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Preface
Today, the application of artificial intelligence (AI) is very broad, and its increase 
was noted especially in areas like understanding of natural language, visual recog-
nition, robotics, autonomous system, machine learning, design and manufacturing 
and other critical fields. AI has evolved massively, thanks in particular to the emer-
gence of Cloud Computing and Big Data that are capable of storing and linking the 
enormous amount of data from the critical sector for improving daily life such as 
manufacturing. The present book will highlight the recent progress in fundamental 
research in advanced manufacturing methods, integrating various aspects from syn-
thesis to applications of advanced materials and providing a correlation of physical 
properties with macro, micro and nanostructures, which is a great interest for the 
academic and industrial readers. Moreover, it will provide a cutting-edge research 
from around the globe in this field. Current status, trends, future directions, oppor-
tunities, etc., will be discussed, making it friendly for beginners and young research-
ers. This book will present and discuss new studies that incorporate some modern 
techniques such as AI, multi-criteria decision and novel advanced material from 
macro to microscale representative of a society which main desire is to achieve net 
zero emission by 2050. The state of art of each research field was presented briefly 
and concisely in each chapter. It makes this book a desired tool for the university in 
order to accommodate the new students with novel knowledge in advanced manu-
facturing that are based in AI and novel material. It can also be useful for training 
courses, engineers, PhD students and other researchers.

This book is composed of nine chapters:
Chapter 1 deals with manufacturing incorporating AI and Big Data, especially for 

the development of Industry 4.0. This chapter is organized as follows: firstly, we find 
an introduction about the use of internet of things (IoT) technologies in specific indus-
trial applications such as factories, manufacturing, facilities and warehouses. The IoT 
(like RFID technology) can create new business models by improving productivity, 
exploiting analytics for innovation, maximizing operational efficiency, optimizing 
business operations and protecting systems. Secondly, were presented a part reserved 
for Big Data from sensors and IoT devices. As known, a large number of special 
sensors are used to collect data in smart manufacturing, in which devices are inde-
pendent of each other. The fourth part of this chapter is about the application of AI in 
the industry, which makes the manufacturing sector more smart. The AI algorithms 
are able to learn from data; enhance themselves by learning new heuristics. After 
the presentation of the concepts, applications and current researches of the IoT, Big 
Data, and AI for smart manufacturing in the Industry 4.0 era are revealed. We have 
indicated opportunities and further research perspectives of these important factors 
of industrial intelligent manufacturing. In the last section, we presented a case study 
linked to the application of AI algorithms for the remaining useful lifetime (RUL) 
prognostic of a product.

Chapter 2 discusses the use of cold spray (CS) technology in detail and its green 
applications are examined. CS technology is a thermal spray coating method in 
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which dense coating layers can be produced with a high deposition rate. Deposition 
layers are produced by the mechanical locking mechanism, which is formed as a 
result of the impact of the powder particles sprayed from the nozzle at supersonic 
speeds on the substrate. It is defined as cold since the accelerated sprayed pow-
der particles are solid state due to the process temperature below powder melting 
temperature. Thanks to the important advantages it provides, this method can also 
be used in advanced manufacturing methods such as additive manufacturing and 
innovative methods such as repairing damaged parts. For this reason, it is defined 
in advanced manufacturing methods and can also be evaluated in the green applica-
tions class due to its environmental effects.

Chapter 3 is focused on the application of multi-criteria decision making 
(MCDM) techniques when is applied to conventional and non-conventional machin-
ing techniques. The use of MCDM methods is based on modeling and analysis of 
decision processes according to specific criteria. MCDM is preferred as an assist 
tool in determining the most appropriate performance conditions by reducing cost 
and time in manufacturing. This chapter discusses the different techniques VIKOR, 
COPRAS, MULTIMOORA, WASPAS, EVAMIX, OCRA and MABAC, which are 
still being developed and current studies on processing in the literature related to 
these techniques are presented in detail and comparatively. The VIKOR method 
is widely preferred in the literature in studies on machinability, COPRAS covers 
qualitative and quantitative features and allows the selection of alternatives among 
the results. MULTIMOORA is used for a ratio system in which the response of the 
alternative on a target is compared with a denominator representing all the alter-
natives of the target. WASPAS is a multi-response appropriate decision-making 
method. EVAMIX, which is among the decision-making analysis approach sys-
tems, reduces the selection time or decision-making process. OCRA is used to cal-
culate the performance of alternatives in performance and efficiency measurement 
and analysis problems. And for the MABAC method, it is used to determine the 
most suitable alternatives.

Chapter 4 discusses and presents the optimal WEDM process for machining of 
the spool bore, which is a critical component in EHSV. The dimension of spool bore 
must be precisely controlled in order to maintain the smooth functioning of the servo 
system. Therefore, there is required to have an optimized process input to the WEDM 
process for precise and controlled machining of spool bore. The study contains a 
detailed experimental investigation that was performed to obtain an optimal combi-
nation of process parameters for the WEDM of a spool bore for a type II EHSV. The 
spool bore is made by machining of stainless steel of grade 440C. Experiments were 
designed in accordance with Taguchi array. The significance of parameters affecting 
the quality characteristics is established using ANOVA. Grey-based Taguchi method 
is employed for multi-response optimization method.

Chapter 5 is concentrated on the study of electrical discharge machining 
(EDM), which is a precise machining technique where machining is done by a 
series of repetitive sparks between electrode and workpiece. Since the perfor-
mance of electrodes is important in EDM, it is necessary to understand the com-
plex wearing behavior of electrodes obtained during machining. In this study, it 
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was concluded that the wear of electrode is affected by a number of factors. By 
consequent, it is recommended to impose an appropriate control for the machin-
ing factors used in EDM. To understand that wear of copper electrode (tool wear 
ratio, TWR), the machining of AISI 1035 steel were used as case study. After the 
determination of significant EDM factors, affecting the TWR, an optimal set of 
factors that yield lower TWR was determined using the main effect plot and desir-
ability function approach.

Chapter 6 deals with additive manufacturing (AM) technologies such as fused 
deposition modeling (FDM). In this chapter, we have provided a study on the effect 
of PPs when using the FDM technique on mechanical properties, dimensional 
accuracy, surface roughness and total cost is investigated. Hence, an experimen-
tal method for AM of chopped glass reinforced polyamide (GRPA) and chopped 
Kevlar reinforced polyamide (KRPA) is presented. These PPs include extrusion 
temperature (ET), layer thickness (LT) and print speed (PS). In the conducted study, 
a detailed investigation of performance and quality of 3D printed polyamide com-
posites (with chopped glass fiber and Kevlar fiber reinforcement) was presented. The 
comparison of these composites with fabricated additively neat polyamide and ABS 
parts and those processed by injection molding was carried out. By consequent, 
the dimensional accuracy of both PAs was assessed and found to be influenced by 
extrusion temperature and layer thickness more than print speed and reinforcement. 
KRPA surface roughness was largely affected by process parameters more than 
GRPA. Total cost was found to be notably influenced by print speed, layer thickness 
and nature or reinforcement.

Chapter 7 discusses a full factorial design of experiment (DOE) for cone sup-
port, tree support and different cellular support structures manufactured from 
stainless steel 316L using selective laser melting for selected geometric control 
factors. Then digital microscopy is used, which enables to study of upper surface 
quality. The morphology of surface was further examined through cross section-
ing and revealing the deformation mechanisms too. Afterward, a removability 
evaluation of every sample from the platform was investigated. The purpose of 
this study was to compare the features of two distinct types of support structures 
(tree and cellular supports). Each support type was manufactured from 316L stain-
less steel as control material.

Chapter 8 is focused on the field of surface engineering and advanced manufac-
turing, carbon nanotubes (CNTs) which have been drawing industrial attention not 
only due to their unique structural, mechanical and electrical properties but also to 
their antimicrobial activity. The high antimicrobial activity of CNT-nanocomposites 
was reported against a broad spectrum of microorganisms and their potential for 
medical and water treatment applications was demonstrated. Also, the significant 
fouling resistance of these nanocomposites was proven at distinct levels, including 
in the development of marine AF or FR coatings, water treatment, and industrial 
processes such as filtration.

Chapter 9 focuses on the manufacturing of nanocomposite coating by introduc-
ing the development of a novel nanocomposite coating with ordered porous alumina 
(NPA) as a matrix embedded with aligned metal (Cu) nanorods. This was achieved 
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by optimally modifying the barrier layer without sacrificing the interfacial strength. 
Uniform coating has been achieved over a specific area. The coating is found to have 
good tribological properties of low friction and high wear resistance. Also, the use 
of pulse electrodeposition is a highly efficient and well-suited method for a metal 
filling into the pores.

Dr. Catalin Pruncu
Brunel University London 

Uxbridge UB8 3PH, UK

Dr. Jamal Zbitou
Laboratory (LABTIC) – ENSA of Tangier

University of Abdelmalek Essaâdi
Morocco
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2 Advanced Manufacturing Methods

1.1  INTRODUCTION

A path through the four industrial revolutions represents stages in the development 
of industrial systems from manual work toward smart manufacturing. The use of 
water and steam-powered mechanical manufacturing facilities is considered as the 
first industrial revolution. The next revolution was the discovery of electricity and 
assembly line production based on the division of labor. The third industrial revolu-
tion is the introduction of electronics and IT to production systems to enhance the 
automation of manufacturing. Recently, engineers have realized that manufacturing 
has been developed into a new era where products tend to control their manufactur-
ing processes, leading to the concept of “Industry 4.0”. The term Industry 4.0 has 
become increasingly pervasive in the context of industrial manufacturing, and it has 
been considered as the fourth industrial revolution (Henning1).

In Industry 4.0, by integrating advanced technologies like industrial internet of 
things (IIoT), Big Data, Cloud Computing, and artificial intelligent (AI), the manu-
facturing will become intelligent and independently perform complex tasks such 
as predicting, maintaining the machines, monitoring, and controlling the produc-
tion. It is now at the center of Industry 4.0, and it attracts a lot of interest from 
governments, enterprises, and researchers. The framework for implementing smart 
manufacturing of Industry 4.0 was proposed in Frank et al.2 An extensive review 
of technologies for smart manufacturing systems is recently conducted in Alcácer 
and Cruz-Machado.3

The IIoT refers to the use of internet of things (IoT) technologies to enhance 
manufacturing and industrial processes. Using the IIoT, the industrial manufactur-
ing process and industrial products (components, machines) are connected to the 
Internet; the underlying equipment resources are integrated, leading to the abilities 
of perception, interconnection, and data integration of the manufacturing systems. 
The application of the IIoT in smart manufacturing could lead to a decrease in pro-
duction costs by 10–30%, logistic costs by 10–30%, and quality management costs 
by 10–30% (Rojko4).

A vital characteristic of the IIoT is that the sensors are embedded in all the com-
ponents related to the manufacturing process. These sensors act as the “eyes” for 
collecting data from the supply, production, storage, distribution, and consumption 
of products. With the ever-accelerating advancement of IoT devices and other com-
munication and sensing devices and technologies, it is expected that the data gener-
ated from future smart manufacturing systems will grow exponentially, leading to 
the concept of Big Data (Qin5). The Big Data in smart manufacturing mainly encom-
passes real-time sensor data and manufacturing process data which have a large 

1.6	 A Case Study................................................................................................... 14
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1.6.3	 Experimental Results........................................................................... 15

1.7	 Conclusion....................................................................................................... 19
References.................................................................................................................20



3Smart Manufacturing with AI and Big Data

volume, multiple sources, and spare value. The applications of Big Data are rapidly 
developing in industrial supply chain analysis and optimization, product quality con-
trol, and active maintenance (Song et al.6; Xu et al.7).

The term “Big Data” does not simply refer to a huge amount of data but also 
the various kinds of collected data in all the stages. The massiveness, complexity, 
and heterogeneity of data streams require the advanced computing technologies, 
which are now performed efficiently thanks to the availability of AI. This is a set 
of algorithms related to the creation of machine intelligence that is able to perform 
tasks heretofore only performed by people (Fox8). It enables automatic processing 
of data toward highly complex feature abstraction instead of handcrafting the opti-
mum feature representation of data with domain knowledge. In the past, the com-
puter was programmed to perform a specific task. Now, the AI makes the computer 
intelligent with the ability to correctly interpret external data, learn from such 
data, and use those learnings to achieve specific goals and tasks through flexible 
adaptation (Kaplan and Haenlein9). The use of AI can revolutionize the indus-
trial manufacturing process with a large number of applications such as predictive 
maintenance, predictive quality analytics, automation, and insightful identification 
of engineering systems.

It brings countless advantages to Industry 4.0, involving optimizing all stages of the 
manufacturing process, reducing waste, and creating new smart products and services 
with high quality. The AI now plays the role of a “brain” for smart manufacturing.

Toward an intelligent manufacturing industry is a long-term and not straightfor-
ward process. It requires a deep insight into a multiplicity of advanced and modern 
technologies that are integrated into this process. This study aims to provide a survey 
of the key techniques that enable smart manufacturing, including IIoT, Big Data, and 
AI. Several important perspectives for these techniques in smart manufacturing will 
be discussed and suggested. Some obtained results in this chapter have already been 
discussed in Nguyen et al.10

The chapter is organized as follows: The IIoT-based background and techniques 
are presented in Section 1.2. In Section 1.3, we focus on the concept of Big Data 
in Industry 4.0 and the methods of Big Data analytics. The industrial applications 
of the AI algorithms are discussed in Section 1.4. Section 1.5 is devoted to several 
important perspectives for further research on the application of IIoT, Big Data, 
and AI in the smart manufacturing sector. A case study is given in Section 1.6. 
Section 1.7 provides some concluding remarks.

1.2  THE INDUSTRIAL INTERNET OF THINGS

The IIoT can be simply understood as the use of IoT technologies in specific industrial 
applications such as factories, manufacturing facilities, and warehouses. In practice, 
it is broadly similar to and interchangeable with Industry 4.0. More general and 
comprehensive definitions of the IIoT have been discussed in Boyes et al.11 Based on 
a large number of modern technologies such as cyber-physical systems (CPS), Cloud 
Computing, mobile technologies, machine-to-machine (M2M), advanced robot-
ics, IoT, radio frequency identification (RFID) technology, and cognitive comput-
ing, the IIoT incorporates machine learning algorithms and Big Data technologies, 
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harnessing the sensor data, M2M communication, and automation technologies that 
have existed in industrial settings for years (Saturno et al.12). As a result, the IIoT 
can create new business models by improving productivity, exploiting analytics for 
innovation, maximizing operational efficiency, optimizing business operations, and 
protecting systems. For example, according to a specific application of IIoT to the 
fashion industry provided in Shen et al.,13 an innovative RFID-embedded smart 
washing machine has been proposed to produce a large amount of real-time data 
associated with what color, textile, style, and brands of clothes the consumers are 
washing, and when and where they are washed. This real-time information, which 
reflects what consumers are wearing, enables fashion companies to derive optimal 
solutions in terms of consumer preference and use analytics to improve operations 
performance in design, manufacturing, and retailing. The advantages of IIoT in 
intelligence manufacturing and smart factory are discussed broadly in the literature, 
see, for example, Zhong et al.14 and Lu and Weng.15

The first essential basic platform for the IIoT is the IoT, which is a network of 
physical devices embedded with sensors, actuators, electronics, software, and 
network connectivity that enable these objects to connect, interact, and exchange 
data. The IoT is the bridge between the digital domain, involving a novel analytical 
approach, and the physical domain. Applications of the IoT can be seen in many 
areas such as consumer (smart home, elder care), commercial (medical and health-
care, transportation, building, and home automation), and infrastructure (metro-
politan scale deployments, energy management, environmental monitoring), and 
especially industry. Studies on IoT in the literature are abundant. Key technologies, 
applications, visions, and challenges of the IoT have been presented in Miorandi 
et al.16 and Gubbi et al.17 Five different categories of the solutions of IoT, including 
smart wearable, smart home, smart city, smart environment, and smart enterprise, 
have been discussed in a survey on the IoT marketplace from an industrial perspec-
tive conducted in Perera et al.18 Yang et al.19 provided a comprehensive review of the 
IoT for smart manufacturing. The authors outlined in their study the evolution of the 
Internet from computer networks to human networks to the latest era of smart and 
connected networks of manufacturing things. Recently, the arising of novel commu-
nication infrastructures is also the contribution to the IIoT. As the data generated by 
IIoT systems continues to increase exponentially, industrial companies face the chal-
lenge of transferring their critical communication infrastructure to enable digital and 
automated operations. New generation of networked, information-based technolo-
gies like 5th generation (5G) wireless mobile communication and low-power wide-
area (LPWA) networks are expected to provide the means to allow an all-connected 
world of humans and objects. Surveys of long-range wireless technologies for IoT 
applications can be seen in Sinha et al.20 Cheng et al.21 analyzed the crucial technolo-
gies and difficulties of the 5G-based IIoT.

