
Methods in
Molecular Biology 2932

Alexander Krasnitz

Pascal Belleau Editors

Cancer

Bioinformatics
Second Edition

M E T H O D S I N M O L E C U L A R B I O L O G Y

Series Editor

John M. Walker

School of Life and Medical Sciences,

University of Hertfordshire,

Hatfield, UK

For further volumes:

http://www.springer.com/series/7651

http://www.springer.com/series/7651
http://www.springer.com/series/7651

For over 35 years, biological scientists have come to rely on the research protocols and
methodologies in the critically acclaimed Methods in Molecular Biology series. The series was
the first to introduce the step-by-step protocols approach that has become the standard in all
biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-
step fashion, opening with an introductory overview, a list of the materials and reagents
needed to complete the experiment, and followed by a detailed procedure that is supported
with a helpful notes section offering tips and tricks of the trade as well as troubleshooting
advice. These hallmark features were introduced by series editor Dr. John Walker and
constitute the key ingredient in each and every volume of the Methods in Molecular Biology
series. Tested and trusted, comprehensive and reliable, all protocols from the series are
indexed in PubMed.

Cancer Bioinformatics

Second Edition

Edited by

Alexander Krasnitz and Pascal Belleau

Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA

Editors
Alexander Krasnitz
Cold Spring Harbor Laboratory
Cold Spring Harbor, NY, USA

Pascal Belleau
Cold Spring Harbor Laboratory
Cold Spring Harbor, NY, USA

ISSN 1064-3745 ISSN 1940-6029 (electronic)
Methods in Molecular Biology
ISBN 978-1-0716-4565-9 ISBN 978-1-0716-4566-6 (eBook)
https://doi.org/10.1007/978-1-0716-4566-6

©The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Science+Business Media, LLC, part
of Springer Nature 2025

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and
retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations
and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to
be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty,
expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been
made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Humana imprint is published by the registered company Springer Science+Business Media, LLC, part of Springer
Nature.
The registered company address is: 1 New York Plaza, New York, NY 10004, U.S.A.

If disposing of this product, please recycle the paper.

https://doi.org/10.1007/978-1-0716-4566-6

Preface

This second edition of the Cancer Bioinformatics volume in the Methods in Molecular
Biology (MiMB) protocol series reflects the new status of data management and analysis as
an integral part of basic and translational research in cancer. Cancer bioinformatics’ mission
is twofold: to bring cutting-edge computational tools to bear on problems in cancer research
and to provide computational support of novel molecular diagnostics and treatment mod-
alities in the clinic of cancer. In keeping with these goals, the present volume contains
chapters on cancer-related software repositories, databases, and cloud computing resources;
computing techniques applied to recently developed molecular protocols in cancer biology;
in-depth analysis of genomic alterations caused by cancer; methods to evaluate findings from
liquid biopsies; and prognostic tools for immunotherapies. Written in the MiMB protocol
style, these chapters provide step-by-step guidance to each respective computational method
or resource, facilitating their adoption by the readers.

Cold Spring Harbor, NY, USA Alexander Krasnitz
Pascal Belleau

v

Contents

Preface v
Contributors. ix

1 Bioconductor’s Computational Ecosystem for Genomic Data Science
in Cancer . . . 1
Marcel Ramos, Lori Shepherd, Nathan C. Sheffield, Alexandru Mahmoud,
Hervé Pagès, Andres Wokaty, Dario Righelli, Davide Risso, Sean Davis,
Sehyun Oh, Levi Waldron, Martin Morgan, and Vincent Carey

2 Building Portable and Reproducible Cancer Informatics Workflows
for Scalable Data Analysis: An RNA Sequencing Tutorial 47
Rowan F. Beck, Zelia F. Worman, Gaurav Kaushik,
and Brandi N. Davis-Dusenbery

3 Using the Cancer Epitope Database and Analysis Resource (CEDAR) 75
Zeynep Koşaloğlu-Yalçın, Randi Vita, Nina Blazeska, Bjoern Peters,
and Alessandro Sette

4 Quantifying the Prevalence of Non-B DNA Motifs as a Marker
of Non-B Burden in Cancer Using NBBC 93
Qi Xu and Jeanne Kowalski

5 Starfish: Deciphering Complex Genomic Rearrangement Signatures
Across Human Cancers . 105
Lisui Bao

6 Using FFPEsig to Remove Formalin-Induced Artifacts and Characterize
Mutational Signatures in Cancer . 125
Qingli Guo, Ann-Marie Baker, Ville Mustonen, and Trevor A. Graham

7 Inferring Phenotypes of Copy Number Clones in Cancer Populations
Using TreeAlign . 137
Hongyu Shi, Matthew Zatzman, Sohrab Shah, and Andrew McPherson

8 Inference of Genetic Ancestry from Cancer-Derived Molecular Data
with RAIDS . 153
Pascal Belleau, Astrid Deschênes, David A. Tuveson,
and Alexander Krasnitz

9 Pruning-Assisted Modeling of Network Graph Connectivity
from Spatial Transcriptomic Data . 177
Antara Biswas and Subhajyoti De

10 Inferring Metabolic Flux from Gene Expression Data Using METAFlux. 187
Yuchen Pan, Yuefan Huang, Vakul Mohanty, and Ken Chen

11 Functional Pathway Inference Analysis (FPIA). 203
Irbaz I. Badshah and Pedro R. Cutillas

12 NGP: A Tool to Detect Noncoding RNA-Gene Regulatory Pairs
from Expression Data . 231
Hongjie Ke and Tianzhou Ma

vii

viii Contents

13 MODIG: An Attention Mechanism-Based Approach to Cancer Driver
Gene Identification . . 247
Wenyi Zhao and Zhan Zhou

14 Predictive Modeling of Anticancer Drug Sensitivity
Using REFINED CNN . 259
Daniel Nolte, Omid Bazgir, and Ranadip Pal

15 Anticancer Monotherapy and Polytherapy Drug Response Prediction
Using Deep Learning: Guidelines and Best Practices . . 273
Amin Emad and David Earl Hostallero

16 Identification of Somatic Variants in Cancer Genomes from Tissue
and Liquid Biopsy Samples. . . 291
Kiran Krishnamachari, Hanaé Carrié, and Anders Jacobsen Skanderup

17 SUMMER: A Practical Tool for Identifying Factors and Biomarkers
Associated with Pan-cancer Survival . . . 303
Junyi Xin, Silu Chen, Huiqin Li, Meilin Wang, and Mulong Du

18 Predicting Tumor Antigens Using the LENS Workflow Through RAFT. 319
Steven P. Vensko, Dante Bortone, and Benjamin G. Vincent

Index 343

Contributors

IRBAZ I. BADSHAH • Centre for Genomics and Computational Biology, Barts Cancer
Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse
Square, London, UK

ANN-MARIE BAKER • Genomics and Evolutionary Dynamics Laboratory, Centre for
Evolution and Cancer, Institute of Cancer Research, London, UK

LISUI BAO • Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education)
and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao,
China

OMID BAZGIR • Modeling & Simulation/Clinical Pharmacology, Genentech, South San
Francisco, CA, USA

ROWAN F. BECK • Velsera, Charlestown, MA, USA
PASCAL BELLEAU • Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory,

Cold Spring, NY, USA; Cancer Center, Cold Spring Harbor Laboratory, Cold Spring, NY,
USA

ANTARA BISWAS • Rutgers Cancer Institute of New Jersey, Rutgers, the State University of
New Jersey, New Brunswick, NJ, USA

NINA BLAZESKA • Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla,
CA, USA

DANTE BORTONE • Lineberger Comprehensive Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, NC, USA

VINCENT CAREY • Channing Division of Network Medicine, Mass General Brigham,
Harvard Medical School, Buffalo, NY, USA

HANAÉ CARRIÉ • Genome Institute of Singapore (GIS), Agency for Science, Technology and
Research (A*STAR), Singapore, Republic of Singapore

KEN CHEN • Department of Bioinformatics and Computational Biology, The University of
Texas MD Anderson Cancer Center, Houston, TX, USA

SILU CHEN • Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer
Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer
Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of
Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education,
Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing,
China

PEDRO R. CUTILLAS • Centre for Genomics and Computational Biology, Barts Cancer
Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse
Square, London, UK

SEAN DAVIS • University of Colorado Anschutz School of Medicine, Aurora, CO, USA
BRANDI N. DAVIS-DUSENBERY • Independent Advisor, Charlestown, MA, USA
SUBHAJYOTI DE • Rutgers Cancer Institute of New Jersey, Rutgers, the State University of

New Jersey, New Brunswick, NJ, USA
ASTRID DESCHÊNES • Cancer Center, Cold Spring Harbor Laboratory, Cold Spring, NY,

USA
MULONG DU • Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer

Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer

ix

Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of
Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education,
Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing,
China; Department of Biostatistics, Center for Global Health, School of Public Health,
Nanjing Medical University, Nanjing, China

x Contributors

AMIN EMAD • Department of Electrical and Computer Engineering, McGill University,
Montreal, QC, Canada; Mila, Quebec AI Institute, Montreal, QC, Canada; The Rosalind
and Morris Goodman Cancer Institute, Montreal, QC, Canada

TREVOR A. GRAHAM • Genomics and Evolutionary Dynamics Laboratory, Centre for
Evolution and Cancer, Institute of Cancer Research, London, UK

QINGLI GUO • Genomics and Evolutionary Dynamics Laboratory, Centre for Evolution and
Cancer, Institute of Cancer Research, London, UK; Organismal and Evolutionary Biology
Research Programme, Department of Computer Science, University of Helsinki, Helsinki,
Finland

DAVID EARL HOSTALLERO • Department of Electrical and Computer Engineering, McGill
University, Montreal, QC, Canada; Mila, Quebec AI Institute, Montreal, QC, Canada

YUEFAN HUANG • Department of Bioinformatics and Computational Biology, The University
of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Biostatistics &
Data Science, School of Public Health, The University of Texas Health Science Center at
Houston (UTHealth), Houston, TX, USA

GAURAV KAUSHIK • ScienceIO, New York, NY, USA
HONGJIE KE • Department of Epidemiology and Biostatistics, School of Public Health,

University of Maryland, College Park, MD, USA
ZEYNEP KOŞALOĞ LU-YALÇ IN • Center for Vaccine Innovation, La Jolla Institute for

Immunology, La Jolla, CA, USA
JEANNE KOWALSKI • Department of Oncology, Dell Medical School, University of Texas at

Austin, Austin, TX, USA
ALEXANDER KRASNITZ • Simons Center for Quantitative Biology, Cold Spring Harbor

Laboratory, Cold Spring, NY, USA; Cancer Center, Cold Spring Harbor Laboratory,
Cold Spring, NY, USA

KIRAN KRISHNAMACHARI • Genome Institute of Singapore (GIS), Agency for Science,
Technology and Research (A*STAR), Singapore, Republic of Singapore

HUIQIN LI • Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer
Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer
Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of
Genetic Toxicology, The Key Laboratory of Modern Toxicology of the Ministry of Education,
Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing,
China

TIANZHOU MA • Department of Epidemiology and Biostatistics, School of Public Health,
University of Maryland, College Park, MD, USA

ALEXANDRU MAHMOUD • Channing Division of Network Medicine, Mass General Brigham,
Harvard Medical School, Boston, MA, USA

ANDREW MCPHERSON • Computational Oncology, Department of Epidemiology and
Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA

VAKUL MOHANTY • Department of Bioinformatics and Computational Biology,
The University of Texas MD Anderson Cancer Center, Houston, TX, USA

MARTIN MORGAN • Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA

Contributors xi

VILLE MUSTONEN • Organismal and Evolutionary Biology Research Programme,
Department of Computer Science, University of Helsinki, Helsinki, Finland

DANIEL NOLTE • Department of Electrical and Computer Engineering, Texas Tech
University, Lubbock, TX, USA

SEHYUN OH • City University of New York School of Public Health, New York, NY, USA
HERVÉ PAGÈS • Fred Hutchinson Cancer Center, Seattle, WA, USA
RANADIP PAL • Department of Electrical and Computer Engineering, Texas Tech University,

Lubbock, TX, USA
YUCHEN PAN • Department of Bioinformatics and Computational Biology, The University of

Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Biostatistics &
Data Science, School of Public Health, The University of Texas Health Science Center at
Houston (UTHealth), Houston, TX, USA

BJOERN PETERS • Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla,
CA, USA; Department of Medicine, University of California San Diego, La Jolla, CA,
USA

MARCEL RAMOS • City University of New York School of Public Health, New York, NY, USA
DARIO RIGHELLI • Department of Electrical Engineering and Information Technology,

University of Naples “Federico II”, Naples, Italy
DAVIDE RISSO • Department of Statistical Sciences, University of Padova, Padova, Italy
ALESSANDRO SETTE • Center for Vaccine Innovation, La Jolla Institute for Immunology,

La Jolla, CA, USA; Department of Medicine, University of California San Diego, La Jolla,
CA, USA

SOHRAB SHAH • Computational Oncology, Department of Epidemiology and Biostatistics,
Memorial Sloan Kettering Cancer Center, New York, NY, USA

NATHAN C. SHEFFIELD • University of Virginia, Charlottesville, VA, USA
LORI SHEPHERD • Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
HONGYU SHI • Computational Oncology, Department of Epidemiology and Biostatistics,

Memorial Sloan Kettering Cancer Center, New York, NY, USA
ANDERS JACOBSEN SKANDERUP • Genome Institute of Singapore (GIS), Agency for Science,

Technology and Research (A*STAR), Singapore, Republic of Singapore
DAVID A. TUVESON • Cancer Center, Cold Spring Harbor Laboratory, Cold Spring, NY,

USA
STEVEN P. VENSKO II • Lineberger Comprehensive Cancer Center, University of North

Carolina at Chapel Hill, Chapel Hill, NC, USA
BENJAMIN G. VINCENT • Lineberger Comprehensive Cancer Center, University of North

Carolina at Chapel Hill, Chapel Hill, NC, USA
RANDI VITA • Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla,

CA, USA
LEVI WALDRON • City University of New York School of Public Health, New York, NY, USA
MEILIN WANG • Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer

Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer
Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of
Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education,
Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing,
China

ANDRES WOKATY • City University of New York School of Public Health, New York, NY, USA
ZELIA F. WORMAN • Velsera, Charlestown, MA, USA

xii Contributors

JUNYI XIN • Department of Bioinformatics, School of Biomedical Engineering and
Informatics, Nanjing Medical University, Nanjing, Jiangsu, China; Department of
Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and
Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing
Medical University, Nanjing, China

QI XU • Department of Oncology, Dell Medical School, University of Texas at Austin, Austin,
TX, USA; Department of Molecular Biosciences, College of Natural Sciences, University of
Texas at Austin, Austin, TX, USA

MATTHEW ZATZMAN • Computational Oncology, Department of Epidemiology and
Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA

WENYI ZHAO • State Key Laboratory of Advanced Drug Delivery and Release Systems &
Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou, China

ZHAN ZHOU • State Key Laboratory of Advanced Drug Delivery and Release Systems &
Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical
Sciences, Zhejiang University, Hangzhou, China; The Fourth Affiliated Hospital, Zhejiang
University School of Medicine, Yiwu, China

Chapter 1

Bioconductor’s Computational Ecosystem for Genomic Data
Science in Cancer

Marcel Ramos , Lori Shepherd , Nathan C. Sheffield ,
Alexandru Mahmoud , Hervé Pagès , Andres Wokaty ,
Dario Righelli , Davide Risso , Sean Davis , Sehyun Oh ,
Levi Waldron , Martin Morgan , and Vincent Carey

Abstract

The Bioconductor project enters its third decade with over two thousand packages for genomic data
science, over 100,000 annotation and experiment resources, and a global system for convenient distribu-
tion to researchers. Over 60,000 PubMed Central citations and terabytes of content shipped per month
attest to the impact of the project on cancer genomic data science. This report provides an overview of
cancer genomics resources in Bioconductor. After an overview of Bioconductor project principles, we
address exploration of institutionally curated cancer genomics data such as TCGA. We then review genomic
annotation and ontology resources relevant to cancer and then briefly survey analytical workflows addres-
sing specific topics in cancer genomics. Concluding sections cover how new software and data resources are
brought into the ecosystem and how the project is tackling needs for training of the research workforce.
Bioconductor’s strategies for supporting methods developers and researchers in cancer genomics are
evolving along with experimental and computational technologies. All the tools described in this report
are backed by regularly maintained learning resources that can be used locally or in cloud computing
environments.

Key words Cancer genomics, open source software, data structures, transcriptomics, mutations,
ontology, epigenomics, spatial transcriptomics

1 Introduction

Computation is a central component of cancer genomics research.
Tumor sequencing is the basis of computational investigation of
mutational, epigenetic and immunologic processes associated with
cancer initiation and progression. Numerous computational work-
flows have been produced to profile tumor cell transcriptomes and
proteomes. New technologies promise to unite sequence-based
characterizations with digital histopathology, ultimately driving

Alexander Krasnitz and Pascal Belleau (eds.), Cancer Bioinformatics, Methods in Molecular Biology, vol. 2932,
https://doi.org/10.1007/978-1-0716-4566-6_1,
© The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature 2025

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-4566-6_1&domain=pdf
https://orcid.org/0000-0002-3242-0582
https://orcid.org/0000-0002-5910-4010
https://orcid.org/0000-0001-5643-4068
https://orcid.org/0000-0002-3779-492X
https://orcid.org/0009-0002-8272-4522
https://orcid.org/0009-0008-0900-8793
https://orcid.org/0000-0002-2687-9928
https://orcid.org/0000-0001-8508-5012
https://orcid.org/0000-0002-8991-6458
https://orcid.org/0000-0002-9490-3061
https://orcid.org/0000-0003-2725-0694
https://orcid.org/0000-0002-5874-8148
https://orcid.org/0000-0003-4046-0063
https://doi.org/10.1007/978-1-0716-4566-6_1#DOI

efforts in molecule design and evaluation to produce patient-
centered treatments.

2 Marcel Ramos et al.

Bioconductor is an open source software project with a 20 year
history of uniting biostatisticians, bioinformaticians, and genome
researchers in the creation of an ecosystem of data, annotation, and
analysis resources for research in genome-scale biology. This paper
will review current approaches of the project to advancing cancer
genomics. After a brief discussion of basic principles of the Biocon-
ductor project, we will present a “top down” survey of resources
useful for cancer bioinformatics. Primary sections address

• how to explore institutionally curated cancer genomics data

• genomic annotation resources relevant to cancer genomics

• analytical workflows

• components for introducing new data or analyses

• pedagogics and workforce development.

Two concluding sections offer discussion of possible paths
forward, and a detailed description of software components under-
lying an exemplary integrative analysis of response to immune
checkpoint blockade.

2 Bioconductor principles

2.1 R packages and

vignettes

Software tools and data resources in Bioconductor are organized
into “R packages”. These are collections of folders with data,
code (principally R functions), and documentation, following a
protocol specified in the Writing R Extensions manual [1]. R
packages have a DESCRIPTION file with metadata about package
contents and provenance. Package structure can be checked for
validity using the R CMD check facility. Documentation of code
and data can be programmatically checked for existence and valid-
ity. The DESCRIPTION file for a package specifies its version and
also gives precise definition of how an R package may depend upon
versions of other packages.

At its inception, Bioconductor introduced a new approach to
holistic package documentation called “vignette”. Vignettes pro-
vide narrative and explanation interleaved with executable code
describing package operations. While R function manual pages
describe the operation of individual functions, vignettes illustrate
the interoperation of package components and provide motivation
for both package design but also context for its use.

2.2 R package

repositories;

repository evolution

Bioconductor software forms a coherent ecosystem that can be
checked for consistency of versions of all packages available in a
given installation of R. Bioconductor packages may specify

2.4 Unifying assay

and sample data:

SummarizedExperi-

ment and

MultiAssayExperiment

dependency on other Bioconductor packages, or packages that are
available in the CRAN repository. Bioconductor does not include
packages with dependencies on “github-only” packages. Later in
this paper we will provide details on package quality assurance that
provide a rationale for this restriction.

Bioconductor’s Computational Ecosystem for Genomic Data Science in Cancer 3

Major updates to the R language occur annually, and updates
are preceded by careful assessment of effects of language change on
Bioconductor package operations. These effects can be identified
through changes in the output of R CMD check. The Bioconduc-
tor ecosystem is updated twice a year, once to coincide with update
to R, and once about six months later. The semiannual updates
reflect the need to track developments in the fast-moving field of
genomic data science.

2.3 Package quality

assessment;

installation

consistency

The BiocCheck function is used to provide more stringent assess-
ment of package compliance with basic principles of the Biocon-
ductor ecosystem.

The BiocManager package provides functionality for installing
and updating packages and for verifying the coherence and version
status of the currently installed package collection. This is impor-
tant in the context of a language and package ecosystem that
changes every six months, while analyses may take years to com-
plete. Tools for recreating past package collections are available to
assist in reproducing outputs of prior analyses.

Most of the data from genome-scale experiments to be discussed in
this chapter are organized in special data containers rooted in the
concepts of the SummarizedExperiment class. Briefly, assay data are
thought of as occupying a G ×N array, and sample level data occupy
an N ×K table. The array and the table are linked together in the
SummarizedExperiment; see Figure 1.

Multiple representations of assay results may be managed in
this structure, but all assay arrays must have dimensions G ×N .

For experiment collections in which the same samples are sub-
jected to multiple genome-scale assays, MultiAssayExperiment con-
tainers are used. See Figure 2 for the layout.

Further details on these data structures will be provided in
section 6.

2.5 Downloading and

caching cancer

genomics data and

annotations

Downloading and managing data from various online resources can
be excessively time consuming. Bioconductor encourages data
caching for increased efficiency and reproducibility. The caching
data methods employed in Bioconductor allow analysis code to
concisely refer to data resources as needed, with minimal attention
to how data are stored, retrieved or transformed. It allows for easy
management and reuse of data that are on remote servers or in
cloud, storing source location and providing information for data

4 Marcel Ramos et al.

Fig. 1 SummarizedExperiment schematic.

Fig. 2 MultiAssayExperiment schematic.

library(ExperimentHub)

eh = ExperimentHub()

query(eh, "CancerData")

ExperimentHub with 1742 records

snapshotDate(): 2024-04-29

$dataprovider: Eli and Edythe L. Broad Institute

of Harvard and MIT, GEO, ...

$species: Homo sapiens, Mus musculus, NA

$rdataclass: SummarizedExperiment, RaggedExperiment,

matrix, list, DFrame,...

additional mcols(): taxonomyid, genome, description,

coordinate_1_based, maintainer, rdatadateadded,

preparerclass, tags,

rdatapath, sourceurl, sourcetype

retrieve records with, e.g., ’object[["EH558"]]’

##

title

EH558 | ACC_CNASNP-20160128

EH559 | ACC_CNVSNP-20160128

EH560 | ACC_colData-20160128

EH561 | ACC_GISTIC_AllByGene-20160128

updates. The BiocFileCache Bioconductor package handles data
management from within R.

Bioconductor’s Computational Ecosystem for Genomic Data Science in Cancer 5

BiocFileCache is a general-use caching system but Bioconduc-
tor also provides “Hubs”, AnnotationHub and ExperimentHub, to
help distributed annotation or experimental data hosted externally.
Both AnnotationHub and ExperimentHub use BiocFileCache to
handle download and caching of data.

AnnotationHub provides a centralized repository of diverse
genomic annotations, facilitating easy access and integration into
analyses. Researchers can seamlessly retrieve information such as
genomic features, functional annotations, and variant data, stream-
lining the annotation process for their analyses.

ExperimentHub extends this concept to experimental data. It
serves as a centralized hub for storing and sharing curated
experiment-level datasets, allowing researchers to access a wide
range of experimental designs and conditions. This cloud-based
infrastructure enhances collaboration and promotes the reproduc-
ibility of analyses across different laboratories.

The curatedTCGAData package provides some resources
through ExperimentHub, as do many other self-identified “Can-
cerData” resources. Once the ExperimentHub is loaded, it can be
queried for terms of interest.

Here and throughout, shading is used to indicate code opera-
tions in Bioconductor 3.19 with R 4.4. Lines of output are pre-
ceded by ##.

EH562 | ACC_GISTIC_ThresholdedByGene-20160128

... ...

EH8533 | tcga_transcript_counts

EH8534 | target_rhabdoid_wgbs_hg19

EH8567 | xenium_hs_breast_addon

EH9482 | Capper_example_betas.rda

EH9483 | GIMiCC_Library.rda

query(eh, c("CancerData", "esophageal"))

ExperimentHub with 2 records

snapshotDate(): 2023-10-24

$dataprovider: University of California San Francisco

$species: Homo sapiens

$rdataclass: RangedSummarizedExperiment, data.frame

additional mcols(): taxonomyid, genome, description,

coordinate_1_based, maintainer, rdatadateadded,

preparerclass, tags,}

rdatapath, sourceurl, sourcetype }

retrieve records with, e.g., object[["EH8527"]]

title

EH8527 | cao_esophageal_wgbs_hg19

EH8530 | cao_esophageal_transcript_counts

6 Marcel Ramos et al.

Multiple terms can be used to narrow results before choosing a
download.

Similarly AnnotationHub files can be downloaded for annotat-
ing data. For example, the ensembl 110 release of gene and protein
annotations are obtained with the following:

library(AnnotationHub)

ah = AnnotationHub()

query(ah, c("ensembl", "110", "Homo sapiens"))

#snapshotDate(): 2024-04-29

#AnnotationHub with 1 record

snapshotDate(): 2024-04-29

names(): AH113665

$dataprovider: Ensembl

$species: Homo sapiens

$rdataclass: EnsDb

$rdatadateadded: 2023-04-25

$title: Ensembl 110 EnsDb for Homo sapiens

$description: Gene and protein annotations

for

Homo

sapiens based on Ensem...

$taxonomyid: 9606

$genome: GRCh38

$sourcetype: ensembl

$sourceurl: http://www.ensembl.org

$sourcesize: NA

$tags: c("110", "Annotation",

"AnnotationHubSoftware",

"Coverage", "DataImport", "EnsDb",

"Ensembl",

"Gene", "Protein",

"Sequencing", "Transcript")

retrieve record with ’object[["AH113665"]]’

Bioconductor’s Computational Ecosystem for Genomic Data Science in Cancer 7

3 Exploring institutionally curated cancer genomics data

3.1 The Cancer

Genome Atlas

An overview of Bioconductor’s resource for the Cancer Genome
Atlas (TCGA) is easy to obtain, with the curatedTCGAData
package.

library(curatedTCGAData)

tcgatab = curatedTCGAData(version="2.1.1")

Records obtained for adrenocortical carcinoma (code ACC) are
in Table 1.

Various conventions are in play in this table. The “title” field is
of primary concern. The title string can be decomposed into sub-
strings with interpretation [tumorcode]_[assay]-[date]_

[optional codes]. The column ah_id will be explained in
section 4, and entries in column rdataclass will be discussed in
section 6 below.

3.1.1 Tumor code

resolution

There are 33 different tumor types available in TCGA. The decod-
ing of tumor codes for the first ten in alphabetical order is provided
in Table 2.

3.1.2 Assay codes and

counts

Assays performed on tumors vary across tumor types. For assay
types shared between breast cancer, glioblastoma, and lung adeno-
carcinoma (code LUAD), the numbers of tumor and normal sam-
ples available in curatedTCGAData are provided in Table 3.

8 Marcel Ramos et al.

Table 1

Records returned by curatedTCGAData::curatedTCGAData(), filtered to those pertaining to

adrenocortical carcinoma.

ah_id title file_size rdataclass

1 EH4737 ACC_CNASNP-20160128 0.8 Mb RaggedExperiment

2 EH4738 ACC_CNVSNP-20160128 0.2 Mb RaggedExperiment

3 EH4740 ACC_GISTIC_AllByGene-20160128 0.2 Mb SummarizedExperiment

4 EH4741 ACC_GISTIC_Peaks-20160128 0 Mb RangedSummarizedExperiment

5 EH4742 ACC_GISTIC_ThresholdedByGene-
20160128

0.2 Mb SummarizedExperiment

6 EH4744 ACC_Methylation-20160128_assays 239.2
Mb

SummarizedExperiment

7 EH4745 ACC_Methylation-20160128_se 6 Mb RaggedExperiment

8 EH4747 ACC_Mutation-20160128 0.7 Mb SummarizedExperiment

9 EH4748 ACC_RNASeq2Gene-20160128 2.7 Mb SummarizedExperiment

10 EH4750 ACC_RPPAArray-20160128 0.1 Mb SummarizedExperiment

414 EH8118 ACC_miRNASeqGene-20160128 0.2 Mb SummarizedExperiment

415 EH8119 ACC_RNASeq2GeneNorm-20160128 5.4 Mb SummarizedExperiment

Table 2

Decoding TCGA tumor code abbreviations.

Code Tumor.Type

ACC Adrenocortical Carcinoma

BLCA Bladder Urothelial Carcinoma

BRCA Breast Invasive Carcinoma

CESC Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma

CHOL Cholangiocarcinoma

CNTL Controls

COAD Colon Adenocarcinoma

DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma

ESCA Esophageal Carcinoma

FPPP FFPE Pilot Phase II

GBM Glioblastoma Multiforme

HNSC Head and Neck Squamous Cell Carcinoma

KICH Kidney Chromophobe

KIRC Kidney Renal Clear Cell Carcinoma

(continued)

Table 2

Bioconductor’s Computational Ecosystem for Genomic Data Science in Cancer 9

(continued)

Code Tumor.Type

KIRP Kidney Renal Papillary Cell Carcinoma

LAML Acute Myeloid Leukemia

LCML Chronic Myelogenous Leukemia

LGG Brain Lower Grade Glioma

LIHC Liver Hepatocellular Carcinoma

LUAD Lung Adenocarcinoma

LUSC Lung Squamous Cell Carcinoma

MESO Mesothelioma

MISC Miscellaneous

OV Ovarian Serous Cystadenocarcinoma

PAAD Pancreatic Adenocarcinoma

PCPG Pheochromocytoma and Paraganglioma

PRAD Prostate Adenocarcinoma

READ Rectum Adenocarcinoma

SARC Sarcoma

SKCM Skin Cutaneous Melanoma

STAD Stomach Adenocarcinoma

TGCT Testicular Germ Cell Tumors

THCA Thyroid Carcinoma

THYM Thymoma

UCEC Uterine Corpus Endometrial Carcinoma

UCS Uterine Carcinosarcoma

UVM Uveal Melanoma

Table 3

Numbers of assays available in TCGA on tumor and normal samples, for breast cancer, glioblastoma,

and lung adenocarcinoma.

BRCA BRCAnormal GBM GBMnormal LUAD LUADnormal

CNASNP 1089 1120 577 527 516 579

CNVSNP 1080 1119 577 527 516 579

GISTIC_AllByGene 1080 0 577 0 516 0

(continued)

gbrna = TCGAprimaryTumors(curatedTCGAData("GBM",

"RNASeq2GeneNorm", dry.run=FALSE, version="2.1.1"))

gbrna

A MultiAssayExperiment object of 1 listed

##experiment with a user-defined name and respective class.

##Containing an ExperimentList class object of length 1:

[1] GBM_RNASeq2GeneNorm-20160128: SummarizedExperiment

with 18199 rows and 153 columns

##

Functionality:

experiments() - obtain the ExperimentList instance

colData() - the primary/phenotype DataFrame

sampleMap() - the sample coordination DataFrame

$, [, [[- extract colData columns, subset or

experiment

*Format() - convert into a long or wide DataFrame

assays() - convert ExperimentList to a SimpleList of

matrices

exportClass() - save data to flat files

Table 3

10 Marcel Ramos et al.

(continued)

BRCA BRCAnormal GBM GBMnormal LUAD LUADnormal

GISTIC_Peaks 1080 0 577 0 516 0

GISTIC_ThresholdedByGene 1080 0 577 0 516 0

Mutation 988 5 283 7 230 0

RNASeq2Gene 1093 119 153 13 515 61

RPPAArray 887 50 233 11 365 0

RNASeq2GeneNorm 1093 119 153 13 515 61

Methylation_methyl27 314 29 285 0 65 24

Methylation_methyl450 783 102 140 14 458 34

3.1.3 An example

dataset for RNA-seq from

glioblastoma multiforme

We obtain normalized RNA-seq data on primary tumor samples for
GBM with

R functions defined in Bioconductor packages can operate on
the variable gbrna to retrieve information of interest. Details on
the underlying data structure are given in section 6 below. For most
assay types, we think of the quantitative assay information as tabular

in nature, with table rows corresponding to genomic features such
as genes, and table columns corresponding to samples.

Bioconductor’s Computational Ecosystem for Genomic Data Science in Cancer 11

Information on GBM samples employs the colData function.

dim(colData(gbrna))

[1] 153 4380

For sample level information obtained with colData, we think
of rows as samples, and columns as sample attributes.

3.1.4 Clinical and

phenotypic data

TCGA datasets are generally provided as combinations of results for
tumor tissue and normal tissue. The determination of a record’s
sample type is encoded in the sample “barcode”. Decoding of
sample barcodes is described at

https://docs.gdc.cancer.gov/Encyclopedia/pages/

TCGA_Barcode/

with specific interpretation of sample types listed at

https://gdc.cancer.gov/resources-tcga-users/

tcga-code-tables/sample-type-codes

separately. The TCGAutils package provides utilities for
extracting data on primary tumor samples, excluding samples that
may have been taken on normal tissue or metastases.

Clinical and phenotypic data on all TCGA samples are volumi-
nous. For example, there are 2684 fields of sample level data for
BRCA samples, and 4380 fields for GBM samples. Many of these
fields are meaningfully populated for only a very small minority of
samples. To see this for GBM:

mean(sapply(colData(gbrna), function(x) mean(is.na (x))>.90))

[1] 0.8091324

In words, for 81% of clinical data fields in TCGA GBM data, at
least 90% of entries are missing.

Nevertheless, with careful inspection of fields and contents,
nearly complete clinical data can be extracted and combined with
molecular and genetic assay data with modest effort.

The following code chunk illustrates a very crude approach to
comparing survival profiles for BRCA, GBM, and LUAD donors.
The result is in Figure 3.

obtain mutation data for BRCA, GBM, LUAD; could use any or

all assay types

brmut = curatedTCGAData("BRCA", "Mutation", version = "2.1.1",

dry.run = FALSE)

gbmut = curatedTCGAData("GBM", "Mutation", version = "2.1.1",

dry.run = FALSE)

lumut = curatedTCGAData("LUAD", "Mutation", version = "2.1.1",

dry.run = FALSE)

extract survival times

library(survival)

getSurv = function(mae) {

days_on=with(colData(mae),ifelse(is.na(days_to_last_followup),

days_to_death,days_to_last_followup))

Surv(days_on,colData(mae)$vital_status)

}

ss=lapply(list(brmut,gbmut,lumut),getSurv)

codes=c("BRCA","GBM","LUAD")

type=factor(rep(codes,sapply(ss,length)))

allsurv=do.call(c,ss)

library(GGally)

ggsurv(survfit(allsurv~type))

12 Marcel Ramos et al.

0.00

0.25

0.50

0.75

1.00

0 2500 5000 7500
Time

S
u

rv
iv

a
l type

BRCA

LUAD

GBM

Fig. 3 Survival profile extraction from three MultiAssayExperiments produced with curatedTCGAData calls

At this point, survival times within tumor type can be stratified
by any features of the mutation profiles of individual samples. The
“RaggedExperiment” class is employed to test each BRCA sample
for presence of any mutation in the gene TTN. See Figure 4.

Bioconductor’s Computational Ecosystem for Genomic Data Science in Cancer 13

0.2

0.4

0.6

0.8

1.0

0 2500 5000 7500

Time

S
u

rv
iv

a
l hasTTNmut

FALSE

TRUE

Fig. 4 Survival distributions for donors of breast tumors in TCGA, stratified by presence or absence of mutation

in gene TTN.

bprim = TCGAprimaryTumors(brmut)

harmonizing input:

removing 5 sampleMap rows with ’colname’ not

in

colnames of experiments

mutsyms = assay(experiments(bprim)[[1]],

"Hugo_Symbol")

cn = rownames(colData(bprim)) # short

cna = colnames(mutsyms) # long

cnas = substr(cna, 1, 12)

hasTTNmut = apply(assay(experiments(

TCGAprimaryTumors(brmut))[[1]],

"Hugo_Symbol"), 2,

function(x) length(which(x=="TTN"))>0)

harmonizing input:

##removing5sampleMaprowswith’colname’notin

colnames of experiments

names(hasTTNmut) = cnas

bsurv = getSurv(TCGAprimaryTumors(brmut))

harmonizing input:

##removing5sampleMaprowswith’colname’notin

colnames of experiments

hasTTNmut = hasTTNmut[cn] # match mut records

to surv times

ggsurv(survfit(bsurv~hasTTNmut))

The cBioPortal user guide at

14 Marcel Ramos et al.

Similar manipulations permit exploration of relationships
between any molecular assay outcomes and any clinical data col-
lected in TCGA.

3.2 cBioPortal

https://www.cbioportal.org/

defines the goal of the portal to be reducing “the barriers
between complex genomic data and cancer researchers by
providing rapid, intuitive, and high-quality access to molecular
profiles and clinical attributes from large-scale cancer genomics
projects, and therefore to empower researchers to translate these
rich data sets into biologic insights and clinical applications.”

Bioconductor’s cBioPortalData package simplifies access to
over 300 genomic studies of diverse cancers in cBioPortal. The
main unit of data access is the publication. The cBioPortal

function mediates a connection between an R session and the
cBioPortal API. getStudies returns a tibble with metadata on
all studies.

library(cBioPortalData)

cbio = cBioPortal()

allst = getStudies(cbio)

dim(allst)

[1] 397 13

A pruned selection of records from the cBioPortal studies table
is given in Table 4.

To explore copy number alteration data from a study on angio-
sarcoma, we find the associated studyId field in allst and use the
cBioDataPack function to retrieve a MultiAssayExperiment:

ann = "angs_project_painter_2018"

ang = cBioDataPack(ann)

ang

A MultiAssayExperiment object of 3 listed

##experiments with user-defined names and respective classes.

####Containing an ExperimentList class object of length 3:

##[1] cna_hg19.seg: RaggedExperiment with 27835 rows

and 48 columns

##[2] cna: SummarizedExperiment with 23109 rows

and 48 columns

##[3] mutations: RaggedExperiment with 24058 rows

and 48 columns

Functionality:

experiments() - obtain the ExperimentList

instance

colData() - the primary/phenotype DataFrame

sampleMap() - the sample coordination DataFrame

$, [, [[- extract colData columns, subset

, or

experiment

*Format() - convert into a long or wide DataFrame

assays() - convert ExperimentList to a SimpleList of

matrices

exportClass() - save data to flat files

Bioconductor’s Computational Ecosystem for Genomic Data Science in Cancer 15

Table 4

Excerpts from four fields on selected records in the cBioPortal getStudies output.

name description studyId

Adenoid Cystic
Carcinoma of the
Breast

Whole exome sequencing of 12 breast AdCCs. acbc_mskcc_2015

Adenoid Cystic
Carcinoma

Whole-exome or whole-genome sequencing analysis of
60 ACC tumor/normal pairs

acyc_mskcc_2013

Adenoid Cystic
Carcinoma

Targeted Sequencing of 28 metastatic Adenoid Cystic
Carcinoma samples.

acyc_fmi_2014

Adenoid Cystic
Carcinoma

Whole-genome or whole-exome sequencing of 25 adenoid
cystic carcinoma tumor/normal pairs.

acyc_jhu_2016

Adenoid Cystic
Carcinoma

WGS of 21 salivary ACCs and targeted molecular analyses
of a validation set (81 patients).

acyc_mda_2015

Adenoid Cystic
Carcinoma

Whole-genome/exome sequencing of 10 ACC PDX
models.

acyc_mgh_2016

Adenoid Cystic
Carcinoma

Whole exome sequencing of 24 ACCs. acyc_sanger_2013

Adenoid Cystic
Carcinoma Project

Multi-Institute Cohort of 1045 Adenoid Cystic Carcinoma
patients.

acc_2019

Basal Cell Carcinoma Whole-exome sequencing of 126 basal cell carcinoma
tumor/normal pairs; targeted sequencing of
163 sporadic samples (40 tumor/normal pairs) and
4 Gorlin symdrome basal cell carcinomas.

bcc_unige_2016

The copy number alteration outcomes are in the assay com-
ponent of the experiment.

16 Marcel Ramos et al.

seg = experiments(ang)[[1]]

colnames(seg) = sapply(strsplit(colnames(seg),

"-"), "[", 5)

assay(seg)[1:4,1:4]

DAE1F DACME DADBW DAD34

1:12227-955755 71 NA NA NA

1:957844-1139868 62 NA NA NA

1:1140874-1471177 167 NA NA NA

1:1475170-1855370 113 NA NA NA

The rownames component of this matrix can be transformed to
a GenomicRanges instance for concise manipulation.

allalt = GRanges(rownames(assay(seg)))

allalt

GRanges object with 27835 ranges and 0 meta-

data columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] 1 12227-955755 *

[2] 1 957844-1139868 *

[3] 1 1140874-1471177 *

[4] 1 1475170-1855370 *

[5] 1 1857786-17257894 *

...

[27831] 20 68410-1559342 *

[27832] 20 1585705-1592359 *

[27833] 20 1616247-62904955 *

[27834] 21 9907492-48084286 *

[27835] 22 16157938-51237572 *

seqinfo: 22 sequences from an unspecified

genome; no

seqlengths

We’ll focus on chromosome 17, where TP53 is found. Regions
of genomic alteration are summarized to their midpoints. The
display in Figure 5 shows a strong peak in the vicinity of 7.5 Mb
on chromosome 17, near TP53.

g17 = allalt[seqnames(allalt)=="17"]

df17 = as(g17, "data.frame")

df17$mid = .5*(df17$start+df17$end) # midpoint only

ggplot(df17,aes(x=mid))+geom_density(bw=.2)+xlab("chr17bp")

Bioconductor’s Computational Ecosystem for Genomic Data Science in Cancer 17

0.00

0.01

0.02

0.03

0.04

0e+00 2e+07 4e+07 6e+07 8e+07

chr 17 bp

d
e

n
s
it
y

Fig. 5 Density of recurrent genomic alterations on chromosome 17 for 48 angiosarcoma patients

4 Genomic annotation resources relevant to cancer

4.1 Resources from

UCSC, NCBI, and EMBL

Sequences for reference genome builds for human and other model
organisms are supplied in BSgenome packages. BSgenome.Hsa-
piens.UCSC.hg19 provides all chromosomes and contigs for the
2009 build; the hg38 suffix may be used for the 2013 build. The
recent “telomere to telomere” build is available as BSgenome.Hsa-
piens.NCBI.T2T.CHMv13v2.0.

NCBI’s dbSNP catalog of genetic variants is provided in ver-
sioned packages. For example, SNPlocs.Hsapiens.dbSNP155.
GRCh38 includes position and nucleotide content information
for over 1 billion SNP identifiers (“rs numbers”).

Tracks defined for the UCSC genome browser are also pack-
aged. The package TxDb.Hsapiens.UCSC.knownGene.hg38 can
be used to get gene, transcript, and exon location information for
the hg38 build. The EnsDb packages provide similar information
for annotations curated at EMBL.

library(EnsDb.Hsapiens.v86)

EnsDb.Hsapiens.v86

EnsDb for Ensembl:

|Backend: SQLite

|Db type: EnsDb

|Type of Gene ID: Ensembl Gene ID

|Supporting package: ensembldb

|Db created by: ensembldb package from Bioconductor

|script_version: 0.3.0

|Creation time: Thu May 18 16:32:27 2017

|ensembl_version: 86

|ensembl_host: localhost

|Organism: homo_sapiens

|taxonomy_id: 9606

|genome_build: GRCh38

|DBSCHEMAVERSION: 2.0

| No. of genes: 63970.

| No. of transcripts: 216741.

|Protein data available.

18 Marcel Ramos et al.

The “genes” method provides addresses and additional
annotations.

names(mcols(genes(EnsDb.Hsapiens.v86)))

[1] "gene_id" "gene_name" "gene_biotype"

[4] "seq_coord_system" "symbol" "entrezid"

head(table(genes(EnsDb.Hsapiens.v86)$gene_biotype))

3prime_overlapping_ncRNA antisense

30 5703

bidirectional_promoter_lncRNA IG_C_gene

4 23

IG_C_pseudogene IG_D_gene

11 64

More recent versions of Ensembl gene annotation are available
from AnnotationHub, as illustrated above in section 2.5 with the
creation of ens110.

4.2 Gene sets Many methods have been developed to employ collections of genes
for inference on hypotheses about cancer initiation or progression.
The Molecular Signatures Database (MSigDB) is curated at Broad
Institute, and can be harvested using the msigdb package.

Collect all gene sets for humans:

library(msigdb)

hssigs = getMsigdb(org="hs", id="SYM",

version=getMsigdbVersions())

nms = grep("CANCER", names(hssigs), value=TRUE)

head(nms)

[1] "SOGA_COLORECTAL_CANCER_MYC_DN"

[2] "SOGA_COLORECTAL_CANCER_MYC_UP"

[3] "WATANABE_RECTAL_CANCER_RADIOTHERAPY_

RESPONSIVE_UP"

[4] "LIU_PROSTATE_CANCER_UP"

[5] "BERTUCCI_MEDULLARY_VS_DUCTAL_BREAST_

CANCER_UP"

[6] "WATANABE_COLON_CANCER_MSI_VS_MSS_UP"

wangmet = hssigs[["WANG_METASTASIS_OF_BREAST_CANCER_ESR1_UP"]]

wangmet

setName: WANG_METASTASIS_OF_BREAST_CANCER_ESR1_UP

geneIds: KPNA2, HDGFL3, ..., PSMC2 (total: 22)

geneIdType: Symbol

collectionType: Broad

##bcCategory: c2 (Curated)

##bcSubCategory: CGP

details: use ’details(object)’

details(wangmet)

setName: WANG_METASTASIS_OF_BREAST_CANCER_ESR1_UP

geneIds: KPNA2, HDGFL3, ..., PSMC2 (total: 22)

geneIdType: Symbol

collectionType: Broad

##bcCategory: c2 (Curated)

##bcSubCategory: CGP

setIdentifier: LVY1HGGWMJ7:35020:Fri May 26 13: 33:02

2023:1104005

description: Genes whose expression in primary ER(+)

[GeneID=2099] breast cancer tumors positively correla

(longDescription available)

organism: Homo sapiens

pubMedIds: 15721472

urls: https://data.broadinstitute.org/gsea-msigdb/msigdb/

release/2023.1.Hs/msigdb_v2023.1.Hs.xml.zip

contributor: Arthur Liberzon

Bioconductor’s Computational Ecosystem for Genomic Data Science in Cancer 19

Find those with CANCER in their name:

Information on provenance is bound together with the
gene list:

library(org.Hs.eg.db)

go139 = select(org.Hs.eg.db, keys="GO:0000139", keytype="GO",

columns=c("ENTREZID", "SYMBOL", "PFAM"))

dim(go139)

[1] 1212 6

head(go139)

GO EVIDENCE ONTOLOGY ENTREZID SYMBOL PFAM

1 GO:0000139 TAS CC 28 ABO PF03414

2 GO:0000139 IEA CC 102 ADAM10 PF00200

3 GO:0000139 IEA CC 102 ADAM10 PF13574

4 GO:0000139 IEA CC 102 ADAM10 PF01562

5 GO:0000139 TAS CC 162 AP1B1 PF09066

6 GO:0000139 TAS CC 162 AP1B1 PF01602

20 Marcel Ramos et al.

4.3 Ontologies Informal reasoning about cancer genomics employs conventional
but frequently ambiguous terminology. In modern information
science, ontologies are structured vocabularies (sets of “terms”,
which may be single words or natural language phrases) accompa-
nied by explicit statements of semantic relationships among terms.

Bioconductor provides several approaches for using ontologies
in cancer data science. The most familiar ontology in this domain is
Gene Ontology (GO), which organizes vocabulary about genes
and gene products in the areas of molecular function, cellular
components, and biological processes.

4.3.1 Ontology usage

with AnnotationDbi

A common use case is to find genes or proteins associated with
some biological process, component, or function. A phrase like
‘Golgi membrane’ can be found in Gene Ontology using the select
method with GO.db:

library(GO.db)

select(GO.db, keytype="TERM",

keys="Golgi membrane", columns=c("GOID",

"DEFINITION",

"ONTOLOGY"))

TERM GOID

1 Golgi membrane GO:0000139

DEFINITION

1 The lipid bilayer surrounding any of the

compartments of the Golgi apparatus.

ONTOLOGY

1 CC

Once the formal identifier is obtained, the org.Hs.eg.db pack-
age can be used to find mappings from the GO term to gene and
protein identifiers. This generates a fairly large table:

library(rols)

lk1 = OlsSearch(q="golgi membrane dynamics", exact TRUE)

lk1

Object of class ’OlsSearch’:

##query: golgi membrane dynamics

##requested: 20 (out of 3)

##response(s): 0

Bioconductor’s Computational Ecosystem for Genomic Data Science in Cancer 21

The evidence code TAS means that there is a “traceable author
statement” associating the term of interest with the gene identified.
The number of genes in traceable Golgi membrane:gene associa-
tions is found with

go139 |> dplyr::filter(EVIDENCE=="TAS") |>

distinct(ENTREZID) |> count()

n

[1] 327

4.3.2 Ontology usage

with rols

Access to a vast collection of ontologies is afforded by the EBI’s
Ontology Lookup Service (OLS). The rols package uses the OLS
API to discover ontologic mapping of terms of interest. Here we’ll
consider the term “golgi membrane dynamics”, which is not found
in GO. Again a multistep process is used.

In this first step, we find how extensive is the response to the
query. Certain searches yield tens of thousands of hits. With the
exact parameter setting, the yield is modest. Now we extract a data.
frame after requesting all records with olsSearch. Results are
excerpted in Table 5.

lk2 = olsSearch(lk1)

lk3 = as(lk2, "data.frame")

lk3$description = unlist(lk3$description)

The detailed descriptions of the NCI Thesaurus entries show
the exact nature of the search outcome.

4.3.3 Cross-ontology

relationships

Philosophically, ontology is the study of what there is. For applica-
tions in information science, boundaries need to be established so
that ontological resources can be managed with well-defined
scopes. In Gene Ontology, three sub-ontologies are explicitly iden-
tified for cellular components, biological processes, and molecular
functions.

22 Marcel Ramos et al.

Table 5

Using rols to obtain ontologic information related to golgi membrane dynamics.

short_form description label

NCIT_C119637 This gene is involved in both protein ubiquitination and Golgi
membrane dynamics.

HACE1 Gene

NCIT_C119639 E3 ubiquitin-protein ligase HACE1 (909 aa, ˜102 kDa) is
encoded by the human HACE1 gene. This protein is
involved in the regulation of both the ubiquitination and
subsequent degradation of small GTPases, which modulates
Golgi membrane dynamics.

E3 Ubiquitin-
Protein Ligase
HACE1

NCIT_C119638 Human HACE1 wild-type allele is located in the vicinity of
6q16.3 and is approximately 132 kb in length. This allele,
which encodes E3 ubiquitin-protein ligase HACE1 protein,
plays a role in the modulation of both Golgi membrane
dynamics and ubiquitination. Mutations of the gene,
including translocations that either reduce expression of the
gene (t(6;15)(q21;q21)) or truncate the gene (t(5;6)(q21;
q21)), are associated with Wilms tumor.

HACE1 wt Allele

Fig. 6 Ontology visualization and tabulation with ontoProc::ctmarks.

As knowledge of cell biology increases, the typology of cells
becomes more and more intricate. Differentiation and definition of
“cell types” involves concepts from immunology, protein science,
anatomy, and other conceptual domains for which ontologies have
been developed. Figure 6 presents, on the left, the hierarchy of cell
type concepts starting at “lymphocyte”, leading to “Type II Natu-
ral Killer T cell secreting interferon gamma”. On the right, some of
the GO and Protein Ontology (PR) cross-references in the Cell
Ontology (CL) entry for the Type II NK cell are shown. The
“cond” column of the table contains abbreviated tokens represent-
ing formal relationships linking the cell type to the protein or
cellular component elements of PR and GO. The token “hasPMP”
refers to the element of the Relation Ontology (RO) “has plasma
membrane part” (RO:0002104).

Bioconductor’s Computational Ecosystem for Genomic Data Science in Cancer 23

Prospects for use of ontological discipline in the definition of
new cell types are reviewed in a 2018 paper from the Venter
Institute [2].

The field of biological ontology is rapidly advancing, and the
integration of ontology search and inference with data analytic
frameworks requires more effort at this time.

5 Analytical workflows

5.1 Overview Table 6 presents an informal topical labeling for Bioconductor
software packages with cancer mentioned in the Description field
of package metadata.

The vignettes of each of these packages provide background
and illustration of their roles in cancer genomics.

Table 6

Topical organization of packages with cancer applications.

topic packages

Ancestry RAIDS

Biomarkers INDEED, iPath, RLassoCox

ceRNA GDCRNATools

Clonal Evolution CIMICE, LACE, OncoSimulR, TRONCO, CancerInSilico, cellscape

CNV oncoscanR, SCOPE, ZygosityPredictor

DrugSensitivity DepInfeR, octad, PharmacoGx, rcellminer

Epigenetics MethylMix, AMARETTO, COCOA, methylclock, missMethyl

HotSpots/Drivers/signatures compSPOT, MoonlightR, Moonlight2R,

DriverNet, genefu, mastR, pathifier, RESOLVE, macat,

SigCheck, signeR, signifinder, supersigs, decompTumor2Sig, YAPSA

ImmuneModulation easier

IsoformSwitching IsoformSwitchAnalyzeR

Literature mining OncoScore

ncRNA NoRCE

Radiomics RadioGx

RecurrentFusion copa, oppar

Spatial SpatialDecon

SpecificCancers consensusOV, PDATK, STROMA4

Splicing OutSplice, psichomics

Subtyping SCFA

24 Marcel Ramos et al.

5.2 Packages

supporting epigenomic

analysis

Bioconductor also provides a diverse array of packages for analysis
of epigenome data. Cancer is often studied under a developmental
lens, so increasingly, studies are measuring cell states using epige-
nomic methods. Epigenomics is the study of chemical modifica-
tions and chromosomal conformations of DNA in a nucleus; in
cancer epigenomics, we study how the cancer epigenome differs
among cancers and how these relate to healthy epigenomes. As of
2023, Bioconductor includes 89 packages under Epigenetics and
93 packages tagged under FunctionalGenomics, including dozens
of tools for analyzing a variety of epigenome assays, such as ATAC-
seq, ChIP-seq, or bisulfite-seq. Among these are also tools that
handle more general analysis, such as genomic region set
enrichment.

First, for ATAC-seq data, Bioconductor packages include
general-purpose pipelines, including scPipe [3]. and esATAC [4]
which start from FASTQ files and produce feature count matrices.
Alternatively, many practitioners elect to do general-purpose pipe-
line processing outside of R, and then bring the processed data into
R for statistical analysis, visualization, and quality control. In this
approach, ATACseqQC provides a variety of QC plots specific to
ATAC-seq data [5].

For DNA methylation, many popular packages have been
developed to help with all stages of a DNA methylation analysis.
These include minfi [6] which specializes in methylation array
analysis, biseq and bsseq [7] which provide fundamental infrastruc-
ture for sequencing-based assays, and RnBeads [8], which provides
a comprehensive general-purpose analysis of DNA methylation
cohorts from arrays or sequencing-based assays. Other packages
provide more specialized analysis approaches, such as MIRA [9],
which infers regulatory activity of transcription factors using DNA
methylation signals, or ELMER, which uses DNA methylation and
gene expression in large cancer cohorts to infer transcription factor
networks [10]. EpiDISH infers the proportions of cell-types pres-
ent in a bulk sample on the basis of DNA methylation data [11].

DiffBind [12] facilitates differential binding analysis of ChIP-
seq peak data.

GenomicDistributions [13] provides a variety of plots for visu-
alization distributions of any type of genomic range data. The
chromPlot package specializes in plots across chromosomes. Sev-
eral packages deal with unsupervised exploration of variation in
epigenomic data. PathwayPCA, MOFA2 [14] and COCOA [15]
can process any epigenomic signal data. A variety of alternative
approaches for enrichment analysis, which include LOLA [16],
chipenrich, regioneR [17], and FGNet [18]. Annotation packages
include ChIPpeakAnno [19] and annotatr [20].

Bioconductor’s Computational Ecosystem for Genomic Data Science in Cancer 25

5.3 Some details on

prediction of

responsiveness to

immune checkpoint

blockade

The National Cancer Institute website on checkpoint inhibitors in
cancer immunotherapy (“Immune Checkpoint Inhibitors” [21])
lists 12 different cancer types amenable to treatment via immune
checkpoint inhibition. The “easier” package in Bioconductor
assembles multiple systems biology resources to produce patient-
specific prediction of responsiveness to immune checkpoint block-
ade (ICB) [22].

Figure 7 presents on overview of results of immune response
assessment in a cohort of patients with bladder cancer
[23]. Patient’s bulk RNA-seq data are used to develop multiple
quantitative descriptors of the tumor microenvironment, and
scores for processes regarded as hallmarks of anti-cancer immune
responses.

This display encapsulates a) the capacity of measurements of
genomic elements to discriminate patients who respond to ICB for
bladder cancer (position of labeled item on x axis), b) the direction
of association of element activity with immune response (shape of
glyph) and c) the relative magnitudes of weights (size of glyph)
estimated for features in initial model fitting.

The design of this package is noteworthy in its approach to
information hiding. Parameters estimated in machine learning of

Fig. 7 Comparison of genomic features distinguishing patients non-responsive and responsive to immune

checkpoint blockade.

mw = eh[["EH6678"]]

see ?easierData and browseVignettes(’easierData’) for

documentation

loading from cache

names(mw) # TCGA tumor types

[1]"LUAD""LUSC""BLCA""BRCA""CESC""CRC""GBM""HNSC""KIRC"

[10] "KIRP" "LIHC" "OV" "PAAD" "PRAD" "SKCM" "STAD"

"THCA" "UCEC"

[19] "NSCLC"

names(mw[["LUAD"]]) # TME descriptors

[1] "pathways" "immunecells" "tfs" "lrpairs" "ccpairs"

rownames(mw[["LUAD"]]$pathways$CYT) # predict cytolytic

activity

[1] "(Intercept)" "Androgen" "EGFR" "Estrogen" "Hypoxia"

[6] "JAK-STAT" "MAPK""NFkB""p53" "PI3K"

[11] "TNFa" "Trail" "VEGF" "WNT"

tissue-specific relations between quantitative descriptors of the
tumor microenvironment and hallmarks of immune response are
stored in ExperimentHub.

26 Marcel Ramos et al.

library(easierData)

list_easierData()

eh_id title

EH6677 Mariathasan2018_PDL1_treatment

EH6678 opt_models

EH6679 opt_xtrain_stats

EH6680 TCGA_mean_pancancer

EH6681 TCGA_sd_pancancer

EH6682 cor_scores_genes

EH6683 intercell networks

EH6684 lr_frequency_TCGA

EH6685 group_lr_pairs

EH6686 HGNC_annotation

EH6687 scores_signature_genes

The structure of the stored model weights resource can be
sketched by probing list elements.

The vignette of the easier package steps through phases,
using these tumor-type-specific weights to compute patient-specific
measures of transcription factor activity or cell-cell interaction
on the basis of bulk RNA-seq (units are transcripts per million),
and a patient-specific measure of pathway activity using raw
RNA-seq counts. These metrics may be of interest in their own

library(TENxVisiumData)

snapshotDate(): 2023-10-24

library(SpatialExperiment)

library(ggspavis)

hbc <- HumanBreastCancerIDC()

see ?TENxVisiumData and browseVignettes (’TENxVisiumData’)

for documentation

right for applications other than establishing predictions of
response to ICB.

Bioconductor’s Computational Ecosystem for Genomic Data Science in Cancer 27

Section 9 provides the names and versions of all packages used
to produce this analysis.

5.4 Representing

and visualizing spatial

transcriptomics

experiments

Spatial transcriptomics (ST) allows the quantification of RNA
expression of large numbers of genes while preserving the spatial
context of tissues and cells. This is important as cancer progression
depends on a complex tumor microenvironment, and not just cell
type composition, but also cell type spatial organization can be used
to derive diagnostic or prognostic markers.

The Bioconductor project offers multiple approaches to handle
and manipulate spatial transcriptomics data. The SpatialExperiment
class [24] is designed to be a lightweight, technology-agnostic
container. By inheriting from the SingleCellExperiment class,
it unlocks the use in ST data of analysis packages designed
for single-cell data, such as scater for exploration and QC, and
scran for normalization. SpatialFeatureExperiment [25] extends
SpatialExperiment to easily reuse polygons and other spatial geom-
etry features from geospatial CRAN packages, such as sf. See also
MoleculeExperiment [26] for a different approach based on the
data.table package.

In addition to data containers, Bioconductor provides a rich set
of ST data. The STexampleData and SFEData packages contain a
collection of datasets from different technologies and tissues. As of
December 2023, the TENxVisiumData package provides a collec-
tion of 13 in-house 10X Genomics Visium datasets from 23 samples
across two organisms (human and mouse) and 13 tissues. The
MerfishData package contains two annotated samples assayed
with the MERFISH in-situ imaging protocol.

Finally, Bioconductor offers a growing collection of analysis
methods tailored for spot-based and in-situ ST data, including
methods for visualization, data exploration and quality control,
spot deconvolution, spatially-aware clustering, and identification
of spatially-variable genes.

To show a simple example of an analysis workflow on spot-
based data, we explore a fresh frozen Invasive Ductal Carcinoma
breast tissue assayed with the 10X Genomics Visium platform.
First, we use the ggspavis package for visualization. See Figure 8.

loading from cache

hbc <- hbc[,hbc$sample_id=="HumanBreastCancerIDC1"]

hbc$in_tissue <- TRUE

hbc <- rotateImg(hbc, degrees=-90)

plotVisium(hbc, y_reverse = FALSE)

28 Marcel Ramos et al.

HumanBreastCancerIDC1

Fig. 8 Visualization of a Visium breast cancer sample

To investigate the spatially variable genes the nnSVG package
implements a method for the detection of genes whose expression
varies in the tissue spatial domains by fitting nearest-neighbor
Gaussian processes [27].

library(scater)

library(nnSVG)

library(scran)

#add quality metrics

is_mito <- grepl("(ˆMT-)|(ˆmt-)", rowData(hbc)$symbol)

hbc <- addPerCellQC(hbc, subsets = list(mito = is_mito))

needed because the column name is hard coded in

the nnSVG::filter_genes

rowData(hbc)$gene_name <- rowData(hbc)$symbol

filter and normalize gene expression

hbc <- filter_genes(hbc)

Gene filtering: removing mitochondrial genes

removed 13 mitochondrial genes

Gene filtering: retaining genes with at least 3 counts

in at least 0.5% (n = 19) of spatial locations

removed 26583 out of 36588 genes due to low expression

hbc <- computeLibraryFactors(hbc)

hbc <- logNormCounts(hbc)

select highly variable genes

hvgs <- getTopHVGs(hbc, n=1000)

hbc <- hbc[hvgs,]

identify spatially variable genes

hbc <- nnSVG(hbc, n_threads=4)

post-processing

hbc <- hbc[order(rowData(hbc)$rank),]

gnr1 <- rowData(hbc)$symbol[1]

rownames(hbc) <- rowData(hbc)$symbol

plotVisium(hbc, y_reverse = FALSE, fill = gnr1, palette="red")

library(SpatialFeatureExperiment)

library(SFEData)

jbr = JanesickBreastData("rep1")

jbr

class: SpatialFeatureExperiment

dim: 541 167782

metadata(1): Samples

Bioconductor’s Computational Ecosystem for Genomic Data Science in Cancer 29

By ranking the results of nnSVG, we are able to detect the most
spatially variable genes. As an example, Figure 9 shows how the
most spatially variable gene varies across the tissue.

Finally, we show an example of an in-situ ST technology, by
visualizing a breast cancer sample assayed with the 10X Genomics
Xenium platform.

assays(1): counts

rownames(541): ABCC11 ACTA2 ... BLANK_0497 BLANK_0499

rowData names(6): ID Symbol ... vars cv2

colnames: NULL

colData names(10): Sample Barcode ... nCounts nGenes

reducedDimNames(0):

mainExpName: NULL

altExpNames(0):

spatialCoords names(2) : x_centroid y_centroid

imgData names(1): sample_id

##

unit:

Geometries:

colGeometries: centroids (POINT), cellSeg (POLYGON),

30 Marcel Ramos et al.

HumanBreastCancerIDC1

0.0
2.5
5.0
7.5
10.0

MGP

Fig. 9 Spatial expression of a highly variable gene

nucSeg (GEOMETRY)

##

Graphs:

sample01:

library(Voyager)

cellbins <- plotCellBin2D(jbr, hex = TRUE)

cellgeo <- plotGeometry(jbr, "cellSeg",

bbox=c("xmin"=0, "ymin"=4000, "xmax"=1000, "ymax"=5000))

library(gridExtra)

grid.arrange(cellbins, cellgeo, ncol=2)

Bioconductor’s Computational Ecosystem for Genomic Data Science in Cancer 31

We can leverage the nature of in-situ data to explore the cell
density across the tissue, identifying the tissue’s macrostructure,
and the cell segmentation, zooming in on a small portion of the
tissue. See Figure 10.

Finally, we can visualize the expression of marker genes after
log-normalizing the data (Fig. 11).

jbr <- jbr[, jbr$nCounts >= 20]

jbr <- logNormCounts(jbr)

library(scattermore)

strom <- plotSpatialFeature(jbr, "POSTN",

colGeometryName = "centroids",

scattermore = TRUE, ncol = 2, pointsize = 0.5) +

0

1000

2000

3000

4000

5000

0 2000 4000 6000

count

10

20

30

Fig. 10 Cell density and cell boundaries of a Xenium breast cancer sample

Proposed contributions to Bioconductor’s ecosystem of software
packages, data resources, and documentation are registered at

ggtitle("POSTN, stromal")

fasn <- plotSpatialFeature(jbr, "FASN",

colGeometryName = "centroids",

scattermore = TRUE, ncol = 2, pointsize = 0.5) +

ggtitle("FASN, invasive")

grid.arrange(strom, fasn, ncol=2)

32 Marcel Ramos et al.

0

2

4

6

POSTN

POSTN, stromal

0

1

2

3

4

5

FASN

FASN, invasive

Fig. 11 Spatial expression of marker genes

6 Components and processes for introducing new data, analytic tools, documents

6.1 Contributions

and review

https://github.com/bioconductor/contributions/

issues

Contributors identify a public github.com repository that
houses their software, or some durable open data repository for a
data contribution. The contributor provides schematized informa-
tion on format, licensing, and commitment to maintenance of the
contributed resource. After a series of automated and manual veri-
fication steps, the contributed resource enters the review process.

An example under review in December 2023 is the “methodi-
cal” package, submitted 27 September 2023. The issue number at
the contributions site is 3169. This contribution is of particular
interest as it addresses new data resources from whole genome and
reduced representation bisulfite sequencing experiments. Specifics
on these high-resolution studies of DNA methylation in a variety of
clinical situtions are given below.

6.2 Data structures Inheritance is a key feature of object-oriented programming (OOP)
that allows us to define a new class out of existing classes and add
new features, which provides reusability of code. Inheritance carries

over attributes and methods defined for base classes; ‘Attributes’
are variables that are bound in a class. They are used to define
behavior and methods for objects of that class. ‘Methods’ are
functions defined within a class that receive an instance of the
class, conventionally called self, as the first argument. The attributes
defined for a base class will automatically be present in the derived
class, and the methods for the base class will work for the derived
class. The R programming language has three different class sys-
tems: S3, S4, and Reference. Inheritance in S3 classes does not have
any fixed definition, and hence attributes of S3 objects can be
arbitrary. Derived classes, however, inherit the methods defined
for the base class. Inheritance in S4 classes is more structured, and
derived classes inherit both attributes and methods of the parent
class. Reference classes are similar to S4 classes, but they are muta-
ble and have reference semantics.

Bioconductor’s Computational Ecosystem for Genomic Data Science in Cancer 33

S4 classes are used extensively in Bioconductor to create data
structures that store complex information, such as biological assay
data and metadata, in one or more slots. The entire structure can
then be assigned to an R object, and the types of information in
each slot of the object are tightly controlled. S4 generics and
methods define functions that can be applied to these objects,
providing a rich software development infrastructure while ensur-
ing interoperability, reusability, and efficiency.

Bioconductor have established Bioconductor classes to repre-
sent different types of biological data. Data and tools distributed
through Bioconductor adopt Bioconductor classes, providing con-
venient methods and improving usability and interoperability
within the Bioconductor ecosystem.

Table 7

Overview of key datatypes and associated classes in Bioconductor.

Data Types Bioconductor Classes

Genomic coordinates (1-based, closed interval) GRanges

Groups of genomic coordinates GRangesList

Ragged genomic coordinates RaggedExperiment

Gene sets GeneSet

Rectangular Features x samples SummarizedExperiment

Multi-omics data MultiAssayExperiment

Single-cell data SingleCellExperiment

Spatial Transcriptomics SpatialExperiment

Mass spectrometry data Spectra

34 Marcel Ramos et al.

The GRanges class represents a collection of genomic ranges
and associated annotations. Each element in the vector represents a
set genomic ranges in terms of the sequence name (seqnames,
typically the chromosome), start and end coordinates (ranges, as
an IRanges object), strand (strand, either positive, negative, or
unstranded), and optional metadata columns (e.g., exon_id and
exon_name in the below).

GRanges object with 4 ranges and 2 metadata columns:

seqnames ranges strand | exon_id

exon_name

<Rle> <IRanges> <Rle> | <integer>

<character>

[1] X 99883667-99884983 - | 667145

ENSE00001459322

[2] X 99885756-99885863 - | 667146

ENSE00000868868

[3] X 99887482-99887565 - | 667147

ENSE00000401072

[4] X 99887538-99887565 - | 667148

ENSE00001849132

seqinfo: 722 sequences (1 circular) from an

unspecified genome

The GRangesList object serves as a container for genomic
features consisting of multiple ranges that are grouped by a parent
features, such as spliced transcripts that are comprised of exons. A
GRangesList object behaves like a list and many of the same meth-
ods for GRanges objects are available for GRangesList object
as well.

The SummarizedExperiment class (see Figure 1 is a matrix-like
container, where rows represent features of interest (e.g., genes,
transcripts, exons, etc.) and columns represent samples. The attri-
butes of this object include experimental results (in assays), infor-
mation on observations (in rowData) and samples (in colData), and
additional metadata (in metadata). SummarizedExperiment objects
can simultaneouly manage several experimental results as long as
they are of the same dimensions. The best benefit of using Sum-
marizedExperiment class is the coordination of the metadata and
assays when subsetting. SummarizedExperiment is similar to the
historical ExpressionSet class, but more flexible in its row informa-
tion, allowing both GRanges and DataFrames. ExpressionSet
object can be easily converted to SummarizedExperiment.

RangedSummarizedExperiment inherits the SummarizedEx-
periment class, with the extended capability of storing genomic
ranges (as a GRanges or GRangesList object) of interest instead
of a DataFrame (S4-class objectcs similar to data.frame) of features
in rows.

library(TumourMethData)

demm = download_meth_dataset("mcrpc_wg ..." ... [TRUNCATED]

demm

class: RangedSummarizedExperiment

dim: 1333114 100

metadata(5): genome is_h5 ref_CpG chrom_sizes

descriptive_stats

assays(2): beta cov

rownames: NULL

rowData names(0):

colnames(100): DTB_003 DTB_005 ... DTB_265 DTB_266

##colDatanames(4):metastatis_sitesubtypeagesexrowRanges(demm)

GRanges object with 1333114 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr11 60077 *

[2] chr11 60088 *

[3] chr11 60365 *

[4] chr11 60941 *

[5] chr11 60979 *

...

[1333110] chr11 135076482 *

[1333111] chr11 135076496 *

[1333112] chr11 135076502 *

[1333113] chr11 135076507 *

[1333114] chr11 135076510 *

seqinfo: 25 sequences from an unspecified genome; no seqlengths

Bioconductor’s Computational Ecosystem for Genomic Data Science in Cancer 35

The MultiAssayExperiment class (presented above in Figure 2)
is modeled after the SummarizedExperiment class. A MultiAs-
sayExperiment instance M can be filtered as a three-dimensional
array. When G is a vector of feature identifiers, C a vector of sample
identifiers, and E a vector of experiment names, then M[G, C, E] is
a MultiAssayExperiment with content restricted to the requested
features, samples, and experiments. The MultiAssayExperiment
package includes tooling to convert data content to “long” or
“wide” formats. In long format, each element of the assay array
occupies a row, accompanied by metadata associated with the ele-
ment. In wide format, each sample occupies a row, accompanied by
all assocated assay and metadata elements.

6.3 Out-of-memory

data representation

strategies

We return to the “methodical” package submission mentioned
above. A number of whole-genome bisulfite sequencing experi-
ments on tumors from various anatomic sites are available in
ExperimentHub. Metadata in that package shows that the datasets
are large, ranging from 2–40 gigabytes. One smaller dataset is
provided for illustration.

names(colData(demm))

[1] "metastatis_site" "subtype" "age" "sex"

table(demm$metastatis_site)

Bone Liver Lymph_node Other

43 11 38 8

library(EnsDb.Hsapiens.v86)

gg = genes(EnsDb.Hsapiens.v86)

get gene addresses

atmpos = gg[gg$gene_name == "ATM" &

gg$gene_biotype == "protein_coding"] # filter to ATM

seqlevelsStyle(atmpos) = "UCSC"

assay(subsetByOverlaps(demm, atmpos+1e6))

<18110 x 100> DelayedMatrix object of type "double":

DTB_003 DTB_005 DTB_008 ... DTB_265 DTB_266

[1,] 0.1053 0.7660 0.9206 . 0.6944 0.9412

[2,] 0.4062 0.9091 0.9318 . 0.5676 1.0000

[3,] 0.1379 0.0000 0.7400 . 0.4643 0.9231

[4,] 0.2308 0.9231 0.9149 . 0.8929 0.9286

[5,] 0.1481 0.8500 0.8864 . 0.8710 0.9762

...

[18106,] 0.4138 0.3143 0.3208 . 0.17647 0.10000

[18107,] 0.2727 0.2745 0.4143 . 0.22500 0.32500

[18108,] 0.2258 0.4800 0.5775 . 0.08889 0.25000

[18109,] 0.5278 0.7059 0.8088 . 0.55263 0.97561

[18110,] 0.2778 0.3137 0.6957 . 0.52632 0.35714

36 Marcel Ramos et al.

References to demm involve an 800MB excerpt of a prostate
cancer atlas with a storage footprint of 40GB. Ideally, queries about
particular genomic regions on particular samples, whole-sample
statistical summaries, and searches for patterns can be carried out
without specific accommodation of the data size or representation.
The DelayedArray package helps pursue this aim. We’ll illustrate by
interrogating the prostate cancer WGBS data for “beta” (fraction of
locus that is methylated) values in the vicinity of gene ATM.

The numeric values presented above are just the “corners” of
the associated array, presented as a “check” on the content
requested. Transfer of array content to the CPU for numerical
analysis only occurs on demand, which can be tailored to the
quantity of RAM available at analysis time.

Bioconductor’s Computational Ecosystem for Genomic Data Science in Cancer 37

Fig. 13 Workshop.bioconductor.org schematic.

6.4 Quality

assessment of

Bioconductor

resources

Figure 12 is an overview of the periodic ecosystem testing process
for Bioconductor software packages in the release branch. All Bio-
conductor and CRAN packages on which they depend are present
and are updated on change to sources.

The project distributes source tarballs for Linux-like systems,
and compiled binaries for MacOS and Windows. Numbers in red
boxes indicate failures to install, build, or check. Failure events are
frequently platform-specific; full logs are provided on the build
report pages to help developers isolate and fix build and check
errors. When failures are persistent, developers are contacted by
core. If contact cannot be made and failures continue, packages are
deprecated for at least one release, and then removed.

7 Pedagogics and workforce development

The Bioconductor project has undertaken a number of initiatives to
support growth of the scientific workforce’s capacity to efficiently
integrate and interpret genome-scale experiments.

• Partnering with The Carpentries. The Carpentries (https://
carpentries.org) is a non-profit organization focused on teaching
programming and data science to researchers. The organization
defines “good practices in lesson design and development, and
open source collaboration skills”. Bioconductor community

https://carpentries.org
https://carpentries.org

38 Marcel Ramos et al.

members have created bioc-intro, bioc-project, and bioc-rnaseq
repositories using The Carpentries Incubator template. This
arrangement helps Bioconductor create and manage a “train
the trainer” process according to tested pedagogical principles.

• Curating monographs for topics in genomic data science.
The breadth of Bioconductor resources for genomics, combined
with the energetic approach to software and annotation upkeep
in the project, empowers Bioconductor developers to produce
unified, wide-ranging, computable documents on topics of
interest to the broader cancer genomics community. Books
currently available at bioconductor.org include OSCA (Orches-
trating Single Cell Analysis with Bioconductor), SingleRBook
(Assigning cell types with SingleR), csawBook (Analysis of
ChIP-seq data), OHCA (Orchestrating Hi-C Analysis with Bio-
conductor) and R for Mass Spectrometry. Very recently, Jacques
Serizay of Institut Pasteur has contributed a book authoring
framework called BiocBook. This transforms documents marked
up in Posit’s quarto format into web-based books backed up by
Docker containers and maintained with templated GitHub
actions. The OHCA book is produced and managed with
BiocBook.

• A system for authoring and deploying interactive
workshops.

Figure 13 gives an overview of the resources and objectives of
the system underlying workshop.bioconductor.org. Given a
kubernetes-enabled cluster the workshop system assembles

• compute and storage elements,

• static components (training texts and shareable data),

Fig. 12 Build report for Bioc 3.18, 12-29-2023.

http://workshop.bioconductor.org

Bioconductor’s Computational Ecosystem for Genomic Data Science in Cancer 39

• development environments (containers with all runtime ele-
ments required to compiled code, conduct analyses, communi-
cate with GPUs).

A lightly customized deployment of the Galaxy system (usega-
laxy.org) is used to deal with authentication and process initiation
and termination.

This system has been used to serve interactive workshops in a
number of international conferences. Content in R markdown or
quarto can be produced by anyone interested in offering a work-
shop, and the “BiocWorkshopSubmit” app at workshop.biocon-
ductor.org can be used to identify new content to the system.
Markdown documents will be analyzed to determine what
resources are needed for the containerization of workshop software
and data components, and the container will be created and
registered at the GitHub Container Registry. Arrangements to
deploy the workshop over a given calendar period can be made
with Bioconductor core. The workshop container can be used to
conduct the workshop on any system with a Docker client.

8 Conclusions and paths forward

We have described several aspects of Bioconductor’s approach to
ecosystem management for cancer genomics data science resources.
In light of the dynamism of biotechnological innovation, it is clear
that the project must anticipate change. But it is challenging to
introduce changes to processes on which a very large community
depends for their daily research work. Commitments to supporting
reproducible research entail that Bioconductor preserves decades
worth of images of software and data for immediate retrieval via
web request by parties unknown to the project.

We’ll conclude this report with a few observations on general
paths that the project is likely to take that should have favorable
consequences to researchers in cancer genomics.

• Language-agnostic data and annotation The alabaster.*

packages introduced in Bioconductor 3.17 are designed to con-
vert existing Bioconductor data structures to formats that are
more readily ingested by software in other languages. Thus the
alabaster.mae package will convert a MultiAssayExperiment
into a collection of files of metadata (serialized in JSON),
sample-level data (serialized as CSV), and assay data (serialized
to HDF5).

• Zero-configuration genomic analysis environments Users of
Docker containers have long been able to take advantage
of Bioconductor containers pre-populated with Rstudio and
runtime resources to support installation of any desired

Package Version Date(UTC) Source

40 Marcel Ramos et al.

software packages. The bioc2u system (https://github.com/
bioconductor/bioc2u) in conjunction with r2u (github.com/
eddelbuettel/r2u) introduces the availability of Debian packages
for all Bioconductor packages, made available in a CRAN-like
repository. Given a system running Ubuntu 22 or 20, the apt
package manager will resolve any package requests with tested,
fully linked binary packages. Users do not have to perform any
configuration or compilation of system utilities or package code.
This practice can greatly reduce resource consumption that
occurs when individuals or workflow systems need to compile
every package and its dependencies to perform analyses.

• Computation at the data Several members of Bioconductor’s
development core are on the technical development team of
NHGRI’s Analysis and Visualization Laboratory (AnVIL). The
aim of this project is to overthrow the prevalent model of down-
loading data for local analysis. AnVIL mobilizes commercial
cloud computing and storage to support truly elastic genomic
analysis – create and pay for only the computation you need. The
basic strategy is described in Schatz et al. [28]. used in the
production of the Telomere-to-Telomere genome build, see
Aganezov et al. [29].

We hope that the project can continue to support researchers in
cancer genomics for another 20 years!

9 Figure 7 software

abind 1.4-5 2016-07-21 RSPM (R 4.2.0)

AnnotationDbi 1.64.1 2023-11-03 Bioconductor

AnnotationHub 3.10.0 2023-10-24 Bioconductor

backports 1.4.1 2021-12-13 RSPM (R 4.2.0)

bcellViper 1.38.0 2023-10-26 Bioconductor

Biobase 2.62.0 2023-10-24 Bioconductor

BiocFileCache 2.10.1 2023-10-26 Bioconductor

BiocGenerics 0.48.1 2023-11-01 Bioconductor

BiocManager 1.30.22 2023-08-08 RSPM (R 4.2.0)

BiocParallel 1.36.0 2023-10-24 Bioconductor

BiocVersion 3.18.0 2023-04-25 Bioconductor

Biostrings 2.70.1 2023-10-25 Bioconductor

bit 4.0.5 2022-11-15 RSPM (R 4.2.0)

(continued)

https://github.com/bioconductor/bioc2u
https://github.com/bioconductor/bioc2u
http://github.com/eddelbuettel/r2u
http://github.com/eddelbuettel/r2u

Bioconductor’s Computational Ecosystem for Genomic Data Science in Cancer 41

Package Version Date(UTC) Source

bit64 4.0.5 2020-08-30 RSPM (R 4.2.0)

bitops 1.0-7 2021-04-24 RSPM (R 4.2.0)

blob 1.2.4 2023-03-17 RSPM (R 4.2.0)

broom 1.0.5 2023-06-09 RSPM (R 4.2.0)

bspm 0.5.5 2023-08-22 CRAN (R 4.3.1)

cachem 1.0.8 2023-05-01 RSPM (R 4.2.0)

car 3.1-2 2023-03-30 RSPM (R 4.2.0)

carData 3.0-5 2022-01-06 RSPM (R 4.2.0)

class 7.3-22 2023-05-03 RSPM (R 4.2.0)

cli 3.6.2 2023-12-11 RSPM (R 4.3.0)

codetools 0.2-19 2023-02-01 RSPM (R 4.2.0)

coin 1.4-3 2023-09-27 RSPM (R 4.3.0)

colorspace 2.1-0 2023-01-23 RSPM (R 4.2.0)

cowplot 1.1.2 2023-12-15 RSPM (R 4.3.0)

crayon 1.5.2 2022-09-29 RSPM (R 4.2.0)

curl 5.2.0 2023-12-08 RSPM (R 4.3.0)

DBI 1.1.3 2022-06-18 RSPM (R 4.2.0)

dbplyr 2.4.0 2023-10-26 RSPM (R 4.3.0)

decoupleR 2.8.0 2023-10-24 Bioconductor

DelayedArray 0.28.0 2023-10-24 Bioconductor

DESeq2 1.42.0 2023-10-24 Bioconductor

digest 0.6.33 2023-07-07 RSPM (R 4.2.0)

dorothea 1.14.0 2023-10-26 Bioconductor

dplyr 1.1.4 2023-11-17 RSPM (R 4.3.0)

e1071 1.7-14 2023-12-06 RSPM (R 4.3.0)

easier 1.8.0 2023-10-24 Bioconductor

easierData 1.8.0 2023-10-26 Bioconductor

ellipsis 0.3.2 2021-04-29 RSPM (R 4.2.0)

evaluate 0.23 2023-11-01 RSPM (R 4.3.0)

ExperimentHub 2.10.0 2023-10-24 Bioconductor

fansi 1.0.6 2023-12-08 RSPM (R 4.3.0)

farver 2.1.1 2022-07-06 RSPM (R 4.2.0)

fastmap 1.1.1 2023-02-24 RSPM (R 4.2.0)

(continued)

42 Marcel Ramos et al.

Package Version Date(UTC) Source

filelock 1.0.3 2023-12-11 RSPM (R 4.3.0)

generics 0.1.3 2022-07-05 RSPM (R 4.2.0)

GenomeInfoDb 1.38.1 2023-11-08 Bioconductor

GenomeInfoDbData 1.2.11 <NA> Bioconductor

GenomicRanges 1.54.1 2023-10-29 Bioconductor

ggplot2 3.4.4 2023-10-12 RSPM (R 4.3.0)

ggpubr 0.6.0 2023-02-10 RSPM (R 4.2.0)

ggrepel 0.9.4 2023-10-13 RSPM (R 4.3.0)

ggsignif 0.6.4 2022-10-13 RSPM (R 4.2.0)

glue 1.6.2 2022-02-24 RSPM (R 4.2.0)

gridExtra 2.3 2017-09-09 RSPM (R 4.2.0)

gtable 0.3.4 2023-08-21 RSPM (R 4.2.0)

htmltools 0.5.7 2023-11-03 RSPM (R 4.3.0)

htmlwidgets 1.6.4 2023-12-06 RSPM (R 4.3.0)

httpuv 1.6.13 2023-12-06 RSPM (R 4.3.0)

httr 1.4.7 2023-08-15 RSPM (R 4.2.0)

interactiveDisplayBase 1.40.0 2023-10-24 Bioconductor

IRanges 2.36.0 2023-10-24 Bioconductor

jsonlite 1.8.8 2023-12-04 RSPM (R 4.3.0)

KEGGREST 1.42.0 2023-10-24 Bioconductor

kernlab 0.9-32 2023-01-31 RSPM (R 4.2.0)

KernSmooth 2.23-22 2023-07-10 RSPM (R 4.2.0)

knitr 1.45 2023-10-30 RSPM (R 4.3.0)

labeling 0.4.3 2023-08-29 RSPM (R 4.2.0)

later 1.3.2 2023-12-06 RSPM (R 4.3.0)

lattice 0.22-5 2023-10-24 RSPM (R 4.3.0)

lazyeval 0.2.2 2019-03-15 RSPM (R 4.2.0)

libcoin 1.0-10 2023-09-27 RSPM (R 4.3.0)

lifecycle 1.0.4 2023-11-07 RSPM (R 4.3.0)

limSolve 1.5.7 2023-09-21 RSPM (R 4.3.0)

locfit 1.5-9.8 2023-06-11 RSPM (R 4.2.0)

lpSolve 5.6.20 2023-12-10 RSPM (R 4.3.0)

magrittr 2.0.3 2022-03-30 RSPM (R 4.2.0)

(continued)

Bioconductor’s Computational Ecosystem for Genomic Data Science in Cancer 43

Package Version Date(UTC) Source

MASS 7.3-60 2023-05-04 RSPM (R 4.2.0)

Matrix 1.6-4 2023-11-30 RSPM (R 4.3.0)

MatrixGenerics 1.14.0 2023-10-24 Bioconductor

matrixStats 1.2.0 2023-12-11 RSPM (R 4.3.0)

memoise 2.0.1 2021-11-26 RSPM (R 4.2.0)

mime 0.12 2021-09-28 RSPM (R 4.2.0)

mixtools 2.0.0 2022-12-05 RSPM (R 4.2.0)

modeltools 0.2-23 2020-03-05 RSPM (R 4.2.0)

multcomp 1.4-25 2023-06-20 RSPM (R 4.2.0)

munsell 0.5.0 2018-06-12 RSPM (R 4.2.0)

mvtnorm 1.2-4 2023-11-27 RSPM (R 4.3.0)

nlme 3.1-164 2023-11-27 RSPM (R 4.3.0)

pillar 1.9.0 2023-03-22 RSPM (R 4.2.0)

pkgconfig 2.0.3 2019-09-22 RSPM (R 4.2.0)

plotly 4.10.3 2023-10-21 RSPM (R 4.3.0)

plyr 1.8.9 2023-10-02 RSPM (R 4.3.0)

png 0.1-8 2022-11-29 RSPM (R 4.2.0)

preprocessCore 1.64.0 2023-10-24 Bioconductor

progeny 1.24.0 2023-10-24 Bioconductor

promises 1.2.1 2023-08-10 RSPM (R 4.2.0)

proxy 0.4-27 2022-06-09 RSPM (R 4.2.0)

purrr 1.0.2 2023-08-10 RSPM (R 4.2.0)

quadprog 1.5-8 2019-11-20 RSPM (R 4.2.0)

quantiseqr 1.10.0 2023-10-24 Bioconductor

R6 2.5.1 2021-08-19 RSPM (R 4.2.0)

rappdirs 0.3.3 2021-01-31 RSPM (R 4.2.0)

Rcpp 1.0.11 2023-07-06 RSPM (R 4.2.0)

RCurl 1.98-1.13 2023-11-02 RSPM (R 4.3.0)

reshape2 1.4.4 2020-04-09 CRAN (R 4.0.1)

rlang 1.1.2 2023-11-04 RSPM (R 4.3.0)

rmarkdown 2.25 2023-09-18 RSPM (R 4.3.0)

ROCR 1.0-11 2020-05-02 RSPM (R 4.2.0)

RSQLite 2.3.4 2023-12-08 RSPM (R 4.3.0)

(continued)

44 Marcel Ramos et al.

Package Version Date(UTC) Source

rstatix 0.7.2 2023-02-01 RSPM (R 4.2.0)

S4Arrays 1.2.0 2023-10-24 Bioconductor

S4Vectors 0.40.2 2023-11-23 Bioconductor 3.18
(R 4.3.2)

sandwich 3.1-0 2023-12-11 RSPM (R 4.3.0)

scales 1.3.0 2023-11-28 RSPM (R 4.3.0)

segmented 2.0-1 2023-12-19 RSPM (R 4.3.0)

sessioninfo 1.2.2 2021-12-06 RSPM (R 4.2.0)

shiny 1.8.0 2023-11-17 RSPM (R 4.3.0)

SparseArray 1.2.2 2023-11-07 Bioconductor

startup 0.21.0 2023-12-11 RSPM (R 4.3.0)

stringi 1.8.3 2023-12-11 RSPM (R 4.3.0)

stringr 1.5.1 2023-11-14 RSPM (R 4.3.0)

Summarized
Experiment

1.32.0 2023-10-24 Bioconductor

survival 3.5-7 2023-08-14 RSPM (R 4.2.0)

TH.data 1.1-2 2023-04-17 RSPM (R 4.2.0)

tibble 3.2.1 2023-03-20 RSPM (R 4.3.0)

tidyr 1.3.0 2023-01-24 RSPM (R 4.2.0)

tidyselect 1.2.0 2022-10-10 RSPM (R 4.2.0)

utf8 1.2.4 2023-10-22 RSPM (R 4.3.0)

vctrs 0.6.5 2023-12-01 RSPM (R 4.3.0)

viper 1.36.0 2023-10-24 Bioconductor

viridisLite 0.4.2 2023-05-02 RSPM (R 4.2.0)

withr 2.5.2 2023-10-30 RSPM (R 4.3.0)

xfun 0.41 2023-11-01 RSPM (R 4.3.0)

xtable 1.8-4 2019-04-21 RSPM (R 4.2.0)

XVector 0.42.0 2023-10-24 Bioconductor

yaml 2.3.8 2023-12-11 RSPM (R 4.3.0)

zlibbioc 1.48.0 2023-10-24 Bioconductor

zoo 1.8-12 2023-04-13 RSPM (R 4.2.0)

Bioconductor’s Computational Ecosystem for Genomic Data Science in Cancer 45

Acknowledgements

This work was supported in part by NIH NCI 3U24CA180996-
10S1, NHGRI 5U24HG004059-18, and NSF ACCESS allocation
BIR190004.

References

1. R-Core. Writing R Extensions, 2024.

2. Aevermann, B. D., Novotny, M., Bakken, T.,
Miller, J. A., Diehl, A. D., Osumi-Sutherland,
D., Lasken, R. S., Lein, E. S., and Scheuer-
mann, R. H. Cell type discovery using single-
cell transcriptomics: Implications for ontologi-
cal representation. Human Molecular Genetics,
27:R40–R47, 2018.

3. Tian, L., Su, S., Dong, X., Amann-Zalcenstein,
D., Biben, C., Seidi, A., Hilton, D. J., Naik,
S. H., and Ritchie, M. E. scpipe: A flexible
r/bioconductor preprocessing pipeline for
single-cell rna-sequencing data. PLOS Compu-
tational Biology, 14(8):e1006361, 2018.

4. Wei, Z., Zhang, W., Fang, H., Li, Y., and
Wang, X. esatac: An easy-to-use systematic
pipeline for atac-seq data analysis. Bioinformat-
ics (Oxford, England), March 2018.

5. Ou, J., Liu, H., Yu, J., Kelliher, M. A., Castilla,
L. H., Lawson, N. D., and Zhu, L. J. Atac-
seqqc: a bioconductor package for post-
alignment quality assessment of atac-seq data.
BMC Genomics, 19(1), 2018.

6. Aryee, M. J., Jaffe, A. E., Corrada-Bravo, H.,
Ladd-Acosta, C., Feinberg, A. P., Hansen,
K. D., and Irizarry, R. A. Minfi: a flexible and
comprehensive bioconductor package for the
analysis of infinium dna methylation microar-
rays. Bioinformatics, 30(10):
1363–1369, 2014.

7. Hansen, K. D., Langmead, B., and Irizarry,
R. A. Bsmooth: from whole genome bisulfite
sequencing reads to differentially methylated
regions. Genome Biology, 13(10):R83, 2012.

8. Müller, F., Scherer, M., Assenov, Y., Lutsik, P.,
Walter, J., Lengauer, T., and Bock, C. Rnbeads
2.0: comprehensive analysis of dna methylation
data. Genome Biology, 20(1), 2019.

9. Lawson, J., Tomazou, E., Bock, C., and Shef-
field, N. C. Mira: An R package for DNA
methylation-based inference of regulatory
activity. Bioinformatics, bty083, 3 2018.

10. Silva, T. C., Coetzee, S. G., Gull, N., Yao, L.,
Hazelett, D. J., Noushmehr, H., Lin, D.-C.,
and Berman, B. P. Elmer v.2: an r/bioconduc-
tor package to reconstruct gene regulatory net-
works from dna methylation and transcriptome
profiles. Bioinformatics, 35(11):
1974–1977, 2019.

11. Zheng, S. C., Breeze, C. E., Beck, S., and
Teschendorff, A. E. Identification of differen-
tially methylated cell types in epigenome-wide
association studies. Nature Methods, 15(12):
1059–1066, 2018.

12. Stark, R. and Brown, G. DiffBind: differential
binding analysis of ChIP-Seq peak data, 2011.

13. Kupkova, K., Mosquera, J. V., Smith, J. P.,
Stolarczyk, M., Danehy, T. L., Lawson, J. T.,
Xue, B., Stubbs, J. T., LeRoy, N., and Sheffield,
N. C. GenomicDistributions: fast analysis of
genomic intervals with bioconductor. BMC
Genomics, 23(1), apr 2022.

14. Argelaguet, R., Arnol, D., Bredikhin, D.,
Deloro, Y., Velten, B., Marioni, J. C., and Ste-
gle, O. Mofa+: a statistical framework for com-
prehensive integration of multi-modal single-
cell data. Genome Biology, 21(1), 2020.

15. Lawson, J. T., Smith, J. P., Bekiranov, S.,
Garrett-Bakelman, F. E., and Sheffield, N. C.
COCOA: coordinate covariation analysis of
epigenetic heterogeneity. Genome Biology,
21(1), sep 2020.

16. Sheffield, N. C. and Bock, C. Lola: enrichment
analysis for genomic region sets and regulatory
elements in R and bioconductor. Bioinformat-
ics, 32(4):587–589, Oct 2016.

17. Gel, B., Diez-Villanueva, A., Serra, E., Busch-
beck, M., Peinado, M. A., and Malinverni,
R. regioneR: an r/bioconductor package for
the association analysis of genomic regions
based on permutation tests. Bioinformatics,
page btv562, sep 2015.

18. Aibar, S., Fontanillo, C., Droste, C., and De
Las Rivas, J. Functional gene networks: R/bioc
package to generate and analyse gene networks
derived from functional enrichment and clus-
tering. Bioinformatics, 31(10):
1686–1688, 2015.

19. Zhu, L. J., Gazin, C., Lawson, N. D., Pagès,
H., Lin, S. M., Lapointe, D. S., and Green,
M. R. ChIPpeakAnno: a bioconductor package
to annotate ChIP-seq and ChIP-chip data.
BMC Bioinformatics, 11(1), may 2010.

20. Cavalcante, R. G. and Sartor, M. A. annotatr:
genomic regions in context. Bioinformatics,
33(15):2381–2383, mar 2017.

46 Marcel Ramos et al.

21. Immune checkpoint inhibitors. https://
www.cancer.gov/about-cancer/treatment/
t y p e s/ immuno th e r a p y/ ch e c kpo i n t -
inhibitors, 2022. Accessed: 2023-12-30.

22. Ó scar Lapuente-Santana, van Genderen, M.,
Hilbers, P. A., Finotello, F., and Eduati,
F. Interpretable systems biomarkers predict
response to immune-checkpoint inhibitors.
Patterns, 2, 8 2021.

