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For over 35 years, biological scientists have come to rely on the research protocols and 
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the first to introduce the step-by-step protocols approach that has become the standard in all 
biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-
step fashion, opening with an introductory overview, a list of the materials and reagents 
needed to complete the experiment, and followed by a detailed procedure that is supported 
with a helpful notes section offering tips and tricks of the trade as well as troubleshooting 
advice. These hallmark features were introduced by series editor Dr. John Walker and 
constitute the key ingredient in each and every volume of the Methods in Molecular Biology 
series. Tested and trusted, comprehensive and reliable, all protocols from the series are 
indexed in PubMed.
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Preface 

This second edition of the Cancer Bioinformatics volume in the Methods in Molecular 
Biology (MiMB) protocol series reflects the new status of data management and analysis as 
an integral part of basic and translational research in cancer. Cancer bioinformatics’ mission 
is twofold: to bring cutting-edge computational tools to bear on problems in cancer research 
and to provide computational support of novel molecular diagnostics and treatment mod-
alities in the clinic of cancer. In keeping with these goals, the present volume contains 
chapters on cancer-related software repositories, databases, and cloud computing resources; 
computing techniques applied to recently developed molecular protocols in cancer biology; 
in-depth analysis of genomic alterations caused by cancer; methods to evaluate findings from 
liquid biopsies; and prognostic tools for immunotherapies. Written in the MiMB protocol 
style, these chapters provide step-by-step guidance to each respective computational method 
or resource, facilitating their adoption by the readers. 

Cold Spring Harbor, NY, USA Alexander Krasnitz 
Pascal Belleau
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HANAÉ CARRIÉ • Genome Institute of Singapore (GIS), Agency for Science, Technology and 
Research (A*STAR), Singapore, Republic of Singapore 

KEN CHEN • Department of Bioinformatics and Computational Biology, The University of 
Texas MD Anderson Cancer Center, Houston, TX, USA 

SILU CHEN • Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer 
Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer 
Personalized Medicine, Nanjing Medical University, Nanjing, China; Department of 
Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, 
Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 
China 

PEDRO R. CUTILLAS • Centre for Genomics and Computational Biology, Barts Cancer 
Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse 
Square, London, UK 

SEAN DAVIS • University of Colorado Anschutz School of Medicine, Aurora, CO, USA 
BRANDI N. DAVIS-DUSENBERY • Independent Advisor, Charlestown, MA, USA 
SUBHAJYOTI DE • Rutgers Cancer Institute of New Jersey, Rutgers, the State University of 

New Jersey, New Brunswick, NJ, USA 
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Chapter 1 

Bioconductor’s Computational Ecosystem for Genomic Data 
Science in Cancer 

Marcel Ramos , Lori Shepherd , Nathan C. Sheffield , 
Alexandru Mahmoud , Hervé Pagès , Andres Wokaty , 
Dario Righelli , Davide Risso , Sean Davis , Sehyun Oh , 
Levi Waldron , Martin Morgan , and Vincent Carey 

Abstract 

The Bioconductor project enters its third decade with over two thousand packages for genomic data 
science, over 100,000 annotation and experiment resources, and a global system for convenient distribu-
tion to researchers. Over 60,000 PubMed Central citations and terabytes of content shipped per month 
attest to the impact of the project on cancer genomic data science. This report provides an overview of 
cancer genomics resources in Bioconductor. After an overview of Bioconductor project principles, we 
address exploration of institutionally curated cancer genomics data such as TCGA. We then review genomic 
annotation and ontology resources relevant to cancer and then briefly survey analytical workflows addres-
sing specific topics in cancer genomics. Concluding sections cover how new software and data resources are 
brought into the ecosystem and how the project is tackling needs for training of the research workforce. 
Bioconductor’s strategies for supporting methods developers and researchers in cancer genomics are 
evolving along with experimental and computational technologies. All the tools described in this report 
are backed by regularly maintained learning resources that can be used locally or in cloud computing 
environments. 

Key words Cancer genomics, open source software, data structures, transcriptomics, mutations, 
ontology, epigenomics, spatial transcriptomics 

1 Introduction 

Computation is a central component of cancer genomics research. 
Tumor sequencing is the basis of computational investigation of 
mutational, epigenetic and immunologic processes associated with 
cancer initiation and progression. Numerous computational work-
flows have been produced to profile tumor cell transcriptomes and 
proteomes. New technologies promise to unite sequence-based 
characterizations with digital histopathology, ultimately driving
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efforts in molecule design and evaluation to produce patient-
centered treatments.

2 Marcel Ramos et al.

Bioconductor is an open source software project with a 20 year 
history of uniting biostatisticians, bioinformaticians, and genome 
researchers in the creation of an ecosystem of data, annotation, and 
analysis resources for research in genome-scale biology. This paper 
will review current approaches of the project to advancing cancer 
genomics. After a brief discussion of basic principles of the Biocon-
ductor project, we will present a “top down” survey of resources 
useful for cancer bioinformatics. Primary sections address

• how to explore institutionally curated cancer genomics data

• genomic annotation resources relevant to cancer genomics

• analytical workflows

• components for introducing new data or analyses

• pedagogics and workforce development. 

Two concluding sections offer discussion of possible paths 
forward, and a detailed description of software components under-
lying an exemplary integrative analysis of response to immune 
checkpoint blockade. 

2 Bioconductor principles 

2.1 R packages and 

vignettes 

Software tools and data resources in Bioconductor are organized 
into “R packages”. These are collections of folders with data, 
code (principally R functions), and documentation, following a 
protocol specified in the Writing R Extensions manual [1]. R 
packages have a DESCRIPTION file with metadata about package 
contents and provenance. Package structure can be checked for 
validity using the R CMD check facility. Documentation of code 
and data can be programmatically checked for existence and valid-
ity. The DESCRIPTION file for a package specifies its version and 
also gives precise definition of how an R package may depend upon 
versions of other packages. 

At its inception, Bioconductor introduced a new approach to 
holistic package documentation called “vignette”. Vignettes pro-
vide narrative and explanation interleaved with executable code 
describing package operations. While R function manual pages 
describe the operation of individual functions, vignettes illustrate 
the interoperation of package components and provide motivation 
for both package design but also context for its use. 

2.2 R package 

repositories; 

repository evolution 

Bioconductor software forms a coherent ecosystem that can be 
checked for consistency of versions of all packages available in a 
given installation of R. Bioconductor packages may specify



2.4 Unifying assay

and sample data:

SummarizedExperi-

ment and 

MultiAssayExperiment 

dependency on other Bioconductor packages, or packages that are 
available in the CRAN repository. Bioconductor does not include 
packages with dependencies on “github-only” packages. Later in 
this paper we will provide details on package quality assurance that 
provide a rationale for this restriction. 

Bioconductor’s Computational Ecosystem for Genomic Data Science in Cancer 3

Major updates to the R language occur annually, and updates 
are preceded by careful assessment of effects of language change on 
Bioconductor package operations. These effects can be identified 
through changes in the output of R CMD check. The Bioconduc-
tor ecosystem is updated twice a year, once to coincide with update 
to R, and once about six months later. The semiannual updates 
reflect the need to track developments in the fast-moving field of 
genomic data science. 

2.3 Package quality 

assessment; 

installation 

consistency 

The BiocCheck function is used to provide more stringent assess-
ment of package compliance with basic principles of the Biocon-
ductor ecosystem. 

The BiocManager package provides functionality for installing 
and updating packages and for verifying the coherence and version 
status of the currently installed package collection. This is impor-
tant in the context of a language and package ecosystem that 
changes every six months, while analyses may take years to com-
plete. Tools for recreating past package collections are available to 
assist in reproducing outputs of prior analyses. 

Most of the data from genome-scale experiments to be discussed in 
this chapter are organized in special data containers rooted in the 
concepts of the SummarizedExperiment class. Briefly, assay data are 
thought of as occupying a G ×N array, and sample level data occupy 
an N ×K table. The array and the table are linked together in the 
SummarizedExperiment; see Figure 1. 

Multiple representations of assay results may be managed in 
this structure, but all assay arrays must have dimensions G ×N . 

For experiment collections in which the same samples are sub-
jected to multiple genome-scale assays, MultiAssayExperiment con-
tainers are used. See Figure 2 for the layout. 

Further details on these data structures will be provided in 
section 6. 

2.5 Downloading and 

caching cancer 

genomics data and 

annotations 

Downloading and managing data from various online resources can 
be excessively time consuming. Bioconductor encourages data 
caching for increased efficiency and reproducibility. The caching 
data methods employed in Bioconductor allow analysis code to 
concisely refer to data resources as needed, with minimal attention 
to how data are stored, retrieved or transformed. It allows for easy 
management and reuse of data that are on remote servers or in 
cloud, storing source location and providing information for data
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Fig. 1 SummarizedExperiment schematic. 

Fig. 2 MultiAssayExperiment schematic.



library(ExperimentHub) 

eh = ExperimentHub() 

query(eh, "CancerData") 

## ExperimentHub with 1742 records 

## # snapshotDate(): 2024-04-29 

## # $dataprovider: Eli and Edythe L. Broad Institute 

## of Harvard and MIT, GEO, ... 

## # $species: Homo sapiens, Mus musculus, NA 

## # $rdataclass: SummarizedExperiment, RaggedExperiment, 

## matrix, list, DFrame,... 

## # additional mcols(): taxonomyid, genome, description, 

## # coordinate_1_based, maintainer, rdatadateadded, 

## preparerclass, tags, 

## # rdatapath, sourceurl, sourcetype 

## # retrieve records with, e.g., ’object[["EH558"]]’ 

##

## title 

## EH558 | ACC_CNASNP-20160128 

## EH559 | ACC_CNVSNP-20160128 

## EH560 | ACC_colData-20160128 

## EH561 | ACC_GISTIC_AllByGene-20160128

updates. The BiocFileCache Bioconductor package handles data 
management from within R.
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BiocFileCache is a general-use caching system but Bioconduc-
tor also provides “Hubs”, AnnotationHub and ExperimentHub, to 
help distributed annotation or experimental data hosted externally. 
Both AnnotationHub and ExperimentHub use BiocFileCache to 
handle download and caching of data. 

AnnotationHub provides a centralized repository of diverse 
genomic annotations, facilitating easy access and integration into 
analyses. Researchers can seamlessly retrieve information such as 
genomic features, functional annotations, and variant data, stream-
lining the annotation process for their analyses. 

ExperimentHub extends this concept to experimental data. It 
serves as a centralized hub for storing and sharing curated 
experiment-level datasets, allowing researchers to access a wide 
range of experimental designs and conditions. This cloud-based 
infrastructure enhances collaboration and promotes the reproduc-
ibility of analyses across different laboratories. 

The curatedTCGAData package provides some resources 
through ExperimentHub, as do many other self-identified “Can-
cerData” resources. Once the ExperimentHub is loaded, it can be 
queried for terms of interest. 

Here and throughout, shading is used to indicate code opera-
tions in Bioconductor 3.19 with R 4.4. Lines of output are pre-
ceded by ##. 



## EH562 | ACC_GISTIC_ThresholdedByGene-20160128 

## ... ...

## EH8533 | tcga_transcript_counts 

## EH8534 | target_rhabdoid_wgbs_hg19 

## EH8567 | xenium_hs_breast_addon 

## EH9482 | Capper_example_betas.rda 

## EH9483 | GIMiCC_Library.rda 

query(eh, c("CancerData", "esophageal")) 

## ExperimentHub with 2 records 

## snapshotDate(): 2023-10-24 

## $dataprovider: University of California San Francisco 

## $species: Homo sapiens 

## $rdataclass: RangedSummarizedExperiment, data.frame 

## additional mcols(): taxonomyid, genome, description, 

## coordinate_1_based, maintainer, rdatadateadded, 

## preparerclass, tags,} 

## rdatapath, sourceurl, sourcetype } 

## retrieve records with, e.g., object[["EH8527"]] 

## title 

## EH8527 | cao_esophageal_wgbs_hg19 

## EH8530 | cao_esophageal_transcript_counts 
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Multiple terms can be used to narrow results before choosing a 
download. 

Similarly AnnotationHub files can be downloaded for annotat-
ing data. For example, the ensembl 110 release of gene and protein 
annotations are obtained with the following: 

library(AnnotationHub) 

ah = AnnotationHub() 

query(ah, c("ensembl", "110", "Homo sapiens")) 

#snapshotDate(): 2024-04-29 

#AnnotationHub with 1 record 

## snapshotDate(): 2024-04-29 

## names(): AH113665 

## $dataprovider: Ensembl 

## $species: Homo sapiens 

## $rdataclass: EnsDb 

## $rdatadateadded: 2023-04-25 

## $title: Ensembl 110 EnsDb for Homo sapiens 

## $description: Gene and protein annotations 

for



Homo 

## sapiens based on Ensem... 

## $taxonomyid: 9606 

## $genome: GRCh38 

## $sourcetype: ensembl 

## $sourceurl: http://www.ensembl.org 

## $sourcesize: NA 

## $tags: c("110", "Annotation", 

"AnnotationHubSoftware", 

## "Coverage", "DataImport", "EnsDb", 

"Ensembl", 

## "Gene", "Protein", 

## "Sequencing", "Transcript") 

## retrieve record with ’object[["AH113665"]]’ 
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3 Exploring institutionally curated cancer genomics data 

3.1 The Cancer 

Genome Atlas 

An overview of Bioconductor’s resource for the Cancer Genome 
Atlas (TCGA) is easy to obtain, with the curatedTCGAData 
package. 

library(curatedTCGAData) 

tcgatab = curatedTCGAData(version="2.1.1") 

Records obtained for adrenocortical carcinoma (code ACC) are 
in Table 1. 

Various conventions are in play in this table. The “title” field is 
of primary concern. The title string can be decomposed into sub-
strings with interpretation [tumorcode]_[assay]-[date]_ 

[optional codes]. The column ah_id will be explained in 
section 4, and entries in column rdataclass will be discussed in 
section 6 below. 

3.1.1 Tumor code 

resolution 

There are 33 different tumor types available in TCGA. The decod-
ing of tumor codes for the first ten in alphabetical order is provided 
in Table 2. 

3.1.2 Assay codes and 

counts 

Assays performed on tumors vary across tumor types. For assay 
types shared between breast cancer, glioblastoma, and lung adeno-
carcinoma (code LUAD), the numbers of tumor and normal sam-
ples available in curatedTCGAData are provided in Table 3.
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Table 1 

Records returned by curatedTCGAData::curatedTCGAData(), filtered to those pertaining to 

adrenocortical carcinoma. 

ah_id title file_size rdataclass 

1 EH4737 ACC_CNASNP-20160128 0.8 Mb RaggedExperiment 

2 EH4738 ACC_CNVSNP-20160128 0.2 Mb RaggedExperiment 

3 EH4740 ACC_GISTIC_AllByGene-20160128 0.2 Mb SummarizedExperiment 

4 EH4741 ACC_GISTIC_Peaks-20160128 0 Mb RangedSummarizedExperiment 

5 EH4742 ACC_GISTIC_ThresholdedByGene-
20160128 

0.2 Mb SummarizedExperiment 

6 EH4744 ACC_Methylation-20160128_assays 239.2 
Mb 

SummarizedExperiment 

7 EH4745 ACC_Methylation-20160128_se 6 Mb RaggedExperiment 

8 EH4747 ACC_Mutation-20160128 0.7 Mb SummarizedExperiment 

9 EH4748 ACC_RNASeq2Gene-20160128 2.7 Mb SummarizedExperiment 

10 EH4750 ACC_RPPAArray-20160128 0.1 Mb SummarizedExperiment 

414 EH8118 ACC_miRNASeqGene-20160128 0.2 Mb SummarizedExperiment 

415 EH8119 ACC_RNASeq2GeneNorm-20160128 5.4 Mb SummarizedExperiment 

Table 2 

Decoding TCGA tumor code abbreviations. 

Code Tumor.Type 

ACC Adrenocortical Carcinoma 

BLCA Bladder Urothelial Carcinoma 

BRCA Breast Invasive Carcinoma 

CESC Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma 

CHOL Cholangiocarcinoma 

CNTL Controls 

COAD Colon Adenocarcinoma 

DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma 

ESCA Esophageal Carcinoma 

FPPP FFPE Pilot Phase II 

GBM Glioblastoma Multiforme 

HNSC Head and Neck Squamous Cell Carcinoma 

KICH Kidney Chromophobe 

KIRC Kidney Renal Clear Cell Carcinoma

(continued)



Table 2
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(continued)

Code Tumor.Type

KIRP Kidney Renal Papillary Cell Carcinoma 

LAML Acute Myeloid Leukemia 

LCML Chronic Myelogenous Leukemia 

LGG Brain Lower Grade Glioma 

LIHC Liver Hepatocellular Carcinoma 

LUAD Lung Adenocarcinoma 

LUSC Lung Squamous Cell Carcinoma 

MESO Mesothelioma 

MISC Miscellaneous 

OV Ovarian Serous Cystadenocarcinoma 

PAAD Pancreatic Adenocarcinoma 

PCPG Pheochromocytoma and Paraganglioma 

PRAD Prostate Adenocarcinoma 

READ Rectum Adenocarcinoma 

SARC Sarcoma 

SKCM Skin Cutaneous Melanoma 

STAD Stomach Adenocarcinoma 

TGCT Testicular Germ Cell Tumors 

THCA Thyroid Carcinoma 

THYM Thymoma 

UCEC Uterine Corpus Endometrial Carcinoma 

UCS Uterine Carcinosarcoma 

UVM Uveal Melanoma 

Table 3 

Numbers of assays available in TCGA on tumor and normal samples, for breast cancer, glioblastoma, 

and lung adenocarcinoma. 

BRCA BRCAnormal GBM GBMnormal LUAD LUADnormal 

CNASNP 1089 1120 577 527 516 579 

CNVSNP 1080 1119 577 527 516 579 

GISTIC_AllByGene 1080 0 577 0 516 0

(continued)



gbrna = TCGAprimaryTumors(curatedTCGAData("GBM", 

"RNASeq2GeneNorm", dry.run=FALSE, version="2.1.1")) 

gbrna

## A MultiAssayExperiment object of 1 listed 

##experiment with a user-defined name and respective class. 

##Containing an ExperimentList class object of length 1: 

## [1] GBM_RNASeq2GeneNorm-20160128: SummarizedExperiment 

## with 18199 rows and 153 columns 

##

## Functionality: 

## experiments() - obtain the ExperimentList instance 

## colData() - the primary/phenotype DataFrame 

## sampleMap() - the sample coordination DataFrame 

## $, [, [[ - extract colData columns, subset or 

## experiment 

## *Format() - convert into a long or wide DataFrame 

## assays() - convert ExperimentList to a SimpleList of

## matrices

## exportClass() - save data to flat files 

Table 3
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(continued)

BRCA BRCAnormal GBM GBMnormal LUAD LUADnormal

GISTIC_Peaks 1080 0 577 0 516 0 

GISTIC_ThresholdedByGene 1080 0 577 0 516 0 

Mutation 988 5 283 7 230 0 

RNASeq2Gene 1093 119 153 13 515 61 

RPPAArray 887 50 233 11 365 0 

RNASeq2GeneNorm 1093 119 153 13 515 61 

Methylation_methyl27 314 29 285 0 65 24 

Methylation_methyl450 783 102 140 14 458 34 

3.1.3 An example 

dataset for RNA-seq from 

glioblastoma multiforme 

We obtain normalized RNA-seq data on primary tumor samples for 
GBM with 

R functions defined in Bioconductor packages can operate on 
the variable gbrna to retrieve information of interest. Details on 
the underlying data structure are given in section 6 below. For most 
assay types, we think of the quantitative assay information as tabular



in nature, with table rows corresponding to genomic features such 
as genes, and table columns corresponding to samples. 
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Information on GBM samples employs the colData function. 

dim(colData(gbrna)) 

## [1] 153 4380 

For sample level information obtained with colData, we think 
of rows as samples, and columns as sample attributes. 

3.1.4 Clinical and 

phenotypic data 

TCGA datasets are generally provided as combinations of results for 
tumor tissue and normal tissue. The determination of a record’s 
sample type is encoded in the sample “barcode”. Decoding of 
sample barcodes is described at 

https://docs.gdc.cancer.gov/Encyclopedia/pages/ 

TCGA_Barcode/ 

with specific interpretation of sample types listed at

https://gdc.cancer.gov/resources-tcga-users/ 

tcga-code-tables/sample-type-codes 

separately. The TCGAutils package provides utilities for 
extracting data on primary tumor samples, excluding samples that 
may have been taken on normal tissue or metastases. 

Clinical and phenotypic data on all TCGA samples are volumi-
nous. For example, there are 2684 fields of sample level data for 
BRCA samples, and 4380 fields for GBM samples. Many of these 
fields are meaningfully populated for only a very small minority of 
samples. To see this for GBM: 

mean(sapply(colData(gbrna), function(x) mean(is.na (x))>.90)) 

## [1] 0.8091324

In words, for 81% of clinical data fields in TCGA GBM data, at 
least 90% of entries are missing. 

Nevertheless, with careful inspection of fields and contents, 
nearly complete clinical data can be extracted and combined with 
molecular and genetic assay data with modest effort. 

The following code chunk illustrates a very crude approach to 
comparing survival profiles for BRCA, GBM, and LUAD donors. 
The result is in Figure 3.



# obtain mutation data for BRCA, GBM, LUAD; could use any or 

# all assay types 

brmut = curatedTCGAData("BRCA", "Mutation", version = "2.1.1", 

dry.run = FALSE) 

gbmut = curatedTCGAData("GBM", "Mutation", version = "2.1.1", 

dry.run = FALSE) 

lumut = curatedTCGAData("LUAD", "Mutation", version = "2.1.1", 

dry.run = FALSE) 

# extract survival times 

library(survival) 

getSurv = function(mae) { 

days_on=with(colData(mae),ifelse(is.na(days_to_last_followup), 

days_to_death,days_to_last_followup)) 

Surv(days_on,colData(mae)$vital_status) 

}

ss=lapply(list(brmut,gbmut,lumut),getSurv) 

codes=c("BRCA","GBM","LUAD") 

type=factor(rep(codes,sapply(ss,length))) 

allsurv=do.call(c,ss) 

library(GGally)

ggsurv(survfit(allsurv~type)) 
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Fig. 3 Survival profile extraction from three MultiAssayExperiments produced with curatedTCGAData calls 

At this point, survival times within tumor type can be stratified 
by any features of the mutation profiles of individual samples. The 
“RaggedExperiment” class is employed to test each BRCA sample 
for presence of any mutation in the gene TTN. See Figure 4.
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Fig. 4 Survival distributions for donors of breast tumors in TCGA, stratified by presence or absence of mutation 

in gene TTN. 

bprim = TCGAprimaryTumors(brmut) 

## harmonizing input: 

## removing 5 sampleMap rows with ’colname’ not 

in 

## colnames of experiments 

mutsyms = assay(experiments(bprim)[[1]], 

"Hugo_Symbol") 

cn = rownames(colData(bprim)) # short 

cna = colnames(mutsyms) # long 

cnas = substr(cna, 1, 12) 

hasTTNmut = apply(assay(experiments( 

TCGAprimaryTumors(brmut))[[1]], 

"Hugo_Symbol"), 2, 

function(x) length(which(x=="TTN"))>0) 

## harmonizing input: 

##removing5sampleMaprowswith’colname’notin 

## colnames of experiments 

names(hasTTNmut) = cnas 

bsurv = getSurv(TCGAprimaryTumors(brmut)) 

## harmonizing input: 

##removing5sampleMaprowswith’colname’notin 

## colnames of experiments 

hasTTNmut = hasTTNmut[cn] # match mut records 

to surv times 

ggsurv(survfit(bsurv~hasTTNmut))
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Similar manipulations permit exploration of relationships 
between any molecular assay outcomes and any clinical data col-
lected in TCGA. 

3.2 cBioPortal 

https://www.cbioportal.org/ 

defines the goal of the portal to be reducing “the barriers 
between complex genomic data and cancer researchers by 
providing rapid, intuitive, and high-quality access to molecular 
profiles and clinical attributes from large-scale cancer genomics 
projects, and therefore to empower researchers to translate these 
rich data sets into biologic insights and clinical applications.” 

Bioconductor’s cBioPortalData package simplifies access to 
over 300 genomic studies of diverse cancers in cBioPortal. The 
main unit of data access is the publication. The cBioPortal 

function mediates a connection between an R session and the 
cBioPortal API. getStudies returns a tibble with metadata on 
all studies. 

library(cBioPortalData) 

cbio = cBioPortal() 

allst = getStudies(cbio) 

dim(allst) 

## [1] 397 13 

A pruned selection of records from the cBioPortal studies table 
is given in Table 4. 

To explore copy number alteration data from a study on angio-
sarcoma, we find the associated studyId field in allst and use the 
cBioDataPack function to retrieve a MultiAssayExperiment: 

ann = "angs_project_painter_2018" 

ang = cBioDataPack(ann) 

ang

## A MultiAssayExperiment object of 3 listed 

##experiments with user-defined names and respective classes. 

####Containing an ExperimentList class object of length 3: 

##[1] cna_hg19.seg: RaggedExperiment with 27835 rows 

## and 48 columns 

##[2] cna: SummarizedExperiment with 23109 rows 

## and 48 columns 

##[3] mutations: RaggedExperiment with 24058 rows 

## and 48 columns



## Functionality: 

## experiments() - obtain the ExperimentList 

instance

## colData() - the primary/phenotype DataFrame 

## sampleMap() - the sample coordination DataFrame 

## $, [, [[ - extract colData columns, subset 

, or

## experiment 

## *Format() - convert into a long or wide DataFrame 

## assays() - convert ExperimentList to a SimpleList of

## matrices

## exportClass() - save data to flat files 
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Table 4 

Excerpts from four fields on selected records in the cBioPortal getStudies output. 

name description studyId 

Adenoid Cystic 
Carcinoma of the 
Breast 

Whole exome sequencing of 12 breast AdCCs. acbc_mskcc_2015 

Adenoid Cystic 
Carcinoma 

Whole-exome or whole-genome sequencing analysis of 
60 ACC tumor/normal pairs 

acyc_mskcc_2013 

Adenoid Cystic 
Carcinoma 

Targeted Sequencing of 28 metastatic Adenoid Cystic 
Carcinoma samples. 

acyc_fmi_2014 

Adenoid Cystic 
Carcinoma 

Whole-genome or whole-exome sequencing of 25 adenoid 
cystic carcinoma tumor/normal pairs. 

acyc_jhu_2016 

Adenoid Cystic 
Carcinoma 

WGS of 21 salivary ACCs and targeted molecular analyses 
of a validation set (81 patients). 

acyc_mda_2015 

Adenoid Cystic 
Carcinoma 

Whole-genome/exome sequencing of 10 ACC PDX 
models. 

acyc_mgh_2016 

Adenoid Cystic 
Carcinoma 

Whole exome sequencing of 24 ACCs. acyc_sanger_2013 

Adenoid Cystic 
Carcinoma Project 

Multi-Institute Cohort of 1045 Adenoid Cystic Carcinoma 
patients. 

acc_2019 

Basal Cell Carcinoma Whole-exome sequencing of 126 basal cell carcinoma 
tumor/normal pairs; targeted sequencing of 
163 sporadic samples (40 tumor/normal pairs) and 
4 Gorlin symdrome basal cell carcinomas. 

bcc_unige_2016 

The copy number alteration outcomes are in the assay com-
ponent of the experiment.
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seg = experiments(ang)[[1]] 

colnames(seg) = sapply(strsplit(colnames(seg), 

"-"), "[", 5) 

assay(seg)[1:4,1:4] 

## 

## DAE1F DACME DADBW DAD34 

## 1:12227-955755 71 NA NA NA 

## 1:957844-1139868 62 NA NA NA 

## 1:1140874-1471177 167 NA NA NA 

## 1:1475170-1855370 113 NA NA NA 

The rownames component of this matrix can be transformed to 
a GenomicRanges instance for concise manipulation. 

allalt = GRanges(rownames(assay(seg))) 

allalt 

## GRanges object with 27835 ranges and 0 meta-

data columns: 

## seqnames ranges strand 

## <Rle> <IRanges> <Rle> 

## [1] 1 12227-955755 *

## [2] 1 957844-1139868 *

## [3] 1 1140874-1471177 *

## [4] 1 1475170-1855370 *

## [5] 1 1857786-17257894 *

## ... ... ... ... 

## [27831] 20 68410-1559342 *

## [27832] 20 1585705-1592359 *

## [27833] 20 1616247-62904955 *

## [27834] 21 9907492-48084286 *

## [27835] 22 16157938-51237572 *

## -------

## seqinfo: 22 sequences from an unspecified 

genome; no 

## seqlengths 

We’ll focus on chromosome 17, where TP53 is found. Regions 
of genomic alteration are summarized to their midpoints. The 
display in Figure 5 shows a strong peak in the vicinity of 7.5 Mb 
on chromosome 17, near TP53. 

g17 = allalt[seqnames(allalt)=="17"] 

df17 = as(g17, "data.frame") 

df17$mid = .5*(df17$start+df17$end) # midpoint only 

ggplot(df17,aes(x=mid))+geom_density(bw=.2)+xlab("chr17bp")
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Fig. 5 Density of recurrent genomic alterations on chromosome 17 for 48 angiosarcoma patients 

4 Genomic annotation resources relevant to cancer 

4.1 Resources from 

UCSC, NCBI, and EMBL 

Sequences for reference genome builds for human and other model 
organisms are supplied in BSgenome packages. BSgenome.Hsa-
piens.UCSC.hg19 provides all chromosomes and contigs for the 
2009 build; the hg38 suffix may be used for the 2013 build. The 
recent “telomere to telomere” build is available as BSgenome.Hsa-
piens.NCBI.T2T.CHMv13v2.0. 

NCBI’s dbSNP catalog of genetic variants is provided in ver-
sioned packages. For example, SNPlocs.Hsapiens.dbSNP155. 
GRCh38 includes position and nucleotide content information 
for over 1 billion SNP identifiers (“rs numbers”). 

Tracks defined for the UCSC genome browser are also pack-
aged. The package TxDb.Hsapiens.UCSC.knownGene.hg38 can 
be used to get gene, transcript, and exon location information for 
the hg38 build. The EnsDb packages provide similar information 
for annotations curated at EMBL. 

library(EnsDb.Hsapiens.v86) 

EnsDb.Hsapiens.v86 

## EnsDb for Ensembl: 

## |Backend: SQLite 

## |Db type: EnsDb



## |Type of Gene ID: Ensembl Gene ID 

## |Supporting package: ensembldb 

## |Db created by: ensembldb package from Bioconductor 

## |script\_version: 0.3.0 

## |Creation time: Thu May 18 16:32:27 2017 

## |ensembl\_version: 86 

## |ensembl\_host: localhost 

## |Organism: homo\_sapiens 

## |taxonomy\_id: 9606 

## |genome\_build: GRCh38 

## |DBSCHEMAVERSION: 2.0 

## | No. of genes: 63970. 

## | No. of transcripts: 216741. 

## |Protein data available. 
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The “genes” method provides addresses and additional 
annotations. 

names(mcols(genes(EnsDb.Hsapiens.v86))) 

## [1] "gene_id" "gene_name" "gene_biotype" 

## [4] "seq_coord_system" "symbol" "entrezid" 

head(table(genes(EnsDb.Hsapiens.v86)$gene_biotype)) 

## 3prime_overlapping_ncRNA antisense 

## 30 5703 

## bidirectional_promoter_lncRNA IG_C_gene 

## 4 23 

## IG_C_pseudogene IG_D_gene 

## 11 64 

More recent versions of Ensembl gene annotation are available 
from AnnotationHub, as illustrated above in section 2.5 with the 
creation of ens110. 

4.2 Gene sets Many methods have been developed to employ collections of genes 
for inference on hypotheses about cancer initiation or progression. 
The Molecular Signatures Database (MSigDB) is curated at Broad 
Institute, and can be harvested using the msigdb package. 

Collect all gene sets for humans: 

library(msigdb) 

hssigs = getMsigdb(org="hs", id="SYM", 

version=getMsigdbVersions())



nms = grep("CANCER", names(hssigs), value=TRUE) 

head(nms)

## [1] "SOGA_COLORECTAL_CANCER_MYC_DN" 

## [2] "SOGA_COLORECTAL_CANCER_MYC_UP" 

## [3] "WATANABE_RECTAL_CANCER_RADIOTHERAPY_ 

RESPONSIVE_UP"

## [4] "LIU_PROSTATE_CANCER_UP" 

## [5] "BERTUCCI_MEDULLARY_VS_DUCTAL_BREAST_ 

CANCER_UP"

## [6] "WATANABE_COLON_CANCER_MSI_VS_MSS_UP" 

wangmet = hssigs[["WANG_METASTASIS_OF_BREAST_CANCER_ESR1_UP"]] 

wangmet

## setName: WANG_METASTASIS_OF_BREAST_CANCER_ESR1_UP 

## geneIds: KPNA2, HDGFL3, ..., PSMC2 (total: 22) 

## geneIdType: Symbol 

## collectionType: Broad 

##bcCategory: c2 (Curated) 

##bcSubCategory: CGP 

## details: use ’details(object)’ 

details(wangmet)

## setName: WANG_METASTASIS_OF_BREAST_CANCER_ESR1_UP 

## geneIds: KPNA2, HDGFL3, ..., PSMC2 (total: 22) 

## geneIdType: Symbol 

## collectionType: Broad 

##bcCategory: c2 (Curated) 

##bcSubCategory: CGP 

## setIdentifier: LVY1HGGWMJ7:35020:Fri May 26 13: 33:02 

## 2023:1104005 

## description: Genes whose expression in primary ER(+) 

## [GeneID=2099] breast cancer tumors positively correla 

## (longDescription available) 

## organism: Homo sapiens 

## pubMedIds: 15721472 

## urls: https://data.broadinstitute.org/gsea-msigdb/msigdb/ 

## release/2023.1.Hs/msigdb_v2023.1.Hs.xml.zip 

## contributor: Arthur Liberzon
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Find those with CANCER in their name: 

Information on provenance is bound together with the 
gene list: 



library(org.Hs.eg.db) 

go139 = select(org.Hs.eg.db, keys="GO:0000139", keytype="GO", 

columns=c("ENTREZID", "SYMBOL", "PFAM")) 

dim(go139)

## [1] 1212 6

head(go139)

## GO EVIDENCE ONTOLOGY ENTREZID SYMBOL PFAM 

## 1 GO:0000139 TAS CC 28 ABO PF03414 

## 2 GO:0000139 IEA CC 102 ADAM10 PF00200 

## 3 GO:0000139 IEA CC 102 ADAM10 PF13574 

## 4 GO:0000139 IEA CC 102 ADAM10 PF01562 

## 5 GO:0000139 TAS CC 162 AP1B1 PF09066 

## 6 GO:0000139 TAS CC 162 AP1B1 PF01602
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4.3 Ontologies Informal reasoning about cancer genomics employs conventional 
but frequently ambiguous terminology. In modern information 
science, ontologies are structured vocabularies (sets of “terms”, 
which may be single words or natural language phrases) accompa-
nied by explicit statements of semantic relationships among terms. 

Bioconductor provides several approaches for using ontologies 
in cancer data science. The most familiar ontology in this domain is 
Gene Ontology (GO), which organizes vocabulary about genes 
and gene products in the areas of molecular function, cellular 
components, and biological processes. 

4.3.1 Ontology usage 

with AnnotationDbi 

A common use case is to find genes or proteins associated with 
some biological process, component, or function. A phrase like 
‘Golgi membrane’ can be found in Gene Ontology using the select 
method with GO.db: 

library(GO.db) 

select(GO.db, keytype="TERM", 

keys="Golgi membrane", columns=c("GOID", 

"DEFINITION", 

"ONTOLOGY")) 

## TERM GOID 

## 1 Golgi membrane GO:0000139 

## DEFINITION 

## 1 The lipid bilayer surrounding any of the 

## compartments of the Golgi apparatus. 

## ONTOLOGY 

## 1 CC 

Once the formal identifier is obtained, the org.Hs.eg.db pack-
age can be used to find mappings from the GO term to gene and 
protein identifiers. This generates a fairly large table: 



library(rols)

lk1 = OlsSearch(q="golgi membrane dynamics", exact TRUE) 

lk1

## Object of class ’OlsSearch’: 

##query: golgi membrane dynamics 

##requested: 20 (out of 3) 

##response(s): 0
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The evidence code TAS means that there is a “traceable author 
statement” associating the term of interest with the gene identified. 
The number of genes in traceable Golgi membrane:gene associa-
tions is found with 

go139 |> dplyr::filter(EVIDENCE=="TAS") |> 

distinct(ENTREZID) |> count() 

## n 

## [1] 327 

4.3.2 Ontology usage 

with rols 

Access to a vast collection of ontologies is afforded by the EBI’s 
Ontology Lookup Service (OLS). The rols package uses the OLS 
API to discover ontologic mapping of terms of interest. Here we’ll 
consider the term “golgi membrane dynamics”, which is not found 
in GO. Again a multistep process is used. 

In this first step, we find how extensive is the response to the 
query. Certain searches yield tens of thousands of hits. With the 
exact parameter setting, the yield is modest. Now we extract a data. 
frame after requesting all records with olsSearch. Results are 
excerpted in Table 5. 

lk2 = olsSearch(lk1) 

lk3 = as(lk2, "data.frame") 

lk3$description = unlist(lk3$description) 

The detailed descriptions of the NCI Thesaurus entries show 
the exact nature of the search outcome. 

4.3.3 Cross-ontology 

relationships 

Philosophically, ontology is the study of what there is. For applica-
tions in information science, boundaries need to be established so 
that ontological resources can be managed with well-defined 
scopes. In Gene Ontology, three sub-ontologies are explicitly iden-
tified for cellular components, biological processes, and molecular 
functions.
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Table 5 

Using rols to obtain ontologic information related to golgi membrane dynamics. 

short_form description label 

NCIT_C119637 This gene is involved in both protein ubiquitination and Golgi 
membrane dynamics. 

HACE1 Gene 

NCIT_C119639 E3 ubiquitin-protein ligase HACE1 (909 aa, ˜102 kDa) is 
encoded by the human HACE1 gene. This protein is 
involved in the regulation of both the ubiquitination and 
subsequent degradation of small GTPases, which modulates 
Golgi membrane dynamics. 

E3 Ubiquitin-
Protein Ligase 
HACE1 

NCIT_C119638 Human HACE1 wild-type allele is located in the vicinity of 
6q16.3 and is approximately 132 kb in length. This allele, 
which encodes E3 ubiquitin-protein ligase HACE1 protein, 
plays a role in the modulation of both Golgi membrane 
dynamics and ubiquitination. Mutations of the gene, 
including translocations that either reduce expression of the 
gene (t(6;15)(q21;q21)) or truncate the gene (t(5;6)(q21; 
q21)), are associated with Wilms tumor. 

HACE1 wt Allele 

Fig. 6 Ontology visualization and tabulation with ontoProc::ctmarks. 

As knowledge of cell biology increases, the typology of cells 
becomes more and more intricate. Differentiation and definition of 
“cell types” involves concepts from immunology, protein science, 
anatomy, and other conceptual domains for which ontologies have 
been developed. Figure 6 presents, on the left, the hierarchy of cell 
type concepts starting at “lymphocyte”, leading to “Type II Natu-
ral Killer T cell secreting interferon gamma”. On the right, some of 
the GO and Protein Ontology (PR) cross-references in the Cell 
Ontology (CL) entry for the Type II NK cell are shown. The 
“cond” column of the table contains abbreviated tokens represent-
ing formal relationships linking the cell type to the protein or 
cellular component elements of PR and GO. The token “hasPMP” 
refers to the element of the Relation Ontology (RO) “has plasma 
membrane part” (RO:0002104).
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Prospects for use of ontological discipline in the definition of 
new cell types are reviewed in a 2018 paper from the Venter 
Institute [2]. 

The field of biological ontology is rapidly advancing, and the 
integration of ontology search and inference with data analytic 
frameworks requires more effort at this time. 

5 Analytical workflows 

5.1 Overview Table 6 presents an informal topical labeling for Bioconductor 
software packages with cancer mentioned in the Description field 
of package metadata. 

The vignettes of each of these packages provide background 
and illustration of their roles in cancer genomics. 

Table 6 

Topical organization of packages with cancer applications. 

topic packages 

Ancestry RAIDS 

Biomarkers INDEED, iPath, RLassoCox 

ceRNA GDCRNATools 

Clonal Evolution CIMICE, LACE, OncoSimulR, TRONCO, CancerInSilico, cellscape 

CNV oncoscanR, SCOPE, ZygosityPredictor 

DrugSensitivity DepInfeR, octad, PharmacoGx, rcellminer 

Epigenetics MethylMix, AMARETTO, COCOA, methylclock, missMethyl 

HotSpots/Drivers/signatures compSPOT, MoonlightR, Moonlight2R, 

DriverNet, genefu, mastR, pathifier, RESOLVE, macat, 

SigCheck, signeR, signifinder, supersigs, decompTumor2Sig, YAPSA 

ImmuneModulation easier 

IsoformSwitching IsoformSwitchAnalyzeR 

Literature mining OncoScore 

ncRNA NoRCE 

Radiomics RadioGx 

RecurrentFusion copa, oppar 

Spatial SpatialDecon 

SpecificCancers consensusOV, PDATK, STROMA4 

Splicing OutSplice, psichomics 

Subtyping SCFA
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5.2 Packages 

supporting epigenomic 

analysis 

Bioconductor also provides a diverse array of packages for analysis 
of epigenome data. Cancer is often studied under a developmental 
lens, so increasingly, studies are measuring cell states using epige-
nomic methods. Epigenomics is the study of chemical modifica-
tions and chromosomal conformations of DNA in a nucleus; in 
cancer epigenomics, we study how the cancer epigenome differs 
among cancers and how these relate to healthy epigenomes. As of 
2023, Bioconductor includes 89 packages under Epigenetics and 
93 packages tagged under FunctionalGenomics, including dozens 
of tools for analyzing a variety of epigenome assays, such as ATAC-
seq, ChIP-seq, or bisulfite-seq. Among these are also tools that 
handle more general analysis, such as genomic region set 
enrichment. 

First, for ATAC-seq data, Bioconductor packages include 
general-purpose pipelines, including scPipe [3]. and esATAC [4] 
which start from FASTQ files and produce feature count matrices. 
Alternatively, many practitioners elect to do general-purpose pipe-
line processing outside of R, and then bring the processed data into 
R for statistical analysis, visualization, and quality control. In this 
approach, ATACseqQC provides a variety of QC plots specific to 
ATAC-seq data [5]. 

For DNA methylation, many popular packages have been 
developed to help with all stages of a DNA methylation analysis. 
These include minfi [6] which specializes in methylation array 
analysis, biseq and bsseq [7] which provide fundamental infrastruc-
ture for sequencing-based assays, and RnBeads [8], which provides 
a comprehensive general-purpose analysis of DNA methylation 
cohorts from arrays or sequencing-based assays. Other packages 
provide more specialized analysis approaches, such as MIRA [9], 
which infers regulatory activity of transcription factors using DNA 
methylation signals, or ELMER, which uses DNA methylation and 
gene expression in large cancer cohorts to infer transcription factor 
networks [10]. EpiDISH infers the proportions of cell-types pres-
ent in a bulk sample on the basis of DNA methylation data [11]. 

DiffBind [12] facilitates differential binding analysis of ChIP-
seq peak data. 

GenomicDistributions [13] provides a variety of plots for visu-
alization distributions of any type of genomic range data. The 
chromPlot package specializes in plots across chromosomes. Sev-
eral packages deal with unsupervised exploration of variation in 
epigenomic data. PathwayPCA, MOFA2 [14] and COCOA [15] 
can process any epigenomic signal data. A variety of alternative 
approaches for enrichment analysis, which include LOLA [16], 
chipenrich, regioneR [17], and FGNet [18]. Annotation packages 
include ChIPpeakAnno [19] and annotatr [20].
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5.3 Some details on 

prediction of 

responsiveness to 

immune checkpoint 

blockade 

The National Cancer Institute website on checkpoint inhibitors in 
cancer immunotherapy (“Immune Checkpoint Inhibitors” [21]) 
lists 12 different cancer types amenable to treatment via immune 
checkpoint inhibition. The “easier” package in Bioconductor 
assembles multiple systems biology resources to produce patient-
specific prediction of responsiveness to immune checkpoint block-
ade (ICB) [22]. 

Figure 7 presents on overview of results of immune response 
assessment in a cohort of patients with bladder cancer 
[23]. Patient’s bulk RNA-seq data are used to develop multiple 
quantitative descriptors of the tumor microenvironment, and 
scores for processes regarded as hallmarks of anti-cancer immune 
responses. 

This display encapsulates a) the capacity of measurements of 
genomic elements to discriminate patients who respond to ICB for 
bladder cancer (position of labeled item on x axis), b) the direction 
of association of element activity with immune response (shape of 
glyph) and c) the relative magnitudes of weights (size of glyph) 
estimated for features in initial model fitting. 

The design of this package is noteworthy in its approach to 
information hiding. Parameters estimated in machine learning of

Fig. 7 Comparison of genomic features distinguishing patients non-responsive and responsive to immune 

checkpoint blockade.



mw = eh[["EH6678"]] 

## see ?easierData and browseVignettes(’easierData’) for 

## documentation 

## loading from cache 

names(mw) # TCGA tumor types 

## [1]"LUAD""LUSC""BLCA""BRCA""CESC""CRC""GBM""HNSC""KIRC" 

## [10] "KIRP" "LIHC" "OV" "PAAD" "PRAD" "SKCM" "STAD" 

## "THCA" "UCEC" 

## [19] "NSCLC"

names(mw[["LUAD"]]) # TME descriptors 

## [1] "pathways" "immunecells" "tfs" "lrpairs" "ccpairs" 

rownames(mw[["LUAD"]]$pathways$CYT) # predict cytolytic 

# # activity 

## [1] "(Intercept)" "Androgen" "EGFR" "Estrogen" "Hypoxia" 

## [6] "JAK-STAT" "MAPK""NFkB""p53" "PI3K" 

## [11] "TNFa" "Trail" "VEGF" "WNT" 

tissue-specific relations between quantitative descriptors of the 
tumor microenvironment and hallmarks of immune response are 
stored in ExperimentHub.
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library(easierData) 

list_easierData() 

## eh_id title 

## EH6677 Mariathasan2018_PDL1_treatment 

## EH6678 opt_models 

## EH6679 opt_xtrain_stats 

## EH6680 TCGA_mean_pancancer 

## EH6681 TCGA_sd_pancancer 

## EH6682 cor_scores_genes 

## EH6683 intercell networks 

## EH6684 lr_frequency_TCGA 

## EH6685 group_lr_pairs 

## EH6686 HGNC_annotation 

## EH6687 scores_signature_genes 

The structure of the stored model weights resource can be 
sketched by probing list elements. 

The vignette of the easier package steps through phases, 
using these tumor-type-specific weights to compute patient-specific 
measures of transcription factor activity or cell-cell interaction 
on the basis of bulk RNA-seq (units are transcripts per million), 
and a patient-specific measure of pathway activity using raw 
RNA-seq counts. These metrics may be of interest in their own



library(TENxVisiumData) 

## snapshotDate(): 2023-10-24 

library(SpatialExperiment) 

library(ggspavis) 

hbc <- HumanBreastCancerIDC() 

## see ?TENxVisiumData and browseVignettes (’TENxVisiumData’) 

## for documentation

right for applications other than establishing predictions of 
response to ICB. 
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Section 9 provides the names and versions of all packages used 
to produce this analysis. 

5.4 Representing 

and visualizing spatial 

transcriptomics 

experiments 

Spatial transcriptomics (ST) allows the quantification of RNA 
expression of large numbers of genes while preserving the spatial 
context of tissues and cells. This is important as cancer progression 
depends on a complex tumor microenvironment, and not just cell 
type composition, but also cell type spatial organization can be used 
to derive diagnostic or prognostic markers. 

The Bioconductor project offers multiple approaches to handle 
and manipulate spatial transcriptomics data. The SpatialExperiment 
class [24] is designed to be a lightweight, technology-agnostic 
container. By inheriting from the SingleCellExperiment class, 
it unlocks the use in ST data of analysis packages designed 
for single-cell data, such as scater for exploration and QC, and 
scran for normalization. SpatialFeatureExperiment [25] extends 
SpatialExperiment to easily reuse polygons and other spatial geom-
etry features from geospatial CRAN packages, such as sf. See also 
MoleculeExperiment [26] for a different approach based on the 
data.table package. 

In addition to data containers, Bioconductor provides a rich set 
of ST data. The STexampleData and SFEData packages contain a 
collection of datasets from different technologies and tissues. As of 
December 2023, the TENxVisiumData package provides a collec-
tion of 13 in-house 10X Genomics Visium datasets from 23 samples 
across two organisms (human and mouse) and 13 tissues. The 
MerfishData package contains two annotated samples assayed 
with the MERFISH in-situ imaging protocol. 

Finally, Bioconductor offers a growing collection of analysis 
methods tailored for spot-based and in-situ ST data, including 
methods for visualization, data exploration and quality control, 
spot deconvolution, spatially-aware clustering, and identification 
of spatially-variable genes. 

To show a simple example of an analysis workflow on spot-
based data, we explore a fresh frozen Invasive Ductal Carcinoma 
breast tissue assayed with the 10X Genomics Visium platform. 
First, we use the ggspavis package for visualization. See Figure 8. 



## loading from cache 

hbc <- hbc[,hbc$sample_id=="HumanBreastCancerIDC1"] 

hbc$in_tissue <- TRUE 

hbc <- rotateImg(hbc, degrees=-90) 

plotVisium(hbc, y_reverse = FALSE) 
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HumanBreastCancerIDC1 

Fig. 8 Visualization of a Visium breast cancer sample 

To investigate the spatially variable genes the nnSVG package 
implements a method for the detection of genes whose expression 
varies in the tissue spatial domains by fitting nearest-neighbor 
Gaussian processes [27].



library(scater)

library(nnSVG)

library(scran)

#add quality metrics 

is_mito <- grepl("(ˆMT-)|(ˆmt-)", rowData(hbc)$symbol) 

hbc <- addPerCellQC(hbc, subsets = list(mito = is_mito)) 

## needed because the column name is hard coded in 

## the nnSVG::filter_genes 

rowData(hbc)$gene_name <- rowData(hbc)$symbol 

## filter and normalize gene expression 

hbc <- filter_genes(hbc) 

## Gene filtering: removing mitochondrial genes 

## removed 13 mitochondrial genes 

## Gene filtering: retaining genes with at least 3 counts 

## in at least 0.5% (n = 19) of spatial locations 

## removed 26583 out of 36588 genes due to low expression 

hbc <- computeLibraryFactors(hbc) 

hbc <- logNormCounts(hbc) 

## select highly variable genes 

hvgs <- getTopHVGs(hbc, n=1000) 

hbc <- hbc[hvgs,] 

## identify spatially variable genes 

hbc <- nnSVG(hbc, n_threads=4) 

## post-processing 

hbc <- hbc[order(rowData(hbc)$rank),] 

gnr1 <- rowData(hbc)$symbol[1] 

rownames(hbc) <- rowData(hbc)$symbol 

plotVisium(hbc, y_reverse = FALSE, fill = gnr1, palette="red") 

library(SpatialFeatureExperiment) 

library(SFEData)

jbr = JanesickBreastData("rep1") 

jbr

## class: SpatialFeatureExperiment 

## dim: 541 167782 

## metadata(1): Samples
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By ranking the results of nnSVG, we are able to detect the most 
spatially variable genes. As an example, Figure 9 shows how the 
most spatially variable gene varies across the tissue. 

Finally, we show an example of an in-situ ST technology, by 
visualizing a breast cancer sample assayed with the 10X Genomics 
Xenium platform. 



## assays(1): counts

## rownames(541): ABCC11 ACTA2 ... BLANK_0497 BLANK_0499

## rowData names(6): ID Symbol ... vars cv2

## colnames: NULL

## colData names(10): Sample Barcode ... nCounts nGenes

## reducedDimNames(0):

## mainExpName: NULL

## altExpNames(0):

## spatialCoords names(2) : x_centroid y_centroid

## imgData names(1): sample_id

##

## unit:

## Geometries:

## colGeometries: centroids (POINT), cellSeg (POLYGON),
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HumanBreastCancerIDC1 
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Fig. 9 Spatial expression of a highly variable gene



## nucSeg (GEOMETRY)

##

## Graphs:

## sample01:

library(Voyager)

cellbins <- plotCellBin2D(jbr, hex = TRUE) 

cellgeo <- plotGeometry(jbr, "cellSeg", 

bbox=c("xmin"=0, "ymin"=4000, "xmax"=1000, "ymax"=5000)) 

library(gridExtra) 

grid.arrange(cellbins, cellgeo, ncol=2) 
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We can leverage the nature of in-situ data to explore the cell 
density across the tissue, identifying the tissue’s macrostructure, 
and the cell segmentation, zooming in on a small portion of the 
tissue. See Figure 10. 

Finally, we can visualize the expression of marker genes after 
log-normalizing the data (Fig. 11). 

jbr <- jbr[, jbr$nCounts >= 20] 

jbr <- logNormCounts(jbr) 

library(scattermore) 

strom <- plotSpatialFeature(jbr, "POSTN", 

colGeometryName = "centroids", 

scattermore = TRUE, ncol = 2, pointsize = 0.5) +
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Fig. 10 Cell density and cell boundaries of a Xenium breast cancer sample



Proposed contributions to Bioconductor’s ecosystem of software
packages, data resources, and documentation are registered at

ggtitle("POSTN, stromal") 

fasn <- plotSpatialFeature(jbr, "FASN", 

colGeometryName = "centroids", 

scattermore = TRUE, ncol = 2, pointsize = 0.5) + 

ggtitle("FASN, invasive") 

grid.arrange(strom, fasn, ncol=2)
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Fig. 11 Spatial expression of marker genes 

6 Components and processes for introducing new data, analytic tools, documents 

6.1 Contributions 

and review 

https://github.com/bioconductor/contributions/ 

issues 

Contributors identify a public github.com repository that 
houses their software, or some durable open data repository for a 
data contribution. The contributor provides schematized informa-
tion on format, licensing, and commitment to maintenance of the 
contributed resource. After a series of automated and manual veri-
fication steps, the contributed resource enters the review process. 

An example under review in December 2023 is the “methodi-
cal” package, submitted 27 September 2023. The issue number at 
the contributions site is 3169. This contribution is of particular 
interest as it addresses new data resources from whole genome and 
reduced representation bisulfite sequencing experiments. Specifics 
on these high-resolution studies of DNA methylation in a variety of 
clinical situtions are given below. 

6.2 Data structures Inheritance is a key feature of object-oriented programming (OOP) 
that allows us to define a new class out of existing classes and add 
new features, which provides reusability of code. Inheritance carries



over attributes and methods defined for base classes; ‘Attributes’ 
are variables that are bound in a class. They are used to define 
behavior and methods for objects of that class. ‘Methods’ are 
functions defined within a class that receive an instance of the 
class, conventionally called self, as the first argument. The attributes 
defined for a base class will automatically be present in the derived 
class, and the methods for the base class will work for the derived 
class. The R programming language has three different class sys-
tems: S3, S4, and Reference. Inheritance in S3 classes does not have 
any fixed definition, and hence attributes of S3 objects can be 
arbitrary. Derived classes, however, inherit the methods defined 
for the base class. Inheritance in S4 classes is more structured, and 
derived classes inherit both attributes and methods of the parent 
class. Reference classes are similar to S4 classes, but they are muta-
ble and have reference semantics. 
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S4 classes are used extensively in Bioconductor to create data 
structures that store complex information, such as biological assay 
data and metadata, in one or more slots. The entire structure can 
then be assigned to an R object, and the types of information in 
each slot of the object are tightly controlled. S4 generics and 
methods define functions that can be applied to these objects, 
providing a rich software development infrastructure while ensur-
ing interoperability, reusability, and efficiency. 

Bioconductor have established Bioconductor classes to repre-
sent different types of biological data. Data and tools distributed 
through Bioconductor adopt Bioconductor classes, providing con-
venient methods and improving usability and interoperability 
within the Bioconductor ecosystem. 

Table 7 

Overview of key datatypes and associated classes in Bioconductor. 

Data Types Bioconductor Classes 

Genomic coordinates (1-based, closed interval) GRanges 

Groups of genomic coordinates GRangesList 

Ragged genomic coordinates RaggedExperiment 

Gene sets GeneSet 

Rectangular Features x samples SummarizedExperiment 

Multi-omics data MultiAssayExperiment 

Single-cell data SingleCellExperiment 

Spatial Transcriptomics SpatialExperiment 

Mass spectrometry data Spectra
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The GRanges class represents a collection of genomic ranges 
and associated annotations. Each element in the vector represents a 
set genomic ranges in terms of the sequence name (seqnames, 
typically the chromosome), start and end coordinates (ranges, as 
an IRanges object), strand (strand, either positive, negative, or 
unstranded), and optional metadata columns (e.g., exon_id and 
exon_name in the below). 

GRanges object with 4 ranges and 2 metadata columns: 

seqnames ranges strand | exon_id 

exon_name 

<Rle> <IRanges> <Rle> | <integer> 

<character> 

[1] X 99883667-99884983 - | 667145 

ENSE00001459322 

[2] X 99885756-99885863 - | 667146 

ENSE00000868868 

[3] X 99887482-99887565 - | 667147 

ENSE00000401072 

[4] X 99887538-99887565 - | 667148 

ENSE00001849132

-------

seqinfo: 722 sequences (1 circular) from an 

unspecified genome 

The GRangesList object serves as a container for genomic 
features consisting of multiple ranges that are grouped by a parent 
features, such as spliced transcripts that are comprised of exons. A 
GRangesList object behaves like a list and many of the same meth-
ods for GRanges objects are available for GRangesList object 
as well. 

The SummarizedExperiment class (see Figure 1 is a matrix-like 
container, where rows represent features of interest (e.g., genes, 
transcripts, exons, etc.) and columns represent samples. The attri-
butes of this object include experimental results (in assays), infor-
mation on observations (in rowData) and samples (in colData), and 
additional metadata (in metadata). SummarizedExperiment objects 
can simultaneouly manage several experimental results as long as 
they are of the same dimensions. The best benefit of using Sum-
marizedExperiment class is the coordination of the metadata and 
assays when subsetting. SummarizedExperiment is similar to the 
historical ExpressionSet class, but more flexible in its row informa-
tion, allowing both GRanges and DataFrames. ExpressionSet 
object can be easily converted to SummarizedExperiment. 

RangedSummarizedExperiment inherits the SummarizedEx-
periment class, with the extended capability of storing genomic 
ranges (as a GRanges or GRangesList object) of interest instead 
of a DataFrame (S4-class objectcs similar to data.frame) of features 
in rows.



library(TumourMethData) 

demm = download_meth_dataset("mcrpc_wg ..." ... [TRUNCATED] 

demm

## class: RangedSummarizedExperiment 

## dim: 1333114 100 

## metadata(5): genome is_h5 ref_CpG chrom_sizes 

## descriptive_stats 

## assays(2): beta cov 

## rownames: NULL 

## rowData names(0): 

## colnames(100): DTB_003 DTB_005 ... DTB_265 DTB_266 

##colDatanames(4):metastatis_sitesubtypeagesexrowRanges(demm) 

## GRanges object with 1333114 ranges and 0 metadata columns: 

## seqnames ranges strand 

## <Rle> <IRanges> <Rle> 

## [1] chr11 60077 *

## [2] chr11 60088 *

## [3] chr11 60365 *

## [4] chr11 60941 *

## [5] chr11 60979 *

## ... ... ... ... 

## [1333110] chr11 135076482 *

## [1333111] chr11 135076496 *

## [1333112] chr11 135076502 *

## [1333113] chr11 135076507 *

## [1333114] chr11 135076510 *

## -------

## seqinfo: 25 sequences from an unspecified genome; no seqlengths
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The MultiAssayExperiment class (presented above in Figure 2) 
is modeled after the SummarizedExperiment class. A MultiAs-
sayExperiment instance M can be filtered as a three-dimensional 
array. When G is a vector of feature identifiers, C a vector of sample 
identifiers, and E a vector of experiment names, then M[G, C, E] is 
a MultiAssayExperiment with content restricted to the requested 
features, samples, and experiments. The MultiAssayExperiment 
package includes tooling to convert data content to “long” or 
“wide” formats. In long format, each element of the assay array 
occupies a row, accompanied by metadata associated with the ele-
ment. In wide format, each sample occupies a row, accompanied by 
all assocated assay and metadata elements. 

6.3 Out-of-memory 

data representation 

strategies 

We return to the “methodical” package submission mentioned 
above. A number of whole-genome bisulfite sequencing experi-
ments on tumors from various anatomic sites are available in 
ExperimentHub. Metadata in that package shows that the datasets 
are large, ranging from 2–40 gigabytes. One smaller dataset is 
provided for illustration. 



names(colData(demm)) 

## [1] "metastatis_site" "subtype" "age" "sex" 

table(demm$metastatis_site) 

## Bone Liver Lymph_node Other 

## 43 11 38 8 

library(EnsDb.Hsapiens.v86) 

gg = genes(EnsDb.Hsapiens.v86) 

# get gene addresses 

atmpos = gg[gg$gene_name == "ATM" & 

gg$gene_biotype == "protein_coding"] # filter to ATM 

seqlevelsStyle(atmpos) = "UCSC" 

assay(subsetByOverlaps(demm, atmpos+1e6)) 

## <18110 x 100> DelayedMatrix object of type "double": 

## DTB_003 DTB_005 DTB_008 ... DTB_265 DTB_266 

## [1,] 0.1053 0.7660 0.9206 . 0.6944 0.9412 

## [2,] 0.4062 0.9091 0.9318 . 0.5676 1.0000 

## [3,] 0.1379 0.0000 0.7400 . 0.4643 0.9231 

## [4,] 0.2308 0.9231 0.9149 . 0.8929 0.9286 

## [5,] 0.1481 0.8500 0.8864 . 0.8710 0.9762 

## ... . . . . . . 

## [18106,] 0.4138 0.3143 0.3208 . 0.17647 0.10000 

## [18107,] 0.2727 0.2745 0.4143 . 0.22500 0.32500 

## [18108,] 0.2258 0.4800 0.5775 . 0.08889 0.25000 

## [18109,] 0.5278 0.7059 0.8088 . 0.55263 0.97561 

## [18110,] 0.2778 0.3137 0.6957 . 0.52632 0.35714 
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References to demm involve an 800MB excerpt of a prostate 
cancer atlas with a storage footprint of 40GB. Ideally, queries about 
particular genomic regions on particular samples, whole-sample 
statistical summaries, and searches for patterns can be carried out 
without specific accommodation of the data size or representation. 
The DelayedArray package helps pursue this aim. We’ll illustrate by 
interrogating the prostate cancer WGBS data for “beta” (fraction of 
locus that is methylated) values in the vicinity of gene ATM. 

The numeric values presented above are just the “corners” of 
the associated array, presented as a “check” on the content 
requested. Transfer of array content to the CPU for numerical 
analysis only occurs on demand, which can be tailored to the 
quantity of RAM available at analysis time.
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Fig. 13 Workshop.bioconductor.org schematic. 

6.4 Quality 

assessment of 

Bioconductor 

resources 

Figure 12 is an overview of the periodic ecosystem testing process 
for Bioconductor software packages in the release branch. All Bio-
conductor and CRAN packages on which they depend are present 
and are updated on change to sources. 

The project distributes source tarballs for Linux-like systems, 
and compiled binaries for MacOS and Windows. Numbers in red 
boxes indicate failures to install, build, or check. Failure events are 
frequently platform-specific; full logs are provided on the build 
report pages to help developers isolate and fix build and check 
errors. When failures are persistent, developers are contacted by 
core. If contact cannot be made and failures continue, packages are 
deprecated for at least one release, and then removed. 

7 Pedagogics and workforce development 

The Bioconductor project has undertaken a number of initiatives to 
support growth of the scientific workforce’s capacity to efficiently 
integrate and interpret genome-scale experiments.

• Partnering with The Carpentries. The Carpentries (https:// 
carpentries.org) is a non-profit organization focused on teaching 
programming and data science to researchers. The organization 
defines “good practices in lesson design and development, and 
open source collaboration skills”. Bioconductor community

https://carpentries.org
https://carpentries.org
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members have created bioc-intro, bioc-project, and bioc-rnaseq 
repositories using The Carpentries Incubator template. This 
arrangement helps Bioconductor create and manage a “train 
the trainer” process according to tested pedagogical principles.

• Curating monographs for topics in genomic data science. 
The breadth of Bioconductor resources for genomics, combined 
with the energetic approach to software and annotation upkeep 
in the project, empowers Bioconductor developers to produce 
unified, wide-ranging, computable documents on topics of 
interest to the broader cancer genomics community. Books 
currently available at bioconductor.org include OSCA (Orches-
trating Single Cell Analysis with Bioconductor), SingleRBook 
(Assigning cell types with SingleR), csawBook (Analysis of 
ChIP-seq data), OHCA (Orchestrating Hi-C Analysis with Bio-
conductor) and R for Mass Spectrometry. Very recently, Jacques 
Serizay of Institut Pasteur has contributed a book authoring 
framework called BiocBook. This transforms documents marked 
up in Posit’s quarto format into web-based books backed up by 
Docker containers and maintained with templated GitHub 
actions. The OHCA book is produced and managed with 
BiocBook.

• A system for authoring and deploying interactive 
workshops. 

Figure 13 gives an overview of the resources and objectives of 
the system underlying workshop.bioconductor.org. Given a 
kubernetes-enabled cluster the workshop system assembles

• compute and storage elements,

• static components (training texts and shareable data), 

Fig. 12 Build report for Bioc 3.18, 12-29-2023.

http://workshop.bioconductor.org
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• development environments (containers with all runtime ele-
ments required to compiled code, conduct analyses, communi-
cate with GPUs). 

A lightly customized deployment of the Galaxy system (usega-
laxy.org) is used to deal with authentication and process initiation 
and termination. 

This system has been used to serve interactive workshops in a 
number of international conferences. Content in R markdown or 
quarto can be produced by anyone interested in offering a work-
shop, and the “BiocWorkshopSubmit” app at workshop.biocon-
ductor.org can be used to identify new content to the system. 
Markdown documents will be analyzed to determine what 
resources are needed for the containerization of workshop software 
and data components, and the container will be created and 
registered at the GitHub Container Registry. Arrangements to 
deploy the workshop over a given calendar period can be made 
with Bioconductor core. The workshop container can be used to 
conduct the workshop on any system with a Docker client. 

8 Conclusions and paths forward 

We have described several aspects of Bioconductor’s approach to 
ecosystem management for cancer genomics data science resources. 
In light of the dynamism of biotechnological innovation, it is clear 
that the project must anticipate change. But it is challenging to 
introduce changes to processes on which a very large community 
depends for their daily research work. Commitments to supporting 
reproducible research entail that Bioconductor preserves decades 
worth of images of software and data for immediate retrieval via 
web request by parties unknown to the project. 

We’ll conclude this report with a few observations on general 
paths that the project is likely to take that should have favorable 
consequences to researchers in cancer genomics.

• Language-agnostic data and annotation The alabaster.* 

packages introduced in Bioconductor 3.17 are designed to con-
vert existing Bioconductor data structures to formats that are 
more readily ingested by software in other languages. Thus the 
alabaster.mae package will convert a MultiAssayExperiment 
into a collection of files of metadata (serialized in JSON), 
sample-level data (serialized as CSV), and assay data (serialized 
to HDF5).

• Zero-configuration genomic analysis environments Users of 
Docker containers have long been able to take advantage 
of Bioconductor containers pre-populated with Rstudio and 
runtime resources to support installation of any desired
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software packages. The bioc2u system (https://github.com/ 
bioconductor/bioc2u) in conjunction with r2u (github.com/ 
eddelbuettel/r2u) introduces the availability of Debian packages 
for all Bioconductor packages, made available in a CRAN-like 
repository. Given a system running Ubuntu 22 or 20, the apt 
package manager will resolve any package requests with tested, 
fully linked binary packages. Users do not have to perform any 
configuration or compilation of system utilities or package code. 
This practice can greatly reduce resource consumption that 
occurs when individuals or workflow systems need to compile 
every package and its dependencies to perform analyses.

• Computation at the data Several members of Bioconductor’s 
development core are on the technical development team of 
NHGRI’s Analysis and Visualization Laboratory (AnVIL). The 
aim of this project is to overthrow the prevalent model of down-
loading data for local analysis. AnVIL mobilizes commercial 
cloud computing and storage to support truly elastic genomic 
analysis – create and pay for only the computation you need. The 
basic strategy is described in Schatz et al. [28]. used in the 
production of the Telomere-to-Telomere genome build, see 
Aganezov et al. [29]. 

We hope that the project can continue to support researchers in 
cancer genomics for another 20 years! 

