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1. The Theory of Nuclear Energy
Generation of Solar Type Stars

Arak M. Mathai! and Hans J. Haubold?

(1) Department of Mathematics and Statistics, McGill University,
Montreal, ON, Canada

(2) Vienna International Centre, UN Office for Outer Space Affairs,
Vienna, Austria

1.1 Classical Thermodynamics: Polytropic Gas

Spheres in Convective Equilibrium

Shortly after the discovery of the law of conservation of energy by
Mayer (1942) and Helmholtz (1847) it was J. R. Mayer who raised the
question for the origin of the radiative energy emitted by the Sun. J.R.
Mayer’s law of conservation of energy (first law of thermodynamics)
took into account the energy due to heat. If dQ is the amount of heat
energy which is absorbed by the system under question from its
surroundings, then this law of conservation of energy is,

dQ = dU + dw, (1.1)

where dU is the change in internal energy of the system when going
from one equilibrium state to another, and dW is the amount of work
done by the system on its surroundings. In 1848 J. R. Mayer stated that
the source of the solar radiation energy should be the kinetic energy of
infalling meteorites. At last a refinement of J. R. Mayer’s idea we meet in
the hypothesis of Helmholtz (1847) and Lord Kelvin (1861) who were
able to show that the gravitational contraction of the Sun itself could be
the significant source of radiated energy. However, already on the basis
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of Lane’s (1870) considerations of a stellar configuration in convective
equilibrium taking into account internal gravitation and Ritter’s (1878)
results on the uniform expansion and contraction of gaseous
configurations it has been shown that gravitational contraction cannot
keep the Sun shining (HELMHOLTZ-KELVIN contraction time scale).
This very important conclusion for the theory of internal structure of
the Sun is closely related to the macro-structure of a gaseous sphere in
stationary equilibrium described by the virial theorem of

Clausius (1870) which is also called POINCARE'’s theorem:

2T +Q =0 (1.2)

where T is the total kinetic energy of particles, and €2 is the total
gravitational potential energy of the system. For an adiabatic process in
a gaseous sphere in gravitational equilibrium it follows from (1.1) that
the change dU in the internal energy of the sphere is given by

dU = —PdV, (1.3)

where P is the gas pressure and dV is the change in the volume.
Considering a perfect gas with PV = RT one has,

I =_(y-1)97, (1.4)

where R is the gas constant and + is the adiabatic index. Using (1.3) and
(1.4) it holds for the perfect gas,

_ _oT
U= 305 (1.5)

which can be written in the light of POINCARE’s theorem (1.2),

Q
U=~ 3(v-1) ° (1.6)

The result in (1.6) goes back to Ritter (1880a). The total energy E is

then given by
(1.7)

_ N
E=U+Q= 3750



From (1.7) it is evident that the gaseous sphere will be unstable against
adiabatic pulsations for v < 4/3. In his remarkable paper Ritter
(1880a) also obtained the result that the period of oscillation of the
gaseous sphere is inversely proportional to the square root of its mean
density.

As a remark we should mention here that Maxwell (1860) in 1860
obtained the probability distribution of gas particles with velocities
between v and v + dv,

f(v)dv = (%)% (kﬂT)%fv2 exp {— g}g }dv, (1.8)

where m is the mass of the particle under question. Already in Ritter’s
(1879) paper consequences of (1.8) played an important role for the
development of convective equilibrium in a gaseous sphere under the
influence of its own gravitation. Equation (1.8) follows also directly
from the MAXWELL-BOLTZMANN solution L. Boltzmann’s (1872)
equation found by him in 1872.

For the first time the fundamental differential equation governing
the structure of gaseous spheres was given by Ritter (1880) and Lane
(1870),

d (% dP
%W(? W) = —47nGp, (1.9)

which can be derived by consideration of two fundamental equations of
gravitational equilibrium,

d]‘(ﬁ” = 47r?p, conservation of mass, (1.10)
&L= G]\ﬁr)p , hydrostatic equilibrium. (1.11)

A. Ritter studied the properties of gaseous spheres in convective
equilibrium, where pressure P and matter density p obey the law
(1.12)
P = Kpl-i-%,



which are called polytropes of index n. Taking into account (1.12) and
(1.9), we are led to the well-known LANE-EMDEN equation,

Fa(ed)+om=o, (1.13)

where the solution satisfies the initial condition (0) = 1 and 6'(0) = 0

. The LANE-EMDEN equation (1.13) can be obtained from (1.9) and
(n+1)K )\%_1} 1/2
4G )
Special cases of (1.13), namely, when n = 0, 1, 5, have explicit analytic
solutions. The mathematical foundation for the study of the LANE-
EMDEN equation (1.13) and of more general equations was made by
Fowler (19144, b, 1930, 1931) in a series of four papers during 1914-
1931. However, the theory of polytropic stars governed by the second
order nonlinear differential equation (1.13) culminated in Emden’s
(1907) book. The fundamental point of view adopted at that time was
that the energy transport in the interior of a star would be by
convective motion. But, already in 1894 Sampson (1894) introduced
the concept of energy transfer by radiative rather than by convective
processes. This concept had to wait upon further progress in
thermodynamics. In 1905 Schuster (1905), E. Rutherford’s predecessor
in Manchester, applied the idea of radiative energy transfer of an
atmosphere which also led to Schwarzschild’s (1906) famous paper on
the physical state of the Sun’s atmosphere. It contains the concept of
local thermodynamic equilibrium.
It is generally accepted in the literature that the publication
of Emden’s (1907) book containing the complete theory of polytropic
stars marks the end of the first epoch in the study of the internal
constitution of stellar configurations. In the following decades mainly
the importance of radiative energy transfer in the interior of stars was
realized and the theory of radiative transfer was developed in some
detail.

(1.12) by substituting p = A0",r = a&, and a = [

1.2 Quantum Theory of Atomic Structure:
Opacity



Although E. Hertzsprung (1905) in 1905 had already recognized the
distinction between giant and dwarf stars the full discovery of the
HERTZSPRUNG-RUSSELL diagram had to wait until 1913.In 1911-
1914 Hertzsprung (1911, 1912) and Russell (1914) were convinced as
to the significance of their diagram for the study of the evolution of
stars. Indeed the theory of the evolution of stars based on observations
first became possible in connection with the study of the internal
structure of the stars made by LANE, RITTER, and EMDEN as discussed
above.

In Bohr (1913) laid the foundations of the quantum theory of
atomic structure by establishing a link between the structure of the
atom and PLANCK'’s quantum of action as given in his trilogy on the
constitution of atoms and molecules. It is quite interesting that at about
this time the idea was born that the up till now considered mechanical
or radioactive energy source did not nearly suffice for supplying the
radiation of the Sun. Taking into account that the luminosity of the Sun
has not changed significantly since the formation of the Earth some 10?
years ago, Perrin (1920) and Eddington (1920) in 1920 came to
conjecture that in the interior of the Sun subatomic energy must be
generated by the conversion of hydrogen into helium. As we shall see in
the following the development of the theory of stellar nuclear energy
generation is closely connected with the foundations of the theory of
astrophysical plasmas. In 1923, for instance, Debye (1923) and E.
HUCKEL had shown that the electrons of a plasma move in such a way
as to screen out the COULOMB field of a test charge for distances
greater than the DEBYE-HUCKEL length.

The combination of the theory of radiative equilibrium and BOHR'’s
theory of atomic structure with LANE'’s, RITTER’s, and EMDEN’s results
was realized by Eddignton (19163, b, 1918) (1916-1918) and came up
with a more refined theory of the internal structure of the stars. He was
the first to apply the concept of radiative equilibrium to the interior of a
star and made the assumption that heat is transferred inside a star by
radiation whose flow controls the internal temperature distribution.
The equations of equilibrium for a star in radiative equilibrium now
consist of (1.11) taking into account the gas pressure P, = kN 4pT'/p,

and the radiation pressure p, = aT'*/3, the equation of radiative
energy transport,




4 (Lgpd) = —xe I0) (1.14)

dr c A4mr2?

and the equation of conservation of energy,

L0 — gr? pe, (1.15)

where Y is the measure of the ability of a gas to absorb radiation
(opacity), and € is the total amount of heat energy liberated per unit
mass in unit time (energy generation rate). While the opacity x could
be fixed by the physical theory of radiative transfer, the quantity € as
the nuclear energy generation rate still remained uncertain at that time.
The situation was surveyed at the end of the third decade of the century
by Eddington’s (1926) book During the following decade much work
was done on the derivation of detailed stellar models.

1.3 Quantum Theory of Nuclear Structure:

Nuclear Energy Generation Rates

The decades after the publication of Eddington’s (1926) book are
characterized by the breakthrough of quantum mechanics into the
physics of stellar interior. In Fowler (1926) made the fundamental
discovery that the electron assembly in the white dwarfs must be
degenerate in the sense of the FERMI-DIRAC statistics in the same way
as shortly thereafter W. Pauli and A. Sommefeld showed to be the case
for electrons in metals. He derived the equation of state for degenerate
matter, P = kp5/ 3, where k is a constant. About this time Wentzel
(1926), Kramers (1926), and Brillouin (1926) studied approximate
solutions of the SCHRODINGER equation for a charged particle in the
COULOMB field which later on were named as COULOMB wave
functions. Charged particle interactions at low energies as expected in
stellar interiors are dominated by the COULOMB barrier penetration
factor first discussed in detail by Gamow (1928), Gurney and

Condon (1928, 1929). Thus, the theoretical foundations for the stellar
nuclear energy generation had been created. In Atkinson (1929) and
FE.G. Houtermans considered the transmutation of elements arising from
proton captures by the help of simple physical considerations. Fowler




(1929) and Wilson (1929) developed the resonant penetration of
charged particles leading to the distinction of nonresonant and
resonant particle interactions in nuclear reactions. It is an important
fact that Eddington (1926) in his book succeeded in deriving a relation
between the mass M, luminosity L, and the opacity x from the
considerations of a steady state of a star not knowing the dependence
of the energy generation rate € on density p and temperature T.
However, contrary to EDDINGTON’s point of view Milne (1930)
suggested that the mass, luminosity, and opacity of a stellar model must
be taken as independent parameters in the consideration of its steady
state, and that the observed mass-luminosity relation should depend
upon the intrinsic physics of the energy generating processes and not
from deductions of steady state considerations only. During the years
1926-1939 important integral theorems were established by the
analysis of the differential equations of the internal structure of stars
(1.10), (1.11), and the total pressure as a sum of the gas kinetic
pressure p, and radiative pressure p,. Those integral theorems

permitted the estimation of mean values and values at the centre of the
star for all relevant physical variables inside the star (density, pressure,
temperature). May be the two most important theorems are due to Vogt
(1926) and Russell (1927) as well as to Stromgren (1937). The VOGT-
RUSSELL theorem is valid for gaseous stars in radiative equilibrium as
well as in convective equilibrium and states that the four first-order
ordinary differential equations (1.10), (1.11), (1.14), (1.15), under
general assumptions for the three constitutive relations P, x, €, form a
self-sufficient system for the problem of stellar structure if one takes
into account, additionally, the boundary conditions: M(r) = 0 at
r=0;M(r) = M,L(r) = L,and P(r) = 0atr = R. The theorem in
question reads that the structure of a star is uniquely determined by its
mass and chemical composition, if the pressure P, the opacity x and the
rate of energy generation € are functions of the local values of density p,
temperature T, and chemical composition X; only. The main
observational consequence of the VOGT-RUSSELL theorem was that
different stars in the distribution of stars in the HERTZSPRUNG-
RUSSELL diagram have different chemical composition. The theorem of
STROMGREN states that for a star in radiative equilibrium with




negligible radiation pressure the mass-luminosity-radius relation has
the form

L = constant. Xio %u”s, (1.16)
if the rate of energy generation € and the opacity x obey the general
power laws

€ = ep*T", (1.17)

X = xopT >, (1.18)

where a, v, 8, €g, and X are arbitrary constants. The constant in Eq.
(1.16) depends only on the exponents «, v, and s, respectively. Again,
the value of STROMGREN'’s theorem (1.16) is to have the dependence of
the luminosity L from M and R which allows a comparison of theory and
observation. The special feature of STROMGREN’s theorem is the more
realistic dependence of L on the introduced physical assumptions about
the rate of energy generation via o and v and the opacity via s.

Besides the theory of the internal structure of ordinary stars (main
sequence stars) Chandrasekhar (1931) realized in 1931 that with
increasing relativistic degeneracy the radius of a white dwarf star tends
to the limiting value zero at a finite limiting mass of 1.4 M with a slight
dependence on chemical composition. The main result was that white
dwarf stars are stable or can exist, only for masses M < 1.4M,
(chandrasekhar limiting mass). Then, the exact equation of state for a
completely degenerate gas has been derived by Chandrasekhar (1935).
Much of the material developed for physics of degenerate matter and
white dwarf stars as well as the construction of stellar models by

analytic methods was summarized in the monograph of
Chandrasekhar (1939).

1.4 Stellar Models with Nuclear Burning:
Nuclear Reaction Rates



The decades after the publication of Chandrasekhar’s (1939)
monograph saw the working out of further details of the nuclear
reactions and the determination of reaction rates on the basis of
laboratory measurements. As an example for the elaboration of the
nuclear reaction theory we refer to the analytic treatment of nuclear
cross sections as given by Breit (1936) and Wigner’s (1936) single
resonance formula. The rapid advance of nuclear physics in the thirties
of this century enable Weizsacker (1937) and Bethe (1938) and
Critchfield (1938) to work out the nuclear reactions that are possible at
temperatures of about 10°® to 10% K in the deep interior of the Sun (CNO
cycle). Thus, the problem of stellar energy generation came to a
solution. A second possibility for conversion of hydrogen into helium
was offered by a reaction chain which Bethe (1939) had studied in
1939 (Proton-Proton chain). Thorough experimental investigations
particularly those of Fowler (1984a), of reaction cross sections at low
energies have contributed very significantly to our knowledge of
nuclear energy generation in stars. One of the first results of the theory
of stellar evolution taking into consideration hydrogen burning was
that stars remain in the immediate vicinity of the main sequence until a
considerable faction (=~ 10%) of the hydrogen is burned. If no mixing

takes place between burned and unburned material, the evolutionary
track in the effective temperature-luminosity diagram then leads
upward and to the right into the region of the red giants, a result
obtained by Schonberg (1942) and S. Chandrasekhar as early as 1942.
In connection with a more elaborate concept of astrophysical cross
section factors given by Salpeter (1952a) (1952) the theory of nuclear
burning stars made important advancement. In the deep interior of a
star, suppose that a certain part of the hydrogen has been used up then
the temperature rises to more than 10° K as a result of gravitational
contraction. Opik (1951) and Salpeter (1952b) remarked in 1951/1952
that helium burning sets in to give carbon in accordance with the triple-
a-process. The growth of theoretical researches on sellar evolution,
starting with the important paper by Hoyle (1955) and

Schwarzschild (1955) denoted also a fundamental extension of the
LANE-RITTER-EMDEN-EDDINGTON theory of the internal constitution
of stars. The assumption hitherto made, that the material inside a star
is continually mixed through its evolution, had to be given up in the face



of theoretical and observational results. The new concept of the theory
of stellar evolution was born, considering the evolution of a star as
successive stages of nuclear burning phases. These developments are
described in the monograph of Schwarzshild (1958) and

Hayashi (1962).

1.5 The Solar Neutrino Experiment: Solar

Neutrino Emission Rates

The development of large fast computers at the beginning of the 1960s
has had a profound impact on the study of stellar structure. It was no
longer necessary to use the techniques of integration by hand discussed
in Schwarzschild’s (1959) book. The first foundation of the elaborate
numerical study of the internal structure and evolution of stars was the
method of dividing the structure of a star into many concentric zones
and then solving the differential equations of stellar structure in
difference form at the boundaries of these zones, introduced
by Henyey (1959). The second foundation of this study is Fowler’s
(FowlerEtAl 1967; HarrisEtAl 1983) nuclear reaction rate systematics
as published in a series of ‘Handbiicher der Kernastrophysik’ (1967,
1975, 1983). Acting as a guide FOWLER’s nuclear reaction rates are
leading the computer from the main sequence stage of a star through
the red giant stage up to the final stages of stellar evolution known as
white dwarfs and supernovae. As far as the present scope of the theory
of internal structure and evolution of stars is concerned a wide range of
astrophysical problems emerged which are treated more or less
independently from the classical theory of LANE-RITTER-EMDEN-
EDDINGTON-CHANDRASEKHAR as described above briefly. To mention
some: The theory of black holes and neutron stars, the emission of
neutrinos and gravitational waves by stars, pulsating and oscillating
stars, close binaries, population III stars, and so on. For an illustrative
introduction to the recent history of the theory of the internal
constitution and evolution of stars see Kippenhahn (1984) and Iben Jr.
(1985).

In the following we are coming back once again to the classical
theory of the internal structure of the Sun as established in the thirties.
Surely, since the discovery of the nuclear reactions for the solar energy



generation by Weizsacker (1937), Bethe (1938) and Chrichfield (1938),
and Bethe (1939) it was known that additionally to the photon a second
stable particle with no charge and a rest mass of approximately) zero,
that carries away energy in the course of nuclear reaction is emitted by
the Sun: the neutrino. Further, two main characteristics of the neutrino
were well known, namely, the weak interaction with matter and that
neutrinos arise only in the energy generating regions of the stars and
carry therefore unlike photons direct evidence of conditions in stellar
cores. The first serious attempt to detect neutrinos emitted by the

Sun goes back to Davis Jr. (1955) using a radio chemical neutrino
detector based on the reaction *’CI(v, e~ *) 37 Ar. This radiochemical
method was suggested by Pontecorvo (1946) in 1946. Note that at this
time it was generally believed that neutrinos and antineutrinos were
equivalent. After a long way of refinements of the Cl — Ar-experiment
by R. DAVIS Jr. and associates the counting experiments valid for today’s
experimental and theoretical calculations of the solar neutrino flux
started in 1968 by Daavis Jr. (1968), D.S. HARMER, and K.C. HOFFMAN.
The net result of the solar neutrino experiment over more than

15 years is a disagreement between theory and observation of about a
factor of four. Considering a standard model for the Sun and varying all
of the parameters within the limits to be a plausible range of variation
it has been shown by Bahcall (1982) that the disagreement still
remains if not otherwise a contradiction with observational results
appears.

As generally expected the neutrino flux from various nuclear
reactions depends strongly on model parameters. But, for a first glance
one can predict the number of solar neutrinos reaching the surface of
the Earth per em? per s. This total number is approximately,

N, = 22 ~2x10%s7, (1.19)

where L is the luminosity of the Sun and E is the energy liberated by
the overall net nuclear reaction for the solar nuclear energy generation
(Proton-Proton chain), not including the energy of the two emitted

neutrinos. Thus, the solar neutrino flux on Earth is,
(1.20)



_ N, 10 2 -1
¢V_47T(AU)2N6.5><10 rvem °s .

As will be shown in the following Chapters I and II the relation (1.19)
can be derived by constructing a simple solar model solving the
respective differential equations (1.10), (1.11), (1.15), taking into
consideration the boundary conditions as discussed above, and
assuming the equation of state for a perfect gas. For that we consider,
instead of the phenomenological form of the rate of nuclear energy
generation given in (1.17), the relation following from quantum
statistical arguments as given by

€12 = %E12T12(P, T), (1.21)

where r19 denotes the thermonuclear reaction rate between nuclear
species 1 an 2, F/15 is the energy liberated in the nuclear reaction under
question. The thermonuclear reaction rate 712 in (1.21) can be derived
from first principles including the distinction between resonant and
nonresonant as well as MAXWELL-BOLTZMANNian and non-
MAXWELL-BOLTZMANN:Iian reaction rates. At last 19 will be a function
not only of density p, temperature T, and chemical composition X7, but

also of subatomic quantities,
ri2 = f(p, T, X, Z1, Zs, A1, Az, S12) (1.22)

where Z; denotes the atomic number, and A; is the mass number, and
S19 is the nuclear cross section factor. Then, the nuclear output of the
Sun ascribed to the nuclear reaction under question is according to
(1.15) and (1.21),

Li2(Rp) = foR® dr 4mr®p(r)era(r)

Re ) (1.23)
= fo dr 4nr*E1ar12(p(r), T(7)).

The total number of neutrinos due to the nuclear reaction between

number species 1 and 2 in the Sun can then be written as

(1.24)

Nyp = 228l — g7 (50 dg 1245 (p(r), T(r)).




The number output of the Sun due to a reaction between nuclear
species 1 and 2 as written in (1.22) is a function of stellar model
parameters and subatomic quantities:

L12 — f(RapaTaX'iaZlaz27A17A27512)- (125)

What concerns the solar neutrino problem is that the relations (1.22)
and (1.25) are equivalent to relations (1.17) and (1.16), but, in (1.22)
and (1.25) the subatomic physics is taken into account. All cases of
thermonuclear reaction rates (1.22) are derived in Chapter I, whereas
the evaluation of (1.25) is given in Chap. 2 in detail.
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2.1 Introduction: Cosmic Nucleosynthesis of the Elements

According to the current understanding of the evolution of the Universe the presently
observed state of the Universe is the result of expansion from an extremely dense and
extremely hot singular origin. Describing that evolution of the Universe by means of the
standard cosmological model, based on the ‘big-bang’ hypothesis, cosmological
nucleosynthesis occurs at the appropriate temperature in the course of expansion and
goes on until the decreasing temperature stops nuclear reactions. No significant
cosmological nucleosynthesis beyond helium-4 occurred due to the instability gaps at
mass number 5 and mass number 8 as well as the constraints set by the present universal
density and temperature. However, it is well-known that ‘big-bang’ nucleosynthesis
results in the production of lithium-7 in amounts comparable to the solar system
abundance of this nucleus. Some general features of the cosmological nucleosynthesis are
listed in Table 2.1 and Figs. 2.1 and 2.2.

Table 2.1 Basic facts of cosmic nucleosynthesis (cp. Burbidge et al. (1957), Fowler et al. (1983))
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Fig. 2.1 The standard abundance distribution of the elements in the Universe (Si = 106) (Burbidge et al. (1957))

Stars are born out of interstellar gas and are thought to be the site of stellar
nucleosynthesis during their lifetime. It is now believed that most of the heavy elements
are cooked in successive generations of stars. As can be seen in Table 2.1 and Figs. 2.1 and
2.2, within 10? years after the big-bang, stars are formed and stellar nucleosynthesis
activities can take place in these stars. It was the study of the detailed plot of the number
distribution of the cosmic elements as a function of atomic weight (cp. Figs. 2.1 and 2.2)
and COULOMB barrier penetration considerations which led Burbidge et al. (1957) to
postulate the basic nucleosynthetic processes in stars as shown in Table 2.1. Hydrogen
burning, where four hydrogen nuclei are converted into one helium-4 nucleus, can occur
via two different sets of nuclear reactions: the proton-proton chain and the CNO cycles.
The most important feature of the CNO cycles is the conversion of carbon-12 and oxygen-
16 into nitrogen-14. Helium burning bridges the mass number 5 and mass number 8
instability gaps via a three-particle reaction: 3 helium-4 — carbon 12. Helium burning
includes the conversion of helium-4 into heavier elements such as carbon-12, oxygen-16,
and neon-20. Helium burning is also considerd as the site of the slow neutron capture
processes (s-process). Carbon burning consists of the fusion of carbon nuclei themselves
to build nucleides in the mass range 16 < A < 28. Neon burning is a transient stage to
photodisintegrate neon-20 into oxygen-16 and alpha particles. Again, oxygen burning
produces elements in the mass range 16 < A < 28, but at temperatures still higher than
in carbon burning. In silicon burning a strong flux of neutrons, protons, and alphas are
liberated mainly from silicon-28. These articles are captured by other nuclei to produce
elements up to the iron peak elements. Thus, in these equilibrium processes between
synthesis and disintegration, elements with the highest nuclear stability are produced.
With the occurrence of silicon burning processes inside a star the so-called stationary
stellar nucleosynthesis is finished. The core of the star consisting of iron peak elements
will collapse never being stopped by nuclear energy generating reactions. During the
collapse a shock wave is generated which propagates out through the star, adiabatically
compressing, and thereby heating, the stellar matter through which it passes. The
temperature in each nuclear burning shell of the star is raised suddenly and leads to
explosive stellar nucleosynthesis in the various shells of the star. The final stages of this
collapse and the explosive nucleosynthesis will be observed as supernova.
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It is one of the most important features for stellar nucleosynthesis that the binding
energy per nucleon decreases with increasing mass number for nucleides beyond the iron
peak (A > 60), and that these nuclei have large COULOMB barriers (cp. Figs. 2.1 and 2.2).
Thus, they are not be formed by charged particle reactions. It is believed that most of
these heavy elements are produced by neutron capture reactions which start with the iron
group nuclei. These nuclei can be divided into two groups: if the flux of neutrons is weak,
most chains of neutron captures will include only a few captures before the beta decay of
the product nucleus. Because the neutron capture lifetime is slower than the beta decay
lifetime, this kind of neutron capture is called s-process. In the opposite case, if there is a
strong neutron flux, the neutron-rich elements will be formed by the rapid neutron
capture process, where the neutron capture lifetime is much less than the beta decay
lifetime (r-process). There are some very rare nuclei which are located on the proton-rich
side of the valley of stability. It is believed that they are produced by the p-process in
which photodisintegration occurs on s-process nuclei (Figs. 2.1 and 2.2).

Only to mention it, there are some very light, low abundance nuclei (hydrogen-2,
helium-3, beryllium, lithium, bor). They are not produced in sufficient quantities in the
cosmological nucleosynthesis and are immediately destroyed by thermonuclear
reactions in the course of sellar nucleosynthesis. These nuclei are ascribed to I-processes:
spallation reactions on carbon, nitrogen, and oxygen nuclei, by protons or alphas, in the
high energy and low energy cosmic rays.



The present generally accepted framework of nuclear astrophysics can already be
found in the classical paper by Burbidge et al. (1957) and most recently reviewed in the
Nobel lecture of Fowler (1983). The laboratory approach to nuclear astrophysics, what
concerns the element synthesizing nuclear reactions studied to a large extent in nuclear
laboratories, is presented in the ‘Handbticher der Astrophysik’ by Fowler et al. (1967,
1975). The outcome of model computations with the best available nuclear input for the
cosmological and stationary as well as explosive stellar nucleosynthesis is summarized in
articles in ‘Nucleosynthesis’ edited by Biswas et al. (1980). The aim of the present chapter
is to contribute to the problem of the parametrization of nuclear reaction rates as
described in Fowler’s paper (1983, Table I on p. 154 and Table Il on P. 155; ep. also
Bethe 1967). In this connection we try to continue the earlier investigations of
Atkinson and Houtermans (1929), Gamow and Teller (1938), Salpeter (1952),

Bahcall (1966), and Critchfield (1972) as recently considered in Haubold and John (1982)
and Haubold and Mathai (1984). The examples for the analytic representation of nuclear
reaction rates presented in the following sections should illustrate the field of nuclear
astrophysics from the more mathematical point of view. They are worked out in the spirit
of the remarks in Fowler’s (1974) George Darwin lecture: “.. each reaction rate, measured
accurately or computed from good systematics, is a diagnostic tool in determining the
astrophysical circumstances and sites of nucleosynthesis and energy generation.”

2.2 The Thermonuclear Reaction Rate

Before we shall come to the mathematical methods for the analytic representation of
nuclear reaction rates it will be useful to discuss some basic nuclear
astrophysical relations containing the thermonuclear reaction rate. Most of the formalism
for the tabulations of the reaction rate of interacting particles under cosmological or
stellar conditions has been presented by Fowler etal. (1967, 1975).

For the most common case, in which two particles in the initial channel (1 and 2) form
two particles in the final channel (3 and 4),

1+2—3+4+ Ei9, (2.1)
the reaction rate r15 is defined by (Fowler et al. 1967, 1975; Haubold and Mathai 1984)
19 = (1 — %512)7’1,1712, < ov >19, [7’12] = cm_3s_1, (2.2)

where n1 and ns are the number densities of nuclei 1 and 2, respectively, §12 is the
KRONECKER symbod, E1s is the energy release (E12 = (m1 + ma — m3 — my)c?),c
denotes the velocity of light. The KRONECKER delta is introduced to avoid double
counting in the reaction if 1 and 2 being identical. In (2.2) the quantity < ov > is the
thermally averaged product of the cross section, o, for the reaction, and relative velocity, v,
of the interacting particles, 1 and 2, which is in fact the most important quantity for the
analytic representation of the thermonuclear reaction rate (2.2) as we shall see in
Sect. 2.3. For a gas of mean density, p, the number density, n;, of particle, i, can be
expressed in terms of its mass fraction, X;, by the relation

(2.3)



n; = pNA%ﬂ' =1,2,3,4, [nl] = Cmiga
where N 4 stands for AVOGADRO's constant, and A, is the atomic mass of particle i in
atomic mass units (Note > |, X; = 1).
The mean lifetime, 75(1), of particle 1 for interaction with particle 2 can be given by

A2(l) = @ = N2 <ov>n= pNAi—; < ov >19

d dX _
= (%), = % (%), ROI=s

where A2(1) is the decay rate of 1 for interaction with 2. The definition of the mean
lifetime of a nucleus for interaction with a nucleus in (2.4) shows directly the connection
of the quantity < ov > with kinetic equations for the production and destruction of the
respective nucleus (Haubold and Mathai 1984).

The energy generation rate, €15, for the reaction (2.1) is defined by

(2.4)

€12 = %7“12E12, [e12] =erg g s, (2.5)
where F5 is the energy given off in one single reaction (2.1).

By definition, the quantity < ov > in (2.2) arises from an integral over the respective
cross section of the reaction, times relative velocity of the reacting particles, times the
distribution function of the relative velocities of the particles:

1

<ov>= [* &% o(v) of(v) = [} dB o(B) (22) " J(B), [< ov>] = em?s!, (26)

where d*v = 4mv?dv; the kinetic energy of the particles in the center-of-mass system is
E = uv? /2, the reduced mass of the particles is denoted by u = mimsz/(m; + m2), the
reaction cross section is o(v) and o(E), respectively. Equation (2.6) contains what we
expected to be the basic quantities for the description of reactions between nuclear
particles going on in the very hot and intermediate dense plasma at some stage of the
evolution of the Universe and in the deep interior of stars: for quantummechanical
reasons the cross section of the particle reaction and for reasons of statistical mechanics
the distribution function of the velocities of the reacting particles.

The time reversal invariance of the strong, electromagnetic, and weak interactions
leads to an important relation between the cross sections for the forward and backward
nuclear reactions which should be noted here (cp. Blatt and Weisskopf 1959):

o3 _ (14631) 919> A1AsEn (2.7)
o12 (14+012) 9394 A3A4E34”° .

which reads for the quantity < ov > in (2.6):

3
<ov>3 _ (14+034)g1g2 [ A1dy \ 2 _ Ey—FEp 2.8
<ov>12  (14+812)g3gs \ A3z €xp kT ’ ( ' )



where the g;’s denote spin statistical weights g; = (2s; + 1),i = 1, 2, 3, 4. At high
temperatures many nuclear states are populated and the g;'s become partition functions
in the expression (2.8). Equation (2.7) underlines the principle of microscopic
reversibility, (2.8) represents the principle of detailed balance (see Haubold and

Mathai 1984). All relations given above are thought to be valid for reactions in a non-
degenerate gas and for non-relativistic particle velocities.