23. Mariathasan, S., Turley, S. J., Nickles, D., Cas-
tiglioni, A., Yuen, K., Wang, Y., Kadel III,
E. E., Koeppen, H., Astarita, J. L., Cubas, R.,
Jhunjhunwala, S., Banchereau, R., Yang, Y.,
Guan, Y., Chalouni, C., Ziai, J., Senbabaoglu,
Y., Santoro, S., Sheinson, D., Hung, J., Gilt-
nane, J. M., Pierce, A. A., Mesh, K., Lianoglou,
S., Riegler, J., Carano, R. A. D., Eriksson, P.,
Hoglund, M., Somarriba, L., Halligan, D. L.,
van der Heijden, M. S., Loriot, Y., Rosenberg,
J. E., Fong, L., Mellman, I., Chen, D. S.,
Green, M., Derleth, C., Fine, G. D., Hegde,
P. S., Bourgon, R., and Powles, T. Tgfb attenu-
ates tumour response to pd-l1 blockade by
contributing to exclusion of t cells. Nature,
554(7693):544–548, Feb 2018.

24. Righelli, D., Weber, L. M., Crowell, H. L.,
Pardo, B., Collado-Torres, L., Ghazanfar, S.,
Lun, A. T., Hicks, S. C., and Risso,
D. Spatialexperiment: infrastructure for
spatially-resolved transcriptomics data in r
using bioconductor. Bioinformatics, 38(11):
3128–3131, 2022.

25. Moses, L., Einarsson, P. H., Jackson, K., Lueb-
bert, L., Booeshaghi, A. S., Antonsson, S.,
Bray, N., Melsted, P., and Pachter,
L. Voyager: exploratory single-cell genomics
data analysis with geospatial statistics.
bioRxiv, 2023.

26. Couto, B. Z. P., Robertson, N., Patrick, E., and
Ghazanfar, S. Moleculeexperiment enables
consistent infrastructure for molecule-resolved
spatial transcriptomics data in bioconductor.
bioRxiv, 2023.

27. Weber, L. M., Saha, A., Datta, A., Hansen,
K. D., and Hicks, S. C. nnsvg for the scalable
identification of spatially variable genes using
nearest-neighbor gaussian processes. Nature
communications, 14(1):4059, 2023.

28. Schatz, M. C., Philippakis, A. A., Afgan, E.,
Banks, E., Carey, V. J., Carroll, R. J., Culotti,
A., Ellrott, K., Goecks, J., Grossman, R. L.,
Hall, I. M., Hansen, K. D., Lawson, J., Leek,
J. T., Luria, A. O., Mosher, S., Morgan, M.,
Nekrutenko, A., O’Connor, B. D., Osborn, K.,
Paten, B., Patterson, C., Tan, F. J., Taylor,
C. O., Vessio, J., Waldron, L., Wang, T., Wui-
chet, K., Baumann, A., Rula, A., Kovalsy, A.,
Bernard, C., Caetano-Anollés, D., der Auwera,
G. A. V., Canas, J., Yuksel, K., Herman, K.,
Taylor, M. M., Simeon, M., Baumann, M.,
Wang, Q., Title, R., Munshi, R., Chaluvadi,
S., Reeves, V., Disman, W., Thomas, S., Hajian,
A., Kiernan, E., Gupta, N., Vosburg, T., Geis-
tlinger, L., Ramos, M., Oh, S., Rogers, D.,
McDade, F., Hastie, M., Turaga, N.,
Ostrovsky, A., Mahmoud, A., Baker, D., Clem-
ents, D., Cox, K. E., Suderman, K., Kucher,
N., Golitsynskiy, S., Zarate, S., Wheelan, S. J.,
Kammers, K., Stevens, A., Hutter, C., Welling-
ton, C., Ghanaim, E. M., Wiley, K. L., Sen,
S. K., Francesco, V. D., s Yuen, D., Walsh, B.,
Sargent, L., Jalili, V., Chilton, J., Shepherd, L.,
Stubbs, B., O’Farrell, A., Vizzier, B. A., Over-
beck, C., Reid, C., Steinberg, D. C., Sheets,
E. A., Lucas, J., Blauvelt, L., Cabansay, L.,
Warren, N., Hannafious, B., Harris, T.,
Reddy, R., Torstenson, E., Banasiewicz,
M. K., Abel, H. J., and Walker, J. Inverting
the model of genomics data sharing with the
nhgri genomic data science analysis, visualiza-
tion, and informatics lab-space. Cell Genomics,
2:100085, 1 2022.

29. Aganezov, S., Yan, S. M., Soto, D. C., Kirsche,
M., Zarate, S., Avdeyev, P., Taylor, D. J., Sha-
fin, K., Shumate, A., Xiao, C., Wagner, J.,
McDaniel, J., Olson, N. D., Sauria, M. E., Voll-
ger, M. R., Rhie, A., Meredith, M., Martin, S.,
Lee, J., Koren, S., Rosenfeld, J. A., Paten, B.,
Layer, R., Chin, C. S., Sedlazeck, F. J., Hansen,
N. F., Miller, D. E., Phillippy, A. M., Miga,
K. H., McCoy, R. C., Dennis, M. Y., Zook,
J. M., and Schatz, M. C. A complete reference
genome improves analysis of human genetic
variation. Science, 376, 2022.

https://www.cancer.gov/about-cancer/treatment/types/immunotherapy/checkpoint-inhibitors
https://www.cancer.gov/about-cancer/treatment/types/immunotherapy/checkpoint-inhibitors
https://www.cancer.gov/about-cancer/treatment/types/immunotherapy/checkpoint-inhibitors
https://www.cancer.gov/about-cancer/treatment/types/immunotherapy/checkpoint-inhibitors

Chapter 2

Building Portable and Reproducible Cancer Informatics
Workflows for Scalable Data Analysis: An RNA Sequencing
Tutorial

Rowan F. Beck, Zelia F. Worman, Gaurav Kaushik,

and Brandi N. Davis-Dusenbery

Abstract

The continued decrease in sequencing costs has led to an abundance of high-throughput data representing
an increasing diversity of experimental conditions. These changes have been coupled with the adoption of
cloud technologies and interoperability standards to share and analyze large primary and secondary data
files. While 10 years ago analysis of hundreds or thousands of genomics samples was only practical at
institutions with large local computational resources, these experiments can now be routinely performed by
anyone with access to the Internet.
In this tutorial, we use the Seven Bridges Cancer Genomics Cloud (CGC) to analyze RNA sequencing

data from the NIH Cancer Research Data Commons (CRDC). This tutorial demonstrates how to bring a
new computational algorithm to the platform, combine it with an existing workflow, and execute an analysis
on the cloud. We highlight best practices for designing command line tools, Docker containers, and CWL
descriptions to enable massively parallelized and reproducible biomedical computation with cloud
resources. The CGC’s support for diverse analysis techniques and user-friendly interface simplifies the
complex process of handling large datasets while promoting collaboration across disciplines.

Key words Cloud, Bioinformatics, Cancer informatics, Workflows, CWL, TCGA, AWS, Docker,
Reproducibility, Software design

1 Introduction

The Seven Bridges Cancer Genomics Cloud (CGC) powered by
Velsera is part of the National Cancer Institute (NCI) Cancer
Research Data Commons (CRDC), which was created to accelerate
and simplify use of petabyte-scale clinical, imaging, and multiomics
data [1]. The CGC provides a secure, scalable, and reproducible
environment to perform computational analysis in the cloud
[2, 3]. Further, the use of interoperability standards enables con-
nectivity of this resource to NCI multiple data nodes such as the

Alexander Krasnitz and Pascal Belleau (eds.), Cancer Bioinformatics, Methods in Molecular Biology, vol. 2932,
https://doi.org/10.1007/978-1-0716-4566-6_2,
© The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature 2025

47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-4566-6_2&domain=pdf
https://doi.org/10.1007/978-1-0716-4566-6_2#DOI

Genomics Data Commons (GDC) which house data from more
than 130,000 participants as of 2023 [4]. The CGC enables data
discovery through rich visual interfaces as well as interactive data
analysis using popular tools like Python, R Studio, SAS, and Galaxy.
Additionally, the CGC enables the automation of large-scale, repro-
ducible analysis using software containers and workflow languages
like Nextflow (NF) [5], Workflow Description Language (WDL)
[6], and Common Workflow Language (CWL) [7]. Most high-
throughput analysis techniques including next generation sequenc-
ing, proteomics, flow cytometry, imaging, etc. create large and
complex primary data files which must be quality controlled, aggre-
gated, and harmonized. The CGC democratizes these steps by
providing both visual and programmatic interfaces for describing
analytic workflows. Further, central management of utilities like job
scheduling and orchestration, cost monitoring, and data security
enables researchers to focus on addressing specific analytic ques-
tions rather than building and operating computational
infrastructure.

48 Rowan F. Beck et al.

Computational reproducibility remains a significant challenge
when replicating studies or performing large-scale, collaborative
cancer genomics [8–10]. Variations in software versions or para-
meters introduce errors and artifacts when attempting to compare
analyses from various sources or when working in large collabora-
tions or consortia.

In order to enable and simplify computational reproducibility,
the CGC leverages open-source and community-driven technolo-
gies for supporting reproducibility with complementary software
models that enable researchers to (1) replicate analyses performed
previously, (2) readily analyze large volumes of data with identical
workflows, and (3) track each step, input, parameter, and output of
an analysis automatically.

One such technology is software containers, i.e., operating
system-level virtualized environments with a complete filesystem
and a unique set of resources and permissions. The Cancer Geno-
mics Cloud specifically supports Docker [11], an implementation
of software containers that is operable on all major operating sys-
tems. The only external dependency for “running” a Docker con-
tainer is that the Docker daemon is installed. Because containers are
isolated environments, they can be used as portable vehicles for
software and their dependencies. For example, a Docker container
may build upon a Linux distribution and contain a bioinformatics
tool and its dependencies.

Docker containers are designed to be small and intended to be
easily deployed to enable sharing among data analysts. Software
within containers, if deterministic, will run exactly the same regard-
less of where the container is deployed or by whom. The use of
Docker, therefore, solves a major issue in handling software depen-
dencies in execution environments and comparing or replicating

results which may differ because of software versioning. Indeed,
over the last 10 years, Docker and other containerization technol-
ogies have become widely adopted across industries.

Reproducible Cancer Informatics Workflows 49

One issue not solved by Docker is how to run bioinformatics
tools within the container—in other words, the exact command
line arguments which will be used for a given analysis. Bioinformat-
ics use cases have inspired the development and adoption of multi-
ple computational workflow languages which allow users to clearly
define computational processes. Each of these languages has differ-
ent benefits and drawbacks including speed of development, level
of declaration, and stability. Bioinformaticians can modularize their
pipelines to support reproducibility and reuse by utilizing a work-
flow language based on their needs by understanding the strengths
and weaknesses of each language. Here we focus on CWL which is
the most mature of frequently used bioinformatics workflow lan-
guages [7, 12]. Importantly, CWL is a formally governed specifica-
tion which underlies a rich ecosystem of orchestrators, visualization
engines, debugging tools, and workflow repositories. The robust
nature of CWL enables inclusion of computational workflows
within the BioCompute Object paradigm which is being explored
as a standard for transmission of computational processes to regu-
latory agencies like the FDA [13, 14].

For an individual tool, the CWL description contains the URL
or pointer to a Docker container residing in an online registry and a
set of commands which are executable within the container. In
addition, CWL defines “ports” or the input objects which can be
used to run analysis (e.g., files, parameters, or simple objects that
the user can provide to support execution) and the output objects
expected from the analysis.

Based on experience with end users, two additional capabilities
have been added on the Seven Bridges platform to extend the utility
of Docker and CWL. First, because the CWL specification can be
extended by plug-ins, we have added features to enable advanced
features such as application revision history and on-the-fly optimi-
zation of compute resources. Second, the platform records the
explicit parameters and files used in every execution, thus allowing
researchers to clone prior analyses inclusive of all inputs for replica-
tion or application to new data.

The Seven Bridges Cancer Genomics Cloud aims to drive
advancements in cancer research by providing an efficient, secure,
and scalable platform for computational analysis. Its integration
with interoperability standards and connectivity to NCI data
nodes enable researchers from diverse institutions to efficiently
leverage the power of cloud computing to perform new analysis.
Below we focus on the process of bringing a new tool to the CGC
using Docker and CWL. We note that these steps are applicable to
other Seven Bridges platform deployments. Furthermore, we
emphasize that more than 900 (and growing) popular tools and

workflows are immediately available and optimized for use on the
platform (https://cgc.sbgenomics.com/public/apps). These tools
can be modified and combined following the approach in Subhead-
ing 3.5. Typical bioinformatics workflows include primary and
secondary processing of data using well-defined workflows, fol-
lowed by interactive analysis and exploration using scripting lan-
guages and visualization techniques. While the platform provides
rich capabilities for downstream analysis, a review of these is outside
the scope of this chapter, and the reader is encouraged to explore
the detailed documentation at https://docs.cancergenomicscloud.
org/.

50 Rowan F. Beck et al.

2 Materials

Researchers wishing to access the CGC need only a personal com-
puter with reliable access to the Internet. For use of Docker con-
tainers on your personal computer, we recommend that researchers
follow the minimal requirements guidelines from Docker (https://
docs.docker.com). Public containers for bioinformatics are also
available in online repositories, such as DockerHub (hub.docker.
com), Quay.io (quay.io), and Dockstore (dockstore.org). All con-
tainers for this study were developed using Docker for Mac Version
1.12 on a 2020 MacBook Pro with 4 cores and 16GB RAM
(2 cores and 2GB allocated for Docker). These methods and mate-
rials are intended for users familiar with basic bash commands and
who have a working knowledge of bioinformatics methods and
tools.

Academic users may create a free account on the CGC at
https://www.cancergenomicscloud.org/ using their institutional
email address. While not required for the following method, the
CGC enables researchers to access controlled data from popular
datasets like The Cancer Genome Atlas (TCGA) [15], the Human
Tumor Atlas Network (HTAN) [16], and others. Users wishing to
access controlled data must register using their eRA Commons
account and have an approved Data Access Request (DAR) (see
Note 1).

3 Methods

RNA sequencing (RNA-seq) is a molecular biology technique that
provides a comprehensive and high-throughput method for
profiling and quantifying the entire transcriptome of a biological
sample, offering insights into gene expression, alternative splicing,
and identification of novel transcripts. The CGC is connected to
RNAseq data from thousands of tumors. While single cell RNASeq
is increasingly common and the platform provides a number of

https://cgc.sbgenomics.com/public/apps
https://docs.cancergenomicscloud.org/
https://docs.cancergenomicscloud.org/
https://docs.docker.com
https://docs.docker.com
http://hub.docker.com
http://hub.docker.com
http://dockstore.org
https://www.cancergenomicscloud.org/

resources for this type of analysis, below we use common methods
for batch analysis as an example as many bioinformaticians are
intimately familiar with these tools.

Reproducible Cancer Informatics Workflows 51

In brief, we will build a workflow that first performs quality
control using the popular tool FastQC, followed by quantification
of gene expression using HISAT2-StringTie. FastQC is a widely
used and highly efficient quality control tool used in bioinformatics
to assess the quality of high-throughput sequencing data. It pro-
vides a comprehensive analysis of raw sequencing data and offers
insights into various parameters that are crucial for downstream
analysis [17]. Numerous approaches have been developed to quan-
tify the abundance of RNA transcripts from sequencing data. Here
we’ve selected hierarchical indexing for spliced alignment of tran-
scripts (HISAT2) and StringTie [18]. Together, these methods
align reads to a genome, assemble transcripts including novel splice
variants, compute the abundance of these transcripts in each sam-
ple, and compare experiments to identify differentially expressed
genes and transcripts.

The CGC enables researchers to upload private data and link to
public open or controlled access data in the cloud. Here we will use
open data from the HCC1143 cancer cell line available as part of
the Cancer Cell Line Encyclopedia (CCLE) Project [19]. These
data are linked and immediately on the CGC, so researchers are able
to rapidly follow the provided method which can then be extended
to use private data or other public RNAseq files. Further, the steps
provided here can be applied to deploy any command line tool
and/or modify existing workflows.

3.1 Workflow Design Deploying new computational methods or tools and incorporating
them into an existing workflow on the CGC entails four major
steps:

1. A Docker image is created that contains the software and all of
its dependencies. The Docker image should be tested to ensure
that the software is correctly installed prior to deployment on
the CGC platform.

2. Once tested, the Docker image is pushed to the CGC Docker
registry using Docker shell commands and a CGC authentica-
tion token, as outlined in Subheading 3.3.

3. A private app is created using CWL to allow description of the
Docker image.

4. The newly created app is incorporated into an existing public or
private workflow.

In this example, we will incorporate our newly deployed quality
control tool into a public RNA-seq workflow. This final step allows
tools to be recombined to create complex and reproducible work-
flows. However, it should be noted that many software tools are
perfectly functional as so-called “stand-alone” tools.

52 Rowan F. Beck et al.

3.2 Creating Docker

Containers and Testing

Tools in Them

A major benefit to Docker containers is their portability; a single
container running the Ubuntu Linux distribution can be smaller
than 200 MB. This allows for easy and rapid sharing between
researchers and platforms. We provide the following guidelines to
maintain these benefits:

1. Use Dockerfiles to build your Docker containers (see Note 2).

2. Avoid or clearly document dependencies on cloud-specific ser-
vices (e.g., AWS SageMaker).

3. Package each tool in your workflow as a separate container (see
Note 3).

(a) For example, use a unique container for FastQC and its
dependencies and a unique container for any additional
tools.

(b) For Linux tools (e.g., cut, gzip, tar, grep), we recommend
using a standard Ubuntu container (ubuntu:latest) or
a container that builds from it (see Note 4).

4. In the Dockerfile, explicitly set the working directory as “/.”

(a) When we later describe how to execute commands within
the container, all arguments and file paths must be relative
to “/,” so it’s good practice to start thinking that way
early.

5. In the Dockerfile, set the command option as “/bin/bash.”

With these considerations in mind, we will now start by build-
ing a Docker container with FastQC which is available at https://
www.bioinformatics.babrahmac.uk/projects/fastqc/fastqc_v0.11.
8.zip.

Using the command line, create a file called “Dockerfile” in the
top directory with the following content; each section of which is
described below:

FROM ubuntu:16.04

MAINTAINER "YourFirstName YourLastName" <email@institution.

io>

Update and install necessary tools

RUN apt-get update && apt-get install -y build-essential

zlib1g-dev \

libgsl0-dev wget unzip

RUN apt-get -y install software-properties-common

RUN apt-get update

RUN apt-get -y install openjdk-8-jdk openjdk-8-jre && apt-get

clean

WORKDIR /opt

Add FastQC to container and give proper permissions

RUN wget https://www.bioinformatics.babraham.ac.uk/projects/

https://www.bioinformatics.babrahmac.uk/projects/fastqc/fastqc_v0.11.8.zip
https://www.bioinformatics.babrahmac.uk/projects/fastqc/fastqc_v0.11.8.zip
https://www.bioinformatics.babrahmac.uk/projects/fastqc/fastqc_v0.11.8.zip

fastqc/fastqc_v0.11.8.zip

RUN unzip fastqc_v0.11.8.zip && rm fastqc_v0.11.8.zip

RUN chmod 755 /opt/FastQC/fastqc

RUN ln -s /opt/FastQC/fastqc /usr/local/bin/fastqc

COPY Dockerfile /opt/

Reproducible Cancer Informatics Workflows 53

This Dockerfile can then be built using the following
command:

$ docker build -t <repo/image:tag> </path/to/Dockerfile>

The first line of the Dockerfile specifies “ubuntu:16.04” as
the base image (using the FROM command; see Note 5). The
“MAINTAINER” or contact information for the Dockerfile author
can also be specified. The working directory is defined in the third
line (WORKDIR /).

The second block of commands (RUN apt-get…) installs the
dependencies for FastQC, which are defined by the tool authors in
their documentation [5]. When using “apt-get,” include the “-
y” or “--yes” option to confirm all actions ahead of time, pre-
venting the need for intervention during install.

Finally, we’re changing into “/opt/” as the working directory,
downloading and installing the FastQC software and copying the
Dockerfile used to build the image into “/opt/” as well to store a
record of how the image was created. In the third set of actions
(RUNmkdir…), we create a directory for the FastQC executables in
/opt/; copy the local directory to this directory within the con-
tainer (see Note 6). To grant permissions to files in /opt/FastQC,
the chmod 755 /opt/FastQC is used, and add the directory to
$PATH in order to invoke it from the working directory (see
Note 7). Finally, we set the command to “/bin/bash” (see Note
8).

Next, run the container in interactive mode to verify that the
installation has occurred properly:

$ docker run -ti <repo/image:tag>

If changes need to be made to a container, we recommend
recording each change within the original Dockerfile as a comment
and then rebuilding the container (see Note 9). In this way, your
Dockerfile will capture all dependencies to streamline reproducibil-
ity and repeatability. Note 10 provides an example Dockerfile for
another RNASeq tool, RSEM, which requires multiple
dependencies.

54 Rowan F. Beck et al.

3.3 Deploying

Containers on the

Seven Bridges Cancer

Genomics Cloud

Once the container is tested, you can “push” it to an online registry.
The Cancer Genomics Cloud can pull containers from any public
registry, including DockerHub or Quay.io. However, we recom-
mend pushing containers to the CGC image registry for increased
reliability and reduced latency when pulling containers for
computation.

A user will need to verify their CGC authentication token,
which encodes that specific user’s CGC credentials and uniquely
identifies them on the CGC. To obtain this token, a user must log
in to the CGC (cgc.sbgenomics.com) then click “Developer” in the
top navigation bar. Next, select “Authentication token.” Click
“Generate Token” to generate an authentication token for the
first time. The authentication token will be displayed in the input
field, and information will be provided on when the token will
expire (see Fig. 1).

To push the container to the CGC image registry, tag the
container with the appropriate repo name:

docker tag <image_id> cgc-images.sbgenomics.com/<cgc_user-

name>/<image>:<tag> docker login cgc-images.sbgenomics.com

<cgc_username>

<cgc_auth_token>

docker push cgc-images.sbgenomics.com/<cgc_username>/<im-

age>:<tag>

Often, bioinformatics tools are very comprehensive which
makes it difficult to capture all of its command line arguments or
utilities in a single description. Attempting to do so may require
very complex wrappers, which can increase the time for debugging
and testing. To prevent this issue, wrap your analysis and reuse prior
wrappers as your analyses change. Everything is versioned on the
Seven Bridges Cancer Genomics Cloud which makes it easy to keep
track of each application and its associated files. In addition,
researchers have full visibility to when each task was executed and
by whom.

3.4 Describing Tools

Using the Cancer

Genomics Cloud

On the Cancer Genomics Cloud, tools are considered single execu-
tables or runnables, which consist of a set of command line expres-
sions run within a Docker container. Workflows are chains of tools,
in which upstream files are passed downstream until a final result is
achieved. To begin using the visual interface to write the CWL
describing a tool, navigate to Apps, followed by “Command Line
Tool” as shown in Fig. 2.

On the CGC, tools have the following five properties:

1. Docker Container: Defines the Docker container that will be
used via the <repo/image:tag> (e.g., “ubuntu:latest” or
“cgc-images.sbgenomics.com/gauravcgc/

rsem:1.2.31”)

http://cgc.sbgenomics.com
http://cgc-images.sbgenomics.com/gauravcgc/rsem:1.2.31
http://cgc-images.sbgenomics.com/gauravcgc/rsem:1.2.31

Reproducible Cancer Informatics Workflows 55

Fig. 1 Accessing the CGC Authentication Token. The authentication token encodes your Seven Bridges CGC

Platform credentials and uniquely identifies you on the Seven Bridges Platform. This token can be used with a

number of features of the Seven Bridges Platform instead of a login

2. Base Commands: The starting point on which the arguments
and ports are layered

3. Arguments: Hard coded inputs which are not user configurable
at runtime

4. Input Ports: Describe data objects that can be passed to the tool
during execution

5. Output Ports: Describe data objects that will be saved from an
execution, most commonly an output file or array of files

We’ll walk through describing each of these properties below.

56 Rowan F. Beck et al.

Fig. 2 Accessing the CGC Tool Editor. The tool editor is a visual editor for creating and editing CWL tools. (1) To

access the tool editor, first select or create a project, and then navigate to the “Apps” tab along the top of the

screen. Click the “Create app” button. (2) To create a new app, select “Command Line Editor” and give your

app a name

Wrapping FastQC in CWL
The FastQC tool has several input and output parameter settings.
Rather than go through every single one, we will add only a few of
the parameters and define required Base Command, Arguments,
Inputs, and Outputs as shown in Fig. 3.

The desired command line we are aiming to build is as follows:

fastqc --noextract --outdir . /path/to/input-1.ext /path/to/

input-2.ext

In this example, we are defining the base command as
“fastqc” with an additional argument of “--noextract.” This
argument allows us to run FastQC without having to uncompress
the output file after creating it. To create this command line, do the
following:

1. Set the Docker image URL, which can be used with a “docker

pull” command to pull an image to your local machine.

2. Set the Base Command as “fastqc.”

Reproducible Cancer Informatics Workflows 57

Fig. 3 Describing the FastQC tool with the CGC Tool Editor. (1) Each tool must have a Docker container within

which the command line executions are run. (2) The Base Command field is for a set of core commands for the

tool, including the necessary subcommand. (3) The argument command is where any arguments to the base

command can be added or modified. (4) The inputs tab is where Input Ports are added and modified. The Input

Port menu allows the user to set the parameters and behavior for an object that can be passed to the tool (e.g.,

a File). (5) The Outputs menu allows the user to specify Output Ports, which describe objects produced by the

tool which the user wishes to capture when the execution is completed. (6) The Resulting command line of

the app

3. Click the “Add an Argument” button. Configure new argu-
ment as following:

(a) Use command line binding: YES

(b) Prefix: (leave empty)

(c) Value: --noextract

(d) Separate value and prefix: YES or NO

(e) Position: 0

(i) Note: Position is set to 0 as we want this argument to
be placed first after the end of the base command.

For this argument, we have left the prefix empty as it is a
Boolean type argument and it does not take an actual value.
Since we want this flag to be added to the generated command
line under all circumstances, we have added the “--noex-

tract” argument directly as a value.
Arguments differ from “inputs,” as arguments are not

directly open to the user manipulation during task creation.
You may utilize arguments to lock down fundamental aspects
of your tool execution. For instance, in this case we want to
force FastQC to adopt a certain behavior: never create result
directories, and instead rather keep results in compressed for-
mat to reduce file cluttering in the project.

The settings we can define for an argument are as follows:

58 Rowan F. Beck et al.

• Use command line binding: This Yes/No switch determines
whether the specified argument should be included in the
generated command line.

• Prefix: Prefix field allows tool wrapper to define the argu-
ment prefix.

• Value: This field allows tool wrapper to define the value that
will come after the prefix. Tool wrappers may fill this field
with fixed values or create a JavaScript expression using “</
>” button for dynamic generation of the argument value.
You may visit the Seven Bridges Knowledge Center
(https://docs.sevenbridges.com/) to learn more about
dynamic expressions generated with JavaScript.

• Separate value and prefix: This Yes/No switch determines
whether “prefix” and “value” should be separated with a
space in the command line.

• Position: This field determines the position of the argument
within the command line. You may set this as 0 to position
the argument at the first place after the base command or a
very large number, such as 99, to position the argument at
the very end of the command line.

4. Add an additional argument by selecting the “+ Add an Argu-
ment” button and configure as following:

(a) Use command line binding: YES

(b) Prefix: --outdir

(c) Value:

(d) Separate value and prefix: YES

(e) Position: 1

This time we have set a prefix and a value, since this is an
argument that takes a value.

5. Add an INPUT PORT by selecting the “Add an Input” button
and configure as following:

(a) Required: YES

(b) ID: input_files

(c) Type: array

(d) Items Type: File

(e) Include in the command line: Ye s

(f) Value Transform:

(g) Prefix:

(h) Position: 100 (or any large number; we want this to be
placed at the end of the command line)

(i) Separate value and prefix: Yes

https://docs.sevenbridges.com/

Reproducible Cancer Informatics Workflows 59

(j) Item Separator: repeat

(k) Stage Input: --none--

(l) shellQuote:

(m) Load Content: N o

(n) Add secondary file: No Secondary Files defined.

(o) Label: Input FASTQ Files

(p) Description:

(q) Alternative Prefix:

(r) Category:

(s) File type(s): FASTQ, FASTQ.GZ

You may find more information about how to define the
input settings at the Seven Bridges Knowledge Center
(https://docs.sevenbridges.com/).

6. (Optional) Add another INPUT PORT by selecting “+ Add an
Input,” and set the following fields in the inspector panel:

(a) Required: N O

(b) ID: threads

(c) Type: int

(d) Include in the command line: Ye s

(e) Value Transform:

(f) Prefix: --threads

(g) Position: 3

(h) Separate value and prefix: Ye s

(i) Label: Number of Threads

(j) Description: Specifies the number of files which can be
processed simultaneously.

(k) Alternative Prefix:

(l) Category:

(m) Tool Defaults: 1

Now that we have specified all inputs and arguments
defined in the target command line structure shown at the
beginning of this section, we may start defining the outputs
that should be collected after the execution of the FastQC.
When run with a “--noextract” argument, FastQC creates two
files per sample:

• A ZIP file that contains FastQC report, graphics, and sum-
mary files

• An HTML report showing the FastQC results

As such, we must create output ports for both types of
outputs.

https://docs.sevenbridges.com/

60 Rowan F. Beck et al.

7. Add an OUTPUT PORT by selecting the “Add an Output”
button, and set the following fields in the inspector panel:

(a) Required: N o

(b) ID: report_zip

(c) Type: array

(d) Items Type: File

(e) Glob: *.zip

(f) Inherit:

(g) Output eval:

(h) Load content: N O

(i) No Secondary Files defined Label: Report zip

(j) Description:

(k) File type(s): ZIP

You may learn more about the output port settings at the
Seven Bridges Knowledge Center (https://docs.sevenbridges.
com/). Please note that adding an output port does not cause a
change in the sample command line generated at the bottom of
the screen.

Now you can add our second output port for the HTML
reports that you can display on the Platform.

8. Add an OUTPUT PORT by selecting the “+ Add an Output”
button, and set the following fields in the inspector panel:

(a) Required: N o

(b) ID: report_html

(c) Type: array

(d) Items Type: File

(e) Glob: *.html

(f) Inherit:

(g) Output eval:

(h) Load content: N O

(i) No Secondary Files defined

(j) Label: Report HTML

(k) Description:

(l) File type(s): HTML

9. Save your tool to the Seven Bridges Platform by creating a new
revision. Click the floppy disc icon located at the top right
corner of the screen. You may add a revision note, and then
select “Save.”

You will now notice that a new tab appears that displays the
app version that you just pushed to the Platform project.

https://docs.sevenbridges.com/
https://docs.sevenbridges.com/

Reproducible Cancer Informatics Workflows 61

CWL provides a variety of features to enhance the usability
and performance of described tools such as conditional execu-
tion, batching, and dynamic expressions (please see Notes 11–

15 for additional considerations and suggestions when opti-
mizing tool descriptions). While we’ve provided instructions
for describing tools using the visual interface on Seven Bridges
platforms, it is worth emphasizing that CWL can be entirely
written by hand and any valid CWL description can be
imported into the platform. The CWL website (commonwl.
org) provides numerous tutorials and resources for users get-
ting started with CWL.

3.5 Chaining Tools

into Workflows

Workflows on the Cancer Genomics Cloud are chains of tools
where input data is passed from tool to tool in an orchestrated
manner. In addition, workflows expand upon tools in specific ways:

1. Explicit values can be set for Input Ports (e.g., “threads” in the
example above).

2. Workflows can be configured to “scatter” an array of para-
meters of values over an Input Port, creating a task for each
index in the array.

3. Workflows can be “batched” based on metadata properties.

The Seven Bridges Platform includes a workflow editor for
viewing and customizing workflows. For example, the addition or
subtraction of tools from a workflow may be desirable to meet the
users’ analysis needs.

Here we will walk through the steps required to modify the
public HISAT2-StringTie Workflow to include the FastQC tool
which we just wrapped in CWL. These steps could also be applied
to combine other public or private tools into a reproducible
workflow.

Copy HISAT2-StringTie Workflow from Public Apps Gallery
The HISAT2-StringTie Workflow can be used to perform a gene
abundance estimation of RNA-Seq data (i.e., quantification) for a
unified set of genes common for all samples in an analysis. This
workflow is based on the Nature protocol paper [18] (with the
absence of the last step, Ballgown, which carries out testing for
differential expression).

To copy an existing version of this workflow into your project
space, click the “Apps” tab along the top banner of your project and
then “Add apps,” and lastly select “Public Apps.”

Next, type “HISAT2” into the search box, and click “Copy” on
the “HISAT2-StringTie Workflow” workflow panel. Select your
project from the dropdown menu, or create a new project. You
should now see a copy of the “HISAT2-StringTie Workflow” app in
the project you created.

http://commonwl.org
http://commonwl.org

62 Rowan F. Beck et al.

Chaining FastQC into the HISAT2-StringTie Workflow
Starting from a project containing the public apps version of the
HISAT2-StringTie Workflow, first navigate to the “Apps” tab and
click the “…” next to HISAT2-StringTie Workflow, and then select
“Edit.”

The platform will prompt you with a warning that if you make
changes to this copy of the HISAT2-StringTie Workflow, you will
stop getting notifications about updates to the original app. Click
“Edit” again to open the workflow editor with the HISAT2-
StringTie workflow featured in the workflow editor dashboard.
This workflow consists of several independent apps each displayed
as a colored circle and corresponding input or output files displayed
as gray circles. There are nodes on the perimeter of each item in the
Workflow Editor. These represent the tool’s ports, which are used
to enable data to flow in and out of the App. Nodes on the left of
the circle represent input ports, whereas the ones on the right
indicate output ports. Clicking on a port and dragging will reveal
a smart connector which is used to chain tools together into work-
flows as shown in Fig. 4.

To connect our FastQC app, first navigate to the left side of the
editor. Click the tab labeled “My Projects” and type “FastQC” to
search for your app. Once you’ve identified your FastQC app, select
it with your arrow, and then drag and drop the app onto the work-
flow editor dashboard.

Now, the “FastQC” app is available to be connected to the rest
of the workflow. We must first connect the FASTQ files (labeled
“Reads”) as an input to the FastQC app. To do so, click the output
port of the object labeled “Reads,” and drag it to the input node on
the left side of the “FastQC” app.

FastQC is now connected to our workflow; however, we need
to specify which outputs we would like to capture. To do this, click
the output node of the FastQC app and drag it to the dashboard.
Finally, clicking the grid icon in the lower right-hand corner of the
editor will realign the diagram.

Before executing the workflow, you need to save it by clicking
the save icon in the upper right-hand corner of the editor. This will
reveal a dialogue box for comments describing the changes made to
the workflow. Here we’ll type “Added FastQC to the workflow.”
Now, the workflow is complete and ready for analysis.

3.6 Running the

Workflow

To run the workflow, we must first create a new task within the
project space containing the modified HISAT2-StringTie work-
flow. To create a new task, navigate to the “Apps” tab within the
project, and then select “Run” next to the workflow. A new task
page will be created featuring two main tabs, “Task Inputs” and
“Execution Settings.”

Reproducible Cancer Informatics Workflows 63

Fig. 4 Assembly of the FastQC-HISAT2-Stringtie workflow. Workflows are described as chains of tools, in

which data objects are passed downstream. Data objects (inputs/outputs) can be passed between tools by

connecting the appropriate ports or can be redirected to Output Ports, so they are captured and saved once

execution is completed

Workflows are designed such that certain ports can be “locked” with or without values (if not required),

thereby preventing a user of the workflow from modifying this parameter. (1) To connect an additional app to

the workflow, select the desired app from the list on the left side of the screen, and then click and drag the app

into the workspace editor. (2) Connect the input port of FastQC to the “reads” output port. Click and drag both

output ports of FastQC to create and save output files

64 Rowan F. Beck et al.

Task Inputs
The task inputs tab can be divided into two sections with which the
user can interact: Inputs and App Settings. The “Inputs” section for
this workflow specifies that a user must provide reads, a reference
annotation file, and a reference or index file. These files can be
selected from the current project, other projects a user is a member
of, or public files. For this example, we will use input files from the
Public Files repository. To select reads, click the “Select file(s)” icon
for Reads input. Navigate to the “Public Files” tab along the top.
Next, click the “Tags” dropdown menu and select “RNA-seq.”
From the list of sorted files, select the two files ending in 1Mreads.
Click “Save Selection” to assign these files to your task, and then
click “Copy” when prompted. You will be returned to the draft task
page. Next, click the “Select file(s)” icon for the Reference annota-
tion file, navigate to the “Public Files” tab, then search “Homo_-
sapiens.GRCh38.84.gtf,” and save your selection. Finally, click
“Select file(s)” for the “References or Index files” input field,
navigate to “Public Files” and search “grch38_tran.tar.gz,” select
the file, and save the selection.

Under the “App Settings” section, set “Estimate novel isoform
abundance?” as False. Click “Show all” under the Apps Settings tab
to see all other parameters as shown in Fig. 5. These parameters are
not set as “editable” by the developer of this workflow.

Execution Settings
Under Execution Settings, “Spot Instances” can be set to “On.”
Spot instances are cost-effective ways to run tasks. Our in-house
analysis has shown that tasks on spot instances cost up to 90% less
than tasks that run on on-demand instances. This comes at a low
risk with an interruption rate of ~1%, in which case the platform will
automatically restart the interrupted process(es) using an
on-demand instance.

Memoization provides a mechanism for the automatic reuse of
precomputed outputs inside your project. There are some impor-
tant considerations to be aware of before using Memoization
(https://docs.sevenbridges.com/docs/about-memoization).

Additional options such as “Instance type” and “Paralleliza-
tion” can be accessed and specified in this section.

Click “Run” on the top-right to kick off the task. Task details
page shows the task is in running state. Processing time is ~7 min
and costs $0.17. After the task has finished, click the task link. This
brings up the task details page, which contains a complete record of
the executed app, used inputs, app settings, and the produced
outputs.

https://docs.sevenbridges.com/docs/about-memoization

Reproducible Cancer Informatics Workflows 65

Fig. 5 Setting parameters in the FastQC-HISAT2-Stringtie workflow. Once inputs are provided to the app on the

task run page, we can take a look at “App Settings.” Only the setting, “Estimate novel isoform abundance?”,

can be altered in this workflow. Click “Show all” under the Apps Settings tab to see all other parameters.

These parameters are not set as “editable” by the developer of this workflow

Viewing Outputs
StringTie provides a number of output files, among them a gene
abundance file, which is a TAB file containing FPKM, TPM, and
Coverage values for each gene as shown in Fig. 6. Two files are also
produced containing transcript and gene expression values in the

DESeq2 input format. The count matrix files are in .CSV format
and can be previewed on the Platform and dynamically sorted to
display genes with the highest read count values.

66 Rowan F. Beck et al.

Fig. 6 Viewing task results. Execution details including computational runtime and price are printed below the

task name. Output files from the task run are linked to directly from the task page

Viewing Stats and Logs
The Seven Bridges Platform gives you the tools you need to view
statistics and logs related to your analysis. This can come in handy
when you are diagnosing failed tasks. Click on “View stats & logs”
at the top-right of the task details page. This brings up the “Task
stats” page. You can find a detailed explanation of all its content in
the Seven Bridges Knowledge Center (https://docs.sevenbridges.
com/docs/view-task-stats). A detailed view of the selected area is

https://docs.sevenbridges.com/docs/view-task-stats
https://docs.sevenbridges.com/docs/view-task-stats

shown beneath the timeline. Most often, you will see several hori-
zontal bars on the timeline which correspond to different apps and
their jobs. Each app is executed in several steps, which are called
jobs. To view these jobs individually, click the bar representing the
app. The jobs appear as horizontal green bars underneath the app.
Parallel jobs are aligned vertically, to indicate that they executed
simultaneously.

Reproducible Cancer Informatics Workflows 67

If we select the gray box labeled HISAT2, you now see the
pinned details for this app. Click “View Logs” under “HISAT2” to
get more details about how this app was executed. The Task logs
page gives us access to all the log files of the app and any output files
generated. Logs we typically want to inspect are “cmd.log,” which
contains the executed command line, “sbg.worker.log,” which
provides details on Platform operations to coordinate the task
execution, and “job.err.log,” which contains all error/warning
messages produced by the command (stderr).

After checking the logs, if you would like to investigate
resource usage on the computational instances used throughout
the execution, you can go close the task logs dialogue by clicking on
the “X” button on top right corner, and click “Instance Metrics”
button shown on the top right-hand side of the “Tasks stats &
logs” page. The Platform lets you access instance metrics informa-
tion for all instances used in task execution.

The following information is available during task execution
and for 15 days after the task has been executed:

• Instance type, purchasing type and status

• Instance configuration, i.e., available vCPUs, Memory, Disk
space

• CPU usage

• Disk usage

• Memory usage

• Load average

• I/O activity

• Swap activity

All files generated from the execution can be accessed from the
task page as well as from the files tab. Note that selecting a file will
link back to the execution that created it which helps to support
traceability and reproducibility. We recommend running the work-
flow with several test files before setting up large batch tasks. This
allows you to identify areas for cost optimization and avoid errors
and expected outcomes at scale. Typically, researchers will perform
interactive analysis using visualization and scripting tools once raw
data are processed. The CGC has a number of tutorials and videos
demonstrating these capabilities which can be found on the CGC
home page at www.cancergenomicscloud.org.

http://www.cancergenomicscloud.org

68 Rowan F. Beck et al.

3.7 Conclusions The Seven Bridges Cancer Genomics Cloud plays a pivotal role
within the NCI Cancer Research Data Commons and serves as an
efficient, secure, and scalable computational analysis platform. Its
adherence to interoperability standards and seamless connection to
NCI data nodes allows users to easily integrate software and tech-
nologies to analyze publicly available data, as demonstrated in this
guide. The CGC’s facilitation of diverse analysis techniques, user-
friendly interfaces, and automation capabilities not only streamlines
the intricate process of managing extensive datasets but also
empowers researchers to focus on the core analytical aspects of
their investigations.

4 Notes

1. The CGC uses standards developed by the Global Alliance for
Genomics and Health (GA4GH) to enable approved research-
ers to access petabytes of data. A listing of connected datasets
can be found at https://www.cancergenomicscloud.org/
datasets. A video tutorial for submitting dbGaP requests can
be found at https://www.youtube.com/watch?v=m0xp_
cCO7kA, while guidance for troubleshooting data access is
available at https://docs.cancergenomicscloud.org/docs/
dbgap-controlled-data-access.

2. Dockerfiles should be used as a precise description of how to
rebuild the container used for an analysis. Since Dockerfiles are
simple text descriptions of a container using a domain-specific
language, they are extremely portable. By the time you’re done
building a container with a Dockerfile, you have a lightweight
way to enable others to reproduce your execution environ-
ments. You may want to interactively build the container and
then record the steps you take in a Dockerfile—but to ensure
reproducibility, the final container you use should actually be
built from the Dockerfile.

3. An important aspect of Docker containers is that a group of
containers in the same volume (e.g., registry, hard drive) can
share layers. For example, a container that is built from another
container but adds additional tools doesn’t duplicate the data
from the previous container. This behavior alleviates any data
burden of having many function-specific containers. For this
reason, we encourage researchers to employ many lightweight
containers for easy sharing and deployment, as opposed to a
few containers with many tools inside.

4. For simple command line tools, we recommend using standard
Linux distribution containers. For example, let us examine a
simple tool which saves the first 1000 lines of a FASTQ file as a
new file. We can use the “head” tool to trim the top “n” lines of

https://www.cancergenomicscloud.org/datasets
https://www.cancergenomicscloud.org/datasets
https://www.youtube.com/watch?v=m0xp_cCO7kA
https://www.youtube.com/watch?v=m0xp_cCO7kA
https://docs.cancergenomicscloud.org/docs/dbgap-controlled-data-access
https://docs.cancergenomicscloud.org/docs/dbgap-controlled-data-access

Reproducible Cancer Informatics Workflows 69

any file. Since head is a Linux command line tool, we can use
an Ubuntu container as a bigger one is not needed. To save the
first 1000 lines of a FASTQ in a new file, use head to print the
first 1000 lines of the input FASTQ file, and then redirect
stdout to a new file:

head -1000 [input_file] > [output_file]

This tool can then be reused on any FASTQ file to generate
a plethora of outputs. Note that this tool is particularly useful
for sampling FASTQs, which can then be used for rapidly
testing tools or workflows which are computationally intensive.
When the goal is to see if your tool runs properly, we recom-
mend that you use sampled FASTQs to iterate more rapidly.

5. Dockerfiles use the “FROM” command to use another image
as the “base” for the new image being built. We recommend
that you build from trusted, standard containers (e.g.,
ubuntu:latest) instead of a third-party container. If you
choose to rebuild your container from this Dockerfile in the
future and the base image has been modified, the rebuilt con-
tainer will inherit any changes within it. This may lead to errors
or dependency issues if the base image has changed
dramatically.

6. If you don’t intend to use the software outside the container,
you can use commands such as wget, curl, or other download-
ing software to directly download software into a container
during the build.

7. Some software will automatically add itself to $PATH, and thus
these steps may not be required.

8. Docker containers can be run to execute a command directly
(using the CMD field). However, containers intended for use
on the CGC should be built such that they can be run in
“interactive mode” (e.g., docker run -it <repo/image:

tag>) and a set of specified commands can be executed within
them. On the Cancer Genomics Cloud, all commands are
executed from the working directory (“/”) by default.

9. The “docker build” command will begin to build the con-
tainer layers starting from the beginning of the Dockerfile
(FROM) until the end (CMD). The layers pertaining to each
code block are cached during the build. If a change is made
somewhere in the Dockerfile, all the layers pertaining to code
blocks above the change will be loaded, and all layers built from
the command below the change will be overwritten. It is recom-
mended that any software-based changes that need to be made
into a container are done by modifying the original Dockerfile
and then rebuilding. However, there may be cases where you

70 Rowan F. Beck et al.

wish to save an analysis or analysis output in a container for
your own use (not for production). In such cases, you can
commit changes made in a container back to the image with
the following command: docker commit <container_id>

<repo/image:tag>.

10. Here is an example Dockerfile for another RNAseq tool,
RSEM 1.23.1.

FROM ubuntu:latest

MAINTAINER "YourFirstName YourLastName" <email@institution.

io>

WORKDIR /

Update and install necessary tools

RUN apt-get update -y

RUN apt-get install -y \

gcc \

g++ \

libdb5.1 \

libdb5.1-dev \

make \

cmake \

libboost-dev \

libboost-thread-dev \

libboost-system-dev \

zlib1g-dev \

ncurses-dev \

libxml2-dev \

libxslt-dev \

build-essential \

python \

python-pip \

python-dev \

git \

apt-utils \

vim \

wget \

perl \

perl-base \

r-base \

r-base-core \

r-base-dev

Get RSEM-1.2.31 and install RSEM and EBSeq

RUN wget -P opt --verbose --tries=5 https://github.com/

deweylab/RSEM/archive/v1.2.31.tar.gz

RUN tar xzf opt/v1.2.31.tar.gz

RUN cd RSEM-1.2.31/ && make && make install && make ebseq

Install bowtie

RUN apt-get install bowtie -y

Open container with bash terminal

CMD ["/bin/bash"]

Reproducible Cancer Informatics Workflows 71

11. There are a few important considerations when designing
tools. On the CGC, you can create a “batch” of tasks based
on the metadata properties of a set of input files. For example,
let’s say you have a tool which sorts a single BAM file and
outputs the sorted BAM. You can create a workflow from this
tool which can instead take an array of bam files and will create
a single task for each set of files based on “Sample ID.” Since
each BAM file presumably has its own unique Sample ID, a
single task will be created per BAM with far less user interaction
(if done through the GUI) or code required (if done through
the API). A major constraint for this feature is that you can only
batch on a single Input port. This is obvious for BAM files, but
when performing a batch of tasks for a set of paired-end
FASTQ files, you must pass the FASTQ files as an array of
files. If you create an individual port for each paired-end
FASTQ (e.g., 1, 2), then you cannot set up a batchable
workflow.

12. We can set a default value for an Input Port by taking two steps:
(1) do not make the port “required,” and (2) create a dynamic
expression for the “Value” of this port such that the port has a
value if unspecified. For example, if the Input Port type is an
integer and we wish to specify “31” as a default value, the
dynamic expression can be written as ($self || 31) or
($job.inputs.<input_id> || 31). This expression means
that if the user specifies a value for this port ($self), then that is
used as the “Value” or, if unspecified, 31 is given as the value.
In addition, the default value in the CWL description can be
different from the tool’s default.

13. Explicit values for each Input Port and Allocated Resources
(CPU, Memory) are provided to the application for execution.
This is referred to as the “job” object (or “job.json”). From
this object, we can incorporate the properties of Input Ports
into the dynamic expressions of the tool. For example, suppose
that a user can specify the number of threads for a tool with an
integer value (ID: threads). In order to pass this to the CPU
requirements field, we can set the value for CPU as the follow-
ing dynamic expression: $job.inputs.threads.

14. Consider how a tool will operate when it runs at scale and how
you will manage the output data. Tools such as kallisto index
take an input which generates the output filename or its prefix.
When batching tasks, you cannot then specify an individual
name per file. Rather, only an individual value can be given. On
the CGC, this will produce n number of files with the same

72 Rowan F. Beck et al.

name, with the addition of a prefix (“_#_,” where # is the nth
copy of a file). This will make file management difficult, as the
origin of a file is not readily apparent from its name. Instead, we
will solve this issue by automatically passing a unique identifier,
such as the input file’s “Sample ID,” which will scale over
dozens, hundreds, or thousands of tasks.

15. Within workflows, if an Output Node is not created from a
port, then objects from that port are not saved. It is possible to
both pass an output from an upstream tool downstream and
create an Output Port to save it. In this way, you can also save
“intermediate files” or files which can be passed to downstream
tools, by creating Output Nodes for them in addition to con-
necting them to downstream tools.

Acknowledgments

The Seven Bridges Cancer Research Data Commons Cloud
Resource has been funded in whole or in part with Federal funds
from the National Cancer Institute, National Institutes of Health,
Contract No. HHSN261201400008C, and ID/IQ Agreement
No. 17X146 under Contract No. HHSN261201500003I and
75N91019D00024. We would like to acknowledge the contribu-
tions of past and present Velsera team members, including but not
limited to Jack DiGiovanna, Alison Leaf, Liz Williams, Manisha
Ray, Dennis Dean III, Divya Sain, Sai Subramanian, Nikola Mirko-
vic, Nina Skoko, Ivana Gornik, and Milos Trboljevac.

References

1. Kim E, Davidsen T, Davis-Dusenbery BN,
Baumann A, Maggio A, Chen Z,
Meerzaman D, Casas-Silva E, Pot D, Pihl T,
Otridge J, Shalley E, CRDC Program,
Barnholtz-Sloan JS, Kerlavage AR (2024)
NCI Cancer Research Data Commons: lessons
learned and future state. Cancer Res 84(9):
1404–1409. https://doi.org/10.1158/
0008-5472.CAN-23-2730. PMID:
38488510; PMCID: PMC11063686

2. Pot D, Worman Z, Baumann A, Pathak S,
Beck R, Beck E, Thayer K et al (2024) NCI
Cancer Research Data Commons: cloud-based
analytic resources. Cancer Res 84(9):
1396–1403

3. Lau JW, Lehnert E, Sethi A, Malhotra R,
Kaushik G, Onder Z, Groves-Kirkby N,
Mihajlovic A, DiGiovanna J, Srdic M,
Bajcic D, Radenkovic J, Mladenovic V,
Krstanovic D, Arsenijevic V, Klisic D,
Mitrovic M, Bogicevic I, Kural D, Davis-
Dusenbery B (2017) The Cancer Genomics

Cloud: collaborative, reproducible, and
democratized—a new paradigm in large-scale
computational research. Cancer Res 77:e3–e6

4. Wang Z, Davidsen TM, Kuffel GR, Addepalli
KD, Bell A, Casas-Silva E, Dingerdissen H et al
(2024) NCI Cancer Research Data Commons:
resources to share key cancer data. Cancer Res
84(9):1388–1395

5. Di Tommaso P, Chatzou M, Floden EW, Barja
PP, Palumbo E, Notredame C (2017) Next-
flow enables reproducible computational work-
flows. Nat Biotechnol 35:316–319

6. Voss K, Auwera GA, Gentry J (2017) Full-stack
genomics pipelining with GATK4 + WDL +
Cromwell. F1000Res 6:1–4

7. Crusoe MR, Abeln S, Iosup A, Amstutz P,
Chilton J, Tijanić N, Ménager H, Soiland-
Reyes S, Gavrilović B, Goble C, Community
TC (2022) Methods included: standardizing
computational reuse and portability with the
Common Workflow Language. Commun
ACM 65:54–63

https://doi.org/10.1158/0008-5472.CAN-23-2730
https://doi.org/10.1158/0008-5472.CAN-23-2730

Reproducible Cancer Informatics Workflows 73

8. Alioto TS, Buchhalter I, Derdak S, Hutter B,
Eldridge MD, Hovig E, Heisler LE, Beck TA,
Simpson JT, Tonon L, Sertier A-S, Patch A-M,
J€ager N, Ginsbach P, Drews R, Paramasivam N,
Kabbe R, Chotewutmontri S, Diessl N,
Previti C, Schmidt S, Brors B, Feuerbach L,
Heinold M, Gröbner S, Korshunov A, Tarpey
PS, Butler AP, Hinton J, Jones D, Menzies A,
Raine K, Shepherd R, Stebbings L, Teague JW,
Ribeca P, Giner FC, Beltran S, Raineri E,
Dabad M, Heath SC, Gut M, Denroche RE,
Harding NJ, Yamaguchi TN, Fujimoto A,
Nakagawa H, Quesada V, Valdés-Mas R,
Nakken S, Vodák D, Bower L, Lynch AG,
Anderson CL, Waddell N, Pearson JV, Grim-
mond SM, Peto M, Spellman P, He M,
Kandoth C, Lee S, Zhang J, Létourneau L,
Ma S, Seth S, Torrents D, Xi L, Wheeler DA,
López-Otı́n C, Campo E, Campbell PJ, Bou-
tros PC, Puente XS, Gerhard DS, Pfister SM,
McPherson JD, Hudson TJ, Schlesner M,
Lichter P, Eils R, Jones DTW, Gut IG (2015)
A comprehensive assessment of somatic muta-
tion detection in cancer using whole-genome
sequencing. Nat Commun 6:10001

9. Ziemann M, Poulain P, Bora A (2023) The five
pillars of computational reproducibility: bioin-
formatics and beyond. Brief Bioinform 24:
bbad375. https://doi.org/10.1093/bib/
bbad375

10. Trisovic A, Lau MK, Pasquier T, Crosas M
(2022) A large-scale study on research code
quality and execution. Sci Data 9:60

11. Merkel D (2014) Docker: lightweight Linux
containers for consistent development and
deployment. Linux J 2014:2

12. GitHub. common-workflow-language com-
mon-workflow-language/common-workflow-
language. https://github.com/common-
workflow-language/common-workflow-lan
guage. Accessed 22 Feb 2015

13. Xiao N, Koc S, Roberson D, Brooks P, Ray M,
Dean D (2020) BCO App: tools for generating
BioCompute Objects from next-generation
sequencing workflows and computations.
F1000Res 9:1144

14. Simonyan V, Goecks J, Mazumder R (2017)
Biocompute objects—a step towards evalua-
tion and validation of biomedical scientific

computations. PDA J Pharm Sci Technol 71:
136–146

15. Hutter C, Zenklusen JC (2018) The Cancer
Genome Atlas: creating lasting value beyond
its data. Cell 173:283–285

16. Rozenblatt-Rosen O, Regev A,
Oberdoerffer P, Nawy T, Hupalowska A,
Rood JE, Ashenberg O, Cerami E, Coffey RJ,
Demir E, Ding L, Esplin ED, Ford JM,
Goecks J, Ghosh S, Gray JW, Guinney J, Han-
lon SE, Hughes SK, Hwang ES, Iacobuzio-
Donahue CA, Jané-Valbuena J, Johnson BE,
Lau KS, Lively T, Mazzilli SA, Pe’er D,
Santagata S, Shalek AK, Schapiro D, Snyder
MP, Sorger PK, Spira AE, Srivastava S, Tan K,
West RB, Williams EH, Human Tumor Atlas
Network (2020) The Human Tumor Atlas
Network: charting tumor transitions across
space and time at single-cell resolution. Cell
181:236–249

17. Babraham Bioinformatics. FastQC A quality
control tool for high throughput sequence
data. https://www.bioinformatics.babraham.
ac.uk/projects/fastqc/. Accessed 19 Jan 2024

18. Pertea M, Kim D, Pertea GM, Leek JT, Salz-
berg SL (2016) Transcript-level expression
analysis of RNA-seq experiments with HISAT,
StringTie and Ballgown. Nat Protoc 11:1650–

1667

19. Barretina J, Caponigro G, Stransky N,
Venkatesan K, Margolin AA, Kim S, Wilson
CJ, Lehár J, Kryukov GV, Sonkin D,
Reddy A, Liu M, Murray L, Berger MF, Mon-
ahan JE, Morais P, Meltzer J, Korejwa A, Jan-
é-Valbuena J, Mapa FA, Thibault J, Bric-
Furlong E, Raman P, Shipway A, Engels IH,
Cheng J, Yu GK, Yu J, Aspesi P Jr, de Silva M,
Jagtap K, Jones MD, Wang L, Hatton C,
Palescandolo E, Gupta S, Mahan S,
Sougnez C, Onofrio RC, Liefeld T,
MacConaill L, Winckler W, Reich M, Li N,
Mesirov JP, Gabriel SB, Getz G, Ardlie K,
Chan V, Myer VE, Weber BL, Porter J,
Warmuth M, Finan P, Harris JL,
Meyerson M, Golub TR, Morrissey MP, Sellers
WR, Schlegel R, Garraway LA (2019) Adden-
dum: The Cancer Cell Line Encyclopedia
enables predictive modelling of anticancer
drug sensitivity. Nature 565:E5–E6

https://doi.org/10.1093/bib/bbad375
https://doi.org/10.1093/bib/bbad375
https://github.com/common-workflow-language/common-workflow-language
https://github.com/common-workflow-language/common-workflow-language
https://github.com/common-workflow-language/common-workflow-language
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Chapter 3

Using the Cancer Epitope Database and Analysis Resource
(CEDAR)

Zeynep Koşaloğlu-Yalçın, Randi Vita, Nina Blazeska, Bjoern Peters,
and Alessandro Sette

Abstract

The Cancer Epitope Database and Analysis Resource (CEDAR) is a freely accessible catalog of cancer
epitope and receptor data linked to the biological, immunological, and clinical contexts in which they were
described. CEDAR data is populated by manual curation of the cancer literature and provides a central
resource for researchers to access information about cancer antigens and their specific epitopes, which is
relevant to our understanding of the role that the immune system plays in cancer progression, prevention,
and treatment. In this chapter, we aim to provide a comprehensive overview of the database section of
CEDAR. This includes a detailed description of all available query parameters, guidance on navigating
through the query results, and a demonstration of how CEDAR can aid cancer research, featuring example
research scenarios and queries.

Key words Tumor antigens, Epitopes, Neoantigens, Cancer immunology, Immunotherapy, Database

1 Introduction

Adaptive immunity relies on two main types of responses; one is
mediated by B cells, while the other is mediated by T cells. Mole-
cules that are recognized by immune cells are called antigens.
Receptors on the surface of B cells (BCRs) and T cells (TCRs)
bind to specific parts of antigens, called epitopes, which can trigger
an immune response.

Antigens expressed by cancer cells, namely, tumor antigens,
play an essential role in the diagnosis and treatment of cancer.
Tumor antigens include proteins, glycoproteins, glycolipids, and
carbohydrates. Tumor antigens can be broadly categorized into
tumor-specific antigens (TSAs), which are restricted to tumor
cells, and tumor-associated antigens (TAAs), antigens that are pres-
ent in both tumor cells and normal cells [1]. TSAs include antigens
derived from oncogenic viruses (e.g., human papillomavirus

Alexander Krasnitz and Pascal Belleau (eds.), Cancer Bioinformatics, Methods in Molecular Biology, vol. 2932,
https://doi.org/10.1007/978-1-0716-4566-6_3,
© The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature 2025

75

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-4566-6_3&domain=pdf
https://doi.org/10.1007/978-1-0716-4566-6_3#DOI

(HPV)), products of mutated genes (also called neoantigens), and
cancer germline or cancer-testis antigens that are normally not
expressed in adult tissue but reexpressed in tumor tissue (e.g.,
carcinoembryonic antigen (CEA), melanoma-associated antigens
(MAGEs)) [2, 3]. TAAs include differentiation or tissue-specific
antigens that are expressed by tumors and the normal tissues from
which they arise (e.g., melanoma-associated antigen recognized by
T cells (MART-1), Glycoprotein 100 (gp100)) and overexpressed
antigens that are expressed in normal cells but are expressed at
considerably higher levels on tumor cells (e.g., Her2/neu, Survi-
vin, wild-type p53) [3, 4].

76 Zeynep Koşaloğlu-Yalçın et al.

Cancer antigens are routinely used as diagnostic markers and
provide targets for immunotherapeutic treatments [5]. Historically,
antigen-targeting immunotherapies yielded limited success in clini-
cal trials (reviewed in [6]). However, with the advent of immune-
checkpoint blockade (ICB) therapies that can remove the immune
inhibitory signals at the tumor site, interest in antigen-based immu-
notherapies has resurged. For example, epitope-based vaccines can
elicit strong and durable immune responses when combined with
ICB (reviewed in [7]). The transfer of epitope-specific T cells and T
cell receptors, or T cells with chimeric antigen receptors (CAR T
cells), is also being studied and has shown clinical success [8–
12]. While epitopes from shared antigens expressed across cancers
of different individuals provide potential targets for more broadly
applicable immunotherapies, neoantigens that are highly tumor-
specific are of particular interest for personalized strategies. Indeed,
neoantigen-based immunotherapies were shown to be highly effec-
tive when compared to therapies based on shared antigens
[13, 14]. Data about tumor antigens and their specific epitopes is
relevant to our understanding of the role that the immune system
plays in cancer progression, prevention, and treatment.

Given the importance of cancer epitopes, there is a clear need to
catalog all cancer epitope-related data linked to the biological,
immunological, and clinical contexts. Most importantly, this infor-
mation must be freely available to the scientific community in a
user-friendly format. Most resources do not capture all necessary
epitope data granularly and/or are not freely available. The Cancer
Epitope Database and Analysis Resource (CEDAR, cedar.iedb.org)
[15] was initiated in 2021 and provides a central, freely accessible
catalog of cancer epitope and receptor data linked to the biological,
immunological, and clinical contexts in which they were described.
It builds on technical and scientific knowledge obtained from the
Immune Epitope Database (IEDB, iedb.org) [16] and utilizes
similar infrastructure and processes adapted to the cancer research
setting.

CEDAR data is populated by manual curation of the cancer
literature, following detailed curation guidelines, and is assisted by
automated validation [17]. Briefly, PhD-level curators read journal

http://cedar.iedb.org
http://iedb.org

articles and identify all experimental assays where an adaptive
immune receptor was tested for recognition of an epitope, whether
the outcome was positive or negative. All assay types that provide
epitope-specific recognition data, including assays that generate
BCR and TCR sequences and 3D structures, are captured. All
epitope-specific data and details of the assays used to describe the
immune responses are captured. Curation is performed on a
per-publication basis, with all data, including positive and negative
outcomes, from each publication curated fully as a stand-alone
record. Thus, any single epitope may have been described in multi-
ple papers and various contexts.

The Cancer Epitope Database and Analysis Resource 77

In this chapter, we provide a detailed description of the data-
base part of CEDAR, describing all available query parameters and
explaining how to navigate and interpret the query results. We also
offer four research scenarios with example queries to demonstrate
how CEDAR can facilitate cancer research.

2 CEDAR Query Interface

One of the challenges for biomedical databases is to develop intui-
tive query interfaces while allowing the user to perform granular
queries. To ensure this, we conducted interviews with several
experts in the cancer immunology research field. During several
iterations, we developed a search interface that makes the most
requested information immediately accessible (Fig. 1).

2.1 Epitope Panel In the “Epitope” panel, users can select if they want to include
linear or discontinuous epitopes in their query. A specific peptide
sequence of interest can also be entered into the “Linear Peptide”
field. If no specific antigen is entered in the “Epitope Source” panel
below, this query might return results including different antigens,
as the same peptide might occur in different proteins. Users can
search for exact matches or include epitopes from which the peptide
of interest is a substring. One could also search for epitopes that are
similar to the peptide of interest by selecting the “BLAST” options
from the drop-down menu.

2.2 Epitope Source

Panel

Users can use the “Epitope Source” panel to query CEDAR for
epitopes encoded by a specific gene by entering it into the text field.
When the user starts to enter text into the field, matching proteins
will show up in a drop-down menu. In the example query in Fig. 1,
the antigen “NY-ESO-1” was selected. The “Molecule Finder” can
be accessed by clicking the “Find” button next to the text field.
Here, users can search for a gene/protein of interest by entering a
synonym or the UniProt ID and the source organism.

78 Zeynep Koşaloğlu-Yalçın et al.

Fig. 1 CEDAR homepage: cedar.iedb.org. The CEDAR search interface makes the most requested information
immediately accessible and allows intuitive yet granular queries

Additionally, users can select specific cancer-associated antigen
subtypes as the epitope source, including “Neoantigen,” “Viral
antigen,” and “Germline/Self/Host antigen.” We defined these
three broader categories of cancer-associated antigens that can be
clearly distinguished and are mutually exclusive. Antigens that are
not cancer-associated but were reported together with cancer-
associated antigens in a cancer-related study can also be included
in the query by selecting “Other antigens from same reference.”
The default selection on the CEDAR homepage excludes those
antigens and only queries all cancer-associated antigens. In the
example query in Fig. 1, the checkboxes “Neoantigen” and “Viral
antigen” were deselected to include only germline epitopes.

2.3 Host Panel In the “Host” panel, users can select the organism for which they
want to retrieve epitope data for. While CEDAR hosts some epitope
data from mouse and nonhuman primates, curation currently
focuses on human epitope data. In the example query in Fig. 1,
“Human” was selected as the host.

2.4 Assay Panel In the “Assay” panel, users can select to query for epitopes that
were tested using specific assay types. For a broader search, the
three main assay groups, “T cell,” “B cell,” or “MHC ligand
elution,” can be selected using the checkboxes. Users can also
search for a specific assay type. The assay types in CEDAR reflect

http://cedar.iedb.org

the assays being used in the literature. This includes all commonly
used immunological methods such as ELISPOT, ELISA, FACs,
bioassays, etc. The assay of interest can be found by typing into
the text box, which will show all matching assay types in a drop-
down menu.

The Cancer Epitope Database and Analysis Resource 79

The “Assay Finder” can be accessed by clicking the “Find”
button next to the text box. The Assay Finder allows users to search
for either the purpose of the assay (e.g., to measure IL-2) or the
method used (e.g., ELISA). Users can also browse the “Assay Tree”
to explore all available assays in CEDAR.

All experimental data entered into the CEDAR database are
categorized as either positive or negative. Users can select which
outcomes to include in the query using the checkboxes. In the
example query in Fig. 1, the checkboxes “B Cell” and “MHC
Ligand” were deselected to only include T cell assays. For the
“Outcome” fields, only “Positive” was selected to only include
assays with positive outcomes.

2.5 MHC Restriction

Panel

In the “MHC Restriction” panel, users can select to query for the
MHC molecules involved in an epitope’s recognition. One can
select to search for epitopes recognized in the context of MHC
class I, class II, or nonclassical or narrow down the search and enter
a specific MHC into the text box. The “MHC Restriction Finder”
can be accessed using the finder button next to the text box. Here,
users can search for an MHC or use the tree to explore all MHC
molecules captured in CEDAR. In the example query in Fig. 1,
“Class I” was selected to only query for MHC class I restricted
epitopes.

2.6 Cancer Panel Users can narrow down their query to only include epitopes tested
in the context of a specific cancer using the “Cancer” panel. A
cancer type can be selected by typing it into the text box, where
matching cancer types appear in the drop-down menu. In the
“Disease Finder,” which can be accessed using the finder icon
next to the text box, users can search for cancers by name or
using Disease Ontology (DOID) [18] or the Ontology of Immune
Epitopes (ONTIE) [19] identifiers. One can also explore the “Dis-
ease Tree” to select cancer types of interest. In the cancer panel,
users can also select a cancer stage they want to query from the
drop-down menu. The cancers can further be narrowed down
according to how the host was exposed, i.e., “Naturally occurring
disease” (e.g., occurrence of breast cancer), “Animal model of
cancer” (e.g., C57BL/6 or BALB/c), and “Vaccination” (e.g.,
therapeutic vaccination with neoantigens or prophylactic vaccina-
tion against human papillomavirus (HPV)). In the example query
in Fig. 1, the “Type” field was left blank to include all cancer types,
and “Naturally occurring disease” was selected to only include
cancers that occurred naturally without any intervention.

80 Zeynep Koşaloğlu-Yalçın et al.

2.7 Querying CEDAR As an example, we have populated the query interface to search for
all MHC class I restricted germline epitopes from NY-ESO-1 that
were observed in humans with naturally occurring cancer of any
type and tested with any T cell assay that yielded a positive outcome.
Executing this search queries the entire CEDAR content, meaning
all epitope, antigen, assay, receptor records, and returns records
meet these search criteria.

3 Results Display

Once a query has been executed, the search results are presented on
a new page (Fig. 2a). The search criteria are displayed at the top of
the results table, and any filter can also be removed at this stage by

Fig. 2 CEDAR results presentation of epitope data. (a) The Epitopes tab displays one unique epitope per row
together with its source antigen and organism, and all available assays and references are summarized as

numbers. (b) The Epitope Details page provides information on all experimental contexts in which an epitope
was tested. For each assay type the epitope was tested in, it displays how often it was tested, the outcome,

and links to these assays

clicking “X” next to the parameter. Additional search panels added
to the left side of the page allow the current results to be further
refined by selecting additional search parameters (not shown in
Fig. 2a).

The Cancer Epitope Database and Analysis Resource 81

The results are grouped into five tabs—“Epitopes,” “Anti-
gens,” “Assays,” “Receptors,” and “References,” which are filtered
based on the selected search criteria. These different units of infor-
mation reflect how users may want to utilize CEDAR; one can
explore the literature, for example, on the References tab or use
the Antigens tab to explore which specific antigens have been
studied for immune reactivity for a cancer type of interest. Results
on each tab are sorted by how much information is available, and
data with the highest number of references is shown first.

3.1 Epitopes Tab The “Epitopes” tab displays one unique epitope per row with its
source antigen and organism. For each epitope, all available assays
and references are summarized as numbers (Fig. 2a). If the user is
interested in a specific epitope from this list, results can be filtered
by clicking the funnel icon next to it. This will filter all records in the
tabs Epitopes, Antigens, Assays, Receptors, and References to only
show records related to the epitope of interest while maintaining all
selected search parameters.

By clicking on the “Epitope ID” in the “Details” column of an
epitope, a new browser tab containing the “Epitope Details” page
is opened (Fig. 2b). The Epitope Details page provides information
on all experimental contexts in which an epitope was tested, with a
textual summary of the compiled data at the top of the page and in
the data tables below. Each assay type, namely, MHC ligand, B cell,
and T cell assay, is presented in a separate section of the data table
and provides a summary of assay subtypes the epitope was tested in,
how often it was tested, how often the outcome was positive, and
links to these assays. Using the Epitope Details page, a user can
quickly form opinions regarding an epitope of interest. On the
Epitope Details page, all information will be displayed without
considering the parameters of the initial query.

For example, the assays performed on the epitope in Fig. 2b
suggest that the NY-ESO-1 epitope SLLMWITQC binds to
HLA-A*02:01, as shown by 15 assays. The epitope can activate B
cells, as shown by four different B cell assays. A plethora of T cell
assays were performed with this epitope, all suggesting that it can
activate T cells. All numbers in these data tables are links and can be
clicked to access the details about the corresponding assays.

3.2 Antigens Tab The “Antigens” tab displays one unique antigen per row with its
source organism. The Antigen table also provides information on
how often epitopes from each antigen were studied with counts for
the number of epitopes, assays, and references. Users can further
narrow their results to a single antigen using the funnel icon next to

the antigen of interest. In the example in Fig. 3a, only one antigen
is displayed because our example query included a filter for
NY-ESO-1.

82 Zeynep Koşaloğlu-Yalçın et al.

Fig. 3 CEDAR results presentation of antigen data. (a) The Antigens tab displays one unique antigen per row
with its source organism and information on how often epitopes from each antigen were studied with counts

for the number of epitopes, assays, and references. (b) The Immunome Browser visualizes linear epitopes
along the length of the parent antigen based on sequence similarity and displays how often each protein

region has been studied and in how many assays the immune response was positive or negative

The “Immunome Browser” can be accessed by clicking the bar
chart icon next to the antigen of interest. The Immunome Browser
visualizes linear peptidic epitopes along the length of the parent
antigen based on sequence similarity. This displays how often each
protein region has been studied in immune assays and in how many
assays the immune response was positive or negative. Figure 3b
shows the Immunome Browser output for the epitopes from
NY-ESO-1 recognized in the human T cell response. The upper
plot renders the lower and upper bounds of the 95% confidence
interval of the response frequency for each target protein position,
averaged over all epitopes mapped to that position and calculated as
the number of positively responded subjects relative to the total
number tested. The bottom plot shows the number of positive and
negative assays averaged over epitopes mapped to each position in
the protein sequence. A table below the graphs (not shown) pre-
sents results for each epitope and each protein position in a tabular

format that can be saved, along with the graph images, for further
analysis and publication. The user can interactively zoom in and out
of the plots to a specific protein region, and the table will update
accordingly. Of note, the Immunome Browser is not available for
neoantigens at this time, but future work is planned to implement a
suitable version of the Immunome Browser for neoantigens.

The Cancer Epitope Database and Analysis Resource 83

3.3 Assays Tab The “Assays” tab displays all assays used to identify and test the
epitopes that meet the search criteria. If an epitope was tested with
multiple assays, all assays that meet the search criteria will be listed
here. The Assays parent tab is grouped into three subtabs: T cell, B
cell, and MHC ligand assays. In our example in Fig. 4, only the T
cell tab is populated because our example query included a filter for
T cell assays.

Each row in the assays tab describes an assay with a set of fields
providing relevant details such as the following:

(i) Reference. This field contains the reference the assay was
reported in, and the first author, journal, and year of publica-
tion are displayed. By clicking the reference, the reference
details page can be opened (described below).

(ii) Epitope. This field describes the specific epitope sequence
utilized in the assay together with its source antigen and
organism. By clicking here, the “Epitope Details” page can
also be accessed.

Fig. 4 CEDAR results presentation of assay data. The Assays tab displays all assays used to identify and test
the epitopes that meet the search criteria and is grouped into three tabs: T cell, B cell, and MHC Ligand

Assays. Each row in the assays tab describes an assay with a set of fields providing relevant details such as

the type and outcome of the assay and the reference it was reported in

84 Zeynep Koşaloğlu-Yalçın et al.

(iii) Host. This field described the host from which the immune
cells or antibodies for the assay were derived.

(iv) Immunization. This field contains details about how the host
was immunized. This includes, for example, “Occurrence of
Disease” (e.g., naturally occurring lung cancer), “Adminis-
tration in vivo” (e.g., injection of a mouse with a cancer
antigen), “Environmental exposure” (e.g., natural exposure
to HPV through known sexual contact), and “Vaccination”
(e.g., therapeutic vaccination with neoantigens).

(v) Assay Antigen. This field contains the specific antigen that
was used in the assay. This is not always the same as the
epitope because CEDAR captures all experimental contexts
in which an epitope-specific receptor is tested. For example, if
an epitope-specific T cell line is tested for proliferation in
response to a whole protein, this will be included in CEDAR.

(vi) Antigen Epitope Relation. This field describes the relation-
ship between the epitope and the assay antigen. For example,
“Epitope” describes a case where the epitope itself was used
in the assay, whereas “Source Antigen” describes an assay
where the whole protein was used and the specific epitope
sequence within the antigen was also known.

(vii) MHC Restriction. This describes the MHC restriction of the
epitope that was utilized in the assay. Depending on what was
reported in the reference, this can be a general description
like “HLA class II” or a specific MHC molecule like “HLA-
DRB1*04:02.”

(viii) Assay Description. This field provides a brief description of
the assay, including the type of assay and the outcome. The
assay type includes the method and what was measured, e.g.,
ELISPOT and IFNg release. All experimental data entered
into CEDAR are categorized as positive or negative. If
authors provide such information, additional granularity is
available for positive data with values of positive-high, posi-
tive-intermediate, and positive-low. For assay types with
quantitative measurements, the numerical values and units
are also available.

3.4 Receptors Tab The “Receptors” tab has two subtabs for T cell and B cell receptors
(Fig. 5a). In each row of the TCR or BCR tab, a unique receptor is
displayed along with the species it was reported in, the type (e.g., αβ
TCRs), and the Chain 1 and Chain 2 CDR3 sequences, if available.
Analogous to the “Epitope” tab, details about a receptor can be
retrieved by clicking on its ID in the “Group ID” column.

On the “Receptor Details” page (Fig. 5b), relevant information
about the species that the receptor was reported in is displayed, and
links to the 3D structures in PDB are summarized at the top of the

page. In the data table below, the gene usage and sequences for
CDR1, CDR2, and CDR3 as well as the full-length receptor
sequence are displayed for both alpha and beta chains, when avail-
able. Some authors only provide a single CDR3 sequence for one
chain, while others provide full-length receptor sequences for both
chains. Sequences of the epitopes that the receptor was reported to
recognize are also listed, together with links to the corresponding
epitopes in CEDAR.

The Cancer Epitope Database and Analysis Resource 85

Fig. 5 CEDAR results presentation of receptor data. (a) The Receptors tab has two subtabs for T cell and B cell
receptors. In each row of the TCR or BCR tab, a unique receptor is displayed along with the species it was

reported in, the type, and the Chain 1 and Chain 2 CDR3 sequences, if available. (b) The Receptor Details page
provides relevant information about the species that the receptor was reported in and links to the 3D

structures in PDB. In the data table below, the gene usage and sequences for CDR1, CDR2, and CDR3 as

well as the full-length receptor sequence are displayed if available for both alpha and beta chains. Sequences

of the epitopes that the receptor was reported to recognize are also listed, together with links to the

corresponding epitopes in CEDAR

3.5 References Tab The “References” tab (Fig. 6a) lists all references containing epi-
tope data that meet the search criteria. Listed are the PubMed ID
(PMID), author list, title, journal, and year of publication. Clicking
on the PMID opens a new browser tab to the corresponding
PubMed entry. The “Reference Details” page (Fig. 6b) can be

accessed by clicking the CEDAR ID of the reference. Here, more
details about the publication are provided, like the abstract and the
authors’ affiliations. Additionally, all epitopes and assays reported in
the reference are listed in a summary table.

86 Zeynep Koşaloğlu-Yalçın et al.

Fig. 6 CEDAR results presentation of curated references. (a) The references tab (lists all references containing
epitope data that meet the search criteria together with PubMed ID, author list, title, journal, and year of

publication). (b) The reference details page provides more details about the publication, like the abstract and
the authors’ affiliations. Also, all epitopes and assays reported in the reference are listed in a summary table

4 Downloading Data from CEDAR

After executing a query, the corresponding results from each of the
tabs, Epitopes, Antigens, Assays, Receptors, and References, can be
downloaded by clicking “Export Results” in the upper right corner
of the results display. The user has the option to choose what
format to download the data in and which specific columns to
include.

All data stored in CEDAR can also be retrieved as a bulk
download. The download page can be accessed from the homepage
by clicking “More CEDAR” on the top right corner and then
selecting “Database Export” from the pop-up. Complete database
exports are available in XML and MySQL formats. Most users
prefer to download data in a tabular format, which can be found

under the section “CSV Metric Exports.” Here, the user has the
option to separately download T cell (tcell_full_v3.zip), B cell
(bcell_full_v3.zip), and MHC ligand elution assays (mhc_ligand_-
full.zip). These tables contain all information on the assay level, and
an epitope will be listed multiple times if it was reported in the
context of multiple different assays.

The Cancer Epitope Database and Analysis Resource 87

5 Example Search Scenarios and Queries

To illustrate how CEDAR can facilitate cancer research, we present
four example research questions along with example queries.

5.1 Research

Scenario I

For a literature review, the user wants to retrieve all references that
contain assays testing epitopes from the antigen “Prostate-specific
antigen.”

• In the Epitope Source panel, enter “Prostate-specific antigen”
and select the first entry from the drop-down menu “Prostate-
specific antigen [P07288] (Homo sapiens (human)).”

• In the Assay panel, check both outcome types, “Positive” and
“Negative.”

• All other search panels remain in the default selection.

• Execute the query and navigate to the “References” tab in the
Results display.

• Click “Export Results” in the upper right corner of the “Refer-
ences” Results display to download an Excel file containing
details about 74 references.

5.2 Research

Scenario II

The user conducted a study about recurrent mutations in cancer
and identified putative neoantigens using prediction tools. The
neoepitope “SYLDSGIHF” from Catenin beta 1 (CTNNB1) was
found to be recurring in many patients and was predicted to be
potentially immunogenic. The user wants to investigate the experi-
mental evidence for immunogenicity reported in the literature.

• In the Epitope panel, enter the epitope sequence “SYLDS-
GIHF” into the “Linear peptide” text field.

• In the Assay panel, check both outcome types, “Positive” and
“Negative.”

• All other search panels remain in the default selection.

• Execute the query and inspect the results.

• In the “Antigen” tab, two antigens will be listed: “neoantigen:
Catenin beta-1 Homo sapiens (human)” and “neoantigen:
Catenin beta 1 (UniProt:A0A2R8Y7Z0).” These are two differ-
ent isoforms of the protein, and the epitope “SYLDSGIHF” was
reported in both in different references.

88 Zeynep Koşaloğlu-Yalçın et al.

• Navigate to the “Epitopes” tab and open the “Epitope Details”
page by clicking on the CEDAR ID of the epitope.

• In the “Epitope Details” page, under “MHC Ligand Assays,”
the user can see that the epitope was tested for binding
HLA-A*24:02, three times with positive outcomes every time.

• In the “Epitope Details” page, under “T cell Assays,” the user
can see that the epitope was tested in eight T cell assays: three
cytotoxicity assays, three IFNg release assays, one GM-CSF
release assay, and one tetramer assay measuring qualitative bind-
ing. As most of these assays had positive outcomes, there is
strong evidence that the epitope “SYLDSGIHF” can activate T
cells.

5.3 Research

Scenario III

Certain viruses can cause cancer by integrating viral DNA into the
human genome. As viral antigens are foreign to the human immune
system, they are attractive targets for immunotherapy [20]. To
explore putative antigen and epitope targets, the user wants to
retrieve a list of viral antigens and epitopes in head and neck cancer
with positive outcomes in T cell recognition assays.

• In the Epitope Source panel, deselect the checkboxes “Neoanti-
gen” and “Germline/Self/Host antigen” to select only “Viral
antigen.”

• In the Assay panel, deselect “B Cell” and “MHC Ligand,” and
only select the outcome type “Positive” to query for T cell assays
with positive outcomes.

• In the Cancer panel, enter “head and neck cancer” into the
Cancer “Type” field, and select “head and neck cancer (ID:
DOID:11934, head/neck neoplasm” from the drop-
down menu.

• All other search panels remain in the default selection.

• Executing the query will show 92 epitopes from four antigens of
the organism “Alphapapillomavirus 9.”

• Download the epitopes by clicking “Export Results” on the
upper right corner of the “Epitopes” tab.

5.4 Research

Scenario IV

Neoantigen vaccines can elicit strong and durable antitumor
immune responses when paired with immune-checkpoint blockade
therapy. The user wants to investigate which neoantigens have been
successfully used for vaccinating cancer patients.

• In the Epitope Source panel, deselect the checkboxes “Viral
antigen” and “Germline/Self/Host antigen” to select only
“Neoantigen.”

• In the Host panel select Human.

• In the Cancer panel, under “Exposure,” select “Vaccination.”

The Cancer Epitope Database and Analysis Resource 89

• All other search panels remain in the default selection.

• Executing the refined query results in 520 epitopes from
377 antigens, tested with 775 assays, reported in 44 references.

• We can further refine the query on the Results page to include
only therapeutic vaccinations. On the left side of the Results
display, under “Cancer” and “Exposure,” select “Vaccination
(therapeutic).”

• Executing the refined query results in 309 epitopes from
233 antigens, tested with 514 assays, reported in 30 references.

• Download the epitopes by clicking “Export Results” on the
upper right corner of the “Epitopes” tab.

6 Conclusion and Future Plans

The Cancer Epitope Database and Analysis Resource (CEDAR)
provides a freely accessible, comprehensive collection of cancer
epitope and receptor data curated from the literature, linked to
the biological, immunological, and clinical contexts in which they
were described.

Overall, as of January 31, 2024, a total of 289,028 cancer-
associated epitopes have been curated from 5001 references.
These epitopes have been tested in 910,389 assays (87,903 T cell
assays, 64,766 B cell assays, and 757,720 MHC ligand elution
assays). Furthermore, 36,928 receptors have been curated:
36,555 T cell receptors and 373 antibodies. There are currently
approximately 3145 possibly curatable cancer references still out-
standing in the curation queue.

We have several plans to improve CEDAR’s search interface.
Given the increased interest in neoantigens, we are working on
including the option to search for neoantigens encoded by a specific
mutation. We are also working on including more information
about the variant encoding the neoantigen. Currently, it is not
possible to search for receptor sequences directly from the main
CEDAR search interface, but it is only possible to filter for specific
sequences once a query has been executed. We plan to provide this
option directly on the main CEDAR search interface in the future.
Finally, we also plan to provide an Application Programming Inter-
face (API) to allow users to perform custom and more complex
queries and larger batch queries.

With the advancement of technologies like high-throughput
cancer genomics and single-cell analysis of immune repertoires, we
expect that the amount of cancer epitope data will continue to
increase in the future. As the amount of data continues to grow, it
becomes increasingly important to extract meaningful insights
from this data. Making cancer epitope data easily and freely

accessible creates an opportunity for the research community to
reanalyze the data, generate new research hypotheses, and gain new
insights into cancer immunology.

90 Zeynep Koşaloğlu-Yalçın et al.

Acknowledgments

Research reported in this publication was supported by the
National Institutes of Health grant U24CA248138 and contract
75N93019C00001.

References

1. Valilou SF, Rezaei N (2019) Chapter 4 –
Tumor antigens. In: Rezaei N, Keshavarz-
Fathi M (eds) Vaccines for cancer immunother-
apy. Academic Press, London, pp 61–74.
https://doi.org/10.1016/B978-0-12-
814039-0.00004-7

2. Kufe DW, Holland JF, Frei E, American Cancer
Society (2003) Holland Frei cancer medicine,
vol 1, 6th edn. BC Decker, Hamilton

3. Jhunjhunwala S, Hammer C, Delamarre L
(2021) Antigen presentation in cancer: insights
into tumour immunogenicity and immune eva-
sion. Nat Rev Cancer 21(5):298–312. https://
doi.org/10.1038/s41568-021-00339-z

4. Kosaloglu-Yalcin Z, Blazeska N, Carter H,
Nielsen M, Cohen E, Kufe D, Conejo-Garcia J,
Robbins P, Schoenberger SP, Peters B, Sette A
(2021) The cancer epitope database and analy-
sis resource: a blueprint for the establishment
of a new bioinformatics resource for use by the
cancer immunology community. Front Immu-
nol 12:735609. https://doi.org/10.3389/
fimmu.2021.735609

5. Hellström KE, Hellström I (2002) Tumor
antigens. In: Bertino JR (ed) Encyclopedia of
cancer, 2nd edn. Academic Press, New York, pp
459–466. https://doi.org/10.1016/B0-12-
227555-1/00251-3

6. Melero I, Gaudernack G, Gerritsen W,
Huber C, Parmiani G, Scholl S, Thatcher N,
Wagstaff J, Zielinski C, Faulkner I, Mellstedt H
(2014) Therapeutic vaccines for cancer: an
overview of clinical trials. Nat Rev Clin Oncol
11(9):509–524. https://doi.org/10.1038/
nrclinonc.2014.111

7. Hollingsworth RE, Jansen K (2019) Turning
the corner on therapeutic cancer vaccines. NPJ
Vaccines 4:7. https://doi.org/10.1038/
s41541-019-0103-y

8. Majzner RG, Ramakrishna S, Yeom KW,
Patel S, Chinnasamy H, Schultz LM, Richards
RM, Jiang L, Barsan V, Mancusi R, Geraghty

AC, Good Z, Mochizuki AY, Gillespie SM,
Toland AMS, Mahdi J, Reschke A, Nie EH,
Chau IJ, Rotiroti MC, Mount CW,
Baggott C, Mavroukakis S, Egeler E, Moon J,
Erickson C, Green S, Kunicki M, Fujimoto M,
Ehlinger Z, Reynolds W, Kurra S, Warren KE,
Prabhu S, Vogel H, Rasmussen L, Cornell TT,
Partap S, Fisher PG, Campen CJ, Filbin MG,
Grant G, Sahaf B, Davis KL, Feldman SA,
Mackall CL, Monje M (2022) GD2-CAR T
cell therapy for H3K27M-mutated diffuse
midline gliomas. Nature 603(7903):934–941.
https://doi.org/10.1038/s41586-022-
04489-4

9. Shah NN, Lee DW, Yates B, Yuan CM,
Shalabi H, Martin S, Wolters PL, Steinberg
SM, Baker EH, Delbrook CP, Stetler-
Stevenson M, Fry TJ, Stroncek DF, Mackall
CL (2021) Long-term follow-up of CD19-
CAR T-cell therapy in children and young
adults with B-ALL. J Clin Oncol 39(15):
1650–1659. https://doi.org/10.1200/JCO.
20.02262

10. Spiegel JY, Patel S, Muffly L, Hossain NM,
Oak J, Baird JH, Frank MJ, Shiraz P, Sahaf B,
Craig J, Iglesias M, Younes S, Natkunam Y,
Ozawa MG, Yang E, Tamaresis J,
Chinnasamy H, Ehlinger Z, Reynolds W,
Lynn R, Rotiroti MC, Gkitsas N, Arai S,
Johnston L, Lowsky R, Majzner RG,
Meyer E, Negrin RS, Rezvani AR, Sidana S,
Shizuru J, Weng WK, Mullins C, Jacob A,
Kirsch I, Bazzano M, Zhou J, Mackay S, Born-
heimer SJ, Schultz L, Ramakrishna S, Davis
KL, Kong KA, Shah NN, Qin H, Fry T,
Feldman S, Mackall CL, Miklos DB (2021)
CAR T cells with dual targeting of CD19 and
CD22 in adult patients with recurrent or
refractory B cell malignancies: a phase 1 trial.
Nat Med 27(8):1419–1431. https://doi.org/
10.1038/s41591-021-01436-0

https://doi.org/10.1016/B978-0-12-814039-0.00004-7
https://doi.org/10.1016/B978-0-12-814039-0.00004-7
https://doi.org/10.1038/s41568-021-00339-z
https://doi.org/10.1038/s41568-021-00339-z
https://doi.org/10.3389/fimmu.2021.735609
https://doi.org/10.3389/fimmu.2021.735609
https://doi.org/10.1016/B0-12-227555-1/00251-3
https://doi.org/10.1016/B0-12-227555-1/00251-3
https://doi.org/10.1038/nrclinonc.2014.111
https://doi.org/10.1038/nrclinonc.2014.111
https://doi.org/10.1038/s41541-019-0103-y
https://doi.org/10.1038/s41541-019-0103-y
https://doi.org/10.1038/s41586-022-04489-4
https://doi.org/10.1038/s41586-022-04489-4
https://doi.org/10.1200/JCO.20.02262
https://doi.org/10.1200/JCO.20.02262
https://doi.org/10.1038/s41591-021-01436-0
https://doi.org/10.1038/s41591-021-01436-0

The Cancer Epitope Database and Analysis Resource 91

11. Brightman SE, Naradikian MS, Miller AM,
Schoenberger SP (2020) Harnessing neoanti-
gen specific CD4 T cells for cancer immuno-
therapy. J Leukoc Biol 107(4):625–633.
https://doi.org/10.1002/JLB.5RI0220-
603RR

12. Yamamoto TN, Kishton RJ, Restifo NP (2019)
Developing neoantigen-targeted T cell-based
treatments for solid tumors. Nat Med 25(10):
1488–1499. https://doi.org/10.1038/
s41591-019-0596-y

13. Weber JS, Carlino MS, Khattak A, Meniawy T,
Ansstas G, Taylor MH, Kim KB, McKean M,
Long GV, Sullivan RJ, Faries M, Tran TT,
Cowey CL, Pecora A, Shaheen M, Segar J,
Medina T, Atkinson V, Gibney GT, Luke JJ,
Thomas S, Buchbinder EI, Healy JA,
Huang M, Morrissey M, Feldman I, Sehgal V,
Robert-Tissot C, Hou P, Zhu L, Brown M,
Aanur P, Meehan RS, Zaks T (2024) Indivi-
dualised neoantigen therapy mRNA-4157
(V940) plus pembrolizumab versus pembroli-
zumab monotherapy in resected melanoma
(KEYNOTE-942): a randomised, phase 2b
study. Lancet 403:632. https://doi.org/10.
1016/S0140-6736(23)02268-7

14. Rojas LA, Sethna Z, Soares KC, Olcese C,
Pang N, Patterson E, Lihm J, Ceglia N,
Guasp P, Chu A, Yu R, Chandra AK,
Waters T, Ruan J, Amisaki M, Zebboudj A,
Odgerel Z, Payne G, Derhovanessian E,
Muller F, Rhee I, Yadav M, Dobrin A,
Sadelain M, Luksza M, Cohen N, Tang L,
Basturk O, Gonen M, Katz S, Do RK, Epstein
AS, Momtaz P, Park W, Sugarman R, Varghese
AM, Won E, Desai A, Wei AC, D’Angelica MI,
Kingham TP, Mellman I, Merghoub T, Wol-
chok JD, Sahin U, Tureci O, Greenbaum BD,
Jarnagin WR, Drebin J, O’Reilly EM, Bala-
chandran VP (2023) Personalized RNA neoan-
tigen vaccines stimulate T cells in pancreatic

cancer. Nature 618(7963):144–150. https://
doi.org/10.1038/s41586-023-06063-y

15. Kosaloglu-Yalcin Z, Blazeska N, Vita R,
Carter H, Nielsen M, Schoenberger S,
Sette A, Peters B (2023) The Cancer Epitope
Database and Analysis Resource (CEDAR).
Nucleic Acids Res 51(D1):D845–D852.
https://doi.org/10.1093/nar/gkac902

16. Vita R, Mahajan S, Overton JA, Dhanda SK,
Martini S, Cantrell JR, Wheeler DK, Sette A,
Peters B (2019) The Immune Epitope Data-
base (IEDB): 2018 update. Nucleic Acids Res
47(D1):D339–D343. https://doi.org/10.
1093/nar/gky1006

17. Salimi N, Edwards L, Foos G, Greenbaum JA,
Martini S, Reardon B, Shackelford D, Vita R,
Zalman L, Peters B, Sette A (2020) A behind-
the-scenes tour of the IEDB curation process:
an optimized process empirically integrating
automation and human curation efforts.
Immunology 161(2):139–147. https://doi.
org/10.1111/imm.13234

18. Schriml LM, Munro JB, Schor M, Olley D,
McCracken C, Felix V, Baron JA, Jackson R,
Bello SM, Bearer C, Lichenstein R, Bisordi K,
Dialo NC, Giglio M, Greene C (2022) The
Human Disease Ontology 2022 update.
Nucleic Acids Res 50(D1):D1255–D1261.
https://doi.org/10.1093/nar/gkab1063

19. Greenbaum JA, Vita R, Zarebski LM, Sette A,
Peters B (2010) Ontology development for the
immune epitope database. In: Bioinformatics
for immunomics. Springer, New York, pp
47–56

20. von Witzleben A, Wang C, Laban S,
Savelyeva N, Ottensmeier CH (2020)
HNSCC: tumour antigens and their targeting
by immunotherapy. Cells 9(9):2103. https://
doi.org/10.3390/cells9092103

https://doi.org/10.1002/JLB.5RI0220-603RR
https://doi.org/10.1002/JLB.5RI0220-603RR
https://doi.org/10.1038/s41591-019-0596-y
https://doi.org/10.1038/s41591-019-0596-y
https://doi.org/10.1016/S0140-6736(23)02268-7
https://doi.org/10.1016/S0140-6736(23)02268-7
https://doi.org/10.1038/s41586-023-06063-y
https://doi.org/10.1038/s41586-023-06063-y
https://doi.org/10.1093/nar/gkac902
https://doi.org/10.1093/nar/gky1006
https://doi.org/10.1093/nar/gky1006
https://doi.org/10.1111/imm.13234
https://doi.org/10.1111/imm.13234
https://doi.org/10.1093/nar/gkab1063
https://doi.org/10.3390/cells9092103
https://doi.org/10.3390/cells9092103

Chapter 4

Quantifying the Prevalence of Non-B DNA Motifs as a Marker
of Non-B Burden in Cancer Using NBBC

Qi Xu and Jeanne Kowalski

Abstract

Alternative DNA structures, such as Z-DNA, G-quadruplexes, and mirror repeats, have shown potential
involvement in cancer etiology. NBBC (Non-B DNA Burden in Cancer) is a web-based tool designed for
quantifying and analyzing non-B DNA motifs within a cancer context. Herein, we provide a step-by-step
protocol for employing NBBC, starting with data input and proceeding through the quantification and
normalization of non-B DNA motifs that result in calculation of non-B burden. With detailed instructions
for performing various motif-centric analyses based on cancer gene signatures, including DNA damage
repair and response pathways for genomic stability, and other sample-level gene mutation signatures, users
can explore non-B associative correlations within current cancer biology. We provide additional details on
input queries into NBBC, interpret the quantitative results, and apply normalization techniques to ensure
accurate comparisons across different genomic regions and non-B DNA structures.
NBBC offers a powerful and user-friendly interface for the cancer research community. This chapter

serves as an essential, enhanced instructional guide for researchers to leverage NBBC in their cancer
biomarker investigations for an understanding of the potential role of non-B DNA in contributing to them.