Another state-of-the-art technology of the IIoT is the CPS, a new class of auto-
mated systems that enables the connection of the operations of physical objects with 
computing and communication infrastructures. The IoT can be referred to as the con-
nection of the CPS to the Internet (Jazdi22). A CPS consists of a control unit, which 
controls the sensors, actuators that are necessary to interact with the real processes, 
and a large number of sensors. It contains networked interactions that are designed 
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and developed with physical input and output, along with their cyber-twined services 
such as control algorithms and computational capacities (Zhong et al.14). The 5C 
architecture, i.e. smart connection, data-to-information conversion, cyber, cognition, 
and configuration, has been proposed in Lee et al.23 This 5C structure provides a 
step-by-step guideline to construct a CPS system from the data acquisition to value 
creation. The CPS is now considered as one of the most significant advances in 
the development of computer science, information, and communication technolo-
gies which have a great impact on the emergence of new technologies like robotic 
surgery, intelligent buildings, smart electric grid, and implanted medical devices 
(Monostori et al.24). A typical example of CPS is the smart vehicle, where various 
types of sensors enable to collect raw data during the vehicle’s operation, involving a 
driver’s operation, vehicle condition, driving route, and destination. Herterich et al.25 
investigated the influence of CPS on industrial services in manufacturing. Waschull 
et al.26 analyzed the impact of the technological capabilities provided by CPS on 
work design and they developed a detailed framework of the transformation toward 
CPS. A comprehensive survey of the CPS, involving various examples, several defin-
ing characteristics, design techniques, and its applications, has been introduced in 
Khaitan and McCalley.27 The development of advanced IoT and CPS technologies 
brings to the IIoT not only enormous advantages, but it also reveals the challenges 
related to security vulnerabilities. The network connection of the CPS caries pro-
cesses and exchanges a huge number of security-critical and privacy-sensitive data. 
The IIoT-based manufacturing systems are now one of the top industries targeted by 
a variety of attacks. Many security incidents affecting industrial control systems and 
critical infrastructure have been reported in Levy.28 The problem of protecting IIoT 
systems against cyberattacks is becoming increasingly important and indispensable 
in their design. A mathematical framework for attack detection and identification 
in CPS and a brief review of the studies related to the analysis of vulnerabilities of 
CPS to external attacks are presented in Pasqualetti et al.29 Sadeghi et al.30 presented 
an overview of security and privacy challenges as well as possible solutions for IIoT 
systems, including designing security architectures for CPS, verifying the integrity 
of CPS, and securing IoT device management.

1.3  BIG DATA FROM SENSORS AND IIoT DEVICES

As mentioned above, a large number of special sensors are used to collect data in 
smart manufacturing, in which devices are independent of each other. The sensors 
turn the physical conditions of an object into an electrical signal. These electrical 
signals are then transferred to a programmable logic controller for further oper-
ations. Other electronic devices like an RFID chip, which is an electromagnetic 
technology for transferring data to detect and track tags of objects in automatic 
identification, are also widely used (Khan et al.31). Moreover, each component has 
the capability of communicating and sharing data based on new network technolo-
gies, for instant, wireless sensor networks. The rapid development of modern tech-
nologies using IIoT makes the process of data acquisition and storage increasingly 
easy and convenient. As a result, data at different stages of a product’s life, rang-
ing from raw materials, machines’ operations, and facility logistics, are collected. 
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These various sources of sensors, machine log files, event streams from IoT devices, 
human activities, and industrial robotics promote the era of industrial Big Data. In 
the literature, the first efforts to define Big Data focused on enlisting its character-
istics, leading to “3V”, namely, Volume, Velocity, and Variety (McAfee et al.32). 
Volume refers to the size of data being collected from all the sources. Velocity 
informs the frequency of data acquisition; it is related to real-time data, data stream, 
operation data, remote, and control. The higher is the velocity, the higher is the 
volume. Variety describes the different types of data that may be handled, involv-
ing structured, semi-structured, and unstructured data. A variety of data directly 
affects their integrity: the more variety is in the data, the more errors it will contain. 
These characteristics have been extended by adding multiple features like Veracity 
(related to the unreliability or uncertainty of some data sources), Validity (the cor-
rectness and accuracy of data concerning the intended usage), Volatility (related to 
the retention policy of structured data), and Value (the desired outcome of Big Data 
processing) (Uddin et al.33). Other dimensions of Big Data like Vision, Validation, 
and Variability have also been recently mentioned in Alcácer and Cruz-Machado.3 
A general definition of Big Data based on a survey of existing definitions for this 
concept is given in De Mauro et al.34

The core feature of Big Data is that it requires to be analyzed, i.e. Big Data analyt-
ics, and without being analyzed, Big Data has no value. Big Data analytics refers to 
the process of collecting data, transferring data into centralized cloud data centers, 
preprocessing data, analyzing data, and visualizing data. Involving complex applica-
tions with elements such as information technology, mathematics, statistics, machine 
learning algorithms, and data mining techniques, Big Data analytics is the major 
contributor to enrich the intelligence of businesses. The use of Big Data analytics 
results in a 15–20% increase in return on investment for retailers (Perrey et al.35). 
In the literature, methods for data-driven anomaly detection for industrial Big Data 
have been studied in Martí et al.36 and Zhang et al.37 Xu et al.7 presented an advanced 
fault diagnostic method to handle collected industrial Big Data. Two applications 
of Big Data analytics in manufacturing were mentioned in Chen et al.,38 including 
active maintenance and product design optimization. Megahed and Jones-Farmer39 
provided several statistical perspectives on Big Data, in which the authors discussed 
many Big Data applications to highlight the opportunities and challenges for applied 
statisticians interested in surveillance and statistical process control. Challenges and 
opportunities for the implementation of Big Data analytics in the Industry 4.0 have 
been discussed in Khan et al.31

1.4  ARTIFICIAL INTELLIGENCE IN INDUSTRIAL APPLICATIONS

The key factor that makes smart manufacturing “smart” is artificial intelligence 
(AI). In the field of computer science, AI refers to the intelligence demonstrated by 
machines. It is a set of algorithms that enables a machine to perform complex tasks 
by perceiving the working environment and taking actions to maximize the possibil-
ity of successfully achieving the predetermined goals. The AI algorithms are able to 
learn from data; enhance themselves by learning new heuristics (Domingos40), and 
provide powerful tools to extract useful information and the connection or feature 
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from data that could not be analyzed effectively heretofore. Nowadays, the term 
“artificial intelligence” is ubiquitous and its applications have been witnessed in a 
large number of areas of everyday life. In industrial manufacturing, AI also pro-
vides a significant improvement in designing an automatic robot, making decisions, 
monitoring and scheduling the production process, predictive maintenance, and 
analytics. It can be said that the manufacturing and factories of Industry 4.0 cannot 
be “intelligent” or “smart” without AI. In the literature, an extensive review of the 
application of AI to industrial manufacturing was carried out in Meireles et al.41 
Other advantages of AI in smart manufacturing have been discussed in Frank et al.2 
Table 1.1 provides typical application scenarios of the AI algorithms in smart man-
ufacturing. In particular, Helu et al.42 and Teti et al.43 reviewed the machine learning 
techniques of neural networks and genetic algorithms for decision-making support 
systems. The advantages, challenges, and applications of typical techniques of 
machine learning like instance-based learning, Support Vector Machine, Random 
Forest, Bayesian Networks, and Artificial Neural Network have been illustrated in 
Wuest et al.44 in a wide range of industrial applications. A survey of the advanced 
use and development of machine learning in smart manufacturing has recently been 
given in Sharp et al.45

In smart manufacturing, the mechanical systems are closely linked to form con-
tinuous production lines. Failure due to degradation or an abnormal working envi-
ronment can lead to unexpected downtime and affect the productivity of the entire 
system. Two important applications of the AI algorithms can be used to deal with 
this problem, involving (1) diagnostic analytics for fault assessment and (2) predic-
tive analytics for defect prognostic (Wang et al.46). For the first application, the fault 
diagnostics of several electronic systems and electric drives using machine learning 
have been presented in Fenton et al.47 and Murphey et al.48 The strengths and weak-
nesses of the machine learning method for fault prognostic are discussed in Gao 
et al.49 A number of algorithms of deep learning have recently been investigated to 
overcome the limitations of traditional machine learning methods. A novel method 
for early fault detection of machine tools based on deep learning and dynamic identi-
fication has been proposed in Luo et al.50 The Convolutional Neural Network (CNN), 
the Deep Belief Network (DBN), and the Stacked Auto Encoder have been applied 
to several fault diagnostics such as bearing, gearbox, aircraft engine, reciprocating 

TABLE 1.1
The Application of AI Algorithms in Industrial 
Manufacturing

Application Situation Reference
Decision making support systems 42–43

Fault diagnosis 50–55

Predictive analytics 56–58

Advanced Robotics 59–65

Scheduling 67–72
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compressor, rolling-element bearing, wind generator, and wind turbine; see, for 
example, Chen et al.51; Janssens et al.52; Lu et al.53; Li et al.54; and Sun et al.55 The 
second application makes maintenance intelligent as it allows to predict the appro-
priate time for performing maintenance. The remaining useful life estimation of 
machinery using DBN and long short-term memory (LSTM) network are given in 
Deutsch et al.56 The deep learning algorithms such as the DBN and the Support 
Vector Regression have been proposed for predictive analytics in Malhi et al.57 and 
Wang et al.58 A comprehensive review of the application of deep learning algorithms 
for smart manufacturing has been conducted in Wang et al.46

Another algorithm of the AI which has surfaced as a method with a great impact 
on Industry 4.0 is reinforcement learning (RL). It is an area of machine learning con-
cerned with the problem of a software agent that tries to develop a behavioral strat-
egy in order to maximize some notion of cumulative reward as a result of taking the 
right actions in any state of its environment. An RL agent interacts with its environ-
ment in discrete time steps, and basic reinforcement is modeled as a Markov decision 
process. The major contribution of RL to smart manufacturing is perhaps in robot-
ics, a core feature of Industry 4.0. Kober et al.59 conducted a survey about the use 
of the RL algorithm in operating industrial robots for studies before 2013. Studies 
in Levine et al.60 and Mnih et al.61 used deep RL to tackle a wide variety of motion 
planning for industrial robots directly from sensory input. These studies are then 
improved to avoid the computational effort of the learning problem in Meyes et al.62 
Deep RL with a smooth policy update is also applied to robotic cloth manipulation 
in Tsurumine et al.63 Pane et al.64 introduced two RL-based compensation meth-
ods for robot manipulators and then evaluated the proposed algorithms on a 6-DoF 
industrial robotic manipulator arm to follow different kinds of reference paths or 
to track a trajectory on a three-dimensional (3D) surface. The problem of advanced 
planning for autonomous vehicles in traffic has been solved by using RL and deep 
inverse RL in You et al.65 Moreover, the application of RL in smart manufacturing is 
not only limited to robotics. The performance, stability, and deep approximators of 
RL for control have been reviewed in Busoniu et al.66 The authors explained how to 
approximate representations of the solution make RL feasible for problems with con-
tinuous states and control actions. The RL algorithms also contribute significantly 
to scheduling, which is the process of arranging, controlling, and optimizing work 
and workloads in a production process or manufacturing process. A large number 
of research on the problem of scheduling have been conducted in the literature, for 
example, Xie et al.67; Fu et al.68; and Leusin et al.69

In smart manufacturing, since the CPS is integrated with the production, logistics, 
and services, it is crucial to consider real-time scheduling. According to a discussion 
in Shiue et al.,70 there are two main approaches in real-time scheduling from previ-
ous studies, involving the multi-pass simulation and machine learning approaches (e.g. 
artificial neural networks, decision tree learning, and support vector machine). The 
authors have pointed out several drawbacks of these two methods and then proposed 
an RL-based model for real-time scheduling for a smart factory. The idea of using 
deep RL for global production scheduling is also presented in Waschneck et al.71 Other 
applications of AI in real scheduling problems can be seen in Costantino et al.72
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1.5 � PERSPECTIVES FOR IIoT, BIG DATA, AND AI  
IN THE SMART MANUFACTURING

The previous sections present the concepts, applications, and current research of 
the IIoT, Big Data, and AI for smart manufacturing in the Industry 4.0 era. In this 
section, we discuss some opportunities and further research perspectives on these 
important factors in industrial intelligent manufacturing.

1.5.1  Monitoring Production Process

The monitoring production process is an important problem in smart manufactur-
ing. Recently, machine learning algorithms have been proposed within Statistical 
Process Monitoring (SPM), which has been shown to effectively detect a variety 
of abnormal conditions. This approach converts the monitoring problem to an out-
lier detection problem or a supervised classification problem, which classifies future 
observations as either in- or out-of-control. When a huge amount of data are col-
lected, it makes sense to use SPM techniques to analyze them in order to get accurate 
information about special causes of variation. The idea of using One-Class Support 
Vector Machines for detecting abnormality in Tran et al.73 can be developed for fur-
ther application. The technology significantly reduces the time taken for testing and 
designing new prototypes and the duration for redesigning the existing models. In 
addition, with the rapid development of IIoT technologies, data are measured with 
a high frequency, high dimension, and a large variety which should not be treated 
straightforwardly. Therefore, it is necessary to develop new methods to be adapted to 
monitor these Big Data. The Topological Data Analysis (TDA) very recently emerged 
as a powerful tool to extract insights from high-dimensional, incomplete, and noisy 
data of varying types such as images, 3D scans, graphs, point clouds, and meshes. 
The core idea of TDA is to find the shape, the underlying structure of shapes, or 
relevant low-dimensional features of high-dimensional data. As a result, the problem 
of treating the complex structure and massive data is brought to a simpler problem. 
Among some recent research on TDA, the first successful application of TDA in the 
manufacturing systems domain is presented in Guo and Banerjee.74 In this study, the 
authors apply the Mapper algorithm, one of the tools of the TDA field, for predic-
tive analysis of a chemical manufacturing process data set for yield prediction and a 
semiconductor etch process data set for fault detection. In general, there is still little 
research on this promising approach in the literature and further research needs to be 
conducted to discover the possible numerous applications to smart manufacturing. 
For example, deep learning algorithms such as LSTM and CNN for topological data 
should be developed to monitor smart manufacturing processes.

1.5.2  Product Design

One of the indispensable requirements for enterprises is to create new products to 
meet the increasingly specialized demands of customers. Making the product devel-
opment process, which drives new products from the idea of production to the final 
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product that is launched on the market, with less cost and fewer mistakes, is the key to 
the competitiveness of a manufacturing company. The new products need to have the 
ability to update based on customers’ preferences. For designers, this means think-
ing ahead to feature consumers in order to add them to the new products. This pro-
cess requires to continuously update and predict the user’s preference, usage context, 
product features, as well as their interrelations. The traditional approaches to collect 
information about users’ experiences such as questionnaires, surveys, and self-reports 
with predefined questions and prompts are recently replaced by the social media 
platform-based methods and other advanced technologies of IIoT. On the one hand, 
it helps customers easier to make choices more easily. On the other hand, it collects 
user-generated reviews. This big customer-generated data require AI algorithms to be 
analyzed to deeply understand the users’ experience and extract them to assist product 
design. The AI algorithms ensure the active integration of customers’ knowledge into 
new product development, improving quality as well as reducing product develop-
ment time and costs. A survey on AI and expert systems application in new product 
development was conducted early in Rao et al.75 Shen et al.13 presented a specific 
example of color trend forecasting using an extreme learning machine forecasting 
model. This forecast of color trends is an important piece of advice for designers to 
design new fashion models: the new prototype will more likely meet the customers’ 
demand. A comprehensive overview of the methods to exploit the user experience 
from the online customer for product design is conducted in Yang et al.76 The authors 
also design a semi-supervised learning approach to classify the candidate segments. 
Other applications of machine learning methods in innovative product development 
can be seen in Zhan et al.77 In addition to meeting the market demand, product recov-
ery is also an important factor in the design of the product, especially for end-of-life 
products. The IIoT is a very useful technology to perform this task. The sensors and 
RFID embedded tags allow these products to be recovered via disassembly to meet 
the components’ demands, remanufactured to meet the product demands, or recycled 
to meet the demands of the materials. The study of evaluating different designs of a 
product for the ease of disassembly and remanufacturing based on IIoT presented in 
Joshi and Gupta78 can be developed for further applications.