2.3 Velocity Distribution Function and Nuclear Cross

Section: Maxwell-Boltzmann Distribution Function

All the analytic expressions for astrophysically relevant nuclear reaction rates given in the
tabulations of Fowler etal. (1967, 1975) underline the hypothesis that the distribution of
the relative velocities of the reacting particles always remains Maxwell-Boltzmannian.
Fixing the distribution function of the relative velocities of the particles as Maxwell-
Boltzmannian has serious physical implications for the nuclear reaction rate

theory (Haubold and Mathai 1984). However, if we choose by the time the Maxwell-
Bolzmannian approach to the nuclear reaction rate in (2.2) and (2.6) then the distribution
of the relative velocities of the particles can be written in the following manner:

fv)dv = (ﬁ) 2 exp {—%}471"02&). (2.9)

The function f{v) satisfies the normalization condition fooo dvf(v) = 1. As given in (2.9)

we can take it as the Maxwell-Bolzmannian relative kinetic energy spectrum for a non-
degenerate, non-relativistic gas of particles (cp. Fig. 2.4)

For a detailed discussion of the underlying physical assumptions for the application of
(2.10) or the evaluation of reaction rates see Haubold and Mathai (1984).

2.4 Nonresonant Neutron Capture Cross Section

In the case of a nuclear reaction via neutron capture the solution of the respective
SCHRODINGER equation is the plane wave which can be normalized to unit particle
density at infinity. Then the cross section is determined by the ratio of the square of the
absolute value of the wave function, v, for inelastic scattering by the current density of the
particles, s

o) = ML — L 1 (2.11)

|s lov| v

where p denotes the space density and v the current velocity of the 1-field, respectively.
At low energy the s-wave interactions dominate. That is to say, the reactions take place
chiefly through a particular angular momentum state [ = 0. From (3.3) follows that ov is a
constant. Derivations from this occur at higher energies when other partial waves become



important and it is convenient to express the nonresonant slowly varying velocity
dependence of the cross section,

o(v) = , (2.12)

as the first three terms of a MACLAURIN series in the relative velocity, v, of the neutron
and the nucleus:

T(v) = T(0) + T'(0)v + 5T"(0)v?, (2.13)

where [T(0)] = em3s~ 1, [T'(0)] = em?, and [T"(0)] = ems (Fowler etal. 1967, 1975).
In (2.13) T'(0),77(0), and T"(0) are empirical constants measured in nuclear
experiments, and the prime indicates differentiation with respect to v.

2.5 Nonresonant Charged Particle Cross Section
If two nuclei, of charges Z;e and Z3e, and masses m; and ms, collide with kinetic energy
of relative motion, E = uv? /2, then on the basis of non-relativistic quantum scattering

theory one obtains, in spherical coordinates at » = 0, for the square of the wave function
(Blatt and Weisskopf 1959):

[%(0)* = [T'(1 — in(v))|* exp (—mn(v)), (2.14)
where
n(v) = Ll _ Lilya, (2.15)

n(v) is the Sommerfeld parameter, h is the PLANCK quantum of action, « is the
Sommerfeld fine structure constant, I'(-) denotes the gamma function, and 12 = —1.
According to the elementary property of the gamma function we have from (2.14)

$O)P = D(L+ in(v))I*(1 + in(v)) exp (—mn(v))
= T(1 + in(v))T(1 — in(v)) exp (~mn(v)) 2.16)

) _ 2mn(v)
_ sinh?ﬂ'n(v)) €xp (—71"[’](’0)) o eXP(27:777(U))_1 )

For physical reasons the argument of the exponential function is always positive and thus
the quantity in (2.16) is smaller than unity and for a strong COULOMB interaction, that
means 27rn(v) >> 1, it becomes exponentially very small. This means that for strong
repulsion and low energy collisions, the wave will only penetrate the potential barrier at
the origin with a rapidly decreasing amplitude whose asymptotic form is

[$(0)[* ~ 2mn(v) exp (—2m7(v)), (2.17)

where the exponential factor is called Gamow factor and (2.17) is the barrier penetration
factor. As in (2.11) the cross section for the charged particle reaction is obtained by



dividing the absolute square value of the wave function for inelastic scattering (2.17) by
the probability current density which is proportional to the velocity of the v-field. Then,
we obtain the overall velocity dependence of the nuclear reaction cross section at low
energies for nonresonant charged particle interactions by

a(v) ~ n*(v) exp (—2mn(v)). (2.18)

It is convenient to factor out the energy dependence and express the cross section, O'(E),
by

o(B) = 22 exp (—2mn(E)), (2.19)
where
5+ Z,Z4€>
n(E) = (%) 5t - (2.20)

Equation (2.19) defines the cross section factor, S(E), representing the intrinsically
nuclear parts of the probability for the occurrence of a nuclear reaction (cp. also
Salpeter 1952). The cross section factor, S(E), is often found to be constant or a slowly
varying function of energy over a limited range of energy (Fowler etal. 1967, 1975). Far
from a nuclear resonance S(E) may be conveniently expressed in terms of the power
series expansion,

S(E) = S(0) + S'(0)E + 1 S"(0)E?, (2.21)

where [S(0)] = MeV barns, [S’(0)] = barns, and [S”(0)] = barns MeV ~'. The prime
indicates differentiation with respect to E.



2.6 Resonant Cross Section for Neutrons and Charged

Particles

For a single resonance of energy, E,, the cross section, cr(E), of the nuclear reaction (2.1)
can be represented as a function of energy in terms of the classical BREIT-WIGNER
formula (Blatt and Weisskopf 1959),

o(E) = m%%, (2.22)
where A = h/(uv) is the reduced DE BROGLIE wavelength. The statistical factor w is
defined by w = (2J + 1) /[(2J1 + 1)(2J3 + 1)], where J is the angular momentum of the
resonance state, and J; and J> are the angular momenta of particles 1 and 2, respectively.
The total width, T, of the resonance state is givenby I' = h/7 =T'19 + I'sg + - - -, where 7
is the effective lifetime of the state. The partial width, I';2, is the width for reemission of
particles 1 and 2, and I'34 is the width for emission of particles 3 and 4.

The partial width, I's4, for the absorption or emission of a certain particle by the

compound nucleus, is a strong energy depending function and can be written (Blatt and
Weisskopf 1959),

[3(E) = 24500 B12P(E), (2.23)

where R) is the characteristic wavelength of nucleons inside the nucleus (of the order of
10~ ¢em), D is the average distance of levels, and P(E) denotes the barrier penetration
factor. At low energy the s-wave (I = 0) interactions dominate and the barrier penetration
factor in (2.23) is given in (2.17), thus we have,

P(B) = 2n(1/2)? 225 exp { —2m(u/2)"* 205 |. (2.24)

For the total width, I', we consider an ad hoc linear energy dependence of the form
I'E)=Ty+T4E, (2.25)

where I'g and I'; are empirical constants measured in nuclear experiments;.
Inserting (2.22)-(2.24) and (2.25) we obtain the parameterized form of the BREIT-
WIGNER one-resonance-level formula

(E) [ x2n2 ] [ 222U 2REV? 27p)? 7, Z,€? _ 2npt?Z, 7€
o = | 2uE R o E2  © 2 KLEL?

(2.26)

% |: wF12D :|
(E.—E)*+([T0+T1E)/2)* |

2.7 Parameterizations of Thermonuclear Reaction Rates



In the following, we consider the form of the quantity < ov > in (2.6) of Chap. 2, taking
into account the distribution function of the relative particle velocities as given in (2.9)
and (2.10), and the nuclear cross section derived in (2.12), (2.19) and (2.26), respectively.
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Fig. 2.3 Schematic plot of the energy-dependent factors for the integral of thermonuclear reaction rates: Maxwell-
Boltzmann distribution function, nonresonant nuclear cross section, and resonant nuclear cross section
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Fig. 2.4 Schematic plot of charged particle and neutron cross sections as a function of center-of-momentum energy,
together with the Maxwell-Boltzmann distribution function (dashed lines) (Wagoner 1969)

Aside from the lorentz factor due to resonance phenomena in nuclear reactions, the
two dominant factors in the quantity < ov > are the COULOMB barrier (Gamow factor),
which inhibits the reaction rate at low energies, and the tail of the distribution function of



relative velocities of the particles (Maxwell-Boltzmann factor) as shown in Fig. 2.3. Thus,
the kernel of the integral of the quantity < ov > in (2.6) is a product of a rapidly rising
cross section and a steeply falling distribution function, which gives a not quite
asymmetrical peak, called the Gamow peak. For the treatment of nuclear

reaction networks for cosmological or stellar nucleosynthetic calculations, these integrals
have to be evaluated as far as possible in closed-form and the results represented in
manageable analytic expressions (Fowler etal. 1967, 1975; Haubold and John 1982;
Haubold and Mathai 1984).

To have a feeling for the integration problem of the quantity < ov > we refer to the
schematic plot of typical charged particle and neutron cross sections, as a function of
center-of-mass energy shown in Fig. 2.4 (Wagoner 1969).

Also, shown in Fig. 2.4 are two Maxwell-Boltzmann distribution functions of the
relative particle velocities for temperatures near the limit of the region of interest
(Wagoner 1969). Inserting the Maxwell distribution function (2.9) and (2.10),
respectively, in (2.6), we obtain the following:

3 o V2
<ov> = (547)° [0 dv o(v)v® exp {— T }, (2.27)
%
8 1 oo B
<ov> = (W) ! [ dE o(E)E exp {—+F }- (2.28)

The remaining factor in the kernel of the integrand of (2.27) and (2.28), respectively, is the
nuclear cross section which has quite special energy characteristics depending on
whether the reaction proceeds via a resonant or nonresonant mechanism.

According to Wagoner (1969) (see also Fowler etal. 1967, 1975) it is convenient to
divide the quantity < ov > in (2.27) and (2.28) into four parts.

<oV >=< 0V >pp +H(Bpes < 0V >p)+ < 0V Sy + < OV > (2.29)

Splitting of < ov > in (2.29) in order of increasing energy as indicated in Fig. 2.4
corresponds to the successive synthesis of heavier elements out of lighter elements in
stellar generations as discussed in Sect. 2.1 and outlined in Table 2.1. The nuclear
reactions of the proton-proton chain are nonresonant (nr), the nuclear reactions of the
CNO cycles are dominated by one or a few resonances (r), and the carbon burning, neon
burning, oxygen burning, and silicon burning are characterized by strongly overlapping
resonances (unsaturated continuum (uc) and saturated continuum (sc)).

As already indicated, the quantity < ov > depends strongly on the temperature. In a
highly evolved star going through explosive nucleosynthesis, the thermal distribution of
energies has a sufficiently broad spectrum that a large number of compound nuclear
states contribute to the effective average cross section of a considered reaction. Thus, the
high temperature regions of the quantity < ov >, those are the last two terms on the right
hand side of (4.3), must be treated by nuclear statistical models (e.g. HAUSER-FESHBACH
model; c.f. Fowler 1974; Fowler et al. 1967, 1975). But, as shown by Fowler etal. (1967,
1975), even in the case of closely spaced or overlapping resonances, the formalism for
thermonuclear reaction rates of nonresonant reactions, or reactions which proceed in the




wing of a single resonance, still remains valid. At least, in all cases mentioned the cross
section factor S(E) is a smoothly varying function of energy as shown in Fig. 2.3. For that
reason, in the following, we will concentrate our considerations on the closed-form
evaluation of the first two terms for < ov > on the right hand side of (2.29). We shall
consider the analytic representation of each of the first two terms on the right hand side
in (2.29) separately.

2.8 Nonresonant Reaction Rates

Here, we consider various situations such as neutral particles, charged particles etc.

Case 2.1 The neutral particle case

Inserting (2.12) and (2.13) in (2.27) leads to the nonresonant neutron capture
representation of < ov >,

2. T®(0 v oo
< ov>= — > ( )2”“<k—T) / dy y"** exp {~y},
0

T2 =0 vl M

1
2
where y = uv?/(2kT), and we obtain,

@) v
< oV >= % 23:0 T—|(0)2V+1(£> F(V"‘ %),%(V) > _% (230)

x V! I

With (2.30) and (2.2), the closed-form representation of the nonresonant thermonuclear
reaction rate in the neutral particle case is obtained (cf. also Haubold and John 1982).
Case 2.2 The charged particle case with strict Maxwell-Boltzmann distribution
function
Inserting (2.19) and (2.21) in (2.28) leads to the charged particle representation of
< ov > if the reaction takes place far away from any resonance,

8 > 1 & SM(0) /oo { E
<ov>=|— - dE E” exp { —— — 27 n(E) ¢,
(7r,u (kT)? Vz:; V! 0 kKT

where the Sommerfeld parameter 7( E) is given in (2.20). With the substitution
y = E/(kT) we obtain

I

z S (0 T
< ov>= (,r—gu) ’ Zizo 1/!( ) (kT)l,H% fooo dy y’e ¥~ *, (2.31)

i~

and remove the parameter-dependent integral

N (2) = [ dy ye v * (2.32)

v

from (2.31). With (2.32) we write for the quantity < ov > in (2.31)
(2.33)



where

1 2
z = 2m(5hr) 7 L2, (2.34)

With the intention to include more general energy dependent nuclear cross section
factors, S(E), than given in (2.21), we considered the following general collision
probability integral (Haubold and Mathai 1984):

Ni(za,p,n,m) =a [;°dt tnpg—at—st T (2.35)

For the analytic evaluation of the integral N;(z;a, p, n, m) in (2.35), first we will give a
general result and then get V; (z) in (2.32) as a special case. For a detailed description of

the mathematical method to tackle integrals of the type in (2.35), see Haubold and
Mathai (1984). The following theorem is originally due to Saxena (1960) and a simple
proof of the theorem by using random variables is given by Haubold and Mathai (1984):

Theorem 2.1

Ni(za,p,n,m) = a,fooo dt t—Pe—at—at

Lo p— L1
= a""(2m) 2 (2mnem) s e (2.36)
m+n,0 zmq"
XGO,m-HL |: mmnn 07%7' . _7m7717 lfnnlJ . ,’";LnP:| )

for R(a) > 0 and R(z) > O;ng'r:z’g(-) denotes Meijer’s G-function (see Mathai and

Saxena 1973).
Consider the casem = 2,n = 1,a = 1,and p = —v in (2.36). Then, we have (cf. also
Mathai 1971; Haubold and John 1982)

Ni(z1,-1,1,2) = [Sdy yre v * = L6i8 |5 (2:37)

T 4 a,%,1+1/:| ’

where z is given in (2.34). With (2.37) it is known that the nonresonant thermonuclear
reaction rate can be represented in closed-form by using the highly efficient theory of
generalized hypergeometric functions as given in Mathai and Saxena (1973). In the case of
the Maxwell-Boltzmann approach to the nonresonant thermonuclear reaction

rate Meijer’s G-function of the type Gg’g(-) appears in the closed-form representation. For

a critical review of the present status of the analytic evaluation of nonresonant
thermonuclear reaction rates see Haubold and John (1982). Approximation consideration
of N;, (z) in (2.37) are given in papers of Bahcall (1966) and Critchfield (1972). On the
basis of the complex Mellin-Barnes integral representation of Meijer’s G-function in
(2.37), one can derive series representations of the integral Niy(z) for all five classes of



the parameters v, v # j:% ,A=0,1,2,...;vapositive integer; v a negative integer; v a
positive half integer; v a negative half integer; as given in Sect. 4.3. (Haubold and
Mathai 1984)). Moreover, one finds series representations of IV; (z) which are termwise
integrable over any finite range of the variable, z, given in (2.34) and which can be used
for the numerical computation of < ov > in (2.33) also.

Case 2.3 The charged particle case with depleted Maxwell-Boltzmann distribution
function

In the following, we admit a depletion of the high energy tail of the Maxwell-
Boltzmann distribution function of the relative kinetic energies of the reacting particles
given in (2.10). For the discussion of the physical reasons for a depletion of the high
energy tail of the Maxwell-Boltzmann distribution function, we refer to the paper
of Haubold and John (1982) and Haubold and Mathai (1986c).

For the integral of < ov > in comparison with the strict Maxwell-Boltzmannian case
(2.32) we have now

1
N, (z8) = [° dy yre vy = >, (2.38)
Consider the general integral

Ny(za,b,6,v,n,m) :/ dt t”efat*bttz'rm,
0

where z > 0,a > 0,b > 0,m,n =1,2,3,....Since

00 k
—bt® (_b) kS
e = kZO X t,

we have
k _n
Ny(za,b,0,v,n,m) = > 77, % [o° dt trHhie-at==t T (2.39)
According to the Theorem 2.1 (cf. also Haubold and Mathai 1984) we have,

Nz(z;a, b,8,v,n, m) — ZZO:O (*klz)k af(u+k6+1)(2ﬂ-)%(2_n—m)m%n%+u+k5

XGm—i—n,O[ 2ma™ | }
0,m+n [ mmnn 0’%7_ . mnfll , 1+Vn+k'5 e n+1;+k5 .

Now, we consider (2.38) and have by puttinga =1,b=1,n=1,m = 2
_1)* 2
N2(Z;1’ 17 5) v, 1a 2) = L% EI?;O ( k!) Gg:g [ZT |0 + 1+u+k5} : (2-40)
iy ) )

For the numerical computation of (2.40) all the cases in Sect. 4.3 of Haubold and
Mathai (1984) can apply with v replaced by v + ké, k = 0,1, 2, ... Note that if § is an
irrational number then v + kd cannot be a negative integer or negative half integer or



zero or positive integer or positive half integer unless v is also a suitable irrational
number. Hence, in this case the poles of the integrand will be simple and the G-function
can be easily evaluated as in the Case (i) of Sect. 4.3 of Haubold and Mathai (1984).

Case 2.4 The charged particle case with modified Maxwell-Boltzmann distribution
function

If there occurs a cut off of the high energy tail of the Maxwell-Boltzmann distribution
function given in (2.10) we expect that the closed-form representation of the appropriate
quantity < ov >, given by

1

N, (zd) = [y dy yre v 7, (2.41)

will not lead to the type Gg:g(') of Meijer’s G-function as we have had in the cases in (2.37)
and (2.40), respectively. For the discussion of physical reasons for the cut off modification
of the Maxwell-Boltzmann distribution function of the relative kinetic energy of the
reacting particles, we refer to the papers of Haubold and John (1982) and Haubold and
Mathai (1986a).

Again, we consider a more general form of the integral in (2.41) as

N3 (Z;d, a, p, n, m) = fod de t—npe—at—zt*%7 (242)

where a > 0,d > 0, z > 0. This can be evaluated by working out the density of a product

of two independent real random variables by using two different techniques. For the
detailed discussion of the mathematical methods to tackle integrals of the types as given
in (2.42), we refer to Haubold and Mathai (1984, 1986a). The results contain the following
theorem:

Theorem 2.2 Forz > 0,d > 0,a > 0, m and n positive integers,

1-m

Ny(z:d, a, p,n,m) = [ dt t-mee ot F = m¥ (97)%5" jonpt1

% Z?ozo (—ad)" Gm+n,0 [ zmm |

7! n,m+n | d"m

_p+%+];_17.]:17 -

e et n)

To obtain the special case realized in (2.41) weputn =1,m = 2,a = 1, p = v, we get

_,, —d)" ~3,0[ 22 |—vtr+2
N3(zd,1,v,1,2) = #d o Ezo ( r!) G1,3 [i_d —Z+:+1,0,%] ) (2:43)

For computable series representation of N; (z:;d) in (2.43) for all classes of the
parameters —v + r + 1 see Sect. 4.4 of Haubold and Mathai (1986a).

2.9 Resonant Reaction Rates

Here also we will consider various situations.
Case 2.5 The charged particle case with Maxwell-Boltzmann distribution function



We put (2.26) into (2.28) and obtain the representation of < gv > for resonant
thermonuclear reactions (2.1):

5 7.7,6 ]
<ov> = (2m)7 AZpfwrnl (% 4E exp {_i s }

Wi (RT)® f £ (2.44)
X [(Er —E)’ + (3(To+ F1E1))2]
where q is given by
g =2r(%)7 22 _ r)F, (2.45)
where z is given in (2.34). From (2.44) we remove the integral
R= [°dE exp {—% = ﬁ} [(Er —E) + (3@ + PlE))Q] o (2.46)

which may be written more conveniently as,
271 _ T
R= l1+(%) ] [ dE exp {—%—L}[(ET—E) +(£) ] (2.47)

where E, denotes a modified resonance energy,

] [1 + (%)2] _1, (2.48)

T,
a:@—;

with I as the modified total width,

-1
f:ﬂm+£mnw1+(%)1 . (2.49)

The form of the resonance denominator with I'y is conserved if one transforms

-1
'y — 'y + ET';. Choosing the variable E = y[1 + (%)2] leads to

R = [*dyexp {—y[km +(T1/2)Y)] -y g+ <r1/2>2>%}
<[(B, —y—ToT1/4)* + ((To + E,T1)/2)%]
With the notations

-1
a =[kKT(1+(T1/2)*)] , b= E,— 4TIy,

g =5@o+ET1), ¢=q(1+(T1/2)")7,



we obtain

© exp{—ay—qy ?
R(q,a,b,g)=/ dy { T J
0 b—y)+g

and (2.44) can be written as,
ZlZ2ezR0wI‘12D
p*(KT)*

(see Haubold and John 1979; Haubold and Mathai 1986b).

In order to comprehend cases in which the cross section factor or the partial width are
additionally multiplied by energy-depending factors we consider the more general
integral

< ov>= (2#)% 1+ (T1/2)° ] R(g,a,b.9)

Ri(g,a,b,gv,n,m) = [ dtexp{b‘f—qtm}. (2.50)

We may replace the denominator [(b — t)* + gz]_1 in (2.50) by an equivalent integral for
g2 > 0. That s,

W = [ dz exp {—[(b—t)" + g*]a}. (2.51)

But, we can write

e Zko ' $(b—t)2k

2.52
=20 _1| Z ( 1)(—1)k1b2k—k1tk1, (2.52)

0! = 1. From (2.50) and (2.51) and (2.52) we have,

n'(m n)' ’

where, for example, <m> =
n

0 o  (—1)F 2k Ly 2
Rl(Qa a, ba g.v,n, m) = fO dz e—g2:E Ek:() (kl') mk 2126];:0 (kl)(_l)k b2k f

o0 vtk fatfqt’%
x [y dt Ve :

(2.53)

Note that

[y dz zhe=9'z = [y dz gkt -le—g'z — T(k + 1)(92)7(“1) = ﬁ, (2.54)

and according to Theorem 2.1, we have
(2.55)



Jedt gtk g—at—gt a—(u+k1+1)(2ﬂ.)%(2—n—m)m%n§+y+k1

m+n,0| ¢"a"
XGOern[m mpn

1 m—1 14v+ky n+v+kq
0,;,...,7, P e T

(cp. also Mathai 1971; Saxena 1960; Haubold and Mathai 1984). Substituting (2.54) and
(2.55) in (2.53) one has the following:

2k
Ri(g,a,b,g;v,n,m) = > 7 05 k Z < )(_1>k1b2k—k1

1
xa—(l/+k1+1)(2ﬂ_)7(2fnfm)m§n7+y+kl (256)
m+n,0| ¢"a"
XGO m+n |:m mnt 07L,.-.7m_—1’1+1’+k1 7..-’—n+1/+k1 :| )
m m n n

Putn =1,m = 2,v =0, to getR(q, a, b, g).

ok
Rl(‘]a a,b, g0, 1, 2) = R(Qaaabag) = ;1 20:0 %

. 2 (2.57)
2k -1 —k1 (3,0 a
X o <kz1) (asz% sy [qT 0,%,1+k1i|

1
for (b — v/a)?/g* < 1, where v = (¢%a/4)* (Haubold and Mathai 1986b).
Comparing the resonant result (2.57) with the nonresonant case (2.37) we observe
that the former is an infinite sum over nonresonant contributions (Note that g%2a = 2?).

The appearance of the G-function of the type Gg:g(-) in (2.57) is due to the Maxwell-

Boltzmannian approach to the resonant thermonuclear reaction rate. For the numerical
computation of (2.57) all results obtained in Sect. 4.3 (Haubold and Mathai 1984) are
applicable.
Case 2.6 The neutral particle case with Maxwell-Boltzmann distribution function
Considering neutron reactions, i.e., ¢ = 0, we are dealing with energy-independent
partial width. In the case ¢ = 0, this also means I'; = 0, for (2.53) we obtain

R:(0.a.b,q: — [P dg e T2 @ [’
1(0, a, ,gOOO)—fO e Yoo T

ok (2.58)
X Z < )(_1)k1 2k ks fO dt tV+kle—at
where
a= 17, b=E, g=3T. (2.59)
Taking into account (2.53) we get for (2.58)
(2.60)

_ 7 17 2k—k1 (v4-ky)!
Rl(oaaa b’ ) Zk 0 ,2 k Z < )( 1)k b a(/(;;uil)cl .



With (2.60), the closed-form representation of the resonant thermonuclear reaction
rate for neutron reactions is obtained.

Case 2.7 The charged particle case with modified Maxwell-Boltzmann distribution
function

In the following, we consider a modification of the Maxwell-Boltzmann distribution for
resonant nuclear reactions. Instead of (2.50) we write

R(g,a,b,¢, g, 8,n,m) = [ dt t 224 (‘b” t;’t‘; @t ¥} (2.61)

Replacing the denominator of the kernel of the integral (2.61) as in the case (2.51) we
obtain the following, denoting the sequence of parameters q, a, b, ¢, g;v, , n, m by W, that
is, W = {q,a,b,c, g;v,8,n,m}:

Ro(W) = [°de e [ dt tre—at-at F—ct’=a(b-1)", (2.62)
But
- ctdra(b—t)2"
o (ct’+a(b—1)’ =% (- ) t+}(€! )]
oo (-1 k — _ 1
=D ko0 (k!) lezl:O (k >Ck okt gh (b — 1)
! (2.63)
oo (-1)F k k ck—hi gk 2% 2k
=D re0 =0 KA PPN
k1 ko
><b2k17k2(_1)k2tk2+5(k7k1)‘
Hence,
_ 2
Ra(W) = X2y GO0k (B )ert gt (260 gt )i
' o\ k2 (2.64)

00 kip—giz [ ko+08(k—k1) o —at—qt
x [ dz ghie=9® [ dt trihetolh—hn)e—at—gt™™

and due to the Theorem 2.1 we have

k . (2k1 _ )
kzo(kl) (k1+1)k 1ck— klz% ( >b2k1 k2(_1)k

o0 -1
Ry(W) =310 ( ks

waq~ Vrketo(k—k1)+1)0 5 vka+0(k—k1)+5
Gm+n 0| ¢g™a”
0,m+n | mmnn 07%’. ) ~,mT_l, 1+V+k2;r§(k—k1) . n+1/+k2:6(k—k1) .

That s,
(2.65)



1 1 1 —1)k k
Ry(W) = (2m) ¢ " Mminrtig-igtye L Sk (k: )‘(J_klkllck_k1
' 1

2k
X Zzljlzo ( 1) b2k17k2 (_1)k2a[*(k2+5(k7k1))nk2+(5(k7k1)

k2
m+n,0| ¢™a”
XG ’ 1 1 l4v+ko+d(k— —
— 9+d0(k—k1) n+v+ko+d(k—ky) |«
0,m+n | m™n" O’W""’mT’ = oo ey o

2
for |(b — %um;w) /g?|< 1, where u = ¢™a™/(m™n™). Puttingn = 1,m = 2,v = O we
obtain

_1)k k
R2 (Qa a, b7 ¢, 9;07 57 1’ 2) = 1ag ZZO:O % 21721:0 (kjl)g_klkl!ck_k1

71"12
2%k
X3 ka0 ( kzl) bk (—1)tg e tok) o (2.66)

3,0 q%a
xGys [ 1

o,é,1+2+6(kfk1)] ’

for [(b — (g/2a) g )/g%|< 1. Series representations for the numerical computation of the
G-function contained in (2.66) are given in Sect. 2.10.

2.10 Series Representations for the Thermonuclear
Functions: Gg’g(-)

Now, we are going back to the collision probability integral containing as a part of the
kernel a Maxwell-Boltzmann distribution function term. Consider the case
m=2,n=1,a =1,and p = —vin Eq. (2.35). Then, the closed-form representation of
the thermonuclear reaction rate integral contains the Meijer’s G-function of the following
type: see for example (2.37),
1 2
2 Gy [ZT |0,%,1+u]‘ (2.67)
In the following, we shall derive representations of (2.67) which will be suitable for the
numerical evaluation. In the light of the results obtained by Critchfield (1972) we refer to
(2.67) as the thermonuclear functions occurring in Egs. (2.37), (2.40), (2.57) and (2.66),
respectively.
Case2.8v # £5,1=0,1,2,...
Then the poles of the Mellin-Barnes integral representation of (2.67) are simple and
then the G-function has a simple series expansion. Consider the evaluation of the G-
function in this case (Mathai and Saxena 1973):

S ds T'(s)T l—i—s F1+v+s) 2—2 h
OtV | 21 2 4)

2
G0 | 2
0,3[ 4



The polesareats =0, —1, —2,. s——%,;— s=—1—-v,—-1—-v—1,....

The sum of the residues correspondlng to the poles s=0,—1,—2,...,denoted by S, is
the following:

T
TP+ % S i (5) (2.68)

=T($)T(+v)oFs(—5%,—v5 - r),

[V

r!

S =32, (L - )I‘(1+V—r)<z

[N}

where ,F,(-) denotes the generalized hypergeometric function. The sum of the residues

corresponding to the poles s = —%, —% —1,..., denoted by Sy, is the following:

. (2.69)
2\ 2 2
=T(-HrG+)(F) oB(5h 1w 1),
Further on the sum of the residues corresponding to the poles
s=—-1—v,—1—v—1,...,denoted by S, is the following:
r 14+v+r
—1 2
S =T STy (- (2)
1 (2.70)

+v
:F(—l—v)I‘(—% —1/) (%) 0Fg(—;1/—|—2,1/—|—%;—%2>.
Now we have the following result:

Theorem 2.3 From S, S5, and S5 of (2.68),(2.69) and (2.70), respectively, we have

2
30| %
G0,3 l_

4 ,1_‘_V‘|:‘91+S2+S3

1
0,%

forv #+3,A=0,1,2,....

Note that the series S1, S2 and S3 are termwise integrable over any finite range and hence
computations can be carried out by using these ¢ F(-) functions (cf. Mathai and
Saxena 1973).

Case 2.9 v a positive integer

In this case the poles of the gammas in the integral representation of (2.67) are the

following: The poles of I'(s) areats = 0, —1,—2,...,—v,—v — 1,.... The poles of
I'l+v+s)areats = —v — 1,—V—2,....ThepolesofI‘(% —i—s) are at

s=—1,—3 —1,....Note that the polesat= —%,—1 — 1,...and at

s =0,—1,...,—vareof order one each and the polesats = -1 —v,—1 —v —1,...are

of order two each.



Again, for convenience, the sum of the residues will be denoted by S;,j = 1, 2, 3. The

sum of the residues corresponding to the poles s = —%, —% —1,..., denoted by Sy, is

the following, by following through the same procedure as in the earlier case:
1
N
Si=T(-HrG+0)(5) on(=4t-v- 7). @71)

For the sum of the residues corresponding to the polesats = 0, —1, ..., —v, denoted by
Ss, we get the following:

For poles of order two, we will have to use the general formula for evaluating the residues
when the poles are of higher orders, and in the present case, the integrand has to be
differentiated once. Let the integrand of the G-function in (2.67) be denoted by A(s). That
is,

z

A(s) =T(s)I(1 + v + 3)I‘<% + s) (Zz) N

Then, the sum of the residues corresponding to the poles s = —v — 1,v — 2, ..., we have
the following, denoted by Ss:

Sy =30 limy 1y 2{(s+1+v+7)°A(s)}
=3, (%2) e limg . 1, {— In (%) + %}B(s)
B(s) ={(s+14+v+r)T(1+v+s)I(s)[(s+1/2)}.