9 Figure 7 software 

abind 1.4-5 2016-07-21 RSPM (R 4.2.0) 

AnnotationDbi 1.64.1 2023-11-03 Bioconductor 

AnnotationHub 3.10.0 2023-10-24 Bioconductor 

backports 1.4.1 2021-12-13 RSPM (R 4.2.0) 

bcellViper 1.38.0 2023-10-26 Bioconductor 

Biobase 2.62.0 2023-10-24 Bioconductor 

BiocFileCache 2.10.1 2023-10-26 Bioconductor 

BiocGenerics 0.48.1 2023-11-01 Bioconductor 

BiocManager 1.30.22 2023-08-08 RSPM (R 4.2.0) 

BiocParallel 1.36.0 2023-10-24 Bioconductor 

BiocVersion 3.18.0 2023-04-25 Bioconductor 

Biostrings 2.70.1 2023-10-25 Bioconductor 

bit 4.0.5 2022-11-15 RSPM (R 4.2.0)

(continued)

https://github.com/bioconductor/bioc2u
https://github.com/bioconductor/bioc2u
http://github.com/eddelbuettel/r2u
http://github.com/eddelbuettel/r2u
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Package Version Date(UTC) Source 

bit64 4.0.5 2020-08-30 RSPM (R 4.2.0) 

bitops 1.0-7 2021-04-24 RSPM (R 4.2.0) 

blob 1.2.4 2023-03-17 RSPM (R 4.2.0) 

broom 1.0.5 2023-06-09 RSPM (R 4.2.0) 

bspm 0.5.5 2023-08-22 CRAN (R 4.3.1) 

cachem 1.0.8 2023-05-01 RSPM (R 4.2.0) 

car 3.1-2 2023-03-30 RSPM (R 4.2.0) 

carData 3.0-5 2022-01-06 RSPM (R 4.2.0) 

class 7.3-22 2023-05-03 RSPM (R 4.2.0) 

cli 3.6.2 2023-12-11 RSPM (R 4.3.0) 

codetools 0.2-19 2023-02-01 RSPM (R 4.2.0) 

coin 1.4-3 2023-09-27 RSPM (R 4.3.0) 

colorspace 2.1-0 2023-01-23 RSPM (R 4.2.0) 

cowplot 1.1.2 2023-12-15 RSPM (R 4.3.0) 

crayon 1.5.2 2022-09-29 RSPM (R 4.2.0) 

curl 5.2.0 2023-12-08 RSPM (R 4.3.0) 

DBI 1.1.3 2022-06-18 RSPM (R 4.2.0) 

dbplyr 2.4.0 2023-10-26 RSPM (R 4.3.0) 

decoupleR 2.8.0 2023-10-24 Bioconductor 

DelayedArray 0.28.0 2023-10-24 Bioconductor 

DESeq2 1.42.0 2023-10-24 Bioconductor 

digest 0.6.33 2023-07-07 RSPM (R 4.2.0) 

dorothea 1.14.0 2023-10-26 Bioconductor 

dplyr 1.1.4 2023-11-17 RSPM (R 4.3.0) 

e1071 1.7-14 2023-12-06 RSPM (R 4.3.0) 

easier 1.8.0 2023-10-24 Bioconductor 

easierData 1.8.0 2023-10-26 Bioconductor 

ellipsis 0.3.2 2021-04-29 RSPM (R 4.2.0) 

evaluate 0.23 2023-11-01 RSPM (R 4.3.0) 

ExperimentHub 2.10.0 2023-10-24 Bioconductor 

fansi 1.0.6 2023-12-08 RSPM (R 4.3.0) 

farver 2.1.1 2022-07-06 RSPM (R 4.2.0) 

fastmap 1.1.1 2023-02-24 RSPM (R 4.2.0)

(continued)
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Package Version Date(UTC) Source 

filelock 1.0.3 2023-12-11 RSPM (R 4.3.0) 

generics 0.1.3 2022-07-05 RSPM (R 4.2.0) 

GenomeInfoDb 1.38.1 2023-11-08 Bioconductor 

GenomeInfoDbData 1.2.11 <NA> Bioconductor 

GenomicRanges 1.54.1 2023-10-29 Bioconductor 

ggplot2 3.4.4 2023-10-12 RSPM (R 4.3.0) 

ggpubr 0.6.0 2023-02-10 RSPM (R 4.2.0) 

ggrepel 0.9.4 2023-10-13 RSPM (R 4.3.0) 

ggsignif 0.6.4 2022-10-13 RSPM (R 4.2.0) 

glue 1.6.2 2022-02-24 RSPM (R 4.2.0) 

gridExtra 2.3 2017-09-09 RSPM (R 4.2.0) 

gtable 0.3.4 2023-08-21 RSPM (R 4.2.0) 

htmltools 0.5.7 2023-11-03 RSPM (R 4.3.0) 

htmlwidgets 1.6.4 2023-12-06 RSPM (R 4.3.0) 

httpuv 1.6.13 2023-12-06 RSPM (R 4.3.0) 

httr 1.4.7 2023-08-15 RSPM (R 4.2.0) 

interactiveDisplayBase 1.40.0 2023-10-24 Bioconductor 

IRanges 2.36.0 2023-10-24 Bioconductor 

jsonlite 1.8.8 2023-12-04 RSPM (R 4.3.0) 

KEGGREST 1.42.0 2023-10-24 Bioconductor 

kernlab 0.9-32 2023-01-31 RSPM (R 4.2.0) 

KernSmooth 2.23-22 2023-07-10 RSPM (R 4.2.0) 

knitr 1.45 2023-10-30 RSPM (R 4.3.0) 

labeling 0.4.3 2023-08-29 RSPM (R 4.2.0) 

later 1.3.2 2023-12-06 RSPM (R 4.3.0) 

lattice 0.22-5 2023-10-24 RSPM (R 4.3.0) 

lazyeval 0.2.2 2019-03-15 RSPM (R 4.2.0) 

libcoin 1.0-10 2023-09-27 RSPM (R 4.3.0) 

lifecycle 1.0.4 2023-11-07 RSPM (R 4.3.0) 

limSolve 1.5.7 2023-09-21 RSPM (R 4.3.0) 

locfit 1.5-9.8 2023-06-11 RSPM (R 4.2.0) 

lpSolve 5.6.20 2023-12-10 RSPM (R 4.3.0) 

magrittr 2.0.3 2022-03-30 RSPM (R 4.2.0)

(continued)
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Package Version Date(UTC) Source 

MASS 7.3-60 2023-05-04 RSPM (R 4.2.0) 

Matrix 1.6-4 2023-11-30 RSPM (R 4.3.0) 

MatrixGenerics 1.14.0 2023-10-24 Bioconductor 

matrixStats 1.2.0 2023-12-11 RSPM (R 4.3.0) 

memoise 2.0.1 2021-11-26 RSPM (R 4.2.0) 

mime 0.12 2021-09-28 RSPM (R 4.2.0) 

mixtools 2.0.0 2022-12-05 RSPM (R 4.2.0) 

modeltools 0.2-23 2020-03-05 RSPM (R 4.2.0) 

multcomp 1.4-25 2023-06-20 RSPM (R 4.2.0) 

munsell 0.5.0 2018-06-12 RSPM (R 4.2.0) 

mvtnorm 1.2-4 2023-11-27 RSPM (R 4.3.0) 

nlme 3.1-164 2023-11-27 RSPM (R 4.3.0) 

pillar 1.9.0 2023-03-22 RSPM (R 4.2.0) 

pkgconfig 2.0.3 2019-09-22 RSPM (R 4.2.0) 

plotly 4.10.3 2023-10-21 RSPM (R 4.3.0) 

plyr 1.8.9 2023-10-02 RSPM (R 4.3.0) 

png 0.1-8 2022-11-29 RSPM (R 4.2.0) 

preprocessCore 1.64.0 2023-10-24 Bioconductor 

progeny 1.24.0 2023-10-24 Bioconductor 

promises 1.2.1 2023-08-10 RSPM (R 4.2.0) 

proxy 0.4-27 2022-06-09 RSPM (R 4.2.0) 

purrr 1.0.2 2023-08-10 RSPM (R 4.2.0) 

quadprog 1.5-8 2019-11-20 RSPM (R 4.2.0) 

quantiseqr 1.10.0 2023-10-24 Bioconductor 

R6 2.5.1 2021-08-19 RSPM (R 4.2.0) 

rappdirs 0.3.3 2021-01-31 RSPM (R 4.2.0) 

Rcpp 1.0.11 2023-07-06 RSPM (R 4.2.0) 

RCurl 1.98-1.13 2023-11-02 RSPM (R 4.3.0) 

reshape2 1.4.4 2020-04-09 CRAN (R 4.0.1) 

rlang 1.1.2 2023-11-04 RSPM (R 4.3.0) 

rmarkdown 2.25 2023-09-18 RSPM (R 4.3.0) 

ROCR 1.0-11 2020-05-02 RSPM (R 4.2.0) 

RSQLite 2.3.4 2023-12-08 RSPM (R 4.3.0)

(continued)
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Package Version Date(UTC) Source 

rstatix 0.7.2 2023-02-01 RSPM (R 4.2.0) 

S4Arrays 1.2.0 2023-10-24 Bioconductor 

S4Vectors 0.40.2 2023-11-23 Bioconductor 3.18 
(R 4.3.2) 

sandwich 3.1-0 2023-12-11 RSPM (R 4.3.0) 

scales 1.3.0 2023-11-28 RSPM (R 4.3.0) 

segmented 2.0-1 2023-12-19 RSPM (R 4.3.0) 

sessioninfo 1.2.2 2021-12-06 RSPM (R 4.2.0) 

shiny 1.8.0 2023-11-17 RSPM (R 4.3.0) 

SparseArray 1.2.2 2023-11-07 Bioconductor 

startup 0.21.0 2023-12-11 RSPM (R 4.3.0) 

stringi 1.8.3 2023-12-11 RSPM (R 4.3.0) 

stringr 1.5.1 2023-11-14 RSPM (R 4.3.0) 

Summarized 
Experiment 

1.32.0 2023-10-24 Bioconductor 

survival 3.5-7 2023-08-14 RSPM (R 4.2.0) 

TH.data 1.1-2 2023-04-17 RSPM (R 4.2.0) 

tibble 3.2.1 2023-03-20 RSPM (R 4.3.0) 

tidyr 1.3.0 2023-01-24 RSPM (R 4.2.0) 

tidyselect 1.2.0 2022-10-10 RSPM (R 4.2.0) 

utf8 1.2.4 2023-10-22 RSPM (R 4.3.0) 

vctrs 0.6.5 2023-12-01 RSPM (R 4.3.0) 

viper 1.36.0 2023-10-24 Bioconductor 

viridisLite 0.4.2 2023-05-02 RSPM (R 4.2.0) 

withr 2.5.2 2023-10-30 RSPM (R 4.3.0) 

xfun 0.41 2023-11-01 RSPM (R 4.3.0) 

xtable 1.8-4 2019-04-21 RSPM (R 4.2.0) 

XVector 0.42.0 2023-10-24 Bioconductor 

yaml 2.3.8 2023-12-11 RSPM (R 4.3.0) 

zlibbioc 1.48.0 2023-10-24 Bioconductor 

zoo 1.8-12 2023-04-13 RSPM (R 4.2.0)
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22. Ó scar Lapuente-Santana, van Genderen, M., 
Hilbers, P. A., Finotello, F., and Eduati, 
F. Interpretable systems biomarkers predict 
response to immune-checkpoint inhibitors. 
Patterns, 2, 8 2021. 

23. Mariathasan, S., Turley, S. J., Nickles, D., Cas-
tiglioni, A., Yuen, K., Wang, Y., Kadel III, 
E. E., Koeppen, H., Astarita, J. L., Cubas, R., 
Jhunjhunwala, S., Banchereau, R., Yang, Y., 
Guan, Y., Chalouni, C., Ziai, J., Senbabaoglu, 
Y., Santoro, S., Sheinson, D., Hung, J., Gilt-
nane, J. M., Pierce, A. A., Mesh, K., Lianoglou, 
S., Riegler, J., Carano, R. A. D., Eriksson, P., 
Hoglund, M., Somarriba, L., Halligan, D. L., 
van der Heijden, M. S., Loriot, Y., Rosenberg, 
J. E., Fong, L., Mellman, I., Chen, D. S., 
Green, M., Derleth, C., Fine, G. D., Hegde, 
P. S., Bourgon, R., and Powles, T. Tgfb attenu-
ates tumour response to pd-l1 blockade by 
contributing to exclusion of t cells. Nature, 
554(7693):544–548, Feb 2018. 

24. Righelli, D., Weber, L. M., Crowell, H. L., 
Pardo, B., Collado-Torres, L., Ghazanfar, S., 
Lun, A. T., Hicks, S. C., and Risso, 
D. Spatialexperiment: infrastructure for 
spatially-resolved transcriptomics data in r 
using bioconductor. Bioinformatics, 38(11): 
3128–3131, 2022. 

25. Moses, L., Einarsson, P. H., Jackson, K., Lueb-
bert, L., Booeshaghi, A. S., Antonsson, S., 
Bray, N., Melsted, P., and Pachter, 
L. Voyager: exploratory single-cell genomics 
data analysis with geospatial statistics. 
bioRxiv, 2023. 

26. Couto, B. Z. P., Robertson, N., Patrick, E., and 
Ghazanfar, S. Moleculeexperiment enables 
consistent infrastructure for molecule-resolved 
spatial transcriptomics data in bioconductor. 
bioRxiv, 2023. 

27. Weber, L. M., Saha, A., Datta, A., Hansen, 
K. D., and Hicks, S. C. nnsvg for the scalable 
identification of spatially variable genes using 
nearest-neighbor gaussian processes. Nature 
communications, 14(1):4059, 2023. 

28. Schatz, M. C., Philippakis, A. A., Afgan, E., 
Banks, E., Carey, V. J., Carroll, R. J., Culotti, 
A., Ellrott, K., Goecks, J., Grossman, R. L., 
Hall, I. M., Hansen, K. D., Lawson, J., Leek, 
J. T., Luria, A. O., Mosher, S., Morgan, M., 
Nekrutenko, A., O’Connor, B. D., Osborn, K., 
Paten, B., Patterson, C., Tan, F. J., Taylor, 
C. O., Vessio, J., Waldron, L., Wang, T., Wui-
chet, K., Baumann, A., Rula, A., Kovalsy, A., 
Bernard, C., Caetano-Anollés, D., der Auwera, 
G. A. V., Canas, J., Yuksel, K., Herman, K., 
Taylor, M. M., Simeon, M., Baumann, M., 
Wang, Q., Title, R., Munshi, R., Chaluvadi, 
S., Reeves, V., Disman, W., Thomas, S., Hajian, 
A., Kiernan, E., Gupta, N., Vosburg, T., Geis-
tlinger, L., Ramos, M., Oh, S., Rogers, D., 
McDade, F., Hastie, M., Turaga, N., 
Ostrovsky, A., Mahmoud, A., Baker, D., Clem-
ents, D., Cox, K. E., Suderman, K., Kucher, 
N., Golitsynskiy, S., Zarate, S., Wheelan, S. J., 
Kammers, K., Stevens, A., Hutter, C., Welling-
ton, C., Ghanaim, E. M., Wiley, K. L., Sen, 
S. K., Francesco, V. D., s Yuen, D., Walsh, B., 
Sargent, L., Jalili, V., Chilton, J., Shepherd, L., 
Stubbs, B., O’Farrell, A., Vizzier, B. A., Over-
beck, C., Reid, C., Steinberg, D. C., Sheets, 
E. A., Lucas, J., Blauvelt, L., Cabansay, L., 
Warren, N., Hannafious, B., Harris, T., 
Reddy, R., Torstenson, E., Banasiewicz, 
M. K., Abel, H. J., and Walker, J. Inverting 
the model of genomics data sharing with the 
nhgri genomic data science analysis, visualiza-
tion, and informatics lab-space. Cell Genomics, 
2:100085, 1 2022. 

29. Aganezov, S., Yan, S. M., Soto, D. C., Kirsche, 
M., Zarate, S., Avdeyev, P., Taylor, D. J., Sha-
fin, K., Shumate, A., Xiao, C., Wagner, J., 
McDaniel, J., Olson, N. D., Sauria, M. E., Voll-
ger, M. R., Rhie, A., Meredith, M., Martin, S., 
Lee, J., Koren, S., Rosenfeld, J. A., Paten, B., 
Layer, R., Chin, C. S., Sedlazeck, F. J., Hansen, 
N. F., Miller, D. E., Phillippy, A. M., Miga, 
K. H., McCoy, R. C., Dennis, M. Y., Zook, 
J. M., and Schatz, M. C. A complete reference 
genome improves analysis of human genetic 
variation. Science, 376, 2022.

https://www.cancer.gov/about-cancer/treatment/types/immunotherapy/checkpoint-inhibitors
https://www.cancer.gov/about-cancer/treatment/types/immunotherapy/checkpoint-inhibitors
https://www.cancer.gov/about-cancer/treatment/types/immunotherapy/checkpoint-inhibitors
https://www.cancer.gov/about-cancer/treatment/types/immunotherapy/checkpoint-inhibitors


Chapter 2 

Building Portable and Reproducible Cancer Informatics 
Workflows for Scalable Data Analysis: An RNA Sequencing 
Tutorial 

Rowan F. Beck, Zelia F. Worman, Gaurav Kaushik, 

and Brandi N. Davis-Dusenbery 

Abstract 

The continued decrease in sequencing costs has led to an abundance of high-throughput data representing 
an increasing diversity of experimental conditions. These changes have been coupled with the adoption of 
cloud technologies and interoperability standards to share and analyze large primary and secondary data 
files. While 10 years ago analysis of hundreds or thousands of genomics samples was only practical at 
institutions with large local computational resources, these experiments can now be routinely performed by 
anyone with access to the Internet. 
In this tutorial, we use the Seven Bridges Cancer Genomics Cloud (CGC) to analyze RNA sequencing 

data from the NIH Cancer Research Data Commons (CRDC). This tutorial demonstrates how to bring a 
new computational algorithm to the platform, combine it with an existing workflow, and execute an analysis 
on the cloud. We highlight best practices for designing command line tools, Docker containers, and CWL 
descriptions to enable massively parallelized and reproducible biomedical computation with cloud 
resources. The CGC’s support for diverse analysis techniques and user-friendly interface simplifies the 
complex process of handling large datasets while promoting collaboration across disciplines. 

Key words Cloud, Bioinformatics, Cancer informatics, Workflows, CWL, TCGA, AWS, Docker, 
Reproducibility, Software design 

1 Introduction 

The Seven Bridges Cancer Genomics Cloud (CGC) powered by 
Velsera is part of the National Cancer Institute (NCI) Cancer 
Research Data Commons (CRDC), which was created to accelerate 
and simplify use of petabyte-scale clinical, imaging, and multiomics 
data [1]. The CGC provides a secure, scalable, and reproducible 
environment to perform computational analysis in the cloud 
[2, 3]. Further, the use of interoperability standards enables con-
nectivity of this resource to NCI multiple data nodes such as the
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Genomics Data Commons (GDC) which house data from more 
than 130,000 participants as of 2023 [4]. The CGC enables data 
discovery through rich visual interfaces as well as interactive data 
analysis using popular tools like Python, R Studio, SAS, and Galaxy. 
Additionally, the CGC enables the automation of large-scale, repro-
ducible analysis using software containers and workflow languages 
like Nextflow (NF) [5], Workflow Description Language (WDL) 
[6], and Common Workflow Language (CWL) [7]. Most high-
throughput analysis techniques including next generation sequenc-
ing, proteomics, flow cytometry, imaging, etc. create large and 
complex primary data files which must be quality controlled, aggre-
gated, and harmonized. The CGC democratizes these steps by 
providing both visual and programmatic interfaces for describing 
analytic workflows. Further, central management of utilities like job 
scheduling and orchestration, cost monitoring, and data security 
enables researchers to focus on addressing specific analytic ques-
tions rather than building and operating computational 
infrastructure.
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Computational reproducibility remains a significant challenge 
when replicating studies or performing large-scale, collaborative 
cancer genomics [8–10]. Variations in software versions or para-
meters introduce errors and artifacts when attempting to compare 
analyses from various sources or when working in large collabora-
tions or consortia. 

In order to enable and simplify computational reproducibility, 
the CGC leverages open-source and community-driven technolo-
gies for supporting reproducibility with complementary software 
models that enable researchers to (1) replicate analyses performed 
previously, (2) readily analyze large volumes of data with identical 
workflows, and (3) track each step, input, parameter, and output of 
an analysis automatically. 

One such technology is software containers, i.e., operating 
system-level virtualized environments with a complete filesystem 
and a unique set of resources and permissions. The Cancer Geno-
mics Cloud specifically supports Docker [11], an implementation 
of software containers that is operable on all major operating sys-
tems. The only external dependency for “running” a Docker con-
tainer is that the Docker daemon is installed. Because containers are 
isolated environments, they can be used as portable vehicles for 
software and their dependencies. For example, a Docker container 
may build upon a Linux distribution and contain a bioinformatics 
tool and its dependencies. 

Docker containers are designed to be small and intended to be 
easily deployed to enable sharing among data analysts. Software 
within containers, if deterministic, will run exactly the same regard-
less of where the container is deployed or by whom. The use of 
Docker, therefore, solves a major issue in handling software depen-
dencies in execution environments and comparing or replicating



results which may differ because of software versioning. Indeed, 
over the last 10 years, Docker and other containerization technol-
ogies have become widely adopted across industries. 
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One issue not solved by Docker is how to run bioinformatics 
tools within the container—in other words, the exact command 
line arguments which will be used for a given analysis. Bioinformat-
ics use cases have inspired the development and adoption of multi-
ple computational workflow languages which allow users to clearly 
define computational processes. Each of these languages has differ-
ent benefits and drawbacks including speed of development, level 
of declaration, and stability. Bioinformaticians can modularize their 
pipelines to support reproducibility and reuse by utilizing a work-
flow language based on their needs by understanding the strengths 
and weaknesses of each language. Here we focus on CWL which is 
the most mature of frequently used bioinformatics workflow lan-
guages [7, 12]. Importantly, CWL is a formally governed specifica-
tion which underlies a rich ecosystem of orchestrators, visualization 
engines, debugging tools, and workflow repositories. The robust 
nature of CWL enables inclusion of computational workflows 
within the BioCompute Object paradigm which is being explored 
as a standard for transmission of computational processes to regu-
latory agencies like the FDA [13, 14]. 

For an individual tool, the CWL description contains the URL 
or pointer to a Docker container residing in an online registry and a 
set of commands which are executable within the container. In 
addition, CWL defines “ports” or the input objects which can be 
used to run analysis (e.g., files, parameters, or simple objects that 
the user can provide to support execution) and the output objects 
expected from the analysis. 

Based on experience with end users, two additional capabilities 
have been added on the Seven Bridges platform to extend the utility 
of Docker and CWL. First, because the CWL specification can be 
extended by plug-ins, we have added features to enable advanced 
features such as application revision history and on-the-fly optimi-
zation of compute resources. Second, the platform records the 
explicit parameters and files used in every execution, thus allowing 
researchers to clone prior analyses inclusive of all inputs for replica-
tion or application to new data. 

The Seven Bridges Cancer Genomics Cloud aims to drive 
advancements in cancer research by providing an efficient, secure, 
and scalable platform for computational analysis. Its integration 
with interoperability standards and connectivity to NCI data 
nodes enable researchers from diverse institutions to efficiently 
leverage the power of cloud computing to perform new analysis. 
Below we focus on the process of bringing a new tool to the CGC 
using Docker and CWL. We note that these steps are applicable to 
other Seven Bridges platform deployments. Furthermore, we 
emphasize that more than 900 (and growing) popular tools and



workflows are immediately available and optimized for use on the 
platform (https://cgc.sbgenomics.com/public/apps). These tools 
can be modified and combined following the approach in Subhead-
ing 3.5. Typical bioinformatics workflows include primary and 
secondary processing of data using well-defined workflows, fol-
lowed by interactive analysis and exploration using scripting lan-
guages and visualization techniques. While the platform provides 
rich capabilities for downstream analysis, a review of these is outside 
the scope of this chapter, and the reader is encouraged to explore 
the detailed documentation at https://docs.cancergenomicscloud. 
org/. 
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2 Materials 

Researchers wishing to access the CGC need only a personal com-
puter with reliable access to the Internet. For use of Docker con-
tainers on your personal computer, we recommend that researchers 
follow the minimal requirements guidelines from Docker (https:// 
docs.docker.com). Public containers for bioinformatics are also 
available in online repositories, such as DockerHub (hub.docker. 
com), Quay.io (quay.io), and Dockstore (dockstore.org). All con-
tainers for this study were developed using Docker for Mac Version 
1.12 on a 2020 MacBook Pro with 4 cores and 16GB RAM 
(2 cores and 2GB allocated for Docker). These methods and mate-
rials are intended for users familiar with basic bash commands and 
who have a working knowledge of bioinformatics methods and 
tools. 

Academic users may create a free account on the CGC at 
https://www.cancergenomicscloud.org/ using their institutional 
email address. While not required for the following method, the 
CGC enables researchers to access controlled data from popular 
datasets like The Cancer Genome Atlas (TCGA) [15], the Human 
Tumor Atlas Network (HTAN) [16], and others. Users wishing to 
access controlled data must register using their eRA Commons 
account and have an approved Data Access Request (DAR) (see 
Note 1). 

3 Methods 

RNA sequencing (RNA-seq) is a molecular biology technique that 
provides a comprehensive and high-throughput method for 
profiling and quantifying the entire transcriptome of a biological 
sample, offering insights into gene expression, alternative splicing, 
and identification of novel transcripts. The CGC is connected to 
RNAseq data from thousands of tumors. While single cell RNASeq 
is increasingly common and the platform provides a number of

https://cgc.sbgenomics.com/public/apps
https://docs.cancergenomicscloud.org/
https://docs.cancergenomicscloud.org/
https://docs.docker.com
https://docs.docker.com
http://hub.docker.com
http://hub.docker.com
http://dockstore.org
https://www.cancergenomicscloud.org/


resources for this type of analysis, below we use common methods 
for batch analysis as an example as many bioinformaticians are 
intimately familiar with these tools. 
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In brief, we will build a workflow that first performs quality 
control using the popular tool FastQC, followed by quantification 
of gene expression using HISAT2-StringTie. FastQC is a widely 
used and highly efficient quality control tool used in bioinformatics 
to assess the quality of high-throughput sequencing data. It pro-
vides a comprehensive analysis of raw sequencing data and offers 
insights into various parameters that are crucial for downstream 
analysis [17]. Numerous approaches have been developed to quan-
tify the abundance of RNA transcripts from sequencing data. Here 
we’ve selected hierarchical indexing for spliced alignment of tran-
scripts (HISAT2) and StringTie [18]. Together, these methods 
align reads to a genome, assemble transcripts including novel splice 
variants, compute the abundance of these transcripts in each sam-
ple, and compare experiments to identify differentially expressed 
genes and transcripts. 

The CGC enables researchers to upload private data and link to 
public open or controlled access data in the cloud. Here we will use 
open data from the HCC1143 cancer cell line available as part of 
the Cancer Cell Line Encyclopedia (CCLE) Project [19]. These 
data are linked and immediately on the CGC, so researchers are able 
to rapidly follow the provided method which can then be extended 
to use private data or other public RNAseq files. Further, the steps 
provided here can be applied to deploy any command line tool 
and/or modify existing workflows. 

3.1 Workflow Design Deploying new computational methods or tools and incorporating 
them into an existing workflow on the CGC entails four major 
steps: 

1. A Docker image is created that contains the software and all of 
its dependencies. The Docker image should be tested to ensure 
that the software is correctly installed prior to deployment on 
the CGC platform. 

2. Once tested, the Docker image is pushed to the CGC Docker 
registry using Docker shell commands and a CGC authentica-
tion token, as outlined in Subheading 3.3. 

3. A private app is created using CWL to allow description of the 
Docker image. 

4. The newly created app is incorporated into an existing public or 
private workflow. 

In this example, we will incorporate our newly deployed quality 
control tool into a public RNA-seq workflow. This final step allows 
tools to be recombined to create complex and reproducible work-
flows. However, it should be noted that many software tools are 
perfectly functional as so-called “stand-alone” tools.
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3.2 Creating Docker 

Containers and Testing 

Tools in Them 

A major benefit to Docker containers is their portability; a single 
container running the Ubuntu Linux distribution can be smaller 
than 200 MB. This allows for easy and rapid sharing between 
researchers and platforms. We provide the following guidelines to 
maintain these benefits: 

1. Use Dockerfiles to build your Docker containers (see Note 2). 

2. Avoid or clearly document dependencies on cloud-specific ser-
vices (e.g., AWS SageMaker). 

3. Package each tool in your workflow as a separate container (see 
Note 3). 

(a) For example, use a unique container for FastQC and its 
dependencies and a unique container for any additional 
tools. 

(b) For Linux tools (e.g., cut, gzip, tar, grep), we recommend 
using a standard Ubuntu container (ubuntu:latest)  or  
a container that builds from it (see Note 4 ).

4. In the Dockerfile, explicitly set the working directory as “/.” 

(a) When we later describe how to execute commands within 
the container, all arguments and file paths must be relative 
to “/,” so it’s good practice to start thinking that way 
early. 

5. In the Dockerfile, set the command option as “/bin/bash.” 

With these considerations in mind, we will now start by build-
ing a Docker container with FastQC which is available at https:// 
www.bioinformatics.babrahmac.uk/projects/fastqc/fastqc_v0.11. 
8.zip. 

Using the command line, create a file called “Dockerfile” in the 
top directory with the following content; each section of which is 
described below: 

FROM ubuntu:16.04 

MAINTAINER "YourFirstName YourLastName" <email@institution. 

io> 

# Update and install necessary tools 

RUN apt-get update && apt-get install -y build-essential 

zlib1g-dev \ 

libgsl0-dev wget unzip 

RUN apt-get -y install software-properties-common 

RUN apt-get update 

RUN apt-get -y install openjdk-8-jdk openjdk-8-jre && apt-get 

clean 

WORKDIR /opt 

# Add FastQC to container and give proper permissions 

RUN wget https://www.bioinformatics.babraham.ac.uk/projects/

https://www.bioinformatics.babrahmac.uk/projects/fastqc/fastqc_v0.11.8.zip
https://www.bioinformatics.babrahmac.uk/projects/fastqc/fastqc_v0.11.8.zip
https://www.bioinformatics.babrahmac.uk/projects/fastqc/fastqc_v0.11.8.zip


fastqc/fastqc_v0.11.8.zip 

RUN unzip fastqc_v0.11.8.zip && rm fastqc_v0.11.8.zip 

RUN chmod 755 /opt/FastQC/fastqc 

RUN ln -s /opt/FastQC/fastqc /usr/local/bin/fastqc 

COPY Dockerfile /opt/ 
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This Dockerfile can then be built using the following 
command: 

$ docker build -t <repo/image:tag> </path/to/Dockerfile> 

The first line of the Dockerfile specifies “ubuntu:16.04”  as  
the base image (using the FROM command; see Note 5). The 
“MAINTAINER” or contact information for the Dockerfile author 
can also be specified. The working directory is defined in the third 
line (WORKDIR / ).

The second block of commands (RUN apt-get…) installs the 
dependencies for FastQC, which are defined by the tool authors in 
their documentation [5]. When using “apt-get,” include the “-
y”  or  “--yes” option to confirm all actions ahead of time, pre-
venting the need for intervention during install.

Finally, we’re changing into “/opt/” as the working directory, 
downloading and installing the FastQC software and copying the 
Dockerfile used to build the image into “/opt/” as well to store a 
record of how the image was created. In the third set of actions 
(RUNmkdir…), we create a directory for the FastQC executables in 
/opt/; copy the local directory to this directory within the con-
tainer (see Note 6). To grant permissions to files in /opt/FastQC, 
the chmod 755 /opt/FastQC is used, and add the directory to 
$PATH in order to invoke it from the working directory (see 
Note 7). Finally, we set the command to “/bin/bash”  (see Note 
8 ).

Next, run the container in interactive mode to verify that the 
installation has occurred properly: 

$ docker run -ti <repo/image:tag> 

If changes need to be made to a container, we recommend 
recording each change within the original Dockerfile as a comment 
and then rebuilding the container (see Note 9). In this way, your 
Dockerfile will capture all dependencies to streamline reproducibil-
ity and repeatability. Note 10 provides an example Dockerfile for 
another RNASeq tool, RSEM, which requires multiple 
dependencies.
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3.3 Deploying 

Containers on the 

Seven Bridges Cancer 

Genomics Cloud 

Once the container is tested, you can “push” it to an online registry. 
The Cancer Genomics Cloud can pull containers from any public 
registry, including DockerHub or Quay.io. However, we recom-
mend pushing containers to the CGC image registry for increased 
reliability and reduced latency when pulling containers for 
computation. 

A user will need to verify their CGC authentication token, 
which encodes that specific user’s CGC credentials and uniquely 
identifies them on the CGC. To obtain this token, a user must log 
in to the CGC (cgc.sbgenomics.com) then click “Developer” in the 
top navigation bar. Next, select “Authentication token.” Click 
“Generate Token” to generate an authentication token for the 
first time. The authentication token will be displayed in the input 
field, and information will be provided on when the token will 
expire (see Fig. 1). 

To push the container to the CGC image registry, tag the 
container with the appropriate repo name: 

docker tag <image_id> cgc-images.sbgenomics.com/<cgc_user-

name>/<image>:<tag> docker login cgc-images.sbgenomics.com 

<cgc_username> 

<cgc_auth_token> 

docker push cgc-images.sbgenomics.com/<cgc_username>/<im-

age>:<tag> 

Often, bioinformatics tools are very comprehensive which 
makes it difficult to capture all of its command line arguments or 
utilities in a single description. Attempting to do so may require 
very complex wrappers, which can increase the time for debugging 
and testing. To prevent this issue, wrap your analysis and reuse prior 
wrappers as your analyses change. Everything is versioned on the 
Seven Bridges Cancer Genomics Cloud which makes it easy to keep 
track of each application and its associated files. In addition, 
researchers have full visibility to when each task was executed and 
by whom. 

3.4 Describing Tools 

Using the Cancer 

Genomics Cloud 

On the Cancer Genomics Cloud, tools are considered single execu-
tables or runnables, which consist of a set of command line expres-
sions run within a Docker container. Workflows are chains of tools, 
in which upstream files are passed downstream until a final result is 
achieved. To begin using the visual interface to write the CWL 
describing a tool, navigate to Apps, followed by “Command Line 
Tool” as shown in Fig. 2. 

On the CGC, tools have the following five properties: 

1. Docker Container: Defines the Docker container that will be 
used via the <repo/image:tag> (e.g., “ubuntu:latest”  or  
“cgc-images.sbgenomics.com/gauravcgc/  

rsem:1.2.31”)

http://cgc.sbgenomics.com
http://cgc-images.sbgenomics.com/gauravcgc/rsem:1.2.31
http://cgc-images.sbgenomics.com/gauravcgc/rsem:1.2.31
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Fig. 1 Accessing the CGC Authentication Token. The authentication token encodes your Seven Bridges CGC 

Platform credentials and uniquely identifies you on the Seven Bridges Platform. This token can be used with a 

number of features of the Seven Bridges Platform instead of a login 

2. Base Commands: The starting point on which the arguments 
and ports are layered 

3. Arguments: Hard coded inputs which are not user configurable 
at runtime 

4. Input Ports: Describe data objects that can be passed to the tool 
during execution 

5. Output Ports: Describe data objects that will be saved from an 
execution, most commonly an output file or array of files 

We’ll walk through describing each of these properties below.
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Fig. 2 Accessing the CGC Tool Editor. The tool editor is a visual editor for creating and editing CWL tools. (1) To 

access the tool editor, first select or create a project, and then navigate to the “Apps” tab along the top of the 

screen. Click the “Create app” button. (2) To create a new app, select “Command Line Editor” and give your 

app a name 

Wrapping FastQC in CWL 
The FastQC tool has several input and output parameter settings. 
Rather than go through every single one, we will add only a few of 
the parameters and define required Base Command, Arguments, 
Inputs, and Outputs as shown in Fig. 3. 

The desired command line we are aiming to build is as follows: 

fastqc --noextract --outdir . /path/to/input-1.ext /path/to/ 

input-2.ext 

In this example, we are defining the base command as 
“fastqc” with an additional argument of “--noextract.” This 
argument allows us to run FastQC without having to uncompress 
the output file after creating it. To create this command line, do the 
following: 

1. Set the Docker image URL, which can be used with a “docker 

pull” command to pull an image to your local machine. 

2. Set the Base Command as “fastqc.”
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Fig. 3 Describing the FastQC tool with the CGC Tool Editor. (1) Each tool must have a Docker container within 

which the command line executions are run. (2) The Base Command field is for a set of core commands for the 

tool, including the necessary subcommand. (3) The argument command is where any arguments to the base 

command can be added or modified. (4) The inputs tab is where Input Ports are added and modified. The Input 

Port menu allows the user to set the parameters and behavior for an object that can be passed to the tool (e.g., 

a File). (5) The Outputs menu allows the user to specify Output Ports, which describe objects produced by the 

tool which the user wishes to capture when the execution is completed. (6) The Resulting command line of 

the app 

3. Click the “Add an Argument” button. Configure new argu-
ment as following: 

(a) Use command line binding: YES 

(b) Prefix: (leave empty) 

(c) Value: --noextract 

(d) Separate value and prefix: YES or NO 

(e) Position:  0  

(i) Note: Position is set to 0 as we want this argument to 
be placed first after the end of the base command. 

For this argument, we have left the prefix empty as it is a 
Boolean type argument and it does not take an actual value. 
Since we want this flag to be added to the generated command 
line under all circumstances, we have added the “--noex-

tract” argument directly as a value. 
Arguments differ from “inputs,” as arguments are not 

directly open to the user manipulation during task creation. 
You may utilize arguments to lock down fundamental aspects 
of your tool execution. For instance, in this case we want to 
force FastQC to adopt a certain behavior: never create result 
directories, and instead rather keep results in compressed for-
mat to reduce file cluttering in the project. 

The settings we can define for an argument are as follows:
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• Use command line binding: This Yes/No switch determines 
whether the specified argument should be included in the 
generated command line. 

• Prefix: Prefix field allows tool wrapper to define the argu-
ment prefix. 

• Value: This field allows tool wrapper to define the value that 
will come after the prefix. Tool wrappers may fill this field 
with fixed values or create a JavaScript expression using “</ 
>” button for dynamic generation of the argument value. 
You may visit the Seven Bridges Knowledge Center 
(https://docs.sevenbridges.com/) to learn more about 
dynamic expressions generated with JavaScript. 

• Separate value and prefix: This Yes/No switch determines 
whether “prefix” and “value” should be separated with a 
space in the command line. 

• Position: This field determines the position of the argument 
within the command line. You may set this as 0 to position 
the argument at the first place after the base command or a 
very large number, such as 99, to position the argument at 
the very end of the command line. 

4. Add an additional argument by selecting the “+ Add an Argu-
ment” button and configure as following: 

(a) Use command line binding: YES 

(b) Prefix: --outdir 

(c) Value: 

(d) Separate value and prefix: YES 

(e) Position:  1  

This time we have set a prefix and a value, since this is an 
argument that takes a value. 

5. Add an INPUT PORT by selecting the “Add an Input” button 
and configure as following: 

(a) Required: YES 

(b) ID: input_files 

(c) Type: array 

(d) Items Type: File 

(e) Include in the command line:  Ye  s

(f) Value Transform: 

(g) Prefix: 

(h) Position: 100 (or any large number; we want this to be 
placed at the end of the command line) 

(i) Separate value and prefix:  Yes

https://docs.sevenbridges.com/
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(j) Item Separator: repeat 

(k) Stage Input: --none--

(l) shellQuote: 

(m) Load Content:  N  o

(n) Add secondary file: No Secondary Files defined. 

(o) Label: Input FASTQ Files 

(p) Description: 

(q) Alternative Prefix: 

(r) Category: 

(s) File type(s): FASTQ, FASTQ.GZ 

You may find more information about how to define the 
input settings at the Seven Bridges Knowledge Center 
(https://docs.sevenbridges.com/). 

6. (Optional) Add another INPUT PORT by selecting “+ Add an 
Input,” and set the following fields in the inspector panel: 

(a) Required:  N  O

(b) ID: threads 

(c) Type: int 

(d) Include in the command line:  Ye  s

(e) Value Transform: 

(f) Prefix: --threads 

(g) Position:  3  

(h) Separate value and prefix:  Ye  s

(i) Label: Number of Threads 

(j) Description: Specifies the number of files which can be 
processed simultaneously. 

(k) Alternative Prefix: 

(l) Category: 

(m) Tool Defaults:  1  

Now that we have specified all inputs and arguments 
defined in the target command line structure shown at the 
beginning of this section, we may start defining the outputs 
that should be collected after the execution of the FastQC. 
When run with a “--noextract” argument, FastQC creates two 
files per sample: 

• A ZIP file that contains FastQC report, graphics, and sum-
mary files 

• An HTML report showing the FastQC results 

As such, we must create output ports for both types of 
outputs.

https://docs.sevenbridges.com/
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7. Add an OUTPUT PORT by selecting the “Add an Output” 
button, and set the following fields in the inspector panel: 

(a) Required:  N  o

(b) ID: report_zip 

(c) Type: array 

(d) Items Type: File 

(e) Glob: *.zip 

(f) Inherit: 

(g) Output eval: 

(h) Load content:  N  O

(i) No Secondary Files defined Label: Report zip 

(j) Description: 

(k) File type(s): ZIP 

You may learn more about the output port settings at the 
Seven Bridges Knowledge Center (https://docs.sevenbridges. 
com/). Please note that adding an output port does not cause a 
change in the sample command line generated at the bottom of 
the screen. 

Now you can add our second output port for the HTML 
reports that you can display on the Platform. 

8. Add an OUTPUT PORT by selecting the “+ Add an Output” 
button, and set the following fields in the inspector panel: 

(a) Required:  N  o

(b) ID: report_html 

(c) Type: array 

(d) Items Type: File 

(e) Glob: *.html 

(f) Inherit: 

(g) Output eval: 

(h) Load content:  N  O

(i) No Secondary Files defined 

(j) Label: Report HTML 

(k) Description: 

(l) File type(s): HTML 

9. Save your tool to the Seven Bridges Platform by creating a new 
revision. Click the floppy disc icon located at the top right 
corner of the screen. You may add a revision note, and then 
select “Save.” 

You will now notice that a new tab appears that displays the 
app version that you just pushed to the Platform project.

https://docs.sevenbridges.com/
https://docs.sevenbridges.com/
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CWL provides a variety of features to enhance the usability 
and performance of described tools such as conditional execu-
tion, batching, and dynamic expressions (please see Notes 11– 

15 for additional considerations and suggestions when opti-
mizing tool descriptions). While we’ve provided instructions 
for describing tools using the visual interface on Seven Bridges 
platforms, it is worth emphasizing that CWL can be entirely 
written by hand and any valid CWL description can be 
imported into the platform. The CWL website (commonwl. 
org) provides numerous tutorials and resources for users get-
ting started with CWL. 

3.5 Chaining Tools 

into Workflows 

Workflows on the Cancer Genomics Cloud are chains of tools 
where input data is passed from tool to tool in an orchestrated 
manner. In addition, workflows expand upon tools in specific ways: 

1. Explicit values can be set for Input Ports (e.g., “threads” in the 
example above). 

2. Workflows can be configured to “scatter” an array of para-
meters of values over an Input Port, creating a task for each 
index in the array. 

3. Workflows can be “batched” based on metadata properties. 

The Seven Bridges Platform includes a workflow editor for 
viewing and customizing workflows. For example, the addition or 
subtraction of tools from a workflow may be desirable to meet the 
users’ analysis needs. 

Here we will walk through the steps required to modify the 
public HISAT2-StringTie Workflow to include the FastQC tool 
which we just wrapped in CWL. These steps could also be applied 
to combine other public or private tools into a reproducible 
workflow. 

Copy HISAT2-StringTie Workflow from Public Apps Gallery 
The HISAT2-StringTie Workflow can be used to perform a gene 
abundance estimation of RNA-Seq data (i.e., quantification) for a 
unified set of genes common for all samples in an analysis. This 
workflow is based on the Nature protocol paper [18] (with the 
absence of the last step, Ballgown, which carries out testing for 
differential expression). 

To copy an existing version of this workflow into your project 
space, click the “Apps” tab along the top banner of your project and 
then “Add apps,” and lastly select “Public Apps.” 

Next, type “HISAT2” into the search box, and click “Copy”  on  
the “HISAT2-StringTie Workflow” workflow panel. Select your 
project from the dropdown menu, or create a new project. You 
should now see a copy of the “HISAT2-StringTie Workflow” app in 
the project you created.

http://commonwl.org
http://commonwl.org
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Chaining FastQC into the HISAT2-StringTie Workflow 
Starting from a project containing the public apps version of the 
HISAT2-StringTie Workflow, first navigate to the “Apps” tab and 
click the “…” next to HISAT2-StringTie Workflow, and then select 
“Edit.” 

The platform will prompt you with a warning that if you make 
changes to this copy of the HISAT2-StringTie Workflow, you will 
stop getting notifications about updates to the original app. Click 
“Edit” again to open the workflow editor with the HISAT2-
StringTie workflow featured in the workflow editor dashboard. 
This workflow consists of several independent apps each displayed 
as a colored circle and corresponding input or output files displayed 
as gray circles. There are nodes on the perimeter of each item in the 
Workflow Editor. These represent the tool’s ports, which are used 
to enable data to flow in and out of the App. Nodes on the left of 
the circle represent input ports, whereas the ones on the right 
indicate output ports. Clicking on a port and dragging will reveal 
a smart connector which is used to chain tools together into work-
flows as shown in Fig. 4. 

To connect our FastQC app, first navigate to the left side of the 
editor. Click the tab labeled “My Projects” and type “FastQC” to 
search for your app. Once you’ve identified your FastQC app, select 
it with your arrow, and then drag and drop the app onto the work-
flow editor dashboard. 

Now, the “FastQC” app is available to be connected to the rest 
of the workflow. We must first connect the FASTQ files (labeled 
“Reads”) as an input to the FastQC app. To do so, click the output 
port of the object labeled “Reads,” and drag it to the input node on 
the left side of the “FastQC” app. 

FastQC is now connected to our workflow; however, we need 
to specify which outputs we would like to capture. To do this, click 
the output node of the FastQC app and drag it to the dashboard. 
Finally, clicking the grid icon in the lower right-hand corner of the 
editor will realign the diagram. 

Before executing the workflow, you need to save it by clicking 
the save icon in the upper right-hand corner of the editor. This will 
reveal a dialogue box for comments describing the changes made to 
the workflow. Here we’ll type “Added FastQC to the workflow.” 
Now, the workflow is complete and ready for analysis. 

3.6 Running the 

Workflow 

To run the workflow, we must first create a new task within the 
project space containing the modified HISAT2-StringTie work-
flow. To create a new task, navigate to the “Apps” tab within the 
project, and then select “Run” next to the workflow. A new task 
page will be created featuring two main tabs, “Task Inputs” and 
“Execution Settings.”
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Fig. 4 Assembly of the FastQC-HISAT2-Stringtie workflow. Workflows are described as chains of tools, in 

which data objects are passed downstream. Data objects (inputs/outputs) can be passed between tools by 

connecting the appropriate ports or can be redirected to Output Ports, so they are captured and saved once 

execution is completed 

Workflows are designed such that certain ports can be “locked” with or without values (if not required), 

thereby preventing a user of the workflow from modifying this parameter. (1) To connect an additional app to 

the workflow, select the desired app from the list on the left side of the screen, and then click and drag the app 

into the workspace editor. (2) Connect the input port of FastQC to the “reads” output port. Click and drag both 

output ports of FastQC to create and save output files
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Task Inputs 
The task inputs tab can be divided into two sections with which the 
user can interact: Inputs and App Settings. The “Inputs” section for 
this workflow specifies that a user must provide reads, a reference 
annotation file, and a reference or index file. These files can be 
selected from the current project, other projects a user is a member 
of, or public files. For this example, we will use input files from the 
Public Files repository. To select reads, click the “Select file(s)” icon 
for Reads input. Navigate to the “Public Files” tab along the top. 
Next, click the “Tags” dropdown menu and select “RNA-seq.” 
From the list of sorted files, select the two files ending in 1Mreads. 
Click “Save Selection” to assign these files to your task, and then 
click “Copy” when prompted. You will be returned to the draft task 
page. Next, click the “Select file(s)” icon for the Reference annota-
tion file, navigate to the “Public Files” tab, then search “Homo_-
sapiens.GRCh38.84.gtf,” and save your selection. Finally, click 
“Select file(s)” for the “References or Index files” input field, 
navigate to “Public Files” and search “grch38_tran.tar.gz,” select 
the file, and save the selection. 

Under the “App Settings” section, set “Estimate novel isoform 
abundance?” as False. Click “Show all” under the Apps Settings tab 
to see all other parameters as shown in Fig. 5. These parameters are 
not set as “editable” by the developer of this workflow. 

Execution Settings 
Under Execution Settings, “Spot Instances” can be set to “On.” 
Spot instances are cost-effective ways to run tasks. Our in-house 
analysis has shown that tasks on spot instances cost up to 90% less 
than tasks that run on on-demand instances. This comes at a low 
risk with an interruption rate of ~1%, in which case the platform will 
automatically restart the interrupted process(es) using an 
on-demand instance. 

Memoization provides a mechanism for the automatic reuse of 
precomputed outputs inside your project. There are some impor-
tant considerations to be aware of before using Memoization 
(https://docs.sevenbridges.com/docs/about-memoization). 

Additional options such as “Instance type” and “Paralleliza-
tion” can be accessed and specified in this section. 

Click “Run” on the top-right to kick off the task. Task details 
page shows the task is in running state. Processing time is ~7 min 
and costs $0.17. After the task has finished, click the task link. This 
brings up the task details page, which contains a complete record of 
the executed app, used inputs, app settings, and the produced 
outputs.

https://docs.sevenbridges.com/docs/about-memoization
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Fig. 5 Setting parameters in the FastQC-HISAT2-Stringtie workflow. Once inputs are provided to the app on the 

task run page, we can take a look at “App Settings.” Only the setting, “Estimate novel isoform abundance?”, 

can be altered in this workflow. Click “Show all” under the Apps Settings tab to see all other parameters. 

These parameters are not set as “editable” by the developer of this workflow 

Viewing Outputs 
StringTie provides a number of output files, among them a gene 
abundance file, which is a TAB file containing FPKM, TPM, and 
Coverage values for each gene as shown in Fig. 6. Two files are also 
produced containing transcript and gene expression values in the



DESeq2 input format. The count matrix files are in .CSV format 
and can be previewed on the Platform and dynamically sorted to 
display genes with the highest read count values. 
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Fig. 6 Viewing task results. Execution details including computational runtime and price are printed below the 

task name. Output files from the task run are linked to directly from the task page 

Viewing Stats and Logs 
The Seven Bridges Platform gives you the tools you need to view 
statistics and logs related to your analysis. This can come in handy 
when you are diagnosing failed tasks. Click on “View stats & logs” 
at the top-right of the task details page. This brings up the “Task 
stats” page. You can find a detailed explanation of all its content in 
the Seven Bridges Knowledge Center (https://docs.sevenbridges. 
com/docs/view-task-stats). A detailed view of the selected area is

https://docs.sevenbridges.com/docs/view-task-stats
https://docs.sevenbridges.com/docs/view-task-stats


shown beneath the timeline. Most often, you will see several hori-
zontal bars on the timeline which correspond to different apps and 
their jobs. Each app is executed in several steps, which are called 
jobs. To view these jobs individually, click the bar representing the 
app. The jobs appear as horizontal green bars underneath the app. 
Parallel jobs are aligned vertically, to indicate that they executed 
simultaneously. 
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If we select the gray box labeled HISAT2, you now see the 
pinned details for this app. Click “View Logs” under “HISAT2” to 
get more details about how this app was executed. The Task logs 
page gives us access to all the log files of the app and any output files 
generated. Logs we typically want to inspect are “cmd.log,” which 
contains the executed command line, “sbg.worker.log,” which 
provides details on Platform operations to coordinate the task 
execution, and “job.err.log,” which contains all error/warning 
messages produced by the command (stderr). 

After checking the logs, if you would like to investigate 
resource usage on the computational instances used throughout 
the execution, you can go close the task logs dialogue by clicking on 
the “X” button on top right corner, and click “Instance Metrics” 
button shown on the top right-hand side of the “Tasks stats & 
logs” page. The Platform lets you access instance metrics informa-
tion for all instances used in task execution. 

The following information is available during task execution 
and for 15 days after the task has been executed: 

• Instance type, purchasing type and status 

• Instance configuration, i.e., available vCPUs, Memory, Disk 
space 

• CPU usage 

• Disk usage 

• Memory usage 

• Load average 

• I/O activity 

• Swap activity 

All files generated from the execution can be accessed from the 
task page as well as from the files tab. Note that selecting a file will 
link back to the execution that created it which helps to support 
traceability and reproducibility. We recommend running the work-
flow with several test files before setting up large batch tasks. This 
allows you to identify areas for cost optimization and avoid errors 
and expected outcomes at scale. Typically, researchers will perform 
interactive analysis using visualization and scripting tools once raw 
data are processed. The CGC has a number of tutorials and videos 
demonstrating these capabilities which can be found on the CGC 
home page at www.cancergenomicscloud.org.

http://www.cancergenomicscloud.org
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3.7 Conclusions The Seven Bridges Cancer Genomics Cloud plays a pivotal role 
within the NCI Cancer Research Data Commons and serves as an 
efficient, secure, and scalable computational analysis platform. Its 
adherence to interoperability standards and seamless connection to 
NCI data nodes allows users to easily integrate software and tech-
nologies to analyze publicly available data, as demonstrated in this 
guide. The CGC’s facilitation of diverse analysis techniques, user-
friendly interfaces, and automation capabilities not only streamlines 
the intricate process of managing extensive datasets but also 
empowers researchers to focus on the core analytical aspects of 
their investigations. 

4 Notes 

1. The CGC uses standards developed by the Global Alliance for 
Genomics and Health (GA4GH) to enable approved research-
ers to access petabytes of data. A listing of connected datasets 
can be found at https://www.cancergenomicscloud.org/ 
datasets. A video tutorial for submitting dbGaP requests can 
be found at https://www.youtube.com/watch?v=m0xp_ 
cCO7kA, while guidance for troubleshooting data access is 
available at https://docs.cancergenomicscloud.org/docs/ 
dbgap-controlled-data-access. 

2. Dockerfiles should be used as a precise description of how to 
rebuild the container used for an analysis. Since Dockerfiles are 
simple text descriptions of a container using a domain-specific 
language, they are extremely portable. By the time you’re done 
building a container with a Dockerfile, you have a lightweight 
way to enable others to reproduce your execution environ-
ments. You may want to interactively build the container and 
then record the steps you take in a Dockerfile—but to ensure 
reproducibility, the final container you use should actually be 
built from the Dockerfile. 

3. An important aspect of Docker containers is that a group of 
containers in the same volume (e.g., registry, hard drive) can 
share layers. For example, a container that is built from another 
container but adds additional tools doesn’t duplicate the data 
from the previous container. This behavior alleviates any data 
burden of having many function-specific containers. For this 
reason, we encourage researchers to employ many lightweight 
containers for easy sharing and deployment, as opposed to a 
few containers with many tools inside. 

4. For simple command line tools, we recommend using standard 
Linux distribution containers. For example, let us examine a 
simple tool which saves the first 1000 lines of a FASTQ file as a 
new file. We can use the “head” tool to trim the top “n” lines of

https://www.cancergenomicscloud.org/datasets
https://www.cancergenomicscloud.org/datasets
https://www.youtube.com/watch?v=m0xp_cCO7kA
https://www.youtube.com/watch?v=m0xp_cCO7kA
https://docs.cancergenomicscloud.org/docs/dbgap-controlled-data-access
https://docs.cancergenomicscloud.org/docs/dbgap-controlled-data-access
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any file. Since head is a Linux command line tool, we can use 
an Ubuntu container as a bigger one is not needed. To save the 
first 1000 lines of a FASTQ in a new file, use head to print the 
first 1000 lines of the input FASTQ file, and then redirect 
stdout to a new file: 

head -1000 [input_file] > [output_file] 

This tool can then be reused on any FASTQ file to generate 
a plethora of outputs. Note that this tool is particularly useful 
for sampling FASTQs, which can then be used for rapidly 
testing tools or workflows which are computationally intensive. 
When the goal is to see if your tool runs properly, we recom-
mend that you use sampled FASTQs to iterate more rapidly. 

5. Dockerfiles use the “FROM” command to use another image 
as the “base” for the new image being built. We recommend 
that you build from trusted, standard containers (e.g., 
ubuntu:latest) instead of a third-party container. If you 
choose to rebuild your container from this Dockerfile in the 
future and the base image has been modified, the rebuilt con-
tainer will inherit any changes within it. This may lead to errors 
or dependency issues if the base image has changed 
dramatically. 

6. If you don’t intend to use the software outside the container, 
you can use commands such as wget, curl, or other download-
ing software to directly download software into a container 
during the build. 

7. Some software will automatically add itself to $PATH, and thus 
these steps may not be required. 

8. Docker containers can be run to execute a command directly 
(using the CMD field). However, containers intended for use 
on the CGC should be built such that they can be run in 
“interactive mode” (e.g., docker run -it <repo/image: 

tag>) and a set of specified commands can be executed within 
them. On the Cancer Genomics Cloud, all commands are 
executed from the working directory (“/”) by default. 

9. The “docker build” command will begin to build the con-
tainer layers starting from the beginning of the Dockerfile 
(FROM) until the end (CMD). The layers pertaining to each 
code block are cached during the build. If a change is made 
somewhere in the Dockerfile, all the layers pertaining to code 
blocks above the change will be loaded, and all layers built from 
the command below the change will be overwritten. It is recom-
mended that any software-based changes that need to be made 
into a container are done by modifying the original Dockerfile 
and then rebuilding. However, there may be cases where you
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wish to save an analysis or analysis output in a container for 
your own use (not for production). In such cases, you can 
commit changes made in a container back to the image with 
the following command: docker commit <container_id> 

<repo/image:tag>. 

10. Here is an example Dockerfile for another RNAseq tool, 
RSEM 1.23.1. 

FROM ubuntu:latest 

MAINTAINER "YourFirstName YourLastName" <email@institution. 

io> 

WORKDIR / 

# Update and install necessary tools 

RUN apt-get update -y 

RUN apt-get install -y \ 

gcc \ 

g++ \ 

libdb5.1 \ 

libdb5.1-dev \ 

make \ 

cmake \ 

libboost-dev \ 

libboost-thread-dev \ 

libboost-system-dev \ 

zlib1g-dev \ 

ncurses-dev \ 

libxml2-dev \ 

libxslt-dev \ 

build-essential \ 

python \ 

python-pip \ 

python-dev \ 

git \ 

apt-utils \ 

vim \ 

wget \ 

perl \ 

perl-base \ 

r-base \ 

r-base-core \ 

r-base-dev 

# Get RSEM-1.2.31 and install RSEM and EBSeq 

RUN wget -P opt --verbose --tries=5 https://github.com/ 

deweylab/RSEM/archive/v1.2.31.tar.gz 

RUN tar xzf opt/v1.2.31.tar.gz 

RUN cd RSEM-1.2.31/ && make && make install && make ebseq 

# Install bowtie



RUN apt-get install bowtie -y 

# Open container with bash terminal 

CMD ["/bin/bash"] 
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11. There are a few important considerations when designing 
tools. On the CGC, you can create a “batch” of tasks based 
on the metadata properties of a set of input files. For example, 
let’s say you have a tool which sorts a single BAM file and 
outputs the sorted BAM. You can create a workflow from this 
tool which can instead take an array of bam files and will create 
a single task for each set of files based on “Sample ID.” Since 
each BAM file presumably has its own unique Sample ID, a 
single task will be created per BAM with far less user interaction 
(if done through the GUI) or code required (if done through 
the API). A major constraint for this feature is that you can only 
batch on a single Input port. This is obvious for BAM files, but 
when performing a batch of tasks for a set of paired-end 
FASTQ files, you must pass the FASTQ files as an array of 
files. If you create an individual port for each paired-end 
FASTQ (e.g., 1, 2), then you cannot set up a batchable 
workflow. 

12. We can set a default value for an Input Port by taking two steps: 
(1) do not make the port “required,” and (2) create a dynamic 
expression for the “Value” of this port such that the port has a 
value if unspecified. For example, if the Input Port type is an 
integer and we wish to specify “31” as a default value, the 
dynamic expression can be written as ($self || 31) or 
($job.inputs.<input_id> || 31). This expression means 
that if the user specifies a value for this port ($self), then that is 
used as the “Value” or, if unspecified, 31 is given as the value. 
In addition, the default value in the CWL description can be 
different from the tool’s default. 

13. Explicit values for each Input Port and Allocated Resources 
(CPU, Memory) are provided to the application for execution. 
This is referred to as the “job” object (or “job.json”). From 
this object, we can incorporate the properties of Input Ports 
into the dynamic expressions of the tool. For example, suppose 
that a user can specify the number of threads for a tool with an 
integer value (ID: threads). In order to pass this to the CPU 
requirements field, we can set the value for CPU as the follow-
ing dynamic expression: $job.inputs.threads. 

14. Consider how a tool will operate when it runs at scale and how 
you will manage the output data. Tools such as kallisto index 
take an input which generates the output filename or its prefix. 
When batching tasks, you cannot then specify an individual 
name per file. Rather, only an individual value can be given. On 
the CGC, this will produce n number of files with the same
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name, with the addition of a prefix (“_#_,” where # is the nth 
copy of a file). This will make file management difficult, as the 
origin of a file is not readily apparent from its name. Instead, we 
will solve this issue by automatically passing a unique identifier, 
such as the input file’s “Sample ID,” which will scale over 
dozens, hundreds, or thousands of tasks. 

15. Within workflows, if an Output Node is not created from a 
port, then objects from that port are not saved. It is possible to 
both pass an output from an upstream tool downstream and 
create an Output Port to save it. In this way, you can also save 
“intermediate files” or files which can be passed to downstream 
tools, by creating Output Nodes for them in addition to con-
necting them to downstream tools. 
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Chapter 3 

Using the Cancer Epitope Database and Analysis Resource 
(CEDAR) 

Zeynep Koşaloğlu-Yalçın, Randi Vita, Nina Blazeska, Bjoern Peters, 
and Alessandro Sette 

Abstract 

The Cancer Epitope Database and Analysis Resource (CEDAR) is a freely accessible catalog of cancer 
epitope and receptor data linked to the biological, immunological, and clinical contexts in which they were 
described. CEDAR data is populated by manual curation of the cancer literature and provides a central 
resource for researchers to access information about cancer antigens and their specific epitopes, which is 
relevant to our understanding of the role that the immune system plays in cancer progression, prevention, 
and treatment. In this chapter, we aim to provide a comprehensive overview of the database section of 
CEDAR. This includes a detailed description of all available query parameters, guidance on navigating 
through the query results, and a demonstration of how CEDAR can aid cancer research, featuring example 
research scenarios and queries. 

Key words Tumor antigens, Epitopes, Neoantigens, Cancer immunology, Immunotherapy, Database 

1 Introduction 

Adaptive immunity relies on two main types of responses; one is 
mediated by B cells, while the other is mediated by T cells. Mole-
cules that are recognized by immune cells are called antigens. 
Receptors on the surface of B cells (BCRs) and T cells (TCRs) 
bind to specific parts of antigens, called epitopes, which can trigger 
an immune response. 

Antigens expressed by cancer cells, namely, tumor antigens, 
play an essential role in the diagnosis and treatment of cancer. 
Tumor antigens include proteins, glycoproteins, glycolipids, and 
carbohydrates. Tumor antigens can be broadly categorized into 
tumor-specific antigens (TSAs), which are restricted to tumor 
cells, and tumor-associated antigens (TAAs), antigens that are pres-
ent in both tumor cells and normal cells [1]. TSAs include antigens 
derived from oncogenic viruses (e.g., human papillomavirus
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(HPV)), products of mutated genes (also called neoantigens), and 
cancer germline or cancer-testis antigens that are normally not 
expressed in adult tissue but reexpressed in tumor tissue (e.g., 
carcinoembryonic antigen (CEA), melanoma-associated antigens 
(MAGEs)) [2, 3]. TAAs include differentiation or tissue-specific 
antigens that are expressed by tumors and the normal tissues from 
which they arise (e.g., melanoma-associated antigen recognized by 
T cells (MART-1), Glycoprotein 100 (gp100)) and overexpressed 
antigens that are expressed in normal cells but are expressed at 
considerably higher levels on tumor cells (e.g., Her2/neu, Survi-
vin, wild-type p53) [3, 4].
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Cancer antigens are routinely used as diagnostic markers and 
provide targets for immunotherapeutic treatments [5]. Historically, 
antigen-targeting immunotherapies yielded limited success in clini-
cal trials (reviewed in [6]). However, with the advent of immune-
checkpoint blockade (ICB) therapies that can remove the immune 
inhibitory signals at the tumor site, interest in antigen-based immu-
notherapies has resurged. For example, epitope-based vaccines can 
elicit strong and durable immune responses when combined with 
ICB (reviewed in [7]). The transfer of epitope-specific T cells and T 
cell receptors, or T cells with chimeric antigen receptors (CAR T 
cells), is also being studied and has shown clinical success [8– 
12]. While epitopes from shared antigens expressed across cancers 
of different individuals provide potential targets for more broadly 
applicable immunotherapies, neoantigens that are highly tumor-
specific are of particular interest for personalized strategies. Indeed, 
neoantigen-based immunotherapies were shown to be highly effec-
tive when compared to therapies based on shared antigens 
[13, 14]. Data about tumor antigens and their specific epitopes is 
relevant to our understanding of the role that the immune system 
plays in cancer progression, prevention, and treatment. 

Given the importance of cancer epitopes, there is a clear need to 
catalog all cancer epitope-related data linked to the biological, 
immunological, and clinical contexts. Most importantly, this infor-
mation must be freely available to the scientific community in a 
user-friendly format. Most resources do not capture all necessary 
epitope data granularly and/or are not freely available. The Cancer 
Epitope Database and Analysis Resource (CEDAR, cedar.iedb.org) 
[15] was initiated in 2021 and provides a central, freely accessible 
catalog of cancer epitope and receptor data linked to the biological, 
immunological, and clinical contexts in which they were described. 
It builds on technical and scientific knowledge obtained from the 
Immune Epitope Database (IEDB, iedb.org)  [16] and utilizes 
similar infrastructure and processes adapted to the cancer research 
setting. 

CEDAR data is populated by manual curation of the cancer 
literature, following detailed curation guidelines, and is assisted by 
automated validation [17]. Briefly, PhD-level curators read journal

http://cedar.iedb.org
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articles and identify all experimental assays where an adaptive 
immune receptor was tested for recognition of an epitope, whether 
the outcome was positive or negative. All assay types that provide 
epitope-specific recognition data, including assays that generate 
BCR and TCR sequences and 3D structures, are captured. All 
epitope-specific data and details of the assays used to describe the 
immune responses are captured. Curation is performed on a 
per-publication basis, with all data, including positive and negative 
outcomes, from each publication curated fully as a stand-alone 
record. Thus, any single epitope may have been described in multi-
ple papers and various contexts. 
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In this chapter, we provide a detailed description of the data-
base part of CEDAR, describing all available query parameters and 
explaining how to navigate and interpret the query results. We also 
offer four research scenarios with example queries to demonstrate 
how CEDAR can facilitate cancer research. 

2 CEDAR Query Interface 

One of the challenges for biomedical databases is to develop intui-
tive query interfaces while allowing the user to perform granular 
queries. To ensure this, we conducted interviews with several 
experts in the cancer immunology research field. During several 
iterations, we developed a search interface that makes the most 
requested information immediately accessible (Fig. 1). 

2.1 Epitope Panel In the “Epitope” panel, users can select if they want to include 
linear or discontinuous epitopes in their query. A specific peptide 
sequence of interest can also be entered into the “Linear Peptide” 
field. If no specific antigen is entered in the “Epitope Source” panel 
below, this query might return results including different antigens, 
as the same peptide might occur in different proteins. Users can 
search for exact matches or include epitopes from which the peptide 
of interest is a substring. One could also search for epitopes that are 
similar to the peptide of interest by selecting the “BLAST” options 
from the drop-down menu. 

2.2 Epitope Source 

Panel 

Users can use the “Epitope Source” panel to query CEDAR for 
epitopes encoded by a specific gene by entering it into the text field. 
When the user starts to enter text into the field, matching proteins 
will show up in a drop-down menu. In the example query in Fig. 1, 
the antigen “NY-ESO-1” was selected. The “Molecule Finder” can 
be accessed by clicking the “Find” button next to the text field. 
Here, users can search for a gene/protein of interest by entering a 
synonym or the UniProt ID and the source organism.
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Fig. 1 CEDAR homepage: cedar.iedb.org. The CEDAR search interface makes the most requested information 
immediately accessible and allows intuitive yet granular queries 

Additionally, users can select specific cancer-associated antigen 
subtypes as the epitope source, including “Neoantigen,” “Viral 
antigen,” and “Germline/Self/Host antigen.” We defined these 
three broader categories of cancer-associated antigens that can be 
clearly distinguished and are mutually exclusive. Antigens that are 
not cancer-associated but were reported together with cancer-
associated antigens in a cancer-related study can also be included 
in the query by selecting “Other antigens from same reference.” 
The default selection on the CEDAR homepage excludes those 
antigens and only queries all cancer-associated antigens. In the 
example query in Fig. 1, the checkboxes “Neoantigen” and “Viral 
antigen” were deselected to include only germline epitopes. 

