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Preface

In the past decades, we have witnessed the rapid development of marine programs in
many countries. Marine communication and networking, as an important corner-
stone of the delivery of maritime services, is deeply integrated into production and
life of people in coastal countries. The next generation Marine Wireless Communi-
cation Networks (MWCNs) are expected to incorporate advanced communication
and networking technologies to meet the ever-increasing demand of maritime
services, and to enable many new intelligent maritime applications such as environ-
ment-adaptive navigation, intelligent cargo storage management, underwater inspec-
tion and surveillance, telemedication, and maritime emergency rescue. However,
marine communications are faced with many fundamental challenges such as com-
plex marine environments, fast-changing maritime channels, and limited spectrum
resources. These challenging issues may greatly degrade the quality of service of
MWCN in terms of latency, reliability, and scalability.

This book aims to address these challenges in the design and development of next
generation MWCNs. Specifically, we will explore the key technologies in the
following general categories to improve the network performance, including (1)
the network deployment, (2) the physical layer channel coding, (3) the link layer
resource management, and (4) the network layer routing design. The objective of the
book is to provide a comprehensive guide for the audience to understand the design
principle and development of MWCNs in support of numerous maritime services.

The book is organized as follows. An overview of MWCNs is first presented,
including maritime applications and a comprehensive survey of existing MWCNs,
followed by a detailed discussion of challenges of maritime communications and
networking in different layers. In order to address these challenges, e.g., high
deployment costs of marine sensors in a large-scale three-dimensional space, and
long propagation delay of underwater acoustic channel, we first study the network
deployment and management of next generation MWCNs with a multi-tier hierar-
chical network architecture that includes three sub-networks, namely, the underwater
acoustic sub-network, the sea-surface wireless sub-network, and the air wireless sub-
network. Then, a novel Orthogonal Frequency Division Multiplexing (OFDM)
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autoencoder featuring CNN-based channel estimation is presented for marine com-
munications with complex and fast-changing environments. Next, the energy sus-
tainable performance of an underwater sensor network using a random-access
protocol is analytically studied, taking into consideration the stochastic nature of
energy harvesting and the unique feature of the acoustic communication channel.
Furthermore, in order to monitor the marine environment and surveil the sensor
ecosystem, an Energy-efficient Depth-based Opportunistic Routing Algorithm with
Q-learning (EDORQ) is proposed for marine wireless sensor networks to guarantee
the energy efficiency and reliable data transmissions. Finally, we summarize the
book and outline the possible further research directions.

We would like to acknowledge with thanks Prof. Nan Wu (Dalian Maritime
University, China), Prof. Rongxi He (Dalian Maritime University, China), Prof.
Yuanguo Bi (Northeast University, China), Prof. Haibo Zhou (Nanjing University,
China), and Prof. Nan Cheng (Xidian University, China) for their valuable sugges-
tions and comments on this book. We would like to thank the helpful suggestions
made by the reviewers, including Xu Hu, Shuang Qi, Chaoyue Zhang, Haocheng
Wang, and Jiaye Li. Special thanks to the staffs at Springer Nature: Hemalatha
Velarasu and Mary E. James, for their effort and support throughout the publication
preparation process.

Dalian, China Bin Lin
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vi Preface



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Overview of Marine Wireless Communications and

Networks (MWCNs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.1 Maritime Applications in MWCNs . . . . . . . . . . . . . . . . . . 3
1.1.2 Current Marine Wireless Communication Networks . . . . . . 6
1.1.3 The Next Generation Marine Wireless

Communication Networks . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2.1 Deployment Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2.2 Physical Layer Challenges . . . . . . . . . . . . . . . . . . . . . . . . 22
1.2.3 Link Layer Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.2.4 Network Layer Challenges . . . . . . . . . . . . . . . . . . . . . . . . 27

1.3 Organization of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Topology Optimization of MWCN . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3 Network Model and Problem Formulation . . . . . . . . . . . . . . . . . . 36

2.3.1 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.2 Energy Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Ant Colony Based Efficient Topology Optimization
(AC-ETO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4.1 Algorithm Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4.2 Computational Complexity Analysis . . . . . . . . . . . . . . . . . 45

2.5 Simulations and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.5.1 Performance Validation in Small Scale to

Middle Scale Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.5.2 Performance Analysis of Gurobi and AC-ETO

in Different Network Scenarios . . . . . . . . . . . . . . . . . . . . . 49

vii



2.5.3 Performance Comparison of AC-ETO and
a Greedy Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3 Autoencoder with Channel Estimation for Marine
Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2 Typical OFDM Communication Systems . . . . . . . . . . . . . . . . . . . 62
3.3 Proposed OFDM Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.1 CNN-Based OFDM Autoencoder . . . . . . . . . . . . . . . . . . . 64
3.3.2 Coded CNN-Based OFDM Autoencoder

Using LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.3.3 CNN-Based Channel Estimation . . . . . . . . . . . . . . . . . . . . 68
3.3.4 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.4.1 AWGN and Fading Channels . . . . . . . . . . . . . . . . . . . . . . 72
3.4.2 Channel Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 Decentralized Reinforcement Learning-Based Access
Control for Energy Sustainable Underwater Acoustic
Sub-Network of MWCN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3 Performance Analysis of ESUN with Energy Harvesting . . . . . . . . 88

4.3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.3.2 Analysis of ESUN Nodes . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.3.3 Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4 Learning-Based Random Access for ESUN Nodes . . . . . . . . . . . . 96
4.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5 Opportunistic Routing with Q-Learning for Marine
Wireless Sensor Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3.1 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.3.2 Q-Learning Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.4 EDORQ Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.4.1 Overview of EDORQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.4.2 Void Detection Based Candidate Set Selection . . . . . . . . . . 119

viii Contents



5.4.3 Q-Learning Based Candidate Set Coordination . . . . . . . . . 121
5.4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.5 Simulation Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.5.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.5.2 Simulation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.5.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6 Conclusions and Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Contents ix



Abbreviations

AANet Adaptive aggregation network
AIS Automatic identification system
ANO Average network overhead
AoA Arrival of angle
AP Access point
APD Average packet delay
AR Augmented reality
ARN Aerial relay node
ARQ Automatic repeat request
ASM Application specific messages
AUVs Autonomous underwater vehicles
BDS BeiDou navigation satellite system
BLER Block error rate
BnB Branch and bound
BSs Base stations
CE Channel estimator
CIRs Channel impulse responses
CL Candidate location
CNNs Convolutional neural networks
Co-DNAR Cooperative DNAR
CoEERD Cooperative effective energy and reliable delivery
COSPAS/SARSAT International satellite system for search and rescue services
CP Cyclic prefix
CSI Channel state information
CSMA/CA Carrier-sense multiple access with collision avoidance
CTS Clear to send
DART Deep-ocean assessment and reporting of tsunamis
DBR Depth-based routing
DEADS Depth and energy aware dominating set based algorithm
Dense-Net Dense convolutional neural networks

xi



DFT Discrete Fourier transform
DL Deep learning
DNAR Depth and noise-aware routing
DSC Digital selective calling
ECN Edge computing node
EDORQ Energy-efficient depth-based opportunistic routing algorithm

with Q-learning
EE-DBR Energy-efficient depth-based routing algorithm
EERD Effective energy and reliable delivery
ELF Extremely low frequency
ELT Emergency locator transmitter
eMBB Enhanced mobile broadband
EPIRB Emergency position indicating radio beacon
ESONET European Seas Observatory Network
EW Electromagnetic waves
FC Full connected
FCL Feasible candidate location
FDMA Frequency division multiple access
FSK Frequency-shift keying
GEO Geostationary Earth Orbit
GMDSS Global Maritime Distress and Safety System
GOES Geostationary Operational Environmental Satellite
GOOS Global Ocean Observing System
GX Global Xpress
HAPs High-altitude platforms
HD High definition
HF High frequency
HH-VBF Hop-by-Hop vector-based forwarding algorithm
IALA International Association of Maritime Aids to Navigation and

Lighthouse Authorities
IDFT Inverse discrete Fourier transform
IMO International Maritime Organization
INMARSAT International Maritime Satellite
IoV Internet of vessels
ISI Inter-symbol interference
ITU International Telecommunication Union
LEO Low Earth orbit
LMMSE Linear minimum mean square error
LS Least squares
LUT Local user terminal
MASS Maritime autonomous surface ship
MCC Mission Control Center
MDP Markov decision process
MEC Mobile edge computing

xii Abbreviations



MEO Medium Earth orbit
MF Medium frequency
MMN Marine monitoring network
MO Multi-objectives optimization
MSI Maritime safety information
MWCNs Marine wireless communication networks
NAVTEX Navigational Telex
NBDP Narrow band direct printing
NCC Network Control Center
NCS Network Coordination Station
NFV Network functions virtualization
NS2 Network simulator version 2
OFDM Orthogonal frequency division multiplexing
OR Opportunistic routing
OVAR Opportunistic void avoidance routing
PDR Packet delivery ratio
PLB Personal locator beacon
QDAR Q-learning based delay-aware routing
QELAR Q-learning-based energy-efficient and lifetime-aware routing
QKS Q-Learning with additional kinematics and sweeping features
QoS Quality of service
RCC Rescue coordination center
Res-Net Residual network
RF Radio frequency
ROVs Remote operated vehicles
RSS Received signal strength
RTS Request to send
SAGSIN Space-air-ground-sea integrated networks
SCS Special communications systems
SDN Software defined network
SIFS Shortest interframe space
SOLAS International Convention for the Safety of Life at Sea
SOTDMA Self-organized time division multiple access
SSN Sea-surface node
TEC Total energy consumption
ToA Time of arrival
TRITON TRI-media Telematic Oceanographic Network
UAN Underwater acoustic network
UAVs Unmanned aerial vehicles
UNCTAD United Nations Conference on Trade and Development
URLLC Ultra-reliable and low latency communication
URN Underwater relay node
UWSNs Underwater wireless sensor networks
VAPR Void-aware pressure routing

Abbreviations xiii



VBF Vector-based forwarding
VDE VHF data exchange
VDES VHF data exchange system
VDL VHF data links
VHF Very high frequency
VLF Very low frequency
VR Virtual reality
VSAT Very small aperture terminal
WiMAX World Interoperability for Microwave Access
WISEPORT Wireless broadband access project
WSN Wireless sensor network

xiv Abbreviations



Chapter 1
Introduction

The area of the ocean is about 360 million square kilometers, which accounts for
about 71% of the earth surface area. As a huge treasure house of resources, the ocean
contains rich ecosystems with mineral wealth, chemical resources, biological
resources, and so on. It is not only an important place for human activities such as
fishery, maritime transportation, and offshore industries, but also a potential area of
human habitat in the future [1]. Therefore, the development of the marine industry is
highly relevant to the growth of global economy and the maintenance of a healthy
global biosphere.

Maritime economy is essential to the economic growth and prosperity worldwide.
Maritime transport accounts for more than 90% of world trade. At the beginning of
2020, the total world  eet amounted to 98,140 commercial ships of 100 gross tons
and above, equivalent to a capacity of 2.06 billion dead-weight tons, excluding
inland waterway vessels, fishing vessels, military vessels, yachts, and fixed/mobile
offshore platforms. United Nations Conference on Trade and Development
(UNCTAD) estimates that the total volume of maritime trade including the tanker
trade, main bulk, and other dry cargo reaches 11.08 billion tons in 2019 [2].

Marine tourism is one of the largest industries in the world marine economy.
Recent developments suggest that marine tourism has become one of the fastest
growing areas of the world’s tourism. According to the statistics from Cruise Lines
International Association, the number of cruise tourists worldwide reached 28.5
million in 2018, an increase of 74.8% over 16.3 million in 2008, with an average
annual growth rate of 5.8% [3]. Despite the negative impact of COVID-19 on the
world economy, the marine economy still plays an important role in global economic
development. As human activities in oceans continuously increase, it becomes
critical and pressing to provision reliable and cost-effective maritime services over
Marine Wireless Communication Networks (MWCNs) [1].

Marine ecosystem spanning over polar, temperate, and tropical waters is an
indispensable part of the global ecosystems. The stability of ocean ecosystem is
important for regulating the global climate and the biological productivity of the
ocean. However, some human activities in the ocean may cause damage to the
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marine environment and ocean resources to some extent. As such, many coastal
countries develop environmentally sustainable strategies to rationally exploiting
marine resources while protecting marine environment. For example, the UK
released the “Marine Energy Plan 2010,” which presented a vision of a renewable
energy strategy and a low-carbon industrial strategy [4]. In 2019, China first
proposed the concept of building a maritime community with a shared future,
which has charted the path and direction for global maritime governance. To protect
the marine environment, marine monitoring systems are deployed to monitor the
ocean environments, including Global Ocean Observing System (GOOS), Neptune,
European Seas Observatory Network (ESONET), etc. The MWCNs can realize the
interconnections among observation equipment, expand the observation coverage,
and thus enhance the real-time ocean monitoring and surveillance.

In addition to the development of the marine industry, it is also well noted that
maritime safety issues are arising. Maritime emergencies, such as a sinking ship, will
cause not only heavy casualties, but also huge economic losses. For example, in
2006, the Egyptian passenger ship Al Salam Boccaccio 98 sank in the Red Sea with
more than 1400 people on board, leaving more than 1000 people dead or missing. It
is of great significance to improve the capability of dealing with and responding to
maritime emergencies to enhance the safety of life and property at sea while
promoting the steady development of the marine industry. Maritime emergency
services can help emergency rescue by comprehensively utilizing various commu-
nication resources in case of maritime emergencies or marine natural disasters
[5]. The Global Maritime Distress and Safety System (GMDSS) proposed by
International Maritime Organization (IMO) is the most well-known system for
maritime emergency.

Facing the rapid development trend of maritime activities, MWCNs are expected
to provide ultra-reliable, low-latency, and low-cost communication services
[6]. However, the current MWCNs can only meet the needs of some services and
are not able to cope with the continued growth of marine applications. For example,
the current maritime medical services can only support text message and voice
transmissions due to limited bandwidth, thus complicated diagnose or surgeries
that require real-time video communication cannot be performed [7]. The construc-
tion of MWCNs also faces great challenges due to the salient features of oceans.
Firstly, the deployment of network infrastructure over sea is much more difficult
compared with territorial networks as geographical space available for deploying
Base Stations (BSs) at sea is very limited. Offshore communications rely on shore-
based communication networks, while communication services in the open sea can
only be provided by maritime satellites. Secondly, the communication environment
in the ocean is very complicated, and the hostile weather and ocean conditions may
seriously affect the communication quality. Finally, maritime nodes usually have to
be operated in high humidity or seawater immersion environment for a long time
under the in uence of strong winds and waves. How to improve the lifetime of
network equipment is another challenging task. More details will be described in
Sect. 1.2. Catering to the growing needs of maritime communications, we aim at
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addressing the challenges in the design and development of next generation
MWCNs.

This chapter is organized as follows: Sect. 1.1 provides an overview of MWCNs,
including the applications of MWCNs, the current MWCNs, and the next generation
MWCNs. Section 1.2 discusses the research challenges of MWCNs. Section 1.3
presents the organization of this book.

1.1 Overview of Marine Wireless Communications
and Networks (MWCNs)

1.1.1 Maritime Applications in MWCNs

Advanced wireless communication technologies enable many maritime services
spanning from ocean monitoring and surveillance to emergency rescue. Digital
Selective Calling (DSC), Narrow Band Direct Printing (NBDP), ship identification,
and monitoring services rely on maritime communication over Medium Frequency
(MF), High Frequency (HF), and Very High Frequency (VHF) bands. International
Satellite System for Search and Rescue Services (COSPAS/SARSAT) and Interna-
tional Maritime Satellite (INMARSAT) provide emergency alarm, ship position
identification, and positioning and location inquiry services. In the offshore area,
the shore-based mobile communication system provides broadband data services for
ports, docks, channel management, mariculture, and marine rescue. Recently, Inter-
net of Things (IoT) technology that incorporates sensing, actuation, computation,
control, and communications has been used to provide various intelligent maritime
services. In this subsection, we introduce four typical intelligent maritime applica-
tions including smart transport, environmental monitoring, entertainment, and emer-
gency rescue.

1.1.1.1 Smart Maritime Transport

The smart transport is in urgent need due to the demand of maritime traffic and port
logistics tasks. A smart maritime transport system can make use of water transpor-
tation facilities and information resources to improve ship navigation efficiency and
safety and to realize the socialization of water transport service and smart manage-
ment. The necessity of smart maritime transport can be re ected in many application
scenarios described below.

The first scenario is the situational awareness of navigation environment.
According to the statistics of the International Maritime Organization (IMO), the
predominant reasons for sea transport accidents are due to human mistakes
(overloading, improper navigation) and/or environmental factors such as storms
and cyclones. If a crew member is aware of an improper operation in time and the
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weather conditions can be accurately predicted in advance, the risk of marine
accidents can be greatly reduced. Thus, it is desirable for a vessel to employ a
network system comprised of different information sensing nodes, e.g., to determine
the numbers of passengers and freight, ship location and speed, the value of
freeboard, the tidal wave height, and water current speed and direction, and to
check the weather conditions and so forth to avoid marine accidents [8, 9]. Another
application scenario is the operation of Maritime Autonomous Surface Ship
(MASS). A MASS is a highly automated ship, which greatly reduces the demand
for the number of crew, and thus releases more space for cargo for a given tonnage.
The automation of MASS relies on a reliable maritime communication network. For
example, in the scenario of MASS berthing and unberthing, the operators on the
shore send control signals according to the real-time video from the unmanned ship,
which requires very low latency and high reliability [10, 11]. The third application
scenario is marine cargo storage monitoring. As there is generally no monitoring
equipment in closed containers, it is difficult to ensure the real-time monitoring of
goods that are sensitive to storage conditions in traditional transportation systems.
Thus, a sensor network should be deployed to monitor the environmental parameters
of cargo storage in real time.

The deployment of modern MWCNs can further improve the transport services
by combining advanced communication technologies and artificial intelligence. In
the first application scenario, sensors on board can send the navigation environment
data to the cloud servers, which analyze the data with trained decision models to
predict the present situation of the sailing vessel, so as to realize the situational
awareness of navigation environment. In case of any emergency predicted by the
cloud service, it sends an alert message with detailed information to the onshore
rescue center and the vessel itself. In the second application scenario, the MWCNs
based on Software Defined Network (SDN) can provide MASS with Enhanced
Mobile Broadband (eMBB) or Ultra-reliable and Low Latency Communication
(URLLC) services, such as High Definition (HD) surveillance video transmission
and remote control of MASS berthing and unberthing. In the third application
scenario, intelligent containers equipped with sensors can send monitoring data
such as temperature and humidity to a remote server on the vessel. Via MWCNs,
the monitoring data are transmitted to the servers onshore, where these data are
analyzed, and the storage environment can be evaluated, and control messages can
be sent back to the vessel to make adjustment according to the actual needs [12, 13].

1.1.1.2 Marine Environmental Monitoring

Some human activities such as oil spill, industrial wastewater discharge, and over-
fishing may cause severe damage to the marine environment. The sustainable
development of marine resources has gradually become a world consensus. How-
ever, it is very challenging to monitor the vast marine areas, especially in the deep
ocean. With the recent advanced Internet of Things technologies, it is possible to
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collect and forward information with the help of Underwater Wireless Sensor
Networks (UWSNs).

The UWSNs are deployed over the different depths in the ocean to monitor the
ocean environment and to surveil the marine ecosystem. For vast water bodies like
oceans, rivers, and large lakes, data is collected from the different depths of the water
levels and then delivered to the surface sinks which are usually installed on the sea
surface. Take an example of seawater pollution detection, the sensors nodes that can
be deployed on the sea oor or  oat in the seawater collect and monitor marine
environmental parameters, such as water temperature, salinity, pH, and oxygen
content. The sensed data are then transmitted to the onshore server via MWCNs
[14]. UWSNs can also be applied for underwater pipeline monitoring. In this case,
sensor nodes can be divided into two categories: static nodes and  oating nodes. The
static nodes are attached to the pipelines so that they are able to monitor the critical
parameters of the pipelines. The  oating nodes pulled by ropes installed on the
seabed are arranged in seawater at different depths, which can be used to relay the
received underwater acoustic signal transmitted by other nodes to the receivers on
the sea surface. The static nodes collect the pressure and velocity of the oil and the
acoustic vibration caused by the leakage if there is any, and the sensed data can be
forwarded to the  oating nodes. Even though these  oating nodes may move around
in the sea, they are attached to the sea bed or  oating buoy with strings to keep them
in range. These  oating nodes relay the data to the surface sink, which communicate
with the control center with radio-frequency communication [15, 16].

1.1.1.3 Entertainment

Marine tourism is one of the largest industries in the world marine economy. Take
China as an example. According to the statistics of the National Development and
Reform Commission, in 2019, China’s value of marine tertiary industry was 5370
billion Yuan, where the marine tourism contributed 1808.6 billion Yuan. In order to
meet the continuous development of marine tourism, it is also critical to promote
marine communication networks.

In terms of cruise tourism, passengers on board need a broadband communication
network to watch live sports events, performances, entertainment programs with
High Definition (HD) television, and to have real-time video conferences at sea. In
the scenarios of new media game services, the players on board need high-
bandwidth and low latency services for immersive gaming experience, such as
Virtual Reality (VR), Augmented Reality (AR), ultra-high definition video games.
The deployment of MWCNs based on Space-Air-Ground-Sea Integrated Networks
(SAGSIN) can extend the coverage and enhance the quality of communication,
which will help to realize the entertainment services mentioned above. In some
underwater entertainment projects such as scuba dive in the deep sea, diving tourists
use underwater acoustic communication networks to communicate with each other,
e.g., to exchange position and the equipment status information which are important
to ensure their personal safety. It has been pointed out in [17] that the planar Ad Hoc
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network based on Very Low Frequency (VLF) or Extremely Low Frequency (ELF)
can be used for small underwater formation communication, which makes it possible
for a small group of diving tourists to communicate with each other, thus improving
their tourism entertainment experience as well as enhancing their ability to deal with
emergencies.

1.1.1.4 Emergency Rescue

Emergency rescue is a critical application as various marine natural disasters have
caused serious damage to human manufacture and life. It is of critical importance to
rescue the crew of the ship when two cruises collide, to evaluate the staff on the
drilling platform in case of bad weather, and to tele-medicate injured or sick people
on ship. The rescue operation cannot be implemented without the support of
communication networks. Different from land emergency communication support,
marine emergency communication support usually needs to face adverse conditions
such as the difficulties in deployment of communication infrastructures and harsh
marine communication environment.

The real-time image and video transmissions of the onsite scene are crucial for the
command and coordination of the rescue operation. When a marine accident occurs,
the onsite situation of marine search and rescue can be collected by MWCNs in real
time, so as to guarantee fast and efficient search and rescue. In addition, underwater
emergency communication can also provide communication and positioning ser-
vices for underwater rescue, wreck positioning, search and rescue as well as salvage.
Besides these, MWCNs make telemedicine possible. Maritime telemedicine allows
for remote diagnose of patients, monitoring, telemedicine training and surgery, and
so on.

In terms of tsunami warning, the USA has implemented a project called Deep-
ocean Assessment and Reporting of Tsunamis (DART) [18]. Each DART tsunami
buoy includes a seabed pressure recorder anchored on the seabed and an anchored
sea buoy. The seabed pressure recorder uses a pressure sensor to detect the sea water
pressure change caused by the tsunami and transmit the information to the buoy
through the underwater acoustic channel, and the buoy can be used to monitor the
sea surface. The data from the seabed and sea surface are transmitted to the ground
station through the Geostationary Operational Environmental Satellite (GOES).

1.1.2 Current Marine Wireless Communication Networks

Currently, maritime mobile terminals mainly acquire communication services via
maritime satellites or through shore-based communication networks [19]. Specifi-
cally, BSs are deployed on the coast line or islands to serve users in the offshore area.
In the open sea area where it is very difficult to deploy BSs, maritime satellites are
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used to provide effective communications for marine users, which are usually
sparsely distributed over the sea and the communication distance is very long.

Traditional maritime satellite communications can provide communication ser-
vices for aero amphibious users and can be widely used for improving ship safety,
disaster rescue, and other maritime services. Compared with territorial network,
satellite communications are not limited by geographical locations and thus are
suitable for remote stations to communicate with each other [20]. The major issue
of satellites communication is the cost as launching a satellite is not an easy task,
especially for geostationary satellites where the orbit space is limited. In addition,
maritime satellites usually use licensed spectrum, which is precious for wireless
users. Due to limited bandwidth of satellites, the data rates of satellites communica-
tions are usually on the order of mega bit per second. For example, the maritime
communication rates of the Inmarsat and Very Small Aperture Terminal (VSAT) are
up to 50 and 46 Mbps, respectively.

In the offshore area, besides maritime satellites communication networks, an
alternative networking solution is offshore communication networks where BSs
are deployed on the shore area to serve offshore users. For example, Digital Selective
Calling (DSC), Navigational Telex (NAVTEX), can provide a communication
coverage of several 100 km using MF, HF, and VHF bands. Due to the limited
bandwidth in these frequency bands, some killing applications such as HD video and
LiDAR may not be fully supported [21, 22].

It has been well recognized that vast unexploited areas lie under water. UWSN is
emerging as an enabling technology for underwater explorations, such as monitoring
the marine environment for scientific research, commercial exploitation, and coast-
line protection. Generally speaking, UWSN is a network of a number of autonomous
sensor nodes spatially distributed underwater, possibly in different depth, to sense
the water temperature, pressure, and other parameters, and transmit the sensed data
to a sink node for data analytics. Since radio waves do not propagate well under-
water, RF based communications including shore-based maritime wireless commu-
nication and maritime satellite communication are not suitable for underwater
communications [23]. Instead, underwater sensors use acoustic transceivers to
communicate with each other. The acoustic waves are low frequency waves of a
small bandwidth but a long wavelength. Thus, acoustic waves can travel long
distances, e.g., on the order of kilometers [24].

In the following subsection, we will introduce offshore/open sea communication
and UWSNs in MWCNs, respectively. Finally, GMDSS, an application example of
MWCNs will be presented.

1.1.2.1 Offshore Wireless Communication

In an offshore wireless communication network, BSs are installed on coasts, islands,
or reefs to provide communication coverage to users in the offshore area using MF,
HF, and VHF frequency bands. A typical offshore maritime communication system
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mainly includes NAVTEX system, PACTOR system, and Automatic Identification
System (AIS).

NAVTEX system sends navigational warning, weather warning, weather fore-
casts, and other maritime safety information to ships from coastal station by using
the Narrow Band Direct Printing (NBDP). The information may be relevant to all
types and sizes of vessels and the selective message-rejection feature ensures that
every mariner can receive the broadcasted safety information relevant to their
voyage [25]. It adopts Frequency-Shift Keying (FSK) modulation scheme and
mainly uses 518 kHz bands to broadcast information in English and uses 490 kHz
band for information in other languages. Basically, it is difficult for NAVTEX to
adapt to meet the requirements of modern shipping services as it operates in a direct-
printing mode in narrow band, with unitary function and low intelligence.

PACTOR, developed by Special Communications Systems GmbH (SCS), is a
digital data protocol combining elements of PACKET and AMTOR Automatic
Repeat Request (ARQ). PACTOR I is used by many groups, such as sail-mail for
mariners to send and receive e-mails. In order to improve the reception of digital data
and achieve robust error control and high data throughput, PACTOR utilizes a
combination of simple FSK modulation, and ARQ protocols, and the time division
duplex (TDM) is applied for transmitting the digital information in the email form.
PACTOR II is up to 8 times faster than PACTOR I, with a bandwidth of 450 Hz. The
next version, PACTOR III, introduces 6 speed levels and further improves the
achievable throughput and robustness compared to the previous generations of
PACTOR I and II, with a maximum bandwidth of 2400 Hz. PACTOR IV is the
latest version of the PACTOR series, advancing from PACTOR I-III. It achieves a
data rate that is 1.5–3 times faster than PACTOR III and introduces 10 speed levels.
Nevertheless, PACTOR systems are not suitable for real-time services due to long
time delay.

Telenor, working in the VHF band, aims to providing digital radio services for
ships in Norway and the nearby international waters. Its base station is not only
distributed in the coastal area of Norway, which is 70 nautical miles away from the
coastline, but even on most of Norway’s oil facilities in Beihai. According to the
ITU-R M.1842-1 protocol, there are four recommendation systems which emphat-
ically describe the data and e-mail exchange for the 18 supplementary channels and
equipment characteristics of VHF ocean mobile business. Specifically for the mod-
ulation schemes, System 1 mainly adopts π/4-DQPSK and π/8-D8PSK, system
2 adopts GMSK, and systems 3 and 4 adopt 16-QAM. TDMA and CSTDMA are
employed as the multiple access techniques.

AIS is an automatic tracking system installed on ships, which can realize the
automatic exchange of information between ships, such as their position, speed, and
navigational status at regular intervals on VHF band, provide collision avoidance
measures for ships effectively. In order to ensure that the transmissions of different
transceivers do not occur at the same time, the signals are time multiplexed using
technology multiple access technique called Self-Organized Time Division Multiple
Access (SOTDMA). However, the increasing number of AIS users and the diversi-
fication of the demand have brought great load to the AIS channel, which lead to
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interfering concurrent transmissions that degrade the system performance. To alle-
viate the interference in the existing VHF frequency band of the AIS system and to
ensure effective and efficient system operations, a new system, namely VHF Data
Exchange System (VDES), has been emerging.

VDES, as an enhanced and upgraded system of AIS in the field of maritime
mobile services, was proposed by the International Telecommunication Union in
2012 after the world radio communication (WRC-12) Conference and was jointly
approved by the 162 member countries and 136 international organizations and
groups at the 2015 World Radio Communication Conference (WRC-15). It has
added the Special Application Message (SAM) and the broadband very high fre-
quency data exchange function to the existing AIS functions, which make it effec-
tively alleviate the pressure of the existing AIS data communication and provide
higher data throughput and spectrum utilization.

Generally, the aforementioned offshore maritime wireless communication sys-
tems have a relatively low cost and ease of operation, compared with satellites
communication systems. It is also worth noting that the offshore systems are
dependent on the climate conditions and marine environment. Moreover, the
existing systems are narrowband communication systems operating on relatively
low frequency bands. Thus, they are not able to provide broadband data services
[26]. Table 1.1 summarizes the main system parameters employed in the existing
shore-based maritime wireless communication systems.

In some areas, 2G/3G/4G mobile communication networks are also applied for
offshore communications, e.g., within 30 km offshore, to support voice and broad-
band data transmissions [27]. In recent years, a few new systems have been emerging
to provide maritime services in a cost-effective way.