Key words NBBC, Non-B DNA, Cancer bioinformatics, Genome instability

1 Introduction

Noncanonical DNA refers to DNA structures that differ from the
canonical B-DNA double helix structure, including
G-quadruplexes, cruciform, slipped structures, triplexes, and
Z-DNA [1–4]. It has been discovered that non-B DNA-forming
sequences can induce genetic instability in human cancer genomes,
suggesting a role in cancer development [1].

While there are several non-B DNA databases and prediction
tools that exist, the majority of these tools primarily focus on
individual motif sequences in isolation [5, 6]. We introduce the
concept of “non-B burden” as a quantitative marker to provide the
capacity to integrate information from non-B DNA motifs into a
comprehensive, genome-wide perspective. This viewpoint has been

Alexander Krasnitz and Pascal Belleau (eds.), Cancer Bioinformatics, Methods in Molecular Biology, vol. 2932,
https://doi.org/10.1007/978-1-0716-4566-6_4,
© The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature 2025

93

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-4566-6_4&domain=pdf
https://doi.org/10.1007/978-1-0716-4566-6_4#DOI

notably absent in prior non-B DNA research, which underscores its
innovative nature and potential. A parallel concept in cancer
research can be found in the idea of tumor mutation burden. As
tumor mutation burden quantifies the prevalence of mutations and
can inform on cancer prognosis and treatment response, our intro-
duction of “non-B burden” holds a similar promise for assessing
non-B DNA motif prevalence and its potential for interpretation of
biological processes, particularly within the realm of cancer
research.

94 Qi Xu and Jeanne Kowalski

To accelerate the non-B burden analysis in cancer, NBBC is
designed to serve as a new analysis and visualization platform for
the exploration of non-B DNA. NBBC serves as a valuable resource
for researchers investigating the role of non-B DNA structures in
cancer and other genetic diseases.

In this chapter, we demonstrate a “how to” guide to access and
explore NBBC [7] for gene signature analyses that may be further
combined with familiar downstream correlatives. In doing so, we
present details on the quantitative approach and normalization
methods that are available at various genomic levels, including the
gene level, signature level, and sample level. Altogether, we provide
a guided approach to the use of NBBC, including input query,
quantification, and normalization of non-B DNA motifs, and how
to use non-B burden in downstream applications.

2 Materials

2.1 The Web Server,

NBBC

To simplify the use of non-B burden calculation and introduce it for
wide, non-bioinformatic research uses, we introduce NBBC, a
Non-B DNA Burden Explorer in Cancer. NBBC is an online web
server that provides non-B burden calculation, non-B burden visu-
alization, and non-B motif exploration. NBBC serves to conduct
non-B burden computations and offers normalizations that enable
comparisons across genes or non-B structures. It provides visuali-
zations for descriptive analysis of burden values, burden distribu-
tion, and burden-based gene clustering. The NBBC webserver is
accessible without any login requirements and is completely free to
use (https://kowalski-labapps.dellmed.utexas.edu/NBBC/).

2.2 Non-B DNA Motif

Data

The non-B DNA-forming motif data in NBBC are downloaded
from the Non-B DB 2.0 database (hg19 build) [5, 6, 8]. There are
seven non-B structure motifs included: A-phased repeat (APR,
n = 2386 motifs), G-quadruplexes (G4, n = 361,232 motifs),
Z-DNA (n = 404,192 motifs), inverted repeats (IR, n = 5,
771,570 motifs), mirror repeats (MR, n = 1,378,864 motifs),
direct repeats (DR, n = 1,113,354 motifs), and short tandem
repeats (STR, n = 2,826,360 motifs). A subset of MR and IR
motifs are further delineated within the application to represent

https://kowalski-labapps.dellmed.utexas.edu/NBBC/

Triplex (Triplex-MR, n = 412,028 motifs) and Cruciform
(Cruciform-IR, n = 147,152 motifs) motifs, respectively. To
ensure the reliability and relevance of our data, we have sourced
our non-B DNA data in the NBBC web server, and so users have no
need to download the non-B DNA data.

Non-B DNA Burden in Cancer 95

2.3 Query Input

2.3.1 Non-B Burden at

Gene Level

To summarize, the input for NBBC includes three major types: a
single gene (or a list of genes), a gene signature, or genomic
coordinates (see below). To accommodate these input types, we
have provided four options for users to choose from. In the web
server (“Input Page” tab), Option 1 offers pre-populated gene sets
related to cancer, while Option 2 provides molecular signatures of
cancer cell lines. Alternatively, users may manually input gene sym-
bols in Option 3 or upload genomic coordinates of interesting
regions in Option 4.

(a) A single gene. The typical use case is a quick single gene search
by typing the “hgnc symbol” of gene, such as KRAS,
BRCA, etc.

(b) Gene signatures. The input includes popular cancer signatures,
cell line molecular signatures, or user-defined signatures.
NBBC offers built-in cancer-related gene sets for quick
query, including cancer hallmark gene signatures from the
MSigDB database [9], DNA damage repair and response
gene signatures [10, 11], and molecular signatures (option
2) from the Genomics of Drug Sensitivity in Cancer
database [12].

(c) Genomic coordinates of regions. This is a general option where
the query region is not a full region of a gene but a subregion
of the gene, such as cancer-specific mutation sites or regions
with copy number alterations. In this case, user can upload the
region in query (genomic coordinates) in a table (see Note 1).

2.3.2 Non-B Burden at

Sample Level (Burden in

Batch)

Furthermore, NBBC allows users to upload “multiple groups” of
genomic regions (genes, mutation regions) in batch and calculate
the non-B burden for each group. We named it as “Burden in
Batch.” Using “Burden in Batch,” it allows users to calculate the
non-B burden for each sample (see Note 2) to enable further
downstream analysis of associations. The input format of “Burden
in Batch” is a table with four columns (group_id, chromosome, start,
end). Each row represents a genomic region and the “group_id” is
used to group the genomic regions.

96 Qi Xu and Jeanne Kowalski

3 Methods

3.1 How to Use NBBC

to Calculate Non-B

Burden

The NBBC web server provides a user-friendly platform for calcu-
lating the non-B DNA burden within genomic sequences. Our
protocol illustrates this calculation through two exemplar use cases.

(a) Gene-Level Non-B Burden (Basic Use)
NBBC can process both single and multiple genes to

calculate the non-B burden. Here, we utilize the “Homolo-
gous Recombination” gene signature [10, 11], the mainte-
nance of which plays an important role in cancer genome
stability. This illustration demonstrate the foundational com-
putation of non-B burden and emphasize the critical role of
normalization techniques in the analysis.

(b) Sample-Level Non-B Burden (Advanced Use)
This second application showcases the “Burden in Batch”

feature of NBBC. We employed mutation site data from
511 samples from the TCGA-LGG (Lower Grade Glioma)
dataset [13]. Each sample comprises a list of mutation sites,
complete with chromosomal coordinates. The “Burden in
Batch” tool in NBBC is utilized to quantify the number of
non-B motifs that overlap with these mutation sites, thereby
summarizing the non-B burden for each sample. The objective
here is to illustrate the integration of non-B burden analysis
with clinical datasets, highlighting its utility in sample-level
evaluation.

3.2 Start with the

“Input Page”

The “Input Page” of the NBBC web server is the starting point for
users to input their data for non-B burden analysis. This page is
designed to accommodate various user requirements through four
distinct input options:

(a) Option 1: Built-In Cancer-Related Gene Signatures. Users can
choose from predefined gene sets related to cancer, such as
those involved in DNA damage repair, response gene path-
ways, cancer hallmark gene sets, and oncogenes, among
others.

(b) Option 2: Cancer Cell Line-Specific Features. This option pro-
vides a selection of molecular features specific to cancer cell
lines, including mutations and copy number alterations.

(c) Option 3: Manual Gene Input. For users interested in con-
ducting a quick query, this interface allows the manual input of
single or multiple genes.

(d) Option 4: Genomic Coordinates Upload. Users can upload
genomic coordinates that define regions of interest, such as
mutation sites, to assess the non-B burden in the context of
mutation-localized regions.

Non-B DNA Burden in Cancer 97

With the integration of these input capabilities, NBBC offers
comprehensive coverage for non-B burden calculations at varying
levels of genomic detail, from precise mutation sites to expansive
gene signatures (Fig. 1).

3.3 Non-B Burden at

Gene Level (Basic Use)

1. Select genes as input
In the input page, under option 1, Select the “Homolo-

gous recombination” gene set under the “DNA Damage and
Repair” category. There will be a preview window at the bot-
tom to show the selected genes (34 genes). Click “Next> Gene
Screen” to navigate to the “Gene Screen” module.

2. The quantification of non-B DNA motif
Non-B burden is calculated by counting the occurrence of

non-B forming regions associated with each specific non-B
DNA type. After the query gene list is selected, the non-B
burden will be calculated in the background by the web server.
And the calculation value will be visualized in bar plots on the
right panel of the “Gene Screen” tab page. There are two tabs
called “Total Burden” and “Burden by type.”

(a) Total Burden. NBBC includes a Total Burdens plot that
visualizes the total non-B burden in each gene as a bar
plot. This visual provides users with a summary of the
non-B burdens for each query unit.

(b) Burden by non-B type. The stacked bar plot shows the
non-B burdens by type for each gene in the query. This
allows users to easily compare the non-B burdens across
different genes and identify genes with potentially higher
burdens from certain non-B structures.

(c) Interactive plots. Since this is an interactive plot, users can
select hovers for more details of each data point. This
feature allows users to obtain a more detailed understand-
ing of the non-B burden for each gene in the query and
can aid in identifying potential targets for further
investigation.

(d) Other options. On the left side panel of this page, there are
checkbox options, where NBBC provides users with the
option to display only a subset of genes or non-B types.
This flexible functionality allows users to tailor their anal-
ysis to their specific research needs and enables them to
focus on the genes or non-B types of interest.

3. The normalization of non-B burden
Normalization ensures meaningful comparisons of non-B

burden across diverse genes and non-B DNA structure types
(see Note 3). The NBBC provides several metrics for normali-
zation to facilitate these comparisons (Fig. 2).

98 Qi Xu and Jeanne Kowalski

Fig. 1 The input page of NBBC. In the “Input Page,” users can select from four distinct options to begin their

analysis with NBBC. Option 1 provides a selection of predefined gene sets pertinent to cancer research. Option

2 allows users to explore molecular signatures from various cancer cell lines. For a more customized

approach, Option 3 enables the manual entry of specific gene symbols. Option 4 permits the uploading of

genomic coordinates for regions of interest

Non-B DNA Burden in Cancer 99

Fig. 2 The normalization options for non-B burden. (A) “Count” indicates raw

motif counts, serving as the unnormalized base measure. (B) “By Gene Length”

adjusts non-B burden based on gene size for comparability across genes. (C) “By

Library Size” scales non-B burden to the non-B motif library size, aiding in

analyzing various non-B DNA types. (D) “Normalization by Both” offers a

measure standardizing non-B burden by both gene length and motif library

and is the default normalized metric in NBBC

(a) Raw Motif Counts: The basic measure of non-B burden
without any normalization, representing the number of
non-B motifs present.

(b) Normalization by Gene Length: Adjusts the non-B burden
by the length of the gene region. This is critical when
comparing different genes, as it accounts for the varying
sizes of genomic regions.

(c) Normalization by Motif Library Size: Tailors the non-B
burden relative to the size of the non-B motif library. This
normalization is particularly useful when assessing the
burden of different types of non-B DNA within a
single gene.

(d) Normalization by Both (CPKM): This comprehensive
measure normalizes non-B burden both by the length of
query regions (per kilobase, 103) and by the library sizes
of non-B motifs (per million, 106), facilitating a compari-
son across both genes and non-B motif types. This default
unit, CPMK (counts per kilobase per million), ensures a
standardized comparison by considering both the preva-
lence of non-B motifs and the scale of the genomic and
motif libraries.

Normalization allows for the comparison of non-B burden
across both different genomic regions and among distinct types
of non-B DNA for the assessment of differences in motif
prevalence among them. Specific applications of normalization
include the following (Fig. 3):

(a) Motif Library Size Normalization: Recommended when
the aim is to compare the non-B burden across various
non-B DNA types within the same gene. It adjusts for the

100 Qi Xu and Jeanne Kowalski

Fig. 3 The non-B burden distribution in homologous recombination signature queried in NBBC. (A) The non-B

burden is visualized in a bar plot with normalization across both genes and non-B types. (B) The normalization

by non-B motif library sizes allow burden comparison across non-B types. (C) The normalization by gene

length enables comparisons across genes

total number of motifs in each non-B motif type,
providing a direct comparison of prevalence across differ-
ent structures.

(b) Gene Length Normalization: Advised for comparing
non-B burden across multiple genes within a signature.
This accounts for the potential bias where longer genes
might inherently contain more non-B motifs, thus offer-
ing a more accurate reflection of non-B motif density,
rather than sheer quantity, within the gene’s region.

The aim of this part (Gene-Level Non-B Burden) in NBBC
is to conduct a gene-level analyses of non-B representation that
could prove helpful to focus on a single or subset of genes of
interest for hypothesis generation.

3.4 Non-B Burden at

Sample Level

(Advance Use)

1. Objective of “Burden in Batch”

• Conception. The “Burden in Batch” function extends
NBBC’s capabilities, enabling the computation of non-B
burden at the sample level. It allows for the analysis of
multiple groups of genomic regions, such as mutated
regions across different tumor samples, facilitating a deeper
exploration of non-B burden in relation to clinical data.

Non-B DNA Burden in Cancer 101

Fig. 4 The “burden in batch” analysis in NBBC. (a) The web interface to “Burden in Batch” analysis to calculate

non-B burden at sample level in batch. (b) The input area to upload the query genomic region grouped by

group ids. (c) The output area to output non-B burden with normalization options. (d) A graphical summary of

non-B burden calculation at the sample level with mapped survival data. (e) The heatmap visualizes the

clustering results of TCGA-LGG sample based on mutation-localized, sample-level non-B burdens. (f) Cluster

1 (STR high) and Cluster 4 (MR-IR high) show a significant overall survival (OS) difference (p = 0.0012)

• Application. This feature is especially beneficial for
generalized queries based on extensive sets of genomic
regions. These can represent distinct tumor samples,
thereby enabling the calculation of sample-specific non-B
burden. This analysis can reveal potential links between
non-B burden and clinical outcomes.

This function can be accessed under the “Burden in Batch”
tab from the home page in NBBC (Fig. 4a).

2. How to perform “Burden in Batch” analysis in NBBC

• Prepare input table. The input format of “Burden in Batch”
is a table with four columns (group_id, chromosome, start,
end)—collectively referred to as the “query table.” The
example data can be downloaded by clicking the “Down-
load Example” button on the page. Each row represents a
genomic region and the “group_id” is used to group the
genomic regions. The typical use case for “Burden in Batch”
is to calculate non-B burden for each tumor sample using a
list of genomic coordinates.

102 Qi Xu and Jeanne Kowalski

• Case study input: For our example, we calculate mutation-
localized non-B burden for TCGA Lower Grade Glioma
(LGG) samples (n = 511), using genome-wide mutation
site regions as the query input. In other words, 511 groups
of genomic mutation regions from 511 LGG samples will be
used as input for the calculation (see Note 4).

• Calculate non-B burden for each sample. Users compile a
query table containing the genomic mutation regions for
all samples, ensuring columns are accurately labeled. Upon
navigating to the “Burden in Batch” input page, users
upload their table and initiate the analysis (Fig. 4b). The
server quantifies non-B motifs coinciding with the input
regions and applies the default CPKM normalization. All
the non-B motifs that overlapped with mutation regions of
each sample will be summarized for non-B burden at sample
level. On the right side of the page, a matrix will be output
to show non-B burden from different types (columns) of
each sample (rows). Users can choose to download the
metrics by clicking the “Download Burden Output”
button.

• Choose an appropriate normalization method. Similar to the
normalization methods gene-level non-B burden, the
sample-level non-B burden also supports four types of
metrics, including “counts,” “normalize by motif library
size,” “normalize by motif region length,” and “normalize
by both (CPKM).” One difference here is the “region
length.” Different from “gene length”, the region length
here refers to the total length of all query regions for each
sample (Fig. 4c).

• Perform sample clustering on non-B burden. Subsequent to
calculating the non-B burden matrix, we perform clustering
analysis on the samples based on their non-B burden. The
data is standardized using Z-score normalization, with
k-means clustering applied in this instance. But users can
choose other preferred clustering methods. The purpose
here is to showcase how this sample-level quantification of
non-B burden can be used for downstream analysis
(Fig. 4e).

• Associate clusters with clinical data. The clustering process
categorizes samples into groups characterized by distinct
non-B burden profiles. These groups can then be utilized
in further analyses, such as survival or association studies, to
elucidate the potential clinical significance of non-B burden
variations in cancer (Fig. 4f).

Non-B DNA Burden in Cancer 103

NBBC serves as a valuable resource for researchers investigat-
ing the role of non-B DNA structures in cancer and other genetic
diseases. By offering an accessible platform for analyzing and visua-
lizing non-B DNA burden within a cancer context, NBBC enables
the quantification and exploration of non-B DNA by a wide,
non-bioinformatic user base.

4 Notes

1. Each row in the table represents a region of query. The four
column names are required to be the same as the example
[hgnc_symbol, chromosome, start, end]. [hgnc_symbol] can be
either gene name or any tags to annotate the region but may
not be duplicated. [chromosome, start, end] takes genomic
coordinates as input.

2. “Burden in Batch” is different from “Genomic coordinates of
regions.” Although they both take genomic coordinate as
input, “Genomic coordinates of regions” only allows one
region under one label, such as one subregion in a specific
gene. So in its input table, the “hgnc_symbol” column should
be unique. In contrast, “Burden in Batch” allows querying a
list of regions under one label, such as all the mutated regions
in one tumor sample. Therefore, in its input table, the
“group_id” column (such sample id) will be repeating for
different genomic coordinate. Then non-B burden can be
summarized for this sample.

3. The concept of normalization in RNA-seq analysis [14], exem-
plified by metrics like CPM (counts per million), RPKM (reads
per kilobase of transcript, per million mapped reads), plays a
similar role as in our approach for normalizing non-B burden.
Similar to RNA-seq, where these normalization techniques
ensure the comparability of gene expression values across
diverse samples, normalization methods employed in non-B
burden calculations serve a similar purpose.

4. The mutation data for TCGA-LGG is downloaded from
UCSC Xena [13, 15] (https://tcga-xena-hub.s3.us-east-1.
amazonaws.com/download/mc3%2FLGG_mc3.txt.gz). The
Xena hub is at https://tcga.xenahubs.net, and the title is “data-
set: somatic mutation (SNP and INDEL)—MC3 public
version.”

https://tcga-xena-hub.s3.us-east-1.amazonaws.com/download/mc3/LGG_mc3.txt.gz
https://tcga-xena-hub.s3.us-east-1.amazonaws.com/download/mc3/LGG_mc3.txt.gz
https://tcga.xenahubs.net

104 Qi Xu and Jeanne Kowalski

Acknowledgments

The NBBC website is hosted on an AWS server provided by the
Kowalski Lab and supported by UT-Austin IT Solutions and Dell
Medical School at UT-Austin.

References

1. Zhao J, Bacolla A, Wang G, Vasquez KM
(2010) Non-B DNA structure-induced genetic
instability and evolution. Cell Mol Life Sci 67:
43–62

2. Bansal A, Kaushik S, Kukreti S (2022)
Non-canonical DNA structures: diversity and
disease association. Front Genet 13:959258

3. Makova KD, Weissensteiner MH (2023) Non-
canonical DNA structures are drivers of
genome evolution. Trends Genet 39:109–124

4. Wang G, Vasquez KM (2023) Dynamic alter-
native DNA structures in biology and disease.
Nat Rev Genet 24:211–234

5. Cer RZ, Donohue DE, Mudunuri US, Temiz
NA, Loss MA, Starner NJ, Halusa GN,
Volfovsky N, Yi M, Luke BT et al (2012)
Non-B DB v2.0: a database of predicted
non-B DNA-forming motifs and its associated
tools. Nucleic Acids Res 41:D94–D100

6. Cer RZ, Bruce KH, Mudunuri US, Yi M,
Volfovsky N, Luke BT, Bacolla A, Collins JR,
Stephens RM (2011) Non-B DB: a database of
predicted non-B DNA-forming motifs in
mammalian genomes. Nucleic Acids Res 39:
D383–D391

7. Xu Q, Kowalski J (2023) NBBC: a non-B DNA
burden explorer in cancer. Nucleic Acids Res
51(W1):W357–W364

8. Cer RZ, Donohue DE, Mudunuri US, Temiz
NA, Loss MA, Starner NJ, Halusa GN,
Volfovsky N, Yi M, Luke BT et al (2013)
Non-B DB v2.0: a database of predicted
non-B DNA-forming motifs and its associated
tools. Nucleic Acids Res 41:D94–D100

9. Liberzon A, Birger C, Thorvaldsdottir H,
Ghandi M, Mesirov JP, Tamayo P (2015) The

Molecular Signatures Database (MSigDB) hall-
mark gene set collection. Cell Syst 1:417–425

10. Wood RD, Mitchell M, Sgouros J, Lindahl T
(2001) Human DNA repair genes. Science
291:1284–1289

11. Wood RD, Mitchell M, Lindahl T (2005)
Human DNA repair genes, 2005. Mutat Res
577:275–283

12. Yang W, Soares J, Greninger P, Edelman EJ,
Lightfoot H, Forbes S, Bindal N, Beare D,
Smith JA, Thompson IR et al (2013) Geno-
mics of Drug Sensitivity in Cancer (GDSC): a
resource for therapeutic biomarker discovery in
cancer cells. Nucleic Acids Res 41:D955–D961

13. Ellrott K, Bailey MH, Saksena G, Covington
KR, Kandoth C, Stewart C, Hess J, Ma S,
Chiotti KE, McLellan M (2018) Scalable
open science approach for mutation calling of
tumor exomes using multiple genomic pipe-
lines. Cell Syst 6:271–281.e7

14. Zhao Y, Li M-C, Konaté MM, Chen L, Das B,
Karlovich C, Williams PM, Evrard YA, Dor-
oshow JH, McShane LM (2021) TPM,
FPKM, or normalized counts? A comparative
study of quantification measures for the analy-
sis of RNA-seq data from the NCI patient-
derived models repository. J Transl Med 19:
1–15

15. Goldman M, Craft B, Hastie M, Repečka K,
McDade F, Kamath A, Banerjee A, Luo Y,
Rogers D, Brooks AN (2018) The UCSC
Xena platform for public and private cancer
genomics data visualization and interpretation.
bioRxiv. https://doi.org/10.1101/326470

https://doi.org/10.1101/326470

Chapter 5

Starfish: Deciphering Complex Genomic Rearrangement
Signatures Across Human Cancers

Lisui Bao

Abstract

Complex genomic rearrangements (CGRs) in cancer often originate from abnormal cellular structures such
as micronuclei and chromatin bridges. However, the primary mechanisms responsible for CGR formation
in disease tissues remain unclear, particularly due to the challenges in fully capturing these processes. To
address this, we have developed “Starfish,” a computational algorithm to decipher CGR signatures and
infer their forming mechanisms by analyzing distinctive copy number variations and breakpoint patterns.
Here, we provide practical guidance on the application of “Starfish,” available as an R package, to study
CGR signatures in human cancers.

Key words Starfish, Algorithm, Complex genomic rearrangements, Copy number variation, Struc-
tural variation, Cancer

1 Introduction

In a range of human cancers, structural variations (SVs) manifest
themselves in numerous forms [1–3], from simple ones like dele-
tions, duplications, inversions, and translocations to complex geno-
mic rearrangements (CGRs) like chromothripsis
[4, 5]. Understanding the molecular mechanisms behind SV for-
mation is crucial for clinical advancements. Recent in vitro studies
of CGR formation have pinpointed two primary mechanisms: chro-
mosomal fragmentation in micronuclei [6] and chromatin bridge-
induced chromothripsis [7, 8]. Both mechanisms can lead to extra-
chromosomal DNA (ecDNA) amplification [9], all contributing to
the genomic complexity and instability in cancer. Despite these
insights, the complex nature of these genomic rearrangements
makes it challenging to study their full extent. A comprehensive
understanding of the diverse mechanisms fueling CGR in disease
tissues remains elusive.

Alexander Krasnitz and Pascal Belleau (eds.), Cancer Bioinformatics, Methods in Molecular Biology, vol. 2932,
https://doi.org/10.1007/978-1-0716-4566-6_5,
© The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature 2025

105

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-4566-6_5&domain=pdf
https://doi.org/10.1007/978-1-0716-4566-6_5#DOI

106 Lisui Bao

To address this gap, our study introduces a computational
algorithm, termed “Starfish,” designed to deduce CGR formation
mechanisms based on the analysis of copy number variation (CNV)
patterns and breakpoint distributions [10]. By integrating five
distinct features—CGR breakpoint dispersion score, copy loss per-
centage, copy gain percentage, telomere loss percentage, and maxi-
mum copy number—we executed unsupervised consensus
clustering on CGRs from the Pan-Cancer Analysis of Whole Gen-
omes (PCAWG) project, identifying six unique CGR signatures
(1, ecDNA/DM/HSR; 2, BFB cycles/chromatin bridge;
3, Large loss; 4, Micronuclei; 5, Large gain; 6, Hourglass). Signa-
ture 1, 2, and 4 were assigned to known CGR mechanisms using
data from five experimental studies on chromothripsis. Further, we
developed a neural network classifier, the “Starfish classifier,”
trained on these features and CGR signatures to categorize CGRs
in additional samples.

2 Methods

2.1 Software

Environment

Starfish is entirely written in R and has been tested on R 3.5.0,
3.6.0, and 4.0.0, but any version above 3.0.1 should be fine to use.

2.2 Package

Dependencies

Starfish depends on several R packages including graph, BiocGene-
rics, S4Vectors, foreach, Genome-InfoDb, GenomicRanges,
IRanges, ConsensusClusterPlus, neuralnet, plyr, data.table,
MASS, ggplot2, gridExtra, dplyr, factoextra, dendextend, gplots,
ggpubr, reshape2, cowplot, patchwork, Cairo, and ggforce (see
Note 1). It also requires a modified version of ShatterSeek (Shat-
terSeeky) [4] which is provided as ShatterSeeky_0.4.tar.gz (see
Note 2). As ShatterSeeky depends on the other packages, please
install it as the last one. In case you cannot reproduce the example
results, you may need to install the versions of packages specified
below. It is possible that the newer versions are not compatible.

The versions of tested packages are graph 1.68.0, BiocGenerics
0.36.0, S4Vectors 0.28.0, foreach 1.5.1, Genome-InfoDb 1.26.0,
GenomicRanges 1.42.0, IRanges 2.24.0, ConsensusClusterPlus
1.54.0, neuralnet 1.44.2, plyr 1.8.6, data.table 1.14.0, MASS
7.3.53.1, ggplot2 3.3.3, gridExtra 2.3, dplyr 1.0.5, factoextra
1.0.7, dendextend 1.15.1, gplots 3.1.1, ggpubr 0.4.0, reshape2
1.4.4, cowplot 1.1.1, patchwork 1.1.1, Cairo 1.5.12.2, ggforce
0.3.3.

2.3 Installation Starfish can be installed remotely by

if (!requireNamespace("devtools", quietly = TRUE)) install.

packages("devtools")

library(devtools)

install_github("yanglab-computationalgenomics/Starfish")

Starfish Infers CGR Signatures Across Human Cancers 107

Alternatively, one can download the latest release of Starfish by
running the following command in a bash terminal:

git clone https://github.com/yanglab-computationalgenomics/
Starfish.git

R CMD INSTALL

2.4 Load SV, CNV,

and Sample Data into

R

One can load Starfish and the test data provided by the package.

library(Starfish)

data("example_sv")

data("example_cnv")

data("example_sample")

Running this command loads three R data frames,
corresponding to the somatic SVs, CNVs, and gender information
of six tumors of the PCAWG project. Starfish accepts SV and CNV
calls from any variant caller, as long as they are encoded in the
required format (see below).

2.5 SV Data Starfish requires the SV data to be stored in a data frame with the
following columns:

“chrom1” (character): chromosome for the first breakpoint (see
Note 3)

• “pos1” (numeric): genomic coordinate for the first breakpoint,
and pos1 should be smaller than pos2 for intrachromosomal SVs
(i.e., DEL, DUP, h2hINV, and t2tINV)

• “chrom2” (character): chromosome for the second breakpoint

• “pos2” (numeric): genomic coordinate for the second
breakpoint

• “svtype” (character): type of SV, encoded as DEL (deletion-like;
+/-), DUP (duplication-like; -/+), h2hINV (head-to-head
inversion; +/+), t2tINV (tail-to-tail inversion; -/-), and TRA
(translocation)

• “strand1” (character): strand information for the first break-
point (e.g., + for DEL)

• “strand2” (character): strand information for the second break-
point (e.g., - for DEL)

• “sample” (character): sample ID

print(head(example_sv), row.names = FALSE)

https://github.com/yanglab-computationalgenomics/Starfish.git
https://github.com/yanglab-computationalgenomics/Starfish.git

chrom1 pos1 chrom2 pos2 strand1 strand2 svtype sample

chromosome start end total_cn sample

108 Lisui Bao

11 36219433 2 52018778 + - TRA 07f16397-71bb-4594-ad4d-
caa7d2baeabd

11 39939312 11 39941515 + - DEL 07f16397-71bb-4594-ad4d-
caa7d2baeabd

12 40811811 12 63685824 + + h2hINV 07f16397-71bb-4594-ad4d-
caa7d2baeabd

12 40838496 12 85876878 - - t2tINV 07f16397-71bb-4594-ad4d-
caa7d2baeabd

12 57913369 12 75990126 - + DUP 07f16397-71bb-4594-ad4d-
caa7d2baeabd

2.6 CNV Data Starfish requires the CNV data to be stored in a data frame with the
following columns:

• “chromosome” (character): chromosome

• “start” (numeric): start coordinate for the CN segment

• “end” (numeric): end coordinate for the CN segment

• “total_cn” (numeric): total copy number, which could be either
integer or decimal

• “sample” (character): sample ID

print(head(example_cnv), row.names = FALSE)

4 68582077 191154275 2 07f16397-71bb-4594-ad4d-caa7d2baeabd

12 112420925 112603567 1 07f16397-71bb-4594-ad4d-caa7d2baeabd

6 68336278 69355562 2 07f16397-71bb-4594-ad4d-caa7d2baeabd

Starfish will calculate the copy number (CN) baseline for each
chromosome to identify loss and gain fragments in a chromosome-
wise manner (see Note 4). It will use the gender information to call
CN losses and gains on chromosome X.

2.7 Gender Data Starfish requires the gender data to be stored in a data frame with
following columns:

• “sample” (character): sample ID, which should match the ones
in SV and CNV data frames.

• “gender” (character): gender for the sample, which could be
“Female,” “female,” “F,” “f,” “Male,” “male,” “M,” or “m.” If
the gender is unknown, any other characters could be given,

sample gender

Starfish Infers CGR Signatures Across Human Cancers 109

such as “unknown,” and the gender will be inferred by the CN
baseline of chromosome X (see details in Subheading 2.8.2).

print(head(example_sample), row.names = FALSE)

3db6e6cc-1a06-49b9-834e-b6611cde4c4b Male

2b6d4d66-7f0b-4bc0-b3d6-171956a937c5 Female

18f5e75e-c623-11e3-bf01-24c6515278c0 Male

fc8130df-897d-5404-e040-11ac0d485e0a Female

2.8 Running Starfish There are four components of Starfish: starfish_link, starfish_fea-
ture, starfish_sig, and starfish_plot. Once the input data are
loaded, we could run them step by step to obtain and examine
intermediate outputs, or we could use starfish_all to run them all
at once.

2.8.1 starfish_link starfish_link loads an SV data frame and identifies “seed” CGR
regions (see below), “linked” CGR regions, and complex SVs using
modified ShatterSeek. Oscillating-copy-state criteria is removed
from the original ShatterSeek package. In each sample, linked
regions are identified if they are connected by at least two translo-
cations within 10 kb of any seed regions. The search is performed
iteratively until no new linked regions could be found. A CGR
event is defined as all connected seed and linked regions combined
(Fig. 1).

Usage

starfish_link(sv_file, prefix = "")

Input

• “sv_file”: the SV data frame defined previously.

• “prefix”: the prefix for all intermediate files; default is none.

Example

Starfish will output the progress of “seed” region and “linked”
region calling.

starfish_link_out = starfish_link(example_sv, prefix = "exam-

ple")

chrom1 pos1 chrom2 pos2 svtype complex sample cluster_id

110 Lisui Bao

C
o

p
y

n
u

m
b

e
r

S
o

m
a

ti
c

S
V

s

Bladder−TCC

chr1 chr3 chr4 chr6 chr9 chr11 chr12 chr14 chr15 chrX
0

10

20

30

2b142863−b963−4cc9−8f8f−c72503c93390

DEL DUP h2hINV t2tINV TRA

seed region

linked region

Fig. 1 “Seed” regions and “linked” regions in a CGR of a Bladder-TCC sample “2b142863-b963-4cc9-8f8f-

c72503c93390.” SVs are shown as arcs, and SV types are shown in different colors. “Seed” and “linked”

regions are plotted as colored bars

Running…

Evaluating the statistical criteria

Successfully finished!

[1] “Iteration 1”

[1] “Starfish is connecting chromothriptic regions…”

Output
The function starfish_link returns an instance that contains three
data frames: interleave_tra_complex_sv, mergecall, and starfish_call.

interleave_tra_complex_sv contains complex SVs in the CGR
regions, and “complex = 2” means both breakpoints are in the
CGR regions. A CSV file “example_connected_CGR_complex_SV.
csv” will be generated under the working space:

print(head(starfish_link_out$interleave_tra_complex_sv), row.

names = FALSE)

19 22936736 4 4188431 TRA 2 18f5e75e-c623-11e3-
bf01-
24c6515278c0

18f5e75e-c623-11e3-
bf01-
24c6515278c0_4_19

19 22937258 4 4188272 TRA 2 18f5e75e-c623-11e3-
bf01-
24c6515278c0

18f5e75e-c623-11e3-
bf01-
24c6515278c0_4_19

chr start end sample call3 call6

chr start end sample CGR_status link_chromosome cluster_id

Starfish Infers CGR Signatures Across Human Cancers 111

mergecall contains “seed” CGR regions which is identified by
the modified ShatterSeek. “Call3” refers to the criteria of “at least
three interleaved intrachromosomal SVs and four or more inter-
chromosomal SVs” to call CGRs used by ShatterSeek, and “call6”
refers to the criteria of “at least six interleaved intrachromosomal
SVs.” The regions pass either “call3” or “call6” criteria will be
defined as “seed” CGR regions.

print(head(starfish_link_out$mergecall), row.names = FALSE)

3 162683868 169237872 07f16397-71bb-4594-ad4d-
caa7d2baeabd

no CG
R

5 30217747 163056821 07f16397-71bb-4594-ad4d-
caa7d2baeabd

no CG
R

X 126784598 152948223 07f16397-71bb-4594-ad4d-
caa7d2baeabd

no CG
R

starfish_call contains final CGR regions (both seed and linked
regions), and a CSV file “example_connected_CGR_event.csv” will
be generated under the working space.

print(head(starfish_link_out$starfish_call), row.names =

FALSE)

19 19053346 23741257 18f5e75e-c623-11e3-
bf01-
24c6515278c0

CGR 4_19 18f5e75e-c623-11e3-
bf01-
24c6515278c0_4_19

4 4188272 4188431 18f5e75e-c623-11e3-
bf01-
24c6515278c0

link 4_19 18f5e75e-c623-11e3-
bf01-
24c6515278c0_4_19

The columns are as follows:

• “chr”: chromosome of the CGR region.

• “start”: start coordinate of the CGR region.

• “end”: end coordinate of the CGR region.

• “sample”: sample ID.

• “CGR_status”: “CGR” means the region is the “seed” region
identified by modified ShatterSeek, and “link” means the region
is the “linked” region connected to “seed” regions.

• “link_chromosome”: the chromosomes linked together in
the CGRs.

112 Lisui Bao

a b c d e f gt

1

2

5

10

C
o

p
y
 n

u
m

b
e

r

Copy gain Copy neutralCopy loss

Telomere loss CGR region

n

s

L

SV

Fig. 2 Genomic features in CGR regions. Each layer represents a unique CGR

event with CGR region highlighted in green. Different CN fragments are painted

in different colors. Letters “a” to “g,” “n,” “t,” “s,” and “L” denote the lengths of

DNA segments, which are used for feature computation

• “cluster_id”: sample ID plus link_chromosome, which is the
unique CGR event ID.

2.8.2 starfish_feature This function loads CGR regions and SVs in the CGRs reported by
starfish_link and then combines CNV calls and gender to construct
a feature matrix for clustering and classification in Subheading
2.8.3. In Fig. 2, the size of CGR region [s] equals to ∑a:g. Break-
point dispersion score is defined as mean absolute deviation of [a:g]
which measures the randomness of breakpoint distribution of a
CGR. Copy loss and copy gain percentages are calculated by
∑a, e/[s], and ∑c, f/[s]. Telomere loss percentage is n/L. The
maximum CN is 10 in this example.

Usage

starfish_feature(cgr, complex_sv, cnv_file, gender_file, pre-

fix = "", genome_v = "hg19", cnv_factor = "auto", arm_del_rm =

TRUE)

Input

• “cgr”: the output of starfish_link_out$starfish_call.

• “complex_sv”: the output of starfish_link_out
$interleave_tra_complex_sv.

• “cnv_file”: the CNV data frame defined previously.

Starfish Infers CGR Signatures Across Human Cancers 113

 MN_SI_170724_P1_F15

chr1

S
V

SV type DEL DUP h2hINV t2tINV

0

1

2

3

C
N

V

Fig. 3 SVs and CNVs identified from single-cell sequencing data with

experimentally induced micronuclei. CN data from single-cell sequencing are

noisy

• “gender_file”: the sample gender defined previously.

• “prefix”: the prefix for all intermediate files; default is none.

• “genome_v”: the genome assembly used to call SV and CNV. It
could be “hg19” or “hg38”; default is “hg19.”

• “cnv_factor”: the CN fluctuation beyond or below baseline to
identify loss and gain fragments for samples with decimal CN;
default is “auto,” or users can provide a value between 0 and 1.

• “arm_del_rm”: logical value for whether or not arm-level dele-
tions should be removed; default is TRUE.

For each chromosome, starfish_feature will calculate the lon-
gest CN and set it as the chromosome CN baseline. In tumors,
aneuploidy is common, so each chromosome can have a different
baseline. By doing this, chromosome-specific copy loss and copy
gain fragments can be identified. Sometimes, the CNV data may be
noisy, such as from single-cell WGS. It would be challenging to
determine the CN baselines and CNVs. For example, Fig. 3 shows a
noisy CN profile from single-cell sequencing data of an experimen-
tally induced chromothriptic cell [11]. The “cnv_factor” parameter
is designed particularly for these samples. Copy loss fragments are
defined as fragments with CN less than (CN baseline)*(1-cnv_fac-
tor), and copy gain fragments are those with CN greater than
(CN baseline)*(1+cnv_factor). The default value is “auto,” and
Starfish will decide the value automatically based on the CN profile.
In “auto” mode, if the CN segments all have integer CNs, the
algorithm will assume the CN profile comes from bulk tumor
sequencing samples with high quality CN profiles, such as

PCAWG samples, and then cnv factor will be automatically set to
0. If the CN segments are decimal values, the algorithm will assume
the CN profile is noisy, such as single-cell sequencing data in Fig. 3,
and then cnv_factor will be automatically set to 0.15. The users may
set this parameter manually to a value ranging from 0 to 1 based on
the quality of CN profiles. For each sample without gender data,
Starfish will infer the gender based on the CN baseline of chromo-
some X. If (1-cnv_factor)≤(CN baseline of chromosome X)≤(1-
+cnv_factor), the gender will be inferred as “Male”; otherwise, it
will be inferred as “Female.”

114 Lisui Bao

 BR_SI_160611_P1_D9

chr1 chr17 chr18

S
V

SV type DEL DUP h2hINV t2tINV TRA

0

1

2

3

C
N

V

Fig. 4 SVs and CNVs identified from single-cell sequencing data with

experimentally induced chromatin bridges. Induced chromatin bridge

generates the telomere loss signature in the CGR region

“arm_del_rm” controls whether arm-level deletions (at least
95% of one chromosome arm is lost) should be removed or not.
To avoid the impact of aneuploidy on identifying telomere loss,
arm-level deletions are removed from bulk tumor sequencing data
by default, since arm-level copy losses are common in cancer and
independent of CGRs. However, in single-cell sequencing of exper-
imentally induced CGRs (Fig. 4), all alterations are generated in
one cell cycle including the somatic SVs and arm-level CNVs. This
function should be turned off in that case.

Example

Starfish will output the progress of CGR feature computation.

starfish_feature_out = starfish_feature(starfish_link_out

$starfish_call, starfish_link_out$interleave_tra_complex_sv,

sample cluster_id max_CNV

Loss_size

_percentage

Gain_size

_percentage

max_telo_loss

_percentage

Brk_dispersion

_MAD_mean_total

example_cnv, example_sample, prefix = "example", genome_v =

"hg19", cnv_factor = "auto", arm_del_rm = TRUE)

Starfish Infers CGR Signatures Across Human Cancers 115

[1] “Starfish is computing the feature matrix, please be
patient…”

[1] “6% is done…”

[1] “Event 07f16397-71bb-4594-ad4d-caa7d2baeabd_12”

…

[1] “62% is done…”

[1] “Event 2b6d4d66-7f0b-4bc0-b3d6-171956a937c5_12”

…

[1] “100% is done…”

[1] “Event fc8130df-897d-5404-e040-
11ac0d485e0a_2_3_7_17”

[1] “CGR feature computing is done!”

Output

The function starfish_feature returns an instance that contains a
data frame—cluster_feature—which is the feature matrix. A CSV
file “example_CGR_feature_matrix.csv” will be generated under
the working space:

print(head(starfish_feature_out$cluster_feature), row.names =

FALSE)

07f16397-71bb-
4594-ad4d-
caa7d2baeabd

07f16397-71bb-
4594-ad4d-
caa7d2baeabd_12

2 0.072 0 0 1.428

07f16397-71bb-
4594-ad4d-
caa7d2baeabd

07f16397-71bb-
4594-ad4d-
caa7d2baeabd_3

2 0.180 0 0 0.962

07f16397-71bb-
4594-ad4d-
caa7d2baeabd

07f16397-71bb-
4594-ad4d-
caa7d2baeabd_6

2 0.968 0 0 1.711

The columns are

• “sample”: sample ID

• “cluster_id”: the unique CGR event ID

• “max_CNV”: maximum copy number (log scale)

• “Loss_size_percentage”: copy loss percentage

• “Gain_size_percentage”: copy gain percentage

cluster_id

Brk_dispersion

_MAD_mean_total

Loss_size

_percentage

Gain_size

_percentage log_max_CN

max_telo

_loss_percentage CGR_signature

116 Lisui Bao

• “max_telo_loss_percentage”: highest telomere loss percentage

• “Brk_dispersion_MAD_mean_total”: breakpoint dispersion
score

2.8.3 starfish_sig This function loads the feature matrix and performs either signa-
ture classification (classifier) or de novo signature decomposition
(clustering).

Usage

starfish_sig(cluster_feature, prefix = "", cmethod = "class")

Input

• “cluster_feature”: feature matrix, which is the output from star-
fish_feature_out$cluster_feature.

• “prefix”: the prefix for intermediate files; default is none.

• “cmethod”: method to infer signatures from the CGR feature
matrix. It could be either “class,” the preconstructed classifier of
PCAWG dataset, or “cluster,” the de novo unsupervised clus-
tering. Default is “class.”

Example 1

If the user selects “class” method, Starfish will run the signature
classification based on a preconstructed classifier built upon 2428
tumors from PCAWG and output the progress:

starfish_sig_out = starfish_sig(starfish_feature_out$clus-

ter_feature, prefix = "example", cmethod = "class")

Using cluster_id as id variables

[1] “Signature classification is done!”

Output 1
The function starfish_sig returns a data frame which contains the
normalized CGR feature values and the CGR signature classifica-
tion. A CSV file “example_pcawg_6signatures_class.csv” will be
generated under the working space:

print(head(starfish_sig_out), row.names = FALSE)

3db6e6cc-1a06-49b9-

834e-

b6611cde4c4b_1_6_7

_12_X

1.987 0 0.839 3.714 0 1 ecDNA/

double

minutes

(continued)

cluster_id _MAD_mean_total _percentage _percentage log_max_CN _loss_percentage CGR_signature

Starfish Infers CGR Signatures Across Human Cancers 117

Brk_dispersion Loss_size Gain_size max_telo

18f5e75e-c623-11e3-

bf01-

24c6515278c0_4_19

0.110 0 2.699 1.794 4.054 2 BFB cycles/

chromatin

bridge

07f16397-71bb-4594-

ad4d-caa7d2baeabd_6

2.955 3.543 0 0.597 0 3 Large loss

07f16397-71bb-4594-

ad4d-caa7d2baeabd_3

0.325 0.661 0 0.597 0 4 Micronuclei

The columns are

• “cluster_id”: the unique CGR event ID

• “log_max_CN”: normalized maximum copy number (log scale)

• “Loss_size_percentage”: normalized copy loss percentage

• “Gain_size_percentage”: normalized copy gain percentage

• “max_telo_loss_percentage”: normalized highest telomere loss
percentage

• “Brk_dispersion_MAD_mean_total”: normalized breakpoint
dispersion score

• “CGR_signature”: CGR signature classification

Breakpoint dispersion score

Loss percentage

Gain percentage

Telomere loss percentage

log10(max CN)

1 ecDNA/double minutes
2 BFB cycles/chromatin bridge
3 Large loss
4 Micronuclei
5 Large gain
6 Hourglass

Fig. 5 Six CGR signatures with normalized feature values in the test data. Each column is a unique CGR event.

Top panel shows the predicted signature of the event, and bottom panels show the normalized values of five

features

118 Lisui Bao

A signature plot will be generated for users to quickly check the
proportion of six CGR signatures in the study cohort (Fig. 5).

Example 2
If the user selects “cluster” method, Starfish will invoke R package
ConsensusClusterPlus and run the unsupervised consensus cluster-
ing for de novo signature decomposition and output the progress:

starfish_sig(starfish_feature_out$cluster_feature, prefix =

"example", cmethod = "cluster")

end fraction

clustered

[1] “Clustering is done! The clustering results are stored
under ‘CGR_cluster’ folder!”

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0

0.2

0.4

0.6

0.8

1.0

consensus CDF

consensus index

C
D

F

2

3

4

5

6

7

8

9

10

11

12

13

Fig. 6 CDF plot for test data. This graphic shows the cumulative distribution functions of the consensus matrix

for each cluster number K (indicated by colors). This figure allows the user to determine at what number of K

the CDF reaches an approximate maximum. The optimal K would be 6 as the curve approaches the plateau in

this example

V1 V2

Starfish Infers CGR Signatures Across Human Cancers 119

2 4 6 8 10 12

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Delta area

k

re
la

ti
v
e
 c

h
a
n

g
e
 i
n

 a
re

a
 u

n
d

e
r

C
D

F
 c

u
rv

e

Fig. 7 Delta area plot for test data. This graphic shows the relative change in area under the CDF curve

comparing cluster number K and K - 1. This plot allows the user to determine the relative increase in

consensus and determine K at which there is no appreciable increase. Beginning from cluster 6, there is no

more dramatic increase, so six clusters would be optimal in this example

Output 2
The clustering results are stored under “CGR_cluster” folder.
Users could check either the “Delta Area” plot (Fig. 6) or the
“Consensus Cumulative Distribution Function (CDF) Plot”
(Fig. 7) to determine the optimal cluster number K:

The user can find clustering tables “CGR_cluster.k=K.consen-
susClass.csv” under the “CGR_cluster” folder, where different K
represents different clustering numbers. Taking K = 6 as an exam-
ple, column “V1” is the unique CGR event ID, and column “V2” is
the clustering ID.

starfish_sig_cluster = read.csv("CGR_cluster.k=6.consensu-

sClass.csv", header = F)

print(head(starfish_sig_cluster), row.names = FALSE)

07f16397-71bb-4594-ad4d-caa7d2baeabd_12 1

(continued)

120 Lisui Bao

V1 V2

07f16397-71bb-4594-ad4d-caa7d2baeabd_3 2

07f16397-71bb-4594-ad4d-caa7d2baeabd_6 3

07f16397-71bb-4594-ad4d-caa7d2baeabd_5 4

07f16397-71bb-4594-ad4d-caa7d2baeabd_7 2

07f16397-71bb-4594-ad4d-caa7d2baeabd_X 4

2.8.4 starfish_plot This function loads an SV data frame, a CNV data frame, and CGR
regions reported by starfish_link, to draw the CGR regions in a
linear setting.

starfish_plot(sv_file, cnv_file, cgr, genome_v = "hg19")

Input

• “sv_file”: the SV data frame defined previously.

• “cnv_file”: the CNV data frame defined previously.

• “cgr”: the output of starfish_link_out$starfish_call.

• “genome_v”: the genome assembly version. It could be either
“hg19” or “hg38,” and default is “hg19.”

Example

starfish_plot(example_sv, example_cnv, starfish_link_out

$starfish_call)

Output
Linear plots of CGR regions (Fig. 8)

2.8.5 starfish_all Starfish also provides a function “starfish_all” to run all four func-
tions described above at once.

Usage

starfish_all(sv_file, cnv_file, gender_file, prefix = "",

genome_v = "hg19", cnv_factor = "auto",

arm_del_rm = TRUE, plot = TRUE, cmethod = "class")

Input

• “sv_file”: the SV data frame defined previously.

• “cnv_file”: the CNV data frame defined previously.

• “gender_file”: the gender data frame defined previously.

• “prefix”: the prefix for all intermediate files; default is none.

Starfish Infers CGR Signatures Across Human Cancers 121

 3db6e6cc-1a06-49b9-834e-b6611cde4c4b

chr1 chr6 chr7 chr12 chrX

S
V

SV type DEL DUP h2hINV t2tINV TRA

0

20

40

60

C
N

V

Fig. 8 Example plot of SVs and CNVs in a CGR region involving chr1, 6, 7, 12, and

X in tumor sample “3db6e6cc-1a06-49b9-834e-b6611cde4c4b” with

connected “seed” CGR regions shown in red and “linked” CGR regions shown

in blue

• “genome_v”: the genome assembly version. It could be “hg19”
or “hg38”; default is “hg19.”

• “cnv_factor”: the CN fluctuation beyond or below baseline to
identify loss and gain fragments for samples with decimal CN;
default is “auto,” or users can provide a value between 0 and 1.

• “arm_del_rm”: logical value for whether or not arm-level dele-
tions should be removed; default is TRUE.

• “plot”: the logical value of plotting CGRs; default is TRUE.

• “cmethod”: method to infer signatures from the CGR feature
matrix, which can be “class” or “cluster”; default is “class.”

Example

starfish_all(example_sv, example_cnv, example_sample, prefix

= "example", genome_v = "hg19",

cnv_factor = "auto", arm_del_rm = TRUE, plot = TRUE,

cmethod = "class")

122 Lisui Bao

3 Notes

1. The users can load all packages at once as

Packages <- c("ShatterSeeky", "GenomeInfoDb", "plyr", "data.

table", "GenomicRanges", "IRanges", "MASS", "ggplot2", "grid",

"gridExtra", "dplyr", "ConsensusClusterPlus", "factoextra",

"gplots", "ggpubr", "reshape2", "cowplot", "scales", "patch-

work", "Cairo", "ggforce")

lapply(Packages, library, character.only = TRUE)

2. ShatterSeeky could be installed as
g i t c l o n e h t t p s : / / g i t h u b . c o m / y a n g l a b -

computationalgenomics/Starfish.git
cd Starfish
R CMD INSTALL ShatterSeeky_0.4.tar.gz

3. Chromosome names could be either Ensembl style or UCSC
style, e.g., “Chr1,” “chr1,” and “1” are all accepted, and only
chromosomes 1–22, X, and Y are considered.

4. For bulk tumor sequencing samples, it is strongly recom-
mended to use algorithms, such as Batternberg and Sequenza,
to derive integer copy numbers, rather than using copy ratios
between tumor and normal.

References

1. Negrini S, Gorgoulis VG, Halazonetis TD
(2010) Genomic instability--an evolving hall-
mark of cancer. Nat Rev Mol Cell Biol 11(3):
220–228. ht tps ://doi .org/10.1038/
nrm2858

2. Yang L, Luquette LJ, Gehlenborg N et al
(2013) Diverse mechanisms of somatic struc-
tural variations in human cancer genomes. Cell
153(4):919–929. https://doi.org/10.1016/j.
cell.2013.04.010

3. The ICGC/TCGA Pan-Cancer Analysis of
Whole Genomes Consortium (2020)
Pan-cancer analysis of whole genomes. Nature
578(7793):82–93. https://doi.org/10.1038/
s41586-020-1969-6

4. Cortes-Ciriano I, Lee JJ, Xi R et al (2020)
Comprehensive analysis of chromothripsis in
2,658 human cancers using whole-genome
sequencing. Nat Genet 52(3):331–341.
https://doi.org/10.1038/s41588-019-
0576-7

5. Stephens PJ, Greenman CD, Fu B et al (2011)
Massive genomic rearrangement acquired in a

single catastrophic event during cancer devel-
opment. Cell 144(1):27–40. https://doi.org/
10.1016/j.cell.2010.11.055

6. Zhang CZ, Spektor A, Cornils H et al (2015)
Chromothripsis from DNA damage in micro-
nuclei. Nature 522(7555):179–184. https://
doi.org/10.1038/nature14493

7. Maciejowski J, Li Y, Bosco N et al (2015)
Chromothripsis and kataegis induced by telo-
mere crisis. Cell 163(7):1641–1654. https://
doi.org/10.1016/j.cell.2015.11.054

8. Maciejowski J, Chatzipli A, Dananberg A et al
(2020) APOBEC3-dependent kataegis and
TREX1-driven chromothripsis during telo-
mere crisis. Nat Genet 52(9):884–890.
https://doi.org/10.1038/s41588-020-
0667-5

9. Shoshani O, Brunner SF, Yaeger R et al (2021)
Chromothripsis drives the evolution of gene
amplification in cancer. Nature 591(7848):
137–141. https://doi.org/10.1038/s41586-
020-03064-z

https://github.com/yanglab-computationalgenomics/Starfish.git
https://github.com/yanglab-computationalgenomics/Starfish.git
https://doi.org/10.1038/nrm2858
https://doi.org/10.1038/nrm2858
https://doi.org/10.1016/j.cell.2013.04.010
https://doi.org/10.1016/j.cell.2013.04.010
https://doi.org/10.1038/s41586-020-1969-6
https://doi.org/10.1038/s41586-020-1969-6
https://doi.org/10.1038/s41588-019-0576-7
https://doi.org/10.1038/s41588-019-0576-7
https://doi.org/10.1016/j.cell.2010.11.055
https://doi.org/10.1016/j.cell.2010.11.055
https://doi.org/10.1038/nature14493
https://doi.org/10.1038/nature14493
https://doi.org/10.1016/j.cell.2015.11.054
https://doi.org/10.1016/j.cell.2015.11.054
https://doi.org/10.1038/s41588-020-0667-5
https://doi.org/10.1038/s41588-020-0667-5
https://doi.org/10.1038/s41586-020-03064-z
https://doi.org/10.1038/s41586-020-03064-z

Starfish Infers CGR Signatures Across Human Cancers 123

10. Bao L, Zhong X, Yang Y et al (2022) Starfish
infers signatures of complex genomic rearran-
gements across human cancers. Nat Cancer
3(10):1247–1259. https://doi.org/10.1038/
s43018-022-00404-y

11. Umbreit NT, Zhang CZ, Lynch LD et al
(2020) Mechanisms generating cancer genome
complexity from a single cell division error.
Science 368(6488):eaba0712. https://doi.
org/10.1126/science.aba0712

https://doi.org/10.1038/s43018-022-00404-y
https://doi.org/10.1038/s43018-022-00404-y
https://doi.org/10.1126/science.aba0712
https://doi.org/10.1126/science.aba0712

Chapter 6

Using FFPEsig to Remove Formalin-Induced Artifacts
and Characterize Mutational Signatures in Cancer

Qingli Guo, Ann-Marie Baker, Ville Mustonen, and Trevor A. Graham

Abstract

The wealth of routinely processed formalin-fixed and paraffin-embedded (FFPE) cancer biopsies is poten-
tially a tremendous resource for cancer genomics research. However, the presence of formalin-induced
artifactual mutations in FFPE material can confound mutational analyses. Our de-noising algorithm,
FFPEsig, removes FFPE-related artifactual mutations enabling the inference of biological mutational
signatures. In this chapter, we focus on the practical use of FFPEsig, offering a detailed guidance from
both the wet-lab experimental and bioinformatics analysis perspectives. Our aim is to assist users to generate
robust and significant results using FFPEsig.

Key words FFPE samples, Signature analysis, Mutational processes, De-noising, Biological mutation
signal

1 Introduction

Characterizing mutational signatures in cancer FFPE (formalin-
fixed paraffin-embedded) specimens can help us to understand
cancer genome evolution [1–3]. However, the use of formalin in
fixing tissues can result in significant DNA damage, leading to not
only a reduced quantity but also a diminished quality in resulting
DNA sequencing libraries [4, 5]. In our earlier research, we intro-
duced FFPEsig, a comprehensive computational tool designed to
eliminate noise and unveil genuine biological signals within DNA
sequencing data derived from FFPE blocks [6]. Our de-noising
method assumes that formalin induces a characteristic pattern of
“mutational noise” that will be consistent across FFPE samples;
therefore, removal of this predictable pattern from the observed
mutational profiles is plausible.

We discovered that the mutational spectrum of formalin-
induced artifactual mutations is highly similar to that of two
biological mutational processes—C > T mutations at CpG sites

Alexander Krasnitz and Pascal Belleau (eds.), Cancer Bioinformatics, Methods in Molecular Biology, vol. 2932,
https://doi.org/10.1007/978-1-0716-4566-6_6,
© The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature 2025

125

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-4566-6_6&domain=pdf
https://doi.org/10.1007/978-1-0716-4566-6_6#DOI

that occur as part of aging [7] and C > T mutations that occur
because of a specific base excision repair deficiency that results from
NTHL1 mutations [8]. These two biological processes produce
patterns of mutations highly similar to formalin-induced signatures
in scenarios where sequencing library preparation is performed with
and without a chemical “FFPE repair” agent, respectively [6]. To
subtract FFPE generated noise, FFPEsig takes the observed muta-
tion profile and the known noise mutational signature as input,
subtracts the noise from the observed profile, and outputs the
predicted biological mutational profile for the given sample.

126 Qingli Guo et al.

Our previous results revealed two main factors that can impact
the correction performance of FFPEsig: signal-to-noise ratio
(SNR) (the true mutational load vs the formalin-induced artifacts)
and signal-to-noise similarity (SNS) (the similarity of the muta-
tional signatures produced by biological processes compared to
that of formalin-induced mutagenesis) [6].

While we briefly addressed the implementation of this knowl-
edge in the analysis of mutational signatures in FFPE samples, this
chapter provides a more comprehensive usage manual. We focus on
the practical solutions and suggestions derived from our own
research. Additionally, we have incorporated notes covering fre-
quently asked questions and areas that users commonly overlook.

2 User Manual

In this section, we first summarize the major steps of using FFPE-
sig, including the recommended wet-lab protocols. Next, we pro-
vide a detailed description for each of the components of the
bioinformatics analysis. Finally, we focus on the practical usage of
FFPEsig with additional notes.

2.1 Overview Here we provide an overview about the major steps of applying
FFPEsig (Fig. 1), including the wet-lab “FFPE repair” treatment
(Step 1), downstream bioinformatics analysis (Step 2), and a final
noise correction using FFPEsig (Step 3). We included the first two
steps (wet lab and mutational calling) in our guidance as they
directly impact the two main factors, SNS and SNR, which jointly
determine the success of noise removal by FFPEsig.

In Step 1, the decision-making process involves determining
whether the target FFPE sample(s) should undergo repair using a
chemical agent (e.g., uracil DNA glycosylase, UDG) or be left
unrepaired during the DNA extraction process. This choice results
in the generation of distinct formalin-induced mutational signature
“error profiles”, which can further add complexity to the bioinfor-
matics process if the error profile is very similar to the dominant
true biological mutational processes expected to be active in the
sample.

Characterising Mutational Signatures Using FFPEsig 127

Fig. 1 Overview of the major steps of using FFPEsig

For instance, colorectal cancers (CRCs) often exhibit a promi-
nent aging signature (SBS1, COSMIC version 3). If the CRC FFPE
DNA has undergone FFPE repair, the artifactual mutations would
also display an SBS1-like FFPE noise pattern, leading to a high SNS
[6]. In such a scenario, FFPEsig will likely “overcorrect” the noise
(i.e., erroneously remove true biological signal) because it is chal-
lenging to differentiate the highly similar authentic signals from the
artifactual ones. Therefore, we strongly recommend using unre-
paired FFPE DNA for mutational signature analysis with FFPEsig.
The following subsection 2.2 outlines how prior knowledge of a
given cancer type can guide this decision-making process.

Step 2 represents a bioinformatics analysis pipeline for calling
somatic mutations and generating mutational profiles from the
mutation list. The incorporation of artifact-filtering methods is
crucial at this stage to ensure a reasonable SNR for FFPEsig to
operate effectively. In our observations, FFPEsig demonstrates
effective performance when the SNR is greater than 0.1 [6]. Never-
theless, its efficacy declines rapidly when the true mutation count is
less than 10% of the noise count, which is due to the stochastic
variability of the noise outweighing the signal itself. Therefore, the
upstream artifact-filtering steps are crucial for addressing easily
removable FFPE artifacts and maximizing SNR values. To achieve
this goal, we offer additional suggestions in the following sections.

128 Qingli Guo et al.

Fig. 2 Using public datasets to determine suitable laboratory treatment of FFPE

samples based on SNS. (This figure is adapted from Guo et al. [6])

2.2 Defining the

Suitable Laboratory

Protocols

To decide whether chemical FFPE repair treatment should be
applied to the target FFPE DNA sample Y of cancer type X,
FFPEsig users can apply the existing knowledge by examining
high quality tumor sequencing data from the same cancer type
X (Fig. 2), e.g., from the pan-cancer data cohort [9]. In this
context, we assume that the biological mutation profile of target
FFPE sample Y is likely to align with publicly available mutational
spectrum of the same cancer type.

For example, users can compare the averaged SNS values,
R and NR, calculated between the biological mutation patterns
(M) of fresh-frozen tumors of cancer type X and the two estab-
lished repaired and unrepaired FFPE signatures, respectively. The
UR value represents the mean pair-wise cosine similarities between
biological profiles and the unrepaired signature, with
R representing the same value computed against the repaired sig-
nature. If the biological mutation patterns share a higher similarity
with the unrepaired signature (R < UR), we recommend applying
UDG treatment to repair the FFPE DNA extracted from sample Y.
Otherwise, if the similarity is greater with the repaired signature
(R > UR), FFPE DNA sample Y should remain unrepaired.

Characterising Mutational Signatures Using FFPEsig 129

Table 1

Recommended application of FFPEsig on common cancer type

Group Common cancer types Recommendation (Step 1)

Confident Lung-SCC Repair
Bladder-TCC
Lung-AdenoCA
Head-SCC
Skin-Melanoma
Eso-AdenoCA Unrepair
ColoRect-AdenoCA
Stomach-AdenoCA
CNS-GBM

Less confident (proceed with care) Liver-HCC Repair
Biliary-AdenoCA
Ovary-AdenoCA
Breast-AdenoCA
Kidney-RCC
Bone-Osteosarc
Uterus-AdenoCA Unrepair
Panc-AdenoCA
Lymph-BNHL
Prost-AdenoCA

Not confident Lymph-CLL NA
Kidney-ChRCC
Panc-Endocrine
Myeloid-MPN
Thy-AdenoCA
CNS-Medullo
CNS-PiloAstro

This table is adapted from Guo et al. [6]

We applied the above principle to sequencing data from fresh-
frozen tumors in Pan-Cancer Analysis of Whole Genomes
(PCAWG) [9] and summarized the recommended protocol for
the common cancer types reported in PCAWG (Table 1). However,
users are encouraged to apply these principles using additional
public datasets as these become available.

2.3 Generating FFPE

Mutational Profile with

Reasonable SNR

Upon obtaining the raw sequencing data from the target FFPE
cancer sample Y along with its matched normal DNA data, the
initial step involves processing the sample pair to call somatic
mutations. It is crucial to note that the removal of FFPE noise
mutations also carries a risk of excluding true somatic mutations.
Therefore, achieving a balanced mutation list with a reasonable
SNR is essential in Step 2.

In our laboratory, we call SNVs using the mutation callers, such
as Mutect2 [10] and Platypus [11]. Additional filters are then
applied, including (1) checking if the FILTER flag was marked as

PASS or other acceptable filters (alleleBias, Q20, QD, SC, Hap-
Score); (2) ensuring the variant is not a known germline variant;
(3) confirming a genotype is called for all samples and the genotype
Phred score is 10 or higher in all samples; and (4) verifying that the
normal sample has no reads containing the variant and at least three
or more reads support the variant in a tumor sample. For a more
detailed overview, please refer to the relevant Method section in our
original paper [6]. Finally, SigProfilerMatrixGenerator is used to
derive mutational profiles [12].

130 Qingli Guo et al.

Following the mutation calling and filtering steps, we can once
again use available cancer profiles from existing fresh-frozen tumors
to estimate the SNR for sample Y (Fig. 3). To obtain this value, we
calculate the number of point mutations in the resulting FFPE
mutational profile, denoted as symbol O. We aggregate the aver-
aged mutation load of non-hypermutated tumors in cancer type
X (with a mutation load <5 × 104) (see Note 1), denoted as symbol
A. The approximate estimation of SNR is then calculated by com-
puting A/(O-A). If the estimated SNR is greater than 0.1, the
FFPE mutation profile and the known FFPE repair status (from
Step 1) are ready for use in FFPEsig for noise correction in Step
3. However, if the estimated SNR falls below 0.1, additional muta-
tion filters or adjustments to the threshold for the current filters
(in Step 2) may be necessary to regenerate the FFPE mutation
profile.

In our previous analysis, we observed that certain cancer types
exhibit a relatively lower mutational load, making it challenging to
adjust the bioinformatics pipeline to achieve a reasonable SNR
(Table 1). Consequently, we do not recommend applying FFPEsig
to cancer samples collected from these tissues.

2.4 Applying FFPEsig FFPEsig is a standalone command-line tool and implemented in
python (version >3). The following code can be used to run
the tool:

python FFPEsig.py -i [input file] -s [sample ID] -l [repair

mode] -o [output file]

In the above code, the script “FFPEsig.py” is available to
download from here. In addition, four arguments are required to
run the tool:

1. --input/-i <string>, refers to the input file containing the
observed mutation counts in 96-channel format for one or
more FFPE samples (see Note 2).

2. --sample/-s <string>, refers to a sample ID contained in the
input file. This sample ID identifies which sample to process
further, and it also serves as the file identifier in the output
folder (see Note 3). Running multiple samples simultaneously
is also possible (see Note 4).

https://github.com/QingliGuo/FFPEsig/blob/main/FFPEsig.py

Characterising Mutational Signatures Using FFPEsig 131

Fig. 3 Adjusting bioinformatics analysis pipeline to meet the minimal SNR

requirement using public datasets. (This figure is adapted from Guo et al. [6])

3. --label/-l <string>, refers to the label of the repair status of the
sample. The label can be either “Repaired” or “Unrepaired.”
When the “Repaired” label is specified, the repaired FFPE
noise signature (similar to SBS1) is used as the noise mutation
pattern. On the other hand, when the “Unrepaired” label is
provided, the unrepaired FFPE noise signature (similar to
SBS30) is utilized by FFPEsig. It is crucial to clearly specify
the label to avoid error messages. Additionally, users have the
option to update the error profiles (see Note 5) or repurpose
the tool to remove noise in a different setting (see Note 6).

4. --output/-o <string>: provides the path to the folder where all
the output files will be stored. This folder must be created
(“mkdir path-to-the-folder”) before running FFPEsig if it
does not exist.

132 Qingli Guo et al.

FFPEsig generates four files in the output folder when
provided with appropriate input arguments. The output files
include the following:

1. ‘SampleID’_corrected_profile.csv, contains the final corrected
mutation profile, which can be further used for the decompo-
sition of individual mutational signatures (see Note 7).

2. ‘SampleID’_all_solutions.csv, contains all solutions derived
from using different random initial values (see Note 3). This
file is helpful to help the users to estimate the variances among
all predicted values, if interested.

3. ‘SampleID’_before_correction.pdf, visualizes original mutational
profile of the given sample over the 96-mutational channels.
Here, we provide a representative example of an uncorrected
profile of a simulated FFPE sample (Fig. 4, top panel).

4. ‘SampleID’_after_correction.pdf, visualizes the corrected muta-
tional profile of the given sample over the 96-mutational chan-
nels. Again, we show an example of a corrected profile from a
simulated FFPE sample (Fig. 4, bottom panel).

3 Possible Batch Effect and Strategies

In our previous article, we have observed an excess number of
artifactual T > C mutations in FFPE samples in study 1 [13], but
not in study 2 [5] and 3 [14]. Additionally, we reviewed an

Fig. 4 Examples of output plots from FFPEsig. In the output folder, users can find two figures generated by

FFPEsig for a given sample. The top panel displays the 96-mutational channel plot of the original mutation

count, while the bottom panel shows the same plot of the predicted biological mutational profile for the same

sample. The total mutation count, sample ID, and correction status are annotated in the plots

additional 20 publications regarding this issue, and only 3 of 20 arti-
cles (15%) observed T > C mutations from their FFPE samples
[6]. These collective findings suggest that these T > C mutations
are likely batch-related artifacts produced by lab-specific DNA
extraction or library generation protocols and/or sequencing and
basic processing of these libraries.

Characterising Mutational Signatures Using FFPEsig 133

Our previous investigation suggested that the choice of poly-
merase used in PCR (and reaction conditions) might be responsible
for the batch-related artifacts. DNA polymerases have different
levels of fidelity and bypass efficiency, also known as translesion
synthesis, leading to polymerase associated artifacts [15, 16]. For
example, T:G mispair is one of the most frequently produced and
most easily extended base substitution errors for Taq DNA poly-
merase, which will lead to T > C accounting for 67% of the artifacts
[17]. The study also found when dNTP concentration is lowered
from 800 to 6 μm, only T:G mismatches or perfect base pairs are
extended [18]. Further, Y family bypass DNA polymerase would
cause a great number of A:T > G:C artifacts as the misincorpora-
tion of dGTP opposite of T is even more efficient than inserting
dATP in this family [16].

In situations where there is an abundance of T > C mutations,
biological interpretation of these mutations should be approached
with extra care. In our current signature analysis, we treated T > C
mutation counts as missing data and assigned them zero values.
Our analysis revealed that the remaining 80 channels (non-T > C)
still retained sufficient information for robust signature decompo-
sition. As more samples are sequenced, it will become feasible to
replace these missing data with corrected values. For instructions
on updating this information in the error profile, users can refer to
Notes 5 and 6 in this chapter.

4 Notes

1. FFPEsig is designed to filter the mutational spectra of samples
with an overwhelming amount of noise that obscures the gen-
uine biological signal. However, if the volume of the true signal
is sufficiently strong to the extent that the FFPE-related noise is
no longer the dominant component, FFPEsig may not be
necessary. For instance, we observed that FFPEsig consistently
performs well on hypermutated tumors, irrespective of the
noise level. This is likely because the dominant biological muta-
tional process can be reliably identified without the need for
FFPE artifact removal.

2. The mutation count in the 96-mutational channel format can
be obtained using installed methods like SigProfilerMatrixGen-
erator [12]. It is important to note that the input data must be

for sample in “cat sample_names.txt” do

python FFPEsig.py --input <Path-to-the-Data-

Frame> --sample $sample --label <Unrepaired|Repaired> --

output <Path-of-output-folder>

Done

134 Qingli Guo et al.

in the same order as presented in our signature file—because
FFPEsig does not read the row names of the input file, which
may be displayed in different formats by different matrix gen-
eration tools.

3. The input file should be a standardized CSV file (comma-
separated) with the 96-channel mutational counts displayed
in the columns, where the column names represent the sample
IDs. While it can contain more than one sample, only the
specified sample ID will be processed by using the command
line. For instructions on running multiple samples automati-
cally, please refer to Note 4.

4. FFPEsig focuses on one sample at a time. For each given
sample, the pipeline runs the correction algorithm 100 times
using different random initial values and collects predicted
mutational profiles from each interaction. The final predicted
profile takes the median values from each mutational channel
over the 100 candidate solutions.

To run multiple samples, the users can utilize the following
codes in a shell script (see also the further discussion in our tool
github page):

In the above code, sample_names.txt refers to a file contain-
ing all the targeted sample IDs. Each line within this file should
contain one sample ID.

5. In the current version of FFPEsig, the formalin-induced FFPE
signatures were derived from targeted panel sequencing data
and then projected into the genome scale. However, we
acknowledge that confounders can arise at both wet-lab and
dry-lab steps, leading to some variability in error profiles. In
such cases, users may consider using their own error profiles
from benchmarked pilot studies. To update or replace the
current error profiles, users can modify the relevant mutational
frequency values in the instances named “ffpe_sig_repaired” or
“ffpe_sig_unrepaired” in our FFPEsig.py script. Alternatively,
you can provide the noise mutation profile directly to the “W1”
argument in the function named “correct_FFPE_profile.” For
more details, please refer to our analysis notebook.

6. FFPEsig can be repurposed to correct noise in other settings
where the dominant noise obscures the signal. In such cases,
users can update the new error profile, which could also be
generated from other types of mutations, such as double base

https://github.com/QingliGuo/FFPEsig/blob/main/Data/FFPE_signatures_96-channel.csv
https://github.com/QingliGuo/FFPEsig/issues/4
https://qingliguo.github.io/FFPEsig/Correcting_FFPEnoise_in_WGS_FFPE_CRCs.html

Characterising Mutational Signatures Using FFPEsig 135

substitutions and small insertions and deletions, not necessarily
limited to SBS mutations. In this scenario, the visualization
codes, designed for SBS mutations, should be muted to avoid
error messages.

7. The corrected mutation profile by FFPEsig is considered a
combined biological mutational profile, representing a linear
combination of various biological mutational processes. To
explore the active mutational processes in the given sample, a
signature refitting analysis is required. Our GitHub page
includes a function named “sig_refitting” specifically designed
for this task. Users can easily utilize it by downloading the
setup.py. Detailed instructions for running this analysis can be
found on our analysis codes page.

Acknowledgments

This article was supported by funding from the Schottlander
Research Charitable Trust (to QG and TG) and Cancer Research
UK (DRCNPG-May21_100001 to TG). V.M. acknowledges fund-
ing from the Academy of Finland (345829).

Conflict of Interest

TG is named as a coinventor on patent applications that describe a
method for TCR sequencing (GB2305655.9, also with AMB), a
method to measure evolutionary dynamics in cancers using DNA
methylation (GB2317139.0), and a method to infer drug resis-
tance mechanisms from barcoding data (GB2501439.0). TG has
received honorarium from Genentech and consultancy fees from
DAiNA therapeutics.

References

1. Alexandrov LB, Nik-Zainal S, Wedge DC et al
(2013) Signatures of mutational processes in
human cancer. Nature 500:415–421

2. Van Hoeck A, Tjoonk NH, van Boxtel R et al
(2019) Portrait of a cancer: mutational signa-
ture analyses for cancer diagnostics. BMC Can-
cer 19:457

3. Koh G, Degasperi A, Zou X et al (2021) Muta-
tional signatures: emerging concepts, caveats
and clinical applications. Nat Rev Cancer 21:
619–637

4. Wong SQ, Li J, Tan AYC et al (2014) Sequence
artefacts in a prospective series of formalin-
fixed tumours tested for mutations in hotspot
regions by massively parallel sequencing. BMC
Med Genet 7:23

5. Bhagwate AV, Liu Y, Winham SJ et al (2019)
Bioinformatics and DNA-extraction strategies
to reliably detect genetic variants from FFPE
breast tissue samples. BMC Genomics 20:689

6. Guo Q, Lakatos E, Bakir IA et al (2022) The
mutational signatures of formalin fixation on
the human genome. Nat Commun 13:4487

7. Alexandrov LB, Jones PH, Wedge DC et al
(2015) Clock-like mutational processes in
human somatic cells. Nat Genet 47:1402–
1407

8. Drost J, van Boxtel R, Blokzijl F et al (2017)
Use of CRISPR-modified human stem cell
organoids to study the origin of mutational
signatures in cancer. Science 358:234–238

https://github.com/QingliGuo/FFPEsig/blob/main/setup.py
https://qingliguo.github.io/FFPEsig/SigDecomposition_using_corrected_and_uncorrected_FFPEprofiles_80c.html

136 Qingli Guo et al.

9. Alexandrov LB, Kim J, Haradhvala NJ et al
(2020) The repertoire of mutational signatures
in human cancer. Nature 578:94–101

10. Van der Auwera GA, Carneiro MO, Hartl C
et al (2013) From FastQ data to high confi-
dence variant calls: the Genome Analysis
Toolkit best practices pipeline. Curr Protoc
Bioinformatics 43:11.10.1–11.10.33

11. Rimmer A, Phan H, Mathieson I et al (2014)
Integrating mapping-, assembly- and
haplotype-based approaches for calling variants
in clinical sequencing applications. Nat Genet
46:912–918

12. Bergstrom EN, Huang MN, Mahto U et al
(2019) SigProfilerMatrixGenerator: a tool for
visualizing and exploring patterns of small
mutational events. BMC Genomics 20:685

13. Prentice LM, Miller RR, Knaggs J et al (2018)
Formalin fixation increases deamination muta-
tion signature but should not lead to false

positive mutations in clinical practice. PLoS
One 13:e0196434

14. Van Allen EM, Wagle N, Stojanov P et al
(2014) Whole-exome sequencing and clinical
interpretation of formalin-fixed, paraffin-
embedded tumor samples to guide precision
cancer medicine. Nat Med 20:682–688

15. Quach N, Goodman MF, Shibata D (2004) In
vitro mutation artifacts after formalin fixation
and error prone translesion synthesis during
PCR. BMC Clin Pathol 4:1

16. Kunkel TA (2004) DNA replication fidelity. J
Biol Chem 279:16895–16898

17. McInerney P, Adams P, Hadi MZ (2014) Error
rate comparison during polymerase chain reac-
tion by DNA polymerase. Mol Biol Int 2014:
287430

18. Eckert KA, Kunkel TA (1991) DNA polymer-
ase fidelity and the polymerase chain reaction.
PCR Methods Appl 1:17–24

Chapter 7

Inferring Phenotypes of Copy Number Clones in Cancer
Populations Using TreeAlign

Hongyu Shi, Matthew Zatzman, Sohrab Shah, and Andrew McPherson

Abstract

Somatic copy number changes modify gene expression and drive cancer development and progression.
Single-cell techniques now allow for the profiling of both gene expression and copy number, opening the
possibility of linking expression changes with copy number changes at a single-cell level. However, joint
measurement of both expression and copy number from the same cell is not commonplace, and thus joint
analysis of expression and copy number requires computational integration of the two modalities. TreeA-
lign is a method for matching cells in single-cell RNA (scRNA) data to clones inferred from single-cell
whole genome sequence (scWGS) data. TreeAlign is phylogeny aware and capable of robustly modeling the
effect of gene dosage on gene expression. In this chapter, we provide a practical guide for using TreeAlign to
jointly analyze copy number and gene expression from single-cell whole genome sequencing and single-cell
RNA sequencing datasets.

Key words Cancer genomics, Tumor evolution, Single-cell RNA sequencing, Single-cell whole
genome sequencing, Probabilistic modeling, Tumor microenvironment

1 Introduction

Copy number alterations (CNAs) are frequent events in cancer and
are known to contribute to transcriptional diversity among cancer
cells. Amplification of oncogenes and deletion of tumor suppressors
can lead to dysregulated expression of affected genes and change
the fitness landscape of cancer cells [1]. CNAs spanning larger
genomic regions of chromosomal arms or whole chromosomes
can impact the expression of hundreds of genes through copy
number (CN) dosage effects. CN dosage effects are defined as the
positive correlation between CN (or gene dosage) and the
corresponding gene expression [2]. Previous studies using bulk
sequencing techniques have investigated the association between
clonal CNAs and gene expression [3–5]. The expression level of a
gene can be influenced by copy number dosage effects reflected by
the significant positive correlation between gene expression and the

Alexander Krasnitz and Pascal Belleau (eds.), Cancer Bioinformatics, Methods in Molecular Biology, vol. 2932,
https://doi.org/10.1007/978-1-0716-4566-6_7,
© The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature 2025

137

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-4566-6_7&domain=pdf
https://doi.org/10.1007/978-1-0716-4566-6_7#DOI

underlying copy number (CN) [2]. However, gene dosage effects
are not deterministic and may be subject to compensatory mechan-
isms, rendering the impact of CNAs on expression as highly variable
across the genome. Transcriptional adaptive mechanisms [6]
including epigenetic modifications and downstream transcriptional
regulation can modulate CN dosage effects [7–9], further obscur-
ing the direct impact of gene dosage. It remains an open question
to investigate how CNAs impact gene expression through both
dosage-dependent and dosage-independent mechanisms and how
dosage effects contribute to intratumor heterogeneity and clonal
evolution in cancer.

138 Hongyu Shi et al.

Establishing a robust connection between genetic composi-
tions and cancer cell phenotypes is challenging. Conventional
bulk sequencing methods have been widely employed to delineate
somatic alterations and concomitant phenotypic modifications [3–
5, 10]. Although paired datasets with both DNA and RNA
sequencing make it possible to correlate these two aspects, the
resolution of these studies is still limited at the level of patient-
derived tumor samples and unable to provide a comprehensive view
of genetic and transcriptomic diversity at the subclonal or single-
cell level. Conducting single-cell RNA and DNA sequencing sepa-
rately offers the capacity to profile a large number of individual cells
and thereby provides a more comprehensive depiction of cell popu-
lations in tumors. In recent years, an increasing number of studies
have appeared, generating multimodal datasets with single-cell
DNA and single-cell RNA profiles [1, 11–13]. The measurements
of both genetic alterations and gene expression at single-cell level
allow us to further dissect different aspects of intratumor heteroge-
neity and understand the role of CNAs in subclonal phenotypic
divergence. However, a comprehensive understanding of the intri-
cate interplay between subclonal CNAs and phenotypic changes
requires the development of computational frameworks for inte-
grating these diverse data modalities.

To quantify how CNAs influence gene expression at a subclone
level, we developed TreeAlign [14], which computationally inte-
grates independently sampled single-cell DNA and RNA sequenc-
ing data from the same cell population and explicitly models gene
dosage effects from subclonal alterations (Fig. 1). TreeAlign imple-
ments a Bayesian probabilistic model to assign single-cell expres-
sion profiles to a scWGS-based single-cell phylogeny while inferring
CN dosage effects. To further improve the accuracy of clone assign-
ment and dosage effect prediction, TreeAlign also allows explicit
modeling of allele-specific expression from allelic copy number
imbalance. The software for TreeAlign (https://github.com/
shahcompbio/TreeAlign) is implemented in Python using Pyro
[15] and is publicly available. The principles and benchmarking of
TreeAlign have been previously described in our publication. This

https://github.com/shahcompbio/TreeAlign
https://github.com/shahcompbio/TreeAlign

chapter focuses on a practical guide to apply TreeAlign on single-
cell sequencing datasets.

Clonal Cancer Phenotypes Using TreeAlign 139

scWGS

scWGS

Fig. 1 A TreeAlign analysis integrates scWGS CN profiles (top left) and scRNA gene expression (bottom left)

resulting in an assignment of scRNA cells to scWGS clones (middle) allowing downstream differential

expression and gene set enrichment analysis

2 Methods

In this section, we outline the steps to preprocess both scRNA and
scWGS from raw reads to input tables for TreeAlign. We describe
multiple options for some steps depending on the scWGS or
scRNA platform used to generate the data or the preference of
the analyst. Quality control (QC) steps are described to allow for
checks on data quality and amount of relevant signal. We then
describe how to run the TreeAlign model and interpret the outputs
generated by the software.

TreeAlign can be run using either clones or a phylogeny as
input. In addition, the model can be run in either total copy
number or allele-specific mode, meaning there are four possible
operating modes overall. We summarize the required inputs based
on the operating mode below.

Universal inputs

• Total copy number per scWGS cell.

• Gene expression per scRNA cell.

Clonal input

140 Hongyu Shi et al.

• Assignments of scWGS cells to clusters representing clones.

Phylogeny input

• A phylogeny relating scWGS cells.

Total copy number mode

• No additional inputs required.

Allele-specific copy number mode

• Allele-specific copy number per heterozygous SNP per
scWGS cell.

• Read counts for heterozygous SNPs in scRNA cells.

2.1 Preprocessing The complete preprocessing pipeline involves the following steps:

• sc

–

WGS preprocessing,

Alignment and QC.

– Compute cell specific total copy number (required).

– Compute cell and allele-specific copy number (optional,
allele-specific model).

– Infer copy number clones (clone mode).

– Infer a phylogenetic tree (phylogeny mode).

– Call heterozygous SNPs from matched normal WGS
(optional, allele-specific model).

• sc

–

RNA preprocessing,

Alignment and QC.

– Classify cells as tumor or normal.

– Genotype heterozygous SNPs in scRNA (optional, allele-
specific model).

A flowchart of the preprocessing pipeline is shown in Fig. 2.
We describe the workflow in the following sections and provide

examples based on data generated from DLP+ and 10X sequencing
of a pretreatment high grade serous ovarian tumor (OV-105) [16].

2.1.1 Preprocessing and

Alignment of scWGS Data

TreeAlign has been tested with both DLP+ [17] and 10X scWGS
data although other scWGS data types should also be possible. For
alignment and QC of scWGS data, we recommend using the pipe-
line designed for each data type. For 10X CNV, the cellranger DNA
pipeline [18] will generate a BAM file with each read properly
tagged with the corresponding cell barcode. For DLP+ data, we
recommend using Mondrian [17, 19]. The Mondrian pipeline will
perform alignment and total copy number calling using
HMMCopy and provide metrics for filtering poor quality and
replicating cells. When using DLP+, we recommend filtering cells

with quality < 0.75 in addition to cells labeled is_s_phase.
For 10X CNV data, the default filtering on DIMAPD and mapped
read count generally suffice.

Clonal Cancer Phenotypes Using TreeAlign 141

Fig. 2 TreeAlign preprocessing workflow

2.1.2 Total Copy Number

Calling from scWGS

Both Mondrian and cellranger DNA provide subcommands to call
cell specific total copy number. To QC the resulting copy number
calls, it is generally helpful to plot a heatmap of copy number sorted
either by a clustering of the cells or a phylogenetic tree (see Fig. 3).
A heatmap will allow you to see where segmentation has failed or
where the default cell filtering has not adequately removed noisy
cells. For a TreeAlign analysis, we advise removing outlier cells. A
cell may be an outlier because either the sequencing performed
poorly for that cell or because the cell has undergone mitotic failure
resulting in significant cell specific differences. In either case, cells
with large numbers of cell specific copy number changes will
impede accurate clonal or phylogenetic inference and are unlikely
to be represented in the scRNA data. Removing outliers can be
accomplished with the scgenome.tl.detect_outliers func-
tion in Mondrian/scgenome [20].

142 Hongyu Shi et al.

Fig. 3 OV-105 copy number and phylogenetic tree, with clones annotated to the right of the heatmaps

Additional options for calling copy number also worth men-
tioning include SCOPE [21], FLCNA [22], and Chisel [23]. Both
FLCNA and Chisel will also output copy number clones that may
be used with TreeAlign. Chisel will also output allele-specific copy
number calls that can be used with an allele-specific TreeAlign
analysis, obviating the need for Signals (see below).

2.1.3 Allele-Specific

Copy Number Calling from

scWGS

We recommend using Signals [1] for allele-specific copy number
calling, especially when working with DLP+ and using Mondrian
for preprocessing and copy number calling. The Mondrian pipeline
provides two additional subcommands that can be used to generate
inputs for Signals. The inferhaps subcommand operates on
matched normal WGS, required for Signals, to produce patient
specific haplotype blocks of phased SNPs. The counthaps sub-
command takes the haplotype blocks and scWGS data as input and
generates a table of cell specific read counts for haplotype blocks.
Signals is then run in R, with the haplotype block read counts and
total copy number as input. See the online documentation [24] for
a description of the commands used.

As with total copy number, a sorted heatmap of allele-specific
copy number will help identify segmentation issues and inadequate
cell filtering (see Fig. 3). In addition, a plot of B-Allele Frequency
(BAF) per inferred copy number state will also help determine how
well the allele-specific copy number fits the raw BAF signal (see
Fig. 4).

An important secondary output of Signals is the phase of each
SNP relative to the allele-specific copy number assigned to the A
and B alleles. Each haplotype block inferred by Mondrian is an

assignment of either the reference or alternate allele to haplotype
allele 0 or 1. During allele-specific copy number inference Sig-
nals will assign the B allele as either haplotype allele 0 or 1 for
each block, thereby assigning the B allele as the reference or alter-
nate allele of each SNP. To compute the phase of each SNP, merge
the Signals output with the haplotype blocks table produced by the
inferhaps subcommand of Mondrian.

Clonal Cancer Phenotypes Using TreeAlign 143

Fig. 4 BAF QC plot for Signals showing distribution of BAF (y-axis) per allele-specific copy number state

(x-axis)

2.1.4 Inferring a

Phylogenetic Tree

Accurate phylogenetic inference of clonal populations from scWGS
copy number data is a difficult problem. Cell specific variation can
be significant in some datasets, obscuring clonal signal. Copy num-
ber changes are homoplastic, and independent copy number
changes can produce convergent genomic profiles. As such, this
step may require careful tuning of the parameters of the selected
method.

For inferring a phylogenetic tree, we recommend using either
MEDICC2 [25] or Sitka [26]. MEDICC2 can be run with either
allele-specific or only total copy number inputs. We recommend
using allele-specific input if available, even if you do not intend to
run TreeAlign in allele-specific mode, as the additional information
will improve tree inference. To run MEDICC2 in allele-specific
mode, reformat the Signals output to the input format required
by MEDICC2, using copy number columns A and B output from
Signals as the cn_a and cn_b inputs for MEDICC2. For total copy
number input, use the state column output from Mondrian/
HMMCopy. To run sitka, follow the Tree Inference Tutorial [27]
using total copy number inputs from Mondrian/HMMCopy.
Leaves of the resulting tree will be either cells or loci. To ensure
the sitka tree is compatible with TreeAlign, prune the tree output
by sitka until the only leaves are those representing cells.

144 Hongyu Shi et al.

A plot of the inferred phylogeny alongside total and allele-
specific copy number is often informative for QC of the phyloge-
netic tree (Fig. 3). Long branches of a small number of cells may
result when those cells are outliers, either because they are noisy or
replicating or harbor significant cell or subclone-specific change
due to complex structural variation or whole genome doubling.
These sets of cells can be filtered post hoc, though rerunning
phylogenetic inference without these cells may improve the quality
of the phylogeny overall. The combined phylogeny copy number
plot also gives a global view of how well the phylogenetic method is
able to explain copy number changes across cells by grouping them
together as having a shared origin in a single clone. Identical copy
number changes scattered throughout the phylogeny indicate that
noise, particularly at segment boundaries for MEDICC2, is inhibit-
ing the method from grouping together common copy number
changes into a shared evolutionary history. Further smoothing of
the copy number subsequent to phylogenetic inference may be
required in such instances. Finally, comparison with a
non-phylogenetic clustering can often inform the quality of the
phylogeny.

2.1.5 Inferring Copy

Number Clones

A single-cell phylogeny is required to leverage the full capabilities of
TreeAlign. Nevertheless, a clustering of cells into putative clonal
populations can also be used as input. Several methods have been
used to cluster scWGS into clonal populations in previous work.
Dimensionality reduction using umap followed by HDBSCAN [1]
can be accomplished using the umap_clustering function from
the Signals R package. K-means or Gaussian mixture model based
clustering [17] can be accomplished using the scgenome.tl.

cluster_cells function in Mondrian/scgenome [20]. If you
have run cellranger DNA [18], then hierarchical clustering will be
included as an output of the pipeline and can be post-processed to
generate clusters of cells. Alternatively, methods specifically tailored
for scWGS data including FLCNA [22] and Chisel [23] will pro-
duce a clustering of the scWGS cells.

2.1.6 Calling

Heterozygous Germline

SNPs in Matched Normal

WGS

Where possible, heterozygous SNPs should be obtained from
matched normal WGS data. WGS data should be subject to align-
ment and QC following GATK best practices [28]. Two options are
possible for calling SNPs. De novo calling can be accomplished
using bcftools mpileup to pileup reads from a BAM file, fol-
lowed by bcftoolscall to call and genotype SNPs [29]. Alterna-
tively, you can restrict to SNPs identified from an existing panel
such as 1000 genomes [30], accessible through IGSR [31]. Add
the panel vcf file as the --regions-file option of bcftools

mpileup to restrict to genotyping SNPs in the panel. Using a
panel will result in reduced runtimes and reduce the need to QC
the resulting SNP data.

Clonal Cancer Phenotypes Using TreeAlign 145

2.1.7 Alignment and QC

of scRNA Data

scRNA data should be aligned to a reference genome using one of
several dedicated alignment tools, typically CellRanger from 10X
genomics [32], though other methods, such as STARsolo [33],
alevin [34], or Kallisto [35], can be used depending on the user’s
needs. These aligners will also typically output a gene expression
count matrix that will serve as the basis for downstream expression
analysis using either Seurat or ScanPy. These steps can be easily
performed using the Nextflow scRNA workflow [36], which is set
up for scRNA best practices, allows users to select between the
various alignment options, and can be deployed locally on a user’s
laptop or a local or cloud compute server using Docker or Singu-
larity containers.

Downstream quality control to remove low-quality cells can be
performed by filtering for a minimum read count per cell (mini-
mum 200 counts per cell) and removing cells with a high propor-
tion of reads aligned to mitochondrial or ribosomal genes (max
20%). For smaller datasets, filtering thresholds should be inspected
and selected based on the overall data quality. For larger datasets,
quality filters can be automated by using the median absolute
deviation (MAD) to remove cells that differ by 5 MADs in one of
these metrics. Ambient RNA correction can be performed using
SoupX [37], DecontX [38], or CellBender [39]. Doublet detection
and removal can be performed using scDblFinder [40].

2.1.8 Classifying scRNA

Cells as Tumor or Normal

Patient-derived scRNA tumor samples are typically composed of
both malignant and nonmalignant cells, which must be accurately
labeled prior to downstream analysis. Complementary approaches
are usually recommended to achieve this task. First, scRNA based
copy number inference methods, such as inferCNV [41], Numbat
[42], SCEVAN [43], or others [44–46], may be used to identify
cells with copy number alterations consistent with malignant cells.
In parallel, exploration of the gene expression using variable feature
selection, PCA, and clustering should reveal patient specific clusters
of epithelial cells (in the case of epithelial-derived tumors), which
should coincide with copy number alteration containing cells.
These clusters should be distinct from nonmalignant epithelial
cells, which should cluster together between patient samples
derived from the same tissue more readily (assuming minimal
batch effects between patients).

2.1.9 Genotyping

Heterozygous SNPs in

scRNA

Heterozygous loci can be measured in the scRNA data using
CellSNP [47] or alternatively Vartrix [48] to compute allele-
specific scRNA read counts for each heterozygous SNP. CellSNP
or Vartrix will produce a matrix of total depth at each SNP position
and number of reads supporting the alternate allele. For optimal
performance, TreeAlign should be provided with not just the read
counts of each SNP but the phase aware read counts relative to the
phasing inferred during allele-specific copy number calling from

scWGS. For each SNP, the alternate allele is either on the A or B
allele as called by Signals or other allele-specific copy number
methods. The phasing information from Signals or other tools
can then be used to compute the number of reads supporting the
B allele, as required for input to TreeAlign. Note that if phasing
information is not available, TreeAlign can infer the B allele of each
SNP during model inference.

146 Hongyu Shi et al.

2.2 Running

TreeAlign

TreeAlign models: (1) clone-specific gene expression level based on
corresponding copy numbers and (2) proportions of reads from B
alleles in scRNA based on B allele frequencies estimated from
scWGS. After successfully preprocessing and QC of input raw
data, running TreeAlign involves preparing input data matrices
and executing a small number of TreeAlign API calls in python.

2.2.1 Preparing Input

Data

Prepare inputs to TreeAlign as follows:

Phylogenetic tree: A tree representing the evolution of cells from a
diploid ancestor with cells as leaf nodes. The tree input should
be provided as Bio.Phylo.BaseTree which can be con-
structed by reading the phylogeny stored in newick format
using the Phylo.read function from the Biopython

package.

Clone assignments: Cell to clone cluster assignment table, used in
place of a phylogenetic tree. The clone assignment table
provided should contain two columns: cell_id to identify
each cell and clone_id for defining the clone to which each
scWGS cell is assigned.

Gene expression: Gene by cell matrix of raw read counts from
scRNA.

Total copy number from scWGS: Gene by cell matrix of integer copy
number from scWGS. This input typically necessitates a con-
version from a matrix of genomic bin by cell copy number
output from a copy number inference method like Mon-
drian/HMMCopy. The scgenome.tl.aggregate_genes

function in Mondrian/scgenome [20] can be used to calculate
a gene by cell matrix from a bin by cell matrix and gene start
and end positions.

Allele-specific copy number from scWGS: SNP by cell matrix of B
allele fraction for each heterozygous SNP position. B allele
fractions should range from 0 to 1. From Signals, B allele
fractions are calculated as the copy number of the B allele (B

column) as a fraction of total copy number (A column + B

column). The scgenome.tl.intersect_positions func-
tion in Mondrian/scgenome [20] can be used to calculate a
position by cell matrix from a bin by cell matrix and a set of
positions representing locations of heterozygous SNPs.