2.3 Host Panel In the “Host” panel, users can select the organism for which they 
want to retrieve epitope data for. While CEDAR hosts some epitope 
data from mouse and nonhuman primates, curation currently 
focuses on human epitope data. In the example query in Fig. 1, 
“Human” was selected as the host. 

2.4 Assay Panel In the “Assay” panel, users can select to query for epitopes that 
were tested using specific assay types. For a broader search, the 
three main assay groups, “T cell,” “B cell,” or “MHC ligand 
elution,” can be selected using the checkboxes. Users can also 
search for a specific assay type. The assay types in CEDAR reflect

http://cedar.iedb.org


the assays being used in the literature. This includes all commonly 
used immunological methods such as ELISPOT, ELISA, FACs, 
bioassays, etc. The assay of interest can be found by typing into 
the text box, which will show all matching assay types in a drop-
down menu. 
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The “Assay Finder” can be accessed by clicking the “Find” 
button next to the text box. The Assay Finder allows users to search 
for either the purpose of the assay (e.g., to measure IL-2) or the 
method used (e.g., ELISA). Users can also browse the “Assay Tree” 
to explore all available assays in CEDAR. 

All experimental data entered into the CEDAR database are 
categorized as either positive or negative. Users can select which 
outcomes to include in the query using the checkboxes. In the 
example query in Fig. 1, the checkboxes “B Cell” and “MHC 
Ligand” were deselected to only include T cell assays. For the 
“Outcome” fields, only “Positive” was selected to only include 
assays with positive outcomes. 

2.5 MHC Restriction 

Panel 

In the “MHC Restriction” panel, users can select to query for the 
MHC molecules involved in an epitope’s recognition. One can 
select to search for epitopes recognized in the context of MHC 
class I, class II, or nonclassical or narrow down the search and enter 
a specific MHC into the text box. The “MHC Restriction Finder” 
can be accessed using the finder button next to the text box. Here, 
users can search for an MHC or use the tree to explore all MHC 
molecules captured in CEDAR. In the example query in Fig. 1, 
“Class I” was selected to only query for MHC class I restricted 
epitopes. 

2.6 Cancer Panel Users can narrow down their query to only include epitopes tested 
in the context of a specific cancer using the “Cancer” panel. A 
cancer type can be selected by typing it into the text box, where 
matching cancer types appear in the drop-down menu. In the 
“Disease Finder,” which can be accessed using the finder icon 
next to the text box, users can search for cancers by name or 
using Disease Ontology (DOID) [18] or the Ontology of Immune 
Epitopes (ONTIE) [19] identifiers. One can also explore the “Dis-
ease Tree” to select cancer types of interest. In the cancer panel, 
users can also select a cancer stage they want to query from the 
drop-down menu. The cancers can further be narrowed down 
according to how the host was exposed, i.e., “Naturally occurring 
disease” (e.g., occurrence of breast cancer), “Animal model of 
cancer” (e.g., C57BL/6 or BALB/c), and “Vaccination” (e.g., 
therapeutic vaccination with neoantigens or prophylactic vaccina-
tion against human papillomavirus (HPV)). In the example query 
in Fig. 1, the “Type” field was left blank to include all cancer types, 
and “Naturally occurring disease” was selected to only include 
cancers that occurred naturally without any intervention.
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2.7 Querying CEDAR As an example, we have populated the query interface to search for 
all MHC class I restricted germline epitopes from NY-ESO-1 that 
were observed in humans with naturally occurring cancer of any 
type and tested with any T cell assay that yielded a positive outcome. 
Executing this search queries the entire CEDAR content, meaning 
all epitope, antigen, assay, receptor records, and returns records 
meet these search criteria. 

3 Results Display 

Once a query has been executed, the search results are presented on 
a new page (Fig. 2a). The search criteria are displayed at the top of 
the results table, and any filter can also be removed at this stage by

Fig. 2 CEDAR results presentation of epitope data. (a) The Epitopes tab displays one unique epitope per row 
together with its source antigen and organism, and all available assays and references are summarized as 

numbers. (b) The Epitope Details page provides information on all experimental contexts in which an epitope 
was tested. For each assay type the epitope was tested in, it displays how often it was tested, the outcome, 

and links to these assays



clicking “X” next to the parameter. Additional search panels added 
to the left side of the page allow the current results to be further 
refined by selecting additional search parameters (not shown in 
Fig. 2a).
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The results are grouped into five tabs—“Epitopes,” “Anti-
gens,” “Assays,” “Receptors,” and “References,” which are filtered 
based on the selected search criteria. These different units of infor-
mation reflect how users may want to utilize CEDAR; one can 
explore the literature, for example, on the References tab or use 
the Antigens tab to explore which specific antigens have been 
studied for immune reactivity for a cancer type of interest. Results 
on each tab are sorted by how much information is available, and 
data with the highest number of references is shown first. 

3.1 Epitopes Tab The “Epitopes” tab displays one unique epitope per row with its 
source antigen and organism. For each epitope, all available assays 
and references are summarized as numbers (Fig. 2a). If the user is 
interested in a specific epitope from this list, results can be filtered 
by clicking the funnel icon next to it. This will filter all records in the 
tabs Epitopes, Antigens, Assays, Receptors, and References to only 
show records related to the epitope of interest while maintaining all 
selected search parameters. 

By clicking on the “Epitope ID” in the “Details” column of an 
epitope, a new browser tab containing the “Epitope Details” page 
is opened (Fig. 2b). The Epitope Details page provides information 
on all experimental contexts in which an epitope was tested, with a 
textual summary of the compiled data at the top of the page and in 
the data tables below. Each assay type, namely, MHC ligand, B cell, 
and T cell assay, is presented in a separate section of the data table 
and provides a summary of assay subtypes the epitope was tested in, 
how often it was tested, how often the outcome was positive, and 
links to these assays. Using the Epitope Details page, a user can 
quickly form opinions regarding an epitope of interest. On the 
Epitope Details page, all information will be displayed without 
considering the parameters of the initial query. 

For example, the assays performed on the epitope in Fig. 2b 
suggest that the NY-ESO-1 epitope SLLMWITQC binds to 
HLA-A*02:01, as shown by 15 assays. The epitope can activate B 
cells, as shown by four different B cell assays. A plethora of T cell 
assays were performed with this epitope, all suggesting that it can 
activate T cells. All numbers in these data tables are links and can be 
clicked to access the details about the corresponding assays. 

3.2 Antigens Tab The “Antigens” tab displays one unique antigen per row with its 
source organism. The Antigen table also provides information on 
how often epitopes from each antigen were studied with counts for 
the number of epitopes, assays, and references. Users can further 
narrow their results to a single antigen using the funnel icon next to



the antigen of interest. In the example in Fig. 3a, only one antigen 
is displayed because our example query included a filter for 
NY-ESO-1. 
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Fig. 3 CEDAR results presentation of antigen data. (a) The Antigens tab displays one unique antigen per row 
with its source organism and information on how often epitopes from each antigen were studied with counts 

for the number of epitopes, assays, and references. (b) The Immunome Browser visualizes linear epitopes 
along the length of the parent antigen based on sequence similarity and displays how often each protein 

region has been studied and in how many assays the immune response was positive or negative 

The “Immunome Browser” can be accessed by clicking the bar 
chart icon next to the antigen of interest. The Immunome Browser 
visualizes linear peptidic epitopes along the length of the parent 
antigen based on sequence similarity. This displays how often each 
protein region has been studied in immune assays and in how many 
assays the immune response was positive or negative. Figure 3b 
shows the Immunome Browser output for the epitopes from 
NY-ESO-1 recognized in the human T cell response. The upper 
plot renders the lower and upper bounds of the 95% confidence 
interval of the response frequency for each target protein position, 
averaged over all epitopes mapped to that position and calculated as 
the number of positively responded subjects relative to the total 
number tested. The bottom plot shows the number of positive and 
negative assays averaged over epitopes mapped to each position in 
the protein sequence. A table below the graphs (not shown) pre-
sents results for each epitope and each protein position in a tabular



format that can be saved, along with the graph images, for further 
analysis and publication. The user can interactively zoom in and out 
of the plots to a specific protein region, and the table will update 
accordingly. Of note, the Immunome Browser is not available for 
neoantigens at this time, but future work is planned to implement a 
suitable version of the Immunome Browser for neoantigens. 
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3.3 Assays Tab The “Assays” tab displays all assays used to identify and test the 
epitopes that meet the search criteria. If an epitope was tested with 
multiple assays, all assays that meet the search criteria will be listed 
here. The Assays parent tab is grouped into three subtabs: T cell, B 
cell, and MHC ligand assays. In our example in Fig. 4, only the T 
cell tab is populated because our example query included a filter for 
T cell assays. 

Each row in the assays tab describes an assay with a set of fields 
providing relevant details such as the following: 

(i) Reference. This field contains the reference the assay was 
reported in, and the first author, journal, and year of publica-
tion are displayed. By clicking the reference, the reference 
details page can be opened (described below). 

(ii) Epitope. This field describes the specific epitope sequence 
utilized in the assay together with its source antigen and 
organism. By clicking here, the “Epitope Details” page can 
also be accessed. 

Fig. 4 CEDAR results presentation of assay data. The Assays tab displays all assays used to identify and test 
the epitopes that meet the search criteria and is grouped into three tabs: T cell, B cell, and MHC Ligand 

Assays. Each row in the assays tab describes an assay with a set of fields providing relevant details such as 

the type and outcome of the assay and the reference it was reported in
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(iii) Host. This field described the host from which the immune 
cells or antibodies for the assay were derived. 

(iv) Immunization. This field contains details about how the host 
was immunized. This includes, for example, “Occurrence of 
Disease” (e.g., naturally occurring lung cancer), “Adminis-
tration in vivo” (e.g., injection of a mouse with a cancer 
antigen), “Environmental exposure” (e.g., natural exposure 
to HPV through known sexual contact), and “Vaccination” 
(e.g., therapeutic vaccination with neoantigens). 

(v) Assay Antigen. This field contains the specific antigen that 
was used in the assay. This is not always the same as the 
epitope because CEDAR captures all experimental contexts 
in which an epitope-specific receptor is tested. For example, if 
an epitope-specific T cell line is tested for proliferation in 
response to a whole protein, this will be included in CEDAR. 

(vi) Antigen Epitope Relation. This field describes the relation-
ship between the epitope and the assay antigen. For example, 
“Epitope” describes a case where the epitope itself was used 
in the assay, whereas “Source Antigen” describes an assay 
where the whole protein was used and the specific epitope 
sequence within the antigen was also known. 

(vii) MHC Restriction. This describes the MHC restriction of the 
epitope that was utilized in the assay. Depending on what was 
reported in the reference, this can be a general description 
like “HLA class II” or a specific MHC molecule like “HLA-
DRB1*04:02.” 

(viii) Assay Description. This field provides a brief description of 
the assay, including the type of assay and the outcome. The 
assay type includes the method and what was measured, e.g., 
ELISPOT and IFNg release. All experimental data entered 
into CEDAR are categorized as positive or negative. If 
authors provide such information, additional granularity is 
available for positive data with values of positive-high, posi-
tive-intermediate, and positive-low. For assay types with 
quantitative measurements, the numerical values and units 
are also available. 

3.4 Receptors Tab The “Receptors” tab has two subtabs for T cell and B cell receptors 
(Fig. 5a). In each row of the TCR or BCR tab, a unique receptor is 
displayed along with the species it was reported in, the type (e.g., αβ 
TCRs), and the Chain 1 and Chain 2 CDR3 sequences, if available. 
Analogous to the “Epitope” tab, details about a receptor can be 
retrieved by clicking on its ID in the “Group ID” column. 

On the “Receptor Details” page (Fig. 5b), relevant information 
about the species that the receptor was reported in is displayed, and 
links to the 3D structures in PDB are summarized at the top of the



page. In the data table below, the gene usage and sequences for 
CDR1, CDR2, and CDR3 as well as the full-length receptor 
sequence are displayed for both alpha and beta chains, when avail-
able. Some authors only provide a single CDR3 sequence for one 
chain, while others provide full-length receptor sequences for both 
chains. Sequences of the epitopes that the receptor was reported to 
recognize are also listed, together with links to the corresponding 
epitopes in CEDAR. 
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Fig. 5 CEDAR results presentation of receptor data. (a) The Receptors tab has two subtabs for T cell and B cell 
receptors. In each row of the TCR or BCR tab, a unique receptor is displayed along with the species it was 

reported in, the type, and the Chain 1 and Chain 2 CDR3 sequences, if available. (b) The Receptor Details page 
provides relevant information about the species that the receptor was reported in and links to the 3D 

structures in PDB. In the data table below, the gene usage and sequences for CDR1, CDR2, and CDR3 as 

well as the full-length receptor sequence are displayed if available for both alpha and beta chains. Sequences 

of the epitopes that the receptor was reported to recognize are also listed, together with links to the 

corresponding epitopes in CEDAR 

3.5 References Tab The “References” tab (Fig. 6a) lists all references containing epi-
tope data that meet the search criteria. Listed are the PubMed ID 
(PMID), author list, title, journal, and year of publication. Clicking 
on the PMID opens a new browser tab to the corresponding 
PubMed entry. The “Reference Details” page (Fig. 6b) can be



accessed by clicking the CEDAR ID of the reference. Here, more 
details about the publication are provided, like the abstract and the 
authors’ affiliations. Additionally, all epitopes and assays reported in 
the reference are listed in a summary table. 
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Fig. 6 CEDAR results presentation of curated references. (a) The references tab (lists all references containing 
epitope data that meet the search criteria together with PubMed ID, author list, title, journal, and year of 

publication). (b) The reference details page provides more details about the publication, like the abstract and 
the authors’ affiliations. Also, all epitopes and assays reported in the reference are listed in a summary table 

4 Downloading Data from CEDAR 

After executing a query, the corresponding results from each of the 
tabs, Epitopes, Antigens, Assays, Receptors, and References, can be 
downloaded by clicking “Export Results” in the upper right corner 
of the results display. The user has the option to choose what 
format to download the data in and which specific columns to 
include. 

All data stored in CEDAR can also be retrieved as a bulk 
download. The download page can be accessed from the homepage 
by clicking “More CEDAR” on the top right corner and then 
selecting “Database Export” from the pop-up. Complete database 
exports are available in XML and MySQL formats. Most users 
prefer to download data in a tabular format, which can be found



under the section “CSV Metric Exports.” Here, the user has the 
option to separately download T cell (tcell_full_v3.zip), B cell 
(bcell_full_v3.zip), and MHC ligand elution assays (mhc_ligand_-
full.zip). These tables contain all information on the assay level, and 
an epitope will be listed multiple times if it was reported in the 
context of multiple different assays. 

The Cancer Epitope Database and Analysis Resource 87

5 Example Search Scenarios and Queries 

To illustrate how CEDAR can facilitate cancer research, we present 
four example research questions along with example queries. 

5.1 Research 

Scenario I 

For a literature review, the user wants to retrieve all references that 
contain assays testing epitopes from the antigen “Prostate-specific 
antigen.”

• In the Epitope Source panel, enter “Prostate-specific antigen” 
and select the first entry from the drop-down menu “Prostate-
specific antigen [P07288] (Homo sapiens (human)).”

• In the Assay panel, check both outcome types, “Positive” and 
“Negative.”

• All other search panels remain in the default selection.

• Execute the query and navigate to the “References” tab in the 
Results display.

• Click “Export Results” in the upper right corner of the “Refer-
ences” Results display to download an Excel file containing 
details about 74 references. 

5.2 Research 

Scenario II 

The user conducted a study about recurrent mutations in cancer 
and identified putative neoantigens using prediction tools. The 
neoepitope “SYLDSGIHF” from Catenin beta 1 (CTNNB1) was 
found to be recurring in many patients and was predicted to be 
potentially immunogenic. The user wants to investigate the experi-
mental evidence for immunogenicity reported in the literature.

• In the Epitope panel, enter the epitope sequence “SYLDS-
GIHF” into the “Linear peptide” text field.

• In the Assay panel, check both outcome types, “Positive” and 
“Negative.”

• All other search panels remain in the default selection.

• Execute the query and inspect the results.

• In the “Antigen” tab, two antigens will be listed: “neoantigen: 
Catenin beta-1 Homo sapiens (human)” and “neoantigen: 
Catenin beta 1 (UniProt:A0A2R8Y7Z0).” These are two differ-
ent isoforms of the protein, and the epitope “SYLDSGIHF” was 
reported in both in different references.
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• Navigate to the “Epitopes” tab and open the “Epitope Details” 
page by clicking on the CEDAR ID of the epitope.

• In the “Epitope Details” page, under “MHC Ligand Assays,” 
the user can see that the epitope was tested for binding 
HLA-A*24:02, three times with positive outcomes every time.

• In the “Epitope Details” page, under “T cell Assays,” the user 
can see that the epitope was tested in eight T cell assays: three 
cytotoxicity assays, three IFNg release assays, one GM-CSF 
release assay, and one tetramer assay measuring qualitative bind-
ing. As most of these assays had positive outcomes, there is 
strong evidence that the epitope “SYLDSGIHF” can activate T 
cells. 

5.3 Research 

Scenario III 

Certain viruses can cause cancer by integrating viral DNA into the 
human genome. As viral antigens are foreign to the human immune 
system, they are attractive targets for immunotherapy [20]. To 
explore putative antigen and epitope targets, the user wants to 
retrieve a list of viral antigens and epitopes in head and neck cancer 
with positive outcomes in T cell recognition assays.

• In the Epitope Source panel, deselect the checkboxes “Neoanti-
gen” and “Germline/Self/Host antigen” to select only “Viral 
antigen.”

• In the Assay panel, deselect “B Cell” and “MHC Ligand,” and 
only select the outcome type “Positive” to query for T cell assays 
with positive outcomes.

• In the Cancer panel, enter “head and neck cancer” into the 
Cancer “Type” field, and select “head and neck cancer (ID: 
DOID:11934, head/neck neoplasm” from the drop-
down menu.

• All other search panels remain in the default selection.

• Executing the query will show 92 epitopes from four antigens of 
the organism “Alphapapillomavirus 9.”

• Download the epitopes by clicking “Export Results” on the 
upper right corner of the “Epitopes” tab. 

5.4 Research 

Scenario IV 

Neoantigen vaccines can elicit strong and durable antitumor 
immune responses when paired with immune-checkpoint blockade 
therapy. The user wants to investigate which neoantigens have been 
successfully used for vaccinating cancer patients.

• In the Epitope Source panel, deselect the checkboxes “Viral 
antigen” and “Germline/Self/Host antigen” to select only 
“Neoantigen.”

• In the Host panel select Human.

• In the Cancer panel, under “Exposure,” select “Vaccination.”
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• All other search panels remain in the default selection.

• Executing the refined query results in 520 epitopes from 
377 antigens, tested with 775 assays, reported in 44 references.

• We can further refine the query on the Results page to include 
only therapeutic vaccinations. On the left side of the Results 
display, under “Cancer” and “Exposure,” select “Vaccination 
(therapeutic).”

• Executing the refined query results in 309 epitopes from 
233 antigens, tested with 514 assays, reported in 30 references.

• Download the epitopes by clicking “Export Results” on the 
upper right corner of the “Epitopes” tab. 

6 Conclusion and Future Plans 

The Cancer Epitope Database and Analysis Resource (CEDAR) 
provides a freely accessible, comprehensive collection of cancer 
epitope and receptor data curated from the literature, linked to 
the biological, immunological, and clinical contexts in which they 
were described. 

Overall, as of January 31, 2024, a total of 289,028 cancer-
associated epitopes have been curated from 5001 references. 
These epitopes have been tested in 910,389 assays (87,903 T cell 
assays, 64,766 B cell assays, and 757,720 MHC ligand elution 
assays). Furthermore, 36,928 receptors have been curated: 
36,555 T cell receptors and 373 antibodies. There are currently 
approximately 3145 possibly curatable cancer references still out-
standing in the curation queue. 

We have several plans to improve CEDAR’s search interface. 
Given the increased interest in neoantigens, we are working on 
including the option to search for neoantigens encoded by a specific 
mutation. We are also working on including more information 
about the variant encoding the neoantigen. Currently, it is not 
possible to search for receptor sequences directly from the main 
CEDAR search interface, but it is only possible to filter for specific 
sequences once a query has been executed. We plan to provide this 
option directly on the main CEDAR search interface in the future. 
Finally, we also plan to provide an Application Programming Inter-
face (API) to allow users to perform custom and more complex 
queries and larger batch queries. 

With the advancement of technologies like high-throughput 
cancer genomics and single-cell analysis of immune repertoires, we 
expect that the amount of cancer epitope data will continue to 
increase in the future. As the amount of data continues to grow, it 
becomes increasingly important to extract meaningful insights 
from this data. Making cancer epitope data easily and freely



accessible creates an opportunity for the research community to 
reanalyze the data, generate new research hypotheses, and gain new 
insights into cancer immunology. 
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Chapter 4 

Quantifying the Prevalence of Non-B DNA Motifs as a Marker 
of Non-B Burden in Cancer Using NBBC 

Qi Xu and Jeanne Kowalski 

Abstract 

Alternative DNA structures, such as Z-DNA, G-quadruplexes, and mirror repeats, have shown potential 
involvement in cancer etiology. NBBC (Non-B DNA Burden in Cancer) is a web-based tool designed for 
quantifying and analyzing non-B DNA motifs within a cancer context. Herein, we provide a step-by-step 
protocol for employing NBBC, starting with data input and proceeding through the quantification and 
normalization of non-B DNA motifs that result in calculation of non-B burden. With detailed instructions 
for performing various motif-centric analyses based on cancer gene signatures, including DNA damage 
repair and response pathways for genomic stability, and other sample-level gene mutation signatures, users 
can explore non-B associative correlations within current cancer biology. We provide additional details on 
input queries into NBBC, interpret the quantitative results, and apply normalization techniques to ensure 
accurate comparisons across different genomic regions and non-B DNA structures. 
NBBC offers a powerful and user-friendly interface for the cancer research community. This chapter 

serves as an essential, enhanced instructional guide for researchers to leverage NBBC in their cancer 
biomarker investigations for an understanding of the potential role of non-B DNA in contributing to them. 

Key words NBBC, Non-B DNA, Cancer bioinformatics, Genome instability 

1 Introduction 

Noncanonical DNA refers to DNA structures that differ from the 
canonical B-DNA double helix structure, including 
G-quadruplexes, cruciform, slipped structures, triplexes, and 
Z-DNA [1–4]. It has been discovered that non-B DNA-forming 
sequences can induce genetic instability in human cancer genomes, 
suggesting a role in cancer development [1]. 

While there are several non-B DNA databases and prediction 
tools that exist, the majority of these tools primarily focus on 
individual motif sequences in isolation [5, 6]. We introduce the 
concept of “non-B burden” as a quantitative marker to provide the 
capacity to integrate information from non-B DNA motifs into a 
comprehensive, genome-wide perspective. This viewpoint has been
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notably absent in prior non-B DNA research, which underscores its 
innovative nature and potential. A parallel concept in cancer 
research can be found in the idea of tumor mutation burden. As 
tumor mutation burden quantifies the prevalence of mutations and 
can inform on cancer prognosis and treatment response, our intro-
duction of “non-B burden” holds a similar promise for assessing 
non-B DNA motif prevalence and its potential for interpretation of 
biological processes, particularly within the realm of cancer 
research.
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To accelerate the non-B burden analysis in cancer, NBBC is 
designed to serve as a new analysis and visualization platform for 
the exploration of non-B DNA. NBBC serves as a valuable resource 
for researchers investigating the role of non-B DNA structures in 
cancer and other genetic diseases. 

In this chapter, we demonstrate a “how to” guide to access and 
explore NBBC [7] for gene signature analyses that may be further 
combined with familiar downstream correlatives. In doing so, we 
present details on the quantitative approach and normalization 
methods that are available at various genomic levels, including the 
gene level, signature level, and sample level. Altogether, we provide 
a guided approach to the use of NBBC, including input query, 
quantification, and normalization of non-B DNA motifs, and how 
to use non-B burden in downstream applications. 

2 Materials 

2.1 The Web Server, 

NBBC 

To simplify the use of non-B burden calculation and introduce it for 
wide, non-bioinformatic research uses, we introduce NBBC, a 
Non-B DNA Burden Explorer in Cancer. NBBC is an online web 
server that provides non-B burden calculation, non-B burden visu-
alization, and non-B motif exploration. NBBC serves to conduct 
non-B burden computations and offers normalizations that enable 
comparisons across genes or non-B structures. It provides visuali-
zations for descriptive analysis of burden values, burden distribu-
tion, and burden-based gene clustering. The NBBC webserver is 
accessible without any login requirements and is completely free to 
use (https://kowalski-labapps.dellmed.utexas.edu/NBBC/). 

2.2 Non-B DNA Motif 

Data 

The non-B DNA-forming motif data in NBBC are downloaded 
from the Non-B DB 2.0 database (hg19 build) [5, 6, 8]. There are 
seven non-B structure motifs included: A-phased repeat (APR, 
n = 2386 motifs), G-quadruplexes (G4, n = 361,232 motifs), 
Z-DNA (n = 404,192 motifs), inverted repeats (IR, n = 5, 
771,570 motifs), mirror repeats (MR, n = 1,378,864 motifs), 
direct repeats (DR, n = 1,113,354 motifs), and short tandem 
repeats (STR, n = 2,826,360 motifs). A subset of MR and IR 
motifs are further delineated within the application to represent

https://kowalski-labapps.dellmed.utexas.edu/NBBC/


Triplex (Triplex-MR, n = 412,028 motifs) and Cruciform 
(Cruciform-IR, n = 147,152 motifs) motifs, respectively. To 
ensure the reliability and relevance of our data, we have sourced 
our non-B DNA data in the NBBC web server, and so users have no 
need to download the non-B DNA data. 
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2.3 Query Input 

2.3.1 Non-B Burden at 

Gene Level 

To summarize, the input for NBBC includes three major types: a 
single gene (or a list of genes), a gene signature, or genomic 
coordinates (see below). To accommodate these input types, we 
have provided four options for users to choose from. In the web 
server (“Input Page” tab), Option 1 offers pre-populated gene sets 
related to cancer, while Option 2 provides molecular signatures of 
cancer cell lines. Alternatively, users may manually input gene sym-
bols in Option 3 or upload genomic coordinates of interesting 
regions in Option 4. 

(a) A single gene. The typical use case is a quick single gene search 
by typing the “hgnc symbol” of gene, such as KRAS, 
BRCA, etc. 

(b) Gene signatures. The input includes popular cancer signatures, 
cell line molecular signatures, or user-defined signatures. 
NBBC offers built-in cancer-related gene sets for quick 
query, including cancer hallmark gene signatures from the 
MSigDB database [9], DNA damage repair and response 
gene signatures [10, 11], and molecular signatures (option 
2) from the Genomics of Drug Sensitivity in Cancer 
database [12]. 

(c) Genomic coordinates of regions. This is a general option where 
the query region is not a full region of a gene but a subregion 
of the gene, such as cancer-specific mutation sites or regions 
with copy number alterations. In this case, user can upload the 
region in query (genomic coordinates) in a table (see Note 1). 

2.3.2 Non-B Burden at 

Sample Level (Burden in 

Batch) 

Furthermore, NBBC allows users to upload “multiple groups” of 
genomic regions (genes, mutation regions) in batch and calculate 
the non-B burden for each group. We named it as “Burden in 
Batch.” Using “Burden in Batch,” it allows users to calculate the 
non-B burden for each sample (see Note 2) to enable further 
downstream analysis of associations. The input format of “Burden 
in Batch” is a table with four columns (group_id, chromosome, start, 
end). Each row represents a genomic region and the “group_id”  is  
used to group the genomic regions.
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3 Methods 

3.1 How to Use NBBC 

to Calculate Non-B 

Burden 

The NBBC web server provides a user-friendly platform for calcu-
lating the non-B DNA burden within genomic sequences. Our 
protocol illustrates this calculation through two exemplar use cases. 

(a) Gene-Level Non-B Burden (Basic Use) 
NBBC can process both single and multiple genes to 

calculate the non-B burden. Here, we utilize the “Homolo-
gous Recombination” gene signature [10, 11], the mainte-
nance of which plays an important role in cancer genome 
stability. This illustration demonstrate the foundational com-
putation of non-B burden and emphasize the critical role of 
normalization techniques in the analysis. 

(b) Sample-Level Non-B Burden (Advanced Use) 
This second application showcases the “Burden in Batch” 

feature of NBBC. We employed mutation site data from 
511 samples from the TCGA-LGG (Lower Grade Glioma) 
dataset [13]. Each sample comprises a list of mutation sites, 
complete with chromosomal coordinates. The “Burden in 
Batch” tool in NBBC is utilized to quantify the number of 
non-B motifs that overlap with these mutation sites, thereby 
summarizing the non-B burden for each sample. The objective 
here is to illustrate the integration of non-B burden analysis 
with clinical datasets, highlighting its utility in sample-level 
evaluation. 

3.2 Start with the 

“Input Page” 

The “Input Page” of the NBBC web server is the starting point for 
users to input their data for non-B burden analysis. This page is 
designed to accommodate various user requirements through four 
distinct input options: 

(a) Option 1: Built-In Cancer-Related Gene Signatures. Users can 
choose from predefined gene sets related to cancer, such as 
those involved in DNA damage repair, response gene path-
ways, cancer hallmark gene sets, and oncogenes, among 
others. 

(b) Option 2: Cancer Cell Line-Specific Features. This option pro-
vides a selection of molecular features specific to cancer cell 
lines, including mutations and copy number alterations. 

(c) Option 3: Manual Gene Input. For users interested in con-
ducting a quick query, this interface allows the manual input of 
single or multiple genes. 

(d) Option 4: Genomic Coordinates Upload. Users can upload 
genomic coordinates that define regions of interest, such as 
mutation sites, to assess the non-B burden in the context of 
mutation-localized regions.
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With the integration of these input capabilities, NBBC offers 
comprehensive coverage for non-B burden calculations at varying 
levels of genomic detail, from precise mutation sites to expansive 
gene signatures (Fig. 1). 

3.3 Non-B Burden at 

Gene Level (Basic Use) 

1. Select genes as input 
In the input page, under option 1, Select the “Homolo-

gous recombination” gene set under the “DNA Damage and 
Repair” category. There will be a preview window at the bot-
tom to show the selected genes (34 genes). Click “Next> Gene 
Screen” to navigate to the “Gene Screen” module. 

2. The quantification of non-B DNA motif 
Non-B burden is calculated by counting the occurrence of 

non-B forming regions associated with each specific non-B 
DNA type. After the query gene list is selected, the non-B 
burden will be calculated in the background by the web server. 
And the calculation value will be visualized in bar plots on the 
right panel of the “Gene Screen” tab page. There are two tabs 
called “Total Burden” and “Burden by type.” 

(a) Total Burden. NBBC includes a Total Burdens plot that 
visualizes the total non-B burden in each gene as a bar 
plot. This visual provides users with a summary of the 
non-B burdens for each query unit. 

(b) Burden by non-B type. The stacked bar plot shows the 
non-B burdens by type for each gene in the query. This 
allows users to easily compare the non-B burdens across 
different genes and identify genes with potentially higher 
burdens from certain non-B structures. 

(c) Interactive plots. Since this is an interactive plot, users can 
select hovers for more details of each data point. This 
feature allows users to obtain a more detailed understand-
ing of the non-B burden for each gene in the query and 
can aid in identifying potential targets for further 
investigation. 

(d) Other options. On the left side panel of this page, there are 
checkbox options, where NBBC provides users with the 
option to display only a subset of genes or non-B types. 
This flexible functionality allows users to tailor their anal-
ysis to their specific research needs and enables them to 
focus on the genes or non-B types of interest. 

3. The normalization of non-B burden 
Normalization ensures meaningful comparisons of non-B 

burden across diverse genes and non-B DNA structure types 
(see Note 3). The NBBC provides several metrics for normali-
zation to facilitate these comparisons (Fig. 2).
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Fig. 1 The input page of NBBC. In the “Input Page,” users can select from four distinct options to begin their 

analysis with NBBC. Option 1 provides a selection of predefined gene sets pertinent to cancer research. Option 

2 allows users to explore molecular signatures from various cancer cell lines. For a more customized 

approach, Option 3 enables the manual entry of specific gene symbols. Option 4 permits the uploading of 

genomic coordinates for regions of interest
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Fig. 2 The normalization options for non-B burden. (A) “Count” indicates raw 

motif counts, serving as the unnormalized base measure. (B) “By Gene Length” 

adjusts non-B burden based on gene size for comparability across genes. (C) “By 

Library Size” scales non-B burden to the non-B motif library size, aiding in 

analyzing various non-B DNA types. (D) “Normalization by Both” offers a 

measure standardizing non-B burden by both gene length and motif library 

and is the default normalized metric in NBBC 

(a) Raw Motif Counts: The basic measure of non-B burden 
without any normalization, representing the number of 
non-B motifs present. 

(b) Normalization by Gene Length: Adjusts the non-B burden 
by the length of the gene region. This is critical when 
comparing different genes, as it accounts for the varying 
sizes of genomic regions. 

(c) Normalization by Motif Library Size: Tailors the non-B 
burden relative to the size of the non-B motif library. This 
normalization is particularly useful when assessing the 
burden of different types of non-B DNA within a 
single gene. 

(d) Normalization by Both (CPKM): This comprehensive 
measure normalizes non-B burden both by the length of 
query regions (per kilobase, 103 ) and by the library sizes 
of non-B motifs (per million, 106 ), facilitating a compari-
son across both genes and non-B motif types. This default 
unit, CPMK (counts per kilobase per million), ensures a 
standardized comparison by considering both the preva-
lence of non-B motifs and the scale of the genomic and 
motif libraries. 

Normalization allows for the comparison of non-B burden 
across both different genomic regions and among distinct types 
of non-B DNA for the assessment of differences in motif 
prevalence among them. Specific applications of normalization 
include the following (Fig. 3): 

(a) Motif Library Size Normalization: Recommended when 
the aim is to compare the non-B burden across various 
non-B DNA types within the same gene. It adjusts for the
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Fig. 3 The non-B burden distribution in homologous recombination signature queried in NBBC. (A) The non-B 

burden is visualized in a bar plot with normalization across both genes and non-B types. (B) The normalization 

by non-B motif library sizes allow burden comparison across non-B types. (C) The normalization by gene 

length enables comparisons across genes 

total number of motifs in each non-B motif type, 
providing a direct comparison of prevalence across differ-
ent structures. 

(b) Gene Length Normalization: Advised for comparing 
non-B burden across multiple genes within a signature. 
This accounts for the potential bias where longer genes 
might inherently contain more non-B motifs, thus offer-
ing a more accurate reflection of non-B motif density, 
rather than sheer quantity, within the gene’s region. 

The aim of this part (Gene-Level Non-B Burden) in NBBC 
is to conduct a gene-level analyses of non-B representation that 
could prove helpful to focus on a single or subset of genes of 
interest for hypothesis generation. 

3.4 Non-B Burden at 

Sample Level 

(Advance Use) 

1. Objective of “Burden in Batch”

• Conception. The “Burden in Batch” function extends 
NBBC’s capabilities, enabling the computation of non-B 
burden at the sample level. It allows for the analysis of 
multiple groups of genomic regions, such as mutated 
regions across different tumor samples, facilitating a deeper 
exploration of non-B burden in relation to clinical data.
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Fig. 4 The “burden in batch” analysis in NBBC. (a) The web interface to “Burden in Batch” analysis to calculate 

non-B burden at sample level in batch. (b) The input area to upload the query genomic region grouped by 

group ids. (c) The output area to output non-B burden with normalization options. (d) A graphical summary of 

non-B burden calculation at the sample level with mapped survival data. (e) The heatmap visualizes the 

clustering results of TCGA-LGG sample based on mutation-localized, sample-level non-B burdens. (f) Cluster 

1 (STR high) and Cluster 4 (MR-IR high) show a significant overall survival (OS) difference ( p = 0.0012)

• Application. This feature is especially beneficial for 
generalized queries based on extensive sets of genomic 
regions. These can represent distinct tumor samples, 
thereby enabling the calculation of sample-specific non-B 
burden. This analysis can reveal potential links between 
non-B burden and clinical outcomes. 

This function can be accessed under the “Burden in Batch” 
tab from the home page in NBBC (Fig. 4a). 

2. How to perform “Burden in Batch” analysis in NBBC

• Prepare input table. The input format of “Burden in Batch” 
is a table with four columns (group_id, chromosome, start, 
end)—collectively referred to as the “query table.” The 
example data can be downloaded by clicking the “Down-
load Example” button on the page. Each row represents a 
genomic region and the “group_id” is used to group the 
genomic regions. The typical use case for “Burden in Batch” 
is to calculate non-B burden for each tumor sample using a 
list of genomic coordinates.
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• Case study input: For our example, we calculate mutation-
localized non-B burden for TCGA Lower Grade Glioma 
(LGG) samples (n = 511), using genome-wide mutation 
site regions as the query input. In other words, 511 groups 
of genomic mutation regions from 511 LGG samples will be 
used as input for the calculation (see Note 4).

• Calculate non-B burden for each sample. Users compile a 
query table containing the genomic mutation regions for 
all samples, ensuring columns are accurately labeled. Upon 
navigating to the “Burden in Batch” input page, users 
upload their table and initiate the analysis (Fig. 4b). The 
server quantifies non-B motifs coinciding with the input 
regions and applies the default CPKM normalization. All 
the non-B motifs that overlapped with mutation regions of 
each sample will be summarized for non-B burden at sample 
level. On the right side of the page, a matrix will be output 
to show non-B burden from different types (columns) of 
each sample (rows). Users can choose to download the 
metrics by clicking the “Download Burden Output” 
button.

• Choose an appropriate normalization method. Similar to the 
normalization methods gene-level non-B burden, the 
sample-level non-B burden also supports four types of 
metrics, including “counts,” “normalize by motif library 
size,” “normalize by motif region length,” and “normalize 
by both (CPKM).” One difference here is the “region 
length.” Different from “gene length”, the region length 
here refers to the total length of all query regions for each 
sample (Fig. 4c).

• Perform sample clustering on non-B burden. Subsequent to 
calculating the non-B burden matrix, we perform clustering 
analysis on the samples based on their non-B burden. The 
data is standardized using Z-score normalization, with 
k-means clustering applied in this instance. But users can 
choose other preferred clustering methods. The purpose 
here is to showcase how this sample-level quantification of 
non-B burden can be used for downstream analysis 
(Fig. 4e).

• Associate clusters with clinical data. The clustering process 
categorizes samples into groups characterized by distinct 
non-B burden profiles. These groups can then be utilized 
in further analyses, such as survival or association studies, to 
elucidate the potential clinical significance of non-B burden 
variations in cancer (Fig. 4f).
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NBBC serves as a valuable resource for researchers investigat-
ing the role of non-B DNA structures in cancer and other genetic 
diseases. By offering an accessible platform for analyzing and visua-
lizing non-B DNA burden within a cancer context, NBBC enables 
the quantification and exploration of non-B DNA by a wide, 
non-bioinformatic user base. 

4 Notes 

1. Each row in the table represents a region of query. The four 
column names are required to be the same as the example 
[hgnc_symbol, chromosome, start, end]. [hgnc_symbol] can be 
either gene name or any tags to annotate the region but may 
not be duplicated. [chromosome, start, end] takes genomic 
coordinates as input. 

2. “Burden in Batch” is different from “Genomic coordinates of 
regions.” Although they both take genomic coordinate as 
input, “Genomic coordinates of regions” only allows one 
region under one label, such as one subregion in a specific 
gene. So in its input table, the “hgnc_symbol” column should 
be unique. In contrast, “Burden in Batch” allows querying a 
list of regions under one label, such as all the mutated regions 
in one tumor sample. Therefore, in its input table, the 
“group_id” column (such sample id) will be repeating for 
different genomic coordinate. Then non-B burden can be 
summarized for this sample. 

3. The concept of normalization in RNA-seq analysis [14], exem-
plified by metrics like CPM (counts per million), RPKM (reads 
per kilobase of transcript, per million mapped reads), plays a 
similar role as in our approach for normalizing non-B burden. 
Similar to RNA-seq, where these normalization techniques 
ensure the comparability of gene expression values across 
diverse samples, normalization methods employed in non-B 
burden calculations serve a similar purpose. 

4. The mutation data for TCGA-LGG is downloaded from 
UCSC Xena [13, 15]  (https://tcga-xena-hub.s3.us-east-1. 
amazonaws.com/download/mc3%2FLGG_mc3.txt.gz). The 
Xena hub is at https://tcga.xenahubs.net, and the title is “data-
set: somatic mutation (SNP and INDEL)—MC3 public 
version.”

https://tcga-xena-hub.s3.us-east-1.amazonaws.com/download/mc3/LGG_mc3.txt.gz
https://tcga-xena-hub.s3.us-east-1.amazonaws.com/download/mc3/LGG_mc3.txt.gz
https://tcga.xenahubs.net
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Chapter 5 

Starfish: Deciphering Complex Genomic Rearrangement 
Signatures Across Human Cancers 

Lisui Bao 

Abstract 

Complex genomic rearrangements (CGRs) in cancer often originate from abnormal cellular structures such 
as micronuclei and chromatin bridges. However, the primary mechanisms responsible for CGR formation 
in disease tissues remain unclear, particularly due to the challenges in fully capturing these processes. To 
address this, we have developed “Starfish,” a computational algorithm to decipher CGR signatures and 
infer their forming mechanisms by analyzing distinctive copy number variations and breakpoint patterns. 
Here, we provide practical guidance on the application of “Starfish,” available as an R package, to study 
CGR signatures in human cancers. 

Key words Starfish, Algorithm, Complex genomic rearrangements, Copy number variation, Struc-
tural variation, Cancer 

1 Introduction 

In a range of human cancers, structural variations (SVs) manifest 
themselves in numerous forms [1–3], from simple ones like dele-
tions, duplications, inversions, and translocations to complex geno-
mic rearrangements (CGRs) like chromothripsis 
[4, 5]. Understanding the molecular mechanisms behind SV for-
mation is crucial for clinical advancements. Recent in vitro studies 
of CGR formation have pinpointed two primary mechanisms: chro-
mosomal fragmentation in micronuclei [6] and chromatin bridge-
induced chromothripsis [7, 8]. Both mechanisms can lead to extra-
chromosomal DNA (ecDNA) amplification [9], all contributing to 
the genomic complexity and instability in cancer. Despite these 
insights, the complex nature of these genomic rearrangements 
makes it challenging to study their full extent. A comprehensive 
understanding of the diverse mechanisms fueling CGR in disease 
tissues remains elusive. 

Alexander Krasnitz and Pascal Belleau (eds.), Cancer Bioinformatics, Methods in Molecular Biology, vol. 2932, 
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To address this gap, our study introduces a computational 
algorithm, termed “Starfish,” designed to deduce CGR formation 
mechanisms based on the analysis of copy number variation (CNV) 
patterns and breakpoint distributions [10]. By integrating five 
distinct features—CGR breakpoint dispersion score, copy loss per-
centage, copy gain percentage, telomere loss percentage, and maxi-
mum copy number—we executed unsupervised consensus 
clustering on CGRs from the Pan-Cancer Analysis of Whole Gen-
omes (PCAWG) project, identifying six unique CGR signatures 
(1, ecDNA/DM/HSR; 2, BFB cycles/chromatin bridge; 
3, Large loss; 4, Micronuclei; 5, Large gain; 6, Hourglass). Signa-
ture 1, 2, and 4 were assigned to known CGR mechanisms using 
data from five experimental studies on chromothripsis. Further, we 
developed a neural network classifier, the “Starfish classifier,” 
trained on these features and CGR signatures to categorize CGRs 
in additional samples. 

2 Methods 

2.1 Software 

Environment 

Starfish is entirely written in R and has been tested on R 3.5.0, 
3.6.0, and 4.0.0, but any version above 3.0.1 should be fine to use. 

2.2 Package 

Dependencies 

Starfish depends on several R packages including graph, BiocGene-
rics, S4Vectors, foreach, Genome-InfoDb, GenomicRanges, 
IRanges, ConsensusClusterPlus, neuralnet, plyr, data.table, 
MASS, ggplot2, gridExtra, dplyr, factoextra, dendextend, gplots, 
ggpubr, reshape2, cowplot, patchwork, Cairo, and ggforce (see 
Note 1). It also requires a modified version of ShatterSeek (Shat-
terSeeky) [4] which is provided as ShatterSeeky_0.4.tar.gz (see 
Note 2). As ShatterSeeky depends on the other packages, please 
install it as the last one. In case you cannot reproduce the example 
results, you may need to install the versions of packages specified 
below. It is possible that the newer versions are not compatible. 

The versions of tested packages are graph 1.68.0, BiocGenerics 
0.36.0, S4Vectors 0.28.0, foreach 1.5.1, Genome-InfoDb 1.26.0, 
GenomicRanges 1.42.0, IRanges 2.24.0, ConsensusClusterPlus 
1.54.0, neuralnet 1.44.2, plyr 1.8.6, data.table 1.14.0, MASS 
7.3.53.1, ggplot2 3.3.3, gridExtra 2.3, dplyr 1.0.5, factoextra 
1.0.7, dendextend 1.15.1, gplots 3.1.1, ggpubr 0.4.0, reshape2 
1.4.4, cowplot 1.1.1, patchwork 1.1.1, Cairo 1.5.12.2, ggforce 
0.3.3. 

2.3 Installation Starfish can be installed remotely by 

if (!requireNamespace("devtools", quietly = TRUE)) install. 

packages("devtools") 

library(devtools) 

install_github("yanglab-computationalgenomics/Starfish")
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Alternatively, one can download the latest release of Starfish by 
running the following command in a bash terminal: 

git clone https://github.com/yanglab-computationalgenomics/ 
Starfish.git 

R CMD INSTALL 

2.4 Load SV, CNV, 

and Sample Data into 

R 

One can load Starfish and the test data provided by the package. 

library(Starfish) 

data("example_sv") 

data("example_cnv") 

data("example_sample") 

Running this command loads three R data frames, 
corresponding to the somatic SVs, CNVs, and gender information 
of six tumors of the PCAWG project. Starfish accepts SV and CNV 
calls from any variant caller, as long as they are encoded in the 
required format (see below). 

2.5 SV Data Starfish requires the SV data to be stored in a data frame with the 
following columns: 

“chrom1” (character): chromosome for the first breakpoint (see 
Note 3)

• “pos1” (numeric): genomic coordinate for the first breakpoint, 
and pos1 should be smaller than pos2 for intrachromosomal SVs 
(i.e., DEL, DUP, h2hINV, and t2tINV)

• “chrom2” (character): chromosome for the second breakpoint

• “pos2” (numeric): genomic coordinate for the second 
breakpoint

• “svtype” (character): type of SV, encoded as DEL (deletion-like; 
+/-), DUP (duplication-like; -/+), h2hINV (head-to-head 
inversion; +/+), t2tINV (tail-to-tail inversion; -/-), and TRA 
(translocation)

• “strand1” (character): strand information for the first break-
point (e.g., + for DEL)

• “strand2” (character): strand information for the second break-
point (e.g., - for DEL)

• “sample” (character): sample ID 

print(head(example_sv), row.names = FALSE)

https://github.com/yanglab-computationalgenomics/Starfish.git
https://github.com/yanglab-computationalgenomics/Starfish.git
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11 36219433 2 52018778 + - TRA 07f16397-71bb-4594-ad4d-
caa7d2baeabd 

11 39939312 11 39941515 + - DEL 07f16397-71bb-4594-ad4d-
caa7d2baeabd 

12 40811811 12 63685824 + + h2hINV 07f16397-71bb-4594-ad4d-
caa7d2baeabd 

12 40838496 12 85876878 - - t2tINV 07f16397-71bb-4594-ad4d-
caa7d2baeabd 

12 57913369 12 75990126 - + DUP 07f16397-71bb-4594-ad4d-
caa7d2baeabd 

2.6 CNV Data Starfish requires the CNV data to be stored in a data frame with the 
following columns:

• “chromosome” (character): chromosome

• “start” (numeric): start coordinate for the CN segment

• “end” (numeric): end coordinate for the CN segment

• “total_cn” (numeric): total copy number, which could be either 
integer or decimal

• “sample” (character): sample ID 

print(head(example_cnv), row.names = FALSE) 

4 68582077 191154275 2 07f16397-71bb-4594-ad4d-caa7d2baeabd 

12 112420925 112603567 1 07f16397-71bb-4594-ad4d-caa7d2baeabd 

6 68336278 69355562 2 07f16397-71bb-4594-ad4d-caa7d2baeabd 

Starfish will calculate the copy number (CN) baseline for each 
chromosome to identify loss and gain fragments in a chromosome-
wise manner (see Note 4). It will use the gender information to call 
CN losses and gains on chromosome X. 

2.7 Gender Data Starfish requires the gender data to be stored in a data frame with 
following columns:

• “sample” (character): sample ID, which should match the ones 
in SV and CNV data frames.

• “gender” (character): gender for the sample, which could be 
“Female,” “female,” “F,” “f,” “Male,” “male,” “M,” or “m.” If 
the gender is unknown, any other characters could be given,



sample gender
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such as “unknown,” and the gender will be inferred by the CN 
baseline of chromosome X (see details in Subheading 2.8.2). 

print(head(example_sample), row.names = FALSE) 

3db6e6cc-1a06-49b9-834e-b6611cde4c4b Male 

2b6d4d66-7f0b-4bc0-b3d6-171956a937c5 Female 

18f5e75e-c623-11e3-bf01-24c6515278c0 Male 

fc8130df-897d-5404-e040-11ac0d485e0a Female 

2.8 Running Starfish There are four components of Starfish: starfish_link, starfish_fea-
ture, starfish_sig, and starfish_plot. Once the input data are 
loaded, we could run them step by step to obtain and examine 
intermediate outputs, or we could use starfish_all to run them all 
at once. 

2.8.1 starfish_link starfish_link loads an SV data frame and identifies “seed” CGR 
regions (see below), “linked” CGR regions, and complex SVs using 
modified ShatterSeek. Oscillating-copy-state criteria is removed 
from the original ShatterSeek package. In each sample, linked 
regions are identified if they are connected by at least two translo-
cations within 10 kb of any seed regions. The search is performed 
iteratively until no new linked regions could be found. A CGR 
event is defined as all connected seed and linked regions combined 
(Fig. 1). 

Usage 

starfish_link(sv_file, prefix = "") 

Input

• “sv_file”: the SV data frame defined previously.

• “prefix”: the prefix for all intermediate files; default is none. 

Example 

Starfish will output the progress of “seed” region and “linked” 
region calling. 

starfish_link_out = starfish_link(example_sv, prefix = "exam-

ple")



chrom1 pos1 chrom2 pos2 svtype complex sample cluster_id
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Fig. 1 “Seed” regions and “linked” regions in a CGR of a Bladder-TCC sample “2b142863-b963-4cc9-8f8f-

c72503c93390.” SVs are shown as arcs, and SV types are shown in different colors. “Seed” and “linked” 

regions are plotted as colored bars 

## Running… 

## Evaluating the statistical criteria 

## Successfully finished! 

## [1] “Iteration 1” 

## [1] “Starfish is connecting chromothriptic regions…” 

Output 
The function starfish_link returns an instance that contains three 
data frames: interleave_tra_complex_sv, mergecall, and starfish_call. 

interleave_tra_complex_sv contains complex SVs in the CGR 
regions, and “complex = 2” means both breakpoints are in the 
CGR regions. A CSV file “example_connected_CGR_complex_SV. 
csv” will be generated under the working space: 

print(head(starfish_link_out$interleave_tra_complex_sv), row. 

names = FALSE) 

19 22936736 4 4188431 TRA 2 18f5e75e-c623-11e3-
bf01-
24c6515278c0 

18f5e75e-c623-11e3-
bf01-
24c6515278c0_4_19 

19 22937258 4 4188272 TRA 2 18f5e75e-c623-11e3-
bf01-
24c6515278c0 

18f5e75e-c623-11e3-
bf01-
24c6515278c0_4_19



chr start end sample call3 call6

chr start end sample CGR_status link_chromosome cluster_id
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mergecall contains “seed” CGR regions which is identified by 
the modified ShatterSeek. “Call3” refers to the criteria of “at least 
three interleaved intrachromosomal SVs and four or more inter-
chromosomal SVs” to call CGRs used by ShatterSeek, and “call6” 
refers to the criteria of “at least six interleaved intrachromosomal 
SVs.” The regions pass either “call3” or “call6” criteria will be 
defined as “seed” CGR regions. 

print(head(starfish_link_out$mergecall), row.names = FALSE) 

3 162683868 169237872 07f16397-71bb-4594-ad4d-
caa7d2baeabd 

no CG 
R 

5 30217747 163056821 07f16397-71bb-4594-ad4d-
caa7d2baeabd 

no CG 
R 

X 126784598 152948223 07f16397-71bb-4594-ad4d-
caa7d2baeabd 

no CG 
R 

starfish_call contains final CGR regions (both seed and linked 
regions), and a CSV file “example_connected_CGR_event.csv” will 
be generated under the working space. 

print(head(starfish_link_out$starfish_call), row.names = 

FALSE) 

19 19053346 23741257 18f5e75e-c623-11e3-
bf01-
24c6515278c0 

CGR 4_19 18f5e75e-c623-11e3-
bf01-
24c6515278c0_4_19 

4 4188272 4188431 18f5e75e-c623-11e3-
bf01-
24c6515278c0 

link 4_19 18f5e75e-c623-11e3-
bf01-
24c6515278c0_4_19 

The columns are as follows:

• “chr”: chromosome of the CGR region.

• “start”: start coordinate of the CGR region.

• “end”: end coordinate of the CGR region.

• “sample”: sample ID.

• “CGR_status”: “CGR” means the region is the “seed” region 
identified by modified ShatterSeek, and “link” means the region 
is the “linked” region connected to “seed” regions.

• “link_chromosome”: the chromosomes linked together in 
the CGRs.
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Fig. 2 Genomic features in CGR regions. Each layer represents a unique CGR 

event with CGR region highlighted in green. Different CN fragments are painted 

in different colors. Letters “a”  to  “g,” “n,” “t,” “s,” and “L” denote the lengths of 

DNA segments, which are used for feature computation

• “cluster_id”: sample ID plus link_chromosome, which is the 
unique CGR event ID. 

2.8.2 starfish_feature This function loads CGR regions and SVs in the CGRs reported by 
starfish_link and then combines CNV calls and gender to construct 
a feature matrix for clustering and classification in Subheading 
2.8.3. In Fig. 2, the size of CGR region [s] equals to ∑a:g. Break-
point dispersion score is defined as mean absolute deviation of [a:g] 
which measures the randomness of breakpoint distribution of a 
CGR. Copy loss and copy gain percentages are calculated by 
∑a, e/[s], and ∑c, f/[s]. Telomere loss percentage is n/L. The 
maximum CN is 10 in this example. 

Usage 

starfish_feature(cgr, complex_sv, cnv_file, gender_file, pre-

fix = "", genome_v = "hg19", cnv_factor = "auto", arm_del_rm = 

TRUE) 

Input

• “cgr”: the output of starfish_link_out$starfish_call.

• “complex_sv”: the output of starfish_link_out 
$interleave_tra_complex_sv.

• “cnv_file”: the CNV data frame defined previously.
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Fig. 3 SVs and CNVs identified from single-cell sequencing data with 

experimentally induced micronuclei. CN data from single-cell sequencing are 

noisy

• “gender_file”: the sample gender defined previously.

• “prefix”: the prefix for all intermediate files; default is none.

• “genome_v”: the genome assembly used to call SV and CNV. It 
could be “hg19” or “hg38”; default is “hg19.”

• “cnv_factor”: the CN fluctuation beyond or below baseline to 
identify loss and gain fragments for samples with decimal CN; 
default is “auto,” or users can provide a value between 0 and 1.

• “arm_del_rm”: logical value for whether or not arm-level dele-
tions should be removed; default is TRUE. 

For each chromosome, starfish_feature will calculate the lon-
gest CN and set it as the chromosome CN baseline. In tumors, 
aneuploidy is common, so each chromosome can have a different 
baseline. By doing this, chromosome-specific copy loss and copy 
gain fragments can be identified. Sometimes, the CNV data may be 
noisy, such as from single-cell WGS. It would be challenging to 
determine the CN baselines and CNVs. For example, Fig. 3 shows a 
noisy CN profile from single-cell sequencing data of an experimen-
tally induced chromothriptic cell [11]. The “cnv_factor” parameter 
is designed particularly for these samples. Copy loss fragments are 
defined as fragments with CN less than (CN baseline)*(1-cnv_fac-
tor), and copy gain fragments are those with CN greater than 
(CN baseline)*(1+cnv_factor). The default value is “auto,” and 
Starfish will decide the value automatically based on the CN profile. 
In “auto” mode, if the CN segments all have integer CNs, the 
algorithm will assume the CN profile comes from bulk tumor 
sequencing samples with high quality CN profiles, such as



PCAWG samples, and then cnv factor will be automatically set to 
0. If the CN segments are decimal values, the algorithm will assume 
the CN profile is noisy, such as single-cell sequencing data in Fig. 3, 
and then cnv_factor will be automatically set to 0.15. The users may 
set this parameter manually to a value ranging from 0 to 1 based on 
the quality of CN profiles. For each sample without gender data, 
Starfish will infer the gender based on the CN baseline of chromo-
some X. If (1-cnv_factor)≤(CN baseline of chromosome X)≤(1-
+cnv_factor), the gender will be inferred as “Male”; otherwise, it 
will be inferred as “Female.”
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Fig. 4 SVs and CNVs identified from single-cell sequencing data with 

experimentally induced chromatin bridges. Induced chromatin bridge 

generates the telomere loss signature in the CGR region 

“arm_del_rm” controls whether arm-level deletions (at least 
95% of one chromosome arm is lost) should be removed or not. 
To avoid the impact of aneuploidy on identifying telomere loss, 
arm-level deletions are removed from bulk tumor sequencing data 
by default, since arm-level copy losses are common in cancer and 
independent of CGRs. However, in single-cell sequencing of exper-
imentally induced CGRs (Fig. 4), all alterations are generated in 
one cell cycle including the somatic SVs and arm-level CNVs. This 
function should be turned off in that case. 

Example 

Starfish will output the progress of CGR feature computation. 

starfish_feature_out = starfish_feature(starfish_link_out 

$starfish_call, starfish_link_out$interleave_tra_complex_sv,



sample cluster_id max_CNV

Loss_size

_percentage

Gain_size

_percentage

max_telo_loss

_percentage

Brk_dispersion

_MAD_mean_total

example_cnv, example_sample, prefix = "example", genome_v = 

"hg19", cnv_factor = "auto", arm_del_rm = TRUE) 
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## [1] “Starfish is computing the feature matrix, please be 
patient…” 

## [1] “6% is done…” 

## [1] “Event 07f16397-71bb-4594-ad4d-caa7d2baeabd_12” 

## … 

## [1] “62% is done…” 

## [1] “Event 2b6d4d66-7f0b-4bc0-b3d6-171956a937c5_12” 

## … 

## [1] “100% is done…” 

## [1] “Event fc8130df-897d-5404-e040-
11ac0d485e0a_2_3_7_17” 

## [1] “CGR feature computing is done!” 

Output 

The function starfish_feature returns an instance that contains a 
data frame—cluster_feature—which is the feature matrix. A CSV 
file “example_CGR_feature_matrix.csv” will be generated under 
the working space: 

print(head(starfish_feature_out$cluster_feature), row.names = 

FALSE) 

07f16397-71bb-
4594-ad4d-
caa7d2baeabd 

07f16397-71bb-
4594-ad4d-
caa7d2baeabd_12 

2 0.072 0 0 1.428 

07f16397-71bb-
4594-ad4d-
caa7d2baeabd 

07f16397-71bb-
4594-ad4d-
caa7d2baeabd_3 

2 0.180 0 0 0.962 

07f16397-71bb-
4594-ad4d-
caa7d2baeabd 

07f16397-71bb-
4594-ad4d-
caa7d2baeabd_6 

2 0.968 0 0 1.711 

The columns are

• “sample”: sample ID

• “cluster_id”: the unique CGR event ID

• “max_CNV”: maximum copy number (log scale)

• “Loss_size_percentage”: copy loss percentage

• “Gain_size_percentage”: copy gain percentage



cluster_id

Brk_dispersion

_MAD_mean_total

Loss_size

_percentage

Gain_size

_percentage log_max_CN

max_telo

_loss_percentage CGR_signature

116 Lisui Bao

• “max_telo_loss_percentage”: highest telomere loss percentage

• “Brk_dispersion_MAD_mean_total”: breakpoint dispersion 
score 

2.8.3 starfish_sig This function loads the feature matrix and performs either signa-
ture classification (classifier) or de novo signature decomposition 
(clustering). 

Usage 

starfish_sig(cluster_feature, prefix = "", cmethod = "class") 

Input

• “cluster_feature”: feature matrix, which is the output from star-
fish_feature_out$cluster_feature.

• “prefix”: the prefix for intermediate files; default is none.

• “cmethod”: method to infer signatures from the CGR feature 
matrix. It could be either “class,” the preconstructed classifier of 
PCAWG dataset, or “cluster,” the de novo unsupervised clus-
tering. Default is “class.” 

Example 1 

If the user selects “class” method, Starfish will run the signature 
classification based on a preconstructed classifier built upon 2428 
tumors from PCAWG and output the progress: 

starfish_sig_out = starfish_sig(starfish_feature_out$clus-

ter_feature, prefix = "example", cmethod = "class") 

## Using cluster_id as id variables 

## [1] “Signature classification is done!” 

Output 1 
The function starfish_sig returns a data frame which contains the 
normalized CGR feature values and the CGR signature classifica-
tion. A CSV file “example_pcawg_6signatures_class.csv” will be 
generated under the working space: 

print(head(starfish_sig_out), row.names = FALSE) 

3db6e6cc-1a06-49b9-

834e-

b6611cde4c4b_1_6_7 

_12_X 

1.987 0 0.839 3.714 0 1 ecDNA/ 

double 

minutes

(continued)



cluster_id _MAD_mean_total _percentage _percentage log_max_CN _loss_percentage CGR_signature
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Brk_dispersion Loss_size Gain_size max_telo 

18f5e75e-c623-11e3-

bf01-

24c6515278c0_4_19 

0.110 0 2.699 1.794 4.054 2 BFB cycles/ 

chromatin 

bridge 

07f16397-71bb-4594-

ad4d-caa7d2baeabd_6 

2.955 3.543 0 0.597 0 3 Large loss 

07f16397-71bb-4594-

ad4d-caa7d2baeabd_3 

0.325 0.661 0 0.597 0 4 Micronuclei 

The columns are

• “cluster_id”: the unique CGR event ID

• “log_max_CN”: normalized maximum copy number (log scale)

• “Loss_size_percentage”: normalized copy loss percentage

• “Gain_size_percentage”: normalized copy gain percentage

• “max_telo_loss_percentage”: normalized highest telomere loss 
percentage

• “Brk_dispersion_MAD_mean_total”: normalized breakpoint 
dispersion score

• “CGR_signature”: CGR signature classification 

Breakpoint dispersion score 

Loss percentage 

Gain percentage 

Telomere loss percentage 

log10(max CN) 

1 ecDNA/double minutes 
2 BFB cycles/chromatin bridge 
3 Large loss 
4 Micronuclei 
5 Large gain 
6 Hourglass 

Fig. 5 Six CGR signatures with normalized feature values in the test data. Each column is a unique CGR event. 

Top panel shows the predicted signature of the event, and bottom panels show the normalized values of five 

features
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A signature plot will be generated for users to quickly check the 
proportion of six CGR signatures in the study cohort (Fig. 5). 

Example 2 
If the user selects “cluster” method, Starfish will invoke R package 
ConsensusClusterPlus and run the unsupervised consensus cluster-
ing for de novo signature decomposition and output the progress: 

starfish_sig(starfish_feature_out$cluster_feature, prefix = 

"example", cmethod = "cluster") 

## end fraction 

## clustered 

## [1] “Clustering is done! The clustering results are stored 
under ‘CGR_cluster’ folder!” 

0
.0

 

0
.2

 

0
.4

 

0
.6

 

0
.8

 

1
.0

 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

consensus CDF 

consensus index 

C
D

F
 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

Fig. 6 CDF plot for test data. This graphic shows the cumulative distribution functions of the consensus matrix 

for each cluster number K (indicated by colors). This figure allows the user to determine at what number of K 

the CDF reaches an approximate maximum. The optimal K would be 6 as the curve approaches the plateau in 

this example
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Fig. 7 Delta area plot for test data. This graphic shows the relative change in area under the CDF curve 

comparing cluster number K and K - 1. This plot allows the user to determine the relative increase in 

consensus and determine K at which there is no appreciable increase. Beginning from cluster 6, there is no 

more dramatic increase, so six clusters would be optimal in this example 

Output 2 
The clustering results are stored under “CGR_cluster” folder. 
Users could check either the “Delta Area” plot (Fig. 6) or the 
“Consensus Cumulative Distribution Function (CDF) Plot” 
(Fig. 7) to determine the optimal cluster number K: 

The user can find clustering tables “CGR_cluster.k=K.consen-
susClass.csv” under the “CGR_cluster” folder, where different K 
represents different clustering numbers. Taking K = 6 as an exam-
ple, column “V1” is the unique CGR event ID, and column “V2” is 
the clustering ID. 

starfish_sig_cluster = read.csv("CGR_cluster.k=6.consensu-

sClass.csv", header = F) 

print(head(starfish_sig_cluster), row.names = FALSE) 

07f16397-71bb-4594-ad4d-caa7d2baeabd_12 1

(continued)
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V1 V2 

07f16397-71bb-4594-ad4d-caa7d2baeabd_3 2 

07f16397-71bb-4594-ad4d-caa7d2baeabd_6 3 

07f16397-71bb-4594-ad4d-caa7d2baeabd_5 4 

07f16397-71bb-4594-ad4d-caa7d2baeabd_7 2 

07f16397-71bb-4594-ad4d-caa7d2baeabd_X 4 

2.8.4 starfish_plot This function loads an SV data frame, a CNV data frame, and CGR 
regions reported by starfish_link, to draw the CGR regions in a 
linear setting. 

starfish_plot(sv_file, cnv_file, cgr, genome_v = "hg19") 

Input

• “sv_file”: the SV data frame defined previously.

• “cnv_file”: the CNV data frame defined previously.

• “cgr”: the output of starfish_link_out$starfish_call.

• “genome_v”: the genome assembly version. It could be either 
“hg19” or “hg38,” and default is “hg19.” 

Example 

starfish_plot(example_sv, example_cnv, starfish_link_out 

$starfish_call) 

Output 
Linear plots of CGR regions (Fig. 8) 

2.8.5 starfish_all Starfish also provides a function “starfish_all” to run all four func-
tions described above at once. 

Usage 

starfish_all(sv_file, cnv_file, gender_file, prefix = "", 

genome_v = "hg19", cnv_factor = "auto", 

arm_del_rm = TRUE, plot = TRUE, cmethod = "class") 

Input

• “sv_file”: the SV data frame defined previously.

• “cnv_file”: the CNV data frame defined previously.

• “gender_file”: the gender data frame defined previously.

• “prefix”: the prefix for all intermediate files; default is none.
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Fig. 8 Example plot of SVs and CNVs in a CGR region involving chr1, 6, 7, 12, and 

X in tumor sample “3db6e6cc-1a06-49b9-834e-b6611cde4c4b” with 

connected “seed” CGR regions shown in red and “linked” CGR regions shown 

in blue

• “genome_v”: the genome assembly version. It could be “hg19” 
or “hg38”; default is “hg19.”

• “cnv_factor”: the CN fluctuation beyond or below baseline to 
identify loss and gain fragments for samples with decimal CN; 
default is “auto,” or users can provide a value between 0 and 1.

• “arm_del_rm”: logical value for whether or not arm-level dele-
tions should be removed; default is TRUE.

• “plot”: the logical value of plotting CGRs; default is TRUE.

• “cmethod”: method to infer signatures from the CGR feature 
matrix, which can be “class” or “cluster”; default is “class.” 

Example 

starfish_all(example_sv, example_cnv, example_sample, prefix 

= "example", genome_v = "hg19", 

cnv_factor = "auto", arm_del_rm = TRUE, plot = TRUE, 

cmethod = "class")
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3 Notes 

1. The users can load all packages at once as 

Packages <- c("ShatterSeeky", "GenomeInfoDb", "plyr", "data. 

table", "GenomicRanges", "IRanges", "MASS", "ggplot2", "grid", 

"gridExtra", "dplyr", "ConsensusClusterPlus", "factoextra", 

"gplots", "ggpubr", "reshape2", "cowplot", "scales", "patch-

work", "Cairo", "ggforce") 

lapply(Packages, library, character.only = TRUE) 

2. ShatterSeeky could be installed as 
g  i  t c l o n e h  t  t  p  s  :  /  / g i t h u b . c o m / y a n g l a b -

computationalgenomics/Starfish.git 
cd Starfish 
R CMD INSTALL ShatterSeeky_0.4.tar.gz 

3. Chromosome names could be either Ensembl style or UCSC 
style, e.g., “Chr1,” “chr1,” and “1” are all accepted, and only 
chromosomes 1–22, X, and Y are considered. 