But, by inserting the factors (s + 1+ v +7r—1)*- - (s + 1+ )3 (s +v)(s +v—1)---s
in the numerator and in the denominator, we can write B(s) as the following:

(s 14v4r) 2 (stvtr) - (s+140) 2 (s4v)- - s
B(S) - (s4v47)2 - (s+14v) 2 (s+v)- - -5
xT(1+v+r+s)(s)T(3 +s)
I2(s+r+v+2)T(5+s)
(s+r+1/)2- . -(s+u+1)2(s+1/)- -8

Now, by taking the limit we have the following, denoting the resulting quantity as B,:

r()r(-1-v-r)
(—1)7()*(=r=1)--(-r—v=1)
(71)1‘#1/‘#27‘1-\2(1)1-\(7%7’/77’) B (71)1+V+7‘1-\(7%7V)

rl(r+v+1)! o) (34y)

Br =lim, , 1, B(S) =
(2.73)

Let



A(s) =& B(s)

=2¢(s+r+v+2)+ (5 +s) - s+72“+l/ N s+7‘i'/—1 B
-2 1 ... _1
st+v+1 s+v 5

Consider the limit and let
Ar :lims%flfrfy A(S)
=2p()+9p(—3 —v-r)+2+2+ 424+ 4L oy
=p(r+ 1) +P(r+v+2) + (-5 —v-7),

where 1(2) is the psi function or digamma function (cf. Mathai and Saxena 1973). Hence,
for the sum of the residues corresponding to the poless = -1 —v,—1 —v —1,..., we
obtain

Sy =3, (%)HW{— n (%) + 4.} B, (2.75)

where A, and B, are defined in (2.74) and (2.73) respectively. Hence, we have the
following result:

Theorem 2.4 For v a positive integer,

] =T+ T i (-5)

™ 2G3§[4

3 .
2
14+v r
s (5) S (5) - (5) +4)8,
where B, and A, are defined in (2.73) and (2.74) respectively.

Case 2.10 v a negative integer

Letv = —u, u = 2,3, ....In this case, the poles of the G-function in (4.41) are

s=—%,—+—1,...0oforder leach;s = -1 —v,—1—v—1,...,10r

s=pu—1,u— 2, ... 1 are of order one each, and the poles s = 0, —1, —2, ... are of order

two each. Let us again denote the sum of the residues by S, j = 1, 2, 3. The sum of the

residues corresponding to the poles s = — %, —% — 1,... remains the same as before

and it is equal to the following:

$i=T(-H)r (% +v) (%)

The other set of poles of order 1 eachares = -1 —v —7r,r =0,1,...,—v — 2 and the
sum of the residues, denoted by S5, is the following:

e

2

oFo (=34 -v- %) (2.76)

(2.77)



Sy =30 ime 1y (s+ 14+ v+ 7)(s + v+ 1I(s)T(E + 5) (%) )
14+v T r
_ (Tz) S ({) CU P (—y—1—n)T (=L —v—7)
2 14v 1 9 (_1)r 2 T 1
- (T) I'(—v - 1)I‘(—5 - V) ZTZO 7l (T) (v+2),(v+3/2),

Poles of order 2 areat s = —r,r = 0,1, 2,. ... Consider the relation,

(s+r)2(s+r—1)2--—(3)2(3—1)---(3—1/+1)

(s+r)2: 5 .
(s+r—1)"---s%2(s—1)---(s—v+1)
Then
2 I2(s+r+1)
(s+7r)T(s)I'(s+v+1)= 5 :
(s+r—1)"---8%(s—1)--- (s —v+1)
Let

B, =lim,,_, B'(s) =lim,_,_, [(s + 7)°T'(s)['(s + v+ 1)T'(1 + )]
*(Wr(5-7)

(-D*(=2)%--(=r)*(=r=1)---(=r+v+1) (2.78)
_ r($-r) (-
o rl(r—v—1)!
Let
A =lim,, , A'(s) =lim,_,_, {% In B'(s)}
(2.79)
=Y(r+1) +9(r —v) +9(5 — 7).
Thus, the sum of the residues corresponding to the poless = —r,» = 0,1,.. ., by using

steps similar to the ones employed before, and denoted by S3, is the following:
T
Sy = 0% (Z{) {— In (Z{) + A;}B;, (2.80)

where B, and A/, are defined in (2.78) and (2.79) respectively. With this, we have the
following theorem:

Theorem 2.5 For v a negative integer,



m(S1+ 82+ 5;) =7 Gy [1—2 |0,%,1+y]
1 5\ 1+v
:W_?(ZI) T(—v— I(~1 —)

2 (1) (2" |
Xm0 (T) 12).(13/2),

where B!, and A/, are defined in (2.78) and (2.79), respectively.

Case 2.11 v a positive half integer
Letv =m + %,m =0,1,....Then

oo} ) ron(rom ()

and the poles of the Meijer’s G-function in (2.67) are the following: s = —r,r = 0,1, ...

are of order 1 each; s = —% —7r,7=20,1,...,mare of order 1 each;
§=-—-m — % — 7,7 =0,1,...are of order 2 each. The sum of the residues
corresponding to the poles s = —r,r = 0,1, ... is the following, denoted again by S1:
"/ 2\T7
S =5 S () T - n)rm+ § )
_ (1 3 (1)’ 1 2\"
- F(?)F(m + 7) PR T (1/2),(—m—1/2), (%) (2.81)

2

=T($)0(m+ $)oFo(—i%,—m— 41— 5).

Evidently, the sum of the residues corresponding to the poles

§ = —% —r,r=0,1,...,m, denoted by S5, is the following:

—_1)" 5 %Jrr
$: =2 S (%) T(-3-nra+m—r)

) o (2.82)
=T(-Hra+m)(5)" 2 S5 (F) et

Let

C(s) = (s+m+ g +r>21‘<% +s)F<; +m+s)1‘(s).

As done in the previous cases, insert the following factors in the numerator and in the
denominator.



tmt S ) - +§2 Fmt S -1 -
S m 5 r S m 2 S m 2 S 5

and write
M2(s+m+ 3 +r+1)I(s)

C(s) = 5 5 :
rmr3rr 1) (s rm 3 o rme 3 1) (s 1)

Now take the limit and denote the result as C,, that is,

., C(s)
(1) (-m—<-r)
*(=r—1)- - -(—m—1—7) (2.83)
m—73)
(m+1+r) (m+5/2), *

CT :hms—> —m— 3y

()(

r)
m+1+rr(

Let D(s) = % In C(s) and
D, zlimsﬁ,m,%,r D(s) =¢v(m+1)+yp(m+r+2)+ 1/)(—m — % — r). (2.84)

Hence, the sum of the residues corresponding to the poles of order 2 each, denoted by Ss,
is the following:

si-35(2)" = (2) +)e. 285

Therefore, we have the following theorem:

Theorem 2.6 For v a positive half integer, namely v = m + -, m=0,1,.

ﬂ_%(51+52+53) =T 2Ggg[4

0,5 ,1+z/i|

=T+ $)oFo(=h-m— - 5)

1

22\ 2 m -1 (2"
(i m)(5) S0 S5 (5) e

e (3) s (3) [ (3) 0

where C, and Dy are defined in (2.83) and (2.84), respectively.

Case 2.12 v a negative half integer

Letv = —m — %,m =0,1,2,....Inthis case,



I‘(s)I‘(s+ %)I‘(s+u+ 1) :I‘(S)F(s+ %)r(w % —m).

The polesats = —r,7 = 0,1, 2, ... are of order 1 each; the poles at
s=m — % —7r,7=20,1,...,m — 1 are of order 1 each and the poles at
§ = —% —7r,7=0,1,2,...are of order 2 each. Again, we will denote the sum of the

residues by S, j = 1,2, 3. The sum of the residues corresponding to the poles
s=—-r,r=0,1,..., denoted by S, is the following:

S =S5 S5 (5) TG -nr(E —m 1)
=T(§)0(5 —m) T 7 (%2> IRCESTE (2.86)

2

~T($)0(3 - m)oFo(—hm+ - 7).

1

For the sum of the residues at the poless =m — 5 —r,r =0,1,...,m — 1, we have the

following, denoted by So:

m—1 (=1)" [ 2 r—m+
S2 = Zr:()l (r!) (I)

_ <Z4_2)m+%F(m)F(m - S et

C'(s) = <s+ X +7’)2F(s+ %)r(w 2 —m>r(s).

As done in the previous cases, insert the following factors in the numerator and in the
denominator

(Hgﬁw_Q?”@+;yG_%)”G+;_m)

I?(s+ 4 +r+1)
(+g+r=1" (s 5 =3+ g -m)

(2.87)

Let

and write

C's(s) =

Now, take the limit of the logarithmic derivative of C’(s) and write

D, =lim,, , , 2 InC'(s) =¢(1) +p(m+r+1)+3(—5 —7). (2.88)



Let

2 _1_,
C; :hm 1 CI(S) _ ! 2F (1)F(2 2 )
2 (=1)%(=2)" (=) (=r=1)--(=r—m) (2.89)
_ ()™T(=3) '
o rl(m4n)!(3/2),
Now, we can write the sum of the residues corresponding to the poles at
§ = —% —r,r=0,1,...as the following, denoted by S5:
0 2\t 2
=% (5) {-m(5)+Dijer (250

where D/, and C| are given in (2.89) and (2.90), respectively. Hence, we have the following
theorem:

Theorem 2.7 For v a negative half integer, namely v = —m — %, m=20,1,...

w*%(Sl + S5 + S3) = F_%ngg[ |0,;,1+u]

=T (5 = m)oFo(~spm+ 35— 7)
1 5 -m++ m 1) [ 2 T
3 (F) T (m - 3) St S5 ()

1
(=m+1),(-m+3/2),

i (5) T () n (2) e

where D; and C’; are given in (2.88) and (2.89), respectively.

X

2.11 Series Representations for the Thermonuclear
i 3,0
Functions: G{’5(-)

In view of the integral of the nonresonant nuclear reaction rate with modified Maxwell-
Boltzmann distribution in (2.32) we have to consider the special casen = 1, m = 2, and
a = 1in (2.33):

11 G30 p+r+2
7dr Zr— r! 13[4d p+r+l,0,%:|
1o (d)" 1 ptrico g D(—ptr+l+s)D(s)T(5+s) (2 7F
= 2 d Y o 3 Jiio 48 T(—p+r+2-+s) i (2.91)

= noddoen o, GO g g TR (27

Z
rl 2m Jt—ioco (—p+r+1+4s) \ 4d



For the Mellin-Barnes integral representation of Meijer’s G-function see the details in
Mathai and Saxena (1973).

Case2.13 —p+r+1#3,1=0,1,2,...

Note that the poles of the integrand in (2.91) areats =p—r—1,s =0,—-1,-2,...
and s = —%,—% —1,....Henceif —p+r+1# %,)\ =0,1,2,...all the poles are
simple and the following are the residues:

+r+1
ats=p—r—1, isF(p—r—l)I‘(p—r—l)(z—d) -’

. . (=)' (3-r) 2\ Y
at s = -V, 18 V!(—p—i-T‘-il—l/) (%)

1 i M( z)%w.

—v s ey

N

at s = —

U

Hence, we have the following result:
Theorem 2.8 Forz > 0,d >0,—p+7r+1# %,)\: 0,1,2,...
1 3,0 p+r+2
d P Z’r 0 7" G |:4d ‘—p—‘—’r—‘—l O,%:|
=g zd PT! Ziio - {I‘ —r—1) I‘(p—r—l/2)(j—d
1
“D'T(5-v) (2 ~1)'T(-%-v) [ 2\2
+> 020 w prr o) (%) +2 0% 1/' pir—vi1/2) (i_d> }

Case2.14 —p+r—1=p,pn=0,1,2,.

If—p+7r—1=p,pu=0,1,2,...thenat s = —p there is a pole of order two in the

integrand of (2.91). The remaining poles are simple. The residue at
s=—u,u=0,1,2, ..., denoted by 51, is therefore the following:

S =tim, ,, 2{ LAY c(s) =T(s)0 (L +5) (%)

I
= (%) {-m(5)+A}B where (2.92)
B =lim,, { MR = S0 (- w),
and
A Slim gy n (REAG

(2.93)
=p(p+1)+ (5 — p)

where 1(2) is the psi function ¥(z) = % In I'(2) (Mathai and Saxena 1973). Thus, we can
give the following result:



Theorem 2.9 Forz>0,d >0,—p+r+1=p,pn=0,1,2,...

1. —d)" ~3,0| 22 |—ptr+2
p+1 S ( ) ) z
T 2d E:r:() 7l Gl 3| 4d | —p+r+1,0,%

L o ) T(—v+1/2
=7n2d p+1ZT:0 o {Zu 0,#u 1/' p-i(-T+1 ’//))<4 >

2
a (2.94)
1) (2T 2
FE o g () + (8) - (3) +A)B),
where A and B are given in (2.93) and (2.92), respectively.
Case2.15—p+r—1= %,)\ =1,3,5,...
f—p+r—1= %,)\ =1,3,5,... then thereis a pole of order two at s = —%.The
residue at s = —% reduces to the following, denoted by S;:
Y 8 J (s+)/2)°D(s)[(s+1/2) -
Sl —11II13H7)\/2 E{ (5+1/2) (%) }
A/2
= (@) {-m () alm
where
_1)M
Bi= SGET(-3)., d=n+h, 295
and
Ay =M+ 1) +9(—3). (2.96)

Theorem 2.10 Forz>0,d>0,—p+r—|—1:% A=1,3,5,. %:)\1-0-%
1. (—d)" ~3,0 p+r+2
m 2d ok Z?‘iO 7! G1,3|:id —p+r+10,2:|
D D ) D(v-1/2) (2 )7
=T 2 Zrz() r! {ZV 0,#)\; 1/' —p—v+r+1/2) ad
A
1/+1/2) v 2\ 2 2

where By and A; are given in (2.95) and (2.96), respectively.

Note that in all the Theorems 2.8, 2.9, and 2.10, the inner series are nothing but a

hypergeometric series of the type 1 F»(z) and hence convergent for all z. Then, the outer
sum in these theorems is dominated by a ; F (z) which is also convergent for all values of
the variable z. Hence, the series forms on the right side in Theorems 2.8, 2.9, and 2.10 are

convergent (cp. Haubold and Mathai 1986a).
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3.1 Introduction: The Solar Neutrino Problem

“..some say the solar neutrino problem is still with us. Others say there never was a problem. My
purpose is to present this ambiguous situation to you in such a way that you can make your own
judgement.” (Fowler 1977). It is not the aim of the present chapter to add one more suggestion to the
long list of attempts for the solution of the so-called solar neutrino problem (for an updated list cf.
Haxton 1984).

It is the merit of R. DAVIS, Jr. and his associates to have developed a radiochemical method of
detecting the solar neutrino via the reaction v, + 37Cl — 37Ar + e~ over a period of about 30 years
(Bahcall and Davis 1982). This detection method is sensitive primarily to the high energy neutrinos from
the decay 8B — 8Be* + et + v,, where 8 B is produced in the proton-proton chain with the overall net
result: dp + e~ — a +e' + 2v, + 26.73MeV. The branching ratios of the proton-proton chain are very
sensitive to the solar temperature and require a detailed model of the evolution and internal structure of
the Sun (Haubold and Gerth 1983). The observations yield, as an average of the runs from 1970 to 1983,
arate Y, (¢i0:) s = (2.1 £ 0.3)SNU(1 SNU = 10 captures s ! per 3’Cl atom (Davis et al. 1984).
The rate predicted by the standard solar model is ), (¢i0%) e0r = (7.6 £ 3.3)SNU(30) (Bahcall et al.
1982). The disagreement between standard theory and observations by a factor of four constitutes what
has come to be known as the solar neutrino problem in the sense questioned by FOWLER as mentioned
above. Over more than 15 years a large number of more or less fundamental solutions, modifying either
the neutrino physics, nuclear physics or the solar model construction, have been proposed. The present
chapter is an attempt to construct a simple analytic model to study the internal structure and the
neutrino emission of the Sun in its present stage of evolution.

In Sect. 3.2, the nuclear reactions of the proton-proton chain and its branching are considered and the
total nuclear energy generation rate of the proton-proton chain under the assumption of near-statistical
equilibrium between the reactions will be derived. In Sect. 3.3, an analytic model for the central nuclear
burning region of the Sun is constructed by taking into account the assumptions of mass conservation,
hydrostatic equilibrium, and energy conservation. These calculations assume a non-linear density
distribution for the solar model and employ the equation of state of the perfect gas. What concerns the
method of solar model construction is that in some sense we are going back to the method of
Chandrasekhar (1939) and Hayashi et al. (1962). In Sect. 3.4, the basic integral of the solar nuclear
energy generation and solar neutrino emission is derived taking into account the closed-form
representation of the nonresonant thermonuclear reaction rate (Haubold and Mathai 1984). That
integral is the analytic equivalent to the rough estimation of the solar neutrino flux by N,, =~ 2L /E,
where L is the luminosity of the Sun and E is the energy liberated by the overall net reaction as
mentioned above, not including the energy of the two neutrinos (N, ~ 2 x 10383*1). In Sect. 3.5, the
integral of the nuclear energy generation and solar neutrino emission is evaluated analytically in closed-
form by means of modern results of the integration theory of generalized hypergeometric functions (cp.
Mathai and Saxena 1973, 1978). In bringing together the results of the analytic evaluations described in
Sects. 3.3, 3.4, 3.5, respectively, analytic results for the solar neutrino emission rates are represented in

Sect. 3.10.
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Table 3.1 Basic facts for the proton-proton chain (adapted from KAvANAGH (1982), BAHCALL et al. (1982), and HAxTON (1984))

U] (i) (e (iii) | (+x)(iv) () (v) (rx) (vi) (++)
(vii)

Reactions, except for reaction Termination and Branching | S11(0)keV b] 7p(0)[years] | Ecut-max [keV] | By max

energies notincluding positron locally contained percentages [MeV]

annihilation but notincluding heat

neutrino energy

MH+e +'H-2H+v, PPI 0.25% 1.44
(mono)

(1 99.75%  |S11(0) = 3.88 x 10 2 |5.8 x 10° 0.42

H+'H2H+em + v, +1.19 MeV

(2)?H+'H —3 He + v+ 5.49 MeV | Qppr = 26.2 MeV 512(0)2.5 x 1074 3.2x 1071 |15

3) 40% S33(0)4.7 x 103 1.5 x 105 |33

3He +° He —* He + 2'H + 12.85 MeV

(4) He +*He —7 Be + v + 1.54 MeV 31% S534(0)0.52 6.5 x 107|107

(5) PPII 99.7% 0.2 0.86

"Be+e~ —7Li+v, +v+ 0.05 MeV (90%)
(mono)

(6) Qppn = 25.7 MeV 2x107* 0.38

"Li+!H —* He +* He + 17.34 MeV (10%)

(7)"Be +1H =8 B4 v+ 0.14 MeV  |PPIII 0.3% 517(0)2.9 x 1072 71 117

8)*B =% Be+e" +v,+7.7MeV  |Qppm = 19.1 MeV 3x10°8 14.06

(9) 8Be —* He +* He + 3.0 MeV 1071

3.2 The Proton-Proton Chain

The calculation of the rate of energy generation and neutrino production from the proton-proton chain is
not so simple as in the case of the CNO cycles, for example, because of the three possible modes of
termination of the chain (cf. Table 3.1, column (i) and (ii), respectively). The locally liberated heat, Q,
varies from Qpprrr = 19.1MeV to Q,pr = 26.2MeV because of different neutrino energy losses. The
individual exoergic reaction energies shown in Table 3.1 (column (i)) include positron annihilation but
do not include neutrino energy. The rate of energy generation is not simply proportional to the rate of the
first reaction (1) in the proton-proton chain, the 1H(p, etve) 2 H reaction, but depends also on density,
temperature and the abundances of the various nuclei that enter into the various reactions. The
temperature of the deep interior of the Sun is high enough, that all reactions in each mode of termination
can occur in time scales short compared to the age of the Sun. The only exception is the proton-proton
reaction itself (cf. Table 3.1). Thus, one can assume that a near-statistical equilibrium among the
intermediate products of the modes will be established, in which the reaction rates of creation and
destruction of each nucleus are approximately equal. Under those conditions, the calculation of energy
generation and neutrino production for the full chain as shown in Table 3.1 is much

simplified (Fowler 1977; Kavanagh 1982; Bahcall et al. 1982). The branching of the various reactions of
the proton-proton chain is shown in columns (ii) and (iii), respectively, in Table 3.1. For the principal
mode (PPI) terminating with reaction (3) we have the rate of energy generation per unit mass,

1 1
Sppr = 5 Qppr5nsng < ov >33, (3.1)

where n3 is the number density of > He nuclei and < ov >33 is the thermally averaged product of the
cross section o for the reaction and relative velocity v of the interacting particles. The mode PPl is
accompanied by neutrino production in the reactions (1), 1H(p,e*v.) 2H,and (0), *H(e p,v.) 2H,
respectively. In the mode PPII under the assumption of near-statistical equilibrium, the net rate of
creation of * He nuclei is equal to the rate of any of the reactions occurring in the mode PPII (the same
holds for PPIII). Choosing the first reactions of each of the modes PPII and PPIII, we get for the rates of
energy generation per unit mass

(3.2)



_ 1 -
€ppPII = ;QPPH nrpre ,
and
1
eppiir = , Qpprir N1 < 0V >71, (3.3)

where n7 and n; are the number densities of “ Be and ' H, respectively, and pr,._ is the probability per
unit time per nucleus of electron capture, < ov > is the thermally averaged product of the cross
section o for the reaction (7) and relative velocity v of the interacting particles. The neutrino producing
reactions of PPII and PPIII are the reactions (5) and (8), respectively.

For PPI the condition of near-statistical equilibrium means that

%nlnl < ov >1q —2(%)113713 < oV >33 —ngny < ov >34= 0, (3.4)
where ny is the number density of * He nuclei, the factors (1/2) account for the fact that a reaction
between identical particles always involves two of these particles. The factor 2 in (3.57) accounts for the
fact that two 3 He nuclei are consumed in each reaction (3). If the reaction 3He(oz, v) "Be would be
negligible one simply states %ngng < oV >33= (%) %nlnl < ov >11 which is correct if only the PPI

mode operates. Similarly, for the reactions following the formation of ” Be we have
N3Ny < OV >34 —NqPre— — NNy < 00 >71 = 0. (3.5)
For the total rate of energy generation per unit mass from all three modes PPI, PPII, PPIII we find
€pp = €ppr + €ppir + €pprIr, (3.6)

which we can write with (3.1), (3.2), (3.3), and by the help of (3.5),

€pp = %[QPPI%H?,M < ov >33 +Qpprmsng < ov >34 37
+(Qpprrr — Qpprr)ning < ov >71].

Equation (3.7) is the total nuclear energy generation rate for the proton-proton chain expressed in terms
of thermonuclear reaction rates of the reactions (3), (4), and (7) shown in Table 3.1. Taking into account
(3.57) we can also write € pp in (3.7) in terms of the reaction (1), L H(p,e*v,) 2H, which determines the
overall thermonuclear energy generation of the proton-proton chain, the reaction (4), > H, (a,7) "B.,
which is the branching reaction between the modes PPI and PPII/PPIII in the proton-proton chain, and
the reaction (7), " B. (p,7) 8 B, which is the first reaction of the mode PPIII containing the high energy
neutrino producing reaction of the decay 8B — SB: + et + ve. As we know, the neutrinos from the
decay of 8 B dominate the capture rate in the solar neutrino experiment of DAVIS and

associates (Fowler 1977; Bahcall et al. 1982; Bahcall and Davis 1982).

What concerns the neutrino producing reactions in the proton-proton chain is that the beta decay
reactions (1) and (8) in Table 3.1 produce neutrinos in an allowed FERMI distribution with maximum
energy F,, _as shown in column (vii) of Table 3.1. However, the flux of 8 B neutrinos deviates from an
allowed FERMI distribution because the & B, final state populated in this decay is a broad resonance
where E, _is computed for the center of this resonance (Fowler 1977; BAHCALL et al. 1982). The
electron capture reactions (0) and (5) produce line sources of neutrinos of maximum energy E,___
shown in Table 3.1 column (vii). The electron capture of ” Be leads partially to the ground state of
"Li(90%) and partially to an excited state (10%) of " Li (Fowler 1977; Bahcall et al. 1982).

One of the most serious problems in the theory of solar nuclear energy generation and solar
neutrino production is the dependence of both on the cross sections of the nuclear reactions involved. It
is quite interesting that the first reaction of the proton-proton chain, ! H(p, e*v,) 2H has never been
directly observed in the nuclear laboratory because of its extremely small cross section. This reaction can
occur only if the two protons are brought together by a nuclear collision. During the extremely short time

also



of encounter between the protons one or both must have a chance to beta decay to become a neutron, a
positron, and an electron neutrino. The neutron can then be captured by the second proton to form a
deuteron which is a very rare event. May be this reaction will never be observed in the laboratory.
However, the present state of the theory of beta decay makes it possible to estimate the cross section and
thus the cross section factor with high precision. Practically, the same holds for the reaction (0) shown in
Table 3.1 (ep. Bahcall et al. 1982). For all other nuclear reactions shown in Table 3.1, the nuclear cross
section can be measured in the nuclear laboratory, but, at least to large energies in comparison to the
order of the central temperature of the Sun (7T, ~ 15.5 X 106K, kT, ~ 1.34keV; cf. Table 3.1). It is
generally accepted that the necessary extrapolation of the experimental cross sections measured for
energies up till E4p,_,. as shown in column (vi) of Table 3.1 to solar energies is well understood
theoretically (Fowler 1977; Kavanagh 1982; Bahcall et al. 1982; Haxton 1984). If one removes the strong
energy dependence of the nuclear cross section due to the COULOMB barrier and displays the
experimental data in the form of the astrophysical nuclear cross section factor S(E), where E is the
center-of-mass energy, one obtains the extrapolated S-factors at zero energy as shown in column (iv) of
Table 3.1 (Bahcall et al. 1982).

Table 3.2 Basic parameters for the solar model (adopted from BAHCALL et al. (1982))

Solar parameter(*) Value
Luminosity Lo |3.86 x 10%%ergs™!
Mass Mg [1.99 x 1033g
Radius Ro 6.96 x 10'% cm
Central hydrogen abundance by mass X. 10355

Central helium abundance by mass Y. 0.6222

Central heavy elements abundances by mass Z. 10.0228

mean molecular weight for central solar conditions | p. |0.8417

Standard solar model parameters(*)

Central density peo  |156g 3

Central pressure P.o [2.39 x 10Y dyn ~2
Central temperature T.o |15.5x 10°K
Analytic solar model parameters

Central density peo |3.52g °

Central pressure Py |1.31 x 107 dyn 2
Central temperature T | 9.7x 10K

3.3 An Analytic Model for the Central Region of the Sun

The equations of the internal structure of the Sun—mass conservations, hydrostatic equilibrium, energy
conservation, and energy transport - form a system of nonlinear differential equations, three relations
which characterize specifically the behaviour of the interior of the Sun, and particular conditions for the
boundaries. A complete solution of that boundary value problem can only be obtained by numerical
integration techniques. However, the aim of the present Section is to construct an analytic solar model by
separating the condition of hydrostatic equilibrium from the consideration of the energy transport inside
the solar material (cp. Haubold and Mathai 1984; Haubold and Mathai 1986). As it is well-known from
the computation of detailed standard solar models, the temperature of the Sun increases towards the
center, but does not attain the value necessary for thermonuclear energy generation until about
r=0.2Rs(M = 0.35Mg, L = 0.95L; cf. Table 3.2; Bahcall et al. 1982). Thus, throughout the region
fromr = Rg tor = 0.2R, we can adopt a constant value of the luminosity L. For the treatment of the
energy generation by nuclear reactions in the deep interior of the Sun, we take into consideration the
hydrostatic equilibrium and the energy conservation which determine the changes in the solar central




conditions. We regard the density distribution p(7) of our stellar model as an arbitrary but specified
function of the distance parameter r,

p(r) = po [1 - (—) ] §>0 (3.8)

which is capable to reproduce the solar density distribution in the central region by choosing the free
parameter §;p(r = 0) = p. denotes the central stellar matter density, p(Rg) = 0. For reasons of

symmetry of the solar model we take § = 2. From the equation of mass conservation,
L M(r) = dnr?p(r), (3.9)

we obtain the mass distribution with (3.8):

0 6
M(r) = 4mp, [, dt t* [1 - (RL@) ] = A per® [1 - ﬁ(#@) ] (3.10)

Note that from (3.10) one can get the central density, that is,

3 (6+3) M
p(r=0) = c:—( )—G.
47 1) R:’({)
Putting § = 2 we have the solar case for (7.3),
_ 5 T 3 3 T 2 _ 15 M@
M(T)—EM@ Ry 1—+ R ,pc@—gR—%, (3.11)

the respective central density p.q for the analytic solar model is given in Table 3.2. The equation of
hydrostatic equilibrium between the total pressure per unit volume and the gravity per unit volume

4 p(r) = - MOl | (3.12)
has the following solution with (3.8) and (3.10):
P(r) = P(0) — [y at M0
2 542
_ 47'rG 2 2 (6+6) r
= SRL{E- _(E) T G209 (R_@) (3.13)

_m(}%)%ﬂ ,

where we took into account the boundary conditions,
P(r= RQ) = O;P(r = 0) =P =

G is the gravitational constant, and

_ 1 (6+6) 3
§=5- (6+2)(3+3) + 2(6+1)(6+3) * (3.14)

For our analytic solar model we obtain with § = 2 for (3.13):
(3.15)



o) o 4(e) ) )}

_ 15 ~ M2
Peo _16nGRg’

the respective value for the central pressure is given in Table 3.2.

Thus, (3.9), (3.12), and the boundary conditions mentioned above determine the pressure
distribution (3.13), corresponding to the given density distribution (3.8), for which hydrostatic
equilibrium will be obtained. In the range of temperatures of the interior of the Sun and because we
restrict ourselves to a star of solar mass we can make the restriction that the radiation pressure inside
the solar material is negligible (Chandrasekhar 1939). According to the perfect gas law, in the simplest
form suggested by the kinetic theory of gases, we have the pressure

P(r) = £ p(r)T(r). (3.16)
In (3.16), it is the mean molecular weight, IV 4 is AVOGADRO'’s constant, and k is the
BOLTZMANN constant. With (3.16) the temperature distribution T(r) corresponding to hydrostatic
equilibrium is determined by (3.8) and (3.13):

—1
_ P(r) _ 4nG r J 1 T 2
T(r) = k]lth p(r) — 3kNg4 'u'pcR%D |:1 - (R—Q) } {f ) (R_@)
(646) o 0+2 3 B 2642
T o693 \ R’ ~ e \ & j2

and the central temperature is given by

(3.17)

G (6+3) M,
T(r=0)=T, = ,
(r=0) kNAé 5 MR,

where £ is given by (3.14).
In the case & = 2 of our analytic solar model we have for (3.17),

r 21! 1 1 r 2 2 r 4 1 r 6
T(r) —5Tc[1_(R_@)] {3_7(5"_@) +?(R_@) _ﬁ<R_®) } (3.18)
1 G , M
Teo = 3Nl ERe>

and the corresponding central temperature T, is given in Table 3.2.

