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Preface 

Nuclear physics is devoted to the study of the properties of atomic nuclei. These 
properties relate to the internal structure of the nucleus which facilitate the 
understanding of the properties of nucleons (neutrons and protons), the mechanisms 
of nuclear reactions (spontaneous or induced), in order to describe the different 
processes of elastic and inelastic nucleus-nucleus interactions, the fields of 
application of nuclear physics and, finally, the impact of nuclear radiation on human 
health and the environment.  

In general, nuclear physics is the physics of low energies, ranging from 250 eV 
to 10 GeV [SAO 04, GER 07, LAL 11]. The range of energies above 10 GeV  
[SAO 04, GER 07, LAL 11] relate to the physics of high energies whose purpose is 
to study the constituent particles of matter and the fundamental interactions between 
them. In this field, experimenters use particle accelerators that operate at very high 
energies or deliver very large beam intensities, thus allowing access to the 
fundamental laws of subatomic physics at very short distances. The most spectacular 
achievement to date is of course the Large Hadron Collider (LHC), launched in 
September 2008 at CERN. 

Nuclear physics is an area that has experienced considerable growth since the 
discovery of radioactivity in 1896 by Henri Becquerel [HAL 11], well before the 
discovery of the atomic nucleus in 1911 by Ernest Rutherford [RUT 11]. Research 
in nuclear physics covers several topics ranging from subatomic particles to stars. It 
thus constitutes a fundamental component of physics, allowing the exploration of  
the infinitely large and the infinitely small [ARN 10]. In addition, nuclear  
physics makes it possible to understand many astrophysical phenomena such as 
nucleosynthesis processes (primordial, stellar and explosive) within the framework 
of the Big Bang model. The study of these processes allows us to understand the 
origin of chemical elements and to describe the evolution of supernova and neutron 
stars [SUR 98].  
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This book is the fruit of a 25-year long teaching career. Initially this was 
teaching final-year high-school S1 and S2 science students at Alpha Molo Baldé 
High School in Kolda, from 1996 to 2002. It was then at Bambey High School from 
2002 to 2008 and at Maurice Delafosse Technical High School from 2008 to 2010. 
This was followed by 9 years at Assane Seck University, Ziguinchor, teaching  
final-year Physics undergraduates and, since February 2019, teaching final-year 
Physics and Chemistry undergraduates at the University of Thiès. 

Nuclear Physics 1 consists of four chapters, as follows. 

Chapter 1 is reserved for general information regarding the atomic nucleus with 
a view to establishing the general properties of nuclei. It begins with a presentation 
of the experimental facts that led to the discovery of the electron (β − particle), the 
proton, the neutron and the nucleus itself. It then focuses on the study of the 
composition and dimensions of the nucleus. Next, the nomenclature of nuclides and 
the stability of nuclei are studied. The chapter culminates with a series of exercises 
with answers. 

Chapter 2 is dedicated to the study of nuclear deexcitation processes. The 
nuclear shell model, which offers an understanding of the discrete structure of 
nuclear levels, is studied in detail. Subsequently, the study examines the properties 
of angular momentum and parity, the processes of gamma deexcitation and internal 
conversion and the phenomenon of deexcitation by nuclear emission. A detailed 
study of the Bethe–Weizsäcker semi-empirical mass formula via the liquid-drop 
model and of the mass parabola equation for odd A completes the chapter and is 
followed by a series of exercises complete with answers. 

Chapter 3 is devoted to the study of alpha (α) radioactivity. It begins with the 
experimental facts that led to the discovery of radioactivity itself, the discovery of  
α radioactivity and β − radioactivity, the discovery of the positron (β + particle), 
neutrino and experiments highlighting α, β and γ radiation. The chapter goes on to 
focus on the study of radioactive disintegration and the properties of α decay.  
A series of exercises complete with answers is at the end of the chapter. 

Chapter 4 is reserved for the study of β − and β + decay modes and for the study 
of radioactive family trees. At the beginning of the chapter, we present the 
experimental facts that led to the discovery of artificial radioactivity. We then focus  
the development on the study of the properties of β decay and the link between  
β decay and decay by electron capture. In addition, double β decay and the process 
of atomic deexcitation by Auger effect are studied in this chapter. The study 
subsequently focuses on the presentation of radioactive series, enabling the 
introduction of the Bateman equations. The mechanism for radionuclide production 
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by nuclear bombardment features prominently in the chapter, which is rounded off 
with a series of exercises complete with answers. 

Two appendices follow the above chapters. The first appendix is dedicated to the 
determination of the quantified expression of the energy of the three-dimensional 
quantum harmonic oscillator, in relation to the harmonic potential nuclear shell 
model. Two approaches are adopted to achieve this. The first approach integrates the 
Schrödinger equation applied to a quantum harmonic oscillator. In the second 
approach, a more flexible operative approach is adopted using creation and 
annihilation operators. The second appendix provides a listing, in table form, of the 
atomic masses of isotopes of atomic numbers Z = 1–93. 

This book is written for Physical Science teachers in high schools, for final-year 
Physics undergraduate students (Licence 3 under the French LMD system) and for 
university lecturers responsible for the Nuclear Physics module in their programs.  
It is written using clear and concise language, underpinned by a very original 
pedagogical style. Each chapter begins with an overview of the general objective, 
the specific objectives and the prerequisites for understanding the chapter as it 
unfolds. In addition, each concept or law introduced follows a direct application for 
sound understanding of the nuclear phenomena and properties studied. The chapters 
are interspersed with succinct biographies of all the great thinkers who have 
contributed to the development of nuclear physics in relation to the topics 
developed. 

This book does not attempt to cover all aspects relating to understanding nuclear 
deexcitation processes and the properties of spontaneous nuclear reactions. 
Nevertheless, it contains the fundamental basics of nuclear physics relating to the 
topics studied here. As with all human endeavors, there is always room for 
improvement. We therefore remain open to our readers for any suggestions, 
comments or criticisms that could be used to improve the scientific quality of this 
work. 

September 2021 
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Overview of the Nucleus 

Overall objective 

To know the general properties of nuclei 

Specific objectives 

To compare the atomic models of Thomson, 
Perrin and Rutherford 

To define the effective scattering  
cross-section 

To compare Rutherford’s and Blackett’s 
observations on the first nuclear 
transmutation reaction 

To define the effective elementary scattering 
cross-section 

To know the properties of the isospin 
operator 

To define the separation energy of a nucleon 

To know the properties of the spin angular 
momentum of a nucleus 

To determine the separation energy of a 
neutron from a proton for a given nuclide 

To know the fundamental properties of 
nucleons 

To determine the total isospin corresponding 
to the ground state of a nucleus 

To know the expression for the radius of a 
nucleus assumed to be spherical 

To deduce, from the binding energy, the 
nuclear charge of the most stable isobar 

To know the expression for the Sakho unit 
nuclear radius 

To establish the relationship between binding 
energy and mass defect 

To know the principle of a mass 
spectrograph 

To establish the relationship between skin 
thickness and the diffusivity parameter 

To compare the stability of nuclei from their 
nuclear binding energy 

To write the balanced equation of the first 
nuclear transmutation reaction 

To know the effect of nuclear forces on the 
stability of nuclei 

To establish Rutherford’s differential 
effective cross-section 

                                 

For a color version of all of the figures in this chapter, see www.iste.co.uk/sakho/nuclear1.zip. 
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First Edition. Ibrahima Sakho. 
© ISTE Ltd 2021. Published by ISTE Ltd and John Wiley & Sons, Inc.
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To differentiate between u and d quarks 
according to the Gell-Mann and Zweig 
model 

To make the analogy between electron 
gyromagnetic ratio and nuclear gyromagnetic 
ratio 

To differentiate between isospin and nuclear 
spin 

To make the analogy between Bohr magneton 
and Bohr nuclear magneton 

To differentiate between unit nuclear radius 
and electromagnetic unit radius 

To make the analogy between spin 
multiplicity and isospin multiplicity 

To differentiate between isotopes, isobars 
and isotones 

 To interpret Chadwick’s experiment 

To differentiate between mirror nucleus and 
magic nucleus 

To interpret Geiger and Marsden’s 
experiment 

To distinguish between valley of stability 
and line of stability 

To interpret Rutherford’s scattering 
experiment 

To define a monoisotopic element 
To interpret Rutherford’s nuclear 
transmutation experiment 

To define a nuclear isomer 
To interpret the shape of the Woods–Saxon 
charge distribution density 

To define the nuclear dipole magnetic 
moment 

To interpret the Segrè diagram 

To define the nuclear Landé factor To interpret the Aston curve 

To define the skin thickness of a nucleus 
To situate the nuclear energy surface or 
stability valley in the Segrè diagram 

To define the atomic mass unit  

Prerequisites 

Material structure 
Motion of a charged particle in a uniform 
magnetic field 

Atomic models Vector product properties 

Shell model of electron configurations 
Fundamental theorems of the dynamics of the 
material point 

Quantum numbers of the electron  

1.1. Discovery of the electron 

1.1.1. Hittorf and Crookes experiments  

In around 1869, Johann Wilhelm Hittorf studied electric discharge in rarefied 
gases using a vacuum tube. With the help of a Sprengel pump, Hittorf managed to 
obtain pressures below 0.001 mbar and found that electric discharges were 



Overview of the Nucleus     3 

accompanied by the emission of glow rays, which he called “cathode rays” [LEP 56, 
CAR 79, ROU 60, PER 95, SAK 11]. Subsequently, he observed that cathode rays 
are gifted with the property of being deflected by a magnetic field. But Hittorf 
stopped at these observations, without providing any physical interpretation. 

Still in 1869, Sir William Crookes invented the electronic tube bearing his name 
[CRO 79, ROU 60, SAK 11]. The Crookes tube was a cold cathode tube, that is, a 
tube that did not have a heating filament as in the case of cathode tubes, designed to 
generate electrons.  

Essentially, a Crookes tube is a bulb containing a gas and is equipped with two 
electrodes (Figure 1.1). When a voltage of approximately 50,000 volts is applied 
between the two electrodes and the gas pressure is gradually reduced, a dark space 
(called Crookes space) fills the tube at around 0.01 millimeters of mercury. Today it 
is now possible to interpret Crookes’ observations. 

 

Figure 1.1. Crookes tube 

Inside the Crookes tube, electrons are generated by ionization of gas molecules 
excited by the applied continuous voltage. Under the action of the established 
electric field, the ions created in the tube are accelerated. They collide with gas 
molecules, knocking electrons off them. The positive ions thus formed are attracted 
by the cathode. As they strike the latter, they eject a large number of electrons, 
called cathode rays. As they strike the glass, the electrons excite the atoms in the 
walls of the tube, thus causing its fluorescence usually in the yellow-green range. 
The electrons flow in a straight line from the cathode to the anode. This motion is 
highlighted by the shadow cast by the cross on the fluorescent wall (Figure 1.2). 
Moreover, cathode radiation has the property of being deflected by a magnetic field. 
Crookes considered cathode radiation to be the fourth state of matter which he called 
the radiant state. But what is the nature of this radiation? 
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Figure 1.2. Crookes tube wall fluorescence 

Crookes gave the following response to this question in 1885: “cathode radiation 
consists of negatively charged molecules emitted by the negative electrode”. The 
proof that they are indeed molecules, he cried, is that the action of a magnet makes 
them deviate from their trajectory, just like particles of iron filings. 

Johann Wilhelm Hittorf was a German physicist. He is also known for his work on the 
interpretation of electrical conductivity in electrolytic solutions in 1859, on the quantitative 
study of metal ion allotropy in 1865 and on the demonstration of cathode rays in 1869.  

Sir William Crookes was a British physicist and chemist. He is most famous for having 
invented the “Crookes tube” in 1869 which allowed him to highlight cathode rays. 

Box 1.1. Hittorf (1824–1914); Crookes (1832–1919) 

1.1.2. Perrin and Thomson experiments  

While cathode radiation was an experimental reality that no-one could question, 
the molecular nature of the famous radiation puzzled many physicists, including  
Sir Joseph John Thomson [THO 97, ROU 60, CAR 79, PER 95, FAL 87, SAK 11].  
The latter, as early as 1881, boldly took the opposite view to Crookes’ conception of 
the nature of cathode radiation. For Thomson, “cathode radiation consists not of 
molecules but of particles of pure negative electricity,” which he would later call 
electrons (a term introduced in 1891 by Stoney [CAR 79]). However, Thomson 
argued that “particles of pure electricity are not matter”. Moreover, he noted, even if 
experimental observations require particles of pure electricity to be given a mass, 
then it is only necessary to understand that “this mass is nothing other than their 
inertia induced by their motion under the action of the magnetic field”. However, 
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Thomson did not say anything regarding the dimension of particles of pure negative 
electricity.  

Challenging the ideas of Crookes, Thomson and others, Perrin suggested that 
cathode rays should not be considered as being made up of molecules but of 
“smaller particles charged with pure negative electricity”. In 1895, he sought to 
verify this proposal through experimentation. Perrin then used a Faraday box  
(a small cylinder capable of trapping cathode rays), in contact with the plate of a 
positively-charged electroscope (Figure 1.3), to gather the cathode radiation as it 
exited a Crookes tube. 

 

Figure 1.3. Perrin’s simplified experimental set-up 

Perrin found that the famous particles of pure electricity suggested by Thomson 
roughly neutralized the positive charge of the electroscope. These observations 
confirmed that the electricity transported by cathode radiation is negative in nature. 
But it should be noted that, until that date, there was no information on the size of 
the particles of pure negative electricity. Were they smaller than atoms? This 
question could be answered by measuring their mass, m. In chronological terms, the 
measurement of this mass was preceded by the measurement of the electron  
mass-to-charge ratio, e/m, by Thomson, and by the measurement of the elementary 
electrical charge, e, by Robert Millikan. Thomson’s experiments form the subject of 
the study that follows. Millikan’s experiment is discussed in section 1.1.3. 

In 1897, Thomson conducted a series of historical experiments that measured the 
mass-to-charge ratio of the electron.  

First experiment: Thomson studied the possibility of separating the negative 
electrical charge from the cathode rays by a magnetic field. He built a cathode-ray 
tube that ends in a pair of cylinders with slots connected to an electrometer. This 
first experiment showed that the cathode rays are not deflected under the action of a 
magnetic field. Thomson concluded that the negative charge cannot be separated 

  

electroscope 

cathode rays  
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from the rays (which tacitly proves that the cathode rays are composed of identical 
charges).  

Second experiment: Thomson studied the action of an electric field on cathode 
rays. To do this, he built a cathode-ray tube with a deeper vacuum, within which is 
an electric field created by a voltage applied between two conductive metal plates. 
He placed a coat of phosphorescent paint at the end of the tube to detect incident 
rays. Thomson observed that rays are attracted by the positive plate. He thus proved 
that the electrical charge of cathode rays is negative, in accordance with Perrin’s 
experimental observations. 

Third experiment: Thomson sought to measure the electron mass-to-charge 
ratio, e/m. Today, Thomson’s experiment is replicated by performing more 
meticulous experiments to determine the value of e/m.  

Electrons in a constant velocity beam penetrate at O into a space where uniform 
electric and magnetic fields can occur simultaneously. In a first experiment, the 
orthogonal electric and magnetic fields are applied simultaneously so that the 
motion of the electrons is straight and uniform along OO’ (Figure 1.4(a)). The 
electric field is vertical and directed downwards. In a second experiment, the 
magnetic field is removed; the characteristics of the electric field and the electron 
velocity vector remain unchanged (Figure 1.4(b)). The set-ups of the two 
experiments conducted can be schematically presented in parallel, as shown in 
Figure 1.4.  

 

Figure 1.4. Simplified set-up for measuring the electron  
mass-to-charge ratio: (a) simultaneous action of the electric  

field and the magnetic field; (b) action of the electric field alone 

It is then shown that the electron mass-to-charge ratio has the following value: 

e
m

= 1.76 × 10 11 C ⋅ kg − 1 [1.1] 

 
 
 
 
 
 
 
     (a)                                   (b) 

E

B

vO   O’   O  O’   v E

x   

y   
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APPLICATION 1.1.– Using the device shown in Figure 1.4, show that if Y designates 
the vertical deviation along the O’y axis, the electron mass-to-charge ratio is given 
by the expression: 

2 2
2

e E Y
m B l

=     [1.2] 

Then find the result [1.1]. 

Given data: E = 50 kV ⋅ m − 1; B = 1 mT; OO’ = l = 10.0 cm, Y = 1.76 cm. 

ANSWER.– Considering Figure 1.4(a), the electrical force is compensated by the 
magnetic force since the motion is uniform and rectilinear (it is a velocity filter). 
Let: 

EqE qv B v
B

= − ∧  =
  

   [1.3] 

Let us thus determine the equation of the trajectory of an electron in the 
electric field (Figure 1.4(b)). Using the theorem of the center of inertia gives: 

2

0

1

2

x

y

a x vtqE ma
qE qEqE a y ta m mm

 =  == 
   = −  = −= 

 

   

Using the last equation system, the equation for the trajectory of an electron 
within the electric field is written (q = − e): 

2
22

1 x
mv
eEy =   [1.4] 

The vertical deviation, Y, along the O’y axis is obtained for x = OO’ = l. Using 
[1.4] and taking account of [1.3], we then obtain the following: 

2
2

2
l

E
B

m
eY =   [1.5] 

Using [1.5], result [1.2] is found. 
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NOTE.– 

26

4

1010

105
2 −− ×

×=
m
e

 × 1.76 × 10 − 2 = 1.76 × 10 11 C ⋅ kg − 1 

The result [1.1] is indeed found. 

The CODATA (Committee on Data and Technology) recommended value is 
1.75882001076(53)× 1011 C ⋅ kg −1. 

George Johnstone Stoney was an Irish physicist. He introduced the concept of an 
“electricity atom” or “electricity particle,” for which he invented the term “electron” in 1891.  

Sir Joseph John Thomson was a British physicist and chemist. He is famous for his work 
on the study of the structure of matter. He is known primarily for inventing the mass 
spectrograph which is very useful in the separation of isotopes. Thomson confirmed the 
existence of the electron, and measured its mass-to-charge ratio in 1897. He was awarded the 
Nobel Prize in Physics 1906 for his theoretical and experimental research on electrical 
conductivity in gases. 

Jean Perrin was a French physicist. He is known for demonstrating that cathode rays are 
negatively charged in 1895. In 1901, Perrin envisioned the atom as a solar system formed at 
the center of a quasi-point-like concentration of positive matter surrounded by a procession of 
electrons in motion. In addition, in 1908 he measured Avogadro’s number. Moreover, in 
1919, Perrin was the first to put forward the hypothesis that the transformation of hydrogen 
into helium was at the origin of energy radiated by the Sun. He was awarded the Nobel Prize 
in Physics 1926 for his work on the discontinuity of matter and, more specifically, for his 
discovery of sedimentation equilibrium. 

Box 1.2. Stoney (1826–1911); Thomson (1856–1940); Perrin (1870–1942) 

1.1.3. Millikan experiment  

In 1909 [MIL 10, ROU 60, CAR 79, PER 95, SAK 10, SAK 11], Robert 
Andrews Millikan began measuring the elementary electrical charge, e. The 
experimental set-up used by Millikan can be schematically presented as indicated in 
Figure 1.5(a) [SAK 10]. 

Droplets assimilated to small, homogeneous spheres of radius r, mass m and, in 
small numbers, are obtained by spraying oil between two plates, P1 and P2, through 
a small orifice in the upper plate, P1. Between P1 and P2, the droplets encounter ions 
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produced by radiation from a source, S (X-ray tube, radium bulb, etc.). Millikan’s 
simplified experimental device is illustrated in Figure 1.5(a). 

Figure 1.5a. Millikan’s simplified experimental device 

From time to time, an ion attaches itself to one of the droplets. The latter is then 
electrified and is subjected to the double action of the antagonistic gravity field and 
electric field reigning between the two plates. The velocity assumed by an electrified 
droplet depends on its charge, q¸ its mass, m, its radius, r, and the viscosity 
coefficient, η, of the air. The motion of the droplets is observed by means of a 
microscope, M. When the velocity of a droplet changes abruptly, it means it has 
attached an ion. Measuring this velocity for various electric field values (including 
zero field) and knowing η then enables the absolute value |q| of the charge carried 
by a droplet to be measured, and the value of the elementary electrical charge, e,  
to be deduced. The value of the elementary electrical charge measured by Millikan 
is (4.77 ± 0.009) 10–10 uemcgs [BIS 19]. This corresponds to the international 
system value, 1.592 × 10−19 coulombs [BIS 19].  

Today, more meticulous experiments produce a far more accurate value than  
that obtained by Millikan. Using glycerin as oil, the experiment shows that for 
several observations in an electric field of intensity E, the velocities, v, acquired  
by the droplets are distributed according to an arithmetic progression of difference 
Δv ≈ 3 × 10−5 m  ⋅ s −1 [SAK 10]. When a droplet attaches the smallest charge, e, its 
velocity varies by Δv. The elementary electrical charge is then given by the 
expression: 

E
vr

e
Δ

=
πη6

 [1.6] 
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Numerically, for η = 1.83 × 10−5 SI; E = 93.5 kV  ⋅ m − 1 1; r = 1.45 μm [SAK 10], 
we obtain, knowing that Δv ≈ 3 × 10−5 m  ⋅ s −1: 

19
4

565

10604833047.1
1035.9

1031045.11083.16 −
−−−

×=
×

××××××= πe  

Thus: 

e = 1.604833047 × 10 − 19 C 

The CODATA recommended value is 1.602179487(40)10−19 C. 

Using value [1.1] for the electron mass-to-charge ratio, the mass, m, of the 
electron is deduced by considering the previous result: E = 1.604833047 × 10−19 C, 
which gives m = 9.11836958 × 10−31 kg. The CODATA recommended value is 
9.10938215(45) 10−31 kg. 

Robert Andrew Millikan was an American physicist. He is best known for his 
experimental work on the drop of oil sprayed by X-rays, which allowed him to measure 
elementary electrical charge in 1909. He was awarded the Nobel Prize in Physics 1923 for his 
work on the “elementary charge of electricity and the photoelectric effect”. 

Box 1.3. Millikan (1868–1953) 

APPLICATION 1.2.– Let us consider Figure 1.5(b).  When a droplet of radius r and 
charge q is in motion in the electric field space, demonstrate relationship [1.6]. We 
will make use of the principle of inertia and will take account of the fact that when a 
droplet attaches the lowest charge, e, its velocity varies by Δv.  The intensity of the 
Stokes force acting on a droplet of velocity v is given: f = 6πηrv, with η the viscosity 
of the air and r the radius of a droplet. We will produce a diagram showing the 
forces acting on the droplet concerned. 

ANSWER.– Let us consider a droplet of charge q and mass m. It is subjected to its 

weight, ,P


 the electrical force, ,F


 and the Stokes force, .f


 With the gravity field 

and the electric field between the two plates being antagonistic, the electric field is 
directed upwards (the droplets move from P1 to P2 and in the same direction as the 
Stokes force (Figure 1.5(b)). 
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With the principle of inertia being verified, the motion of a droplet is uniform 
and rectilinear along the vertical, that is:  

06 =−+=++ vrEqgmfFP πη   [1.7] 

 

Figure 1.5b. Uniform drop motion of a droplet of charge q,  

mass m and radius r. P:


weight,
 
F:


 electrical force, f :


 Stokes force 

By projecting [1.7] in the direction of the velocity, we obtain: 

mg − qE − 6πηrv = 0  

Which then gives: 

qE = mg − 6πηrv  [1.8] 

From a physical point of view, the discontinuous variations, Δv, in the velocity 
limit of a droplet correspond to discontinuous variations, Δq, in the charge, q, 
carried by the droplet. Equation [1.8] then gives: 

(q + Δq)E = mg − 6πηr (v + Δv)  |Δq| = e = 6πηrΔv/E 

[1.6] is indeed found. 

NOTE.– The following reasoning can be adopted. When the velocity of a droplet 
varies from v to v’, then equation [1.8] is written qE = 6πηrv’ − 6πηr rv’ = 6πηr (v’ 
− v). Let: |q|E = 6πηrΔv, with Δv = |v’ − v|. Yet the amount of electricity |q| = ne. 
Hence neE = 6πηrΔv. Given that the variation in velocity, Δv, is due to the attaching 
of the elementary charge, then n = 1. We thus obtain: e = 6πηrΔv/E. 

 

gmP =  

vrf πη6−=

v

 EqF =  

r
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1.2. The birth of the nucleus 

1.2.1. Perrin and Thomson atomic model 

In 1901, Perrin envisioned the atom as a miniature solar system where electrons 
acting like planets gravitate freely around a positively charged, quasi-point-like 
center of matter (Figure 1.6). Under the effect of attractive electrostatic force, 
electrons turn around the quasi-point-like center via elliptic trajectories [DUM 15]. 
This quasi-point-like center will be identified in the atomic nucleus following the 
Rutherford scattering experiment. 

 

Figure 1.6. Planetary model of the  
atom, envisioned by Perrin in 1901 

Through the experiments of Thomson and Millikan, it became known that in 
addition to atoms, there existed a much smaller particle, called an electron. The 
internal structure of the quasi-point center in the Perrin atomic model had not yet 
been elucidated.  

In 1902, Thomson envisioned an atomic model that was different to that of 
Perrin by developing the “raisin bread” theory on the atomic structure [ROU 60, 
SAK 11]. In this model, electrons are considered to be negative raisins distributed 
throughout bread in a positive matter, hence this model is known as the plum 
pudding atom, as shown in Figure 1.7 [SAK 11]. 

But because of the positive electron–substance attraction and Coulomb  
electron–electron repulsion forces, the atomic matter as described is unstable.  
The Thomson atomic model is therefore not suitable, as confirmed by Rutherford in 
1911 (see section 1.2.3). 

  electron 

nucleus
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Figure 1.7. Model of the atom envisioned by Thomson 

1.2.2. Geiger and Marsden experiment 

In 1908, Hans Geiger and Ernest Marsden [GEI 09, EVA 61, DUM 15] carried 
out particle scattering α (in the Rutherford laboratory) using thin metal foils. The 
simplified experimental set-up by Geiger and Marsden is schematically presented 
below (Figure 1.8). This experiment consisted of measuring the deviation angle, θ, 
of particles, α, of kinetic energy 5.5 MeV by a gold foil. 

 

Figure 1.8. Simplified experimental device by Geiger and Marsden 

The Geiger and Marsden experiments showed that one in 8,000 α particles is 
scattered at an angle θ greater than 90°. These observations contradicted the 
Thomson model (Figure 1.7), which predicted small angular deflections by simple 
scattering, and a very low probability of large multiple scattering deflection.  

  

 
particle 
generator α 

α

α

scintillator 

collimator 
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α
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Johannes Wilhelm “Hans” Geiger was a German physicist. In 1928, together with German 
physicist Walther Müller (1905-1979), he invented the particle detector known as the  
Geiger–Müller counter, the operating principle of which he devised in 1913. Geiger is also 
famous for having established, together with English physicist John Mitchell Nuttall  
(1890-1958), the law giving the rate of decay as a function of time, known as the  
Geiger–Nuttall law (see Chapter 3). In addition, in 1908 under Rutherford’s supervision  
(see Box 1.5), Geiger, together with Marsden, carried out the α particle scattering experiment 
with thin gold strips, which enabled Rutherford to devise the planetary model of the atom. 

Sir Ernest Marsden was an English-New Zealand physicist. He is known for his 
experimental work on α particle scattering by thin gold blades. 

Box 1.4. Geiger (1882–1945); Marsden (1889–1970)  

1.2.3. Rutherford scattering: Planetary atomic model 

In 1911, Ernest Rutherford [RUT 11, SIV 86, EVA 61, GUY 03, STÖ 07,  
SAK 11, DUM 15, SAK 19] used radioactive radiation consisting of α particles or 
helion from a radium source to bombard thin metal foils. This experiment, known as 
Rutherford scattering, enabled him to explain Geiger and Marsden’s experimental 
observations, and find that the atomic structure could not be represented in the static 
form that Thomson had envisaged in 1902. The experimental set-up created by 
Rutherford is schematically presented as indicated in Figure 1.9 [SAK 19]. 

Rutherford’s experience makes it possible to make at least two important 
observations: 

First observation: numerous particles pass through the matter without being 
deflected (although theoretically several deviations should have been observed 
according to Thomson’s model). 

Second observation: alpha particles passing close to the “center” of matter are 
deflected at a large angle. 

The first observation allows us to conclude that the positive particles scattered in 
the Thomson model are concentrated at the “center” of the matter. The second 
observation, meanwhile, proves that the “center” of the matter pushing alpha 
particles is a positively charged point-like particle. Rutherford demonstrated that an 
α particle can be obtained by twice ionizing a helium atom: He → He2+ + 2e −. The 
α particle is a He2+ helium nucleus. The positive “center” of matter was identified as 
the atomic nucleus. Drawing on the astronomical model of Johannes Kepler  
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(1571-1630) of the solar system, Rutherford proposed the model of the planetary atom 
in which electrons gravitate around the nucleus, as shown in Figure 1.10 [SAK 11]. 

 

Figure 1.9. Rutherford scattering experiment set-up 

 

Figure 1.10. Planetary atomic model envisaged by Rutherford 

Note that the planetary model is unstable. The electrons, as charged particles, are 
subjected to a centripetal acceleration due to their orbital motion. Yet, according to 
predictions of classical electrodynamics, any charged particle subjected to 
acceleration loses energy by radiation. In the planetary model, electrons ought to 

           

          electron       nucleus                     orbits  
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lose energy through radiation and eventually fall onto the nucleus in around 10−11 s 
(see exercise 1.7.1). Yet that does not happen. 

1.2.4. Rutherford’s differential effective cross-section  

To theoretically interpret these experimental observations, Rutherford developed 
a quantitative theory of α particle scattering by very thin gold foils, 10−5 to 10−4 cm 
thick. These thicknesses made it possible to avoid taking account of potential 
multiple collisions of α particles with several nuclei in the interpretation of large 
scattering angles. Thus, the probability that a large scattering angle would result 
from two or more successive collisions between α particles and gold nuclei is 
entirely negligible. Moreover, due to low electron mass, the probability that a large 
scattering angle would result from collisions between the α particles and electrons in 
the electron cloud of a gold nucleus is also negligible. Thus, under the conditions of 
the experiment, a large deviation angle should result from a collision between an  
α particle and a single point-like center, in this case a gold nucleus. 

In the general case, let us consider the elastic interaction process of a constant 
velocity beam of identical particles by a diffuser center (example target nucleus) 
placed at the origin, O, of the coordinates. By definition, the impact parameter, b, of 
a particle is the distance from the diffuser center core to the initial direction of the 
particle [SIV 86, STÖ 07, DUM 15]. The geometry of Rutherford’s theoretical 
model for studying classical scattering is shown in Figure 1.11. 

 

Figure 1.11. Scattering of a beam of α particles of an  
angle,θ, in the solid angle, dΩ, b is the impact parameter 

Rutherford’s differential effective cross-section is the theoretical expression 
subject to experimental verification. Let us briefly review some useful definitions.  
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The solid angle, dΩ, between the two cones of revolution, with the same vertex, 
O, the same axis, Ox, and with semi-vertex angles, θ and θ  + dθ, is: 

dΩ  = 2πsinθ dθ     [1.9] 

The particles scattered at a larger angle are those that are deflected under the 
angles between θ and θ + dθ with an impact parameter between b and b + db  
(the scattering angle is maximum for b = 0). With the effective cross-section having 
the dimension of a surface, let us consider a disk of radius b and axis of revolution 
Ox. The surface of this disk is equal to the effective scattering cross section in the 
direction of angle θ, noted σ, that is: σ = πb2. The elementary effective scattering 
cross-section, dσ, is then given by the relationship: 

dσ  = 2πbdb   [1.10] 

By definition, the differential effective cross-section is equal to
d
d

σ
Ω

. Using the 

definition relationships [1.9] and [1.10], we then obtain: 

sin

d b db
d d

σ
θ θ

=
Ω

 [1.11] 

If we use ze to designate the charge of the incident particle of kinetic energy, E, 
and Ze for the charge of the target nucleus, then the impact parameter is equal to: 

)2/(tan

1

24

1 2

0 θπε E
zZeb =    [1.12] 

Using [1.12], Rutherford’s differential effective cross-section is then written 
according to [1.11]: 
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
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
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


=

Ω E
zZe

d
d

  [1.13] 

The effective cross-section is expressed in barn (b) with 1 barn = 10−28 m2 and 
the solid angle in steradians (sr). The differential cross section [1.13] is then 
expressed in barn per steradian (b ⋅ sr −1). 
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APPLICATION 1.3.– Demonstrate expression [1.13]. Perform the numerical 
application for α particles of total energy E = 5.5 MeV, scattered under an angle of 
90° by a gold foil with atomic number Z = 79. We will take e = 1.6 × 10−19 C;  
1 eV = 1.6 × 10−19 J and (1/4πε0) = 9.0 ×109 SI.  

ANSWER.– Using [1.12], we obtain: 

)2/(sin

1

44

1

)2/(sin

)2/(cos

24
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2

2

0

2

0 θπεθ
θ

θπεθ E
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d
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d
db −=








=   [1.14] 

Considering that sin θ = 2 sin (θ/2) cos (θ/2), we obtain, by considering [1.12]: 

)2/(cos)2/(sin2

1

)2/(sin

)2/(cos

24

1
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2

0 θθθ
θ

πεθ
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E
zZeb   

Let: 

2

2
0

1 1

sin 4 4 sin ( / 2)

b zZe
Eθ πε θ

=   [1.15] 

Using [1.14] and [1.15] gives: 

2 2

2 2
0 0

1 1 1 1

sin 4 4 4 4sin ( / 2) sin ( / 2)

b db zZe zZe
d E Eθ θ πε πεθ θ

× = − ×  

Considering the absolute value of this equation, we find [1.13]. 

For α particles, z = 2, we find, numerically: 
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APPLICATION 1.4.– The elastic scattering of an α particle of velocity v  and kinetic 
energy E = 6.0 MeV is achieved with a nucleus of gold, Au, that is assumed to be 
immobile. For a frontal collision, a minimum approach distance of amin = 3.8 ×  
10−12 cm is found. Produce a diagram and then deduct the atomic number of the gold 
nucleus from the data. We will assume that the α particle comes from the infinite 
where the potential energy is zero. We will also assume that the {α particle – Au 
nucleus} system is conservative. The data given for application 1.3 will be used. 

ANSWER.– The frontal collision corresponds to a zero-impact parameter (b = 0). We 
thus obtain the diagram shown below (Figure 1.12).  

Rutherford scattering is known to be studied in the context of classical 
mechanics (the resting energy, m0c2, of the particles in the system studied is 
therefore not taken into account). At infinity, the mechanical energy of the {α − Au} 
system is equal to the kinetic energy, E, of the α particle. At the distance r = amin, 
the α particle stops then turns back. 

 

Figure 1.12. Frontal collision between an α  
particle and an immobile nucleus of gold, Au 

The mechanical energy of the {α − Au} system is reduced to its potential energy: 

r
zZekrV
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)( =   [1.16] 

In relationship [1.16], the electrical constant k = 1/4πε0 = 9 × 109 SI. With the  
{α − Au} system being conservative, we obtain: 

2
min

min 2
min

( )
a EzZeE V r k Z

a kze
= =  =   [1.17] 

Numerically we obtain from [1.17]:  

7917.79
106.12109

106108.3
199

614

≈=
××××
×××= −

−
Z  

 
α 

∞ 

α

Au 

r

min

v  re



20     Nuclear Physics 1 

Let us now seek to establish an expression deduced from Rutherford’s formula 
[1.13], subject to experimental verification.  

If  φ designates the α particle flow, the number, dN1, of particles scattered by a 
nucleus per unit time in the solid angle dΩ is: 

dN1 = φd.σ  [1.18] 

If I is the intensity of a parallel plane beam of α particles falling on the nucleus, 
or the number of particles passing per unit time through a surface, S, normal to the 
beam, then: 

S
I=φ    [1.19] 

According to [1.19], the flow of φ particles is expressed in s−1 ⋅ cm−2.  

Using [1.19], the number, dN1, of particles scattered per unit time and per unit 
area in the solid angle dΩ is: 

dN1 = Idσ  [1.20] 

Let n be the number of nuclei per unit volume. The total number of target nuclei 
in volume V is then equal to Vn. The total number, dN, of particles scattered per unit 
time and per unit area in the solid angle dΩ is then equal to VndN1. Thus, using 
[1.20]: 

dN = IVndσ   [1.21] 

By considering Rutherford’s formula [1.13], we then obtain: 

2 22

4
0

1

4 4 sin ( / 2)

zZe ddN IVn
Eπε θ

    Ω=    
  

 [1.22] 

Let us compare the theoretical predictions according to the Rutherford model 
[1.22] with the experimental observations of Geiger and Marsden for α particles of 
energy 5.5 MeV, scattered by gold nuclei. The resulting curves are shown in  
Figure 1.13. Overall, it is noted that for scattering angles less than 140°,  the number 
of  α particles scattered as a function of the scattering angle is compatible with the 
model of the nucleus of highly-concentrated charge density at a point in space. This 
constitutes experimental evidence of the validity of Rutherford’s point-like nucleus 
model. Moreover, this concordance between theory and experience confirms the 
planetary atomic model according to Rutherford (Figure 1.10) and overturns the 



Overview of the Nucleus     21 

Thomson atomic model (Figure 1.7). However, the nucleus is not point-like. It has a 
skin thickness indicating that the mass distribution is not uniform in a nuclear 
volume of spherical form (see section 1.4.2). 

 

Figure 1.13. Comparisons of theoretical predictions according to the Rutherford  
model with the experimental observations of Geiger and Marsden 

Lord Ernest Rutherford of Nelson was a New Zealand-born British physicist and chemist. 
Rutherford is considered the father of nuclear physics for his notable discoveries in this field. 
He discovered α radiation (helium nuclei) and β −  radiation (electron). Rutherford also 
discovered that radioactivity is accompanied by the decay of chemical elements. This won 
him the Nobel Prize in Chemistry 1908. In 1909, he established, along with British 
radiochemist Frederick Soddy (1877-1956), the experimental law of radioactive decay of 
radioelements. Drawing on his past experience of the gold-leaf α particle scattering, achieved 
by Geiger and Marsden, Rutherford revealed the existence of the atomic nucleus in 1911. This 
allowed him to put forward the planetary atomic model. Moreover, in 1919, he carried out the 
first artificial nuclear transmutation reaction, thus paving the way for the study of the 
properties of the nuclear reactions induced. 

Box 1.5. Rutherford (1871–1937)  

  

0° 20° 40° 60° 80° 100° 120° 140° 
Scattering angle 

10 

102 

103 

104 

105 

106 

107 

experimental points  
of Geiger and Marsden 

theoretical curve derived from 
predictions of Rutherford's model 

N
um

be
r o

f α
 p

ar
tic

le
s s

ca
tt

er
ed

 



22     Nuclear Physics 1 

1.3. Composition of the nucleus  

1.3.1. Discovery of the proton 

Rutherford’s experiment allowed the existence of the atomic nucleus to be 
revealed. The α particle corresponding to the nucleus of the helium atom was used 
in Rutherford’s experiment of 1911. However at that time, the composition of the 
nucleus was not yet known, except for the hydrogen atom whose nucleus is  
the proton. This enabled Danish physicist Niels Bohr (1885-1962) to develop his 
semi-classical hydrogen atom theory in 1913 by studying the motion of the electron 
in the electric field created by the proton charge. 

In 1919, Rutherford succeeded in experimentally carrying out the first reaction 
of artificial nuclear transmutation [RUT 19a, RUT 19b, LEP 56, GRO 85, NES 17]. 
This first induced nuclear reaction consisted of bombarding nitrogen gas with  
α particles. The simplified diagram of the experimental device used by Rutherford is 
given below (Figure 1.14).  

 

Figure 1.14. Rutherford’s simplified experimental device  
for conducting the first induced nuclear reaction 

Using an oscilloscope, Rutherford observed scintillations on the zinc sulfide-
coated E-screen due to particles emitted as a result of the collision between the α 
particles and the nitrogen nuclei. He deduced from his observations that in striking 
nitrogen atoms, alpha particles produced a proton. In 1920, at a conference of the 
British Association for the Advancement of Science, Rutherford suggested that the 
nucleus of the hydrogen atom be termed the proton [KRI 19a]. However, Rutherford 
did not know what had become of the residual nucleus. Thus, he tasked Patrick 
Blackett (1897-1974), a researcher working under his direction, with identifying the 
residual nucleus [KRI 19b]. Blackett proceeded to conduct a series of experiments 
with a Wilson chamber (or fog chamber) and confirmed in 1925 that the particles 
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emitted in collisions between α particles and nitrogen nuclei are H1
1  protons  

[BLA 25]. The nuclear transmutation reaction is thus written: 

OHNHe 17
8

1
1

14
7

4
2 +→+   [1.23a] 

The reaction shows the transmutation of the nitrogen nucleus 14 to the oxygen 
nucleus 17 with production of a proton. For this reason, Rutherford is credited with 
the discovery of the proton. Between 1930 and 1932, a series of experiments 
conducted on the study of nuclear transmutation reactions led to the birth of the 
neutron, the proton’s natural companion in the nucleus.  

In 1930, German physicist Walther Bothe and his student Herbert Becker 
conducted transmutation experiments by bombarding atomic targets with α particles 
[BOT 30, NES 17]. At that time, the available sources of alpha radiation were 
radium 226 (α of 4.9 MeV) and its descendant, radon 222 (α of 5.6 MeV) or, for 
polonium 210, emitting α particles of 5.4 MeV.  

Using beryllium bombarded by α particles from a source of polonium-210 as a 
target, the reaction produced penetrating radiation. The latter was interpreted by 
Bothe and Becker as electromagnetic radiation like the γ radiation known at this 
time. Thus, they opposed that this radiation was produced by the deexcitation of 
radiocarbon 13 formed during the transmutation, according to the equation: 

4
2He + 94Be → 13

6C* → 13
6C + γ  [1.23b] 

Bothe and Becker evaluated γ-ray energy by interposing lead plates of varying 
thicknesses between the target and the counter. By measuring the attenuation of the 
gamma-ray flux of known energy, they estimated the energy of the γ photons at 
around 5 MeV. Unfortunately, this energy was higher than the usual γ photons 
produced by radioactivity, which are of the order of 1 to 2 MeV.  

Intrigued by these results, Irène and Frédéric Joliot-Curie [CUR 32b, CUR 32c] 
conducted transmutation experiments of boron and beryllium bombarded by α 
particles, with a view to understanding the real nature of what is known as  
Bothe–Becker radiation. These experiments showed that the penetrating radiation 
observed in the Bothe and Becker experiments could eject protons from paraffin. 
Yet Irène and Frédéric Joliot-Curie did not interpret their observations correctly as 
they believed that the Compton effect phenomenon had occurred between the light 
element and gamma rays, whose energy they estimated. At the time, there was no 
knowledge of any penetrating radiation capable of ejecting particles other than 
electrons by photoelectric or Compton effect. 
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In 1932, Sir James Chadwick offered the correct interpretation of Bothe and 
Becker’s observations by conducting a decisive experiment that would solve the 
enigma of the penetrating radiation observed in the transmutation reactions of boron 
and beryllium. 

Patrick Maynard Stewart Blackett was a British experimental physicist. He is famous for 
his experiments on the induced nuclear reactions that made it possible, in 1925, to identify the 
residual nucleus (oxygen) in the transmutation reaction initiated by Rutherford in 1919. He 
was awarded the Nobel Prize in Physics 1948 for his development of the Wilson cloud 
chamber and for his discoveries in the fields of nuclear physics and cosmic rays. 

 Walter Wilhelm Georg Bothe was a German physicist. He is most famous for his 
contributions to nuclear transmutation reactions. He won half of the Nobel Prize in Physics 
1954 for designing the coincidence method (with the other half awarded to the English 
physicist, Max Born (1882-1970). In nuclear physics, the principle of the coincidence method 
consists of using sensitive devices to detect the simultaneous (or near-simultaneous) emission 
of two particles, each collected in a different counter. For more details on this subject see 
[VUC 55]. 

Box 1.6. Blackett (1897–1974); Bothe (1891–1954) 

1.3.2. Discovery of the neutron  

As noted above, the aim of the Chadwick experiment was to identify radiation 
penetrating the boron and beryllium transmutation reactions. The experimental  
set-up used by Chadwick is schematically presented in Figure 1.15. 

Figure 1.15. Chadwick’s experimental set-up 

Polonium, a source of α particles of 5.3 MeV is introduced into a chamber with a 
high vacuum. The collision between the α particles and the beryllium producing  
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penetrating radiation (here neutron n to be identified) in all directions. This radiation 
then bombards a paraffin screen, inducing the ejection of protons (p). These protons 
then pass through thin aluminum screens to access an ionization chamber filled with 
nitrogen gas. The pulse produced by protons and recoil nitrogen nuclei is amplified 
and recorded. The observed pulses corresponding to protons penetrating into the 
ionization chamber. The track of the recoil protons is then measured in the 
aluminum screens interposed between the detector and the paraffin. 

In 1920, the concept of the neutron consisting of an intimate combination of a 
proton and an electron was discussed by Rutherford. But this combination was never 
confirmed theoretically or experimentally. However, interpreting these observations, 
Chadwick showed that the measured recoil energies were compatible with the 
neutron n hypothesis [CHA 32a, CHA 32b, NES 17]. On the basis of this 
hypothesis, the bombardment of beryllium or boron target nuclei with α particles 
produced two types of induced nuclear reactions: the 9Be (α, n)12C reaction and the 
11B (α, n)14N reaction. These reactions are explicitly written: 

CnBeHe 12
6

1
0

9
4

4
2 +→+   [1.24] 

NnBHe 14
7

1
0

11
5

4
2 +→+   [1.25] 

Since the nucleus mass of beryllium 9 was not known in 1932, reaction [1.25] 
was used by Chadwick. By measuring the energy released by this reaction and using 
the available masses of 11B, 14N, and 4He, Chadwick found a neutron mass, mn, 
between 1.005 u and 1.008 u, i.e. [EVA 61]: 

1.005 u ≤ mn ≤ 1.008 u   [1.26a] 

The CODATA recommended value is 1.00866491597(43) u. Although not 
precise, the Chadwick result is acceptable seeing as the upper limit of neutron mass 
only differs from the CODATA recommended value by around 0.0007 u. 

Chadwick found the neutron he had been seeking for 12 years. He announced his 
results in a brief note, “Possible Existence of a Neutron”, in the journal Nature on 
February 17 (published on February 27) and detailed his experiments in a longer – 
and more affirmative – article, “The Existence of a Neutron” on May 10, published 
on July 1 in Proceedings of the Royal Society. Note that he does not speak of “the” 
neutron, but “a” neutron. The text published by Chadwick is presented in box 1.7. 
However, it was not immediately accepted that Chadwick had discovered the 
neutron. Was it a real particle, like the proton or the electron? The problem  
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was solved in 1933 by Chadwick and the American physicist, Maurice Goldhaber 
(1911-2011). 

In 1931, American chemist Harold Urey (1893-1981) discovered deuterium by 
demonstrating with his colleagues the existence of heavy water (deuterium oxide, 
D2O, a discovery that saw him awarded the Noble Prize in Chemistry 1934). In 
1933, Chadwick and Goldhaber succeeded in achieving deuteron photodissociation 
(deuterium nucleus). By bombarding the deuteron with γ photons of 2.6 MeV,  
they measured the energy of the protons released.  Chadwick and Goldhaber thus 
determined that the deuteron binding energy was 2.2 MeV. Subsequently,  
they estimated the neutron mass by drawing on the principle of energy conservation. 
Let: 

mnc2 = mdc2 – mpc2 + El    [1.26b] 

In equation [1.26b] mn is the neutron mass, md designates the deuteron mass 
(mdc2 = 1876.1), mp represents the proton mass (mpc2 = 938.3), and El designates the 
deuteron binding energy (El = 2.2 MeV). Numerically we find: 

mnc2 = 1876.1 – 938.3 + 2.2 = 940 MeV.  [1.26c] 

The accepted value of the precise neutron mass equals 939.565346 MeV/c2 (see 
Table 1.3). This value is in close accordance with result [1.26c] by Chadwick and 
Goldhaber, since the mass difference is 0.434654 MeV/c2. 

In 1933, the neutron was accepted as a fundamental particle constituting 
atomic nuclei.  

Possible Existence of a Neutron 

It has been shown by Bothe and others that beryllium when bombarded by α-particles of 
polonium emits a radiation of great penetrating power, which has been an absorption 
coefficient in lead of about 0.3 (cm)−1. Recently Mme. Curie-Joliot and M. Joliot found, when 
measuring the ionization produced by this beryllium radiation in a vessel with a thin window, 
that the ionization increased when matter-containing hydrogen was placed in front of the 
window. The effect appeared to be due to the ejection of protons with velocities up to a 
maximum of nearly 3 x 109 cm. per sec. They suggested that the transference of energy to the 
proton was by a process similar to the Compton effect, and estimated that the beryllium 
radiation had a quantum energy of 50 x 106 electron volts. I have made some experiments 
using the valve counter to examine the properties of this radiation excited in beryllium. The  
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valve counter consists of a small ionization chamber connected to an amplifier, and the 
sudden production of ions by the entry of a particle, such as a proton or α-particle, is 
recorded by the deflexion of an oscillograph. These experiments have shown that the 
radiation ejects particles from hydrogen, helium, lithium, beryllium, carbon, air, and argon. 
The particles ejected from hydrogen behave, as regards range and ionizing power, like 
protons with speeds up to about 3.2 x 109 cm. per sec. The particles from the other elements 
have a large ionizing power, and appear to be in each case recoil atoms of the elements. 

If we ascribe the ejection of the proton to a Compton recoil from a quantum of 52 x 106 
electron volts, then the nitrogen recoil atom arising by a similar process should have an 
energy not greater than about 400,000 volts, should produce not more than about 10,000 
ions, and have a range in air at N.T.P. of about 1.3 mm. Actually, some of the recoil atoms in 
nitrogen produce at least 30,000 ions. In collaboration with Dr. Feather, I have observed the 
recoil atoms in an expansion chamber, and their range, estimated visually, was sometimes as 
much as 3 mm at N.T.P. These results, and others I have obtained in the course of the work, 
are very difficult to explain on the assumption that the radiation from beryllium is a quantum 
radiation, if energy and momentum are to be conserved in the collisions.  

The difficulties disappear, however, if it be assumed that the radiation consists of particles of 
mass 1 and charge 0, or neutrons. The capture of the α particle by the Be9 nucleus may be 
supposed to result in the formation of a C12 nucleus and the emission of the neutron. From the 
energy relations of this process the velocity of the neutron emitted in the forward direction 
may well be about 3 x 109 cm. per sec. The collisions of the neutron with the atoms through 
which it passes give rise to the recoil atoms, and the observed energies of the recoil atoms are 
in fair agreement with this view. Moreover, I have observed that the protons ejected from 
hydrogen by the radiation emitted in the opposite direction to that of the exciting α-particle 
appear to have a much smaller range than those ejected by the forward radiation. This again 
receives a simple explanation of the neutron hypothesis. 

If it be supposed that the radiation consists of quanta, then the capture of the α-particle by the 
Be9 nucleus will form a C13 nucleus. The mass defect of C13 is known with sufficient accuracy 
to show that the energy of the quantum emitted in this process cannot be greater than about 
14 x 106 volts. It is difficult to make such a quantum responsible for the effects observed. It is 
to be expected that many of the effects of a neutron in passing through matter should resemble 
those of a quantum of high energy, and it is not easy to reach the final decision between the 
two hypotheses. Up to the present, all the evidence is in favor of the neutron, while the 
quantum hypothesis can only be upheld if the conservation of energy and momentum be 
relinquished at some point. 

J. Chadwick, Cavendish Laboratory, Cambridge, Feb. 17. [CHA 32b] 
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Sir James Chadwick was a British physicist. He is particularly well known for his 
historical experiment that enabled the discovery of the neutron in 1932. This discovery saw 
him receive the Nobel Prize in Physics 1935. This discovery permitted an understanding of 
the internal structure of nuclei and paved the way for the study of various induced nuclear 
reactions, such as fission.  

Box 1.7. Chadwick (1891–1974) 

1.3.3. Internal structure of nucleons: u and d quarks 

Aside from the electrical charge, the proton and neutron are spin-1/2 fermions 
like the electron. Their mass difference is equal to 0.00138 u. Thus the idea of 
German physicist Werner Heisenberg (1901-1976) was accepted, namely that proton 
and neutron are the two possible states of the same heavy particle, called the 
nucleon. Thus, the atomic nucleus consists of nucleons, i.e. the protons and 
neutrons. The nucleus of the hydrogen atom consists of a single nucleon, the proton. 
The α particle corresponding to the nucleus of the helium atom consists of four 
nucleons: two protons and two neutrons. 

With Chadwick’s discovery of the neutron in 1932, the internal structure of the 
nucleus was established. But the internal structure of nucleons remained a mystery. 
What do they consist of?  This question would remain unanswered until 1964. 

Developing their theory on elementary particles, in 1964 Murray Gell-Mann and 
George Zweig independently assumed the existence of particles that would be the 
constituent elements of all others [LEP 56, GRO 85, PAG 85, STÖ 07, SEC 10]. 
Gell-Mann called these elements quarks. This concept is derived from the literary 
work of Irish novelist and poet James Joyce (1882-1941) in his book, Finnegans 
Wake, which includes the line, “Three quarks for Muster Mark,” where half-real, 
half-imaginary objects are presented three by three. In the Gell-Mann and Zweig 
model, the existence of the u (“up”) quark with a charge of (2/3) e and the d 
(“down”) quark with a charge of (−1/3) e, to explain the internal structure of the 
nucleons is assumed. Associated with these quarks, each of spin-1/2, are two 

antiquarks, noted u and d , respectively.  

In order to satisfy the principle of electric charge conservation, the proton has a 
udu-type structure, three-quark internal configuration and the neutron has a udd-type 
structure (Figure 1.16). 

In both the neutron and the proton, the strong interaction between quarks is due 
to an exchange of particles called gluons, noted g (spin s = 1, mass m = 0). These 
exchanged particles thus ensure the cohesion of the nucleons. 
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Figure 1.16. Internal proton and neutron structures  
according to the Gell-Mann and Zweig quark model 

In particle physics, two types of particle systems can be distinguished: 

– the elementary system: a quantum object fully characterized by its mass and 
spin; 

– the elementary particle: an elementary system in which one cannot distinguish 
between the elementary constituents of given mass and spin. 

The proton and neutron are thus elementary systems (they are considered 
elementary particles while ignoring their internal structure) whereas quarks are 
elementary particles (their internal structure not being known at this time).  Whereas 
the proton is a stable particle with an estimated lifetime of more than 1.2 × 109 
years, the neutron is an unstable particle with a radioactive period of 885.7 s  
[STÖ 07]. 

For a given nucleus, a mass number or nucleon number is defined and noted A. 
By definition, A = Z + N, with Z the proton number and N the neutron number of the 
nucleus considered. If X designates the symbol of the chemical element considered, 
then a nucleus is symbolized by writing XA

z . This conventional notation of nuclei 

then enables understanding of the writing of the reagents and products of the 
induced nuclear reactions, [1.23] and [1.24]. 

Murray Gell-Mann was an American physicist. He is famous most notably for having 
formulated the theory of quarks which he considered to be the constituent elementary particles 
of all the other particles. He was awarded the Nobel Prize in Physics 1969.  

George Zweig was a Russian-American physicist. In particle physics he developed quark 
theory, independently from Gell-Mann. We thus speak of the Murray–Zweig quark model.  
He later went on to study neurobiology. 

Box 1.8. Gell-Mann (1929–2019); Zweig (born 1937) 
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1.3.4. Isospin 

In 1932, Heisenberg introduced the concept of isospin, or isobaric spin, to 
characterize the two possible states of the nucleon. Isospin is noted I [STÖ 15] or T 
[EVA 61, SEC 10]. To avoid confusion with nuclear spin, I [EVA 61, BRÖ 01], 
reserved for the nucleus (see section 1.3.5), we will use the notation T below to 
designate isospin.  

In a “hypothetical isospin space”, the nucleon is characterized by the isospin 

vector, ,T


 which is an operator of components Tx, Ty, and Tz. By making the 

analogy with electronic spin, taking the two possible values, ms =  ± 1/2, it is agreed 
that the projection, Tz, of the isospin operator along a preferred direction, Oz, in an 
isospin space takes the values: 

Tz = + 1/2 for the proton; Tz = − 1/2 for the neutron   [1.27] 

According to the rule of addition of angular momenta, the total isospin,T , 

resulting from the coupling of the respective individual isospins, 1T


and 2T , of two 
nucleons, (1) and (2), and its projection, Tz along a reference direction, Oz, in the 
isospin space satisfy the relationships: 

2121 ; zzz TTTTTT +=+=    [1.28] 

For the nucleon, the introduction of isospin is based on the fundamental 
assumption that pp (proton–proton), pn (proton–neutron), or nn (neutron–neutron) 
nuclear interaction is the same because of the charge independence of nuclear 
forces. By analogy to the spin multiplicity (2S + 1) leading to the singlet state, S = 0, 
and triplet state, S = 1, the number of states in the isospin space is equal to the 
isospin multiplicity (2T + 1). The following nucleon states and systems are thus 
obtained. 

– For T = 0, Tz = 0: singlet state corresponding to the pn nucleonic system. 

– For T = 1: triplet state. Three nucleon systems are obtained: pp (Tz = + 1);  
pn (Tz = 0) and nn (Tz = − 1).  

APPLICATION 1.5.– Is the ground state of the deuteron a singlet state or a triplet 
state? We will substantiate the answer.  

ANSWER.– The deuteron (deuterium nucleus) consists of a proton (Tz1 = + 1/2) and a 
neutron (Tz2 = − 1/2). This gives Tz = 0 and T = 0: the ground state of the deuteron is 
a singlet state. 
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Generally, for an arbitrary nucleus of mass number A = N + Z, the projection, Tz, 
of the total isospin quantum number is given by the relationship: 

)(
2

1 ZNTz −=   [1.29] 

Relationship [1.29] shows that Tz depends on the excess neutrons (N – Z). 
Therefore, the ground state of even-even nuclei is a singlet state.  

APPLICATION 1.6.– Determine the total isospin, T, corresponding to the ground state 
of the following isobar nuclei: 14 C (Z = 6), 14N (Z = 7) and 14O (Z = 8).  

ANSWER.– Using formula [1.29], we obtain the following for the nuclei, 
respectively: 14C, 14N and 14O: Tz = +1, Tz = 0 and Tz = −1. The ground state of the 
carbon-14 and oxygen-14 nuclei has isospin T = 1, while T = 0 for the nitrogen-14 
nucleus. 

1.3.5. Nuclear spin 

By analogy to the electron’s own rotational motion characterized by the spin 
angular momentum, the atomic nucleus is associated with a nuclear spin angular 
momentum noted ܫ. Similarly, by analogy to the magnetic quantum number of spin, 
ms, taking (2s + 1) values with s the spin of the electron, the magnetic quantum 
number of nuclear spin, mI, taking (2I + 1) values with I the nuclear spin.  

Nuclear spin, I, is the sum of the nucleon spins and their possible orbital angular 
momenta in the nucleus. The proton and neutron are fermions of spin I = 1/2. 
According to Pauli’s exclusion principle, two nucleons belonging to the same 
nucleus can have only parallel spin orientations if they are different (pn), or 
antiparallel if they are identical (PP or nn). For a given nucleus with mass number 
A, I is integer if A is even and half-integer if A is odd. For example, for deuteron  
2
1H  (pn), I = 1, for lithium 7

3Li  (pp nn pn n), I = 3/2 and for cobalt 59
27Co , I = 7/2.  

1.3.6. Nuclear magnetic moment 

As a general rule, it is assumed that any charged particle following a closed 
curve is a source of magnetic field. At a very far distance from the particle, the 
magnetic field can be considered as that created by a magnetic dipole placed at the 
location of the charged particle [SAK 20].  
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As with electrons, the nucleus is associated with a spin angular momentum, I


, 
which is an observable. The square 

2
I  and one of these projections, for example Iz, 

following a preferred direction (here Oz) have determined values equaling, 
respectively: 

2 ( 1)I I +  and IM  . 

The nuclear magnetic quantum number, MI, then takes the values: 

 – I, – (I + 1), ….., + (I – 1), + I 

This is a total of (2I + 1) values. By definition, the nuclear dipole magnetic 
moment, noted NM


, is given by the relationship: 

N I IM g Iγ=
 

  [1.30] 

In relationship [1.30], gI is the nuclear Landé factor and the magnitude γI is the 
nuclear gyromagnetic ratio [BIÉ 06, SAK 20] given by the following expression 
(this is the analogue of the electron gyromagnetic ratio / 2e mγ =− ): 

p
I m

e
2

=γ   [1.31] 

In relationship [1.31], mp is the proton mass.  

Likewise, we define the nuclear magneton, also called the nuclear Bohr 
magneton, noted µN (by analogy to the Bohr magneton / 2Bµ e mγ= − =  ). The 

nuclear magneton is given by the expression: 

p
IN m

eµ
2

 == γ   [1.32]  

Using [1.31] and [1.32], the dipole magnetic moment [1.32] is written: 

N
N I

µ
M g I=
 


  [1.33]  

Noting that µN/µB = m/mp and mp/m = 1836.1526715, then we obtain: 

µN = 5.05078317 × 10−27 J ⋅ T −1  



Overview of the Nucleus     33 

For the proton:  

I = 1/2; gI = 5.5883; µp = 2.7928473375 µN    [1.34] 

Although electrically neutral, a dipole magnetic moment, µn, is associated with 
the neutron’s spin angular momentum.  Thus, for the neutron:   

I = 1/2; gI = − 3.8263;  µn = − 1.91304272 µN    [1.35] 

Table 1.1 summarizes the fundamental properties of nucleons. 

Properties Proton Neutron 

Mass  1.672621637(83)× 10−27 kg 1.674927211(84) × 10−27 kg 

Charge  1.602179487(40) × 10−19 C 0 

Spin  ½ ½ 

Isospin  + ½ − ½ 

Radioactive period  ~ 2.1 × 1029 years (885.7 ± 08) s 

Nuclear Landé factor  5.5883 − 3.8263 

Dipole magnetic moment  2.7928473375 μN − 1.91304272 μN 

Table 1.1. Fundamental properties of nucleons 

1.4. Nucleus dimensions 

1.4.1. Nuclear radius 

Most nuclei are considered to be spherical. In this approximation, the nuclear 
radius, R, given by the relationship [EVA 61, MIS 96, BRÖ 01, STÖ 07, SEC 10, 
DUM 15, SAK 18a]: 

R = r0 A1/3  [1.36]  

In relationship [1.36], r0 is a nuclear radius whose value depends on the nucleus 
model adopted: 

– for the nuclear model with constant nucleon density, the nucleus charge is 
considered to be uniformly distributed within the nuclear volume, r0 is called the 
unit nuclear radius within the framework of classical mechanics and worth: 

r0 = 1.45  × 10−15 m = 1.45 fm [1.37] 
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– for the nuclear model, it is considered that the nucleus charge is distributed 
uniformly at the surface of the nucleus; r0 is called the electromagnetic unit radius 
within the framework of quantum mechanics and is worth: 

r0 = 1.2  × 10−15 m = 1.2 fm    [1.38] 

The first theoretical expression for the unit nuclear radius was established in 
2018 by the author as part of the nuclear model with constant nucleon density. The 
Sakho unit nuclear radius is given by the expression [SAK 18a]: 

2

0 0(1 / )
r a

N Z
α=

+
  [1.39]  

In relationship [1.39], α is the fine-structure constant and a0 represents the Bohr 
radius.  

For most nuclei, A ≈ 2Z (N = Z). The unit nuclear radius is then written:  

0

2

0 2
ar α=   [1.40]  

Based on α2 = 5.325 ×10−5 and a0 = 5.2917 × 10−11 m, relationship [1.40] gives:  

r0 = 1.41× 10−15 m = 1.41 fm   [1.41] 

The theoretical result [1.41] is very much consistent with the experimental 
results, r0exp = 1.40 × 10−15 m = 1.40 fm obtained on the scattering of α particles by 
light nuclei Li, Be, Mg and Al [POL 35] and on the scattering of fast neutrons by 
nuclei [DAY 53]. 