4. For bulk tumor sequencing samples, it is strongly recom-
mended to use algorithms, such as Batternberg and Sequenza, 
to derive integer copy numbers, rather than using copy ratios 
between tumor and normal. 
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Chapter 6 

Using FFPEsig to Remove Formalin-Induced Artifacts 
and Characterize Mutational Signatures in Cancer 

Qingli Guo, Ann-Marie Baker, Ville Mustonen, and Trevor A. Graham 

Abstract 

The wealth of routinely processed formalin-fixed and paraffin-embedded (FFPE) cancer biopsies is poten-
tially a tremendous resource for cancer genomics research. However, the presence of formalin-induced 
artifactual mutations in FFPE material can confound mutational analyses. Our de-noising algorithm, 
FFPEsig, removes FFPE-related artifactual mutations enabling the inference of biological mutational 
signatures. In this chapter, we focus on the practical use of FFPEsig, offering a detailed guidance from 
both the wet-lab experimental and bioinformatics analysis perspectives. Our aim is to assist users to generate 
robust and significant results using FFPEsig. 

Key words FFPE samples, Signature analysis, Mutational processes, De-noising, Biological mutation 
signal 

1 Introduction 

Characterizing mutational signatures in cancer FFPE (formalin-
fixed paraffin-embedded) specimens can help us to understand 
cancer genome evolution [1–3]. However, the use of formalin in 
fixing tissues can result in significant DNA damage, leading to not 
only a reduced quantity but also a diminished quality in resulting 
DNA sequencing libraries [4, 5]. In our earlier research, we intro-
duced FFPEsig, a comprehensive computational tool designed to 
eliminate noise and unveil genuine biological signals within DNA 
sequencing data derived from FFPE blocks [6]. Our de-noising 
method assumes that formalin induces a characteristic pattern of 
“mutational noise” that will be consistent across FFPE samples; 
therefore, removal of this predictable pattern from the observed 
mutational profiles is plausible. 

We discovered that the mutational spectrum of formalin-
induced artifactual mutations is highly similar to that of two 
biological mutational processes—C > T mutations at CpG sites
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that occur as part of aging [7] and C > T mutations that occur 
because of a specific base excision repair deficiency that results from 
NTHL1 mutations [8]. These two biological processes produce 
patterns of mutations highly similar to formalin-induced signatures 
in scenarios where sequencing library preparation is performed with 
and without a chemical “FFPE repair” agent, respectively [6]. To 
subtract FFPE generated noise, FFPEsig takes the observed muta-
tion profile and the known noise mutational signature as input, 
subtracts the noise from the observed profile, and outputs the 
predicted biological mutational profile for the given sample.
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Our previous results revealed two main factors that can impact 
the correction performance of FFPEsig: signal-to-noise ratio 
(SNR) (the true mutational load vs the formalin-induced artifacts) 
and signal-to-noise similarity (SNS) (the similarity of the muta-
tional signatures produced by biological processes compared to 
that of formalin-induced mutagenesis) [6]. 

While we briefly addressed the implementation of this knowl-
edge in the analysis of mutational signatures in FFPE samples, this 
chapter provides a more comprehensive usage manual. We focus on 
the practical solutions and suggestions derived from our own 
research. Additionally, we have incorporated notes covering fre-
quently asked questions and areas that users commonly overlook. 

2 User Manual 

In this section, we first summarize the major steps of using FFPE-
sig, including the recommended wet-lab protocols. Next, we pro-
vide a detailed description for each of the components of the 
bioinformatics analysis. Finally, we focus on the practical usage of 
FFPEsig with additional notes. 

2.1 Overview Here we provide an overview about the major steps of applying 
FFPEsig (Fig. 1), including the wet-lab “FFPE repair” treatment 
(Step 1), downstream bioinformatics analysis (Step 2), and a final 
noise correction using FFPEsig (Step 3). We included the first two 
steps (wet lab and mutational calling) in our guidance as they 
directly impact the two main factors, SNS and SNR, which jointly 
determine the success of noise removal by FFPEsig. 

In Step 1, the decision-making process involves determining 
whether the target FFPE sample(s) should undergo repair using a 
chemical agent (e.g., uracil DNA glycosylase, UDG) or be left 
unrepaired during the DNA extraction process. This choice results 
in the generation of distinct formalin-induced mutational signature 
“error profiles”, which can further add complexity to the bioinfor-
matics process if the error profile is very similar to the dominant 
true biological mutational processes expected to be active in the 
sample.
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Fig. 1 Overview of the major steps of using FFPEsig 

For instance, colorectal cancers (CRCs) often exhibit a promi-
nent aging signature (SBS1, COSMIC version 3). If the CRC FFPE 
DNA has undergone FFPE repair, the artifactual mutations would 
also display an SBS1-like FFPE noise pattern, leading to a high SNS 
[6]. In such a scenario, FFPEsig will likely “overcorrect” the noise 
(i.e., erroneously remove true biological signal) because it is chal-
lenging to differentiate the highly similar authentic signals from the 
artifactual ones. Therefore, we strongly recommend using unre-
paired FFPE DNA for mutational signature analysis with FFPEsig. 
The following subsection 2.2 outlines how prior knowledge of a 
given cancer type can guide this decision-making process. 

Step 2 represents a bioinformatics analysis pipeline for calling 
somatic mutations and generating mutational profiles from the 
mutation list. The incorporation of artifact-filtering methods is 
crucial at this stage to ensure a reasonable SNR for FFPEsig to 
operate effectively. In our observations, FFPEsig demonstrates 
effective performance when the SNR is greater than 0.1 [6]. Never-
theless, its efficacy declines rapidly when the true mutation count is 
less than 10% of the noise count, which is due to the stochastic 
variability of the noise outweighing the signal itself. Therefore, the 
upstream artifact-filtering steps are crucial for addressing easily 
removable FFPE artifacts and maximizing SNR values. To achieve 
this goal, we offer additional suggestions in the following sections.
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Fig. 2 Using public datasets to determine suitable laboratory treatment of FFPE 

samples based on SNS. (This figure is adapted from Guo et al. [6]) 

2.2 Defining the 

Suitable Laboratory 

Protocols 

To decide whether chemical FFPE repair treatment should be 
applied to the target FFPE DNA sample Y of cancer type X, 
FFPEsig users can apply the existing knowledge by examining 
high quality tumor sequencing data from the same cancer type 
X (Fig. 2), e.g., from the pan-cancer data cohort [9]. In this 
context, we assume that the biological mutation profile of target 
FFPE sample Y is likely to align with publicly available mutational 
spectrum of the same cancer type. 

For example, users can compare the averaged SNS values, 
R and NR, calculated between the biological mutation patterns 
(M) of fresh-frozen tumors of cancer type X and the two estab-
lished repaired and unrepaired FFPE signatures, respectively. The 
UR value represents the mean pair-wise cosine similarities between 
biological profiles and the unrepaired signature, with 
R representing the same value computed against the repaired sig-
nature. If the biological mutation patterns share a higher similarity 
with the unrepaired signature (R < UR), we recommend applying 
UDG treatment to repair the FFPE DNA extracted from sample Y. 
Otherwise, if the similarity is greater with the repaired signature 
(R > UR), FFPE DNA sample Y should remain unrepaired.
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Table 1 

Recommended application of FFPEsig on common cancer type 

Group Common cancer types Recommendation (Step 1) 

Confident Lung-SCC Repair 
Bladder-TCC 
Lung-AdenoCA 
Head-SCC 
Skin-Melanoma 
Eso-AdenoCA Unrepair 
ColoRect-AdenoCA 
Stomach-AdenoCA 
CNS-GBM 

Less confident (proceed with care) Liver-HCC Repair 
Biliary-AdenoCA 
Ovary-AdenoCA 
Breast-AdenoCA 
Kidney-RCC 
Bone-Osteosarc 
Uterus-AdenoCA Unrepair 
Panc-AdenoCA 
Lymph-BNHL 
Prost-AdenoCA 

Not confident Lymph-CLL NA 
Kidney-ChRCC 
Panc-Endocrine 
Myeloid-MPN 
Thy-AdenoCA 
CNS-Medullo 
CNS-PiloAstro 

This table is adapted from Guo et al. [6] 

We applied the above principle to sequencing data from fresh-
frozen tumors in Pan-Cancer Analysis of Whole Genomes 
(PCAWG) [9] and summarized the recommended protocol for 
the common cancer types reported in PCAWG (Table 1). However, 
users are encouraged to apply these principles using additional 
public datasets as these become available. 

2.3 Generating FFPE 

Mutational Profile with 

Reasonable SNR 

Upon obtaining the raw sequencing data from the target FFPE 
cancer sample Y along with its matched normal DNA data, the 
initial step involves processing the sample pair to call somatic 
mutations. It is crucial to note that the removal of FFPE noise 
mutations also carries a risk of excluding true somatic mutations. 
Therefore, achieving a balanced mutation list with a reasonable 
SNR is essential in Step 2. 

In our laboratory, we call SNVs using the mutation callers, such 
as Mutect2 [10] and Platypus [11]. Additional filters are then 
applied, including (1) checking if the FILTER flag was marked as



PASS or other acceptable filters (alleleBias, Q20, QD, SC, Hap-
Score); (2) ensuring the variant is not a known germline variant; 
(3) confirming a genotype is called for all samples and the genotype 
Phred score is 10 or higher in all samples; and (4) verifying that the 
normal sample has no reads containing the variant and at least three 
or more reads support the variant in a tumor sample. For a more 
detailed overview, please refer to the relevant Method section in our 
original paper [6]. Finally, SigProfilerMatrixGenerator is used to 
derive mutational profiles [12]. 
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Following the mutation calling and filtering steps, we can once 
again use available cancer profiles from existing fresh-frozen tumors 
to estimate the SNR for sample Y (Fig. 3). To obtain this value, we 
calculate the number of point mutations in the resulting FFPE 
mutational profile, denoted as symbol O. We aggregate the aver-
aged mutation load of non-hypermutated tumors in cancer type 
X (with a mutation load <5 × 104 )  (see Note 1), denoted as symbol 
A. The approximate estimation of SNR is then calculated by com-
puting A/(O-A). If the estimated SNR is greater than 0.1, the 
FFPE mutation profile and the known FFPE repair status (from 
Step 1) are ready for use in FFPEsig for noise correction in Step 
3. However, if the estimated SNR falls below 0.1, additional muta-
tion filters or adjustments to the threshold for the current filters 
(in Step 2) may be necessary to regenerate the FFPE mutation 
profile.

In our previous analysis, we observed that certain cancer types 
exhibit a relatively lower mutational load, making it challenging to 
adjust the bioinformatics pipeline to achieve a reasonable SNR 
(Table 1). Consequently, we do not recommend applying FFPEsig 
to cancer samples collected from these tissues. 

2.4 Applying FFPEsig FFPEsig is a standalone command-line tool and implemented in 
python (version >3). The following code can be used to run 
the tool: 

python FFPEsig.py -i [input file] -s [sample ID] -l [repair 

mode] -o [output file] 

In the above code, the script “FFPEsig.py” is available to 
download from here. In addition, four arguments are required to 
run the tool: 

1. --input/-i <string>, refers to the input file containing the 
observed mutation counts in 96-channel format for one or 
more FFPE samples (see Note 2). 

2. --sample/-s <string>, refers to a sample ID contained in the 
input file. This sample ID identifies which sample to process 
further, and it also serves as the file identifier in the output 
folder (see Note 3). Running multiple samples simultaneously 
is also possible (see Note 4).

https://github.com/QingliGuo/FFPEsig/blob/main/FFPEsig.py


Characterising Mutational Signatures Using FFPEsig 131

Fig. 3 Adjusting bioinformatics analysis pipeline to meet the minimal SNR 

requirement using public datasets. (This figure is adapted from Guo et al. [6]) 

3. --label/-l <string>, refers to the label of the repair status of the 
sample. The label can be either “Repaired” or “Unrepaired.” 
When the “Repaired” label is specified, the repaired FFPE 
noise signature (similar to SBS1) is used as the noise mutation 
pattern. On the other hand, when the “Unrepaired” label is 
provided, the unrepaired FFPE noise signature (similar to 
SBS30) is utilized by FFPEsig. It is crucial to clearly specify 
the label to avoid error messages. Additionally, users have the 
option to update the error profiles (see Note 5) or repurpose 
the tool to remove noise in a different setting (see Note 6). 

4. --output/-o <string>: provides the path to the folder where all 
the output files will be stored. This folder must be created 
(“mkdir path-to-the-folder”) before running FFPEsig if it 
does not exist.
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FFPEsig generates four files in the output folder when 
provided with appropriate input arguments. The output files 
include the following: 

1. ‘SampleID’_corrected_profile.csv, contains the final corrected 
mutation profile, which can be further used for the decompo-
sition of individual mutational signatures (see Note 7). 

2. ‘SampleID’_all_solutions.csv, contains all solutions derived 
from using different random initial values (see Note 3). This 
file is helpful to help the users to estimate the variances among 
all predicted values, if interested. 

3. ‘SampleID’_before_correction.pdf, visualizes original mutational 
profile of the given sample over the 96-mutational channels. 
Here, we provide a representative example of an uncorrected 
profile of a simulated FFPE sample (Fig. 4, top panel). 

4. ‘SampleID’_after_correction.pdf, visualizes the corrected muta-
tional profile of the given sample over the 96-mutational chan-
nels. Again, we show an example of a corrected profile from a 
simulated FFPE sample (Fig. 4, bottom panel). 

3 Possible Batch Effect and Strategies 

In our previous article, we have observed an excess number of 
artifactual T > C mutations in FFPE samples in study 1 [13], but 
not in study 2 [5] and 3 [14]. Additionally, we reviewed an

Fig. 4 Examples of output plots from FFPEsig. In the output folder, users can find two figures generated by 

FFPEsig for a given sample. The top panel displays the 96-mutational channel plot of the original mutation 

count, while the bottom panel shows the same plot of the predicted biological mutational profile for the same 

sample. The total mutation count, sample ID, and correction status are annotated in the plots



additional 20 publications regarding this issue, and only 3 of 20 arti-
cles (15%) observed T > C mutations from their FFPE samples 
[6]. These collective findings suggest that these T > C mutations 
are likely batch-related artifacts produced by lab-specific DNA 
extraction or library generation protocols and/or sequencing and 
basic processing of these libraries.
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Our previous investigation suggested that the choice of poly-
merase used in PCR (and reaction conditions) might be responsible 
for the batch-related artifacts. DNA polymerases have different 
levels of fidelity and bypass efficiency, also known as translesion 
synthesis, leading to polymerase associated artifacts [15, 16]. For 
example, T:G mispair is one of the most frequently produced and 
most easily extended base substitution errors for Taq DNA poly-
merase, which will lead to T > C accounting for 67% of the artifacts 
[17]. The study also found when dNTP concentration is lowered 
from 800 to 6 μm, only T:G mismatches or perfect base pairs are 
extended [18]. Further, Y family bypass DNA polymerase would 
cause a great number of A:T > G:C artifacts as the misincorpora-
tion of dGTP opposite of T is even more efficient than inserting 
dATP in this family [16]. 

In situations where there is an abundance of T > C mutations, 
biological interpretation of these mutations should be approached 
with extra care. In our current signature analysis, we treated T > C 
mutation counts as missing data and assigned them zero values. 
Our analysis revealed that the remaining 80 channels (non-T > C) 
still retained sufficient information for robust signature decompo-
sition. As more samples are sequenced, it will become feasible to 
replace these missing data with corrected values. For instructions 
on updating this information in the error profile, users can refer to 
Notes 5 and 6 in this chapter. 

4 Notes 

1. FFPEsig is designed to filter the mutational spectra of samples 
with an overwhelming amount of noise that obscures the gen-
uine biological signal. However, if the volume of the true signal 
is sufficiently strong to the extent that the FFPE-related noise is 
no longer the dominant component, FFPEsig may not be 
necessary. For instance, we observed that FFPEsig consistently 
performs well on hypermutated tumors, irrespective of the 
noise level. This is likely because the dominant biological muta-
tional process can be reliably identified without the need for 
FFPE artifact removal. 

2. The mutation count in the 96-mutational channel format can 
be obtained using installed methods like SigProfilerMatrixGen-
erator [12]. It is important to note that the input data must be



for sample in “cat sample_names.txt” do

python FFPEsig.py --input <Path-to-the-Data-

Frame> --sample $sample --label <Unrepaired|Repaired> --

output <Path-of-output-folder>

Done
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in the same order as presented in our signature file—because 
FFPEsig does not read the row names of the input file, which 
may be displayed in different formats by different matrix gen-
eration tools. 

3. The input file should be a standardized CSV file (comma-
separated) with the 96-channel mutational counts displayed 
in the columns, where the column names represent the sample 
IDs. While it can contain more than one sample, only the 
specified sample ID will be processed by using the command 
line. For instructions on running multiple samples automati-
cally, please refer to Note 4. 

4. FFPEsig focuses on one sample at a time. For each given 
sample, the pipeline runs the correction algorithm 100 times 
using different random initial values and collects predicted 
mutational profiles from each interaction. The final predicted 
profile takes the median values from each mutational channel 
over the 100 candidate solutions. 

To run multiple samples, the users can utilize the following 
codes in a shell script (see also the further discussion in our tool 
github page): 

In the above code, sample_names.txt refers to a file contain-
ing all the targeted sample IDs. Each line within this file should 
contain one sample ID. 

5. In the current version of FFPEsig, the formalin-induced FFPE 
signatures were derived from targeted panel sequencing data 
and then projected into the genome scale. However, we 
acknowledge that confounders can arise at both wet-lab and 
dry-lab steps, leading to some variability in error profiles. In 
such cases, users may consider using their own error profiles 
from benchmarked pilot studies. To update or replace the 
current error profiles, users can modify the relevant mutational 
frequency values in the instances named “ffpe_sig_repaired” or 
“ffpe_sig_unrepaired” in our FFPEsig.py script. Alternatively, 
you can provide the noise mutation profile directly to the “W1” 
argument in the function named “correct_FFPE_profile.” For 
more details, please refer to our analysis notebook. 

6. FFPEsig can be repurposed to correct noise in other settings 
where the dominant noise obscures the signal. In such cases, 
users can update the new error profile, which could also be 
generated from other types of mutations, such as double base

https://github.com/QingliGuo/FFPEsig/blob/main/Data/FFPE_signatures_96-channel.csv
https://github.com/QingliGuo/FFPEsig/issues/4
https://qingliguo.github.io/FFPEsig/Correcting_FFPEnoise_in_WGS_FFPE_CRCs.html
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substitutions and small insertions and deletions, not necessarily 
limited to SBS mutations. In this scenario, the visualization 
codes, designed for SBS mutations, should be muted to avoid 
error messages. 

7. The corrected mutation profile by FFPEsig is considered a 
combined biological mutational profile, representing a linear 
combination of various biological mutational processes. To 
explore the active mutational processes in the given sample, a 
signature refitting analysis is required. Our GitHub page 
includes a function named “sig_refitting” specifically designed 
for this task. Users can easily utilize it by downloading the 
setup.py. Detailed instructions for running this analysis can be 
found on our analysis codes page. 
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Chapter 7 

Inferring Phenotypes of Copy Number Clones in Cancer 
Populations Using TreeAlign 

Hongyu Shi, Matthew Zatzman, Sohrab Shah, and Andrew McPherson 

Abstract 

Somatic copy number changes modify gene expression and drive cancer development and progression. 
Single-cell techniques now allow for the profiling of both gene expression and copy number, opening the 
possibility of linking expression changes with copy number changes at a single-cell level. However, joint 
measurement of both expression and copy number from the same cell is not commonplace, and thus joint 
analysis of expression and copy number requires computational integration of the two modalities. TreeA-
lign is a method for matching cells in single-cell RNA (scRNA) data to clones inferred from single-cell 
whole genome sequence (scWGS) data. TreeAlign is phylogeny aware and capable of robustly modeling the 
effect of gene dosage on gene expression. In this chapter, we provide a practical guide for using TreeAlign to 
jointly analyze copy number and gene expression from single-cell whole genome sequencing and single-cell 
RNA sequencing datasets. 

Key words Cancer genomics, Tumor evolution, Single-cell RNA sequencing, Single-cell whole 
genome sequencing, Probabilistic modeling, Tumor microenvironment 

1 Introduction 

Copy number alterations (CNAs) are frequent events in cancer and 
are known to contribute to transcriptional diversity among cancer 
cells. Amplification of oncogenes and deletion of tumor suppressors 
can lead to dysregulated expression of affected genes and change 
the fitness landscape of cancer cells [1]. CNAs spanning larger 
genomic regions of chromosomal arms or whole chromosomes 
can impact the expression of hundreds of genes through copy 
number (CN) dosage effects. CN dosage effects are defined as the 
positive correlation between CN (or gene dosage) and the 
corresponding gene expression [2]. Previous studies using bulk 
sequencing techniques have investigated the association between 
clonal CNAs and gene expression [3–5]. The expression level of a 
gene can be influenced by copy number dosage effects reflected by 
the significant positive correlation between gene expression and the
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underlying copy number (CN) [2]. However, gene dosage effects 
are not deterministic and may be subject to compensatory mechan-
isms, rendering the impact of CNAs on expression as highly variable 
across the genome. Transcriptional adaptive mechanisms [6] 
including epigenetic modifications and downstream transcriptional 
regulation can modulate CN dosage effects [7–9], further obscur-
ing the direct impact of gene dosage. It remains an open question 
to investigate how CNAs impact gene expression through both 
dosage-dependent and dosage-independent mechanisms and how 
dosage effects contribute to intratumor heterogeneity and clonal 
evolution in cancer.
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Establishing a robust connection between genetic composi-
tions and cancer cell phenotypes is challenging. Conventional 
bulk sequencing methods have been widely employed to delineate 
somatic alterations and concomitant phenotypic modifications [3– 
5, 10]. Although paired datasets with both DNA and RNA 
sequencing make it possible to correlate these two aspects, the 
resolution of these studies is still limited at the level of patient-
derived tumor samples and unable to provide a comprehensive view 
of genetic and transcriptomic diversity at the subclonal or single-
cell level. Conducting single-cell RNA and DNA sequencing sepa-
rately offers the capacity to profile a large number of individual cells 
and thereby provides a more comprehensive depiction of cell popu-
lations in tumors. In recent years, an increasing number of studies 
have appeared, generating multimodal datasets with single-cell 
DNA and single-cell RNA profiles [1, 11–13]. The measurements 
of both genetic alterations and gene expression at single-cell level 
allow us to further dissect different aspects of intratumor heteroge-
neity and understand the role of CNAs in subclonal phenotypic 
divergence. However, a comprehensive understanding of the intri-
cate interplay between subclonal CNAs and phenotypic changes 
requires the development of computational frameworks for inte-
grating these diverse data modalities. 

To quantify how CNAs influence gene expression at a subclone 
level, we developed TreeAlign [14], which computationally inte-
grates independently sampled single-cell DNA and RNA sequenc-
ing data from the same cell population and explicitly models gene 
dosage effects from subclonal alterations (Fig. 1). TreeAlign imple-
ments a Bayesian probabilistic model to assign single-cell expres-
sion profiles to a scWGS-based single-cell phylogeny while inferring 
CN dosage effects. To further improve the accuracy of clone assign-
ment and dosage effect prediction, TreeAlign also allows explicit 
modeling of allele-specific expression from allelic copy number 
imbalance. The software for TreeAlign (https://github.com/ 
shahcompbio/TreeAlign) is implemented in Python using Pyro 
[15] and is publicly available. The principles and benchmarking of 
TreeAlign have been previously described in our publication. This

https://github.com/shahcompbio/TreeAlign
https://github.com/shahcompbio/TreeAlign


chapter focuses on a practical guide to apply TreeAlign on single-
cell sequencing datasets. 
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scWGS 

scWGS 

Fig. 1 A TreeAlign analysis integrates scWGS CN profiles (top left) and scRNA gene expression (bottom left) 

resulting in an assignment of scRNA cells to scWGS clones (middle) allowing downstream differential 

expression and gene set enrichment analysis 

2 Methods 

In this section, we outline the steps to preprocess both scRNA and 
scWGS from raw reads to input tables for TreeAlign. We describe 
multiple options for some steps depending on the scWGS or 
scRNA platform used to generate the data or the preference of 
the analyst. Quality control (QC) steps are described to allow for 
checks on data quality and amount of relevant signal. We then 
describe how to run the TreeAlign model and interpret the outputs 
generated by the software. 

TreeAlign can be run using either clones or a phylogeny as 
input. In addition, the model can be run in either total copy 
number or allele-specific mode, meaning there are four possible 
operating modes overall. We summarize the required inputs based 
on the operating mode below. 

Universal inputs

• Total copy number per scWGS cell.

• Gene expression per scRNA cell. 

Clonal input
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• Assignments of scWGS cells to clusters representing clones. 

Phylogeny input

• A phylogeny relating scWGS cells. 

Total copy number mode

• No additional inputs required. 

Allele-specific copy number mode

• Allele-specific copy number per heterozygous SNP per 
scWGS cell.

• Read counts for heterozygous SNPs in scRNA cells. 

2.1 Preprocessing The complete preprocessing pipeline involves the following steps:

• sc 

– 

WGS preprocessing, 

Alignment and QC. 

– Compute cell specific total copy number (required). 

– Compute cell and allele-specific copy number (optional, 
allele-specific model). 

– Infer copy number clones (clone mode). 

– Infer a phylogenetic tree (phylogeny mode). 

– Call heterozygous SNPs from matched normal WGS 
(optional, allele-specific model).

• sc 

– 

RNA preprocessing, 

Alignment and QC. 

– Classify cells as tumor or normal. 

– Genotype heterozygous SNPs in scRNA (optional, allele-
specific model). 

A flowchart of the preprocessing pipeline is shown in Fig. 2. 
We describe the workflow in the following sections and provide 

examples based on data generated from DLP+ and 10X sequencing 
of a pretreatment high grade serous ovarian tumor (OV-105) [16]. 

2.1.1 Preprocessing and 

Alignment of scWGS Data 

TreeAlign has been tested with both DLP+ [17] and 10X scWGS 
data although other scWGS data types should also be possible. For 
alignment and QC of scWGS data, we recommend using the pipe-
line designed for each data type. For 10X CNV, the cellranger DNA 
pipeline [18] will generate a BAM file with each read properly 
tagged with the corresponding cell barcode. For DLP+ data, we 
recommend using Mondrian [17, 19]. The Mondrian pipeline will 
perform alignment and total copy number calling using 
HMMCopy and provide metrics for filtering poor quality and 
replicating cells. When using DLP+, we recommend filtering cells



with quality < 0.75 in addition to cells labeled is_s_phase. 
For 10X CNV data, the default filtering on DIMAPD and mapped 
read count generally suffice. 
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Fig. 2 TreeAlign preprocessing workflow 

2.1.2 Total Copy Number 

Calling from scWGS 

Both Mondrian and cellranger DNA provide subcommands to call 
cell specific total copy number. To QC the resulting copy number 
calls, it is generally helpful to plot a heatmap of copy number sorted 
either by a clustering of the cells or a phylogenetic tree (see Fig. 3). 
A heatmap will allow you to see where segmentation has failed or 
where the default cell filtering has not adequately removed noisy 
cells. For a TreeAlign analysis, we advise removing outlier cells. A 
cell may be an outlier because either the sequencing performed 
poorly for that cell or because the cell has undergone mitotic failure 
resulting in significant cell specific differences. In either case, cells 
with large numbers of cell specific copy number changes will 
impede accurate clonal or phylogenetic inference and are unlikely 
to be represented in the scRNA data. Removing outliers can be 
accomplished with the scgenome.tl.detect_outliers func-
tion in Mondrian/scgenome [20].
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Fig. 3 OV-105 copy number and phylogenetic tree, with clones annotated to the right of the heatmaps 

Additional options for calling copy number also worth men-
tioning include SCOPE [21], FLCNA [22], and Chisel [23]. Both 
FLCNA and Chisel will also output copy number clones that may 
be used with TreeAlign. Chisel will also output allele-specific copy 
number calls that can be used with an allele-specific TreeAlign 
analysis, obviating the need for Signals (see below). 

2.1.3 Allele-Specific 

Copy Number Calling from 

scWGS 

We recommend using Signals [1] for allele-specific copy number 
calling, especially when working with DLP+ and using Mondrian 
for preprocessing and copy number calling. The Mondrian pipeline 
provides two additional subcommands that can be used to generate 
inputs for Signals. The inferhaps subcommand operates on 
matched normal WGS, required for Signals, to produce patient 
specific haplotype blocks of phased SNPs. The counthaps sub-
command takes the haplotype blocks and scWGS data as input and 
generates a table of cell specific read counts for haplotype blocks. 
Signals is then run in R, with the haplotype block read counts and 
total copy number as input. See the online documentation [24] for 
a description of the commands used. 

As with total copy number, a sorted heatmap of allele-specific 
copy number will help identify segmentation issues and inadequate 
cell filtering (see Fig. 3). In addition, a plot of B-Allele Frequency 
(BAF) per inferred copy number state will also help determine how 
well the allele-specific copy number fits the raw BAF signal (see 
Fig. 4). 

An important secondary output of Signals is the phase of each 
SNP relative to the allele-specific copy number assigned to the A 
and B alleles. Each haplotype block inferred by Mondrian is an



assignment of either the reference or alternate allele to haplotype 
allele 0 or 1. During allele-specific copy number inference Sig-
nals will assign the B allele as either haplotype allele 0 or 1 for 
each block, thereby assigning the B allele as the reference or alter-
nate allele of each SNP. To compute the phase of each SNP, merge 
the Signals output with the haplotype blocks table produced by the 
inferhaps subcommand of Mondrian. 
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Fig. 4 BAF QC plot for Signals showing distribution of BAF (y-axis) per allele-specific copy number state 

(x-axis) 

2.1.4 Inferring a 

Phylogenetic Tree 

Accurate phylogenetic inference of clonal populations from scWGS 
copy number data is a difficult problem. Cell specific variation can 
be significant in some datasets, obscuring clonal signal. Copy num-
ber changes are homoplastic, and independent copy number 
changes can produce convergent genomic profiles. As such, this 
step may require careful tuning of the parameters of the selected 
method. 

For inferring a phylogenetic tree, we recommend using either 
MEDICC2 [25] or Sitka [26]. MEDICC2 can be run with either 
allele-specific or only total copy number inputs. We recommend 
using allele-specific input if available, even if you do not intend to 
run TreeAlign in allele-specific mode, as the additional information 
will improve tree inference. To run MEDICC2 in allele-specific 
mode, reformat the Signals output to the input format required 
by MEDICC2, using copy number columns A and B output from 
Signals as the cn_a and cn_b inputs for MEDICC2. For total copy 
number input, use the state column output from Mondrian/ 
HMMCopy. To run sitka, follow the Tree Inference Tutorial [27] 
using total copy number inputs from Mondrian/HMMCopy. 
Leaves of the resulting tree will be either cells or loci. To ensure 
the sitka tree is compatible with TreeAlign, prune the tree output 
by sitka until the only leaves are those representing cells.
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A plot of the inferred phylogeny alongside total and allele-
specific copy number is often informative for QC of the phyloge-
netic tree (Fig. 3). Long branches of a small number of cells may 
result when those cells are outliers, either because they are noisy or 
replicating or harbor significant cell or subclone-specific change 
due to complex structural variation or whole genome doubling. 
These sets of cells can be filtered post hoc, though rerunning 
phylogenetic inference without these cells may improve the quality 
of the phylogeny overall. The combined phylogeny copy number 
plot also gives a global view of how well the phylogenetic method is 
able to explain copy number changes across cells by grouping them 
together as having a shared origin in a single clone. Identical copy 
number changes scattered throughout the phylogeny indicate that 
noise, particularly at segment boundaries for MEDICC2, is inhibit-
ing the method from grouping together common copy number 
changes into a shared evolutionary history. Further smoothing of 
the copy number subsequent to phylogenetic inference may be 
required in such instances. Finally, comparison with a 
non-phylogenetic clustering can often inform the quality of the 
phylogeny. 

2.1.5 Inferring Copy 

Number Clones 

A single-cell phylogeny is required to leverage the full capabilities of 
TreeAlign. Nevertheless, a clustering of cells into putative clonal 
populations can also be used as input. Several methods have been 
used to cluster scWGS into clonal populations in previous work. 
Dimensionality reduction using umap followed by HDBSCAN [1] 
can be accomplished using the umap_clustering function from 
the Signals R package. K-means or Gaussian mixture model based 
clustering [17] can be accomplished using the scgenome.tl. 

cluster_cells function in Mondrian/scgenome [20]. If you 
have run cellranger DNA [18], then hierarchical clustering will be 
included as an output of the pipeline and can be post-processed to 
generate clusters of cells. Alternatively, methods specifically tailored 
for scWGS data including FLCNA [22] and Chisel [23] will pro-
duce a clustering of the scWGS cells. 

2.1.6 Calling 

Heterozygous Germline 

SNPs in Matched Normal 

WGS 

Where possible, heterozygous SNPs should be obtained from 
matched normal WGS data. WGS data should be subject to align-
ment and QC following GATK best practices [28]. Two options are 
possible for calling SNPs. De novo calling can be accomplished 
using bcftools mpileup to pileup reads from a BAM file, fol-
lowed by bcftoolscall to call and genotype SNPs [29]. Alterna-
tively, you can restrict to SNPs identified from an existing panel 
such as 1000 genomes [30], accessible through IGSR [31]. Add 
the panel vcf file as the --regions-file option of bcftools 

mpileup to restrict to genotyping SNPs in the panel. Using a 
panel will result in reduced runtimes and reduce the need to QC 
the resulting SNP data.
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2.1.7 Alignment and QC 

of scRNA Data 

scRNA data should be aligned to a reference genome using one of 
several dedicated alignment tools, typically CellRanger from 10X 
genomics [32], though other methods, such as STARsolo [33], 
alevin [34], or Kallisto [35], can be used depending on the user’s 
needs. These aligners will also typically output a gene expression 
count matrix that will serve as the basis for downstream expression 
analysis using either Seurat or ScanPy. These steps can be easily 
performed using the Nextflow scRNA workflow [36], which is set 
up for scRNA best practices, allows users to select between the 
various alignment options, and can be deployed locally on a user’s 
laptop or a local or cloud compute server using Docker or Singu-
larity containers. 

Downstream quality control to remove low-quality cells can be 
performed by filtering for a minimum read count per cell (mini-
mum 200 counts per cell) and removing cells with a high propor-
tion of reads aligned to mitochondrial or ribosomal genes (max 
20%). For smaller datasets, filtering thresholds should be inspected 
and selected based on the overall data quality. For larger datasets, 
quality filters can be automated by using the median absolute 
deviation (MAD) to remove cells that differ by 5 MADs in one of 
these metrics. Ambient RNA correction can be performed using 
SoupX [37], DecontX [38], or CellBender [39]. Doublet detection 
and removal can be performed using scDblFinder [40]. 

2.1.8 Classifying scRNA 

Cells as Tumor or Normal 

Patient-derived scRNA tumor samples are typically composed of 
both malignant and nonmalignant cells, which must be accurately 
labeled prior to downstream analysis. Complementary approaches 
are usually recommended to achieve this task. First, scRNA based 
copy number inference methods, such as inferCNV [41], Numbat 
[42], SCEVAN [43], or others [44–46], may be used to identify 
cells with copy number alterations consistent with malignant cells. 
In parallel, exploration of the gene expression using variable feature 
selection, PCA, and clustering should reveal patient specific clusters 
of epithelial cells (in the case of epithelial-derived tumors), which 
should coincide with copy number alteration containing cells. 
These clusters should be distinct from nonmalignant epithelial 
cells, which should cluster together between patient samples 
derived from the same tissue more readily (assuming minimal 
batch effects between patients). 

2.1.9 Genotyping 

Heterozygous SNPs in 

scRNA 

Heterozygous loci can be measured in the scRNA data using 
CellSNP [47] or alternatively Vartrix [48] to compute allele-
specific scRNA read counts for each heterozygous SNP. CellSNP 
or Vartrix will produce a matrix of total depth at each SNP position 
and number of reads supporting the alternate allele. For optimal 
performance, TreeAlign should be provided with not just the read 
counts of each SNP but the phase aware read counts relative to the 
phasing inferred during allele-specific copy number calling from



scWGS. For each SNP, the alternate allele is either on the A or B 
allele as called by Signals or other allele-specific copy number 
methods. The phasing information from Signals or other tools 
can then be used to compute the number of reads supporting the 
B allele, as required for input to TreeAlign. Note that if phasing 
information is not available, TreeAlign can infer the B allele of each 
SNP during model inference. 
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2.2 Running 

TreeAlign 

TreeAlign models: (1) clone-specific gene expression level based on 
corresponding copy numbers and (2) proportions of reads from B 
alleles in scRNA based on B allele frequencies estimated from 
scWGS. After successfully preprocessing and QC of input raw 
data, running TreeAlign involves preparing input data matrices 
and executing a small number of TreeAlign API calls in python. 

2.2.1 Preparing Input 

Data 

Prepare inputs to TreeAlign as follows: 

Phylogenetic tree: A tree representing the evolution of cells from a 
diploid ancestor with cells as leaf nodes. The tree input should 
be provided as Bio.Phylo.BaseTree which can be con-
structed by reading the phylogeny stored in newick format 
using the Phylo.read function from the Biopython 

package. 

Clone assignments: Cell to clone cluster assignment table, used in 
place of a phylogenetic tree. The clone assignment table 
provided should contain two columns: cell_id to identify 
each cell and clone_id for defining the clone to which each 
scWGS cell is assigned. 

Gene expression: Gene by cell matrix of raw read counts from 
scRNA. 

Total copy number from scWGS: Gene by cell matrix of integer copy 
number from scWGS. This input typically necessitates a con-
version from a matrix of genomic bin by cell copy number 
output from a copy number inference method like Mon-
drian/HMMCopy. The scgenome.tl.aggregate_genes 

function in Mondrian/scgenome [20] can be used to calculate 
a gene by cell matrix from a bin by cell matrix and gene start 
and end positions. 

Allele-specific copy number from scWGS: SNP by cell matrix of B 
allele fraction for each heterozygous SNP position. B allele 
fractions should range from 0 to 1. From Signals, B allele 
fractions are calculated as the copy number of the B allele (B 

column) as a fraction of total copy number (A column + B 

column). The scgenome.tl.intersect_positions func-
tion in Mondrian/scgenome [20] can be used to calculate a 
position by cell matrix from a bin by cell matrix and a set of 
positions representing locations of heterozygous SNPs.
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SNP allele evidence in scRNA: SNP by cell read count matrix for 
which each entry is the number of reads supporting the B allele 
at a heterozygous SNP position for a given cell in the scRNA 
data. Computing this matrix involves extracting reference and 
alternate read counts from CellSNP or Vartrix and then using 
the per-SNP B allele assignments from Signals or similar to 
produce a matrix of read counts supporting the B allele of 
each SNP. If such an assignment is not possible, the number 
of reads supporting the reference can be provided, but the 
infer_b_allele option should be used (see below). 

SNP depth in scRNA: SNP by cell read count matrix for which each 
entry is the total number of reads overlapping a heterozygous 
SNP position for a given cell in the scRNA data. This input can 
be constructed directly from the output of CellSNP or Vartrix. 

2.2.2 Running TreeAlign The input datasets described in the previous section can be used to 
construct the python CloneAlignTree object for data cleaning 
and preprocessing. The phylogenetic tree, gene expression, and 
total copy number inputs are required. The allele-specific copy 
number, SNP B allele evidence, and SNP depth inputs are optional. 
If allele-specific scRNA evidence is phased with scWGS allele-
specific copy number, set the infer_b_allele to False. Other-
wise, set infer_b_allele to True to specify that TreeAlign 
should learn B allele assignment during inference. If allele-specific 
inputs are not provided, the allele-specific extension of TreeAlign 
will not be run and the clone assignment results will be purely based 
on total copy number and gene expression. After construction of 
the CloneAlignTree object, assign_cells_to_tree function 
can be called to initialize the inference process. 

In addition to assigning expression profiles to a scWGS-based 
phylogeny, TreeAlign also allows assigning expression profiles to 
predefined clones similar to CloneAlign [49]. Instead of providing 
single-cell phylogenetic tree based on scWGS, users can provide a 
clone assignment table to construct a CloneAlignClone object to 
initiate assignment of expression profiles to predefined CN clones. 
Set the infer_b_allele option accordingly. After construction 
of the CloneAlignClone object, assign_cells_to_clones 

function can be called to initialize the inference process. 

2.2.3 Tunable 

Parameters 

Additional parameters can be set to customize the running of 
TreeAlign. 

repeat: number of repeated runs of inference in TreeAlign. As the 
final clone assignment results are determined by the majority 
votes from repeated runs, a larger value for repeat parameter 
may generate more robust results but take longer time to finish 
running.
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min_cell_count_expr: minimum number of cells in the scRNA 
data to allow assigning expression profiles to smaller subtrees. 

min_cell_count_cnv: minimum number of cells in the scWGS 
data to allow TreeAlign to keep assigning expression profiles to 
smaller subtrees. 

min_clone_assign_prob: minimum probability required to 
assign expression profiles to a subclone. 

min_clone_assign_freq: minimum proportion of repeated 
runs with consistent clone assignment needed to assign expres-
sion profiles to a subclone. 

By adjusting these four parameters of min_clone_assign_ 

freq, min_clone_assign_prob, min_cell_count_expr, and 
min_cell_count_cnv, users can tune how far they want TreeA-
lign to proceed down a phylogenetic tree in the alignment of 
scRNA cells to tree clades. Forcing TreeAlign to proceed further 
down a phylogenetic tree allows it to assign expression profiles to 
smaller subclones but may reduce the overall performance of the 
model and leave more expression profiles in the unassigned state. 

min_consensus_gene_freq: The purity threshold for a 
gene to be included in the CN input matrix. It is defined as the 
proportion of cells with the modal copy number in a clone for that 
gene. This tunable parameter was inspired by the observation that 
within the same clones, the integer CNs inferred from hmmcopy 
are still heterogeneous at a cell level; therefore, we want to preserve 
the more homogeneous and clone-specific copy number signals to 
be used as input for TreeAlign. min_consensus_gene_freq >0.5 
should be a reasonable starting point as we want to ensure that all 
input CN values are consensus in given clones. Users may want to 
further increase this value to allow genes which are more represen-
tative of a clone to be used as input, especially if there are already 
sufficient numbers of genes to serve as input, and TreeAlign assign-
ment is confident and stable across different runs. 

min_consensus_snv_freq: The purity threshold for a het-
erozygous SNP to be included in the BAF input matrix—similar to 
min_consensus_gene_freq. 

2.2.4 TreeAlign Outputs After successful inference, generate_output function can be 
called to generate results. The results consist of three dataframes: 

Clone assignment: A table assigning scRNA cells (cell_id col-
umn) to scWGS tree clades or clones (clone_id column). 

Dosage effect: inferred level of dosage effect (gene_type_score 

column) for each gene (gene column) determined to be in a 
clone-specific copy number region during TreeAlign’s internal 
prefiltering step. The gene_type_score column contains 
p(k) scores for genes. p(k) ranges from 0 to 1 and represents
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the probability of a gene’s expression depending on copy num-
ber dosage effects. 

Inferred B allele: A table of SNP allele assignments inferred if allele-
specific inputs are provided and infer_b_allele is set to 
True. If allele-specific inputs were not provided or parameter 
infer_b_allele is set to False, the return dataframe will be 
empty. 

2.3 Interpreting 

TreeAlign Results 

TreeAlign results provide insight into the clone-specific expression 
patterns in a population of tumor cells. scRNA cells will cluster at 
clades throughout the phylogeny, with each cluster best explained 
by the mode of allele-specific copy number of the given clade. A 
cluster of scRNA cells assigned closer to the root of the phylogeny 
implies that the cells in that cluster are unlikely to harbor the copy 
number changes that differentiate any smaller subclades. Some 
scRNA cells will not be assigned to a clade, indicating that these 
cells have divergent copy number profiles from those found in the 
scWGS population. A helpful visual aid is to plot scWGS copy 
number alongside scRNA copy number, with scWGS cells ordered 
by the inferred phylogenetic tree and scRNA cells ordered by their 
assignment to clades in the tree (Fig. 5). For OV-105, this plot 
reveals a small subclone with divergent copy number on chromo-
somes 2, 3, and 19, with evidence in both modalities. 

In addition, TreeAlign clone assignment results can be used to 
compare expression profiles between cancer cell subclones and 
characterize clone-specific transcriptional phenotypes (Fig. 6). 
TreeAlign assigned cancer cell expression profiles from ovarian 
cancer patient OV-105 to six clones. Using differential expression 
analysis, we can identify expression programs that are specific to 
each clone. For example, compared to other clones in patient 
OV-105, clone E has upregulated expression of genes in IFN

Fig. 5 Integrated model of TreeAlign assigns expression profiles of OV-105 to phylogeny. Heatmaps of copy 

number profiles from scWGS (left) and InferCNV corrected expression profiles from scRNA (right). The Sankey 

chart in the middle shows clone assignment from expression profiles to copy number based clones by 

integrated TreeAlign. Pie charts on the tree showing how TreeAlign assigns cell expression profiles to subtrees 

recursively. The pie charts are colored by the proportions of cell expression profiles assigned to downstream 

subtrees. The outer ring color of the pie charts denotes the current subtree



responses and antigen presentation. IFN signaling has important 
immune modulatory effects and has been previously linked to 
immune evasion and resistance to immunotherapy [50]. In addi-
tion to patient OV-105, IFN signaling was also found to be highly 
variable between clones in ovarian cancers [14]. The recurrent 
differential expression of immune related pathways between sub-
clones suggests their importance in clonal divergence in ovarian 
cancers.
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Fig. 6 TreeAlign results for OV-105 showing (a) UMAP embedding of scRNA cell expression profiles colored by 

TreeAlign inferred clones and (b) differentially expressed genes between clone E and all other subclones 
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CG et al (2020) Transcriptional effects of 
copy number alterations in a large set of 
human cancers. Nat Commun 11:715 

4. Ding J, McConechy MK, Horlings HM et al 
(2015) Systematic analysis of somatic muta-
tions impacting gene expression in 12 tumour 
types. Nat Commun 6:8554 

5. Jörnsten R, Abenius T, Kling T et al (2011) 
Network modeling of the transcriptional 
effects of copy number aberrations in glioblas-
toma. Mol Syst Biol 7:486 

6. Sztal TE, Stainier DYR (2020) Transcriptional 
adaptation: a mechanism underlying genetic 
robustness. Development 147 

7. El-Brolosy MA, Stainier DYR (2017) Genetic 
compensation: a phenomenon in search of 
mechanisms. PLoS Genet 13:e1006780 

8. Fehrmann RSN, Karjalainen JM, Krajewska M 
et al (2015) Gene expression analysis identifies 
global gene dosage sensitivity in cancer. Nat 
Genet 47:115–125 

9. Veitia RA, Bottani S, Birchler JA (2013) Gene 
dosage effects: nonlinearities, genetic interac-
tions, and dosage compensation. Trends Genet 
29:385–393 

10. Pollack JR, Sørlie T, Perou CM et al (2002) 
Microarray analysis reveals a major direct role 
of DNA copy number alteration in the tran-
scriptional program of human breast tumors. 
Proc Natl Acad Sci USA 99:12963–12968



11.

Clonal Cancer Phenotypes Using TreeAlign 151

Andor N, Lau BT, Catalanotti C et al (2020) 
Joint single cell DNA-seq and RNA-seq of gas-
tric cancer cell lines reveals rules of in vitro 
evolution. NAR Genom Bioinform 2:lqaa016 

12. Guo L, Yi X, Chen L et al (2022) Single-cell 
DNA sequencing reveals punctuated and grad-
ual clonal evolution in hepatocellular carci-
noma. Gastroenterology 162:238–252 

13. Gonzalo Parra R, Przybilla MJ, Simovic M, 
et al (2021), Single cell multi-omics analysis 
of chromothriptic medulloblastoma highlights 
genomic and transcriptomic consequences of 
genome instability., https://www.biorxiv. 
org/content/10.1101/ 
2021.06.25.449944v1 

14. Shi H, Williams MJ, Satas G et al (2024) Allele-
specific transcriptional effects of subclonal copy 
number alterations enable genotype-
phenotype mapping in cancer cells. Nat Com-
mun 15:2482 

15. Bingham E, Chen JP, Jankowiak M et al. Pyro: 
Deep universal probabilistic programming, 
https://www.jmlr.org/papers/volume20/18-
403/18-403.pdf 

16. Vázquez-Garcı́a I, Uhlitz F, Ceglia N et al 
(2022) Ovarian cancer mutational processes 
drive site-specific immune evasion. Nature 
612:778–786 

17. Laks E, McPherson A, Zahn H et al (2019) 
Clonal decomposition and DNA replication 
states defined by scaled single-cell genome 
sequencing. Cell 179:1207–1221.e22 

18. What is cell ranger DNA? -software -single cell 
CNV -official 10x genomics support. https:// 
support.10xgenomics.com/single-cell-dna/ 
software/pipelines/latest/what-is-cell-
ranger-dna 

19. mondrian-scwgs, Github 

20. scgenome, Github 

21. Wang R, Lin D-Y, Jiang Y (2020) SCOPE: a 
normalization and copy-number estimation 
method for single-cell DNA sequencing. Cell 
Syst 10:445–452.e6 

22. Qin F, Cai G, and Xiao F (2023) A statistical 
learning method for simultaneous copy num-
ber estimation and subclone clustering with 
single cell sequencing data. bioRxiv 

23. Zaccaria S, Raphael BJ (2020) Characterizing 
allele- and haplotype-specific copy numbers in 
single cells with CHISEL. Nat Biotechnol. 
39(2):207–214 

24. Signals. https://shahcompbio.github.io/ 
signals 

25. Kaufmann TL, Petkovic M, Watkins TBK et al 
(2022) MEDICC2: whole-genome doubling 
aware copy-number phylogenies for cancer 
evolution. Genome Biol 23:241 

26. Dorri F, Salehi S, Chern K et al (2020) Efficient 
Bayesian inference of phylogenetic trees from 
large scale, low-depth genome-wide single-cell 
d a t a .  h t t p s ://www.b io r x i v. o rg/con  
tent/10.1101/2020.05.06.058180v1 

27. sitkatree, Github 

28. DePristo MA, Banks E, Poplin R et al (2011) A 
framework for variation discovery and geno-
typing using next-generation DNA sequencing 
data. Nat Genet 43:491–498 

29. Danecek P, Bonfield JK, Liddle J et al (2021) 
Twelve years of SAMtools and BCFtools. 
Gigascience 10 

30. 1000 Genomes Project Consortium, Auton A, 
Brooks LD et al (2015) A global reference for 
human genetic variation. Nature 526:68–74 

31. Fairley S, Lowy-Gallego E, Perry E et al (2020) 
The International Genome Sample Resource 
(IGSR) collection of open human genomic var-
iation resources. Nucleic Acids Res 48:D941– 
D947 

32. Zheng GXY, Terry JM, Belgrader P et al 
(2017) Massively parallel digital transcriptional 
profiling of single cells. Nat Commun 8 

33. Kaminow B, Yunusov D, Dobin A (2021) 
STARsolo: accurate, fast and versatile 
mapping/quantification of single-cell and 
single-nucleus RNA-seq data. https://www. 
biorxiv.org/content/10.1101/2021.05.0 
5.442755 

34. Srivastava A, Malik L, Smith T et al (2019) 
Alevin efficiently estimates accurate gene abun-
dances from dscRNA-seq data. Genome Biol 
20:65 

35. Melsted P, Booeshaghi AS, Liu L et al (2021) 
Modular, efficient and constant-memory sin-
gle-cell RNA-seq preprocessing. Nat Biotech-
nol 39:813–818 

36. scrnaseq: Introduction. https://nf-co.re/ 
scrnaseq 

37. Young MD, Behjati S (2020) SoupX removes 
ambient RNA contamination from droplet-
based single-cell RNA sequencing data. Giga-
science 9:giaa151 

38. Yang S, Corbett SE, Koga Y et al (2020) 
Decontamination of ambient RNA in single-
cell RNA-seq with DecontX. Genome Biol 
21:57 

39. Fleming SJ, Chaffin MD, Arduini A et al 
(2023) Unsupervised removal of systematic 
background noise from droplet-based single-
cell experiments using CellBender. Nat Meth-
ods 20:1323–1335 

40. Germain P-L, Lun A, Garcia Meixide C et al 
(2021) Doublet identification in single-cell 
sequencing data using scDblFinder. F1000Res 
10:979

https://www.jmlr.org/papers/volume20/18-403/18-403.pdf
https://www.jmlr.org/papers/volume20/18-403/18-403.pdf
https://support.10xgenomics.com/single-cell-dna/software/pipelines/latest/what-is-cell-ranger-dna
https://support.10xgenomics.com/single-cell-dna/software/pipelines/latest/what-is-cell-ranger-dna
https://support.10xgenomics.com/single-cell-dna/software/pipelines/latest/what-is-cell-ranger-dna
https://support.10xgenomics.com/single-cell-dna/software/pipelines/latest/what-is-cell-ranger-dna
https://shahcompbio.github.io/signals
https://shahcompbio.github.io/signals
https://www.biorxiv.org/content/10.1101/2020.05.06.058180v1
https://www.biorxiv.org/content/10.1101/2020.05.06.058180v1
https://www.biorxiv.org/content/10.1101/2021.05.05.442755
https://www.biorxiv.org/content/10.1101/2021.05.05.442755
https://www.biorxiv.org/content/10.1101/2021.05.05.442755
https://nf-co.re/scrnaseq
https://nf-co.re/scrnaseq


152 Hongyu Shi et al.

41 .  in f e rCNV.  h t tp s ://g i thub .com/bro  
adinstitute/inferCNV 

42. Gao T, Soldatov R, Sarkar H et al (2023) 
Haplotype-aware analysis of somatic copy 
number variations from single-cell transcrip-
tomes. Nat Biotechnol 41:417–426 

43. De Falco A, Caruso F, Su X-D et al (2023) A 
variational algorithm to detect the clonal copy 
number substructure of tumors from scRNA-
seq data. Nat Commun 14:1074 

44. Gao R, Bai S, Henderson YC et al (2021) 
Delineating copy number and clonal substruc-
ture in human tumors from single-cell tran-
scriptomes. Nat Biotechnol 39:599–608 

45. Serin Harmanci A, Harmanci AO, Zhou X 
(2020) CaSpER identifies and visualizes CNV 
events by integrative analysis of single-cell or 
bulk RNA-sequencing data. Nat Commun 11: 
89 

46. Fan J, Lee H-O, Lee S et al (2018) Linking 
transcriptional and genetic tumor heterogene-
ity through allele analysis of single-cell RNA--
seq data. Genome Res 28:1217–1227 

47. Huang X, Huang Y (2021) Cellsnp-lite: an 
efficient tool for genotyping single cells. Bioin-
formatics 37:4569–4571 

48. vartrix: Single-Cell Genotyping Tool, Github 

49. Campbell KR, Steif A, Laks E et al (2019) 
Clonealign: statistical integration of indepen-
dent single-cell RNA and DNA sequencing 
data from human cancers. Genome Biol 20:54 

50. Benci JL, Xu B, Qiu Y et al (2016) Tumor 
interferon signaling regulates a multigenic 
resistance program to immune checkpoint 
blockade. Cell 167:1540–1554.e12

https://github.com/broadinstitute/inferCNV
https://github.com/broadinstitute/inferCNV


Chapter 8 

Inference of Genetic Ancestry from Cancer-Derived 
Molecular Data with RAIDS 

Pascal Belleau, Astrid Deschênes, David A. Tuveson, 
and Alexander Krasnitz 

Abstract 

There has recently been increasing appreciation of ancestral effects on cancer genotypes and phenotypes. 
Consequently, the need has grown for ancestry annotation of cancer-derived molecular data. In response, 
we created a computational tool termed RAIDS (Robust Ancestry Inference using Data Synthesis). RAIDS 
is designed to infer genetic ancestry using as input sequence data from a variety of molecular protocols, even 
in the absence of matching cancer-free genotypes of the patient. Implemented as an R language package, 
RAIDS is available from the Bioconductor repository. Here we describe functionalities of RAIDS, provide 
instructions for its installation, give examples of its usage, and explain the interpretation of its output. While 
RAIDS is being actively developed, the guidance provided here is expected to apply to future refined and 
expanded versions of this software tool. 

Key words Genetic ancestry, Genotyping, Continental populations, Synthetic data, Principal-com-
ponent analysis 

1 Introduction 

There is ample epidemiological evidence that race and ethnicity are 
important determinants of incidence, clinical course, and outcome 
in multiple types of cancer [1–5]. As such, these categories must be 
taken into account in the analysis of molecular data derived from 
cancer. A number of recently published large-scale genomic studies 
of cancer [6–11] point to differences in the molecular makeup of 
the disease among groups of different ancestral background. These 
differences extend to frequencies of somatic mutations in driver 
genes [6, 10, 11], the degree of genomic instability and somatic 
copy number variation (CNV) [8, 9], and immune response to 
cancer [7]. These ancestral differences, in turn, have been found 
to have a major effect on response to treatment [12]. Knowledge of
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patient genetic ancestry may be decisive in other contexts, e.g., to 
discover that patients from an ancestral group are at higher risk for 
side effects from treatment [13].
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More molecular data are needed to power discovery of 
ancestry-specific effects in cancer. The data shortage for this pur-
pose is especially acute for many non-European ancestries that have 
not been sufficiently sampled to date. For example, a massive cancer 
dataset of The Cancer Genome Atlas (TCGA) only lists 27 self-
identified Alaskan natives/American Indians and only 13 native 
Hawaiians/Pacific islanders. Even for populations with higher 
aggregate numbers of patient cases, the case count is often very 
small for individual cancer types. For example, while a total of 
934 African American (AA) patients are listed by TCGA, only 
7 AA cases are listed for prostate and pancreatic cancers each, 
despite the high incidence of both among AA. 

With computational tools described here, we seek to alleviate 
this data shortage by facilitating reliable, detailed, data-driven 
ancestry annotation of cancer-derived molecular data from two 
major sources: (a) existing data available for secondary analysis 
and (b) cancer-derived specimens, including, notably, those in 
tissue archives. Secondary data analysis on a massive scale is by far 
the most efficient, rapid, and economically feasible way to study 
ancestral impact on the molecular features of cancer. Although data 
acquisition from tumor-derived specimens is far more expensive 
and time-consuming by comparison, it is often made necessary by 
a study design. In such cases, matching cancer-free material may 
not always be available for ancestry analysis by conventional meth-
ods, very often with no possibility of a follow-up specimen collec-
tion from the patient. This is especially likely to be the case with 
archived tumor tissues. Ancestry inference from newly generated 
data originating in archival tumor tissues is still necessary in such 
settings and is the second major application for the tools 
described here. 

Ancestry annotation of cancer-derived data draws on two 
sources. One is a patient’s self-identified race and/or ethnicity 
(SIRE), designed to capture social and cultural factors affecting 
health. SIRE correlates with but is distinct from ancestry. SIRE is 
often missing, sometimes inaccurate, and usually incomplete. As a 
recent analysis [14] of PubMed database entries since 2010 reveals, 
patients’ SIRE is massively underreported in genome and exome 
sequencing studies of cancer, with only 37% of these reporting race 
and 17% reporting ethnicity. Furthermore, SIRE has recently been 
found missing from 56% of electronic health records [15] and is 
therefore unavailable for annotation of many archived specimens. 
When available, SIRE is not always consistent with genetic ancestry. 
A self-declaring patient is often given a choice from a small number 
of broad racial or ethnic categories. As a result, SIRE fails to capture 
complete ancestral information and to quantify ancestral 
admixtures.
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A far more accurate and detailed ancestral characterization may 
be obtained by genotyping a patient’s DNA from a cancer-free 
tissue. Powerful methods exist for ancestry inference from germline 
DNA sequence [16–18]. These methods were recently used to 
determine ancestry of approximately 10,000 patients profiled by 
TCGA [7, 8]. However, genotyping of DNA from matched normal 
specimens is not part of standard clinical practice, where the pur-
pose of DNA profiling is often identification of mutations with 
known oncogenic effects, such as those in the Catalog Of Somatic 
Mutations In Cancer (COSMIC). As a result, it is not performed 
routinely outside academic clinical centers or major research pro-
jects. There also are studies yielding sequence data from tumors, 
whose purpose does not require germline profiling. RNA sequenc-
ing (RNA-seq) for expression quantification, DNA methylation 
analysis of cytosine-converted DNA, chromatin accessibility 
profiling by sequencing (ATAC-seq), and low-coverage whole-
genome sequencing (WGS) are in this category. Finally, peripheral 
blood is most often the source of germline DNA in the clinic, but 
this is not the case for diseases of the hematopoietic system, e.g., 
leukemias, wherein cancer cells are massively present in circulation. 
In summary, matched germline DNA sequence is not universally 
available for cancer-derived molecular data. In such cases, it is 
necessary to infer ancestry from the nucleic acids of the tumor itself. 

Standard methods of ancestry inference rely on population 
specificity of germline single-nucleotide variants (SNVs). WGS or 
whole-exome sequences (WES), at depths sufficient for reliably 
calling single-nucleotide variants, and readouts from genotyping 
microarrays, are therefore most suitable for this purpose. However, 
detailed DNA profiling is often not performed in molecular studies 
of cancer. In such cases, it is necessary to infer ancestry from other 
types of tumor-derived data, including RNA-seq, DNA sequence 
for a small panel of genes (e.g., FoundationOne CDx [19]), 
low-coverage WGS, cytosine-converted sequences, and ATAC-seq. 

Ancestry inference from molecular data other than germline 
DNA sequence faces two challenges. One is cancer-specific, com-
mon to all types of tumor-derived sequence. Tumor genomes are 
often replete with somatic alterations, including copy number var-
iants, translocations, loss of heterozygosity (LOH), microsatellite 
instabilities, and SNV. All these alterations are, to various degrees, 
potential obstacles to accurate ancestry inference. For example, an 
LOH event may render one of the parental alleles inaccessible to 
ancestry analysis in a broad chromosomal fragment. The other 
challenge is data-specific. RNA-seq yields extremely uneven cover-
age of the transcript both due to a broad range of RNA expression 
levels and to molecular protocol design. Further distortions arise 
from allele-specific expression. Similar nonuniformity of coverage is 
found in ATAC-seq data. Gene panels represent a small fraction of 
the genome, whose sufficiency for ancestry inference is not clear a



priori and varies from panel to panel. In addition, such panels are 
enriched in cancer-driver genes, which tend to undergo somatic 
alteration more frequently than other parts of the genome. Confi-
dent SNV profiling, required by all existing ancestry inference 
methods, may be challenging with low-coverage WGS. Cytosine-
converted data present unique challenges: any observed thymine 
next to a guanine may result from conversion. 
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Inferential tools described here are designed to address two 
critical questions. (a) How can the accuracy of genetic ancestry 
inference be assessed and optimized for a given molecular profile? 
The profile in question may have its unique set of sequence proper-
ties. These include the underlying genotype and phenotype, the 
target sequence and uniformity of its coverage depth, read length, 
and sequencing quality. (b) How can such assessment and optimi-
zation be accomplished in the absence of a control dataset from a 
large, ancestrally diverse cohort? The requisite cohort would have 
to yield molecular profiles with underlying biology and technical 
properties closely similar to those of the given profile and to have 
genetic ancestry of the donors inferred from the germline geno-
types. Such a set of controls is not available for the vast majority of 
existing molecular profiles. 

In the following, we present computational methodology for 
global, continental-level ancestry calls from tumor-derived molec-
ular data, including whole-exome sequences, specialized gene 
panels, and RNA sequences [20, 21]. This methodology combines 
existing algorithms for ancestry inference with a novel adaptive 
procedure for inference parameter optimization and rigorous per-
formance assessment, termed “data synthesis.” The resulting tools 
have been validated using a representative subset of public cancer-
derived data and made publicly available in Bioconductor [21], as 
an R language package termed RAIDS. We find their accuracy to be 
consistently high across ancestral groups, sequencing modalities, 
and the four cancer types examined in our paper [20]. 

The remainder of this Protocol is structured as follows. In the 
Methods section, we explain how RAIDS is installed and specify the 
reference data it requires. We next describe the key functionalities of 
RAIDS. This section ends with an example of RAIDS applied to a 
cancer-derived molecular profile, explained step by step. The chap-
ter ends with Notes, providing further details on installation and 
execution of RAIDS. 

2 Methods 

The genetic ancestry inference procedure consists of three main 
steps as shown in Fig. 1.
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Fig. 1 An overview of the genetic ancestry inference procedure. The preparation of population reference files is 

explained in Subheading 2.1, computation of profile genotypes in Subheading 2.2, and the donor genetic 

ancestry in Subheading 2.3, respectively 

2.1 Population 

Reference Data 

The 1000 Genomes (1KG in the following) population reference 
dataset [22], hosted by the International Genome Sample 
Resource, is at present the most detailed and complete dataset of 
its kind. This dataset provides reference for five continental super-
populations: African (AFR), American (AMR), East Asian (EAS), 
European (EUR), and South Asian (SAS). The full set of 1KG 
genotypes with at least 1% frequency in at least one super-
population is available at https://labshare.cshl.edu/shares/ 
krasnitzlab/aicsPaper in the genomic data structure (GDS) format. 
GDS is the most suitable format for handling large volumes of 
genomic data using the R programming language. We will use 
this population reference input throughout this protocol. Alterna-
tively, users can build their own reference datasets. Instructions for 
doing are provided in Subheading 2.4. 

The population reference input into RAIDS consists of two 
files: the reference genotype file (matGeno1000g.gds provided 
for the 1KG reference) and the reference annotation file (matAn-
not1000g.gds provided for the 1KG reference). The reference 
genotype file contains, for each donor to the population reference 
data, the genotypes at all positions in the genome, where the 
alternative allele frequency in at least one super-population is at 
least 1%. The reference annotation file tabulates, for each super-
population, its haplotype blocks. Further details on the data struc-
tures contained in these files are provided in Subheading 2.4.

https://labshare.cshl.edu/shares/krasnitzlab/aicsPaper
https://labshare.cshl.edu/shares/krasnitzlab/aicsPaper
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2.2 Preprocessing 

Sequence Read Data 

for RAIDS 

A file containing sequence reads mapped to the same human 
genome build as the population reference data in the BAM format 
is required as input for each input profile. If mapping or remapping 
is necessary, it should follow the Genome Analysis Toolkit (GATK) 
[23] best practice guidelines. If 1KG reference data provided with 
the RAIDS package are used for inference, the reads should be 
mapped to the GRCh38 (hg38) build of the human genome 
[24]. These guidelines are different for sequences derived from 
DNA and those derived from RNA. 

The GATK best practice guidelines are found at GATK website 
for DNA-derived sequences [25] and for RNA-derived sequences 
[26]. The BAM file must be sorted and indexed, e.g., using 
Samtools [27]. 

2.3 Ancestry 

Inference Using Data 

Synthesis 

In this section, we will describe in detail the inference procedure 
used by RAIDS. This procedure relies on data synthesis for infer-
ence parameter optimization and inference performance evalua-
tion. The main steps of Subheading 2.3.1 are as follows: 

1: Setup and data preprocessing for RAIDS. 

2: Infer the ancestry with RAIDS. 

2) A: Sample the reference data for donor genotypes, to be used for 
synthesis. A fixed number of donor genotypes are sampled from 
each population. For example, there are 26 populations in the 
1KG reference. One can sample 30 genotypes from each of the 
26 populations defined in the 1KG reference, to the total of 
780.

2) B: Execute a function call to one of the RAIDS functions,
inferAncestryDNA() or inferAncestryDNA(), depend-
ing on the molecular source of the input profile. Each of these
calls will result in a series of operations as follows:

• Genotype the input sequence data at all biallelic single-
nucleotide polymorphic (SNP) positions in the genome where 
the frequency of either allele is above a minimum frequency 
cutOff in the reference data.

• Prune the set of positions resulting from (A) to reduce the 
linkage disequilibrium between any two such positions below a 
value of 0:1

p

(see Note 1).

• Infer genetic ancestry for the entire set of synthetic profiles and a 
range of inference parameters. Use the results to optimize the 
inference parameters.

• Infer genetic ancestry of the input profile using the optimal 
parameters found above. 

3: Present and interpret the results of (2) (see Note 2)
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3) A: Output the inferred ancestry of the input profile, the optimal 
set of parameters, and the final state of the inference algorithm. 

3) B: Evaluate the performance of the inference algorithm on the 
synthetic data. 

2.3.1 Example: Genetic 

Ancestry of an RNA 

Sequence Profile 

In this example, we shall use as input an RNA-seq profile from the 
Encode collection [28] (the accession numbers: ENCFF001RFH 
and ENCFF001RFG). 

