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1.	The	Theory	of	Nuclear	Energy
Generation	of	Solar	Type	StarsArak M. Mathai1 and Hans J. Haubold2  Department of Mathematics and Statistics, McGill University,Montreal, ON, CanadaVienna International Centre, UN Of�ice for Outer Space Affairs,Vienna, Austria 
1.1	 Classical	Thermodynamics:	Polytropic	Gas
Spheres	in	Convective	EquilibriumShortly after the discovery of the law of conservation of energy byMayer (1942) and Helmholtz (1847) it was J. R. Mayer who raised thequestion for the origin of the radiative energy emitted by the Sun. J.R.Mayer’s law of conservation of energy (�irst law of thermodynamics)took into account the energy due to heat. If dQ is the amount of heatenergy which is absorbed by the system under question from itssurroundings, then this law of conservation of energy is, (1.1)where dU  is the change in internal energy of the system when goingfrom one equilibrium state to another, and dW  is the amount of workdone by the system on its surroundings. In 1848 J. R. Mayer stated thatthe source of the solar radiation energy should be the kinetic energy ofinfalling meteorites. At last a re�inement of J. R. Mayer’s idea we meet inthe hypothesis of Helmholtz (1847) and Lord Kelvin (1861) who wereable to show that the gravitational contraction of the Sun itself could bethe signi�icant source of radiated energy. However, already on the basis

dQ = dU + dW ,
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of Lane’s (1870) considerations of a stellar con�iguration in convectiveequilibrium taking into account internal gravitation and Ritter’s (1878)results on the uniform expansion and contraction of gaseouscon�igurations it has been shown that gravitational contraction cannotkeep the Sun shining (HELMHOLTZ-KELVIN contraction time scale).This very important conclusion for the theory of internal structure ofthe Sun is closely related to the macro-structure of a gaseous sphere instationary equilibrium described by the virial theorem ofClausius (1870) which is also called POINCARE’s theorem: (1.2)where T is the total kinetic energy of particles, and Ω is the totalgravitational potential energy of the system. For an adiabatic process ina gaseous sphere in gravitational equilibrium it follows from (1.1) thatthe change dU  in the internal energy of the sphere is given by (1.3)where P is the gas pressure and dV  is the change in the volume.Considering a perfect gas with PV = RT  one has, (1.4)where R is the gas constant and γ is the adiabatic index. Using (1.3) and(1.4) it holds for the perfect gas, (1.5)which can be written in the light of POINCARE’s theorem (1.2), (1.6)The result in (1.6) goes back to Ritter (1880a). The total energy E isthen given by (1.7)

2T +Ω = 0

dU = −PdV ,

dT

T

= −(γ − 1)

dV

V

,

U =

2T

3(γ−1)

,

U = −

Ω

3(γ−1)

.

E = U +Ω =

3γ−4

3(γ−1)

Ω.



From (1.7) it is evident that the gaseous sphere will be unstable againstadiabatic pulsations for γ < 4/3. In his remarkable paper Ritter(1880a) also obtained the result that the period of oscillation of thegaseous sphere is inversely proportional to the square root of its meandensity.As a remark we should mention here that Maxwell (1860) in 1860obtained the probability distribution of gas particles with velocitiesbetween v and v+ dv, (1.8)where m is the mass of the particle under question. Already in Ritter’s(1879) paper consequences of (1.8) played an important role for thedevelopment of convective equilibrium in a gaseous sphere under thein�luence of its own gravitation. Equation (1.8) follows also directlyfrom the MAXWELL-BOLTZMANN solution L. Boltzmann’s (1872)equation found by him in 1872.For the �irst time the fundamental differential equation governingthe structure of gaseous spheres was given by Ritter (1880) and Lane(1870), (1.9)which can be derived by consideration of two fundamental equations ofgravitational equilibrium, (1.10)
(1.11)A. Ritter studied the properties of gaseous spheres in convectiveequilibrium, where pressure P and matter density ρ obey the law (1.12)
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which are called polytropes of index n. Taking into account (1.12) and(1.9), we are led to the well-known LANE-EMDEN equation, (1.13)where the solution satis�ies the initial condition θ(0) = 1 and θ′(0) = 0. The LANE-EMDEN equation (1.13) can be obtained from (1.9) and(1.12) by substituting ρ = λθ

n

, r = αξ, and α = [

(n+1)K

4πG

λ

1

n

−1

]

1/2.Special cases of (1.13), namely, when n = 0, 1, 5, have explicit analyticsolutions. The mathematical foundation for the study of the LANE-EMDEN equation (1.13) and of more general equations was made byFowler (1914a, b, 1930, 1931) in a series of four papers during 1914–1931. However, the theory of polytropic stars governed by the secondorder nonlinear differential equation (1.13) culminated in Emden’s(1907) book. The fundamental point of view adopted at that time wasthat the energy transport in the interior of a star would be byconvective motion. But, already in 1894 Sampson (1894) introducedthe concept of energy transfer by radiative rather than by convectiveprocesses. This concept had to wait upon further progress inthermodynamics. In 1905 Schuster (1905), E. Rutherford’s predecessorin Manchester, applied the idea of radiative energy transfer of anatmosphere which also led to Schwarzschild’s (1906) famous paper onthe physical state of the Sun’s atmosphere. It contains the concept oflocal thermodynamic equilibrium.It is generally accepted in the literature that the publicationof Emden’s (1907) book containing the complete theory of polytropicstars marks the end of the �irst epoch in the study of the internalconstitution of stellar con�igurations. In the following decades mainlythe importance of radiative energy transfer in the interior of stars wasrealized and the theory of radiative transfer was developed in somedetail.
1.2	 Quantum	Theory	of	Atomic	Structure:
Opacity
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Although E. Hertzsprung (1905) in 1905 had already recognized thedistinction between giant and dwarf stars the full discovery of theHERTZSPRUNG-RUSSELL diagram had to wait until 1913. In 1911–1914 Hertzsprung (1911, 1912) and Russell (1914) were convinced asto the signi�icance of their diagram for the study of the evolution ofstars. Indeed the theory of the evolution of stars based on observations�irst became possible in connection with the study of the internalstructure of the stars made by LANE, RITTER, and EMDEN as discussedabove.In Bohr (1913) laid the foundations of the quantum theory ofatomic structure by establishing a link between the structure of theatom and PLANCK’s quantum of action as given in his trilogy on theconstitution of atoms and molecules. It is quite interesting that at aboutthis time the idea was born that the up till now considered mechanicalor radioactive energy source did not nearly suf�ice for supplying theradiation of the Sun. Taking into account that the luminosity of the Sunhas not changed signi�icantly since the formation of the Earth some 109years ago, Perrin (1920) and Eddington (1920) in 1920 came toconjecture that in the interior of the Sun subatomic energy must begenerated by the conversion of hydrogen into helium. As we shall see inthe following the development of the theory of stellar nuclear energygeneration is closely connected with the foundations of the theory ofastrophysical plasmas. In 1923, for instance, Debye (1923) and E.HU� CKEL had shown that the electrons of a plasma move in such a wayas to screen out the COULOMB �ield of a test charge for distancesgreater than the DEBYE-HU� CKEL length.The combination of the theory of radiative equilibrium and BOHR’stheory of atomic structure with LANE’s, RITTER’s, and EMDEN’s resultswas realized by Eddignton (1916a, b, 1918) (1916–1918) and came upwith a more re�ined theory of the internal structure of the stars. He wasthe �irst to apply the concept of radiative equilibrium to the interior of astar and made the assumption that heat is transferred inside a star byradiation whose �low controls the internal temperature distribution.The equations of equilibrium for a star in radiative equilibrium nowconsist of (1.11) taking into account the gas pressure P
g

= kN

A

ρT/μ,and the radiation pressure p
r

= aT

4

/3, the equation of radiativeenergy transport,
( )



(1.14)and the equation of conservation of energy, (1.15)where χ is the measure of the ability of a gas to absorb radiation(opacity), and ϵ is the total amount of heat energy liberated per unitmass in unit time (energy generation rate). While the opacity χ couldbe �ixed by the physical theory of radiative transfer, the quantity ϵ asthe nuclear energy generation rate still remained uncertain at that time.The situation was surveyed at the end of the third decade of the centuryby Eddington’s (1926) book During the following decade much workwas done on the derivation of detailed stellar models.
1.3	 Quantum	Theory	of	Nuclear	Structure:
Nuclear	Energy	Generation	RatesThe decades after the publication of Eddington’s (1926) book arecharacterized by the breakthrough of quantum mechanics into thephysics of stellar interior. In Fowler (1926) made the fundamentaldiscovery that the electron assembly in the white dwarfs must bedegenerate in the sense of the FERMI-DIRAC statistics in the same wayas shortly thereafter W. Pauli and A. Sommefeld showed to be the casefor electrons in metals. He derived the equation of state for degeneratematter, P = kρ

5/3, where k is a constant. About this time Wentzel(1926), Kramers (1926), and Brillouin (1926) studied approximatesolutions of the SCHRO� DINGER equation for a charged particle in theCOULOMB �ield which later on were named as COULOMB wavefunctions. Charged particle interactions at low energies as expected instellar interiors are dominated by the COULOMB barrier penetrationfactor �irst discussed in detail by Gamow (1928), Gurney andCondon (1928, 1929). Thus, the theoretical foundations for the stellarnuclear energy generation had been created. In Atkinson (1929) andF.G. Houtermans considered the transmutation of elements arising fromproton captures by the help of simple physical considerations. Fowler
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(1929) and Wilson (1929) developed the resonant penetration ofcharged particles leading to the distinction of nonresonant andresonant particle interactions in nuclear reactions. It is an importantfact that Eddington (1926) in his book succeeded in deriving a relationbetween the mass M, luminosity L, and the opacity χ from theconsiderations of a steady state of a star not knowing the dependenceof the energy generation rate ϵ on density ρ and temperature T.However, contrary to EDDINGTON’s point of view Milne (1930)suggested that the mass, luminosity, and opacity of a stellar model mustbe taken as independent parameters in the consideration of its steadystate, and that the observed mass-luminosity relation should dependupon the intrinsic physics of the energy generating processes and notfrom deductions of steady state considerations only. During the years1926–1939 important integral theorems were established by theanalysis of the differential equations of the internal structure of stars(1.10), (1.11), and the total pressure as a sum of the gas kineticpressure p
g

 and radiative pressure p
r

. Those integral theoremspermitted the estimation of mean values and values at the centre of thestar for all relevant physical variables inside the star (density, pressure,temperature). May be the two most important theorems are due to Vogt(1926) and Russell (1927) as well as to Strömgren (1937). The VOGT-RUSSELL theorem is valid for gaseous stars in radiative equilibrium aswell as in convective equilibrium and states that the four �irst-orderordinary differential equations (1.10), (1.11), (1.14), (1.15), undergeneral assumptions for the three constitutive relations P ,χ, ϵ, form aself-suf�icient system for the problem of stellar structure if one takesinto account, additionally, the boundary conditions: M(r) = 0 at 
r = 0;M(r) = M,L(r) = L, and P(r) = 0 at r = R. The theorem inquestion reads that the structure of a star is uniquely determined by itsmass and chemical composition, if the pressure P, the opacity χ and therate of energy generation ϵ are functions of the local values of density ρ,temperature T, and chemical composition X

i

 only. The mainobservational consequence of the VOGT-RUSSELL theorem was thatdifferent stars in the distribution of stars in the HERTZSPRUNG-RUSSELL diagram have different chemical composition. The theorem ofSTRO� MGREN states that for a star in radiative equilibrium with



negligible radiation pressure the mass-luminosity-radius relation hasthe form (1.16)if the rate of energy generation ϵ and the opacity χ obey the generalpower laws (1.17)
(1.18)where α, ν, s, ϵ

0

, and χ
0

 are arbitrary constants. The constant in Eq.(1.16) depends only on the exponents α, ν, and s, respectively. Again,the value of STRO� MGREN’s theorem (1.16) is to have the dependence ofthe luminosity L from M and R which allows a comparison of theory andobservation. The special feature of STRO� MGREN’s theorem is the morerealistic dependence of L on the introduced physical assumptions aboutthe rate of energy generation via α and ν and the opacity via s.Besides the theory of the internal structure of ordinary stars (mainsequence stars) Chandrasekhar (1931) realized in 1931 that withincreasing relativistic degeneracy the radius of a white dwarf star tendsto the limiting value zero at a �inite limiting mass of 1.4M
⊙

 with a slightdependence on chemical composition. The main result was that whitedwarf stars are stable or can exist, only for masses M ≤ 1.4M

⊙(chandrasekhar limiting mass). Then, the exact equation of state for acompletely degenerate gas has been derived by Chandrasekhar (1935).Much of the material developed for physics of degenerate matter andwhite dwarf stars as well as the construction of stellar models byanalytic methods was summarized in the monograph ofChandrasekhar (1939).
1.4	 Stellar	Models	with	Nuclear	Burning:
Nuclear	Reaction	Rates

L = constant.
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The decades after the publication of Chandrasekhar’s (1939)monograph saw the working out of further details of the nuclearreactions and the determination of reaction rates on the basis oflaboratory measurements. As an example for the elaboration of thenuclear reaction theory we refer to the analytic treatment of nuclearcross sections as given by Breit (1936) and Wigner’s (1936) singleresonance formula. The rapid advance of nuclear physics in the thirtiesof this century enable Weizsäcker (1937) and Bethe (1938) andCritch�ield (1938) to work out the nuclear reactions that are possible attemperatures of about 106 to 108 K in the deep interior of the Sun (CNOcycle). Thus, the problem of stellar energy generation came to asolution. A second possibility for conversion of hydrogen into heliumwas offered by a reaction chain which Bethe (1939) had studied in1939 (Proton-Proton chain). Thorough experimental investigationsparticularly those of Fowler (1984a), of reaction cross sections at lowenergies have contributed very signi�icantly to our knowledge ofnuclear energy generation in stars. One of the �irst results of the theoryof stellar evolution taking into consideration hydrogen burning wasthat stars remain in the immediate vicinity of the main sequence until aconsiderable faction (≈ 10%) of the hydrogen is burned. If no mixingtakes place between burned and unburned material, the evolutionarytrack in the effective temperature-luminosity diagram then leadsupward and to the right into the region of the red giants, a resultobtained by Schönberg (1942) and S. Chandrasekhar as early as 1942.In connection with a more elaborate concept of astrophysical crosssection factors given by Salpeter (1952a) (1952) the theory of nuclearburning stars made important advancement. In the deep interior of astar, suppose that a certain part of the hydrogen has been used up thenthe temperature rises to more than 108 K as a result of gravitationalcontraction. O� pik (1951) and Salpeter (1952b) remarked in 1951/1952that helium burning sets in to give carbon in accordance with the triple-
α-process. The growth of theoretical researches on sellar evolution,starting with the important paper by Hoyle (1955) andSchwarzschild (1955) denoted also a fundamental extension of theLANE-RITTER-EMDEN-EDDINGTON theory of the internal constitutionof stars. The assumption hitherto made, that the material inside a staris continually mixed through its evolution, had to be given up in the face



of theoretical and observational results. The new concept of the theoryof stellar evolution was born, considering the evolution of a star assuccessive stages of nuclear burning phases. These developments aredescribed in the monograph of Schwarzshild (1958) andHayashi  (1962).
1.5	 The	Solar	Neutrino	Experiment:	Solar
Neutrino	Emission	RatesThe development of large fast computers at the beginning of the 1960shas had a profound impact on the study of stellar structure. It was nolonger necessary to use the techniques of integration by hand discussedin Schwarzschild’s (1959) book. The �irst foundation of the elaboratenumerical study of the internal structure and evolution of stars was themethod of dividing the structure of a star into many concentric zonesand then solving the differential equations of stellar structure indifference form at the boundaries of these zones, introducedby Henyey (1959). The second foundation of this study is Fowler’s(FowlerEtAl 1967; HarrisEtAl 1983) nuclear reaction rate systematicsas published in a series of ‘Handbücher der Kernastrophysik’ (1967,1975, 1983). Acting as a guide FOWLER’s nuclear reaction rates areleading the computer from the main sequence stage of a star throughthe red giant stage up to the �inal stages of stellar evolution known aswhite dwarfs and supernovae. As far as the present scope of the theoryof internal structure and evolution of stars is concerned a wide range ofastrophysical problems emerged which are treated more or lessindependently from the classical theory of LANE-RITTER-EMDEN-EDDINGTON-CHANDRASEKHAR as described above brie�ly. To mentionsome: The theory of black holes and neutron stars, the emission ofneutrinos and gravitational waves by stars, pulsating and oscillatingstars, close binaries, population III stars, and so on. For an illustrativeintroduction to the recent history of the theory of the internalconstitution and evolution of stars see Kippenhahn (1984) and Iben Jr.(1985).In the following we are coming back once again to the classicaltheory of the internal structure of the Sun as established in the thirties.Surely, since the discovery of the nuclear reactions for the solar energy



generation by Weizsäcker (1937), Bethe (1938) and Chrich�ield (1938),and Bethe (1939) it was known that additionally to the photon a secondstable particle with no charge and a rest mass of approximately) zero,that carries away energy in the course of nuclear reaction is emitted bythe Sun: the neutrino. Further, two main characteristics of the neutrinowere well known, namely, the weak interaction with matter and thatneutrinos arise only in the energy generating regions of the stars andcarry therefore unlike photons direct evidence of conditions in stellarcores. The �irst serious attempt to detect neutrinos emitted by theSun goes back to Davis Jr. (1955) using a radio chemical neutrinodetector based on the reaction 37Cl(ν, e−1) 37

Ar. This radiochemicalmethod was suggested by Pontecorvo (1946) in 1946. Note that at thistime it was generally believed that neutrinos and antineutrinos wereequivalent. After a long way of re�inements of the Cl−Ar-experimentby R. DAVIS Jr. and associates the counting experiments valid for today’sexperimental and theoretical calculations of the solar neutrino �luxstarted in 1968 by Daavis Jr. (1968), D.S. HARMER, and K.C. HOFFMAN.The net result of the solar neutrino experiment over more than15 years is a disagreement between theory and observation of about afactor of four. Considering a standard model for the Sun and varying allof the parameters within the limits to be a plausible range of variationit has been shown by Bahcall (1982) that the disagreement stillremains if not otherwise a contradiction with observational resultsappears.As generally expected the neutrino �lux from various nuclearreactions depends strongly on model parameters. But, for a �irst glanceone can predict the number of solar neutrinos reaching the surface ofthe Earth per cm2 per s. This total number is approximately, (1.19)where L
⊙

 is the luminosity of the Sun and E is the energy liberated bythe overall net nuclear reaction for the solar nuclear energy generation(Proton-Proton chain), not including the energy of the two emittedneutrinos. Thus, the solar neutrino �lux on Earth is, (1.20)
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As will be shown in the following Chapters I and II the relation (1.19)can be derived by constructing a simple solar model solving therespective differential equations (1.10), (1.11), (1.15), taking intoconsideration the boundary conditions as discussed above, andassuming the equation of state for a perfect gas. For that we consider,instead of the phenomenological form of the rate of nuclear energygeneration given in (1.17), the relation following from quantumstatistical arguments as given by (1.21)where r
12

 denotes the thermonuclear reaction rate between nuclearspecies 1 an 2, E
12

 is the energy liberated in the nuclear reaction underquestion. The thermonuclear reaction rate r
12

 in (1.21) can be derivedfrom �irst principles including the distinction between resonant andnonresonant as well as MAXWELL-BOLTZMANNian and non-MAXWELL-BOLTZMANNian reaction rates. At last r
12

 will be a functionnot only of density ρ, temperature T, and chemical composition X
1

, butalso of subatomic quantities, (1.22)where Z
i

 denotes the atomic number, and A
i

 is the mass number, and 
S

12

 is the nuclear cross section factor. Then, the nuclear output of theSun ascribed to the nuclear reaction under question is according to(1.15) and (1.21),
(1.23)

The total number of neutrinos due to the nuclear reaction betweennumber species 1 and 2 in the Sun can then be written as (1.24)
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The number output of the Sun due to a reaction between nuclearspecies 1 and 2 as written in (1.22) is a function of stellar modelparameters and subatomic quantities: (1.25)What concerns the solar neutrino problem is that the relations (1.22)and (1.25) are equivalent to relations (1.17) and (1.16), but, in (1.22)and (1.25) the subatomic physics is taken into account. All cases ofthermonuclear reaction rates (1.22) are derived in Chapter I, whereasthe evaluation of (1.25) is given in Chap. 2 in detail.
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2.1	 Introduction:	Cosmic	Nucleosynthesis	of	the	ElementsAccording to the current understanding of the evolution of the Universe the presentlyobserved state of the Universe is the result of expansion from an extremely dense andextremely hot singular origin. Describing that evolution of the Universe by means of thestandard cosmological model, based on the ‘big-bang’ hypothesis, cosmologicalnucleosynthesis occurs at the appropriate temperature in the course of expansion andgoes on until the decreasing temperature stops nuclear reactions. No signi�icantcosmological nucleosynthesis beyond helium-4 occurred due to the instability gaps atmass number 5 and mass number 8 as well as the constraints set by the present universaldensity and temperature. However, it is well-known that ‘big-bang’ nucleosynthesisresults in the production of lithium-7 in amounts comparable to the solar systemabundance of this nucleus. Some general features of the cosmological nucleosynthesis arelisted in Table 2.1 and Figs. 2.1 and 2.2.
Table	 2.1 Basic facts of cosmic nucleosynthesis (cp. Burbidge et al. (1957), Fowler et al. (1983))
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Table	 2.1 (continued)





Fig.	 2.1 The standard abundance distribution of the elements in the Universe (Si ≡ 10

6) (Burbidge et al. (1957))Stars are born out of interstellar gas and are thought to be the site of stellarnucleosynthesis during their lifetime. It is now believed that most of the heavy elementsare cooked in successive generations of stars. As can be seen in Table 2.1 and Figs. 2.1 and2.2, within 109 years after the big-bang, stars are formed and stellar nucleosynthesisactivities can take place in these stars. It was the study of the detailed plot of the numberdistribution of the cosmic elements as a function of atomic weight (cp. Figs. 2.1 and 2.2)and COULOMB barrier penetration considerations which led Burbidge et al.  (1957) topostulate the basic nucleosynthetic processes in stars as shown in Table 2.1. Hydrogenburning, where four hydrogen nuclei are converted into one helium-4 nucleus, can occurvia two different sets of nuclear reactions: the proton-proton chain and the CNO cycles.The most important feature of the CNO cycles is the conversion of carbon-12 and oxygen-16 into nitrogen-14. Helium burning bridges the mass number 5 and mass number 8instability gaps via a three-particle reaction: 3 helium-4 → carbon 12. Helium burningincludes the conversion of helium-4 into heavier elements such as carbon-12, oxygen-16,and neon-20. Helium burning is also considerd as the site of the slow neutron captureprocesses (s-process). Carbon burning consists of the fusion of carbon nuclei themselvesto build nucleides in the mass range 16 ≤ A ≤ 28. Neon burning is a transient stage tophotodisintegrate neon-20 into oxygen-16 and alpha particles. Again, oxygen burningproduces elements in the mass range 16 ≤ A ≤ 28, but at temperatures still higher thanin carbon burning. In silicon burning a strong �lux of neutrons, protons, and alphas areliberated mainly from silicon-28. These articles are captured by other nuclei to produceelements up to the iron peak elements. Thus, in these equilibrium processes betweensynthesis and disintegration, elements with the highest nuclear stability are produced.With the occurrence of silicon burning processes inside a star the so-called stationarystellar nucleosynthesis is �inished. The core of the star consisting of iron peak elementswill collapse never being stopped by nuclear energy generating reactions. During thecollapse a shock wave is generated which propagates out through the star, adiabaticallycompressing, and thereby heating, the stellar matter through which it passes. Thetemperature in each nuclear burning shell of the star is raised suddenly and leads toexplosive stellar nucleosynthesis in the various shells of the star. The �inal stages of thiscollapse and the explosive nucleosynthesis will be observed as supernova.



Fig.	 2.2 Abundances of s, r, and p process elementsIt is one of the most important features for stellar nucleosynthesis that the bindingenergy per nucleon decreases with increasing mass number for nucleides beyond the ironpeak (A > 60), and that these nuclei have large COULOMB barriers (cp. Figs. 2.1 and 2.2).Thus, they are not be formed by charged particle reactions. It is believed that most ofthese heavy elements are produced by neutron capture reactions which start with the irongroup nuclei. These nuclei can be divided into two groups: if the �lux of neutrons is weak,most chains of neutron captures will include only a few captures before the beta decay ofthe product nucleus. Because the neutron capture lifetime is slower than the beta decaylifetime, this kind of neutron capture is called s-process. In the opposite case, if there is astrong neutron �lux, the neutron-rich elements will be formed by the rapid neutroncapture process, where the neutron capture lifetime is much less than the beta decaylifetime (r-process). There are some very rare nuclei which are located on the proton-richside of the valley of stability. It is believed that they are produced by the p-process inwhich photodisintegration occurs on s-process nuclei (Figs. 2.1 and 2.2).Only to mention it, there are some very light, low abundance nuclei (hydrogen-2,helium-3, beryllium, lithium, bor). They are not produced in suf�icient quantities in thecosmological nucleosynthesis and are immediately destroyed by thermonuclearreactions in the course of sellar nucleosynthesis. These nuclei are ascribed to l-processes:spallation reactions on carbon, nitrogen, and oxygen nuclei, by protons or alphas, in thehigh energy and low energy cosmic rays.