The TRI-media Telematic Oceanographic Network (TRITON) was proposed by
Singapore for high-rate and low-cost maritime communications in narrow water
channels and shipping lanes close to the shore [28, 29]. Figure 1.1 shows the high-
level architecture of TRITON. The ships form a mesh network connected to the
terrestrial network via shore BSs. Buoys can also form a mesh network with ships.
This system is working for Singapore as there are usually a sufficiently large number

Table 1.1 Shore-based maritime wireless communication systems

System
Communication
method Modulation mode Data rate

Communication
distance

NAVTEX MF FSK 50 bps 460�740 km

NBDP HF FSK 100 bps >460 km

PACTOR-
3

HF FSK/OFDM 9.6/
14.4 kbps

4000�40,000 km

DSC MF/HF and VHF – 100/
1200 bps

Visual range

Telenor VHF π/4-DQPSK/GMSK/16-
QAM

133 kbps 130 km

AIS VHF GMSK 9.6 kbps Sight distance

VDES VHF GSMK/OFDM/QAM 40 kbps Sight distance
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of ships that provide full network connectivity. In locations where the ships are
sparse and the network is not fully connected, then it could be difficult to connect
with onshore stations via mesh links. In such case, the mesh node or ship will fall
back on a satellite communication link [10, 11].

Singapore’s Port Wireless Broadband Access Project (WISEPORT) leverages the
mobile World Interoperability for Microwave Access (WiMAX) wireless broadband
network to provide data communications with a rate of up to 5 Mbps and a
communication distance of 15 km [30]. The network coverage stretches from the
southern coast of Singapore to the port water limits. The recent LTE-Maritime
project in South Korea [21] aims at developing new MWCNs to enable users at
sea to access high-rate data services in coastal areas 100 km from the coast.
LTE-Maritime enables near sea ships to directly communicate with BSs in land.
Therefore, it is particularly suitable for safety-related maritime services with high
reliability and low latency. Another project, namely, Maritime Broadband Commu-
nication (MariComm), target to provide two-way high-speed Internet/multimedia
services at a rate of 1 Mbps or more on the sea by enabling maritime stations to form
maritime heterogeneous relay networks for data forwarding. MariComm is a new
marine broadband digital communication system to meet the requirement for the
coming e-Navigation era. It provides high quality internet services within 100 km
from the shore [31].

Generally, the communication coverage of offshore wireless communication
networks is limited. Due to wireless fading channels, maritime stations far away
from the shore achieve a low data rate over a long communication distance. Thus,
offshore wireless communication networks can support broadband services for
maritime stations that are close to the BSs, while faraway maritime stations may
still suffer from low communication rate.

Cloud Control Center

Ground
station

Drilling
platform

Base station Sea

Buoy

Vessel

Vessel

Satellite

Land

Fig. 1.1 The architecture of TRITON
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1.1.2.2 Open Sea Wireless Communication

Satellite system is suitable for the far ocean navigation as they can provide ships with
worldwide Internet access from anywhere. However, the high cost of satellite
communications could be a barrier to commercial expansion. According to the
altitude, satellites can be classified into three categories: Geostationary Earth Orbit
(GEO), Medium Earth Orbit (MEO), and Low Earth Orbit (LEO) satellites. GEO
satellites operate at the orbit of 36,000 km high and the propagation delay is around
120 ms; MEO satellites work at an orbit from 10,000 to 20,000 km with a propa-
gation delay on the order of 10 ms; the LEO satellite operates at an orbital altitude
from 500 to 1500 km with a propagation delay of less than 1 ms [6, 32].

Inmarsat was the world’s first international GEO satellite mobile communication
system. It provides data services to users worldwide through 14 geostationary
telecommunication satellites. The Inmarsat was originally designed to meet the
communications needs of the U.S. Navy and has since evolved to be operated by
The International Maritime Satellite Organization, gradually shifting to civilian
applications [20]. Inmarsat-3 consists of five L-Band satellites that provide
low-bandwidth communications and security services primarily for global shipping.
Fleet Xpress, the Global Xpress (GX) service for maritime, delivers seamless
connectivity at sea, with high-speed data over Ka-Band, combined with the proven
reliability of Inmarsat’s  agship Fleet Broadband L-Band service as a back-up [33].

The Iridium satellite constellation project aims at providing voice and data
services over the entire surface of the earth. It was first calculated that 77 satellites
are needed, hence the name Iridium, after the metal with atomic number 77. It turned
out later 66 satellites should be sufficient to complete the coverage of the earth. The
first Iridium satellite was launched in 1997 and the first call was made in 1998. The
global coverage was complete by 2002. The Iridium constellation continued oper-
ation following the bankruptcy of the original Iridium Corporation. The second-
generation Iridium-NEXT satellites began to be deployed into the existing constel-
lation without disrupting services in 2017. In 2020, the upgraded Iridium constella-
tion was certified for use in the Global Maritime Distress and Safety System
(GMDSS). As the world’s only truly global satellite network, Iridium provides
reliable communications for maritime stations including unmanned vessels regard-
less of their geographical locations so that it ensures full network connectivity,
improves shipping safety, and communication efficiency [34].

Tiantong-1 satellite communication system was the first satellite of China’s
satellite mobile communication system launched in 2016. The user link operates in
the S band, and the feeder link works in the C band. It supports millions of users at
the same time and can provide voice, data, short message, and other communication
services for mobile users such as vehicles and ships.

The BeiDou Navigation Satellite System (BDS) is a global navigation satellite
system independently constructed and operated by China. The short message com-
munication function is the unique advantage of the BDS that distinguishes it from
other global navigation and positioning systems. The BDS has the function of
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two-way communication: (1) point-to-point two-way interactive information
exchanges and (2) point-to-multipoint one-way transmissions. This function can
be used in marine rescue, ocean transportation, and other services. The BDS
works in the L-Band. The service area of the BDS includes most areas from 55�S
to 55�N, 70�E to 150�E [35].

The satellite-based maritime communication networks can provide low-speed or
high-speed data services depending on the spectrum bands they operate, i.e., the
narrowband or broadband. Notice that the satellite communication may be highly
dependent on the climatic conditions and the marine environment. For example,
satellite communications over Ku band are extremely susceptible to attenuation due
to rain fade [19]. In addition, compared with GEO and MEO satellite networks, the
signal loss of LEO constellation to the ocean would be relatively smaller thanks to a
lower orbit.

1.1.2.3 Underwater Wireless Sensor Networks

Underwater communication plays an important role in observation of marine life,
water pollution, exploration of oil and gas drilling platforms, monitoring of natural
disasters, tactical operations for maritime safety, and observation of changes in the
underwater environment. Underwater wireless communication network is usually
composed of underwater sensor nodes and sink nodes deployed in the sea surface to
jointly complete underwater tasks. Underwater nodes sense the environment and
collect data and then transmit the collected data to the sink node in the sea surface
which serve as gateway nodes to forward the data to the Internet [24]. Generally, the
electromagnetic waves underwater propagate very fast over short distances, yet they
significantly attenuate over a long communication distance. Optical communication
provides high-bandwidth data rate with a low latency and the minimum spreading
delay in aquatic medium. Acoustic waves are the most popular method for under-
water communications over long distances with low latency and high spreading
delay [36, 37].

In a typical UWSN, as shown in Fig. 1.2, clusters of sensor nodes are deployed
underwater. In every cluster, there is an anchor node, or a Cluster Head (CH) node,
which collects the information from other nodes in the cluster. Underwater sensor
nodes communicate with each other over acoustic communication channels. CH
nodes or anchor nodes aggregate and process the data and transmit the processed
information to the sink node, e.g., buoyant nodes deployed at the sea surface [38].

In another example, Autonomous Underwater Vehicles (AUVs), Remote Oper-
ated Vehicles (ROVs), and underwater gliders are deployed underwater, collecting
information from anchor nodes and passing to remote stations. In three-dimension
(3D) space, sensors  oat at different depths to monitor the corresponding objects
[39]. Han et al. [40] studied a 3D maritime monitoring network composed of
different types of underwater sensor nodes, including the gateway nodes, underwater
sensor nodes with buoys, automatic mobile nodes. In a complex underwater envi-
ronment, the UWSNs face great challenges, which will be discussed in Sect. 1.2.
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In summary, the current MWCNs include offshore maritime wireless communi-
cation networks and satellite communication networks that provide services for
offshore stations and mobile users in the open sea, respectively. Generally, a hybrid
satellite-terrestrial network provides a good solution to strike a balance between
maritime satellite communication system and the offshore maritime communication
systems. As a result, the Global Maritime Distress and Safety System (GMDSS), an
improved integrated maritime communications system consists of both terrestrial
and satellite communications, which will be described below.

1.1.2.4 Global Maritime Distress and Safety System

The GMDSS is a global communication network for maritime distress and rescue
operations, safety, and routine communications, which was established in 1988 by
IMO. The GMDSS is illustrated in Fig. 1.3. The competent authorities in charge of
search and rescue on land and the ships near the one in distress coordinate with each
other to perform the rescue tasks. Once the ship is in distress, it first quickly sends
out alarm messages to notify the nearby ships or those on the shore. Upon receiving
the alarm messages, the nearby ships and the Rescue Coordination Center (RCC) can
carry out coordinated search and rescue activities in the shortest possible time to
increase the success ratio of search and rescue.

Satellite

surface
sink

surface
station

uw-gateway
vertical link

cluster

cluster

cluster horizonal
multi-hop link

uw-sensor

Surface sink

Surface station
onshore sink

Fig. 1.2 The typical UWSNs
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According to the International Convention for the Safety of Life at Sea, 1974,
(SOLAS), governments are requested to provide appropriate shore-based facilities to
support space and terrestrial radio communications, as recommended by the IMO.
Besides search and rescue services, the GMDSS may also send navigation warning,
meteorological warning, meteorological forecast, and other Maritime Safety Infor-
mation (MSI) to the sailing ships to present them from maritime accidents to the
greatest extent. Governments are also requested to provide appropriate shore-based
facilities to support space and terrestrial radio communications, as recommended by
the IMO. Specifically, every ship equipped with GMDSS at sea shall be able to
perform the following nine basic communication functions [41]:

1. Distress alerts. Distress alerts can be transmitted in three directions: ship-to-shore,
ship-to-ship, and shore-to-ship.

2. Search and rescue coordinating communications. It is the exchange of distress
and safety information about ships in distress by both parties. It has bi-directional
communication function.

3. On-scene communications. It refers to the communication between a ship in
distress and on-scene commander or coordinator surface search.

4. Signals for positioning. It refers to the process of finding and locating a ship in
distress.

5. Transmitting and receiving maritime coordinating messages. Maritime safety
information includes navigational warning, meteorological warning, meteorolog-
ical forecast, and other emergency information related to navigational safety.

Fig. 1.3 The composition of GMDSS
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6. General communications. GMDSS also should perform some general communi-
cations such as pilotage and cargo conditions.

7. Bridge-to-bridge communications. It refers to the radiotelephone communication
in a ship’s usual steering position for the purpose of safe navigation.

GMDSS utilizes both maritime satellite communication systems and offshore
maritime communication systems to perform the above functions, which will be
introduced in the following context.

• Maritime Satellite Communication Systems

The two current maritime satellite communication systems are Inmarsat system
and COSPAS-SARSAT system. Inmarsat System is an intergovernmental interna-
tional cooperative organization that operates global maritime satellite communica-
tions, providing maritime salvage, secure communications, and commercial
communications for maritime users. The Inmarsat system consists of three major
components: the space segment, the ground segment, and the mobile station. The
space segment includes Inmarsat satellites, the tracking telemetry and control station,
and the satellite control center. The ground segment includes ground station (shore
station), Network Coordination Station (NCS), and Network Control Center (NCC).
The mobile stations are divided into land, maritime, and aero. The system can cover
all regions within 76� north and south latitude of the earth and can provide a variety
of communication services. It is responsible for most of the current maritime
communication services.

COSPAS-SARSAT system is the global search-and-rescue satellite system used
to determine the position of three beacons, namely Emergency Locator Transmitter
(ELT), EPIRB, and Personal Locator Beacon (PLB). The entire system consists of an
emergency beacon, satellite, Local User Terminal (LUT), and Mission Control
Center (MCC). The system has two processing modes: (1) real-time mode, which
means the signal from the EPIRB is processed and stored by the satellite and
immediately sent back to the LUT within the satellite coverage; (2) the global
coverage mode, in which data is processed and stored by the satellite, is sent only
when the satellite comes over the LUT, so that all operating LUTs in the coverage
can receive the data [31, 41].

• Offshore Marine Communication Systems

Offshore marine communication systems consist of ship stations, coastal stations,
and domestic/international land public communication network or dedicated com-
munication network connected to the base stations on the shore. Coastal station
provides a communication interface between the ship station and the offshore user,
as well as plays the role of the transfer between wired communication and wireless
communication. The offshore communication systems are responsible for the dis-
tress alarm, search and rescue coordination communication, field communication,
bridge to bridge communication, and other functions of GMDSS. This system is
currently used by ships for business exchanges and ship to shore communications.
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The communication bands of GMDSS should in principle be determined by the
navigation sea area of the ships. Basically, the sea area can be divided into four areas,
as shown in Fig. 1.4.

Sea Area A1 Sea area A1 refers to the sea area covered by communications over
VHF band. In this area, VHF Digital Selective Calling (DSC) alarm can be carried
out. Generally, the sea area is 25~30 n mile away from the coast.

Sea Area A2 Sea area A2 refers to the area covered by communications over MF
band excluding the sea area A1. In this area, MF DSC alarm can be carried out.
Generally, the sea area is 150 n mile away from the coast.

Sea Area A3 Sea area A3 refers to the area covered by synchronous communica-
tion satellite excluding the sea area A1 and sea area A2. Generally, the sea area A3
covers an area between 76�S and 76�N.

Sea Area A4 Sea area A4 refers to the remaining area except the sea area A1, sea
area A2 and sea area A3, i.e., the sea area beyond 70� north and south latitude to the
South Pole or the North Pole.

For ships sailing in the sea area A1, ship-to-ship and ship-to-shore alarm shall be
conducted by DSC or VHF Emergency Position Indicating Radio Beacon (EPIRB)
on VHF CH70 (156.525 MHz), respectively. The CH70 is designed as the preferred
calling channel for ships in distress. For ships sailing in the sea area A2, ship-to-ship
and ship-to-shore alarm shall be conducted by DSC and satellite EPIRB on VHF
CH70 and/or MF 2187.5 kHz, respectively. For ships sailing in the A3 and A4 areas,
ship-to-ship alarm is conducted by DSC on VHE CH70 and/or MF 2187.5 kHz.

Fig. 1.4 The sea areas
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Ship-to-shore alarm is carried out using one of the Inmarsat stations and HF DSC or
COSPAS-SARSAT ERIRB (1.6 GHz EPIRB is available in A3 sea areas).

In addition to distress and safety communications, GMDSS will fundamentally
change the status quo of maritime communications because of its mandatory nature.
However, GMDSS may not be able to fulfill all the requirements of the modern
maritime applications in the information explosion era. Therefore, IMO is continu-
ously modernizing and improving GMDSS by introducing advanced communica-
tion technologies to improve the design and development of the communication
systems [5].

1.1.3 The Next Generation Marine Wireless Communication
Networks

With the explosive growth of emerging marine services and data, the current
MWCNs are facing great challenges to provision seamless signal coverage and
high-speed data transmissions at anytime from anywhere. In this subsection, we
introduce the next generation marine networks that are adaptive to the complex
marine environment. To meet the ubiquitous communication requirements in a cost
effectively way, the next generation MWCNs employ a hierarchical network archi-
tecture that composed of multi-layer subnetworks including the satellite communi-
cation sub-network, the offshore communication sub-network, the air-based
communication sub-network, the sea-surface communication sub-network, and the
underwater communication sub-network, as illustrated in Fig. 1.5.

• The Satellite Communication Sub-Network

Fig. 1.5 The next generation MWCNs
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Satellites can provide communications services in areas beyond the coverage of
ground BSs to ensure full coverage of the earth. Compared with GEO and MEO,
LEO satellite has the advantages of a low launch cost, a short transmission delay, a
small path loss, and a high data transmission rate. The next generation MWCNs will
make use of the complementary features of different types of satellites for ubiquitous
computing and communications.

• The Air-Based Communication Sub-Network

In the extreme case that it is difficult to guarantee the high reliability and high-
speed data services by relying on satellites and terrestrial networks, the air-based
communication sub-network can be deployed to relay the data, using stratospheric
airships, stratospheric high-altitude balloons, Unmanned Aerial Vehicle (UAVs),
helicopters, and other High-Altitude Platforms (HAPs). Notice that high-altitude
platforms are vulnerable to bad weather conditions. Since 100 km is the lowest orbit
altitude of spacecraft around the earth, people generally take 100 km above the
earth’s surface (also have 80 km and 120 km and other terms) as the boundary
division of “space” and “air.” The balloons usually work at a height of 200~1500 m,
while the airships usually work at a height of 17~22 km in the stratosphere. The
balloons and UAVs controlled remotely by terrestrial base stations and big ships can
be equipped with routers or other relaying devices to realize data forwarding
between different vessels or between vessels and the shore.

• The Offshore Communication Sub-Network

Coastal BSs, cloud computing center, and edge computing center are deployed in
the offshore communication sub-network. Coastal BSs are able to provide commu-
nications services to offshore areas. In the offshore with dense users, there may be a
great demand for communication and computing resources. Deploying cloud com-
puting centers with powerful computing and storage capabilities on land can help
reduce transmission delay and computation delay.

• The Sea-Surface Communication Sub-Network

The sea-surface communication sub-network consists of offshore platforms such
as ships, USVs, and buoys, as well as base stations deployed in islands, beacons,
drilling platform, and reefs. It can provide broadband communication services for
nearby ships and platforms along the coast. Ships, USVs, and buoys equipped with
edge servers can provide edge computing and edge caching services. Due to the
hostile communication conditions, limited bandwidth, and unstable channel quality,
how to make full use of the computing and communication resources for delay-
sensitive tasks in the ocean should be further investigated [6].

• The Underwater Communication Sub-Network

The underwater communication sub-network is mainly composed of different
sensors and Autonomous Underwater Vehicles (AUVs), which collect sensed data of
the ocean, such as salinity, PH, sediment, and so on. Underwater devices are mainly
powered by batteries with limited capacity and thus it is difficult to replace batteries
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underwater. Some sensor nodes use renewable energy sources such as tides, to
achieve energy sustainable operations. Accordingly, communication and networking
protocols for renewable energy powered UWSNs should be further investigated. In
addition, different types of sensors may have different capabilities, for example,
nodes installed in buoys may have storage space and serve as the edge computing
nodes. How to enable edge computing services for UWSNs beckons for further
research.

• Enabling Technologies for the Next Generation MWCNs

To further relieve the computing and communication pressure caused by the
explosive growth of data and to enhance the security of data transmissions,
researchers and engineers are looking for novel enabling technologies for next
generation MWCNs. Some key enabling technologies include smart IoT, Cloud/
Fog Computing, Mobile Edge Computing (MEC), Software Defined Network
(SDN), and Network Functions Virtualization (NFV). With the increasing amount
of offshore data, edge computing is an essential solution to reduce the delay of
transferring data to the cloud computing. UAVs, USVs, and vessels are equipped
with edge servers to achieve efficient sensing, storage, computing, and communica-
tion functions.

The network structure of the maritime broadband communication system is
shown in Fig. 1.6 [42]. For USVs clusters, a maritime fog-cloud computing archi-
tecture is employed. By unloading tasks to distributed USV cluster nodes,
underutilized computing resources can be fully utilized to reduce communication

Fig. 1.6 Network architecture of maritime wideband communication system
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load and processing delay. The USVs cluster and cloud resources are dynamically
allocated to achieve the overall optimization of computing performance [43].

SDN can be also combined with edge computing, for the next generation
MWCNs. The ship is the communication terminal, and the shore BSs, UAVs, or
satellites can be selected to serve the ship based on the location and service
requirements. The SDN architecture is adopted to adaptively manage according to
the network dynamics [44].

At present, the research on the MWCNs is still in the preliminary stage, and there
are still many technical challenges, such as frequency division, routing algorithms,
energy replenishment, etc. The next generation of MWCNs will address these
challenges to achieve global coverage, ultra-reliable, ultra-low latency maritime
services.

1.2 Challenges

In this subsection, we will further discuss the challenging issues in the network
deployment, physical layer communications, data link layer resource management,
and network layer routing in the development and deployment of next generation
MWCNs.

1.2.1 Deployment Challenges

It is a challenging task to design and deploy an efficient and reliable MWCN to
provide quality of service for maritime applications discussed in Sect. 1.1.1, mainly
because of the deployment constraints resulting from harsh marine environment.
First, although the ocean surface is huge, i.e., around 3.62� 108 km2 which is about
71% of the earth surface, it is not easy to find a solid area to deploy the network
infrastructure. Second, the harsh environment such as high humidity, high salty, and
various forms of precipitation may damage network devices, which may affect the
performance of spectrum communication. Third, some small satellites have a prom-
ising paradigm in marine communication networks. Yet the dense deployment of
satellites may result in new research issues in terms of resource allocation and
satellites routing, which add a new dimension for multi-hop satellites resource
management. So far there is no existing solution to provide full coverage for the
open-sea areas. Based on the deployment locations, MWCNs can be deployed in
coastline, underwater, water surface, and in high altitude or even via satellites.

• Coastline Networks

In the offshore areas, terrestrial communication infrastructures can be exploited to
construct coastline networks. In general, by setting up onshore base stations along
the coastline, coastline networks can provide broadband services for nearby offshore
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vessels. Currently, the main technologies including wireless access networks, evap-
oration duct communications, multiple antennas, and free space optical technologies
have been proposed for coastal networks to provide dense and long-range network
coverage in offshore areas at high speed [1]. Thus, the coastline networks play a key
role in extending terrestrial Internet to the offshore areas. However, their coverage is
limited due to the short transmission ranges, the limited power supply of some
maritime devices, and sea water’s absorption to RF signals [45].

• Underwater Networks

Underwater devices are usually powered by batteries. Due to the difficulty in
replacing the batteries of underwater devices, it is essential to deploy a reliable
underwater network with certain redundancies to ensure sustainable operation of the
underwater network in a hostile marine environment. In the case of AUVs, the
deployment density can be reduced to some extent as AUVs can move to the desired
area to perform tasks. Yet the optimal deployment of AUVs is also critical as moving
consumes energy that may reduce the lifetime of the underwater devices. For devices
with energy harvesting capabilities, the optimal network deployment ensures that the
monitoring area is always covered by an active device with sufficient energy. In a
more complicated case of underwater network deployment, different types of energy
sources should be jointly considered to ensure long-term energy sustainable under-
water network operations.

• Water Surface Networks

On the water surface, base stations can be installed on shipborne,  oating
platforms, buoys, and beacons that provide wireless communication services in the
neighboring area. Big vessels usually have large spaces to install communication
infrastructure and have sufficient energy for communication. However, as vessels
usually follow routes for safety reasons, ocean areas far away from busy routes may
not be covered. Some small vessels such as fishing-boats may not be well equipped
with powerful communication devices and sufficient energy supplies due to small
loading capacities and shorter antennas for wireless communication [1]. Similarly,
buoys and beacons deployed on the water surface to construct shipping lanes for
maritime transportation can also be equipped with small antennas and communica-
tion modules to provide wireless services. Notice that vessels,  oating platforms,
buoys, and beacons are low stable facilities as well as the construction and mainte-
nance could be costly. In addition, the hostile marine environment, such as high
salty, high humidity, tides, and storm may jeopardize the devices and degrade their
performance accordingly. Thus, how to deploy marine communication networks that
provide reliable services is a challenging issue.

• Air Networks

High-Altitude Platform (HAP) is a station located on an object at an altitude of
20–50 km and at a specified, nominal, and fixed point relative to the Earth
[46]. Deployment cost of HAP is also considerably lower than that of satellites.
Compared with BSs on the water surface, the coverage of HAP is much larger, which

1.2 Challenges 21



is dependent on the altitude and the elevation angle. As the earth is turning around,
the HAP needs propulsion and station-keeping against mild wind and turbulence in
the stratosphere [47], so that it can provide continuous communication service in one
region. Another alternative solution is to use cheap and  exible UAVs to provide
communication services occasionally to maritime users. While some UAVs can be
powered by green energy, e.g., use replenished energy from solar panels; some other
UAVs need to  y back to the coast or big vessels for energy charging. In the latter
case, the  ight time and energy of the UAV should be considered as constraints in
the deployment of UAVs-aided maritime networks.

• Satellite Networks

Last but not the least, satellite communication networks have wide coverage and
can provide full-time, stability, and high throughput services. The Inmarsat-5 sys-
tem, also known as Global Xpress, aims to provide worldwide coverage and the
demand of higher bandwidth. However, the cost of ship-borne equipment and the
communication charges are very expensive. In view of this, some small satellites
become a promising option due to relatively low cost for construction, launching,
and operation maintaining. Most satellite systems are not dedicated to the maritime
communications but for global network services. Therefore, it is challenging to study
how to integrate satellites, along with air networks into water surface networks to
provide reliable and efficient marine communication networks.

Given that the ocean is huge that none of aforementioned networks alone can
provide satisfactory communication services. Instead, it is more likely that an
integration of coastline networks, underwater networks, water surface networks,
air networks, and satellite networks is needed to provide efficient and reliable
maritime services.

1.2.2 Physical Layer Challenges

To design an efficient maritime communication network, it is essential to understand
maritime channel models. In a modern space-air-ground-sea integrated communica-
tion network, there are three major types of channels to be investigated, namely the
underwater communication channel, the sea-surface communication channel, and
the maritime satellite communication channel. Due to the unique features of the
maritime propagation environment such as sparse scattering, sea wave movement,
and the ducting effect over the sea surface, the modeling of maritime channels differs
from that of conventional terrestrial wireless channels in many aspects.

• Underwater Communication

Underwater communication uses acoustic signals to carry information transmitted
over a relatively narrow band. Generally, the underwater acoustic channel suffers
from severe Doppler shift, multipath fading, and propagation loss compared with
Radio Frequency (RF) based wireless communication channels on land. Doppler
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shift occurs when transmitters or receivers such as ships, unmanned surface vehicles,
and underwater sensors, moves relative to each other, and causes a change in
wavelength or frequency. In addition to the relative movement of communication
devices, the undulating sea surface, the re ection of the underwater acoustic signal
on the uneven seabed, and the refraction of the opposite signal by the turbulence in
the water, the ups and downs of sea waves, and turbulence in the sea may also result
in a Doppler shift. Due to the low propagation speed of underwater acoustic signals,
the Doppler shift in an underwater acoustic communication channel is more severe
compared with that of RF communications on land [48].

When acoustic waves propagate in the sea, there may exist multiple paths
between the transmitter and the receiver of the acoustic wave due to the refraction
of the seawater layered ring and the re ection between the sea surface and the bottom
of the sea. As a result, the received signal is the signal superposition of multiple
delayed and distorted copy of the transmitted signals over multiple paths. It is well
known that the multipath effect will cause inter-symbol interference in the time
domain, which may reduce the link capacity.

The propagation process of underwater sound waves is a process of energy
radiation. The energy of sound waves attenuates when it travels over distance. The
propagation loss of sound waves can be mainly divided into three categories:
expansion loss, absorption loss, and boundary loss. The expansion loss is mainly
caused by the gradual expansion of the wave front of the sound wave during the
transmission process so that the average power density on the wave front is reduced,
and accordingly the external manifestation is the attenuation of sound intensity. The
absorption loss occurs when part of the sound energy is absorbed by sea water and
converted into heat energy during the transmission of sound waves. The boundary
loss is mainly caused by energy leakage when sound waves collide with the sea
water boundary. Therefore, an accurate underwater channel should characterize the
aforementioned Doppler shift, multipath fading effect, and propagation loss.

• Sea-Surface Communication

In maritime wireless communications over the sea surface, the impact of rainfall
and cloud needs to be considered in the channel modeling. For frequency band
below 10 GHz, the scattering effect of sea humidity on electromagnetic wave is
small and can be ignored, but gas components such as oxygen and water vapor in the
atmosphere will absorb the energy of electromagnetic wave and cause attenuation of
electromagnetic wave energy and field intensity. For radio wave propagation,
ducting effects are recognized propagation effect that can significantly increase the
strength of the received signal. When the concentration of water vapor decreases or
the temperature increases, ducting tends to form rapidly as the height increases.
Basically, ducting effects include evaporation duct and elevated duct. Evaporation
duct exists almost all the time in the ocean environment as a result of the moisture at
sea. When the altitude rises to 600-3000 meters, the pressure and temperature
decrease, and the elevated duct begins to appear. Unlike evaporative ducts, the
foundation of elevated ducts is above the surface. Figure 1.7 illustrates the two
main forms of ducting effects [49].
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For an air-to-sea channel, the LOS path and the surface re ection path are likely
to be the two dominant paths. Considering that the transmitter is in general at high
altitude and the transmission distance is large, the so-called curved-Earth two-ray
model is usually adopted to take into account the earth curvature. However, in some
cases, in addition to the two dominant paths, it is also necessary to consider some
scattered paths caused by sea undulations, bubbles, and other factors. The scattering
generally happens around the receiver due to the high transmission altitude. Whereas
the local scattering could be rich for inland receivers, a maritime user is expected to
face much sparser scattering, and hence the over-water setting may simplify the
modeling as compared to the inland air-to-ground channels. The channel over the
water is described by a three-ray model, which consists of one LOS path and two
re ection paths [50]. The stronger re ection path stems from the direct re ection
from the sea surface, and the weaker re ection path is formed by many electromag-
netic waves from multiple weak sources of re ections [51].

• Maritime Satellite Communication

Currently, mobile terminals on the ocean mainly rely on maritime satellites or
BSs on the coast/island to acquire services. Narrow-band satellites, represented by
Inmarsat, mainly provide services, such as telephone, telegraph, and fax, at a low
communication rate. To provide a practically affordable solution for broadband
maritime communications, an efficient hybrid satellite-terrestrial maritime

Fig. 1.7 Schematic diagram of evaporation duct and elevated duct
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communication is required to combine the advantage of wide coverage of satellite
communications and the high throughput of shore-based communications
[52, 53]. However, different from terrestrial cellular networks, the maritime com-
munication still faces many challenges due to the complicated electromagnetic
propagation environment, and stringent service requirement of mission-critical
applications [19].