3.4 Solar Thermonuclear Energy Generation: Energy Conservation

and Solar Luminosity

The analytic solar model constructed in Sect. 3.7 specified the distribution of mass and pressure for a
given density distribution and required the temperature distribution to give hydrostatic equilibrium.
This temperature distribution will in general not lead to thermal equilibrium. However, aside from the
question of energy transport the solar model will be in complete thermal equilibrium only if the equation
of energy conservation is satisfied:

L L(r) = 4nr?p(r)e(r). (3.19)

Equation (3.19) states that the net increase in the rate of energy flow from the inside to the outside of a
spherical shell of the Sun is equal to the rate of energy production within the shell. In (3.19), L(r)
represents the energy flux through the sphere with radius r, €(r) is the rate of thermonuclear energy



generation per unit mass and includes the tiny energy losses via solar neutrinos. The net outflow of
energy per second, L(r), through the sphere of radius r is determined, in the case of radiative transfer in
solar matter, by the local values of the opacity and the temperature gradient. However, with our assumed
density distribution (3.8) the energy transport equation can be satisfied at only one point of the Sun. This
serious assumption is justified by the aim of the present chapter to investigate the physical conditions in
the central nuclear burning region of the Sun where neutrinos are generated. Note that the luminosity,

L(Ry) = f0R® dr 4nr?p(r)e(r), (3.20)

is not completely insensitive to the energy generation rate but, basically determined by the mass of the
star (Chandrasekhar 1939). The quantity L(r) remains constant and will be equal to its value at the
surface of the Sun, L(R), as long as one remains outside the central region where nuclear energy
generation takes place. If we are concerned with only one specific reaction 1 + 2 — 3 + 4, then we have
the “internal luminosity” going back to the specific nuclear reaction in question:

Li1>(Ro) = fORQ dr 4nr?p(r)esa(r). (3.21)

The energy generation rate per unit mass e12(r) is, beside the equation of state (3.16) (the opacity is not
specified in our solar model by assumption), one of the three material equations of our solar model. Let
E15 denote the amount of energy given off in a single reaction of the proton-proton chain written in the
standard notation 1 4+ 2 — 3 + 4, where 1 and 2 denote the incoming particles, and 3 and 4 denote the
outgoing particles.

In the more or less developed analytic theory of the internal structure of the Sun one refers in general
to the definition of the thermonuclear energy generation rate in the following form:

e(r) = eo(po, To) (%)a ( Tj({) )ﬁ, a, B real . (3.22)

In (8.4) the thermonuclear energy generation rate is expressed in terms of powers of the density and
temperature, where the subscript 0 designates central conditions, « and § are constants, and €, contains
the chemical composition (Chandrasekhar 1939; Hayashi, Hoshi, and Sugimoto 1962;
Haubold and Mathai 1984, 1986). In general, the representation (3.22) of (r) does not describe the
energy generation rate of a specific reaction, but, the total nuclear energy generation rate of a chain of
nuclear reactions like the proton-proton chain.

In the following we do not refer to the representation (3.22), but, take into consideration the
definition of the nuclear energy generation rate,

e12(r) = iy Bz m12(p(r), T(r)), (3.23)

containing the thermonuclear reaction rate r12(p(r), T'(r)) whose theory can be formulated on the basis
of physical principles (cf. e.g., Parker et al. 1964; Haubold and Mathai 1984; Haubold and John 1981).

3.5 The Thermonuclear Reaction Rate

All reactions involved in the proton-proton chain are nonresonant. In the calculations of the energy
generation and neutrino emission via the proton-proton chain described in Sect. 3.2 we will adopt the
following definition of the nonresonant nuclear cross section (Salpeter 1952; Parker et al. 1964;
Haubold and Mathai 1984):

o(E) = 52 exp {—2m(E)}, (3.24)

where 7(E) is the SOMMERFELD parameter, given by,
(3.25)



1
*\ ? Zi1Zse?
n(E) = (&) 2%,

where Z1 and Z; are the charges of the interacting particles, E is the center-of-mass energy, e is the
quantum of electric charge, h is PLANCK’s quantum of action,

w* =mimy/(my +ma) = A1 Ay /(A1 + A3) N4 is the reduced mass, A; and A; are the atomic mass
numbers of the particles. As mentioned in Sect. 3.2, the cross section for the nuclear reactions that occur
in the proton-proton chain cannot generally be measured at the energies of interest for solar conditions
(cp- Table 3.1 column (vi)). Hence for the cross section factor S(E) in (3.24), extrapolations from higher
energy measurements must be used to obtain a zero energy intercept, S(0), and average values for the
first and second derivatives at low energies, S’(0) and S”(0). Therefore, S(E) is expanded by using a
MACLAURIN series in the light of the weak dependence of S(E) on the relative kinetic energy of the
particles (Bahcall 1966; Critchfield 1972; Haubold and Mathai 1984)

S(E) = S(0) + S'(0)E + S"(0)E>. (3.26)

All the relevant cross section factors for the proton-proton chain evaluated at zero energy, S(0), are
shown in Table 1 column (iv) (adopted from Bahcall et al. 1982).

The MAXWELL-BOLTZMANN averaged thermonuclear reaction rate of a nonresonant nuclear
reaction r12 in (3.23) can now be written (HAUBOLD and MATHAI 1984):

1
Bl 2 S5Y(0
ry = (1 — %512)7’1,1712(#2*) (le)s/z Zu:[) 1/(! )

x [,°dE E" exp {—(% +2mn(E)) },

(3.27)

where §15 is the KRONECKER symbol, 72; and n, are the particle number densities. The number densities
are more explicitly written as

X
ni(r) = Naz-p(r), (3.28)
where X; is the atomic abundance by mass of the nuclei of type i. In connection with the explicit form of
the thermonuclear reaction rate in (3.27) it is convenient to introduce the quantity < ov >19, defined by
the relation

rig = (]_ — %(512)7’),171,2 < ov >19, (329)

where < ogv >12 is the thermally averaged product of the cross section o for the reaction and relative
velocity v of the interacting particles. The mean lifetime, 73(1), of nucleus 1 for interaction with nucleus 2
is given as follows:

)\2(1) = ﬁ =Ny < OV >19= pNAf—; < 0V >1q9, (3.30)

where A5 (1) is the decay rate of 1 for interaction with 2. The mean lifetime, 75(1) defined in (3.30), for
the reactions of the proton-proton chain are given in Table 3.1 column (v) for central physical conditions
of the standard model of the Sun (cp. Kavanagh 1982).

After defining the basic operations (3.23), (3.29) and (3.30) for the description of the dynamics of
nuclear reactions in the deep interior of the Sun we find the final representation of the thermonuclear
reaction rate by substituting (3.28) in (3.27) and writingy = E/(kT):

5 1
= (1= Lo, N2 KaXe(Autds)? 87 o
ria(r) = (1— 301) Ny ) x P () 1)

x 2 (KT(r))" = 2N, (2(r)),



where

Ni,((r) = [y~ dy ye v T = LGy B (332)

2r) =2y )T 2R (3.33)

Equation (3.32) is the basic closed-form representation of the nonresonant thermonuclear reaction
rate integral by means of MEIJER’s G-function (cf. Mathai and Saxana 1973; Haubold and Mathai 1984).
This closed-form representation is appropriate to perform analytical operations and from (3.32)
approximate expressions easily follow for small and large values of the characteristic parameter z(r) in
(3.33), that is the COULOMB barrier energy divided by thermal energy, which appears in the argument of
the G-function (Haubold and John 1981; Haubold and Mathai 1984).

For large values of z(r) we get the asymptotic representation for the G-function in (3.32) (cf.
Mathai and Saxena 1973)

Go's [# |1+V,%,o] - 2(3)* (%) 5 exp {—3(%) %}. (3.34)

This relation reproduces results from the well-known papers of Salpeter (1952, for v = 0)
and Bahcall (1966, for v = 0, 1, 2). Inserting (8.16) for N;, (z(r)) in (3.31) we get

5 X1 Xo(Arr AT 93
T12(T) = (1 B %612)N/§ : (1:(1A12)3/22) 3%/227r p2(7")

—exp {-3(9) T} S im0 ()

Once again, it is obvious that if S(E) in (3.26) is nearly constant most of the value of (3.35) comes from
values of E near zero. The first approximation for well-behaved cross section factors is to treat S(E) as a
constant, S(0), defined as the value at E = 0. Hence, for v = 0 we obtain

(3.35)

3 XiXa(Ai+45)? o}
ria(r) = (1= §81) Nj 20 e pi(r)

e (7) ee {(9)')

that reproduces the asymptotic representation of the thermonuclear reaction rate underlying the
fundamental papers of Fowler (1984; cf. also Parker et al. 1964; Critchfield 1972;
Haubold and Mathai 1984).

(3.36)

3.6 The Neutrino Emission Rate

In the following evaluations we do not take into account the asymptotic form (3.36) of the thermonuclear
reaction rate but the closed-form representation (3.31) with (3.32) for » = 0, and write (3.21) in terms

of r12(p(r), T(r)),
Lis(Ro) = [ dr 4nr2Eraris(p(r), T(r)). (3.37)
If we divide the “internal luminosity” L13(Rg) by the amount of energy Ej, then we get the total

number of particles per second N liberated in the reaction 1 + 2 — 3 4 4 in question, that is,
(3.38)
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where z = r/Rg and

1
p*\ 2 Z1Z,e? 1
:2 —_— :_E2
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where E¢ is the GAMOW energy. The flux of solar neutrinos at the Earth due to the reaction
1+ 2 — 3 + 4 in the Sun can then be written

_ Ni» _ Lyjy(Ry)
$12 = por AIU)Z = AV, (3.39)

where AU abbreviates the mean distance between the Earth and the Sun (Astronomical Unit
= 1.496 x 1013cm) and N is also called the neutrino emission rate.

3.7 The Integral for the Solar Nuclear Energy Generation
and the Solar Neutrino Fluxes: The General Case of the Basic Integral
Consider the following integral,

Qs = [y dr ?[p(r)“[KT(r)] " [y dy e ov-TON T, (3.40)

for the case (3.8) of the density distribution and (3.17) of the temperature distribution, respectively;
6>0,p>0,£>0,a>0,qg> 0,z > 0. For convenience the inner integral in (3.40) will be rewritten in
terms of the MELLIN-BARNES type integral by using a result in Haubold and Mathai (1984) which will be
stated here as a lemma (cf. also Haubold and Mathai 1987).

Lemma3.1 Fora>0,8>0,u>0,%R(1—~v+s) >0,

Jy7at temetut = L [ s D(s/BD(L — 7+ 5) (aut) (3.41)

2mi Jc—ioco
where i> = —1, ¢ > PR(7y — 1), and R(-) denotes the real part of ().

When 8 =n/m,n,m = 1,2,...onehasI'(s/8) = I'(ms/n).If s/nis replaced by s’ and if I'(ms’) and
I'(1 — v + ns’) are expanded by using the multiplication formula for gamma functions and by using the
resulting quantity if the right hand side of (3.41) is written as a MEIJER’s G-function then the result in
(3.41) agrees with the result established by Saxena (1960) with the help of transform calculus. A proof of
(3.41) by using statistical techniques is given in Haubold and Mathai (1984) and hence the proof won't
be repeated here.

From (3.41) we may note that the right hand side of (3.41) is a H-function, see for example
Mathai and Saxena (1978), and that it exists for all values of au'/? > 0 and the inner integral in (3.40)
for the case (3.8) is dominated by a beta type integral. Hence, by substituting (3.41) in (3.40) and by
rewriting (3.40) one has the following:

c+i0co _s (3.42)
Qs =a '(m/n)5= [T ds T(ms/n)T(1+ s)(az!/P)

2w Jec—ioo

x [ dr 2 lp(r)]URT ()] 7,



where 8 = n/m.
Now the inner integral in (3.42) for the density distribution (3.8) and the temperature distribution
(3.17) reduces to the following, denoting the integral by I;:

= [y'ar lp(r)"IRT()] 7" = RP*L [ do a?[p(Re) "R (Ra)] *

4mpG Tt gtt—%
= Rl oo R T [ da aP(1 - 2%)™ (3.43)
b ¢
1,2 (6+6) 642 3 2642\ #
X{f_ T+ Faem T eyt } ’

and where ¢ is given by (3.14). Making the transformation y = z? and taking out £ one has the following:

bs
Rr+1p? [ drpG T pil _bs bs
1= TG e p2) T gy (- )t L ()] F (344)
where
_e1,2)1 (0+6) 3 2
uly) =€y {7 ~ oY T e Y }’ (3.45)

where £ is given in (3.14).

3.8 The Solar Case of the Basic Integral
In the case § = 2, [1 — u(y)] of (3.44) reduces to the following form:

1—u(y) =1-¢& 3/(___?44‘10«”)5 5
=1-Sy+2y° - 39°
=(1-y)*(1- 3y).

Hence (3.44) reduces to the following form, denoted by I5:

bt

R bs TuG A
= I dr o lp)TRT()] = SR S84 o

pt+ bs bs
X fol dy yTl_l(l — y)q+ﬂ t(l — %y) 4 t.

(3) gy

(3.46)

But

Hence

fidy g 1) TE (1 L) T

Z (t- bs/ﬂ)ml (l)ml T(mi+(p+1)/2)T(1+q—t+bs/B)
T £Lemi=0 my! T(1+g—t+mi+(p+1)/2+bs/B)

2

by using a beta integral. Thus, we have for § = 2, noting that
(3.47)



(%), ="

b ¢
4ru@G oo ((p+1)/2),, my
L = 3oty G R T+ 1)/2) S o (3)

T'(t+mi1—bs/B)T'(g—t+1+bs/B)
T(t—bs/B)T(1+q—t+mi+(p+1)/2+bs/B)

Substituting (3.47) in (3.42) we have for 6 = 2,3 = n/m,

_ -1 (m)\1 +1 4G 2 -t
Q: =a '(%)3RY pZ[wN"AkpCR@]

«(2) ooy (3.48)
1 fL dsP(ms/n)f‘(1+3)F(1+q7t+bsm/n)1‘(t+m17bsm/n) d=s

X om T (¢t—bsm/n)T'(14+g—t+mi+(p+1)/2+bsm/n)

where L is a suitable contour, and

mb
o oom 15N 4k n
d=azn (FupcRéG ) . (3.49)

Note that the integral in (3.48) is nothing but a H-function, see Mathai and Saxena (1978). Hence, we
have for § = 2,

—t
_ _—1(m)\ 1 pptl q| 4muG 2
Q2 =a (T)?RG pC[l5NAkpcR®}

b1 e ), " (3.50)
XF(T) D=0 T

3,1 (1—t—m1,1),(14+q—t+mi+(p+1)/2,mb/n)
xHyy 4] (0,m/n),(L,1),(q—t+1,bm/n),(1—t,mb/n) J

It is easy to note that the H-function exists for all values of d > 0 and that it behaves like the following,
see Mathai and Saxena (1973). For small values of d it behaves like,
|d|”, & =min {0,1, (g —t+1)} = 0 for g > ¢. For large values of d it behaves like |d|® where

nt

B =max { - (—t — ml)} = — . Hence, using this fact we have the following result, noting that

$ B0 (1)

|
im0 my.

3.9 Fox’s H-Function

Definition
m,n myn_|(apAp) myny_|(a1,41),. . . (ap,Ap)
Hyi"(2) = Hyyg [z‘(bq’Bq)} = Hpy [z‘(b;Bll)’_“’(bq’Bq)] = # fL ds z*y(s),
W(s) = {175 T(b;—B;s) {17 T(1—a;+A;s)}
{15 s T(1=05+B;s) HIT5 .., T(aj—A;8)}
where0 <n <p,1 <m < qA;,j=1,...,pand B;,j = 1,...,qgarereal positive numbers,
aj,j=1,...,pandb;,j=1,...,qare complex numbers such that A;(b, + v) # By(b; — A — 1), for
v,A=0,1,2,...;h=1,...,m;j=1,...,n. Lisacontour separating the points

s=(bj+v)/Bj,j=1,...,my =0,1,... which are the poles of I'(b; — Bjs),j = 1,...,m, from the
points s = (a; —v —1)/Aj,j=1,...,n;v =0,1,..., which are the poles of



I'(1 —a;+ Ajs),j =1,...,n.The H-function is an analytic function of z and makes sense if the
following existence conditions are satisfied: (i) for all z # 0 with p > 0, and (ii) for 0 < |2| < 87! with
p>0;

=3 B> 4, B={[4"HI[B;"}

Asymptotic expansions: Orders for small and large values:

HW"(2) — O(|2[), for small values of z
for 4 > 0and ¢ =min {R(b;/B;),j =1,...,m}; and

Hyw (2) — O(]z|d) for large values of z
for p > 0, largz| < amr/2,and d =max {R((a; — 1)/4;),j =1,...,n}, where
= A = A+ By — 0 Bs

Ay f p—Bi

= {H§:1 Aj]}{Bj g
=2iabi— X+ 5 -5

= Z;n:l Bj— Z;I':m+1 Bj— Z§:1 Aj;
= 25:1 B; — 21;:1 Aj.

T > 2 ™ R

3.10 Meijer’s G-Function
This G-function is a special case of the H-function. When A; = 1,j=1,...,pand B, =1,j=1,...,q,
one has

Hm,n[z|(ajy1)7j:17--~yp] — Gm,n[z

a]'vj:lv' . 7p]
p,q (b],l),]:1,7q pq

bj,jil,. g :

The definition as well as the asymptotic expansions for the G-function can be derived from those of the
H-function.

Theorem 3.1 For § = 2, Q)2 is approximated to the following:

—t
QZ a ( n/?2 © Pc 15NAk Pclrg :

for small values of d, and

—t
o mN\1 [ 4G, PH1Y\ e
Qrat()5 R pc[15NAkpCR® g )2

for large values of d, where d is defined in (3.49) (cf. also Haubold and Mathai 1987).

3.11 Analytic Results Connecting Solar Structure Parameters
and Solar Neutrino Emission Rates



Neglecting the nuclear energy generation of the Sun via the CNO cycle, because it provides a negligible
contribution to the total energy output of the Sun, we conclude from Egs. (3.6), (3.7) and (3.20) that

R
L(Ry) =4rm fo odr r2p("')(6PPI + epprr + €pprIT)
= 471'% ORQ dr r’ngns < ov >33 +47Q pprr f0R® dr r’nsng < ov >34 (3.51)

R
+4m(Qppirr — Qpprr) [ ° dr Tnimy < ov >,
or, we may write, with Eq. (3.1)
_ Qppr Ro 2
L(Ry) =4n—LE [ dr r*niny < ov >1

R
+4m(Qppir — 3Qppr) [y © dr rPngng < ov >34 (3.52)

R
+47(Qpprrr — Qpprr) [y © dr r’nimy < ov >q1.

According to (3.38) and (3.6) also we obtain the neutrino fluxes of the nuclear reactions of the proton-
proton chain in terms of the same quantities < ov > as included in (3.52).

R
¢ = ¢(pp) = 47752}1)2 = s o dr rPmam < ov >, (3.53)

¢71 — ¢( 7Be) _ N3y—Ny

4m(AU)?
1 Ro 2 R, 9 (354)
- (AU)Q{fO dr r’ngny < ov >g4 — [, dr r’nmy < ov >71},
— 8‘B — Nny _ 1 Red 2
¢s = ¢( ) = un(AU)? T (av)? fO rremnm; < ov >71. (3.55)

With the representations of the nuclear output of the Sun by (3.52) and the respective neutrino fluxes by
(3.53), (3.54), and (3.55) we traced back the computation of these quantities to the evaluation of the
basic integral in (3.38). For the solar model discussed in Sect. 3.3 and the closed form representation of
the nonresonant thermonuclear reaction rate obtained in Sect. 3.4 we get the neutrino emission rate in

(3.38) and (3.50) fora = 1,b = %,nzl,m:2,p:2,q:2,andt: %

5 1l 1
Niz = dn(1— 3812) Ny H0EE0% 50.615(0) Qe (3.56)
where
I r\YT R (3:2)n, (1/2)™ 31 22 (1/2-m1,1),(4+m1,1)
Q2 = (_) ’ Til@/f ;.jlzo rizl! Hy [Tc (0,2),(1,1),(5/2,1),21/2,1)] (3.57)




Fig. 3.1 Astrophysical Observatory Potsdam (AOP), Germany: Preparations for this book took into account the fact that the AOP celebrated its
150th Anniversary of the establishment of the Astrophysikalisches Observatorium Potsdam on 1st July 1874. AOP was the world’s first
observatory to emphasize explicitly the research area of astrophysics. Albert A. Michelson, studying under Hermann von Helmholtz at the Berlin
University, developed his interferometer and performed the first time the famous Michelson experiment at AOP (cellar of the east dome, right
hand-side of the photo) in 1881 supported by the then director of AOP, Herman C. Vogel. The authors are taking the opportunity to thank Dr.
Reiner John (1942-2007, Astronomical Observatory Potsdam-Babelsberg) and Dr. Ewald Gerth (1934-2022, Astrophysical Observatory
Potsdam-Telegrafenberg) for many years of exciting and productive cooperation on the issues of nuclear and neutrino astrophysics as described
in this book. https: //www.scirp.org/journal /paperinformation?paperid=134139

where z is given in (3.9). The value of he central matter density of the solar model is given in (3.8) and
that for the central temperature in (3.18). According to the Theorem 3.1, the approximated value for Q4
in (3.57) can now be written as

1 R3p2
Q2 ~ (2m) 7 % (3.58)

for small values of d = 22 /T, given in (9.10), and
1
Q2 ~ (2m)TRE p%, L (3.59)

for large values of d = 2% /T, where z is given in (3.6). Inserting (3.58) into (3.56) we obtain finally the
analytic representation of the relationship of the solar structure parameters and a solar
neutrino emission rate for small values of the characteristic parameter d = 2% /T in (3.57).

LS (Ar44y)? R} p2
Niz & (1= §612) 16w N 0805615(0) X, X i (3.60)

Inserting (3.59) into (3.56) we get finally the neutrino emission rate for large values of the characteristic
parameter d = 2%/T, in (3.57) (Fig. 3.1).

o=

Nih (4,44
Nip =~ (1— $61,) (277> 3 msn(o)XleR%Pz@- (3.61)
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4. Solar Nuclear and Neutrino
Astrophysics Research, a Time Line

Arak M. Mathai! and Hans . Haubold?

(1) Department of Mathematics and Statistics, McGill University, Montreal,
ON, Canada

(2) Vienna International Centre, UN Office for Outer Space Affairs, Vienna,
Austria

1930 Wolfgang Pauli hypothesizes the existence of neutrinos to account for
the beta decay energy conservation crisis.

1933 Enrico Fermi writes down the correct theory for beta decay,
incorporating the neutrino.

1956 Fred Reines and Clyde Cowan discover (electron anti-) neutrinos
using a nuclear reactor.

The possible existence of neutrino oscillations, which is a consequence
of neutrino masses and mixing, would be experimental evidence of
elementary particle physics beyond the standard model.

1957 Bruno Pontecorvo proposes neutrino-antineutrino oscillations and
this is the first time neutrino oscillations are hypothesized. B. Pontecorvo,
Neutrino experiments and the problem of conservation of leptonic charge,
Sov. Phys. JETP 26, 984 (1968).

1962 Ziro Maki, Masami Nakagawa and Sakata introduce neutrino
flavour mixing and flavour oscillations. Z. Maki, M. Nakagawa, and S. Sakata,
Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28,
870 (1962).

1962 Muon neutrinos are discovered by Leon Lederman, Mel Schwartz,
Jack Steinberger and colleagues at Brookhaven National Laboratories, and it
is confirmed that they are different from electron neutrinos.

In the 1960s, the first experiment to detect solar neutrinos was
Raymond Davis’s Homestake Experiment, in which he observed a deficit in


https://doi.org/10.1007/978-3-031-83387-8_4

the flux of solar neutrinos with respect to the prediction of the Standard
Solar Model, using a chlorine-based detector. In detecting solar neutrinos in
the Homestake Experiment, it became clear that the number detected was
much lower than that predicted by models of the solar interior. The problem
could be solved by revising the model for the internal structure of the

Sun (solar physics), the assumed mechanisms of thermonuclear reactions
(nuclear physics), or the properties of neutrinos and understanding the
limits of the detection mechanisms (neutrino physics). Most neutrinos
passing through the Earth emanate from the Sun. About 65 billion solar
neutrinos per second pass through every square centimetre perpendicular
to the direction of the Sun in the region of the Earth.

Observations of solar neutrinos were first made by the Homestake
experiment using a radiochemical method, and then followed by real-time
measurement with KAMIOKANDE-II and other radiochemical experiments
using gallium by SAGE and GALLEX/GNO:

R. Davis, Jr,, D. S. Harmer, and K. C. Hoffman, Search for neutrinos from
the Sun, Phys. Rev. Lett. 20, 1205 (1968).

K. S. Hirata, T. Kajita, T. Kifune, K. Kihara, M. Nakahata, K. Nakamura et al.
(The Kamiokande-II Collaboration), Observation of & B solar neutrinos in
the Kamiokande-II detector, Phys. Rev. Lett. 63, 16 (1989).

A. 1. Abazov, O. L. Anosov, E. L. Faizov, V. N. Gavrin, A. V. Kalikhov, T. V.
Knodel et al., Search for neutrinos from Sun using the reaction "*Ga
(electron-neutrino e-) "' Ge, Phys. Rev. Lett. 67, 3332 (1991).

P. Anselmann et al. (The GALLEX Collaboration), Solar
neutrinos observed by GALLEX at Gran Sasso, Phys. Lett. B 285, 376 (1992).

M. Altmann et al. (The GNO Collaboration), GNO solar
neutrino observations: Results for GNO I, Phys. Lett. B 490, 16 (2000).

1963 R. F. Stein and A. G. W. Cameron (Eds.), Stellar Evolution,
Proceedings of an international conference, November 13-15, 1963,
Plenum Press 1966.

1964 John Bahcall and Raymond Davis discuss the feasibility of
measuring neutrinos from the Sun and made the case for the Homestake
Mine experiment.

1968 Raymond Davis and colleagues get first radiochemical solar
neutrino results using cleaning fluid in the Homestake Mine in North
Dakota, leading to the observed deficit subsequently known as the “solar
neutrino problem”.

1972 F. Reines (Ed.), Cosmology, Fusion @ Other Matters, George
Gamow Memorial Volume, Colorado Associated University Press 1972.



hnccanl Montreal
University 2 September 1982

Department of Mathematics
Burnside Hall

Dr. H.J. Haubold .,
Zentralinstitut fur Astrophysik
Akademie der Wisseschaften der DDR

DDR- 1500 Potsdam, Telegrafenberg
German Democratic Republic

Dear Dr. Haubold,

Thanks for your letter dated 14 August 1982 which reached me
here just now. I am enclosing two copies of the corrected bibliography
of our book.

I do not have ready references for integrals involving functions

0
wif s e GP,E , One way of takling this type of integral is to

replace the G-function by its Mellin - Barnes representation and then
interchange the integral. The conditions are to be checked. In our
book we did not work out the conditions in detail. Luke :The Special
Functions and Their Approximations:, (Academic Press) Vol.I & II have
lots of conditions worked out in detail.

Another way of tackling is to expand the gammas in the G-function
by using any one of the asymptotic expans1ons and then integrate term
by term which will also yield computable series representation for the
integral.

The postal address of our university has changed. Please use
the address given below for fast delivery of mail coming to our
university.

If you would like to visit our umiversity and spend a few days
here then I can arrange some funds to meet part of your expenses. If
you are interested please let me know about the items that you will

need such as letters etc from me.

With best wishes
yours sincerely

o f‘fﬂ"&&-’/
Dr. A.M., Mathai
Professor

v

Postal address: 805 Sherbrooke Street West, Montreal, PQ, Canada H3A 2K6

Fig. 4.1 https://www.growkudos.com/projects/a-m-mathai-centre-for-mathematical-and-statistical-
sciences-nurturing-the-love-for-mathematics
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CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA. CALIFORNIA 81125
W. K. KELLOGG RADIATION LABORATORY 106-38 TELEFPHONE (213} 755-6811

T e ”.’"7:‘ i o
January 3, 1979 ZENTRAL
far Azt

g+ 21 JANTO70

Dr. H. J. Haubold —
Zentralinstitut fur Astrophysik der Akademie der

Wissenschatten der DDR
Potsdam, East Germany (DDR )

Dear Dr. Haubold,

Thank you for sending me the corrigendum to your paper
with Dr. R. W. John. It has occurred to me that in any future
work you may wish to refer to C. L. Critchfield's Chapter 11,
pg. 186 inCosmology,Fusion & Other Matters, Editor: F. Reines,
Colorado Associated University Press 1972. Critchfield's Eq.
(17), corrected for typographical errors.is commonly used in
many of our calculations when his € (our ) drops as low as
unity but this rarely occurs.

Sincerely yours,

_7);/%;“

William A. EeWler
Institute Professor of Physics

WAF:mb

Fig. 4.2 https://www.nobelprize.org/prizes/physics/1983 /fowler/facts/
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Fig. 4.3 https://en.wikipedia.org/wiki/Charles Critchfield
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1973 A. M. Mathai and R. K. Saxena, Generalized Hypergeometric
Functions with Applications in Statistics and Physical Sciences, Lecture
Notes in Mathematics, Vol. 348, Springer, Berlin-Heidelberg-New York 1973.



In 1974, conversation of HJH with Hans-Juergen Treder makes us aware
that the solar neutrino problem is crucial for discovering new physics.
Treder’s advice was simple: “Ich glaube, dass die Werke der grossen Meister
eine staendige Quelle von Ideen und neuen Zielstellungen fuer die aktuelle
wissenschaftliche Arbeit sind”. A similar advice was ones given by Albert
Einstein (Figs. 4.1, 4.2 and 4.3).

With this advice in mind the topic solar neutrino radiation made us
turning to the papers of the Proceedings of the first Solvay Council, held in
1911 focusing on The Theory of Radiation and Quantum. Planck’s quantum
of action was discovered earlier but quantum mechanics not yet developed,
and many questions discussed during the Council were destined to lead to
new fundamental physics (or mathematics). Among them Einstein’s
comment that neither Herr Boltzmann nor Herr Planck has given a
definition of W (probability in Boltzmann'’s entropy S = k InW) and
Poincare’s closing question if it was still possible to represent basic physical
laws in terms of ordinary differential equations. We got stack at this point
comparing physics of solar neutrino radiation and physics of black body
radiation because we did not have an idea of Planck’s “Staubkoernchen”
(Pascual Jordan) for neutrino radiation.

1975 A. M. Mathai and P. N. Rathie, Basic Concepts in Information
Theory and Statistics: Axiomatic Foundations and Applications, John Wiley
& Sons, New Delhi 1975.

Already since 1975 we pursued the analysis of Homestake
experiment data by Fourier analysis, wavelet analysis, and Lomb-Spargel
periodograms prospectively to discover possible periodic variations in the
publicly available data sets of the experiment. This analysis was jointly
undertaken in cooperation with Kunitomo Sakurai (Kanagawa University,
Yokohama, Japan). We shared the belief that the discovery of periodic
variation of the solar neutrino flux may lead to new solar physics or new
neutrino physics.