The present generally accepted framework of nuclear astrophysics can already befound in the classical paper by Burbidge et al.  (1957) and most recently reviewed in theNobel lecture of Fowler (1983). The laboratory approach to nuclear astrophysics, whatconcerns the element synthesizing nuclear reactions studied to a large extent in nuclearlaboratories, is presented in the ‘Handbücher der Astrophysik’ by Fowler et al.  (1967,1975). The outcome of model computations with the best available nuclear input for thecosmological and stationary as well as explosive stellar nucleosynthesis is summarized inarticles in ‘Nucleosynthesis’ edited by Biswas et al. (1980). The aim of the present chapteris to contribute to the problem of the parametrization of nuclear reaction rates asdescribed in Fowler’s paper (1983, Table I on p. 154 and Table II on P. 155; ep. alsoBethe 1967). In this connection we try to continue the earlier investigations ofAtkinson and Houtermans (1929), Gamow and Teller (1938), Salpeter (1952),Bahcall (1966), and Critch�ield (1972) as recently considered in Haubold and John (1982)and Haubold and Mathai (1984). The examples for the analytic representation of nuclearreaction rates presented in the following sections should illustrate the �ield of nuclearastrophysics from the more mathematical point of view. They are worked out in the spiritof the remarks in Fowler’s (1974) George Darwin lecture: “... each reaction rate, measuredaccurately or computed from good systematics, is a diagnostic tool in determining theastrophysical circumstances and sites of nucleosynthesis and energy generation.”
2.2	 The	Thermonuclear	Reaction	Rate Before we shall come to the mathematical methods for the analytic representation ofnuclear reaction rates it will be useful to discuss some basic nuclearastrophysical relations containing the thermonuclear reaction rate. Most of the formalismfor the tabulations of the reaction rate of interacting particles under cosmological orstellar conditions has been presented by Fowler  et al. (1967, 1975).For the most common case, in which two particles in the initial channel (1 and 2) formtwo particles in the �inal channel (3 and 4), (2.1)the reaction rate r

12

 is de�ined by (Fowler et al. 1967, 1975; Haubold and Mathai 1984)(2.2)where n
1

 and n
2

 are the number densities of nuclei 1 and 2, respectively, δ
12

 is theKRONECKER symbod, E
12

 is the energy release (E
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), cdenotes the velocity of light. The KRONECKER delta is introduced to avoid doublecounting in the reaction if 1 and 2 being identical. In (2.2) the quantity < σv > is thethermally averaged product of the cross section, σ, for the reaction, and relative velocity, v,of the interacting particles, 1 and 2, which is in fact the most important quantity for theanalytic representation of the thermonuclear reaction rate (2.2) as we shall see inSect. 2.3. For a gas of mean density, ρ, the number density, n
i

, of particle, i, can beexpressed in terms of its mass fraction, X
i

, by the relation (2.3)
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where N
A

 stands for AVOGADRO’s constant, and A
i

 is the atomic mass of particle i inatomic mass units (Note ∑
i

X

i

= 1).The mean lifetime, τ
2

(1), of particle 1 for interaction with particle 2 can be given by
(2.4)

where λ
2

(1) is the decay rate of 1 for interaction with 2. The de�inition of the meanlifetime of a nucleus for interaction with a nucleus in (2.4) shows directly the connectionof the quantity < σv > with kinetic equations for the production and destruction of therespective nucleus (Haubold and Mathai 1984).The energy generation rate, ϵ
12

, for the reaction (2.1) is de�ined by (2.5)where E
12

 is the energy given off in one single reaction (2.1).By de�inition, the quantity < σv > in (2.2) arises from an integral over the respectivecross section of the reaction, times relative velocity of the reacting particles, times thedistribution function of the relative velocities of the particles: (2.6)
where d3v = 4πv

2

dv; the kinetic energy of the particles in the center-of-mass system is 
E = μv

2

/2, the reduced mass of the particles is denoted by μ = m
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2

/(m
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), thereaction cross section is σ(v) and σ(E), respectively. Equation (2.6) contains what weexpected to be the basic quantities for the description of reactions between nuclearparticles going on in the very hot and intermediate dense plasma at some stage of theevolution of the Universe and in the deep interior of stars: for quantummechanicalreasons the cross section of the particle reaction and for reasons of statistical mechanicsthe distribution function of the velocities of the reacting particles.The time reversal invariance of the strong, electromagnetic, and weak interactionsleads to an important relation between the cross sections for the forward and backwardnuclear reactions which should be noted here (cp. Blatt and Weisskopf 1959): (2.7)which reads for the quantity < σv > in (2.6): (2.8)
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where the g
i

’s denote spin statistical weights g
i

= (2s

i

+ 1), i = 1, 2, 3, 4. At hightemperatures many nuclear states are populated and the g
i

’s become partition functionsin the expression (2.8). Equation (2.7) underlines the principle of microscopicreversibility, (2.8) represents the principle of detailed balance (see Haubold andMathai 1984). All relations given above are thought to be valid for reactions in a non-degenerate gas and for non-relativistic particle velocities.
2.3	 Velocity	Distribution	Function	and	Nuclear	Cross
Section:	Maxwell-Boltzmann	Distribution	FunctionAll the analytic expressions for astrophysically relevant nuclear reaction rates given in thetabulations of Fowler  et al. (1967, 1975) underline the hypothesis that the distribution ofthe relative velocities of the reacting particles always remains Maxwell-Boltzmannian.Fixing the distribution function of the relative velocities of the particles as Maxwell-Boltzmannian has serious physical implications for the nuclear reaction ratetheory (Haubold and Mathai 1984). However, if we choose by the time the Maxwell-Bolzmannian approach to the nuclear reaction rate in (2.2) and (2.6) then the distributionof the relative velocities of the particles can be written in the following manner: (2.9)The function f(v) satis�ies the normalization condition ∫ ∞

0

dvf(v) = 1. As given in (2.9)we can take it as the Maxwell-Bolzmannian relative kinetic energy spectrum for a non-degenerate, non-relativistic gas of particles (cp. Fig. 2.4) (2.10)For a detailed discussion of the underlying physical assumptions for the application of(2.10) or the evaluation of reaction rates see Haubold and Mathai (1984).
2.4	 Nonresonant	Neutron	Capture	Cross	SectionIn the case of a nuclear reaction via neutron capture the solution of the respectiveSCHRO� DINGER equation is the plane wave which can be normalized to unit particledensity at in�inity. Then the cross section is determined by the ratio of the square of theabsolute value of the wave function, ψ, for inelastic scattering by the current density of theparticles, s (2.11)where ρ denotes the space density and v the current velocity of the ψ-�ield, respectively.At low energy the s-wave interactions dominate. That is to say, the reactions take placechie�ly through a particular angular momentum state l = 0. From (3. 3) follows that σv is aconstant. Derivations from this occur at higher energies when other partial waves become
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important and it is convenient to express the nonresonant slowly varying velocitydependence of the cross section, (2.12)as the �irst three terms of a MACLAURIN series in the relative velocity, v, of the neutronand the nucleus: (2.13)where [T (0)] = cm

3

s

−1

, [T

′

(0)] = cm

2, and [T ′′

(0)] = cms (Fowler   et al.  1967, 1975).In (2.13) T (0),T ′

(0), and T ′′

(0) are empirical constants measured in nuclearexperiments, and the prime indicates differentiation with respect to v.
2.5	 Nonresonant	Charged	Particle	Cross	SectionIf two nuclei, of charges Z

1

e and Z
2

e, and masses m
1

 and m
2

, collide with kinetic energyof relative motion, E = μv

2

/2, then on the basis of non-relativistic quantum scatteringtheory one obtains, in spherical coordinates at r = 0, for the square of the wave function(Blatt and Weisskopf 1959): (2.14)where (2.15)
η(v) is the Sommerfeld parameter, h is the PLANCK quantum of action, α is theSommerfeld �ine structure constant, Γ(⋅) denotes the gamma function, and i2 = −1.According to the elementary property of the gamma function we have from (2.14)

(2.16)
For physical reasons the argument of the exponential function is always positive and thusthe quantity in (2.16) is smaller than unity and for a strong COULOMB interaction, thatmeans 2πη(v) >> 1, it becomes exponentially very small. This means that for strongrepulsion and low energy collisions, the wave will only penetrate the potential barrier atthe origin with a rapidly decreasing amplitude whose asymptotic form is (2.17)where the exponential factor is called Gamow factor and (2.17) is the barrier penetrationfactor. As in (2.11) the cross section for the charged particle reaction is obtained by
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dividing the absolute square value of the wave function for inelastic scattering (2.17) bythe probability current density which is proportional to the velocity of the ψ-�ield. Then,we obtain the overall velocity dependence of the nuclear reaction cross section at lowenergies for nonresonant charged particle interactions by (2.18)It is convenient to factor out the energy dependence and express the cross section, σ(E),by (2.19)where (2.20)Equation (2.19) de�ines the cross section factor, S(E), representing the intrinsicallynuclear parts of the probability for the occurrence of a nuclear reaction (cp. alsoSalpeter 1952). The cross section factor, S(E), is often found to be constant or a slowlyvarying function of energy over a limited range of energy (Fowler et al. 1967, 1975). Farfrom a nuclear resonance S(E) may be conveniently expressed in terms of the powerseries expansion, (2.21)where [S(0)] = MeV  barns, [S ′

(0)] = barns, and [S ′′

(0)] = barns MeV

−1. The primeindicates differentiation with respect to E.
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2.6	 Resonant	Cross	Section	for	Neutrons	and	Charged
ParticlesFor a single resonance of energy, E

r

, the cross section, σ(E), of the nuclear reaction (2.1)can be represented as a function of energy in terms of the classical BREIT-WIGNERformula (Blatt and Weisskopf 1959), (2.22)where λ = h/(μv) is the reduced DE BROGLIE wavelength. The statistical factor ω isde�ined by ω = (2J + 1)/[(2J

1

+ 1)(2J

2

+ 1)], where J is the angular momentum of theresonance state, and J
1

 and J
2

 are the angular momenta of particles 1 and 2, respectively.The total width, Γ, of the resonance state is given by Γ = h/τ = Γ

12

+ Γ

34

+⋯, where τis the effective lifetime of the state. The partial width, Γ
12

, is the width for reemission ofparticles 1 and 2, and Γ
34

 is the width for emission of particles 3 and 4.The partial width, Γ
34

, for the absorption or emission of a certain particle by thecompound nucleus, is a strong energy depending function and can be written (Blatt andWeisskopf 1959), (2.23)where R
0

 is the characteristic wavelength of nucleons inside the nucleus (of the order of 
10

−13

cm), D is the average distance of levels, and P(E) denotes the barrier penetrationfactor. At low energy the s-wave (l = 0) interactions dominate and the barrier penetrationfactor in (2.23) is given in (2.17), thus we have, (2.24)For the total width, Γ, we consider an ad hoc linear energy dependence of the form (2.25)where Γ
0

 and Γ
1

 are empirical constants measured in nuclear experiments;.Inserting (2.22)–(2.24) and (2.25) we obtain the parameterized form of the BREIT-WIGNER one-resonance-level formula
(2.26)

2.7	 Parameterizations	of	Thermonuclear	Reaction	Rates
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In the following, we consider the form of the quantity < σv > in (2.6) of Chap. 2, takinginto account the distribution function of the relative particle velocities as given in (2.9)and (2.10), and the nuclear cross section derived in (2.12), (2.19) and (2.26), respectively.

Fig.	 2.3 Schematic plot of the energy-dependent factors for the integral of thermonuclear reaction rates: Maxwell-Boltzmann distribution function, nonresonant nuclear cross section, and resonant nuclear cross section

Fig.	 2.4 Schematic plot of charged particle and neutron cross sections as a function of center-of-momentum energy,together with the Maxwell-Boltzmann distribution function (dashed lines) (Wagoner 1969)Aside from the lorentz factor due to resonance phenomena in nuclear reactions, thetwo dominant factors in the quantity < σv > are the COULOMB barrier (Gamow factor),which inhibits the reaction rate at low energies, and the tail of the distribution function of



relative velocities of the particles (Maxwell-Boltzmann factor) as shown in Fig. 2.3. Thus,the kernel of the integral of the quantity < σv > in (2.6) is a product of a rapidly risingcross section and a steeply falling distribution function, which gives a not quiteasymmetrical peak, called the Gamow peak. For the treatment of nuclearreaction networks for cosmological or stellar nucleosynthetic calculations, these integralshave to be evaluated as far as possible in closed-form and the results represented inmanageable analytic expressions (Fowler  et al. 1967, 1975; Haubold and John 1982;Haubold and Mathai 1984).To have a feeling for the integration problem of the quantity < σv > we refer to theschematic plot of typical charged particle and neutron cross sections, as a function ofcenter-of-mass energy shown in Fig. 2.4 (Wagoner 1969).Also, shown in Fig. 2.4 are two Maxwell-Boltzmann distribution functions of therelative particle velocities for temperatures near the limit of the region of interest(Wagoner 1969). Inserting the Maxwell distribution function (2.9) and (2.10),respectively, in (2.6), we obtain the following: (2.27)
(2.28)

The remaining factor in the kernel of the integrand of (2.27) and (2.28), respectively, is thenuclear cross section which has quite special energy characteristics depending onwhether the reaction proceeds via a resonant or nonresonant mechanism.According to Wagoner (1969) (see also Fowler et al. 1967, 1975) it is convenient todivide the quantity < σv > in (2.27) and (2.28) into four parts. (2.29)Splitting of < σv > in (2.29) in order of increasing energy as indicated in Fig. 2.4corresponds to the successive synthesis of heavier elements out of lighter elements instellar generations as discussed in Sect. 2.1 and outlined in Table 2.1. The nuclearreactions of the proton-proton chain are nonresonant (nr), the nuclear reactions of theCNO cycles are dominated by one or a few resonances (r), and the carbon burning, neonburning, oxygen burning, and silicon burning are characterized by strongly overlappingresonances (unsaturated continuum (uc) and saturated continuum (sc)).As already indicated, the quantity < σv > depends strongly on the temperature. In ahighly evolved star going through explosive nucleosynthesis, the thermal distribution ofenergies has a suf�iciently broad spectrum that a large number of compound nuclearstates contribute to the effective average cross section of a considered reaction. Thus, thehigh temperature regions of the quantity < σv >, those are the last two terms on the righthand side of (4. 3), must be treated by nuclear statistical models (e.g. HAUSER-FESHBACHmodel; c.f. Fowler 1974; Fowler et al. 1967, 1975). But, as shown by Fowler  et al.  (1967,1975), even in the case of closely spaced or overlapping resonances, the formalism forthermonuclear reaction rates of nonresonant reactions, or reactions which proceed in the
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wing of a single resonance, still remains valid. At least, in all cases mentioned the crosssection factor S(E) is a smoothly varying function of energy as shown in Fig. 2.3. For thatreason, in the following, we will concentrate our considerations on the closed-formevaluation of the �irst two terms for < σv > on the right hand side of (2.29). We shallconsider the analytic representation of each of the �irst two terms on the right hand sidein (2.29) separately.
2.8	 Nonresonant	Reaction	RatesHere, we consider various situations such as neutral particles, charged particles etc.

Case	2.1 The neutral particle caseInserting (2.12) and (2.13) in (2.27) leads to the nonresonant neutron capturerepresentation of < σv >,
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/(2kT ), and we obtain,
(2.30)With (2.30) and (2.2), the closed-form representation of the nonresonant thermonuclearreaction rate in the neutral particle case is obtained (cf. also Haubold and John 1982).

Case	2.2 The charged particle case with strict Maxwell-Boltzmann distributionfunctionInserting (2.19) and (2.21) in (2.28) leads to the charged particle representation of 
< σv > if the reaction takes place far away from any resonance,
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where the Sommerfeld parameter η(E) is given in (2.20). With the substitution 
y = E/(kT ) we obtain

(2.31)
and remove the parameter-dependent integral (2.32)from (2.31). With (2.32) we write for the quantity < σv > in (2.31) (2.33)
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where (2.34)With the intention to include more general energy dependent nuclear cross sectionfactors, S(E), than given in (2.21), we considered the following general collisionprobability integral (Haubold and Mathai 1984): (2.35)For the analytic evaluation of the integral N
1

(z;a, ρ,n,m) in (2.35), �irst we will give ageneral result and then get N
i

ν

(z) in (2.32) as a special case. For a detailed description ofthe mathematical method to tackle integrals of the type in (2.35), see Haubold andMathai (1984). The following theorem is originally due to Saxena (1960) and a simpleproof of the theorem by using random variables is given by Haubold and Mathai (1984):
Theorem	2.1

(2.36)
for R(a) > 0 and R(z) > 0;Gm+n,0

0,m+n

(⋅) denotes Meijer’s G-function (see Mathai andSaxena 1973).Consider the case m = 2,n = 1, a = 1, and ρ = −ν in (2.36). Then, we have (cf. alsoMathai 1971; Haubold and John 1982) (2.37)
where z is given in (2.34). With (2.37) it is known that the nonresonant thermonuclearreaction rate can be represented in closed-form by using the highly ef�icient theory ofgeneralized hypergeometric functions as given in Mathai and Saxena (1973). In the case ofthe Maxwell-Boltzmann approach to the nonresonant thermonuclear reactionrate Meijer’s G-function of the type Gp,0

0,p

(⋅) appears in the closed-form representation. Fora critical review of the present status of the analytic evaluation of nonresonantthermonuclear reaction rates see Haubold and John (1982). Approximation considerationof N
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(z) in (2.37) are given in papers of Bahcall (1966) and Critch�ield (1972). On thebasis of the complex Mellin-Barnes integral representation of Meijer’s G-function in(2.37), one can derive series representations of the integral N
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the parameters ν, ν ≠ ±

λ

2

,λ = 0, 1, 2,… ;ν a positive integer; ν a negative integer; ν apositive half integer; ν a negative half integer; as given in Sect. 4.3. (Haubold andMathai 1984)). Moreover, one �inds series representations of N
i

ν

(z) which are termwiseintegrable over any �inite range of the variable, z, given in (2.34) and which can be usedfor the numerical computation of < σv > in (2.33) also.
Case	2.3 The charged particle case with depleted Maxwell-Boltzmann distributionfunctionIn the following, we admit a depletion of the high energy tail of the Maxwell-Boltzmann distribution function of the relative kinetic energies of the reacting particlesgiven in (2.10). For the discussion of the physical reasons for a depletion of the highenergy tail of the Maxwell-Boltzmann distribution function, we refer to the paperof Haubold and John (1982) and Haubold and Mathai (1986c).For the integral of < σv > in comparison with the strict Maxwell-Boltzmannian case(2.32) we have now (2.38)Consider the general integral
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zero or positive integer or positive half integer unless ν is also a suitable irrationalnumber. Hence, in this case the poles of the integrand will be simple and the G-functioncan be easily evaluated as in the Case (i) of Sect. 4.3 of Haubold and Mathai (1984).
Case	2.4 The charged particle case with modi�ied Maxwell-Boltzmann distributionfunctionIf there occurs a cut off of the high energy tail of the Maxwell-Boltzmann distributionfunction given in (2.10) we expect that the closed-form representation of the appropriatequantity < σv >, given by (2.41)will not lead to the type Gp,0

0,p

(⋅) of Meijer’s G-function as we have had in the cases in (2.37)and (2.40), respectively. For the discussion of physical reasons for the cut off modi�icationof the Maxwell-Boltzmann distribution function of the relative kinetic energy of thereacting particles, we refer to the papers of Haubold and John (1982) and Haubold andMathai (1986a).Again, we consider a more general form of the integral in (2.41) as (2.42)where a > 0, d > 0, z > 0. This can be evaluated by working out the density of a productof two independent real random variables by using two different techniques. For thedetailed discussion of the mathematical methods to tackle integrals of the types as givenin (2.42), we refer to Haubold and Mathai (1984, 1986a). The results contain the followingtheorem:
Theorem	2.2 For z > 0, d > 0, a > 0,m and n positive integers,

To obtain the special case realized in (2.41) we put n = 1,m = 2, a = 1, ρ = ν, we get(2.43)For computable series representation of N
i

ν

(z;d) in (2.43) for all classes of theparameters −ν + r+ 1 see Sect. 4.4 of Haubold and Mathai (1986a).
2.9	 Resonant	Reaction	RatesHere also we will consider various situations.
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We put (2.26) into (2.28) and obtain the representation of < σv > for resonantthermonuclear reactions (2.1):
(2.44)

where q̄  is given by (2.45)where z is given in (2.34). From (2.44) we remove the integral (2.46)which may be written more conveniently as,
(2.47)

where ~E
r

 denotes a modi�ied resonance energy,
(2.48)

with ~Γ as the modi�ied total width,
(2.49)
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we obtain
R(q, a, b, g) = ∫
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(see Haubold and John 1979; Haubold and Mathai 1986b).In order to comprehend cases in which the cross section factor or the partial width areadditionally multiplied by energy-depending factors we consider the more generalintegral (2.50)
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(cp. also Mathai 1971; Saxena 1960; Haubold and Mathai 1984). Substituting (2.54) and(2.55) in (2.53) one has the following:
(2.56)

Put n = 1,m = 2, ν = 0, to get R(q, a, b, g).
(2.57)
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3  (Haubold and Mathai 1986b).Comparing the resonant result (2.57) with the nonresonant case (2.37) we observethat the former is an in�inite sum over nonresonant contributions (Note that q2a = z

2).The appearance of the G-function of the type Gp,0

0,p

(⋅) in (2.57) is due to the Maxwell-Boltzmannian approach to the resonant thermonuclear reaction rate. For the numericalcomputation of (2.57) all results obtained in Sect. 4.3 (Haubold and Mathai 1984) areapplicable.
Case	2.6 The neutral particle case with Maxwell-Boltzmann distribution functionConsidering neutron reactions, i.e., q = 0, we are dealing with energy-independentpartial width. In the case q = 0, this also means Γ

1

= 0, for (2.53) we obtain
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¯
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With (2.60), the closed-form representation of the resonant thermonuclear reactionrate for neutron reactions is obtained.
Case	2.7 The charged particle case with modi�ied Maxwell-Boltzmann distributionfunctionIn the following, we consider a modi�ication of the Maxwell-Boltzmann distribution forresonant nuclear reactions. Instead of (2.50) we write (2.61)Replacing the denominator of the kernel of the integral (2.61) as in the case (2.51) weobtain the following, denoting the sequence of parameters q, a, b, c, g;ν, δ,n,m by W, thatis, W = {q, a, b, c, g;ν, δ,n,m}: (2.62)But
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for |(b− n

a

u

1
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n
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). Putting n = 1,m = 2, ν = 0 weobtain
(2.66)
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|< 1. Series representations for the numerical computation of theG-function contained in (2.66) are given in Sect. 2.10.
2.10	 Series	Representations	for	the	Thermonuclear
Functions:	G3,0

0,3

(⋅)Now, we are going back to the collision probability integral containing as a part of thekernel a Maxwell-Boltzmann distribution function term. Consider the case 
m = 2,n = 1, a = 1, and ρ = −ν in Eq. (2.35). Then, the closed-form representation ofthe thermonuclear reaction rate integral contains the Meijer’s G-function of the followingtype: see for example (2.37), (2.67)In the following, we shall derive representations of (2.67) which will be suitable for thenumerical evaluation. In the light of the results obtained by Critch�ield (1972) we refer to(2.67) as the thermonuclear functions occurring in Eqs. (2.37), (2.40), (2.57) and (2.66),respectively.

Case	2.8 ν ≠ ±

λ

2

,λ = 0, 1, 2,…Then the poles of the Mellin-Barnes integral representation of (2.67) are simple andthen the G-function has a simple series expansion. Consider the evaluation of the G-function in this case (Mathai and Saxena 1973):
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The poles are at s = 0,−1,−2,… ;s = −

1

2

,

1

2

− 1,… ;s = −1 − ν, −1 − ν − 1,… .The sum of the residues corresponding to the poles s = 0,−1,−2,…, denoted by S
1

, isthe following:
(2.68)

where 
p

F

q

(⋅) denotes the generalized hypergeometric function. The sum of the residuescorresponding to the poles s = −

1

2

, −

1

2

− 1,…, denoted by S
2

, is the following:
(2.69)

Further on the sum of the residues corresponding to the poles 
s = −1 − ν, −1 − ν − 1,…, denoted by S

3

, is the following:
(2.70)

Now we have the following result:
Theorem	2.3 From S

1

,S

2

, and S
3

 of (2. 68),(2.69) and (2.70), respectively, we have
G

3,0

0,3

[

z

2

4

0,

1

2

,1+ν

] = S

1

+ S

2

+ S

3

for ν ≠ ±

λ

2

,λ = 0, 1, 2,… .Note that the series S
1

,S

2

 and S
3

 are termwise integrable over any �inite range and hencecomputations can be carried out by using these 
0

F

2

(⋅) functions (cf. Mathai andSaxena 1973).
Case	2.9 ν a positive integerIn this case the poles of the gammas in the integral representation of (2.67) are thefollowing: The poles of Γ(s) are at s = 0,−1,−2,… ,−ν, −ν − 1,…. The poles of 

Γ(1 + ν + s) are at s = −ν − 1,−ν − 2,…. The poles of Γ( 1

2

+ s) are at 
s = −

1

2

, −

1

2

− 1,…. Note that the poles at = −

1

2

, −

1

2

− 1,… and at 
s = 0,−1,… ,−ν are of order one each and the poles at s = −1 − ν, −1 − ν − 1,… areof order two each.

S

1

=∑

∞

r=0

(−1)

r

r!

Γ(

1

2

− r)Γ(1 + ν − r)(

z

2

4

)

r

= Γ(

1

2

)Γ(1 + ν)∑

∞

r=0

(−1)

r

r!

1

(1/2)

r

(−ν)

r

(

z

2

4

)

r

= Γ(

1

2

)Γ(1 + ν)

0

F

2

(−; 1
2

, −ν;− z

2

4

),

S

2

=∑

∞

r=0

(−1)

r

r!