NOTE.–  The radii of exotic nuclei do not confirm relationship [1.36]. An exotic 
nucleus is a nucleus created artificially in particle accelerators. 

APPLICATION 1.7.– Using [1.36], give a framing of the nuclear radii, RX, 
corresponding to natural nuclei. Let r0 = 1.2 fm. 

ANSWER.– The lightest nucleus is that of the hydrogen atom: RH = 1.20 fm. The 
heaviest natural nucleus is uranium 238: RU =  1.2   × 10−15 × (238)1/3 = 7.4 fm. 
Thus, for a natural nucleus of radius RX, we have:  

(1.0 < RX < 8.0) fm    [1.42] 
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APPLICATION 1.8.– Estimate the density of nuclear matter. We will compare with the 
mass of 1 m3 of water and then draw a conclusion. The mass of a nucleus, m ≈ Au, 
with u the atomic mass unit.  

Let: r0 = 1.2 fm;  u = 1.66 × 10−27 kg. 

ANSWER.– The density of a nucleus assumed to be spherical of radius R = r0A1/3 is: 

3 3
0

3

(4 / 3) 4

m Au u
V R r

ρ
π π

= = =   [1.43]  

NOTE.– ρ ≈ 2.3 × 10 17 kg ⋅ m − 3 

Given that 1 m3 of water weighs 1,000 kg, 1 m3 of nuclear matter weighs around 
230 million billion kilograms.  

CONCLUSION.– nuclear material is extremely dense. 

1.4.2. Nuclear density, skin thickness  

As noted in section 1.4.1, the value of the radius, r0, depends on the adopted 
nucleus model according to whether the nuclear mass is uniformly distributed in 
volume or surface. As a result, the nuclear density is not constant for a given 
nucleus. 

With nuclear rays varying approximately between 1 and 8 fm [1.42], to probe the 
inside of the nuclei, the probe particles must have a de Broglie wavelength of the 
order of 1 fm. To achieve this, it is possible to envisage conducting experiments of, 
for example, photon, electron or neutron scattering by target nuclei. The information 
obtained on the inside of the nucleus will then depend on the nature of the probe 
particle used and the probe-nucleon particle interaction.  

Scattering experiments use probe particles with very high energies. These are 
therefore relativistic particles of total energy: 

42
0

22 cmcpE +=   [1.44] 

By definition, the de Broglie wavelength  λ = h/p. Using relationship [1.44], the 
relativistic expression for the energy of the probe particles is obtained: 

2 2
2 4
02

h cE m c
λ

= +   [1.45] 
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For an electromagnetic probe, the experiment would require a photonic energy of 
more than 1,200 MeV. In photon scattering experiments, X photons with energies in 
the keV range are generally used. From a technical point of view, it proves very 
complex to create a photon beam with 1,200 MeV energy.  

APPLICATION 1.9.– Show that the use of an electromagnetic probe would require 
energy of more than 1,200 MeV.  

Given data: c = 3.0 × 108 m ⋅ s −1 and h = 6.63 × 10−34 J ⋅ s; 1 eV = 1.6 × 10−19 J. 

ANSWER.– For the photon, the resting mass, m0 = 0, expression [1.45] gives: 

hcE
λ

=    [1.46] 

NOTE.– (de Broglie wavelength of the order of 1 fm: λ = 1 fm). 

E = 1.243 × 10 9 eV = 1243 MeV 

The scattering of high-energy electrons (approximately 1 GeV) on nuclei was the 
first source of information on nuclear charge distribution. At these energies, 
electrons have a wavelength comparable to or less than the dimensions of the 
nucleus, and can thus probe the spatial distribution of protons within the nucleus 
[DEL 03]. As neutrons are neutral, neutron scattering experiments offer access to the 
mass distribution of the nucleus.  

Let us thus consider a nucleus of nuclear charge distribution density  ρ (r). For 
the electron, the resting energy m0c2 = 0.511 MeV. For λ = 1 fm, expression [1.45] 
then shows that the energy of the electron beam to be used is equal to 1.24 GeV. 
However, the experiment reveals that electrons of energy between 100 and  
1,000 MeV enables probing of the inside of the nuclei. 

Using electrons as probe particles, the experiment shows that the density  ρ (r) 
presents saturation in a certain range of the nuclear volume and then gradually 
decreases at the surface of the nucleus. The study of several nuclei has established 
the form of ρ (r), the simplest of which, accounting satisfactorily for the charge 
distribution in the nucleus assumed to be spherical, is that of Woods–Saxon, given 
by [CAR 79, DEL 03, STÖ 07, SEC 10, DUM 15, MAY 17]: 







 −+

=

a
Rr

r
exp1

)( 0ρρ    [1.47] 
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In relationship [1.47], ρ0 = ρ (0) designates the saturation density, the quantity, 
a, called the diffusivity parameter characterizes the extent of the nuclear surface, r is  
the distance measured in spherical coordinates from the center of the nucleus, and R 
is the radius of the nucleus assumed to be spherical. 

The set of experimental results for fairly heavy nuclei (A  ≥ 30) agrees with the 
formula R = 1.07 × A1/3 fm and a = 0.545 fm. The variation of the nuclear charge 
distribution density ρ (r) with the distance r is shown in Figure 1.17. At the center of 
the nucleus, the saturation density ρ0 ≈ 0.14 nucleons ⋅ fm −3 (see application 1.10). 

As shown in Figure 1.17, the nuclear charge distribution density is approximately 
constant inside the nucleus, regardless of the nucleus considered. This is due  
to the saturation property of short-range nuclear forces (see section 1.6.5). 

 

Figure 1.17. Variation of the nuclear charge distribution density ρ (r); the nucleus 
radius R = r0 A

1/3, e is the skin thickness and ρ0 is the saturation density 

In addition, when r  → R, note the existence in the nucleus of a diffuse zone of 
approximately 2.2 fm, of almost constant value for all nuclei, in which the density 
gradually decreases. When r > R the nuclear charge distribution density ρ (r) 
gradually decreases at the surface and does not fall abruptly to zero. To translate this 
progressive decay, let us introduce the parameter, e, called skin thickness This 
parameter is the length for which the density ρ (r) decreases from 90% to 10% of the 
saturation density ρ0 (Figure 1.17). The skin thickness is linked to the diffusivity 
parameter, a, by the relationship (see application 1.11): 

e = 4aln3  [1.48] 

For a = 0.545 fm, using [1.48] we find: e = 2.4 fm. If we make the 
approximation a ≈ 0.5 fm, then we find e ≈ 2.2 fm. This result shows that the length 
of the diffuse zone in the nucleus of approximately 2.2 fm corresponds to the skin 
thickness. 

  ρ (r)/ρ0 

R
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APPLICATION 1.10.– Show that the saturation density is worth approximately 0.14 
nucleon ⋅ fm −3.  

Let r0 = 1.2 fm. 

ANSWER.– The saturation density corresponds to the nucleon density per unit 
volume. For a spherical core of volume V and mass number A we have:  

3
0

0
4

3

rV
A

π
ρ ==    [1.49] 

NOTE.– 

14.013815.0
)2.1(4

3
30 ≈=

×
=

π
ρ nucleon ⋅ fm − 3 

APPLICATION 1.11.– Demonstrate relationship [1.48]. 

ANSWER.– Let us use R1 and R9 to note the nuclear radii corresponding to densities 
0.1ρ0 and 0.9 ρ0, respectively. In this case the skin thickness: 

e = R1 − R9  [1.50] 

Using [1.47], we obtain: 


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Thus, according to [1.50]: e = R1 − R9 = 2aln9 = 2aln(32)   e = 4aln3. 

David S. Saxon was an American physicist. He is famous for having proposed, in 1954 
along with R. D. Woods (biography not mentioned in the available literature), what is known 
as the Woods–Saxon potential, thus describing the scattering of protons on heavy nuclei, such 
as platinum or nickel.  

Box 1.9. Saxon (1920–2005) 
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1.5. Nomenclature of nuclides 

1.5.1. Isotopes, isobars, isotones 

In 1886, Crookes gave a speech to the British Association in which he referred to 
the concept of isotopes. He declared:  

When we say, for example, that the atomic mass of calcium is 40, we 
are actually saying that the majority of the calcium atoms have a real 
atomic mass of 40, that there are a small number of atoms which have a 
mass 39 or 41, others much smaller are 38 or 42, and so forth. [EVA 61] 

Today, we know that calcium is a mixture of isotopes of mass numbers 40, 42, 
43, 44, 46, and 48. Crookes’ predictions were therefore correct; the mass numbers 
38 and 39 corresponding to the isotopes of the element potassium. From an 
experimental perspective, Frederick Soddy [SOD 11, SOD 14] was the first to prove 
the existence of isotopes in radioactive substances. In addition, he highlighted in his 
work the existence of substances having the same mass number but different 
chemical properties, because of the difference in their nuclear charges. These 
substances were called isobars. 

The nomenclature of nuclear species distinguishes between groups of nuclei that 
form three large families: isotopes, isobars and isotones.  

Generally, a nucleus is characterized by its proton number, Z, and its nucleon 
number, A [SAK 16] is referred to as a nuclide. A nuclide of a chemical element, X, 

is symbolized by the notation A
Z ,X  which we recall here. The neutron number, N =  

A – Z. 

– Isotopes is the name given to nuclei with the same proton number but different 
neutron numbers, N. For example, 13

6C  (N = 7) and 14
6 C  (N = 8);  

– isobars refer to nuclei with the same mass number but different proton 
numbers. For example, 14

6C and 14
7 ;N  

– isotones refer to nuclei with the same neutron number but different proton 
numbers. For example 12

6C  (N = 6) and 13
7 N  (N = 6). 

Generally, for a family of given nuclei, the nuclide content is different. The most 
stable nuclei have the highest content, while unstable nuclei exist in the form of 
traces. Table 1.2 presents the contents of some isotopes. Today, 90 natural elements 
and 19 artificial elements are known, corresponding to approximately 1,500  
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different nuclides, approximately 350 of which are natural. Of the 1,500 nuclides 
identified, 256 are stable, the others spontaneously convert to more stable nuclides. 
Let us specify some of the isotopes of the first ten elements of the periodic table in 
addition to those of iron and uranium. 

– Hydrogen (H) has three isotopes: 1H, 2H, and 3H. The remaining isotopes from 
4H to 7H have been synthesized in the laboratory. They are particularly unstable and 
have never been observed in nature.  

– Helium (He) has eight known isotopes (2He, 3He, 4He, 5He, 6He, 7He and 8He). 
However, only the two isotopes 3He and 4He are stable. All other radioisotopes have 
a short lifetime. The longest lifetime is that of the isotope 6He with a half-life of 
806.7 ms; the isotope 2He is a hypothetical isotope that would be composed of two 
protons without any neutron, therefore called the “diproton”. 

– Lithium (Li) consists of two stable isotopes, 6Li and 7Li, the majority being the 
latter. 

– Beryllium (Be) has twelve known isotopes, with mass numbers ranging from  
5 to 16. Only the isotope 9Be is stable. For this reason, beryllium is called a 
monoisotopic element. A monoisotopic element is an element with only one stable 
isotope. 26 monoisotopic elements can currently be enumerated. Fluorine-19, 
sodium-23, aluminum-27 and phosphorus-31 can be cited in addition to beryllium-9. 

– Boron (B) has fourteen isotopes, of which only the two isotopes, 10B and 11B, 
are stable.  All have a short lifetime. The isotope 8B, with a half-life of 770 ms, has 
the longest lifetime. 

– Carbon (C) has 15 isotopes, with mass numbers ranging from 8 to 22. Of these 
isotopes, only 12C and 13C are stable. The radioisotope with the longest lifetime is 
carbon 14, with a half-life of 5,730 years. This isotope is widely used for the dating 
of dead plant or animal species (see Chapter 1, Volume 2), and is the only 
radioisotope present in nature. It is formed by the reaction: 14N + 1n → 14C + 1H.  
All other radioisotopes have a short lifetime. The isotope 11C, with a half-life of 
20.334 min, has the longest lifetime. 

– Nitrogen (N) has 16 isotopes with mass numbers between 10 and 25, and a 
nuclear isomer, 11mN, with a half-life of 6.90(80) × 10− 22 s (see the note at the end of 
this section for the definition of a nuclear isomer). Only the two isotopes 14N and 
15N, which are present in nature, are stable. 

– Oxygen (O) has 17 isotopes with mass numbers between 12 and 28, three of 
which, 16O, 17O, and 18O, are stable. The radioisotope with the longest lifetime is 
15O, with a half-life of 122.24 s. 

– Fluorine (F) is a monoisotopic element like beryllium. It consists of the only 
stable isotope, 19F. 
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– Neon (Ne) has 19 isotopes with mass numbers ranging from 16 to 34, three of 
which, 20Ne, 21Ne and 22Ne, are stable. The radioisotope with the longest lifetime is 
24Ne, with a half-life of 3.38 min.  

Among the most significant heavy isotopes are those of iron and uranium. 
Indeed, of all known nuclides, the most stable is that of iron isotope 56. In addition, 
the uranium-235 isotope is widely used in nuclear power plants for the production of 
electrical energy through the fission reaction. The stability data for iron and uranium 
isotopes are as follows. 

– Iron (Fe) has 28 isotopes with mass numbers ranging from 45 to 72, as well as 
six nuclear isomers [52mFe: 45.9 (6) s, 53mFe: 2.526 (24) min, 54mFe: 364 (7) ns, 
61mFe: 250 (10) ns, 65mFe: 430 (130) ns and 67mFe: 64 (17) µs]; the values given in 
square brackets correspond to the half-lives of the nuclear isomers. Of these 
isotopes, only 54Fe, 56Fe, 57Fe and 58Fe are stable. The lightest isotope, 45Fe, decays 
mainly (70%) by two-proton emission into 43Cr. The isotope 56Fe is the most stable 
of all nuclei (see section 1.6.4). 

– Uranium (U) has 26 isotopes, with mass numbers ranging from 217 to 242. It 
also has seven nuclear isomers [234mU: 33.5 (20) ms; 235mU: ~ 26 min; 238mU: 280 (6) 
ns; 239m1U: >250 ns; 239m2U: 780 (40) ns; 236m1U: 100 (4) ns; 236m2U: 120 (2) ns]. 
Uranium is a natural radioactive element and therefore has no stable isotope. The 
two isotopes 235U and 238U, present in appreciable quantities in the Earth’s crust with 
their decay products, have long half-lives. 235U is the only fissile isotope. 

The molar percentages of the most significant isotopes of the first ten elements 
of the periodic table and those of iron and uranium are presented in Table 1.2. 

NOTE.– generally, an excited nucleus normally returns to the lowest energy ground 
state after a fraction of a second. However, the nuclear transition to ground level 
can, in exceptional cases, be inhibited and significantly slowed down. The nucleus 
then remains in an abnormally long excited state. Such excited states are called 
metastable states. Nuclear isomerism is introduced to account for the existence of 
nuclei in different energy states. The term nuclear isomers describes the isomers of a 
nucleus that are all in a metastable state. The nuclear isomers are noted by attaching 
the letter “m” for “metastable” to the AX isotope being considered. Thus, a nuclear 
isotope is noted AmX. This is the case with the nucleus 11mN of the isotope 11N of 
nitrogen. A particularly significant example of a nuclear isomer in nuclear medicine 
is technetium99mTc (half-life 6.0058 hours) that remains several hours before 
returning to the normal state of technetium-99. Technetium-99m is obtained in 
hospitals from a precursor radioactive nucleus, molybdenum 99Mo, generally 
produced in a reactor and is very useful in nuclear medicine (see Chapter 3,  
Volume 2). 



42     Nuclear Physics 1 

Isotope Percentage  Isotope Percentage 
H1

1  99.9885%  16
8O  99.757% 

H2
1  0.00115%  17

8O  0.038% 

H3
1  Traces  18

8O  0.205% 

He3
2  0.000134%  19

9 F  100%* 

He4
2  99.999866%  20

10 Ne  90.48% 

Li6
3  7.59%  21

10 Ne  0.27% 

Li7
3  92.41%  22

10 Ne  9.25% 

9
4 Be  100%*  57

26 Fe  5.845% 
10
5 B  19.9%  56

26 Fe  91.754% 

11

5 B  80.1%  57
26 Fe  2.119% 

12

6C  98.93%  58
26 Fe  0.282% 

13
6C  1.07%  60

26 Fe  traces 
14
6C  traces  234

92U  0.0050 to 0.0059% 
14

7 N  99.636%  235
92U  0.7198 to 0.7202% 

15

7 N  0.364%  238
92U  99.2739 to 99.2752% 

Table 1.2. Molar percentages of the most significant isotopes of the first ten elements 
of the periodic table, and those of iron and uranium. The asterisk (*) refers to the 

monoisotopic elements being the only stable elements  

With the discovery of isotopes, mass spectrometry saw the light of day for 
isotopic analysis. Thus, instruments called mass spectrographs were manufactured, 
which allowed the separation of isotopes of a given substance according to their 
masses [EVA 61, OLS 91, SAK 16]. The principle of a mass spectrograph involves 
subjecting the isotope ions of a given chemical to the action of electric and magnetic 
fields. The electric field makes it possible to accelerate the ions while the magnetic 
field enables their trajectories to be bent. In the magnetic field, the lower the ion’s 
velocity, the more its trajectory is curved. In addition, the radius of curvature of the 
trajectory depends on the mass-to-charge ratio of the ion. The ions are then received  
on a photographic plate. Measuring the distance between the impact points of two 
ions on the plate enables them to be identified. 
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Frederick Soddy was a British radiochemist. In 1902 he established, together with 
Rutherford, the exponential law of radioactive decay. Soddy was awarded the Nobel Prize in 
Chemistry 1921 for his contributions on radioactive substances and for his research on the 
nature of isotopes.  

Box 1.10. Soddy (1877-1956) 

1.5.2. Mirror nuclei, Magic nuclei  

Nuclei known as mirror nuclei are used to study neutron/proton symmetry. 
These are pairs of nuclei with the same mass number, A, and where the proton 
number, Z, in one equals the neutron number, N, in the other. Thus, for mirror 

nuclei, the relationship Z – N = ± 1 is confirmed. For example, 7
3 Li  (Z – N = − 1) 

and 7
4Be  (Z – N = + 1). 

In addition, there exist particularly stable nuclei called “magic nuclei”. For a 
magic nucleus, the number of protons, Z, or neutrons, N, corresponds to complete 
nucleon shells (see Chapter 2, section 2.3). For such a nucleus, Z or N is thus a 
magic number. The magic numbers are: 2, 8, 20, 28, 50, 82 and 126. For example, 
4
2 He  (Z = 2; N = 2), 40

20 Ca  (Z = 20; N = 20), 208
82 Pb  (Z = 82; N =126). Note that these 

nuclei are also said to be doubly-magic nuclei since Z and N are all magic numbers. 

APPLICATION 1.12.– Determine the isospin of mirror nuclei. Conclude. 

ANSWER.– For mirror nuclei, Z – N = ± 1  N – Z =  ± 1. Using [1.29], we obtain: 
Tz = ± 1/2. The isospin of mirror nuclei is therefore equal to T = 1/2. 

CONCLUSION.– Mirror nuclei have the same isospin. 

1.6. Nucleus stability  

1.6.1. Atomic mass unit  

The mass-energy equivalence relationship reflects the fact that mass is a form of 
energy. It is expressed by the relationship E = mc2 with m the relativistic mass of the 
particle, c is velocity of light in a vacuum; E0 = m0c2 is called the mass energy, or the 
resting energy, of the particle of resting mass, m0. 
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As shown in Table 1.1, the mass of a nucleon is of the order of 10−27 kg. This 
mass, expressed in kg, is therefore very low. To have an appreciable mass, let us 
introduce a unit (more convenient than kg for calculations), called the atomic mass 
unit, noted u. By definition, the atomic mass unit is a twelfth of the mass of the 
carbon isotope 12C, i.e. [SAK 16]: 

1u =
12

1 m (12C)  [1.51] 

Yet, m (12C) = M (C)/NA = 12/NA with NA Avogadro’s number. Hence [1.51] is 
written: 

1u =
AN

1  (g)  [1.52] 

Knowing that NA = 6.02214179 × 1023 mol −1, then numerically: 

1u = 1.660538783 × 10−27 kg  [1.53] 

As result [1.53] indicates, the value of the atomic unit expressed in kg is of the 
order of the mass of a nucleon. Another much more convenient unit of mass is then 
introduced: MeV/c2. 

Applying the mass-energy equivalence relationship gives: 

E = mc2 = uc2   [1.54] 

Given that c = 299792458 m ⋅ s −1 and 1 eV = 1.6021794 × 10−19 J, using [1.54] 
and value [1.53], we obtain: 

=
×
××= −

−

19

227

106021794.1

)299792458(10660538783.1E  931.4923 MeV [1.55] 

Hence: 

1u = 931.5 MeV/c2  [1.56] 

Table 1.3 summarizes the nucleon and electron masses. 
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Particles Mass in atomic unit (u) Mass in MeV/c2 
Electron 5.485 799 094 3 × 10−4 0.510999910 

Neutron 1.00866491597 939.565346 

Proton 1.00727646677 938.272013 

Table 1.3. Electron and nucleon masses in u and MeV/c2 

1.6.2. Segrè diagram, nuclear energy surface  

To study the stability of the nuclei, it is convenient to represent each isotope with 
a point on a diagram (Z, N), with abscissa Z and ordinate N. The resulting graph 
(Figure 1.18) is called the Segrè diagram.  

 

Figure 1.18. Segrè diagram, the nuclear energy surface indicated  
in red, grouping together the stable nuclei for which Z = N 
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This diagram reveals the existence of four nuclide distribution zones according 
to the values of Z and N: 

– a red area, called the nuclear energy surface, or valley of stability, where the 
most stable nuclei are distributed; for Z < 30, note that the stable nuclei are located 
near the first N = Z  bisector; 

– an orange area occupied by unstable heavy nuclei that decay by α 
radioactivity; 

– a blue area occupied by nuclei presenting excess neutrons compared to stable 
nuclei with the same mass number, A; they decay by β  − radioactivity; 

– a green area occupied by nuclei presenting excess protons compared to stable 
nuclei with the same mass number, A; they decay by β + radioactivity. 

The modes of α and β decay are discussed in Chapter 3. 

Emilio Gino Segrè was an Italian-American physicist. In 1936 he discovered technetium, 
the first artificial element, then astatine in 1940 and later plutonium-239, whose fissionable 
character he demonstrated (239Pu would be used in the first atomic bomb [FER 64]). In 1945, 
Segrè established a map of nuclides to describe several of their properties graphically, 
marking them on a system of N/Z axes. He shared the Nobel Prize in Physics 1959 with 
American physicist Owen Chamberlain (1920-2006) for their discovery of the antiproton 
(negative proton).  

Box 1.11. Segrè (1905–1989) 

1.6.3. Mass defect, binding energy 

Let us compare, as an illustrative example, the sum of the proton and neutron 
masses separated at infinity and the rest to that of deuteron formed by the bound 
system {neutron-proton}. Using Table 1.3, we can derive the sum of the mass, mp, 
of the proton and mn of the neutron: mp + mn = 2.015941 u. Knowing that the mass 
of deuteron, md = 2.013553 u, we can thus see that: (mp + mn) > md. The deuteron 
nucleus lacks one mass: 

m = (mp + mn) − md = 0.002385 u > 0    [1.57] 

The missing mass [1.57] of the nucleus of deuteron is called a mass defect, 
counted as positive. By applying the mass-energy equivalence relationship, the 
missing mass is not lost. It is converted into binding energy thus ensuring the 
cohesion of the deuteron. 
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Generally, the mass defect of a nucleus noted  Δm is the difference between the 
mass of nucleons (protons and neutrons), separated at rest (infinity), and the mass of 
the nucleus formed at rest (Figure 1.19).  

By definition, for a nucleus of mass M (A, Z), mass number A, proton number Z 
and neutron number N = (A − Z): 

Δm = [Zmp + (A − Z)mn − M (A, Z)]  [1.58] 

 

Figure 1.19. Energy El necessary to separate, to infinity, the  
nucleons of a nucleus (example here: helium-4 nucleus)  

In addition, the binding energy, El, is the energy that must be provided to 
separate, at rest, to infinity, the nucleons of a nucleus as shown in Figure 1.18. Let 
us express the principle of energy conservation when separating nucleons: 

– initial state (nucleus at rest): Ei = M (A, Z) c2;  [1.59] 

– final state (nucleons at rest): Ef = ZMpc2 + (A − Z) mnc2. 

Using [1.59], the energy variation is then written: 

ΔE = Ef − Ei = [Zmpc2 + (A − Z) mnc2] − M (A, Z) c2 

This relationship enables us to derive the expression for the binding energy,  
El = ΔE, i.e.: 

El = {[Zmpc2 + (A − Z) mnc2] − M (A, Z)} c2  [1.60] 

Taking into account the mass defect [1.58] gives: 

El = Δmc2  [1.61] 

  nucleons at rest, 
infinitely 

nucleus at rest 
M (A, Z) 

neutron mn

proton mp 

E 
Ef 

Ei 

El = (Ef − Ei) 



48     Nuclear Physics 1 

Relationship [1.61] reflects the mass-energy equivalence in the case of a nucleus. 
As the mass defect, Δm, is positive, then according to [1.61], the binding energy, El, 
is also positive. This sign is characteristic of a bound system such as the nucleus. 
Thus, for an unbound system, Δm < 0  El < 0. 

APPLICATION 1.13.– Determine the binding energy of deuteron, the α particle, the 
iron isotope 56Fe (Z = 26; MFe = 55.9206 u), and the uranium-238 isotope, 238U  
(Z = 92; MU = 238.0003 u). Conclude.  

We will use the data given in Table 1.3. In addition: mα = 4.0015 u; 1u =  
931.5 MeV/c2.  

ANSWER.–  

– For deuteron, using [1.57] we obtain: 

El (
2H) = Δmc2 = 0.002385 uc2 = 0.002385 × 931.5 = 2.22 MeV 

– For the α particle (helium nucleus): 

El (
4He) = 2 × [mp + mn] c2 − mαc2  

NOTE.– 

El (
4He) = (2 × 2.015941− 4.0015) × 931.5 = 28.30 MeV 

– For the iron-56 nucleus and uranium, we obtain, as above: 

El (
56Fe) = (26 × 1.00727646677 + 30 × 1.00866491597 − 55.9206) × 931.5 = 

492.331 MeV 

El (238U) = (92 × 1.00727646677 + 146 × 1.00866491597 − 238.0003) × 931.5 
= 1801.719 MeV 

In summary: 

El (2H) = 2.22 MeV;          El (4He) = 28.30 MeV     [1.62a]  

El (56Fe) = 492.331 MeV; El (238U) = 1801.719 MeV    [1.62b] 

CONCLUSION.– the more nucleons there are in the nucleus, the greater the binding 
energy. 
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1.6.4. Binding energy per nucleon, Aston curve  

As we found in application 1.13, the binding energy of a nucleus rises with the 
increase in the number of nucleons. However, experience shows that a nucleus is not 
more stable the higher its binding energy is. For this reason, binding energy is not a 
good indicator for comparing nucleus stability. To achieve this, let us define the 
binding energy per nucleon. We thus show that a nucleus is not more stable the 
higher its binding energy (E/A) is. The binding energy per nucleon is of the order of 
8 MeV. 

APPLICATION 1.14.– Verify by calculating which of the nuclei of iron-56 and 
uranium-238 is most stable. 

ANSWER.– Using [1.62b], we obtain: 

El (
56Fe)/A = 492.331/56 = 8.79 MeV/nucleon   [1.63a] 

El (
238U)/ A = 1801.719/238 = 7.57 MeV/nucleon  [1.63b] 

El (
56Fe)/A > El (238U)/ A: the nucleus of iron-56 is more stable than that of 

uranium-238.  

In the general case, let us look at the variation of the curve − El/A = f (A). A 
valley-shape curve is obtained whose bottom is occupied by the nucleus of iron-56 
with binding energy per nucleon equaling 8.8 MeV (Figure 1.20) in accordance with 
result [1.63a]. This graph, called the Aston curve shows that the nucleon of iron-56 
is the most stable of all nuclei.  

The shape of the Aston curve calls for four main observations:  

– light nuclei such as deuteron 2H and triton 3H can fuse to give heavier stable 
nuclei located in the valley; 

– the curve presents something of a plateau for 50 < A < 100 with a minimum for 
A = 56. These nuclides correspond to the most stable nuclei; 

– for A > 100, the curve increases slightly; the corresponding heavy nuclei are 
less stable; 

– very heavy nuclei for A > 200 may undergo fission reactions to give lighter, 
more stable nuclei. 
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Figure 1.20. Aston curve 

Thermonuclear fusion and nuclear fission reactions are nuclear reactions that are 
induced, i.e., not spontaneous. These reactions are therefore not studied in this book. 
However, as an illustration, let us give an example of a fusion reaction and another 
example of a fission reaction to account for the fact that the products of these 
induced reactions are more stable than the starting nuclides. 

– Fusion of deuteron 2H and triton 3H:  

nHeHH 1
0

4
2

3
1

2
1 +→+     [1.64]  

– Fission of uranium-235 under the impact of a neutron, n:  

1 235 94 140 1
0 92 38 54 02n U Sr Xe n γ+ → + + +   [1.65]  

The nucleus of helium 4He obtained after the fusion reaction [1.64] is much more 
stable than deuteron 2H and triton 3H, in accordance with their positions on the Aston 
curve (Figure 1.20). Likewise, products of fission 94Sr (strontium-94) and 140Xe  
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(xenon-140) are more stable than the original 235U uranium nucleus (see  
application 1.15). 

APPLICATION 1.15.– Compare the stability of the nuclei of strontium-54, uranium-
235 and xenon-140 using a horizontal axis. We will classify the nuclides in order of 
increasing stability. In addition, we will use the data given in Table 1.3. 

Additional data: M (235U) = 235.04392 u; M (94Sr) = 93.91536 u; M (140 Xe) = 
139.91879 u. 

ANSWER.– Simply compare the binding energy per nucleon of each nuclide. Using 
[1.60], we obtain: 

– El (
94Sr) = (38 × 1.00727646677 + 56 × 1.00866491597 − 93.91536) × 931.5 = 

788.404 MeV; 

– El (
140Xe) = (54 × 1.00727646677 + 86 × 1.00866491597 − 139.91536) × 931.5 

= 1138.993 MeV; 

– El (235U) = (92 × 1.00727646677 + 143 × 1.00866491597 − 235.04392) × 
931.5 = 1736.873 MeV. 

The binding energies per nucleon are thus equal to: 

El (
94Sr)/A = 788.404/94 = 8.4 MeV/nucleon        [1.66a] 

El (
140Xe)/A = 1138.993/140 = 8.1 MeV/nucleon       [1.66b] 

El (
235U)/A = 1736.873/235 = 7.4 MeV/nucleon           [1.66c] 

Considering results [1.66], the nuclides considered are classified in order of 
increasing binding energy per nucleon (Figure 1.21).  

 

Figure 1.21. Comparison of the stability of the nuclei of uranium-238,  
strontium-54 and xenon-140. The products of the fission reaction  

[1.65] are much more stable than the starting uranium-238 
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Francis William Aston was a British chemist and physicist. He is famous for having 
developed the Aston spectrograph in 1919. The curve for locating the most stable nuclides in 
the valley of stability is named in his honor. He was awarded the Nobel Prize in Chemistry 
1922 for his discovery, using his mass spectrometer, of isotopes of a large number of  
non-radioactive elements and for his formulation of the whole-number rule.  

Box 1.12. Aston (1877-1945) 

1.6.5. Separation energy of a nucleon 

The experimental study of the variation in the separation energy of a nucleon 
from a nucleus provides an idea of its cohesion. By definition, the separation energy 
of a nucleon is the energy required to remove a nucleon from the nucleus. Nucleon 
separation energies are analogous to the first-ionization potential of neutral atoms 
(extraction of an electron). 

For a nucleus of mass M (Z, N), an isotope of mass M (Z, N − 1) is obtained if a 
neutron is removed, and an isotone of mass M (Z − 1, N) if a proton is removed. By 
convention, Sn (Z, N) is used to designate the separation energy of a neutron and Sp 
(Z, N) designates the separation energy of a proton. These energies are given by the 
following respective expressions: 

Sn (Z, N) = [M (Z, N − 1) + mn − M (Z, N)]c2   [1.67a] 

Sp (Z, N) = [M (Z − 1, N) + mp − M (Z, N)]c2   [1.67b] 

According to the binding energies, El, relationships [1.67] are written: 

Sn (Z, N) = El (Z, N) − El (Z, N − 1)  [1.68a] 

Sp (Z, N) = El (Z, N) − El (Z − 1, N)  [1.68b] 

APPLICATION 1.16.– Demonstrate relationships [1.48]. 

ANSWER.– Let us consider the binding energy definition relationship [1.60] by 
noting the mass M (A, Z) of the nucleus with M (Z, N). Knowing that N = A − Z, we 
obtain:  

El (Z, N) = {[ZMp + Nmn] − M (Z, N)}c2  [1.69] 
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For the isotope of mass M (Z, N − 1) corresponding to the removal of a neutron, 
the binding energy is calculated from relationship [1.69]. Thus: 

El (Z, N − 1) = {[Zmp + (N − 1) mn] − M (Z, N − 1)}c2  [1.70a] 

For the isotone of mass M (Z − 1, N) corresponding to the removal of a proton, 
we obtain:  

El (Z − 1, N) = {[(Z − 1) mp + Nmn] − M (Z − 1, N)}c2  [1.70b] 

By subtracting [1.69] from [1.70], we find, respectively: 

El (Z, N) − El (Z, N − 1) = {M (Z, N − 1) + mn − M (Z, N)}c2   [1.71a] 

El (Z, N) − El (Z − 1, N) = {M (Z − 1, N) + mp − M (Z, N)}c2  [1.71b] 

By comparing relationships [1.67] and [1.71], relationships [1.68] are found. 

As shown in equations [1.68], the separation energy of a neutron represents the 
increase in the binding energy, El (Z, N − 1) when a neutron is added to the smallest 
isotope (Z, N − 1), giving the isotope (Z, N) (equation [1.68a]). Similarly, the 
separation energy of a proton represents the increase in the binding energy,  
El (Z − 1, N) when a proton is added to the smallest isotone (Z − 1, N), giving the 
isotone (Z, N) (equation [1.68b]). For these reasons, the separation energies of a 
neutron, Sn (Z, N) or a proton, Sp (Z, N) are also referred to, respectively, as the last 
neutron separation energy (i.e. the last neutron added) or last proton separation 
energy (the last proton added). 

APPLICATION 1.17.– Determine the separation energy of the last neutron for the 7
3 Li  

nucleus and the separation energy of the last proton for the 16
8O  nucleus. We will 

start by writing the nucleon extraction equations for the two cases considered. 

Given data: mn = 1.0087 u; mp = 1.0073 u; M (3.4) = 7.0143 u; M (3.3) =  
6.0135 u; M (8.8) = 15.9905 u;  

M (7.8) = 14.9963 u; 1u = 931.5 MeV/c2. 

ANSWER.– For the extraction equations of a lithium-7 neutron and an oxygen-16 
proton, we obtain: 

– extraction of a lithium-7 neutron, the lithium-6 isotope is obtained: 

nLiLi extraction 1
0

6
3

7
3 +⎯⎯⎯ →⎯    [1.72a] 
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– extraction of an oxygen-16 proton, the nitrogen-15 isotone is obtained: 

16 15 1
8 7 1

extractionO N H⎯⎯⎯⎯→ +   [1.72b] 

Using [1.67], we obtain: 

Sn (3.4) = [M (3.3) + mn − M (3.4)]c2 [1.73a] 

Sp (8.8) = [M (7.8) + mp − M (8.8)]c2    [1.73b] 

Numerically, we thus obtain: 

Sn (3.4) = [6.0135 + 1.0087 − 7.0143] × 931.5 = 7.359 MeV ≈ 7.4 MeV  

Sp (3.4) = [14.9963 + 1.0073 − 15.9905] × 931.5 = 2.203 MeV ≈ 12.2 MeV 

1.6.6. Nuclear forces  

In principle, nuclei should be unstable due to Coulomb repulsion between 
protons. Nuclear forces are manifested at a very short range equaling around  
2 × 10–13 cm). At this distance, they are attractive and thus mask the forces of 
Coulomb repulsion between protons of the same nucleus. This explains the stability 
of the nuclei. Nevertheless, for distances under than 5 × 10–14 cm, nuclear forces are 
repellent as if there is an impenetrable hard core of nucleons within the nucleus. As 
we saw in section 1.3.4, the introduction of isospin is based on the fundamental 
assumption that pp, pn or nn nuclear interaction is the same owing to the charge 
independence of nuclear forces. The cohesion of the nuclei is explained by the 
existence of so-called nuclear forces. These forces are attractive and independent of 
the electrical charge 

1.7. Exercises 

EXERCISE 1.1.– Lifetime of the Rutherford planetary atom 

Let us account for the instability of the planetary atomic model according to 
Rutherford. For this purpose, let us consider the electron of the hydrogen atom in 
motion around the proton. 

a) Show that the electron is subjected to a central acceleration. 
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b) According to the conceptions of classical electrodynamics, any charged 
particle animated by accelerated motion emits electromagnetic waves. The loss of 
energy per unit time (radiated power) is expressed by the relationship: 

2
2

3
0

2

3 4

dE e a
dt cπε

− =   [1.74] 

In [1.74], a designates the acceleration of the particle. 

i) Is Rutherford’s atomic model then stable according to the conceptions of 
classical electrodynamics? Substantiate the answer. 

ii) Show that the radius, r, of the electron orbit confirms the differential 
equation: 

4

1d A
dr r r

  = 
 

    [1.75]

 

with A a constant that will be explained below. 

iii) Considering the fall of the electron from its initial position, r = a0, express 
the duration, Δt, of the falling motion of the electron on the proton. Deduce 
therefrom the lifetime of the hydrogen atom. 

Given datum: Bohr radius, a0= 52.9 pm. 

EXERCISE 1.2.– Discovery of isotopes 

In 1886, Goldstein discovered positively charged rays that he named “canal 
rays”. Sir J.J. Thomson showed in 1912, using the device presented in Figure 1.22, 
that these “canal rays” were composed of ions of two neon isotopes. 

 

Figure 1.22. Simplified Thomson device for  
identifying the canal rays discovered by Goldstein 

                                                          y

                                     

                         

 

                                

E   S 
Ω

x

Ol

B  
v    



56     Nuclear Physics 1 

A beam consisting of positive ions moving along the SO axis, and different velocity 

vectors, v


, is subjected to the simultaneous actions of an electric field, ,E


 and a 

magnetic field, B


, which are parallel and facing the same way (in the Oy axis 
direction). Let l = ΩO be the width of the portion of space on which both fields are 
active. 

a) Express the vertical deviation, y, of an ion of charge q, velocity v and mass m, 

subjected to the action of the electric field, E , alone. 

b) Similarly, express the horizontal deviation, x, of the same ion, subjected to the 
action of the magnetic field, B


, alone. We will assume that the deviation angle is 

small. 

c) Under the conditions of the experiment, the x and y coordinates of the particle 

when the E  and B


 fields are started up simultaneously are virtually equal to those 
obtained when they act alone. Establish the Cartesian equation of the trace formed 
on the screen by the impacts of ions of the same charge and mass but of different 
velocities. What shape is this trace? 

d) What happens if the beam consists of ions of different mass charges, q/m? 

e) In the case where the ion source is neon, two arcs of parabola can be observed 
on the screen, the extensions of which are tangent at O to the Ox axis. 

i) Why are the parabolas not drawn up to point O? 

ii) On the first parabola, note the Cartesian coordinates of a point, M1: x1 = 
12.0 mm; y1 = 4.5 mm. On the second parabola, the coordinates of a point M2 are 
noted: x2 = 10.9 mm; y2 = 4.1 mm. Show that these are the traces of the two isotopes, 
20 +
10 Ne and 22

10 Ne+ , of neon.  

Given data:  

– atomic molecular mass of +Ne20
10 : 20 × 10−3 kg · mol −1; 

– atomic molecular mass of 22
10 Ne+ : 22 × 10−3 kg · mol −1. 

Eugen Goldstein was a German physicist. He is known as one of the first to study 
discharge tubes and is famous for discovering anode rays, or canal rays. The positive ions 
produced in the discharge flow from the anode to the cathode in the opposite direction to the 
cathode rays. These ions, which arrive at one of the holes (canals) of the cathode, cannot 
reach it, because of their inertia. They thus form a “ray”, the cross-section of which is that of 
the hole. In 1886, Goldstein called these positive rays “canal rays” because they appeared to 
pass through a canal. 

Box 1.13. Goldstein (1850–1930) 
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EXERCISE 1.3.– Mass spectrograph 

An ionization chamber (IC) produces 79Br− and 81Br− isotope ions of charge q 
and respective masses, m1 and m2. These ions penetrate with negligible velocity at O 
into a vacuum chamber (A) where they are accelerated by a constant voltage, U0.  

 

Figure 1.23. Simplified diagram of a mass spectrograph  

They then exit at S with velocity v  to penetrate into a magnetic deflector (C) 

where there is a uniform magnetic field B  perpendicular to the plane of the figure. 
The two types of ions are then collected in the collectors (C1) and (C2), where they 
penetrate from orifices O1 and O2, respectively (Figure 1.23). All orifices are 
assumed to be point-like.  

a) Express the input velocity, v, of an ion of mass m and charge q in the magnetic 
deflector according to m, q and U0.  

b) Show that the trajectory of an ion in the magnetic deflector is planar and 
circular. What, then, is the nature of the motion?        

c) Identify by name the ion collected in the collector (C1). Now plot the 
trajectories of the ions up to the two collectors.       

d) Express the distance D = O1O2. Perform the numerical application. 

e) Within one minute, the collectors (C1) and (C2) receive, respectively, the 
following amounts of electricity: Q1 = − 6.60 × 10−8 C and Q2 = − 1.95 × 10−8 C. 
Determine the composition of the isotope ion mixture.   

Given numerical data: 

– absolute value of the ion charge: |q| = 1.6 × 10−19 C;  
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– applied voltage: |U0| = 4 kV; 

– ion masses: m1 = 1.310 4 · 10−25 kg; m2 = 1.343 6 × 10−25 kg; 

– magnetic field value: B = 0.10 T. 

EXERCISE 1.4.– Separation of the uranium isotopes, 235U and 238U 

Natural uranium essentially contains two isotopes of different masses:  
uranium-235 and uranium-238. 

 

Figure 1.24. Uranium isotope trajectories in a magnetic deflector 

One of the historical processes for separating these isotopes is based on the 
difference between the radii of curvature of the trajectories of ionized atoms in 
motion in a uniform magnetic field using a mass spectrograph. First, the neutral 
atoms are injected into an ion source where they each lose one electron. Thus, the 
ions formed in this way each carry the same electrical charge, q = + e. They exit the 
ion source with negligible velocity, then they are accelerated from O to A by a 
constant electrical voltage, U0 = VP – VP’, applied between the two metal plates, P 
and P’ (Figure 1.24). The ions then penetrate at A with a velocity of direction 
perpendicular to the plates in a region where there is a uniform magnetic field, B


, 

perpendicular to the direction of the electric field, E


, created between the two 
plates. 

a) The ions of an isotope i (i = 1, 2) penetrate into the magnetic deflector with a 
velocity of vI. Express values v1 and v2 of the respective velocities of the uranium 
235 and 238 ions according to the charge, the mass of the corresponding ion and the 
accelerating voltage. Calculate v1 and v2. 

b) Beyond point A, the ions travel with circular trajectories located in the plane 
of Figure 1.23. R1 designates the radius of trajectory AI and R2 the radius of 

                               

                                                 

 

P 

P’ 

                               

 

  

 

O
S

(I)

(II)

A
I J

E  

B  



Overview of the Nucleus     59 

trajectory AJ.  Calculate R1 and R2 and express the distance l = IJ between the two 
traces I and J of the isotope ions. Calculate l. 

c) The ion current from the source corresponds to an intensity of 10 µA. 
Knowing that natural uranium contains, in number of atoms, 0.7% light isotope (the 
only fissile), what is the mass, in µg, of this isotope collected in 24 hrs? 

Given data:  

– B = 0.10 T; U0 = 4 kV; e = 1.6 × 10−19 C;  

– atomic mass unit (u): 1 u = 1.66 × 10−27 kg; 

– Avogadro’s number: NA = 6.02 × 1023 mol −1; 

– mass of the uranium-235 ion: m1 = 235 u;  

– mass of the uranium-238 ion: m2 = 238 u. 

1.8. Solutions to exercises   

SOLUTION 1.1.– Lifetime of the Rutherford planetary atom 

a) Nature of electron acceleration 

In the Frenet frame (M,τ , n


), a particle in circular motion with the velocity v  is 
subjected to the acceleration given by the relationship: 

2dv va n
dt

τ
ρ

= +
  

    [1.76] 

In relation [1.76], ρ is the radius of curvature of the trajectory. 

The motion of the electron of the hydrogen atom is uniform, therefore v = const. 
By writing ρ = R, we obtain, according to [1.76]: 

2

n
va a n
R

= =
  

  [1.77] 

b) Planetary atomic model 

i) Stability  

According to the conceptions of classical electrodynamics, the electron of the 
hydrogen atom subjected to central or centripetal acceleration [1.77] radiates energy.  
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This loss of energy through radiation induces a falling motion in the electron that 
eventually falls on the nucleus. Yet this does not happen because the hydrogen atom 
exists as a stable bound system: the Rutherford atomic model is therefore unstable. 

ii) Demonstration 

The total mechanical energy of the bound system {proton – electron} 
constituting the hydrogen atom is given by the relationship: 

r
ekrE
2

)(
2

−=   [1.78] 

Furthermore, the electric force between the proton and the electron being a 
central force in 1/r2, the kinetic energy Ec (r) = − E (r), thus, by using: 

2
21

( )
2 2c

eE r mv k
r

= =   [1.79] 

By deriving v from [1.79], we obtain the relationship: 

4
4 2

2 2

ev k
m r

=   [1.80] 

Given that acceleration a = an = v2/r, the radiated power [1.74] is written, taking 
into account [1.80]: 

432

63

2

4

3

2 1

3

2

3

2)(

rcm
ek

r
v

c
ke

dt
rdE ××=×=−   [1.81] 

If we then derive [1.78] with respect to time and then take into account [1.81], 
we obtain: 

2 3 6

2 3 4

( ) 1 2 1
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dE r ke d k e
dt dt r m c r
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Which then gives: 
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k eA
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=   [1.82] 
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iii) Lifetime of the hydrogen atom 

At instant t0 = 0, the electron is at the distance r = a0 from the proton. When it 
falls on the proton at instant tc, then r = 0. By integrating [1.82] between the limits 
t0, tc and a0 and 0, we obtain, using the expression of A, according to [1.82]:  

Δt = A(tc – t0) = 
3

3
0a  

2 3 3
0

2 44

m c a
t

k e
Δ =   [1.83] 

NOTE.– 

11
41929

31138231

10559.1
)106.1()109(4

)1029.5()103()101.9( −
−

−−
×=

××××
×××××=Δt  ≈ 1.6 × 10 −11 s. 

SOLUTION 1.2.–  Discovery of isotopes 

a) Expression for vertical deviation 

The electric field acts alone. Drawing on the theorem of the center of inertia, we 
obtain: 
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EqamF   [1.84] 

On the screen , x = l  t = l/v. We obtain, according to [1.84]: 

2

2

1

2

qEly
mv

=   [1.85] 

b) Expression for horizontal deviation  

The magnetic field acts alone. Likewise we obtain: 

2

2

22

2

0

1

2

d y y vt
dtF ma qv B qvBx td x qvB

m
mdt

 ==  = = ∧    = = 

   
  [1.86] 
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On the screen , y = l  t = l/v. Using [1.86], we obtain: 

2

2

2

1

mv
qEly =

  [1.87] 

c) Cartesian equation, the nature of the trace formed on the screen 

Using [1.85] and [1.87] we obtain: 

2
22

2 x
lmB

E
q
my =

  [1.88] 

The trace is a parabola of vertex O. 

d) Case of an ion beam of different mass charges 

For ions of different mass/charge ratios, q/m, separate parabolas are obtained on 
the screen: the isotopes are then separated. 

e) Observation on the screen  

i) Explanation 

Since the velocities of the ions are low, they are deflected before arriving at O. 
The impact points of ions of the same charge and mass but of different velocities are 
then distributed over two arcs of parabola whose extensions are tangent at O to the 
Ox axis.  

ii) Isotope identification 

For an ion (i) we obtain, according to [1.88]: 

2

2 2
2 i

i i

xq E
m yB l

=   [1.89] 

Using [1.89], we then obtain: 
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  [1.90] 
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Experimental results: in M1: x1 = 12.0 mm; y1 = 4.5 mm; in M2: x2 = 10.9 mm;  
y2 = 4.1 mm. We then find, numerically, according to [1.90]:  

2
2

2
1

2 2

1 1

12 4.1
1.104

4.510.9

22
1.100

20

m
m
m A u
m A u


= =



 = = =

  [1.91] 

The results [1.91] show that the isotopes are those of neon, 20Ne+ and 22Ne+.  

SOLUTION 1.3.– Mass spectrograph 

a) Expression for input velocity 

Let us apply the theorem of kinetic energy. We obtain: 

m
Uq

vUqmv 0
0

2 2

2

1 ==   [1.92] 

b) Demonstration 

– Nature of the trajectory 

Let us consider a portion of the trajectory of an ion of charge q in the Frenet 
frame (Figure 1.25). 

 

Figure 1.25. Portion of the trajectory of a particle  
of charge q in motion in a magnetic deflector  
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Let us determine the power developed by the Lorentz force acting on the particle. 
Taking into account the properties of the vector product, we obtain:  

0)( =⋅∧=⋅= vBvqvFP
  [1.93] 

Using [1.93], the kinetic energy theorem gives: 

ΔEc = W ( F ) = PΔt = 0  v = constant  [1.94] 

The motion of an ion in the magnetic deflector is therefore uniform according to 
[1.94]. Let us show that the trajectory described by the ion is planar. 

Let us determine the scalar product ka ⋅  in the Frenet frame. Knowing that 

B B k= ⋅
 

 (see Figure 1.25), we obtain, by deriving the acceleration from the first of 

relationships [1.86]: 

0
qa k v B k
m

 ⋅ = ∧ ⋅ = 
 

    
  [1.95] 

Knowing that az = 0 according to [1.95] and that at instant t = 0, the particle is at 
the origin point, O (z0 = 0, v0Z = 0), then the time equation of the motion along Oz is 
written: 

0
2

1
)( 00

2 =++= ztvtatz zz   [1.96] 

The z coordinate = 0, the particle motion occurs in the xOy plane, orthogonal to 
the magnetic field; the trajectory described by the particle is therefore planar. 

– Nature of the motion  

Using expression [1.77] for the acceleration and the first of relationships [1.86], 
we obtain: 

Bq
mvR = = Constant   [1.97] 

The velocity [1.94] and the radius of curvature [1.97] are constant: the motion of 
an ion in the magnetic deflector is uniform circular motion.  
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c) Identification of the ion collected in the collector (C1)   

According to [1.97], the ion collected in the collector (C1) has a trajectory with 
the smallest radius and therefore with the smallest mass, m = Au: it is 79Br− and 
81Br−.  The shape of the trajectories of the two ions is shown in Figure 1.26. 

d) Expression of the distance, D, numerical application 

The distance D = O1O2 = 2(R2 – R1). Thus, using [1.97] and [1.92]: 

( )0
2 2 1 1 2 1

22 2
( )

U
D m v m v m m

eB B e
= − = −   [1.98] 

NOTE.–  
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−D  m   

Thus: D = 20 mm 

 

Figure 1.26. Circular trajectories of  
isotope ions in the magnetic deflector  

e) Composition of the isotope ion mixture  

In one minute, the collectors (C1) and (C2) receive the amounts of electricity, Q1 
and Q2, respectively. The total charge, Q = |Q1| + |Q2|. This then gives: 
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Q1 = − 6.60 × 10−8 C; Q2 = − 1.95 × 10−8 C  Q = 8.55 × 10−8 C. 

79Br −: x1 =|Q1|/Q = 77.19%; 80Br−: x2 =|Q2|/Q = 22.81% 

SOLUTION 1.4.– Separation of the uranium isotopes, 235U and 238U. 

a) Velocity expressions and values 

Drawing on the theorem of kinetic energy, we obtain: 

uA
eU

m
qU

vqUvmvm
ii

i
00

0
2
22

2
22

22
2 ====   [1.99] 

NOTE.– 235U: v1 = 5.73 × 104 m  ⋅ s −1; 238U: v2 = 5.69 × 104 m  ⋅ s −1  

b) Radius values: expression and value of the length between traces 

– Radius value 

The radius of curvature of the trajectory of an ion is given by [1.97]. Taking 
account of [1.99],  for an ion, i, we obtain: 

021i i im v U Au
R

q B B e
= =   [1.100] 

NOTE.– 
235U+: R1 = 1.397 m; 238U+: R1 = 1.406 m. 

– Value of the length between traces 

The value of l is given by the expression [1.98], which we write in the form: 

( )0
2 1

22 U u
l A A

B e
= −   [1.101] 

NOTE.– l ≈ 18 mm. 

c) Mass of uranium-235 collected 

Let Q be the amount of electricity that has circulated. Using N to designate the 
number of particles (here uranium-235 isotope ions), n for the number of moles of 
ions and NA for Avogadro’s number, the following relationships are obtained: 
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Knowing that the  235U isotope contributes 0.7% to the ion current, using [1.102], 
we obtain a mass: 

1
1 0.7 %

A

ItA
m

eN
=   [1.103] 

NOTE.– m1 ≈15 µg. 
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Nuclear Deexcitations 

Overall objective 

To describe the processes of nuclear deexcitation 

Specific objectives 

To compare the internal conversion 
probabilities of a K-electron, L-electron, and 
M-electron 

To determine a γ-deexcitation probability 
based on Weisskopf estimates 

To compare the shell structures derived from 
a harmonic potential and a Woods–Saxon 
potential 

To differentiate between bound and virtual 
levels of nuclei 

To know the expression of the quantified 
energy of a nucleon subjected to a harmonic 
potential 

To distinguish between the different internal 
conversion γ-deexcitation processes 

To know the order of the quantum states of a 
nucleon within the framework of the shell 
model 

To distinguish the parity of an electric 
multipole from that of a magnetic multipole 

To know the quantum numbers 
characterizing the individual state of a 
nucleon 

To distinguish between electric multipole 
transitions and magnetic multipole 
transitions 

To know the conditions of nuclear 
deexcitation by nucleon emission 

To deduce the expression of binding energy 
from the Bethe–Weizsäcker formula 

To know the spectroscopic notation of a 
nucleonic state 

To establish the relationship between the 
half-life of an excited nuclear level and the 
internal conversion coefficient 

  
                                 

For a color version of all of the figures in this chapter, see www.iste.co.uk/sakho/nuclear1.zip. 

Nuclear Physics 1: Nuclear Deexcitations, Spontaneous Nuclear Reactions
First Edition. Ibrahima Sakho. 
© ISTE Ltd 2021. Published by ISTE Ltd and John Wiley & Sons, Inc.
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To know the classification of the  
γ-transitions according to the multipole order 

To explain the mechanism of nuclear 
deexcitation by delayed-neutron emission 

To know the principle for determining 
coefficients in the Bethe–Weizsäcker formula 

To explain the shell structure derived from a 
Woods–Saxon potential, with spin-orbit 
coupling 

To describe the Hamiltonian of a nucleon 
subjected to the Woods–Saxon potential with 
spin-orbit coupling 

To express the total half-life of an excited 
state as a function of partial half-lives of 
deexcitation by γ-photon emission and 
conversion electron emission 

To describe the nuclear shell model 
To express the total conversion coefficient 
according to the partial conversion 
coefficients 

To describe the liquid-drop model 
To perform the energy balance of nuclear 
deexcitation by nucleon emission 

To define the multipole order of γ-radiation 
To correlate virtual nuclear levels with 
deexcitation processes by emission of 
particles (n, p, α, etc.) 

To define the internal conversion coefficient 

To make the link between X-photon emission 
and internal conversion and electronic 
capture phenomena, thus creating an 
electronic gap 

To define the total probability per unit time 
of nuclear deexcitation 

To interpret the shape of the harmonic 
potential of depth V0 

To determine the J π of the ground state of a 
given nucleus 

To interpret the shape of the Woods–Saxon 
potential 

To determine the J π of the excited states of a 
given nucleus 

To interpret the variation in the αK 
conversion coefficient with the atomic 
number  

To determine the K-shell internal conversion 
coefficient for electric multipole transitions 
and magnetic multipole transitions 

To interpret the variation in the K–shell 
internal conversion coefficient with the 
energy of nuclear transition and of the 
multipole order 

 To determine the degree of degeneracy of a 
nucleonic state according to the shell model 

To interpret the terms in the Bethe–
Weizsäcker formula 

To determine the distribution of nucleons of 
a light nucleus according to the shell model 

To justify the preference for the Woods–
Saxon potential over the Yukawa potential 

To determine an atomic mass from the 
Bethe–Weizsäcker formula 

To use the nucleonic level filling rules 

To determine the angular momentum and 
parity of a nucleonic state 

To use the principles of angular momentum 
and parity conservation 
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Prerequisites 

Spin-orbit coupling in hydrogen-like systems Laws of restricted relativity 

Stationary Schrödinger equation Energy and momentum conservation laws 

Hamiltonian of hydrogen-like systems Atomic model of the electron shells 

Hamiltonian of hydrogen-like systems in the 
weakly relativistic domain 

Classical harmonic oscillator 

Orbital angular momentum operator 
properties 

Three-dimensional quantum harmonic 
oscillator 

Potential wells in quantum mechanics  

2.1. Nuclear shell model 

2.1.1. Overview of nuclear models 

Nuclear models enable the internal structure and properties of nuclei to be 
studied. None of the models proposed offer a precise explanation of all of the 
experimental observations related to the structure and properties of nuclei. Each of 
these models is limited to a certain field of validity, according to the basic 
hypotheses formulated to develop them. In general, depending on the type of weak 
or strong interaction adopted, nuclear models can be classified into two categories: 
the model of independent particles, in which nucleon interactions are weak (such as 
the nucleon shell model) and the model of strongly correlated particles, in which 
nucleon interactions are very strong (such as the liquid-drop model, the collective 
model, etc.).  

The shell model is similar to the electronic shell model of atomic systems and 
allows the interpretation of physical phenomena related to nuclear angular momenta 
and magnetic moments, parity and dipole moment of ground states and weakly 
excited states of nuclei. This model also helps to explain the particular stability of 
the magic nuclei.  

The liquid-drop model helps explain nuclear phenomena that it is not possible to 
describe within the framework of the shell model. Many phenomena related to the 
binding energy of ground levels of nuclei, the energy of α and β decay, nuclear 
fission, etc., are successfully interpreted within the framework of the liquid-drop 
model. In this book, we will focus the study on the case of the shell model and the 
liquid-drop model for the reasons set out above.  
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NOTE.– Within the framework of the collective model, nucleons in strong interaction 
are described as evolving in vibrational and rotational motions. In this case, the 
nucleus can be likened to a molecule, and can therefore undergo vibrational and 
rotational excitations. 

2.1.2. Individual state of a nucleon  

By analogy with atomic electrons, the state of a nucleon in the nucleus is 
described by the following quantum numbers [EVA 61, BLA 99, BRÖ 01, STÖ 07, 
MAY 17]:  

1) the principal quantum number, n, characterizing each nucleon shell; n, a 
positive integer;  

2) the orbital quantum number,  , characterizing the motion of each nucleon in 
the nucleus; it takes the values: 0, 1, 2, etc. n – 1; this quantum number is associated 
with the orbital magnetic quantum number, m , characterizing the projection of the 

orbital angular momentum, l


, along a preferred direction; it takes the possible 

values: − ≤ m ≤ +  , that is, in total, (2+1) values; 

3) the spin, s = 1/2; the spin is associated with the magnetic quantum number of 
spin, ms, characterizing the projection of the orbital angular momentum, s


, along a 

preferred direction; it takes two possible values: ms = ± 1/2, that is, in total, (2s +1) 
values; 

4) the total quantum number, j, taking the spin-orbit coupling into account; this 
quantum number is associated with the total magnetic quantum number, mj, 

characterizing the projection of the orbital angular momentum, j , along a preferred 

direction: it takes the possible values: − j ≤ mj ≤ + j, that is, in total, (2j +1) values.  

According to the vector addition rule, the total angular momentum, j


, reflecting 

the spin-orbit coupling is given by the relationship: 

j l s= +
  

 [2.1] 

Since the spin of a nucleon can only have two possible orientations (up and 
down), j takes the possible values: 

1

2
j = ±    [2.2] 
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When   = 0, the "+" sign is considered in relationship [2.2], since j > 0. 
Moreover, j is always a half-integer according to [2.2]. 

Unlike the electronic shells attracted by a nucleus placed in the center of the 
atom, there is no center of matter in a nucleus that would exert an attractive force on 
the A nucleons. To make the analogy with central-nucleus electron shells, it is 
assumed that each nucleon is subjected to a central attractive force from the (A – 1) 
nucleons. Thus, the shell model describes the motion of the nucleons as independent 
particles, each of which is subjected to an average potential, V (r), generated by the 
nucleons themselves. 

If r designates the distance between a nucleon and the center of the nucleus and a 
the diffusivity parameter, then two main types of potential are used to describe the 
interaction occurring between a nucleon and the (A – 1) other nucleons: 

– The potential well of depth V0, such that: 

V (r) = − V0 for r ≤ a; V (r) = 0 for r > a  [2.3]   

– The harmonic potential.  

These two types of potential are studied below.  

2.1.3. Form of the harmonic potential 

Within the framework of the constant nucleon density model, the radius of the 
nucleus assumed to be spherical is R = r0 A1/3.  In the case of the harmonic potential 
(potential energy), the potential function, V (r), is written in the form: 

2

0 2
( ) 1

rV r V
R

 
= − − 

 
  [2.4] 

It is known that for a classical oscillator of mass m with a dimension x, subjected 
to the restoring force F = − kx, the potential energy, V(x), is given by the 
relationship: 

2
0

1
( )

2
V x kx V= +   [2.5] 

In relationship [2.5], V0 represents the value of the potential energy at the origin 
of the coordinates at x = 0. 
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Moreover, for a classical oscillator, the pulsatance, ω, of the oscillations is given 
by the relationship: 

k
m

ω =   [2.6] 

Using [2.6], the elastic potential energy [2.5] takes the form: 

2 2
0

1
( )

2
V x m x Vω= +    [2.7] 

Let us then write [2.4] in a form analogous to [2.7], by introducing the 
pulsatance, ω, of the oscillations of a nucleon into the nucleus.  

Let us thus expand [2.4] as follows:  

2

0 0 2
( )

rV r V V
R

=− +   [2.8] 

Let m be the mass of a nucleon. The last term of the right-hand member of [2.8] 
can be transformed as follows: 

2 2
0

1
( )

2
V r V m rω= − +   [2.9] 

In relationship [2.9], the pulsatance, ω, is given by the relationship: 

0
2

2V
mR

ω =    [2.10] 

Relationship [2.9] shows that at the center of the nucleus (r = 0), assumed 
attractive, V (r) = − V0. In addition, for a nucleon located at the surface of the 
nucleus (r = R), V (r) = 0. This result means that beyond the nucleus surface, strong 
nucleon interactions are no longer felt (this is justified by the fact that nuclear forces 
are short-range). The shape of potential [2.9] is shown in Figure 2.1. 

APPLICATION 2.1.– Demonstrate relationship [2.5]. 

ANSWER.– The restoring force curl is null:  

0=∧∇ F  [2.11] 
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The force F


 therefore derives from the gradient of the scalar potential, V(x), i.e.: 

( )F V x Fdx dV= −∇  = −
 

   [2.12] 

By applying F = − kx in [2.12], we obtain [2.5] after integration. 