Clonal Cancer Phenotypes Using TreeAlign 147

SNP allele evidence in scRNA: SNP by cell read count matrix for
which each entry is the number of reads supporting the B allele
at a heterozygous SNP position for a given cell in the scRNA
data. Computing this matrix involves extracting reference and
alternate read counts from CellSNP or Vartrix and then using
the per-SNP B allele assignments from Signals or similar to
produce a matrix of read counts supporting the B allele of
each SNP. If such an assignment is not possible, the number
of reads supporting the reference can be provided, but the
infer_b_allele option should be used (see below).

SNP depth in scRNA: SNP by cell read count matrix for which each
entry is the total number of reads overlapping a heterozygous
SNP position for a given cell in the scRNA data. This input can
be constructed directly from the output of CellSNP or Vartrix.

2.2.2 Running TreeAlign The input datasets described in the previous section can be used to
construct the python CloneAlignTree object for data cleaning
and preprocessing. The phylogenetic tree, gene expression, and
total copy number inputs are required. The allele-specific copy
number, SNP B allele evidence, and SNP depth inputs are optional.
If allele-specific scRNA evidence is phased with scWGS allele-
specific copy number, set the infer_b_allele to False. Other-
wise, set infer_b_allele to True to specify that TreeAlign
should learn B allele assignment during inference. If allele-specific
inputs are not provided, the allele-specific extension of TreeAlign
will not be run and the clone assignment results will be purely based
on total copy number and gene expression. After construction of
the CloneAlignTree object, assign_cells_to_tree function
can be called to initialize the inference process.

In addition to assigning expression profiles to a scWGS-based
phylogeny, TreeAlign also allows assigning expression profiles to
predefined clones similar to CloneAlign [49]. Instead of providing
single-cell phylogenetic tree based on scWGS, users can provide a
clone assignment table to construct a CloneAlignClone object to
initiate assignment of expression profiles to predefined CN clones.
Set the infer_b_allele option accordingly. After construction
of the CloneAlignClone object, assign_cells_to_clones

function can be called to initialize the inference process.

2.2.3 Tunable

Parameters

Additional parameters can be set to customize the running of
TreeAlign.

repeat: number of repeated runs of inference in TreeAlign. As the
final clone assignment results are determined by the majority
votes from repeated runs, a larger value for repeat parameter
may generate more robust results but take longer time to finish
running.

148 Hongyu Shi et al.

min_cell_count_expr: minimum number of cells in the scRNA
data to allow assigning expression profiles to smaller subtrees.

min_cell_count_cnv: minimum number of cells in the scWGS
data to allow TreeAlign to keep assigning expression profiles to
smaller subtrees.

min_clone_assign_prob: minimum probability required to
assign expression profiles to a subclone.

min_clone_assign_freq: minimum proportion of repeated
runs with consistent clone assignment needed to assign expres-
sion profiles to a subclone.

By adjusting these four parameters of min_clone_assign_

freq, min_clone_assign_prob, min_cell_count_expr, and
min_cell_count_cnv, users can tune how far they want TreeA-
lign to proceed down a phylogenetic tree in the alignment of
scRNA cells to tree clades. Forcing TreeAlign to proceed further
down a phylogenetic tree allows it to assign expression profiles to
smaller subclones but may reduce the overall performance of the
model and leave more expression profiles in the unassigned state.

min_consensus_gene_freq: The purity threshold for a
gene to be included in the CN input matrix. It is defined as the
proportion of cells with the modal copy number in a clone for that
gene. This tunable parameter was inspired by the observation that
within the same clones, the integer CNs inferred from hmmcopy
are still heterogeneous at a cell level; therefore, we want to preserve
the more homogeneous and clone-specific copy number signals to
be used as input for TreeAlign. min_consensus_gene_freq >0.5
should be a reasonable starting point as we want to ensure that all
input CN values are consensus in given clones. Users may want to
further increase this value to allow genes which are more represen-
tative of a clone to be used as input, especially if there are already
sufficient numbers of genes to serve as input, and TreeAlign assign-
ment is confident and stable across different runs.

min_consensus_snv_freq: The purity threshold for a het-
erozygous SNP to be included in the BAF input matrix—similar to
min_consensus_gene_freq.

2.2.4 TreeAlign Outputs After successful inference, generate_output function can be
called to generate results. The results consist of three dataframes:

Clone assignment: A table assigning scRNA cells (cell_id col-
umn) to scWGS tree clades or clones (clone_id column).

Dosage effect: inferred level of dosage effect (gene_type_score

column) for each gene (gene column) determined to be in a
clone-specific copy number region during TreeAlign’s internal
prefiltering step. The gene_type_score column contains
p(k) scores for genes. p(k) ranges from 0 to 1 and represents

Clonal Cancer Phenotypes Using TreeAlign 149

the probability of a gene’s expression depending on copy num-
ber dosage effects.

Inferred B allele: A table of SNP allele assignments inferred if allele-
specific inputs are provided and infer_b_allele is set to
True. If allele-specific inputs were not provided or parameter
infer_b_allele is set to False, the return dataframe will be
empty.

2.3 Interpreting

TreeAlign Results

TreeAlign results provide insight into the clone-specific expression
patterns in a population of tumor cells. scRNA cells will cluster at
clades throughout the phylogeny, with each cluster best explained
by the mode of allele-specific copy number of the given clade. A
cluster of scRNA cells assigned closer to the root of the phylogeny
implies that the cells in that cluster are unlikely to harbor the copy
number changes that differentiate any smaller subclades. Some
scRNA cells will not be assigned to a clade, indicating that these
cells have divergent copy number profiles from those found in the
scWGS population. A helpful visual aid is to plot scWGS copy
number alongside scRNA copy number, with scWGS cells ordered
by the inferred phylogenetic tree and scRNA cells ordered by their
assignment to clades in the tree (Fig. 5). For OV-105, this plot
reveals a small subclone with divergent copy number on chromo-
somes 2, 3, and 19, with evidence in both modalities.

In addition, TreeAlign clone assignment results can be used to
compare expression profiles between cancer cell subclones and
characterize clone-specific transcriptional phenotypes (Fig. 6).
TreeAlign assigned cancer cell expression profiles from ovarian
cancer patient OV-105 to six clones. Using differential expression
analysis, we can identify expression programs that are specific to
each clone. For example, compared to other clones in patient
OV-105, clone E has upregulated expression of genes in IFN

Fig. 5 Integrated model of TreeAlign assigns expression profiles of OV-105 to phylogeny. Heatmaps of copy

number profiles from scWGS (left) and InferCNV corrected expression profiles from scRNA (right). The Sankey

chart in the middle shows clone assignment from expression profiles to copy number based clones by

integrated TreeAlign. Pie charts on the tree showing how TreeAlign assigns cell expression profiles to subtrees

recursively. The pie charts are colored by the proportions of cell expression profiles assigned to downstream

subtrees. The outer ring color of the pie charts denotes the current subtree

responses and antigen presentation. IFN signaling has important
immune modulatory effects and has been previously linked to
immune evasion and resistance to immunotherapy [50]. In addi-
tion to patient OV-105, IFN signaling was also found to be highly
variable between clones in ovarian cancers [14]. The recurrent
differential expression of immune related pathways between sub-
clones suggests their importance in clonal divergence in ovarian
cancers.

150 Hongyu Shi et al.

Fig. 6 TreeAlign results for OV-105 showing (a) UMAP embedding of scRNA cell expression profiles colored by

TreeAlign inferred clones and (b) differentially expressed genes between clone E and all other subclones

References

1. Funnell T, O’Flanagan CH, Williams MJ et al
(2022) Single-cell genomic variation induced
by mutational processes in cancer. Nature 612:
106–115

2. Henrichsen CN, Vinckenbosch N, Zöllner S
et al (2009) Segmental copy number variation
shapes tissue transcriptomes. Nat Genet 41:
424–429

3. Bhattacharya A, Bense RD, Urzúa-Traslaviña
CG et al (2020) Transcriptional effects of
copy number alterations in a large set of
human cancers. Nat Commun 11:715

4. Ding J, McConechy MK, Horlings HM et al
(2015) Systematic analysis of somatic muta-
tions impacting gene expression in 12 tumour
types. Nat Commun 6:8554

5. Jörnsten R, Abenius T, Kling T et al (2011)
Network modeling of the transcriptional
effects of copy number aberrations in glioblas-
toma. Mol Syst Biol 7:486

6. Sztal TE, Stainier DYR (2020) Transcriptional
adaptation: a mechanism underlying genetic
robustness. Development 147

7. El-Brolosy MA, Stainier DYR (2017) Genetic
compensation: a phenomenon in search of
mechanisms. PLoS Genet 13:e1006780

8. Fehrmann RSN, Karjalainen JM, Krajewska M
et al (2015) Gene expression analysis identifies
global gene dosage sensitivity in cancer. Nat
Genet 47:115–125

9. Veitia RA, Bottani S, Birchler JA (2013) Gene
dosage effects: nonlinearities, genetic interac-
tions, and dosage compensation. Trends Genet
29:385–393

10. Pollack JR, Sørlie T, Perou CM et al (2002)
Microarray analysis reveals a major direct role
of DNA copy number alteration in the tran-
scriptional program of human breast tumors.
Proc Natl Acad Sci USA 99:12963–12968

11.

Clonal Cancer Phenotypes Using TreeAlign 151

Andor N, Lau BT, Catalanotti C et al (2020)
Joint single cell DNA-seq and RNA-seq of gas-
tric cancer cell lines reveals rules of in vitro
evolution. NAR Genom Bioinform 2:lqaa016

12. Guo L, Yi X, Chen L et al (2022) Single-cell
DNA sequencing reveals punctuated and grad-
ual clonal evolution in hepatocellular carci-
noma. Gastroenterology 162:238–252

13. Gonzalo Parra R, Przybilla MJ, Simovic M,
et al (2021), Single cell multi-omics analysis
of chromothriptic medulloblastoma highlights
genomic and transcriptomic consequences of
genome instability., https://www.biorxiv.
org/content/10.1101/
2021.06.25.449944v1

14. Shi H, Williams MJ, Satas G et al (2024) Allele-
specific transcriptional effects of subclonal copy
number alterations enable genotype-
phenotype mapping in cancer cells. Nat Com-
mun 15:2482

15. Bingham E, Chen JP, Jankowiak M et al. Pyro:
Deep universal probabilistic programming,
https://www.jmlr.org/papers/volume20/18-
403/18-403.pdf

16. Vázquez-Garcı́a I, Uhlitz F, Ceglia N et al
(2022) Ovarian cancer mutational processes
drive site-specific immune evasion. Nature
612:778–786

17. Laks E, McPherson A, Zahn H et al (2019)
Clonal decomposition and DNA replication
states defined by scaled single-cell genome
sequencing. Cell 179:1207–1221.e22

18. What is cell ranger DNA? -software -single cell
CNV -official 10x genomics support. https://
support.10xgenomics.com/single-cell-dna/
software/pipelines/latest/what-is-cell-
ranger-dna

19. mondrian-scwgs, Github

20. scgenome, Github

21. Wang R, Lin D-Y, Jiang Y (2020) SCOPE: a
normalization and copy-number estimation
method for single-cell DNA sequencing. Cell
Syst 10:445–452.e6

22. Qin F, Cai G, and Xiao F (2023) A statistical
learning method for simultaneous copy num-
ber estimation and subclone clustering with
single cell sequencing data. bioRxiv

23. Zaccaria S, Raphael BJ (2020) Characterizing
allele- and haplotype-specific copy numbers in
single cells with CHISEL. Nat Biotechnol.
39(2):207–214

24. Signals. https://shahcompbio.github.io/
signals

25. Kaufmann TL, Petkovic M, Watkins TBK et al
(2022) MEDICC2: whole-genome doubling
aware copy-number phylogenies for cancer
evolution. Genome Biol 23:241

26. Dorri F, Salehi S, Chern K et al (2020) Efficient
Bayesian inference of phylogenetic trees from
large scale, low-depth genome-wide single-cell
d a t a . h t t p s ://www.b io r x i v. o rg/con
tent/10.1101/2020.05.06.058180v1

27. sitkatree, Github

28. DePristo MA, Banks E, Poplin R et al (2011) A
framework for variation discovery and geno-
typing using next-generation DNA sequencing
data. Nat Genet 43:491–498

29. Danecek P, Bonfield JK, Liddle J et al (2021)
Twelve years of SAMtools and BCFtools.
Gigascience 10

30. 1000 Genomes Project Consortium, Auton A,
Brooks LD et al (2015) A global reference for
human genetic variation. Nature 526:68–74

31. Fairley S, Lowy-Gallego E, Perry E et al (2020)
The International Genome Sample Resource
(IGSR) collection of open human genomic var-
iation resources. Nucleic Acids Res 48:D941–
D947

32. Zheng GXY, Terry JM, Belgrader P et al
(2017) Massively parallel digital transcriptional
profiling of single cells. Nat Commun 8

33. Kaminow B, Yunusov D, Dobin A (2021)
STARsolo: accurate, fast and versatile
mapping/quantification of single-cell and
single-nucleus RNA-seq data. https://www.
biorxiv.org/content/10.1101/2021.05.0
5.442755

34. Srivastava A, Malik L, Smith T et al (2019)
Alevin efficiently estimates accurate gene abun-
dances from dscRNA-seq data. Genome Biol
20:65

35. Melsted P, Booeshaghi AS, Liu L et al (2021)
Modular, efficient and constant-memory sin-
gle-cell RNA-seq preprocessing. Nat Biotech-
nol 39:813–818

36. scrnaseq: Introduction. https://nf-co.re/
scrnaseq

37. Young MD, Behjati S (2020) SoupX removes
ambient RNA contamination from droplet-
based single-cell RNA sequencing data. Giga-
science 9:giaa151

38. Yang S, Corbett SE, Koga Y et al (2020)
Decontamination of ambient RNA in single-
cell RNA-seq with DecontX. Genome Biol
21:57

39. Fleming SJ, Chaffin MD, Arduini A et al
(2023) Unsupervised removal of systematic
background noise from droplet-based single-
cell experiments using CellBender. Nat Meth-
ods 20:1323–1335

40. Germain P-L, Lun A, Garcia Meixide C et al
(2021) Doublet identification in single-cell
sequencing data using scDblFinder. F1000Res
10:979

https://www.jmlr.org/papers/volume20/18-403/18-403.pdf
https://www.jmlr.org/papers/volume20/18-403/18-403.pdf
https://support.10xgenomics.com/single-cell-dna/software/pipelines/latest/what-is-cell-ranger-dna
https://support.10xgenomics.com/single-cell-dna/software/pipelines/latest/what-is-cell-ranger-dna
https://support.10xgenomics.com/single-cell-dna/software/pipelines/latest/what-is-cell-ranger-dna
https://support.10xgenomics.com/single-cell-dna/software/pipelines/latest/what-is-cell-ranger-dna
https://shahcompbio.github.io/signals
https://shahcompbio.github.io/signals
https://www.biorxiv.org/content/10.1101/2020.05.06.058180v1
https://www.biorxiv.org/content/10.1101/2020.05.06.058180v1
https://www.biorxiv.org/content/10.1101/2021.05.05.442755
https://www.biorxiv.org/content/10.1101/2021.05.05.442755
https://www.biorxiv.org/content/10.1101/2021.05.05.442755
https://nf-co.re/scrnaseq
https://nf-co.re/scrnaseq

152 Hongyu Shi et al.

41 . in f e rCNV. h t tp s ://g i thub .com/bro
adinstitute/inferCNV

42. Gao T, Soldatov R, Sarkar H et al (2023)
Haplotype-aware analysis of somatic copy
number variations from single-cell transcrip-
tomes. Nat Biotechnol 41:417–426

43. De Falco A, Caruso F, Su X-D et al (2023) A
variational algorithm to detect the clonal copy
number substructure of tumors from scRNA-
seq data. Nat Commun 14:1074

44. Gao R, Bai S, Henderson YC et al (2021)
Delineating copy number and clonal substruc-
ture in human tumors from single-cell tran-
scriptomes. Nat Biotechnol 39:599–608

45. Serin Harmanci A, Harmanci AO, Zhou X
(2020) CaSpER identifies and visualizes CNV
events by integrative analysis of single-cell or
bulk RNA-sequencing data. Nat Commun 11:
89

46. Fan J, Lee H-O, Lee S et al (2018) Linking
transcriptional and genetic tumor heterogene-
ity through allele analysis of single-cell RNA--
seq data. Genome Res 28:1217–1227

47. Huang X, Huang Y (2021) Cellsnp-lite: an
efficient tool for genotyping single cells. Bioin-
formatics 37:4569–4571

48. vartrix: Single-Cell Genotyping Tool, Github

49. Campbell KR, Steif A, Laks E et al (2019)
Clonealign: statistical integration of indepen-
dent single-cell RNA and DNA sequencing
data from human cancers. Genome Biol 20:54

50. Benci JL, Xu B, Qiu Y et al (2016) Tumor
interferon signaling regulates a multigenic
resistance program to immune checkpoint
blockade. Cell 167:1540–1554.e12

https://github.com/broadinstitute/inferCNV
https://github.com/broadinstitute/inferCNV

Chapter 8

Inference of Genetic Ancestry from Cancer-Derived
Molecular Data with RAIDS

Pascal Belleau, Astrid Deschênes, David A. Tuveson,
and Alexander Krasnitz

Abstract

There has recently been increasing appreciation of ancestral effects on cancer genotypes and phenotypes.
Consequently, the need has grown for ancestry annotation of cancer-derived molecular data. In response,
we created a computational tool termed RAIDS (Robust Ancestry Inference using Data Synthesis). RAIDS
is designed to infer genetic ancestry using as input sequence data from a variety of molecular protocols, even
in the absence of matching cancer-free genotypes of the patient. Implemented as an R language package,
RAIDS is available from the Bioconductor repository. Here we describe functionalities of RAIDS, provide
instructions for its installation, give examples of its usage, and explain the interpretation of its output. While
RAIDS is being actively developed, the guidance provided here is expected to apply to future refined and
expanded versions of this software tool.

Key words Genetic ancestry, Genotyping, Continental populations, Synthetic data, Principal-com-
ponent analysis

1 Introduction

There is ample epidemiological evidence that race and ethnicity are
important determinants of incidence, clinical course, and outcome
in multiple types of cancer [1–5]. As such, these categories must be
taken into account in the analysis of molecular data derived from
cancer. A number of recently published large-scale genomic studies
of cancer [6–11] point to differences in the molecular makeup of
the disease among groups of different ancestral background. These
differences extend to frequencies of somatic mutations in driver
genes [6, 10, 11], the degree of genomic instability and somatic
copy number variation (CNV) [8, 9], and immune response to
cancer [7]. These ancestral differences, in turn, have been found
to have a major effect on response to treatment [12]. Knowledge of

Alexander Krasnitz and Pascal Belleau (eds.), Cancer Bioinformatics, Methods in Molecular Biology, vol. 2932,
https://doi.org/10.1007/978-1-0716-4566-6_8,
© The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature 2025

153

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-4566-6_8&domain=pdf
https://doi.org/10.1007/978-1-0716-4566-6_8#DOI

patient genetic ancestry may be decisive in other contexts, e.g., to
discover that patients from an ancestral group are at higher risk for
side effects from treatment [13].

154 Pascal Belleau et al.

More molecular data are needed to power discovery of
ancestry-specific effects in cancer. The data shortage for this pur-
pose is especially acute for many non-European ancestries that have
not been sufficiently sampled to date. For example, a massive cancer
dataset of The Cancer Genome Atlas (TCGA) only lists 27 self-
identified Alaskan natives/American Indians and only 13 native
Hawaiians/Pacific islanders. Even for populations with higher
aggregate numbers of patient cases, the case count is often very
small for individual cancer types. For example, while a total of
934 African American (AA) patients are listed by TCGA, only
7 AA cases are listed for prostate and pancreatic cancers each,
despite the high incidence of both among AA.

With computational tools described here, we seek to alleviate
this data shortage by facilitating reliable, detailed, data-driven
ancestry annotation of cancer-derived molecular data from two
major sources: (a) existing data available for secondary analysis
and (b) cancer-derived specimens, including, notably, those in
tissue archives. Secondary data analysis on a massive scale is by far
the most efficient, rapid, and economically feasible way to study
ancestral impact on the molecular features of cancer. Although data
acquisition from tumor-derived specimens is far more expensive
and time-consuming by comparison, it is often made necessary by
a study design. In such cases, matching cancer-free material may
not always be available for ancestry analysis by conventional meth-
ods, very often with no possibility of a follow-up specimen collec-
tion from the patient. This is especially likely to be the case with
archived tumor tissues. Ancestry inference from newly generated
data originating in archival tumor tissues is still necessary in such
settings and is the second major application for the tools
described here.

Ancestry annotation of cancer-derived data draws on two
sources. One is a patient’s self-identified race and/or ethnicity
(SIRE), designed to capture social and cultural factors affecting
health. SIRE correlates with but is distinct from ancestry. SIRE is
often missing, sometimes inaccurate, and usually incomplete. As a
recent analysis [14] of PubMed database entries since 2010 reveals,
patients’ SIRE is massively underreported in genome and exome
sequencing studies of cancer, with only 37% of these reporting race
and 17% reporting ethnicity. Furthermore, SIRE has recently been
found missing from 56% of electronic health records [15] and is
therefore unavailable for annotation of many archived specimens.
When available, SIRE is not always consistent with genetic ancestry.
A self-declaring patient is often given a choice from a small number
of broad racial or ethnic categories. As a result, SIRE fails to capture
complete ancestral information and to quantify ancestral
admixtures.

Genetic Ancestry Inference from Cancer-Derived Data 155

A far more accurate and detailed ancestral characterization may
be obtained by genotyping a patient’s DNA from a cancer-free
tissue. Powerful methods exist for ancestry inference from germline
DNA sequence [16–18]. These methods were recently used to
determine ancestry of approximately 10,000 patients profiled by
TCGA [7, 8]. However, genotyping of DNA from matched normal
specimens is not part of standard clinical practice, where the pur-
pose of DNA profiling is often identification of mutations with
known oncogenic effects, such as those in the Catalog Of Somatic
Mutations In Cancer (COSMIC). As a result, it is not performed
routinely outside academic clinical centers or major research pro-
jects. There also are studies yielding sequence data from tumors,
whose purpose does not require germline profiling. RNA sequenc-
ing (RNA-seq) for expression quantification, DNA methylation
analysis of cytosine-converted DNA, chromatin accessibility
profiling by sequencing (ATAC-seq), and low-coverage whole-
genome sequencing (WGS) are in this category. Finally, peripheral
blood is most often the source of germline DNA in the clinic, but
this is not the case for diseases of the hematopoietic system, e.g.,
leukemias, wherein cancer cells are massively present in circulation.
In summary, matched germline DNA sequence is not universally
available for cancer-derived molecular data. In such cases, it is
necessary to infer ancestry from the nucleic acids of the tumor itself.

Standard methods of ancestry inference rely on population
specificity of germline single-nucleotide variants (SNVs). WGS or
whole-exome sequences (WES), at depths sufficient for reliably
calling single-nucleotide variants, and readouts from genotyping
microarrays, are therefore most suitable for this purpose. However,
detailed DNA profiling is often not performed in molecular studies
of cancer. In such cases, it is necessary to infer ancestry from other
types of tumor-derived data, including RNA-seq, DNA sequence
for a small panel of genes (e.g., FoundationOne CDx [19]),
low-coverage WGS, cytosine-converted sequences, and ATAC-seq.

Ancestry inference from molecular data other than germline
DNA sequence faces two challenges. One is cancer-specific, com-
mon to all types of tumor-derived sequence. Tumor genomes are
often replete with somatic alterations, including copy number var-
iants, translocations, loss of heterozygosity (LOH), microsatellite
instabilities, and SNV. All these alterations are, to various degrees,
potential obstacles to accurate ancestry inference. For example, an
LOH event may render one of the parental alleles inaccessible to
ancestry analysis in a broad chromosomal fragment. The other
challenge is data-specific. RNA-seq yields extremely uneven cover-
age of the transcript both due to a broad range of RNA expression
levels and to molecular protocol design. Further distortions arise
from allele-specific expression. Similar nonuniformity of coverage is
found in ATAC-seq data. Gene panels represent a small fraction of
the genome, whose sufficiency for ancestry inference is not clear a

priori and varies from panel to panel. In addition, such panels are
enriched in cancer-driver genes, which tend to undergo somatic
alteration more frequently than other parts of the genome. Confi-
dent SNV profiling, required by all existing ancestry inference
methods, may be challenging with low-coverage WGS. Cytosine-
converted data present unique challenges: any observed thymine
next to a guanine may result from conversion.

156 Pascal Belleau et al.

Inferential tools described here are designed to address two
critical questions. (a) How can the accuracy of genetic ancestry
inference be assessed and optimized for a given molecular profile?
The profile in question may have its unique set of sequence proper-
ties. These include the underlying genotype and phenotype, the
target sequence and uniformity of its coverage depth, read length,
and sequencing quality. (b) How can such assessment and optimi-
zation be accomplished in the absence of a control dataset from a
large, ancestrally diverse cohort? The requisite cohort would have
to yield molecular profiles with underlying biology and technical
properties closely similar to those of the given profile and to have
genetic ancestry of the donors inferred from the germline geno-
types. Such a set of controls is not available for the vast majority of
existing molecular profiles.

In the following, we present computational methodology for
global, continental-level ancestry calls from tumor-derived molec-
ular data, including whole-exome sequences, specialized gene
panels, and RNA sequences [20, 21]. This methodology combines
existing algorithms for ancestry inference with a novel adaptive
procedure for inference parameter optimization and rigorous per-
formance assessment, termed “data synthesis.” The resulting tools
have been validated using a representative subset of public cancer-
derived data and made publicly available in Bioconductor [21], as
an R language package termed RAIDS. We find their accuracy to be
consistently high across ancestral groups, sequencing modalities,
and the four cancer types examined in our paper [20].

The remainder of this Protocol is structured as follows. In the
Methods section, we explain how RAIDS is installed and specify the
reference data it requires. We next describe the key functionalities of
RAIDS. This section ends with an example of RAIDS applied to a
cancer-derived molecular profile, explained step by step. The chap-
ter ends with Notes, providing further details on installation and
execution of RAIDS.

2 Methods

The genetic ancestry inference procedure consists of three main
steps as shown in Fig. 1.

Genetic Ancestry Inference from Cancer-Derived Data 157

Fig. 1 An overview of the genetic ancestry inference procedure. The preparation of population reference files is

explained in Subheading 2.1, computation of profile genotypes in Subheading 2.2, and the donor genetic

ancestry in Subheading 2.3, respectively

2.1 Population

Reference Data

The 1000 Genomes (1KG in the following) population reference
dataset [22], hosted by the International Genome Sample
Resource, is at present the most detailed and complete dataset of
its kind. This dataset provides reference for five continental super-
populations: African (AFR), American (AMR), East Asian (EAS),
European (EUR), and South Asian (SAS). The full set of 1KG
genotypes with at least 1% frequency in at least one super-
population is available at https://labshare.cshl.edu/shares/
krasnitzlab/aicsPaper in the genomic data structure (GDS) format.
GDS is the most suitable format for handling large volumes of
genomic data using the R programming language. We will use
this population reference input throughout this protocol. Alterna-
tively, users can build their own reference datasets. Instructions for
doing are provided in Subheading 2.4.

The population reference input into RAIDS consists of two
files: the reference genotype file (matGeno1000g.gds provided
for the 1KG reference) and the reference annotation file (matAn-
not1000g.gds provided for the 1KG reference). The reference
genotype file contains, for each donor to the population reference
data, the genotypes at all positions in the genome, where the
alternative allele frequency in at least one super-population is at
least 1%. The reference annotation file tabulates, for each super-
population, its haplotype blocks. Further details on the data struc-
tures contained in these files are provided in Subheading 2.4.

https://labshare.cshl.edu/shares/krasnitzlab/aicsPaper
https://labshare.cshl.edu/shares/krasnitzlab/aicsPaper

158 Pascal Belleau et al.

2.2 Preprocessing

Sequence Read Data

for RAIDS

A file containing sequence reads mapped to the same human
genome build as the population reference data in the BAM format
is required as input for each input profile. If mapping or remapping
is necessary, it should follow the Genome Analysis Toolkit (GATK)
[23] best practice guidelines. If 1KG reference data provided with
the RAIDS package are used for inference, the reads should be
mapped to the GRCh38 (hg38) build of the human genome
[24]. These guidelines are different for sequences derived from
DNA and those derived from RNA.

The GATK best practice guidelines are found at GATK website
for DNA-derived sequences [25] and for RNA-derived sequences
[26]. The BAM file must be sorted and indexed, e.g., using
Samtools [27].

2.3 Ancestry

Inference Using Data

Synthesis

In this section, we will describe in detail the inference procedure
used by RAIDS. This procedure relies on data synthesis for infer-
ence parameter optimization and inference performance evalua-
tion. The main steps of Subheading 2.3.1 are as follows:

1: Setup and data preprocessing for RAIDS.

2: Infer the ancestry with RAIDS.

2) A: Sample the reference data for donor genotypes, to be used for
synthesis. A fixed number of donor genotypes are sampled from
each population. For example, there are 26 populations in the
1KG reference. One can sample 30 genotypes from each of the
26 populations defined in the 1KG reference, to the total of
780.

2) B: Execute a function call to one of the RAIDS functions,
inferAncestryDNA() or inferAncestryDNA(), depend-
ing on the molecular source of the input profile. Each of these
calls will result in a series of operations as follows:

• Genotype the input sequence data at all biallelic single-
nucleotide polymorphic (SNP) positions in the genome where
the frequency of either allele is above a minimum frequency
cutOff in the reference data.

• Prune the set of positions resulting from (A) to reduce the
linkage disequilibrium between any two such positions below a
value of 0:1

p

(see Note 1).

• Infer genetic ancestry for the entire set of synthetic profiles and a
range of inference parameters. Use the results to optimize the
inference parameters.

• Infer genetic ancestry of the input profile using the optimal
parameters found above.

3: Present and interpret the results of (2) (see Note 2)

Genetic Ancestry Inference from Cancer-Derived Data 159

3) A: Output the inferred ancestry of the input profile, the optimal
set of parameters, and the final state of the inference algorithm.

3) B: Evaluate the performance of the inference algorithm on the
synthetic data.

2.3.1 Example: Genetic

Ancestry of an RNA

Sequence Profile

In this example, we shall use as input an RNA-seq profile from the
Encode collection [28] (the accession numbers: ENCFF001RFH
and ENCFF001RFG).

1: Setup and data preprocessing for RAIDS

1) A: Create a directory structure for the example.

First you need a working directory (workingDirectory) that will
contain all the other directories. You have to recreate the
following structure on your computer.

workingDirectory/

data/

refGDS

fastq

genomeReference

GATK

010_star

020_picard

030_splitNCigar

040_recalibration

profileGDS

res.out

1) B: Download the population reference files.

cd workingDirectory

cd data/refGDS

wget https://labshare.cshl.edu/shares/krasnitzlab/aicsPaper/

matGeno1000g.gds

wget https://labshare.cshl.edu/shares/krasnitzlab/aicsPaper/

matAnnot1000g.gds

cd -

1) C: Download the two unmapped paired-end sequence read data
files for the input profile in the FASTQ format (approximately
17Gb in total):

cd data/fastq

wget https://www.encodeproject.org/files/ENCFF001RFH/@@down-

load/ENCFF001RFH.fastq.gz -O ENCFF001RFH.fastq.gz

wget https://www.encodeproject.org/files/ENCFF001RFG/@@down-

load/ENCFF001RFG.fastq.gz -O ENCFF001RFG.fastq.gz

cd -

160 Pascal Belleau et al.

1) D: Download and uncompress the GRCh38 human genome
reference sequence file and the corresponding annotation file
[29]:

export PICARD_JAR=[path_to_picard_jar]

cd data/genomeReference

wget https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_hu-

man/release_46/GRCh38.p14.genome.fa.gz

wget https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_hu-

man/release_46/gencode.v46.annotation.gtf.gz

gunzip gencode.v46.annotation.gtf.gz

gunzip GRCh38.p14.genome.fa.gz

java -Xmx2G -jar $PICARD_JAR CreateSequenceDictionary \

REFERENCE=GRCh38.p14.genome.fa \

OUTPUT=GRCh38.p14.genome.dict

samtools faidx ./GRCh38.p14.genome.fa

cd -

1) E: Create a genome index for the STAR [30] RNA-seq read
mapper (see the GitHub site [31] for details), then run STAR
in the two-pass mode with the default parameters, and the read
length of 100 bases as used for sequencing in this case.

STAR \

--runThreadN 1 \

--runMode genomeGenerate \

--genomeDir data/genomeReference/ \

--sjdbGTFfile data/genomeReference/gencode.v46.annotation.gtf

\

--genomeFastaFiles data/genomeReference/GRCh38.p14.genome.fa

\

--sjdbOverhang 100

STAR \

--runThreadN 1 --genomeDir data/genomeReference/ \

--twopassMode Basic \

--twopass1readsN -1 \

--readFilesIn data/fastq/ENCFF001RFH.fastq.gz data/fastq/

ENCFF001RFG.fastq.gz \

--outSAMtype BAM SortedByCoordinate \

--readFilesCommand zcat \

--outFileNamePrefix data/010_star/ENCFF001RF

Genetic Ancestry Inference from Cancer-Derived Data 161

1) F: Post-process the mapped sequences following the GATK
guidelines [26].

cd data/GATK

wget https://storage.googleapis.com/genomics-public-data/re-

sources/broad/hg38/v0/Homo_sapiens_assembly38.dbsnp138.vcf

wget https://storage.googleapis.com/genomics-public-data/re-

sources/broad/hg38/v0/Homo_sapiens_assembly38.dbsnp138.vcf.

idx

wget https://storage.googleapis.com/genomics-public-data/re-

sources/broad/hg38/v0/Mills_and_1000G_gold_standard.indels.

hg38.vcf.gz

wget https://storage.googleapis.com/genomics-public-data/re-

sources/broad/hg38/v0/Mills_and_1000G_gold_standard.indels.

hg38.vcf.gz.tbi

cd -

java -Xmx16g -jar $PICARD_JAR AddOrReplaceReadGroups \

-I data/010_star/ENCFF001RFAligned.sortedByCoord.out.bam \

-O data/020_picard/ENCFF001RF.ARG.bam \

-SO coordinate --RGID 3 --RGLB lib1 --RGPL illumina \

--RGSM CURRENT --RGPU unit1 --RGCN encode

java -Xmx16g -jar $PICARD_JAR MarkDuplicates \

I=data/020_picard/ENCFF001RF.ARG.bam \

O=data/020_picard/ENCFF001RF_sorted_dedupped.bam \

CREATE_INDEX=true \

VALIDATION_STRINGENCY=SILENT \

M=data/020_picard/ENCFF001RF_sorted_dedupped.metrics

gatk --java-options "-Xmx16g -XX:+UseParallelGC -XX:Paral-

lelGCThreads=1 -XX:ConcGCThreads=1" SplitNCigarReads \

--reference data/genomeReference/GRCh38.p14.genome.fa \

--input data/020_picard/ENCFF001RF_sorted_dedupped.bam

\

--output data/030_splitNCigar/ENCFF001RF_split.bam

gatk --java-options "-Xmx16g -XX:+UseParallelGC -XX:Paral-

lelGCThreads=1 -XX:ConcGCThreads=1" BaseRecalibrator \

--input data/030_splitNCigar/ENCFF001RF_split.bam \

--reference data/genomeReference/GRCh38.p14.genome.fa \

--known-sites data/GATK/Homo_sapiens_assembly38.dbsnp138.

vcf \

--known-sites data/GATK/Mills_and_1000G_gold_standard.in-

dels.hg38.vcf.gz \

--output data/040_recalibration/ENCFF001RF_recal_data.table

gatk --java-options "-Xmx16g -XX:+UseParallelGC -XX:Paral-

lelGCThreads=1 -XX:ConcGCThreads=1" ApplyBQSR \

--input data/030_splitNCigar/ENCFF001RF_split.bam \

--reference data/genomeReference/GRCh38.p14.genome.fa \

--bqsr-recal-file data/040_recalibration/ENCFF001RF_recal_-

data.table \

--output data/040_recalibration/ENCFF001RF_recalibrated.bam

samtools sort -O BAM data/040_recalibration/ENCFF001RF_recali-

brated.bam > data/040_recalibration/ENCFF001RF_recalibrated_-

sort.bam

samtools index data/040_recalibration/ENCFF001RF_recalibra-

ted_sort.bam

Note if all the steps before are ok you can only keep

data/040_recalibration/ENCFF001RF_recalibrated_sort.ba[mi]

162 Pascal Belleau et al.

2: Ancestry inference with RAIDS

Invoke R from the directory workingDirectory.

Install and load RAIDS, and set up the required directory paths.

if (!require("BiocManager", quietly = TRUE))

install.packages("BiocManager")

BiocManager::install("RAIDS")

library(RAIDS)

setwd("workingDirectory")

pathReference <- file.path("data/refGDS")

refGenotype <- file.path(pathReference, "matGeno1000g.gds")

refAnnotation <- file.path(pathReference, "matAnnot1000g.

gds")

pathProfileGDS <- file.path("data", "profileGDS")

pathOut <- file.path("data", "res.out")

The output directories must exist

if (!dir.exists(pathProfileGDS))

dir.create(pathProfileGDS)

if (!dir.exists(pathOut))

dir.create(pathOut)

Genetic Ancestry Inference from Cancer-Derived Data 163

2) A: Sample reference donor profiles from the reference data.

With the 1KG reference, we recommend sampling 30 donor pro-
files per population. For reproducibility, be sure to use the same
random-number generator seed.

set.seed(3043)

dataRef <- select1KGPopForSynthetic(fileReferenceGDS=refGen-

otype,

nbProfiles=30L)

2) B: Perform the ancestry inference.

Within a single function call, data synthesis is performed, the
synthetic data are used to optimize the inference parameters,
and, with these, the ancestry of the input profile donor is
inferred.

pathToBam <- file.path("data/040_recalibration/ENCFF001RF_re-

calibrated_sort.bam")

chrInfo <- GenomeInfoDb::seqlengths(BSgenome.Hsapiens.UCSC.

hg38::Hsapiens)[1:25]

resOut <- inferAncestryGeneAware(profileFile=pathToBam,

pathProfileGDS =pathProfileGDS,

fileReferenceGDS=refGenotype,

fileReferenceAnnotGDS=refAnnotation,

chrInfo=chrInfo,

syntheticRefDF=dataRef,

genoSource=c("bam"),

blockTypeID="GeneS.Ensembl.Hsapiens.v86")

saveRDS(resOut, file.path(pathOut, "resOut.rds"))

3: Examine the value of the ancestry inference as follows

3) A: The inferred ancestry and the optimal parameters. For the
global ancestry inference using PCA followed by nearest neigh-
bor classification these parameters are D, the number of the top
principal directions retained, and k, the number of nearest
neighbors [20].

print(resOut$Ancestry)

3) B: Visualize the RAIDS performance for the synthetic data, as a
function of D and k (Fig. 2).

createAUROCGraph(dfAUROC=resOut$paraSample$dfAUROC,

title=" Encode ENCFF001 RNA")

164 Pascal Belleau et al.

Fig. 2 The area under receiver operating characteristic (AUROC) measure of

performance for global ancestry inference, as a function of the inference

parameters D and K computed for each super-population (AFR, AMR, EAS,

EUR, SAS)

Fig. 3 The reference (1KG) profiles and a donor RNA-seq profile ENCFF001

(green circle) are projected onto the top 3 principal components of the

reference data

Visualize the inference results in three top principal coordinates
(Fig. 3).

if (! requireNamespace("GenomeInfoDb", quietly=TRUE)){

install.packages("plotly")

library(plotly)

}

dfPop <- getRefSuperPop(refGenotype)

eigenvect <- rbind(resOut$pcaSample$eigenvector.ref,

resOut$pcaSample$eigenvector)

rownames(eigenvect) <- c(row.names(resOut$pcaSample$eigenvec-

tor.ref),

row.names(resOut$pcaSample$eigenvector))

sampleInfo <- data.frame(id=rownames(eigenvect),

superPop=c(dfPop[rownames(eigenvect[-1* nrow

(eigenvect),])],

paste0("i_", resOut$Ancestry$SuperPop)),

Type=c(rep("1kG", nrow(eigenvect)-1), "ENCFF001"),

stringsAsFactors=FALSE)

pcaSel3dAA <- data.frame(PCA1=eigenvect[,1], PCA2=eigenvect

[,2], PCA3=eigenvect[,3])

plot_ly(pcaSel3dAA, x=~PCA1, y=~PCA2, z=~PCA3,

type=’scatter3d’, mode="markers",

color=as.factor(sampleInfo$superPop),

symbol=factor(sampleInfo$Type,

levels = c("ENCFF001","1kG"),

labels = c("ENCFF001","1kG")),

symbols=c("circle","cross"))

Genetic Ancestry Inference from Cancer-Derived Data 165

2.4 Build a

Population Reference

Dataset (Optional)

The population reference input into RAIDS consists of two files:
the reference genotype file and the reference annotation file. The
reference genotype file contains, for each donor, to the population
reference data, the genotypes at all positions in the genome, where
the alternative allele frequency in a population is above a user-
defined threshold. The reference annotation file tabulates, for
each super-population, its haplotype blocks and the phase informa-
tion for the reference. Both these files adhere to the genome data
structure (GDS) format [32–34]. We use the gdsfmt [32] package
to format both files.

2.4.1 Build the Reference

Genotype File

Here we will explain how to construct the 1KG reference file as an
example (see Note 3).

We will set up a directory structure for the reference, namely, a
directory tree for the input:

workingDirectory

data

1000GGenotypeGRCh38 # PATHVCF1KG

geno # PATHGENO

info1kg

testpopulationRef # PATHOUT

ldBlock # pathBlockPop

166 Pascal Belleau et al.

PATHVCF1KG=data/1000GGenotypeGRCh38

if [! -d $PATHVCF1KG]

then

mkdir $PATHVCF1KG

fi

and two output directories:

PATHOUT=data

PATHGENO=${PATHOUT}/geno

PATHINFO=${PATHOUT}/info1kg

if [! -d $PATHGENO]

then

mkdir $PATHGENO

fi

if [! -d data/testpopulationRef]

then

mkdir data/testpopulationRef

fi

if [! -d $PATHINFO]

then

mkdir $PATHINFO

fi

The genotypes of the donors to 1KG are defined in
VCF-formatted files (one per chromosome) [35].

Currently, these files follow the GRCh38 build of the human
genome [24].

The table header in the VCF file is as follows:

#INFO=<ID=DP,Number=1,Type=Integer,Description="Approximate

read depth; some reads may have been filtered">

#CHROM POS ID REF ALT QUAL FILTER INFO

FORMAT HG00096 HG00097 …

where the first nine columns provide the sequence variant
information, including the allele frequencies in the INFO column.
The remaining columns contain the donor genotypes.

In addition, we shall need the donor genotype metadata file in
the PED format [36] located at The International Genome Sample
Resource (IGSR) [37].

Download the input files:

cd $PATHVCF1KG

for i in ‘seq 1 22‘

do

wget http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collec-

tions/1000_genomes_project/release/20181203_biallelic_SNV/

ALL.chr${i}.shapeit2_integrated_v1a.GRCh38.20181129.phased.

vcf.gz

wget http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collec-

tions/1000_genomes_project/release/20181203_biallelic_SNV/

ALL.chr${i}.shapeit2_integrated_v1a.GRCh38.20181129.phased.

vcf.gz.tbi

done

wget ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/work-

ing/20130606_sample_info/20130606_g1k.ped

cd -

Genetic Ancestry Inference from Cancer-Derived Data 167

From this input, we first create separate genotype files for each
1KG donor (see Note 4).

FILE1KG=${PATHVCF1KG}/ALL.chr1.shapeit2_integrated_v1a.

GRCh38.20181129.phased.vcf.gz

NF=$(($(zcat $FILE1KG|head -n 5000|grep "#CHROM"|grep -o

$’\t’|wc -l) + 1))

TITLE=$(zcat $FILE1KG|head -n 5000|grep "#CHROM")

for j in ‘seq 10 $NF‘

do

CURRENT=$(echo $TITLE|cut -d $’ ’ -f ${j})

echo ${CURRENT} > ${PATHGENO}/${CURRENT}.csv

done

for i in ‘seq 1 22‘

do

FILE1KG=${PATHVCF1KG}/ALL.chr${i}.shapeit2_integrated_v1a.

GRCh38.20181129.phased.vcf.gz

for j in ‘seq 10 $NF‘

do

CURRENT=$(echo $TITLE|cut -d $’ ’ -f ${j})

zcat $FILE1KG|grep -v "#"|cut -d $’\t’ -f ${j}|head -n 10000 >>

${PATHGENO}/${CURRENT}.csv

done

done

cd ${PATHGENO}

for j in ‘seq 10 $NF‘

do

CURRENT=$(echo $TITLE|cut -d $’ ’ -f ${j})

bzip2 ${CURRENT}.csv

done

cd -

168 Pascal Belleau et al.

We also create a single variant information table which, in
addition to columns describing the variants, provides the variant
allele frequencies in each 1KG super-population.

echo $’CHROM,POS,REF,ALT,AF,EAS_AF,EUR_AF,AFR_AF,AMR_AF,SA-

S_AF’>${PATHINFO}/snvAnnotation.csv

for i in ‘seq 1 22‘

do

FILE1KG=${PATHVCF1KG}/ALL.chr${i}.shapeit2_integrated_v1a.

GRCh38.20181129.phased.vcf.gz

zcat $FILE1KG|grep -v "#"|cut -d $’\t’ -f 1,2,4,5,8|perl -n -e

’@line=split("\t",$_);

@info=split(";", $line[4]);

my %indCur=();

foreach(@info){

@val=split("\=", $_);

$indexCur{$val[0]}=$val[1]};

print($line[0].",". $line[1].",". $line[2] . "," . $line[3].

",".

$indexCur{"AF"}.

",". $indexCur{"EAS_AF"}.

",". $indexCur{"EUR_AF"}.

",". $indexCur{"AFR_AF"}.

",". $indexCur{"AMR_AF"}.

",". $indexCur{"SAS_AF"} ."\n")’ |head -n 10000 >>${PATHINFO}/

snvAnnotation.csv

done

cd ${PATHINFO}

bzip2 snvAnnotation.csv

cd -

Next, in an R session, we reformat the input metadata:

library(RAIDS)

pathGeno1Kg <- "data/1000GGenotypeGRCh38"

pathGeno <- "data/geno"

pathInfo <- "data/info1kg"

fileName <- "20130606_g1k.ped"

ped <- prepPed1KG(filePed=file.path(pathGeno1Kg,fileName),

pathGeno=pathGeno)

saveRDS(ped, file.path(pathInfo, "ped1kg.rds"))

Genetic Ancestry Inference from Cancer-Derived Data 169

Only variants with a user-set minimum frequency in at least one
super-population will be retained for further analysis. Here the
minimum frequency is set to 0.01. The requisite function call is.

outSNVIndex <- "snvSel0.01.Index.rds"

outSNVSelected <- "snvSel0.01.rds"

generateMapSnvSel(cutOff=0.01,

fileSNV=file.path(pathInfo, "snvAnnotation.csv.bz2"),

fileSNPsRDS=file.path(pathInfo, outSNVIndex),

fileFREQ=file.path(pathInfo, outSNVSelected))

, where cutOff is the minimum frequency; pathSNVAnnota-

tion is the path to a variant information file (snvAnnotation.

csv.bz2 in this example); and outSNVIndex and outSNVSe-

lected are names of the output files: the first containing the
index for the population reference genotypes and the second con-
taining the description of the variants retained.

We next create a reference genotype file required by RAIDS.

pathReference <- "data/testpopulationRef"

refGenotype <- file.path(pathReference, "matGeno1000gTest.

gds")

generateGDS1KG(pathGeno=pathGeno,

filePedRDS=file.path(pathInfo, "ped1kg.rds"),

fileSNVIndex=file.path(pathInfo, outSNVIndex),

fileSNVSelected=file.path(pathInfo, outSNVSelected),

fileNameGDS=refGenotype)

where pathGeno is the path to the directory containing all the
reference genotype files; filePedRDS, fileSNVIndex, and
fileSNVSelected are input file names; and fileNameGDS is
the output file name.

Finally, we test all pairs of the reference donors for kinship and
add a field in the reference genotype file identifying a subset of
unrelated donors:

identifyRelativeRef(fileReferenceGDS=refGenotype,

maf=0.05,

thresh=2^(-11/2),

fileIBD=file.path(pathInfo, "ibd1kg.rds"),

filePart=file.path(pathInfo, "unrelated1kg.rds"))

addRef2GDS1KG(fileNameGDS=refGenotype,

filePart=file.path(pathInfo, "unrelated1kg.rds"))

170 Pascal Belleau et al.

In the final form, the population reference structure is (see
Note 5).

|--+ sample.id { Str8 2548, 19.9K }

|--+ sample.annot [data.frame] *

| |--+ sex { Str8 2548, 5.0K } #

| |--+ pop.group { Str8 2548, 10.0K }

| |--+ superPop { Str8 2548, 10.0K }

| \--+ batch { Float64 2548, 19.9K }

|--+ snp.id { Str8 24516859, 223.2M }

|--+ snp.chromosome { UInt16 24516859, 46.8M }

|--+ snp.position { Int32 24516859, 93.5M }

|--+ snp.allele { Str8 24516859, 93.5M }

|--+ snp.AF { PackedReal24 24516859, 70.1M }

|--+ snp.EAS_AF { PackedReal24 24516859, 70.1M } #

|--+ snp.EUR_AF { PackedReal24 24516859, 70.1M } #

|--+ snp.AFR_AF { PackedReal24 24516859, 70.1M } #

|--+ snp.AMR_AF { PackedReal24 24516859, 70.1M } #

|--+ snp.SAS_AF { PackedReal24 24516859, 70.1M } #

|--+ genotype { Bit2 24516859x2548, 14.5G }

\--+ sample.ref { Bit1 2548, 319B }

The fields are as follows:

sample.id: a character string used as unique identifier for each
sample.

sample.annot: a data.frame object where each row corresponds to a
donor containing those columns:

sex: a character string used as identifier of the sex of the donor.

pop.Group: a character string representing the subpopulation ances-
try of the donor (e.g., GBR).

superPop: a character string representing the super-population
ancestry of the donor.

batch: an integer field reserved for future use (e.g., addition of
donors to the reference collection).

snp.id: a character string used as a unique identifier for each
variant.

snp.chromosome: an integer denoting the chromosome for the
variant.

snp.position: genomic coordinate of the variant.

snp.allele: a character string representing the reference and alter-
native alleles.

snp.AF: a numeric value for the frequency of the alternative allele in
the reference collection.

Genetic Ancestry Inference from Cancer-Derived Data 171

snp.[SPR]_AF: a numeric value between 0 and 1 representing the
allele frequency of the alternative allele in the super-
population SPR.

sample.ref: an integer indicating whether the reference donor is
retained (=1) or removed following the kinship test.

2.4.2 Build the Reference

Annotation File

The reference annotation file is created by the following
function call:

refAnnotation <- file.path(pathReference, "matAnnot1000gTest.

gds")

generatePhaseRef(fileReferenceGDS=refGenotype,

pathGeno=pathGeno,

fileSNVIndex=file.path(pathInfo, outSNVIndex),

fileReferenceAnnotGDS=refAnnotation)

where fileReferenceGDS, pathGeno, and fileSNVIndex

are character strings containing the names of population reference
file, the index file for the population reference genotypes, and the
path to the directory containing all the reference genotype files,
respectively; fileReferenceAnnotGDS is a character string for
the reference annotation file name.

At this point, the annotation file contains haplotype phasing
information for each donor.

Next, for each super-population, we add to the annotation file a
partition of the genome into blocks of variants in linkage disequi-
librium (LD):

pathBlockPop <- "data/ldBlock"

addBlockFromDetFile(fileReferenceGDS=refGenotype,

gdsRefAnnotFile=refAnnotation,

pathBlock=pathBlockPop,

superPop="AFR")

where fileReferenceGDS and gdsRefAnnotFile are char-
acter strings containing the names of population reference file and
the reference annotation file name and pathBlockPop is a charac-
ter string for a directory containing, for each chromosome, a file
with a table for super-population-specific LD blocks. The file names
must be of the form *.chr[chrNum].blocks.det, where
chrNum is an integer between 1 and 22. The LD block table must
have at least the following three columns:

CHR: the chromosome.

BP1: the start position of the block.

BP2: the end position of the block.

172 Pascal Belleau et al.

(see Note 6);
and the superPop argument is a character string containing

the name of the super-population.
Finally, in order to enable inference from RNA-seq data, we

add to the annotation file a transcript-oriented partition of the
genome. For all transcribed regions annotated in the EnsDb.Hsa-

piens, we provide the transcription start and end coordinates. The
remainder of the genome is partitioned into windows of equal size.

if (! requireNamespace("EnsDb.Hsapiens.v86", quietly=TRUE)){

BiocManager::install("EnsDb.Hsapiens.v86")

library(EnsDb.Hsapiens.v86)

}

edb <- EnsDb.Hsapiens.v86::EnsDb.Hsapiens.v86

addGeneBlockRefAnnot(fileReferenceGDS=refGenotype,

gdsRefAnnotFile=refAnnotation,

winSize=10000,

ensDb=edb,

suffixBlockName="Ensembl.Hsapiens.v86")

where

winSize: an integer window size for the partition of the genome
outside the annotated regions.

edb: an object available from Bioconductor.

suffixBlockName: a character string containing the name of the
edb object.

In the final form, the reference annotation file contains the
following structure:

--+ phase { Bit2 24516859x2548 LZ4_ra(35.0%), 5.1G }

|--+ block.annot [data.frame] *

| |--+ block.id { Str8 7, 123B }

| \--+ block.desc { Str8 7, 388B }

\--+ block { Int32 24516859x7 LZ4_ra(3.60%), 23.6M }

The field descriptions are as follows:

phase: an integer representing the phase of the SNVs in the Popu-
lation Annotation GDS file; 0 means the first allele is a refer-
ence; 1 means the first allele is the alternative and 3 means
unknown. The first allele combined with the genotype of the
variant determines the phase for a biallelic variant. The variants
in phase are in the same order than the variants in the Popula-
tion reference dataset.

block.annot: a data.frame object containing the following columns.

Genetic Ancestry Inference from Cancer-Derived Data 173

block.id: a character string representing an identifier of block
group. A block can be linkage disequilibrium block relative to
a population or a gene.

block.desc: a character string describing the block group.

block: a matrix of integer values where each row represents a SNV
in the same order as that of the variants in Population reference
dataset. The columns are the block groups described in
block.annot. Each element in the matrix is a block identifier.

3 Future Expansion and Refinement of RAIDS

Future versions of RAIDS will include methods for in-depth infer-
ence of genetic ancestry, specifically inference of ancestral admix-
tures and local ancestry. RAIDS will also be enabled to handle
sequence data from additional molecular protocols, such as
ATAC-seq, cytosine-conversion assays, and low-coverage whole-
genome sequences.

4 Notes

Note 1: In RAIDS, the function snpgdsLDpruning() from the
Bioconductor package SNPRelate is invoked to prune variants
in order to reduce the linkage disequilibrium.

Note 2: We tune the inference parameters to optimal performance
on a set of synthetic profiles. A strict assessment of performance
at the optimum would require another set of synthetic profiles.
Instead, we examine whether the inference performance
remains nearly unchanged in a range of parameters near the
optimum.

Note 3: We restricted the reference to the first 10,000 variants for
accelerate the example. If you want to generate all the refer-
ence, you must remove the 2 “|head -n 10000” in shell
scripts.

Note 4: The genotype file name must be of the form “donorID.

csv.bz2,” where the string “donorID” is unique for each
donor to the reference. The first line of the genotype file
contains the name of the donor, and the subsequent lines
each contain a genotype in the format “Allele1/Allele2”
if no phasing is available, “Allele1|Allele2” otherwise.

Note 5: The fields for allele frequencies must have names of the
form “snp.[SPR]_AF” where SPR is the super-population
reference code, e.g., EAS for the East Asian super-population.

174 Pascal Belleau et al.

These fields correspond to the values present in the field
superPop of the population reference structure file.

Note 6: We recommend Plink [38] software package for comput-
ing LD blocks [39]. Computing LD blocks genome-wide is
computationally demanding. An example of Plink output is
provided at https://labshare.cshl.edu/shares/krasnitzlab/
aicsPaper/ldBlock2024.09.10.tar.gz.

Acknowledgments

We acknowledge support by the National Institute of Health
(awards 1U01CA289357–01 to A.K.; P30CA45508,
P20CA192996, U01CA224013, U01CA210240,
R01CA188134, R01CA249002, and R01CA229699 to D.A.T.);
the New York Genome Center Polyethnic-1000 Project (award
33,350,211, A.K. and D.A.T.) and MacMillan Center for the
Study of the Non-Coding Genome (awards 36,620,111 and
36,620,112); Simons Foundation awards 519,054 (A.K.) and
552,716 (D.A.T.), the Simons Center for Quantitative Biology at
Cold Spring Harbor Laboratory (A.K.); the Lustgarten Founda-
tion (LF; awards 33,470,211, 36,900,101, 36,900,201), where
D.A.T. is a Distinguished Scholar and Director of LF-designated
laboratory; and the Pershing Square Foundation, William Ackman,
and Neri Oxman (all D.A.T.).

References

1. Siegel RL, Miller KD, Jemal A (2020) Cancer
statistics, 2020. CA Cancer J Clin 70(1):7–30.
https://doi.org/10.3322/caac.21590

2. Cronin KA, Lake AJ, Scott S, Sherman RL,
Noone AM, Howlader N, Henley SJ, Ander-
son RN, Firth AU, Ma J, Kohler BA, Jemal A
(2018) Annual Report to the Nation on the
Status of Cancer, part I: national cancer statis-
tics. Cancer 124(13):2785–2800. https://doi.
org/10.1002/cncr.31551

3. Ashktorab H, Kupfer SS, Brim H, Carethers
JM (2017) Racial disparity in gastrointestinal
cancer risk. Gastroenterology 153(4):
910–923. https://doi.org/10.1053/j.gastro.
2017.08.018

4. Huang BZ, Stram DO, Le Marchand L, Hai-
man CA, Wilkens LR, Pandol SJ, Zhang ZF,
Monroe KR, Setiawan VW (2019) Interethnic
differences in pancreatic cancer incidence and
risk factors: the Multiethnic Cohort. Cancer
Med 8(7):3592–3603. https://doi.org/10.
1002/cam4.2209

5. Tan DS, Mok TS, Rebbeck TR (2016) Cancer
genomics: diversity and disparity across

ethnicity and geography. J Clin Oncol 34(1):
91–101. https://doi.org/10.1200/JCO.
2015.62.0096

6. Mahal BA, Alshalalfa M, Kensler KH,
Chowdhury-Paulino I, Kantoff P, Mucci LA,
Schaeffer EM, Spratt D, Yamoah K, Nguyen
PL, Rebbeck TR (2020) Racial differences in
genomic profiling of prostate cancer. N Engl J
Med 383(11):1083–1085. https://doi.org/
10.1056/NEJMc2000069

7. Carrot-Zhang J, Chambwe N, Damrauer JS,
Knijnenburg TA, Robertson AG, Yau C,
Zhou W, Berger AC, Huang KL, Newberg
JY, Mashl RJ, Romanel A, Sayaman RW,
Demichelis F, Felau I, Frampton GM, Han S,
Hoadley KA, Kemal A, Laird PW, Lazar AJ,
Le X, Oak N, Shen H, Wong CK, Zenklusen
JC, Ziv E, Cancer Genome Atlas Analysis N,
Cherniack AD, Beroukhim R (2020) Compre-
hensive analysis of genetic ancestry and its
molecular correlates in cancer. Cancer Cell
37(5):639–654 e636. https://doi.org/10.
1016/j.ccell.2020.04.012

8. Yuan J, Hu Z, Mahal BA, Zhao SD, Kensler
KH, Pi J, Hu X, Zhang Y, Wang Y, Jiang J,

https://labshare.cshl.edu/shares/krasnitzlab/aicsPaper/ldBlock2024.09.10.tar.gz
https://labshare.cshl.edu/shares/krasnitzlab/aicsPaper/ldBlock2024.09.10.tar.gz
https://doi.org/10.3322/caac.21590
https://doi.org/10.1002/cncr.31551
https://doi.org/10.1002/cncr.31551
https://doi.org/10.1053/j.gastro.2017.08.018
https://doi.org/10.1053/j.gastro.2017.08.018
https://doi.org/10.1002/cam4.2209
https://doi.org/10.1002/cam4.2209
https://doi.org/10.1200/JCO.2015.62.0096
https://doi.org/10.1200/JCO.2015.62.0096
https://doi.org/10.1056/NEJMc2000069
https://doi.org/10.1056/NEJMc2000069
https://doi.org/10.1016/j.ccell.2020.04.012
https://doi.org/10.1016/j.ccell.2020.04.012

Genetic Ancestry Inference from Cancer-Derived Data 175

Li C, Zhong X, Montone KT, Guan G, Tanyi
JL, Fan Y, Xu X, Morgan MA, Long M,
Zhang Y, Zhang R, Sood AK, Rebbeck TR,
Dang CV, Zhang L (2018) Integrated analysis
of genetic ancestry and genomic alterations
across cancers. Cancer Cell 34(4):549–560
e549. https://doi.org/10.1016/j.ccell.2018.
08.019

9. Sinha S, Mitchell KA, Zingone A, Bowman E,
Sinha N, Sch€affer AA, Lee JS, Ruppin E, Ryan
BM (2020) Higher prevalence of homologous
recombination deficiency in tumors from Afri-
can Americans versus European Americans.
Nat Cancer 1(1):112–121. https://doi.org/
10.1038/s43018-019-0009-7

10. Bhatnagar B, Kohlschmidt J, Mrozek K,
Zhao Q, Fisher JL, Nicolet D, Walker CJ,
Mims AS, Oakes C, Giacopelli B, Orwick S,
Boateng I, Blachly JS, Maharry SE, Carroll
AJ, Powell BL, Kolitz JE, Stone RM, Byrd JC,
Paskett ED, de la Chapelle A, Garzon R, Eis-
feld AK (2021) Poor survival and differential
impact of genetic features of black patients with
acute myeloid leukemia. Cancer Discov 11(3):
626–637. ht tps ://doi .org/10.1158/
2159-8290.CD-20-1579

11. Carrot-Zhang J, Soca-Chafre G, Patterson N,
Thorner AR, Nag A, Watson J, Genovese G,
Rodriguez J, Gelbard MK, Corrales-
Rodriguez L, Mitsuishi Y, Ha G, Campbell
JD, Oxnard GR, Arrieta O, Cardona AF,
Gusev A, Meyerson M (2021) Genetic ancestry
contributes to somatic mutations in lung can-
cers from admixed Latin American popula-
tions. Cancer Discov 11(3):591–598. https://
doi.org/10.1158/2159-8290.CD-20-1165

12. Weiner AB, Vidotto T, Liu Y, Mendes AA,
Salles DC, Faisal FA, Murali S, McFarlane M,
Imada EL, Zhao X, Li Z, Davicioni E, March-
ionni L, Chinnaiyan AM, Freedland SJ, Spratt
DE, Wu JD, Lotan TL, Schaeffer EM (2021)
Plasma cells are enriched in localized prostate
cancer in Black men and are associated with
improved outcomes. Nat Commun 12(1):
935. https://doi.org/10.1038/s41467-021-
21245-w

13. Zaaijer S, Capes-Davis A (2021) Ancestry mat-
ters: building inclusivity into preclinical study
design. Cell 184(10):2525–2531. https://doi.
org/10.1016/j.cell.2021.03.041

14. Nugent A, Conatser KR, Turner LL, Nugent
JT, Sarino EMB, Ricks-Santi LJ (2019)
Reporting of race in genome and exome
sequencing studies of cancer: a scoping review
of the literature. Genet Med 21(12):
2676–2680. https://doi.org/10.1038/
s41436-019-0558-2

15. Polubriaginof FCG, Ryan P, Salmasian H, Sha-
piro AW, Perotte A, Safford MM, Hripcsak G,

Smith S, Tatonetti NP, Vawdrey DK (2019)
Challenges with quality of race and ethnicity
data in observational databases. J Am Med
Inform Assoc 26(8–9):730–736. https://doi.
org/10.1093/jamia/ocz113

16. Pritchard JK, Stephens M, Donnelly P (2000)
Inference of population structure using multi-
locus genotype data. Genetics 155(2):945–959

17. Price AL, Patterson NJ, Plenge RM, Weinblatt
ME, Shadick NA, Reich D (2006) Principal
components analysis corrects for stratification
in genome-wide association studies. Nat Genet
38(8):904–909. https://doi.org/10.1038/
ng1847

18. Alexander DH, Novembre J, Lange K (2009)
Fast model-based estimation of ancestry in
unrelated individuals. Genome Res 19(9):
1655–1664. https://doi.org/10.1101/gr.
094052.109

19. Frampton GM, Fichtenholtz A, Otto GA,
Wang K, Downing SR, He J, Schnall-Levin M,
White J, Sanford EM, An P, Sun J, Juhn F,
Brennan K, Iwanik K, Maillet A, Buell J,
White E, Zhao M, Balasubramanian S,
Terzic S, Richards T, Banning V, Garcia L,
Mahoney K, Zwirko Z, Donahue A,
Beltran H, Mosquera JM, Rubin MA,
Dogan S, Hedvat CV, Berger MF, Pusztai L,
Lechner M, Boshoff C, Jarosz M, Vietz C,
Parker A, Miller VA, Ross JS, Curran J, Cronin
MT, Stephens PJ, Lipson D, Yelensky R (2013)
Development and validation of a clinical cancer
genomic profiling test based on massively par-
allel DNA sequencing. Nat Biotechnol 31(11):
1023–1031. https://doi.org/10.1038/nbt.
2696

20. Belleau P, Deschenes A, Chambwe N, Tuveson
DA, Krasnitz A (2023) Genetic ancestry infer-
ence from cancer-derived molecular data across
genomic and transcriptomic platforms. Cancer
Res 83(1):49–58. https://doi.org/10.1158/
0008-5472.CAN-22-0682

21. Belleau P, Deschênes A, Tuveson DA, Krasnitz
A (2023) Accurate inference of genetic ances-
try from cancer sequences. Bioconductor.
https://doi.org/10.18129/B9.bioc.RAIDS

22. Lowy-Gallego E, Fairley S, Zheng-Bradley X,
Ruffier M, Clarke L, Flicek P, Genomes Project
C (2019) Variant calling on the GRCh38
assembly with the data from phase three of
the 1000 Genomes Project. Wellcome Open
Res 4:50. https://doi.org/10.12688/
wellcomeopenres.15126.2

23. GATK Team (2024) Genome Analysis Toolkit.
https://gatk.broadinstitute.org/hc/en-us

24. Schneider VA, Graves-Lindsay T, Howe K,
Bouk N, Chen HC, Kitts PA, Murphy TD,
Pruitt KD, Thibaud-Nissen F, Albracht D, Ful-
ton RS, Kremitzki M, Magrini V, Markovic C,

https://doi.org/10.1016/j.ccell.2018.08.019
https://doi.org/10.1016/j.ccell.2018.08.019
https://doi.org/10.1038/s43018-019-0009-7
https://doi.org/10.1038/s43018-019-0009-7
https://doi.org/10.1158/2159-8290.CD-20-1579
https://doi.org/10.1158/2159-8290.CD-20-1579
https://doi.org/10.1158/2159-8290.CD-20-1165
https://doi.org/10.1158/2159-8290.CD-20-1165
https://doi.org/10.1038/s41467-021-21245-w
https://doi.org/10.1038/s41467-021-21245-w
https://doi.org/10.1016/j.cell.2021.03.041
https://doi.org/10.1016/j.cell.2021.03.041
https://doi.org/10.1038/s41436-019-0558-2
https://doi.org/10.1038/s41436-019-0558-2
https://doi.org/10.1093/jamia/ocz113
https://doi.org/10.1093/jamia/ocz113
https://doi.org/10.1038/ng1847
https://doi.org/10.1038/ng1847
https://doi.org/10.1101/gr.094052.109
https://doi.org/10.1101/gr.094052.109
https://doi.org/10.1038/nbt.2696
https://doi.org/10.1038/nbt.2696
https://doi.org/10.1158/0008-5472.CAN-22-0682
https://doi.org/10.1158/0008-5472.CAN-22-0682
https://doi.org/10.18129/B9.bioc.RAIDS
https://doi.org/10.12688/wellcomeopenres.15126.2
https://doi.org/10.12688/wellcomeopenres.15126.2
https://gatk.broadinstitute.org/hc/en-us

176 Pascal Belleau et al.

McGrath S, Steinberg KM, Auger K, Chow W,
Collins J, Harden G, Hubbard T, Pelan S,
Simpson JT, Threadgold G, Torrance J, Wood
JM, Clarke L, Koren S, Boitano M, Peluso P,
Li H, Chin CS, Phillippy AM, Durbin R, Wil-
son RK, Flicek P, Eichler EE, Church DM
(2017) Evaluation of GRCh38 and de novo
haploid genome assemblies demonstrates the
enduring quality of the reference assembly.
Genome Res 27(5):849–864. https://doi.
org/10.1101/gr.213611.116

25. GATK Team (2024) How to map and clean up
short read sequence data efficiently. Broad
Institute. https://gatk.broadinstitute.org/hc/
en-us/ar t ic les/360039568932%2D%2
DHow-to-Map-and-clean-up-short-read-
sequence-data-efficiently

26. GATK Team (2024) RNAseq short variant dis-
covery (SNPs + Indels). https://gatk.bro
adinstitute.org/hc/en-us/articles/36003
5531192-RNAseq-short-variant-discovery-
SNPs-Indels

27. Danecek P, Bonfield JK, Liddle J, Marshall J,
Ohan V, Pollard MO, Whitwham A, Keane T,
McCarthy SA, Davies RM, Li H (2021) Twelve
years of SAMtools and BCFtools. Gigascience
1 0 (2) . h t t p s : //do i . o r g/10 . 1 0 93/
gigascience/giab008

28. Luo Y, Hitz BC, Gabdank I, Hilton JA, Kagda
MS, Lam B, Myers Z, Sud P, Jou J, Lin K,
Baymuradov UK, Graham K, Litton C, Miya-
sato SR, Strattan JS, Jolanki O, Lee JW, Tanaka
FY, Adenekan P, O’Neill E, Cherry JM (2020)
New developments on the Encyclopedia of
DNA Elements (ENCODE) data portal.
Nucleic Acids Res 48(D1):D882–D889.
https://doi.org/10.1093/nar/gkz1062

29. Frankish A, Diekhans M, Ferreira AM,
Johnson R, Jungreis I, Loveland J, Mudge
JM, Sisu C, Wright J, Armstrong J, Barnes I,
Berry A, Bignell A, Carbonell Sala S, Chrast J,
Cunningham F, Di Domenico T, Donaldson S,
Fiddes IT, Garcia Giron C, Gonzalez JM,
Grego T, Hardy M, Hourlier T, Hunt T,
Izuogu OG, Lagarde J, Martin FJ,
Martinez L, Mohanan S, Muir P, Navarro
FCP, Parker A, Pei B, Pozo F, Ruffier M,
Schmitt BM, Stapleton E, Suner MM,
Sycheva I, Uszczynska-Ratajczak B, Xu J,
Yates A, Zerbino D, Zhang Y, Aken B,
Choudhary JS, Gerstein M, Guigo R, Hubbard
TJP, Kellis M, Paten B, Reymond A, Tress ML,
Flicek P (2019) GENCODE reference annota-
tion for the human and mouse genomes.
Nucleic Acids Res 47(D1):D766–D773.
https://doi.org/10.1093/nar/gky955

30. Dobin A, Davis CA, Schlesinger F, Drenkow J,
Zaleski C, Jha S, Batut P, Chaisson M, Gingeras

TR (2013) STAR: ultrafast universal RNA-seq
aligner. Bioinformatics 29(1):15–21. https://
doi.org/10.1093/bioinformatics/bts635

31. Dobin A (2024) STAR. https://github.com/
alexdobin/STAR?tab=readme-ov-file

32. Zheng X, Gogarten S, Gailly J-L, Adler M,
Collet Y (2024) R Interface to CoreArray
Genomic Data Structure (GDS) Files.
https://bioconductor.org/packages/release/
bioc/html/gdsfmt.html

33. Zheng X, Gogarten SM, Lawrence M, Stilp A,
Conomos MP, Weir BS, Laurie C, Levine D
(2017) SeqArray-a storage-efficient high-
performance data format for WGS variant
calls. Bioinformatics 33(15):2251–2257.
https://doi.org/10.1093/bioinformatics/
btx145

34. Zheng X, Levine D, Shen J, Gogarten SM,
Laurie C, Weir BS (2012) A high-performance
computing toolset for relatedness and principal
component analysis of SNP data. Bioinformat-
ics 28(24):3326–3328. https://doi.org/10.
1093/bioinformatics/bts606

35. Schneider VA, Graves-Lindsay T, Howe K,
Bouk N, Chen HC, Kitts PA, Murphy TD,
Pruitt KD, Thibaud-Nissen F, Albracht D, Ful-
ton RS, Kremitzki M, Magrini V, Markovic C,
McGrath S, Steinberg KM, Auger K, Chow W,
Collins J, Harden G, Hubbard T, Pelan S,
Simpson JT, Threadgold G, Torrance J, Wood
JM, Clarke L, Koren S, Boitano M, Peluso P,
Li H, Chin CS, Phillippy AM, Durbin R, Wil-
son RK, Flicek P, Eichler EE, Church DM
(2018) 1000 genomes 20181203 biallelic
SNV. http://ftp.1000genomes.ebi.ac.uk/
vol1/ftp/data_collections/1000_genomes_
project/release/20181203_biallelic_SNV

36. IGSR (2013) Technical note on the pedigree
file for the 1000 Genomes project. https://
ftp.1000genomes.ebi.ac.uk/vol1/ftp/techni
ca l/working/20130606_sample_info/
README_20130606_sample_info

37. IGSR (2013) Pedigree file for the 1000 Gen-
omes project. ftp://ftp.1000genomes.ebi.ac.
uk/vol1/ftp/technical/working/20130606_
sample_info/20130606_g1k.ped

38. Purcell S, Neale B, Todd-Brown K, Thomas L,
Ferreira MA, Bender D, Maller J, Sklar P, de
Bakker PI, Daly MJ, Sham PC (2007) PLINK:
a tool set for whole-genome association and
population-based linkage analyses. Am J Hum
Genet 81(3):559–575. https://doi.org/10.
1086/519795

39. Chang C, Chow C, Vattikuti S, Tellier L, Lee J
(2024) Plink 1.9 Haplotype block estimation
documentation. https://www.cog-genomics.
org/plink/1.9/ld#blocks

https://doi.org/10.1101/gr.213611.116
https://doi.org/10.1101/gr.213611.116
https://gatk.broadinstitute.org/hc/en-us/articles/360039568932%2D%2DHow-to-Map-and-clean-up-short-read-sequence-data-efficiently
https://gatk.broadinstitute.org/hc/en-us/articles/360039568932%2D%2DHow-to-Map-and-clean-up-short-read-sequence-data-efficiently
https://gatk.broadinstitute.org/hc/en-us/articles/360039568932%2D%2DHow-to-Map-and-clean-up-short-read-sequence-data-efficiently
https://gatk.broadinstitute.org/hc/en-us/articles/360039568932%2D%2DHow-to-Map-and-clean-up-short-read-sequence-data-efficiently
https://gatk.broadinstitute.org/hc/en-us/articles/360035531192-RNAseq-short-variant-discovery-SNPs-Indels
https://gatk.broadinstitute.org/hc/en-us/articles/360035531192-RNAseq-short-variant-discovery-SNPs-Indels
https://gatk.broadinstitute.org/hc/en-us/articles/360035531192-RNAseq-short-variant-discovery-SNPs-Indels
https://gatk.broadinstitute.org/hc/en-us/articles/360035531192-RNAseq-short-variant-discovery-SNPs-Indels
https://doi.org/10.1093/gigascience/giab008
https://doi.org/10.1093/gigascience/giab008
https://doi.org/10.1093/nar/gkz1062
https://doi.org/10.1093/nar/gky955
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bioinformatics/bts635
https://github.com/alexdobin/STAR?tab=readme-ov-file
https://github.com/alexdobin/STAR?tab=readme-ov-file
https://bioconductor.org/packages/release/bioc/html/gdsfmt.html
https://bioconductor.org/packages/release/bioc/html/gdsfmt.html
https://doi.org/10.1093/bioinformatics/btx145
https://doi.org/10.1093/bioinformatics/btx145
https://doi.org/10.1093/bioinformatics/bts606
https://doi.org/10.1093/bioinformatics/bts606
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/release/20181203_biallelic_SNV
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/release/20181203_biallelic_SNV
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/release/20181203_biallelic_SNV
https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130606_sample_info/README_20130606_sample_info
https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130606_sample_info/README_20130606_sample_info
https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130606_sample_info/README_20130606_sample_info
https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130606_sample_info/README_20130606_sample_info
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130606_sample_info/20130606_g1k.ped
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130606_sample_info/20130606_g1k.ped
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130606_sample_info/20130606_g1k.ped
https://doi.org/10.1086/519795
https://doi.org/10.1086/519795
https://www.cog-genomics.org/plink/1.9/ld#blocks
https://www.cog-genomics.org/plink/1.9/ld#blocks

Chapter 9

Pruning-Assisted Modeling of Network Graph Connectivity
from Spatial Transcriptomic Data

Antara Biswas and Subhajyoti De

Abstract

Functional interactions within and between different types of somatic cells are crucial for executing complex
organ-level biological processes in multicellular organisms. Spatial transcriptomic technologies have
allowed for high throughput characterization of cell communities and associated cellular processes in the
tissue contexts. However, analytical resources for characterization and quantitative inference of spatial
interactions among somatic cells that can potentially impact complex biological functions in tissue micro-
environment are still limited. Here, we describe a framework to use network graph-based spatial statistical
models on spatially annotated molecular data to gain insights into cellular relationship and connectivity in
the local tumor microenvironment and evaluate the effects of network graph connectivity on the model
inference.

Key words Network, Community connectivity, Pruning, Trimming, Spatial transcriptomics, Tumor
microenvironment, Quantitative inference

1 Introduction

In multicellular organisms, somatic cells are organized into differ-
ent tissue layers, where functional interactions among the cells lead
to complex, organ-level functions [1, 2]. Examining gene expres-
sion in somatic cell types along with their respective cellular neigh-
borhoods in the tissue layers provides information about the
broader context of biological processes and their interrelation in
the tissue microenvironment—offering valuable insights and inter-
pretation of their functional significance in tissues, organs, and
general body system [3–5]. Emerging technologies such as the
high throughput spatial transcriptomics (ST) approaches have
allowed for capture of gene expression profiles at specific, spatially
annotated spots in tissues at unprecedented resolution, enabling a
systematic assessment of the patterns of spatial connectedness of

Alexander Krasnitz and Pascal Belleau (eds.), Cancer Bioinformatics, Methods in Molecular Biology, vol. 2932,
https://doi.org/10.1007/978-1-0716-4566-6_9,
© The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature 2025

177

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-4566-6_9&domain=pdf
https://doi.org/10.1007/978-1-0716-4566-6_9#DOI

cellular transcriptomes, and also have prompted the development
of numerous statistical models for characterizing the makeup of
highly heterogeneous tissue samples [5–9].

178 Antara Biswas and Subhajyoti De

While substantial work has been done to detect somatic cell
types and their activities in the tissue contexts using spatial tran-
scriptomics, the efforts to statistically model the spatial aspects of
the community structure of cell types and connectivity of cellular
processes are still at an earlier stage [10–12]. Appropriate modeling
of these attributes can shed light into complex biological processes
in the tissue microenvironment and their deregulation in diseases
such as cancer. In previous work [13, 14], we presented some
results from a network graph model built to capture the character-
istics of spatial heterogeneity. In this work, we provide more details
on the network science underpinning the model and discuss the
strategies for model optimization by removing redundancy in con-
nectivity from a dense network. Specifically, this chapter describes
the methodological details of a neighborhood graph-based
approach to analyze spatial transcriptomic data and focuses on the
community structure of cell types and connectivity of cellular pro-
cesses and examines strategies to prune the neighborhood graph at
different levels based on cellular makeups, without affecting topol-
ogy of the spatial network. This particularly highlights how the
functionalities offered by the analyses described here address the
challenges of spatial data setting and can be widely used to assess
the effects of the cell-type and proximity-based trimming strategies
to capture the fundamental attributes of cellular relationship and
local patterns in the cancer microenvironment.

2 Materials

The R packages eSDM, spdep,adegraphics, adespatial, ade4, sp.,
adegenet, adegraphics, gstat, raster, spatialreg, geometry, lsa, sp.,
and gstat were used for manipulating, modelling, representation
and statistical analysis tools for spatial data analysis [15, 16]. Data
processing relied heavily on the Tidyverse v1.3.2 R packages
(https://www.tidyverse.org/). All statistical analyses were per-
formed using R version 4.2.3 (https://www.r-project.org/). In
the following sections, we focus on the fundamentals of analysis
and trimming techniques. Detailed code used for performing rele-
vant analyses is available from our GitHub directory (https://
github.com/sjdlabgroup/BLCA-resources). In this chapter, we
will use the terms pruning and trimming interchangeably.

https://www.tidyverse.org/
https://www.r-project.org/
https://github.com/sjdlabgroup/BLCA-resources
https://github.com/sjdlabgroup/BLCA-resources

Network Connectivity in Tumor Spatial Microenvironment 179

3 Methods

3.1 Spatial Collection

and Initial Wet Lab

Processing

Deidentified human bladder urothelial carcinoma samples were
obtained from Rutgers Cancer Institute of New Jersey Bioreposi-
tory under an IRB approved protocol (Pro2019002924, PI: De). A
typical spatial transcriptomic sequencing workflow involves initial
tissue preparation, capturing and library preparation, sequencing,
raw data processing, and downstream analyses (Fig. 1a). In this
study, we used the Visium platform from 10x Genomics to perform
spatial transcriptomic sequencing. 5 μm tissue sections were placed
on the Visium Spatial Gene Expression Slide for FFPE, hybridized,
and prepared for sequencing according to the manufacturer’s pro-
tocols. The slides were then used with Visium Spatial Gene Expres-
sion for FFPE User Guide (10X Genomics, CG000407) to
generate Visium Spatial Gene Expression-FFPE libraries and
sequenced on Illumina NovaSeq S4 300 cycle. Using this approach,
we profiled tissue slices from four bladder cancer patients (S1-S4),
as reported elsewhere [14], and here we discuss the modeling of
spatial processes from this dataset using the network graph
approach. Samples included Sample 1 (S1), a high-grade invasive
urothelial transitional cell carcinoma with lymph node metastasis
but no distant metastasis; Sample 2 (S2), a high-grade invasive
localized urothelial transitional cell carcinoma without lymph

Fig. 1 (a) Schematic diagram of integral components of the spatial transcriptomics workflow, including key

analysis steps. (b) Spatial composition of cell types in the four spatial transcriptomics samples, S1–S4

node or distant metastasis; Sample 3 (S3), a high-grade noninvasive
papillary urothelial carcinoma without lymph node or distant
metastasis; and Sample 4 (S4), a high-grade invasive urothelial
transitional cell carcinoma with squamous differentiation and neg-
ative for lymph node or distant metastasis [14].

180 Antara Biswas and Subhajyoti De

3.2 Processing and

Initial Analysis of

Spatial Transcriptomic

Data to Examine

Spatial Heterogeneity

in Tumor and Non-

tumor Cells in Bladder

Cancer

As indicated elsewhere [14], the sequence data (FASTQ files) were
processed using Space Ranger (v2.0.1) pipeline to align transcrip-
tomic reads to the human reference genome (GRCh38), map them
to the microscopic images of the tissue samples from which the
reads were obtained and generate feature barcode matrices.
Feature-barcode matrices and associated H&E images for each
sample were imported into the R package “Seurat” (v4.3.0) for
normalization, quality control, batch effect correction, dimension-
ality reduction, clustering, and cell-type estimation [17, 18]
(Fig. 1b; see Notes 1 and 2).

3.3 Modeling Spatial

Transcriptomic Data

Using Neighborhood

Connectivity Graph

We used the network graph-based approach to model the biological
interactions in the spatial transcriptomic dataset and assessed the
effects of network connectivity on the key inferences [13]. A neigh-
borhood connectivity graph describes pairwise relationships
between two or more nodal entities in a connected network. Spatial
transcriptomic data are typically presented as nodal features (e.g.,
proportions of different cell types, pathway scores, etc.) at each
regularly spaced spatially profiled spots in a tissue section (Fig. 2a).
In the basic model, each spatially annotated data point from a tissue
sample is a node, and adjacent nodes are connected by an edge—

which enables statistical modeling of interactions among the adja-
cent nodes. For more complex models, it is represented as a collec-
tion of nodes connected by edges, where the set of neighbors of a
given node is the node’s neighborhood and the number of its
neighbors is its connectivity.

Fig. 2 (a) A schematic representation of construction and trimming of connections in neighborhood graph. As

shown here for sample S1, using gene expression and spatial coordinate matrices from spatial transcrip-

tomics platform, spatial network is constructed, which consists of two components—nodes (spots) and edges

(connecting spots)—wherein edge thickness is determined by the attributes of the nodes (spatial annotation of

spots) and the structure of the graph. (b) The number of edges changing with trimming of neighborhood graphs

for samples S1–S4 from most dense to most sparse

Network Connectivity in Tumor Spatial Microenvironment 181

3.4 Network Graph

Trimming Strategy

Considering the spatially prominent features of tissue architectures,
it is apparent that a majority of the tissue-level biological processes
(i) depend on the local cell-type composition, (ii) show weak cor-
respondence between dissimilar tissue layers, and (iii) their effects
decay over distance within and across tissues. Therefore, one may
argue that uniform nodal connectivity based on spatial adjacency
alone may not be adequate and utility of alternative connectivity
patterns should be evaluated. Starting with a fully connected net-
work graph, we considered strategies to systematically trim the
edges. All edges in the neighborhood connectivity graph had
equal weight before network trimming. Since most of the tissue-
level biological processes depend on distance and cellular commu-
nity structures, we trimmed the network based on both geographic
distance between the nodes in the graph and also their cell-type
compositions. Network trimming, based on weights of network
connection, was performed using a min-max module. We first
computed pairwise Euclidean distances and cosine similarity values
in terms of cell-type composition, between all the nodes in a graph.
Here we used a product of cosine similarity of cell spots based on
cell-type composition and inverse distance matrix of spatial spots to
construct a spatial weight matrix, Ψ = {wij; 1 ≤ i, j ≤ N}, described
as

wij = cij × dij ,

where cij is cosine similarity value and dij is inverse distance between
the i and j-th node and N is the number of spots. For each sample,
the network graph based on the spatial transcriptomic data was
trimmed to generate sparse network submatrices by network disas-
sembly using edge removal. It was trimmed in such a way that the
edges between adjacent nodes in the graph were progressively
eliminated based on increasingly higher cutoff for w, which reflects
increasingly higher threshold for similarity in cell-type composition
as well as spatial proximity of the spots in the 10X spatial transcrip-
tomic data (Fig. 2a, b). In simpler terms, wij → 0 when the distance
between the nodes is large or their cell-type compositions are
fundamentally different. In contrast, wij → 1 when the nodes are
adjacent and also their cell-type compositions are very similar,
reflecting homologous cellular neighborhood. We binned wij into
ten-sequence vector and chose the sequence partitions as possible
values of w′cutoff. To trim the network, we tested different w′cutoff

and retained the edges between the nodes i and j if wij > =w′cutoff

(Fig. 3; see Notes 3 and 4).

3.5 Calculation of

Different Spatial

Statistics Using

Network Graph

When cells are mapped to their spatial context, they often exhibit
some degree of spatial relatedness at some scale. One popular
measure of spatial autocorrelation is the Moran’s index (Moran’s
I for short) coefficient. Moran’s I is an index for measuring spatial

Fig. 3 Spatial network graphs for samples S1–S4, trimmed by using similarity/proximity measures between

the nodes, wherein the spatial information is considered as a spatial weight matrix and the trimming ranges, in

a ten-sequence vector, from minima (most dense graph) to maxima (most sparse graph) of the weight matrix

autocorrelation of a given feature considering its values at different
spatial locations, as in this case, a phenotype score of spots in a
tissue microenvironment. It is the correlation coefficient indicating
the relationship for a variable (e.g., proportion of cell type) between
the neighboring nodes. Given a set of features and associated
attributes, Moran’s I evaluates whether the pattern expressed is
clustered, dispersed, or random. We used the moran.randtest func-
tion, which is based on the moran.mc function of the spdep pack-
age, using a published approach [13]. Moran’s spatial
autocorrelation can be expressed as

Network Connectivity in Tumor Spatial Microenvironment 183

Fig. 4 Spatial analysis showing joint variation in spatial localization of the cell types in the four samples, S1–

S4, with trimming, wherein P values associated with Moran’s I statistic are shown

I =
N

W k xk - xð Þ
 i j xi - xð Þ xj - x ,

where I refers to Moran’s I; N is the total number of spatial units
indexed with i and j; x is the random variable, in this case, a
phenotype score for tissue microenvironment in the spatial units;
x is the mean of x; wij is a spatial weight matrix; and W is the sum of
all wij. We computed spatial autocorrelation values using this for-
mula with the above-described spatial weights for the edges in the
network (Fig. 4; see Note 5).

3.6 Visualization of

Analysis Results

These analyses produced a set of results (see Note 6):

(a) Cell-type estimation.

(b) Spatial network graphs.

(c) Network trimming.

(d) Spatial autocorrelation analysis.

4 Notes

1. After strict quality control and filtration, a total of 6823 spots
in ST data were retained for downstream analysis (S1-1923,
S2-1230, S3-2097, S4-1573). Tumors are spatially heteroge-
neous tissues that comprise numerous cell types with intricate
structures. Expression matrices were combined from all ST
samples; then, gene and spot filtering, dimensionality reduc-
tion, and clustering of all spots were performed. We recom-
mend using well-characterized cell-type markers to identify
different cell, including endothelial cells, epithelial cells,

184 Antara Biswas and Subhajyoti De

fibroblasts, immune cells, and smooth muscle cells. As expected
from tumor tissues, epithelial cancer cells emerged as the dom-
inant cell type, given that bladder carcinomas are considered as
the malignancies of epithelial tissue [19, 20].

2. Tumor microenvironment is inherently heterogeneous and
thus spatial heterogeneity is expected within and between
tumors. In our dataset, the proportions of cell types varied in
each region, revealing heterogeneity and complexity by
showing differential gene expression profiles of regions on the
same slide and by revealing differential patterns across patients.
Focusing on the tumor tissues, we found clusters of epithelial
cells both in the center of the tumor and in the invasive front in
all tumor samples. We observed heterogeneous distribution of
other cell populations. T cells and tumor cells were generally in
proximity, although we observed differences in immune cell
infiltration within and across tumors. On the other hand, peri-
tumoral zone was rich in fibroblasts, which protects tumor cells
from enhanced T cell accumulation [21–23]. These results
reinforce that immune and stromal cells within the TME play
a key role in cancer progression by interacting with tumor cells
by secreting different chemokines, cytokines, and other signal-
ing molecules.

3. To examine the effects of the dense-to-sparse representation of
the network graph on key spatial inference from spatial tran-
scriptomic data, it is recommended that results from different
trimming are compared. We started with the densely connected
graph to sparse and calculated a weight (w) for each edge that
depends on the cell-type composition similarity and geographic
distance between pairs of spatially annotated spots. As we
pruned the weak connections with increasing stringency (w
′cutoff: 0–10) to attain dense-to-sparse representation of the
network graph, the overall connectedness of the graph
declined, as expected, and the network gradually disintegrated
into disjoint subgraphs and isolated nodes. At an extreme, at
the highest level of wcutoff, all nodes were isolated. Trimming at
an intermediate level, i.e., w′cutoff, within 4–8 created interpret-
able sparse networks that revealed biologically interesting local
microenvironmental architectures and spatial patterns in cellu-
lar processes.

4. We observed that there were sample-to-sample variations in the
tissue architecture, network graph topology, and specific infer-
ences about cell-type compositions and cell-type specific local
autocorrelation—indicating that single network trimming cut-
off may be unsuitable for all situations. Instead, the gradual
trimming from dense-to-sparse network using the strategy
described above can be a generic approach to identify
context-specific trimming ranges and resulting biologically rel-
evant patterns.

Network Connectivity in Tumor Spatial Microenvironment 185

5. Moran’s I is a popular measure of spatial autocorrelation across
adjacent nodes in a graph to examine spatial patterns of cell-
type abundance for respective cell types and assessed the effects
of trimming on this index. Negative Moran’s I values indicate
an inverse relationship between abundance of cells of specific
cell types with respect to that in the neighboring spots, and
Moran’s I values above 0 suggest a synergistic relationship
among adjacent spots in terms of abundance of specific cell
types. We observed that Moran’s I for trims 4–8 was statistically
significant for all cell types; however, nonsignificant P values
were associated with extreme trims. This is due to organization
of tissue spatial architecture into discrete subunits based on cell
types and by pruning the weakest connections—the collection
of these cellular subunits becomes concentrated in the
locality [24].

6. Overall, our observations suggest that refinement of the net-
work graph based on both cell type and proximity captures
spatial relationships among cell types and biological processes
and connectivity in the local tissue microenvironment. We
found that intermediate levels of network connectivity are
more useful in identifying local structures in cell-type compo-
sition and interdependent biological processes. Autocorrela-
tion of cell-type abundance scores, measured using Moran’s I,
revealed local tissue-level microstructures, such that regions of
clonal tumor growth or fibrosis at this range. Importantly, it
showcases the effects of different levels of network trimming on
the reliability of biological inferences. Our method is of course
not without limitations. The major limitation is that tumor
images represent a single timepoint, meaning that our method
is not temporally resolved [25, 26]. Another limitation is that
the current spatial transcriptomic technologies lack single-cell
resolution, but emerging techniques might provide highly
defined annotations to locate fine-grained histopathological
regions and further improve trimming tools and metrices
[25, 27]. Constructing spatial-temporal connectivity graph,
with 3D perspectives, and designing trimming operations
may help resolve the challenging issues of incoherent predic-
tions and enabling demonstration of transitions in connectivity.
By doing so, one could establish statistical metrices for the
biological network analysis focusing on intercellular communi-
cation patterns.

Acknowledgments

The authors acknowledge financial support from New Jersey Com-
mission for Cancer Research (to A.B.) R01GM129066,
P01CA250957, and R35GM149224 (to S.D.). The authors

thank the other members of the laboratory of S.D. and also Rutgers
Cancer Institute for helpful discussions.

186 Antara Biswas and Subhajyoti De

Conflict of Interest The authors declare no potential conflicts of
interest with respect to research, authorship, and/or publication of
this chapter.

References

1. Bryant DM, Mostov KE (2008) From cells to
organs: building polarized tissue. Nat Rev Mol
Cell Biol 9(11):887–901

2. Dos Santos AXdS, Liberali P (2019) From sin-
gle cells to tissue self-organization. FEBS J
286(8):1495

3. Anderson NM, Simon MC (2020) The tumor
microenvironment. Curr Biol 30(16):R921–
R925

4. Baghban R et al (2020) Tumor microenviron-
ment complexity and therapeutic implications
at a glance. Cell Commun Signal 18:1–19

5. Palla G et al (2022) Spatial components of
molecular tissue biology. Nat Biotechnol
40(3):308–318

6. Ståhl PL et al (2016) Visualization and analysis
of gene expression in tissue sections by spatial
transcriptomics. Science 353(6294):78–82

7. Rao A et al (2021) Exploring tissue architec-
ture using spatial transcriptomics. Nature
596(7871):211–220

8. Tian L, Chen F, Macosko EZ (2023) The
expanding vistas of spatial transcriptomics.
Nat Biotechnol 41(6):773–782

9. Rao N, Clark S, Habern O (2020) Bridging
genomics and tissue pathology: 10x genomics
explores new frontiers with the visium spatial
gene expression solution. Genet Eng Biotech-
nol News 40(2):50–51

10. Moses L, Pachter L (2022) Museum of spatial
transcriptomics. Nat Methods 19(5):534–546

11. Velten B, Stegle O (2023) Principles and chal-
lenges of modeling temporal and spatial omics
data. Nat Methods 20(10):1462–1474

12. Liu T et al (2023) A comprehensive overview
of graph neural network-based approaches to
clustering for spatial transcriptomics T. Liu
et al. Overview of Spatial Transcriptomics’ Spa-
tial Clutering. Comput Struct Biotechnol J 23:
106–128

13. Biswas A et al (2022) Inference on spatial het-
erogeneity in tumor microenvironment using
spatial transcriptomics data. Comput Syst
Oncol 2(3):e21043

14. Biswas A et al (2023) Transcriptional state
dynamics lead to heterogeneity and adaptive
tumor evolution in urothelial bladder carci-
noma. Commun Biol 6(1):1292

15. Hornik K (2012) The comprehensive R archive
network. Wiley Interdiscip Rev Comput Stat
4(4):394–398

16. Team, R.D.C., R: A language and environment
for statistical computing. (No Title), 2010

17. Satija R et al (2015) Spatial reconstruction of
single-cell gene expression data. Nat Biotech-
nol 33(5):495–502

18. Hao Y et al (2021) Integrated analysis of mul-
timodal single-cell data. Cell 184(13):
3573–3587.e29

19. Sanli O et al (2017) Bladder cancer. Nat Rev
Dis Prim 3(1):1–19

20. Dyrskjøt L et al (2023) Bladder cancer. Nat
Rev Dis Primers 9(1):58

21. Gajewski TF (2015) The next hurdle in cancer
immunotherapy: overcoming the non–T-cell–
inflamed tumor microenvironment. In: Semi-
nars in oncology. Elsevier

22. Fearon DT (2014) The carcinoma-associated
fibroblast expressing fibroblast activation pro-
tein and escape from immune surveillance.
Cancer Immunol Res 2(3):187–193

23. Joyce JA, Fearon DT (2015) T cell exclusion,
immune privilege, and the tumor microenvi-
ronment. Science 348(6230):74–80

24. Seferbekova Z et al (2023) Spatial biology of
cancer evolution. Nat Rev Genet 24(5):
295–313

25. De S (2021) Signatures beyond oncogenic
mutations in cell-free DNA sequencing for
non-invasive, early detection of cancer. Front
Genet 12:759832

26. Biswas A, De S (2021) Drivers of dynamic
intratumor heterogeneity and phenotypic plas-
ticity. Am J Phys Cell Phys 320(5):C750–C760

27. Moffitt JR, Lundberg E, Heyn H (2022) The
emerging landscape of spatial profiling technol-
ogies. Nat Rev Genet 23(12):741–759

Chapter 10

Inferring Metabolic Flux from Gene Expression Data Using
METAFlux

Yuchen Pan, Yuefan Huang, Vakul Mohanty, and Ken Chen

Abstract

Metabolic dysregulation is a hallmark of malignant cells, which contributes significantly to tumor prolifera-
tion, persistence, and therapeutic resistance. Further, metabolic interplay between malignant cells and cells
in the tumor microenvironment (TME) has a significant impact on tumor phenotype. Examining the
reconfiguration of metabolic pathways within tumors and TME is therefore critical to understand cancer
biology and improve patient care. Current limitations of metabolomic techniques, however, restrict broad
and deep characterization of tumor metabolome. To address this gap, we developed METAFlux (META-
bolic Flux balance analysis), a computational technique that uses flux balance analysis (FBA) to infer activity
or flux of metabolic reactions from bulk and single-cell RNA sequencing data (scRNA-seq). Here, we
describe the workflow along with a detailed step-by-step explanation for calculating metabolic fluxes using
METAFlux from bulk RNA-seq and scRNA-seq data and the extension to characterize metabolic hetero-
geneity and metabolic interaction among cell types.