Γ(−

1

2

− r)Γ(

1

2

+ ν − r)(

z

2

4

)

1

2

+r

= Γ(−

1

2

)Γ(

1

2

+ ν)(

z

2

4

)

1

2

0

F

2

(−; 3
2

,

1

2

− ν;− z

2

4

).

S

3

=∑

∞

r=0

(−1)

r

r!

Γ(−1 − ν − r)Γ(−

1

2

− ν − r)(

z

2

4

)

1+ν+r

= Γ(−1 − ν)Γ(−

1

2

− ν)(

z

2

4

)

1+ν

0

F

2

(−;ν + 2, ν +

3

2

;− z

2

4

).

∣



Again, for convenience, the sum of the residues will be denoted by S
j

, j = 1, 2, 3. Thesum of the residues corresponding to the poles s = −

1

2

, −

1

2

− 1,…, denoted by S
1

, isthe following, by following through the same procedure as in the earlier case: (2.71)For the sum of the residues corresponding to the poles at s = 0,−1,… ,−ν, denoted by 
S

2

, we get the following: (2.72)For poles of order two, we will have to use the general formula for evaluating the residueswhen the poles are of higher orders, and in the present case, the integrand has to bedifferentiated once. Let the integrand of the G-function in (2.67) be denoted by Δ(s). Thatis,
Δ(s) = Γ(s)Γ(1 + ν + s)Γ(

1

2

+ s)(

z

2

4

)

−s

.

Then, the sum of the residues corresponding to the poles s = −ν − 1, ν − 2,…, we havethe following, denoted by S
3

:

But, by inserting the factors (s+ 1 + ν + r− 1)

2

⋯(s+ 1 + ν)

2

(s+ v)(s+ ν − 1)⋯ sin the numerator and in the denominator, we can write B(s) as the following:

Now, by taking the limit we have the following, denoting the resulting quantity as B
r

:
(2.73)

Let

S

1

= Γ(−

1

2

)Γ(

1

2

+ ν)(

z

2

4

)

1

2

0

F

2

(−; 3
2

,

1

2

− ν;− z

2

4

).

S

2

= Γ(1 + ν)Γ(

1

2

)∑

ν

r=0

1

(1/2)

r

(−ν)

r

r!

(

z

2

4

)

r

.

S

3

=∑

∞

r=0

lim

s→−1−ν−r

∂

∂s

{(s+ 1 + ν + r)

2

Δ(s)}

=∑

∞

r=0

(

z

2

4

)

1+ν+r

lim

s→−1−ν−r

{− ln (

z

2

4

)+

∂

∂s

}B(s)

B(s)

= {(s+ 1 + ν + r)

2

Γ(1 + ν + s)Γ(s)Γ(s+ 1/2)}.

B(s) =

(s+1+ν+r)

2

(s+ν+r)

2

⋯(s+1+ν)

2

(s+ν)⋯s

(s+ν+r)

2

⋯(s+1+ν)

2

(s+ν)⋯s

×Γ(1 + ν + r+ s)Γ(s)Γ(

1

2

+ s)

=

Γ

2

(s+r+ν+2)Γ(

1

2

+s)

(s+r+ν)

2

⋯(s+ν+1)

2

(s+ν)⋯s

B

r

=lim

s→−1−ν−r

B(s) =

Γ

2

(1)Γ(

1

2

−1−ν−r)

(−1)

2

⋯(−r)

2

(−r−1)⋯(−r−ν−1)

=

(−1)

1+ν+2r

Γ

2

(1)Γ(−

1

2

−ν−r)

r!(r+ν+1)!

=

(−1)

1+ν+r

Γ(−

1

2

−ν)

r!(ν+r+1)!(

3

2

+ν)

r

.



Consider the limit and let
(2.74)

where ψ(z) is the psi function or digamma function (cf. Mathai and Saxena 1973). Hence,for the sum of the residues corresponding to the poles s = −1 − ν, −1 − ν − 1,…, weobtain (2.75)where A
r

 and B
r

 are de�ined in (2.74) and (2.73) respectively. Hence, we have thefollowing result:
Theorem	2.4 For ν a positive integer,

where B
r

 and A
r

 are de�ined in (2.73) and (2.74) respectively.
Case	2.10 ν a negative integerLet ν = −μ,μ = 2, 3,…. In this case, the poles of the G-function in (4.41) are 
s = −

1

2

, −

1

2

− 1,… of order 1 each; s = −1 − ν, −1 − ν − 1,… , 1 or 
s = μ− 1,μ− 2,…1 are of order one each, and the poles s = 0,−1,−2,… are of ordertwo each. Let us again denote the sum of the residues by S

j

, j = 1, 2, 3. The sum of theresidues corresponding to the poles s = −

1

2

, −

1

2

− 1,… remains the same as beforeand it is equal to the following: (2.76)The other set of poles of order 1 each are s = −1 − ν − r, r = 0, 1,… ,−ν − 2 and thesum of the residues, denoted by S
2

, is the following: (2.77)

A(s) =

∂

∂s

ln B(s)

= 2ψ(s+ r+ ν + 2) + ψ(

1

2

+ s)−

2

s+r+ν

−

2

s+r+ν−1

−⋯

−

2

s+ν+1

−

1

s+ν

−⋯−

1

s

.

A

r

=lim

s→−1−r−ν

A(s)

= 2ψ(1) + ψ(−

1

2

− ν − r)+

2

1

+

2

2

+⋯+

2

r

+

1

r+1

+⋯+

1

r+ν+1

= ψ(r+ 1) + ψ(r+ ν + 2) + ψ(−

1

2

− ν − r),

S

3

=∑

∞

r=0

(

z

2

4

)

1+ν+r

{− ln (

z

2

4

)+A

r

}B

r

,

π

−

1

2

G

3,0

0,3

[

z

2

4

0,

1

2

,1+ν

] = Γ(1 + ν)∑

ν

r=0

1

(1/2)

r

(−ν)

r

r!

(−

z

2

4

)

r

−2Γ(

1

2

+ ν)(

z

2

4

)

1

2

0

F

2

(−; 3
2

,

1

2

− ν;− z

2

4

)

+π

−

1

2

(

z

2

4

)

1+ν

∑

∞

r=0

(

z

2

4

)

r

{− ln (

z

2

4

)+A

r

}B

r

,

∣

S

1

= Γ(−

1

2

)Γ(

1

2

+ ν)(

z

2

4

)

1

2

0

F

2

(−; 3
2

,

1

2

− ν;− z

2

4

).



Poles of order 2 are at s = −r, r = 0, 1, 2,…. Consider the relation,
(s+ r)

2

=

(s+ r)

2

(s+ r− 1)

2

⋯(s)

2

(s− 1)⋯(s− ν + 1)

(s+ r− 1)

2

⋯ s

2

(s− 1)⋯(s− ν + 1)

.

Then
(s+ r)

2

Γ(s)Γ(s+ ν + 1) =

Γ

2

(s+ r+ 1)

(s+ r− 1)

2

⋯ s

2

(s− 1)⋯(s− ν + 1)

.

Let
(2.78)

Let
(2.79)

Thus, the sum of the residues corresponding to the poles s = −r, r = 0, 1,…, by usingsteps similar to the ones employed before, and denoted by S
3

, is the following: (2.80)where B′

r

 and A′

r

 are de�ined in (2.78) and (2.79) respectively. With this, we have thefollowing theorem:
Theorem	2.5 For ν a negative integer,

S

2

=∑

−ν−2

r=0

lim

s→−1−ν−r

(s+ 1 + ν + r)Γ(s+ ν + 1)Γ(s)Γ(

1

2

+ s)(

z

2

4

)

−s

= (

z

2

4

)

1+ν

∑

−ν−2

r=0

(

z

2

4

)

r

(−1)

r

r!

Γ(−ν − 1 − r)Γ(−

1

2

− ν − r)

= (

z

2

4

)

1+ν

Γ(−ν − 1)Γ(−

1

2

− ν)∑

−ν−2

r=0

(−1)

r

r!

(

z

2

4

)

r

1

(ν+2)

r

(ν+3/2)

r

.

B

′

r

=lim

s→−r

B

′

(s) =lim

s→−r

[(s+ r)

2

Γ(s)Γ(s+ ν + 1)Γ(1 + s)]

=

Γ

2

(1)Γ(

1

2

−r)

(−1)

2

(−2)

2

⋯(−r)

2

(−r−1)⋯(−r+ν+1)

=

Γ

2

(1)Γ(

1

2

−r)(−1)

ν+1

r!(r−ν−1)!

.

A

′

r

=lim

s→−r

A

′

(s) =lim

s→−r

{

∂

∂s

ln B

′

(s)}

= ψ(r+ 1) + ψ(r− ν) + ψ(

1

2

− r).

S

3

=∑

∞

0

(

z

2

4

)

r

{− ln (

z

2

4

)+A

′

r

}B

′

r

,



where B′

r

 and A′

r

 are de�ined in (2.78) and (2.79), respectively.
Case	2.11 ν a positive half integerLet ν = m+

1

2

,m = 0, 1,…. Then
Γ(s)Γ(s+ ν + 1)Γ(

1

2

+ s) = Γ(s)Γ(s+m+

3

2

)Γ(s+

1

2

)

and the poles of the Meijer’s G-function in (2.67) are the following: s = −r, r = 0, 1,…are of order 1 each; s = −

1

2

− r, r = 0, 1,… ,m are of order 1 each; 
s = −m−

3

2

− r, r = 0, 1,… are of order 2 each. The sum of the residuescorresponding to the poles s = −r, r = 0, 1,… is the following, denoted again by S
1

:
(2.81)

Evidently, the sum of the residues corresponding to the poles 
s = −

1

2

− r, r = 0, 1,… ,m, denoted by S
2

, is the following:
(2.82)

Let
C(s) = (s+m+

3

2

+ r)

2

Γ(

1

2

+ s)Γ(

3

2

+m+ s)Γ(s).

As done in the previous cases, insert the following factors in the numerator and in thedenominator.

π

−

1

2

(S

1

+ S

2

+ S

3

)

= π

−

1

2

G

3,0

0,3

[

z

2

4 0,

1

2

,1+ν

]

= π

−

1

2

(

z

2

4

)

1+ν

Γ(−ν − 1)Γ(−

1

2

− ν)

×∑

−ν−2

r=0

(−1)

r

r!

(

z

2

4

)

r

1

(ν+2)

r

(ν+3/2)

r

−2Γ(

1

2

+ ν)(

z

2

4

)

1

2

0

F

2

(−; 3
2

,

1

2

− ν;− z

2

4

)

+π

−

1

2

∑

∞

r=0

(

z

2

4

)

r

{− ln (

z

2

4

)+A

′

r

}B

′

r

,

∣

S

1

=∑

∞

r=0

(−1)

r

r!

(

z

2

4

)

r

Γ(

1

2

− r)Γ(m+

3

2

− r)

= Γ(

1

2

)Γ(m+

3

2

)∑

∞

r=0

(−1)

r

r!

1

(1/2)

r

(−m−1/2)

r

(

z

2

4

)

r

= Γ(

1

2

)Γ(m+

3

2

)

0

F

2

(−; 1
2

, −m−

1

2

;− z

2

4

).

S

2

=∑

m

r=0

(−1)

r

r!

(

z

2

4

)

1

2

+r

Γ(−

1

2

− r)Γ(1 +m− r)

= Γ(−

1

2

)Γ(1 +m)(

z

2

4

)

1

2

∑

m

r=0

(−1)

r

r!

(

z

2

4

)

r

1

(3/2)

r

(−m)

r

.



(s+m+

3

2

+ r− 1)

2

⋯(s+m+

3

2

)

2

(s+m+

3

2

− 1)⋯(s+

1

2

)

and write
C(s) =

Γ

2

(s+m+

3

2

+ r+ 1)Γ(s)

(s+m+

3

2

+ r− 1)

2

⋯ (s+m+

3

2

)

2

(s+m+

3

2

− 1)⋯ (s+

1

2

)

.

Now take the limit and denote the result as C
r

, that is,
(2.83)

Let D(s) = ∂

∂s

ln C(s) and (2.84)Hence, the sum of the residues corresponding to the poles of order 2 each, denoted by S
3

,is the following: (2.85)Therefore, we have the following theorem:
Theorem	2.6 For ν a positive half integer, namely ν = m+

1

2

,m = 0, 1,…

where C
r

 and D
4

 are de�ined in (2.83) and (2.84), respectively.
Case	2.12 ν a negative half integerLet ν = −m−

1

2

,m = 0, 1, 2,…. In this case,

C

r

=lim

s→−m−

3

2

−r

C(s)

=

Γ

2

(1)Γ(−m−

3

2

−r)

(−1)

2

⋯(−r)

2

(−r−1)⋯(−m−1−r)

=

(−1)

m+1+r

Γ(−m−

3

2

)

r!(m+1+r)!(m+5/2)

r

.

D

r

=lim

s→−m−

3

2

−r

D(s) = ψ(m+ 1) + ψ(m+ r+ 2) + ψ(−m−

3

2

− r).

S

3

=∑

∞

r=0

(

z

2

4

)

m+

3

2

+r

{− ln (

z

2

4

)+D

r

}C

r

.

π

−

1

2

(S

1

+ S

2

+ S

3

)

= π

−

1

2

G

3,0

0,3

[

z

2

4 0,

1

2

,1+ν

]

= Γ(m+

3

2

)

0

F

2

(−; 1
2

, −m−

1

2

;− z

2

2

)

−2Γ(1 +m)(

z

2

4

)

1

2

∑

m

r=0

(−1)

r

r!

(

z

2

4

)

r

1

(3/2)

r

(−m)

r

π

−

1

2

(

z

2

4

)

m+

3

2

∑

∞

r=0

(

z

2

4

)

r

{− ln (

z

2

4

)+D

r

}C

r

,

∣



Γ(s)Γ(s+

1

2

)Γ(s+ ν + 1) = Γ(s)Γ(s+

1

2

)Γ(s+

1

2

−m).

The poles at s = −r, r = 0, 1, 2,… are of order 1 each; the poles at 
s = m−

1

2

− r, r = 0, 1,… ,m− 1 are of order 1 each and the poles at 
s = −

1

2

− r, r = 0, 1, 2,… are of order 2 each. Again, we will denote the sum of theresidues by S
j

, j = 1, 2, 3. The sum of the residues corresponding to the poles 
s = −r, r = 0, 1,…, denoted by S

1

, is the following:
(2.86)

For the sum of the residues at the poles s = m−

1

2

− r, r = 0, 1,… ,m− 1, we have thefollowing, denoted by S
2

:
(2.87)

Let
C

′

(s) = (s+

1

2

+ r)

2

Γ(s+

1

2

)Γ(s+

1

2

−m)Γ(s).

As done in the previous cases, insert the following factors in the numerator and in thedenominator
(s+

1

2

+ r− 1)

2

⋯(s+

1

2

)

2

(s−

1

2

)⋯(s+

1

2

−m)

and write
C

′

s(s) =

Γ

2

(s+

1

2

+ r+ 1)

(s+

1

2

+ r− 1)

2

⋯ (s+

1

2

)

2

(s−

1

2

)⋯ (s+

1

2

−m)

.

Now, take the limit of the logarithmic derivative of C ′

(s) and write (2.88)

S

1

=∑

∞

r=0

(−1)

r

r!

(

z

2

4

)

r

Γ(

1

2

− r)Γ(

1

2

−m− r)

= Γ(

1

2

)Γ(

1

2

−m)∑

∞

r=0

(−1)

r

r!

(

z

2

4

)

r

1

(1/2)

r

(m+1/2)

r

= Γ(

1

2

)Γ(

1

2

−m)

0

F

2

(−; 1
2

,m+

1

2

;− z

2

4

).

S

2

=∑

m−1

r=0

(−1)

r

r!

(

z

2

4

)

r−m+

1

2

Γ(m− r)Γ(m−

1

2

− r)

= (

z

2

4

)

−m+

1

2

Γ(m)Γ(m−

1

2

)∑

m−1

r=0

(−1)

r

r!

(

z

2

4

)

r

1

(−m+1)

r

(−m+3/2)

r

.

D

′

r

=lim

s→−

1

2

−r

∂

∂s

ln C

′

(s) = ψ(1) + ψ(m+ r+ 1) + ψ(−

1

2

− r).



Let
(2.89)

Now, we can write the sum of the residues corresponding to the poles at 
s = −

1

2

− r, r = 0, 1,… as the following, denoted by S
3

:
(2.90)where D′

r

 and C ′

r

 are given in (2.89) and (2.90), respectively. Hence, we have the followingtheorem:
Theorem	2.7 For ν a negative half integer, namely ν = −m−

1

2

,m = 0, 1,…

where D′

r

 and C ′

r

 are given in (2.88) and (2.89), respectively.
2.11	 Series	Representations	for	the	Thermonuclear
Functions:	G3,0

1,3

(⋅)In view of the integral of the nonresonant nuclear reaction rate with modi�ied Maxwell-Boltzmann distribution in (2.32) we have to consider the special case n = 1,m = 2, and 
a = 1 in (2.33):

(2.91)
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For the Mellin-Barnes integral representation of Meijer’s G-function see the details inMathai and Saxena (1973).
Case	2.13 −ρ+ r+ 1 ≠

λ

2

,λ = 0, 1, 2,…Note that the poles of the integrand in (2.91) are at s = ρ− r− 1, s = 0,−1,−2,…and s = −

1

2

, −

1

2

− 1,…. Hence if −ρ+ r+ 1 ≠

λ

2

,λ = 0, 1, 2,… all the poles aresimple and the following are the residues:

Hence, we have the following result:
Theorem	2.8 For z > 0, d > 0,−ρ+ r+ 1 ≠

λ

2

,λ = 0, 1, 2,…

Case	2.14 −ρ+ r− 1 = μ,μ = 0, 1, 2,…If −ρ+ r− 1 = μ,μ = 0, 1, 2,… then at s = −μ there is a pole of order two in theintegrand of (2.91). The remaining poles are simple. The residue at 
s = −μ,μ = 0, 1, 2,…, denoted by S

1

, is therefore the following:
(2.92)

and
(2.93)

where ψ(z) is the psi function ψ(z) = ∂
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ln Γ(z) (Mathai and Saxena 1973). Thus, we cangive the following result:
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Theorem	2.9 For z > 0, d > 0,−ρ+ r+ 1 = μ,μ = 0, 1, 2,…

(2.94)
where A and B are given in (2.93) and (2.92), respectively.
Case	2.15 −ρ+ r− 1 =

λ

2

,λ = 1, 3, 5,…If −ρ+ r− 1 =

λ

2

,λ = 1, 3, 5,… then there is a pole of order two at s = −

λ

2

. Theresidue at s = −

λ

2

 reduces to the following, denoted by S
1

:

where (2.95)and (2.96)
Theorem	2.10 For z > 0, d > 0,−ρ+ r+ 1 =

λ

2

,λ = 1, 3, 5,… ,

λ
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= λ

1

+

1

2

where B
1

 and A
1

 are given in (2.95) and (2.96), respectively.Note that in all the Theorems 2.8, 2.9, and 2.10, the inner series are nothing but ahypergeometric series of the type 
1

F

2

(z) and hence convergent for all z. Then, the outersum in these theorems is dominated by a 
1

F

1

(z) which is also convergent for all values ofthe variable z. Hence, the series forms on the right side in Theorems 2.8, 2.9, and 2.10 areconvergent (cp. Haubold and Mathai 1986a).
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3.	The	Solar	Neutrino	ProblemArak M. Mathai1 and Hans J. Haubold2  Department of Mathematics and Statistics, McGill University, Montreal, ON, CanadaVienna International Centre, UN Of�ice for Outer Space Affairs, Vienna, Austria 
3.1	 Introduction:	The	Solar	Neutrino	Problem“...some say the solar neutrino problem is still with us. Others say there never was a problem. Mypurpose is to present this ambiguous situation to you in such a way that you can make your ownjudgement.” (Fowler 1977). It is not the aim of the present chapter to add one more suggestion to thelong list of attempts for the solution of the so-called solar neutrino problem (for an updated list cf.Haxton 1984).It is the merit of R. DAVIS, Jr. and his associates to have developed a radiochemical method ofdetecting the solar neutrino via the reaction ν

e

+

37

Cl→

37

Ar+ e

− over a period of about 30 years(Bahcall and Davis 1982). This detection method is sensitive primarily to the high energy neutrinos fromthe decay 8B→

8

Be

∗

+ e

+

+ ν

e

, where 8B is produced in the proton-proton chain with the overall netresult: 4p+ e

−

→ α+ e

+

+ 2ν

e

+ 26.73MeV . The branching ratios of the proton-proton chain are verysensitive to the solar temperature and require a detailed model of the evolution and internal structure ofthe Sun (Haubold and Gerth 1983). The observations yield, as an average of the runs from 1970 to 1983,a rate ∑
i

(ϕ

i

σ

i

)

obs

= (2.1 ± 0.3)SNU(1 SNU = 10

−36 captures s−1 per 37Cl atom (Davis et al. 1984).The rate predicted by the standard solar model is ∑
i

(ϕ

i

σ

i

)

theor

= (7.6 ± 3.3)SNU(3σ) (Bahcall et al.1982). The disagreement between standard theory and observations by a factor of four constitutes whathas come to be known as the solar neutrino problem in the sense questioned by FOWLER as mentionedabove. Over more than 15 years a large number of more or less fundamental solutions, modifying eitherthe neutrino physics, nuclear physics or the solar model construction, have been proposed. The presentchapter is an attempt to construct a simple analytic model to study the internal structure and theneutrino emission of the Sun in its present stage of evolution.In Sect. 3.2, the nuclear reactions of the proton-proton chain and its branching are considered and thetotal nuclear energy generation rate of the proton-proton chain under the assumption of near-statisticalequilibrium between the reactions will be derived. In Sect. 3.3, an analytic model for the central nuclearburning region of the Sun is constructed by taking into account the assumptions of mass conservation,hydrostatic equilibrium, and energy conservation. These calculations assume a non-linear densitydistribution for the solar model and employ the equation of state of the perfect gas. What concerns themethod of solar model construction is that in some sense we are going back to the method ofChandrasekhar (1939) and Hayashi et al. (1962). In Sect. 3.4, the basic integral of the solar nuclearenergy generation and solar neutrino emission is derived taking into account the closed-formrepresentation of the nonresonant thermonuclear reaction rate (Haubold and Mathai 1984). Thatintegral is the analytic equivalent to the rough estimation of the solar neutrino �lux by N
ν

≈ 2L

⊙

/E,where L
⊙

 is the luminosity of the Sun and E is the energy liberated by the overall net reaction asmentioned above, not including the energy of the two neutrinos (N
ν

≈ 2 × 10

38

s

−1

). In Sect. 3.5, theintegral of the nuclear energy generation and solar neutrino emission is evaluated analytically in closed-form by means of modern results of the integration theory of generalized hypergeometric functions (cp.Mathai and Saxena 1973, 1978). In bringing together the results of the analytic evaluations described inSects. 3.3, 3.4, 3.5, respectively, analytic results for the solar neutrino emission rates are represented inSect. 3.10.
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Table	 3.1 Basic facts for the proton-proton chain (adapted from K������� (1982), BAHCALL et al. (1982), and H����� (1984))
(i) (ii) (∗∗)(iii) (∗∗)(iv) (∗∗)(v) (∗∗)(vi) (∗∗)

(vii)

Reactions,	except	for	reaction
energies	not	including	positron
annihilation	but	not	including
neutrino	energy

Termination andlocally containedheat Branchingpercentages S

11

(0)[keV b] τ

D

(0)[years] E

cut-max

[keV] E

ν,max[MeV]
(0)	1H+ e

−

+

1

H →

2

H+ ν

e

PPI 0.25%    1.44(mono)
(1)	
1

H+

1

H →

2

H+ e

+

+ ν

e

+ 1.19 MeV

 99.75%
S

11

(0) = 3.88 × 10

−22

5.8 × 10

9  0.42
(2)	2H+

1

H →

3

He + γ + 5.49 MeV Q

PPI

= 26.2 MeV

 
S

12

(0)2.5 × 10

−4

3.2 × 10

−15 15  
(3)	
3

He +

3

He →

4

He + 2

1

H+ 12.85 MeV

40%  
S

33

(0)4.7 × 10

3

1.5 × 10

5 33  
(4)	3He +4

He →

7

Be + γ + 1.54 MeV

 31% S

34

(0)0.52

6.5 × 10

7 107  
(5)	
7

Be + e

−

→

7

Li + ν

e

+ γ + 0.05 MeV

PPII 99.7%  0.2  0.86(90%)(mono)
(6)	
7

Li +

1

H →

4

He +

4

He + 17.34 MeV

Q

PPII

= 25.7 MeV

  
2 × 10

−4  0.38(10%)
(7)	7Be +1

H →

8

B+ γ + 0.14 MeV PPIII 0.3%
S

17

(0)2.9 × 10

−2 71 117  
(8)	8B →

8

Be + e

+

+ ν

e

+ 7.7 MeV Q

PPIII

= 19.1 MeV

  
3 × 10

−8  14.06
(9)	8Be →4

He +

4

He + 3.0 MeV

   
10

−19   
3.2	 The	Proton-Proton	ChainThe calculation of the rate of energy generation and neutrino production from the proton-proton chain isnot so simple as in the case of the CNO cycles, for example, because of the three possible modes oftermination of the chain (cf. Table 3.1, column (i) and (ii), respectively). The locally liberated heat, Q,varies from Q

ppIII

= 19.1MeV  to Q
ppI

= 26.2MeV  because of different neutrino energy losses. Theindividual exoergic reaction energies shown in Table 3.1 (column (i)) include positron annihilation butdo not include neutrino energy. The rate of energy generation is not simply proportional to the rate of the�irst reaction (1) in the proton-proton chain, the 1H(p, e

+

ν

e

)