A summery of basic knowledge about solar physics, nuclear physics, and
neutrino physics, having the Solar Neutrino Problem in mind, was provided
in the first 18 pages of the 1988 edition of our book titled “Modern
Problems in Nuclear and Neutrino Astrophysics”. Back in 1974 we hoped
that such a survey may provide us a way to contribute to the solution of
the Solar Neutrino Problem.

1978 A. M. Mathai and R. K. Saxena, The H-function with Applications in
Statistics and Other Disciplines, John Wiley and Sons, New Delhi 1978.




1979 we initiated an exchange of information with Raymond
Davis Brookhaven National Laboratory asking him to provide us on a
regular basis the data from his Homestake chlorine solar
neutrino experiment. This cooperation by exchange of letters and visits to
Raymond Davis workplace at the University of Pennsylvania was active until
2002 (Figs. 4.4 and 4.5).



E) Ii ! _ BROOKHAVEN NATIONAL LABORATORY
(I li ; ASSOCIATED UNIVERSITIES, INC.
Upton, Long Island, New York 11973

(516) 282+ 4322

Department of Chemistry FTS 6667

March 17, 1983 m“.,.,d‘-o-f e o
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Dr. H. J. Haubold R :':,gw\"““*"w
Zentralinstitut fdr Astrophysik Ll
DDR-1500

Potsdam, East Germany
Dear Professor Haubold:

Sorry for the long delay in answering your request for data from our
chlorine solar neutrino experiment. I have enclosed copies of our latest re—
ports given at meetings. In addition I am including a copy of ocur latest data
plot and table. The columns in the data Table have the following meanings.

1. Date of the beginning of the exposure.

2. Date of the end of the exposure.

3. The date corresponding to the time at which one-half of the atoms that
are collected would be produced assuming a uniform production rate,

4, The most likely value of the 3/Ar production rate in 615 metric tons
of C Cl4 in atoms per dag.

5. The %ower limit for the 37Ar production rate in the same units,
corresponds to a 1o error.

6. The upper limit for the 37Ar production rate in the same units,
corresponding to a lo error.

This table includes all of the data analyzed. The remainder of the experimental:
runs are still being counted, so I do not have the results for 1982. Above
columns 4, 5, and 6 are the combined values, however this average does not in-
clude runs nos. 71 and 72. However if these are included there will be very
little difference.

If I can be of further help please let me know. Values for 1982 will come
out slowly as the counting measurements are completed. If you are interested in
the 1982 results please send me a note later on.

Sincerely yours,

//:7””"/&9%%

Raymond Davis Jr.

jd
enc.

Fig. 4.4 https://www.nobelprize.org/prizes/physics/2002/davis/biographical/
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KANAGAWA UNIVERSITY

INSTITUTE OF PHYSICS
ROKKAKUBASHI, YOKOHAMA, 221, JAPAN

September 30, 1989

Prof. H.J. Haubold
Room S5-3260B

Quter Space Division
United Nations

New York, N.¥Y. 10017
U.S.A.

Dear Professor Haubold:

It is nice to receive a letter from you I have known
for many years since our first meeting in India.

In the letter not dated, you request a copy of my paper
entitled "Solar Neutrino Problem as Viewed from the
Active Phenomena on the Sun."™ This is printed in the
Proceedings of XVI-th INS Internatl. Symp., held in
March 1988. ©No reprint was made of it, so herewith
enclosed is the Xeroxed copy taken from the proceedings.
Also enclosed herewith is a sheet of the notice for our
new books on cosmic ray astrophysics and neutrino astro-
physics. I guess you are interested to see them.

I am now planning to attend the 21st ICRC to be held in
Australia in this coming January and to present a paper
on the solar neutrinos, in which it is shown that a
chaotic process is taking place inside the sun.

I am looking forward hearlng from you about your current
status some day.

With best wishes.

PO e

Kunitomo Sakurai
Professor of Physics

Fig. 4.5 https://www.walshmedicalmedia.com/open-access/kunitomo-sakurai-solar-neutrino-
problems-how-they-were-solved-2332-2519-1000132.pdf

At the same time, we also took up a problem that was discussed in the
1970s concerning the closed-form evaluation of thermonuclear reaction


https://www.walshmedicalmedia.com/open-access/kunitomo-sakurai-solar-neutrino-problems-how-they-were-solved-2332-2519-1000132.pdf

rates described in publications of Bethe, Salpeter, and Fowler and explicitly
discussed by Charles Critchfield. Critchfield’s paper can be considered, in
principle, as a follow-up research result to his paper published in
cooperation with Hans Bethe in 1939 that led to the Nobel Prize for

Bethe in in 1967 for his work on the production of’energy in stars.

1980s The Kamioka experiment is built in a zinc mine in Japan.

1983 William A. Fowler receives the Nobel Prize in Physics for his
theoretical and experimental studies of the nuclear reactions of importance
in the formation of the chemical elements in the universe: W.A. Fowler,
Experimental and theoretical nuclear astrpphysics: the quest for the origin
of the elements, Reviewes of Modern Physics 56 (1984) 149-179.

1985 The “atmospheric neutrino anomaly” is observed by IMB and
Kamiokande.

1986 T. Pinch, Confronting Nature: The Sociology of Solar-Neutrino
Detection, D. Reidel Publishing CompanyDordrecht.

1986 Kamiokande group makes first directional counting observation
solar of solar neutrinos and confirms deficit.

1987 The Kamiokande and IMB experiments detect burst of neutrinos
from Supernova 1987A in the Large Magellanic Cloud, a satellite galaxy of
the Milky Way, heralding the birth of neutrino astronomy, and setting many
limits on neutrino properties, such as mass.

1987 conversation of HJH with Hans A. Bethe and F. Reines, meeting at
the Michelson-Morley Conference 1987 in Cleveland. Our research work
started focusing on the Big Bang model, including Big Bang nucleosynthesis
and predictions of the cosmic microwave background radiation.

S. Gottloeber, HJH, J. P. Muecket, and V. Mueller, Early Evolution of the
Universe and Formation of Structure, Akademie-Verlag, Berlin 1990, de
Gruyter 2024).

The following is the generalized form of the basic reaction-rate
probability integral in the real scalar positive variable case:

Ia,,b(57 p) = / ,U’Yfle—av&,bv—pdv
0

fora > 0,b> 0,6 > 0,p > 0,9R(y) > 0. Before the integral is evaluated,
let us consider some particular cases. For § = 1, p = 1, it is the basic Bessel
integral. For = 1, p = 1, the integrand, normalized, is the inverse Gaussian
density. Ford = 1,p = % it is the reaction-rate probability integral in
nuclear reaction-rate theory. For 6 = 1 and general p, it is Kratzel integral



and Kratzel transform is associated with it. The integral is also known in the
literature by different names such as generalized gamma integral, ultra
gamma integral and super gamma integral.

The closed-form representation of the integral can be written in terms of
a H-function, namely,

o |~

1
H) =b

g(u) = Doas 02 {“Eu|(o,%),(%,%)}’u

where the c in the contour is such thatc > 0, > 0, p > 0,9R(v) > 0.



November Z7, 19885

Dr. Hans Joachim Haubold
United Nations
United Nations, NY 10017

Deay Dx. Haubold:

This iz in yesponse to your letter of November 14, 19889, I am
sorry to have been so leong in responding but I have been awavy.

Since vou have seen our first chapter in the Gamow memorial
volume, you are already aware that Gamow made a very simple
calculation, using the Jeans’ criterion, to obtain a value for
the diameter of a typical galaxy based on fundamental constants.
Robert Herman and I corrected some minor errors in his
formulation which we alseo published in Nature, and which is
referred to in the memorial velume.

We later attempted to carry the discussion based on the Jeans’
criterion a bit further in a paper we wrote in 1987, but which we
nevey published. Perhaps it will be of some interest to vou, and
I therefocre enclose a copy.

Considerations such as your mass scale formula have been made by
several investigators, starting, I believe, with Chandrasekhar,
as early as 1837. You will find such matters guite adeguately
reviewed in the book The Anthropic Cosmological Principle by
Barrow and Tipler (Oxford University Press 1988 - paperback
edition). On page 234 a mass scale formula is given with the
exponent zeta instead of your expenent (n/Z). This formula does
give a typical mass figure for a protogalaxuy.

If vou have read my paper with Gamow on the fundamental censtants
cr my American Scientist article on the subject, you will realize
zhat I believe the Dirac LNH is really based on dimensiocnal
considerations in which he used the age of the universe as a
characteristic time. It follows then that toc form dimensionless
ratios one must have some other dimensicnal constant also vary
with the epoch. We now know that the variation of G with the
epoch is observationally unacceptable {(work of Canuteo, Goldiberg,
Shapirec, ete.). UOne can use other characteristic times, such as
the time of decoupling, which is a number unigue %o a particular
cosmological model. This vields Dirac-like ratios, without the
problem cof a dependence of anything on the epsach. '

I have no probklem in using the results of dimensiconal analysis in
the absence of z theory, but feel that cne has to be careful notb
to read too much into the results., For example, over the years
pecple seem to have forgotten bhe origin of the Planck time, so
that it achieves enormous importance in analyses of the early
universe.

I do not want to analvze the reprint vou sent me in detail, but

Fig. 4.6 https://en.wikipedia.org/wiki/Ralph Alpher


https://en.wikipedia.org/wiki/Ralph_Alpher

do note with some surprise that you have not used the
temperature-time relation determined by the dominant radiatiocn
field, which seems %o me toc be appropriate for the temperature in
the expanding universe during the time pricr to radiaticen

deocupiing. (See the paper by Alpher and Herman in Physies
Today.) This will surely affect your resnlt.

Sincerely,

‘z%"ﬁugbﬁduf’

Ralph A. Alpher
Department of Physics
Union Ceollege
Schenectady, NY 12308

CC:Dr. Robert Herman

1991 SAGE (in Russia) and GALLEX (in Italy) confirm the solar
neutrino deficit in radiochemical experiments.

1995 H. ]. Haubold and A. M. Mathai, A Heuristic Remark on the Periodic
Variation in the Number of Solar Neutrinos Detected on Earth, Astrophysics
and Space Science 228, 113-134.

1995 With Reiner John, Ewald Gerth, under the guidance of Arak M.
Mathai, we stopped analyzing the data of Davis’s Homestake
experiment and turned our attention to the operation of the
SuperKamiokande experiment and the analysis of publicly made
available solar neutrino data.

1996 SuperKamiokande, the largest particle detector ever, begins
searching for neutrino interactions on 1 April at the site of the Kamioka
experiment, with a Japan-US team.

1998 Analysing more than 500 d of data, the SuperKamiokande team
reports evidence of oscillations in atmospheric neutrinos implying that
neutrinos have nonzero mass, thus suggesting physics beyond the Standard
Model of Particle Physics.

2001 The Sudbury Neutrino Observatory (SNO) reported observation of
neutral currents from solar neutrinos, along with charged currents and
elastic scatters, providing convincing evidence that neutrino oscillations are
the cause of the solar neutrino deficit.

An initial indication of solar neutrino oscillations was obtained from the
difference between the 8B solar neutrino fluxes as measured in the elastic-
scattering channel at SuperKamiokande and the charged-current channel at
the Sudbury Neutrino Observatory in 2001. Solar neutrino oscillation was
subsequently established by including neutral-current measurements from



SNO. Solar neutrino oscillations were confirmed using reactor antineutrinos
by KamLAND (Fig. 4.6):

S. Fukuda et al. (The SuperKamiokande Collaboration), Solar 8 B and hep
neutrino measurements from 1258 d of SuperKamiokande data, Phys. Rev.
Lett. 86,5651 (2001).

Q. R. Ahmad et al. (The SNO Collaboration), Measurement of the rate of
Ve +d — p+ p + e interactions produced by & B solar neutrinos at the
Sudbury Neutrino Observatory, Phys. Rev. Lett. 87, 071301 (2001).

Q. R. Ahmad et al. (The SNO Collaboration), Direct evidence for neutrino
flavor transformation from neutral current interactions in the Sudbury
Neutrino Observatory, Phys. Rev. Lett. 89, 011301 (2002).

K. Eguchi et al. (The KamLAND Collaboration), First results from
Kamland: Evidence for reactor antineutrino disappearance, Phys. Rev. Lett.
90,021802 (2003).

2002 Raymond Davis and Masatoshi Koshiba won shares of the Nobel
Prize in Physics for their roles in the detection of neutrinos from the
Sun and Supernova 1987A: R. Davis, Jr., A half-century with solar neutrinos,
Reviewes of Modern Physics 75 (2003) 985-994.

2010 N. Scafetta, Fractal and Diffusion Entropy Analysis of Time Series:
Theory, concepts, applications and computer codes for studying fractal
noises and Levy Walk signals, VDM Verlag Dr. Mueller, Saarbruecken 2010.

2014 Analysis of Solar Neutrino Data from SuperKamiokande I and I,
Entropy 16, 1414-1425.

In physics one is used to be confronted with either difficult experimental
results or ambitious theoretical considerations in one way or another. The
time series of data from solar neutrino experiments like Homestake (US)
and SuperKamiokande (Japan) appear to be noisy and irregular. The
authors have analysed solar neutrino data from the two experiments since
1974 by applying mathematically rigorous Fourier analysis, wavelet
analysis, Lomb-Scargle periodograms. In the case of the
SuperKamiokande solar neutrino data we made the decision to study the
data with Standard Deviation Analysis (SDA) and Diffusion Entropy
Analysis (DEA). The purpose is to study the scaling exponent of a complex
time series that may manifest long-range correlations and fractal statistics.
Scaling analysis (SDA, Hurst analysis, Detrended Fluctuation Analysis, etc.)
relays on the assumption that physical data are characterised by fractal
Brownian memory. Such methods of scaling analysis are based on the
evaluation of the variance of a diffusion process. DEA does NOT relay on the
assumption of fractal Brownian memory. DEA evaluates the scaling



exponent of the probability density function (pdf) through the Shannon
entropy of the diffusion process generated by those fluctuating data. SDA ad
similar methodologies evaluate only the scaling of the variance and NOT the
pdf scaling. One can call “H” (Hurst) the scaling exponent detected by means
of the variance-based methods (SDA) and “delta” the scaling exponent
detected by DEA. Our results show that “H” and “delta” are not identical.
This means that the SuperKamiokande data are not characterized by fractal
Gaussian statistics. It further means that the data are characterized by Levy
statistics. Additionally, we found that “delta” < 1 which clearly indicated
Levy flights and super-diffusion. This research result, by analysing
SuperKamiokande data, did even allow us to identify the fractal differential
equation that is guiding the now called solar neutrino probability density
function (pdf). This pdf we identified in terms of a Fox H-function
H[1,1;2,2]. The solar neutrino pdf was discovered by analysing
SuperKamiokande experiment data. The opposite (and most welcome!)
approach to the SuperKamiokande experiment has been published in
papers titled

Probability Density Function for Neutrino Masses and Mixings, Phys.
Rev. D94, 115004 (2016) and

Mellin Transform Approach to Rephasing Invariants, Phys. Rev. D102,
036001 (2020).

The authors discover the solar neutrino probability density in terms of
Fox’ H-function by assuming the probability density function:

p(z,t) = 5 f(&), (4.1)

where § denotes the scaling exponent of the pdf. In the variance based
methods, scaling is studied by direct evaluation of the time behavior of the
variance of the diffusion process. If the variance scales, one would have

o2 (t) ~ 31, (4.2)

T

where o2 (t) is the variance of the diffusion process and where H is the

Hurst exponent. To evaluate the Shannon entropy of the diffusion process at
time ¢, defined S(¢) as

S(t) = — [ dz p(z,t) In p(z,t) (4.3)

and with the previous p(x, t) one has



The solution of the generalized diffusion equation

Wl _ ga _ Dop(z,t), (4.4)

where _, DY is the fractional Weyl operator, is

1 1 tl/a 1,1 |33'| (L%)a(lal)
p(z,t) =3 m Ty Ha) {m—/ (1,1),<1,§)

11 peries TUEENCH) (_lal )Yy
— a|x| 2w Je—io0 F(—s)I‘(1+%) Ktl/a S
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Since these discoveries, Borexino and KamLAND experiments have
measured the neutrino fluxes from different solar nuclear fusion processes,
such as pp, pep, ’ Be, and Carbon-Nitrogen-Oxygen cycle:

M. Agostini et al. (The Borexino Collaboration), First simultaneous
precision spectroscopy of pp,  Be, and pep solar neutrinos with Borexino
phase-II, Phys. Rev. D 100, 082004 (2019).

M. Agostini et al. (The BOREXINO Collaboration), Comprehensive
measurement of pp-chain solar neutrinos, Nature 562, 505 (2018).

A. Gando et al. (The KamLAND Collaboration), “ Be solar
neutrino measurement with KamLAND, Phys. Rev. C 92, 055808 (2015).

M. Agostini et al. (The BOREXINO Collaboration), Experimental evidence
of neutrinos produced in the CNO fusion cycle in the Sun, Nature (London)
587,577 (2020).

All measurements to date are naturally explained by neutrino flavor
change due to neutrino oscillations with matter effects predicted by
Mikheyev, Smirnov, and Wolfenstein, termed the MSW effect: higher energy
neutrinos undergo adiabatic conversion from the electron flavor state to the
second mass eigenstate. While neutrino oscillations and MSW effect is
consistent with all current solar neutrino measurements, two distinctive
predictions are yet to be observed: the characteristic energy dependence of
the solar neutrino electron-flavor survival probability P..(E,) distortion
due to the MSW effect in the Sun and the day/night flux asymmetry induced
by the matter effect in the Earth. One of the interests of solar
neutrino experiments is to determine the neutrino oscillation parameters of
Amg1 and sin? Aqs. Independent of solar neutrino measurements, the



KamLAND experiment used reactor anti-neutrinos to measure the same
oscillation parameters, assuming CPT symmetry holds:

S. P. Mikheyev and A. Y. Smirnov, Resonance amplification of oscillations
in matter and spectroscopy of solar neutrinos, Sov. ]. Nucl. Phys. 42, 913
(1985).

L. Wolfenstein, Neutrino oscillations in matter, Phys. Rev. D 17, 2369
(1978).

A.]. Baltz and ]. Weneser, Effect of transmission through the Earth on
neutrino oscillations, Phys. Rev. D 35, 528 (1987).

J. Bouchez, M. Cribier, J. Rich, M. Spiro, D. Vignaud, and W. Hampel,
Matter effects for solar neutrino oscillations, Z. Phys. C 32, 499 (1986).

E. D. Carlson, Terrestrially enhanced neutrino oscillations, Phys. Rev. D
34,1454 (1986).

M. Cribier, W. Hampel, J. Rich, and D. Vignaud, MSW regeneration of solar
V. in the Earth, Phys. Lett. B 182, 89 (1986).

S. T. Petcov, Diffractive like (or parametric resonance like?) enhancement
of the Earth (day night) effect for solar neutrinos crossing the Earth core,
Phys. Lett. B 434, 321 (1998).

P. Bakhti and A. Y. Smirnov, Oscillation tomography of the Earth
with solar neutrinos and future experiments, Phys. Rev. D 101, 123031
(2020).

A. Gando, Y. Gando, H. Hanakago, H. Ikeda, K. Inoue, K. Ishidoshiro et al.
(The KamLAND Collaboration), Reactor on-off antineutrino measurement
with KamLAND, Phys. Rev. D 88, 033001 (2013).

Many subsequent radiochemical and water Cherenkov detectors
confirmed the deficit, but neutrino oscillation was not conclusively
identified as the source of the deficit until the Sudbury Neutrino
Observatory provided clear evidence of neutrino flavour change in 2001.
Solar neutrinos have energies below 20 MeV and travel an astronomical
unit between the source in the Sun and detector on the Earth. At energies
above 5 MeV, solar neutrino oscillations actually take place in the
Sun through a resonance known as the MSW effect, a different process from
the vacuum oscillation. The transition between the low energy regime (the
MSW effect is negligible) and the high energy regime (the oscillation
probability is determined by matter effects) lies in the region of about 2
MeV for the solar neutrinos. The MSW effect is important at the very large
electron densities of the Sun where electron neutrinos are produced. The
high-energy neutrinos seen, for example, in Sudbury Neutrino Observatory
and in SuperKamiokande, are produced mainly as the higher mass



eigenstate in matter and remain as such as the density of solar material
changes. When neutrinos go through the MSW resonance the neutrinos
have the maximal probability to change their nature, but it happens that
this probability is negligibly small this is sometimes called propagation in
the adiabatic regime.

The Corona

= The ionized elements within the corona glow in
The Convection Zone /" the x-ray and extreme ultraviolet wavmaggm
e 3 NASA instruments can image the Sun’s corona at
these higher energies since the photosphere is
quite dim in these wavelengths.

Energy continues to move toward the surface
through convection currents of healed and
cooled gas in the convection zone.

The Radiative Zone i, v ;

Energy moves siowly outward—taking " .‘ o Y 2 "«.\S(I'I’S Core
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the layer of The Sun known as the radiative . . ¥ Enﬂmhnummdwnmnmﬂw!m_cm

20n8. . ¥ v creating extreme temperatures deep within the
; b F Sun'score.

"_The Chromasphere

2 The relatively thin layer of the Sun called the
poronal Streamql_'f_'__ LoX B . chromosphere is sculpted by magnetic field lines
The outward-flowing plasma of the corond. - That festrain the elecirically charged solar plasma.
Is shaped by magnetic field fines Into tapered DOecasionally larger plasma features—calied
forms called coronal streamers, which exend e g prominences—jorm and extend far into the very
millions of miles into space. N, lenuous and hot corona, somelimes ejecting

material away from the Sun.

Fig. 4.7 Nuclear Astrophysics: The diagram shows the internal structure of the Sun. The interior of the
Sun is a ball of swirling hot plasma that is held together by a balance of forces between gravity and
pressure. The dense gases inside the Sun are so massive that they create a strong gravitational pull, which
helps to keep solar material from escaping. As a counter force, the expanding hot gases create a large
amount of pressure pushing outward toward the Sun’s surface. The push and pull between gravity and
pressure create conditions that maintain the three interior regions of the Sun: the core, the radiative
zone, and the convective zone. The core is the centre of the Sun and extends about a quarter of the way
to the surface. About half of the Sun’s mass is within the core. Even though the core is made of gas, it is
10 times denser than lead. It is also the hottest region of the Sun, about 15 million degrees Celsius (27
million degrees Fahrenheit). The Sun’s core is the only place in our solar system where the temperature
and density conditions are high enough for nuclear fusion reaction to occur naturally. The nuclear



reactions within the core fuse hydrogen atoms into helium atoms, releasing extremely large amounts of
energy in the process. Some of the energy that is created in the core travels to the surface of the

Sun through the Sun’s atmosphere, and out into space, enough of it reaching Earth’s surface to sustain
life. An in terms of physics, very important by-product of the nuclear reactions are the neutrinos

The Chap. 5 “Nuclear Astrophysics, 2025 Update”, first, gives the explicit
evaluation of the basic reaction-rate probability integral and its
representations in computable series form. Then, a more general form of
the reaction-rate probability integral, which can be called the generalized
Bessel integral, is examined. Here also, computable series forms are given.
Connection of this model to Kratzel integral, Kratzel transform, inverse
Gaussian density etc. is established. Next, Mathai’s pathway extension of the
reaction-rate probability integral is explored. The discussion so far is for
real scalar variable situations. A multivariate extension or a p-variate model
for the generalized reaction-rate integral is explored. This is then extended
to the corresponding integral in the complex domain. Next, areal p X g
matrix-variate integral is discussed, which can be considered as the real
matrix-variate extension of the reaction-rate probability integral. Then, the
matrix-variate integral is extended to the complex domain. All the above
topics can be considered as Mellin convolutions and M-convolutions of a
product involving generalized gamma functions as the basic functions. Next,
other functions are incorporated into a Mellin convolution of a product. It is
shown that when a type-1 beta form of the function is considered, one can
reach fractional integral of the second kind. This idea is extended to real and
complex matrix-variate cases. Then, a Mellin convolution of a ratio is
examined and its connections to fractional integral of the fist kind are
established. These ideas are extended to matrix-variate cases in the real and
complex domains. The purpose of this chapter is to discuss mathematical
aspects connected with generalized reaction-rate probability integral so
that physicists and others can explore the possibility of the corresponding
new physics or communication theory.

The Chap. 6 “Neutrino Astrophysics, 2025 Update: The Entropic
Approach to Solar Neutrinos” is utilizing data from the
SuperKamiokande solar neutrino detection experiment and analyses them
by diffusion entropy analysis and standard deviation analysis. The main
result of analysis indicates that solar neutrinos are subject to Lévy flights
(anomalous diffusion, super-diffusion). Subsequently the chapter derives
the probability density function and the governing fractional diffusion
equation (fractional Fokker-Planck Equation) for solar neutrino Lévy flights.



The conclusion is Does SuperKamiokande Observe Lévy Flights of Solar
Neutrinos?

The Chap. 7 “Neutrino Astrophysics, 2025 Update: Neutrino Masses and
Mixings” is addressing one of the highest priorities in fundamental particle
physics concerning the discovery of non-zero neutrino masses that remains
one of the very few hints regarding the nature of physics beyond the
Standard Model of Elementary Particle Interactions. The questions about
neutrino properties still remain unanswered, such as the their absolute
masses, the ordering of the mass states and the charge-parity violating
phase. The neutrino sector of the seesaw-modified Standard Model is
investigated under the anarchy principle. The anarchy principle leading to
the seesaw ensemble is studied analytically with tools of random matrix
theory. The probability density function is obtained (Fig. 4.7).
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5.1 Explicit Evaluation of the Thermonuclear Reaction-
Rate Probability Integrals

For the sake of ready reference, the basic materials will be restated here. Let z; > 0
and o > 0 be two real scalar positive variables with the associated functions fi(z1)
and f5(x,) respectively. Let the joint function of 1 and x5 be f;(z) fo(z3), the
product. If z; > 0 and 2 > 0 are real scalar random variables with the densities
fi(z1) and f2(x3), then we say that 21 and x5 are statistically independently
distributed when we take the joint density as f1(z1) f2(z2), the product. Let

u = 1T the product. Consider the transformation v = x4, v = 5. Then, we can
see that the wedge product of differentials are connected by the relation

dr; ANdzy = %du A dv and then the marginal function of u, denoted by g(u), is

given by the following:
w) = [o° TH(E) HEdv = [ 5 A1) f(3)dv (5.1)

where the second form of the integral is obtained by taking the transformation as
u = 122 and v = x1. Now, consider the evaluation of the following integral denoted
by Ia,b:

_1
Iy = [ v te ™™ P do. (5.2)

This (5.2) is the basic reaction-rate probability integral in nuclear reaction-rate
theory (Mathai and Haubold 1988). Let us denote the Mellin transform of a real-
valued scalar functlon f(x) of the real scalar variable x, with Mellin parameter s, as
Mj(s), thatis, Ms(s) = [, #* ! f(z)dz whenever the integral is convergent. In

order to evaluate the integral in (5.2) by using (5.1), let us take


https://doi.org/10.1007/978-3-031-83387-8_5

1
2
1

o0 1
fi(zi1) =e 1,21 > 0= My (s) = / zr:i*le*g”12 dz; = 2T'(2s),R(s) > 0
0

where 2R(-) denotes the real part of (-), and let

fa(x2) =zye7 %229 > 0,0 >0 =

5.3
My (s) = [P ) leday = Dy + s)a- ), R(s) > —R(y). O

Note that
u ,(g)% T 1 2
fl(_):e i=e" T =>b=u?oru=>

and %fg (v) = %v”e*‘w — 97" le™%, Note that, by taking the Mellin transform of g in
(5.1), we have M, (s) = My, (s)My,(s), which is the Mellin convolution of a product
property also. This property is established easily.

) = [y u du_fu OU val( )fz(v)dv}du

P Aleet enin e - a0 O

where we have reused the same transformation © = x5 with the associated
Jacobian dz1 A dzy = %du A dv at the second line of the above derivation. Now,

from (5.3) and (5.4), we have
M,(s) = My,(s)M,(s) = 20(2s)a~00(y + ), R(s) > 0, %(s) > ~R(3).(5.5)
Then, by taking the inverse Mellin transform of (11.5) we have g. That is,

g(u) = = CCJ;ZO 2T(28)L(y+ s)(au)*ds (5.6)

where i = 4/(—1) and c in the contour is any real number > 0. This, (5.6) can be
written as a H-function. That is,

2,0
g(u) = FHyslau| g ), u > 0. (5.7)
For the theory and applications of the H-function, see Mathai et al. (2010). By using

the duplication formula for the gamma function, see for example, Mathai (1993), one
can write

2T (25) = 7 222°T(s)T(s + 1). (5.8)

Now, the integrand in (5.6) can be written as
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which enables us to write the H-function in terms of a G-function, that is,

g(u) = 5 Gos[ %]y 1, u>0. (59)

a77r

For the theory and applications of the G-function, see, for example, Mathai (1993).
Note that in the gamma product I'(s)I'(s + 5 )T'(y + s) the poles are simple as long

as vy is not an integer or half-integer. In this case, one can write the G-function
representation in (5.9) in terms of simple hypergeometric series. Note that the poles
of I'(s) areat s = —v,v = 0,1, - -. The poles of I'(§ + s) are at

s=—3—V,v= 0,1,---andthepolesofF(7+s) areats = —y—v,v=0,1,---
Hence, fory # % ,v = 0,1, - - - the sum of the residues at the poles of I'(s) is the

following, denoted by Sy:
S =Y, ST ~I)O =)
=T(3)TN X0 7 (§w)” (5.10)
( ) (’Y) ( _%%;—%U);U:b2a

where, for example, (a),, =a(a+1)---(a+m —1),a # 0, (a), = listhe
Pochhammer symbol. For writing (5.10) in terms of the hypergeometric series o F5,
we have used basically two properties:

lim,, , (z+v)['(2) =lim,, , (z+v) wf(z)

(z4+v-1)-- -2
. ’ (5.11)
. I'(z+v+1 -1 -1
:llmz—>—1/ [(z—l(—ytl_)'_)z] = (]/!) F(l) - %
I'z) =-1)(z—-2)---(z—v)['(z—v)=>
_ I'(2)
L(z—-v) = D2 () (5.12)

_ (=1" _ (=
T (1-2)(1—2+1)- - (1—2+v-1)  (1-2),

whenever I'(z) and I'(z — v) are defined. Now, evaluating the sum of the residues at
the poles of I'(s + 1), thatisats = —4 — v,v =0, 1,..., we have the following,

denoted by So:
(5.13)



The sum of the residues at the poles of I'(s + ) or at the points
s=—vy—v,v=0,1,...,1is the following, denoted by S, by using steps parallel to
the ones used in (5.10) and (5.13):

s =2, G (2) T (—y — )T (% — 7 —v) ()"
:F(_’Y)P(E_'Y)(Tu) 0F2( ;1+77%+7;_%)7u:b2'

From (5.10), (5.13) and (5.14), we have the following series form for I, ;, which will
be stated as a theorem.

(5.14)

Theorem 5.1 Fora > 0,b > 0,93(y) > 0, the reaction-rate probability integral

1
oo 1. —ar—br~ 2 _ 2 2,0 2
Ly = [y 27 e *de = 5 Hy, [ab |(0,2),(7,1)]’u >0

:a_VW_%Gg’g[ },uZOand fory# 5,v=0,1,...