 

Figure 2.1. Profile of a harmonic potential well of depth V0 

2.1.4. Shell structure derived from a harmonic potential 

The problem comes down to determining the energy, E, of a nucleon in the 
harmonic potential well within the framework of quantum mechanics. By noting 
with Ψ (r,θ,ϕ) the function describing the state of a Hamiltonian H nucleon, the 
Schrödinger equation is written: 

HΨ = E Ψ [2.13] 

In equation [2.16], the Hamiltonian  

H = Hr + H     [2.14] 

In equation [2.14], Hr is the radial part of the Hamiltonian associated with the 
kinetic energy of the particle (here the nucleon) and with the potential energy V (r) and 
H  is the operator associated with the rotational kinetic energy of the particle (here 

the nucleon) around the attractive center of the nucleus. These operators are analogous 
to those defined in the case of hydrogen-like systems [SAK 12]: 

2 2
2

2
( ) ;

2 2r r
lH V r H

m mr
= − ∇ + =


  [2.15] 

  

− R + R 0 

V (r) 

r  

− V0
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In quantum mechanics, only the square l2 and one of the lz projections of the 

orbital angular momentum operator, l


, have determined values. Thus: 

 mll z =+= ;)1(22   [2.16] 

Using [1.59], the Hamiltonian H is then written: 

2

2
2

2

2
)(

2 mr
lrV

m
H r ++∇−= 

   [2.17] 

Using the first relationship [2.16], the Hamiltonian [2.17] takes the form: 

2

2
2

2

2

)1(
)(

2 mr
rV

m
H r

+++∇−= 

   [2.18a] 

In spherical coordinates, the radial part of the Laplacian is written: 

2
2 2

2 2

1 2 1
r

d d dr
dr dr r drr dr

 Δ = ∇ = = + 
 

  [2.18b] 

Given that the observables Hr, l2 and lz constitute a CSCO, they therefore have 

the same eigenfunction, ),()(),,( , ϕθϕθ m
n rRr  Υ=Ψ . The Schrödinger radial equation 

is then written [SAK 12]: 

2 2
, ,

,2 2 2

( ) ( )2 2 ( 1)
( ) ( ) 0

2
n n

n

d R r dR r m E V r R r
r drdr mr

 ++ + − − = 
 

 


  


  [2.18c] 

In the case of a three-dimensional quantum harmonic oscillator, the resolution of 
equation [2.18c] shows that the energy, E, is quantified and given by the relationship 
(see Appendix 1): 

3

2
E h nω  = + 

 
  [2.19] 

In relationship [2.19], the integer n is the principal quantum number with n ≥ 0. 
In the case of a nucleon subjected to potential [2.12], a solution analogous to [2.19] 
is obtained, i.e.: 

3

2NE h Nω  = + 
 

  [2.20] 
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For the principal quantum number, N ≥ 0, each value of N determines the 
number of a nucleon shell. For N = 0, the nucleons distributed over shell I are 
obtained, for N = 1, the nucleons distributed over shell II are obtained, for N = 2, the 
nucleons distributed over shell III are obtained, and so on. For the first three shells, 
the energy of a nucleon is equal to: 

0 2 3

3 5 7
; ;

2 2 2
E h E h E hω ω ω= = =   

Moreover, within the framework of the harmonic potential, each nucleon is 
characterized by a group of four quantum numbers: k,   , m  and ms, with k the 

radial quantum number (often noted nr) equal to the number of nodes of the wave 
function describing the state of the nucleon, k > 0. The quantum numbers  , m  and 

ms are already defined in section 2.3.2. The principal quantum number, N, verifies 
the relationship: 

2( 1)N k= − +       [2.21] 

As with electrons, two identical nucleons cannot have the same spin orientation 
under Pauli’s exclusion principle. 

For a given value of N, the subshells are determined by the pairs of values (k,  ).  
In addition, for a shell N, the magnetic quantum number of spin, ms, takes a total of 
(2s + 1) values, while the orbital magnetic quantum number takes (2   + 1) possible 
values. The degree of degeneracy or the number of quantum states characterized by 
the same energy value, EN, is given by the relationship (s = 1/2 for a given nucleon): 

(2 1) (2 1) 2(2 1)Ng s= + × + = +    [2.22] 

Using relationships [2.21] and [2.22], we determine the number of identical 
nucleons per shell. We can thus find some of the magic numbers characterizing 
particularly stable nuclei. 

1) Shell I: N = 0  0 = 2(k – 1) + .  We thus obtain: 

– for k = 1, = 0: subshell 1s containing 2 (2 × 0 + 1) = 2 nucleons; 

– for k = 2, 0 = 2 + :  there is no value of  . 

CONCLUSION.– The shell N = 0 therefore contains 2 identical nucleons in the 1s state. 

2) Shell II: N = 1  1 = 2(k – 1) + .  We obtain: 

– for k = 1, = 1: subshell 1p containing 2 (2 × 1 + 1) = 6 nucleons; 
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– for k = 2, 1 = 2 + :  there is no value of .  

CONCLUSION.– The shell N = 1 therefore contains 6 identical nucleons in the 1p state. 

3) Shell II: N = 2  2 = 2(k – 1) + .  We obtain: 

– for k = 1,  = 2: subshell 1d containing 2 (2 × 2 + 1) = 10 nucleons; 

– for k = 2,  = 0: subshell 2s containing 2 (2 × 0 + 1) = 2 nucleons; 

– for k = 3, 2 = 4 + :  there is no value of .  

CONCLUSION.– Shell N = 2 thus contains 12 identical nucleons in the 1d and 2s states 
(the second state, "s", the first state, "s", corresponding to N = 0). 

4) Shell III: N = 3  3 = 2(k – 1) + .  We obtain: 

– for k = 1, = 3: subshell 1f containing 2 (2 × 3 + 1) = 2 nucleons; 

– for k = 1,  = 1: subshell 2p containing 2 (2 × 1 + 1) = 6 nucleons; 

– for k = 3, 3 = 4 + :  there is no value of .  

CONCLUSION.– Shell N = 3 thus contains 20 identical nucleons in the 1f and 2p states 
(the second "p" state, the first "p" state corresponding to N = 1). 

5) Shell III: N = 4  4 = 2(k – 1) + .  We obtain: 

– for k = 1,  = 4: subshell 1g containing 2 (2 × 4 + 1) = 18 nucleons; 

– for k = 1, = 2: subshell 2d containing 2 (2 × 2 + 1) = 10 nucleons; 

– for k = 2, = 0: subshell 3s containing 2 (2 × 0 + 1) = 2 nucleons; 

– for k = 4, 4 = 6 + :  there is no value of .  

CONCLUSION.– Shell N = 4 thus contains 30 identical nucleons in the 1g, 2d and 3s 
states. 

Table 2.1 shows the order of the quantum states, as well as the number of 
identical nucleons within the framework of the harmonic potential. 

Using the previous results, the essential properties of a nucleon subjected to a 
harmonic potential are summarized in Table 2.2.  
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Orbital quantum number  0 1 2 0 3 1 4 

Order of states 1s 1p 1d 2s 1f 2p 1g 

Maximum number of nucleons  2 6 10 2 14 6 18 

Table 2.1. Order of the quantum states of a nucleon within the framework of the shell 
model. The maximum number of nucleons of the same nature is also indicated 

With the magic numbers being 2, 8, 20, 28, 50, 82 and 126, Table 2.2 shows that 
only the numbers 2, 8 (2 + 6) and 20 (8 + 12) are found. From N = 3 onwards, the 
magic numbers are no longer reproduced. This justifies the limits of the harmonic 
potential that do not take spin-orbit coupling into account.  

Shell no. N EN k  State Maximum number 
of nucleons 

Number of nucleons 
on a shell 

I 0 
3

2
ω  1 0 1s 2 2 

II 1 ω
2

5

 
1 1 1p 6 6 

III 2 
7

2
ω  

1 2 1d 10 
12 

2 0 2s 2 

IV 3 
9

2
ω  

1 3 1f 14 
20 

2 1 2p 60 

V 4 
11

2
ω  

1 4 1g 18 

30 2 2 2d 10 

3 0 2s 2 

VI 5 
13

2
ω  

1 5 1h 22 

42 2 3 2f 14 

3 1 3p 6 

Table 2.2. Properties of a nucleon subjected to a harmonic potential 

APPLICATION 2.2.– Determine the number of nucleons for N = 5 and N = 6. We will 
specify the subshells into which the nucleons are distributed. 

ANSWER.– For N = 5, we find 42 identical nucleons distributed in the 1h, 2f, and 3p 
states. For N = 6, we find 56 identical nucleons distributed in the 1i, 2g, 3d, and 4s 
states. 
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As an example, using a diagram, let us give the distribution of nucleons 
according to the shell model for the nuclei 4

2 He  and 7
3Li:  

– the helium-4 nucleus contains 2 protons and 2 neutrons distributed in the 1s 
state of each nucleon; the s state is saturated at 2 identical nucleons; 

– the lithium-7 nucleus contains 3 protons and 4 neutrons; 2 protons in the 1s 
state and 1 proton in the 1p state; 2 neutrons in the 1s state and 2 neutrons in the 1p 
state; the p state is saturated at 6 identical nucleons. 

The distribution shown in Figure 2.2 is then obtained. As shown in this figure, 
the 1s state of the helium-4 nucleus contains 4 nucleons. It is then understood that 
saturation is relative to nucleons of the same nature and not to the number A of 
nucleons of the nucleus. This state thus contains a maximum of 2 protons and 2 
neutrons. The same applies to the lithium-7 nucleus.  

 

Figure 2.2. Nucleon distribution according to the  
shell model for helium-4 and lithium-7 nuclei  

APPLICATION 2.3.– Determine, using a diagram, the nucleon distribution according 
to the shell model for the 18

10 Ne  nucleus. 

ANSWER.– The neon-18 nucleus contains 10 protons and 8 neutrons distributed as 
follows:  

– 2 protons in the 1s state, 6 in the 1p state and 2 in the 1d state;   

– 2 neutrons in the 1s state, 6 in the 1p state and 0 in the 1d state. 

The distribution shown in Figure 2.3 is then obtained. 

  
neutrons proton neutrons proton

 6 

 2  1s 

 1p 

He4
2  Li7

3  

 6 

 2 

 1p 

 1s 
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Figure 2.3. Nucleon distribution according  
to the shell model for the neon-18 nucleus  

NOTE.– Another expression of the degree of degeneracy, gN [2.22], can be 
established as a function of the principal quantum number, N [MAY 17, BES 17]. 
For this purpose, a quantum number, ni ≥ 0 (i = x, y, z) is assigned to each degree of 
freedom of the nucleon, n. The principal quantum number is then given by the 
relationship: N = nx + ny + nz. The degree of degeneracy, gN, then corresponds to 
triplets (nx, ny, nz), giving the same energy value, EN. To express gN, we fix nx 
(varying from 0 to N) and look for the number Cny,nz of pairs (ny, nz), such that: 

ny + nz = N − nx   [2.22a] 

Taking into account the fact that the magnetic quantum number of spin takes  
(2s + 1) values, the degree of degeneracy is then given by the relationship: 

,
0

(2 1)
x

N

N nx ny
n

g s C
=

= +    [2.22b] 

It now remains to express Cny,nz as a function of nx, taking into account [2.22a] 

Let us reason in terms of the particular cases where N = 0, 1, 2 and 3. 

– N = 0, nx = 0; ny + nz = 0  (0,0): 1 pair, such that (0 – 0) + 1 = 1; 

– N = 1, nx = 0, 1;  

- nx = 0; ny + nz =  (1,0) and (0,1): 2 pairs, such that (1 – 0) + 1 = 2; 

- nx = 1 ; ny + nz = 1  (0,0): 1 pair, such that (1 – 1) + 1 = 1. 

– N = 2, nx = 0, 1, 2;  

- nx = 0; ny + nz = 2  (1,1), (2,0) and (0,2): 3 pairs, such that (2 – 0) + 1 = 3; 

- nx = 1; ny + nz =  (1,0) and (0,1): 2 pairs, such that (2 – 1) + 1 = 1. 

- nx = 2; ny + nz = 0  (0,0): 1 pair, such that (2 – 2) + 1 = 1. 

  neutrons proton

 1s  

 1p  6 

2 

 1d  10 
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– N = 3, nx = 0, 1, 2, 3;  

- nx = 0; ny + nz = 3  (1,2), (2,1), (3,0) and (0,3): 4 pairs, such that (3 – 0) + 1 
= 4; 

- nx = 1; ny + nz = 2  (1,1), (2,0) and (0,2): 3 pairs, such that (3 – 1) + 1 = 3. 

- nx = 2; ny + nz =  (1,0) and (0,1): 2 pairs, such that (3 – 2) + 1 = 2. 

- nx = 3; ny + nz = 0  (0,0): 1 pair, such that (3 – 3) + 1 = 1. 

It can therefore be admitted that in the general case, for given values of N and nx, 
the number of pairs Cny,nz = (N – nx) + 1. Relationship [2.22b] is then written: 

[ ]
=

+−+=
N

xn
xN nNsg

0
1)()12(

   [2.23] 

By expanding [2.22c], we obtain: 

0 0

( 1)
(2 1) ( 1) 1 (2 1) ( 1)( 1)

2
x x

N N

N x
n n

N Ng s N n s N N
= =

  +   = + + − = + + + −   
   

    

Note that the sum on nx is the sum of an arithmetic sequence of first term U0 = 0 
and reason r = 1 (Unx = nx). This sum is therefore equal to N(N +1)/2. This then 
gives: 







 +−+++=

2

)1(
)1)(1()12(

NNNNsgN
 

That is, after arrangement, knowing that for the nucleon s = 1/2: 

( + 1)( + 2)Ng N N=  [2.24]   

Using [2.24], we obtain, for N = 0, 1, 2, 3, 4, 5, etc., respectively: 2, 6, 12, 20, 
30, 42, etc. The maximum number of nucleons per shell is found, as shown in Table 
2.3. Therefore, gN can be determined using [2.22] or the simpler relationship [2.24].  

2.1.5. Shell structure derived from a Woods–Saxon potential 

Within the framework of the shell model based on the potential well of depth V0, 
the Woods–Saxon potential is generally used. To account for the set of magic 
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numbers, this potential is corrected by adding a term that takes spin-orbit coupling 
into account.  

First case: the spin-orbit coupling is unknown 

Let us express the nuclear charge density [1.47] as a function of the skin 
thickness, e. Knowing that (see application 1.4) e = 4aln3, then the diffusivity 
parameter value is: 

ln 0.2276 0.228
4ln3

ea e e= = ≈   [2.25] 

The nuclear charge density can then be written as: 








 −+
=

e
Rr

r

228.0
exp1

)( 0ρρ

  [2.26] 

In the event that the spin-orbit coupling is unknown, we use the Woods–Saxon 
potential taking the form of the charge density [2.26], i.e.: 

0( )

1 exp
0.228

V
V r

r R
e

−
=

 −+  
 

  [2.27] 

In relationship [2.27], R = r0 A1/3, r0 = 1.2 fm. The shape of potential [2.27] is 
shown in Figure 2.4.  

 

Figure 2.4. Shape of the Woods–Saxon potential 
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The value of V0 varies approximately between 50 MeV [CAR 79, MOU 11] and 
53 MeV [BES 17], as shown in Figure 2.5 for nuclei of mass number 16, 40, 120, 
and 129 [BES 17].  

 

Figure 2.5. Shape of the Woods–Saxon potential for nuclei  
of mass number 16, 40, 120, and 129, − V0 = − 53 MeV 

Because of the shape of the potential [2.27] the analytical resolution of the 
Schrödinger equation [2.20] is impossible except for the 1s state for which   = 0. 
For   ≠ 0, different approximations are used to determine the energy, E, of a 
nucleon, see, for example, [MOU 11]. As the calculations are highly complex, we 
will limit ourselves to analyzing the results obtained and comparing them with those 
derived from the harmonic potential. We will use the data given in Table 2.2. The 
results shown in Figure 2.6 are then obtained.  

A splitting of the nucleon shells is observed in the case of the Woods–Saxon 
potential. This reflects a lifting of degeneracy with respect to the orbital quantum 
number.  Spin degeneracy persists since spin-orbit coupling is not taken into 
account.   

NOTE.– Within the framework of the shell model, we can use the Yukawa potential 
given by the expression: 

( )0

00

/exp
)(

rrr
Vr

rV
−

=    [2.28] 
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Figure 2.6. Comparison of shell structures derived from  
a harmonic potential and a Woods–Saxon potential  

In this relationship , r0 = 1.2 fm and V0 = 50 MeV. 

Nevertheless, the Woods–Saxon potential is preferable since it is closer in form 
to that of the nuclear charge density [2.26]. 

Second case: taking the coupling into consideration  

Decisive progress was made in the development of the shell model, by 
introducing a strong coupling between the spin angular momentum, s , and the 

orbital angular momentum, l , of the nucleon, called spin-orbit interaction, or  

spin-orbit coupling.  

Indeed, inspired by the fine structure of spectral lines, in 1949 Maria  
Goeppert-Mayer and Hans Jensen independently demonstrated that all of the magic 
numbers observed experimentally can be reproduced by adding a spin-orbit coupling 

term of the type l s∝ ⋅
 

 to the Woods–Saxon potential. 

Let us briefly recall the concept of spin-orbit coupling studied in atomic physics 
by considering hydrogen-like systems [SAK 20].  
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In addition to the Coulomb interaction between the electron and the nucleus, an 
additional interaction determined by the spin of the electron and the nuclear charge, 
called spin-orbit interaction, or spin-orbit coupling, noted LS, appears in  
hydrogen-like systems.  

To illustrate this concept more closely in the particular case of the hydrogen 
atom, let us consider a reference frame bound to the electron in motion around the 
proton. Relative to this reference frame where the electron is at rest, the proton is in 

motion and creates a magnetic field, 0B


, at the electron location. This field then 

exerts its action on the spin magnetic moment, sM


of the electron. As the proton 
and electron charges are equal in absolute value, the magnetic field created by the 
proton is the same as the magnetic field that would be created by the electron 
rotating around the proton bound to a fixed reference frame. For this reason, the 
spin-orbit interaction is formally likened to an interaction between the orbital 
magnetic moment and the electron spin magnetic moment. The magnetic moment, 

sM


, can then be oriented parallel or antiparallel to 0B . In the first case, the 
interaction potential energy of the {electron – nucleus} system increases and, in the 
second case, decreases. As a result, each energy level of the atom splits into two 
sub-levels under the effect of the spin-orbit interaction. 

Although there is no positive center within the nucleus around which a nucleon 
would gravitate, the previous interpretation of spin-orbit coupling is drawn from to 
correct the Woods–Saxon potential. We then find a corrective term whose validity is 
justified by the simple fact that its introduction into the Woods–Saxon potential 
makes it possible to correctly reproduce all of the magic numbers observed 
experimentally.  In the following, we will draw from the correction relative to  
spin-orbit coupling applied to the Hamiltonian for hydrogen-like systems in the 
weakly relativistic domain. 

In the weakly relativistic domain, the term of the fine-structure Hamiltonian 
relating to spin-orbit interaction (LS coupling) is given by the expression [SAK 20]: 

SL
dR

RdV
Rcm

WSO ⋅= )(1

2

1
22

   [2.29] 

Using lowercase letters, the term [2.29] is written: 

2 2

1 1 ( )

2so
dV RW l s

R dRm c
= ⋅

  
   [2.30] 
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Drawing from [2.30], we then add to the Woods–Saxon potential [2.27] a 

corrective term proportional to ,l s⋅
 

 such that: 

soW C l s= − ⋅
 

  [2.31] 

In corrective term [2.31], C is a positive constant.  

Taking into account [2.27] and [2.31], the corrected potential, Vcor (r), is written 
as: 

0( )

1 exp
0.228

cor
V

V r C l s
r R

e

−
= − ⋅

 −+  
 

 
  [2.32] 

Let us now determine the solution to the Schrödinger equation where the scalar 
potential is of type [2.32]. Let Hws = H, the Hamiltonian [2.19a] of a nucleon 
subjected to the Woods–Saxon potential. Taking into account the spin-orbit 
coupling, the total Hamiltonian is written: 

soWSrcor WHslC
mr

rV
m

H +=⋅−+++∇−=
2

2
2

2

2

)1(
)(

2



   [2.33] 

In Hamiltonian [2.33], V (r) is the Woods–Saxon potential, given by [2.27].  

The problem then amounts to solving the Schrödinger equation: 

cor corH EΨ = Ψ    [2.34] 

Using the last equality in [2.33], Hamiltonian [2.34] is written: 

( ) ( )WS so WS so cor WS soH W E E E E E+ Ψ = + Ψ  = +    [2.35] 

As [2.35] indicates, the resolution of equation [2.34] comes down to determining 

Eso, since EWS is already known. For this, let us use the base jmjk ,,,  in the space 

of the states of a nucleon. By definition: 

, , , , , ,so so j so jE W k j m W k j m= =     [2.36] 
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This gives, using [2.31]: 

, , , , , ,so j jE C k j m l s k j m= − ⋅
 

    [2.37] 

Let us now express the scalar product in the right-hand member of [2.37]. Using 
expression [2.10] of the total angular momentum, we obtain: 

2 2 22( ) 2j l s l s l s= + = + + ⋅
      

 

That is: 

( )2 2 21

2
l s j l s⋅ = − −
    

  [2.38] 

By applying [2.38] in [2.37], we obtain: 

jjso mjksljmjkCE ,,,)(,,,
2

222
 −−−=

  [2.39] 

In quantum mechanics, the eigenvalue of the square f 2 of an angular momentum, 

f


, is equal to 2 ( 1)f f + , i.e.: 

jj mjkffmjkf ,,,)1(,,, 22
 +=

  [2.40] 

Taking into account [2.40], the average value [2.39] is then written:  

[ ])1()1()1(
2

2
+−+−+−= ssjjCEso 

   [2.41] 

The corrected energy [2.35] taking spin-orbit coupling into account is ultimately 
written: 

[ ]
2

( 1) ( 1) ( 1)
2cor WS

CE E j j s s= − + − + − +     [2.42] 

Given that s = 1/2 and j = ± 1/2 according to [2.11], two possible cases are 
obtained: 

2 1 1 3
1 ( 1)

2 2 2 4cor WS
CE E    = − ± ± + − + −      

       [2.43]  
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For j = +1/2, we obtain, by expanding the term in square brackets of [2.43]: 

2 2

1 1 3
1 ( 1)

2 2 4

1 1 3

2 2 4 2 4

  + + + − + −  
  

= + + + + + − − − =

   

     
 

The same is obtained for j = −1/2: 

2 2

1 1 3
1 ( 1)

2 2 4

1 1 3
(2 1)

2 2 4 2 4

  − − + − + −  
  

= − + − + − − − − = − +

   

     
 

Taking into account the previous results, we ultimately obtain: 










−=++=

+=−=

2

1
);12(

2

2

1
;

2
2

2





jCEE

jCEE

WScor

WScor
  [2.44]  

APPLICATION 2.4.– Determine the expression of Ecor in a state determined by = 0. 

ANSWER.– As the total quantum number, j, is strictly positive, for = 0, the 
expression satisfied for 1/ 2 1/ 2j = + =  is considered. This then gives Ecor = EWS 

(Eso = 0) according to [2.44]. This result was predictable since the spin-orbit 
coupling is absent in all quantum states determined by = 0 (states k, 0). 

To account for the set of magic numbers in accordance with the experimental 
observations, let us first introduce the spectroscopic notation of the nucleonic states 
using atomic physics as inspiration. 

In the case of hydrogen-like systems [SAK 20], the definition of the total 
quantum number, j, allows the spectroscopic notation of quantum states to be 
written using the label: n 2s + 1Lj.  In this notation, n is the principal quantum number, 
(2s +1) designates the level multiplicity, and L denotes the quantum state considered, 
determined by the value of the orbital quantum number,  .  By analogy, a nucleonic 
state is designated by the label n lj (L is replaced with l).  However, in this notation, 
n is not the principal quantum number. It designates a number indicating the number 
of occurrences of the orbital quantum number,  .  For example (see Table 2.2), for 
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the 1s, 1p and 1d states, n = 1, for the 2s, 2d and 2f states, n = 2, and so on. Note that 
for a given value of j, the total magnetic quantum number, mj, takes (2j + 1) possible 
values. The degree of degeneracy of a n lj state is: 

gj = (2j + 1)   [2.45] 

 

Figure 2.7. Comparison of shell structures derived from a harmonic potential  
and from a Woods–Saxon potential, with or without a spin-orbit coupling 
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Each n lj state then contains a maximum of (2j + 1) nucleons.   

In addition, the parity, π, of a monoelectronic atomic system is defined by the 

simple relationship: )1(−=π . This notation is linked to the properties of 

hydrogen-like wave functions (see the note at the end of this section). Taking the 

parity into account makes it possible to note a nucleonic state using the label jnlπ .  

Let us now represent the nucleonic states compared to the energy levels derived 
from the Woods–Saxon potential.  

To account for all magic numbers, 2, 8, 20, 28, 50, 82 and 126, let us consider all 
of the values of 0 ≤   ≤ 5. The results obtained are shown in Figure 2.7. For greater 
clarity, the parity of states is omitted.  

As relationships [2.44] indicate, for the same value of the orbital quantum 
number,  , the state characterized by 2/1+= j is deeper than the state 

characterized by 2/1−= j . In addition, the difference in energy between the 

1/ 2j = +  and 2/1−= j  states increases with  . These two observations 

enable magic numbers 28, 50, 82 and 126 to be taken into account.  

– The separation of the 1f5/2 and 1f7/2 levels induces lowering of the 1f7/2 level, 
which thus forms a single shell allowing magic number 28 to be reproduced.  

– Similarly, the separation of the 1g7/2 and 1g9/2, 1h9/2 and 1h11/2 and 1i11/2 (this 
level is not shown) and 1i13/2 levels induces the lowering of the 1g9/2, 1h11/2, and 1i13/2 
levels, allowing magic numbers 50, 82 and 126, respectively, to be reproduced.  

Beyond the 7th magic number, 126, the shell structure is written in order (with 
the number of nucleons saturating the subshell indicated in parentheses) 2g9/2 (10) → 
5d5/2 (6) → 1i11/2 (12) → 2g7/2 (8) → 4s1/2 (2) → 3d3/2 (4) → 1j15/2 (16). This gives 58 
nucleons. By adding 126 we find the 8th magic number, 184. 

In summary, contrary to the harmonic potential and the Woods–Saxon potential, 
taking corrective term [2.31] into account enables all of the magic numbers 2, 8, 20, 
28, 50, 82, 126 and 184 to be correctly reproduced. 

NOTE.– Semi-magic numbers.  

Noted in the literature are what are known as semi-magic numbers, 
corresponding to the saturation of a nuclear subshell, obtained by adding together 
the magic number of the saturated shell and the number of nucleons occupying the 
subshell located just above the line (here, a dotted red line), indicating the magic 
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number considered.  For example, these are the numbers 6 (magic number 2 + 4 
nucleons of the 1p3/2 subshell); the sum of the semi-magic number 6 and the 2 
nucleons of the 1p1/2 subshell gives the 2nd magic number, 8; 14 (magic number 8 + 6 
nucleons of the 1d5/2 subshell); 16 (semi-magic number 14 + 2 nucleons of the 2s1/2 
subshell). By adopting the same approach, we find the semi-magic numbers: 32, 38, 
40, 58, 64, 68, 70, 92, 100, 106, 110, 112 (= magic number 126 − 14 nucleons of the 
last 1i13/2 shown in Figure 2.9). It should be kept in mind that magic numbers are 
highlighted quite clearly by the experiment. By contrast, none of the semi-magic 
numbers have been observed experimentally. Therefore, only magic numbers have a 
precise physical meaning within the framework of the shell model, since they 
correspond to particularly stable nuclei.  

NOTE.– Concept of parity [SAK 20]. 

Within the framework of LS coupling, a spectral term, or, simply, a term, is 
noted by the symbol 2S + 1LJ.  To determine the complete writing of a term, the parity 
of the system already introduced in the case of hydrogen-like systems should be 
taken into account. For these systems with a well-determined orbital angular 

momentum, l , the parity of the system or the quantum state, )1(−=π . This result 

stems from the action of a mathematical being called the parity operator, noted Π. 

The parity operation on a wave function of the type f (r, θ, ϕ) consists of a 
symmetry operation with respect to the origin of the reference axes, such that:  

r  r; θ  π − θ; ϕ  π + ϕ   [2.46] 

Inversion operations [2.46] show that if the radial part, , ( )nR r , of the wave 

function , , ,( , , ) ( ) ( , )m
n m nr R rψ θ ϕ θ ϕ= Υ    remains unchanged after inverting the 

coordinates, the angular part, ),( ϕθm
Υ , however, determined by spherical 

harmonics, changes sign: 

),()1(),( πϕθππϕθπ +−Υ−=+−Υ mm



   [2.47] 

By definition, the parity operator is an operator whose action on a wave function 
involves inverting the coordinates of spaces with respect to the center of reference. 
Thus, by taking [2.47] into account: 

),,()1(),()(),,( ,,,,, ϕθψϕθϕθψ rrRr mn
m

nmn 


 −=ΠΥ=Π    [2.48] 
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According to [2.48] the eigenvalues of the parity operator ( 1)π = −   are equal  

+ 1 (even parity for even  ) and − 1 (odd parity for odd  ). 

Hideki Yukawa was a Japanese physicist. He is known for having established, around 
1930, the nuclear potential bearing his name, often used alongside the Woods–Saxon 
potential. He was awarded the Nobel Prize in Physics 1949 for his prediction of the existence 
of mesons (particles having an intermediate mass between that of the electron and that of the 
proton) based on theoretical work on nuclear forces. Yukawa was the first Japanese Nobel 
Prizewinner. 

Maria Gertrud Käte Goeppert, a.k.a. Maria Goeppert-Mayer was a German-American 
physicist. She is famous for theoretically demonstrating the existence of two-photon 
absorption (TPA) by atoms in 1929, with TPA only highlighted experimentally for the first 
time 30 years later, with the invention of lasers. In addition, she conducted research on 
nuclear decay processes, including double β decay (see Chapter 3), and nuclear structures. 
She was jointly awarded half of the Nobel Prize in Physics 1963, which she shares with 
Daniel Jensen for their discoveries relating to the shell structure of the atomic nucleus. 

Johannes Hans Daniel Jensen was a German physicist. He is famous for his work on the 
shell structure of the atomic nucleus. He was joint winner of half the Nobel Prize in Physics 
1963 (the other half being awarded to the Hungarian and naturalized-American physicist, 
Eugene Paul Wigner (1902-1995)). 

Box 2.1. Yukawa (1905–1981); Goeppert-Mayer  
(1906–1970); Jensen (1907–1973) 

2.2. Angular momentum and parity  

2.2.1. Angular momentum and parity of ground state 

In atomic physics, when spin-orbit coupling is predominant with respect to the 
Coulomb repulsion between electrons, the so-called (j, j) bond encountered in the 
case of heavy atoms (Z ≥ 30) [SAK 20] is obtained.  Within the framework of jj 
coupling, the individual orbital ( il


) and spin ( is


) momenta of each electron are 

added together to give the total momentum, ij


:  

iii slj += . [2.49] 

 

 



94     Nuclear Physics 1 

The total angular momentum, J


, is thus written, for N electrons: 

1 2
1

......
N

i N
i

J j j j j
=

= = + + +
    

  [2.50]  

In nuclear physics, the strong coupling of nucleons is treated within the 

framework of  jj coupling. The individual orbital ( il


) and spin ( is


) momenta of 

each nucleon are added together to give the total momentum, ij


, according to the 

vector addition rule [2.49]. For a nucleus containing A nucleons, the total angular 

momentum, J


, is written according to [2.50]: 

A

A

i
i jjjjJ +++==

=

......21
1

  [2.51]  

In addition, the total parity of a nuclear state with A nucleons is given by the 
product of the parities of the individual nucleonic states, i.e.:  

1 2

1

( 1) ( 1) ( 1) ....( 1)i A

A

i
π

=

= − = − × − × −∏       [2.52]  

The term of the state of a nucleus is then written using the label, Jπ. This notation 
is then used to determine the nature of Jπ of the ground state of a nucleus with A 
nucleons. 

Let us first set out the nucleonic level filling rules [MAY 17]:  

Identical nucleons on the same energy level tend to form a Jπ = 0+ pair. 

Let us therefore identify two cases, depending on whether A is even or odd, to 
state the rules for determining the Jπ of the ground state of a nucleus. 

– In their ground state, the even-even nuclei (even Z – even N) are in the Jπ = 0+ 

state. 

– In their ground state, the Jπ of nuclei of odd A (even Z – odd N or odd Z – even 
N) is determined by the unpaired nucleon. 

– In their ground state, the Jπ of odd-odd nuclei (odd Z – odd N) is determined by 
the coupling of the two unpaired nucleons. 
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To apply the preceding rules, we start by mapping out the distribution of nucleons 
according to the shell model, in order to determine the individual states, nlj, of each 
nucleon within the framework of the spin-orbit coupling. Next, [2.52] is used  
to determine π parity, then one of the previous rules is applied to determine the Jπ. 

Let us illustrate the three preceding rules using simple examples by considering 

the 4
2 He  and Li6

3 nuclei. 

Nucleon distribution according to the shell model for helium-4 and lithium-7 
nuclei was presented in Figure 2.4. Taking into account the spin-orbit coupling 
(Figure 2.9), the 1s level is a single level, 1s1/2. Each of levels 1p and 1d, however, 
split into two components: 1p1/2 and 1p3/2, 1d3/2, and 1d5/2. 

– Case of the helium-4 nucleus 

The 4
2 He  nucleus contains 2 protons distributed on the 1s1/2 level and 2 neutrons 

distributed over the 1s1/2 level. The 1s1/2 level contains a pair of identical nucleons:  
J = 0  Jπ = 0π. For the 1s state,   = 0, hence π = +1. For the ground state, Jπ = 0+. 
The nucleon distribution shown in Figure 2.8 is then obtained for the ground state of 
the 4

2 He  nucleus. 

 

Figure 2.8. Ground state of the helium-4 nucleus, Jπ = 0+;  
(a) distribution derived from a harmonic potential; (b) distribution  
derived from the Woods–Saxon potential with spin-orbit coupling 

– Case of the lithium-6 nucleus 

The Li6
3  nucleus contains 3 protons, 2 of which are distributed over the 1s1/2 

level and 1 over the 1p3/2 level (this level is filled before the 1p1/2 higher level, see 
Figure 2.7), and 3 neutrons (2 over the 1s1/2 level and 1 over the 1p3/2 level). Under 
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the third rule, the Jπ of the ground state is determined by the coupling of the 1p3/2 
unpaired proton and the 1p3/2 unpaired neutron. For this state, the total quantum 
number, j = 3/2.  According to the vector addition rule [2.51], the total angular 
momentum: 

21

2

1

jjjJ
i

i +==
=

  [2.53]  

As with two-electron atomic systems, the angular momentum, J, takes all of the 
values comprised between j1 + j2 and |j1 − j2|. Thus, the values: 

j1 + j2, j1 + j2 − 1, j1 + j2 − 2, etc., |j1 − j2|   [2.54] 

Given that j1 = j2 =3/2, J takes the values 3, 2, 1 and 0 according to [2.54]. This 
corresponds to Jπ = 0π, 1π, 2π or 3π.  

Using [2.52], we determine the parity, π. Knowing that   = 1 for the 1p3/2 level, 
we find: π = (−1)×(−1) = + 1. This then gives the states Jπ = 0+, 1+ or 3+. Thus, the 
shell model predicts four possible states for the ground level of the 6

3 Li nucleus. 

Experimentally, the ground level of the 6
3 Li  nucleus corresponds to Jπ = 1+. The 

other three values in the order 3+, 0+, 2+, correspond to excited states (see Figure 
2.9c). 

 

Figure 2.9. Ground state of the lithium-6 nucleus, Jπ = 1+; and three excited states 
revealed by the experiment. (a) distribution derived from a harmonic potential;  
(b) distribution derived from the Woods–Saxon potential with spin-orbit coupling;  
(c) experimental observations 

APPLICATION 2.5.– Determine the J π of the ground state of the helium-3 nucleus. 
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ANSWER.– The He3
2  nucleus contains 2 protons distributed over the 1s1/2 level and 1 

neutron over the 1s1/2 level. Under the third rule, the Jπ of the ground state is 
determined by the unpaired neutron; i.e. J = j = 1/2 and π = + 1. This then gives  
Jπ = 1/2 +. This prediction is confirmed by the experiment. 

2.2.2. Angular momentum and parity of an excited state 

Experimentally, all nuclei with an even number of nucleons have a ground state 
characterized by Jπ = 0 +. The excitation process then consists of breaking a pair of 
identical nucleons and carrying one of the nucleons to the higher level. This 
separation would correspond to an energy cost due to the strong neutron-neutron 
coupling. For a nucleus containing an unpaired nucleon, excitation requires less 
energy. The situation is similar in atomic physics: it is easier to excite an unpaired 
electron than to excite a paired electron. We can thus identify two rules for 
determining the Jπ of an excited nucleus. 

– The Jπ of odd-A nuclei is determined by the unpaired nucleon. 

– The Jπ of the even-A nuclei is determined by the possible values of J given by 
the relationship: 

J = 2j – 1, 2j – 3, 2j – 5, 2j – 7, etc., 0  [2.55] 

In relationship [2.55], j represents the quantum number of the initial state of 
excitation of one of the identical nucleons located on the same level, nlj, of the outer 
shell. 

Let us illustrate the two previous rules in the case of lithium-7 and neon-18. 

– Case of the lithium-7 nucleus 

The 7
3 Li  nucleus contains 3 protons, 2 of which are distributed over the 1s1/2 

level and 1 over the 1p3/2 level) and 4 neutrons (2 over the 1s1/2 level and 2 over the 
1p3/2 level). Under the second rule verified for odd A, the Jπ of the ground state is 
determined by the unpaired nucleon here the proton located on the 1p3/2 level; i.e.,  
J = j = 3/2 and π = − 1.  This then gives Jπ = 3/2 −. By applying the proton on the 
1p1/2 level, an excited state of lithium-7 corresponding to Jπ = 1/2 − is obtained.  
The theoretical predictions for the ground level (Jπ = 3/2 −) and the first excited level 
(Jπ = 1/2 −) are corroborated by the experiment (Figure 2.10). 
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Figure 2.10. Ground state of the nucleus of lithium-6, Jπ = 3/2 −; and the first excited 
state revealed by the experiment. (a) distribution derived from a harmonic potential; 
(b) distribution derived from the Woods–Saxon potential with spin-orbit coupling, the 
arrow indicates an excitation process; (c) experimental observations  

– Case of the neon-18 nucleus 

The Ne18
10  nucleus contains 10 protons (2 distributed over the 1s1/2 level; 4 over 

the 1p3/2 level; 2 over the 1p1/2 level and 2 over the 1d5/2 level) and 8 neutrons (2 
distributed over the 1s1/2 level; 4 over the 1p3/2 level; 2 over the 1p1/2 level). The 
study of the neon-18 excitation process can be envisaged as follows: 

– either we envisage breaking the proton pair from the 1d5/2 level and carrying 
one of the protons to the 1d5/2 level (or to the nearest 2s1/2 level); 

– or we envisage breaking the pair of neutrons from the 1p1/2 level and carrying 
one of the neutrons to the 1d5/2 level. 

 

Figure 2.11. Ground state, Jπ = 0 +; and excited states (Jπ = 2+, J
 π = 4+) of the  

neon-18 nucleus, revealed by the experiment. (a) shell structure derived from a 
harmonic potential; (b) distribution derived from the Woods–Saxon potential with 
spin-orbit coupling, the arrow indicates a proton excitation process; (c) experimental 
observations 
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The most probable process is when exciting the protons of the 1d5/2 level, since 
the neutrons in magic number (8) form particularly stable shells.  For the 1d5/2 level, 
j = 5/2. The possible values of J are deduced using relationship [2.55]. This then 
gives J = 4, 2 and 0. For the 1d5/2 level,   = 2; hence the parity π = + 1. This then 
gives Jπ = 4+, 2+ or 0+. The level Jπ = 0+ corresponds to the ground state and the 
levels Jπ = 4+ and 2+ correspond to the excited states. These predictions are 
consistent with the experimental observations (Figure 2.11). 

APPLICATION 2.6.– Experimentally, two excited levels of energy 585 keV and  
974 keV are found for the magnesium-25 nucleus, corresponding to Jπ = 1/2+ and  
Jπ = 3/2+, respectively. Determine the  Jπ of the ground state and then theoretically 
find the Jπ values of the excited states. Create a diagram showing the ground state, 
the two excited states of the magnesium-25 nucleus revealed by the experiment;  
(a) the shell structure derived from a harmonic potential; (b) the distribution of its 
nucleons derived from the Woods–Saxon potential with spin-orbit coupling, two 
arrows indicating the possible excitation processes of one of the nucleons to be 
specified; (c) experimental observations. Energy range: 0, 1,000 and 2,000 keV. 

ANSWER.– The Mg25
12  nucleus contains 12 protons (2 distributed over the 1s1/2 level, 

4 over the 1p3/2 level, 2 over the 1p1/2 higher level and 4 over the 1d5/2 level) and 13 
protons (2 distributed over the 1s1/2 level, 4 over the 1p3/2 level, 2 over the 1p1/2 
higher level and 5 over the 1d5/2 level). Under the second rule verified for odd A, the 
Jπ of the ground state is determined by the single nucleon, here the unpaired neutron 
located on the 1d5/2 level; i.e., therefore, J = j = 5/2 and π = + 1 since = 2. This 
then gives, for the ground state Jπ = 5/2 +.  

 

Figure 2.12. Ground state of the magnesium-25 nucleus, Jπ = 5/2+; and the two 
excited states revealed by the experiment. (a) shell structure derived from a 
harmonic potential; (b) distribution derived from the Woods–Saxon potential with 
spin-orbit coupling, the arrow indicates an excitation process; (c) experimental 
observations 
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Exciting the uncoupled neutron consists of either carrying it on the 2s1/2 intermediate 
level, thus giving Jπ = 1/2 + (J = j = 1/2 and π = + 1, = 0); or on the 1d3/2 higher level, 
giving  Jπ = 3/2 + (J = j = 3/2 and π = + 1, = 2). The Jπ values of the two excited states 
of the magnesium-25 nucleus are thus found, in accordance with the experiment  
(Figure 2.12). Note that the 5 neutrons of the 1d3/2 level are indiscernible, therefore they 
have the same probability of being excited at the 2s1/2 or 1d3/2 higher level.  

2.3. Gamma deexcitation 

2.3.1. Definition, deexcitation energy 

Gamma deexcitation corresponds to the emission of a γ-ray or photon by a  
low-energy excited nucleus (excited-state energy less than the separation energy of a 
nucleon). γ-deexcitation often accompanies α- or β-type radioactive decay processes 
(see Chapter 3). This deexcitation may also result from a radiative capture process, 
inelastic shock, an induced nuclear reaction such as fission, etc. In the general case, 
the excited nucleus can go through various intermediate excited states before 
moving to the final ground level. There then follows a process of successive 
deexcitations generating a spectrum of γ-photon lines. During the nuclear transition 
between one state of the excited nucleus noted *A

Z X  and the final state of the stable 

nucleus, A
Z X , the γ-deexcitation equation is written: 

γ+→ XX A
Z

A
Z *   [2.56] 

Since the emission of a γ-photon does not affect the mass number, A, or the 
charge number, Z, the two notations in [2.56] can be simplified, considering the 
symbols X* and X for the excited nucleus and stable nucleus, respectively.   

To express the energy of the photon emitted during transition [2.56], it is 
sufficient to make use of the laws of energy and momentum conservation. 

Let us use the following designations: 

– E (X*) for the energy of the excited state of the *A
Z X  nucleus of resting mass, 

m (X*), and momentum *;Xp


 

– E (X) for the energy of the ground state of the A
Z X  nucleus of resting mass, m 

(X), and momentum ;Xp


 

– Eγ for the energy of the γ-photon of momentum pγ


. 



Nuclear Deexcitations     101 

During deexcitation, the X nucleus undergoes a recoil. Let Ecr (X) be this kinetic 
energy. The laws of conservation of energy and momentum are written, 
respectively: 

E (X*) = E (X) + Ecr (X) + Eγ   [2.57] 

γppp XX +=*     [2.58] 

Since the initial nucleus, X*, is at rest, its momentum is null. It follows that 
according to [2.58], the momentum  of the final nucleus, X, is non-null; this allows 
verification of the law of conservation of momentum. In addition, the resting energy 
of a particle of resting mass, m0, is equal to m0c2. Equations [2.57] and [2.58] are 
then written: 

m (X*) c2 = m (X) c2 + Ecr (X) + Eγ   [2.59] 

0 X Xp p p pγ γ= +  = −
    

     [2.60] 

Equation [2.60] shows that the momentum of the X nucleus is directly opposite 
that of the γ-photon; this justifies its recoil during deexcitation of the X* nucleus. 

Using [2.59], the energy of the γ-photon is written: 

Eγ  = m (X*) c2 − m (X) c2 − Ecr (X)   [2.61] 

With a very good approximation, the energy, Eγ  can be directly calculated by 
overlooking the recoil kinetic energy, Ecr (X), in [2.61]. We will nevertheless take 
this into account and establish the general expression of Eγ. For this, let us express 
the recoil kinetic energy of the X nucleus in function Eγ.  

The photon energy is linked to its momentum by the relationship Eγ. = pγc.  
Using [2.60], we obtain: 

2

22

)(2
)(

)(2
)(

cXm

E
XE

c
E

p

Xm
p

XE

pp
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X
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X

γ

γ
γ

γ

=







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

=
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=

  [2.62] 
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Using the last relationship, [2.62], equation [2.61] can be put in the form: 

2

2
22

)(2
)(*)(

cXm

E
cXmcXmE γ

γ −−=   [2.63] 

Let us write, in [2.63]: 

ΔE  = m (X*) c2 − m (X) c2    [2.64] 

We thus obtain: 

0
)(2 2

2

=Δ−+ EE
cXm

E
γ

γ
   [2.65] 

Equation [2.65] is second degree in Eγ. Its discriminant Δ = 1 + 2ΔE/m (X)c2. Its 
physically acceptable solutions are given by the relationship: 

2
2

2
( ) 1 1

( )

EE m X c
m X cγ

 Δ= − ± + 
 

   [2.66] 

Since Eγ > 0, the physically acceptable solution is then given by the relationship: 

2
2

2
( ) 1 1

( )

EE m X c
m X cγ

 Δ= + − 
 

  [2.67] 

Consider the case where m (X) c2 >>ΔE.  

First, let us recall the following binomial expansion: 

......
!3

)2)(1(

!2

)1(
1)1( 32 +−−+−++=+ xnnnxnnnxx n

    [2.68] 

For x << 1, equation [2.68] is written in second-order form: 

2( 1)
(1 ) 1

2!
n n nx nx x−+ ≈ + +    [2.69] 
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By writing x = 2ΔE/m (X) c2 << 1, the limited expansion of the term in square 
brackets on the right side of equation [2.67] is in the shape.  

2

2
2 2

1 2 1 2
( ) 1 1

2 8( ) ( )

E EE m X c
m X c m X cγ

  Δ Δ
 ≈ + − − 
   

  

i.e. after simplification and arrangement: 

2

2

1

2 ( )

EE E
m X cγ

Δ= Δ −   [2.70] 

As equation [2.70] indicates, if the energy gap, ΔE, is small, we obtain: 

2 2( *) ( )E E m X c m X cγ ≈ Δ = −    [2.71] 

This amounts to overlooking in equation [2.61] the recoil kinetic energy, Ecr (X) 
of the final nucleus, X. Relationship [2.71] is often verified with a very good 
approximation, as highlighted above.  

To confirm this assertion, let us determine the energy of the gamma photon 
emitted during deexcitation of the yttrium-89 nucleus according to the equation: 

89 89
39 39Y Y* + γ→   [2.72] 

Given data: 

m(Y*) = 88.9037013 u; m(Y) = 88.9027212 u; 1 u 931.5 MeV/c2. 

Using [2.71], we obtain: 

Eγ ≈ ΔE = [88.9037013 − 88.9027212] uc2 = 0.91296315 MeV 

Which then gives:  

Eγ ≈ ΔE ≈ 913 keV   [2.73] 

Let us now take into account the recoil kinetic energy of the Y* nucleus. The 
energy of the γ-photon is deduced from [2.70]. Let: 

2

2
'

)(2

1

cm
EEE
Υ

Δ
−Δ=γ    [2.74] 
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Let us determine the following relative gap: 

' 'E E E E E
E E E

γ γ γ γ

γ γ γ

Δ − Δ −
= =    [2.75] 

Knowing that Eγ ≈ ΔE, and using [2.74], we obtain: 

2

2 2

1 1

2 2( ) ( )

E E E
E E m Y c m Y c

γ

γ γ

Δ Δ Δ= =    [2.76] 

Numerically we find: 

6105.5
5.9319027212.88

91296315.0

2

1 −×=
×

×=
Δ

γ

γ

E

E
    [2.77] 

Result [2.77] shows that correction [2.74] applied to the energy of the γ-photon 
by taking into account the recoil energy of the final nucleus is very low. It will be 
accepted that in the general case and unless otherwise indicated, approximation 
[2.71] may be used to determine the γ-deexcitation energy. 

2.3.2. Angular momentum and multipole order of γ-radiation 

As with atomic electrons and nucleons in a nucleus, γ-radiation has an angular 

momentum, l


, its square, l2, and one of its projections on an arbitrary axis (Oz, for 

example) having determined values equal, respectively, to: 

2 2 ( 1) ; zl l m= + =       [2.78] 

For the photon   > 0 

From a classical perspective, the emission of a γ-photon is perceived as the 
electromagnetic radiation emitted by a distribution of nuclear charges (protons) 
contained in the nucleus. This charge distribution can be dipole, quadrupole, etc., or 
multipole. Thus, γ-radiation is characterized by a multipole order, 2k = 

 . 

– For   = 0, k0 = 1: a monopole is obtained. Electromagnetic radiation 
corresponds to the simultaneous propagation in the space of electric and magnetic 
fields. While an electric monopole (elementary charged particle) exists, no magnetic 
monopole exists in nature, however (manifestation of an elementary magnetic 
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charge). Therefore, the value   = 0 is not possible. This justifies that for the photon, 
  > 0. 

– For   = 1, k1 = 2: a dipole is obtained. The corresponding radiation is called 
dipole radiation. 

– For   = 2, k2 = 4: a quadrupole corresponding to quadrupolar radiation is 
obtained. 

– For   = 3, k3 = 8: an octopole corresponding to octopolar radiation is 
obtained, and so on. 

2.3.3. Classification of γ-transitions, parity of γ-radiation 

Like any particle, the photon is characterized by its spin, s = +1. The value of the 
magnetic quantum number of spin is thus ms = ± s, i.e. ms = − 1, 0 or +1. That is,  
(2s + 1) values. In addition, the quantum number, ms indicates the different 

propagation directions of the photon. When the projection of the photon spin, s


, on 
the propagation axis, is equal to + 1 (spin parallel to the propagation direction), the 
light wave is said to have a right-hand polarization (right-handed helicity state). 
Otherwise (ms = − 1: spin antiparallel to the propagation direction) the polarization 
is said to be left-hand (left-handed helicity state). Since electromagnetic waves 
consist of photon fluxes and only two propagation directions are sufficient to 
describe the electromagnetic field, it is accepted that the photon has two possible 
polarizations:  

– a right-hand polarization (ms = + 1) corresponding to the right-handed helicity 

state, , 1sk m = +


; 

– a left-hand polarization (ms = − 1) corresponding to the left-handed helicity 

state, 1, −=smk , with  k


 as the wave vector indicating the photon propagation 

direction.  

Based on current knowledge, the state in which the spin vector projection is 
equal to ms = 0 does not exist according to quantum electrodynamics [SAK 12,  
SAK 19]. 

For each multipole order, there can therefore only be two different waves by the 
polarization of the photon. Each value of   corresponds to an electric radiation 
quantum and a magnetic radiation quantum having the same angular momentum, but  
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different parities. The parity of an electric multipole is opposite to the parity of an 
magnetic multipole, i.e.: 

– for an electric multipole: ( 1) ;π = −           

– for a magnetic multipole: 1( 1) ( 1) .π += − − = −   
[2.79] 

For the purpose of their classification, the γ-transitions are characterized by their 
multipole order, k  and their type: E (electrical) or M (magnetic). They are then 

noted E (E1, E2, E3, etc.) for electric multipole transitions or M  (M1, M2, M3, etc.) 

for magnetic multipole transitions. Table 2.3 summarizes the classification of  
γ-transitions according to the multipole order. Monopole γ-transitions (with zero 
quantum number) have never been observed. They are therefore excluded from 
Table 2.3. 

Classification of γ-transitions Type Quantum number Multipole order 

Electric dipole E1 1 2 

Magnetic dipole M1 1 2 

Electric quadrupole E2 2 4 

Magnetic quadrupole M2 2 4 

Electric octopole E3 3 8 

Magnetic octopole M3 3 8 

Electric multipole E    2  

Magnetic multipole M    2  

Table 2.3. Classification of the γ-transitions according to the multipole order 

2.3.4. γ-transition probabi lities, Weisskopf estimates 

As mentioned above, the process of successive deexcitations generate a  
spectrum of γ-photon lines. Each γ-tr ansition then occurs with a certain probability 
that can be evaluated theoretically using Weisskopf estimates [WEI 51, DAU 99, 
MAY 17]. It should be noted, however, that these estimates do not constitute a 
theoretical framework with predictions that can be compared with the observations. 
They are used to understand the phenomenon of γ-deexcitation by comparing the 
probabilities of the different γ-transitions studied. If we use λγ to designate the 
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deexcitation probability, γ, per unit time, the Weisskopf estimates for electric ( E ) 

and magnetic ( M ) transitions are written, respectively (see Exercise 2.9 for 

demonstrations): 

2 /3 2 1( ) ( ) ( )ET E C E A Eγ γλ += =  
     [2.80] 

123/)22()()()( +−== 
 γγλ EAMCMTM    [2.81] 

In these relationships, A is the mass number of the nucleus, Eγ is the energy of 
the γ-photon expressed in MeV,  ( )C E  and ( )C M  are estimated coefficients for 

each value of   (Table 2.4); the probabilities of multipole transitions ( )Eλ   and 

( )Mλ   are expressed in s – 1.  

 ℓ 1 2 3 4 5 
Cℓ (E) 1.0 × 1014 7.4 × 107 34.5 1.1 × 10 −5 2.5 × 10 −12 

Cℓ (M) 3.1 × 1013 2.2 × 107 10.3 3.3 × 10 −6 7.4 × 10 −13 

Table 2.4. Values of the Cℓ(E) and Cℓ(E) coefficients for γ-transitions  

Table 2.4 shows that the values of the ( )C E  and ( )C M  coefficients are all the 

greater, the smaller   is. Therefore, for a small value of  , the probabilities of  
γ-transitions [2.80] and [2.81] are all the greater, the higher the energy, Eγ, is. We 
will find the values gathered in exercise 2.9.  

2.3.5. Conserving angular momentum and parity 

As noted in the previous section, the smallest value of   is predominant for a 
given γ-transition. In the general case, the γ-deexcitation process satisfies the 
principle of conserving the total angular momentum. 

Let iJ


 designate the angular momentum of the initial transition level of γ and 

fJ


 the angular momentum of the final level of the same. During this transition, the 

γ-photon emitted is characterized by the angular same transition, l


. Applying the 

principle of total angular momentum conservation, we obtain: 

fifi JJllJJ −=+=    [2.82] 
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From the last equality [2.82], the possible values of   are taken, i.e.: 

fifi JJJJ +≤≤− 
  [2.83] 

In addition, during a transition, the principle of conserving parity should be 
verified. As indicated in relationships [2.79], the parities of electric multipole 
transition states are opposite to the parities of magnetic multipole transition states. 
Using πi to designate the parity of the initial state of the transition and πf for the 
parity of the final state of the same transition, the principle of parity conservation 
gives: 

– for an electric multipole transition (El): 
)1(−= fi ππ  

– for a magnetic multipole transition (Ml): 
1)1( +−= 

fi ππ  
[2.84] 

Note that as a general rule, an E-type transition is never in competition with an 
M-type transition. It follows that relationships [2.84] cannot be simultaneously 
verified. Either one of these relationships or the other is satisfied during a  
γ-transition.  

 

Figure 2.13. γ-transitions to the ground level of the nickel-60 nucleus 

Let us illustrate by an example, the analysis of the γ-deexcitation spectrum of the 
nickel-60 nucleus toward the ground level. The β − decay (see Chapter 3) of cobalt 
60
27 Co  feeds two excited states of the nickel 60

28 Ni  nucleus. Experimentally, these two 

states are characterized by the state Jπ = 4+ (99.9%) of energy E* = 2.505 MeV and 
the state Jπ = 2+ (0.1%) of energy E* =1.332 MeV. Theoretically, γ-transitions to the 
fundamental level Jπ

 = 0+ should induce the emission of three photons, γ1, γ2 and γ3 
(Figure 2.13).   
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Experimentally, only two transitions are observed: the 4+ → 2+ transition (γ1) and 
the 2+ → 0+ (γ2) transition. It follows that the 4+ → 0+ transition (γ3) is absent from 
the emission spectrum. We propose to verify these experimental observations 
theoretically by calculating, inter alia, the probabilities of transitions based on the 
Weisskopf estimates. 

– Permitted transitions 

Let us use the conservations of total angular momentum and parity to determine 
  and the type of multipole transition, E or M. 

– 4+ → 0+ transition: πi = πf = + 1; the parity is unchanged: this is an E-type 

transition according to [2.84]. Ji = 4, Jf = 0. Since Jf = 0, only one value exists, = 4 
according to [2.83]. It is therefore an E4 transition;. 

– 4+ → 2+ transition: πi = πf = + 1; Ji = 4, Jf = 2. According to [2.83], 2 ≤ ≤ 6.  
The possible values of   are 2, 3, 4, 5 and 6. The most favored transition 
corresponds to the smallest value of  , i.e.   = 2. We thus obtain an E2 transition; 

–  2+ → 0+ transition: πi = πf = + 1; Ji = 4, Jf = 0. Therefore, only one value 
exists,   = 2. We likewise obtain an E2 transition; 

Ultimately, two dipole transitions are obtained, 4+ → 2+ and 2+ → 0+, which are 
widely favored, confirming the experimental observations. The 4+ → 0+ transition is 
therefore unlikely. This result can be verified by calculating the transition 
probabilities.  

– Transition probabilities 

For the 4+ → 2+ and 2+ → 0+ transitions:   = 2 and the 4+ → 0+ transition:   = 4. 
Using the Weisskopf formula [2.80], we obtain (A = 60 for Ni): 

– 4+ → 2+ transitions  

1 1

4/3 5
2 2 2( ) ( )E C E A Eγ γλ = ×   [2.85a] 

– 2+ → 0+ transitions  

2 2

4/3 5
2 2 2( ) ( )E C E A Eγ γλ = ×   [2.85b] 
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– 4+ → 0+ transitions  

9
3

3/8
4443

)()( γγλ EAECE ×=
  [2.85c] 

Referring to Figure 2.13 and Table 2.4, we take: 

Eγ1 = (2.505 – 1.332) MeV = 1.173 MeV; C2 (E) = 7.3 × 107 

Eγ2 = 1.332 MeV; Eγ3 = 2.505 MeV; C4 (E) = 1.1 × 10 −5 

Numerically, according to [2.85], we obtain: 

1053/47
2 108.3)173.1(60103.7)(

1
×=×××=Eγλ

s −1   

2

7 4/3 5 10
2( ) 7.3 10 60 (1.332) 7.2 10Eγλ = × × × = ×  s −1  [2.86]  

393/85
4 104.2)505.2(60101.1)(

3
×=×××= −Eγλ

 s −1       

Results [2.86] show that the 4+ → 2+ and 2+ → 0+ transitions are around  
10 million times more probable than the 4+ → 0+ transition. Note that the probability 
of the 4+ → 0+ transition is far from negligible. Nevertheless, these are results 
obtained using the Weisskopf estimates that are not as we stated above, a theoretical 
framework that gives predictions that may be corroborated by experimental 
observations. We therefore envisage obtaining two emission lines corresponding to 
γ1 and γ2 photons. 

APPLICATION 2.7.– Figure 2.14 shows the excited level fed by the β − decay of 
cesium-137. Determine the type of multipole transition, E  or M , corresponding to 

the observed deexcitation. Estimate the corresponding transition probability. 

ANSWER.– For the 11/2 − → 3/2+ transition, πi = + = − πf = + 1: there is a change in 
parity. This is therefore a magnetic multipole transition ( M ).  Ji = 11/2, Jf = 3/2. 

According to [2.83], 4 ≤   ≤ 7.  The possible values of   are 4, 5, 6 and 7. The most 
favored transition corresponds to the smallest value of  , i.e.   = 4. It is therefore a 
magnetic 24-pole transition, or put simply, a M4-type transition.  

To estimate the transition probability, let us use the Weisskopf estimate formula 
[2.81]. We obtain: 

2 5
4 4 4( ) ( )M C M A Eγ γλ = ×   [2.87] 
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Figure 2.14. γ-transitions to the ground level of the barium-137 nucleus 

From Table 2.4, we take C4 = 3.3 × 10−6. According to Figure 2.14,  
Eγ = 0.6616 MeV. Numerically, using [2.87], we then find: 

6 2 5
4( ) 4.5 10 137 (0.6616) 0.008Mγλ −= × × × =   [2.88] 

Mathematically, the magnetic 24–pole transition 11/2 − → 3/2+ of virtually zero 
probability is unlikely. Yet it is observed experimentally. This contradiction is 
entirely justified by the fact that the Weisskopf estimates are not based on a theory 
able to predict results that may be corroborated by the experiment. 

Victor Frederik Weisskopf was an American-naturalized Austrian theoretical physicist. In 
1937, he formulated the general theory of the statistical model to describe the evaporation 
model of nucleons of a highly-excited nucleus. In addition, in 1951, he established equations 
for estimating γ-transition probabilities, these equations bearing the name ‘Weisskopf 
estimates’ in his honor. 

Box 2.2. Weisskopf (1908–2002) 

NOTE.– On the evaporation model: 

Within the framework of the nucleon evaporation model, a large number of close 
and very excited nuclear levels are considered. The emission of a nucleon from a 
highly-excited nuclear level is analogous to the process of extracting a molecule 
from an evaporating liquid drop by heating. In the nucleon evaporation model, the 
usual laws of statistical thermodynamics are applied. 
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2.4. Internal conversion 

2.4.1. Definition 

Internal conversion is a process of nucleus deexcitation, generally in competition 
with γ-deexcitation (Figure 2.15). During this process, the excitation energy of a 
nucleus is transferred directly to an electron of the atomic cloud. The electron of W 
binding energy is then expelled from the atom. This results in the emission of an 
electron called internal conversion electron, noted eC, which has a well-determined 
kinetic energy. This competition is particularly significant for low excitation 
energies. 

 

Figure 2.15. Competition of γ-deexcitation  
and the internal conversion process 

Let EI and Ef  be the energies of the initial and final levels, respectively, of the 
excited nucleus. Let E = (EI − Ef) be the difference in nuclear energy.  The kinetic 
energy of the internal conversion electron is deduced from the principle of energy 
conservation, i.e.: 

Ec = E − W    [2.89] 

In the case of the emission of an electron by photoelectric effect, a photon of 
energy E = hν is absorbed by a metal of work function W0. Equation [2.89] then 
gives the Einstein equation of the photoelectric effect: 

Ec = hν − W0  [2.90] 

The similarity of equations [2.89] and [2.90] created confusion as to the correct 
interpretation of the phenomenon of internal conversion, which was likened to a 
photoelectric effect. 

  E 

Ei 

Ef 

Ji
π

Jf
π

γ 
or 

eC



Nuclear Deexcitations     113 

Indeed, in 1922, Ellis [ELL 21, ELL 22] and Lisa Meitner [EVA 61] showed, 
independently of one another, that equation [2.89] was valid for what was called 
“the spectrum of β ray lines” and is nowadays referred to as “conversion electrons”.  
In interpreting their experimental observations, Ellis and Meitner attributed the 
spectrum of electron lines produced by nuclear deexcitation to a photoelectric effect. 
Their model initially assumed the emission of a photon during a process of 
deexcitation of the nucleus. Subsequently, the photon is absorbed by the inner shells 
of the atom without ever escaping. This results in the expulsion of an electron by 
photoelectric effect. 

Amongst the best evidence that an internal conversion cannot be likened to a 
photoelectric effect is the observation of the electric monopole transition, E0, 
resulting from a deexcitation of the 0+ excited level of the zirconium-90 nucleus to 
the ground level, 0+ (Figure 2.16).  