1.5.3  Product Lifecycle Management

Product lifecycle management (PLM) refers to the succession of strategies for 
managing all data related to the design, production, support, and ultimate disposal 
of manufactured goods. From this point of view, monitoring the production process 
and product design could be considered as the components of PLM. The PLM brings 
tremendous benefits to manufacturing industries for improving product quality, reduc-
ing prototyping costs, identifying potential sales opportunities and revenue contribu-
tions, maintaining operational serviceability, and reducing environmental impacts 
at end-of-life. A study in Venkatasubramanian79 reported that the petrochemical 
industry in the U.S. incurs approximately $20 billion in losses due to poor manage-
ment of equipment and processes, which lead to such abnormal situations. Similarly, 
U.S. manufacturers spend over $7 billion annually recalling and renewing over 2000 
defective products. All of these costs are associated with PLM. A key factor in PLM 
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is prognostic and diagnostic monitoring. By comparing various existing approaches 
for prognostic and diagnostic in PLM, Venkat Venkatasubramanian79 concluded that 
no traditional single method is adequate to handle all the requirements for a desir-
able diagnostic system. The application of the framework of the intelligent system 
for this complex problem is then suggested. In this sense, the use of IIoT, Big Data, 
and AI is a basic platform to design such intelligent PLM systems. The IIoT-based 
PLM system will be the first place where all product information from marketing 
and design comes together while the AI algorithms process this information and 
output them in a form suitable for production and support. As an example, recently, 
Karasev and Sukhanov80 designed a PLM system using multi-agent systems models. 
In general, developing AI-based PLM systems in smart manufacturing is attractive 
for future research.

1.5.4  Predictive Maintenance

Another application of IIoT, Big Data, and AI in intelligent manufacturing is predic-
tive maintenance or just-in-time maintenance. The benefits and advantages to be 
achieved by the development of comprehensive predictive maintenance are shown in 
Ferreiro et al.81 Currently, the maintenance is regularly scheduled at fixed intervals, 
leading to some limitations. It could be a large amount of money in lost productiv-
ity while the process must be halted to fix the failure if a machine breaks before the 
maintenance. Otherwise, time and another amount of money would be wasted if 
the machine does not need any maintenance at the moment. Moreover, unnecessary 
maintenance operations increase the failure rate because of installed defective items 
or human negligence. Advanced IIoT technologies allow engineering to carry out 
predictive maintenance. In particular, the sensors are applied to a different piece of 
equipment to continuously update the individual equipment health. The AI tools can 
process this gathered data to monitor and forecast overloads, machinery failures, 
or related problems based on learning algorithms. The appropriate time that the 
machines need to be maintained is determined exactly. Online learning, transfer 
learning, and domain adaption are the trends for predictive maintenance and prog-
nosis in Industry 4.0 (Diez-Olivan et al.82).

1.5.5 C ybersecurity

The exponential growth of IIoT also brings a significant challenge in designing and 
implementing smart factories related to the cybersecurity problem. It would result 
in severe and heavy consequences if hackers could gain access to control network 
or malware and worms could invade and destroy the operating system of a fac-
tory. Cybersecurity is now a major concern in many types of research. Twenty-four 
risk assessment methods developed for or applied in the context of a Supervisory 
Control and Data Acquisition (SCADA) system have been selected and examined in 
Cherdantseva et al.83 Tuptuk and Hailes84 provided a large number of real reported 
attacks against smart manufacturing systems as well as existing active and passive 
countermeasures with their limitations. In general, many traditional existing cyber-
security solutions have become obsolete (Mahmood and Afzal85). Machine learning 
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and deep learning algorithms for regression, classification, and clustering are pow-
erful tools to detect and identify different classes of network attacks. For example, 
the method for network intrusion detection based on nested one-class support vector 
machines presented in Nguyen et al.,86 the method for anomaly detection in time 
series based on LSTM networks presented in Bontemps et al.87 could be applied and 
developed for further applying to cybersecurity in intelligent manufacturing.

1.5.6  Manufacturing Optimization

Optimizing the production process is a key mission in smart manufacturing. It could 
be an action, a process, or a methodology to make operations related to the manufac-
turing process as good, functional, and effective as possible. This is a highly com-
plex task where the best combination of a large number of controllable parameters 
must be found to achieve a predetermined goal. The IIoT and AI platform enable 
the smart factory to gather, store, and process data related to products from raw 
materials, production, and use process to customer feedback. The features extracted 
and the insight from these data and the AI optimization algorithms are extremely 
necessary to reach optimality in the manufacturing process. By refining this process 
and employing programs that can upgrade existing systems, track and report errors, 
and allow for experiments with design, the AI enables the smart factory to establish 
robust systems, which can maximize the yield in a shorter time and at reduced costs. 
The RL algorithm is applied to optimize the inventory in Oroojlooyjadid et al.88 
Combined with simulation techniques such as multi-agent modeling, the AI can pro-
vide a decision support system for supplier selection and production planning based 
on real-time data (Waschneck et al.71). The AI algorithms also can predict long-term 
production demands and transform them into daily production orders, considering 
last-minute orders and operations’ restrictions (Frank et al.2). In general, the question 
of how to optimize each stage as well as the whole of the manufacturing process is 
still a major concern in designing smart manufacturing.

1.5.7 V irtual Reality in a Smart Manufacturing

Virtual Reality (VR) can be considered an artificial environment created by a mix-
ture of interactive hardware and software to present users with realistic 3D images as 
a real environment in which she/he may interact within a seemingly real or physical 
way. In the past, the application of VR in industrial manufacturing could only be 
seen in Robotics, where VR technology has been used to control robots in telepres-
ence and telerobotic systems. Recently, the rapid development of AI algorithms has 
transformed the use of VR in intelligent manufacturing. VR technology allows us to 
design and test virtual prototypes without the necessity to build physical prototypes. 
It is applied to support factory layout planning in several industries such as aerospace, 
trucks, snus, and tobacco (Gong et al.89) and maintenance in aeronautics (Ceruti 
et al.90). Advances in VR technology present a new opportunity that can provide 
the implementation of complex engineering theory from industrial real-life practice 
in a virtual 3D model (Ma et al.91). The reasons why VR can be a powerful tool for 
applications in smart manufacturing have been discussed in Hamid et al.,92 where the 
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authors pointed out three specific applications of VR in industrial manufacturing, 
including Design (design and prototyping), Manufacturing Processes (machining, 
assembly, and inspection), and Operation Management (planning, simulation, and 
training). A review of the studies related to virtual manufacturing systems can be 
seen in Dobrescu et al.93 Although the AI algorithms (machine learning and deep 
learning) have now made significant advances in VR for hand and eye-tracking 
gestures, natural language processing, detailed environmental mapping, VR can 
better simulate an environment by replicating one that is already existing. They can 
use external structure sensors with an AI system to create a mixed reality experience 
for their users and incorporate voice commands into training simulations. It can 
be said that there are still many promising applications of VR technology that can be 
developed for the application of smart manufacturing.

1.5.8  Machine-to-Machine Communication

As a vital part of the use of IIoT in smart manufacturing, a M2M communication 
technology represents technologies that allow two or more devices to exchange 
information and data with each other. That is, the communication between machines 
is autonomous without human intervention. In fact, the applications of this technol-
ogy span across various areas such as healthcare, remote monitoring, security, and 
city automation. In manufacturing, digital control systems and smart sensors can 
maximize operational efficiency, safety, and reliability. A comprehensive survey of 
opportunities for M2M communication is conducted by Amodu and Othman.94 The 
M2M technology is also the basic technical background for a large number of appli-
cations in Industry 4.0 like robotics and automation. Obviously, the recent develop-
ment of IIoT technologies and AI algorithms can significantly enhance the use of 
M2M in smart manufacturing.

1.5.9  Wearable Technology and Smart Manufacturing

A promising technology emerged in recent times that benefiting smart manufac-
turing is wearable technology. It describes electronics and computers that are inte-
grated into clothing and other accessories that can be worn comfortably on the body. 
In practice, one may have seen the applications of this technology in everyday life 
such as fitness trackers, continuous health monitoring, smart clothes, and contactless 
payment solutions. In the literature, a large number of studies have been devoted 
to the development of smart wearable devices based on the IoT, Big Data, and AI 
techniques (Maman et al.95,96; Nguyen et al.97). In the field of manufacturing, the 
use of smart wearable devices can create great benefits. Firstly, it helps to improve 
productivity and efficiency in manufacturing. For instance, the wearable devices can 
be integrated with voice functions to become hands-free instructions and commu-
nication devices. Some specific industries like oil, gas, and automotive industries 
often have complicated instructions. With smart wearable devices, workers can stay 
focused on their tasks, obtain additional information, or deliver remote commands 
(Cavuoto et al.98). Secondly, it enhances safety in the manufacturing process, espe-
cially in high-tech intelligent manufacturing. This technology can create a safer 
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working environment for workers by monitoring ambient conditions and alarming 
potential accidents; or it can allow workers to perform more accurate operations in 
the manufacturing process, leading to better products. In addition, it also increases 
the authentication and security planning. As maintaining proper security protocols 
and authenticate employees is mandatory in some factories or processes, wearable 
devices can take the form of authentication devices that restrict access to a facil-
ity. Due to promising applications of wearable technology in assisting smart manu-
facturing, some studies related to the topic have been introduced in the literature. 
Roda-Sanchez et al.99 introduced OperaBLE, an IoT-based Wearable to improve effi-
ciency and smart worker care services in Industry 4.0. The role of wearable devices 
in meeting the needs of cloud manufacturing was discussed in Hao and Helo.100 
Among smart wearable devices, smart glasses and smartwatches are the two best-
known ones. A state of the art of wearable devices and the corresponding industrial 
applications can be seen in Aleksy et al.101 In general, the rapid advances in the 
IIoT technique and AI algorithms can benefit wearable technology, enabling further 
applications in smart manufacturing.

1.6  A CASE STUDY

In this section, we present an application of AI algorithms to the remaining useful 
lifetime (RUL) prognostic. In prognostics and health management, the RUL represents 
the amount of time left before equipment is considered to not perform its operation. 
An accurate prognostic of the RUL plays a very important role in any manufactur-
ing process: it enables the manufacturers to assess accurately an equipment’s health 
status. As a result, they will have better plan logistics and minimize the costs involved 
by timely conducting maintenance activities. Due to its importance, a large number of 
studies has been devoted to this problem. Especially, the recent advancements of IIoT 
techniques and AI algorithms have benefited to the RUL prognostic as the obtained 
results have become increasingly accurate. Following this direction, we suggest a 
combination of the Kalman filter, the CNN, and the LSTM algorithms to create a 
novel model for the RUL based on the C-MAPSS datasets.

1.6.1 C -MAPSS Datasets

The Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) datasets 
were generated with the C-MAPSS simulator, a tool for the simulation of realistic 
large commercial turbofan engine data. These datasets are composed of four distinct 
datasets (FD001, FD002, FD003, and FD004), containing information from differ-
ent aircraft gas turbine engines. Each dataset is further divided into training and test 
sets of multiple multivariate time series. The training set is with run-to-failure infor-
mation and the testing is with information terminating before a failure is observed. 
The data provided are from a high-fidelity system-level engine simulation that is 
designed to simulate fault engine degradation over several flights. The C-MAPSS 
datasets are well-known and they are widely used for several studies with differ-
ent purposes in the literature. More details of the datasets can be seen in Costa and 
Kaymak102; the main information of the datasets is reproduced in Table 1.2.
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1.6.2 �T he Proposed AI-Based Method for RUL 
with the C-MAPSS Datasets

The structure of our proposed model is shown in Figure 1.1. At the first stage, a 
Kalman filter is used as a noise filtering to account for uncertainty from raw unla-
beled input data of the C-MAPSS datasets since they are contaminated with sensor 
noise and lack of specific information on the effects of operational conditions. Then, 
an LSTM layer with 100 neurons in total is added in the second stage to reveal hid-
den information and learn long-term dependencies in sequential data with multiple 
operating and fault conditions. Following this LSTM is the CNN layer, which is used 
to extract local features. It contains a 1D convolution layer, a 1D Maxpooling layer 
and it employs rectified linear units (ReLU) to calculate the feature maps. Another 
LSTM layer with 50 neurons is included in the third stage for the extraction of long-
range dependencies features. This LSTM layer is to enhance the efficiency of the 
proposed method. The ability of the LSTM to learn more patterns in data over long 
sequences makes them suitable for multivariate time series forecasting. In the final 
stage, there is a time distributed fully connected output layer to handle error calcula-
tions and perform RUL predictions. To keep the transparency of the chapter, we do 
not present the detail of each algorithm here, involving the Kalman filter, the CNN 
algorithm, and the LSTM algorithm. In the literature, references for these algorithms 
are abundant. Readers can refer to Harvey103 and Goodfellow et al.104 for a deeper 
understanding of these algorithms.

1.6.3 E xperimental Results

In the C-MAPSS datasets, engines are supposed to start in good condition and 
they begin to degrade at some points during the time series. In the training sets, 
the degradation increases in magnitude until failure, while in the test sets, it some-
times ends before failures. That means in the test sets, the last time step for each 
engine provides information on the true RUL targets. Thus, the main objective is 

TABLE 1.2
The C-MAPSS Datasets

Dataset FD001 FD002 FD003 FD004
No. of training engines 100 260 100 249

No. of testing engines 100 259 100 248

Operating conditions 1 6 1 6

Fault modes 1 1 2 2

FIGURE 1.1  A graphical architecture of the proposed model.
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now to predict the correct RUL value for each engine in the test sets. We apply 
our proposed method for the RUL prediction based on the first three datasets in 
the C-MAPSS datasets, i.e. FD001, FD002, and FD003. The fourth dataset, i.e. 
FD004, is passed to avoid a too lengthy chapter. The predicted RUL on the first 
datasets and the corresponding line plot of train loss and validation loss from the 
proposed model during training are shown in Figures 1.2 and 1.3. From Figure 1.3, 
we can see that the model has comparable performance on both train and validation 

FIGURE 1.2  The true RUL and the predicted RUL by the proposed approach on the 
FD001 dataset.

FIGURE 1.3  Line plot of train and validation loss from the proposed model during training 
on the FD001 dataset.
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datasets (labeled test), as the two lines are very close after a few epochs. This is also 
the case for the third dataset, FD003, as shown in Figures 1.4 and 1.5. For FD002 
datasets, the obtained results are presented in Figures 1.6 and 1.7, where its line plot 
of train and validation shows that the proposed method is less effective in this data-
set compared to the first and the third ones. In addition, for all three datasets, the 
predicted RUL matches very well with the true RUL, indicating the effectiveness of 
RUL prediction of the proposed method.

FIGURE 1.4  The true RUL and the predicted RUL by the proposed approach on the 
FD003 dataset.

FIGURE 1.5  Line plot of train and validation loss from the proposed model during training 
on the FD003 dataset
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We also compared the performance of the proposed model and four very recent mod-
els available in the literature, using the root mean square error (RMSE). The RMSE 
is defined by the following formula

	
∑=
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,
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(1.1)

FIGURE 1.6  The true RUL and the predicted RUL by the proposed approach on the 
FD002 dataset.