Compared with the terrestrial environment, the atmosphere over the sea surface is
unevenly distributed due to the large amount of seawater evaporation. Shore-to-ship
and ship-to-ship communication are very vulnerable to the sea surface conditions,
such as tidal waves, and atmospheric conditions, such as temperature, humidity, and
wind speed. In addition, the height and the angle of ship-borne antennas vary greatly
with the ocean waves, which results in a great variance in the channel qualities and
thus poses great challenges in upper layer resource management.

In summary, maritime communication faces new challenges in the design of
communication technologies, compared with terrestrial communications. Accurate
and prompt CSI acquisition could be difficult in maritime communications due to
long feedback delay caused by long transceiver distances and high variant channel
conditions. To address these challenges in the maritime communications, novel
adaptive channel coding is required to improve the transmission efficiency over
different types of communication channels.

1.2.3 Link Layer Challenges

Link layer resource management plays a critical role in satisfying the demands of
diversified maritime applications with Quality of Service (QoS) provision. In the
next generation MWCN, rich multimedia information such as voice and video
streaming have surged with the rising of various types of vessels including MASS,
which poses great challenging for the design and development of maritime commu-
nication network. Specifically, in this subsection, we will discuss link layer chal-
lenges including limited spectrum resources, spatial uncertainty of maritime
communications, and diversified energy constraints of maritime nodes.

1.2.3.1 Limited Spectrum Resources for Maritime Services

Automatic Identification System (AIS) is a worldwide standard that provides infor-
mation transmission services on VHF Data Links (VDL). AIS consists of two narrow
band channels, namely AIS 1 (161.975–162.000 MHz) and AIS
2 (162.025–162.050 MHz) [54]. According to the International Association of
Maritime Aids to Navigation and Lighthouse Authorities (IALA), it is not conducive
to the smooth transmission of AIS communications when the channel utilization is
over 50% [55–57]. A 2012 study in China showed that the traffic load in VDL
exceeded 50% in some large ports during the busy periods [57]. Therefore, it is
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necessary to develop the next generation system, i.e., the VHF Data Exchange
System (VDES) to meet the growing demands of maritime services. According to
the recommendation of the International Telecommunication Union (ITU), VDES
will consist of four types of channels, i.e., AIS, Application Specific Messages
(ASM), VHF data exchange (VDE), and Long-range AIS, with a total of
18 [58]. The standard of VDES is still in its infancy and attracts attention from
academia, maritime sectors, and shipping operators. Moreover, given that new
channel resources are included such as ASM and VDE channels, new resource
management schemes should be updated in the MAC protocol design of the VDES.

1.2.3.2 Spatial Uncertainty of Maritime Communications

For RF communications in a terrestrial network, the propagation delay is usually
considered negligible as the light speed is as high as 3� 108 m/s and the propagation
delay is usually on the order of micro-second. Therefore, collision-free transmissions
at the sender side will not result in interference at the receiver side. For acoustic
underwater communications, the propagation delay is five orders higher than that of
RF communications in the air because the propagation speed of sounds is only
1500 m/s [59]. In such case, a collision-free transmission scheduled at the sender
side may lead to a collision at the receiver side due to various propagation delays of
maritime nodes, which is referred to as a spatial uncertainty problem in underwater
communication networks [59]. In other words, the conventional resource manage-
ment for a terrestrial network schedules the transmission time of senders, assuming
that the receivers will receive the data at the same time. This does not apply in an
underwater maritime communication network where data transmitted in different
time slots may arrive at a receiver in the same time slot, which leads to a collision at
the receiver. Therefore, existing resource management for RF communication net-
works is not applicable for underwater marine communication networks. To achieve
high resource utilization while ensuring fair sharing of network resources among
multiple nodes, it is essential to consider the spatial uncertainty in the link layer
protocol design.

1.2.3.3 Link Dynamics in Hash Maritime Environment

The quality of the link over the sea surface is severely in uenced by the harsh
maritime environment such as ocean currents, rain, and sea waves. As discussed in
Sect. 1.2.2, the path loss characterizes the re ection loss on the sea surface, the
diffraction over the sea, and the ducting effects in the air. An efficient link layer
resource management should take into consideration the underlying physical layer
channel conditions to improve the transmission efficiency. In other words, a
PHY/MAC cross layer approach is required for link-aware scheduling to achieve
high resource utilization while maintaining the fair resource sharing among multiple
maritime nodes, with or without various energy constraints of maritime nodes.
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1.2.4 Network Layer Challenges

The complicated ocean environment also brings great challenges to the design of
network routing protocols. In the vastness of the ocean, especially in the open ocean,
multi-hop routing is usually required to forward the data from nodes to other nodes
to the server. In MWCNs, various types of nodes may be equipped with different
energy sources that result in different energy constraints, which should also be
considered in the routing design. In addition, ocean currents may  ow away some
marine nodes, and tsunamis may even damage some nodes, coupled with energy
exhaustion, the network topology of the MWCNs may be highly dynamic, which
calls for reliable and robust routing design. In a short summary, to support the
diversified service requirements of the next generation MWCNs, it is essential to
design reliable and efficient routing protocols, considering the challenging energy
constraints and the highly dynamic network topology.

• Energy Constraints

In MWCNs, how to supply energy to marine nodes either on the sea surface or in
the deep ocean is an important issue [60]. Lots of nodes in the MWCNs are powered
by batteries which have constrained energy capacity, leading to limited network
lifetime [61]. When the energy is exhausted, the nodes on the sea surface, such as
USVs and buoys, can be artificially replaced or charged, while underwater, it is
highly burdensome to restore the battery factitiously [62]. Wireless charging tech-
nology can better solve the energy supply demand of underwater nodes [63]. For
example, Inductive-Coupled Resonant technology has high transmission power, and
the propagation of near-field electromagnetic field is not affected by seawater
medium, it can charge underwater wireless sensors [64]. Using renewable energy
such as solar and tides, the energy also can be replenished to sustain the node
operations.

To maximize the sustainability of MWCNs, it is critical to balance the energy
consumption of the marine nodes across the network. Routing protocols should
consider different energy constraints of different types of nodes, as discussed in the
link layer. And compared with the dense distribution of nodes in the offshore, the
distance between nodes in an open sea is usually much larger, requiring long-
distance transmission, which greatly increases the energy consumption.

• Dynamic Ocean Environment

In MWCNs, the network topology may change when marine nodes move in the
ocean. For example, the nodes in the MWCNs may  oat with the ocean currents may
 ow [65]; and some marine nodes may die due to energy exhaustion, or be damaged
by marine organisms and long-term corrosion of seawater. In the case of tsunami,
whirlpool may damage multiple nodes in a region, which may result in a network
separation. As mentioned above, for nodes with energy exhaustion, we can restore
power supply by replacing batteries and continue to provide communication ser-
vices. However, for those nodes whose hardware is damaged, they can hardly be
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repaired or replaced, and the failure of nodes in the region will cause network
segmentation. In such cases, moving sensors such as USVs, UAVs can move to
the area to connect the network segments. Therefore, in the MWCN, the routing
protocol jointly considering the temporary and permanent failure of nodes needs to
be further studied.

1.3 Organization of the Book

The book is organized as follows:
In Chap.1, an overview of the current research on MWCNs is first presented,

followed by the discussion of research challenges of the next generation MWCNs in
terms of network deployment, physical layer communication, link layer resource
management, and network layer routing.

In Chap.2, the network deployment is studied for the next generation MWCNs. A
three-tier hierarchical network architecture is proposed to support edge computing.
Based on hierarchical network architecture, a multi-objective optimization frame-
work is formulated to minimize the network deployment cost while maximizing the
network lifetime by determining the deployment locations of network nodes.

In Chap.3, communications between intelligent Internet of Vessels are investi-
gated. A novel OFDM autoencoder and a new channel estimation algorithm for
OFDM systems are proposed to adapt to the complex marine environment.

In Chap.4, data link layer protocol design and optimization are studied for the
next generation underwater sensor networks with energy harvesting process is
modeled and analyzed, and a multi-agent reinforcement learning approach is pro-
posed for underwater sensors to autonomously adapt the random-access parameter
based on the interactions with the dynamic network environment.

In Chap.5, routing for underwater wireless sensor networks is analyzed, and an
energy-efficient depth-based opportunistic routing algorithm with Q-learning is
proposed to guarantee the energy-saving and reliable data transmission.

In Chap.6, we summarize this book and identify some further research issues in
the next generation MWCNs.
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Chapter 2
Topology Optimization of MWCN

The foremost task of the next generation MWCN is network deployment and
topology optimization. To this end, we firstly study a hierarchical network architec-
ture of MWCN with support of edge computing which integrates the Underwater
Acoustic Network (UAN), the sea-surface wireless network with edge computing,
and the air wireless network. Based on the hierarchical network architecture, a multi-
objective optimization framework is formulated to minimize the network deploy-
ment cost while maximizing the network lifetime by determining the deployment
locations of network nodes, including Aerial Relay Nodes (ARNs), Edge Computing
Nodes (ECNs), Sea-Surface Nodes (SSNs), and Underwater Relay Nodes (URNs),
and the data transmission links between network nodes, subject to various con-
straints of the network topology, network connectivity, and the battery capacity. As
the formulated optimization problem is known to be NP-hard, an Ant Colony based
Efficient Topology Optimization (AC-ETO) algorithm is presented to solve the
formulated Multi-objective Optimization (MO) problem in various network scenar-
ios of different number of nodes. Extensive simulations are conducted to validate the
performance of the proposed algorithm. The results show that the proposed algo-
rithm approaches the optimal solution and outperform some existing solutions.

This chapter is organized as follows: We present a brief research background in
Sect. 2.1. The related works about the deployment of MWCN are reviewed in Sect.
2.2. The network model and the problem formulation are described in Sect. 2.3. An
AC-ETO algorithm is proposed in Sect. 2.4. The numerical analysis is present in
Sect. 2.5. Finally, we close the chapter with conclusions in Sect. 2.6.

2.1 Background

With the deepening of human’s understanding of the ocean, as well as the rapid
development of science and technology, great attention has been paid to the ocean
because of its huge economic potential and strategic importance. The increasing
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demand for the exploitation and utilization of marine resources calls for the wide
deployment of MWCNs, especially marine monitoring networks. For example, a
large number of drilling platforms have been built at sea to extract oil from the sea
[1]. However, the exploitation of offshore oil resources also brings pollution risk to
the marine environment. In 2010, the Gulf of Mexico oil spill accident led to serious
harm to the marine ecosystem [2]. In such case, an underwater monitoring network is
helpful to detect the oil spill and report the detection results in a timely manner.
Another application is real-time monitoring for marine ranching, which is heavily
dependent on the quality of marine environment to foster the marine fishery
resources [3]. Thus motivated, a real-time MWCN has become an important research
topic for both academia and industry. Node deployment is one of the fundamental
tasks for MWCN and also is an attractive research topic. During the past decade,
many technologies and systems related to marine monitoring have been developed,
such as a buoy for marine monitoring [4–6], a prediction model of battery life [7],
and a data acquisition and transmission system [8], which build the foundation for
the implementation of the real-time MWCN. According to the requirements of
marine monitoring, various types of sensors are deployed to monitor and measure
different physical and chemical parameters such as water temperature, pressure,
water direction and speed, salinity, turbidity, pH, oxygen density, and chlorophyll
levels [4], and then the acquired data are transmitted back to the data center on land
by relay nodes. The data acquired from the seabed far away from the coast needs to
be relayed back to the data center through multi-layer relay. Compared with terres-
trial wireless communication networks, deployment of an MWCN is more costly and
complex due to the harsh marine environment in three-dimensional space.

Most existing works of the deployment of MWCNs in the literature proposed
different algorithms to improve the network coverage. In [9], a distributed node
deployment algorithm was proposed to utilize the mobility of the anchor nodes to
maximize the coverage of 3D underwater wireless sensor networks in dynamic
ocean environments. In [10–13], different algorithms were proposed to deploy
sensors, surface gateways in an underwater sensor network. These works mainly
focus on the deployment of UAN. To enable marine monitoring service, it is also
critical to forward the data of the UAN towards the Base Station (BS) which is
usually deployed in the shoreline of ocean. For efficient data communications over
the large area of ocean, a multi-tier network that incorporates both underwater
acoustic communications, radio communications above the water, and aerial relay
over the air is highly desirable. To the best of our knowledge, no existing work on
the deployment of marine monitoring network studied the deployment of an inte-
grated multi-tier hierarchical network architecture, which includes underwater
acoustic sub-network, sea-surface wireless sub-network, and air wireless
sub-network.

In this chapter, we first study an integrated multi-tier hierarchical network
architecture of MWCN as shown in Fig. 2.1 for an integrated sea-air-ground
monitoring system. In the MWCN, the underwater acoustic sub-network consists
of a number of battery-powered sensors with limited energy [14], Autonomous
Underwater Vehicles (AUVs) [15] and buoys [16] with acoustic receiving devices
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and RF transmitting devices; the sea-surface wireless sub-network consists of
unmanned ships which carry RF communication devices; and the air wireless
sub-network [17, 18] consists of ARNs, such as Unmanned Air Vehicles (UAVs)
with RF communication equipment. Under the proposed network architecture, the
node deployment problem is further investigated to achieve the minimum network
cost while ensuring the maximum network lifetime. Specifically, an MO problem is
formulated to minimize the costs and maximize the network lifetime, by deploying
different types of nodes in different tiers of the network, considering the energy and
capacity constraints of each node. The formulated optimization problem can be
solved by Gurobi. As Gurobi does not work well when the network scale up, we
propose a swarm intelligent based optimization approach to find the near-optimal
solution of the formulated optimization problem.

2.2 Related Works

Most researches of deployment of MWCN focus on nodes deployment of UAN
networks, i.e., sensors and/or surface gateways. Ibrahim S., Cui J., and Ammar
R. formulate the optimal gateway deployment problem as an Integer Linear Pro-
gramming (ILP) problem in [11]. They propose an algorithm to deploy multiple
surface-level gateways in [13] and use a greedy algorithm and greed-interchange
algorithm to select gateway positions among candidate locations. In these works,
they mainly study sensor deployment under 2D space. In [19], Song X., Gong
Y. et al. propose a 3D node deployment algorithm for underwater sensor networks.
The proposed algorithm can achieve a large coverage area with the minimal number
of nodes. In [20], Jiang P., Wang X., and Jiang L. propose a depth adjustment
algorithm based on connected tree (CTDA), in which the sink node is used as the
first root node of a connected tree, and the whole network is organized as a forest that

Fig. 2.1 An integrated multi-tier hierarchical network architecture of MWCN
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comprises many connected sub-trees. To maximize the network coverage, coverage
overlaps between the parent node and the child node are reduced within each
sub-tree. In addition, in [10, 21, 22], Han G., Pompili D. et al. present 2D and 3D
communication architectures and review deployment algorithms and strategies for
UASNs from different perspectives. It is found that most existing works focus on the
node deployment of underwater sub-network nodes, and few works jointly consider
the network deployment of underwater network and network above the water
surface. With the popularity of Swarm Intelligence (SI), a number of researches
propose to use SI and SI-based algorithms (SIAs) to tackle the optimization prob-
lems in node deployment of tradition wireless sensor networks and communication
network. Ant Colonies Optimization (ACO) is one of the well-known representative
SIAs, where complex collective behavior emerges from the behavior of ants. ACO is
effective for solving NP-hard discrete optimization problems and has been success-
fully applied to a number of scientific and engineering problems, including grid-
based deployment for wireless sensor networks [23–25]. ACO is also applied to the
topology optimization [26, 27] and routing algorithm [28, 29] for wireless networks.
An ACO algorithm coupled with a local search heuristic is proposed in [30] to
deploy a WSN under a certain reliability constraint at the minimum deployment cost.
However, algorithms for traditional WSN or communication networks cannot be
directly applied for MWCNs due to the different characteristics of the deployment
environment of ocean in three-dimensional space. To this end, we are motivated to
apply ACO for the MWCN deployment under three-tier architecture and formulate a
multi-objective optimization problem characterizing the 3D marine environment.

2.3 Network Model and Problem Formulation

2.3.1 Network Model

The hierarchical network model of MWCN is composed of three subnetworks:
(1) the underwater acoustic sub-network, (2) the sea-surface wireless sub-network,
and (3) the air wireless sub-network, as shown in Fig. 2.1. In an underwater acoustic
sub-network, multiple sensors deployed at representative Monitoring Points (MPs)
are to monitor the target areas. The MP then transmits the monitoring data to an SSN,
typically via one or multiple URNs, when communication distance is beyond the
transmission range of sensors at MPs. URN is a buoyancy-driven device which can
hover and select a specified position to acquire and transmit data over acoustic
communication channels [31–33]. The location of URN should be carefully decided
as it is dependent on the in uence of ocean  ow and undercurrent. SSU is equipped
with a wireless communication radio installed on the buoy, an acoustic-electric
conversion device, and an underwater acoustic receiver located under the sea
surface. After receiving the underwater acoustic signals from URNs, it converts
them into radio signals and then transmits radio signals to an ECN or other SSN
within its communication distance.
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The sea-surface wireless sub-network is comprised of multiple ECNs, which are
responsible of receiving radio signals from the underwater acoustic sub-network,
processing the data in an edge device, and sending the processed data to the air
wireless sub-network. Generally, unmanned ships with communication equipment
and small edge server are used as ECNs.

The air wireless sub-network further relays the received data from the sea-surface
wireless sub-network to the BS. This sub-network is consisted of multiple ARNs
which transmit the received data to the BS over one or multiple hops through other
ARNs. Finally, the BS transmit the data from the MWCN network to the data center
through the terrestrial wireless networks.

In the MWCN, the BS is the destination node, ARNs, ECNs, SSNs, and URNs
are the intermediate nodes and MPs are source nodes. All nodes are organized
hierarchically within the communication radius of nodes, and an efficiently tree
architecture will be finally formed to achieve an effective communication.

In summary, various nodes involved in the MWCN have a certain communication
radius, by using either radio or acoustic communications; and each node only
communicate with other nodes of the same sub-network or nodes of the upper
sub-network within their communication distance. In addition, the ARN and ECN
nodes may have sufficient power supply with no stringent capacity limitation, but
battery-powered SSN and URN nodes are typically of small sizes and thus are
subject to certain battery constraints, which should be taken into consideration for
network deployment.

2.3.2 Energy Model

In the MWCN, ARNs and ECNs usually have sufficient energy supply with no
stringent capacity limitation, while battery-powered underwater nodes, i.e., SSNs,
URNs, and MPs, are typically of small sizes with limited battery capacity. Thus, to
provision quality marine monitoring services of the MWCN, it is of critical impor-
tance to improve the operation time of the underwater nodes.

Generally, the states of the battery of a node include sending, receiving, idle, and
sleeping. It is reported in [34] that communication module consumes most energy,
i.e., around 80% of the total energy consumption. Energy consumption during idle
and sleep modes is only related to time. In our system model, energy consumption
per unit time during idle and sleep mode is regarded as a constant. Here, a URN
communicates to other URNs or SSNs over underwater acoustic channels.

The transmission and receiving energy consumption of node i over a communi-
cation channel, i.e., either an acoustic channel [35] or a radio channel [36], are
denoted as Ei

tr and Ei
re, respectively, which are given by:
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Ei
tr lij, dij
� � ¼ E0d

k
ij10

dij
α fð Þ
10 lij, acoustic channel

Eeleclij þ εamplijd
2
ij, radio channel

(
ð2:1Þ

where Eelec is the energy consumption of the transmitter circuit; εamp is the energy
consumption of power amplifier; E0 is the energy consumption of transmitting one
bit of data with a certain communication radius; Er is the energy consumption of
receiving one bit of data; k is the energy diffusion factor; lij is the size of the data
packet from node i to node j in bits, and dij is the transmission distance from node i to
node j. α( f ) is the Doppler frequency absorption coefficient of signal frequency f,
which is given by Throp [35]

α fð Þ ¼ 0:11 f 2

1þ f 2
þ 44 f 2

4100þ f 2
þ 2:75� 10�4 f 2 þ 0:003 ð2:2Þ

Thus, the communication energy consumption of node i is

Eci ¼
X
j2V

Ei
tr lij, dij
� �

eij þ
X
t2V

Ei
re ltið Þeti ð2:3Þ

where eij ¼ 1 indicates that node i can directly communicate with node j and vice
versa. And the total energy consumption of node i is

Ei ¼ Eci þ Ei
idle þ Ei

sleep ð2:4Þ

where Ei
idle and Ei

sleep are the energy consumption of node i during idle and sleep
mode, respectively.

2.3.3 Problem Formulation

We model the MWCN as a directed graph G
! ¼ V , E

!� �
, where V represents the set

of nodes, i.e., BSs, ARNs, ECNs, SSNs, URNs, and MPs, and E
!
represents directed

edges between two nodes that are within the communication radius. To differentiate
nodes, the subsets of BSs, ARNs, ECNs, SSNs, URNs, and MPs are denoted as VBS,
VARN, VECN, VSSN, VURN, and VMP. Thus, the whole set of nodes

V ¼ VBS [ VARN [ VECN [ VSSN [ VURN [ VMP. The edge eij 2 E
!

is a binary
variable, eij ¼ 1 indicates there exists a direct communication link from node i to
node j and vice versa. The main notations used in the MO problem are listed in
Table 2.1.
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As the marine monitoring devices, especially the battery-powered underwater
monitoring devices, are expensive, it is desirable to reduce the total number of
devices for deployment to minimize the total deployment cost. In the meantime, it
is hard if not possible to replace batteries of underwater nodes, and thus it is
important to maximize the operation time of network nodes. In this chapter, we
will formulate MO problem under the MWCN architecture. The primary objectives
are to minimize the total deployment cost while maximizing the network lifetime
subjected to the limited node communication radius and battery cdapacities. Here,
the network lifetime is defined as the time until the first node runs out of energy [37].

Table 2.1 Definitions of symbols

Symbols Definition

gi The amount of data of MPi (per unit time).

RMP The perceived radius of MPs

DARN The communication distance of ARNs

DECN The communication distance of ECNs

DSSN The communication distance of SSNs

DURN The communication distance of URNs

CARN The cost of ARNs

CECN The cost of ECNs

CSSN The cost of SSNs

CURN The cost of URNs

Eelec Energy consumption for sending and receiving data per bit

PUT The transmission power of URNs

PUR The reception power of URNs

EIi The initial energy of node i

ECi The energy consumption of node i per unit time

K K-coverage: Each MP must be covered by K URNs

E
! ¼ eij

� �
Vj j�jV j,8i, j 2 V The matrix of edge variables, where eij 2 {0, 1} is a binary

variable and eij ¼ 1 denotes node i can directly communicate
with node j and vice versa

A ¼ amf g1�jVURN j,8m 2 VURN The location incidence vector of nodes, where am 2 {0, 1} is a
binary variable and am¼ 1 denotes that the candidate location m
is selected to deploy a URN and vice versa

B ¼ fbng1�jVSSN j,8n 2 VSSN The location incidence vector of nodes, where bn 2 {0, 1} is a
binary variable and bn ¼ 1 denotes that the candidate location
m is selected to deploy an SSN and vice versa

H ¼ fhlg1�jVECN j, 8l 2 VECN The location incidence vector of nodes, where hl 2 {0, 1} is a
binary variable and hl ¼ 1 denotes that the candidate location m
is selected to deploy an ECN and vice versa

Z ¼ fztg1�jVARN j,8t 2 VARN The location incidence vector of nodes, where zt 2 {0, 1} is a
binary variable and zt ¼ 1 denotes that the candidate location m
is selected to deploy an ARN and vice versa

fij, 8 i, j 2 V The data  ow from node i to node j
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2.3.3.1 Minimization of the Total Network Deployment Cost

The first objective is to minimize Cnet, the total deployment cost of the network, i.e.,
the sum deployment cost of ARNs, ECNs, SSNs, and URNs. The MPs are
pre-deployed based on the marine areas of interest while other types of nodes are
deployed to collect and forward the information from MPs to the Internet servers.
Denote the unit deployment cost of ARN, ECN, SSN, and URN as CARN, CECN,
CSSN

, and CURN. Thus, we have

Cnet ¼ CURN
X

m2VURN

am þ CSSN
X

n2VSSN

bn þ CECN
X

l2VECN

hl þ CARN
X

t2VARN

zt ð2:5Þ

where am, bn, hl, and zt are binary variables of Candidate Locations (CLs) of URNs,
SSNs, ECNs, and ARNs, respectively. The value of 1 indicates that the CL is
selected to place a corresponding node and vice versa.

2.3.3.2 Maximization of the Network Lifetime

Besides the network deployment cost, it is also critical to ensure that the MWCN
provisions quality marine monitoring services as long as possible. The network
lifetime is defined as the operation time of the network until the first battery-
powered node exhausts the energy supply and becomes out of service. Given the
initial battery of a battery-powered node i, EIi, and the energy consumption of node
i, Ei per unit time, the lifetime of node i is then given by

Ti ¼ EIi
Ei

,8i 2 VURN [ VSSN ð2:6Þ

Therefore, the network lifetime Tnet is defined as:

Tnet ¼ min
8i2VURN[VSSN

Ti ¼ min
8i2VURN[VSSN

EIi
Ei

ð2:7Þ

Notice that Ei is dependent on the communication distance and the communica-
tion data volume shown as Eqs. (2.1)–(2.4), Thus the network lifetime is determined
by Eci of the first energy-exhausted node i. Accordingly, to maximize the network
lifetime, it is equivalent to minimize the energy consumption of the first energy-
exhausted node. According to Eqs. (2.3) and (2.4), the energy consumption of the
first energy-exhausted node is given by

Emax ¼ max
8i2VURN[VSSN

X
j2V

Ei
tr lij, dij
� �

eij þ
X
t2V

Ei
re ltið Þeti þ Ei

idle þ Ei
sleep

 !
ð2:8Þ
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Without the loss of generality, the initial energy of node (EI) is regard as 100% in
the following formulation.

Thus, the MO problem is formulated as follows:

minimize Cnet þ ωEmax ð2:9Þ
s:t:

X
j2VURN

eij � K, 8i 2 VMP ð2:10Þ
X

i2VMP[VURN

eim � am, 8m 2 VURN,m 6¼ i ð2:11Þ
X

j2VURN[VSSN

emj � am,8m 2 VURN,m 6¼ j ð2:12Þ
X

j2VSSN[VURN

ejn � bn,8n 2 VSSN, n 6¼ j ð2:13Þ
X

q2VSSN[VECN

enq � bn, 8n 2 VSSN, n 6¼ q ð2:14Þ
X

q2VSSN[VECN

eql � hl,8l 2 VECN, l 6¼ q ð2:15Þ
X

u2VECN[VARN

elu � hl, 8l 2 VECN, l 6¼ u ð2:16Þ
X

u2VECN[VARN

eut � zt,8t 2 VARN, t 6¼ u ð2:17Þ
X

s2VBS[VARN

ets � zt,8t 2 VARN, t 6¼ s ð2:18Þ
X

i2VURN

f ij þ
X
k2VMP

gkekj ¼
X

l2VURN

f jl þ
X

m2VSSN

f jm,8j 2 VURN, i 6¼ j, j 6¼ l ð2:19Þ
X
i2VSSN

f ij þ
X

k2VURN

f kj ¼
X
l2VSSN

f jl þ
X

m2VECN

f jm,8j 2 VSSN, i 6¼ j, j 6¼ l ð2:20Þ

Equation (2.9) is the weighted sum of the two main objectives, where the network
cost Cnet and the energy consumption of the first exhausted node Emax are defined in
Eqs. (2.5) and (2.8), respectively, and ω is the weight to strike a balance of the two
objectives.

Constraint Eq. (2.10) specifies that each MP must be covered by at least K URNs.
Different monitoring tasks have different requirements of K.

Equation (2.11) indicates that if CL j is selected to deploy a URN, then aj¼ 1, and
there exists at least one link of receiving data, e.g., between a MP or URN node i and
j. Equation (2.12) indicates that when a URN j is deployed, there exists one link of
forwarding data, e.g., between node j to another URN or SSN nodes l.

2.3 Network Model and Problem Formulation 41



Similarly, SSNs, ECNs, and ARNs are subject to the constraints Eqs. (2.13)–
(2.18), respectively.

Equations (2.13) and (2.14) specify that if a SSU $n$ is deployed, i.e., bn¼ 1, the
SSU n has one link of forwarding data and at least one link of receiving data.
Similarly, Eqs. (2.15) and (2.16) specify that if CL l is selected to deploy an ECN,
i.e., hl ¼ 1, there exists one link of forwarding data and at least one link of receiving
data. Equations (2.17) and (2.18) specify that if CL t is selected to deploy an ARN,
i.e., zt ¼ 1, there exists one link of forwarding data and at least one link of
receiving data.

Equations (2.19) and (2.20) specify the  ow constraints that the output data
should be the same as the input data.

2.4 Ant Colony Based Efficient Topology Optimization
(AC-ETO)

2.4.1 Algorithm Description

As the formulated optimization problem is an integer linear programming problem,
which is known to be NP-hard [38]. The ant colony is widely used to solve various
NP-hard problems. Especially [39]. Thus, in this section we propose an Ant Colony
based efficient topology optimization algorithm, namely AC-ETO, to solve the
proposed problem in P1.

In a traditional ACO algorithm, ants choose the next city through a probabilistic
rule and then iteratively construct the best path [40]. The probability for an ant to
move from city i to city j is

pij ¼
τij
� �α

ηβijP
j2V allowed

τis þ τ0isð Þαηβis
ð2:21Þ

where τij is the amount of pheromone deposited for a transition from city i to j, α is a
parameter to control the in uence of τij, ηij is a heuristic factor for the transition from
city i to j and typically is inversely proportional to the distance between cities i and j,
i.e., ηij ¼ 1/dij, β is a parameter to control the in uence of ηij, and Vallowed is the
feasible neighborhood of an ant in city i.

In AC-ETO, we select data forwarding paths in the hierarchical MWCN step by
step. In each step, a probabilistic transition rule is applied to select a deployment
location. For example, at node i, the probability that the deployment location
j j ¼ 1, 2, . . . , jVi

FCLj
� �

is selected is given by
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pij ¼
τ0ij þ τ00ij
� �α

η0βijP
j2Vi

FCL

τ0ij þ τ00ij
� �α

η0βij
ð2:22Þ

where τ0ij given in Eq. (2.23) is the global pheromone trail value between node i and
node j; τ00ij given in Eq. (2.24) is the local value between the two nodes i and j; η0ij is
the heuristic value of adding node j to the connected cover currently being built by
the ant, which is defined as Eq. (2.26); and α, β are parameters that control the
in uence of the pheromone trail values and heuristic information on pij, respectively;
Vi
FCL is the Feasible Candidate Location (FCL) set of node i, and FCL is defined as

CLs within the communication range of a node.