Key words Metabolism, Flux balance analysis, Bulk RNA-seq, Single-cell RNA-seq, Tumor
microenvironment

1 Introduction

Research has shown that metabolic characteristics of tumors and
their TME are linked to tumor phenotype and patient outcome and
can potentially unveil therapeutic vulnerabilities [1].Understanding
metabolic patterns in cancers can therefore facilitate greater under-
standing of the underlying cancer biology and development of new
therapeutics. However, contemporary metabolomic technologies
only assess a subset of metabolites, thus providing an incomplete
view of tumor metabolism. Large multi-omics datasets used to
study molecular biology of cancers also often lack detailed meta-
bolic profiling [2]. Flux balance analysis (FBA), a quantitative
technique, that models the flow of metabolites through metabolic
networks [3]. FBA’s application to gene expression data can exploit
the relative abundance of transcriptomic data to comprehensively

Alexander Krasnitz and Pascal Belleau (eds.), Cancer Bioinformatics, Methods in Molecular Biology, vol. 2932,
https://doi.org/10.1007/978-1-0716-4566-6_10,
© The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature 2025

187

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-4566-6_10&domain=pdf
https://doi.org/10.1007/978-1-0716-4566-6_10#DOI

study tumor metabolism [4–7]. While computational methods
have been developed to infer metabolic flux from bulk and single-
cell(sc)RNA-seq, methods that model the metabolic interplay
among various cell populations in the TME are underdeveloped.

188 Yuchen Pan et al.

To address these challenges, we developed METAFlux, a
computational framework to deduce metabolic fluxes from bulk
and single-cell transcriptomic data using FBA. METAFlux utilizes
Human1, a genome-scale metabolic model (GEM) that encodes
the relationships between genes, metabolites, and reactions in a
human cell to perform FBA. METAFlux is capable of simulta-
neously inferring a nondegenerate solution for flux of all reactions
in the metabolic network from cancer gene expression data while
considering media or TME nutrient conditions as binary para-
meters, corresponding to their availability. The metabolic fluxes
generated by METAFlux can be a valuable resource for detailed
metabolic characterization of tumors from gene expression and
identification of potential metabolic targets for detailed follow-up
studies in the context of precision medicine. In conventional FBA
analysis, fluxes represent the velocities or rates at which metabolic
reactions occur. However, in METAFlux, the predicted fluxes are
calculated and normalized based on gene expression data, which
means the results are relative flux scores. A positive flux indicates
the reaction progressing in the forward direction, and a negative
flux indicates the reaction is reversed. In the context of nutrient
uptake, positive fluxes indicate secretion of the nutrient into the
interstitial space and negative uptake of nutrients. Here, we present
the workflow with detailed step-by-step explanation to obtain met-
abolic fluxes from bulk RNA-seq and scRNA-seq data using
METAFlux.

2 Materials

2.1 Software and

Packages Version

METAFlux_1.1.0

R version 4.3.2

Seurat_4.3.0

Matrix_1.6.3

2.2 Human1

(Human-GEM File)

Human1 [8] is a publicly accessible consensus human genome-scale
metabolic model (GEM) consisting of 13,082 metabolic reactions
and 8378 metabolites. These reactions are distributed across nine
distinct compartments, including the extracellular space, peroxi-
some, mitochondria, cytosol, lysosome, endoplasmic reticulum,
Golgi apparatus, nucleus, and inner mitochondria.

Inferring Metabolic Flux Using METAFlux 189

2.3 Cell Medium and

Human Blood Nutrient

Profiles

METAFlux requires a user-defined input that defines a set of meta-
bolites (nutrient profile) that are available for uptake by cells. The
input is formatted as a table with nutrient names in the “metabo-
lite” column and their corresponding exchange reaction IDs in the
“reaction_name” column. METAFlux offers 2 default mediums to
define the nutrient profiles: (1) “cell_medium” consisting of
44 metabolites that can be used to analyze cells grown in culture
and (2) “human_blood” which is an approximation of nutrients
available in human blood for use on expression profiles derived
from human tissues. These nutrient profiles can be used by the
user in the absence of experiment specific nutrient profiles.

2.4 Nutrient Lookup

Files

METAFlux offers a table “nutrient_lookup_files” containing 1648
exchange reactions. These exchange reactions are artificial reactions
that serve as a mathematical representation exchange of metabolites
between cells and the extracellular space.

3 Methods

3.1 Installation METAFlux R package can be easily installed from GitHub using
devtools:

devtools::install_github(’KChen-lab/METAFlux’)

•

Installation of other dependencies

Install the osqp package for optimization using.

install.packages(’osqp’)

• Install the dplyr package using.

install.packages(’dplyr’)

• For single-cell data analysis, we provide a pipeline to work with
Seurat. Please install Seurat package using.

install.packages(’Seurat’)

3.2 Bulk RNA-Seq

Pipeline

3.2.1 Quick Workflow for

Bulk RNA-Seq Sample

This workflow can be applied to human cell line and tissue derived
bulk RNAseq. Gene expression is input as a matrix with genes as
rows and samples as columns. Users will need to choose the appro-
priate nutrient profile (either cell medium for cells in culture or
human blood medium for tissues samples) as the input for META-
Flux. Users can also provide custom nutrient profiles when
appropriate. Note: METAFlux estimates flux in each sample based
on the same nutrient profile in any given run.

library(METAFlux)

https://htmlpreview.github.io/?https://github.com/KChen-lab/

METAFlux/blob/main/Tutorials/pipeline.html - cb2-3data

("bulk_test_example")

data("cell_medium")

data("human_blood")

scores <- calculate_reaction_score(bulk_test_example)

flux <- compute_flux(mras = scores,medium = human_blood)

cbrt <- function(x) {

sign(x) * abs(x)^(1/3)

}

flux <- cbrt(flux)

190 Yuchen Pan et al.

3.2.2 Step-by-Step Bulk

RNA-Seq Pipeline

Load the Library

library(METAFlux)

Load Data (1) Load gene expression data.
METAFlux requires gene expression data as input.

• The gene expression matrix should be gene by sample
matrix where row names are human gene names (gene
symbols), and column names should be sample names.
Please note that METAFlux does not support other
gene IDs.

• The input gene expression matrix should be normalized
(e.g., log-transformed TPM, etc.) before using META-
Flux. METAflux will not perform any normalization on
expression data.

• Gene expression data cannot have negative values.

data("bulk_test_example")

head(bulk_test_example)

Sample1 Sample2 Sample3 Sample4 Sample5

TSPAN6 4.433587 4.06179073 4.777144 5.501764 5.32881296

TNMD 0.000000 0.04264398 0.000000 0.000000 0.08406697

DPM1 4.467942 5.61354161 5.125975 4.926973 4.74574474

SCYL3 2.286859 2.75061766 2.356148 2.548451 1.87972673

C1orf112 2.575287 2.82777973 2.087475 1.682574 1.76127531

FGR 4.005357 2.56314415 1.673564 2.272007 2.08067237

Inferring Metabolic Flux Using METAFlux 191

(2) Load Human 1 GEM.
We use the Human 1 GEM as the underlying metabolic

model. For each reaction, there is one unique Reaction ID
and SUBSYSTEM.

data("human_gem")

head(human_gem[,c("ID","EQUATION","EC-NUMBER","GENE ASSOCIA-

TION","SUBSYSTEM")])

In Table 1, we can get the following information from each
column:

ID represents the reaction ID in Metabolic Atlas.

Equation shows the detailed chemical equation for this reaction;
here, “=>” means this reaction is irreversible and “<=>”
means reversible.

EC number represents the Enzyme Commission number; every
enzyme code consists of four numbers separated by periods.
These numbers represent a progressively finer classification of
the enzyme. For more detailed expansions, please refer to
BiteSizeBio link [9].

Gene association represents the Ensembl ID of the genes associated
with this reaction; gene reaction associations from HMR2,
Recon3D, and iHsa were combined and integrated with
enzyme complex information from Recon3D, iHsa, and the
comprehensive resource of mammalian protein complexes
database (CORUM [10]) to obtain gene reaction rules for
Human1.

Subsystem corresponds to a set of reactions that share a similar
metabolic function; it can help organize and categorize metabolic
reactions based on their functional roles or participation in specific
cellular processes.

For each reaction, we can also get other important information
from this file such as whether the reaction is reversible, the specific
compartment in which it occurs, and a list of the metabolites and
genes involved.

(3) Load the METAFlux medium.

Two general medium files, “cell medium” and “human blood
medium,” are available in METAFlux for users for general purpose
use for analysis of human cell lines in culture and tissue samples,
respectively. METAFlux also allows for input of user-defined
medium when the information is available (see below).

data("cell_medium")

data("human_blood")

192 Yuchen Pan et al.

T
a
b
le
 1

P
re
vi
e
w
 o
f
H
u
m
a
n
-G
E
M
:
th
e
 g
e
n
e
ri
c
 g
e
n
o
m
e
-s
c
a
le
 m

e
ta
b
o
li
c
 m

o
d
e
l
o
f
H
o
m
o
 s
a
p
ie
n
s

ID
E
q
u
a
ti
o
n

E
C
 n
u
m
b
e
r

G
e
n
e
 a
ss
o
c
ia
ti
o
n

S
u
b
sy
st
e
m

H
M
R
_
3
9
0
5

et
h
an
o
l[
c]
 +
 N

A
D
+
[c
]
=

 >
 ac
et
al
d
eh

yd
e

[c
]
+
 H

+
[c
]
+
 N

A
D
H
[c
]

1
.1
.1
.1
;1
.1
.1
.7
1

E
N
S
G
0
0
0
0
0
1
4
7
5
7
6
 o
r
E
N
S
G
0
0
0
0
0
1
7
2
9
5
5
 o
r

E
N
S
G
0
0
0
0
0
1
8
0
0
1
1
 o
r
E
N
S
G
0
0
0
0
0
1
8
7
7
5
8
 o
r

E
N
S
G
0
0
0
0
0
1
9
6
3
4
4
 o
r
E
N
S
G
0
0
0
0
0
1
9
6
6
1
6
 o
r

E
N
S
G
0
0
0
0
0
1
9
7
8
9
4
 o
r
E
N
S
G
0
0
0
0
0
1
9
8
0
9
9
 o
r

E
N
S
G
0
0
0
0
0
2
4
8
1
4
4

G
ly
co
ly
si
s/

g
lu
co
n
eo

g
en

es
is

H
M
R
_
3
9
0
7

et
h
an
o
l[
c]
 +
 N

A
D
P

+
[c
]
=

 >
 ac
et
al
d
eh

yd
e[
c]
 +
 H

+
[c
]
+
 N

A
D
P
H
[c
]

1
.1
.1
.2

E
N
S
G
0
0
0
0
0
1
1
7
4
4
8

G
ly
co
ly
si
s/

g
lu
co
n
eo

g
en

es
is

H
M
R
_
4
0
9
7

ac
et
at
e[
c]
 +
 A
T
P
[c
]
+
 C

o
A

[c
]
=
 >
 ac
et
yl
-C

o
A
[c
]
+
 A
M
P
[c
]
+
 P
P
i

[c
]

6
.2
.1
.1

E
N
S
G
0
0
0
0
0
1
3
1
0
6
9

G
ly
co
ly
si
s/

g
lu
co
n
eo

g
en

es
is

H
M
R
_
4
0
9
9

ac
et
at
e[
m
]
+
 A
T
P
[m

]
+
 C

o
A

[m
]
=

 >
 ac
et
yl
-C

o
A
[m

]
+
 A
M
P

[m
]
+
 P
P
i[
m
]

6
.2
.1
.1

E
N
S
G
0
0
0
0
0
1
1
1
0
5
8
 o
r
E
N
S
G
0
0
0
0
0
1
5
4
9
3
0

G
ly
co
ly
si
s/

g
lu
co
n
eo

g
en

es
is

H
M
R
_
4
1
0
8

ac
et
yl
 a
d
en

yl
at
e[
c]
 +
 C

o
A
[c
]
=

 >
 ac
et
yl
-

C
o
A
[c
]
+
 A
M
P
[c
]
+
 H

+
[c
]

6
.2
.1
.1

E
N
S
G
0
0
0
0
0
1
3
1
0
6
9

G
ly
co
ly
si
s/

g
lu
co
n
eo

g
en

es
is

H
M
R
_
4
1
3
3

ac
et
at
e[
c]
 +
 A
T
P
[c
]
+
 H

+
[c
]
=

 >
 ac
et
yl

ad
en

yl
at
e[
c]
 +
 P
P
i[
c]

6
.2
.1
.1

E
N
S
G
0
0
0
0
0
1
3
1
0
6
9

G
ly
co
ly
si
s/

g
lu
co
n
eo

g
en

es
is

Inferring Metabolic Flux Using METAFlux 193

Look at the first six rows of cell_medium.

(4) Load the METAFlux medium if users have prior knowledge
about their medium composition.

Metabolite reaction_name

Arginine HMR_9066

Histidine HMR_9038

Lysine HMR_9041

Methionine HMR_9041

Phenylalanine HMR_9043

Tryptophan HMR_9045

Users can provide custom medium files that need to be format-
ted as a data.frame with two columns, “metabolite” and “reaction_-
name,” for the name of the metabolite and its exchange reaction,
respectively. The exchange IDs can be looked up in the nutrien-
t_lookup_files. For example, metabolite “naphthalene” has an
exchange reaction ID “HMR_7110.”

data("nutrient_lookup_files")

view("nutrient_lookup_files")

Note: After viewing the nutrient lookup file, users can use the
search box on the top right corner to locate the corresponding
nutrient reaction and its equation

Calculate MRAS (Metabolic

Reaction Activity Score)

METAFlux utilizes Gene-Protein-Reaction (GPR) rules [11] t o
decipher the Boolean logic relationships among genes within a
specific reaction and use it to compute a metabolic reaction activity
score (MRAS) for each reaction. MRAS represents the activity of a
reaction as a function of gene expression of enzymes catalyzing
it. Using the approach described below, the expression of 3625
metabolic genes, a MRAS score is calculated for each reaction in
Human 1.

In GPR, AND operator is employed to link genes that encode
for different subunits of the same enzyme, and the OR operator is
used to connect genes encoding for isoenzymes. For an enzyme
complex where all the subunits need to be expressed to catalyze a
reaction, the metabolic activity is determined by the lowest expres-
sion value among all the genes associated with this enzyme com-
plex. For more details about the calculation of each operator and
the steps of deriving MRAS, please refer to our Nature Commu-
nications (NatComm) paper [12].

194 Yuchen Pan et al.

Given a gene expression matrix calculate_reaction_score func-
tion in METAFlux can be used to calculate MRAS scores across all
samples:

scores <- calculate_reaction_score(bulk_test_example)

Calculate Flux MRAS calculated above can be used to connect transcriptome and
fluxes. Normalized MRAS is used as the flux upper bound to their
corresponding metabolic reactions, and the lower bound is set to
zero if the reaction is nonreversible or to (-normalized MRAS) if
reversible. For more details about how to construct the constraints
of fluxes, please refer to our NatComm paper [12].

To guide the optimization search in a biologically relevant
sup-space, the metabolite availability needs to be defined. We use
the cell line culture medium containing 44 metabolites as the
growth medium, which includes major components from Hams
F-12 medium and other essential nutrients and ions from serum
supplements. The uptake or secretion rates of these 44 metabolites
are not limited. However, for the remaining metabolites in the
model, cells can only secrete them into the medium rather than
uptake from the medium. For patients’ tissue sample, we derived a
list of 64 metabolites in human blood based on a human plasma-like
medium (HPLM) developed by Cantor et al. [13] For more gen-
eral use purposes, users can also define their own metabolite list.

Predicted fluxes are inferred from gene expression, so the
results are relative flux scores. A positive flux represents secretion,
while a negative flux indicates uptake of the metabolite.

In R code, we calculate the metabolic fluxes for the 13,082
reactions.

https://htmlpreview.github.io/?https://github.com/KChen-lab/

METAFlux/blob/main/Tutorials/pipeline.html - cb23-2flux <-

compute_flux(mras = scores,medium = human_blood)

Inspecting and Interpreting

the Flux Data

• The sign of flux represents the direction of a reaction. In the
context of nutrient uptake/release reactions (1648 exchange
reactions in the nutrient lookup file), a positive value signifies
the release of metabolites into extracellular space, while a nega-
tive value indicates the uptake of metabolites. In other reactions,
a positive flux denotes a net forward direction, whereas a nega-
tive flux implies a net backward direction. The absolute values
represent the magnitude of the flux.

• As we aim to minimize the sum of all fluxes in the model, the
resulting flux data output tends to be parsimonious, with many
reactions approaching zero flux. For instance, reactions that

Inferring Metabolic Flux Using METAFlux 195

Fig. 1 The glucose uptake result of sample data in the step-by-step bulk-RNA

seq pipeline

should predominantly proceed in the forward direction might
have a predicted flux with a small negative value, effectively
approaching zero flux.

• The “nutrient_lookup_files” and “human_gem” tables can be
used to focus on specific reactions and nutrient exchanges of
interest. For instance, if we seek information on glucose uptake,
a search for “glucose” would yield the glucose uptake reaction
(HMR_9034). These values can be considered as the rates of
glucose metabolite uptake. Subsequently, we can extract the
relevant data (Fig. 1):

data("nutrient_lookup_files")

glucose <- data.frame(glucose = flux[grep("HMR_9034",human_-

gem$ID),])

library(ggplot2)

ggplot(glucose, aes(y = -glucose, x = "sample")) + geom_box-

plot() + ggtitle("Glucose uptake level") +

xlab("") + ylab("Glucose uptake scores") + theme_bw()

result shown in Figure1

If one wants to explore other reactions such as glycolysis,
oxphos, etc., Reaction_ID is required by using human_gem file to
search it. As an illustration, suppose our focus is on the reaction
HMR_4363 within the glycolysis pathway:

HMR_4363 <- data.frame(hmr4363 = flux[grep("HMR_4363",human_-

gem$ID),])

196 Yuchen Pan et al.

3.3 Single-Cell RNA-

Seq Pipeline

3.3.1 Quick Workflow for

Single-Cell RNA-Seq

Sample

When applied to scRNAseq, METAFLux models the entire TME as
a community to consider metabolic interactions between groups.
In this approach, we model fluxes at the level of cell groups such as
cluster or cell-type level rather than the individual cells, to mitigate
the effect of sparsity in scRNAseq data and characterizing metabolic
heterogeneity and interaction among various cell types or clusters.
Clusters can be obtained function FindNeighbors and FindClusters
in Seurat, which is based on nearest neighbor graph, and cell types
can be assigned based on the known knowledge or clustering
results. The application is showcased using Seurat object. Since
bootstrap samples will be generated later by sampling with replace-
ment, this step is necessary to estimate the properties of each group
when sampling from an approximating distribution.

To estimate metabolic fluxes, the following inputs are required:

1. METAFlux’s single-cell workflow accepts gene expression as a
Seurat object. Please note that the expression should be nor-
malized prior to using the object to run METAFLux. If users
have an expression matrix, then CreateSeuratObject function in
Seurat package can be used to create a Seurat object compatible
with this workflow.

2. Group assignment for each cell. This can be cell type, cluster, or
other user-defined grouping. This should be specified in a
column in the metadata file of the Seurat object.

3. Cluster/cell-type fractions. As single-cell disassociation proto-
cols can have uneven sampling of cell types in a tissue, estimat-
ing cell-type proportions directly from single-cell data can
introduce biases. When available, we encourage users to use
cell proportions inferred from experiments or derived from in
silico deconvolution of corresponding bulk gene
expression data.

Note: As METAFlux models cell types/groups as a collective
with the same TME, it is more intuitive to run METAFlux inde-
pendently on each sample rather than on single-cell data after
integration. However, based on specific biological inquiries and
data quality, one may choose to explore the average effect across
subjects, where the proportions of each cluster or cell type are
estimated using all available data, and flux computation will be
performed assuming that all the cell groups exist within a
shared TME.

Here we present the quick workflow to run METAFlux on a
Seurat object containing cells from a single sample.

library(METAFlux)

data("sc_test_example")

data("human_blood")

mean_exp = calculate_avg_exp(

myseurat = sc_test_example,

myident = ’Cell_type’,

n_bootstrap = 3,

seed = 1

)

scores <- calculate_reaction_score(data = mean_exp)

round(table(sc_test_example$Cell_type)/nrow(sc_test_example@-

meta.data),1)

flux <- compute_sc_flux(

num_cell = 4,

fraction = c(0.1, 0.3, 0.3, 0.3),

fluxscore = scores,

medium = human_blood

)

cbrt <- function(x) {

sign(x) * abs(x)^(1/3)

flux <- cbrt(flux)

Inferring Metabolic Flux Using METAFlux 197

In cases where the Seurat object contains multiple samples, we
recommend running METAFlux on each sample independently.
The workflow below presents an outline of how this can be
achieved.

obj.list <- SplitObject(seurat, split.by = "patient_id")

for (i in c(1:length(obj.list))) {

sc <- obj.list[[i]]

mean_exp = calculate_avg_exp(

myseurat = sc_test_example,

myident = ’Cell_type’,

n_bootstrap = 50,

seed = 1

)

scores <- calculate_reaction_score(data = mean_exp)

g <- table(sc$Cell_type) / nrow(sc@meta.data)

print(g)

flux = compute_sc_flux(

num_cell = 4,

fraction = c(g[1], g[2], g[3], g[4]),

fluxscore = scores,

medium = human_blood

)

}

library(METAFlux)

data("human_blood")

data("cell_medium")

data("human_gem")

198 Yuchen Pan et al.

3.3.2 Step-by-Step

Single-Cell RNA-Seq

Pipeline

Load Library, METAFlux

Medium, and GEM

Information

Load the Single-Cell Data

data("sc_test_example")

Please note that this Seurat toy example is based on a single
patient. For multiple samples, refer to the example code in Quick
workflow for single-cell RNA-seq sample.

Create an Average

Expression Profile for

Stratified Bootstrapped

Samples for This Patient

We only provide the built-in function for computing mean expres-
sion on bootstrap samples; here, METAFlux utilizes AverageEx-
pression function in Seurat to get the average expression in each
identity class; it returns a matrix with genes as rows and identity
classes as columns. There are various methods to aggregate sam-
ples, such as median or geometric mean. Users have the flexibility
to calculate their own “average expression profile” according to
their preferences, but it should adhere to the same data format as
illustrated below.

mean_exp <-

calculate_avg_exp(

myseurat = sc_test_example,

myident = ’Cell_type’,

n_bootstrap = 3,

seed = 1

)

Calculate MRAS (Metabolic

Reaction Activity Score)

MRAS can be computed from individual samples using GPR. The
scores are normalized by dividing each element by the maximum
value in that vector. The whole vector includes the reaction score of
all relationships that a gene is involved in. This step is the same as
the process in the bulk RNA-seq pipeline.

Since bootstrap samples are used, MRAS matrix has a repeating
motif.

scores <- calculate_reaction_score(data=mean_exp)

Compute Flux The flux computation and GEM setup are quite similar to the bulk
pipeline. However, there are some differences for single cell: GEMs
are merged across cell types, cell-type proportions are taken into
consideration, and the biomass of the full community is maximized.

Inferring Metabolic Flux Using METAFlux 199

specifically, we generate bootstraped samples, and each gener-
ated sample has the same size and the same group proportion as the
original data, then using these samples to calculate MRAS for each
mean gene expression vector, and group fraction parameter is also
defined, which indicates the proportions of groups of interest with
respect to the whole sample. To merge multiple metabolic net-
works, we create a “TME metabolite reservoir” for different cell
groups to interact. Our model is designed to optimize the biomass
of the entire community while minimizing the sum of squares of
overall fluxes.

To calculate the metabolic fluxes, OSQP solver is also used as in
bulk pipeline. For the mathematical details of how the model is
constructed and how the fluxes are calculated, please refer to our
NatComm paper [12]. Users should keep the order of fraction
parameters consistent with the order of scores results (MRAS scores
matrix). For example, Cell type 1 (B lymphocytes) is the first
column of scores, and cell type 2 (epithelial cells) is the second
column of scores. And fractions need to sum up to 1.

round(table(sc_test_example$Cell_type)/nrow(sc_test_example@-

meta.data),1)

flux <- compute_sc_flux(

num_cell = 4,

fraction = c(0.1, 0.3, 0.3, 0.3),

fluxscore = scores,

medium = human_blood

)

Inspecting and Interpreting

the Flux Data

The total dimension of the predicted flux data is calculated as
(num_cell * 13082 + 1648) * number_of_bootstrap (13,082 reac-
tions in Human1 and 1648 exchange reactions in nutrient lookup
file). Rows labeled “external_medium” represent reactions involv-
ing the entire TME exchanging metabolites with the external envi-
ronment. These reactions pertain to the overall tumor community
rather than a specific cell type. Rows labeled “internal_medium”
correspond to reactions where a specific cell type or cluster
exchanges metabolites with the TME.

Signs of fluxes are biologically meaningful as previously dis-
cussed in the bulk pipeline.

The fluxes specific to cell types represent average fluxes, calcu-
lated as the mean or unit flux for each cell type. To clarify if the flux
of reaction A for cell type 1 is 0.2, it denotes that the average cell
within cell type 1 exhibits a flux of 0.2 for reaction A. In contrast,
external_medium fluxes are not average fluxes; instead, they are
weighted total fluxes. The relationship between external_medium
and internal_medium is defined as follows:

200 Yuchen Pan et al.

Proportioncelltype1⋅Internal Medium
Celltype1
exchange reactioni

þ Proportioncelltype2⋅Internal Medium
Celltype2
exchange reactioni

þ ……

=External Mediumexchange reactioni

We can extract the reactions of interest. Once again, for those
solely focused on metabolite uptake or release, a search in the
“nutrient lookup file” can provide the Reaction ID for the metab-
olite exchange (refer to “Bulk Step-by-Step Breakdown” section in
Subheading 2.3 for detailed guidance). For instance, to inquire
about glucose uptake, a search for “glucose” would yield the glu-
cose uptake reaction, identified as HMR_9034. Subsequently, the
relevant data can be extracted by the following:

data("nutrient_lookup_files")

glucose <- data.frame(glucose=flux[grep("HMR_9034",rownames

(flux)),])

cbrt <- function(x) {

sign(x) * abs(x)^ (1/3)

}

Considering all these key points collectively, we observe that
Glucose.V1, Glucose.V2, and Glucose.V3 represent three boot-
strap samples. One can examine the distribution of all bootstraps
to compare the nutrient uptake profiles of B cells, epithelial cells,
myeloid cells, and T cells (Fig. 2).

Fig. 2 The glucose uptake result of sample data in the step-by-step single-cell RNA seq pipeline

library(ggplot2)

glucose$celltype = rownames(glucose)

long_glucose = reshape2::melt(glucose, id.vars = ’celltype’)

ggplot(long_glucose, aes(y = -value, x = celltype)) + geom_-

boxplot() + ggtitle("Glucose uptake level for different cell

types") +

xlab("") + ylab("Glucose uptake scores") + theme(axis.text.x

= element_text(

angle = 90,

vjust = 0.5,

hjust = 1

))

Inferring Metabolic Flux Using METAFlux 201

result shown in Figure2

• “celltype 1 internal_medium HMR_9034” is the glucose uptake
flux for cell type 1 (referring to B cells in toy example).

• “celltype 2 internal_medium HMR_9034” is the glucose uptake
flux for cell type 2(referring to epithelial cells in toy example).

• “celltype 3 internal_medium HMR_9034” is the glucose uptake
flux for cell type 2(referring to myeloid cells in toy example).

• “celltype 4 internal_medium HMR_9034” is the glucose uptake
flux for cell type 2(referring to T cells in toy example).

• “external_medium HMR_9034” is the glucose uptake flux for
the whole tumor community(referring to combined TME com-
munity in toy example).

References

1. Faubert B, Solmonson A, DeBerardinis RJ
(2020) Metabolic reprogramming and cancer
progression. Science 368(6487):eaaw5473.
https://doi.org/10.1126/science.aaw5473

2. Zhou B, Xiao JF, Tuli L, Ressom HW (2012)
LC-MS-based metabolomics. Mol Biosyst.
8(2):470–481. https://doi.org/10.1039/
c1mb05350g. Epub 2011 Nov 1. PMID:
22041788; PMCID: PMC3699692

3. Orth J, Thiele I, Palsson B (2010) What is flux
balance analysis? Nat Biotechnol 28:245–248.
https://doi.org/10.1038/nbt.1614

4. Lee D, Smallbone K, Dunn WB, Murabito E,
Winder CL, Kell DB, Mendes P, Swainston N
(2012) Improving metabolic flux predictions
using absolute gene expression data. BMC
Syst Biol 6:73. https://doi.org/10.1186/
1752-0509-6-73. PMID: 22713172;
PMCID: PMC3477026

5. Jensen PA, Papin JA (2011) Functional inte-
gration of a metabolic network model and
expression data without arbitrary thresholding.
Bioinformatics. 27(4):541–547. https://doi.
org/10.1093/bioinformatics/btq702. Epub
2010 Dec 20. PMID: 21172910; PMCID:
PMC6276961

6. Colijn C, Brandes A, Zucker J, Lun DS,
Weiner B, Farhat MR, Cheng TY, Moody
DB, Murray M, Galagan JE (2009) Interpret-
ing expression data with metabolic flux models:
predicting Mycobacterium tuberculosis myco-
lic acid production. PLoS Comput Biol. 5(8):
e1000489. https://doi.org/10.1371/journal.
pcbi.1000489. Epub 2009 Aug 28. PMID:
19714220; PMCID: PMC2726785

7. Chandrasekaran S, Price ND (2010) Probabi-
listic integrative modeling of genome-scale
metabolic and regulatory networks in Escher-
ichia coli and Mycobacterium tuberculosis.
Proc Natl Acad Sci U S A 107(41):

https://doi.org/10.1126/science.aaw5473
https://doi.org/10.1039/c1mb05350g
https://doi.org/10.1039/c1mb05350g
https://doi.org/10.1038/nbt.1614
https://doi.org/10.1186/1752-0509-6-73
https://doi.org/10.1186/1752-0509-6-73
https://doi.org/10.1093/bioinformatics/btq702
https://doi.org/10.1093/bioinformatics/btq702
https://doi.org/10.1371/journal.pcbi.1000489
https://doi.org/10.1371/journal.pcbi.1000489

202 Yuchen Pan et al.

17845–17850. https://doi.org/10.1073/
pnas.1005139107. Epub 2010 Sep
27. PMID: 20876091; PMCID:
PMC2955152

8. Robinson JL, Kocabaş P, Wang H, Cholley PE,
Cook D, Nilsson A, Anton M, Ferreira R,
Domenzain I, Billa V, Limeta A, Hedin A,
Gustafsson J, Kerkhoven EJ, Svensson LT,
Palsson BO, Mardinoglu A, Hansson L,
Uhlén M, Nielsen J (2020) An atlas of human
metabolism. Sci Signal 13(624):eaaz1482.
h t t p s ://do i . o rg/10 .1126/s c i s i gna l .
aaz1482. PMID: 32209698; PMCID:
PMC7331181

9. Understand EC numbers in 5 minutes part I:
how EC numbers work. Protein Expression
and Analysis July 8, 2013. https://bitesizebio.
com/10683/understand-ec-numbers-in-5-
minutes-part-i-how-ec-numbers-work/

10. Tsitsiridis G, Steinkamp R, Giurgiu M,
Brauner B, Fobo G, Frishman G,
Montrone C, Ruepp A (2023) CORUM: the
comprehensive resource of mammalian protein
complexes-2022. Nucleic Acids Res 51(D1):

D539–D545. https://doi.org/10.1093/nar/
gkac1015. PMID: 36382402; PMCID:
PMC9825459

11. Gu C, Kim GB, Kim WJ, Kim HU, Lee SY
(2019) Current status and applications of
genome-scale metabolic models. Genome Biol
20(1):121. https://doi.org/10.1186/
s13059-019-1730-3. PMID: 31196170;
PMCID: PMC6567666

12. Huang Y, Mohanty V, Dede M, Tsai K,
Daher M, Li L, Rezvani K, Chen K (2023)
Characterizing cancer metabolism from bulk
and single-cell RNA-seq data using META-
Flux. Nat Commun 14(1):4883. https://doi.
org/10.1038/s41467-023-40457-w. PMID:
37573313; PMCID: PMC10423258

13. Cantor JR, Abu-Remaileh M, Kanarek N,
Freinkman E, Gao X, Louissaint A Jr, Lewis
CA, Sabatini DM (2017) Physiologic Medium
Rewires Cellular Metabolism and Reveals Uric
Acid as an Endogenous Inhibitor of UMP
Synthase. Cell. Apr 6;169(2):258–272.e17.
https://doi.org/10.1016/j.cell.2017.03.023.
PMID: 28388410; PMCID: PMC5421364.

https://doi.org/10.1073/pnas.1005139107
https://doi.org/10.1073/pnas.1005139107
https://doi.org/10.1126/scisignal.aaz1482
https://doi.org/10.1126/scisignal.aaz1482
https://bitesizebio.com/10683/understand-ec-numbers-in-5-minutes-part-i-how-ec-numbers-work/
https://bitesizebio.com/10683/understand-ec-numbers-in-5-minutes-part-i-how-ec-numbers-work/
https://bitesizebio.com/10683/understand-ec-numbers-in-5-minutes-part-i-how-ec-numbers-work/
https://doi.org/10.1093/nar/gkac1015
https://doi.org/10.1093/nar/gkac1015
https://doi.org/10.1186/s13059-019-1730-3
https://doi.org/10.1186/s13059-019-1730-3
https://doi.org/10.1038/s41467-023-40457-w
https://doi.org/10.1038/s41467-023-40457-w
https://doi.org/10.1016/j.cell.2017.03.023

Chapter 11

Functional Pathway Inference Analysis (FPIA)

Irbaz I. Badshah and Pedro R. Cutillas

Abstract

Pathway inference methods allow the mapping of biochemical networks, the discovery of signaling com-
ponents, and the assignment of functions to understudied proteins and genes. Literature and automated
text mining have been successfully used to reconstruct metabolic and signaling circuits, while gene
regulatory networks may be inferred from gene expression data. As an alternative approach to map members
of proliferative pathways, functional pathway inference analysis (FPIA) is based on the premise that genes
producing similar phenotypes following perturbation across multiple cell lines belong to a common
pathway. We have demonstrated this concept with the use of gene dependency datasets that allow the
provision of probabilistic values of pathway membership for thousands of genes. Here, we provide a
detailed protocol for the implementation of FPIA in the ‘cordial‘ R package. As an illustration of how
FPIA may be used to identify new pathway members, we present a step-by-step description of its use for the
investigation of genes functionally associated to PI3K and TP53.

Key words Cancer, Cell signaling, Cordial, CRISPR-Cas9, FPIA, Functional pathway inference
analysis, Gene dependency, Network, Pathway, R, RNAi

1 Introduction

Bioinformatic methods play a crucial role in inferring biochemical
pathways, providing insights into the mechanisms of biochemical
processes, and identifying potential drug targets [1]. These meth-
ods complement experimental approaches and are essential for
annotating the genome and discovering signaling members within
biochemical networks [2]. Once mapped into pathways, protein
and gene sets may be used to infer pathway activities from tran-
scriptomic or proteomic data by performing enrichment analysis,
e.g., gene set enrichment analysis (GSEA) or overrepresentation
analysis, focusing on groups/sets of genes sharing common
biological functions [3, 4].

An approach to biochemical pathway inference involves system-
atic automated literature search, which reconstructs biochemical
pathways by providing structured data derived from experimental

Alexander Krasnitz and Pascal Belleau (eds.), Cancer Bioinformatics, Methods in Molecular Biology, vol. 2932,
https://doi.org/10.1007/978-1-0716-4566-6_11,
© The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature 2025

203

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-4566-6_11&domain=pdf
https://orcid.org/0000-0002-7545-3851
https://orcid.org/0000-0002-3426-2274
https://doi.org/10.1007/978-1-0716-4566-6_11#DOI

observations in published literature [5]. These reconstructions
serve as valuable resources that abstract essential information on
the biochemical transformations and can be restricted to the analy-
sis of specific target organisms [6]. Automated text-mining techni-
ques and the integration of biological databases are employed to
initiate the reconstruction of molecular circuits, providing the
foundational data for pathway reconstruction [7, 8]. However,
some representations of biochemical pathways may reduce network
complexity and result in ambiguous representations [9], and incon-
sistencies between public resources containing literature-curated
signaling pathways have been noted [10].

204 Irbaz I. Badshah and Pedro R. Cutillas

As an alternative to systematic literature search and text mining,
gene regulatory networks (GRNs) have attracted significant inter-
est as a means to infer cell-type specific pathway circuitry, leading to
the development of numerous methods for their statistical infer-
ence from gene expression data [11]. These methods aim to under-
stand gene interactions and regulatory mechanisms, with the aim of
deciphering gene functions and cellular dynamics [12]. Various
computational approaches have been proposed for inferring
GRNs, including bidirectional recurrent neural networks for
single-cell transcriptomic data [13], multilevel strategies for large-
scale network inference [14], and relaxed graph matching for net-
work inference [15]. Additionally, fuzzy cognitive maps and Bayes-
ian networks have been utilized for improved inference of GRNs
based on time series data and multi-omics data integration, respec-
tively [16, 17].

We recently proposed a methodology for identifying compo-
nents of biochemical pathways involved in cell proliferation and
viability [1]. The approach is based on the premise that genes
belonging to the same pathway would produce the same antiproli-
ferative phenotypes across cell models when such genes are silenced
using genetic means, such as by CRISPR or RNA interference
(RNAi). To test this concept, we developed a method named
functional pathway inference analysis (FPIA), which uses datasets
of systematic gene perturbations across large panels of cell line
data as input. Through the use of gene dependency data of
genome-wide systematic genetic perturbation screens across multi-
ple cancer cell lines, the calculation of pairwise correlations reveals
signaling mediators with concordant survival phenotypes that are
potential elements of a shared pathway [1]. This chapter provides a
protocol for FPIA implemented in the freely available R package
‘cordial‘ [1].

Functional Pathway Inference Analysis 205

Table 1

Recommended hardware

Specification

System type 64-bit operating system; x64-based processor

Processor Intel® Core™ i7-10610U CPU @ 1.80 GHz; Base speed 2.30 GHz

Installed RAM 64.0 GB (minimum recommended: 16 GB)

Hardware used in the creation and testing of ‘cordial‘

2 Materials

2.1 Hardware • The ‘cordial‘ package was developed and tested on a system with
the hardware specification detailed in Table 1.

2.2 Software • The required software is presented in Table 2.

• The R programming language and environment, its packages,
additional build tools, and RStudio integrated development
environment (IDE) are available for several Linux distributions,
macOS, and Windows operating systems (OS); consult the offi-
cial websites of the software for more information (Table 2).

2.3 ‘cordial‘ • The ‘cordial‘ R package provides functions to compute pairwise
Pearson’s correlations of a dataset in whole or of specified targets
simultaneously in parallel. Conveniently, it includes the ability to
filter the input dataset and select a subset of columns to compute
correlations. The functions of the package output Pearson’s
product moment correlation coefficients, p-values, adjusted p-
values (q-values), linear model slope, and observation counts in a
long-format data structure (‘data.table‘).

• The ‘cordial‘ R package was built on a 64-bit Windows 10 and
Windows 11 system; however, the codebase was constructed to
be OS-independent. Specifically, an asynchronous multisession
parallel backend was implemented which is compatible with
Windows and Unix-like systems (Linux, macOS).

3 Methods

• The methods herein assume the use of the R programming
language and environment via the RStudio IDE, where R code
is run from an R console or source editor.

3.1 Installation • Consult the official websites of the software listed in Table 2 for
OS-specific installation instructions for the current releases.

T
a
b
le
2

R
[

]
3
3

≥
3
.5
.0

O
S
-s
p
ec
ifi
c
in
st
al
le
rs

ca
n
b
e
fo
u
n
d
b
y
fi
rs
t

se
le
ct
in
g
 a
 C

o
m
p
re
h
en

si
ve
 R
 A
rc
h
iv
e

N
et
w
o
rk
 (
C
R
A
N
)
m
ir
ro
r
cl
o
se
 t
o
 t
h
e
u
se
r’
s

lo
ca
ti
o
n

h
tt
p
s:
//

cr
an
.r
-p
ro
je
ct
.o
rg
/

A
d
d
it
io
n
al

(S
p
ec
ifi
c
to

O
S
an
d

R
eq

u
ir
ed

to
b
u
il
d
R
p
ac
k
ag
es

fr
o
m

so
u
rc
e,

h
tt
p
s:
//

su
p
p
o
rt
.p
o
si
t.
co
/
h
c/

en
-u
s/
ar
ti
cl
es
/
2
0
0
4
8
6
4
9
8
-

R
S
tu
d
io

(L
at
es
t
av
ai
la
b
le
)

A
lt
h
o
u
g
h
n
o
t
an

ab
so
lu
te

re
q
u
ir
em

en
t,

fo
r
ea
se
 o
f
u
se
,
an
 I
D
E
 i
s
re
co
m
m
en

d
ed

h
tt
p
s:
//

p
o
si
t.
co
/
d
o
w
n
lo
ad
/
rs
tu
d
io
-d
es
k
to
p
/

‘d
ev
to
ol
s‘
[

]
3
4

(L
at
es
t
av
ai
la
b
le
)

R
p
ac
k
ag
e
(S
u
b
h
ea
d
in
g

)
3
.1

h
tt
p
s:
//

d
ev
to
o
ls
.r
-l
ib
.o
rg
/
in
d
ex
.h
tm

l

‘m
a
gr
it
tr
‘

≥
2
.0
.1

R
p
ac
k
ag
e
(S
u
b
h
ea
d
in
g

)
3
.1

h
tt
p
s:
//

m
ag
ri
tt
r.
ti
d
yv
er
se
.o
rg
/
in
d
ex
.h
tm

l

‘t
id
yr
‘
[

]
3
6

≥
1
.1
.4

R
p
ac
k
ag
e
(S
u
b
h
ea
d
in
g

)
3
.1

h
tt
p
s:
//

ti
d
yr
.t
id
yv
er
se
.o
rg
/
in
d
ex
.h
tm

l

‘p
u
rr
r‘
[

]
3
7

≥
0
.3
.4

R
p
ac
k
ag
e
(S
u
b
h
ea
d
in
g

)
3
.1

h
tt
p
s:
//

p
u
rr
r.
ti
d
yv
er
se
.o
rg
/
in
d
ex
.h
tm

l

‘f
u
tu
re
‘
[

]
3
8

≥
1
.2
3
.0

R
p
ac
k
ag
e
(S
u
b
h
ea
d
in
g

)
3
.1

h
tt
p
s:
//

fu
tu
re
.f
u
tu
re
ve
rs
e.
o
rg
/
in
d
ex
.h
tm

l

‘f
u
rr
r‘
[

]
3
9

≥
0
.2
.3

R
p
ac
k
ag
e
(S
u
b
h
ea
d
in
g

)
3
.1

h
tt
p
s:
//

fu
rr
r.
fu
tu
re
ve
rs
e.
o
rg
/
in
d
ex
.h
tm

l

‘c
ol
la
ps
e‘
[

]
4
0

≥
1
.7
.2

R
p
ac
k
ag
e
(S
u
b
h
ea
d
in
g

)
3
.1

h
tt
p
s:
//

se
b
k
ra
n
tz
.g
it
h
u
b
.i
o
/
co
ll
ap
se
/
in
d
ex
.h
tm

l

‘d
a
ta
.t
a
bl
e‘

≥
1
.1
4
.2

R
p
ac
k
ag
e
(S
u
b
h
ea
d
in
g

)
3
.1

h
tt
p
s:
//

rd
at
at
ab
le
.g
it
la
b
.i
o
/
d
at
a.
ta
b
le
/
in
d
ex
.h
tm

l

‘c
or
d
ia
l‘
[
]

1
(L

at
es
t
av
ai
la
b
le
)

R
p
ac
k
ag
e
(S
u
b
h
ea
d
in
g

)
3
.1

h
tt
p
s:
//

g
it
h
u
b
.c
o
m
/
C
u
ti
ll
as
L
ab
/
co
rd
ia
l

‘g
gp
lo
t2
‘
[

]
4
2

(L
at
es
t
av
ai
la
b
le
)

R
p
ac
k
ag
e;

o
p
ti
o
n
al
(S
u
b
h
ea
d
in
g

).
3
.1

h
tt
p
s:
//

g
g
p
lo
t2
.t
id
yv
er
se
.o
rg
/
in
d
ex
.h
tm

l

‘g
gr
ep
el
‘
[

]
4
3

(L
at
es
t
av
ai
la
b
le
)

R
p
ac
k
ag
e;

o
p
ti
o
n
al
(S
u
b
h
ea
d
in
g

).
P
ro
vi
d
es

3
.1

h
tt
p
s:
//

g
g
re
p
el
.s
lo
w
k
o
w
.c
o
m
/

R
eq

u
ir
ed

so
ft
w
ar
e
fo
r
F
P
IA

;
in
st
al
l
in

th
e
o
rd
er

li
st
ed

206 Irbaz I. Badshah and Pedro R. Cutillas
S
o
ft
w
a
re
 r
e
q
u
ir
e
m
e
n
ts

S
o
ft
w
a
re

V
e
rs
io
n

N
o
te
s

W
e
b
si
te
 U
R
L

b
u
il
d
 t
o
o
ls

R
 v
er
si
o
n
s)

su
ch
 a
s
fr
o
m
 a
 G

it
H
u
b
 r
ep
o
si
to
ry
:

L
in
u
x,

m
ac
O
S
,

W
in
d
o
w
s

P
ac
k
ag
e-
D
ev
el
o
p
m
en

t-
P
re
re
q
u
is
it
es

h
tt
p
s:
//

cr
an
.r
-p
ro
je
ct
.o
rg
/
b
in
/
li
n
u
x/

h
tt
p
s:
//

cr
an
.r
-p
ro
je
ct
.o
rg
/
b
in
/
m
ac
o
sx
/
to
o
ls

h
tt
p
s:
//

cr
an
.r
-p
ro
je
ct
.o
rg
/
b
in
/
w
in
d
o
w
s/
R
to
o
ls
/

[3
5
]

[4
1
]

h
tt
p
s:
//

rd
at
at
ab
le
.g
it
la
b
.i
o
/
d
at
a.
ta
b
le
/
ar
ti
cl
es
/
d
at
at
ab
le
-

in
tr
o
.h
tm

l

F
o
r
cr
ea
ti
n
g
 g
ra
p
h
ic
s
an
d
 p
lo
ts

ad
d
it
io
n
al
 f
ea
tu
re
s
fo
r
‘g
gp
lo
t2
‘

https://cran.r-project.org/
https://support.posit.co/hc/en-us/articles/200486498-Package-Development-Prerequisites
https://support.posit.co/hc/en-us/articles/200486498-Package-Development-Prerequisites
https://cran.r-project.org/bin/linux/
https://cran.r-project.org/bin/macosx/tools
https://cran.r-project.org/bin/windows/Rtools/
https://posit.co/download/rstudio-desktop/
https://devtools.r-lib.org/index.html
https://magrittr.tidyverse.org/index.html
https://tidyr.tidyverse.org/index.html
https://purrr.tidyverse.org/index.html
https://future.futureverse.org/index.html
https://furrr.futureverse.org/index.html
https://sebkrantz.github.io/collapse/index.html
https://rdatatable.gitlab.io/data.table/index.html
https://rdatatable.gitlab.io/data.table/articles/datatable-intro.html
https://rdatatable.gitlab.io/data.table/articles/datatable-intro.html
https://github.com/CutillasLab/cordial
https://ggplot2.tidyverse.org/index.html
https://ggrepel.slowkow.com/

Functional Pathway Inference Analysis 207

1. Install R (Table 2).

2. Install tools for building R packages from source (such as from
GitHub), specific to the version of R and OS (Table 2).

3. Install RStudio (Table 2).

4. Install ‘cordial‘ package dependencies by executing in an R
console or editor (Table 2):

(a) ‘devtools‘

(b) ‘magrittr‘

(c) ‘tidyr‘

(d) ‘purrr‘

(e) ‘future‘

(f) ‘furrr‘

(g) ‘collapse‘

(h) ‘data.table‘

(i) ‘ggplot2‘ (optional)

(j) ‘ggrepel‘ (optional)

if (!require("devtools")) { # check if not installed

install.packages("devtools") # install

library(devtools) # load

}

install.packages("magrittr")

install.packages("tidyr")

install.packages("purrr")

install.packages("future")

install.packages("furrr")

install.packages("collapse")

install.packages("data.table")

install.packages("ggplot2")

install.packages("ggrepel")

5. Install the ‘cordial‘ package by any of the following methods
(Table 2):

(a) Direct from GitHub.

devtools::install_github("CutillasLab/cordial@*release")

(b) Manual download.

(i) Download the Package Archive File (cordial_x.x.x.tar.gz)
of the latest release from the GitHub repository (Table 2).

208 Irbaz I. Badshah and Pedro R. Cutillas

(ii) Run the following, replacing the string argument to
‘path‘ with the actual location:

devtools::install_local(path = "C:/path/to/cordial_x.x.x.tar.

gz")

(c) RStudio graphical user interface (GUI).

(i) Download the Package Archive File (cordial_x.x.x.tar.gz)
of the latest release from the GitHub repository
(Table 2).

(ii) In RStudio, click Tools menu.

(iii) Select Install Packages… .

(iv) In the Install from list box, select Package Archive File (.
zip; .tar.gz).

(v) Click Browse to select the downloaded ‘cordial‘ Package
Archive File.

(vi) Select Install.

3.2 Load ‘cordial‘ • The ‘cordial‘ R package must be loaded (makes functions, data,
and code available) and attached (places the package in the
search path of available R objects so that function definitions
can be found) by executing at the beginning, once per session:

library(cordial)

• The package documentation can be consulted by prepending ‘?‘
to the package name; this method can be used for any object
including functions and data:

?cordial

• All subsequent code examples assume the ‘cordial‘ package has
been loaded, in addition to any optional packages (‘ggplot2‘,
‘ggrepel‘).

3.3 Data • Datasets included in ‘cordial‘ are from the Cancer Dependency
Map (DepMap)—a collaboration of the Broad Institute (Cam-
bridge, Massachusetts, USA) and the Wellcome Sanger Institute
(Hinxton, Cambridgeshire, UK) [18–22].

• ‘cordial‘ contains three datasets from the DepMap project:

1. ‘cellmeta_DT‘: cancer cell line metadata

2. ‘rnai_DT‘: cancer cell line genetic dependencies from RNAi
screens

3. ‘crispr_DT‘: cancer cell line genetic dependencies from
CRISPR-Cas9 screens

Functional Pathway Inference Analysis 209

3.3.1 ‘cellmeta_DT‘ • Cancer cell line sample information [23–25].

• A ‘data.table‘ with 1811 rows (cell lines) and 26 columns (cell
line metadata).

1. depmap_id: cell line DepMap ID. The ‘data.table‘ key
(improves performance of binary search, joins, grouping,
and indexing),

2. cell_line_name: cell line name,

3. stripped_cell_line_name: stripped cell line name,

4. CCLE_Name: Cancer Cell Line Encyclopaedia name,

5. Alias: alias,

6. COSMICID: Catalogue Of Somatic Mutations In Cancer
ID,

7. sex: sex of individual from which sample was derived,

8. source: tissue sample source,

9. Achilles_n_replicates: Achilles number of replicates,

10. cell_line_NNMD: cell line null-normalized median
difference,

11. culture_type: cell culture type,

12. culture_medium: culture medium,

13. cas9_activity: Cas9 activity,

14. RRID: research resource identifier,

15. WTSI_Master_Cell_ID: Wellcome Trust Sanger Institute
ID,

16. sample_collection_site: sample collection site,

17. primary_or_metastasis: primary or metastatic cancer cell
line,

18. primary_disease: primary disease,

19. Subtype: subtype disease,

20. age: age of individual from which sample was derived,

21. Sanger_Model_ID: Sanger model ID,

22. depmap_public_comments: additional information,

23. lineage: cancer cell line lineage,

24. lineage_subtype: cancer cell line lineage subtype,

25. lineage_sub_subtype: cancer cell line lineage sub-subtype,

26. lineage_molecular_subtype: cancer cell line lineage molecular
subtype.

210 Irbaz I. Badshah and Pedro R. Cutillas

3.3.2 ‘rnai_DT‘ • Cancer cell line genetic dependencies estimated using the
DEMETER2 model applied to three large-scale RNAi screening
datasets: the Broad Institute Project Achilles, Novartis Project
DRIVE, and the Marcotte et al. breast cell line dataset [21, 26–
29].

• A ‘data.table‘ with 711 rows (cell lines) and 16,816 columns
(6 cell line metadata, 16,810 genes).

1. depmap_id: cell line DepMap ID. The ‘data.table‘ key
(improves performance of binary search, joins, grouping,
and indexing),

2. cell_line_display_name: cell line display name,

3. lineage_1: cancer cell line lineage,

4. lineage_2: cancer cell line lineage subtype,

5. lineage_3: cancer cell line lineage sub-subtype,

6. lineage_4: cancer cell line lineage molecular subtype,

7. … 16,816: [Genes].

3.3.3 ‘crispr_DT‘ • Cancer cell line genetic dependencies estimated using the
CERES model applied to the Avana library CRISPR-Cas9
genome-scale knockout (prefixed with Achilles) [20, 25, 30,
31].

• A ‘data.table‘ with 945 rows (cell lines) and 17,648 columns
(6 cell line metadata, 17,642 genes).

1. depmap_id: cell line DepMap ID. The ‘data.table‘ key
(improves performance of binary search, joins, grouping
and indexing),

2. cell_line_display_name: cell line display name,

3. lineage_1: cancer cell line lineage,

4. lineage_2: cancer cell line lineage subtype,

5. lineage_3: cancer cell line lineage sub-subtype,

6. lineage_4: cancer cell line lineage molecular subtype,

7. … 17,648: [Genes].

3.3.4 Usage • The datasets can be accessed as follows; for further information,
consult ‘data.table‘ documentation (Table 2):

access data object

cellmeta_DT

rnai_DT

crispr_DT

view in tabulated spreadsheet presentation

View(cellmeta_DT)

View(rnai_DT)

View(crispr_DT)

index data

syntax: DT[i, j, by]

DT[

subset/reorder rows using i,

select/calculate columns using j,

grouped according to by

]

an empty argument in i, j or by indicates no subsetting

change ‘by‘ to ‘keyby‘ to sort results

EXAMPLES

all rows, column subset, grouped ----

‘.()‘ = alias of ‘list()‘ in ‘data.table‘

cellmeta_DT[

,

.(stripped_cell_line_name, sample_collection_site),

by = .(primary_disease, Subtype)

]

Boolean index, column subset using indices ----

rnai_DT[

lineage_1 == "Breast"

& lineage_2 == "Breast Carcinoma",

1:6

]

Boolean index using variable, column subset excluding

indices ----

create character vector of cell lines

cell_primary <- cellmeta_DT[

primary_or_metastasis == "Primary",

stripped_cell_line_name

]

index and return all dependency data

crispr_DT[cell_line_display_name %in% cell_primary, !1:6]

index and return dependency data for specific genes ----

create character vector of specific genes

Functional Pathway Inference Analysis 211

‘data.table‘ supports chained operations

‘.SD‘ = subset of data:

contains data for the current group in ‘by‘

targets <- crispr_DT[, 7:16][, colnames(.SD)]

index first 5 rows for specific genes

‘..‘ = access variable from outside the ‘data.table‘

crispr_DT[1:5, ..targets]

calculate means for each column of target genes, ----

per ‘lineage_1‘ group

create character vector of specific genes

targets <- crispr_DT[, 7:16][, colnames(.SD)]

apply mean for each ‘lineage_1‘ to each gene column in

‘targets‘

‘.SDcols‘ = columns to compute on

crispr_DT[, lapply(.SD, mean), keyby = lineage_1, .SDcols =

targets]

212 Irbaz I. Badshah and Pedro R. Cutillas

3.4 Functions • There are three main functions of ‘cordial‘ that perform a corre-
lation analysis to implement FPIA:

1. ‘cor_map()‘: correlation analysis of a dataset

2. ‘cor_target_map()‘: correlation analysis of multiple targets
in parallel

3. ‘cor_target()‘: correlation analysis of a single target in
parallel

• There are two additional functions to set up an asynchronous
multisession backend for parallel computing:

1. ‘start_parallel()‘: begin a parallel processing plan

2. ‘end_parallel()‘: begin a sequential processing plan

3.4.1 ‘start_parallel()‘ • ‘start_parallel()‘ creates a multisession ‘future::plan()‘ for asyn-
chronous (parallel) processing in separate R sessions running in
the background of the same machine; replaces any previously set
‘plan‘.

• If a multisession ‘plan‘ is set, ‘cor_target()‘ and ‘cor_target_map
()‘ execute in parallel; the result is returned to the main R
session.

• Run ‘start_parallel()‘ at the beginning of working with ‘cordial‘
functions. Alternatively, users may set their own ‘plan‘ for more

Functional Pathway Inference Analysis 213

control. To return to sequential processing, see ‘end_parallel()‘
(Subheading 3.4.2).

Call

start_parallel(logical_cores = FALSE)

Arguments • ‘logical_cores‘: a logical scalar. The number of parallel R sessions
is set to the number of physical CPUs/cores if ‘FALSE‘ (default)
or logical CPUs/cores if ‘TRUE‘.

Usage

create parallel multisessions equal to the number of physical

cores ----

start_parallel() # Default

start_parallel(FALSE) # Same as above

create parallel multisessions equal to the number of logical

cores ----

start_parallel(TRUE)

execute ‘cordial‘ functions...

3.4.2 ‘end_parallel()‘ • ‘end_parallel()‘ creates a sequential ‘future::plan()‘ for synchro-
nous processing in the current R session; replaces any previously
set ‘plan‘.

• Run ‘end_parallel()‘ at the end of working with ‘cordial‘ func-
tions to return to sequential processing. Alternatively, users may
set their own ‘plan‘ explicitly for more control.

Call

end_parallel()

Arguments • [None].

Usage

execution of ‘cordial‘ functions...

begin sequential processing ----

end_parallel()

214 Irbaz I. Badshah and Pedro R. Cutillas

3.4.3 ‘cor_map()‘:

Correlation Analysis of a

Dataset

Correlation Analysis

• ‘cor_map()‘ uses ‘collapse::pwcor()‘ to test for an association
between paired samples computed with Pearson’s product
moment correlation coefficient (same as ‘cor.test()‘). Correla-
tions are computed on complete pairs of observations for each
pair of variables (same as ‘cor(..., use = "pairwise.complete.obs")‘).

• Adjusted p-values are computed with ‘p.adjust()‘ using one of
the ‘p.adjust.methods‘: ‘c("holm", "hochberg", "hommel", "bonfer-
roni", "BH", "BY", "fdr", "none")‘. Default ‘"BH"‘ (alias
‘"fdr"‘) is the Benjamini-Hochberg false discovery rate multiple
testing adjustment method [32].

Subset • ‘cor_map()‘ conveniently allows filtering (‘filter_rows‘) of the
input dataset by performing a cross-join (‘CJ‘) with a named
list referring to values present within the dataset itself, or a
separate metadata ‘data.table‘.

• If the dataset contains non-numeric columns, they must be
omitted by selecting (‘select_cols‘) the columns to compute pair-
wise correlations. This mechanism also allows limiting of the
correlations to perform.

• The subsetting algorithm is identical to that in ‘cor_target_map
()‘ and ‘cor_target()‘.

Context • ‘cor_map()‘ differs from ‘cor_target()‘ in that correlations are
computed for all pairs of columns specified in ‘select_cols‘,
whereas ‘cor_target()‘ computes pairwise correlations for a sin-
gle specified ‘target‘ column, with correlations limited to the
columns specified in ‘select_cols‘.

• ‘cor_target_map()‘ varies from ‘cor_target()‘ in that it allows
specifying multiple elements in ‘target‘.

Output • A ‘data.table‘ in long-format is returned with no pairwise dupli-
cates (corr(X, Y) without corr(Y, X)); if ‘filter_rows‘ has been
supplied, the filters are included:

1. Target,

2. Correlation,

3. Pearson’s product moment correlation coefficients (r),

4. p-values (p),

5. Adjusted p-values (q),

6. Observation counts (n),

7. … [Filters].

Functional Pathway Inference Analysis 215

Call

cor_map(

dataset,

select_cols = colnames(dataset),

filter_rows = NULL,

metadata = NULL,

self = "yes",

method = "BH"

)

Arguments • ‘dataset‘: a ‘data.table‘. Must be in column-major order.

• ‘select_cols‘: a vector of column names (character) or indices
(numeric). The columns to use for computing correlations,
which must be of type numeric.

• ‘filter_rows‘: a named ‘list()‘. Values specify which rows to sub-
set. Names correspond to column names in ‘dataset‘ or ‘meta-
data‘ if supplied.

• ‘metadata‘: a ‘data.table‘. Must be in column-major order.
Optional input containing data to filter ‘dataset‘ by. If supplied,
‘metadata‘ and ‘dataset‘ must possess the same key (‘data.table::
setkey()‘) column.

• ‘self‘: a character scalar. Self-correlations are included if ‘“yes”‘
(default) or omitted if ‘“no”‘.

• ‘method‘: A character scalar. Correction method for p-value
adjustment, passed to ‘p.adjust()‘. One of ‘c("holm", "hochberg",
"hommel", "bonferroni", "BH", "BY", "fdr", "none")‘; ‘"BH"‘
(alias ‘"fdr"‘) (default).

Usage: Dataset

execute function

results <- cor_map(

dataset = crispr_DT,

select_cols = colnames(crispr_DT[, !1:6])

)

add column for annotating plots

results <-

results[, ‘=‘(

Direction = data.table::fifelse(r > 0, "Positive", "Nega-

tive")

)]

216 Irbaz I. Badshah and Pedro R. Cutillas

Usage: Dataset Filtered by

Metadata # create vector of gene targets

genes <- c(

"AKT1", "AKT2", "AKT3", "MDM2", "PIK3CA", "PIK3CB", "PIK3CD",

"PIK3R1", "PIK3R2", "PIK3R3", "TP53"

)

filter using columns in ‘metadata‘

(to filter ‘dataset‘ directly without ‘metadata‘:

use column names and values in ‘dataset‘ for ‘filter_rows‘)

results <- cor_map(

dataset = crispr_DT,

select_cols = genes,

filter_rows = list(lineage = "ovary"),

metadata = cellmeta_DT

)

add column for annotating plots

results <-

results[, ‘=‘(

Direction = data.table::fifelse(r > 0, "Positive", "Nega-

tive")

)]

Usage: Dataset by

Grouping Variable # create vector of gene targets

genes <- c(

"AKT1", "AKT2", "AKT3", "MDM2", "PIK3CA", "PIK3CB", "PIK3CD",

"PIK3R1", "PIK3R2", "PIK3R3", "TP53"

)

create vector of grouping variables

unique_lineages <- crispr_DT[, unique(lineage_1)]

map function to multiple groups

results <- purrr::map(

.x = unique_lineages,

.f = ~ cor_map(

dataset = crispr_DT,

select_cols = genes,

filter_rows = list(lineage_1 = .x)

)

)

assign names to list elements

results <- purrr::set_names(results, unique_lineages)

keep data that is not empty (from too few observations)

results <- purrr::compact(.x = results, .p = ~ nrow(.x))

combine output into single ‘data.table‘

results <- data.table::rbindlist(results)

add column for annotating plots

results <-

results[, ‘=‘(

Direction = data.table::fifelse(r > 0, "Positive", "Nega-

tive")

)]

Functional Pathway Inference Analysis 217

3.4.4 ‘cor_target_map()‘:

Correlation Analysis of

Multiple Targets

Correlation Analysis

• ‘cor_target_map()‘ uses ‘cor.test()‘ to test for an association
between paired samples computed with Pearson’s product
moment correlation coefficient. Correlations are computed
with incomplete cases removed (‘cor.test(..., na.action = "na.
omit")‘).

• Adjusted p-values are computed with ‘p.adjust()‘ using one of
the ‘p.adjust.methods‘: ‘c("holm", "hochberg", "hommel", "bonfer-
roni", "BH", "BY", "fdr", "none")‘. Default ‘"BH"‘ (alias ‘"fdr"‘)
is the Benjamini-Hochberg false discovery rate multiple testing
adjustment method [32].

Subset • ‘cor_target_map()‘ conveniently allows filtering (‘filter_rows‘) of
the input dataset by performing a cross-join (‘CJ‘) with a named
list referring to values present within the dataset itself or a
separate metadata ‘data.table‘.

• If the dataset contains non-numeric columns, they must be
omitted by selecting (‘select_cols‘) the columns to compute pair-
wise correlations. This mechanism also allows limiting of the
correlations to perform.

• The subsetting algorithm is identical to that in ‘cor_target()‘ and
‘cor_map()‘.

Parallelization • ‘cor_target_map()‘ computes correlations in parallel if an asyn-
chronous ‘future::plan()‘ is set prior to executing ‘cor_target_-
map()‘. See ‘start_parallel()‘ (Subheading 3.4.1).

• Internally, ‘furrr::future_map()‘ is used to map simultaneously
in parallel each element in ‘target‘ for processing via ‘cor.test()‘.
Specifically, ‘cor_target_map()‘ by default maps ‘cor_targets()‘
(a sequential variant of ‘cor_target()‘) to avoid nested parallel

218 Irbaz I. Badshah and Pedro R. Cutillas

operations; otherwise, the nested parallel operations both
attempt to utilize the full complement of CPUs/cores which
would result in inefficient load balancing.

Context • ‘cor_target_map()‘ differs from ‘cor_map()‘ in that pairwise cor-
relations are computed for multiple specified ‘target‘ columns,
with correlations limited to the columns specified in ‘select_cols‘,
whereas ‘cor_map()‘ computes correlations for all pairs of col-
umns specified in ‘select_cols‘.

• ‘cor_target_map()‘ varies from ‘cor_target()‘ in that it allows
specifying multiple elements in ‘target‘.

Output • A ‘data.table‘ in long-format is returned with no pairwise dupli-
cates (corr(X, Y) without corr(Y, X)); if ‘filter_rows‘ has been
supplied, the filters are included:

1. Target,

2. Correlation,

3. Slope,

4. Pearson’s product moment correlation coefficients (r),

5. p-values (p),

6. Adjusted p-values (q),

7. … [Filters].

Call

cor_target_map(

dataset,

target,

select_cols = colnames(dataset),

filter_rows = NULL,

metadata = NULL,

self = "yes",

method = "BH",

fun = cordial::cor_targets

)

Arguments • ‘dataset‘: a ‘data.table‘. Must be in column-major order.

• ‘target‘: a character vector. Column names in ‘dataset‘ to com-
pute correlations with (specified in ‘select_cols‘), which must be
of type numeric.

Functional Pathway Inference Analysis 219

• ‘select_cols‘: a vector of column names (character) or indices
(numeric). The columns to use for computing correlations,
which must be of type numeric.

• ‘filter_rows‘: a named ‘list()‘. Values specify which rows to sub-
set. Names correspond to column names in ‘dataset‘ or ‘meta-
data‘ if supplied.

• ‘metadata‘: a ‘data.table‘. Must be in column-major order.
Optional input containing data to filter ‘dataset‘ by. If supplied,
‘metadata‘ and ‘dataset‘ must possess the same key (‘data.table::
setkey()‘) column.

• ‘self‘: a character scalar. Self-correlations are included if ‘"yes”‘
(default) or omitted if ‘"no”‘.

• ‘method‘: a character scalar. Correction method for p-value
adjustment, passed to ‘p.adjust()‘. One of ‘c(“holm”, “hochberg”,
“hommel”, “bonferroni”, “BH”, “BY”, “fdr”, “none”)‘; ‘"BH”‘
(alias ‘"fdr”‘) (default).

• ‘fun‘: a function. Currently, only compatible with ‘cordial::cor_-
targets()‘ (default) or ‘cordial::cor_target()‘. See Parallelization
(Subheading 3.4.4.3).

Usage: Multiple Targets

create vector of gene targets

genes <- c(

"AKT1", "AKT2", "AKT3", "MDM2", "PIK3CA", "PIK3CB",

"PIK3CD",

"PIK3R1", "PIK3R2", "PIK3R3", "TP53"

)

execute function for multiple targets

‘select_cols‘ must also include the ‘target‘ columns

results <- cor_target_map(

dataset = crispr_DT,

target = genes,

select_cols = c(genes, colnames(crispr_DT[, 7:17]))

)

add column for annotating plots

results <-

results[, ‘=‘(

Direction = data.table::fifelse(r > 0, "Positive",

"Negative")

)]

220 Irbaz I. Badshah and Pedro R. Cutillas

Usage: Multiple Targets

Filtered by Metadata # create vector of gene targets

genes <- c(

"AKT1", "AKT2", "AKT3", "MDM2", "PIK3CA", "PIK3CB",

"PIK3CD",

"PIK3R1", "PIK3R2", "PIK3R3", "TP53"

)

filter using columns in ‘metadata‘

(to filter ‘dataset‘ directly without ‘metadata‘:

use column names and values in ‘dataset‘ for ‘filter_rows‘)

results <- cor_target_map(

dataset = crispr_DT,

target = genes,

select_cols = genes,

filter_rows = list(lineage = c("breast", "ovary")),

metadata = cellmeta_DT

)

add column for annotating plots

results <-

results[, ‘=‘(

Direction = data.table::fifelse(r > 0, "Positive",

"Negative")

)]

Usage: Multiple Targets by

Grouping Variable # create vector of gene targets

genes <- c(

"AKT1", "AKT2", "AKT3", "MDM2", "PIK3CA", "PIK3CB",

"PIK3CD",

"PIK3R1", "PIK3R2", "PIK3R3", "TP53"

)

create vector of grouping variables

lineages <- c("Breast", "Ovary")

map function to multiple targets for each group

results <- purrr::map(

.x = lineages,

.f = ~ cor_target_map(

dataset = crispr_DT,

target = genes,

select_cols = genes,

filter_rows = list(lineage_1 = .x)

)

)

assign names to list elements

results <- purrr::set_names(results, lineages)

keep data that is not empty (from too few observations)

results <- purrr::compact(.x = results, .p = ~ nrow(.x))

combine output into single ‘data.table‘

results <- data.table::rbindlist(results)

add column for annotating plots

results <-

results[, ‘=‘(

Direction = data.table::fifelse(r > 0, "Positive", "Nega-

tive")

)]

Functional Pathway Inference Analysis 221

3.4.5 ‘cor_target()‘:

Correlation Analysis of a

Single Target

Correlation Analysis

• ‘cor_target()‘ uses ‘cor.test()‘ to test for an association between
paired samples computed with Pearson’s product moment cor-
relation coefficient. Correlations are computed with incomplete
cases removed (‘cor.test(..., na.action = “na.omit”)‘).

• Adjusted p-values are computed with ‘p.adjust()‘ using one of
the ‘p.adjust.methods‘: ‘c("holm", "hochberg", "hommel", "bonfer-
roni", "BH", "BY", "fdr", "none")‘. Default ‘"BH"‘ (alias ‘"fdr"‘)
is the Benjamini-Hochberg false discovery rate multiple testing
adjustment method [32].

Subset • ‘cor_target()‘ conveniently allows filtering (‘filter_rows‘) of the
input dataset by performing a cross-join (‘CJ‘) with a named list
referring to values present within the dataset itself or a separate
metadata ‘data.table‘.

• If the dataset contains non-numeric columns, they must be
omitted by selecting (‘select_cols‘) the columns to compute pair-
wise correlations. This mechanism also allows limiting of the
correlations to perform.

• The subsetting algorithm is identical to that in ‘cor_target_map
()‘ and ‘cor_map()‘.

Parallelization • ‘cor_target()‘ computes correlations in parallel if an asynchro-
nous ‘future::plan()‘ is set prior to executing ‘cor_target()‘. See
‘start_parallel()‘ (Subheading 3.4.1).

• Internally, ‘furrr::future_map2()‘ is used to map simultaneously
in parallel each column in ‘select_cols‘ with the ‘target‘ for pro-
cessing via ‘cor.test()‘.

222 Irbaz I. Badshah and Pedro R. Cutillas

Context • ‘cor_target()‘ differs from ‘cor_map()‘ in that pairwise correla-
tions are computed for a single specified ‘target‘ column, with
correlations limited to the columns specified in ‘select_cols‘,
whereas ‘cor_map()‘ computes correlations for all pairs of col-
umns specified in ‘select_cols‘.

• ‘cor_target_map()‘ varies from ‘cor_target()‘ in that it allows
specifying multiple elements in ‘target‘.

Output • A ‘data.table‘ in long-format is returned with no pairwise dupli-
cates (corr(X, Y) without corr(Y, X)); if ‘filter_rows‘ has been
supplied, the filters are included:

1. Target,

2. Correlation,

3. Slope,

4. Pearson’s product moment correlation coefficients (r),

5. p-values (p),

6. Adjusted p-values (q),

7. … [Filters].

Call

cor_target(

dataset,

target,

select_cols = colnames(dataset),

filter_rows = NULL,

metadata = NULL,

self = "yes",

method = "BH"

)

Arguments • ‘dataset‘: a ‘data.table‘. Must be in column-major order.

• ‘target‘: a character scalar. A column name in ‘dataset‘ to com-
pute correlations with (specified in ‘select_cols‘), which must be
of type numeric.

• ‘select_cols‘: a vector of column names (character) or indices
(numeric). The columns to use for computing correlations,
which must be of type numeric.

• ‘filter_rows‘: a named ‘list()‘. Values specify which rows to sub-
set. Names correspond to column names in ‘dataset‘ or ‘meta-
data‘ if supplied.

Functional Pathway Inference Analysis 223

• ‘metadata‘: a ‘data.table‘. Must be in column-major order.
Optional input containing data to filter ‘dataset‘ by. If supplied,
‘metadata‘ and ‘dataset‘ must possess the same key (‘data.table::
setkey()‘) column.

• ‘self‘: a character scalar. Self-correlations are included if ‘"yes”‘
(default) or omitted if ‘"no”‘.

• ‘method‘: a character scalar. Correction method for p-value
adjustment, passed to ‘p.adjust()‘. One of: ‘c("holm", "hochberg",
"hommel", "bonferroni", "BH", "BY", "fdr", "none")‘; ‘"BH"‘
(alias ‘"fdr"‘) (default).

Usage: Single Target

execute function

results <- cor_target(

dataset = crispr_DT,

target = "A1BG",

select_cols = colnames(crispr_DT[, !1:6])

)

add column for annotating plots

results <-

results[, ‘=‘(

Direction = data.table::fifelse(r > 0, "Positive",

"Negative")

)]

Usage: Single Target

Filtered by Metadata # filter using columns in ‘metadata‘

(to filter ‘dataset‘ directly without ‘metadata‘:

use column names and values in ‘dataset‘ for ‘filter_rows‘)

results <- cor_target(

dataset = crispr_DT,

target = "A1BG",

select_cols = colnames(crispr_DT[, !1:6]),

filter_rows = list(lineage_subtype = "breast_carcinoma"),

metadata = cellmeta_DT

)

add column for annotating plots

results <-

results[, ‘=‘(

Direction = data.table::fifelse(r > 0, "Positive",

"Negative")

)]

224 Irbaz I. Badshah and Pedro R. Cutillas

Usage: Single Target by

Grouping Variable # create vector of unique grouping variables

unique_lineages <- crispr_DT[, unique(lineage_1)]

map function to a single target for each group

results <- purrr::map(

.x = unique_lineages,

.f = ~ cor_target(

dataset = crispr_DT,

target = "A1BG",

select_cols = colnames(crispr_DT[, !1:6]),

filter_rows = list(lineage_1 = .x)

)

)

assign names to list elements

results <- purrr::set_names(results, unique_lineages)

keep data that is not empty (from too few observations)

results <- purrr::compact(.x = results, .p = ~ nrow(.x))

combine output into single ‘data.table‘

results <- data.table::rbindlist(results)

add column for annotating plots

results <-

results[, ‘=‘(

Direction = data.table::fifelse(r > 0, "Positive", "Nega-

tive")

)]

4 Anticipated Results

• Example usage of visualizing correlations for a subset of exem-
plar genes in PI3K and TP53 pathways across all cell lines is
shown below. The output of such analysis returned genes known
to be associated with these pathways (Fig. 1):

create vector of gene targets

genes <- c(

"AKT1", "AKT2", "AKT3", "MTOR", "PDPK1", "PIK3CA", "PIK3CB",

"PIK3CD", "PIK3R1", "PIK3R2", "PIK3R3", "PTEN", "TP53"

)

execute function for specified genes

results <- cor_target_map(

dataset = crispr_DT,

target = genes,

select_cols = colnames(crispr_DT[, !1:6]),

self = "no"

)

create subset for labels:

top 6 correlations by q-value for each ‘Target‘

annotations <- results[order(q)][q < 0.05, head(.SD, 6), by =

Target]

get maximum absolute value of ’Slope’

max_abs_slope <- results[, max(abs(Slope))]

create plot

plot_results <- ggplot(

results[q < 0.05],

aes(x = r, y = -log10(q), colour = Slope)) +

geom_point(

data = results[q > 0.05], # non-significant points

colour = "grey",

alpha = 0.5

) +

geom_point(alpha = 0.5) + # significant points from initial

‘ggplot()‘

geom_label_repel(

data = annotations,

aes(label = Correlation),

colour = "black",

size = 2.5,

force = 5,

force_pull = 0.5,

direction = "y",

nudge_y = 3,

nudge_x = 2,

label.padding = 0.15,

segment.size = 0.3

) +

geom_hline(

yintercept = -log10(0.05),

linetype = "dashed",

linewidth = 0.4,

alpha = 0.5

) +

geom_vline(

xintercept = 0,

linetype = "dashed",

linewidth = 0.4,

Functional Pathway Inference Analysis 225

226 Irbaz I. Badshah and Pedro R. Cutillas

Fig. 1 Pearson’s correlations across all cell lines. Pearson’s correlations of genes significantly associated with

specified target genes across multiple cancer cell lines from CRISPR-Cas9 knockout data. Top 6 correlations

(labeled) by q-value for each target (shown in graph headers) with self-correlations omitted; horizontal line:-

log10(q-value) = 0.05; vertical line: r-value = 0

alpha = 0.5

) +

facet_wrap(vars(Target)) +

scale_color_viridis_c(

option = "H",

limits = c(-max_abs_slope, max_abs_slope),

guide = guide_colourbar(barwidth = 8, barheight = 0.7)

) +

theme_bw() +

theme(

legend.position = "top",

legend.title = element_text(size = 9),

legend.text = element_text(size = 8),

plot.title = element_text(size = 10),

strip.text = element_text(size = 8),

axis.title = element_text(size = 9),

axis.text = element_text(size = 8)

) +

labs(

title = "Pearson’s correlations",

x = "r-value",

y = "-log10(q-value)",

)

view plot

plot_results

save plot

ggsave("Fig 1.pdf", width = 4.5, height = 7.5, units = "in")

Functional Pathway Inference Analysis 227

References

1. Badshah II, Cutillas PR (2023) Systematic
identification of biochemical networks in can-
cer cells by functional pathway inference analy-
sis. Bioinformatics 39(1). https://doi.org/10.
1093/bioinformatics/btac769

2. Hijazi M et al (2020) Reconstructing kinase
network topologies from phosphoproteomics
data reveals cancer-associated rewiring. Nat
Biotechnol 38(4):493–502. https://doi.org/
10.1038/s41587-019-0391-9

3. Subramanian A et al (2005) Gene set enrich-
ment analysis: a knowledge-based approach for
interpreting genome-wide expression profiles.
Proc Natl Acad Sci. https://doi.org/10.1073/
pnas.0506580102

4. Kim SY, Volsky DJ (2005) PAGE: parametric
analysis of gene set enrichment. BMC

Bioinformatics 6:144. https://doi.org/10.
1186/1471-2105-6-144

5. Chowdhury S, Sarkar RR (2015) Comparison
of human cell signaling pathway databases—

evolution, drawbacks and challenges. Data-
base. https://doi.org/10.1093/database/
bau126

6. Thiele I, Palsson BØ (2010) A protocol for
generating a high-quality genome-scale meta-
bolic reconstruction. Nat Protoc. https://doi.
org/10.1038/nprot.2009.203

7. Usié A et al (2014) Biblio-MetReS for user-
friendly mining of genes and biological pro-
cesses in scientific documents. Peerj. https://
doi.org/10.7717/peerj.276

8. Wang H et al (2018) RAVEN 2.0: a versatile
toolbox for metabolic network reconstruction

https://doi.org/10.1093/bioinformatics/btac769
https://doi.org/10.1093/bioinformatics/btac769
https://doi.org/10.1038/s41587-019-0391-9
https://doi.org/10.1038/s41587-019-0391-9
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1186/1471-2105-6-144
https://doi.org/10.1186/1471-2105-6-144
https://doi.org/10.1093/database/bau126
https://doi.org/10.1093/database/bau126
https://doi.org/10.1038/nprot.2009.203
https://doi.org/10.1038/nprot.2009.203
https://doi.org/10.7717/peerj.276
https://doi.org/10.7717/peerj.276

228 Irbaz I. Badshah and Pedro R. Cutillas

and a case study on Streptomyces Coelicolor.
PLoS Comput Biol. https://doi.org/10.
1371/journal.pcbi.1006541

9. Sandefur CI, Mincheva M, Schnell S (2013)
Network representations and methods for the
analysis of chemical and biochemical pathways.
Mol BioSyst. https://doi.org/10.1039/
c3mb70052f

10. Turei D, Korcsmaros T, Saez-Rodriguez J
(2016) OmniPath: guidelines and gateway for
literature-curated signaling pathway resources.
Nat Methods 13(12):966–967. https://doi.
org/10.1038/nmeth.4077

11. Seçilmiş D, Hillerton T, Sonnhammer ELL
(2022) GRNbenchmark – a web server for
benchmarking directed gene regulatory net-
work inference methods. Nucleic Acids Res.
https://doi.org/10.1093/nar/gkac377

12. Cai X, Bazerque JA, Giannakis GB (2013)
Inference of gene regulatory networks with
sparse structural equation models exploiting
genetic perturbations. PLoS Comput Biol.
https://doi.org/10.1371/journal.pcbi.
1003068

13. Gan Y et al (2022) Inferring gene regulatory
networks from single-cell transcriptomic data
using bidirectional RNN. Front Oncol.
https://doi.org/10.3389/fonc.2022.899825

14. Wu J, Zhao X, Lin Z, Shao Z (2016) Large
scale gene regulatory network inference with a
multi-level strategy. Mol BioSyst. https://doi.
org/10.1039/c5mb00560d

15. Weighill D et al (2020) Gene regulatory net-
work inference as relaxed graph matching.
https://doi.org/10.1101/2020.06.23.
167999

16. Emadi M, Boroujeni FZ, Pirgazi J (2021)
Improved fuzzy cognitive maps for gene regu-
latory networks inference based on time series
data. https://doi.org/10.21203/rs.3.rs-
770358/v1

17. Zarayeneh N et al (2017) Integration of multi-
omics data for integrative gene regulatory net-
work inference. Int J Data Min Bioinform.
https://doi.org/10.1504/ijdmb.2017.
10008266

18. Boehm JS, Golub TR (2015) An ecosystem of
cancer cell line factories to support a cancer
dependency map. Nat Rev Genet 16(7):
373–374. https://doi.org/10.1038/nrg3967

19. Corsello SM et al (2020) Discovering the anti-
cancer potential of non-oncology drugs by sys-
tematic viability profiling. Nat Cancer 1(2):
235–248. https://doi.org/10.1038/s43018-
019-0018-6

20. Meyers RM et al (2017) Computational cor-
rection of copy number effect improves

specificity of CRISPR-Cas9 essentiality screens
in cancer cells. Nat Genet 49(12):1779–1784.
https://doi.org/10.1038/ng.3984

21. Tsherniak A et al (2017) Defining a cancer
dependency map. Cell 170(3):564–576.e516.
https://doi.org/10.1016/j.cell.2017.06.010

22. Yu C et al (2016) High-throughput identifica-
tion of genotype-specific cancer vulnerabilities
in mixtures of barcoded tumor cell lines. Nat
Biotechnol 34(4):419–423. https://doi.org/
10.1038/nbt.3460

23. Cancer Cell Line Encyclopedia C and Geno-
mics of Drug Sensitivity in Cancer C (2015)
Pharmacogenomic agreement between two
cancer cell line data sets. Nature 528(7580):
8 4 –87 . h t t p s : //do i . o r g/10 . 1038/
nature15736

24. Barretina J et al (2012) The cancer cell line
encyclopedia enables predictive modelling of
anticancer drug sensitivity. Nature 483(7391):
603–607. ht tps ://doi .org/10.1038/
nature11003

25. DepMap B (2021) public_21q1. In, 1 edn

26. Marcotte R et al (2016) Functional genomic
landscape of human breast cancer drivers, vul-
nerabilities, and resistance. Cell 164(1–2):
293–309. https://doi.org/10.1016/j.cell.
2015.11.062

27. McDonald ER et al (2017) Project DRIVE: a
compendium of cancer dependencies and syn-
thetic lethal relationships uncovered by large-
scale, deep RNAi screening. Cell 170(3):
577–592.e510. https://doi.org/10.1016/j.
cell.2017.07.005

28. McFarland JM et al (2018) Improved estima-
tion of cancer dependencies from large-scale
RNAi screens using model-based normaliza-
tion and data integration. Nat Commun 9(1).
https://doi.org/10.1038/s41467-018-
06916-5

29. Science CD (2020) DEMETER2 data. In,
6 edn

30. Dempster JM et al (2019) Extracting
biological insights from the project Achilles
genome-scale CRISPR screens in cancer cell
lines. bioRxiv:720243. https://doi.org/10.
1101/720243

31. Ghandi M et al (2019) Next-generation char-
acterization of the cancer cell line encyclopedia.
Nature 569(7757):503–508. https://doi.org/
10.1038/s41586-019-1186-3

32. Benjamini Y, Hochberg Y (1995) Controlling
the false discovery rate: a practical and powerful
approach to multiple testing. J R Stat Soc Ser B
(Methodolog) 57(1):289–300

https://doi.org/10.1371/journal.pcbi.1006541
https://doi.org/10.1371/journal.pcbi.1006541
https://doi.org/10.1039/c3mb70052f
https://doi.org/10.1039/c3mb70052f
https://doi.org/10.1038/nmeth.4077
https://doi.org/10.1038/nmeth.4077
https://doi.org/10.1093/nar/gkac377
https://doi.org/10.1371/journal.pcbi.1003068
https://doi.org/10.1371/journal.pcbi.1003068
https://doi.org/10.3389/fonc.2022.899825
https://doi.org/10.1039/c5mb00560d
https://doi.org/10.1039/c5mb00560d
https://doi.org/10.1101/2020.06.23.167999
https://doi.org/10.1101/2020.06.23.167999
https://doi.org/10.21203/rs.3.rs-770358/v1
https://doi.org/10.21203/rs.3.rs-770358/v1
https://doi.org/10.1504/ijdmb.2017.10008266
https://doi.org/10.1504/ijdmb.2017.10008266
https://doi.org/10.1038/nrg3967
https://doi.org/10.1038/s43018-019-0018-6
https://doi.org/10.1038/s43018-019-0018-6
https://doi.org/10.1038/ng.3984
https://doi.org/10.1016/j.cell.2017.06.010
https://doi.org/10.1038/nbt.3460
https://doi.org/10.1038/nbt.3460
https://doi.org/10.1038/nature15736
https://doi.org/10.1038/nature15736
https://doi.org/10.1038/nature11003
https://doi.org/10.1038/nature11003
https://doi.org/10.1016/j.cell.2015.11.062
https://doi.org/10.1016/j.cell.2015.11.062
https://doi.org/10.1016/j.cell.2017.07.005
https://doi.org/10.1016/j.cell.2017.07.005
https://doi.org/10.1038/s41467-018-06916-5
https://doi.org/10.1038/s41467-018-06916-5
https://doi.org/10.1101/720243
https://doi.org/10.1101/720243
https://doi.org/10.1038/s41586-019-1186-3
https://doi.org/10.1038/s41586-019-1186-3

Functional Pathway Inference Analysis 229

33. Team RC (2020) R: a language and environ-
ment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria

34. Wickham H, Hester J, Chang W, Bryan J
(2022) Devtools: tools to make developing R
packages easier. In, R package version
2.4.5 edn

35. Bache SM, Wickham H (2022) Magrittr: a
forward-pipe operator for R. In, R package
version 2.0.3 edn

36. Wickham H, Vaughan D, Girlich M (2023)
Tidyr: tidy messy data. In, R package version
1.3.0 edn

37. Wickham H, Henry L (2023) Purrr: functional
programming tools. In, R package version
1.0.2 edn

38. Bengtsson H (2021) A unifying framework for
parallel and distributed processing in R using
futures. R J 13(2):208–227. https://doi.org/
10.32614/RJ-2021-048

39. Vaughan D, Dancho M (2022) Furrr: apply
mapping functions in parallel using futures.
In, R package version 0.3.1 edn

40. Krantz S (2022) Collapse: advanced and fast
data transformation. In

41. Barrett T, Dowle M, Srinivasan A (2023) data.
table: Extension of ‘data.frame‘. In, R package
version 1.14.10 edn

42. Wickham H (2016) ggplot2: elegant graphics
for data analysis. Springer, New York

43. Slowikowski K (2024) ggrepel: automatically
position non-overlapping text labels with
’ggplot2’. In, R package version 0.9.5 edn

https://doi.org/10.32614/RJ-2021-048
https://doi.org/10.32614/RJ-2021-048

Chapter 12

NGP: A Tool to Detect Noncoding RNA-Gene Regulatory Pairs
from Transcriptomic Data

Hongjie Ke and Tianzhou Ma

Abstract

Noncoding RNAs (ncRNAs) play key roles in cancer initiation, promotion, and progression via regulating
the expression of critical genes. Existing methods performed simple bivariate analysis on each pair of
ncRNA and gene separately without considering the complex interactions among ncRNAs and genes. We
developed a statistically rigorous and computationally efficient software tool to identify essential ncRNA-
gene regulatory pairs from transcriptome-wide ncRNA and gene expression data. Here we provide a practi-
cal guidance with real data examples on the use of the tool implemented in the R package “NGP.”

Key words Noncoding RNA, Gene regulation, Gene expression, NGP

1 Introduction

A majority (>95%) of the human genome is transcribed into RNAs
that do not further encode for proteins called noncoding RNAs
(ncRNAs), which include micro RNAs (miRNAs), small interfering
RNAs (siRNAs), and long noncoding RNAs (lncRNAs), among
others [1]. Though long regarded as the “dark matter” of the
genome [2], ncRNAs played critical roles in human malignancies.
For example, deregulation of miRNAs and lncRNAs has been
linked to all cancer types and impacts major cancer hallmarks [3–
8]. ncRNAs can regulate gene expression at both transcriptional
and posttranscriptional levels, as mechanisms to affect cancer onset
and progression [1, 9]. However, the study of ncRNAs and their
target genes and how they regulate gene expression in cancer is still
in its infancy.

The advent of high-throughput technology including micro-
array and RNA sequencing (RNA-seq) has enabled the expression
analysis for a large number of ncRNAs and genes over the whole
genome simultaneously. Existing methods typically performed sim-
ple bivariate analysis on each pair of ncRNA and gene separately,

Alexander Krasnitz and Pascal Belleau (eds.), Cancer Bioinformatics, Methods in Molecular Biology, vol. 2932,
https://doi.org/10.1007/978-1-0716-4566-6_12,
© The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature 2025

231

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-4566-6_12&domain=pdf
https://doi.org/10.1007/978-1-0716-4566-6_12#DOI

which ignores the complex interaction among ncRNAs and
genes and is subject to severe multiple testing issue [10, 11]. Jointly
analyzing candidate ncRNAs and genes expressed in a condition
and investigating how their interactions changed from status to
status (e.g., from early stage to late stage cancer) are critical to
our understanding of their roles in disease pathogenesis. However,
several analytical challenges exist when handling these two sets of
expression data together. First, the numbers of ncRNAs and genes
in the human genome are both huge (~10k–100k each), resulting
in a vast number of candidate ncRNA-gene interactive pairs (~1
billion) to search from. Second, ncRNAs and genes are highly
correlated with other ncRNAs and genes, further increasing the
computational burden. Third, the high-dimensional data of
ncRNA and gene expression are usually featured by being highly
skewed, heavy-tailed, and noisy (e.g., due to low expression of
ncRNA). Robust methods are needed to mitigate the bias brought
by these non-normal data.

232 Hongjie Ke and Tianzhou Ma

To fill the gap, we recently developed a statistically rigorous and
computational efficient method to robustly screen and select non-
coding RNA regulators of gene expression [12]. Here, we present a
bioinformatic tool built on the basis of the method, namely,
“NGP,” for the detection of Noncoding RNA-Gene regulatory
Pairs from transcriptome-wide ncRNA and gene expression data.

2 Materials

This protocol requires a computer with R installed. We assume
both ncRNA and gene expression data have undergone standard
pipeline for microarray (e.g., quality control, background adjust-
ment, and normalization by affy or lumi package in R [13, 14]) or
RNA-seq (e.g., alignment and quantification by HISAT + StringTie
[15, 16]) and are well annotated following standardized gene
nomenclature. The inputs of the tool are the normalized expression
values (or normalized counts, e.g., Reads Per Kilobase of transcript
per Million mapped reads (RPKM)/Fragments Per Kilobase of
transcript per Million mapped reads (FPKM)/Transcripts Per Mil-
lion (TPM)/Reads Per Million (RPM) for RNA-seq) of annotated
ncRNAs and genes for matched samples in a particular condition
(e.g., patients with kidney cancer):

(a) Normalized expression values (or normalized count for
RNA-seq) of ncRNAs for matched samples in csv or txt files

(b) Normalized expression values (or normalized count for
RNA-seq) of genes for matched samples in csv or txt files

The current NGP tool only allows the input of normalized
expression data from either microarray or RNA-seq. Users can use

the tool to further perform filtering, imputation, and transforma-
tion if needed. For RNA-seq, the tool so far only considers the
continuous RPKM/FPKM/TPM values but not raw count data.
After reading into R, the two input data items will be in data frame/
matrix format with rows representing the ncRNAs/genes and col-
umns representing the samples. The columns (i.e., samples) of the
two data matrices need to be matched and put in the same order.

Detecting Noncoding RNA-Gene Regulatory Pairs 233

3 Methods

Figure 1 shows a workflow of the NGP tool. We assume both
ncRNA and gene expression data have undergone standard pipeline
to generate normalized expression values. The tool provides a
function to perform filtering, imputation, and transformation
when needed as a preprocessing step before the analysis. The
main analytical component of the tool is implemented in two
stages: in the first dimension reduction stage, as both ncRNA and
gene expression data are of high dimension, the tool runs an edge-
wise screening (remove ncRNA-gene pairs) followed by a node-
wise screening (remove ncRNA or genes) to reduce the number of
ncRNAs, genes, and ncRNA-gene pairs to a more manageable

Fig. 1 A workflow of the “NGP” tool. Dashed part is the main analytical component of the tool

scale. In the second pair selection stage, the tool applies a multivar-
iate regularization method to identify the most critical ncRNA-
gene pairs from a sparse ncRNA x gene adjacency matrix outputted
from the first stage. Our tool can also be coupled with existing
visualization software (e.g., Cytoscape [17]) to provide both tabu-
lar and graphical outputs for users to visually explore the identified
ncRNA-gene regulatory pairs and perform subsequent analysis
(e.g., pathway enrichment analysis, validation using external
database).

234 Hongjie Ke and Tianzhou Ma

3.1 Install NGP in R Download NGP from its GitHub repository:

devtools::install_github(’kehongjie/NGP’)

Dependency packages of NGP including impute, rPCor, CCA,
CCP, remMAP, and FarmTest will be automatically installed with
the package.

3.2 Preprocessing

Step (Optional)

“Junk in, junk out”. Expression data can be noisy which will lead to
biased results if not carefully prepared. Before performing any
analysis, the tool employs an optional preprocessing step, following
the common practice of analyzing gene expression data [18], by
filtering out ncRNAs or genes with low expression (e.g., typical for
ncRNAs) and low variance (e.g., housekeeping genes), conducting
log2 transformation, and imputing any missing values whenever
necessary if users have not done so yet.