 

Figure 2.16. Electric monopole transition, E0, resulting from a process of  
initial-level deexcitation of the zirconium-90 nucleus by internal conversion 

The 0+ → 0+ transition is forbidden in the case of photon emission, since it 
corresponds to = 0. Deexcitation from level 0+, with a very short half-life equaling 
61.3 ns, to the ground level, is then accompanied by the emission of an electron by 
internal conversion. The conversion electron is ejected from the K-shell with a 
kinetic energy equaling 1.742 MeV. 

APPLICATION 2.8.– Determine the K-shell binding energy of the zirconium atom. We 
will use the data given in Figure 2.16. Verify the classical or relativistic nature of the 
internal conversion electron. Let m0c2 = 0.511 MeV for the electron. 

ANSWER.– Using [2.89], the K-shell binding energy of the zirconium atom is given 
by the relationship: 

WK = E − Ec    [2.91a] 
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We have Ec = 1.742 MeV. Considering the 0+ → 0+ transition (Figure 2.16), the 
difference in nuclear energy, E = (Ei − Ef) = 1.760 MeV is determined. According to 
[2.91], the K-shell binding energy is WK = (1.760 − 1.742) MeV = 18 MeV.  

To verify the classical or relativistic nature of the internal conversion electron, 
we can use a demonstration by reducing to absurd. Let us assume that it is a classical 
particle. Its kinetic energy is thus given by the relationship: 

c
cm

E
v

c
v

cmmvE c
c 2

0
2

2
2

0
2 2

2

1

2

1
===     [2.91b] 

NOTE.– Ec = 1.742 MeV, m0c2 = 0.511 MeV. We obtain: 

2 1.742
2.61

0.511
v c c×= =    [2.91c] 

Result [2.91c] is erroneous since v < c: it is therefore a relativistic electron whose 
velocity is given by relationship [2.2]. We thus find v = 0.97 c.  

2.4.2. Internal conversion coefficients 

Let us use λγ to designate the probability per unit time of deexcitation by  
γ-photon emission and λC the probability per unit time of deexcitation by conversion 
electron emission. Taking into account the two processes in competition at low 
energy, a quantity is introduced called the internal conversion coefficient, noted α, 
which is given by the relationship:   

C CN
Nγ γ

λα
λ

= =   [2.92] 

In the definition relationship [2.92], NC and Nγ represent, respectively, the 
numbers of conversion electrons and γ -photons emitted, in the same time interval, 
by the same sample of identical nuclei characterized by the difference in nuclear 
energy, W, during the transition being considered. The internal conversion 
coefficient depends on the atomic number, Z, of the nucleus under consideration, the 

multipole order, 
2 , and the difference in energy transition, W. The total probability 

per unit time of nuclear deexcitation, λ, is then given by the relationship: 

λ = λγ + λC  [2.93] 
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Taking into account [2.92], relationship [2.93] can be put in the form: 

λ = (1 + α)λγ   [2.94] 

Relationship [2.94] allows us to define the half-life, T, of an excited nuclear 
level, i.e.: 

ln 2 ln 2

(1 )
T

γλ α λ
= =

+
  [2.95] 

Knowledge of the internal conversion coefficient, α, and the internal conversion 
probability, λγ, enables the determination of the half-life, T, of an excited nuclear 
state.  

Using Tγ to designate the partial half-life of deexcitation by γ-photon emission 
and TC for the partial half-life  of deexcitation by conversion electron emission, the 
total half-life, T, of an excited state is also defined by the relationship: 

1 1 1
= +

CT T Tγ
 [2.96] 

APPLICATION 2.9.– The half-life of the 0+ excited state of the zirconium-90 nucleus 
(Figure 2.16) is equal to 61.3 ns. Specify the value of half-life Tγ, then determine the 
probability per unit time of the deexcitation of 90Zr by internal conversion. 

ANSWER.– This is an internal conversion. Mathematically, according to [2.96], we 
obtain: T = TC  Tγ  = ∞: physically, the γ-emission is unobservable. Using [2.95], 
we obtain: λ = λC = ln 2/T = 1.13 ×107 s −1. 

2.4.3. Partial conversion coefficients 

Historically, electronic shells were designated by the letters K, L, M, etc., used in 
X-ray spectroscopy. The electronic configuration of an atom can then be written as 
Ka, Lb, Mc, etc., the shells K, L, M, etc., are marked by the numbers 1, 2, 3, 4, etc., 
respectively. On the basis of the planetary model, the electrons are distributed in the 
shells of the electronic cloud in order, starting from the first shell, K. For a given 
configuration of the type Ka, Lb , Mc, etc., the atomic number Z = a + b + c +. 
Depending on the number of electrons, the K, L, M, etc. shells are saturated at 2, 8, 
18, etc. electrons, respectively [SAK 19]. 

According to the above, the internal conversion electron can originate from one 
of the shells K, L, M, etc. Thus, a partial conversion coefficient is introduced for 
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each electronic shell. The total conversion coefficient, αtot, is then equal to the sum 
of the partial conversion coefficients, αK, αL, αM, etc., i.e.: 

αtot = αK + αL +αM  +, etc.  [2.97] 

In relationship [2.97], each partial conversion coefficient is relative to the set of 
electrons distributed on the shell. Thus, αK is relative to the two K-electrons, αL to 
the eight L-electrons, αM to the 18-M electrons, and so on. Given that the K-shell is 
closer to the nucleus, the internal conversion probability of a K-electron is greater 
than the internal conversion probability of an L-electron, which is itself greater than 
the internal conversion probability of an M-electron, and so on. Theoretically, we 
should expect to see: αK > αL > αM >, etc. In the following, we will limit our study  
to the case of the K-shell. 

2.4.4. K-shell conversion  

Theoretically, the values of the partial conversion coefficients, αK, αL, αM, etc., 
are determined by approximated relativistic formulas.  

When Born’s rule [Zα (v/c)] << 1 is satisfied, two formulas of interest relating to 
multipole transitions can be used as examples for the study of K-shell internal 
conversion. Note that in Born’s rule (named after the German physicist, Max Born 
(1882-1971)), α designates the fine-structure constant: α  = 1/137.036. To avoid 
confusion with the internal conversion coefficient α, defined by the relationship 
[2.92], the approximation α  ≈ 1/137 is applied and Born’s rule is written as  
[Z/137 (v/c)] << 1, with v as the velocity of the conversion electron. 

Let us note with EK = WK, the binding energy of a K-electron, and with E = W = 
(Ei − Ef), the difference in nuclear energy. If, in addition to Born’s rule, the double 
inequality EK << W << m0c2 is verified, the partial conversion coefficient, αK, can be 
determined from the approximated formulas [EVA 61]: 

– For electric multipole transitions: 
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– For magnetic multipole transitions: 
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As indicated in formulas [2.98] and [2.99], for a given value of the transition 
energy, W, the K-shell internal conversion coefficient increases with the atomic 
number, Z, and multipole order,

 
2 .  Likewise, for fixed Z, αK is all the greater, the 

lower the transition energy is and the higher the multipole order is. 

APPLICATION 2.10.– Estimate the internal conversion coefficient, αK, for zirconium-90 
(Figure 2.18). Let m0c2 = 0.511 MeV. Given datum: Z = 40 for zirconium.  

ANSWER.– For the monopole transition, E0,   = 0. Therefore, formula [2.99] is used. 
Given that W = (EI − Ef) = 1.760 MeV, we obtain:   

4 3/2
3 31 2 0.511

( ) 40 8.3 10
137 1.760K magα ×   ≈ = ×   
   

     

Using numerical calculations, the exact theoretical values of the K-shell internal 
conversion coefficients listed in tables can be determined. Figure 2.17 shows the 
variation in the conversion coefficient, αK, with atomic number Z.  

 

Figure 2.17. Variation in the internal conversion coefficient, αK with atomic  
number Z for two multipoles, E2 at 0.92 MeV and M4 at 0.25 MeV 

It is easily verified that αK is all the greater, the lower the transition energy is 
(here W = 0.25 MeV) and the higher the multipole order is (here magnetic 24-pole 
order, M4). In particular, it is noted that αK is all the greater, the lower the transition 
energy is and the higher   is. This proves that deexcitation by γ-photon emission is 
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disadvantaged for a low value of W and a high value of  . When W increases, the 
preferred mode of deexcitation is deexcitation by γ-photon emission. 

Similarly, in Figure 2.18 we have reproduced the results obtained for zirconium 
under the conditions 1 ≤   ≤ 5 and 0.3 m0c2 ≤ W ≤ 5 m0c2 [EVA 61].  

 

Figure 2.18. Variation in internal conversion coefficients (αK)el and (αK)mag  
relative to zirconium as a function of the nuclear transition energy, W,  
and of the multipole order 2ℓ with 1 ≤ ℓ ≤ 5 and 0.1 MeV < W < 4 MeV 

This figure shows that for a given value of Z, the K-shell internal conversion 
coefficient is strongly dependent on nuclear transition energy, W, and the multipole 
order, 2 . 

According to the above, low-energy nuclear deexcitation is accompanied by the 
emission of γ-photons in competition with the emission of conversion electrons. The 
K, L, M, etc. shell conversion process leaves a hole or a vacant orbital in the inner 
shell. This hole can then be occupied by an electron from an upper shell with  
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emission of a characteristic X-ray, or with emission of an electron called an Auger 
electron. These processes of atomic deexcitation result from a redistribution of 
energy within the atom, following a rearrangement of the electronic cloud. Although 
X-ray and Auger electron emissions are derived from atomic phenomena, we will 
incorporate their study into this book (see section 4.1.9) since they originate from 
low-energy nuclear deexcitation. 

2.5. Deexcitation by nucleon emission  

2.5.1. Definition 

γ-deexcitation and/or internal conversion occur at low energy (E* < Sn,p). In the 
case of highly excited nuclei (E* > Sn,p), the mode of nuclear deexcitation by 
emission of γ-photon or conversion electron is in competition with the emission of 
proton p if (E* > Sp), or neutron n if (E* > Sn). 

Let us study the particularly significant case of neutron emission that is 
responsible for the emission of delayed neutrons by nuclear fission products. To do 
this, we write the general equation for the fission of uranium-235 under the impact 
of a slow or thermal neutron: 

235 A A'
Z92 Z'+ U X + Y +2 3n or n→ + 2 or 3 n   [2.100] 

Let us identify several neutron qualifiers involved in a nuclear fission reaction: 

– The neutron of reagents is called slow neutron or thermal neutron. This 
neutron is said to be slow because, if it is too slow, it rebounds on the uranium-235 
nucleus, if it is too fast, it crosses it without being captured: fission does not occur in 
these cases. It is called a thermal neutron because it has a kinetic energy of the order 
of the thermal agitation energy of the gas molecules at the temperature of the nuclear 
reactor core where fission occurs. The kinetic energy of the slow or thermal neutron 
capable of inducing a uranium-235 fission is of the order of 0.025 MeV. 

– The 2 or 3 neutrons appearing in the products of fission [2.100] are called 
fission neutrons. In the case where the fission fragment X is radioactive β −,  
for example, because it has an excess of neutrons, it then breaks by emitting a  
so-called delayed neutron. The diagram of delayed neutron deexcitation is shown in 
Figure 2.19. The neutron is said to be delayed because it appears after the β − decay 
of the fission product, X, and thus well after the appearance of the fission neutrons.  
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Figure 2.19. General diagram of nuclear deexcitation by  
delayed-neutron emission following a β − decay process  

Delayed neutron emission occurs according to the general equation: 

A * A 1 1
N Z+1 N-1 Z+1 N 2 0

A -
-ZX X X + nβ−

⎯⎯→ ⎯⎯→  [2.101] 

2.5.2. Energy balance 

Consider the process of nuclear deexcitation by neutron emission according to 
[2.101]. We obtain: 

nXX 1
02N

1A
1Z

*
1N

A
1Z +⎯→⎯ −

−
+−+   [2.102] 

Let E* be the excitation energy of the *
1 1
A

Z NX+ −  nucleus. Determine the energies 

of the initial and final states of reaction [2.102]. We obtain:  

– Ei Ei =  E* + m ( *
1N

A
1Z X −+ )c2  

– Ef =  m ( 1
1 2

A
Z NX−

+ − )c2 + mnc2 + Ec (
n1

0 ) + Ecr (
1
1 2

A
Z NX−

+ − )    

In the expression of Ef, Ecr refers to the recoil kinetic energy of the 2N
1A
1Z X −

−
+  

nucleus. By making use of the principle of energy conservation, EI = Ef, we obtain: 

E* + m ( *
1 1
A

Z NX+ − )c2  =  m ( 2N
1A
1Z X −

−
+ )c2 + mnc2 + Ec (

1
0n ) + Ecr ( 2N

1A
1Z X −

−
+ )    

 

  N
A
Z X

1N
A
1Z X −+

2N
1A
1Z X −

−
+

β − 

nE* > Sn 
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That is: 

Ec (
1
0n ) + Ecr (

1
1 2

A
Z NX−

+ − ) = E* + m (
*

1N
A
1Z X −+ )c2 − m ( 2N

1A
1Z X −

−
+ )c2 − mnc2   [2.103] 

By definition, the energy of deexcitation by Qn neutron emission is equal to: 

Qn = Ec (
n1

0 ) + Ecr ( 2N
1A
1Z X −

−
+ )   [2.104] 

Thus, using [2.103] 

Qn  = E* + m ( *
1 1
A

Z NX+ − )c2 − m ( 2N
1A
1Z X −

−
+ )c2 − mnc2   [2.105] 

By considering the expression of the separation energy of a neutron [1.67a], the 
energy balance, Qn, can take the form: 

Qn  = E* − Sn  [2.106] 

Knowing that Qn > 0 according to equation [2.104], relationship [2.106] indeed 
shows that nuclear deexcitation by n neutron emission can only occur if E* > Sn.  

2.5.3. Bound levels and virtual levels  

When studying the nuclear deexcitation process we differentiate between the 
bound levels and virtual levels of the nuclei. A bound level is a level whose 
excitation energy is insufficient to induce a deexcitation of the nucleus by emission 
of a particle such as a neutron, proton or α-particle. As a consequence, deexcitation 
of a bound nuclear level can only be achieved by the emission of a γ-photon or of an 
internal conversion electron in competition with the γ-emission. On the other hand, a 
virtual level is any level whose excitation energy is greater than the lowest 
dissociation energy of a nucleus in a lighter nucleus with emission of a particle (n, p, 
α, etc.).  

A common example is the nitrogen-14 nucleus, the lowest dissociation energy of 
which is equal to 7.542 MeV. Figure 2.20 shows several excited levels of the 
nitrogen-14 nucleus, as well as mass differences, expressed in MeV, of various 
possible dissociation products. All levels above 7.542 MeV are virtual levels.  
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As an example, let us calculate the mass difference between the nitrogen-14 
nucleus and its dissociation products, 13C + 1H, according to the equation: 

HC*N 1
1

13
6

14
7 +→   [2.107] 

The masses of the nuclei involved in reaction [2.107] are equal to [EVA 61]:  

m (14N) = 14.007515 u; m (13C) = 13.007473 u; m (1H) = 1.008142 u. 

Taking 1 u = 931.5 MeV/c2, we obtain the mass difference: 

Δm = [m (13C) + m (1H)] − m (14N) = 0.0081 u = 7.54515 MeV/c2 [2.108] 

Result [2.108] clearly shows that the energy level 7.545 MeV is a virtual level 
that can be dissociated by emission of a proton according to equation [2.107]. 

 

Figure 2.20. Bound levels and virtual levels of the nitrogen-14 nucleus. All levels 
above 7.542 MeV are virtual levels that can be dissociated with emission of a 
particle: neutron (n), proton (p), particle α, deuteron (d). For clarity, the energy scale 
is not respected 
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APPLICATION 2.11.– Account for the various deexcitation pathways of the virtual 
levels of the nitrogen-14 nucleus by emission of a particle, as shown in Figure 2.20. 

Given data:  

– m (13N) = 13.009858 u; m (12C) = 12.003804 u;  

– m (2H) = 2.014735 u; m (10B) = 10.016114 u;  

– mα  = 4.003873 u; mn = 1.008982 u. 

ANSWER.– The various deexcitation pathways of the virtual levels of the nitrogen-14 
nucleus with emission of a neutron, a deuteron or an α particle (4He) correspond to 
the following processes, respectively: 

nN*N 1
0

13
7

14
7 +→  

14 12 2
7 6 1N * C + H→  [2.109] 

14 10 4
7 5 2N * B+ He→  

The mass differences between the nitrogen-14 nucleus and its dissociation 
products then have the following values, respectively, according to [2.109]: 

Δm = [m (13N) + mn] − m (14N) = 10.54924 MeV/c2      

Δm = [m (12C) + m (2H)] − m (14N) = 10.26886 MeV/c2     [2.110] 

Δm = [m (10B) + mα] − m (14N) = 11.61767 MeV/c2     

Results [2.110] clearly justify the various deexcitation pathways of the virtual 
levels of the nitrogen-14 nucleus with emission of a particle (Figure 2.20). 

In the general case, deexciting a virtual level of a nucleus, X, can leave the 
residual nucleus, Y, in an excited state, E*r. In the case of a nucleon, the maximum 
kinetic energy, Ecmax, of the nucleon emitted of separation energy, Sn,p (Sn in the case 
of a neutron or Sp in the case of a proton) is given by the relationship: 

Ecmax = E* − E*r − Sn,p      [2.111] 

When the nucleon emission leaves the residual nucleus in its ground level, then 
E*r = 0 and Ecmax = E* − Sn,p. 
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2.5.4. Study of an example of delayed-neutron emission 

For a better understanding of the process of nuclear deexcitation by neutron 
emission, consider the specific case of bromine-87 decay. This is a decay process 
with delayed-neutron emission by the krypton-87 nucleus, a nuclear fission product 
of uranium-235. Using [2.103], in the case of bromine-87 with radioactive half-life, 
T = 55.6 s, we obtain: 

*87 87 86 1
35 36 36 0Br Kr Kr+ nβ−

⎯⎯→ ⎯⎯→   [2.112] 

In Figure 2.21, we have reproduced the diagram of nuclear deexcitation by 
delayed-neutron emission by the krypton-87 nucleus produced from the β − decay of 
the bromine-87 nucleus, according to the notation ZXA [EVA 61], for a nucleus with 
mass number A and charge number Z. 

 

Figure 2.21. Diagram of nuclear deexcitation by delayed-neutron emission by  
the krypton-87 nucleus produced from the β − decay of the bromine-87 nucleus 

As shown in Figure 2.21, approximately 70% of the β − decay of the 87Br nucleus 
leads to the excited energy level 5.4 MeV of 87Kr. This excited level is a virtual level 
whose energy is greater than the neutron separation energy in the 87Kr nucleus, equal 
to approximately 5.1 MeV. It follows that the 5.4 MeV level is deexcited by 
emission of a neutron of 0.3 MeV energy, with production of the residual  
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nucleus, 86Kr, according to the last equation [2.112], which we will complete as 
follows: 

nKr*Kr 1
0

86
36

87
36 +→  + 0.3 MeV   [2.113] 

APPLICATION 2.12.– Determine the deexcitation energy by neutron emission by the 
86Kr nucleus. Find the value of the separation energy of the neutron Sn ≈ 5.1 MeV.  

Given data: mass of 86Kr: 85.93828 u. 

ANSWER.– Using [2.104], we obtain:  

Qn = Ec (n) + Ecr (
86Kr)   [2.114] 

In [2.114] Ec (n) is known: Ec (n) = 0.3MeV. Let us then express Ecr (86Kr) 
according to Ec (n) by making use of momentum conservation. For the sake of 
simplicity, let us write: Ec (n) = Ecn and Ecr (

86Kr) = EcrKr. By considering equation 
[2.113] for deexcitation of Kr* initially at rest, we obtain:  

nKrnKr pppp =+=0
  [2.115a] 

Given that Ec = p2/2m and according to [2.115a], we obtain: 

cnncKrKr EmEm =   [2.115b]  

By taking EcrKr from [2.115b] and applying the result in [2.114], we obtain: 

1 n
n cn

Kr

m
Q E

m
 

= + 
 

  [2.116]  

Numerically we find:  

3035.03.0
93828.85

008982.1
1 =×






 +=nQ MeV  [2.117]  

Yet according to [2.106],  

Sn = E* − Qn  Sn = 5.4 − 0.3035 = 5.096 MeV  [2.118] 

We indeed find the value of the separation energy of the neutron Sn ≈ 5.1 MeV.  
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2.6. Bethe–Weizsäcker semi-empirical mass formula 

2.6.1. Presentation of the liquid-drop model 

As specified in section 2.3.1, the nuclear models for studying the internal 
structure and properties of nuclei include the liquid-drop model, in which nucleons 
are highly correlated. This model allows us to explain nuclear phenomena that 
cannot be described within the framework of the shell model, such as phenomena 
linked inter alia to the energy of α and β decays, whose processes will be studied in 
Chapter 3. For this reason, we will complete this chapter with a detailed study of the 
properties of the nuclei within the framework of the liquid-drop model or nuclear 
model with constant nucleon density [EVA 61, STÖ 07, SEC 10, DUM 15,  
MAY 17, SAK 18a]. 

The liquid-drop model is based on the following hypotheses: 

1) The nucleus assumed to be spherical of radius R = r0A1/3 is likened to a drop of 
incompressible nuclear matter.  

2) All nuclei have the same nucleon density; saturated nucleon shells are 
overlooked.  

3) The forces between nucleons are independent of spin and charge.  

4) Nuclear forces are very short-range, so that each nucleon only interacts with 
its closest neighbors, so the nucleons distributed in volume have more neighbors 
than those distributed on the surface. 

On the basis of these hypotheses, we will present and discuss the physical 
contents of the semi-empirical mass formula proposed by Carl von Weizsäcker in 
1935 and resumed by Hans Bethe in 1936. This then justifies the Bethe–Weizsäcker 
semi-empirical mass formula or the Bethe–Weizsäcker formula, in short. 

2.6.2. Bethe–Weizsäcker formula, binding energy 

The semi-empirical mass formula, known as the Bethe–Weizsäcker formula, 
expresses the M (A, Z) of a nucleus according to the relationship: 

2/3

2 2 2

2 2

1/3

( , ) ( )

( 2 )

H n

v s c a

M A Z c ZM c A Z M c
Z A Za A a A a a

AA
δ

= + −

−− + + + ±
    [2.119] 
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To clarify the physical meaning of the different terms in the Weizsäcker formula, 
let us first express the binding energy, El (A, Z), of a nucleus. To do this, let us 
consider expression [1.60] by replacing mp with MH: 

El = {[ZMHc2 + (A − Z) mnc2] − M (A, Z)}c2  [2.120]  

By comparing [1.120] and [2.119], and knowing that N = A – Z, we obtain: 

δ±
−

−−−=
A

ZNa
A
ZaAaAaZAE acsvl

2

3/1

2 )(
),( 3/2   [2.121] 

The expression [2.121] of the binding energy enables us to obtain the precise 
physical meaning of the different terms in the Bethe–Weizsäcker formula [2.120]. It 
contains five terms having the dimension of an energy, whose physical meanings we 
will specify. 

2.6.3. Volume energy, surface energy  

The volume energy, noted Ev, is a term introduced by considering an infinite 
nucleus, in which the nucleons are bound by the strong nuclear force. It corresponds 
to the first term in expansion [2.121], i.e.: 

=v vE a A  [2.122] 

In relationship [2.122], the constant av is called the volume coefficient. This 
coefficient is to be evaluated. 

As explained in section 1.6.6, short-range nuclear forces only act on the close 
neighbors of a nucleon. A saturation effect of nuclear forces occurs, resulting in the 
binding energy being limited by the maximum number of nucleons that can surround 
the nucleon considered. For this reason, the binding energy is proportional to the 
number of nucleons contained in the drop and therefore to the mass number, A, of 
the nucleus. This then justifies the presence of the term avA in the expression of the 
binding energy [2.121]. Knowing that for a bound system the binding energy is 
positive, then the volume energy [2.122] is counted positively. Physically, the 
volume coefficient, av, represents the energy density per nucleon in the nuclear 
matter assumed to be infinite.  

The second term in [2.121] is negative surface energy, Es: 

Es = − asA2/3  [2.123] 
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In relationship [2.123], as is called the positively-counted surface coefficient. 
This coefficient is also evaluated. 

Surface energy is introduced to account for the fact that the nucleus is well-
finished and that the nucleons on the surface are less bound than those within the 
nucleus. To theoretically justify expression [2.123], it can be considered that within 
the framework of the nuclear model with constant nucleon density, the nucleus 
assumed to be spherical of radius R = r0 A1/3 has a surface S = 4πR2 = 4πr0

2A2/3. 
Assuming the spherical nucleon has an average radius equal to r0, it would occupy a 
volume v0 = (4/3)πr0

3. Each nucleon would then have a surface s0 = 4πr0
2. Since the 

nucleon density is constant, the number of nucleons distributed at the surface would 
then be of the order of S/s0 = 3A2/3. Considering a nucleon of surface πr0

2, the 
number of nucleons distributed at the surface would be of the order of 4A2/3 [EVA 
61]. These results justify the fact that the surface energy is proportional to A2/3. The 
negative sign is justified by the fact that the volume energy corresponds to the 
energy of infinite nuclear matter. With the nucleus being finished, El < Ev  Es < 0, 
according to [2.121]. 

2.6.4. Coulomb energy  

The third term in the expression [2.121] is the Coulomb energy noted Ec, due to 
proton repulsion in the nucleus: 

3/1

2

A
ZaE cc −=   [2.124] 

In [2.124], ac refers to the Coulomb coefficient also to be evaluated. 

Considering that the charge + Ze of the nucleus is uniformly distributed in 
volume, the Coulomb energy of a sphere of R charged in volume is given by the 
relationship (see exercise 2.5): 

R
eZ

kWc

22

5

3
=   [2.125] 

Within the framework of the liquid-drop model, the nucleus radius, R = r0 A1/3. 
The relationship [2.125] is then written in the form: 

2 2

1/3
0

3

5c
ke ZW
r A

= ×    [2.126] 



Nuclear Deexcitations     129 

With the Coulomb term decreasing the energy volume, we obtain Ec = − Wc. This 
gives, according to [2.126]: 

2 2 2

1/3 1/3
0

3

5c c
ke Z ZE a
r A A

= − × = − ×   [2.127] 

The Coulomb coefficient, ac, is then written: 

0

2

5

3

r
keac =

  [2.128] 

The expression [2.128] shows that the Coulomb coefficient can be evaluated 
theoretically if r0 is known. The first theoretical expression of the Coulomb 
coefficient is determined using the expression of the Sakho unit nuclear radius 
[1.39]. We obtain [SAK 18a]: 

2

2
0

3
1

5c
ke Na

Zaα
 = + 
 

  [2.129] 

APPLICATION 2.13.– Show that in MeV, relationship [2.129] is written: 







 +×=

Z
Nac 1307.0

 (MeV)  [2.130]   

Calculate the Coulomb coefficient for the nuclei 20Ne (Z = 10) and 56Fe (Z = 26). 

Given data (CODATA recommended values):  

α = 1/137.035999679; e =  1.602179487 × 10 − 19 C, a0 = 0.52917720859 × 
10 − 10 m; 1eV = 1.602179487 × 10 − 19 J. Let k = 1/4πε0 = 9 × 109 IS. 

Let us call K the factor in [3.10]: 

2

2
0

3

5

keK
aα

=  

Numerically we find:  

5
115

199

1007027.3
10291720859.510325135412.55

10602179487.11093 ×=
××××

××××= −−

−
K
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Let K ≈ 0.307 MeV. We then obtain [2.130]: 

– for 20Ne: N/Z = 1  ac = 0.614 MeV; 

– for 56Fe: N/Z = 1  ac = 0.661 MeV. 

As we will see in Table 2.8, for various authors, the semi-empirical values of the 
Coulomb coefficient vary between 0.580 MeV and 0.710 MeV. 

2.6.5. Asymmetry energy, pairing energy  

The fourth term in expression [2.121] of the binding energy represents the 
asymmetry energy, Ea: 

A
ZNaE aa

2)( −
−=   [2.131] 

In this relationship, aa is called the asymmetry coefficient to be evaluated.  

The negative asymmetry energy, Ea, is a term introduced to account for excess 
neutrons (N − Z) compared to N = Z symmetry for the number of nuclei, as observed 
experimentally.  

As shown in Segrè diagram 1.18, the most stable nuclei (Z < 30) are located in 
the valley of stability near the first bisector, N = Z, also known as the line of 
stability. This shows that attractive nuclear interaction is stronger where the nucleus 
has an equal number of protons and neutrons. For heavy nuclei, the excess of 
neutrons partially compensates for the Coulomb repulsion between protons. This 
then justifies the fact that the asymmetry energy, which is a purely quantum 
contribution, is proportional to the excess of neutrons (N − Z), which is reflected by 
a decrease in the binding energy. Note that the asymmetry term is more significant 
for light nuclei than for heavy nuclei outside the valley of stability.  

Finally, the fifth term in expression [2.121] of the binding energy represents the 
pairing energy, Ep (pairing term): 

Ep = ± |δ |  [2.132] 

The term for pairing energy is introduced to take into account the fact that, while 
even-even nuclei exist, there are several even-odd and odd-even nuclei, as well as 
odd–odd nuclei numbering five (see Table 2.1). This corrective term, also known as 
a pairing term, expresses the fact that the binding energy increases when identical 
nucleons of a nucleus are paired. As a result, even-even nuclei are more stable than 
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odd-even or even-odd nuclei, which themselves are more stable than odd-odd nuclei 
because of the inability to pair an unpaired nucleon. If we use ap to designate the 
pairing coefficient, we obtain:  

δ = 0 for odd A (even Z-odd N or odd Z-even N)   [2.133a] 

δ = + ap A−1/2 for even Z-even N nuclei    [2.133b] 

δ = − ap A−1/2 for odd Z-odd N nuclei     [2.133c] 

In [2.133], the pairing coefficient, ap = 12 MeV [DUM 15] or (11.2 ± 09) MeV 
[BUS 13; MAT 46]. 

Table 2.5 shows the stable nucleus numbers according to the parity of the 
nucleon number, A, the proton number, Z, and the neutron number, N. 

Z N A Number of stable nuclei 
even even even 166 

even odd odd 55 
odd even odd 51 
odd odd even      5 (*) 

(*): the nuclei concerned are: 1H, 6Li, 10Be, 14N and 180Ta (tantalum) 

Table 2.5. Number of stable nuclei with respect to the parity of Z and N 

2.6.6. Principle of semi-empirical evaluation of coefficients in  
Bethe–Weizsäcker form 

To determine the coefficients in the Bethe–Weizsäcker formula [2.119], we 
consider nuclei of odd-A nucleon number. This allows the pairing energy to be 
canceled according to [2.133a]. The binding energy [2.121] is then written in the 
form: 

2/3

2 2

1/3

( )
( , )l v s c a

Z N ZE A Z a A a A a a
AA
−= − − −   [2.134] 

Relationship [2.134] is an equation with four unknowns, av, as, ac , and aa a. 
These coefficients can then either be determined from the experimental data on four 
nuclide binding energies, or from the experimental data on the released energies of 
four nuclear reactions. The average values of the coefficients av, as, ac and aa  

 



132     Nuclear Physics 1 

evaluated thus serve as a basis for calculation for a large number of nuclides. 
Nevertheless, it should be noted that formula [2.119] does not give very good results 
for magic nuclei, which are more stable than nuclei whose masses are determined 
with high precision using formula [2.119]. 

– Determining ac and aa. 

The Coulomb coefficient, ac, can be determined directly from equation [2.130] 
by considering all stable nuclei N = Z. Which then gives: 

ac = 0.613 MeV   [2.135]  

Historically, the empirical determination of the five coefficients in the  
Bethe–Weizsäcker formula is based on experimental data. In the general case, the 
expression [2.128] of the Coulomb coefficient is considered. Then to evaluate ac, the 
experimental value of the unit nuclear radius, r0, is used, usually chosen as being 
specific to the Bethe–Weizsäcker formula with [EVA 61]: 

r0 = (1.45 ± 0.05) × 10 − 13 cm; 10 < A < 240  [2.136]  

Using the value [2.136] of r0, the Coulomb coefficient has the following value, 
according to [2.128]: 

5
15

199

109667374.5
1045.15

10602179487.11093 ×=
××

××××= −

−

ca
 eV  

α = 1/137.035999679; e = 1.602179487 × 10 − 19 C, a0 = 0.52917720859 × 10 − 10 m; 
1eV = 1.602179487 × 10 − 19 J. Let k = 1/4πε0 = 9 × 109 IS. 

Let: 

ac = 0.597 MeV   [2.137] 

To evaluate aa, the values of the ratio aa/ac are determined for several nuclides 
and an average value is then deduced. This then allows the asymmetry coefficient to 
be evaluated using the empirical value [2.137] of the Coulomb coefficient. 

As shown in equation [2.134], for fixed A, the binding energy is a parabola 
presenting a minimum. By definition, the term nuclear charge of the most stable 
isobar is used for the Zmin value of Z, for which the mass, M (A, Z) is minimal: 

min

( , )
0

M A Z
Z ZZ

δ
δ

=
=

  [2.138] 
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By making use of condition [2.138], the volume, av, and surface as, coefficients 
are eliminated. This then gives an equation where only coefficients ac and aa remain. 
This enables us to express the ratio aa/ac.  

Using [2.134], condition [2.138] leads to the ratio: 

c

Hn

c

a

a
cMM

ZA
A

ZA
AZ

a
a

4

)(

222

1 2

minmin

3/2
min −

×
−

−
−

=   [2.139] 

In equation [2.139], Zmin is generally non-integer. The charge is therefore 
fictitious. Knowing that the atomic number is an integer. The integer Z closest to 
Zmin is then taken for the calculations.  

Let us determine the mass-energy difference (Mn – MH) c2 by considering  
the mass energies of the hydrogen atom and the neutron to be equal to: MHc2 = 
1.007825 uc2; Mnc2 = 1.008665 uc2. Knowing that: 1 u = 931.5 MeV/c2, we then 
obtain: 

(Mn – MH) c2 = 0.78246 MeV  [2.140] 

Considering [2.137] and [2.140], we find the results gathered in Table 2.6, 
obtained using equation [2.139] by writing Zmin = Z. 

X element Z A aa/ac 
Astate (As) 33 75 29.874 

Bromine (Br) 35 79 32.924 

Bromine (Br) 35 81 27.370 

Niobium (Nb)  41 93 35.484 

Rhodium (Rh) 45 103 35.434 

Iodine (I) 53 127 29.902 

Cesium (Cs) 55 133 29.259 

Terbium (Tb) 65 159 31.095 

Holmium (Ho) 67 165 30.765 

Thulium (Tm)  69 169 32.232 

Tantalum (Ta) 73 181 31.675 

Iridium (Ir) 77 191 32.819 

Iridium (Ir) 77 193 31.347 

Gold (Au) 79 197 32.636 

Bismuth (Bi) 83 209 32.397 

      Average of the ratio aa/ac       31.681 

Table 2.6. Calculating the average value of the ratio aa/ac  
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Looking at the last row of Table 2.6, we obtain:  

( / ) 31,681a ca a =  = 31.681   [2.141] 

The value of the asymmetry coefficient is given by the relationship: 

)/( caca aaaa ×=
  [2.142] 

Using [2.137] and [2.141], we ultimately obtain: 

ac = 18.914 MeV    [2.143] 

APPLICATION 2.14.– Then demonstrate relationship [2.139] and determine the 
absolute errors ΔaI on the evaluations of coefficients ac and aa . Now rewrite results 
[2.135] and [2.141], taking the absolute errors into account. 

ANSWER.– Using [2.119], we obtain: 



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

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−+−=
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∂
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A
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c
MM
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42
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3/12
    [2.144a] 

By minimizing equation [2.144a] according to condition [2.138], we obtain: 

min min
2 1/3

( 2 )1
2 4 0H n c a

Z A ZM M a a
Ac A

− − + − = 
 

    [2.144b] 

Given that N = A − Z, equation [2.144b] is written: 
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Let us multiply [2.144c] by A/(A − 2Zmin). We obtain: 
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By dividing [2.145] by ac on both sides, we obtain [2.139]. 

To determine the absolute errors, ΔaI, on the evaluations of coefficients ac and 
aa, let us consider [2.128] and [2.142] to obtain, respectively:  

0
0

0 0

0
0

c c
c

c

a c a
a

a c

a r aa r
a r r
a a aa r

a a r

Δ Δ = Δ = Δ   Δ Δ = Δ = Δ
  

   [2.146] 

Given that r0 = 1.45 × 10 − 13 cm, Δr0 = 0.05 × 10 − 13 cm [2.136], a =  
18.914 MeV [2.137] and  aa = 18.914 MeV [2.143], numerically we obtain: 

Δac = 0.021 MeV; Δaa = 0.652 MeV  [2.147] 

Taking into account the absolute errors, we ultimately obtain: 

ac = (0.597 ± 0.021) MeV; aa = 18.914 ± 0.652 MeV       [2.148] 

– Determining av and ap. 

To empirically determine the coefficients of volume av and pairing ap, let us 
express the binding energy per nucleon using [2.134]. By replacing the neutron 
number, N, with A – Z, we obtain:  

1/3

22

4/3

( , ) 2
1l s

v c a
E A Z a Z Za a a

A AAA
 = − − − − 
 

  [2.149] 

Given that coefficients ac and aa are known [2.148], the equation is solved if two 
experimental nucleon binding values are known for any two nuclides of an odd 
number of nucleons. Consider the experimental values of (El/A) for 65Cu (Z = 29) 
and 127I (Z = 53) equal to 8.75 MeV/nucleon and 8.43 MeV/nucleon, respectively 
[EVA 61]. Using [2.148], equation [2.149] gives: 

8.75 = av – 0.248711317as – 2.140468896 

8.43 = av – 0.198944571as – 3.144113565 

By solving the above system of equations, we find: 

av = 14.307 MeV; as = 13.737 MeV    [2.150] 
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In summary, the following semi-empirical values are obtained: 

ac = 0.597 MeV; aa = 18.914 MeV  

av = 14.307 MeV; as = 13.737 MeV     
[2.151]

These results can be compared with the more recent values from Roy and Basu 
[ROY 06]: 

ac = (0.695 ± 0.002) MeV; aa = 22.435 ± 0.065) MeV;  

av = (15.409 ± 0.026) MeV; as = 16.873 ± 0.080) MeV;            [2.152] 

ap = (11.155 ± 0.864) MeV, this value often being approximated to 12 MeV. 

The liquid-drop model is a comprehensive approach to roughly determine the 
mass and binding energy of nuclei. Considering the semi-empirical mass formula 
[2.119], the M (A, Z) of a neutral atom and a nucleus are written as a function of the 
binding energy, El [2.134], respectively in the form: 

M (A, Z) = ZMHc2 + (A − Z)Mnc2 − El     [2.153a] 

M (A, Z) = ZMHc2 + (A − Z)Mnc2 − El     [2.153b] 

Using [2.151], the binding energy [2.134] is determined, then the atomic mass, 
M (A, Z) [2.153a] is derived. The results obtained for several odd-A nuclei compared 
to the experimental data are presented in Table 2.7. 

Element Z A (El /A)cal 
(MeV) 

(El /A)exp 
(MeV) 

M (A, Z)cal 
(u) 

M (A, Z)exp 
(u) 

Oxygen (O) 8 17 8.02 7.75 17.1320 17.0045 

Sulfur (S) 16 33 8.56 8.50 33.2633 32.9819 

Manganese (Mn)  25 55 8.75 8.75 55.4462 54.9558 

Copper (Cu) 29 65 8.75 8.75 65.5295 64.6484 

Iodine (I) 53 127 8.43 8.43 128.0469 126.9453 

Platinum (Pt) 78 195 7.97 7.92 196.6156 195.0264 

Berkelium (Bk) 97 245 7.63 7.52 247.0333 245.142 

Table 2.7. Binding energy and atomic mass of some nuclides. The calculated values 
are obtained using formulas [2.149] and [2.153a] based on the values [2.152] of 

coefficients av, as, aa, ac, and ap. The experimental values are taken from [EVA 61] 
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The comparison of the results gathered in Table 2.7 shows that the  
semi-empirical mass formula reproduces the experimental data in a fairly 
satisfactory manner. The deviations observed are due to the imprecision of the 
empirical values of coefficients av, ac, as and aa . Several families of coefficients are 
found in the literature, as indicated in Table 2.8.   

Authors av as aa ac ap 
Bethe and Bachera 13.86 13.20 19.50 0.580  

Bohr and Wheelerb  14.00  0.590  

Matauch and Flueggec 14.66 15.40 20.50 0.602  

Feenbergd 14.10 13.10 18.10 0.585  

Friedlander and Kennedye 14.10 13.10 18.10 0.585  

Fermif 14.00 13.00 19.30 0.583  

Wapstrag 14.10 13.00 19.00 0.595  

Seegerh 16.11 20.21 20.65 0.806  

Roy and Basui 15.41 16.87 22.43 0.695 12.00 
a [BET 36], b [BOH 39], c[MAT 46], d[FEE 47], e[FRI 49], f [FER 50] 
g[WAP 58], h[SEE 61], i[ROY 06] 

Table 2.8. Families of coefficients av, as, aa, ac, and ap 

APPLICATION 2.15.– The [SAK 18a] tables present the atomic masses 15.99491 u 
and 25.98689 u, respectively, for the nuclides 16O (Z = 8) and 26Al (Z = 13). Deduct 
the masses of the nuclei corresponding to the two nuclides considered from these 
results. Compare the atomic masses obtained with the predictions of the liquid-drop 
model. We will use the values of coefficients av, ac, as, and aa obtained by Wapstra 
(Table 2.8).  

We will take (Table 1.3): m0 = 0.0005486 u; mp = 1.007276 u, mn = 1.00866 u. 

ANSWER.– 

– Nucleus masses 

Let M (A, Z) denote the atomic mass of a nuclide, AX, and MX (A, Z) the mass of 
the corresponding nucleus. The mass of an electron is noted m0. The mass of the 
nucleus is thus given by the relationship: 

MX (A, Z) = M (A, Z) − Zm0   [2.154] 
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We thus obtain: 

– for 16O: MO (16, 8) = (15.99491 − 8 × 0.0005486) u = 15.9905212 u 

– for 26Al: MAl (26, 13) = (25.98689 − 8 × 0.0005486) u = 25.9797582 u 

Thus, in summary: 

MO (16, 8) = 15.9905212 u; MAl (26, 13) = 25.9797582 u. [2.155] 

– Predictions of the liquid-drop model, comparison 

The 16O and 26Al nuclides are even-even and odd-odd nuclides, respectively. 
Using the Bethe–Weizsäcker formula [2.119] and the expression of pairing energy 
[2.133b] and [2.133c], for even A, we obtain: 

2/3

2 2 2

2 2

1/3 1/ 2

( , ) ( )

( ) 1

H n

v s c a p

M A Z c ZM c A Z M c
Z N Za A a A a a a

AA A

= + −

−− + + + ±
  [2.156] 

Which then gives: 

– for 16O (even Z-even N): 

M (16, 8)c2 = 8MHc2 + 8Mnc2 – 16 av + 6.34960 as +25.39842 ac + 0.25 ap    [2.157a] 

– for 26Al (odd Z-odd N): 

M (26.13)c2 = 13MHc2 + 13Mnc2 – 26 av + 8.77638 as +228.18596 ac – 
0.19612 ap   [2.157b] 

Given that MHc2 = 1.007825 uc2, 1 u = 931.5 MeV/c2, av = 14.1 MeV,  
as = 13.0 MeV, ac = 0.595 MeV and ap = 33.50 MeV, equations [2.156] give: 

M (16, 8) = 16.00351 u; M (26, 13) = 25.54304 u   [2.157c] 

The consistency between the predictions [2.157c] derived from the drop model 
and the atomic masses, M (16, 8) = 15.99491 u and M (26, 13) = 25.98689 u given 
in the tables is satisfactory. 
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NOTE.– Using [2.119], the mass, MX (A, Z) of a nucleus is written: 

2/1
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3/1
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222
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a

A
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a
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aAaAa

cMZAcZmcZAM

pacsv

npX

±
−

+++−

−+=
    [2.158] 

Given that the mass difference (MH – mp) = m0 (electron mass) is obtained by 
comparing [2.156] and [2.158], we obtain: 

MX (A, Z) = M (A, Z) − Z (MH – mp) = M (A, Z) − Zm0  

Equation [2.154] is found. It is therefore not necessary to calculate the mass of a 
nucleus using the semi-empirical mass formula [2.119], if the atomic mass of the 
nuclide considered is known. It is sufficient to simply use [2.154].  

 

Figure 2.22. Summary of the treatment of binding  
energy within the framework of the liquid-drop model  

 

 

 

 

 

17O 

0 30 60 90 120 150 180 210 240 270 
0 

2 

4 

6 

8 

10 

12 

14 

16 volume energy 

surface energy 

Coulomb energy 

binding energy asymmetry energy 

bi
nd

in
g 

en
er

gy
 p

er
 n

uc
le

on
 

(E
l/A

 (
M

eV
/n

uc
le

on
) 

mass number, A 

33S 55Mn 65Cu 127I 197Pt 245Bk 



140     Nuclear Physics 1 

In conclusion, let us summarize the treatment of binding energy within the 
framework of the liquid-drop model by including the contributions of the four 
corrective terms in the Bethe–Weizsäcker formula [2.119]. To do this, for the sake 
of convenience let us reverse the shape of the Aston curve shown in Figure 1.20. 
Considering the specific values of the binding energy nucleons of the nuclides listed 
in Table 2.7, the diagram shown in Figure 2.22 is obtained. This figure shows that 
for A < 30, the contribution of asymmetry energy to the decrease in volume energy 
is insignificant. For A < 60, the greatest decrease in binding energy per nucleon can 
be attributed to the surface energy. The Coulomb repulsion between protons 
becomes predominant for A > 60. Thus, for heavy nuclides, the greatest decrease in 
binding energy per nucleon can be attributed to the surface energy. 

Lastly, for A > 30, note the significance of the contribution of asymmetry energy, 
which increases, albeit modestly compared to the contributions of the surface and 
Coulomb energies. 

2.6.7. Isobar binding energy, the most stable isobar 

As shown in equation [2.121], for fixed and odd A (δ = 0), the variation in the 
binding energy, El (A, Z) as a function of Z is a parabola (N = A – Z): 
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aAaAaZAE acsvl
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−−−=    [2.159] 

The parabola thus presents a minimum Z = Zmin obtained by minimizing equation 
[2.159], i.e.: 
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Using [2.159], condition [2.160] gives:  
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The minimum binding energy is then obtained for: 

min
2/32

2
c

a

AZ
a A
a

=
+

  [2.161] 

As an illustration, look for the most stable isobar among the nuclides  
131Te (Z = 52), 131I (Z = 53), 131Xe (Z = 54), and 131Cs (Z = 55). Using the values of 
the coefficients ac= 0.595 MeV and aa = 19.0 MeV obtained by Wapstra, equation 
[2.161] gives the nuclear charge of the most stable isobar: 

Zmin = 54.4953  Z = 54   [2.162]  

The most stable isobar is actually xenon according to result [2.162].  

Indeed, tellurium-131 and iodine-131 are all β − radioactive. Cesium-131 (only 
isotope-133 is stable) decays by electron capture with the emission of X-ray energy 
in the range (29.5 – 33.5) keV. The equations of radioactive transformations are 
written (the complete equations will be presented in Chapter 3): 

131 131 131
52 53 54Te I Xeβ β− −

⎯⎯→ ⎯⎯→  [2.163a] 

131 131
55 54Cs + Xe + +e Xν− →  [2.163b] 

Given that a decay product (daughter nucleus) is more stable than the decaying 
nucleus (parent nucleus), equations [2.163] show that xenon-131 is indeed the most 
stable isobar. 

NOTE.– It is helpful to calculate Zmin using the values of ac and aa, obtained by the 
various authors whose results are presented in Table 2.8. The comparison shows 
that the accuracy of calculations using formula [2.161] depends on the accuracy of 
semi-empirical measurements on the values of the Coulomb coefficient, ac, and the 
asymmetry coefficient, a. An imprecision is notably found in the evaluations of 
coefficients ac and aa by Seeger and by Matauch and Fluegge. The following  
sub-section shows that for A = 131, the most stable isobar is xenon, based on the 
mass parabola equation for constant A.   

In order to correctly interpret the results gathered in Table 2.9, the integer value 
just below Zmin is to be considered. Z = 54 is found, except for the results obtained 
from the evaluations of Seeger (Z = 52) and Matauch and Fluegge (Z = 55), for 
which the most stable isobar corresponds to 131Te and 131Cs, respectively, in 
contradiction to observations [2.164].  
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Authors 
Mass number A = 131 

ac /aa Zmin Z isobar 

Bethe and Bacher 0.02974 54.95997 55 Xenon 

Matauch and Fluegge 0.02937 55.07022 55 Cesium 

Feenberg 0.03232 54.20331 54 Xenon 

Friedlander and Kennedy 0.03232 54.20331 54 Xenon 

Fermi 0.03031 54.79099 55 Cesium 

Wapstra 0.03132 54.49410 54 Xenon 

Seeger 0.03903 52.32957 52 Tellurium 

Roy Chowdhury and Basu 0.03102 54.58195 55 Cesium 

Table 2.9. Values of Zmin calculated from the  
values of ac and aa gathered in Table 2.8 

Taking into account the values of the ratio ac/aa recorded in Table 2.9, an average 
is found: 

( / ) 0.03184c aa a =   [2.164]   

Considering the inverse of the average [2.141], we find: 

03156.0)/( =ac aa
  

This result is in accordance with [2.164]. 

If we now apply the average [2.165] in [2.161], we find: 

min 2/32 0.01592

AZ
A

=
+

  [2.165] 

With stable nuclei being the nuclei with a minimum of binding energy, the 
formula [2.165] also corresponds to the equation giving the nuclear charge of nuclei 
within the valley of stability (see section 2.8.6). This equation shows that for light 
nuclei (Z < 30), Z = Zmin ≈ A/2, which corresponds to nuclei located in the valley of 
stability near the line of stability, N = Z (see the Segré diagram, Figure 1.18). 
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APPLICATION 2.16.– Determine the most stable isobar for A = 177 and A = 179.  

Given data: lutetium (Z = 71), hafnium (Z = 72), and tantalum (Z = 73) elements. 

ANSWER.– Using [2.162] and the average value [2.164], we obtain: 

– for A = 177, Zmin = 70.7471  Z = 71: the most stable isotope, Lu177
71 ; 

– for A = 179, Zmin = 71.4387  Z = 71: the most stable isotope,. 179
71Lu.  

2.7. Mass parabola equation for odd A 

2.7.1. Expression 

As the Bethe–Weizsäcker formula [2.119] shows, for fixed A, the variation in 
atomic mass, M (A, Z), with atomic number Z is a parabola. For the sake of 
convenience, let us rewrite this formula by expanding the factor (A – 2Z)2 for the 
asymmetry term. We obtain: 
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By arranging this equation, we obtain the following mass parabola equation: 
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  [2.166] 

Let us introduce the ratio ac/aa  into the first term of the right-hand member of 
equation [2.166].. We obtain: 
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Let us simplify the writing of the parabolic equation [2.167] as follows: 

M (A, Z)c2 = a Z2 + b Z + d ± | δ |     [2.168] 

In equation [2.168]: 
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For odd A, the pairing energy is zero (δ = 0) in [2.167] and [2.169]. The nuclear 
charge of the most stable isobar corresponding to the minimum value of Z is given 
by condition [2.138]. By applying it to parabolic equation [2.168], we obtain: 

min
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M A Z a Z b
Z ZZ
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Which then gives: 
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min −=    [2.170] 

APPLICATION 2.17.– Show that [2.170] is equivalent to equation [2.139]. 

ANSWER.– In [2.170] replace a and b with their expressions taken from [2.169]. We 
obtain: 
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Thus: 

4 aa (A − 2Zmin) = − 2ac Zmin A2/3 − A( Mn − MH) c2    [2.171] 
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By dividing [2.171] by 4ac, × (A – 2Zmin) on both sides, we find relationship 
[2.139]. 

2.7.2. Determining the nuclear charge of the most stable isobar from 
the decay energy 

As explained in section 1.6.2, referring to the Segré diagram, the blue area 
occupied by nuclei with excess neutrons compared to stable nuclei with the same 
mass number, A, decay by β − radioactivity, while the green area occupied by nuclei 
with excess protons compared to stable nuclei with the same mass number, A, decay 
by β + radioactivity. Although these two decay modes are studied in Chapter 3, it is 
interesting to see how, based on β decay energies, the nuclear charge of the most 
stable isobar can be determined from equation [2.170]. To do this, let us first express 
the parabolic relationship between the mass of the isobars of odd A, defined by the 
mass difference, M (A, Z) − M (A, Zmin). Using the parabolic mass equation [2.168], 
let us express the fictitious mass, M (A, Zmin): 

2 2
min min min( , )M A Z c a Z b Z d= + +  

By replacing b with its expression taken from [2.170] in the last term of the 
right-hand member of the above equation, we find: 

2 2
min min( , )M A Z c a Z d= − +   [2.172] 

Let us now express the parabolic relationship between the mass of the isobars of 
odd A. Using [2.168] and [2.172], we obtain: 

)2()],(),([ min
2
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22
min ZZZZacZAMZAM −+=−  

Thus by leveraging the identities of note: 

2 2
min min[ ( , ) ( , )] ( )M A Z M A Z c a Z Z− = −    [2.173] 

Equation [2.173] reflects the parabolic relationship between the mass of the 
isobars of odd A.  

Let us now express the β decay energies as a function of the nuclear charge, Zmin, 
using [2.173]. 
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– Transition between isobars of odd A by β  −  emission: Z → Z + 1 

During a β  − transition, the nuclear charge of the final nucleus has one more 
proton than the initial nucleus: it is therefore a Z → Z + 1 transition. Using [2.168], 
the β − decay energy is written: 

[ ] 2
min

2
min

2 )1()()1,(),( ZZaZZacZAMZAMQ −+−−=+−=−β  

Which then gives:   

Qβ−  = a (Z – Zmin + Z + 1 − Zmin)(Z – Zmin − Z − 1 + Zmin) 

That is, ultimately: 

min min

1 1
2 2

2 2
Q a Z Z a Z Zβ −

   = − − + = − −   
   

    [2.174] 

– Transition between isobars of odd A by β+ emission: Z → Z − 1 

During a β + transition, the nuclear charge of the final nucleus has one less proton 
than the initial nucleus: it is therefore a Z → Z − 1 transition. The β+ decay energy is 
written using [2.168]: 

[ ] 






 −−=−−=+
2

1
2)1,(),( min

2 ZZacZAMZAMQβ  [2.175] 

Using [2.174] and [2.175], we can summarize the two expressions giving the β 
decay energies, that is: 

min

1
2 ( )

2
Q a Z Z

β ±

 = ± − −  
  [2.176] 

Let us now plot the curve translating the mass parabola, at the lowest point of 
which is the stable isobar of odd mass number A. By including the quantities [2.173] 
and [2.176], the curve shown in Figure 2.25 is obtained. 

As shown in Figure 2.23, for odd and fixed A, the Z → Z ± 1 transitions between 
isobars give a sequence of β decays cascading toward the most stable final isobar of 
nuclear charge Z equal to the integer closest to Zmin. 
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Figure 2.23. Mass parabola for the isobars of odd A 

APPLICATION 2.18.– Let us consider the two β − transitions [2.163a] cascading 
toward the xenon, which we will rewrite featuring the decay energy for each 
transition: 

131 131
52 53Te I→ +  β − +  (2.16 ± 0.10) MeV 131 131

52 53Te I→  [2.177a]  

XeI 131
54

131
53 → +  β − +  (0.97 ± 0.01) MeV   [2.177b] 

Deduce from the data in [2.177] the most stable isobar. 

ANSWER.– Let us write, according to [2.177]: 

Qβ (131.52) = (2.16 ± 0.10) MeV  [2.178] 

Qβ (131.53) = (0.97 ± 0.01) MeV 

Using [2.174], we obtain:   

Qβ (131, 52) + Qβ (131, 53) = 4a (Zmin − 53)  [2.179a] 

Qβ (131, 52) − Qβ (131, 53) = 2a    [2.179b] 

  odd A

Qβ + = 2a (Z − Zmin − 1/2)

Qβ − = 2a (Zmin − Z − 1/2) 

Z → Z + 1 Z → Z − 1 Zmin = − b/2a 

M (A, Zmin) 

M
 (A

, Z
) 

β − 

β − 
β + 

β + 
a 

(Z
−Z

m
in

)2 
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By applying the ratio of the two equations [2.179], we find: 

)52,131()52,131(

)52,131()52,131(

2

1
53min

ββ

ββ

QQ
QQ

Z
−

+
+=   [2.180] 

Using [2.178], we find, numerically: 

min

1 (2.16 0.97)
53 54.3151260 54

2 (2.16 0.97)
Z Z+= + =  =

−
  [2.181] 

Result [2.162] derived from equation [2.161] is found another way: xenon is 
indeed the most stable isobar. 

APPLICATION 2.21.– Deduce from the data in [2.177], the value of the ratio ac/aa . 
Compare the result obtained with the average value [2.164]. Let us consider result 
[2.1]. 

ANSWER.– Using [2.169], we obtain: 

1/3

2 2

4

( 4 )

c a

H n a

a aa
AA

b M c M c a

  = +  
 

 = − −

  [2.182] 

It is therefore sufficient to calculate a and b and then to deduce therefrom the 
values of ac and aa using equations [2.182]. 

Using [2.179], we determine a, that is: 

a = [Qβ (131, 52) − Qβ (131, 53)]/2 =   0.595 MeV    [2.183a] 

To determine b, let us use expression [2.170] of Zmin and its value [2.181]. We 
find: 

b = − 2a Zmin  = − 64.635 MeV     [2.183b] 

By applying [2.183] in [2.182] and taking into account the mass difference 
[2.140], the system of equations for A = 131 is obtained: 





−=−
+=

a

ac

a
aa

478246.0535.64

030534.0196899.0595.0
   [2.184] 
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Solving [2.184] gives: 

aa = 16.329 MeV; ac = 0.489 MeV   [2.185] 

Using [2.185], we ultimately obtain: 

ac/aa = 0.029947    [2.186] 

Result [2.186] is consistent with the average value [2.164] equal to 0.03184. 

2.7.3. Mass parabola equation for even A 

The isobars for even A concern the even Z−even N and odd Z−odd N isobars.  
Since the transitions between isobars leave N constant, we will only present atomic 
number Z in the equations to be established. 

For even A, equations [2.168] and [2.172] give: 

– For even Z 

M (A, Z) c2 = a Z2 + b Z + d − δ    [2.187] 

– For odd Z 

M (A, Z) c2 = a Z2 + b Z + d + δ  [2.188] 

For even A, the nuclear charge of the most stable isobar is given by condition 
[2.138], i.e. by using [2.187]: 

a
b

ZbZa
ZZZ

ZAM
2

02
),(

minmin
min

−==+=
=∂

δ
   

Result [2.170] is thus found. Thus the value of Zmin is independent of the parity 
of mass number A. 

Let us choose the pairing energy, such that M (A, Zmin) has the smallest possible 
value for even A. We will thus consider equation [2.187], which is written taking 
[2.170] into account: 

δ−+−= dZacZAM 2
min

2
min ),(   [2.189]       
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Let us now establish the parabolic relationship between the mass of the isobars 
of even A.  

– For even Z 

Using [2.187] and [2.189], we obtain relationship [2.173], which we assign 
another number for the calculations to follow for even Z and odd Z: 

2 2
min min[ ( , ) ( , )] ( )M A Z M A Z c a Z Z− = −   [2.190a]           

– For odd Z 

Using [2.188] and [2.189], we obtain: 

δ2)()],(),([ 2
min

2
min +−=− ZZacZAMZAM   [2.190] 

Let us now express the decay energies as a function of Zmin, as in the case of the 
isobars of odd A. 

– Transition between isobars of even A by β  −  emission: Z → Z + 1 

Using [2.190], the β  − decay energy is written: 

– For even Z 

Since Z is even, mass M (A, Z) verifies equation [2.187]. For even Z, Z +1 is then 
odd. [2.188] is then used to express the mass M (A, Z + 1). Which gives: 

M (A, Z + 1) c2 = a (Z + 1)2  + b (Z + 1) + d + δ   [2.191] 

The β − decay energy for even Z is then written according to [2.187] and [2.191]: 

Qβ− = [M (A, Z) − M (A, Z + 1)] c2 = a Z 2  + b Z  − a (Z + 1)2  − b (Z + 1) − 2δ 

That is, taking into account [2.170]: 

Qβ− = − a − 2aZ − b − 2δ = − a − 2aZ + 2aZmin − 2δ 

That is, ultimately: 

min

1
2 2

2
Q a Z Z

β
δ−

 = − − + − 
 

   [2.192] 
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– For odd Z 

Mass M (A, Z) is given by [2.188]. Given that Z + 1 is odd if Z is even, then mass 
M (A, Z + 1) is obtained using [1.187]. We thus obtain: 

M (A, Z + 1) c2 = a (Z + 1)2  + b (Z + 1) + d − δ   [2.193] 

Using [2.188] and [2.193], the β − decay energy for odd Z is written: 

Qβ− = [M (A, Z) − M (A, Z + 1)] c2 = a Z 2  + b Z  − a (Z + 1)2  − b (Z + 1)  2δ 

That is, by considering [2.170]: 

δ
β

2
2

1
2 min +






 +−−=− ZZaQ

  [2.194] 

– Transition between isobars of even A by β + emission: Z → Z − 1 

Taking an approach analogous to the previous one, we obtain: 

– For even Z (odd Z – 1) 

Mass M (A, Z−1) is obtained using [1.188]. We thus obtain: 

M (A, Z − 1) c2 = a (Z − 1)2  + b (Z − 1) + d + δ  [2.195] 

The β+ decay energy for even Z is then written according to [2.187], [2.195] and 
[2.170]: 

Qβ+ = [M (A, Z) − M (A, Z − 1)] c2 = 2aZ   − a  − 2aZmin − 2δ 

That is, ultimately: 

min

1
2 2

2
Q a Z Zβ δ+

 = − − − 
 

  [2.196] 

– For odd Z (even Z – 1) 

Mass M (A, Z − 1) is obtained using [1.187]. We obtain: 

M (A, Z − 1) c2 = a (Z − 1)2  + b (Z − 1) + d − δ     [2.197] 
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The β+ decay energy is written according to [2.188], [2.197] and [2.170]: 

Qβ+ = [M (A, Z) − M (A, Z − 1)] c2 = 2aZ   − a  − 2aZmin + 2δ 

Thus: 

δβ 2
2

1
2 min +







 −−=+ ZZaQ    [2.198] 

Let us give a summary of the β decay energies that we have just determined: 

– Transition between isobars of even A by β  −  emission: Z → Z + 1 

even Z: Qβ
− = 2a (Zmin − Z − 1/2) − 2δ 

odd Z: Qβ
− = 2a (Zmin − Z − 1/2) + 2δ 

[2.199] 

Using the preceding results, we get the mass parabola for the isobars of even A 
(Figure.2.24). 

 

Figure 2.24. Mass parabola for the isobars of even A. Note that  
there are two parabolas, one for even Z, even N and the other  

for odd Z, odd N; the two parabolas are offset by 2 δ 

 
 even A 

Z → Z ± 1 Z → Z ± 1 Zmin = − b/2a 

M (A, Zmin) 

M
 (A

, Z
) β − 

β − 
β + 

2δ 

β + 

 

 

even Z 

odd Z: 

Qβ − = 2a (ΔZ − 1/2) + 2δ 

Qβ+ = 2a (ΔZ − 1/2) − 2δ 

ΔZ = (Z − Zmin) 

Qβ+ = 2a (ΔZ − 1/2) + 2δ 

ΔZ = (Zmin − Z) 

Qβ − = 2a (ΔZ − 1/2) − 2δ 
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– Transition between isobars of even A by β + emission: Z → Z − 1 

even Z: Qβ
+ = 2a (Z − Zmin − 1/2) − 2δ 

odd Z: Qβ
+ = 2a (Z − Zmin − 1/2) + 2δ 

[2.200] 

APPLICATION 2.20.– Show that by choosing the pairing energy, such that M (A, Zmin) 
has the greatest possible value for even A, the parabola bottom for even Z is located 
at 2δ below the parabola bottom for odd Z.  