τ0ij ¼ 1� ρ1ð Þτ0ij þ Δτ0ij ð2:23Þ
τ00ij ¼ 1� ρ2ð Þτ00ij þ Δτ00ij ð2:24Þ

η0ij ¼
1
Ei
tr

i 2 VURN [ VSSN

1 otherwise

8<
: ð2:25Þ

where Ei
tr is given by formula (1). Δτ0ij and Δτ00ij are defined as follows:

Δτ0ij ¼
Q� C j

Cbestnet
eij ¼ 1

0 otherwise

8<
: ð2:26Þ

Δτ00ij ¼
Q� C j

Cpath
eij ¼ 1

0 otherwise

8<
: ð2:27Þ

where Cj is the cost of node j, Cbestnet is the current minimum network cost, and Cpath

is the cost of the path. Q is a constant greater than 1, ρ1 and ρ2 are the rates of global
and local pheromone evaporation.

The process of AC-ETO is divided into two phases. The first phase is the
initialization phase, which reduces the search space so that only FCLs are selected
and stored by certain nodes. The second phase is the planning phase, where the
optimization process is iteratively performed to construct the network topology and
remove the redundant edges until the desired result is reached.

We first use a small-scale network with 2 MPs as an example to describe the
algorithm. In the initialization phase, the distances between nodes are calculated
based on the location of nodes. Each node then constructs a FCL table which
includes all nodes in its communication coverage. For instance, the FCL table of
MP0 includes URN0 and URN1. In the planning phase, a number of iterations are
involved. In each iteration, a number of ants are placed on each MP to construct
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paths to the BS by using the probabilistic rule, the local pheromone, and the global
pheromone defined in Eqs. (2.23)–(2.25). An ant placed on MP0 moves to the next
node, e.g., URN0 in the FCL table according to the pheromones and the transition
probability until it arrives at the BS. After the ant reaches the BS, the BS informs all
nodes along the path to update the local pheromone and selects the best path from
multiple ants, e.g., MP0-URN1-SSN0-ECN0-ARN1-BS0 and MP1-URN2-SSN2-
ECN0-ARN0-BS0 in the 2-MP example, as shown in Fig. 2.2a. Notice that the two
paths are independently found by ants and there may be multiple links between two
nodes, e.g., ECN0-ARN1-BS0 and ECN0-ARN0-BS0. In such case, the two links
are compared and the path with higher energy consumption, e.g., ECN0-ARN0-BS0,
is removed to obtain a tree with Cnet + ωEmax ¼ 68.417, as shown in Fig. 2.2b. The
iteration repeats until no better tree with a smaller Cnet + ωEmax can be found.

The pseudo code of the proposed AC-ETO is elaborated in Algorithm 2.1.

Algorithm 2.1: The Pseudo Code of AC-ETO Algorithm
Input: VMP,VURN,VSSN,VECN,VARN,VBS

/* Phase I: Initialization*/
1: Input positions of nodes and other parameters;
2: N j Vj;
3: DN � N the distance between nodes;
4: for i ¼ 1 to N do
5: Ti

Feable  FCL Table Bld ið Þ;
6: end for
/*Phase II: Multi-objective planning*/
7: M _ GlobalN � N {1};
8: Vstart VMP, M j VMPj;
9: repeat
/*Step 1-Network construction*/
10: for i ¼ 1 to M do
11: Take a MPj randomly form Vstart;
12: Place m ants on j; \\ m is a constant integer
13: for each ant r ¼ 1 to m do
14: M _ LocalN � N {1};

Fig. 2.2 The topology of
the network with 2 MPs
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15: Put j into node_list of r: Vr
list  Vr

list [ jf g;
16: k j;
17: M _ probN � N {0};
18: while (k =2 VBS) do
19: Choose and move to next node k from Tk

Feable;
20: Vr

list  Vr
list [ kf g;

21: end while
22: Calculate the cost of Vr

list;
23: Calculate the energy consumption of each node t: ECt;
24: end for
25: Choose the best path for MPj from V1

list, . . . ,V
m
list

� �! list j;
26: The cost of listj! Cj;
27: Calculate the energy consumption of each node t: ECt;
28: Update M _ LocalN � N;
29: end for
\* Step 2- Redundant edge removal*\
30: Remove redundant edges from the initial constructed network;
31: Update M _ GlobalN � N;
32:Until iterative number >ψ
33:Output: the optimal solution, total cost and energy consumption;

2.4.2 Computational Complexity Analysis

In this subsection, we analyze the computational complexity of the proposed
(AC-ETO) algorithm.

Phase I—Initialization (Lines 1–6): In the initialization phase, the locations of a
number of network nodes, including BS, MPs, CLs of ARNs, ECNs, SSNs, and
URNs, are imported. Accordingly, the network parameters such as communication
distance, initial energy, transmit and receive power are set as shown in Table 2.3.
The complexity of initialization is O(N ), where N is the network size; And then the
distance matrix between neighboring nodes is calculated first, and the complexity is
O(N2). According to the distance matrix, each node maintains an FCL table that
includes the list of nodes that it can directly communicate with. For example, a URN
lists a set of other URNs and/or SSNs in its communication coverage. The worst-
case complexity is O((N � 1)(N � M )). Therefore, the complexity of Phase I is
O(2N2 � MN � N + M ).

Phase II—Topology planning (Lines 7–31): Based on the FCL tables calculated
in phase I, an ant colony based optimal method is used to find the placement of the
minimum cost and the energy consumption. The algorithm is interactively
performed for network construction and redundant edge removal until a desirable
result is reached. In Lines 7–8, the matrix of global pheromone is initialized to 1 by
the memset function with a complexity of O(N ), and the subset VMP, which has
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M elements, is set as the set of starting points Vstart, and the complexity is O(M ),
where M is the number of MPs. In Lines 9–31, the iterative optimization process is
executed, where Lines 10–29 are for Step 1—Network construction and Lines 30–31
are for Step 2—Redundant edge removal. In Step 1, an ant colony is placed on a MP
which is randomly selected from VMP and then move to construct paths towards the
BS. By comparing the values of Eq. (2.9) for each feasible path, the best one, the one
with the minimum value of Eq. (2.9) is selected and stored. When M ant colonies
complete path construction, the sequences ofM best paths are selected to construct a
network. Step 1 yields the worst-case complexity O(MN2 + MN + M2). In Step
2 (Lines 30–31), the result of Step 1 is modified by removing some redundant edges
according to the characteristics of the tree structure constraints, and the complexity
of this step is O(N2 + M2 + M ). Figure 2.2 shows an example of Step 2. Figure 2.2a
shows the constructed network topology after Step 1. It can be seen that the structure
is not a tree topology as the out degree of ECN 0 is 2. In Fig. 2.2b, two redundant
edges are removed from the network to form a tree topology. Thus, the complexity of
Lines 12–33 is as follows.

O(MN2 + MN + M2) + O(N2 + M2 + M ) ¼ O(MN2 + N2 + MN + 2M2 + M )

Accordingly, if N is sufficiently large, the complexity of Phase II is
O(ψMN2 + ψMN + ψM2 + ψM) approximately, where ψ is the maximum number
of iterations.

Therefore, the overall computation complexity of the algorithm is O(2N2 � MN
� N + M ) + O(ψMN2 + ψMN + ψM2 + ψM) � O(ψMN2 + ψMN + ψM2). The
AC-ETO is efficient and it achieves a polynomial time complexity.

2.5 Simulations and Discussions

In this section, we validate the performance of the proposed algorithm and compare
it with benchmark algorithms in different network scenarios. MPs are predefined
carefully in the monitoring sea area according to sea state conditions and needs.
Specifically, we first validate the performance in a small-scale network. Then we
show the performance of MO problem solved by Gurobi in small-scale networks and
compared it with our proposed algorithm. A greedy algorithm is further presented
and compared with the proposed AC-ETO algorithm. We setup multiple experi-
ments of 11 network scenarios of different scales, as shown in Table 2.2. The main
parameters used in the experiments are listed in Table 2.3. Without loss of generality,
the generic cost unit (gcu) and the generic time unit (gtu) are defined to simplify the
evaluation of deployment costs and network lifetime in the case studies. The impacts
of ω on the results are tested in different scenarios under various network scales, as
shown in Fig. 2.3. It can be seen that the deployment cost shows little variance, but
the energy consumption may decrease significantly when ω increases. In other
experiments, the value of ω is set to 2E+06.
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2.5.1 Performance Validation in Small Scale to Middle Scale
Networks

We first evaluate the network performance of small-scale network scenarios with a
few numbers of nodes, i.e., Scenario 0 and Scenario 1. Take Scenario 0 as an
example. The results obtained by Gurobi [41], Fig. 2.4 shows the deployment
solution of Scenario 0. The deployment cost of this solution is 68, which is the
minimum cost in Scenario 0. Similarly, the energy consumption is 8.18E-05, which
is also the lowest one among all deployment plans. In this simple case, the optimi-
zation solution obtained by Gurobi is optimal, compared with the results obtained
from the exhaustive search.

We then compare the solutions of the MO problem P1 with each of the
sub-problem of MO, i.e., P2 and P3 under different scenarios from Scenarios 1–7.
We then compare the solutions of the MO problem (P1) with each of the
sub-problem of MO, i.e., to minimize the cost (P2) or to minimize the energy
consumption (P3) under different scenarios from Scenarios 1–7. The results are
compared in Fig. 2.5. As shown in Fig. 2.5a, the deployment cost of P1 is slightly

Table 2.2 The setting of simulated scenarios

Scenario index

Number of

BS MP CLs of ARN CLs of ECN CLs of SSN CLs of URN

0 1 2 2 3 4 6

1 1 2 1 2 10 15

2 1 4 1 2 20 25

3 1 6 2 8 20 30

4 1 8 2 8 25 40

5 1 10 3 5 35 50

6 1 12 3 10 40 60

7 1 15 3 9 50 70

8 1 20 4 12 80 100

9 1 25 5 16 100 120

10 1 35 7 25 125 150

11 1 50 7 25 170 200

Table 2.3 Parameter setting Parameter Value

EISSN, EIURN 2,3(J)

Er, Eo 10,50(nJ)

Eelec 50(nJ)

DURN, DSSN, DECN, DARN 5,10,25,30(km)

RMP 0.2(km)

CURN, CSSN, CECN, CARN 15,10,9,9(gcu)

εamp 0.84

ω 2E+06
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Fig. 2.3 The impacts of DC stands for Deployment Cost, and EC stands for Energy Consumption.
Sce. is the abbreviation of Scenario

Fig. 2.4 The optimal solution of Scenario (Cnet ¼ 68 gcu,Emax ¼ 8.18E – 0.5%)
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greater than that of P2, but smaller than that of P3. Figure 2.5b shows that energy
consumption of P1 is similar to that of P3 but much smaller than that of P2.
Correspondingly, the network lifetime of P1 is much greater than that of P2 while
smaller than or equal to that of P3 as shown in Fig. 2.5c. Thus, using P1, a longer
network lifetime can be achieved with a lower deployment cost. Again, Gurobi can
achieve the optimal solution.

Based on the above process, a series of small-scale network simulation are carried
out to verify the performance of the algorithm and compare it with the exhaustive
search and Gurobi. As shown in Fig. 2.6, the results of the proposed algorithm in
Scenarios 0–2 approaches that of the exhaustive search and Gurobi. For instance, the
optimal solution of the AC-ETO in Scenario 0 is 68.818, which equals to that of the
exhaustive search. Thus, the solutions of the algorithm in small-scale networks are
close to optimal. As the scale of the network increase, it is difficult to obtain the
optimal solutions by the exhaustive search. We further compare the solutions of the
algorithm with that of the Gurobi in Scenarios 3–5. Figure 2.6 shows that the results
of the algorithm are very close to that of Gurobi. Therefore, the optimization solution
of the AC-ETO is close to optimal in small scale and medium scale networks.

2.5.2 Performance Analysis of Gurobi and AC-ETO
in Different Network Scenarios

We further study the performance of the proposed algorithm AC-ETO under differ-
ent network scales and compare the results with the solutions of P1 obtained by
Guiobi. As shown in Fig. 2.7a, the deployment cost obtained by Gurobi is slightly
smaller than that by AC-ETO in Scenarios 5–10. Figure 2.7b, c compares the energy
consumption and network lifetime performance obtained by Gurobi and by AC-ETO
under different scenarios. Similarly, it can be observed Gurobi slightly outperform
AC-ETO in all these metrics. In Fig. 2.7d, when the network scales up with a larger
number of nodes, the time complexity of Gurobi increases drastically, while the
running time of AC-ETO does not very much. As an example, in Scenario 9 the
energy consumption by AC-ETO is 0.69E-4% greater than that by Gurobi, and the
deployment cost by AC-ETO is 9.16% higher than that by Gurobi, but the time
complexity of Gurobi is 1000 times higher than that of AC-ETO. As the network size
increases, Gurobi cannot obtain the results in the last scenario, i.e., Scenario
11, within the set time limit of 300,000 s, yet the proposed AC-ETO algorithm
obtains the results efficiently. Thus, the AC-ETO is efficient in dealing with those
large-scale network scenarios at the cost of a slight reduction of the optimality.
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2.5.3 Performance Comparison of AC-ETO and a Greedy
Algorithm

We further compare the performance of the proposed AC-ETO algorithm with a
greedy algorithm shown in Algorithm 2.2. Initially, the feasible table, i.e., FCL table
of each node is established to store the CLs within the communication coverage. All
CLs in the table are grouped by type in the increasing order of the communication
distance. A path is then set to the BS for each MP. To set up a path, each node along
the path is selected by checking CLs in FCL_Table of the prior node in an order,
until the BS is reached. The network construction completes when all paths are
found for any MP.

Algorithm 2.2: A Greedy Algorithm
Input: VMP,VURN,VSSN,VECN,VARN,VBS;

Initialization: Input positions of nodes and other parameters;
for each i 2 V do
Build the feasible table FCL_Table for i;

end for
M j VMPj
for i¼1 to M do
Find a feasible node l from FCL_Table of MPi;
while (l =2 VBS) do
Find a feasible node k from FCL_Table of l;
l k;
path_list of i k;

end while
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Fig. 2.6 Comparison of the exhaustive search, Gurobi, and the AC-ETO in terms of the optimi-
zation objective
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Fig. 2.7 Comparison of Gurobi and AC-ETO in terms of the deployment cost, the energy
consumption, the network lifetime, and time complexity under various network scenarios. (a)
Deployment cost. (b) Energy consumption. (c) Network lifetime. (d) Running time
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end for
for each path do

Vnet path;
end for
Calculate the total cost Cnet and the energy consumption Emax;
Output: Vnet, Cnet, Emax

Fig. 2.7 (continued)
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As shown in Fig. 2.8a, the deployment cost of AC-ETO is lower than that of the
greedy algorithm. In Fig. 2.8b, it is found that the energy consumption of the greedy
algorithm in different scenarios is higher than that of AC-ETO. Accordingly, the
network lifetime of AC-ETO is longer than that of the greedy algorithm in

Fig. 2.8 Comparison of AC-ETO and a greedy algorithm in terms of the deployment cost, the
energy consumption, the network lifetime, and time complexity under various network scenarios.
(a) Deployment cost. (b) Energy consumption. (c) Network lifetime. (d) Running time
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Fig. 2.8c. In the greedy algorithm, it is favorable to select a path with the minimum
cost and accordingly the minimum energy consumption, which does not guarantee
the cost and energy consumption of the overall network. While AC-ETO guides ants
to find the optimal (approximate optimal) solution through two pheromones.
Figure 2.8d shows that running time increases with the network size. For instance,
in Scenario 7 the deployment cost obtained by AC-ETO is 447 gcu, while the

Fig. 2.8 (continued)
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deployment cost obtained by greedy algorithm is 481 gcu, and the energy consump-
tion obtained by AC-ETO is 5% less than that obtained by greedy algorithm. Thus,
AC-ETO achieves better performance than that of the greedy algorithm in different
scenarios, at the cost of increased but affordable time complexity.

Based on the above analysis, it is observed that the AC-ETO algorithm
outperform greedy algorithm and approaches the optimal solutions in different
scenarios, which may be difficult for Gurobi to solve.

2.6 Conclusion

In the chapter, we have investigated a multi-tier hierarchical network architecture
with support of edge computing that includes the underwater acoustic sub-network,
the sea-surface wireless sub-network, and the air wireless sub-network. Based on the
network architecture, we have formulated an MO problem to minimize the total
network deployment cost and maximize the network lifetime. To solve the MO
problem, we have proposed an efficient algorithm, namely AC-ETO, and analyzed
its time complexity. The proposed algorithm approaches the optimal solutions under
different network scales with polynomial time. We will jointly study the network
deployment of static ocean sensors and trajectory design of mobile ocean vehicles in
our future work.
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Chapter 3
Autoencoder with Channel Estimation
for Marine Communications

Due to the special characteristics of the underwater environment such as pressure
and temperature, many wireless communication technologies that can be
implemented in a terrestrial environment cannot be implemented well in underwater
environments. Therefore, it is very important to study the new generation of
MWCNs. To solve the challenges mentioned in Sect. 1.2.2, this chapter proposes
a novel Orthogonal Frequency Division Multiplexing (OFDM) autoencoder featur-
ing CNN-based channel estimation for marine communications with complex and
fast-changing environments. We demonstrate that the proposed OFDM autoencoder
system can be generalized to work under various channel environments, different
throughputs, while outperform the traditional OFDM counterparts, especially when
working at high throughputs. In addition, since OFDM systems require accurate
channel estimations to function properly, this chapter also proposes a new channel
estimation algorithm for OFDM systems that combine the power of deep learning
with the philosophy of super-resolution reconstruction, which uses Dense
convolutional neural Networks (Dense-Net) to reconstruct low-resolution pilot
information images into high-resolution full Channel Impulse Responses (CIRs).
The Dense-Net structure has the characteristics of dense connections and feature
multiplexing. Simulation results show that under slow fading, the proposed channel
estimator can estimate the CIRs perfectly. Under fast fading, the proposed channel
estimator outperforms existing learning-based algorithms with fewer neural network
parameters. Therefore, the proposed novel autoencoder scheme and the powerful
channel estimator are potentially attractive approaches for MWCNs.

This chapter is organized as follows: We present a brief research background in
Sect.3.1. The related works about typical OFDM communication systems in Sect.
3.2. The proposed OFDM autoencoder is described in Sect.3.3. The simulation
results are presented in Sect.3.4. Finally, we close the chapter with conclusions in
Sect. 3.5.
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3.1 Background

Emerging Internet of Vessels (IoV) [1] is expected to play an important role in the
realm of the next generation marine wireless communication networks. Specifically,
Maritime Autonomous Surface Ship (MASS) is widely recognized as the develop-
ment trend of future shipping industry. IoV invokes a large amount of information
exchange among vessels and land-shore facilities, such as position, speed, and route.
As a result, IoV has the ability to realize the refinement of shipping management, the
comprehensiveness of industry services, and the humanization of user experiences
by providing an intelligent and safer navigating environment [1, 2]. Thus, high
throughputs and reliability are essential for IoV communications and networking,
which can employ Orthogonal Frequency Division Multiplexing (OFDM) tech-
niques [3, 4] as the information-bearing signaling. Furthermore, marine wireless
communication systems are required to accommodate complex and fast-changing
channel environments, as compared with their terrestrial counterparts. In the first
chapter of this book, the maritime channel challenge part is introduced, and the
analysis is focused on underwater communication, on the sea-surface communica-
tion and the maritime satellite communication. In order to realize intelligent com-
munication at maritime, this chapter combines the idea of Deep Learning (DL) to
solve the problem of maritime communication.

Therefore, the effort of introducing DL into the field of wireless communications
[5, 6] grows significantly with the breakthrough of DL in image processing, speech
recognition, natural language processing, etc. The resultant DL-based wireless trans-
ceivers have already demonstrated promising system performance and provided
inspirations in many aspects of communication system designs. In particular, the
pioneering work of [7, 8] proposed a communication system based on the concept of
autoencoder optimized through end-to-end learning. In contrast to conventional
communications systems, this single-carrier autoencoder architecture employs neu-
ral networks to jointly optimize the transmitter and receiver, conditioned on the
surrounding channel environments. Since then, researchers around the globe have
relentlessly pushed the boundary of deep learning into higher OSI layers, such as
hatching the idea of deep learning in resource allocation [9, 10], routing [11], and
multiple access protocols [12].

As for multi-carrier modulations, OFDM technologies are often used to combat
the effect of frequency-selective fading, since it can transform a frequency-selective
fading channel into parallel  at-fading subchannels [13]. Naturally, the challenge of
fusing DL with OFDM motives researchers to design innovative frameworks for
Internet of Vessels, where an increasing number of vessels are required to be
connected. Among them, [14], [15], and [16] used Full Connected (FC) neural
network layers to implement an OFDM system based on autoencoder structures.
However, FC layers require a large amount of network parameters, and the vanish of
gradients during training becomes problematic, when building deep neural networks.

Conversely, OFDM systems demand high accuracy channel estimations in order
to recover information correctly, where pilot-based channel estimation algorithms
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such as Least Squares (LS) and Linear Minimum Mean Square Error (LMMSE)
algorithms are often used [17]. More explicitly, [18] implemented a channel estima-
tion module based on LS algorithm using Deep Complex Convolutional Networks,
whereas authors in [19] proposed an OFDM channel estimation module using FC
neural networks. [20] proposed a model approach that combined DL with the expert
knowledge to replace the existing channel estimation module. In addition, the
channel estimation problem can also be formulated as the issue of super-resolution
reconstruction in the field of image processing [21]. The pilot data across the time
and frequency domain are treated as a low-resolution image and the full channel
responses that need to be estimated are considered to be the corresponding high-
resolution image [22], where vanilla Convolutional Neural Networks (CNNs) were
used. However, this shallow CNNs structure prevented the channel estimation
algorithm to achieve higher accuracy.

A novel autoencoder based OFDM system using CNNs layers to facilitate end-to-
end learning designed for IoV is proposed. Compared with FC layers, our
CNN-based systems can learn intricate signal representations with fast convergence
during training while using fewer network parameters. Moreover, Long Short-Term
Memory (LSTM) network layers [23] are also used to exploit the dependency of time
sequence, so that the channel coding gain becomes achievable. Furthermore, in order
to handle complex marine communication environments, we propose a novel chan-
nel estimation algorithm for OFDM systems combining the power of DL with super-
resolution reconstruction, where the low-resolution pilot information image is
reconstructed into a full channel response high-resolution image using Dense-Net
[24]. The Dense-Net structure allows us to effectively solve the vanishing gradient
problem caused by the excessive network layers of typical CNN networks. In
addition, Dense-Net has fewer network parameters than the Residual Network
(Res-Net) [25] architecture. We will demonstrate that the proposed algorithm’s
channel estimation performance is better than the state-of-the-art DL-based algo-
rithm [18]. Apart from the performance gain, the proposed algorithm has a deeper
network structure to learn high-level features with fewer total parameters than that of
[18]. Our main contributions in this chapter can be summarized as follows:

• The carefully designed CNN layers allow the learned OFDM autoencoder to have
generalization capability while achieving optimal Block Error Rate (BLER)
performance, namely support  exible data rates, suitable for AWGN and Ray-
leigh as well as non-AWGN channels.

• Furthermore, LSTM layers are introduced on top of CNN layers to achieve the
channel coding gain, which is essential to combat hostile marine communication
environments. Namely, the entire transmitted sequence is encoded using LSTM
layers before transmission, while the LSTM layers at the receiver are responsible
for extracting adequate correlated information for detection.

• To the best of our knowledge, this is the first study in the literature to propose a
novel Dense-Net channel estimation scheme based on the idea of image super-
resolution, which not only achieves state-of-the-art estimation accuracy, but also
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solves conventional CNN’s problem of gradient vanishing and excessive param-
eters through dense connections and feature multiplexing.

• The proposed OFDM autoencoder and the novel Dense-Net based channel
estimator can be trained jointly with fast convergence, hence becomes an appeal-
ing solution to dynamic IoV communications.

3.2 Typical OFDM Communication Systems

In this section, a conventional OFDM communication system is brie y described,
which is used as the bench-marker for the proposed DL-based OFDM autoencoder.

The block diagram of a conventional OFDM communication system is shown in
Fig. 3.1. Firstly, the input bits are mapped to QAM constellation points, which
consist of In-Phase and Quadrature components (IQ) in the constellation plane.
Then, the IQ signals are mapped to N (equals to the number of subcarriers used to
transmit data) sets of parallel data streams via Serial to Parallel (S/P) conversion.
Later, pilot data is inserted in each frequency domain OFDM symbol. The insertion
pattern of the pilot signals is chosen to be comb mode in order to combat the effect of
fast fading [26], which is shown in Fig. 3.2. Hence, the resultant frequency domain
OFDM symbols are converted to their time domain representations using Inverse
Discrete Fourier Transform (IDFT) operations, followed by adding Cyclic Prefix
(CP) to deal with Inter-Symbol Interference (ISI). The CP’s length depends on the
size of the multipath delay.

The multipath fading channel is modeled as:

Fig. 3.1 The block diagram of a conventional OFDM communication system
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r ¼ s� hþ n ð3:1Þ

where vectors s and r represent the transmitted and received signals in the time
domain, respectively. And n represents the white noise. h is the Channel Impulse
Responses (CIRs) of the multipath channel and� denotes the convolution operation.
Assuming that the channel response remains static within one OFDM symbol while
changing between difference OFDM symbols, the tapped delay line model [27] of
h is given by

h τ, tð Þ ¼
XK

k¼1
ak tð Þδ τ � τkð Þ ð3:2Þ

where ak(t) is the gain of the signal on the kth path and τk is the delay of the kth path,
K is the total number of paths.

At the receiver, after removing the CPs, the received time domain OFDM
symbols r of Eq. (3.1) will be converted to its frequency domain representations
via Discrete Fourier Transform (DFT) operations. Then, the channel estimation
module of Fig. 3.1 estimates the full CIRs using the received pilot data, which assist
the channel equalization module to equalize the received frequency domain symbols.
Finally, the output signal is demodulated into binary data streams after the P/S
operation.

Fig. 3.2 The insertion of
pilot data in a frequency
domain OFDM symbol
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3.3 Proposed OFDM Autoencoder

In this section, the design and training methods of the proposed OFDM autoencoder
for IoV are introduced, where the system diagram is illustrated in Fig. 3.3. The
purpose of the end-to-end structure is to find appropriate signal representations for
the transmitter that can adapt to the surrounding marine channels, such that the
receiver can recover the information with minimum error probability. More explic-
itly, two autoencoder structures are proposed. One uses CNN layers to facilitate the
task of modulation, the other is designed using both CNN and LSTM layers to
perform “joint” channel coding and modulation.

Besides, the problem of channel estimation is tackled using the idea from imagine
super-resolution [28, 29], where pilot data are the low-resolution signals and neural
networks are used to reconstruct full CIRs.

3.3.1 CNN-Based OFDM Autoencoder

The proposed OFDM autoencoder based on CNN is shown in Fig. 3.3. Firstly, a
group of N � log2m information bits are converted into one-hot matrix format
X 2 ℂN � m, which corresponds to N number of conventional m-array QAM symbols
in conventional OFDM systems. The one-hot data format can assist the transmitter to

Fig. 3.3 The block diagram of the proposed OFDM autoencoder with a novel CNN-based channel
estimator
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converge to the optimal solution quickly. Then, the CNN-based autoencoder
Ε 2 ℂm � 2 transforms input matrix X into XE 2 ℂN � 2, where the real and
imaginary parts of the signal are represented as two real numbers. Furthermore,
information signal XE is protected by adding P number of pilot signals and
C number of CPs, before modulated to multiply carriers using IDFT operations, as
seen in Fig. 3.3. This process is characterized using a matrix operation denoted as
M 2 ℂS � N, where S ¼ N + P + C. Hence, the learned signal MXE 2 ℂS � 2

propagates through the channel H 2 ℂS � S and MXE is corrupted by AWGN
N 2 ℂS � 2 before arriving at the receiver.

Next, the OFDM demodulator at the receiver of Fig. 3.3 performs an inverse
matrix operation denoted as R 2 ℂN � S to the received signal, where CP removal,
DFT calculations, and channel equalizations are processed. More importantly, a
novel CNN-based channel estimator of Fig. 3.3 is used in order to accurately
estimate the CIRs based on the pilot signals. Then, the CNN-based decoder trans-
forms the received baseband signal into suitable representations using D 2 ℂ2 � m of
Fig. 3.3, so that the recovery of data bX 2 ℂN�m using supervised learning becomes
feasible.

Finally, the whole OFDM autoencoder of Fig. 3.3 can be expressed using matrix
operations as:

bX ¼ R H MXEð Þ þ Nð Þð ÞD ð3:3Þ

Unlike traditional OFDM communication systems of Fig. 3.1 that are designed
block by block, the proposed end-to-end learning architecture can globally find the
optimal solution for the OFDM signaling representation and detection in the
overparametrized neural network space while subject to challenging channel
conditions.

Compared to FC neural networks, the employed convolutional layers of Fig. 3.3
can significantly reduce the number of trained parameters through weights sharing.
From the communication perspective, this means the information are processed
locally or in block manner. In addition, the convolutional layers are capable of
mapping bit streams to higher dimensions by increasing the number of kernels. The
detailed parameters of CNN layers used in Fig. 3.3 are shown in Table 3.1. More
explicitly, one-dimensional convolutional (Conv-1D) layers are used for both
encoding and decoding, where B in the first dimension of the output shape is the
mini-batch size, and the second output dimension N in Table 3.1 is the number of
OFDM symbols, and the last dimension is the number of kernels.

Note that since the kernel size of all the Conv-1D layers of Table 3.1 is set to one,
hence, each information vector is processed individually rather than jointly, which
means that there is no correlation between the information vectors. In the language of
traditional communications, the proposed autoencoder of Table 3.1 replaces tradi-
tional QAM modulation/demodulation using Conv-1D layers, which enable the
autoencoder system to search for the optimal modulation solution in an over-
parameterized space for different channel conditions.
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3.3.2 Coded CNN-Based OFDM Autoencoder Using LSTM

Furthermore, it is well known that channel coding can improve the system’s
performance by correlating the information bits to adjacent bits using Convolutional
Codes (CC), turbo codes, etc. In this section, we propose an OFDM autoencoder
empowered by LSTM layers, so that the architecture has the capacity of achieving
channel coding gain, where the specific neural network structure is given in
Table 3.2 and illustrated in Fig. 3.4.