Sample code

ncrna_data <- preproc(data=ncrna_input, type=”ncRNA”, plat-

form=”RNAseq”, filter.mean.cutoff=T, filter.mean.quantile=F,

filter.var=F, mean.cutoff=0.3, log=FALSE, impute=FALSE)

gene_data <- preproc(data=gene_input, type=”gene”, plat-

form=”RNAseq”, filter.mean.cutoff=T, filter.mean.quantile=F,

filter.var=T, mean.cutoff=5, var.quantile=0.5, log=FALSE,

impute=FALSE)

We provide two options for filtering by mean:
cutoff vs. quantile. Considering the relatively lower expression of
ncRNAs as compared to genes, we suggest using a lower mean
cutoff for ncRNA (e.g., 0.3 for ncRNA vs. 5 for gene). The pre-
processing pipeline for ncRNA has not reached a consensus yet, so
we follow the common practice in gene expression to process
ncRNA, but users can apply other existing ncRNA specific proces-
sing pipelines to process the ncRNA expression data and treat it as
input for our tool. Log2 transformation and imputation are
optional if already performed in previous steps.

Detecting Noncoding RNA-Gene Regulatory Pairs 235

3.3 Edge-wise

Screening of ncRNA-

Gene Pairs

Both ncRNA and gene expression data are of extremely high
dimension (10–100k each, with up to 1 billion potential edges to
search from), so we need to reduce the dimension before selecting
important pairs. In the dimension reduction stage, we first perform
an edge-wise screening. The main method used here follows from
our recently published paper [12], and users may refer to the paper
for technical details. In short, we use the robust partial correlation
based statistics as a screening utility and run an iterative approach to
remove ncRNA-gene pairs/edges with the statistics not passing a
threshold defined by the parameter αe (see Fig. 2). The expected
output from this step is a highly sparse ncRNA x gene adjacency
matrix (“1” indicating the corresponding ncRNA-gene pair is kept,
“0” indicating the pair is removed) with much fewer number of
pairs, ncRNAs, and genes (when all pairs of an ncRNA or a gene are
removed) kept than the original matrix. The optimal choice of
αe will be determined by stability or pseudo-F-score based
approaches introduced next (see Subheading 3.5).

Sample code

fit_edge <- screen.edge(X=ncrna_data, Y=gene_data, alpha=1e-

5, X.thres=0.5, Y.thres=0.5, C=0.5)

In the above function, “alpha” is the key threshold parameter
users need to tune using our recommended approaches to achieve
the best performance. Other than that, we do not suggest users to
change the default values for options determining the neighbors in
conditional sets (X.thres, Y.thres) and the robustification related

Fig. 2 Demonstration of screening methods in dimension reduction stage. Two screening utilities, robust

partial correlation and marginal canonical correlation, are used in edge-wise and node-wise screening,

respectively. In edge-wise screening, when the robust partial correlation based statistics of a ncRNA(X)-

gene(Y) pair | Z τ X , Y jX
s1

m½]

, Y s2
m½]

| does not pass the threshold Φ-1 (1 - αe/2) at any iteration m, the pair

will be removed. In node-wise screening, when the marginal canonical correlation based statistics between a

node (either ncRNA(X) or gene(Y)) and its remaining edges | ZCC(X) | or | ZCC(Y) | does not pass the threshold

Φ
-1 (1 - αn/2), the node will be removed

parameter (C) in the calculation of robust partial correlation, unless
they fully understand the method. The output of this function will
be an ncRNA x gene (p x q where p is the number of ncRNAs and q
is the number of genes) adjacency matrix, with each entry indicat-
ing whether the corresponding ncRNA-gene pair is kept (1) or not
(0).

236 Hongjie Ke and Tianzhou Ma

3.4 Node-Wise

Screening of ncRNA

and Gene Nodes

The ncRNA x gene matrix after edge-wise screening tends to have
highly sparse rows (ncRNAs) and columns (genes). We further
apply a node-wise screening by using marginal canonical correlation
(CC) of a node with all its remaining neighbors as a screening utility
[19] and remove ncRNA or gene nodes having the statistics not
passing a threshold defined by the parameter αn (see Fig. 2).

Sample code

fit_node <- screen.node(X=ncrna_data, Y=gene_data, edge.in-

d=fit_edge, alpha=1e-6)

Edge.ind is an ncRNA x gene adjacency matrix with each entry
indicating whether the pair is kept from the previous step (1) or not
(0). The above function will calculate the marginal CC for all nodes
with their remaining neighbors and remove nodes when relatively
low CC. Alpha is the threshold parameter in node-wise screening
(less sensitive than the one for edge-wise screening; see Subheading
3.5 for recommended value). The node-wise screening may have
computational bottlenecks with an ultrahigh-dimensional dense
matrix, so we suggest node-wise screening to be implemented
after edge-wise screening. Like the previous step, the output of
this function will be an ncRNA × gene (p × q: p is number of
ncRNAs, q the number of genes) adjacency matrix, with each
entry indicating whether the corresponding ncRNA-gene pair is
kept (1) or not (0) after node-wise screening step.

3.5 Selecting

Optimal Threshold

Parameter

One key tuning parameter of the tool is the threshold parameter
αe (α for short from here on) in the edge-wise screening step. On
one hand, a too stringent α will have the risk of losing important
signals from the screening step; on the other hand, an overly
conservative α will reduce the screening power without achieving
the dimension reduction purpose. In NGP tool, following from
[12], we propose two procedures to select the optimal α. The first
procedure is based on stability selection to make sure an optimal α
can remove as many pairs as possible while keeping the selection
frequency of top pairs above a cutoff with false-discovery rate
(FDR) controlled.

Sample code

p <- ncol(ncrna_data) # number of ncRNAs

q <- ncol(gene_data) # number of genes

alpha <- screen.tune(X=ncrna_data, Y=gene_data, B=100,

D=100, eta=min(p,q), method=”stability”)

Detecting Noncoding RNA-Gene Regulatory Pairs 237

Eta is the number of top pairs for which selection frequency will
be calculated. B and D are the number of subsampling and permu-
tations to be performed to calculate selection frequency and get its
FDR cutoff. We do not suggest users to change the default values
for these options unless they fully understand the method and the
algorithm. Figure 3 shows an example on how to select the optimal
threshold parameter α using a stability based approach. At α = 1e-
6, the selection frequency of top pairs bypasses the FDR cutoff;
thus, the threshold is chosen too stringent. α = 1e- 5 is an optimal
threshold where the selection frequency of top pairs does not
bypass the FDR cutoff but also achieves the screening purpose
(i.e., screen out as many noisy pairs as one can).

The stability selection algorithm, however, can be computa-
tionally heavy and becomes infeasible in some real data with ultra-
high dimension. Alternatively, we propose a much faster and
relatively accurate procedure using a pseudo-F-score (like
F-score = 2*precision*sensitivity/{precision + sensitivity}). A
pseudo-F-score is defined using the same formula but from a
pseudo sensitivity (true ncRNA-gene pairs defined as those pairs
with largest marginal correlations) and a pseudo precision as we do
not know the ground truth in real data to balance between effective
dimension reduction (i.e. maintaining high precision) and high
sensitivity in the remaining pairs.

Sample code

Fig. 3 Selecting optimal threshold parameter α using a stability based approach

alpha <- screen.tune(X=ncrna_data, Y=gene_data, eta=min(p,

q), method=”pseudo”)

238 Hongjie Ke and Tianzhou Ma

Fig. 4 Selecting optimal threshold parameter α using pseudo-F-score

Eta is the number of top pairs from which the pseudo-F-score
will be calculated. Figure 4 shows an example on how to select the
optimal threshold parameter α using a pseudo-F-score. α = 1e - 5
is an optimal threshold that has the largest pseudo-F-score value
here.

The choice of the threshold parameter αn in the node-wise
screening step is relatively stable based on our exploration of differ-
ent real data examples, so we do not further suggest any approaches
to select its optimal value. We generally suggest a slightly more
stringent αn (e.g., αn = α/10) to make sure highly sparse nodes can
be removed.

3.6 Multivariate

Regularization to

Identify Final ncRNA-

Gene Regulatory Pairs

After screening (or dimension reduction stage), the dimensions of
both ncRNAs and genes are reduced to a more manageable scale
(e.g., comparable to sample size), and the matrix of remaining
ncRNA-gene pairs is highly sparse. In the final pair selection
stage, the NGP tool performs a multivariate regularization method
to identify the most probable ncRNA-gene regulatory pairs from
the highly sparse matrix of remaining ncRNA-gene edge pairs [20].

Sample code

fit_reg <- multi.reg(X=ncrna_data, Y=gene_data, edge.in-

d=fit_node, lambda1=seq(1,100,10), lambda2=seq(1,100,10))

Edge.ind is an ncRNA x gene adjacency matrix with each entry
indicating whether the pair is kept from the previous steps (1) or
not (0). Lambda1 and lambda 2 are the sequence of tuning para-
meters (“seq(1,100,10)”: start from 1, end at 100 with step size of

10) to be used in the regularization step, and the method will
automatically use cross-validation to select the optimal lambdas
from the specified sequences. We generally do not suggest users
to change the default values to ensure accuracy. However, to avoid
excessive computation in irrelevant ranges, users can first run
coarser search using a larger step size (e.g., 20 or 30) in a wider
range and then fine search for the optimal lambda with smaller step
size within a narrower range.

Detecting Noncoding RNA-Gene Regulatory Pairs 239

3.7 NGP Output and

Subsequent Analysis

The major output of the NGP tool includes a matrix of coefficient
estimate for all remaining ncRNA-gene pairs and a list of two
columns of corresponding ncRNA and gene names for those
pairs. The two-column output will be treated as an input (ncRNA
column as the source node, gene column as the target node) for
network visualization platform “CytoScape” [17] to investigate the
ncRNA-gene regulation pattern in a network graph.

Sample code

fit_reg$cyto_input

The identified ncRNA-gene pairs and remaining ncRNA and
gene nodes can be further validated using existing database on
ncRNAs, genes, and ncRNA-gene interactions specific to a condi-
tion or a disease [21–23]. These databases are typically experimen-
tally validated or sequence based, thus providing further evidence
and additional biological information to the interactions identified
from expression data by NGP tool. In addition, we also suggest
users to perform pathway enrichment analysis on the pool of genes
regulated by ncRNAs for more biological insight of the ncRNA
regulatory path in the disease.

4 Examples

We use ncRNA and gene expression data from The Cancer Genome
Atlas Program (TCGA) cohort to demonstrate two examples (one
for lncRNA-gene regulation, the other for miRNA-gene regula-
tion) of applying the NGP tool to identify critical ncRNA-gene
regulatory pairs in cancer study.

4.1 LncRNA

Regulation of Gene

Expression in KIdney

Renal Papillary Cell

Carcinoma (KIRP)

LncRNAs are essential regulators of genes in major pathways of cell
growth, proliferation, differentiation, and survival and are critical to
the tumor formation, progression, and pathogenesis of kidney
cancer [24, 25]. KIRP accounts for 10–15% of all renal cell carci-
noma and has a poor prognosis [26]. In this example, we retrieve
lncRNA (in RPM) and gene expression data (in RPKM; both
measured by RNA-seq) of N = 198 matched KIRP samples in
TCGA from The Atlas of Non-coding RNAs in Cancer [27] and

LinkedOmics [28], respectively, and use our tool to identify critical
lncRNAs, genes, and lncRNA-gene regulatory pairs in KIRP.

240 Hongjie Ke and Tianzhou Ma

In the first step, we carefully preprocessed the data and filtered
out features with low expression (lncRNAs with mean RPM ≤0.3
and genes with mean RPKM ≤5) following the general guideline
[27, 29]. We also filtered out potential housekeeping genes and
only kept the most variant 50% of genes. After preprocessing, 2170
lncRNAs and 6704 genes were left with a total of 14,547,680
possible pairs.

We then applied the edge-wise screening to reduce dimension,
and only 3054 pairs were left after screening, generating a highly
sparse lncRNA x gene matrix. We further applied the node-wise
screening and removed those lncRNAs and genes with very few
edges left (mostly with one or two edges per node, as the number of
pairs removed are about the same as the number of nodes removed
after node-wise screening). Lastly, we applied the multivariate reg-
ulation to select the final set of 877 ncRNA-gene regulatory pairs
from the interactions of 298 lncRNAs and 781 genes. The final
pool was highly enriched with lncRNAs related to kidney cancer
based on EVLncRNA database [22] (see Table 1; 18 out of 32 with
Fisher’s exact test p-value<1e-4). We plotted one example of
lncRNA-gene interaction network from these 877 pairs in Cytos-
cape (Fig. 5). Both the lncRNA “lnc-IRX3–80” and the gene
“IRX5” were Iroquois transcription factors found to be related to
kidney development and tumorigenesis [30, 31]. Their interaction
we identified here has also been validated in the LncTarD database
[32], a comprehensive lncRNA-target regulation database, which
may help reveal the underlying regulatory mechanism in KIRP and
have potential diagnostic and therapeutic values.

Table 1

Results after each step of the NGP tool for the TCGA-KIRP lncRNA-gene regulation example

Step

Number of lncRNAs

left

Number of genes

left

Number of lncRNA-gene pairs

left

After preprocessing 2170 (32) 6704 14,547,680

After edge-wise
screening

1336 (23) 2251 3054

After node-wise
screening

1153 (21) 1737 2471

After regularization 298 (18) 781 877

Numbers inside parentheses indicate the numbers of lncRNAs that are shown to be related to kidney cancer according to

EVLncRNAs database

Detecting Noncoding RNA-Gene Regulatory Pairs 241

Fig. 5 An example of a network of lncRNA-gene regulatory pairs identified in TCGA KIRP by our method. Red

highlighted indicates the lncRNAs, genes, or the lncRNA-gene pairs have been validated in large lncRNA/gene

databases (e.g., EVLncRNA, LncTarD, Oncogene database)

4.2 miRNA

Regulation of Gene

Expression in PRostate

ADenocarcinoma

(PRAD)

miRNAs are critical noncoding RNAs that play indispensable roles
in regulating gene expression and have been found as key factors
and potentially serve as clinical tools for diagnosis, prognosis, and
therapy in prostate cancer [33–35]. In the second example, we
retrieve miRNA (in RPM) and gene expression data (in RPKM)
of N = 493 matched PRAD samples in TCGA from LinkedOmics
[28] and use our tool to identify critical miRNAs, genes, and
miRNA-gene regulatory pairs in PRAD.

We first preprocessed the data and filtered out low-expressed
genes with mean RPKM ≤5 and only kept the most variant 50% of
genes. After preprocessing, 765 miRNAs and 6715 genes were left
with a total of 5,136,975 possible pairs.

We then applied the edge-wise screening to reduce dimension,
and only 1396 pairs were left after screening, generating a highly
sparse miRNA x gene matrix. We further applied the node-wise
screening and removed those miRNAs and genes with very few
edges left (mostly with one or two edges per node). Lastly, we
applied the multivariate regulation to select the final set of
618 ncRNA-gene regulatory pairs from the interactions of
147 miRNAs and 547 genes. These 147 miRNAs were highly
enriched with miRNAs related to prostate cancer based on miR-
Cancer database [21] (see Table 2; 33 out of 79 with Fisher’s exact
test p-value<1e-4). We plotted one example of miRNA-gene inter-
action network from these 618 pairs in Cytoscape (Fig. 6). The

miRNA “hsa-mir-135b” and the genes “BATF” and “CASP1”
were found to be related to prostate cancer (BATF and CASP1
are both potential oncogenes) [36–38]. Their interactions we iden-
tified here have also been validated in the miRDB database [39],
revealing the potential miRNA→gene regulatory pathways in
PRAD.

242 Hongjie Ke and Tianzhou Ma

Table 2

Results after each step of the NGP tool for the TCGA-PRAD miRNA-gene regulation example

Step

Number of miRNAs

left

Number of genes

left

Number of miRNA-gene pairs

left

After preprocessing 765 (79) 6715 5,136,975

After edge-wise
screening

381 (50) 1132 1396

After node-wise
screening

294 (46) 729 962

After regularization 147 (33) 547 618

Numbers inside parentheses indicate the numbers of miRNAs that are shown to be related to kidney cancer according to

miRCancer database

Fig. 6 An example of a network of miRNA-gene regulatory pairs identified in TCGA PRAD by our method. Red

highlighted indicates the miRNAs, genes, or the miRNA-gene pairs have been validated in large miRNA/gene

databases (e.g., miRCancer, miRDB, Oncogene database)

Detecting Noncoding RNA-Gene Regulatory Pairs 243

5 Notes

1. Screening implemented in the NGP tool is different from
filtering by mean or variance as usually done in bioinformatics.
Stemmed from the concept of sure screening in statistics,
screening is a theoretically justified step to reduce the dimen-
sion for the analysis while keeping most of the true signals in
the pool after screening, a theoretical property known as sure
screening property [40]. In our context, we have a theoretical
guarantee that most of the true ncRNA-gene regulatory pairs
should remain in the pool after screening.

2. As the NGP tool first applies screening methods to reduce the
dimension, it is computationally efficient and runs significantly
fast for high-dimensional ncRNA and gene expression data.
However, the computational cost can depend on the detailed
implementation of each step (see our paper [12] for a bench-
mark of computational time of the screening step using simula-
tions), e.g., the threshold parameter used in screening, the
range of tuning parameter values to search from in regulariza-
tion. For example, setting a more stringent screening threshold
may speed up the procedure by greatly reducing the dimension
but may also have the danger of losing important signals. We
recommend users to follow instructions in the above protocol
for the most efficient and accurate implementation of the tool.

3. To further reduce the computational cost, we highly recom-
mended users to filter out ncRNAs or genes of less interest (low
means or low variance) and focus only on the ncRNAs or genes
of biological interest. If some differential expression
(DE) analysis for ncRNAs and genes can be performed
between, e.g., cancer and normal tissues, one can also prioritize
analyzing the top DE ncRNAs and genes most related to
disease development.

4. We assume both ncRNA and gene expression data were well
annotated using standard nomenclature before the preproces-
sing step. If annotation was not completed yet, we recommend
users apply the functions in existing R packages (e.g., “preproc”
function in the “metaOmic” package [18]) and use existing
annotation databases available in R to annotate before proceed-
ing to the next steps.

5. The tool so far only considers continuously valued noncoding
and gene expression data generated by microarray or RNA-seq.
As the technology advances, new types of expression data (e.g.,
those generated by single cell RNA-seq) will emerge, and the
tool will be gradually improved to accommodate the features of
these newly emerging data types.

244 Hongjie Ke and Tianzhou Ma

6. In its current form, the NGP tool relies on “Cytoscape” to help
generate graphical and network output. The tool will be cou-
pled with existing packages in R (e.g., igraph) to generate a
graphical user interface (e.g., by R Shiny) with interactive
visualization in future development.

7. The tool identifies critical ncRNA-gene regulatory pairs. On
one hand, we recommend users to further perform down-
stream pathway analysis on the identified genes and post hoc
validation using external databases (e.g., EVLncRNA,
LncTarD, miRCancer); on the other hand, we do want to
point out that as the research of noncoding RNA and its
regulation of gene expression is still in an early stage, our tool
might help identify new ncRNA-gene links underlying impor-
tant ncRNA regulatory mechanism that are not yet available in
existing database but worth further exploration.

8. The tool gives a static snapshot of all potential regulatory
ncRNA-gene pairs in a condition or cancer type (e.g., in
KIRP) based on expression data. As more clinical data become
available, we will further consider how these paired links will
change as the disease progresses in different stages/grades and
whether any of these links have potential prognostic values (i.e.,
predictive of survival) in cancer in future development. In
addition, the tool currently selects edge by edge without con-
sidering the overall regulatory pattern of ncRNAs and genes
(e.g., in network) nor the flow of biological information.
Bayesian network method to identify the overall causal pattern
will be an important plus to the tool in future work.

Acknowledgments

This work was supported by the University of Maryland Grand
Challenge grant, University of Maryland MPower Brain Health
and Human Performance seed grant, University of Maryland
Department of Epidemiology and Biostatistics Pilot Award and
National Institutes of Health under award number
1K01DA059603-01A1.

References

1. Yan H, Bu P (2021) Non-coding RNA in can-
cer. Essays Biochem 65(4). https://doi.org/
10.1042/EBC20200032

2. Patil VS, Zhou R, Rana TM (2014) Gene reg-
ulation by non-coding RNAs. Crit Rev Bio-
chem Mol Biol 49(1). https://doi.org/10.
3109/10409238.2013.844092

3. Schmitt AM, Chang HY (2016) Long noncod-
ing RNAs in cancer pathways. Cancer Cell
29(4). https://doi.org/10.1016/j.ccell.2016.
03.010

4. Lenkala D, LaCroix B, Gamazon ER,
Geeleher P, Im HK, Huang RS (2014) The
impact of microRNA expression on cellular

https://doi.org/10.1042/EBC20200032
https://doi.org/10.1042/EBC20200032
https://doi.org/10.3109/10409238.2013.844092
https://doi.org/10.3109/10409238.2013.844092
https://doi.org/10.1016/j.ccell.2016.03.010
https://doi.org/10.1016/j.ccell.2016.03.010

Detecting Noncoding RNA-Gene Regulatory Pairs 245

proliferation. Hum Genet 133(7). https://doi.
org/10.1007/s00439-014-1434-4

5. Calin GA, Croce CM (2006) MicroRNA-
cancer connection: the beginning of a new
tale. Cancer Res 66(15). https://doi.org/10.
1158/0008-5472.CAN-06-0800

6. Ivey KN, Srivastava D (2015) microRNAs as
developmental regulators. Cold Spring Harb
Perspect Biol 7(7). https://doi.org/10.
1101/cshperspect.a008144

7. Winkle M, El-Daly SM, Fabbri M, Calin GA
(2021) Noncoding RNA therapeutics – chal-
lenges and potential solutions. Nat Rev Drug
Discov 20(8). https://doi.org/10.1038/
s41573-021-00219-z

8. Gutschner T, Diederichs S (2012) The hall-
marks of cancer: a long non-coding RNA
point of view. RNA Biol 9(6). https://doi.
org/10.4161/rna.20481

9. Grillone K, Riillo C, Scionti F, Rocca R,
Tradigo G, Guzzi PH, Alcaro S, Di Martino
MT, Tagliaferri P, Tassone P (2020)
Non-coding RNAs in cancer: platforms and
strategies for investigating the genomic “dark
matter”. J Exp Clin Cancer Res 39(1). https://
doi.org/10.1186/s13046-020-01622-x

10. Zhang J, Le TD, Liu L, Li J (2019) Inferring
and analyzing module-specific lncRNA-mRNA
causal regulatory networks in human cancer.
Brief Bioinform 20(4). https://doi.org/10.
1093/bib/bby008

11. Madhumita M, Paul S (2022) A review on
methods for predicting miRNA-mRNA regu-
latory modules. J Integr Bioinform 19(3).
https://doi.org/10.1515/jib-2020-0048

12. Ke H, Ren Z, Qi J, Chen S, Tseng GC, Ye Z,
Ma T (2022) High-dimension to high-
dimension screening for detecting genome-
wide epigenetic and noncoding RNA regula-
tors of gene expression. Bioinformatics 38(17):
4078–4087. https://doi.org/10.1093/bioin
formatics/btac518

13. Gautier L, Cope L, Bolstad BM, Irizarry RA
(2004) affy—analysis of Affymetrix GeneChip
data at the probe level. Bioinformatics (Oxford,
England) 20(3). https://doi.org/10.1093/
bioinformatics/btg405

14. Du P, Kibbe WA, Lin SM (2008) lumi: a pipe-
line for processing Illumina microarray. Bioin-
formatics (Oxford, England) 24(13). https://
doi.org/10.1093/bioinformatics/btn224

15. Pertea M, Kim D, Pertea GM, Leek JT, Salz-
berg SL (2016) Transcript-level expression
analysis of RNA-seq experiments with HISAT,
StringTie and Ballgown. Nat Protoc 11(9).
https://doi.org/10.1038/nprot.2016.095

16. Sahraeian SME, Mohiyuddin M, Sebra R,
Tilgner H, Afshar PT, Au KF, Bani Asadi N
et al (2017) Gaining comprehensive biological
insight into the transcriptome by performing a
broad-spectrum RNA-seq analysis. Nat Com-
mun 8(1). https://doi.org/10.1038/s41467-
017-00050-4

17. Shannon P, Markiel A, Ozier O, Baliga NS,
Wang JT, Ramage D, Amin N,
Schwikowski B, Ideker T (2003) Cytoscape: a
software environment for integrated models of
biomolecular interaction networks. Genome
Res 13(11). https://doi.org/10.1101/gr.
1239303

18. Ma T, Huo Z, Kuo A, Zhu L, Fang Z, Zeng X,
Lin CW et al (2019) MetaOmics: analysis pipe-
line and browser-based software suite for tran-
scriptomic meta-analysis. Bioinformatics
(Oxford, England) 35(9). https://doi.org/
10.1093/bioinformatics/bty825

19. He D, Zhou Y, Zou H (2021) On sure screen-
ing with multiple responses. Stat Sin 31(4):
1749–1777

20. Peng J, Zhu J, Bergamaschi A, Han W, Noh
DY, Pollack JR, Wang P (2010) Regularized
multivariate regression for identifying master
predictors with application to integrative geno-
mics study of breast cancer. Ann Appl Stat 4(1).
h t t p s : // d o i . o r g / 1 0 . 1 2 1 4 / 0 9 -
AOAS271SUPP

21. Xie B, Ding Q, Han H, Wu D (2013) miRCan-
cer: a microRNA-cancer association database
constructed by text mining on literature. Bio-
informatics (Oxford, England) 29(5). https://
doi.org/10.1093/bioinformatics/btt014

22. Zhou B, Zhao H, Yu J, Guo C, Dou X, Song F,
Hu G et al (2018) EVLncRNAs: a manually
curated database for long non-coding RNAs
validated by low-throughput experiments.
Nucleic Acids Res 46(D1). https://doi.org/
10.1093/nar/gkx677

23. Cheng L, Wang P, Tian R, Wang S, Guo Q,
Luo M, Zhou W, Liu G, Jiang H, Jiang Q
(2019) LncRNA2Target v2.0: a comprehen-
sive database for target genes of lncRNAs in
human and mouse. Nucleic Acids Res 47
(D1). https://doi.org/10.1093/nar/
gky1051

24. Martens-Uzunova ES, Böttcher R, Croce CM,
Jenster G, Visakorpi T, Calin GA (2014) Long
noncoding RNA in prostate, bladder, and kid-
ney cancer. Eur Urol 65(6). https://doi.org/
10.1016/j.eururo.2013.12.003

25. Zhou S, Wang J, Zhang Z (2014) An emerging
understanding of long noncoding RNAs in
kidney cancer. J Cancer Res Clin Oncol
140(12). https://doi.org/10.1007/s00432-
014-1699-y

https://doi.org/10.1007/s00439-014-1434-4
https://doi.org/10.1007/s00439-014-1434-4
https://doi.org/10.1158/0008-5472.CAN-06-0800
https://doi.org/10.1158/0008-5472.CAN-06-0800
https://doi.org/10.1101/cshperspect.a008144
https://doi.org/10.1101/cshperspect.a008144
https://doi.org/10.1038/s41573-021-00219-z
https://doi.org/10.1038/s41573-021-00219-z
https://doi.org/10.4161/rna.20481
https://doi.org/10.4161/rna.20481
https://doi.org/10.1186/s13046-020-01622-x
https://doi.org/10.1186/s13046-020-01622-x
https://doi.org/10.1093/bib/bby008
https://doi.org/10.1093/bib/bby008
https://doi.org/10.1515/jib-2020-0048
https://doi.org/10.1093/bioinformatics/btac518
https://doi.org/10.1093/bioinformatics/btac518
https://doi.org/10.1093/bioinformatics/btg405
https://doi.org/10.1093/bioinformatics/btg405
https://doi.org/10.1093/bioinformatics/btn224
https://doi.org/10.1093/bioinformatics/btn224
https://doi.org/10.1038/nprot.2016.095
https://doi.org/10.1038/s41467-017-00050-4
https://doi.org/10.1038/s41467-017-00050-4
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1093/bioinformatics/bty825
https://doi.org/10.1093/bioinformatics/bty825
https://doi.org/10.1214/09-AOAS271SUPP
https://doi.org/10.1214/09-AOAS271SUPP
https://doi.org/10.1093/bioinformatics/btt014
https://doi.org/10.1093/bioinformatics/btt014
https://doi.org/10.1093/nar/gkx677
https://doi.org/10.1093/nar/gkx677
https://doi.org/10.1093/nar/gky1051
https://doi.org/10.1093/nar/gky1051
https://doi.org/10.1016/j.eururo.2013.12.003
https://doi.org/10.1016/j.eururo.2013.12.003
https://doi.org/10.1007/s00432-014-1699-y
https://doi.org/10.1007/s00432-014-1699-y

246 Hongjie Ke and Tianzhou Ma

26. Lan H, Zeng J, Chen G, Huang H (2017)
Survival prediction of kidney renal papillary
cell carcinoma by comprehensive LncRNA
characterization. Oncotarget 8(67). https://
doi.org/10.18632/oncotarget.22732

27. Li J, Han L, Roebuck P, Diao L, Liu L, Yuan Y,
Weinstein JN, Liang H (2015) TANRIC: an
interactive open platform to explore the func-
tion of lncRNAs in cancer. Cancer Res 75(18).
https://doi.org/10.1158/0008-5472.CAN-
15-0273

28. Vasaikar SV, Straub P, Wang J, Zhang B (2018)
LinkedOmics: analyzing multi-omics data
within and across 32 cancer types. Nucleic
Acids Res 46(D1). https://doi.org/10.1093/
nar/gkx1090

29. Ricketts CJ, De Cubas AA, Fan H, Smith CC,
Lang M, Reznik E, Bowlby R et al (2018) The
cancer genome atlas comprehensive molecular
characterization of renal cell carcinoma. Cell
Rep 23(1). https://doi.org/10.1016/j.cel
rep.2018.03.075

30. Marra AN, Wingert RA (2014) Roles of iro-
quois transcription factors in kidney develop-
ment. Cell Dev Biol 3(1). https://doi.org/10.
4172/2168-9296.1000131

31. Holmquist Mengelbier L, Lindell-Munther S,
Yasui H, Jansson C, Esfandyari J, Karlsson J,
Lau K et al (2019) The Iroquois homeobox
proteins IRX3 and IRX5 have distinct roles in
Wilms tumour development and human
nephrogenesis. J Pathol 247(1). https://doi.
org/10.1002/path.5171

32. Zhao H, Yin X, Xu H, Liu K, Liu W, Wang L,
Zhang C et al (2023) LncTarD 2.0: an updated
comprehensive database for experimentally-
supported functional lncRNA-target regula-
tions in human diseases. Nucleic Acids Res 51
(D1). https://doi.org/10.1093/nar/gkac984

33. Ghamlouche F, Yehya A, Zeid Y,
Fakhereddine H, Fawaz J, Liu YN,
Al-Sayegh M, Abou-Kheir W (2023)

MicroRNAs as clinical tools for diagnosis,
prognosis, and therapy in prostate cancer.
Transl Oncol 28. https://doi.org/10.1016/j.
tranon.2022.101613

34. Rana S, Valbuena GN, Curry E, Bevan CL,
Keun HC (2022) MicroRNAs as biomarkers
for prostate cancer prognosis: a systematic
review and a systematic reanalysis of public
data. Br J Cancer 126(3). https://doi.org/10.
1038/s41416-021-01677-3

35. Schitcu VH, Raduly L, Nutu A, Zanoaga O,
Ciocan C, Munteanu VC, Cojocneanu R et al
(2022) MicroRNA dysregulation in prostate
cancer. Pharmgenomics Pers Med 15. https://
doi.org/10.2147/PGPM.S348565

36. Olivan M, Garcia M, Suárez L, Guiu M,
Gros L, Méndez O, Rigau M et al (2021)
Loss of microRNA-135b enhances bone
metastasis in prostate cancer and predicts
aggressiveness in human prostate samples.
Cancers 13(24). https://doi.org/10.3390/
cancers13246202

37. Winter RN, Kramer A, Borkowski A, Kypria-
nou N (2001) Loss of caspase-1 and caspase-3
protein expression in human prostate cancer.
Cancer Res 61(3):1227

38. Siltanen S, Fischer D, Rantapero T, Laitinen V,
Mpindi JP, Kallioniemi O, Wahlfors T, Schleut-
ker J (2013) ARLTS1 and prostate cancer
risk—analysis of expression and regulation.
PLoS One 8(8). https://doi.org/10.1371/
journal.pone.0072040

39. Chen Y, Wang X (2020) miRDB: an online
database for prediction of functional micro-
RNA targets. Nucleic Acids Res 48(D1).
https://doi.org/10.1093/nar/gkz757

40. Fan J, Lv J (2008) Sure independence screen-
ing for ultrahigh dimensional feature space. J R
Stat Soc Series B Stat Methodol 70(5):
849–911. https://doi.org/10.1111/j.
1467-9868.2008.00674.x

https://doi.org/10.18632/oncotarget.22732
https://doi.org/10.18632/oncotarget.22732
https://doi.org/10.1158/0008-5472.CAN-15-0273
https://doi.org/10.1158/0008-5472.CAN-15-0273
https://doi.org/10.1093/nar/gkx1090
https://doi.org/10.1093/nar/gkx1090
https://doi.org/10.1016/j.celrep.2018.03.075
https://doi.org/10.1016/j.celrep.2018.03.075
https://doi.org/10.4172/2168-9296.1000131
https://doi.org/10.4172/2168-9296.1000131
https://doi.org/10.1002/path.5171
https://doi.org/10.1002/path.5171
https://doi.org/10.1093/nar/gkac984
https://doi.org/10.1016/j.tranon.2022.101613
https://doi.org/10.1016/j.tranon.2022.101613
https://doi.org/10.1038/s41416-021-01677-3
https://doi.org/10.1038/s41416-021-01677-3
https://doi.org/10.2147/PGPM.S348565
https://doi.org/10.2147/PGPM.S348565
https://doi.org/10.3390/cancers13246202
https://doi.org/10.3390/cancers13246202
https://doi.org/10.1371/journal.pone.0072040
https://doi.org/10.1371/journal.pone.0072040
https://doi.org/10.1093/nar/gkz757
https://doi.org/10.1111/j.1467-9868.2008.00674.x
https://doi.org/10.1111/j.1467-9868.2008.00674.x

Chapter 13

MODIG: An Attention Mechanism-Based Approach to Cancer
Driver Gene Identification

Wenyi Zhao and Zhan Zhou

Abstract

Identifying genes that play a causal role in carcinogenesis remains one of the major challenges in cancer
biology. With the accumulation of high-throughput multi-omics data over decades, it has become a great
challenge to effectively integrate these data into the identification of cancer driver genes. Here, we propose
MODIG, a graph attention network (GAT)-based framework, to identify cancer driver genes by combining
multi-omics pan-cancer data (mutations, copy number variants, gene expression, and methylation levels)
with multidimensional gene networks. Among them, the multidimensional gene network is constructed by
using genes as nodes and five types of gene associations (protein-protein interaction, gene sequence
similarity, KEGG pathway co-occurrence, gene co-expression patterns, and gene ontology terms) as
multiplex edges. We apply a GAT encoder to model within-dimension interactions to generate a gene
representation for each dimension based on this graph, introduce a joint learning module to fuse multiple
dimension-specific representations to generate general gene representations, and use the obtained gene
representation to perform a semi-supervised driver gene identification task. The MODIG program is
available at https://github.com/zjupgx/modig. The code and data are also available on Zenodo, at
https://doi.org/10.5281/zenodo.7057241.

Key words Driver gene, Multi-omics data, Gene network, Protein-protein interaction, Graph atten-
tion network, Attention mechanism

1 Introduction

It is widely accepted that cancer progression is due to the accumu-
lation of mutations in driver genes that confer a selective growth
advantage to cells [1–4]. As a key issue in cancer genomics, identi-
fying genes that play a causal role in carcinogenesis can help to
better understand the molecular mechanisms of cancer develop-
ment, facilitate the discovery of drug targets and biomarkers, and
guide the development of precise therapeutic approaches. Over the
past decades, several large-scale cancer genomics projects, such as
The Cancer Genome Atlas (TCGA) [5] and the International

Alexander Krasnitz and Pascal Belleau (eds.), Cancer Bioinformatics, Methods in Molecular Biology, vol. 2932,
https://doi.org/10.1007/978-1-0716-4566-6_13,
© The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature 2025

247

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-4566-6_13&domain=pdf
https://github.com/zjupgx/modig
https://doi.org/10.5281/zenodo.7057241
https://doi.org/10.1007/978-1-0716-4566-6_13#DOI

Cancer Genome Consortium (ICGC) [6], have accumulated a
large amount of genomics, epigenomics, transcriptomics, and pro-
teomics data from thousands of cancer patients.

248 Wenyi Zhao and Zhan Zhou

Benefitting from these omics data, many computational tools
have been developed to identify cancer driver genes, yet most of
them focus only on genomics data [7–11]. Several studies have
found that some cancer driver genes are not altered at their DNA
sequence level but dysregulated through various cellular mechan-
isms [1, 12, 13], suggesting that diverse omics data are likely to
shape gene function at different biological scales and that effective
integration of such information is valuable for identifying the
potential driver and passenger genes. Thus, there is an increasing
need to develop a framework that can harness and integrate com-
plementary information among multi-omics data for downstream
cancer driver gene prediction tasks.

Biological networks are abstract representations of biological
systems as graphs, where genes are used as nodes, gene associations
as edges, and omics features as node attributes. As a research hot-
spot in recent years, graph neural networks (GNN) are deep
learning models developed specifically for graphs, which apply to
high-dimensional and complex biological data and are potentially
suitable integration frameworks. Recently, several studies have pro-
posed cancer driver gene prediction methods integrating multi-
omics features based on graph deep learning. EMOGI is an inter-
pretable machine learning method based on graph convolutional
networks (GCN) that combine genomics, epigenomics, and tran-
scriptomics data as gene features with protein-protein interaction
(PPI) networks to learn more abstract gene features [14]. MTGCN
is a GCN-based multitask learning framework that simultaneously
optimizes the node prediction and the link prediction task during
the learning of node embedding features [15]. These existing
methods are designed based on PPI networks.

However, considering the limitations of PPI networks (e.g.,
incomplete interaction profiles and the existence of research bias)
and the fact that the performance of graph deep learning models
relies heavily on the reliability of graph structure, we introduce
heterogeneous information of multiple types of gene associations
(gene similarity, gene co-expression patterns, etc.) into the con-
struction of multidimensional gene networks, in which multi-omics
features are used as node features, and develop MODIG, a graph
attention network-based (GAT-based) model for efficient integra-
tion of cancer multi-omics data to facilitate the prediction of cancer
driver genes [16].

A GAT-Based Method for Cancer Driver Gene Identification 249

2 Materials and Methods

MODIG is a GAT-based cancer driver gene identification method
that generates gene representation by integrating multi-omics data
and multiple gene associations; it not only utilizes the labels of
labeled nodes in a multidimensional gene network but also the
topological features of unlabeled nodes [17]. The steps involved
in MODIG are as follows:

1. Generation of omics feature matrix: Calculate mutation rate,
differential DNA methylation level, and differential expression
rate for each gene by using multi-omics data.

2. Generation of gene association profiles: Measure gene associa-
tions based on gene co-expression pattern, gene sequence sim-
ilarity, gene pathway co-occurrence, gene semantic similarity,
and PPI.

3. Construction of multidimensional gene network: Use these gene
association profiles as multiple edges and multi-omics features
as node attributes.

4. Multi-omics and multidimensional graph attention network:
MODIG contains three modules: a multidimensional GAT
encoder, a joint learning module, and a multilayer perceptron
(MLP) classifier for learning knowledge from multidimen-
sional graphs to help in cancer driver gene prediction.

2.1 Generation of

Omics Feature Matrix

Gene features containing the mutation rate, differential DNA
methylation level, and differential expression rate are calculated by
using the cancer genomics (somatic mutations and copy number
variants), epigenomics (DNA methylations), and transcriptomics
(gene expressions) data collected from TCGA, covering over
8000 samples and 16 different cancer types.

1. Gene mutation rate: Calculate the average of single nucleotide
variations and copy number aberrations in a cancer type. Use
the number of non-silent mutations in that gene divided by the
exon length as the mutation frequency of each gene and the
number of times that gene is amplified or deleted in a given
cohort as the copy number mutation rate for each gene.

2. Differential DNA methylation rate: Calculate the average of
the differences in methylation signal between tumor and
matched normal samples in a cancer type as in Eq. 1. For
each gene, the beta(β) values of all CpG sites within the defined
promoter region were averaged to calculate the average pro-
moter methylation level after removing batch effects using
ComBat [18]:

250 Wenyi Zhao and Zhan Zhou

dmc
i =

1
SCj j

s ∈ SC

βt si - βn si ð1 Þ

where c denotes the specific cancer type, βt i , β
n
i are the

methylation levels of gene i in tumor and matched normal
samples, respectively, and SC is the number of all samples for a
given cancer type.

3. Differential expression rate: Calculate the mean of log2 fold
change between gene expression values in tumor versus
matched normal samples by using gene expression data after
quantile normalization and batch effect correction by
Combat [18].

4. Gene feature matrix: Concatenate these features as a gene
feature matrix ℝN × F , in which each row indicates a feature
vector for each gene, after a column-by-column (feature-wise)
min-max normalization. Set the missing values to 0.

2.2 Generation of

Gene Association

Profiles

The methods for gene association calculations are based on five
diverse metrics (gene co-expression pattern, gene sequence similar-
ity, pathway co-occurrence, gene semantic similarity, and PPI). For
these gene association profiles, the associated values are in the range
of [0, 1], where 1 indicates the highest association and 0 is the
lowest association.

1. Tissue co-expression: The co-expression pattern between a pair
of genes G1 and G2 is measured as the absolute Pearson’s
correlation coefficient of their gene expression vectors as in
Eq. 2, based on the gene expression profiles of 79 normal
human tissues (GEO code: GSE1133).

Rcoexp G1,G2ð Þ=
cov G1,G2ð Þ
σ G1ð Þσ G2ð Þ ð 2Þ

2. Gene sequence similarity: The protein sequences of all genes,
downloaded from the NCBI RefSeq database (released
February 2019), are aligned against each other by using the
BLASTP program [19] with defaulted parameters, and then
the sequence similarity between a pair of genes G1 and G2 is
calculated as in Eq. 3. The gene semantic similarity should be
normalized.

Rseq G1,G2ð Þ

=
BLASTbitscore G1,G2ð Þ þ BLASTbitscore G2,G1ð Þ
BLASTbitscore G1,G1ð Þ þ BLASTbitscore G2,G2ð Þ ð3Þ

3. Pathway co-occurrence: The gene co-occurrence relationship is
calculated using cosine similarity. A 337-dimensional vector is
constructed for each gene using the human cancer pathways

A GAT-Based Method for Cancer Driver Gene Identification 251

from the KEGG database (released June 2021), assigned 1 to
the dimension if the gene is included in the corresponding
pathway and 0 otherwise. Then the gene co-occurrence rela-
tionship of two genes G1 and G2 is measured as follows:

Rpath G1,G2ð Þ=
PG1

·PG2

PG1
j j PG2

j j ð 4Þ

4. Gene semantic similarity: The functional similarity is measured
based on the semantic similarity among the gene ontology
(GO) terms annotating genes by using an R package GOSem-
Sim [20]. Gene semantic similarity score is calculated by using a
best-match average strategy to combine the semantic similarity
scores of multiple GO terms measured as the Wang method
[21], which is implemented by setting the parameters of the
mgeneSim function with the “measure” parameter as “Wang”
and the “combine” parameter as “BMA.” The GO terms used
in measurement can be restricted by assigning the
corresponding parameter to “BP” (biological process), “MF”
(molecular function), and “CC” (cellular component). Thus,
given a pair of genes G1 and G2 annotated by GO terms, the
functional similarity is calculated as follows:

simBMA G1,G2ð Þ

= max

m

i =1

max
1≤ j ≤n

sim goi, goj

m
,

n

j =1

max
1≤ i ≤m

sim goi, goj

n

ð5Þ

RGO G1,G2ð Þ

= simBP
BMA G1,G2ð ÞsimMF

BMA G1,G2ð ÞsimCC
BMA G1,G2ð Þ3 ð6Þ

5. PPI: The PPIs are collected from different sources, while most
of them are downloaded from NDEx v2.5.1 [22], except for
the CPDB network (version 35 and version 34) [23] and the
STRING (version 11) network [24], the former being down-
loaded from http://cpdb.molgen.mpg.de/ and the latter
being collected from https://stringdb-static.org/download/
protein.links.v11.0/9606.protein.links.v11.0.txt.gz. The
CPDB and STRING networks only consider high-confidence
(probability of an interaction between two proteins) interac-
tions. Thus, “complex” interactions (more than two partners)
and interactions with scores <0.5 are excluded from the CPDB
network, and interactions with scores <0.85 are removed from
the STRING network.

http://cpdb.molgen.mpg.de/
https://stringdb-static.org/download/protein.links.v11.0/9606.protein.links.v11.0.txt.gz
https://stringdb-static.org/download/protein.links.v11.0/9606.protein.links.v11.0.txt.gz

252 Wenyi Zhao and Zhan Zhou

Fig. 1 Flowchart of multidimensional gene network construction

2.3 Construction of

Multidimensional Gene

Network

A multidimensional graph with about 20,000 nodes and two mil-
lion edges (containing 5 types) is constructed by integrating diverse
gene association profiles into a unified, gene-centric network, after
filtering out small association values (Fig. 1).

1. Filter out weak associations in gene association profiles: To retain
strongly correlated gene associations, the pathway
co-occurrence is set to 0.5. Since the network of tissue
co-expression and gene semantic similarity network is too
dense, the threshold is set to a higher value of 0.8. The gene
co-expression network retains approximately the top 1% of
highly correlated edges (see Notes 1 and 2).

2. Construct the multidimensional graph: The nodes in the graph
represent genes and the links represent their respective rela-
tionships, and it consists of a set of N nodes V = f v1, . . ., vN g
and D sets of edges f gE1, . . ., ED . Each edge set Ed describes
the d-th type of relation between the nodes in the
corresponding d-th dimension. These D types of relations can
be expressed by D adjacency matrices A(1) ,…, A(D) . Besides,
each node is characterized as a multi-omics feature vector (see
Note 3).

2.4 Multi-Omics and

Multidimensional

Graph Attention

Network

To learn knowledge from the multidimensional graph, instead of
fusing different edges into a single edge to form a homogeneous
graph, MODIG applies a GAT block for within-dimension interac-
tions to get the dimension-specific gene representations and a joint

learning module to adaptatively learn the importance of different
dimensional representations and fuse them by an attention mecha-
nism for downstream cancer driver gene prediction (Fig. 2).

A GAT-Based Method for Cancer Driver Gene Identification 253

Fig. 2 Schematic diagram of cancer driver gene prediction method, MODIG

2.4.1 Multidimensional

GAT Encoder

The GAT encoder is used to learn the within-dimension represen-
tation of genes, which is a GNN method that employs an attention
mechanism to aggregate node features [25]. Given the input vertex

feature h = h
→

1, h
→

2, . . ., h
→

n , h
→

i ∈ℝ
N ×F , where N is the number

of nodes and F is the number of features in each node. The 2 GAT
layers with 300 and 100 hidden channels and 3 attention heads
with a 0.25 dropout rate together are stacked as a GAT block.
Then, the GAT block is applied on intra-dimensional interactions
to generate dimension-specific gene representations Z1, Z2, Z3, Z4,
and Z5, respectively, by updating the vertex representations
through the following steps:

eij = a W h
→

i,W h
→

j ð7 Þ

eij =LeakReLU a
→T

W h
→

iW h
→

j ð 8Þ

αij = softmaxj eij =
exp eij

k∈ N i
exp eik

ð9Þ

h
→ 0

i = σ
1
K

K

K =1 j ∈N i

αk ijW
k h
→

j ð10Þ

where W and a
→

are trainable parameters and k is the concatenation
operation.

Þ ðL = - py * log σ xð Þ þ 1- yð Þ * log 1- σ xð Þð Þ ð 15Þ

254 Wenyi Zhao and Zhan Zhou

2.4.2 Joint Learning

Module

The joint learning module can adaptatively learn the importance of
different dimensional representations and fuse them by an attention
mechanism for downstream cancer driver gene prediction.

1. Cross-dimension information sharing: Given the representation
from D different dimensions as {Z1, . . .,ZM}, a self-attention
layer is employed to share information across all dimensions.
For each dimension-specific representation, associate a key
matrix Ki ∈ ℝ

n × k and a query matrix Qi ∈ ℝ
n × k with it as

follows:

K i =Z iW k, Q i =Z iW q ð11Þ
Then, propagate information among all dimensions as

follows:

Z i =

D

i =1

softmax
Q iK

T
i

k
p

D

i =1

Z i ð12Þ

Next, the final representation for i-th dimension w is calcu-
lated by incorporating the relevant global information Z i of the
i-th dimension with a weight α, as in Eq. 13.

Z 0
i = αZ i þ 1- αð ÞZ i, 0≤ α≤1 ð 13Þ

2. Multidimension fusion: A fusion layer learns the corresponding
importance of dimension-specific representations and com-
bines all dimension-specific representations to obtain the final
gene representation Zf as follows:

Z f =

D

i

wiZ
0
i, wi = softmax qT · tanh W · Z 0

i

T þ b ð14Þ

where q is a shared attention vector and wi is the weight of
the i-th dimension.

2.4.3 MLP Classifier After obtaining the final gene representation, a semi-supervised
classification task is performed with the MLP classifier to identify
cancer driver genes. The loss function is binary cross-entropy by
adding a weight of 2.7 for positive samples owing to the unbalance
of two classes (non-cancer and cancer genes) as in Eq. 15.

3 Implementation

3.1 Input Data 1. Omics feature matrix: Calculate the mutation rate, differential
DNA methylation level, and differential expression rate for
each gene in different types of cancer to obtain a gene feature
matrix, based on the multi-omics data collected from TCGA or
your cohort.

A GAT-Based Method for Cancer Driver Gene Identification 255

2. Labeled genes for training: The positive samples are obtained
from multiple sources, such as the Network of Cancer Genes
(NCG) v6.0 [26], COSMIC Cancer Gene Census (CGC v91)
[27], and DigSEE [28]. The negative samples are generated by
recursively removing potentially cancer-related genes from all
protein-coding genes, such as genes included in the NCG,
genes associated with cancer pathways in the KEGG database,
genes present in the Online Mendelian Inheritance in Man
(OMIM) database, MutSigdb predicted genes associated with
cancer, and genes whose expressions are associated with cancer
gene expression. As a result, 796 positive samples and 2187
negative samples were obtained for MODIG training (see Note
4).

3. Independent test sets: The first set (Independent Set 1) com-
prises manually curated cancer genes annotated according to
validated oncogenic effects from the OncoKB [29] database
and literature-curated cancer genes from the ONGene [30]
database. The second set (Independent Set 2) comprises candi-
date cancer genes from the NCG [26] which are nonoverlap-
ping with the known cancer gene set used for MODIG’s
training as well as high-confidence cancer genes compiled
using different computational tools [11].

3.2 Software To run MODIG downloading from GitHub (https://github.com/
zjupgx/modig), the following tools and packages must be
installed:

1. MODIG is written in Python 3.8, Pytorch 1.8.1, and Pytorch
geometric library 2.0.0 [31, 32]. In addition, the recommen-
dation parameters for MODIG are the use of the Adam opti-
mizer with a learning rate of 0.001, a weight decay of 0.0005,
and a dropout rate of 0.25 for 1000 epochs.

2. The command to run MODIG is python main.py -t output -ppi
CPDB. Several parameters can be tuned: --thr_go, --thr_seq, --
thr_exp, --thr_path, etc. Refer to the main.py file for a detailed
description of all parameters.

3. In the prediction results, genes with scores more than 0.99 are
considered potential cancer driver genes. In particular, the
thresholds are set artificially and can be adjusted accordingly
to the task.

4 Notes

1. The thresholds of gene association profiles are set artificially
based on a priori knowledge when constructing the edges for
the multidimensional graphs and can be adjusted according to
the specific task and input data.

https://github.com/zjupgx/modig
https://github.com/zjupgx/modig

256 Wenyi Zhao and Zhan Zhou

2. To further improve the performance of MODIG, some net-
work noise reduction methods can be considered to improve
the reliability of gene networks.

3. Assigning multi-properties to edges might comprise the scal-
ability of the model, especially for different cancer types. Con-
structing cancer-specific multidimensional gene networks may
be more suitable for cancer-specific driver gene prediction
tasks.

4. Due to issues such as label scarcity and lack of cancer-specific
networks, MODIG is currently not sufficiently reliable and not
recommended for driver gene prediction at the cancer-specific
level.

Acknowledgments

This work was supported by the National Natural Science Founda-
tion of China [Grant No. 32370712], the Zhejiang Provincial
Natural Science Foundation of China [Grant
No. LQ24C060005], the China Postdoctoral Science Foundation
[Grant No. 2023M743050], and the Postdoctoral Research Proj-
ect in Zhejiang Province. We thank the Information Technology
Center and State Key Lab of CAD&CG; the Innovation Institute
for Artificial Intelligence in Medicine, Zhejiang University; and
Alibaba Cloud for the support of computing resources. We also
gratefully acknowledge the clinical contributors and data producers
from the TCGA Research Network for referencing the TCGA
datasets.

References

1. Vogelstein B, Papadopoulos N, Velculescu VE
et al (2013) Cancer genome landscapes. Sci-
ence 340:1546–1558. https://doi.org/10.
1126/science.1235122

2. Martincorena I, Campbell PJ (2015) Somatic
mutation in cancer and normal cells. Science
349:1483–1489. https://doi.org/10.1126/
science.aab4082

3. Stratton MR, Campbell PJ, Futreal PA (2009)
The cancer genome. Nature 458:719–724.
https://doi.org/10.1038/nature07943

4. Zhu X, Zhao W, Zhou Z, Gu X (2023) Unra-
veling the drivers of tumorigenesis in the con-
text of evolution: theoretical models and
bioinformatics tools. J Mol Evol 91:405–423.
https://doi.org/10.1007/s00239-023-
10117-0

5. Cancer Genome Atlas Research Network,
Weinstein JN, Collisson EA et al (2013) The

Cancer Genome Atlas Pan-Cancer analysis
project. Nat Genet 45:1113–1120. https://
doi.org/10.1038/ng.2764

6. Zhang J, Bajari R, Andric D et al (2019) The
International Cancer Genome Consortium
Data Portal. Nat Biotechnol 37:367–369.
https://doi.org/10.1038/s41587-019-
0055-9

7. Cheng F, Zhao J, Zhao Z (2016) Advances in
computational approaches for prioritizing
driver mutations and significantly mutated
genes in cancer genomes. Brief Bioinform 17:
642–656. https://doi.org/10.1093/bib/
bbv068

8. Zhou Z, Zou Y, Liu G et al (2017) Mutation-
profile-based methods for understanding selec-
tion forces in cancer somatic mutations: a com-
parative analysis. Oncotarget 8:58835–58846.
https://doi.org/10.18632/oncotarget.19371

https://doi.org/10.1126/science.1235122
https://doi.org/10.1126/science.1235122
https://doi.org/10.1126/science.aab4082
https://doi.org/10.1126/science.aab4082
https://doi.org/10.1038/nature07943
https://doi.org/10.1007/s00239-023-10117-0
https://doi.org/10.1007/s00239-023-10117-0
https://doi.org/10.1038/ng.2764
https://doi.org/10.1038/ng.2764
https://doi.org/10.1038/s41587-019-0055-9
https://doi.org/10.1038/s41587-019-0055-9
https://doi.org/10.1093/bib/bbv068
https://doi.org/10.1093/bib/bbv068
https://doi.org/10.18632/oncotarget.19371

A GAT-Based Method for Cancer Driver Gene Identification 257

9. Zhao W, Yang J, Wu J et al (2021) CanDriS:
posterior profiling of cancer-driving sites based
on two-component evolutionary model. Brief
Bioinform 22:bbab131. https://doi.org/10.
1093/bib/bbab131

10. Martı́nez-Jiménez F, Muiños F, Sentı́s I et al
(2020) A compendium of mutational cancer
driver genes. Nat Rev Cancer:1–18. https://
doi.org/10.1038/s41568-020-0290-x

11. Bailey MH, Tokheim C, Porta-Pardo E et al
(2018) Comprehensive characterization of
cancer driver genes and mutations. Cell 173:
371–385.e18. https://doi.org/10.1016/j.
cell.2018.02.060

12. Bradner JE, Hnisz D, Young RA (2017) Tran-
scriptional addiction in cancer. Cell 168:629–
643. https://doi.org/10.1016/j.cell.2016.
12.013

13. Bell CC, Gilan O (2020) Principles and
mechanisms of non-genetic resistance in can-
cer. Br J Cancer 122:465–472. https://doi.
org/10.1038/s41416-019-0648-6

14. Schulte-Sasse R, Budach S, Hnisz D, Marsico A
(2021) Integration of multiomics data with
graph convolutional networks to identify new
cancer genes and their associated molecular
mechanisms. Nat Mach Intell 3:513–526.
https://doi.org/10.1038/s42256-021-
00325-y

15. Peng W, Tang Q, Dai W, Chen T (2021)
Improving cancer driver gene identification
using multi-task learning on graph convolu-
tional network. Brief Bioinform 23:bbab432.
https://doi.org/10.1093/bib/bbab432

16. Zhao W, Gu X, Chen S et al (2022) MODIG:
integrating multi-omics and multi-dimensional
gene network for cancer driver gene identifica-
tion based on graph attention network model.
Bioinformatics 38:4901–4907. https://doi.
org/10.1093/bioinformatics/btac622

17. Kipf TN, Welling M (2016) Semi-supervised
classification with graph convolutional net-
works. ICLR. arXiv:1609.02907

18. Johnson WE, Li C, Rabinovic A (2007) Adjust-
ing batch effects in microarray expression data
using empirical Bayes methods. Biostatistics 8:
118–127. https://doi.org/10.1093/biostatis
tics/kxj037

19. Shiryev SA, Papadopoulos JS, Sch€affer AA,
Agarwala R (2007) Improved BLAST searches
using longer words for protein seeding. Bioin-
formatics 23:2949–2951. https://doi.org/10.
1093/bioinformatics/btm479

20. Yu G, Li F, Qin Y et al (2010) GOSemSim: an
R package for measuring semantic similarity
among GO terms and gene products. Bioinfor-
matics 26:976–978. https://doi.org/10.
1093/bioinformatics/btq064

21. Wang JZ, Du Z, Payattakool R et al (2007) A
new method to measure the semantic similarity
of GO terms. Bioinformatics 23:1274–1281.
https://doi.org/10.1093/bioinformatics/
btm087

22. Pillich RT, Chen J, Churas C et al
(2021) NDEx: accessing network models and
streamlining network biology workflows. Curr
Protoc 1:e258. https://doi.org/10.1002/
cpz1.258

23. Herwig R, Hardt C, Lienhard M, Kamburov A
(2016) Analyzing and interpreting genome
data at the network level with Consensus-
PathDB. Nat Protoc 11:1889–1907. https://
doi.org/10.1038/nprot.2016.117

24. Szklarczyk D, Gable AL, Nastou KC et al
(2021) The STRING database in 2021: cus-
tomizable protein–protein networks, and func-
tional characterization of user-uploaded gene/
measurement sets. Nucleic Acids Res 49:
D605–D612. https://doi.org/10.1093/nar/
gkaa1074

25. Veličković P, Cucurull G, Casanova A et al
(2018) Graph attention networks. ICLR.
arXiv:1710.10903

26. Repana D, Nulsen J, Dressler L et al (2019)
The Network of Cancer Genes (NCG): a com-
prehensive catalogue of known and candidate
cancer genes from cancer sequencing screens.
Genome Biol 20:1. https://doi.org/10.1186/
s13059-018-1612-0

27. Tate JG, Bamford S, Jubb HC et al (2019)
COSMIC: the catalogue of somatic mutations
in cancer. Nucleic Acids Res 47:D941–D947.
https://doi.org/10.1093/nar/gky1015

28. Kim J, So S, Lee H-J et al (2013) DigSee:
disease gene search engine with evidence sen-
tences (version cancer). Nucleic Acids Res 41:
W510–W517. https://doi.org/10.1093/nar/
gkt531

29. Chakravarty D, Gao J, Phillips S et al (2017)
OncoKB: a precision oncology knowledge
base. JCO Precis Oncol:PO.17.00011.
https://doi.org/10.1200/po.17.00011

30. Liu Y, Sun J, Zhao M (2017) ONGene: a
literature-based database for human onco-
genes. J Genet Genomics 44:119–121.
https://doi.org/10.1016/j.jgg.2016.12.004

31. Paszke A, Gross S, Massa F, et al (2019)
PyTorch: an imperative style, high-
performance deep learning library. NeurIPS.
arXiv:1912.01703

32. Fey M, Lenssen JE (2019) Fast graph represen-
tation learning with PyTorch Geometric.
ICLR. arXiv:1903.02428

https://doi.org/10.1093/bib/bbab131
https://doi.org/10.1093/bib/bbab131
https://doi.org/10.1038/s41568-020-0290-x
https://doi.org/10.1038/s41568-020-0290-x
https://doi.org/10.1016/j.cell.2018.02.060
https://doi.org/10.1016/j.cell.2018.02.060
https://doi.org/10.1016/j.cell.2016.12.013
https://doi.org/10.1016/j.cell.2016.12.013
https://doi.org/10.1038/s41416-019-0648-6
https://doi.org/10.1038/s41416-019-0648-6
https://doi.org/10.1038/s42256-021-00325-y
https://doi.org/10.1038/s42256-021-00325-y
https://doi.org/10.1093/bib/bbab432
https://doi.org/10.1093/bioinformatics/btac622
https://doi.org/10.1093/bioinformatics/btac622
https://doi.org/10.1093/biostatistics/kxj037
https://doi.org/10.1093/biostatistics/kxj037
https://doi.org/10.1093/bioinformatics/btm479
https://doi.org/10.1093/bioinformatics/btm479
https://doi.org/10.1093/bioinformatics/btq064
https://doi.org/10.1093/bioinformatics/btq064
https://doi.org/10.1093/bioinformatics/btm087
https://doi.org/10.1093/bioinformatics/btm087
https://doi.org/10.1002/cpz1.258
https://doi.org/10.1002/cpz1.258
https://doi.org/10.1038/nprot.2016.117
https://doi.org/10.1038/nprot.2016.117
https://doi.org/10.1093/nar/gkaa1074
https://doi.org/10.1093/nar/gkaa1074
https://doi.org/10.1186/s13059-018-1612-0
https://doi.org/10.1186/s13059-018-1612-0
https://doi.org/10.1093/nar/gky1015
https://doi.org/10.1093/nar/gkt531
https://doi.org/10.1093/nar/gkt531
https://doi.org/10.1200/po.17.00011
https://doi.org/10.1016/j.jgg.2016.12.004

Chapter 14

Predictive Modeling of Anticancer Drug Sensitivity Using
REFINED CNN

Daniel Nolte, Omid Bazgir, and Ranadip Pal

Abstract

Over the past decade, convolutional neural networks (CNNs) have revolutionized predictive modeling of
data containing spatial correlations, specifically excelling at image analysis tasks due to their embedded
feature extraction and improved generalization. However, outside of image or sequence data, datasets
typically lack the structural correlation needed to exploit the benefits of CNN modeling. This is especially
true regarding anticancer drug sensitivity prediction tasks, as the data used is often tabular without any
embedded information in the ordering or locations of the features when utilizing data other than DNA or
RNA sequences. This chapter provides a computational procedure, REpresentation of Features as Images
with NEighborhood Dependencies (REFINED), that maps high-dimensional feature vectors into compact
2D images suitable for CNN-based deep learning. The pairing of REFINED mappings with CNNs enables
enhanced predictive performance through reduced model parameterization and improved embedded
feature extraction as compared to fully connected alternatives utilizing the high-dimensional feature
vectors.

Key words Deep learning, Convolutional neural networks, Drug sensitivity prediction

1 Introduction

A crucial intent of data-driven precision medicine for cancer thera-
peutics is to accurately identify the most effective anticancer drug or
combination of drugs for each individual tumor [1]. Anticancer
drug sensitivity prediction from high-dimensional molecular fin-
gerprints and genomics has substantially benefited from the surge
in the availability of high-throughput screening data [2]. Given the
vast number of features typically found in these high-dimensional
datasets, feature selection is a common critical step to achieve
enhanced predictive performance [3, 4]. With the rise in the
amount of data, numerous deep learning-based approaches have
shown outstanding drug sensitivity prediction performance as they
enable built-in feature extraction when supplied with enough sam-
ples [5]. In addition to improving the generalization performance,

Alexander Krasnitz and Pascal Belleau (eds.), Cancer Bioinformatics, Methods in Molecular Biology, vol. 2932,
https://doi.org/10.1007/978-1-0716-4566-6_14,
© The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature 2025

259

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-4566-6_14&domain=pdf
https://doi.org/10.1007/978-1-0716-4566-6_14#DOI

the built-in feature extraction removes the need to perform feature
selection, which can be time-consuming and expensive if done by a
subject matter expert. Since molecular features and genomics data
are typically represented as 1D vectors, these methods commonly
employ fully connected deep neural networks as there are no spatial
neighborhood correlations within the data to utilize the full poten-
tial of CNNs.

260 Daniel Nolte et al.

CNNs have emerged as the most established deep learning
algorithm in the past decade due to their ability to handle the spatial
correlations in images along with the rising availability of labeled
data. Throughout their dominant performance in the ImageNet
Large Scale Visual Recognition Competition (ILSVRC) from
2012 to 2017 [6], tremendous research and advancements were
developed which allowed deeper model architectures while improv-
ing the generalization performance [7, 8]. Utilizing the develop-
ments of CNNs, astounding results have been achieved in medical
imaging research [9], such as radiology [10] and magnetic reso-
nance imaging analysis [11], with some tasks achieving expert-level
performance. Regarding drug sensitivity prediction tasks, CNNs
have only been applied on DNA or RNA sequencing data, as the
sequences contain a natural ordering which can be processed by
one-dimensional (1D) CNNs. However, for other modalities of
data such as gene expression or molecular descriptors, the ordering
of the features does not contain relevant dependencies.

To make CNN-based learning amenable to these modalities,
REFINED [12] was developed as a representation learning meth-
odology with the aim of arranging high-dimensional vectors into
compact images conducive to CNN-based modeling. In this
arrangement, similar features are positioned close by, while dissim-
ilar features are placed far apart in the image. The REFINED
algorithm maps tabular data into images in two main phases:
(1) initial coordinate learning of each feature in the 2D space
using a manifold learning technique and unique nearest pixel place-
ment to avoid feature overlap and (2) hill climbing to optimize the
feature pixel locations to match the true feature distances while
maintaining unique pixels for each feature. REFINED CNN can be
applied to any tabular data and has achieved superior performance
on various drug sensitivity prediction and survival analysis tasks
[12–15]. This chapter presents a detailed overview of the procedure
to generate a REFINED mapping of input features and subse-
quently train a CNN on the mapped samples for accurate anticancer
drug sensitivity prediction.

2 Methods

REFINED is a general methodology that can be applied on any
type of tabular data and, as with all machine learning methods,
starts by preparing the data into a quantifiable form suitable for

computer consumption. For drug sensitivity tasks, we start by
extracting relevant features such as molecular drug descriptors or
individual tumor gene expression values. Once the data is in a
tabular form, the REFINED process begins initializing a mapping
to optimally place features on a 2D square grid. The feature
mapping can be viewed as a mapping of features to unique 2D
coordinates of a square grid large enough to fit all features.
REFINED initializes the mapping by learning a 2D manifold of
the features and assigning each feature to its closest unique pixel.
Then REFINED optimizes the feature mapping to mimic the true
feature distances calculated from all samples. Each learned coordi-
nate is associated with a pixel in an image, and a single image
mapping is universal across all samples. In other words, we learn
for the entire dataset, where the location of each feature resides in a
2D space such that similarity/dissimilarity among the features
remains as close as possible to the initial sample space before apply-
ing the manifold learning technique. Once the REFINED mapping
is optimized, every sample can be converted into an image and used
to train a CNN for prediction using conventional training methods.

REFINED CNN 261

The general steps involved in generating a REFINED CNN
model are depicted in Fig. 1 and are detailed as follows:

1. Data extraction and preprocessing: Extract and process the
molecular descriptors or genomics data such that each sample
is represented by a complete 1D numerical vector.

2. Initialize REFINED mapping: Apply an initial manifold
learning technique, such as multidimensional scaling (MDS),
on the features, and assign each feature to its closest unique
coordinate in a 2D grid space.

3. REFINED hill climbing: Optimize the feature mapping by
minimizing the difference between the new locations and true
distances among the features using hill climbing.

4. CNN model training: Use the learned mapping to transform
each 1D sample into compact 2D images, and use the images to
train a CNN.

2.1 Data Extraction

and Preprocessing

A wide range of data modalities have been identified as potential
predictors of drug sensitivity, such as various genetic characteriza-
tions and molecular descriptors. This data is typically extracted
using task specific quantification techniques which represent differ-
ent characterizations as 1D vectors of features. Here we focus on
molecular descriptors, although this method can be beneficial for
any 1D representation when there are enough high-dimensional
samples (see Note 1). For drug sensitivity prediction datasets, these
characterizations are conducted across an extensive range of poten-
tial cancer-inhibiting drugs, each representing a sample in the
dataset (see Note 2). Once the characterization has been collected

for each sample and centralized into one matrix, the data must be
preprocessed. Some characterizations can lead to missing values
due to numerous factors, and those features must be delt with
either through removal or imputation. Common imputation tech-
niques include filling the missing values with the mean of the

262 Daniel Nolte et al.

Fig. 1 Schematic overview of the REFINED CNN procedure. (1) Extract and preprocess data. (2) Initialize

REFINED by learning a 2D manifold and assigning each feature to its closest unique pixel on a unit square grid.

(3) Optimize the mapping to match the true feature distances in the initial sample space through hill climbing.

(4) Train a CNN on the mapped samples. (Reproduced from [12] (CC-BY 4.0))

feature, while more sophisticated techniques exist such as k-
nearest-neighbor [16] (kNN) or MissForest imputation
[17]. Depending on the characterization, one should ensure the
features are normalized such that they are all on the same scale (see
Note 3). Lastly, drug responses are often recorded as measures of
concentration resulting in half-maximal response which are loga-
rithmic in nature due to the dose administration protocol. To
correct for this, the concentrations are typically converted to sensi-
tivities using a negative log transformation, y = -

log (concentration).

REFINED CNN 263

2.2 REFINED

Manifold Learning

Now the preprocessed molecular features can be represented as a
complete n × p matrix, where n is the number of samples and p is the
number of features. The goal of using a manifold learning tech-
nique is to generate a p × 2 matrix where each of the p features
across the entire dataset are represented by two values, which are
particular features’ coordinates in a 2D space. Using the 2D mani-
fold, each feature can be assigned to its closest unique pixel on a
square grid in an iterative manner to arrive at an initial feature
mapping.

We start by learning a 2D manifold of the features rather than
the samples as normally done. We employ scikit-learn [18] mani-
fold functions such as multidimensional scaling [19] or t-SNE
[20]. This requires transposing the input data matrix as the scikit-
learn methods are programmed to transform row (sample) wise
rather than column (feature) wise. Using the learned manifold,
the features can then be projected into two dimensions represent-
ing each features’ coordinates on a 2D plane as a p × 2 matrix, L.
Subsequently, each feature must be mapped to a unique pixel to
avoid sparse images with multiple features occupying the same
location as shown in Fig. 2. Notice the sparsity in the top row of
images generated by directly utilizing the learned 2D manifold
which would result in deficient performance with CNNs as the
overlapping features would induce interference. To ensure unique
feature locations, we normalize the 2D coordinates onto the range
[0, 1] by ranking the x and y coordinates separately and dividing
each rank by p, essentially replacing each column of L with its
fractional ranking equivalent to acquire LRanked.

Next, we iteratively assign each feature to its closest unique
pixel. The process starts by initializing a q2 × 3 matrix, M(0) , whose
first two columns represent the x and y integers of pixel locations on
a q × q grid that acts as our 2D pixel space, with q calculated as

p
p

and the third column of M(0) reserved for selected feature indices.
The calculation of q ensures more pixels than features, allowing
each feature to have its own exclusive pixel on a unit square grid
with the unselected pixels set to null. Using the first two columns of
M(0) , the centroids of each pixel location can be calculated on the

M
range [0,1] through the element wise operation C ij =

ij

q
þ 1 .2q

Now the distances between feature locations in the 2D manifold
space and pixel centroids on the 2D square grid are easily calculated
using the pairwise Euclidean distance between the 2D centroids, C,
and the rank normalized 2D feature coordinates, LRanked.

264 Daniel Nolte et al.

Fig. 2 Depiction of REFINED images employing different manifold learning techniques, which generate

REFINED images with varying patterns. The top row of mappings depicts the overlapping features after

directly applying the initial manifold, while the bottom row shows the learned REFINED mappings with unique

pixels for each feature. Here, we used the molecular descriptors extracted from the NCI60 dataset with

chloramphenicol (NSC ID = 3069) as the sample drug in all images. (Reproduced from [13] (CC-BY 4.0))

Utilizing the pairwise distances, the iterative unique pixel
mapping begins by evaluating each feature for which pixel resides
closest to them. Since there will likely be feature collisions where
multiple features are closest to a particular pixel, all available pixels
are then evaluated, and the nearest feature among the ones who
selected that pixel is assigned to it by placing the feature index into
the third column of M at the specific pixel’s row. This iteratively
repeats for all unassigned features until all features have been
assigned a unique pixel in the 2D mapping. Once each feature has
been assigned a pixel, we have arrived at the initial REFINED
feature mapping, M(0) , which we subsequently further optimize.
Note that, depending on the choice of manifold learning tech-
nique, the different similarity/dissimilarity metrics can lead to
diverse patterns in the generated REFINED mappings, which can
be combined to create an ensemble of REFINED CNN models (see
Note 4).

2.3 Hill Climbing In an image, we have discrete 2D coordinates, but the 2D coordi-
nates learned through manifold learning are continuous and often
so sparse that a cluster of features likely has multiple features
occupying a single pixel. When solving the previous initial mapping,
compromises occur for all multiple-feature to single-pixel

collisions. To resolve this issue, we apply a hill climbing technique
such that, in an iterative approach, we arrive at a locally optimal
mapping that closely mimics the true feature distances in the
n-dimensional sample space.

REFINED CNN 265

The hill climbing process begins by calculating the pairwise
distances between the features on the initial n × p tabular data,
resulting in a p × p symmetric matrix, δ. This matrix serves as the
ground-truth feature distances that will be approximated in the 2D
mapping using the hill climbing procedure. Next, the initial 2D
feature mapping, M(0) , can be evaluated by calculating the pairwise
Euclidean distance in the mapped 2D grid space, resulting in a p × p
symmetric matrix, δ. Using these distances, we can now compute a
loss function of the difference between feature distances in the
initial and mapped spaces that will be minimized through the hill
climbing process:

L δ, δ =

p

i =1

p

j =1

δi,j - δi,j

2

p

i =1

p

j =1

δi,j
2

With the loss function defined, the iterative process begins
performing permutations by swapping each pixel with its eight
adjacent pixels in the case of selecting a 3 × 3 kernel, resulting in
nine configurations for each pixel including its initial location. Each
configuration is evaluated using L, and the swap that results in the
lowest loss is the one that is performed for each pixel. This proce-
dure can be computationally expensive and would be computation-
ally impracticable if considering all potential feature location
combinations sequentially. Therefore, a heuristic permutation
method was used in the implementation of [12] by breaking the
full q × q mapping into separate adjacent 3 × 3 grids, with the pixels
under evaluation occupying the center of each 3 × 3 grid. For
example, for the first grid structure, the top-left most pixel, and
every pixel spaced three pixels apart vertically or horizontally until
the limit of the image has been reached, is evaluated. This allows
parallel processing of each grid separately by distributing a subset of
centroid coordinates to separate processors (see Note 5). Using this
method, the only pixels that are evaluated are spaced three pixels
apart vertically or horizontally, removing the potential for collisions
between the separate processes. To evaluate every pixel on the 2D
mapping, each 3 × 3 grid structure is shifted to nine distinct loca-
tions such that every pixel of the top-left most 3 × 3 grid of the
image resides at the center once. This moves every grid in the same
direction and is done iteratively, with the centroid pixels being
selected and distributed to each process and the processes returning
the best locations for each of their given centroids. Then the best

swap for each centroid pixel is performed for the current grid
evaluation structure, and subsequently, the next group of centroid
pixels are considered until all pixels have been evaluated. At the end
of evaluating and swapping all pixels to their locally optimal loca-
tions, we have arrived at the next feature map, M(k) , with k being
the iteration number. This process repeats for the user specified
number of iterations, or until a suitable loss has been achieved.
After the optimal mapping, M, is obtained, we can map each 1D
feature vector into 2D images suitable for CNN utilization. This
involves transforming each of the n rows of samples into images by
applying the learned mapping.

266 Daniel Nolte et al.

2.4 Model Training Training a REFINED CNN model is highly dependent on the
complexity of the problem, the availability of enough training
samples, and sufficient computational resources. CNNs contain
many hyperparameters, and finding an optimal architecture is
often task specific. For instance, in [12], the CNN architecture we
used for the NCI60 dataset takes a single REFINED image of
molecular drug descriptors as the input for prediction since we
had a relatively large training dataset for each cell line. However,
in the same paper, the CNN model for the GDSC dataset takes two
REFINED images, one associated with molecular descriptors and
another associated with cell line gene expressions, to predict the
drug response. Based on our experimentation, the width of the
CNN is as important as its depth since we want to extract as much
information as possible from the entire raw features in the
REFINED images. We have noticed that increasing the number
of kernels in the convolutional layers often helps extract more
abstract feature maps heuristically.

Once the samples have been converted into images, we typically
employ PyTorch [21] or TensorFlow [22], regardless of the ver-
sion, for the implementation and training of deep neural networks
including CNNs. Throughout the rest of the chapter, we will be
focusing on a PyTorch implementation such as the code found in
[14, 15], although a TensorFlow implementation can be found in
the code of [12]. First, the model architecture is initialized by the
user specifying the desired layers, such as convolutional layers,
pooling layers, or dense layers, along with activation functions
and hyperparameters that match the task complexity. In PyTorch,
this is done by initializing a class that inherits the PyTorch Module
class, leaving the user to define two functions: one for the model
architecture in an __init__ method and another method, forward,
that takes a data matrix as input and performs a forward pass of the
data through each of the previously defined layers.

With the model defined, the user can select which optimizer to
use for training such as stochastic gradient decent (SGD) or Adam.
We typically had success using the Adam optimizer. Next, the
images should be split into training and evaluation datasets and

be prepared for input into another user-defined method for train-
ing. In the user-defined training method, the process will repeat for
the specified number of training epochs, or until a valid spotting
point is reached. This process consists of multiple steps made easy
through PyTorch functions. At the beginning of an epoch, the
gradient of the optimizer must be set to zero or NONE using the
optimizer objects zero_grad method. Next, using an object of the
user-defined model class from before, make a forward pass of the
data by calling the object with the data as input. Finally, a specific
loss, such as mean squared error (MSE), can be calculated using a
PyTorch evaluation metric or user-defined method, and the loss can
be backpropagated through the model using the backward method
on the loss object before calling the step method on the optimizer
object. These two methods will handle the backpropagation of the
gradients and updating of the model parameters, and this process
can be run for the specified number of epochs or until training is
halted (see Note 6).

REFINED CNN 267

With the model now trained to predict drug sensitivity using
input REFINED images, it is important to verify the generalization
performance of the model by evaluating the predictive performance
on the held-out evaluation set. This can be done by using the
trained model to predict the evaluation dataset responses and cal-
culate a desired metric using the true and predicted responses
which is typically done with a user-defined evaluation method
that evaluates the model on an input dataset.

3 Notes

1. In [12], we conducted an experiment to compare REFINED
CNN predictive performance using normalized root mean
squared error (NRMSE) metric with synthetic data, where we
created a dataset with various sample sizes (ranging between
50 and 10,000), various feature sizes (ranging between 20 and
4000), and different spurious feature ratios (20%, 50%, and
80%). We observed that, in the case of availability of a minimal
number of samples (< 200), or small number of features
(<100), it is more efficient to use shallow models (e.g., support
vector machines or random forests) rather than REFINED
CNNs. Figure 3 shows the results of the abovementioned
experiment in the case of 20% spurious features—complete
results could be found in [12].

2. Molecular descriptors or fingerprints can be extracted using
various descriptor calculation software packages such as
PaDEL [23], Mordred [24], and RDKit [25]. In [12–14], we
used the PaDEL software package in conjunction with each
unique inhibitor’s NSC identifier to extract 672 descriptors
after removal of features with missing values.

268 Daniel Nolte et al.

Fig. 3 Experimental results showing the predictive performance of REFINED CNN compared with random

forests, support vector machines, and fully connected deep neural network methods while varying the number

of samples and features available for model training using a synthetic dataset with 20% spurious features.

(Reproduced from [12] (CC-BY 4.0))

3. For preprocessing steps such as normalization and imputation,
we utilize the python package scikit-learn due to its versatile
and user efficient functionality. Scikit-learn has a range of mod-
ules for various machine learning tasks such as imputation,
feature selection, manifold learning, normalization, and various
predictive modeling algorithms, all packaged with the same
user-friendly functionality.

4. Depending on the choice of the initial manifold learning tech-
nique, the pattern of the REFINED image and consequently
the predictive performance of the REFINED CNN would be
different. In [13, 15], we have shown that an ensemble of
REFINED CNN models, trained on separate REFINED map-
pings from different manifold learning techniques, can achieve
improved model performance through stacking the associated
CNN predictions with a simple linear regression. Figure 4
depicts a setup where four CNN models are trained using
four separate REFINED mappings initialized from different
manifold learning techniques. This can be performed by
repeating steps 2–4 for different manifold learning methods
and learning an additional linear regression on a separate held-
out dataset to combine the individual predictions into an accu-
rate ensemble prediction.

5. For parallel processing of the hill climbing method, we used the
MPI for Python package [26] which allowed one processor to
act as the coordinating server and the remaining processors to
act as clients. With this architecture, the server communicates

REFINED CNN 269

Fig. 4 Depiction of Ensemble REFINED: Four different REFINED images were

created using MDS, Isomap, Laplacian eigenmaps (LE), and locally linear

embedding (LLE), and for each set of REFINED images, a CNN was trained

stacked using a linear regression model. (Reproduced from [13] (CC-BY 4.0))

the centroids to each of the clients and performs the swaps
given the optimal swaps received from the clients. That leaves
the clients to evaluate each of the nine swaps for all their given
centroids and communicate to the server the optimal locations.

6. When training deep networks, employing early stopping and
dynamic learning rate reduction is common to improve gener-
alization error by reducing model overfitting. This is done at
the cost of samples as the training and evaluation partitions
must also accommodate another partition, termed the valida-
tion set, for model evaluation at each epoch. Although any
percentage can be used depending on the number of samples
available, a common splitting percentage is 60%, 20%, and 20%
for the training validation and test datasets, respectively, as this
reduces the potential sampling variation noise for validation
and testing. Early stopping and learning rate schedulers track
the number of successive epochs in which the model does not
improve. After a specified number of epochs without improve-
ment, the model reduces the learning rate by a user-defined

270 Daniel Nolte et al.

factor or halts training for learning rate scheduling and early
stopping, respectively. In [12–15], early stopping was
employed as it led to appropriately fit models with greater
generalization performance and [14] also employed learning
rate reduction to help fine-tune the models.

References

1. Krzyszczyk P et al (2018) The growing role of
precision and personalized medicine for cancer
treatment. Technology (Singap World Sci)
6(3–4):79–100. https://doi.org/10.1142/
S2339547818300020

2. Ling A, Gruener RF, Fessler J, Huang RS
(2018) More than fishing for a cure: the pro-
mises and pitfalls of high throughput cancer
cell line screens. Pharmacol Ther 191:178–
189. https://doi.org/10.1016/j.pharmthera.
2018.06.014

3. Dong Z et al (2015) Anticancer drug sensitiv-
ity prediction in cell lines from baseline gene
expression through recursive feature selection.
BMC Cancer 15:489. https://doi.org/10.
1186/s12885-015-1492-6

4. Koras K et al (2020) Feature selection strate-
gies for drug sensitivity prediction. Sci Rep
10(1):9377. https://doi.org/10.1038/
s41598-020-65927-9

5. Baptista D, Ferreira PG, Rocha M (2021) Deep
learning for drug response prediction in cancer.
Brief Bioinform 22(1):360–379. https://doi.
org/10.1093/bib/bbz171

6. Russakovsky O et al (2015) ImageNet large
scale visual recognition challenge. Int J Com-
put Vis 115(3):211–252. https://doi.org/10.
1007/s11263-015-0816-y

7. Krizhevsky A, Sutskever I, Hinton GE (2012)
ImageNet classification with deep convolu-
tional neural networks. Association for Com-
puting Machinery, New York

8. He K, Zhang X, Ren S, Sun J (2016) Deep
residual learning for image recognition. In:
Paper presented at the Proceedings of the
IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) IEEE, Las
Vegas, NV, USA

9. Sarvamangala DR, Kulkarni RV (2022) Con-
volutional neural networks in medical image
understanding: a survey. Evol Intell 15(1):
1–22. https://doi.org/10.1007/s12065-
020-00540-3

10. Yamashita R, Nishio M, Do RKG, Togashi K
(2018) Convolutional neural networks: an
overview and application in radiology. Insights

Imaging 9(4):611–629. https://doi.org/10.
1007/s13244-018-0639-9

11. Bernal J et al (2019) Deep convolutional neural
networks for brain image analysis on magnetic
resonance imaging: a review. Artif Intell Med
95:64–81. https://doi.org/10.1016/j.
artmed.2018.08.008

12. Bazgir O et al (2020) Representation of fea-
tures as images with neighborhood dependen-
cies for compatibility with convolutional neural
networks. Nat Commun 11(1):4391. https://
doi.org/10.1038/s41467-020-18197-y

13. Bazgir O, Ghosh S, Pal R (2021) Investigation
of REFINED CNN ensemble learning for anti-
cancer drug sensitivity prediction. Bioinfor-
matics 37(Suppl_1):i42–i50. https://doi.org/
10.1093/bioinformatics/btab336

14. Nolte D, Bazgir O, Ghosh S, Pal R (2023)
Federated learning framework integrating
REFINED CNN and Deep Regression For-
ests. Bioinform Adv 3(1):vbad036. https://
doi.org/10.1093/bioadv/vbad036

15. Bazgir O, Lu J (2023) REFINED-CNN frame-
work for survival prediction with high-
dimensional features. iScience 26(9):107627.
https://doi.org/10.1016/j.isci.2023.107627

16. Troyanskaya O et al (2001) Missing value esti-
mation methods for DNA microarrays. Bioin-
formatics 17(6):520–525

17. Stekhoven DJ, Bühlmann P (2012)
MissForest—non-parametric missing value
imputation for mixed-type data. Bioinformat-
ics 28(1):112–118

18. Pedregosa F et al (2011) Scikit-learn: machine
learning in Python. J Mach Learn Res 12:
2825–2830

19. Borg I, Groenen PJ (2005) Modern multidi-
mensional scaling: theory and applications.
Springer Science & Business Media, New York

20. Van der Maaten L, Hinton G (2008) Visualiz-
ing data using t-SNE. J Mach Learn Res
9(11):2579–2605

21. Paszke A et al (2019) Pytorch: an imperative
style, high-performance deep learning library.
Adv Neural Inf Process Syst 32:8026–8037

https://doi.org/10.1142/S2339547818300020
https://doi.org/10.1142/S2339547818300020
https://doi.org/10.1016/j.pharmthera.2018.06.014
https://doi.org/10.1016/j.pharmthera.2018.06.014
https://doi.org/10.1186/s12885-015-1492-6
https://doi.org/10.1186/s12885-015-1492-6
https://doi.org/10.1038/s41598-020-65927-9
https://doi.org/10.1038/s41598-020-65927-9
https://doi.org/10.1093/bib/bbz171
https://doi.org/10.1093/bib/bbz171
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s12065-020-00540-3
https://doi.org/10.1007/s12065-020-00540-3
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.1016/j.artmed.2018.08.008
https://doi.org/10.1016/j.artmed.2018.08.008
https://doi.org/10.1038/s41467-020-18197-y
https://doi.org/10.1038/s41467-020-18197-y
https://doi.org/10.1093/bioinformatics/btab336
https://doi.org/10.1093/bioinformatics/btab336
https://doi.org/10.1093/bioadv/vbad036
https://doi.org/10.1093/bioadv/vbad036
https://doi.org/10.1016/j.isci.2023.107627

REFINED CNN 271

22. Abadi M et al (2016) Tensorflow: large-scale
machine learning on heterogeneous
distributed systems. arXiv preprint
arXiv:160304467

23. Yap CW (2011) PaDEL-descriptor: an open
source software to calculate molecular descrip-
tors and fingerprints. J Comput Chem 32(7):
1466–1474

24. Moriwaki H, Tian Y-S, Kawashita N, Takagi T
(2018) Mordred: a molecular descriptor calcu-
lator. J Chem 10(1):1–14

25. Landrum G. RDKit: open-source cheminfor-
matics. https://www.rdkit.org

26. Dalcin L, Fang Y-LL (2021) mpi4py: status
update after 12 years of development. Comput
Sci Eng 23(4):47–54

https://www.rdkit.org

Chapter 15

Anticancer Monotherapy and Polytherapy Drug Response
Prediction Using Deep Learning: Guidelines and Best
Practices

Amin Emad and David Earl Hostallero

Abstract

Cancer precision medicine aims to identify the best course of treatment for an individual. To achieve this
goal, two important questions include predicting the response of an individual to a treatment strategy and
identifying molecular markers that determine the response. The rapid growth of large publicly available
databases containing clinical and molecular characteristics of cancer-derived samples paired with their
response to single or multiple drugs, has enabled the development of computational models to answer
these questions. In recent years, various deep learning models have been proposed to predict the response
to polytherapy and monotherapies. However, selecting among all available options or developing new
models for a particular study requires careful considerations and best practices to avoid various pitfalls. In
this chapter, and drawing from our own studies, we will discuss various important points for choosing,
utilizing, and developing such deep learning tools.

Key words Drug response prediction, Drug synergy prediction, Deep learning, Machine learning,
Cancer precision medicine, Omics

1 Introduction

The rapid growth of large databases containing molecular and
clinical properties of cancer derived samples and their response to
different drugs or drug combinations such as TCGA [1], CCLE
[2], CTRP [3], DepMap [4], GDSC [5], DrugComb [6], Drug-
CombDB [7], as well as advances in the area of deep learning
(DL) [8] has fueled the development of computational models
for precision cancer medicine. In particular, various DL models
have been recently proposed to predict the response to monothera-
pies (henceforth referred to as drug response prediction (DRP))
and predicting the synergism of drug-pairs (henceforth referred to
as drug synergy prediction (DSP)). Given the number of existing
tools and potential approaches for these tasks, careful

Alexander Krasnitz and Pascal Belleau (eds.), Cancer Bioinformatics, Methods in Molecular Biology, vol. 2932,
https://doi.org/10.1007/978-1-0716-4566-6_15,
© The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature 2025

273

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-4566-6_15&domain=pdf
https://doi.org/10.1007/978-1-0716-4566-6_15#DOI

considerations are required to select the best approach for a partic-
ular application or dataset. Drawing examples from different tools
that we have developed and studies that we have performed in this
domain [9–14], we will discuss various important points for choos-
ing, utilizing, and developing DL tools for DRP and DSP. While
our focus will be on DL models, most of the guidelines provided
here also apply to traditional machine learning or statistical
approaches.

274 Amin Emad and David Earl Hostallero

In this chapter, we use the term “samples” to refer to a wide
range of cancer derived samples such as cancer cell lines (CCLs),
patient-derived xenografts (PDX), and tumors, for which one
wants to predict the effect of one or multiple drugs. We define
DRP as the problem of predicting the response of samples to a
specific compound. Similarly, DSP is concerned with predicting the
synergy of two compounds, when used as a combinational treat-
ment for a specific sample. We emphasize having a sample as an
important distinction from related problems, such as drug combi-
nation recommendation and drug repurposing, in which the
recommendations are not specific to a sample.

2 Methods

2.1 Preliminary

Considerations and

Overall Computational

Pipeline

Prior to choosing the best tool or developing a new one, several
questions should be answered. These questions clarify the specifica-
tions of the problem and will affect different aspects of the model.
Some examples are provided below.

1. What are the input features for the model? The input features
may involve different data modalities representing samples or
drugs, each requiring different preprocessing and quality con-
trol steps.

2. What is the output that needs to be predicted? The type of
output (e.g., Boolean, categorical, continuous) will affect the
choice of the model, its architecture, and the loss function.

3. What is the final goal of the prediction? In some applications,
one is interested in imputing missing values. For example, due
to the large number of possible drug-pairs and cancer cell lines
(CCLs), large databases of synergy scores (e.g., DrugComb
[6]) contain many missing values, and one may need to impute
those values. MARSY [14] is an example of such computational
model for the DSP task. Alternatively, one may want a model
that can predict response to a drug in new samples or for a new
drug. Each of these tasks may require different model architec-
tures, data processing, and evaluation.

4. Is the test set from the same domain as the training data or not?
In some applications, the test set for which one needs to make
predictions has distinct statistical characteristics. For example,

Deep Learning for Drug Response and Drug Synergy Prediction 275

Fig. 1 The typical computational pipeline for the prediction of response to monotherapies or combinational

therapies

we developed TG-LASSO [10] and TINDL [13] to predict the
response of cancer tumors (test set) based on models
completely trained on in vitro CCLs. In such an application,
various biological and technical differences may exist between
the train and test set (see [10, 13] for a discussion), which
would require models that can generalize to out of distribution
datasets.

While the answers to the questions above affect problem for-
mulation, the overall computational pipeline typically includes data
cleaning and preprocessing, data splitting, model training, predic-
tion, evaluation, and interpretation (Fig. 1). In what follows, we
will explain various aspects of these steps.

2.2 Model

Formulation

One of the main factors influencing the model formulation is the
type of variable to be predicted. In the context of DRP, when the
drug response is presented as area under the dose-response curve
(AUC), half-maximal inhibitory concentration (IC50), or similar
measures, regression models are used to predict these continuous
values. On the other hand, when the aforementioned measures are
binarized or categorical representations such as Response Evalua-
tion Criteria in Solid Tumours (RECIST) [15] are used, a classifi-
cation model is utilized. In the context of DSP, most commonly
used measures of synergism, which rely on Loewe additivity [16],
Bliss independence [17], and zero interaction potency (ZIP) [18],
are continuous values and can be predicted directly using a regres-
sion model, or their binarized versions can be predicted using a
classifier.

Typically, there are three main frameworks used to formulate
the DRP (or DSP) problem, depicted in Fig. 2. The first approach is
the single-task learning (STL) (Fig. 2a) framework, in which a
separate model is trained for each drug (or drug-pair). The input
to each model is molecular and clinical features of samples (such as
CCLs or tumors), but drug-specific features such as chemical
structures are not used. For example, TG-LASSO [10], a compu-
tational model that we developed for DRP of cancer tumors based
on a model trained on CCLs, falls under this category (even though
it is based on traditional ML). Similarly, TINDL [13], a DL model

with specialized tissue-informed normalization for the same task,
also falls in this category. On one hand, this framework directly uses
the knowledge of the drug identity, since the model is drug-
specific; however, when the number of drugs is large, this approach
will be computationally expensive. Moreover, information is not
shared across different drugs. Since drugs with similar targets or
mechanisms of action could be informative about each other,
approaches that jointly model the response of multiple drugs
(Fig. 2b, c) can be beneficial.

276 Amin Emad and David Earl Hostallero

Fig. 2 The three main frameworks used for problem formulation. Neural networks are used to present these

frameworks, but traditional machine learning (ML) or statistical models can also be categorized in a similar

manner

In the frameworks depicted in Fig. 2b, c, a single model is
trained for all drugs, and information about the similarities or
differences of drugs is shared. In the approach depicted in
Fig. 2b, a multitask learning (MTL) framework is used, and each
output node corresponds to a different drug. This approach shares
parameters and information across drugs, but the similarity and
differences of the drugs must be learned by the model during
training without relying on drug-specific features. Similar to the
previous framework, the input to the model are only the sample
features. As such, it is still not possible to predict the response of
drugs that do not exist in the training set.

In the third framework (Fig. 2c), both the sample and drug
features are used as input, and a single model is trained to predict
the response to any of the drugs in any of the samples. Generally,
this framework is more flexible as it does not limit the model’s
generalizability to drugs that are already in the training set. How-
ever, the quality and choice of representations for samples and
drugs play a larger part in the model’s predictive capacity. Depend-
ing on the priorities of the user, this flexibility can be traded off for
superior performance on the main task. As an example, BiG-DRP
[11], which is a deep learning model based on heterogenous graph
convolutional networks (HGCN) for DRP, uses this framework. In
this model, CCLs are represented using their baseline gene

expression profile (the mRNA abundance of their genes), and drugs
are represented based on their chemical structure (drug descriptors
[19] or Morgan fingerprints [20]). Additionally, a drug-CCL
bipartite graph is formed in which each drug is connected to the
1% of the training CCLs that are most sensitive to it (using “sensi-
tive” edges) and to the 1% of the CCLs that are most resistant to it
(using “resistant” edges). This graph enables information-sharing
across all CCLs and drugs. A two-layer HGCN is used to integrate
different representations to obtain better drug embeddings to
improve DRP performance.