2

H reaction, but depends also on density,temperature and the abundances of the various nuclei that enter into the various reactions. Thetemperature of the deep interior of the Sun is high enough, that all reactions in each mode of terminationcan occur in time scales short compared to the age of the Sun. The only exception is the proton-protonreaction itself (cf. Table 3.1). Thus, one can assume that a near-statistical equilibrium among theintermediate products of the modes will be established, in which the reaction rates of creation anddestruction of each nucleus are approximately equal. Under those conditions, the calculation of energygeneration and neutrino production for the full chain as shown in Table 3.1 is muchsimpli�ied (Fowler 1977; Kavanagh 1982; Bahcall et al. 1982). The branching of the various reactions ofthe proton-proton chain is shown in columns (ii) and (iii), respectively, in Table 3.1. For the principalmode (PPI) terminating with reaction (3) we have the rate of energy generation per unit mass, (3.1)where n
3

 is the number density of 3He nuclei and < σv >

33

 is the thermally averaged product of thecross section σ for the reaction and relative velocity v of the interacting particles. The mode PPI isaccompanied by neutrino production in the reactions (1), 1H(p, e

+

ν

e

)

2

H, and (0), 1

H(e

−

p, ν

e

)

2

H,respectively. In the mode PPII under the assumption of near-statistical equilibrium, the net rate ofcreation of 4He nuclei is equal to the rate of any of the reactions occurring in the mode PPII (the sameholds for PPIII). Choosing the �irst reactions of each of the modes PPII and PPIII, we get for the rates ofenergy generation per unit mass (3.2)

S

PPI

=

1

ρ

Q

PPI

1

2

n

3

n

3

< σv >

33

,



and (3.3)where n
7

 and n
1

 are the number densities of 7Be and 1H, respectively, and p
7e−

 is the probability perunit time per nucleus of electron capture, < σv >

71

 is the thermally averaged product of the crosssection σ for the reaction (7) and relative velocity v of the interacting particles. The neutrino producingreactions of PPII and PPIII are the reactions (5) and (8), respectively.For PPI the condition of near-statistical equilibrium means that (3.4)where n
4

 is the number density of 4He nuclei, the factors (1/2) account for the fact that a reactionbetween identical particles always involves two of these particles. The factor 2 in (3.57) accounts for thefact that two 3He nuclei are consumed in each reaction (3). If the reaction 3He(α, γ)

7

Be would benegligible one simply states 1
2

n

3

n

3

< σv >

33

= (

1

2

)

1

2

n

1

n

1

< σv >

11

 which is correct if only the PPImode operates. Similarly, for the reactions following the formation of 7Be we have (3.5)For the total rate of energy generation per unit mass from all three modes PPI, PPII, PPIII we �ind (3.6)which we can write with (3.1), (3.2), (3.3), and by the help of (3.5),
(3.7)

Equation (3.7) is the total nuclear energy generation rate for the proton-proton chain expressed in termsof thermonuclear reaction rates of the reactions (3), (4), and (7) shown in Table 3.1. Taking into account(3.57) we can also write ϵ
PP

 in (3.7) in terms of the reaction (1), 1H(p, e

+

ν

e

)

2

H, which determines theoverall thermonuclear energy generation of the proton-proton chain, the reaction (4), 3H
e

(α, γ)

7

B

e

,which is the branching reaction between the modes PPI and PPII/PPIII in the proton-proton chain, andthe reaction (7), 7B
e

(p, γ)

8

B, which is the �irst reaction of the mode PPIII containing the high energyneutrino producing reaction of the decay 8B→

8

B

∗

e

+ e

+

+ ν

e

. As we know, the neutrinos from thedecay of 8B dominate the capture rate in the solar neutrino experiment of DAVIS andassociates (Fowler 1977; Bahcall et al. 1982; Bahcall and Davis 1982).What concerns the neutrino producing reactions in the proton-proton chain is that the beta decayreactions (1) and (8) in Table 3.1 produce neutrinos in an allowed FERMI distribution with maximumenergy E
ν

max

 as shown in column (vii) of Table 3.1. However, the �lux of 8B neutrinos deviates from anallowed FERMI distribution because the 8B
e

 �inal state populated in this decay is a broad resonancewhere E
ν

max

 is computed for the center of this resonance (Fowler 1977; BAHCALL et al. 1982). Theelectron capture reactions (0) and (5) produce line sources of neutrinos of maximum energy E
ν

max

 alsoshown in Table 3.1 column (vii). The electron capture of 7Be leads partially to the ground state of 
7

Li(90%) and partially to an excited state (10%) of 7Li (Fowler 1977; Bahcall et al. 1982).One of the most serious problems in the theory of solar nuclear energy generation and solarneutrino production is the dependence of both on the cross sections of the nuclear reactions involved. Itis quite interesting that the �irst reaction of the proton-proton chain, 1H(p, e

+

ν

e

)

2

H has never beendirectly observed in the nuclear laboratory because of its extremely small cross section. This reaction canoccur only if the two protons are brought together by a nuclear collision. During the extremely short time
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of encounter between the protons one or both must have a chance to beta decay to become a neutron, apositron, and an electron neutrino. The neutron can then be captured by the second proton to form adeuteron which is a very rare event. May be this reaction will never be observed in the laboratory.However, the present state of the theory of beta decay makes it possible to estimate the cross section andthus the cross section factor with high precision. Practically, the same holds for the reaction (0) shown inTable 3.1 (ep. Bahcall et al. 1982). For all other nuclear reactions shown in Table 3.1, the nuclear crosssection can be measured in the nuclear laboratory, but, at least to large energies in comparison to theorder of the central temperature of the Sun (T
c

≈ 15.5 × 10

6

K, kT

c

≈ 1.34keV; cf. Table 3.1). It isgenerally accepted that the necessary extrapolation of the experimental cross sections measured forenergies up till E
1ab

max

 as shown in column (vi) of Table 3.1 to solar energies is well understoodtheoretically (Fowler 1977; Kavanagh 1982; Bahcall et al. 1982; Haxton 1984). If one removes the strongenergy dependence of the nuclear cross section due to the COULOMB barrier and displays theexperimental data in the form of the astrophysical nuclear cross section factor S(E), where E is thecenter-of-mass energy, one obtains the extrapolated S-factors at zero energy as shown in column (iv) ofTable 3.1 (Bahcall et al. 1982).
Table	 3.2 Basic parameters for the solar model (adopted from B������ et al. (1982))
Solar	parameter(*)  Value

Luminosity L

⊙

  
3.86 × 10

33

erg s

−1

Mass M

⊙

 
1.99 × 10

33

g

Radius R

⊙

  
6.96 × 10

10

cm

Central	hydrogen	abundance	by	mass   X
c

  0.355
Central	helium	abundance	by	mass   Y

c

  0.6222
Central	heavy	elements	abundances	by	mass   Z

c

  0.0228
mean	molecular	weight	for	central	solar	conditions   μ

c

  0.8417
Standard	 solar	 model	 parameters(*)

Central	density ρ

c⊙

  156 g

−3

Central	pressure P

c⊙

  
2.39 × 10

17

dyn

−2

Central	temperature T

c⊙

  
15.5 × 10

6

K

Analytic	 solar	 model	 parameters

Central	density   ρ
c⊙

  3.52 g

−3

Central	pressure   P
c⊙

  
1.31 × 10

17

dyn

−2

Central	temperature   T
c⊙

  9.7 × 10

6

K

3.3	 An	Analytic	Model	for	the	Central	Region	of	the	SunThe equations of the internal structure of the Sun—mass conservations, hydrostatic equilibrium, energyconservation, and energy transport - form a system of nonlinear differential equations, three relationswhich characterize speci�ically the behaviour of the interior of the Sun, and particular conditions for theboundaries. A complete solution of that boundary value problem can only be obtained by numericalintegration techniques. However, the aim of the present Section is to construct an analytic solar model byseparating the condition of hydrostatic equilibrium from the consideration of the energy transport insidethe solar material (cp. Haubold and Mathai 1984; Haubold and Mathai 1986). As it is well-known fromthe computation of detailed standard solar models, the temperature of the Sun increases towards thecenter, but does not attain the value necessary for thermonuclear energy generation until about 
r = 0.2R

⊙

(M = 0.35M

⊙

,L = 0.95L

⊙

; cf. Table 3.2; Bahcall et al. 1982). Thus, throughout the regionfrom r = R

⊙

 to r = 0.2R

⊙

, we can adopt a constant value of the luminosity L. For the treatment of theenergy generation by nuclear reactions in the deep interior of the Sun, we take into consideration thehydrostatic equilibrium and the energy conservation which determine the changes in the solar central



conditions. We regard the density distribution ρ(r) of our stellar model as an arbitrary but speci�iedfunction of the distance parameter r,
(3.8)

which is capable to reproduce the solar density distribution in the central region by choosing the freeparameter δ;ρ(r = 0) = ρ

c

 denotes the central stellar matter density, ρ(R
⊙

) = 0. For reasons ofsymmetry of the solar model we take δ = 2. From the equation of mass conservation, (3.9)we obtain the mass distribution with (3.8):
(3.10)

Note that from (3.10) one can get the central density, that is,
ρ(r = 0) = ρ

c

=
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4π
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3
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.

Putting δ = 2 we have the solar case for (7. 3),
(3.11)

the respective central density ρ
c⊙

 for the analytic solar model is given in Table 3.2. The equation ofhydrostatic equilibrium between the total pressure per unit volume and the gravity per unit volume(3.12)has the following solution with (3.8) and (3.10):
(3.13)

where we took into account the boundary conditions,
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G is the gravitational constant, and (3.14)For our analytic solar model we obtain with δ = 2 for (3.13): (3.15)
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the respective value for the central pressure is given in Table 3.2.Thus, (3.9), (3.12), and the boundary conditions mentioned above determine the pressuredistribution (3.13), corresponding to the given density distribution (3.8), for which hydrostaticequilibrium will be obtained. In the range of temperatures of the interior of the Sun and because werestrict ourselves to a star of solar mass we can make the restriction that the radiation pressure insidethe solar material is negligible (Chandrasekhar 1939). According to the perfect gas law, in the simplestform suggested by the kinetic theory of gases, we have the pressure (3.16)In (3.16), μ is the mean molecular weight, N
A

 is AVOGADRO’s constant, and k is theBOLTZMANN constant. With (3.16) the temperature distribution T(r) corresponding to hydrostaticequilibrium is determined by (3.8) and (3.13):
(3.17)

and the central temperature is given by
T (r = 0) = T

c
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G

kN
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M

⊙
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,

where ξ is given by (3.14).In the case δ = 2 of our analytic solar model we have for (3.17),
(3.18)

and the corresponding central temperature T
c⊙

 is given in Table 3.2.
3.4	 Solar	Thermonuclear	Energy	Generation:	Energy	Conservation
and	Solar	LuminosityThe analytic solar model constructed in Sect. 3.7 speci�ied the distribution of mass and pressure for agiven density distribution and required the temperature distribution to give hydrostatic equilibrium.This temperature distribution will in general not lead to thermal equilibrium. However, aside from thequestion of energy transport the solar model will be in complete thermal equilibrium only if the equationof energy conservation is satis�ied: (3.19)Equation (3.19) states that the net increase in the rate of energy �low from the inside to the outside of aspherical shell of the Sun is equal to the rate of energy production within the shell. In (3.19), L(r)represents the energy �lux through the sphere with radius r, ϵ(r) is the rate of thermonuclear energy
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generation per unit mass and includes the tiny energy losses via solar neutrinos. The net out�low ofenergy per second, L(r), through the sphere of radius r is determined, in the case of radiative transfer insolar matter, by the local values of the opacity and the temperature gradient. However, with our assumeddensity distribution (3.8) the energy transport equation can be satis�ied at only one point of the Sun. Thisserious assumption is justi�ied by the aim of the present chapter to investigate the physical conditions inthe central nuclear burning region of the Sun where neutrinos are generated. Note that the luminosity,(3.20)is not completely insensitive to the energy generation rate but, basically determined by the mass of thestar (Chandrasekhar 1939). The quantity L(r) remains constant and will be equal to its value at thesurface of the Sun, L(R
⊙

), as long as one remains outside the central region where nuclear energygeneration takes place. If we are concerned with only one speci�ic reaction 1 + 2 → 3 + 4, then we havethe “internal luminosity” going back to the speci�ic nuclear reaction in question: (3.21)The energy generation rate per unit mass ϵ
12

(r) is, beside the equation of state (3.16) (the opacity is notspeci�ied in our solar model by assumption), one of the three material equations of our solar model. Let 
E

12

 denote the amount of energy given off in a single reaction of the proton-proton chain written in thestandard notation 1 + 2 → 3 + 4, where 1 and 2 denote the incoming particles, and 3 and 4 denote theoutgoing particles.In the more or less developed analytic theory of the internal structure of the Sun one refers in generalto the de�inition of the thermonuclear energy generation rate in the following form: (3.22)In (8.4) the thermonuclear energy generation rate is expressed in terms of powers of the density andtemperature, where the subscript 0 designates central conditions, α and β are constants, and ϵ
0

 containsthe chemical composition (Chandrasekhar 1939; Hayashi, Hōshi, and Sugimoto 1962;Haubold and Mathai 1984, 1986). In general, the representation (3.22) of ϵ(r) does not describe theenergy generation rate of a speci�ic reaction, but, the total nuclear energy generation rate of a chain ofnuclear reactions like the proton-proton chain.In the following we do not refer to the representation (3.22), but, take into consideration thede�inition of the nuclear energy generation rate, (3.23)containing the thermonuclear reaction rate r
12

(ρ(r),T (r)) whose theory can be formulated on the basisof physical principles (cf. e.g., Parker et al. 1964; Haubold and Mathai 1984; Haubold and John 1981).
3.5	 The	Thermonuclear	Reaction	RateAll reactions involved in the proton-proton chain are nonresonant. In the calculations of the energygeneration and neutrino emission via the proton-proton chain described in Sect. 3.2 we will adopt thefollowing de�inition of the nonresonant nuclear cross section (Salpeter 1952; Parker et al. 1964;Haubold and Mathai 1984): (3.24)where η(E) is the SOMMERFELD parameter, given by, (3.25)

L(R

⊙

) = ∫

R

⊙

0

dr 4πr

2

ρ(r)ϵ(r),

L

12

(R

⊙

) = ∫

R

⊙

0

dr 4πr

2

ρ(r)ϵ

12

(r).

ϵ(r) = ϵ

0

(ρ

0

,T

0

)(

ρ(r)

ρ

0

)

α

(

T (r)

T

0

)

β

,α,β real .

ϵ

12

(r) =

1

ρ(r)

E

12

r

12

(ρ(r),T (r)),

σ(E) =

S(E)

E

exp {−2πη(E)},

1



where Z
1

 and Z
2

 are the charges of the interacting particles, E is the center-of-mass energy, e is thequantum of electric charge, h is PLANCK’s quantum of action, 
μ

∗

= m

1

m

2

/(m

1

+m

2

) = A

1

A

2

/(A

1

+A

2

)N

A

 is the reduced mass, A
1

 and A
2

 are the atomic massnumbers of the particles. As mentioned in Sect. 3.2, the cross section for the nuclear reactions that occurin the proton-proton chain cannot generally be measured at the energies of interest for solar conditions(cp. Table 3.1 column (vi)). Hence for the cross section factor S(E) in (3.24), extrapolations from higherenergy measurements must be used to obtain a zero energy intercept, S(0), and average values for the�irst and second derivatives at low energies, S ′

(0) and S ′′

(0). Therefore, S(E) is expanded by using aMACLAURIN series in the light of the weak dependence of S(E) on the relative kinetic energy of theparticles (Bahcall 1966; Critch�ield 1972; Haubold and Mathai 1984) (3.26)All the relevant cross section factors for the proton-proton chain evaluated at zero energy, S(0), areshown in Table 1 column (iv) (adopted from Bahcall et al. 1982).The MAXWELL-BOLTZMANN averaged thermonuclear reaction rate of a nonresonant nuclearreaction r
12

 in (3.23) can now be written (HAUBOLD and MATHAI 1984):
(3.27)

where δ
12

 is the KRONECKER symbol, n
1

 and n
2

 are the particle number densities. The number densitiesare more explicitly written as (3.28)where X
i

 is the atomic abundance by mass of the nuclei of type i. In connection with the explicit form ofthe thermonuclear reaction rate in (3.27) it is convenient to introduce the quantity < σv >

12

, de�ined bythe relation (3.29)where < σv >

12

 is the thermally averaged product of the cross section σ for the reaction and relativevelocity v of the interacting particles. The mean lifetime, r
2

(1), of nucleus 1 for interaction with nucleus 2is given as follows: (3.30)where λ
2

(1) is the decay rate of 1 for interaction with 2. The mean lifetime, τ
2

(1) de�ined in (3.30), forthe reactions of the proton-proton chain are given in Table 3.1 column (v) for central physical conditionsof the standard model of the Sun  (cp. Kavanagh 1982).After de�ining the basic operations (3.23), (3.29) and (3.30) for the description of the dynamics ofnuclear reactions in the deep interior of the Sun we �ind the �inal representation of the thermonuclearreaction rate by substituting (3.28) in (3.27) and writing y = E/(kT ):
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where (3.32)
(3.33)Equation (3.32) is the basic closed-form representation of the nonresonant thermonuclear reactionrate integral by means of MEIJER’s G-function (cf. Mathai and Saxana 1973; Haubold and Mathai 1984).This closed-form representation is appropriate to perform analytical operations and from (3.32)approximate expressions easily follow for small and large values of the characteristic parameter z(r) in(3.33), that is the COULOMB barrier energy divided by thermal energy, which appears in the argument ofthe G-function (Haubold and John 1981; Haubold and Mathai 1984).For large values of z(r) we get the asymptotic representation for the G-function in (3.32) (cf.Mathai and Saxena 1973)
(3.34)

This relation reproduces results from the well-known papers of Salpeter (1952, for ν = 0)and Bahcall (1966, for ν = 0, 1, 2). Inserting (8.16) for N
i

ν

(z(r)) in (3.31) we get
(3.35)

Once again, it is obvious that if S(E) in (3.26) is nearly constant most of the value of (3.35) comes fromvalues of E near zero. The �irst approximation for well-behaved cross section factors is to treat S(E) as aconstant, S(0), de�ined as the value at E = 0. Hence, for ν = 0 we obtain
(3.36)

that reproduces the asymptotic representation of the thermonuclear reaction rate underlying thefundamental papers of Fowler (1984; cf. also Parker et al. 1964; Critch�ield 1972;Haubold and Mathai 1984).
3.6	 The	Neutrino	Emission	RateIn the following evaluations we do not take into account the asymptotic form (3.36) of the thermonuclearreaction rate but the closed-form representation (3.31) with (3.32) for ν = 0, and write (3.21) in termsof r
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(ρ(r),T (r)), (3.37)If we divide the “internal luminosity” L
12
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) by the amount of energy E
12

, then we get the totalnumber of particles per second N
12

 liberated in the reaction 1 + 2 → 3 + 4 in question, that is, (3.38)
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where x = r/R
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 and
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where E
G

 is the GAMOW energy. The �lux of solar neutrinos at the Earth due to the reaction 
1 + 2 → 3 + 4 in the Sun can then be written (3.39)where AU abbreviates the mean distance between the Earth and the Sun (Astronomical Unit 
= 1.496 × 10

13

cm) and N
12

 is also called the neutrino emission rate.
3.7	 The	Integral	for	the	Solar	Nuclear	Energy	Generation
and	the	Solar	Neutrino	Fluxes:	The	General	Case	of	the	Basic	Integral  Consider the following integral, (3.40)for the case (3.8) of the density distribution and (3.17) of the temperature distribution, respectively; 
δ > 0, p > 0, t > 0, a > 0, q > 0, z > 0. For convenience the inner integral in (3.40) will be rewritten interms of the MELLIN-BARNES type integral by using a result in Haubold and Mathai (1984) which will bestated here as a lemma (cf. also Haubold and Mathai 1987).
Lemma	3.1 For α > 0,β > 0,u > 0,R(1 − γ + s) > 0, (3.41)where i2 = −1, c > R(γ − 1), and R(⋅) denotes the real part of (⋅).When β = n/m,n,m = 1, 2,… one has Γ(s/β) = Γ(ms/n). If s/n is replaced by s′ and if Γ(ms′) and 
Γ(1 − γ + ns

′

) are expanded by using the multiplication formula for gamma functions and by using theresulting quantity if the right hand side of (3.41) is written as a MEIJER’s G-function then the result in(3.41) agrees with the result established by Saxena (1960) with the help of transform calculus. A proof of(3.41) by using statistical techniques is given in Haubold and Mathai (1984) and hence the proof won’tbe repeated here.From (3.41) we may note that the right hand side of (3.41) is a H-function, see for exampleMathai and Saxena (1978), and that it exists for all values of αu1/β > 0 and the inner integral in (3.40)for the case (3.8) is dominated by a beta type integral. Hence, by substituting (3.41) in (3.40) and byrewriting (3.40) one has the following: (3.42)
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where β = n/m.Now the inner integral in (3.42) for the density distribution (3.8) and the temperature distribution(3.17) reduces to the following, denoting the integral by I
1

:
(3.43)

and where ξ is given by (3.14). Making the transformation y = x

δ and taking out ξ one has the following:
(3.44)

where (3.45)where ξ is given in (3.14).
3.8	 The	Solar	Case	of	the	Basic	IntegralIn the case δ = 2, [1 − u(y)] of (3.44) reduces to the following form:

Hence (3.44) reduces to the following form, denoted by I
2

:
(3.46)
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Hence

by using a beta integral. Thus, we have for δ = 2, noting that (3.47)
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Substituting (3.47) in (3.42) we have for δ = 2,β = n/m,
(3.48)

where L
1

 is a suitable contour, and
(3.49)

Note that the integral in (3.48) is nothing but a H-function, see Mathai and Saxena (1978). Hence, wehave for δ = 2,
(3.50)

It is easy to note that the H-function exists for all values of d > 0 and that it behaves like the following,see Mathai and Saxena (1973). For small values of d it behaves like, 
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3.9	 Fox’s	H-Function
De�inition
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s), j = 1,… ,n. The H-function is an analytic function of z and makes sense if thefollowing existence conditions are satis�ied: (i) for all z ≠ 0 with μ > 0, and (ii) for 0 < |z| < β
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3.10	 Meijer’s	G-Function This G-function is a special case of the H-function. When A
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for large values of d, where d is de�ined in (3.49) (cf. also Haubold and Mathai 1987).
3.11	 Analytic	Results	Connecting	Solar	Structure	Parameters
and	Solar	Neutrino	Emission	Rates

α =∑

n

j=1

A

j

−∑

p

j=n+1

A

j

+∑

m

j=1

B

j

−∑

q

j=m+1

B

j

;

β = {∏

p

j=1

A

A

j

j

}{B

−B

j

j

};

γ =∑

q

j=1

b

j

−∑

p

j=1

a

j

+

p

2

−

q

2

;

λ =∑

m

j=1

B

j

−∑

q

j=m+1

B

j

−∑

p

j=1

A

j

;

μ =∑

q

j=1

B

j

−∑

p

j=1

A

j

.

∣ ∣



 Neglecting the nuclear energy generation of the Sun via the CNO cycle, because it provides a negligiblecontribution to the total energy output of the Sun, we conclude from Eqs. (3.6), (3.7) and (3.20) that
(3.51)

or, we may write, with Eq. (3.1)
(3.52)

According to (3.38) and (3.6) also we obtain the neutrino �luxes of the nuclear reactions of the proton-proton chain in terms of the same quantities < σv > as included in (3.52). (3.53)
(3.54)
(3.55)With the representations of the nuclear output of the Sun by (3.52) and the respective neutrino �luxes by(3.53), (3.54), and (3.55) we traced back the computation of these quantities to the evaluation of thebasic integral in (3.38). For the solar model discussed in Sect. 3.3 and the closed form representation ofthe nonresonant thermonuclear reaction rate obtained in Sect. 3.4 we get the neutrino emission rate in(3.38) and (3.50) for a = 1, b =
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Fig.	 3.1 Astrophysical Observatory Potsdam (AOP), Germany: Preparations for this book took into account the fact that the AOP celebrated its150th Anniversary of the establishment of the Astrophysikalisches Observatorium Potsdam on 1st July 1874. AOP was the world’s �irstobservatory to emphasize explicitly the research area of astrophysics. Albert A. Michelson, studying under Hermann von Helmholtz at the BerlinUniversity, developed his interferometer and performed the �irst time the famous Michelson experiment at AOP (cellar of the east dome, righthand-side of the photo) in 1881 supported by the then director of AOP, Herman C. Vogel. The authors are taking the opportunity to thank Dr.Reiner John (1942–2007, Astronomical Observatory Potsdam-Babelsberg) and Dr. Ewald Gerth (1934–2022, Astrophysical ObservatoryPotsdam-Telegrafenberg) for many years of exciting and productive cooperation on the issues of nuclear and neutrino astrophysics as describedin this book. https:// www. scirp. org/ journal/ paperinformation ? paperid= 134139where z is given in (3.9). The value of he central matter density of the solar model is given in (3.8) andthat for the central temperature in (3.18). According to the Theorem 3.1, the approximated value for Q
2in (3.57) can now be written as (3.58)for small values of d = z

2

/T

c

 given in (9.10), and (3.59)for large values of d = z

2

/T

c

, where z is given in (3.6). Inserting (3.58) into (3.56) we obtain �inally theanalytic representation of the relationship of the solar structure parameters and a solarneutrino emission rate for small values of the characteristic parameter d = z

2

/T

c

 in (3.57).
(3.60)

Inserting (3.59) into (3.56) we get �inally the neutrino emission rate for large values of the characteristicparameter d = z

2

/T

c

 in (3.57) (Fig. 3.1).
(3.61)

Open	Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http:// creativecommons. org/ licenses/ by/ 4. 0/ ), which permits use, sharing, adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to theCreative Commons license and indicate if changes were made.The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwisein a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted bystatutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
ReferencesBahcall, J.N.: Astrophys. J. 143, 259–261 (1966)

Q

2

≈ (2π)

1

2

R

3

⊙

ρ

2

c⊙

T

1/2

c

Q

2

≈ (2π)

1

2

R

3

⊙

ρ

2

c⊙

1

z

N

12

≈ (1 −

1

2

δ

12

)16π

1

2

N

5

2

A

(A

1

+A

2

)

1

2

(A

1

A

2

)

3/2

S

12

(0)X

1

X

2

R

3

⊙

ρ

2

c⊙

T

1/2

c⊙

.