FIGURE 1.7  Line plot of train and validation loss from the proposed model during training 
on the FD002 dataset.



19Smart Manufacturing with AI and Big Data

where n is the total number of true RUL targets in the test set and di = RULpredicted −  
RULtrue.

As discussed in Xia et al.,105 the C-MAPSS FD001 dataset has been extensively 
used to verify the model in many studies. The authors also summarized the results 
of start-of-the-art RUL prediction models and stated that their proposed method 
achieved the best performance with the smallest RMSE equal to 12.61. This result 
is similar to the one obtained from the model in Ellefsen et al.106 (with an RSEM = 
12.56) and better than the one from Chen et al.107 (with an RSEM = 14.53) and Deng 
et al.108 (with an RSEM = 15.8). Compared to these models, our proposed method 
finds a significantly better result with an RSEM = 9.81. Our proposed method also 
leads to the smallest RSEM = 15.56 for the FD002 dataset. Meanwhile, the semi-
supervised setup in Ellefsen et al.106 achieved slightly higher RMSE prediction accu-
racy on the FD003 dataset. The compared results are presented in Table 1.3, where 
the best accuracies are in bold. From this result, we can say that our proposed model 
is a promising approach to achieve better accuracy in RUL prediction.

1.7  CONCLUSION

We have provided in this chapter a survey on enabling smart manufacturing with 
AI, IIoT, and Big Data. We have also discussed several perspectives and opportuni-
ties for the promising application of these key components in problems related to 
smart manufacturing. In general, the wide use of electronic sensing devices, wire-
less sensor networks, and other advanced technologies in the IIoT makes the process 
of collecting, transforming, and storing data from all stages of the manufacturing 
process easier and more convenient, promoting the era of big manufacturing data. 
Meanwhile, AI algorithms are used as powerful analytic approaches for insight into 
these data. The extracting insightful information and analyzing from big manu-
facturing data bring numerous benefits such as optimizing the production process, 
enhancing product quality, reducing cost, and making the manufacturing “smart”. 
Finally, we have presented a case study in RUL prognostic where we have suggested 
an AI-based model achieve better accuracy of RUL prediction compared to other 
models existing in the literature. Despite a large number of researchers contributing 
to the application of these technologies to intelligent manufacturing, there are still 

TABLE 1.3
RMSE Comparison with the Literature on the C-MAPSS Datasets

AI Approach & Refs. FD001 FD002 FD003
Attention-based LSTM107 14.53

MTW-BLSTM ensemble105 12.61

LSTM- FW-CatBoost108 15.8 21.4 16.0

Semi-supervised RBM-LSTM-FNN106 12.56 22.73 12.10
Proposed method 9.81 15.56 13.05
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many challenges for further research. No doubt that the new advanced inventions 
in IIoT, Big Data, and AI will make a decisive contribution to the development of 
Industry 4.0.
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2.1  INTRODUCTION

Material deposition via the cold spray (CS) method is a relatively innovative method. 
It was developed at the Russian Academy of Sciences in the 1980s and patented in 
the United States and Europe in 1994 and 1995. However, developments progressed 
slowly until 2007. With the development and utilization of high-pressure equipment, 
CS technology also takes its place in the literature with names such as supersonic 
particle deposition and gas dynamic cold spraying. Not only is frequently used in 
coating applications but it is also used in the repair of damages in metallic and 
composite materials in various industrial areas including the production of additive 
manufacturing parts. Studies on the CS method have been increasing in recent years 
(Champagne and Helfritch 2014; Shushpanov 1994; Widener et al. 2018). The mate-
rial properties that cannot be obtained by using traditional thermal spray methods 
can be easily achieved by the CS method. The damaged mechanical parts can be 
repaired without exposing the melting temperature of metallic powder. Thus, unde-
sirable oxidation, cracks, residual stress, and inclusions are prevented (Gärtner et al. 
2006). CS technology could be considered in the “Green Applications” grade thanks 
to the recovery of the part and time-saving in the industry for high part costs. In 
addition, CS technology is also used as an advanced manufacturing method such 
as additive manufacturing due to includes the advantages of additive manufacturing 
methods. For this reason, it can be evaluated as “Green Applications with Advanced 
Manufacturing Method” grade, where it provides repair, additive manufacturing, 
and production of anti-pathogenic materials.

CS systems are used either large stationary systems or small portable systems in 
many research institutions in including Europe, Asia, and America around the world. 
CS systems process by accelerating particles aerodynamically and hitting the sub-
strate surface at high speed (Champagne and Helfritch 2016). The main components 
of the CS system are the supersonic nozzle, the powder feed unit, and the gas heating 
systems. High-pressure He, N2, or air is used as powder carrier gas. At temperatures 
below the powder melting temperature, it is sprayed from a supersonic nozzle to the 
substrate at high speed (Ashokkumar et al. 2021).

Recently, the CS repair method has been making great progress thanks to regenera-
tion and recovery applications. These developments provide enormous benefits in the 
industrial sector. This method, which supports environmental development, is evalu-
ated in the “green techniques and methods” grade. Apart from material recycling, it 
comes to the forefront as an alternative way of renewing and making it reliable in the 
product life cycle. Considering the entire production process of the product, it is clear 
that this method saves on raw material and energy consumption. But more importantly, 
it eliminates the problems such as delay time, a stock shortage, and economic limita-
tions that occur during the replacement of the damaged part. For these reasons, the 
CS repair method is economically satisfactory (Raoelison et al. 2017). The CS process 
provides a clean production environment without burning fossil fuels. Deposition on 
the substrate material is formed by the impact of low-temperature metal powder par-
ticles on the surface at high speed (Ashokkumar et al. 2021).

The main difference of CS technology from other methods is that it uses kinetic 
energy instead of thermal energy to deposit the sprayed particles. The sprayed 
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particles are below the melting temperature, unlike other methods. For this reason, 
this method is called cold. CS technology has grown rapidly in recent years in the 
field of coating, repair, and additive manufacturing applications, especially in the 
aviation and automobile sectors due to its significant advantages (Yu et al. 2021).

This section describes green applications and advanced manufacturing methods 
that can be achieved by CS. Particularly focused on repair, additive manufacturing, 
and anti-pathogenic applications. Also, experimental, existing applications and 
innovative approaches that may lead to new applications are examined.

2.2  COLD SPRAY TECHNOLOGY

The CS process is a solid-state material deposition method. Micron-sized powders 
are sprayed onto a substrate at high speeds, resulting in an interaction between 
the particles and the surface. As a result of severe plastic deformation, the powder 
material is deposited on the surface. Acceleration of particles is achieved by the 
expansion of a pressurized and heated gas at the nozzle. The particles remain solid 
throughout the process. Due to this event, the process is called CS. Figure 2.1 shows 
the schematic representation of the material deposition technology by CS.

In this process, metallic powder particles are injected into a Laval-type nozzle, 
where they are accelerated to high velocities by a supersonic gas stream. The gas is 
heated, accelerates to sonic velocity in the throat region of the nozzle, and then the 
flow becomes supersonic as it expands in the separation section of the nozzle (Mach 
number ranges from 2 to 4). The gas used can be He, air, N2, and a mixture of these. 
N2 is one of the most preferred process gases because it does not cause oxidation 
and is relatively cheap. In the process, the reached maximum temperature of the gas 
is typically 700°C, with a pressure peak of 3.5 MPa. The material deposition rate 
varies between 300 and 1200 m/s. If the used gas is air, the speed can increase to 
600 m/s. The powder sizes used vary between 1 and 50 μm. When the accelerated 
particles hit the layer, they transform their kinetic energy into mechanical energy 
which causes plastic deformation and accumulation on the surface (Davis 2004; 
Zhao et al. 2006).

The sprayed particles remain solid throughout the deposition process compared 
to conventional thermal sputtering techniques and expose high plastic deformation 
when they hit the surface. In this way, kinetic energy is used instead of thermal 
energy for deposition. Therefore, compared to conventional thermal spraying 
methods, oxidation is greatly reduced and phase transformation is not observed, and 
thermal stresses are greatly reduced (Ashokkumar et al. 2021).

FIGURE 2.1  Schematic representation of CS technology.
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Two different joint mechanisms occur in CS deposition processes. The first mech-
anism is the formation of the first layer by the powders sprayed on the surface. The 
formation of the first layer is related to the adhesion strength of the coating to the 
substrate surface. With the preliminary surface preparation processes, the surface 
can be made rough and the deposition efficiency can be increased. The second mech-
anism is the mechanical bonding of sprayed powders to each other. Due to the forma-
tion of more suitable layers at this stage, the thickness of the coating layer gradually 
increases. When sprayed powders hit the surface at high speed, they expose severe 
plastic deformation. This results in mechanical interlocking, causing the morphol-
ogy of the coating powder to differ in size and shape of the particles embedded in 
the coating layer (Kılıçay 2020).

There are two different CS technology systems according to the operating gas 
pressure. These are low-pressure cold spray (LPCS, up to 9 bar) and high-pressure 
cold spray (HPCS, up to 40 Bar) systems. Although the main difference between 
these two systems is pressure, there are also differences in their functional principles 
in the inclusion of powders in the system.

2.2.1  Low-Pressure Cold Spray Process

As seen in Figure 2.2, in LPCS systems, powders enter the supersonic nozzle from a 
separate section. It is designed as a smaller and portable system as it does not require a 
high-pressure powder feeding system. These systems can be robot-controlled or man-
ually controlled. Particle velocities are smaller than high-pressure systems. Typical 
particle velocities are limited to between 500 and 800 m/s. The sprayed powders 
must exceed the critical velocity value required for surface adhesion. For this reason, 
LPCS can be used in the application of mostly low-density materials. The gases used 
for particle accelerators are air, N2, He, or mixtures thereof. Although helium gas 
provides the highest particle velocity, it is quite expensive compared to other gases. 
In cases where the sprayed particles are different sizes, large particles may not reach 
the critical velocity value. Therefore, larger and slower particles hit the substrate and 
bounce back from the surface. This situation deteriorates deposition efficiency. The 
deposition efficiency is defined as the ratio of the powder deposited on the substrate 
to the mass of the sprayed powder. The deposition efficiency in LPCS varies over a 
wide range from 10% to 95%. Powder splashed from the surface can be collected and 
reprocessed (Champagne and Helfritch 2016; Moridi et al. 2014).

FIGURE 2.2  Schematic of the LPCS process.
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The major advantage of LPCS is the relatively low equipment cost. The portability 
of systems using compressed air allows them to be used in any environment. At the 
same time, unlike a HPCS system, it can be processed with compressed air which 
provides very low operating costs. Since particle velocities are lower in LPCS than 
in HPCS, the stored kinetic energy of the particles is lower. This situation causes 
the critical speed not to be exceeded, reducing the deposition efficiency. Therefore, 
particle sizes, morphology, and density of the sprayed powders are more critical in 
LPCS. The LPCS are more suitable for light and ductile materials, as the deposition 
efficiency depends on the critical velocity and plastic deformation of the particles 
that hit the surface (Cavaliere 2018).

2.2.2 H igh-Pressure Cold Spray Process

In HPCS systems, particles enter the supersonic nozzle with high-pressure gas. 
A schematic representation of the HPCS is given in Figure 2.3. In this way, particle 
velocities in HPCS reach speeds of approximately 800 to 1400 m/s. HPCS makes 
feasible high-density sprayed particles. N2 or He gas is preferred as the pressurized 
gas. Thanks to its high particle velocity, HPCS creates a less porous microstructure 
than LPCS. In HPCS, a higher pressure powder feed system is required for a mixture 
of powder. This system increases the cost and causes it to be a larger built-up area. 
Although the investment and operating cost of the HPCS is high, it can be applied 
to a wider material group and obtain higher quality deposition layers. Also, it can 
operate more efficiently due to the high powder feed rate (Cavaliere 2018).

2.2.3 �C omparison of Cold Spray Technology 
and Thermal Spray Technology

The CS method is similar to thermal spray methods in many ways. Pressurized 
gas is heated to 300–800°C with the help of electrical energy and passes through 
the converging-diverging nozzle to reach supersonic sonic velocity. Unlike thermal 
spray methods, the reason for heating the gas is not to melt the powder but to 
increase the velocity of the gas. Gas passing through the nozzle expands and cools 

FIGURE 2.3  Schematic of the HPCS process.
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rapidly and leaves the nozzle at lower temperatures. The difference between particle 
velocity and processing temperatures compared to other thermal spray methods is 
shown in Figure 2.4. Compared to other thermal spray methods, the CS method 
seems to be operable at very low temperatures and very high particle velocities 
(Champagne 2007).

Since the operating temperature of traditional thermal spray methods is 
above the melting temperature of the powders, they have a high tendency to form 
porosity and oxide. In particular, methods such as atmospheric plasma spray 
(APS) and high-velocity oxygen fuel (HVOF) contain oxides and pores that 
reduce the corrosion resistance of the coating (Bala et al. 2013). Also, these oxides 
and porosities can significantly reduce the mechanical, thermal, and electrical 
properties of the layers. P. Richer et al. (2010) produced CoNiCrAlY coatings 
using APS, HVOF, and CS methods in their study. As a result of the EDS analysis 
of the coating layers, it was reported that the lowest oxide content was obtained 
in the CS coating thanks to the low processing temperature. In thermal spray 
coating methods, such as HVOF, operating at high temperatures causes higher 
residual stress in comparison to CS methods due to the cooling of molten particles 
(Champagne and Helfritch 2016).

One of the important advantages of the CS method is the deprive of new phase 
formation thanks to the process performed below the melting temperatures of 
the particles. In this way, there is no phase transformation between the sprayed 
powder and the coating layer. The current literature studies show that there is no 
phase transformation between the initial powder and coating layer by CS (Kılıçay 
2020; Padmini et al. 2020). This occasion allows especially critical alloys to be 
used by the CS method. Tribological properties of different thermal spray methods 
were also investigated in literature studies. Karaoglanli et al. (2013) investigated 
the wear properties of CoNiCrAlY coatings using APS, HVOF, and CS methods.  

FIGURE 2.4  Gas temperature versus particle speed for thermal spray process (Cavaliere 
2015).
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They emphasized that the coating produced by the CS method has the highest 
hardness and wear resistance properties.

CS coatings also have disadvantages compared to traditional thermal spray meth-
ods. The fact that the particles don’t melt in this method causes the limitation of 
the materials to be used. Conventional thermal spray methods can be applied to a 
wide range of materials, while the CS method is more restricted to ductile materials 
(Champagne 2007). This is related to the fact that the sprayed material can be plasti-
cally deformed when it hits the substrate material. This is more critical in LPCS as 
the particle velocity is slower. In addition, the amount of gas used in CS processes is 
higher than in thermal spray methods. Even if this is not a major problem when using 
air or N2 gas, it will increase operating costs, especially with the use of He, which is 
an expensive gas that also provides the highest particle velocity.

2.3 � THE EFFECT OF MAIN PROCESS PARAMETERS 
ON COLD SPRAY

To obtain a good coating layer in CS, the carrier gas, powder feeding unit, and super-
sonic nozzle system must be processed in harmony. Figure 2.5 shows the basic pro-
cess parameters affecting the CS coating process.

2.3.1 N ozzle Design

One of the most important parts of a CS coating system related to high deposition 
efficiency is the supersonic nozzle component. Gas temperature, nozzle movements, 
trajectory spray distance, and shape of metal powder particles affect nozzle design 
(Lupoi 2013).

2.3.1.1  Nozzle Traverse Speed
The nozzle traverse speed is a measure of the dwell time of the nozzle on the 
substrate and the number of metal powder particles deposited per unit time. It 
also determines the coating thickness deposited on the substrate and affects the 

FIGURE 2.5  Schematic representation of CS process parameters (Yin et al. 2018).
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cross-section profile (Yin et al. 2018). Lower nozzle traverse speed increases the 
layer temperature. A denser but softer coating layer is obtained (Wong et al. 2010). 
If the nozzle travel speed is not high enough for the powder feed rate, the amount of 
coating deposition increases too much or is segregated in a certain area (Ozdemir 
et al. 2017). In a CS application, it was observed that the maximum temperature on 
the coating surface decreased due to the increase in the nozzle traverse speed and, 
therefore, the decrease in the processing time. It was also noticed that at higher 
nozzle traverse speed, it takes less time for the coating to reach maximum tempera-
ture and thermal equilibrium. In addition, as the nozzle speed gradually increased, 
the deposition efficiency decreased as a result of the decrease in the substrate-
coating temperature (Chen et al. 2017a).