ANSWER.– 

For the largest possible value of M (A, Zmin) for even A, equation [2.189] 
becomes: 

2 2
min( , ) = + +M A Z c a Z d δ−  [2.201] 

Using [2.187] and [2.188], we obtain, respectively: 

– For even Z 

δ2)()],(),([ 2
min

2
min −−=− ZZacZAMZAM      [2.202]   

– For odd Z 

2
min

2
min )()],(),([ ZZacZAMZAM −=−   [2.203]   

Results [202] and [203] clearly show that by choosing the pairing energy, such 
that M (A, Zmin) has the greatest possible value for even A, the parabola bottom for 
even Z is located at 2δ below the parabola bottom for odd Z.  

Carl Friedrich Von Weizsäcker was a German physicist and philosopher. In physics he is 
especially famous for having proposed, in 1935, the semi-empirical mass formula initially 
named the Weizsäcker formula in his honor.  

Hans Albrecht Bethe was an American physicist of German origin. He was the winner of 
the Nobel Prize in Physics 1967 for his contribution to stellar nucleosynthesis. In 1936, he 
simplified the Weizsäcker formula. Thus, the semi-empirical mass formula is often called the 
Bethe–Weizsäcker formula. 

Box 2.3. Bethe (1906–2005); Weizsäcker (1912–2007) 



154     Nuclear Physics 1 

APPLICATION 2.21.– Determine the most stable neighboring isobars for A = 120. 

ANSWER.– For A = 120, equation [2.165] gives: 

min 2/3

120
50.26568

2 0.01592 120
Z = =

+ ×
  [2.204]    

Given that there are two parabolas, we will choose the integer value immediately 
below Zmin, i.e. Z = 50 (even Z isobar) and the integer value immediately above Zmin, 

i.e. Z = 51 (odd Z isobar). These are the isobars Sn120
50  (tin-120) and 120

51Te  

(tellurium-120). 

2.8. Nuclear potential barrier 

2.8.1. Definition, model of the rectangular potential well 

Let us consider the diffusion process for a particle of charge ze, by a nucleus of 
charge Ze. At infinity, the potential energy of the system {particle-nucleus} is zero.  At 
a distance r from the nucleus, the potential energy of the system {Ze nucleus – ze 
particle} is equal to the potential electrostatic energy, U (r), given by the relationship: 

r
ZzekrU

2

)( =   [2.205] 

When r decreases to the order of Fermi, the nuclear forces begin to make 
themselves felt. If r decreases again, it arrives at an instant where the attractive 
nuclear forces are equal in intensity to the repulsive Coulomb forces between 
protons. At this moment, the charge particle, ze, is no longer subjected to any force. 
If r decreases further, the nuclear forces predominate and the particle of charge ze, is 
captured by the nucleus to form another stable nucleus. For example, a (4He)-α 
particle can fuse with a 204Hg mercury nucleus to give a stable 208Pb lead nucleus. 

The simplest representation model of the interaction potential of the system {Ze 
nucleus – ze particle} is that of the rectangular potential well of depth U0 for 0 ≤ r ≤ R 
and presenting a discontinuity for r = R. The curve U (r) from r = R to r = ∞ is 
called the nuclear potential barrier. The value U (R) = B is called the nuclear 
potential barrier height, also called the Coulomb barrier height given by the 
relationship:  

2ZzeB k
R

=   [2.206] 
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The profile of the nuclear potential barrier is illustrated in Figure 2.25. 

 

Figure 2.25. Profile of the nuclear potential barrier between a nucleus  
of charge Ze and radius R and a particle of charge ze, r is the  
distance between the centers of the nucleus and the particle 

2.8.2. Modifying the model of the rectangular potential well  

In reality, just like the nucleus, the charge particle, ze, has a nuclear radius. Let 
us note using RZ, the radius of the nucleus (RZ = R), and using Rz, the radius of the 
particle. As long as the distance r >  (Rz + RZ), the potential energy is of the 
Coulomb type and is given by [2.205]. When r = (Rz + RZ), the surfaces of the 
spherical envelopes of the nucleus and the particle are in contact (Figure 2.26).  

 

Figure 2.26. Modified profile of the nuclear potential barrier between a nucleus  
of charge Ze and radius RZ and a particle of charge ze and radius Rz. The value  

of the height of the potential barrier is a function of r with RZ < r < (Rz + RZ) 
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At a distance r <  (Rz + RZ), the attractive nuclear forces become predominant 
with respect to the Coulomb repulsion forces. The height of the nuclear potential 
barrier is no longer defined for r = R, but rather at a distance, r such that: 

2ZzeB k
r

= ;  RZ < r < (Rz +RZ)  [2.207]  

Expression [2.207] gives a nuclear potential barrier height that is much closer to 
reality than expression [2.206]. There is no longer a discontinuity of the potential at 
r = R and we obtain a modified profile of the nuclear potential barrier with a 
rounded vertex and bottom (Figure 2.26). When the radius, Rz, of the particle is not 
known, the height of the nuclear potential barrier corresponds to the height of the 
Coulomb barrier given by expression [2.206] with a nuclear radius, R = r0 A1/3. 

2.9. Exercises 

EXERCISE 2.1.– Experimental measurement of the radioactive half-life of  
vanadium-52 

Using a meter, we measure the activity of a source of vanadium-52, which is a  
β − emitter.  Let N be the decay number measured for a constant duration, τ = 5s. 
The results obtained are gathered in Table 2.10. 

a) Determine the activity, A0, of the source at the initial instant, t = 0. 

b) Determine, in table form, the values of the ratio A0/A(t). 

c) Use the experimental results to determine the radioactive half-life of 
vanadium-52. Express it in minutes. 

t (min) 0 2 4 6 8 10 12 

 N 1586 1075 741 471 355 235 155 

Table 2.10. Decay number N measured during a constant duration of 5s 

EXERCISE 2.2.– Shell structure, Jπ of the ground state and of excited states 

The following nuclide list is given: 15N, 11B and 27Al�. Figure 2.27 shows the 
nuclear levels of platinum-188 (Z = 78) and thorium-228 (Z = 90). 
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Figure 2.27. Nuclear levels of platinum-188 and thorium-228.  
For clarity, the energy scale is not respected 

a) We will consider the nuclides 15N, 11B and 25Mg. 

i) For each nuclide, map out the shell structure derived from a harmonic 
potential and the distribution of nucleons on shells resulting from the Woods–Saxon 
potential with spin-orbit coupling. 

ii) Deduce from the previous shell structures, the Jπ of the ground state, and the 
Jπ of the two excited states of lower energies. 

b) Let us consider Figure 2.27. 

i) Theoretically justify the Jπ of the ground state of each of the nuclei. 

ii) Specify the multipole transition type for the 5 − → 4+ and 4+ → 2+ 

deexcitations and the forbidden transition. Derive therefrom the wavelengths of 
photons that could be emitted. 

Given data: c = 3 × 10 8 m ⋅ s−1; h = 6.63 × 10 −34 J ⋅ s; 1 eV = 1.6 × 10 −19 J. 

EXERCISE 2.3.–  Multipole order, probability of γ-deexcitation of neon-22 

We propose to determine the γ-deexcitation probability of neon-22. Neon-22 is 
the decay product of radiosodium-22. Figure 2.28 shows the excited level of  
neon-22 fed by β+ decay and the electronic capture (EC) of sodium-22.  

a) Theoretically justify the values of Jπ shown in Figure 2.28. 

b) Determine the multipole order and the type of multipole transition, El or Ml, 
corresponding to the deexcitation observed.  
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c) Estimate the corresponding transition probability. We will use the data given 
in Table 2.4. 

 

Figure 2.28. γ-transitions to the ground level of the neon-22 nucleus 

EXERCISE 2.4.– Separation energy of the last proton and last neutron of  
dysprosium-161 (161Dy). 

In this exercise, we propose to determine the separation energy of the last Sn,p 
nucleon (A, Z). To do so, we will consider the 66-proton dysprosium-161 nucleus. 
We are seeking to determine the energy required to extract a neutron or a proton 
from the 161Dy nucleus. 

a) A 160Dy nucleus absorbs a neutron. Deduce the energy released during this 
reaction. What does this energy represent? 

b) A 160Tb (terbium-160) nucleus with atomic number Z = 65 absorbs a proton. 
Deduce the energy released during this reaction. What does this energy represent? 

c) Calculate the binding energies of the 160Dy, 161Dy and 160Tb nuclei. Then 
classify the nuclides in order of increasing stability. 

d) Deduce therefrom the separation energies of the last neutron, Sn (161, 66) and 
the last proton, Sp (161, 66) of the dysprosium-161 nucleus. Now find the results of 
4.1 and 4.2. 

Given data: [m (AX): atomic mass; m0: electron mass): 

– mn = 1.00866 u; mp = 1.00728 u; m0 (electron) = 5.486 × 10 −4 u; 

– M (160Dy) = 159.9251975 u; M (161Dy) =160.9269334 u;  

– M (160Tb) = 159.9271676; 1 u = 931.5 MeV/c2. 
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EXERCISE 2.5.– Determining the Coulomb energy of a charged sphere from the 
potential created by a charge placed in the center of the nucleus. 

We propose to establish expression [2.125] representing the Coulomb energy of 
a volume-charged sphere. To do this, let us consider a nucleus, assumed to be 
spherical, of radius R, whose charge is uniformly distributed in volume. We will 
assume that the charge volume density, ρ, is constant throughout the nuclear 
volume. 

a) Express ρ as a function of the atomic number, Z, the elementary charge, e,  
and R.  

b) A point M is located at a distance r from the center, O, of the nucleus (r < R). 
Draw a diagram then express the potential, V(r), created at M by the point charge,  
Q (r), placed at O and contained in the nuclear envelope of radius r. We will express 
it as a function of Z, e, r, and R. 

c) Express the potential energy, dW, of the elementary charge, dq, immersed in 
the potential, V (r). Deduce from this result, the expression of the Coulomb energy 
of a sphere of nuclear radius R = r0 A1/3, uniformly charged in volume. 

EXERCISE 2.6.– Determining the Coulomb energy of a charged sphere from the 
electromagnetic energy density.  

We propose to establish expression [2.125] by using another method and 
considering the electromagnetic energy density stored in a sphere of radius R.  

As in exercise 2.5, it is assumed that the charge of the nucleus, Q, is uniformly 
distributed in a sphere of center O and radius R = r0 A1/3. The charge volume density 
is considered constant throughout the sphere. 

a) Let us consider a point, M, located at a distance r from the center, O, of the 

nucleus. Represent the external electric field, extE


, created by the electric charge, Q, 
of the nucleus at a point M’ (r > R) as a function of Q and R, as well as the internal 

electric field, intE , created by the internal charge, Q (r), at a point M (r < R) as a 
function of Q, r and R. 

b) Let us give the expression of the electromagnetic energy density [SAK 18b]. 

2 2
0 0

02 2

E B
µ

ε εω = +   [2.208] 
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Deduce from [2.208], with supporting justification, the shape at which the 
electromagnetic energy density is summarized in the calculation of the Coulomb 
energy of a volume-charged sphere.  Deduce therefrom the expressions of ω on the 
inside (ωint) and outside (ωext) of the sphere of radius R. 

c) Now express the elementary Coulomb energy, dWc, stored on the inside and 
outside of the sphere of radius R as a function of ωint and ωext. Now find expression 
[2.125] of the Coulomb energy of a volume-charged sphere. 

EXERCISE 2.7.– Determining the height of the nuclear potential barrier: theory and 
experiment. 

Let us study a problem of α particle diffusion by a nucleus of radius R = r0 A1/3.  

a) We do not know the nuclear radius of the α particle. Show that within the 
framework of the liquid-drop model, the height of the nuclear potential barrier, B0theo 

(the “0” index included for zero correction) can be theoretically written as: 

B0theo = 
2

2/3
0 2

0

2
théo

keB A
aα

=     [2.209]  

b) The radius, Rz, of the α particle is taken into account. Let r be the distance 
between the centers of the particle and nucleus of radius RZ. To establish a corrected 
expression (Btheocorr) of the height of the nuclear potential barrier, such that  
RZ < r < (Rz +RZ), we will write, arbitrarily, for a nucleus other than the α particle: 

z
Z

Rr R
A

= +   [2.210] 

Using hypothesis [2.210], express Btheocorr analogously to [2.209], where A will 
be the mass number of the nucleus, with that of the α particle replaced by its value.  

c) Table 2.11 presents the experimental results obtained on the measurement of 
the height of the nuclear potential barrier for eight light elements: He, Li, Be, B, C, 
N, Mg, and Al. Using [2.209] and [2.210], compare the experimental results with the 
theoretical predictions by completing Table 2.11. Conclude. 

Given data:  

– α2 = 5.325 × 10 −5; a0 = 5.29 × 10 −11 m; k = 9 × 109 SI;   

– e = 1.602 × 10 −19 C; 1 eV = 1.602 × 10 −19 J. 
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Element B (MeV) 
ZX A (Bexp)a (Btheo0)b Btheocorr

c 

2He 4 2.4   

3Li 7 3.3   

4Be 9 4.0   

5B 11 4.5   

6C 12 5.1   

7N 14 5.6   

12Mg 24 8.5   

13Al 27 9.0   
a Experimental values, [POL 35]. 
b Theoretical values, formula [2.209]. 
c Theoretical values, formula [2.210]. 

Table 2.11. Comparison of the experimental (Bexp) and theoretical (Btheo) values  
of the height of the nuclear potential barrier, B, for several light elements 

EXERCISE 2.8.– Experimentally determining the Coulomb coefficient by measuring 
the variation in binding energy of neighboring isobars 

In this exercise, we propose to experimentally determine the Coulomb 
coefficient, ac, by measuring the variation in binding energy between neighboring 
isobars. To do this, we consider the experimental values for the measurement of the 
variation in binding energies of the following neighboring isobars:  

(37Ar and 37K); (31P and 31S); (23Mg and 23Al); and (15N and 15O).  

a) Recall the definition of mirror nuclei. Deduce therefrom the value of A – 2Z 
for these nuclei. What can then be said about each of the above pairs of isobars? 

b) Using the Bethe–Weizsäcker formula, express the mass difference, ΔM, and 
the binding energy difference, ΔEl, given by the following relationships: 

ΔM = M (A, Z) – M (A, A – Z)  [2.211a] 

ΔEl = El (A, Z) – El (A, A – Z)  [2.211b] 

c) Now show that the variation in binding energy between neighboring isobars is 
written: 

ΔElexp = ac A2/3  [2.212] 
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d) Using the expression of the Sakho unit nuclear radius, the Coulomb 
coefficient is written: 
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We will write, for a pair of isobars (AXZ and AXZ+1): 
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  [2.213b] 

The variation in binding energy between neighboring isobars is given 
theoretically with a good approximation by: 

2/3
ltheo cE a AΔ =   [2.214a] 

In this relationship, ac is the average value of ac defined by: 

2

)1()( ++
=

ZaZa
a cc

c   [2.214b] 

Complete Table 2.12 below using [2.213] and [2.214].  The numerical data from 
exercise 2.7. should also be used. 

Isobar 
Coulomb coefficient 

(MeV) 
Difference in binding 

energy 

A ZX Z+1X ac (Z) ac (Z+1) ac
 ΔEltheo (MeV) 

37 18Ar 19K     

31 15P 16S     

23 12Mg 13Al     

15 7N 8O     

Table 2.12. Theoretical values of the Coulomb coefficient and  
of the difference in binding energy of neighboring isobars 
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e) The experimental results obtained by Marmier and Sheldon [MAR 69] are 
given in Table 2.10. Furthermore, using [2.228], we can estimate the average value 
of the unit nuclear radius for the neighboring isobars by the relationship: 

ca
ker

2

0
5

3
=   [2.215] 

Reproduce, then complete Tables 2.13 and 2.14, taking into account the results 
presented in Table 2.12. 

(A, Z) (A, A − Z) Experiment  Theory 

ZX Z+1X El (A, Z) El (A, A − Z) ΔEl
 ΔEl

 

18Ar 19K 315.510 08.587   

15P 16S 262.916 256.688   

12Mg 13Al 186.565 181.726   

7N 8O 115.494 111.952   

Table 2.13. Comparison of the experimental [MAR 69] and  
theoretical values of the difference in binding energy of  
neighboring isobars. The results are expressed in MeV 

(A, Z) (A, A − Z) Experiment  Theory 

ZX Z+1X ac (MeV) r0 (fm) ac (MeV) r0  (fm) 

18Ar 19K     

15P 16S     

12Mg 13Al     

7N 8O     

Table 2.14. Comparison of the experimental [MAR 69] and theoretical  
values of the Coulomb coefficient and the unit nuclear radius 

EXERCISE 2.9.– Expressions of Weisskopf estimates 

In section 2.5.4, we presented the Weisskopf estimates given by relationships 
[2.80] and [2.81]. In this exercise we propose to establish these estimates based on 
Weisskopf’s general formula, giving the probability of γ-deexcitation per unit time 
for electric and magnetic transitions. 
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For a process of γ-deexcitation between two nuclear levels, the transition 
probability per unit time, noted T (  , m) for electric (El) and magnetic (Ml) 
transitions, is given by Weisskopf’s general formula [WEI 51]: 

2 1
2

2

8 ( 1)
( , ) ( , ) '( , )

[(2 1)!!]
T m A m A mπ κ ++= +

+

  
 

  [2.216] 

In formula [2.216]: 

– (2 + 1)!!
 

corresponds to the product of odd positive integers:  

(2 + 1) × (2 1) × (2 3) × (2 5) × ...×1;− − −     

–   and m are the orbital quantum number and the orbital magnetic quantum 
number, respectively; 

– κ is the wave number of the transition considered: κ = 2πν/c = 2π/λ; 

– A and A’ represent the matrix elements of the multipole matrix induced by the 
electric current and the magnetic field. 

By explaining the matrix elements, A and A’, Weisskopf estimated the 
probabilities of electric and magnetic multipole transitions using the expressions 
[WEI 51]:  
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
 

 
s − 1  [2.217b] 

In formulas [2.217], γω E=  is the energy of the γ-photon emitted during the 

transition, expressed in MeV, and R is the radius of the nucleus considered:  
R = 1.2A1/3 fm. 

We will write:  

( ) ( ) ; ( ) ( )E ME T M Tγ γλ λ= =     [2.217c] 

a) Using [2.217], express, as a function of the mass number, A, and the energy, 
Eγ, of the γ-photon, the deexcitation probabilities per unit time corresponding to the 
first four multipole transitions of each type. 
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b) Deduct from [2.217] the general expressions of the coefficients ( )C E and

)(MC  involved in the Weisskopf estimates [2.80] and [2.81]. 

c) Determine the values for ( )C E  relating to the first five electric multipole 

transitions. 

d) Show that  

1900
( ) ( )

6336
C M C E=    [2.217d] 

e) Then, determine the values for )(MC  relating to the first five electric 

multipole transitions.   

Verify that the values of coefficients )(EC   and ( )C M  presented in Table 2.4 

are found. 

2.10. Solutions to exercises 

SOLUTION 2.1.– Experimentally determining the radioactive half-life of vanadium-52 

a) Determining the activity, A0, of the source 

At the initial instant, t = 0, the activity, A0, of the source is given by the 
relationship: 

A0 = N0/τ  A0 = 1586/5 = 317.2 Bq   [2.218] 

b) Determining the values of the ratio A0/A(t) 

Using relationship [2.218], we find the results gathered in Table 2.15.  

t (min) 0 2 4 6 8 10 12 

A (t) 317.2 215.0 148.2 94.2 71.0 47.0 31.0 

A0/A (t) 1 1.475 2.140 3.367 4.468 6.749 10.232 

ln [A0/A (t)] 0 0.389 0.761 1.214 1.497 1.909 2.326 

Table 2.15. Values of the ratio A0/A(t) of the initial and  
instantaneous activities of the source of vanadium-52 
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We have added a last row to Table 2.15 in advance, to list the values of  
ln [A0/A(t)], which are useful for the exploitation of experimental data. This 
eliminates the need to draw up another table of values. 

c) Usage: radioactive half-life of vanadium-52 

The decay law of the source activity is written: 

A (t) = A0 e −λt  ln [A0/A (t)] = λt     [2.219] 

Let us then trace the curve ln [A0/A (t)] = f (t). The resulting graph is shown in 
Figure 2.26. A slope line is obtained: 

a = λ = ln 2/T  T =  ln 2/a    [2.220] 

Numerically: a = 0.192 min −1  T = 3.6 min. This result is consistent with the 
min. value 3.743 (5) shown in the isotope tables. 

 

Figure 2.29. Curve indicating the variation in the Napierian logarithm of the ratio 
A0/A(t) of the initial and instantaneous activities of the source of vanadium-52  
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SOLUTION 2.2.– Shell structure, Jπ of the ground state and of excited states 

a) Shell structure of nuclides 15N, 11B and 25Mg 

i) Diagrams of nucleon distribution 

The nucleon distribution over the nuclide shells 11B (Z = 5), 15N (Z = 7), and 
25Mg (Z = 12) is shown in Figures 2.30. 

 

Figure 2.30a. Shell structure derived from a harmonic potential (a) and distribution 
derived from the Woods–Saxon potential with spin-orbit coupling (b) for boron-11. 

The arrows indicate two possible of excitation of the unpaired proton 

 

Figure 2.30b. Shell structure derived from a harmonic potential (a) and distribution 
derived from the Woods–Saxon potential with spin-orbit coupling (b) for nitrogen-15. 

The arrows indicate two possible of excitation of the unpaired proton 
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Figure 2.30c. Shell structure derived from a harmonic potential (a) and distribution 
derived from the Woods–Saxon potential with spin-orbit coupling (b) for  

magnesium-25. The arrows indicate two possible of excitation of the unpaired proton 

ii) Values of Jπ  

– The unpaired proton of the boron-11 nucleus occupies the 1p3/2 level; i.e.  
j = 3/2. The parity for this state π = − 1. Hence for the ground state, Jπ = 3/2−. The 
excitation of this proton can induce two transitions: 1p3/2 → 1p1/2  and 1p3/2 → 1d5/2 
(Figure 2.34a). This gives two excited states: 1p1/2, π = − 1 and Jπ

 = 1/2−, and 1d5/2,  
π = + 1 and Jπ

 = 5/2+. 

– Similarly, for the nitrogen-15 nucleus, the proton occupies the 1p1/2 level. This 
gives, for the ground state, Jπ = 1/2− and for the two lower-energy excited states 
(Figure 2.34b): 1d5/2, Jπ

 = 5/2+  and 2s1/2,  Jπ
 = 1/2+. 

– For the magnesium-25 nucleus, it is the neutron occupying the 1d5/2 level that 
should be considered. This gives, for the ground state, Jπ = 5/2+ and for the two 
lower-energy excited states (Figure 2.34): 2s1/2, Jπ

 = 1/2+ and 1d3/2,  Jπ
 = 3/2+. 

b) Transitions between the energy levels of the 188Pt and 228Th nuclei   

i) Theoretical justification of the Jπ of the ground state  

The 188Pt and 228Th nuclei are even-A nuclei. Jπ = 0+ for the ground state. 

ii) Transition type, forbidden transition, wavelengths 

– Multipole transition type, forbidden transition 

– 5 − → 4+ transition: there is a change in parity. This is an M-type transition. 
The quantum number,  , takes the values from 9 to 1. The dominant transition 
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corresponds to   = 1 and the multipole order k1 = 2: a magnetic dipole transition, 
M1, is thus obtained; 

– 4+ → 2+ transition: parity is conserved. This is an E-type transition. The 
quantum number,  , takes the values from 6 to 2. The dominant transition 
corresponds to   = 2 and the multipole order k2 = 4: an electric quadrupole 
transition, E4, is thus obtained; 

– The electric monopole transition (E0) 0
+ → 0+ is forbidden since   = 0. 

– Wavelengths 

The wavelengths are given by the relationship: 

EE
hchcE

Δ
≈

Δ
==Δ 3.124λ

λ (pm)  [2.221]    

In the last equality [2.121], ΔE is expressed in keV. 

NOTE.– 

– 5− → 4+ transition: ΔE = 327 keV  λ = 0.38 pm; 

– 4+ → 2+ transition: ΔE =131 keV  λ = 0.95 pm. 

SOLUTION 2.3.– Multipole order, probability of γ-deexcitation of neon-22 

a) Justification of the values of Jπ  

– For the 22Ne nucleus, A is even, and for the ground state we obtain Jπ = 0+. 

– For the 22Na nucleus, A is even, but Z and N are odd. 10 protons and 10 
neutrons are paired. Referring to Figure 2.30c, for example, we can see that the 11th 
proton and the 11th unpaired neutron are located on the 1d5/2 level (π = + 1). This 
gives j1 = 5/2 and j2 = 5/2 for the 11th neutron. The total parity π = (+ 1) × (+ 1) = + 1. 
The total angular momentum takes the values between 5 (j1 + j2) and 2 (|j1 − j2|). 
This then gives, for J π, the values 5+, 4+, 3+ and 2+. Only the level Jπ = 3+ is shown 
in Figure 2.32. The other values correspond to excited states. 

b) Determining the multipole transition type 

The deexcitation corresponds to the γ  2+ → 0+ transition. The parity is conserved 
and the multipole order is equal to 4 (   = 2): it is therefore an electric quadrupole 
transition, E2. 
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c) Estimating the transition probability 

Using the Weisskopf estimates, the probability of electric quadrupole transition, 
E2, is given by the relationship according to [2.80]: 

4/3 5
2 2( ) ( )E C E A Eγ γλ =    [2.222] 

NOTE.– A = 22, C2 (E) = 7.4 × 107; Eγ = 1.28 MeV. 

λγ (E2) = 7.4 × 107 × 224/3 × 1.285 ≈ 1.5 × 1010 s −1 

SOLUTION 2.4.– Separation energy of the last proton and last neutron of  
dysprosium-161 (161Dy) 

In this exercise, we propose to determine the separation energy of the last Sn,p 
nucleon (A, Z). To do so, we will consider the 66-proton dysprosium-161 nucleus. 
We are seeking to determine the energy required to extract a neutron or a proton 
from the 161Dy nucleus. 

a) Energy released by the absorption of a neutron, meaning 

Let us write the transformation equation for the 160Dy nucleus following the 
absorption of a neutron: 

DyDyn 161
66

160
66

1
0 →+   [2.223] 

According to [2.223], the released energy, Ql, is given by the relationship: 

Ql = Δmc2 = [mn + m (160Dy) − m (161Dy)]c2      [2.224] 

The released energy [2.224] therefore represents the separation energy of the last 
neutron, Sn (161, 66) of the 161Dy nucleus. 

NOTE.–  It is recalled that the mass of a nucleus is obtained by subtracting the mass 
of Z electrons from the atomic mass  

Ql = [1.00866 + 159.8889899 − 160.8907258] × 931.5 = 6.45 MeV     [2.225] 
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b) Energy released by the absorption of a proton, meaning 

Let us write the transformation equation for the 160Tb nucleus following the 
absorption of a proton: 

DyTbH 161
66

160
65

1
1 →+   [2.226] 

The released energy, Ql, is then equal to: 

Ql = [mp + m (160Tb) − m (161Dy)]c2     [2.227] 

The released energy [2.224] therefore represents the separation energy of the last 
proton, Sp (161, 66) of the 161Dy nucleus. 

NOTE.–   

Ql = [1.00728 + 159.8915086 − 160.8907258] × 931.5 = 7.51 MeV   [2.228] 

c) Binding energies, classification 

– Binding energies 

Using the expression for the binding energy [1.60], we obtain: 

– El (160Dy) = (66 × 1.00728 + 94 × 1.00866 − 159.8889899) × 931.5 = 
1,309.251 MeV 

– El (161Dy) = (66 × 1.00728 + 95 × 1.00866 − 160.8907258) × 931.5 = 
1,315.701 MeV  

– El (160Tb) = (65 × 1.00728 + 95 × 1.00866 − 159.8915086) × 931.5 = 
1,308.191 MeV  

In summary, this gives: 

El (
160Dy) = 1,309.251 MeV 

El (
161Dy) = 1,315.701 MeV   [2.229] 

El (
160Tb) = 1,308.191 MeV 
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– Classification of nuclides in order of increasing stability 

Using [2.229], we obtain: 

El (
160Dy)/A = 8.18 MeV/nucleon 

El (
161Dy)/A = 8.17 MeV/nucleon   [2.230] 

El (
160Tb)/A = 8.12 MeV/nucleon 

Hence:  

El (
160Dy)/A > El (

161Dy)/A > El (
160Tb)/A.  

In order of increasing stability, we obtain: 160Tb → 161Dy → 160Dy. 

d) Separation energy of the last nucleon 

Using results [2.229], we obtain: 

Sn (161, 66) = El (
161Dy) − El (

160Dy) = 6.45 MeV      [2.231] 

Sn (161, 66) = El (
161Dy) − El (

160Dy) = 7.51 MeV 

Results [2.225] and [2.228] are indeed found. 

SOLUTION 2.5.– Determining the Coulomb energy of a charged sphere from the 
potential created by a charge placed in the center of the nucleus 

We propose to establish expression [2.225] representing the Coulomb energy of 
a volume-charged sphere. To do this, let us consider a nucleus assumed to be 
spherical, of radius R, whose charge is uniformly distributed in volume. We will 
assume that the charge volume density, ρ, is constant throughout the nuclear 
volume. 

a) Expression of the charge volume density  

The charge of the nucleus Q = Ze and its volume τ (R) = (4/3)πR3. The charge 
volume density is therefore equal to: 

3

4

( ) 3

Q Ze
R R

ρ
τ π

= =   [2.232] 
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b) Expression of potential   

Let us consider Figure 2.31.  

 

Figure 2.31. Charge Q (r) contained in the nuclear envelope with radius r  

The electrostatic potential created at M by the nuclear charge, Q (r), is given by 
the relationship (the origin of the potentials is chosen as zero to infinity): 

( )
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Q rV r k
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=   [2.233] 

Since the charge density is constant, then: 
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Using [2.234], potential [2.233] is ultimately written: 

2 2
3 3

( )
Q ZeV r k r k r
R R

= =   [2.235] 

c) Expression of potential energy and Coulomb energy 

The potential energy, dW, of the elementary charge, dq, immersed in the 
potential, V (r) [2.235] is given by the relationship: 

= ( ) = ( )dW dqV r d V rρ τ  [2.236] 
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In spherical coordinates, the elementary volume dτ = r2drsinθdθϕ. Using 
[2.235], equation [2.236] is written: 

2 2
3

sin
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Q QdW k r r dr d d
R R

θ θ ϕ
τ

 = ×  
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4
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θ θ φ
π

 [2.237a] 

By integrating equation [2.237], we obtain: 

22
4

6
0 0 0

3
sin

4

RQW k r dr d d
R

π π

θ θ ϕ
π

=      [2.237b] 

Which gives: 

2 5
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3
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Q RW k
R

π
π

= × ×   [2.237c] 

That is, ultimately: 
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Ar
eZ

k
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Q
kW ==   [2.238] 

This corresponds to expression [2.225] of the Coulomb energy, Wc, of sphere 
with nuclear radius, R = r0 A1/3 uniformly charged in volume. 

SOLUTION 2.6.– Determining the Coulomb energy of a charged sphere from the 
electromagnetic energy density  

a) Expressions of internal and external electric fields 

Let us consider Figure 2.32. 

The external electric field, extE , created by the electric charge, Q, of the nucleus 

at a point M’ (r > R) and the internal electric field, intE , created by the internal 
charge, Q (r), at a point M (r < R) are given by the expressions: 

u
r
QkE ext

2
= ; int 2 3

( )Q r QE k u k ru
r R

= =
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  [2.239] 
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Figure 2.32. Internal and external electric fields created  
by charges Q (r) and Q at M and M’, respectively 

b) Shape of electromagnetic energy density 

In the calculation of the Coulomb energy of a volume-charged sphere, the 
protons are assumed to be fixed. Therefore, there is no volume current. The 
electromagnetic energy density is summarized in the electrical term, i.e.: 
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c) Expression of the Coulomb energy of a volume-charged sphere  

The elementary Coulomb energy, dWc stored inside and outside the sphere of 
radius R is written: 

extextcelc dddWddW τωτωτω +== intint   [2.241] 

Using [2.240] and [2.239], equation [2.241] is written: 
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That is: 


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Let us integrate [2.242]. We obtain: 
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This then gives: 
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We indeed find [2.225]. 

SOLUTION 2.7.– Determining the height of the nuclear potential barrier: theory and 
experiment 

a) Theoretical expression of the height of the nuclear potential barrier 

For a problem of α particle diffusion by a nucleus of radius R = r0 A1/3, the height 
of the nuclear potential barrier is given by the general expression: 

3/1
0

22 2

Ar
Zek

R
ZzekB ==

  [2.244] 

Let us rewrite the expression of the Sakho unit nuclear radius [1.39] as follows: 

A
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=

  [2.245] 

By applying expression [2.244] in [2.245], we obtain: 
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= =   [2.246] 
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b) Corrected expression of the height of the nuclear potential barrier 

For  r = RZ + Rz/A, the height of the nuclear potential barrier is written: 
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ARR
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AzZ α+

=
+
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According to [2.245], we obtain: 

2
2 0

0 0 0;
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aZr a r

A α
αα= =   [2.248] 

Using [2.248], equation [2.247] is then written: 
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That is, ultimately:  
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  [2.249] 

c) Comparison of experimental results and theoretical predictions 

Let us calculate the factor 2ke2/α2at0 in equations [2.246] and [2.248]. We find: 

2 9 19

2 5 11
0

2 2 9 10 1.602 10
1.02367

5.325 10 5.29 10

ke
aα

−

− −

× × × ×= =
× × ×

 MeV    [2.250]   

Taking into account result [2.250], equations [2.246] and [2.249] are written: 

B0theo = 1.02367 × A2/3 MeV   [2.251] 
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02367.1  MeV   [2.252]    
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Using [2.251] and [2.252], we find the theoretical results gathered in Table 2.16 
compared with the experimental data. 

Element B (MeV) 

ZX A (Bexp)a (Btheo0)b Btheocorr
c 

2He 4 2.4 2.579 - 

3Li 7 3.3 3.746 3.291 

4Be 9 4.0 4.429 4.043 

5B 11 4.5 5.063 4.726 

6C 12 5.1 5.365 5.072 

7N 14 5.6 5.946 5.679 

8O 16  6.500 6.254 

9F 19  7.289 7.056 

10Ne 20  7.542 7.328 

12Mg 24 8.5 8.517 8.326 

13Al 27 9.0 9.213 9.039 

14Si 28  9.439 9.266 

15P 31  10.102 9.935 

16S 32  10.318 10.159 

17Cl 35  10.953 10.799 

18Ar 40  11.973 11.821 
a Experimental values, [POL 35]. 
b Theoretical values, formula [2.251]. 
c Corrected theoretical values, formula [2.252].  

Table 2.16. Comparison of the experimental (Bexp) and theoretical (Btheo) values  
of the height of the nuclear potential barrier, B, for several light elements 

Overall, there is very good agreement between the theoretical and experimental 
results when the theoretical expression of the height of the nuclear potential barrier 
is corrected by choosing r = RZ + Rz/A.  

NOTE.– The experimental values 4.5 MeV and 8.5 MeV are probably less accurate 
than the other measured values. 

SOLUTION 2.8.– Experimentally determining the Coulomb coefficient by measuring 
the variation in binding energy of neighboring isobars 
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The following pairs of neighboring isobars are considered:  

(37Ar and 37K); (31P and 31S); (23Mg and 23Al); and (15N and 15O)     [2.253] 

a) Reminder, value of A – 2Z 

Mirror nuclei are pairs of nuclei with the same mass number, A, with their 
numbers of protons Z and neutrons N exchanged; this is reflected in the relationship: 
Z – N = ± 1. It follows that: 

A – 2Z = Z + N – 2Z = N – Z   A – 2Z = ± 1  [2.254] 

Let us calculate the values of A – 2Z for the pairs of nuclei [2.253]. We obtain: 

– 37Ar (Z = 18): A – 2Z = 1; 37K (Z = 19): A – 2Z = − 1  

– 31P (Z = 15): A – 2Z = 1; 31S (Z = 16): A – 2Z = − 1 

– 23Mg (Z = 12): A – 2Z = 1;   23Al (Z = 13): A – 2Z = − 1 

– 15N (Z = 7): A – 2Z = 1;  15O (Z = 8): A – 2Z = − 1 

Each of the pairs of nuclei [2.253] verifies the last equality [2.254]: they are 
therefore pairs of mirror nuclei. 

b) Expressions of mass difference and binding energy difference 

– Expression of mass difference 

Using the Bethe–Weizsäcker formula, we obtain (A − Z = A − (A − Z) = Z): 
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  [2.255] 

Using [2.255], the difference in mass, ΔM = M (A, Z) – M (A, A – Z) is written:  

2 2
1/3

[ ( ) ] [( ) ]

[ ( ) ]

H n H n

c

M ZM A Z M A Z M ZM
a

Z A Z
A

Δ = + − − − +

+ + −
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That is: 

AZA
A
aMMZMMAM c

HnHn )]2[()](2)([
3/1

−−−−−=Δ
  

That is, ultimately: 

2/3( 2 )[( ) ]n H cM A Z M M a AΔ = − − −  [2.256a] 

– Expression of the binding energy difference 

The difference in binding energy, ΔEl = El (A, Z) – El (A, A – Z) is equal to: 

[ ] [ ] [ ])Z,A(M)ZA,A(MZMM)ZA(M)ZA(ZME nHnHl −−++−−−+=Δ  

i.e.: 

ΔEl = (A – 2Z) [Mn – MH] ΔM   [2.256b] 

c) Demonstration 

By applying [2.256a] to [2.256b], we obtain: 

2/3( 2 )( ) ( 2 )[( ) ]l n H n H cE A Z M M A Z M M a AΔ = − − − − − −  

That is: 

3/2)2( AaZAE cl −=Δ   [2.256c]  

Let us write ΔElexp = |ΔEl |. The variation in binding energy between neighboring 
isobars is written taking the result [2.254] into account: 

2/3
expl cE a AΔ =   [2.257] 

d) Theoretical expression of the variation of the binding energy between 
neighboring isobars 

We will write, for a pair of isobars (AXZ and AXZ+1): 
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Let us rewrite these expressions by multiplying the top and bottom of their  
right-hand members by 2, with a view to using result [2.250]. We obtain: 

1
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=+=
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Z
A
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Taking [2.250] into account, we obtain: 

Z
AZac ×= 307101.0)(  MeV   [2.258a]   

1
307101.0)1(

+
×=+

Z
AZac  MeV  [2.258b] 

The average value ac is defined by the relationship: 

( ) ( 1)

2
c c

c

a Z a Z
a

+ +
=  MeV   [2.259]  

Furthermore, the variation in binding energy between neighboring isobars is 
theoretically given by: 

3/2AaE cltheo =Δ   [2.260] 

Using [2.258], [2.259] and [2.260], the theoretical predictions gathered in  
Table 2.17 are obtained.  

Pair of neighboring 
isobars 

Coulomb coefficient 
(MeV) 

Binding energy 
difference 

A ZX Z+1X ac (Z) ac (Z+1) ac
 ΔEltheo (MeV) 

37 18Ar 19K 0.631 0.598 0.615 6.829 

31 15P 16S 0.635 0.595 0.615 6.069 

23 12Mg 13Al 0.589 0.543 0.566 4.588 

15 7N 8O 0.658 0.576 0.617 3.753 

Table 2.17. Theoretical values of the Coulomb coefficient and  
of the difference in binding energy of neighboring isobars 
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Let us now compare the theoretical values of the difference in binding energy of 
neighboring isobars with the experimental data. The results presented in Table 2.18 
are obtained. 

(A, Z) (A, A − Z) Experiment  Theory 

ZX Z+1X El (A, Z) El (A, A − Z) ΔEl
 ΔEl

 

18Ar 19K 315.510 308.587 6.923 6.829 

0.15P 16S 262.916 256.688 6.228 6.069 

12Mg 13Al 186.565 181.726 4.839 4.588 

7N 8O 115.494 111.952 3.542 3.753 

Table 2.18. Comparison of the experimental [MAR 69] and  
theoretical values of the difference in binding energy of  
neighboring isobars. The results are expressed in MeV 

The comparison of the values listed in the last two columns of Table 2.18 shows 
agreement between the theoretical predictions and the experimental results. The 
maximum deviation of 0.251 MeV between the theoretical and experimental results 
is due to the imprecision on the average value ac of the Coulomb coefficient.    

e) Average value of the unit nuclear radius 

The average value of the unit nuclear radius for the neighboring isobars is given 
by the relationship: 

2 28

0

3 1.38585816 10

5 c c

ker
a a

−×= =   [2.261]   

Examples of calculations  

ΔElexp = acexp A2/3  acexp = ΔElexp/ A2/3   [2.262] 

For ΔElexp = 6.923 MeV, we obtain, for the pair (18Ar and 19K) with A = 37:  

acexp = 6.923/372/3 = 0.623 (MeV) 

For the unit nuclear radius,  

r0exp = 1.38585816 × 10 −28/acexp   [2.263] 
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Thus, for the pair of isobars (18Ar and 19K): 

r0exp = 1.38585816 × 10−28/(0.623 × 106 ×1.602×10−19) 

        = 1.38857 × 10−15 m = 1.39 fm   

By adopting an approach analogous to the previous one, we find the results 
gathered in Table 2.19. 

(A, Z) (A, A − Z) Coulomb coefficient Unit nuclear radius 

ZX Z+1X 
acexp 

(MeV) 
actheo 

(MeV) 
r0exp 

(fm) 
r0theo 

(fm) 

18Ar 19K 0.623 0.615 1.389 1.407 

15P 16S 0.631 0.615 1.371 1.407 

12Mg 13Al 0.598 0.566 1.447 1.530 

7N 8O 0.582 0.617 1.486 1.404 

Table 2.19. Comparison of the experimental [MAR 69] and theoretical  
values of the Coulomb coefficient and the unit nuclear radius  

The comparison of the results gathered in Table 2.19 shows sound agreement 
between theory and experiment.  

SOLUTION 2.9.– Expressions of Weisskopf estimates 

a) General expressions of coefficients )(EC and )(MC  

In relationships [2.217], let us replace R with 1.2 A1/3 fm and Eγω = . We 

obtain: 
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Comparing [2.264] and [2.265], respectively, with the Weisskopf estimates 
[2.80] and [2.81], we see that: 
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Note that )(EC   is expressed in (fm)
2

 and )(MC  in (fm)
22 −

. 

b) Values of coefficient )(EC  

– Case of electric multipole transitions 

Using [2.266], we obtain: 

– for   = 1: 
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= 1.03592 × 1014  

([3!!] = [(2 × 1 + 1) × (2 × 1 − 1)] = 3 

– for = 2:  

10
2

52

2

214

2 10
]!!5[

66050539.1

197

1

5

3

]!!5[2

10)2.1(34.4
)( ×=
















×
×××≈EC

 

= 7.380024 × 107  

([5!!] = [(2 × 2 + 1) × (2 × 2 − 1) × (2 × 2 − 3)]  = 15 

– for   = 3:  
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= 34.49663  

([7!!] = [(2 × 3 + 1) × (2 × 3 − 1) × (2 × 3 − 3) × (2 × 3 − 5)]  = 105 
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– for   = 4:  

2 98 21

4 2 2

4.4 5 (1.2) 10 3 1 9.719928088
( )

7 1974 [9!!] [9!!]
C E × × ×    ≈ =   ×    

 

= 1,088427322 × 10 −5  

([9!!] = [(2 × 4 + 1) × (2 × 4 − 1) × (2 × 4 − 3) × (2 × 4 − 5) × (2 × 4 − 7)] = 
945 

– for   = 5:  

2

4112

2

2110

5
]!!11[

1065082.2

197

1

8

3

]!!11[5

10)2.1(64.4
)(

−×=















×
×××≈EC  

= 2,45319037 × 10 −12  

([11!!] = [(2 × 5 + 1) × (2 × 5 − 1) × (2 × 5 − 3) × (2 × 5 − 5) × (2 × 5 − 7) 

× (2 × 5 − 9)] = 10,395 

In summary: 

C1 (E) = 1.0 × 1014; C2 (E) = 7.4 × 107; C3 (E) = 34.5  

  [2.268] 

C4 (E) = 1.1 × 10−5; C5 (E) = 2.5 × 10−12  

c) Expression and values of coefficients )(MC  

Let us express the ratio ( )C M / ( ).C E  Using [2.266] and [2.267], we obtain, 

after simplification: 
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Using [2.268] and the untruncated values of )(EC  above, we find, for the first 

five magnetic multipole transitions: 

– 1314
11 1010645202.31003592.1

6336
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– 7 7
2 2

1900 1900
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6336 6336
C M C E= × = × × = ×  

– 34463336.10 34.49663
6336

1900
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)( 13 =×=×= ECMC  

– 5 6
4 4

1900 1900
( ) ( ) 1.088427322 10 3.263907689 10

6336 6336
C M C E − −= × = × × = ×

 

– 12 13
5 5

1900 1900
( ) ( ) 2.45319037 10 7.356773521 10

6336 6336
C M C E − −= × = × × = ×

 

In summary: 

C1 (M) = 3.1 × 1013; C2 (M) = 2.2 × 107; C3 (M) = 10.3  

  [2.271] 

C4 (M) = 3.3 × 10 −6; C5 (M) = 7.4 × 10 −13  

The values recorded in Table 2.4 are clearly found by comparing them with 
results [2.268] and [2.271]. 
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Alpha Radioactivity 

Overall objective 

To know the general properties of α and β radioactivities and electron capture 

Specific objectives 

To interpret Becquerel’s observations that 
led to the discovery of natural radioactivity To write the balanced equation for α decay 

To know the experimental facts that led to 
the discovery of α radioactivity 

To apply the mass number and charge number 
conservation laws 

To define the activity of a radioactive 
source 

To define the mass loss in a nuclear reaction 

To know the conventional unit of activity To define the energy released during α decay 

To define radioactivity To calculate the α decay energy 

To define radioactive decay To define the α decay energy diagram 

To define radioactive radiation To interpret the fine structure of α lines 

To distinguish between a parent nucleus 
and a daughter nucleus 

To know the Gerger–Nuttall law 

To give examples of α emitting 
radioelements or radionuclides 

To interpret the quantum model of α emission 
by tunnel effect 

To establish the relationship between 
radioactive half-life and decay constant  
of a radioelement 

To establish the relationship between 
radioactive half-life and decay constant 

                                 

For a color version of all of the figures in this chapter, see www.iste.co.uk/sakho/nuclear1.zip. 
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To highlight α, β and γ radiation 
experimentally 

To describe the process of creating an  
electron-positron pair 

To theoretically justify the classical nature 
of α emission 

To describe the materialization process of a  
g photon interacting with a nucleus 

To theoretically justify the relativistic 
character of β emission 

To describe the annihilation process of an 
electron-positron pair 

To establish Rutherford and Soddy’s 
empirical law of exponential decay 

To know the nature of the four interactions 
within the framework of the standard model 

To define the probability of decay per unit 
time of a radionuclide 

To know the properties of the u and d quarks 

To know the Gamow–Gurney–Condon 
quantum model of α emission 

To know the properties of the W - and  
W + bosons 

To know the hypotheses of Gamow’s 
theory of α emission 

To explain the emission of the neutrino and the 
antineutrino from the weak interaction 

To make use of Gamow’s quantum theory 
to estimate the radioactive half-life 

To schematically describe the decay of the 
neutron by low interaction 

To define exotic radioactivity To schematically describe the decay of the 
proton by low interaction 

To distinguish between α emission and 
cluster emission 

To describe the Cowan and Reines experiment 
that led to the discovery of the neutrino 

To theoretically justify the highly 
improbable nature of cluster emission 

To write the internal structure of the neutron 
and the proton according to the Gell-Mann and 
Zweig quark model 

Prerequisites 

Energy and momentum conservation laws Nucleon shell model 

Properties of a relativistic particle Nuclear deexcitation 

Angular momenta and parity of a system Radioactive decay law 

3.1. Experimental facts  

3.1.1. Becquerel’s observations, radioactivity 

In 1896, Henri Becquerel experimented with phosphorescent materials that emit 
light into the dark after exposure to light. To do this, he sealed a photographic plate 
in black paper and put this package in contact with various phosphorescent 
materials. The experimental observations were negative except those involving 
uranium salts, which then left an imprint on the photographic plate through the layer 
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of paper used. However, it soon transpired that the impression of the photographic 
emulsion was not related to the phenomenon of phosphorescence since it occurred 
even if the uranium was not previously exposed to light. Interpreting his 
observations, Becquerel thus assumed that a mysterious radiation had just been 
revealed by chance. The discovery of this phenomenon marked the birth of 
radioactivity. Not having any idea as to the nature of radiation, for six hours he 
somewhat imprudently left several decimeters of a radium salt in his vest pocket. 
Twenty days later, he noticed that his skin was falling off and a wound was festering 
at the precise spot where the radiation, unknown at that time, had struck.  

Henri Becquerel was a French physicist. He discovered natural radioactivity by chance in 
1896. He won the Nobel Prize in Physics 1903 (shared with the Curie couple, see Box 3.2). 
The unit of activity is named in his honor. 

Box 3.1. Becquerel (1852–1908) 

3.1.2. Discovery of α radioactivity and β− radioactivity 

As noted in Chapter 1, uranium has 26 isotopes, including 238U (99.2739 to 
99.2752%), 235U (0.7198 to 0.7202%) and 234U (0.0050 to 0.0059%). The decay of 
uranium-238 is a series of chain reactions leading to stable lead-206. The decay 
chain of uranium-238 leading to lead is written (the products involved in the global 
decay chain leading to 206Pb are presented in section 3.3): 

238
92U ⎯→⎯α 234

90Th ⎯⎯→⎯
−β 234

91
mPa ⎯⎯→⎯

−β 234
92U

α⎯⎯→  

Th230
90

α⎯⎯→ 226
88 Ra ⎯→⎯α 222

86 Rn α⎯⎯→ Po218
84 … β −

⎯⎯→   [3.1] 

210
83 Bi β −

⎯⎯→ 210
84 Po α⎯⎯→ 206

82 Pb  (stable) + several γ  

In 1897, Pierre Curie and Marie Curie entered the scene with the aim of finding 
substances with the same properties as the uranium salts handled by Becquerel. In 
1898, they discovered polonium and then radium, two radioactive substances 
involved in the uranium-238 decay chain [3.1]. After four years of research, the 
Curies succeeded in processing several tons of pitchblende and obtained just one 
tenth of a gram of pure radium salt. The Curies called radioactivity the property of 
nuclei to emit radiation by decay [FER 64]. On July 4 1934, Marie Curie died of 
leukemia (blood cancer) induced by the same radiation that had caused Becquerel’s 
wound. Today, we know that that mysterious radiation is the gamma (γ)  
photon [3.1], the most dangerous ionizing radiation of all (see Chapter 4,  
section 4.4), exposure to which can lead to slow death. 
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As the sequence of nuclear reactions [3.1] indicates, the decay chain of  
uranium-238 produces α, β − and γ particles.  

In 1898, Ernest Rutherford (Box 1.4) discovered that radioactivity in a uranium 
ore is a mixture of two distinct phenomena, as indicated in the decay chain [3.1] of 
uranium-238. Rutherford called these two decay modes α radioactivity and β 
radioactivity (here β −). 

From 1902, Rutherford and Frederick Soddy studied the phenomenon of 
radioactivity. They managed to condense radium emanations and concluded that 
helium had to be one of the decay products of radioactive substances. Rutherford 
determined the nature of the helium element emitted by radium: it is the He2+ 
nucleus, corresponding to α alpha radiation.  

Beta β radioactivity was observed in the form of a radiation deflected by electric 
or magnetic fields in the opposite direction from alpha radiation. This proves that the 
β particles emitted spontaneously by radioactive substances are negatively charged. 
With the discovery of the electron in 1897 by Joseph John Thomson (see Chapter 1, 
section 1.1.2), β particles were identified as electrons. The β radioactivity mode 
named by Rutherford thus corresponds to β − radioactivity. 

The radioactivity corresponding to the α and β − decay modes is called natural 
radioactivity (to be differentiated from artificial radioactivity, see section 3.2). By 
definition, natural radioactivity is the property of some unstable nuclei to 
spontaneously convert into other, more stable nuclei. This non-induced nuclear 
transformation is called radioactive decay. It is accompanied by the emission of a 
radioactive radiation consisting of the various particles emitted by radioactive 
substances, also called radioelements or radionuclides. The decaying nucleus is 
called the parent nucleus and the nucleus into which the parent nucleus converts  
is called the daughter nucleus.  

Pierre Curie was a French physicist and Marie Sklodowska Curie was a French 
physicist and chemist of Polish origin. As a couple they discovered polonium in 
1898 and then radium. They won the Nobel Prize in Physics 1903 for their work on 
radium radioactivity. Marie Curie was also the winner of the Nobel Prize in 
Chemistry 1911 for her work on polonium and radium. 

Frederick Soddy was a British radiochemist. In 1902 he established, together 
with Rutherford, the exponential law of radioactive decay. Soddy was awarded the 
Nobel Prize in Chemistry 1921 for his contributions on radioactive substances and 
for his research on the nature of isotopes.  

Box 3.2. Marie Curie (1867–1934); Pierre Curie (1859–1906); Soddy (1877–1956) 
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3.1.3. Discovery of the positron 

The β radioactivity mode consists of two decay submodes, one of which is the  
β − decay mode. It took until 1932 for the second β decay submode to be identified 
with the discovery of the positive electron called the positron (the negative electron 
then being called the negatron). In 1934, there followed the discovery of artificial 
radioactivity, which highlighted β+ radiation, similar to β − radiation. 

The existence of the positron was postulated in 1928 by the British physicist Paul 
Adrien Maurice Dirac (1902–1984) through his relativistic wave equation (see  
[ASL 08] p. 889). In 1932 Carl Anderson studied the particles present in cosmic 
radiation using a Wilson chamber, or fog chamber. When a charged particle passes 
through the chamber, steam condenses into fine droplets along its path. The particle 
trace is thus visualized. Under the action of a magnetic field the trajectory of the 
particle is curved in a direction that depends on the sign of its charge. In 1933, 
Anderson [AND 33a] succeeded in photographing the first trajectory of a particle 
whose direction of curvature indicates that it is a positive particle that is not a 
proton, whose course would have been much shorter. He identified the particle with 
the positive electron, or β+ positron, which does not exist in our environment. This 
electron is produced by a rare decay mode called β+ radioactivity (see section 3.2). 
In addition, the β + particle appears during the process of simultaneous production of 
electron-positron (or negatron-positron) pairs when a γ photon of energy greater 
than or equal to 1.022 MeV interacts with a nucleus (Figure 3.1). However, it should 
be noted that during decay processes, few γ photons possess the energy to induce the 
creation of electron-positron pairs. Thus, the production of pairs plays a marginal 
role in our environment. 

The discovery of the positive electron constituted the first experimental evidence 
of the existence of what became known as antimatter.  

 

Figure 3.1. Creation of electron-positron pair by a process of materialization  
of a γ photon of energy greater than 1.022 MeV interacting with a nucleus 
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In 1933, Anderson and Seth Henry Neddermeyer [AND 33b] showed that the  
γ radiation of 2.62 MeV energy produced by the β decay of Th C′′ (208Tl, Z = 81), 
forms positron-negatron pairs when it is absorbed by heavy elements such as lead. 

APPLICATION 3.1.– Show that the threshold energy of the γ photon for electron-
positron pair creation is equal to 1.022 MeV. Also show that during the process of 
dematerialization of the γ photon, the positron and the electron formed move in 
directly opposite directions. 

ANSWER.– The positron and electron have same resting energy, E0 = m0c2. The 
threshold energy therefore has the value: Ethreshold = 2m0c2. That is, numerically, 
Ethreshold = 2 × 0.511 MeV = 1.022 MeV. 

The amount of motion of the {absorbed photon-nucleus} system is zero at the 
initial instant of photon absorption (the recoil of the nucleus is negligible). Thus, by 
applying the principle of conservation of momentum: 

0 e e e ep p p p− + − += +  = −
    

  [3.2] 

As soon as it is created, a positron rapidly encounters an electron in matter. An 
annihilation reaction occurs with the production of two γ photons of the same 
energy and propagating in opposite directions (Figure 3.2). This annihilation process 
is used in nuclear medicine for cancer screening (see Volume 2, Chapter 3). 

 

Figure 3.2. Process of annihilation of an electron-positron  
pair with production of two γ photons of energy 1.022 MeV 

APPLICATION 3.2.– Show that the process of annihilation of an electron-positron pair 
causes two γ photons of the same energy to be emitted, propagating in opposite 
directions. The energy carried by each photon will be specified. 

  
electron (e−)positon (e+)
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ANSWER.– During the annihilation process, the electron resting energy and that of 
the positron are each converted into electromagnetic energy. Thus, two photons,  
γ and γ ’ (γ ’ = γ), of the same energy, 0.511 MeV, are formed. 

The momentum of the {electron-positron} system is zero at the initial instant of 
dematerialization. That is, by applying conservation of momentum: 

' '0 p p p pγ γ γ γ= +  = −
    

  [3.3] 

Carl David Anderson was an American physicist. He is famous for having discovered the 
positron in 1933, thus experimentally confirming the prediction of Paul Adrien Dirac in 1928. 
In 1936, together with Neddermeyer, his first student, he discovered the muon, a particle 207 
times larger than the electron. Anderson received half of the Nobel Prize in Physics 1936 for 
his discovery of the positron. 

Seth Henry Neddermeyer was an American physicist. In 1982, he received the Enrico 
Fermi Prize for his participation in the discovery of the positron and the muon. 

Box 3.3. Anderson (1905–1991); Neddermeyer (1907–1988) 

3.1.4. Discovery of the neutrino, Cowan and Reines experiment 

The standard model describing the interaction between elementary particles is 
based on four fundamental interactions: strong interaction, electromagnetic 
interaction, weak interaction and gravitational interaction. The weak interaction 
carried by the W+ and W− vector bosons allows us to explain the emission of neutral 
and uncharged particles, called the neutrino and antineutrino. These bosons have the 
same mass, equaling (80,800 ± 2,700) MeV/c2 and electrical charges equaling +e 
and –e, respectively. The neutrino and antineutrino accompany the β radioactive 
emission. By weak interaction, a nucleon of the nucleus can convert into another 
species. To compensate for the change in charge, an electron or a positron is then 
expelled from the nucleus. The emission of the electron is accompanied by an 

electronic antineutrino, eν , and that of the positron by an electronic neutrino, eν . 

The processes of nuclear transformations of a nucleon into another species are as 
follows: 

e

e

n p e
p n e

ν
ν

−

+

 → + +


→ + +
  [3.4] 
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Let us interpret the first transformation [3.4] within the framework of weak 
interaction, using the quark model. 

The neutron and proton have quark structures udd and udu, respectively  
(Figure 1.16). We recall that the electrical charges of the u and d quarks are equal to 
+2/3e and −1/3e respectively. Under weak interaction, a d quark of the neutron 
converts into a u quark by emitting a W− boson. The W− boson subsequently decays 
into an electron and into an antineutrino These two processes of d quark 
transformation and W− boson decay are described by the respective equations (we 
will note the conservation of the electrical charge): 

+

+ e

d u W

W e ν

−

− −

 →


→
 [3.5] 

The overall process of a neutron converting into a proton via weak interaction is 
shown in Figure 3.3. 

 

Figure 3.3. Neutron decay by low interaction. It is the decay of the W− boson into  
an electron and an antineutrino that allows the neutron to convert into a proton 

APPLICATION 3.3.– Using a diagram, reflect the overall process of the transformation 
of a proton into a neutron via weak interaction. 

ANSWER.– Under weak interaction, a u quark of the proton converts into a d quark 
by emitting a W+ boson. The W+ boson subsequently decays into a positron and a 
neutrino (Figure 3.4). 
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Figure 3.4. Proton decay by low interaction. It is the decay of the W+ boson  
into a positron and a neutrino that allows the proton to convert into a neutron 

The existence of the neutrino was first postulated in 1930 by the Austrian 
physicist Wolfgang Ernst Pauli (1900–1958) to satisfy the conservation of energy, 
essentially during β decay. Nevertheless, the word “neutrino” was not introduced by 
Pauli in the parlance of particle physicists.  

Indeed, to generally satisfy the energy and momentum conservation laws during 
β radioactivity, Pauli suggested the existence of a new neutral particle of zero mass 
accompanying the β emission, which he called a neutron (which proved to be 
incorrect since the neutron is a nucleon discovered by Chadwick in 1932, see 
Chapter 1, section 1.3.2). 

In a conversation with Enrico Fermi (see biography, box 4.3) at the Physics 
Institute of Via Panisperna in Rome, the Italian physicist Edoardo Amadi  
(1908–1989) gave the new particle suggested by Pauli the name “neutrino” in 
Italian, meaning “little neutron”, in order to distinguish it from the neutron, which is 
much more massive. From 1932, one after another, Fermi and Pauli adopted the 
word neutrino, which has since been cited in the parlance of particle physicists. 

Postulated in 1930, the existence of the neutrino was not proven experimentally 
until 26 years later, by means of what became known as the neutrino experiment 
carried out by Cowan and Reines. 

In 1956, Clyde Cowan and Frederick Reines conducted the historical experiment 
aimed at detecting the neutrino. The Cowan and Reines experimental set-up is 
shown in Figure 3.5.  
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Figure 3.5. Cowan and Reines experimental set-up 

The principle of the Cowan and Reines experiment is to use slow neutrons 
produced by a nuclear reactor in Los Alamos, USA. These neutrons, with an average  
lifetime of 887 s, decay into a proton, an electron and an antineutrino according to 
the first equation [3.4], which we recall here: 

n → p + e − + eν  

This reaction then provides an antineutrino flux of 5 × 1013 particles per second 
per square centimeter. To isolate the antineutrino flux, Cowan and Reines placed a 
shielding of thousands of tons of iron on the path of neutron decay products, which 
then stopped the protons, electrons and residual neutrons via the first equation [3.4] 
(Figure 3.5). The antineutrino flux passes through the shielding, practically without 
interacting, and then accesses two reservoirs containing a total of 200 L of water 
added to 40 kg of cadmium chloride (CdCl2). The two reservoirs are surrounded by a 
scintillation counter. Photomultipliers coupled to the counter enable the conversion 
of light signals into electrical signals. When an emitted photon is received by the 
cathode of a photomultiplier, it induces the emission of an electron by photoelectric 
effect. This electron is then accelerated by an electric field and comes to strike the 
first electrode of the photomultiplier. This then induces a shower of accelerated 
electrons toward the second electrode and so on. A photon arriving on the cathode of 
a photomultiplier thus induces a brief current pulse. The pulses recorded are then 
enumerated by the counter. 

While passing through the reservoirs, antineutrino capture reactions are produced 
by the water protons according to the equation:  

eν  + p → e+ + n  [3.6] 
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The antineutrino capture reaction [3.6] thus produces a neutron and a positron. 

Once formed, positrons interact, rapidly being annihilated with electrons of 
matter. This produces the emission of at least two photons in coincidence 
(annihilation with emission of more than two photons is extremely rare, see note 
below): 

e + + e − → γ + γ  [3.7] 

NOTE.– Probability of emission of more than two photons by annihilation.  

In a very limited number of cases, the annihilation can lead to the emission of 
more than two photons. However, in practice, this type of marginal reaction is not 
taken into account since the probability of an annihilation of three photons occurring 
in water is estimated at less than 0.5% [NIC 10]. 

The introduction of cadmium (a good neutron absorber) into the water allows the 
detection of the neutron emitted by the antineutrino capture reaction [3.6]. Under the 
impact of a neutron, an atom of cadmium (Cd) is carried in an excited state, Cd*, 
with an average lifetime of 15 µs. There follows a γ-deexcitation process: 

n + Cd → Cd* → Cd + γ  [3.8] 

The emission of the two annihilation photons by coincidence [3.7] and the 
emission of the delayed photon [3.8] thus show the interaction of the antineutrino 
with matter (here water + cadmium). Using a scintillation counter (Figure 3.5) then 
enables detection of a time-delayed pulse with respect to the two pulses in 
coincidence resulting from the annihilation of an electron-positron pair.  

