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Preface

This book contains the lecture notes prepared for two one-semester courses at the
University of Padua: “Structure of Matter”, B.Sc. in Optics and Optometrics, and
“Quantum Physics”, B.Sc. in Materials Science. These courses give an introduction
to statistical mechanics, special and general relativity, and quantum physics.

Chapter 1 briefly reviews the ideas of classical statistical mechanics introduced
by James Clerk Maxwell, Ludwig Boltzmann, Willard Gibbs, and others. Chapter 2
is mainly devoted to the special relativity of Albert Einstein but we briefly consider
also the general relativity. In Chap. 3, the quantization of light due to Max Planck
and Albert Einstein is historically analyzed, while Chap. 4 discusses the Niels Bohr
quantization of the energy levels and the electromagnetic transitions. Chapter 5 inves-
tigates the Schrödinger equation, which was obtained by Erwin Schrödinger from
the idea of Louis De Broglie to associate with each particle a quantum wavelength.
Chapter 6 describes the basic axioms of quantum mechanics, which were formu-
lated in the seminal books of Paul Dirac and John von Neumann. In this chapter,
we also discuss the stationary perturbation theory, the time-dependent perturbation
theory, and the variational principle. In Chap. 7, there are several important appli-
cation of quantum mechanics: the quantum particle in a box, the quantum particle
in the harmonic potential, and the quantum tunneling. Chapter 8 is devoted to the
study of quantum atomic physics with special emphasis on the spin of the electron,
which needs the Dirac equation for a rigorous theoretical justification. In Chap. 9,
the quantum mechanics of many identical particles at zero temperature is explained,
while in Chap. 10 the discussion is extended at finite temperature by introducing
and using the quantum statistical mechanics. The appendices on Dirac delta func-
tion, complex numbers, Fourier transform, and differential equations are a useful
mathematical aid for the reader.

The author acknowledges Dr. Fabio Sattin, Dr. Andrea Tononi, and Prof. Flavio
Toigo for their critical reading of the manuscript and their useful comments and
suggestions.

Padova, Italy
November 2021

Luca Salasnich
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Chapter 1
Classical Statistical Mechanics

In this chapter we first discuss the kinetic theory of ideal gases and the Maxwell
distribution of velocities at thermal equilibrium. Then we consider the more general
Maxwell-Boltzmann distribution of non-interacting particles under the effect of an
external trapping potential. Finally, we analyze the statistical ensembles of Gibbs,
which are useful tools to connect the microscopic dynamics of interacting particles
to the macroscopic behavior of a thermodynamical system.

1.1 Kinetic Theory of Gases

The kinetic theory of gases was formulated in the period between 1738 and 1871
with the contribution of several scientists, among them Daniel Bernoulli, Mikhail
Lomonosov, August Krönig, Rudolf Clausius, James Clerk Maxwell, and Ludwig
Boltzmann. This theory is the first historical example of statistical mechanics, where
the macroscopic thermodynamics is described in terms of many microscopic parti-
cles (atoms or molecules). Actually, it was the description of the stochastic Brow-
nian motion of a mesoscopic particle in a liquid, as due to the collisions with the
microscopic particles of the liquid (made by Albert Einstein in 1905), that provided
compelling proof that atoms and molecules exist. Jean Perrin confirmed this fact
experimentally in 1908. In 1926, Perrin received the Nobel Prize in Physics “for his
work on the discontinuous structure of matter”.

At thermal equilibrium a very dilute gas is well described by the equation of state

P V = n R T , (1.1)

where P is the pressure of the gas, V is the volume of the gas container, n is the
number of moles, R = 8.314J/(mol×K) is the gas constant, and T is the absolute

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Salasnich, Modern Physics, UNITEXT for Physics,
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2 1 Classical Statistical Mechanics

temperature (i.e. the temperature, usually measured in Kelvin, that is zero at the
absolute zero, where the pressure of the ideal gas becomes zero). Equation (1.1)
is known as the equation of state of ideal gases and it was formulated by Benoit
Clapeyron in 1834.

August Krönig in 1856 and Rudolf Clausius in 1857 found, independently, that
Eq. (1.1) can be derived from a microscopic kinetic theory. First of all, one observes
that the number n of moles is related to the total number N of identical particles by
the formula

n = N

NA
, (1.2)

where NA = 6.02 · 1023 is the Avogadro number. After introducing the Boltzmann
constant

kB = R

NA
= 1.38 · 1023 J/K , (1.3)

Equation (1.1) can be rewritten as

P V = N kB T . (1.4)

This equation clearly shows that the pressure P is proportional to the total number
N of identical particles and to the absolute temperature T . Thus, it is quite natural
to think that the pressure P exerted by the gas is due to the collisions of the particles
on the container walls.

Let us now consider a cubic container of side L and volume V = L3 with N
identical particles of mass m inside. Let us choose the reference system with the
Cartesian axes (x, y, x) along the sides of the box. The force Fi,x that the i-th particle
exerts, along the x direction on the container wall that parallel to the plane (y, z), is
given by

Fi,x = �(mvi,x )

�t
= 2mvi,x

�t
, (1.5)

where �(mvi,x ) is the variation of the linear momentum in the elastic collision of
the i-th particle with the wall and �t is the time interval. This time interval is not
arbitrary if the particles are only interacting with the walls of the container. In this
case

�t = 2L

vi,x
, (1.6)

that is the time interval between two collisions of the i th particle with the same wall.
It then follows that

Fi,x = mv2
i,x

L
(1.7)

and the pressure reads
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P =
∑N

i=1 Fi,x
L2

= m

L3

N∑

i=1

v2
i,x = m

L3
N 〈v2

x 〉 , (1.8)

introducing the statistical average of a generic quantity A shared by the N identical
particles as

〈A〉 = 1

N

N∑

i=1

Ai . (1.9)

Moreover, we assume independence with respect to the direction of propagation of
the squared velocity, namely

〈v2〉 = 〈v2
x 〉 + 〈v2

y〉 + 〈v2
z 〉 = 3〈v2

x 〉 . (1.10)

It follows that the pressure P of Eq. (1.8) can be written as

P = mN

3V
〈v2〉 . (1.11)

Comparing Eq. (1.4) with Eq. (1.11) we obtain

1

2
m〈v2〉 = 3

2
kBT . (1.12)

This remarkable formula relates the statistical average of the kinetic energy of the
miscroscopic identical particles to the macroscopic absolute temperature T of the
gas.

In this treatment the gas is indeed ideal because its total internal energy E is
simply the sum of the kinetic energies (1/2)mv2

i of the single particles, i.e.

E =
N∑

i=1

1

2
mv2

i = N
1

2
m〈v2〉 = N

3

2
kBT = 3

2
nRT . (1.13)

This is the correct formula for the internal energy of a monoatomic gas, where each
atom has only three traslational degrees of freedom. In this case the equipartition
theorem holds: at thermal equilibrium there is an associated thermal energy kBT/2
for each degree of freedom.

1.1.1 Maxwell Distribution of Velocities

In 1860 James ClerkMaxwell considered the probability distribution f (v) of finding
a particle with velocity v in a volume d3v for the ideal gas at thermal equilibrium.
Because f (v) is a probability distribution it must satisfy the condition of normaliza-
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tion to one, namely ∫

R3
f (v) d3v = 1 , (1.14)

whereR3 is the three-dimensional space of velocities. Moreover, the statistical aver-
age of a generic observable A(v), which is a function of v, is defined as

〈A(v)〉 =
∫

R3
A(v) f (v) d3v . (1.15)

In particular, it follows that the statistical average of the square velocity v2 reads

〈v2〉 =
∫

R3
v2 f (v) d3v . (1.16)

Taking into account Eqs. (1.12) and (1.16), it follows that f (v) must satisfy the
crucial condition ∫

R3
v2 f (v) d3v = 3

kBT

m
. (1.17)

Each particle of the gas is characterized by its kinetic energy

1

2
mv2 = 1

2
m

(
v2
x + v2

y + v2
z

)
, (1.18)

and, due to the isotropy of the problem with respect to the velocity, it is quite natural
to assume that

f (v) = C f0(v
2) = C f0(v

2
x + v2

y + v2
z ) = C f0(v

2
x ) f0(v

2
y) f0(v

2
z ) , (1.19)

whereC is a constant fixed by the normalization to one, Eq. (1.14). The only function
f0(x) that satisfies the equation

f0(x + y + z) = f0(x) f0(y) f0(z) (1.20)

is the exponential function, i.e.
f0(x) = eαx , (1.21)

and it means that
f0(v

2) = eα(v2x+v2y+v2z ) , (1.22)

where α is a constant fixed by Eq. (1.17). It is then straightforward to find

C =
(

m

2πkBT

)3/2

and α = − m

2kBT
. (1.23)
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Fig. 1.1 Maxwell
distribution �(v) of the
particle speed v = |v| for
three values of the
temperature T . In the plot we
choose units such that m = 1
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In conclusion, the Maxwell distribution of the velocities is given by

f (v) =
(

m

2πkBT

)3/2

e− mv2

2kB T . (1.24)

For historical reasons one usually introduces the parameter

β = 1

kBT
(1.25)

and the Maxwell distribution then reads

f (v) =
(
mβ

2π

)3/2

e−β mv2

2 . (1.26)

It is important to stress that, adopting spherical coordinates and taking into account
the spherical symmetry of the problem we have d3v = 4πv2dv, and we can also
introduce

�(v) = 4πv2 f (|v|) = 4π

(
mβ

2π

)3/2

v2 e−β mv2

2 (1.27)

that is the probability distribution of the modulus v = |v| of the velocity v, and it is
such that (Fig. 1.1) ∫ +∞

0
�(v) dv = 1 . (1.28)

We immediately find

〈v〉 =
∫ +∞

0
v �(v) dv =

√
8

π

√
kBT

m
(1.29)
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and

〈v2〉 =
∫ +∞

0
v2 �(v) dv = 3

kBT

m
, (1.30)

as expected. Notice that the maximum of �(v) is instead obtained at

vmp =
√
2kBT

m
, (1.31)

which is known as the most probable speed.

1.1.2 Maxwell-Boltzmann Distribution of Energies

In 1872 Ludwig Boltzmann analyzed an ideal gas of identical particles of mass m
under the action of an external potential energy U (r), for instance the gravitational
potential energy U (r) = mgz with gravity acceleration g = 9.81 m/s2. In this case
the total internal energy of the gas is given by

E =
N∑

i=1

ε(ri ,pi ) , (1.32)

where

ε(r,p) = p2

2m
+U (r) (1.33)

is the single-particle energywithp = mv the linearmomentumof the generic particle
and r its position vector. Notice that p2/(2m) = mv2/2.

Boltzmann introduced the adimensional probability distribution f (r, v) of finding
a particle with position r and linear momentum p in this many-particle system at
thermal equilibrium. Because f (r,p) is a probability distribution it must satisfy the
condition of normalization to one, namely

∫

V
f (r, v)

d3r d3p
h3

= 1 , (1.34)

where V is the so-called single-particle phase space volume and h is a constant intro-
duced to make the infinitesimal element d3rd3p/h3 adimensional. The constant h,
whichmust be an action, i.e. a quantitywith units Joule×seconds,will be identified as
the Planck constant (h = 6.63 · 10−34 J×s) within the quantum statistical mechan-
ics. In full generality V = R

3 × R
3 but if the particles are confined in a volume

V one has V = V × R
3. In the absence of the external potential one must recover

the Maxwell distribution of Eq. (1.26) and, consequently, Boltzmann suggested the
following more general Maxwell-Boltzmann distribution
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f (r,p) = 1

Z1
e−βε(r,p) , (1.35)

where Z1, that is called single-particle partition function, is determined by the nor-
malization (1.34), i.e.

Z1 =
∫

V
e−βε(r,p) d

3r d3p
h3

. (1.36)

According to Boltzmann, for a gas of non-interacting particles, the statistical average
of a generic observable A(r,p), which is a function of r and p, is defined as

〈A(r,p)〉 =
∫

V
A(r,p) f (v)

d3r d3p
h3

, (1.37)

namely

〈A(r,p)〉 = 1

Z1

∫

V
A(r,p) e−βε(r,p) d

3r d3p
h3

(1.38)

Many experiments have shown that the Maxwell-Boltzmann distribution (1.35) is
extemely accurate for non-interacting identical particles. However, at very low tem-
perature the Maxwell-Boltzmann distribution is not reliable because of quantum
mechanical effects, which are the main topic of this book.

1.1.3 Single-Particle Density of States

In many applications the single-particle partition function (1.36) is written in a com-
pact way as

Z1 =
∫ +∞

0
D1(ε) e

−βε dε , (1.39)

where

D1(ε) =
∫

V
δ (ε − ε(r,p))

d3r d3p
h3

(1.40)

is the so-called single-particle density of states with δ(x) the Dirac delta function.
Actually, in thisway the expression ofZ1 seems simple but, in general, the calculation
of the density of states D1(ε) is not.

As an example, let us suppose that ε(r,p) = p2/(2m) and V = V × R
3. Then

we have
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D1(ε) =
∫

V×R3
δ

(

ε − p2

2m

)
d3r d3p

h3
= 4πV

h3

∫ +∞

0
p2 δ

(

ε − p2

2m

)

dp

= 2πV

h3
(2m)3/2

∫ +∞

0
y1/2 δ(ε − y) dy = 2πV

h3
(2m)3/2 ε1/2 . (1.41)

This is the single-particle density of states of a gas of ideal identical particles of mass
m moving inside a box of volume V .

1.2 Statistical Ensembles of Gibbs

The total energy of Eq. (1.32) is separable in the contribution of single-particle
energies because the particles are not interacting each other. In full generality one
must take into account the interaction potential V (ri , r j ) between particles and the
total energy of the system of N identical interacting particles of mass m reads

E =
N∑

i=1

[
p2i
2m

+U (ri )
]

+ 1

2

N∑

i, j=1
i �= j

V (ri , r j ) = H(�r, �p) , (1.42)

where the total energy is a function of �r = (r1, r2, ..., rN−1, rN ) and �p = (p1,p2, ...,
pN−1,pN ) which are vectors with 3N components. Here we have used the symbol
H(�r, �p) to represent the functional dependence of the energy with respect to the 6N
variables. When the energy is written in terms of coordinates and linear momenta it
is said to be the Hamiltonian function H of the system.

In 1878 Joisiah Willard Gibbs introduced the concept of statistical ensemble: a
large number of virtual copies of a macroscopic system, each of which represents a
possible microscopic state that the macroscopic system might be in. Gibbs proposed
different statistical ensembles and here we discuss the three most used.

1.2.1 Microcanonical Ensemble

The microcanonical ensemble describes an isolated system characterized by a fixed
volume V , a fixed number N of identical particles, and a fixed total energy E .
According toGibbs, for a gas of interacting particles in themicrocanonical ensemble,
the statistical average of a generic observable A(�r, �p) is defined as

〈A(�r, �p)〉 = 1

W
∫

V N×R3N
A(�r, �p)W0 δ (E − H(�r, �p))

d3N �r d3N �p
N ! h3N , (1.43)
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where δ(x) is the Dirac delta function, W0 is an arbitrary constant with the units of
energy such that the statistical density functionW0 δ (E − H(�r, �p)) is adimensional,
and the key quantity is the number W of microscopic states (microstates) which
correspond to the same macroscopic state:

W =
∫

V N×R3N
W0 δ (E − H(�r, �p))

d3N �r d3N �p
N ! h3N , (1.44)

It is important to stress that the factorial term N ! which appears in Eqs. (1.43) and
(1.44) is know as the correct counting term of Gibbs, and it takes into account that
identical particles must be indistinguishable. Indeed, N ! is the number of permuta-
tions of N particles.

In themicrocanonical ensemble ofGibbs the connectionwith the thermodynamics
is simply given by

S = kB ln (W) , (1.45)

which introduces the entropy S as a function of energy E , volume V and number N
of particles. Note that this equation was discovered by Ludwig Boltzmann in 1872
and that the correct counting term N ! of Gibbs is really crucial to get an extensive
entropy, i.e. an entropy whose value is proportional to the size of the system.

It is important to remember that Rudolf Clausius in 1850 made the first complete
formulation of the first law of thermodynamics: the infinitesimal heat dQ absorbed by
a macroscopic system produces an infinitesimal work dW done by the macroscopic
system or an infinitesimal growth dE of its internal energy. In symbols,

dQ = dW + dE . (1.46)

In addition, if this infinitesimal transformation is reversible, then

dQ = T dS , (1.47)

where T is the temperature and dS is an infinitesimal variation of the entropy S.
Moreover, in many cases the work can be written as

dW = P dV − μ dN (1.48)

where P is the pressure, dV is an infinitesimal variation of the volume, μ is the
chemical potential, and dN is the corresponding variation of the number of particles.
Under these conditions Eq. (1.46) gives

dS = 1

T
dE + P

T
dV − μ

T
dN . (1.49)

Now, from the entropy S(E, V, N ) as function of internal energy E , volume V , and
number N of particles, we also have
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dS =
(

∂S

∂E

)

V,N

dE +
(

∂S

∂V

)

E,N

dV +
(

∂S

∂N

)

E,V

dN . (1.50)

Comparing Eq. (1.49) with Eq. (1.50) we obtain the absolute temperature T , the
pressure P and the chemical potential μ as

1

T
=

(
∂S

∂E

)

V,N

, P = T

(
∂S

∂V

)

E,N

, μ = −T

(
∂S

∂N

)

E,V

, (1.51)

which are familiar relationships of equilibrium thermodynamics. In the microcanon-
ical ensemble the independent thermodynamic variables are E , N and V , while T ,
P and μ are dependent thermodynamic variables.

1.2.2 Canonical Ensemble

The canonical ensemble describes a system characterized by a fixed volume V , a
fixed number N of identical particles, and a fixed temperature T due to the thermal
contact with a heat bath. According to Gibbs, for a gas of particles in the canonical
ensemble, the statistical average of a generic observable A(�r, �p) is defined as

〈A(�r, �p)〉 = 1

ZN

∫

V N×R3N
A(�r, �p) e−βH(�r,�p) d

3N �r d3N �p
N ! h3N , (1.52)

where ZN is the canonical partition function defined as

ZN =
∫

V N×R3N
e−βH(�r,�p) d

3N �r d3N �p
N ! h3N , (1.53)

which is clearly a generalization of the single-particle partition function Z1 of Eq.
(1.53).

In the canonical ensemble, the connection between statistical mechanics and ther-
modynamics is due to the formula

ZN = e−βF , (1.54)

which introduces the Helmholtz free energy F , whose thermodynamical definition
is

F = E − T S , (1.55)

where E is the internal energy, T is the temperature and S is the entropy. Here F
is as a function of temperature T , volume V and number N of particles. From the
Helmholtz free energy F(T, V, N ) the entropy S, the pressure P and the chemical
potential μ are obtained as
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S = −
(

∂F

∂T

)

V,N

, P = −
(

∂F

∂V

)

T,N

, μ =
(

∂F

∂N

)

T,V

, (1.56)

which are standard relationships of equilibrium thermodynamics such that

dF = −SdT − PdV + μdN , (1.57)

that is another formulation of the first law of thermodynamics. In the canonical
ensemble the independent thermodynamic variables are T , N and V , while S, P and
μ are dependent thermodynamic variables.

1.2.3 Grand Canonical Ensemble

The grand canonical ensemble describes an open system characterized by a fixed
volume V , a fixed temperature T , and a fixed chemical potential μ due to the weak
thermal-chemical contact with a reservoir. According to Gibbs, for a gas of inter-
acting particles in the grand canonical ensemble, the statistical average of a generic
observable A(�r, �p) is defined as

〈A(�r, �p)〉 = 1

Z
+∞∑

N=0

∫

V N×R3N
A(�r, �p) e−β(H(�r,�p)−μN ) d

3N �r d3N �p
N ! h3N , (1.58)

where Z is the grand canonical partition function defined as

Z =
+∞∑

N=0

eβμNZN , (1.59)

namely as

Z =
+∞∑

N=0

∫

V N×R3N
e−β(H(�r,�p)−μN ) d

3N �r d3N �p
N ! h3N . (1.60)

In the grand canonical ensemble the connection between the statistical mechanics
and the thermodynamics is due to the formula

Z = e−β� , (1.61)

which introduces the grand potential �, whose thermodynamical definition is

� = E − T S − μ N . (1.62)
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Here � is a function of temperature T , volume V and chemical potential μ. From
the grand potential �(T, V,μ) the entropy S, the pressure P and the number N of
particles are obtained as

S = −
(

∂�

∂T

)

V,μ

, P = −
(

∂�

∂V

)

T,μ

, N = −
(

∂�

∂μ

)

V,T

, (1.63)

which are standard relationships of equilibrium thermodynamics such that

d� = −S dT − P dV − N dμ , (1.64)

that is an alternative formulation of the first law of thermodynamics. In the grand
canonical ensemble the independent thermodynamic variables are T , μ and V , while
S, P and N are dependent thermodynamic variables.

1.2.4 Many-Particle Density of States

Clearly, the canonical partition function (1.53) can be written as

ZN =
∫ +∞

0
DN (ε) e−βε dε , (1.65)

where

DN (ε) =
∫

V N×R3N
δ (ε − H(�r, �p))

d3N �r d3N �p
N ! h3N , (1.66)

is themany-particle density of states. Similarly, the grand canonical partition function
(1.60) can be written as

Z =
+∞∑

N=0

∫ +∞

0
DN (ε) e−β(ε−μN ) dε . (1.67)

1.3 Heat Capacity of Gases and Solids

The molar heat capacity at constant volume V is defined as

cV = 1

n

(
dQ

dT

)

V,N

, (1.68)
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where dQ is the amount of exchanged heat and dT is the corresponding variation
of temperature. Because n = N/NA with NA the Avogadro number, and here dV =
dN = 0, from Eq. (1.48) it follows dQ = dE , i.e.

cV = 1

n

(
dE

dT

)

V,N

. (1.69)

For an ideal monoatomic gas the internal energy is given by E = (3/2)nRT and
consequently

cV = 3

2
R . (1.70)

This result is in very good agreementwith the experimental data ofmonoatomic gases
at room temperature, and also at high temperature. However, at low temperature one
finds that this formula fails. The molar heat capacity of the monoatomic gas can
also be deduced invoking the equipartition theorem of classical statistical mechanics
saying that for each quadratic degree of freedom there is an associated thermal energy
kBT/2. Indeed, in the case of a free atom there are 3 translational degrees of freedom,
which are 3 quadratic components of the velocity.

In a crystalline solid the atoms are distributed in a ordered and periodic structure.
These atoms remain, on the average, in a specific site of the crystal lattice but they
can oscillate around their equilibrium position. Thus, the motion of each atom in a
solid is similar to the one of a harmonic oscillator, which is characterized by 3 + 3
degrees of freedom: 3 for the kinetic energy and 3 for the elastic potential energy.
Using again the equipartition theorem one immediately gets

cV = 3R (1.71)

because E = 6N (kBT/2) and cV = 3NkB/n = 3NkB/(N/NA) = 3kBNA = 3R.
This expression for the molar heat capacity at constant volume of a solid is know
as Dulong-Petit law. It was proposed in 1819 by Pierre Louis Dulong and Alexis
Therese Petit as simple empirical fitting formula of their eperimental data at room
temperature. Subsequent low-temperature studies showed that the Dulong-Petis law
always fails, provided the temperature is low enough.

We have seen two examples of physical systems (monoatomic gas and crystalline
solid) where the molar specific heat predicted by classical statistical mechanics is in
disagreement with experiments at low temperature. In Chaps. 4 and 10 we will see
that quantum statisticalmechanics is the appropriate theory to explain these empirical
evidences.
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Further Reading

Two excellent books on statistical mechanics are:
Landau, L.D., Lifshitz, E.M.: Statistical Physics. Pergamon (1980).
Huang, K.: Statistical Mechanics. Wiley (1987).
Relevant historical papers are:
Maxwell, J.C.: Philos. Trans. R. Soc. Lond. 157, 49 (1867).
Boltzmann, L.: Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in
Wien, Mathematisch-Naturwissenschaftliche Classe, 66, 275 (1872).
The statistical ensembles were introduced by Gibbs in his book:
Gibbs, J.W.: Elementary Principles in StatisticalMechanics. Charles Scribner’s Sons
(1902); Cambridge University Press (2010).



Chapter 2
Special and General Relativity

In this chapter we review the main results of the theory of special relativity, which
was developed by Einstein in 1905. Special relativity has a wide range of conse-
quences which have been confirmed by experiments. Among them, the universal
speed limit, the length contraction, the time dilation, the mass-energy equivalence,
and the formulas of relativistic dynamics. For the sake of completeness, in the last
section we briefly discuss the theory of general relativity, that is the geometric theory
of gravitation formulated by Einstein in 1916.

2.1 Electromagnetic Waves

In 1861 James ClerkMaxwell wrote a set of 20 coupled partial differential equations
which are the foundation of classical electromagnetism. Some years later Oliver
Heaviside restructuredMaxwell original equations to be the 4 equations that we now
recognize as Maxwell’s equations. In the vacuum these equations are

∇ · E = ρ

ε0
, (2.1)

∇ · B = 0 , (2.2)

∇ ∧ E = −∂B
∂t

, (2.3)

∇ ∧ B = μ0 j + ε0 μ0
∂E
∂t

, (2.4)

where E(r, t) is the electric field, B(r, t) is the magnetic field, ρ(r, t) is the electric
charge density, and j(r, t) is the electric current density. ε0 is the dielectric constant
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of vacuum, given by ε0 = 8.85 · 10−12 C2/(N×m2). Instead, μ0 is the paramagnetic
constant of vacuum, given by μ0 = 4π · 10−7 V×s/(amp×m).

In the absence of electric sources (ρ = 0, j = 0) Maxwell’s equations are much
simpler and read

∇ · E = 0 , (2.5)

∇ · B = 0 , (2.6)

∇ ∧ E = −∂B
∂t

, (2.7)

∇ ∧ B = ε0 μ0
∂E
∂t

. (2.8)

Maxwell found that the electric and magnetic fields of Eqs. (2.5)–(2.8) satisfy the
wave equations

(
1

c2
∂2

∂t2
− ∇2

)
E = 0 , (2.9)

(
1

c2
∂2

∂t2
− ∇2

)
B = 0 , (2.10)

where

c = 1√
ε0μ0

= 3 · 108 m/s (2.11)

is the speed of light in vacuum. It is important to stress that, strictly speaking, since
1983 the meter is defined in the International System of Units as the distance light
travels in vacuum in 1/299792458 of a second. This definition fixes the speed of light
in vacuum at exactly 299792458 m/s. From Eqs. (2.9) to (2.10) Maxwell concluded
that light is an electromagnetic field characterized by the coexisting presence of an
electric field E(r, t) and a magnetic field B(r, t). Note that Eqs. (2.9) and (2.10) are
usually called d’Alembert equations of electromagnetic waves.

As an exercise, we now derive Eq. (2.9) from Maxwell’s equations. Inserting the
curl into Eq. (2.7) we get

∇ ∧ (∇ ∧ E) = ∇ ∧
(

−∂B
∂t

)
= − ∂

∂t
(∇ ∧ B) . (2.12)

For any vector field E(r, t), an identity of differential calculus gives

∇ ∧ (∇ ∧ E) = −∇2E + ∇ (∇ · E) . (2.13)

Therefore, by using Eq. (2.5), for the electric field we obtain

∇ ∧ (∇ ∧ E) = −∇2E (2.14)
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and Eq. (2.12) becomes

− ∇2E = − ∂

∂t
(∇ ∧ B) . (2.15)

Finally, taking into account Eq. (2.8), we can write

− ∇2E = −ε0μ0
∂2E
∂t2

, (2.16)

which is exactly Eq. (2.9). In a similar way one can easily derive also Eq. (2.10).
Equations (2.9) and (2.10), which are fully confirmed by experiments, admit

monochromatic complex plane wave solutions

E(r, t) = E0 e
i(k·r−ωt) , (2.17)

B(r, t) = B0 e
i(k·r−ωt) , (2.18)

where k is the wavevector and ω the angular frequency, such that

ω = c k , (2.19)

is the dispersion relation, with k = |k| is thewavenumber. FromMaxwell’s equations
one finds that the vectors E(r, t) and B(r, t) of these electromagnetic waves are
mutually orthogonal. In addition they are transverse fields, i.e. orthogonal to the
wavevectork,whichgives thedirectionof propagationof thewave. For completeness,
let us remind that the wavelength λ is given by

λ = 2π

k
, (2.20)

and that the linear frequency ν and the angular frequency ω = 2πν are related to the
wavelength λ and to the wavenumber k by the formulas

λ ν = ω

k
= c . (2.21)

Assuming that the electromagnetic plane waves are confined in a cubic region
of volume V = L3 and imposing periodic boundary conditions, i.e. E(x + L , y +
L , z + L , t) = E(x, y, z, t) and B(x + L , y + L , z + L , t) = B(x, y, z, t), we
immediately find from Eqs. (2.17) and (2.18) that the wavevector k is quantized,
namely

k = 2π

L
n , (2.22)

where n = (n1, n2, n3) ∈ Z
3. In this case, the sumwith respect to all the wavevectors

is usually written as
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∑
k

=
∑
n

=
+∞∑

n1=−∞

+∞∑
n2=−∞

+∞∑
n3=−∞

. (2.23)

It follows that in the continuum limit one gets

∑
k

=
∑
n

→
∫

d3n = L3
∫

d3k
(2π)3

= V
∫

d3k
(2π)3

. (2.24)

2.1.1 Lorentz Invariance of d’Alembert Operator

In 1887 Albert Michelson and Edward Morley made a break-through experiment of
optical interferometry showing that the speed of light in the vacuum is always given
by Eq. (2.11) independently on the relative motion of the observer. Two years later,
Henry Poincaré suggested that the speed of light is the maximum possible value for
any kind of velocity. On the basis of previous ideas of George Francis FitzGerald,
in 1904 Hendrik Lorentz found that Maxwell’s equations of electromagnetism, and
consequently also d’Alembert’s equations (2.9) and (2.10), are not invariant with
respect to the familiar Galilei transformations

x ′ = x − vt , (2.25)

y′ = y , (2.26)

z′ = z , (2.27)

t ′ = t . (2.28)

In theGalilei transformations, one considers a particle P measured by two orthogonal
Cartesian reference systems O and O ′. Within this framework, OP = r = (x, y, z)
is the position vector and t is the time coordinate of the particle observed bt the
reference system O . Instead, O ′P = r′ = (x ′, y′, z′) is the position vector and t ′ is
the time coordinate of a particle observed by the reference system O ′. Moreover, here
we have assumed that the two reference systems are moving with relative velocity
v = (v, 0, 0), such that at t = t ′ = 0 the two reference systems are coincident and
during the time evolution they simply translate each other along the X axis.

Hendrik Lorentz considered the more general transformations

x ′ = γ(x − v t) , (2.29)

y′ = y , (2.30)

z′ = z , (2.31)

t ′ = γ
(
t − β

x

c

)
, (2.32)
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where γ and β are unknown dimensionless parameters. Following Lorentz, we can
ask ourself what are the values of γ and β for which the d’Alembert operator

1

c2
∂2

∂t2
− ∇2 , (2.33)

that appears in Eqs. (2.9) and (2.10), is invariant with respect to (2.29), (2.30), (2.31),
(2.32). Taking into account the rules of differential calculus we find

∂

∂x
= ∂x ′

∂x

∂

∂x ′ + ∂t ′

∂x

∂

∂t ′
= γ

∂

∂x ′ − γ
β

c

∂

∂t ′
, (2.34)

∂

∂y
= ∂

∂y′ , (2.35)

∂

∂z
= ∂

∂z′ , (2.36)

∂

∂t
= ∂x ′

∂t

∂

∂x ′ + ∂t ′

∂t

∂

∂t ′
= −γv

∂

∂x ′ + γ
∂

∂t ′
. (2.37)

It follows that

∂2

∂x2
= γ2 ∂2

∂(x ′)2
+ γ2 β2

c2
∂2

∂(t ′)2
− 2γ2 β

c

∂2

∂x ′∂t ′
, (2.38)

∂2

∂y2
= ∂2

∂(y′)2
, (2.39)

∂2

∂z2
= ∂2

∂(z′)2
, (2.40)

∂2

∂t2
= γ2v2 ∂2

∂(x ′)2
+ γ2 ∂2

∂(t ′)2
− 2γ2v

∂2

∂x ′∂t ′
. (2.41)

Combining Eqs. (2.38) and (2.41) we obtain

1

c2
∂2

∂t2
− ∂2

∂x2
= γ2

c2
(1 − β2)

∂2

∂(x ′)2
− γ2

(
1 − v2

c2

)
∂2

∂(x ′)2
− 2γ2

(
v

c2
− β

c

)
∂2

∂x ′∂t ′
(2.42)

which gives
1

c2
∂2

∂t2
− ∂2

∂x2
= 1

c2
∂2

∂(t ′)2
− ∂2

∂(x ′)2
(2.43)

only if β = v/c and γ2 = 1 − β2 = 1 − v2/c2. These are the parameters of the so-
called Lorentz transformations.
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2.2 Lorentz Transformations

Wehave just proved that the d’Alembert equations of the electromagneticwaves (2.9)
and (2.10) are not invatiant with respect to the Galilei transformations (2.25)–(2.28)
but are instead invariant with respect to the Lorentz transformations

x ′ = x − v t√
1 − v2

c2

, (2.44)

y′ = y , (2.45)

z′ = z , (2.46)

t ′ = t − v x/c2√
1 − v2

c2

. (2.47)

It is possible to prove that also Maxwell’s equations (2.1)–(2.4) are invariant with
respect to these Lorentz transformations. Moreover, it is straightforward to verify
that, under the condition

v

c
	 1 , (2.48)

the Lorentz transformations reduce to theGalilei transformations. Thus, if the relative
velocity v of the two reference systems is much smaller than the speed of light c,
Lorentz and Galilei transformations are practically equivalent.

2.2.1 Thought Experiment with Light Bulb

In 1905 Albert Einstein recognized the strict connection between the invariance of
the speed of light and the Lorentz transformations. Here we analyze a Gedankenex-
periment (thought experiment) that was discussed in 1916 by Einstein to explain in
a simple way this connection.

Let us consider a small light bulb that at time zero is turned on emitting light in
all directions. Assume that the emission of light is uniform. Consider a stationary
reference system O with origin in the center of the bulb. According to this reference
system a point P on the surface of the sphere of light emitted by the bulb will have
coordinates r = (x, y, z) which satisfy the equation

|r| = c t , (2.49)

where c is the speed of light and t the time measured by the system reference system
O . This formula can be rewritten as

√
x2 + y2 + z2 = c t (2.50)
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That is, by squaring it we get

x2 + y2 + z2 = c2t2 . (2.51)

This is the equation of a sphere of radius r that grows with time with the law r = ct .
Let us now consider another reference system O ′ such that the coordinates

r′ = (x ′, y′, z′) of the point P with respect to this reference system reference sys-
tem are related to those of the reference system O by the generic transformations
(2.29)–(2.32), where t ′ is the time measured by the reference system O ′. Again, in
these generic transformations, γ and β are dimensionless parameters that must be
determined. According to the reference system O ′, a point P on the surface of the
sphere of light emitted by the bulb will have coordinates r′ = (x ′, y′, z′) that satisfy
the equation

|r′| = c′ t ′ , (2.52)

or
(x ′)2 + (y′)2 + (z′)2 = (c′)2(t ′)2 . (2.53)

Einstein’s crucial assumption, based on the experiment of Michelson-Morley
experiment and earlier work by Poincare and others, is

c = c′ . (2.54)

Therefore we have

0 = x2 + y2 + z2 − c2t2 = (x ′)2 + (y′)2 + (z′)2 − c2(t ′)2 . (2.55)

Inserting in this expression the generic space-time coordinate transformation given
by Eqs. (2.29)–(2.32), after some algebraic calculations we obtain

γ = 1√
1 − v2

c2

and also β = v

c
. (2.56)

Thus, in conclusion, we have found that correct transformations which ensure the
invariance of the speed of light are nothing else than the Lorentz transformations.

2.3 Einstein Postulates

This research activity on invariant transformations was summarized by Albert Ein-
stein, who proposed to adopt two suggestive postulates:

P1: The laws of physics are the same for all inertial reference systems.
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P2: The speed of light in vacuum is the same in all inertial reference systems.

It is important to stress that a reference system is called inertial if the first principle
of dynamics is valid for it: a material point not subject to external forces measured in
this reference system is either at rest or moving at a constant speed. In other words,
two reference systems are inertial if their relative velocity remains constant.

Fromhis twopostulatesEinstein deduced that the laws of physicsmust be invariant
with respect to the Lorentz transformations but the laws of Newtonian mechanics
(which are not) must be modified.

2.4 Relativistic Kinematics

Einstein developed a new mechanics, the relativistic mechanics, which relates back
to Newtonian mechanics when the velocities of massive particles are much smaller
than the speed of light c. As known, mechanics can be divided into two parts: the
kinematics and dynamics. We begin here to analyze the relativistic kinematics.

2.4.1 Length Contraction

One of the surprising results of relativistic kinematics is the contraction of length:
the length L of a rod measured by an observer (measuring instrument) moving at the
velocity v with respect to the rod given by

L = L0

√
1 − v2

c2
, (2.57)

where L0 is the proper length of the rod, i.e., the length measured by an observer for
whom the rod is at rest (Fig. 2.1).

The contraction of lengths is easily verified using the first equation of Lorentz
transformations:

x ′ = x − v t√
1 − v2

c2

. (2.58)

A finite variation of the space-time coordinates implies

�x ′ = �x − v �t√
1 − v2

c2

. (2.59)

In our problem�x = L is the length of the bar with respect to the system of reference
O . The length is measured by O instantaneously, i.e. with�t = 0. Clearly�x ′ = L0
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Fig. 2.1 Scaled length L/L0
of the rod as a function of the
scaled velocity v/c of the rod
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is instead the length of the barmeasured at the reference systemO ′ which is comoving
with the bar. Therefore we have

L0 = L√
1 − v2

c2

(2.60)

or, equivalently, Eq. (2.57). Note that the length contraction appears only in the
direction of the moving observer.

2.4.2 Time Dilation

Another surprising result of relativistic kinematics is the dilation of time: the time
interval T of a clock measured by an observer moving at the speed v with respect to
the clock is given by

T = T0√
1 − v2

c2

, (2.61)

where T0 is the proper time of the clock, i.e. the time measured by an observer for
whom the clock is at rest (Fig. 2.2).