At the transmitter side, three Conv-1D layers are employed to facilitate signal
transformation; however, the second Conv-1D layer’s kernel size is set to 3 to

Table 3.1 The Proposed CNN-based autoencoder

Layer name Type Output shape

Input One-hot vector (B, N, m)

Encoder1 Conv1D, kernel size: 1 (B, N, 256)

Encoder2 Conv1D, kernel size: 1 (B, N, 256)

Encoder3 Conv1D, kernel size: 1 (B, N, 2)

Modulator Non-trainable (B, N + P + C, 2)

Channel Non-trainable (B, N + P + C, 2)

Demodulator Non-trainable (B, N + P, 2)

Equalization Non-trainable (B, N, 2)

Decoder1 Conv1D, kernel size: 1 (B, N, 256)

Decoder2 Conv1D, kernel size: 1 (B, N, 256)

Output Conv1D, activation: softmax (B, N, m)

Table 3.2 The Proposed
Coded CNN-based
autoencoder using LSTM

Layer name Type Output shape

Input One-hot vector (B, N*e, m)

Encoder1 Conv-1D, kernel size: 1 (B, N*e, 32)

Encoder2 Conv-1D, kernel size: 3 (B, N*e, 32)

Encoder3 Conv-1D, kernel size: 1 (B, N*e, 32)

Encoder4 LSTM, units: 128 (B, N*e, 128)

Encoder5 Time distributed (B, N*e, 2/e)

Reshape I Reshape (B, N, 2)

Modulator Non-trainable (B, N + P + C, 2)

Channel Non-trainable (B, N + P + C, 2)

Demodulator Non-trainable (B, N + P, 2)

Equalization Non-trainable (B, N, 2)

Reshape II Reshape (B, N*e, 2/e)

Decoder1 LSTM, units: 64 (B, N*e, 64)

Decoder2 LSTM, units: 32 (B, N*e, 32)

Decoder3 Conv-1D, kernel size: 1 (B, N*e, 32)

Decoder4 Conv-1D, kernel size: 3 (B, N*e, 32)

Output Time distributed (B, N*e, m)
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correlate the information symbols, as seen in Table 3.2. Later, an LSTM layer having
128 units is added after the Conv-1D layers in order to further spread information
vector to adjacent transmit sequence, so that having CC like channel coding becomes
possible. More specifically, the output data sequence of the last Conv-1D layer is
feed into the LSTM cell to recurrently encode current information to all the past
time-steps through LSTM’s input, output, and forget gates. In addition, 128 units are
used to ensure that adequate features are encoded into the whole sequence. In other
words, it is the CNN layers together with the additional LSTM layer jointly carry out
the task of modulation and channel coding for the autoencoder system. In addition,
Time Distributed and Reshape layers of Table 3.2 are used to conform the transmit
signals to the appropriate OFDM frame structure.

At the receiver, compared with the pure CNN-based autoencoder of Table 3.1,
two LSTM layers are added to extract the correlated information from the received
sequence, followed by two Conv-1D layers, so that the channel decoding and
demodulation are carried out jointly. Finally, the Time Distributed layer is used to
reconstruct the extracted features at each time step into one-hot vector to complete
the task of data recovery.

Unlike the traditional communication system, where channel coding and modu-
lation are optimized separately, the proposed coded CNN-based OFDM autoencoder

Fig. 3.4 Illustration of the proposed coded CNN-based autoencoder using LSTM, as listed in
Table 3.2
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using LSTM of Table 3.2 uses a stack of Conv-1D and LSTM layers to encode and
correlate the data jointly. Furthermore, Conv-1D layers have limited correlation
capability of time sequence, since the kernel size is small. Conversely, increasing
the kernel size makes the neural network difficult to converge. Therefore, the
additional LSTM layers are necessary to complement the Conv-1D layers in terms
of correlating long-time sequence signals, given that the LSTM layer has broader
data receptive and processing field than Conv-1D layers.

Besides, the autoencoder system’s code rate e can be controlled by changing the
number of input bits, that is, each group of (N � e) � log2m m information bits is
converted into a one-hot matrix as the input.

3.3.3 CNN-Based Channel Estimation

We also propose a novel CNN-based channel estimator for dynamic marine channel
environments as shown in Fig. 3.3, where the specific network structure is given in
Table 3.3 and illustrated in Fig. 3.5. The received pilot signals are served as the input
of the channel estimator. Then, the data are reshaped through the reshape layer of
Table 3.3, based on which the following two-dimensional convolutional (Conv-2D)
layers can infer full CIRs. The pilot data is further up-sampled using a FC layer;
therefore, the pilot signals’ dimension is expanded to 2(N + P). Furthermore,
12 consecutive Conv-2D layers together with the shortcuts of the learned features
of the previous layers are used, namely the concatenation layers in Table 3.3. This

Table 3.3 The proposed Dense-Net channel estimation in Fig. 3.3

Layer name Type Output Shape

Input Received Pilot signals (B, P, 2)

Reshape1 Reshape (B, 2P, 1)

Up-Sampling FC, activation: linear (B, 2(N + P), 1)

DN1 Conv-2D, 1 � 1, activation: elu (B, 2(N + P), 8)

Concat1 Concat [DN1, Up-Sampling] (B, 2(N + P), 9)

DN2 Conv-2D, 3 � 3, activation: elu (B, 2(N + P), 8)

Concat2 Concat [DN2, Concat1] (B, 2(N + P), 17)

DN3 Conv-2D, 1 � 1, activation: elu (B, 2(N + P), 8)

⋮ ⋮ ⋮
DN11 Conv-2D, 1 � 1, activation: elu (B, 2(N + P), 8)

Concat11 Concat [DN11, Concat10] (B, 2(N + P), 89)

DN12 Conv-2D, 3 � 3, activation: linear (B, 2(N + P), 1)

Reshape2 Reshape (B, N + P, 2)

Denoise1 Lambda (IDFT) (B, N + P, 2)

Denoise2 Lambda (Zero-Setting) (B, N + P, 2)

Output Lambda (DFT) (B, N + P, 2)

68 3 Autoencoder with Channel Estimation for Marine Communications



Dense-Net type structure allows the proposed channel estimator to accurately recon-
struct the full channel frequency responses from the Up-Sampled pilot data.

Furthermore, the effect of pilot signal’s AWGN is minimized by three specially
designed denoising layers in Table 3.3. More specifically, Denoise1 layer of
Table 3.3 converts the estimated frequency channel response to time domain CIRs
through IDFT. Then, the last (N + P)-K samples are set to zero, since the full CIR’s
length is restricted to K. Finally, time domain CIRs are converted back to frequency
domain through DFT, which will be used in the channel equalizer.

The design philosophy of the proposed CNN-based channel estimator originates
from image super-resolution in image processing. That is, treating the pilot data
having a size of B � 2P as a low-resolution two-dimensional image, and the full
channel frequency response as the corresponding high-resolution image having a
size of B� 2(N + P). Then, we innovatively design a Dense-Net network structure to
facilitate the super-resolution process, where the input of each Conv-2D layer is the
concatenation of all the previous layers, which means the features learned by each
layer are directly passed to all the latter layers. In contrast, shallow CNN networks
are unable to deliver the precision of the estimation required by the CE module, even
though they are adequate for the autoencoder itself. In other words, the channel
perturbation is more complex to learn than the encoding/decoding of the information
sequence, hence deeper and powerful Dense-Net architecture is necessary. Addi-
tionally, the proposed Dense-Net CE has the ability of fast convergence, owing to
inherited shortcut connections. This structure allows the channel estimator to piece

Fig. 3.5 Illustration of the proposed Dense-Net channel estimation network, as listed in Table.3.3

3.3 Proposed OFDM Autoencoder 69



together all the learned features to solve the “puzzle.” Also, through feature
multiplexing, the parameters required by the Dense-Net are greatly reduced. For
example, only 8 filters using kernel of size 1 � 1 or 3 � 3 are used in each Conv-2D
layer in the DN layers of Table 3.3. In addition, the dense connections alleviate the
vanishing gradient phenomenon usually seen during the training of deep CNN
networks.

3.3.4 Model Training

For the proposed CNN-based OFDM autoencoder system and the coded CNN-based
OFDM autoencoder system using LSTM of Fig. 3.3, random one-hot data are
generated as training data. And cross entropy of Eq. (3.4) is used as the loss function,
which is given by

LCross�Entropy ¼ �
XU
i¼1

Xg
j¼1

yij log xij ð3:4Þ

where x and y are training and label datasets and g is the number of categories, U is
the number of samples.

The training data of the CNN-based channel estimation of Fig. 3.3 is obtained
after the pilot signals propagate through multipath fading channels, and the perfect
CIRs are used as the label data. Besides, Mean Square Error (MSE) is used as the
loss function:

LMSE ¼ 1
U

XU

i¼1
yi � xið Þ2 ð3:5Þ

The elu and linear activation functions are used in Tables 3.1, 3.2, and 3.3 to
perform nonlinear and linear transformations, respectively, and the SoftMax activa-
tion function is used at the decoder. We found that elu activation is more suitable to
solve the problem of vanishing gradient and cell “dying” for the proposed
autoencoder and CE networks, compared with tanh, relu, and other commonly
used activation functions. We also find that using early stopping and dropout
mechanism with a rate of 0.05 are useful to prevent overfitting. ADAM optimizer
[30] is used to optimize the back-propagation process and to control the step and
direction of the gradient during training. In order to speed up the training process and
facilitate neural network convergence, the initial learning rate is set to be 0.01 and
the learning rate will be reduced by a factor of ten, whenever the loss function of
Eqs. (3.4) or (3.5) is saturated for 5 consecutive epochs. In addition, the Mini-batch
Gradient Descent algorithm is used to speed up the training process, which is set to
B ¼ 64.
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Besides, the training Eb/N0 is also an important factor to converge to optimal
solutions. When training at low Eb/N0, neural networks have difficulty to learn
intricate data structure because of high noise power. Conversely, if the training Eb/
N0 is too high, neural networks lose the generalization ability to cope with noise
contaminated data. In this paper, the CNN-based OFDM system of Table 3.1 was
trained in the range of 4 to 10 dB, the coded CNN-based OFDM autoencoder system
using LSTM of Table 3.2 was trained in the range of 10 to 20 dB which higher than
un-coded system, while the CNN-based channel estimator of Table 3.3 was trained
at 20 dB.

3.4 Simulation Results

After the detailed OFDM parameters are given in Table 3.4, the BLER performance
of the proposed CNN-based OFDM autoencoder under AWGN and multipath fading
channels is provided, when the receiver has perfect CIRs. The CNN-based OFDM
autoencoder of Fig. 3.3 is benchmarked by the conventional OFDM systems of
Fig. 3.1 having corresponding m-array QAM modulations. The performance of the
coded autoencoder using LSTM is compared with the traditional half-rate
convolutional coded OFDM system. Furthermore, the OFDM autoencoder’s
BLER performance using the proposed Channel Estimator (CE) of Table 3.3 is
also provided under slow or fast fading channels. Our source codes are implemented
in Keras and will be available on GitHub upon publication.

For the marine communication channel, since the relatively low onboard anten-
na’s height on a vessel and local scatters around the user introduce multiple paths in
wireless channels [31], multipath Rayleigh fading models are used with  at fading or
having a Doppler frequency of 8.73 Hz for fast fading [32], which corresponds to the
maximum relative speed between ships of 60 km/h. We will show that, firstly, the
OFDM autoencoders of Tables 3.1 and 3.2 can adapt to marine channel

Table 3.4 OFDM parameters of the proposed OFDM autoencoder

Carrier frequency 157.2 MHz (International VHF Marine Radio Channel 24)

DFT Size 64

Pilots per OFDM symbol 8

Number of used subcarriers 56

CP duration 0.1 ms

Data symbol duration 0.4 ms

Total symbol duration 0.5 ms

Pilot pattern Comb of Fig. 3.2

Pilot value 1 + 1i

Channel model AWGN, multipath fading

Channel coherence Taps updated per OFDM symbol

Doppler frequency Flat or 8.73 Hz
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environments through learning, secondly, the proposed CE scheme is capable of
outperforming existing deep learning-based channel estimations [18] for marine
channels.

3.4.1 AWGN and Fading Channels

Figure 3.6 demonstrates the BLER performance of the CNN-based OFDM
autoencoder of Fig. 3.3 under AWGN channels. In the case of m ¼ 2 and 4, the
proposed CNN-based OFDM system achieves nearly identical BLER performance
compared with conventional expert OFDM systems of Fig. 3.1 having the same
throughput, when using BPSK and QPSK. However, when the system throughput
increases as m ¼ 16 and 64, the CNN-based OFDM achieves slightly better BLER
performance than that of the expert OFDM systems using 16-QAM and 64-QAM.
That is because the CNN structure can optimize the data symbols jointly in higher
dimensions. In addition, the CNN operations inheritably enable hamming-type block
coding to the information bits [7], which becomes more transparent when the
increase of m.

Fig. 3.6 The BLER performance of the proposed CNN-based OFDM autoencoder under AWGN
channels, when compared with corresponding expert OFDM systems
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Figure 3.7 shows the BLER performance of the CNN-based OFDM autoencoder
of Fig. 3.3 under multipath Rayleigh fading channels of Doppler frequency 8.73 Hz,
when having perfect CIRs. Again, we observe that for m ¼ 2 and 4, the BLER
performance of the CNN-based OFDM is in agreement with the baseline systems. At
m ¼ 16 and 64, the CNN system’s BLER performance is slightly better than their
conventional counterparts. This phenomenon indicates that the CNN-based
autoencoder architecture can converge quickly subject to not only simple AWGN
conditions, but also to more dynamic multipath fading environments. In other words,
CNNs are  exible enough to learn useful signal representations under different
channel variations at the transmitter while distinguishing different symbols at the
receiver after channel impairment.

In order to further illustrate on CNN structure’s quick convergence, Figs. 3.8 and
3.9 plot the training loss and validation loss of the proposed CNN-based OFDM
autoencoder under AWGN and multipath fading channels with Doppler frequency of
8.73 Hz. CNN’s learning process is further complicated by settingm¼ 64. However,
despite high data rate and dynamic channel environments, we observe in Figs. 3.8
and 3.9 that the convergence happens around training over 25 and 50 epochs.
Observe that the autoencoder working under fading channels of Fig. 3.9 converges
slower than under AWGN channels of Fig. 3.8. That is because the fading channels
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Fig. 3.7 The BLER performance of the CNN-based OFDM autoencoder of Fig. 3.3 under
multipath Rayleigh fading channels of Doppler frequency 8.73 Hz, when having perfect CIRs
and compared with corresponding expert OFDM systems
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are more complicated than the AWGN channels, the proposed autoencoder requires
more data to gain comprehensive knowledge of the surrounding environments.
Besides, the training loss and validation loss match quite well, which means the
issue of overfitting can be alleviated by proper design of the CNN model.

Figure 3.10 shows the BLER performance of the coded CNN-based OFDM
autoencoder using LSTM of Table 3.2 under AWGN channels. In the case of
m ¼ 16 and m ¼ 64, it can be clearly seen that the BLER performance of coded
OFDM autoencoder having a rate of e ¼ 1/2 is greatly improved over the un-coded
OFDM autoencoder of Table 3.1 having a rate of e ¼ 1. This means the proposed
LSTM-aided model can achieve the coding gain. Even better, when compared with
the corresponding expert OFDM system using CC of e ¼ 1/2, the proposed half-rate
coded OFDM autoencoder archives a better BLER performance in the whole range
of Eb/N0. This is because the proposed combination of CNN and LSTM layers can
better exploit and extract the features of the entire transmission sequence than the
individually designed convolutional coded expert systems. That is, the autoencoder
carries out the search for optimal transmission sequence in a much larger over-
parameterized space, compared with the traditional hand-crafted constellation
points. Also, the constraint length of a CC is limited to 7, whereas the LSTM layer
can correlate current input information to the whole vector having a length of N*e,
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Fig. 3.8 Training loss and validation loss of the CNN-based OFDM autoencoder of Fig. 3.3 under
AWGN channels with m ¼ 64
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which also assists the LSTM layer at the receiver to observe and extract information
from the entire received signals. So, the LSTM layers at the transmitter are able to
correlate each information vector much further in a transmission sequence than a
simple CC, and the LSTM layers at the receiver can exact more information than a
Viterbi decoder.

Then, Fig. 3.11 shows the BLER performance of three half-rate (e¼ 1/2) systems
under AWGN channels, which are the proposed CNN-based OFDM autoencoder of
Table 3.1, the coded CNN-based OFDM autoencoder of Table 3.2 and the
corresponding CC-coded expert OFDM system. It can be clearly seen that the
coded OFDM autoencoder outperforms both its expert OFDM counterpart and the
un-coded OFDM autoencoder significantly, which exemplifies LSTM’s ability of
properly encoding and decoding information across a total number of one-thousand
time-steps through learning [23], whereas the CC has a limited constraint length of
7. Conversely, we also note that the un-coded CNN-based OFDM autoencoder beats
the BLER performance of CC-coded expert OFDM system in the low SNR range,
before the power of CC kicks in for high SNRs. Again, this proves that the key to
approach Shannon capacity is to correlate the transmitting sequence through coding.

Furthermore, the BLER performance of coded CNN-based OFDM autoencoder
using the LSTM of Table 3.2 having a rate of e ¼ 1, 1/2, 1/4 is shown in Fig. 3.12
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Fig. 3.9 Training loss and validation loss of the CNN-based OFDM autoencoder of Fig. 3.3 with
m ¼ 64 under multipath Rayleigh fading channels with Doppler frequency of 8.73 Hz
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when transmitting over multipath Rayleigh fading channels of Doppler frequency
8.73 Hz. It is obvious that our proposed autoencoder can indeed function under
multipath fading channels and working with various rates, owing to the learning
ability of neural networks. What’s more, the BLER performance keeps improving
significantly, with the help of increasing redundancy from e ¼ 1 to 1/4. This means
that the proposed coded CNN-based OFDM autoencoder using LSTM can exploit
the redundancy efficiently through sufficient training.

3.4.2 Channel Estimation

There are two factors that contribute to the accuracy of the CE, namely the noise
level in the pilot data and the fast-changing nature of the marine wireless channel,
characterized by Doppler frequency.

Figure 3.13 shows the BLER performance of the proposed CNN-based OFDM
autoencoder of Fig. 3.3 using CNN-based CE of Table 3.3 when communicating
over  at multipath Rayleigh fading channels. In order to demonstrate the proposed
CE’s learning ability, the OFDM system’s BLER performance using perfect CIRs
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Fig. 3.10 The BLER performance of the proposed CNN-based OFDM autoencoder of rate e ¼ 1
and coded CNN-based OFDM autoencoder using LSTM of e ¼ 1/2 under AWGN channels, when
compared with corresponding expert OFDM systems using CC of e ¼ 1/2
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and using state-of-the-art deep learning-based channel estimation [18] is also given
as the bench markers. When m ¼ 2 and 4, we observed that both reference [18] and
the proposed CE can achieve the same performance as that of using the perfect CIRs.

Also observe in Fig. 3.13 that, in the case of m ¼ 16 and 64, there exists an error
 oor for CE of [18] at high Eb/N0 region. However, our proposed CNN-based CE of
Table 3.3 remains capable of accurately reconstructing CIRs, which results in close
BLER performance with the case of using perfect CIRs. This improvement over [18]
comes from Dense-Net structure’s deepened layers and multiple shortcut connec-
tions, which allow the proposed CE to infer better based on the pilot data.

For fast multipath Rayleigh fading channels having a Doppler frequency of
8.73 Hz, Fig. 3.14 plots the BLER performance of the CNN-based OFDM system
of Fig. 3.3 using CNN-based CE of Table 3.3, when compared with using perfect
CIRs and reference [18]. Firstly, observe in Fig. 3.14 that all the BLER performance
under fast fading environments are worse than that of  at-fading channels in
Fig. 3.13, owing to the increasing unpredictability of the channel. In this case, the
comb pattern pilot signals of Fig. 3.2 are insufficient to capture the change in the
environment. Secondly, all the CE algorithms in Fig. 3.14 exhibit error  oors at high
SNR regions, and the error  oors become more apparent for large m. However, the
proposed CE algorithm of Table 3.3 still manages to beat the performance of [18].
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Fig. 3.11 The BLER performance of the proposed CNN-based OFDM autoencoder of rate e¼ 1/2
and coded CNN-based OFDM autoencoder using LSTM of e ¼ 1/2 under AWGN channels, when
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Again, this means that the proposed Dense-Net structure can estimate the CIRs better
than that of [18]. In addition, the proposed CNN-based CE uses fewer neural
network parameters (total number of parameters ¼ 19,192) than [18] (total number
of parameters ¼ 64,292). In other words, the proposed CNN-based CE invokes less
computational cost.

3.5 Conclusion

In order to design an intelligent communication system for challenging maritime
channel environment, a novel OFDM autoencoder is proposed, which employs CNN
and LSTM layers to facilitate end-to-end learning. Furthermore, the proposed
learning-based autoencoder is best suitable for communication systems that having
a precise channel model is either impractical or impossible, which is not limited to
maritime communications. Our OFDM autoencoder consists of multiple CNN layers
in order to learn intricate signal representations for optimal transmissions while
using fewer parameters than using FC layers. In addition, the proposed CNN
architecture is able to converge to optimal solutions easily during training as of
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Fig. 3.12 The BLER performance of coded CNN-based OFDM autoencoder using the LSTM of
Table 3.2 having a rate of e ¼ 1, 1/2, 1/4, when transmitting over multipath Rayleigh fading
channels of Doppler frequency 8.73 Hz, while having perfect CIRs
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Figs. 3.8 and 3.9. When operating at low throughput, the proposed autoencoder
exhibits similar BLER performance comparable to conventional QAM-assisted
OFDM systems. And the proposed system is able to outperform traditional OFDM
systems in high throughput settings as seen in Figs. 3.6 and 3.7. Furthermore, we
also propose an LSTM-aided OFDM autoencoder of Table 3.2, which has the
capacity of achieving a better channel coding gain than the convolutional coded
counterparts, which is shown in Figs. 3.10 and 3.12.

In the meantime, we also propose a new channel estimation algorithm for OFDM
systems that marries the power of DL with the idea of super-resolution reconstruc-
tion, where a specially designed Dense-Net architecture is used to reconstruct
low-resolution pilot information image into a high-resolution image. The Dense-
Net architecture solves traditional CNN’s problem of vanishing gradient and exces-
sive parameters through dense connections and feature multiplexing. Under slow
fading channels, the proposed channel estimator can estimate the CIRs near perfec-
tion. In the case of fast fading channels, the proposed channel estimator achieves
better performance than that of the existing DL-based algorithms with lower com-
putational complexity. Finally, the proposed coded OFDM autoencoder and the
proposed CNN-based CE require significant amount of computation power to train
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Fig. 3.13 The BLER performance of the CNN-based OFDM autoencoder of Fig. 3.3 with
CNN-based Channel Estimation (CE) of Table III, when communicating over  at multipath
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CE of reference [18]
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of ine; however, once the training is complete, the proposed autoencoders enjoy
simple deployment by loading trained parameters and readily online training update.

In summary, we believe that the proposed OFDM autoencoder’s generalization
ability married with superior BLER performance and adaptability to complex marine
environments, which are blessed by LSTM-aided CNNs, hold to key to the evolution
of MWCNs.
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Chapter 4
Decentralized Reinforcement
Learning-Based Access Control for Energy
Sustainable Underwater Acoustic
Sub-Network of MWCN

Due to energy limitations, inadequate frequency band, mobility of underwater nodes,
the most challenging issue of the next generation MWCN is the access control of the
underwater acoustic sub-network. In this chapter, we focus on an Energy Sustainable
Underwater acoustic sub-network of MWCN with tidal energy harvesting. For
simplicity, we use the term ESUN for the energy sustainable underwater
sub-network of MWCN in the later sections. Specifically, an analytical model is
first developed to analyze the network performance of ESUN, characterizing the
stochastic nature of energy harvesting and traffic demands of ESUN nodes, and the
salient features of acoustic communication channels. It is found that the spatial
uncertainty resulting from underwater acoustic communication may cause severe
fairness issue. As such, an optimization problem is formulated to maximize the
network throughput under fairness constraints by tuning the random-access param-
eters of each node. Given the global network information, including the number of
nodes, energy harvesting rates, communication distances, etc., the optimization
problem can be efficiently solved using the Branch and Bound (BnB) method.
Considering a realistic network where the full network information may not be
available at the ESUN nodes, we further propose a multi-agent reinforcement
learning approach for each node to autonomously adapt the random-access param-
eter based on the interactions with the dynamic network environment. Numerical
results show that the proposed learning algorithm outperforms the existing solutions
in terms of the network throughput and approaches the derived theoretical bound.

The remainder of this chapter is organized as follows: Sect. 4.1 studies the
background. Section 4.2 discusses the related works. Section 4.3 describes the
system model and the analytical framework to investigate the throughput perfor-
mance of an ESUN. In Sect. 4.4, a multi-agent reinforcement learning algorithm is
presented. Numerical results are provided in Sect. 4.5, followed by concluding
remarks in Sect. 4.6.
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4.1 Background

The expansion of marine industries to the far and deep ocean puts forward higher
requirements for the next generation MWCNs. However, the marine environment is
harsh and complex, and the traditional network access method is difficult to be
directly applied to the marine environment. The MWCN faces many problems, such
as power supply, balanced access to the network of underwater nodes, and so on. In
the last decade, we have witnessed the rapid development of the wireless sensor
network technology. Billions of wireless sensors and other communication devices
have been deployed to provide numerous intelligent services such as smart home,
smart city, and smart ocean [1–4]. Compared with smart home and smart city, the
service of smart ocean is relatively under-explored; yet it has attracted increasing
attentions from both industry and academia to exploit the abundant marine resources
including marine life, oil and gas, minerals, and tidal energy [5]. To build a smart
underwater MWCN, an extension of wireless sensor network in the underwater
environment has been proposed in 2012 [6]. In such a network, underwater sensor
nodes are deployed in the ocean to track the cycles of marine life and monitor ocean
environment like the water temperature and pressure in certain areas, direction and
speed of ocean current, salinity, turbidity, oxygen density, and chlorophyll levels of
water [7]. Generally, wireless sensor nodes are considered to be powered only by
battery with limited capacity. One obvious downside of the battery-powered nodes is
the need of frequent battery replacement. But in the underwater environment, the
battery replacement for underwater node can be challenging, costly, and inconve-
nient [8]. To tackle this issue, energy harvesting is considered as a promising
solution to provide a sustainable network. Fortunately, the tidal current can be
considered as a good source for energy harvesting. Since, recent researches find
that the energy density of tidal current is much higher compared with other renew-
able sources such as wind and solar [9–11]. This is because tides are more predict-
able than wind energy and solar energy. Therefore, tidal energy can be further
exploited to provide an ESUN.

Compared with nodes of terrestrial wireless communication network, ESUN
nodes in the underwater environment use acoustic wave to communicate instead of
Radio Frequency (RF) signals. This is because, in underwater environment, acoustic
waves attenuate less compared to radio waves and optical waves. Therefore, it is of
great importance to consider both the features of the acoustic waves and marine
environment in designing the MAC protocols for ESUN. For example, the propa-
gation speed of sound in water is only about 1500 m/s, which causes long propaga-
tion delay that is five orders higher than that in terrestrial communication network.
Therefore, while the propagation delay can be ignored for RF communication, the
propagation delay is vital for acoustic communication. For ESUN nodes distributed
in different locations, a collision-free transmission at the transmitter side may still
result in a collision at the receiver side due to various propagation delays over the
acoustic channels. As a result, this issue is referred as spatial uncertainty problem. In
addition to the spatial uncertainty problem, the underwater acoustic communication
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system usually has limited bandwidth and low data rate. Last but not least, the
importance of different ESUN nodes should be considered. Since different ESUN
nodes may have quite different responsibilities, some nodes are used to monitor the
underwater environment, while other nodes are used to build disaster prevention
systems such as earthquake warning system. Thus, it is crucial to consider such
salient features of acoustic communications in the design of ESUN.

Most existing works of underwater communications in the literature propose
different scheduling-based algorithms and protocols to address the spatial uncer-
tainty problem. In [12], a receiver-based schedule scheme is proposed to ensure data
are received in order at the receiver side, assuming the propagation delay of each
node can be perfectly known. But the locations of underwater sensor nodes may
change over time due to water current which leads to varying propagation delays.
Such network dynamics make it difficult to have an efficient transmission schedule
of underwater sensor nodes. A few papers propose to use random-access protocols
for underwater sub-network of MWCNs. In [13], three protocols are evaluated in
terms of delay and throughput, by simulations. In [14, 15], it is shown that slotted
ALOHA achieves similar performance as pure ALOHA due to the location-
dependent propagation delay. To improve the throughput, an enhanced slotted
ALOHA protocol is proposed in [16] where the frame arrival time is aligned in
slots at the receiver side. These works are either based on only simulations or on an
over-simplified model, e.g., Poisson data arrival in the network. In addition, these
aforementioned works consider conventional battery-powered underwater sensor
nodes that have sufficient energy to operate in the network. For an ESUN powered
by tidal energy harvesting, the number of nodes ready for data communications may
change from time to time, which makes it challenging for the protocol design and
optimization. To the best of our knowledge, no prior work investigates the design
and development of ESUNs with energy harvesting.

In this chapter, we study a random access based ESUN with tidal energy
harvesting. Specifically, an analytical framework is developed to analyze the
throughput of ESUN nodes, characterizing the stochastic nature of energy
harvesting, traffic demands of ESUN nodes, and the acoustic communication chan-
nels. Based on the analysis, the impact of long propagation delay of acoustic
communication channel and the spatial uncertainty on the network performance is
investigated. According to our analysis, we find that spatial uncertainty may cause
severe fairness issue in an ESUN, as a closer node may access the channel more
frequently than a faraway node. To achieve the maximum network throughput while
ensuring fair sharing of network bandwidth, an optimization problem is formulated.
By adapting the random-access window of each node, the maximum throughput can
be achieved under the fairness constraint. Given the global network information, i.e.,
the total number of network nodes, the traffic demands of ESUN nodes, and the
communication distance between the ESUN nodes and the Access Point (AP), the
optimization problem can be efficiently solved using the Branch and Bound (BnB)
optimization method. In a realistic network setting, the information of ESUN may
not be available at ESUN nodes. Thus, we further propose a multi-agent reinforce-
ment learning approach for each ESUN node to distributively adapt the access
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parameters based on the dynamic network environment. The main contributions of
this chapter can be summarized into fourfold.