The experiment of Cowan and Reines thus made it possible to highlight the 
electronic antineutrino, the antiparticle of the electronic neutrino just as the positron 
is the antiparticle of the electron. Since then, other experiments have proven the 
existence of the neutrino that appears during β+ disintegration, as indicated in the 
second equation [3.4]. In addition, the neutrino capture reaction produces positrons 
analogously to reaction [3.6]: 

νe + p → e + + n   [3.9] 

Since the effective interaction cross-section of a neutrino with matter is 
extremely small (σ = 3 × 10−48 m2 = 3 × 10−20 barns), the matter is virtually 
transparent to neutrinos. On a flux of several billion neutrinos arriving on Earth, 
only one neutrino interacts with matter, the others crossing the Earth from either side 
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without interacting. It should be noted that a flux of 3 × 1014 neutrinos per second 
and per square meter is continuously received from the Sun. 

NOTE.– In the categorization of elementary particles within the framework of the 
standard model, we can identify a family of particles called leptons, numbering six. 
Leptons are spin-1/2 fermions that are insensitive to strong interactions and devoid 
of internal structure. They consist of three particles of − e charge: electron e− (m0 = 
0.511 MeV/c2) muon µ− (m0 = 105.6 MeV/c2) and tauon τ− (m0 = 1,777 MeV/c2) 
associated with three neutrinos, νe (electronic neutrino), νµ (muonic neutrino) and 
ντ (tauonic neutrino), respectively. The six leptons are then grouped into three 
pairs: (e−, νe), (µ−, νµ) and (τ−, ντ). For these six leptons there are six corresponding 
antiparticles. It is therefore important to differentiate between the neutrino 
accompanying β decay (here the electronic neutrino) and the muonic and tauonic 
neutrinos. 

Moreover, based on current knowledge, neutrinos have masses equal to: 

– electronic neutrino, νe: m0 < 10− 6 MeV/c2; 

– muonic neutrino, νµ: m0 < 0.19 MeV/c2; 

– tauonic neutrino, ντ: m0 < 18.2 MeV/c2. 

Therefore, only the electronic neutrino has a near-zero mass. 

Clyde Lorrain Cowan Jr. and Frederick Reines were American physicists. They are 
known for their discovery of the neutrino, for which they shared the Nobel Prize in Physics 
1995. Reines is also known for his work on the development of radiation detectors used in 
medicine to measure the total amount of radiation delivered to the human body during 
radiation treatments. 

Box 3.4. Cowan (1919–1974); Reines (1918–1998) 

3.1.5. Highlighting α, β and γ radiation 

By studying the phenomenon of radioactivity, Marie Curie, Pierre Curie and 
Rutherford discovered that an electric or magnetic field can separate uranic rays into 
three separate beams made up of α, β and γ radiation. 

Let us use a uniform electric field as an example to highlight α, β and γ 
radiations emitted by a mixture of natural and artificial radioactive substances. 
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Figure 3.6. Separation, by a uniform electric field, of α, β and γ radiations  
emitted by a radioactive source consisting of a mixture of natural  

and artificial radioactive substances 

Figure 3.6 shows the trajectories of α, β and γ particles. One can see that the β 
radiation is constituted of β− and β+ particles (emitted by artificial radioactive 
substances). The deviation direction is used to specify the particle’s sign. The 
neutral photon is not deflected. Note that in the case of the magnetic field, the same 
deflections are observed except that the trajectories described by the α and β 
particles are circular arcs).  

Moreover, the α particles emitted by radioactive sources are classical particles 
with ejection rates of the order of 20,000 km ⋅ s−1 while the β+

 and β − particles are 
relativistic particles with ejection velocities of the order of 280,000 km ⋅ s−1. The γ 
photon moves in a vacuum at the speed of light, 300,000 km ⋅ s−1. It should be noted 
that the hazardous nature of radioactive radiations relates to the damage that they 
induce when passing through biological matter. Whereas α particles can be stopped 
by a simple sheet of paper, β particles can pass through 7 mm of aluminum, while 
the most hazardous, γ radiation, can pass through 20 cm of lead. These biological 
effects will be discussed in forthcoming volumes.  

APPLICATION 3.3.– The experimental study of the decay of radium-226 reveals the 
emission of α particles of maximum kinetic energy 4.8 MeV. Similarly, the decay 
of sodium-24 is accompanied by the emission of β − particles of maximum kinetic 
energy 1.39 MeV. Find the order of magnitude of the ejection velocities of α 
particles emitted by radioactive substances, then show that the β − particles emitted 
by sodium-24 are relativistic particles.  

Given data: mα = 4.0015 u; m0 = mβ = 0.00055 u; 1u = 1.66 × 10−27 kg.  

We will take 1 eV = 1.6 × 10−19 C and m0c
2 = 0.511 MeV. 
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ANSWER.– 

– Case of α particles 

If α particles are classical particles, their kinetic energies verify the relationship: 

2 21

2
c

c
EE m v v

mα
α

=  =   [3.10] 

Numerically, we find: 

6 19
7

27

2 × 4.8 ×10 ×1.6 ×10
= 1.52 ×10

4.0015 ×1.66 ×10
v

−

− = m ⋅ s−1 = 15,000 km ⋅ s−1. 

The order of magnitude (20,000 km ⋅ s−1) of the ejection velocities of the α 
particles emitted by radioactive substances is indeed found.  

– Case of β particles 

The β− particles emitted by sodium-24 are assumed to be classical particles. 
Numerically we obtain, using [3.10] 

6 19
8

27

2 1.39 10 1.6 10
= = 6.98 10

0.00055 1.66 10

× × × ×
×

× ×
v

−

− m ⋅ s−1 > c = 300,000 km ⋅ s−1.  

The above result is unacceptable. It follows that expression [3.10] is not verified 
for β− particles. They are therefore relativistic particles whose kinetic energy is 
given by the relationship: 

2
0 2 22 2

0

1 1
1 1

( / 1)1 /
c

c

E m c v c
E m cv c

 
= −  = −  +− 

  [3.11] 

Numerically we find: 

2

1
1 300000 289000

(1.39 / 0.511 1)
v = − × ≈

+
× 300,000 ≈ 289,000 km ⋅ s−1  

The order of magnitude (280,000 km ⋅ s−1) of the ejection rates of the β particles 
is indeed found. 
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3.2. Radioactive decay 

3.2.1. Rutherford and Soddy’s empirical law  

Let us consider a radioactive source, with λ the probability per unit time for a 
nucleus to decay in the time interval t and t + dt, and N(t) the number of nuclei 
remaining at instant t. By definition: 

( )

dNdt
N t

λ = −   [3.12] 

The “−” sign in relationship [3.12] reflects the decrease in the number of nuclei 
over time. 

If the radioactive source contains N0 initial nuclei, the integration of [3.12] gives: 

0( ) tN t N e λ−=  [3.13] 

In relationship [3.13], λ is also called the decay constant and is expressed in 
seconds minus one (s−1). This relationship reflects Rutherford and Soddy’s empirical 
law established in 1902.  

3.2.2. Radioactive half-life  

By definition, the radioactive half-life, T (or (half-life period) is the time after 
which half of the initial nuclei, N0, of a radioactive sample has decayed.  

Thus, at t = T, N(T) = N0/2. Using empirical law [3.13], we obtain: 

0
0( ) ln 2

2
TN

N T N e Tλ λ−= =  =   [3.14] 

This then gives: 

ln 2T
λ

=   [3.15] 

In relationship [3.15], λ is expressed in s−1 and T in s. 

Table 3.1 indicates the radioactive half-lives of several radionuclides. T varies 
from fractions of a second to billions of years. 
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Radionuclides Half-life, T Radionuclides Half-life, T 
204

82 Pb  (α) 1.0 × 1019 years 
137
55Cs  (β −) 30.07 years 

238
92U  (α) 4.5 × 109 years 60

27 Co  (β −) 5.2 years 

40
19 K  (β −) 1.3 × 109 years 210

84 Po  (α) 138 days 

235
92U  (α) 7.0 × 108 years 131

53 I  (β −) 8.0 days 

239
94 Pu  (α) 2.4 × 104 years 212

83 Bi  (α) 60 min 

14
6C  (β −) 5,730 years 19

10 Ne  (β +) 18 s 

226
88 Ra  (α) 1,622 years 212

84 Po  (α) 3 × 10−7 s 

Table 3.1. Radioactive half-life of several radionuclides 

APPLICATION 3.4.– Show that at instant t = nT, the number N of non-decayed nuclei 
from a radioactive source containing initial N0 nuclei is given by the relation: 

0

2n

N
N =   [3.16] 

ANSWER.– Using Rutherford and Soddy’s law [3.13] and [3.15], we obtain: 

nnnT NeNeNnTN −−− === 2)( 0
2ln

00
λ  0

2n

N
N =  

The graphical representation of the exponential decay law of the number of 
nuclei of a radioactive source is shown in Figure 3.7. 

 

Figure 3.7. Exponential decay of the number, N(t), of radioactive nuclei 
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3.2.3. Average lifetime of a radioactive nucleus 

The number of nuclei remaining at instant t is N (t). Between instant t and instant 
t + dt, the number of decayed nuclei is equal to − dN (t). Each of these nuclei lived 
for t seconds before decaying. The total lifetime of the − dN (t) nuclei is therefore 
equal to − tdN (t). By definition, the average lifetime of a radioactive nucleus, noted 
τ, is equal to the sum of the lifetimes of each nucleus, divided by the sum of the  
− dN (t) nuclei. That is, given by the relationship:  




∞

∞

=

0

0

)(

)(

tdN

ttdN
τ   [3.17] 

Using [3.13], we obtain: 

00 0

00 0

t t

t t

t N e dt t e dt

N e dt e dt

λ λ

λ λ

λ
τ

λ

∞ ∞− −

∞ ∞− −
= = 
 

  [3.18] 

The integrals in [3.18] are of the form: 

10

!
+

∞ − = n
axn

a
ndxex

  [3.19] 

By writing [3.19], we obtain, according to [3.18]: 

21!/ 1

0!/

λτ
λ λ

= =   [3.20] 

Taking into account the relationship [3.15], the average lifetime of a radioactive 
nucleus is ultimately written: 

1

ln 2

Tτ
λ

= =   [3.21] 

For example, for bismuth-212, with a half-life of 60 min (Table 3.1), the  
average lifetime is approximately 86 minutes 34 seconds. Note that, in the 
calculations, it is instead the radioactive half-life that is used. The average lifetime, 
τ, is used very little. 
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3.2.4. Activity of a radioactive source  

By definition, activity A (t) of a radioactive source is the number of decay per 
second. Knowing that λ is the probability per unit time for a nucleus to decay in the 
time interval t and t + dt and N (t), the number of nuclei remaining at instant t, then: 

A (t) = λ N (t)   [3.22] 

Taking account of [1.58] we obtain: 

0 0 0( ) ;tA t A e A Nλ λ−= =   [3.23] 

In [3.23], A0 = A (0) is the initial activity of the source. 

Activity A is expressed in becquerel (Bq) with 1 Bq = 1 decay per second.  

NOTE.– The older unit of activity is the curie: 1 Ci = 3.7 × 1010 Bq. 

APPLICATION 3.5.– We will consider a radioactive source of iodine-131 of half-life 
8.1 days and of initial activity 2.2 × 105 Bq. Calculate the number of nuclei at t1 = 81 
days and then at t2 = 810 days. Conclude. 

ANSWER.– Note that t1 = 10 T and t2 = 100 T 

Using [2.4], [2.5], [2.7] and [2.8] we obtain: 

ln 2( / )0( )
ln 2

t TA T
N t e−=   [3.24] 

NOTE.– N (t1) = 2.2 × 108; N (t2) = 1.7 × 10−17 ≈ 0. 

CONCLUSION.– The source is switched off at the instant of date t = 810 days. 

3.3. α radioactivity 

3.3.1. Balanced equation 

During the α decay process, the parent nucleus, ,A
Z X  spontaneously converts 

into a daughter nucleus, '
' ,A

Z Y  possibly with the emission of γ-photons. The balanced 
equation for α disintegration is thus written: 
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' 4
' 2

A A
Z ZX Y He γ→ + + + γ  [3.25] 

Equation [3.25] satisfies the principle of mass number and charge number 
conservation: 

– mass number conservation: A = A’ + 4  A’ = A – 4  [3.26a] 

– charge number conservation: Z = Z’ + 2  Z’ = Z – 2  [3.26b] 

By using [3.26], equation [3.25] is written as follows: 

4 4
2 2

A A
Z ZX Y He γ−

−→ + +   [3.27]  

Example, for the α emitter radium-228 (Table 3.1), the decay equation is written: 

226 222 4
88 86 2Ra Rn He γ→ + +   [3.28]  

3.3.2. Mass defect (loss of matter), decay energy  

By definition, the mass loss in a nuclear reaction is equal to the difference 
between the total mass of the nuclei before the reaction (mb) and the total mass of 
the nuclei after the reaction (ma). Using Δm to note the mass loss, we obtain: 

Δm = mb − ma [3.29] 

APPLICATION 3.6.– Calculate the mass loss in the case of reaction [3.28]. 

Given data: m (226Ra) = 225. 9771332 u; m (222Rn) = 221.9703834 u; m (4He) = 
4.0015 u; 1 u = 931.5 MeV/c2. 

ANSWER.– The mass of the γ photon is zero. We thus obtain: 

Δm = m (226Ra) − [m (222Rn) + m (4He)]  [3.30] 

Numerically, we find: 

Δm = 0.0052498 u  = 4.890 MeV ≈ 4.9 MeV/c2   [3.31] 

Let us now perform the energy balance of the decay reaction [3.27]. We obtain: 

– Before decay (resting energy is E0 = m0c2): 

Ei = E0 ( XA
Z ) = mXc2  [3.32a]  
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– After decay: 

Ef = E0 ( 4
2

A
Z Y−

− ) + E0 ( He4
2 ) + Ecα + Ecr (Y) + Eγ  

That is: 

Ef = mYc2 + mαc2+ Ecα + Ecr (Y) + Eγ  [3.32b] 

Making use of the principle of energy conservation, we obtain, using [3.32]: 

Ei = Ef  mXc2 = mYc2 + mαc2+ Ecα + Ecr (Y) + Eγ  [3.33a] 

By integrating equation [3.33a], we obtain: 

Ecα + Ecr (Y) + Eγ = [mX
 − (mY

 + mα)]c2
  [3.33b] 

By definition, the energy released during α decay according to equation [3.27], 
also called α decay energy, noted Qα, is equal to the sum of the kinetic energy of the 
α particle and the recoil energy of the daughter nucleus and the quantum energy of 
the γ photon, i.e. according to [3.33b]: 

Qα = Ecα + Ecr (Y) + Eγ   [3.34] 

Taking into account [3.33b], another relationship is found, enabling the α decay 
energy to be calculated: 

Qα = [mX
 − (mY

 + mα)]c2
   [3.35] 

The mass loss in equation [3.27] is written, according to [3.29]: 

Δm  = [mX
  − (mY

 + mα)]    [3.36] 

The α decay energy [3.35] then verifies the relationship: 

 Qα  = Δm c2
  [3.37] 

We thus find the mass–energy equivalence relationship: 

APPLICATION 3.7.– Calculate the energy released during the disintegration of 
radium-226 according to equation [3.28]. 

ANSWER.– Using [3.37] and [3.31], we find:  

Qα ≈ 4.9 MeV  [3.38] 
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In practice, the recoil kinetic energy of the daughter nucleus is negligible in 
relation to the kinetic energy of the α particle. To verify this assertion, let us apply 
the principle of conservation of momentum to the decay process of the parent 
nucleus AX.  We will use pX to designate the momentum of the parent nucleus and pY 
and pα for the respective momenta of the daughter nucleus and the α particle. With 
the momentum being conserved, we obtain:  

0X Y Yp p p p pα α= + =  = −
     

 [3.39] 

Given that Ec = p2/2m, we obtain, using the last relation [3.39]: 

mY Ecr (Y) =  mα Ecα  [3.40] 

By approximating m = Au, equation [3.40] is written, taking into account the 
conservation of the mass number [3.26a]: 

A’Ecr (Y) =  4 Ecα    (A − 4)Ecr (Y) =  4 Ecα   

Hence:  

4
( )

4cr cE Y E
A α=

−
  [3.41] 

Taking into account [3.41], the α decay energy [3.34] can be put in the form: 

4 4
1

4 4c c cQ E E E E E
A Aα α α γ α γ

 = + + = + + − − 
  

That is, ultimately: 

4 c
AQ E E

Aα α γ= +
−

  [3.42] 

APPLICATION 3.8.– Radium can decay into radon with or without the emission of one 
or more γ photons. Calculate the maximum kinetic energy of the α particles emitted 
during the decay of radium-226. Deduce the recoil kinetic energy of radon. 
Conclude. 
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ANSWER.– According to [3.42], the kinetic energy of the α particles verifies the 
equation:  

γαα EQE
A

A
c −=

− 4
  [3.43] 

The kinetic energy of the α particles is maximum if there is no photon emission. 
Let: 

αα Q
A

AEc
4−=   [3.44] 

Using [3.38], for radium-228 we obtain: 

228

224=αcE
 
× 4.9 = 4.8 MeV  [3.45]  

Using [3.41], the recoil kinetic energy of radon has a value of: 

Ecr (Rn)
4

4.8 0.0857
224

= × = MeV  [3.46] 

CONCLUSION.– If high precision is not required, the recoil kinetic energy of the 
daughter nucleus can be overlooked. 

3.3.3. Decay energy diagram 

The α decay energy diagram gives an overall mapping of the decay process of 
an α emitting nucleus. Notably, it includes the level of the parent nucleus, the 
excited levels and the ground level of the daughter nucleus, the α transitions 
between the energy level of the parent nucleus and those of the daughter nucleus, 
and the γ decay transitions of the daughter nucleus. 

Let us consider the simple case where a single γ photon is emitted. The α decay 
energy diagram is then mapped as shown in Figure 3.8. 
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Figure 3.8. α decay energy diagram  

Figure 3.8 shows two α transitions: a direct α0 transition corresponding to a 
decay of the parent nucleus, leaving the daughter nucleus in its ground level, and a 
direct α1 transition, feeding the excited level of the daughter nucleus. This level is 
deexcited to the ground level with emission of a γ photon of energy Eγ. 

APPLICATION 3.9.– One of the α transitions resulting from the decay of bismuth-212 
corresponds to α particles of kinetic energy equal to 5.481 MeV. Show that this 
transition is accompanied by the emission of a γ photon to the ground level of radon. 
The value of the transition energy is to be specified. 

Given data: Energy released during decay of bismuth-212: 6.201 MeV. 

ANSWER.– The energy released during decay of bismuth-212 is greater than the 
kinetic energy of the α particles: 

Qα =  6.201 MeV > Ecα =  5.481 MeV 

The transition is therefore accompanied by the emission of a γ photon. 

Using [2.59], we will take the energy of the γ photon emitted:  

ααγ cE
A

AQE
4−

−=   [3.47] 

NOTE.– 

212
= 6.201 5.481 = 0.615

208
×Eγ − MeV     

  XA
Z  

Y4A
2Z

−
−  

α0 

α1 

E 

γ 

Jπ

Jπ

Jπ

Eγ 

0 
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3.3.4. Fine structure of α lines  

The decay of a nucleus leading to the emission of an α particle with  
well-determined kinetic energy gives what is called an α line. In the general case, 
several α lines corresponding to particles with different kinetic energies comprised 
between 4 and 9 MeV are observed. The decay thus feeds several excited levels of 
the daughter nucleus which thus deexcites to its ground level with an emission of 
several γ photons. The set of lines observed reflects the fine structure of the α lines. 

Figure 3.9 indicates the energy diagram of the α decay of uranium-232.  

We can identify the five excited levels of thorium-228 fed by the decay and six α 
transitions. The α0 transition without photon emission occurs at 68%. 

 

Figure 3.9. Uranium-232 α decay energy diagram 

APPLICATION 3.10.– Using Figure 3.9, determine in tabular form the kinetic energies 
of the α particles corresponding to the six transitions shown. The γ photon energy 
emitted for each transition will be specified. 

Given data:  

– mass of the uranium-232 nucleus: 231.986685 u; 

– mass of the thorium-228 nucleus: 227.9793671 u; 

– α particle mass: 4.0015 u; 

– 1 u = 931.5 MeV/c2. 

ANSWER.– Using [3.47], the kinetic energy of an α particle is given by the 
relationship: 

  U232
92

Th228
90

α0 

α5 

E (keV) 

56 

0+

0 

α1 

α2 

α3 

α4 

187 

327 

396 

514 

0+
2+

4+

1−

3−
5−
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)(
4

γαα EQ
A

AEc −−=   [3.48] 

In the case of uranium-232, we obtain: 

228
( )

234cE Q Eα α γ= −   [3.49] 

Considering [3.35], the α decay energy of uranium-232 is written as: 

Qα  = [mU
  − (mTh

 + mα)]c2
    [3.50] 

Numerically:  

Qα  = [231.986685 − (227.9793671  + 4.0015)] u = 5.41937385 MeV 

i.e.:  

Qα  = 5.419 MeV  [3.51] 

Using [3.48] and [3.50], we find the results gathered in Table 3.2. 

α transition Energy of γ photons (in keV) Kinetic energy  Ecα  
of α particles (in MeV) 

α0 transition 0 5.419 

α1 transition 56 5.225 

α2 transition 187 5.098 

α3 transition 327 4.961 

α4 transition 396 4.894 

α5 transition 514 4.779 

Table 3.2. Energies of the γ photons and α particles emitted during the decay  
of uranium-232 according to the decay diagram shown in Figure 3.9 

As an example, for the α1 transition 

228
(5419 56) 5225.49

234cE α = − = keV ≈ 5.225 MeV    
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3.3.5. Geiger–Nuttall law  

Johannes Wilhelm Geiger and John Mitchell Nuttall studied the phenomenon of 
α radioactivity. In 1911, they showed that for even-even α emitters of the uranium 
family, the logarithm of the distance traveled (R) by the α particle was a linear 
function of the logarithm of the λ radioactive constant [CUR 32a, STÖ 07, LES 10, 
FOO 12, MAY 17]. The empirical relationship between R and λ, known as the 
Geiger–Nuttall law, is written:  

lnR = a + b ln λ  [3.52] 

In relationship [3.52], a and b are empirical parameters.  

In the air we have, approximately: 

R (cm) = 0.325Eα (MeV)  [3.53] 

Knowing that the λ decay constant is linked to the radioactive half-life,  
T (T = ln2/λ), Geiger and Nuttall showed that the greater the kinetic energy, Eα 
(where the decay energy Qα), the shorter the radioactive half-life, T, of the α emitter. 
Table 3.3 shows the correlation between T and Eα for several α emitters  
[FOO 12]. 

α emitter Radioactive half-life, T Kinetic energy  Ecα  
of α particles (in MeV) 

147Ce 5 × 1016 years 1.30 

238U 4.5 × 109 years 4.20 

 239Pu 24,110 years 5.15 
242Cm 162.8 days 6.21 
212At 0.314 s 7.83 
212Po 2.98 × 10−7 years 8.78 

Table 3.3. Correlation between the radioactive half-life, T, and kinetic energy,  
Eα, for some α emitters. In particular, it is noted that the greater the kinetic  

energy, the shorter the radioactive half-life of the α emitter  

For the even-even α-emitting nuclei of the uranium family, the variation law of 
the radioactive half-time, T, as a function of the kinetic energy, Eα, is written: 

ln
bT a
Eα

= +   [3.54] 
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In relationship [3.54] another formulation of the Geiger–Nuttall law is shown. In 
this relationship, T is expressed in seconds, Eα in MeV, and a and b are empirical 
parameters dependent on the atomic number of the daughter nucleus. If Z is the 
atomic number of the daughter nucleus, we have: 

2/33.7 49.3; = 3.7×a Z b Z≈ − −   [3.55]  

Using [3.51], law [3.54] is placed in the form: 

αE
ZZT 7.3

3.497.3ln 3/2 +−−=   [3.56a] 

For isotopes of a given α emitter, the curve lnT = f (Eα
1/2) is practically linear 

(Figure 3.10) in accordance with the Geiger–Nuttall law [3.56]. 

 

Figure 3.10. Variation of curve LnT = f (Eα
1/2) for several α ZX emitters  

(polonium 84Po, protactinium 88Pa, uranium 92U and cerium 96Cm).  
The shapes obtained comply with the Geiger–Nuttall law 
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As an illustrative example, let us numerically examine the validity of the  
Geiger–Nuttall law [3.56] in the case of uranium-238 decay. The daughter nucleus 
obtained is thorium with atomic number Z = 90. From Table 3.3 we will take, for 
uranium-238: T = 4.5 × 109 years. Taking 1 year = 365.25 days, we find: 

lnT = 39.495 ≈ 39  [3.56b] 

Moreover, using [3.56] we obtain: 

2/3 3.7 90
ln = 3.7 90 49.3 + 38.880

4.2

×
× =T − − ≈ 39 [3.57]  

There is excellent agreement between results [3.56] and [3.57].  

3.3.6. Quantum model of α emission by tunnel effect 

As explained above, Geiger and Nuttall observed a strong correlation between 
the kinetic energy of α particles and the radioactive half-life, T, of α emitters. This 
observation remained enigmatic for several years. In 1928, George Gamow and, 
independently of him, Ronald Gurney and Edward Condon gave a quantum 
explanation of the phenomenon of α radioactivity.  

Gamow’s theory concerns the α decay of even-even nuclei in their ground state 
of J π= 0+. This is therefore an α emission between a 0+ state of the parent nucleus 
and a 0+ state of the daughter nucleus. The angular momentum of the α particle is 
therefore zero. The Gamow quantum model of α emission is based on the following 
hypotheses:  

1) The α particle is preformed in the parent nucleus, AX, before its emission and 
lies in a potential, U (r), created by the daughter nucleus, A−4Y. 

2) The α emission is not associated with an angular momentum. 

3) Let us consider a problem with spherical symmetry described by a central 
potential, U (r), whose profile is shown in Figure 2.25. 

4) We will adopt the model of the spherical core of radius R = r0 A1/3. 

To model the daughter nucleus α particle interaction, the α particle is considered 
trapped in the potential of the daughter nucleus and is retained by attractive nuclear 
forces. By overlooking the skin effect of the daughter nucleus, the distance, a, 
between the centers of inertia of the daughter nucleus, A−4Y, and the α particle (He) 
in contact is defined by the relationship: 

a = R (A − 4Y) + R (He) = r0 [(A − 4)1/3+ 41/3]  [3.58] 
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In relationship [3.8], r0 = 1.1 fm. 

When the daughter nucleus A−4Y and the α particle are in contact, the height of 
the nuclear potential barrier is equal to, according to [2.207]: 

22( 2)Z eB k
a
−=    [3.59] 

Let us consider, for illustrative purposes, the specific case of the decay of 
radium-226 (Z = 88). The distance, a, between the centers of inertia of the daughter 
nucleus and the α particle in contact has the numerical value: 

a = 1.1 × 10−15 × [(226 − 4)1/3+ 41/3] =  8.41 fm  [3.60] 

The height of the nuclear potential barrier [3.59] then has the numerical value: 

19
9

15

2(88 2) 1.602 10
= 9 10 = 29.49

8.41 10

× ×
×

×
B

−

−

−
MeV  [3.61] 

To escape from the daughter nucleus, Rn, the α particle must have a kinetic 
energy greater than 29.49 MeV. However, the kinetic energy of the α particle is 
equal to 4.8 MeV [3.38]. It follows that the α particle remains trapped in the 
potential of the daughter nucleus.  

From a quantum point of view, the state of the α particle in the potential of the 
daughter nucleus is described by a wave function. Thus, in the Gamow–Gurney–
Condon interpretation, the α particle is retained by the Coulomb barrier, striking the 
latter’s walls approximately 1021 times per second. The wave describing the state of 
the α particle in the potential of the daughter nucleus is then a stationary wave 
(Figure 3.11). Then, after 1025 to 1044 impacts against this barrier, the α particle 
passes through the barrier by the tunnel effect. The wave describing the state of the 
α particle passing through the barrier is called a fading wave, which decreases 
exponentially (Figure 3.11). 

In the general case, to describe the mechanism of tunnel effect emission, the 
potential of the daughter nucleus is modeled as shown in Figure 3.11. 

For r < a, the potential is attractive and is equal to − U0: the attractive forces are 
nuclear. For r > a, the potential is repulsive and at 

r
eZkrU

2)2(2
)(

−=   [3.62] 
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Figure 3.11. Modeling of α emission by tunnel effect. The  
barrier width is equal to (b – a), b >> a (not to scale) 

The value of the radius, b, is defined by the condition U (b) = Eα. That is, using 
[3.62]: 

α
α E

eZkb
b

eZkE
22 )2(2)2(2 −=

−=   [3.63] 

Numerically, the specific case of radium-226 decay (Eα ≈ 4.8 MeV) gives: 

19
9

6

2(88 2) 1.602 10
= 9 10 = 51.66

4.8 10

× ×
×

×
b

−−
fm  [3.64] 

Comparing [3.60] and [3.64] gives a ratio b/a = 51.66/8.41 = 6.14. The width of 
the barrier (b − a) ≈ 5a (in Figure 3.11, this width is not respected).  

3.3.7. Estimating the radioactive half-life, Gamow factor 

To estimate the radioactive half-life, as a first approximation it is considered that 
the λ decay constant is the product of the frequency, f, at which the α particle strikes 
the barrier by the probability, P, with which it crosses the barrier by tunnel effect. 
That is: 

λ = f × P  [3.65] 

  

 

U (r) 

− U0 

r

wave function describing 
the state of the α particle 

B 

0 a b

tunnel effect emission  

Eα 
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To estimate the frequency, f, let us consider an α particle of kinetic energy  
Ecα = Eα passing across the nucleus of radius R. We thus obtain (one can note that 
for a uniform circular motion, the frequency f = v/2πr): 

2
;

2

v E
f v

R m
α α

α
α

= = fm  [3.66] 

Furthermore, the tunnel effect decreases exponentially, as indicated by the fading 
wave shape in the barrier shown in Figure 3.10. Within the framework of the 
Gamow–Gurney–Condon, the probability, P, is given by the relationship: 

P = e − G  [3.67] 

In relationship [3.67], G is called “Gamow factor”, equal to: 

( )2
2 ( )

b

a
G m U r E drα α= −   [3.68]   

It now remains to determine the Gamow factor, G, by integrating equation [3.68]. 
The calculations are long and drawn out. We will limit ourselves to giving the 
expression of G, allowing the half-life time, T, to be estimated using the Gamow 
formula. We then find, approximately, for a heavy nucleus of radius R [LES 10,  
FOO 12]:  

213.47 10

3.96
exp 2.97

× ×
E

f
R

ZP Za
E

α

α


≈


   ≈ −   

  [3.69] 

In approximated expressions [3.69], Z is the atomic number of the daughter 
nucleus, Eα is expressed in MeV and a and R are expressed in Fermi. Generally, for 
an α emitting nucleus of mass number A, a ≈ 1.27 × A1/3 and R ≈ 1.1 × A1/3. 
Expressions [3.69] are then written in the form: 

21
1/3

1/3

3.47 10
1.1

3.96
exp 2.97 1.27

× ×
×

× ×

E
f

A

ZP Z A
E

α

α


≈


   ≈ −   

  [3.70] 
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By comparing the expression of probability [3.70] and relationship [3.67], we 
obtain: 

1/33.96
2.97 1.27× ×

ZG Z A
Eα

 
≈ − 
 

  [3.71]  

For example, let us estimate the decay half-life of radium-226 using [3.65] and 
then compare the result with the experimental value, T = 1,600 years.  

For radium-226, the precise value of the kinetic energy, Eα = 4.87 MeV [LES 10, 
FOO 12]. The daughter nucleus is the radon with atomic number Z = 86. Using 
[3.73], we obtain: 

1/33.96 86
2.97 86 1.27 226 = 77.72

4.87

×
× ×G  ≈ −  

  [3.72] 

The numerical value of the probability, P, is then, according to [3.67]: 

77.72 34= = 1.76 ×10P e− −   [3.73]   

Using the first relationship [3.70], the frequency, f, has the numerical value: 

21 21
1/3

4.87
3.47 10 = 1.14 10

1.1 226
× × ×

×
f ≈ s−1 [3.74] 

Result [3.74] shows that in the Gamow quantum model, the α particle strikes the 
walls of the Coulomb barrier approximately 1021 times per second. The λ decay 
constant [3.6] is then equal to: 

λ = 1.76 × 10−34 × 1.14 × 1021 = 2.0 × 10−13 s−1   [3.75] 

Result [3.75] is already very different from the experimental value, 1.37 × 10−11 s−1 
[LES 10]. This is due to the different approximations adopted to determine the 
frequency, f, at which the α particle strikes the barrier and the probability, P, with 
which it crosses the barrier by tunnel effect. 

Using [3.75], the radioactive half-life of radium-226 is then: 

T = ln2/λ = 3.47 × 1013 s = 109,822 years   [3.76] 
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The value [3.76] of the decay half-life estimated based on the Gamow theory is 
about 69 times greater than the experimental value, T = 1,600 years. The estimation 
of the radioactive half-life by the Gamow model is therefore poor. 

George Gamow was an American-Russian physicist and cosmologist. In nuclear physics, 
in 1928 he developed, independently of British physicist Ronald Wilfred (or Wilfrid) Gurney 
and American physicist Edward Uhler Condon, the quantum theory of α emission by tunnel 
effect, thus allowing the radioactive half-life of an α emitter to be estimated. This theory 
helped in the understanding of Geiger–Nuttall’s observation of 1911. In addition, Gamow 
established, together with American-Hungarian physicist Edward Teller (Box 4.2), what are 
known as the Gamow–Teller selection rules, governing permitted and prohibited transitions  
β (see section 3.4.4). 

Box 3.5. Gamow (1906–1968); Gurney (1898–1953); Condon (1902–1974)   

NOTE.– Cluster emission. 

Exotic radioactivity is a process of decay of atomic nuclei with emission of 
clusters such as 12C and 14C. We can cite the case of uranium-238, whose decay can 
occur with emission of 12C and 14C according to the equations: 

238 226 12
92 86 6U Rn C→ +   [3.77] 

CRnU 14
6

224
86

238
92 +→   [3.78] 

Generally speaking, the decay of atomic nuclei with cluster emission is highly 
unlikely for at least the following two reasons. 

1) Let m be the mass of the particle (α or clusters) emitted by tunnel effect. 
Considering equation [3.68], we obtain: 

G mρ=    [3.79] 

with: 

( )drErU
b

a −= αρ )(2
2


 

The probability, P, of tunnel effect emission is then written, according to [3.67]: 

meP ρ−=   [3.80] 
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Equation [3.80] shows that the probability P of tunnel effect emission depends 
on the mass of the emitted particle and decreases sharply with it. For the α particle, 
this probability of the order of 10−34 [3.73] is already very low. It follows that for 
heavier clusters, the probability of tunnel effect emission is extremely low. 

2) As shown in equation [3.59], the height of the Coulomb barrier increases with 
the atomic number, z, of the emitted particle (z = 2 for the α particle): 

2( 2)z Z eB k
a
−=   [3.81] 

Radius b is then written, according to [3.63]: 

αE
eZzkb

2)2( −=   [3.82] 

Thus, as the atomic number z of the emitted particle increases, the height of the 
potential barrier [3.81] and the width (b – a) of the barrier increase. Since the 
probability, P, decreases strongly with the mass of the emitted particle, the result is 
that the fading wave (Figure 3.11) disappears before the particle crosses the barrier 
by tunnel effect. 

In conclusion, exotic radioactivity with cluster emission is highly improbable. 

3.4. Exercises 

EXERCISE 3.1.– Experimental determination of the half-life of an α emitter. 

In this exercise we propose to determine the half-life of an α emitter 
experimentally. Experimental measurements are made using a Geiger–Müller counter 
(its principle is explained in Chapter 4, section 4.1.1).  

We have a sample of mass m0 containing N0 α radioactive nuclei. Measurements 
made using a Geiger–Müller counter resulted in Table 3.4 being drawn up. 

t (h) 0 3 4 5 7 9 11 15 20 

N(t)/N0 1 0.740 0.680 0.612 0.506 0.414 0.343 0.230 0.140 

Table 3.4. Variation as a function of time in the ratio of the number, N(t),  
of non-disintegrated nuclei to the initial number, N0, of nuclei of an α emitter 
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a) Propose a methodology for determining the probability per unit time of decay 
of the radionuclide studied. 

b) Making use of the experimental data presented in Table 3.4, determine the 
probability per unit time of decay of the radionuclide studied. Deduce its half-life 
from this. 

c) Deduce, from the plotted experimental curve, the activity of the α emitter 
studied at date t = 14 h if we initially have 2 moles of nuclei. 

Given datum: NA = 6.02 × 1023 mol−1. 

EXERCISE 3.2.– Decay of an α emitting parent nucleus. 

Let us study the decay of a A
Z X nucleus α emitter to be identified. 

Given data:  

– nuclear masses of nuclides X; 

Nuclide   

MX (u) 4.002603 229.031762 233.039635 235.0439299 

Table 3.5. Atomic masses of several nuclides 

– electron mass: 0.00055 u; 

– atomic mass unit: 1 u = 931.5 MeV/c 2;  

– J of the ground state; 233U: 5/2+; 229Th: 5/2+. 

a) Identify the α emitter simply by reading Table 3.5, considering that 
thorium-229 is the daughter nucleus. The conservation law used will be specified. 

b) Calculate, in MeV, the energy released during the decay of the α emitter. 

c) Calculate kinetic energies Ecα of the α particle and EcTh of thorium, 
assuming the α emitter to be initially immobile. 

d) Analysis of the nuclear radiation reveals the existence of a γ radiation and 
that the spectrum of emitted α particles has a fine structure. Of particular note are 
two groups of α particles of kinetic energies, Ecα1 =  4.1 MeV and Ecα2 = 4.7 MeV.   

e) Is a 5/2+ → 5/2+ nuclear transition observed? Substantiate the answer. 

 

He4
2 Th229

90 U233
92 U235

92
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f) Then map out the energy diagram of the α decay studied. It will include the 
various nuclear transitions observed and, in MeV, the kinetic energies measured as 
well as the energies of the nuclear levels of the parent nucleus and the daughter 
nucleus. 

g) Determine the energies of the gamma photons emitted. 

EXERCISE 3.3.– Nuclear power produced by the decay of plutonium-239. 

Plutonium, with atomic number 94, is α radioactive. Little of it exists in its 
natural state. It does, however, form in the core of nuclear reactors by a chain 
reaction [4.99] when a uranium-238 nucleus captures a neutron. We proposed  
to determine the nuclear power produced by the decay of one kilogram of 
plutonium-239. 

Given data: 

– atomic masses: Mα = 4.0026032 u; MU = 235.0439299 u;  

– MPu = 239.0521634 u; 

– radioactive half-life of plutonium-239: T = 24,410 years. 

We will only consider the nuclear transition between the fundamental levels of 
plutonium and the daughter nucleus. 

a) Calculate the kinetic energies of the particles produced by the decay of 
plutonium-239. 

b) Let N0 be the initial number contained in a sample of 1 kg of plutonium-239. 
Show that the activity, A (t), of 239Pu is almost equal to its initial activity, A0. 

c) Then express the nuclear power produced by the decay of 239Pu as a function 
of N0, MPu, Mu, Mα and T. Perform the numerical application. 

3.5. Solutions to exercises 

SOLUTION 3.1.– Experimental determination of the half-life of an α emitter. 

a) Methodology 

The exponential decay law of the number, N(t), of radioactive nuclei is written: 

N(t) = N0 e− λt  − ln [N(t)/N0 ] = λt  [3.83] 
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According to [3.83], the curve − ln [N(t)/N0 ] = f (t) is a slope line, λ. By plotting 
this curve, the probability per unit time of λ decay is determined experimentally.  

b) Probability per unit time of decay, half-life 

Considering Table 3.4, we obtain:  

t (h) 0 3 4 5 7 9 11 15 20 

− ln [N(t)/N0] 0 0.30 0.39 0.49 0.68 0.88 1.07 1.47 1.97 

Table 3.6. Variation as a function of time of the opposite of the Napierian  
logarithm in the ratio of the number, N(t), of non-disintegrated  

nuclei to the initial number, N0, of nuclei of an α emitter 

The resulting curve is shown in Figure 3.12. 

 

Figure 3.12. Curve of variation as a function of time of the opposite of the  
Napierian logarithm in the ratio of the number, N(t), of non-disintegrated  

nuclei to the initial number, N0, of nuclei of an α emitter  

Let us write y = − ln [N(t)/N0]. Graphically, the slope a of the line given by the 
last relationship [3.83] is equal to: 
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The probability per unit time of decay and the half-life of the α emitter studied 
are equal to: 

λ = 0.09756 h −1 = 2.7 × 10−5 s−1; T = ln2/λ = 7.1 h. 

c) Activity  

– Usage of the experimental curve 

Let N14 be the number of nuclei remaining at instant t = 14 hrs. Graphically: 

– ln [N14 /N0] = 1.39  N14 = N0e−1.39  [3.85] 

The activity, A14, of the α emitter studied is then equal to: 

A14 = λN14 = λN0e−1.39 = 2λNAe−1.39  [3.86] 

Numerically: 

A14 = 2 × 2.7 × 10−5 × 6.02 × 1023 × e−1.39= 8.10 × 1019 Bq [3.87] 

– Using the law of decay of activity 

Activity A (t) varies according to the law of exponential decay: 

– A (t) = A0 e −λt = 2λNA e −λt [3.88] 

Numerically: 

A14 = 2 × 2.7 × 10−5 × 6.02 × 1023 e− 0.09756 ×14 = 8.29 × 1018 Bq  

SOLUTION 3.2.– Decay of an α emitting parent nucleus 

a) Identification of the α emitter 

Thorium-229 is the daughter nucleus. Under the law of conservation of mass 
number, we obtain, for the parent nucleus: A = 229 + 4 = 233: the parent nucleus is 
uranium-233. 

b) Calculation of released energy 

The energy released during α decay of uranium-233 is given by the relationship: 

Qα = Δmc2 = [mU − (mTh + mα)]c2 [3.89a] 
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By subtracting the mass of Z electrons from the atomic masses recorded in  
Table 3.5, we obtain: 

Qα = [232.9889 − (228.9821 + 4.0015)] × 931.5 = 4.937 MeV  [3.89b] 

c) Calculation of kinetic energies 

By definition: 

Qα = Ecα + EcTh + Eγ  [3.90a] 

For a direct transition from the ground state of  233U to the ground state of  229Th, 
we obtain: 

Qα = Ecα + EcTh + Eγ  [3.90b] 

Under the momentum conservation law, we obtain: 

α
α

c
Th

crY E
m
mE =

  [3.90c]  

Using [3.90a] and [3.90c], after arrangement we find: 

Th
c

Th

m
E Q

m mα α
α

=
+

   Ecα = 4.852 MeV  [3.91]  

For thorium, we obtain, according to [3.90c]: 

EcTh = 0.085 MeV  [3.92]  

d) Analysis of nuclear radiation 

5/2+ → 5/2+ nuclear transition  

5/2+ → 5/2+ transition occurs without γ photon emission. In this case, the 
particles resulting from the decay of uranium-233 have a kinetic energy equal to 
4.852 MeV [3.91]. However, the spectral analysis reveals the presence of only two 
groups of α particles of kinetic energies: 

Ecα1 =  4.1 MeV; Ecα2 = 4.7 MeV  [3.93] 

The 5/2+ → 5/2+ nuclear transition is therefore not observed. 
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e) Energies of the gamma photons emitted 

For a group of particles (i) of kinetic energy EcαI, we obtain, according to 
[3.90b]: 

Eγi = Qα − (Ecαi + EcThi)  [3.94] 

Using [3.90c], we obtain: 

EcTh1 = (4.0015/228.9821) × 4.1 = 0.072 MeV  [3.95a] 

EcTh1 = (4.0015/228.9821) × 4.7 = 0.082 MeV  [3.95b] 

Considering [3.89], [3.93] and [3.94], the gamma photon energy is equal to: 

Eγ1 = 4.937 − (4.1 + 0.072) = 0.765 MeV [3.96a] 

Eγ2 = 4.937 − (4.7 + 0.082) = 0.155 MeV [3.96b] 

f) Mapping of the decay energy diagram 

The mapping of the uranium-233 α decay energy diagram is shown in  
Figure 3.13. 

 

Figure 3.13. Uranium-233 α decay energy diagram 

SOLUTION 3.3.– Nuclear power produced by the decay of 239Pu. 

a) Calculation of kinetic energies 

The particles produced by the decay of plutonium-239 are the α particles and the 
daughter nucleus. The transition occurs without photon emission. The decay energy, 
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Qα, is then equal to (the mass of Z electrons will be subtracted from the atomic 
masses used): 

Qα = [mPu − (mU + mα)]c2 = 5.248 MeV  [3.97] 

Moreover, according to [3.90c] and [3.91]: 
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  [3.98]  

Using [3.97], we obtain, according to [3.98]: 

Ecα = (234.9933299/238.9948299) × 5.248 = 5.160 MeV  [3.99a] 

EcU = (4.0015/238.9948299) × 5.248 = 0.088 MeV  [3.99b] 

b) Activity of plutonium-239  

The radioactive half-time, T = 24,410 years (= 7.7 × 1011 s) of plutonium-239 is 
long enough to consider its activity A(t) virtually constant and equal to its initial 
activity, A0. 

c) Expression of nuclear power 

The energy released by the decay of a 239Pu nucleus is given by the relationship 
[3.97]. A mass m of plutonium contains N0 = (m × NA)/M nuclei. The decay number 
per second is equal to A0 = λN0. Each decay produces an energy Qα. The nuclear 
power produced by the decay of a mass, m, of 239Pu is therefore equal to (M: molar 
mass in g ⋅ mol−1, therefore the mass, m, is expressed in g, i.e. m = 1,000 g): 

M
Nm

T
Q

QNQAP A×
×=== α

αα λ 2ln00   [3.100]  

NOTE.– 

6 19 23
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Beta Radioactivity,  
Radioactive Family Tree 

Overall objective 

To know the general properties of β− and β+ radioactivities,  
electron capture and radioactive family trees 

Specific objectives 
To know the experimental facts that led 
to the discovery of  the positron To define the β decay energy 

To know the experimental facts that led 
to the discovery of artificial radioactivity 

To explain the difference between the spectra of 
β, − and β+ emissions 

To describe the experiment of Frédéric 
and Irène Joliot-Curie that led to the 
discovery of artificial radioactivity 

To determine the maximum energy,  Emax, of the 
β spectrum 

To describe the experiment of Frédéric 
and Irène Joliot-Curie that led to the 
identification of radiophosphorous-30 

To know Sargent’s law 

To describe the Geiger-Müller counter To interpret the Sargent diagram 

To know the principle of a Geiger-Müller 
counter 

To distinguish between the Gamow-Teller rules 
and the Fermi rules governing β transitions 

To know the origin of the Townsend 
avalanche To define the β decay energy diagram 

To differentiate between the β − and β + 
decay equations 

To know the condition of the β − emission 

To make the link between the Segrè 
diagram and β − or β + 

To know the condition of the β+ emission 

                                 

For a color version of all of the figures in this chapter, see www.iste.co.uk/sakho/nuclear1.zip. 

Nuclear Physics 1: Nuclear Deexcitations, Spontaneous Nuclear Reactions
First Edition. Ibrahima Sakho. 
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To define electron capture 
To use the Bateman equations to establish the 
law of accumulation of a daughter product 

To define double β decay [ββ (2ν)] 
To define a radioactive or secular equilibrium or 
a state equilibrium 

To know the correspondence between 
Siegbahn notation and that of the IUPAC 

To know the experimental facts that led to the 
conducting of the nuclear transmutation reaction 

To use the classification of energy levels 
and X-rays in Siegbahn notation 

To write the general equation for nuclear 
transmutation, X (a, b) Y 

To express the energy of the X-photon 
emitted from a given electronic shell 

To define the production rate of a radionuclide 

To illustrate Auger deexcitation 
schematically 

To define the production yield of a radionuclide 

To schematically illustrate  
X-deexcitation 

To know the unit of the yield of a nuclear 
reaction 

To define a radioactive series or family 
tree 

To make the analogy between the time constant 
of a circuit (R, C) and the “nuclear time 
constant” 

To write the decay chain of a given 
family tree 

To know the four radioactive families 

To define the simple family tree To know the three natural radioactive families 

To establish the law of accumulation of 
the daughter product 

To know the characteristics relative to each 
radioactive family 

To define the Bateman equations  

Prerequisites 
Radioactive decay law Angular momenta and parity of a system 

Angular momentum and parity 
conservation laws 

Nuclear deexcitation 

Properties of a relativistic particle  

4.1. Beta radioactivity  

4.1.1. Experiment of Frédéric and Irène Joliot-Curie: discovery of 
artificial radioactivity  

As stated in section 3.1.3, the β-radioactivity mode consists of the β− decay mode 
(negative electron) and the β+ decay mode (positive electron or positron). The 
experiment of Frédéric and Irène Joliot-Curie carried out in 1934 allowed the 
discovery of artificial radioactivity [PER 82, BIM 06, SAK 16]. This discovery 
made it possible to highlight β+ radiation, similar to β − radiation. 
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In studying the effects of α radiation on matter, in 1934, Frédéric and Irène 
Joliot-Curie found that an inactive boron, aluminum or magnesium foil becomes 
radioactive when placed in front of a polonium source emitting α particles. Moving 
away from the polonium source, they noted that the radioactivity from the activated 
foil persisted with a β+-positron emission. The number of β+ particles emitted 
decreased exponentially with time when the source was far away. Each of the foils 
of activated B, Al, or Mg had a different radioactive half-life. This proves that the 
observed radioactive decays are not due to a nucleus common to B, Al and Mg.  
In the case of activated aluminum, for example, the Joliots implemented chemical 
processes to identify the new β+ emitting element. The experimental set-up used by 
the Joliot couple is schematically presented in Figure 4.1a. 

The set-up consists of a chamber filled with gaseous carbon dioxide in which a 
source of polonium-210 (210Po) emitting α particles is placed. A valve (not shown) 
connects the chamber to the gas pump. For sufficient gas pressure, the α particles 
can be stopped before reaching the target consisting of an aluminum foil, Al. The 
detection of particles that may be emitted following irradiation of the aluminum foil 
by α particles is carried out by means of a Geiger-Müller counter coupled to an 
amplifier and a numerator. 

Figure 4.1a. Experimental set-up of Frédéric and Irène  
Joliot-Curie that led to the discovery of artificial radioactivity  

On January 11, 1934, Frédéric Joliot, alone in the nuclear physics laboratory of 
Orsay, powered up the Geiger-Müller counter. In this state, the counter only 
detected background noise due to cosmic radiation and ambient radioactivity. 
Frédéric then operated the valve so as to empty the chamber. This allowed the  
α particles to bombard the aluminum foil. He then noted that the counter recorded 
an increase in the number of pulses. He thus determined the number of strokes per 
minute corresponding to the maximum energy of the α particles. Subsequently, he 
filled the chamber with carbon dioxide under sufficient pressure to stop the  
α particles. He then observed that the counter continued to record pulses and that the 
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number of strokes per minute determined using the numerator decreased according 
to an exponential decay law. To interpret this surprising observation, Frédéric Joliot 
hypothesized that the aluminum foil had become radioactive under irradiation by  
α particles: the aluminum was activated. 

Intuitively, Frédéric Joliot simplified the experimental set-up by placing the 
source of polonium directly in contact with the aluminum foil for several minutes. 
He then placed the activated sheet in contact with the counter. Minute by minute, 
Frédéric noted, with the help of the numerator, the radioactivity decay that he had 
just highlighted. This decay follows the empirical law of Rutherford and Soddy with 
a half-life of 3 min 15 sec: he had just discovered artificial radioactivity.  

Back in 1933, the Joliots had already used an intense source of polonium to 
bombard an aluminum foil. They identified the particles from aluminum irradiated 
to be β+ particles thanks to the curvature of their traces through a Wilson chamber. 
Thus, Frédéric knew that the pulses recorded by the Geiger-Müller counter were due 
to the β+ particles passing through the detector. But an enigma remained following 
Frédéric’s experimental observations of 1934: what was the chemical nature of the 
radioelement responsible for the observed radioactivity? 

To identify the radionuclide responsible for β+ emission, Frédéric and Irène 
Joliot-Curie developed a chemical process. They then placed the activated aluminum 
foil in a solution of hydrochloric acid (H3O

+ Cl−). The chemical reaction occurring 
led to the formation of dihydrogen mixed with traces of hydrogen phosphide, H3P 
(Figure 4.1b).  

Figure 4.1b. Experimental set-up of Frédéric and Irène Joliot-Curie that  
led to the identification of radiophosphorous-30 by chemical means 
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The bombardment of aluminum by α particles therefore induced transmutation 
of aluminum into phosphorus according to the equation: 

4 27 1 30
2 13 0 15He Al n P+ → +   [4.1] 

The phosphorus-30 thus created is β+ radioactive and decays according to the 
equation: 

30 30 0
15 14 1P Si e ν→ + +   [4.2] 

NOTE.– Principle of a Geiger-Müller counter.  

The Geiger-Müller counter is a capacitor whose plates consist of a detector tube 
(T) filled with gas (He, Ne, Ar, etc.) under low pressure and a metal wire (W). The 
cylindrical tube acts as a cathode and the wire plays the role of an anode. The 
capacitor thus constituted is assembled in series with a generator (G) and an ohmic 
conductor of resistance R. The generator imposes a voltage UFT of the order of 1 kV. 
The voltage at the terminals of the ohmic conductor is applied to a pulse counter 
(Figure 4.2a). 

 

Figure 4.2a. Description of a Geiger-Müller counter 

The inlet face of the tube (the one that is directed toward the point where the 
measurement is to be made) is closed by a lightweight material (generally mica leaf, 
or silicon or beryllium), permeable to ionizing radiation. The principle of measuring 
using a Geiger-Müller counter is shown in Figure 4.2b.  
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Figure 4.2b. Measuring principle using a Geiger-Müller  
counter. Source: https://fr.qwe.wiki/wiki/Geiger_counter 

When no ionizing particle interacts with the gas contained in the tube, the 
capacitor behaves like an insulator and no electrical current is detected in the circuit 
formed. When ionizing radiation (α, β or γ) passes through the tube, electrons and 
ions appear, which are then accelerated by the voltage UFT.  

The electrons multiply very quickly in the gas by electron avalanche, known as 
“Townsend avalanche”. This induces cascading ionization in the gas and discharge 
of the capacitor through the ohmic conductor. The discharge current thus creates, at 
the terminals of the ohmic conductor, an electrical voltage pulse sent to the pulse 
counter (Figure 4.2b). This allows detection of the presence of ionizing radiation in 
the Geiger-Müller counter’s surroundings. In the first counters, the pulse is sent to a 
loudspeaker. A “click” sound is then obtained. These pulses are then shaped by the 
electronics used, and can then be counted. The result obtained is either converted to 
sound, or displayed by a galvanometer or a digital display, or both (Figure 4.2b). 

Jean Frédéric Joliot, known as Frédéric Joliot-Curie was a French physicist and chemist. 
His wife Irène Joliot-Curie was also a French physicist and chemist. This couple stand out 
particularly for their discovery of artificial radioactivity in 1934. They were winners of the 
Nobel Prize in Chemistry 1935 in recognition of this discovery. Unfortunately, Irène died of 
acute leukemia caused by multiple exposure to polonium and X-rays, the same disease that 
killed her mother, Marie Curie, in 1934 (Box 3.2).   
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Sir John Sealy Edward Townsend was a British physicist-mathematician. He conducted 
numerous works on the electrical conduction of gases. Thus in 1897, he discovered the 
phenomenon of electron avalanche in ionized gases, called Townsend avalanche in his honor. 

Box 4.1. Irène Joliot (1897–1956);  
Frédéric Joliot (1900–1958); Townsend (1868–1967) 

4.1.2. Balanced equation, β decay energy  

During β radioactivity, the mass number, A, does not vary. Thus, the parent 
nucleus and the daughter nucleus have the same mass number. It is therefore an 
isobaric transition during which the atomic number of the daughter nucleus 
increases (for β− mode) or decreases (for the β+ mode) by one unit relative to the 
atomic number, Z, of the parent nucleus. An electron and an electron antineutrino 
are emitted in the case of the β− mode, while a positron and an electron neutrino are 
emitted in the case of the β+ mode. The  β− and β+ decay equations are written, 
respectively: 

γν +++→ −+ e
0
0

0
1

A
1Z

A
Z eYX   [4.3a] 

0 0
1 1 0

A A
Z Z eX Y e ν γ−→ + + +   [4.3b] 

As shown in the Segrè diagram (Figure 1.18), β−  decay concerns unstable nuclei 
located above the nuclear energy surface grouping together stable nuclei for which  
Z = N. This radioactivity occurs for nuclei with excess neutrons. Thus, during β − 
decay, a neutron disintegrates into a proton, an electron and an electron antineutrino: 

01 1 0
00 1 1 en H e ν−→ + +   [4.4] 

Equation [4.4] is often simplified as indicated in the first equation [3.4], which 
we recall here: 

eepn ν++→ −
  

Reaction [4.4] corresponds to the free neutron decay reaction with a period of 
925 sec. In the nucleus, the stability of the neutron is ensured by attractive nuclear 
forces. As explained in section 3.1.4, the neutron decays by weak interaction  
(Figure 3.3). The transformation of neutron to proton is interpreted by the decay of 
the W − boson  into an electron and into an electron antineutrino. 
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β+ decay, by contrast, concerns unstable nuclei located below the surface of 
nuclear energy. It occurs for nuclei with excessive protons. Unlike β − radioactivity, 
which concerns natural radionuclides, β+ radioactivity is observed almost only for 
artificial radionuclides. In this decay mode, a proton decays into a neutron, a 
positron and an electron neutrino according to the second simplified equation [3.4] 
as recalled here: 

eenp ν++→ +
  

Similarly, as Figure 3.4 shows, the proton decays by weak interaction. The 
transformation of proton to neutron is interpreted by the decay of the W+  boson into 
a positron and into an electron neutrino.  

Unlike the unstable free neutron, the lifetime of the free proton is estimated at 
1032 years compared to the lifetime of the free neutron, equaling 925 sec. The proton 
is absolutely stable. 

Let us now give examples of β decay. Sodium-24 and krypton-91 are β−  
emitters, while iron-53 and molybdenum-91 are β+ emitters. Decay equations are 
written (specific cases of isobaric transitions without photon emission): 

– for β − decay: 

024 24 0
011 12 1 eNa Mg e ν−→ + +   [4.5a] 

091 91 0
036 37 1 eKr Rb e ν−→ + +   [4.5b] 

– for β+ decay: 

53 53 0 0
26 25 1 0 eFe Mn e ν→ + +   [4.6a] 

e
0
0

0
1

91
41

91
42 eNbMo ν++→   [4.6b] 

The daughter nuclei then formed are magnesium(Mg)-24, rubidium(Rb)-91, 
manganese(Mn)-53, and niobium(Nb)-91. 

Table 4.1 shows several (β, γ) emitters. The radioactive half-life, or half-life 
period, T, is indicated for each radionuclide. Some of these (marked with asterisks) 
exhibit double or triple decay. 
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(β −, γ) emitter (β+, γ) emitter 
Z Nucleus Half-life T Z Nucleus Half-life T 
3 8Li 840.3 ms 6 11C 20.334 min 

6 14C 5,730 years 9 18F 109.771 min 

15 32P 14.263 days 11 22Na 2.6027 years 

19 40K* 1.248 × 109 years 12 23Mg 11.317 sec 

23 52V 3.743 min 14 27Si 4.16 sec 

27 60Co 5.2713 years 20 39Ca 859.6 ms 

53 131I 8.02 days 27 53Co 242 ms 

55 137Cs 30.1671 years 35 80Br** 17.68 min 

* 40K: β − (88.8%); β + (0.001%); EC (11.2%). 

** 80Br: β − (91.7%); β + (8.3%). 

Table 4.1. Several (β,γ) emitters. The (β+,γ) emitters are all artificial 

As in the case of α radioactivity, the energy released during β decay, also called 
β decay energy, noted Qβ, is equal to the sum of the kinetic energies of the β particle 
and of the recoiled daughter nucleus and the quantum energies of the γ photon and 
the neutrino or the antineutrino. Let us use Eµ to designate the energy of the neutrino 
or antineutrino. We obtain: 

Qβ  = Ecβ  + Ecr (Y) + Eγ  + Eµ  [4.7] 

Analogously to [3.35], the relationship for calculating β decay energy is written 
(the β − and β+ particles have the same mass, noted mβ): 

 Qβ  = [mX
  − (mY

 + mβ)]c2
  [4.8] 

The mass loss during β decay is then written according to [4.8]: 

Δm  = [mX
  − (mY

 + mβ)]   [4.9] 

APPLICATION 4.1.– Francium (Fr) with atomic number 87 has 23 isotopes, the most 
well-known of which is isotope-223 with a radioactive half-life of 22 min. Almost 
all 223Fr nuclides undergo β − decay. Some of these nuclides can undergo α decay. 
Write the β −  and α decay equations for francium-223, taking into account the 
emission of photons. Calculate the probability per unit time for a nucleus of 
francium-223 to decay. 
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ANSWER.– The respective β − and α decay equations for francium-223 are written: 

0223 223 0
087 88 1 eFr Ra e ν γ−→ + + +   [4.10a] 

γ++→ HeAtFr 4
2

219
85

223
87   [4.10b] 

The probability per unit time for a nucleus of francium-223 to decay corresponds 
to its λ decay constant. I.e.  

λ = ln2/T = 5.25 × 10 −4 s −1  [4.10c] 

APPLICATION 4.2.– Calculate the decay energy of radiosodium-24. 

Given data: 

– mass of nucleus 24Na: 23.98422254 u; 

– mass of nucleus 24Mg: 23.9784568 u; 

– mass of β particle: 5.486 × 10 −4 u;   

– 1 u = 931.5 MeV. 

ANSWER.– Using [4.8], we obtain: 

Qβ  = [mNa
  − (mMg

 + mβ)]c2
  [4.11] 

Numerically this gives: 

Qβ  = 0.00521714 u = 4.86 MeV    

4.1.3. Continuous β emission spectrum 

Unlike the α emission spectrum, which is often discrete (Figure 3.9), the  
β emission spectrum is continuous. Experimentally, the absorption curve of a β-ray 
decreases exponentially when the thickness of the absorbent increases. It is then 
canceled out when the thickness of the absorbent is equal to the maximum course of 
the β-rays in the matter that is passed through. As stated in section 3.1.5, β particles 
can pass through 7 mm of aluminum before being stopped. In 1914, Chadwick  
(Box 1.6) and other researchers showed for the first time that the β emission 
spectrum is continuous. Figures 4.3 and 4.4 show the β− emission spectrum of 
phosphorus-32 (Figure 4.3) and the β+ emission spectrum of phosphorus-30  
(Figure 4.4). The two spectra, although continuous, present a slight difference.  
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Figure 4.3. β−  emission spectrum of phosphorus-32 

For β − emission, the number of particles emitted is not zero when the total 
energy, E, is zero. It all occurs as if, during β − emission, certain electrons emitted 
have just enough energy to leave the nucleus without being able to move away from 
it because of the Coulomb attraction. They thus remain trapped in the electric field 
of the nucleus for E = 0. When E > 0, those with sufficient kinetic energy can 
overcome the Coulomb attraction. They thus move away from the nucleus after 
emission. Then, the number of β− particles emitted increases until it reaches a peak 
and then decreases exponentially. The curve is canceled out when the energy, E, of 
the β− spectrum is equal to Emax. By definition, Emax is called maximum energy  
of the β spectrum, or extreme energy of the β spectrum. For phosphorus-32,  
Emax = 1.71 MeV (Figure 4.3). 

By contrast, for β+ emission, there is no positron emitted with zero energy. Since 
these particles are positive, they easily move away from the nucleus after emission 
due to Coulomb repulsion. Subsequently, when E > 0, the number of β+ particles 
emitted increases until it reaches a peak and then decreases exponentially until it is 
canceled out when the energy, E, is equal to the extreme energy of the β spectrum. 
For phosphorus-30, Emax = 3.20 MeV (Figure 4.4). 
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Figure 4.4. β+
 emission spectrum of phosphorus-30  

Note that the β emission is accompanied by the emission of an electron 
antineutrino (case of β − emission) or an electron neutrino (case of β+ emission). If 
Eµ is used to designate the electron antineutrino or electron neutrino and Ecβ for the 
relativistic kinetic energy of the β particle, then: 

Emax = Ecβ + Eµ  [4.12] 

4.1.4. Sargent diagram, β transition selection rules 

Studying the β− emitters of the natural radioactive families of uranium (U), 
thorium (Th) and actinium (Ac), in 1933 Bernice Sargent established an empirical 
relationship between the λ decay constant and the extreme energy, Emax, of the  
β spectrum. This relationship, called Sargent’s law, is written: 

log λ = a  + b log Emax  [4.13] 

In Sargent’s law, a and b are empirically-determined constants. 