N

12

≈ (1 −

1

2

δ

12

)(

2

7

π

)

1

2

N

3

A

h

e

2

(A

1

+A

2

)

(A

1

A

2

)

2

Z

1

Z

2

S

12

(0)X

1

X

2

R

3

⊙

ρ

2

c⊙

.

https://www.scirp.org/journal/paperinformation?paperid=134139
https://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0/


Bahcall, J.N., Davis, Jr., R.: Essays in Nuclear Astrophysics. In: Barnes, C.A., Clayton, D.D., Schramm, D.N. (eds.) W.A. Fowler on the Occasion of hisSeventieth Birthday, pp. 243–285. Cambridge University Press, Cambridge-London-New York-New Rochelle-Melbourne-Sydney (1982)Bahcall, J.N., Huebner, W.F., Lubow, S.H., Parker, P.D., Ulrich, R.K.: Rev. Mod. Phys. 54, 767–799 (1982)[ADS][Crossref]Chandrasekhar, S.: An Introduction to the Study of Stellar Structure. Dover Publications, Inc., New York (1967). Unabridged, correctedrepublication of the 1st edn., University of Chicago Press, Chicago (1939)Critch�ield, C.L.: Cosmology, Fusion and Other Matters: George Gamow Memorial Volume. In: Reines, F. (ed.), pp. 186–191. Colorado AssociatedUniversity Press, Colorado (1972)Davis, Jr., R., Cleveland, B., Rowley, J.K.: Report on the solar neutrino experiments, presented at the conference on the intersections betweenparticle and nuclear physics. Steamboat Springs, CO, May 23–30 (1984)Fowler, W.A.: Uni�ication of elementary forces and gauge theories. In: Cline, D.B., MIles, F.E. (eds.) Ben Lee Memorial International Conference OnParity Nonconservation, Weak Neutral Currents and Gauge Theories. Fermi National Accelerator Laboratory, Batavia, Illinois, U.S.A., Oct 20–22(1977). Harwood Academic Publishers Ltd., London-Chur, pp. 509–527 (1977)Fowler, W.A.: Rev. Mod. Phys. 56, 149–179 (1984)Haubold, H.J., Gerth, E.: Astron. Nachr. 304, 299–304 (1983)[ADS][Crossref]Haubold, H.J., John, R.W.: Fundamental problems in the theory of stellar evolution. In: Sugimoto, D., Lamb, D.Q., Schramm, D.N. (eds.) IAUSymposium No. 93, Proceedings, p. 317. D. Reidel Publishing Company, Dordrecht (1981)Haubold, H.J., Mathai, A.M.: Ann. Phys. (Leipzig) 41, 372–379 (1984)[ADS][Crossref]Haubold, H.J., Mathai, A.M.: Ann. Phys. (Leipzig) 41, 380–396 (1984)[ADS][Crossref]Haubold, H.J., Mathai, A.M.: Astron. Nachr. 307, 9–12 (1986)[ADS][Crossref]Haubold, H.J., Mathai, A.M.: Ann. Phys. (Leipzig) 44, 103–116 (1987)[ADS][Crossref]Haxton, W.C.: Neutrino ’84. 11th International Conference on Neutrino Physics and Astrophysics, Kleinknecht, K., Paschos, E.A. (eds.)Nordkirchen near Dortmund, F.R.G., June 11–16 (1984); World Scienti�ic Publishing Co Pvt. Ltd., Singapore, pp. 217–228 (1984)Hayashi, C., Hōshi, Sugimoto, D.: Evolution of the stars. Progr. Theor. Phys. (Japan) Suppl. 22, 1 (1962)Kavanagh, R.W.: Essays in Nuclear Astrophysics. In: Barnes, C.A., Clayton, D.D., Schramm, D.N. (eds.) W.A. Fowler on the Occasion of hisSeventieth Birthday, pp. 159–170. Cambridge University Press, Cambridge-London-New York-New Rochelle-Melbourne-Sydney (1982)Mathai, A.M., Saxena, R.K.: Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciences. Lecture Notes inMathematics, vol. 348. Springer, Berlin-Heidelberg-New York (1973)Mathai, A.M., Saxena, R.K.: The H-function with Applications in Statistics and Other Disciplines. Wiley, New Delhi (1978)Parker, P.D., Bahcall, J.N., Fowler, W.A.: Astrophys. J. 139, 602–621 (1964)Salpeter, E.E.: Phys. Rev. 88, 547–553 (1952)Saxena, R. K.: Proc. Nat. Acad. Sci. India A26, 400–413 (1960)
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4.	Solar	Nuclear	and	Neutrino
Astrophysics	Research,	a	Time	LineArak M. Mathai1 and Hans J. Haubold2  Department of Mathematics and Statistics, McGill University, Montreal,ON, CanadaVienna International Centre, UN Of�ice for Outer Space Affairs, Vienna,Austria 
1930 Wolfgang Pauli hypothesizes the existence of neutrinos to account forthe beta decay energy conservation crisis.1933 Enrico Fermi writes down the correct theory for beta decay,incorporating the neutrino.1956 Fred Reines and Clyde Cowan discover (electron anti-) neutrinosusing a nuclear reactor.The possible existence of neutrino oscillations, which is a consequenceof neutrino masses and mixing, would be experimental evidence ofelementary particle physics beyond the standard model.1957 Bruno Pontecorvo proposes neutrino-antineutrino oscillations andthis is the �irst time neutrino oscillations are hypothesized. B. Pontecorvo,Neutrino experiments and the problem of conservation of leptonic charge,Sov. Phys. JETP 26, 984 (1968).1962 Ziro Maki, Masami Nakagawa and Sakata introduce neutrino�lavour mixing and �lavour oscillations. Z. Maki, M. Nakagawa, and S. Sakata,Remarks on the uni�ied model of elementary particles, Prog. Theor. Phys. 28,870 (1962).1962 Muon neutrinos are discovered by Leon Lederman, Mel Schwartz,Jack Steinberger and colleagues at Brookhaven National Laboratories, and itis con�irmed that they are different from electron neutrinos.In the 1960s, the �irst experiment to detect solar neutrinos wasRaymond Davis’s Homestake Experiment, in which he observed a de�icit in

https://doi.org/10.1007/978-3-031-83387-8_4


the �lux of solar neutrinos with respect to the prediction of the StandardSolar Model, using a chlorine-based detector. In detecting solar neutrinos inthe Homestake Experiment, it became clear that the number detected wasmuch lower than that predicted by models of the solar interior. The problemcould be solved by revising the model for the internal structure of theSun (solar physics), the assumed mechanisms of thermonuclear reactions(nuclear physics), or the properties of neutrinos and understanding thelimits of the detection mechanisms (neutrino physics). Most neutrinospassing through the Earth emanate from the Sun. About 65 billion solarneutrinos per second pass through every square centimetre perpendicularto the direction of the Sun in the region of the Earth.Observations of solar neutrinos were �irst made by the Homestakeexperiment using a radiochemical method, and then followed by real-timemeasurement with KAMIOKANDE-II and other radiochemical experimentsusing gallium by SAGE and GALLEX/GNO:R. Davis, Jr., D. S. Harmer, and K. C. Hoffman, Search for neutrinos fromthe Sun, Phys. Rev. Lett. 20, 1205 (1968).K. S. Hirata, T. Kajita, T. Kifune, K. Kihara, M. Nakahata, K. Nakamura et al.(The Kamiokande-II Collaboration), Observation of 8B solar neutrinos inthe Kamiokande-II detector, Phys. Rev. Lett. 63, 16 (1989).A. I. Abazov, O. L. Anosov, E. L. Faizov, V. N. Gavrin, A. V. Kalikhov, T. V.Knodel et al., Search for neutrinos from Sun using the reaction 71Ga(electron-neutrino e-) 71Ge, Phys. Rev. Lett. 67, 3332 (1991).P. Anselmann et al. (The GALLEX Collaboration), Solarneutrinos observed by GALLEX at Gran Sasso, Phys. Lett. B 285, 376 (1992).M. Altmann et al. (The GNO Collaboration), GNO solarneutrino observations: Results for GNO I, Phys. Lett. B 490, 16 (2000).1963 R. F. Stein and A. G. W. Cameron (Eds.), Stellar Evolution,Proceedings of an international conference, November 13–15, 1963,Plenum Press 1966.1964 John Bahcall and Raymond Davis discuss the feasibility ofmeasuring neutrinos from the Sun and made the case for the HomestakeMine experiment.1968 Raymond Davis and colleagues get �irst radiochemical solarneutrino results using cleaning �luid in the Homestake Mine in NorthDakota, leading to the observed de�icit subsequently known as the “solarneutrino problem”.1972 F. Reines (Ed.), Cosmology, Fusion @ Other Matters, GeorgeGamow Memorial Volume, Colorado Associated University Press 1972.
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1973 A. M. Mathai and R. K. Saxena, Generalized HypergeometricFunctions with Applications in Statistics and Physical Sciences, LectureNotes in Mathematics, Vol. 348, Springer, Berlin-Heidelberg-New York 1973.



In 1974, conversation of HJH with Hans-Juergen Treder makes us awarethat the solar neutrino problem is crucial for discovering new physics.Treder’s advice was simple: “Ich glaube, dass die Werke der grossen Meistereine staendige Quelle von Ideen und neuen Zielstellungen fuer die aktuellewissenschaftliche Arbeit sind”. A similar advice was ones given by AlbertEinstein (Figs. 4.1, 4.2 and 4.3).With this advice in mind the topic solar neutrino radiation made usturning to the papers of the Proceedings of the �irst Solvay Council, held in1911 focusing on The Theory of Radiation and Quantum. Planck’s quantumof action was discovered earlier but quantum mechanics not yet developed,and many questions discussed during the Council were destined to lead tonew fundamental physics (or mathematics). Among them Einstein’scomment that neither Herr Boltzmann nor Herr Planck has given ade�inition of W (probability in Boltzmann’s entropy S = k lnW) andPoincare’s closing question if it was still possible to represent basic physicallaws in terms of ordinary differential equations. We got stack at this pointcomparing physics of solar neutrino radiation and physics of black bodyradiation because we did not have an idea of Planck’s “Staubkoernchen”(Pascual Jordan) for neutrino radiation.1975 A. M. Mathai and P. N. Rathie, Basic Concepts in InformationTheory and Statistics: Axiomatic Foundations and Applications, John Wiley& Sons, New Delhi 1975.Already since 1975 we pursued the analysis of Homestakeexperiment data by Fourier analysis, wavelet analysis, and Lomb-Spargelperiodograms prospectively to discover possible periodic variations in thepublicly available data sets of the experiment. This analysis was jointlyundertaken in cooperation with Kunitomo Sakurai (Kanagawa University,Yokohama, Japan). We shared the belief that the discovery of periodicvariation of the solar neutrino �lux may lead to new solar physics or newneutrino physics.A summery of basic knowledge about solar physics, nuclear physics, andneutrino physics, having the Solar Neutrino Problem in mind, was providedin the �irst 18 pages of the 1988 edition of our book titled “ModernProblems in Nuclear and Neutrino Astrophysics”. Back in 1974 we hopedthat such a survey may provide us a way to contribute to the solution ofthe Solar Neutrino Problem.1978 A. M. Mathai and R. K. Saxena, The H-function with Applications inStatistics and Other Disciplines, John Wiley and Sons, New Delhi 1978.



1979 we initiated an exchange of information with RaymondDavis Brookhaven National Laboratory asking him to provide us on aregular basis the data from his Homestake chlorine solarneutrino experiment. This cooperation by exchange of letters and visits toRaymond Davis workplace at the University of Pennsylvania was active until2002 (Figs. 4.4 and 4.5).



Fig.	 4.4 https:// www. nobelprize. org/ prizes/ physics/ 2002/ davis/ biographical/ 

https://www.nobelprize.org/prizes/physics/2002/davis/biographical/


Fig.	 4.5 https:// www. walshmedicalmedi a. com/ open-access/ kunitomo-sakurai-solar-neutrino-problems-how-they-were-solved-2332-2519-1000132. pdfAt the same time, we also took up a problem that was discussed in the1970s concerning the closed-form evaluation of thermonuclear reaction
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rates described in publications of Bethe, Salpeter, and Fowler and explicitlydiscussed by Charles Critch�ield. Critch�ield’s paper can be considered, inprinciple, as a follow-up research result to his paper published incooperation with Hans Bethe in 1939 that led to the Nobel Prize forBethe in in 1967 for his work on the production of’energy in stars.1980s The Kamioka experiment is built in a zinc mine in Japan.1983 William A. Fowler receives the Nobel Prize in Physics for histheoretical and experimental studies of the nuclear reactions of importancein the formation of the chemical elements in the universe: W.A. Fowler,Experimental and theoretical nuclear astrpphysics: the quest for the originof the elements, Reviewes of Modern Physics 56 (1984) 149–179.1985 The “atmospheric neutrino anomaly” is observed by IMB andKamiokande.1986 T. Pinch, Confronting Nature: The Sociology of Solar-NeutrinoDetection, D. Reidel Publishing CompanyDordrecht.1986 Kamiokande group makes �irst directional counting observationsolar of solar neutrinos and con�irms de�icit.1987 The Kamiokande and IMB experiments detect burst of neutrinosfrom Supernova 1987A in the Large Magellanic Cloud, a satellite galaxy ofthe Milky Way, heralding the birth of neutrino astronomy, and setting manylimits on neutrino properties, such as mass.1987 conversation of HJH with Hans A. Bethe and F. Reines, meeting atthe Michelson-Morley Conference 1987 in Cleveland. Our research workstarted focusing on the Big Bang model, including Big Bang nucleosynthesisand predictions of the cosmic microwave background radiation.S. Gottloeber, HJH, J. P. Muecket, and V. Mueller, Early Evolution of theUniverse and Formation of Structure, Akademie-Verlag, Berlin 1990, deGruyter 2024).The following is the generalized form of the basic reaction-rateprobability integral in the real scalar positive variable case:
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and Krätzel transform is associated with it. The integral is also known in theliterature by different names such as generalized gamma integral, ultragamma integral and super gamma integral.The closed-form representation of the integral can be written in terms ofa H-function, namely,
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Fig.	 4.6  https:// en. wikipedia. org/ wiki/ Ralph_ Alpher
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1991 SAGE (in Russia) and GALLEX (in Italy) con�irm the solarneutrino de�icit in radiochemical experiments.1995 H. J. Haubold and A. M. Mathai, A Heuristic Remark on the PeriodicVariation in the Number of Solar Neutrinos Detected on Earth, Astrophysicsand Space Science 228, 113–134.1995 With Reiner John, Ewald Gerth, under the guidance of Arak M.Mathai, we stopped analyzing the data of Davis’s Homestakeexperiment and turned our attention to the operation of theSuperKamiokande experiment and the analysis of publicly madeavailable solar neutrino data.1996 SuperKamiokande, the largest particle detector ever, beginssearching for neutrino interactions on 1 April at the site of the Kamiokaexperiment, with a Japan-US team.1998 Analysing more than 500 d of data, the SuperKamiokande teamreports evidence of oscillations in atmospheric neutrinos implying thatneutrinos have nonzero mass, thus suggesting physics beyond the StandardModel of Particle Physics.2001 The Sudbury Neutrino Observatory (SNO) reported observation ofneutral currents from solar neutrinos, along with charged currents andelastic scatters, providing convincing evidence that neutrino oscillations arethe cause of the solar neutrino de�icit.An initial indication of solar neutrino oscillations was obtained from thedifference between the 8B solar neutrino �luxes as measured in the elastic-scattering channel at SuperKamiokande and the charged-current channel atthe Sudbury Neutrino Observatory in 2001. Solar neutrino oscillation wassubsequently established by including neutral-current measurements from



SNO. Solar neutrino oscillations were con�irmed using reactor antineutrinosby KamLAND (Fig. 4.6):S. Fukuda et al. (The SuperKamiokande Collaboration), Solar 8B and hepneutrino measurements from 1258 d of SuperKamiokande data, Phys. Rev.Lett. 86, 5651 (2001).Q. R. Ahmad et al. (The SNO Collaboration), Measurement of the rate of 
ν

e

+ d→ p+ p+ e

− interactions produced by 8B solar neutrinos at theSudbury Neutrino Observatory, Phys. Rev. Lett. 87, 071301 (2001).Q. R. Ahmad et al. (The SNO Collaboration), Direct evidence for neutrino�lavor transformation from neutral current interactions in the SudburyNeutrino Observatory, Phys. Rev. Lett. 89, 011301 (2002).K. Eguchi et al. (The KamLAND Collaboration), First results fromKamland: Evidence for reactor antineutrino disappearance, Phys. Rev. Lett.90, 021802 (2003).2002 Raymond Davis and Masatoshi Koshiba won shares of the NobelPrize in Physics for their roles in the detection of neutrinos from theSun and Supernova 1987A: R. Davis, Jr., A half-century with solar neutrinos,Reviewes of Modern Physics 75 (2003) 985–994.2010 N. Scafetta, Fractal and Diffusion Entropy Analysis of Time Series:Theory, concepts, applications and computer codes for studying fractalnoises and Levy Walk signals, VDM Verlag Dr. Mueller, Saarbruecken 2010.2014 Analysis of Solar Neutrino Data from SuperKamiokande I and II,Entropy 16, 1414–1425.In physics one is used to be confronted with either dif�icult experimentalresults or ambitious theoretical considerations in one way or another. Thetime series of data from solar neutrino experiments like Homestake (US)and SuperKamiokande (Japan) appear to be noisy and irregular. Theauthors have analysed solar neutrino data from the two experiments since1974 by applying mathematically rigorous Fourier analysis, waveletanalysis, Lomb-Scargle periodograms. In the case of theSuperKamiokande solar neutrino data we made the decision to study thedata with Standard Deviation Analysis (SDA) and Diffusion EntropyAnalysis (DEA). The purpose is to study the scaling exponent of a complextime series that may manifest long-range correlations and fractal statistics.Scaling analysis (SDA, Hurst analysis, Detrended Fluctuation Analysis, etc.)relays on the assumption that physical data are characterised by fractalBrownian memory. Such methods of scaling analysis are based on theevaluation of the variance of a diffusion process. DEA does NOT relay on theassumption of fractal Brownian memory. DEA evaluates the scaling



exponent of the probability density function (pdf) through the Shannonentropy of the diffusion process generated by those �luctuating data. SDA adsimilar methodologies evaluate only the scaling of the variance and NOT thepdf scaling. One can call “H” (Hurst) the scaling exponent detected by meansof the variance-based methods (SDA) and “delta” the scaling exponentdetected by DEA. Our results show that “H” and “delta” are not identical.This means that the SuperKamiokande data are not characterized by fractalGaussian statistics. It further means that the data are characterized by Levystatistics. Additionally, we found that “delta” < 1 which clearly indicatedLevy �lights and super-diffusion. This research result, by analysingSuperKamiokande data, did even allow us to identify the fractal differentialequation that is guiding the now called solar neutrino probability densityfunction (pdf). This pdf we identi�ied in terms of a Fox H-functionH[1,1;2,2]. The solar neutrino pdf was discovered by analysingSuperKamiokande experiment data. The opposite (and most welcome!)approach to the SuperKamiokande experiment has been published inpapers titledProbability Density Function for Neutrino Masses and Mixings, Phys.Rev. D94, 115004 (2016) andMellin Transform Approach to Rephasing Invariants, Phys. Rev. D102,036001 (2020).The authors discover the solar neutrino probability density in terms ofFox’ H-function by assuming the probability density function: (4.1)where δ denotes the scaling exponent of the pdf. In the variance basedmethods, scaling is studied by direct evaluation of the time behavior of thevariance of the diffusion process. If the variance scales, one would have(4.2)where σ2
x

(t) is the variance of the diffusion process and where H is theHurst exponent. To evaluate the Shannon entropy of the diffusion process attime t, de�ined S(t) as (4.3)and with the previous p(x, t) one has
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The solution of the generalized diffusion equation (4.4)where 
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2018 A. M. Mathai and H. J. Haubold, Erdelyi-Kober Fractional Calculus:From a Statistical Perspective, Inspired by Solar Neutrino Physics, SpringerBriefs in Mathematical Physics 31, Springer, Singapore.Since these discoveries, Borexino and KamLAND experiments havemeasured the neutrino �luxes from different solar nuclear fusion processes,such as pp, pep, 7Be, and Carbon-Nitrogen-Oxygen cycle:M. Agostini et al. (The Borexino Collaboration), First simultaneousprecision spectroscopy of pp, 7Be, and pep solar neutrinos with Borexinophase-II, Phys. Rev. D 100, 082004 (2019).M. Agostini et al. (The BOREXINO Collaboration), Comprehensivemeasurement of pp-chain solar neutrinos, Nature 562, 505 (2018).A. Gando et al. (The KamLAND Collaboration), 7Be solarneutrino measurement with KamLAND, Phys. Rev. C 92, 055808 (2015).M. Agostini et al. (The BOREXINO Collaboration), Experimental evidenceof neutrinos produced in the CNO fusion cycle in the Sun, Nature (London)587, 577 (2020).All measurements to date are naturally explained by neutrino �lavorchange due to neutrino oscillations with matter effects predicted byMikheyev, Smirnov, and Wolfenstein, termed the MSW effect: higher energyneutrinos undergo adiabatic conversion from the electron �lavor state to thesecond mass eigenstate. While neutrino oscillations and MSW effect isconsistent with all current solar neutrino measurements, two distinctivepredictions are yet to be observed: the characteristic energy dependence ofthe solar neutrino electron-�lavor survival probability P
ee

(E

ν
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KamLAND experiment used reactor anti-neutrinos to measure the sameoscillation parameters, assuming CPT symmetry holds:S. P. Mikheyev and A. Y. Smirnov, Resonance ampli�ication of oscillationsin matter and spectroscopy of solar neutrinos, Sov. J. Nucl. Phys. 42, 913(1985).L. Wolfenstein, Neutrino oscillations in matter, Phys. Rev. D 17, 2369(1978).A. J. Baltz and J. Weneser, Effect of transmission through the Earth onneutrino oscillations, Phys. Rev. D 35, 528 (1987).J. Bouchez, M. Cribier, J. Rich, M. Spiro, D. Vignaud, and W. Hampel,Matter effects for solar neutrino oscillations, Z. Phys. C 32, 499 (1986).E. D. Carlson, Terrestrially enhanced neutrino oscillations, Phys. Rev. D34, 1454 (1986).M. Cribier, W. Hampel, J. Rich, and D. Vignaud, MSW regeneration of solar
ν

e

 in the Earth, Phys. Lett. B 182, 89 (1986).S. T. Petcov, Diffractive like (or parametric resonance like?) enhancementof the Earth (day night) effect for solar neutrinos crossing the Earth core,Phys. Lett. B 434, 321 (1998).P. Bakhti and A. Y. Smirnov, Oscillation tomography of the Earthwith solar neutrinos and future experiments, Phys. Rev. D 101, 123031(2020).A. Gando, Y. Gando, H. Hanakago, H. Ikeda, K. Inoue, K. Ishidoshiro et al.(The KamLAND Collaboration), Reactor on-off antineutrino measurementwith KamLAND, Phys. Rev. D 88, 033001 (2013).Many subsequent radiochemical and water Cherenkov detectorscon�irmed the de�icit, but neutrino oscillation was not conclusivelyidenti�ied as the source of the de�icit until the Sudbury NeutrinoObservatory provided clear evidence of neutrino �lavour change in 2001.Solar neutrinos have energies below 20 MeV and travel an astronomicalunit between the source in the Sun and detector on the Earth. At energiesabove 5 MeV, solar neutrino oscillations actually take place in theSun through a resonance known as the MSW effect, a different process fromthe vacuum oscillation. The transition between the low energy regime (theMSW effect is negligible) and the high energy regime (the oscillationprobability is determined by matter effects) lies in the region of about 2MeV for the solar neutrinos. The MSW effect is important at the very largeelectron densities of the Sun where electron neutrinos are produced. Thehigh-energy neutrinos seen, for example, in Sudbury Neutrino Observatoryand in SuperKamiokande, are produced mainly as the higher mass



eigenstate in matter and remain as such as the density of solar materialchanges. When neutrinos go through the MSW resonance the neutrinoshave the maximal probability to change their nature, but it happens thatthis probability is negligibly small this is sometimes called propagation inthe adiabatic regime.