Deep Learning for Drug Response and Drug Synergy Prediction 277

The DSP problem can also be formulated using the same three
frameworks, but with some modifications. The main difference is
that instead of predicting the response to a single drug, synergism
of two or multiple drugs are predicted. As a result, in the first
framework, one model per drug combination should be trained,
and in the second framework, a different output node for each drug
combination is required. For large numbers of unique drugs, the
number of all possible combinations (even pairs) grows rapidly,
resulting in the first two frameworks becoming computationally
infeasible. The third framework, however, can be used in which
features of multiple drugs need to be provided as input. We have
developed MARSY [14] to predict the synergism of different drug-
pairs in CCLs using the third framework (Fig. 2c). In this model, to
enable learning better representations, we also defined two auxiliary
tasks in a MTL framework such that the model also predicted
response of the CCLs to each individual drug. In this model,
CCLs were represented using their baseline gene expression profile,
but the drugs were represented using the gene expression profile
changes they would induce in two cancer cell lines. We observed
that in this task, this drug representation improves performance
compared to using the chemical structure of the drugs.

It is important to note that different variations of the three
frameworks above can also be used. For example, in the first frame-
work, one could train one model per sample by treating different
drugs as training instances. Or in the second framework, one could
have one output node for each CCL, instead of each drug. As a
result, the advantages of information-sharing as well as the limita-
tions in generalizability would be shifted from drugs to samples
(since the role of the two are swapped).

2.3 Model Inputs Various data modalities have been used for the DRP and DSP tasks.
For training purposes, the models require a measure of drug
response or drug synergism (mentioned earlier). Additionally, vari-
ous features can be used as input to the model to represent samples
and drugs. Molecular “omics” data are one category of features
widely used to represent samples. These can include protein abun-
dance, gene expression, methylation profile, mutations, copy num-
ber alternations, and other data modalities. Arguably, gene

expression profiles (nowadays mostly from RNA-seq) are the most
commonly used set of features and have been shown to be most
predictive of drug response in previous studies [21, 22]. One of the
challenges of using multi-omics data is the excessive number of
features that results in the “big-p, little-n” problem. More specifi-
cally, adding extra data modalities increases the number of features
without increasing the number of training instances. Consequently,
the computational model will be more prone to overfitting, nega-
tively affecting its generalizability and performance. As a result, we
recommend to start model training using one data modality and
then add additional data modalities carefully while controlling and
assessing overfitting using the validation set. Additionally, it is
possible that these extra modalities are not available for some of
the samples. While it may be tempting to drop samples with missing
modalities or employ some imputation strategies, the risk of over-
fitting (when dropping a significant number of samples) and pro-
pagating error (when imputing) should be carefully assessed. In
spite of these considerations, using multiple data modalities can
improve prediction performance [12].

278 Amin Emad and David Earl Hostallero

To represent different drugs (e.g., in the third framework in
Fig. 2c), different drug features can be used. Drug targets [23],
Morgan fingerprints [20], drug descriptors [19], change in gene
expression profile of cell lines treated with the drug [14, 24], or
other representations can be used to represent drugs from different
views. In a recent study, we benchmarked four state-of-the-art
interpretable DL models for DRP using different input features
[12]. Comparing the performance of these models when drug
targets or Morgan fingerprints (MFP) were used to represent
drugs, we observed that MFPs were more informative for predict-
ing the drug response of unseen CCLs. Similarly, we used MFPs
and drug descriptors in BiG-DRP [11] and observed that using
either of them provides good comparable performances (Table 3 of
[11]). In the context of DSP, we used these chemical representa-
tions, but also the gene expression changes of MCF7 and PC3
CCLs in response to each drug (from the LINCS dataset [24]) in
MARSY [14]. Our results showed that LINCS signatures resulted
in better synergy prediction, which may suggest the use of this data
modality as an alternative to chemical structure features (Table 5 of
[14]). The use of “raw” chemical structures, represented by graphs
[25], is also getting traction due to the increasing popularity of
graph neural networks (GNNs). Graph-based representations pro-
vide additional depth to data that is otherwise lost when using
vector-formatted drug features. For a comprehensive comparison
of different chemical structure-based representation, we refer to
[26]. Although GNNs seem to perform well, users have to take into
account the additional nuisances of training neural networks, such
as stochasticity and sample sizes.

Deep Learning for Drug Response and Drug Synergy Prediction 279

Other information such as protein-protein interaction (PPI)
networks or signaling pathways can also be useful in the context
of DRP or DSP. Several studies have used signaling pathways to
make DL models for DRP interpretable [27–30]. While this infor-
mation can improve interpretability, our analyses [12] showed that
they may not be able to improve the prediction performance com-
pared to baselines. Similarly, PPI or other biological networks can
be used for network-guided gene prioritization [9] or gene set
characterization [31], but the capability of these networks in
improving prediction performance is yet unclear. Given the increas-
ingly large experimental PPI studies [32] as well as computational
models that can accurately predict such networks [33], network
information may prove to be a significant contributor in not only
improving interpretability but also the prediction performance of
computational models in this field.

2.4 Preprocessing The first step of the computational pipeline (Fig. 1) involves data
cleaning and preprocessing. In this section, we will describe steps
that are applicable to different data modalities, instead of focusing
on the details of one particular data type.

2.4.1 Data Cleaning Depending on the quality of data, number of missing values, pat-
tern of missing values, presence of outliers, etc., different data
cleaning steps may be necessary. One of the main considerations
is how to deal with missing values in the input feature dataset. To
deal with missing values, two strategies are typically used. One is to
impute missing values. There are various methods for imputation,
and many of them work based on the principle that missing values
can be estimated based on the values of other samples or other
features. However, when the number of missing values is large, it is
recommended to exclude samples or features with many missing
values, since the imputation accuracy deteriorates as the number of
missing values increases. When the choice is between removing a
feature and a training instance, it is usually recommended to
remove features, since reducing the number of training instances
can negatively affect prediction performance and generalizability of
the model. Other methods for removing features could include
removing low-variance features or selecting a set of features based
on prior information.

Labels should also be inspected in advance. For instances where
drug response/synergy (labels) has duplicates, users should first
check the range of concentration. Unless the concentration range
is used to normalize the response/synergy, it is recommended that
all samples should be in the same concentration ranges for a specific
drug(pair); otherwise, the model may learn unwanted and unex-
pected relationships. Choose only one of the concentration ranges
if there are multiple; otherwise, it is also common to average the
labels.

280 Amin Emad and David Earl Hostallero

2.4.2 Normalization Most databases would provide FPKM or TPM data for gene expres-
sion. Although considered as normalized, the values of these can
still be very large. This can lead to extremely low/high magnitude
parameter values and gradients, which are not ideal for learning. We
recommend using log2(TPM + 1) or log2(FPKM + 1) for gene
expression data. Furthermore, we also recommend z-score normal-
ization per gene, so that the distributions of features are centered
around 0 and have a standard deviation of 1, which is more efficient
for deep learning (also see Note 1). However, normalization is not
necessary if the feature is binary, as in the case of mutation
and MFPs.

In addition to the normalization of features, normalization of
drug responses is also recommended in regression tasks, especially
in multitask frameworks (framework 2 and 3) (also see Note 2).
Specifically, you can z-score the drug responses prior to training
and save the summary statistics (mean and standard deviation) so
that you can use them to scale the predictions back to the original
distribution. This is because some drugs have distinct response
signatures (e.g., very high/low IC50 for all samples, low variance).
Normalizing the responses prevents the models from focusing on
the obvious biases of each drug and encourages the model to learn
more meaningful differences between samples.

2.4.3 Feature Selection

and Dimensionality

Reduction

One advantage of deep learning is its capacity to learn features of
high dimensional data without the need for feature selection.
However, feature selection and dimensionality reduction can still
improve deep learning models in efficiency and performance. For
continuous-valued features, low-variance features can be dropped
as they are less likely to be associated by the model with the output.
In other applications of machine learning, features that highly
correlate with each other are typically dropped or combined into
one feature. However, it is unclear whether this should be the case
for gene expression data because genes are not independent. As a
result, highly correlated genes can still be kept, or users can rely on
their intuition based on their prior knowledge.

Dimensionality reduction can be performed as part of prepro-
cessing. Principal component analysis (PCA) should be used with
care because PCA can only be applied for transductive tasks. Differ-
ent types of autoencoders can also be useful, especially if you have
an abundance of unlabeled samples. In a typical scenario, the auto-
encoder should only be trained using the training samples. In some
cases, it is inevitable that test samples should be used in training the
[auto]encoder. Researchers should carefully define the scope of
their model to prevent misinterpretations.

Deep Learning for Drug Response and Drug Synergy Prediction 281

2.4.4 Data

Homogenization

One recurring theme in DRP is the idea of preclinical-to-clinical
(P2C) DRP. In this scenario, the model is trained using preclinical
(in vitro) datasets, but with the end-goal of predicting for clinical
samples typically from a different dataset [10, 13]. It is important to
address statistical discrepancies and homogenize data when multi-
ple datasets are involved in the study. This can be performed as part
of data preprocessing, training, post hoc analysis, or a combination
of these. This step can typically be skipped when working with a
single dataset, except when starting with raw data where the data
has been gathered in multiple batches. One simple visual test to
check whether such homogenization is necessary is to plot the data
in two dimensions using PCA or other dimensionality reduction
methods. When there is an obvious separation of points between
the batches/datasets, then the data should be homogenized.

Data homogenization can be done during the preprocessing
using batch effect removal tools. Although different datasets have
much more distinction than different batches, multiple studies
[10, 34] have shown batch effect removal tools such as ComBat
[35] can still be effective in homogenizing gene expression data
from GDSC (cancer cell lines) and TCGA (tumors) in the context
of DRP.

In deep learning, we refer to these different datasets as different
“domains”. Domain adaptation methods such as DANN [36] and
ADDA [37] allow the model to generalize across different domains
using adversarial learning. These methods typically have two adver-
sarial components, the encoder and the discriminator. Encoders are
used to encode the inputs into embeddings in a common latent
space across datasets, while discriminator classifies the original
domain from the encoder’s output. The goal of the encoder is to
confuse the discriminator by making sure that the domain-specific
artifacts are removed. In theory, once the discriminator can no
longer tell the samples apart, then the embeddings are already
“homogenized” across the dataset. However, it should be noted
that unlike computer vision tasks, domain adaptation for biological
data is quite difficult to assess. In our previous study [13], we found
that a simple tissue-informed normalization could suffice in remov-
ing such discrepancies in preclinical-to-clinical DRP.

2.5 Data Splitting

and Its Implications for

the Application of the

Model

One of the most important considerations is data splitting for
training, hyperparameter tuning, and evaluation [12, 38]. As a
general rule, the training set is used to learn model parameters,
the validation set is used to tune the hyperparameters, and the test
set is used to evaluate the performance and generalizability. As a
result, the performance of the model on completely held-out test
data is the main measure of performance, since both the training
and validation sets have been used during training, and the perfor-
mance on those sets will be inflated and overoptimistic.

282 Amin Emad and David Earl Hostallero

Fig. 3 Three data splitting strategies for DRP and DSP tasks

In addition to the general rule above, data splitting strategy has
significant implications on the application and usability of a compu-
tational model for DRP or DSP (see Note 3). The most common
approach for splitting the data into train/validation/test is by
randomly selecting (sample, drug) pairs in DRP or (sample, drug-
pair) triples in DSP (Fig. 3a). As a result of this strategy, each sample
or each drug (or drug-pair) in the test set is present in the training
set, but not simultaneously together. For example, if (CCL1,
drug1) is in the test set, the training set may include (CCL1,
drug2) and (CCL2, drug1). Such a model is not recommended in
making predictions for completely unseen samples or completely
unseen drugs because there is a high risk that the model has been
overfitted on the seen drugs and samples. However, this model is
useful to impute missing values or to obtain biological insights
about the effect of drugs in different cancer types. In the context
of DSP in CCLs, even if the synergy score of drug-pairs is of
interest, the set of all possible triples of (CCL, drug1, drug2) is
extremely large. Since experimentally measuring the synergy score
of all such triples is costly and labor intensive, even the large
databases of synergy scores such as DrugComb contain many miss-
ing values. In such cases, a model that is trained to impute these
missing values can be quite useful. In [14], we developed MARSY
to address this issue. We showed that MARSY can accurately predict
the drug synergy scores (ZIP and Smean) both in the leave-triple-out
(described above) and in the more challenging leave-pair-out setup,
in which a drug-pair in the test set is never seen in the training set.
In addition to imputation, models trained using this framework can
be used to characterize drugs’ mechanisms of action and biomar-
kers of drug sensitivity as novel drug targets.

Another data splitting strategy is leave-cancer-sample-out
(or cancer-sample-blind). In this strategy, any sample in the test
set must not exist in the training or validation sets (Fig. 3b). This
strategy is particularly useful to train computational models for
precision medicine, in which the model should make predictions
for a new sample. We commonly use this data splitting strategy
(e.g., in TG-LASSO [10], TINDL [13], and BiG-DRP [11]) due
to its usefulness for precision medicine applications. However, to

train models capable of accurately making predictions on unseen
samples, a large number of training samples are necessary. As a
result, this strategy is not applicable when only a few (e.g., tens
of) samples are available. Another data splitting strategy is leave-
drug (or drug-pair)-out, which is also known as drug-blind in DRP
or drug-pair-blind in DSP (Fig. 3c). This strategy is similar to leave-
cancer-sample-out, with the difference that now drugs (or drug-
pairs) in the test set must not be present in the training or validation
set. This strategy is particularly useful for drug discovery. In [14],
we showed that MARSY can accurately predict synergy scores in a
leave-drug-pair-out setup.

Deep Learning for Drug Response and Drug Synergy Prediction 283

Depending on the application of a computational model, one
should carefully choose the data splitting strategy for training and
for evaluation. We recently benchmarked four interpretable DL
models for DRP using all three data splitting strategies [12] and
showed that accurate predictions in one strategy does not necessar-
ily translate into accurate predictions in another.

2.6 Baseline Models

and Ablation Study

One of the main steps in choosing the best computational model or
in evaluating the performance of a novel predictor is benchmarking
against alternative solutions. There are several categories of base-
lines that in our opinion are essential to achieve these goals, which
we have used in previous studies [10–14]. The first category are
baselines that we call naı̈ve predictors [12]. These are simple models
that make predictions without learning the relationship between
inputs and outputs. The main goal of these baselines is to charac-
terize potential inflation of performance metrics and provide a
lower bound that any useful predictor should surpass. As we have
discussed in our prior work [12], one such predictor works as
follows. Assuming a random (Fig. 3a) or a leave-cancer-sample-
out (Fig. 3b) split, for each drug (or drug-pair) the model reports
the mean (or median) response (or synergy score) of that drug
(drug-pair) across all samples in the training set. Alternatively, for
a random or a leave-drug or (drug-pair)-out split, for each sample
the model reports the mean (or median) response of that sample to
all drugs (or drug-pairs) in its training set. Alternative variations of
this model can also be designed that take into account drug families
or tissue types in prediction. Naive predictors are one major cate-
gory of baselines that are typically missing from publications in this
domain, which may contribute to the misinterpretation of the
quality of predictions. For example, the DRP methods that we
benchmarked in [12] showed higher performance metrics in a
leave-CCL-out framework compared to a leave-drug-out frame-
work; however, when those metrics were calibrated using the
corresponding naive predictors, their performances in these setups
were not too different. This is due to specific biases that may exist in
the dataset, which are not always easy to detect in advance. For
example, when using IC50, typically the naı̈ve predictor performs

well, since different drugs have vastly different IC50 values, and the
knowledge of the drug identity by itself is quite informative about
the response (also see Note 4).

284 Amin Emad and David Earl Hostallero

Ablated and alternative versions of a model are also a very
important category of baselines that must be assessed. Such base-
lines not only reveal which component of the model contributes
most to its performance but also ensure that a simpler model
cannot provide better or comparable results. For example, in
BiG-DRP [11], we observed that when both Morgan fingerprints
and drug descriptors are used simultaneously (requiring a more
complex model with more parameters), the performance was
slightly better than using each drug feature alone (Table 3 of
[11]). However, we opted for drug descriptors, since the perfor-
mance improvement was not large enough to justify the additional
parameters that increase the computational complexity and training
time. Including alternative versions of the model that have a com-
parable number of parameters while changing the architecture is
also quite useful. When there are many training instances, a model
with more parameters can perform better. To disentangle whether
an improved performance stems from an architecture modification
or simply the number of parameters, one needs to control for this.
For example, in [14], we evaluated various versions of MARSY
(Table 3 of [14]) to fully assess the trade-off between type of
encoder and number of parameters.

In addition to the aforementioned baselines, state-of-the-art
models designed for the same (or a similar) task as well as traditional
machine learning algorithms (e.g., random forests, support vector
machines, elastic net) should be included. For example, when
assessing four interpretable DL models for DRP [12], we observed
that a similar prediction performance could be achieved using a
random forest or a simple fully connected neural network.

As a final note, it is recommended that all baseline models be
trained and tested on the exact same training/validation/test sets
used for the original model. In addition, cross-validation can ensure
that a specific choice of data splitting is not the reason behind
performance variations across models. Finally, the hyperparameter
of baseline models should be tuned on the validation set or why
such an approach has not been taken clearly discussed.

2.7 Model

Interpretation

An important question in cancer precision medicine is the identifi-
cation of molecular markers (e.g., genes) that are predictive of
response to treatments. Such markers can reveal drug-cancer
dependencies, can characterize drugs’ mechanisms of action, and
can identify novel drug targets to overcome drug resistance. The
association between the molecular features of samples (e.g., gene
mRNA expression) and drug response (or drug-pair synergy score)
is one way to identify such markers. Simple correlation analysis or
methods that additionally incorporate known interactions among

molecular features can be used for this purpose. In [9], we devel-
oped ProGENI, a method based on random walks with restart
(RWR) for gene prioritization while incorporating known
protein-protein interactions (PPIs). In this method, first a small
number of genes are identified based on the correlation of their
expression across many samples to the response to a specific drug.
These genes are then used as the restart set in an RWR on a PPI
network to obtain a ranked list of genes associated with the drug of
interest. This approach enables the integration of PPIs with drug-
gene dependencies to obtain a more informative list of genes. Our
study (including wet-lab gene knockdown experiments) allowed us
to identify genes whose mRNA expression significantly influences
the response of a CCL to a drug, many of which were not identifi-
able using correlation analysis (or other methods) alone.

Deep Learning for Drug Response and Drug Synergy Prediction 285

An alternative to directly assessing the association between
molecular features and drug response is to utilize machine learning
models for DRP and DSP. Achieving this is related to the concept
of interpretable machine learning [39, 40]. Many traditional ML
methods (e.g., LASSO) perform feature selection and prediction
simultaneously, enabling the identification of a list of features. For
DL models, methods that quantify feature attribution scores
[41, 42] can be used to identify features that contribute most to
the prediction performance (e.g., see TINDL [13] and BiG-DRP
[11] for examples of how these methods can be used in DRP and see
Note 5 for some considerations).

Irrespective of how a list of top molecular features are obtained,
one typically needs to characterize their functional role. When top
genes or proteins are identified, gene ontology (GO) and pathway
enrichment analysis are widely used to this end. We have found the
gene set characterization (GSC) pipeline of KnowEnG (an online
computational platform) [31] to be particularly powerful due to
the wide variety of options it provides. In addition to supporting
standard Fisher’s exact test analysis with a wide range of GO and
pathway collections, it supports a network-guided mode of opera-
tion. This mode is an implementation of an algorithm called
DRaWR [43], which utilizes discriminative random walks to incor-
porate information from gene-level networks in this task, providing
a richer and more comprehensive view of involved pathways.

As a final note, we would like to point out that in spite of the
availability of the methods discussed here and other methods, the
field of interpretable DL for DRP and DSP is a lively field of study
with many recent innovations. Recent advances in this field rely on
developing DL architectures that are motivated by prior biological
knowledge [44] such as pathway information or PPIs. These inno-
vations coupled with large databases of experimentally character-
ized biological networks and computational models that can
predict them [33, 45] can have a significant impact in this field.

286 Amin Emad and David Earl Hostallero

3 Notes

1. When performing transformations that require statistics about
the data, consider calculating the statistics only using the train-
ing set to prevent data leakage. For example, when applying
z-score normalization to the features, calculate the mean and
standard deviation using only the training set. However, when
the entities in the test set and training set are the same, there is
no need for such consideration. For example, since drugs can
simultaneously be in the training and test sets in leave-cancer-
sample-out splitting, drug features can be normalized using all
the drugs.

2. Normalizing the drug responses is not recommended for tasks
that rely on drug rankings per sample because the normaliza-
tion changes the order of the drugs. Normalizing drug
responses is also not necessary if there are no obvious biases
in the responses.

3. When benchmarking models, data splits should be fixed and
consistent across different models to prevent unintended
advantages/disadvantages for some models.

4. The naı̈ve predictor is only one way to recalibrate our percep-
tion of evaluations. Another way is to calculate these metrics
per drug (e.g., Pearson’s correlation per drug) to remove the
main source of these biases. These numbers may appear less
impressive, but this highlights the difficulty of the task.

5. When interpreting the model, feature contributions can end up
being inconsistent across identical models with different initi-
alizations due to possible feature correlations and stochasticity
of training neural networks. For this reason, it is recommended
to repeat the pipeline (training and explaining) multiple times
with different initializations.

References

1. Cancer Genome Atlas Research N, Weinstein
JN, Collisson EA, Mills GB, Shaw KR, Ozen-
berger BA, Ellrott K, Shmulevich I, Sander C,
Stuart JM (2013) The Cancer Genome Atlas
Pan-Cancer analysis project. Nat Genet
45(10):1113–1120. https://doi.org/10.
1038/ng.2764

2. Barretina J, Caponigro G, Stransky N,
Venkatesan K, Margolin AA, Kim S, Wilson
CJ, Lehar J, Kryukov GV, Sonkin D,
Reddy A, Liu M, Murray L, Berger MF, Mon-
ahan JE, Morais P, Meltzer J, Korejwa A, Jane-
Valbuena J, Mapa FA, Thibault J, Bric-
Furlong E, Raman P, Shipway A, Engels IH,

Cheng J, Yu GK, Yu J, Aspesi P Jr, de Silva M,
Jagtap K, Jones MD, Wang L, Hatton C,
Palescandolo E, Gupta S, Mahan S,
Sougnez C, Onofrio RC, Liefeld T,
MacConaill L, Winckler W, Reich M, Li N,
Mesirov JP, Gabriel SB, Getz G, Ardlie K,
Chan V, Myer VE, Weber BL, Porter J,
Warmuth M, Finan P, Harris JL,
Meyerson M, Golub TR, Morrissey MP, Sellers
WR, Schlegel R, Garraway LA (2012) The
Cancer Cell Line Encyclopedia enables predic-
tive modelling of anticancer drug sensitivity.
Nature 483(7391):603–607. https://doi.
org/10.1038/nature11003

https://doi.org/10.1038/ng.2764
https://doi.org/10.1038/ng.2764
https://doi.org/10.1038/nature11003
https://doi.org/10.1038/nature11003

Deep Learning for Drug Response and Drug Synergy Prediction 287

3. Rees MG, Seashore-Ludlow B, Cheah JH,
Adams DJ, Price EV, Gill S, Javaid S, Coletti
ME, Jones VL, Bodycombe NE, Soule CK,
Alexander B, Li A, Montgomery P, Kotz JD,
Hon CS, Munoz B, Liefeld T, Dancik V, Haber
DA, Clish CB, Bittker JA, Palmer M, Wagner
BK, Clemons PA, Shamji AF, Schreiber SL
(2016) Correlating chemical sensitivity and
basal gene expression reveals mechanism of
action. Nat Chem Biol 12(2):109–116.
https://doi.org/10.1038/nchembio.1986

4. Ghandi M, Huang FW, Jane-Valbuena J, Kryu-
kov GV, Lo CC, McDonald ER 3rd,
Barretina J, Gelfand ET, Bielski CM, Li H,
Hu K, Andreev-Drakhlin AY, Kim J, Hess JM,
Haas BJ, Aguet F, Weir BA, Rothberg MV,
Paolella BR, Lawrence MS, Akbani R, Lu Y,
Tiv HL, Gokhale PC, de Weck A, Mansour AA,
Oh C, Shih J, Hadi K, Rosen Y, Bistline J,
Venkatesan K, Reddy A, Sonkin D, Liu M,
Lehar J, Korn JM, Porter DA, Jones MD,
Golji J, Caponigro G, Taylor JE, Dunning
CM, Creech AL, Warren AC, McFarland JM,
Zamanighomi M, Kauffmann A, Stransky N,
Imielinski M, Maruvka YE, Cherniack AD,
Tsherniak A, Vazquez F, Jaffe JD, Lane AA,
Weinstock DM, Johannessen CM, Morrissey
MP, Stegmeier F, Schlegel R, Hahn WC,
Getz G, Mills GB, Boehm JS, Golub TR, Garr-
away LA, Sellers WR (2019) Next-generation
characterization of the Cancer Cell Line Ency-
clopedia. Nature 569(7757):503–508.
https://doi.org/10.1038/s41586-019-
1186-3

5. Yang W, Soares J, Greninger P, Edelman EJ,
Lightfoot H, Forbes S, Bindal N, Beare D,
Smith JA, Thompson IR, Ramaswamy S,
Futreal PA, Haber DA, Stratton MR,
Benes C, McDermott U, Garnett MJ (2013)
Genomics of Drug Sensitivity in Cancer
(GDSC): a resource for therapeutic biomarker
discovery in cancer cells. Nucleic Acids Res 41
(Database issue):D955–D961. https://doi.
org/10.1093/nar/gks1111

6. Zagidullin B, Aldahdooh J, Zheng S, Wang W,
Wang Y, Saad J, Malyutina A, Jafari M,
Tanoli Z, Pessia A, Tang J (2019) DrugComb:
an integrative cancer drug combination data
portal. Nucleic Acids Res 47(W1):W43–W51.
https://doi.org/10.1093/nar/gkz337

7. Liu H, Zhang W, Zou B, Wang J, Deng Y,
Deng L (2020) DrugCombDB: a comprehen-
sive database of drug combinations toward the
discovery of combinatorial therapy. Nucleic
Acids Res 48(D1):D871–D881. https://doi.
org/10.1093/nar/gkz1007

8. LeCun Y, Bengio Y, Hinton G (2015) Deep
learning. Nature 521(7553):436–444.
https://doi.org/10.1038/nature14539

9. Emad A, Cairns J, Kalari KR, Wang L, Sinha S
(2017) Knowledge-guided gene prioritization
reveals new insights into the mechanisms of
chemoresistance. Genome Biol 18(1):153.
https://doi.org/10.1186/s13059-017-
1282-3

10. Huang EW, Bhope A, Lim J, Sinha S, Emad A
(2020) Tissue-guided LASSO for prediction of
clinical drug response using preclinical samples.
PLoS Comput Biol 16(1):e1007607. https://
doi.org/10.1371/journal.pcbi.1007607

11. Hostallero DE, Li Y, Emad A (2022) Looking
at the BiG picture: incorporating bipartite
graphs in drug response prediction. Bioinfor-
matics 38(14):3609–3620. https://doi.org/
10.1093/bioinformatics/btac383

12. Li Y, Hostallero DE, Emad A (2023) Interpret-
able deep learning architectures for improving
drug response prediction performance: myth
or reality? Bioinformatics 39(6). https://doi.
org/10.1093/bioinformatics/btad390

13. Hostallero DE, Wei L, Wang L, Cairns J, Emad
A (2023) Preclinical-to-clinical anti-cancer
drug response prediction and biomarker iden-
tification using TINDL. Genomics Proteomics
Bioinformatics 21:535. https://doi.org/10.
1016/j.gpb.2023.01.006

14. El Khili MR, Memon SA, Emad A (2023)
MARSY: a multitask deep-learning framework
for prediction of drug combination synergy
scores. Bioinformatics 39(4). https://doi.
org/10.1093/bioinformatics/btad177

15. Eisenhauer EA, Therasse P, Bogaerts J,
Schwartz LH, Sargent D, Ford R, Dancey J,
Arbuck S, Gwyther S, Mooney M,
Rubinstein L, Shankar L, Dodd L, Kaplan R,
Lacombe D, Verweij J (2009) New response
evaluation criteria in solid tumours: revised
RECIST guideline (version 1.1). Eur J Cancer
45(2):228–247. https://doi.org/10.1016/j.
ejca.2008.10.026

16. Loewe S (1953) The problem of synergism and
antagonism of combined drugs. Arzneimittel-
forschung 3(6):285–290

17. Liu Q, Yin X, Languino LR, Altieri DC (2018)
Evaluation of drug combination effect using a
Bliss independence dose-response surface
model. Stat Biopharm Res 10(2):112–122.
https://doi.org/10.1080/19466315.2018.
1437071

18. Yadav B, Wennerberg K, Aittokallio T, Tang J
(2015) Searching for drug synergy in complex

https://doi.org/10.1038/nchembio.1986
https://doi.org/10.1038/s41586-019-1186-3
https://doi.org/10.1038/s41586-019-1186-3
https://doi.org/10.1093/nar/gks1111
https://doi.org/10.1093/nar/gks1111
https://doi.org/10.1093/nar/gkz337
https://doi.org/10.1093/nar/gkz1007
https://doi.org/10.1093/nar/gkz1007
https://doi.org/10.1038/nature14539
https://doi.org/10.1186/s13059-017-1282-3
https://doi.org/10.1186/s13059-017-1282-3
https://doi.org/10.1371/journal.pcbi.1007607
https://doi.org/10.1371/journal.pcbi.1007607
https://doi.org/10.1093/bioinformatics/btac383
https://doi.org/10.1093/bioinformatics/btac383
https://doi.org/10.1093/bioinformatics/btad390
https://doi.org/10.1093/bioinformatics/btad390
https://doi.org/10.1016/j.gpb.2023.01.006
https://doi.org/10.1016/j.gpb.2023.01.006
https://doi.org/10.1093/bioinformatics/btad177
https://doi.org/10.1093/bioinformatics/btad177
https://doi.org/10.1016/j.ejca.2008.10.026
https://doi.org/10.1016/j.ejca.2008.10.026
https://doi.org/10.1080/19466315.2018.1437071
https://doi.org/10.1080/19466315.2018.1437071

288 Amin Emad and David Earl Hostallero

dose-response landscapes using an interaction
potency model. Comput Struct Biotechnol J
13:504–513. https://doi.org/10.1016/j.csbj.
2015.09.001

19. Landrum G (2013) RDKit: a software suite for
cheminformatics, computational chemistry,
and predictive modeling. Greg Landrum, 8:1–
31

20. Rogers D, Hahn M (2010) Extended-
connectivity fingerprints. J Chem Inf Model
50(5):742–754. https://doi.org/10.1021/
ci100050t

21. Jang IS, Neto EC, Guinney J, Friend SH, Mar-
golin AA (2014) Systematic assessment of ana-
lytical methods for drug sensitivity prediction
from cancer cell line data. Pac Symp
Biocomput:63–74

22. Costello JC, Heiser LM, Georgii E, Gonen M,
Menden MP, Wang NJ, Bansal M, Ammad-ud-
din M, Hintsanen P, Khan SA, Mpindi JP,
Kallioniemi O, Honkela A, Aittokallio T,
Wennerberg K, Community ND, Collins JJ,
Gallahan D, Singer D, Saez-Rodriguez J,
Kaski S, Gray JW, Stolovitzky G (2014) A com-
munity effort to assess and improve drug sensi-
tivity prediction algorithms. Nat Biotechnol
32(12):1202–1212. https://doi.org/10.
1038/nbt.2877

23. Szklarczyk D, Santos A, von Mering C, Jensen
LJ, Bork P, Kuhn M (2016) STITCH 5: aug-
menting protein-chemical interaction networks
with tissue and affinity data. Nucleic Acids Res
44(D1):D380–D384. https://doi.org/10.
1093/nar/gkv1277

24. Subramanian A, Narayan R, Corsello SM, Peck
DD, Natoli TE, Lu X, Gould J, Davis JF,
Tubelli AA, Asiedu JK, Lahr DL, Hirschman
JE, Liu Z, Donahue M, Julian B, Khan M,
Wadden D, Smith IC, Lam D, Liberzon A,
Toder C, Bagul M, Orzechowski M, Enache
OM, Piccioni F, Johnson SA, Lyons NJ, Berger
AH, Shamji AF, Brooks AN, Vrcic A, Flynn C,
Rosains J, Takeda DY, Hu R, Davison D,
Lamb J, Ardlie K, Hogstrom L, Greenside P,
Gray NS, Clemons PA, Silver S, Wu X, Zhao
WN, Read-Button W, Wu X, Haggarty SJ,
Ronco LV, Boehm JS, Schreiber SL, Doench
JG, Bittker JA, Root DE, Wong B, Golub TR
(2017) A next generation connectivity map:
L1000 platform and the first 1,000,000 pro-
files. Cell 171(6):1437–1452. e1417. https://
doi.org/10.1016/j.cell.2017.10.049

25. Liu Q, Hu Z, Jiang R, Zhou M (2020)
DeepCDR: a hybrid graph convolutional net-
work for predicting cancer drug response. Bio-
informatics 36(Suppl_2):i911–i918. https://
doi.org/10.1093/bioinformatics/btaa822

26. Zagidullin B, Wang Z, Guan Y, Pitkanen E,
Tang J (2021) Comparative analysis of molec-
ular fingerprints in prediction of drug combi-
nation effects. Brief Bioinform 22(6). https://
doi.org/10.1093/bib/bbab291

27. Deng L, Cai Y, Zhang W, Yang W, Gao B, Liu
H (2020) Pathway-guided deep neural net-
work toward interpretable and predictive mod-
eling of drug sensitivity. J Chem Inf Model
60(10):4497–4505. https://doi.org/10.
1021/acs.jcim.0c00331

28. Jin I, Nam H (2021) HiDRA: hierarchical net-
work for drug response prediction with atten-
tion. J Chem Inf Model 61(8):3858–3867.
https://doi.org/10.1021/acs.jcim.1c00706

29. Tang YC, Gottlieb A (2021) Explainable drug
sensitivity prediction through cancer pathway
enrichment. Sci Rep 11(1):3128. https://doi.
org/10.1038/s41598-021-82612-7

30. Zhang H, Chen Y, Li F (2021) Predicting
anticancer drug response with deep learning
constrained by signaling pathways. Front
Bioinform 1:639349. https://doi.org/10.
3389/fbinf.2021.639349

31. Blatti C 3rd, Emad A, Berry MJ, Gatzke L,
Epstein M, Lanier D, Rizal P, Ge J, Liao X,
Sobh O, Lambert M, Post CS, Xiao J,
Groves P, Epstein AT, Chen X, Srinivasan S,
Lehnert E, Kalari KR, Wang L, Weinshilboum
RM, Song JS, Jongeneel CV, Han J,
Ravaioli U, Sobh N, Bushell CB, Sinha S
(2020) Knowledge-guided analysis of “omics”
data using the KnowEnG cloud platform.
PLoS Biol 18(1):e3000583. https://doi.org/
10.1371/journal.pbio.3000583

32. Luck K, Sheynkman GM, Zhang I, Vidal M
(2017) Proteome-scale human interactomics.
Trends Biochem Sci 42(5):342–354. https://
doi.org/10.1016/j.tibs.2017.02.006

33. Szymborski J, Emad A (2022) RAPPPID:
towards generalizable protein interaction pre-
diction with AWD-LSTM twin networks. Bio-
informatics 38(16):3958–3967. https://doi.
org/10.1093/bioinformatics/btac429

34. Geeleher P, Cox NJ, Huang RS (2014) Clinical
drug response can be predicted using baseline
gene expression levels and in vitro drug sensi-
tivity in cell lines. Genome Biol 15(3):R47.
https://doi.org/10.1186/gb-2014-15-3-r47

35. Johnson WE, Li C, Rabinovic A (2007) Adjust-
ing batch effects in microarray expression data
using empirical Bayes methods. Biostatistics
8(1):118–127

36. Ganin Y, Lempitsky V (2015) Unsupervised
domain adaptation by backpropagation. In:
International conference on machine learning
(ICML), pp 1180–1189, Lille, France

https://doi.org/10.1016/j.csbj.2015.09.001
https://doi.org/10.1016/j.csbj.2015.09.001
https://doi.org/10.1021/ci100050t
https://doi.org/10.1021/ci100050t
https://doi.org/10.1038/nbt.2877
https://doi.org/10.1038/nbt.2877
https://doi.org/10.1093/nar/gkv1277
https://doi.org/10.1093/nar/gkv1277
https://doi.org/10.1016/j.cell.2017.10.049
https://doi.org/10.1016/j.cell.2017.10.049
https://doi.org/10.1093/bioinformatics/btaa822
https://doi.org/10.1093/bioinformatics/btaa822
https://doi.org/10.1093/bib/bbab291
https://doi.org/10.1093/bib/bbab291
https://doi.org/10.1021/acs.jcim.0c00331
https://doi.org/10.1021/acs.jcim.0c00331
https://doi.org/10.1021/acs.jcim.1c00706
https://doi.org/10.1038/s41598-021-82612-7
https://doi.org/10.1038/s41598-021-82612-7
https://doi.org/10.3389/fbinf.2021.639349
https://doi.org/10.3389/fbinf.2021.639349
https://doi.org/10.1371/journal.pbio.3000583
https://doi.org/10.1371/journal.pbio.3000583
https://doi.org/10.1016/j.tibs.2017.02.006
https://doi.org/10.1016/j.tibs.2017.02.006
https://doi.org/10.1093/bioinformatics/btac429
https://doi.org/10.1093/bioinformatics/btac429
https://doi.org/10.1186/gb-2014-15-3-r47

Deep Learning for Drug Response and Drug Synergy Prediction 289

37. Tzeng E, Hoffman J, Saenko K, Darrell T
(2017) Adversarial discriminative domain
adaptation. In: IEEE computer vision and pat-
tern recognition (CVPR), pp 7167–7176,
IEEE, Honolulu, HI, USA

38. Tabe-Bordbar S, Emad A, Zhao SD, Sinha S
(2018) A closer look at cross-validation for
assessing the accuracy of gene regulatory net-
works and models. Sci Rep 8(1):6620. https://
doi.org/10.1038/s41598-018-24937-4

39. Malioutov DM, Varshney KR, Emad A, Dash S
(2017) Learning interpretable classification
rules with boolean compressed sensing. In:
Transparent data mining for big and small
data, pp 95–121, Springer

40. Arrieta AB, Dı́az-Rodrı́guez N, Del Ser J,
Bennetot A, Tabik S, Barbado A, Garcı́a S ,
Gil-López S, Molina D, Benjamins R (2020)
Explainable Artificial Intelligence (XAI): con-
cepts, taxonomies, opportunities and chal-
lenges toward responsible AI. Inf Fusion 58:
82– 115

41. Schwab P, Karlen W (2019) CXPlain: causal
explanations for model interpretation under

uncertainty. In: Neural information processing
systems (NeurIPS), Vancouver, BC, Canada

42. Lundberg SM, Lee S-I (2017) A unified
approach to interpreting model
predictions. In: Advances in neural information
processing systems. Curran Associates Inc, Red
Hook, p 30

43. Blatti C, Sinha S (2016) Characterizing gene
sets using discriminative random walks with
restart on heterogeneous biological networks.
Bioinformatics 32(14):2167–2175. https://
doi.org/10.1093/bioinformatics/btw151

44. Kuenzi BM, Park J, Fong SH, Sanchez KS,
Lee J, Kreisberg JF, Ma J, Ideker T (2020)
Predicting drug response and synergy using a
deep learning model of human cancer cells.
Cancer Cell 38(5):672–684.e676. https://
doi.org/10.1016/j.ccell.2020.09.014

45. Emad A, Sinha S (2021) Inference of
phenotype-relevant transcriptional regulatory
networks elucidates cancer type-specific regu-
latory mechanisms in a pan-cancer study. NPJ
Syst Biol Appl 7(1):9. https://doi.org/10.
1038/s41540-021-00169-7

https://doi.org/10.1038/s41598-018-24937-4
https://doi.org/10.1038/s41598-018-24937-4
https://doi.org/10.1093/bioinformatics/btw151
https://doi.org/10.1093/bioinformatics/btw151
https://doi.org/10.1016/j.ccell.2020.09.014
https://doi.org/10.1016/j.ccell.2020.09.014
https://doi.org/10.1038/s41540-021-00169-7
https://doi.org/10.1038/s41540-021-00169-7

Chapter 16

Identification of Somatic Variants in Cancer Genomes
from Tissue and Liquid Biopsy Samples

Kiran Krishnamachari, Hanaé Carrié, and Anders Jacobsen Skanderup

Abstract

Somatic variant detection is an important step in the analysis of cancer genomes for basic research as well as
precision oncology. Here, we review existing computational methods for identifying somatic mutations
from tissue as well as liquid biopsy samples. We then describe steps to run VarNet (Krishnamachari et al.,
Nat Commun 13:4248, 2022), a variant caller using deep learning, to accurately identify single nucleotide
variants (SNVs) and short insertion-deletion (indels) mutations from next-generation sequencing (NGS) of
tumor tissue samples.

Key words Somatic variant calling, Cancer genomics, Mutations, Next-generation sequencing

1 Introduction

1.1 Overview of

Somatic Variant

Calling

Acquired (somatic) DNA mutations and genetic instability play a
significant role in tumorigenesis [2]. Somatic variants are caused by
errors in the machinery for DNA replication and repair, which can
be promoted by aberrant growth or environmental factors such as
exposure to carcinogens.

Somatic variant detection is the computational problem of
identifying acquired genetic mutations in cancer genomes. This is
most commonly achieved by analyzing sequencing data obtained
from matched normal and tumor samples of a given patient.
Somatic variants can be categorized as single nucleotide variants
(SNVs), short insertion-deletions (indels), and structural variants
(SVs). In this chapter, we focus on the detection of SNVs and
indels only.

Somatic variant detection is commonly performed on tumor
tissue biopsies obtained from cancer patients. Somatic variant call-
ing on tumor samples is confounded both by biological variation

Kiran Krishnamachari and Hanaé Carrié contributed equally with all other contributors.

Alexander Krasnitz and Pascal Belleau (eds.), Cancer Bioinformatics, Methods in Molecular Biology, vol. 2932,
https://doi.org/10.1007/978-1-0716-4566-6_16,
© The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature 2025

291

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-4566-6_16&domain=pdf
https://doi.org/10.1007/978-1-0716-4566-6_16#DOI

(e.g., tumor heterogeneity) and technical noise (e.g., sequencing
errors). This process is further complicated when somatic variant
calling must be performed on tumor samples that have been pre-
served using formalin fixation and paraffin embedding (FFPE),
which is the predominant method to store and preserve clinical
tissue samples worldwide. The FFPE process causes DNA damage
that can cause variant callers to produce a large number of false
positive mutation calls [3, 4].

292 Kiran Krishnamachari et al.

Somatic variant detection is also valuable in the analysis of cell-
free DNA (cfDNA) from blood liquid biopsy samples in precision
oncology. cfDNA refers to degraded DNA fragments released into
the plasma through apoptosis or necrosis or via passive or active
secretion from various tissues in the body. In cancer patients, a
portion of cfDNA, termed circulating tumor DNA (ctDNA), ori-
ginates from tumor cells [5]. Tracking ctDNA mutations represents
a promising approach to minimal residual disease (MRD) detection
[6], treatment response monitoring [7], or targeted therapy attri-
bution [8]. Liquid biopsy offers accessible, minimally invasive, and
repeatable detection of cancer mutations in contrast to tissue
biopsy; nevertheless, it is accompanied by unique challenges.

1.2 Somatic Variant

Calling in Tumor

Tissue Samples

Somatic variant callers have traditionally used statistical or probabi-
listic models of variant alleles in tumor samples in combination with
multiple heuristic filters to remove false positives. Strelka2 [9] and
Mutect2 [10] are two such popular methods. Recently, machine
learning has proven to be an effective approach that leverages the
many cancer genomes publicly available today. SMuRF [11] uses a
random forest model trained using features from an ensemble of
somatic mutation callers. Strelka2 [9] augments its probabilistic
variant model using machine learning to predict an aggregate con-
fidence score for each candidate variant. VarNet [1] and NeuSo-
matic [12] both use convolutional deep learning models to predict
a probability of mutation. While NeuSomatic was trained on syn-
thetic data from the DREAM challenge [13], VarNet was trained
on real cancer genomes using weak supervision. AIVariant [14] is
another deep learning based caller recently proposed for highly
contaminated tumor samples (see Table 1 for an overview).

1.3 Somatic Variant

Calling in Formalin-

Fixed Paraffin-

Embedded (FFPE)

Tumor Samples

Fresh-frozen tumor tissue samples are preferred for basic research
due to their lower levels of DNA degradation. In contrast, FFPE
tumor tissue samples are the most common starting point for
translational research and clinical diagnostics. However, the FFPE
preservation process introduces significant DNA degradation and
damage that results in misread bases during NGS. This makes the
accurate determination of somatic mutations from FFPE tumor
samples significantly more challenging compared to fresh-frozen
(FF) tumor samples [3, 4]. FFPE artifacts tend to occur at
low-allele frequencies, and the most prominent of these are

C > T/G > A changes due to the hydrolytic deamination of
cytosines [15]. FFPE artifacts especially confound the detection
of true low-allele-frequency somatic mutations that could be of
clinical relevance. Hence, simply filtering low-allele-frequency
mutation calls may mislead downstream clinical analysis.

Somatic Variant Calling from Tissue and Liquid Biopsy Samples 293

Table 1

Overview of somatic variant callers and different approaches used in the

literature

Caller Approach Publication

Varscan2 Fisher’s exact test Koboldt et al.) [41]

Freebayes Bayesian inference Garrison and Marth [42]

Vardict Fisher’s exact test Lai et al. [43]

Strelka2 Bayesian inference Kim et al. [9]

Mutect2 Bayesian inference Benjamin et al. [10]

SMuRF Ensemble (random forest) Huang et al. [11]

NeuSomatic Deep learning Sahraeian et al. [12]

VarNet Deep learning Krishnamachari et al. [1]

AIVariant Deep learning Jeon et al. [14]

Recent work has attempted to improve the quality of FFPE
variant call-sets by performing post hoc removal of artifacts from
the outputs of popular variant callers (see Note 5). For example,
IdeaFix [16] filters likely mutation artifacts from the output of
Mutect2 using a decision tree-based approach exploiting multiple
features such as read pair orientation bias, genomic context, and
variant allele frequency. IdeaFix annotates C > T/G > A calls made
by Mutect2 as either true variants or artifacts. FIREVAT [17]
removes sequencing artifacts from variant call-sets using known
mutational and error signatures. SOBDetector [18] proposed a
method to filter artifacts from the output of any mutation caller
using the strand orientation bias feature. FFPolish [19] proposed a
logistic regression model of multiple features including variant
allele frequency and variant read-quality metrics to filter artifacts
from the outputs of mutation callers. Other work has also proposed
using mutation calls made by any two callers on FFPE tumor
samples as a simple baseline to reduce artifacts [20]. This strategy
however would not exclude artifacts that are misclassified as muta-
tions by more than one caller.

1.4 Somatic Variant

Calling Approaches in

Liquid Biopsy Samples

Calling cancer mutations from cfDNA is challenging due to typi-
cally low ctDNA fractions, leading to cancer mutations presenting
at low variant allele frequencies (VAFs). While obtaining compre-
hensive tumor profiles from cfDNA could yield valuable biological

information, it entails significant technical complexity, as subclonal
and metastatic mutations may manifest at even lower VAFs. More-
over, these mutations can be mistaken for clonal hematopoiesis of
indeterminate potential (CHIP) variants from noncancerous blood
cell subpopulations [21, 22]. The degraded nature of cfDNA
amplifies sequencing errors, PCR artifacts, and mapping errors, all
falling within the same VAF range as cancer mutations, complicat-
ing their distinction from noise. Moreover, nonrandom cfDNA
fragmentation, attributable to nucleosome wrapping, results in
uneven sequencing coverage compared to tissue biopsy, posing
both a technical challenge and an informative feature that could
be exploited for variant calling. Although increased sequencing
depth enhances detection sensitivity, the limited input of molecules
imposes a maximum informative coverage depth. For instance, a
typical 5 mL blood draw yields on average 2 mL of plasma contain-
ing 10 ng of DNA, corresponding to 3000 diploid genome
equivalents [23].

294 Kiran Krishnamachari et al.

At ultrahigh sequencing depths, the utilization of unique
molecular identifiers (UMIs) is recommended for consensus cor-
rection of PCR and sequencing errors. Furthermore, in silico error
correction methods, such as iDES [24] and DREAMS [25], con-
tribute to enhanced accuracy. The iDES method employs a locus-
level error model derived from healthy cfDNA samples, eliminating
noise loci through statistical tests. On the other hand, DREAMS
constructs a machine learning read-level error model trained on
error-free and sequencing error reads from filtered post-surgery
low ctDNA samples. It considers read-level and local sequence-
context features, albeit necessitating retraining for changes in labo-
ratory protocols.

The tissue-specific callers in Table 1 can be applied to cfDNA
with a reduced (e.g., 1

coverage) or disabled VAF threshold (see
Note 7). Table 2 gives an overview of existing cfDNA-specific
callers. ABEMUS [26] models VAF distributions using a binomial
model and employs global and per-base error filters derived from

Table 2

Overview of cfDNA somatic variant callers

Caller Approach Publication

SiNVICT Poisson model Kockan et al. [28]

ABEMUS Binomial model Casiraghi et al. [26]

cfSNV Error suppression using overlapping read mate
Joined genotype model
Iterative search of clusters
Adjusted site-level post-filtration
Machine learning (random forest) read level post-filtration

Li et al. [27]

normal buffy coat samples. cfSNV [27] utilizes overlapping read
mates to suppress errors, applies a joined genotype model on
mutation clusters iteratively to address tumor heterogeneity, and
performs adjusted site-level and machine learning-based read level
post-filtration. SiNVICT [28], a plasma-only approach, incorpo-
rates local assembly, read realignment, and a statistical Poisson
model. However, the lack of annotated real cfDNA datasets, akin
to the ICGC benchmark dataset for tumor tissue [29], currently
hinders comparative evaluation of the accuracy of these specialized
cfDNA callers relative to tissue-based callers (Table 1) when applied
to cfDNA samples.

Somatic Variant Calling from Tissue and Liquid Biopsy Samples 295

Clinical ultra-deep targeted cfDNA-only assays (>1000x, tar-
geting 10–200 genes) have been receiving US Food and Drug
Administration (FDA) approval since 2020 as Companion Diag-
nostic tests (CDx) for detecting actionable mutations in confirmed
cancer patients, facilitating targeted therapy stratification. The
SEQC2 benchmark [30] compared five industry-leading ctDNA
assays, emphasizing challenges in accurately detecting variants
below 0.5% variant allele frequency (VAF).

Innovative minimal residual disease (MRD) detection tools
employed for early relapse detection after surgery or treatment,
such as INVAR [31] and MRDetect/MRD-Edge [32, 33], are
built on ctDNA mutation detection. These methods harness cumu-
lative signals from rare, error-corrected mutated ctDNA reads
found in hundreds to thousands of somatic mutations detected in
30x WGS or 200x WES plasma samples, thereby overcoming the
limitations in ctDNA abundance associated with targeted assays.
INVAR implements error correction through overlapping read
pairs and trinucleotide context-based filtering. MRDetect employs
a support vector machine classifier, while MRD-Edge utilizes a
convolutional neural network and a multilayer perceptron for
read-level error correction. However, these methods rely on prior
tissue biopsy, limiting their applicability for cancer screening.
Recent proof-of-concept studies propose cfDNA-only cancer
detection methods, such as Bae et al.’s [34] and Pointy [35],
based on de novo mutation discovery from low-coverage WGS
plasma samples, combined with other molecular characteristics.
Enhancements, such as including a matched buffy coat sample for
efficient germline subtraction (see Note 8), increasing sequencing
depth, and validating on additional external datasets, are necessary
to achieve significant performance improvements in future studies.

2 Materials

Here we describe steps to run VarNet, a deep learning based
somatic variant caller that has demonstrated superior accuracy
compared to other methods on real tumor tissue samples, including
low tumor-purity settings (see Note 1) [1].

296 Kiran Krishnamachari et al.

2.1 Environment VarNet is implemented as a Python package. The source code is
available on GitHub (https://github.com/skandlab/VarNet). To
get started, download the latest release of VarNet from GitHub
(https://github.com/skandlab/VarNet/releases). The dependen-
cies to run VarNet can be installed using the pip package manager.

pip install -r requirement.txt

Alternatively, download the Docker image to run VarNet:

docker pull kiranchari/varnet:latest

VarNet relies on Tensorflow-cpu [36], Pysam (https://github.
com/pysam-developers/pysam), NumPy [37], Pandas [38],
Pybedtools [39], and Joblib (https://github.com/joblib/joblib).
These dependencies will be automatically installed by the above
command or can be found preinstalled in the docker image.

2.2 Input

Requirements

VarNet performs somatic variant calling using matched normal and
tumor genomes input as binary alignment map (BAM) files (.bam
files) along with the reference genome (.fa file) that was used to
perform alignment of the genomes. BAM files can be generated
from sequencing data (.fastq files) using a pipeline such as the
bcbio-nextgen (https://bcbio-nextgen.readthedocs.io) workflow.
The recommended configuration to run bcbio-nextgen is listed in
Table 3 (see Note 4).

3 Methods

3.1 Running VarNet Minimally, VarNet requires the following parameters to run:
(1) paths to normal and tumor BAM files, (2) path to reference
genome file (see Note 3), and (3) an output directory. Optionally,
the number of processes to use a BED (Browser Extensible Data)
file containing a list of genomic regions to limit variant calling to
and the run mode (SNV or indel calling) can be specified.

Table 3

Recommended bcbio-nextgen parameters

bcbio-nextgen parameter Value

mark_duplicates True

Recalibrate False

Realign (GATK4) False

https://github.com/skandlab/VarNet
https://github.com/skandlab/VarNet/releases
https://github.com/pysam-developers/pysam
https://github.com/pysam-developers/pysam
https://github.com/joblib/joblib
https://bcbio-nextgen.readthedocs.io

Somatic Variant Calling from Tissue and Liquid Biopsy Samples 297

First, the filtering step must be run to scan the genome to
identify mutation candidates. An example command to perform
filtering is as follows:

python filter.py \

--sample_name dream1 \

--normal_bam /path/to/dream1_normal.bam \

--tumor_bam /path/to/dream1_tumor.bam \

--processes 6 \

--output_dir /path/to/varnet_outputs \

--reference /path/to/GRCh38.fa

In the above filtering step, VarNet uses heuristic filters to
exclude genomic sites with very low or no evidence for a variant
in the tumor sample. By default, VarNet scans the genome for both
SNV and indel candidates. Subsequently in the prediction step,
VarNet generates input image encodings for each candidate variant
(Fig. 1; see Note 2). The deep learning model is applied on the fly
for each generated input image encoding. The prediction step can
be run as follows:

python predict.py \

--sample_name dream1 \

--normal_bam /path/to/dream1_normal.bam \

--tumor_bam /path/to/dream1_tumor.bam \

--processes 6 \

--output_dir /path/to/varnet_outputs \

--reference /path/to/GRCh38.fa

Fig. 1 (a) VarNet encoding (base channel) of an SNV on chromosome 10 in the medulloblastoma (MBL) sample.

The candidate position is repeated 5× in both the normal and tumor image. Variant alleles are visible at the

candidate site in the tumor sample image. (b) Heatmap visualization showing “pixels” in the base channel

most important to VarNet’s deep learning model. VarNet has identified variant alleles at the candidate site in

the tumor. Pixel-wise importance scores were computed using guided backpropagation [40]

298 Kiran Krishnamachari et al.

Note that VarNet does not require a GPU (graphics processing
unit) to perform prediction. Upon successful completion of the
prediction step, VarNet outputs a standard VCF (variant call for-
mat) file in the root of the sample’s output directory. VarNet
includes metadata for each variant in its output including a proba-
bility SCORE. The probability SCORE is the confidence given by
VarNet’s deep learning model that the locus contains a somatic
mutation.

3.2 Performance on

ICGC Benchmark

Samples

We benchmarked VarNet on the International Cancer Genome
Consortium (ICGC) Gold Set comprising manually verified
somatic mutations in chronic lymphocytic leukemia (CLL) and
medulloblastoma (MBL) tumor-normal pairs [29]. VarNet made
calls at higher accuracy compared to existing state-of-the-art callers
(Fig. 2).

3.3 Tuning the

Performance of VarNet

VarNet uses a default SCORE threshold of 0.5 to classify variants as
PASS or REJECT. However, this threshold can be varied to extract
higher recall (sensitivity) or precision from VarNet. Decreasing the
threshold would increase recall at the expense of precision, and vice
versa (see Note 6).

b)

a)

d)

c) VarNet
Strelka2
Neusomatic
Mutect2
Freebayes

SNV INDEL

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re
c
is
io
n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re
c
is
io
n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re
c
is
io
n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re
c
is
io
n

Fig. 2 (a, b) Precision/recall curves for SNV calling in the MBL and CLL samples, respectively. (c, d) Precision/

recall curves for indel calling in the MBL and CLL samples, respectively. Solid circles indicate the highest F1

accuracy score obtained by each method

Somatic Variant Calling from Tissue and Liquid Biopsy Samples 299

Minimum allele frequency thresholds: VarNet has a sensitivity
threshold of 3.5% for the AF of variants it can detect. Variants
below 3.5% are excluded in the filtering step. Hence, VarNet is
not suitable for detecting very low VAF variants such as those in
liquid biopsy samples.

4 Notes

1. VarNet is a deep learning based computational method to
detect somatic variants from tumor tissue samples.

2. VarNet generates “images” of reads overlapping each candidate
mutation in both the tumor and matched normal sample.

3. When running VarNet, ensure that the same reference genome
used for aligning reads is also employed during variant calling.

4. Mark and remove duplicate reads in your sequencing data prior
to somatic variant calling. This step can be done by libraries
such as bcbio-nextgen.

5. Somatic variant callers can generate many false positive muta-
tion calls on FFPE tumor samples. Post hoc variant filtering
methods have been proposed to alleviate this problem.

6. Modifying the prediction threshold of callers can be important
to achieve high accuracy, especially in FFPE tumor samples.

7. When using tissue-specific callers on liquid biopsy samples,
lower (e.g., 1

coverage) or disable the default VAF threshold.

8. Clinical ultra-deep targeted liquid biopsy assays are currently
limited to cfDNA-only tests. For intermediate depth to deep
WES/WGS, it is recommended to sequence the matched buffy
coat sample for efficient germline subtraction.

References

1. Krishnamachari K, Lu D, Swift-Scott A et al
(2022) Accurate somatic variant detection
using weakly supervised deep learning. Nat
Commun 13:4248. https://doi.org/10.
1038/s41467-022-31765-8

2. Jassim A, Rahrmann EP, Simons BD, Gilbert-
son RJ (2023) Cancers make their own luck:
theories of cancer origins. Nat Rev Cancer 23:
710–724. https://doi.org/10.1038/s41568-
023-00602-5

3. Oh E, Choi Y-L, Kwon MJ et al (2015) Com-
parison of accuracy of whole-exome sequenc-
ing with formalin-fixed paraffin-embedded and
fresh frozen tissue samples. PLoS One 10:1–
13. https://doi.org/10.1371/journal.pone.
0144162

4. Srinivasan M, Sedmak D, Jewell S (2002)
Effect of fixatives and tissue processing on the
content and integrity of nucleic acids. Am J
Pathol 161:1961–1971. https://doi.org/10.
1016/S0002-9440(10)64472-0

5. Heitzer E, Haque IS, Roberts CES, Speicher
MR (2019) Current and future perspectives of
liquid biopsies in genomics-driven oncology.
Nat Rev Genet 20:71–88. https://doi.org/
10.1038/s41576-018-0071-5

6. Salvianti F, Gelmini S, Mancini I et al (2021)
Circulating tumour cells and cell-free DNA as a
prognostic factor in metastatic colorectal can-
cer: the OMITERC prospective study. Br J
Cancer 125:94–100. https://doi.org/10.
1038/s41416-021-01399-6

https://doi.org/10.1038/s41467-022-31765-8
https://doi.org/10.1038/s41467-022-31765-8
https://doi.org/10.1038/s41568-023-00602-5
https://doi.org/10.1038/s41568-023-00602-5
https://doi.org/10.1371/journal.pone.0144162
https://doi.org/10.1371/journal.pone.0144162
https://doi.org/10.1016/S0002-9440(10)64472-0
https://doi.org/10.1016/S0002-9440(10)64472-0
https://doi.org/10.1038/s41576-018-0071-5
https://doi.org/10.1038/s41576-018-0071-5
https://doi.org/10.1038/s41416-021-01399-6
https://doi.org/10.1038/s41416-021-01399-6

300 Kiran Krishnamachari et al.

7. Abbosh C, Frankell AM, Harrison T et al
(2023) Tracking early lung cancer metastatic
dissemination in TRACERx using ctDNA.
Nature 616:553–562. https://doi.org/10.
1038/s41586-023-05776-4

8. Rolfo C, Mack PC, Scagliotti GV et al (2018)
Liquid biopsy for advanced non-small cell lung
cancer (NSCLC): a statement paper from the
IASLC. J Thorac Oncol 13:1248–1268.
https://doi.org/10.1016/j.jtho.2018.05.030

9. Kim S, Scheffler K, Halpern AL et al (2018)
Strelka2: fast and accurate calling of germline
and somatic variants. Nat Methods 15:591–
594. https://doi.org/10.1038/s41592-018-
0051-x

10. Benjamin D, Sato T, Cibulskis K et al (2019)
Calling somatic SNVs and Indels with
Mutect2. bioRxiv. https://doi.org/10.1101/
861054

11. Huang W, Guo YA, Muthukumar K et al
(2019) SMuRF: portable and accurate ensem-
ble prediction of somatic mutations. Bioinfor-
matics (Oxford, England). https://doi.org/
10.1093/bioinformatics/btz018

12. Sahraeian SME, Liu R, Lau B et al (2019) Deep
convolutional neural networks for accurate
somatic mutation detection. Nat Commun
10. https://doi.org/10.1038/s41467-019-
09027-x

13. Ewing AD, Houlahan KE, Hu Y et al (2015)
Combining tumor genome simulation with
crowdsourcing to benchmark somatic single-
nucleotide-variant detection. Nat Methods
12:623–630. https://doi.org/10.1038/
nmeth.3407

14. Jeon H, Ahn J, Na B et al (2023) AIVariant: a
deep learning-based somatic variant detector
for highly contaminated tumor samples. Exp
Mol Med 55:1734–1742. https://doi.org/
10.1038/s12276-023-01049-2

15. Steiert TA, Parra G, Gut M et al (2023) A
critical spotlight on the paradigms of FFPE-
DNA sequencing. Nucleic Acids Res:
gkad519. https://doi.org/10.1093/nar/
gkad519

16. Tellaetxe-Abete M, Calvo B, Lawrie C (2021)
Ideafix: a decision tree-based method for the
refinement of variants in FFPE DNA sequenc-
ing data. NAR Genom Bioinform 3:lqab092.
https://doi.org/10.1093/nargab/lqab092

17. Kim H, Lee AJ, Lee J et al (2019) FIREVAT:
finding reliable variants without artifacts in
human cancer samples using etiologically rele-
vant mutational signatures. Genome Med 11:
81. https://doi.org/10.1186/s13073-019-
0695-x

18. Diossy M, Sztupinszki Z, Krzystanek M et al
(2021) Strand orientation bias detector to
determine the probability of FFPE sequencing
artifacts. Brief Bioinform 22. https://doi.org/
10.1093/bib/bbab186

19. Dodani DD, Nguyen MH, Morin RD et al
(2022) Combinatorial and machine learning
approaches for improved somatic variant call-
ing from formalin-fixed paraffin-embedded
genome sequence data. Front Genet 13.
https://doi.org/10.3389/fgene.2022.
834764

20. de Schaetzen van Brienen L, Larmuseau M,
Van der Eecken K et al (2020) Comparative
analysis of somatic variant calling on matched
FF and FFPE WGS samples. BMC Med Genet
13:94. https://doi.org/10.1186/s12920-
020-00746-5

21. Chan HT, Chin YM, Nakamura Y, Low S-K
(2020) Clonal hematopoiesis in liquid biopsy:
from biological noise to valuable clinical impli-
cations. Cancers (Basel) 12:2277. https://doi.
org/10.3390/cancers12082277

22. Jaiswal S, Ebert BL (2019) Clonal hematopoi-
esis in human aging and disease. Science 366:
eaan4673. https://doi.org/10.1126/science.
aan4673

23. Song P, Wu LR, Yan YH et al (2022) Limita-
tions and opportunities of technologies for the
analysis of cell-free DNA in cancer diagnostics.
Nat Biomed Eng 6:232–245. https://doi.org/
10.1038/s41551-021-00837-3

24. Newman AM, Lovejoy AF, Klass DM et al
(2016) Integrated digital error suppression
for improved detection of circulating tumor
DNA. Nat Biotechnol 34:547–555. https://
doi.org/10.1038/nbt.3520

25. Christensen MH, Drue SO, Rasmussen MH
et al (2023) DREAMS: deep read-level error
model for sequencing data applied to
low-frequency variant calling and circulating
tumor DNA detection. Genome Biol 24:99.
https://doi.org/10.1186/s13059-023-
02920-1

26. Casiraghi N, Orlando F, Ciani Y et al (2020)
ABEMUS: platform-specific and data-
informed detection of somatic SNVs in
cfDNA. Bioinformatics 36:2665–2674.
https://doi.org/10.1093/bioinformatics/
btaa016

27. Li S, Noor ZS, Zeng W et al (2021) Sensitive
detection of tumor mutations from blood and
its application to immunotherapy prognosis.
Nat Commun 12:4172. https://doi.org/10.
1038/s41467-021-24457-2

28. Kockan C, Hach F, Sarrafi I et al (2017) SiN-
VICT: ultra-sensitive detection of single

https://doi.org/10.1038/s41586-023-05776-4
https://doi.org/10.1038/s41586-023-05776-4
https://doi.org/10.1016/j.jtho.2018.05.030
https://doi.org/10.1038/s41592-018-0051-x
https://doi.org/10.1038/s41592-018-0051-x
https://doi.org/10.1101/861054
https://doi.org/10.1101/861054
https://doi.org/10.1093/bioinformatics/btz018
https://doi.org/10.1093/bioinformatics/btz018
https://doi.org/10.1038/s41467-019-09027-x
https://doi.org/10.1038/s41467-019-09027-x
https://doi.org/10.1038/nmeth.3407
https://doi.org/10.1038/nmeth.3407
https://doi.org/10.1038/s12276-023-01049-2
https://doi.org/10.1038/s12276-023-01049-2
https://doi.org/10.1093/nar/gkad519
https://doi.org/10.1093/nar/gkad519
https://doi.org/10.1093/nargab/lqab092
https://doi.org/10.1186/s13073-019-0695-x
https://doi.org/10.1186/s13073-019-0695-x
https://doi.org/10.1093/bib/bbab186
https://doi.org/10.1093/bib/bbab186
https://doi.org/10.3389/fgene.2022.834764
https://doi.org/10.3389/fgene.2022.834764
https://doi.org/10.1186/s12920-020-00746-5
https://doi.org/10.1186/s12920-020-00746-5
https://doi.org/10.3390/cancers12082277
https://doi.org/10.3390/cancers12082277
https://doi.org/10.1126/science.aan4673
https://doi.org/10.1126/science.aan4673
https://doi.org/10.1038/s41551-021-00837-3
https://doi.org/10.1038/s41551-021-00837-3
https://doi.org/10.1038/nbt.3520
https://doi.org/10.1038/nbt.3520
https://doi.org/10.1186/s13059-023-02920-1
https://doi.org/10.1186/s13059-023-02920-1
https://doi.org/10.1093/bioinformatics/btaa016
https://doi.org/10.1093/bioinformatics/btaa016
https://doi.org/10.1038/s41467-021-24457-2
https://doi.org/10.1038/s41467-021-24457-2

Somatic Variant Calling from Tissue and Liquid Biopsy Samples 301

nucleotide variants and indels in circulating
tumour DNA. Bioinformatics 33:26–34.
https://doi.org/10.1093/bioinformatics/
btw536

29. Alioto TS, Buchhalter I, Derdak S et al (2015)
A comprehensive assessment of somatic muta-
tion detection in cancer using whole-genome
sequencing. Nat Commun 6. https://doi.org/
10.1038/ncomms10001

30. Deveson IW, Gong B, Lai K et al (2021) Eval-
uating the analytical validity of circulating
tumor DNA sequencing assays for precision
oncology. Nat Biotechnol 39:1115–1128.
https://doi.org/10.1038/s41587-021-
00857-z

31. Wan JCM, Heider K, Gale D et al (2020)
ctDNA monitoring using patient-specific
sequencing and integration of variant reads.
Sci Transl Med 12:eaaz8084. https://doi.
org/10.1126/scitranslmed.aaz8084

32. Zviran A, Schulman RC, Shah M et al (2020)
Genome-wide cell-free DNA mutational inte-
gration enables ultra-sensitive cancer monitor-
ing. Nat Med 26:1114–1124. https://doi.
org/10.1038/s41591-020-0915-3

33. Widman AJ, Shah M, Øgaard N et al (2022)
Machine learning guided signal enrichment for
ultrasensitive plasma tumor burden monitor-
ing. 2022.01.17.476508

34. Bae M, Kim G, Lee T-R et al (2023) Integra-
tive modeling of tumor genomes and epigen-
omes for enhanced cancer diagnosis by cell-free
DNA. Nat Commun 14:1–15

35. Wan JCM, Stephens D, Luo L et al (2022)
Genome-wide mutational signatures in
low-coverage whole genome sequencing of
cell-free DNA. Nat Commun 13:4953.

https://doi.org/10.1038/s41467-022-
32598-1

36. Abadi M, Barham P, Chen J, et al (2016) Ten-
sorFlow: A system for large-scale machine
learning. In: 12th USENIX Symposium on
Operating Systems Design and Implementa-
tion (OSDI 16). pp 265–283

37. Harris CR, Millman KJ, van der Walt SJ et al
(2020) Array programming with NumPy.
Nature 585:357–362. https://doi.org/10.
1038/s41586-020-2649-2

38. Reback J, McKinney W, Jbrockmendel et al
(2020) pandas-dev/pandas: Pandas 1.1.1

39. Dale RK, Pedersen BS, Quinlan AR (2011)
Pybedtools: a flexible Python library for manip-
ulating genomic datasets and annotations. Bio-
informatics 27:3423–3424. https://doi.org/
10.1093/bioinformatics/btr539

40. Springenberg JT, Dosovitskiy A, Brox T, Ried-
miller MA (2015) Striving for simplicity: the all
convolutional net. In: Bengio Y, LeCun Y (eds)
3rd international conference on learning repre-
sentations, ICLR 2015, San Diego, CA, USA,
7–9 May 2015, Workshop Track Proceedings

41. Koboldt DC, Zhang Q, Larson DE, et al
(2012) VarScan 2: somatic mutation and copy
number alteration discovery in cancer by
exome sequencing. Genome research 22:568–
576

42. Garrison E, Marth G (2012) Haplotype-based
variant detection from short-read sequencing

43. Lai Z, Markovets A, Ahdesmaki M, Johnson J
(2015) VarDict: A novel and versatile variant
caller for next-generation sequencing in cancer
research. Cancer Research 75:4864 LP – 4864.
https://doi.org/10.1158/1538-7445.
AM2015-4864

https://doi.org/10.1093/bioinformatics/btw536
https://doi.org/10.1093/bioinformatics/btw536
https://doi.org/10.1038/ncomms10001
https://doi.org/10.1038/ncomms10001
https://doi.org/10.1038/s41587-021-00857-z
https://doi.org/10.1038/s41587-021-00857-z
https://doi.org/10.1126/scitranslmed.aaz8084
https://doi.org/10.1126/scitranslmed.aaz8084
https://doi.org/10.1038/s41591-020-0915-3
https://doi.org/10.1038/s41591-020-0915-3
https://doi.org/10.1038/s41467-022-32598-1
https://doi.org/10.1038/s41467-022-32598-1
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1093/bioinformatics/btr539
https://doi.org/10.1093/bioinformatics/btr539
https://doi.org/10.1158/1538-7445.AM2015-4864
https://doi.org/10.1158/1538-7445.AM2015-4864

Chapter 17

SUMMER: A Practical Tool for Identifying Factors
and Biomarkers Associated with Pan-cancer Survival

Junyi Xin, Silu Chen, Huiqin Li, Mulong Du, and Meilin Wang

Abstract

The application of Mendelian randomization (MR) analytical framework based on genome-wide associa-
tion study (GWAS) datasets has uncovered hundreds of risk factors involving disease development that
included tumorigenesis, but the practice of MR in cancer survival remains limited. Here, we will provide
abundant details of our previously established tool, SUrvival related cancer Multi-omics database via
MEndelian Randomization (SUMMER; http://njmu-edu.cn:3838/SUMMER/), which would help
users systematically evaluate the causal effects of risk factors and circulating biomarkers on pan-cancer
survival.

Key words Cancer survival, Mendelian randomization, Risk factors, Biomarkers

1 Introduction

Genome-wide association study (GWAS), as a common genetic
epidemiology method based on comparing the allele frequency of
genetic variants between affected cases and unaffected controls, has
uncovered thousands of genetic loci involved in susceptibility to
disease, especially for cancer [1–3]. Notably, with the increasing
number of GWAS loci, Mendelian randomization (MR), an inte-
grative “post-GWAS” approach [4], provides a way to explore the
potential risk factors or biomarkers related to the development of
cancer [5]. Briefly, MR is a well-known causal inference method
that uses single nucleotide polymorphisms (SNPs) as instrumental
variables (IVs, i.e., genetic predictors), to assess the causal associa-
tion between exposures (e.g., BMI and smoking) and outcomes
(e.g., cancer risk) [6–8]. For example, our previous MR findings

Junyi Xin, Silu Chen and Huiqin Li contributed equally with all other contributors.

Alexander Krasnitz and Pascal Belleau (eds.), Cancer Bioinformatics, Methods in Molecular Biology, vol. 2932,
https://doi.org/10.1007/978-1-0716-4566-6_17,
© The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature 2025

303

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-4566-6_17&domain=pdf
http://njmu-edu.cn:3838/SUMMER/
https://doi.org/10.1007/978-1-0716-4566-6_17#DOI

indicated plausible noncausal associations between circulating vita-
min E and the risk of ten common cancers [9].

304 Junyi Xin et al.

It is noteworthy that cancer also ranks as a leading cause of
death [10], with an estimated 10.0 million cancer deaths that
occurred in 2020 worldwide, indicating that cancer death remains
an important barrier to life expectancy [11]. Accurate estimation of
survival probability can provide valuable insights into the precision
therapy of cancer patients [12, 13]. Currently, MR has not been
widely applied to identify the risk factors and biomarkers associated
with cancer survival.

To address this gap, we have constructed an online pan-cancer
survival database, SUMMER (SUrvival related cancer Multi-omics
database via MEndelian Randomization; http://njmu-edu.cn:383
8/SUMMER/), that includes (i) available survival GWAS sum-
mary statistics of 17 cancer types from the UK Biobank cohort
(Table 1), followed by (ii) causal risk factors and biomarkers involv-
ing cancer survival obtained via MR analysis, to help users query,
browse, and download results [14].

Totally, across 17 cancer types, SUMMER identifies a total of
1209 cancer overall survival (OS)-associated and 1539 cancer-
specific survival (CSS)-associated SNPs at a suggestive genome-
wide significance threshold (P ≤ 1 × 10-6), as well as an average
of 11 phenotypes, 716 genes, and 4828 CpG sites associated with
cancer OS and an average of 11 phenotypes, 705 genes, and 4702
CpG sites associated with cancer CSS (Table 2).

In this chapter, we will provide details on the construction of
SUMMER database and instructions on its usage and notes, to help
users systematically evaluate causal effects of risk factors and circu-
lating biomarkers on pan-cancer survival.

2 Materials

The construction of SUMMER database was conducted in a
two-stage design (Fig. 1) as follows:

(i) Construction of pan-cancer survival GWAS datasets: to system-
atically evaluate the effects of genome-wide genetic variants on
cancer survival that included OS and CSS, leveraging a total of
17 cancer types derived from the UK Biobank cohort.

(ii) Integrative analysis to identify cancer prognostic risk factors and
circulating biomarkers: We evaluate effects causally related to
risk factors and circulating biomarkers on cancer prognosis via a
comprehensive MR approach that integrates pan-cancer sur-
vival GWAS datasets, with phenome-wide association study
(PheWAS) and blood gene expression/DNA methylation
quantitative trait loci (eQTL/meQTL) datasets.

http://njmu-edu.cn:3838/SUMMER/
http://njmu-edu.cn:3838/SUMMER/

T
a
b
le
1

C
a
n
c
e
r
ty
p
e

C
a
se
s

M
e
d
ia
n
fo
ll
o
w
-u
p
T
im
e

(m
o
n
th
s)

A
g
e
a

(M
e
a
n
 ±
 S
D
)

B
M
I
(M

e
a
n

±
S
D
)

M
a
le

F
e
m
a
le

A
ll
-c
a
u
se

C
a
n
c
e
r-

sp
e
c
ifi
c

5
2
6

1
0
0
(1
9
.0
1
)

2
8
.2
5
±
4
.3
4

1
7
0
(3
2
.3
2
)

3
9
7

2
4
6
(6
1
.9
6
)

1
5
1
(3
8
.0
4
)

2
7
.6
5
±
4
.7
6

3
3
4
(8
4
.1
3
)

B
re
as
t
ca
n
ce
r

6
1
.8
4
±
7
.7
8

3
1
9
(7
.3
3
)

4
8
.5
7

1
0
6
6
(4
0
.6
7
)

2
7
.9
4
±
4
.5
9

5
6
9
(2
1
.7
1
)

0
(0
)

6
4
.1
7
±
6
.2
9

7
8
(1
1
.1
7
)

E
so
p
h
ag
u
s
ca
n
ce
r

1
9
.5
7

6
6
.4
2
±
5
.8
1

2
9
6
(6
4
.3
5
)

3
0
3

2
2
2
(7
3
.2
7
)

8
1
(2
6
.7
3
)

2
8
.6
8
±
4
.9
1

1
7
0
0

7
5
5
(4
4
.4
1
)

2
7
.4
6
±
4
.7
3

3
5
0

2
0
9
(5
9
.7
1
)

6
5
.4
2
±
6
.0
4

2
7
.9
6
±
5
.1
1

2
6
(7
.4
3
)

M
u
lt
ip
le

m
ye
lo
m
a

4
3
.1
0

1
4
8
(4
1
.6
9
)

2
7
.7
9
±
4
.5
4

9
0
(2
5
.3
5
)

O
ra
l
an
d
p
h
ar
yn

x
ca
n
ce
r

5
0
.4
5

6
2
.8
0
±
6
.9
4

1
2
0
(2
6
.2
)

7
1
(1
5
.5
)

O
va
ri
an

ca
n
ce
r

4
3
7

4
0
.3
3

0
(0
)

4
3
7
(1
0
0
)

6
3
.6
5
±
7
.2
6

2
7
.2
9
±
4
.8
6

2
0
1
(4
6
)

1
7
7
(4
0
.5
)

5
0
6

5
.3
5

2
3
2
(4
5
.8
5
)

4
6
0
(9
0
.9
1
)

4
8
8
2

0
(0
)

2
7
.5
5
±
3
.8
3

4
6
0
(9
.4
2
)

6
4
9

4
4
.4
0

2
2
4
(3
4
.5
1
)

6
5
.2
1
±
6
.3
8

1
4
7
(2
2
.6
5
)

S
k
in

m
el
an
o
m
a

1
4
0
2

7
1
7
(5
1
.1
4
)

6
8
5
(4
8
.8
6
)

2
7
.5
8
±
4
.4
8

7
9
(5
.6
3
)

1
7
9

5
7
(3
1
.8
4
)

1
2
2
(6
8
.1
6
)

2
7
.6
6
±
4
.7
0

a A
g
e
at

d
ia
g
n
o
si
s

The Application of SUMMER in Pan-cancer Survival Analysis 305

B
a
si
c
 c
h
a
ra
c
te
ri
st
ic
s
o
f
c
a
n
c
e
r
c
a
se
s
in
 t
h
e
 U
K
 B
io
b
a
n
k
 c
o
h
o
rt

G
e
n
d
e
r
(%

)
D
e
a
th
 (
%
)

B
la
d
d
er
 c
an
ce
r

4
9
.6
3

6
7
.1
1
 ±
 5
.6
1

4
2
6
 (
8
0
.9
9
)

1
1
3
 (
2
1
.4
8
)

B
ra
in
 c
an
ce
r

8
.8
3

6
4
.2
4
 ±
 7
.0
4

3
5
4
 (
8
9
.1
7
)

4
3
5
0

6
2
.1
3

0
 (
0
)

4
3
5
0
 (
1
0
0
)

2
7
.4
6
 ±
 5
.1
0

2
3
3
 (
5
.3
6
)

C
o
lo
re
ct
al
 c
an
ce
r

2
6
2
1

1
5
5
5
 (
5
9
.3
3
)

6
5
.2
5
 ±
 6
.5
3

7
7
9
 (
2
9
.7
2
)

C
o
rp
u
s
u
te
ri

6
9
8

5
7
.5
8

6
9
8
 (
1
0
0
)

3
0
.3
0
 ±
 6
.9
5

1
0
5
 (
1
5
.0
4
)

4
6
0

3
4
4
 (
7
4
.7
8
)

1
1
6
 (
2
5
.2
2
)

2
8
.6
3
 ±
 5
.6
1

2
5
5
 (
5
5
.4
3
)

G
as
tr
ic
 c
an
ce
r

1
4
.6
0

6
6
.3
0
 ±
 6
.6
3

2
2
0
 (
7
2
.6
1
)

1
4
1
 (
4
6
.5
3
)

L
u
n
g
 c
an
ce
r

1
1
.4
7

9
4
5
 (
5
5
.5
9
)

6
6
.6
5
 ±
 5
.9
9

1
2
8
7
 (
7
5
.7
1
)

1
1
1
3
 (
6
5
.4
7
)

L
ym

p
h
o
id
 l
eu

k
em

ia
5
1
.9
0

1
4
1
 (
4
0
.2
9
)

5
8
 (
1
6
.5
7
)

3
5
5

2
0
7
 (
5
8
.3
1
)

6
5
.8
6
 ±
 6
.7
8

1
2
2
 (
3
4
.3
7
)

4
5
8

3
1
2
 (
6
8
.1
2
)

1
4
6
 (
3
1
.8
8
)

2
7
.2
7
 ±
 4
.9
2

P
an
cr
ea
ti
c
ca
n
ce
r

2
7
4
 (
5
4
.1
5
)

6
6
.2
7
 ±
 6
.2
9

2
8
.2
1
 ±
 5
.0
2

4
2
2
 (
8
3
.4
)

P
ro
st
at
e
ca
n
ce
r

5
7
.9
3

4
8
8
2
 (
1
0
0
)

6
6
.7
7
 ±
 5
.3
2

2
5
8
 (
5
.2
8
)

R
en

al
 c
an
ce
r

4
2
5
 (
6
5
.4
9
)

2
9
.1
8
 ±
 5
.2
6

2
0
9
 (
3
2
.2
)

5
6
.2
7

6
3
.3
9
 ±
 7
.6
8

1
1
9
 (
8
.4
9
)

T
h
yr
o
id
 c
an
ce
r

6
0
.2
7

6
2
.0
6
 ±
 7
.5
6

1
6
 (
8
.9
4
)

6
 (
3
.3
5
)

N
o
te
:
B
M
I
b
o
d
y
m
as
s
in
d
ex

T
a
b
le
2

S
u
m
m
a
ry

o
f
th
e
si
g
n
if
ic
a
n
t
a
ss
o
c
ia
ti
o
n
s
o
f
ri
sk

fa
c
to
rs

a
n
d
c
ir
c
u
la
ti
n
g
b
io
m
a
rk
e
rs

w
it
h
c
a
n
c
e
r
su
rv
iv
a
l
vi
a
M
e
n
d
e
li
a
n
ra
n
d
o
m
iz
a
ti
o
n
a
n
a
ly
si
s

S
ig
n
ifi
c
a
n
t
a
ss
o
c
ia
ti
o
n
s
w
it
h
o
ve
ra
ll
su
rv
iv
a
l

S
ig
n
ifi
c
a
n
t
a
ss
o
c
ia
ti
o
n
s
w
it
h
c
a
n
c
e
r-
sp
e
c
ifi
c
su
rv
iv
a
l

C
a
n
c
e
r
ty
p
e

N
o
.
o
f
S
N
P
s

L
a
m
b
d
a

S
N
P
sa

L
o
c
ia

P
h
e
n
o
ty
p
e
s
b
G
e
n
e
sc

C
p
G
si
te
sc

L
a
m
b
d
a

S
N
P
s
a
L
o
c
ia

P
h
e
n
o
ty
p
e
s
b
G
e
n
e
sc

C
p
G
si
te
sc

B
la
d
d
er

ca
n
ce
r

1
.0
3

2
3

1
2

4
6
9
2

1
.0
3

3
8

1
3

5
0
1
7

B
ra
in

ca
n
ce
r

8
,3
9
0
,7
4
3

1
.1
2

1
0
8

3
9

4
8
4
7

5
5
1
4

1
.1
2

9
8

3
8

4
8
7
7

5
5
7
4

B
re
as
t
ca
n
ce
r

8
,3
3
8
,6
3
8

1
.0
1

9
9

1
5

1
1

7
0
5

4
6
8
1

1
.0
1

2
9

1
2

1
4

6
7
7

4
7
3
1

C
o
lo
re
ct
al
ca
n
ce
r

8
,3
3
4
,6
2
9

1
.0
1

7
5

5
6
9
2

4
4
2
5

1
.0
1

1
0

7
1
5

6
8
9

4
3
0
1

C
o
rp
u
s
u
te
ri

8
,3
6
0
,9
3
4

1
.0
1

1
6
1

7
6
2
9

4
7
7
4

0
.9
8

1
3
8

3
1

8
7
0
8

4
7
0
0

E
so
p
h
ag
u
s
ca
n
ce
r

8
,2
9
6
,7
1
4

1
.0
7

4
7

3
6

9

3
5

7
1
7

5
0
3
4

1
.0
7

3
6

3
1

7
7
2
9

5
1
9
8

G
as
tr
ic
ca
n
ce
r

8
,2
8
3
,9
6
3

1
.0
6

1
7
7

5
0

1
1

7
4
3

4
9
5
3

1
.0
7

2
7
0

5
4

1
2

7
1
6

5
1
1
7

L
u
n
g
ca
n
ce
r

8
,3
5
5
,2
2
7

1
.0
1

2
4

4
1
2

6
7
7

4
5
1
8

1
.0
1

1
3

9
1
3

6
6
6

4
6
7
8

L
ym

p
h
o
id

le
u
k
em

ia
8
,4
2
5
,9
5
2

0
.9
7

9
8

5
7

1
2

7
5
7

5
2
0
8

0
.8
4

2
7
1

3
6

1
5

7
9
2

5
1
4
2

M
u
lt
ip
le

m
ye
lo
m
a

8
,2
5
8
,0
9
1

1
.0
7

7
3

3
9

1
2

6
8
0

4
8
6
1

1
.0
5

1
0
4

4
1

1
3

7
1
0

5
0
4
1

O
ra
l
an
d
p
h
ar
yn

x
ca
n
ce
r

8
,2
7
2
,4
6
4

1
.0
5

9
9

3
0

9
7
6
2

4
8
0
2

0
.9
9

8
0

3
9

1
3

7
6
0

4
8
1
9

O
va
ri
an

ca
n
ce
r

8
,3
5
1
,7
7
7

1
.0
7

1
3
8

1
1

7
1
3

4
9
7
8

1
.0
6

9
0

4
6

6
6
7
1

4
8
5
6

P
an
cr
ea
ti
c
ca
n
ce
r

8
,2
9
9
,0
0
1

1
.0
7

2
9

2
2

9

4
8

7
0
0

4
7
4
6

1
.0
6

8
6

1
0

6
7
8

4
5
1
2

P
ro
st
at
e
ca
n
ce
r

8
,3
3
3
,0
6
9

1
.0
1

1
5

1
3

7
0
3

4
5
5
9

1
.0
0

2
9

1
8

7
1
9

4
4
1
5

R
en

al
ca
n
ce
r

8
,3
7
6
,8
5
2

1
.0
3

3
2

1
7

1
1

1
1

7
5
4

5
0
0
7

1
.0
3

9
1

2
4

9

6

2
6

7
2
8

4
7
1
2

S
k
in

m
el
an
o
m
a

8
,3
3
9
,4
4
3

0
.9
9

5
5

2
2

1
4

6
6
8

4
3
5
0

0
.9
6

6
0

2
5

1
6

6
7
9

4
6
3
5

T
h
yr
o
id

ca
n
ce
r

8
,3
0
8
,3
0
6

0
.7
7

1
3

7
2
3

7
2
1

4
9
7
7

0
.3
7

0
0

1
2

4
5
1

2
4
9
1

N
o
te
:
SN

P
si
n
g
le
n
u
cl
eo

ti
d
e
p
o
ly
m
o
rp
h
is
m
,
IV

W
in
ve
rs
e
va
ri
an
ce

w
ei
g
h
te
d
,
SM

R
su
m
m
ar
y-
d
at
a-
b
as
ed

M
en

d
el
ia
n
ra
n
d
o
m
iz
at
io
n

a P
-v
al
u
e
fo
r
C
o
x
re
g
re
ss
io
n
m

b
P
-v
al
u
e
fo
r
IV

W
an
al
ys
is
≤
0
.0
5
,
P
-v
al
u
e
fo
r
eg
g
er

in
te
rc
ep
t
>
0
.0
5
,
an
d
P
-v
al
u
e
fo
r
h
et
er
o
g
en

ei
ty

>
0
.0
5

c P
-v
al
u
e
fo
r
S
M
R
an
al
ys
is
≤
0
.0
5
an
d
P
-v
al
u
e
fo
r
H
E
ID

I
>
0
.0
5

306 Junyi Xin et al.

8
,3
2
6
,2
8
2

3
4

7
1
0

1
3
4

7
3
7

o
d
el
 ≤
1
 ×

1
0
-
6

The Application of SUMMER in Pan-cancer Survival Analysis 307

Fig. 1 Summary of the design of SUMMER database

2.1 Preparation of

SNP-Exposure

Association Datasets

2.1.1 PheWAS Dataset

The GWAS summary statistics of common traits in the PheWAS
dataset [15] were accessed through the IEU Open GWAS project
(https://gwas.mrcieu.ac.uk/), with the R package TwoSampleMR
[16, 17].

Based on a strict QC process consisting of (i) limited in
European population (see Note 1) and (ii) with ≥3 independent
[linkage disequilibrium (LD) r2 < 0.01] genetic instruments
(defined by SNPs with P-value ≤5 × 10-8), we included a total of
150 traits in this database, which spanned the categories of anthro-
pometric, autoimmune/inflammatory, behavioral, cardiovascular,
International Classification of Diseases, 10th revision (ICD-10)
codes-related, miscellaneous, non-cancer illness, and psychiatric/
neurological traits.

2.1.2 QTL Dataset In addition to PheWAS dataset, we also obtained QTL datasets for
biomarker-level analysis, including (i) eQTL datasets from the
eQTLGen consortium (https://eqtlgen.org/) that incorporated a
total of 31,684 blood samples mostly from donors of European
ancestry [18] and (ii) meQTL dataset from Hannon et al.’s study
that included a total of 1175 blood samples from donors of
European ancestry (see Note 1) [19].

https://gwas.mrcieu.ac.uk/
https://eqtlgen.org/

308 Junyi Xin et al.

2.2 Preparation of

SNP-Outcome

Association (That Is,

Cancer Survival GWAS)

Datasets

2.2.1 Data Collection and

Quality Control in UK

Biobank Cohort

The UK Biobank cohort is a prospective, population-based study
that recruited 502,528 adults aged 40–69 years from the general
population between 2006 and 2010 [20]. Participants visited 1 of
22 assessment centers across England, Scotland, and Wales, where
they completed touchscreen and nurse-led questionnaires and
provided biological samples. The study protocol and information
about data access are available online (https://www.ukbiobank.ac.
uk/; Application #45611).

A total of 355,543 participants remained for analysis after the
following individual-level quality control (QC) process which
(i) excluded individuals with prevalent cancer (except nonmela-
noma skin cancer, based on the ICD-10 [C44]) at baseline;
(ii) excluded individuals of sex discordance; (iii) excluded outliers
for genotype missingness or excess heterozygosity; (iv) retained
unrelated participants; (v) restricted the cohort to “white British”
individuals of European ancestry (see Note 1); and (vi) removed
individuals who decided not to participate in this program. The
follow-up time of cancer survival was measured from cancer diag-
nosis (defined by ICD-10 codes [21]) to death or the last follow-up
(February 14, 2018). We determined whether an individual died of
a specific cancer by considering the ICD-10 codes listed as the
primary cause of death. Finally, of the 355,543 individuals,
19,628 were newly diagnosed with 1 or more of 17 cancer types,
ranging from 179 thyroid cancer cases to 4882 prostate cancer
cases (Table 1).

2.2.2 Cancer Survival

GWAS Analysis

All samples derived from UK Biobank were genotyped using the
UK BiLEVE Axiom Array or UK Biobank Axiom Array by Affyme-
trix [22]. The genotyping data were imputed using SHAPEIT3 and
IMPUTE3 based on the reference panels of Haplotype Reference
Consortium (HRC), UK10K, and 1000 Genomes Project (Phase
3). The study protocol and information about data access are
available online (http://www.ukbiobank.ac.uk/wp-content/
uploads/2011/11/UKBiobank-Protocol.pdf).

We kept variants based on a strict QC process with the follow-
ing criteria: (i) SNPs located within autosomal chromosomes,
(ii) imputation info score ≥0.3, (iii) minor allele frequency (MAF)
≥0.01, (iv) call rate ≥95%, and (v) Hardy-Weinberg equilibrium
(HWE) P value ≥1 × 10-6 . Subsequently, the Cox proportional
hazards regression analysis in an additive genetic model was applied
to evaluate the association between each SNP and cancer survival
that included OS and CSS as endpoints, with adjustment for sex,
age at diagnosis, BMI, smoking status, drinking status, and the top
10 principal components of population stratification when
appropriate.

https://www.ukbiobank.ac.uk/
https://www.ukbiobank.ac.uk/
http://www.ukbiobank.ac.uk/wp-content/uploads/2011/11/UKBiobank-Protocol.pdf
http://www.ukbiobank.ac.uk/wp-content/uploads/2011/11/UKBiobank-Protocol.pdf

The Application of SUMMER in Pan-cancer Survival Analysis 309

2.3 MR Analysis

Framework

2.3.1 MR Analysis in

Identification of Cancer

Survival-Associated Risk

Factors

Here, we used the R package TwoSampleMR to apply multiple MR
methods [6] in the phenotype-survival association analysis, includ-
ing inverse variance weighted (IVW), weighted median, penalized
weighted median, and MR Egger methods. In addition, the het-
erogeneity test was used to assess whether a genetic variant’s effect
on outcome was proportional to its effect on exposure, and the
MR-Egger intercept test was fitted to evaluate the presence of
horizontal pleiotropy [23]. The suggestive evidence between phe-
notypes and cancer survival was identified when three nominal
thresholds were met, including P-value for IVW analysis ≤0.05,
P-value for Egger intercept >0.05, and P-value for heterogeneity
>0.05.

2.3.2 Summary-Data-

Based MR (SMR) Analysis

for Identification of Cancer

Survival-Associated

Circulating Biomarkers

The associations between biomarkers and cancer survival were
evaluated using the SMR analytical framework with default settings
(--peqtl-smr 5E-08 --peqtl-heidi 1.57E-03 --cis-wind 2000) by
integrating the cancer survival GWAS summary statistics data with
cis-eQTL and cis-meQTL results (i.e., with a window of 2000 kb to
select SNPs centered around the target biomarker) [24, 25]. The
genotype data from the European population of the 1000 Gen-
omes Project Phase 3 were used for the LD estimation. The sug-
gestive colocalized signals were determined at a nominal threshold
of P-value for SMR analysis ≤0.05 and P-value for HEIDI (i.e.,
heterogeneity test in dependent instruments) >0.05.

3 Methods

3.1 Design of

SUMMER Database

We applied the R package Shiny to develop SUMMER database
(Fig. 1) with the following four modules:

(i) Survival GWAS Dataset module, to help users browse the
association effects of over eight million genetic variants on
pan-cancer survival

(ii) Phenotype-Wide Association Analysis module, to help users
browse the causal effects of 150 phenotypes on pan-cancer
survival

(iii) Biomarker-Wide Association Analysis module, to help users
browse the causal effects of genome-wide genes and CpG
sites on pan-cancer survival

(iv) Running your data module, to allow users to evaluate their
own data on pan-cancer survival.

The “About” page provides more details about the function of
this database.

310 Junyi Xin et al.

3.2 “Survival GWAS

Dataset” Module

1. Search and browse: Select a cancer type and enter a batch of SNP
IDs or a genetic region. A table with cancer type (see Note 2),
chromosome ID, SNP ID, SNP genomic position, SNP alleles
(A1: minor/effect allele; A2: major/reference allele), MAF,
hazard ratio (HR), standard error (SE), and P-value will be
built to display the associations of SNPs with cancer survival
that includes OS and CSS. Additional function annotation links
are also provided (see Note 3).

2. Download: Download the results by clicking the “Download”
button.

3. Plot: Select one SNP-survival pair and click the “Plot” button.
The diagrams of Kaplan-Meier (KM) plot will be provided to
display the associations.

4. Example: Colorectal cancer patients with the SNP rs17123527
GA or AA genotypes had shorter OS times than patients with
the rs17123527 GG genotype (HR = 2.20, P = 1.27 × 10-5 ;
P for log-rank test = 1.21 × 10-6 ; Fig. 2).

3.3 “Phenotype-

Wide Association

Analysis” Module

1. Search and browse: Select a cancer type (see Note 2), a pheno-
type category (e.g., anthropometric and autoimmune/inflam-
matory; see Note 4) and a survival type (e.g., OS or CSS). A
table with phenotype category, trait, trait ID, cancer type,
survival type, MR method, number of IVs, and beta, SE, and
P-value from the MR analysis will be built to display the asso-
ciations of selected phenotypes with cancer survival.