The dilation of time is easily demonstrated by using the fourth equation of Lorentz
transformations:

t ′ = t − v
c2 x√

1 − v2

c2

. (2.62)

A finite variation of the space-time coordinates implies
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Fig. 2.2 Scaled time
interval T/T0 of the clock as
a function of the scaled
velocity v/c of the clock
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�t ′ = �t − v
c2 �x√

1 − v2

c2

. (2.63)

In our problem �t = T0 is the time interval of a clock with respect to the reference
systemO , comovingwith the clock, andmeasuredwith the clock at the sameposition,
i.e. with �x = 0. Clearly �t ′ = T is instead the time interval measured by the
reference system O ′. Therefore we obtain precisely Eq. (2.61).

2.4.3 Transformation of Velocities

Let us consider the Lorentz transformations given byEqs. (2.44)–(2.47). An infinites-
imal variation of the space-time coordinates implies

dx ′ = dx − v dt√
1 − v2

c2

, (2.64)

dy′ = dy , (2.65)

dz′ = dz , (2.66)

dt ′ = dt − v dx/c2√
1 − v2

c2

. (2.67)

The velocity V = (Vx , Vy, Vz) of the particle P , as seen by the reference system
O , is defined as

Vx = dx

dt
, Vy = dy

dt
, Vz = dz

dt
, (2.68)
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while the velocityV′ = (V ′
x , V

′
y, V

′
z ) of the particle P , as seen by the reference system

O ′, is instead defined as

V ′
x = dx ′

dt ′
, V ′

y = dy′

dt ′
, V ′

z = dz′

dt ′
. (2.69)

By using the differential Lorentz transformations (2.64)–(2.67) one derives the
Lorentz transformations for the velocities

V ′
x = Vx − v

1 − v Vx
c2

, (2.70)

V ′
y =

Vy

√
1 − v2

c2

1 − v Vx
c2

, (2.71)

V ′
z =

Vz

√
1 − v2

c2

1 − v Vx
c2

. (2.72)

These relativistic transformations of velocities are much more complicated than the
relativistic transformations of positions. However, for v 	 c and Vx 	 c one gets

V ′
x = Vx − v , (2.73)

V ′
y = Vy , (2.74)

V ′
z = Vz , (2.75)

that are the familiar Galilei transformations of velocities. On the other hand, set-
ting V = (c, 0, 0) in Eqs. (2.70)–(2.72) it follows that V′ = (c, 0, 0), which is fully
consistent with the postulate P2 of Einstein about the invariance of the speed of light.

2.5 Relativistic Dynamics

The postulate P1 of Einstein says that laws of physics are invariant with respect
to Lorentz transformations. However, the laws of Newtonian mechanics, which are
invariant with respect to Galilei transformation, are not invariant with respect to
Lorentz transformations. For this reason, Einstein concluded that the Newton law

F = m a , (2.76)

where F is the force acting on a particle of constant massm moving with acceleration
a, must be modified. Einstein suggested the following relativistic Newton law

F = dp
dt

, (2.77)
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where
p = m v√

1 − v2

c2

. (2.78)

is the relativistic linear momentum of the particle of mass m moving with velocity
v. It is possible to prove that Eq. (2.77) equipped with Eq. (2.78) is indeed Lorentz
invariant. It is important to stress that the relativistic linear momentum can also
written as

p = mR v (2.79)

where
mR = m√

1 − v2

c2

(2.80)

is the so-called relativistic mass of the particle. However, modern scientific books
and papers do not use anymore the concept of relativistic mass.

It can be seen immediately that if v 	 c the relativistic linear momentum (2.78)
reduces to the familiar non-relativistic expression

p = m v , (2.81)

and the relativistic Newton law reduces to the non-relativistic one, i.e. Eq. (2.76).
On the other hand, if the particle is moving at the speed of of light, that is v = c, it
follows that

p = m v
0

. (2.82)

This expression is mathematically ill-defined, unless one assumes that the massm is
zero. In this case

p = 0
0

(2.83)

which is an indeterminate form of type 0/0. This results somehow suggests that a
particle moving at the speed of light must have zero mass. We will see that, indeed,
the light is made of fotons, which are particles with zero mass.

2.5.1 Mechanical Work and Relativistic Energy

Also in relativistic mechanics the definition of mechanical work WAB done by a
particle to move from the point A to the point B is given by

WAB =
∫ B

A
F · dr . (2.84)
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We now show that the theorem which relates the mechanical work to the kinetic-
energy difference is valid also in relativistic mechanics but the relativistic kinetic
energy is different with respect to the non-relativistic one. By using the relativistic
Eqs. (2.77) and (2.78) we obtain

WAB =
∫ B

A

dp
dt

· dr =
∫ B

A
dp · dr

dt
=

∫ B

A
dp · v

= −
∫ B

A
p · dv + [

p · v]BA = −
∫ B

A

m√
1 − v2

c2

v dv +
⎡
⎣ mv2√

1 − v2

c2

⎤
⎦

B

A

= EK (vB) − EK (vA) = �EK , (2.85)

where

EK (v) = mc2√
1 − v2

c2

− mc2 (2.86)

is the relativistic kinetic energy, such that

EK (v = 0) = 0 . (2.87)

The quantity
ER = mc2 (2.88)

is called rest energy of the particle.
It is important to observe that the relativistic kinetic energy EK (v), given by Eq.

(2.86), can be Taylor expanded around v = 0 giving

EK (v) = 1

2
mv2 − mv4

8c2
+ ... , (2.89)

which reduces to the familiar non-relativistic kinetic energy mv2/2 if v 	 c.
The rest energy ER = mc2 is extremely important because it explicitly shows

the mass-energy equivalence: all massive particles have an intrinsic energy directly
related to their mass. One can then introduce the total relativistic energy of a free
particle as

E = ER + EK = mc2√
1 − v2

c2

. (2.90)

In general, the conservation of the total energy is a universal principle in Physics.
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2.5.2 Relativistic Energy and Linear Momentum

Up to nowwe have discussed two relevant relativistic formulas for the linear momen-
tum, Eq. (2.78), and for the energy, Eq. (2.90). Squaring the two expressions we
immediately obtain

p2 = m2v2

1 − v2

c2

, (2.91)

E2 = m2c2

1 − v2

c2

. (2.92)

Then, after simple manipulations, we find that

E2 − p2c2 = m2c4 , (2.93)

namely
E =

√
m2c4 + p2c2 . (2.94)

This is a very nice results of Einstein’s relativistic dynamics: the energy E of a
particle in terms of its mass m and its linear momentum p = |p|.

Clearly, if the particle has zero momentum, that is p = 0, then from Eq. (2.94)
we get

E = mc2 = ER , (2.95)

which is the previously introduced rest energy of the particle. If instead the particle
has zero mass, that is m = 0, from Eq. (2.94) we obtain

E = c p , (2.96)

which is the energy of a particle with zero mass. We have seen previously that the
linear momentum p of a particle of zero mass (which must have velocity equal to the
speed of light) is undetermined. It follows that its energy E is also undetermined.
Despite this, the two indeterminate quantities are related to each other by the Eq.
(2.96). It is now estabished that the elementary particles that constitute the light, the
so-called photons, are particles with zero mass.

2.5.3 Non-relativistic Limit of the Energy

In general, for a particle with p 
= 0 and m 
= 0, Eq. (2.94) can be rewritten as
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E = mc2
√
1 + p2

m2c2
. (2.97)

We can Taylor expanding the square root of Eq. (2.97) obtaining

E = mc2 + p2

2m
− p4

8m3c2
+ ... . (2.98)

This shows, another time, that the energy E is given by the sum of two contributions:
the rest energy mc2 and the relativistic kinetic energy

EK = p2

2m
− p4

8m3c2
+ ... (2.99)

which reduces to the non-relativistic kinetic energy p2/(2m) if p 	 mc.
As previously stressed, the formulas of relativistic dynamics have been confirmed

by many experiments with interacting relativistic particles. Among them there are
the particle-physics experiments routinely performed in the colliders of the European
Organization for Nuclear Research (CERN) and the Fermi National Accelerator
Laboratory (Fermilab). In the next chapters we will see that the relativistic theory
plays a crucial role also in atomic, molecular, and optical physics.

2.6 Basic Concepts of General Relativity

The theory of general relativity, formulated by Albert Einstein in 1915, is the modern
description of gravitational phenomena. This theory is a coherent account of gravity
as a geometric characteristic of four-dimensional spacetime, that generalizes special
relativity and refines Newton’s law of universal gravitation.

2.6.1 Spacetime Interval

We have seen that in special relativity space and time are strictly related. It is then
quite natural to introduce a four-dimensional spacetime point x = (x0, x1, x2, x3) to
represent the spacetime coordinates of a particle seen by a frame of reference. The
four-position x is also called spacetime event. The time component x0 is defined as
x0 = ct with c the speed of light in vacuum and t the time coordinate. The space
components x1, x2, x3 are nothing else than the familiar coordinates of the three-
dimensional position vector r = (x1, x2, x3). A generic component of the spacetime
point x is denoted by xμ with μ = 0, 1, 2, 3. This xμ is called contravariant compo-
nent of the four-vector x . Formally, one can write
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xμ =

⎛
⎜⎜⎝
x0

x1

x2

x3

⎞
⎟⎟⎠ (2.100)

By using these notations, the Lorentz transformations (2.44)–(2.47) become

x0
′ = x0 − β x1√

1 − β2
, (2.101)

x1
′ = x1 − β x0√

1 − β2
, (2.102)

x2
′ = x2 , (2.103)

x3
′ = x3 , (2.104)

with β = v/c. One can then introduce the infinitesimal spacetime interval ds such
that

ds2 = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2 = c2dt2 − dr2 = c2dt2
(
1 − v2

c2

)
,

(2.105)
where v is here defined as v = |v| = |dr/dt |. Quite remarkably this spacetime inter-
val is invariant for inertial frames. In fact, by using the Lorentz transformations
(2.101)–(2.104) we have

(ds ′)2 = (dx0
′
)2 − (dx1

′
)2 − (dx2

′
)2 − (dx3

′
)2

= (dx0 − β dx1)2

(1 − β2)
− (dx1 − β dx0)2

(1 − β2)
− (dx2)2 − (dx3)2

= (1 − β2)
(
(dx0)2 − (dx1)2

)
(1 − β2)

− (dx2)2 − (dx3)2

= ds2 . (2.106)

The infinitesimal spacetime interval (2.105) can be also written is a more formal way
as

ds2 = ημν dx
μ dxν , (2.107)

where ημν is the Minkowski metric tensor, dxμ is an infinitesimal variation of xμ

and repeated indices means the summation over them. The metric tensor ημν is the
element of a 4 × 4 matrix. Formally, we can write

ημν =

⎛
⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ . (2.108)
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It is important to stress that the spacetime interval is not invariant for non-intertial
frames, for instance if one frame of reference is accelerating. Thus, in full generality,
for a non-intertial frame the infinitesimal spacetime interval ds reads

ds2 = gμν(x) dx
μ dxν , (2.109)

where gμν(x) is the local spacetime metric tensor. The metric tensor gμν(x) is the
element of a 4 × 4 matrix. Formally, we can write

gμν(x) =

⎛
⎜⎜⎝

g00(x) g01(x) g02(x) g03(x)
g10(x) g11(x) g12(x) g13(x)
g20(x) g21(x) g22(x) g23(x)
g30(x) g31(x) g32(x) g33(x)

⎞
⎟⎟⎠ . (2.110)

However the problem is a bit simpler because gμν(x) is symmetric tensor, i.e.
gμν(x) = gνμ(x). This implies that gμν(x) has 10 independent components.

Given the infinitesimal spacetime interval ds one can introduce the infinitesimal
proper time dτ = c ds, which is an invariant quantity in the case of intertial frames.
A finite proper time interval �τ is then given by

�τ =
∫
P
dτ =

∫
P

ds

c
=

∫
P

1

c

√
gμν(x) dxμ dxν (2.111)

where P is a worldline, i.e. a spacetime path. This �τ is time interval measured by
a clock that is at rest with the worldline.

2.6.2 Curved Manifolds

It is important to observe that Eq. (2.109) is nothing else than the extension of the
notion of infinitesimal spatial interval introduced by Bernhard Riemann for curved
manifolds. In other words, the spacetime is treated as a four-dimensional manifold
characterized by the localmetric tensor gμν(x). At the end ofXIX century, themotion
on curvedmanifoldswas deeply anayzed byElwinBrunoChristoffel,GregorioRicci-
Curbastro, and Tullio Levi-Civita developing the so-called tensor calculus. Within
the framework of the tensor calculus, the covariant component xμ of the four-vector
x is defined as xμ = gμν(x) xν , where again repeated indices means the summation
over them.Moreover, gμν(x) represents a generic element of the 4 × 4 inversematrix
obtained from the matrix of gμν(x).

One of the main results of differential geometry and tensor calculus is the fol-
lowing one. In the absence of external forces, for a particle of local coordinates
x(τ ) = (x0(τ ), x1(τ ), x2(τ ), x3(τ )) and some time τ (which can be the proper time
in the case of general relativity), that is moving on the curved manifold characterized
by the local metric tensor gμν(x), the acceleration is given by
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d2xα

dτ 2
= −�α

μν

dxμ

dτ

dxν

dτ
, (2.112)

where

�α
μν(x) = 1

2
gαβ(x)

(
∂

∂xν
gβμ(x) + ∂

∂xμ
gβν(x) − ∂

∂xβ
gμν(x)

)
(2.113)

is the Christoffel symbol. Thus, the familiar acceleration d2xα/dτ 2 of the particle is
not zero because the particle is constrained to move on the curved manifold, and the
Christoffel symbol �α

μν takes into account the presence of the constraining manifold.
In the case of a x-independent metric tensor the Christoffel symbols are zero and the
acceleration of the particle is zero.

2.6.3 Equivalence Principle and Einstein Equations

Einstein noticed that a person in a freely falling elevatorwould experience no apparent
weight; that is, the inertial massmI of a test particle is equal to its gravitational mass
mG . In fact, the Newton law of the non-relativistic dyamics of this test particle under
the effect of the gravitational force due to another particle of gravitational mass MG

is given by

mI
d2r
dt2

= −G
mG MG

|r|2 , (2.114)

whereG = 6.7 × 10−11 m3 kg−1 s−2 is the gravitational constant and r(t) is the posi-
tion vector of the test particle measured with respect to the other particle. However,
experimentally (GalileoGalilei, 1590; Lorand Eötvös 1922) one finds thatmG = mI ,
and also MG = MI . Consequently, we can write

d2r
dt2

= −G
M

|r|2 , (2.115)

where we set M = MG = MI and m = mG = mI for the two masses. For these
reasons, Einstein formulated new postulates, in addition to the ones of the special
relativity:

P3: The laws of physics in a gravitational field are identical to those of a local
accelerating frame.

P4: The laws of physics must be expressed by identical equations relative to all other
systems, whichever way they are moving.

The postulate P3 is called equivalence principle, while the postulate P4 is called
principle of general covariance. In other words, Einstein supposed that the gravita-
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tional effects must be all encoded into the spacetime metric tensor gμν(x). Accord-
ing to the postulate P3, in the absence of any energy or momentum at the spacetime
point x , for an inertial frame of reference the spacetime interval (2.109) is such that
gμν(x) = ημν , as in Eq. (2.107). Instead, if there is some kind of energy ormomentum
at the spacetime point x , the metric tensor gμν(x) is much more complicated.

Einstein, after several trials and errors, and taking into account the postulates P3
and P4, found that gμν(x) must satisfy the following equations

Rμν(x) − 1

2
R(x) gμν(x) = 8πG

c4
Tμν(x) . (2.116)

We do not derive these equations, which were obtained by Einstein in 1915 with
the crucial technical help of David Hilbert. In these equations G is the gravitational
constant and c is the speed of light in vacuum. The quantity

Rμν(x) = ∂

∂xα
�α

νμ(x) − ∂

∂xμ
�α

αμ(x) + �α
αβ(x) �β

νμ(x) − �α
νβ �β

αμ(x) (2.117)

is the Ricci tensor, which is a symmetric tensor. Instead

R(x) = gμν(x) Rμν(x) (2.118)

is the Ricci scalar, and Tμν(x) is the stress-energy tensor, which is also a symmetric
tensor, i.e. Tμν(x) = Tνμ(x). Both the Ricci tensor Rμν(x) and the Ricci scalar R(x)
depend on themetric tensor gμν(x) in a highly nonlinear and differential way through
the Christoffel symbol �α

μν(x), Eq. (2.113), which is indeed a crucial quantity of
differential geometry.Ricci is the abbreviation forRicci-Curbastro. The stress-energy
tensor Tμν(x) is the element of a 4 × 4 matrix, and it contains all the informations
about the energy-momentum which resides at x due to presence of some source.
As an example, for a very simple relativistic fluid with local mass density ρ(x),
and local relativistic four-velocity u(x) = (u0(x), u1(x), u2(x), u3(x)) with generic
component uμ(x) = dxμ/ds, the stress-energy tensor reads

Tμν(x) = ρ(x)c2uμ(x) uν(x) , (2.119)

where uμ(x) = gμν(x) uν(x) are the so-called covariant components of the relativis-
tic four-velocity u(x), which is an adimensional quadrivectorial quantity. In the case
of a Minkoswki spacetime, according to Eq. (2.105) we have ds = cdt

√
1 − v2/c2

and the time-time component T00(x) of the stress-energy tensor becomes T00(x) =
ρ(x)c2/(1 − v2/c2), which is the energy density of this very simple relativistic fluid.
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2.6.4 Non-Relativistic Limit of General Relativity

The partial differential equations (2.116) connect the local spacetime metric ten-
sor gμν(x) with the local stress-tensor Tμν(x). In general, the problem of solving
Eq. (2.116), is a quite difficult task. However, the Einstein equations have been for-
mulated in such a way that they reduce to the familiar gravitational theory of Newton
in the non-relativistic regime, i.e. when the three-dimensional velocity v = dr/dt is
small compared to the speed of light c. In this limit the stress-energy tensor of our
very simple fluid becomes

Tμν(x) =

⎛
⎜⎜⎝

ρ(r)c2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , (2.120)

where ρ(r) = ρ(x0 = 0, x1, x2, x3). Moreover, in the same Newtonian limit, from
Eq. (2.116) after some calculations one finds

gμν(x) =

⎛
⎜⎜⎝
1 + 2φ(r)/c2 0 0 0

0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ (2.121)

for the local spacetimemetric tensor, where the scalar field φ(r) satisfies the equation

∇2φ(r) = −4πG ρ(r) , (2.122)

that is the Poisson equation for the gravitational potential φ(r) generated by a mass
density distribution ρ(r). This equation can be solved and gives

φ(r) = −4πG
∫

ρ(r′)
|r − r′| d

3r′ . (2.123)

Considering a uniformdensityρ = M/V with totalmassM inside a sphere of volume
V , outside the sphere we get

φ(r) = −G
M

|r| , (2.124)

which is the familiar Newtonian expression of the gravitational field generated by
a mass M . In the non-relativistic limit, the formula (2.112) for the acceleration of
a particle constrained to move on the curved spacetime with metric tensor given by
Eq. (2.121) reads

d2r
dt2

= −∇φ(r) , (2.125)
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which is exactly the Newton law for the non-relativistic dynamics of a particle under
the action of the gravitational potential φ(r), i.e. Eq. (2.115).

2.6.5 Predictions of General Relativity

To conclude this section, we emphasize that many important predictions based on
the Einstein equations of general relativity have been confirmed experimentally. The
most famous is the explanation of the precession of the perihelion of Mercury. There
are, however, very recent relevant achievements. Among them:
(i) the accelerating expansion of the Universe (Nobel Prize in Physis 2011);
(ii) the existence gravitational waves (Nobel Prize in Physics 2017);
(iii) the existence of black holes (Nobel Prize in Physics 2020).

Quantum mechanics and quantum field theory are used to explain three forces
(electromagnetic, nuclear weak, and nuclear strong) of the four fundamental forces
of Nature. Albert Einstein’s general theory of relativity, which is formulated within
the wholly distinct framework of classical physics, forms the basis for our current
understanding of gravity, the fourth force. Nowadays, a very active field of research is
quantumgravity.Quantumgravity aims to describe gravity using quantummechanics
principles in situations where quantum effects are important, such as in the vicinity of
black holes or other compact astrophysical objects with strong gravitational effects
(e.g. neutron stars).

Further Reading
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Poincare, H.: Revue de Metaphysique et de Morale 6, 1 (1898).
Fitzgerald, G.F.: Science 13, 390 (1889).
Lorentz, H.A.: Proc. R. Netherlands Acad. Arts Sci. 6, 809 (1904).
Einstein, A.: Ann. der Physik 17, 891 (1905).
An introductory book of general relativity is:
Ryder, L.: Introduction to General Relativity. Cambridge University Press (2009).
Relevant historical papers on general relativity are:
Hilbert, D.: Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen,
Mathematisch-Physikalische Klasse 3, 395 (1915).
Einstein, A.: Sitzungsberichte der Preussischen Akademie der Wissenschaften zu
Berlin, Part 2, 844 (1915).



Chapter 3
Quantum Properties of Light

In this chapter we discuss the three main empirical phenomena which, for the first
time, emphasized the quantum nature of light. These phenomena are the black-body
radiation, the photoelectric effect, and the Compton effect. The main idea is that light
is made of elementary massless particles called photons. This idea, due to Planck,
Einstein, and Compton, is now well established experimentally and it is the heart of
the flourishing field of quantum optics.

3.1 Black-Body Radiation

Historically the beginning of quantummechanics is placed in 1900whenMax Planck
found that the experimental results of the electromagnetic spectrum emitted by a
black body are explained under the assumption that the energy of the radiation is
quantized.

A black body is a hypothetical physical body that completely absorbs all the
oncoming electromagnetic radiation, regardless of frequency or incidence angle. The
word black is due to the fact that this body absorbs all colors of light. However, as any
hot body, the black body emits its own electromagnetic radiation to reach the thermal
equilibrium with the external environment. A small hole in a big insulated container
(cavity), with internal walls that are opaque to radiation, is a good approximation
of the ideal black body. Any light that enters the hole is reflected or absorbed by
the body’s internal surfaces and is unlikely to re-emerge, making it a near-perfect
absorber. Instead, the electromagnetic radiation outcoming from the hole, that is at
thermal equilibrium with the walls of the cavity, is the black body radiation.

In 1898Otto Lummer and Ferdinand Kurlbaum analyzed experimentally the elec-
tromagnetic radiation coming from the small hole of the cavity. By definition, ρ(ν)

is such that
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Fig. 3.1 Black-body
radiation: Planck’s law of the
energy density per unit
frequency, ρ(ν), for three
values of the temperature T
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where E is the total energy of the electromagnetic radiation inside a volume V .
Experimentally one finds that the function ρ(ν) is such that

∫ +∞

0
ρ(ν) dν = a T 4 , (3.2)

which is Stefan-Boltzmann’s law with

a = 7.56 · 10−16 J/(m3 × K4) (3.3)

the so-called radiation constant. Moreover, one finds that the frequency νmax of the
maximum of the curve grows by increasing the temperature (Wien’s law).

As we will see in detail, Planck derived the expression (Fig. 3.1)

ρ(ν) = 8π

c3
ν2 hν

e
hν
kB T − 1

(3.4)

for the density of electromagnetic energy per unit frequency ρ(ν) emitted by the
body at temperature T , with kB the Boltzmann constant and c the speed of light in
vacuum. This formula, known as Planck’s law of black-body radiation, is in very
good agreement with the experimental data. The constant h, derived by interpolation
of experimental data, results to be

h = 6.63 · 10−34 J × s . (3.5)
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This parameter is called Planck constant. Note that often we use also the reduced
Planck constant

� = h

2π
= 1.06 · 10−34 J × s (3.6)

that is routinely called “hbar”. As expected, taking into account Eq. (3.4) we obtain
Stefan-Boltzmann’s law

∫ +∞

0
ρ(ν) dν = 8π5k4B

15c3 h3
T 4 , (3.7)

and this means that the radiation constant a of Eq. (3.3) must be

a = 8π5k4B
15c3 h3

= π2k4B
15c3�3

. (3.8)

Also the Wien’s law is perfectly reproduced by Planck’s black-body radiation for-
mula.

3.1.1 Derivation of Planck’s Law

The crucial assumption made by Max Planck to derive the correct function ρ(ν)

of the black-body radiation is that the energy E(ν, n) emitted by the walls of the
black-body cavity is quantized as follows

E(ν, n) = hν n , (3.9)

where h is Planck’s constant, ν is the frequency of the radiation, and n ∈ N is a natural
number called quantum number. According to Planck, the average electromagnetic
energy Ē(ν) emitted with frequency ν by the cavity at temperature T is given by

Ē(ν) = 〈E(ν, n)〉 =
∑+∞

n=0 E(ν, n) e−βE(ν,n)

∑+∞
n=0 e

−βE(ν,n)
, (3.10)

where e−βE(ν,n) is Boltzmann’s statistical factor with β = 1/(kBT ). Quite remark-
ably, Eq. (3.10) can be explicitly calculated. In fact, Ē(ν) can be rewritten as

Ē(ν) = − ∂

∂β
lnZ1 (3.11)

where

Z1 =
+∞∑
n=0

e−βhν n (3.12)
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is the single-mode (single-frequency) partition function. By using the geometric
series results, i.e.

∑+∞
n=0 x

n = 1/(1 − x) for |x | < 1, we immediately obtain

Z1 = 1

e−βhν − 1
. (3.13)

Inserting this expression in Eq. (3.11) we get

Ē(ν) = hν

e
hν
kB T − 1

= hν n̄(ν) , (3.14)

where

n̄(ν) = 1

e
hν
kB T − 1

(3.15)

is the thermal average number of quanta with frequency ν.
Let us now consider the dispersion relation

ν = c

λ
= ck

2π
(3.16)

and the fact that infinite wavevectors k correspond to the same wavenumber k = |k|
and, consequently, to the same frequency ν. The total energy of the electromagnetic
radiation is then given by

E = 2
∑
k

Ē
(
ν = ck

2π

)
, (3.17)

where the factor 2 takes into account the two possible polarization of the light. In the
continuum limit, where

∑
k → V

∫
d3k/(2π)3, we obtain

E

V
= 2

∫
d3k

(2π)3
Ē

(
ν = ck

2π

) =
∫ +∞

0
D1(ν) Ē(ν) dν =

∫ +∞

0
ρ(ν) dν , (3.18)

where

D1(ν) = 2
∫

d3k
(2π)3

δ

(
ν − ck

2π

)
= 1

π2

∫ +∞

0
dkk2δ

(
ν − ck

2π

)
= 8π

c3
ν2 (3.19)

is the single-mode density of states per volume. Thus, the energy density ρ(ν) per
unit of frequency can be expressed as

ρ(ν) = D1(ν) Ē(ν) , (3.20)

where D1(ν) is the single-particle density of the states that have frequency ν whereas
Ē(ν) is given by Eq. (3.14). Explicity, we have
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ρ(ν) = 8π

c3
ν2 hν

e
hν
kB T − 1

, (3.21)

that is exactly the formula of Planck. In the regime hν � kBT of high temperatures
we have

e
hν
kB T ≈ 1 + hν

kBT
(3.22)

and consequently

ρ(ν) ≈ 8π

c3
ν2kBT , (3.23)

which is the Rayleigh-Jeans law: very good at low frequencies but unreliable at high
frequencies (ultraviolet catastrophe). The Rayleigh-Jeans law was derived the same
years of the Planck law by John William Strutt (Rayleigh) and James Jeans on the
basis of classical statistical mechanics, i.e. using Eq. (3.20) with D1(ν) given by Eq.
(3.19) and Ē(ν) given by the classical results Ē(ν) = kBT instead of the quantum
one, Eq. (3.14). We underline that the classical result can be obtained assuming that
the number n of Eq. (3.10) is real, i.e.

Ē(ν) = 〈E(ν, n)〉 =
∫ +∞
0 E(ν, n) e−βE(ν,n) dn∫ +∞

0 e−βE(ν,n) dn
=

∫ +∞
0 hν n e−βhν n dn∫ +∞

0 e−βhν n dn
= 1

β
= kBT .

(3.24)
Thus, it is really crucial to impose that n is a natural number to get the Planck law.

At this point it is useful to perform a simple exercise. We want to determine
the corresponding energy density per unit of wavelength, ρ(λ), of the black-body
radiation. The linear frequency ν is related to the wavelength λ by the expression

λν = c . (3.25)

In practice, ν = cλ−1, from which

dν = −cλ−2dλ . (3.26)

By changing variable in the integral of Eq. (3.1) the energy density becomes

E

V
=

∫ ∞

0

8π2

λ5

hc

eβhc/λ − 1
dλ , (3.27)

and consequently the energy density per unit of wavelength reads

ρ(λ) = 8π2

λ5

hc

eβhc/λ − 1
, (3.28)

such that
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E

V
=

∫ ∞

0
ρ(λ) dλ . (3.29)

3.2 Photoelectric Effect

A few years after the formulation of Planck’s law for the black body, in 1905, Albert
Einstein suggested that the electromagnetic radiation is composed of light quanta,
called photons, where the energy E of a single photon is given by

E = h ν = � ω , (3.30)

with h the Planck constant, � = h/(2π) the reduced Planck constant, ν the frequency,
and ω = 2πν the angular frequency. Einstein used the concept of photon to explain
the photoelectric effect, that is the emission of electrons from ametallic surface when
this surface is hit by an electromagnetic radiation.

The photoelectric effect was observed for the first time at the end of the nineteenth
century by Heinrich Hertz and Philipp von Lenard. In the photoelectric experiment
two metallic plates are placed at a finite distance from each other inside a vacuum
chamber. The two plates are connected by a conducting wire, where there is an
ammeter, that measures the electric current, and a battery (voltage generator) which
can be switched off. A monochromatic light of frequency ν is sent to one of the two
metal plates. If the voltage generator is turned off, the passage of an electric current
is observed only if the frequency of the monochromatic light exceeds a critical value,
that is only if

ν > ν0 , (3.31)

where experimentally ν0 turns out to depend on the material properties of the metal
plate hit by the light, (Table3.1). Surprisingly, if ν < ν0 one does not observe electric
current even if the intensity of the incident light is very large.

If the voltage generator is switched onwith inverted polarity, the critical frequency
required for measuring current flow is larger. In fact, the negative electrons extracted

Table 3.1 Critical frequency νc of the photoelectric effect for some metals

Material Critical frequency νc (Hz) Light color

Potassium (K) 5.43 × 1014 Green

Sodium (Na) 5.51 × 1014 Green

Calcium (Ca) 7.74 × 1014 Violet

Copper (Cu) 1.08 × 1015 Ultraviolet

Ferro (Fe) 1.12 × 1015 Ultravolet

Silver (Ag) 1.14 × 1015 Ultraviolet
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from the material are repelled by the excess of negative charges found on the other
plate. In this configuration with reversed polarity, there exists a critical potential
difference, called stopping electric potential V0, above which there is no electric
current.

3.2.1 Theoretical Explanation

Einstein used the concept of a photon to explain the photoelectric effect:

(i) light consists of photons of energy hν;
(ii) the radiation-matter interaction is, with good approximation, an interaction

between single photon and single electron;
(iii) the single electrons in metals are bound to the metal by a binding energy W ;
(iv) the photoelectric effect occurs only if the energy hν of the single photon inter-

acting with the single electron is greater than the binding energy W .

Einstein suggested that the kinetic energy EK of an electron emitted from the
surface of a metal after being irradiated is given by

EK = hν − W , (3.32)

whereW is the metal work function (i.e., the minimum energy to extract the electron
from the surface of the metal). In the case of a turned off voltage generator, the
Einstein formula clearly implies that the critical frequency ν0 of the incident radiation
required to extract electrons from a metal is

ν0 = W

h
. (3.33)

Then ν0 is the ratio of the extraction energy W and the Planck constant h.
Furthermore, according to Einstein, the stopping electric potential V0 necessary to

prevent the single electron from reaching the other plate must be equal to the kinetic
energy EK of the electron, that is

eV0 = EK , (3.34)

where q = −e the electric charge of the electron with e = 1.6 · 1019 C. From the
Eqs. (3.32) and (3.34) we immediately find

V0 = h

e
ν − W

e
. (3.35)

Thus, V0 grows linearly with frequency ν and the slope of this straight line is the
ratio h/e of two universal constants. These results are in very good agreement with
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the experimental data. Einstein received the Nobel Prize in Physics in 1921 with this
motivation: “for his services to theoretical physics, and especially for his discovery
of the law of the photoelectric effect”.

3.3 Energy and Linear Momentum of a Photon

If the light is composed of elementary particles called photons, obviously these
photons move at the speed c of light. Based on Einstein relativistic dynamics, a
particle moving at the speed of light, that is with v = c, must have zero mass, that is
m = 0. Moreover, in this case the energy E of the particle is related to its momentum
p by the relation

E = c p , (3.36)

where p = |p|. On the other hand, we have seen that for the photon

E = h ν , (3.37)

where h is Planck’s constant and ν is the frequency of the light. It follows that

p = E

c
= h ν

c
. (3.38)

Recalling that
λ ν = c , (3.39)

where λ is the wavelength of light, we get

p = h

λ
. (3.40)

This formula relates a corpuscular property of light, the linear momentum p, with
an undulatory property of light, the wavelength λ.

To conclude this section, let us perform two simple exercises. In the first exercise
we want to calculate the number of photon emitted in 4 s by a lamp of 10W which
radiates 1% of its energy as monochromatic light with wavelength 6000 · 10−10 m
(orange light). The energy of one photon of wavelength λ and linear frequency ν is
given by

ε = hν = h
c

λ
, (3.41)

where is Planck’s constant. In our problem one gets

ε = h
c

λ
= 6.62 · 10−34 J × s × 3 · 108 m/s

6 · 103 · 10−10 m
= 3.3 · 10−19 J . (3.42)
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During the period �t = 4s the energy of the lamp with power P = 10 W is

E = P �t = 10 J/s · 4 s = 40 J . (3.43)

The radiation energy is instead

Erad = E · 1% = E · 1

100
= 40

100
J = 0.4 J . (3.44)

The number of emitted photons is then

N = Erad

ε
= 0.4 J

3.3 · 10−19 J
= 1.2 · 1018 . (3.45)

The second exercise is a bit more complicated. On a photoelectric cell it arrives a
beam of light with wavelength 6500 · 10−10 m and energy 106 erg per second [1 erg =
10−7 J]. This energy is entirely used to produce photoelectrons. We want to calculate
the intensity of the electric current which flows in the electric circuit connected to
the photoelectric cell. The wavelength can be written as

λ = 6.5 · 103 · 10−10 m = 6.5 · 10−7 m . (3.46)

The energy of the beam of light can be written as

E = 106 erg = 106 · 10−7 J = 10−1 J . (3.47)

The time interval is
�t = 1 s . (3.48)

The energy of a single photon reads

ε = h
c

λ
= 6.6 · 10−34 3 · 108

6.5 · 10−7
J = 3 · 10−19 J . (3.49)

The number of photons is thus given by

N = E

ε
= 10−1 J

3 · 10−19 J
= 3.3 · 1017 . (3.50)

If one photon produces one electron with electric charge e = −1.6 · 10−19 C, the
intensity of electric current is easily obtained:

I = |e|N
�t

= 1.6 · 10−19 C · 3.3 · 1017
1 s

= 5.5. · 10−2 amp . (3.51)
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To conclude we observe that with wavelength 6500 · 10−10 m the photoelectric effect
is possible only if the work function of the sample is reduced, for instance by using
an external electric field.

3.4 Compton Effect

In 1923 Arthur Compton studied the scattering of a beam of X-rays that passes
through a small target of graphite. Experimental data from this experiment show that
after collision (scattering) at a certain scattering angle θ the light becomesbichromatic
with two wavelengths:

λ1 ≈ λ , (3.52)

λ2 = λ + λc (1 − cos(θ)) , (3.53)

where λ is the wavelength of light before the scattering. The empirical constant
λc = 2.42 · 10−12 m is now known as the Compton wavelength. Clearly, in the case
θ = 0 we have

λ2 = λ , (3.54)

for θ = π/2 = 90◦ we instead obtain

λ2 = λ + λc , (3.55)

while the maximum separation occurs in the case θ = π = 180◦ where

λ2 = λ + 2λc . (3.56)

3.4.1 Theoretical Explanation

Compton himself gave a reasonable theoretical explanation of his experiment. Comp-
ton’s hypotheses are:

(i) light is composed of photons, particles with zero mass;
(ii) graphite is composed of atoms and free electrons, in both cases they are particles

with mass m different from zero;
(iii) in the scattering process every single photon interacts with a single particle of

graphite;
(iv) this diffusion process is an elastic collision and therefore the total energy and

the total momentum are conserved.

Before the scattering, the energy EX and the linear momentum pX of the photon
are
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EX = h
c

λ
, (3.57)

pX =
(
h

λ
, 0, 0

)
. (3.58)

The energy Eg and the linear momentum pg of a particle of mass m of graphite are
instead

Eg = mc2 , (3.59)

pg = (
0, 0, 0

)
, (3.60)

in a reference system where initially the particle is stationary.
After the collision the energy E ′

X and the linear momentum p′
X of the photon are

E ′
X = h

c

λ′ , (3.61)

p′
X =

(
h

λ′ cos (θ),
h

λ′ sin (θ), 0

)
. (3.62)

The energy E ′
g and the linear momentum p′

g of the particle of massm of graphite are
instead

E ′
g =

√
m2c4 + (p′

gc)
2 , (3.63)

p′
g = (p′

g cos (φ), p′
g sin (φ), 0) , (3.64)

where θ is the scattering angle of the photon while φ is the scattering angle of the
particle.