Fig.	 4.7 Nuclear Astrophysics: The diagram shows the internal structure of the Sun. The interior of theSun is a ball of swirling hot plasma that is held together by a balance of forces between gravity andpressure. The dense gases inside the Sun are so massive that they create a strong gravitational pull, whichhelps to keep solar material from escaping. As a counter force, the expanding hot gases create a largeamount of pressure pushing outward toward the Sun’s surface. The push and pull between gravity andpressure create conditions that maintain the three interior regions of the Sun: the core, the radiativezone, and the convective zone. The core is the centre of the Sun and extends about a quarter of the wayto the surface. About half of the Sun’s mass is within the core. Even though the core is made of gas, it is10 times denser than lead. It is also the hottest region of the Sun, about 15 million degrees Celsius (27million degrees Fahrenheit). The Sun’s core is the only place in our solar system where the temperatureand density conditions are high enough for nuclear fusion reaction to occur naturally. The nuclear



reactions within the core fuse hydrogen atoms into helium atoms, releasing extremely large amounts ofenergy in the process. Some of the energy that is created in the core travels to the surface of theSun through the Sun’s atmosphere, and out into space, enough of it reaching Earth’s surface to sustainlife. An in terms of physics, very important by-product of the nuclear reactions are the neutrinosThe Chap. 5 “Nuclear Astrophysics, 2025 Update”, �irst, gives the explicitevaluation of the basic reaction-rate probability integral and itsrepresentations in computable series form. Then, a more general form ofthe reaction-rate probability integral, which can be called the generalizedBessel integral, is examined. Here also, computable series forms are given.Connection of this model to Krätzel integral, Krätzel transform, inverseGaussian density etc. is established. Next, Mathai’s pathway extension of thereaction-rate probability integral is explored. The discussion so far is forreal scalar variable situations. A multivariate extension or a p-variate modelfor the generalized reaction-rate integral is explored. This is then extendedto the corresponding integral in the complex domain. Next, a real p× qmatrix-variate integral is discussed, which can be considered as the realmatrix-variate extension of the reaction-rate probability integral. Then, thematrix-variate integral is extended to the complex domain. All the abovetopics can be considered as Mellin convolutions and M-convolutions of aproduct involving generalized gamma functions as the basic functions. Next,other functions are incorporated into a Mellin convolution of a product. It isshown that when a type-1 beta form of the function is considered, one canreach fractional integral of the second kind. This idea is extended to real andcomplex matrix-variate cases. Then, a Mellin convolution of a ratio isexamined and its connections to fractional integral of the �ist kind areestablished. These ideas are extended to matrix-variate cases in the real andcomplex domains. The purpose of this chapter is to discuss mathematicalaspects connected with generalized reaction-rate probability integral sothat physicists and others can explore the possibility of the correspondingnew physics or communication theory.The Chap. 6 “Neutrino Astrophysics, 2025 Update: The EntropicApproach to Solar Neutrinos” is utilizing data from theSuperKamiokande solar neutrino detection experiment and analyses themby diffusion entropy analysis and standard deviation analysis. The mainresult of analysis indicates that solar neutrinos are subject to Lévy �lights(anomalous diffusion, super-diffusion). Subsequently the chapter derivesthe probability density function and the governing fractional diffusionequation (fractional Fokker-Planck Equation) for solar neutrino Lévy �lights.



The conclusion is Does SuperKamiokande Observe Lévy Flights of SolarNeutrinos?The Chap. 7 “Neutrino Astrophysics, 2025 Update: Neutrino Masses andMixings” is addressing one of the highest priorities in fundamental particlephysics concerning the discovery of non-zero neutrino masses that remainsone of the very few hints regarding the nature of physics beyond theStandard Model of Elementary Particle Interactions. The questions aboutneutrino properties still remain unanswered, such as the their absolutemasses, the ordering of the mass states and the charge-parity violatingphase. The neutrino sector of the seesaw-modi�ied Standard Model isinvestigated under the anarchy principle. The anarchy principle leading tothe seesaw ensemble is studied analytically with tools of random matrixtheory. The probability density function is obtained (Fig. 4.7).
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5.1	 Explicit	Evaluation	of	the	Thermonuclear	Reaction-
Rate	Probability	IntegralsFor the sake of ready reference, the basic materials will be restated here. Let x
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> 0and x
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(−1) and c in the contour is any real number > 0. This, (5.6) can bewritten as a H-function. That is, (5.7)For the theory and applications of the H-function, see Mathai et al. (2010). By usingthe duplication formula for the gamma function, see for example, Mathai (1993), onecan write (5.8)Now, the integrand in (5.6) can be written as
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which enables us to write the H-function in terms of a G-function, that is, (5.9)For the theory and applications of the G-function, see, for example, Mathai (1993).Note that in the gamma product Γ(s)Γ(s+ 1
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The sum of the residues at the poles of Γ(s+ γ) or at the points 
s = −γ − ν, ν = 0, 1,…, is the following, denoted by S
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, by using steps parallel tothe ones used in (5.10) and (5.13):
(5.14)

From (5.10), (5.13) and (5.14), we have the following series form for I
a,b

, which willbe stated as a theorem.
Theorem	5.1 For a > 0, b > 0,R(γ) > 0, the reaction-rate probability integral
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normalizing constants to construct densities out of those f
1

 and f
2

. These,normalizing constants get canceled in the equation M
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(s) andhence the inverse, namely g(u) will be one and the same as obtained in Sect. 5.1. Theoriginal derivation of the reaction-rate probability integral in 1984, which wasreported in Mathai and Haubold (1988), was done through statistical distributiontheory as described in this Note 5.1. When γ is an integer or a half-integer, then someof the poles can be of order 1 and the remaining of order 2. In this case, one canobtain computable series forms involving gamma function, psi function andlogarithm, details may be seen from Mathai (1993) where the techniques of derivingthe residues from poles of all types of orders are given.
5.2	 Generalization	of	the	Reaction-Rate	Probability
IntegralA generalization of the integral I

a,b

 is the following integral: (5.15)for a > 0, b > 0, δ > 0, ρ > 0,R(γ) > 0. For the evaluation of the integral (5.15)also, we can proceed exactly as in the case of the integral I
a,b

 of Sect. 5.1. Before theintegral is evaluated, let us consider some particular cases. For δ = 1, ρ = 1, (5.15) isthe basic Bessel integral. For δ = 1, ρ = 1, the integrand in (5.15), normalized, is theinverse Gaussian density. For δ = 1, ρ =
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2

, it is the reaction-rate probability integralin nuclear reaction-rate theory. For δ = 1 and general ρ, it is Krätzel integral andKrätzel transform is associated with it. Mathai (2012) has created a statisticaldensity out of (5.15) and studied its properties. We may call (5.15) as a generalizedBessel integral. (5.15) is also known in the literature by different names such asgeneralized gamma integral, ultra gamma integral and super gamma integral. Fromthe series representations, it is obvious that (5.15) does not belong to the gammafamily of functions, see also Mathai (2016). For the evaluation of (5.15), consider(5.16)
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where the second part integral is obtained by taking x
1

= v in the transformation 
u = x

1

x
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. Now, for R(s) > 0,R(s) > −R(γ),R(γ) > 0 ⇒ R(s) > 0,
(5.19)

Therefore, from the inverse Mellin transform, (5.20)As shown in Sect. 5.1, this (5.20) can be written in terms of a H-function, namely,(5.21)where the c in the contour is such that c > 0, δ > 0, ρ > 0,R(γ) > 0. Consider thespecial case ρ = δ. In this case, one can write the H-function in (5.21) in terms of a G-function. Replace s
δ

 by s, thereby s by δs and ds by δds. Then, we have the following:
(5.22)

where G(⋅) is the G-function as explained in Sect. 11 or see Mathai (1993). Then, for 
γ

δ

≠ ν, ν = 0, 1,… the poles of the integrand in (5.22) are simple and thenproceeding as in Sect. 5.1, we have the following result:
Theorem	5.2 For the g(u) de�ined in (vii) above, the following is the explicitcomputable series form when γ
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≠ ν, ν = 0, 1,…:
(5.23)
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 is the classical Bessel series. The details of the derivation are omittedbecause the derivation is parallel to that in Sect. 5.1.
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5.3	 An	Extension	Through	Mathai’s	Pathway	IdeaIn a physical system the ideal behavior of a variable x, under observation, may begoverned by the function e−bx−ρ , b > 0, ρ > 0. But, in a practical situation thebehavior may be e−bx−ρ  or in the neighborhood of this ideal behavior. The idealfunction and its neighborhoods are covered by the function (5.24)For q < 1, q − 1 = −(1 − q), q < 1 and then (5.25)Thus, for −∞ < q < 1, the binomial form in (5.25), for 1 < q < ∞, the binomialform in (5.24), and for q → 1, the exponential form e−bx−ρ , are all reached throughthe parameter q, and either from the binomial from in (5.24) or from the binomialform in (5.25). From these observations, Mathai (2005) proposed a rectangularmatrix-variate model, known as Mathai’s pathway model. If the pathway model istaken for a real scalar positive variable, then it will be either the model in (5.24),which can switch into (5.25) or vice-versa. Consider the following integral, denotedby I
a,b

(δ, ρ;q), where the pathway idea is incorporated:

Again, we will evaluate the integral I
a,b

(δ, ρ;q) by using the Mellin convolution of aproduct property. Let us consider the case q > 1 �irst.
Case	5.1	q > 1.  Let f
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δ

2 . Then,
(5.26)

for q > 1, ρ > 0,R(s) > 0,R(s) <

ρ

q−1

 where the integral is evaluated with thehelp of a real scalar type-2 beta integral. (5.27)
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for R(s) > −R(γ),R(γ) > 0, a > 0, δ > 0. Then, from the Mellin convolution of aproduct property, the Mellin transform of g, the function corresponding to u = x

1

x

2

,is the following:
(5.28)

for δ > 0, ρ > 0, a > 0, q > 1, 0 < R(s) <

ρ

q−1

, b = u

ρ . Hence, from the inverseMellin transform, the function g(u) is available as the following, where 
c

−1

= ρδa

γ/δ

Γ(

1

q−1

):
(5.29)

But, for ρ = δ, we may replace s
δ

 by s thereby s by δs and ds by δds. Then, g(u) of(5.29) can be written in terms of a G-function as the following: (5.30)
That is, g(u) of (5.30) is given by the following, for c−1

1

= δa

γ/δ

Γ(

1

q−1

), q > 1:
(5.31)where the c in the contour is such that 0 < c <

ρ

q−1

. This G-function in (5.31) can beevaluated as the sum of the residues at the poles of Γ(s)Γ( γ
δ

+ s). The continuationpart gives a divergent series. The poles of Γ(s)Γ( γ
δ

+ s) are simple if 
γ

δ

≠ ν, ν = 0, 1,…. Hence, in this special case we will write down the computableseries form for the function g(u). The steps are parallel to those used in Sects. 5.1and 5.2 and hence the �inal result will be stated here as a theorem.
Theorem	5.3 For δ = ρ, q > 1,

γ

δ

≠ ν, ν = 0, 1,… , g(u) of (5.31) above is thefollowing, where c
1

 is given in (5.31) above and u = b

1

ρ

, ρ = δ, q > 1:
(5.32)
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Observe that the con�luent hypergeometric series 
1

F

1

 is convergent for all values of 
ab(q − 1).

Case	5.2	q < 1.  Let f
1

(x

1

) = [1 − (1 − q)x

ρ
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]

1

1−q

, q < 1 and f
2
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2

) = x
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2

e

−ax

δ

2 .Then, their Mellin transforms are the following, where the computational steps areparallel to those in the case q > 1 and hence the details are not given here:
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, when the joint function is f
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for δ > 0, ρ > 0, q < 1,R(γ) > 0, a > 0,R(s) > 0,u
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= b. Therefore, from theinverse Mellin transform, the function g(u) for uρ = b is the following, for 
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)
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:
(5.33)

for a > 0, δ > 0, ρ > 0,R(γ) > 0, b > 0, q < 1. As in the case for q > 1, here alsowe can represent g(u) in terms of a G-function for the case ρ = δ. Let ρ = δ. Now,replace s
δ

 by s thereby s by δs and ds by δds. Then, c
2

 of (5.33) changes to c′
2

 where 
c

′

2

 is the same c
2

 with ρ removed from the denominator because this is canceledfrom the δ coming from δds. That is,
(5.34)
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where the c in the contour is any real number > 0. Note that for γ
δ

≠ ν, ν = 0, 1,…the poles of the integrand in (5.34) are simple. Hence, in this case, proceeding as inthe case of q > 1, we have computable series form, which will be stated as atheorem.
Theorem	5.4 For q < 1, ρ = δ,

γ

δ

≠ ν, ν = 0, 1,… , g(u) in (5.34) is given by thefollowing series forms:
(5.35)

for a > 0, δ > 0, a > 0, b > 0, q < 1,R(γ) > 0,u

ρ

= b, ρ = δ.
Note	5.2 Note that
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Hence, one may consider an extended integral I
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(δ, ρ) as the following, denoted by 
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> 1, q

2
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2

→ 1.Thus, there are nine situations in the above integral. Such an integral called “aversatile integral” was evaluated in Mathai and Haubold (2019). The above versatileintegral can also be handled by using the procedures in Sects. 5.1, 5.2, 5.3. Hence, thiswill not be discussed in detail here.
5.4	 The	Pathway	Extended	Reaction-Rate	Probability
IntegralThe following are three different extended forms of the basic reaction-rateprobability integral in the real scalar positive variable case: (5.36)(5.37)
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(5.38)
Observe that in the �irst two integrals, (5.36), (5.37), there are three situations each,namely q

j

> 1, q

j

< 1, q

j

→ 1. In the third case (5.28) there are nine situations, andeach situation is an extended form of the reaction-rate integral except the originalbasic integral. The techniques used in Sects. 5.1, 5.2, 5.3s can be applied to derive theH-function format or G-function format or series forms for the left side in each of(5.36)-(5.38). For the sake of illustration of the techniques, we will evaluate one ofthe above integrals.
Case	5.3  Evaluation of the �irst integral, q
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> 1The integral to be evaluated is the following:
Let f

1

(x

1

) = e

−x

1

2

1  and f
2

(x

2

) = x

γ

2

[1 + a(q

1

− 1)x

2

]

−

1

q

1

−1

. Then, 
f

1

(

u

v

) = e

−(

u

v

)

1

2

= e

−bv

−

1

2

, b = u

1

2

⇒ u = b

2.
(5.39)

for R(s) > 0. Observe that Γ(2s) is expanded by using the duplication formula forgamma functions, which was already illustrated before.

for R(s) > −R(γ),R(s) <
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> 1, a > 0,R(γ) > 0. Then, from theMellin convolution property, the Mellin transform of g is the following:

I

a,b

(q

1

, q

2

) = ∫

∞

0

v

γ−1

[1 + a(q

1

− 1)v]

−

1

q

1

−1

×[1 + b(q

2

− 1)v

−

1

2

]

−

1

q

2

−1

dv, q

j

> 1, j = 1, 2.

I

a,b

(q

1

)

= ∫

∞

0

v

γ−1

[1 + a(q

1

− 1)v]

−

1

q

1

−1

e

−bv

−

1

2

dv, q

1

> 1.

M

f

1

(s) = ∫

∞

0

x

s−1

1

e

−x

1

2

1

dx

1

= 2 ∫

∞

0

y

2 s−1

e

−y

dy

= 2Γ(2 s) = π

−

1

2

2

2 s

Γ(s)Γ(s+

1

2

),

M

f

2

(s) = ∫

∞

0

x

γ+s−1

2

[1 + a(q

1

− 1)x

2

]

−

1

q

1

−1

dx

2

= [a(q

1

− 1)]

−(γ+s)

Γ(γ+s)Γ(

1

q

1

−1

−(γ+s))

Γ(

1

q

1

−1

)

M

g

(s)

=

[a(q

1

−1)]

−s

4

s

[a(q

1

−1)]

γ

π

1

2

Γ(

1

q

1

−1

)

×Γ(s)Γ(s+

1

2

)Γ(γ + s)Γ(

1

q

1

−1

− γ − s)



for q
1

> 1, a > 0,R(γ) > 0, 0 < R(s) <

1

q

1
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. Then, from the inverse Mellintransform g(u), which is the integral to be evaluated, is the following:
(5.40)

Observe that one can evaluate (5.40) as the sum of the residues at the poles of 
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)Γ(γ + s) because the continuation part is divergent. The poles aresimple when γ is not an integer or half-integer. We will obtain the series form for thiscase. The method is the same as the ones used in Sects. 5.1–5.3 Hence, the �inal resultwill be written as a theorem.
Theorem	5.5 For γ ≠ ν
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for q
1

< 1, a > 0, b > 0, 1 − a(1 − q
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)v > 0. We use the same technique as before.Here f
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for R(s) > −R(γ),R(γ) > 0. From the Mellin convolution of the product property,the Mellin transform of g(u) is the following:
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< 1,R(s) > 0,R(γ) > 0. From the inverse Mellin transform, we have
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(5.42)
where c in the contour is any real number > 0, a > 0, b > 0,R(γ) > 0, q
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< 1. Notethat, as in the previous case, we can obtain a series from for g(u) when 
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)Γ(γ) are simple. Theresult will be stated as a theorem.
Theorem	5.6 For γ ≠ ν
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 is given in (5.42) above: (5.43)
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)

π

1

2

[a(1−q

1

)]

γ

∣



Note	5.3 If the integrals considered in Sects. 5.1–5.3 are extended to the whole realline, then it can be achieved by replacing v in the integral by |v|, the absolute value of
v. For example, the generalized reaction-rate integral will then be of the followingform: (5.44)for a > 0, b > 0, δ > 0, ρ > 0,R(γ) > 0. Corresponding changes may be made in allother integrals such as I

a,b

, I

a,b

(q

1

), I

a,b

(q

2

), I

a,b

(q

1

, q

2

). Mellin convolution of theproduct of Maxwell-Boltzmann and Raleigh densities and their extended forms tothe whole line are covered in (5.44).
5.5	 Generalized	Reaction-Rate	Probability	Integral
in	the	Real	Multivariate	CaseThere may not be any corresponding physics or reaction-rate probability integral orKrätzel integral yet in what we are going to discuss in this section. These results maybe motivating factors for developing corresponding physics or communicationtheory or engineering problems later on. Let X be a p× 1 real vector with 
X

′

= [x

1

,… ,x

p

], where a prime denotes the transpose and the x
j

’s are distinct(functionally independent) real scalar variables, −∞ < x

j

< ∞, j = 1,… , p. Then,
y = X

′

X = x

2

1

+⋯+ x

2

p

 is an isotropic quantity, in the sense that y remainsinvariant under the rotation of the axes of coordinates or under orthonormaltransformations, that is, if Z = AX,AA

′

= I

p

,A

′

A = I

p

, then Z ′

Z = X

′

X. Suchisotropic variables appear in different disciplines. X ′

X is associated with isotropicrandom points in p-dimensional Euclidean space in geometrical probabilityproblems, see Mathai (1999). Also, X ′

X is associated with spherically symmetricdistributions in statistical distribution theory and related areas. Let us consider theintegral, denoted by I
a,b

(δ, ρ) with I in bold,

g(u) = c

1

[

Γ(

1

2

)Γ(γ)

Γ(1+

1

1−q

1

)

1

F

2

(−

1

1−q

1

; 1
2

, 1 − γ; a(1−q1)b
2

4

)

+

Γ(−

1

2

)Γ(γ−

1

2

)

Γ(

1

2

+

1

1−q

1

)

[

a(1−q

1

)b

2

4

]

1

2

×

1

F

2

(

1

2

−

1

1−q

1

; 3
2

,

3

2

− γ; a(1−q1)b
2

4

)

+

Γ(−γ)Γ(

1

2

−γ)

Γ(1+

1

1−q

1

−γ)

[

a(1−q

1

)b

2

4

]

γ

×

1

F

2

(γ −

1

1−q

1

;1 + γ,

1

2

+ γ; a(1−q1)b
2

4

)], q

1

< 1

∫

∞

−∞

|x|

γ−1

e

−|x|

δ

−b|x|

−ρ

dx



(5.45)for a > 0, b > 0, δ > 0, ρ > 0.The following general notations will be used in this and coming sections. Realscalar variables, whether they are mathematical variables or random variables, willbe denoted by lower-case letters such as x, y. Vector (a p× 1 or 1 × p matrix)/matrixvariables will be denoted by capital letters such as X, Y, whether the variables aremathematical or random. Scalar constants will be denoted by a, b etc. andvector/matrix constants by A, B etc. Variables in the complex domain will be writtenwith a tilde such as ~x, ~y, ~X, ~Y . No tilde will be used on constants. The determinant ofa p× p matrix A will be written as |A| or as det(A). When A is in the complexdomain, then |A| = a+ ib, i =

√

(−1), a, b are real scalars. Then, the absolutevalue of the determinant is written as |det(A)| = √

a

2

+ b

2. Also, A∗ will denote theconjugate transpose of A, denoting the conjugate by Ac and transpose by A′. For the 
p× q matrix X = (x

ij

), where the elements x
ij

’s are distinct real scalar variables,the wedge product of differentials will be denoted as dX = ∧

p

i=1

∧

q

j=1

dx

ij

. If the 
p× p matrix Y = (y

ij

) = Y

′ (real symmetric), then dY = ∧

i≥j

dy

ij

= ∧

i≤j

dy

ij

. Fortwo real scalar variables x and y with differentials dx and dy, the wedge (∧) productof the differentials is de�ined as dx ∧ dy = −dy ∧ dx⇒ dx ∧ dx = 0, dy ∧ dy = 0.When the p× q matrix ~X = (

~

x

jk

) is in the complex domain, then one can write 
~

X = X

1

+ iX

2

, i =

√

(−1),X

1

,X

2

 are p× q real matrices. Then, d ~X will bede�ined as d ~X = dX

1

∧ dX

2

. In the coming sections, we will be considering onlyreal-valued scalar functions, the argument may be scalar/vector/matrix in the realor complex domain. A statistical density will be de�ined as a real-valued scalarfunction f(X) of X such that f(X) ≥ 0 in the domain of X and ∫
X

f(X)dX = 1 where
X may be scalar/vector/matrix or a sequence of matrices in the real or complexdomain but f(X) has to be a real-valued scalar function. In the following discussions,a result on Jacobian of matrix transformation is going to be frequently used. This willbe stated as a lemma here without proof. For the proof and for other relatedmaterials, see Mathai (1997).
Lemma	5.1 Let the p× q, p ≤ q matrix X = (x

jk

) of rank p in the real domain. Let
Y = XX

′. Then, Y > O (real positive de�inite). Then, going through atransformation involving a lower triangular matrix with positive diagonal elementsand a unique semi-orthonormal matrix and after integrating out the differentialelement corresponding to the semi-orthonormal matrix, the following connection isobtained between the differential elements dX and dY :
dX =

π

pq

2

Γ

p

(

q

2

)

|Y |

q

2

−

p+1

2

dY

I

a,b

(δ, ρ) = ∫

X

(X

′

X)

γ

e

−a(X

′

X)

δ

−b(X

′

X)

−ρ

dX



where, for example, Γ
p

(α) is the real matrix-variate gamma function de�ined by thefollowing:

where tr(⋅) means the trace of (⋅) and Z is a p× p real positive de�inite matrix. Let ~Xbe a p× q, p ≤ q matrix of rank p in the complex domain with distinct complexscalar variables as elements. Let ~Y =

~

X

~

X

∗

> O (Hermitian positive de�inite),where ~X ∗ is the conjugate transpose of ~X. Then, going through a transformationinvolving a lower triangular matrix with real and positive diagonal elements and aunique semi-unitary matrix and then integrating out the differential elementcorresponding to the semi-unitary matrix, one has the following connection:
d

~

X =

π

pq

~

Γ

p

(q)

|det(

~

Y )|

q−p

d

~

Y

where, for example, the complex matrix-variate gamma function is de�ined as thefollowing:
where ~Z is a p× p Hermitian positive de�inite matrix.Let us continue the evaluation of our integral in (5.45). For a 1 × p matrix we canapply Lemma 5.1, to y = X

′

X considering X ′ be that 1 × p matrix. Then, (5.46)Then, (5.47)Now, comparing with our integral in earlier sections, the only change is γ there isreplaced by γ + p

2

. Hence, the explicit evaluation is available from the results inearlier sections and hence further discussion is omitted. Now, for X a p× 1 vector inthe real domain, consider the following extended integrals, denoted by I
1

, I

2

, I

3

 for 
q

1

> 1, q

2

> 1:

Γ

p

(α) = π

p(p−1)

4

Γ(α)Γ(α−

1

2

)⋯Γ(α−

p−1

2

),R(α) >

p−1

2

= ∫

Z>O

|Z|

α−

p+1

2

e

−tr(Z)

dZ,R(α) >

p−1

2

~

Γ

p

(α) = π

p(p−1

2

Γ(α)Γ(α− 1)⋯Γ(α− p+ 1),R(α) > p− 1

= ∫

~

Z>O

|det(

~

Z)|

α−p

e

−tr(

~

Z)

d

~

Z

dX =

π

p

2

Γ(

p

2

)

y

p

2

−1

dy.

I

a,b

(δ, ρ) =

π

p

2

Γ(

p

2

)

∫

∞

0

y

γ+

p

2

−1

e

−ay

δ

−by

−ρ

dy.

1



(5.48)
(5.49)
(5.50)

Consider again, y = X

′

X and from (5.46) above, the differential element is available.Then, in (5.48)–(5.50) we obtain a multiplicative factor π

p

2

Γ(

p

2

)

, the parameter γbecomes γ + p

2

− 1 and X ′

X is replaced by y. Then, (5.48)–(5.50) become thecorresponding integrals of earlier sections and hence further discussion is omitted.
5.6	 Real	Matrix-Variate	CaseLet X = (x

jk

) be a p× q, p ≤ q matrix of rank p in the real domain with pq distinctreal scalar variables as the elements x
jk

’s. Then, (5.51)because for any real matrix A = (a

jk

), tr(AA

′

) = tr(A

′

A) = the sum of squares ofall elements in A. Now, think of (5.46) as coming from a 1 × pq vector U so that UU ′is the sum of squares in (5.46). Hence, we may use the result from the previoussection on real vector-variate case. Here, one has pq variables instead of p variablesin the previous section. Now, (5.52)For a p× q, p ≤ q matrix of rank p in the real domain, let (5.53)
(5.54)for y = tr(XX

′

), a > 0, b > 0, δ > 0, ρ > 0. Now, the integral in (5.54) is availablefrom the corresponding real scalar variable case with γ replaced by γ + pq

2

 andhence further discussion is omitted. If there is a multiplicative factor in terms of a

I

1

= ∫

X

[X

′

X]

γ

[1 + a(q

1

− 1)(X

′

X)

δ

]

−

1

q

1

−1

e

−b(X

′

X)

−ρ

dX

I

2

= ∫

X

[X

′

X]

γ

e

−a(X

′

X)

δ

[1 + b(q

2

− 1)(X

′

X)

−ρ

]

−

1

q

2

−1

dX

I

3

= ∫

X

[X

′

X]

γ

[1 + a(q

1

− 1)(X

′

X)

δ

]

−

1

q

1

−1

×[1 + b(q

2

− 1)(X

′

X)

−ρ

]

−

1

q

2

−1

dX.

tr(XX

′

) =∑

p

j=1

∑

q

k=1

x

2

jk

dX =

π

pq

2

Γ(

pq

2

)

y

pq

2

−1

dy, y = tr(XX

′

).