• A generic mathematical model is developed to analyze the performance of an
ESUN with energy harvesting, capturing the salient features of underwater
communication channel and the stochastic energy harvesting process.

• An optimization problem is formulated to maximize the weighted sum through-
put of ESUN nodes under the fairness constraint. Given the global network
information, the optimization problem can be solved with BnB method to find
the optimal setting of random-access parameters of ESUN nodes.

• In a fully distributed ESUN where the global network information is not avail-
able, a multi-agent reinforcement learning approach is further introduced for each
ESUN node to adapt the access parameter in a distributive manner.

• Extensive simulations are conducted to demonstrate that the proposed learning
algorithm approaches the derived theoretical bound and significantly outperforms
some existing solutions.

4.2 Related Works

The existing MAC protocols proposed for underwater sub-network of MWCNs can
be classified into two categories: scheduling-based and contention-based protocols
[17]. For scheduling-based protocols, the communication channel is usually divided
into multiple subchannels in the time domain, which are allocated for contention-free
data transmissions of underwater nodes. Due to the scarcity of the available band-
width, Frequency Division Multiple Access (FDMA) is not suitable for underwater
networks. Most existing scheduling-based protocols aim to optimize the transmis-
sion schedule to improve the throughput performance of an underwater acoustic
network. In [18], a MAC protocol proposed for underwater sensor network applies
graph coloring to schedule as many con ict-free concurrent transmissions as possi-
ble to achieve high throughput, based on the global network topology. In [19], a
distributed scheduling scheme is proposed without the full information of the
network topology but using a distributed clustering approach coordinating neigh-
boring nodes. The proposed solutions in [18, 19] involve large signaling overheads
to obtain the network topology or form distributive clusters, which may not be
suitable for energy constrained underwater nodes. In [20], a load-based slot alloca-
tion scheme is proposed for underwater wireless sensor networks, which combines
TDMA and Carrier-Sense Multiple Access with Collision Avoidance (CSMA/CA).
However, the scheme in [20] ignores the impact of long propagation delay of
underwater communications by simply adopting a long slot duration which com-
prises the data transmission time and the maximum propagation delay. In [21], a
delay and queue aware adaptive scheduling-based MAC protocol is proposed, taking
into consideration the data queue length of nodes and various propagation delays of
different nodes at different locations. This paper considers a static network with a
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fixed number of nodes which are well synchronized with the central scheduler. In
[22], the performance of sender-based scheduling and receiver-based scheduling
where the schedule is decided by the sender and receiver, respectively, are com-
pared. To improve the energy efficiency, a depth-based protocol named ED-MAC is
proposed in [23] by scheduling duty cycles of underwater sensors. In all these
aforementioned works, it is assumed that all nodes always have sufficient energy
to transmit. For ESUN nodes with energy harvesting, the nodes may not always have
sufficient energy to operate in the network and they become inactive for data trans-
missions from time to time. In such case, the number of active ESUN nodes in the
network may vary over time. Thus, it is difficult for the central scheduler to decide
the transmission schedule for ESUN nodes.

Besides the scheduling-based protocols, some papers propose contention-based
protocols for underwater wireless networks. To address the spatial uncertainty
problem, an enhanced slotted ALOHA protocol is presented in [15], where guard
bands are added with respect to the maximum propagation delay in each slot.
Similarly, a reservation-based protocol is proposed in [24], where competing users
contend to send short busy-tone signals to reserve the channel. However, the
proposed protocol requires that each node keeps sensing the channel for each
contention round when competing for channel access, which is not energy-efficient
and thus not suitable for ESUN nodes. In [25], two variants of ALOHA-based
protocols are proposed to improve the throughput by exploiting the long propagation
delay. The performance of the enhanced ALOHA protocol proposed in [15] is
analytically studied in [26]. It is found that the bandwidth waste resulting from the
guard time is proportional to the propagation delay.

With the popularity of machine learning, some related works incorporate the
learning algorithm on the protocol design of traditional wireless network [27–
31]. However, there is no work considering the unique feature of ESUN. To sum
up, these aforementioned works mainly aim at improving the network throughput or
energy efficiency of conventional battery-powered underwater sensor networks,
without considering the spatial fairness issue in an ESUN. It is well known that
fairness is an important performance metric of MAC protocol design. In addition,
tidal energy harvesting poses new challenges in the design and development of an
energy sustainable ESUN, which should be taken into consideration. Thus moti-
vated, in this chapter, we investigate the protocol design and optimization of an
ESUN with tidal energy harvesting, characterizing the stochastic nature of energy
harvesting and data arrivals of ESUN nodes. However, when the network informa-
tion is not available.

By applying reinforcement learning, each ESUN node can intelligently utilize its
harvested energy and adapt their protocol parameters to attain the maximal sustain-
able network throughput.
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4.3 Performance Analysis of ESUN with Energy Harvesting

In this section, we will first introduce the system model considered in this chapter.
Then, based on whether the data requires acknowledgement from the AP, we will
mathematically analyze the performance of ESUN nodes for both cases.

4.3.1 System Model

In the system, we consider an ESUN consisting of one AP and M ESUN nodes.
These M ESUN nodes are randomly deployed in a 3-D space which is shown in
Fig. 4.1. The propagation delay of ESUN node i is assumed to be dependent only on
the distance to the AP which is denoted as DiA. Based on the numerical results in
[16], we can find that the ESUN nodes with different propagation delays may
introduce random collisions at the receiver sides caused by the spatial uncertainty
problem. Thus, slotted ALOHA performs similarly to pure ALOHA algorithm. To
tackle the spatial uncertainty problem, in this chapter, we postpone the transmissions
according to the propagation delay to ensure that the data can be received at the start
of a slot. The postpone process is shown in Fig. 4.2. In Fig. 4.2, one ESUN node with
propagation delay 1.2 slot supposes to transmit a data packet at time t¼ 1. To ensure
that the data can be received at the beginning of one slot, the ESUN node will
postpone the transmission time to t ¼ 1.8.

It is assumed that ESUN nodes are only powered by tidal energy generated from
periodic  ow of water. In each time slot, the probability that node i harvests one unit
of energy is denoted as Pe(i). The power capacity of each ESUN node is assumed to

Fig. 4.1 The ESUN model
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beW units. When one ESUN node has W unit of energy, it can be ready to transmit.
Thus, each IoT node will keep harvesting the tidal energy until it reaches the capacity
ofW energy units. After transmitting the data, no matter successful or failure, a node
depletes the energy buffer and needs to take some time to recharge for the next
transmission.

Each ESUN node monitors the ocean environment for certain duration and
randomly generates data for transmission. For data of ESUN nodes, we consider
the following two cases: (1) In the first case when a critical event is detected, an
ESUN node generates a critical data that require reliable transmission to the
AP. Thus, unicast transmission with immediate acknowledgement (ACK) is
required. (2) In the second case, an ESUN node may also report some non-critical
data to the AP and no mandatory immediate ACK is required. It is worth noting that
due to the long propagation delay, the ACK cannot be protected by using a Shortest
Interframe Space (SIFS) as in conventional random-access protocols. Thus, the AP
transmits ACK at a high-power mode to ensure successful reception of ACK. We
assume data arrival follows Bernoulli distribution with mean value Pd(i) for node i.
When a node has charged sufficient energyW and has a data in the queue, the ESUN
node is then ready for data transmission. In what follows, the term ready nodes refer
to the nodes that have both data and enough energy. Due to stochastic nature of the
data generation and energy harvesting, the AP may not able to accurately predict the
set of ready nodes and then schedule the transmissions efficiently. Therefore, in this
work, we consider that each node adopts the slotted ALOHA-based random-access
protocol to access the channel when it is ready. Specifically, in the beginning of each
slot, a ready node randomly selects random-access parameter, i.e., a backoff counter,
from [0, CWi � 1]. The backoff counter decrements by one in each slot. When the
backoff counter reaches zero, the node is able to transmit. The channel is assumed to
be ideal such that the transmission will be successful if there is no collision at the
receiver side.

Fig. 4.2 Receiver synchronization
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4.3.2 Analysis of ESUN Nodes

In this section, we develop the analytical model to study the performance of ESUN
network with energy harvesting. Based on whether the data requires acknowledge-
ment from the AP, the nodes can be divided into two categories, i.e., nodes carrying
critical data and nodes carrying non-critical data. Firstly, the ready probability along
with the access rate of the nodes with non-critical data is derived in Sect. 4.3.2.1.
Then, the access rate of nodes carrying critical data is derived in Sect. 4.3.2.2. Based
on the access rate and the ready probability, the system throughput can be obtained.

4.3.2.1 Analysis of ESUN Nodes with Non-critical Data

In this subsection, we analyze the average ready probability for the ESUN nodes
who carry the data without the requirements of reliability. We define the ready
probability as the probability that the ESUN node has enough energy and non-empty
data at a random slot. The main parameters used in the analytical part are listed in
Table.4.1. Let Dai (t) denote the data state for ESUN node i in slot t. This discrete
time scale is directly related to the system time. Similarly, the unit of energy stored at
time t for a given ESUN node is denoted as Ei (t). As mentioned previously,
W denotes both the power storage capacity and the energy required to transmit
data. The bi-dimensional process {Dai (t), Ei (t)} with Markov chain of node i is
illustrated in Fig. 4.3. The non-null one step transition probabilities are:

P 1, k þ 1j1, kf g ¼ Pe ið Þ, k 6¼ W

P 1, k þ 1j0, kf g ¼ Pe ið ÞPd ið Þ, k 6¼ W

P 0, k þ 1j0, kf g ¼ 1� Pd ið Þð ÞPe ið Þ, k 6¼ W

P 0, 0j1,Wf g ¼ p ið Þ 1� Pd ið Þð Þ
P 1, 0j1,Wf g ¼ p ið ÞPd ið Þ
P 1,W j1,Wf g ¼ 1� P ið Þ

8>>>>>>>><
>>>>>>>>:

ð4:1a� fÞ

The first three equations in Eq. (4.1) show the transition probabilities when the
ESUN node is not ready in the previous slot. Eq. (4.1a) shows that given the ESUN

Table 4.1 List of Notations

Description Notation

The number of ESUN nodes M

The distance between node i and AP DiA

Prob. of arriving of n unit energy in one slot for node i Pe(i)

Prob. of arriving of one packet in one slot for node i Pd (i)

Window size of node i CW (i)

Energy capacity of a node W
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node has k units of energy and the data queue is not empty in the previous slot, the
probability that it harvests one unit of energy is Pe(i). Since the data state is one in
the previous slot and the data queue is one, the data state will still be one in the next
slot regardless of the data arrival in the following slot. Since each node only trans-
mits the most updated data. In Eq. (4.1b), node i with no data and k units of energy
changes to state (1, k + 1) with probability Pd(i)Pe(i). If the data state remains zero in
the next slot, the probability is (1 � Pd(i)) which is shown in Eq. (4.1c). Equation
(4.1d–f) account for the fact that when the node is ready in the previous slot, the state
in the next slot depends on the data arrival. If a new data arrives when node i is
transmitting, the next state is (1,0). p(i) is the average transmission probability of
node i. Given the window size of node i is CWi, the average transmission probability
is

πi 0,kf g ¼
p ið Þ 1� pd ið Þð Þπi 1,Wf g þ πi 0,0f g 1� pe ið Þð ÞPd ið Þ, k ¼ 0

1� pd ið Þð Þπi 0,k�1f gpe ið Þ, k 2 1,W � 1½ �
1� pdð Þ πi 0,W�1f gPe þ πi 0,Wf g

� �
, k ¼ W

8>>><
>>>:

ð4:2a� cÞ

Let πi d,ef g ¼ lim t!1P Dai tð Þ ¼ d,Ei tð Þ ¼ e
� �

, d 2 0, 1ð Þ, e 2 0,Wð Þ denote the
steady state probability when the data state is d and energy state is e for the ESUN
node i. The steady state probabilities when the data state is zero are given in
Eq. (4.2).

Fig. 4.3 Markov chain
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Equation (4.2a–c) are the steady state probabilities when k ¼ 0, k 2 [1,W-1], and
k ¼ W. Similarly, we can obtain the steady possibilities when the data state is one
which are shown in Eq. (4.3). Equation (4.3a) is the steady probability of πi 1,kf gwhen
k 2 [0, W-1]. While Eq. (4.3) is the steady probability when k is W.

πi 1,kf g ¼
πk�1

1,xf gPe ið Þ þ Pd ið Þπi 0,k�1f gPe ið Þ
πi 1,W�1f gPe ið Þ þ πi 1,Wf g 1� p ið Þð Þ
þPd ið Þπi 0,Wf g þ Pd ið Þπi 0,W�1f gPe ið Þ

8>><
>>: ð4:3a� bÞ

According to the total probabilities rule, we have

XW
x¼0

πi 0,xf g þ
XW
x¼0

πi 1,xf g ¼ 1 ð4:4Þ

After solving Eqs. (4.1)–(4.4), the steady state probabilities πi 1,kf g for each state

can be derived using CWi. Among all steady state probabilities, πi 1,Wf g denotes the

ready probability that the device has enough energy and non-empty data queue in a
random slot. In a special case when all ESUN nodes carry non-critical data. Given
the ready probability and the total number of ESUN nodes, the average number of
ready ESUN nodes in each slot can be written as:

Nr ¼
XM
i¼1

πi 1,Wf g ð4:5Þ

Given that node i is ready with probability πi 1,Wf g, the average waiting time until

the node is ready is 1
πi

1,Wf g
. A ready node attempts to transmit on the channel with

probability p(i). Thus, the access rate is given by

μ ið Þ ¼ 1
1

πi
1,Wf g

þ 1
p ið Þ

ð4:6Þ

When the ESUN node gets the opportunity to transmit over the channel, a
collision occurs when at least one of the remaining ESUN nodes is transmitting.
Thus, the conditional collision probability given the tagged ESUN node i is trans-
mitting is given by

Pi
cc ¼ 1�

Y
k 6¼i, k2 1,M½ �

1� μ kð Þð Þ ð4:7Þ

The average throughput of node i is given by
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Thi ¼ μ ið Þ 1� Pi
cc

� �
R ð4:8Þ

where R is the transmission rate.

4.3.2.2 Performance Analysis of ESUN Nodes with Critical Data

In this subsection, we analyze the performance of ESUN nodes with critical data.
Specifically, AP transmits an acknowledgement (ACK) message which informs the
sender whether the packet has been received or not to the transmitters immediately
after the reception of a packet. Therefore, the ACKmessage can reach the transmitter
side after a round-trip time which is two times the propagation delay between the
transmitter and the receiver. Meanwhile, in the transmitter side, the ESUN node
keeps sensing the channel until it receives the ACK or the expiration of the ACK
timeout. We consider that each ESUN node can only update the data queue when it
receives the ACK or the expiration of ACK timeout. Note that each node can still
harvest the energy while waiting for the ACK.

Now, we analyze the possible events could happen during two successive trans-
missions for a tagged node i. The possible events that could occur between two
successful transmissions of a tagged node are illustrated in Fig. 4.4. As shown in
Fig. 4.4, the possible events that could happen between two successive transmissions
are dependent on whether the previous transmission is successful or not. If the
previous transmission is successful, the data queue of the tagged node is cleared,
the node waits for the new data arrival and energy arrival. In contrast, if the previous
transmission is collided, the ESUN node waits only for the energy after the ACK.
Denote Pe(i) and Pd(i) as the probability that the node i has a data or energy arrival in
a random slot. The time instant of the end of last transmission is denoted as m. The
probability that the data arrives after time + 1) can be expressed as:

P Td>tð Þ ið Þ ¼ 1�
Xt

j¼1

1� Pd ið Þð Þ j�1Pd ið Þ ð4:9Þ

Similarly, the probability that the energy is sufficient after time (t0 + t) is given by

Fig. 4.4 Channel access of reliable node i
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P Te>tð Þ ið Þ ¼ 1�
Xt

j¼W

Ct
W 1� Pd ið Þð Þt�WPe ið ÞW ð4:10Þ

Given the previous transmission is successful, the average waiting time is depen-
dent on whether energy arrives before data or not. Denote the propagation delay of
the node is Tpro(i). Each node keeps harvesting the energy while waiting for the
ACK, the probability that the energy arrives before the ACK is 1 � P(t > 2Tpro(i)0).
Given the energy arrives after the ACK, the probability that the data arrives first is
given by

Pdf ¼
P1

j¼WC
j
W 1� Pe ið Þð Þ j�WPe ið ÞW 1� P Td>jð Þ ið Þ

� �
P Td>2Tpro ið Þð Þ

ð4:11Þ

Then, the probability that energy arrives no earlier than the data can be written as
1 � pdf. Given data arrives first, the average waiting time after ACK can be
written as:

E Tdf

� 	 ¼
P1

j¼WC
j
W 1� Pe ið Þð Þ j�WPe ið ÞW 1� P Td>jð Þ ið Þ

� �
j

P Td>2Tpro ið Þð Þ
ð4:12Þ

If data arrives earlier than the time that the energy is sufficient, the average
waiting time after ACK is

E Tef

� 	 ¼ 1=Pd ið Þ ð4:13Þ

Using Eqs. (4.11)–(4.13), the average waiting time after ACK can be written as:

E Tr ið Þ½ � ¼ P Te>2Tproð Þ ið Þ E Tdf

� 	
pdf þ E Tef

� 	
1� pdf
� �� �

þ 1� P Te>2Tproð Þ ið Þ
� � 1

Pd ið Þ

 �

ð4:14Þ

where the first line represents the average duration between the time that the packet
has been sent and the time that the node is ready given the condition that energy is
sufficient after the ACK. Meanwhile, the second line is the average waiting time
when the energy is sufficient after the ACK. The average waiting time between a
successful transmission and the first transmission is given by

Tst ið Þ ¼ E Tr ið Þ½ � þ 2Tpro ið Þ þ TACK þ CWi

2
ð4:15Þ
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When the previous transmission is not successful, after the ACK timeout, the
ESUN node only needs to wait for the energy arrival. The average duration between
a collision and a transmission is

Tct ið Þ ¼ 1� P Te > tð Þ ið Þð Þ2Tpro ið Þ þ P Te > tð Þ ið Þ

�
P1

j¼WC
j
W 1� Pe ið Þð Þ j�WPe ið ÞW jþ 2Tpro ið Þ� �

P Td>2Tpro ið Þð Þ
ð4:16Þ

Denote the probability that the transmission of the tagged node i is collided in the
receiver side with pc(i). Therefore, the average time between two successive suc-
cessful transmissions is

Tss ið Þ ¼ Tst ið Þ þ 1=pc ið Þ � 1ð ÞTct ið Þ ð4:17Þ

Then, the access probability that the node transmits a packet to the central node in
a random slot can be expressed as:

μ ið Þ ¼ 1= 1� pc ið Þð Þ
Tss

ð4:18Þ

Node i accesses the channel with probability μ(i) in each slot. Denote CR and NC
as the set of ESUN nodes carrying critical data and non-critical data, respectively.
Thus, the system throughput can be written as:

Thtot ¼
X
i2RE

μ ið Þ
Y

c 6¼i, c2CR
1� μ cð Þð ÞRþ

X
i2UR

μ jð Þ
Y

d 6¼j, j2NC
1� μ dð Þð ÞR ð4:19Þ

4.3.3 Optimization Problem

In this section, we first formulate the optimization problem and then show how to
solve it using the proposed analytical model. Denote CR and NC as the set of ESUN
nodes carrying critical data and non-critical data, respectively. Jain’s index is used to
quantify the fairness of the system and is defined as:

J Th1, Th2::ThNð Þð Þ ¼
PN

i¼1Thi
� �2
N
PN

i¼1Th
2
i

ð4:20Þ

The goal is to maximize the weighted throughput by the optimal selection of the
window size. A tolerance parameter y is used to ensure the fairness due to the
different locations.
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maximizeCWi,j α1
X
i2CR

Thi þ α2
X
j2NC

Th j

s:t: CWmin � CWi � CWmax,

J Th1, Th2::ThNð Þð Þ � γ,

ð4:21Þ

where the first constraint represents the constraints on the selections on the window
size and the second constraint specifies the fairness requirement. For non-convex
problems, Branch and Bound (BnB) optimization method [32] can be used to find
the optimal solution. Thus, BnB algorithm is adopted to find the optimal solution. In
BnB algorithm, the searching space is divided into different subsets which is called
branching or splitting. The algorithm keeps track of both lower bound and upper
bound of each branch. These bounds are used to prune the search space. Because the
bound on the branch may prove that candidate solutions in this branch do not contain
an optimal solution. Therefore, many branches can be terminated.

4.4 Learning-Based Random Access for ESUN Nodes

Using the analytical model proposed in Sect. 4.3, the optimal window size can be
determined when the full network information, i.e., the number of ESUN nodes,
energy harvesting rate Pe, traffic parameter Pe can be obtained.

In practice, network information from every individual node may not be able to
obtain accurately and timely at the AP side. Additionally, the stochastic nature in
energy harvesting and data generation results the number of ready nodes in the
network contending for channel access may vary from time to time, which is very
difficult to track at the AP. Thus motivated, the powerful reinforcement learning
algorithm which can allow each node to autonomously adapt their action, i.e.,
selecting a random window for channel access, based on its own interactions with
the network environment.

Specifically, we propose a distributed learning algorithm based on multi-armed
bandit learning for each node. Different from some other learning algorithms like
Q-learning or SARSA learning, multi-armed bandit learning is stateless, which
means that there is no state nor state transitions and the reward is only dependent
on the action space. In the original multi-armed bandit problem, there is a slot
machine with n arms with each arm having its own rigged probability distribution
of success. Since the true probability distributions of n arms are not known, the
ultimate target is to find the optimal arm regardless of the state. The multi-armed
bandit learning is carried out via the means of trial-and-error and value estimation.
In our problem, all ESUN nodes have different selections of random-access
parameter, i.e., contention window CW which can be modeled as different arms
(action).
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Denote as the instant reward received when action a is chosen for the k-th time
slot. And Qk(a) denotes the estimation of action a after it has been selected for k —
1 times, which can be written as [33]:

Qk að Þ ¼ R1 að Þ þ R2 að Þ þ . . .þ Rk�1 að Þ
k � 1

ð4:22Þ

According to (22), a record of all previous rewards is needed to obtain the
estimated Q-value. However, the problem is that the memory and computational
requirements would grow over time as more rewards are obtained. For simplicity, we
can devise incremental formulas for updating averages with small, constant compu-
tation required to process each new reward. Equation (4.22) can be rewritten as:

Qk að Þ ¼ Qk�1 þ 1
k � 1

Rk�1 að Þ � Qk�1 að Þð Þ ð4:23Þ

In reinforcement learning, there is a classic explore-exploit dilemma need to be
addressed. More specifically, the agents have to choose between exploring new
actions which may potentially yield higher rewards in the future and exploiting the
state that yields the highest reward based on the existing knowledge. To strike a
balance between the exploration and the exploitation, we adopt the £-greedy policy
as the exploration strategy. In ε-greedy policy, the probability that an agent selects a
random action is ε and the probability that the action with the highest Q-value is
chosen is (1- ε) [34]. Instead of using a constant ε, a decayed ε is adopted. A high
value of ε—1 is used in the beginning to ensure that more explorations are performed
and the ε decays when agent has already investigated some actions and built
confidence in selecting a good action. Specifically, in this algorithm, we decrement
the value of ε by a pε (e.g., pε¼ 0.1) after a number of Nε iterations until ε reaches the
minimum value εmin.

The definitions of each element in the learning algorithm are listed as follows:

• Agent:
Each ESUN node is an agent.

• Action:
The action of each agent is to select a window size that can maximize the

weighted throughput while satisfying fairness constraint. Let CWmin and CWmax

denote the minimum and the maximum window sizes that can be selected,
respectively. The window size that can be selected is from [CWmin,
CW + CWstep, CWmax], where CWstep is the step size of the window size.
Each node only selects the action when it has data and sufficient energy for
transmission.

• Reward:
We define the reward of action a as,
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R að Þ ¼ α1
P

i2CNThiþα2
P

j2NCTh j,J�γ

0:J<γ

�

In one observation window, the AP monitors the successful transmissions and
calculates the weighted sum throughput. Then, the AP sends this information to
all nodes through ACK frames or broadcast beacon frames.

Algorithm 4.1: Cooperative Learning Algorithm for Optimal Contention
Window Selection
Input:

CWmin, the minimum value of CW; CWmax, the maximum value of CW;
£, the exploration policy parameter;Ne, the number of iterations before reducing £;
Emin, the minimum value of of ε;γ, the tolerance rate;
Te, the time of one episode.
Output:
CW*, the optimal CW; For each node ;
while convergence is not reached do
if Nε has been reached then ε ¼ max εmin, ε� pεð Þ
Randomly choose pe 2 [0, 1];
if pe < ε then

Enter exploration;
Select the next action randomly

else
Enter exploitation;
Select the next action with maximum Q value

Receive a reward;
if J � γ then

Receive the reward: a1∑i 2 REThi + a2∑j 2 URThj
else

Receive the reward:
0

Update the Q table;

In the learning process, we consider the ESUN nodes take an action and keep the
action during an observation window. For example, given the observation window is
200 slots, each ready node keeps to use the same window during {200 k 200(k + 1)}.
Each node can select a new action in the following observation window. The detailed
procedure of the learning algorithm is described in Algorithm 4.1.

The detailed proof of convergence of the cooperative learning algorithm can be
found in [35]. It has been proven that the convergence can be guaranteed for multi-
agent system if one state Q-learning algorithm is used and all agents have a common
interest. In our cooperative learning algorithm, the updating rule of Q matrix is the
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same as one state Q-learning in [35]. In addition, the agents in our proposed learning
algorithm have the same throughput-related reward, which is the common interest of
all agents. Therefore, the convergence of the cooperative learning algorithm is
guaranteed.

4.5 Performance Evaluation

To validate the proposed analytical model and to evaluate the performance of the
proposed learning algorithm, extensive simulations have been performed using
MATLAB. We set up the experiments as described in Sect. 4.3. The minimum
and maximum backoff window sizes are 8 and 64, and the step size of window
change is 2. If not otherwise specified, we set up N ¼ 40 nodes, and Pe(i) ¼ P
(i) ¼ 0.1.

The throughput performance of ESUN nodes with critical data (with immediate
ACK in case 1) and non-critical data (with no immediate ACK in case 2) are shown
in Fig. 4.5. To illustrate the impact of distance uncertainty on the throughput
performance, two groups of ESUN nodes are randomly distributed with mean
distance of 75 m and 750 m to the AP. As shown in Fig. 4.5, the throughput of
the two groups of nodes with non-critical data in case 2 are the same regardless of the
distance; however, in case 1, the nodes with shorter communication distances
achieve a much larger throughput than those with longer communication distances.

Fig. 4.5 Throughput performance under different Pe
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The throughput gap increases with pe. This is because, in case 1 when critical data is
transmitted, an ESUN node needs to wait for an ACK which takes a long round-trip
time. Nodes with a smaller communication distance complete a transmission in a
shorter round-trip time and thus achieve a higher throughput. For nodes at 75 m,
when ACK is used in case 1, ESUN nodes need to wait for an ACK before initiating
the next transmission, thus the contention level is reduced. In case 2 when no ACK is
required, nodes will not wait for ACK but becomes ready for transmission when
energy and data buffer are non-empty. The high contention level in case 2 degrades
the throughput performance. When pe increases, ESUN nodes are more likely to be
ready for data transmissions, which increases the contention level and thus degrades
the network throughput. To address the fairness problem due to the various propa-
gation delay, the window sizes of nodes should be carefully tuned based on the
communication distance.

In Fig. 4.6, the throughput performance under different window sizes is investi-
gated. It can be seen that the throughput in both cases increases with the window
sizes CW when N ¼ 40 but decreases with CW when N ¼ 20. When the number of
users is large, the contention level in the network is high, and a larger window can
efficiently reduce the collisions. When the number of users is small and the conten-
tion level is low, an enlarged window leads to unnecessary waiting time which
degrades the throughput. Thus, to attain the best throughput performance, window
sizes should be carefully tuned according to the traffic demands in the network.

The average number of ready nodes in a random slot is shown in Fig. 4.7. It can
be observed that the number of ready nodes increases with the window size. The
larger the window size, the lower the transmission probability. According to Fig. 4.3,
the node stays in the ready state with higher probability if the transmission proba-
bility becomes smaller. Simulation results validate our analytical model.

We further investigate the network throughput in a more complicated network
setting, i.e., half of network nodes carry critical data and the other half of network
nodes carry non-critical data. As shown in Fig. 4.8a, nodes with non-critical data
(case 1) achieve higher throughput than the nodes with critical data (case 2). Nodes
that do not need to wait for ACK will access the channel more aggressively
compared with those waiting for ACK and thus achieves a higher throughput. This
further jeopardizes the network fairness performance. By increasing the window
sizes of nodes with non-critical data, the throughput of nodes with critical data
improves at the cost of decreased throughput of nodes with non-critical data, as
shown in Fig. 4.8b.

We further implement the proposed multi-agent reinforcement learning algorithm
in Algorithm 1 so that each node can adapt its access window based on the
interactions with the network. The performance of the proposed algorithm is com-
pared with the theoretical upper bound achieved by solving the formulated optimi-
zation problem in Eq. (4.21). As shown in Fig. 4.9, in the first 20 k iterations, the
average network throughput is lower than the analytical bound, yet the performance
of the proposed algorithm becomes stable after 30 k iterations. In each iteration, each
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Fig. 4.6 Throughput
performance under different
window sizes. (a) N ¼ 40.
(b) N ¼ 20

Fig. 4.7 Number of ready
nodes



node explores actions randomly or exploits the best action from previous experience.
The exploration parameter e decays by iterations, and the throughput becomes stable
and closely approaches the analytical upper bound when e decays to zero. Thus,
without knowing the detailed network information, an ESUN node can still apply
advanced learning technique to attain the sub-optimal network performance.

We further compare the throughput performance of the proposed learning algo-
rithm with some existing solutions in the literature. The first benchmark algorithm
uses the fixed window without adaption, as most existing networks implement. The
second benchmark algorithm is random algorithm, which selects a window size
randomly from [CWmin, CWmax]. It can be seen in Fig. 4.10a, the fixed algorithm

Fig. 4.8 Network
Throughput of co-existed
case 1 and case 2. (a)
Throughput Vs window
size. (b) Weighted
throughput Vs window size

102 4 Decentralized Reinforcement Learning-Based Access Control for Energy. . .



achieves the lowest throughput among all algorithms, when no fairness constraint is
considered. The proposed learning-based algorithm greatly outperforms the other
two algorithms and even closely approaches the analytical upper bound. Similar
results can be also found in Fig. 4.10b with the fairness constraint.