Imposing the conservation of the total energy

EX + Eg = E ′
X + E ′

g (3.65)

and also of the total linear momentum

pX + pg = p′
X + p′

g , (3.66)

after some algebric calculations one finds

λ′ = λ + h

mc
(1 − cos(θ)) . (3.67)

In the case of photon-electron collision m = me = 9.11 · 10−31 kg and h/(mec)
turns out to be the wavelength Compton (of the electron). And so λ′ = λ2 = λ +
λc (1 − cos(θ)). Instead, in the case of photon-atom collision m = mC = 19.94 ·
10−27 kg and h/(mCc) turns out to be extremely small such that λ′ = λ1 ≈ λ.
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3.5 Pair Production

A photon generating an electron-positron pair near a nucleus is often referred to as
pair creation. The positron is a particle with the same mass me of the electron but
with opposite charge +e. The process is often written as

γ → e− + e+ , (3.68)

where γ is the symbol of a photon (with frequency ν in the gamma-ray region), e− is
the symbol of the electron, and e+ is the symbol of the positron. Because the energy
must be conserved, the photon energy hν must be greater than the total rest mass
energy 2mec2 of the two particles generated for pair creation to occur, i.e.

hν > 2me c
2 = 2 × 0.511 MeV = 1.022MeV , (3.69)

with νmin = 2mec2/h = 2.5 × 1020 Hz the minimum frequency of the gamma-ray
photon. Literally, the phonon vanishes and the electron-positron pair appears in its
place. Theprocess is constrainedby the conservationof energy and linearmomentum.

To satisfy the conservationof linearmomentum, the photonmust be near a nucleus,
as an electron–positron pair created in free space cannot meet both energy and
momentum conservation. All other conserved quantum numbers of the produced
particles must add up to zero, resulting in opposite values for the created particles.
For example, if one particle has a positive electric charge+e, the other must have the
electric charge−e. The phenomenon of pair priduction was first observed by Patrick
Blackett and Giovanni Occhialini in 1933 with a counter-controlled cloud chamber.
Experiments show that the probability of pair creation increases with photon energy
and alsowith the square of the atomic number (number of protons) of the neighboring
atom.

It is important to stress that the reverse of the pair production is also possible.
This is known as electron-positron annihilation:

e− + e+ → γ + γ . (3.70)

In this case the electron-positron pair vanishes and two photons appear in its place.
The conservation of energy and linear momentum forbid the creation of only one
photon in free space. In the most common case, the two photons have an energy
equal to the rest energy mec2 of the electron.

Further Reading

There are many books discussing the topics of this chapter. Two best-selling ones
are:
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Serway, R.A., Moses, C.J., Moyer, C.A.: Modern Physics. Brooks/Cole Publishing
Company (2004).
Bransden, B.H., Joachain, C.J.: Physics of Atoms and Molecules. Prentice Hall
(2003).
Relevant historical papers about the quantum nature of light are:
Planck, M.: Verhandlungen der Deutschen Physikalischen Gesellschaft 2, 202
(1900).
Planck, M.: Verhandlungen der Deutschen Physikalischen Gesellschaft 2, 237
(1900).
Einstein, A.: Annalen der Physik 17, 132 (1905).
Compton, A.H.: Phys. Rev. 21, 483 (1923).
Blackett, P.M.S., Occhialini, G.P.S.: Proc. R. Soc. Lond. A 139, 699 (1933).



Chapter 4
Quantum Properties of Matter

In this chapter we analyze empirical phenomena which are explained by taking
into account the quantum nature of matter. We investigate the peculiar behavior
shown by the heat capacity in solids at low temperature, introducing the concept of
vibrational phonons. Following the approach of Einstein and Debye, the solid can be
seen as a gas of phonons characterized by a specific quantum thermal distribution,
similar to the one of the photons of the black-body radiation. We also consider the
quantization of the energy levels proposed in 1913 byBohr for the hydrogen atom and
the three main mechanisms of electromagnetic transitions for atoms and molecules:
absorption, spontaneous emission, and stimulated emission.

4.1 Heat Capacity of Solids: Einstein Versus Debye

In 1907 Albert Einstein observed that the quantization adopted by Max Planck for
the black-body radiation of photons can be used also for the harmonic vibrations of
atoms in solids, which are called phonons. Einstein invoked a sort of generalization
of the equipartition principle of the harmonic oscillator: for each mode of harmonic
oscillation with frequency ν, the average thermal energy is given by

Ē(ν) = hν

eβhν − 1
, (4.1)

that is exactly Eq. (3.14) of the previous chapter setting β = 1/(kBT ) with kB the
Boltzmann constant and T the absolute temperature. As seen in the previous chapter,
for hν � kBT one gets

Ē(ν) = 1

β
= kBT , (4.2)
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Fig. 4.1 Molar heat capacity
cV as a function of the
temperature T according to
the Einstein’s theory of
phonons in solids

0 0.5 1 1.5 2 2.5 3

k
B
T/(hν0)

0

0.2

0.4

0.6

0.8

1

1.2

c V
/(
3R

)

that is the classical equipartition principle for the harmonic oscillator. Einstein
assumed that the frequency is the same for all the 3N modes of a specific solid,
i.e. where N is the number of atoms in the solid and the factor 3 is due to the fact
that there are three possibile directions of oscillation. We denote ν0 the Einstein’s
frequency of oscillation of phonons. Under these assumptions the internal energy E
reads

E = 3 N Ē(ν0) = 3Nhν0

eβhν0 − 1
(4.3)

and the molar heat capacity at constant volume is

cV = 1

n

(
∂E

∂T

)
V,N

= 3R

(
hν0

kBT

)2 e
hν0
kB T(

e
hν0
kB T − 1

)2 , (4.4)

where n = N/NA is the number of moles, NA is the Avogadro number, and R =
kBNA is the gas constant. At high temperatures from this Einstein formula one
recovers theDulong-Petit law cV = 3R. Themeasurements of themolar heat capacity
performed by Walther Nernst in many solids at low temperature were in reasonable
agreement with the Einstein formula, Eq. (4.4), by using ν0 as a fitting parameter for
each solid (Fig. 4.1).

In 1912 Peter Debye found that a slightly different approach is more successful
in reproducing the experimental data. Debye suggested that, as in the case of the
black-body radiation, the atoms in a crystal lattice can have many frequencies ν of
oscillations. The total number of phonons (harmonic modes of vibrations) in a solid
is given by 3N , with N the number of atoms in the solid. As a consequence, it must
be

3 N =
∫ νD

0
D1(ν)dν , (4.5)
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where νD is the maximal admitted frequency of oscillation, which is now called
Debye frequency, and D1(μ) is the single-mode density of states, i.e. the density of
states of phonons. In analogy with the black-body radiation, Debye assumed that

D1(ν) = A ν2 , (4.6)

where the constant A is fixed by Eq. (4.5). One immediately finds

A = 9N

ν3
D

. (4.7)

The total internal energy of Debye is then given by

E =
∫ νD

0
D1(ν) Ē(ν) dν = 9N

ν3
D

∫ νD

0
ν2 hν

e
hν
kB T − 1

(4.8)

and the molar heat capacity at constant volume of Debye can be written as

cV = 9R

(
T

TD

)3 ∫ TD/T

0

x4 ex

(ex − 1)2
dx , (4.9)

where TD = hνD/kB is the Debye temperature, which depends on the specific
solid material. Several crystalline solids show an extremely good agreement of the
Debye equation (4.9) with experimental data. From Eq. (4.9) one finds that cV = 3R
for T/TD � 1, that is the Dulong-Petit law, while cV = (12Rπ4/5)(T/TD)3 for
T/TD � 1. For the sake of completeness, it is important to stress that, at very low
temperature (below 1K), one must also take into account the electronic heat capacity
to reproduce correctly the experimental findings of solids.

4.2 Energy Spectra of Atoms

All the experimental data obtainedwith atomic gases show that individual atoms emit
light only for certain characteristic wavelengthsλ.Moreover, in the case of atoms, the
emission wavelengths coincide with the absorption wavelengths. These wavelengths
λ (or equivalently the corresponding frequenciesν = c/λ), specific for each atom, are
called electromagnetic spectrum of that atom. Historically, systematic experiments
to determine the electromagnetic spectrum of atoms began in the mid-1800s. The
technique used was to confine an atomic gas inside an ampoule (lamp), and to heat
the gas by electrical methods to produce light. For example, in the discharge lamp
the ends of the lamp there are two charged electrodes.
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4.2.1 Energy Spectrum of Hydrogen Atom

In the case of the electromagnetic spectrum of the hydrogen atom, the numerous
experimental data are well summarized by the Rydberg empirical formula

1

λ
= RH

(
1

n21
− 1

n22

)
(4.10)

where λ is one of the wavelengths of the spectrum,

RH = 1.1 · 107 m−1 (4.11)

is Rydberg’s constant, while n1 and n2 are two natural number such that n2 > n1.
In 1888 Eq. (4.10) was obtained Johannes Rydberg as an empirical generalization
of Balmer series, previously found for the hydrogen atom. The most experimentally
studied spectral series of the hydrogen atom are: the Lyman series, with n1 = 1 and
n2 > 1; the Balmer series, with n1 = 2 and n2 > 2; the Paschen series, with n1 = 3
and n2 > 3; and the Brackett series, with n1 = 4 and n2 > 4.

Since the relation
λ ν = c (4.12)

is always valid, the Rydberg formula can also be written as follows

ν = c RH

(
1

n21
− 1

n22

)
(4.13)

where ν is one of the frequencies of the electromagnetic spectrum of the hydrogen
atom. Aswewill see, Bohr explained the Rydberg empirical formula with a planetary
microscopicmodel of the hydrogen atom. To do this, Bohr introduced a revolutionary
hypothesis: the quantization of the motion of the electron.

4.3 Bohr’s Model of Hydrogen Atom

In 1913Niels Bohr was able to explain the discrete frequencies of electromagnetic
emission of hydrogen atom under the hypothesis that the energy of electron orbiting
around the nucleus is quantized according to formula

En = − mee4

8ε20 h
2

1

n2
= −13.6 eV

1

n2
, (4.14)

where n = 1, 2, 3, ... is called principal quantum number, me is the mass of the
electron, −e is the electric charge of the electron, and ε0 is the dielectric constant in
the vacuum. Remember that
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1 eV = 1eV = 1.6 · 10−19J.

Equation (4.14) shows that the quantum states of the system are characterized by the
quantum number n and the ground state (n = 1) has an energy equal to −13.6 eV,
which is the ionization energy of the hydrogen atom. Adopting a notation introduced
by Paul Dirac in 1939, we denote with the symbol |n〉, in words “ket n”, the quantum
state of the electron characterized by the principal quantum number n. According to
the Bohr model, the electromagnetic radiation is emitted or absorbed only when an
electron has a transition from one energy level En1 to another En2 . In addition, the
frequency ν of the radiation is related to the energies of the two quantum states |n1〉
and |n2〉 involved in the transition according to

hν = En1 − En2 . (4.15)

Thus, any electromagnetic transition between two quantum states involves the emis-
sion or absorption of a photon with an energy hν equal to the energy difference of
the two quantum states.

4.3.1 Derivation of Bohr’s Formula

The energy of the electron with mass me and electric charge q = −e (with e > 0)
orbiting with uniform circular motion around the proton is given by

E = 1

2
mev

2 − e2

4πε0r
, (4.16)

where the first term represents the non-relativistic kinetic energy of the electron and
the second term is the potential energy due to the Coulomb electric force between
the electron and the proton. As is well known, the magnitude of the electric force F
by Coulomb is given by

F = e2

4πε0r2
. (4.17)

According to the second law of dynamics it must be

F = me a = me
v2

r
, (4.18)

where the last equality is obtained taking into account that in the circular motion the
acceleration a is related to the velocity v and to the radius of the orbit r by a = v2/r .
Putting together Eqs. (4.17) and (4.18) we obtain immediately
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1

2
mev

2 = 1

2

e2

4πε0r
. (4.19)

Therefore the kinetic energy of the electron is equal to half of its potential energy
changed of sign. From Eq. (4.16) it follows that the energy of the electron can be
written as

E = −1

2

e2

4πε0r
. (4.20)

The fact that there is a minus sign ensures that the electron is in a bound state. This
is correct since it is assumed that the electron is bound on a circular orbit. However,
this fully classical plnetary model for the electron (proposed by Hantaro Nagaoka
in 1904) does not take into account that the electron, being an accelerating charged
particle, emits electromagnetic radiation: losing energy the electron spirals into the
proton within a fraction of a second.

Bohr observed that in this planetary model besides the energy E there is another
conserved quantity: the total angular momentum L of the electron. The modulus of
L is given by

L = |r ∧ p| = r me v sin (θ) = r me v (4.21)

Bohr’s fundamental hypothesis is that this orbital angular momentum L is quantized.
Since the angular momentum has the units Joule × second, which are the same as
Planck’s constant h, Bohr in his seminal scientific paper wrote

L = h

2π
n (4.22)

where n is a natural number, i.e. n = 1, 2, 3, 4, .... From the quantization of angular
momentum, explicitly

r me v = h

2π
n , (4.23)

a constraint follows between the velocity v and the radius r . On the other hand, Eq.
(4.19) also gives a constraint between these two quantities. After a simple algebra
with the Eqs. (4.19) and (4.23) we derive the formulas

r = ε0h2

πmee2
n2 = rB n2 (4.24)

v = e2

2ε0h

1

n
= vB

1

n
(4.25)

where rB = 0.53 · 10−10 m is called Bohr radius and vB = 2 · 106 m/s is the Bohr
velocity. Therefore the quantization of the angular momentum implies the quantiza-
tion of the radius of the orbit and also the quantization of the velocity of the electron
in that orbit. The other relevant hypothesis of Bohr’s model is that the electron does
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not emit radition until it moves in a quantized orbit. Instead, the radiation is emitted
or absorbed when the electron jumps from one quantized orbit to another.

4.4 Energy Levels and Photons

Inserting Eq. (4.24) into Eq. (4.20) we obtain exactly Eq. (4.14), which can also be
written as

En = − EB

n2
, (4.26)

where EB = (mee4)/(8ε20h
2) = 13.6 eV is the Bohr energy. As already pointed out,

a single photon is emitted or absorbed when an electron has a transition from one
energy level En1 to another En2 . Moreover, the energy hν of this photon reads

hν = En2 − En1 = mee4

8ε20 h
2

(
1

n21
− 1

n22

)
. (4.27)

Recalling that

ν = c

λ
(4.28)

we find

h
c

λ
= mee4

8ε20 h
2

(
1

n21
− 1

n22

)
(4.29)

namely
1

λ
= mee4

8cε20 h
3

(
1

n21
− 1

n22

)
. (4.30)

This is exactly the Rydberg formula, Eq. (4.10), where

RH = mee4

8cε20 h
3

(4.31)

turns out to be the Rydberg constant, and clearly EB = hcRH .

4.5 Electromagnetic Transitions

The three main mechanisms of electromagnetic transitions in atoms, molecules, and
solids are: absorption, spontaneous emission, and stimulated emission. In absorption,
the electron moves from a quantum state |a〉 of lower energy Ea to quantum state
|b〉 of higher energy Eb with the absorption of a photon of linear frequency ν =
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νba = (Eb − Ea)/h or, equivalently of angular frequency ω = ωba = (Eb − Ea)/�.
In the spontaneous emission, the electron spontaneously jumps from a quantum
state |b〉 of higher energy Eb to quantum state |a〉 of lower energy Ea with the
emission a photon of linear frequency ν = νba = (Eb − Ea)/h or, equivalently of
angular frequency ω = ωba = (Eb − Ea)/�. In the stimulated emission, the electron
is stimulated to jump from a quantum state |b〉 of higher energy Eb to quantum
state |a〉 of lower energy Ea by the presence of a photon of linear frequency ν =
νba = (Eb − Ea)/h or, equivalently of angular frequency ω = ωba = (Eb − Ea)/�.
During the stimulated emission it is emitted a photon with the same frequency, the
same direction, and the same phase of the stimulating one.

4.6 Einstein Coefficients

In 1916 Albert Einstein observed that, given an ensemble of N atoms in two possible
atomic states |a〉 and |b〉, with Na(t) the number of atoms in the state |a〉 at time t
and Nb(t) the number of atoms in the state |b〉 at time t , it must be

N = Na(t) + Nb(t) (4.32)

and consequently
dNa

dt
= −dNb

dt
. (4.33)

Notice that, within the semiclassical approach of Bohr for the hydrogen atom, |a〉
means the electronwith quantumnumber na and |b〉means the electronwith quantum
number nb. Einstein suggested that, if the atoms are exposed to an electromagnetic
radiation of energy density per unit of angular frequency, ρ(ω), the rate of change of
the number of atoms in the state |a〉 must be

dNa

dt
= Aba Nb + Bba ρ(ωba) Nb − Bab ρ(ωba) Na . (4.34)

where the parameters Aba , Bba , and Bab are known as Einstein coefficients. Here
ωba = (Eb − Ea)/� is the so-called Bohr angular frequency of the electromagnetic
transition from the quantum state with energies Eb and Ea . The first two terms in Eq.
(4.34) describe the increase of the number of atoms in |a〉 due to spontaneous and
stimulated transitions from |b〉, while the third term takes into account the decrease
of the number of atoms in |a〉 due to absorption with consequent transition to |b〉.

Einstein was able to determine the coefficients Aba , Bba and Bab by supposing that
the two rates in Eqs. (4.33) and (4.34) must be equal to zero at thermal equilibrium,
i.e.

dNa

dt
= −dNb

dt
= 0 , (4.35)
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In this way Einstein found

Aba
Nb

Na
= ρ(ωba)

(
Bab − Bba

Nb

Na

)
. (4.36)

Because the relative population of the atomic states |a〉 and |b〉 is given by a Boltz-
mann factor

Nb

Na
= e−βEb

e−βEa
= e−β(Eb−Ea) = e−β�ωba , (4.37)

Einstein got

ρ(ωba) = Aba

Babeβ�ωba − Bba
. (4.38)

At thermal equilibrium we know that

ρ(ωba) = �ω3
ba

π2c3
1

eβ�ωba − 1
. (4.39)

It follows that

Aba = Bba
�ω3

ba

π2c3
, Bab = Bba . (4.40)

Notice that in this way Einstein obtained the coefficient Aba of spontaneous decay by
calculating the coefficient of stimulated decay Bba . We do not show the calculation
but we report the final result for the hydrogen atom:

Bba = π2c3

�ω3
ba

ω3
ba

3πε0�c3
|dba|2 , (4.41)

where dba = erba is the so-called electric dipole element with e the charge of the
proton and rba the position vector associated to the distance between the quantum
states |a〉 and |b〉. In the case of the semiclassical model of Bohr we have |rba| =
|rnb − rna |, where rn is radius of theBohr stationary orbit of the electronwith quantum
number n.

It is important to stress that the laser device, invented in 1957 by Charles Townes
and Arthur Schawlow at Bell Labs, is based on a generalization of Eqs. (4.33) and
(4.34) describing the light amplification by stimulated emission of radiation.

4.7 Life-Time of an Atomic State

We have seen that the Einstein coefficient Aba gives the transition probability per
unit time from the atomic state |b〉 to the atomic state |a〉. This means that, according
to Einstein, in the absence of an external electromagnetic radiation one has
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dNb

dt
= −Aba Nb (4.42)

with the unique solution
Nb(t) = Nb(0) e

−Aba t . (4.43)

It is then quite natural to consider 1/Aba as the characteristic time of this spontaneous
transition. More generally, the life-time τb of an atomic state |b〉 is defined as the
reciprocal of the total spontaneous transition probability per unit time to all possible
final atomic states |a〉, namely

τb = 1∑
a Aba

. (4.44)

Clearly, if |b〉 is the ground-state then Aba = 0 and τb = ∞.
Let us perform an instructive exercise. 108 sodium atoms are excited to the first

excited state of sodium by absorption of light. Knowing that the excitation energy is
2.125 eV and the lifetime is 16 ns, we want to calculate the maximum of the emitting
power. The total absorbed energy is given by

E = Nε , (4.45)

where N is the number of atoms (and also the number of absorbed photons) while ε
is the transition energy

ε = 2.125 eV = 2.125 · 1.6 · 10−19 J = 3.4 · 10−19 J . (4.46)

The absorbed energy is then

E = 108 · 3.4 · 10−19 J = 3.4 · 10−11 J . (4.47)

The absorbed energy is equal to the energy emitted by spontaneous de-excitation.
The emitting power P(t) decays exponentially with time t as

P(t) = P0e
−t/τ , (4.48)

where P0 is the maximum of the emitting power and τ = 16ns is the lifetime of the
excited state. It must be

E =
∫ ∞

0
P(t) dt = P0 τ , (4.49)

from which we get

P0 = E

τ
= 3.4 · 10−11 J

16 · 10−9 s
= 2.1 · 10−3 J/s = 2.1 · 10−3 W . (4.50)
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4.8 Natural Line Width

Many experimental results show that, in the radiation energy spectrum, the natural
line-width �N due to the transition from the state |b〉 to the state |a〉 is accurately
described by the formula

�N = �

(
1

τb
+ 1

τa

)
. (4.51)

Moreover, in this transition the intensity of the emitted electromagnetic radiation
follows the Lorentzian peak

I (ε) = I0�2
N/4

(ε − Eba)2 + �2
N/4

, (4.52)

where ε = �ω is the energy of the emitted photon and Eba = Eb − Ea is the energy
difference of the two atomic states. The Lorentzian peak is centered on ε = Eba and
�N is its full width at half-maximum. These empirical results are not explained by the
old semiclassical quantum mechanics of Bohr, but are instead quite well explained
by the modern quantum mechanics we shall describe in next chapters.

As an example, we want to calculate the natural frequency width of theα-Lymann
line in a hydrogen gas at the temperature 1000K, knowing that the lifetime of the
excited state is 0.16 · 10−8 s and the wavelength of the transition is 1214 · 10−10 m.
The natural width between the states |i〉 and | j〉 is given by

�νN = 1

2π

(
1

τi
+ 1

τ j

)
(4.53)

where τi is the lifetime of the state |i〉 and τ j is the lifetime of the state | j〉. In our
problem τ1s = ∞, because |1s〉 is the ground-state, while τ2p = 0.16 · 10−8 s for the
excited state |2p〉. It follows that

�νN = 1

2π

(
1

τ1s
+ 1

τ1p

)
= 1

6.28

(
0 + 1

0.16 · 10−8

)
s−1 = 9.9 · 107 Hz . (4.54)

4.8.1 Collisional Broadening

It is important to observe that the effective line-width � measured in the experiments
is usually larger than �N because the radiating atoms move and collide. In fact, one
can write

� = �N + �C + �D , (4.55)
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where in addition to the natural width �N there are the so-called collisional broad-
ening width �C and the Doppler broadening width �D .

The collisional broadening is due to the collisions among the identical atoms of a
gas. The collision reduces the effective life-time of an atomic state and the collisional
width can be then written as

�C = �

τcol
, (4.56)

where τcol is the collisional time, i.e. the average time between two collision of atoms
in the gas. According to the results of statistical mechanics, τcol is given by

τcol = 1

nσvmp
, (4.57)

where n is the number density of atoms, σ is the cross-section, and vmp is the most
probable speed of the particles in the gas. The cross-section σ, which can be inter-
preted as the effective area seen by a particle colliding with another particle, is
clearly dependent on the inter-atomic potential energy between two atoms. More-
over, by considering the Maxwell-Boltzmann distribution of speeds in an ideal gas,
the most probable speed vmp is given by

vmp =
√
2kBT

m
, (4.58)

where T is the absolute temperature, kB is the Boltzmann constant andm is the mass
of each particle.

As an example, let us calculate the collisional frequency width of the α-Lyman
line for a gas of hydrogen atoms with density 1012 atoms/(m3) and collisional cross-
section 10−19 m2 at the temperature 103 K. The α-Lyman line is associated to the
1s→2p transition of the hydrogen atom. The collisional frequency width is given
by

�νC = 1

2πτcol
, (4.59)

where τcol is the collision time. This time depends on the cross-section σ = 10−19

m2 and on the gas density n = 1012 m−3 according to the formula

τcol = 1

n σ vmp
, (4.60)

where vmp = √
2kBT/mH is the velocity corresponding the the maximum of the

Maxwell-Boltzmann distribution. We have then

�νC = n σ

2π

√
2kBT

mH
. (4.61)
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Because T = 103 K, kB = 1.3 · 10−23 J/K andmH = 1.6 · 10−27 kg,wefinally obtain

�νC = 6.4 · 10−5 Hz . (4.62)

4.8.2 Doppler Broadening

The Doppler broadening is due to the Doppler effect caused by the distribution
of velocities of atoms. For non-relativistic velocities (vx � c) the Doppler shift in
frequency is

ω = ω0

(
1 − vx

c

)
, (4.63)

where ω is the observed angular frequency, ω0 is the rest angular frequency, vx is
the component of the atom speed along the axis between the observer and the atom
and c is the speed of light. The Maxwell-Boltzmann distribution f (vx ) of speeds
vx = −c(ω − ω0)/ω0 at temperature T , given by

f (vx ) dvx =
(

m

2πkBT

)1/2

e−mv2x/(2kBT ) dvx , (4.64)

becomes

f (ω) dω =
(

m

2πkBT

)1/2

e−mc2(ω−ω0)
2/(2ω2

0kBT ) c

ω0
dω (4.65)

in terms of the angular frequency ω. This is the distribution of frequencies seen by
the observer, and the full width at half-maximum of the Gaussian is taken as Doppler
width, namely

�D =
√
8 ln (2)kBT

mc2
�ω0 . (4.66)

Also in this case we perform a simple exercise. We want to calculate the Doppler
frequency width of the α-Lyman line in a hydrogen gas at the temperature 1000K,
knowing that the lifetime of the excited state is 0.16 · 10−8 s and the wavelength of
the transition is 1214 · 10−10 m. The Doppler width depends on the temperature T
and on the frequency ν of the transition according to the formula

�νD = ν
√
8 ln(2)

√
kBT

mHc2
= ν

c

√
8 ln(2)

√
kBT

mH
, (4.67)

where kB = 1.3 · 10−23 J/K is the Boltzmann constant, mH = 1.6 · 10−27 kg is the
mass of an hydrogen atom, while c = 3 · 108 m/s is the speed of light in the vacuum.
We know that
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ν

c
= 1

λ
= 1

1.216 · 10−7 m
= 8.22 · 106 m−1 , (4.68)

and then we get

�νD = 8.22 · 106 · 2.35 ·
√
1.3 · 10−23 · 103

1.6 · 10−27
Hz = 5.6 · 1010 Hz . (4.69)

4.9 Old Quantum Mechanics of Bohr, Wilson and
Sommerfeld

The early quantum results of Planck, Einstein, Bohr and others are substantially
characterized by heuristic prescriptions. Such results, far from being able to be con-
sidered complete, have had the merit to anticipate, at least in the spirit, the modern
quantum mechanics. In the case of matter with mass different from zero a quite
general extension of Bohr 1913 results for the hydrogen atom was proposed in 1915-
1916 by William Wilson and Arnold Sommerfeld. This Bohr-Wilson-Sommerfeld
theory, known as “old quantum mechanics” allows that the orbits of the electron in
the hydrogen atom may be elliptical and not just circular, as assumed by Niels Bohr.

The premise of the old quantum theory is that the classicalHamiltonian H(	q, 	p) of
a three-dimensional system is separable, i.e. H(	q, 	p) = H1(q1, p1) + H2(q2, p2) +
H3(q3, p3), where qi are the (generalized) coordinates and pi are the corresponding
linear momenta. Then, not all motions are permitted, but only those that comply with
the quantization condition

∮
H(q, 	p)=E

pi dqi = ni h , (4.70)

where the quantum numbers ni are integers, and the integral is taken over one period
of the classical motion at constant energy E .

Unfortunately, this old quantum theory works reasonably well only if the system
under investigation is integrable, i.e. if there is a canonical transformation of coordi-
nates which makes the Hamiltonian separable. Moreover, this theory does not take
into account the dual wave-particle nature of the electron.

Further Reading

The quantum mechanical approach of Einstein and Debye to the heat capacity of
solids is very well described in the book:
J.D. McGervey, Introduction to Modern Physics (Academic Press, 1983).
Relevant historical papers about the Rydberg formula, the Bohr model for the hydro-
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gen atom, and the Einstein coefficients of electromagnetic transitions are:
J.R. Rydberg, Proceedings of the Royal Swedish Academy of Science, 23, 1 (1889).
N. Bohr, Philosophical Magazine 26, 1 (1913).
A. Einstein, Verhandlungen der Deutschen Physikalischen Gesellschaft 18, 318
(1916).
For a quite complete discussion of line widths in elecromagnetic spectra:
B.H. Bransden and C.J. Joachain, Physics of Atoms and Molecules (Prentice Hall,
2003).
The derivation of the old-quantum mechanics of Bohr-Wilson-Sommerfeld from the
more modern Schrödinger equation is discussed in several papers. See, for instance,
M. Robnik and L. Salasnich, Journal of Physics A 30, 1719 (1997).
A detailed calculation of the Einstein coefficient of spontaneous emission can be
found in the book:
L. Salasnich, Quantum Physics of Light and Matter. Photons, Atoms, and Strongly
Correlated Systems (Springer, 2019).



Chapter 5
Wavefunction of a Quantum Particle

In this chapter we introduce the time-dependent Schrödinger equation, obtained in
1926 by Erwin Schrödinger from the revolutionary idea of De Broglie to associate
to each particle, and in particular to the electron, a quantum wave. We also discuss
the Born probabilistic interpretation of the Schrödinger wavefunction, which is the
interpretation commonly accepted even today because it has been confirmed by
several sophisticated experiments.

5.1 De Broglie Wavelength

Inspired by the behavior of light, that shows both wave and corpuscular properties,
in the period 1922–1924 Louis de Broglie suggested that also the electron has wave
proprties. De Broglie postulated that the relation

λ = h

p
(5.1)

applies not only to photons but also to matter particles. Thus, this equation applies
also to the electron and, more generally, to particles with mass m different from
zero. Remember that p is the magnitude of linear momentum (corpuscular property)
and λ is the wavelength (wave property) of the “quantum particle”. The quantum
particle is therefore characterized both by wave and corpuscular properties. This
is the so-called wave-particle duality introduced by De Broglie, and then strongly
supported by Niels Bohr, Werner Heisenberg and others (Copenhagen interpretation
of quantum mechanics).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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5.1.1 Explaining the Bohr Quantization

On the basis of his hypothesis, De Broglie was able to explain the quantization pro-
posed by Bohr for orbital angular momentum of the electron in the hydrogen atom.
De Broglie’s reasoning is the following:
(i) the electron of mass me, velocity v and momentum p = mev is also a wave;
(ii) this electronic matter wave is characterized by the wavelength λ = h/p =
h/(mev);
(iii) in a closed trajectory of length l the electronic wave the electron wave is stable
only if

l = λ n , (5.2)

where n is a natural number. Equation (5.2) is well known in wave motion theory
and ensures that there are no distructive interference effects in a wave. A wave which
satisfies this equation is called stationary wave. In the case of circular motion of
radius r we will have

l = 2π r (5.3)

and moreover for the electron is

λ = h

mev
. (5.4)

So the formula (5.2) becomes

2π r = h

mev
n (5.5)

i.e.

r mev = h

2π
n . (5.6)

This is precisely the quantization formula of the angular momentum L = rmev of
Bohr:

L = � n (5.7)

with � = h/(2π).

5.2 Wave Mechanics of Schrödinger

In 1926 Erwin Schrödinger introduced the equation that bears his name. According
to Schrödinger, a particle of massm under the action of a conservative external force
F, i.e. such that

F = −∇U (r) , (5.8)
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where U (r) is the potential energy of the particle in the position r = (x, y, z), is
characterized by a wave function ψ(r, t), which depends on spatial position r and
time coordinate t . This wavefunction ψ(r, t) satisfies the equation

i�
∂

∂t
ψ(r, t) = − �

2

2m
∇2ψ(r, t) +U (r)ψ(r, t) (5.9)

known as time-dependent Schrödinger equation. In this equation i = √−1 is the
imaginary unit of the complex numbers while � is the reduced Planck constant.

It is important to point out that, initially, Schrödinger thought that the complex
wave function ψ(r, t) was a matter wave, such that |ψ(r, t)|2 represents the local
density of electrons that are at position r and time t . It was Max Born in 1926
to suggest a probabilistic interpretation of the wavefunction, which is commonly
accepted even today: the wavefunction ψ(r, t) should be understood as the complex
probability amplitude, where |ψ(r, t)|2 gives the local probability density of finding
an electron at position r and time t , with the normalization condition

∫
R3

|ψ(r, t)|2 d3r = 1 (5.10)

at any time t .
In the case of N particles the probabilistic interpretation of Born becomes crucial:

�(r1, r2, ..., rN , t) is the many-body complex wavefunction of the systems, such
that |�(r1, r2, ..., rN , t)|2 is the probability density of finding, at time t , a particle at
position r1, another particle at position r2, and so on.

Niels Bohr (in 1922), Werner Heisenberg (in 1932), Erwin Schrödinger (in 1933)
and Max Born (in 1954) were awarded the Nobel Prize in Physics for their contri-
butions to the formulation of quantum mechanics. In particular, Max Born received
the Nobel Prize “for his fundamental research in quantum mechanics, in particular
for his statistical interpretation of the wave function”.

5.2.1 Derivation of Schrödinger’s Equation

We have seen several times the dispersion relation for monochromatic light:

ω = c k , (5.11)

where ω is the angular frequency, k is the wave vector, while k = |k| the wave
number. Multiplying this relation by the reduced Planck constant � we get

�ω = c �k , (5.12)
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namely
E = c p , (5.13)

where E = �ω = hν is the energy of a particle of light (the photon) and p = �k =
h/λ is the modulus of its momentum p, with h the unreduced Planck constant,
ν = ω/(2π) the linear frequency, and λ = 2π/k the wavelength.

The energy E of a non-relativistic particle of massm not subject to external forces
is given by

E = p2

2m
, (5.14)

where p is the momentum of the particle and p = |p| is its modulus. Following the
idea of Louis de Broglie, we assume that we can write

E = �ω (5.15)

p = �k (5.16)

where ω and k are respectively the angular frequency and the wavevector of the
monochromatic quantum wave associated to the particle. It immediately follows that
the dispersion relation is

ω = �k2

2m
. (5.17)

It is important to note that, unlike the case of the light wave, in the quantum matter
wave the dispersion relation contains explicitly on the reduced Planck constant �.

Previously we have shown that the dispersion relation (5.11) of monochromatic
light is easily obtained starting from the d’Alembert equation of the electric field

(
1

c2
∂2

∂t2
− ∇2

)
E(r, t) = 0 , (5.18)

under the assumption that the electric field is a plane wave

E(r, t) = E0 e
i(k·r−ωt) . (5.19)

The question that ErwinSchrödinger asked himselfwas:Given the dispersion relation
(5.17) of de Broglie’s quantumwave ofmatter, assuming that this wave is describable
as a monochromatic wave of the type

ψ(r, t) = ψ0 e
i(k·r−ωt) , (5.20)

what is the differential equation that allows me to obtain the dispersion relation
above? In 1926 Schrödinger found an answer to this question. The differential equa-
tion he searched is
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i�
∂

∂t
ψ(r, t) = − �

2

2m
∇2ψ(r, t) . (5.21)

It is in fact easy to verify that by substituting Eq. (5.20) in Eq. (5.21) we find Eq.
(5.17).

5.3 Double-Slit Experiment with Electrons

Historically, the experiment that demonstrated the wave-like nature of light was
performed by Thomas Young in 1801, and is known as the Young’s double-slit
experiment. A single source of monochromatic light of wavelength λ. Illuminates
an opaque screen with two small holes placed at distance d. The slits become two
sources of coherent light that generate on a screen placed at distance L an interference
pattern consisting of alternating dark and bright bands. At a very large distance from
the slits (L � d), the lines joining the slits with a certain point P on the screen are
approximately parallel, and form an angle θ with the normal of the line joining the
slits. Experimentally, the light maxima on the far panel are obtained when the angle
θ satisfies the relation

nλ = d sin (θ) , (5.22)

where n = 0, 1, 2, 3, ... is a natural number. This result is explained on the basis of
constructive interference between light beams, which have an optical path difference
� = d sin (θ). It is important to stress that the ratio λ/d is a crucial parameter in the
double-slit experiment. The distance between consecutive interference fringes will
be minimal if λ/d � 1 and the interference effects may not be seen.

The double-slit experiment was first performed using electrons in 1961 by Claus
Jonsson. The experimental results fully confirmed that the beamof electrons produces
an interference pattern which satisfies the formula (5.22) with the wavelength λ such
that

λ = h

mev
, (5.23)

where h is Planck’s constant, me is the mass of the electron and v is the electron
velocity of the incident beam. The experiment was repeated in 1974 in Bologna by
Pier Giorgio Merli, Gianfranco Missiroli and Giulio Pozzi, who, however, sent one
electron at a time on the photographic plate. The result of the Bologna experiment
of 1974 is amazing:
(a) although the electrons are sent one at a time precise light and dark zones are
formed on the photographic plate photographic plate;
(b) the single electron hits a point on the photographic plate photographic plate;
(c) the interference bangs are obtained as the sum of single electron events.

The double-slit experiment with electrons was also performed in 1989 by Akira
Tonomura and collaborators at the Hitachi Lab by using a better resolution. Their
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results confirm the findigs of Merli, Missiroli and Pozzi. The single electron is there-
fore both a particle and a wave, as found for light photons. It should be noted that
today it is possible to perform the Young’s double-slit experiment also with single
photons: the results are in perfect agreement with what we observed with single
electrons.

5.4 Formal Quantization Rules

Starting from the monochromatic plane wave, for both the d’Alembert equation and
the Schrödinger equation, the dispersion relation is obtained by taking into account
that

∂

∂t
←→ −iω , (5.24)

∇ ←→ ik , (5.25)

i.e.: applying the time prime derivative to the plane wave function we obtain the same
function multiplied by −iω, while applying the spatial prime derivative to the plane
wave function one obtains the same function multiplied by ik. Recall that i = √−1.
These expressions can also be written as

ω ←→ i
∂

∂t
, (5.26)

k ←→ −i∇ , (5.27)

multiplying by i and taking into account that i2 = −1. Multiplying also by � we
have then

�ω ←→ i�
∂

∂t
, (5.28)

�k ←→ −i�∇ . (5.29)

Recalling that E = �ω and that p = �k ultimately we get

E ←→ i�
∂

∂t
, (5.30)

p ←→ −i�∇ . (5.31)

These expressions are known as quantization rules: from the formula that links the
energy E to the momentum p of a particle with these rules we obtain the differential
equation that describes the wave associated with the particle.
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5.4.1 Schrödinger Equation for a Free Particle

The energy E of a non-relativistic free particle of mass m is

E = p2

2m
, (5.32)

where p is the linear momentum of the particle. Using the quantization rules (5.30)
and (5.31) we obtain the Schrödinger equation of a quantum free particle

i�
∂

∂t
ψ(r, t) = − �

2

2m
∇2ψ(r, t) , (5.33)

whereψ(r, t) is the matter wave function associated with the particle, usually simply
called wavefunction.