M

a,b

(δ, ρ) = ∫

X

[tr(XX

′

)]

γ

e

−a[tr(XX

′

)]

δ

−b[tr(XX

′

)]

−ρ

dX

=

π

pq

2

Γ(

pq

2

)

∫

∞

0

y

γ+

pq

2

−1

e

−ay

δ

−by

−ρ

dy



pdeterminant such as |XX

′

|

γ  and trace factor [tr(XX

′

)]

η, then the integral in (5.53)becomes quite general. Can we evaluate such an extended Bessel integral orreaction-rate probability integral. This will be explored next.
5.7	 Most	General	Real	Matrix-Variate	CaseConsider again a p× q, p ≤ q real matrix of rank p with pq distinct real scalarvariables as elements. For δ > 0, ρ > 0, a > 0, b > 0,R(γ) >

p−1

2

,R(η) > 0,consider the integral
(5.55)

Note that, even though X has pq real scalar variables as elements, Y = XX

′ issymmetric and positive de�inite with p(p+ 1)/2 distinct real scalar variables in Y.Let k = p(p+ 1)/2. One can go from the differential element dX to the differentialelement dT  where T is a lower triangular matrix with positive diagonal elements bygoing from X to Y = XX

′ and then from Y to T or one can go directly from X to T byusing another result from Mathai (1997), which will be stated here without proof.
Lemma	5.2 Let X = (x

jk

) be a p× q, p ≤ q matrix of rank p in the real domainwith pq distinct real scalar variables as elements x
jk

’s. Let T be a lower triangularmatrix with positive diagonal elements t
jj

’s. Let U be a p× q unique semi-orthonormal matrix, UU ′

= I

p

. Let X = TU . A unique choice of U can be made byputting the condition that the �irst nonzero element in every row is positive. Then,
X = TU ,UU

′

= I

p

⇒ dX =

π

pq

2

Γ

p

(

q

2

)

{

p

∏

j=1

t

q−j

jj

}dT .

In the corresponding complex case, ~X is a p× q, p ≤ q matrix of rank p in thecomplex domain, ~T  is a lower triangular matrix in the complex domain with real andpositive diagonal elements t
jj

’s and ~U  is a unique semi-unitary matrix ~U ~

U

∗

= I

p

.Then,
~

X =

~

T

~

U ,

~

U

~

U

∗

= I

p

⇒ d

~

X =

π

pq

~

Γ

p

(q)

{

p

∏

j=1

t

2(q−j)+1

jj

}d

~

T .

Now, continuing with the evaluation of our integral in (5.55), observe that (5.56)

M

a,b

(δ, ρ;γ, η) = ∫

X

|XX

′

|

γ

[tr(XX

′

)]

η

×e

−a[tr(XX

′

)]

δ

−b[tr(XX

′

)]

−ρ

dX.

|XX

′

|=∏

p

j=1

t

2

jj

, tr(XX

′

) = tr(TT

′

) =∑

j≥r

t

2

jr



in the real case, and in the complex case, ~t
jr

= t

jr1

+ it

jr2

, i =

√

(−1), t

jr1

, t

jr2

 arereal scalar variables and then (5.57)Let the total number of t
jr

’s be k. Then, in the real case k = p(p+ 1)/2 and in thecomplex case k = p

2. The sum of squares of all the real elements in T or ~T  can bemade into a single scalar quantity r2 where r is the polar radius, through a generalpolar coordinate transformation. This transformation and the associated Jacobianwill be stated as a lemma without proof. For the proof and other details, seeMathai (1997).
Lemma	5.3 Let x

1

,… ,x

k

 be real scalar variables, −∞ < x

j

< ∞, j = 1,… , k.Consider the following transformation to r and θ
j

’s:

Then,
dx

1

∧⋯∧ dx

k

= r

k−1

{

k−1

∏

j=1

|cos θ

j

|

k−1−j

}dr ∧ dθ

1

∧⋯∧ dθ

k−1

.

Now, let us apply Lemma 5.3 to the t
jk

’s in (5.56). Then, in the real case, 
|XX|

γ

= |TT

′

|

γ

= {∏

k

j=1

(t

2

jj

)

γ

}. The Jacobian part from Lemma 5.2 gives 
∏

k

j=1

t

q−j

jj

 and therefore
|XX

′

|

γ

dX = |TT

′

|

γ

dT =

k

∏

j=1

(t

2

jj

)

γ+

q

2

−

j

2

dT

and hence the r2 coming from this product is (5.58)The total number of r2 coming from t
jk

’s is 
p(γ +

q

2

) −

p(p+1)

4

+ η+

p(p+1)

4

−

1

2

= p(γ +

q

2

) + η−

1

2

. The product of θ
j

’s

|

~

t

jr

|

2

= t

2

jr1

+ t

2
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.

x

1

= r sin θ

1
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2

= r cos θ

1

sin θ

2

x

j

= r cos θ

1

⋯ cos θ

j−1

sin θ

j

, j = 1,… , k− 2,−

π

2

< θ

j

≤

π

2

x

k−1

= r cos θ

1

⋯ cos θ

k−1

, −π < θ

k−1

≤ π.

∏

p

j=1

(r

2

)

γ+

q

2

−

j

2

= (r

2

)

p(γ+

q

2

)−p(p+1)/4

.



coming from the factor containing |TT ′

| and the Jacobian part is integrated out inMathai (2003) and the result, denoted by I
θ

, is the following: (5.59)Then, the integral in (5.55) is the following for u = trXX

′

):
(5.60)

Now, the integral in (5.55) is available from the previous section by evaluating theintegral over y in (5.60) above.
5.8	 Generalized	Reaction-Rate	Integrals	in	the	Complex
Multivariate	CaseNow, we look into the extension of reaction-rate integral and general Bessel integralto the complex domain. First we consider the vector case and then the matrix-variatecase. Let ~X be a p× 1 vector in the complex domain with p distinct scalar complexvariables as elements ~x

j

’s. Then,
~

X

∗

~

X =|

~

x

1

|

2

+⋯+ |

~

x

p

|

2

= (x

2

11

+ x

2

12

) +⋯+ (x

2

p1

+ x

2

p2

)where ~x
j

= x

j1

+ ix

j2

, i =

√

(−1),x

j1

,x

j2

 are real scalar variables. Consider thetransformation y = ~

X

∗

~

X. Note that y here is real also and y contains sum of squaresof 2p real scalar variables as opposed to p variables in the corresponding real case.Apply Lemma 5.1 to y. Then, (5.61)Consider the following integral, even though it is real-valued, in order to distinguishit from the corresponding real case, we will use a tilde. (5.62)

I

θ

=

2Γ
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(γ+

q

2

)

Γ(p(γ+

q

2

))
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q

2

+

p−1

2

.

M
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(δ, ρ;γ, η) = ∫
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=
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1

2
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)
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2
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−ρ
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=

Γ

p

(γ+

q
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)

Γ(p(γ+

q
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∫

∞
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)+η−1
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−ay
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π
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π
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dy.



Now, the integral in (5.62) can be evaluated by using the techniques in Sects. 5.1–5.3.As in the real case, we can consider the pathway extended models also, which can allbe evaluated by making the transformation in (5.61) above and then using thetechniques from Sects. 5.1–5.3. Hence, we will only list the pathway forms here. Forsimplicity, we will write them by using the symbol y = ~

X

∗

~

X and denoting them by 
~

I

1

,

~

I

2

,

~

I

3

 for q
1

> 1, q

2

> 1: (5.63)
(5.64)
(5.65)Observe that there are three situations each in (5.63) and (5.64), that is 

q

1

> 1,< 1,→ 1 and q
2

> 1,< 1,→ 1 and there are nine situations in (5.65).
5.9	 Complex	Matrix-Variate	CaseLet ~X be a p× q, p ≤ q matrix of rank p in the complex domain with distinct pqcomplex scalar variables as elements. Then, ~Y =

~

X

~

X

∗ is Hermitian positive de�inite.Note that (5.66)where ~x
jk

= x

jk1

+ ix

jk2

, i =

√

(−1),x

jk1

,x

jk2

 are real scalar variables. Thus,there are 2pq sum of squares of real scalar variables in (5.66) above, as opposed to
pq sum of squares in the corresponding real case. Consider the transformation 
y = tr(

~

X

~

X

∗

). Then, we can apply Lemma 5.1 on a 1 × 2pq real vector and then wehave the following result: (5.67)Now, for the p× q, p ≤ q matrix of rank p in the complex domain, consider theevaluation of the following integral: (5.68)
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Now, the integral in (5.68) can be evaluated by using the techniques from Sects. 5.1–5.3.
5.10	 Most	General	Form	in	the	Complex	Matrix-Variate
CaseLet ~X = (

~

x

jk

) be a p× q, p ≤ q matrix of rank p in the complex domain with pqdistinct scalar complex variables as elements. Then ~X ~

X

∗

=

~

Y > O (Hermitianpositive de�inite). Consider the integral
(5.69)

Consider the transformation ~X =

~

T

~

U , where ~T  is a p× p lower triangular matrixwith real and positive diagonal elements and ~U  is a p× q unique semi-unitarymatrix, ~U ~

U

∗

= I

p

. Then, after integrating out the differential element correspondingto ~U , we have the following result, see also Lemma 5.2: (5.70)Note that (5.71)where |~t
jk

|

2

= t

2

jk1

+ t

2

jk2

,

~

t

jk

= t
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+ it

jk2

, i =

√

(−1), t

jk1

, t

jk2

 are real scalarvariables. Thus, there is a total of p+ 2

p(p−1)

2

= p

2 sum of squares of real scalarvariables in tr( ~T ~

T

∗

). In the notation of Lemma 5.3, k = p

2 in the complex case and 
k = p(p+ 1)/2 in the real case. Then, under the general polar coordinatetransformation in Lemma 5.3 we have the following, denoting the complex scalarvariables as ~x

1

,… ,

~

x

p

2 : (5.72)
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and tr( ~T ~

T

∗

) = r

2. Sine and cosine of θ
j

’s are coming from the determinant 
|det(

~

T

~

T

∗

)| and the integral over this function of θ
j

’s is already evaluated inMathai (2003) for the real and complex cases. For the complex case, it is thefollowing, denoted by ~I
θ

: (5.73)
In the complex case, combining all factors of r2 we have (r2)p(γ+q)+η− 1

2 . Now, theintegral in (5.69) reduces to the following:
(5.74)

This is the most general form of the integral in the complex case. The evaluation ofthe integral over u can be done by using the techniques in Sects. 5.1–5.3.
5.11	 Reaction-Rate	Probability	Integral	Through
Optimization	of	Mathai	EntropyBasic measure of uncertainty in a scheme (a set of mutually exclusive and totallyexhaustive events along with the corresponding probabilities) is Shannon entropyde�ined as the following, where the �irst expression is for a discrete distribution andthe second item is for a density function f(x) of a real scalar random variable x, bothdenoted by S(f):

(5.75)
where c is a constant. This basic Shannon entropy is generalized in variousdirections. One α-generalized entropy is Havrda-Charvat entropy denoted by H

α

(f)where (5.76)A variant of H
α

(f) is Tsallis entropy T
α

(f) given by (5.77)
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> 0, j = 1,… , k, p

1

+⋯+ p
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= −c ∫
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f(x) ln f(x)dx
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Mathai entropy is also a variant of H
α

(f), denoted by M
α

(f) and de�ined as (5.78)where a is an �ixed anchoring point, α is the parameter of interest and the deviationof α from a is measured in η units. Here, f(X) is de�ined as a real-valued scalarfunction of X such that f(X) ≥ 0 for all X in the domain of X and ∫
X

f(X)dX = 1. Itis called a density function where X may be a scalar/vector/matrix or a sequence ofmatrices in the real or complex domain. Thus, (5.78) is a very general concept. It canalso be taken as an expected value, namely
M

α

(f) = E[

[f(X)]

a−α

η

− 1

α− a

] =

E[[f(X)]

a−α

η

]

− 1

α− a

,α ≠ a, η > 0.

Note that when α→ a,M

α

(f) → S(f) = Shannon entropy and hence M
α

(f) is an 
α-generalized Shannon entropy. Similarly, H

α

(f) → S(f) and T
α

(f) → S(f) when 
α→ 1. Thus, H

α

(f) and T
α

(f) are also α-generalized Shannon entropy. Let usconsider the optimization of Mathai entropy M
α

(f) under the following twomoment-type constraints, where we take x as a real scalar variable to start with:(5.79)where b
1

> 0, ρ > 0, δ > 0,R(γ) > 0 and E[⋅] denotes the expected value of [⋅]. Ifwe use calculus of variation to optimize M
α

(f) under the constraints in (5.79)above, then the Euler equation is the following, where λ
1

 and λ
2

 are the Lagrangianmultipliers:

where λ
3

 to λ
6

 are some constants. Let us consider the case α < a. Then, theexponent η

a−α

> 0 since η > 0. Then, if f has to remain as a density function for allpossible values of a,α, η,α < a, η > 0, then λ
6

 has to be negative. Let 
λ

6

= −b(a− α), b > 0,α < a and let c
1

 be corresponding normalizing constantand let the resulting density be denoted as (5.80)
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under the condition 1 − b(a− α)x

δ

> 0, δ > 0, ρ > 0,R(γ) > 0. When α > a, then 
a− α = −(α− a) and then f

1

(x) switches into the function (5.81)for b > 0, b

1

> 0, δ > 0, ρ > 0, η > 0,R(γ) > 0. When α→ a, then both f
1

(x) and 
f

2

(x) go to (5.82)for b
1

> 0, b > 0, δ > 0, ρ > 0, η > 0,R(γ) > 0, where c
1

, c

2

, c

3

 are the respectivenormalizing constants.
5.12	 Multivariate	Densities	in	the	Real	and	Complex
DomainsLet X be a p× 1 vector of real scalar variables x

j

’s, X ′

= [x

1

,… ,x
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] so that 
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) = sum of squares of 2p real scalar variableswhen ~X is in the complex domain. Let X in f(X) of M
α

(f) be a p× 1 vector in the realdomain. Let us replace x in the constraints (i) and (ii) in (5.79) by u, then f
j

(x) of(5.80)–(5.82) change to corresponding densities in terms of X, where for example 
f

1

(x) in the real scalar case changes to (5.83)for 
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> 0, η > 0, δ > 0, ρ > 0,R(γ) > 0,α < a,u = X
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X.Then, f
1

(X) of (5.83) above is a real multivariate extension of the pathway densityfor the case α < a. We can obtain f
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(X) for α > a and f
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(X) for α→ a. Now, let usreplace x in the constraints in (i) and (ii) of (5.79) by ~u = ~
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X where ~X is a p× 1vector in the complex domain. Then, we will end up with densities corresponding to(5.80)–(5.82), where for example the density for the case α > a, denoted by f
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X),is the following: (5.84)for δ > 0, ρ > 0, b > 0, b
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5.13	 Matrix-Variate	Densities	in	the	Real	and	Complex
DomainsLet X be a p× q, p ≤ q matrix of rank p in the real domain. Let u = tr(XX

′

). We usethe same notation u for convenience. Observe that XX ′

> O (positive de�inite). Letus replace x in the constraints in (i) and (ii) of (5.79) by u = tr(XX

′

). Then,optimization of Mathai entropy M
α

(f) produces three densities denoted by 
f

j

(X), j = 1, 2, 3 where X is now a p× q, p ≤ q matrix of rank p in the real domain.For example, f
2

(X) in this case will be the following, again denoting the normalizingconstant by C
2

: (5.85)for b > 0, b
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> 0, δ > 0, ρ > 0, η > 0,R(γ) > 0,u = tr(XX

′

). Let the p× q, p ≤ qmatrix ~X of rank p be in the complex domain. Let ~u = tr(

~

X

~

X

∗

) where ~X ∗ is theconjugate transpose of ~X. Observe that ~u here is also real and we use the samenotation ~u for convenience. Now, replace x of the constraints in (i) and (ii) of (5.79)by this ~u and then optimize Mathai entropy M
α

(f). Then, we end up with threedensities corresponding to (5.80)–(5.82), where for example, f
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X) is the following:(5.86)for δ > 0, ρ > 0, b > 0, b
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> 0, η > 0,R(γ) > 0,
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). This, f
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X) is thematrix-variate density in the complex domain corresponding to (5.82) in the realscalar case. In a similar manner, one can consider various constraints for the matrix-variate case and obtain all the densities considered in Sects. 5.1–5.4 throughoptimization of Mathai entropy. In order to limit the size of the manuscript, we stopthe discussion of the construction of densities through optimization of entropies.
5.14	 Mellin	Convolutions	Involving	Other	FunctionsIn Sects. 5.1–5.7 we have considered reaction-rate probability integral, itsgeneralizations and its extensions. These can also be looked upon as basic Besselintegral, its generalizations and its pathway extensions. They can also be consideredas Mellin convolution of a product involving gamma and generalized gammafunctions and generalized gamma densities as basic functions. We did not look intoMellin convolution of a ratio involving generalized gamma functions because ourinterest was to look into generalizations of the basic reaction-rate probabilityintegral. In the present section, we will examine the situation if one of the functionsinvolved is a type-1 beta function type. In terms of statistical densities, we are goingto examine Mellin convolution of a product when one of the densities involved is a
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type-1 beta density. Let x
1

> 0,x

2

> 0 be two real scalar variables with theassociated functions f
1

(x

1

) and f
2

(x

2

) respectively and with the joint function 
f

1

(x

1

)f

2

(x

2

), the product, where let (5.87)for R(α) > 0,R(γ) > −1 with c = Γ(γ + 1 + α)/Γ(γ + 1) if f
1

(x

1

) is a statisticaldensity. This density, is the type-1 real scalar beta density with the parameters 
(γ + 1,α) under the usual notation. Let the second function f

2

(x

2

) = f(x

2

) anarbitrary function or arbitrary density if we are considering statistical densities. Let 
u = x

1

x

2

. Let the function corresponding to u be g(u). Then, from the Mellinconvolution of a product property
(5.88)

where K−α

2,γ,u

(f) is Erdélyi-Kober fractional integral of the second kind of order αand parameter γ in the real scalar variable case. Thus, a simple change of the basicfunctions to a type-1 beta form and a general function for f
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), leads to afractional integral of the second kind. Mathai (2009) shows that if we take the �irstfunction f
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 one has Erdélyi-Kober fractional integral. If ϕ(x
1

) = x
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, one had Weylfractional integral of the second kind. In this case, if v is bounded above by a constant
b, v ≤ b, then it becomes Riemmann-Liouville fractional integral of the second kindand so on. From the derivation of (5.88), observe that this fractional integral of thesecond kind can also be obtained as a constant multiple of a density of a product ofreal scalar positive random variables when one of the densities is a type-1 betadensity with the parameters (γ + 1,α) and the other is an arbitrary density.
5.15	 Generalization	to	Real	Matrix-Variate	CaseLet X
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> O and X
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> O be two p× p real positive de�inite matrices with distinctelements as real scalar variables. Let the associated functions be the real-valuedscalar functions f
1

(X

1

) and f
2

(X

2

) respectively and let the joint function be 

f

1

(x

1

) = c

1

Γ(α)

x

γ

1

(1 − x

1

)

α−1

, 0 ≤ x

1

≤ 1

g(u) = ∫

v

1

v

f

1

(

u

v

)f

2

(v)dv = c

1

Γ(α)

(

u

v

)

γ

(1 −

u

v

)

α−1

f(v)dv

= c

u

γ

Γ(α)

∫

v>u>0

v

−γ−α

(v− u)

α−1

f(v)dv = c K

−α

2,γ,u

(f)
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)f
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). If X
1

 and X
2

 are matrix-variate real random variables with theassociated densities f
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) and f
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) then, when the joint function is the product 
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), we say that X
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 are statistically independently distributed.Consider the symmetric product U = X
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 is thesymmetric positive de�inite square root of the positive de�inite matrix X
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> O. FromMathai (1997) we have the Jacobian and we can show that 
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5.16	 Generalization	to	the	Complex	Matrix-Variate
CaseLet ~X

1

> O and ~X
2

> O be two p× p Hermitian positive de�inite matrices in thecomplex domain with the associated functions f
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lead to different items in different disciplines as can be seen from the followingillustration. Let u
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where K−α

1,γ,U

1
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where ~K−α

1,γ,

~

U

1

(f) is Erdélyi-Kober fractional integral of the �irst kind of order α andparameter γ in the complex domain as de�ined by Mathai (2013). A brief overview ofthe development of fractional calculus in the complex domain and for functions ofmatrix argument is given in the Springer Brief of Mathai and Haubold (2018). Hence,further discussion of fractional integrals and fractional derivatives is not attemptedhere.
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6.	Neutrino	Astrophysics,	2025	Update:	The
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6.1	 Solar	Neutrinos:	SuperKamiokande	DataOver the past 50 years, radio-chemical and real-time solarneutrino experiments have proven to be sensitive tools to test bothastrophysical and elementary particle physics models and principles(Sakurai 2018; Orebi Gann et al. 2021). Solar neutrino detectors (radio-chemical: Homestake, GALLEX + GNO, SAGE, real-time: SuperKamiokande,SNO, Borexino) have demonstrated that the Sun is powered by thermonuclearfusion reactions. Today �luxes, particularly from the pp-chain have beenmeasured: pp. 7Be, pep, 8B, and, hep. Experiments with solar neutrinos andreactor anti-neutrinos (KamLAND) have con�irmed that solarneutrinos undergo �lavor oscillations (Mikheyev–Smirnov–Wolfenstein (MSW)model). Results from solar neutrino experiments are consistent with theMikheyev–Smirnov–Wolfenstein Large Mixing Angle (MSW-LMA) model,which predicts a transition from vacuum-dominated to matter-enhancedoscillations, resulting in an energy dependent electron neutrino survivalprobability.
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Fig.	 6.1 Yearly solar neutrino �lux measured by SuperKamiokande. The red�illed circle points show theSuperKamiokande data with statistical uncertainty and the gray striped area show the systematicuncertainty for each phase. The horizontal black solid line (red shaded area) shows the combined value ofmeasured �lux (its combined uncertainty). The black-blank circle points show the sunspot numbers from1996 to 2018 (Abe et al. 2024b)



Fig.	 6.2 Measured 8B solar neutrino fuxes for 5-day (top �ive panels, black data points) and 45-day(bottom panel, blue data points) intervals without 1/R2 correction. The errors in the 5-day (the 45-day)plot are asymmetric (symmetric) errors of the average �luxes. The solid-red curve in the 45-day plot is theexpected sinusoidal solar neutrino �lux based on the elliptical orbit of the Earth (Abe et al. 2024a)
6.2	 Diffusion	Entropy	and	Standard	Deviation:
AnalysisFor all radio-chemical and real-time solar neutrino experiments, periodicvariation in the detected solar neutrino �luxes have been reported, basedmainly on Fourier and wavelet analysis methods (standard deviationanalysis). Other attempts to analyze the same data sets, particularly



undertaken by the experimental collaborations of real-time solarneutrino experiments themselves, have failed to �ind evidence for suchvariations of the solar neutrino �lux over time (Abe et al. 2024a). Periodicitiesin the solar neutrino �luxes, if con�irmed, could provide evidence for newsolar, nuclear, or neutrino physics beyond the commonly accepted physics ofvacuum-dominated and matter-enhanced oscillations of massive neutrinos(MSW model) that is, after 50 years of solar neutrino experiment and theory,considered to be the ultimate solution to the solar neutrino problem (Fig. 6.1).Speci�ically, subsequent to the analysis made by the SuperKamiokandecollaboration, the SNO experiment collaboration has painstakingly searchedfor evidence of time variability at periods ranging from 10 years down to 10min. SNO has found no indications for any time variability of the 8B �lux atany timescale, including in the frequency window in which g-modeoscillations of the solar core might be expected to occur. Despite large effortsto utilize helio-seismology and helio-neutrinospectroscopy, at present timethere is no conclusive evidence in terms of physics for time variability ofthe solar neutrino �luxes from any solar neutrino experiment. If such avariability over time would be discovered, a mechanism for a chronometer forsolar variability could be proposed based on relations between properties ofthermonuclear fusion and g-modes (Buldgen et al. 2024; Sturrock et al. 2021).All above �indings encouraged the conclusion that Fourier and waveletanalysis, which are based upon the analysis of the variance of the respectivetime series (standard deviation analysis: SDA) should be complemented bythe utilization of diffusion entropy analysis (DEA), which measures the scalingof the probability density function (pdf) of the diffusion process generated bythe time series thought of as the physical source of �luctuations(Scafetta 2010). For this analysis, we have used the publicly available data ofSuperKamiokande-I (1996-05-31–2001-07-15) and SuperKamiokande-II(2002-12-10–2005-10-06) (see Fig. 6.2) (Yoo et al. 2003: Cravens et al. 2008;Abe et al. 2024b). Such an analysis does not reveal periodic variations ofthe solar neutrino �luxes but shows how the pdf scaling exponent departs inthe non-Gaussian case from the Hurst exponent. Figures 6.3 and 6.4 show thescaling exponents (DEA) for the SuperKamiokande I and II data. Therespective Hurst exponents for SDA are visible in Figs. 6.5 and 6.6 (Mathai andHaubold  2018). SuperKamiokande is sensitive mostly to neutrinos from the 
8

B and hep branch of the pp nuclear fusion chain in solar burning. Aboveapproximately 4 MeV the detector can pick-out the scattering of solarneutrinos off atomic electrons which produces Cherenkov radiation in thedetector. The 8B and rarer hep neutrinos have a spectrum which ends near 20MeV.