2.3.1.2  Nozzle Scanning Step
The nozzle scanning step is defined as the distance between two consecutive coating 
passes. It has effects on the coating thickness and the profile of the coating. As the 
nozzle scanning step distance increases, the maximum-minimum and average coating 
thickness and flatness of the coating surface decrease (Cai et al. 2013). A nozzle scan-
ning step is generally chosen by researchers to achieve a satisfactory level of flatness 
on the coating surface. Half of the width of a single coating pass is usually preferable. 
However, thanks to the recently developed software, the best nozzle scanning step can 
be performed with simulations to obtain less wavy surfaces (Yin et al. 2018).

2.3.1.3  Gas Temperature
High pressure and high temperature cause the carrier gas to reach high velocities and 
accelerate the metal powder particles to a higher velocity. Although the gas was ini-
tially heated to 400–1100°C, the term “cold spray” was used to describe this process 
due to the relatively low temperatures (100–500°C) of the expanded gas stream exit-
ing the nozzle (Champagne and Helfritch 2016). The risk of clogging and the thermal 
resistance of the nozzle limit the temperature used in the system. These obstacles 
limit the particle impact velocity and impact temperature. The particle impact tem-
perature reduces the critical velocity to be reached due to thermal softening (Schmidt 
et al. 2006). In addition, in various studies in the academic field, it has been observed 
that the bond strength increases with the increase of gas temperature, also the micro-
hardness and conductivity properties of the coatings increase as the porosity values 
decrease (Assadi et al. 2011; Meng et al. 2011; Sudharshan Phani et al. 2007). As 
a result of numerical and experimental studies, the formula obtained by Suo et al. 
(2015) revealed that the particle velocity is related to the type of process gas and 
its temperature (Eq. 2.1). In this relationship, v is the velocity, M is the local Mach 
number, γ is the specific heat ratio, Mw is the molar mass, T is the local temperature, 
and R is the ideal gas constant.

	

= γ
v M

RT

Mw
	

(2.1)
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2.3.1.4  Standoff Distance and Spray Angle
The standoff distance, which defines the distance between the exit point of the nozzle 
and the substrate to be coated, affects the particle velocity and deposition efficiency. 
In the studies, it was observed that the deposition efficiency decreased with the 
increase of the standoff distance. There may be different best standoff distance val-
ues for the best coating efficiency for different materials and powder groups. When 
this optimum value is exceeded, the efficiency decreases. In addition, the coating 
thickness decreases with increasing standoff distance (Li et al. 2008). When the 
distance between the nozzle and the substrate material is small, a shock wave may 
occur when the gas jet hits the substrate material. This occasion reduces the particle 
impact intensity, which deteriorates the deposition quality and efficiency. When the 
ideal standoff distance is selected, no shock wave occurs, and if the gas velocity is 
higher than the velocity of the particles, the deposition efficiency increases. If the 
standoff distance is higher than the ideal, the gas velocity will decrease to a lower 
level than the particle velocity and the gas will have a slowing effect on the particles 
(Pattison et al. 2008).

Cai et al. (2013) carried out a mathematical analysis of the coating profile using 
the numerical solution method in the MATLAB program. The Gaussian distribution 
was chosen for the simulations because the curve was symmetrical in the first visual 
analysis. For the coating profile, the relationship in Eq. 2.2 was obtained in accor-
dance with the Gauss equation.
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σ is the standard deviation of the Gaussian equation, µ is the mean value of the equa-
tion, Z(x) is the height of the coating profile, S(x) is the surface of the coating profile, 
and K is the constant coefficient of the Gaussian equation. The surface of the 2D 
coating profile S(x) is given in Eq. 2.3.

	

∫ ∫

∫

( )

( )

( ) ( )= =
σ π

−
− µ
σ













=
σ π

−
− µ
σ













dx
2

exp
2

dx

*
2

exp
2

dx

0

1

0

1 2

2

0

1 2

2

S x Z x
K x

K
K x

	 (2.3)

The surface under the curve of the Gaussian function is equal to 1. Then the surface 
of the 2D coating profile is given by Eq. 2.4.

	 ( ) =S x K 	 (2.4)
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In the experimental studies carried out between 10 mm and 70 mm spray distance 
values, the maximum S(x) value was obtained at 7.8 mm2 and 50 mm spray distance. 
Although the decrease in S(x) value was not more than 2 mm2, it was observed 
that there was a decrease when 10 mm and 70 mm spray distances were selected 
(Cai et al. 2013).

The spray angle is defined as the angle between the nozzle axis and the substrate 
surface. Generally, the best coating quality and deposition efficiency will occur when 
the spray angle is 90°. However, the spray angle may change when coating samples 
with complex geometry or in case of limitations due to operating conditions (Chen 
et al. 2017b). When the particle hits the substrate, the plastic deformation undergoes 
till it reaches the normal velocity. For this reason, the normal velocity component 
of particles ejected at an angle different from the normal angle decreases. This 
changes the deposition quality and microstructure of the coating (Li et al. 2002). In 
addition, when the perpendicularity between the nozzle and the substrate changes, 
the porosity value increases, and the particle bonding and tensile strengths decrease 
(Binder et al. 2010).

2.3.1.5  Nozzle Trajectory
The studies on the nozzle trajectory, which defines the movements of the nozzle and 
the path it follows during the CS coating application, affect the quality, homogeneity 
level, and microstructure properties of the coating, although not much compared to 
other CS parameters (Chen et al. 2017c; Yin et al. 2018). The nozzle trajectory pro-
vides a suitable deposition for the profile of the damaged area to be repaired. Nozzle 
trajectory strategy controlled by robotic mechanisms and software significantly 
affects repair quality and accuracy. In repair applications using an appropriate strat-
egy prevents the use of excess material and reduces the process of bringing the part 
to its original dimensions after processing. Since the damage type and profile of each 
damaged part will be different, the appropriate nozzle trajectory strategy should be 
selected so that more efficient and low-cost applications can be made (Wu et al. 2021).

2.3.2  Powder Morphology

Powder particles used in CS expose a plastic deformation due to the impact. When 
the microstructure images of the cross-sectional coating layer are examined, 
it is seen that the deformed particles take a form similar to the shape of a blobfish 
(Figure 2.6), which is flattened due to high pressure in deep seas (Jeandin et al. 2014).

In a study, it was seen that the morphology of the Cu powder particles affects the 
velocity of the particles in the gas flow. It has been observed that the use of irregu-
lar instead of spherical type increases the velocity of the particles in the gas flow 
(Ning et al. 2007). For cold sprayed Al2O3 reinforced Al powder particles, it was 
determined that the deposition efficiency increased after a certain value with the 
increase of Al2O3 addition. A different result was encountered in the coating process 
using spherical Al2O3 particles. Spherical Al2O3 does not form roughness on the 
coating surface, which provides better deposition efficiency. Therefore, it does not 
affect the deposition efficiency (Fernandez and Jodoin 2019). This phenomenon was 
also observed for Ti content coatings. It has been observed that powder spongy and 
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irregular particles have higher deposition efficiency than spherical ones for pure Ti 
(Wong et al. 2013). It is known that smaller-sized particles reach higher velocities 
in the CS process and it is thought that a good deposition efficiency is achieved in 
this way, although the velocity of small particles when they hit the part can be much 
lower despite their high exit velocity from the nozzle. The parameter that correlates 
the particle velocity with the deposition process in the CS process is the critical 
velocity. The critical velocity is defined as the minimum particle velocity required 
for a good deposition process. Particle velocities below the critical velocity cause 
material loss due to erosion and good deposition cannot be achieved (Poirier et al. 
2019). According to the results based on simulation and experimental studies in CS 
coating application of copper (Cu) particles, it was revealed that the critical velocity 
is a function of particle diameter (dp), and impact temperature (Tp). According to 
Eq. 2.5, it is concluded that the critical velocity decreases when the size of the par-
ticles increases (Schmidt et al. 2009).
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2.4  GREEN APPLICATIONS BY USING COLD SPRAY TECHNOLOGY

With the increase in studies both in the industrial field and in the academic world, 
the application potential of CS technology has started to be understood more 
clearly, and its applicability, advantages, and disadvantages have been revealed. 
Research and studies related to which materials it can be applied to, optimum 
process parameters, postprocess performance are increasing gradually. Thanks 
to the repair of metallic-based materials, especially used in aviation, automotive, 
maritime, and other industrial areas, product lifespan increases. This situation saves 
the need for remanufacturing material, time, and energy. For this reason, the CS 
repair method is considered a green method, as it eliminates the harmful effects on 
the environment. At the same time, the fact that it can be used for additive manufac-
turing, which is an advanced manufacturing method, makes CS technology more 

FIGURE 2.6  (a) Blobfish and (b) SEM image of cold sprayed Cu with inserted blobfish 
(Jeandin et al. 2014).
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interesting. Along with the production advantages it provides, the cold spraying 
method also has important advantages such as reducing environmental impacts, 
economic efficiency, and safety.

2.4.1 A nti-Pathogenic Applications

Interest in the development of materials with antibacterial properties for different 
biomedical applications is gradually increasing. Carbon steel which has low cost and 
sufficient mechanical properties widely used in public places and hospitals. However, 
the formation of various pathogenic biofilms could be observed in such environments 
(da Silva et al. 2021). CS technology has emerged in recent years as a promising can-
didate for creating anti-pathogenic coatings. It is possible to coat some bioactive met-
als such as Ag, Cu, and Zn on different substrate materials by cold spraying (Ghosh 
et al. 2020). Sanpo and Tharajak (2017) fabricated the Ag, Ni, Zn, and Cu-substituted 
Hydroxyapatite (HA)/poly-ether-ether-ketone (PEEK) composite coatings on the 
glass slide substrates by the CS coating technology. They investigated the antibacte-
rial properties of the coatings against Staphylococcus aureus. They indicated that 
cold sprayed coatings have a significant killing effect on Staphylococcus aureus 
when compared with the control group. They determined the bacterial killing rate as 
HA-Ag/PEEK, HA-Zn/PEEK, HA-Cu/PEEK, and HA-Ni/PEEK, from best to worst, 
respectively. However, they emphasized that the antibacterial properties of CS coat-
ings should also be investigated with the different types of bacteria. da Silva et al. 
(2019) investigated the corrosion and antibacterial performance of cold sprayed coat-
ings produced by using Cu powder on the carbon steel substrate. At least 99% purity 
Cu powder was used. The average grain size was measured as 31 ± 2 μm. XRD analy-
sis confirmed that the sprayed powder and the coating layer were quite similar phases. 
They determine the antibacterial activity of the Cu coating against Staphylococcus 
aureus using the plate count method. Colony-forming units (CFU) values upon con-
tact time of 0, 5, and 10 minutes are given in Figure 2.7. They determined that after 
5 minutes of contact on the Cu coating, the bacteria decreased from 1.97 × 108 to 0.97 
× 106 CFU/mL, and after 10 minutes of contact, all Staphylococcus aureus bacteria 
were inactivated. They attributed this situation to the formed Cu ions and moisture 
at the contact of the coating layer that destroy cell walls of bacteria and prevent their 
growth. Therefore, they explained that the amount of released Cu ions determines the 
antibacterial activity. With the obtained results, they emphasized that the cold sprayed 
Cu coating on the common contact surfaces such as public and hospital environments 
can be used as an antibacterial surface.

da Silva et al. (2021) coated 99.9% pure Cu powder on low carbon steel by CS 
method. They investigated the anti-microbial activity and biocompatibility of the 
produced coating. The cold sprayed coatings were tested against the Methicillin-
susceptible Staphylococcus aureus, Escherichia coli, and Candida albicans 
biofilms for the anti-microbial tests, and biocompatibility of the cold sprayed 
coatings were investigated in human monocytes. When the cold sprayed Cu surface 
and the steel surface were compared, they determined that the metabolic activ-
ity and growth rates of biofilms decreased significantly (Figure 2.8). At the same 
time, it was determined that the cold sprayed Cu surfaces had biocompatibility 
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properties. According to their results, they stated that cold sprayed Cu coatings 
may be interesting to use in healthcare environments due to both anti-microbial and 
biocompatibility properties.

Hutasoit et al. (2020) produced coatings using Cu powder with a particle size 
of 5–60 μm with 99.9% purity by CS method on a stainless steel substrate. They 
investigated the effects of the coatings against the SARS-CoV-2 (COVID-19) virus. 
They found that Cu-coated surfaces significantly reduced the activation ability of the 
COVID-19 virus compared to stainless steel. They determined that after a 2-hour 
incubation period, Cu-coated samples inactivated 96% of the virus. In addition, they 

FIGURE 2.7  CFU values of coatings based on contact time (da Silva et al. 2019).

FIGURE 2.8  Metabolic activity and growth rates of biofilms. MS: Metal surface; MS+Cu: 
Cu coated surface (da Silva et al. 2021).
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found that Cu-coated surfaces reduced the lifespan of the COVID-19 virus by more 
than 5 hours. They emphasized that cold sprayed Cu coatings could easily eliminate 
viruses in a short time. So one can be implied that cold sprayed Cu content coating 
can be used on metallic parts in the common use area which can act as an inhibitor 
for the spread of the virus.

2.4.2 R epair Applications

Al and Mg alloys are widely used in the aerospace and automotive industry due 
to their low density and high strength ratio. In addition to this situation, there are 
various studies on the repair of cold sprayed Al and Mg, steel, and superalloys. To 
make successful repair applications, the tests and controls are of great importance. 
Dimensional accuracy should be checked after the applied repair process to structural 
or non-structural workpieces. In addition, desired mechanical, physical, tribological, 
and microstructural properties should perform satisfactory results under operating 
conditions. CS repair processes on Al alloys are widely used and have been extensively 
researched by researchers. In this section, examples of repair processes using CS 
technology are given and its performance after the repair process is evaluated.

Lee et al. (2007) repaired a plastic injection mold made of Al 6061-T6 alloy 
(Figure 2.9), which suffered extensive wear damage as a result of the thermal and 

FIGURE 2.9  The schematic representation CS repair process of plastic injection mold (Lee 
et al. 2007).
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mechanical loads. Pure Al powders are used for CS repair technology. As a result of 
the tests, it was observed that the wear performance of the repaired area improved 
and its machinability performed similar results with the base material. It was also 
determined that there was little dimensional difference in the polymer materials 
produced from the repaired mold and this situation could be eliminated.

Cavaliere and Silvello (2017) repaired the notch damage that occurs in Al2099 
alloy plates used in aircraft by using CS. The Al2198 and Al7075 alloy powder 
particles were used for the repair process. In the crack initiation and growth tests, 
it was revealed that the repaired plates had six times the crack initiation resistance 
when the optimum processing parameters were used (Figure 2.10). He attributed 
this result to the inhibition of crack initiation and propagation thanks to the strong 
bonding between the repaired area and the substrate. Their results show that dam-
aged Al2029 material is suitable for repairing by CS in terms of fatigue strength.

Widener et al. (2015) repaired flake wear and pitting corrosions on the surface 
of the sealing hole on an Al 6061 hydraulic valve body used in military navy units 
with Al 6061 powders (Figure 2.11). It was determined that the porosity value on 
the repaired surfaces was below 5% and the bond strength was above the required 
68.9 MPa. These results show that the repair process was applied successfully.

Shikalov et al. (2017) repaired corrosive damaged plate-shaped aviation parts 
made of 1163RDTV Al alloy with ASD-1 powder particles. It was observed that 
the porosity value did not exceed 1% after the repair process, and considering the 
mechanical properties, it was determined that the elastic area was almost completely 
equivalent to each other in the stress-strain diagram of the undamaged part and the 
repaired region.