5.4.2 Schrödinger Equation for a Particle in an External
Potential

The energy E of a non-relativistic particle of mass m subjected to an external force
of potential energy U (r) is given by

E = p2

2m
+U (r) . (5.34)

Using also in this case the rules of quantization (5.30) and (5.31) we obtain the
Schrödinger equation of a quantum particle in presence of an external potential

i�
∂

∂t
ψ(r, t) = − �

2

2m
∇2ψ(r, t) +U (r)ψ(r, t) , (5.35)

where ψ(r, t) is the wavefunction associated to the particle. Clearly, this equation
can be rewritten as

i�
∂

∂t
ψ(r, t) =

(
− �

2

2m
∇2 +U (r)

)
ψ(r, t) , (5.36)

or, equivalently, as

(
i�

∂

∂t
+ �

2

2m
∇2 −U (r)

)
ψ(r, t) = 0 . (5.37)
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Recall the probabilistic interpretation of the wave function (Max Born, 1927):
ψ(r, t), that is also called complex probability amplitude, is such that its square
modulus |ψ(r, t)|2 represents the real probability density of finding the particle at
position r and time t . The probability density is sometimes written as

ρ(r, t) = |ψ(r, t)|2 . (5.38)

Its integral over the entire three-dimensional space R
3 must give 1, that is

∫
R3

ρ(r, t) d3r = 1 (5.39)

at any time t . Instead, the integral over a finite region of space V represents the
probability PV (t) of finding the particle within that region V at time t . In symbols

∫
V

ρ(r, t) d3r = PV (t) , (5.40)

where, of course, 0 ≤ PV (t) ≤ 1 for any time t . In general, PV (t) is a function of
time t .

5.5 Madelung Transformation

In 1926 ErwinMadelung found that the just discovered time-dependent Schrödinger
equation can be rewritten as the Euler equations of irrotational and inviscid hydro-
dynamics, with a very peculiar equation of state, that is the so-called called quantum
potential. In fact, setting

ψ(r, t) = ρ(r, t)1/2 eiθ(r,t) , (5.41)

and inserting this formula into Eq. (5.35) one finds

∂

∂t
ρ + ∇ · (ρ v) = 0 , (5.42)

m
∂

∂t
v + ∇

[
1

2
mv2 +U (r) − �

2

2m

∇2√ρ√
ρ

]
= 0 , (5.43)

where ρ(r, t) is the local probability density and

v(r, t) = �

m
∇θ(r, t) (5.44)

is a local velocity, that is (by definition) irrotational, i.e.
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∇ ∧ v(r, t) = 0 . (5.45)

Equation (5.42) is the continuity equation, with

j(r, t) = ρ(r, t) v(r, t) = �

2mi

[
ψ∗(r, t)∇ψ(r, t) − ψ(r, t)∇ψ∗(r, t)

]
(5.46)

the current density. Integrating Eq. (5.42) over a volume V one finds

d

dt

∫
V

ρ d3r = −
∫
V

∇ · j(r, t) = −
∮
S
j(r, t) · n(r) , (5.47)

taking into account the divergence theorem with S the closed surface of the volume
V . In many applications, with a sufficiently large volume V , i.e. when V = R

3, on
the surface S the current density j(r, t) is zero. Under this condition we get

∫
R3

ρ(r, t) d3r = constant , (5.48)

which ensures the conservation of the probability, and we can set constant = 1.
Equation (5.43) is reminiscent of Newton’s second law of dynamics. It contains

a term which depends explicitly on the reduced Planck constant �, i.e. the quantum
potential

UQ(r, t) = − �
2

2m

∇2√ρ(r, t)√
ρ(r, t)

. (5.49)

Clearly, this is not an external potential, because it depends on the local probability
density ρ(r, t) of the quantum fluid.

Within the Euler hydrodynamics of the Schrödinger equation, quantum effects
are encoded not only in the quantum potential, but also into the properties of the
local field v(r, t). This velocity field is proportional to the gradient of a scalar field,
θ(r, t), that is the angle of the phase of the single-valued complex wavefunction
ψ(r, t). Consequently, v(r, t) satisfies the equation

∮
C
v · dr = �

m

∮
C

∇θ · dr = �

m

∮
C
dθ = �

m
2π n = h

m
n (5.50)

for any closed contour C, with n an integer number. In other words, the circulation
is quantized in units of h/m.
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5.6 Stationary Schrödinger Equation

It is important to stress that the time-dependent Schrödinger equation can be written
in a more compact form as

i�
∂

∂t
ψ(r, t) = Ĥ ψ(r, t) , (5.51)

where

Ĥ = − �
2

2m
∇2 +U (r) (5.52)

is the so-called quantum Hamiltonian operator, i.e. the quantum energy operator,
associated to the classical total energy E = p2/(2m) +U (r).

Given the time-dependent Schrödinger equation (5.35), setting

ψ(r, t) = φ(r) e−i Et/� (5.53)

one immediately finds

E φ(r) =
(

− �
2

2m
∇2 +U (r)

)
φ(r) , (5.54)

known as the time-independent Schrödinger equation or stationary Schrödinger
equation. Obviously this equation can be formally rewritten as

Ĥφ(r) = E φ(r) , (5.55)

i.e. as an eigenvalue equation. In general there are many real values of E , called
eigenvalues (or energy levels) that satisfy this equation and the corresponding func-
tions φ(r), called eigenfunctions. For this reason, the previous equation is usually
rewritten as

Ĥφn(r) = En φn(r) , (5.56)

where En is one element of the set of possible eigenvalues labelled by the subindex
n = (n1, n2, n3), which represents the possible quantum numbers. Moreover, φn(r)
is one element of the corresponding set of eigenfunctions.

Recall that to obtain the stationarySchrödinger equationwehavemade the hypoth-
esis that

ψ(r, t) = φ(r) e−i Et/� (5.57)

from which it immediately follows that

|ψ(r, t)|2 = |φ(r)|2 (5.58)
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provided that E is a real number. So, the wave functions satisfying Eq. (5.57) are a
very particular class of solutions of the time-dependent Schrödinger equation from
time: they are those for which the probability density does not depend on time. For
this reason they are called stationary wavefunctions.

5.6.1 Properties of the Hamiltonian Operator

Let us consider the Hamiltonian operator Ĥ given by Eq. (5.52). It is called hermitian
because Ĥ∗ = Ĥ . It is also called symmetric because

∫
R3

φ1(r)Ĥφ2(r) d3r =
∫

R3
φ2(r)Ĥφ1(r) d3r (5.59)

for any choice of functions φ1(r) and φ2(r) which go to zero at infinity. In fact,

∫
R3

(
φ1(r)Ĥφ2(r) − φ2(r)Ĥφ1(r)

)
d3r = �

2

2m

∫
R3

(−φ1(r)∇2φ2(r) + φ2(r)∇2φ1(r)
)
d3r

= �
2

2m

∫
R3

(∇φ1(r) · ∇φ2(r) − ∇φ2(r) · ∇φ1(r)) d3r = 0 (5.60)

by using per partes integration. The fact that Ĥ is symmetric can be denoted as
follows: Ĥ T = Ĥ with Ĥ T the transpose of Ĥ . The Hamiltonian Ĥ is also called
self-adjoint because it is both hermitian and symmetric. In symbols one can write
Ĥ+ = Ĥ with Ĥ+ = (Ĥ∗)T the adjoint of Ĥ .

5.6.2 Orthogonality of Eigenfunctions

Let us consider two eigenfunctions φn(r) and φn′(r) which correspond to two differ-
ent eigenvalues En �= En′ of the quantum Hamiltonian Ĥ . It is not difficult to prove
that φn(r) and φn′(r) are orthogonal, i.e.

∫
R3

φ∗
n′(r)φn(r) d3r = 0 (5.61)

if n �= n′. In fact, starting from

Ĥφn(r) = En φn(r) , (5.62)

Ĥφ∗
n′(r) = En′ φ∗

n′(r) , (5.63)

we can write
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φ∗
n′(r)Ĥφn(r) = En φ∗

n′(r)φn(r) , (5.64)

φn(r)Ĥφ∗
n′(r) = En′ φn(r)φ∗

n′(r) . (5.65)

Subtracting the last two equations and integrating over space we get

∫
R3

φ∗
n′(r)Ĥφn(r) d3r −

∫
R3

φn(r)Ĥφ∗
n′(r) d3r = (En′ − En)

∫
R3

φ∗
n′(r)φn(r) d3r .

(5.66)
The left side of this equality is zero because Ĥ is symmetric, and consequently

0 = (En′ − En)

∫
R3

φ∗
n′(r)φn(r) d3r . (5.67)

Finally, because we have assumed that En′ �= En, we get Eq. (5.61).
Usually the eigenfunctions are normalized to one and we can then say that they

are orthonormal, i.e. ∫
R3

φ∗
n′(r)φn(r) d3r = δn′,n (5.68)

with δn′,n the Kronecher delta, such that δn′,n = 1 if n = n′ and δn′,n = 0 if n �= n′.

Further Reading

Relevant historical papers about the De Broglie wavelength, the Schrödinger equa-
tion and its probabilistic interpretation are:
L. De Broglie, Annales de Physique 10, 22 (1925).
E. Schrödinger, Physical Review 28, 1049 (1926).
M. Born, Zeitschrift für Physik 37, 863 (1926).
M. Born, Zeitschrift für Physik, 38, 803 (1926).
E. Madelung, Naturwissenschaften 14, 1004 (1926).
The cited works about the experimental verification of the wave-particle duality of
the electron are:
C.J. Davisson and L.H. Germer, Proceedings National Academy of Sciences 14, 317
(1928).
P.G.Merli, G.F.Missiroli, andG. Pozzi, American Journal of Physics 44, 306 (1976).
A. Tonomura, J. Endo, T. Matsuda, T. Kawasaki, and H Ezawa, Americal Journal of
Physics 57 117 (1989).
A very nice pedagogical book on quantum mechanics and the Schrödinger wave-
function is:
R.W. Robinett, Quantum Mechanics: Classical Results, Modern Systems, and Visu-
alized Examples (Oxford Univ. Press, 2006).



Chapter 6
Axiomatization of Quantum Mechanics

In this chapter we discuss the matrix mechanics of Born, Jordan, and Heisenberg,
and then we analyze the basic axioms of quantummechanics, which were formulated
in the seminal books of Dirac and von Neumann. Finally, we consider the quantum
perturbation theory for both time-independent and time-dependent cases.

6.1 Matrix Mechanics and Commutation Rules

In 1925, that is a year before the discovery of the Schrödinger equation, Max Born,
Pasqual Jordan and Werner Heisenberg introduced the matrix mechanics. This was
the first complete (in the non-relativistic limit) and coherent version of quantum
mechanics and extended Bohr’s atomicmodel of Bohr, justifying from the theoretical
point of view the existence of the quantum jumps. This result was achieved by
describing the physical observables observables and their time evolution through the
use of matrices. The idea of matrix mechanics is to eliminate the concept of classical
trajectory of elementary particle. Heisenberg wrote: “All my efforts are directed
towards the unraveling and replacement of the concept of the orbital trajectory that
one cannot observe”. It is possible to show that the mechanics of the matrices of
Heisenberg-Born-Jordan matrix mechanics is equivalent to the wave mechanics of
Erwin Schrödinger, who followed it by about six months. The wave mechanics is
more intuitive and mathematically simpler than the matrix mechanics.

According to the matrix mechanics the position r and the linear momentum p
of an elementary particle are not vectors composed of numbers but instead vectors
composed of infinite dimensional matrices (operators) which satisfy strange com-
mutation rules, i.e.

r̂ = (x̂1, x̂2, x̂3) , p̂ = ( p̂1, p̂2, p̂3) , (6.1)
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such that
[x̂ j , p̂k] = i� δ jk , (6.2)

where the hat symbol is introduced to denote operators, [ Â, B̂] = Â B̂ − B̂ Â is the
commutator of generic operators Â and B̂, and δ jk is the Kronecker delta (δ jk = 1
if j = k and δ jk = 0 if j �= k). As usual, i = √−1 is the imaginary unit. In full
generality, these infinite dimensional matrices (operators) act on infinite dimensional
vectors (wavefunctions) which characterize the possible “quantum states” of the
system.

By using their theory Born, Jordan and Heisenberg were able to obtain the energy
spectrum of the hydrogen atom and also to calculate the transition probabilities
between two energy levels. Soon after, Schrödinger realized that the matrix mechan-
ics is equivalent to his wave-like formulation in the coordinate representation intro-
ducing the quantization rules

r̂ = r , p̂ = −i�∇ . (6.3)

For instance, given a generic function f (x j ) one finds immediately the commutation
rule

(
x̂ j p̂ j − p̂ j x̂ j

)
f (x j ) = −i� x j

∂

∂x j
f (x j ) + i�

∂

∂x j

(
x j f (x j )

)

= −i� x j
∂

∂x j
f (x j ) + i� f (x j ) + i� x j

∂

∂x j
f (x j )

= i� f (x j ) . (6.4)

Moreover, starting from classical Hamiltonian

H = p2

2m
+ U (r) , (6.5)

the quantization rules give immediately the quantum Hamiltonian operator in the
coordinate representation

Ĥ = − �
2

2m
∇2 + U (r) (6.6)

from which one can write the time-dependent Schrödinger equation as

i�
∂

∂t
ψ(r, t) = Ĥψ(r, t) . (6.7)
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6.1.1 Momentum Representation

Actually, one can also work in the so-called momentum representation, introducing
the alternative quantization rules

r̂ = i�∇p , p̂ = p , (6.8)

with ∇p = ( ∂
∂ p1

, ∂
∂ p2

, ∂
∂ p3

). For instance, given a generic function f (p j ) one finds
immediately the commutation rule

(
x̂ j p̂ j − p̂ j x̂ j

)
f (p j ) = i�

∂

∂ p j

(
p j f (p j )

) − i� p j
∂

∂ p j
f (p j )

= i� f (p j ) + i�
∂

∂ p j
f (p j ) − i� p j

∂

∂ p j
f (p j )

= i� f (p j ) . (6.9)

Moreover, starting from the classical Hamiltonian

H = p2

2m
+ U (r) , (6.10)

the quantization rules in themomentum representation give immediately the quantum
Hamiltonian operator in the momentum representation

Ĥ = p2

2m
+ U (i�∇p) (6.11)

from which one can write the time-dependent Schrödinger equation

i�
∂

∂t
ψ(p, t) = Ĥψ(p, t) , (6.12)

for the wavefunction ψ(p, t) = ψ(p1, p2, p3, t).

6.2 Time Evolution Operator

A crucial operator in quantum mechanics is the time evolution operator, defined as

Û (t) = exp (−i Ĥ t/�) =
+∞∑

n=0

1

n!
(

− i

�
Ĥ t

)n

, (6.13)

with Ĥ given by Eq. (6.6). Quite remarkably, the equation
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ψ(r, t) = Û (t)ψ(r, 0) (6.14)

is equivalent to Eq. (6.7). In fact, performing the time derivative in Eq. (6.14) we
obtain

∂

∂t
ψ(r, t) = ∂

∂t

(
Û (t)ψ(r, 0)

)
=

(
∂

∂t
exp (−i Ĥ t/�)

)
ψ(r, 0)

= − i

�
Ĥ exp (−i Ĥ t/�)ψ(r, 0) = − i

�
Ĥ ψ(r, t) . (6.15)

Both Eqs. (6.7) and (6.14) describe the time evolution of the wavefunction ψ(r, t).

6.3 Axioms of Quantum Mechanics

The axiomatic formulation of quantum mechanics was set up by Paul Maurice Dirac
in 1930 and John von Neumann in 1932. The basic axioms are the following:

Axiom 1. The “state” of a quantum system is described by a vector |ψ〉 belonging to
a complex Hilbert space H. This state is usually called “ket ψ”.

A complex Hilbert space H is a vector space, which can be finite dimensional
or infinite dimensional, equipped with the complex scalar product (also called inner
product) 〈ψ|ψ′〉 between any pair of states |ψ〉, |ψ′〉 ∈ H. The norm, or modulus, of
a generic vector |ψ〉 ∈ H is defined as

||ψ|| = |〈ψ|ψ〉| ,

and usually |ψ〉 is normalized to one, i.e. ||ψ|| = 1. The symbol 〈ψ|which appears in
the definition of the norm is called “braψ” and it can be intepreted as the fuction 〈ψ| :
H → C. For any |ψ′〉 ∈ H this function gives a complex number 〈ψ|ψ′〉 obtained as
scalar product of |ψ〉 and |ψ′〉. In a complex Hilbert space H it exists a set of basis
vectors |φα〉 which are orthonormal, i.e. 〈φα|φα〉 = δα,β , and such that

|ψ〉 =
∑

α

cα|φα〉

for any |ψ〉 ∈ H, where the coefficients cα belong to C.

Axiom 2. Any observable (measurable quantity) of a quantum system is described
by a self-adjoint linear operator F̂ acting on the Hilbert space of state vectors.

For any classical observable F it exists a corresponding quantum observable
F̂ : H → H, which can be a finite-dimensional or infinite-dimensional matrix. Self-
adjointmeans that F̂+ = F̂ , where F̂+ is the adjoint (also calledHermitian conjugate
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or transpose conjugate) of the operator F̂ , i.e. F̂+ = (F̂∗)t where ∗ means the complex
conjugate and t means the transpose of the matrix.

Axiom 3. The possible measurable values of an observable F̂ are its eigenvalues f ,
such that

F̂ | f 〉 = f | f 〉

with | f 〉 the corresponding eigenstate.

The observable F̂ admits the spectral resolution

F̂ =
∑

f

f | f 〉〈 f | ,

where {| f 〉} is the set of orthonormal eigenstates of F̂ , and the mathematical object
〈 f |, called “bra of f ”, is a linear map that maps into the complex number. This
spectral resolution is quite useful in applications, as well as the spectral resolution
of the identity

Î =
∑

f

| f 〉〈 f | .

Axiom 4. The probability P of finding the state |ψ〉 in the state | f 〉 is given by

P = |〈 f |ψ〉|2 ,

where the complex probability amplitude 〈 f |ψ〉 denotes the scalar product of the
two vectors. This probability P is also the probability of measuring the value f of
the observable F̂ when the system is in the quantum state |ψ〉.

In Axiom 4 both |ψ〉 and | f 〉 must be normalized to one. Clearly, from Axiom 1
and Axiom 4 we have |ψ〉 = ∑

f c f | f 〉, where c f is the complex amplitude of the
probabilityP = |〈 f |ψ〉|2 that is equal to |c f |2. Notice that thewavefunction collapse
occurs when, after an observation (measurement), the quantum state |ψ〉 collapses
into one of its basis states. Often it is useful to introduce the expectation value (mean
value or average value) of an observable F̂ with respect to a state |ψ〉 as 〈ψ|F̂ |ψ〉.
Moreover, from the Axiom 4 it follows that the wavefunction ψ(r) can be interpreted
as

ψ(r) = 〈r|ψ〉 ,

that is the probability amplitude of finding the state |ψ〉 at the position state |r〉, and
similarly

ψ∗(r) = 〈ψ|r〉 .
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One can also consider ψ(r) as the vector of a specific Hilbert spaceH that is usually
denoted as L2(R3, C). This is the space of all the functions ψ(r) : R

3 → C whose
square modulus |ψ(r)|2 is Lebesgue integrable. Within this interpretation, the scalar
product of |ψ〉 and |φ〉 can be written as

〈ψ|φ〉 =
∫

R3
ψ∗(r)φ(r) d3r ,

and the norm ||ψ|| of |ψ〉 is such that

||ψ||2 =
∫

R3
|ψ(r)|2 d3r .

Axiom 5. The time evolution of states and observables of a quantum system with
Hamiltonian Ĥ is determined by the unitary operator

Û (t) = exp (−i Ĥ t/�) ,

such that |ψ(t)〉 = Û (t)|ψ〉 is the time-evolved state |ψ〉 at time t and F̂(t) =
Û−1(t)F̂Û (t) is the time-evolved observable F̂ at time t .

From Axiom 5, simply using the derivative wih respect to time t , one finds imme-
diately the Schrödinger equation

i�
∂

∂t
|ψ(t)〉 = Ĥ |ψ(t)〉

for the state |ψ(t)〉, and the Heisenberg equation

i�
∂

∂t
F̂(t) = [F̂(t), Ĥ ]

for the observable F̂(t). In the so-called Heisenberg picture, that is the one of matrix
mechanics, the states are time independent while the observables are time dependent.
Instead, in the so-called Schrödinger picture, that is the one of the wave mechanics,
the states are time dependent while the observables are, usually, time independent.
Indeed, for the sake of simplicity, in the Heisenberg equation of the observable F̂(t)
we are assuming that the observable is time-independent in the Schrödinger picture,
i.e. F̂S(t) = F̂S(0) where the subscript S means “Schrödinger picture”. It is then
quite intuitive to recognize that one can move from the Heisenberg picture to the
Schrödinger picture by applying the time-evolution unitary operator Û (t). Finally,
we stress that this observable F̂ is a constant of motion if it commutes with the
Hamiltonian operator Ĥ .
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6.4 Heisenberg Uncertainty Principle

The position-momentum uncertainty principle, introduced by Werner Heisenberg
in 1927, is a theorem of quantum mechanics which follows from the commutation
rule (6.2) of the observables position r̂ = (x̂1, x̂2, x̂3) and linear momentum p̂ =
( p̂1, p̂2, p̂3), as shown by Earle Hesse Kennard in 1927 and by Hermann Weyl in
1928. The principle says that the standard deviations �x j and �p j always satisfy
the inequality

�x j �p j ≥ �

2
, (6.16)

where
(�x j )

2 = 〈ψ|x̂2
j |ψ〉 − 〈ψ|x̂ j |ψ〉2 (6.17)

and
(�p j )

2 = 〈ψ| p̂2
j |ψ〉 − 〈ψ| p̂ j |ψ〉2 , (6.18)

with |ψ〉 a generic quantum state.
Actually, the position-momentum inequality (6.16) is nothing else than the

position-wavevector theorem

�x j (t)�k j (t) ≥ 1

2
, (6.19)

of the space-wavevector Fourier transform

ψ̃(k, t) =
∫

ψ(r, t) e−ik·r d3r (6.20)

of the wavefunction ψ(r, t), observing that p̂ = �k̂ with k̂ = −i∇ and that

(�p j (t))
2 = �

2 �k j (t)
2 , (6.21)

where

(�k j (t))
2 = 〈ψ|k̂2

j |ψ〉 − 〈ψ|k̂ j |ψ〉2

= −
∫

ψ∗(r, t)
∂2

∂x2
j

ψ(r, t) d3r −
(

i
∫

ψ∗(r, t)
∂

∂x j
ψ(r, t) d3r

)2

=
∫

k2
j |ψ̃(k, t)|2 d3k −

(∫
k j |ψ̃(k, t)|2 d3k

)2

. (6.22)

For the sake of completeness, we observe that, given the time-frequency Fourier
transform
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ψ̃(r,ω) =
∫ +∞

−∞
ψ(r, t) eiωt dt (6.23)

of the wavefunction ψ(r, t) in the frequency domain ω, the frequency-time theorem
holds

�ω �t ≥ 1

2
, (6.24)

where

(�ω)2 =
∫

d3r
∫ ∞

−∞
dω ω2 |ψ̃(r,ω)|2 −

(∫
d3r

∫ ∞

−∞
dω ω |ψ̃(r,ω)|2 d3r dω

)2

(6.25)
and

(�t)2 =
∫

d3r
∫ ∞

−∞
dt t2 |ψ(r, t)|2 −

(∫
d3r

∫ ∞

−∞
dt t |ψ(r, t)|2

)2

. (6.26)

Setting E = �ω we immediately find that energy-time uncertainty relation

�E �t ≥ �

2
. (6.27)

In the simultaneous measurements of the energy of a quantum state and its lifetime,
Eq. (6.27) connects the uncertainty�E in the energymeasurement to the uncertainty
�t in the lifetime measurement. Indeed, as seen in Chap. 4, �E is strictly related to
the natural linewidth of the quantum state. Within the Schrödinger picture, where the
time t is identified as the parameter entering in the Schrödinger equation, the energy-
time uncertanty is meaningful. However, within the Heisenberg picture, the energy-
time uncertainty relation is a bit controversial. The self-adjoint operator associated to
the energy E is the quantum Hamiltonian Ĥ , while the existence of a time operator
t̂ gives rise to technical problems.

6.4.1 Uncertainty Principle for Non-commuting Operators

It is important to observe that there is a more formal version of the Heisenberg
uncertainty principle. Let us consider two operators Â and B̂. Their mean-square
uncertainties are given by

(�A)2 = 〈 Â2〉 − 〈 Â〉2 , (6.28)

(�B)2 = 〈B̂2〉 − 〈B̂〉2 , (6.29)
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where 〈 Â2〉 = 〈ψ| Â2|ψ〉 and 〈 Â〉2 = 〈ψ| Â|ψ〉2 with |ψ〉 a chosen quantum state. It
is then possible to prove (Howard Percy Robertson, 1929) that

�A �B ≥ 1

2
|〈[ Â, B̂]〉| , (6.30)

where [ Â, B̂] = Â B̂ − B̂ Â is the commutator. If [ Â, B̂] �= 0, Eq. (6.30) is the uncer-
tainty principle for non-commuting operators. If [ Â, B̂] = 0 the two operators are
commuting and Eq. (6.30) implies no uncertainty, i.e. �A �B = 0. Notice that, if
commutator [ Â, B̂] is a constant, the expectation value in Eq. (6.30) can be removed
and we obtain the simplfied expression

�A �B ≥ 1

2
|[ Â, B̂]| . (6.31)

Clearly, with two operators x̂ j and p̂ j , such that [x̂ j , p̂ j ] = i�, from Eq. (6.31) we
find exactly Eq. (6.16).

Two quantum observabiles Â and B̂ are called complementary if they are not com-
muting, i.e. [ Â, B̂] �= 0. The observables are instead called compatible if they com-
mute, i.e. [ Â, B̂] = 0. Quite remarkably, complementary observables cannot have
common eigenstates, while compatible observables may have common eigenstates.

6.5 Time-Independent Perturbation Theory

Let us consider a quantum system described by the Hamiltonian

Ĥ = Ĥ0 + ĤI , (6.32)

where Ĥ0 is an Hamiltonian whose eigenvalues and eigenstates are exactly known,
while ĤI is simply the difference between Ĥ and Ĥ0. A generic eigenstate |φ(0)

n 〉 of
the Hamiltonian Ĥ0 satisfies the stationary Schrödinger equation

Ĥ0|φ(0)
n 〉 = E (0)

n |φ(0)
n 〉 . (6.33)

Our aim is to solve the eigenvalue problem

Ĥ |φn〉 = En|φn〉 , (6.34)

in a perturbative way. For this reason it is useful to introduce a parameter λ ∈ [0, 1]
used to keep track of the order of the correction. In particular, instead of Eq. (6.32),
we consider

Ĥ = Ĥ0 + λ ĤI . (6.35)
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H0 is usually called unperturbed Hamiltonian while λ HI is the perturbing Hamil-
tonian. Clearly λ = 0 means no perturbation and λ = 1 means full perturbation.
At the end of the calculations, at a fixed order of the perturbation theory, one sets
λ = 1. Obviously one must also verify that the obtained corrections are small with
respect to the unperturbed ones. The perturbative procedure, that is called Rayleigh-
Schrödinger perturbation theory, is then based on the following λ expansions for
eigenvalues and eigenstates:

En =
+∞∑

j=0

λ j E ( j)
n = E (0)

n + λ E (1)
n + λ2 E (2)

n + ... , (6.36)

|φn〉 =
+∞∑

j=0

λ j |φ( j)
n 〉 = |φ(0)

n 〉 + λ |φ(1)
n 〉 + λ2 |φ(2)

n 〉 + ... . (6.37)

By using Eqs. (6.35) and (6.37) we immediately obtain

En = 〈φn|Ĥ |φn〉 = 〈φn|
(

Ĥ0 + λĤI

)
|φn〉 = E(0)

n + λ 〈φ(0)
n |Ĥ |φ(0)

n 〉 + λ2〈φ(1)
n |Ĥ0|φ(1)

n 〉 + ... .

(6.38)
Consequently, setting λ = 1, at the first order of the perturbation theory we simply
get

En = E (0)
n + 〈φ(0)

n |ĤI |φ(0)
n 〉 . (6.39)

This is a very nice result: the eigenvalues of the total Hamiltonian are obtained
knowing the eigenvalues of the unperturbed Hamiltonian and the average (expecta-
tion value) of the perturbing Hamiltonian with respect to the unperturbed eigen-
states. Thus, the perturbation causes the average energy of this state to change
by E (1)

n = 〈φ(0)
n |ĤI |φ(0)

n 〉. This is the so-called first-order result of non-degenerate
perturbation theory for the energy levels. Equation (6.39) can be extendend to the
degenerate case, where various unperturbed eigenstates |ψ(0)

n,α correspond to the same
unperturbed eigenvalue E (0)

n . Here the label α takes into account the degeneration,
i.e. α = 1, 2, ..., M for a M times degenerate eigenvalue. In this case, the first-order
degenerate perturbation theory gives

En,α = E (0)
n + E (1)

n,α , (6.40)

where the various E (1)
n,α are the eigenvalues of the M × M perturbing matrix whose

elements are 〈φ(0)
n,α|ĤI |φ(0)

n,β〉.
The derivation of the first-order correction for the eigenstates is quite complicated

also in the non-degenerate case. Here we report the final formula:

|φ(1)
n 〉 =

∑

n′ �=n

〈φ(0)
n′ |ĤI |φ(0)

n 〉
E (0)
n − E (0)

n′
|φ(0)

n′ 〉 . (6.41)
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From this expression one can then deduce the second-order correction for the eigen-
values, which reads

E (2)
n =

∑

n′ �=n

|〈φ(0)
n′ |ĤI |φ(0)

n 〉|2
E (0)
n − E (0)

n′
. (6.42)

Note that in the last two formulas the summation is done with respect to n′ with the
constraint that n′ must be different from n.

6.6 Time-Dependent Perturbation Theory and Fermi
Golden Rule

Let us consider again the Hamiltonian (6.32) equipped by Eq. (6.33). If the pertur-
bation is zero, i.e. if ĤI = 0, then the time evolution of |φn〉 is simple:

|φn(t)〉 = e−iεnt/�|φn(0)〉 . (6.43)

Clearly, in this case, the probability of finding the eigenstate |φn〉 of the unperturbed
Hamiltonian Ĥ0 in another eigenstate |φl〉 of the unperturbedHamiltonian Ĥ0 is zero.

If instead the perturbation is not zero, i.e. if ĤI �= 0, then the time evolution of
|φn〉 is, in general, quite complicated because, usually, |φn〉 is not an eigenstate of the
total Hamiltonian Ĥ . The Fermi golden rule is relevant in this case because it gives
a way to calculate the probability of finding the eigenstate |φn〉 of the unperturbed
Hamiltonian Ĥ0 into another eigenstate |φl〉 of the unperturbed Hamiltonian Ĥ0.

A generic time-dependent state |ψ(t)〉 satisfies the time-dependent Schrödinger
equation

i�
∂

∂t
|ψ(t)〉 =

(
Ĥ0 + ĤI

)
|ψ(t)〉 . (6.44)

This state |ψ(t)〉 can be expanded in the orthonormal basis of the time-independent
eigenstates |φ j (0)〉 of the unperturbed Hamiltonian Ĥ0 as follows

|ψ(t)〉 =
∑

j

cj(t) e−iεjt/� |φj(0)〉 , (6.45)

where the complex coefficients cj(t) are all equal to one only in the very special case
of ĤI = 0.

For the sake of simplicity we approximate Eq. (6.45) adopting the two-mode
approximation which involves only two eigenstates |φI (0)〉 and |φF (0)〉 of the unper-
turbed Hamiltonian H0:

|ψ(t)〉 =
∑

j=I,F

cj(t) e−iεjt/� |φj(0)〉 , (6.46)
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assuming that at t = 0 the state |ψ(0)〉 of the system is in the initial state |φI (0)〉,
namely cI (0) = 1 and cF (0) = 0. Here |φF (0)〉 is our final state, and clearly
〈φI (0)|φF (0)〉 = 0.

Inserting the expression (6.46) into Eq. (6.44) and the bra 〈φF (0)| on the left side
of the resulting formula we obtain

i� ċF (t) = 〈φF (0)|ĤI |φI (0)〉 eiωI F t , (6.47)

where ωI F = (EI − EF )/�. The solution of this equation is given by

cF (t) = 〈F |ĤI |I (0)〉
i�

∫ t

0
eiωI F t ′

dt ′ = 〈F |ĤI |I 〉
�ωI F

(
1 − eiωI F t

)
, (6.48)

where we set |I 〉 = |φI (0)〉 and F = |φF (0)〉. It follows that

|cF (t)|2 = |〈φF (0)|ĤI |φF (0)〉|2
�2ω2

I F

4 sin2 (ωI F t/2) . (6.49)

We can now introduce the transition probability per unit time

|cF (t)|2
t

= 1

�2
t
sin2(ωI F t/2)

(ωI F t/2)2
. (6.50)

Since the Dirac delta function δ(x) can be written as

δ(x) = 1

2π
lim

t→+∞ t
sin2(x t)

(x t)2
, (6.51)

the asymptotic transition probability per unit time

WI F = lim
t→+∞

|cF (t)|2
t

(6.52)

reads

WI F = 2π

�
|〈F |HI |I 〉|2 δ(EI − EF ) , (6.53)

which is the so-called Fermi golden rule. Actually, it was derived for the first time in
1926 by Paul Dirac and named “golden rule” few years later by Enrico Fermi. Note
that the Dirac delta function is then removed by integrating over the possible final
states |F〉 but, obviously, to perform the integration one needs an explicit expression
for the final states.
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6.7 Variational Principle

Many approaches to the determination of the ground-state of a quantum system are
based on the so-called variational principle, which is actually a theorem.

Theorem 1 For any normalized quantum state |φ〉, i.e. such that 〈φ|φ〉 = 1, which
belongs to the Hilbert space on which acts the Hamiltonian Ĥ , one finds

〈φ|Ĥ |φ〉 ≥ Egs , (6.54)

where Egs is the ground-state energy of the system and the equality holds only if
|φ〉 = |φgs〉 with |φgs〉 ground-state of the system, i.e. such that Ĥ |φgs〉 = Egs |φgs〉.
Proof The quantum Hamiltonian Ĥ satisfies the exact eigenvalue problem

Ĥ |φα〉 = Eα|φα〉 , (6.55)

where Eα are the ordered eigenvalues, i.e. such that E0 < E1 < E2 < ... with E0 =
Egs , and |φα〉 the correspondingorthonormalized eigenstates, i.e. such that 〈φα|φβ〉 =
δα,β with |φ0〉 = |φgs〉. The generic quantum state |φ〉 can be written as

|φ〉 =
∑

α

cα|φα〉 , (6.56)

where cα are the complex coefficients of the expansion such that

∑

α

|cα|2 = 1 . (6.57)

Then one finds

〈φ|Ĥ |φ〉 =
∑

α,β

c∗
α cβ 〈φα|Ĥ |φβ〉 =

∑

α,β

c∗
α cβ Eβ 〈φα|φβ〉 =

∑

α,β

c∗
α cβ Eβ δα,β

=
∑

α

|cα|2 Eα ≥
∑

α

|cα|2 E0 = E0 = Egs . (6.58)

Obviously, the equality holds only if c0 = 1 and, consequently, all the other coeffi-
cients are zero.

As an application of the variational method we will calculate the approximate
energy of the ground-state of a one-dimensional quantum particle under the action
of the quartic potential

U (x) = A x4 . (6.59)

The stationary Schrödinger equation of the particle is given by
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[
− �

2

2m

∂2

∂x2
+ A x4

]
φ(x) = ε φ(x) , (6.60)

while the energy that we want to minimize reads

E = 〈φ|Ĥ |φ〉 =
∫

dx φ∗(x)

[

− �
2

2m

∂2

∂x2
+ A x4

]

φ(x) =
∫

dx

[
�
2

2m

∣∣
∣
∂φ(x)

∂x

∣∣
∣
2 + A x4|φ(x)|2

]

,

(6.61)
with the normalization condition

∫
dx |φ(x)|2 = 1 (6.62)

for the wavefunction. We assume that the variational wavefunction is a Gaussian
function, i.e.

φ(x) = e−x2/(2σ2)

π1/4σ1/2
, (6.63)

where σ is the variational parameter. Inserting this variational wavefunction into the
energy functional and integrating over x we get

E = �
2

4mσ2
+ 3

4
A σ4 . (6.64)

Minimizing this energy with respect to the variational parameter σ, i.e. setting d E
dσ

=
0, we find

σ =
(

�
2

6m A

)1/6

. (6.65)

Substituting this value of σ in the energy E we finally obtain

E = 9

4

(
�
2

6m

)2/3

A1/3 , (6.66)

which is the approximate energy of the ground-state. This energy is surely larger or
equal to the energy of the exact ground state of the system.

Further Reading

Relevant historical papers about the matrix mechanics are:
W. Heisenberg, Zeitschrift für Physik 33, 879 (1925).
M. Born and P. Jordan, Zeitschrift für Physik 34, 858 (1925).
M. Born, W. Heisenberg, and P. Jordan, Zeitschrift für Physik 35, 557 (1926).
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The two seminal books on the axiomatization of quantum mechanics are:
P.A.M.Dirac, ThePrinciples ofQuantumMechanics. First published in 1930 (Oxford
Univ. Press, 1982).
J. von Neumann, Mathematical Foundations of QuantumMechanics. First published
in 1932 (Princeton Univ. Press, 2018).
For a detailed discussion of the quantum perturbation theory and the variational
principle:
J.J. Sakurai and J. Napolitano,ModernQuantumMechanics (CambridgeUniv. Press,
2020).



Chapter 7
Solvable Problems in Quantum
Mechanics

In this chapter we consider relevant applications of quantummechanics in one spatial
dimension. Among them, the quantum particle in a box, in a harmonic potential,
and in a double-well potential. We also discuss the three-dimensional Schrödinger
equation with a separable potential.