1: Setup and data preprocessing for RAIDS 

1) A: Create a directory structure for the example. 

First you need a working directory (workingDirectory) that will 
contain all the other directories. You have to recreate the 
following structure on your computer. 

workingDirectory/ 

data/ 

refGDS 

fastq 

genomeReference 

GATK 

010_star 

020_picard 

030_splitNCigar 

040_recalibration 

profileGDS 

res.out 

1) B: Download the population reference files. 

cd workingDirectory 

cd data/refGDS 

wget https://labshare.cshl.edu/shares/krasnitzlab/aicsPaper/ 

matGeno1000g.gds 

wget https://labshare.cshl.edu/shares/krasnitzlab/aicsPaper/ 

matAnnot1000g.gds 

cd -

1) C: Download the two unmapped paired-end sequence read data 
files for the input profile in the FASTQ format (approximately 
17Gb in total): 

cd data/fastq 

wget https://www.encodeproject.org/files/ENCFF001RFH/@@down-

load/ENCFF001RFH.fastq.gz -O ENCFF001RFH.fastq.gz



wget https://www.encodeproject.org/files/ENCFF001RFG/@@down-

load/ENCFF001RFG.fastq.gz -O ENCFF001RFG.fastq.gz 

cd -
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1) D: Download and uncompress the GRCh38 human genome 
reference sequence file and the corresponding annotation file 
[29]: 

export PICARD_JAR=[path_to_picard_jar] 

cd data/genomeReference 

wget https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_hu-

man/release_46/GRCh38.p14.genome.fa.gz 

wget https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_hu-

man/release_46/gencode.v46.annotation.gtf.gz 

gunzip gencode.v46.annotation.gtf.gz 

gunzip GRCh38.p14.genome.fa.gz 

java -Xmx2G -jar $PICARD_JAR CreateSequenceDictionary \ 

REFERENCE=GRCh38.p14.genome.fa \ 

OUTPUT=GRCh38.p14.genome.dict 

samtools faidx ./GRCh38.p14.genome.fa 

cd -

1) E: Create a genome index for the STAR [30] RNA-seq read 
mapper (see the GitHub site [31] for details), then run STAR 
in the two-pass mode with the default parameters, and the read 
length of 100 bases as used for sequencing in this case. 

STAR \

--runThreadN 1 \

--runMode genomeGenerate \

--genomeDir data/genomeReference/ \

--sjdbGTFfile data/genomeReference/gencode.v46.annotation.gtf 

\

--genomeFastaFiles data/genomeReference/GRCh38.p14.genome.fa 

\

--sjdbOverhang 100 

STAR \

--runThreadN 1 --genomeDir data/genomeReference/ \

--twopassMode Basic \

--twopass1readsN -1 \

--readFilesIn data/fastq/ENCFF001RFH.fastq.gz data/fastq/ 

ENCFF001RFG.fastq.gz \

--outSAMtype BAM SortedByCoordinate \



--readFilesCommand zcat \

--outFileNamePrefix data/010_star/ENCFF001RF 
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1) F: Post-process the mapped sequences following the GATK 
guidelines [26]. 

cd data/GATK 

wget https://storage.googleapis.com/genomics-public-data/re-

sources/broad/hg38/v0/Homo_sapiens_assembly38.dbsnp138.vcf 

wget https://storage.googleapis.com/genomics-public-data/re-

sources/broad/hg38/v0/Homo_sapiens_assembly38.dbsnp138.vcf. 

idx 

wget https://storage.googleapis.com/genomics-public-data/re-

sources/broad/hg38/v0/Mills_and_1000G_gold_standard.indels. 

hg38.vcf.gz 

wget https://storage.googleapis.com/genomics-public-data/re-

sources/broad/hg38/v0/Mills_and_1000G_gold_standard.indels. 

hg38.vcf.gz.tbi 

cd -

java -Xmx16g -jar $PICARD_JAR AddOrReplaceReadGroups \

-I data/010_star/ENCFF001RFAligned.sortedByCoord.out.bam \

-O data/020_picard/ENCFF001RF.ARG.bam \

-SO coordinate --RGID 3 --RGLB lib1 --RGPL illumina \

--RGSM CURRENT --RGPU unit1 --RGCN encode 

java -Xmx16g -jar $PICARD_JAR MarkDuplicates \ 

I=data/020_picard/ENCFF001RF.ARG.bam \ 

O=data/020_picard/ENCFF001RF_sorted_dedupped.bam \ 

CREATE_INDEX=true \ 

VALIDATION_STRINGENCY=SILENT \ 

M=data/020_picard/ENCFF001RF_sorted_dedupped.metrics 

gatk --java-options "-Xmx16g -XX:+UseParallelGC -XX:Paral-

lelGCThreads=1 -XX:ConcGCThreads=1" SplitNCigarReads \

--reference data/genomeReference/GRCh38.p14.genome.fa \

--input data/020_picard/ENCFF001RF_sorted_dedupped.bam 

\

--output data/030_splitNCigar/ENCFF001RF_split.bam 

gatk --java-options "-Xmx16g -XX:+UseParallelGC -XX:Paral-

lelGCThreads=1 -XX:ConcGCThreads=1" BaseRecalibrator \

--input data/030_splitNCigar/ENCFF001RF_split.bam \

--reference data/genomeReference/GRCh38.p14.genome.fa \

--known-sites data/GATK/Homo_sapiens_assembly38.dbsnp138. 

vcf \



--known-sites data/GATK/Mills_and_1000G_gold_standard.in-

dels.hg38.vcf.gz \

--output data/040_recalibration/ENCFF001RF_recal_data.table 

gatk --java-options "-Xmx16g -XX:+UseParallelGC -XX:Paral-

lelGCThreads=1 -XX:ConcGCThreads=1" ApplyBQSR \

--input data/030_splitNCigar/ENCFF001RF_split.bam \

--reference data/genomeReference/GRCh38.p14.genome.fa \

--bqsr-recal-file data/040_recalibration/ENCFF001RF_recal_-

data.table \

--output data/040_recalibration/ENCFF001RF_recalibrated.bam 

samtools sort -O BAM data/040_recalibration/ENCFF001RF_recali-

brated.bam > data/040_recalibration/ENCFF001RF_recalibrated_-

sort.bam 

samtools index data/040_recalibration/ENCFF001RF_recalibra-

ted_sort.bam 

# Note if all the steps before are ok you can only keep 

# data/040_recalibration/ENCFF001RF_recalibrated_sort.ba[mi] 

162 Pascal Belleau et al.

2: Ancestry inference with RAIDS 

Invoke R from the directory workingDirectory. 

Install and load RAIDS, and set up the required directory paths. 

if (!require("BiocManager", quietly = TRUE)) 

install.packages("BiocManager") 

BiocManager::install("RAIDS") 

library(RAIDS) 

setwd("workingDirectory") 

pathReference <- file.path("data/refGDS") 

refGenotype <- file.path(pathReference, "matGeno1000g.gds") 

refAnnotation <- file.path(pathReference, "matAnnot1000g. 

gds") 

pathProfileGDS <- file.path("data", "profileGDS") 

pathOut <- file.path("data", "res.out") 

# The output directories must exist 

if (!dir.exists(pathProfileGDS)) 

dir.create(pathProfileGDS) 

if (!dir.exists(pathOut)) 

dir.create(pathOut)
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2) A: Sample reference donor profiles from the reference data. 

With the 1KG reference, we recommend sampling 30 donor pro-
files per population. For reproducibility, be sure to use the same 
random-number generator seed. 

set.seed(3043) 

dataRef <- select1KGPopForSynthetic(fileReferenceGDS=refGen-

otype, 

nbProfiles=30L) 

2) B: Perform the ancestry inference. 

Within a single function call, data synthesis is performed, the 
synthetic data are used to optimize the inference parameters, 
and, with these, the ancestry of the input profile donor is 
inferred. 

pathToBam <- file.path("data/040_recalibration/ENCFF001RF_re-

calibrated_sort.bam") 

chrInfo <- GenomeInfoDb::seqlengths(BSgenome.Hsapiens.UCSC. 

hg38::Hsapiens)[1:25] 

resOut <- inferAncestryGeneAware(profileFile=pathToBam, 

pathProfileGDS =pathProfileGDS, 

fileReferenceGDS=refGenotype, 

fileReferenceAnnotGDS=refAnnotation, 

chrInfo=chrInfo, 

syntheticRefDF=dataRef, 

genoSource=c("bam"), 

blockTypeID="GeneS.Ensembl.Hsapiens.v86") 

saveRDS(resOut, file.path(pathOut, "resOut.rds")) 

3: Examine the value of the ancestry inference as follows 

3) A: The inferred ancestry and the optimal parameters. For the 
global ancestry inference using PCA followed by nearest neigh-
bor classification these parameters are D, the number of the top 
principal directions retained, and k, the number of nearest 
neighbors [20]. 

print(resOut$Ancestry) 

3) B: Visualize the RAIDS performance for the synthetic data, as a 
function of D and k (Fig. 2). 

createAUROCGraph(dfAUROC=resOut$paraSample$dfAUROC, 

title=" Encode ENCFF001 RNA")
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Fig. 2 The area under receiver operating characteristic (AUROC) measure of 

performance for global ancestry inference, as a function of the inference 

parameters D and K computed for each super-population (AFR, AMR, EAS, 

EUR, SAS) 

Fig. 3 The reference (1KG) profiles and a donor RNA-seq profile ENCFF001 

(green circle) are projected onto the top 3 principal components of the 

reference data 

Visualize the inference results in three top principal coordinates 
(Fig. 3). 

if (! requireNamespace("GenomeInfoDb", quietly=TRUE)){ 

install.packages("plotly") 

library(plotly) 

} 

dfPop <- getRefSuperPop(refGenotype) 

eigenvect <- rbind(resOut$pcaSample$eigenvector.ref,



resOut$pcaSample$eigenvector) 

rownames(eigenvect) <- c(row.names(resOut$pcaSample$eigenvec-

tor.ref), 

row.names(resOut$pcaSample$eigenvector)) 

sampleInfo <- data.frame(id=rownames(eigenvect), 

superPop=c(dfPop[rownames(eigenvect[-1* nrow 

(eigenvect),])], 

paste0("i_", resOut$Ancestry$SuperPop)), 

Type=c(rep("1kG", nrow(eigenvect)-1), "ENCFF001"), 

stringsAsFactors=FALSE) 

pcaSel3dAA <- data.frame(PCA1=eigenvect[,1], PCA2=eigenvect 

[,2], PCA3=eigenvect[,3]) 

plot_ly(pcaSel3dAA, x=~PCA1, y=~PCA2, z=~PCA3, 

type=’scatter3d’, mode="markers", 

color=as.factor(sampleInfo$superPop), 

symbol=factor(sampleInfo$Type, 

levels = c("ENCFF001","1kG"), 

labels = c("ENCFF001","1kG")), 

symbols=c("circle","cross")) 
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2.4 Build a 

Population Reference 

Dataset (Optional) 

The population reference input into RAIDS consists of two files: 
the reference genotype file and the reference annotation file. The 
reference genotype file contains, for each donor, to the population 
reference data, the genotypes at all positions in the genome, where 
the alternative allele frequency in a population is above a user-
defined threshold. The reference annotation file tabulates, for 
each super-population, its haplotype blocks and the phase informa-
tion for the reference. Both these files adhere to the genome data 
structure (GDS) format [32–34]. We use the gdsfmt [32] package 
to format both files. 

2.4.1 Build the Reference 

Genotype File 

Here we will explain how to construct the 1KG reference file as an 
example (see Note 3). 

We will set up a directory structure for the reference, namely, a 
directory tree for the input: 

workingDirectory 

data 

1000GGenotypeGRCh38 # PATHVCF1KG 

geno # PATHGENO 

info1kg 

testpopulationRef # PATHOUT 

ldBlock # pathBlockPop
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PATHVCF1KG=data/1000GGenotypeGRCh38 

if [ ! -d $PATHVCF1KG ] 

then 

mkdir $PATHVCF1KG 

fi 

and two output directories: 

PATHOUT=data 

PATHGENO=${PATHOUT}/geno 

PATHINFO=${PATHOUT}/info1kg 

if [ ! -d $PATHGENO ] 

then 

mkdir $PATHGENO 

fi 

if [ ! -d data/testpopulationRef ] 

then 

mkdir data/testpopulationRef 

fi 

if [ ! -d $PATHINFO ] 

then 

mkdir $PATHINFO 

fi 

The genotypes of the donors to 1KG are defined in 
VCF-formatted files (one per chromosome) [35]. 

Currently, these files follow the GRCh38 build of the human 
genome [24]. 

The table header in the VCF file is as follows: 

#INFO=<ID=DP,Number=1,Type=Integer,Description="Approximate 

read depth; some reads may have been filtered"> 

#CHROM POS ID REF ALT QUAL FILTER INFO 

FORMAT HG00096 HG00097 … 

where the first nine columns provide the sequence variant 
information, including the allele frequencies in the INFO column. 
The remaining columns contain the donor genotypes. 

In addition, we shall need the donor genotype metadata file in 
the PED format [36] located at The International Genome Sample 
Resource (IGSR) [37]. 

Download the input files: 

cd $PATHVCF1KG 

for i in ‘seq 1 22‘ 

do



wget http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collec-

tions/1000_genomes_project/release/20181203_biallelic_SNV/ 

ALL.chr${i}.shapeit2_integrated_v1a.GRCh38.20181129.phased. 

vcf.gz 

wget http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collec-

tions/1000_genomes_project/release/20181203_biallelic_SNV/ 

ALL.chr${i}.shapeit2_integrated_v1a.GRCh38.20181129.phased. 

vcf.gz.tbi 

done 

wget ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/work-

ing/20130606_sample_info/20130606_g1k.ped 

cd -
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From this input, we first create separate genotype files for each 
1KG donor (see Note 4). 

FILE1KG=${PATHVCF1KG}/ALL.chr1.shapeit2_integrated_v1a. 

GRCh38.20181129.phased.vcf.gz 

NF=$(($(zcat $FILE1KG|head -n 5000|grep "#CHROM"|grep -o 

$’\t’|wc -l) + 1)) 

TITLE=$(zcat $FILE1KG|head -n 5000|grep "#CHROM") 

for j in ‘seq 10 $NF‘ 

do 

CURRENT=$(echo $TITLE|cut -d $’ ’ -f ${j}) 

echo ${CURRENT} > ${PATHGENO}/${CURRENT}.csv 

done 

for i in ‘seq 1 22‘ 

do 

FILE1KG=${PATHVCF1KG}/ALL.chr${i}.shapeit2_integrated_v1a. 

GRCh38.20181129.phased.vcf.gz 

for j in ‘seq 10 $NF‘ 

do 

CURRENT=$(echo $TITLE|cut -d $’ ’ -f ${j}) 

zcat $FILE1KG|grep -v "#"|cut -d $’\t’ -f ${j}|head -n 10000 >> 

${PATHGENO}/${CURRENT}.csv 

done 

done 

cd ${PATHGENO} 

for j in ‘seq 10 $NF‘ 

do 

CURRENT=$(echo $TITLE|cut -d $’ ’ -f ${j}) 

bzip2 ${CURRENT}.csv 

done 

cd -
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We also create a single variant information table which, in 
addition to columns describing the variants, provides the variant 
allele frequencies in each 1KG super-population. 

echo $’CHROM,POS,REF,ALT,AF,EAS_AF,EUR_AF,AFR_AF,AMR_AF,SA-

S_AF’>${PATHINFO}/snvAnnotation.csv 

for i in ‘seq 1 22‘ 

do 

FILE1KG=${PATHVCF1KG}/ALL.chr${i}.shapeit2_integrated_v1a. 

GRCh38.20181129.phased.vcf.gz 

zcat $FILE1KG|grep -v "#"|cut -d $’\t’ -f 1,2,4,5,8|perl -n -e 

’@line=split("\t",$_); 

@info=split(";", $line[4]); 

my %indCur=(); 

foreach( @info){ 

@val=split("\=", $_); 

$indexCur{$val[0]}=$val[1]}; 

print($line[0].",". $line[1].",". $line[2] . "," . $line[3]. 

",". 

$indexCur{"AF"}. 

",". $indexCur{"EAS_AF"}. 

",". $indexCur{"EUR_AF"}. 

",". $indexCur{"AFR_AF"}. 

",". $indexCur{"AMR_AF"}. 

",". $indexCur{"SAS_AF"} ."\n")’ |head -n 10000 >>${PATHINFO}/ 

snvAnnotation.csv 

done 

cd ${PATHINFO} 

bzip2 snvAnnotation.csv 

cd -

Next, in an R session, we reformat the input metadata: 

library(RAIDS) 

pathGeno1Kg <- "data/1000GGenotypeGRCh38" 

pathGeno <- "data/geno" 

pathInfo <- "data/info1kg" 

fileName <- "20130606_g1k.ped" 

ped <- prepPed1KG(filePed=file.path(pathGeno1Kg,fileName), 

pathGeno=pathGeno) 

saveRDS(ped, file.path(pathInfo, "ped1kg.rds"))
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Only variants with a user-set minimum frequency in at least one 
super-population will be retained for further analysis. Here the 
minimum frequency is set to 0.01. The requisite function call is. 

outSNVIndex <- "snvSel0.01.Index.rds" 

outSNVSelected <- "snvSel0.01.rds" 

generateMapSnvSel(cutOff=0.01, 

fileSNV=file.path(pathInfo, "snvAnnotation.csv.bz2"), 

fileSNPsRDS=file.path(pathInfo, outSNVIndex), 

fileFREQ=file.path(pathInfo, outSNVSelected)) 

, where cutOff is the minimum frequency; pathSNVAnnota-

tion is the path to a variant information file (snvAnnotation. 

csv.bz2 in this example); and outSNVIndex and outSNVSe-

lected are names of the output files: the first containing the 
index for the population reference genotypes and the second con-
taining the description of the variants retained. 

We next create a reference genotype file required by RAIDS. 

pathReference <- "data/testpopulationRef" 

refGenotype <- file.path(pathReference, "matGeno1000gTest. 

gds") 

generateGDS1KG(pathGeno=pathGeno, 

filePedRDS=file.path(pathInfo, "ped1kg.rds"), 

fileSNVIndex=file.path(pathInfo, outSNVIndex), 

fileSNVSelected=file.path(pathInfo, outSNVSelected), 

fileNameGDS=refGenotype) 

where pathGeno is the path to the directory containing all the 
reference genotype files; filePedRDS, fileSNVIndex, and 
fileSNVSelected are input file names; and fileNameGDS is 
the output file name. 

Finally, we test all pairs of the reference donors for kinship and 
add a field in the reference genotype file identifying a subset of 
unrelated donors: 

identifyRelativeRef(fileReferenceGDS=refGenotype, 

maf=0.05, 

thresh=2^(-11/2), 

fileIBD=file.path(pathInfo, "ibd1kg.rds"), 

filePart=file.path(pathInfo, "unrelated1kg.rds")) 

addRef2GDS1KG(fileNameGDS=refGenotype, 

filePart=file.path(pathInfo, "unrelated1kg.rds"))
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In the final form, the population reference structure is (see 
Note 5). 

|--+ sample.id { Str8 2548, 19.9K } 

|--+ sample.annot [ data.frame ] * 

| |--+ sex { Str8 2548, 5.0K } # 

| |--+ pop.group { Str8 2548, 10.0K } 

| |--+ superPop { Str8 2548, 10.0K } 

| \--+ batch { Float64 2548, 19.9K } 

|--+ snp.id { Str8 24516859, 223.2M } 

|--+ snp.chromosome { UInt16 24516859, 46.8M } 

|--+ snp.position { Int32 24516859, 93.5M } 

|--+ snp.allele { Str8 24516859, 93.5M } 

|--+ snp.AF { PackedReal24 24516859, 70.1M } 

|--+ snp.EAS_AF { PackedReal24 24516859, 70.1M } # 

|--+ snp.EUR_AF { PackedReal24 24516859, 70.1M } # 

|--+ snp.AFR_AF { PackedReal24 24516859, 70.1M } # 

|--+ snp.AMR_AF { PackedReal24 24516859, 70.1M } # 

|--+ snp.SAS_AF { PackedReal24 24516859, 70.1M } # 

|--+ genotype { Bit2 24516859x2548, 14.5G } 

\--+ sample.ref { Bit1 2548, 319B } 

The fields are as follows: 

sample.id: a character string used as unique identifier for each 
sample. 

sample.annot: a data.frame object where each row corresponds to a
donor containing those columns:

sex: a character string used as identifier of the sex of the donor. 

pop.Group: a character string representing the subpopulation ances-
try of the donor (e.g., GBR). 

superPop: a character string representing the super-population 
ancestry of the donor. 

batch: an integer field reserved for future use (e.g., addition of 
donors to the reference collection). 

snp.id: a character string used as a unique identifier for each 
variant. 

snp.chromosome: an integer denoting the chromosome for the 
variant. 

snp.position: genomic coordinate of the variant. 

snp.allele: a character string representing the reference and alter-
native alleles. 

snp.AF: a numeric value for the frequency of the alternative allele in 
the reference collection.
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snp.[SPR]_AF: a numeric value between 0 and 1 representing the 
allele frequency of the alternative allele in the super-
population SPR. 

sample.ref: an integer indicating whether the reference donor is 
retained (=1) or removed following the kinship test. 

2.4.2 Build the Reference 

Annotation File 

The reference annotation file is created by the following 
function call: 

refAnnotation <- file.path(pathReference, "matAnnot1000gTest. 

gds") 

generatePhaseRef(fileReferenceGDS=refGenotype, 

pathGeno=pathGeno, 

fileSNVIndex=file.path(pathInfo, outSNVIndex), 

fileReferenceAnnotGDS=refAnnotation) 

where fileReferenceGDS, pathGeno, and fileSNVIndex 

are character strings containing the names of population reference 
file, the index file for the population reference genotypes, and the 
path to the directory containing all the reference genotype files, 
respectively; fileReferenceAnnotGDS is a character string for 
the reference annotation file name. 

At this point, the annotation file contains haplotype phasing 
information for each donor. 

Next, for each super-population, we add to the annotation file a 
partition of the genome into blocks of variants in linkage disequi-
librium (LD): 

pathBlockPop <- "data/ldBlock" 

addBlockFromDetFile( fileReferenceGDS=refGenotype, 

gdsRefAnnotFile=refAnnotation, 

pathBlock=pathBlockPop, 

superPop="AFR") 

where fileReferenceGDS and gdsRefAnnotFile are char-
acter strings containing the names of population reference file and 
the reference annotation file name and pathBlockPop is a charac-
ter string for a directory containing, for each chromosome, a file 
with a table for super-population-specific LD blocks. The file names 
must be of the form *.chr[chrNum].blocks.det, where 
chrNum is an integer between 1 and 22. The LD block table must 
have at least the following three columns: 

CHR: the chromosome. 

BP1: the start position of the block. 

BP2: the end position of the block.
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(see Note 6); 
and the superPop argument is a character string containing 

the name of the super-population. 
Finally, in order to enable inference from RNA-seq data, we 

add to the annotation file a transcript-oriented partition of the 
genome. For all transcribed regions annotated in the EnsDb.Hsa-

piens, we provide the transcription start and end coordinates. The 
remainder of the genome is partitioned into windows of equal size. 

if (! requireNamespace("EnsDb.Hsapiens.v86", quietly=TRUE)){ 

BiocManager::install("EnsDb.Hsapiens.v86") 

library(EnsDb.Hsapiens.v86) 

} 

edb <- EnsDb.Hsapiens.v86::EnsDb.Hsapiens.v86 

addGeneBlockRefAnnot(fileReferenceGDS=refGenotype, 

gdsRefAnnotFile=refAnnotation, 

winSize=10000, 

ensDb=edb, 

suffixBlockName="Ensembl.Hsapiens.v86") 

where 

winSize: an integer window size for the partition of the genome 
outside the annotated regions. 

edb: an object available from Bioconductor. 

suffixBlockName: a character string containing the name of the 
edb object. 

In the final form, the reference annotation file contains the 
following structure:

--+ phase { Bit2 24516859x2548 LZ4_ra(35.0%), 5.1G } 

|--+ block.annot [ data.frame ] * 

| |--+ block.id { Str8 7, 123B } 

| \--+ block.desc { Str8 7, 388B } 

\--+ block { Int32 24516859x7 LZ4_ra(3.60%), 23.6M } 

The field descriptions are as follows: 

phase: an integer representing the phase of the SNVs in the Popu-
lation Annotation GDS file; 0 means the first allele is a refer-
ence; 1 means the first allele is the alternative and 3 means 
unknown. The first allele combined with the genotype of the 
variant determines the phase for a biallelic variant. The variants 
in phase are in the same order than the variants in the Popula-
tion reference dataset.



block.annot: a data.frame object containing the following columns.
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block.id: a character string representing an identifier of block 
group. A block can be linkage disequilibrium block relative to 
a population or a gene. 

block.desc: a character string describing the block group. 

block: a matrix of integer values where each row represents a SNV 
in the same order as that of the variants in Population reference 
dataset. The columns are the block groups described in 
block.annot. Each element in the matrix is a block identifier. 

3 Future Expansion and Refinement of RAIDS 

Future versions of RAIDS will include methods for in-depth infer-
ence of genetic ancestry, specifically inference of ancestral admix-
tures and local ancestry. RAIDS will also be enabled to handle 
sequence data from additional molecular protocols, such as 
ATAC-seq, cytosine-conversion assays, and low-coverage whole-
genome sequences. 

4 Notes 

Note 1: In RAIDS, the function snpgdsLDpruning() from the 
Bioconductor package SNPRelate is invoked to prune variants 
in order to reduce the linkage disequilibrium. 

Note 2: We tune the inference parameters to optimal performance 
on a set of synthetic profiles. A strict assessment of performance 
at the optimum would require another set of synthetic profiles. 
Instead, we examine whether the inference performance 
remains nearly unchanged in a range of parameters near the 
optimum. 

Note 3: We restricted the reference to the first 10,000 variants for 
accelerate the example. If you want to generate all the refer-
ence, you must remove the 2 “|head -n 10000” in shell 
scripts. 

Note 4: The genotype file name must be of the form “donorID. 

csv.bz2,” where the string “donorID” is unique for each 
donor to the reference. The first line of the genotype file 
contains the name of the donor, and the subsequent lines 
each contain a genotype in the format “Allele1/Allele2” 
if no phasing is available, “Allele1|Allele2” otherwise. 

Note 5: The fields for allele frequencies must have names of the 
form “snp.[SPR]_AF” where SPR is the super-population 
reference code, e.g., EAS for the East Asian super-population.
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These fields correspond to the values present in the field 
superPop of the population reference structure file. 

Note 6: We recommend Plink [38] software package for comput-
ing LD blocks [39]. Computing LD blocks genome-wide is 
computationally demanding. An example of Plink output is 
provided at https://labshare.cshl.edu/shares/krasnitzlab/ 
aicsPaper/ldBlock2024.09.10.tar.gz. 
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Chapter 9 

Pruning-Assisted Modeling of Network Graph Connectivity 
from Spatial Transcriptomic Data 

Antara Biswas and Subhajyoti De 

Abstract 

Functional interactions within and between different types of somatic cells are crucial for executing complex 
organ-level biological processes in multicellular organisms. Spatial transcriptomic technologies have 
allowed for high throughput characterization of cell communities and associated cellular processes in the 
tissue contexts. However, analytical resources for characterization and quantitative inference of spatial 
interactions among somatic cells that can potentially impact complex biological functions in tissue micro-
environment are still limited. Here, we describe a framework to use network graph-based spatial statistical 
models on spatially annotated molecular data to gain insights into cellular relationship and connectivity in 
the local tumor microenvironment and evaluate the effects of network graph connectivity on the model 
inference. 

Key words Network, Community connectivity, Pruning, Trimming, Spatial transcriptomics, Tumor 
microenvironment, Quantitative inference 

1 Introduction 

In multicellular organisms, somatic cells are organized into differ-
ent tissue layers, where functional interactions among the cells lead 
to complex, organ-level functions [1, 2]. Examining gene expres-
sion in somatic cell types along with their respective cellular neigh-
borhoods in the tissue layers provides information about the 
broader context of biological processes and their interrelation in 
the tissue microenvironment—offering valuable insights and inter-
pretation of their functional significance in tissues, organs, and 
general body system [3–5]. Emerging technologies such as the 
high throughput spatial transcriptomics (ST) approaches have 
allowed for capture of gene expression profiles at specific, spatially 
annotated spots in tissues at unprecedented resolution, enabling a 
systematic assessment of the patterns of spatial connectedness of
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cellular transcriptomes, and also have prompted the development 
of numerous statistical models for characterizing the makeup of 
highly heterogeneous tissue samples [5–9].
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While substantial work has been done to detect somatic cell 
types and their activities in the tissue contexts using spatial tran-
scriptomics, the efforts to statistically model the spatial aspects of 
the community structure of cell types and connectivity of cellular 
processes are still at an earlier stage [10–12]. Appropriate modeling 
of these attributes can shed light into complex biological processes 
in the tissue microenvironment and their deregulation in diseases 
such as cancer. In previous work [13, 14], we presented some 
results from a network graph model built to capture the character-
istics of spatial heterogeneity. In this work, we provide more details 
on the network science underpinning the model and discuss the 
strategies for model optimization by removing redundancy in con-
nectivity from a dense network. Specifically, this chapter describes 
the methodological details of a neighborhood graph-based 
approach to analyze spatial transcriptomic data and focuses on the 
community structure of cell types and connectivity of cellular pro-
cesses and examines strategies to prune the neighborhood graph at 
different levels based on cellular makeups, without affecting topol-
ogy of the spatial network. This particularly highlights how the 
functionalities offered by the analyses described here address the 
challenges of spatial data setting and can be widely used to assess 
the effects of the cell-type and proximity-based trimming strategies 
to capture the fundamental attributes of cellular relationship and 
local patterns in the cancer microenvironment. 

2 Materials 

The R packages eSDM, spdep,adegraphics, adespatial, ade4, sp., 
adegenet, adegraphics, gstat, raster, spatialreg, geometry, lsa, sp., 
and gstat were used for manipulating, modelling, representation 
and statistical analysis tools for spatial data analysis [15, 16]. Data 
processing relied heavily on the Tidyverse v1.3.2 R packages 
(https://www.tidyverse.org/). All statistical analyses were per-
formed using R version 4.2.3 (https://www.r-project.org/). In 
the following sections, we focus on the fundamentals of analysis 
and trimming techniques. Detailed code used for performing rele-
vant analyses is available from our GitHub directory (https:// 
github.com/sjdlabgroup/BLCA-resources). In this chapter, we 
will use the terms pruning and trimming interchangeably.

https://www.tidyverse.org/
https://www.r-project.org/
https://github.com/sjdlabgroup/BLCA-resources
https://github.com/sjdlabgroup/BLCA-resources
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3 Methods 

3.1 Spatial Collection 

and Initial Wet Lab 

Processing 

Deidentified human bladder urothelial carcinoma samples were 
obtained from Rutgers Cancer Institute of New Jersey Bioreposi-
tory under an IRB approved protocol (Pro2019002924, PI: De). A 
typical spatial transcriptomic sequencing workflow involves initial 
tissue preparation, capturing and library preparation, sequencing, 
raw data processing, and downstream analyses (Fig. 1a). In this 
study, we used the Visium platform from 10x Genomics to perform 
spatial transcriptomic sequencing. 5 μm tissue sections were placed 
on the Visium Spatial Gene Expression Slide for FFPE, hybridized, 
and prepared for sequencing according to the manufacturer’s pro-
tocols. The slides were then used with Visium Spatial Gene Expres-
sion for FFPE User Guide (10X Genomics, CG000407) to 
generate Visium Spatial Gene Expression-FFPE libraries and 
sequenced on Illumina NovaSeq S4 300 cycle. Using this approach, 
we profiled tissue slices from four bladder cancer patients (S1-S4), 
as reported elsewhere [14], and here we discuss the modeling of 
spatial processes from this dataset using the network graph 
approach. Samples included Sample 1 (S1), a high-grade invasive 
urothelial transitional cell carcinoma with lymph node metastasis 
but no distant metastasis; Sample 2 (S2), a high-grade invasive 
localized urothelial transitional cell carcinoma without lymph

Fig. 1 (a) Schematic diagram of integral components of the spatial transcriptomics workflow, including key 

analysis steps. (b) Spatial composition of cell types in the four spatial transcriptomics samples, S1–S4



node or distant metastasis; Sample 3 (S3), a high-grade noninvasive 
papillary urothelial carcinoma without lymph node or distant 
metastasis; and Sample 4 (S4), a high-grade invasive urothelial 
transitional cell carcinoma with squamous differentiation and neg-
ative for lymph node or distant metastasis [14].
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3.2 Processing and 

Initial Analysis of 

Spatial Transcriptomic 

Data to Examine 

Spatial Heterogeneity 

in Tumor and Non-

tumor Cells in Bladder 

Cancer 

As indicated elsewhere [14], the sequence data (FASTQ files) were 
processed using Space Ranger (v2.0.1) pipeline to align transcrip-
tomic reads to the human reference genome (GRCh38), map them 
to the microscopic images of the tissue samples from which the 
reads were obtained and generate feature barcode matrices. 
Feature-barcode matrices and associated H&E images for each 
sample were imported into the R package “Seurat” (v4.3.0) for 
normalization, quality control, batch effect correction, dimension-
ality reduction, clustering, and cell-type estimation [17, 18] 
(Fig. 1b; see Notes 1 and 2). 

3.3 Modeling Spatial 

Transcriptomic Data 

Using Neighborhood 

Connectivity Graph 

We used the network graph-based approach to model the biological 
interactions in the spatial transcriptomic dataset and assessed the 
effects of network connectivity on the key inferences [13]. A neigh-
borhood connectivity graph describes pairwise relationships 
between two or more nodal entities in a connected network. Spatial 
transcriptomic data are typically presented as nodal features (e.g., 
proportions of different cell types, pathway scores, etc.) at each 
regularly spaced spatially profiled spots in a tissue section (Fig. 2a). 
In the basic model, each spatially annotated data point from a tissue 
sample is a node, and adjacent nodes are connected by an edge— 

which enables statistical modeling of interactions among the adja-
cent nodes. For more complex models, it is represented as a collec-
tion of nodes connected by edges, where the set of neighbors of a 
given node is the node’s neighborhood and the number of its 
neighbors is its connectivity. 

Fig. 2 (a) A schematic representation of construction and trimming of connections in neighborhood graph. As 

shown here for sample S1, using gene expression and spatial coordinate matrices from spatial transcrip-

tomics platform, spatial network is constructed, which consists of two components—nodes (spots) and edges 

(connecting spots)—wherein edge thickness is determined by the attributes of the nodes (spatial annotation of 

spots) and the structure of the graph. (b) The number of edges changing with trimming of neighborhood graphs 

for samples S1–S4 from most dense to most sparse
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3.4 Network Graph 

Trimming Strategy 

Considering the spatially prominent features of tissue architectures, 
it is apparent that a majority of the tissue-level biological processes 
(i) depend on the local cell-type composition, (ii) show weak cor-
respondence between dissimilar tissue layers, and (iii) their effects 
decay over distance within and across tissues. Therefore, one may 
argue that uniform nodal connectivity based on spatial adjacency 
alone may not be adequate and utility of alternative connectivity 
patterns should be evaluated. Starting with a fully connected net-
work graph, we considered strategies to systematically trim the 
edges. All edges in the neighborhood connectivity graph had 
equal weight before network trimming. Since most of the tissue-
level biological processes depend on distance and cellular commu-
nity structures, we trimmed the network based on both geographic 
distance between the nodes in the graph and also their cell-type 
compositions. Network trimming, based on weights of network 
connection, was performed using a min-max module. We first 
computed pairwise Euclidean distances and cosine similarity values 
in terms of cell-type composition, between all the nodes in a graph. 
Here we used a product of cosine similarity of cell spots based on 
cell-type composition and inverse distance matrix of spatial spots to 
construct a spatial weight matrix, Ψ = {wij;  1  ≤ i, j ≤ N}, described 
as

wij = cij × dij , 

where cij is cosine similarity value and dij is inverse distance between 
the i and j-th node and N is the number of spots. For each sample, 
the network graph based on the spatial transcriptomic data was 
trimmed to generate sparse network submatrices by network disas-
sembly using edge removal. It was trimmed in such a way that the 
edges between adjacent nodes in the graph were progressively 
eliminated based on increasingly higher cutoff for w, which reflects 
increasingly higher threshold for similarity in cell-type composition 
as well as spatial proximity of the spots in the 10X spatial transcrip-
tomic data (Fig. 2a, b). In simpler terms, wij → 0 when the distance 
between the nodes is large or their cell-type compositions are 
fundamentally different. In contrast, wij → 1 when the nodes are 
adjacent and also their cell-type compositions are very similar, 
reflecting homologous cellular neighborhood. We binned wij into 
ten-sequence vector and chose the sequence partitions as possible 
values of w′cutoff. To trim the network, we tested different w′cutoff 

and retained the edges between the nodes i and j if wij >  =w′cutoff 

(Fig. 3; see Notes 3 and 4). 

3.5 Calculation of 

Different Spatial 

Statistics Using 

Network Graph 

When cells are mapped to their spatial context, they often exhibit 
some degree of spatial relatedness at some scale. One popular 
measure of spatial autocorrelation is the Moran’s index (Moran’s 
I for short) coefficient. Moran’s I is an index for measuring spatial



Fig. 3 Spatial network graphs for samples S1–S4, trimmed by using similarity/proximity measures between 

the nodes, wherein the spatial information is considered as a spatial weight matrix and the trimming ranges, in 

a ten-sequence vector, from minima (most dense graph) to maxima (most sparse graph) of the weight matrix



autocorrelation of a given feature considering its values at different 
spatial locations, as in this case, a phenotype score of spots in a 
tissue microenvironment. It is the correlation coefficient indicating 
the relationship for a variable (e.g., proportion of cell type) between 
the neighboring nodes. Given a set of features and associated 
attributes, Moran’s I evaluates whether the pattern expressed is 
clustered, dispersed, or random. We used the moran.randtest func-
tion, which is based on the moran.mc function of the spdep pack-
age, using a published approach [13]. Moran’s spatial 
autocorrelation can be expressed as
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Fig. 4 Spatial analysis showing joint variation in spatial localization of the cell types in the four samples, S1– 

S4, with trimming, wherein P values associated with Moran’s I statistic are shown 

I = 
N 

W k xk - xð  Þ
 i j xi - xð  Þ  xj - x ,

where I refers to Moran’s I; N is the total number of spatial units 
indexed with i and j; x is the random variable, in this case, a 
phenotype score for tissue microenvironment in the spatial units; 
x is the mean of x; wij is a spatial weight matrix; and W is the sum of 
all wij. We computed spatial autocorrelation values using this for-
mula with the above-described spatial weights for the edges in the 
network (Fig. 4; see Note 5). 

3.6 Visualization of 

Analysis Results 

These analyses produced a set of results (see Note 6): 

(a) Cell-type estimation. 

(b) Spatial network graphs. 

(c) Network trimming. 

(d) Spatial autocorrelation analysis. 

4 Notes 

1. After strict quality control and filtration, a total of 6823 spots 
in ST data were retained for downstream analysis (S1-1923, 
S2-1230, S3-2097, S4-1573). Tumors are spatially heteroge-
neous tissues that comprise numerous cell types with intricate 
structures. Expression matrices were combined from all ST 
samples; then, gene and spot filtering, dimensionality reduc-
tion, and clustering of all spots were performed. We recom-
mend using well-characterized cell-type markers to identify 
different cell, including endothelial cells, epithelial cells,
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fibroblasts, immune cells, and smooth muscle cells. As expected 
from tumor tissues, epithelial cancer cells emerged as the dom-
inant cell type, given that bladder carcinomas are considered as 
the malignancies of epithelial tissue [19, 20]. 

2. Tumor microenvironment is inherently heterogeneous and 
thus spatial heterogeneity is expected within and between 
tumors. In our dataset, the proportions of cell types varied in 
each region, revealing heterogeneity and complexity by 
showing differential gene expression profiles of regions on the 
same slide and by revealing differential patterns across patients. 
Focusing on the tumor tissues, we found clusters of epithelial 
cells both in the center of the tumor and in the invasive front in 
all tumor samples. We observed heterogeneous distribution of 
other cell populations. T cells and tumor cells were generally in 
proximity, although we observed differences in immune cell 
infiltration within and across tumors. On the other hand, peri-
tumoral zone was rich in fibroblasts, which protects tumor cells 
from enhanced T cell accumulation [21–23]. These results 
reinforce that immune and stromal cells within the TME play 
a key role in cancer progression by interacting with tumor cells 
by secreting different chemokines, cytokines, and other signal-
ing molecules. 

3. To examine the effects of the dense-to-sparse representation of 
the network graph on key spatial inference from spatial tran-
scriptomic data, it is recommended that results from different 
trimming are compared. We started with the densely connected 
graph to sparse and calculated a weight (w) for each edge that 
depends on the cell-type composition similarity and geographic 
distance between pairs of spatially annotated spots. As we 
pruned the weak connections with increasing stringency (w 
′cutoff:  0–10) to attain dense-to-sparse representation of the 
network graph, the overall connectedness of the graph 
declined, as expected, and the network gradually disintegrated 
into disjoint subgraphs and isolated nodes. At an extreme, at 
the highest level of wcutoff, all nodes were isolated. Trimming at 
an intermediate level, i.e., w′cutoff, within 4–8 created interpret-
able sparse networks that revealed biologically interesting local 
microenvironmental architectures and spatial patterns in cellu-
lar processes.

4. We observed that there were sample-to-sample variations in the 
tissue architecture, network graph topology, and specific infer-
ences about cell-type compositions and cell-type specific local 
autocorrelation—indicating that single network trimming cut-
off may be unsuitable for all situations. Instead, the gradual 
trimming from dense-to-sparse network using the strategy 
described above can be a generic approach to identify 
context-specific trimming ranges and resulting biologically rel-
evant patterns.
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5. Moran’s I is a popular measure of spatial autocorrelation across 
adjacent nodes in a graph to examine spatial patterns of cell-
type abundance for respective cell types and assessed the effects 
of trimming on this index. Negative Moran’s I values indicate 
an inverse relationship between abundance of cells of specific 
cell types with respect to that in the neighboring spots, and 
Moran’s I values above 0 suggest a synergistic relationship 
among adjacent spots in terms of abundance of specific cell 
types. We observed that Moran’s I for trims 4–8 was statistically 
significant for all cell types; however, nonsignificant P values 
were associated with extreme trims. This is due to organization 
of tissue spatial architecture into discrete subunits based on cell 
types and by pruning the weakest connections—the collection 
of these cellular subunits becomes concentrated in the 
locality [24]. 

6. Overall, our observations suggest that refinement of the net-
work graph based on both cell type and proximity captures 
spatial relationships among cell types and biological processes 
and connectivity in the local tissue microenvironment. We 
found that intermediate levels of network connectivity are 
more useful in identifying local structures in cell-type compo-
sition and interdependent biological processes. Autocorrela-
tion of cell-type abundance scores, measured using Moran’s I, 
revealed local tissue-level microstructures, such that regions of 
clonal tumor growth or fibrosis at this range. Importantly, it 
showcases the effects of different levels of network trimming on 
the reliability of biological inferences. Our method is of course 
not without limitations. The major limitation is that tumor 
images represent a single timepoint, meaning that our method 
is not temporally resolved [25, 26]. Another limitation is that 
the current spatial transcriptomic technologies lack single-cell 
resolution, but emerging techniques might provide highly 
defined annotations to locate fine-grained histopathological 
regions and further improve trimming tools and metrices 
[25, 27]. Constructing spatial-temporal connectivity graph, 
with 3D perspectives, and designing trimming operations 
may help resolve the challenging issues of incoherent predic-
tions and enabling demonstration of transitions in connectivity. 
By doing so, one could establish statistical metrices for the 
biological network analysis focusing on intercellular communi-
cation patterns. 
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Chapter 10 

Inferring Metabolic Flux from Gene Expression Data Using 
METAFlux 

Yuchen Pan, Yuefan Huang, Vakul Mohanty, and Ken Chen 

Abstract 

Metabolic dysregulation is a hallmark of malignant cells, which contributes significantly to tumor prolifera-
tion, persistence, and therapeutic resistance. Further, metabolic interplay between malignant cells and cells 
in the tumor microenvironment (TME) has a significant impact on tumor phenotype. Examining the 
reconfiguration of metabolic pathways within tumors and TME is therefore critical to understand cancer 
biology and improve patient care. Current limitations of metabolomic techniques, however, restrict broad 
and deep characterization of tumor metabolome. To address this gap, we developed METAFlux (META-
bolic Flux balance analysis), a computational technique that uses flux balance analysis (FBA) to infer activity 
or flux of metabolic reactions from bulk and single-cell RNA sequencing data (scRNA-seq). Here, we 
describe the workflow along with a detailed step-by-step explanation for calculating metabolic fluxes using 
METAFlux from bulk RNA-seq and scRNA-seq data and the extension to characterize metabolic hetero-
geneity and metabolic interaction among cell types. 

Key words Metabolism, Flux balance analysis, Bulk RNA-seq, Single-cell RNA-seq, Tumor 
microenvironment 

1 Introduction 

Research has shown that metabolic characteristics of tumors and 
their TME are linked to tumor phenotype and patient outcome and 
can potentially unveil therapeutic vulnerabilities [1].Understanding 
metabolic patterns in cancers can therefore facilitate greater under-
standing of the underlying cancer biology and development of new 
therapeutics. However, contemporary metabolomic technologies 
only assess a subset of metabolites, thus providing an incomplete 
view of tumor metabolism. Large multi-omics datasets used to 
study molecular biology of cancers also often lack detailed meta-
bolic profiling [2]. Flux balance analysis (FBA), a quantitative 
technique, that models the flow of metabolites through metabolic 
networks [3]. FBA’s application to gene expression data can exploit 
the relative abundance of transcriptomic data to comprehensively
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study tumor metabolism [4–7]. While computational methods 
have been developed to infer metabolic flux from bulk and single-
cell(sc)RNA-seq, methods that model the metabolic interplay 
among various cell populations in the TME are underdeveloped.
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To address these challenges, we developed METAFlux, a 
computational framework to deduce metabolic fluxes from bulk 
and single-cell transcriptomic data using FBA. METAFlux utilizes 
Human1, a genome-scale metabolic model (GEM) that encodes 
the relationships between genes, metabolites, and reactions in a 
human cell to perform FBA. METAFlux is capable of simulta-
neously inferring a nondegenerate solution for flux of all reactions 
in the metabolic network from cancer gene expression data while 
considering media or TME nutrient conditions as binary para-
meters, corresponding to their availability. The metabolic fluxes 
generated by METAFlux can be a valuable resource for detailed 
metabolic characterization of tumors from gene expression and 
identification of potential metabolic targets for detailed follow-up 
studies in the context of precision medicine. In conventional FBA 
analysis, fluxes represent the velocities or rates at which metabolic 
reactions occur. However, in METAFlux, the predicted fluxes are 
calculated and normalized based on gene expression data, which 
means the results are relative flux scores. A positive flux indicates 
the reaction progressing in the forward direction, and a negative 
flux indicates the reaction is reversed. In the context of nutrient 
uptake, positive fluxes indicate secretion of the nutrient into the 
interstitial space and negative uptake of nutrients. Here, we present 
the workflow with detailed step-by-step explanation to obtain met-
abolic fluxes from bulk RNA-seq and scRNA-seq data using 
METAFlux. 

2 Materials 

2.1 Software and 

Packages Version 

METAFlux_1.1.0 

R version 4.3.2 

Seurat_4.3.0 

Matrix_1.6.3 

2.2 Human1 

(Human-GEM File) 

Human1 [8] is a publicly accessible consensus human genome-scale 
metabolic model (GEM) consisting of 13,082 metabolic reactions 
and 8378 metabolites. These reactions are distributed across nine 
distinct compartments, including the extracellular space, peroxi-
some, mitochondria, cytosol, lysosome, endoplasmic reticulum, 
Golgi apparatus, nucleus, and inner mitochondria.
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2.3 Cell Medium and 

Human Blood Nutrient 

Profiles 

METAFlux requires a user-defined input that defines a set of meta-
bolites (nutrient profile) that are available for uptake by cells. The 
input is formatted as a table with nutrient names in the “metabo-
lite” column and their corresponding exchange reaction IDs in the 
“reaction_name” column. METAFlux offers 2 default mediums to 
define the nutrient profiles: (1) “cell_medium” consisting of 
44 metabolites that can be used to analyze cells grown in culture 
and (2) “human_blood” which is an approximation of nutrients 
available in human blood for use on expression profiles derived 
from human tissues. These nutrient profiles can be used by the 
user in the absence of experiment specific nutrient profiles. 

2.4 Nutrient Lookup 

Files 

METAFlux offers a table “nutrient_lookup_files” containing 1648 
exchange reactions. These exchange reactions are artificial reactions 
that serve as a mathematical representation exchange of metabolites 
between cells and the extracellular space. 

3 Methods 

3.1 Installation METAFlux R package can be easily installed from GitHub using 
devtools: 

devtools::install_github(’KChen-lab/METAFlux’)

•

Installation of other dependencies 

Install the osqp package for optimization using. 

install.packages(’osqp’)

• Install the dplyr package using. 

install.packages(’dplyr’)

• For single-cell data analysis, we provide a pipeline to work with 
Seurat. Please install Seurat package using. 

install.packages(’Seurat’) 

3.2 Bulk RNA-Seq 

Pipeline 

3.2.1 Quick Workflow for 

Bulk RNA-Seq Sample 

This workflow can be applied to human cell line and tissue derived 
bulk RNAseq. Gene expression is input as a matrix with genes as 
rows and samples as columns. Users will need to choose the appro-
priate nutrient profile (either cell medium for cells in culture or 
human blood medium for tissues samples) as the input for META-
Flux. Users can also provide custom nutrient profiles when 
appropriate. Note: METAFlux estimates flux in each sample based 
on the same nutrient profile in any given run.



library(METAFlux) 

https://htmlpreview.github.io/?https://github.com/KChen-lab/ 

METAFlux/blob/main/Tutorials/pipeline.html - cb2-3data 

("bulk_test_example") 

data("cell_medium") 

data("human_blood") 

scores <- calculate_reaction_score(bulk_test_example) 

flux <- compute_flux(mras = scores,medium = human_blood) 

cbrt <- function(x) { 

sign(x) * abs(x)^(1/3) 

} 

flux <- cbrt(flux) 
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3.2.2 Step-by-Step Bulk 

RNA-Seq Pipeline 

Load the Library 

library(METAFlux) 

Load Data (1) Load gene expression data. 
METAFlux requires gene expression data as input.

• The gene expression matrix should be gene by sample 
matrix where row names are human gene names (gene 
symbols), and column names should be sample names. 
Please note that METAFlux does not support other 
gene IDs.

• The input gene expression matrix should be normalized 
(e.g., log-transformed TPM, etc.) before using META-
Flux. METAflux will not perform any normalization on 
expression data.

• Gene expression data cannot have negative values. 

data("bulk_test_example") 

head(bulk_test_example) 

## Sample1 Sample2 Sample3 Sample4 Sample5 

## TSPAN6 4.433587 4.06179073 4.777144 5.501764 5.32881296 

## TNMD 0.000000 0.04264398 0.000000 0.000000 0.08406697 

## DPM1 4.467942 5.61354161 5.125975 4.926973 4.74574474 

## SCYL3 2.286859 2.75061766 2.356148 2.548451 1.87972673 

## C1orf112 2.575287 2.82777973 2.087475 1.682574 1.76127531 

## FGR 4.005357 2.56314415 1.673564 2.272007 2.08067237
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(2) Load Human 1 GEM. 
We use the Human 1 GEM as the underlying metabolic 

model. For each reaction, there is one unique Reaction ID 
and SUBSYSTEM. 

data("human_gem") 

head(human_gem[,c("ID","EQUATION","EC-NUMBER","GENE ASSOCIA-

TION","SUBSYSTEM")]) 

In Table 1, we can get the following information from each 
column: 

ID represents the reaction ID in Metabolic Atlas. 

Equation shows the detailed chemical equation for this reaction; 
here, “=>” means this reaction is irreversible and “<=>” 
means reversible. 

EC number represents the Enzyme Commission number; every 
enzyme code consists of four numbers separated by periods. 
These numbers represent a progressively finer classification of 
the enzyme. For more detailed expansions, please refer to 
BiteSizeBio link [9]. 

Gene association represents the Ensembl ID of the genes associated 
with this reaction; gene reaction associations from HMR2, 
Recon3D, and iHsa were combined and integrated with 
enzyme complex information from Recon3D, iHsa, and the 
comprehensive resource of mammalian protein complexes 
database (CORUM [10]) to obtain gene reaction rules for 
Human1. 

Subsystem corresponds to a set of reactions that share a similar 
metabolic function; it can help organize and categorize metabolic 
reactions based on their functional roles or participation in specific 
cellular processes. 

For each reaction, we can also get other important information 
from this file such as whether the reaction is reversible, the specific 
compartment in which it occurs, and a list of the metabolites and 
genes involved. 

(3) Load the METAFlux medium. 

Two general medium files, “cell medium” and “human blood 
medium,” are available in METAFlux for users for general purpose 
use for analysis of human cell lines in culture and tissue samples, 
respectively. METAFlux also allows for input of user-defined 
medium when the information is available (see below). 

data("cell_medium") 

data("human_blood")
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Look at the first six rows of cell_medium. 

(4) Load the METAFlux medium if users have prior knowledge 
about their medium composition. 

Metabolite reaction_name 

Arginine HMR_9066 

Histidine HMR_9038 

Lysine HMR_9041 

Methionine HMR_9041 

Phenylalanine HMR_9043 

Tryptophan HMR_9045 

Users can provide custom medium files that need to be format-
ted as a data.frame with two columns, “metabolite” and “reaction_-
name,” for the name of the metabolite and its exchange reaction, 
respectively. The exchange IDs can be looked up in the nutrien-
t_lookup_files. For example, metabolite “naphthalene” has an 
exchange reaction ID “HMR_7110.” 

data("nutrient_lookup_files") 

view("nutrient_lookup_files") 

Note: After viewing the nutrient lookup file, users can use the 
search box on the top right corner to locate the corresponding 
nutrient reaction and its equation 

Calculate MRAS (Metabolic 

Reaction Activity Score) 

METAFlux utilizes Gene-Protein-Reaction (GPR) rules [11]  t  o
decipher the Boolean logic relationships among genes within a 
specific reaction and use it to compute a metabolic reaction activity 
score (MRAS) for each reaction. MRAS represents the activity of a 
reaction as a function of gene expression of enzymes catalyzing 
it. Using the approach described below, the expression of 3625 
metabolic genes, a MRAS score is calculated for each reaction in 
Human 1.

In GPR, AND operator is employed to link genes that encode 
for different subunits of the same enzyme, and the OR operator is 
used to connect genes encoding for isoenzymes. For an enzyme 
complex where all the subunits need to be expressed to catalyze a 
reaction, the metabolic activity is determined by the lowest expres-
sion value among all the genes associated with this enzyme com-
plex. For more details about the calculation of each operator and 
the steps of deriving MRAS, please refer to our Nature Commu-
nications (NatComm) paper [12].
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Given a gene expression matrix calculate_reaction_score func-
tion in METAFlux can be used to calculate MRAS scores across all 
samples: 

scores <- calculate_reaction_score(bulk_test_example) 

Calculate Flux MRAS calculated above can be used to connect transcriptome and 
fluxes. Normalized MRAS is used as the flux upper bound to their 
corresponding metabolic reactions, and the lower bound is set to 
zero if the reaction is nonreversible or to (-normalized MRAS) if 
reversible. For more details about how to construct the constraints 
of fluxes, please refer to our NatComm paper [12]. 

To guide the optimization search in a biologically relevant 
sup-space, the metabolite availability needs to be defined. We use 
the cell line culture medium containing 44 metabolites as the 
growth medium, which includes major components from Hams 
F-12 medium and other essential nutrients and ions from serum 
supplements. The uptake or secretion rates of these 44 metabolites 
are not limited. However, for the remaining metabolites in the 
model, cells can only secrete them into the medium rather than 
uptake from the medium. For patients’ tissue sample, we derived a 
list of 64 metabolites in human blood based on a human plasma-like 
medium (HPLM) developed by Cantor et al. [13] For more gen-
eral use purposes, users can also define their own metabolite list. 

Predicted fluxes are inferred from gene expression, so the 
results are relative flux scores. A positive flux represents secretion, 
while a negative flux indicates uptake of the metabolite. 

In R code, we calculate the metabolic fluxes for the 13,082 
reactions. 

https://htmlpreview.github.io/?https://github.com/KChen-lab/ 

METAFlux/blob/main/Tutorials/pipeline.html - cb23-2flux <-

compute_flux(mras = scores,medium = human_blood) 

Inspecting and Interpreting 

the Flux Data

• The sign of flux represents the direction of a reaction. In the 
context of nutrient uptake/release reactions (1648 exchange 
reactions in the nutrient lookup file), a positive value signifies 
the release of metabolites into extracellular space, while a nega-
tive value indicates the uptake of metabolites. In other reactions, 
a positive flux denotes a net forward direction, whereas a nega-
tive flux implies a net backward direction. The absolute values 
represent the magnitude of the flux.

• As we aim to minimize the sum of all fluxes in the model, the 
resulting flux data output tends to be parsimonious, with many 
reactions approaching zero flux. For instance, reactions that
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Fig. 1 The glucose uptake result of sample data in the step-by-step bulk-RNA 

seq pipeline 

should predominantly proceed in the forward direction might 
have a predicted flux with a small negative value, effectively 
approaching zero flux.

• The “nutrient_lookup_files” and “human_gem” tables can be 
used to focus on specific reactions and nutrient exchanges of 
interest. For instance, if we seek information on glucose uptake, 
a search for “glucose” would yield the glucose uptake reaction 
(HMR_9034). These values can be considered as the rates of 
glucose metabolite uptake. Subsequently, we can extract the 
relevant data (Fig. 1): 

data("nutrient_lookup_files") 

glucose <- data.frame(glucose = flux[grep("HMR_9034",human_-

gem$ID),]) 

library(ggplot2) 

ggplot(glucose, aes(y = -glucose, x = "sample")) + geom_box-

plot() + ggtitle("Glucose uptake level") + 

xlab("") + ylab("Glucose uptake scores") + theme_bw() 

# result shown in Figure1 

If one wants to explore other reactions such as glycolysis, 
oxphos, etc., Reaction_ID is required by using human_gem file to 
search it. As an illustration, suppose our focus is on the reaction 
HMR_4363 within the glycolysis pathway: 

HMR_4363 <- data.frame(hmr4363 = flux[grep("HMR_4363",human_-

gem$ID),])
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3.3 Single-Cell RNA-

Seq Pipeline 

3.3.1 Quick Workflow for 

Single-Cell RNA-Seq 

Sample 

When applied to scRNAseq, METAFLux models the entire TME as 
a community to consider metabolic interactions between groups. 
In this approach, we model fluxes at the level of cell groups such as 
cluster or cell-type level rather than the individual cells, to mitigate 
the effect of sparsity in scRNAseq data and characterizing metabolic 
heterogeneity and interaction among various cell types or clusters. 
Clusters can be obtained function FindNeighbors and FindClusters 
in Seurat, which is based on nearest neighbor graph, and cell types 
can be assigned based on the known knowledge or clustering 
results. The application is showcased using Seurat object. Since 
bootstrap samples will be generated later by sampling with replace-
ment, this step is necessary to estimate the properties of each group 
when sampling from an approximating distribution. 

To estimate metabolic fluxes, the following inputs are required: 

1. METAFlux’s single-cell workflow accepts gene expression as a 
Seurat object. Please note that the expression should be nor-
malized prior to using the object to run METAFLux. If users 
have an expression matrix, then CreateSeuratObject function in 
Seurat package can be used to create a Seurat object compatible 
with this workflow. 

2. Group assignment for each cell. This can be cell type, cluster, or 
other user-defined grouping. This should be specified in a 
column in the metadata file of the Seurat object. 

3. Cluster/cell-type fractions. As single-cell disassociation proto-
cols can have uneven sampling of cell types in a tissue, estimat-
ing cell-type proportions directly from single-cell data can 
introduce biases. When available, we encourage users to use 
cell proportions inferred from experiments or derived from in 
silico deconvolution of corresponding bulk gene 
expression data. 

Note: As METAFlux models cell types/groups as a collective 
with the same TME, it is more intuitive to run METAFlux inde-
pendently on each sample rather than on single-cell data after 
integration. However, based on specific biological inquiries and 
data quality, one may choose to explore the average effect across 
subjects, where the proportions of each cluster or cell type are 
estimated using all available data, and flux computation will be 
performed assuming that all the cell groups exist within a 
shared TME. 

Here we present the quick workflow to run METAFlux on a 
Seurat object containing cells from a single sample. 

library(METAFlux) 

data("sc_test_example") 

data("human_blood") 

mean_exp = calculate_avg_exp(



myseurat = sc_test_example, 

myident = ’Cell_type’, 

n_bootstrap = 3, 

seed = 1 

) 

scores <- calculate_reaction_score(data = mean_exp) 

round(table(sc_test_example$Cell_type)/nrow(sc_test_example@-

meta.data),1) 

flux <- compute_sc_flux( 

num_cell = 4, 

fraction = c(0.1, 0.3, 0.3, 0.3), 

fluxscore = scores, 

medium = human_blood 

) 

cbrt <- function(x) { 

sign(x) * abs(x)^(1/3) 

flux <- cbrt(flux) 
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In cases where the Seurat object contains multiple samples, we 
recommend running METAFlux on each sample independently. 
The workflow below presents an outline of how this can be 
achieved. 

obj.list <- SplitObject(seurat, split.by = "patient_id") 

for (i in c(1:length(obj.list))) { 

sc <- obj.list[[i]] 

mean_exp = calculate_avg_exp( 

myseurat = sc_test_example, 

myident = ’Cell_type’, 

n_bootstrap = 50, 

seed = 1 

) 

scores <- calculate_reaction_score(data = mean_exp) 

g <- table(sc$Cell_type) / nrow(sc@meta.data) 

print(g) 

flux = compute_sc_flux( 

num_cell = 4, 

fraction = c(g[1], g[2], g[3], g[4]), 

fluxscore = scores, 

medium = human_blood 

) 

} 

library(METAFlux) 

data("human_blood") 

data("cell_medium")



data("human_gem")

198 Yuchen Pan et al.

3.3.2 Step-by-Step 

Single-Cell RNA-Seq 

Pipeline 

Load Library, METAFlux 

Medium, and GEM 

Information 

Load the Single-Cell Data 

data("sc_test_example") 

Please note that this Seurat toy example is based on a single 
patient. For multiple samples, refer to the example code in Quick 
workflow for single-cell RNA-seq sample. 

Create an Average 

Expression Profile for 

Stratified Bootstrapped 

Samples for This Patient 

We only provide the built-in function for computing mean expres-
sion on bootstrap samples; here, METAFlux utilizes AverageEx-
pression function in Seurat to get the average expression in each 
identity class; it returns a matrix with genes as rows and identity 
classes as columns. There are various methods to aggregate sam-
ples, such as median or geometric mean. Users have the flexibility 
to calculate their own “average expression profile” according to 
their preferences, but it should adhere to the same data format as 
illustrated below. 

mean_exp <-

calculate_avg_exp( 

myseurat = sc_test_example, 

myident = ’Cell_type’, 

n_bootstrap = 3, 

seed = 1 

) 

Calculate MRAS (Metabolic 

Reaction Activity Score) 

MRAS can be computed from individual samples using GPR. The 
scores are normalized by dividing each element by the maximum 
value in that vector. The whole vector includes the reaction score of 
all relationships that a gene is involved in. This step is the same as 
the process in the bulk RNA-seq pipeline. 

Since bootstrap samples are used, MRAS matrix has a repeating 
motif. 

scores <- calculate_reaction_score(data=mean_exp) 

Compute Flux The flux computation and GEM setup are quite similar to the bulk 
pipeline. However, there are some differences for single cell: GEMs 
are merged across cell types, cell-type proportions are taken into 
consideration, and the biomass of the full community is maximized.
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specifically, we generate bootstraped samples, and each gener-
ated sample has the same size and the same group proportion as the 
original data, then using these samples to calculate MRAS for each 
mean gene expression vector, and group fraction parameter is also 
defined, which indicates the proportions of groups of interest with 
respect to the whole sample. To merge multiple metabolic net-
works, we create a “TME metabolite reservoir” for different cell 
groups to interact. Our model is designed to optimize the biomass 
of the entire community while minimizing the sum of squares of 
overall fluxes. 

To calculate the metabolic fluxes, OSQP solver is also used as in 
bulk pipeline. For the mathematical details of how the model is 
constructed and how the fluxes are calculated, please refer to our 
NatComm paper [12]. Users should keep the order of fraction 
parameters consistent with the order of scores results (MRAS scores 
matrix). For example, Cell type 1 (B lymphocytes) is the first 
column of scores, and cell type 2 (epithelial cells) is the second 
column of scores. And fractions need to sum up to 1. 

round(table(sc_test_example$Cell_type)/nrow(sc_test_example@-

meta.data),1) 

flux <- compute_sc_flux( 

num_cell = 4, 

fraction = c(0.1, 0.3, 0.3, 0.3), 

fluxscore = scores, 

medium = human_blood 

) 

Inspecting and Interpreting 

the Flux Data 

The total dimension of the predicted flux data is calculated as 
(num_cell * 13082 + 1648) * number_of_bootstrap (13,082 reac-
tions in Human1 and 1648 exchange reactions in nutrient lookup 
file). Rows labeled “external_medium” represent reactions involv-
ing the entire TME exchanging metabolites with the external envi-
ronment. These reactions pertain to the overall tumor community 
rather than a specific cell type. Rows labeled “internal_medium” 
correspond to reactions where a specific cell type or cluster 
exchanges metabolites with the TME. 

Signs of fluxes are biologically meaningful as previously dis-
cussed in the bulk pipeline. 

The fluxes specific to cell types represent average fluxes, calcu-
lated as the mean or unit flux for each cell type. To clarify if the flux 
of reaction A for cell type 1 is 0.2, it denotes that the average cell 
within cell type 1 exhibits a flux of 0.2 for reaction A. In contrast, 
external_medium fluxes are not average fluxes; instead, they are 
weighted total fluxes. The relationship between external_medium 
and internal_medium is defined as follows:
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Proportioncelltype1⋅Internal Medium
Celltype1 
exchange reactioni 

þ Proportioncelltype2⋅Internal Medium
Celltype2 
exchange reactioni 

þ …… 

=External Mediumexchange reactioni 

We can extract the reactions of interest. Once again, for those 
solely focused on metabolite uptake or release, a search in the 
“nutrient lookup file” can provide the Reaction ID for the metab-
olite exchange (refer to “Bulk Step-by-Step Breakdown” section in 
Subheading 2.3 for detailed guidance). For instance, to inquire 
about glucose uptake, a search for “glucose” would yield the glu-
cose uptake reaction, identified as HMR_9034. Subsequently, the 
relevant data can be extracted by the following: 

data("nutrient_lookup_files") 

glucose <- data.frame(glucose=flux[grep("HMR_9034",rownames 

(flux)),]) 

cbrt <- function(x) { 

sign(x) * abs(x)^ (1/3) 

} 

Considering all these key points collectively, we observe that 
Glucose.V1, Glucose.V2, and Glucose.V3 represent three boot-
strap samples. One can examine the distribution of all bootstraps 
to compare the nutrient uptake profiles of B cells, epithelial cells, 
myeloid cells, and T cells (Fig. 2).

Fig. 2 The glucose uptake result of sample data in the step-by-step single-cell RNA seq pipeline



library(ggplot2) 

glucose$celltype = rownames(glucose) 

long_glucose = reshape2::melt(glucose, id.vars = ’celltype’) 

ggplot(long_glucose, aes(y = -value, x = celltype)) + geom_-

boxplot() + ggtitle("Glucose uptake level for different cell 

types") + 

xlab("") + ylab("Glucose uptake scores") + theme(axis.text.x 

= element_text( 

angle = 90, 

vjust = 0.5, 

hjust = 1 

))
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# result shown in Figure2

• “celltype 1 internal_medium HMR_9034” is the glucose uptake 
flux for cell type 1 (referring to B cells in toy example).

• “celltype 2 internal_medium HMR_9034” is the glucose uptake 
flux for cell type 2(referring to epithelial cells in toy example).

• “celltype 3 internal_medium HMR_9034” is the glucose uptake 
flux for cell type 2(referring to myeloid cells in toy example).

• “celltype 4 internal_medium HMR_9034” is the glucose uptake 
flux for cell type 2(referring to T cells in toy example).

• “external_medium HMR_9034” is the glucose uptake flux for 
the whole tumor community(referring to combined TME com-
munity in toy example). 