Cruz et al. (2018) investigated the repair of Al-Cu alloys (Al 2024) and Al-Si 
alloys (Al C355) used in gearboxes and body parts of aircraft operating under heavy 
conditions. It has been revealed that the wear behavior of the coatings made on the 

FIGURE 2.10  Diagram of crack length based on the number of cycles repaired alloy 
Al 2099 using Al 2198 and Al 7075 alloy powders (Cavaliere and Silvello 2017).
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same substrate material with the same alloy powders is equivalent. Therefore, they 
determined that the repair process was successful in terms of tribology.

Astarita et al. (2016) artificially damaged an engine block made of A380 die-cast 
alloy by machining. The engine block was repaired by two different methods, CS 
(Figure 2.12) and TIG welding. Microstructure, hardness, and corrosion resistance 
properties of the repaired zones were investigated. AA4047 alloy was used as filler 
metal in the TIG welding, and Al-12% Si powder particles were used for CS operation. 
It was observed that there were no alterations in the microstructure of the substrate 
material under the coating in the area repaired by CS. They reported that the new 
surface was found to be quite compact and non-porous. The hardness value of the 
sprayed coating is close to the substrate material and also shows isotropic properties. 
It has been stated that the CS method is an alternative to the surface cladding process.

FIGURE 2.12  A close-up photo of engine block repair by CS technology (Astarita et al. 
2016).

FIGURE 2.11  A macro photo of the damaged and repaired sealing hole surface on an Al 
6061 hydraulic valve body (Widener et al. 2015).
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White et al. (2019) repaired the connection holes of high hardness forged 
AA7075-T651 and AA2024-T351 plates by CS method. The AA7075-325 and 
AA2024-325 alloy powders were used. As a result of the experimental studies, it 
was observed that the CS repair method did not cause any damage to the base mate-
rial. The micro-hardness of both parts wasn’t changed. As a result of the fatigue 
tests, it has been revealed that the fatigue life is at least equal to the epoxy-based 
repair applications and even longer life performance in some cases. Although some 
surface cracks were observed in fractography examinations, it was determined that 
there was sufficient bonding energy to prevent the separation between coating and 
substrate material.

In addition to Al alloys, the CS repair method can be applied to various Mg 
alloys, Ni-based superalloys, and steels. Ogawa and Seo (2011) repaired the part 
made of Inconel 738LC (IN738LC), which is a Ni-based superalloy and is used in jet 
engine turbine parts. IN738LC powder particles were used as filler in the process. 
It has been observed that the use of small particle size positively affects the quality 
of the coating layer. In small punch tests, He gas content sprayed samples perform 
higher maximum load-carrying capability. They also applied heat treatment after the 
CS process. It was seen that the repaired layers were able to recover their crystal-
line structure and mechanical properties. This situation showed that the adhesion 
strength of the coating/substrate interface can be improved after heat treatment. The 
applied heat treatment also ensures a decrease in pores ratio, increase in particles 
size, and formation of more γ in repaired coating zone. They imply that CS repair 
of gas turbine blades requires final heat treatment application for better mechani-
cal properties. Faccoli et al. (2014) investigated the repair of damaged ASTM A 
743 quality CA6NM cast martensitic stainless steel materials. The materials were 
repaired by TIG welding and CS method (Figure 2.13) using AISI 316 (austenitic) 
and AISI 410 (martensitic) stainless steel powder particles. Compressive stresses that 
occur as a result of repair with CS method improve the fatigue strength properties of 
the material. The absence of alteration in the microstructure of the repaired zone and 
the base material interface ensured the preservation of the metallic properties. As a 
result of the CS method, it was determined that the interface of the surface and the 
coating base material exhibits higher microhardness than the welding process. They 
also showed no toughness reduction was observed. According to their results, due to 
negligible residual stress and extra heat treatment is not required.

Cavaliere et al. (2017) repaired the notched Inconel 718 specimens with the 
CS method using Inconel 625 particles. They also determined optimum CS repair 
parameters of superalloy (pressure, temperature, spray distance) concerning porosity 
reduction and increased adhesion strength and fatigue resistance. Also, aging heat 
treatments were applied to the repaired samples and it was revealed that it had ben-
eficial effects on fatigue crack resistance and propagation.

The schematic representation of the repair process with the CS process is given in 
Figure 2.14. A preliminary preparation should be made so that the first layer can adhere 
to the damaged area. In this step, there is no residue or oxide layer on the surface. 
A preliminary grinding may be required to make the surface rough (Figure 2.14a). 
After this step, the damaged area should be filled with suitable powders selected per 
the base material. The selected powders for filling could be pure, alloy, or mixed. 
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When a mixed powder is used, the repaired area has a composite microstructure. 
At the end of the filling process, the part will be larger than its original dimen-
sions. At this step, the repaired surface also becomes quite rough (Figure 2.14b). 
Machining methods and usually grinding are preferred to provide original dimen-
sions (Figure 2.14c). With the final surface preparation processes, the part is brought 
to the desired surface quality and tolerance values. Figure 2.15 shows the steps of the 
repair process with the LPCS system on the damaged Al alloy aircraft wing surface 
material. The damaged area was successfully filled with densely Al alloy using an 
N2 carrier gas. Due to the plastic deformation mechanism caused by the particles 
hitting the surface, the hardness of the repaired area was determined to be higher 
than the original coating layer and the filler powder. Residual stress is formed by the 

FIGURE 2.14  Schematic representation of part repair with CS technology.

FIGURE 2.13  Macro photography of CS repair of martensitic stainless steel components 
(Faccoli et al. 2014).



45Green Cold Spray Deposition

CS in the repaired area, which enhances fatigue resistance. At the same time, the 
repaired zone has a positive effect on corrosion resistance. According to the obtained 
results in the study, it was determined that the CS process is suitable for the repair of 
Al alloy aircraft wing surface material (Yandouzi et al. 2014).

Lyalyakin et al. (2015) investigated the repair of damaged bodies of oil pumps 
of Caterpillar-3116 and Caterpillar-3126 engines by the CS method (Figure 2.16). 
Sandblasting, CS, machining, and final cleaning steps were performed as repair 
process steps, respectively. Al2O3 powder was used in the sandblasting step to clean 
the residues in the bodies of the oil pumps. During the CS repair process, pressur-
ized atmosphere gas and Dymet A-80-13 Al powder were used. After the repair 
process, the pump bodies were machined to their nominal sizes, and Al power and 
oxides residues were cleaned. After the repairs, they determined that the service 
times of the oil pump bodies were close to the original pump bodies. They reported 
that more than 30 oil pump housings were repaired in Moscow between 2012 and 
2013. These repaired parts did not cause any malfunction. They found that the cost 
of repairing the oil pump housing by CS did not exceed about 10–15% of the cost 
of a new component. They emphasized that the annual economic impact of repair 
with CS can be cost-effective.

2.4.3 A dditive Manufacturing Using Cold Spray Technology

With CS technology, powder particles can be accelerated to high speeds to adhere 
to the substrate. Various structural components can be produced. Therefore, the CS 
method is also considered an additive manufacturing process (Wang et al. 2015). 
It facilitates the machinability of small parts. The need for production equipment 
decreases and production efficiency increases. Since the finished product can be man-
ufactured directly from the raw material, residual raw materials and damage to the 
environment are eliminated (Pathak and Saha 2017). Metal and composite structures 

FIGURE 2.15  The repair process of damaged Al part with CS technology (Yandouzi et al. 
2014).
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can be produced with the cold spray additive manufacturing (CSAM) method. With 
the appropriate powders and process parameters (gas pressure and temperature, 
powder carrier gas type, nozzle geometry, nozzle movement, speed, etc.), the desired 
material properties and topologies can be easily produced. Programmed robotic 
manipulators are generally used to manufacture complex shapes. The microstruc-
tural properties such as (pore amount, grain shapes) that affect the product quality 
and mechanical properties, tribological performances, and residual stresses of the 
produced parts so it should always be taken into consideration. If necessary, appro-
priate heat treatments are applied to improve the specified properties. In this section, 
the structures produced by using different powders with the CSAM method and the 
evaluation processes of the properties of these structures are examined.

Free-form structural samples produced from Inconel 718 material by CS method 
and laser melting-based manufacturing method were compared. It is one of the 
most important advantages of CS method manufacturing is the most homogeneous 
products, which preserve the microstructure properties of the feed powders in the 
structure. It was also observed that metallurgical bonding improved and the ductility 
of the sample increased with various post-production heat treatments. In addition, it 
has been determined that the fatigue strength of the produced samples can compete 
with those of casting and forging products. Reduced ductility and size limitations 

FIGURE 2.16  Macrophotography of oil pump housings of Caterpillar 3116-3126 engines (a) 
as damaged (b) as repaired (Lyalyakin et al. 2015).
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due to strain hardening are the issues that need to be developed in the CSAM method 
(Bagherifard et al. 2018).

Another developed hybrid production method includes CS and laser melting. Ni 
deposition process was performed on Ti-6Al-4V alloy by using CS and laser melting 
additive manufacturing methods (Figure 2.17). It has been stated that this method is 
a potential alternative for joining dissimilar materials. After vacuum heat treatment, 
it was observed that the unbonded interfaces between the Ni particles improved, 
while the brittle intermetallic compounds in the structure decreased. However, it 
has been determined that this process reduces the deposition-substrate bond strength 
(Huang et al. 2018).

Another technological field in which the CSAM method is used is nuclear 
technology applications. In a study, a neutron shield was formed by deposition of 
B4C/Al (Figure 2.18) on Al 6061-T6 material with the CSAM method. The micro-
structure, mechanical properties, and neutron shield properties of the material 
produced under different heat treatment conditions were investigated (200, 300, 
400, and 500°C). Maximum ductility and strength and lowest porosity were 
achieved at 500°C heat treatment conditions. It was observed that the neutron 
shield performance increased with increasing deposition thickness. In addition, 
a slight improvement in neutron shield performance was observed for heat treat-
ment at 500°C (Tariq et al. 2018).

FIGURE 2.17  Ni deposition on Ti-6Al-4V: (a) Surface top view, (b) surface cross-section 
view (Huang et al. 2018).

FIGURE 2.18  B4C/Al deposition on Al 6061 T6: (a) Top view, (b) cross-section view  
(Tariq et al. 2018).
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Cu-containing materials can also be produced with the CSAM method. With the 
CSAM method, thick and dense Cu coatings were produced on the AA2024 sub-
strate material, and the substrate material was separated from the Cu coating by the 
electro-discharge machining method after the CSAM method. It has been observed 
that the performed heat treatments produced a significant effect on the mechanical 
properties, increasing the tensile strength by 34.2% and reducing the microhardness 
by 43.6%. Although the processing temperature was below the melting point of the 
powder particles, it was observed that dynamic and static recrystallization occurred 
at the interparticle interfaces during CS and heat treatment, respectively. According 
to the mechanical anisotropy tests, the samples performed different tensile strengths 
in different directions (Yang et al. 2018).

Xie et al. (2020) produced Al/diamond metal matrix composite structures 
using the CSAM method with using core-shell diamond powder particles. It 
was observed that the wear resistance of the produced samples was a superior 
comparison to laser melted Inconel 625 and 17−4PH alloys. They also showed 
that the wear performance improved as the number of diamond particles in the 
composite structure increased.

Chen et al. (2020). produced metal matrix composites were by using the CSAM 
method. Gas atomized Al7075 alloy powders and Nano-sized TiB2 powders were 
used for chemical compositions. The reinforcement phase is dispersed homog-
enously in the Al7075 matrix. No microstructural defects were observed in the 
samples. Achieving high particle velocities during production increased the defor-
mation and resulted in improved grain refinement. As a result of grain refinement, 
better tensile strength results were observed. Also, the addition of TiB2 increased 
the hardness of the produced sample. As a result of mechanical tests, fracture mor-
phologies of the samples are brittle. They reported that heat treatment is required 
for better mechanical results.

Luzin et al. (2020) produced samples using the CSAM method with commer-
cially Ti powders. They investigated the residual stresses. To obtain dense and non-
porous Ti structures, optimum process parameters were selected to achieve the 
highest particle velocity. Ti was deposited as a thick planar coating on the stainless 
steel substrate and as a thick rod wall on the substrate Al material (Figure 2.19). In 
both cases, residual stresses were found due to the difference in the thermal expan-
sion coefficient between the substrate and the Ti structure.

FIGURE 2.19  Two different geometries are produced by CSAM: (a) Thick planar type and 
(b) thick wall type (Luzin et al. 2020).
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To eliminate the residual stress is to choose the same substrate as the deposition 
powders or to separate the substrate material from the structure after the CSAM 
method. Another residual stress that occurs in the structure is caused by the deposition 
stress in the CS process. The control of this residual stress is achieved by adjusting the 
pressure and temperature parameters in the CS process. In addition, the formed com-
pressive stresses on the surface, which is a characteristic of the CSAM method, have 
a positive effect on the structure and delay the formation and propagation of cracks.

Another material group that can be produced by the CSAM method is INVAR alloys. 
Chen et al. (2021) produced Invar 36 alloy structures by the CSAM method. The micro-
structural properties, pore amount, residual stress, thermal expansion, and mechanical 
performance were investigated concerning heat-treated and non-heat treated samples. 
It was observed that the level of porosity decreased with the increase in gas pressure. 
Phase change and oxidation did not occur in the microstructure during the CSAM pro-
cess. There are residual stresses with compressive character in the not heat-treated con-
dition. Samples produced with He gas perform higher maximum tensile strength and 
elongation than Samples produced with N2 gas. After the heat treatment, the materials 
produced with both gases perform equivalent yield strengths.

Al 6061 alloy, which is widely used in structural applications, has important 
advantages due to its high strength/weight ratio. One of the most important factors 
in the additive manufacturing of materials in the CSAM method is the spray angle. 
Hutasoit et al. (2021) produced material using gas atomized Al6061 alloy powders 
deposited on Al5005 alloy substrate with 45° and 90° spray angles (Figure 2.20). 

FIGURE 2.20  A representative block production by CSAM method (Hutasoit et al. 2021).
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They also investigated the effect of extra heat treatment on the produced material. 
The untreated samples perform low ductility and low tensile strength while heat-
treated samples perform improvement in mechanical properties which are nearly 
equivalent to forged products. The main reason for this is thought to enhance metal-
lurgical bonding. In addition, they also report that heat treatment increased the cor-
rosion resistance of the material.

2.5  FUTURE PERSPECTIVE

Recently, CS technology has undergone significant development. Currently, CS tech-
nology has a wide range of uses such as corrosion, oxidation and wear-resistant metal 
or alloy coatings, repair of damaged components, additive manufacturing method, 
and biomedical applications. Currently, studies are carried out in many international 
research institutions and universities to develop innovative approaches and existing 
practices. The future of CS technology depends on the potential of innovative mate-
rials to be deposited on different substrates with extremely low thermal load and 
cost. These developments will make the opportunities of CS come to the pioneer.

Improvements in CS equipment are expected, especially with technological devel-
opments. For example, He gas is used for high spraying speed, but it is very expensive 
in terms of cost. Economic efficiency can be increased with gas recycling systems. In 
addition, technological developments such as lower pressure powder feeding systems 
and reuse of backscattered powder particles without sticking to the coating surface 
can be expected. Higher particle velocities and deposition efficiency can be achieved 
by improving the supersonic nozzle design, which is the most important part of CS 
systems. In addition, it is known that when the ductile powder is used, even in a short 
usage time (e.g. 10 minutes), adhesion occurs on the nozzle wall and disrupts the gas 
flow. Although this situation can be resolved with the use of plastic nozzles, it limits 
the use of gas temperature and may require more frequent nozzle replacement due 
to the lower wear resistance of plastics. With technological developments, it will be 
possible to solve this chronic problem and have longer spray times (Champagne and 
Helfritch 2014). With technical and economic developments, new application areas 
can be feasible. It is expected to be used in fields such as wind energy, photovoltaic 
(photovoltaic) energy, architecture, and medicine. For example, recently, researchers 
focus on using photovoltaic applications in the production of complex conductive 
products in solar cells. To improve the surface properties of polymer matrix com-
posites, wind turbine blades CSAM is also utilized (Cavaliere 2018). All aside, CS 
technology is interesting in anti-pathogenic applications of equipment used in hospi-
tals and dentistry by coating high purity Cu.