7.1 One-Dimensional Square-Well Potential

The stationary Schrödinger equation for a particle moving only along the x-axis is
given by

Ĥ φ(x) = E φ(x) , (7.1)

where

Ĥ = − �
2

2m

d2

dx2
+U (x) (7.2)

is the Hamiltonian operator of this one-dimensional (1D) problem.
We assume that the external potential U (x) is an infinite square-well, i.e.

U (x) =
{
0 if 0 ≤ x ≤ L
+∞ elsewhere

(7.3)

Therefore the particle is free to move in the region of x between 0 and L , while
it cannot enter in the regions external to this interval [0, L] since there the poten-
tial barrier becomes infinitely repulsive. Basically the problem under consideration
reduces to that described by the stationary Schrödinger equation

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Salasnich, Modern Physics, UNITEXT for Physics,
https://doi.org/10.1007/978-3-030-93743-0_7
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Fig. 7.1 Infinite square-well
potential U (x) with L = 1
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− �
2

2m

d2

dx2
φ(x) = E φ(x) (7.4)

with boundary conditions φ(0) = 0 and φ(L) = 0 (Fig. 7.1).
The equation can be rewritten as follows

φ′′(x) + k2φ(x) = 0 , (7.5)

where the constant k is given by

k =
√
2mE

�2
. (7.6)

This is a second order differential equation with constant coefficients. The general
solution is

φ(x) = A eκ1 x + B eκ2 x , (7.7)

where κ1 and κ2 are the roots of the algebraic equation

κ2 + k2 = 0 , (7.8)

namely
κ1 = i k κ2 = −i k . (7.9)

The solution then becomes

φ(x) = A eikx + B e−ikx , (7.10)

where the arbitrary constants A and B are determined via the boundary conditions
and by normalization. From the boundary conditions we have
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0 = φ(0) = A + B , (7.11)

from which A = −B, but also

0 = φ(L) = A eikL + B e−ikL = A eikL − A e−ikL = 2 i A sin (kL) . (7.12)

It follows that
k L = π n (7.13)

where n is an integer different from zero. We can then write

k = π

L
n . (7.14)

Recalling the definition of the constant k, which is precisely the wave number, we
get

En = �
2π2

2mL2
n2 , (7.15)

which is the quantization formula for the energy levels of the problem. To recap, we
obtained the eigenfunctions

φn(x) = A sin
(π

L
nx

)
(7.16)

and the corresponding eigenvalues given by Eq. (7.15). It remains to determine the
arbitrary constant A. Imposing the normalization condition

∫ L

0
|φn(x)|2 dx = 1 (7.17)

after some calculations one finds

A =
√

2

L
. (7.18)

7.2 One-Dimensional Harmonic Potential

In this section we assume that the external potential U (x) is given by

U (x) = 1

2
m ω2x2 (7.19)

This harmonic potential represents the potential energy of a particle of mass m
subjected to the elastic force F = −Kel x , where Kel is the elastic constant and
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Fig. 7.2 Harmonic potential
U (x) = mω2x2/2 setting
mω2 = 1
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ω =
√

Kel

m
(7.20)

is the angular frequency of the periodic (harmonic) oscillation of the particle
(Fig. 7.2).

The problem under consideration is described by the stationary Schrödinger equa-
tion

− �
2

2m

d2

dx2
φ(x) + 1

2
m ω2x2 φ(x) = E φ(x) (7.21)

with boundary conditions φ(−∞) = 0 e φ(+∞) = 0, which are needed to obtain a
square-integrable smooth wavefunction. This is a second order differential equation
but, unfortunately, it does not have constant coefficients.

To solve this equation we use a special approach that is the factorization method.
The Hamiltonian operator of the problem at hand reads

Ĥ = − �
2

2m

d2

dx2
+ 1

2
mω2 x2 = p̂2

2m
+ 1

2
mω2 x2 , (7.22)

where p̂ = −i�d/dx . By collecting �ω this operator becomes

Ĥ = �ω

(
−1

2

�

mω

d2

dx2
+ 1

2

mω

�
x2

)
= �ω

(
p̂2

2m�ω
+ 1

2

mω

�
x2

)
. (7.23)

Note that, using the characteristic length

σ =
√

�

mω
(7.24)

appearing in the Hamiltonian, it can then be rewritten as
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Ĥ = �ω

(
−1

2

d2

dx̃2
+ 1

2
x̃2

)
= �ω

(
1

2
ˆ̃p2 + 1

2
ˆ̃x2

)
(7.25)

having introduced the dimensionless coordinate x̃ = x/σ and the dimensionless lin-
earmomentumoperator ˆ̃p = −id/dx̃ . In 1927PaulDirac observed that the following
formula holds

Ĥ = �ω

(
â+ â + 1

2

)
, (7.26)

where the differential operator â+ ed â are given by

â+ = 1√
2

(
x̃ − d

dx̃

)
=

( ˆ̃x + i ˆ̃p
)

, (7.27)

â = 1√
2

(
ˆ̃x + d

dx̃

)
=

( ˆ̃x − i ˆ̃p
)

. (7.28)

Clearly, one can also write the inverse transformations

ˆ̃x = 1√
2

(
â + â+)

, (7.29)

ˆ̃p = 1

i
√
2

(
â − â+)

. (7.30)

Thus, in the case of the harmonic oscillator, the Hamiltonian operator Ĥ can be
factorized in terms of the operators â+ and â. The operators â+ and â satisfy the
commutation rule

[â, â+] = 1 , (7.31)

i.e. explicitly
â â+ − â+ â = 1 . (7.32)

This commutation rule can obviously derived from the commutation rule [x̂, p̂] =
i� or, equivalently, [ ˆ̃x, ˆ̃p] = i . The operator â+ is called the creation operator, the
operator â is called annihilation operator. These operators are also called ladder
operators. Their product â+â is the number operator, denoted by the symbol N̂ , i.e.

N̂ = â+ â . (7.33)

The reasons for these distinctive names are discussed below.
For the number operator it can be proved that the following eigenvalue equation

holds
N̂ φn(x̃) = n φn(x̃) , (7.34)
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where the eigenvalue is just the natural numbern and the corresponding eigenfunction
φn(x̃) is given by

φn(x̃) = 1√
n!

(
â+)n

φ0(x̃) , (7.35)

where

φ0(x̃) = 1

π1/4
e−x̃2/2 . (7.36)

Furthermore, the operators â and â+ are such that

â φn(x̃) = √
n φn−1(x̃) , (7.37)

â+ φn(x̃) = √
n + 1φn+1(x̃) . (7.38)

These formulas justify the names of destruction and creation operators for â and â+.
Note that, adopting the Dirac notation, Eq. (7.34) can be written in a more compact
way as

N̂ |n〉 = n |n〉 . (7.39)

Similarly, Eqs. (7.38) and (7.38) can be written as

â |n〉 = √
n |n − 1〉 , (7.40)

â+ |n〉 = √
n + 1 |n + 1〉 . (7.41)

In conclusion, since

Ĥ = �ω

(
N̂ + 1

2

)
, (7.42)

it follows

Ĥ φn(x) = �ω

(
n + 1

2

)
φn(x) , (7.43)

with En = �ω(n + 1/2) a generic quantized energy level with quantum number n
and with φn(x) = 〈x |n〉 the corresponding eigenfunction, given by

φn(x) = 1√
n!

(
− σ√

2

d

dx
+ 1√

2σ
x

)n

φ0(x) (7.44)

being

φ0(x) = 1

π1/4σ1/2
e−x2/(2σ2) (7.45)

the Gaussian wavefunction of the ground state with energy E0 = �ω/2. The lowest
energies and corresponding eigenfunctions of the quantum particle of mass m in a
harmonic potential one-dimensional potential of frequency ω are:
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E0 = 1

2
�ω ↔ φ0(x) = 1

π1/4σ1/2
e−x2/(2σ2) (7.46)

E1 = 3

2
�ω ↔ φ1(x) = 1

π1/4σ1/2

√
2
x

σ
e−x2/(2σ2) (7.47)

E2 = 5

2
�ω ↔ φ2(x) = 1

π1/4σ1/2

1√
2

(
x2

σ2
− 1

)2

e−x2/(2σ2) . (7.48)

7.2.1 Properties of Number Operator

We now prove that the eigenvalues n of the number operator N̂ = â+â are non
negative. By using the Dirac notation the eigenvalue equation of N̂ reads

â+â|n〉 = n|n〉 . (7.49)

We can then write
〈n|â+â|n〉 = n〈n|n〉 = n , (7.50)

because the eigenstate |n〉 is normalized to one. On the other hand, we have also

〈n|â+â|n〉 = (â|n〉)+(â|n〉) = |(â|n〉)|2 (7.51)

Consequently, we get
n = |(â|n〉)|2 ≥ 0 . (7.52)

We now show that that if |n〉 is an eigenstate of the number operator N̂ = â+â
with eigenvalue n then a|n〉 is an eigenstate of N̂ with eigenvalue n − 1 and a+|n〉
is an eigenstate of N̂ with eigenvalue n + 1. In fact, we have

N̂ â|n〉 = (â+â)â|n〉 . (7.53)

The commutation relation
ââ+ − â+â = 1 (7.54)

between â and â+ can be rewritten as

â+â = ââ+ − 1 . (7.55)

This implies that

N̂ â|n〉 = (ââ+ − 1)â|n〉 = â(â+â − 1)|n〉 = â(N̂ − 1)|n〉 = (n − 1)â|n〉 .

(7.56)
Finally, we obtain
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N̂ â+|n〉 = (â+â)â+|n〉 = â+(ââ+)|n〉 = â+(â+â + 1)|n〉 = â+(N̂ + 1)|n〉 = (n + 1)â+|n〉 .

(7.57)

Taking into account the previous results of this subsection, we can also show that
the spectrum of the number operator is the set of integer numbers. We have seen that
N̂ has a non negative spectrum. This means that N̂ possesses a lowest eigenvalue n0
with |n0〉 its eigenstate. This eigenstate |n0〉 is such that

â|n0〉 = 0 . (7.58)

In fact, on the basis of the results of the previous problem, â|n0〉 should be eigenstate
of N̂ with eigenvaluen0 − 1but this is not possible becausen0 is the lowest eigenvalue
of N̂ . Consequently the state â|n0〉 is not a good quantum state and we set it equal
to 0. In addition, due to the fact that

N̂ |n0〉 = n0|n0〉 = â+â|n0〉 = â+ (
â|n0〉

) = â+ (0) = 0 (7.59)

we find that n0 = 0. Thus, the state |0〉, called vacuum state, is the eigenstate of N̂
with eigenvalue 0, i.e.

N̂ |0〉 = 0|0〉 = 0 , (7.60)

but also
â|0〉 = 0 . (7.61)

Due to this equation, it follows that the eigenstates of N̂ are only those generated by
applying n times the operator â+ on the vacuum state |0〉, namely

|n〉 = 1√
n! (â

+)n|0〉 , (7.62)

where the factorial is due to the normalization. Finally, we notice that it has been
shown in the previous problem that the state |n〉 has integer eigenvalue n.

7.3 One-Dimensional Scattering

In this section we discuss an example where a particle is scattering with a potential
U (x). In particular, we analyze a stationary problem where U (x) = 0 for x < 0.
Thus, for x 
= 0 we have a free particle described by the plane wave with unbound
energy E = �

2k2/(2m). Instead for x > 0 we assume thatU (x) 
= 0 and this implies
a much more complicated wavefunction ψ(x) in the region.

We consider the step potential (Fig. 7.3)
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Fig. 7.3 Step potential U (x)
with U0 = 1
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U (x) =
{

0 for x < 0
U0 for x ≥ 0

(7.63)

The wavefunction is then given by

ψ1(x) = A ei k1 x + B e−i k1 x for x < 0 (7.64)

ψ2(x) = C ei k2 x for x ≥ 0 (7.65)

where

k1 =
√
2mE

�2
(7.66)

k2 =
√
2m(E −U0)

�2
. (7.67)

The coefficients A, B,C have a clear physicalmeaning: A is the amplitude probability
of the incoming wave, B is the amplitude probability of the reflecting wave, and C is
the amplitude probability of the transmitted wave. Obviously, both k1 and k2 are real
numbers if the energy E of the incoming particle is larger than the energy barrierU0.
Instead, if E < U0 then k2 is purely imaginary, and such that

k2 = i

√
2m(U0 − E)

�2
, (7.68)

implying an exponential decay of ψ2(x) in space, i.e.

ψ2(x) = C e−
√

2m(U0−E)

�2 x
. (7.69)
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The coefficients A, B, C can be found imposing the boundary conditions of the
wavefunction at x = 0. The wavefunction and its derivative must be continuous
everywhere, i.e.

ψ1(0) = ψ2(0) (7.70)

ψ′
1(0) = ψ′

2(0) , (7.71)

obtaining

A + B = C (7.72)

A − B = k2
k1
C , (7.73)

or equivalently
B

A
= k1 − k2

k1 + k2

C

A
= 2k1

k1 + k2
. (7.74)

Introducing the reflection coefficient

R =
∣∣∣∣ BA

∣∣∣∣
2

(7.75)

and the transmission coefficient

T = k2
k1

∣∣∣∣CA
∣∣∣∣
2

= 1 − R (7.76)

one gets

T = 1 −
⎛
⎝1 −

√
1 − U0

E

1 +
√
1 − U0

E

⎞
⎠

2

(7.77)

for E ≥ U0, and T = 0 for E < U0. Therefore, if the kinetic energy E of a quantum
particle is below the energy U0 of the barrier the transmission probability is zero
because the wavefunction decays exponentially (and asymptotically goes to zero) in
the classically forbidden region x ≥ 0.

7.4 One-Dimensional Double-Well Potential

Let us consider a one-dimensional system with classical Hamiltonian



7.4 One-Dimensional Double-Well Potential 105

Fig. 7.4 Double-well
potential U (x) = (x2 − 1)2.
In this case the maximum U0
of the energy barrier is
U0 = 1
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H = p2

2m
+U (x) , (7.78)

where U (−x) = U (x) is a symmetric double-well potential. In Fig. 7.4 we plot a
simple example of symmetric double-well potential. In classical mechanics, if the
energy E of the particle is below the maximum of the barrierU0, there is a forbidden
unaccessible region for |x | < a, where a is such that U (a) = U (−a) = E .

On the contrary, in quantummechanics the particle can stay also in the classically
forbidden region. This phenomenon is called quantum tunneling. The stationary
Schrödinger equation of the quantum system reads

Ĥφ(x) =
(

− �
2

2m

d2

dx2
+U (x)

)
φ(x) = Eφ(x) . (7.79)

Let φ1(x) and φ2(x) be two exact eigenfunctions of the Schrödinger equation

Ĥφ1 = E1φ1 and Ĥφ2 = E2φ2 , (7.80)

such that φ1(−x) = φ1(x) and φ2(−x) = −φ2(x) and E1 � E2. To calculate the
splitting �E = E2 − E1, we multiply the first equation by φ2(x) and the second by
φ1(x) and then we subtract the two resulting equations. By integrating from 0 to ∞
we find

�E = �
2

2m

φ1(0)φ′
2(0) − φ′

1(0)φ2(0)∫ ∞
0 φ1(x)φ2(x)dx

. (7.81)

We write the eigenfunctions φ1(x) and φ2(x) in terms of the right-localized function

φR(x) = 1√
2
(φ1(x) + φ2(x)) . (7.82)
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It is easy to show that ER = 〈φR|Ĥ |φR〉 = 1
2 (E1 + E2). Then, with the approxima-

tion
∫ ∞
R φ2

Rdx � 1, namely

∫ ∞

0
φ1(x)φ2(x)dx =

∫ ∞

0
φ2
R(x)dx − 1

2
� 1 − 1

2
= 1

2
, (7.83)

we get

�E � 2�
2

m
φR(0)φ′

R(0) , (7.84)

which is an approximate formula to calculate the energy splitting.One should observe
that this quantity is always positive, because the tail of the right localized eigenfunc-
tion φR(x) at x = 0 has the same sign for φR(0) and its derivative φ′

R(0). Another
way to see this is to realize that there are no degeneracies in one-dimensional sys-
tems, implying that all pairs of almost degenerate states, from the ground state up,
are grouped by odd state above the even state.

7.4.1 One-Dimensional Double-Square-Well Potential

As a specific example, we consider the 1D double-square-well potential (Fig. 7.5)
given by

U (x) =
⎧⎨
⎩

V0 for |x | ≤ a
0 for a < |x | ≤ b

+∞ for |x | > b
(7.85)

with V0 > 0. By using the quasi-exact right-localized wavefunction

Fig. 7.5 Double-square-well
potential U (x) with a = 1,
b = 2, and U0 = 4
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φR(x) = D e− 1
�

√
2m(V0−E) x (7.86)

for 0 < x < a (classically forbidden region), and

φR(x) = A e
i
�

√
2mE x + B e− i

�

√
2mE x (7.87)

for a < x < b (classically allowed region), and by imposing matching and normal-
ization conditions we find

A = D

2

(
1 − i

√
V0 − E

E

)
e

a
�

√
2m(V0−E)− a

�

√
E , (7.88)

B = D

2

(
1 + i

√
V0 − E

E

)
e

a
�

√
2m(V0−E)+ a

�

√
E , (7.89)

and

D2 = 2E

V0(b − a)
e− 2a

�

√
2m(V0−E) . (7.90)

Finally, we obtain

�E � 4�E
√
2m(V0 − E)

mV0(b − a)
e− 2a

�

√
2m(V0−E) , (7.91)

that is the energy splitting for the double-square-well potential.
The result that we have found is quite general. The analytical formula for the

energy splitting can be formally written as

�E � A e−S/� , (7.92)

where A is the tunneling amplitude and S is the tunneling action, which is the
classical action

S =
∫ a

−a
p dx =

∫ a

−a

√
2m(V0 − E) dx = 2a

√
2m(V0 − E) (7.93)

inside the classically forbidden region |x | < a. In conclusion, the splitting of the
energy levels in the double-well potential is strictly related to the quantum tunneling,
i.e. to the fact that a quantum particles can tunnel the energy barrier.
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7.5 WKB Method

The quantized energy levels of the one-dimensional Schrödinger problem

[
− �

2

2m

∂2

∂x2
+U (x)

]
φ(x) = Eφ(x) , (7.94)

can be obtained by using the so-called WKB method, developed in 1926 by Gregor
Wentzel, Hendrik Anthony Kramers, and Leon Brillouin. This method is based on
the observation that the wavefunction φ(x) can be formally written as

φ(x) = e
i
�

σ(x) , (7.95)

where the phase σ(x) is a complex function. Inserting this expression into the
Schrödinger equation one finds that σ(x) satisfies the differential equation

(σ
′
(x))2 + �

i
σ

′′
(x) = 2m (E −U (x)) , (7.96)

where σ′ = dσ/dx and σ′′ = d2σ/dx2. The WKB expansion for the phase σ(x) is
given by

σ(x) =
+∞∑
k=0

(
�

i

)k

σk(x) . (7.97)

Substituting (7.97) into (7.96) and comparing like powers of � gives the recursion
relation (n > 0)

σ
′′
n−1 +

n∑
k=0

σ
′
k σ

′
n−k = 0 (7.98)

with initial condition
(σ

′
0)

2 = 2m (E −U (x)) . (7.99)

The quantization condition is obtained by requiring the single-valuedness of the
wavefunction, namely

∮
dσ =

+∞∑
k=0

(
�

i

)k ∮
dσk = 2π� n , (7.100)

where n ∈ N is a quantum number. The zero order term is given by

∮
dσ0 =

∮ √
2m(E −U (x) dx =

∮
p(x) dx (7.101)
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where p(x) = √
2m(E −U (x) is the linear momentum. Thus, the zero order of the

WKB � expansion gives

∮
p(x) dx = 2

∫ √
2m(E −U (x) dx = h n , (7.102)

that is nothing else than the Bohr-Sommerfeld-Wilson quantization rule of old quan-
tummechanics, with h = 2π�. Instead, the first odd term gives theMaslov correction

(
�

i

) ∮
dσ1 =

(
�

i

)
1

4
ln p|contour = −π� . (7.103)

In this way, to the first order of the WKB � expansion one obtains

∮
p(x) dx = h

(
n + 1

2

)
. (7.104)

Obviously, there are corrections to this formula. Remarkably, all the other odd terms
vanish when integrated along the closed contour because they are exact differentials.
So the quantization condition (7.100) can be written

+∞∑
k=0

(
�

i
)2k

∮
dσ2k = h

(
n + 1

2

)
, (7.105)

thus a sum over even-numbered terms only. For instance, the next non-zero term is

(
�

i
)2

∮
dσ2 = −�

2

12

∂2

∂E2

∫
U ′(x)2√

2m(E −U (x))
dx . (7.106)

Higher-order corrections quickly increase in complexity but in specific cases they
can be calculated. For some special potentials U (x) one determines analytically
all orders of the WKB expansion, showing that the series is convergent and gives
precisely the exact result.

7.6 Three-Dimensional Separable Potential

The stationary Schrödinger equation for a particle moving in three dimensions is
given by

Ĥ φ(x, y, z) = E φ(x, y, z) , (7.107)

where

Ĥ = − �
2

2m

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
+U (x, y, z) (7.108)
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is the Hamiltonian operator of this three-dimensional (3D) problem.
We assume that the external potential U (x, y, z) is separable, i.e. of type

U (x, y, z) = U (1)(x) +U (2)(y) +U (3)(z) , (7.109)

where U (1)(x) is a potential acting only on the coordinate x , U (2)(y) is a potential
acting on the coordinate y only, andU (3)(z) is a potential acting on the z-coordinate
only. The problem under consideration is described by the stationary Schrödinger
equation

− �
2

2m

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
φ(x, y, z) +

(
U (1)(x) +U (2)(y) +U (3)(z)

)
φ(x, y, z) = E φ(x, y, z) .

(7.110)
The fact that the potential is separable suggests to us the following factorization for
the wavefunction

φ(x, y, z) = φ(1)(x)φ(2)(y)φ(3)(z) , (7.111)

where φ(1)(x) is a function of coordinate x alone, φ(2)(y) is a function of the coor-
dinate y only, and φ(3)(z) is a function of the coordinate z only. We also assume
that

E = E (1) + E (2) + E (3) , (7.112)

where E (1) is the energy of motion along the x coordinate, E (2) is the energy of
the motion along the y-coordinate, and E (3) is the energy of the motion along the
z-coordinate. The Schrödinger equation becomes

φ(2)(y)φ(3)(z)

(
− �

2

2m

∂2

∂x2
+U (1)(x) − E (1)

)
φ(1)(x)

+φ(1)(x)φ(3)(z)

(
− �

2

2m

∂2

∂y2
+U (2)(y) − E (2)

)
φ(2)(y)

+φ(1)(x)φ(2)(y)

(
− �

2

2m

∂2

∂z2
+U (3)(z) − E (3)

)
φ(3)(z) = 0 . (7.113)

Dividing by φ(1)(x)φ(2)(y)φ(3)(z) yields

1

φ(1)(x)

(
− �

2

2m

∂2

∂x2
+U (1)(x) − E (1)

)
φ(1)(x)

+ 1

φ(2)(y)

(
− �

2

2m

∂2

∂y2
+U (2)(y) − E (2)

)
φ(2)(y)

+ 1

φ(3)(z)

(
− �

2

2m

∂2

∂z2
+U (3)(z) − E (3)

)
φ(3)(z) = 0 . (7.114)
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So we have the sum of three terms: one that depends only on the variable x , one that
depends only on the variable y, one that depends only on the variable z. And the sum
must be equal to zero. For mathematical consistency, each of the three terms must
be equal to zero. Thus, three independent Schrödinger equations are found:

(
− �

2

2m

∂2

∂x2
+U (1)(x)

)
φ(1)(x) = E (1) φ(1)(x) ,

(
− �

2

2m

∂2

∂y2
+U (2)(y)

)
φ(2)(y) = E (2) φ(2)(y) ,

(
− �

2

2m

∂2

∂z2
+U (3)(z)

)
φ(3)(z) = E (3) φ(3)(z) . (7.115)

In conclusion, if the potential is separable the 3D problem can be leads back to three
1D problems.

7.6.1 Three-Dimensional Harmonic Potential

As an example, let us consider a quantum particle under the action of the three-
dimensional harmonic potential

U (x, y, z) = 1

2
mω2

1x
2 + 1

2
mω2

2 y
2 + 1

2
mω2

3z
2 . (7.116)

The potential is separable, in fact

U (x, y, z) = U (1)(x) +U (2)(y) +U (3)(z) , (7.117)

where

U (1)(x) = 1

2
mω2

1x
2 (7.118)

U (2)(y) = 1

2
mω2

2 y
2 (7.119)

U (3)(z) = 1

2
mω2

3z
2 . (7.120)

Based on what has been discussed above, the 3D problem is reduced to three
independent problems of a particle in harmonic potential:

(
− �

2

2m
∇2 + 1

2
mω2

1x
2 + 1

2
mω2

2 y
2 + 1

2
mω2

3z
2

)
φn1n2n3(r) = En1n2n3φn1n2n3(r) ,

(7.121)
where
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φn1n2n3(r) = φ(1)
n1 (x)φ(2)

n2 (y)φ(3)
n3 (z) (7.122)

and

En1n2n3 = �ω1

(
n1 + 1

2

)
+ �ω2

(
n2 + 1

2

)
+ �ω3

(
n3 + 1

2

)
(7.123)

remembering the quantization formula of the energy levels of the 1D harmonic oscil-
lator. Here n1, n2, n3 are three natural numbers: the three quantum numbers that
characterize the energy levels.

In the particular case ω1 = ω2 = ω3, indicating by ω the three equal frequencies,
we have

(
− �

2

2m
∇2 + 1

2
mω2(x2 + y2 + z2)

)
φn1n2n3(r) = En1n2n3φn1n2n3(r) , (7.124)

where
φn1n2n3(r) = φ(1)

n1 (x)φ(2)
n2 (y)φ(3)

n3 (z) (7.125)

and

En1n2n3 = �ω

(
n1 + n2 + n3 + 3

2

)
. (7.126)

The ground state has energy E000 = 3�ω/2, while the first excited state has energy
E100 = E010 = E001 = 5�ω/2. The first excited state turns out to be degenerate:
there are three independent wave functions that produce the same energy.

Further Reading

Solvable problems of quantum mechanics are discussed in detail here:
Cohen-Tannoudji, C.,Diu,B., Laloe, F.:QuantumMechanics:BasicConcepts, Tools,
and Applications. Wiley (2019)
Landau, L.D., Lifshitz, E.M.: Quantum Mechanics: Non-Relativistic Theory. Perg-
amon (1981)
Sakurai, J.J., Napolitano, J.: Modern Quantum Mechanics. Cambridge Univ. Press
(2020)
An extremely important historical paper on ladder operators and number operator is:
Dirac, P.A.M.: Proc. R. Soc. Lond. A 114, 243 (1927)
The WKB method to all orders of the � expansion is discussed in:
Robnik, M., Salasnich, L.: J. Phys. A 30, 1711 (1997)



Chapter 8
Modern Quantum Physics of Atoms

In this chapter we analyze the quantummechanics of the hydrogen atom by using the
three-dimensional Schrödinger equation. We also introduce the spin of the electron,
giving a rigorous theoretical justification in the basis of the Dirac equation. Finally,
we discuss how the quantum energy levels of atoms are modified in the presence of
an electric field (Stark effect) and of a magnetic field (Zeeman effect).

8.1 Electron in the Hydrogen Atom

The neutral hydrogen atom is formed by an electron orbiting around the nucleus that
is formed by a single proton. The stationary Schrödinger equation for an electron of
charge−e and massme moving in three dimensions under the action of the Coulomb
force exerted by the proton is given by

Ĥ φ(x, y, z) = E φ(x, y, z) , (8.1)

where

Ĥ = − �
2

2me

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
+U (x, y, z) (8.2)

is the Hamiltonian operator of this three-dimensional (3D) problem and

U (x, y, z) = − e2

4πε0
√
x2 + y2 + z2

(8.3)

is the potential energy of the electron due to the Coulomb force.
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Unfortunately, in the problem under consideration the potential U (x, y, z) is not
separable in Cartesian coordinates. On the other hand, if we introduce spherical polar
coordinates, of radius r and angles φ and θ such that

x = r cos (φ) sin (θ) (8.4)

y = r sin (φ) sin (θ) (8.5)

z = r cos (θ) (8.6)

the Coulomb potential is separable in spherical polar coordinates because it depends
only on r , i.e.

U (r) = − e2

4πε0r
. (8.7)

The Laplace operator

∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
(8.8)

expressed in spherical polar coordinates is given by

∇2 = ∇2
r + L̂2

φ,θ

r2
(8.9)

where

∇2
r = ∂2

∂r2
+ 1

r

∂

∂r
(8.10)

while

L̂2
φ,θ = 1

sin2(θ)

∂2

∂φ2
+ 1

sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ

)
. (8.11)

In spherical polar coordinates the Hamiltonian operator of the electron in the hydro-
gen atom is therefore given by

Ĥ = − �
2

2me
∇2
r + L̂2

2mer2
− e2

4πε0r
, (8.12)

where
L̂2 = −�

2L̂2
φ,θ (8.13)

is called quantum operator of the square of the orbital angular momentum. This name
is fully motivated by the fact that, given the square of the orbital angular momentum
L of classical mechanics, i.e.

L2 = (r ∧ p)2 (8.14)
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and applying the quantization rule p ↔ −i�∇, we get just L̂2 if spherical polar
coordinates are used.

8.1.1 Schrödinger Equation in Spherical Polar Coordinates

Therefore, in spherical polar coordinates, the Schrödinger equation of the electron
in the hydrogen atom is given by

(
− �

2

2me
∇2
r + L̂2

2mer2
− e2

4πε0r

)
φ(r,φ, θ) = E φ(r,φ, θ) , (8.15)

where the differential operator ∇2
r involves only the derivatives of the radial coordi-

nate r , while the differential operator L̂2 involves only the derivatives of the angular
coordinates φ and θ.

In the problem we can then impose the following factorization for the wave func-
tion

φ(r, θ,φ) = R(r) Y (θ,φ) . (8.16)

It is possible to prove that the operator L̂2 satisfies the eigenvalue equation

L̂2Ylml (θ,φ) = �
2l(l + 1) Ylml (θ,φ) (8.17)

where l is a natural number called quantum number of the orbital angular momentum
while ml is an integer number called magnetic quantum number and such that

ml = −l,−l + 1,−l + 2, . . . , l − 2, l − 1, l . (8.18)

Then for every value of l there are 2l + 1 possible values for ml . The functions
Ylml (θ,φ) are called spherical harmonics. For spherical harmonics there is another
important eigenvalue equation

L̂ zYlml (θ,φ) = �ml Ylml (θ,φ) (8.19)

involving the differential operator

L̂ z = −i�
∂

∂φ
(8.20)

associated with the third component of the orbital angular momentum.
Finally, it is possible to show that
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(
− �

2

2me
∇2
r + �

2l(l + 1)

2mer2
− e2

4πε0r

)
Rnl(r) = − mee4

32π2ε20�
2

1

n2
Rnl(r) , (8.21)

where n is a natural number different from zero, called principal quantum number
such that, once n is fixed, l can assume the following values l = 0, 1, 2, . . . , n − 1.

In conclusion, we can write for the electron in the hydrogen atom the stationary
Schrödinger equation

Ĥφnlml (r, θ,φ) = En φnlml (8.22)

with eigenfunctions
φnlml (r, θ,φ) = Rnl(r) Ylml (θ,φ) (8.23)

and eigenvalues

En = − mee4

32π2ε20�
2

1

n2
= − mee4

8ε20 h
2

1

n2
= −13.6 eV

n2
. (8.24)

This last one is exactly the same formula of quantization of energy levels first obtained
by Bohr in 1913.

The formalism of the old Bohr’s quantummechanics does not provide information
about the wave function of the electron. Instead, Schrödinger formalism provides this
information as well. In fact, in the formula

φnlml (r, θ,φ) = Rnl(r) Ylml (θ,φ) (8.25)

both the radial functions Rnl(r) and the spherical harmonics Ylml (θ,φ) can be com-
puted explicitly, although the calculation is not at all straightforward. For example,
one can show that for the ground state we have

R10(r) = 2

r3/20

e−r/r0 , (8.26)

Y00(θ,φ) = 1√
4π

, (8.27)

with r0 = 4πε0�
2/(mee2) = 0.53 · 10−10 m the so-called Bohr radius.

8.1.2 Selection Rules

Using the ket formalism of Dirac we can write, for the electron in the hydrogen atom,
the stationary Schrödinger equation

Ĥ |n l ml〉 = En |n l ml〉 (8.28)
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with

En = −13.6 eV

n2
. (8.29)

In addition, the following equations hold

L̂2|n l ml〉 = �
2l(l + 1) |n l ml〉 , (8.30)

L̂ z|n l ml〉 = �ml |n l ml〉 , (8.31)

where the three quantum numbers n, l, ml are such that:

n = 1, 2, 3, . . . ,

l = 0, 1, 2, . . . , n − 1 ,

ml = −l,−l + 1,−l + 2, . . . , l − 2, l − 1, l .

Considering the Schrödinger equation for the electron in the atom of hydrogen
and the interaction of the electron with the electromagnetic field, and therefore the
interaction of the electron with the photon, it is possible to show (within the so-called
dipole approximation) that the transition electromagnetic between the state |n′ l ′ m ′

l〉
and the state |n′ l ml〉 occurs only if the following selection rules are met

�l = ±1 �ml = 0,±1 , (8.32)

where �l = l ′ − l and �ml = m ′
l − ml . These selection rules are confirmed by

experimental evidence. So, once again, modern quantum mechanics, based on the
Schrödinger equation, shows a predictive power considerably higher than the old
quantum mechanics of Bohr, Wilson and Sommerfeld.

8.2 Pauli Exclusion Principle and the Spin

The Schrödinger equation for the electron describes extremely well the quantum
properties of the hydrogen atom: its energy spectrumand the allowed electromagnetic
transitions. Applied to explain many-electron atoms Schrödinger equation continues
to work very well if one takes into account a principle, called exclusion principle,
formulated by Wolfang Pauli in 1925: “There cannot be two electrons in the same
single-particle quantum state”. To explain Mendeleev’s periodic table of elements,
Pauli used his exclusion principle assuming also that the electron has an intrinsic
angular momentum, called spin, characterized by only two measurable values:

−�

2
and

�

2
.
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In 1928 Paul Dirac generalized the Schrödinger equation to the relativistic case.
Among the consequences of this generalized equation, known as the Dirac equation,
there is just the spin of the electron. From Dirac equation, and other subsequent
experimental and theoretical studies, it is deduced in fact that every quantum particle
is characterized by an intrinsic angular momentum

Ŝ = (Ŝx , Ŝy, Ŝz) (8.33)

called spin. This spin is a vector whose three components are operators such that the
square of the spin Ŝ2 and the third component Ŝz of the spin satisfy the following
eigenvalue equations

Ŝ2|s ms〉 = �
2 s(s + 1)|s ms〉 , (8.34)

Ŝz|s ms〉 = �ms |s ms〉 . (8.35)

The numbers s and ms are called respectively spin quantum number and quantum
number of the third spin component. Fixed s, the number ms can assume 2s + 1
values, given by ms = −s,−s + 1,−s + 2, . . . , s − 2, s − 1, s. In the case of the
electron, from the Dirac equation it is found in particular that

s = 1

2
and consequently ms = −1

2
,
1

2
, (8.36)

and, as conjectured by Pauli, with the two possible values −�/2 and �/2 for Ŝz . In
the case of electrons the quantum number s = 1/2 is always the same, while the
quantum number ms can be −1/2 or 1/2. In the particular case of the electron in a
stationary state in hydrogen atom we have then that

|n l ml ms〉

is Dirac’s ket representing all its quantum numbers: n is the principal quantum
number, l is the orbital angular momentum quantum number, ml is the magnetic
quantum number (also called of the third component of the orbital orbital angular
momentum), ms is the spin quantum number (more properly the quantum number
of the third component of the spin).

8.2.1 Semi-integer and Integer Spin: Fermions and Bosons

As already said, not only the electron, but any particle is characterized by a spin
quantum number s. The particles that have a spin quantum number s semi-integer
positive are called fermionic particles (or fermions). Particles that have a positive
integer spin s quantum number are called bosonic particles (or bosons). Clearly the
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electron is a fermionic particle with s = 1/2, as well as the proton and neutron.
Experiments show instead the photon is a bosonic particle with s = 1. The spin of
a non elementary particle is the sum of the spin of the elementary particles that
constitute this non-elementary particle.

8.3 The Dirac Equation

The classical energy of a nonrelativistic free particle is given by

E = p2

2m
, (8.37)

where p is the linear momentum and m the mass of the particle. We have seen that
the Schrödinger equation of the corresponding quantum particle with wavefunction
ψ(r, t) is easily obtained by imposing the quantization prescription

E → i�
∂

∂t
, p → −i�∇ . (8.38)

In this way one gets the time-dependent Schrödinger equation of the free particle,
namely

i�
∂

∂t
ψ(r, t) = − �

2

2m
∇2ψ(r, t) , (8.39)

obtained for the first time in 1926 by Erwin Schrödinger. The classical energy of a
relativistic free particle is instead given by

E =
√
p2c2 + m2c4 , (8.40)

where c is the speed of light in the vacuum. By applying directly the quantization
prescription (8.38) one finds

i�
∂

∂t
ψ(r, t) =

√
−�2c2∇2 + m2c4 ψ(r, t) . (8.41)

This equation is quite suggestive but the square-root operator on the right side is a
very difficult mathematical object. For this reason in 1927 Oskar Klein and Walter
Gordon suggested to start with

E2 = p2c2 + m2c4 (8.42)

and then to apply the quantization prescription (8.38). In this way one obtains
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− �
2 ∂2

∂t2
ψ(r, t) = (−�

2c2∇2 + m2c4
)

ψ(r, t) (8.43)

the so-called Klein-Gordon equation, which can be re-written in the following form

(
1

c2
∂2

∂t2
− ∇2 + m2c2

�2

)
ψ(r, t) = 0 , (8.44)

i.e. a generalization of Maxwell’s wave equation for massive particles. This equation
has two problems: (i) it admits solutions with negative energy; (ii) the space integral
over the entire space of the non negative probability density ρ(r, t) = |ψ(r, t)|2 ≥ 0
is generally not time-independent, namely

d

dt

∫
R3

ρ(r, t) d3r 
= 0 . (8.45)

Nowadaysweknow that to solve completely these twoproblems it is necessary to pro-
mote ψ(r, t) to a quantum field operator. Within this second-quantization (quantum
field theory) approach the Klein-Gordon equation is now used to describe relativistic
particles with spin zero, like the pions or the Higgs boson.