References 

1. Faubert B, Solmonson A, DeBerardinis RJ 
(2020) Metabolic reprogramming and cancer 
progression. Science 368(6487):eaaw5473. 
https://doi.org/10.1126/science.aaw5473 

2. Zhou B, Xiao JF, Tuli L, Ressom HW (2012) 
LC-MS-based metabolomics. Mol Biosyst. 
8(2):470–481. https://doi.org/10.1039/ 
c1mb05350g. Epub 2011 Nov 1. PMID: 
22041788; PMCID: PMC3699692 

3. Orth J, Thiele I, Palsson B (2010) What is flux 
balance analysis? Nat Biotechnol 28:245–248. 
https://doi.org/10.1038/nbt.1614 

4. Lee D, Smallbone K, Dunn WB, Murabito E, 
Winder CL, Kell DB, Mendes P, Swainston N 
(2012) Improving metabolic flux predictions 
using absolute gene expression data. BMC 
Syst Biol 6:73. https://doi.org/10.1186/ 
1752-0509-6-73. PMID: 22713172; 
PMCID: PMC3477026 

5. Jensen PA, Papin JA (2011) Functional inte-
gration of a metabolic network model and 
expression data without arbitrary thresholding. 
Bioinformatics. 27(4):541–547. https://doi. 
org/10.1093/bioinformatics/btq702. Epub 
2010 Dec 20. PMID: 21172910; PMCID: 
PMC6276961 

6. Colijn C, Brandes A, Zucker J, Lun DS, 
Weiner B, Farhat MR, Cheng TY, Moody 
DB, Murray M, Galagan JE (2009) Interpret-
ing expression data with metabolic flux models: 
predicting Mycobacterium tuberculosis myco-
lic acid production. PLoS Comput Biol. 5(8): 
e1000489. https://doi.org/10.1371/journal. 
pcbi.1000489. Epub 2009 Aug 28. PMID: 
19714220; PMCID: PMC2726785 

7. Chandrasekaran S, Price ND (2010) Probabi-
listic integrative modeling of genome-scale 
metabolic and regulatory networks in Escher-
ichia coli and Mycobacterium tuberculosis. 
Proc Natl Acad Sci U S A 107(41):

https://doi.org/10.1126/science.aaw5473
https://doi.org/10.1039/c1mb05350g
https://doi.org/10.1039/c1mb05350g
https://doi.org/10.1038/nbt.1614
https://doi.org/10.1186/1752-0509-6-73
https://doi.org/10.1186/1752-0509-6-73
https://doi.org/10.1093/bioinformatics/btq702
https://doi.org/10.1093/bioinformatics/btq702
https://doi.org/10.1371/journal.pcbi.1000489
https://doi.org/10.1371/journal.pcbi.1000489


202 Yuchen Pan et al.

17845–17850. https://doi.org/10.1073/ 
pnas.1005139107. Epub 2010 Sep 
27. PMID: 20876091; PMCID: 
PMC2955152 
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Chapter 11 

Functional Pathway Inference Analysis (FPIA) 

Irbaz I. Badshah and Pedro R. Cutillas 

Abstract 

Pathway inference methods allow the mapping of biochemical networks, the discovery of signaling com-
ponents, and the assignment of functions to understudied proteins and genes. Literature and automated 
text mining have been successfully used to reconstruct metabolic and signaling circuits, while gene 
regulatory networks may be inferred from gene expression data. As an alternative approach to map members 
of proliferative pathways, functional pathway inference analysis (FPIA) is based on the premise that genes 
producing similar phenotypes following perturbation across multiple cell lines belong to a common 
pathway. We have demonstrated this concept with the use of gene dependency datasets that allow the 
provision of probabilistic values of pathway membership for thousands of genes. Here, we provide a 
detailed protocol for the implementation of FPIA in the ‘cordial‘ R package. As an illustration of how 
FPIA may be used to identify new pathway members, we present a step-by-step description of its use for the 
investigation of genes functionally associated to PI3K and TP53. 

Key words Cancer, Cell signaling, Cordial, CRISPR-Cas9, FPIA, Functional pathway inference 
analysis, Gene dependency, Network, Pathway, R, RNAi 

1 Introduction 

Bioinformatic methods play a crucial role in inferring biochemical 
pathways, providing insights into the mechanisms of biochemical 
processes, and identifying potential drug targets [1]. These meth-
ods complement experimental approaches and are essential for 
annotating the genome and discovering signaling members within 
biochemical networks [2]. Once mapped into pathways, protein 
and gene sets may be used to infer pathway activities from tran-
scriptomic or proteomic data by performing enrichment analysis, 
e.g., gene set enrichment analysis (GSEA) or overrepresentation 
analysis, focusing on groups/sets of genes sharing common 
biological functions [3, 4]. 

An approach to biochemical pathway inference involves system-
atic automated literature search, which reconstructs biochemical 
pathways by providing structured data derived from experimental
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observations in published literature [5]. These reconstructions 
serve as valuable resources that abstract essential information on 
the biochemical transformations and can be restricted to the analy-
sis of specific target organisms [6]. Automated text-mining techni-
ques and the integration of biological databases are employed to 
initiate the reconstruction of molecular circuits, providing the 
foundational data for pathway reconstruction [7, 8]. However, 
some representations of biochemical pathways may reduce network 
complexity and result in ambiguous representations [9], and incon-
sistencies between public resources containing literature-curated 
signaling pathways have been noted [10].
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As an alternative to systematic literature search and text mining, 
gene regulatory networks (GRNs) have attracted significant inter-
est as a means to infer cell-type specific pathway circuitry, leading to 
the development of numerous methods for their statistical infer-
ence from gene expression data [11]. These methods aim to under-
stand gene interactions and regulatory mechanisms, with the aim of 
deciphering gene functions and cellular dynamics [12]. Various 
computational approaches have been proposed for inferring 
GRNs, including bidirectional recurrent neural networks for 
single-cell transcriptomic data [13], multilevel strategies for large-
scale network inference [14], and relaxed graph matching for net-
work inference [15]. Additionally, fuzzy cognitive maps and Bayes-
ian networks have been utilized for improved inference of GRNs 
based on time series data and multi-omics data integration, respec-
tively [16, 17]. 

We recently proposed a methodology for identifying compo-
nents of biochemical pathways involved in cell proliferation and 
viability [1]. The approach is based on the premise that genes 
belonging to the same pathway would produce the same antiproli-
ferative phenotypes across cell models when such genes are silenced 
using genetic means, such as by CRISPR or RNA interference 
(RNAi). To test this concept, we developed a method named 
functional pathway inference analysis (FPIA), which uses datasets 
of systematic gene perturbations across large panels of cell line 
data as input. Through the use of gene dependency data of 
genome-wide systematic genetic perturbation screens across multi-
ple cancer cell lines, the calculation of pairwise correlations reveals 
signaling mediators with concordant survival phenotypes that are 
potential elements of a shared pathway [1]. This chapter provides a 
protocol for FPIA implemented in the freely available R package 
‘cordial‘ [1].
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Table 1 

Recommended hardware 

Specification 

System type 64-bit operating system; x64-based processor 

Processor Intel® Core™ i7-10610U CPU @ 1.80 GHz; Base speed 2.30 GHz 

Installed RAM 64.0 GB (minimum recommended: 16 GB) 

Hardware used in the creation and testing of ‘cordial‘ 

2 Materials 

2.1 Hardware • The ‘cordial‘ package was developed and tested on a system with 
the hardware specification detailed in Table 1. 

2.2 Software • The required software is presented in Table 2.

• The R programming language and environment, its packages, 
additional build tools, and RStudio integrated development 
environment (IDE) are available for several Linux distributions, 
macOS, and Windows operating systems (OS); consult the offi-
cial websites of the software for more information (Table 2). 

2.3 ‘cordial‘ • The ‘cordial‘ R package provides functions to compute pairwise 
Pearson’s correlations of a dataset in whole or of specified targets 
simultaneously in parallel. Conveniently, it includes the ability to 
filter the input dataset and select a subset of columns to compute 
correlations. The functions of the package output Pearson’s 
product moment correlation coefficients, p-values, adjusted p-
values (q-values), linear model slope, and observation counts in a 
long-format data structure (‘data.table‘).

• The ‘cordial‘ R package was built on a 64-bit Windows 10 and 
Windows 11 system; however, the codebase was constructed to 
be OS-independent. Specifically, an asynchronous multisession 
parallel backend was implemented which is compatible with 
Windows and Unix-like systems (Linux, macOS). 

3 Methods

• The methods herein assume the use of the R programming 
language and environment via the RStudio IDE, where R code 
is run from an R console or source editor. 

3.1 Installation • Consult the official websites of the software listed in Table 2 for 
OS-specific installation instructions for the current releases.
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1. Install R (Table 2). 

2. Install tools for building R packages from source (such as from 
GitHub), specific to the version of R and OS (Table 2). 

3. Install RStudio (Table 2). 

4. Install ‘cordial‘ package dependencies by executing in an R 
console or editor (Table 2): 

(a) ‘devtools‘ 

(b) ‘magrittr‘ 

(c) ‘tidyr‘ 

(d) ‘purrr‘ 

(e) ‘future‘ 

(f) ‘furrr‘ 

(g) ‘collapse‘ 

(h) ‘data.table‘ 

(i) ‘ggplot2‘ (optional) 

(j) ‘ggrepel‘ (optional) 

if (!require("devtools")) { # check if not installed 

install.packages("devtools") # install 

library(devtools) # load 

} 

install.packages("magrittr") 

install.packages("tidyr") 

install.packages("purrr") 

install.packages("future") 

install.packages("furrr") 

install.packages("collapse") 

install.packages("data.table") 

install.packages("ggplot2") 

install.packages("ggrepel") 

5. Install the ‘cordial‘ package by any of the following methods 
(Table 2): 

(a) Direct from GitHub. 

devtools::install_github("CutillasLab/cordial@*release") 

(b) Manual download. 

(i) Download the Package Archive File (cordial_x.x.x.tar.gz) 
of the latest release from the GitHub repository (Table 2).
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(ii) Run the following, replacing the string argument to 
‘path‘ with the actual location: 

devtools::install_local(path = "C:/path/to/cordial_x.x.x.tar. 

gz")

(c) RStudio graphical user interface (GUI). 

(i) Download the Package Archive File (cordial_x.x.x.tar.gz) 
of the latest release from the GitHub repository 
(Table 2). 

(ii) In RStudio, click Tools menu. 

(iii) Select Install Packages… . 

(iv) In the Install from list box, select Package Archive File (. 
zip; .tar.gz). 

(v) Click Browse to select the downloaded ‘cordial‘ Package 
Archive File. 

(vi) Select Install. 

3.2 Load ‘cordial‘ • The ‘cordial‘ R package must be loaded (makes functions, data, 
and code available) and attached (places the package in the 
search path of available R objects so that function definitions 
can be found) by executing at the beginning, once per session: 

library(cordial)

• The package documentation can be consulted by prepending ‘?‘ 
to the package name; this method can be used for any object 
including functions and data: 

?cordial

• All subsequent code examples assume the ‘cordial‘ package has 
been loaded, in addition to any optional packages (‘ggplot2‘, 
‘ggrepel‘). 

3.3 Data • Datasets included in ‘cordial‘ are from the Cancer Dependency 
Map (DepMap)—a collaboration of the Broad Institute (Cam-
bridge, Massachusetts, USA) and the Wellcome Sanger Institute 
(Hinxton, Cambridgeshire, UK) [18–22].

• ‘cordial‘ contains three datasets from the DepMap project: 

1. ‘cellmeta_DT‘: cancer cell line metadata 

2. ‘rnai_DT‘: cancer cell line genetic dependencies from RNAi 
screens 

3. ‘crispr_DT‘: cancer cell line genetic dependencies from 
CRISPR-Cas9 screens
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3.3.1 ‘cellmeta_DT‘ • Cancer cell line sample information [23–25].

• A  ‘data.table‘ with 1811 rows (cell lines) and 26 columns (cell 
line metadata).

1. depmap_id: cell line DepMap ID. The ‘data.table‘ key 
(improves performance of binary search, joins, grouping, 
and indexing), 

2. cell_line_name: cell line name, 

3. stripped_cell_line_name: stripped cell line name, 

4. CCLE_Name: Cancer Cell Line Encyclopaedia name, 

5. Alias: alias, 

6. COSMICID: Catalogue Of Somatic Mutations In Cancer 
ID, 

7. sex: sex of individual from which sample was derived, 

8. source: tissue sample source, 

9. Achilles_n_replicates: Achilles number of replicates, 

10. cell_line_NNMD: cell line null-normalized median 
difference, 

11. culture_type: cell culture type, 

12. culture_medium: culture medium, 

13. cas9_activity: Cas9 activity, 

14. RRID: research resource identifier, 

15. WTSI_Master_Cell_ID: Wellcome Trust Sanger Institute 
ID, 

16. sample_collection_site: sample collection site, 

17. primary_or_metastasis: primary or metastatic cancer cell 
line, 

18. primary_disease: primary disease, 

19. Subtype: subtype disease, 

20. age: age of individual from which sample was derived, 

21. Sanger_Model_ID: Sanger model ID, 

22. depmap_public_comments: additional information, 

23. lineage: cancer cell line lineage, 

24. lineage_subtype: cancer cell line lineage subtype, 

25. lineage_sub_subtype: cancer cell line lineage sub-subtype, 

26. lineage_molecular_subtype: cancer cell line lineage molecular 
subtype.
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3.3.2 ‘rnai_DT‘ • Cancer cell line genetic dependencies estimated using the 
DEMETER2 model applied to three large-scale RNAi screening 
datasets: the Broad Institute Project Achilles, Novartis Project 
DRIVE, and the Marcotte et al. breast cell line dataset [21, 26– 
29].

• A ‘data.table‘ with 711 rows (cell lines) and 16,816 columns 
(6 cell line metadata, 16,810 genes). 

1. depmap_id: cell line DepMap ID. The ‘data.table‘ key 
(improves performance of binary search, joins, grouping, 
and indexing), 

2. cell_line_display_name: cell line display name, 

3. lineage_1: cancer cell line lineage, 

4. lineage_2: cancer cell line lineage subtype, 

5. lineage_3: cancer cell line lineage sub-subtype, 

6. lineage_4: cancer cell line lineage molecular subtype, 

7. … 16,816: [Genes]. 

3.3.3 ‘crispr_DT‘ • Cancer cell line genetic dependencies estimated using the 
CERES model applied to the Avana library CRISPR-Cas9 
genome-scale knockout (prefixed with Achilles) [20, 25, 30, 
31].

• A ‘data.table‘ with 945 rows (cell lines) and 17,648 columns 
(6 cell line metadata, 17,642 genes). 

1. depmap_id: cell line DepMap ID. The ‘data.table‘ key 
(improves performance of binary search, joins, grouping 
and indexing), 

2. cell_line_display_name: cell line display name, 

3. lineage_1: cancer cell line lineage, 

4. lineage_2: cancer cell line lineage subtype, 

5. lineage_3: cancer cell line lineage sub-subtype, 

6. lineage_4: cancer cell line lineage molecular subtype, 

7. … 17,648: [Genes]. 

3.3.4 Usage • The datasets can be accessed as follows; for further information, 
consult ‘data.table‘ documentation (Table 2): 

# access data object 

cellmeta_DT 

rnai_DT 

crispr_DT



# view in tabulated spreadsheet presentation

View(cellmeta_DT)

View(rnai_DT)

View(crispr_DT)

# index data

# syntax: DT[i, j, by]

# DT[

# subset/reorder rows using i,

# select/calculate columns using j,

# grouped according to by

# ]

# an empty argument in i, j or by indicates no subsetting

# change ‘by‘ to ‘keyby‘ to sort results

# EXAMPLES ####

# all rows, column subset, grouped ----

# ‘.()‘ = alias of ‘list()‘ in ‘data.table‘

cellmeta_DT[

,

.(stripped_cell_line_name, sample_collection_site),

by = .(primary_disease, Subtype)

]

# Boolean index, column subset using indices ----

rnai_DT[

lineage_1 == "Breast"

& lineage_2 == "Breast Carcinoma",

1:6

]

# Boolean index using variable, column subset excluding

indices ----

# create character vector of cell lines

cell_primary <- cellmeta_DT[

primary_or_metastasis == "Primary",

stripped_cell_line_name

]

# index and return all dependency data

crispr_DT[cell_line_display_name %in% cell_primary, !1:6]

# index and return dependency data for specific genes ----

# create character vector of specific genes
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# ‘data.table‘ supports chained operations 

# ‘.SD‘ = subset of data: 

# contains data for the current group in ‘by‘ 

targets <- crispr_DT[, 7:16][, colnames(.SD)] 

# index first 5 rows for specific genes 

# ‘..‘ = access variable from outside the ‘data.table‘ 

crispr_DT[1:5, ..targets] 

# calculate means for each column of target genes, ----

# per ‘lineage_1‘ group 

# create character vector of specific genes 

targets <- crispr_DT[, 7:16][, colnames(.SD)] 

# apply mean for each ‘lineage_1‘ to each gene column in 

‘targets‘ 

# ‘.SDcols‘ = columns to compute on 

crispr_DT[, lapply(.SD, mean), keyby = lineage_1, .SDcols = 

targets] 
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3.4 Functions • There are three main functions of ‘cordial‘ that perform a corre-
lation analysis to implement FPIA: 

1. ‘cor_map()‘: correlation analysis of a dataset 

2. ‘cor_target_map()‘: correlation analysis of multiple targets 
in parallel 

3. ‘cor_target()‘: correlation analysis of a single target in 
parallel

• There are two additional functions to set up an asynchronous 
multisession backend for parallel computing: 

1. ‘start_parallel()‘: begin a parallel processing plan 

2. ‘end_parallel()‘: begin a sequential processing plan 

3.4.1 ‘start_parallel()‘ • ‘start_parallel()‘ creates a multisession ‘future::plan()‘ for asyn-
chronous (parallel) processing in separate R sessions running in 
the background of the same machine; replaces any previously set 
‘plan‘.

• If a multisession ‘plan‘ is set, ‘cor_target()‘ and ‘cor_target_map 
()‘ execute in parallel; the result is returned to the main R 
session.

• Run ‘start_parallel()‘ at the beginning of working with ‘cordial‘ 
functions. Alternatively, users may set their own ‘plan‘ for more
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control. To return to sequential processing, see ‘end_parallel()‘ 
(Subheading 3.4.2). 

Call 

start_parallel(logical_cores = FALSE) 

Arguments • ‘logical_cores‘: a logical scalar. The number of parallel R sessions 
is set to the number of physical CPUs/cores if ‘FALSE‘ (default) 
or logical CPUs/cores if ‘TRUE‘. 

Usage 

# create parallel multisessions equal to the number of physical 

cores ----

start_parallel() # Default 

start_parallel(FALSE) # Same as above 

# create parallel multisessions equal to the number of logical 

cores ----

start_parallel(TRUE) 

# execute ‘cordial‘ functions... 

3.4.2 ‘end_parallel()‘ • ‘end_parallel()‘ creates a sequential ‘future::plan()‘ for synchro-
nous processing in the current R session; replaces any previously 
set ‘plan‘.

• Run ‘end_parallel()‘ at the end of working with ‘cordial‘ func-
tions to return to sequential processing. Alternatively, users may 
set their own ‘plan‘ explicitly for more control. 

Call 

end_parallel() 

Arguments • [None]. 

Usage 

# execution of ‘cordial‘ functions... 

# begin sequential processing ----

end_parallel()
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3.4.3 ‘cor_map()‘: 

Correlation Analysis of a 

Dataset 

Correlation Analysis

• ‘cor_map()‘ uses ‘collapse::pwcor()‘ to test for an association 
between paired samples computed with Pearson’s product 
moment correlation coefficient (same as ‘cor.test()‘). Correla-
tions are computed on complete pairs of observations for each 
pair of variables (same as ‘cor(..., use = "pairwise.complete.obs")‘).

• Adjusted p-values are computed with ‘p.adjust()‘ using one of 
the ‘p.adjust.methods‘: ‘c("holm", "hochberg", "hommel", "bonfer-
roni", "BH", "BY", "fdr", "none")‘. Default ‘"BH"‘ (alias 
‘"fdr"‘) is the Benjamini-Hochberg false discovery rate multiple 
testing adjustment method [32]. 

Subset • ‘cor_map()‘ conveniently allows filtering (‘filter_rows‘) of the 
input dataset by performing a cross-join (‘CJ‘) with a named 
list referring to values present within the dataset itself, or a 
separate metadata ‘data.table‘.

• If the dataset contains non-numeric columns, they must be 
omitted by selecting (‘select_cols‘) the columns to compute pair-
wise correlations. This mechanism also allows limiting of the 
correlations to perform.

• The subsetting algorithm is identical to that in ‘cor_target_map 
()‘ and ‘cor_target()‘. 

Context • ‘cor_map()‘ differs from ‘cor_target()‘ in that correlations are 
computed for all pairs of columns specified in ‘select_cols‘, 
whereas ‘cor_target()‘ computes pairwise correlations for a sin-
gle specified ‘target‘ column, with correlations limited to the 
columns specified in ‘select_cols‘.

• ‘cor_target_map()‘ varies from ‘cor_target()‘ in that it allows 
specifying multiple elements in ‘target‘. 

Output • A ‘data.table‘ in long-format is returned with no pairwise dupli-
cates (corr(X, Y) without corr(Y, X)); if ‘filter_rows‘ has been 
supplied, the filters are included: 

1. Target, 

2. Correlation, 

3. Pearson’s product moment correlation coefficients (r), 

4. p-values ( p), 

5. Adjusted p-values (q), 

6. Observation counts (n), 

7. … [Filters].



Functional Pathway Inference Analysis 215

Call 

cor_map( 

dataset, 

select_cols = colnames(dataset), 

filter_rows = NULL, 

metadata = NULL, 

self = "yes", 

method = "BH" 

) 

Arguments • ‘dataset‘:  a  ‘data.table‘. Must be in column-major order.

• ‘select_cols‘: a vector of column names (character) or indices 
(numeric). The columns to use for computing correlations, 
which must be of type numeric.

• ‘filter_rows‘: a named ‘list()‘. Values specify which rows to sub-
set. Names correspond to column names in ‘dataset‘ or ‘meta-
data‘ if supplied.

• ‘metadata‘:  a  ‘data.table‘. Must be in column-major order. 
Optional input containing data to filter ‘dataset‘ by. If supplied, 
‘metadata‘ and ‘dataset‘ must possess the same key (‘data.table:: 
setkey()‘) column.

• ‘self‘: a character scalar. Self-correlations are included if ‘“yes”‘ 
(default) or omitted if ‘“no”‘.

• ‘method‘: A character scalar. Correction method for p-value 
adjustment, passed to ‘p.adjust()‘. One of ‘c("holm", "hochberg", 
"hommel", "bonferroni", "BH", "BY", "fdr", "none")‘;  ‘"BH"‘ 
(alias ‘"fdr"‘) (default).

Usage: Dataset 

# execute function 

results <- cor_map( 

dataset = crispr_DT, 

select_cols = colnames(crispr_DT[, !1:6]) 

) 

# add column for annotating plots 

results <-

results[, ‘=‘( 

Direction = data.table::fifelse(r > 0, "Positive", "Nega-

tive") 

)]
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Usage: Dataset Filtered by 

Metadata # create vector of gene targets 

genes <- c( 

"AKT1", "AKT2", "AKT3", "MDM2", "PIK3CA", "PIK3CB", "PIK3CD", 

"PIK3R1", "PIK3R2", "PIK3R3", "TP53" 

) 

# filter using columns in ‘metadata‘ 

# (to filter ‘dataset‘ directly without ‘metadata‘: 

# use column names and values in ‘dataset‘ for ‘filter_rows‘) 

results <- cor_map( 

dataset = crispr_DT, 

select_cols = genes, 

filter_rows = list(lineage = "ovary"), 

metadata = cellmeta_DT 

) 

# add column for annotating plots 

results <-

results[, ‘=‘( 

Direction = data.table::fifelse(r > 0, "Positive", "Nega-

tive") 

)] 

Usage: Dataset by 

Grouping Variable # create vector of gene targets 

genes <- c( 

"AKT1", "AKT2", "AKT3", "MDM2", "PIK3CA", "PIK3CB", "PIK3CD", 

"PIK3R1", "PIK3R2", "PIK3R3", "TP53" 

) 

# create vector of grouping variables 

unique_lineages <- crispr_DT[, unique(lineage_1)] 

# map function to multiple groups 

results <- purrr::map( 

.x = unique_lineages, 

.f = ~ cor_map( 

dataset = crispr_DT, 

select_cols = genes, 

filter_rows = list(lineage_1 = .x) 

) 

) 

# assign names to list elements



results <- purrr::set_names(results, unique_lineages) 

# keep data that is not empty (from too few observations) 

results <- purrr::compact(.x = results, .p = ~ nrow(.x)) 

# combine output into single ‘data.table‘ 

results <- data.table::rbindlist(results) 

# add column for annotating plots 

results <-

results[, ‘=‘( 

Direction = data.table::fifelse(r > 0, "Positive", "Nega-

tive") 

)] 
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3.4.4 ‘cor_target_map()‘: 

Correlation Analysis of 

Multiple Targets 

Correlation Analysis

• ‘cor_target_map()‘ uses ‘cor.test()‘ to test for an association 
between paired samples computed with Pearson’s product 
moment correlation coefficient. Correlations are computed 
with incomplete cases removed (‘cor.test(..., na.action = "na. 
omit")‘).

• Adjusted p-values are computed with ‘p.adjust()‘ using one of 
the ‘p.adjust.methods‘: ‘c("holm", "hochberg", "hommel", "bonfer-
roni", "BH", "BY", "fdr", "none")‘. Default ‘"BH"‘ (alias ‘"fdr"‘) 
is the Benjamini-Hochberg false discovery rate multiple testing 
adjustment method [32]. 

Subset • ‘cor_target_map()‘ conveniently allows filtering (‘filter_rows‘)  of  
the input dataset by performing a cross-join (‘CJ‘) with a named 
list referring to values present within the dataset itself or a 
separate metadata ‘data.table‘.

• If the dataset contains non-numeric columns, they must be 
omitted by selecting (‘select_cols‘) the columns to compute pair-
wise correlations. This mechanism also allows limiting of the 
correlations to perform.

• The subsetting algorithm is identical to that in ‘cor_target()‘ and 
‘cor_map()‘. 

Parallelization • ‘cor_target_map()‘ computes correlations in parallel if an asyn-
chronous ‘future::plan()‘ is set prior to executing ‘cor_target_-
map()‘. See ‘start_parallel()‘ (Subheading 3.4.1).

• Internally, ‘furrr::future_map()‘ is used to map simultaneously 
in parallel each element in ‘target‘ for processing via ‘cor.test()‘. 
Specifically, ‘cor_target_map()‘ by default maps ‘cor_targets()‘ 
(a sequential variant of ‘cor_target()‘) to avoid nested parallel
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operations; otherwise, the nested parallel operations both 
attempt to utilize the full complement of CPUs/cores which 
would result in inefficient load balancing. 

Context • ‘cor_target_map()‘ differs from ‘cor_map()‘ in that pairwise cor-
relations are computed for multiple specified ‘target‘ columns, 
with correlations limited to the columns specified in ‘select_cols‘, 
whereas ‘cor_map()‘ computes correlations for all pairs of col-
umns specified in ‘select_cols‘.

• ‘cor_target_map()‘ varies from ‘cor_target()‘ in that it allows 
specifying multiple elements in ‘target‘. 

Output • A ‘data.table‘ in long-format is returned with no pairwise dupli-
cates (corr(X, Y) without corr(Y, X)); if ‘filter_rows‘ has been 
supplied, the filters are included: 

1. Target, 

2. Correlation, 

3. Slope, 

4. Pearson’s product moment correlation coefficients (r), 

5. p-values ( p), 

6. Adjusted p-values (q), 

7. … [Filters]. 

Call 

cor_target_map( 

dataset, 

target, 

select_cols = colnames(dataset), 

filter_rows = NULL, 

metadata = NULL, 

self = "yes", 

method = "BH", 

fun = cordial::cor_targets 

) 

Arguments • ‘dataset‘:  a  ‘data.table‘. Must be in column-major order.

• ‘target‘: a character vector. Column names in ‘dataset‘ to com-
pute correlations with (specified in ‘select_cols‘), which must be 
of type numeric.
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• ‘select_cols‘: a vector of column names (character) or indices 
(numeric). The columns to use for computing correlations, 
which must be of type numeric.

• ‘filter_rows‘: a named ‘list()‘. Values specify which rows to sub-
set. Names correspond to column names in ‘dataset‘ or ‘meta-
data‘ if supplied.

• ‘metadata‘:  a  ‘data.table‘. Must be in column-major order. 
Optional input containing data to filter ‘dataset‘ by. If supplied, 
‘metadata‘ and ‘dataset‘ must possess the same key (‘data.table:: 
setkey()‘) column.

• ‘self‘: a character scalar. Self-correlations are included if ‘"yes”‘ 
(default) or omitted if ‘"no”‘.

• ‘method‘: a character scalar. Correction method for p-value 
adjustment, passed to ‘p.adjust()‘. One of ‘c(“holm”, “hochberg”, 
“hommel”, “bonferroni”, “BH”, “BY”, “fdr”, “none”)‘; ‘"BH”‘ 
(alias ‘"fdr”‘) (default).

• ‘fun‘: a function. Currently, only compatible with ‘cordial::cor_-
targets()‘ (default) or ‘cordial::cor_target()‘. See Parallelization 
(Subheading 3.4.4.3). 

Usage: Multiple Targets 

# create vector of gene targets 

genes <- c( 

"AKT1", "AKT2", "AKT3", "MDM2", "PIK3CA", "PIK3CB", 

"PIK3CD", 

"PIK3R1", "PIK3R2", "PIK3R3", "TP53" 

) 

# execute function for multiple targets 

# ‘select_cols‘ must also include the ‘target‘ columns 

results <- cor_target_map( 

dataset = crispr_DT, 

target = genes, 

select_cols = c(genes, colnames(crispr_DT[, 7:17])) 

) 

# add column for annotating plots 

results <-

results[, ‘=‘( 

Direction = data.table::fifelse(r > 0, "Positive", 

"Negative") 

)]
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Usage: Multiple Targets 

Filtered by Metadata # create vector of gene targets 

genes <- c( 

"AKT1", "AKT2", "AKT3", "MDM2", "PIK3CA", "PIK3CB", 

"PIK3CD", 

"PIK3R1", "PIK3R2", "PIK3R3", "TP53" 

) 

# filter using columns in ‘metadata‘ 

# (to filter ‘dataset‘ directly without ‘metadata‘: 

# use column names and values in ‘dataset‘ for ‘filter_rows‘) 

results <- cor_target_map( 

dataset = crispr_DT, 

target = genes, 

select_cols = genes, 

filter_rows = list(lineage = c("breast", "ovary")), 

metadata = cellmeta_DT 

) 

# add column for annotating plots 

results <-

results[, ‘=‘( 

Direction = data.table::fifelse(r > 0, "Positive", 

"Negative") 

)] 

Usage: Multiple Targets by 

Grouping Variable # create vector of gene targets 

genes <- c( 

"AKT1", "AKT2", "AKT3", "MDM2", "PIK3CA", "PIK3CB", 

"PIK3CD", 

"PIK3R1", "PIK3R2", "PIK3R3", "TP53" 

) 

# create vector of grouping variables 

lineages <- c("Breast", "Ovary") 

# map function to multiple targets for each group 

results <- purrr::map( 

.x = lineages, 

.f = ~ cor_target_map( 

dataset = crispr_DT, 

target = genes, 

select_cols = genes, 

filter_rows = list(lineage_1 = .x) 

) 

)



# assign names to list elements 

results <- purrr::set_names(results, lineages) 

# keep data that is not empty (from too few observations) 

results <- purrr::compact(.x = results, .p = ~ nrow(.x)) 

# combine output into single ‘data.table‘ 

results <- data.table::rbindlist(results) 

# add column for annotating plots 

results <-

results[, ‘=‘( 

Direction = data.table::fifelse(r > 0, "Positive", "Nega-

tive") 

)] 
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3.4.5 ‘cor_target()‘: 

Correlation Analysis of a 

Single Target 

Correlation Analysis

• ‘cor_target()‘ uses ‘cor.test()‘ to test for an association between 
paired samples computed with Pearson’s product moment cor-
relation coefficient. Correlations are computed with incomplete 
cases removed (‘cor.test(..., na.action = “na.omit”)‘).

• Adjusted p-values are computed with ‘p.adjust()‘ using one of 
the ‘p.adjust.methods‘: ‘c("holm", "hochberg", "hommel", "bonfer-
roni", "BH", "BY", "fdr", "none")‘. Default ‘"BH"‘ (alias ‘"fdr"‘) 
is the Benjamini-Hochberg false discovery rate multiple testing 
adjustment method [32]. 

Subset • ‘cor_target()‘ conveniently allows filtering (‘filter_rows‘) of the 
input dataset by performing a cross-join (‘CJ‘) with a named list 
referring to values present within the dataset itself or a separate 
metadata ‘data.table‘.

• If the dataset contains non-numeric columns, they must be 
omitted by selecting (‘select_cols‘) the columns to compute pair-
wise correlations. This mechanism also allows limiting of the 
correlations to perform.

• The subsetting algorithm is identical to that in ‘cor_target_map 
()‘ and ‘cor_map()‘. 

Parallelization • ‘cor_target()‘ computes correlations in parallel if an asynchro-
nous ‘future::plan()‘ is set prior to executing ‘cor_target()‘. See 
‘start_parallel()‘ (Subheading 3.4.1).

• Internally, ‘furrr::future_map2()‘ is used to map simultaneously 
in parallel each column in ‘select_cols‘ with the ‘target‘ for pro-
cessing via ‘cor.test()‘.
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Context • ‘cor_target()‘ differs from ‘cor_map()‘ in that pairwise correla-
tions are computed for a single specified ‘target‘ column, with 
correlations limited to the columns specified in ‘select_cols‘, 
whereas ‘cor_map()‘ computes correlations for all pairs of col-
umns specified in ‘select_cols‘.

• ‘cor_target_map()‘ varies from ‘cor_target()‘ in that it allows 
specifying multiple elements in ‘target‘. 

Output • A ‘data.table‘ in long-format is returned with no pairwise dupli-
cates (corr(X, Y) without corr(Y, X)); if ‘filter_rows‘ has been 
supplied, the filters are included: 

1. Target, 

2. Correlation, 

3. Slope, 

4. Pearson’s product moment correlation coefficients (r), 

5. p-values ( p), 

6. Adjusted p-values (q), 

7. … [Filters]. 

Call 

cor_target( 

dataset, 

target, 

select_cols = colnames(dataset), 

filter_rows = NULL, 

metadata = NULL, 

self = "yes", 

method = "BH" 

) 

Arguments • ‘dataset‘:  a  ‘data.table‘. Must be in column-major order.

• ‘target‘: a character scalar. A column name in ‘dataset‘ to com-
pute correlations with (specified in ‘select_cols‘), which must be 
of type numeric.

• ‘select_cols‘: a vector of column names (character) or indices 
(numeric). The columns to use for computing correlations, 
which must be of type numeric.

• ‘filter_rows‘: a named ‘list()‘. Values specify which rows to sub-
set. Names correspond to column names in ‘dataset‘ or ‘meta-
data‘ if supplied.
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• ‘metadata‘:  a  ‘data.table‘. Must be in column-major order. 
Optional input containing data to filter ‘dataset‘ by. If supplied, 
‘metadata‘ and ‘dataset‘ must possess the same key (‘data.table:: 
setkey()‘) column.

• ‘self‘: a character scalar. Self-correlations are included if ‘"yes”‘ 
(default) or omitted if ‘"no”‘.

• ‘method‘: a character scalar. Correction method for p-value 
adjustment, passed to ‘p.adjust()‘. One of: ‘c("holm", "hochberg", 
"hommel", "bonferroni", "BH", "BY", "fdr", "none")‘; ‘"BH"‘ 
(alias ‘"fdr"‘) (default). 

Usage: Single Target 

# execute function 

results <- cor_target( 

dataset = crispr_DT, 

target = "A1BG", 

select_cols = colnames(crispr_DT[, !1:6]) 

) 

# add column for annotating plots 

results <-

results[, ‘=‘( 

Direction = data.table::fifelse(r > 0, "Positive", 

"Negative") 

)] 

Usage: Single Target 

Filtered by Metadata # filter using columns in ‘metadata‘ 

# (to filter ‘dataset‘ directly without ‘metadata‘: 

# use column names and values in ‘dataset‘ for ‘filter_rows‘) 

results <- cor_target( 

dataset = crispr_DT, 

target = "A1BG", 

select_cols = colnames(crispr_DT[, !1:6]), 

filter_rows = list(lineage_subtype = "breast_carcinoma"), 

metadata = cellmeta_DT 

) 

# add column for annotating plots 

results <-

results[, ‘=‘( 

Direction = data.table::fifelse(r > 0, "Positive", 

"Negative") 

)]
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Usage: Single Target by 

Grouping Variable # create vector of unique grouping variables 

unique_lineages <- crispr_DT[, unique(lineage_1)] 

# map function to a single target for each group 

results <- purrr::map( 

.x = unique_lineages, 

.f = ~ cor_target( 

dataset = crispr_DT, 

target = "A1BG", 

select_cols = colnames(crispr_DT[, !1:6]), 

filter_rows = list(lineage_1 = .x) 

) 

) 

# assign names to list elements 

results <- purrr::set_names(results, unique_lineages) 

# keep data that is not empty (from too few observations) 

results <- purrr::compact(.x = results, .p = ~ nrow(.x)) 

# combine output into single ‘data.table‘ 

results <- data.table::rbindlist(results) 

# add column for annotating plots 

results <-

results[, ‘=‘( 

Direction = data.table::fifelse(r > 0, "Positive", "Nega-

tive") 

)] 

4 Anticipated Results

• Example usage of visualizing correlations for a subset of exem-
plar genes in PI3K and TP53 pathways across all cell lines is 
shown below. The output of such analysis returned genes known 
to be associated with these pathways (Fig. 1): 

# create vector of gene targets 

genes <- c( 

"AKT1", "AKT2", "AKT3", "MTOR", "PDPK1", "PIK3CA", "PIK3CB", 

"PIK3CD", "PIK3R1", "PIK3R2", "PIK3R3", "PTEN", "TP53" 

) 

# execute function for specified genes 

results <- cor_target_map(



dataset = crispr_DT,

target = genes,

select_cols = colnames(crispr_DT[, !1:6]),

self = "no"

)

# create subset for labels:

# top 6 correlations by q-value for each ‘Target‘

annotations <- results[order(q)][q < 0.05, head(.SD, 6), by =

Target]

# get maximum absolute value of ’Slope’

max_abs_slope <- results[, max(abs(Slope))]

# create plot

plot_results <- ggplot(

results[q < 0.05],

aes(x = r, y = -log10(q), colour = Slope)) +

geom_point(

data = results[q > 0.05], # non-significant points

colour = "grey",

alpha = 0.5

) +

geom_point(alpha = 0.5) + # significant points from initial

‘ggplot()‘

geom_label_repel(

data = annotations,

aes(label = Correlation),

colour = "black",

size = 2.5,

force = 5,

force_pull = 0.5,

direction = "y",

nudge_y = 3,

nudge_x = 2,

label.padding = 0.15,

segment.size = 0.3

) +

geom_hline(

yintercept = -log10(0.05),

linetype = "dashed",

linewidth = 0.4,

alpha = 0.5

) +

geom_vline(

xintercept = 0,

linetype = "dashed",

linewidth = 0.4,
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Fig. 1 Pearson’s correlations across all cell lines. Pearson’s correlations of genes significantly associated with 

specified target genes across multiple cancer cell lines from CRISPR-Cas9 knockout data. Top 6 correlations 

(labeled) by q-value for each target (shown in graph headers) with self-correlations omitted; horizontal line:-

log10(q-value) = 0.05; vertical line: r-value = 0



alpha = 0.5 

)  +  

facet_wrap(vars(Target)) + 

scale_color_viridis_c( 

option = "H", 

limits = c(-max_abs_slope, max_abs_slope), 

guide = guide_colourbar(barwidth = 8, barheight = 0.7) 

)  +  

theme_bw() + 

theme( 

legend.position = "top", 

legend.title = element_text(size = 9), 

legend.text = element_text(size = 8), 

plot.title = element_text(size = 10), 

strip.text = element_text(size = 8), 

axis.title = element_text(size = 9), 

axis.text = element_text(size = 8) 

)  +  

labs( 

title = "Pearson’s correlations", 

x = "r-value", 

y = "-log10(q-value)", 

) 

# view plot 

plot_results 

# save plot 

ggsave("Fig 1.pdf", width = 4.5, height = 7.5, units = "in")
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Chapter 12 

NGP: A Tool to Detect Noncoding RNA-Gene Regulatory Pairs 
from Transcriptomic Data 

Hongjie Ke and Tianzhou Ma 

Abstract 

Noncoding RNAs (ncRNAs) play key roles in cancer initiation, promotion, and progression via regulating 
the expression of critical genes. Existing methods performed simple bivariate analysis on each pair of 
ncRNA and gene separately without considering the complex interactions among ncRNAs and genes. We 
developed a statistically rigorous and computationally efficient software tool to identify essential ncRNA-
gene regulatory pairs from transcriptome-wide ncRNA and gene expression data. Here we provide a practi-
cal guidance with real data examples on the use of the tool implemented in the R package “NGP.” 

Key words Noncoding RNA, Gene regulation, Gene expression, NGP 

1 Introduction 

A majority (>95%) of the human genome is transcribed into RNAs 
that do not further encode for proteins called noncoding RNAs 
(ncRNAs), which include micro RNAs (miRNAs), small interfering 
RNAs (siRNAs), and long noncoding RNAs (lncRNAs), among 
others [1]. Though long regarded as the “dark matter” of the 
genome [2], ncRNAs played critical roles in human malignancies. 
For example, deregulation of miRNAs and lncRNAs has been 
linked to all cancer types and impacts major cancer hallmarks [3– 
8]. ncRNAs can regulate gene expression at both transcriptional 
and posttranscriptional levels, as mechanisms to affect cancer onset 
and progression [1, 9]. However, the study of ncRNAs and their 
target genes and how they regulate gene expression in cancer is still 
in its infancy. 

The advent of high-throughput technology including micro-
array and RNA sequencing (RNA-seq) has enabled the expression 
analysis for a large number of ncRNAs and genes over the whole 
genome simultaneously. Existing methods typically performed sim-
ple bivariate analysis on each pair of ncRNA and gene separately,
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which ignores the complex interaction among ncRNAs and 
genes and is subject to severe multiple testing issue [10, 11]. Jointly 
analyzing candidate ncRNAs and genes expressed in a condition 
and investigating how their interactions changed from status to 
status (e.g., from early stage to late stage cancer) are critical to 
our understanding of their roles in disease pathogenesis. However, 
several analytical challenges exist when handling these two sets of 
expression data together. First, the numbers of ncRNAs and genes 
in the human genome are both huge (~10k–100k each), resulting 
in a vast number of candidate ncRNA-gene interactive pairs (~1 
billion) to search from. Second, ncRNAs and genes are highly 
correlated with other ncRNAs and genes, further increasing the 
computational burden. Third, the high-dimensional data of 
ncRNA and gene expression are usually featured by being highly 
skewed, heavy-tailed, and noisy (e.g., due to low expression of 
ncRNA). Robust methods are needed to mitigate the bias brought 
by these non-normal data.
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To fill the gap, we recently developed a statistically rigorous and 
computational efficient method to robustly screen and select non-
coding RNA regulators of gene expression [12]. Here, we present a 
bioinformatic tool built on the basis of the method, namely, 
“NGP,” for the detection of Noncoding RNA-Gene regulatory 
Pairs from transcriptome-wide ncRNA and gene expression data. 

2 Materials 

This protocol requires a computer with R installed. We assume 
both ncRNA and gene expression data have undergone standard 
pipeline for microarray (e.g., quality control, background adjust-
ment, and normalization by affy or lumi package in R [13, 14]) or 
RNA-seq (e.g., alignment and quantification by HISAT + StringTie 
[15, 16]) and are well annotated following standardized gene 
nomenclature. The inputs of the tool are the normalized expression 
values (or normalized counts, e.g., Reads Per Kilobase of transcript 
per Million mapped reads (RPKM)/Fragments Per Kilobase of 
transcript per Million mapped reads (FPKM)/Transcripts Per Mil-
lion (TPM)/Reads Per Million (RPM) for RNA-seq) of annotated 
ncRNAs and genes for matched samples in a particular condition 
(e.g., patients with kidney cancer): 

(a) Normalized expression values (or normalized count for 
RNA-seq) of ncRNAs for matched samples in csv or txt files 

(b) Normalized expression values (or normalized count for 
RNA-seq) of genes for matched samples in csv or txt files 

The current NGP tool only allows the input of normalized 
expression data from either microarray or RNA-seq. Users can use



the tool to further perform filtering, imputation, and transforma-
tion if needed. For RNA-seq, the tool so far only considers the 
continuous RPKM/FPKM/TPM values but not raw count data. 
After reading into R, the two input data items will be in data frame/ 
matrix format with rows representing the ncRNAs/genes and col-
umns representing the samples. The columns (i.e., samples) of the 
two data matrices need to be matched and put in the same order. 
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3 Methods 

Figure 1 shows a workflow of the NGP tool. We assume both 
ncRNA and gene expression data have undergone standard pipeline 
to generate normalized expression values. The tool provides a 
function to perform filtering, imputation, and transformation 
when needed as a preprocessing step before the analysis. The 
main analytical component of the tool is implemented in two 
stages: in the first dimension reduction stage, as both ncRNA and 
gene expression data are of high dimension, the tool runs an edge-
wise screening (remove ncRNA-gene pairs) followed by a node-
wise screening (remove ncRNA or genes) to reduce the number of 
ncRNAs, genes, and ncRNA-gene pairs to a more manageable

Fig. 1 A workflow of the “NGP” tool. Dashed part is the main analytical component of the tool



scale. In the second pair selection stage, the tool applies a multivar-
iate regularization method to identify the most critical ncRNA-
gene pairs from a sparse ncRNA x gene adjacency matrix outputted 
from the first stage. Our tool can also be coupled with existing 
visualization software (e.g., Cytoscape [17]) to provide both tabu-
lar and graphical outputs for users to visually explore the identified 
ncRNA-gene regulatory pairs and perform subsequent analysis 
(e.g., pathway enrichment analysis, validation using external 
database).
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3.1 Install NGP in R Download NGP from its GitHub repository: 

devtools::install_github(’kehongjie/NGP’) 

Dependency packages of NGP including impute, rPCor, CCA, 
CCP, remMAP, and FarmTest will be automatically installed with 
the package. 

3.2 Preprocessing 

Step (Optional) 

“Junk in, junk out”. Expression data can be noisy which will lead to 
biased results if not carefully prepared. Before performing any 
analysis, the tool employs an optional preprocessing step, following 
the common practice of analyzing gene expression data [18], by 
filtering out ncRNAs or genes with low expression (e.g., typical for 
ncRNAs) and low variance (e.g., housekeeping genes), conducting 
log2 transformation, and imputing any missing values whenever 
necessary if users have not done so yet. 

Sample code 

ncrna_data <- preproc(data=ncrna_input, type=”ncRNA”, plat-

form=”RNAseq”, filter.mean.cutoff=T, filter.mean.quantile=F, 

filter.var=F, mean.cutoff=0.3, log=FALSE, impute=FALSE) 

gene_data <- preproc(data=gene_input, type=”gene”, plat-

form=”RNAseq”, filter.mean.cutoff=T, filter.mean.quantile=F, 

filter.var=T, mean.cutoff=5, var.quantile=0.5, log=FALSE, 

impute=FALSE) 

We provide two options for filtering by mean: 
cutoff vs. quantile. Considering the relatively lower expression of 
ncRNAs as compared to genes, we suggest using a lower mean 
cutoff for ncRNA (e.g., 0.3 for ncRNA vs. 5 for gene). The pre-
processing pipeline for ncRNA has not reached a consensus yet, so 
we follow the common practice in gene expression to process 
ncRNA, but users can apply other existing ncRNA specific proces-
sing pipelines to process the ncRNA expression data and treat it as 
input for our tool. Log2 transformation and imputation are 
optional if already performed in previous steps.



Detecting Noncoding RNA-Gene Regulatory Pairs 235

3.3 Edge-wise 

Screening of ncRNA-

Gene Pairs 

Both ncRNA and gene expression data are of extremely high 
dimension (10–100k each, with up to 1 billion potential edges to 
search from), so we need to reduce the dimension before selecting 
important pairs. In the dimension reduction stage, we first perform 
an edge-wise screening. The main method used here follows from 
our recently published paper [12], and users may refer to the paper 
for technical details. In short, we use the robust partial correlation 
based statistics as a screening utility and run an iterative approach to 
remove ncRNA-gene pairs/edges with the statistics not passing a 
threshold defined by the parameter αe (see Fig. 2). The expected 
output from this step is a highly sparse ncRNA x gene adjacency 
matrix (“1” indicating the corresponding ncRNA-gene pair is kept, 
“0” indicating the pair is removed) with much fewer number of 
pairs, ncRNAs, and genes (when all pairs of an ncRNA or a gene are 
removed) kept than the original matrix. The optimal choice of 
αe will be determined by stability or pseudo-F-score based 
approaches introduced next (see Subheading 3.5). 

Sample code 

fit_edge <- screen.edge(X=ncrna_data, Y=gene_data, alpha=1e-

5, X.thres=0.5, Y.thres=0.5, C=0.5) 

In the above function, “alpha” is the key threshold parameter 
users need to tune using our recommended approaches to achieve 
the best performance. Other than that, we do not suggest users to 
change the default values for options determining the neighbors in 
conditional sets (X.thres, Y.thres) and the robustification related

Fig. 2 Demonstration of screening methods in dimension reduction stage. Two screening utilities, robust 

partial correlation and marginal canonical correlation, are used in edge-wise and node-wise screening, 

respectively. In edge-wise screening, when the robust partial correlation based statistics of a ncRNA(X)-

gene(Y) pair | Z τ X , Y jX
s1 

m½ ]

, Y s2 
m½ ]

| does not pass the threshold Φ-1 (1 - αe/2) at any iteration m, the pair 

will be removed. In node-wise screening, when the marginal canonical correlation based statistics between a 

node (either ncRNA(X) or gene(Y)) and its remaining edges | ZCC(X) | or | ZCC(Y ) | does not pass the threshold 

Φ
-1 (1 - αn/2), the node will be removed



parameter (C) in the calculation of robust partial correlation, unless 
they fully understand the method. The output of this function will 
be an ncRNA x gene (p x q where p is the number of ncRNAs and q 
is the number of genes) adjacency matrix, with each entry indicat-
ing whether the corresponding ncRNA-gene pair is kept (1) or not 
(0).
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3.4 Node-Wise 

Screening of ncRNA 

and Gene Nodes 

The ncRNA x gene matrix after edge-wise screening tends to have 
highly sparse rows (ncRNAs) and columns (genes). We further 
apply a node-wise screening by using marginal canonical correlation 
(CC) of a node with all its remaining neighbors as a screening utility 
[19] and remove ncRNA or gene nodes having the statistics not 
passing a threshold defined by the parameter αn (see Fig. 2). 

Sample code 

fit_node <- screen.node(X=ncrna_data, Y=gene_data, edge.in-

d=fit_edge, alpha=1e-6) 

Edge.ind is an ncRNA x gene adjacency matrix with each entry 
indicating whether the pair is kept from the previous step (1) or not 
(0). The above function will calculate the marginal CC for all nodes 
with their remaining neighbors and remove nodes when relatively 
low CC. Alpha is the threshold parameter in node-wise screening 
(less sensitive than the one for edge-wise screening; see Subheading 
3.5 for recommended value). The node-wise screening may have 
computational bottlenecks with an ultrahigh-dimensional dense 
matrix, so we suggest node-wise screening to be implemented 
after edge-wise screening. Like the previous step, the output of 
this function will be an ncRNA × gene (p × q: p is number of 
ncRNAs, q the number of genes) adjacency matrix, with each 
entry indicating whether the corresponding ncRNA-gene pair is 
kept (1) or not (0) after node-wise screening step. 

3.5 Selecting 

Optimal Threshold 

Parameter 

One key tuning parameter of the tool is the threshold parameter 
αe (α for short from here on) in the edge-wise screening step. On 
one hand, a too stringent α will have the risk of losing important 
signals from the screening step; on the other hand, an overly 
conservative α will reduce the screening power without achieving 
the dimension reduction purpose. In NGP tool, following from 
[12], we propose two procedures to select the optimal α. The first 
procedure is based on stability selection to make sure an optimal α 
can remove as many pairs as possible while keeping the selection 
frequency of top pairs above a cutoff with false-discovery rate 
(FDR) controlled. 

Sample code 

p <- ncol(ncrna_data) # number of ncRNAs 

q <- ncol(gene_data) # number of genes



alpha <- screen.tune(X=ncrna_data, Y=gene_data, B=100, 

D=100, eta=min(p,q), method=”stability”) 
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Eta is the number of top pairs for which selection frequency will 
be calculated. B and D are the number of subsampling and permu-
tations to be performed to calculate selection frequency and get its 
FDR cutoff. We do not suggest users to change the default values 
for these options unless they fully understand the method and the 
algorithm. Figure 3 shows an example on how to select the optimal 
threshold parameter α using a stability based approach. At α = 1e-
6, the selection frequency of top pairs bypasses the FDR cutoff; 
thus, the threshold is chosen too stringent. α = 1e- 5 is an optimal 
threshold where the selection frequency of top pairs does not 
bypass the FDR cutoff but also achieves the screening purpose 
(i.e., screen out as many noisy pairs as one can). 

The stability selection algorithm, however, can be computa-
tionally heavy and becomes infeasible in some real data with ultra-
high dimension. Alternatively, we propose a much faster and 
relatively accurate procedure using a pseudo-F-score (like 
F-score = 2*precision*sensitivity/{precision + sensitivity}). A 
pseudo-F-score is defined using the same formula but from a 
pseudo sensitivity (true ncRNA-gene pairs defined as those pairs 
with largest marginal correlations) and a pseudo precision as we do 
not know the ground truth in real data to balance between effective 
dimension reduction (i.e. maintaining high precision) and high 
sensitivity in the remaining pairs. 

Sample code

Fig. 3 Selecting optimal threshold parameter α using a stability based approach



alpha <- screen.tune(X=ncrna_data, Y=gene_data, eta=min(p, 

q), method=”pseudo”)
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Fig. 4 Selecting optimal threshold parameter α using pseudo-F-score 

Eta is the number of top pairs from which the pseudo-F-score 
will be calculated. Figure 4 shows an example on how to select the 
optimal threshold parameter α using a pseudo-F-score. α = 1e - 5 
is an optimal threshold that has the largest pseudo-F-score value 
here. 

The choice of the threshold parameter αn in the node-wise 
screening step is relatively stable based on our exploration of differ-
ent real data examples, so we do not further suggest any approaches 
to select its optimal value. We generally suggest a slightly more 
stringent αn (e.g., αn = α/10) to make sure highly sparse nodes can 
be removed. 

3.6 Multivariate 

Regularization to 

Identify Final ncRNA-

Gene Regulatory Pairs 

After screening (or dimension reduction stage), the dimensions of 
both ncRNAs and genes are reduced to a more manageable scale 
(e.g., comparable to sample size), and the matrix of remaining 
ncRNA-gene pairs is highly sparse. In the final pair selection 
stage, the NGP tool performs a multivariate regularization method 
to identify the most probable ncRNA-gene regulatory pairs from 
the highly sparse matrix of remaining ncRNA-gene edge pairs [20]. 

Sample code 

fit_reg <- multi.reg(X=ncrna_data, Y=gene_data, edge.in-

d=fit_node, lambda1=seq(1,100,10), lambda2=seq(1,100,10)) 

Edge.ind is an ncRNA x gene adjacency matrix with each entry 
indicating whether the pair is kept from the previous steps (1) or 
not (0). Lambda1 and lambda 2 are the sequence of tuning para-
meters (“seq(1,100,10)”: start from 1, end at 100 with step size of



10) to be used in the regularization step, and the method will 
automatically use cross-validation to select the optimal lambdas 
from the specified sequences. We generally do not suggest users 
to change the default values to ensure accuracy. However, to avoid 
excessive computation in irrelevant ranges, users can first run 
coarser search using a larger step size (e.g., 20 or 30) in a wider 
range and then fine search for the optimal lambda with smaller step 
size within a narrower range. 
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3.7 NGP Output and 

Subsequent Analysis 

The major output of the NGP tool includes a matrix of coefficient 
estimate for all remaining ncRNA-gene pairs and a list of two 
columns of corresponding ncRNA and gene names for those 
pairs. The two-column output will be treated as an input (ncRNA 
column as the source node, gene column as the target node) for 
network visualization platform “CytoScape” [17] to investigate the 
ncRNA-gene regulation pattern in a network graph. 

Sample code 

fit_reg$cyto_input 

The identified ncRNA-gene pairs and remaining ncRNA and 
gene nodes can be further validated using existing database on 
ncRNAs, genes, and ncRNA-gene interactions specific to a condi-
tion or a disease [21–23]. These databases are typically experimen-
tally validated or sequence based, thus providing further evidence 
and additional biological information to the interactions identified 
from expression data by NGP tool. In addition, we also suggest 
users to perform pathway enrichment analysis on the pool of genes 
regulated by ncRNAs for more biological insight of the ncRNA 
regulatory path in the disease. 

4 Examples 

We use ncRNA and gene expression data from The Cancer Genome 
Atlas Program (TCGA) cohort to demonstrate two examples (one 
for lncRNA-gene regulation, the other for miRNA-gene regula-
tion) of applying the NGP tool to identify critical ncRNA-gene 
regulatory pairs in cancer study. 

4.1 LncRNA 

Regulation of Gene 

Expression in KIdney 

Renal Papillary Cell 

Carcinoma (KIRP) 

LncRNAs are essential regulators of genes in major pathways of cell 
growth, proliferation, differentiation, and survival and are critical to 
the tumor formation, progression, and pathogenesis of kidney 
cancer [24, 25]. KIRP accounts for 10–15% of all renal cell carci-
noma and has a poor prognosis [26]. In this example, we retrieve 
lncRNA (in RPM) and gene expression data (in RPKM; both 
measured by RNA-seq) of N = 198 matched KIRP samples in 
TCGA from The Atlas of Non-coding RNAs in Cancer [27] and



LinkedOmics [28], respectively, and use our tool to identify critical 
lncRNAs, genes, and lncRNA-gene regulatory pairs in KIRP. 

240 Hongjie Ke and Tianzhou Ma

In the first step, we carefully preprocessed the data and filtered 
out features with low expression (lncRNAs with mean RPM ≤0.3 
and genes with mean RPKM ≤5) following the general guideline 
[27, 29]. We also filtered out potential housekeeping genes and 
only kept the most variant 50% of genes. After preprocessing, 2170 
lncRNAs and 6704 genes were left with a total of 14,547,680 
possible pairs. 

We then applied the edge-wise screening to reduce dimension, 
and only 3054 pairs were left after screening, generating a highly 
sparse lncRNA x gene matrix. We further applied the node-wise 
screening and removed those lncRNAs and genes with very few 
edges left (mostly with one or two edges per node, as the number of 
pairs removed are about the same as the number of nodes removed 
after node-wise screening). Lastly, we applied the multivariate reg-
ulation to select the final set of 877 ncRNA-gene regulatory pairs 
from the interactions of 298 lncRNAs and 781 genes. The final 
pool was highly enriched with lncRNAs related to kidney cancer 
based on EVLncRNA database [22]  (see Table 1; 18 out of 32 with 
Fisher’s exact test p-value<1e-4). We plotted one example of 
lncRNA-gene interaction network from these 877 pairs in Cytos-
cape (Fig. 5). Both the lncRNA “lnc-IRX3–80” and the gene 
“IRX5” were Iroquois transcription factors found to be related to 
kidney development and tumorigenesis [30, 31]. Their interaction 
we identified here has also been validated in the LncTarD database 
[32], a comprehensive lncRNA-target regulation database, which 
may help reveal the underlying regulatory mechanism in KIRP and 
have potential diagnostic and therapeutic values. 

Table 1 

Results after each step of the NGP tool for the TCGA-KIRP lncRNA-gene regulation example 

Step 

Number of lncRNAs 

left 

Number of genes 

left 

Number of lncRNA-gene pairs 

left 

After preprocessing 2170 (32) 6704 14,547,680 

After edge-wise 
screening 

1336 (23) 2251 3054 

After node-wise 
screening 

1153 (21) 1737 2471 

After regularization 298 (18) 781 877 

Numbers inside parentheses indicate the numbers of lncRNAs that are shown to be related to kidney cancer according to 

EVLncRNAs database
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Fig. 5 An example of a network of lncRNA-gene regulatory pairs identified in TCGA KIRP by our method. Red 

highlighted indicates the lncRNAs, genes, or the lncRNA-gene pairs have been validated in large lncRNA/gene 

databases (e.g., EVLncRNA, LncTarD, Oncogene database) 

4.2 miRNA 

Regulation of Gene 

Expression in PRostate 

ADenocarcinoma 

(PRAD) 

miRNAs are critical noncoding RNAs that play indispensable roles 
in regulating gene expression and have been found as key factors 
and potentially serve as clinical tools for diagnosis, prognosis, and 
therapy in prostate cancer [33–35]. In the second example, we 
retrieve miRNA (in RPM) and gene expression data (in RPKM) 
of N = 493 matched PRAD samples in TCGA from LinkedOmics 
[28] and use our tool to identify critical miRNAs, genes, and 
miRNA-gene regulatory pairs in PRAD. 

We first preprocessed the data and filtered out low-expressed 
genes with mean RPKM ≤5 and only kept the most variant 50% of 
genes. After preprocessing, 765 miRNAs and 6715 genes were left 
with a total of 5,136,975 possible pairs. 

We then applied the edge-wise screening to reduce dimension, 
and only 1396 pairs were left after screening, generating a highly 
sparse miRNA x gene matrix. We further applied the node-wise 
screening and removed those miRNAs and genes with very few 
edges left (mostly with one or two edges per node). Lastly, we 
applied the multivariate regulation to select the final set of 
618 ncRNA-gene regulatory pairs from the interactions of 
147 miRNAs and 547 genes. These 147 miRNAs were highly 
enriched with miRNAs related to prostate cancer based on miR-
Cancer database [21]  (see Table 2; 33 out of 79 with Fisher’s exact 
test p-value<1e-4). We plotted one example of miRNA-gene inter-
action network from these 618 pairs in Cytoscape (Fig. 6). The



miRNA “hsa-mir-135b” and the genes “BATF” and “CASP1” 
were found to be related to prostate cancer (BATF and CASP1 
are both potential oncogenes) [36–38]. Their interactions we iden-
tified here have also been validated in the miRDB database [39], 
revealing the potential miRNA→gene regulatory pathways in 
PRAD. 
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Table 2 

Results after each step of the NGP tool for the TCGA-PRAD miRNA-gene regulation example 

Step 

Number of miRNAs 

left 

Number of genes 

left 

Number of miRNA-gene pairs 

left 

After preprocessing 765 (79) 6715 5,136,975 

After edge-wise 
screening 

381 (50) 1132 1396 

After node-wise 
screening 

294 (46) 729 962 

After regularization 147 (33) 547 618 

Numbers inside parentheses indicate the numbers of miRNAs that are shown to be related to kidney cancer according to 

miRCancer database 

Fig. 6 An example of a network of miRNA-gene regulatory pairs identified in TCGA PRAD by our method. Red 

highlighted indicates the miRNAs, genes, or the miRNA-gene pairs have been validated in large miRNA/gene 

databases (e.g., miRCancer, miRDB, Oncogene database)
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5 Notes 

1. Screening implemented in the NGP tool is different from 
filtering by mean or variance as usually done in bioinformatics. 
Stemmed from the concept of sure screening in statistics, 
screening is a theoretically justified step to reduce the dimen-
sion for the analysis while keeping most of the true signals in 
the pool after screening, a theoretical property known as sure 
screening property [40]. In our context, we have a theoretical 
guarantee that most of the true ncRNA-gene regulatory pairs 
should remain in the pool after screening. 

2. As the NGP tool first applies screening methods to reduce the 
dimension, it is computationally efficient and runs significantly 
fast for high-dimensional ncRNA and gene expression data. 
However, the computational cost can depend on the detailed 
implementation of each step (see our paper [12] for a bench-
mark of computational time of the screening step using simula-
tions), e.g., the threshold parameter used in screening, the 
range of tuning parameter values to search from in regulariza-
tion. For example, setting a more stringent screening threshold 
may speed up the procedure by greatly reducing the dimension 
but may also have the danger of losing important signals. We 
recommend users to follow instructions in the above protocol 
for the most efficient and accurate implementation of the tool. 

3. To further reduce the computational cost, we highly recom-
mended users to filter out ncRNAs or genes of less interest (low 
means or low variance) and focus only on the ncRNAs or genes 
of biological interest. If some differential expression 
(DE) analysis for ncRNAs and genes can be performed 
between, e.g., cancer and normal tissues, one can also prioritize 
analyzing the top DE ncRNAs and genes most related to 
disease development. 

4. We assume both ncRNA and gene expression data were well 
annotated using standard nomenclature before the preproces-
sing step. If annotation was not completed yet, we recommend 
users apply the functions in existing R packages (e.g., “preproc” 
function in the “metaOmic” package [18]) and use existing 
annotation databases available in R to annotate before proceed-
ing to the next steps. 

5. The tool so far only considers continuously valued noncoding 
and gene expression data generated by microarray or RNA-seq. 
As the technology advances, new types of expression data (e.g., 
those generated by single cell RNA-seq) will emerge, and the 
tool will be gradually improved to accommodate the features of 
these newly emerging data types.
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6. In its current form, the NGP tool relies on “Cytoscape” to help 
generate graphical and network output. The tool will be cou-
pled with existing packages in R (e.g., igraph) to generate a 
graphical user interface (e.g., by R Shiny) with interactive 
visualization in future development. 

7. The tool identifies critical ncRNA-gene regulatory pairs. On 
one hand, we recommend users to further perform down-
stream pathway analysis on the identified genes and post hoc 
validation using external databases (e.g., EVLncRNA, 
LncTarD, miRCancer); on the other hand, we do want to 
point out that as the research of noncoding RNA and its 
regulation of gene expression is still in an early stage, our tool 
might help identify new ncRNA-gene links underlying impor-
tant ncRNA regulatory mechanism that are not yet available in 
existing database but worth further exploration. 

8. The tool gives a static snapshot of all potential regulatory 
ncRNA-gene pairs in a condition or cancer type (e.g., in 
KIRP) based on expression data. As more clinical data become 
available, we will further consider how these paired links will 
change as the disease progresses in different stages/grades and 
whether any of these links have potential prognostic values (i.e., 
predictive of survival) in cancer in future development. In 
addition, the tool currently selects edge by edge without con-
sidering the overall regulatory pattern of ncRNAs and genes 
(e.g., in network) nor the flow of biological information. 
Bayesian network method to identify the overall causal pattern 
will be an important plus to the tool in future work. 
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Chapter 13 

MODIG: An Attention Mechanism-Based Approach to Cancer 
Driver Gene Identification 

Wenyi Zhao and Zhan Zhou 

Abstract 

Identifying genes that play a causal role in carcinogenesis remains one of the major challenges in cancer 
biology. With the accumulation of high-throughput multi-omics data over decades, it has become a great 
challenge to effectively integrate these data into the identification of cancer driver genes. Here, we propose 
MODIG, a graph attention network (GAT)-based framework, to identify cancer driver genes by combining 
multi-omics pan-cancer data (mutations, copy number variants, gene expression, and methylation levels) 
with multidimensional gene networks. Among them, the multidimensional gene network is constructed by 
using genes as nodes and five types of gene associations (protein-protein interaction, gene sequence 
similarity, KEGG pathway co-occurrence, gene co-expression patterns, and gene ontology terms) as 
multiplex edges. We apply a GAT encoder to model within-dimension interactions to generate a gene 
representation for each dimension based on this graph, introduce a joint learning module to fuse multiple 
dimension-specific representations to generate general gene representations, and use the obtained gene 
representation to perform a semi-supervised driver gene identification task. The MODIG program is 
available at https://github.com/zjupgx/modig. The code and data are also available on Zenodo, at 
https://doi.org/10.5281/zenodo.7057241. 

Key words Driver gene, Multi-omics data, Gene network, Protein-protein interaction, Graph atten-
tion network, Attention mechanism 

1 Introduction 

It is widely accepted that cancer progression is due to the accumu-
lation of mutations in driver genes that confer a selective growth 
advantage to cells [1–4]. As a key issue in cancer genomics, identi-
fying genes that play a causal role in carcinogenesis can help to 
better understand the molecular mechanisms of cancer develop-
ment, facilitate the discovery of drug targets and biomarkers, and 
guide the development of precise therapeutic approaches. Over the 
past decades, several large-scale cancer genomics projects, such as 
The Cancer Genome Atlas (TCGA) [5] and the International
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Cancer Genome Consortium (ICGC) [6], have accumulated a 
large amount of genomics, epigenomics, transcriptomics, and pro-
teomics data from thousands of cancer patients.
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Benefitting from these omics data, many computational tools 
have been developed to identify cancer driver genes, yet most of 
them focus only on genomics data [7–11]. Several studies have 
found that some cancer driver genes are not altered at their DNA 
sequence level but dysregulated through various cellular mechan-
isms [1, 12, 13], suggesting that diverse omics data are likely to 
shape gene function at different biological scales and that effective 
integration of such information is valuable for identifying the 
potential driver and passenger genes. Thus, there is an increasing 
need to develop a framework that can harness and integrate com-
plementary information among multi-omics data for downstream 
cancer driver gene prediction tasks. 