4 lo, L

’2’

Lap :F(%)F(V)o%( ;1—%%;—“71’2)

Note 5.1 Theorem 5.1 can also be established by using statistical procedures. In
this case, consider two real scalar positive random variables £; > 0, z5 > 0,
statistically independently distributed with densities f1(x1) and fa(z2) respectively.
Due to independence, their joint density will be the product fi(z1) fa(z2). Let

u = x122. Consider the (s — 1)th moment of u, that is E[u®~!] where E[-] means the
expected value of [-]. Due to independence,

) =E(z1" ) (z571), B(u*™) = [ u* " g(u)du = My(s)
Y = e fi(m)de = Mfl(s)

E(zs') = =[x L fo(xa)dzy = My, (s) =

My(s) = My, (s )Mfz( )

where g(u) is the density of u, which is to be determined. We can take the same
functions fi(z1) and f2(x2) as in Sect. 5.1 but in this case, multiply by the respective

E(sl

ZB 1



normalizing constants to construct densities out of those f; and f». These,
normalizing constants get canceled in the equation My(s) = My, (s)Mjy,(s) and
hence the inverse, namely g(u) will be one and the same as obtained in Sect. 5.1. The
original derivation of the reaction-rate probability integral in 1984, which was
reported in Mathai and Haubold (1988), was done through statistical distribution
theory as described in this Note 5.1. When + is an integer or a half-integer, then some
of the poles can be of order 1 and the remaining of order 2. In this case, one can
obtain computable series forms involving gamma function, psi function and
logarithm, details may be seen from Mathai (1993) where the techniques of deriving
the residues from poles of all types of orders are given.

5.2 Generalization of the Reaction-Rate Probability

Integral
A generalization of the integral I, is the following integral:

Lp(8,p) = fg7 v te ™ 0 dy (5.15)

fora > 0,b > 0,5 > 0,p > 0,9(y) > 0. For the evaluation of the integral (5.15)
also, we can proceed exactly as in the case of the integral I, of Sect. 5.1. Before the
integral is evaluated, let us consider some particular cases. Ford =1, p = 1, (5.15) is
the basic Bessel integral. For § = 1, p = 1, the integrand in (5.15), normalized, is the
inverse Gaussian density. Ford =1, p = %, it is the reaction-rate probability integral

in nuclear reaction-rate theory. For § = 1 and general p, it is Kritzel integral and
Kratzel transform is associated with it. Mathai (2012) has created a statistical
density out of (5.15) and studied its properties. We may call (5.15) as a generalized
Bessel integral. (5.15) is also known in the literature by different names such as
generalized gamma integral, ultra gamma integral and super gamma integral. From
the series representations, it is obvious that (5.15) does not belong to the gamma
family of functions, see also Mathai (2016). For the evaluation of (5.15), consider

fi(z1) = e Tl = My (s) = fooo wi_le_mfdzcl = %I‘(%),?ﬁ(s) >0,p>0 (5.16)

f2(z2)

Y, —axd _ oo yts—1_ —az?
Tye % = My, (s) = [, zy e *adxy

s yio (5.17)
%I‘(str )a_(T),fR(s) > —R(y),0 > 0,a > 0,R(y) >0

where M, (s) and My, (s) are the Mellin transforms of f; and f5 respectively, with
Mellin parameter s. Let u = 129 and v = x5 with the joint function fi(z1) f2(x2),

the product. Let g(u) be the function associated with u. Then,
(5.18)



o) = [ LA(2) Bo)do = [7* LHi(0)f(2)dv

where the second part integral is obtained by taking £; = v in the transformation
u = z1x2. Now, for R(s) > 0,R(s) > —R(v),R(y) > 0= R(s) >0,

My(s) = Mj,(s)Mp,(s) = =T (£ )0(252 o
_ 1 s s _s
= p(;m/aF(;)F(% +5)a .
Therefore, from the inverse Mellin transform,
c+ioco s s 1 =8 1,
g(u) = paiv/é # c:.oo F(;)F(% + 3) (aéu) ds,u =bv,i = +/(—1). (5.20)

As shown in Sect. 5.1, this (5.20) can be written in terms of a H-function, namely,

(5.19)

2,0 1 1
9(w) = S5 Hy, [“‘5“‘«),,)) <w)} u="b (5.21)

where the c in the contour is such thatc > 0,0 > 0, p > 0,93(-y) > 0. Consider the
special case p = 4. In this case, one can write the H-function in (5.21) in terms of a G-
function. Replace % by s, thereby s by ds and ds by dds. Then, we have the following:

g(u) :ﬁﬁfgt@o (s)T (% + s)(au’) “ds,c; > 0
= GQO[au5|Ol},uZO,u:b?,p:5
1

6a7/ s

(5.22)

where G(-) is the G-function as explained in Sect. 11 or see Mathai (1993). Then, for
% #v,v=0,1,...the poles of the integrand in (5.22) are simple and then
proceeding as in Sect. 5.1, we have the following result:

Theorem 5.2 For the g(u) defined in (vii) above, the following is the explicit
computable series form when 72 v,v=20,1,..

g(w) = 7w (5 )OFl( ;1 — Tiaud)
+T(=3) (ou?) o Fi ;1+%;au5),u:b%] (5:23)

where ¢ F is the classical Bessel series. The details of the derivation are omitted
because the derivation is parallel to that in Sect. 5.1.



5.3 An Extension Through Mathai’s Pathway Idea
In a physical system the ideal behavior of a variable x, under observation, may be
governed by the function e ®* ", b > 0, p > 0. But, in a practical situation the

behavior may be e % " or in the neighborhood of this ideal behavior. The ideal
function and its neighborhoods are covered by the function

(1+b(g—1)z ") 7T — et for ¢ > 1. (5.24)
Forg<1l,g—1=—(1—-¢q),q < 1andthen
(1—0d(1- Q)w_p)%q —e " when1—-b(1—-qg)z”>0andg<1. (525)

Thus, for —oo < g < 1, the binomial form in (5.25), for 1 < ¢ < o0, the binomial
form in (5.24), and for ¢ — 1, the exponential form e ** *, are all reached through
the parameter ¢, and either from the binomial from in (5.24) or from the binomial
form in (5.25). From these observations, Mathai (2005) proposed a rectangular
matrix-variate model, known as Mathai’s pathway model. If the pathway model is
taken for a real scalar positive variable, then it will be either the model in (5.24),
which can switch into (5.25) or vice-versa. Consider the following integral, denoted
by I,5(d, p;q), where the pathway idea is incorporated:

Ia,b((sa p;Q) = fooo ’U’y_le_‘wé[l + b(q — 1)U_p]_q+1dv

1/p 1
= fo(b(l_q)) v7_1e_‘”’6[1 —b(l—q)v?]T7,g<1,1-b(1—q)v " >0
— a,b(57 Pal) - Ia,b(67 p) for q— 1.

Again, we will evaluate the integral I,, (4, p;q) by using the Mellin convolution of a
product property. Let us consider the case ¢ > 1 first.
1

Case 5.1 ¢ > 1. Let fi(z1) = [1 + (g — 1)z?] 7T and fo(axs) = z]e 4. Then,

My (s) = [y =3 "1+ (g— D] T der,b= v’
s T(2)D(-—2) (5.26)

g-1 p

= +[(g~ DI =

q—1

forg > 1,p > 0,9R(s) > 0,R(s) < q_Ll where the integral is evaluated with the
help of a real scalar type-2 beta integral.

Y+s

My, (s) = [;° :U;Jrs*le*‘”gdxg = %a*TI‘(W?) (5.27)




for R(s) > —R(y),R(y) > 0,a > 0,8 > 0. Then, from the Mellin convolution of a
product property, the Mellin transform of g, the function corresponding to u = zx2,
is the following:

—S

My(0) = e () () (7 - 5) (520

ford > 0,p > 0,a >0,g>1,0 < R(s) < ﬁ, b = u”. Hence, from the inverse

Mellin transform, the function g(u) is available as the following, where
¢l = pécﬂ/‘SI‘(L1
—

gu) = et [T T(H)D(E)0 (- 2 )lat - 1)7u] ds
1 (1- 2

2.1 1 1) 1 (529)
= cHy, [aF(q Pu‘ q)(% %)} u>0,u=>br.

But, for p = §, we may replace by s thereby s by s and ds by dds. Then, g(u) of
(5.29) can be written in terms of a G-function as the following:

1
g(u)zmcﬁ;[ab 1)\07 ,u>0,p=06u=>br,g>1  (530)

That is, g(u) of (5.30) is given by the following, for ¢; ' = 5a7/‘511(qi—1), q>1:

o) = ergts [T TO(F + s>r(q—z —a)lablg—1) s (531

where the c in the contour is such that 0 < ¢ < —%. This G-function in (5.31) can be
evaluated as the sum of the residues at the poles ofI‘(s)F( + s). The continuation
part gives a divergent series. The poles of I'(s)I'( % + s) are simple if

% #v,v=0,1,....Hence, in this special case we will write down the computable

series form for the function g(u). The steps are parallel to those used in Sects. 5.1
and 5.2 and hence the final result will be stated here as a theorem.

Theorem 5.3 Ford=p,q>1,+ #v,v=0,1,...,9(u) of (5.31) above is the
following, where c¢; is given in (5.31) above and u = b%, p=24,q>1:



Observe that the confluent hypergeometric series 1 F is convergent for all values of
ab(q —1).
1
Case 5.2 ¢ < 1. Let fi(z1) = [1 — (1 — ¢)2?] 77, ¢ < 1 and fy(xs) = z]e .
Then, their Mellin transforms are the following, where the computational steps are
parallel to those in the case ¢ > 1 and hence the details are not given here:

s o D+
;>(1_Q) T(L 1+ 2)

My, (s) = %F(

for R(s) > 0,p > 0,q < 1.
1 Y+ s _ots
Mfz(s):gI‘< 5 )a 3

for R(s) > —R(y) > 0,R(y) > 0,a > 0,9 > 0. Therefore, the Mellin transform of
u = x122, when the joint function is f1(x1) f2(z2), is given by the following:

—S$

CT( 41 TN

M,(s) =
o(#) pda?/d  T(1+ %q +2)

=

(as(1—q)7)

ford > 0,p > 0,9 < 1,7R(7) > 0,a > 0,9R(s) > 0,u” = b. Therefore, from the
inverse Mellin transform, the function g(u) for u” = b is the following, for
P(1+1)

C2 = 5pa’¥/5

. 1 c+ioo F(%)F(ﬁs) 1 1.8
9(u) =ergg Jetios Tz (@2 (01— q))7) ds
1 1 (5.33)
= c2HoY ot (b(1 - )|

fora > 0,5 > 0,p > 0,R(v) > 0,b > 0,q < 1. As in the case for ¢ > 1, here also
we can represent g(u) in terms of a G-function for the case p = d. Let p = J. Now,
replace £ by s thereby s by ds and ds by dds. Then, ¢, of (5.33) changes to ¢, where
c} is the same ¢y with p removed from the denominator because this is canceled
from the § coming from dds. That is,

c+ico T(8)T(L+s) —s
g(u) = chgr [ m[ab(l —q)] "ds

) (5.34)



where the c in the contour is any real number > 0. Note that for % #v,v=0,1,...

the poles of the integrand in (5.34) are simple. Hence, in this case, proceeding as in
the case of ¢ > 1, we have computable series form, which will be stated as a
theorem.

Theorem 5.4 Forg<1,p=46,+ #v,v=0,1,...,g(u) in (5.34) is given by the
following series forms:

P(l++5) | I(?)
g(U) - da/d |:I‘(1+61;q) 1F1 (_%q,]- - %, - a/b(]. — q))
(5.35)
I'(—5) a . .
ey lab(— @)y (F - it + i - ab(1 - q))}

fora > 0,6 > 0,a >0,b> 0,9 < 1,R(7y) > 0,u” =b,p=96.

Note 5.2 Note that

1
lim [1+a(q — 1)z =" = e 95,

ql—)l

Hence, one may consider an extended integral I, ;(d, p) as the following, denoted by
Iaab(57 p;q17 q2)) Where

1

Lap(8, p3q1,q2) = / VM1 +a(gr — 1)v)] T [L+b(ge — v ] BT dw
0

forqg; > lorq; < 1orgq; — 1andthenindependentlygs > 1,q2 < 1,q2 — 1.
Thus, there are nine situations in the above integral. Such an integral called “a
versatile integral” was evaluated in Mathai and Haubold (2019). The above versatile
integral can also be handled by using the procedures in Sects. 5.1, 5.2, 5.3. Hence, this
will not be discussed in detail here.

5.4 The Pathway Extended Reaction-Rate Probability

Integral

The following are three different extended forms of the basic reaction-rate
probability integral in the real scalar positive variable case:

_1
Lp(q1) = [0 1+ a(qn — 1)v]_rl—1e_b” “dv,qp > 1 (5.36)

1 (5.37)
Lp(q2) = [y v te @1 +b(g2 — 1)v*%]_q2—‘1dv, g > 1



Lp(q1,2) = [o v 1+ a(q — 1)”]

N (5.38)
X[1+b(ga —1)v 2 = dv,q; > 1,j=1,2.

Observe that in the first two integrals, (5.36), (5.37), there are three situations each,
namely g; > 1,q; < 1,q; — 1. In the third case (5.28) there are nine situations, and
each situation is an extended form of the reaction-rate integral except the original
basic integral. The techniques used in Sects. 5.1, 5.2, 5.3s can be applied to derive the
H-function format or G-function format or series forms for the left side in each of
(5.36)-(5.38). For the sake of illustration of the techniques, we will evaluate one of
the above integrals.

Case 5.3 Evaluation of the first integral, g; > 1

The integral to be evaluated is the following:

_1
Liy(q1) = [P0 14+ a(gr —1)v] a'e dv, q1 > 1.

: L
Let f1(z1) = _zlf and fa(z2) = 9|1 + a(q1 — 1)za] @T. Then,

fi(3) = _(%) = _bvfj,b:u% = u = b
Mfl - f() $Fdw1
= 2f0 25— e*ydy (539)

=2I(2s) = 7 722T(s)(s + 1),

for 23(s) > 0. Observe that I'(2s) is expanded by using the duplication formula for
gamma functions, which was already illustrated before.

Mp(s) = [y a3 1[1+a(ql—1>m21 T da
— a(q, —

;)

for R(s) > —R(y),R(s) < q1—1—1 —R(v),¢1 > 1,a > 0,R(y) > 0. Then, from the

Mellin convolution property, the Mellin transform of g is the following:

xT(s)T'(s+ 3)T(v+ s)I‘(qlL_1 —y— s)



forg; > 1,a > 0,7R(y) > 0,0 < R(s) < ql—il. Then, from the inverse Mellin
transform g(u), which is the integral to be evaluated, is the following:

g(w) =eig [TIT(s)D(s + 5)0(y + 5)
><I‘( q11—1 —y— s) [M] Tds

1
_ G371 a(qg1—1)u Ty a1-1
=1 b3 4 |0,%,7

(5.40)

cfl = %[(ql—l)]7F< )q1>1a>0u—b2b>0

Observe that one can evaluate (5.40) as the sum of the residues at the poles of
I'(s)['(s + +)I'(y + s) because the continuation part is divergent. The poles are
simple when -y is not an integer or half-integer. We will obtain the series form for this
case. The method is the same as the ones used in Sects. 5.1-5.3 Hence, the final result
will be written as a theorem.

Theorem 5.5 Forvy # =,v=0,1,...,g(u) of (5.40) is the following for
u="b%a>0,b>0,q > 1:

_1
g(w) = [0 1+ a(g — 1) aTe ™ *dv
e (st )
ﬂ[a(qllmr(q;—l){ ()T
a 1—1 b2
X1F2(q1 T 7;%,1—7;—%)

P(— VD (- D)L — oy 1) [elap]? 5.41
"'(2)(7 2) -1 Yt 3 Z (5-41)
X1F2(Q1 1 a(Qlll)b )

s(qi—1)p2 17
AT (% = )0k ) [

T e R )}

1.3 3 .
YTy T

Case 5.4 Firstintegral,q; < 1
Consider

1
al-qp) 1 1
Ia,b(Ql) :/ a1 vfy—l[l . a(l _ Q1)U] 1jq1 e—by 2dv
0



forqg1 <1,a >0,b> 0,1 —a(l —g1)v > 0. We use the same technique as before.
Here fi(z1) remains the same with My, (s) = mT[(s)[(s + 1)4%,%(s) > 0.But,
f2(z2) will be different;

fo(zs) =z[1 —a(l - ql)xl]ﬁ =

(yts) DOFOT(L+ )
Mp(s) = la(l— )] " S

for R(s) > —R(y),R(y) > 0. From the Mellin convolution of the product property,
the Mellin transform of g(u) is the following:
_ o+ 1—1111 ) [a(l-q) ] i
My(s) = TS [ 4
L(s)(s+3)T(y+s)
D(1+ - +s)

fora > 0,q1 < 1,9R(s) > 0,9R(y) > 0. From the inverse Mellin transform, we have
g(u) as the following:

. c+zoo L(s)D(s+4)T(y+s) a(l—q)b2 | ~%
g( =Clong 2m f 1+W+S) [ 4 1 ] ds
a(1-g)b* (Mg q
— ClG?:g [ (1 4‘11)1) |0’ ;1’ 1 :| U= b2 (5.42)
P(1+)

C1 = —1

72 [a(l-q,)]

where c in the contour is any real number > 0,a > 0,b > 0,3(y) > 0,41 < 1. Note
that, as in the previous case, we can obtain a series from for g(u) when

v# %,v=0,1,...in which case the poles of I'(s)I'(s + 5 )T'() are simple. The
result will be stated as a theorem.

Theorem 5.6 For~y 3& <, v=0,1,...,the g(u) for case (2) in (5.42) above, is the

following, where c; is given in (5.42) above:
(5.43)



1
L(—5)T(v—7%) [a(l—q1)b2 ] 2
T | e
1 1 .3 3 a(1—q1)b?
><1F2 E_llh,?’?_ ) 41 )
T(—)T(5—7) [ a(1—q1)b? } g
R 5

_ 2
><1F2(7— %m;1+77%+7;M):|7QI <1

Note 5.3 If the integrals considered in Sects. 5.1-5.3 are extended to the whole real
line, then it can be achieved by replacing v in the integral by |v|, the absolute value of
v. For example, the generalized reaction-rate integral will then be of the following
form:

= || Le—lzI'~blal " dg (5.44)

fora > 0,b> 0,0 > 0,p > 0,%R(y) > 0. Corresponding changes may be made in all
other integrals such as I 4, 14.5(q1); La,5(q2), La5(q1, g2)- Mellin convolution of the
product of Maxwell-Boltzmann and Raleigh densities and their extended forms to
the whole line are covered in (5.44).

5.5 Generalized Reaction-Rate Probability Integral

in the Real Multivariate Case

There may not be any corresponding physics or reaction-rate probability integral or
Kratzel integral yet in what we are going to discuss in this section. These results may
be motivating factors for developing corresponding physics or communication
theory or engineering problems later on. Let X be a p X 1 real vector with

X' =[zg,..., a:p], where a prime denotes the transpose and the z;'s are distinct
(functionally independent) real scalar variables, —oo < z; < 00,7 = 1,...,p. Then,
y=X'X = :13% + -+ 33129 is an isotropic quantity, in the sense that y remains
invariant under the rotation of the axes of coordinates or under orthonormal
transformations, thatis, if Z = AX, AA' = I,, A'A = I, then Z'Z = X'X. Such
isotropic variables appear in different disciplines. X' X is associated with isotropic
random points in p-dimensional Euclidean space in geometrical probability
problems, see Mathai (1999). Also, X' X is associated with spherically symmetric
distributions in statistical distribution theory and related areas. Let us consider the
integral, denoted by I, (4, p) with I in bold,



L,5(0,p) = [y (X'X) Ve alX'X)'-bX'X) " q x (5.45)

fora > 0,b > 0,6 > 0,p > 0.

The following general notations will be used in this and coming sections. Real
scalar variables, whether they are mathematical variables or random variables, will
be denoted by lower-case letters such as x, y. Vector (ap X 1 or 1 X p matrix)/matrix
variables will be denoted by capital letters such as X, Y, whether the variables are
mathematical or random. Scalar constants will be denoted by a, b etc. and
vector/matrix constants by A4, B etc. Variables in the complex domain will be written
with a tilde such as Z, 9, X, Y. No tilde will be used on constants. The determinant of
ap X p matrix A will be written as |A| or as det(A). When 4 is in the complex

domain, then |A| = a 4 ib,i = /(—1), a, b are real scalars. Then, the absolute
value of the determinant is written as |det(A4)| = v a? + b%. Also, A* will denote the
conjugate transpose of 4, denoting the conjugate by A€ and transpose by A’. For the
p X g matrix X = (z;;), where the elements z;;'s are distinct real scalar variables,
the wedge product of differentials will be denoted as d.X = /\f:1 /\;1.:1 dz;;. If the

p X pmatrix Y = (y;;) = Y’ (real symmetric), then dY = A;>;dy;; = Ni<;jdy;;. For
two real scalar variables x and y with differentials dx and dy, the wedge (A) product
of the differentials is defined asdz AN dy = —dy Adz = dz Adz = 0,dy Ady = 0.
When the p x g matrix X = (% ,) is in the complex domain, then one can write
X=X +iX,y,i= \/m, X1, X, are p X g real matrices. Then, dX will be
defined as dX = dX; A dX,. In the coming sections, we will be considering only
real-valued scalar functions, the argument may be scalar/vector/matrix in the real

or complex domain. A statistical density will be defined as a real-valued scalar
function f{X) of X such that f(X) > 0in the domain of Xand [ f(X)dX = 1 where

X may be scalar/vector/matrix or a sequence of matrices in the real or complex
domain but f{X) has to be a real-valued scalar function. In the following discussions,
a result on Jacobian of matrix transformation is going to be frequently used. This will
be stated as a lemma here without proof. For the proof and for other related
materials, see Mathai (1997).

Lemma 5.1 Letthep X g,p < g matrix X = () of rank p in the real domain. Let
Y = XX'.Then, Y > O (real positive definite). Then, going through a
transformation involving a lower triangular matrix with positive diagonal elements
and a unique semi-orthonormal matrix and after integrating out the differential
element corresponding to the semi-orthonormal matrix, the following connection is
obtained between the differential elements d X and dY:

Pg
T2

Tp(3)

dX = Y|? T dy



where, for example, I', (@) is the real matrix-variate gamma function defined by the
following:
plp=1)

Lpla) =77 F(a)F(a—%)...I‘(a_pT—l

,R(a) > 22

N———

—

ptl —
= [72012]*" 7 e " DdZ, R(a) > *

m|

where tr(-) means the trace of (-) and Zis a p x p real positive definite matrix. Let X
be ap X q,p < g matrix of rank p in the complex domain with distinct complex
scalar variables as elements. Let Y = XX* > O (Hermitian positive definite),
where X * is the conjugate transpose of X. Then, going through a transformation
involving a lower triangular matrix with real and positive diagonal elements and a
unique semi-unitary matrix and then integrating out the differential element
corresponding to the semi-unitary matrix, one has the following connection:

g

dxX = det(V)|" "dY

I'y(q)

where, for example, the complex matrix-variate gamma function is defined as the
following:

p(p—1

F(a) =77 [(a)l(a—1)---T(a—p+1),R(a)>p—1
= [7.0ldet(2)|" "eDdZ
where Z is a p X p Hermitian positive definite matrix.

Let us continue the evaluation of our integral in (5.45). Fora 1 X p matrix we can
apply Lemma 5.1, to y = X' X considering X' be that 1 x p matrix. Then,

£ y4
dX = F’Eg)y?*ldy. (5.46)
Then,
r v L,
Los(8,0) = 77 Jo TRAR I S AL e 1) (5.47)

Now, comparing with our integral in earlier sections, the only change is «y there is
replaced by v + %. Hence, the explicit evaluation is available from the results in
earlier sections and hence further discussion is omitted. Now, for Xa p x 1 vector in
the real domain, consider the following extended integrals, denoted by I, I, I3 for
g1 > 1,99 > 1:



I = [y [X'X]"[1 +a(q — 1)(X'X))] " Te b X'X) "qx (5.48)

I = [y [X'X]%e *X0"[1 4 b(g, — 1)(X'X) "] = TdX (5.49)

I, = [ [X'X]"[1+ a(g — 1)(X'X)") 7 (5.50)

X[1+ b(ga — 1)(X'X) "] =7 dX.

Consider again, y = X'X and from (5.46) above, the differential element is available.
p

_m2_
(%)
becomes vy + % — 1 and X'X is replaced by y. Then, (5.48)-(5.50) become the

corresponding integrals of earlier sections and hence further discussion is omitted.

Then, in (5.48)-(5.50) we obtain a multiplicative factor , the parameter -y

5.6 Real Matrix-Variate Case
Let X = (z;x) beap X ¢, p < ¢ matrix of rank p in the real domain with pq distinct
real scalar variables as the elements z j;'s. Then,

br(XX) = 2000 X T (551)
because for any real matrix A = (aj), tr(AA") = tr(A’A) = the sum of squares of
all elements in A. Now, think of (5.46) as coming from a 1 x pq vector U so that UU’
is the sum of squares in (5.46). Hence, we may use the result from the previous

section on real vector-variate case. Here, one has pq variables instead of p variables
in the previous section. Now,

B pq
dX = 1“72221) y2 ldy,y = tr(XX'). (5.52)
2

Forap X q,p < g matrix of rank p in the real domain, let

Map(8,p) = [y [tr(XX")] e alsGX - blur(XX7 g x (5.53)
Ezq 00 pq g —p
- 1“7@) Jo yrtr e dy (5.54)

fory = tr(XX'),a > 0,b > 0,6 > 0, p > 0. Now, the integral in (5.54) is available
from the corresponding real scalar variable case with -y replaced by v + % and

hence further discussion is omitted. If there is a multiplicative factor in terms of a



determinant such as | X X'|” and trace factor [tr(XX")]", then the integral in (5.53)
becomes quite general. Can we evaluate such an extended Bessel integral or
reaction-rate probability integral. This will be explored next.

5.7 Most General Real Matrix-Variate Case

Consider againap X q,p < q real matrix of rank p with pq distinct real scalar
variables as elements. For § > 0,p > 0,a > 0,b > 0,R(vy) > p%l,%(n) > 0,
consider the integral

Moy (8, piv,m) = [x [ XX [tr(XX")]"

altr(XX")) bler(XX")] " 1 X . (5.55)

xXe

Note that, even though X has pq real scalar variables as elements, Y = X X' is
symmetric and positive definite with p(p + 1) /2 distinct real scalar variables in Y.
Let k = p(p + 1)/2. One can go from the differential element d X to the differential

element dT" where T is a lower triangular matrix with positive diagonal elements by
going from Xto Y = X X' and then from Y to T or one can go directly from X to T by
using another result from Mathai (1997), which will be stated here without proof.

Lemma 5.2 Let X = (z;;) beap X g,p < g matrix of rank p in the real domain
with pq distinct real scalar variables as elements x j;'s. Let T be a lower triangular
matrix with positive diagonal elements ¢;’s. Let Ube a p X g unique semi-
orthonormal matrix, UU’ = I,,. Let X = T'U. A unique choice of U can be made by
putting the condition that the first nonzero element in every row is positive. Then,

21 p
_ r_ __m q—j
X=TU,UU' =I,=dX = o {Htjj }dT.
p\ 2 j=1
In the corresponding complex case, Xisa p X q,p < g matrix of rank p in the
complex domain, T is a lower trlangular matrix in the complex domain with real and
positive diagonal elements ¢ ;;’s and U is a unique semi-unitary matrix UU* = = I,
Then,

> FET FTTT* e q—j)+
X =TU0,00* =1, = dX {Ht” }
Ty(q)
Now, continuing with the evaluation of our integral in (5.55), observe that
(5.56)
| XX'|= [T, 5, tr(XX') = t2(TT") = 3 1o, 5,



in the real case, and in the complex case, fj,. =tj1 + ity = \/(—1), tir1,tjr are
real scalar variables and then

|tj7’|2 = tﬂ«l + tjrz (5.57)

Let the total number of ¢;,’s be k. Then, in the real case k = p(p + 1) /2 and in the

complex case k = p?. The sum of squares of all the real elements in T or T can be
made into a single scalar quantity 72 where r is the polar radius, through a general
polar coordinate transformation. This transformation and the associated Jacobian
will be stated as a lemma without proof. For the proof and other details, see
Mathai (1997).

Lemma 5.3 Letzy,...,x;bereal scalar variables, —oo < z; < 00,5 =1,...,k.
Consider the following transformation to r and 6,’s:

1 =17 sin 6,
Lo =17 cos 6 sin 0y
Tj =7 cosby---cosb; 1sinb;,j=1,...,k—2,—F <0; <%
1 =7 cosby---cos O 1,—m<Op 1 <m.
Then,
k—
dzy A--- Adxy, = rF H|cos9 |k I dr AdOL A -+ - A dBk_q.
Jj=1

Now, let us apply Lemma 5.3 to the ¢ ;s in (5.56). Then, in the real case,
| XX|" = |TT'|" = {H] L (t %)7} The Jacobian part from Lemma 5.2 gives
szl ¢2-7 and therefore

Ji

k ¢« J
XX'dX = |TT'["dT = [ (t%)""* *dT

j=1
and hence the 7% coming from this product is
4_7 ay_
2 (rz)vﬂ 7 _ (rz)p(vﬂ) plp+1)/4 (5.58)

The total number of r? coming from tjr'sis
p(y+4) - plptl) +1) +n+ plptl) +1) — 5 =p(y+ %) + n— . The product of 6;’s



coming from the factor containing |T'T"| and the Jacobian part is integrated out in
Mathai (2003) and the result, denoted by Iy, is the following:

2Fp(’7+%)
L(p(y++4))?

1

I = R(y) > —+ + 5. (5.59)

Then, the integral in (5.55) is the following for u = tr X X'):

Ma,b(& P 7’]) = fX |XX’|7uﬂe*au57bu*PdX

_ 2) p(y+4)+n—5

o F(p(7+ ) f (r
xe—a@’)—b(?‘) dr (5.60)
L'y 2)+n-1

_ +4
o F(p(7+ ) fy 0¥’ o

xe W' b dy.

Now, the integral in (5.55) is available from the previous section by evaluating the
integral over y in (5.60) above.

5.8 Generalized Reaction-Rate Integrals in the Complex

Multivariate Case

Now, we look into the extension of reaction-rate integral and general Bessel integral
to the complex domain. First we consider the vector case and then the matrix-variate

case. Let X be a p X 1 vector in the complex domain with p distinct scalar complex
variables as elements Z;’s. Then,

XX =|#1]” + -+ [Tl = (ah + 2d) + -+ (25 + 23)

where Z; = 1 +izj2,1 = 1/(—1), 1, zj2 are real scalar variables. Consider the
transformation y = X *X. Note that y here is real also and y contains sum of squares

of 2p real scalar variables as opposed to p variables in the corresponding real case.
Apply Lemma 5.1 to y. Then,

S 2 2p P
_ 2 =—-—1 _ _r —1
dX = @) y2 ‘dy = T yPdy. (5.61)

Consider the following integral, even though it is real-valued, in order to distinguish

it from the corresponding real case, we will use a tilde.
(5.62)



Lp(6,0) = [y [X*X)Temel@ D' HED) g%
= Ty Jymo v e T dy.