In 1928 Paul Dirac proposed a different approach to the quantization of the rel-
ativistic particle. To solve the problem of Eq. (8.45) he considered a wave equation
with only first derivatives with respect to time and space and introduced the classical
energy

E = c α̂ · p + β̂ mc2 , (8.46)

such that squaring it one recovers Eq. (8.42). This condition is fulfilled only if α̂ =
(α̂1, α̂2, α̂3) and β̂ satisfy the following algebra of matrices

α̂2
1 = α̂2

2 = α̂2
3 = β̂ 2 = Î , (8.47)

α̂i α̂ j + α̂ j α̂i = 0̂ , i 
= j (8.48)

α̂i β̂ + β̂ α̂i = 0̂ , ∀i (8.49)

where 1̂ is the identity matrix and 0̂ is the zero matrix. The smallest dimension in
which the so-called Dirac matrices α̂i and β̂ can be realized is four. In particular, one
can write

α̂i =
(
0̂2 σ̂i

σ̂i 0̂2

)
, β̂ =

(
Î2 0̂2
0̂2 − Î2

)
, (8.50)

where Î2 is the 2 × 2 identity matrix, 0̂2 is the 2 × 2 zero matrix, and

σ̂1 =
(
0 1
1 0

)
σ̂2 =

(
0 −i
i 0

)
σ̂3 =

(
1 0
0 −1

)
(8.51)
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are the Pauli matrices. Eq. (8.46) with the quantization prescription (8.38) gives

i�
∂

∂t
�(r, t) =

(
−i�c α̂ · ∇ + β̂ mc2

)
�(r, t) , (8.52)

which is the Dirac equation for a free particle. Notice that the wavefunction �(r, t)
has four components in the abstract space of Dirac matrices, i.e. this spinor field can
be written

�(r, t) =

⎛
⎜⎜⎝

ψ1(r, t)
ψ2(r, t)
ψ3(r, t)
ψ4(r, t)

⎞
⎟⎟⎠ . (8.53)

In explicit matrix form the Dirac equation is thus given by

i�
∂

∂t

⎛
⎜⎜⎝

ψ1(r, t)
ψ2(r, t)
ψ3(r, t)
ψ4(r, t)

⎞
⎟⎟⎠ = Ĥ

⎛
⎜⎜⎝

ψ1(r, t)
ψ2(r, t)
ψ3(r, t)
ψ4(r, t)

⎞
⎟⎟⎠ (8.54)

where

Ĥ =

⎛
⎜⎜⎜⎝

mc2 0 −i�c ∂
∂z −i�c( ∂

∂x − i ∂
∂y )

0 mc2 −i�c( ∂
∂x + i ∂

∂y ) i�c ∂
∂z

−i�c ∂
∂z −i�c( ∂

∂x − i ∂
∂y ) −mc2 0

−i�c( ∂
∂x + i ∂

∂y ) i�c ∂
∂z 0 −mc2

⎞
⎟⎟⎟⎠ . (8.55)

It is easy to show that the Dirac equation satisfies the differential law of current
conservation. In fact, left-multiplying Eq. (8.52) by

�+(r, t) = (
ψ∗
1(r, t),ψ

∗
2(r, t),ψ

∗
3(r, t),ψ

∗
4(r, t)

)
(8.56)

we get

i��+ ∂�

∂t
= −i�c�+α̂ · ∇� + mc2�+β̂ � . (8.57)

Considering the Hermitian conjugate of the Dirac equation (8.52) and right-
multiplying it by �(r, t) we find instead

− i�
∂�+

∂t
� = i�c α̂ · ∇�+� + mc2�+β̂ � . (8.58)

Subtracting the last two equations we obtain the continuity equation
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∂

∂t
ρ(r, t) + ∇ · j(r, t) = 0 , (8.59)

where

ρ(r, t) = �+(r, t)�(r, t) =
4∑

i=1

|ψi (r, t)|2 (8.60)

is the probability density, and j(r, t) is the probability current with three components

jk(r, t) = c�+(r, t)α̂k�(r, t) . (8.61)

Finally, we observe that from the continuity equation (8.59) one finds

d

dt

∫
R3

ρ(r, t) d3r = 0 , (8.62)

by using the divergence theorem and imposing a vanishing current density on the
border at infinity. Thus, contrary to the Klein-Gordon equation, the Dirac equation
does not have the probability density problem.

8.3.1 The Pauli Equation and the Spin

In this subsection we analyze the non-relativistic limit of the Dirac equation. Let
us suppose that the relativistic particle has the electric charge q. In presence of an
electromagnetic field, by using the Gauge-invariant substitution

i�
∂

∂t
→ i�

∂

∂t
− q φ(r, t) (8.63)

−i�∇ → −i�∇ − qA(r, t) (8.64)

in Eq. (8.52), we obtain

i�
∂

∂t
�(r, t) =

(
c α̂ · (

p̂ − qA(r, t)
) + β̂ mc2 + q φ(r, t)

)
�(r, t) , (8.65)

where p̂ = −i�∇, φ(r, t) is the scalar potential and A(r, t) the vector potential.
To workout the non-relativistic limit of Eq. (8.65) it is useful to set

�(r, t) = e−imc2t/�

⎛
⎜⎜⎝

ψ1(r, t)
ψ2(r, t)
χ1(r, t)
χ2(r, t)

⎞
⎟⎟⎠ = e−imc2t/�

(
ψ(r, t)
χ(r, t)

)
, (8.66)



8.3 The Dirac Equation 123

where ψ(r, t) and χ(r, t) are two-component spinors, for which we obtain

i�
∂

∂t

(
ψ
χ

)
=

(
q φ c σ̂ · (p̂ − qA)

c σ̂ · (p̂ − qA) q φ − 2mc2

)(
ψ
χ

)
(8.67)

where σ̂ = (
σ̂1, σ̂2, σ̂3

)
. Remarkably, only in the lower equation of the system it

appears the mass term mc2, which is dominant in the non-relativistic limit. Indeed,
under the approximation

(
i� ∂

∂t − q φ + 2mc2
)
χ  2mc2 χ, the previous equations

become

(
i� ∂ψ

∂t
0

)
=

(
q φ c σ̂ · (p̂ − qA)

c σ̂ · (p̂ − qA) −2mc2

) (
ψ
χ

)
, (8.68)

from which

χ = σ̂ · (p̂ − qA)

2mc
ψ . (8.69)

Inserting this expression in the upper equation of the system (8.68) we find

i�
∂

∂t
ψ =

([
σ̂ · (p̂ − qA)

]2
2m

+ q φ

)
ψ . (8.70)

From the identity

[
σ̂ · (

p̂ − qA
)]2 = (p̂ − qA)2 − i q (p̂ ∧ A) · σ̂ (8.71)

where p̂ = −i�∇, and using the relation B = ∇ ∧ Awhich introduces the magnetic
field we finally get

i�
∂

∂t
ψ(r, t) =

(
(−i�∇ − qA(r, t))2

2m
− q

m
B(r, t) · Ŝ + q φ(r, t)

)
ψ(r, t) ,

(8.72)
that is the so-called Pauli equation with

Ŝ = �

2
σ̂ . (8.73)

the spin operator. This equation was introduced in 1927 (a year before the Dirac
equation) by Wolfgang Pauli as an extension of the Schrödinger equation with the
phenomenological inclusion of the spin operator. If the magnetic field B is constant,
the vector potential can be written as

A = 1

2
B ∧ r (8.74)
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and then

(
p̂ − qA

)2 = p̂2 − 2qA · p̂ + q2A2 = p̂2 − qB · L̂ + q2(B ∧ r)2 , (8.75)

with L̂ = r ∧ p̂ the orbital angular momentum operator. Thus, the Pauli equation
for a particle of charge q in a constant magnetic field reads

i�
∂

∂t
ψ(r, t) =

(
−�

2∇2

2m
− q

2m
B ·

(
L̂ + 2Ŝ

)
+ q2

2m
(B ∧ r)2 + q φ(r, t)

)
ψ(r, t) .

(8.76)
In conclusion, we have shown that the spin Ŝ naturally emerges from the Dirac equa-
tion. Moreover, the Dirac equation predicts very accurately the magnetic momentμS

of the electron (q = −e, m = me) which appears in the spin energy Es = −μ̂S · B
where

μS = −ge
μB

�
Ŝ (8.77)

with gyromagnetic ratio ge = 2 and Bohr magneton μB = e�/(2m)  5.79 ·
10−5 eV/T.

8.3.2 Dirac Equation with a Central Potential

We now consider the stationary Dirac equation with a confining spherically-
symmetric potential V (r) = V (|r|), namely

(
−i�c α̂ · ∇ + β̂ mc2 + V (r)

)
�(r) = E �(r) . (8.78)

This equation is easily derived from Eq. (8.65) setting A = 0, qφ = V (r), and

�(r, t) = e−i Et/� �(r) . (8.79)

The relativistic Hamiltonian

Ĥ = −i�c α̂ · ∇ + β̂ mc2 + V (r) (8.80)

commutes with the total angular momentum operator

Ĵ = L̂ + Ŝ = r ∧ p̂ + �

2
σ̂ (8.81)

because the external potential is spherically symmetric. In fact, one can show that

[Ĥ , L̂] = −i�c α̂ ∧ p̂ = −[Ĥ , Ŝ] . (8.82)
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Consequently one has
[Ĥ , Ĵ] = 0 , (8.83)

and also
[Ĥ , Ĵ 2] = 0 , [ Ĵ 2, Ĵx ] = [ Ĵ 2, Ĵy] = [ Ĵ 2, Ĵz] = 0 , (8.84)

where the three components Ĵx , Ĵy , Ĵz of the total angularmomentum Ĵ = ( Ĵx , Ĵy, Ĵz)
satisfy the familiar commutation relations

[ Ĵi , Ĵ j ] = i� εi jk Ĵk (8.85)

with

εi jk =
⎧⎨
⎩

1 if (i, j, k) is (x, y, z) or (z, x, y) or (y, z, x)
−1 if (i, j, k) is (x, z, y) or (z, y, x) or (y, x, z)
0 if i = j or i = k or j = k

(8.86)

the Levi-Civita symbol (also called Ricci-Curbastro symbol). Note that these com-
mutation relations can be symbolically synthesized as

Ĵ ∧ Ĵ = i� Ĵ . (8.87)

Indicating the states which are simultaneous eigenstates of Ĥ , Ĵ 2 and Ĵz as |njm j 〉,
one has

Ĥ |njm j 〉 = Enj |njm j 〉 , (8.88)

Ĵ 2|njm j 〉 = �
2 j ( j + 1) |njm j 〉 , (8.89)

Ĵz|njm j 〉 = �m j |njm j 〉 , (8.90)

where j is the quantum number of the total angular momentum andm j = − j,− j +
1,− j + 2, . . . , j − 2, j − 1, j the quantum number of the third component of the
total angular momentum.

In conclusion, we have found that the orbital angular momentum L̂ and the spin
Ŝ are not constants of motion of a particle in a central potential. On the contrary, the
total angular momentum Ĵ = L̂ + Ŝ is a constant of motion, and also Ĵ 2 and Ĵz are
constants of motion.

8.3.3 Relativistic Hydrogen Atom and Fine Splitting

Let us consider now the electron of the hydrogen atom. We set q = −e,m = me and

V (r) = − e2

4πε0|r| = − e2

4πε0 r
. (8.91)
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Then the eigenvalues Enj of Ĥ are found to be

Enj = mc2√
1 + α2(

n− j− 1
2 +

√
( j+ 1

2 )2−α2
)2

− mc2 , (8.92)

with α = e2/(4πε0�c)  1/137 the fine-structure constant. We do not prove this
remarkable quantization formula, obtained independently in 1928 by Charles Galton
Darwin and Walter Gordon, but we stress that expanding it in powers of the fine-
structure constant α to order α4 one gets

Enj = E (0)
n

[
1 + α2

n

(
1

j + 1
2

− 3

4n

)]
, (8.93)

where

E (0)
n = −1

2
mc2

α2

n2
= −13.6 eV

n2
(8.94)

is the familiar Bohr quantization formula of the non relativistic hydrogen atom. The
term which corrects the Bohr formula, given by

�E = E (0)
n

α2

n

(
1

j + 1
2

− 3

4n

)
, (8.95)

is called fine splitting correction. This term removes the non relativistic degeneracy
of energy levels, but not completely: double-degenerate levels remain with the same
quantum numbers n and j but different orbital quantum number l = j ± 1/2.

We have seen that, strictly speaking, in the relativistic hydrogen atom nor the
orbital angularmomentum L̂ nor the spin Ŝ are constants ofmotion.As a consequence
l, ml , s and ms are not good quantum numbers. Nevertheless, in practice, due to the
smallness of fine-splitting corrections, one often assumes without problems that both
L̂ and Ŝ are approximately constants of motion.

As an example, let us calculate the fine splitting for the state |3p〉 of the hydrogen
atom. The integer number j is the quantum number of the total angular momentum
J = L + S, where j = 1/2 if l = 0 and j = l − 1/2, l + 1/2 if l 
= 0. The state |3p〉
means n = 3 and l = 1, consequently j = 1/2 or j = 3/2. The hyperfine correction
for j = 1/2 reads

�E3, 12
= E (0)

3

α2

3

(
1 − 1

4

)
= E (0)

3

α2

4
= −13.6 eV

9

1

1372 · 4 = −2.01 · 10−5 eV .

(8.96)
The hyperfine correction for j = 3/2 is instead
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�E3, 32
= E (0)

3

α2

3

(
1

2
− 1

4

)
= E (0)

3

α2

12
= −13.6 eV

9

1

1372 · 12 = −6.71 · 10−6 eV .

(8.97)

8.3.4 Relativistic Corrections to the Schrödinger Hamiltonian

It is important to stress that the relativistic Hamiltonian Ĥ of the Dirac equation
in a spherically-symmetric potential, given by Eq. (8.80), can be expressed as the
familiar non relativistic Schrödinger Hamiltonian

Ĥ0 = − �
2

2m
∇2 + V (r) (8.98)

plus an infinite sum of relativistic quantum corrections. To this aim one can start from
the Dirac equation, written in terms of bi-spinors, i.e. Eq. (8.67) with A(r, t) = 0
and qφ(r, t) = V (r), which gives

E

(
ψ̃
χ̃

)
=

(
V (r) c σ̂ · p̂
c σ̂ · p̂ V (r) − 2mc2

) (
ψ̃
χ̃

)
(8.99)

setting ψ(r, t) = ψ̃(r) e−i Et/� and χ(r, t) = χ̃(r) e−i Et/�. The lower equation of
this system can be written as

χ̃ = c σ̂ · p̂
E − V (r) + 2mc2

ψ̃ . (8.100)

This is an exact equation. If E − V (r) � 2mc2 the equation becomes

χ̃ = σ̂ · p̂
2mc

ψ̃ , (8.101)

which is exactly the stationary version of Eq. (8.69) with A(r, t) = 0. We can do
something better by expanding Eq. (8.100) with respect to the small term (E −
V (r))/2mc2 obtaining

χ̃ = σ̂ · p̂
2mc

(
1 − E − V (r)

2mc2
+ . . .

)
ψ̃ . (8.102)

Inserting this expression in the upper equation of the system and neglecting the higher
order terms symbolized by the three dots, and after some tedious calculations, one
finds

E ψ̃ = Ĥ ψ̃ , (8.103)
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where
Ĥ = Ĥ0 + Ĥ1 + Ĥ2 + Ĥ3 , (8.104)

with

Ĥ1 = − �
4

8m3c2
∇4 , (8.105)

Ĥ2 = 1

2m2c2
1

r

dV (r)

dr
L · S , (8.106)

Ĥ3 = �
2

8m2c2
∇2V (r) , (8.107)

with Ĥ1 the relativistic correction to the electron kinetic energy, Ĥ2 the spin-orbit
correction, and Ĥ3 the Darwin correction.

If the external potential V(r) is that of the hydrogen atom, i.e. V (r) = −e2/(4πε0|
r|), one finds immediately that H3 = (�2e2)/(8m2c2ε0)δ(r) because ∇2(1/|r|) =
−4πδ(r). In addition, by applying the first-order perturbation theory to Ĥ with Ĥ0

unperturbed Hamiltonian, one gets exactly Eq. (8.93) of fine-structure correction.
Physically one can say that the relativistic fine structure is due to the coupling between
the spin Ŝ and the orbital angular momentum L̂ of the electron.Moreover, we observe
that

L̂ · Ŝ = 1

2

(
Ĵ 2 − L̂2 − Ŝ2

)
, (8.108)

since
Ĵ 2 = (L̂ + Ŝ)2 = L̂2 + Ŝ2 + 2 L̂ · Ŝ , (8.109)

the Hamiltonian Ĥ of Eq. (8.104) commutes with L̂2 and Ŝ2 but not with L̂ z and Ŝz .
Actually, also the nucleus (the proton in the case of the hydrogen atom) has its spin

Î which couples to the electronic spin to produce the so-called hyperfine structure.
However, typically, hyperfine structure has energy shifts orders of magnitude smaller
than the fine structure.

8.4 Spin Properties in a Magnetic Field

The amazing properties of quantummechanics are verywell illustrated by the dynam-
ics of a spin in the presence of a magnetic field. As an example, let us consider the
electron in a uniformmagnetic field B = (0, 0, B0). We want to calculate the expec-
tation value of the spin Ŝ along the x axis if at t = 0 the spin is along the z axis. The
Hamiltonian operator of the spin is

Ĥ = −μ̂S · B , (8.110)
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where μ̂ is the magnetic dipole moment of the electron, given by

μS = −ge
μB

�
Ŝ = −1

2
ge μB σ̂ , (8.111)

with ge = 2.002319  2 the gyromagnetic ratio of the electron, μB = e�/(2m) =
9.27 · 10−24 J/T the Bohr magneton and σ̂ = (σ̂1, σ̂2, σ̂3) the vector of Pauli matri-
ces. The Hamiltonian operator can be written as

Ĥ = 1

2
�ω0 σ̂3 = 1

2
�ω0

(
1 0
0 −1

)
, (8.112)

whereω0 = geμB B0/� is the Larmor frequency of the system. Suppose that the initial
state of the system is

|ψ(0)〉 =
(
1
0

)
= | ↑ 〉 , (8.113)

while (
0
1

)
= | ↓ 〉 (8.114)

is the other eigenstate of σ̂3. Then, the state at time t is then given by

|ψ(t)〉 = e−i Ĥ t/�|ψ(0)〉 = e−iω0σ̂3t/2| ↑ 〉 = e−iω0t/2| ↑ 〉 , (8.115)

because
σ̂3| ↑ 〉 = | ↑ 〉 (8.116)

and
e−iω0σ̂3t/2| ↑ 〉 = e−iω0t/2| ↑ 〉 . (8.117)

The expectation value at time t of the spin component along the x axis is then

〈Ŝx (t)〉 = 〈ψ(t)|�
2
σ̂1|ψ(t)〉 = �

2
〈↑ |eiω0t/2σ̂1e

−iω0t/2| ↑ 〉 = �

2
〈↑ |σ̂1| ↑ 〉 .

(8.118)
Observing that

σ̂1| ↑ 〉 = | ↓ 〉 , (8.119)

and also
〈↑ | ↓ 〉 = 0 , (8.120)

we conclude that
〈Ŝx (t)〉 = 0 . (8.121)
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This means that if initially the spin is in the direction of the magnetic field it remains
in that direction forever: it is a stationary state with a time-dependence only in the
phase. Instead, the components of spin which are orthogonal to the magnetic field
have always zero expectation value.

Let us consider another interesting example: the electron is set in a uniform mag-
netic field B = (0, 0, B0). We want to calculate the expectation value of the spin Ŝ
along the x axis if at t = 0 the spin is along the x axis. The Hamiltonian operator of
spin is given by

Ĥ = 1

2
�ω0 σ̂3 (8.122)

where ω0 = geμB B0/� is the Larmor frequency of the system, with ge gyromagnetic
factor and μB Bohr magneton. The initial state of the system is

|ψ(0)〉 = 1√
2

(| ↑ 〉 + | ↓ 〉) , (8.123)

since

σ̂1|ψ(0)〉 = 1√
2

(
σ̂1| ↑ 〉 + σ1| ↓ 〉) = 1√

2
(| ↓ 〉 + | ↑ 〉) = |ψ(0)〉 . (8.124)

The state at time t is then

|ψ(t)〉 = e−i Ĥ t/�|ψ(0)〉 = e−iω0σ̂3t/2 1√
2

(| ↑ 〉 + | ↓ 〉) = 1√
2

(
e−iω0t/2| ↑ 〉 + eiω0t/2| ↓ 〉

)
,

(8.125)
because

σ̂3| ↑ 〉 = | ↑ 〉 (8.126)

σ̂3| ↓ 〉 = −| ↓ 〉 (8.127)

and
e−iω0σ̂3t/2| ↑ 〉 = e−iω0t/2| ↑ 〉 (8.128)

e−iω0σ̂3t/2| ↓ 〉 = eiω0t/2| ↓ 〉 . (8.129)

The expectation value at time t of the spin component along x axis reads

〈Ŝx (t)〉 = 〈ψ(t)|�
2
σ̂1|ψ(t)〉 = �

4

(
〈↑ |eiω0t/2 + 〈↓ |e−iω0t/2

)
σ̂1

(
e−iω0t/2| ↑ 〉 + eiω0t/2| ↓ 〉

)
(8.130)

= �

4

(
eiω0t 〈↑ | ↑ 〉 + e−iω0t 〈↓ | ↓ 〉

)
= �

2
cos (ω0t) . (8.131)
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8.5 Stark Effect

Let us consider the hydrogen atom under the action of a constant electric field E. We
write the constant electric field as

E = E uz = (0, 0, E) , (8.132)

choosing the z axis in the same direction of E. The Hamiltonian operator of the
system is then given by

Ĥ = Ĥ0 + ĤI , (8.133)

where

Ĥ0 = p̂2

2m
− e2

4πε0 r
(8.134)

is the non-relativisticHamiltonian of the electron in the hydrogen atom (withm = me

the electron mass), while

ĤI = −e φ(r) = e E · r = −d · E = e E z (8.135)

is the Hamiltonian of the interaction due to the electric scalar potentialφ(r) = −E · r
such thatE = −∇φ, with−e electric charge of the electron and d = −er the electric
dipole.

Let |nlml〉 be the eigenstates of Ĥ0, such that

Ĥ0|nlml〉 = E (0)
n |nlml〉 (8.136)

with

E (0)
n = −13.6

n2
eV , (8.137)

the Bohr spectrum of the hydrogen atom, and moreover

L̂2|nlml〉 = �
2 l(l + 1) |nlml〉 , L̂ z|nlml〉 = � ml |nlml〉 . (8.138)

At the first order of degenerate perturbation theory the energy spectrum is given by

En = E (0)
n + E (1)

n , (8.139)

where E (1)
n is one of the eigenvalues of the submatrix Ĥ n

I , whose elements are

a(n)

l ′m ′
l ,lml

= 〈nl ′m ′
l |ĤI |nlml〉 = e E 〈nl ′m ′

l |z|nlml〉 . (8.140)

Thus, in general, there is a linear splitting of degenerate energy levels due to the
external electric field E . This effect is named after Johannes Stark, who discovered it



132 8 Modern Quantum Physics of Atoms

in 1913. Actually, it was discovered independently in the same year also by Antonino
Lo Surdo.

It is important to stress that the ground-state |1s〉 = |n = 1, l = 0,ml = 0〉 of the
hydrogen atom is not degenerate and for it 〈1s|z|1s〉 = 0. It follows that there is no
linear Stark effect for the ground-state. Thus, we need the second order perturbation
theory, namely

E1 = E (0)
1 + E (1)

1 + E (2)
1 , (8.141)

where

E (1)
1 = 〈100|eEz|100〉 = 0 , (8.142)

E (2)
1 =

∑
nlml 
=100

|〈nlml |eEz|100〉|2
E (0)
1 − E (0)

n

= e2E2
∞∑
n=2

|〈n10|z|100〉|2
E (0)
1 − E (0)

n

, (8.143)

where the last equality is due to the dipole selection rules. This formula shows that
the electric field produces a quadratic shift in the energy of the ground state. This
phenomenon is known as the quadratic Stark effect.

The polarizability αp of an atom is defined in terms of the energy-shift �E1 of
the atomic ground state energy E1 induced by an external electric field E as follows:

�E1 = −1

2
αp E2 . (8.144)

Hence, for the hydrogen atom we can write

αp = −2e2
∞∑
n=2

|〈n10|z|100〉|2
E (0)
1 − E (0)

n

= −9

4

e2r20
E (0)
1

, (8.145)

with r0 the Bohr radius.

8.6 Zeeman Effect

Let us consider the hydrogen atom under the action of a constant magnetic field B.
According to the Pauli equation, the Hamiltonian operator of the system is given by

Ĥ =
(
p̂ + eA

)2
2m

− e2

4πε0 r
− μ̂S · B (8.146)

where
μ̂S = − e

m
Ŝ (8.147)
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is the spin dipole magnetic moment, with Ŝ the spin of the electron, and A is the
vector potential, such that B = ∇ ∧ A. Because the magnetic field B is constant, the
vector potential can be written as

A = 1

2
B ∧ r , (8.148)

and then

(
p̂ + eA

)2 = p̂2 + 2ep̂ · A + e2A2 = p̂2 + 2eB · L̂ + e2(B ∧ r)2 , (8.149)

with L̂ = r ∧ p̂. In this way the Hamiltonian can be expressed as

Ĥ = Ĥ0 + ĤI , (8.150)

where

Ĥ0 = p̂2

2m
− e2

4πε0 r
(8.151)

is the non-relativistic Hamiltonian of the electron in the hydrogen atom, while

ĤI = −μ̂ · B + e2

8m
(B ∧ r)2 (8.152)

is the Hamiltonian of the magnetic interaction, with

μ̂ = μ̂L + μ̂S = − e

2m
(L̂ + 2̂S) (8.153)

the total dipolemagneticmoment of the electron.Wenowwrite the constantmagnetic
field as

B = B uz = (0, 0, B) , (8.154)

choosing the z axis in the same direction ofB. In this way the interactionHamiltonian
becomes

ĤI = eB

2m

(
L̂ z + 2Ŝz

)
+ e2B2

8m
(x2 + y2) . (8.155)

The first term, called paramagnetic term, grows linearly with the magnetic field B
while the second one, the diamagnetic term, grows quadratically. The paramagnetic
term is of the order ofμB B, whereμB = e�/(2m) = 9.3 · 10−24 Joule/Tesla= 5.29 ·
10−5 eV/Tesla is the Bohr magneton. Because the unperturbed energy of Ĥ0 is of the
order of 10 eV, the paramagnetic term can be considered a small perturbation.
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8.6.1 Strong-Field Zeeman Effect

Usually the diamagnetic term is much smaller than the paramagnetic one, and
becomes observable only for B of the order of 106/n4 Tesla, i.e. mainly in the
astrophysical context. Thus in laboratory the diamagnetic term is usually negligible
(apart for very large values of the principal quantum number n) and the effective
interaction Hamiltonian reads

HI = eB

2m

(
L̂ z + 2Ŝz

)
. (8.156)

Thus (8.151) is the unperturbedHamiltonian and (8.156) the perturbingHamiltonian.
It is clear that this total Hamiltonian is diagonal with respect to the eigenstates
|nlmlms〉 and one obtains immediately the following energy spectrum

En,ml ,ms = E (0)
n + μB B (ml + 2ms) , (8.157)

where E (0)
n is the unperturbed Bohr eigenspectrum and μB = e�/(2m) is the Bohr

magneton, withm the mass of the electron. Equation (8.157) describes the high-field
Zeeman effect, first observed in 1896 by Pieter Zeeman. The field B does not remove
the degeneracy in l but it does remove the degeneracy in ml and ms . The selection
rules for dipolar transitions require �ms = 0 and �ml = 0,±1. Thus the spectral
line corresponding to a transition n → n′ is split into 3 components, called Lorentz
triplet.

8.6.2 Weak-Field Zeeman Effect

In the hydrogen atom the strong-field Zeeman effect is observable if the magnetic
field B is between about 1/n3 Tesla and about 106/n4 Tesla, with n the principal
quantum number. In fact, as previously explained, for B larger than about 106/n4

Tesla the diamagnetic term is no more negligible. Instead, for B smaller than about
1/n3 Tesla the splitting due to the magnetic field B becomes comparable with the
splitting due to relativistic fine-structure corrections. Thus, to study the effect of
a weak field B, i.e. the weak-field Zeeman effect, the unperturbed non-relativistic
Hamiltonian Ĥ0 given by the Eq. (8.151) is no more reliable. One must use instead
the exact relativistic Hamiltonian or, at least, the non-relativistic one with relativistic
corrections, namely

Ĥ0 = Ĥ0,0 + Ĥ0,1 + Ĥ0,2 + Ĥ0,3 , (8.158)

where
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Ĥ0,0 = − �
2

2m
∇2 − e2

4πε0 r
(8.159)

Ĥ0,1 = − �
4

8m3c2
∇4 , (8.160)

Ĥ0,2 = 1

2m2c2
1

r

dV (r)

dr
L · S , (8.161)

Ĥ0,3 = �
2

8m2c2
∇2V (r) , (8.162)

with Ĥ0,0 the non relativistic Hamiltonian, Ĥ0,1 the relativistic correction to the
electronkinetic energy, Ĥ0,2 the spin-orbit correction, and Ĥ0,3 theDarwin correction.
In any case, ml and ms are no more good quantum numbers because L̂ z and Ŝz do
not commute with the new Ĥ0.

The Hamiltonian (8.158) commutes instead with L̂2, Ŝ2, Ĵ 2 and Ĵz . Consequently,
for this Hamiltonian the good quantum numbers are n, l, s, j andm j . Applying again
the first-order perturbation theory, where now (8.158) is the unperturbedHamiltonian
and (8.156) is the perturbingHamiltonian, one obtains the following energy spectrum

En,l, j,m j = E (0)
n, j + E (1)

n,l,s, j,m j
, (8.163)

where E (0)
n, j is the unperturbed relativistic spectrum and

E (1)
n,l,s, j,m j

= eB

2m
〈n, l, s, j,m j |L̂ z + 2Ŝz|n, l, s, j,m j 〉 (8.164)

is the first-order correction, which is indeed not very easy to calculate. But we can
do it. First we note that

〈n, l, s, j,m j |L̂ z + 2Ŝz |n, l, s, j,m j 〉 = 〈n, l, s, j,m j | Ĵz + Ŝz |n, l, s, j,m j 〉
= �m j + 〈n, l, s, j,m j |Ŝz |n, l, s, j,m j 〉 . (8.165)

TheWigner-Eckart theorem states that for any vector operator V̂ = (V̂1, V̂2, V̂3) such
that [ Ĵi , V̂ j ] = i�εi jk V̂k holds the identity

�
2 j ( j + 1) 〈n, l, s, j,m j |V̂|n, l, s, j,m j 〉 = 〈n, l, s, j,m j |(V̂ · Ĵ) Ĵ|n, l, s, j,m j 〉 .

(8.166)
In our case V̂ = Ŝ and we have considered the z component only. Then, on the basis
of the Wigner-Eckart theorem, we have

�
2 j ( j + 1)〈n, l, s, j,m j |Ŝz |n, l, s, j,m j 〉 = 〈n, l, s, j,m j |(Ŝ · Ĵ) Ĵz |n, l, s, j,m j 〉 ,

(8.167)
from which we obtain
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�
2 j ( j + 1)〈n, l, s, j,m j |Ŝz |n, l, s, j,m j 〉 = �m j 〈n, l, s, j,m j |Ŝ · Ĵ|n, l, s, j,m j 〉

= �m j 〈n, l, s, j,m j | 1
2

(
Ĵ 2 + Ŝ2 − L̂2

)
|n, l, s, j,m j 〉

= �m j
1

2
�
2 ( j ( j + 1) + s(s + 1) − l(l + 1)) . (8.168)

In conclusion, for a weak magnetic field B the first-order correction is given by

E (1)
n,l,s, j,m j

= μB B gl,s, j m j , (8.169)

where μB = e�/(2m) is the Bohr magneton, and

gl,s, j = 1 + j ( j + 1) + s(s + 1) − l(l + 1)

2 j ( j + 1)
(8.170)

is the so-called Landé factor. Clearly, in the case of the electron s = 1/2 and the
Landé factor becomes

gl, j = 1 + j ( j + 1) − l(l + 1) + 3/4

2 j ( j + 1)
. (8.171)

Strictly speaking, the energy splitting described by Eq. (8.169) is fully reliable only
for a weak magnetic field B in the range 0 Tesla ≤ B � 1/n3 Tesla, with n the
principal quantum number. In fact, if the magnetic field B approaches 1/n3 Tesla
one observes a complex pattern of splitting, which moves by increasing B from the
splitting described by Eq. (8.169) towards the splitting described by Eq. (8.157). This
transition, observed in 1913 by Friedrich Paschen and Ernst Back, is now called the
Paschen-Back effect.

Further Reading

A complete treatment of the Schrödinger equation for the electron in the hydrogen
atom can be found in:
Landau, L.D., Lifshitz, E.M.: Quantum Mechanics: Non-Relativistic Theory. Perg-
amon (1981)
A detailed analysis of the selection rules based on the dipole approximation of the
matter-radiation interaction can be found in:
Salasnich, L.: Quantum Physics of Light and Matter: Photons, Atoms, and Strongly
Correlated Systems. Springer (2017)
For the Dirac equation and the Pauli equation:
Bjorken, J.D., Drell, S.D.: Relativistic Quantum Mechanics. McGraw-Hill, New
York (1964)
A detailed discussion of the Dirac equation for the electron in the hydrogen atom
can be found in:
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Lifshitz, E.M., Pitaevskii, L.P.: Relativistic Quantum Theory. Pergamon (1971)
For the Stark effect:
Robinett, R.W.: QuantumMechanics: Classical Results, Modern Systems, and Visu-
alized Examples, chap. 19, Sect. 19.6. Oxford Univ. Press, Oxford (2006)
For the Zeeman effect:
Bransden, B.H., Joachain, C.J.: Physics of Atoms and Molecules, chap. 6, Sects. 6.1
and 6.2. Prentice Hall, Upper Saddle River (2003)



Chapter 9
Quantum Mechanics of Many-Body
Systems

In this chapter we analyze atoms with many electrons and, more generally, systems
with many interacting identical particles.We consider the general properties of many
identical particles with their bosonic or fermionicmany-bodywavefunctions, and the
connection between spin and statisticswhich explains thePauli principle and themain
features of the periodic table of elements.

9.1 Identical Quantum Particles

First of all, we introduce the generalized coordinate x = (r,σ) of a particle which
takes into account the spatial coordinate r but also the intrinsic spin σ pertaining to
the particle. For instance, a spin 1/2 particle has σ = −1/2, 1/2 =↓,↑. By using
the Dirac notation the corresponding single-particle state is

|x〉 = |r σ〉 . (9.1)

We now consider N identical particles; for instance particles with the same mass and
electric charge. The many-body wavefunction of the system is given by

�(x1, x2, . . . , xN ) = �(r1,σ1, r2,σ2, . . . , rN ,σN ) , (9.2)

According to quantum mechanics identical particles are indistinguishable. As a con-
sequence, it must be

|�(x1, x2, . . . , xi , . . . , x j , . . . , xN )|2 = |�(x1, x2, . . . , x j , . . . , xi , . . . , xN )|2 ,

(9.3)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Salasnich, Modern Physics, UNITEXT for Physics,
https://doi.org/10.1007/978-3-030-93743-0_9

139

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93743-0_9&domain=pdf
https://doi.org/10.1007/978-3-030-93743-0_9


140 9 Quantum Mechanics of Many-Body Systems

which means that the probability of finding the particles must be independent on the
exchange of two generalized coordinates xi and x j . Obviously, for 2 particles this
implies that

|�(x1, x2)|2 = |�(x2, x1)|2 . (9.4)

Experiments suggests that there are only two kind of identical particles which satisfy
Eq. (9.3): bosons and fermions. For N identical bosons one has

�(x1, x2, . . . , xi , . . . , x j , . . . , xN ) = �(x1, x2, . . . , x j , . . . , xi , . . . , xN ) , (9.5)

i.e. the many-body wavefunction is symmetric with respect to the exchange of two
coordinates xi and x j . Note that for 2 identical bosonic particles this implies

�(x1, x2) = �(x2, x1). (9.6)

For N identical fermions one has instead

�(x1, x2, . . . , xi , . . . , x j , . . . , xN ) = −�(x1, x2, . . . , x j , . . . , xi , . . . , xN ) , (9.7)

i.e. the many-body wavefunction is anti-symmetric with respect to the exchange of
two coordinates xi and x j . Note that for 2 identical fermionic particles this implies

�(x1, x2) = −�(x2, x1) . (9.8)

An immediate consequence of the anti-symmetry of the fermionic many-body wave-
function is the Pauli Principle: if xi = x j then the many-body wavefunction is zero.
In other words: the probability of finding two fermionic particles with the same
generalized coordinates is zero.

9.1.1 Spin-Statistics Theorem

A remarkable experimental fact, which is often called spin-statistics theorem because
can be deduced from other postulates of relativistic quantum field theory, is the
following: identical particles with integer spin are bosons while identical particles
with semi-integer spin are fermions. For instance, photons are bosons with spin 1
while electrons are fermions with spin 1/2. Notice that for a composed particle it
is the total spin which determines the statistics. For example, the total spin (sum of
nuclear and electronic spins) of 4He atom is 0 and consequently this atom is a boson,
while the total spin of 3He atom is 1/2 and consequently this atom is a fermion.
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9.2 Non-interacting Identical Particles

The quantum Hamiltonian of N identical non-interacting particles is given by

Ĥ0 =
N∑

i=1

ĥ(xi ) , (9.9)

where ĥ(x) is the single-particle Hamiltonian. Usually the single-particle Hamilto-
nian is given by

ĥ(x) = − �
2

2m
∇2 +U (r) , (9.10)

withU (r) the external confining potential. In general the single-particle Hamiltonian
ĥ satisfies the eigenvalue equation

ĥ(x) φn(x) = εn φn(x) , (9.11)

where εn are the single-particle eigenenergies and φn(x) the single-particle eigen-
functions, with n = 1, 2, . . ..