Biological networks are abstract representations of biological 
systems as graphs, where genes are used as nodes, gene associations 
as edges, and omics features as node attributes. As a research hot-
spot in recent years, graph neural networks (GNN) are deep 
learning models developed specifically for graphs, which apply to 
high-dimensional and complex biological data and are potentially 
suitable integration frameworks. Recently, several studies have pro-
posed cancer driver gene prediction methods integrating multi-
omics features based on graph deep learning. EMOGI is an inter-
pretable machine learning method based on graph convolutional 
networks (GCN) that combine genomics, epigenomics, and tran-
scriptomics data as gene features with protein-protein interaction 
(PPI) networks to learn more abstract gene features [14]. MTGCN 
is a GCN-based multitask learning framework that simultaneously 
optimizes the node prediction and the link prediction task during 
the learning of node embedding features [15]. These existing 
methods are designed based on PPI networks. 

However, considering the limitations of PPI networks (e.g., 
incomplete interaction profiles and the existence of research bias) 
and the fact that the performance of graph deep learning models 
relies heavily on the reliability of graph structure, we introduce 
heterogeneous information of multiple types of gene associations 
(gene similarity, gene co-expression patterns, etc.) into the con-
struction of multidimensional gene networks, in which multi-omics 
features are used as node features, and develop MODIG, a graph 
attention network-based (GAT-based) model for efficient integra-
tion of cancer multi-omics data to facilitate the prediction of cancer 
driver genes [16].
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2 Materials and Methods 

MODIG is a GAT-based cancer driver gene identification method 
that generates gene representation by integrating multi-omics data 
and multiple gene associations; it not only utilizes the labels of 
labeled nodes in a multidimensional gene network but also the 
topological features of unlabeled nodes [17]. The steps involved 
in MODIG are as follows: 

1. Generation of omics feature matrix: Calculate mutation rate, 
differential DNA methylation level, and differential expression 
rate for each gene by using multi-omics data. 

2. Generation of gene association profiles: Measure gene associa-
tions based on gene co-expression pattern, gene sequence sim-
ilarity, gene pathway co-occurrence, gene semantic similarity, 
and PPI. 

3. Construction of multidimensional gene network: Use these gene 
association profiles as multiple edges and multi-omics features 
as node attributes. 

4. Multi-omics and multidimensional graph attention network: 
MODIG contains three modules: a multidimensional GAT 
encoder, a joint learning module, and a multilayer perceptron 
(MLP) classifier for learning knowledge from multidimen-
sional graphs to help in cancer driver gene prediction. 

2.1 Generation of 

Omics Feature Matrix 

Gene features containing the mutation rate, differential DNA 
methylation level, and differential expression rate are calculated by 
using the cancer genomics (somatic mutations and copy number 
variants), epigenomics (DNA methylations), and transcriptomics 
(gene expressions) data collected from TCGA, covering over 
8000 samples and 16 different cancer types. 

1. Gene mutation rate: Calculate the average of single nucleotide 
variations and copy number aberrations in a cancer type. Use 
the number of non-silent mutations in that gene divided by the 
exon length as the mutation frequency of each gene and the 
number of times that gene is amplified or deleted in a given 
cohort as the copy number mutation rate for each gene. 

2. Differential DNA methylation rate: Calculate the average of 
the differences in methylation signal between tumor and 
matched normal samples in a cancer type as in Eq. 1. For 
each gene, the beta(β) values of all CpG sites within the defined 
promoter region were averaged to calculate the average pro-
moter methylation level after removing batch effects using 
ComBat [18]:
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dmc 
i = 

1 
SCj  j

s ∈ SC 

βt si - βn si ð1 Þ

where c denotes the specific cancer type, βt i , β
n 
i are the 

methylation levels of gene i in tumor and matched normal 
samples, respectively, and SC is the number of all samples for a 
given cancer type. 

3. Differential expression rate: Calculate the mean of log2 fold 
change between gene expression values in tumor versus 
matched normal samples by using gene expression data after 
quantile normalization and batch effect correction by 
Combat [18]. 

4. Gene feature matrix: Concatenate these features as a gene 
feature matrix ℝN × F , in which each row indicates a feature 
vector for each gene, after a column-by-column (feature-wise) 
min-max normalization. Set the missing values to 0. 

2.2 Generation of 

Gene Association 

Profiles 

The methods for gene association calculations are based on five 
diverse metrics (gene co-expression pattern, gene sequence similar-
ity, pathway co-occurrence, gene semantic similarity, and PPI). For 
these gene association profiles, the associated values are in the range 
of [0, 1], where 1 indicates the highest association and 0 is the 
lowest association. 

1. Tissue co-expression: The co-expression pattern between a pair 
of genes G1 and G2 is measured as the absolute Pearson’s 
correlation coefficient of their gene expression vectors as in 
Eq. 2, based on the gene expression profiles of 79 normal 
human tissues (GEO code: GSE1133). 

Rcoexp G1,G2ð Þ= 
cov G1,G2ð Þ  
σ G1ð  Þσ G2ð  Þ ð 2Þ

2. Gene sequence similarity: The protein sequences of all genes, 
downloaded from the NCBI RefSeq database (released 
February 2019), are aligned against each other by using the 
BLASTP program [19] with defaulted parameters, and then 
the sequence similarity between a pair of genes G1 and G2 is 
calculated as in Eq. 3. The gene semantic similarity should be 
normalized. 

Rseq G1,G2ð Þ  

= 
BLASTbitscore G1,G2ð Þ þ  BLASTbitscore G2,G1ð Þ  
BLASTbitscore G1,G1ð Þ þ  BLASTbitscore G2,G2ð Þ  ð3Þ 

3. Pathway co-occurrence: The gene co-occurrence relationship is 
calculated using cosine similarity. A 337-dimensional vector is 
constructed for each gene using the human cancer pathways
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from the KEGG database (released June 2021), assigned 1 to 
the dimension if the gene is included in the corresponding 
pathway and 0 otherwise. Then the gene co-occurrence rela-
tionship of two genes G1 and G2 is measured as follows: 

Rpath G1,G2ð Þ= 
PG1 

·PG2 

PG1
j  j  PG2

j  j ð 4Þ

4. Gene semantic similarity: The functional similarity is measured 
based on the semantic similarity among the gene ontology 
(GO) terms annotating genes by using an R package GOSem-
Sim [20]. Gene semantic similarity score is calculated by using a 
best-match average strategy to combine the semantic similarity 
scores of multiple GO terms measured as the Wang method 
[21], which is implemented by setting the parameters of the 
mgeneSim function with the “measure” parameter as “Wang” 
and the “combine” parameter as “BMA.” The GO terms used 
in measurement can be restricted by assigning the 
corresponding parameter to “BP” (biological process), “MF” 
(molecular function), and “CC” (cellular component). Thus, 
given a pair of genes G1 and G2 annotated by GO terms, the 
functional similarity is calculated as follows: 

simBMA G1,G2ð Þ  

= max 

m 

i =1 

max 
1≤ j ≤n 

sim goi, goj 

m 
, 

n 

j =1 

max 
1≤ i ≤m 

sim goi, goj 

n 

ð5Þ 

RGO G1,G2ð Þ  

= simBP 
BMA G1,G2ð ÞsimMF 

BMA G1,G2ð ÞsimCC 
BMA G1,G2ð Þ3 ð6Þ 

5. PPI: The PPIs are collected from different sources, while most 
of them are downloaded from NDEx v2.5.1 [22], except for 
the CPDB network (version 35 and version 34) [23] and the 
STRING (version 11) network [24], the former being down-
loaded from http://cpdb.molgen.mpg.de/ and the latter 
being collected from https://stringdb-static.org/download/ 
protein.links.v11.0/9606.protein.links.v11.0.txt.gz. The 
CPDB and STRING networks only consider high-confidence 
(probability of an interaction between two proteins) interac-
tions. Thus, “complex” interactions (more than two partners) 
and interactions with scores <0.5 are excluded from the CPDB 
network, and interactions with scores <0.85 are removed from 
the STRING network.

http://cpdb.molgen.mpg.de/
https://stringdb-static.org/download/protein.links.v11.0/9606.protein.links.v11.0.txt.gz
https://stringdb-static.org/download/protein.links.v11.0/9606.protein.links.v11.0.txt.gz
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Fig. 1 Flowchart of multidimensional gene network construction 

2.3 Construction of 

Multidimensional Gene 

Network 

A multidimensional graph with about 20,000 nodes and two mil-
lion edges (containing 5 types) is constructed by integrating diverse 
gene association profiles into a unified, gene-centric network, after 
filtering out small association values (Fig. 1). 

1. Filter out weak associations in gene association profiles: To retain 
strongly correlated gene associations, the pathway 
co-occurrence is set to 0.5. Since the network of tissue 
co-expression and gene semantic similarity network is too 
dense, the threshold is set to a higher value of 0.8. The gene 
co-expression network retains approximately the top 1% of 
highly correlated edges (see Notes 1 and 2). 

2. Construct the multidimensional graph: The nodes in the graph 
represent genes and the links represent their respective rela-
tionships, and it consists of a set of N nodes V = f  v1, . . ., vN g
and D sets of edges f gE1, . . ., ED . Each edge set Ed describes 
the d-th type of relation between the nodes in the 
corresponding d-th dimension. These D types of relations can 
be expressed by D adjacency matrices A(1) ,…,  A(D) . Besides, 
each node is characterized as a multi-omics feature vector (see 
Note 3 ).

2.4 Multi-Omics and 

Multidimensional 

Graph Attention 

Network 

To learn knowledge from the multidimensional graph, instead of 
fusing different edges into a single edge to form a homogeneous 
graph, MODIG applies a GAT block for within-dimension interac-
tions to get the dimension-specific gene representations and a joint



learning module to adaptatively learn the importance of different 
dimensional representations and fuse them by an attention mecha-
nism for downstream cancer driver gene prediction (Fig. 2). 
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Fig. 2 Schematic diagram of cancer driver gene prediction method, MODIG 

2.4.1 Multidimensional 

GAT Encoder 

The GAT encoder is used to learn the within-dimension represen-
tation of genes, which is a GNN method that employs an attention 
mechanism to aggregate node features [25]. Given the input vertex 

feature h = h 
→ 

1, h 
→ 

2, . . ., h 
→ 

n , h 
→ 

i ∈ℝ
N ×F , where N is the number 

of nodes and F is the number of features in each node. The 2 GAT 
layers with 300 and 100 hidden channels and 3 attention heads 
with a 0.25 dropout rate together are stacked as a GAT block. 
Then, the GAT block is applied on intra-dimensional interactions 
to generate dimension-specific gene representations Z1, Z2, Z3, Z4, 
and Z5, respectively, by updating the vertex representations 
through the following steps: 

eij = a W  h  
→ 

i,W  h  
→ 

j ð7 Þ

eij =LeakReLU a
→T 

W  h  
→ 

iW  h  
→ 

j ð 8Þ

αij = softmaxj eij = 
exp eij 

k∈ N i 
exp eik 

ð9Þ 

h 
→ 0 

i = σ 
1 
K 

K 

K =1 j ∈N i 

αk ijW
k h 
→ 

j ð10Þ 

where W and a
→ 

are trainable parameters and k is the concatenation 
operation.



Þ ðL = - py * log σ xð  Þ þ  1- yð  Þ * log 1- σ xð  Þð Þ  ð 15Þ
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2.4.2 Joint Learning 

Module 

The joint learning module can adaptatively learn the importance of 
different dimensional representations and fuse them by an attention 
mechanism for downstream cancer driver gene prediction. 

1. Cross-dimension information sharing: Given the representation 
from D different dimensions as {Z1, . . .,ZM}, a self-attention 
layer is employed to share information across all dimensions. 
For each dimension-specific representation, associate a key 
matrix Ki ∈ ℝ

n × k and a query matrix Qi ∈ ℝ
n × k with it as 

follows: 

K i =Z iW k, Q i =Z iW q ð11Þ 
Then, propagate information among all dimensions as 

follows: 

Z i = 

D 

i =1 

softmax 
Q iK

T 
i 

k
p 

D 

i =1 

Z i ð12Þ 

Next, the final representation for i-th dimension w is calcu-
lated by incorporating the relevant global information Z i of the 
i-th dimension with a weight α, as in Eq. 13. 

Z 0 
i = αZ i þ 1- αð  ÞZ i,  0≤ α≤1 ð 13Þ

2. Multidimension fusion: A fusion layer learns the corresponding 
importance of dimension-specific representations and com-
bines all dimension-specific representations to obtain the final 
gene representation Zf as follows: 

Z f = 

D 

i 

wiZ
0 
i, wi = softmax qT · tanh W · Z 0 

i 

T þ b ð14Þ 

where q is a shared attention vector and wi is the weight of 
the i-th dimension. 

2.4.3 MLP Classifier After obtaining the final gene representation, a semi-supervised 
classification task is performed with the MLP classifier to identify 
cancer driver genes. The loss function is binary cross-entropy by 
adding a weight of 2.7 for positive samples owing to the unbalance 
of two classes (non-cancer and cancer genes) as in Eq. 15. 

3 Implementation 

3.1 Input Data 1. Omics feature matrix: Calculate the mutation rate, differential 
DNA methylation level, and differential expression rate for 
each gene in different types of cancer to obtain a gene feature 
matrix, based on the multi-omics data collected from TCGA or 
your cohort.
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2. Labeled genes for training: The positive samples are obtained 
from multiple sources, such as the Network of Cancer Genes 
(NCG) v6.0 [26], COSMIC Cancer Gene Census (CGC v91) 
[27], and DigSEE [28]. The negative samples are generated by 
recursively removing potentially cancer-related genes from all 
protein-coding genes, such as genes included in the NCG, 
genes associated with cancer pathways in the KEGG database, 
genes present in the Online Mendelian Inheritance in Man 
(OMIM) database, MutSigdb predicted genes associated with 
cancer, and genes whose expressions are associated with cancer 
gene expression. As a result, 796 positive samples and 2187 
negative samples were obtained for MODIG training (see Note 
4). 

3. Independent test sets: The first set (Independent Set 1) com-
prises manually curated cancer genes annotated according to 
validated oncogenic effects from the OncoKB [29] database 
and literature-curated cancer genes from the ONGene [30] 
database. The second set (Independent Set 2) comprises candi-
date cancer genes from the NCG [26] which are nonoverlap-
ping with the known cancer gene set used for MODIG’s 
training as well as high-confidence cancer genes compiled 
using different computational tools [11]. 

3.2 Software To run MODIG downloading from GitHub (https://github.com/ 
zjupgx/modig), the following tools and packages must be 
installed: 

1. MODIG is written in Python 3.8, Pytorch 1.8.1, and Pytorch 
geometric library 2.0.0 [31, 32]. In addition, the recommen-
dation parameters for MODIG are the use of the Adam opti-
mizer with a learning rate of 0.001, a weight decay of 0.0005, 
and a dropout rate of 0.25 for 1000 epochs. 

2. The command to run MODIG is python main.py -t output -ppi 
CPDB. Several parameters can be tuned: --thr_go, --thr_seq, --
thr_exp, --thr_path, etc. Refer to the main.py file for a detailed 
description of all parameters. 

3. In the prediction results, genes with scores more than 0.99 are 
considered potential cancer driver genes. In particular, the 
thresholds are set artificially and can be adjusted accordingly 
to the task. 

4 Notes 

1. The thresholds of gene association profiles are set artificially 
based on a priori knowledge when constructing the edges for 
the multidimensional graphs and can be adjusted according to 
the specific task and input data.

https://github.com/zjupgx/modig
https://github.com/zjupgx/modig
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2. To further improve the performance of MODIG, some net-
work noise reduction methods can be considered to improve 
the reliability of gene networks. 

3. Assigning multi-properties to edges might comprise the scal-
ability of the model, especially for different cancer types. Con-
structing cancer-specific multidimensional gene networks may 
be more suitable for cancer-specific driver gene prediction 
tasks. 

4. Due to issues such as label scarcity and lack of cancer-specific 
networks, MODIG is currently not sufficiently reliable and not 
recommended for driver gene prediction at the cancer-specific 
level. 
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Chapter 14 

Predictive Modeling of Anticancer Drug Sensitivity Using 
REFINED CNN 

Daniel Nolte, Omid Bazgir, and Ranadip Pal 

Abstract 

Over the past decade, convolutional neural networks (CNNs) have revolutionized predictive modeling of 
data containing spatial correlations, specifically excelling at image analysis tasks due to their embedded 
feature extraction and improved generalization. However, outside of image or sequence data, datasets 
typically lack the structural correlation needed to exploit the benefits of CNN modeling. This is especially 
true regarding anticancer drug sensitivity prediction tasks, as the data used is often tabular without any 
embedded information in the ordering or locations of the features when utilizing data other than DNA or 
RNA sequences. This chapter provides a computational procedure, REpresentation of Features as Images 
with NEighborhood Dependencies (REFINED), that maps high-dimensional feature vectors into compact 
2D images suitable for CNN-based deep learning. The pairing of REFINED mappings with CNNs enables 
enhanced predictive performance through reduced model parameterization and improved embedded 
feature extraction as compared to fully connected alternatives utilizing the high-dimensional feature 
vectors. 

Key words Deep learning, Convolutional neural networks, Drug sensitivity prediction 

1 Introduction 

A crucial intent of data-driven precision medicine for cancer thera-
peutics is to accurately identify the most effective anticancer drug or 
combination of drugs for each individual tumor [1]. Anticancer 
drug sensitivity prediction from high-dimensional molecular fin-
gerprints and genomics has substantially benefited from the surge 
in the availability of high-throughput screening data [2]. Given the 
vast number of features typically found in these high-dimensional 
datasets, feature selection is a common critical step to achieve 
enhanced predictive performance [3, 4]. With the rise in the 
amount of data, numerous deep learning-based approaches have 
shown outstanding drug sensitivity prediction performance as they 
enable built-in feature extraction when supplied with enough sam-
ples [5]. In addition to improving the generalization performance,

Alexander Krasnitz and Pascal Belleau (eds.), Cancer Bioinformatics, Methods in Molecular Biology, vol. 2932, 
https://doi.org/10.1007/978-1-0716-4566-6_14, 
© The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature 2025 

259

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-4566-6_14&domain=pdf
https://doi.org/10.1007/978-1-0716-4566-6_14#DOI


the built-in feature extraction removes the need to perform feature 
selection, which can be time-consuming and expensive if done by a 
subject matter expert. Since molecular features and genomics data 
are typically represented as 1D vectors, these methods commonly 
employ fully connected deep neural networks as there are no spatial 
neighborhood correlations within the data to utilize the full poten-
tial of CNNs.
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CNNs have emerged as the most established deep learning 
algorithm in the past decade due to their ability to handle the spatial 
correlations in images along with the rising availability of labeled 
data. Throughout their dominant performance in the ImageNet 
Large Scale Visual Recognition Competition (ILSVRC) from 
2012 to 2017 [6], tremendous research and advancements were 
developed which allowed deeper model architectures while improv-
ing the generalization performance [7, 8]. Utilizing the develop-
ments of CNNs, astounding results have been achieved in medical 
imaging research [9], such as radiology [10] and magnetic reso-
nance imaging analysis [11], with some tasks achieving expert-level 
performance. Regarding drug sensitivity prediction tasks, CNNs 
have only been applied on DNA or RNA sequencing data, as the 
sequences contain a natural ordering which can be processed by 
one-dimensional (1D) CNNs. However, for other modalities of 
data such as gene expression or molecular descriptors, the ordering 
of the features does not contain relevant dependencies. 

To make CNN-based learning amenable to these modalities, 
REFINED [12] was developed as a representation learning meth-
odology with the aim of arranging high-dimensional vectors into 
compact images conducive to CNN-based modeling. In this 
arrangement, similar features are positioned close by, while dissim-
ilar features are placed far apart in the image. The REFINED 
algorithm maps tabular data into images in two main phases: 
(1) initial coordinate learning of each feature in the 2D space 
using a manifold learning technique and unique nearest pixel place-
ment to avoid feature overlap and (2) hill climbing to optimize the 
feature pixel locations to match the true feature distances while 
maintaining unique pixels for each feature. REFINED CNN can be 
applied to any tabular data and has achieved superior performance 
on various drug sensitivity prediction and survival analysis tasks 
[12–15]. This chapter presents a detailed overview of the procedure 
to generate a REFINED mapping of input features and subse-
quently train a CNN on the mapped samples for accurate anticancer 
drug sensitivity prediction. 

2 Methods 

REFINED is a general methodology that can be applied on any 
type of tabular data and, as with all machine learning methods, 
starts by preparing the data into a quantifiable form suitable for



computer consumption. For drug sensitivity tasks, we start by 
extracting relevant features such as molecular drug descriptors or 
individual tumor gene expression values. Once the data is in a 
tabular form, the REFINED process begins initializing a mapping 
to optimally place features on a 2D square grid. The feature 
mapping can be viewed as a mapping of features to unique 2D 
coordinates of a square grid large enough to fit all features. 
REFINED initializes the mapping by learning a 2D manifold of 
the features and assigning each feature to its closest unique pixel. 
Then REFINED optimizes the feature mapping to mimic the true 
feature distances calculated from all samples. Each learned coordi-
nate is associated with a pixel in an image, and a single image 
mapping is universal across all samples. In other words, we learn 
for the entire dataset, where the location of each feature resides in a 
2D space such that similarity/dissimilarity among the features 
remains as close as possible to the initial sample space before apply-
ing the manifold learning technique. Once the REFINED mapping 
is optimized, every sample can be converted into an image and used 
to train a CNN for prediction using conventional training methods. 
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The general steps involved in generating a REFINED CNN 
model are depicted in Fig. 1 and are detailed as follows: 

1. Data extraction and preprocessing: Extract and process the 
molecular descriptors or genomics data such that each sample 
is represented by a complete 1D numerical vector. 

2. Initialize REFINED mapping: Apply an initial manifold 
learning technique, such as multidimensional scaling (MDS), 
on the features, and assign each feature to its closest unique 
coordinate in a 2D grid space. 

3. REFINED hill climbing: Optimize the feature mapping by 
minimizing the difference between the new locations and true 
distances among the features using hill climbing. 

4. CNN model training: Use the learned mapping to transform 
each 1D sample into compact 2D images, and use the images to 
train a CNN. 

2.1 Data Extraction 

and Preprocessing 

A wide range of data modalities have been identified as potential 
predictors of drug sensitivity, such as various genetic characteriza-
tions and molecular descriptors. This data is typically extracted 
using task specific quantification techniques which represent differ-
ent characterizations as 1D vectors of features. Here we focus on 
molecular descriptors, although this method can be beneficial for 
any 1D representation when there are enough high-dimensional 
samples (see Note 1). For drug sensitivity prediction datasets, these 
characterizations are conducted across an extensive range of poten-
tial cancer-inhibiting drugs, each representing a sample in the 
dataset (see Note 2). Once the characterization has been collected



for each sample and centralized into one matrix, the data must be
preprocessed. Some characterizations can lead to missing values
due to numerous factors, and those features must be delt with
either through removal or imputation. Common imputation tech-
niques include filling the missing values with the mean of the
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Fig. 1 Schematic overview of the REFINED CNN procedure. (1) Extract and preprocess data. (2) Initialize 

REFINED by learning a 2D manifold and assigning each feature to its closest unique pixel on a unit square grid. 

(3) Optimize the mapping to match the true feature distances in the initial sample space through hill climbing. 

(4) Train a CNN on the mapped samples. (Reproduced from [12] (CC-BY 4.0))



feature, while more sophisticated techniques exist such as k-
nearest-neighbor [16] (kNN) or MissForest imputation 
[17]. Depending on the characterization, one should ensure the 
features are normalized such that they are all on the same scale (see 
Note 3). Lastly, drug responses are often recorded as measures of 
concentration resulting in half-maximal response which are loga-
rithmic in nature due to the dose administration protocol. To 
correct for this, the concentrations are typically converted to sensi-
tivities using a negative log transformation, y =  -

log (concentration).
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2.2 REFINED 

Manifold Learning 

Now the preprocessed molecular features can be represented as a 
complete n × p matrix, where n is the number of samples and p is the 
number of features. The goal of using a manifold learning tech-
nique is to generate a p × 2 matrix where each of the p features 
across the entire dataset are represented by two values, which are 
particular features’ coordinates in a 2D space. Using the 2D mani-
fold, each feature can be assigned to its closest unique pixel on a 
square grid in an iterative manner to arrive at an initial feature 
mapping. 

We start by learning a 2D manifold of the features rather than 
the samples as normally done. We employ scikit-learn [18] mani-
fold functions such as multidimensional scaling [19] or t-SNE 
[20]. This requires transposing the input data matrix as the scikit-
learn methods are programmed to transform row (sample) wise 
rather than column (feature) wise. Using the learned manifold, 
the features can then be projected into two dimensions represent-
ing each features’ coordinates on a 2D plane as a p × 2 matrix, L. 
Subsequently, each feature must be mapped to a unique pixel to 
avoid sparse images with multiple features occupying the same 
location as shown in Fig. 2. Notice the sparsity in the top row of 
images generated by directly utilizing the learned 2D manifold 
which would result in deficient performance with CNNs as the 
overlapping features would induce interference. To ensure unique 
feature locations, we normalize the 2D coordinates onto the range 
[0, 1] by ranking the x and y coordinates separately and dividing 
each rank by p, essentially replacing each column of L with its 
fractional ranking equivalent to acquire LRanked. 

Next, we iteratively assign each feature to its closest unique 
pixel. The process starts by initializing a q2 × 3 matrix, M(0) , whose 
first two columns represent the x and y integers of pixel locations on 
a q × q grid that acts as our 2D pixel space, with q calculated as 

p 
p

and the third column of M(0) reserved for selected feature indices. 
The calculation of q ensures more pixels than features, allowing 
each feature to have its own exclusive pixel on a unit square grid 
with the unselected pixels set to null. Using the first two columns of 
M(0) , the centroids of each pixel location can be calculated on the 

M
range [0,1] through the element wise operation C ij = 

ij 

q 
þ 1 .2q



Now the distances between feature locations in the 2D manifold 
space and pixel centroids on the 2D square grid are easily calculated 
using the pairwise Euclidean distance between the 2D centroids, C, 
and the rank normalized 2D feature coordinates, LRanked. 
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Fig. 2 Depiction of REFINED images employing different manifold learning techniques, which generate 

REFINED images with varying patterns. The top row of mappings depicts the overlapping features after 

directly applying the initial manifold, while the bottom row shows the learned REFINED mappings with unique 

pixels for each feature. Here, we used the molecular descriptors extracted from the NCI60 dataset with 

chloramphenicol (NSC ID = 3069) as the sample drug in all images. (Reproduced from [13] (CC-BY 4.0)) 

Utilizing the pairwise distances, the iterative unique pixel 
mapping begins by evaluating each feature for which pixel resides 
closest to them. Since there will likely be feature collisions where 
multiple features are closest to a particular pixel, all available pixels 
are then evaluated, and the nearest feature among the ones who 
selected that pixel is assigned to it by placing the feature index into 
the third column of M at the specific pixel’s row. This iteratively 
repeats for all unassigned features until all features have been 
assigned a unique pixel in the 2D mapping. Once each feature has 
been assigned a pixel, we have arrived at the initial REFINED 
feature mapping, M(0) , which we subsequently further optimize. 
Note that, depending on the choice of manifold learning tech-
nique, the different similarity/dissimilarity metrics can lead to 
diverse patterns in the generated REFINED mappings, which can 
be combined to create an ensemble of REFINED CNN models (see 
Note 4). 

2.3 Hill Climbing In an image, we have discrete 2D coordinates, but the 2D coordi-
nates learned through manifold learning are continuous and often 
so sparse that a cluster of features likely has multiple features 
occupying a single pixel. When solving the previous initial mapping, 
compromises occur for all multiple-feature to single-pixel



collisions. To resolve this issue, we apply a hill climbing technique 
such that, in an iterative approach, we arrive at a locally optimal 
mapping that closely mimics the true feature distances in the 
n-dimensional sample space. 
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The hill climbing process begins by calculating the pairwise 
distances between the features on the initial n × p tabular data, 
resulting in a p × p symmetric matrix, δ. This matrix serves as the 
ground-truth feature distances that will be approximated in the 2D 
mapping using the hill climbing procedure. Next, the initial 2D 
feature mapping, M(0) , can be evaluated by calculating the pairwise 
Euclidean distance in the mapped 2D grid space, resulting in a p × p 
symmetric matrix, δ. Using these distances, we can now compute a 
loss function of the difference between feature distances in the 
initial and mapped spaces that will be minimized through the hill 
climbing process: 

L δ, δ = 

p 

i =1 

p 

j =1 

δi,j - δi,j 

2 

p 

i =1 

p 

j =1 

δi,j 
2 

With the loss function defined, the iterative process begins 
performing permutations by swapping each pixel with its eight 
adjacent pixels in the case of selecting a 3 × 3 kernel, resulting in 
nine configurations for each pixel including its initial location. Each 
configuration is evaluated using L, and the swap that results in the 
lowest loss is the one that is performed for each pixel. This proce-
dure can be computationally expensive and would be computation-
ally impracticable if considering all potential feature location 
combinations sequentially. Therefore, a heuristic permutation 
method was used in the implementation of [12] by breaking the 
full q × q mapping into separate adjacent 3 × 3 grids, with the pixels 
under evaluation occupying the center of each 3 × 3 grid. For 
example, for the first grid structure, the top-left most pixel, and 
every pixel spaced three pixels apart vertically or horizontally until 
the limit of the image has been reached, is evaluated. This allows 
parallel processing of each grid separately by distributing a subset of 
centroid coordinates to separate processors (see Note 5). Using this 
method, the only pixels that are evaluated are spaced three pixels 
apart vertically or horizontally, removing the potential for collisions 
between the separate processes. To evaluate every pixel on the 2D 
mapping, each 3 × 3 grid structure is shifted to nine distinct loca-
tions such that every pixel of the top-left most 3 × 3 grid of the 
image resides at the center once. This moves every grid in the same 
direction and is done iteratively, with the centroid pixels being 
selected and distributed to each process and the processes returning 
the best locations for each of their given centroids. Then the best



swap for each centroid pixel is performed for the current grid 
evaluation structure, and subsequently, the next group of centroid 
pixels are considered until all pixels have been evaluated. At the end 
of evaluating and swapping all pixels to their locally optimal loca-
tions, we have arrived at the next feature map, M(k) , with k being 
the iteration number. This process repeats for the user specified 
number of iterations, or until a suitable loss has been achieved. 
After the optimal mapping, M, is obtained, we can map each 1D 
feature vector into 2D images suitable for CNN utilization. This 
involves transforming each of the n rows of samples into images by 
applying the learned mapping. 
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2.4 Model Training Training a REFINED CNN model is highly dependent on the 
complexity of the problem, the availability of enough training 
samples, and sufficient computational resources. CNNs contain 
many hyperparameters, and finding an optimal architecture is 
often task specific. For instance, in [12], the CNN architecture we 
used for the NCI60 dataset takes a single REFINED image of 
molecular drug descriptors as the input for prediction since we 
had a relatively large training dataset for each cell line. However, 
in the same paper, the CNN model for the GDSC dataset takes two 
REFINED images, one associated with molecular descriptors and 
another associated with cell line gene expressions, to predict the 
drug response. Based on our experimentation, the width of the 
CNN is as important as its depth since we want to extract as much 
information as possible from the entire raw features in the 
REFINED images. We have noticed that increasing the number 
of kernels in the convolutional layers often helps extract more 
abstract feature maps heuristically. 

Once the samples have been converted into images, we typically 
employ PyTorch [21] or TensorFlow [22], regardless of the ver-
sion, for the implementation and training of deep neural networks 
including CNNs. Throughout the rest of the chapter, we will be 
focusing on a PyTorch implementation such as the code found in 
[14, 15], although a TensorFlow implementation can be found in 
the code of [12]. First, the model architecture is initialized by the 
user specifying the desired layers, such as convolutional layers, 
pooling layers, or dense layers, along with activation functions 
and hyperparameters that match the task complexity. In PyTorch, 
this is done by initializing a class that inherits the PyTorch Module 
class, leaving the user to define two functions: one for the model 
architecture in an __init__ method and another method, forward, 
that takes a data matrix as input and performs a forward pass of the 
data through each of the previously defined layers. 

With the model defined, the user can select which optimizer to 
use for training such as stochastic gradient decent (SGD) or Adam. 
We typically had success using the Adam optimizer. Next, the 
images should be split into training and evaluation datasets and



be prepared for input into another user-defined method for train-
ing. In the user-defined training method, the process will repeat for 
the specified number of training epochs, or until a valid spotting 
point is reached. This process consists of multiple steps made easy 
through PyTorch functions. At the beginning of an epoch, the 
gradient of the optimizer must be set to zero or NONE using the 
optimizer objects zero_grad method. Next, using an object of the 
user-defined model class from before, make a forward pass of the 
data by calling the object with the data as input. Finally, a specific 
loss, such as mean squared error (MSE), can be calculated using a 
PyTorch evaluation metric or user-defined method, and the loss can 
be backpropagated through the model using the backward method 
on the loss object before calling the step method on the optimizer 
object. These two methods will handle the backpropagation of the 
gradients and updating of the model parameters, and this process 
can be run for the specified number of epochs or until training is 
halted (see Note 6). 
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With the model now trained to predict drug sensitivity using 
input REFINED images, it is important to verify the generalization 
performance of the model by evaluating the predictive performance 
on the held-out evaluation set. This can be done by using the 
trained model to predict the evaluation dataset responses and cal-
culate a desired metric using the true and predicted responses 
which is typically done with a user-defined evaluation method 
that evaluates the model on an input dataset. 

3 Notes 

1. In [12], we conducted an experiment to compare REFINED 
CNN predictive performance using normalized root mean 
squared error (NRMSE) metric with synthetic data, where we 
created a dataset with various sample sizes (ranging between 
50 and 10,000), various feature sizes (ranging between 20 and 
4000), and different spurious feature ratios (20%, 50%, and 
80%). We observed that, in the case of availability of a minimal 
number of samples (< 200), or small number of features 
(<100), it is more efficient to use shallow models (e.g., support 
vector machines or random forests) rather than REFINED 
CNNs. Figure 3 shows the results of the abovementioned 
experiment in the case of 20% spurious features—complete 
results could be found in [12]. 

2. Molecular descriptors or fingerprints can be extracted using 
various descriptor calculation software packages such as 
PaDEL [23], Mordred [24], and RDKit [25]. In [12–14], we 
used the PaDEL software package in conjunction with each 
unique inhibitor’s NSC identifier to extract 672 descriptors 
after removal of features with missing values.
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Fig. 3 Experimental results showing the predictive performance of REFINED CNN compared with random 

forests, support vector machines, and fully connected deep neural network methods while varying the number 

of samples and features available for model training using a synthetic dataset with 20% spurious features. 

(Reproduced from [12] (CC-BY 4.0)) 

3. For preprocessing steps such as normalization and imputation, 
we utilize the python package scikit-learn due to its versatile 
and user efficient functionality. Scikit-learn has a range of mod-
ules for various machine learning tasks such as imputation, 
feature selection, manifold learning, normalization, and various 
predictive modeling algorithms, all packaged with the same 
user-friendly functionality. 

4. Depending on the choice of the initial manifold learning tech-
nique, the pattern of the REFINED image and consequently 
the predictive performance of the REFINED CNN would be 
different. In [13, 15], we have shown that an ensemble of 
REFINED CNN models, trained on separate REFINED map-
pings from different manifold learning techniques, can achieve 
improved model performance through stacking the associated 
CNN predictions with a simple linear regression. Figure 4 
depicts a setup where four CNN models are trained using 
four separate REFINED mappings initialized from different 
manifold learning techniques. This can be performed by 
repeating steps 2–4 for different manifold learning methods 
and learning an additional linear regression on a separate held-
out dataset to combine the individual predictions into an accu-
rate ensemble prediction. 

5. For parallel processing of the hill climbing method, we used the 
MPI for Python package [26] which allowed one processor to 
act as the coordinating server and the remaining processors to 
act as clients. With this architecture, the server communicates
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Fig. 4 Depiction of Ensemble REFINED: Four different REFINED images were 

created using MDS, Isomap, Laplacian eigenmaps (LE), and locally linear 

embedding (LLE), and for each set of REFINED images, a CNN was trained 

stacked using a linear regression model. (Reproduced from [13] (CC-BY 4.0)) 

the centroids to each of the clients and performs the swaps 
given the optimal swaps received from the clients. That leaves 
the clients to evaluate each of the nine swaps for all their given 
centroids and communicate to the server the optimal locations. 

6. When training deep networks, employing early stopping and 
dynamic learning rate reduction is common to improve gener-
alization error by reducing model overfitting. This is done at 
the cost of samples as the training and evaluation partitions 
must also accommodate another partition, termed the valida-
tion set, for model evaluation at each epoch. Although any 
percentage can be used depending on the number of samples 
available, a common splitting percentage is 60%, 20%, and 20% 
for the training validation and test datasets, respectively, as this 
reduces the potential sampling variation noise for validation 
and testing. Early stopping and learning rate schedulers track 
the number of successive epochs in which the model does not 
improve. After a specified number of epochs without improve-
ment, the model reduces the learning rate by a user-defined
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factor or halts training for learning rate scheduling and early 
stopping, respectively. In [12–15], early stopping was 
employed as it led to appropriately fit models with greater 
generalization performance and [14] also employed learning 
rate reduction to help fine-tune the models. 
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Chapter 15 

Anticancer Monotherapy and Polytherapy Drug Response 
Prediction Using Deep Learning: Guidelines and Best 
Practices 

Amin Emad and David Earl Hostallero 

Abstract 

Cancer precision medicine aims to identify the best course of treatment for an individual. To achieve this 
goal, two important questions include predicting the response of an individual to a treatment strategy and 
identifying molecular markers that determine the response. The rapid growth of large publicly available 
databases containing clinical and molecular characteristics of cancer-derived samples paired with their 
response to single or multiple drugs, has enabled the development of computational models to answer 
these questions. In recent years, various deep learning models have been proposed to predict the response 
to polytherapy and monotherapies. However, selecting among all available options or developing new 
models for a particular study requires careful considerations and best practices to avoid various pitfalls. In 
this chapter, and drawing from our own studies, we will discuss various important points for choosing, 
utilizing, and developing such deep learning tools. 

Key words Drug response prediction, Drug synergy prediction, Deep learning, Machine learning, 
Cancer precision medicine, Omics 

1 Introduction 

The rapid growth of large databases containing molecular and 
clinical properties of cancer derived samples and their response to 
different drugs or drug combinations such as TCGA [1], CCLE 
[2], CTRP [3], DepMap [4], GDSC [5], DrugComb [6], Drug-
CombDB [7], as well as advances in the area of deep learning 
(DL) [8] has fueled the development of computational models 
for precision cancer medicine. In particular, various DL models 
have been recently proposed to predict the response to monothera-
pies (henceforth referred to as drug response prediction (DRP)) 
and predicting the synergism of drug-pairs (henceforth referred to 
as drug synergy prediction (DSP)). Given the number of existing 
tools and potential approaches for these tasks, careful
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considerations are required to select the best approach for a partic-
ular application or dataset. Drawing examples from different tools 
that we have developed and studies that we have performed in this 
domain [9–14], we will discuss various important points for choos-
ing, utilizing, and developing DL tools for DRP and DSP. While 
our focus will be on DL models, most of the guidelines provided 
here also apply to traditional machine learning or statistical 
approaches.
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In this chapter, we use the term “samples” to refer to a wide 
range of cancer derived samples such as cancer cell lines (CCLs), 
patient-derived xenografts (PDX), and tumors, for which one 
wants to predict the effect of one or multiple drugs. We define 
DRP as the problem of predicting the response of samples to a 
specific compound. Similarly, DSP is concerned with predicting the 
synergy of two compounds, when used as a combinational treat-
ment for a specific sample. We emphasize having a sample as an 
important distinction from related problems, such as drug combi-
nation recommendation and drug repurposing, in which the 
recommendations are not specific to a sample. 

2 Methods 

2.1 Preliminary 

Considerations and 

Overall Computational 

Pipeline 

Prior to choosing the best tool or developing a new one, several 
questions should be answered. These questions clarify the specifica-
tions of the problem and will affect different aspects of the model. 
Some examples are provided below. 

1. What are the input features for the model? The input features 
may involve different data modalities representing samples or 
drugs, each requiring different preprocessing and quality con-
trol steps. 

2. What is the output that needs to be predicted? The type of 
output (e.g., Boolean, categorical, continuous) will affect the 
choice of the model, its architecture, and the loss function. 

3. What is the final goal of the prediction? In some applications, 
one is interested in imputing missing values. For example, due 
to the large number of possible drug-pairs and cancer cell lines 
(CCLs), large databases of synergy scores (e.g., DrugComb 
[6]) contain many missing values, and one may need to impute 
those values. MARSY [14] is an example of such computational 
model for the DSP task. Alternatively, one may want a model 
that can predict response to a drug in new samples or for a new 
drug. Each of these tasks may require different model architec-
tures, data processing, and evaluation. 

4. Is the test set from the same domain as the training data or not? 
In some applications, the test set for which one needs to make 
predictions has distinct statistical characteristics. For example,
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Fig. 1 The typical computational pipeline for the prediction of response to monotherapies or combinational 

therapies 

we developed TG-LASSO [10] and TINDL [13] to predict the 
response of cancer tumors (test set) based on models 
completely trained on in vitro CCLs. In such an application, 
various biological and technical differences may exist between 
the train and test set (see [10, 13] for a discussion), which 
would require models that can generalize to out of distribution 
datasets. 

While the answers to the questions above affect problem for-
mulation, the overall computational pipeline typically includes data 
cleaning and preprocessing, data splitting, model training, predic-
tion, evaluation, and interpretation (Fig. 1). In what follows, we 
will explain various aspects of these steps. 

2.2 Model 

Formulation 

One of the main factors influencing the model formulation is the 
type of variable to be predicted. In the context of DRP, when the 
drug response is presented as area under the dose-response curve 
(AUC), half-maximal inhibitory concentration (IC50), or similar 
measures, regression models are used to predict these continuous 
values. On the other hand, when the aforementioned measures are 
binarized or categorical representations such as Response Evalua-
tion Criteria in Solid Tumours (RECIST) [15] are used, a classifi-
cation model is utilized. In the context of DSP, most commonly 
used measures of synergism, which rely on Loewe additivity [16], 
Bliss independence [17], and zero interaction potency (ZIP) [18], 
are continuous values and can be predicted directly using a regres-
sion model, or their binarized versions can be predicted using a 
classifier. 

Typically, there are three main frameworks used to formulate 
the DRP (or DSP) problem, depicted in Fig. 2. The first approach is 
the single-task learning (STL) (Fig. 2a) framework, in which a 
separate model is trained for each drug (or drug-pair). The input 
to each model is molecular and clinical features of samples (such as 
CCLs or tumors), but drug-specific features such as chemical 
structures are not used. For example, TG-LASSO [10], a compu-
tational model that we developed for DRP of cancer tumors based 
on a model trained on CCLs, falls under this category (even though 
it is based on traditional ML). Similarly, TINDL [13], a DL model



with specialized tissue-informed normalization for the same task, 
also falls in this category. On one hand, this framework directly uses 
the knowledge of the drug identity, since the model is drug-
specific; however, when the number of drugs is large, this approach 
will be computationally expensive. Moreover, information is not 
shared across different drugs. Since drugs with similar targets or 
mechanisms of action could be informative about each other, 
approaches that jointly model the response of multiple drugs 
(Fig. 2b, c) can be beneficial. 
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Fig. 2 The three main frameworks used for problem formulation. Neural networks are used to present these 

frameworks, but traditional machine learning (ML) or statistical models can also be categorized in a similar 

manner 

In the frameworks depicted in Fig. 2b, c, a single model is 
trained for all drugs, and information about the similarities or 
differences of drugs is shared. In the approach depicted in 
Fig. 2b, a multitask learning (MTL) framework is used, and each 
output node corresponds to a different drug. This approach shares 
parameters and information across drugs, but the similarity and 
differences of the drugs must be learned by the model during 
training without relying on drug-specific features. Similar to the 
previous framework, the input to the model are only the sample 
features. As such, it is still not possible to predict the response of 
drugs that do not exist in the training set. 

In the third framework (Fig. 2c), both the sample and drug 
features are used as input, and a single model is trained to predict 
the response to any of the drugs in any of the samples. Generally, 
this framework is more flexible as it does not limit the model’s 
generalizability to drugs that are already in the training set. How-
ever, the quality and choice of representations for samples and 
drugs play a larger part in the model’s predictive capacity. Depend-
ing on the priorities of the user, this flexibility can be traded off for 
superior performance on the main task. As an example, BiG-DRP 
[11], which is a deep learning model based on heterogenous graph 
convolutional networks (HGCN) for DRP, uses this framework. In 
this model, CCLs are represented using their baseline gene



expression profile (the mRNA abundance of their genes), and drugs 
are represented based on their chemical structure (drug descriptors 
[19] or Morgan fingerprints [20]). Additionally, a drug-CCL 
bipartite graph is formed in which each drug is connected to the 
1% of the training CCLs that are most sensitive to it (using “sensi-
tive” edges) and to the 1% of the CCLs that are most resistant to it 
(using “resistant” edges). This graph enables information-sharing 
across all CCLs and drugs. A two-layer HGCN is used to integrate 
different representations to obtain better drug embeddings to 
improve DRP performance. 
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The DSP problem can also be formulated using the same three 
frameworks, but with some modifications. The main difference is 
that instead of predicting the response to a single drug, synergism 
of two or multiple drugs are predicted. As a result, in the first 
framework, one model per drug combination should be trained, 
and in the second framework, a different output node for each drug 
combination is required. For large numbers of unique drugs, the 
number of all possible combinations (even pairs) grows rapidly, 
resulting in the first two frameworks becoming computationally 
infeasible. The third framework, however, can be used in which 
features of multiple drugs need to be provided as input. We have 
developed MARSY [14] to predict the synergism of different drug-
pairs in CCLs using the third framework (Fig. 2c). In this model, to 
enable learning better representations, we also defined two auxiliary 
tasks in a MTL framework such that the model also predicted 
response of the CCLs to each individual drug. In this model, 
CCLs were represented using their baseline gene expression profile, 
but the drugs were represented using the gene expression profile 
changes they would induce in two cancer cell lines. We observed 
that in this task, this drug representation improves performance 
compared to using the chemical structure of the drugs. 

It is important to note that different variations of the three 
frameworks above can also be used. For example, in the first frame-
work, one could train one model per sample by treating different 
drugs as training instances. Or in the second framework, one could 
have one output node for each CCL, instead of each drug. As a 
result, the advantages of information-sharing as well as the limita-
tions in generalizability would be shifted from drugs to samples 
(since the role of the two are swapped). 

2.3 Model Inputs Various data modalities have been used for the DRP and DSP tasks. 
For training purposes, the models require a measure of drug 
response or drug synergism (mentioned earlier). Additionally, vari-
ous features can be used as input to the model to represent samples 
and drugs. Molecular “omics” data are one category of features 
widely used to represent samples. These can include protein abun-
dance, gene expression, methylation profile, mutations, copy num-
ber alternations, and other data modalities. Arguably, gene



expression profiles (nowadays mostly from RNA-seq) are the most 
commonly used set of features and have been shown to be most 
predictive of drug response in previous studies [21, 22]. One of the 
challenges of using multi-omics data is the excessive number of 
features that results in the “big-p, little-n” problem. More specifi-
cally, adding extra data modalities increases the number of features 
without increasing the number of training instances. Consequently, 
the computational model will be more prone to overfitting, nega-
tively affecting its generalizability and performance. As a result, we 
recommend to start model training using one data modality and 
then add additional data modalities carefully while controlling and 
assessing overfitting using the validation set. Additionally, it is 
possible that these extra modalities are not available for some of 
the samples. While it may be tempting to drop samples with missing 
modalities or employ some imputation strategies, the risk of over-
fitting (when dropping a significant number of samples) and pro-
pagating error (when imputing) should be carefully assessed. In 
spite of these considerations, using multiple data modalities can 
improve prediction performance [12]. 
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To represent different drugs (e.g., in the third framework in 
Fig. 2c), different drug features can be used. Drug targets [23], 
Morgan fingerprints [20], drug descriptors [19], change in gene 
expression profile of cell lines treated with the drug [14, 24], or 
other representations can be used to represent drugs from different 
views. In a recent study, we benchmarked four state-of-the-art 
interpretable DL models for DRP using different input features 
[12]. Comparing the performance of these models when drug 
targets or Morgan fingerprints (MFP) were used to represent 
drugs, we observed that MFPs were more informative for predict-
ing the drug response of unseen CCLs. Similarly, we used MFPs 
and drug descriptors in BiG-DRP [11] and observed that using 
either of them provides good comparable performances (Table 3 of 
[11]). In the context of DSP, we used these chemical representa-
tions, but also the gene expression changes of MCF7 and PC3 
CCLs in response to each drug (from the LINCS dataset [24]) in 
MARSY [14]. Our results showed that LINCS signatures resulted 
in better synergy prediction, which may suggest the use of this data 
modality as an alternative to chemical structure features (Table 5 of 
[14]). The use of “raw” chemical structures, represented by graphs 
[25], is also getting traction due to the increasing popularity of 
graph neural networks (GNNs). Graph-based representations pro-
vide additional depth to data that is otherwise lost when using 
vector-formatted drug features. For a comprehensive comparison 
of different chemical structure-based representation, we refer to 
[26]. Although GNNs seem to perform well, users have to take into 
account the additional nuisances of training neural networks, such 
as stochasticity and sample sizes.
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Other information such as protein-protein interaction (PPI) 
networks or signaling pathways can also be useful in the context 
of DRP or DSP. Several studies have used signaling pathways to 
make DL models for DRP interpretable [27–30]. While this infor-
mation can improve interpretability, our analyses [12] showed that 
they may not be able to improve the prediction performance com-
pared to baselines. Similarly, PPI or other biological networks can 
be used for network-guided gene prioritization [9] or gene set 
characterization [31], but the capability of these networks in 
improving prediction performance is yet unclear. Given the increas-
ingly large experimental PPI studies [32] as well as computational 
models that can accurately predict such networks [33], network 
information may prove to be a significant contributor in not only 
improving interpretability but also the prediction performance of 
computational models in this field. 

2.4 Preprocessing The first step of the computational pipeline (Fig. 1) involves data 
cleaning and preprocessing. In this section, we will describe steps 
that are applicable to different data modalities, instead of focusing 
on the details of one particular data type. 

2.4.1 Data Cleaning Depending on the quality of data, number of missing values, pat-
tern of missing values, presence of outliers, etc., different data 
cleaning steps may be necessary. One of the main considerations 
is how to deal with missing values in the input feature dataset. To 
deal with missing values, two strategies are typically used. One is to 
impute missing values. There are various methods for imputation, 
and many of them work based on the principle that missing values 
can be estimated based on the values of other samples or other 
features. However, when the number of missing values is large, it is 
recommended to exclude samples or features with many missing 
values, since the imputation accuracy deteriorates as the number of 
missing values increases. When the choice is between removing a 
feature and a training instance, it is usually recommended to 
remove features, since reducing the number of training instances 
can negatively affect prediction performance and generalizability of 
the model. Other methods for removing features could include 
removing low-variance features or selecting a set of features based 
on prior information. 

Labels should also be inspected in advance. For instances where 
drug response/synergy (labels) has duplicates, users should first 
check the range of concentration. Unless the concentration range 
is used to normalize the response/synergy, it is recommended that 
all samples should be in the same concentration ranges for a specific 
drug(pair); otherwise, the model may learn unwanted and unex-
pected relationships. Choose only one of the concentration ranges 
if there are multiple; otherwise, it is also common to average the 
labels.
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2.4.2 Normalization Most databases would provide FPKM or TPM data for gene expres-
sion. Although considered as normalized, the values of these can 
still be very large. This can lead to extremely low/high magnitude 
parameter values and gradients, which are not ideal for learning. We 
recommend using log2(TPM + 1) or log2(FPKM + 1) for gene 
expression data. Furthermore, we also recommend z-score normal-
ization per gene, so that the distributions of features are centered 
around 0 and have a standard deviation of 1, which is more efficient 
for deep learning (also see Note 1). However, normalization is not 
necessary if the feature is binary, as in the case of mutation 
and MFPs. 

In addition to the normalization of features, normalization of 
drug responses is also recommended in regression tasks, especially 
in multitask frameworks (framework 2 and 3) (also see Note 2). 
Specifically, you can z-score the drug responses prior to training 
and save the summary statistics (mean and standard deviation) so 
that you can use them to scale the predictions back to the original 
distribution. This is because some drugs have distinct response 
signatures (e.g., very high/low IC50 for all samples, low variance). 
Normalizing the responses prevents the models from focusing on 
the obvious biases of each drug and encourages the model to learn 
more meaningful differences between samples. 

2.4.3 Feature Selection 

and Dimensionality 

Reduction 

One advantage of deep learning is its capacity to learn features of 
high dimensional data without the need for feature selection. 
However, feature selection and dimensionality reduction can still 
improve deep learning models in efficiency and performance. For 
continuous-valued features, low-variance features can be dropped 
as they are less likely to be associated by the model with the output. 
In other applications of machine learning, features that highly 
correlate with each other are typically dropped or combined into 
one feature. However, it is unclear whether this should be the case 
for gene expression data because genes are not independent. As a 
result, highly correlated genes can still be kept, or users can rely on 
their intuition based on their prior knowledge. 

Dimensionality reduction can be performed as part of prepro-
cessing. Principal component analysis (PCA) should be used with 
care because PCA can only be applied for transductive tasks. Differ-
ent types of autoencoders can also be useful, especially if you have 
an abundance of unlabeled samples. In a typical scenario, the auto-
encoder should only be trained using the training samples. In some 
cases, it is inevitable that test samples should be used in training the 
[auto]encoder. Researchers should carefully define the scope of 
their model to prevent misinterpretations.
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2.4.4 Data 

Homogenization 

One recurring theme in DRP is the idea of preclinical-to-clinical 
(P2C) DRP. In this scenario, the model is trained using preclinical 
(in vitro) datasets, but with the end-goal of predicting for clinical 
samples typically from a different dataset [10, 13]. It is important to 
address statistical discrepancies and homogenize data when multi-
ple datasets are involved in the study. This can be performed as part 
of data preprocessing, training, post hoc analysis, or a combination 
of these. This step can typically be skipped when working with a 
single dataset, except when starting with raw data where the data 
has been gathered in multiple batches. One simple visual test to 
check whether such homogenization is necessary is to plot the data 
in two dimensions using PCA or other dimensionality reduction 
methods. When there is an obvious separation of points between 
the batches/datasets, then the data should be homogenized. 

Data homogenization can be done during the preprocessing 
using batch effect removal tools. Although different datasets have 
much more distinction than different batches, multiple studies 
[10, 34] have shown batch effect removal tools such as ComBat 
[35] can still be effective in homogenizing gene expression data 
from GDSC (cancer cell lines) and TCGA (tumors) in the context 
of DRP. 

In deep learning, we refer to these different datasets as different 
“domains”. Domain adaptation methods such as DANN [36] and 
ADDA [37] allow the model to generalize across different domains 
using adversarial learning. These methods typically have two adver-
sarial components, the encoder and the discriminator. Encoders are 
used to encode the inputs into embeddings in a common latent 
space across datasets, while discriminator classifies the original 
domain from the encoder’s output. The goal of the encoder is to 
confuse the discriminator by making sure that the domain-specific 
artifacts are removed. In theory, once the discriminator can no 
longer tell the samples apart, then the embeddings are already 
“homogenized” across the dataset. However, it should be noted 
that unlike computer vision tasks, domain adaptation for biological 
data is quite difficult to assess. In our previous study [13], we found 
that a simple tissue-informed normalization could suffice in remov-
ing such discrepancies in preclinical-to-clinical DRP. 

2.5 Data Splitting 

and Its Implications for 

the Application of the 

Model 

One of the most important considerations is data splitting for 
training, hyperparameter tuning, and evaluation [12, 38]. As a 
general rule, the training set is used to learn model parameters, 
the validation set is used to tune the hyperparameters, and the test 
set is used to evaluate the performance and generalizability. As a 
result, the performance of the model on completely held-out test 
data is the main measure of performance, since both the training 
and validation sets have been used during training, and the perfor-
mance on those sets will be inflated and overoptimistic.
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Fig. 3 Three data splitting strategies for DRP and DSP tasks 

In addition to the general rule above, data splitting strategy has 
significant implications on the application and usability of a compu-
tational model for DRP or DSP (see Note 3). The most common 
approach for splitting the data into train/validation/test is by 
randomly selecting (sample, drug) pairs in DRP or (sample, drug-
pair) triples in DSP (Fig. 3a). As a result of this strategy, each sample 
or each drug (or drug-pair) in the test set is present in the training 
set, but not simultaneously together. For example, if (CCL1, 
drug1) is in the test set, the training set may include (CCL1, 
drug2) and (CCL2, drug1). Such a model is not recommended in 
making predictions for completely unseen samples or completely 
unseen drugs because there is a high risk that the model has been 
overfitted on the seen drugs and samples. However, this model is 
useful to impute missing values or to obtain biological insights 
about the effect of drugs in different cancer types. In the context 
of DSP in CCLs, even if the synergy score of drug-pairs is of 
interest, the set of all possible triples of (CCL, drug1, drug2) is 
extremely large. Since experimentally measuring the synergy score 
of all such triples is costly and labor intensive, even the large 
databases of synergy scores such as DrugComb contain many miss-
ing values. In such cases, a model that is trained to impute these 
missing values can be quite useful. In [14], we developed MARSY 
to address this issue. We showed that MARSY can accurately predict 
the drug synergy scores (ZIP and Smean) both in the leave-triple-out 
(described above) and in the more challenging leave-pair-out setup, 
in which a drug-pair in the test set is never seen in the training set. 
In addition to imputation, models trained using this framework can 
be used to characterize drugs’ mechanisms of action and biomar-
kers of drug sensitivity as novel drug targets. 

Another data splitting strategy is leave-cancer-sample-out 
(or cancer-sample-blind). In this strategy, any sample in the test 
set must not exist in the training or validation sets (Fig. 3b). This 
strategy is particularly useful to train computational models for 
precision medicine, in which the model should make predictions 
for a new sample. We commonly use this data splitting strategy 
(e.g., in TG-LASSO [10], TINDL [13], and BiG-DRP [11]) due 
to its usefulness for precision medicine applications. However, to



train models capable of accurately making predictions on unseen 
samples, a large number of training samples are necessary. As a 
result, this strategy is not applicable when only a few (e.g., tens 
of) samples are available. Another data splitting strategy is leave-
drug (or drug-pair)-out, which is also known as drug-blind in DRP 
or drug-pair-blind in DSP (Fig. 3c). This strategy is similar to leave-
cancer-sample-out, with the difference that now drugs (or drug-
pairs) in the test set must not be present in the training or validation 
set. This strategy is particularly useful for drug discovery. In [14], 
we showed that MARSY can accurately predict synergy scores in a 
leave-drug-pair-out setup. 
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Depending on the application of a computational model, one 
should carefully choose the data splitting strategy for training and 
for evaluation. We recently benchmarked four interpretable DL 
models for DRP using all three data splitting strategies [12] and 
showed that accurate predictions in one strategy does not necessar-
ily translate into accurate predictions in another. 

2.6 Baseline Models 

and Ablation Study 

One of the main steps in choosing the best computational model or 
in evaluating the performance of a novel predictor is benchmarking 
against alternative solutions. There are several categories of base-
lines that in our opinion are essential to achieve these goals, which 
we have used in previous studies [10–14]. The first category are 
baselines that we call naı̈ve predictors [12]. These are simple models 
that make predictions without learning the relationship between 
inputs and outputs. The main goal of these baselines is to charac-
terize potential inflation of performance metrics and provide a 
lower bound that any useful predictor should surpass. As we have 
discussed in our prior work [12], one such predictor works as 
follows. Assuming a random (Fig. 3a) or a leave-cancer-sample-
out (Fig. 3b) split, for each drug (or drug-pair) the model reports 
the mean (or median) response (or synergy score) of that drug 
(drug-pair) across all samples in the training set. Alternatively, for 
a random or a leave-drug or (drug-pair)-out split, for each sample 
the model reports the mean (or median) response of that sample to 
all drugs (or drug-pairs) in its training set. Alternative variations of 
this model can also be designed that take into account drug families 
or tissue types in prediction. Naive predictors are one major cate-
gory of baselines that are typically missing from publications in this 
domain, which may contribute to the misinterpretation of the 
quality of predictions. For example, the DRP methods that we 
benchmarked in [12] showed higher performance metrics in a 
leave-CCL-out framework compared to a leave-drug-out frame-
work; however, when those metrics were calibrated using the 
corresponding naive predictors, their performances in these setups 
were not too different. This is due to specific biases that may exist in 
the dataset, which are not always easy to detect in advance. For 
example, when using IC50, typically the naı̈ve predictor performs



well, since different drugs have vastly different IC50 values, and the 
knowledge of the drug identity by itself is quite informative about 
the response (also see Note 4). 
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Ablated and alternative versions of a model are also a very 
important category of baselines that must be assessed. Such base-
lines not only reveal which component of the model contributes 
most to its performance but also ensure that a simpler model 
cannot provide better or comparable results. For example, in 
BiG-DRP [11], we observed that when both Morgan fingerprints 
and drug descriptors are used simultaneously (requiring a more 
complex model with more parameters), the performance was 
slightly better than using each drug feature alone (Table 3 of 
[11]). However, we opted for drug descriptors, since the perfor-
mance improvement was not large enough to justify the additional 
parameters that increase the computational complexity and training 
time. Including alternative versions of the model that have a com-
parable number of parameters while changing the architecture is 
also quite useful. When there are many training instances, a model 
with more parameters can perform better. To disentangle whether 
an improved performance stems from an architecture modification 
or simply the number of parameters, one needs to control for this. 
For example, in [14], we evaluated various versions of MARSY 
(Table 3 of [14]) to fully assess the trade-off between type of 
encoder and number of parameters. 

In addition to the aforementioned baselines, state-of-the-art 
models designed for the same (or a similar) task as well as traditional 
machine learning algorithms (e.g., random forests, support vector 
machines, elastic net) should be included. For example, when 
assessing four interpretable DL models for DRP [12], we observed 
that a similar prediction performance could be achieved using a 
random forest or a simple fully connected neural network. 

As a final note, it is recommended that all baseline models be 
trained and tested on the exact same training/validation/test sets 
used for the original model. In addition, cross-validation can ensure 
that a specific choice of data splitting is not the reason behind 
performance variations across models. Finally, the hyperparameter 
of baseline models should be tuned on the validation set or why 
such an approach has not been taken clearly discussed. 

2.7 Model 

Interpretation 

An important question in cancer precision medicine is the identifi-
cation of molecular markers (e.g., genes) that are predictive of 
response to treatments. Such markers can reveal drug-cancer 
dependencies, can characterize drugs’ mechanisms of action, and 
can identify novel drug targets to overcome drug resistance. The 
association between the molecular features of samples (e.g., gene 
mRNA expression) and drug response (or drug-pair synergy score) 
is one way to identify such markers. Simple correlation analysis or 
methods that additionally incorporate known interactions among



molecular features can be used for this purpose. In [9], we devel-
oped ProGENI, a method based on random walks with restart 
(RWR) for gene prioritization while incorporating known 
protein-protein interactions (PPIs). In this method, first a small 
number of genes are identified based on the correlation of their 
expression across many samples to the response to a specific drug. 
These genes are then used as the restart set in an RWR on a PPI 
network to obtain a ranked list of genes associated with the drug of 
interest. This approach enables the integration of PPIs with drug-
gene dependencies to obtain a more informative list of genes. Our 
study (including wet-lab gene knockdown experiments) allowed us 
to identify genes whose mRNA expression significantly influences 
the response of a CCL to a drug, many of which were not identifi-
able using correlation analysis (or other methods) alone. 
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An alternative to directly assessing the association between 
molecular features and drug response is to utilize machine learning 
models for DRP and DSP. Achieving this is related to the concept 
of interpretable machine learning [39, 40]. Many traditional ML 
methods (e.g., LASSO) perform feature selection and prediction 
simultaneously, enabling the identification of a list of features. For 
DL models, methods that quantify feature attribution scores 
[41, 42] can be used to identify features that contribute most to 
the prediction performance (e.g., see TINDL [13] and BiG-DRP 
[11] for examples of how these methods can be used in DRP and see 
Note 5 for some considerations). 

Irrespective of how a list of top molecular features are obtained, 
one typically needs to characterize their functional role. When top 
genes or proteins are identified, gene ontology (GO) and pathway 
enrichment analysis are widely used to this end. We have found the 
gene set characterization (GSC) pipeline of KnowEnG (an online 
computational platform) [31] to be particularly powerful due to 
the wide variety of options it provides. In addition to supporting 
standard Fisher’s exact test analysis with a wide range of GO and 
pathway collections, it supports a network-guided mode of opera-
tion. This mode is an implementation of an algorithm called 
DRaWR [43], which utilizes discriminative random walks to incor-
porate information from gene-level networks in this task, providing 
a richer and more comprehensive view of involved pathways. 

As a final note, we would like to point out that in spite of the 
availability of the methods discussed here and other methods, the 
field of interpretable DL for DRP and DSP is a lively field of study 
with many recent innovations. Recent advances in this field rely on 
developing DL architectures that are motivated by prior biological 
knowledge [44] such as pathway information or PPIs. These inno-
vations coupled with large databases of experimentally character-
ized biological networks and computational models that can 
predict them [33, 45] can have a significant impact in this field.
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3 Notes 

1. When performing transformations that require statistics about 
the data, consider calculating the statistics only using the train-
ing set to prevent data leakage. For example, when applying 
z-score normalization to the features, calculate the mean and 
standard deviation using only the training set. However, when 
the entities in the test set and training set are the same, there is 
no need for such consideration. For example, since drugs can 
simultaneously be in the training and test sets in leave-cancer-
sample-out splitting, drug features can be normalized using all 
the drugs. 

2. Normalizing the drug responses is not recommended for tasks 
that rely on drug rankings per sample because the normaliza-
tion changes the order of the drugs. Normalizing drug 
responses is also not necessary if there are no obvious biases 
in the responses. 

3. When benchmarking models, data splits should be fixed and 
consistent across different models to prevent unintended 
advantages/disadvantages for some models. 

4. The naı̈ve predictor is only one way to recalibrate our percep-
tion of evaluations. Another way is to calculate these metrics 
per drug (e.g., Pearson’s correlation per drug) to remove the 
main source of these biases. These numbers may appear less 
impressive, but this highlights the difficulty of the task. 

5. When interpreting the model, feature contributions can end up 
being inconsistent across identical models with different initi-
alizations due to possible feature correlations and stochasticity 
of training neural networks. For this reason, it is recommended 
to repeat the pipeline (training and explaining) multiple times 
with different initializations. 
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Chapter 16 

Identification of Somatic Variants in Cancer Genomes 
from Tissue and Liquid Biopsy Samples 

Kiran Krishnamachari, Hanaé Carrié, and Anders Jacobsen Skanderup 

Abstract 

Somatic variant detection is an important step in the analysis of cancer genomes for basic research as well as 
precision oncology. Here, we review existing computational methods for identifying somatic mutations 
from tissue as well as liquid biopsy samples. We then describe steps to run VarNet (Krishnamachari et al., 
Nat Commun 13:4248, 2022), a variant caller using deep learning, to accurately identify single nucleotide 
variants (SNVs) and short insertion-deletion (indels) mutations from next-generation sequencing (NGS) of 
tumor tissue samples. 

Key words Somatic variant calling, Cancer genomics, Mutations, Next-generation sequencing 

1 Introduction 

1.1 Overview of 

Somatic Variant 

Calling 

Acquired (somatic) DNA mutations and genetic instability play a 
significant role in tumorigenesis [2]. Somatic variants are caused by 
errors in the machinery for DNA replication and repair, which can 
be promoted by aberrant growth or environmental factors such as 
exposure to carcinogens. 

Somatic variant detection is the computational problem of 
identifying acquired genetic mutations in cancer genomes. This is 
most commonly achieved by analyzing sequencing data obtained 
from matched normal and tumor samples of a given patient. 
Somatic variants can be categorized as single nucleotide variants 
(SNVs), short insertion-deletions (indels), and structural variants 
(SVs). In this chapter, we focus on the detection of SNVs and 
indels only. 