4.6 Conclusions

In this chapter, we have proposed an analytical model to study the performance of a
random access based ESUN by considering the stochastic nature of energy
harvesting and the unique feature of acoustic communication channel. It has been
found that spatial uncertainty causes severe fairness issue in an ESUN network. By
jointly considering the network throughput and fairness, an optimization problem
has been formulated. Given the global network information, the optimization prob-
lem can be solved using BnB optimization method. In a dynamic network setting
where the global network information is not available, a multi-agent reinforcement
learning approach has been applied for each node to adapt the access parameter
based on the interactions with the dynamic network environment. Numerical results
have validated the analysis. It has also been shown that the performance of the
proposed learning algorithm can closely approach the analytical bound and
outperform some existing solutions.

In our future work, we plan to extend the work in a large-scale ESUN with
multiple APs and massive numbers of ESUN nodes operating on multiple acoustic
communication channels. Channel allocation and access control under co-channel
and cross-channel interference will be jointly investigated.

Fig. 4.9 Throughput of the
learning algorithm
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Chapter 5
Opportunistic Routing with Q-Learning
for Marine Wireless Sensor Networks

In the next generation MWCNs, it is very challenging to monitor the vast marine
areas, especially in the deep ocean. To this end, billions of sensors will be deployed
over the different depths in the ocean or on the sea surface from Marine Wireless
Sensor Networks (MWSNs), to monitor the marine environment and surveil the
marine ecosystem. As described in Sect. 1.2.4, energy efficiency is a more difficult
challenge for routing in MWSNs due to the harsh marine environment compared
with terrestrial wireless sensor networks. In this chapter, we propose an Energy-
efficient Depth-based Opportunistic Routing Algorithm with Q-learning (EDORQ)
for MWSNs to guarantee the energy-saving and reliable data transmission. It takes
the advantages of both Q-learning technique and Opportunistic Routing
(OR) algorithm without the full-dimensional location information to improve the
network performance in terms of energy consumption, average network overhead,
and packet delivery ratio. In EDORQ, the void detection factor, residual energy, and
depth information of candidate nodes are jointly considered when defining the
Q-value function, which contributes to proactively detect void nodes in advance,
meanwhile, to reduce energy consumption. In addition, a simple and scalable void
node recovery mode is proposed for the selection of candidate set so as to rescue
packets that are stuck in void nodes unfortunately. Furthermore, we design a novel
method to set the holding time for the schedule of packet forwarding based on
Q-value so as to alleviate the packet collision and redundant transmission. We
conduct extensive simulations to evaluate the performance of our proposed algo-
rithm and compare it with other three routing algorithms on Aqua-sim platform
(NS2). The results show that the proposed algorithm significantly improves the
performance in terms of energy efficiency, packet delivery ratio, and average
network overhead without sacrificing too much average packet delay.

This chapter is organized as follows: We present a brief research background in
Sect.5.1. The related works are reviewed comprehensively in Sect.5.2. Section 5.3
illustrates the network architecture and Q-learning model in MWSNs. The proposed
algorithm is described in detail in Sect.5.4. We report the simulation results and
analysis in Sect. 5.5. Section 5.6 concludes this chapter and refers to future works.
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5.1 Background

With the great application prospects in marine environmental protection, underwater
exploration, marine disaster monitoring, offshore operations, and marine military
activities, MWSNs have drawn great attention from governments, industry, and
academia over the course of the past few years [1, 2]. Routing is a non-trivial task
in MWSNs that can ensure fast and reliable transmission of data packets, which
becomes one of the most valuable research hotspots recently.

Designing an efficient and reliable routing algorithm is a fundamental but essen-
tial research topic in MWSNs. In Chap. 1 we discussed the challenges facing
MWCNs at different layers, and the challenges in MWSNs can be summarized in
the following.

• The sensor nodes in MWSNs are usually powered by batteries, which are difficult
to replace or recharge them because of the harsh and violent underwater envi-
ronment. Therefore, improving the energy efficiency is one of the most crucial
issues that should be considered in the design of routing algorithms for MWSNs.

• Radio signals attenuate rapidly in underwater environment. Larger antennas and
higher transmission power are required to propagate at longer distance with extra
low frequencies [3–6]. Besides, optical signals are affected by the factors of water
clarity, scattering, and precision [6]. Both radio and optical signals cannot meet
the requirement of long-distance underwater communication. Thus, acoustic
signals are usually adopted in underwater environment to communicate. How-
ever, compared with the radio-frequency channel, the bandwidth of an acoustic
channel is lower (up to 20 kbps) and the propagation delay is longer (approxi-
mately 1500 m/s) [7]. Meanwhile, it may be affected by some unfavorable factors
such as path loss, noise, and Doppler spreading, which can cause extremely high
packet loss ratio and total energy consumption [2, 6].

• The network topology changes frequently in MWSNs since the sensor nodes
move passively with the water currents [8, 9].

Therefore, the inherent features of MWSNs make it difficult to design efficient
and appropriate routing algorithms. Due to all the above differences between the
terrestrial wireless sensor networks and MWSNs, traditional routing algorithms for
terrestrial-based wireless sensor networks are not feasible for MWSNs [10]. Hence
specific routing algorithms must be designed to tackle the intrinsic properties in
MWSNs.

Underwater OR algorithms have been proposed as a promising paradigm to
mitigate these drawbacks and improve the performance of network in an underwater
environment [11]. Unlike conventional routing algorithms in which packets are
transmitted along the predefined route and a specific neighbor node is selected as
the next-hop forwarder, OR algorithms make good use of the broadcast characteristic
of wireless channels to select a set of next-hop forwarder candidates [12]. These
candidates provide better alternative paths to the destination so that it can adapt to the
dynamic underwater topology effectively and reduce the negative effect of weak
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links in MWSNs. It can also increase the communication reliability and network
throughput by taking advantage of multiple potential relay nodes. However, there
are lots of challenges in order to obtain a better performance in MWSNs with the use
of OR algorithms [13–15]. A large number of redundant copies can be generated due
to the usage of multiple potential candidates during forwarding process, resulting in
unnecessary energy losses. Furthermore, the frequently forwarding of some high
priority nodes leads to energy exhausted early, which shortens the network lifetime
and causes the routing void that occurs whenever the current node has no neighbor
closer to the water surface than itself for packet forwarding to the destination. A node
is a void node if none of its neighbor nodes makes a positive progress for packet
transmission towards the sink on the water surface. Some void-handling approaches
are required in OR algorithms to achieve a recovery when the packet reaches a void
node [16].

In general, OR algorithms are composed of two main procedures, that is, candi-
date set selection and candidate set coordination. The candidate set selection proce-
dure is for the purpose of selecting a suitable set of neighboring nodes as potential
candidates, which can be further classified into three groups: sender-side-based,
receiver-side-based, and hybrid approaches [17, 18]. The candidate set coordination
process is responsible to choose relay nodes from candidates and suppress redundant
packet transmissions of low-priority nodes. The underwater OR algorithms can be
roughly divided into two main categories: localization-based and localization-free.
The significant difference between them is whether or not the awareness of location
by the sensor nodes [19]. A Focused Beam Routing (FBR) is a localization-based
OR algorithm to address energy consumption. It applies the exchanging of Request
To Send (RTS) and Clear To Send (CTS) to select forwarders within a cone formed
from the source to the destination. It can improve the energy efficiency but it has a
low packet delivery ratio in sparse conditions [20].

Due to the accurate three-dimensional information is hard to acquire in an
underwater environment, localization-based routing algorithms are difficult to be
widely applied. While localization-free algorithms pick out packet forwarders only
according to the depth information of the nodes which can be obtained easily [21]. A
Depth-Based Routing (DBR) requires water pressure (depth) as a forwarder’s
selection metric, which achieves great performance improvements in packet delivery
ratio and end-to-end delay. However, it has high load on the nodes closer to the water
surface [22].

As a classic learning method that interacts with the environment, reinforcement
learning is one of the most critical contents in the field of artificial intelligence and
machine learning [23]. It does not require agents to grasp the environment model in
advance, nor does it require supervision and guidance from supervisors. The
Q-learning algorithm is one of the most representative and widely used reinforce-
ment learning algorithms [24]. In the Q-learning algorithm, agents learn continu-
ously to adapt to the environment better according to their received rewards or
penalties. Thus, it has great adaptability and  exibility in practical applications
[25]. In recent years, several routing algorithms [26–29] based on Q-learning
technique are implemented in MWSNs. The Q-learning-based Energy-efficient and
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Lifetime-Aware Routing (QELAR) algorithm [26] applies machine learning tech-
nique in the distributed underwater routing for the purpose of energy conservation
and lifetime extension. But lots of control packets are used to exchange the related
information, resulting in unnecessary overhead. The Q-learning based Delay-Aware
Routing (QDAR) algorithm for underwater networks aims to extend the lifetime of
MWSNs with the aid of Q-learning algorithm. However, the designated routing path
needs to be constructed before issuing the data packet, which leading to high end-to-
end delay due to the low acoustic velocity. Moreover, the frequent construction of
routing paths brings about plenty of additional overheads and energy consumption
[27]. The reinforcement learning based data forwarding algorithm with Received
Signal Strength (RSS) and Arrival of Angle (AoA) positioning mechanism, to cope
with the passive mobility of nodes in underwater routing. By adopting the Q-learn-
ing to build the mobile model of sensor nodes, it achieves a good performance in
terms of energy consumption but has a low packet delivery ratio [28]. The
localization-based routing algorithm based on Q-Learning with additional Kinemat-
ics and Sweeping features (QKS) has great adaptability to the dynamic topology by
estimating the node velocity and position with the help of Q-learning. However, it is
very difficult to realize underwater location [29].

In summary, the depth-based opportunistic routing tackles the harsh underwater
environment well but it only focuses on the local optimal selection by employing
greedy approaches. Although the aforementioned routing algorithms based on
reinforcement learning for MWSNs can improve the network performance in some
aspects by observing and learning the environment, some of them cannot control the
routing overhead well when exchange the related information about Q-values and
the others require position information, in which it is tricky to achieve accurate
underwater location. Meanwhile, as far as we know, the Q-learning technique has
not been introduced to underwater depth-based OR algorithms basically. Motivated
by the above considerations, in this chapter, we propose an EDORQ to further
reduce the energy consumption and improve the robustness for MWSNs. Instead
of depending on full-dimensional position coordinates for packet delivery, the
EDORQ needs only local depth information which can be easily obtained via an
inexpensive pressure sensor. Our main contributions in this chapter can be summa-
rized as follows.

• We introduce the Q-learning technique into the underwater OR algorithm, so as to
fully utilize their respective advantages. On the one hand, it takes full advantage
of the broadcast nature of wireless medium in OR for reliable data packet
delivery. On the other hand, global optimization can be achieved through single
step Q-value iteration with the aid of Q-learning technique, which overcomes the
shortcomings of greedy strategy and local optimization in traditional underwater
OR algorithms.

• In our proposal, the void detection factor, residual energy, and depth information
of nodes are jointly considered in the reward function of Q-learning, which
contributes to proactively detecting and bypassing void nodes in advance as
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well as avoids excessive energy consumption for the nodes locating in hot
regions.

• We design a simple and scalable void node recovery mode in the candidate set
selection phase through a packet backward retransmission manner to recover
packets that encounter void nodes unfortunately. Instead of the network topology
information, the void recovery mode needs only local depth to go around void
nodes, which can further improve the packet delivery ratio, especially in a sparse
network.

• We exploit a timer-based candidate set coordination approach to schedule packet
forwarding, where a novel method to set the holding time is designed on the basis
of Q-value, which helps to reduce the packet collisions and redundant trans-
missions. Besides, the Q-value is shared in only one hop neighbor, which is
beneficial to further decrease overhead and energy cost.

5.2 Related Works

For a special wireless sensor network, the underwater routing algorithm is required
to be deliberately tailored to fit the unique characteristics, which poses great chal-
lenges to the design of underwater routing algorithms for MWSNs [30]. In this
section, we review the related research works on this topic.

In the Vector-Based Forwarding (VBF) routing algorithm for MWSNs [31], a
virtual “pipe” from the source to the destination is predefined for the selection of
forwarder nodes. The nodes only located in the routing “pipe” can be selected as the
qualified candidates. It avoids excessive redundant transmissions since the
low-priority nodes are suppressed. However, frequent usage of sensor nodes in
“pipe” leads to early death of these nodes. As a result, it will disconnect the routing
links and cause the energy distribution unbalanced. A Hop-by-Hop Vector-based
Forwarding Algorithm (HH-VBF) is proposed to mitigate the drawbacks of VBF
[32]. HH-VBF creates a dynamic virtual routing “pipe” in each hop instead of a fixed
vector from the source to the sink. It is less sensitive to “pipe” radius threshold and
has a higher opportunity to deliver the packet to the destination in the sparse
network. Simulation results show that HH-VBF has better performance of packet
delivery ratio and more robustness than VBF. However, more energy is consumed in
a dense network due to the dynamic change of the routing “pipe.” Furthermore, both
VBF and HH-VBF are localization-based OR algorithms, which require sensor
nodes to know their own full-dimensional position coordinates information. How-
ever, as mentioned before, it is not an easy task for underwater sensor nodes to obtain
their location information, which limits the usage of VBF and HH-VBF in practical
applications.

The first localization-free routing algorithm is named as Depth-Based Routing
(DBR) [22]. As a representative opportunistic routing algorithm, DBR adopts the
holding time to schedule packet forwarding. During the holding time, the sensor
nodes with the highest priority will suppress the packet forwarding of the other
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nodes with the lower priority. A fixed depth threshold mechanism is introduced to
reduce the number of redundant packets. It requires that the depth difference
between the previous hop node and candidate node should be larger than a fixed
depth threshold. The mechanism decreases the number of redundant packets to a
certain extent in a dense network. However, the defect of this mechanism is that the
depth threshold is set to a fixed value even if the underwater nodes are not deployed
uniformly. If the value is too large, the packet delivery ratio will be very small in
sparse networks. Contrariwise, the number of redundant packets will increase in
dense networks if the value is too small. It cannot adapt well to the changing of the
senor density.

Aiming at the problem of fixed depth threshold in DBR, the Depth and Energy
Aware Dominating Set based algorithm (DEADS) employs an optimized depth
threshold mechanism [33]. Three optimal depth threshold values are defined in
advance to reduce the scope of candidate set. The source node determines which
optimal depth threshold value should be taken on the basis of the number of dead
nodes in the network. The algorithm can overcome the defect that the fixed depth
threshold only has one value in DBR to a certain extent. However, there are only
three optimal values in the dynamic network that cannot adapt to the changing
density of sensor nodes well. Furthermore, it needs the whole network information
to select the depth threshold that greatly increases the overhead.

In the Energy-Efficient Depth-Based Routing Algorithm (EE-DBR) [34], an
underwater Time of Arrival (ToA) ranging technique [35] is introduced to reduce
multipath redundancy forwarding. Instead of using the depth threshold mechanism,
EE-DBR removes the redundant nodes in the blind zone (nonshaded area in Fig. 5.1)
to select the next-hop forwarder candidates. The calculation of blind zone is given as
Eq. (5.1).

dis2 � Δd2
� �þ R� Δdð Þ2 > R2 ð5:1Þ

where dis is the minimal distance between node n1 and source node, which can be
obtained by ToA technique. Δd is the depth difference of two nodes and R is the
maximum transmission range of one hop. EE-DBR effectively reduces redundancy
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n1

dis�d

n2Fig. 5.1 Forwarding zone
of Energy-Efficient Depth-
Based Routing Algorithm
(EE-DBR)
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energy waste in the blind zone compared with DBR. However, there are still a large
number of redundant copies in the non-blind zone in a dense network. What is more,
it is challenging to guarantee the synchronization of time when using ToA technique
in MWSNs.

Two routing mechanisms of Effective Energy and Reliable Delivery (EERD) and
Cooperative Effective Energy and Reliable Delivery (CoEERD) are proposed for
MWSNs to improve the energy efficiency and reliability of packet transmissions
[36]. EERD is a single path routing mechanism, in which a certain weight function
based on residual energy, bit error rate, and shortest distance is designed to prolong
the network lifetime and reduce the energy consumption and delay. In order to
ensure packet reliability in harsh underwater conditions, the CoEERD, a multiple
path routing mechanism, improves the EERD by adding the cooperation of a single
relay node between a source–destination pair. However, it increases the energy
usage and average delay compared with EERD due to the cooperation of nodes.

Considering the energy balanced localization-free cooperative noise-aware
routing for MWSNs, Depth and Noise-Aware Routing (DNAR) and Cooperative
DNAR (Co-DNAR) are proposed [37]. DNAR is designed to reduce the energy
consumption by combining the extent of link noise with the depth of a node. But
only a single link is utilized to send data, which is vulnerable to the harshness of
channel. Co-DNAR algorithm proposed to overcome the weaknesses of DNAR. In
Co-DNAR, the source–relay–destination triplets in information advancement are
applied to reduce the probability of information corruption while with a high data
traffic on the relay and the destination nodes.

The above-mentioned OR algorithms can adapt to the MWSNs well but they do
not have void-handling techniques to deal with the routing void problem. The Void-
Aware Pressure Routing (VAPR) algorithm aims to enhance the performance of
opportunistic directional forwarding [38]. The sequence number, hop count, and
depth information are used to build a directional trail to the closest sonobuoy, which
does not need additional recovery path maintenance. Due to whole network beacon
propagation being involved to share the control information, undoubtedly it
increases the network overhead.

The Hydraulic-pressure-based Anycast Routing (HydroCast) algorithm is pro-
posed to address the challenges of ocean current and limited resources in MWSNs
[39]. HydroCast selects a cluster of candidates with the maximum progress and
limited hidden terminals by exploiting the hydraulic pressure level of sensor nodes.
A dead-end recovery method is proposed to improve the performance of simple 3D
 ooding manner. However, as a sender-side-based OR algorithm, it updates the
neighbors’ information frequently for the selection of next-hop forwarder, which
greatly increases the energy consumption.

An Opportunistic Void Avoidance Routing (OVAR) is proposed to handle the
void problem and improve the energy efficiency in MWSNs [40]. In OVAR, the
adjacency graph is constructed at each hop, which does not require global topology
information to impose less overhead. The packet delivery probability and packet
advancement are utilized to select the relay nodes, which increases the throughput
and reliability in a sparse network. However, the nodes close to the sinks are
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frequently involved in packet forwarding, leading to the unbalanced energy con-
sumption of nodes [4].

The Q-learning technique is applied in QELAR so as to learn and adapt to the
dynamic underwater environment efficiently [26]. The residual energy of each node
is considered into the definition of reward function to prolong the lifetime of
network. However, it adopts a large number of “metadata” packets to exchange
the information, introducing plenty of overhead and collisions unavoidably. The
more sensor nodes in the network, the higher energy will be consumed. Thus, it is
unsuitable for dense networks with a great quantity of nodes.

A QDAR is proposed to extend the network lifetime and reduce end-to-end delay
[27]. It defines an action-utility function with residual energy-related cost and delay-
related cost for routing decisions. The defined “DATA_READY” and “INTEREST”
control packets are applied to construct the routing path between sources and sink
nodes. However, the designated paths may be easily broken before data packets are
sent due to the dynamic topology in MWSNs. Besides, the frequent construction of
routing paths results in lots of extra overheads and energy consumption.

In a reinforcement learning-based data forwarding algorithm in MWSNs with
passive mobility, the performance of both delay and energy consumption are
improved in a specific dynamic scene [28]. AOA and RSS positioning mechanism
are used in the phase of orientation determination but the precision is difficult to be
guaranteed in UWSNs. What is more, it sacrifices the packet delivery ratio greatly.
Thus, it is inappropriate for the delivery ratio sensitive scenarios.

In the underwater routing algorithm based on QKS, the transmission probabilities
in Q-value are modeled based on the position and velocity of nodes in order to
handle the nodes’ high mobility in underwater environment [29]. However, the
underwater positioning is a trouble due to the high attenuation of RF and the
velocities of nodes in QKS are estimated by Kalman filter, which is also inaccurate
underwater.

In conclusion, the aforementioned underwater routing based on reinforcement
learning technique enhances the network performance in many aspects, through
observing and learning the environment. However, the routing overhead is not
controlled well when sharing the related information of Q-values. Besides, it is
few and far between for the existing routing algorithms to concentrate on the
combination of depth-based OR routing and Q-learning technique in MWSNs,
which can make full use of their advantages, respectively. In this chapter, we
propose an EDORQ for MWSNs to further reduce the total energy consumption
and improve packet delivery ratio. Our algorithm is different from those above as
follows. First, the Q-learning technique is utilized in OR algorithm to learn the
environment and adapt to the dynamic underwater topology. Second, we take the
void detection factor, residual energy, and depth difference information of sensor
nodes into account in the construct of Q-value for the void detection and avoidance,
which is beneficial to balance the energy distribution, reduce energy consumption,
and improve the packet delivery ratio. Next, a simple void recovery mode is
designed to select next-hop candidate nodes, which further minimizes the unneces-
sary energy waste and improves the packet delivery ratio in a sparse network.
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Moreover, the timer-based candidate set coordination approach based on Q-value is
applied to reduce the collisions of the packets while imposing minimal overhead.
Finally, extensive experiments are conducted on the popular Network Simulator
Version 2 (NS2) [41] platform. The simulation results demonstrate that our proposal
can significantly improve the performance in terms of energy efficiency, packet
delivery ratio, and average network overhead.

5.3 System Model

5.3.1 Network Architecture

The MWSN architecture considered in this chapter is depicted in Fig. 5.2, which is
composed of underwater sensor nodes, sinks, underwater acoustic channels, and
water surface base station. A large number of wireless sensor nodes with acoustic
modems are randomly deployed underwater with different depths, operating to
collect oceanographic data. Multiple sinks are randomly placed on the water surface
and equipped with both radio-frequency and acoustic modems. On the one hand,
sinks adopt acoustic signals to receive data packets from underwater sensor nodes.
On the other hand, the radio modem is employed by sinks to communicate with the
surface base station.

The base station transmits the collected data to the onshore control center for
of ine information processing. Suppose that with the aid of an inexpensive depth
sensor, each sensor node knows its own depth [22], that is, the minimum distance
from itself to the water surface. What we discussed is the routing process that data
packets are transmitted from underwater sensors to sinks.

Sensor nodes

Onshore control 
center

Surface base station

RF

Sinks

Acoustic signal

Fig. 5.2 Marine wireless sensor network architecture
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5.3.2 Q-Learning Model

5.3.2.1 Markov Decision Process (MDP) Model

The MDP is the optimal decision process of stochastic dynamic system and also the
theoretical basis of reinforcement learning. The routing decision process of the entire
MWSN can be regarded as a reinforcement learning system. And the routing
problem can be formulated as a discrete MDP [23]. The mathematical framework
of MDP consists of a tuple of <S, A, P, R>, where S, A, P, R are the set of discrete
states, actions, state transition probabilities, and rewards, respectively. The related
definitions in our routing scenario are explained as follows.

Agents Each underwater sensor node is regarded as an independent agent. Sensor
nodes distributively learn from the underwater environment to transmit packets,
which are described by a finite set ofN ¼ {n1, n2, . . .. . .nj, . . .. . .nm}, where njis the
jth sensor node and m is the total number of sensors.

States S ¼ {s1, s2, . . .. . .sj, . . .. . .sm} is defined as the states set of the network,
where the state sj represents that the data packet reaches to the node nj. If a packet is
forwarded from node ni to node nj, then the state of node transfers from si to sj.

Actions A ¼ {a1, a2, . . .. . .aj} denotes the set of exploration actions, where the
action aj represents the node nj is selected as the next-hop forwarder successfully.

Reward R
a j
sis j represents an immediate reward (positive or negative) when an agent

takes action aj to make a state transfer from si to sj. The factors to be considered in the
construction of the reward function may include energy consumption, network
lifetime, average end-to-end delay, and so forth, which depends on the specific
task of the scenario.

Probability Transfer Function P
a j
sis j indicates the transition probability that node

ni takes the action aj from state si to state sj successfully, while the failure transition
probability is defined as P

a j
sisi ¼ 1� P

a j
sis j [26]. In our model, the transition probabil-

ity can be estimated at run time based on the success or failure history of probability
forwarding action.

5.3.2.2 The Basic Q-Learning Technique

Reinforcement learning adopts a “trial-and-error” scheme to interact with the envi-
ronment, committing to find the optimal behavioral policy to maximize the cumu-
lative rewards [42]. Figure 5.3 depicts the basic pattern of reinforcement learning
technique. The agent perceives the current state and the corresponding reinforcement
signals (reward or punishment values) from the environment and then to perform an
action. The quality of the action selection affects the next state and rewards. If an
action makes the environment generate positive rewards, the trend of agent to select
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this action will be strengthened. With the passage of time, the agent will learn an
optimal behavioral policy to get a higher reward.

Q-learning is a value-based reinforcement learning technique, which determines
an optimal policy to obtain a higher reward in a step-by-step iteration manner. It can
evaluate the performance of a given action at a particular state with the aid of the
Q-value (action-value), Q(si, aj), which denotes the expected discounted reward for
taking an action aj at the state si [24]. The Q-value function satisfies Eq. (5.2):

Q si, a j

� � ¼ ri a j

� �þ γ
X
s j2S

Pa j
sis j

max
a

Q s j, a
� �

: ð5:2Þ

where γ(0 � γ < 1) is the discount factor, which is used to determine the importance
of future rewards. When γ is small, the agent will pay more attention to the
immediate rewards. Conversely, the agent will pay more attention to the future
rewards. Typically, to balance the direct and future reward, the value of γis within
(0.5, 0.99) [26]. ri(aj) is the direct reward function, which is critical to Q-learning as
it determines the behavior and performance of action ajat the state si, which can be
defined as follows:

ri a j

� � ¼ X
s j2S

Pa j
sis j

Ra j
sis j

: ð5:3Þ

According to the Bellman’s principle of optimality [43] in dynamic program-
ming, once the maximum Q-value function is found, the optimal policy can be
obtained. The optimal action a�i at state si can be acquired as follows:

ai
� ¼ argmaxQ si, aið Þ

ai2A sið Þ
ð5:4Þ

Agent Environment

Actions

States

Reinforcement signals

Reward or punishment

Fig. 5.3 Schematic of reinforcement learning
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where A(si) is the set of actions that aimay be chosen at state si. A greedy Q-learning
algorithm always chooses the action with the highest Q-value, which contributes to
the packets being forwarded from source to sinks via the best path.

5.4 EDORQ Algorithm

5.4.1 Overview of EDORQ

The routing process of our proposed algorithm EDORQ includes two phases candi-
date set selection phase and candidate set coordination phase. The purpose of the first
phase is to select a subset of neighbor nodes as candidates to continue forwarding the
packet toward the destination. The general candidate set selection method can be
divided into two different categories: sender-side-based and receiver-side-based
[18]. In the sender-side-based method, the unique ID of candidate nodes is embed-
ded into the data packet by sender to determine the next forwarders. Therefore, lots
of control packets are exchanged between nodes to acquire the network topological
information. To avoid huge overhead of the network, our proposal employs receiver-
side-based candidate set selection method without extra control packets. As a simple
and scalable candidate set selection method, it requires that packet receivers decide
whether or not to be qualified candidates by themselves. Because of this, energy
conservation and channel utilization improvement can be achieved. In EDORQ, the
data packet is composed of two parts: packet header and payload data. Its format is
illustrated in Fig. 5.4, where the packet header consists of five fields, as follows.

Packet Sequence Number: The unique sequence number of the packet.
Sender ID: Node ID of the node sending the data packet.
Depth: The depth information of the current node.
Q-value: The Q-value of the current node.
Void- ag: A bit information of “0” or “1” identifying whether or not the current

forwarder of the packet is a void node. If the node is a void node, the void- ag is
filled with “1”; otherwise, the void- ag is filled with “0.”

Sender ID

Depth

Q-value

Void-flag: 0/1

Payload data

Header

Packet Sequence Number
Fig. 5.4 The format of data
packets
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In the second phase, the candidate nodes will collaborate with each other to
decide the forwarding orders with an attempt to suppress the redundant forwarding
according to their priorities. To achieve that, the common technique of a timer-based
mechanism [17] is applied in EDORQ. However, in order to further minimize the
energy consumption and raise the dynamic adaptability, the Q-learning technique is
adopted in our proposal to design the holding time mechanism, which is further
elaborated in Sect. 5.4.3. The different holding times are assigned to each neighbor
node in the candidate set based on Q-value. The potential candidate node with the
highest Q-value is first selected as the best forwarder.

5.4.2 Void Detection Based Candidate Set Selection

So as to show the process for candidate set selection clearly, we assume that an
intermediate node ni is the current forwarder aiming to determine the candidate set to
continue packet transmission to sinks. CS(ni) is considered as the candidate set of
node ni. The number of nodes in CS(ni) has a significant in uence on the routing
performance. If the number is too small, the packet delivery ratio will be low;
otherwise, the energy consumption will be increased. The depth and void- ag
information embedded in the data packet header are utilized as the metrics to select
the candidate set.

We divide the candidate set selection procedure into two modes of greedy mode
and void recovery mode. The greedy mode is first applied to select candidate
forwarders, while the void recovery mode is actuated whenever the routing void is
encountered. ni first broadcasts the data packet to its one hop neighbors. After
receiving the data packet, each neighbor node extracts the depth di and void- ag
information of ni from the packet header and then compares di with its own depth.
The greedy mode contributes to find a set of candidate nodes closer to the water
surface, which can ensure that the data packets are transmitted upwards to the sinks
quickly. To this end, the void- ag field in the header of packet is filled with “0,”
indicating that only the nodes with a smaller depth than the current forwarder can be
selected as an eligible candidate. The neighbors with a bigger depth than the current
forwarder are not desirable nodes as next forwarders, only discarding the data packet
simply. However, one major defect should be properly addressed in the greedy mode
is that the data packet may get stuck in a void node, that is, there is no qualified
candidate node in its lower depth region. As shown in Fig. 5.5, node n2 is the next
forwarder of n1. After receiving the packet from n1, node n2 first updates the void-
 ag in packet header with “0” and then sends out it with the greedy mode. If it does
not hear that the packet is successfully forwarded during a period of time, then the
void recovery mode will be triggered. Subsequently, node n2 will retransmit the data
packet in a void recovery mode, where the void- ag filed is filled with “1,” allowing
those neighbor nodes with greater depth to be selected as candidate nodes. To
suppress duplicate packets, similar to the DBR [22], ideally a node forwards the
packet with the same ID only once in a certain time interval. Accordingly, nodes n3,
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n4, and n2 form the new candidate set of node n2. Node n3 is the optimal next
forwarder of n2 and then it will continue the packet transmission in a greedy mode
toward to the sink D until the void node occurs.