The many-body wavefunction �(x1, x2, . . . , xN ) of the system can be written in
terms of the single-particle wavefunctions φn(x) but one must take into account the
spin-statistics of the identical particles. For N bosons the simplest many-body wave
function reads

�(x1, x2, . . . , xN ) = φ1(x1) φ1(x2) . . . φ1(xN ) , (9.12)

which corresponds to the configuration where all the particles are in the lowest-
energy single-particle state φ1(x). This is indeed a pure Bose-Einstein condensate.
Note that for 2 bosons the previous expression becomes

�(x1, x2) = φ1(x1)φ1(x2) . (9.13)

Obviously there are infinite configuration which satisfy the bosonic symmetry of the
many-body wavefunction. For example, with 2 bosons one can have

�(x1, x2) = φ4(x1)φ4(x2) , (9.14)

which means that the two bosons are both in the fourth eigenstate; another example
is

�(x1, x2) = 1√
2

(φ1(x1)φ2(x2) + φ1(x2)φ2(x1)) , (9.15)
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where the factor 1/
√
2 has been included to maintain the same normalization of the

many-body wavefunction, and in this case the bosons are in the first two available
single-particles eigenstates.

For N fermions the simplest many-body wave function is instead very different,
and it is given by

�(x1, x2, . . . , xN ) = 1√
N !

⎛

⎜⎜⎝

φ1(x1) φ1(x2) . . . φ1(xN )

φ2(x1) φ2(x2) . . . φ2(xN )

. . . . . . . . . . . .

φN (x1) φN (x2) . . . φN (xN )

⎞

⎟⎟⎠ (9.16)

that is the so-called Slater determinant of the N × N matrix obtained with the N
lowest-energy single particlewavefunctionsψn(x), with n = 1, 2, . . . , N , calculated
in the N possible generalized coordinates xi , with i = 1, 2, . . . , N . Note that for 2
fermions the previous expression becomes

�(x1, x2) = 1√
2

(φ1(x1)φ2(x2) − φ1(x2)φ2(x1)) . (9.17)

We stress that for non-interacting identical particles the Hamiltonian (9.9) is sep-
arable and the total energy associated to the bosonic many-body wavefunction (9.12)
is simply

E = N ε1 , (9.18)

while for the fermionic many-body wavefunction (9.16) the total energy (in the
absence of degenerate single-particle energy levels and for spin-polarized fermions)
reads

E = ε1 + ε2 + · · · + εN , (9.19)

which is surely higher than the bosonic one. The highest occupied single-particle
energy level is called Fermi energy, and it indicated as εF ; in our case it is obviously
εF = εN .

9.2.1 Atomic Shell Structure and the Periodic Table of the
Elements

The non-relativistic quantum Hamiltonian of Z identical non-interacting electrons
in the neutral atom is given by

Ĥ0 =
Z∑

i=1

ĥ(ri ) , (9.20)
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where ĥ(r) is the single-particle Hamiltonian given by

ĥ(r) = − �
2

2m
∇2 +U (r) , (9.21)

with

U (r) = − Ze2

4πε0 |r| (9.22)

the confining potential due to the attractive Coulomb interaction between the single
electron and the atomic nucleus of positive charge Ze, with e > 0.

Because the confiningpotentialU (r) is spherically symmetric, i.e.U (r) = U (|r|),
the single-particle Hamiltonian ĥ satisfies the eigenvalue equation

ĥ(r) φnlmlms (r) = εn(Z) φnlmlms (r) , (9.23)

where

εn(Z) = −13.6 eV
Z2

n2
(9.24)

are the Bohr single-particle eigenenergies of the hydrogen-like atom, and φnlmlms (r)
= Rnl(r)Ylml (θ,φ) are the single-particle eigenfunctions, which depends on the prin-
cipal quantumnumbers n = 1, 2, . . ., the angular quantumnumber l = 0, 1, . . . , n −
1, the third-component angular quantum numberml = −l,−l + 1, . . . , l − 1, l, and
the third-component spin quantum number ms = − 1

2 ,
1
2 . Notice that here

φnlmlms (r) = φnlml (r,σ) (9.25)

with σ =↑ for ms = 1
2 and σ =↓ for ms = − 1

2 .

Z Atom Symbol E
1 hydrogen H ε1(1)
2 helium He 2ε1(2)
3 lithium Li 2ε1(3) + ε2(3)
4 beryllium Be 2ε1(4) + 2ε2(4)
5 boron B 2ε1(5) + 3ε2(5)
6 carbon C 2ε1(6) + 4ε2(6)
7 nitrogen N 2ε1(7) + 5ε2(7)
8 oxygen O 2ε1(8) + 6ε2(8)
9 fluorine F 2ε1(9) + 7ε2(9)
10 neon Ne 2ε1(10) + 8ε2(10)
11 sodium Na 2ε1(11) + 8ε2(11) + ε3(11)
12 magnesium Mg 2ε1(12) + 8ε2(12) + 2ε3(12)
13 aluminium Al 2ε1(13) + 8ε2(13) + 3ε3(13)
14 silicon Si 2ε1(14) + 8ε2(14) + 4ε3(14)

Table. Lightest atoms and their ground-state energy E on the basis of single-particle
energies.
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Due to the Pauli principle the ground-state energy E of this system of Z electrons
strongly depends of the degeneracy of single-particle energy levels. In the Table we
report the ground-state energy E of the lightest atoms on the basis of their single-
particle energy levels εn(Z).

The degeneracy of the single-particle energy level εn(Z) is clearly independent
on Z and given by

deg(εn(Z)) =
n−1∑

l=0

2(2l + 1) = 2n2 , (9.26)

which is the maximum number of electrons with the same principal quantum number
n. The set of stateswith the same principal quantumnumber is called theoretical shell.
The number of electrons in each theoretical shell are: 2, 8, 18, 32, 52. One expects
that the more stable atoms are characterized by fully occupied theoretical shells.
Actually, the experimental data, namely the periodic table of elements due to Dmitri
Mendeleev, suggest that the true number of electrons in each experimental shell are
instead: 2, 8, 8, 18, 18, 32, because the noble atoms are characterized the following
atomic numbers:

2, 2 + 8 = 10, 2 + 8 + 8 = 18, 2 + 8 + 8 + 18 = 36, 2 + 8 + 8 + 18 + 18 = 54, 2 + 8 + 8 + 18 + 18 + 32 = 86 ,

corresponding to Helium (Z = 2), Neon (Z = 10), Argon (Z = 18), Krypton (Z =
36), Xenon (Z = 54), and Radon (Z = 86). The experimental sequence is clearly
similar but not equal to the theoretical one, due to repetitions of 8 and 18.

It is important to stress that the theoretical sequence is obtained under the very
crude assumption of non-interacting electrons. To improve the agreement between
theory and experiment one must include the interaction between the electrons.

9.3 Interacting Identical Particles

The quantum Hamiltonian of N identical interacting particles is given by

Ĥ =
N∑

i=1

ĥ(xi ) + 1

2

N∑

i, j=1
i �= j

V (xi , x j ) = Ĥ0 + ĤI , (9.27)

where ĥ is the single-particle Hamiltonian and V (xi , x j ) is the inter-particle potential
of the mutual interaction. In general, due to the inter-particle potential, the Hamilto-
nian (9.27) is not separable and the many-body wavefunctions given by Eqs. (9.12)
and (9.16) are not exact eigenfunctions of Ĥ .
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9.3.1 Electrons in Atoms and Molecules

It is well known that a generic molecule is made of Nn atomic nuclei with electric
charges Zαe and masses Mα (α = 1, 2, . . . , Nn) and Ne electrons with charges −e
and masses m. Neglecting the finite structure of atomic nuclei, the Hamiltonian of
the molecule can be written as

Ĥ = Ĥn + Ĥe + Vne , (9.28)

where

Ĥn =
Nn∑

α=1

− �
2

2Mα
∇2

α + 1

2

Nn∑

α,β=1
α �=β

ZαZβe2

4πε0

1

|Rα − Rβ | (9.29)

is the Hamiltonian of the atomic nuclei, with Rα the position of the α-th nucleus,

Ĥe =
Ne∑

i=1

− �
2

2m
∇2
i + 1

2

Ne∑

i, j=1
i �= j

e2

4πε0

1

|ri − r j | (9.30)

is the Hamiltonian of the electrons, with ri the position of the i-th electron, and

Vne = −
Nn ,Ne∑

α,i=1

Zαe2

4πε0

1

|Rα − ri | (9.31)

is the potential energy of the Coulomb interaction between atomic nuclei and elec-
trons.

It is clear that the computation of the ground-state energy and the many-body
wavefunction of an average-size molecule is a formidable task. For instance, the
benzene molecule (C6H6) consists of 12 atomic nuclei and 42 electrons, and this
means that its many-body wavefunction has (12 + 42) × 3 = 162 variables: the spa-
tial coordinates of the electrons and the nuclei. The exact many-body Schrodinger
equation for the ground-state is given by

Ĥ�(R, r) = E �(R, r) , (9.32)

where �(R, r) = �(R1, . . . ,RNn , r1, . . . , rNe) is the ground-state wavefunction,
with R = (R1, . . . ,RNn ) and r = (r1, . . . , rNe) multi-vectors for nuclear and elec-
tronic coordinates respectively.

In 1927 Max Born and Julius Robert Oppenheimer suggested a reliable approxi-
mation to treat this problem. Their approach is based on the separation of the fast elec-
tron dynamics from the slowmotion of the nuclei. In the so-calledBorn-Oppenheimer
approximation the many-body wave function of the molecule is factorized as
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�(R, r) = �e(r; R) �n(R) , (9.33)

where �n(R) is the nuclear wavefunction and �e(r; R) is the electronic wavefunc-
tion, which depends also on nuclear coordinates. We do not analyze here the conse-
quences of this factorization. However, we stress that Born-Oppenheimer approxi-
mation is crucial in any context where there is more than a single atom around, which
includes atomic gases, clusters, crystals, and many other physical systems.

9.4 The Hartree-Fock Method

In 1927 by Douglas Hartree and Vladimir Fock used the variational principle to
develop a powerful method for the study of interacting identical particles. We will
analyze this variational method in the following subsections.

9.4.1 Hartree for Bosons

In the case of N identical interacting bosons the Hartree approximation is simply
given by

�(x1, x2, . . . , xN ) = φ(x1) φ(x2) . . . φ(xN ) , (9.34)

where the single-particle wavefunction φ(x) is unknown and it must be determined
in a self-consistent way. Notice that, as previously stressed, this factorization implies
that all particles belong to the same single-particle state, i.e. we are supposing that
the interacting system is a pure Bose-Einstein condensate. This is a quite strong
assumption, that is however reliable in the description of ultracold and dilute gases
made of bosonic alkali-metal atoms (in 2001EricCornell, CarlWeiman, andWolfang
Ketterle got the Nobel Prize in Physics for their experiments with these quantum
gases), andwhichmust be relaxed in the case of strongly-interacting bosonic systems
(like superfluid 4He). In the variational spirit of the Hartree approach the unknown
wavefunction φ(x) is determined by minimizing the expectation value of the total
Hamiltonian, given by

〈�|Ĥ |�〉 =
∫

dx1dx2 . . . dxN�∗(x1, x2, . . . , xN )Ĥ�(x1, x2, . . . , xN ) , (9.35)

with respect to φ(x). In fact, by using Eq. (9.27) one finds immediately

〈�|Ĥ |�〉 = N
∫

dx φ∗(x)ĥ(x)φ(x) + 1

2
N (N − 1)

∫
dx dx ′ |φ(x)|2 V (x, x ′)|φ(x ′)|2 ,

(9.36)
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which is a nonlinear energy functional of the single-particle wavefunction φ(x). It
is called single-orbital Hartree functional for bosons. In this functional the first term
is related to the single-particle hamiltonian ĥ(x) while the second term is related to
the inter-particle interaction potential V (x, x ′). Weminimize this functional with the
following constraint due to the normalization

∫
dx |φ(x)|2 = 1 . (9.37)

We get immediately the so-called Hartree equation for bosons

[
ĥ(x) +Umf (x)

]
φ(x) = ε φ(x) , (9.38)

where the mean-field potential Umf (x) reads

Umf (x) = (N − 1)
∫

dx ′ V (x, x ′) |φ(x ′)|2 (9.39)

and ε is the Lagrange multiplier fixed by the normalization. It is important to observe
that the mean-field potential Umf (x) depends on φ(x) and it must be obtained self-
consistently. In other words, the Hartree equation of bosons is a integro-differential
nonlinear Schrödinger equation whose nonlinear term gives the mean-field potential
of the system.

In the case of spinless bosons, where |x〉 = |r〉, given the local bosonic density

ρ(r) = N |φ(r)|2 , (9.40)

under the assumption of a large number N of particles the Hartree variational energy
reads

〈�|Ĥ |�〉 = N
∫

d3r φ∗(r)
[
− �

2

2m
∇2 +U (r)

]
φ(r) + 1

2

∫
d3r d3r′ ρ(r)V (r − r′)ρ(r′)

(9.41)
while the Hartree equation becomes

[
− �

2

2m
∇2 +U (r) +

∫
d3r′ V (r − r′) ρ(r′)

]
φ(r) = ε φ(r) . (9.42)

To conclude this subsection, we observe that in the case of a contact inter-particle
potential, i.e.

V (r − r′) = g δ(r − r′) , (9.43)

with the strength g given by

g =
∫

V (r) d3r , (9.44)
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the previous Hartree variational energy becomes

〈�|Ĥ |�〉 = N
∫

d3r φ∗(r)
[
− �

2

2m
∇2 +U (r)

]
φ(r) + g

2

∫
d3r ρ(r)2 (9.45)

and the corresponding Hartee equation reads

[
− �

2

2m
∇2 +U (r) + g ρ(r)

]
φ(r) = ε φ(r) , (9.46)

which is the so-called Gross-Pitaevskii equation, deduced in 1961 by Eugene Gross
and Lev Pitaevskii.

9.4.2 Hartree-Fock for Fermions

In the case of N identical interacting fermions, the approximation developed by
Hartree and Fock is based on the Slater determinant we have seen previously,
namely

�(x1, x2, . . . , xN ) = 1√
N !

⎛

⎜⎜⎝

φ1(x1) φ1(x2) . . . φ1(xN )

φ2(x1) φ2(x2) . . . φ2(xN )

. . . . . . . . . . . .

φN (x1) φN (x2) . . . φN (xN )

⎞

⎟⎟⎠ , (9.47)

where now the single-particle wavefunctions φn(x) are unknown and they are deter-
mined with a variational procedure. In fact, in the Hartree-Fock approach the
unknown wavefunctions φn(x) are obtained by minimizing the expectation value
of the total Hamiltonian, given by

〈�|Ĥ |�〉 =
∫

dx1 dx2 . . . dxN �∗(x1, x2, . . . , xN )Ĥ�(x1, x2, . . . , xN ) , (9.48)

with respect to the N single-particle wavefunctions φn(x). By using Eq. (9.27) and
after some tedious calculations one finds

〈�|Ĥ |�〉 =
N∑

i=1

∫
dx φ∗

i (x)ĥ(x)φi (x) + 1

2

N∑

i, j=1
i �= j

[ ∫
dx dx ′ |φi (x)|2 V (x, x ′)|φ j (x

′)|2

−
∫

dx dx ′ φ∗
i (x)φ j (x)V (x, x ′)φ∗

j (x
′)φi (x ′)

]
, (9.49)

which is a nonlinear energy functional of the N single-particle wavefunctions φi (x).
In this functional the first term is related to the single-particleHamiltonian ĥ(x)while
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the second and the third terms are related to the inter-particle interaction potential
V (x, x ′). The second term is called direct term of interaction and the third term is
called exchange term of interaction. We minimize this functional with the following
constraints due to the normalization

∫
dx |φi (x)|2 = 1 , i = 1, 2, . . . , N , (9.50)

where, in the case of spin 1/2 particles, one has

φi (x) = φi (r,σ) = φ̃i (r,σ) χσ (9.51)

with χσ the two-component spinor, and the integration over x means

∫
dx =

∫
d3r

∑

σ=↑,↓
, (9.52)

such that
∫

dx |φi (x)|2 =
∫

d3r
∑

σ=↑,↓
|φi (r,σ)|2 =

∫
d3r

∑

σ=↑,↓
|φ̃i (r,σ)|2 , (9.53)

because χ∗
σχσ = 1 and more generally χ∗

σχσ′ = δσ,σ′ .
After minimization of the energy functional we get the so-called Hartree-Fock

equations [
ĥ(x) + Ûm f (x)

]
φi (x) = εi φi (x) (9.54)

where εi are theLagrangemultipliers fixed by the normalization and Ûm f is a nonlocal
mean-field operator. This nonlocal operator is given by

Ûm f (x) φi (x) = Ud(x) φi (x) −
N∑

j=1

U ji
x (x)φ j (x) , (9.55)

where the direct mean-field potential Ud(x) reads

Ud(x) =
N∑

j=1
j �=i

∫
dx ′ V (x, x ′) |φ j (x

′)|2 , (9.56)

while the exchange mean-field potential U ji
x (x) is instead

U ji
x (x) =

∫
dx ′ φ∗

j (x
′) V (x, x ′) φi (x

′) . (9.57)
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If one neglects the exchange term, as done by Hartree in his original derivation, the
so-called Hartree equations

[
ĥ(x) +Ud(x)

]
φi (x) = εi φi (x) , (9.58)

are immediately derived. It is clearly much simpler to solve the Hartree equations
instead of the Hartree-Fock ones. For this reason, in many applications the latter are
often used. In the case of spin 1/2 fermions, given the local fermionic density

ρ(r) =
∑

σ=↑,↓

N∑

i=1

|φi (r,σ)|2 =
∑

σ=↑,↓
ρ(r,σ) , (9.59)

under the assumption of a large number N of particles the Hartree (direct) variational
energy reads

ED =
N∑

i=1

∑

σ=↑,↓

∫
d3r φ∗

i (r,σ)

[
− �

2

2m
∇2 +U (r)

]
φi (r,σ)

+ 1

2

∑

σ,σ′=↑,↓

∫
d3r d3r′ ρ(r,σ)V (r − r′)ρ(r′,σ′) (9.60)

and the corresponding Hartree equation becomes

⎡

⎣− �
2

2m
∇2 +U (r) +

∑

σ′=↑,↓

∫
d3r′ V (r − r′) ρ(r′,σ′)

⎤

⎦φi (r,σ) = εi φi (r,σ) .

(9.61)
The Hartree-Fock variational energy is slightly more complex because it includes
also the exchange energy, given by

EX = −1

2

N∑

i, j=1
i �= j

∑

σ=↑,↓

∫
d3r d3r′ φ∗

i (r,σ)φi (r′,σ)V (r − r′)φ∗
j (r

′,σ)φ j (r,σ) .

(9.62)
Notice that in the exchange energy all the termswith opposite spins are zero due to the
scalar product of spinors:χ∗

σχσ′ = δσ,σ′ . The existence of this exchange energy EX is
a direct consequence of the anti-symmetry of themany-bodywave function, namely a
consequence of the fermionic nature of the particles we are considering. Historically,
this term EX was obtained by Vladimir Fock to correct the first derivation of Douglas
Hartree who used a not anti-symmetrized many-body wavefunction.

To conclude this subsection, we observe that in the case of a contact inter-particle
potential, i.e.

V (r − r′) = g δ(r − r′) , (9.63)
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the Hartee-Fock (direct plus exchange) variational energy reads

E =
N∑

i=1

∑

σ=↑,↓

∫
d3r φ∗

i (r,σ)

[
− �

2

2m
∇2 +U (r)

]
φi (r,σ) (9.64)

+ g

2

N∑

i, j=1
i �= j

∑

σ,σ′=↑,↓

∫
d3r

[ |φi (r,σ)|2|φ j (r,σ′)|2 − |φi (r,σ)|2|φ j (r,σ)|2 δσ,σ′
]

.

It follows immediately that identical spin-polarized fermionswith contact interaction
are effectively non-interacting because in this case the interaction terms of direct and
exchange energy exactly compensate to zero.

Further Reading

A classic book on the many-body quantum problem is:
Fetter, A.L., Walecka, J.D.: Quantum Theory of Many-Particle Systems. Dover Pub-
lications (2003)
For the many-electron atom and the Hartree-Fock method:
Bransden, B.H., Joachain, C.J.: Physics of Atoms and Molecules. Prentice Hall
(2003)
Lipparini, E.: Modern Many-Particle Physics: Atomic Gases, Quantum Dots and
Quantum Fluids. World Scientific (2003)



Chapter 10
Quantum Statistical Mechanics

In this chapter we discuss elements of quantum statistical mechanics. In the first
chapter we have seen that statistical mechanics aims to describe macroscopic prop-
erties of complex systems starting from their microscopic components by using
statistical averages. Quantum statistical mechanics is more general than classical
statistical mechanics and it reproduces all the results of thermodynamics. In gen-
eral, quantum statistical machanics reduces to classical statistical mechanics in the
high-temperature regime.

10.1 Quantum Statistical Ensembles

Here we discuss only quantum systems at thermal equilibrium and consider a many-
body quantum system of identical particles characterized by the Hamiltonian Ĥ such
that

Ĥ |E (N )
i 〉 = E (N )

i |E (N )
i 〉, (10.1)

where |E (N )
i 〉 are the eigenstates of Ĥ for a fixed number N of identical particles and

EN
i are the corresponding eigenenergies.

10.1.1 Quantum Microcanonical Ensemble

In the microcanonical ensemble the quantum many-body system in a volume V has
a fixed number N of particles and also a fixed energy E . In this case the Hamiltonian
Ĥ admits the spectral decomposition
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Ĥ =
∑

i

E (N )
i |E (N )

i 〉〈E (N )
i |, (10.2)

and one defines the microcanonical density operator as

ρ̂ = W0 δ
(
E − Ĥ

)
, (10.3)

where δ(x) is the Dirac delta function and W0 is an arbitrary constant with the units
of an energy such that the density operator is adimensional. This microcanonical
density operator ρ̂ has the spectral decomposition

ρ̂ =
∑

i

W0 δ
(
E − E (N )

i

)
|E (N )

i 〉〈E (N )
i |. (10.4)

The key quantity in the microcanonical ensemble is the density of states (or
microcanonical volume) W given by

W = Tr [ρ̂] = Tr [W0 δ
(
E − Ĥ

)
], (10.5)

namely
W =

∑

i

W0 δ(E − E (N )
i ). (10.6)

The ensemble average of an observable described by the self-adjunct operator Â
is defined as

〈 Â〉 = Tr [ Â ρ̂]
Tr [ρ̂] = 1

W

∑

i

A(N )
i i W0 δ

(
E, E (N )

i

)
, (10.7)

where A(N )
i i = 〈E (N )

i | Â|E (N )
i 〉. As in the case of classical statistical mechanics, the

connection with equilibrium thermodynamics is given by the formula

S = kB ln (W ), (10.8)

which introduces the entropy S as a function of energy E , volume V and number N
of particles.

10.1.2 Quantum Canonical Ensemble

In the canonical ensemble the quantum system in a volume V has a fixed number N
of particles and a fixed temperature T . In this case one defines the canonical density
operator as
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ρ̂ = e−β Ĥ , (10.9)

with β = 1/(kBT ). Here ρ̂ has the spectral decomposition

ρ̂ =
∑

i

e−βE (N )
i |E (N )

i 〉〈E (N )
i |. (10.10)

The key quantity in the canonical ensemble is the canonical partition function (or
canonical volume) ZN given by

ZN = Tr [ρ̂] = Tr [e−β Ĥ ], (10.11)

namely

ZN =
∑

i

e−βE (N )
i . (10.12)

The ensemble average of an observable Â is defined as

〈 Â〉 = Tr [ Â ρ̂]
Tr [ρ̂] = 1

ZN

∑

i

A(N )
i i e−βE (N )

i , (10.13)

where A(N )
i i = 〈E (N )

i | Â|E (N )
i 〉. Notice that the definition of canonical-ensemble aver-

age is the same of the microcanonical-ensemble average but the density of state ρ̂ is
different in the two ensembles. The connection with equilibrium thermodynamics is
given by the formula

ZN = e−βF , (10.14)

which introduces theHelmholtz free energy F as a function of temperature T , volume
V and number N of particles.

10.1.3 Quantum Grand Canonical Ensemble

In the grand canonical ensemble the quantum system in a volume V has a fixed
temperature T and a fixed chemical potential μ. In this case the Hamiltonian Ĥ has
the spectral decomposition

Ĥ =
∞∑

N=0

∑

i

E (N )
i |E (N )

i 〉〈E (N )
i |, (10.15)

which is a generalization of Eq. (10.2), and one introduces the total number operator
N̂ such that
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N̂ |E (N )
i 〉 = N |E (N )

i 〉, (10.16)

and consequently N̂ has the spectral decomposition

N̂ =
∞∑

N=0

∑

i

N |E (N )
i 〉〈E (N )

i |. (10.17)

For the grand canonical ensemble one defines the grand canonical density operator
as

ρ̂ = e−β(Ĥ−μN̂ ), (10.18)

with β = 1/(kBT ) and μ the chemical potential. Here ρ̂ has the spectral decompo-
sition

ρ̂ =
∞∑

N=0

∑

i

e−β(E (N )
i −μN )|E (N )

i 〉〈E (N )
i | =

∞∑

N=0

zN
∑

i

e−βE (N )
i |E (N )

i 〉〈E (N )
i |,
(10.19)

where z = eβμ is the fugacity. The key quantity in the grand canonical ensemble is
the grand canonical partition function (or grand canonical volume) Z given by

Z = Tr [ρ̂] = Tr [e−β(Ĥ−μN̂ )], (10.20)

namely

Z =
∞∑

N=0

∑

i

e−β(E (N )
i −μN ) =

∞∑

N=0

zN ZN . (10.21)

The ensemble average of an observable Â is defined as

〈 Â〉 = Tr [ Â ρ̂]
Tr [ρ̂] = 1

Z
∞∑

N=0

∑

i

A(N )
i i e−(βE (N )

i −μN ), (10.22)

where A(N )
i i = 〈E (N )

i | Â|E (N )
i 〉. Notice that the definition of grand canonical-ensemble

average is the same of both microcanonical-ensemble average and canonical-enseble
average but the density of state ρ̂ is different in the three ensembles. Also here, the
connection with equilibrium thermodynamics is given by the same formula of the
classical case, i.e.

Z = e−β�, (10.23)

which introduces the grand potential � as a function of temperature T , volume V
and chemical potential μ.

To conclude this section we observe that in the grand canonical ensemble, instead
of working with eigenstates |E (N )

i 〉 of Ĥ at fixed number N of particles, one can
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work with multi-mode Fock states

|n0 n1 n2 ... n∞〉 = |n0〉 ⊗ |n1〉 ⊗ |n2〉 ⊗ ... ⊗ |n∞〉, (10.24)

where |nα〉 is the single-mode Fock state which describes nα particles in the single-
mode state |α〉 with α = 0, 1, 2, .... The trace Tr which appears in Eq. (10.20) is
indeed independent on the basis representation.

10.2 Bosons and Fermions at Finite Temperature

Let us consider the non-interacting matter field in thermal equilibrium with a bath at
the temperature T . The relevant quantity to calculate all thermodynamical properties
of the system is the grand-canonical partition function Z , given by

Z = Tr [e−β(Ĥ−μN̂ )] (10.25)

where β = 1/(kBT ) with kB the Boltzmann constant,

Ĥ =
∑

α

εα N̂α, (10.26)

is the quantum Hamiltonian,
N̂ =

∑

α

N̂α (10.27)

is total number operator, and μ is the chemical potential, fixed by the conservation
of the average particle number. This implies that

Z =
∑

{nα}
〈 ... nα ... |e−β(Ĥ−μN̂ )| ... nα ... 〉 =

∑

{nα}
〈 ... nα ... |e−β

∑
α(εα−μ)N̂α | ... nα ... 〉

=
∑

{nα}
e−β

∑
α(εα−μ)nα =

∑

{nα}

∏

α

e−β(εα−μ)nα =
∏

α

∑

nα

e−β(εα−μ)nα

=
∏

α

∞∑

n=0

e−β(εα−μ) n =
∏

α

1

1 − e−β(εα−μ)
for bosons (10.28)

=
∏

α

1∑

n=0

e−β(εα−μ) n =
∏

α

(
1 + e−β(εα−μ)

)
for fermions (10.29)

Quantum statistical mechanics dictates that the thermal average of any operator Â is
obtained as

〈 Â〉 = 1

Z Tr [ Â e−β(Ĥ−μN̂ )]. (10.30)
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Let us suppose that Â = Ĥ ′ = Ĥ − μN̂ , it is then quite easy to show that

〈Ĥ ′〉 = 1

Z Tr [(Ĥ − μN̂ ) e−β(Ĥ−μN̂ )] = − ∂

∂β
ln

(
Tr [e−β(Ĥ−μN̂ ]

)
= − ∂

∂β
ln(Z).

(10.31)
By using Eq. (10.28) or Eq. (10.29) we immediately obtain

ln(Z) = ∓
∑

α

ln
(
1 ∓ e−β(εα−μ)

)
, (10.32)

where − is for bosons and + for fermions, and finally from Eq. (10.31) we get

〈Ĥ〉 =
∑

α

εα 〈N̂α〉T , (10.33)

with

〈N̂ 〉 =
∑

α

1

eβ(εα−μ) ∓ 1
. (10.34)

Notice that the zero-temperature limit, i.e. β → ∞, for fermions we have

〈N̂ 〉 =
∑

α

�(μ − εα) , (10.35)

where �(x) is the Heaviside step function and the chemical potential μ at zero
temperature is nothing but the Fermi energy εF , i.e. εF = μ(T = 0). Instead, in the
high-temperature regime, where β(εα − μ) 	 1, Eq. (10.34) becomes

〈N̂ 〉 =
∑

α

e−β(εα−μ), (10.36)

that is exactly the Maxwell-Boltzmann distribution. Thus, when the temperature T
is such that also the highly excited energy levels εα are occupied, then both Bose-
Einstein and Fermi-Dirac distributions reduce to the Maxwell-Boltzmann one.

10.2.1 Gas of Photons at Thermal Equlibrium

The chemical potential μ of a many-body system is the energy required to add a
particle to the system. The minimal energy to create a particle of mass m from the
vacuum is nothing else than its rest energy mc2. Thus, for a gas of non-interacting
photons we have μ = 0 and consequently the number of photons is not fixed. This
implies that
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〈Ĥ〉 =
∑

k

∑

s

�ωk

eβ�ωk − 1
=

∑

k

∑

s

�ωk 〈N̂ks〉. (10.37)

In the continuum limit, where

∑

k

→ V
∫

d3k
(2π)3

, (10.38)

with V the volume, and taking into account that ωk = ck, one can write the energy
density E = 〈Ĥ〉T /V as

E = 2
∫

d3k
(2π)3

c�k

eβc�k − 1
= c�

π2

∫ ∞

0
dk

k3

eβc�k − 1
, (10.39)

where the factor 2 is due to the two possible polarizations (s = 1, 2). By usingω = ck
instead of k as integration variable one gets

E = �

π2c3

∫ ∞

0
dω

ω3

eβ�ω − 1
=

∫ ∞

0
dω ρ(ω), (10.40)

where

ρ(ω) = �

π2c3
ω3

eβ�ω − 1
(10.41)

is the energy density per frequency, i.e. the familiar formula of the black-body radi-
ation, obtained for the first time in 1900 by Max Planck. The previous integral can
be explicitly calculated and it gives

E = π2k4B
15c3�3

T 4, (10.42)

which is nothing but the Stefan-Boltzmann law. In an similar way one determines
the average number density of photons:

n = 〈N̂ 〉T
V

= 1

π2c3

∫ ∞

0
dω

ω2

eβ�ω − 1
= 2ζ(3)k3B

π2c3�3
T 3. (10.43)

where ζ(3) 
 1.202. Notice that both energy density E and number density n of
photons go to zero as the temperature T goes to zero. To conclude this section, we
stress that these results are obtained at thermal equilibrium and under the condition of
a vanishing chemical potential, meaning that the number of photons is not conserved
when the temperature is varied.
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10.2.2 Gas of Massive Bosons at Thermal Equlibrium

For a gas of non-interacting bosons, which can occupy the single-particle energy
levels εα of the single-particle quantum states |α〉, we have found that the thermal
average of the internal energy is given by

Ē =
∑

α

εα N̄α, (10.44)

where

N̄α = 1

eβ(εα−μ) − 1
(10.45)

is the termal average of the number of bosons in the single-particle quantum state
|α〉. That is the Bose-Einstein distribution. Here, to simplify a bit the notation, we
have used the bar over the symbol to represent the thermal average, i.e. Ē = 〈Ĥ〉
and N̄α = 〈N̂α〉.

The thermal average N̄ = 〈N̂ 〉 of the total number of bosons then reads

N̄ =
∑

α

N̄α =
∑

α

1

eβ(εα−μ) − 1
. (10.46)

At fixed temperature T = 1
kBβ

, N̄ is fully determined by the chemical potential μ.
Let us suppose for simplicity that the set of single-particle energy levels εα is

given by
ε0, ε1, ε2, ε3, ... (10.47)

where
ε0 < ε1 ≤ ε2 ≤ ε3 ≤ .... (10.48)

Clearly it must be
μ < ε0 (10.49)

to avoid divergences in the Bose-Einstein distributions of each

N̄α = 1

eβ(εα−μ) − 1
. (10.50)

Moreover, as μ → ε0 the distribution

N̄0 = 1

eβ(ε0−μ) − 1
(10.51)

becomes very large: under this condition we have Bose-Einstein condensation, i.e.
a macrosopic number of bosons in the lowest single-particle energy level ε0.
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In the presence of Bose-Einstein condensation (BEC) it is useful to write the total
number of bosons as follows

N̄ = N̄0 +
∑

α �=0

N̄α = 1

eβ(ε0−μ) − 1
+

∑

α �=0

1

eβ(εα−μ) − 1
. (10.52)

The exact condensate fraction is defined as

N̄0

N̄
= 1 −

∑
α �=0

1
eβ(εα−μ)−1∑

α
1

eβ(εα−μ)−1

. (10.53)

Following Einstein (1924), instead of using the exact formula of N̄0 we assume
that N0 is unknown but we also set

μ = ε0 (10.54)

in the BEC phase (i.e. when N0 > 0). In this way, in the BEC phase we find

N̄ = N̄0 +
∑

α �=0

1

eβ(εα−ε0) − 1
. (10.55)

At the critical temperature TBEC we have N̄0 = 0 and consequently

N̄ =
∑

α �=0

1

e(εα−ε0)/(kBTBEC ) − 1
, (10.56)

while for T < TBEC we have

N̄ = N̄0 +
∑

α �=0

1

e(εα−ε0)/(kBT ) − 1
. (10.57)

Then the condensate fraction reads

N̄0

N̄
= 1 −

∑
α �=0

1
e(εα−μ)/(kB T )−1∑

α �=0
1

e(εα−μ)/(kB TBEC )−1

. (10.58)

Let us now consider a Bose gas of atoms with mass m in a cubic box of volume
LD . The single-particle energy spectrum is

εq = �
2q2

2m
. (10.59)

In the continuum limit
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∑

q

→ LD
∫

dDq
(2π)D

(10.60)

and the total number density n̄ = N̄/LD in the BEC phase is given by

n̄ = n̄0 +
∫

dDq
(2π)D

1

e
�2q2

2mkB T − 1
, (10.61)

where n̄0 = N̄0/LD is the condensate number density.
The critical temperature TBEC of Bose-Einstein condensation is obtained setting

n̄0 = 0 in the previous equation. In this way one finds

kB TBEC =
⎧
⎨

⎩

2π
ζ(3/2)2/3

�
2

m n̄2/3 for D = 3
0 for D = 2
no solution for D = 1

(10.62)

where ζ(x) is the Riemann zeta function. This result was extended to interacting
systems by David Mermin and Herbert Wagner in 1966. The so-called Mermin-
Wagner theorem states that there is no Bose-Einstein condensation at finite tempera-
ture in homogeneous systemswith sufficiently short-range interactions in dimensions
D ≤ 2.

In the three-dimensional case (D = 3) from the equation

n̄ = n̄0 +
∫

d3q
(2π)3

1

e
�2q2

2mkB T − 1
, (10.63)

we find

n̄ = n̄0 + ζ(3/2)

(
mkBT

2π�2

)3/2

. (10.64)

It follows that

n̄0
n̄

= 1 − ζ(3/2)
( mkB
2π�2

)3/2
T 3/2

n̄
= 1 − ζ(3/2)

( mkB
2π�2

)3/2
T 3/2

ζ(3/2)
( mkB
2π�2

)3/2
T 3/2
BEC

. (10.65)

Thus, the condensate fraction reads

n̄0
n̄

= 1 −
(

T

TBEC

)3/2

. (10.66)

The critical temperature of Eq. (10.62) and this formula for the condensate fraction
of non-interacting massive bosons were obtained in 1925 by Albert Einstein extend-
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ing previous results derived by Satyendra Nath Bose for a gas a photons (massless
bosons).

10.2.3 Gas of Non-interacting Fermions at Zero Temperature

A quite important physical system is the uniform gas of non-interacting fermions. It
is indeed a good starting point for the description of all the real systems which have
a finite interaction between fermions.

The non-interacting uniform Fermi gas is obtained setting to zero the confining
potential, i.e.

U (r) = 0, (10.67)

and imposing periodicity conditions on the single-particle wavefunctions, which are
plane waves with a spinor

φ(x) = 1√
V

eik·r χσ, (10.68)

where χσ is the spinor for spin-up and spin-down along a chosen z asis:

χ↑ =
(
1
0

)
, χ↓ =

(
0
1

)
. (10.69)

At the boundaries of a cube having volume V and side L one has

eikx (x+L) = eikx x , eiky(y+L) = eiky y, eikz(z+L) = eikz z . (10.70)

It follows that the linear momentum k can only take on the values

kx = 2π

L
nx , ky = 2π

L
ny, kz = 2π

L
nz, (10.71)

where nx , ny , nz are integer quantum numbers. The single-particle energies are given
by

εk = �
2k2

2m
= �

2

2m

4π2

L2
(n2x + n2y + n2z ). (10.72)

In the thermodynamic limit L → ∞, the allowed values are closely spaced and
one can use the continuum approximation

∑

nx ,ny ,nz

→
∫

dnx dny dnz, (10.73)

which implies
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∑

k

→ L3

(2π)3

∫
d3k = V

∫
d3k

(2π)3
. (10.74)

The total number N of fermionic particles is given by

N =
∑

σ

∑

k

�(εF − εk) , (10.75)

where theHeaviside step function�(x), such that�(x) = 0 for x < 0 and�(x) = 1
for x > 0, takes into account the fact that fermions are occupied only up to the
Fermi energy εF , which is determined by fixing N . Notice that at finite temperature
T the total number N of ideal fermions is instead obtained from the Fermi-Dirac
distribution, namely

N =
∑

σ

∑

k

1

eβ(εk−μ) + 1
, (10.76)

where β = 1/(kBT ), with kB the Boltzmann constant, andμ is the chemical potential
of the system. In the limit β → +∞, i.e. for T → 0, the Fermi-Dirac distribution
becomes the Heaviside step function and μ is identified as the Fermi energy εF .