Now, the integral in (5.62) can be evaluated by using the techniques in Sects. 5.1-5.3.
As in the real case, we can consider the pathway extended models also, which can all
be evaluated by making the transformation in (5.61) above and then using the
techniques from Sects. 5.1-5.3. Hence, we will only list the pathway forms here. For

simplicity, we will write them by using the symbol y = X* X and denoting them by
Ii,Is,I5forq; > 1,q2 > 1:

L = [3y ™ 1+a(g —1)y] “Te"dX (5.63)
jg = fX y’Y+P—1e—ay5[1 + b(q2 _ 1)y—P]qz+1dX (564)

Iy = [ey™ P 1+a(q— 1)) T [1+b(g2— Ly =TdX.  (5.65)

Observe that there are three situations each in (5.63) and (5.64), that is
g1 >1,<1,— 1and gy > 1,< 1,— 1 and there are nine situations in (5.65).

5.9 Complex Matrix-Variate Case

Let X bea p X q,p < g matrix of rank p in the complex domain with distinct pq

complex scalar variables as elements. Then, Y = X X * is Hermitian positive definite.
Note that

c o 9
tr(XX™) = ?:1 ZZ:1 |Zjk|” = ?:1 ZZ:1(5’3?1¢1 + f”?kz) (5.66)

where Z i, = Tji1 + 1T k2,1 = / (—1), Z jk1, T jk2 are real scalar variables. Thus,
there are 2pq sum of squares of real scalar variables in (5.66) above, as opposed to
pq sum of squares in the corresponding real case. Consider the transformation

Y= tr(X'X*). Then, we can apply Lemma 5.1 ona 1 X 2pq real vector and then we
have the following result:

y=tr(XX*) = dX = ”i yz ldy = T—yPr1dy. (5.67)

Now, for the p X q,p < g matrix of rank p in the complex domain, consider the

evaluation of the following integral:
(5.68)



— fX [tI' XX )] —(tr(XX* )) —b(tr(XX*)) dX

I Y+pg—1g—ay’ by *
I'(pq) fy:Oy © dy.

Now, the integral in (5.68) can be evaluated by using the techniques from Sects. 5.1-
5.3.

5.10 Most General Form in the Complex Matrix-Variate

Case

Let X = (1) beap x g,p < g matrix of rank p in the complex domain with pq

distinct scalar complex variables as elements. Then XX*=Y >0 (Hermitian
positive definite). Consider the integral

= [ |det(XX*)|"[tr(XX"]"

. L (5.69)
% e—a(tr(XX*))é—b(tr(XX*)) "X

Consider the transformation X = TU, where T is a p X plower triangular matrix

with real and positive diagonal elements and U is a p X q unique semi-unitary

matrix, OU* = I p- Then, after integrating out the differential element corresponding

to U, we have the following result, see also Lemma 5.2:

S A v a frp 20D g7
X =70 = aX = Z{ [, 6 Jof. (5.70)
Note that
tr(TT*) = 30 1%+ >, 5] (5.71)

where [£;|? = t?kl + t?m,fjk = tji1 + k2, ¢ = /(—1), k1, t k2 are real scalar
variables. Thus, there is a total of p + 2@ = p? sum of squares of real scalar
variables in tr(7'T*). In the notation of Lemma 5.3, k = p? in the complex case and
k = p(p + 1)/2 in the real case. Then, under the general polar coordinate

transformation in Lemma 5.3 we have the following, denoting the complex scalar

variables as Z1, ..., Zp:

iy A Adiy = rp”{ ?2:‘11 |cos 0j|p2‘j‘1}dr AdOrLA---dfpe 1. (5.72)



and tr(TT*) = r2. Sine and cosine of 6;'s are coming from the determinant
|det(T'T*)| and the integral over this function of §;s is already evaluated in
Mathai (2003) for the real and complex cases. For the complex case, it is the
following, denoted by Iy:

= 20, (y+
Iy = 108 R(7) > —g+p— 1. (5.73)

_1
In the complex case, combining all factors of % we have (r2)” oyt Now, the
integral in (5.69) reduces to the following:

[ |det(XX*)|" [tr(X X)) e altrXEN b (XX "4 %

_ 20y(r+a) f (rz)p('y+q)+n—%e_a(rz)ﬁ_b(ra)wd

~ T(p(v+9)) T (5.74)
fp( + ) oo —1_ —au’—bu="
= ﬁ [ uPO+9+n—-1g bu™" Jau.

This is the most general form of the integral in the complex case. The evaluation of
the integral over u can be done by using the techniques in Sects. 5.1-5.3.

5.11 Reaction-Rate Probability Integral Through
Optimization of Mathai Entropy

Basic measure of uncertainty in a scheme (a set of mutually exclusive and totally
exhaustive events along with the corresponding probabilities) is Shannon entropy
defined as the following, where the first expression is for a discrete distribution and
the second item is for a density function f{x) of a real scalar random variable x, both
denoted by S(f):

S(f) = _CZ§:1pj hlpj)pj >07j: 17"'akap1+"'+pk: ]-7 S(f)
= —c [ f(z) In f(z)dz

where c is a constant. This basic Shannon entropy is generalized in various
directions. One a-generalized entropy is Havrda-Charvat entropy denoted by H,(f)

where

(5.75)

Ho(f) = L o 21, (5.76)

2la_]

A variant of H,(f) is Tsallis entropy T, ( f) given by
[, [f(2))*dz—1 (577)
Ta(f) = ET,C! # 1.



Mathai entropy is also a variant of H,(f), denoted by M,(f) and defined as

Mo (f) = LT o % a,m > 0 (5.78)

where a is an fixed anchoring point, « is the parameter of interest and the deviation
of a from a is measured in 7 units. Here, f(X) is defined as a real-valued scalar
function of X such that f(X) > 0 for all X in the domain of Xand [ f(X)dX = 1.1t
is called a density function where X may be a scalar/vector/matrix or a sequence of
matrices in the real or complex domain. Thus, (5.78) is a very general concept. It can
also be taken as an expected value, namely

F0]5 —1

a—a

_ E[fx))5 -1

a—a

Ma(.f):E ,a%a,n>0.

Note that when o — a, M, (f) — S(f) = Shannon entropy and hence M,(f) is an
a-generalized Shannon entropy. Similarly, H, (f) — S(f) and T, (f) — S(f) when
o — 1. Thus, H,(f) and T,,(f) are also a-generalized Shannon entropy. Let us
consider the optimization of Mathai entropy M, (f) under the following two
moment-type constraints, where we take x as a real scalar variable to start with:

(7) : E[w”e_blep]% = given ; (if): E[(m”e_b”’fp)%x‘s] = given (5.79)

where b; > 0,p > 0,6 > 0,9%(y) > 0 and E[] denotes the expected value of [-]. If
we use calculus of variation to optimize M, /(f) under the constraints in (5.79)
above, then the Euler equation is the following, where A\; and A, are the Lagrangian
multipliers:

a—

A (@l )T f - M[(z7e T )T 20 f]] = 0 =

1
o

f

a—Q

= A3[zYe b T [1 + M2l =

. o
f = )\5337671)1:6 [1 + )\62136] ara

where A3 to \g are some constants. Let us consider the case a < a. Then, the
exponent # > 0 since 7 > 0. Then, if fhas to remain as a density function for all

possible values of a, o, , @ < a,n > 0, then \g has to be negative. Let
A = —b(a — a),b > 0,a < aand let ¢; be corresponding normalizing constant
and let the resulting density be denoted as

n
fi(z) = ciz¥e P ’[1 — bla — a)x’]" " ,a < a,by >0,b>0,n>0  (5.80)



under the condition 1 — b(a — a)z® > 0,6 > 0,p > 0, R(y) > 0. When a > a, then
a — a = —(a — a) and then f;(x) switches into the function

fo(z) = coxVe 2% "[1 + b(a — a)azé]_%, a>a (5.81)

forb > 0,b1 > 0,6 > 0,p > 0,7 > 0,9R(v) > 0. When a — a, then both f;(z) and
f2() go to

fa(z) = cszVe bz gt (5.82)

forb; > 0,b> 0,6 > 0,p > 0,17 > 0,9R() > 0, where ¢y, ¢, c3 are the respective
normalizing constants.

5.12 Multivariate Densities in the Real and Complex

Domains

Let Xbe ap x 1 vector of real scalar variables z;'s, X' = [z1, ..., x,] so that
u=X'X= a:% 4+ 4 azg. If X isap x 1 vector in the complex domain with

X' =[%1,...,%p),%; = xj1 +izj2,i = v/(—1),x 1, x 2 are real scalar quantities,
j=1,...,k then,leta = X*X where X* is the conjugate transpose of X.Then,
o= (z} +2%)+ -+ (:1:12,1 + xfﬁ) — sum of squares of 2p real scalar variables
when X is in the complex domain. Let X in f{X) of M (f) be ap x 1 vector in the real
domain. Let us replace x in the constraints (i) and (i) in (5.79) by u, then f;(x) of

(5.80)-(5.82) change to corresponding densities in terms of X, where for example
fi(x) in the real scalar case changes to

7

fi(X) =Ciuwe™*’[1 —bla — a)u’]"",a < a (5.83)

for

1—b(a—a)u’®>0,b>0,b; >0,7>0,6>0,p>0,R(7) >0,a<a,u=X'X.
Then, f;(X) of (5.83) above is a real multivariate extension of the pathway density
for the case a < a. We can obtain f5(X) for @ > a and f3(X) for « — a. Now, let us
replace x in the constraints in (/) and (ii) of (5.79) by & = X *X where X isap x 1
vector in the complex domain. Then, we will end up with densities corresponding to
(5.80)-(5.82), where for example the density for the case a > a, denoted by f5 (X),
is the following:

n

f2(X) = Cole ™’ [1 4+ b(a — a)i’] “",a > a (5.84)

ford > 0,p > 0,b > 0,b; > 0,R(v) > 0,7 > 0.



5.13 Matrix-Variate Densities in the Real and Complex

Domains

LetXbeap X ¢,p < g matrix of rank p in the real domain. Let u = tr(XX'). We use
the same notation u for convenience. Observe that X X’ > O (positive definite). Let
us replace x in the constraints in (i) and (ii) of (5.79) by u = tr(X X'). Then,
optimization of Mathai entropy M, (f) produces three densities denoted by
fi(X),7=1,2,3 where Xisnowap x g,p < g matrix of rank p in the real domain.
For example, fo(X) in this case will be the following, again denoting the normalizing
constant by C:

F2(X) = Coule b "[1 4 b(a — a)u’] 77, a > a (5.85)

forb > 0,by > 0,6 > 0,p > 0,7 > 0,R(v) > 0,u = tr(XX’). Letthep x ¢,p < q
matrix X of rank p be in the complex domain. Let & = tr(XX*) where X* is the

conjugate transpose of X. Observe that @ here is also real and we use the same
notation % for convenience. Now, replace x of the constraints in (i) and (if) of (5.79)
by this & and then optimize Mathai entropy M, (f). Then, we end up with three

densities corresponding to (5.80)-(5.82), where for example, f3(X) is the following:
f3(X) = Cyre ta "—bni’, (5.86)

for§ > 0,p > 0,b> 0,b; > 0,17 > 0,9R(y) > 0,4 = tr(XX*). This, f3(X) is the
matrix-variate density in the complex domain corresponding to (5.82) in the real
scalar case. In a similar manner, one can consider various constraints for the matrix-
variate case and obtain all the densities considered in Sects. 5.1-5.4 through
optimization of Mathai entropy. In order to limit the size of the manuscript, we stop
the discussion of the construction of densities through optimization of entropies.

5.14 Mellin Convolutions Involving Other Functions

In Sects. 5.1-5.7 we have considered reaction-rate probability integral, its
generalizations and its extensions. These can also be looked upon as basic Bessel
integral, its generalizations and its pathway extensions. They can also be considered
as Mellin convolution of a product involving gamma and generalized gamma
functions and generalized gamma densities as basic functions. We did not look into
Mellin convolution of a ratio involving generalized gamma functions because our
interest was to look into generalizations of the basic reaction-rate probability
integral. In the present section, we will examine the situation if one of the functions
involved is a type-1 beta function type. In terms of statistical densities, we are going
to examine Mellin convolution of a product when one of the densities involved is a



type-1 beta density. Let z; > 0, z5 > 0 be two real scalar variables with the
associated functions f1(z1) and fa(z2) respectively and with the joint function
fi(z1) fo(z2), the product, where let

fi(e:) = ¢ gyl (l—21)*0< 2 <1 (5.87)

for R(a) > 0,R(vy) > —1withe =T(y+ 1+ a)/T'(y+ 1) if fi(x1) is a statistical
density. This density, is the type-1 real scalar beta density with the parameters

(7 + 1, @) under the usual notation. Let the second function f2(z2) = f(z2) an
arbitrary function or arbitrary density if we are considering statistical densities. Let
u = x1x2. Let the function corresponding to u be g(u). Then, from the Mellin
convolution of a product property

g(w) = [, LA(2) fo(v)dv = ek () (1 — %) f(v)do
e [ (v — w)* f(v)dv = e K2 (f)

(5.88)

where K, 7 (f) is Erdélyi-Kober fractional integral of the second kind of order o

and parameter < in the real scalar variable case. Thus, a simple change of the basic
functions to a type-1 beta form and a general function for fy(x5), leads to a
fractional integral of the second kind. Mathai (2009) shows that if we take the first
function f(z1) as

¢(z1)

(o) (1—2z1)* 1 R(a) >0

fi(z1) =

and fy(z9) = f(x,) as above, then by specializing ¢(z1), one can obtain all the
various definitions of fractional integrals of the second kind of order « introduced by
various authors from time to time, in the real scalar case situation. For example, if
#(x1) = ] one has Erdélyi-Kober fractional integral. If ¢(x1) = ;% one had Weyl
fractional integral of the second kind. In this case, if v is bounded above by a constant
b, v < b, then it becomes Riemmann-Liouville fractional integral of the second kind
and so on. From the derivation of (5.88), observe that this fractional integral of the
second kind can also be obtained as a constant multiple of a density of a product of
real scalar positive random variables when one of the densities is a type-1 beta
density with the parameters (77 + 1, &) and the other is an arbitrary density.

5.15 Generalization to Real Matrix-Variate Case

Let X; > O and X3 > O be two p x p real positive definite matrices with distinct
elements as real scalar variables. Let the associated functions be the real-valued
scalar functions f;(X1) and f2(X?2) respectively and let the joint function be



f1(X7) f2(X5). If X7 and X5 are matrix-variate real random variables with the
associated densities f1(X1) and fa(X32) then, when the joint function is the product
f1(X1) f2(X2), we say that X; and X are statistically independently distributed.

1 1 1
Consider the symmetric product U = X7 X1 X, and let X2 = V where X is the
symmetric positive definite square root of the positive definite matrix X, > O. From
Mathai (1997) we have the Jacobian and we can show that
dX; AdX, = |V ~%%dU A dV. This involves the transformation of a symmetric
matrix to a symmetric matrix and we have not listed the corresponding Jacobian as a
lemma in order to save space. Then, the function corresponding to U, again denoted
by g(U), is the following:

gU) = [, [V|™T A (V-3UV 1) fy(V)av. (5.89)
Let
A(X1) = S| X = X1*7,0 < Xy < I,%R(a) > 237 (5.90)

and let f3(X2) = f(X2) where fis an arbitrary function, O < X; < I means

X; > O,I — X; > O (both positive definite), and f;(X;) = 0 elsewhere. As
observed in the real scalar case, if we multiply by the constant

Tp(y+ pTH +a)/Tp(y + pTH), then f1(X7) becomes a real matrix-variate type-1
beta density. Now, from (5.89) and (5.90),

_ p+1

9U) = w7 Jy VI T ((VROV R IT =V 3uV 3T f(V)av
= —r|f,](|a) Jv vo0 VI 2NV = U7 f(V)aV (5.91)
=K, (/)

where K, 7/;(f) is Erdélyi-Kober fractional integral of the second kind of order o

and parameter 7 in the real matrix-variate case. Since (5.91) is identical with
Erdélyi-Kober fractional integral of the second kind when p = 1 or in the real scalar
variable case, Mathai (2015) defined (5.91) as Erdélyi-Kober fractional integral of
the second kind in the real matrix-variate case. Again, in the real matrix-variate case
also, if we take f;(X;) = ﬁqﬁ(Xl)\I — Xl\O‘JT+1 for O < X; < I, then we can

show that by specializing ¢(X1) one can obtain the real matrix-variate versions of
the various definitions of fractional integral of the second kind introduced by various
authors for the real scalar variable case. These, matrix-variate versions are not
defined by anyone so far.



5.16 Generalization to the Complex Matrix-Variate

Case
Let X; > O and X > O be two p X p Hermitian positive definite matrices in the
complex domain with the associated functions f; (X 1) and f2(X 2) respectively and

with the joint unction f; (X' 1) fz(X 2) where f; and f, are real-valued scalar
1 1

functions of the matrix argument in the complex domain. Let U= X;lef; and

- - -1
V = X,, where X is the Hermitian positive definite square root of the Hermitian
positive definite matrix X5. Again, from Mathai (1997) we can show that

dX; AdX, = |det(V)| "dT A dV. Let

~ 1 ~ ~ _ a— ~
Fi(X1) = ——|det(X1)||det(I — X1)|” 7,0 < X1 < I,R(e) >p—1
I')(a

and f;(X;) = 0 elsewhere, and let f,(X;) = f(X5) an arbitrary function. Then,

o N | — S _ Ly 1N Y
o(0) = 5 [y 1det(V)| Pldet(V TV 4)
P o L (5.92)
x|det(I — V20V ~%)|*Pf(V)dV.

de 7| ¥ —v—Q ¥, & a—p ¥ 7
— ;8' Jo_to0 |det(V)|7~%|det(V — O)| ~ f(V)dV (5.93)
=K, (/) (5.94)

where I?;jﬁ(f) is Erdélyi-Kober fractional integral of the second kind of order «

and parameter v in the complex matrix-variate case. Mathai (2013) has defined like
this when he extended fractional calculus to the complex matrix-variate case. In the
real scalar case (5.94) will agree with Erdélyi-Kober fractional integral of the second
kind.

5.17 Mellin Convolution of a Ratio

Let us start with real scalar variables first. Let £; > 0 and x5 > 0 be two real scalar

positive variables. We can define a product in two different ways u = x1x2,v = 2
. . . . -’171 .

or v = x1. We can define a ratio in four different ways u; = o withv = x7 or

v=1=x9and u; = ﬁ—f with v = x; or v = xs. All these different representations can



lead to different items in different disciplines as can be seen from the following
illustration. Let u; = z—f with v = x4 so that

v v
Ty =v,21 = — = dx; Adey = ——2du1 A do.
Uy uy

Let the function corresponding to u; be denoted by g1 (u1). Then,
g1(w1) = [, o f1(35) fa(v)dv (5.95)

Let

v—1
L

()

fi(z1) = (1—2z1)* 1 0<z1 <1,%R() > 0,%R%() >0

and fy(z2) = f(x2) an arbitrary function. Then,

g1(u1) = a) I, % =) 1= ) ()
=4 focoen v”(ul—v)“‘lf(v)dv (5.96)
=K, 7.

where Kl_’f;"ul (f) is Erdélyi-Kober fractional integral of the first kind of order o and

parameter -y for the real scalar variable case. By multiplying f; with a constant, one
has a real scalar type-1 beta density and if f(z,) is an arbitrary density, then the

fractional integral of the first kind in (ii) is a constant multiple of the density of a
ratio of two independently distributed real scalar positive random variables. This
connection was pointed out by Mathai (2009).

5.18 M-Convolution of a Ratio in the Real Matrix-

Variate Case

Let X7 > O and X5 > O be two p X p real positive definite matrices and let the
associated functions be f1(X7) and fo(X32) respectively and let the joint function be
1 1

f1(X71) f2(X5). Let Uy = X; X1_1X27 be a symmetric ratio of the matrices X; and
Xs.Let V = Xs. Then, from Mathai (1997), we can show that

dX; A dXs =|Uy|~ @)V F dUy A dV.

Let



f1(Xy) = X, |I Xlla_ O<X1 < I,

Fp(a)

for R(a) > 25, 7M(y) > ZF and let f2(X2) = f(X2) an arbitrary function. Then,

() = [, |Ui| eI vT fl(V UV ) f(V)AV

ptl

= oy eV vy e

x| [-V 32U V2o f(V)aV (5.97)
= B fy o VUL = V™ f(V)aV
:Kl_,;l,Ul(f)

where K 1, '(;iUl (f) is Erdélyi-Kober fractional integral of the first kind of order « and

parameter « in the real matrix-variate case. This was established by Mathai in one of
the series of papers published in Linear Algebra and Its Applications in 2013-2016,
extending fractional calculus to the matrix-variate cases in the real and complex
domain.

5.19 Fractional Integral of the First Kind

in the Complex Matrix-Variate Case

Let X; > Oand X, > Obe p X p Hermitian positive definite matrices in the
complex domain with the associated functions f1(X;) and f(X5) respectively and
with the joint function fl(f{ 1) fz(X 2) where f; and f5 are real-valued scalar
functions of thle matric?s X, and X in the comlplex domain. Consider the symmetric
ratio (7'1 = X; X;UZ’; andV = Xz where X’; is the Hermitian positive definite
square root of the Hermitian positive definite matrix X5 > O. From Mathai (1997),
it can be shown that dX; A dX, :\det(01)|_2p\det(‘7)|pd01 A dV Let

A(X) = det(X1)[7P|det(I — X1)|" T,0< Xy < I

pl&

for R(a) > p—1,R(y) >p—1andO < X; < I'means X; > O, — X; > O
(both Hermitian positive definite). Let fo(X2) = f(X3), an arbitrary function. Then

for R(cr) > p — 1, the function corresponding to U;, denoted by gy (U1), is the

following:
(5.98)



91(01) = 55 Jo ldet(V)[P|det ()| |det(V =0V 3)"
x|det(I — V%UflV%)P‘_Pf(V)dV
de ﬁl e ~ - ~. a—p ~
- t(f,,()o[) f(Ul—V)>0 [det(V)["|det (Uy — V)|~ f(V)dV
- Kl_,%[;—l(f)

where R’;‘;‘U (f) is Erdélyi-Kober fractional integral of the first kind of order « and
y HY1

parameter + in the complex domain as defined by Mathai (2013). A brief overview of
the development of fractional calculus in the complex domain and for functions of
matrix argument is given in the Springer Brief of Mathai and Haubold (2018). Hence,
further discussion of fractional integrals and fractional derivatives is not attempted
here.
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6.1 Solar Neutrinos: SuperKamiokande Data

Over the past 50 years, radio-chemical and real-time solar
neutrino experiments have proven to be sensitive tools to test both
astrophysical and elementary particle physics models and principles
(Sakurai 2018; Orebi Gann et al. 2021). Solar neutrino detectors (radio-
chemical: Homestake, GALLEX + GNO, SAGE, real-time: SuperKamiokande,
SNO, Borexino) have demonstrated that the Sun is powered by thermonuclear
fusion reactions. Today fluxes, particularly from the pp-chain have been
measured: pp. ’ Be, pep, 8 B, and, hep. Experiments with solar neutrinos and
reactor anti-neutrinos (KamLAND) have confirmed that solar
neutrinos undergo flavor oscillations (Mikheyev-Smirnov-Wolfenstein (MSW)
model). Results from solar neutrino experiments are consistent with the
Mikheyev-Smirnov-Wolfenstein Large Mixing Angle (MSW-LMA) model,
which predicts a transition from vacuum-dominated to matter-enhanced
oscillations, resulting in an energy dependent electron neutrino survival
probability.
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6.2 Diffusion Entropy and Standard Deviation:
Analysis

For all radio-chemical and real-time solar neutrino experiments, periodic
variation in the detected solar neutrino fluxes have been reported, based
mainly on Fourier and wavelet analysis methods (standard deviation
analysis). Other attempts to analyze the same data sets, particularly



undertaken by the experimental collaborations of real-time solar
neutrino experiments themselves, have failed to find evidence for such
variations of the solar neutrino flux over time (Abe et al. 2024a). Periodicities
in the solar neutrino fluxes, if confirmed, could provide evidence for new
solar, nuclear, or neutrino physics beyond the commonly accepted physics of
vacuum-dominated and matter-enhanced oscillations of massive neutrinos
(MSW model) that is, after 50 years of solar neutrino experiment and theory,
considered to be the ultimate solution to the solar neutrino problem (Fig. 6.1).
Specifically, subsequent to the analysis made by the SuperKamiokande
collaboration, the SNO experiment collaboration has painstakingly searched
for evidence of time variability at periods ranging from 10 years down to 10
min. SNO has found no indications for any time variability of the B flux at
any timescale, including in the frequency window in which g-mode
oscillations of the solar core might be expected to occur. Despite large efforts
to utilize helio-seismology and helio-neutrinospectroscopy, at present time
there is no conclusive evidence in terms of physics for time variability of
the solar neutrino fluxes from any solar neutrino experiment. If such a
variability over time would be discovered, a mechanism for a chronometer for
solar variability could be proposed based on relations between properties of
thermonuclear fusion and g-modes (Buldgen et al. 2024; Sturrock et al. 2021).
All above findings encouraged the conclusion that Fourier and wavelet
analysis, which are based upon the analysis of the variance of the respective
time series (standard deviation analysis: SDA) should be complemented by
the utilization of diffusion entropy analysis (DEA), which measures the scaling
of the probability density function (pdf) of the diffusion process generated by
the time series thought of as the physical source of fluctuations
(Scafetta 2010). For this analysis, we have used the publicly available data of
SuperKamiokande-I (1996-05-31-2001-07-15) and SuperKamiokande-II
(2002-12-10-2005-10-06) (see Fig. 6.2) (Yoo et al. 2003: Cravens et al. 2008;
Abe et al. 2024Db). Such an analysis does not reveal periodic variations of
the solar neutrino fluxes but shows how the pdf scaling exponent departs in
the non-Gaussian case from the Hurst exponent. Figures 6.3 and 6.4 show the
scaling exponents (DEA) for the SuperKamiokande I and Il data. The
respective Hurst exponents for SDA are visible in Figs. 6.5 and 6.6 (Mathai and
Haubold 2018). SuperKamiokande is sensitive mostly to neutrinos from the
8 B and hep branch of the pp nuclear fusion chain in solar burning. Above
approximately 4 MeV the detector can pick-out the scattering of solar
neutrinos off atomic electrons which produces Cherenkov radiation in the
detector. The 8B and rarer hep neutrinos have a spectrum which ends near 20
MeV.
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Assuming that the solar neutrino signal is governed by a probability
density function with scaling given by the asymptotic time evolution of a pdf
of x, obeying the property (Scafetta 2010; Culbreth et al. 2023)

p(z,t) = 5 F(5), (6.1)

where § denotes the scaling exponent of the pdf. In the variance based
methods, scaling is studied by direct evaluation of the time behavior of the
variance of the diffusion process. If the variance scales, one would have

o2 (t) ~ 28, (6.2)

T



where 02(t) is the variance of the diffusion process and where H is the Hurst

exponent. To evaluate the Shannon entropy of the diffusion process at time ¢,
defined S(t) as

S(t) =— [ dz p(x,t) In p(z,t) (6.3)
and with the previous p(x, t) one has
S(t)=A+68In(t), A=—["*dyf(y) In f(y). (6.4)

The scaling exponent ¢ is the slope of the entropy against the logarithmic time
scale. The slope is visible in Figs. 6.3 and 6.4 for the SuperKamiokande data
measured for 8 B and hep. The Hurst exponents (SDA) are H = 0.66 and
H = 0.36 for 8 B and hep, respectively, see Figs. 6.5 and 6.6
(Mathai and Haubold 2018). The pdf'scaling exponents (DEA) are § = 0.88
and § = 0.80 for B and hep, respectively, as shown in Figs. 6.3 and 6.4. The
values for both SDA and DEA indicate a deviation from Gaussian behavior
which would require that H = § = 0.5.

A test computation for the application of SDA and DEA to data that are
known to exhibit non-Gaussian behavior have been published
by Haubold et al. (2012) and Tsallis (2024). In this test computation, SDA and
DEA, applied to the magnetic field strength fluctuations recorded by the
Voyager-I spacecraft in the heliosphere clearly revealed the scaling behavior
of such fluctuations as previously already discovered by non-extensive
statistical mechanics considerations that lead to the determination of the non-
extensivity g-triplet.
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6.3 Probability Density Function and Differential
Equation: Lévy Flights

We consider a diffusion process generated by a waiting time pdf with a
finite characteristic time T that can be modeled with a Poissonian
distribution, and a jump length pdf A(x) given by a Lévy distribution with
index 0 < a < 2 (Metzler and Klafter 2000). The Fourier transform of A(x) is

A(k) = exp(—o®|k|*) ~ 1—o®|k|°. (6.5)

Then A(x) has the asymptotic behavior given by
(6.6)



Az) ~ Aqo®|z| 1 = AgotHz|H

for || > o and p = 1 4 a. Substituting the asymptotic expansion of the
jump length pdf X(k) in the Fourier space and the waiting time pdf of

®(t) = Lexp(—L) (6.7)

where 7 = T' < o0 is the characteristic waiting time in the Laplace space into

plk, ) = =20 _%’*Ei’“? , (6.8)

where py(k) is the Fourier transform of the initial condition p(x, 0), we obtain
the following jump pdf in the Fourier-Laplace space

ﬁ(k7 8) = 8+K1a|k“’ ) (69)

where K® = ¢“ /7 is the generalized diffusion constant. Equation (6.9) is the
solution of the generalized diffusion equation (Hilfer 2018)

op(z, o
el — Ko Dep(a,t), (6.10)

where _, DY is the fractional Weyl operator. Upon Laplace inversion of
Eq. (6.9), we get the characteristic function of the jump pdf

p(k,t) = exp(— K t[k[*). (6.11)

Equation (6.11) is the characteristic function of a centered and symmetric
Lévy distribution. The Fourier inversion of (6.7) can be analytically obtained
by making use of the Fox function (Mathai et al. 2010;

Mathai and Haubold 2018)

kd

1 s
p(x,t) = ot a H22 [Ktl/a

L1),(1,
1 e TOENCE) (el \ g,
- alz| 27 Je—ico T(—s)[(1+3) ’

where c in the contour is such that —a < ¢ < 0. Replacing > by s, observing

that a coming from s ds is canceled with « sitting outside, we have the
following:



1 1 c'+ico ]_"(1 + S)P(—%S) ‘CE| —as
)= ds,—1 < ¢ < 0.
P(@Y) = Tl o /c,_m T(—as)I(1+ 25) < Ktl/a> i ¢

By using the duplication formula for gamma functions, we have

(-a) =T(2(~5s)) =2t in(- g o)r( 5 - o)

so that one I'(— < s) is canceled. Then,

ory 1 [fotio (1 —as
p(a, ) = T _/ (1+s) ( || ) ds

2] 270 Jo o T(% — 25)D(14 25) \ 2KtY/e

Evaluating the H-function as the sum of the residues at the poles of I'(1 + s),
whichareats = —1 —v,v =0, 1,...., we have the following series:

1
_ 22 |z]*
p(x, t) = Ta] ( (2K)% )

oo (=1)" 1 z)* \Y
XD im0 [(5* 4510 (1-§(1+)) ((2K)°‘t) o lasl

6.4 Discussion

The first solar neutrino experiment led by Raymond Davis Jr. showed a deficit
of neutrinos relative to the solar model prediction, referred to as the solar
neutrino problem since the 1970s. The Kamiokande experiment led by
Masatoshi Koshiba successfully observed solar neutrinos, as first reported in
1980s. The solar neutrino problem was solved due to neutrino oscillations by
comparing the SuperKamiokande and Sudbury Neutrino Observatory results.
While recent decades have offered tremendous advances in solar
neutrinos across the fields of solar physics (Buldgen et al. 2024; Yang and
Tian 2024), nuclear physics (Bertulani et al. 2022; Hwang et al. 2023), and
neutrino physics (Sturrock et al. 2021; Slad 2024), many lingering mysteries
remain.