Somatic variant detection is commonly performed on tumor 
tissue biopsies obtained from cancer patients. Somatic variant call-
ing on tumor samples is confounded both by biological variation
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(e.g., tumor heterogeneity) and technical noise (e.g., sequencing 
errors). This process is further complicated when somatic variant 
calling must be performed on tumor samples that have been pre-
served using formalin fixation and paraffin embedding (FFPE), 
which is the predominant method to store and preserve clinical 
tissue samples worldwide. The FFPE process causes DNA damage 
that can cause variant callers to produce a large number of false 
positive mutation calls [3, 4].
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Somatic variant detection is also valuable in the analysis of cell-
free DNA (cfDNA) from blood liquid biopsy samples in precision 
oncology. cfDNA refers to degraded DNA fragments released into 
the plasma through apoptosis or necrosis or via passive or active 
secretion from various tissues in the body. In cancer patients, a 
portion of cfDNA, termed circulating tumor DNA (ctDNA), ori-
ginates from tumor cells [5]. Tracking ctDNA mutations represents 
a promising approach to minimal residual disease (MRD) detection 
[6], treatment response monitoring [7], or targeted therapy attri-
bution [8]. Liquid biopsy offers accessible, minimally invasive, and 
repeatable detection of cancer mutations in contrast to tissue 
biopsy; nevertheless, it is accompanied by unique challenges. 

1.2 Somatic Variant 

Calling in Tumor 

Tissue Samples 

Somatic variant callers have traditionally used statistical or probabi-
listic models of variant alleles in tumor samples in combination with 
multiple heuristic filters to remove false positives. Strelka2 [9] and 
Mutect2 [10] are two such popular methods. Recently, machine 
learning has proven to be an effective approach that leverages the 
many cancer genomes publicly available today. SMuRF [11] uses a 
random forest model trained using features from an ensemble of 
somatic mutation callers. Strelka2 [9] augments its probabilistic 
variant model using machine learning to predict an aggregate con-
fidence score for each candidate variant. VarNet [1] and NeuSo-
matic [12] both use convolutional deep learning models to predict 
a probability of mutation. While NeuSomatic was trained on syn-
thetic data from the DREAM challenge [13], VarNet was trained 
on real cancer genomes using weak supervision. AIVariant [14]  is  
another deep learning based caller recently proposed for highly 
contaminated tumor samples (see Table 1 for an overview). 

1.3 Somatic Variant 

Calling in Formalin-

Fixed Paraffin-

Embedded (FFPE) 

Tumor Samples 

Fresh-frozen tumor tissue samples are preferred for basic research 
due to their lower levels of DNA degradation. In contrast, FFPE 
tumor tissue samples are the most common starting point for 
translational research and clinical diagnostics. However, the FFPE 
preservation process introduces significant DNA degradation and 
damage that results in misread bases during NGS. This makes the 
accurate determination of somatic mutations from FFPE tumor 
samples significantly more challenging compared to fresh-frozen 
(FF) tumor samples [3, 4]. FFPE artifacts tend to occur at 
low-allele frequencies, and the most prominent of these are



C > T/G > A changes due to the hydrolytic deamination of 
cytosines [15]. FFPE artifacts especially confound the detection 
of true low-allele-frequency somatic mutations that could be of 
clinical relevance. Hence, simply filtering low-allele-frequency 
mutation calls may mislead downstream clinical analysis. 
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Table 1 

Overview of somatic variant callers and different approaches used in the 

literature 

Caller Approach Publication 

Varscan2 Fisher’s exact test Koboldt et al.) [41] 

Freebayes Bayesian inference Garrison and Marth [42] 

Vardict Fisher’s exact test Lai et al. [43] 

Strelka2 Bayesian inference Kim et al. [9] 

Mutect2 Bayesian inference Benjamin et al. [10] 

SMuRF Ensemble (random forest) Huang et al. [11] 

NeuSomatic Deep learning Sahraeian et al. [12] 

VarNet Deep learning Krishnamachari et al. [1] 

AIVariant Deep learning Jeon et al. [14] 

Recent work has attempted to improve the quality of FFPE 
variant call-sets by performing post hoc removal of artifacts from 
the outputs of popular variant callers (see Note 5). For example, 
IdeaFix [16] filters likely mutation artifacts from the output of 
Mutect2 using a decision tree-based approach exploiting multiple 
features such as read pair orientation bias, genomic context, and 
variant allele frequency. IdeaFix annotates C > T/G > A calls made 
by Mutect2 as either true variants or artifacts. FIREVAT [17] 
removes sequencing artifacts from variant call-sets using known 
mutational and error signatures. SOBDetector [18] proposed a 
method to filter artifacts from the output of any mutation caller 
using the strand orientation bias feature. FFPolish [19] proposed a 
logistic regression model of multiple features including variant 
allele frequency and variant read-quality metrics to filter artifacts 
from the outputs of mutation callers. Other work has also proposed 
using mutation calls made by any two callers on FFPE tumor 
samples as a simple baseline to reduce artifacts [20]. This strategy 
however would not exclude artifacts that are misclassified as muta-
tions by more than one caller. 

1.4 Somatic Variant 

Calling Approaches in 

Liquid Biopsy Samples 

Calling cancer mutations from cfDNA is challenging due to typi-
cally low ctDNA fractions, leading to cancer mutations presenting 
at low variant allele frequencies (VAFs). While obtaining compre-
hensive tumor profiles from cfDNA could yield valuable biological



information, it entails significant technical complexity, as subclonal 
and metastatic mutations may manifest at even lower VAFs. More-
over, these mutations can be mistaken for clonal hematopoiesis of 
indeterminate potential (CHIP) variants from noncancerous blood 
cell subpopulations [21, 22]. The degraded nature of cfDNA 
amplifies sequencing errors, PCR artifacts, and mapping errors, all 
falling within the same VAF range as cancer mutations, complicat-
ing their distinction from noise. Moreover, nonrandom cfDNA 
fragmentation, attributable to nucleosome wrapping, results in 
uneven sequencing coverage compared to tissue biopsy, posing 
both a technical challenge and an informative feature that could 
be exploited for variant calling. Although increased sequencing 
depth enhances detection sensitivity, the limited input of molecules 
imposes a maximum informative coverage depth. For instance, a 
typical 5 mL blood draw yields on average 2 mL of plasma contain-
ing 10 ng of DNA, corresponding to 3000 diploid genome 
equivalents [23]. 
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At ultrahigh sequencing depths, the utilization of unique 
molecular identifiers (UMIs) is recommended for consensus cor-
rection of PCR and sequencing errors. Furthermore, in silico error 
correction methods, such as iDES [24] and DREAMS [25], con-
tribute to enhanced accuracy. The iDES method employs a locus-
level error model derived from healthy cfDNA samples, eliminating 
noise loci through statistical tests. On the other hand, DREAMS 
constructs a machine learning read-level error model trained on 
error-free and sequencing error reads from filtered post-surgery 
low ctDNA samples. It considers read-level and local sequence-
context features, albeit necessitating retraining for changes in labo-
ratory protocols. 

The tissue-specific callers in Table 1 can be applied to cfDNA 
with a reduced (e.g., 1 

coverage ) or disabled VAF threshold (see 
Note 7). Table 2 gives an overview of existing cfDNA-specific 
callers. ABEMUS [26] models VAF distributions using a binomial 
model and employs global and per-base error filters derived from

Table 2 

Overview of cfDNA somatic variant callers 

Caller Approach Publication 

SiNVICT Poisson model Kockan et al. [28] 

ABEMUS Binomial model Casiraghi et al. [26] 

cfSNV Error suppression using overlapping read mate 
Joined genotype model 
Iterative search of clusters 
Adjusted site-level post-filtration 
Machine learning (random forest) read level post-filtration 

Li et al. [27]



normal buffy coat samples. cfSNV [27] utilizes overlapping read 
mates to suppress errors, applies a joined genotype model on 
mutation clusters iteratively to address tumor heterogeneity, and 
performs adjusted site-level and machine learning-based read level 
post-filtration. SiNVICT [28], a plasma-only approach, incorpo-
rates local assembly, read realignment, and a statistical Poisson 
model. However, the lack of annotated real cfDNA datasets, akin 
to the ICGC benchmark dataset for tumor tissue [29], currently 
hinders comparative evaluation of the accuracy of these specialized 
cfDNA callers relative to tissue-based callers (Table 1) when applied 
to cfDNA samples.
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Clinical ultra-deep targeted cfDNA-only assays (>1000x, tar-
geting 10–200 genes) have been receiving US Food and Drug 
Administration (FDA) approval since 2020 as Companion Diag-
nostic tests (CDx) for detecting actionable mutations in confirmed 
cancer patients, facilitating targeted therapy stratification. The 
SEQC2 benchmark [30] compared five industry-leading ctDNA 
assays, emphasizing challenges in accurately detecting variants 
below 0.5% variant allele frequency (VAF). 

Innovative minimal residual disease (MRD) detection tools 
employed for early relapse detection after surgery or treatment, 
such as INVAR [31] and MRDetect/MRD-Edge [32, 33], are 
built on ctDNA mutation detection. These methods harness cumu-
lative signals from rare, error-corrected mutated ctDNA reads 
found in hundreds to thousands of somatic mutations detected in 
30x WGS or 200x WES plasma samples, thereby overcoming the 
limitations in ctDNA abundance associated with targeted assays. 
INVAR implements error correction through overlapping read 
pairs and trinucleotide context-based filtering. MRDetect employs 
a support vector machine classifier, while MRD-Edge utilizes a 
convolutional neural network and a multilayer perceptron for 
read-level error correction. However, these methods rely on prior 
tissue biopsy, limiting their applicability for cancer screening. 
Recent proof-of-concept studies propose cfDNA-only cancer 
detection methods, such as Bae et al.’s [34] and Pointy [35], 
based on de novo mutation discovery from low-coverage WGS 
plasma samples, combined with other molecular characteristics. 
Enhancements, such as including a matched buffy coat sample for 
efficient germline subtraction (see Note 8), increasing sequencing 
depth, and validating on additional external datasets, are necessary 
to achieve significant performance improvements in future studies. 

2 Materials 

Here we describe steps to run VarNet, a deep learning based 
somatic variant caller that has demonstrated superior accuracy 
compared to other methods on real tumor tissue samples, including 
low tumor-purity settings (see Note 1)  [1].
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2.1 Environment VarNet is implemented as a Python package. The source code is 
available on GitHub (https://github.com/skandlab/VarNet). To 
get started, download the latest release of VarNet from GitHub 
(https://github.com/skandlab/VarNet/releases). The dependen-
cies to run VarNet can be installed using the pip package manager. 

pip install -r requirement.txt 

Alternatively, download the Docker image to run VarNet: 

docker pull kiranchari/varnet:latest 

VarNet relies on Tensorflow-cpu [36], Pysam (https://github. 
com/pysam-developers/pysam), NumPy [37], Pandas [38], 
Pybedtools [39], and Joblib (https://github.com/joblib/joblib). 
These dependencies will be automatically installed by the above 
command or can be found preinstalled in the docker image. 

2.2 Input 

Requirements 

VarNet performs somatic variant calling using matched normal and 
tumor genomes input as binary alignment map (BAM) files (.bam 
files) along with the reference genome (.fa file) that was used to 
perform alignment of the genomes. BAM files can be generated 
from sequencing data (.fastq files) using a pipeline such as the 
bcbio-nextgen (https://bcbio-nextgen.readthedocs.io) workflow. 
The recommended configuration to run bcbio-nextgen is listed in 
Table 3 (see Note 4). 

3 Methods 

3.1 Running VarNet Minimally, VarNet requires the following parameters to run: 
(1) paths to normal and tumor BAM files, (2) path to reference 
genome file (see Note 3), and (3) an output directory. Optionally, 
the number of processes to use a BED (Browser Extensible Data) 
file containing a list of genomic regions to limit variant calling to 
and the run mode (SNV or indel calling) can be specified. 

Table 3 

Recommended bcbio-nextgen parameters 

bcbio-nextgen parameter Value 

mark_duplicates True 

Recalibrate False 

Realign (GATK4) False

https://github.com/skandlab/VarNet
https://github.com/skandlab/VarNet/releases
https://github.com/pysam-developers/pysam
https://github.com/pysam-developers/pysam
https://github.com/joblib/joblib
https://bcbio-nextgen.readthedocs.io
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First, the filtering step must be run to scan the genome to 
identify mutation candidates. An example command to perform 
filtering is as follows: 

python filter.py \

--sample_name dream1 \

--normal_bam /path/to/dream1_normal.bam \

--tumor_bam /path/to/dream1_tumor.bam \

--processes 6 \

--output_dir /path/to/varnet_outputs \

--reference /path/to/GRCh38.fa 

In the above filtering step, VarNet uses heuristic filters to 
exclude genomic sites with very low or no evidence for a variant 
in the tumor sample. By default, VarNet scans the genome for both 
SNV and indel candidates. Subsequently in the prediction step, 
VarNet generates input image encodings for each candidate variant 
(Fig. 1; see Note 2). The deep learning model is applied on the fly 
for each generated input image encoding. The prediction step can 
be run as follows: 

python predict.py \

--sample_name dream1 \

--normal_bam /path/to/dream1_normal.bam \

--tumor_bam /path/to/dream1_tumor.bam \

--processes 6 \

--output_dir /path/to/varnet_outputs \

--reference /path/to/GRCh38.fa 

Fig. 1 (a) VarNet encoding (base channel) of an SNV on chromosome 10 in the medulloblastoma (MBL) sample. 

The candidate position is repeated 5× in both the normal and tumor image. Variant alleles are visible at the 

candidate site in the tumor sample image. (b) Heatmap visualization showing “pixels” in the base channel 

most important to VarNet’s deep learning model. VarNet has identified variant alleles at the candidate site in 

the tumor. Pixel-wise importance scores were computed using guided backpropagation [40]
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Note that VarNet does not require a GPU (graphics processing 
unit) to perform prediction. Upon successful completion of the 
prediction step, VarNet outputs a standard VCF (variant call for-
mat) file in the root of the sample’s output directory. VarNet 
includes metadata for each variant in its output including a proba-
bility SCORE. The probability SCORE is the confidence given by 
VarNet’s deep learning model that the locus contains a somatic 
mutation. 

3.2 Performance on 

ICGC Benchmark 

Samples 

We benchmarked VarNet on the International Cancer Genome 
Consortium (ICGC) Gold Set comprising manually verified 
somatic mutations in chronic lymphocytic leukemia (CLL) and 
medulloblastoma (MBL) tumor-normal pairs [29]. VarNet made 
calls at higher accuracy compared to existing state-of-the-art callers 
(Fig. 2). 

3.3 Tuning the 

Performance of VarNet 

VarNet uses a default SCORE threshold of 0.5 to classify variants as 
PASS or REJECT. However, this threshold can be varied to extract 
higher recall (sensitivity) or precision from VarNet. Decreasing the 
threshold would increase recall at the expense of precision, and vice 
versa (see Note 6). 
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Fig. 2 (a, b) Precision/recall curves for SNV calling in the MBL and CLL samples, respectively. (c, d) Precision/ 

recall curves for indel calling in the MBL and CLL samples, respectively. Solid circles indicate the highest F1 

accuracy score obtained by each method
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Minimum allele frequency thresholds: VarNet has a sensitivity 
threshold of 3.5% for the AF of variants it can detect. Variants 
below 3.5% are excluded in the filtering step. Hence, VarNet is 
not suitable for detecting very low VAF variants such as those in 
liquid biopsy samples. 

4 Notes 

1. VarNet is a deep learning based computational method to 
detect somatic variants from tumor tissue samples. 

2. VarNet generates “images” of reads overlapping each candidate 
mutation in both the tumor and matched normal sample. 

3. When running VarNet, ensure that the same reference genome 
used for aligning reads is also employed during variant calling. 

4. Mark and remove duplicate reads in your sequencing data prior 
to somatic variant calling. This step can be done by libraries 
such as bcbio-nextgen. 

5. Somatic variant callers can generate many false positive muta-
tion calls on FFPE tumor samples. Post hoc variant filtering 
methods have been proposed to alleviate this problem. 

6. Modifying the prediction threshold of callers can be important 
to achieve high accuracy, especially in FFPE tumor samples. 

7. When using tissue-specific callers on liquid biopsy samples, 
lower (e.g., 1 

coverage) or disable the default VAF threshold. 

8. Clinical ultra-deep targeted liquid biopsy assays are currently 
limited to cfDNA-only tests. For intermediate depth to deep 
WES/WGS, it is recommended to sequence the matched buffy 
coat sample for efficient germline subtraction. 
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Chapter 17 

SUMMER: A Practical Tool for Identifying Factors 
and Biomarkers Associated with Pan-cancer Survival 

Junyi Xin, Silu Chen, Huiqin Li, Mulong Du, and Meilin Wang 

Abstract 

The application of Mendelian randomization (MR) analytical framework based on genome-wide associa-
tion study (GWAS) datasets has uncovered hundreds of risk factors involving disease development that 
included tumorigenesis, but the practice of MR in cancer survival remains limited. Here, we will provide 
abundant details of our previously established tool, SUrvival related cancer Multi-omics database via 
MEndelian Randomization (SUMMER; http://njmu-edu.cn:3838/SUMMER/), which would help 
users systematically evaluate the causal effects of risk factors and circulating biomarkers on pan-cancer 
survival. 

Key words Cancer survival, Mendelian randomization, Risk factors, Biomarkers 

1 Introduction 

Genome-wide association study (GWAS), as a common genetic 
epidemiology method based on comparing the allele frequency of 
genetic variants between affected cases and unaffected controls, has 
uncovered thousands of genetic loci involved in susceptibility to 
disease, especially for cancer [1–3]. Notably, with the increasing 
number of GWAS loci, Mendelian randomization (MR), an inte-
grative “post-GWAS” approach [4], provides a way to explore the 
potential risk factors or biomarkers related to the development of 
cancer [5]. Briefly, MR is a well-known causal inference method 
that uses single nucleotide polymorphisms (SNPs) as instrumental 
variables (IVs, i.e., genetic predictors), to assess the causal associa-
tion between exposures (e.g., BMI and smoking) and outcomes 
(e.g., cancer risk) [6–8]. For example, our previous MR findings
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indicated plausible noncausal associations between circulating vita-
min E and the risk of ten common cancers [9].
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It is noteworthy that cancer also ranks as a leading cause of 
death [10], with an estimated 10.0 million cancer deaths that 
occurred in 2020 worldwide, indicating that cancer death remains 
an important barrier to life expectancy [11]. Accurate estimation of 
survival probability can provide valuable insights into the precision 
therapy of cancer patients [12, 13]. Currently, MR has not been 
widely applied to identify the risk factors and biomarkers associated 
with cancer survival. 

To address this gap, we have constructed an online pan-cancer 
survival database, SUMMER (SUrvival related cancer Multi-omics 
database via MEndelian Randomization; http://njmu-edu.cn:383 
8/SUMMER/), that includes (i) available survival GWAS sum-
mary statistics of 17 cancer types from the UK Biobank cohort 
(Table 1), followed by (ii) causal risk factors and biomarkers involv-
ing cancer survival obtained via MR analysis, to help users query, 
browse, and download results [14]. 

Totally, across 17 cancer types, SUMMER identifies a total of 
1209 cancer overall survival (OS)-associated and 1539 cancer-
specific survival (CSS)-associated SNPs at a suggestive genome-
wide significance threshold (P ≤ 1 × 10-6 ), as well as an average 
of 11 phenotypes, 716 genes, and 4828 CpG sites associated with 
cancer OS and an average of 11 phenotypes, 705 genes, and 4702 
CpG sites associated with cancer CSS (Table 2). 

In this chapter, we will provide details on the construction of 
SUMMER database and instructions on its usage and notes, to help 
users systematically evaluate causal effects of risk factors and circu-
lating biomarkers on pan-cancer survival. 

2 Materials 

The construction of SUMMER database was conducted in a 
two-stage design (Fig. 1) as follows: 

(i) Construction of pan-cancer survival GWAS datasets: to system-
atically evaluate the effects of genome-wide genetic variants on 
cancer survival that included OS and CSS, leveraging a total of 
17 cancer types derived from the UK Biobank cohort. 

(ii) Integrative analysis to identify cancer prognostic risk factors and 
circulating biomarkers: We evaluate effects causally related to 
risk factors and circulating biomarkers on cancer prognosis via a 
comprehensive MR approach that integrates pan-cancer sur-
vival GWAS datasets, with phenome-wide association study 
(PheWAS) and blood gene expression/DNA methylation 
quantitative trait loci (eQTL/meQTL) datasets.

http://njmu-edu.cn:3838/SUMMER/
http://njmu-edu.cn:3838/SUMMER/
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Fig. 1 Summary of the design of SUMMER database 

2.1 Preparation of 

SNP-Exposure 

Association Datasets 

2.1.1 PheWAS Dataset 

The GWAS summary statistics of common traits in the PheWAS 
dataset [15] were accessed through the IEU Open GWAS project 
(https://gwas.mrcieu.ac.uk/), with the R package TwoSampleMR 
[16, 17]. 

Based on a strict QC process consisting of (i) limited in 
European population (see Note 1) and (ii) with ≥3 independent 
[linkage disequilibrium (LD) r2 < 0.01] genetic instruments 
(defined by SNPs with P-value ≤5 × 10-8 ), we included a total of 
150 traits in this database, which spanned the categories of anthro-
pometric, autoimmune/inflammatory, behavioral, cardiovascular, 
International Classification of Diseases, 10th revision (ICD-10) 
codes-related, miscellaneous, non-cancer illness, and psychiatric/ 
neurological traits. 

2.1.2 QTL Dataset In addition to PheWAS dataset, we also obtained QTL datasets for 
biomarker-level analysis, including (i) eQTL datasets from the 
eQTLGen consortium (https://eqtlgen.org/) that incorporated a 
total of 31,684 blood samples mostly from donors of European 
ancestry [18] and (ii) meQTL dataset from Hannon et al.’s study 
that included a total of 1175 blood samples from donors of 
European ancestry (see Note 1)  [19].

https://gwas.mrcieu.ac.uk/
https://eqtlgen.org/
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2.2 Preparation of 

SNP-Outcome 

Association (That Is, 

Cancer Survival GWAS) 

Datasets 

2.2.1 Data Collection and 

Quality Control in UK 

Biobank Cohort 

The UK Biobank cohort is a prospective, population-based study 
that recruited 502,528 adults aged 40–69 years from the general 
population between 2006 and 2010 [20]. Participants visited 1 of 
22 assessment centers across England, Scotland, and Wales, where 
they completed touchscreen and nurse-led questionnaires and 
provided biological samples. The study protocol and information 
about data access are available online (https://www.ukbiobank.ac. 
uk/; Application #45611). 

A total of 355,543 participants remained for analysis after the 
following individual-level quality control (QC) process which 
(i) excluded individuals with prevalent cancer (except nonmela-
noma skin cancer, based on the ICD-10 [C44]) at baseline; 
(ii) excluded individuals of sex discordance; (iii) excluded outliers 
for genotype missingness or excess heterozygosity; (iv) retained 
unrelated participants; (v) restricted the cohort to “white British” 
individuals of European ancestry (see Note 1); and (vi) removed 
individuals who decided not to participate in this program. The 
follow-up time of cancer survival was measured from cancer diag-
nosis (defined by ICD-10 codes [21]) to death or the last follow-up 
(February 14, 2018). We determined whether an individual died of 
a specific cancer by considering the ICD-10 codes listed as the 
primary cause of death. Finally, of the 355,543 individuals, 
19,628 were newly diagnosed with 1 or more of 17 cancer types, 
ranging from 179 thyroid cancer cases to 4882 prostate cancer 
cases (Table 1). 

2.2.2 Cancer Survival 

GWAS Analysis 

All samples derived from UK Biobank were genotyped using the 
UK BiLEVE Axiom Array or UK Biobank Axiom Array by Affyme-
trix [22]. The genotyping data were imputed using SHAPEIT3 and 
IMPUTE3 based on the reference panels of Haplotype Reference 
Consortium (HRC), UK10K, and 1000 Genomes Project (Phase 
3). The study protocol and information about data access are 
available online (http://www.ukbiobank.ac.uk/wp-content/ 
uploads/2011/11/UKBiobank-Protocol.pdf). 

We kept variants based on a strict QC process with the follow-
ing criteria: (i) SNPs located within autosomal chromosomes, 
(ii) imputation info score ≥0.3, (iii) minor allele frequency (MAF) 
≥0.01, (iv) call rate ≥95%, and (v) Hardy-Weinberg equilibrium 
(HWE) P value ≥1 × 10-6 . Subsequently, the Cox proportional 
hazards regression analysis in an additive genetic model was applied 
to evaluate the association between each SNP and cancer survival 
that included OS and CSS as endpoints, with adjustment for sex, 
age at diagnosis, BMI, smoking status, drinking status, and the top 
10 principal components of population stratification when 
appropriate.

https://www.ukbiobank.ac.uk/
https://www.ukbiobank.ac.uk/
http://www.ukbiobank.ac.uk/wp-content/uploads/2011/11/UKBiobank-Protocol.pdf
http://www.ukbiobank.ac.uk/wp-content/uploads/2011/11/UKBiobank-Protocol.pdf
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2.3 MR Analysis 

Framework 

2.3.1 MR Analysis in 

Identification of Cancer 

Survival-Associated Risk 

Factors 

Here, we used the R package TwoSampleMR to apply multiple MR 
methods [6] in the phenotype-survival association analysis, includ-
ing inverse variance weighted (IVW), weighted median, penalized 
weighted median, and MR Egger methods. In addition, the het-
erogeneity test was used to assess whether a genetic variant’s effect 
on outcome was proportional to its effect on exposure, and the 
MR-Egger intercept test was fitted to evaluate the presence of 
horizontal pleiotropy [23]. The suggestive evidence between phe-
notypes and cancer survival was identified when three nominal 
thresholds were met, including P-value for IVW analysis ≤0.05, 
P-value for Egger intercept >0.05, and P-value for heterogeneity 
>0.05. 

2.3.2 Summary-Data-

Based MR (SMR) Analysis 

for Identification of Cancer 

Survival-Associated 

Circulating Biomarkers 

The associations between biomarkers and cancer survival were 
evaluated using the SMR analytical framework with default settings 
(--peqtl-smr 5E-08 --peqtl-heidi 1.57E-03 --cis-wind 2000) by 
integrating the cancer survival GWAS summary statistics data with 
cis-eQTL and cis-meQTL results (i.e., with a window of 2000 kb to 
select SNPs centered around the target biomarker) [24, 25]. The 
genotype data from the European population of the 1000 Gen-
omes Project Phase 3 were used for the LD estimation. The sug-
gestive colocalized signals were determined at a nominal threshold 
of P-value for SMR analysis ≤0.05 and P-value for HEIDI (i.e., 
heterogeneity test in dependent instruments) >0.05. 

3 Methods 

3.1 Design of 

SUMMER Database 

We applied the R package Shiny to develop SUMMER database 
(Fig. 1) with the following four modules: 

(i) Survival GWAS Dataset module, to help users browse the 
association effects of over eight million genetic variants on 
pan-cancer survival 

(ii) Phenotype-Wide Association Analysis module, to help users 
browse the causal effects of 150 phenotypes on pan-cancer 
survival 

(iii) Biomarker-Wide Association Analysis module, to help users 
browse the causal effects of genome-wide genes and CpG 
sites on pan-cancer survival 

(iv) Running your data module, to allow users to evaluate their 
own data on pan-cancer survival. 

The “About” page provides more details about the function of 
this database.
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3.2 “Survival GWAS 

Dataset” Module 

1. Search and browse: Select a cancer type and enter a batch of SNP 
IDs or a genetic region. A table with cancer type (see Note 2), 
chromosome ID, SNP ID, SNP genomic position, SNP alleles 
(A1: minor/effect allele; A2: major/reference allele), MAF, 
hazard ratio (HR), standard error (SE), and P-value will be 
built to display the associations of SNPs with cancer survival 
that includes OS and CSS. Additional function annotation links 
are also provided (see Note 3). 

2. Download: Download the results by clicking the “Download” 
button. 

3. Plot: Select one SNP-survival pair and click the “Plot” button. 
The diagrams of Kaplan-Meier (KM) plot will be provided to 
display the associations. 

4. Example: Colorectal cancer patients with the SNP rs17123527 
GA or AA genotypes had shorter OS times than patients with 
the rs17123527 GG genotype (HR = 2.20, P = 1.27 × 10-5 ; 
P for log-rank test = 1.21 × 10-6 ; Fig. 2). 

3.3 “Phenotype-

Wide Association 

Analysis” Module 

1. Search and browse: Select a cancer type (see Note 2), a pheno-
type category (e.g., anthropometric and autoimmune/inflam-
matory; see Note 4) and a survival type (e.g., OS or CSS). A 
table with phenotype category, trait, trait ID, cancer type, 
survival type, MR method, number of IVs, and beta, SE, and 
P-value from the MR analysis will be built to display the asso-
ciations of selected phenotypes with cancer survival. 

2. Download: Download the results by clicking the “Download” 
button. 

3. Plot: Select one trait-survival pair and click the “Plot” button. 
The diagrams of MR scatter plot will be provided to display the 
associations. 

4. Example: Blood clot in the leg (DVT) was associated with a 
poorer OS of colorectal cancer (betaIVW = 8.45, PIVW = 0.013, 
Pegger intercept = 0.375, PIVW heterogeneity = 0.509; Fig. 3). 

3.4 “Biomarker-

Wide Association 

Analysis” Module 

1. Search and browse: Select a cancer type (see Note 2), a bio-
marker type (e.g., gene expression or CpG site; see Note 4), 
and a survival type (e.g., OS or CSS). A table with cancer type, 
survival type, probe ID, probe genomic position, top eQTL/ 
meQTL SNP, top SNP genomic position, MAF from 1000 
Genomes EUR population, top SNP-associated eQTL and 
survival GWAS results (including beta, SE, and P-value), and 
beta, SE, and P-value (including PSMR, Pmulti-SMR, and PHEIDI) 
from SMR analysis will be built to display the associations of 
selected biomarkers with cancer survival. 

2. Download: Download the results by clicking the “Download” 
button.
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Fig. 2 Overview of the “Survival GWAS Dataset” module in the SUMMER database
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Fig. 3 Overview of the “Phenotype-Wide Association Analysis” module in the SUMMER database
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3. Plot: Select one biomarker-survival pair and click the “Plot” 
button. The diagrams of SMR scatter plot will be provided to 
display the associations. 

4. Example: Higher expression of HTR6 was associated with 
poorer OS in colorectal cancer (betaSMR = 0.72, 
PSMR = 2.38 × 10-4 , Pmulti-SMR = 0.007, PHEIDI = 0.692; 
Fig. 4). 

3.5 “Running Your 

Data” Module 

1. Selection of type of exposures and outcomes: Select a cancer type 
(see Note 2), a data type (e.g., phenotype or biomarker), and a 
survival type (e.g., OS or CSS), and enter a data name and 
email address (optional). 

2. Data uploading: Upload your summary statistic data (.csv 
format). 

3. Data analysis, browse, and download: Submit your data and 
perform analysis (see Note 5). A table derived from the MR 
or SMR analysis will be built to display the associations of 
related phenotypes/biomarkers with cancer survival, which 
can be downloaded by clicking the “Download” button or 
received by email. 

4. Plot: Select one pair and click the “Plot” button. The diagrams 
of MR/SMR scatter plots will be provided to display the 
associations. 

5. Example: The uploaded trait_1 was not associated with the OS 
of colorectal cancer (betaIVW = 6.15, PIVW = 0.212, Pegger 

intercept = 0.518, PIVW heterogeneity = 0.458; Fig. 5). 

4 Notes 

1. Our database is mainly used to identify cancer survival-relevant 
risk factors and biomarkers in European populations, of which 
the findings may not be directly transferred in other ancestries. 

2. The cancer outcomes are focused on OS and CSS of 17 cancers 
from UK Biobank cohort. More cancer survival GWAS datasets 
with larger sample sizes and longer follow-up times will be 
updated in our database, or at the user’s own survival GWAS 
datasets. 

3. Our database does not provide sufficient functional annotation 
for the identified genetic variants and biomarkers but shows 
several informative links (e.g., Haploreg, dbSNP, and ClinVar) 
on the website. 

4. The phenotypes of our database only include 150 traits, and 
there is a limited number of biomarkers based on the gene 
expression and DNA methylation at the circulating level.
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Fig. 4 Overview of the “Biomarker-Wide Association Analysis” module in the SUMMER database
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Fig. 5 Overview of the “Running your data” module in the SUMMER database
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Additional risk factors and multi-tissue biomarkers will be 
updated in our database. 

5. In the Running your data module, users must upload the 
SNP-exposure association file in the example format (e.g., . 
csv file) and cannot choose other parameters (e.g., the distance 
and LD r2 for selection of genetic instrument). In addition, 
when running data with more genetic instruments, our tool 
needs more time for analysis. If errors occur, they are likely due 
to problems for the data format, the number of genetic instru-
ments, or others. 
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Chapter 18 

Predicting Tumor Antigens Using the LENS Workflow 
Through RAFT 

Steven P. Vensko II , Dante Bortone , and Benjamin G. Vincent 

Abstract 

Tumor-specific and tumor-associated antigens presented on the tumor cell surface by MHC molecules are 
enticing targets for personalized vaccination and T cell receptor-engineered T cell (TCR-T) therapy. 
Accurately predicting suitable tumor antigens is a considerable challenge and requires flexibility in both 
computational tools and experimental methods. Here we describe our framework for reproducible bioin-
formatics, RAFT, as well as our highly modular neoantigen prediction workflow, LENS. We provide step-
by-step instructions for installation, running, and modifying LENS to suit different purposes. 

Key words Tumor antigen, Neoantigen, Immuno-oncology, Tumor-associated antigen, Neoantigen 
workflow, Bioinformatics 

1 Introduction 

Cancer immunotherapy involves the treatment of tumors through 
targeted control and elimination by a patient’s immune system. 
Vaccines designed against tumor-specific neoantigens have shown 
success in eliciting tumor antigen-specific T cell responses in some 
patient groups and tumor types [10, 23]. Nevertheless, the vast 
majority of trials result in minimal clinical improvement for patients 
[12]. This lack of beneficial outcomes underscores many of the 
field’s difficult and unanswered questions, such as those related to 
immunogenicity. Despite these hurdles, advancements in assays, 
sequencing technologies, and applications of machine learning 
suggest the efficacy of personalized neoantigen vaccines should 
vastly improve in the coming years. 
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2 Tumor Antigens 

Personalized tumor vaccines may target both tumor-specific and 
tumor-associated antigens [7]. Tumor-specific antigens are gener-
ated by disruptive genomic events occurring within the tumor, but 
not the adjacent normal tissues. These events include somatic 
mutations (single-nucleotide variants and insertions/deletions), 
tumor-specific transcriptional splice variants, and gene fusions, 
among others. Tumor-associated antigens, on the other hand, 
may exist in normal tissues but typically are not expressed or are 
heavily tumor-biased in their expression. These antigens include 
endogenous retroviruses and cancer-testis antigens. Endogenous 
retroviruses are ancient viruses that are abundant in the genome 
(up to 8% of the genome’s content) [8]. Endogenous retroviruses 
are largely degraded and nonfunctional, but some retain sufficient 
coding sequences for transcription and translation. They have been 
observed in normal tissues but are largely downregulated 
[11, 16]. Cancer-testis antigens (CTAs) are produced by transcripts 
that are almost exclusively expressed in immune-privileged testis 
and embryonal tissue [25]. CTA expression in immune-privileged 
tissue suggests they may be recognized by the patient’s immune 
system as non-self which may trigger an antitumor immune 
response. Tumors may have disrupted chromatin states throughout 
their genome allowing endogenous retroviruses and cancer-testis 
antigens to be aberrantly expressed. 

3 Role of Bioinformatics in Personalized Neoantigen Vaccines 

The ability to address challenges within the field of immuno-
oncology is heavily reliant upon bioinformatics tools and work-
flows. The advent of relatively inexpensive short-read exome and 
RNA sequencing resulted in the explosive growth of data available 
across a variety of tumor types. These data, combined with bioin-
formatics tools, can be used to predict tumor-specific and tumor-
associated antigens. 

Specifically, standard sequence-based bioinformatics tools cou-
pled with custom scripts can be used to predict tumor antigens that 
may potentially be presented on the tumor cell surface. Somatic 
single-nucleotide variants, insertions, and deletions can be detected 
and annotated using tools like MuTect2 and snpEff, respectively 
[2, 4]. Tumor RNA-sequencing data can be used to detect gene 
fusion events or, when combined with a tissue-matched normal 
sample, tumor-biased splice events and endogenous retroviral 
expression. The resulting predicted peptides and patient-specific 
HLA allele information can be used to predict peptide-MHC 
(pMHC) binding affinity, stability, and relative expression—some 
of the factors believed to be relevant to predicting a pMHC’s 
potential immunogenicity [28].
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Here, we present a detailed description and tutorial for running 
the LENS neoantigen workflow through RAFT, our in-house 
framework, and workflow manager built on Nextflow DSL2 
[5]. First, we will cover RAFT’s functionality and how it supports 
reproducible bioinformatics (and, in turn, LENS), and then we will 
describe running LENS. 

4 RAFT 

A common issue with bioinformatics analyses is difficulty in repro-
ducing the results of a journal article. Many article authors will 
generally describe the process in which data were generated and the 
analyses were performed, but commonly omit critical details such as 
tool versions and parameters used. Our workflow manager, RAFT 
(Reproducible Analyses Framework and Tools), seeks to support 
absolute reproducibility within the field of sequencing-based bio-
informatics while also providing an easy-to-use interface. The even-
tual goal for RAFT is to support the running of complex workflows 
by third parties with minimal difficulty. Reproducibility through 
RAFT is accomplished through several interoperating facets: (1) a 
project context, (2) module-based components, and (3) RAFT 
packages. Here, we describe these aspects of RAFT and how they 
support project transparency and reproducibility. 

4.1 Project Context Specifically, a project context entails an isolated environment in 
which an analysis is performed. The project’s contents consist of 
reference files, sample-level input files, the output files generated, 
and the module code running each workflow step. This isolated 
environment ensures that every component needed to reproduce 
results is contained within the project. 

4.2 Module-Based 

Components 

Modules within RAFT define command-level process definitions, 
subworkflow definitions, resource allocation (CPU and memory), 
and the Docker image to use for running the processes and work-
flows. These modules exist locally within the project such that users 
can modify them as needed to change tool-level behaviors. 

4.3 Project 

Packaging 

RAFT projects contain end-to-end analyses and can, depending on 
the workflow, require hundreds of gigabytes to terabytes of storage. 
Unfortunately, it is rarely practical to store the entire project for 
long periods. We have included functionality within RAFT, the 
RAFT package, to address this issue. Specifically, the RAFT package 
(.rftpkg) is a tarfile consisting of (1) checksums of input, outputs, 
and references, (2) all of the module code used to run the analysis 
(including any user modifications), and (3) the RAFT commands 
used to generate and run the project. The tarfile containing these 
components is a fraction of the size of the original project and 
allows for the regeneration of the project at a later date if needed.



4.4.1 Installation

Through pip

4.4.2 Installation

Through Conda

RAFT packages also serve as a mechanism to share an analysis with 
third parties as it is sufficient to rerun the entire analysis (assuming 
the third party has access to the input files). 
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More information on RAFT can be found at https://useraft.io. 

4.4 Installation RAFT installation canbeperformedwith either pip (https://pypi.org/ 
project/reproducible-analyses-framework-and-tools) or using Conda 
environments (https://anaconda.org/raft/reproducible-analyses-
framework-and-tools). RAFT requires the following dependencies:

• Python 3.6

• python-wget 3.2 (https://pypi.org/project/wget/)

• gitpython 3.1.9 (https://github.com/gitpython-developers/ 
GitPython)

• python-gitlab 4.2.0 (https://github.com/python-gitlab/ 
python-gitlab)

• Nextflow 23.10.0 (https://nextflow.io/)

• Git 2.43.0 (https://git-scm.com/)

• OpenJDK 21.0.1 (https://openjdk.java.net) 

RAFT installation through pip requires Java >  =  11 to be installed 
by the user (for example, using sudo apt-get install openjdk11-jdk) 
to support Nextflow. Note that installation through pip does not 
include installation of Singularity/Apptainer and instead requires 
the user to install it separately (or use another supported tool, like 
Docker).

Installing RAFT Using pip 

pip install --user reproducible-analyses-fra-

mework 

-and-tools

The RAFT Conda package provides a full working environment 
that installs all required dependencies. 

Installing RAFT Using Conda 

conda install -c bioconda -c conda-forge -c 

raft \ 

reproducible-analyses-framework-and

-tools

https://useraft.io
https://pypi.org/project/reproducible-analyses-framework-and-tools
https://pypi.org/project/reproducible-analyses-framework-and-tools
https://anaconda.org/raft/reproducible-analyses-framework-and-tools
https://anaconda.org/raft/reproducible-analyses-framework-and-tools
https://pypi.org/project/wget/
https://github.com/gitpython-developers/GitPython
https://github.com/gitpython-developers/GitPython
https://github.com/python-gitlab/python-gitlab
https://github.com/python-gitlab/python-gitlab
https://nextflow.io/
https://git-scm.com/
https://openjdk.java.net


4.4.3 Setting up RAFT

Setting up RAFT with Default Parameters

raft.py setup -d

4.4.4 Setting up Nextflow

Profile
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RAFT must be installed within a directory that will house all 
projects and project-related artifacts (e.g., references, fastqs, 
RAFT packages, etc.). RAFT can be quickly installed using: 

Usage of the -d/–default flag will create all of the required 
directories in the working directory in which the command is run. 
Users desiring a more flexible, custom installation can instead run: 

Setting up RAFT with Interactive Prompt 

raft.py setup

This command initiates a prompt requesting user-provided 
paths for each directory required by RAFT. These directories will 
be created or will be symbolically linked (symlinked) to the RAFT 
installation directory if they already exist elsewhere on the file 
system. 

Nextflow supports a variety of executors to schedule and run its 
processes. For demonstration purposes, we will be running in the 
local environment using Singularity/Apptainer to run containers. 
The following configuration can be placed in ∼/.nextflow/config 
to run RAFT: 

Example Nextflow Profile 

profiles { 

standard { 

process.executor = ’local’ 

executor.queueSize = ’99’ 

executor.submitRateLimit = ’25/2min’ 

singularity.enabled = true 

}

}



5 LENS Workflow Demonstration

Running LENS Demonstration

raft.py run-demo --workflow lens -mb v1.2-dev

(continued)
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Now that RAFT and its dependencies are installed, users can run 
LENS in demonstration mode. Demonstration mode uses a pre-
defined manifest and set of FASTQs, so users can see how the 
workflow works before providing their samples. Demonstrations 
are run using the RAFT command run-demo. The demonstration 
project’s identifier defaults to demo-< WORKFLOW> (e.g., 
demo-lens) and will be available in ./raft/projects/demo-< 

WORKFLOW> . 
The LENS demonstration can be run using: 

The -mb Parameter 

The -mb parameter specifies the module branch. The latest 
version of LENS at this time of publication is v1.2-dev, but 
users are encouraged to check for the latest version on the 
LENS wiki (see Subheading 12). 

RAFT will then download them if necessary and load the 
required inputs into the project (truncated for brevity): 

LENS Demonstration Output 

Initializing project default-demo... 

Pulling off-the-shelf workflow... 

This may take some time due to module fetching. 

Loading manifest... 

Couldn’t find lens.demo.manifest in RAFT meta-

data 

directory. 

Loading references... 

Couldn’t find Homo_sapiens_assembly38.fasta. 

Downloading... 

Couldn’t find gencode.v44.annotation.gtf.gz. 

Downloading... 

Loading fastqs... 

Couldn’t find SRR8668635_1.fastq.gz. Download-



6.2 Generating and

Checking the RAFT

Manifest

ing... 

Couldn’t find SRR8668635_2.fastq.gz. Download-

ing... 

Building workflow... 

Connecting subworkflows... 

Populating default parameters... 

Running workflow...
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Outputs from the demonstration are available for review in ./ 
raft/projects/demo-<WORKFLOW>/outputs. Output file 
descriptions can be found in Subheadings 8 and 9. 

6 Running LENS with User-Provided Manifest 

6.1 Loading 

Reference and FASTQ 

Files 

RAFT expects reference files, FASTQ files, and, in most cases, 
metadata/manifest files to be available within specific directories 
(./raft/references, ./raft/fastqs, and ./raft/metadata, respec-
tively) when running a project’s workflow. Many of RAFT’s off-
the-shelf workflows, such as LENS, will automatically download 
any references required for running. They will also automatically 
copy the user-provided metadata file to the correct location. Users, 
however, must copy or symlink their sample-level FASTQs to the ./ 
raft/fastqs directory. 

LENS currently supports single-end and paired-end Illumina 
sequencing by synthesis (SBS) reads. For optimal performance, 
each patient should have three samples including: (1) normal 
DNA, (2) tumor DNA, and (3) tumor RNA. Users can also provide 
only a tumor RNA sample for each patient but will not receive SNV 
and InDel neoantigen predictions. A single-reference tissue-
matched (to the tumor type) normal RNA sample is also required. 
LENS has been extensively tested on whole exome sequencing data 
(WES or WXS) but should also work with whole genome sequenc-
ing (WGS) data. 

The relationship between samples and patients is defined within the 
RAFT manifest. The samples required for a RAFT workflow vary 
depending on the workflow. For example, an RNA quantification 
workflow may use one or multiple RNA-sequencing samples per 
patient. Other workflows, like somatic variant calling, will require 
both a normal sample and a tumor sample for each patient. For 
optimal performance, LENS requires patient-specific normal DNA 
samples, tumor DNA samples, and tumor RNA samples as well as a 
tissue-specific control normal sample to be shared among patients. 
RAFT manifests may contain one or more patients. Many computer



clusters will allow for multiple patients to be run in parallel to 
reduce run time. 
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Table 1 

Required RAFT manifest columns 

Column Description Allowed values 

File_Prefix Base name of FASTQ files Free text 

Patient_Name Name for collection of samples Free text 

Normal Is the sample normal or abnormal (tumor)? (TRUE, FALSE) 

Sequencing_Method Sequencing protocol for sample (RNA-Seq, WES, WXS, WGS) 

Dataset Name for collection of patients Any string 

Run_Name Name for the specific sample Free text (see note below) 

A RAFT manifest must have at least the columns defined in 
Table 1. Columns can be in any order, and other columns contain-
ing non-RAFT metadata are also allowed. 

The general hierarchy of organization within RAFT follows: 

Sample ∈Patient ∈Dataset : 

In other words, samples belong to patients (patients can have 
multiple samples) and patients belong to datasets (datasets can have 
multiple patients). 

Run_Names are instrumental in guiding samples through the 
LENS workflow. A sample’s Run_Name should have a two-letter 
prefix that describes the type of sample followed by an arbitrary 
unique identifier. The first letter of the prefix is either a (for abnor-
mal) or n (for normal). The second letter is either r (for RNA) or 
d (for DNA). For example, a sample with an ar- prefix is an abnor-
mal (tumor) RNA sample, while a sample with a nd- prefix is a 
normal DNA sample. 

Each line in the manifest after the header corresponds to a 
sample and provides the necessary data for running the workflow. 
The samples described within the manifest may, in some cases, be 
effectively independent (as in, the workflow does not attempt to 
pair samples from a patient), but in other cases, users must be 
careful that samples are properly labeled. For example, somatic 
variant calling generally requires a normal DNA sample and a 
tumor DNA sample. For RAFT to properly pair these samples 
together, they must have the correct sample prefix (nd- for the 
DNA tumor sample and nd- for the DNA normal sample) and be 
paired with the patient (Patient_Name field) and dataset (Dataset 
field). Consider the following example:



Example Manifest

6.3 Running LENS

Workflow with Default

Parameters

Running an off-the-Shelf Workflow

raft.py run-ots \

--project-id my_lens_project \

--workflow lens \

-mb v1.2-dev \ 

--metadata /path/to/manifest.tsv
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Patient_Name Run_Name Dataset File_Prefix Se-

quencing 

_Method Normal 

Pt01 ad-Pt01-03A AML 9f7f7 WES FALSE 

Pt01 nd-Pt01-11A AML 8e74a WES TRUE 

Pt01 ar-Pt01-03A AML cdb288 RNA-Seq FALSE 

CTRL nr-CTRL TCGA_LAML CD34-032U RNA-Seq 

TRUE

Note that both the tumor DNA sample (ad-Pt01-03A) and the 
normal DNA (nd-Pt01-11A) sample belong to the same patient 
(Pt01) and the same dataset (AML). 

User-provided manifests can be sanity-checked by using: 

Sanity Checking Manifests 

raft.py check-manifest -m /path/to/manifest. 

tsv

Users can then provide the manifest to RAFT’s run-ots com-
mand to run the workflow with their manifest. 

Running LENS with a user-provided manifest and default para-
meters can be accomplished with: 

The -mb Parameter 

The -mb parameter specifies the module branch. The latest 
version of LENS at this time of publication is v1.2-dev, but 
users are encouraged to check for the latest version on the 
LENS wiki (see Subheading 12).



7 Modifying LENS Modules, Parameters, and References

7.1.1 Parameter

Modifications
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This command will create a new project in the ./raft/projects 
directory named my_lens_project. Note that project names are free 
text, but RAFT’s developers highly encourage users to name their 
projects using meaningful nomenclature (e.g., < DATASET> -< 

WORKFLOW> -< DATE> ). A meaningful naming convention 

will allow users to better organize their projects and prevent poten-
tial confusion. 

Note that the relevant FASTQs must be present within the 
RAFT FASTQs directory (./raft/fastqs) for the workflow to be 
completed successfully. Information regarding accessing and inter-
preting LENS output files can be found in Subheading 8 and 9. 

RAFT’s off-the-shelf workflows run with sensible default para-
meters, but it is possible to modify workflow- to tool-level para-
meters to suit specific situations. In this case, users should run the 
run-ots command with the --setup-only parameter: 

Setting up (but not Running) an off-the-Shelf Workflow 

raft.py run-ots \

--project-id my_lens_project \

--workflow lens \

-mb v1.2-dev

--metadata /path/to/user-generated-manifest. 

tsv \ 

--setup-only

This command will run the same steps as the run-ots com-
mand, except it will not execute Nextflow. This provides an oppor-
tunity to modify the workflow before execution. 

7.1 Workflow 

Modifications 

Users can drastically alter workflow behaviors by modifying tool 
versions, tool containers, and tool-level parameters. They can also 
swap tools (e.g., swapping salmon with kallisto for RNA quantifi-
cation) or reference files. Each section below describes the steps 
required to modify the workflow. 

Tool-level and workflow parameters can be tweaked by users 
through modification of the main.nf file (found in ./raft/pro-
jects/< PROJECT_ID> /workflow/main.nf). Lines within the 
main.nf file that start with ”params.” are parameters that can be



Parameter for DNA Alignment Tool

Setting RNA Alignment Tool to star

params.lens$alignment$manifest_to_rna_alns 

$aln_tool 

= "star"

user-modified. The parameter names, while long, describe what 
aspect of the workflow is being controlled by the parameter. Param-
eter names are $ delimited with each segment providing an increas-
ingly narrow scope of the parameter’s application. For example: 
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params.lens$alignment$manifest_to_dna_alns 

$aln_tool

This parameter is a part of the lens module which is utilizing the 
alignment module’s manifest_to_dna_alns subworkflow which 
requires the specific parameter aln_tool. 

Using the above logic, we can see the following parameter 
assigns the RNA alignment step to use the tool STAR [6]: 

This allows us to specify the tool to be used but does not specify 
the parameters provided to that tool. Providing tool-specific para-
meters is shown of the next line: 

Setting Parameters for Running star 

params.lens$alignment$manifest_to_rna_alns 

$aln_ 

tool_parameters = \ 

"[star’: --quantMode TranscriptomeSAM --out-

SAMtype 

BAM \ 

SortedByCoordinate --twopassMode Basic --out-

SAMunmapped 

Within’]"

Tool-level parameters are defined using a key:value strategy 
similar to a Python dictionary. In the above example, ’star’ is the



7.1.2 Tool, Container,

and Resource

Modifications

Specifying STAR for RNA Alignment

params.lens$alignment$manifest_to_rna_alns 

$aln_tool 

= "star"

Specifying STAR Alignment Parameters

params.lens$alignment$manifest_to_rna_alns 

$aln_tool 

_parameters = \ 

"[star’: --quantMode TranscriptomeSAM --out-

SAMtype 

BAM \ 

SortedByCoordinate --twopassMode Basic --

outSAMunmapped Within’]"

key, and ’–quantMode TranscriptomeSAM –outSAMtype BAM 
SortedByCoordinate –twopassMode Basic –outSAMunmapped 
Within’ is the value. Note that this parameter set is only passed to 
star in the context of running the manifest_to_rna_alns workflow 
and will not affect other instances of star being called. 
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Users may also change the tool or the tool container used within a 
process. Recall the previous section in which star is being used for 
aligning short-read RNA-sequencing data to a reference. If users 
instead wanted to use a different tool such as bbmap [3], then they 
would change 

to 

Specifying BBMap for RNA Alignment

params.lens$alignment$manifest_to_rna_alns 

$aln_tool 

= "bbmap"

Likewise, they would also change the line 



Specifying BBMap Alignment Parameters

params.lens$alignment$manifest_to_rna_alns 

$aln_tool 

_parameters = \ 

"[bbmap’: ’]"

Specifying a Single Somatic Variant Caller

params.somatic$alns_to_som_vars$som_var_cal-

ler 

= "strelka2"

Specifying Multiple Somatic Variant Callers

params.somatic$alns_to_som_vars$som_var_cal-

ler = \ 

"strelka2,mutect2,varscan2"

Applying Parameters to Multiple Somatic Variant Callers

params.lens$somatic$alns_to_som_vars$som_-

(continued)
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to 

while replacing ‘’ with any parameters they would like passed to 
bbmap. 

Note that only tools currently supported by RAFT may be 
utilized. A set of supported tools for each workflow, as well as 
information on creating modules to support new tools and work-
flows, can be found on the RAFT and LENS wikis (see 
Subheading 12). 

Finally, multiple tools can be specified for some subworkflows. 
For example, somatic variant calling can be performed with a 
single tool: 

or users may specify multiple variant callers [2, 13, 15]: 

Note that parameters can be specified on a tool basis using the 
following: 



Specifying Docker Images for Tools

... 

withLabel: star_container { 

container = docker://mgibio/star:2.7.0f’ 

} 

...

Determining Processes Using Specific Docker Image Label

$ grep -n star_container projects/<PROJEC-

T_ID>/ 

workflow/*/*nf 

projects/<PROJECT_ID>/workflow/star/star. 

nf:20: \ 

label star_container’ 

projects/<PROJECT_ID>/workflow/star/star. 

nf:75:\

label star_container’

var_caller 

_parameters = \ 

"[’gatk_filter_mutect_calls_suffix’:  ’.  

gfilt’, \ 

’varscan2’: ’--output-vcf’]"
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Different workflows have differing mechanisms for handling 
situations in which multiple tools are specified for a workflow, but 
that topic is beyond the scope of this chapter. 

Specifying different containers for Nextflow processes allows 
users to change the version of a tool being run within the workflow. 
Containers are defined on a per-process level within the nextflow. 
config file (located at ./raft/projects/<PROJECT_ID>/work-
flow/nextflow.config). Viewing the nextflow.config file reveals the 
containers used for several tools: 

Here, we see that processes with the label star_container will be 
run with mgibio’s star:2.7.0f Docker image. To determine which 
processes in the workflow have the star_container label, users 
can run: 



7.1.3 Reference

Modifications

Downloading External Reference

wget https://storage.googleapis.com/genomics-

public

-data/\ 

resources/broad/hg38/v0/Homo_sapiens_as-

sembly38 

.fasta
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which directs users to lines 20 and 75 of star.nf. 
Users can change the version of star used within the workflow 

by changing the Docker image specified within nextflow.config. For 
example: 

Changing Docker Image for Specific Tool 

... 

withLabel: star_container { 

container = docker://quay.io/biocontainers/ 

star 

:2.7.11a’ 

} 

...

Another crucial consideration when running a complex bioinfor-
matics workflow is the set of reference files used. Users may want to 
use a reference file more relevant to their specific application, or 
they may want to update a reference file to a newer version. Refer-
ence modifications can be performed using a three-step process. 
Specifically, users must (1) download the new reference from the 
external source, (2) load the reference into the project using the 
load-reference mode of RAFT (e.g., raft.py load-reference -p my-
lens-project -f reference-name), and (3) modify the appropriate line 
within their project’s main.nf file to reflect the updated reference. 

As an example, consider a scenario in which a user may want to 
upgrade their hg19 reference to an hg38 reference within LENS. 
This would require the user to download the updated reference: 

Then copy, move, or symlink that reference to their RAFT’s / 
references directory:



Moving External Reference to RAFT References Directory

mv Homo_sapiens_assembly38.fasta /path/to/ 

raft/ 

references

Loading External Reference into a RAFT Project

raft.py load-reference -p my-lens-project \

-f Homo_sapiens_assembly38 

.fasta

Original Genomic References within main.nf

params.lens$alignment$manifest_to_dna_alns 

$alns_ref 

= \ "params.{ref_dir}/hg19.fa" 

... 

params.lens$alignment$manifest_to_rna_alns 

$alns_ref 

= \ "params.{ref_dir}/hg19.fa"

(continued)
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Next, the user must load the reference into their project. Here, 
the project identifier is my-lens-project. 

Note that only the file’s name is needed and that the file does 
not need to have a specific path within the /references directory 
(as long as the file is contained within RAFT’s references directory). 

Finally, users must modify the appropriate lines within the 
project’s main.nf file. 

can be changed to: 

Updated Genomic References within main.nf 

params.lens$alignment$manifest_to_dna_alns 

$alns_ref = \ 

"params.{ref_dir}/Homo_sapiens_assembly38. 

fasta"



7.2 Running a

Modified Workflow

8 Examining RAFT Output Files

... 

params.lens$alignment$manifest_to_rna_alns 

$alns_ref = \ 

"params.{ref_dir}/Homo_sapiens_assembly38. 

fasta"
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In the case of LENS, both the RNA and DNA references must 
be modified as LENS allows users to use different references for 
each nucleic acid sequence type. 

Users must be careful when updating some reference files due 
to inter-dependencies among reference files. For example, LENS, 
by default, utilizes both a GTF file for transcript annotations and a 
CTAT trinity reference for gene fusion detection through STAR-
Fusion [9]. Both of these references are versioned and will not only 
have transcript-level information, but version-specific transcript 
information. As a result, users should ensure these references 
(as well as any other versioned references) are compatible with 
each other such that transcript and transcript versions within 
LENS are consistent among antigen sources. 

Users can run their modified workflow through RAFT using the 
following command: 

Running a Modified RAFT Project 

raft.py run-workflow -p my-lens-project

This command will create an augmented Nextflow command 
and execute it per the user’s Nextflow configuration. 

RAFT produces a variety of output files which are available for 
review in the project’s /outputs directory. Patient-level and 
sample-level output files are generally published using a < 

DATASET>/<PATIENT_NAME> /<RUN_NAME> direc-

tory hierarchy. For example, the quant.sf output file from Salmon 
for Patient01’s sample nr-123 in dataset MyDataset would be 
located in ./outputs/samples/MyDataset/Patient01/nr-123/ 
salmon_quant [18].
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Generally speaking, the Unix find command may be the easiest 
way to quickly find and analyze files from the outputs directory. For 
example, if a user wants to count the number of lines in each 
sample’s MuTect2 VCF, then they can run the following line: 

Using find to Interact with RAFT Output Files 

find ../projects/<PROJECT_ID>/outputs -name "

*mutect2*vcf" \ 

-exec wc -l {} \;

LENS-specific reports can be found in the /outputs/lens 
directory. These reports should be tab-separated text files (.tsv) 
and should be viewable within Microsoft Excel. Next, we will go 
over relevant columns from the report that may be useful for 
prioritizing tumor antigens. 

9 Understanding LENS Output Reports 

LENS generates a variety of reports depending on the user-specific 
parameters provided. These reports are subject to change as LENS 
development continues, but generally speaking, many columns are 
highly relevant to tumor antigen interpretation and are not 
expected to change. Here, we provide an overview of potentially 
useful columns from LENS reports. We begin with columns that 
help identify peptide-MHCs (pMHCs), then describe columns 
relevant for ranking and prioritizing pMHCs, and end with antigen 
source-specific columns used for further filtering. 

9.1 pMHC Identifying 

Columns 

Each line within the LENS report represents a unique peptide-
MHC complex predicted by LENS. The columns relevant for 
describing a pMHC are allele, peptide, identity, and antigen 
source. The allele column contains the HLA allele from the patient 
that combines with the peptide to create the pMHC. The identity 
column contains a unique checksum that can be used to trace the 
genomic origin of the pMHC for debugging purposes. Finally, the 
antigen source column describes the type of pMHC being 
described. As of the time of this writing, antigen sources include 
SNV, INDEL, SPLICE, FUSION, CTA/SELF, VIRUS, and ERV. 

9.2 pMHC 

Descriptive Columns 

The factors associated with a suitably targetable tumor antigen 
remain a topic of debate within the literature [24]. Generally 
speaking, pMHCs with higher binding affinity, higher stability, 
higher relative abundance, higher clonality, and higher dissimilarity



from the self-proteome are thought to be most effective for target-
ing. LENS is capable of providing metrics for all of these factors so 
users can develop their own strategy for prioritizing tumor anti-
gens. LENS also provides a priority score as a starting point for 
users. 
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Specifically, binding affinity is, by default, calculated by 
NetMHCpan and MHCflurry [17, 21]. NetMHCpan provides 
raw scores, percent rank values (relative to a set of random natural 
peptides), and binding affinity (measured in nanomolar). 
MHCflurry provides information on binding affinity but also 
includes both proteasomal processing and cell surface presentation 
scores. 

Binding stability is calculated by NetMHCstabpan 
[20]. NetMHCstabpan provides a stability percent score, percent 
rank, and a binding half-life (in hours). 

Dissimilarity and foreignness are defined by antigen.garnish 
[22]. Dissimilarity is a measure of how “non-self” peptides are 
relative to the human proteome, while foreignness is a measure of 
how similar a peptide is to known immunogenic peptides in the 
Immune Epitope Database (IEDB) [14]. LENS also calculates 
agretopicity by BLASTing peptides against the human proteome 
to discover the closest match and performing both NetMHCpan 
and MHCflurry binding affinity calculations against the match 
[1]. Specifically, the agretopicity value is defined as the ratio of 
mutant binding affinity to wild-type binding affinity ratio. Agreto-
picity remains a debated metric, but some evidence suggests high 
agretopicity peptides are rarely presented in wild-type form (and 
thus have a lower probability of central tolerance) which should 
boost the immunogenicity performance of the mutant form [22]. 

Tumor antigens are quantified by calculating the reads support-
ing the peptide’s coding sequence from the tumor RNA BAM. 
Quantification algorithms are defined within the LENS 
manuscript [27]. 

Cancer cell fraction (CCF) is provided by LENS through 
means of somatic variant calling and CNVKit copy number alter-
ation analysis [26]. Cancer cell fraction measures the clonality of a 
predicted tumor antigen such that tumor antigens with higher 
cancer cell fractions are present in more of the tumor’s cells and 
may be better targets for therapy. LENS currently only supports 
cancer cell fraction calculations for SNVs and InDels. 

Finally, LENS also provides a simple prioritization score as the 
priority_score column. This score takes relative antigen read sup-
port, binding affinity, and cancer cell fraction into account. Specifi-
cally, binding affinity values are transformed using: 

absðχ-1000Þ
1000 

:
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Tumor antigen read support is log-transformed and then nor-
malized by dividing each quantification value by the maximum 
observed count such that quantification values range from ½0, 1]. 
Cancer cell fraction is unmodified as it is already bound between 
½0, 1 ]. The priority score is then calculated as 

S = pMHCBA * pMHCRS * pMHCCCF , 

where pMHCBA is the transformed binding affinity, pMHCRS 

is the log-transformed and normalized read support, and 
pMHCCCF is the estimated cancer cell fraction. We have also 
developed an alternate metric, priority_score_no_ccf, which is 
calculated without the cancer cell fraction value. This alternate 
metric serves as an antigen source agnostic value that should be 
available for all peptides. 

9.3 SNV- and InDel-

Specific Columns 

SNV and InDel tumor antigens are generated from somatic muta-
tions occurring within canonical transcripts which result in altered 
protein content. As such, LENS provides several useful columns 
that users can use to further investigate predicted SNV and InDel 
peptides. More information can be found in Table 2. 

9.4 Fusion-Specific 

Columns 

Gene fusions are a subset of structural variants that can produce 
novel, non-self-sequences. LENS provides several columns relevant 
to understanding the gene fusions detected within a patient. More 
information can be found in Table 3. 

9.5 Splice-Specific 

Columns 

Tumor-specific splice variants arise from noncanonical splicing dur-
ing RNA maturation. These events can result in a variety of scenar-
ios including intron skipping and the inclusion of cryptic exons. 
LENS provides the columns gene with the name of the gene 
harboring the splice variant as well as tumor_splice which contains 
the tumor-specific splice coordinates. 

Table 2 

LENS SNV and InDel output columns 

Column Description 

gene_name Gene name 

transcript_id Transcript identifier 

mut_aa_pos Mutation position within predicted peptide 

mut_aa_range Range of mutant positions within predicted 
peptide 

variant_coords Variant genomic position (chromosome:position) 

variant_position_in_cds Variant position within transcript coding sequence
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Table 3 

LENS fusion output columns 

Column Description 

fusion_type Fusion type (in-frame or frameshift) 

fusion_left_breakpoint Genomic coordinates of left breakpoint 

fusion_left_gene Gene name on the left of breakpoint 

fusion_left_transcript Transcript identifier on the left of breakpoint 

fusion_right_breakpoint Genomic coordinates of right breakpoint 

fusion_right_gene Gene name on the right of breakpoint 

fusion_right_transcript Transcript identifier on the right of breakpoint 

fusion_annotation Fusion annotation informative, if available 

variant_position_in_cds Variant position within transcript coding sequence 

Table 4 

LENS ERV output columns 

Column Description 

erv_geve_annot gEVE database identifier 

erv_hervq_region hERVQuant associated region, if any 

erv_mtec_exp_status True if expressed in medullary thymic endothelial cells, false 
otherwise 

erv_norm_exp_statu True if expressed in normal tissues, false otherwise 

erv_hervq_region_proteins_list List of ERV proteins present in hERVQuant region 

erv_hervq_erv_uniq_proteins_counts Count of unique ERV proteins present in hERVQuant region 

erv_hervq_region_avg_exp_corr Average correlated expression among ERV proteins present in 
hERVQuant region 

erv_normed_erv_orf_confidence_score Normalized confidence score between 0.0 and 1.0—closer to 
1.0 is better 

9.6 ERV-Specific 

Columns 

LENS utilizes the gEVE database for defining the coordinates of 
ERVs for each species. This database relies upon computational 
prediction for ERV annotation and is, as a result, prone to false 
positive entries. LENS provides both identifying columns (erv_ge-
ve_annot), several descriptive columns, as well as scoring column. 
More information can be found in Table 4.



10 Generating a RAFT Package for Analysis Storage
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Table 5 

LENS CTA/self-antigen output columns 

Column Description 

gene_name Gene name 

transcript_id Transcript identifier 

mtec_tpm Expression (TPM) of transcript in medullary thymic endothelial cells 

mtec_num_reads Expression (number of reads) of transcript in medullary thymic 
endothelial cells 

gene_detectable_normal_tissues List of normal tissues transcript is detectable in (Human Protein Atlas 
[19]) 

gene_main_subcellular_location Subcellular location of gene product 

9.7 Cancer-Testis 

Antigens- and Self-

Antigens-Specific 

Columns 

Cancer-testis antigens are derived from transcripts physiologically 
expressed and translated within the testis; however, they can 
become aberrantly expressed within tumors under some condi-
tions. The testis is an immune-privileged tissue, and thus the pre-
sentation of peptides derived from these transcripts on the cell 
surface by MHC molecules has the potential to prompt an immune 
response. More information can be found in Table 5. 

A RAFT package is a minimal, yet sufficient, collection of metadata 
from a RAFT project used for regenerating projects. Users can 
create a RAFT package after their LENS project is completed 
using the command: 

Generating a RAFT Package 

raft.py package-project -p <PROJECT_ID> \ 

-o <rft_pkg_name>

The resulting RAFT package (.rftpkg) will be available within 
the project’s /rftpkgs directory (./raft/projects/< 

PROJECT_ID> /rftpkgs). This file can be used for regenerating 

the project in the future.



11 Loading a Project from a RAFT Package
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Loading a RAFT project from a RAFT package can be performed 
using: 

Generating a RAFT Project from a rftpkg File 

raft.py load-project -p <PROJECT_ID> -r /path/ 

to 

/rftpkg

Note that the Project Identifier can be different than the proj-
ect identifier originally used with the project. Users loading a 
project must have the relevant reference, metadata, and fastqs in 
their global RAFT directory (./raft/references, ./raft/metadata, 
and ./raft/fastqs, respectively). The project can be run using the 
raft.py run-workflow like a standard RAFT project. 

12 Further Help 

More information about running RAFT can be found at https:// 
useraft.io, and more information on LENS can be found at https:// 
uselens.io. Interactive help is also available on our Slack server: 
https://tinyurl.com/raft-slack. Nextflow experience can help with 
debugging workflow errors that may occur. We encourage users to 
learn more about Nextflow using free training provided by its 
developers at https://training.nextflow.io/. 
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