In the continuum limit and choosing spin 1/2 fermions one finds

N =
∑

σ=↑,↓
V

∫
d3k

(2π)3
�

(
εF − �

2k2

2m

)
, (10.77)

from which one gets (the sum of spins gives simply a factor 2) the uniform density

ρ = N

V
= 1

3π2

(
2mεF

�2

)3/2

. (10.78)

The formula can be inverted giving the Fermi energy εF as a function of the density
ρ, namely

εF = �
2

2m

(
3π2ρ

)2/3
. (10.79)

In many applications the Fermi energy εF is written as

εF = �
2k2F
2m

, (10.80)

where kF is the so-called Fermi wave-number, given by

kF = (
3π2ρ

)1/3
. (10.81)

The total energy E of the uniform and non-interacting Fermi system is given by
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E =
∑

σ

∑

k

εk �(εF − εk) , (10.82)

and using again the continuum limit with spin 1/2 fermions it becomes

E =
∑

σ=↑,↓
V

∫
d3k

(2π)3

�
2k2

2m
�

(
εF − �

2k2

2m

)
, (10.83)

from which one gets the energy density

E = E

V
= 3

5
ρ εF = 3

5

�
2

2m

(
3π2

)2/3
ρ5/3 (10.84)

in terms of the Fermi energy εF and the uniform density ρ.

Further Reading

Two classic books where the formalism of quantum statistical mechanics is intro-
duced are:
A.L. Fetter and J.D. Walecka, Quantum Theory of Many-Particle Systems (Dover
Publications, 2003).
K. Huang, Statistical Mechanics (Wiley, 1987).
A mathematically oriented book on the same subject is:
W.C. Schieve and L.P. Horwitz, Quantum Statistical Mechanics (Cambridge Univ.
Press, 2009).



Appendix A
Dirac Delta Function

The Heaviside Step Function

In 1880 the self-taught electrical scientist Oliver Heaviside introduced the following
function

�(x) =
{
1 for x > 0
0 for x < 0

(A.1)

which is now called Heaviside step function. This is a discontinous function, with a
discontinuity of first kind (jump) at x = 0, which is often used in the context of the
analysis of electric signals.

Moreover, it is important to stress that the Haviside step function appears also
in the context of quantum statistical physics. In fact, the Fermi-Dirac function (or
Fermi-Dirac distribution)

Fβ(x) = 1

eβ x + 1
, (A.2)

proposed in 1926 by Enrico Fermi and Paul Dirac to describe the quantum statistical
distribution of electrons in metals, where β = 1/(kBT ) is the inverse of the absolute
temperature T (with kB the Boltzmann constant) and x = ε − μ is the energy ε of
the electron with respect to the chemical potential μ, becomes the function �(−x)
in the limit of very small temperature T , namely

lim
β→+∞

Fβ(x) = �(−x) =
{
0 for x > 0
1 for x < 0

. (A.3)
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The Strange Function of Dirac

Inspired by the work of Heaviside, with the purpose of describing an extremely
localized charge density, in 1930 Paul Dirac investigated the following “function”

δ(x) =
{+∞ for x = 0

0 for x �= 0
(A.4)

imposing that ∫ +∞

−∞
δ(x) dx = 1. (A.5)

Unfortunately, this property of δ(x) is not compatible with the definition (A.4).
In fact, from Eq. (A.4) it follows that the integral must be equal to zero. In other
words, it does not exist a function δ(x) which satisfies both Eq. (A.4) and Eq. (A.5).
Dirac suggested that a way to circumvent this problem is to interpret the integral of
Eq. (A.5) as ∫ +∞

−∞
δ(x) dx = lim

ε→0+

∫ +∞

−∞
δε(x) dx, (A.6)

where δε(x) is a generic function of both x and ε such that

lim
ε→0+

δε(x) =
{+∞ for x = 0

0 for x �= 0
, (A.7)

∫ +∞

−∞
δε(x) dx = 1. (A.8)

Thus, the Dirac delta function δ(x) is a “generalized function” (but, strictly-
speaking, not a function) which satisfy Eqs. (A.4) and (A.5) with the caveat that the
integral in Eq. (A.5) must be interpreted according to Eq. (A.6) where the functions
δε(x) satisfy Eqs. (A.7) and (A.8).

There are infinite functions δε(x)which satisfy Eqs. (A.7) and (A.8). Among them
there is, for instance, the following Gaussian

δε(x) = 1

ε
√

π
e−x2/ε2 , (A.9)

which clearly satisfies Eq. (A.7) and whose integral is equal to 1 for any value of ε.
Another example is the function

δε(x) =
{

1
ε
for |x | ≤ ε/2

0 for |x | > ε/2
, (A.10)
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which again satisfies Eq. (A.7) and whose integral is equal to 1 for any value of ε.
In the following we shall use Eq. (A.10) to study the properties of the Dirac delta
function.

Dirac Function and the Integrals

According to the approach of Dirac, the integral involving δ(x) must be interpreted
as the limit of the corresponding integral involving δε(x), namely

∫ +∞

−∞
δ(x) f (x) dx = lim

ε→0+

∫ +∞

−∞
δε(x) f (x) dx, (A.11)

for any function f (x). It is then easy to prove that

∫ +∞

−∞
δ(x) f (x) dx = f (0). (A.12)

by using Eq. (A.10) and the mean value theorem. Similarly one finds

∫ +∞

−∞
δ(x − c) f (x) dx = f (c). (A.13)

Several other properties of the Dirac delta function δ(x) follow from its definition.
In particular

δ(−x) = δ(x), (A.14)

δ(a x) = 1

|a| δ(x) with a �= 0, (A.15)

δ( f (x)) =
∑
i

1

| f ′(xi )| δ(x − xi ) with f (xi ) = 0. (A.16)

Dirac Function in D Spatial Dimensions

Up to nowwe have considered the Dirac delta function δ(x)with only one variable x .
It is not difficult to define aDirac delta function δ(D)(r) in the case of aD-dimensional
domain R

D , where r = (x1, x2, . . . , xD) ∈ R
D is a D-dimensional vector:

δ(D)(r) =
{+∞ for r = 0

0 for r �= 0
(A.17)
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and ∫
RD

δ(D)(r) dDr = 1. (A.18)

Notice that sometimes δ(D)(r) is written using the simpler notation δ(r). Clearly,
also in this case one must interpret the integral of Eq. (A.18) as

∫
RD

δ(D)(r) dDr = lim
ε→0+

∫
RD

δ(D)
ε (r) dDr, (A.19)

where δ(D)
ε (r) is a generic function of both r and ε such that

lim
ε→0+

δ(D)
ε (r) =

{+∞ for r = 0
0 for r �= 0

, (A.20)

lim
ε→0+

∫
δ(D)
ε (r) dDr = 1. (A.21)

Several properties of δ(x) remain valid also for δ(D)(r). Nevertheless, some prop-
erties of δ(D)(r) depend on the space dimension D. For instance, one can prove the
remarkable formula

δ(D)(r) =
{

1
2π ∇2 (ln |r|) for D = 2

− 1
D(D−2)VD

∇2
(

1
|r|D−2

)
for D ≥ 3

, (A.22)

where ∇2 = ∂2

∂x21
+ ∂2

∂x22
+ · · · + ∂2

∂x2D
and VD = πD/2/�(1 + D/2) is the volume of

a D-dimensional ipersphere of unitary radius, with �(x) the Euler Gamma function.
In the case D = 3 the previous formula becomes

δ(3)(r) = − 1

4π
∇2

(
1

|r|
)

, (A.23)

which can be used to transform the Gauss law of electromagnetism from its integral
form to its differential form.
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Set of Complex Numbers

Complex numbers were introduced in 1545 by Girolamo Cardano as an auxiliary
tool for determining the real solutions of some third-degree algebraic equations. At
that time, complex numbers were also used by others Italian mathematicians such
as Scipione del Ferro, Raffele Bombelli, Niccolo Tartaglia, and Ludovico Ferrari, to
determine the real solutions not only of third-degree algebric equations but also those
of the fourth degree. As mentioned, complex numbers initially did not come consid-
ered as serious numbers but only as useful tool for solving equations. In the XVIII
century Abraham deMoivre and Leonhard Euler began to provide complex numbers
with a theoretical basis, until they assumed full citizenship in themathematical world
with the works of Carl Friedrich Gauss.

The set of complex numbers C is defined as

C =
{
z : z = x + i y, where x, y ∈ R while i = √−1

}
. (B.1)

It follows that a generic complex number z is given by

z = x + i y, (B.2)

where x and y are real numberswhile i is not a real number. The intrinsically complex
number i , called imaginary unit, is defined as

i = √−1, (B.3)

namely the square root of −1, which is obviously not a real number. Indeed, it does
not exist a real number such that its square is equal to −1. The real numbers x and
y of the complex number z = x + iy are said respectively real part and imaginary
part of the complex number z. Sometimes one writes x = Re[z] and y = Im[z].
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The set of real numbers R is a subset of the set of complex numbers C, that is

R ⊂ C. (B.4)

Indeed, if the imaginary part of the complex number is zero, the complex number
is in fact a real number. Conversely, if the real part of the complex number is zero, the
complex number is not a real number and is also called imaginary pure. For instance,
z = i 3 is a purely imaginary complex number, while z = 2 is a complex number but
also a real number.

By definition, the algebraic properties that are used in complex numbers are the
same of real numbers. Therefore, for example,

x + i y = x + y i = i y + x = y i + x . (B.5)

It is very important to remember is that the square of the imaginary unit i is equal
to −1, that is

i2 = −1. (B.6)

Obviously it follows that

i3 = i2 i = (−1) i = −i, (B.7)

and similarly
i4 = i2 i2 = (−1) (−1) = +1 = 1. (B.8)

The complex conjugate of a complex number z = x + iy is indicated with z∗
(sometimes also with z̄) and it is defined as follows

z∗ = x − iy. (B.9)

Hence the complex conjugate z∗ has the same real part as z but an imaginary part
with opposite sign. Themodulus, or absolute value, of a complex number z = x + iy
is denoted by |z| and it is defined as follows

|z| =
√
x2 + y2. (B.10)

So the modulus |z| is definitely a non-negative real number. For example, given
the complex number z = 2 − 3i , its modulus reads

|z| =
√
22 + (−3)2 = √

4 + 9 = √
13. (B.11)

It is then quite easy to prove that for a generic complex number z the following
equalities hold

|z|2 = z∗z = zz∗. (B.12)
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Gauss Plane

As previously seen, the complex number z = x + iy is characterized from two real
numbers x and y which uniquely determine z. Therefore it is possible to introduce a
Cartesian plane, called the Gauss plane or complex plane, such that on the horizontal
axis of the abscissa, called real axis, we put x = Re[z] while on the vertical axis of
the ordinates, said imaginary axis, we set y = Im[z]. In this way any point P on the
Gauss plane is characterized by two coordinates x and y, i.e.

P = (x, y), (B.13)

where x and y are obviously the real part and the imaginary part of the complex
number z = x + iy. Thus, any complex number z is in one-to-one correspondence
with a point P of the Gauss plane. Formally it can be written

z = x + iy ↔ P = (x, y). (B.14)

The geometric meaning of the modulus |z| of a complex number z is therefore
evident: |z| = √

x2 + y2 represents the distance of the number z from the complex
number 0, which is in the origin of the axes of the Gauss plane, that is 0 ↔ (0, 0).

Polar Representation

We have seen that the complex number z = x + iy is in one-to-one correspondence
with a point P = (x, y) of the Gaussian plane. There is also a polar representation
[r,φ], where

x = r cos(φ) y = r sin(φ) (B.15)

with r = √
x2 + y2 the radius (distance) and φ = artan(y/x) the angle shown in

the figure.
The Cartesian representation of a complex number z is

z = x + iy. (B.16)

Since we can write

x = r cos(φ) (B.17)

y = r sin(φ) (B.18)

it follows that

z = r cos(φ) + i r sin(φ) = r (cos(φ) + i sin(φ)) (B.19)
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is the polar representation of the complex number z. Evidently the modulus |z| of z
is precisely the radius r :

|z| = r =
√
x2 + y2. (B.20)

Euler Formula

An extremely important result due to Leonard Euler is the formula

eiφ = cos(φ) + i sin(φ). (B.21)

It follows that the polar representation of the complex number z can be written
compactly as

z = r eiφ. (B.22)

From Euler’s formula (B.21) it follows that

eiπ = cos(π) + i sin(π) = −1

i.e.
eiπ + 1 = 0

which is considered the most beautiful formula in mathematics because it relates 5
fundamental objects of mathematics: 0, 1, e, π, and i .

Proof of the Euler Formula

To prove the Euler formula we must assume that we can to do a Taylor-MacLaurin
series development on the function eiφ around φ = 0. That is

eiφ = 1 + (iφ) + 1

2! (iφ)2 + 1

3! (iφ)3 + 1

4! (iφ)4 + 1

5! (iφ)5 + · · ·

= 1 + iφ − 1

2!φ
2 − i

1

3!φ
3 + 1

4!φ
4 + i

1

5!φ
5 + · · ·

=
(
1 − 1

2!φ
2 1

4!φ
4 + · · ·

)
+ i

(
φ − 1

3!φ
3 + 1

5!φ
5 + · · ·

)

= cos(φ) + i sin(φ), (B.23)

remembering the Taylor-MacLaurin series of cos(φ) and sin(φ).
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De Moivre Formula

The formula of de Moivre

(cos(φ) + i sin(φ))n = cos(nφ) + i sin(nφ) (B.24)

is a direct consequence of the Euler formula and of the fact of using the rules of
algebra to complex numbers. In fact

(cos(φ) + i sin(φ))n = (
eiφ

)n = einφ = cos(nφ) + i sin(nφ) (B.25)

The de Moivre formula can be used to find complex solutions of simple algebraic
equations of simple algebraic equations. For example, the equation

z3 = 2 (B.26)

can be solved by writing z = reiφ so that

r3 e3iφ = 2 ei2πn, (B.27)

with n an arbitrary integer. It follows that r3 = 2 but also that φ = 2πn/3. And so
we get r = 21/3 and three values of φ given by

φ1 = 0, φ2 = −2π

3
, φ3 = 2 . (B.28)

Fundamental Theorem of Algebra

The fundamental theorem of algebra states that the algebraic equation

anz
n + an−1z

n−1 + · · · + a1z + a0 = 0, (B.29)

with z unknown and coefficients a0, a1,…, an−1, an known, always admits n complex
solutions.

For example, the equation
z2 + 4 = 0

admits the two complex solutions z1 = −2i and z2 = 2i .
Another example, the equation

z(z2 + 3) = 0

admits the three complex solutions z1 = 0, z2 = −i
√
3 and z3 = i

√
3.
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Complex Functions

A function ζ = f (z) with complex domain C and complex codomain C can be
formally written as

f : C → C. (B.30)

A function ζ = f (x, y, z) with real domain R
3 and real codomain R can be

formally written as
f : R

3 → R. (B.31)

As we shall see in the main text, the solutions of the independent Schrödinger
equation, also called stationary Schrödinger equation, are exactly of this kind.

A function ζ = f (x, y, z, t) with real domain R
4 and complex codomain C can

be formally written as
f : R

4 → C. (B.32)

As we shall see, the solutions of the time-dependent Schrödinger equation are
exactly of this kind.
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Geometric and Taylor Series

It was known from the times of Archimedes that, in some cases, the infinite sum
of decreasing numbers can produce a finite result. But it was only in 1593 that the
mathematician Francois Viete gave the first example of a function, f (x) = 1/(1 −
x), written as the infinite sum of power functions. This function is nothing else than
the geometric series, given by

1

1 − x
=

∞∑
n=0

xn , for |x | < 1. (C.1)

In 1714 Brook Taylor suggested that any real function f (x) which is infinitely
differentiable in x0 and sufficiently regular can be written as a series of powers, i.e.

f (x) =
∞∑
n=0

cn (x − x0)
n, (C.2)

where the coefficients cn are given by

cn = 1

n! f
(n)(x0), (C.3)

with f (n)(x) the n-th derivative of the function f (x). The series (C.2) is now called
Taylor series and becomes the so-called Maclaurin series if x0 = 0. Clearly, the
geometric series (C.1) is nothing else than the Maclaurin series, where cn = 1. We
observe that it is quite easy to prove the Taylor series: it is sufficient to suppose that
Eq. (C.2) is valid and then to derive the coefficients cn by calculating the derivatives
of f (x) at x = x0; in this way one gets Eq. (C.3).

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2022
L. Salasnich, Modern Physics, UNITEXT for Physics,
https://doi.org/10.1007/978-3-030-93743-0

177

https://doi.org/10.1007/978-3-030-93743-0


178 Appendix C: Fourier Transform

Fourier Series

In 1807 Jean Baptiste Joseph Fourier, who was interested on wave propagation and
periodic phenomena, found that any sufficiently regular real function function f (x)
which is periodic, i.e. such that

f (x + L) = f (x), (C.4)

where L is the periodicity, can be written as the infinite sum of sinusoidal functions,
namely

f (x) = a0
2

+
∞∑
n=1

[
an cos

(
n
2π

L
x

)
+ bn sin

(
n
2π

L
x

)]
, (C.5)

where

an = 2

L

∫ L/2

−L/2
f (y) cos

(
n
2π

L
y

)
dy , (C.6)

bn = 2

L

∫ L/2

−L/2
f (y) sin

(
n
2π

L
y

)
dy . (C.7)

It is quite easy to prove also the series (C.5), which is now called Fourier series.
In fact, it is sufficient to suppose that Eq. (C.5) is valid and then to derive the coeffi-
cients an and bn by multiplying both side of Eq. (C.5) by cos

(
n 2π

L x
)
and sin

(
n 2π

L x
)

respectively and integrating over one period L; in this way one gets Eqs. (C.6) and
(C.7).

It is important to stress that, in general, the real variable x of the function f (x)
can represent a space coordinate but also a time coordinate. In the former case L
gives the spatial periodicity and 2π/L is the wavenumber, while in the latter case L
is the time periodicity and 2π/L the angular frequency.

Complex Representation of the Fourier Series

Taking into account the Euler formula

ein
2π
L x = cos

(
n
2π

L
x

)
+ i sin

(
n
2π

L
x

)
(C.8)

with i = √−1 the imaginary unit, Fourier observed that his series (C.5) can be
re-written in the very elegant form
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f (x) =
+∞∑

n=−∞
fn e

in 2π
L x , (C.9)

where

fn = 1

L

∫ L/2

−L/2
f (y) e−in 2π

L y dy (C.10)

are complex coefficients, with f0 = a0/2, fn = (an − ibn)/2 if n > 0 and fn =
(a−n + ib−n)/2 if n < 0, thus f ∗

n = f−n .

Fourier Integral

The complex representation (C.9) suggests that the function f (x) can be periodic but
complex, i.e. such that f : R → C. Moreover, one can consider the limit L → +∞
of infinite periodicity, i.e. a function which is not periodic. In this limit Eq. (C.9)
becomes the so-called Fourier integral (or Fourier anti-transform)

f (x) = 1

2π

∫ +∞

−∞
f̃ (k) eikx dk (C.11)

with

f̃ (k) =
∫ ∞

−∞
f (y) e−iky dy (C.12)

the Fourier transform of f (x). To prove Eqs. (C.11) and (C.12) we write Eq. (C.9)
taking into account Eq. (C.10) and we find

f (x) =
+∞∑

n=−∞

(
1

L

∫ L/2

−L/2
f (y) e−in 2π

L y dy

)
ein

2π
L x . (C.13)

Setting

kn = n
2π

L
and �k = kn+1 − kn = 2π

L
(C.14)

the previous expression of f (x) becomes

f (x) = 1

2π

+∞∑
n=−∞

(∫ L/2

−L/2
f (y) e−ikn y dy

)
eikn x �k. (C.15)

In the limit L → +∞ one has �k → dk, kn → k and consequently
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f (x) = 1

2π

∫ +∞

−∞

(∫ +∞

−∞
f (y) e−iky dy

)
eikx dk, (C.16)

which gives exactly Eqs. (C.11) and (C.12). Note, however, that one gets the same
result (C.16) if the Fourier integral and its Fourier transform are defined multiplying
them respectively with a generic constant and its inverse. Thus, we have found that
any sufficiently regular complex function f (x) of real variable x which is globally
integrable, i.e. such that ∫ +∞

−∞
| f (x)| dx < +∞, (C.17)

can be considered as the (infinite) superposition of complex monocromatic waves
eikx . The amplitude f̃ (k) of the monocromatic wave eikx is the Fourier transform of
f (x).

f (x) F[ f (x)](k)
0 0
1 2πδ(k)

δ(x) 1
�(x) 1

ik + π δ(k)
eik0x 2π δ(k − k0)

e−x2/(2a2) a
√
2πe−a2k2/2

e−a|x | 2a
a2+k2

sgn(x) 2
ik

sin (k0x)
π
i [δ(k − k0) − δ(k + k0)]

cos (k0x) π [δ(k − k0) + δ(k + k0)]

Table: Fourier transforms F[ f (x)](k) of simple functions f (x), where δ(x) is the
Dirac delta function, sgn(x) is the sign function, and �(x) is the Heaviside step
function.

Properties of the Fourier Transform

The Fourier transform f̃ (k) of a function f (x) is sometimes denoted asF[ f (x)](k),
namely

f̃ (k) = F[ f (x)](k) =
∫ ∞

−∞
f (x) e−ikx dx . (C.18)

The Fourier transform F[ f (x)](k) has many interesting properties. For instance,
due to the linearity of the integral the Fourier transform is clearly a linear map:

F[a f (x) + b g(x)](k) = aF[ f (x)](k) + bF[g(x)](k). (C.19)

Moreover, one finds immediately that
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F[ f (x − a)](k) = e−ika F[ f (x)](k), (C.20)

F[eik0x f (x)](k) = F[ f (x)](k − k0). (C.21)

F[x f (x)](k) = i f̃ ′(k), (C.22)

F[ f (n)(x)](k) = (ik)n f̃ (k), (C.23)

where f (n)(x) is the n-th derivative of f (x) with respect to x .
In the Table we report the Fourier transforms F[ f (x)](k) of some elementary

functions f (x), including the Dirac delta function δ(x) and the Heaviside step func-
tion �(x). We insert also the sign function sgn(x) defined as: sgn(x) = 1 for x > 0
and sgn(x) = −1 for x < 0.

Fourier Transform and Uncertanty Theorem

The table of Fourier transforms clearly shows that the Fourier transform localizes
functions which is delocalized, while it delocalizes functions which are localized. In
fact, the Fourier transform of a constant is a Dirac delta function while the Fourier
transform of a Dirac delta function is a constant. In general, it holds the following
uncertainty theorem

�x �k ≥ 1

2
, (C.24)

where

(�x)2 =
∫ ∞

−∞
x2 | f (x)|2 dx −

(∫ ∞

−∞
x | f (x)|2 dx

)2

(C.25)

and

(�k)2 =
∫ ∞

−∞
k2 | f̃ (k)|2 dk −

(∫ ∞

−∞
k | f̃ (k)|2 dk

)2

(C.26)

are the spreads of the wavepackets respectively in the space x and in the dual space
k. This theorem is nothing else than the uncertainty principle of quantum mechanics
formulated by Werner Heisenberg in 1927, where x is the position and k is the
wavenumber. Another interesting and intuitive relationship is the Parseval identity,
given by ∫ +∞

−∞
| f (x)|2dx =

∫ +∞

−∞
| f̃ (k)|2dk. (C.27)
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Fourier Transform of Space-Time Functions

The Fourier transform is often used in electronics. In that field of research the signal
of amplitude f depends on time t , i.e. f = f (t). In this case the dual variable of
time t is the frequency ω and the fourier integral is usually written as

f (t) = 1

2π

∫ +∞

−∞
f̃ (ω) e−iωt dk (C.28)

with

f̃ (ω) = F[ f (t)](ω) =
∫ ∞

−∞
f (t) eiωt dt (C.29)

the Fourier transform of f (t). Clearly, the function f (t) can be seen as the Fourier
anti-transform of f̃ (ω), in symbols

f (t) = F−1[ f̃ (ω)](t) = F−1[F[ f (t)](ω)](t), (C.30)

which obviously means that the composition F−1 ◦ F gives the identity.
More generally, if the signal f depends on the 3 spatial coordinates r = (x, y, z)

and time t , i.e. f = f (r, t), one can introduce Fourier transforms from r to k, from
t to ω, or both. In this latter case one obviously obtains

f (r, t) = 1

(2π)4

∫
R4

f̃ (k,ω) ei(k·x−ωt) d3k dω (C.31)

with

f̃ (k,ω) = F[ f (r, t)](k,ω) =
∫
R4

f (r, t) e−i(k·r−ωt) d3r dt. (C.32)

Also in this general case the function f (r, t) can be seen as the Fourier anti-
transform of f̃ (k,ω), in symbols

f (r, t) = F−1[ f̃ (k,ω)](r, t) = F−1[F[ f (r, t)](k,ω)](r, t). (C.33)
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First-Order ODE

A typical first-order ordinary differential equation (ODE) is given by

a(x) f ′(x) + b(x) f (x) = g[ f (x), x], (D.1)

where f (x) is the unknown function, while a(x), b(x) and g[ f (x), x] are known
functions. This is a first-order ODE because it appears only the first derivative f ′(x)
of the unknown function f (x). For example, the equation might be

f ′(x) = 2 sin(x) f (x)2 + 3, (D.2)

where clearly in this case we have that a(x) = 1, b(x) = 0 and g[ f (x), x] =
2 sin(x) f (x)2 + 3.

The most general first-order ODE with constant coefficients reads

a f ′(x) + b f (x) = c, (D.3)

where f (x) is the unknown function, while a, b and c are known coefficients. For
example, the equation might be

− f ′(x) + 3 f (x) = π, (D.4)

where clearly in this case we have that a = −1, b = 3 and c = π. It is important
to note that the coefficients a, b and c could also be complex numbers. In this case
the unknown function f (x) has a complex codomain. If c = 0 the ODE is said
homogeneous.

The homogeneous first-oder ODE with constant coefficients

a f ′(x) + b f (x) = 0, (D.5)
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admits the general solution
f (x) = A eκ x (D.6)

where κ is the solution of the algebraic equation

aκ + b = 0 that is κ = −b

a
, (D.7)

while the arbitrary constant A is determined by fixing an initial condition to the
unknown function f (x). This result is demonstrated by verifying that once we enter
Eq. (D.6) into the left hand side of the equal of the Eq. (D.5) we find zero only if κ
satisfies Eq. (D.7).

As an example, we consider the homogeneous first-order ODE with constant
coefficients

f ′(x) + 4 f (x) = 0 (D.8)

with the initial condition f (0) = 3. This equation admits the general solution

f (x) = A eκ x , (D.9)

where κ is the solution of the algebraic equation

κ + 4 = 0 i.e. κ = −4, (D.10)

and therefore
f (x) = A e−4x . (D.11)

The initial condition f (0) = 3 implies f (0) = A = 3. Ultimately, the solution of
the ODE results in

f (x) = 3 e−4x . (D.12)

Separation of Variables

The homogeneous first-order ODE of the type

a(x) f ′(x) = d(x) p[ f (x)], (D.13)

can be formally solved by the method of the separation of variables. Given that
f ′(x) = d f

dx the equation can be rewritten formally as

a(x)
d f

dx
= d(x) p[ f ] (D.14)
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and then also
d f

p[ f ] = d(x)

a(x)
dx . (D.15)

This equation that involves the differentials d f and dx can be integrated, giving

∫ f (x)

f (x0)

d f

p[ f ] =
∫ x

x0

d(x)

a(x)
dx, (D.16)

where f (x0) is the initial condition of f (x) at x0. If we can calculate the two integrals,
we get the solution f (x) sought.

For example, let us consider the ODE

x f ′(x) = x3 f (x)2, (D.17)

with initial condition f (1) = 2. Setting f ′(x) = d f
dx the equation can be rewritten as

d f

dx
= x2 f 2 (D.18)

and then
d f

f 2
= x2dx . (D.19)

This equation between differentials can be integrated

∫ f (x)

2

d f

f 2
=

∫ x

1
x2dx (D.20)

and we then obtain [
− 1

f

] f (x)

2

=
[
x3

3

]x

1

. (D.21)

It follows that

− 1

f (x)
+ 1

2
= x3

3
− 1

3
(D.22)

and finally

f (x) = 1
5
6 − x3

3

. (D.23)

Second-Order ODE

A typical second-order ordinary differential equation (ODE) is given by



186 Appendix D: Differential Equations

a(x) f ′′(x) + b(x) f ′(x) + c(x) f (x) = d[ f (x), x], (D.24)

where f (x) is the unknown function, while a(x), b(x), c(x), and d[ f (x), x] are
known functions. This is a second-orderODEbecause it appears the secondderivative
f ′′(x) of the unknown function f (x) but not higher derivatives. For example, the
equation might be

x2 f ′′(x) + 3 f ′(x) = 2 sin(x) f (x)4, (D.25)

where clearly in this casewehave thata(x) = x2,b(x) = 3, c(x) = 0, andd[ f (x), x] =
2 sin(x) f (x)4.

The most general second-order ODE with constant coefficients reads

a f ′′(x) + b f ′(x) + c f (x) = d, (D.26)

where f (x) is the unknown function, while a, b, c, and d are known coefficients.
For example, the equation might be

3 f ′′(x) − f ′(x) + 2 f (x) = −7, (D.27)

where clearly in this case we have that a = 3, b = −1, c = 2, and d = −7. It is
important to note that the coefficients a, b, c, d could also be complex numbers. In
this case also the unknown function f (x)will be a function with complex codomain.
If d = 0 the ODE is called homogeneous.

The homogeneous second-order ODE with constant coefficients

a f ′(x) + b f ′(x) + c f (x) = 0, (D.28)

admits the general solution

f (x) = Aeκ1 x + Beκ2 x (D.29)

where κ1 and κ2 are the two complex solutions of the algebraic equation

aκ2 + bκ + c = 0, (D.30)

while the arbitrary constants A and B are determined by fixing two initial conditions
to the unknown function f (x). This result is demonstrated by verifying that once
inserted Eq. (D.29) into the left-hand side of the Eq. (D.28) zero is found only if κ
satisfies Eq. (D.30).

As an example, we consider the following homogeneous second-order ODE with
constant coefficients

f ′′(x) + 4 f (x) = 0 (D.31)

with initial conditions f (0) = 1 and f ′(0) = 0. This equation admits the general
solution
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f (x) = Aeκ1 x + Beκ2 x (D.32)

where κ1 and κ2 are the two complex solutions of the algebraic equation

κ2 + 4 = 0, (D.33)

i.e. κ1 = −2i and κ2 = 2i , and therefore

f (x) = Ae−i2x + Bei2x . (D.34)

In this example we also have

f ′(x) = −i2 Ae−i2x + i2Bei2x . (D.35)

The initial condition f ′(0) = 0 implies

f ′(0) = −i2 A + i2B = 0 (D.36)

and therefore
A = B. (D.37)

Furthermore, the initial condition f (0) = 1 implies.

f (0) = A + B = 2 A = 1, (D.38)

and thus

A = B = 1

2
. (D.39)

In conclusion, the solution of the ODE reads

f (x) = 1

2

(
e−i2x + ei2x

) = cos(2x). (D.40)

Newton Law as a Second-Order ODE

It is important to stress that the familiar Newton law

F = m a (D.41)

is to all intents and purposes a second-order ODE. In fact it can be written in full as

F(r(t),
dr(t)
dt

) = m
d2r(t)
dt2

(D.42)
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where the unknown function is the radius vector r(t) as a function of time t .
In fact, the acceleration appears in Newton’s law a(t) at time t . This can be written

as the second derivative with respect to time t of the position vector r(t), i.e.

a(t) = d2r(t)
dt2

. (D.43)

Moreover, in certain cases, the forceF can depend not only on the position r(t) but
also on the velocity v(t), and therefore on the first derivative of the position vector,
since v(t) = dr(t)/dt .

Partial Differential Equations

A partial differential equation (PDE) is an equation that involves the partial deriva-
tives of an unknown function of several independent variables. For instance, in the
differential equation

∂ f (x, y)

∂x
+ ∂ f (x, y)

∂y
= 2x2 y (D.44)

the partial derivatives of the unknown function f (x, y) appear. This PDE is of the
first order because only the first partial derivatives appear.

In general, a PDE is of order n if in the equation it appears the n-th partial derivative
with respect to some variable. Usually in Physics the unknown function depends on
the three spatial coordinates x , y, z and the time t . The unknown function can be
a scalar quantity, that is of the type f (x, y, z, t) or a vector quantity, that is of the
type v(x, y, z, t). Compactly, we can rewrite the two functions as f (r, t) and v(r, t),
respectively. In Physics, a quantity that depends on the three spatial coordinates is
called a field. Thus, one can have scalar fields and vector fields. More generally, we
can also have tensor fields.

Wave Equation

A typical example of EDP from Physics is the wave equation, also called d’Alambert
equation, given by (

1

c2
∂2

∂t2
− ∇2

)
f (r, t) = 0, (D.45)

where

∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
(D.46)
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is known as Laplace differential operator, or Laplacian, sometimes also called the
nabla. The constant c is the velocity of propagation of the wave. In the case of
electromagnetic waves c is the speed of light. In the case of sound waves, c is the
speed of sound. This equation can be written in an even more compact way

� f (r, t) = 0, (D.47)

where

� = 1

c2
∂2

∂t2
− ∇2 (D.48)

is known as d’Alambert differential operator, or d’Alambertian. Equation (D.47)
admits the following complex solution, called monochromatic plane wave

f (r, t) = f0 e
i(k·r−ω t), (D.49)

where f0 is an arbitrary constant, called the amplitude of the wave, k is called the
wave vector, and ω is called the angular frequency of the wave. The wave vector
and the angular frequency are not independent. In fact between them there is the
following relationship

ω = c k (D.50)

called the dispersion relation, with k = |k|. The dispersion relation is obtained imme-
diately by inserting the function (D.49) in Eq. (D.47). As we have already seen, by
setting ω = 2πν and k = 2π/λ the relation can be rewritten as

λ ν = c. (D.51)

Since the d’Alambertian operator is linear, taking into account Euler formula of
complex numbers, it is immediate to verify that also the functions

f (r, t) = A cos (k · r − ω t) (D.52)

and
f (r, t) = B sin (k · r − ω t) (D.53)

are solutions of the wave equation. Also in this case the dispersion relation ω = ck
holds, and A and B are arbitrary constants. More generally, it follows immediately
that also

f (r, t) = A cos (k · r − ω t) + B sin (k · r − ω t) (D.54)

is solution, but also

f (r, t) = f0 e
i(k·r−ω t) + f1 e

−i(k·r−ω t) (D.55)
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is a solution of (D.47) with f0 and f1 arbitrary constants.

Diffusion Equation

Another typical example of PDE is the diffusion equation, also called heat equation,
given by

∂

∂t
f (r, t) = D∇2 f (r, t), (D.56)

where D is a constant, usually real, that is the so-called diffusion coefficient. This
equation resembles the equation of Schrödinger equation of a quantum particle in
the absence of an external potential. In the case of the Schrödinger equation the
coefficient D is a complex number complex number given by

D = i�

2m
, (D.57)

where i is the imaginary unit, � is the reduced Plank constant, and m is the mass of
the quantum particle.

Considering the case of a single spatial coordinate, the diffusion eqution becomes

∂

∂t
f (x, t) = D

∂2

∂x2
f (x, t). (D.58)

Assuming that at time t = 0 the initial condition is Gaussian

f (x, t = 0) = e−x2 , (D.59)

it can be verified that the solution at time t is

f (x, t) = 1√
ζ(t)

e− x2

ζ(t) , (D.60)

where
ζ(t) = 1 + 2Dt. (D.61)

So if D > 0 the solution widens and lowers as time increases, that is, it diffuses.
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Maxwell’s equations, 15, 16, 18
Minkowski metric tensor, 30

N
Number operator, 99, 101, 102

P
Pair production, 48
Partition function, 7, 10–12, 155–157
Pauli equation, 122, 123
Pauli exclusion principle, 117, 140, 144
Pauli matrices, 121
Phonon, 51–53
Photoelectric effect, 42, 43
Photon, 28, 43–46, 54, 55, 60, 117, 158
Planck’s law, 38–40, 159
Positron, 48
Principle of general covariance, 32
Proton, 54, 113

Q
Quantization, 39, 55–57, 64, 68, 72, 79, 81,

82, 97, 100, 112, 115, 116, 118, 119,
126, 135, 143

Quantum potential, 75

R
Relativistic energy, 27, 28, 119

Relativistic kinetic energy, 27, 29
Relativistic linear momentum, 25
Rest energy, 27
Ricci scalar, 33
Ricci tensor, 33

S
Scattering, 102
Schrödinger equation, 69, 70, 73, 74, 76, 81,

95, 98, 103, 105, 109, 111, 113, 115,
119, 145

Selection rules, 116, 117
Slater determinant, 142, 148
Spacetime interval, 30
Spacetime metric tensor, 31, 33, 34
Spherical harmonics, 115, 116
Spin, 117, 118, 122, 123, 128, 130, 140, 143,

149, 150
Spin-statistics theorem, 140
Square-well potential, 95
Stark effect, 131
Statistical ensemble, 8, 10, 11, 153–155
Step potential, 102
Stress-energy tensor, 33, 34

T
Time dilation, 23
Tunneling, 104, 107

V
Variational principle, 91

W
WKB method, 108, 109

X
X-rays, 46

Z
Zeeman effect, 132, 134
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