This chapter takes advantage of publicly available solar
neutrino SuperKamiokande data and analyses them by applying diffusion
entropy analysis and standard deviation analysis. The result is a scaling
exponent § < 1 indicating anomalous diffusion of solar neutrinos in terms of
Lévy flights. Based on this result the chapter developes the probability density



function for neutrino flights and derives the respective differential equation in
terms of a fractional Fokker-Planck equation. Accordingly, the closed form
analytic representation of the neutrino power density function is given as a
Fox H-function that can be used for further numerical exercises for the benefit
of solar neutrino physics.

The authors have grateful for the support in the diffusion entropy
analysis and standard deviation analysis by Dr. Alexander Haubold while he
was doing his research at the Department of Computer Science, Columbia
University, New York (USA). The results of diffusion entropy analysis were
independently confirmed by the research of Dr. Nicy Sebastian, Department of
Statistics, St Thomas College, Thrissur, University of Calicut, Kerala (India).
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7.1 Introduction

The Standard Model (SM) of Particle Physics is the pinnacle of the understanding of neutrino
physics (Deppisch 2019; Oberauer et al. 2020). It comes with a plethora of parameters, the
masses and the flavour mixings, that are seemingly not fixed by any known fundamental
principle. In the SM, the neutrino spectrum is simple: all neutrinos are massless. Neutrino
oscillations, where neutrinos seemingly change flavour in flight, cannot be accommodated in
the SM due to the mass of the neutrinos. Neutrino oscillations thus imply massive neutrino
eigenstates, and the SM must be extended. Moreover, neutrino oscillation experimental data
suggest that the neutrino spectrum is not hierarchical, with three massive light neutrinos and a
mixing matrix exhibiting near-maximal mixing (Deppisch 2019; Oberauer et al. 2020).

To make sense of the neutrino sector, it was argued that the light neutrino mass matrix
could be generated randomly from a more fundamental Dirac neutrino mass matrix and a more
fundamental Majorana neutrino mass matrix with random elements distributed according to a
Gaussian ensemble, a principle dubbed the anarchy principle (Haba and Murayama 2001).
These more fundamental neutrino mass matrices would come from the extended SM where the
seesaw mechanism occurs (Yanagida 1979). It was argued that the probability density
function (PDF) for the mixing angles and phases is the appropriate Haar measure of the
symmetry group, implying near-maximal mixings (Fortin et al. 2016; Haba et al. 2023; Fortin
et al. 2020). We have shown that the PDF can be obtained either by analysing data by diffusion
entropy analysis (done for the case of solar neutrinos from observations emanating from
SuperKamiokande) (Scafetta 2010; Mathai and Haubold 2018; Haubold and Mathai 2024) or as
proceeding in this chapter. Then, the anarchy principle was analysed mostly numerically,
reaching conclusions, for example about the preferred normal hierarchy of the neutrino
masses.

Although several numerical results have been obtained, few analytical results on the seesaw
ensemble, which is derived from the anarchy principle, exist. That it is the case even though
random matrix theory is a well-studied subject in mathematics is surprising. It is therefore
clear that a thorough analytical investigation of the seesaw ensemble is possible.

[t is an open issue to investigate analytically the seesaw ensemble derived from the anarchy
principle with the help of the usual tools of random matrix theory. The seesaw ensemble PDF
can be obtained from N x N fundamental Dirac and Majorana neutrino mass matrices with
real or complex elements. The joint PDF for the singular (eigen) values in the complex (real)
case can be derived and it can be shown that the group variables decouple straightforwardly as
in the usual Gaussian ensembles.



https://doi.org/10.1007/978-3-031-83387-8_7

The following notations will be used in this chapter: Real scalar (1 X 1 matrix) variables,
whether random or mathematical, will be denoted by lower-case letters such as x, y, z. Real
vector (1 X porp X 1, p > 1, matrix), matrix (p X q) variables will be denoted by capital letters
such as X, Y. Variables in the complex domain will be indicated with a tilde such as Z, 3, X, Y.
Constants will be denoted by a, b etc. for scalars and 4, B etc. for vectors/matrices. No tilde will
be used on constants. For a p X p matrix B, |B| or det(B) will denote the determinant of the

matrix B. When B is in the complex domain, one can write | B| = a + ib,i = /(—1),a,bare
real scalars. Then, the absolute value of the determinant will be denoted by

|det(B)| =|det(BB*)|* = /(a2 + b%) where B* means the conjugate transpose of B, that is
B* = (B')° = (B°)' where a prime denotes the transpose and c in the exponent denotes the
conjugate. If X = (zx) is ap x g matrix in the real domain, where the z ;s are distinct real
scalar variables, then the wedge product of their differentials will be denoted as

dX = /\1;:1 AL, da . If X = X' (real symmetric), then dX = A j>jda . For two real scalar
variables x1 and x4, the wedge product is defined as dx1 A dxs = —dxzy A dxg so that

dz; ANdz; = 0,5 = 1, 2. Also, fX f(X)dX will denote the real-valued scalar function f{X) of X

is integrated over X. If the p X g matrix X isin the complex domain, then
X=X, +iXs,i= \/(—1), X1, X, are real p x ¢ matrices, then dX = dX; A dXs. Other
notations will be explained whenever they occur for the first time.

This chapter is organized as follows: Sect. 7.2 gives a mathematical introduction to the
models. Section 7.3 derives the distribution of the light neutrino mass matrix in explicit
computable form. Section 7.4 is providing the densities in terms of the eigenvalues, including
the cases of the largest eigenvalue and the smallest eigenvalue.

7.2 Modified Dirac and Majorana Neutrino Matrices and Their

Distributions

Let X and X be p X n,p < n matrix of rank p in the real and complex domains respectively. If X
and X are p X n matrix-variate random variables in the real and complex domains respectively,
then this matrix X corresponds to the N x N Dirac matrix Mp considered in Fortin et al.
(2016); Haba et al. (2023); Fortin etal. (2020).LetY > O,Y > O be n x n real positive

definite and Hermitian positive definite matrices in the real and complex domains respectively,
where (-) > O denotes the matrix (+) is real positive definite or Hermitian positive definite. If Y

and Y are n X m matrix-variate random variables in the real and complex domains, then this Y
corresponds to the N x N Majorana matrix Mg in Fortin et al. (2016); Haba et al. (2023);
Fortin et al. (2020). Let U = — XY ~1X where U corresponds to the light neutrino mass matrix
M, in Fortin et al. (2016); Haba et al. (2023); Fortin et al. (2020). Due to our assumption of X
being a full rank matrix, the rows of X are linearly independent so that a singular distribution
for any column of X is avoided. The columns of X are p X 1 which corresponds to a p-vector in
multivariate statistical analysis. Also if the columns of X are iid (independently and identically
distributed) then X can represent a sample matrix of a sample of size n from a p-variate
population. When p = n, X will be an X n square matrix as considered in Fortin et al. (2016);
Haba et al. (2023); Fortin et al. (2020). Let X have a p X n matrix-variate Gaussian density in
the standard form, denoted by f;(X), where

f1 (X)dX = Cleftr(XX/)dX, f1 (X)dj( = Eleftr(XX*)dX (7.1)



where ¢; is the normalizing constant, ¢; = 7”2 If a real scalar scaling constant b; > 0in
introduced in the exponent in (Z.1) and write the exponent as —b;tr(XX"'), then the
normalizing constant changes to (blw)pn/Q. In the corresponding complex case, ¢; = 74 and if
areal scaling factor b; > 0 is present, then ¢; = (bym)"? respectively. If a location parameter
matrix is to be included, then replace Xin (2.1) by X — M and X by X — M where the M and
M matrices can act as the mean value or expected value of X and expected value of X
respectively, where M = E[X], M = E[X] where E[(-)] denotes the expected value of (-).
There is not going to be any change in the normalizing constants c; and ¢;. If scaling matrices
are also to be inserted, then replace XX’ by A(X — M)B(X — M)' and XX* by

A(X — M)B(X — M)* respectively, where A > Qisp x pand B > O isn x n real positive
definite constant matrices in the real case,and A = A* > O and B = B* > O (Hermitian
positive definite matrices) in the complex domain. The normalizing constants will change to

¢y = w12 A| 2| B| * and &, changes to ¢; = wP?|det(A)|"|det(B)|” respectively. These changes
are taking place due to Lemma 2.1 given below. When X X" is changed to AXBX', one can give
interpretations in terms of the covariance matrices of the columns and rows of X. For example,
the inverse of A can act as the covariance matrix of each p x 1 column vector of X and similarly
the inverse of B can act as the covariance matrix of each row of X when X is a sample matrix
from some p-variate population. The above are some of the advantages of considering the p x n
matrix X and inserting location parameter matrix and scaling matrices in X X'. Corresponding
interpretations can be given in the complex case also.

Lemma 7.1 Let X = (x;;) beap x g matrix in the real domain with pq distinct real scalar
variables as elements z j;’s. Let Abe ap X p and Bbe a g X g real nonsingular constant
matrices. Consider the linear transformation Y = AX B. Then,

Y = AXB,|A| #0,|B| #0,= dY = |A|?B|FdX

In the corresponding complex domain, Y = AXB where A and B are nonsingular and they may
be in the real or complex domain, then

Y = AXB,|A| #0,|B| # 0,= dY = |det(A)|*|det(B)|*dX.

In the discussion to follow, we will need the Jacobian from a symmetric transformation, for
example, p = q, B = A’ in the real case in Lemma 7.1. In the symmetric case, the Jacobian will
not be available from Lemma 7.1.

Lemma 7.2 Consider the p x p matrices X = X', A and X = X*, Ainthe real and complex
domains respectively where A is a nonsingular constant matrix and in the complex case A could

be real or complex. Note that we assume X is symmetric in the real domain and X is Hermitian
in the complex domain. Then,

Y = AXA,|A| #0,= dY = |[A]PT1dX,Y = AXA* = dY = |det(A)|*dX.

If X is skew symmetric then the exponent p + 1 changes to p — 1 in the Jacobian part in Lemma
7.2.1f X is skew Hermitian, there is no change, 2p in the exponent will remain as 2p.

Let the n X n matrix Y, corresponding to the Majorana neutrino mass matrix Mg in Fortin
etal. (2016); Haba et al. (2023); Fortin et al. (2020) have the following density:



F(NAY = |V % e tMAY, £,(Y)dY = &|det(¥)|" e tTdY (7.2)
where Y = Y’ > O (real positive definite), Y=Y*>0 (Hermitian positive definite). Here
is a free parameter which may be given some physical interpretations. The n X n positive
definite matrix Y can always be written as Y1Y{ where Y7 isan x n1,n < n; matrix of rank n
where ny can be equal to n or Y7 can be a square matrix also. Further, Y7 can be a square root of
Y where a square root can be uniquely defined when Y is positive definite or Y is Hermitian
positive definite. Thus, the exponents in the densities of Y and Y can have exactly the same
structures as in the corresponding densities in Fortin et al. (2016); Haba et al. (2023); Fortin
etal. (2020). Butin Fortin et al. (2016); Haba et al. (2023); Fortin et al. (2020) the densities are
Gaussian forms and in (7.2) above, the densities are real and complex matrix-variate Gamma

densities for Yand Y. The normalizing constants cy and ¢3 are the following:
1 n—1 1

, Gy = JR(@) >n—1
2 I'y(a)

where 9(+) means the real part of (-) and T',, () and T',, () are the real and complex matrix-
variate gamma functions defined as the following:

n(n—1)

T3 I‘(a)I‘(a—%)...F(a_anl)’%(a)>712;1

Fn(a) o n+1
Jz-0121" 7 e DdzZ (7.3)
() ""("zf”F(CV)F(Oé—1)---F(a—n+1),9{(a)>n_1
" @ - ~., a—"n > ~
fZ>0 |det(2)|” e *"@dZ,R(a) >n — 1.

Let Y be the positive definite square root of the positive definite matrix Y > O. Then, if we
consider X of (7.1) to be scaled by XY ~7 then this scaling has the effect of making the rows of
X correlation-free if Y is the correlation matrix of each row of X. Thus, in a physical situation if
the rows are likely to be correlated then they can be made correlation free by scaling with the
proper scaling matrix, namely the square root of the inverse of the correlation matrix. In the
scaled X X', namely AXBX' considered above, B~! corresponds to Y in the present
discussion. When scaled with the proper scaling matrix X X’ goes to
(XY’%)(XY’%)’ = XY ' X’ and one has similar changes in the complex case also. Hence,
our light neutrino mass matrix U = XY ~1 X has proper interpretations in terms of scaling
models, making rows correlation free etc.

Our interest is to derive the density of U. For this purpose, we need either the assumption
that X and Y are independently distributed, in that case the joint density of Xand Y'is
f1(X) f2(Y), the product, or we have to assume that f;(X) is a conditional density, in the
sense, for every given Y, one has the density of X a matrix-variate Gaussian as in (7.1) and f2(Y")
is then the marginal density of Y and again the joint density will be the product f;(X) f2(Y).
We will assume f7(X) being a conditional density of X for every given Y and derive the density

of U= XY 'X'and U = XY 1 X~

7.3 Derivation of the Density of U



In our notation, the light neutrino mass matrix is U = — XY ~' X" in the real case and
U=—-XY 'X*inthe complex case. Let us consider the real case first. Ignoring the sign, U can
be writtenas U = (XY ~2)(XY ~ ) since Y is symmetric real positive definite. Let
Z=XY %= X=Z2Y7anddX = |Y|%dZ, for fixed Y, by using Lemma 7.1,and U = ZZ'.
The joint density of X and Y, is the conditional density of X, given Y, times the marginal density
of Y. That is, denoting the joint density by f(X, Y), we have the following:

n+1

FX,Y)AX AY = c1e|V] T e W2V Z)e W)y |54 Z A dY
= c1eo|V]*TE T e ulY (2Dl 7 A Y.

But
(Y + 2YZ') = te(Y (I, + 2'Z)) = tr|(I, + Z'2) Y (I, + Z'Z)7]

Even though Z'Z is singular and positive semi-definite, due to the presence of the identity
matrix I = I,,, we may take I,, + Z'Z to be positive definite and hence one may consider the
positive definite square root of I,, + Z'Z. Now, we can integrate out Y by using a real matrix-
variate gamma of (7.3). That is,

n—1
2

/ |Y|2+a7— —tr[(L,+2Z' Z)7Y(In+Z Z)’Z]dY T (Ot-i— )|I +Z Z| (at+%) m( )
Y>0

But we can write |I,, + Z'Z| in terms of the p X p real positive definite matrix ZZ'. Consider
the expansion of the following determinant in two different ways in terms of its submatrices,
denoting the determinant by 7:

I, -7
= =|I,| I, — Z'I;Y(-2)| =|I,| |I,.+Z'Z| =|I, + Z'Z
=g | el = 20 2) =L L+ 22| =1+ 22 -
“\L| |, — (~2)[ 2| =|L,| L, + 22'|=I1, + 22| |1, + 2'2| =|I, + Z2'|.
Hence, the density of Z, denoted by g(Z), is the following:
9(2)dZ = cresT(a + 2|1, + 22| Daz. (7.5)

Going through steps parallel to the real case, one has the corresponding result in the complex
case, denoted by §(Z) as the following:

3(2)dZ = &6l a(a + p)|det(I + 227)| " “Pdz. (7.6)

Our matrix is U = ZZ'. We can go from the density of Z to the density of U = ZZ' by using the
following result from Mathai (1997) which will be stated as a lemma. This result is available in
Chap. 5 as Lemma 5.1. For the sake of ready reference, this result is given as the next lemma.

Lemma 7.2 LetX = (x;;) beap x ¢g,p < g matrix of rank p in the real domain where the z j;,

’s are distinct real scalar variables. Let S = X X'. Then, going through a transformation
involving a lower triangular matrix with positive diagonal elements and a unique semi-



orthonormal matrix and then integrating out the differential element corresponding to the
semi-orthonormal matrix, we have the following relationship between d X and dS:

r (%)

In the corresponding complex case, let X be PXqgp< < g matrix in the complex domain with

dX =

15|77 ds.

distinct scalar complex variables as elements. Let S = XX*. Then, going through a
transformation involving a lower triangular matrix with real and positive diagonal elements
and a unique semi-unitary matrix and then integrating out the differential element
corresponding to the semi-unitary matrix, we have the following connection:

Pa
fp (‘1)

With the help of Lemma 7.2, we can go to the density of Zin (7.5) to the density of U = ZZ’,
denoted by g1 (U). Since the variable is changed from a p X n matrix to a p X p matrix, the

normalizing constant will change. Hence we may write

dX = |det(S)|* 7dS.

g (U)AU = U~ [T + U~ Dau (7.7)

for R(ar) > "T_l, n > p — 1, where c is the corresponding normalizing constant. This g1 (U) is
a real matrix-variate type 2 beta density with the parameters ( yo+ 2 ) Hence, the

normalizing constants, denoted by c in the real case and ¢ in the complex case, are the
following:

) n—1 = __ f‘p(n)fp(a+p—n) _
,R(a) > = ) ,R(@) >n—1, (7.8)
evaluated from real and complex p X p matrix-variate type 2 beta densities respectively. Using

steps parallel to the real case, we have the corresponding density g (U ) in the complex case as
the following, for R(a) > n — 1:

—(a+n)

§1(0)dU = &|det(T)|*P|de(I + U)| dU (7.9)

where ¢ is given in (7.8).

7.4 Densities in Terms of the Eigenvalues

From (7.7) the p X p real positive definite matrix U has a real matrix-variate type 2 beta density
with the parameters (5, + 5 — 2) withR(a) > 5 — & + pT_l = 2L thatis, with the
density

Tp(at+2) +1 —(a+2
T,(5)T, (a+£_; |U|2 E I +U| (@2)qu (7.10)

g1 (U)dU =



for R(a) > ”T_l The corresponding density in the complex domain is the following where Uis
Hermitian positive definite and |det(U| means the absolute value of the determinant of U

§1(0)d0 = %met( 0)|"»|det(I + U)|_(“+p)d("] (7.11)

Lp(n)T'p(atp—n)

for R(a) > n — 1. We can convert U and U and write the densities in terms of their
eigenvalues. If p; is an eigenvalue of U, then 0 < pu; < 00,7 = 1,...,p. Similar is the case for

the eigenvalues of U. For convenience, let us convert U and U to the corresponding type 1 beta
form. Consider the transformation

1 -

V=(I+U)UI+U) 2, V=I+0) "UI+0)

N

Then, V and V will be p X p matrix-variate type 1 beta with the same parameters, see Mathai
(1997); Mathai et al. (2022). Let the densities of Vand V be denoted by g»(V) and §»(V)
respectively. Then,

g2(V)dV = ;"(C”% ]V|T_|I yjett-s-iqy (7.12)
FP(Z)FP(
and
G2(V)dV = #Met( )|me|det(I — V)" "V (7.13)

Tp(n)Ty(a+p—n)

for R(a) > "T_l, n—1 respectively in the real and the corresponding complex case. If A; is an

eigenvalue of V, then \; = (1+ Wy = M= /\]) 0<Aj<1L,0<puj<o0,j=1,...,p. LetQ

(1
be a p X p unique orthonormal matrix, QQ' = I, Q'Q = I such that

Q'VQ = diag(A1, ..., Ap) with1 > Ay > Xy > --- > A, > 0. Correspondingly, letQ bea
unique unitary matrix, QQ* = I, Q*Q = I such that Q*VQ = diag(\1, ..., \p), where Q*
means the conjugate transpose of Q When Aj’s are real scalar variables we can assume

Pr{\; = X\j,i # j} = 0 almost surely. Hence, without loss of generality we assume that the A;
's are distinct, 1 > A; > --- > A, > 0. Observe that the eigenvalues of Hermitian matrices are

also real and hence the eigenvalues of both V and V will be real and we will denote them by the
same symbols /\j's. Also,

Q'VQ = D =diag(A1,...,A) = V =QDQ",|V] = A1+ Ap, [T = V| = [T}, (1 — )j) and
when Vis transformed to its eigenvalues a factor [[;_;(A; — A;) comes in, both in the real and
complex cases, see Mathai (1997); Mathai et al. (2022). If the differential elements
corresponding to Q and Q are denoted by dG and dG respectively, then from Mathai (1997);
Mathai et al. (2022), G = Q'(dQ), G = Q(dQ) where, for example, (dQ) is the matrix of

differentials in Q and the integrals over dG and dG are the following results which will be
written as a lemma, see Mathai (1997); Mathai et al. (2022):

Lemma 7.3 For the G, dG, é’, dG as defined above, we have



2
5 - p(p—1)
/dG: ”—H,/dG: T
Fp(pT) Lp(p

Let us verify this lemma for p = 2, 3. For a p X p real positive definite matrix X we have

Pt -1
/ 1X|* 7 e X = T)(a), R(a) > 2=
X>0 2

from the real matrix-variate gamma integral. In the complex case, let the p X p matrix X be
Hermitian positive definite. Then, from the complex matrix-variate gamma integral we have

/5( Jdet(%)]" Fe "0k = Fy(a), K(a) > p— 1.
>

p+

Consider the integrals in the real and complex cases when o = in thereal caseand a = p

in the complex case. Then,
1 N ~
/ e g x = 1,2 ),/ e "X dX =T, (p).
X>0 2 x>0

If we go through a unique orthonormal transformation involving an orthonormal matrix Q then

in the real case
/{H)\—)\ e tr(D dD/dG/dG— T

i<j

w|’B

and in the corresponding complex case

/{HA—A e (D dD/dG— ).

i<j

p2

Then, in the real case, forp = 2, T (p+1) =T5(2) =n/2. F”(—Tﬂ) = #(21) . Now, T'p(25+)
p\2

divided by the right side quantity 7 gives % Now, consider the integral over D for p = 2 in the
real case. Letu; = A1 — As.

JoA1 = Xo)em MDD = [ Jwje duy [ jeP2dA,
1
5.

Hence, for p = 2 in the real case, Lemma 4.1 is verified. Now, for p = 3 in the real case, the left

w[@m

side quantity I, (pH) =T5(2) = %2 r:(g) = m = 272, Then,

I‘p(pTH)/[wT /Tp(5)] = %2/(271_2) = <. Now, consider the integral over D. Let
Uy = )\1 - AQ,UQ = )\2 - )\3,U3 = )\3.Th€l’l,




(A1 = A2) (A1 — A3) (A2 — Ag)e~MitAetd)d D
D
% [ [ 4y (ug + usg)uge WT2u23us) qoyy A dug A dus
o Jo
— L[l + Z] — 1
3l T3 4

Hence, the result for p = 3 in the real case is verified. Now, consider the complex case. The left
side quantity is T', (p) = T'2(2) = i ['(2)T'(1) = 7 for p = 2 and 273 for p = 3. The right
side quantity [Wp(p’l)/f‘p(p)] = mforp = 2 and %3 for p = 3. Now, the left side quantity
divided by the right side quantity gives the following: /7 = 1 for p = 2 and (2773)/(“73) =4
for p = 3. Now, consider the integral over D in the complex case. As before, let

Uy = )\1 — )\2,’&2 = )\2 — )\3. Then, fOI‘p = 2,

[p (A1 — Ag)?e~ (2l dyy A dg
= I [ u%e’(ulﬁ’\?)dul AdXg = 1.

Thus, the result for p = 2 is verified. Now, consider p = 3.

I 2(uq + uz) u%e (ur+2u2+333) oy A dug A dAg
= [ e _3>‘3d)\3 o7 [ (wiu? 4 2udud + wdug)e 1 ~22duy A duy

Hence, the result for p = 3 in the complex case is verified.
The joint density of Ay, ..., A, is the following, denoted by g3(D) in the real case and g3 (D)

in the complex case:

(7.14)

~ . ', (a+p) P
gg(D)dD - pr(n)fxp(a+p 'fl Fp {21;]‘:7( ) }

) ) (7.15)
11 A;”’}{ 11— )\j)a_"}dD.

j=1

We can write [[;_;(Ai — A;) in the real case and [[,_; (A; — A;)? in the complex case, in the

P X p matrix case, in terms of Vandermonde’s determinant.



APTLONPTE
AT o
[Té=x)=1{" _ o[ =A=(ay),a =X
i<j : I
DY VAN W |
for all i and j. Let us use the general expansion for a determinant. Then, for K = (k1, ..., kp)
where k1, ..., k, is a given permutation of 1, 2, .. ., p, we have the following:
—k1yp— —k
A= 3 (~1)Fane, - ape, = D (<)X NG A
K K
Here, pk is the number of transpositions needed to bring (&1, . . ., kp) to the natural order

(1,2,...,p). Then, if px is odd then we have —1 and if px is even then we have +1 as the
coefficient. For example, for p = 3 the possible permutations are
(1,2,3),(1,3,2),(2,3,1),(2,1,3),(3, 1, 2), (3,2, 1). There are 3! = 6 terms. In the general case
there are p! terms. For example, for the sequence (1, 2, 3) we have

ki =1,ky = 2,k3 = 3 = pg = 0 and the corresponding sign is +1. For (1, 3, 2) we have

k1 = 1,ky = 3, ks = 2. Here one transposition is needed to bring to the natural order (1, 2, 3)
and hence px = 1 and the corresponding sign is —1, and so on. In the complex case,

[T =2 = 4] = |[44'|=|A'4|.
i<j
Let A" = [B1, B2, . . ., Bp), where B, is the j-th column of A’,
Br= NN A1, =1, p Let AA = B = (by), by = Y0 A7) Then,

r=17"'T

H (Ai — )‘j)z = |B] :’AIA‘ = Z (—=1)"%byg,bok, - - - bpky

1<j K

where

b . )\2p7(1+k1) )\2p7(1+k1) 2p—(1+k1)

ki — ™M + Ay et A

boy, = )\fp—(2+kz) + )\gp—(2+k2) 4t )\ZP—(2+’€2)

bpkp — /\ip_(p“’kp) + /\gp_(p"‘kp) et )\gp_(l""kp)
Let

bikybak, -+ bpk, = Do AT - A (7.16)
Tiye 0Ty )

In the real case, the joint density of A1, ..., A, is the following:

(7.17)
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where, R(a) > 251 andm; = 2 — in +p —k;.

In the complex case,

~ . T, (a+p) p(p—1) PK\ M my, P a—n
D)dD = —= T =) A 1—A; dD
g3( ) Fp(n)rp(OH’P*n) Fp(p) ; ( ) 1 P {]1_[]_ ( J) } (718)
where R(a) > n — 1and m; = n — p + r; where r; is defined in (7.16). Hence, in (7.17) and
(7.18) we will use the same notation m; as the exponentof A;, 5 = 1,...,p with the
understanding that in the real case m; = 5 — pTH + p — k; and in the complex case

mj = n — p + r;. Further, for simplicity, we may write the joint density of the eigenvalues in
the real and complex cases as the following:

g3(D)AD =Y (—1)AT" - Ap" (1= X1)7 -+ (1 = Ap)"dD (7.19)
K
g3(D)AD =&Y (1) A" - A" (1 = X1)7 -+ (1 = Ap)"dD (7.20)
K
where
n p+1+ . n—1 Tpla+ ) s _—
m; = - ——F——7TPpP—Rj,y=C— yC = n n yJ=41...,D
! 2 2 ’ 2 Fp(?)rp(a+%_i) Fp(%)

in the real case, and

- Pp(a+p) mple—1)
mj;=n—p+r;j;Yy=0—"n,C= = ,Jj=1,...,p

Lp(n)Lp(a+p—mn) fp(p)

in the complex case, where r; is defined in (7.16). Since we have written the joint density of the

eigenvalues, both in the real and complex cases, by using the same format, we can use the same
procedure to obtain the densities of the largest eigenvalue, smallest eigenvalue etc. Integration

over Ai,...,Ap_1 is needed to obtain the density of the smallest eigenvalue A, Similarly,
integration over A, ..., A, is needed to obtain the density of the largest eigenvalue A;. In the
complex case, mj, j = 1, ..., p are always positive integers. Hence, integration by parts can get

rid off the factor )\;-nj . But, if the m is large or moderately large then the final expression, even
though a finite sum, will be messy. Similarly, when m; or «y in the real or complex case is a



positive integer, then integration by parts will eliminate the corresponding factor either )\;.nj or

(1- )\j)y. But the expressions may become messy when the parameter m; or «y is large or

moderately large. Hence, we will consider series expansions which will be valid for the real and
complex cases. When the parameters are positive integers, then these series will terminate into
a finite sum. Since 0 < \; < 1 the series will converge fast even if it is an infinite series.

7.5 Exact Marginal Function of the Largest Eigenvalue \;
in (7.19)

For both the real and complex cases, whether « is a positive integer or not, let us expand
(1 — X;)” to obtain a convenient representation. Note that

s (_7)1: t
jp § PP

where, for example, the notation (a),, = a(a+1)---(a + m —1),(a), = 1,a # Ois the
Pochhammer symbol. This will be a finite sum when -y is a positive integer. Now, we start
integrating from A\, onward.

Ap-1 x (=) 1
AP (L = Ap) "N, = 2 At
/}\pzo P ( P) P tpz:;) tp' mp + tp +1 p—1

Now, multiply this with A;”;" (1 — A, _1)” and integrate A, 1 from 0 to A2, and so on. The

final form, denoted by f1(1) is the marginal function corresponding to the largest eigenvalue
M. That s,

Y - io: (7'7)tp 1 io: (_’Y)tp,l 1
fily) = b Mt Al iy 142
P p—1=
o0 (_
¥ tode ot -1
% Z )tz 1 )\mp+ +myttp -+t 1+(p )(1 . tl)v,

to!  mpte - Amatty e Atat+(p—1) 71

for 0 < A\; < 1 and zero elsewhere. Now, incorporating the remaining factors from (7.17) and
(7.18), we have the marginal density of A;.

7.6 Exact Marginal Function of )\, the Smallest Eigenvalue

In the complex case, m is a positive integer for all j, and in the real case, m; is either a positive
integer or a half-integer. Since we are integrating out, starting from A1, A2 < A1 < 1, we may
write, for convenience,

A = - = 3 e g e
t1=0 1

Then,



1 m 0 (—my), 1
f/\lz/\z Al 1(1 — )\l)vd)\l = tE . % f/\lz/\z (1 _ )\1)’7+t1d)\1
1=

X (mma)y g Phaase
5 .

o tlz::O !yl
Now, multiply by AJ*?(1 — A2)” and integrate out A2, and so on. Final result, denoted by f,(\p),
is the following:

Bw) = 5 S T S b
p\”*P _t*O t! oyl Seta=0 ! 29t 42
=

v ZOO (7m17*1)tp_1 1
tp-1=0 tp1! (p—1)y+t1+ - Htp1+(p—1)

XA (L= AT et g <y, <1

and this multiplied by the remaining factors from (7.17) and (7.18) will be the marginal density
of the smallest eigenvalue A,. Observe that if one wishes to compute the marginal density of A,

for any s, then integrate out A1, ..., As_1, Ap, ..., As1. Then, multiply by the remaining factors
from (7.17) and (7.18). By integrating out A1, ..., A;_, one obtains the joint marginal function
of A, ..., Ap,and so on.
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