The phase of void-detection based candidate set selection is conducted in Algo-
rithms 5.1 and 5.2 describes the switching mechanism of greedy mode and
recovery mode.

Algorithm 5.1: Candidate Set Selection
Input: the packet p broadcasted by ni
Output: CS(ni) //the candidate set of ni for packet forwarding

1: CS(ni)¼∅
2: for each neighbor node of ni denoted by nj do
3: if it has forwarded the packet p then
4: drop p
5: else
6: extract the depth di and ni.void- ag from p
7: obtain its own depth dj
8: compute Δd ¼ di � dj
9: if (!ni.void- ag and Δd > 0) or (ni.void- ag) then

10: CS(ni) ¼ CS(ni) [ {nj}
11: end if
12: end if
13: end for
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Fig. 5.5 The void recovery mode
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Algorithm 5.2: Forwarding Mode Switch
Input: the packet p received by node ni
Output: greedy mode or void recovery mode

1: node ni updates p with di
2: ni.void- ag¼0
3: BroadcastFlag¼True // indicate that whether or not node ni transmits p
4: RecoveryFlag¼True // indicate whether to activate void recovery mode or not
5: while (BroadcastFlag) do
6: ni broadcasts p and set a specific timer
7: while (timer is not expired) and (RecoveryFlag) do
8: overhear the channel
9: if ni overhears p being transmitted then

10: RecoveryFlag¼False
11: end if
12: end while
13: if (RecoveryFlag) and (!ni.void- ag) then //overhear no transmission of pwithin

its //timer and it is the first time to activate the void recovery mode
14: set ni.void- ag to 1
15: else
16: drop the packet p
17: BroadcastFlag¼False
18: end if
19: end while

5.4.3 Q-Learning Based Candidate Set Coordination

In this subsection, we elaborate on the data forwarding coordination process among
candidate nodes based on the Q-value, which is the expected discounted reward for
executing an action at a particular state. Some of the main symbols used in this
chapter are listed in Table 5.1.

Table 5.1 The main symbols
used in the equations

Name Description

ρj The void detection factor of node nj
Ej The energy-related factor of node nj
Dij The depth-related factor between nodes ni and nj
δij Binary-valued variable

α Adjustment coefficients of ρj
β Weight factor of rewards Ej and Dij

Tj The holding time of node nj
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Suppose that node nj is one of the candidate nodes of current forwarder ni. In
order to make packets detect and bypass the void node in advance as much as
possible, meanwhile, minimize energy consumption, we define the immediate
reward function R

a j
sis j for taking action aj at state si via an exponential function, as

follows:

Ra j
sis j

¼ 2þ αρ j

� �δij� βE jþ 1�βð ÞDij½ � ð5:5Þ

s:t:, δij ¼
1, if ni forwards a packet to n j successfully s j 6¼ si

� �
�1, otherwise s j ¼ si

� � ,

(
ð5:6Þ

where ρj� 0 is designated as a void detection factor, which represents the number of
forwarding packets from neighbors with lower depth overheard by node nj in a
period of time. The factor is approximately proportional to the number of potential
qualified forwarders of nj, which is utilized to detect the void nodes in advance. The
larger the ρj is, the less likely for node nj to be a void node. We plus two to αρj in
order to guarantee the base of exponential function Eq. (5.5) is always greater than
1. α(0 < α � 1) is the adjustment coefficients of ρj. Ej is the energy-related factor,
while Dij is the depth-related factor, which are defined as Eqs. (5.7) and (5.8),
respectively. The parameter β 2 (0, 1) is the weight factor to balance the impact
between Ej and Dij.

E j ¼
erj
eij
, ð5:7Þ

Dij ¼ di � d j

Rmax
, ð5:8Þ

where erj and eij are the residual energy and initial energy of node nj, respectively.
Clearly, the more energy node nj remains, the more rewards it obtains. di and dj are
the depth of nodes ni and nj, respectively. Rmax is the maximum communication
range between two sensor nodes. In conventional depth-based routing algorithms
[22], the nodes with smaller depth tend to be dead prematurely since they participate
in forwarding data packets frequently. Unlike them, our proposed reward function
considers both the depth difference and residual energy information of sensors at the
same time, which can avoid excessive energy consumption for the nodes with
smaller depth. From Eqs. (5.5)–(5.6) we can see that, if the node ni forwards a
packet to nj successfully, then the immediate reward function R

a j
sis j is a monotone

increasing function and its value is always more than 1. It indicates that any node
with higher residual energy, lower depth, or greater void detection factor has more
rewards to be selected as a forwarder node. Otherwise,R

a j
sisi , the immediate reward

function for the case that node ni fails to forward a packet to nj is a monotone
decreasing function in the range (0,1), which is considered as a penalty for packet
delivery failure that is always less than the R

a j
sis j . For those undesirable candidate
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nodes, less residual energy, depth difference, or void detection factor they have,
more penalties they will pay. Therefore, the direct reward function for node ni taking
an action aj is expressed as Eq. (5.9).

ri a j

� � ¼ Pa j
sis j

Ra j
sis j

� Pa j
sisi
Ra j
sisi
, ð5:9Þ

where the state transition probabilities P
a j
sisi and P

a j
sis j can be estimated by the

probabilities of successful and failed packet forwarding, respectively.
The Q-value of nj can be updated according to Eq. (5.10).

Q si, a j

� � ¼ ri a j

� �þ γ
X
s j2S

Pa j
sis j

max
a

Q s j, a
� �

: ð5:10Þ

Suppose that the Q-value of each node is 0 in the initial stage. If the next hop is
one of the sinks, ni transmits the packet with the largest reward in its cache to sink
directly.

If all the eligible candidate nodes of ni take part in forwarding the same packet,
then it will result in larger overhead and higher energy consumption. To reduce this
waste of energy, we assign a holding time for each candidate node with the principle
that nodes with larger Q-value have higher priority and lower holding time. Each
candidate node of the current forwarder obtains its Q-value through Eqs. (5.5)–
(5.10) and then sets a respective holding time according to the Q-value. The holding
time of node nj can be calculated as follows:

T j ¼ 1� 2
π
arctanQ si, a j

� �h i
Tmax, ð5:11Þ

where Q(si,aj)is the Q-value calculated by node nj, Tmax is a predefined maximum
holding time. In order to further reduce the number of redundant packets, the Tmax

should be long enough to be able to suppress the duplicate transmission of lower
priority nodes before relaying the packet. Thus, Tmax can be defined as Eq. (5.12):

Tmax ¼ 2Rmax

vs
, ð5:12Þ

where vs is the propagation speed of sound in the water.
The candidate forwarder with a larger Q-value has a shorter holding time, which

means that it is preferential to relay the data packet. If a candidate node with a lower
priority overhears the same packet transmission of any node with a higher priority
within its holding time, then it will discard this packet simply. A simple example is
shown in Fig. 5.6, nodes n2 and n3 are candidate forwarders of sender n1. It assumes
that the respective Q-value of nodes n2 and n3 are 5 and 1. Upon receiving a data
packet broadcasted by n1, nodes n2 and n3 start a timer, respectively. After calculat-
ing according to Eqs. (5.11)–(5.12), we know that the holding time of n2 is 0.016 s
while n3 is 0.06 s. Consequently, the optimal action a* at state s1 is a2 and node n2
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will first forwards the data packet when its timer expires. Node n3 will discard the
packet simply when it overhears the same packet transmitted from node n1 during its
holding time. This coordination approach has no additional control or ACK packets
and is easy to implement.

In our EDORQ algorithm, a sender node usually has several potential forwarding
candidate nodes and each of them has opportunity to forward packets. If the sender
overhears no transmission for the same packet from its candidate nodes after the
maximum holding time, then the packet retransmission occurs. The sender node will
select the new candidate set again in a void recovery mode to expand the range of
candidate set. Algorithm 5.3 details the phase of Q-learning based candidate set
coordination.

Algorithm 5.3: Candidate Set Coordination
Input: CS (ni) //candidate set of node ni
Output: broadcast or drop the packet

1: for each node in CS (ni) denoted by nj do
2: calculate its Q-value according to Equations (5.5)–(5.10)
3: Set its holding time according to Equations (5.11)–(5.12)
4: RelayFlag ¼ True // indicates that whether or not a node overhears a packet

within its // holding time
5: while (timer is not expired) and (RelayFlag) do
6: if overhear that packet p has been sent by any neighbor then
7: RelayFlag ¼ False
8: end if
9: end while

10: if (RelayFlag) then
11: broadcast the packet
12: else
13: drop the packet
14: end if
15: end for

n1

n2

n3

n4

Candidate nodes set

Discard

Q(s1,a3)=1
T3≈ 0.06s

Q(s1,a2)=5
T2≈ 0.016s

a*=a2

Fig. 5.6 Timer-based
candidate coordinate
mechanism with Q-learning
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5.4.4 Summary

In this subsection, we describe the data packet forwarding process from the perspec-
tive of an intermediate receiver sensor node. Upon receiving a data packet, the
receiver node determines its eligibility to take part in the packet forwarding or not
according to Algorithm 5.1. If it is not selected as a qualified candidate node, then
only discards the data packet simply. Otherwise, it will implement the candidate set
coordination phase by executing Algorithm 5.3. Firstly, it calculates the Q-value,
which is an expect discount reward, on the bases of the void detection factor, depth
difference, and residual energy information and subsequently starts a timer with a
holding time based on the Q-value to schedule packet forwarding. If the node does
not hear that the same packet is forwarded from a higher priority node before itself
holding time is expired, then it will relay the packet to continue the routing process in
a greedy mode. After that, if it does not overhear the packet be transmitted after a
period of time, the void recovery mode will be activated for the reselection of
candidate set, in which the forwarding mode switch manner can be referred to
Algorithm 5.2.

The main strategy of our proposal is to select a qualified candidate set from one
hop neighbor nodes and then to utilize the Q-learning technique for the determina-
tion of forwarder nodes with higher priority. In the candidate set selection phase, it
takes a time complexity ofO(h) at most to select the candidate nodes from neighbors,
where h is the size of CS(ni). The time complexity of the second phase is similar to
the algorithm proposed in Reference [28], which is O(h(h-1)). As a result, the
complexity of our algorithm can be represented as O(h2).

5.5 Simulation Results and Analysis

5.5.1 Simulation Setup

In this chapter, we evaluate the performance of the proposed EDORQ algorithm and
compare it with VBF [31], DBR [22], and QELAR [26]. All simulations are
implemented on the Network Simulator Version 2 (NS2) with an underwater sensor
network simulation package (called Aqua-Sim) extension [41]. In our simulations,
the source nodes are deployed at the bottom of the network randomly. Unless
otherwise specified, four sinks are randomly deployed at the water surface. Each
sink is equipped with both radio-frequency and acoustic modems. Once a packet
arrives at any sink node successfully, it assumes that the packet reaches the desti-
nation. The other sensor nodes are randomly deployed in a 500 m � 500 m � 500 m
3D underwater environment. They follow the random-walk mobility pattern
[22]. Each of them moves to a new horizontal direction randomly with a random
speed between 1 m/s and 3 m/s, respectively, whereas the vertical movement is
considered negligible [22]. Moreover, it adopts LinkQuest UWM1000 [44] as the
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acoustic modem with 10 k bps transmission bit rate and a maximum transmission
range of 100 m. These sensor nodes adopt the same propagation model, energy
consumption model, and initial energy. The discount factor  is set as 0.9 [26], while
the adjustment coefficients α is set as 0.5. To balance the depth with energy
consumption, we set β as 0.5. In order to investigate the effect of node density on
the performance of the four algorithms, we perform extensive simulations with
different sizes of sensor nodes from 200 to 800, respectively. All of the simulation
results are averaged over 20 runs for randomly generated topologies with the 95%
confidence interval. For each run, the simulation time is set to 800 s. The main
simulation parameters are listed in Table 5.2.

5.5.2 Simulation Metrics

The performances of the four algorithms are assessed by the following four metrics:
total energy consumption, packet delivery ratio, average packet delay, and average
network overhead.

Total Energy Consumption (TEC) is the total amount of energy consumed by all
underwater sensor nodes within the simulation duration, including the energy
consumption of nodes in sending, receiving, and idling mode.

Packet Delivery Ratio (PDR) is defined as the proportion of the number of
packets successfully received by the sinks to the total number of packets sent by
source nodes.

Average Packet Delay (APD) is the average time taken by a data packet trans-
mission from the source to any of the sinks.

Average Network Overhead (ANO) is defined as the ratio of the total number of
forwarding packets including data and control packets for all forwarder nodes to the
number of data packets successfully delivered to any sink.

Table 5.2 Main simulation
parameters

Parameters name Value

Simulation scene range 500 m � 500 m � 500 m

Rmax 100 m

Send power 2 w

Receive power 0.1 w

Idle power 0.01 w

Discount factor  0.9

α
β
Simulation time for each run

0.5
0.5
800 s
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5.5.3 Simulation Results

5.5.3.1 Performance Comparison

Figure 5.7 compares the performance of VBF, DBR, QELAR, and EDORQ in terms
of total energy consumption for various numbers of nodes. We can observe that the
total energy consumptions of the four algorithms increase with an increase of the
sensor nodes. The reason is that when the density of nodes increases, the number of
qualified forwarding nodes also increases, which causes more energy consumption
in sending, receiving, and even idling mode. It is notable that the EDORQ algorithm
outperforms other counterparts, followed by QELAR, DBR, and VBF in sequence
no matter what the number of sensor nodes. This is attributed to that the use of void
recovery mode and void detection factor reduces the chance to encounter a void
node, which effectively reduces the energy consumption caused by routing void
problem, while neither DBR nor VBF takes it into account. What is more, its holding
time based on Q-value of each candidate nodes prevents lots of redundant copies
retransmissions that result in less energy consumption than the other three algo-
rithms. In addition, in contrast to QELAR, the EDORQ algorithm does not require
too many extra control packets to exchange network information, further avoiding
excess energy consumption. QELAR consumes less energy since fewer nodes are
involved in the packet forwarding process compared to DBR. The higher energy

Fig. 5.7 Total energy consumption
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consumption result in VBF is mainly caused by a number of redundant transmis-
sions. DBR adopts the fixed depth threshold mechanism to suppress the number of
redundant packets, thus it is more efficient at energy saving than VBF.

Figure 5.8 depicts the performance of the four algorithms in terms of packet
delivery ratio with different number of nodes. It can be clearly seen that the packet
delivery ratio is enhanced as the density being increased. This is because with the
number of nodes increasing in the network, the more nodes have opportunity to be
selected as suitable forwarder nodes, which leads to a higher packet deliver ratio. It
can also be observed that when the number of nodes is greater than 400, DBR,
QELAR, and EDORQ can achieve a higher packet delivery ratio (more than 0.75)
but this metric of VBF is always at a relatively low level (less than 0.5). The reason is
that the packet delivery ratio of VBF is significantly in uenced by the radius of
routing “pipe” and the location precision underwater. The passive movement of
sensor nodes in the networks affects the number of nodes in pipe, thereby reducing
the packet delivery ratio of VBF. No matter what the number of sensor nodes, our
algorithm has obvious advantages than the other three algorithms and the lower the
node density is, the more obvious the advantage is. This is because the void detect
factor in Q-value and the void recovery mode in candidate selection phase are used
to improve the packet deliver ratio in EDORQ, which can achieve good performance
especially in the sparse network.

Figure 5.9 portrays the impact of node density to the average packet delay of the
four different algorithms. We can see that the average packet delay of the four
algorithms decreases with the increasing of the number of nodes, because the

Fig. 5.8 Total energy consumption

128 5 Opportunistic Routing with Q-Learning for Marine Wireless Sensor Networks



forwarding node can find more qualified nodes to relay packets in its neighborhoods.
Another observation from Fig. 5.9 is that the average packet delay of VBF is higher
than other three algorithms. This can be explained by the fact that, in VBF, the
packets are delivered only within the routing “pipe” formed from source to sink.
However, the nodes located in the “pipe” may not be closer to the surface sink,
resulting in higher average packet delay. The average packet delay of DBR is shorter
than VBF, it is mainly because that DBR utilizes the multiple-sinks architecture
while VBF has only one fixed sink on the water surface. The performance of our
proposal in terms of average packet delay is better than DBR but a little weaker than
QELAR. Because the Q-leaning based candidate coordination method in EDORQ
helps to find the global optimal next-hop forwarder to reduce the packet delay,
instead of a local optimal forwarder in DBR, it has a less average latency than DBR.
Our method utilizes a holding time based on Q-value to coordinate the forwarding of
candidate nodes, in which each packet needs to wait for a moment before it be
forwarded, thus causing a slightly higher average packet delay than QELAR.

The results for the average network overhead of the four algorithms at different
node densities are illustrated in Fig. 5.10. We can observe that the average network
overhead of DBR is smaller than VBF. The reason is that, in VBF, there are too
many sensor nodes that are contributed to the process of data forwarding without
effective redundant packets suppression technique. Compared to VBF, the utilizing
of depth threshold and timer in DBR greatly reduces the number of redundant copies
in the network, resulting in the reduction of average overhead. QELAR causes many
overheads in the initial stage of routing process when using the Q-learning

Fig. 5.9 Average packet delay
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technique. However, it can find a path of the length near the shortest one; therefore,
the overall overhead is smaller than DBR. Compared with QELAR, the proposed
EDORQ algorithm applies the timer-based candidate set coordination mechanism
based on Q-learning, which decreases the number of packet retransmissions. Mean-
while, it exchanges the related information of Q-value in only one hop neighbor
without too many extra control packets, thus it suppresses redundant packet trans-
missions and avoids causing too much extra overhead. Therefore, the proposed
scheme attains superior performance in average network overhead to other three
algorithms.

5.5.3.2 Impact of Sink Number

In order to examine how number of sinks impacts the performance of EDORQ, we
conduct extensive simulations at varied sink numbers of 1, 2, and 4 under the same
operational condition as before. The simulation results for total energy consumption,
packet delivery ratio, average packet delay, and average network overhead are
shown in Figs. 5.11, 5.12, 5.13, and 5.14, respectively.

From the figures, we can observe that EDORQ has a lower total energy con-
sumption, average packet delay, and average network overhead while a higher
packet delivery ratio with more the number of sinks. It is mainly because that the
fewer the number of sinks, the greater the probability for a node close to the water
surface to be a void node. Thus, with fewer sinks, the void recovery mode will be

Fig. 5.10 Average network overhead
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Fig. 5.11 Impact of different number of sinks on the total energy consumption

Fig. 5.12 Impact of different number of sinks on the packet delivery ratio
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Fig. 5.13 Impact of different number of sinks on the average packet delay

Fig. 5.14 Impact of different number of sinks on the average network
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triggered more frequently to recover the data packet suffering from void nodes,
which causes plenty of extra energy consumption, delay, and network overhead. On
the contrary, more sinks mean an increase in the chance for packets to be delivered to
a sink along a shorter path with fewer nodes, which is beneficial to reduce the energy
consumption, overhead, and latency. What is more, the increasing of the number of
sinks enhances the opportunity for each forwarding node to select more qualified
neighbor nodes for packet transmission to any of the sinks, which improves the
packet delivery ratio.

5.5.3.3 Impact of Node Mobility

In this subsection, we investigate the impact of node mobility on the performance of
EDORQ with different random speed intervals of [1, 3] m/s, [3, 5] m/s, and [5, 7]
m/s, respectively, and the other parameters are the same as Sect. 5.5.1. The first
number in the bracket is the minimal speed and the second is the maximum speed.
Each underwater node randomly selects a horizontal direction and moves with a
random speed between the minimal speed and maximal speed. Figures 5.15, 5.16,
5.17, and 5.18 show that how node mobility affects the network performance of
EDORQ in terms of total energy consumption, packet delivery ratio, average packet
delay, and average network overhead, respectively.

Fig. 5.15 Impact of different node mobility on the total energy consumption
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Fig. 5.16 Impact of different node mobility on the packet delivery ratio

Fig. 5.17 Impact of different node mobility on the average packet delay
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As can be observed from the figures, the total energy consumption, average
packet delay, and average network overhead will increase slightly while the packet
delivery ratio will reduce slightly with the increasing of node speed. It shows that the
movement of nodes within a certain speed range does not impact much on the
performance of EDORQ algorithm. The reason is that the OR features of our
proposal can deal with the dynamic underwater topology to some extent by making
the best of multiple potential forwarders. In addition, no exchange of topology or
route information is involved among neighbor nodes in EDORQ. Furthermore, the
Q-learning technique employed by EDORQ can learn from the network environment
and make it have an adaptation to the dynamic underwater topology.

5.6 Conclusions

In this chapter, we have proposed an EDORQ for MWSNs to provide energy-saving
and reliable data transmission, which improves the performance of network in terms
of energy consumption, average network overhead, and packet deliver ratio by
taking the advantages of both OR algorithm and Q-learning technique. It does not
need the three-dimensional location information of sensors or other positioning
methods like ToA or AOA. In EDORQ, we design the direct reward function with

Fig. 5.18 Impact of different node mobility on the average network overhead
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a joint consideration of a void detection factor, residual energy, and depth difference
of sensor nodes to extend the Q-value, which can contribute to detecting and
bypassing the void node in advance; meanwhile, minimizing the energy consump-
tion. Furthermore, we design a void recovery mode in the candidate set selection
phase to further recover the packet forwarding that is unfortunately trapped in the
void nodes. What is more, we propose a novel holing time mechanism based on
Q-value to further alleviate collisions and redundant forwarding. Simulation results
show that, compared with the DBR, VBF, and QELAR algorithms, our proposed
algorithm significantly improves the performance in terms of energy efficiency,
packet delivery ratio, and average network overhead without sacrificing too much
average packet delay. In the future, we will investigate the novel method to minimize
the average packet delay of our proposed EDORQ to make it more  exible to many
applications. Additionally, we intend to further extend the Q-value in our EDORQ
for different research purposes by considering the in uence of ocean currents,
channel capacity, and other performance indicators.
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Chapter 6
Conclusions and Future Directions

In this chapter, we summarize the main research results presented in this book and
highlight the potential future research directions.

6.1 Conclusions

As one of the Earth’s most valuable resources, maritime resources have attracted
increasing attention from both academia and industry in the past decades. To support
intensive maritime activities, Marine Wireless Communication Networks (MWCNs)
are introduced to provide reliable, low-latency, and low-cost communications ser-
vices. However, the current MWCNs can only meet the needs of limited services and
cannot cope with the ever-increasing growth of marine applications. Thus motivated,
in this book, we first brie y introduce the background of MWCNs and then present
some recent research in network deployment, channel coding, resource manage-
ment, and routing design to improve the network performance of MWCNs.

In the first research work, we have presented a multi-tier hierarchical network
architecture with support of edge computing that includes the underwater acoustic
sub-network, the sea-surface wireless sub-network, and the air wireless sub-network.
Based on the network architecture, we have formulated an MO problem to minimize
the total network deployment cost and to maximize the network lifetime. To solve
the MO problem, we have proposed an efficient algorithm, namely AC-ETO, and
analyzed its time complexity. The proposed algorithm can approach the optimal
solutions under different network scales within polynomial time.

In the second research work, we have proposed a novel OFDM autoencoder,
which employs CNN and LSTM layers to facilitate end-to-end learning. The pro-
posed learning-based autoencoder not only works for maritime communications, but
also is suitable for a communication system where a precise channel model is either
impractical or impossible. Meanwhile, we have also proposed a new channel
estimation algorithm for OFDM systems that marries the power of DL with the
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idea of super-resolution reconstruction. A specially designed Dense-Net architecture
is used to reconstruct a low-resolution pilot information image into a high-resolution
image.

In the third research work, an analytical model has been proposed to study the
performance of a random access based UMWCN network, taking into consideration
the stochastic nature of energy harvesting and the unique feature of the acoustic
communication channel. It has been found that spatial uncertainty causes a severe
fairness issue in a UMWCN. By jointly considering the network throughput and
fairness, an optimization problem has been formulated. Given the global network
information, the optimization problem can be solved using the BnB method. In a
dynamic network setting, where the global network information is not available, a
multi-agent reinforcement learning approach has been applied for each node to adapt
the access parameter based on the interactions with the dynamic network environ-
ment. The proposed learning algorithm can closely approach the theoretical upper
bound.

In the fourth research work, we have proposed an opportunistic routing algorithm
for UWSNs to improve the network performance in terms of energy consumption,
average network overhead, and packet delivery ratio by combining the advantages of
OR algorithm and Q-learning technique. Unlike some traditional positioning method
like ToA or AOA, the proposed algorithm does not require the knowledge of the
three-dimensional location information of sensors or other network information. In
EDORQ, we design the direct reward function with a joint consideration of a void
detection factor, residual energy, and different depths of sensor nodes to extend the
Q-value, which can contribute to detecting and bypassing the void node in advance.
Additionally, we design a void recovery mode in the candidate set selection phase to
further recover the packet forwarding that is unfortunately trapped in the void nodes.
Furthermore, we propose a novel holing time mechanism based on Q-value to
mitigate collisions and redundant forwarding.

6.2 Future Research Directions

We close this book with the potential research directions including: (1) large space-
time scale heterogeneous network fusion; (2) design of  exible elastic protocol
based on SDN/NFV; (3) complex mobility management; and (4) communication
security.

• Large Space-Time Scale Heterogeneous Network Fusion

The Space-Air-Ground-Sea Integrated Network (SAGSIN) covers a variety of
heterogeneous networks with different time and space spans, including space-based
satellite networks, space-based networks, ground-based wireless networks, the
Internet, etc. Its architecture is multi-layered, and each network has its own network
architecture, protocols, and service scenarios, which poses great challenges to the
deep integration of the network. In order to solve this problem, it is necessary to
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propose generic network architecture that adaptively integrates large-scale spatial-
temporal heterogeneous networks to solve the problems of function deployment of
heaven and earth multi-network system and distributed interconnection of large-
scale heterogeneous networks. Zhao et al. [1] proposed an Adaptive Aggregation
Network (AANet) architecture, which uses network endogenous intelligence to
realize the dynamic adaptive aggregation ability of different types of network
intelligence, and adaptively meet diversified scenarios and business requirements.
Conversely, based on the existing architectures such as TCP/IP and mobile Ad-hoc
network, it is necessary to design a network protocol system suitable for the
integration scenario of space-air-ground-sea, so as to solve the problems of large-
scale heterogeneous node identification, large-scale dynamic routing, multi-
dimensional resource allocation, multi-system protocol interconnection, and so on.

• Design of Flexible Elastic Protocol Based on SDN/NFV

Traditional networks are constrained by complex operation logic and physical
limited network resources and lack of support for network scalability and service
 exibility. For example, the existing network functions are generally realized by the
corresponding hardware and are highly coupled with the equipment. Therefore,
when the network needs to deploy new functions, the cycle and cost of network
update are too high. For SAGSIN, because it covers the future human production and
living space, it needs to support a variety of emerging new network architectures,
equipment, functions, and services, which puts forward higher requirements for the
scalability of the network. In recent years, a series of network generalization and
virtualization technologies represented by SDN/NFV provide new possibilities to
improve the scalability, reusability, and  exibility of the network. With the help of
SDN/NFV, the control surface and data surface of the network can be decoupled,
and various network resources and functions can be deployed and allocated more
 exibly through virtualization, so as to realize service-oriented and user demand-
oriented network control and optimization.

Papa et al. [2] proposed a deployment method of dynamic SDN controller in LEO
satellite constellation network to deal with the dynamic changes of network traffic
with users’ geographical location and time zone. On demand service is an important
issue in SAGSIN. Ahmed et al. [3] used SDN/NFV technology to transform
SAGSIN from a connection-based model to a service-based model, which has
high service customization and adaptability, so as to realize the on-demand alloca-
tion of resources. Due to the dynamic nature of resources and the uncertainty of
services in the air space integrated network, the traditional methods are not suitable
for decision-making tasks with high efficiency and response speed, such as service
function chain deployment and mapping. Reinforcement Learning (RL) method, as a
self-learning and adaptive decision-making method, has been studied in SDN/NFV
network [3–5]. At this stage, the research of RL method in SDN/NFV space earth
integrated network requires further investigation.

• Complex Mobility Management
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Space-based, air-based, ground-based, and sea-based networks have their own
mobile characteristics, resulting in the unique “multi-mobile” characteristics of
SAGSIN, which makes their mobile characteristics more complex, more dynamic,
and more difficult to describe and predict compared with ground-based networks,
which hinders the provision of efficient and coherent service guarantee. Therefore,
the mobility management of SAGSIN is an important challenge to be addressed.
Among them, designing an efficient switching mechanism is an effective way to
solve the service interruption caused by mobility. However, because the received
signal strength of satellite signals is usually low, traditional switching methods based
on signal strength or bit error rate threshold are no longer applicable. Therefore, it is
more suitable for complex SAGSIN environment to consider a variety of judgment
criteria and make a switch decision using machine learning algorithm. Foong [6]
presents a switching method which takes into account the link quality, QoS, error
rate, and signal strength switching indices and uses deep learning networks to blur
these indices for different network environments.

Another important task of mobility management in SAGSIN is to design dynamic
hybrid network routing protocols to optimize network end-to-end transmission
performance. Routing of large-scale space-time transmission services usually
requires a combination of a ground-based network, a space-based access network,
and a space-based backbone network. Among them, the basic network routing
technology is mature, and the space-based network routing protocol with the rise
of LEO network and intersatellite communication technology has gradually attracted
the attention of the academic community.

• Communication Security

Since SAGSIN integrates various military and civil application systems, we need
to ensure the transmissions of a large amount of sensitive data are secure, reliable,
and real-time. However, due to the open links, moving nodes, dynamic network
topologies, and diverse collaborative algorithms, it is difficult for SAGSIN to
efficiently resist jamming, message tampering, malicious attacking, and other secu-
rity issues.

In addition to the available traditional cryptographic methods, physical layer
security, which exploits the physical characteristics of propagation channels to
enhance secured wireless links, has been considered as a promising paradigm of
the satellite and UAV communication security. How to enhance secure transmission
in SAGSIN by utilizing physical layer security mechanisms is an open issue and of
great challenges. In this context, jamming and coding may play an important role in
adding interference signals to prevent malicious eavesdroppers from decoding the
transmitted messages and thus significantly improves quality and reliability of secure
communication links between legitimate terminals.
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