In its original form, the representation of empirical relationship [4.13] is known 
as the Sargent diagram. This diagram was established for natural β− emitters 
corresponding to radium (Ra), lead (Pb), bismuth (Bi), thallium (Tl), thorium (Th), 
Actinium (Ac), and protactinium (Pa). The Sargent diagram is shown in Figure 4.5 
for the few β −  emitters: 
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– RaB ( 214
82 Pb ), RaC ( Bi214

83 ), RaD (
Pb210

82 ), RaE ( 210
83 Bi ); 

– ThB ( 212
82 Pt ), ThC ( 212

83 Bi ), ThC′′ ( 208
81Tl ); 

– AcB ( Pt211
82 ), AcC′′ ( 207

81Tl ); 

– UX1 (
Th234

90 ), UX2 (
Pa234

91 );  

– MsTh2 ( Ac228
89 ) (MsTh2 : mesothorium-2). 

 

Figure 4.5. Sargent diagram in its original form according to [SAR 33] 

In Figure 4.5, we have reproduced the Sargent diagram, respecting the writing of 
nuclide symbols according to the old nucleus notations. These notations are often 
used in certain nuclear physics works, especially when quoting verbatim from old  
works on radioactivity. This is particularly the case with Sargent’s work [SAR 33]. 
It is important for the reader to be able to make the correspondence between the old 
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nucleus notations and their conventional notations. These correspondences are 
presented for all three natural radioactive families (see section 4.4). 

As shown in Figure 4.5, the Sargent diagram shows that the natural β− emitting 
nuclides are approximately distributed around two lines. For the same value of 
energy, Emax, the radioactive decay constants of the nuclides distributed on either 
side of the upper line are 100 to 1,000 times higher than the radioactive decay 
constants of the nuclides distributed on either side of the lower line. To explain this 
difference, Sargent suggested that the group of nuclides distributed around the upper 
line consists of nuclides of “permitted” β transitions, while the group of  nuclides 
distributed around the lower line consists of nuclides of “forbidden” β transitions. 

In β decay theory, the selection rules are determined from the transition 
probabilities dependent on the orbital angular momentum, L, and spin angular 
momentum, S, of the electron-neutrino pair.  

As we saw in sub-section 3.4.2, β decay is interpreted by a transformation of  
a nucleon from one species into another species according to equations [3.4]. 
Considering the Hamiltonian of the {transforming nucleon – electron-neutrino pair} 
system, we can thus differentiate two groups of β transition selection rules: the 
Gamow–Teller rules and the Fermi rules. 

Let iJ , ,fJ


 and πi, πf respectively, be the angular momenta and parities of the 

initial and end states of the β transition studied. Under the angular momentum and 
parity conservation law: 

i fJ J L S= + +
   

 ; L
fi )1(−= ππ   [4.14a] 

– the Gamow–Teller rules are used for the Hamiltonian expression when 
coupling the nucleon spin that is transformed with the electron-neutrino pair spin. 
These rules stipulate that electron-neutrino pairs are emitted with parallel spins 
corresponding to triplet states (S = 1); 

– not knowing the nucleon spin that is transformed in the Hamiltonian, the Fermi 
rules are used. These rules express the fact that the electron-neutrino pairs are 
emitted with antiparallel spins corresponding to singlet states (S = 0). 

The Gamow–Teller and Fermi rules governing permitted and forbidden β 
transitions can be summarized as follows: 

– Gamow–Teller rules 

ΔJ = 0, ± 1; πi = πf   [4.14b] 
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– Fermi rules 

ΔJ = 0; πi = πf   [4.14c] 

Thus,  

– if the orbital angular momentum L = 0, then β transitions are permitted. For  
S = 0 (singlet state), we then have ΔJ = 0; for S = 1 (triplet state), then ΔJ = ± 1;  

– if the orbital angular momentum L  ≠ 0, then β transitions are forbidden.  

Forbidden transitions are classified in terms of forbidden 1st-order transitions 
when L =1, 2nd-order for L = 2, and so on. 

Bernice Weldon Sargent was a Canadian physicist. He distinguished himself by his work 
in nuclear physics. He is especially famous for having established in 1932, in his doctoral 
thesis, the empirical relationship between the radioactive decay constants of radioisotopes 
emitting β − particles and the corresponding Napierian logarithms of their maximum energies 
of β − particles. This relationship and the corresponding curves are called Sargent’s law and 
the Sargent diagram, respectively, in his honor. 

Edward Teller was an American-Hungarian physicist. He distinguished himself by his 
many contributions to nuclear physics, molecular physics and spectroscopy. Gamow–Teller’s 
selection rules developed in collaboration with George Gamow (Box 3.5) attest to his 
valuable contribution to nuclear physics.  

Box 4.2. Sargent (1906–1993); Teller (1908–2003) 

4.1.5. Decay energy diagram 

As for α decay, the β decay energy diagram gives an overall mapping of the 
decay process of a β− or β+ emitting nucleus. It notably includes the level of the 
parent nucleus, the excited levels and the ground level of the daughter nucleus, the  
β transitions between the energy level of the parent nucleus and those of the 
daughter nucleus, and the γ decay transitions of the daughter nucleus. 

Figures 4.6 and 4.7 show the respective β− and β+ decay energy diagrams of 
cesium-137 (Figure 4.6) and sodium-22 (Figure 4.7). Note that sodium-22 can decay 
by electron capture toward the excited level of neon-22. We will come back to this 
in section 4.1.7. 
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Figure 4.6. β− decay energy diagram of cesium-137 (T = 32 years). The diagram 
shows a direct β0

− transition to the  3/2+ ground level of barium-137 without photon 
emission and a β1

− transition supplying the 11/2− excited level of barium-137. 11/2− → 
3/2+ deexcitation is accompanied by the emission of a photon of energy 0.66 MeV. 
The extreme energy of the β spectrum is equal to 0.52 MeV for the β1

− transition and 
1.18 MeV for the β0

− transition 

 

Figure 4.7. β+ decay energy diagram of sodium-22 (T = 2.58 years). The diagram 
shows a direct β0

− transition to the 0+ ground level of neon-22 without photon 
emission and a β1

− transition feeding the 2+ excited level of neon-22. The 2+ → 0+ 
deexcitation is accompanied by the emission of a 1.28 MeV energy photon. The 
extreme energy of the β spectrum is equal to 0.55 MeV for the β1

−transition and  
1.83 MeV for the β0

−
 transition. Note that an EC transition is observed between the  

3+ levels of sodium and the 2+ level of neon corresponding to an electron capture 
process (11%) 
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Ba137
56  
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 Na22
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Ne22
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APPLICATION 4.3.– Using the data in Figures 4.6 and 4.7, show that the energies of 
the emitted gamma photons are equal to 0.66 MeV (Figure 4.6) and 1.28 MeV 
(Figure 4.7), respectively. 

ANSWER.– Considering [4.7] and [4.12], the β decay energy is equal to: 

Qβ = Ecβ + Eµ + Eγ = Emax + Eγ  [4.15] 

According to [4.8]: 

Qβ0 = Qβ1 = [mX
  − (mY

 + mβ)]c2
  [4.16] 

– For cesium-137: 

Qβ0 = Emax0; Qβ1 = Emax1 + Eγ   [4.17] 

This then gives: 

Eγ  = Emax0 − Emax1 = 1.18 – 0.52 = 0.66 MeV 

– The same applies to sodium-22: 

Eγ  = Emax0 − Emax1 = 1.83 – 0.55 = 1.28 MeV 

4.1.6. Condition of β + emission 

Let us use the following designations: 

– mX and mY for the respective masses of the parent nucleus, X, and the daughter 
nucleus, Y; 

– MX and MY for the respective atomic masses of the X and Y elements; 

– m0 = mβ for the resting mass of the electron or positron. 

Using [4.8] and [4.12], we obtain: 

Qβ = [mX
  − (mY

 + m0)]c2 = Emax + Eγ   [4.18] 

This then gives: 

(mX
  − mY)c2 = m0c2  + Emax + Eγ   [4.19] 
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The mass of an atom, M (X), is less than the sum of the masses of the nucleus,  
m (X) and the Z electrons, Zm0. The difference is equal to the binding energy, W, of 
the system: 

W =  m (X) + Zm0 − M (X)  [4.20] 

Note that for a bound system, W > 0 and for an unbound system, W < 0. 

By overlooking the binding energy of the {nucleus-electrons} system, the mass 
of an atom is then equal to the sum of the masses of the Z-electrons and that of the 
nucleus. 

– For β − emission, the atomic numbers of the parent and daughter nucleus are Z 
and (Z + 1), respectively. We thus obtain: 

MX = mX + Zm0; MY = mY + (Z + 1)m0 = mY + Zm0 + m0   [4.21] 

The difference in atomic mass (MX − MY) is then written according to [4.21],  

(MX − MY)c2 = (mX − mY)c2 − m0c2
   

This then gives: 

(mX − mY)c2 = (MX − MY)c2 + m0c2
   [4.22] 

Equalizing [4.19] and [4.22] gives: 

(MX − MY)c2 + m0c2
 = m0c2  + Emax + Eγ   

That is, ultimately: 

(MX − MY)c2 = Emax + Eγ  > 0 [4.23] 

The result [4.23] reflects the β − emission condition: the mass difference between 
the atomic masses of the X (parent nucleus) and Y (daughter nucleus) elements must 
be positive. This is verified for the β− emitters. 

– For β+ emission, the atomic numbers of the parent and daughter nucleus are Z 
and (Z − 1), respectively. We thus obtain: 

MX = mX + Zm0; MY = mY + (Z − 1)m0 = mY + Zm0 − m0   [4.24] 
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The difference in atomic mass (MX − MY) is then written according to [4.24]:  

(MX − MY)c2 = (mX − mY)c2 + m0c2
   

This then gives: 

(mX − mY)c2 = (MX − MY)c2 − m0c2
   [4.25] 

Equalizing [4.19] and [4.25] gives: 

(MX − MY)c2 − m0c2
 = m0c2  + Emax + Eγ  

That is, ultimately: 

(MX − MY)c2 = 2m0c2  + Emax + Eγ   [4.26] 

Using [4.26], let us express the β+ emission condition: the mass difference 
between the atomic masses of the X (parent nucleus) and Y (daughter nucleus) 
elements must be strictly greater than twice the resting energy of the electron, i.e.: 

(MX − MY)c2 > 2m0c2  = 1.022 MeV   [4.27] 

Note that emission is impossible if (MX − MY)c2 = 2m0c2  since if Eγ can be zero 
in the case of decay without photon emission, the extreme energy, Emax, of the  
β spectrum is never zero.  

4.1.7. Decay by electron capture  

When the mass difference between neighboring isobars allows, in terms of 
energy, a nucleus with charge number Z can capture one of its internal electrons to 
transform into the neighboring isobar with charge number Z − 1, with emission of a 
ν neutrino. The phenomenon of electron capture generally occurs in the K-shell 
since, as it is the deepest, its electrons have the greatest probability of being captured 
by the nucleus. Electron capture is a phenomenon in competition with β+ decay.  

In the general case, the emission of X-photon by a multi-electron atom occurs as 
a result of an internal conversion phenomenon or as a result of an electron capture 
process, thus creating an electronic gap or a hole in one of the inner shells of the 
atom.  

From a chronological point of view, electron capture was first theorized by  
Gian-Carlo Wick in 1934. In this work, Wick drew on Fermi’s β decay theory. He 
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proposed a possible type of decay in addition to β+ radioactivity, notably calculating 
the probability of decaying by positron emission and electron capture. 

In 1937, Luis Alvarez discovered the electron capture of the K-shell by studying 
the radioactive decay of vanadium-48. In his experiment, vanadium-48 was 
produced by titanium bombardment by deuterons. Detection of the X-photons 
characteristic of titanium occurred using an aluminum foil.  

In the general case, during the electron capture process, a proton of the nucleus 
changes into a neutron, with the decay energy being carried away by the neutrino 
according to the equation: 

p + e − → n + ν   [4.28] 

Electronic capture is an isobaric transition with general equation: 

RXXeX e
A
1Z

A
Z ++→+ −

− ν   [4.29] 

The neutrino (electron neutrino) formed via reaction [4.29] has no interaction 
with the matter it passes through because it is neutral like the photon. Therefore, the 
detection of an electron capture process cannot occur directly from the 
characteristics of the neutrino emitted via [4.29]. Nevertheless, as we explained 
above, during an electron capture, the occupation of the K-shell hole by one of the 
L-, M-, N-, etc. electrons results from an electron rearrangement accompanied by the 
emission of characteristic X-photons. These easily detectable photons help to 
highlight the electron capture process. Note that the rearrangement of the electronic 
cloud may be accompanied by the emission of Auger electrons by a process called 
Auger effect (see section 4.19). As a result, electron capture is accompanied by a 
completion of X-photon and Auger electron emissions. 

Equation [2.163b] reflects cesium-131 decay by electron capture. Figure 4.8 
shows the decay energy diagram of sodium highlighting the competition between β + 

decay and electron capture.  

As noted at the beginning of this section, the phenomenon of electron capture 
generally occurs in the deepest K-shell. It follows that, the higher the number of  
Z-protons, the closer the electrons are to the nucleus, the greater the capture 
probabilities of their electron are. As a result, the β+ decay/electron capture ratio 
increases with atomic number Z. 
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Figure 4.8. Decay energy diagram of sodium-22 by  
electron capture (EC) and by β+ electron capture  

By overlooking the differences in binding energy between {nucleus  
(X)- electrons} and {nucleus (Y)- electrons} systems, the decay energy by electron 
capture, QEC, is written according to [4.29]: 

QEC = [MX – MY]c2 = Eν  + EX > 0  [4.30] 

Equation [4.30] expresses the electron capture condition. 

Using β+ emission condition [4.27], we obtain:  

MX > MY + 2m0  [4.31] 

Thus, according to [4.30] and [4.31], decay by electron capture is always 
possible when MX > MY. On the other hand, the competitive β+ decay process is only 
possible if MX > MY + 2m0. Therefore, an electron capture not accompanied by β+ 
emission may occur in the case of isobars of low mass difference (MX − MY). 

NOTE.– 

All of the known chemical elements in the universe were created from 
successive nuclear reactions at the heart of the stars. Today, it is recognized that all 
known elements are the result of a stellar explosion around 14 billion years ago, 
known as the Big Bang. This explosion marked the birth of the Universe.   

Practically speaking, all of the β+ emitters formed at the time of the Big Bang no 
longer meet in nature. Since their decay periods were relatively short, these emitters 
could not remain, except in trace states, in the atmosphere and the Earth’s crust. 
Today, the only β+ emitter existing in its natural state is potassium-40 (see  
exercise 4.6). 
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APPLICATION 4.4.– We will study the competition between β+ emission and electron 
capture. We will do this by considering the atomic masses of the following isobaric 
pairs: 

– 7Li: 7.01600455 u; 7Be: 7.01692983 u; 0.00093 u. 

– 11C :11.0114336 u; 11B: 11.0093054 u. 0.0021282 u.   

For each pair of isobars, specify the spontaneous transformation likely to occur. 
In each case, write the transformation equation (without γ emission) and determine, 
if applicable, the maximum energy of the spectrum of the emitted β particles. 

ANSWER.– Let us determine the differences in resting energies (MX − MY)c2 for each 
pair of isobars. 

– For 7Li and 7Be:  

(MBe – MLi)c2 = 0.00092528 × 931.5 = 0.862 MeV < 1.022 MeV    

(MBe – MLi)c2 < 1.022 MeV: β+ emission is impossible according to [3.105]. 
Only electronic capture  is possible in accordance with condition [4.30]. The decay 
equation is written, in this case: 

RXLieBe e
7
3

7
4 ++→+ − ν    [4.32a]  

– For 11C and 11 B:  

(MC – MB)c2 = 0.0021282 × 931.5 =  1.982 MeV > 1.022 MeV 

Note that (MC – MB)c2 > 1.022 MeV : β+ emission is therefore possible according 
to [4.27], accompanied by the competitive electron capture process. The β + decay 
and electron capture equations are written: 

e
0
1

11
5

11
6 eBC ν++→   [4.32b]   

RXBeC e
11
5

11
6 ++→+ − ν   [4.32c] 

The maximum β+ spectrum energy is given by equation [4.26]. We obtain: 

Emax = (MX − MY)c2 − 2m0c2  − Eγ   [4.32d] 
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Decay occurs without γ-photon emission. Giving: 

Emax = (MC − MB)c2 − 2m0c2   [4.32e] 

Numerically this gives: 

Emax = 1.982 − 1.022 = 0.96 MeV 

For information. The decay period of 7Be is T = 53.22 days and that of 11C is  
T = 20.334 min. Moreover, 11C decays by β+ emission for 99.79% and by electron 
capture for 0.21%.  

4.1.8. Double β decay, branching ratio 

Certain nuclides (T ~ 1019 years) can decay by simultaneous emission of two β − 
particles and two electron neutrinos. This rare natural radioactivity, noted [ββ (2ν)], 
is called double β decay. As an example, we can cite the specific cases of [ββ (2ν)] 
radioactivity of molybdenum 100 (T = 8.5 × 1018 years; daughter nucleus ruthenium 
(Ru)) and tellurium 130 (T = 7.9 × 1020 years; daughter nucleus xenon (Xe)) of the 
respective decay equations: 

100 100
42 44 e eMo Ru β β ν ν− −→ + + + +   [4.33a] 

130 130
52 54 e eTe Xe β β ν ν− −→ + + + +   [4.33b] 

As equations [4.33] show, double β decay requires the emission of two Dirac 
antineutrinos. Note that in the discussion on β radioactivity, the term “electron-
neutrino pair” is commonly used instead of “electron-antineutrino pair”. The word 
“neutrino” then refers to one or other of the forms of neutrino. In Majorana’s theory, 
for example, no distinction is made between neutrino and antineutrino (see note at 
the end of this section).  

It should be noted that certain nuclei may decay by simultaneous emission of β − 

and β+ (and/or electron capture). The most widely-studied cases are of copper-64 
(see exercise 4.10), potassium-40 (see exercise 4.6) and vanadium-50. For example, 
the decay of vanadium-50 with simultaneous emission of β − and β+ occurs according 
to the respective balanced equations: 

50 50
23 24 eV Cr β ν−→ + + + 1.2 MeV  [4.34a] 

eTiV νβ ++→ +50
22

50
23 + 2.4 MeV  [4.34b] 
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In addition, certain radioactive nuclei may decay by different modes. Each of the 
i modes corresponds to a partial decay constant, λI. The total decay constant, λtotal, 
is equal to the sum of the partial decay constants. By definition, the term branching 
ratio is used to refer to the fraction, Ri, given by the relationship: 

total

i
iR

λ
λ

=
   [4.35] 

APPLICATION 4.5.– Radon-221 can decay either by the α mode leading to  
polonium-217, or by the β− mode leading to francium-221. The decay diagram is 
shown in Figure 4.9. 

 

Figure 4.9. α and β− decay modes of radon-221 

Write the balanced equations (without γ-photon emission) of the various decay 
modes of radon-221, then calculate the branching ratios, Rα and Rβ

−. The α and  
β− particles will be replaced by their symbols. 

ANSWER.– 

– Balanced equations: 

HePoRn 4
2

217
84

221
86 +→    [4.36a] 

221 221 0
86 87 1 eRn Fr e ν−→ + +    [4.36b] 

– Branching ratios: 

λtotal = λα +λβ− = 1.01×10 −4 + 3.60 ×10 −4  = 4.62 × 10 −4 s −1 
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−
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22.0=
+

=
−βα

α
α λλ

λ
R  ;  Rα = 22%   [4.37a] 

0.78R β
β

α β

λ
λ λ

−
−

−

= =
+

 ; Rβ
−= 78%   [4.37b] 

Decay of radon-221 occurs at 78% according to the β− mode and at 22% 
according to the α mode.  

NOTE.– Dirac neutrino and Majorana neutrino 

In particle physics, we can identify what are known as “Majorana” particles from 
what are known as “Dirac” particles.  

– A Majorana particle or Majorana fermion is a particle that is its own 
antiparticle. The absence of an electrical charge is therefore a necessary condition to 
consider that an elementary particle possesses this property. The neutrino without an 
antiparticle is the typical example of a Majorana fermion. 

– A Dirac particle or Dirac fermion is a particle that has an antiparticle. 
Examples of Dirac fermions are the electron (antiparticle: positive electron or 
positron) and proton (antiparticle: negative proton).  

Experiments are currently underway, for example in the Modane Underground 
Laboratory (LSM) to identify whether neutrinos that are the only elementary 
fermions with zero electrical charge are ordinary or Majorana fermions [MAR 11]. 
This laboratory is located in the middle of the Fréjus tunnel connecting France and 
Italy and is topped by the Pointe du Fréjus located at an altitude of 2,932 m. The 
LSM is thus covered with 1,700 m of rock, protecting it from cosmic radiation, 
which cannot entirely pass through the thickness of rock [DEG 17]. The success of 
these experiments will then determine whether the neutrino is a Dirac particle (the 
neutrino and antineutrino are two distinct states) or a Majorana particle (neutrino = 
antineutrino). 

The Majorana particles, fermions and neutrinos are named in tribute to Italian 
physicist Ettore Majorana (1906-presumed to have died after 1959), who is best 
known for his work in particle physics. 

The Dirac particles, fermions and neutrinos are named in honor of British 
physicist Paul Adrien Maurice Dirac (1902-1984), who is famous in particular for 
his work in particle physics, quantum mechanics, and statistical physics. 
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4.1.9. Atomic deexcitation, Auger effect 

The emission of X-photon by a multi-electron atom occurs as a result of an 
internal conversion phenomenon or as a result of an electron capture process, thus 
creating an electronic gap or a hole in one of the inner shells of the atom.  

Let us assume that an electron from the K-shell is expelled by internal 
conversion or captured by a nucleus. The electronic gap thus created can be 
occupied by one of the electrons originating from the L-, M-, N-, etc. upper shells. 
There follows an electron rearrangement with emission of X-photons characteristic 
of the emitting atom by a process called electron-hole recombination. This process 
is in competition with the emission of an Auger electron (eA) by a process called 
Auger effect.  

Depending on the upper level where the transition occurs to the shell where the 
gap is located, we can identify several spectral series called K-, L-, M-, N-, etc. 
series. The X-photons of the K-series correspond to the X-lines produced during 
electronic transitions from the L-, M-, N-, etc. upper shells to the K-shell. Similarly, 
the L-series corresponds to the X-lines produced during electronic transitions from 
the M-, N-, etc. upper shells to the L-shell, and so on. The set of photons or X-rays 
of a given series constitutes the spectral lines of that series. 

In the adopted nomenclature, the spectral lines of a series are designated by the 
name of the shell toward which the electronic transition takes place, indexed with a 
Greek letter, α, β, γ, etc., depending on the subshells concerned by the transition. In 
addition, the K-, L-, M-, N-, etc. shells correspond, respectively, to the values of the 
principal quantum number, n = 1, 2, 3, 4, etc. We either use the so-called Siegbahn 
notation, or that of the IUPAC (International Union of Pure and Applied Chemistry). 
Table 4.2 shows the correspondences between Siegbahn notation and that of the 
IUPAC for the top four electronic shells, K, L, M and N. 

Siegbahn Kα1 Kα2 Kβ1 Kβ2 Kβ1′ Kβ2′′ … 

IUPAC KL3 KL2 KM3 KM2 KN3 KN2 … 

Table 4.2. Correspondence between the Siegbahn  
notation and that of the IUPAC in X-ray nomenclature 

In Siegbahn’s notation, the X-photon noted Kα1 corresponds to the photon noted 
KL3 in IUPAC notation, and so on. 
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For a given shell, there are several subshells resulting from the spin-orbit 
interaction. By adopting the spectroscopic notation 2S +1 LJ of the spectral terms, the 
total quantum number takes the values |L + S| ……. |L − S|. As an example, let us 
explain the terms relating to the K- and L-shells: 

– K-shell: 1s2, n = 1,   = 0; L = 0 which corresponds to the term S. In this 
orbital, the two electrons have antiparallel spin orientations. Hence the total spin,  
S = 0; the multiplicity of degeneracy (2S + 1) = 1. Moreover, J takes a single value, 
J = 0. We obtain the term 1 1S0; 

– L-shell: 2s22p6, n = 2,   = 0, 1. For the configuration 2s2, L = 0, J = S = 0. This 
corresponds to the term 2 1S0. For the configuration 2p6, we consider an electron 
(example: L-electron filling the hole created following a K-shell capture). Thus, for a 
2p-electron,   = L = 1, s = S = 1/2, J = 3/2 (1+1/2) or J = 1/2 (1 − 1/2). Moreover, 
the multiplicity of degeneracy (2S + 1) = 2. The two terms 2 2P3/2 and 2 2P1/2 are 
obtained.  

Table 4.3 presents the classification of energy levels and X-rays in Siegbahn 
notation. 

Low-energy level High-energy level Line symbol

 L3 (²P3/2)  Kα1  

K (1S0) L2 (²P1/2)  Kα2  

 M3 (³P3/2)  Kβ1  

L3 (²P3/2) M5 (³D5/2) Lα1 

L2 (²P1/2) M4 (³D3/2) Lβ1 

Table 4.3. Classification of energy  
levels and X-rays in Siegbahn notation 

Figure 4.10 shows atomic deexcitation by emission of X-rays or of an Auger 
electron following a K-shell electron capture.  

We will use WK and Wi to designate the respective K-shell and Ci-shell (Li, Mi, 
Ni, etc.) binding energies. The energy, EX, of the emitted X-photon is given by the 
equation: 

EX = WK − Wi  [4.38] 
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Figure 4.10. Process of atomic deexcitation by emission  
of X-rays or of an Auger electron by rearrangement of  

the electronic cloud following a K-shell electron capture 

In Figure 4.10a, we have assumed that the hole is filled by an electron from the 
L3-subshell. This corresponds to the emission of a XKL3- or Kα1-photon. This hole 
can also be filled by an L2-electron (XKL2-photon or Kα2-line) or an electron of the 
M-, N-, etc. upper shells (not shown). For a deexcitation involving one of the  
L-electrons (an L2-electron is indiscernible from an L3-electron), two photons, XKL2 
and XKL3, can then be emitted with respective energies: 

EXKL2 = E (Kα1) = WK − WL2   [4.39a] 

EXKL2 = E (Kα2) = WK − WL3   [4.39b] 

APPLICATION 4.6.– The energy gap between the L- and M-shell sub-levels is 
unknown. In the case of the L-shell, this means interchanging the terms 3/2P2 and 
2P1/2 (Table 4.4) or the L2- and L3-sub-levels (Figure 4.10). In this approximation, the 
relative arrangement of the K-, L- and M-shells of the copper atoms can be adopted, 
as shown in Figure 4.11 (scale not respected). Two lines, Kα and Kβ can be detected 
in the X-ray spectrum. The hole on the K-shell is due to an electron capture. For the 
sake of simplicity, let us indicate one electron for each of the L- and M-shells. 
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Figure 4.11. Relative arrangement of the K-, L- and M-shells of copper atoms 

Reproduce the figure then indicate the two envisaged electron-hole 
recombination processes leading to the emission of lines Kα and Kβ. Calculate the 
corresponding wavelengths. 

Given data: h = 6.63 × 10− 34 J ⋅ s; c = 3.0 × 108 m ⋅ s−1; 1 eV = 1.6 × 10− 19 J. 

ANSWER.– The electron-hole recombination processes are shown in Figure 4.12. 

 

Figure 4.12. Electron-hole recombination processes 

The variation in energy between any two shells A (upper shell) and B is given by 
the relationship: 
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The wavelengths associated with lines Kα and Kβ are then written: 

KMKL EE
hc

EE
hc

−
=

−
= βα λλ ;

  [4.40b] 

Numerically, we find: 

λα = 154.1 pm; λβ = 139.2 pm  

The Auger deexcitation shown in Figure 4.10b occurs by Auger effect, the 
principle of which is as follows. The hole created in the K-shell is filled by an 
electron of a Ci-upper shell (here L3-shell). The excess energy is then transferred to 
another electron of a Cj-shell (here L2-shell) located above the Ci-shell. The electron 
of the Cj-shell is then expelled from the electronic cloud: this is the Auger effect.  

The Auger electron carries a kinetic energy satisfying the energy conservation 
law: 

Ec (eA) = WK − Wi − Wj [4.41a] 

In the case of Auger deexcitation described in Figure 3.22b, the kinetic energy of 
the Auger electron is equal to: 

Ec (eA) = WK − W3 − W2 [4.41b] 

As a numerical illustration, let us consider the process of deexciting copper 
atoms according to the diagram described in Figure 4.12. The electron of the L-shell 
is recombined with the hole in the K-shell. The excess energy is then transferred to 
the electron of the M-shell. This produces an Auger electron of kinetic energy: 

Ec (eA) = WK − WL − WM [4.42] 

Equation [3.127], for an Auger deexcitation process involving the L- and  
M-shells, the Auger effect is only observed if: 

WK >  (WL + WM)  [4.43] 

Numerically, using [3.127] we obtain (for a given shell A, the positive binding 
energy is given by the relationship: WA = − EA): 

Ec (eA) = 8979 − (931 + 74) =  7.974 keV 
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Enrico Fermi was an American-naturalized Italian physicist. He made numerous 
contributions, notably to statistical physics (Fermi-Dirac statistics) and nuclear physics. 
Fermions (half-integer spin particles), the nuclear ray unit, the Fermi, Fermi gas (consisting of 
free fermions) and many other names are given in his honor. He won the Nobel Prize in 
Physics 1938 “for his demonstrations of the existence of new radioactive elements produced 
by neutron bombardments, and for his related discovery of nuclear reactions brought about by 
slow neutrons”. 

Karl Manne Georg Siegbahn was a Swedish physicist. He distinguished himself by his 
work in nuclear physics. He is especially famous for what is known as the Siegbahn notation, 
used to designate the lines of the X-ray spectra. He won the Nobel Prize in Physics 1924 for 
his research and discoveries in X-ray spectroscopy. 

Pierre Auger was a French physicist. He distinguished himself by his contributions to 
atomic physics, nuclear physics and cosmic rays. The Auger effect named in his honor is 
testament to his fame.  

Box 4.3. Fermi (1901–1954); Siegbahn (1886–1978); Auger (1899–1993) 

4.2. Radioactive family trees  

4.2.1. Definition   

Certain unstable nuclei disintegrate into other nuclei, themselves radioactive.  

The process gives rise to a decay sequence called radioactive series or family 
tree.  

Let there be a sample of radioactive parent nuclei, X1, of decay constant, λ1. The 
decay produces radioactive intermediate parent nuclei, Xm, of decay constant λm, and 
leads to the stable daughter nucleus, Xn. The decay chain is written: 

11 2

1 2 1 1....... m m
m m mX X X X Xλ λλ λ −

− +⎯⎯→ ⎯⎯→ ⎯⎯⎯→ ⎯⎯→ … 

… 1

1
n

n nX Xλ −
− ⎯⎯⎯→  (stable)    [4.44] 

In equation [4.44], λm is the decay constant of the parent nucleus, Xm. 
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4.2.2. Simple two-body family tree 

The simple family tree corresponds to the simple case of X1 (m = 1) and X2  
(m = 2) nuclei. The decay chain is written according to [4.44]: 

1 2

1 2 3X X Xλ λ⎯⎯→ ⎯⎯→ (stable)  [4.45] 

During decay, the quantity, dN2, of nuclei X2 decreases but also increases by the 
quantity – dN1 originating from the decay of the parent nuclei, X1:  

dN2 = – λ2N2dt – dN1
    [4.46a] 

For the parent nucleus: 

dN1 = – λ1N1dt   [4.46b] 

Using [4.46b], equation [4.46a] is written: 

dN2 = – λ2N2dt + λ1N1dt   [4.46c] 

If N01 designates the initial number of the parent nuclei, X1, the decay law of the 
number N1 (t) of these parent nuclei is written, according to Rutherford and Soddy’s 
empirical law [3.13]: 

1
1 01( ) tN t N e λ−=  [4.46d] 

By applying solution [4.46d] to relationship [4.46c], we obtain: 

12
2 2 1 01

( )
( ) tdN t N t N e

dt
λλ λ −+ =    [4.47]  

The solution to differential equation [4.47] is of the form:  

tt eKeKtN 2
2

1
12 )( λλ −− +=     [4.48a] 

In equation [4.48a], K1 and K2 are constants to be determined.  

A specific solution to differential equation [4.47] is obtained for K2 = 0. This 
then leads to the relationship:  

1 12
2 1 1 1

( )
( ) t tdN tN t K e K e

dt
λ λλ− −=  = −    [4.48b] 
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Using the last equation [4.48.], we obtain, according to [4.47]: 

ttt eNeKeK 1
011

1
12

1
11

λλλ λλλ −−− =+−     [4.48c] 

We deduce from equation [4.48c] the expression of K1, i.e.: 

01
12

1
1 NK

λλ
λ
−

=
  [4.49] 

Replacing K1 with its expression [4.49] in [4.48a] results in: 

1 21
2 01 2

2 1

( ) t tN t N e K eλ λλ
λ λ

− −= +
−

  [4.50] 

Using the initial conditions for which at t  = 0, N2 (t = 0) = 0, the expression of 
K2 is determined  from [4.50]. We thus obtain: 

1
2 01

2 1

K Nλ
λ λ

= −
−

  [4.51] 

Using results [4.49] and [4.51], the law of accumulation of the daughter product, 
X2, is written according to [4.48a]: 

( )tt eeNtN 21
01

12

1
2 )( λλ

λλ
λ −− −
−

=
   [4.52] 

Let us generalize equations [4.45] and [4.52] in the case of a parent nucleus, Np, 
and a daughter nucleus, Nf , of any kind. The simple two-body family-tree equation 
is written: 

p f
p f nX X Xλ λ⎯⎯→ ⎯⎯→  (stable)  [4.53] 

For the number Nf (t) of daughter nuclei, we obtain: 

( )tt
p

pf

p
f

fp eeNtN λλ

λλ
λ −− −
−

= 0)(   [4.54] 

Using [4.54], the activity of the daughter nucleus, Af(t), is deduced:   

( )
( ) ( ) ( )f

f p p f f

dN t
A t N t N t

dt
λ λ= = −    [4.55]  
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4.2.3. Multi-body family tree, Bateman equations 

The Bateman equations express the radioactive family-tree general equations. 
They are a set of equations describing the abundances and activities in a decay chain 
as a function of time. They thus allow determination of the evolution in the activity 
of a radioactive source. 

Let there be a sample containing N01 parent nuclei at initial instant t = 0. Let  
Nm (t) be the number of intermediate parent nuclei and Nn the number of stable 
daughter nuclei. For m < n [4.44], the relationship is written:  

1

1 1
m m

m m mX X Xλ λ−
− +⎯⎯⎯→ ⎯⎯→      [4.56] 

The variation, dNm, in the number of daughter nuclei (m = f) is given by the 
equation: 

1 1( ) ( ) ( )m m m m mdN t N t dt N t dtλ λ − −= − +   [4.57] 

By recurrence, we obtain the number Nm of daughter nuclei: 


=

−=
m

i

tim
i

m
m eCNtN

1

01)( λ
λ

   [4.58]  

In relation [4.58], the coefficients m
iC  verify the equation: 

1

1,

( )

m

j
jm

i m

j i
j j i

C
λ

λ λ

=

= ≠

=
−

∏

∏
   [4.59] 

Relations [4.58] and [4.59] express the Bateman equations. 

APPLICATION 4.7.– Find the law of accumulation [4.50] resulting from the simple 
two-body family tree based on the Bateman equations. 

ANSWER.– For the simple two-body family tree, m = 2 and i = 1. Using general 
equation [4.58], we obtain: 

( )1 1

2
2 2 201 01

2 1 2
12 2

( ) i t t t
i

i

N N
N t C e C e C eλ λ λ

λ λ
− − −

=

= = +                   [4.60] 
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According to [4.59]: 

)(
)(

12

21
2

1
1

2

12
1 λλ

λλ

λλ

λ

−
×

=
−

=

∏

∏

≠

=

j
j

j
j

C   [4.61a] 

2

12 1 2
2 2

1 2
2

1, 2

( )
( )

j
j

j
j j

C
λ

λ λ
λ λλ λ

=

= ≠

×
= =

−−

∏

∏
  [4.61b] 

By applying [4.61] to [4.60], we obtain: 










−
+

−
= −− tt ee

N
tN 11

)()(
)(

21

21

12

21

2

01
2

λλ

λλ
λλ

λλ
λλ

λ
   [4.62] 

By arranging [4.62], we indeed find the law of accumulation [4.50]. 

APPLICATION 4.8.– Write the decay chain for a three-body problem and then deduce 
from the Bateman equations, the corresponding law of accumulation of the daughter 
product. Show that under certain conditions that will be specified, we can find from 
the three-body problem, the law of accumulation [4.50] relating to the simple  
two-body family tree. 

ANSWER.– For the three-body family tree, the decay chain is written according to 
[4.44]: 

31 2

1 2 3 4X X X Xλλ λ⎯⎯→ ⎯⎯→ ⎯⎯→  (stable)  [4.63] 

Using [4.58], we obtain, for the parent nucleus, X3: 

( )ttt

i

tii eCeCeCNeCNtN 33
3

23
2

13
1

3

01
3

1

3

3

01
3 )( λλλλ

λλ
−−−

=

− ++== 
   [4.64] 
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According to [4.59]: 

3

13 1 2 3
1 3

2 1 3 1
1

1

( ) ( )
( )

j
j

j
j

C
λ

λ λ λ
λ λ λ λλ λ

=

≠

× ×
= =

− × −−

∏

∏
   [4. 65a] 
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2321
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3

2,1
2

3

13
2 λλλλ

λλλ

λλ

λ

−×−
××

=
−

=

∏

∏

≠=

=

jj
j

j
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C   [4.65b] 

3

13 1 2 3
3 3

1 3 2 3
3

1, 3

( ) ( )
( )

j
j

j
j j

C
λ

λ λ λ
λ λ λ λλ λ

=

= ≠

× ×
= =

− × −−

∏

∏
   [4.65c] 

Using [4.65], the accumulation equation [4.64] of the parent nucleus, X3, is 
written: 

1 2

3

01 1 2 3 1 2 3
3

3 2 1 3 1 1 2 3 2

1 2 3

1 3 2 3

( )
( ) ( ) ( ) ( )

( ) ( )

t t

t

N
N t e e

e

λ λ

λ

λ λ λ λ λ λ
λ λ λ λ λ λ λ λ λ

λ λ λ
λ λ λ λ

− −

−

 × × × ×
= + − × − − × −

× ×
+ − × − 

 

Ultimately, this gives: 

31 2
1 2 2 1

3 01
2 1 3 1 3 2 1 3 2 3

( )
( )

( ) ( ) ( ) ( ) ( )

tt t ee eN t N
λλ λλ λ λ λ

λ λ λ λ λ λ λ λ λ λ

−− − × −
= − + − − − − × − 

  [4.66] 

Relative law of accumulation of the simple two-body family tree  

In the case where the daughter product, X2, has a very short radioactive half-life 
compared to the long decay half-life of the parent nucleus, X1 (T1 >> T2), the X2 
daughter product disappears instantly so that the X2 nucleus practically transforms  
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into the stable X3 nucleus. In this case, the law of accumulation of X3 is written 
according to [4.66] (T2 → 0; λ2 → ∞): 












×−
+

−
×

=
−−

231

2

13
01

2

21
3

)()(
)(

31

λλλ
λ

λλλ
λλ λλ tt eeNtN   [4.67] 

i.e. after simplification and arrangement:  

( )tt eeNtN 31
01

13

1
3 )(

)( λλ
λλ

λ −− −
−

=
 

We indeed find the law of accumulation [4.50] relating to the simple two-body 
family tree. The index “3” simply needs to be changed to the index “2”. 

4.2.4. Secular equilibrium 

In the specific case where the period, T1, of the parent nucleus, X1, is very large in 
relation to the half-lives Tm (m ≥ 2) of all the daughter nuclei, a radioactive 
equilibrium called secular equilibrium or state equilibrium is produced. 

When the condition T1 >> Tm is satisfied, the exponential factors in general 
equation [4.58] are negligible in relation to the first factor. This then gives: 

1
01 1( ) tm

m mN t N C e λλ −=    [4.68] 

Given that λj >>λ1, λj −λ1 ≈ λj, general equation [4.59] gives: 

1
1 2

1 1

1
2, 2,

( )

m m

j j
j jm

m m

j j
j j

C
λ λ λ

λ
λ λ λ

= =

= =

×
= ≈ ≈

−

∏ ∏

∏ ∏
  [4.69] 

Using [4.69], relationship [4.68] is placed in the final form: 

)()()( 11
1

011 tNtNeNtN mm
t

mm λλλλ λ == −
  [4.70] 

As when secular equilibrium is established, all activities of the daughter products 
are equal, i.e.: 

A1 (t) = A2 (t) = A3 (t) = , etc. = Am (t)  [4.71] 
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Let us illustrate, as an example, the decay law of a radioactive source and the 
accumulation law of its daughter product. To achieve this, let us consider the decay 
of tellurium-131 (T = 30 hrs) and of its daughter product, iodine-131 (T = 8.0 days) 
leading to the stable daughter nucleus, xenon-131 according to decay chain [2.163a], 
which we recall here: 

131 131 131
52 53 54Te I Xeβ β− −

⎯⎯→ ⎯⎯→   

Figure 4.13 shows the curves of the evolution of the activities of a pure source of 
131Te and of the evolution of its daughter product, 131I. 

 

Figure 4.13. Evolution curves of the activities of tellurium-131 and its daughter product, 
iodine-131. The activity of 131I is maximum after 95.0 hrs. 1 Ci = 3.7 × 1010 Bq  
(the units of activity accepted today are the becquerel (Bq) and the curie (CI)) 

As shown in Figure 4.13, for t < 100 hrs, the activity of tellurium-131 decays 
rapidly while that of its daughter product accumulates to a maximum after a period 
equal to 95.0 hrs, corresponding to the secular equilibrium state. Beyond 100 hours, 

 
 

 
1.0 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 
0 100 200 300 400 500 600 700 800 

time (hrs)

ac
tiv

ity
 (m

Ci
) 

evolution in the activity of 131I 

decay of activity of 131Th 

        radioactive relationship

 
β − β − 



Beta Radioactivity, Radioactive Family Tree     267 

the activities of both nuclei decay. Between the initial instant and the 700 hrs instant, 
the ratio of the activity of 131I to that of 131Te increases with time. 

Using [4.71], it is shown that secular equilibrium is reached on the date tm, given 
by the relationship (see application 4.9): 










−
=

2

1

21

21 ln
)(2ln

1

T
T

TT
TT

tm    [4.72] 

Numerically (T1 = 30 hrs; T2 = 8.0 days = 192 hrs), we obtain: 

1 30 192 30
ln 95.22

ln 2 (30 192) 192mt
×  = = −  

hrs  

APPLICATION 4.9.– Show that the ratio of the activity of 131I to that of 131Te increases 
continuously with time in accordance with the evolutions in the curves shown in 
Figure 4.13. Deduce therefrom result [4.72]. 

ANSWER.– The activities of 131Te and 131I are given, respectively, by the 
relationships: 

1 1 1 2 2 2( ) ( ) ; ( ) ( )A t N t A t N tλ λ= =   [4.73] 

The number of 131Te parent nuclei decreases exponentially while that of the 
intermediate 131I parent nucleus evolves according to the exponential decay law: 

teNtA 1
0111 )( λλ −=   [4.74a] 

( )1 21 2
2 01

2 1

( ) t tA t N e eλ λλ λ
λ λ

− −= −
−

   [4.74b] 

Using [4.74], the ratio of activities A2(t)/A1(t) is written: 

( )1 1 22 2

1 2 1

( )

( )
t t tA t e e e

A t
λ λ λλ

λ λ
− −= −

−
  

which gives: 

( )te
tA
tA )21(

12

2

1

2 1
)(

)( λλ
λλ

λ −−
−

=
  [4.74c] 
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Knowing that T2 > T1 (T1 = 30 hrs; T2 = 8.0 days), then λ1 > λ2. Let us write  
Δλ = (λ1 − λ2) > 0. Equation [4.74c] ultimately gives: 

( )1 1 22 2

1 2 1

( )

( )
t t tA t e e e

A t
λ λ λλ

λ λ
− −= −

−
  [4.75] 

Result [4.75] indeed shows that the ratio of activity of 131I activity to 131Te 
activity  increases continuously over time since Δλ = (λ1 − λ2) > 0. Let us now 
deduct from [4.75] result [4.72]. 

When the state equilibrium is reached on the date tm, then A2(tm)/A1(tm) = 1. 
Using [4.75], we obtain: 

( ) ( )1 2 1 2( ) ( )2 1 2

1 2 2

1 1 1m mt te eλ λ λ λλ λ λ
λ λ λ

− −−
− =  = −

−
  

This then gives: 

1 2( ) 1 1
1 2

2 2

( ) lnmt
me tλ λ λ λλ λ

λ λ
−  

=  − =  
 

 [4.76a] 

By introducing radioactive half-lives, the last equality [4.76a] gives: 
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

21
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211

2 2ln
2ln2ln

ln     [4.76b] 

By arranging [4.76b], result [4.72] is found. 

Harry Bateman was a British mathematician. He is best known for his works in 
mathematical physics. In nuclear physics, he is famous for having established the general 
radioactive family-tree equations called Bateman equations. 

Box 4.4. Bateman (1882−1946)  

4.3. Radionuclide production by nuclear bombardment 

4.3.1. General aspects 

As we saw in section 1.3.1, in 1919 Rutherford performed the first artificial 
nuclear transmutation reaction from the bombardment of nitrogen nuclei by  
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α particles. The particles resulting from the reaction were identified by Blackett in 
1925 as indicated in balanced equation [1.23], which we recall here:  

4 14 1 17
2 7 1 8He N H O+ → +  

In addition, nuclear transmutation reactions were carried out in 1934 by Irène 
and Frédéric Joliot-Curie by carrying out aluminum bombardment by α particles via 
equation [3.83], which we also recall here: 

PnAlHe 30
15

1
0

27
13

4
2 +→+

 

These experiments thus enabled the creation of radiophosphorous-30, which 
decays according to the β+ mode via equation [3.84]. 

Thus, the production of radionuclides by nuclear bombardment has been known 
since 1934. Nuclear reactions [1.23] and [3.83] verify the general nuclear 
transmutation equation noted X (a, b) Y. The equation for these induced nuclear 
reactions is written: 

a + X → b + Y    [4.77] 

In equation [4.77]: 

– X is the target core; 

– Y represents the residual core; 

– a designates the incident particle;  

– b is the emerging particle. 

APPLICATION 4.10.– Give the notation of nuclear transmutation reactions [1.23] and 
[3.84] according to the label X(a, b)Y. 

ANSWER.– 14N(α,p)17O and 27Al(α,n)30P. Note that in these notations, the helium-4 
nucleus is noted α (not 4He) and the proton p (not 1H).  

4.3.2. Production rate of a radionuclide 

Let us consider a target nucleus, X1, producing β-emitting radioactive nuclei, X2, 
following a nuclear bombardment. The decay product of nucleus X2 is designated by 
X3. The radioactive relationship may be described by the series:  
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31 2

1 2

( , )
1 2 3

AA Aa bX X Xβ

λ λ
⎯⎯⎯→ ⎯⎯→   [4.78] 

In equation [4.78], λ1 is the probability per unit time of a nucleus X1 
transforming into a nucleus X2 by bombardment using the incident particle a, and λ2 
is the probability per unit time of a nucleus X2 decaying according to the β mode. 

An illustrative example is the reaction 23Na(d, p)24Na of production of β 
radioactive sodium-24 by continuous bombardment of sodium-23 by a beam of 
deuterons. The radioactive relationship can be written according to [4.78]: 

1 2

23 ( , ) 24 24d pNa Na Mgβ

λ λ

−

⎯⎯⎯→ ⎯⎯→   [4.79] 

If N01 designates the initial number of target nuclei X1, the decay law of the 
number, N1(t), of nuclei X1 is written:  

teNtN 1
011 )( λ−=    [4.80] 

In the general case, if the probability per unit time λ1 is very small (λ1 → 0), the 
number of nuclei, on the other hand, is very large. In this case, decay law [4.80] is 
written, approximately: 

N1 (t) ≈ N01 (1 − λ1t) = N01 − λ1N01t   [4.81] 

Using [4.81], we obtain: 

λ1N01t = N01 − N1 (t)  [4.82] 

For a continuous bombardment time τ, equation [4.82] gives: 

τ
τλ )(01

011
NNN −

=    [4.83] 

By definition, the quantity λ1N01 is referred to as the production rate of 
radioactive nucleus X2. In practice, the rate of production of a radionuclide is low 
(λ1 → 0). For this reason, experiments of intense and prolonged irradiation of target 
nuclei are carried out to obtain an appreciable amount of radionuclides. 
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4.3.3. Production yield of a radionuclide 

Let us determine the law of evolution of radionuclide X2. Its activity a2 (t) is 
given by equation [4.74b], which we recall here: 

( )tt eeNtA 21
01

12

21
2 )( λλ

λλ
λλ −− −
−

=
   

In addition, the term production yield of a radionuclide is used to refer to the 
yield of a nuclear reaction, X(a, b)Y producing radionuclides, Y. By definition, the 
production yield of a radionuclide, X2, via equation [4.78] is equal to the value of the 
derivative of its activity [4.74b] with respect to time, i.e.: 

dt
tdA

r
)(2=   [4.84a] 

According to [4.84a], the yield, r, is the size of an activity per unit time. It is 
therefore expressed in becquerel per second (Bq ⋅ s −1). 

When irradiation produces a single type of radionuclide, X2, the yield, r, is given 
by the relationship: 

2 ( )

0

dA tr
tdt

=
=

  [4.84b] 

Considering [4.84b], we obtain: 

( )tt eeN
dt

tdA
21

2101
12

212 )( λλ λλ
λλ

λλ −− +−
−

=    [4.84c] 

At instant t = 0, we then obtain: 

01212101
12

21 )( NNr λλλλ
λλ

λλ
=+−

−
=

  [4.85] 

The yield, r, is therefore constant. 

Considering the radioactive half-life, we obtain: 

ln 2 1
1.44

ln 2

TT T
λ λ

=  = =   [4.86a]  
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Let us now introduce the time variable: 

1
1.44Tτ

λ
= =   [4.86b] 

The activity of X2 is given by equation [4.84b]. Since λ1 → 0 and λ2 >> λ1, we 
thus obtain: 

( ) ( )1 2 21 2 1 2
2 01 01

2 1 2 1

( ) 1t t tA t N e e N eλ λ λλ λ λ λ
λ λ λ λ

− − −= − ≈ −
− −

  

That is: 

( )2
2 1 01( ) 1 tA t N e λλ −≈ −   [4.87] 

According to [3.87] and [3.86b]:  

2
2

011 τ
λ

λ rrN ==
  [4.88] 

Considering [4.88], equation [4.87] is then written: 

( )2
2 2( ) 1 tA t r e λτ −≈ −   [4.89] 

The activity of X2 is maximum for t → ∞. That is, according to [4.89]:  
A2max = rτ2. 

Let us examine graphically the variation in activity A2 (t) of product X2. The 
resulting curve is shown in Figure 4.14.  

It is interesting to compare the evolution in the activity, A2 (t), shown in  
Figure 4.14 with that of the charge curve of a capacitor of capacity C through an 
ohmic conductor of resistance R. The circuit (R, C) considered of time constant  
τ = RC, is fed by an ideal e.m.f. generator, E. During the experiment, the electrical 
charge, q (t), of the capacitor varies according to the law [SAK 16]: 

( ) ( )ττ //
max 11)( tt eCEeQtq −− −=−=    [4.90] 
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Figure 4.14. Variation in the activity, A2 (t), of a radionuclide, X2, obtained by nuclear 
irradiation. The maximum activity is equal to rτ2. When X2 is unique, the yield, r, is 
constant and equal to the slope of the tangent to curve A2 (t) at instant t = 0. The 
tangent to curve A2 (t) intersects the horizontal asymptote, A2 (t) = rτ2 at time t = rτ2, 
with τ2 the nuclear time constant: τ2 = 1/ λ2 

The curve q (t) given by [4.90] has the same shape as the curve giving the 
evolution, a2, over time (Figure 4.14). Using [4.90], we obtain: 

– at t = τ, q (τ) = 0.63 Qmax = 63% Qmax; 

– at t = 5τ, q (5τ) = 0.99 Qmax = 99% Qmax. 

Thus for circuit (R, C), the charge, q(t), of the capacitor reaches 63% of its 
maximum charge, Qmax, at the instant t = τ. At t = 5τ, the capacitor is almost 
charged. 

By analogy with circuit (R, C), we obtain, using the law of evolution [4.89] of 
activity A2 (t): 

– at t = τ2, A2 (τ) = 0.63 A2max = 63% a2max; 

– at t = 5τ, A2 (5τ) = 0.99 A2max = 99% a2max. 

Thus for a radioactive source, X2, produced by nuclear irradiation, the activity 
A2(t) of the source reaches 63% of its maximum charge A2max at instant t = τ. At  
t = 5τ, the accumulation of the radionuclide virtually stops and remains constant. By 
analogy with the time constant of the circuit (R, C), τ = 1/λ [4.86b] can be called the 
“nuclear time constant” of a radioactive source produced by nuclear irradiation. It 
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provides an estimate of the accumulation time of the radionuclide produced by 
nuclear bombardment. 

As shown in Figure 4.14, beyond t = 6T, the activity of radionuclide X2 no longer 
increases with accumulation time. A dynamic equilibrium is established where the 
production and decay velocities are equal. 

APPLICATION 4.11.– Let us consider equation [4.79] of production of sodium-24. 
Determine the maximum activity of sodium-24 for which T = 15.0 hrs and r = 4.107 
× 108 Bq ⋅ h −1. 

ANSWER.– We have: 

τ2  = 1.44 T2  A2max = r × 1.44 T2  [4.91] 

Numerically this gives: 

A2max = 4.107 × 108 × 1.44 ×15.0 = 8.87 × 109 Bq 

APPLICATION 4.12.– Show that for a single type of radionuclide, X2, of activity  
A2 (t), the yield, r, is constant and equal to the slope of the tangent to curve A2 (t) at 
instant t = 0 (Figure 4.14). 

Let us recall the equation for the tangent at point x0: 

0 0 0( ) '( )( ) ( )f x f x x x f x= − +   [4.92a] 

ANSWER.– The equation for the tangent to curve a2 (t) at the origin verifies the 
relationship: 

' '
2 0 0 2 0 2 2( ) ( )( ) ( ) (0) (0)a t a t t t a t a t a= − + = +   [4.92b]  

Using [4.90], we obtain: 

22
2'

22 0

)(
)0(;0)0( λτr

tdt
tdaaa =

=
==   [4.92c]  

Yet τ  = 1/λ. Taking [4.86] into account, we then obtain: 

a2(0) = rτ2λ2 = r = λ1λ2N01  [4.92d] 
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The equation for the tangent of curve a2 (t) at the origin is then written: 

trtNta == 0121)( λλ   [4.93] 

Thus, when irradiation produces a single type of radionuclide, X2, of activity  
A2 (t), the yield, r, is constant and equal to the slope of the tangent to curve A2 (t) at 
instant t = 0 (Figure 4.14). 

4.4. Natural radioactive series  

4.4.1. Presentation 

There are four radioactive families, three of which are natural. They are the 
thorium family, the neptunium family, the uranium-238 family and the uranium-235 
family. The natural radioactive families are the thorium, uranium-238 and uranium-
235 families. The member of the neptunium family with the longest half-life is 
neptunium-237 with radioactive half-life T = 2.44 × 106 years. As a consequence, no 
single member of the neptunium family exists in nature. All members of this family 
are artificially created, making the neptunium family the only artificial radioactive 
family. For each of the three natural radioactive families, the family tree ends with a 
daughter nucleus, which is a stable isotope of lead (Pb). Inversely, the neptunium 
family yields stable thallium-205. All nuclei of the family tree derived from the 
same parent nucleus is called the radioactive family or radioactive series.  

In a given series, each family member decays either by the α mode or by the  
β mode. For each of these members, the mass number, A, is of the type: 

A = 4n + q, n > 0; 0 ≤ q ≤ 3    [4.94] 

In relationship [4.94], n is a real number and q is an integer.  

The value of q is used to differentiate the four radioactive families: 

– thorium family: q = 0  A = 4n; 

– neptunium family: q = 1  A = 4n + 1; 

– uranium-238 family: q = 2  A = 4n + 2; 

– uranium-235 family: q = 2  A = 4n + 3. 

In the following, we will present the characteristics relating to each of the 
radioactive families mentioned above. 
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4.4.2. Thorium (4n) family 

In the thorium family, each member has a mass number, A, equal to a multiple of 
4, i.e. A = 4n. The variations in A and n are different depending on whether the 
decay is either of α type or β type.  

As an example: 

– for the 232Th → 228Ra transition according to the α mode, ΔA = (232 – 228) = 4; 
n (232) = 232/4 = 58; n (228) = 228/4 = 57 Δn = (57 – 58) = – 1; 

– for the 212Pb → 212Bi isobaric transition according to the β mode, ΔA = 0;  
Δn = (57 – 58) = – 1.  

The precursor element of the family is thorium-232 with a radioactive half-life of 
T = 14.05 × 109 years. The stable end product of the family tree is lead-208. 

The long half-life of thorium-232 makes it possible to find it in nature with its 
daughter products. The parent substance of thorium-232 is uranium-236, which is an 
α emitter with radioactive half-life T ≈ 5 × 107 years. Given that the Earth’s age is 
estimated at around 4.5 × 109 years, uranium-236 is no longer found in terrestrial 
sources. It follows that thorium-232 has not formed in the Earth’s crust since the 
extinction of its parent substance. 

The decay chain of the thorium-232 family giving all the descendants of the 
family tree is written:  

 [4.95] 
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The decay chain [3.95] of thorium-232 can be represented more simply using a 
diagram (Z, N). The diagram shown in Figure 4.15 is then obtained.  

 

Figure 4.15. Natural series of thorium. The stable  
end product of the family tree is lead-208   

Table 4.4 shows the correspondence between the old and conventional notations 
of nuclei belonging to the natural family of thorium. 

Radionuclide Old notation Conventional notation Radioactive 
half-time 

Radium-228 MésoTh1 228
88

Ra 5.75 yrs 

Actinium-228 MésoTh2 228
89

Ac 6.13 hrs 

Thorium-228 RdTh* 228
90

Th 1.91 yrs 

Radon-220 Tn** 220
86

Rn 55.6 sec 

Polonium-216 ThA 216
84

Po 146 ms 

Lead-212 ThB 212
82

Pb 10.64 hrs 
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Radionuclide Old notation Conventional notation Radioactive 
half-time 

Bismuth-212 ThC 212
83 Bi  60.55 min 

Lead-208 ThD 208
82

Pb ∞ 

Polonium-212 ThC′ 212
84

Po 299 ns 

Thallium-208 ThC′′ 208
81 Tl  3.05 min 

Radium-224 ThX 224
88

Ra 3.62 days 

* RadioThorium 

** Thoron 

Table 4.4. Correspondence between old and conventional nucleus notations.  
The radionuclides listed belong to the natural family of thorium 

NOTE.– Natural thorium is composed of 100% 232 Th. One gram of thorium-232 
has an activity equal to 4,070 Bq. In nature, it is found in secular equilibrium with 
its descendant, thorium-228, at the rate of around 1.3 × 10−10g of 228Th per gram of 
232Th.  

4.4.3. Neptunium (4n + 1) family 

Each member of the neptunium family with a mass number A = 4n + 1 decays 
according to the α mode or β mode. As with the thorium family: 

– for the α mode: ΔA = 4 or Δn = − 1; 

– for the β mode: ΔA = 0 or Δn = 0 

The first member of the neptunium family is plutonium-241. For all members of 
this family, neptunium-237 has the longest radioactive half-life of 2.44 × 106 years. 
Therefore, no member of the neptunium (4n +1) family is present in nature. They 
have all decayed since the creation of the Earth some 4.5 × 109 years ago. The stable 
end product of the family tree is thallium-205. Among the descendants of the family, 
only bismuth-209 and thallium-205 are observed in nature. All other descendants of 
the (4n +1) family including neptunium-237 are created artificially.  

 



Beta Radioactivity, Radioactive Family Tree     279 

The decay chain of the neptunium family giving all the descendants of the family 
tree is written: 

6 5

237 233 233 229
93 91 92 90

26.9672.144 10 1.592 10
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  [4.96]  

The diagram (Z, N) corresponding to the decay chain [4.96] is shown in  
Figure 4.16. This diagram reflecting the neptunium series has eleven descendants, 
among which the stable end product, 205Tl. Bismuth-209 with radioactive half-life  
T = 19 billion billion can be considered stable. 

 

Figure 4.16. Artificial series of neptunium. The  
stable end product of the family tree is lead-208 
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4.4.4. Uranium-235 (4n +2) family 

The uranium-235 family was formerly called the actinium family. Thus, 235U 
was called Actinium Uranium, noted as AcU. Each member of the uranium-235 
family has a mass number A = 4n + 2, and decays according to the α mode or  
β mode. In the uranium-235 family, the mass number, A, is odd. It follows that n is 
not an integer. As examples: 

– for the 235U → 231Th transition, ΔA = (232 – 228) = 4; n (235) = (235 − 2)/4 = 
58.25; n (231) = 57.25 Δn = – 1; 

– for the 211Pb → 211Bi isobaric transition; ΔA = 0; Δn = 0.  

In summary: 

– for the α mode: ΔA = 4 or Δn = 1; 

– for the β mode: ΔA = 0 or Δn = 0. 

The first member of the uranium-235 family is plutonium-239. The very long 
radioactive half-life of uranium-235 is equal to 7 × 109 years. In the Earth’s crust, 
natural uranium is composed of approximately 93% 238U and 0.7% 235U. The stable 
end product of the family tree is lead-207. The decay chain of the uranium-235 
family leading to all the descendants of the family tree is written: 
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    [4.97] 

NOTE.– Francium-223 lead 99.994% to radium-223 and 0.006% to astate-219, itself 
radioactive. It leads 3% to radon-219 and 97% to bismuth-215, which transforms 
100% to polonium-215. This decay chain is overlooked by considering that the 
decay of francium-223 leads 100% to radium-223. 

 



Beta Radioactivity, Radioactive Family Tree     281 

The diagram (Z, N) corresponding to the decay chain [4.97] is shown in  
Figure 4.17.  

 

Figure 4.17. Natural series of uranium-235. The  
stable end product of the family tree is lead-207   

Table 4.5 shows the correspondence between the old and conventional notations 
of nuclei belonging to the natural family of uranium-235. 

Radionuclide Old notation Conventional notation Radioactive half-time 

Polonium-215 AcA 215
84 Po  1.78 ms 

Lead-211 AcB 211
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Radionuclide Old notation Conventional notation Radioactive half-time 

Lead-207 AcD 207
82 Pb  ∞ 

Francium-223 AcK 223
87 Fr  21 min 

Uranium-235 AcU 235
92 U  7 ×109 yrs 

Radium-223 AcX Ra223
88  

11.43 days 

Thallium-207 AcC′′ Tl207
81  

1.3 ms 

Radon-219 An Rn219
86  

7 ×109 yrs 

Thorium-227 RdAc Th231
90 24.1 days 

Table 4.5. Correspondence between old and conventional nucleus notations.  
The radionuclides listed belong to the natural family of uranium-235 

4.4.5. Uranium-238 (4n + 3) family 

The uranium family refers to radionuclides with a mass number, A = 4n + 3. The 
decay chain of uranium-238 giving all the descendants of the family tree is written: 
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     [4.98] 

The decay chain [4.98] is often translated into a (Z, N) diagram to represent the 
natural uranium series (Figure 4.18). 
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Figure 4.18. Natural series of uranium-238 (often called uranium-radium  
series). The stable end product of the family tree is lead-206   

Table 4.6 shows the correspondence between the old and conventional notations 
of nuclei belonging to the natural family of uranium-238. 