Fig.	 6.3 The Diffusion Entropy Analysis (DEA) of the 8B solar neutrino data from the SuperKamiokande Iand II experiment



Fig.	 6.4 The Diffusion Entropy Analysis (DEA) of the hep solar neutrino data from the SuperKamiokande Iand II experimentAssuming that the solar neutrino signal is governed by a probabilitydensity function with scaling given by the asymptotic time evolution of a pdfof x, obeying the property (Scafetta 2010; Culbreth et al. 2023) (6.1)where δ denotes the scaling exponent of the pdf. In the variance basedmethods, scaling is studied by direct evaluation of the time behavior of thevariance of the diffusion process. If the variance scales, one would have (6.2)
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(t) is the variance of the diffusion process and where H is the Hurstexponent. To evaluate the Shannon entropy of the diffusion process at time t,de�ined S(t) as (6.3)and with the previous p(x, t) one has (6.4)The scaling exponent δ is the slope of the entropy against the logarithmic timescale. The slope is visible in Figs. 6.3 and 6.4 for the SuperKamiokande datameasured for 8B and hep. The Hurst exponents (SDA) are H = 0.66 and 
H = 0.36 for 8B and hep, respectively, see Figs. 6.5 and 6.6(Mathai and Haubold 2018). The pdf scaling exponents (DEA) are δ = 0.88and δ = 0.80 for 8B and hep, respectively, as shown in Figs. 6.3 and 6.4. Thevalues for both SDA and DEA indicate a deviation from Gaussian behaviorwhich would require that H = δ = 0.5.A test computation for the application of SDA and DEA to data that areknown to exhibit non-Gaussian behavior have been publishedby Haubold et al. (2012) and Tsallis (2024). In this test computation, SDA andDEA, applied to the magnetic �ield strength �luctuations recorded by theVoyager-I spacecraft in the heliosphere clearly revealed the scaling behaviorof such �luctuations as previously already discovered by non-extensivestatistical mechanics considerations that lead to the determination of the non-extensivity q-triplet.
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Fig.	 6.5 The Standard Deviation Analysis (SDA) of the 8B solar neutrino data from the SuperKamiokande Iand II experiment



Fig.	 6.6 The Standard Deviation Analysis (SDA) of the hep solar neutrino data from the SuperKamiokandeI and II experiment
6.3	 Probability	Density	Function	and	Differential
Equation:	Lévy	FlightsWe consider a diffusion process generated by a waiting time pdf with a�inite characteristic time T that can be modeled with a Poissoniandistribution, and a jump length pdf λ(x) given by a Lévy distribution withindex 0 < α < 2 (Metzler and Klafter 2000). The Fourier transform of λ(x) is(6.5)Then λ(x) has the asymptotic behavior given by (6.6)
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for |x| ≫ σ and μ = 1 + α. Substituting the asymptotic expansion of thejump length pdf ^λ(k) in the Fourier space and the waiting time pdf of (6.7)where τ = T < ∞ is the characteristic waiting time in the Laplace space into(6.8)where p̂
0

(k) is the Fourier transform of the initial condition p(x, 0), we obtainthe following jump pdf in the Fourier-Laplace space (6.9)where Kα
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/τ  is the generalized diffusion constant. Equation (6.9) is thesolution of the generalized diffusion equation (Hilfer 2018) (6.10)where 
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 is the fractional Weyl operator. Upon Laplace inversion ofEq. (6.9), we get the characteristic function of the jump pdf (6.11)Equation (6.11) is the characteristic function of a centered and symmetricLévy distribution. The Fourier inversion of (6.7) can be analytically obtainedby making use of the Fox function (Mathai et al. 2010;Mathai and Haubold 2018)
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By using the duplication formula for gamma functions, we have
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Evaluating the H-function as the sum of the residues at the poles of Γ(1 + s),which are at s = −1 − ν, ν = 0, 1, . . . ., we have the following series:

6.4	 DiscussionThe �irst solar neutrino experiment led by Raymond Davis Jr. showed a de�icitof neutrinos relative to the solar model prediction, referred to as the solarneutrino problem since the 1970s. The Kamiokande experiment led byMasatoshi Koshiba successfully observed solar neutrinos, as �irst reported in1980s. The solar neutrino problem was solved due to neutrino oscillations bycomparing the SuperKamiokande and Sudbury Neutrino Observatory results.While recent decades have offered tremendous advances in solarneutrinos across the �ields of solar physics (Buldgen et al. 2024; Yang andTian 2024), nuclear physics (Bertulani et al. 2022; Hwang et al. 2023), andneutrino physics (Sturrock et al. 2021; Slad 2024), many lingering mysteriesremain.This chapter takes advantage of publicly available solarneutrino SuperKamiokande data and analyses them by applying diffusionentropy analysis and standard deviation analysis. The result is a scalingexponent δ < 1 indicating anomalous diffusion of solar neutrinos in terms ofLévy �lights. Based on this result the chapter developes the probability density
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function for neutrino �lights and derives the respective differential equation interms of a fractional Fokker-Planck equation. Accordingly, the closed formanalytic representation of the neutrino power density function is given as aFox H-function that can be used for further numerical exercises for the bene�itof solar neutrino physics.The authors have grateful for the support in the diffusion entropyanalysis and standard deviation analysis by Dr. Alexander Haubold while hewas doing his research at the Department of Computer Science, ColumbiaUniversity, New York (USA). The results of diffusion entropy analysis wereindependently con�irmed by the research of Dr. Nicy Sebastian, Department ofStatistics, St Thomas College, Thrissur, University of Calicut, Kerala (India).
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68, 092002 (2003)[ADS][Crossref]

http://arxiv.org/abs/2302.10102
https://doi.org/10.1007/978-1-4419-0916-9
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2000PhR...339....1M
http://www.ams.org/mathscinet-getitem?mr=1809268
https://doi.org/10.1016/S0370-1573(00)00070-3
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2021ARNPS..71..491O
https://doi.org/10.1146/annurev-nucl-011921-061243
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2024AnP...53600168S
https://doi.org/10.1002/andp.202400168
https://doi.org/10.3389/fphy.2021.718306
https://doi.org/10.3390/e26020158
https://arxiv.org/abs/2405.10472
http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2003PhRvD..68i2002Y
https://doi.org/10.1103/PhysRevD.68.092002


(1)(2)

© The Author(s) 2026A. M. Mathai, H. J. Haubold, Modern	Problems	in	Nuclear	and	Neutrino	Astrophysicshttps://doi.org/10.1007/978-3-031-83387-8_7
7.	Neutrino	Astrophysics,	2025	Update:	Neutrino
Masses	and	MixingsArak M. Mathai1 and Hans J. Haubold2  Department of Mathematics and Statistics, McGill University, Montreal, ON, CanadaVienna International Centre, UN Of�ice for Outer Space Affairs, Vienna, Austria 
7.1	 IntroductionThe Standard Model (SM) of Particle Physics is the pinnacle of the understanding of neutrinophysics (Deppisch 2019; Oberauer et al. 2020). It comes with a plethora of parameters, themasses and the �lavour mixings, that are seemingly not �ixed by any known fundamentalprinciple. In the SM, the neutrino spectrum is simple: all neutrinos are massless. Neutrinooscillations, where neutrinos seemingly change �lavour in �light, cannot be accommodated inthe SM due to the mass of the neutrinos. Neutrino oscillations thus imply massive neutrinoeigenstates, and the SM must be extended. Moreover, neutrino oscillation experimental datasuggest that the neutrino spectrum is not hierarchical, with three massive light neutrinos and amixing matrix exhibiting near-maximal mixing (Deppisch 2019; Oberauer et al. 2020).To make sense of the neutrino sector, it was argued that the light neutrino mass matrixcould be generated randomly from a more fundamental Dirac neutrino mass matrix and a morefundamental Majorana neutrino mass matrix with random elements distributed according to aGaussian ensemble, a principle dubbed the anarchy principle (Haba and Murayama 2001).These more fundamental neutrino mass matrices would come from the extended SM where theseesaw mechanism occurs (Yanagida 1979). It was argued that the probability densityfunction (PDF) for the mixing angles and phases is the appropriate Haar measure of thesymmetry group, implying near-maximal mixings (Fortin et al. 2016; Haba et al. 2023; Fortinet al. 2020). We have shown that the PDF can be obtained either by analysing data by diffusionentropy analysis (done for the case of solar neutrinos from observations emanating fromSuperKamiokande) (Scafetta 2010; Mathai and Haubold 2018; Haubold and Mathai 2024) or asproceeding in this chapter. Then, the anarchy principle was analysed mostly numerically,reaching conclusions, for example about the preferred normal hierarchy of the neutrinomasses.Although several numerical results have been obtained, few analytical results on the seesawensemble, which is derived from the anarchy principle, exist. That it is the case even thoughrandom matrix theory is a well-studied subject in mathematics is surprising. It is thereforeclear that a thorough analytical investigation of the seesaw ensemble is possible.It is an open issue to investigate analytically the seesaw ensemble derived from the anarchyprinciple with the help of the usual tools of random matrix theory. The seesaw ensemble PDFcan be obtained from N ×N  fundamental Dirac and Majorana neutrino mass matrices withreal or complex elements. The joint PDF for the singular (eigen) values in the complex (real)case can be derived and it can be shown that the group variables decouple straightforwardly asin the usual Gaussian ensembles.
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The following notations will be used in this chapter: Real scalar (1 × 1 matrix) variables,whether random or mathematical, will be denoted by lower-case letters such as x, y, z. Realvector (1 × p or p× 1, p > 1, matrix), matrix (p× q) variables will be denoted by capital letterssuch as X, Y. Variables in the complex domain will be indicated with a tilde such as ~x, ~y, ~X,

~

Y .Constants will be denoted by a, b etc. for scalars and A, B etc. for vectors/matrices. No tilde willbe used on constants. For a p× p matrix B, |B| or det(B) will denote the determinant of thematrix B. When B is in the complex domain, one can write |B| = a+ ib, i =
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. Othernotations will be explained whenever they occur for the �irst time.This chapter is organized as follows: Sect. 7.2 gives a mathematical introduction to themodels. Section 7.3 derives the distribution of the light neutrino mass matrix in explicitcomputable form. Section 7.4 is providing the densities in terms of the eigenvalues, includingthe cases of the largest eigenvalue and the smallest eigenvalue.
7.2	 Modi�ied	Dirac	and	Majorana	Neutrino	Matrices	and	Their
DistributionsLet X and ~X be p× n, p ≤ n matrix of rank p in the real and complex domains respectively. If Xand ~X are p× n matrix-variate random variables in the real and complex domains respectively,then this matrix X corresponds to the N ×N  Dirac matrix M

D

 considered in Fortin et al.(2016); Haba et al. (2023); Fortin et al. (2020). Let Y > O,

~

Y > O be n× n real positivede�inite and Hermitian positive de�inite matrices in the real and complex domains respectively,where (⋅) > O denotes the matrix (⋅) is real positive de�inite or Hermitian positive de�inite. If Yand ~Y  are n× n matrix-variate random variables in the real and complex domains, then this Ycorresponds to the N ×N  Majorana matrix M
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 in Fortin et al. (2016); Haba et al. (2023);Fortin et al. (2020). Let U = −XY
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X where U corresponds to the light neutrino mass matrix 
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 in Fortin et al. (2016); Haba et al. (2023); Fortin et al. (2020). Due to our assumption of Xbeing a full rank matrix, the rows of X are linearly independent so that a singular distributionfor any column of X is avoided. The columns of X are p× 1 which corresponds to a p-vector inmultivariate statistical analysis. Also if the columns of X are iid (independently and identicallydistributed) then X can represent a sample matrix of a sample of size n from a p-variatepopulation. When p = n, X will be a n× n square matrix as considered in Fortin et al. (2016);Haba et al. (2023); Fortin et al. (2020). Let X have a p× n matrix-variate Gaussian density inthe standard form, denoted by f
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p respectively. These changesare taking place due to Lemma 2.1 given below. When XX ′ is changed to AXBX ′, one can giveinterpretations in terms of the covariance matrices of the columns and rows of X. For example,the inverse of A can act as the covariance matrix of each p× 1 column vector of X and similarlythe inverse of B can act as the covariance matrix of each row of X when X is a sample matrixfrom some p-variate population. The above are some of the advantages of considering the p× nmatrix X and inserting location parameter matrix and scaling matrices in XX ′. Correspondinginterpretations can be given in the complex case also.
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 in Fortinet al. (2016); Haba et al. (2023); Fortin et al. (2020) have the following density:
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Let Y 1
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7.3	 Derivation	of	the	Density	of	U
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In our notation, the light neutrino mass matrix is U = −XY
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)

,R(α) >

n− 1

2

.

But we can write |I
n

+ Z

′

Z| in terms of the p× p real positive de�inite matrix ZZ ′. Considerthe expansion of the following determinant in two different ways in terms of its submatrices,denoting the determinant by η:
(7.4)

Hence, the density of Z, denoted by g(Z), is the following: (7.5)Going through steps parallel to the real case, one has the corresponding result in the complexcase, denoted by ~g( ~Z) as the following: (7.6)Our matrix is U = ZZ

′. We can go from the density of Z to the density of U = ZZ

′ by using thefollowing result from Mathai (1997) which will be stated as a lemma. This result is available inChap. 5 as Lemma 5. 1. For the sake of ready reference, this result is given as the next lemma.
Lemma	7.2 Let X = (x

jk

) be a p× q, p ≤ q matrix of rank p in the real domain where the x
jk’s are distinct real scalar variables. Let S = XX

′. Then, going through a transformationinvolving a lower triangular matrix with positive diagonal elements and a unique semi-

f(X,Y )dX ∧ dY = c

1

c

2

|Y |
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2

e
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e
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= c
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−
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p
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p
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′
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′
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n
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n

Z

′
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n
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p
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p
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p
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∣
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∣

g(Z)dZ = c
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~

c

1

~

c

2

~
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orthonormal matrix and then integrating out the differential element corresponding to thesemi-orthonormal matrix, we have the following relationship between dX and dS:
dX =

π

pq

2

Γ

p

(

q

2

)

|S|

q

2

−

p+1

2

dS.

In the corresponding complex case, let ~X be p× q, p ≤ q matrix in the complex domain withdistinct scalar complex variables as elements. Let ~S =

~

X

~

X

∗. Then, going through atransformation involving a lower triangular matrix with real and positive diagonal elementsand a unique semi-unitary matrix and then integrating out the differential elementcorresponding to the semi-unitary matrix, we have the following connection:
d

~

X =

π

pq

~

Γ

p

(q)

|det(

~

S)|

q−p

d

~

S.

With the help of Lemma 7.2, we can go to the density of Z in (7.5) to the density of U = ZZ

′,denoted by g
1

(U). Since the variable is changed from a p× n matrix to a p× p matrix, thenormalizing constant will change. Hence we may write (7.7)for R(α) > n−1

2

,n > p− 1, where c is the corresponding normalizing constant. This g
1

(U) isa real matrix-variate type 2 beta density with the parameters ( n
2

,α+

p−n

2

). Hence, thenormalizing constants, denoted by c in the real case and ~c in the complex case, are thefollowing: (7.8)evaluated from real and complex p× p matrix-variate type 2 beta densities respectively. Usingsteps parallel to the real case, we have the corresponding density ~g
1

(

~

U) in the complex case asthe following, for R(α) > n− 1: (7.9)where ~c is given in (7.8).
7.4	 Densities	in	Terms	of	the	EigenvaluesFrom (7.7) the p× p real positive de�inite matrix U has a real matrix-variate type 2 beta densitywith the parameters ( n
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p
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2

) with R(α) > n
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+
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2
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2

, that is, with thedensity (7.10)
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for R(α) > n−1

2

. The corresponding density in the complex domain is the following where ~U  isHermitian positive de�inite and |det( ~U | means the absolute value of the determinant of ~U :
(7.11)

for R(α) > n− 1. We can convert U and ~U  and write the densities in terms of theireigenvalues. If μ
j

 is an eigenvalue of U, then 0 < μ

j

< ∞, j = 1,… , p. Similar is the case forthe eigenvalues of ~U . For convenience, let us convert U and ~U  to the corresponding type 1 betaform. Consider the transformation
V = (I + U)

−

1

2

U(I + U)

−

1

2

,

~

V = (I +

~

U)

−

1

2

~

U(I +

~

U)

−

1

2

.Then, V and ~V  will be p× p matrix-variate type 1 beta with the same parameters, see Mathai(1997); Mathai et al. (2022). Let the densities of V and ~V  be denoted by g
2

(V ) and ~g
2

(

~

V )respectively. Then, (7.12)and (7.13)for R(α) > n−1

2

,n− 1 respectively in the real and the corresponding complex case. If λ
j

 is aneigenvalue of V, then λ
j

=

μ

j

(1+μ

j

)

⇒ μ

j

=

λ

j

(1−λ

j

)

, 0 < λ

j

< 1, 0 < μ

j

< ∞, j = 1,… , p. Let Qbe a p× p unique orthonormal matrix, QQ′

= I,Q

′

Q = I  such that 
Q

′

VQ = diag(λ

1

,… ,λ

p

) with 1 > λ

1

> λ

2

>⋯ > λ

p

> 0. Correspondingly, let ~Q be aunique unitary matrix, ~Q ~

Q

∗

= I,

~

Q

∗

~

Q = I  such that ~Q∗

~

V

~

Q = diag(λ

1

,… ,λ

p

), where ~Q∗means the conjugate transpose of ~Q. When λ
j

’s are real scalar variables we can assume 
Pr{λ

i

= λ

j

, i ≠ j} = 0 almost surely. Hence, without loss of generality we assume that the λ
j’s are distinct, 1 > λ

1

>⋯ > λ

p

> 0. Observe that the eigenvalues of Hermitian matrices arealso real and hence the eigenvalues of both V and ~V  will be real and we will denote them by thesame symbols λ
j

’s. Also, 
Q

′

VQ = D = diag(λ

1

,… ,λ

p

) ⇒ V = QDQ

′

, |V | = λ

1

⋯λ

p

, |I − V | =∏

p

j=1

(1 − λ

j

) andwhen V is transformed to its eigenvalues a factor ∏
i<j

(λ

i

− λ

j

) comes in, both in the real andcomplex cases, see Mathai (1997); Mathai et al. (2022). If the differential elementscorresponding to Q and ~Q are denoted by dG and d ~G respectively, then from Mathai (1997);Mathai et al. (2022), G = Q

′

(dQ),

~

G =

~

Q(d

~

Q) where, for example, (dQ) is the matrix ofdifferentials in Q and the integrals over dG and d ~G are the following results which will bewritten as a lemma, see Mathai (1997); Mathai et al. (2022):
Lemma	7.3 For the G, dG, ~G, d ~G as de�ined above, we have
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∫ dG =

π

p

2

2

Γ

p

(

p+1

2

)

,∫ d

~

G =

π

p(p−1)

~

Γ

p

(p)

.

Let us verify this lemma for p = 2, 3. For a p× p real positive de�inite matrix X we have
∫

X>O

|X|
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2

e

−tr(X)

dX = Γ

p

(α),R(α) >

p− 1

2from the real matrix-variate gamma integral. In the complex case, let the p× p matrix ~X beHermitian positive de�inite. Then, from the complex matrix-variate gamma integral we have
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Consider the integrals in the real and complex cases when α =

p+1

2

 in the real case and α = pin the complex case. Then,
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If we go through a unique orthonormal transformation involving an orthonormal matrix Q thenin the real case
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)and in the corresponding complex case
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Then, in the real case, for p = 2, Γ
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)divided by the right side quantity π gives 1
2

. Now, consider the integral over D for p = 2 in thereal case. Let u
1
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− λ

2

.
Hence, for p = 2 in the real case, Lemma 4.1 is veri�ied. Now, for p = 3 in the real case, the leftside quantity Γ
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Hence, the result for p = 3 in the real case is veri�ied. Now, consider the complex case. The leftside quantity is ~Γ
p
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~
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2

Γ(2)Γ(1) = π for p = 2 and 2π3 for p = 3. The rightside quantity [πp(p−1)/~Γ
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2

 for p = 3. Now, the left side quantitydivided by the right side quantity gives the following: π/π = 1 for p = 2 and (2π3)/( π3
2

) = 4for p = 3. Now, consider the integral over D in the complex case. As before, let 
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. Then, for p = 2,
Thus, the result for p = 2 is veri�ied. Now, consider p = 3.

Hence, the result for p = 3 in the complex case is veri�ied.The joint density of λ
1

,… ,λ

p

 is the following, denoted by g
3

(D) in the real case and ~g
3

(D)in the complex case:
(7.14)

(7.15)
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2 in the complex case, in the 
p× p matrix case, in terms of Vandermonde’s determinant.
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∏

i<j

(λ
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− λ

j

) = = A = (a

ij

), a

ij

= λ

p−j

i

for all i and j. Let us use the general expansion for a determinant. Then, for K = (k

1

,… , k

p

)where k
1

,… , k

p

 is a given permutation of 1, 2,… , p, we have the following:
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Here, ρ
K

 is the number of transpositions needed to bring (k
1

,… , k

p

) to the natural order 
(1, 2,… , p). Then, if ρ

K

 is odd then we have −1 and if ρ
K

 is even then we have +1 as thecoef�icient. For example, for p = 3 the possible permutations are(1, 2, 3), (1, 3, 2), (2, 3, 1), (2, 1, 3), (3, 1, 2), (3, 2, 1). There are 3! = 6 terms. In the general casethere are p! terms. For example, for the sequence (1, 2, 3) we have 
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Let (7.16)In the real case, the joint density of λ
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,… ,λ

p

 is the following: (7.17)
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where, R(α) > n−1

2

 and m
j

=

n

2

−

p+1

2

+ p− k

j

.In the complex case,
(7.18)

where R(α) > n− 1 and m
j

= n− p+ r

j

 where r
j

 is de�ined in (7.16). Hence, in (7.17) and(7.18) we will use the same notation m
j

 as the exponent of λ
j

, j = 1,… , p with theunderstanding that in the real case m
j

=

n

2

−

p+1

2

+ p− k

j

 and in the complex case 
m

j

= n− p+ r

j

. Further, for simplicity, we may write the joint density of the eigenvalues inthe real and complex cases as the following: (7.19)
(7.20)where

m

j

=

n

2

−

p+ 1

2

+ p− k

j

, γ = α−

n− 1

2

, c =

Γ

p

(α+

p

2

)

Γ

p

(

n

2

)Γ

p

(α+

p

2

−

n

2

)

π

p

2

2

Γ

p

(

p

2

)

, j = 1,… , p

in the real case, and
m

j

= n− p+ r

j

, γ = α− n,

~

c =

~

Γ

p

(α+ p)

~

Γ

p

(n)

~

Γ

p

(α+ p− n)

π

p(p−1)

~

Γ

p

(p)

, j = 1,… , p

in the complex case, where r
j

 is de�ined in (7.16). Since we have written the joint density of theeigenvalues, both in the real and complex cases, by using the same format, we can use the sameprocedure to obtain the densities of the largest eigenvalue, smallest eigenvalue etc. Integrationover λ
1

,… ,λ

p−1

 is needed to obtain the density of the smallest eigenvalue λ
p

. Similarly,integration over λ
p

,… ,λ

2

 is needed to obtain the density of the largest eigenvalue λ
1

. In thecomplex case, m
j

, j = 1,… , p are always positive integers. Hence, integration by parts can getrid off the factor λmj

j

. But, if the m
j

 is large or moderately large then the �inal expression, eventhough a �inite sum, will be messy. Similarly, when m
j

 or γ in the real or complex case is a

g

3

(D)dD =

Γ

p

(α+

p

2

)

Γ

p

(

n

2

)Γ

p

(α+

p

2

−

n

2

)

π

p

2

2

Γ

p

(

p

2

)

{

p

∏

j=1

λ

n

2

−

p+1

2

j

}{

p

∏

j=1

(1 − λ

j

)

α−

n−1

2

}

×(∑

K

(−1)

ρ

K

λ

p−k

1

1

λ

p−k

2

2

⋯λ

p−k

p

p

)dD

=

Γ

p

(α+

p

2

)

Γ

p

(

n

2

)Γ

p

(α+

p

2

−

n

2

)

π

p

2

2

Γ

p

(

p

2

)

∑

K

(−1)

ρ

K

λ

m

1

1

⋯λ

m

p

p

{

p

∏

j=1

(1 − λ

j

)

α−

n−1

2

}dD

~

g

3

(D)dD =

~

Γ

p

(α+p)

~

Γ

p

(n)

~

Γ

p

(α+p−n)

π

p(p−1)

~

Γ

p

(p)

∑

K

(−1)

ρ

K

λ

m

1

1

⋯λ

m

p

p

{

p

∏

j=1

(1 − λ

j

)

α−n

}dD

g

3

(D)dD = c∑

K

(−1)

ρ

K

λ

m

1

1

⋯λ

m

p

p

(1 − λ

1

)

γ

⋯(1 − λ

p

)

γ

dD

~

g

3

(D)dD =

~

c∑

K

(−1)

ρ

K

λ

m

1

1

⋯λ

m

p

p

(1 − λ

1

)

γ

⋯(1 − λ

p

)

γ

dD



positive integer, then integration by parts will eliminate the corresponding factor either λm
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 or 
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γ . But the expressions may become messy when the parameter m
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