2. Download: Download the results by clicking the “Download”
button.

3. Plot: Select one trait-survival pair and click the “Plot” button.
The diagrams of MR scatter plot will be provided to display the
associations.

4. Example: Blood clot in the leg (DVT) was associated with a
poorer OS of colorectal cancer (betaIVW = 8.45, PIVW = 0.013,
Pegger intercept = 0.375, PIVW heterogeneity = 0.509; Fig. 3).

3.4 “Biomarker-

Wide Association

Analysis” Module

1. Search and browse: Select a cancer type (see Note 2), a bio-
marker type (e.g., gene expression or CpG site; see Note 4),
and a survival type (e.g., OS or CSS). A table with cancer type,
survival type, probe ID, probe genomic position, top eQTL/
meQTL SNP, top SNP genomic position, MAF from 1000
Genomes EUR population, top SNP-associated eQTL and
survival GWAS results (including beta, SE, and P-value), and
beta, SE, and P-value (including PSMR, Pmulti-SMR, and PHEIDI)
from SMR analysis will be built to display the associations of
selected biomarkers with cancer survival.

2. Download: Download the results by clicking the “Download”
button.

The Application of SUMMER in Pan-cancer Survival Analysis 311

Fig. 2 Overview of the “Survival GWAS Dataset” module in the SUMMER database

312 Junyi Xin et al.

Fig. 3 Overview of the “Phenotype-Wide Association Analysis” module in the SUMMER database

The Application of SUMMER in Pan-cancer Survival Analysis 313

3. Plot: Select one biomarker-survival pair and click the “Plot”
button. The diagrams of SMR scatter plot will be provided to
display the associations.

4. Example: Higher expression of HTR6 was associated with
poorer OS in colorectal cancer (betaSMR = 0.72,
PSMR = 2.38 × 10-4 , Pmulti-SMR = 0.007, PHEIDI = 0.692;
Fig. 4).

3.5 “Running Your

Data” Module

1. Selection of type of exposures and outcomes: Select a cancer type
(see Note 2), a data type (e.g., phenotype or biomarker), and a
survival type (e.g., OS or CSS), and enter a data name and
email address (optional).

2. Data uploading: Upload your summary statistic data (.csv
format).

3. Data analysis, browse, and download: Submit your data and
perform analysis (see Note 5). A table derived from the MR
or SMR analysis will be built to display the associations of
related phenotypes/biomarkers with cancer survival, which
can be downloaded by clicking the “Download” button or
received by email.

4. Plot: Select one pair and click the “Plot” button. The diagrams
of MR/SMR scatter plots will be provided to display the
associations.

5. Example: The uploaded trait_1 was not associated with the OS
of colorectal cancer (betaIVW = 6.15, PIVW = 0.212, Pegger

intercept = 0.518, PIVW heterogeneity = 0.458; Fig. 5).

4 Notes

1. Our database is mainly used to identify cancer survival-relevant
risk factors and biomarkers in European populations, of which
the findings may not be directly transferred in other ancestries.

2. The cancer outcomes are focused on OS and CSS of 17 cancers
from UK Biobank cohort. More cancer survival GWAS datasets
with larger sample sizes and longer follow-up times will be
updated in our database, or at the user’s own survival GWAS
datasets.

3. Our database does not provide sufficient functional annotation
for the identified genetic variants and biomarkers but shows
several informative links (e.g., Haploreg, dbSNP, and ClinVar)
on the website.

4. The phenotypes of our database only include 150 traits, and
there is a limited number of biomarkers based on the gene
expression and DNA methylation at the circulating level.

314 Junyi Xin et al.

Fig. 4 Overview of the “Biomarker-Wide Association Analysis” module in the SUMMER database

The Application of SUMMER in Pan-cancer Survival Analysis 315

Fig. 5 Overview of the “Running your data” module in the SUMMER database

316 Junyi Xin et al.

Additional risk factors and multi-tissue biomarkers will be
updated in our database.

5. In the Running your data module, users must upload the
SNP-exposure association file in the example format (e.g., .
csv file) and cannot choose other parameters (e.g., the distance
and LD r2 for selection of genetic instrument). In addition,
when running data with more genetic instruments, our tool
needs more time for analysis. If errors occur, they are likely due
to problems for the data format, the number of genetic instru-
ments, or others.

Acknowledgments

This work was supported by the Natural Science Foundation of
Jiangsu Province (BK20230003; BK20240524). We are grateful to
the participants and study staff of the UK Biobank.

Conflict of Interest None

References

1. Sud A, Kinnersley B, Houlston RS (2017)
Genome-wide association studies of cancer:
current insights and future perspectives. Nat
Rev Cancer 17:692–704

2. Buniello A, MacArthur J, Cerezo M et al
(2019) The NHGRI-EBI GWAS Catalog of
published genome-wide association studies,
targeted arrays and summary statistics 2019.
Nucleic Acids Res 47:D1005–D1012

3. Visscher PM, Brown MA, McCarthy MI et al
(2012) Five years of GWAS discovery. Am J
Hum Genet 90:7–24

4. Zuber V, Grinberg NF, Gill D et al (2022)
Combining evidence from Mendelian random-
ization and colocalization: review and compar-
ison of approaches. Am J Hum Genet 109:
767–782

5. Gallagher MD, Chen-Plotkin AS (2018) The
post-GWAS era: from association to function.
Am J Hum Genet 102:717–730

6. Smith GD, Ebrahim S (2003) ‘Mendelian ran-
domization’: can genetic epidemiology con-
tribute to understanding environmental
determinants of disease? Int J Epidemiol 32:
1–22

7. Davies NM, Holmes MV, Davey SG (2018)
Reading Mendelian randomisation studies: a
guide, glossary, and checklist for clinicians.
BMJ 362:k601

8. Davey SG, Hemani G (2014) Mendelian ran-
domization: genetic anchors for causal infer-
ence in epidemiological studies. Hum Mol
Genet 23:R89–R98

9. Xin J, Jiang X, Ben S et al (2022) Association
between circulating vitamin E and ten common
cancers: evidence from large-scale Mendelian
randomization analysis and a longitudinal
cohort study. BMC Med 20:168

10. Lin L, Li Z, Yan L et al (2021) Global,
regional, and national cancer incidence and
death for 29 cancer groups in 2019 and trends
analysis of the global cancer burden,
1990–2019. J Hematol Oncol 14:197

11. Sung H, Ferlay J, Siegel RL et al (2021) Global
cancer statistics 2020: GLOBOCAN estimates
of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin
71:209–249

12. Liu J, Lichtenberg T, Hoadley KA et al (2018)
An integrated TCGA pan-cancer clinical data
resource to drive high-quality survival outcome
analytics. Cell 173:400–416

13. Arnold M, Rutherford MJ, Bardot A et al
(2019) Progress in cancer survival, mortality,
and incidence in seven high-income countries
1995-2014 (ICBP SURVMARK-2): a
population-based study. Lancet Oncol 20:
1493–1505

The Application of SUMMER in Pan-cancer Survival Analysis 317

14. Xin J, Gu D, Chen S et al (2023) SUMMER: a
Mendelian randomization interactive server to
systematically evaluate the causal effects of risk
factors and circulating biomarkers on
pan-cancer survival. Nucleic Acids Res 51:
D1160–D1167

15. Prince C, Mitchell RE, Richardson TG (2021)
Integrative multiomics analysis highlights
immune-cell regulatory mechanisms and
shared genetic architecture for 14 immune-
associated diseases and cancer outcomes. Am J
Hum Genet 108:2259–2270

16. Lyon MS, Andrews SJ, Elsworth B et al (2021)
The variant call format provides efficient and
robust storage of GWAS summary statistics.
Genome Biol 22:32

17. Hemani G, Zheng J, Elsworth B et al (2018)
The MR-Base platform supports systematic
causal inference across the human phenome.
elife 7:e34408

18. Vosa U, Claringbould A, Westra HJ et al
(2021) Large-scale cis- and trans-eQTL ana-
lyses identify thousands of genetic loci and
polygenic scores that regulate blood gene
expression. Nat Genet 53:1300–1310

19. Hannon E, Gorrie-Stone TJ, Smart MC et al
(2018) Leveraging DNA-methylation quanti-
tative-trait loci to characterize the relationship
between methylomic variation, gene

expression, and complex traits. Am J Hum
Genet 103:654–665

20. Sudlow C, Gallacher J, Allen N et al (2015) UK
biobank: an open access resource for identify-
ing the causes of a wide range of complex dis-
eases of middle and old age. PLoS Med 12:
e1001779

21. Zhu M, Wang T, Huang Y et al (2021) Genetic
risk for overall cancer and the benefit of adher-
ence to a healthy lifestyle. Cancer Res 81:
4618–4627

22. Bycroft C, Freeman C, Petkova D et al (2018)
The UK Biobank resource with deep pheno-
typing and genomic data. Nature 562:203–
209

23. Burgess S, Thompson SG (2017) Interpreting
findings from Mendelian randomization using
the MR-Egger method. Eur J Epidemiol 32:
377–389

24. Zhu Z, Zhang F, Hu H et al (2016) Integra-
tion of summary data from GWAS and eQTL
studies predicts complex trait gene targets. Nat
Genet 48:481–487

25. Wu Y, Zeng J, Zhang F et al (2018) Integrative
analysis of omics summary data reveals putative
mechanisms underlying complex traits. Nat
Commun 9:918

Chapter 18

Predicting Tumor Antigens Using the LENS Workflow
Through RAFT

Steven P. Vensko II , Dante Bortone , and Benjamin G. Vincent

Abstract

Tumor-specific and tumor-associated antigens presented on the tumor cell surface by MHC molecules are
enticing targets for personalized vaccination and T cell receptor-engineered T cell (TCR-T) therapy.
Accurately predicting suitable tumor antigens is a considerable challenge and requires flexibility in both
computational tools and experimental methods. Here we describe our framework for reproducible bioin-
formatics, RAFT, as well as our highly modular neoantigen prediction workflow, LENS. We provide step-
by-step instructions for installation, running, and modifying LENS to suit different purposes.

Key words Tumor antigen, Neoantigen, Immuno-oncology, Tumor-associated antigen, Neoantigen
workflow, Bioinformatics

1 Introduction

Cancer immunotherapy involves the treatment of tumors through
targeted control and elimination by a patient’s immune system.
Vaccines designed against tumor-specific neoantigens have shown
success in eliciting tumor antigen-specific T cell responses in some
patient groups and tumor types [10, 23]. Nevertheless, the vast
majority of trials result in minimal clinical improvement for patients
[12]. This lack of beneficial outcomes underscores many of the
field’s difficult and unanswered questions, such as those related to
immunogenicity. Despite these hurdles, advancements in assays,
sequencing technologies, and applications of machine learning
suggest the efficacy of personalized neoantigen vaccines should
vastly improve in the coming years.

Alexander Krasnitz and Pascal Belleau (eds.), Cancer Bioinformatics, Methods in Molecular Biology, vol. 2932,
https://doi.org/10.1007/978-1-0716-4566-6_18,
© The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature 2025

319

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-4566-6_18&domain=pdf
https://orcid.org/0000-0001-9399-5999
https://orcid.org/0000-0002-3215-5440
https://doi.org/10.1007/978-1-0716-4566-6_18#DOI

320 Steven P. Vensko II et al.

2 Tumor Antigens

Personalized tumor vaccines may target both tumor-specific and
tumor-associated antigens [7]. Tumor-specific antigens are gener-
ated by disruptive genomic events occurring within the tumor, but
not the adjacent normal tissues. These events include somatic
mutations (single-nucleotide variants and insertions/deletions),
tumor-specific transcriptional splice variants, and gene fusions,
among others. Tumor-associated antigens, on the other hand,
may exist in normal tissues but typically are not expressed or are
heavily tumor-biased in their expression. These antigens include
endogenous retroviruses and cancer-testis antigens. Endogenous
retroviruses are ancient viruses that are abundant in the genome
(up to 8% of the genome’s content) [8]. Endogenous retroviruses
are largely degraded and nonfunctional, but some retain sufficient
coding sequences for transcription and translation. They have been
observed in normal tissues but are largely downregulated
[11, 16]. Cancer-testis antigens (CTAs) are produced by transcripts
that are almost exclusively expressed in immune-privileged testis
and embryonal tissue [25]. CTA expression in immune-privileged
tissue suggests they may be recognized by the patient’s immune
system as non-self which may trigger an antitumor immune
response. Tumors may have disrupted chromatin states throughout
their genome allowing endogenous retroviruses and cancer-testis
antigens to be aberrantly expressed.

3 Role of Bioinformatics in Personalized Neoantigen Vaccines

The ability to address challenges within the field of immuno-
oncology is heavily reliant upon bioinformatics tools and work-
flows. The advent of relatively inexpensive short-read exome and
RNA sequencing resulted in the explosive growth of data available
across a variety of tumor types. These data, combined with bioin-
formatics tools, can be used to predict tumor-specific and tumor-
associated antigens.

Specifically, standard sequence-based bioinformatics tools cou-
pled with custom scripts can be used to predict tumor antigens that
may potentially be presented on the tumor cell surface. Somatic
single-nucleotide variants, insertions, and deletions can be detected
and annotated using tools like MuTect2 and snpEff, respectively
[2, 4]. Tumor RNA-sequencing data can be used to detect gene
fusion events or, when combined with a tissue-matched normal
sample, tumor-biased splice events and endogenous retroviral
expression. The resulting predicted peptides and patient-specific
HLA allele information can be used to predict peptide-MHC
(pMHC) binding affinity, stability, and relative expression—some
of the factors believed to be relevant to predicting a pMHC’s
potential immunogenicity [28].

Predicting Tumor Antigens Using the LENS Workflow Through RAFT 321

Here, we present a detailed description and tutorial for running
the LENS neoantigen workflow through RAFT, our in-house
framework, and workflow manager built on Nextflow DSL2
[5]. First, we will cover RAFT’s functionality and how it supports
reproducible bioinformatics (and, in turn, LENS), and then we will
describe running LENS.

4 RAFT

A common issue with bioinformatics analyses is difficulty in repro-
ducing the results of a journal article. Many article authors will
generally describe the process in which data were generated and the
analyses were performed, but commonly omit critical details such as
tool versions and parameters used. Our workflow manager, RAFT
(Reproducible Analyses Framework and Tools), seeks to support
absolute reproducibility within the field of sequencing-based bio-
informatics while also providing an easy-to-use interface. The even-
tual goal for RAFT is to support the running of complex workflows
by third parties with minimal difficulty. Reproducibility through
RAFT is accomplished through several interoperating facets: (1) a
project context, (2) module-based components, and (3) RAFT
packages. Here, we describe these aspects of RAFT and how they
support project transparency and reproducibility.

4.1 Project Context Specifically, a project context entails an isolated environment in
which an analysis is performed. The project’s contents consist of
reference files, sample-level input files, the output files generated,
and the module code running each workflow step. This isolated
environment ensures that every component needed to reproduce
results is contained within the project.

4.2 Module-Based

Components

Modules within RAFT define command-level process definitions,
subworkflow definitions, resource allocation (CPU and memory),
and the Docker image to use for running the processes and work-
flows. These modules exist locally within the project such that users
can modify them as needed to change tool-level behaviors.

4.3 Project

Packaging

RAFT projects contain end-to-end analyses and can, depending on
the workflow, require hundreds of gigabytes to terabytes of storage.
Unfortunately, it is rarely practical to store the entire project for
long periods. We have included functionality within RAFT, the
RAFT package, to address this issue. Specifically, the RAFT package
(.rftpkg) is a tarfile consisting of (1) checksums of input, outputs,
and references, (2) all of the module code used to run the analysis
(including any user modifications), and (3) the RAFT commands
used to generate and run the project. The tarfile containing these
components is a fraction of the size of the original project and
allows for the regeneration of the project at a later date if needed.

4.4.1 Installation

Through pip

4.4.2 Installation

Through Conda

RAFT packages also serve as a mechanism to share an analysis with
third parties as it is sufficient to rerun the entire analysis (assuming
the third party has access to the input files).

322 Steven P. Vensko II et al.

More information on RAFT can be found at https://useraft.io.

4.4 Installation RAFT installation canbeperformedwith either pip (https://pypi.org/
project/reproducible-analyses-framework-and-tools) or using Conda
environments (https://anaconda.org/raft/reproducible-analyses-
framework-and-tools). RAFT requires the following dependencies:

• Python 3.6

• python-wget 3.2 (https://pypi.org/project/wget/)

• gitpython 3.1.9 (https://github.com/gitpython-developers/
GitPython)

• python-gitlab 4.2.0 (https://github.com/python-gitlab/
python-gitlab)

• Nextflow 23.10.0 (https://nextflow.io/)

• Git 2.43.0 (https://git-scm.com/)

• OpenJDK 21.0.1 (https://openjdk.java.net)

RAFT installation through pip requires Java > = 11 to be installed
by the user (for example, using sudo apt-get install openjdk11-jdk)
to support Nextflow. Note that installation through pip does not
include installation of Singularity/Apptainer and instead requires
the user to install it separately (or use another supported tool, like
Docker).

Installing RAFT Using pip

pip install --user reproducible-analyses-fra-

mework

-and-tools

The RAFT Conda package provides a full working environment
that installs all required dependencies.

Installing RAFT Using Conda

conda install -c bioconda -c conda-forge -c

raft \

reproducible-analyses-framework-and

-tools

https://useraft.io
https://pypi.org/project/reproducible-analyses-framework-and-tools
https://pypi.org/project/reproducible-analyses-framework-and-tools
https://anaconda.org/raft/reproducible-analyses-framework-and-tools
https://anaconda.org/raft/reproducible-analyses-framework-and-tools
https://pypi.org/project/wget/
https://github.com/gitpython-developers/GitPython
https://github.com/gitpython-developers/GitPython
https://github.com/python-gitlab/python-gitlab
https://github.com/python-gitlab/python-gitlab
https://nextflow.io/
https://git-scm.com/
https://openjdk.java.net

4.4.3 Setting up RAFT

Setting up RAFT with Default Parameters

raft.py setup -d

4.4.4 Setting up Nextflow

Profile

Predicting Tumor Antigens Using the LENS Workflow Through RAFT 323

RAFT must be installed within a directory that will house all
projects and project-related artifacts (e.g., references, fastqs,
RAFT packages, etc.). RAFT can be quickly installed using:

Usage of the -d/–default flag will create all of the required
directories in the working directory in which the command is run.
Users desiring a more flexible, custom installation can instead run:

Setting up RAFT with Interactive Prompt

raft.py setup

This command initiates a prompt requesting user-provided
paths for each directory required by RAFT. These directories will
be created or will be symbolically linked (symlinked) to the RAFT
installation directory if they already exist elsewhere on the file
system.

Nextflow supports a variety of executors to schedule and run its
processes. For demonstration purposes, we will be running in the
local environment using Singularity/Apptainer to run containers.
The following configuration can be placed in ∼/.nextflow/config
to run RAFT:

Example Nextflow Profile

profiles {

standard {

process.executor = ’local’

executor.queueSize = ’99’

executor.submitRateLimit = ’25/2min’

singularity.enabled = true

}

}

5 LENS Workflow Demonstration

Running LENS Demonstration

raft.py run-demo --workflow lens -mb v1.2-dev

(continued)

324 Steven P. Vensko II et al.

Now that RAFT and its dependencies are installed, users can run
LENS in demonstration mode. Demonstration mode uses a pre-
defined manifest and set of FASTQs, so users can see how the
workflow works before providing their samples. Demonstrations
are run using the RAFT command run-demo. The demonstration
project’s identifier defaults to demo-< WORKFLOW> (e.g.,
demo-lens) and will be available in ./raft/projects/demo-<

WORKFLOW> .
The LENS demonstration can be run using:

The -mb Parameter

The -mb parameter specifies the module branch. The latest
version of LENS at this time of publication is v1.2-dev, but
users are encouraged to check for the latest version on the
LENS wiki (see Subheading 12).

RAFT will then download them if necessary and load the
required inputs into the project (truncated for brevity):

LENS Demonstration Output

Initializing project default-demo...

Pulling off-the-shelf workflow...

This may take some time due to module fetching.

Loading manifest...

Couldn’t find lens.demo.manifest in RAFT meta-

data

directory.

Loading references...

Couldn’t find Homo_sapiens_assembly38.fasta.

Downloading...

Couldn’t find gencode.v44.annotation.gtf.gz.

Downloading...

Loading fastqs...

Couldn’t find SRR8668635_1.fastq.gz. Download-

6.2 Generating and

Checking the RAFT

Manifest

ing...

Couldn’t find SRR8668635_2.fastq.gz. Download-

ing...

Building workflow...

Connecting subworkflows...

Populating default parameters...

Running workflow...

Predicting Tumor Antigens Using the LENS Workflow Through RAFT 325

Outputs from the demonstration are available for review in ./
raft/projects/demo-<WORKFLOW>/outputs. Output file
descriptions can be found in Subheadings 8 and 9.

6 Running LENS with User-Provided Manifest

6.1 Loading

Reference and FASTQ

Files

RAFT expects reference files, FASTQ files, and, in most cases,
metadata/manifest files to be available within specific directories
(./raft/references, ./raft/fastqs, and ./raft/metadata, respec-
tively) when running a project’s workflow. Many of RAFT’s off-
the-shelf workflows, such as LENS, will automatically download
any references required for running. They will also automatically
copy the user-provided metadata file to the correct location. Users,
however, must copy or symlink their sample-level FASTQs to the ./
raft/fastqs directory.

LENS currently supports single-end and paired-end Illumina
sequencing by synthesis (SBS) reads. For optimal performance,
each patient should have three samples including: (1) normal
DNA, (2) tumor DNA, and (3) tumor RNA. Users can also provide
only a tumor RNA sample for each patient but will not receive SNV
and InDel neoantigen predictions. A single-reference tissue-
matched (to the tumor type) normal RNA sample is also required.
LENS has been extensively tested on whole exome sequencing data
(WES or WXS) but should also work with whole genome sequenc-
ing (WGS) data.

The relationship between samples and patients is defined within the
RAFT manifest. The samples required for a RAFT workflow vary
depending on the workflow. For example, an RNA quantification
workflow may use one or multiple RNA-sequencing samples per
patient. Other workflows, like somatic variant calling, will require
both a normal sample and a tumor sample for each patient. For
optimal performance, LENS requires patient-specific normal DNA
samples, tumor DNA samples, and tumor RNA samples as well as a
tissue-specific control normal sample to be shared among patients.
RAFT manifests may contain one or more patients. Many computer

clusters will allow for multiple patients to be run in parallel to
reduce run time.

326 Steven P. Vensko II et al.

Table 1

Required RAFT manifest columns

Column Description Allowed values

File_Prefix Base name of FASTQ files Free text

Patient_Name Name for collection of samples Free text

Normal Is the sample normal or abnormal (tumor)? (TRUE, FALSE)

Sequencing_Method Sequencing protocol for sample (RNA-Seq, WES, WXS, WGS)

Dataset Name for collection of patients Any string

Run_Name Name for the specific sample Free text (see note below)

A RAFT manifest must have at least the columns defined in
Table 1. Columns can be in any order, and other columns contain-
ing non-RAFT metadata are also allowed.

The general hierarchy of organization within RAFT follows:

Sample ∈Patient ∈Dataset :

In other words, samples belong to patients (patients can have
multiple samples) and patients belong to datasets (datasets can have
multiple patients).

Run_Names are instrumental in guiding samples through the
LENS workflow. A sample’s Run_Name should have a two-letter
prefix that describes the type of sample followed by an arbitrary
unique identifier. The first letter of the prefix is either a (for abnor-
mal) or n (for normal). The second letter is either r (for RNA) or
d (for DNA). For example, a sample with an ar- prefix is an abnor-
mal (tumor) RNA sample, while a sample with a nd- prefix is a
normal DNA sample.

Each line in the manifest after the header corresponds to a
sample and provides the necessary data for running the workflow.
The samples described within the manifest may, in some cases, be
effectively independent (as in, the workflow does not attempt to
pair samples from a patient), but in other cases, users must be
careful that samples are properly labeled. For example, somatic
variant calling generally requires a normal DNA sample and a
tumor DNA sample. For RAFT to properly pair these samples
together, they must have the correct sample prefix (nd- for the
DNA tumor sample and nd- for the DNA normal sample) and be
paired with the patient (Patient_Name field) and dataset (Dataset
field). Consider the following example:

Example Manifest

6.3 Running LENS

Workflow with Default

Parameters

Running an off-the-Shelf Workflow

raft.py run-ots \

--project-id my_lens_project \

--workflow lens \

-mb v1.2-dev \

--metadata /path/to/manifest.tsv

Predicting Tumor Antigens Using the LENS Workflow Through RAFT 327

Patient_Name Run_Name Dataset File_Prefix Se-

quencing

_Method Normal

Pt01 ad-Pt01-03A AML 9f7f7 WES FALSE

Pt01 nd-Pt01-11A AML 8e74a WES TRUE

Pt01 ar-Pt01-03A AML cdb288 RNA-Seq FALSE

CTRL nr-CTRL TCGA_LAML CD34-032U RNA-Seq

TRUE

Note that both the tumor DNA sample (ad-Pt01-03A) and the
normal DNA (nd-Pt01-11A) sample belong to the same patient
(Pt01) and the same dataset (AML).

User-provided manifests can be sanity-checked by using:

Sanity Checking Manifests

raft.py check-manifest -m /path/to/manifest.

tsv

Users can then provide the manifest to RAFT’s run-ots com-
mand to run the workflow with their manifest.

Running LENS with a user-provided manifest and default para-
meters can be accomplished with:

The -mb Parameter

The -mb parameter specifies the module branch. The latest
version of LENS at this time of publication is v1.2-dev, but
users are encouraged to check for the latest version on the
LENS wiki (see Subheading 12).

7 Modifying LENS Modules, Parameters, and References

7.1.1 Parameter

Modifications

328 Steven P. Vensko II et al.

This command will create a new project in the ./raft/projects
directory named my_lens_project. Note that project names are free
text, but RAFT’s developers highly encourage users to name their
projects using meaningful nomenclature (e.g., < DATASET> -<

WORKFLOW> -< DATE>). A meaningful naming convention

will allow users to better organize their projects and prevent poten-
tial confusion.

Note that the relevant FASTQs must be present within the
RAFT FASTQs directory (./raft/fastqs) for the workflow to be
completed successfully. Information regarding accessing and inter-
preting LENS output files can be found in Subheading 8 and 9.

RAFT’s off-the-shelf workflows run with sensible default para-
meters, but it is possible to modify workflow- to tool-level para-
meters to suit specific situations. In this case, users should run the
run-ots command with the --setup-only parameter:

Setting up (but not Running) an off-the-Shelf Workflow

raft.py run-ots \

--project-id my_lens_project \

--workflow lens \

-mb v1.2-dev

--metadata /path/to/user-generated-manifest.

tsv \

--setup-only

This command will run the same steps as the run-ots com-
mand, except it will not execute Nextflow. This provides an oppor-
tunity to modify the workflow before execution.

7.1 Workflow

Modifications

Users can drastically alter workflow behaviors by modifying tool
versions, tool containers, and tool-level parameters. They can also
swap tools (e.g., swapping salmon with kallisto for RNA quantifi-
cation) or reference files. Each section below describes the steps
required to modify the workflow.

Tool-level and workflow parameters can be tweaked by users
through modification of the main.nf file (found in ./raft/pro-
jects/< PROJECT_ID> /workflow/main.nf). Lines within the
main.nf file that start with ”params.” are parameters that can be

Parameter for DNA Alignment Tool

Setting RNA Alignment Tool to star

params.lens$alignment$manifest_to_rna_alns

$aln_tool

= "star"

user-modified. The parameter names, while long, describe what
aspect of the workflow is being controlled by the parameter. Param-
eter names are $ delimited with each segment providing an increas-
ingly narrow scope of the parameter’s application. For example:

Predicting Tumor Antigens Using the LENS Workflow Through RAFT 329

params.lens$alignment$manifest_to_dna_alns

$aln_tool

This parameter is a part of the lens module which is utilizing the
alignment module’s manifest_to_dna_alns subworkflow which
requires the specific parameter aln_tool.

Using the above logic, we can see the following parameter
assigns the RNA alignment step to use the tool STAR [6]:

This allows us to specify the tool to be used but does not specify
the parameters provided to that tool. Providing tool-specific para-
meters is shown of the next line:

Setting Parameters for Running star

params.lens$alignment$manifest_to_rna_alns

$aln_

tool_parameters = \

"[star’: --quantMode TranscriptomeSAM --out-

SAMtype

BAM \

SortedByCoordinate --twopassMode Basic --out-

SAMunmapped

Within’]"

Tool-level parameters are defined using a key:value strategy
similar to a Python dictionary. In the above example, ’star’ is the

7.1.2 Tool, Container,

and Resource

Modifications

Specifying STAR for RNA Alignment

params.lens$alignment$manifest_to_rna_alns

$aln_tool

= "star"

Specifying STAR Alignment Parameters

params.lens$alignment$manifest_to_rna_alns

$aln_tool

_parameters = \

"[star’: --quantMode TranscriptomeSAM --out-

SAMtype

BAM \

SortedByCoordinate --twopassMode Basic --

outSAMunmapped Within’]"

key, and ’–quantMode TranscriptomeSAM –outSAMtype BAM
SortedByCoordinate –twopassMode Basic –outSAMunmapped
Within’ is the value. Note that this parameter set is only passed to
star in the context of running the manifest_to_rna_alns workflow
and will not affect other instances of star being called.

330 Steven P. Vensko II et al.

Users may also change the tool or the tool container used within a
process. Recall the previous section in which star is being used for
aligning short-read RNA-sequencing data to a reference. If users
instead wanted to use a different tool such as bbmap [3], then they
would change

to

Specifying BBMap for RNA Alignment

params.lens$alignment$manifest_to_rna_alns

$aln_tool

= "bbmap"

Likewise, they would also change the line

Specifying BBMap Alignment Parameters

params.lens$alignment$manifest_to_rna_alns

$aln_tool

_parameters = \

"[bbmap’: ’]"

Specifying a Single Somatic Variant Caller

params.somatic$alns_to_som_vars$som_var_cal-

ler

= "strelka2"

Specifying Multiple Somatic Variant Callers

params.somatic$alns_to_som_vars$som_var_cal-

ler = \

"strelka2,mutect2,varscan2"

Applying Parameters to Multiple Somatic Variant Callers

params.lens$somatic$alns_to_som_vars$som_-

(continued)

Predicting Tumor Antigens Using the LENS Workflow Through RAFT 331

to

while replacing ‘’ with any parameters they would like passed to
bbmap.

Note that only tools currently supported by RAFT may be
utilized. A set of supported tools for each workflow, as well as
information on creating modules to support new tools and work-
flows, can be found on the RAFT and LENS wikis (see
Subheading 12).

Finally, multiple tools can be specified for some subworkflows.
For example, somatic variant calling can be performed with a
single tool:

or users may specify multiple variant callers [2, 13, 15]:

Note that parameters can be specified on a tool basis using the
following:

Specifying Docker Images for Tools

...

withLabel: star_container {

container = docker://mgibio/star:2.7.0f’

}

...

Determining Processes Using Specific Docker Image Label

$ grep -n star_container projects/<PROJEC-

T_ID>/

workflow/*/*nf

projects/<PROJECT_ID>/workflow/star/star.

nf:20: \

label star_container’

projects/<PROJECT_ID>/workflow/star/star.

nf:75:\

label star_container’

var_caller

_parameters = \

"[’gatk_filter_mutect_calls_suffix’: ’.

gfilt’, \

’varscan2’: ’--output-vcf’]"

332 Steven P. Vensko II et al.

Different workflows have differing mechanisms for handling
situations in which multiple tools are specified for a workflow, but
that topic is beyond the scope of this chapter.

Specifying different containers for Nextflow processes allows
users to change the version of a tool being run within the workflow.
Containers are defined on a per-process level within the nextflow.
config file (located at ./raft/projects/<PROJECT_ID>/work-
flow/nextflow.config). Viewing the nextflow.config file reveals the
containers used for several tools:

Here, we see that processes with the label star_container will be
run with mgibio’s star:2.7.0f Docker image. To determine which
processes in the workflow have the star_container label, users
can run:

7.1.3 Reference

Modifications

Downloading External Reference

wget https://storage.googleapis.com/genomics-

public

-data/\

resources/broad/hg38/v0/Homo_sapiens_as-

sembly38

.fasta

Predicting Tumor Antigens Using the LENS Workflow Through RAFT 333

which directs users to lines 20 and 75 of star.nf.
Users can change the version of star used within the workflow

by changing the Docker image specified within nextflow.config. For
example:

Changing Docker Image for Specific Tool

...

withLabel: star_container {

container = docker://quay.io/biocontainers/

star

:2.7.11a’

}

...

Another crucial consideration when running a complex bioinfor-
matics workflow is the set of reference files used. Users may want to
use a reference file more relevant to their specific application, or
they may want to update a reference file to a newer version. Refer-
ence modifications can be performed using a three-step process.
Specifically, users must (1) download the new reference from the
external source, (2) load the reference into the project using the
load-reference mode of RAFT (e.g., raft.py load-reference -p my-
lens-project -f reference-name), and (3) modify the appropriate line
within their project’s main.nf file to reflect the updated reference.

As an example, consider a scenario in which a user may want to
upgrade their hg19 reference to an hg38 reference within LENS.
This would require the user to download the updated reference:

Then copy, move, or symlink that reference to their RAFT’s /
references directory:

Moving External Reference to RAFT References Directory

mv Homo_sapiens_assembly38.fasta /path/to/

raft/

references

Loading External Reference into a RAFT Project

raft.py load-reference -p my-lens-project \

-f Homo_sapiens_assembly38

.fasta

Original Genomic References within main.nf

params.lens$alignment$manifest_to_dna_alns

$alns_ref

= \ "params.{ref_dir}/hg19.fa"

...

params.lens$alignment$manifest_to_rna_alns

$alns_ref

= \ "params.{ref_dir}/hg19.fa"

(continued)

334 Steven P. Vensko II et al.

Next, the user must load the reference into their project. Here,
the project identifier is my-lens-project.

Note that only the file’s name is needed and that the file does
not need to have a specific path within the /references directory
(as long as the file is contained within RAFT’s references directory).

Finally, users must modify the appropriate lines within the
project’s main.nf file.

can be changed to:

Updated Genomic References within main.nf

params.lens$alignment$manifest_to_dna_alns

$alns_ref = \

"params.{ref_dir}/Homo_sapiens_assembly38.

fasta"

7.2 Running a

Modified Workflow

8 Examining RAFT Output Files

...

params.lens$alignment$manifest_to_rna_alns

$alns_ref = \

"params.{ref_dir}/Homo_sapiens_assembly38.

fasta"

Predicting Tumor Antigens Using the LENS Workflow Through RAFT 335

In the case of LENS, both the RNA and DNA references must
be modified as LENS allows users to use different references for
each nucleic acid sequence type.

Users must be careful when updating some reference files due
to inter-dependencies among reference files. For example, LENS,
by default, utilizes both a GTF file for transcript annotations and a
CTAT trinity reference for gene fusion detection through STAR-
Fusion [9]. Both of these references are versioned and will not only
have transcript-level information, but version-specific transcript
information. As a result, users should ensure these references
(as well as any other versioned references) are compatible with
each other such that transcript and transcript versions within
LENS are consistent among antigen sources.

Users can run their modified workflow through RAFT using the
following command:

Running a Modified RAFT Project

raft.py run-workflow -p my-lens-project

This command will create an augmented Nextflow command
and execute it per the user’s Nextflow configuration.

RAFT produces a variety of output files which are available for
review in the project’s /outputs directory. Patient-level and
sample-level output files are generally published using a <

DATASET>/<PATIENT_NAME> /<RUN_NAME> direc-

tory hierarchy. For example, the quant.sf output file from Salmon
for Patient01’s sample nr-123 in dataset MyDataset would be
located in ./outputs/samples/MyDataset/Patient01/nr-123/
salmon_quant [18].

336 Steven P. Vensko II et al.

Generally speaking, the Unix find command may be the easiest
way to quickly find and analyze files from the outputs directory. For
example, if a user wants to count the number of lines in each
sample’s MuTect2 VCF, then they can run the following line:

Using find to Interact with RAFT Output Files

find ../projects/<PROJECT_ID>/outputs -name "

*mutect2*vcf" \

-exec wc -l {} \;

LENS-specific reports can be found in the /outputs/lens
directory. These reports should be tab-separated text files (.tsv)
and should be viewable within Microsoft Excel. Next, we will go
over relevant columns from the report that may be useful for
prioritizing tumor antigens.

9 Understanding LENS Output Reports

LENS generates a variety of reports depending on the user-specific
parameters provided. These reports are subject to change as LENS
development continues, but generally speaking, many columns are
highly relevant to tumor antigen interpretation and are not
expected to change. Here, we provide an overview of potentially
useful columns from LENS reports. We begin with columns that
help identify peptide-MHCs (pMHCs), then describe columns
relevant for ranking and prioritizing pMHCs, and end with antigen
source-specific columns used for further filtering.

9.1 pMHC Identifying

Columns

Each line within the LENS report represents a unique peptide-
MHC complex predicted by LENS. The columns relevant for
describing a pMHC are allele, peptide, identity, and antigen
source. The allele column contains the HLA allele from the patient
that combines with the peptide to create the pMHC. The identity
column contains a unique checksum that can be used to trace the
genomic origin of the pMHC for debugging purposes. Finally, the
antigen source column describes the type of pMHC being
described. As of the time of this writing, antigen sources include
SNV, INDEL, SPLICE, FUSION, CTA/SELF, VIRUS, and ERV.

9.2 pMHC

Descriptive Columns

The factors associated with a suitably targetable tumor antigen
remain a topic of debate within the literature [24]. Generally
speaking, pMHCs with higher binding affinity, higher stability,
higher relative abundance, higher clonality, and higher dissimilarity

from the self-proteome are thought to be most effective for target-
ing. LENS is capable of providing metrics for all of these factors so
users can develop their own strategy for prioritizing tumor anti-
gens. LENS also provides a priority score as a starting point for
users.

Predicting Tumor Antigens Using the LENS Workflow Through RAFT 337

Specifically, binding affinity is, by default, calculated by
NetMHCpan and MHCflurry [17, 21]. NetMHCpan provides
raw scores, percent rank values (relative to a set of random natural
peptides), and binding affinity (measured in nanomolar).
MHCflurry provides information on binding affinity but also
includes both proteasomal processing and cell surface presentation
scores.

Binding stability is calculated by NetMHCstabpan
[20]. NetMHCstabpan provides a stability percent score, percent
rank, and a binding half-life (in hours).

Dissimilarity and foreignness are defined by antigen.garnish
[22]. Dissimilarity is a measure of how “non-self” peptides are
relative to the human proteome, while foreignness is a measure of
how similar a peptide is to known immunogenic peptides in the
Immune Epitope Database (IEDB) [14]. LENS also calculates
agretopicity by BLASTing peptides against the human proteome
to discover the closest match and performing both NetMHCpan
and MHCflurry binding affinity calculations against the match
[1]. Specifically, the agretopicity value is defined as the ratio of
mutant binding affinity to wild-type binding affinity ratio. Agreto-
picity remains a debated metric, but some evidence suggests high
agretopicity peptides are rarely presented in wild-type form (and
thus have a lower probability of central tolerance) which should
boost the immunogenicity performance of the mutant form [22].

Tumor antigens are quantified by calculating the reads support-
ing the peptide’s coding sequence from the tumor RNA BAM.
Quantification algorithms are defined within the LENS
manuscript [27].

Cancer cell fraction (CCF) is provided by LENS through
means of somatic variant calling and CNVKit copy number alter-
ation analysis [26]. Cancer cell fraction measures the clonality of a
predicted tumor antigen such that tumor antigens with higher
cancer cell fractions are present in more of the tumor’s cells and
may be better targets for therapy. LENS currently only supports
cancer cell fraction calculations for SNVs and InDels.

Finally, LENS also provides a simple prioritization score as the
priority_score column. This score takes relative antigen read sup-
port, binding affinity, and cancer cell fraction into account. Specifi-
cally, binding affinity values are transformed using:

absðχ-1000Þ
1000

:

338 Steven P. Vensko II et al.

Tumor antigen read support is log-transformed and then nor-
malized by dividing each quantification value by the maximum
observed count such that quantification values range from ½0, 1].
Cancer cell fraction is unmodified as it is already bound between
½0, 1]. The priority score is then calculated as

S = pMHCBA * pMHCRS * pMHCCCF ,

where pMHCBA is the transformed binding affinity, pMHCRS

is the log-transformed and normalized read support, and
pMHCCCF is the estimated cancer cell fraction. We have also
developed an alternate metric, priority_score_no_ccf, which is
calculated without the cancer cell fraction value. This alternate
metric serves as an antigen source agnostic value that should be
available for all peptides.

9.3 SNV- and InDel-

Specific Columns

SNV and InDel tumor antigens are generated from somatic muta-
tions occurring within canonical transcripts which result in altered
protein content. As such, LENS provides several useful columns
that users can use to further investigate predicted SNV and InDel
peptides. More information can be found in Table 2.

9.4 Fusion-Specific

Columns

Gene fusions are a subset of structural variants that can produce
novel, non-self-sequences. LENS provides several columns relevant
to understanding the gene fusions detected within a patient. More
information can be found in Table 3.

9.5 Splice-Specific

Columns

Tumor-specific splice variants arise from noncanonical splicing dur-
ing RNA maturation. These events can result in a variety of scenar-
ios including intron skipping and the inclusion of cryptic exons.
LENS provides the columns gene with the name of the gene
harboring the splice variant as well as tumor_splice which contains
the tumor-specific splice coordinates.

Table 2

LENS SNV and InDel output columns

Column Description

gene_name Gene name

transcript_id Transcript identifier

mut_aa_pos Mutation position within predicted peptide

mut_aa_range Range of mutant positions within predicted
peptide

variant_coords Variant genomic position (chromosome:position)

variant_position_in_cds Variant position within transcript coding sequence

Predicting Tumor Antigens Using the LENS Workflow Through RAFT 339

Table 3

LENS fusion output columns

Column Description

fusion_type Fusion type (in-frame or frameshift)

fusion_left_breakpoint Genomic coordinates of left breakpoint

fusion_left_gene Gene name on the left of breakpoint

fusion_left_transcript Transcript identifier on the left of breakpoint

fusion_right_breakpoint Genomic coordinates of right breakpoint

fusion_right_gene Gene name on the right of breakpoint

fusion_right_transcript Transcript identifier on the right of breakpoint

fusion_annotation Fusion annotation informative, if available

variant_position_in_cds Variant position within transcript coding sequence

Table 4

LENS ERV output columns

Column Description

erv_geve_annot gEVE database identifier

erv_hervq_region hERVQuant associated region, if any

erv_mtec_exp_status True if expressed in medullary thymic endothelial cells, false
otherwise

erv_norm_exp_statu True if expressed in normal tissues, false otherwise

erv_hervq_region_proteins_list List of ERV proteins present in hERVQuant region

erv_hervq_erv_uniq_proteins_counts Count of unique ERV proteins present in hERVQuant region

erv_hervq_region_avg_exp_corr Average correlated expression among ERV proteins present in
hERVQuant region

erv_normed_erv_orf_confidence_score Normalized confidence score between 0.0 and 1.0—closer to
1.0 is better

9.6 ERV-Specific

Columns

LENS utilizes the gEVE database for defining the coordinates of
ERVs for each species. This database relies upon computational
prediction for ERV annotation and is, as a result, prone to false
positive entries. LENS provides both identifying columns (erv_ge-
ve_annot), several descriptive columns, as well as scoring column.
More information can be found in Table 4.

10 Generating a RAFT Package for Analysis Storage

340 Steven P. Vensko II et al.

Table 5

LENS CTA/self-antigen output columns

Column Description

gene_name Gene name

transcript_id Transcript identifier

mtec_tpm Expression (TPM) of transcript in medullary thymic endothelial cells

mtec_num_reads Expression (number of reads) of transcript in medullary thymic
endothelial cells

gene_detectable_normal_tissues List of normal tissues transcript is detectable in (Human Protein Atlas
[19])

gene_main_subcellular_location Subcellular location of gene product

9.7 Cancer-Testis

Antigens- and Self-

Antigens-Specific

Columns

Cancer-testis antigens are derived from transcripts physiologically
expressed and translated within the testis; however, they can
become aberrantly expressed within tumors under some condi-
tions. The testis is an immune-privileged tissue, and thus the pre-
sentation of peptides derived from these transcripts on the cell
surface by MHC molecules has the potential to prompt an immune
response. More information can be found in Table 5.

A RAFT package is a minimal, yet sufficient, collection of metadata
from a RAFT project used for regenerating projects. Users can
create a RAFT package after their LENS project is completed
using the command:

Generating a RAFT Package

raft.py package-project -p <PROJECT_ID> \

-o <rft_pkg_name>

The resulting RAFT package (.rftpkg) will be available within
the project’s /rftpkgs directory (./raft/projects/<

PROJECT_ID> /rftpkgs). This file can be used for regenerating

the project in the future.

11 Loading a Project from a RAFT Package

Predicting Tumor Antigens Using the LENS Workflow Through RAFT 341

Loading a RAFT project from a RAFT package can be performed
using:

Generating a RAFT Project from a rftpkg File

raft.py load-project -p <PROJECT_ID> -r /path/

to

/rftpkg

Note that the Project Identifier can be different than the proj-
ect identifier originally used with the project. Users loading a
project must have the relevant reference, metadata, and fastqs in
their global RAFT directory (./raft/references, ./raft/metadata,
and ./raft/fastqs, respectively). The project can be run using the
raft.py run-workflow like a standard RAFT project.

12 Further Help

More information about running RAFT can be found at https://
useraft.io, and more information on LENS can be found at https://
uselens.io. Interactive help is also available on our Slack server:
https://tinyurl.com/raft-slack. Nextflow experience can help with
debugging workflow errors that may occur. We encourage users to
learn more about Nextflow using free training provided by its
developers at https://training.nextflow.io/.

References

1. Altschul SF, Madden TL, Sch€affer AA,
Zhang J, Zhang Z, Miller W, Lipman DJ
(1997) Gapped blast and PSI-blast: a new gen-
eration of protein database search programs.
Nucleic Acids Res 25(17):3389–3402

2. Benjamin D, Sato T, Cibulskis K, Getz G,
Stewart C, Lichtenstein L (2019) Calling
somatic SNVs and Indels with Mutect2. BioR-
xiv 861054

3. Bushnell B (2014) BBMap: a fast, accurate,
splice-aware aligner. Tech. rep., Lawrence Ber-
keley National Lab.(LBNL), Berkeley, CA
(United States) (2014)

4. Cingolani P, Platts A, Coon M, Nguyen T,
Wang L, Land S, Lu X, Ruden D (2012) A
program for annotating and predicting the
effects of single nucleotide polymorphisms,
SnpEff: SNPs in the genome of Drosophila

melanogaster strain w1118; iso-2; iso-3. Fly
6(2):80–92

5. Di Tommaso P, Chatzou M, Floden EW, Barja
PP, Palumbo E, Notredame C (2017) Next-
flow enables reproducible computational work-
flows. Nat Biotechnol 35(4):316–319

6. Dobin A, Davis CA, Schlesinger F, Drenkow J,
Zaleski C, Jha S, Batut P, Chaisson M, Gingeras
TR (2013) Star: ultrafast universal RNA-seq
aligner. Bioinformatics 29(1):15–21

7. Feola S, Chiaro J, Martins B, Cerullo V (2020)
Uncovering the tumor antigen landscape: what
to know about the discovery process. Cancers
12(6):1660

8. Griffiths DJ (2001) Endogenous retroviruses
in the human genome sequence. Genome Biol
2(6):reviews1017–1

https://useraft.io
https://useraft.io
https://uselens.io
https://uselens.io
https://tinyurl.com/raft-slack
https://training.nextflow.io/

342 Steven P. Vensko II et al.

9. Haas BJ, Dobin A, Stransky N, Li B, Yang X,
Tickle T, Bankapur A, Ganote C, Doak TG,
Pochet N et al (2017) Star-fusion: fast and
accurate fusion transcript detection from
RNA-seq. BioRxiv 120295

10. Hodi FS, Kluger H, Sznol M, Carvajal R,
Lawrence D, Atkins M, Powderly J,
Sharfman W, Puzanov I, Smith D et al (2016)
Abstract ct001: durable, long-term survival in
previously treated patients with advanced mel-
anoma (MEL) who received nivolumab
(NIVO) monotherapy in a phase I trial. Cancer
Res 76(14_Supplement):CT001–CT001

11. Jo JO, Kang YJ, Ock MS, Song KS, Jeong MJ,
Jeong SJ, Choi YH, Ko EJ, Leem SH, Kim S
et al (2016) Expression profiles of HERV-K
Env protein in normal and cancerous tissues.
Genes Genom 38:91–107

12. Katsikis PD, Ishii KJ, Schliehe C (2024) Chal-
lenges in developing personalized neoantigen
cancer vaccines. Nat Rev Immunol 24(3):
213–227

13. Kim S, Scheffler K, Halpern AL, Bekritsky MA,
Noh E, K€allberg M, Chen X, Kim Y, Beyter D,
Krusche P et al (2018) Strelka2: fast and accu-
rate calling of germline and somatic variants.
Nat Methods 15(8):591–594

14. Kim Y, Ponomarenko J, Zhu Z, Tamang D,
Wang P, Greenbaum J, Lundegaard C,
Sette A, Lund O, Bourne PE et al (2012)
Immune epitope database analysis resource.
Nucleic Acids Res 40(W1):W525–W530

15. Koboldt DC, Zhang Q, Larson DE, Shen D,
McLellan MD, Lin L, Miller CA, Mardis ER,
Ding L, Wilson RK (2012) VarScan 2: somatic
mutation and copy number alteration discov-
ery in cancer by exome sequencing. Genome
Res 22(3):568–576

16. Lavie L, Kitova M, Maldener E, Meese E,
Mayer J (2005) CpG methylation directly reg-
ulates transcriptional activity of the human
endogenous retrovirus family HERV-K
(HML-2). J Virol 79(2):876–883

17. O’Donnell TJ, Rubinsteyn A, Laserson U
(2020) MHCflurry 2.0: improved pan-allele
prediction of MHC class I-presented peptides
by incorporating antigen processing. Cell Syst
11(1):42–48

18. Patro R, Duggal G, Love MI, Irizarry RA,
Kingsford C (2017) Salmon provides fast and
bias-aware quantification of transcript expres-
sion. Nat Methods 14(4):417–419

19. Pontén F, Jirström K, Uhlen M (2008) The
human protein atlas—a tool for pathology. J

Pathol A J Pathol Soc Great Br Ireland
216(4):387–393

20. Rasmussen M, Fenoy E., Harndahl M, Kristen-
sen AB, Nielsen IK, Nielsen M, Buus S (2016)
Pan-specific prediction of peptide–MHC class I
complex stability, a correlate of t cell immuno-
genicity. J Immunol 197(4):1517–1524

21. Reynisson B, Alvarez B, Paul S, Peters B, Niel-
sen M (2020) NetMHCpan-4.1 and
netMHCIIpan-4.0: improved predictions of
MHC antigen presentation by concurrent
motif deconvolution and integration of MS
MHC eluted ligand data. Nucleic Acids Res
48(W1):W449–W454

22. Richman LP, Vonderheide RH, Rech AJ
(2019) Neoantigen dissimilarity to the self-
proteome predicts immunogenicity and
response to immune checkpoint blockade.
Cell Syst 9(4):375–382

23. Rojas LA, Sethna Z, Soares KC, Olcese C,
Pang N, Patterson E, Lihm J, Ceglia N,
Guasp P, Chu A et al (2023) Personalized
RNA neoantigen vaccines stimulate t cells in
pancreatic cancer. Nature 618(7963):144–150

24. Schmidt J, Smith AR, Magnin M, Racle J, Dev-
lin JR, Bobisse S, Cesbron J, Bonnet V, Car-
mona SJ, Huber F et al (2021) Prediction of
neo-epitope immunogenicity reveals TCR rec-
ognition determinants and provides insight
into immunoediting. Cell Rep Med 2(2):
100194

25. Suri A (2006) Cancer testis antigens–their
importance in immunotherapy and in the
early detection of cancer. Expert Opin Biol
Therapy 6(4):379–389

26. Talevich E, Shain AH, Botton T, Bastian BC
(2016) CNVkit: genome-wide copy number
detection and visualization from targeted
DNA sequencing. PLoS Comput Biol 12(4):
e1004873

27. Vensko SP, Olsen K, Bortone D, Smith CC,
Chai S, Beckabir W, Fini M, Jadi O,
Rubinsteyn A, Vincent BG (2023) Lens: land-
scape of effective neoantigens software. Bioin-
formatics 39(6):btad322

28. Wells DK, van Buuren MM, Dang KK,
Hubbard-Lucey VM, Sheehan KC, Campbell
KM, Lamb A, Ward JP, Sidney J, Blazquez AB
et al (2020) Key parameters of tumor epitope
immunogenicity revealed through a consor-
tium approach improve neoantigen prediction.
Cell 183(3):818–834

INDEX

A

Algorithm 106, 113, 114, 122, 134, 156, 159,

214, 221, 237, 260, 268, 284, 285, 337

Amazon Web Services (AWS)... 52

Analysis

flux balance ... 187, 188

functional pathway inference......................... 203–227

principal component145, 163, 280, 281

signature ...94, 127, 133

Antigen

tumor ... 75, 76, 319–341

tumor-associated ..75, 76, 320

Attention mechanism... 247–256

B

Bioinformatics

cancer ... 2

Biological mutation signal125, 126, 128, 132, 135

Biomarkers...23, 247, 303–316

C

Cancer

bioinformatics.. 2

genomics....... 1–17, 20, 23, 38–40, 48, 89, 247, 249

immunology ..77, 90

informatics ...47–72

precision medicine... 284

survival 304, 306, 308–310, 313

Cell signaling ...204

Cloud ..3, 5, 40, 47, 49, 51, 145

Common Workflow Language (CWL)............48, 49, 51,

54, 56, 61, 71

Community connectivity ..178

Complex genomic rearrangements 105–122

Continental populations ...157

Copy number variation (CNV)....................23, 106–108,

112–114, 120, 121, 140, 141, 153

Cordial ...204–208, 212, 213

CRISPR-Cas9.. 208, 210, 226

Alexander Krasnitz and Pascal Belleau (eds.), Cancer Bioinformatics, Methods in Molecular Biology, vol. 2932,
https://doi.org/10.1007/978-1-0716-4566-6,
© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer
Nature 2025

343

D

Data

structures3, 10, 32–35, 39, 157, 205

synthetic... 159, 163, 267

Database 77, 86, 93–95, 154, 191, 204, 234,

239–244, 250, 251, 255, 273, 274, 280, 282,

285, 304, 307, 309, 311–316, 339

De-noising ...125

Docker38, 39, 48–54, 56, 57, 68, 69, 145, 296,

321, 322, 332, 333

Drug

response prediction .. 273–286

sensitivity prediction 259–261

synergy prediction 273–275, 277–279, 282,

283, 285

E

Epigenomics ...24, 248, 249

Epitopes ...75–89

F

Formalin-fixed, paraffin-preserved (FFPE)

samples125, 126, 128, 130, 132, 133,

292–293

Functional pathway inference analysis

(FPIA) ... 203–227

G

Gene

dependency... 204, 285

driver ... 247–256

expression 24, 50, 51, 65, 103, 137–139,

145–147, 177, 180, 184, 187–201, 204,

231–235, 239–244, 249, 250, 255, 260, 261,

266, 276–278, 280, 281, 304, 310, 313

network..248, 249, 252, 256

regulation..239–242, 244

Genetic ancestry ... 153–174

Genome instability ...93, 105, 153

https://doi.org/10.1007/978-1-0716-4566-6#p_106
https://doi.org/10.1007/978-1-0716-4566-6#p_113
https://doi.org/10.1007/978-1-0716-4566-6#p_114
https://doi.org/10.1007/978-1-0716-4566-6#p_134
https://doi.org/10.1007/978-1-0716-4566-6#p_156
https://doi.org/10.1007/978-1-0716-4566-6#p_159
https://doi.org/10.1007/978-1-0716-4566-6#p_214
https://doi.org/10.1007/978-1-0716-4566-6#p_221
https://doi.org/10.1007/978-1-0716-4566-6#p_237
https://doi.org/10.1007/978-1-0716-4566-6#p_260
https://doi.org/10.1007/978-1-0716-4566-6#p_268
https://doi.org/10.1007/978-1-0716-4566-6#p_284
https://doi.org/10.1007/978-1-0716-4566-6#p_285
https://doi.org/10.1007/978-1-0716-4566-6#p_337
https://doi.org/10.1007/978-1-0716-4566-6#p_52
https://doi.org/10.1007/978-1-0716-4566-6#p_187
https://doi.org/10.1007/978-1-0716-4566-6#p_188
https://doi.org/10.1007/978-1-0716-4566-6#p_203
https://doi.org/10.1007/978-1-0716-4566-6#p_145
https://doi.org/10.1007/978-1-0716-4566-6#p_163
https://doi.org/10.1007/978-1-0716-4566-6#p_280
https://doi.org/10.1007/978-1-0716-4566-6#p_281
https://doi.org/10.1007/978-1-0716-4566-6#p_94
https://doi.org/10.1007/978-1-0716-4566-6#p_127
https://doi.org/10.1007/978-1-0716-4566-6#p_133
https://doi.org/10.1007/978-1-0716-4566-6#p_75
https://doi.org/10.1007/978-1-0716-4566-6#p_76
https://doi.org/10.1007/978-1-0716-4566-6#p_319
https://doi.org/10.1007/978-1-0716-4566-6#p_75
https://doi.org/10.1007/978-1-0716-4566-6#p_76
https://doi.org/10.1007/978-1-0716-4566-6#p_320
https://doi.org/10.1007/978-1-0716-4566-6#p_2
https://doi.org/10.1007/978-1-0716-4566-6#p_125
https://doi.org/10.1007/978-1-0716-4566-6#p_126
https://doi.org/10.1007/978-1-0716-4566-6#p_128
https://doi.org/10.1007/978-1-0716-4566-6#p_132
https://doi.org/10.1007/978-1-0716-4566-6#p_135
https://doi.org/10.1007/978-1-0716-4566-6#p_23
https://doi.org/10.1007/978-1-0716-4566-6#p_303
https://doi.org/10.1007/978-1-0716-4566-6#p_2
https://doi.org/10.1007/978-1-0716-4566-6#p_1
https://doi.org/10.1007/978-1-0716-4566-6#p_20
https://doi.org/10.1007/978-1-0716-4566-6#p_23
https://doi.org/10.1007/978-1-0716-4566-6#p_38
https://doi.org/10.1007/978-1-0716-4566-6#p_48
https://doi.org/10.1007/978-1-0716-4566-6#p_89
https://doi.org/10.1007/978-1-0716-4566-6#p_77
https://doi.org/10.1007/978-1-0716-4566-6#p_47
https://doi.org/10.1007/978-1-0716-4566-6#p_284
https://doi.org/10.1007/978-1-0716-4566-6#p_304
https://doi.org/10.1007/978-1-0716-4566-6#p_306
https://doi.org/10.1007/978-1-0716-4566-6#p_308
https://doi.org/10.1007/978-1-0716-4566-6#p_313
https://doi.org/10.1007/978-1-0716-4566-6#p_204
https://doi.org/10.1007/978-1-0716-4566-6#p_3
https://doi.org/10.1007/978-1-0716-4566-6#p_5
https://doi.org/10.1007/978-1-0716-4566-6#p_40
https://doi.org/10.1007/978-1-0716-4566-6#p_47
https://doi.org/10.1007/978-1-0716-4566-6#p_49
https://doi.org/10.1007/978-1-0716-4566-6#p_51
https://doi.org/10.1007/978-1-0716-4566-6#p_145
https://doi.org/10.1007/978-1-0716-4566-6#p_48
https://doi.org/10.1007/978-1-0716-4566-6#p_49
https://doi.org/10.1007/978-1-0716-4566-6#p_51
https://doi.org/10.1007/978-1-0716-4566-6#p_54
https://doi.org/10.1007/978-1-0716-4566-6#p_56
https://doi.org/10.1007/978-1-0716-4566-6#p_61
https://doi.org/10.1007/978-1-0716-4566-6#p_71
https://doi.org/10.1007/978-1-0716-4566-6#p_178
https://doi.org/10.1007/978-1-0716-4566-6#p_105
https://doi.org/10.1007/978-1-0716-4566-6#p_157
https://doi.org/10.1007/978-1-0716-4566-6#p_23
https://doi.org/10.1007/978-1-0716-4566-6#p_106
https://doi.org/10.1007/978-1-0716-4566-6#p_112
https://doi.org/10.1007/978-1-0716-4566-6#p_120
https://doi.org/10.1007/978-1-0716-4566-6#p_121
https://doi.org/10.1007/978-1-0716-4566-6#p_140
https://doi.org/10.1007/978-1-0716-4566-6#p_141
https://doi.org/10.1007/978-1-0716-4566-6#p_153
https://doi.org/10.1007/978-1-0716-4566-6#p_204
https://doi.org/10.1007/978-1-0716-4566-6#p_212
https://doi.org/10.1007/978-1-0716-4566-6#p_213
https://doi.org/10.1007/978-1-0716-4566-6#p_208
https://doi.org/10.1007/978-1-0716-4566-6#p_210
https://doi.org/10.1007/978-1-0716-4566-6#p_226
https://doi.org/10.1007/978-1-0716-4566-6#p_3
https://doi.org/10.1007/978-1-0716-4566-6#p_10
https://doi.org/10.1007/978-1-0716-4566-6#p_32
https://doi.org/10.1007/978-1-0716-4566-6#p_39
https://doi.org/10.1007/978-1-0716-4566-6#p_157
https://doi.org/10.1007/978-1-0716-4566-6#p_205
https://doi.org/10.1007/978-1-0716-4566-6#p_159
https://doi.org/10.1007/978-1-0716-4566-6#p_163
https://doi.org/10.1007/978-1-0716-4566-6#p_267
https://doi.org/10.1007/978-1-0716-4566-6#p_77
https://doi.org/10.1007/978-1-0716-4566-6#p_86
https://doi.org/10.1007/978-1-0716-4566-6#p_93
https://doi.org/10.1007/978-1-0716-4566-6#p_154
https://doi.org/10.1007/978-1-0716-4566-6#p_191
https://doi.org/10.1007/978-1-0716-4566-6#p_204
https://doi.org/10.1007/978-1-0716-4566-6#p_234
https://doi.org/10.1007/978-1-0716-4566-6#p_239
https://doi.org/10.1007/978-1-0716-4566-6#p_273
https://doi.org/10.1007/978-1-0716-4566-6#p_274
https://doi.org/10.1007/978-1-0716-4566-6#p_280
https://doi.org/10.1007/978-1-0716-4566-6#p_282
https://doi.org/10.1007/978-1-0716-4566-6#p_285
https://doi.org/10.1007/978-1-0716-4566-6#p_304
https://doi.org/10.1007/978-1-0716-4566-6#p_307
https://doi.org/10.1007/978-1-0716-4566-6#p_309
https://doi.org/10.1007/978-1-0716-4566-6#p_311
https://doi.org/10.1007/978-1-0716-4566-6#p_339
https://doi.org/10.1007/978-1-0716-4566-6#p_125
https://doi.org/10.1007/978-1-0716-4566-6#p_38
https://doi.org/10.1007/978-1-0716-4566-6#p_39
https://doi.org/10.1007/978-1-0716-4566-6#p_48
https://doi.org/10.1007/978-1-0716-4566-6#p_56
https://doi.org/10.1007/978-1-0716-4566-6#p_57
https://doi.org/10.1007/978-1-0716-4566-6#p_68
https://doi.org/10.1007/978-1-0716-4566-6#p_69
https://doi.org/10.1007/978-1-0716-4566-6#p_145
https://doi.org/10.1007/978-1-0716-4566-6#p_296
https://doi.org/10.1007/978-1-0716-4566-6#p_321
https://doi.org/10.1007/978-1-0716-4566-6#p_322
https://doi.org/10.1007/978-1-0716-4566-6#p_332
https://doi.org/10.1007/978-1-0716-4566-6#p_333
https://doi.org/10.1007/978-1-0716-4566-6#p_273
https://doi.org/10.1007/978-1-0716-4566-6#p_259
https://doi.org/10.1007/978-1-0716-4566-6#p_273
https://doi.org/10.1007/978-1-0716-4566-6#p_277
https://doi.org/10.1007/978-1-0716-4566-6#p_282
https://doi.org/10.1007/978-1-0716-4566-6#p_283
https://doi.org/10.1007/978-1-0716-4566-6#p_285
https://doi.org/10.1007/978-1-0716-4566-6#p_24
https://doi.org/10.1007/978-1-0716-4566-6#p_75
https://doi.org/10.1007/978-1-0716-4566-6#p_125
https://doi.org/10.1007/978-1-0716-4566-6#p_126
https://doi.org/10.1007/978-1-0716-4566-6#p_128
https://doi.org/10.1007/978-1-0716-4566-6#p_130
https://doi.org/10.1007/978-1-0716-4566-6#p_132
https://doi.org/10.1007/978-1-0716-4566-6#p_133
https://doi.org/10.1007/978-1-0716-4566-6#p_292
https://doi.org/10.1007/978-1-0716-4566-6#p_203
https://doi.org/10.1007/978-1-0716-4566-6#p_204
https://doi.org/10.1007/978-1-0716-4566-6#p_285
https://doi.org/10.1007/978-1-0716-4566-6#p_24
https://doi.org/10.1007/978-1-0716-4566-6#p_50
https://doi.org/10.1007/978-1-0716-4566-6#p_51
https://doi.org/10.1007/978-1-0716-4566-6#p_65
https://doi.org/10.1007/978-1-0716-4566-6#p_103
https://doi.org/10.1007/978-1-0716-4566-6#p_137
https://doi.org/10.1007/978-1-0716-4566-6#p_145
https://doi.org/10.1007/978-1-0716-4566-6#p_177
https://doi.org/10.1007/978-1-0716-4566-6#p_180
https://doi.org/10.1007/978-1-0716-4566-6#p_184
https://doi.org/10.1007/978-1-0716-4566-6#p_187
https://doi.org/10.1007/978-1-0716-4566-6#p_204
https://doi.org/10.1007/978-1-0716-4566-6#p_231
https://doi.org/10.1007/978-1-0716-4566-6#p_239
https://doi.org/10.1007/978-1-0716-4566-6#p_260
https://doi.org/10.1007/978-1-0716-4566-6#p_261
https://doi.org/10.1007/978-1-0716-4566-6#p_266
https://doi.org/10.1007/978-1-0716-4566-6#p_276
https://doi.org/10.1007/978-1-0716-4566-6#p_280
https://doi.org/10.1007/978-1-0716-4566-6#p_281
https://doi.org/10.1007/978-1-0716-4566-6#p_304
https://doi.org/10.1007/978-1-0716-4566-6#p_310
https://doi.org/10.1007/978-1-0716-4566-6#p_313
https://doi.org/10.1007/978-1-0716-4566-6#p_239
https://doi.org/10.1007/978-1-0716-4566-6#p_153
https://doi.org/10.1007/978-1-0716-4566-6#p_93
https://doi.org/10.1007/978-1-0716-4566-6#p_105
https://doi.org/10.1007/978-1-0716-4566-6#p_153
https://doi.org/10.1007/978-1-0716-4566-6#DOI

344
CANCER BIOINFORMATICS

Index

Genotyping..144–146, 155, 308

I

Immuno-oncology ..320

Immunotherapy 25, 76, 88, 150, 319

L

Learning

deep............248, 259, 260, 273–286, 292, 293, 295,

297–299

machine.................25, 248, 260, 268, 274–276, 280,

284, 285, 292, 294, 295, 319

M

Mendelian randomization (MR) 303, 304, 306, 309,

310, 313

Metabolism... 187, 188

Multi-omics data 33, 204, 248, 249, 254, 278

Mutational processes................................... 125, 126, 135

Mutations 10, 12, 13, 22, 87, 94–97, 102, 103,

125–135, 153, 155, 247, 249, 254, 277, 280,

291–295, 297–299, 320, 338

N

Neoantigen

workflow .. 321

Network

convolutional neural259–270, 295

gene..248, 249, 252, 256

graph attention..............................248, 249, 252–254

Non-B DNA

Burden in Cancer (NBBC)...............................93–103

Noncoding RNA

gene regulatory pairs (NGP) 231–244

O

Omics...248–250, 254, 277

Ontology ...20–23

Open source software ... 2

P

Pathway..............26, 150, 180, 195, 203, 204, 224, 234,

239, 242, 244, 249–252, 255, 279, 285

Probabilistic modeling ... 138, 292

Protein-protein interaction (PPI)248–251, 279, 285

Pruning ... 178, 185

R

R (programming language) 2, 3, 5, 10, 14, 24, 33,

38–44, 106, 107, 118, 144, 156, 157, 178,

180, 188, 189, 194, 204–208, 232–234, 243,

244, 251, 307, 309

Reproducibility...................... 3, 48, 49, 67, 68, 163, 321

Risk factors 303, 304, 306, 309, 313, 316

RNA

interference (RNAi) 204, 208, 210

sequencing

bulk25, 26, 188–195, 198

single cell 50, 138, 196–201, 243

S

Sequencing

next-generation .. 48, 292

RNA

bulk25, 26, 188–195, 198

single cell 50, 138, 196–201, 243

single cell whole genome.............. 138–144, 146–149

Single cell

sequencing

RNA.................................. 50, 138, 196–201, 243

whole genome 138–144, 146–149

Software

design... 39

open source ... 2

Somatic variant calling 291–296, 299, 325, 331, 337

Spatial transcriptomics 27–33, 177–185

Starfish (algorithm) .. 105–122

Structural variation... 105, 144

T

The Cancer Genome Atlas (TCGA) 7–14, 102,

154, 155, 239, 241, 242, 247, 249, 273, 281

Transcriptomics

spatial ..27–33, 177–185

Trimming..178, 180–185

Tumor

evolution.. 138

microenvironment...........25–27, 184, 187, 188, 196,

199, 201

W

Workflow

neoantigen ... 321

https://doi.org/10.1007/978-1-0716-4566-6#p_144
https://doi.org/10.1007/978-1-0716-4566-6#p_155
https://doi.org/10.1007/978-1-0716-4566-6#p_308
https://doi.org/10.1007/978-1-0716-4566-6#p_320
https://doi.org/10.1007/978-1-0716-4566-6#p_25
https://doi.org/10.1007/978-1-0716-4566-6#p_76
https://doi.org/10.1007/978-1-0716-4566-6#p_88
https://doi.org/10.1007/978-1-0716-4566-6#p_150
https://doi.org/10.1007/978-1-0716-4566-6#p_319
https://doi.org/10.1007/978-1-0716-4566-6#p_259
https://doi.org/10.1007/978-1-0716-4566-6#p_260
https://doi.org/10.1007/978-1-0716-4566-6#p_273
https://doi.org/10.1007/978-1-0716-4566-6#p_292
https://doi.org/10.1007/978-1-0716-4566-6#p_293
https://doi.org/10.1007/978-1-0716-4566-6#p_295
https://doi.org/10.1007/978-1-0716-4566-6#p_297
https://doi.org/10.1007/978-1-0716-4566-6#p_25
https://doi.org/10.1007/978-1-0716-4566-6#p_260
https://doi.org/10.1007/978-1-0716-4566-6#p_268
https://doi.org/10.1007/978-1-0716-4566-6#p_274
https://doi.org/10.1007/978-1-0716-4566-6#p_280
https://doi.org/10.1007/978-1-0716-4566-6#p_284
https://doi.org/10.1007/978-1-0716-4566-6#p_285
https://doi.org/10.1007/978-1-0716-4566-6#p_292
https://doi.org/10.1007/978-1-0716-4566-6#p_294
https://doi.org/10.1007/978-1-0716-4566-6#p_295
https://doi.org/10.1007/978-1-0716-4566-6#p_319
https://doi.org/10.1007/978-1-0716-4566-6#p_303
https://doi.org/10.1007/978-1-0716-4566-6#p_304
https://doi.org/10.1007/978-1-0716-4566-6#p_306
https://doi.org/10.1007/978-1-0716-4566-6#p_309
https://doi.org/10.1007/978-1-0716-4566-6#p_310
https://doi.org/10.1007/978-1-0716-4566-6#p_313
https://doi.org/10.1007/978-1-0716-4566-6#p_187
https://doi.org/10.1007/978-1-0716-4566-6#p_188
https://doi.org/10.1007/978-1-0716-4566-6#p_33
https://doi.org/10.1007/978-1-0716-4566-6#p_204
https://doi.org/10.1007/978-1-0716-4566-6#p_278
https://doi.org/10.1007/978-1-0716-4566-6#p_125
https://doi.org/10.1007/978-1-0716-4566-6#p_126
https://doi.org/10.1007/978-1-0716-4566-6#p_135
https://doi.org/10.1007/978-1-0716-4566-6#p_10
https://doi.org/10.1007/978-1-0716-4566-6#p_12
https://doi.org/10.1007/978-1-0716-4566-6#p_13
https://doi.org/10.1007/978-1-0716-4566-6#p_22
https://doi.org/10.1007/978-1-0716-4566-6#p_87
https://doi.org/10.1007/978-1-0716-4566-6#p_94
https://doi.org/10.1007/978-1-0716-4566-6#p_102
https://doi.org/10.1007/978-1-0716-4566-6#p_103
https://doi.org/10.1007/978-1-0716-4566-6#p_125
https://doi.org/10.1007/978-1-0716-4566-6#p_153
https://doi.org/10.1007/978-1-0716-4566-6#p_155
https://doi.org/10.1007/978-1-0716-4566-6#p_277
https://doi.org/10.1007/978-1-0716-4566-6#p_280
https://doi.org/10.1007/978-1-0716-4566-6#p_291
https://doi.org/10.1007/978-1-0716-4566-6#p_297
https://doi.org/10.1007/978-1-0716-4566-6#p_320
https://doi.org/10.1007/978-1-0716-4566-6#p_338
https://doi.org/10.1007/978-1-0716-4566-6#p_321
https://doi.org/10.1007/978-1-0716-4566-6#p_259
https://doi.org/10.1007/978-1-0716-4566-6#p_295
https://doi.org/10.1007/978-1-0716-4566-6#p_93
https://doi.org/10.1007/978-1-0716-4566-6#p_231
https://doi.org/10.1007/978-1-0716-4566-6#p_277
https://doi.org/10.1007/978-1-0716-4566-6#p_20
https://doi.org/10.1007/978-1-0716-4566-6#p_2
https://doi.org/10.1007/978-1-0716-4566-6#p_26
https://doi.org/10.1007/978-1-0716-4566-6#p_150
https://doi.org/10.1007/978-1-0716-4566-6#p_180
https://doi.org/10.1007/978-1-0716-4566-6#p_195
https://doi.org/10.1007/978-1-0716-4566-6#p_203
https://doi.org/10.1007/978-1-0716-4566-6#p_204
https://doi.org/10.1007/978-1-0716-4566-6#p_224
https://doi.org/10.1007/978-1-0716-4566-6#p_234
https://doi.org/10.1007/978-1-0716-4566-6#p_239
https://doi.org/10.1007/978-1-0716-4566-6#p_242
https://doi.org/10.1007/978-1-0716-4566-6#p_279
https://doi.org/10.1007/978-1-0716-4566-6#p_285
https://doi.org/10.1007/978-1-0716-4566-6#p_138
https://doi.org/10.1007/978-1-0716-4566-6#p_292
https://doi.org/10.1007/978-1-0716-4566-6#p_279
https://doi.org/10.1007/978-1-0716-4566-6#p_285
https://doi.org/10.1007/978-1-0716-4566-6#p_178
https://doi.org/10.1007/978-1-0716-4566-6#p_185
https://doi.org/10.1007/978-1-0716-4566-6#p_2
https://doi.org/10.1007/978-1-0716-4566-6#p_3
https://doi.org/10.1007/978-1-0716-4566-6#p_5
https://doi.org/10.1007/978-1-0716-4566-6#p_10
https://doi.org/10.1007/978-1-0716-4566-6#p_14
https://doi.org/10.1007/978-1-0716-4566-6#p_24
https://doi.org/10.1007/978-1-0716-4566-6#p_33
https://doi.org/10.1007/978-1-0716-4566-6#p_38
https://doi.org/10.1007/978-1-0716-4566-6#p_106
https://doi.org/10.1007/978-1-0716-4566-6#p_107
https://doi.org/10.1007/978-1-0716-4566-6#p_118
https://doi.org/10.1007/978-1-0716-4566-6#p_144
https://doi.org/10.1007/978-1-0716-4566-6#p_156
https://doi.org/10.1007/978-1-0716-4566-6#p_157
https://doi.org/10.1007/978-1-0716-4566-6#p_178
https://doi.org/10.1007/978-1-0716-4566-6#p_180
https://doi.org/10.1007/978-1-0716-4566-6#p_188
https://doi.org/10.1007/978-1-0716-4566-6#p_189
https://doi.org/10.1007/978-1-0716-4566-6#p_194
https://doi.org/10.1007/978-1-0716-4566-6#p_204
https://doi.org/10.1007/978-1-0716-4566-6#p_232
https://doi.org/10.1007/978-1-0716-4566-6#p_243
https://doi.org/10.1007/978-1-0716-4566-6#p_307
https://doi.org/10.1007/978-1-0716-4566-6#p_309
https://doi.org/10.1007/978-1-0716-4566-6#p_3
https://doi.org/10.1007/978-1-0716-4566-6#p_48
https://doi.org/10.1007/978-1-0716-4566-6#p_49
https://doi.org/10.1007/978-1-0716-4566-6#p_67
https://doi.org/10.1007/978-1-0716-4566-6#p_68
https://doi.org/10.1007/978-1-0716-4566-6#p_163
https://doi.org/10.1007/978-1-0716-4566-6#p_321
https://doi.org/10.1007/978-1-0716-4566-6#p_303
https://doi.org/10.1007/978-1-0716-4566-6#p_304
https://doi.org/10.1007/978-1-0716-4566-6#p_306
https://doi.org/10.1007/978-1-0716-4566-6#p_309
https://doi.org/10.1007/978-1-0716-4566-6#p_313
https://doi.org/10.1007/978-1-0716-4566-6#p_316
https://doi.org/10.1007/978-1-0716-4566-6#p_204
https://doi.org/10.1007/978-1-0716-4566-6#p_208
https://doi.org/10.1007/978-1-0716-4566-6#p_210
https://doi.org/10.1007/978-1-0716-4566-6#p_25
https://doi.org/10.1007/978-1-0716-4566-6#p_26
https://doi.org/10.1007/978-1-0716-4566-6#p_188
https://doi.org/10.1007/978-1-0716-4566-6#p_198
https://doi.org/10.1007/978-1-0716-4566-6#p_50
https://doi.org/10.1007/978-1-0716-4566-6#p_138
https://doi.org/10.1007/978-1-0716-4566-6#p_196
https://doi.org/10.1007/978-1-0716-4566-6#p_243
https://doi.org/10.1007/978-1-0716-4566-6#p_48
https://doi.org/10.1007/978-1-0716-4566-6#p_292
https://doi.org/10.1007/978-1-0716-4566-6#p_25
https://doi.org/10.1007/978-1-0716-4566-6#p_26
https://doi.org/10.1007/978-1-0716-4566-6#p_188
https://doi.org/10.1007/978-1-0716-4566-6#p_198
https://doi.org/10.1007/978-1-0716-4566-6#p_50
https://doi.org/10.1007/978-1-0716-4566-6#p_138
https://doi.org/10.1007/978-1-0716-4566-6#p_196
https://doi.org/10.1007/978-1-0716-4566-6#p_243
https://doi.org/10.1007/978-1-0716-4566-6#p_138
https://doi.org/10.1007/978-1-0716-4566-6#p_146
https://doi.org/10.1007/978-1-0716-4566-6#p_50
https://doi.org/10.1007/978-1-0716-4566-6#p_138
https://doi.org/10.1007/978-1-0716-4566-6#p_196
https://doi.org/10.1007/978-1-0716-4566-6#p_243
https://doi.org/10.1007/978-1-0716-4566-6#p_138
https://doi.org/10.1007/978-1-0716-4566-6#p_146
https://doi.org/10.1007/978-1-0716-4566-6#p_39
https://doi.org/10.1007/978-1-0716-4566-6#p_2
https://doi.org/10.1007/978-1-0716-4566-6#p_291
https://doi.org/10.1007/978-1-0716-4566-6#p_325
https://doi.org/10.1007/978-1-0716-4566-6#p_331
https://doi.org/10.1007/978-1-0716-4566-6#p_337
https://doi.org/10.1007/978-1-0716-4566-6#p_27
https://doi.org/10.1007/978-1-0716-4566-6#p_177
https://doi.org/10.1007/978-1-0716-4566-6#p_105
https://doi.org/10.1007/978-1-0716-4566-6#p_105
https://doi.org/10.1007/978-1-0716-4566-6#p_144
https://doi.org/10.1007/978-1-0716-4566-6#p_7
https://doi.org/10.1007/978-1-0716-4566-6#p_102
https://doi.org/10.1007/978-1-0716-4566-6#p_154
https://doi.org/10.1007/978-1-0716-4566-6#p_155
https://doi.org/10.1007/978-1-0716-4566-6#p_239
https://doi.org/10.1007/978-1-0716-4566-6#p_241
https://doi.org/10.1007/978-1-0716-4566-6#p_242
https://doi.org/10.1007/978-1-0716-4566-6#p_273
https://doi.org/10.1007/978-1-0716-4566-6#p_281
https://doi.org/10.1007/978-1-0716-4566-6#p_27
https://doi.org/10.1007/978-1-0716-4566-6#p_177
https://doi.org/10.1007/978-1-0716-4566-6#p_178
https://doi.org/10.1007/978-1-0716-4566-6#p_180
https://doi.org/10.1007/978-1-0716-4566-6#p_138
https://doi.org/10.1007/978-1-0716-4566-6#p_25
https://doi.org/10.1007/978-1-0716-4566-6#p_184
https://doi.org/10.1007/978-1-0716-4566-6#p_187
https://doi.org/10.1007/978-1-0716-4566-6#p_188
https://doi.org/10.1007/978-1-0716-4566-6#p_196
https://doi.org/10.1007/978-1-0716-4566-6#p_199
https://doi.org/10.1007/978-1-0716-4566-6#p_321

	Preface
	Contents
	Contributors
	Chapter 1: Bioconductor´s Computational Ecosystem for Genomic Data Science in Cancer
	1 Introduction
	2 Bioconductor principles
	2.1 R packages and vignettes
	2.2 R package repositories; repository evolution
	2.3 Package quality assessment; installation consistency
	2.4 Unifying assay and sample data: SummarizedExperiment and MultiAssayExperiment
	2.5 Downloading and caching cancer genomics data and annotations

	3 Exploring institutionally curated cancer genomics data
	3.1 The Cancer Genome Atlas
	3.1.1 Tumor code resolution
	3.1.2 Assay codes and counts
	3.1.3 An example dataset for RNA-seq from glioblastoma multiforme
	3.1.4 Clinical and phenotypic data

	3.2 cBioPortal

	4 Genomic annotation resources relevant to cancer
	4.1 Resources from UCSC, NCBI, and EMBL
	4.2 Gene sets
	4.3 Ontologies
	4.3.1 Ontology usage with AnnotationDbi
	4.3.2 Ontology usage with rols
	4.3.3 Cross-ontology relationships

	5 Analytical workflows
	5.1 Overview
	5.2 Packages supporting epigenomic analysis
	5.3 Some details on prediction of responsiveness to immune checkpoint blockade
	5.4 Representing and visualizing spatial transcriptomics experiments

	6 Components and processes for introducing new data, analytic tools, documents
	6.1 Contributions and review
	6.2 Data structures
	6.3 Out-of-memory data representation strategies
	6.4 Quality assessment of Bioconductor resources

	7 Pedagogics and workforce development
	8 Conclusions and paths forward
	9 Figure 7 software
	References

	Chapter 2: Building Portable and Reproducible Cancer Informatics Workflows for Scalable Data Analysis: An RNA Sequencing Tutor...
	1 Introduction
	2 Materials
	3 Methods
	3.1 Workflow Design
	3.2 Creating Docker Containers and Testing Tools in Them
	3.3 Deploying Containers on the Seven Bridges Cancer Genomics Cloud
	3.4 Describing Tools Using the Cancer Genomics Cloud
	3.5 Chaining Tools into Workflows
	3.6 Running the Workflow
	3.7 Conclusions

	4 Notes
	References

	Chapter 3: Using the Cancer Epitope Database and Analysis Resource (CEDAR)
	1 Introduction
	2 CEDAR Query Interface
	2.1 Epitope Panel
	2.2 Epitope Source Panel
	2.3 Host Panel
	2.4 Assay Panel
	2.5 MHC Restriction Panel
	2.6 Cancer Panel
	2.7 Querying CEDAR

	3 Results Display
	3.1 Epitopes Tab
	3.2 Antigens Tab
	3.3 Assays Tab
	3.4 Receptors Tab
	3.5 References Tab

	4 Downloading Data from CEDAR
	5 Example Search Scenarios and Queries
	5.1 Research Scenario I
	5.2 Research Scenario II
	5.3 Research Scenario III
	5.4 Research Scenario IV

	6 Conclusion and Future Plans
	References

	Chapter 4: Quantifying the Prevalence of Non-B DNA Motifs as a Marker of Non-B Burden in Cancer Using NBBC
	1 Introduction
	2 Materials
	2.1 The Web Server, NBBC
	2.2 Non-B DNA Motif Data
	2.3 Query Input
	2.3.1 Non-B Burden at Gene Level
	2.3.2 Non-B Burden at Sample Level (Burden in Batch)

	3 Methods
	3.1 How to Use NBBC to Calculate Non-B Burden
	3.2 Start with the ``Input Page´´
	3.3 Non-B Burden at Gene Level (Basic Use)
	3.4 Non-B Burden at Sample Level (Advance Use)

	4 Notes
	References

	Chapter 5: Starfish: Deciphering Complex Genomic Rearrangement Signatures Across Human Cancers
	1 Introduction
	2 Methods
	2.1 Software Environment
	2.2 Package Dependencies
	2.3 Installation
	2.4 Load SV, CNV, and Sample Data into R
	2.5 SV Data
	2.6 CNV Data
	2.7 Gender Data
	2.8 Running Starfish
	2.8.1 starfish_link
	2.8.2 starfish_feature
	2.8.3 starfish_sig
	2.8.4 starfish_plot
	2.8.5 starfish_all

	3 Notes
	References

	Chapter 6: Using FFPEsig to Remove Formalin-Induced Artifacts and Characterize Mutational Signatures in Cancer
	1 Introduction
	2 User Manual
	2.1 Overview
	2.2 Defining the Suitable Laboratory Protocols
	2.3 Generating FFPE Mutational Profile with Reasonable SNR
	2.4 Applying FFPEsig

	3 Possible Batch Effect and Strategies
	4 Notes
	References

	Chapter 7: Inferring Phenotypes of Copy Number Clones in Cancer Populations Using TreeAlign
	1 Introduction
	2 Methods
	2.1 Preprocessing
	2.1.1 Preprocessing and Alignment of scWGS Data
	2.1.2 Total Copy Number Calling from scWGS
	2.1.3 Allele-Specific Copy Number Calling from scWGS
	2.1.4 Inferring a Phylogenetic Tree
	2.1.5 Inferring Copy Number Clones
	2.1.6 Calling Heterozygous Germline SNPs in Matched Normal WGS
	2.1.7 Alignment and QC of scRNA Data
	2.1.8 Classifying scRNA Cells as Tumor or Normal
	2.1.9 Genotyping Heterozygous SNPs in scRNA

	2.2 Running TreeAlign
	2.2.1 Preparing Input Data
	2.2.2 Running TreeAlign
	2.2.3 Tunable Parameters
	2.2.4 TreeAlign Outputs

	2.3 Interpreting TreeAlign Results

	References

	Chapter 8: Inference of Genetic Ancestry from Cancer-Derived Molecular Data with RAIDS
	1 Introduction
	2 Methods
	2.1 Population Reference Data
	2.2 Preprocessing Sequence Read Data for RAIDS
	2.3 Ancestry Inference Using Data Synthesis
	2.3.1 Example: Genetic Ancestry of an RNA Sequence Profile

	2.4 Build a Population Reference Dataset (Optional)
	2.4.1 Build the Reference Genotype File
	2.4.2 Build the Reference Annotation File

	3 Future Expansion and Refinement of RAIDS
	4 Notes
	References

	Chapter 9: Pruning-Assisted Modeling of Network Graph Connectivity from Spatial Transcriptomic Data
	1 Introduction
	2 Materials
	3 Methods
	3.1 Spatial Collection and Initial Wet Lab Processing
	3.2 Processing and Initial Analysis of Spatial Transcriptomic Data to Examine Spatial Heterogeneity in Tumor and Non-tumor Cel...
	3.3 Modeling Spatial Transcriptomic Data Using Neighborhood Connectivity Graph
	3.4 Network Graph Trimming Strategy
	3.5 Calculation of Different Spatial Statistics Using Network Graph
	3.6 Visualization of Analysis Results

	4 Notes
	References

	Chapter 10: Inferring Metabolic Flux from Gene Expression Data Using METAFlux
	1 Introduction
	2 Materials
	2.1 Software and Packages Version
	2.2 Human1 (Human-GEM File)
	2.3 Cell Medium and Human Blood Nutrient Profiles
	2.4 Nutrient Lookup Files

	3 Methods
	3.1 Installation
	3.2 Bulk RNA-Seq Pipeline
	3.2.1 Quick Workflow for Bulk RNA-Seq Sample
	3.2.2 Step-by-Step Bulk RNA-Seq Pipeline
	Load the Library
	Load Data
	Calculate MRAS (Metabolic Reaction Activity Score)
	Calculate Flux
	Inspecting and Interpreting the Flux Data

	3.3 Single-Cell RNA-Seq Pipeline
	3.3.1 Quick Workflow for Single-Cell RNA-Seq Sample
	3.3.2 Step-by-Step Single-Cell RNA-Seq Pipeline
	Load Library, METAFlux Medium, and GEM Information
	Load the Single-Cell Data
	Create an Average Expression Profile for Stratified Bootstrapped Samples for This Patient
	Calculate MRAS (Metabolic Reaction Activity Score)
	Compute Flux
	Inspecting and Interpreting the Flux Data

	References

	Chapter 11: Functional Pathway Inference Analysis (FPIA)
	1 Introduction
	2 Materials
	2.1 Hardware
	2.2 Software
	2.3 `cordial`

	3 Methods
	3.1 Installation
	3.2 Load `cordial`
	3.3 Data
	3.3.1 `cellmeta_DT`
	3.3.2 `rnai_DT`
	3.3.3 `crispr_DT`
	3.3.4 Usage

	3.4 Functions
	3.4.1 `start_parallel()`
	Call
	Arguments
	Usage

	3.4.2 `end_parallel()`
	Call
	Arguments
	Usage

	3.4.3 `cor_map()`: Correlation Analysis of a Dataset
	Correlation Analysis
	Subset
	Context
	Output
	Call
	Arguments
	Usage: Dataset
	Usage: Dataset Filtered by Metadata
	Usage: Dataset by Grouping Variable

	3.4.4 `cor_target_map()`: Correlation Analysis of Multiple Targets
	Correlation Analysis
	Subset
	Parallelization
	Context
	Output
	Call
	Arguments
	Usage: Multiple Targets
	Usage: Multiple Targets Filtered by Metadata
	Usage: Multiple Targets by Grouping Variable

	3.4.5 `cor_target()`: Correlation Analysis of a Single Target
	Correlation Analysis
	Subset
	Parallelization
	Context
	Output
	Call
	Arguments
	Usage: Single Target
	Usage: Single Target Filtered by Metadata
	Usage: Single Target by Grouping Variable

	4 Anticipated Results
	References

	Chapter 12: NGP: A Tool to Detect Noncoding RNA-Gene Regulatory Pairs from Transcriptomic Data
	1 Introduction
	2 Materials
	3 Methods
	3.1 Install NGP in R
	3.2 Preprocessing Step (Optional)
	3.3 Edge-wise Screening of ncRNA-Gene Pairs
	3.4 Node-Wise Screening of ncRNA and Gene Nodes
	3.5 Selecting Optimal Threshold Parameter
	3.6 Multivariate Regularization to Identify Final ncRNA-Gene Regulatory Pairs
	3.7 NGP Output and Subsequent Analysis

	4 Examples
	4.1 LncRNA Regulation of Gene Expression in KIdney Renal Papillary Cell Carcinoma (KIRP)
	4.2 miRNA Regulation of Gene Expression in PRostate ADenocarcinoma (PRAD)

	5 Notes
	References

	Chapter 13: MODIG: An Attention Mechanism-Based Approach to Cancer Driver Gene Identification
	1 Introduction
	2 Materials and Methods
	2.1 Generation of Omics Feature Matrix
	2.2 Generation of Gene Association Profiles
	2.3 Construction of Multidimensional Gene Network
	2.4 Multi-Omics and Multidimensional Graph Attention Network
	2.4.1 Multidimensional GAT Encoder
	2.4.2 Joint Learning Module
	2.4.3 MLP Classifier

	3 Implementation
	3.1 Input Data
	3.2 Software

	4 Notes
	References

	Chapter 14: Predictive Modeling of Anticancer Drug Sensitivity Using REFINED CNN
	1 Introduction
	2 Methods
	2.1 Data Extraction and Preprocessing
	2.2 REFINED Manifold Learning
	2.3 Hill Climbing
	2.4 Model Training

	3 Notes
	References

	Chapter 15: Anticancer Monotherapy and Polytherapy Drug Response Prediction Using Deep Learning: Guidelines and Best Practices
	1 Introduction
	2 Methods
	2.1 Preliminary Considerations and Overall Computational Pipeline
	2.2 Model Formulation
	2.3 Model Inputs
	2.4 Preprocessing
	2.4.1 Data Cleaning
	2.4.2 Normalization
	2.4.3 Feature Selection and Dimensionality Reduction
	2.4.4 Data Homogenization

	2.5 Data Splitting and Its Implications for the Application of the Model
	2.6 Baseline Models and Ablation Study
	2.7 Model Interpretation

	3 Notes
	References

	Chapter 16: Identification of Somatic Variants in Cancer Genomes from Tissue and Liquid Biopsy Samples
	1 Introduction
	1.1 Overview of Somatic Variant Calling
	1.2 Somatic Variant Calling in Tumor Tissue Samples
	1.3 Somatic Variant Calling in Formalin-Fixed Paraffin-Embedded (FFPE) Tumor Samples
	1.4 Somatic Variant Calling Approaches in Liquid Biopsy Samples

	2 Materials
	2.1 Environment
	2.2 Input Requirements

	3 Methods
	3.1 Running VarNet
	3.2 Performance on ICGC Benchmark Samples
	3.3 Tuning the Performance of VarNet

	4 Notes
	References

	Chapter 17: SUMMER: A Practical Tool for Identifying Factors and Biomarkers Associated with Pan-cancer Survival
	1 Introduction
	2 Materials
	2.1 Preparation of SNP-Exposure Association Datasets
	2.1.1 PheWAS Dataset
	2.1.2 QTL Dataset

	2.2 Preparation of SNP-Outcome Association (That Is, Cancer Survival GWAS) Datasets
	2.2.1 Data Collection and Quality Control in UK Biobank Cohort
	2.2.2 Cancer Survival GWAS Analysis

	2.3 MR Analysis Framework
	2.3.1 MR Analysis in Identification of Cancer Survival-Associated Risk Factors
	2.3.2 Summary-Data-Based MR (SMR) Analysis for Identification of Cancer Survival-Associated Circulating Biomarkers

	3 Methods
	3.1 Design of SUMMER Database
	3.2 ``Survival GWAS Dataset´´ Module
	3.3 ``Phenotype-Wide Association Analysis´´ Module
	3.4 ``Biomarker-Wide Association Analysis´´ Module
	3.5 ``Running Your Data´´ Module

	4 Notes
	References

	Chapter 18: Predicting Tumor Antigens Using the LENS Workflow Through RAFT
	1 Introduction
	2 Tumor Antigens
	3 Role of Bioinformatics in Personalized Neoantigen Vaccines
	4 RAFT
	4.1 Project Context
	4.2 Module-Based Components
	4.3 Project Packaging
	4.4 Installation
	4.4.1 Installation Through pip
	4.4.2 Installation Through Conda
	Installing RAFT Using Conda
	4.4.3 Setting up RAFT
	4.4.4 Setting up Nextflow Profile
	Example Nextflow Profile

	5 LENS Workflow Demonstration
	LENS Demonstration Output
	6 Running LENS with User-Provided Manifest
	6.1 Loading Reference and FASTQ Files
	6.2 Generating and Checking the RAFT Manifest
	6.3 Running LENS Workflow with Default Parameters
	The -mb Parameter

	7 Modifying LENS Modules, Parameters, and References
	Setting up (but not Running) an off-the-Shelf Workflow
	7.1 Workflow Modifications
	7.1.1 Parameter Modifications
	Setting Parameters for Running star
	7.1.2 Tool, Container, and Resource Modifications
	Specifying STAR Alignment Parameters
	Applying Parameters to Multiple Somatic Variant Callers
	Determining Processes Using Specific Docker Image Label
	7.1.3 Reference Modifications
	Downloading External Reference
	Updated Genomic References within main.nf

	7.2 Running a Modified Workflow
	Running a Modified RAFT Project

	8 Examining RAFT Output Files
	Using find to Interact with RAFT Output Files
	9 Understanding LENS Output Reports
	9.1 pMHC Identifying Columns
	9.2 pMHC Descriptive Columns
	9.3 SNV- and InDel-Specific Columns
	9.4 Fusion-Specific Columns
	9.5 Splice-Specific Columns
	9.6 ERV-Specific Columns
	9.7 Cancer-Testis Antigens- and Self-Antigens-Specific Columns

	10 Generating a RAFT Package for Analysis Storage
	Generating a RAFT Package
	11 Loading a Project from a RAFT Package
	Generating a RAFT Project from a rftpkg File
	12 Further Help
	References

	Index