CS technology is promising for many applications thanks to its advantages such 
as reducing oxidation, avoiding undesired phase transformations, having similar ini-
tial powder properties in the deposition layer, applying to materials that are sensitive 
to temperature, and being suitable for a wide range of materials. For this reason, 
it allows the coating of various industrial parts, the production of additive manu-
facturing, and the repair of damaged products. However, since the desired surface 
properties and tolerances cannot be directly achieved in both repair and additive 
manufacturing processes in current applications, machining may be required after 
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deposition. By developing innovative powder feeding systems and improving nozzle 
traverse speed in CS, it will be possible to obtain better surface properties and reduce 
or eliminate secondary processes (Champagne and Helfritch 2014). On the other 
hand, CS technology provides a clean production opportunity without burning fossil 
fuels in its current applications. It stands out with its applications such as repairing 
damaged parts. Low processing temperatures provide low energy consumption and 
raw material savings. For these reasons, considering the environmental effects, the 
CS method remains in the category of “green techniques and methods” in current 
literature and is kept its novelty for future studies.

2.6  CONCLUSIONS

In this section, CS technology is explained in detail and its green applications are 
examined. CS technology is a thermal spray coating method in which dense coating 
layers can be produced with a high deposition rate. Deposition layers are produced 
by the mechanical locking mechanism, which is formed as a result of the impact of 
the powder particles sprayed from the nozzle at supersonic speeds on the substrate. 
It is defined as cold since the accelerated sprayed powder particles are solid state 
due to the process temperature below powder melting temperature. Thanks to the 
important advantages it provides, this method can also be used in advanced manu-
facturing methods such as additive manufacturing and innovative methods such as 
repairing damaged parts. For this reason, it is defined in advanced manufacturing 
methods and can also be evaluated in the green applications class due to its envi-
ronmental effects.

It is possible to repair quite different machine parts with CS technology. It is clear 
that the repair process, instead of replacing the part with a new one, will provide eco-
nomic and time savings. Thanks to the application of CS at low operating tempera-
tures, it does not create an additional thermal load on the damaged part. Therefore, 
no microstructural or significant mechanical property alteration is observed in the 
repaired parts. The service life of the part can be improved by obtaining a hard 
and wear-resistant depositing layer in the repaired area. In particular, portable 
low-pressure CS devices also provide mobility for large stationary machine parts. 
Additional machining operations may be required to obtain the desired surface 
quality and tolerance values. With the CS technology, it has been possible to produce 
anti-pathogenic coatings by using bioactive metals such as Ag, Cu, and Zn on dif-
ferent substrate materials. The microstructure of the initial powder and the coating 
layers is quite similar, and the sprayed powder does not change any phase transfor-
mation thanks to the low processing temperatures. Therefore, high purity coatings 
of bioactive metals such as Ag, Cu, and Zn can be formed by the CS method which 
these coating layers are quite successful for anti-pathogenic properties.

The use of CS technology as an additive manufacturing method provides a sig-
nificant cost advantage as it eliminates many manufacturing process steps. The 
need for equipment such as tools and apparatus for production is reduced. Waste 
generation and environmental impacts can be minimized, as raw materials can be 
turned directly into finished products. The produced products may need a small 
amount of extra surface treatment for the desired surface quality and tolerances. 
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Therefore, CSAM is classified as a net shape or nearly net shape manufacturing 
method. Although it can be said that the production of complex-shaped parts needs 
systemic development.

It can be interpreted that CS technology, which is an advanced manufacturing 
method, is a very interesting and advanced method for green applications. Also, it 
is an innovative method that is open to development due to having high potential.
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3.1  INTRODUCTION TO MCDM

Decision-making is an idea or action that is obtained as a result of mental activi-
ties among different alternatives throughout life. It constitutes a phenomenon with 
different orientations such as “right-wrong”, “good-bad” or “effective-ineffective”. 
When we look at the existing process of human beings, the results of conscious 
and unconscious decisions show themselves in all areas. What path should we 
follow when making decisions in order to reach the most appropriate result? In 
practice, methods that can meet the expectations of the decision-maker over time 
are used to create a less inaccurate and realistic decision output. In addition, vari-
ous methods that involve different preferences and produce different results for 
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each decision-maker are constantly being developed. Optimum hybrid decision-
making methods emerge by using different combinations together. Mathematical 
and computational methods are used to support the evaluation process of com-
plex criteria with multiple alternatives in many branches of science. Multi Criteria 
Decision Making (MCDM), with these methods, is a model and analysis supporter 
that enables the use of qualitative and quantitative factors as well as ranking, com-
parison and selection criteria. In other words, it creates a series of decisions that 
are compatible with reason and logic rather than making a decision. The use of 
MCDM is increasing rapidly in industries such as manufacturing, energy, aero-
space, automotive, construction and defense, due to the variety and competitiveness 
of decision mechanisms. It is also preferred to assist in many different areas such 
as material selection, procurement, human resources, infrastructure, agriculture, 
food, health, risk management and occupational safety. Different results can be 
obtained with different MCDM methods on the same problems in any field. This 
reveals a limiting feature of MCDM. However, ideal results can be achieved with 
different combinations or hybrid techniques. MCDM methods are divided into two 
groups as multiple attribute decision-making (MADM) and multi-objective deci-
sion-making (MODM) due to different problem variables. While MADM deals 
with decision problems with a finite number of alternatives and features, MODM 
deals with decision problems with an infinite number of alternatives and features. 
Many multi-objective problems do not have well-defined alternatives. Therefore, 
different methods are applied according to the nature of the decision problems [1]. 
Since MCDM is a unique computational technique in which alternatives are ranked, 
the same results may not be obtained with the same input values and different 
MCDM techniques. Many MCDM methods can be arranged according to different 
parameters and provide convenience to solve problems. The use of AHP, SWARA, 
COPRAS, MULTIMOORA, VIKOR, PSO, TOPSIS, WASPAS, EVAMIX, OCRA, 
MABAC and hybrid methods can be used to find the best alternative and reach the 
determined target. Today, it is possible for most decision-makers to obtain more 
efficient and reliable results due to the use of hybrid methods. In the literature, 
studies on the effectiveness of hybrid techniques in different sectoral applications 
and the development of these techniques continue. Studies on the effectiveness of 
hybrid techniques in different sectoral applications and the development of these 
techniques continue [1]. In addition, ANN, GRA, FL, GA, PSO, PROMETHEE, 
AHP and ELECTRE techniques are detailed in [2]. In this book chapter, VIKOR, 
COPRAS, MULTIMOORA, WASPAS, EVAMIX, OCRA and MABAC techniques 
that are still being developed, and current studies on processing in the literature 
related to these techniques are presented in detail and comparatively.

3.2  WHY IS THE MCDM PREFERRED?

MCDM is the method encompassing mathematical and computational tools to 
support the subjective evaluation of performance criterion. It is a collection of 
methodologies used to compare, select or rank alternatives involving multiple and 
conflicting criteria and both tangible and intangible factors. It is used by decision-
makers in solving real-world decision-making problems according to their own 
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preferences in order to choose the appropriate one [3]. It has been developed in 
recent years to cope with the decision-making limitations of human, which arises in 
complex decision environments, and is widely preferred in many areas. This leads 
to a tendency to simplify the problem by using heuristic approaches rather than 
rational or analytical approaches. It can also lead to subjective judgments and loss 
of important information. It has been determined that experts have difficulties in 
evaluating complex structures and applying simplified decision-making methods. 
Thus, better and alternative solutions can be used with MCDM techniques that can 
cope with large amounts of information and computation [4]. Competition emerges 
in many sectors depending on the developing conditions. For this reason, fast and 
reliable decision-making in an increasingly competitive environment comes to the 
fore. All the tools that can help to choose among the many alternatives are critical. 
In this context, thanks to the MCDM methods that continue to be developed, the effi-
ciency and effectiveness of these processes can be increased significantly. Decision-
making problems, with their powerful tools, can be easily analyzed in complex 
problems in different fields [1]. In other words, it describes a set of techniques used 
to combine different evaluation indicators into a general index in ordering alterna-
tives from best to worst (Figure 3.1).

FIGURE 3.1  Example application stages for MCDM techniques [5].
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MCDM methods in which a specific approach is used to manage data related to 
each problem reveal the value function according to Eq. 3.1.

	 [ ] [ ]→ ∈f fi
n

i: 0,1 0,1 	 (3.1)

Here, the value function links the qualitative and quantitative dataset x j, 
= ⋅⋅ ⋅j n1,2, ,  of the criterion vectors to a single numerical value for each alternative 

i [6]. Although each data set is measurable at its own scale, it is not compatible 
with other scales.

3.3  MCDM APPROACHES AND THEIR APPLICATIONS

3.3.1 VI sekriterijumska Optimizacija KOmpromisno Resenje (VIKOR)

VIKOR was first revealed by Opricovic to solve decision problems non-proportional 
and with contradictory criteria. The closeness of each alternative to the ideal solution 
is evaluated, and then it is aimed to find a compromise solution with the multi-criteria 
ranking index in this method. In other words, the aim is to determine an applicability 
compromise solution that is closest to the ideal. The proposed solution may provide 
the best compromise due to the contradictory nature of the criteria. It is widely used 
in computer, engineering, business and resource management [6]. This method has 
started to be preferred among decision-making techniques due to its simple and easy-
to-understand calculation steps. The basic concept is based on the identification of 
positive and negative ideal points in the solution space. It allows ranking and choosing 
among a finite set of viable alternatives in case of conflicting and non-measurable cri-
teria. Each alternative is evaluated according to each criterion and a consensus ranking 
can be obtained while comparing the relative closeness scale with the ideal alternative. 
Hence, the derived compromise solution is an applicability solution that is closest to the 
positive ideal solution and furthest from the negative ideal solution. Different combina-
tions of VIKOR can be used to solve complex decision-making problems. These are 
the comprehensive, fuzzy, regret theory-based, modified and interval VIKOR meth-
ods. Different methods emerge depending on the type of decision problem and the 
needs of the relevant decision-maker. However, the best solutions using the standard 
VIKOR technique can be obtained without unnecessarily complicating the math-
ematical calculations [7]. It has been determined that the calculation process with the 
VIKOR technique is quite simple compared to other methods. However, results may 
be affected by the normalization procedure and weight strategy [8]. The most impor-
tant factor is alternative closeness to the ideal solution. The next factor is the ranking 
of alternatives. Euclidean distance is used in this method. Accordingly, the best and 
worst values of the criteria are defined in the first stage. In the next step, the best and 
worst values matrix is calculated with Eq. 3.2. For the mathematical formula in Eq. 3.2 
is given as w: criterion weight, f: criterion value, f *: best criterion value (max or min) 
and −f : worst criterion value (min or max).

	 = −
− −S w

f f

f f

*

* 	 (3.2)
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Then, according to Eq. 3.3, S, R and Q values are calculated for each alternative. 
There is no normalized weight matrix as in TOPSIS, MULTIMOORA and COPRAS 
techniques [9].

	 ( )=
−
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+ −
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−− −Q v

S S

S S
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R R

R R
j j1 ,* * 	 (3.3)

where v is the decision factor (if v ≥ 0.5 great compromise, if v = 0.5 consent-based 
compromise, if v ≤ 0.5 vetoed compromise) according to Eq. 3.3.
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The VIKOR method is widely preferred in the literature in studies on machinability. 
Samson et al. examined roundness, taper angle (Ta), material removal rate (MRR) 
and surface roughness (SR) using different pressure (140, 160 and 180 MPa), stand-
off stance (SOD) (2, 3 and 4 mm) and abrasive flow rate (0.22, 0.32 and 0.42 kg/min) 
in Abrasive water jet machining (AWJM) process of Inconel 718 material. It was 
determined that the MRR decreased with the increase in SOD and the optimum 
experimental parameters were pressure: 180 MPa, abrasive flow rate: 0.42 kg/min 
and SOD: 2 mm with the VIKOR method. It was stated that roundness: 0.085 mm, 
MRR: 0.222 gm/s, Ta: 0.098° and SR: 1.365 µm were measured in these parameters 
and VIKOR technique was successfully used for optimum parameter combination 
[10]. Singaravel et al. optimized the experimental inputs using the Taguchi-VIKOR 
hybrid approach for machining AISI D2 die steel using Electrical discharge machin-
ing (EDM). While different dielectric fluid (Kerosene, jatropha oil and cottonseed 
oil), current (6, 8 and 10 A) and pulse on time (200, 300 and 400 µs) were used 
as independent variables, the experimental outputs were measured as MRR, TWR 
(Tool wear rate) and SR. Optimum parameters were determined as cottonseed oil, 
current: 8A and pulse on time: 400 µs with statistical technique. It was stated that 
TWR decreases as a result of the cryogenic treatment applied to the electrode and the 
proposed approaches were simple, useful and reliable for the optimization of process 
parameters [11]. Dey et al. optimized the experimental outputs in the machining of 
Al6061/cenosphere with the EDM process using a TOPSIS-VIKOR-based approach. 
They used peak current (PC), pulse on time (Ton), percentage of reinforcement (PoR) 
and flushing pressure (FP) as independent variables. The weighting factors for the 
criteria were determined by AHP. Optimal parameters for experimental outputs 
were calculated as PC: 10 A, Ton: 1010 µs, PoR: 2% and FP: 0.6 MPa [12]. Khan 
and Maity optimized the independent variables with the fuzzy-VIKOR approach in 
turning of commercially pure titanium (CP-Ti) grade 2 workpieces. While differ-
ent cutting speeds (40, 70 and 100 m/min), feeds (0.05, 0.1 and 0.15 mm/rev) and 
depths of cut (0.2, 0.4 and 0.6 mm) were used as independent variables, test results 
were measured as cutting force, tool wear and SR. It was determined that the best 
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parametric combination was obtained as cutting speed: 40 m/min, feed: 0.05 mm/
rev and depth of cut: 0.2 mm. It was found that the proposed approach was system-
atic and easy to understand. In addition, it was demonstrated that the fuzzy-VIKOR 
approach could be adopted to obtain the best parametric combination [13]. Kumar 
et al. optimized TWR, SR and MRR with GRA and entropy-integrated-gray-VIKOR 
methods using Cu, CuW and graphite tool in the EDM process of Zircaloy-2. It was 
determined that the maximum MRR was obtained with the negative polarity graph-
ite tool and increased with the increase of Ton. It was observed that minimum TWR 
and SR were obtained with positive polarity using the graphite tool and increased 
with the increase of Ton and PC (Ip). It was revealed that the GRA and entropy-
integrated gray VIKOR methods confirmed the 16th alternative as the optimal value, 
and the entropy-integrated gray VIKOR method was more effective than the meth-
ods in the current study [14]. Vikram et al. optimized the machinability properties 
of AISI 316L using the VIKOR technique under dry, minimum quantity cooling and 
lubrication (MQCL), different cutting speeds (122, 141, 160 and 179 m/min), feeds 
(0.10, 0.14, 0.18 and 0.22 mm/rev), depths of cut (0.3, 0.6, 0.9 and 1.2 mm) conditions. 
Average SR, workpiece temperature (Tw) and tool temperature (TT) were obtained 
as experimental outputs. The optimum values for minimum SR: 0.72 µm, Tw: 44.1°C 
and TT: 66°C in dry machining conditions were determined as cutting speed: 122 m/
min, feed rate: 0.1 mm/rev and depth of cut: 0.3 mm. Optimum values for minimum 
SR: 0.87 µm, Tw: 39.1°C and TT: 50°C in MQCL machining conditions were deter-
mined as cutting speed: 141 m/min, feed rate: 0.14 mm/rev and depth of cut: 0.3 mm. 
In addition, discontinuous small helical chips were observed at low feed and depth of 
cut values (Figures 3.2–3.4) [15].

FIGURE 3.2  Workpiece temperature graphs: (a) Dry machining and (b) Mqcl machin-
ing [15].