NOTE.– Nuclear fuels  

Natural thorium 100% composed of 232Th is around three times more abundant 
than natural uranium consisting 93% of 238U and 0.7% of 235U. Thorium-232 and 
uranium-238 are not fissile. In nuclear power plants, uranium-235 is used as a fuel. 
Its fission under the impact of a thermal neutron produces nuclear energy that can be 
converted into electrical energy. However, thorium is a fertile nucleus in the same 
way as uranium-238. Under the impact of a slow or thermal neutron, a fertile 
nucleus produces a fissile nucleus. Uranium-233 and plutonium-239 are fissile 
nuclei obtained by neutron bombardment of uranium-238 and thorium-232, 
respectively, according to the equations: 

  N  = A – Z  

144 

α 

β 
− 

143 

142 
140 
138 

136 
134 

132 

130  

Z

129  

126 
124 

80
Hg 

81
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82P
b 

83
Bi 

84P
o 

89
Ac 

85
At 

86
Rn 

90
Th 

87F
r 

88
Ra 

91
Pa 

206Pb (stable) 

92
U 

138.38 
d

22.26 y   

5 
d

19.9 min 
26.8 min 

16.37 ms 

3.05min 3.82 days 
1,600 yrs 

7.7 × 104 yrs 
2.4 × 105 yrs 

4.5 ×109 24.1 
146 

238U

226Ra

1.17 min 

natural family of uranium-238  

93
Np 

128  1.3 min 
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UPuNpUUn
yd

capture 235
92

24410

239
94

35.2

239
93

min23

239
92

238
92

1
0 ⎯→⎯⎯→⎯⎯→⎯⎯⎯⎯ →⎯+

−− αββ
  [4.99] 

1 232 233 233 233 219
0 90 90 91 92 90

22 min 27 159200

capture

d y
n Th Th Pa U Thβ β α− −

+ ⎯⎯⎯→ ⎯⎯→ ⎯⎯→ ⎯⎯→      [4.100] 

Radionuclide Old notation Conventional notation Radioactive 
half-time 

Polonium-218 RaA 218
84

Po 3.05 min 

Lead-214 RaB Pb214
82 26.8 min 

Bismuth-214 RaC 214
83 Bi  19.9 min 

Lead-210 RaD 210
82 Pb  22.26 yrs 

Bismuth-210 RaE 210
83 Bi  5.013 days 

Polonium-210 RaF Po210
84 138.38 days 

Lead-206 RaG Pb206
82 ∞ 

Polonium-214 RaC′ 214
84

Po 163.7 µs 

Thallium-210 RaC′′ 210
81 Tl  1.3 ms 

Uranium-238 UI 238
92 U  4.5 × 109 yrs 

Uranium-234 UII 234
92 U 2.4 × 105 yrs 

Thorium-234 UX1 234
90 Th  24.1 days 

Protactinium-234 UX2 234
91 Pa  1.17 hrs 

Table 4.6. Correspondence between old and conventional nucleus notations.  
The radionuclides listed belong to the natural family of uranium-238 

Mixed with depleted uranium to form MOX (mixed oxide) nuclear fuel 
consisting of PuO2 and UO2, the fission of plutonium-239 can be exploited for the 
manufacture of nuclear weapons such as atomic bombs. For this reason, its use is 
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particularly controlled. As for uranium-233, its use as a nuclear fuel is one of the 
challenges of the future.  

Today, the most widely used nuclear fuel is composed of pellets of uranium 
oxide, UO2, enriched by 3% uranium-235. To demonstrate the importance of this 
fuel, let us calculate the energy released by the fission of 1 g of uranium-235 via the 
balanced equation [1.65], which we recall here: 

γ+++→+ n2XeSrUn 1
0

140
54

94
38

235
92

1
0   

The atomic masses and that of the neutron are equal to:  

m (U) = 235.04392 u; m (Sr) = 93.91536 u;  

m (Xe) = 139.91879 u; mn  = 1.00866 u. 

The mass loss in reaction [1.65] has the value (overlooking the mass of the 
electrons): 

Δm = [m (U) + mn] − [m (Sr) + m (Xe) + 2 mn] = 0.2011 u  [4.101] 

The energy released by the fission of a nucleus of uranium-235 is then equal to: 

Ql = Δmc2 = 0.2011×931.5 = 218708.6 MeV  [4.102] 

A mass m of nuclei contains a number N of nuclei equal to (with NA Avogadro’s 
number): 

A

A

mNm N N
A N A

=  =   [4.103] 

The number of nuclei contained in 1 g of uranium-235 is equal to NA/A. The 
energy released by the fission of a gram of uranium-235 is then equal to: 

235
A

l
NQ Q= ×   [4.104] 

Numerically, we obtain (NA = 6.02 × 10 23 mol −1): 

23
6 19 106.02 10

187.33 10 1.602 10 7.69 10
235

Q −×= × × × × = × J  [4.105]  
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Let us compare the energy released by fission of one gram of uranium-235 with 
the heat value, Qp = 42 MJ ⋅ kg −1. The mass of oil producing the same amount of 
energy [4.105] by combustion is equal to: 

m = 7.69 × 1010/4.2 × 107 = 1.830.95 kg  [4.106]  

Result [4.106] shows that in order to obtain the same amount of energy produced 
by the fission of one gram of uranium-235, approximately 2 tons of oil needs to be 
burned. The stakes for nuclear energy are therefore high. 

4.5. Exercises 

For certain exercises, the following data will be used:  

M0c2 = 0.511 MeV; 1 u = 931.5 MeV; 1 eV = 1.602 × 10 −19 J; NA = 6.02 ×  
1023 mol −1. 

EXERCISE 4.1.– Determination of the maximum energy of the β+ spectrum from the 
semi-empirical Bethe–Weizsäcker formula 

The semi-empirical Bethe–Weizsäcker formula [2.119] is recalled here: 

δ±−+++−−+=
A

ZAa
A
ZaAaAacMZAcZMcZAM acsvnH

2

3/1

2
3/2222 )2(

)(),(
 

Let us consider a radionuclide, AX, of mass number A = 2Z − 1. Its β + decay 
from its ground level leads to stable isobar AY. 

a) Show that AX is a mirror nucleus. 

b) Let mX and mY be the respective masses of nuclei AX and AY. Express the mass 
difference (mX − mY) as a function of mp, mn, A and ac. 

c) Then establish, as a function of A and ac, the expression of the maximum 
energy, Emaxβ+ of the β+ spectrum, valid for all mirror nuclei of mass number A =  
2Z – 1. 

d) Table 4.7 shows several mirror nuclei (A = 2Z – 1), all β+ emitters, without  
γ-photon emission. Reproduce and then complete the table, presenting the theoretical 
values of Emaxβ+. Then verify the accuracy of the nuclear  model with constant 
nucleon density. 
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Nucleus Emaxβ + (MeV) 
experiment 

Emaxβ + (MeV) 
theory 

11C 0.99  
13N 1.24  
15O 1.68  
17F 1.72  

19Ne 2.18  
21Na 2.50  
23Mg 2.99  
27Si 3.48  
29P 3.94  
31S 3.9  

33Cl 4.1  
35Ar 4.4  
37K 4.6  

39Ca 5.1  
41Sc 4.94  

Table 4.7. Experimental values of maximum energy Emax of the β+ spectra of several 
mirror nuclei for which A = 2Z − 1. The experimental values are taken from [EVA 61] 

Given data: Ac = 0.585 MeV; (mn − mp) = 1.293 MeV. 

EXERCISE 4.2.– Decay of indium-114: maximum energies of β − and β+  spectra 

Analysis of the emission spectra of particles resulting from the decay of a mass 
of 10 g of indium-114 (Z = 49) shows that the latter decays 99.5% according to the  
β − mode and only 0.5% according to the β+ mode. For each of these decay modes, 
isobaric transition leads directly to the ground level of the daughter nucleus. The 
radioactive half-life of indium-114 is T = 71.9 sec. The decay of indium-114 occurs 
from its ground state. In this exercise, we propose to determine the maximum 
energies of the β − and β+ spectra observed. 

Given data (atomic masses): indium-114 (Z = 49): 113.904914 u; tin-114  
(Z = 50): 113.902779 u; cadmium-114 (Z = 48): 113.9033585 u. 

a) Justify the relative positions of the ground levels of the daughter nuclei 
relative to that of the parent nucleus. Then represent the decay diagram of indium-114. 
Include on the diagram the ground levels of the isobars involved in decay, the  
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Jπ values corresponding to these levels, and the isobaric transitions observed 
including their percentages. 

b) Write the β decay equations involved. Deduce therefrom the maximum 
energies of the β − and β+ spectra observed. 

c) Calculate the masses (in grams) of daughter products collected after 143.8 sec 
of indium-114 decay. What masses do we obtain to infinity? 

EXERCISE 4.3.– Decay of vanadium-48: energies of photons and Auger electrons   

Studying the decay of vanadium-48 enabled Luis Alvarez to discover the 
phenomenon of electron capture in 1937. This radionuclide decays by β+ emission 
and by electron capture in the K- or L-shell. This decay feeds approximately 100% 
of the 4+ excited level of titanium-48. The decay energy diagram of vanadium-48 is 
mapped out in Figure 4.19. 

 

Figure 4.19. Decay energy diagram of vanadium-48 

In this exercise, we propose to use the decay energy diagram of radiovanadium-48 
(Figure 4.19) to determine the energies of X- and γ-photons as well as the energies 
of Auger electrons. 

Given data: 

– Theoretical branching ratios:  

Rβ = BR(β +) = 45.8%; RECK = BRK (EC) = 48.2%; RECl = BRL (EC) = 6%  

– Internal conversion coefficients:  

- 4+ → 0+ transition: αK = 0.359; αL = 0.0385; 
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- 4+ → 2+ transition: αK = 5.88 × 10 −5; αL = 5.25 × 10 −6; 

- 2+ → 0+ transition: αK = 1.15 × 10 −4; αL = 1.03 × 10 −5. 

– C-shell binding energy for titanium 48: 

WK = 4.9664 eV; WL1 = 0.5637 eV; WL2 = 0.4615 eV; WL3 = 0.4555 eV 

– Intensity, Iγ, of emitted photons: 

1+
=

tot

totII
αγ   [4.107] 

In relationships [3.199]: αtot = αK + αL + , etc.;  Itot: total intensity of the observed 
γ transitions. 

a) Indicate in the form of diagrams, the distributions of the vanadium and 
titanium nucleons according to the shell structure derived from a harmonic potential 
(a) and according to the distribution derived from the Woods–Saxon potential  
with spin-orbit coupling (b). Then justify the values of Jπ shown in Figure 4.19. 
Figure 2.7 will be used as a basis. 

b) Determine the types of multipole transitions that can be observed when 
titanium deexcites to its ground level. Specify, with supporting justification, the 
most probable transitions. 

c) Reproduce Figure 4.19 and then represent the most probable multipole 
transitions and the corresponding γ-photons. 

d) List all observed photons and calculate their intensities and energies. 

e) Determine the energies of the X-photons and Auger electrons observed. 

EXERCISE 4.4.– Decay of arsenic-74: masses of products formed and maximum 
energies of the β − and β+ spectra   

Let us consider a radioactive sample containing 80 mg of radioarsenic-74  
(Z = 33) of radioactive half-life T = 17.77 days.  This radioelement decays according 
to the β − (34%) and β+ (29%) modes and by electron capture (37%). 

Given data (atomic masses): arsenic-74: 73.9239287 u; germanium-74: 
73.9211778 u; selenium-74: 73.9224764 u.  

a) Write the β −, β + decay equations and EC of radioarsenic-74. 

b) Determine the mass percentages of the elements present in the sample after 
53.31 days of decay of 74As.   
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c) Calculate the maximum energy of the β+ spectrum. 

d) The β− decay mode of 74As reveals the presence of two groups of β− particles: 
a group noted β0

− and consisting of 53% of the transitions leading to the ground state 
of the daughter nucleus and a group noted β1

− consisting of 47% of the transitions 
leading to the excited state of the daughter nucleus, whose energy measured in 
relation to its ground level is equal to 596 keV. Map out the complete decay energy 
diagram of vanadium-74. The percentages of the observed transitions will be shown 
on the diagram. 

e) Calculate the maximum energy of the β − spectrum for each group of particles.   

EXERCISE 4.5.– Decay of copper-64: determination of partial decay probabilities per 
unit time   

Certain radioelements such as copper-64 have the particular feature of presenting 
three decay pathways: β −, β + and EC. Figure 4.20 shows the energy spectra of β − 
(39%) and β + (18%) particles emitted by copper-64. This radionuclide also decays 
by electron capture, EC (43%) in the K-shell. 

 

Figure 4.20. Energy spectra of β particles emitted by copper-64 

In this exercise we propose to identify the β spectrum corresponding to each 
decay pathway and to determine the partial decay constants relative to the three 
decay pathways of copper-64. 
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Given data: 

– atomic masses: copper-64: 63.9297642 u; zinc-64: 63.9291422 u;  

– nickel-64: 63.927966 u; 

– branching ratios: λEC/λβ
+ = 2.3; λβ

−
 /λβ

+ = 2.  

a) By comparing the shapes of the spectra shown in Figure 4.20, identify, with 
supporting justification, the spectrum corresponding to the β− particles and that 
corresponding to the β+ particles. 

b) Write the β − and β+ decay equations. 

c) Graphically determine the maximum energies, Emaxβ- and Emaxβ +, of the β− 
and β+ spectra, respectively. Justify the results obtained by the calculation. 

d) Calculate the partial decay probabilities per unit time and the partial periods 
relative to the three decay pathways of copper-64. What can be noted? Briefly 
justify this remark. 

EXERCISE 4.6.– Study of the various decay pathways of potassium-40 

Potassium-40 of half-life T = 1.248 × 109 years decays:  

– 88.8% to the ground level of calcium-40; 

– 11% to the ground level of argon-40; 

– 0.001% to the excited level (at 1,460.8 keV) of argon-40. 

Deexcitation of the excited level of argon to its ground level occurs by emission 
of γ-photons. 

Given data: 

– isotopic abundance of 40K: 0.01167%; 

– atomic masses: 40K: 39.96399848 u; 40Ar: 39.962383122 u; 

– maximum observed spectrum energy: 1,311.6 keV; 

– molar mass of potassium nitrate: 101 g ⋅ mol −1. 

a) Identify, with supporting justification, the various decay pathways of 40K. 

b) Theoretically justify the decay path leading to the ground level of argon-40.  

 

 



292     Nuclear Physics 1 

c) Map out the decay energy diagram of potassium-40, showing the various 
decay pathways and the observable gamma transition. 

d) Determine the atomic mass of calcium-40. 

e) Let us consider a 50-kg bag of potassium nitrate, KNO3. Calculate its 
intimate activity as well as the number of photons emitted per hour by this bag. 

EXERCISE 4.7.– Accumulation of xenon-131 by irradiation of tellurium-130 

In this exercise, we propose to study the family tree leading to xenon-131 from 
deuteron irradiation of tellurium-130. The nuclear reaction 130Te (d, p) 131Te 
generates the decay chain β− leading to the accumulation of 131Xe: 

130
52Te

1

),(

λ
⎯⎯⎯ →⎯ pd 131

52Te
2λ

β⎯⎯ →⎯
− 131

53 I
3λ

β⎯⎯ →⎯
− 131

54 Xe  (stable)  

In this decay chain, the nuclear reaction 130Te (d, p) 131Te plays the role of a 
parent substance with a long half-life for tellurium 131Te. This enables the 
approximation λ1 → 0. The radioactive half-lives of tellurium-130 and iodine-131 
are equal to 30 hrs and 8 days, respectively. 

Let N01 be the initial number of 130Te nuclei. Under experimental conditions, the 
parent substance is equivalent to a radioactive source of decay constant λ1  and 
initial activity A01 = 7.4 × 107 Bq. 

a) Explain the nuclear reaction 130Te (d, p) 131Te. 

b) Determine the activity of iodine-131 after 12 hrs of irradiation. 

c) Using the Bateman equations, show that the number of 131Xe nuclei 
accumulating over time is given by the equation (taking account of the 
approximation: λ1 → 0).  

323 2
4 1 01

2 2 3 3 2 3

( )
( ) ( )

ttN t N t e e λλλ λλ
λ λ λ λ λ λ

−− 
= − + × − × − 

 

d) Calculate the number of xenon-131 nuclei accumulated in 12 hrs of 
irradiation. 
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4.6. Solutions to exercises 

SOLUTION 4.1.– Determination of the maximum energy of the β+ spectrum from the 
semi-empirical Bethe–Weizsäcker formula 

a) Nature of the AX nucleus 

The mass number A = Z + N. The mirror nuclei verify the relationship: 

Z − N = ± 1  2Z − A = ± 1  A = 2Z ± 1.  

Radionuclide AX with mass number A = 2Z − 1 is indeed a mirror nucleus. 

b) Expression of mass difference  

Let us write the decay equation for the β+-emitting AX nucleus. We obtain: 

0
1 1

A A
Z Z eX Y e ν−→ + +   [4.108a] 

In semi-empirical Bethe–Weizsäcker formula [2.119], let us replace the mass of 
the hydrogen atom, MH, with the mass of the proton and use a lowercase letter to 
designate the mass, Mn, of the neutron. Furthermore, knowing that the mass number 
is odd (A = 2Z − 1), then the δ pair energy is zero [2.133a]. Taking [2.119] into 
account we obtain: 

A
ZAa

A
ZaAaAa

cmZAcZmcm

acsv

npX
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3/1
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3/2

222
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  [4.108b] 
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Y p n

v s c a

m c Z m c A Z m c
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   [4.108c] 

Let us expand equation [4.108c]. This gives: 

2 2 2 2 2 2/3

2 2

1/3 1/3 1/3

( )

2 ( 2 ) 4 ( 2 ) 4

Y p p n n v s

c c c a a a

m c Zm c m c A Z m c m c a A a A

a Z a Z a a A Z a A Z a
A A AA A A
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− −
+ − + + + +

   [4.108d] 
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By subtracting, member-to-member, equations [4.108b] and [4.108d], we find: 

A
a

A
ZAa

A
a

A
Zacmmcmm aacc

pnYX
4)2(22

)()(
3/13/1

22 −
−

−−+−−=−  [4.108e] 

Yet A = 2Z −  2Z = A + 1. Equation [4.108e] is then written: 

A
a

A
a

A
a

A
Aacmmcmm aacc

pnYX
44)1(

)()(
3/13/1

22 −+−++−−=−
 

Ultimately, this gives: 

(mX
  − mY)c2 = acA2/3−  (mn −  mp)c2   [4.109] 

c) Expression of the maximum energy of the β+ spectrum 

The decay energy via equation [4.108a] is given by relationship [4.18]: 

Qβ = [mX
  − (mY

 + m0)]c2 = Emaxβ + + Eγ  

This then gives: 

Emaxβ + = (mX
  − mY)c2 −  m0c2   [4.110] 

Using [4.109], equation [4.110] is then written: 

Emaxβ + = acA2/3−  (mn −  mp)c2 −  m0c2    [4.111] 

As a function of A, equation [4.111] is ultimately written (in MeV): 

Emaxβ + = 0.595 A2/3−  1.804   [4.112] 

d) Reproduction, accuracy of the nuclear model with constant nucleon density 

Using [4.112], we obtain the theoretical values of Emaxβ+ gathered in Table 4.8. 

Reading the results gathered in Table 4.8 we can see sound agreement between 
theory and experiment. This justifies the validity of the nuclear model with constant 
density, R = r0 A1/3. Nevertheless, this model based on the spherical nucleus remains 
a simplistic model. This also justifies the small differences observed between the 
experimental and theoretical results listed in Table 4.8. Indeed, as we saw in  
Chapter 1, the nucleus has a diffuse zone of around 2.2 fm corresponding to the skin 
thickness in which the nuclear charge distribution density ρ (r) gradually decreases 
(Figure 1.17). In addition, the value of the Coulomb coefficient varies from author to 
author (Table 2.8). For example, using the most recent value, ac = 0.695 MeV 
obtained by Roy Chowdhury and Basu [ROY 06], for 11C we find: Emaxβ+ = 1.63 MeV 
(experimental value: 0.99 MeV) and for 39Ca: Emaxβ+  = 6.2 MeV (experimental 
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value: 5.1 MeV). An increase in the energy gap between the theoretical and  
experimental values of Emaxβ+ is clearly noted by considering the theoretical results 
obtained with ac = 0.585 MeV [FEE 47, FRI 49]. It follows that the accuracy of the 
theoretical values of the maximum energy of the β+ spectrum depends on the value 
of ac chosen.  

Nucleus 
Emaxβ + (MeV) 
experiment 

Emaxβ + (MeV) 
theory 

11C 0.99 1.09 

13N 1.24 1.43 

15O 1.68 1.75 

17F 1.72 2.06 

19Ne 2.18 2.36 

21Na 2.50 2.65 

23Mg 2.99 2.93 

27Si 3.48 3.46 

29P 3.94 3.72 

31S 3.9 3.97 

33Cl 4.1 4.21 

35Ar 4.4 4.45 

37K 4.6 4.69 

39Ca 5.1 4.92 

41Sc 4.94 5.15 

Table 4.8. Comparison of the experimental values of maximum energy,  
Emax, of the β+ spectra of several mirror nuclei for which A = 2Z − 1 

SOLUTION 4.2.– Decay of indium-114: maximum energies of β − and β+  spectra 

a) Relative positions, decay diagram of indium-114 

The mass of cadmium-114 is greater than the mass of tin-114. It follows that the 
β+ decay energy of 114In is less than its β− decay energy. The ground level of 
cadmium is therefore lower than that of tin relative to the ground level of indium-114. 
The decay diagram is shown in Figure 4.21. 
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Figure 4.21. β decay energy diagram of indium-114 

b) Decay equations, maximum energies of the β spectra  

– Decay equations  

For the observed β − and β+ modes, the following are obtained, respectively: 

e
0
1

114
50

114
49 eSnIn ν++→ −    [4.113a] 

114 114 0
49 48 1 eIn Cd e ν→ + +   [4.113b] 

– Maximum energies of the spectra 

We will use the β − emission condition [3.106] and the β+ emission condition 
[3.109]. Considering [4.113], we then obtain: 

Emaxβ− = (MIn − MSn)c2; Emaxβ+ = (MIn − MCd)c2 − 2m0c2   [4.114a] 

Numerically we find: 

Emaxβ− = (113.904914  − 113.902779) × 931.5 =   1.989 MeV  [4.114b] 

Emaxβ+ = (113.904914  − 113.9033585) × 931.5 − 1.022 = 0.427   [4.114c] 

c) Masses of daughter products collected 

Let N0 be the number of nuclei contained in m0 = 10 g of indium-114 and N (t) 
the number of nuclei contained in m (t) grams of indium-114 at instant t. We obtain: 

0
0

( )
; ( )

A A

N N tm A m t A
N N

= × = ×    [4.115a] 
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The radioactive decay law of indium-114 is written: 

Ttt eNeNtN /693.0
00)( −− == λ

   [4.115b] 

The mass of indium-114 not decayed at instant t is written according to [4.115a] 
and [4.115b]: 

0.693 /
0( ) t Tm t m e−=   [4.116a] 

– At t = 143.8 sec. The decay half-life of indium-114 is T = 71.9 sec. It is then 
noted that the ratio t/T = 143.8/71.9 = 2  t = 2T. Equation [4.116a] is explicitly 
written: 

m2T = 10e− 0.693 ×2 = 2.5 g   [4.116b] 

The decayed mass, md = m0 – m2T = 7.5 g. The masses of products collected on 
the date t = 143.8 sec are then equal to: 

mSn = 99.5% m0 = 7.463 g; mCd = 0.5% md = 0.0375 g ≈ 38 mg. 

– At t = ∞. The total mass, m0, has decayed. Hence 

mSn = 99.5% m0 = 9.95 g; mCd = 0.5% m0 = 0.05 g = 50 mg. 

SOLUTION 4.3.– Decay of vanadium-48: energies of photons and Auger electrons   

a) Nucleon distribution, justification of values of Jπ 

– For titanium-48: Z = 22 and N = 26. The nucleon distribution is shown in 

Figure 4.22. It is recalled that the number of gj-nucleons distributed in a j -shell is 

gj = 2j +1. 

As shown in Figure 4.22, jn = jp = j = 7/2. Moreover, πn = πp = −  1. Hence the 
total parity, π = πn × πp = + 1. In addition, titanium-48 is an even-even nuclide. The 
angular momentum is then determined by rule [2.55], which we recall here: 

J = 2j – 1, 2j – 3, 2j – 5, 2j – 7, etc., 0  

Taking parity into account, we obtain: 

Jπ = 6+, 4+, 2+, 0+      
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Figure 4.22. Distribution of nucleons of titanium-48: (a) shell structure  
derived from a harmonic potential; (b) distribution derived from  

the Woods–Saxon potential with spin-orbit coupling 

The ground state corresponds to Jπ = 4+ according to the indication in  
Figure 4.19. The other Jπ values refer to the excited states of titanium-48. 

– For vanadium-48: Z = 23 and N = 25. The nucleon distribution is shown in 
Figure 4.23.  

 

Figure 4.23. Distribution of nucleons of vanadium-48: (a) shell  
structure derived from a harmonic potential; (b) distribution  

derived from the Woods–Saxon potential with spin-orbit coupling 
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According to Figure 4.23, jn = jp = j = 7/2;  π = + 1. The coupling of the 
individual angular momenta of the unpaired nucleons gives the different values of 
the total angular momentum, J. Thus: 

Jπ = (7/2  + 7/2)π ,  etc., (7/2  – 7/2)π = 7+, 6+, 5+, 4+, 3+, 2+, 1+, 0+      

We find Jπ = 0+ for the ground state and  Jπ = 4+ and Jπ = 2+, in accordance with 
the indications in Figure 4.19. The other Jπ values refer to the excited states of 
vanadium-48, which are not shown. 

b) Multipole transition types, the most probable transitions 

According to Figure 4.19, three transitions are probable: 

4+ → 0+; 4+ → 2+; 2+ → 0+ 

These transitions occur without a change in parity. They are therefore electric 
multipole transitions:  

– for the 4+ → 0+ transition,   = 4: E4 transition; 

– for the 4+ → 2+  transition,   = 6, 5, 4, 2: transition E6, ... E2; 

– for the 2+ → 0+ transition,   = 2: E2 transition. 

The most probable transitions correspond to the smallest values of  . They are 
therefore the two electric multipole transitions, E2: 4

+ → 2+ and 2+ → 0+. 

c) Representation of multipole transitions and γ-photons  

The representation of electric quadrupole transitions and photons observed is 
shown in Figure 4.24. 

d) Enumeration and energies of observed photons 

– Photon types: five types of photons are observed: the γ1- and γ2-photons 
resulting from the quadrupole transitions, E2, between the excited levels of titanium, 
and a third photon, γ3, due to the annihilation of the β+-positron with an electron of 
matter. In addition, there are the two X-photons resulting from the electron (from the 
L-shell) - hole (in the K-shell) recombinations.   

– Energy: taking into account Figure 4.24 and the annihilation process, we 
obtain:  

Eγ1 = 1313 keV; Eγ2  = 983 keV; Eγ3 = m0c
2 = 511 keV. 
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Figure 4.24. The most probable electric quadrupole  
transitions (E2) between excited levels of titanium-48 

Intensity:  

– 4+ → 2+ transition: αK + αL +1 ≈ 1  Iγ1 = Itot = 100%; 

– 2+ → 0+ transition: αK + αL +1 ≈ 1  Iγ2 = Itot = 100%; 

– annihilation process: Iγ3 =BR(β+) = 45.8%. 

e) Determination of energies of the X-photons and of the Auger electrons 

– X-photon energies 

For X-photons emitted by processes of electronic rearrangement between the K- 
and L2- and K- and L3-shells of titanium, we obtain: 

EX1 = WK − WL2 =  4.9664 − 0.4615 = 4.5049 keV 

EX2 = WK − WL3 =  4.9664 − 0.4555 = 4.5109 keV 

– Auger electron energies 

The Auger electron carries a kinetic energy satisfying energy conservation law 
[4.41], which we recall here: 

Ec (eA) = WK − Wi − Wj 

 
 

2,296 

983 

0 0+

2+

4+

E (keV) 4+

β 
+  

EC  

V48
23

Ti48
22

E2

E2γ2

γ1



Beta Radioactivity, Radioactive Family Tree     301 

Similarly, let us recall, due to the Auger effect, a gap created in the K-shell is 
filled by an electron of an upper shell (i). The excess energy is then transmitted to an 
electron of a shell (j), causing its expulsion from the electronic cloud. 

In this exercise, the Auger effect is involved in the K- and L (L1, L2, L3)-shells. 
Let Li and Lj designate one of the three L-subshells with Lj as the upper subshell. The 
binding energies of the three subshells are known. By considering the total energies, 
E = − W, we obtain:  

E(L1) = − 0.5637 keV;  E(L2) = − 0.4615 keV; E(L3) = − 0.4555 keV. 

Six energies can then be identified for the Auger electrons (considering the 
increasing arrangement order of the subshells: L1 → L2 → L3): 

– a L1-electron fills the K-shell gap and another electron of the same L1-subshell 
is expelled by Auger effect with a kinetic energy, Ec11 (eA); 

– a L2-electron fills the K-shell gap and another electron of the same L2-subshell 
is expelled by Auger effect with a kinetic energy, Ec22 (eA); 

– a L3-electron fills the K-shell gap and another electron of the same L3-subshell 
is expelled by Auger effect with a kinetic energy, Ec33 (eA); 

– a L1-electron fills the K-shell gap and another electron of the same L2-subshell 
is expelled by Auger effect with a kinetic energy, Ec12 (eA); 

– a L1-electron fills the K-shell gap and another electron of the same L3-subshell 
is expelled by Auger effect with a kinetic energy, Ec13 (eA); 

– a L2-electron fills the K-shell gap and another electron of the same L3-subshell 
is expelled by Auger effect with a kinetic energy, Ec33 (eA). 

Using [4.41], we then obtain, respectively: 

Ec11 (eA) = WK − W1 − W1 = WK − W (L1) − W (L1)  

Ec22 (eA) = WK − W2 − W2 = WK − W (L2) − W (L2)  

E33 (eA) = WK − W3 − W3 = WK − W (L3) − W (L3)  [4.117] 

Ec12 (eA) = WK − W1 − W2 = WK − W (L1) − W (L2)    

Ec13 (eA) = WK − W1 − W3 = WK − W (L1) − W (L3)   

Ec23 (eA) = WK − W2 − W3 = WK − W (L2) − W (L3)   
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Using [4.117], the Auger kinetic energies are thus theoretically obtained: 

Ec11 (eA) = WK − 2W (L1) 

Ec22 (eA) = WK − 2W (L2)   [4.118a] 

E33 (eA) = WK − 2W (L3)  

Ec12 (eA) = WK − W (L1) − W (L2)  

Ec13 (eA) = WK − W (L1) − W (L3)  [4.118b]  

Ec23 (eA) = WK − W (L2) − W (L3)  

Numerically we find, according to [4.118]: 

Ec11 (eA) = 4.9664 − 2 × 0.5637 = 3.8390 keV 

Ec22 (eA) = 4.9664  − 2 × 0.4615 = 4.0434 keV  [4.119a] 

E33 (eA) = 4.9664  − 2 × 0.4555 = 4.0554 keV 

 Ec12 (eA) = 4.9664  − 0.5637 − 0.4615 = 3.9412 keV  

Ec13 (eA) = 4.9664  − 0.5637 − 0.4555 = 3.9472 keV  [4.119b]  

Ec23 (eA) = 4.9664  − 0.4615 − 0.4555 = 4.0494 keV   

NOTE.– Experimentally, the six kinetic energies of the Auger electrons [4.118] are 
not solved. Thus, only the number of Auger K-electrons expelled within the energy 
range comprised between Ecmin (eA) and Ecmax (eA) is given. As indicated by results 
[4.119], the minimum kinetic energy of the Auger electrons corresponds to the 
energy Ec11= 3.8390 keV and the maximum kinetic energy at Ec33 = 4.0554 keV. We 
thus obtain the energy range:  

Ecmin (eA) = WK − 2W (L1); Ecmax (eA) = WK − 2W (L3)  [4.120] 

SOLUTION 4.4.– Decay of arsenic-74: masses of products formed and maximum 
energies of the β − and β+ spectra   

a) Decay equations of radioarsenic-74 

The equations for the β −, β+ and electronic capture (EC) decay of arsenic-74 are 
written, respectively: 

e
0
1

74
34

74
33 eSeAs ν++→ −   [4.121a] 
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e
0
1

74
32

74
33 eGeAs ν++→   [4.121b] 

e
74
32

74
33 RXGeeAs ν++→+ −

  [4.121c] 

b) Determination of mass percentages 

The decay law of the radioarsenic mass is: 

m (t) = m0 e−0.693 t/T   [4.122] 

The radioactive half-life of 74As is T = 17.77 days.  For t = 53.31 days =  3T, 
equation [4.121] gives: 

m3T = 80 × e− 0.693 × 3 = 10.0 mg   [4.123] 

Arsenic-74 decays 34% by β −, producing selenium-74, and 29% by β + and 37% 
by electron capture, producing germanium-74 according to [4.121]. The mass of 
decayed arsenic after 53.31 days is md = 70 mg. We then obtain a mass: 

– mAs = 10.0 mg;  

– mSe = 70 × 34% = 23.8 mg; 

– mGe = 70 × 66% = 46.2 mg. 

c) Calculation of the maximum energy of the β+ spectrum 

The maximum energy of the β + spectrum is: 

Emaxβ+ = (MAs − MGe)c2 − 2m0c2   [4.124] 

Numerically: 

Emaxβ+ = (73.9239287 − 73.9211778) × 931.5 − 1.022 = 1.540 MeV    

d) Decay energy diagram 

Of the 34% decay according to the β− mode, 53% of transitions, i.e. 18.02%, lead 
to the ground state of selenium-74 (β0

− group) and 47% of transitions, i.e. 15.98%,  
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lead to the excited state at 596 keV of selenium-74 (β1
− group). The decay diagram 

of vanadium-74 is shown in Figure 4.25. 

 

Figure 4.25. Decay energy diagram of vanadium-74 

e) Maximum energy of the β− spectra 

For the β0
− group, we obtain: 

Emaxβ0
− = (MAs − MSe)c2  [4.125a] 

Numerically: 

Emaxβ0
− = (73.9239287 − 73.9224764) × 931.5 = 1.353 MeV   

For the β1
− group, the energy of the emitted γ-photon (Eγ = 596 keV) during the 

deexcitation of selenium to its ground state is taken into account. Thus: 

Emaxβ1
− = (MAs − MSe)c2 − Eγ   [4.125b] 

Numerically: 

Emaxβ1
− = 1.353 − 0.596 = 0.757 MeV  

SOLUTION 4.5.– Decay of copper-64: determination of partial decay probabilities per 
unit time   

a) Identification of spectra 

For a β− spectrum, there is a number of particles emitted and retained in the 
nucleus environment by the electron-nucleus coulomb attraction for E = 0. 
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Inversely, for a β+ spectrum, there are no particles emitted for E = 0. Spectrum (1) 
corresponds to the β− spectrum and spectrum (2) corresponds to the β+ spectrum.  

b) Decay equations 

The  β − and β+ decay equations are written, respectively: 

e
0
1

64
30

64
29 eZnCu ν++→ −   [4.126a] 

e
0
1

64
28

64
29 eNiCu ν++→

  [4.126b] 

c) Graphical determination of the maximum energies of the β spectra, justification 

– Graphical determination 

The spectra are reproduced to scale. We find, graphically (Figure 4.26): 

Emaxβ + = 0.660 MeV; Emaxβ − = 0.570 MeV   [4.127] 

 

Figure 4.26. Maximum energy of β− and β+ spectra of copper-64 
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– Theoretical justification 

Theoretically: 

Emaxβ
− = (MCu − MZn)c2 = 0.579 MeV  [4.128a] 

Emaxβ+ = (MCu − MNi)c2 − 2m0c2 =  0.653 MeV  [4.128b] 

The theoretical results [4.128] are well corroborated by the experimental 
observations [4.127].  

Given data: 

– atomic masses: copper-64: 63.9297642 u; zinc-64: 63.9291422 u;  

– nickel-64: 63.927966 u; 

– branching ratios: λK/λβ
+ = 2.3; λβ

−
 /λβ

+ = 2.  

d) Partial decay probabilities, partial half-lives  

The partial decay probabilities per unit time correspond to the λβ
−

 , λβ
+

 and λEC 
decay constants relative to the β −, β+ and EC decay modes, respectively. The total 
decay constant, λ, of copper-64 for the three pathways is equal to the sum of the 
partial decay constants. Thus:  

λ = λβ
− + λβ

+
 + λEC   [4.129a] 

Considering the branching ratios, λEC/λβ
+ = 2.3; λβ

−
 /λβ

+ = 2, let us express λ as a 
function of λβ

−. We obtain, according to [4.129a]: 

−−−− =++= ββββ λλλλλ
2

3.5

2

3.2

2

1
  [4.129b]  

Considering the decay half-life, T, of copper-64, we obtain: 








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


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=
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T

T

T

T

CE
2ln

3.5

3.2
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3.5

1
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3.52ln

λ

λ

λ

λ β

β

β    [4.129c] 
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Given that T = 12.8 hrs, we obtain according to [4.129c]: 

λβ
−

 = 0.020 hrs −1 = 5.7 × 10 −6 s −1; Tβ
−

 = 33.92 hrs 

λβ
+

 = 0.010 hrs − 1 = 2.8 × 10 −6 s −1; Tβ
+

 = 67.84 hrs   [4.129d] 

λEC = 0.023 hrs −1 = 6.5 × 10 −6 s −1 ; TEC  = 29.50 hrs 

Comparing the partial decay half-lives, Ti [4.129d] with the radioactive half-life 
T = 12.8 hrs of copper-64, we note that Ti > T. This predictable result is due to the 
various decay pathways of copper. 

SOLUTION 4.6.– Study of the various decay pathways of potassium-40 

a) Identification of the various decay pathways of 40K 

The various decay pathways of potassium-40 studied all correspond to isobaric 
transitions (A = constant). Let us now consider the variation in the charge number, Z, 
for each transition. We thus obtain:  

– 19K → 20Ca transition (88.8%): ΔZ = + 1: β − decay; 

– 19K → 18Ar transition (11.2%): ΔZ = − 1: β+ decay; 

– 19K → 18Ar transition (0.001%): ΔZ = − 1: electron capture in competition with 
β+ decay. 

b) Decay energy diagram of potassium-40 

The decay energy diagram of potassium-40 is mapped out below (Figure 4.27). 

 

Figure 4.27. Decay energy diagram of potassium-48.  
Of particular note are its three decay pathways 
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c) Theoretical justification 

Let us determine the mass energy difference (MK – MAr)c2. We obtain: 

(MK – MAr)c2 = (39.96399848 − 39.962383122) × 931.5 = 1.505 MeV 

The β+ emission is clearly observed since: 

(MK – MAr)c2 > 1.022 MeV  [4.130] 

d) Determination of the atomic mass of calcium-40 

For β − emission: 

(MK – MCa)c2 = Emaxβ −   MCac2 = (MKc2 – Emaxβ −)  [4.131a] 

Numerically, we obtain: 

MCac2 = (39.96399848 × 931.5 – 1.3116) = 37,225.153 MeV 

That is, in atomic units: 

MCa = 39.9625904 u  [4.131b] 

e) Initial activity, number of photons  

– Initial activity of the bag of ammonium nitrate 

The molar mass of potassium, M = 39 g ⋅ mol −1. One mole of potassium nitrate 
of mass 101 g therefore contains 39 g of potassium. The 50,000 g bag of potassium 
nitrate then contains 19,306.93 g of potassium. Given that the isotopic abundance of 
40K is equal to 0.01167%, the 50-kg bag contains a mass, m, of potassium-40 such 
that: m = 2.25 g. This mass corresponds to a number of nuclei, N0 = (m × NA/M) = 
3.47 × 1022. The initial activity of 40K then has the value: 

000
2ln N

T
NA ==λ

  [4.132a] 

Numerically (T = 1.248 × 109 years = 3.938 × 1016 sec):  

A0 = 610,582.2 Bq ≈ 6.1 × 105 Bq. 
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– Number of photons emitted per hour by this bag 

The photons are produced by the electron capture process occurring for 0.001%. 
Each EC decay produces a photon. The total number Nγ of photons is therefore equal 
to   

Nγ  = 0.001% A0 ≈ 6 photons s −1 =  21,600 photons hr −1. 

SOLUTION 4.7.– Accumulation of xenon-131 by irradiation of tellurium-130 

a) Explication of the nuclear reaction 

The nuclear reaction 130Te (d, p) 131Te is explicitly written: 

TeHTeH 131
52

1
1

130
52

2
1 +→+   [4.132b] 

b) Determination of the activity of iodine-131 

Let us consider the production chain leading to stable xenon: 

1 2 3

( , )130 131 131 131
52 52 53 54 ( )d pTe Te I Xe stableβ β

λ λ λ

− −

⎯⎯⎯→ ⎯⎯→ ⎯⎯→   [4.133] 

Let us determine the law of evolution of iodine-131 using the Bateman 
equations. We obtain result [4.66], which we recall here: 
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The activity, A3 (t), of iodine-131 then has the value (A0 = λ1N01): 
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Let us now take account of the approximation λ1 → 0 (e −λ1t ≈ 1). We obtain: 

32
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That is, ultimately: 



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

−
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−
+= −− tt eeAtA 32

)()(
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32
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013

λλ
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λλ
λ

  [4.134b] 

NOTE.– T2 = 30 h  λ2 = 0.0231 h −1; T3 = 8 d = 192 h  λ3 = 0.0036 h −1.   

Which gives: 

7 0.0231 12
3(12)

0.0036 12 8

0.0036
7.4 10 1

(0.0231 0.0036)

0.0231
1.68 10

(0.0231 0.0036)

A e

e

− ×

− ×


= × + −


+ = ×− 

 

Thus: A3(12) = 1.68 × 108 Bq.   

c) Demonstration 

Let N4 (t) be the number of 131Xe nuclei that accumulate over time. Since  
xenon-131 is stable, its decay period is infinite. Consequently, its probability of 
decay per unit time is zero (λ4 = 0). Using the Bateman equations, we obtain by 
using [4.58]: 
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According to [4.59]: 
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Using [4.136], accumulation equation [4.135] of the parent nucleus, X3, is 
written: 
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Given that λ4 = 0, we obtain: 
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That is, ultimately: 

323 2
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  [4.137] 

d) Determination of the number of nuclei of xenon-131 

We have: λ1N01 = A01  = 7.4 × 107 Bq; λ2 = 6.4 × 10 −6 s −1; λ3 = 1.0 × 10 −6 s −1.    

Using [4.137], we obtain, at t = 12 hrs (t in seconds since the activity is 
becquerel): 
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Appendix 1 

Quantified Energy of the Three-
Dimensional Quantum Harmonic Oscillator 

In this appendix, we propose to demonstrate expression [2.19] of the quantified 
energy of a three-dimensional quantum harmonic oscillator. To do this, we will 
adopt two approaches. Firstly, we will integrate the Schrödinger equation describing 
the state of a one-dimensional quantum harmonic oscillator. Then, we will take a 
much more flexible approach to finding relationship [2.19], based on the creation 
and annihilation operators. 

A1.1. Integration of the Schrödinger equation 

Let us consider a quantum harmonic oscillator with a dimension (Ox) of mass m, 
energy E, pulsatance ω and potential energy U (x) [SAK 12]:  

2 2 21 1
( )

2 2
U x kx m xω= =  [A1.1] 

The steady-state Schrödinger equation of the harmonic oscillator is given by the 
expression: 

2 2

2
( ) ( ) ( )

2

d U x x E x
m dx

 
− + Φ = Φ 
 


 [A1.2] 

Using [A1.1], equation [A1.2] is written: 

2 2
2 2

2

1
( ) ( )

2 2

d m x x E x
m dx

ω 
− + Φ = Φ 
 


 [A1.3] 
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Let us introduce into [A1.3] the dimensionless quantities: 

xmq

ω= ; 

2Eε
ω

=


 [A1.4] 

We obtain: 

( ) 0)(
)( 2

2

2

=Φ−+Φ qq
dq

qd ε  [A1.5] 

The solution to equation [A1.5] is of the form: 

2 /2( ) ( ) qq Au q e −Φ =  [A1.6] 

In [A1.5], A is a constant and function u (q) is an integer series of power q given 
by the expression: 

0

( ) k
k

k
u q a q

∞

=

=   [A1.7] 

By deriving the wave function [A1.6] we obtain: 

2

2 2

/2

2 2
/2 /2

2 2

( ) ( )
( )

( ) ( ) ( ) ( )
( ) ( )

q

q q

d q du qA qu q e
dq dq

d q d u q du q du qA q u q e qA qu q e
dq dqdq dq

−

− −

  Φ = −  
 


   Φ = − − − −      

 

The second of these equations is written in condensed form: 

2 2
2

2 2

( ) ( ) ( )
2 ( 1) ( ) ( )

d q d u q du qq q u q q
dqdq dq

 Φ = − + − Φ 
 

 [A1.8] 

If we apply [A1.6] and [A1.8] in [A1.5], after arrangement we find: 

( )
2

2

( ) ( )
2 1 ( ) 0

d u q du qq u q
dqdq

ε− + − =  [A1.9] 
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To establish the quantified expression of the energy of the one-dimensional 
harmonic oscillator, we simply need to determine the recurrence relationship 
satisfied by the expansion coefficients, ak, of the entire series, u(q), and apply the 
cutoff condition. 

Using [A1.7], we then obtain: 

1

0

2
2

2
0

( )

( )
( 1)

k
k

k

k
k

k

du q ka q
dq

d u q k k a q
dq

∞
−

=

∞
−

=

 =


 = −




 [A1.10] 

If we apply [A1.10] in [A1.9], we obtain: 

( )2 1

0 0 0

( 1) 2 1 0k k k
k k k

k k k
k k a q q ka q a qε

∞ ∞ ∞
− −

= = =

− − + − =    

That is: 

( )2

0 0

( 1) 2 1 0k k
k k

k k
k k a q k a qε

∞ ∞
−

= =

− + − − =   [A1.11] 

By identifying the terms of the same power in qk, we find (by simply replacing k 
with k + 2 in the first term of equation [A1.11]): 

( )2( 2)( 1) 2 1 0k kk k a k aε++ + + − − =  

Thus: 

( )
2

2 1

( 2)( 1)k k

k
a a

k k
ε

+

+ −
=

+ +
 [A1.12] 

Now we can use the cutoff condition applied to equation [A1.12]. 

From a quantum mechanics perspective, wave function [A1.6] must be finite 
(convergent) for all values of q (including q → ± ∞). To meet this requirement, 
series [A1.10] must stop for a certain value, n, of the integer, k. This cutoff condition 
thus implies that an + 2 = 0. That is, according to [A1.12]: 

2 1 0n ε+ − =   12 += nε  [A1.13]  
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Using the last quantity [A1.4] and [A1.13], we obtain: 

2 1
2 1

2n
E n E nε ω
ω

 = = +  = + 
 




 [A1.14] 

A1.2. Use of creation and annihilation operators 

Let us consider a harmonic oscillator with a dimension (Ox) of mechanical 
energy E given by the relation: 

22
2

2

1

2
)( xm

m
pxUEE c ω+=+=

  [A1.15] 

The Hamiltonian H associated with mechanical energy [A1.15] is written: 

2
2 21

2 2

PH m X
m

ω= +   [A1.16] 

The steady-state Schrödinger equation of the harmonic oscillator is given by 

expression [A1.3]. Let us introduce the dimensionless operators X̂ and P̂  defined by 
the relationships [COH 77]: 

ˆ
ˆ

1ˆ ˆ

mX X X X
m

P P P m P
m

ω

ω
ω

ω

 = =  
 = =







  [A1.17] 

Using [A1.17], Hamiltonian [A1.16] is then written in the form: 

2
2 2ˆ ˆ

2 2

m mH P X
m m
ω ω

ω
= + × 

 [A1.18] 

Factoring [A1.18] by the energy of the photon, we obtain: 

2 21 ˆ ˆ[ ( )]
2

H P Xω= +   [A1.19] 
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The Hamiltonian H has the dimension of an energy. Let us then introduce the 

dimensionless operator, Ĥ , given by the relationship: 

2 21ˆ ˆ ˆ ˆ( )
2

H P X H Hω= +  =   [A1.20] 

According to [A1.20], the Hamiltonian, H, is proportional to the operator, Ĥ : 
they therefore have the same eigenvector, which we note nΦ .  

To determine the eigenvalues of H, we must now introduce three other operators 
noted a† (read: a dagger) and a. By definition, the a† and a operators are called 
(photon) creation and (photon) annihilation operators, respectively, given by the 
relationships: 

†

† †

1 1ˆ ˆ ˆ( ) ( )
2 2
1 ˆ ˆ ˆ( ) ( )
2 2

a X iP X a a

ia X iP P a a

 = + = +   
 = − = −
  

 [A1.21] 

Knowing that the commutator [X, P] = i  , using [A1.17], it is easy to show that 

[ X̂ , P̂ ] = i. Let us thus determine the product a†a to introduce the operator N. Using 
[A1.22], we obtain:  

† 2 21 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )
22 2

a a X iP X iP X P iXP iPX= − × − = + + −  

That is, knowing that [ X̂ , P̂ ] = i: 

2

1ˆ]ˆ,ˆ[
2

)ˆˆ(
2

1 22† −=−+= HXPiPXaa
  [A1.22] 

The result [A1.22] allows us to introduce the dimensionless operator noted N 
given by the relationship: 

† 1ˆ
2

N a a H= = −   [A1.23] 
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Using [A1.20] and [A1.23], the Hamiltonian, H, is expressed as a function of N. 
Thus: 

1

2
H Nω  = + 

 
   [A1.24] 

Let us designate nΦ  with the eigenkets of N of eigenvalues n, n = 0, 1, 2, 3, 

…., ∞. Taking into account [A1.24] we obtain: 

1 1

2 2
n n

n n n n
n n n

N n
N E n

H E
ω ω

 Φ = Φ     + Φ = Φ = + Φ    Φ = Φ    
    

Thus: 

1

2n n nE nω  Φ = + Φ 
 

   [A1.25] 

With the nΦ  kets being orthonormal ( nmmn δ=ΦΦ ), we ultimately obtain: 

1 1

2 2n n n n n nE n E nω ω   Φ Φ = + Φ Φ  = +   
   

    

Result [A1.14] is indeed found. It now remains for us to generalize it to three 
dimensions.  

In order to generalize result [A1.14] to three dimensions, let us consider the 
tensor product space, E = Ex ⊗ Ey ⊗ Ez (the “⊗“ sign symbolizes the tensor 
product). We will use |ΦI to designate the ket describing the state of the harmonic 
oscillator in space relative to the i dimension (i = x, y, z):  

|Φx∈Ex; |Φy∈Ey; |Φz∈Ez  

Hx∈Ex; Hy ∈Ey; Hz ∈Ez  

The global ket, |Φxyz, describing the state of the harmonic oscillator in  
three-dimension space is then written (|Φxyz∈E): 

|Φxyz = |Φx ⊗ |Φy ⊗ |Φz  [A1.26a] 
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The global Hamiltonian, H, is the sum of the one-dimensional Hamiltonians, Hi, 
i.e.: 

Hxyz = H = Hx + Hy + Hz  [A1.26b] 

The Hamiltonian Hx of the quantum harmonic oscillator relative to the x 
dimension is given by expression [A1.16], which we will rewrite as follows:  

22
2

2

1

2
Xm

m
PH x

x ω+=
  [A1.27] 

The Schrödinger equation [A1.2] is then written: 

)()()(
2 2

22
xExxU

dx
d

m xxx Φ=Φ











+− 

  [A1.28] 

The solution to equation [A1.28] and that of each of the equivalent equations for 
the y and z coordinates is given by [A1.14]. Thus: 

1 1 1
; ;

2 2 2nx x ny y nz zE n E n E nω ω ω     = + = + = +     
     

     [A1.29] 

Let us now determine the expression of the total energy, Enxnynz, of the  
three-dimensional harmonic oscillator. Considering [A1.26], the eigenvalue equation 
for Hamiltonian H is written in the tensor product space: 

H|Φxyz = (Hx + Hy + Hz)(|Φx ⊗ |Φy ⊗ |Φz) 

That is: 

Enxnynz |Φxyz  = Hx|Φx ⊗ (|Φy ⊗ |Φz) + |Φx ⊗ (Hy |Φy) ⊗ |Φz 

                        + (|Φx ⊗ |Φy) ⊗ Hz |Φz 

i.e.: 

Enxnynz |Φxyz  = (Enx + Eny + Enz)|Φx ⊗ |Φy ⊗ |Φz   

       = (Enx + Eny + Enz) |Φxyz 

 



322     Nuclear Physics 1 

Thus, ultimately: 

Enxnynz = (Enx + Eny + Enz     [A1.30] 

Using [A1.29], solution [A1.30] is written in the form: 







 +++=

2

3
zyxnxnynz nnnE ω

  [A1.31] 

The energy of the three-dimensional quantum harmonic oscillator is then written: 

3
;

2n x y zE n n n n nω  = + = + + 
 

   [A1.32] 

By placing n = N in [A1.32], equation [2.20] is found in the case of a nucleon 
subject to potential [2.12]. 



Appendix 2 

Atomic Masses of Several Nuclides 

NOTE.– The mass of the nucleus corresponding to the indicated element is  
obtained by subtracting from the atomic mass, M, the mass of Z electrons; that is: M 
(A

ZX) = M (X) − Zme. 

EXAMPLE.– Mass of the 42He helium nucleus: m (4
2He) = M (He) − 2 me. 

NOTE.– m (4
2He) = 4.00260 u − 2  × 5.486 × 10 −4 u = 4.0015028 u = 4.00150 u. 

Element 
(X) 

Z AX M (X) 
(u) 

 

Element 
(X) 

Z AX M (X) 
(u) 

Hydrogen 

(H) 

1 1H 1.007825 

Oxygen (O) 

8 16O 15.99491 

1 2H 2.01400 8 17O 16.99910 

1 3H 3.016050 8 18O 17.99920 

Helium (He)
2 3He 3.01603 Fluorine (F) 9 19F 18,99840 

2 4He 4.002 60 

Neon 

(Ne) 

10 20Ne 19.99244 

Lithium (Li)
3 6Li 6.01512 10 21Ne 20.99335 

3 7Li 7.01600 10 22Ne 21.99138 

Beryllium 
(Be) 

4 7Be 7.01690 

Sodium 

(Na) 

11 22Na 21.99440 

4 9Be 9.01218 11 23Na 22.98980 

4 10Be 10.01350 11 24Na 23.99096 

Nuclear Physics 1: Nuclear Deexcitations, Spontaneous Nuclear Reactions
First Edition. Ibrahima Sakho. 
© ISTE Ltd 2021. Published by ISTE Ltd and John Wiley & Sons, Inc.
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Element 
(X) 

Z AX M (X) 
(u) 

 
Element 

(X) 
Z AX M (X) 

(u) 

Boron (B) 
5 10B 10.01290 

Magnesium 
(Mg) 

12 24Mg 23.98504 

5 11B 11.00931 
Aluminum 

(Al) 

13 26Al 25.98689 

Carbon (C) 

6 12C 12.00000 13 27Al 26.98153 

6 13C 13.00335 

 
Silicon 

(Si) 

14 28Si 27.97693 

6 14C 14.00320 14 29Si 28.97649 

Nitrogen (N)
7 14N 14.00307 14 30Si 29.97376 

7 15N 15.00031 14 31Si 30.97553 

Table A2.1. Atomic masses of nuclides with atomic numbers Z = 1-14 

Element 
(X) 

Z AX M (X) 
(u) 

 

Element 
(X) 

Z AX M (X) 
(u) 

Silicon 

(Si) 
14 32Si 31.97400 

Iron 

(Fe) 

26 57Fe 56.93540 

Phosphorus 
(P) 

15 31P 30.99376 26 58Fe 57.93300 

15 32P 31.97390 26 59Fe 58.93500 

15 33P 32.97170 
Cobalt 

(Co) 
27 56Co 55.94000 

Sulfur 

(S) 
16 32S 31.97207 Copper 

(Cu) 

29 63Cu 62.92980 

Chlorine 

(Cl) 

17 35Cl 34.96885 29 65Cu 64.92780 

17 36Cl 35.97970 
Zinc 

(Zn) 
30 64Zn 63.92910 

17 37Cl 36.96580 
Gallium 

(Ga) 
31 69Ga 68.92570 
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Element 
(X) 

Z AX M (X) 
(u) 

 
Element 

(X) 
Z AX M (X) 

(u) 

Argon 

(Ar) 

18 36Ar 35.96755 

Germanium 
(Ge) 

32 70Ge 69.92430 

18 37Ar 36.96670 32 72Ge 71.92170 

18 38Ar 37.96272 32 74Ge 73.92190 

18 39Ar 38.96400 Arsenic (As) 33 75As 74.92160 

18 40Ar 39.96240 
Selenium (Se) 

34 78Se 77.91730 

Potassium 
(K) 

19 39K 38.96371 

 

34 80Se 79.91650 

19 40K 39.97400 

Bromine (Br) 

35 77Br 76.92100 

19 41K 40.95200 35 79Br 78.91830 

19 42K 41.96300 35 81Br 80.91830 

Calcium 

(Ca) 
20 40Ca 39.96259  35 82Br 81.91700 

Scandium 

(Sc) 

21 45Sc 44.95592  Krypton (Kr) 36 84Kr 83.91200 

21 46Sc 45.95500  

Rubidium (Rb)

37 85Rb 84.91170 

Titanium 

(Ti) 
22 48Ti 47.94800  37 87Rb 86.90900 

Vanadium 

(V) 
23 51V 50.94400  

Strontium (Sr) 

38 84Sr 83.91340 

Chrome 

(Cr) 
24 52Cr 51.94050  38 85Sr 84.91300 

Manganese 
(Mn) 

25 55Mn 54.93810  38 86Sr 35.90940 

Iron 

(Fe) 

26 54Fe 53.96960  38 87Sr 86.90890 

26 55Fe 54.93800  38 88Sr 87.90560 

26 56Fe 55.93490  38 89Sr 88.90700 

Table A2.2. Atomic masses of nuclides with atomic numbers Z = 14-38 
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Element 
(X) 

Z AX M (X) 
(u) 

 

Element 
(X) 

Z AX M (X) 
(u) 

Strontium 
(Sr) 

38 90Sr 89.90700 
Tellurium 

(Te) 
52 130Te 129.90670 

Yttrium 

(Y) 

39 87Y 86.91100 
Iodine 

(I) 
53 127I 126.90040 

39 88Y 87.91000 Xenon 

(Xe) 

54 129Xe 128.90480 

39 89Y 88.90540 54 132Xe 131.90420 

39 91Y 90.90700 
Cesium 

(Ce) 

55 133Ce 132.90510 

Zirconium 
(Zr) 

40 90Zr 89.90430 55 137Ce 136.90750 

Niobium 
(Nb) 

41 93Nb 92.90600 

Barium (Ba) 

56 132Ba 131.90570 

Molybdenum 
(Mo) 

42 98Mo 97.90551 56 134Ba 133.90430 

Technetium 
(Tc) 

43 98Tc 97.90720 56 135Ba 134.90560 

Ruthenium 
(Ru) 

44 102Ru 101.90370 56 136Ba 135.90440 

44 104Ru 103.90550 56 137Ba 136.90630 

Rhodium 
(Rh) 

45 103Rh 102.90480 56 138Ba 137.90500 

Palladium 
(Pd) 

46 105Pd 104.90460 
Lanthanum 

(La) 
57 139La 138.90610 

46 106Pd 105.90320 

 

Cerium (Ce) 

58 138Ce 137.90570 

46 108Pd 107.90300 58 140Ce 139.90530 

Silver (Ag) 

47 107Ag 106.90410 58 142Ce 141.90900 

47 109Ag 108.90470 
Praseodymium 

(Pr) 
59 141Pr 140.90740 
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Element 
(X) 

Z AX M (X) 
(u) 

 
Element 

(X) 
Z AX M (X) 

(u) 

Cadmium 
(Cd) 

48 112Cd 111.90280  

Neodymium 

(Nd) 

60 142Nd 141.90750 

48 114Cd 113.90360  60 144Nd 143.90990 

Indium 

(In) 
49 115In 114.90410  60 146Nd 145.91720 

Tin (Sn) 

50 118Sn 117.90180  
Promethium 

(Pm) 
61 143Pm 142.91100 

50 122Sn 121.90340  
Samarium (Sm)

62 152Sm 151.91950 

50 124Sn 123.90520  62 154Sm 153.92200 

Antimony 
(SB) 

51 121Sb 120.90380  Europium 

(Eu) 

63 151Eu 150.91960 

51 123Sb 122.90410  63 153Eu 152.92090 

Tellurium 

(Te) 

52 122Te 121.90300  
Gadolinium 

(Ga) 

64 158Ga 157.92410 

52 128Te 127.90470  64 160Ga 159.90710 

Table A2.3. Atomic masses of nuclides with atomic numbers Z = 38-64  

Element 
(X) 

Z AX M (X) 
(u) 

 

Element 
(X) 

Z AX M (X) 
(u) 

Terbium 

(Tb) 
65 159Tb 158.92500 Platinum 

(Pt) 

78 196Pt 195.96500 

Dysprosium 
(Dy) 

66 162Dy 161.92650 78 198Pt 197.96750 

66 163Dy 162.92840 
Gold 

(Au) 
79 197Au 196.96600 

66 164Dy 163.92880 
Mercury 

(Hg) 

80 196Hg 195.96580 

Holmium 
(Ho) 

67 165Ho 164.93030 80 198Hg 197.96680 
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Element 
(X) 

Z AX M (X) 
(u) 

 
Element 

(X) 
Z AX M (X) 

(u) 

Erbium 

(Er) 

68 166Er 165.93040 Thallium 

(Tl) 

81 203Tl 202.97230 

68 167Er 166.93200 81 205Tl 204.97450 

68 168Er 167.93240 

Lead 

(Pb) 

82 204Pb 203.97310 

68 170Er 169.93550 82 206Pb 205.97450 

Thulium 
(Tm) 

69 169Tm 168.93440 82 207Pb 206.97590 

Ytterbium 
(Yb) 

70 170Yb 169.93490 82 208Pb 207.97660 

70 171Yb 169.93490 
Bismuth 

(Bi) 
83 209Bi 208.98040 

70 172Yb 171.93660 

Polonium 

(Po) 

84 206Po 206.98050 

70 173Yb 172.93830 84 208Po 207.98130 

70 174Yb 173.93900 84 209Po 208.98250 

70 176Yb 175.94270 84 210Po 209.98290 

Lutetium 
(Lu) 

71 175Lu 174.94090 
Astate 

(At) 
85 211At 210.98750 

Hafnium 

(Hf) 
72 180Hf 179.94680  

Radon 

(Rn) 
86 222Rn 222.01750 

Tantalum 

(Ta) 
73 181Ta 180.94800  

Francium 

(Fr) 
87 223Fr 223.01980 

Tungsten 
(W) 

74 182W 181.94830  
Radium 

(Ra) 
88 226Ra 226.02540 

74 184W 183.95100  
Actinium 

(Ac) 
89 225Ac 225.02310 

74 186W 185.95430  
Thorium 

(Th) 
90 232Th 232.03820 
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Element 
(X) 

Z AX M (X) 
(u) 

 
Element 

(X) 
Z AX M (X) 

(u) 

Rhenium 

(Re) 

75 185Re 184.95300  
Protactinium 

(Pr) 
91 231Pr 231.03590 

75 187Re 186.95600  

Uranium 

(U) 

92 234U 234.04090 

Osmium 

(Os) 

76 188Os 187.95600  92 235U 235.04390 

76 189Os 188.95860  92 238U 238.05080 

Iridium 

(Ir) 

77 191Ir 190.96090  
Neptunium 

(Np) 

93 236Np 236.04660 

77 193Ir 192.96330  93 237Np 237.04800 

Platinum 

(Pt) 

78 194Pt 193.96280  
 

78 195Pt 194.96480  

Table A2.4. Atomic masses of nuclides with atomic numbers Z = 65-93  
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