FIGURE 3.3  Surface roughness graphs: (a) Dry machining and (b) Mqcl machining [15].
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Phan and Muthuramalingam optimized the SR, MRR, microhardness (HV) and 
white layer thickness (WLT) in the vibration aided EDM process of high silicon-
carbon tool steel using different MCDM techniques. Deng’s approach, preference 
selection index (PSI), COPRAS, GRA, simple-additive-weighting (SAW), TOPSIS 
and VIKOR techniques were used as MCDM techniques. It was determined that the 
TOPSIS method provided better estimation accuracy and the frequency was effective 
in determining the quality criteria based on the TOPSIS method. Optimum param-
eters measured as I: 4A, Ton: 12 µs, Toff: 5.5 µs and frequency: 512 Hz [16]. Babu and 
Jeyapaul optimized the machining parameters by using the Taguchi-VIKOR hybrid 
approach in EDM process of A6082/Fly Ash/Al2O3 hybrid metal matrix composite. 
While wire type (brass and zinc-coated brass), different Ton (108, 110 and 112 µs), 
Toff (56, 58 and 60 µs) and servo feed (1030, 1050 and 1070 mm/min) were used 
as independent variables, the machining performances were determined as cutting 
speed (CS), kerf width (KW), wire wear ratio (WWR) and overcut (OC). While the 
entropy method was used to evaluate the weight of each output, VIKOR was used for 
the final ranking of the alternatives. Optimum values for maximum CS and mini-
mum WWR, KW and OC were calculated as 3.41 mm/min, 0.07 mm, 0.27 mm and 
0.014 mm, respectively [17]. Sahu et al. optimized MRR, TWR and SR with simple 
optimization (SOPT) and multi-objective simple optimization (MOSOPT) in the 
EDM process of Ti6Al4V alloy and ranked the alternatives with the VIKOR tech-
nique. Different tool type (Cu, Cu90W5(B4C)5, Cu80W10(B4C)10 and Cu70W15(B4C)15) 
current (4, 6, 8 and 10A), Ton (50, 100, 150 and 200 µs) and duty cycle (40, 50, 60 
and 70%) were used as input variables. It was revealed that while current affected 
MRR, TWR and tool type, respectively, SR was affected by tool type and current, 
respectively. It was observed that Ton and duty cycle had less effect on performance 
measures. It was stated that SOPT could be performed parameter optimization with 
less computational processes and could be easily adapted to multiple optimization 
problems. The best solution among all Pareto-optimal solutions with the lowest 
VIKOR index was chosen [18].

3.3.2 CO mplex PRoportional ASsessment (COPRAS)

COPRAS covers qualitative and quantitative features and allows the selection of 
alternatives among the results. The solution is determined by the ratio to the ideal 
solution. Gradual ranking and degree of benefit using this method can be calculated 

FIGURE 3.4  Tool temperature graphs: (a) Dry machining and (b) Mqcl machining [15].
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in case of conflicting criteria. Alternatives must be ranked in descending order in 
order to obtain alternative rankings taking into account the degree of benefit [8]. It is 
also preferred to convert a multi-objective review into a single-objective review [19]. 
Experimental outputs in the first stage using the COPRAS method are collected in 
the decision matrix according to Eq. 3.4. Here, n is the number of experiments and 
m is the number of output responses.
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According to Eq. 3.5 each value in the decision matrix is normalized in the second 
step. Here, xij  is the criterion value and ∑ xij is the sum of the criterion values.
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The weights of the output responses are determined and according to Eq. 3.6 nor-
malized weighted matrix is calculated. Here, xij  is the normalized matrix values and 
w is the criterion weight.

	  = ×x x wij ij 	 (3.6)

According to the qualitative nature of the output responses, maximizing index 
Pj( ) and minimizing index Rj( ) are calculated by Eqs. 3.7 and 3.8. Here, xij  is the 

weighted normalized matrix.

	 = ∑P xj ij 	 (3.7)

	 = ∑R xj ij 	 (3.8)

According to Eq. 3.9, the relative weights of the output responses are calculated.
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According to Eq. 3.10, the degree of benefit is calculated. Here, major weight is Qi  : 
the longer is rank of work and Qmax: agreement degree is the largest.
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Some studies on machinability related to COPRAS have been carried out. Nimel et al. 
optimized different cutting fluids (flood, MQL, CO2 and CO2+MQL), cutting speeds 
(60, 75 and 90 m/min) and feeds (0.04, 0.06 and 0.08 mm/rev) independent variables 
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using the COPRAS technique in milling of Nimonic-80A material. They calculated 
machining temperature (MT), SR and flank wear (FW) dependent variables. It was 
found that the hybrid CO2+MQL cooling technique was more effective than other 
methods to improve the C/L conditions during the processing of Nimonic-80A. It 
was revealed that flood cooling had better performance when compared to MQL 
due to the low penetrability of mist at high cutting speeds. It was determined that 
CO2 cooling reduced the temperature of the cutting zone to the maximum level. 
For this reason, it was stated that better machined surface quality was obtained and 
FW was reduced. While it was found that successful results were obtained with 
the COPRAS technique, the optimum cutting conditions were calculated as hybrid 
CO2+MQL, low cutting speed and feed [20]. Varatharajulu et al. optimized different 
spindle speeds (1100, 2920 and 4540 rpm) and feed rates (0.038, 0.076 and 0.203 
mm/rev) using COPRAS and TOPSIS techniques in drilling of AZ91 magnesium. 
They measured drilling time, burr height and burr thickness as experimental results. 
The optimum parameters for simultaneous minimization of all experimental outputs 
using COPRAS and TOPSIS were calculated as spindle speed of 4540 rpm and feed 
rate of 0.076 mm/rev. Drilling alternatives were ranked in both statistical methods, 
and the results were evaluated. As a result, identical sequencing order was observed 
(Figure 3.5) [21].

Nguyen and Trung optimized the workpiece speed and depth of cut for mini-
mum SR and maximum MRR in surface grinding of SKD11 steel using Taguchi, 
COPRAS and MOORA techniques. The optimum values for the independent 
variables were calculated as workpiece speed of 20 m/min and depth of cut of 
0.02 mm. The experimental output values of SR and MRR for optimum points 
were 1.16 µm and 86.67 mm3/s, respectively. In addition, similar optimum cutting 

FIGURE 3.5  Variation between TOPSIS and COPRAS methods in terms of number of run/
ranking order [21].
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parameters were determined with the statistical techniques used in the study [22]. 
Saha and Majumder found optimal points for different cutting speeds (160, 240 
and 400 rpm), feeds (0.08, 0.16 and 0.32 mm/rev) and depths of cut (0.1, 0.15 
and 0.2 mm) in turning of ASTM A36 steel using the COPRAS method. They 
calculated SR, power consumption and frequency of tool vibration as experimen-
tal output. Optimum parameters for minimum experimental output values were 
determined as spindle speed: 160 rpm, feed rate: 0.08 mm/rev and depth of cut: 
0.1 mm. It was stated that the proposed statistical method could be used to solve it 
relatively easy compared to other traditional methods because it required less com-
putation [23]. Stanojkovic and Radovanovic selected solid carbide drills for high 
pressured drilling with entropy and COPRAS method. While the alternatives were 
selected as Iscar, Seco, Sandvik and Kennametal, the selection criteria were deter-
mined as cutting speed, feed, pressured coolant and machining time. According 
to alternatives and criteria, ranking of preference was determined as Seco, Iscar, 
Sandvik and Kennametal [24]. Joshi et al. optimized MRR and SR in the param-
eters of cutting speed, feed and depth of cut in micro-turning of C360 copper alloy 
using tungsten carbide insert. For this, non-dominated sorting genetic algorithm 
II (NSGA-II), multi-objective ant lion optimization (MOALO) and multi-objective 
dragonfly optimization (MODA) algorithms were used. The Pareto solutions of 
these algorithms were compared using the COPRAS method (Table 3.1). COPRAS 
solutions for MODA were found to outperform MOALO and both methods outper-
formed from NSGA-II [25].

3.3.3  MOORA Plus Full Multiplicative Form (MULTIMOORA)

Multi-Objective Optimization by Ratio Analysis (MOORA) is used for a ratio sys-
tem in which the response of the alternative on a target is compared with a denomi-
nator representing all the alternatives of the target. The square root of the sum of 
the squares of each alternative is chosen per objective for this denominator. This 
method [26] presented by Brauers is preferred for selecting alternatives. It works 
according to the ratio and reference point system. Desired and undesirable criteria in 

TABLE 3.1
Deviation in Different Metaheuristics Solutions for the Best Solution 
of COPRAS [25]

Metaheuristic 
Method

COPRAS Solution
% Deviation with Respect  

to Best Solution
Average 

DeviationMRR Ra MRR Ra
NSGA-II 0.00998 4.08457 0.62% 0.00% 0.31%

MOALO 0.01004 4.08499 0.00% 0.01% 0.01%

MODA 0.00991 4.08558 1.28% 0.02% 0.65%
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the ranking process are used simultaneously. It is preferred in terms of calculation 
system and ease. The full multiplicative form was added to MOORA by Brauers and 
Zavadskas and MULTIMOORA was created. Thus, MULTIMOORA consists of 
ratio system, reference point techniques and full multiplicative form [27]. It is widely 
used in solving problems encountered in different fields, such as MOORA [8]. In 
this method, after the standard decision matrix is created, the matrix is normalized 
(Eq. 3.11). Here, xi is the criterion value.
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According to Eq. 3.12, the normalized weight matrix is calculated. Here, xi is the 
normalized matrix value and w is the criterion weight.

	 = ×Y x wi 	 (3.12)

According to Eq. 3.13, the difference between the maximum and minimum values 
for each alternative is determined. According to Eq.3.14, the alternative value is 
calculated.
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It was determined that the process parameters are optimized in the machining 
of materials using MOORA. Majumder and Maity optimized the microhardness 
and SR of shape memory alloy nitinol in the Wire electrical discharge machining 
(WEDM) process using general regression neural network (GRNN) and MOORA-
fuzzy techniques. Different Ton (10, 12 and 14 µs), discharge current-I (8, 10 and 12 
A), wire tension-WT (10, 12 and 14 N), wire speed-WS (150, 195 and 240 mm/s) 
and Flushing pressure (FP) (6, 8 and 10 bar) as independent variable were used. It 
was stated that the experimental outputs could be estimated with a ±10% error rate 
with the GRNN model. According to the MOORA-fuzzy MCDM approach, the 
optimum independent variables were determined as Ton: 12 μs, I: 10 A, WT: 12 N, 
WS: 150 mm/s and FP: 8 bar (Table 3.2). It was determined that the I was the most 
important variable on the experimental outputs with ANOVA results [28].

Anitha and Das optimized the machining parameters in the EDM process 
with the MOORA method. The effects of current, Ton, duty cycle and voltage-
independent variables on MRR and SR were revealed. The improvement procedure 
was carried out using the combination of standard deviation and MOORA. 
Weights were calculated using the standard deviation of 0.53 for the MRR and 
0.47 for the Ra. Optimal values to maximize MRR and minimize SR were calcu-
lated as current: 15 units, duty cycle: 50 units, Ton: 100 units and voltage 50 units 
[29]. Khan and Maity focused on the MOORA technique in WEDM, plasma arc 
cutting, electrochemical micro-machining, electrochemical machining, abrasive 
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jet machining, abrasive water jet machining, ultrasonic machining, laser beam 
machining and laser cutting processes. They stated that this method could be 
used for large selection problems involving any amount of selection criteria in 
terms of relatively accurate, time saving and ease of operation [30]. Abhang et al. 
optimized the machining parameters for turning of EN-31 steel alloy with the 
MOORA technique. While different cutting speeds (39, 112 and 189 m/min), 
feeds (0.06, 0.1 and 0.15 mm/rev), cutting tool nose radii (0.2, 0.4 and 0.6 mm) 
and depths of cut (0.4, 0.8 and 1.2 mm) were used as independent variables, tem-
perature, cutting force and tool wear were used as the dependent variables or 
experimental outputs. It was stated that all independent variables used for the 
dependent in the machining of EN-31 steel alloy should be used at the lowest 
values. Gray relational analysis and MOORA results were found to be compatible 
with each other [31]. Sahu et al. optimized the SR of AISI 1040 stainless steel 
with MOORA in the EDM process, using selective laser sintering (SLS) manu-
factured AlSiMg, standard copper and brass electrodes. Ton: 100, 200 and 300 µs 
and discharge current (Ip: 10, 20 and 30 A) were used as independent variables. 
According to the MOORA optimization, it was revealed that better surface qual-
ity was obtained by using AlSiMg electrode, Ip: 10 A and Ton: 100 µs parameters 
under the same conditions. In other words, it was determined that the lowest Ip 
and Ton values and the electrode manufactured with SLS should be used in terms 
of better surface quality [32]. Sahoo et al. optimized the experimental parameters 
in the WEDM process of High carbon high chromium steel with the MOORA 
technique. MRR, KW and average SR experimental outputs were obtained using 
different pulse width time (Ton: 15, 20 and 25 µs), pulse off time (Toff: 25, 30 and 
35 µs) and wire feed rate (WF: 8, 10 and 12 m/min) parameters. It was deter-
mined that MRR, KW and SR increased with increasing of Ton and decreased 
more slowly with increasing of Toff. It was revealed that Ton: 15 µs, Toff: 35 µs 
and WF: 10 m/min should be used to maximize MRR and minimize KW and SR 
with MOORA. It was also stated that these results were the best combination for 
efficient machining work in industries [33].

TABLE 3.2
Confirmation Test Results [28]

Initial Machining 
Parameter

Optimum Machining Parameter

Predicted Experimental
Parameter level TONI IIWSI WTI FPII TONII III WTIIWSI FPII TONII III WTIIWSI FPII

Ra 3.78 2.31 2.27

Rq 4.64 4.33 4.12

Rz 22.4 20.18 19.77

MH 413.40 424.28 427.15

MFRG 0.686 0.89792 0.75

Improvement in MFRG 9.33%
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3.3.4  Weighted Aggregated Sum Product ASsessment (WASPAS)

WASPAS is a multi-response appropriate decision-making method. A mutual opti-
mality criterion is determined based on two optimality criteria in this method. It 
is used to evaluate a set of alternatives according to a set of decision criteria. It is 
quite practical and utilizes heavily on the concept of ranking accuracy. It is pre-
ferred in multiple response systems in terms of different engineering fields to find 
the optimum parametric setting for combined output responses [34]. The WASPAS 
technique is a unique combination of two commonly used MCDM techniques. In 
other words, WASPAS, which combines the Weighted Sum Model (WSM) and the 
Weighted Product Model (WPM), increases the ranking accuracy of the alternatives 
[35, 36].   ×

xij n m
 decision matrix consisted of according to Eq. 3.15 with “n” alterna-

tive and “m” criteria in the first stage.
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According to Eq. 3.16, the decision matrix is normalized in the second stage. Here, 
Xij is normalized decision matrix. Nb and Nnb represent benefit and non-benefit 
criteria, respectively. Nb is desired to be large, while Nnb is desired to be small.
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According to Eq. 3.17, the relative importance of the alternatives is calculated using the 
WSM method. Here, Wj: is the weight value of the j criterion. According to Eq. 3.18, 
the total relative importance of the i. alternative using the WPM method is calculated.
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As a result of the weighted combination of additive and multiplicative methods, the 
mutual generalized criterion is calculated as in Eq. 3.19 [37].

	 = +( ) ( )Q Q Qi i i0.5 0.51 2 	 (3.19)

Total relative importance of the i. alternative for improved and reliable ranking accu-
racy in WASPAS is determined by Eq. 3.20 [38].

	 ( )= λ + − λ( ) ( )Q Q Qi i i11 2 	 (3.20)
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All alternatives are ranked according to their Q values. The highest Q value has the 
best alternative. The WASPAS method turns into WPM in the case of λ = 0 and WSM 
in the case of λ = 1 [39–42]. It has been determined that there are some studies in the 
literature about WASPAS. Pathapalli et al. optimized the machining parameters in turn-
ing of stir casted and TiC reinforced Al6060 metal matrix composite with the WASPAS 
technique. Optimum parameters for maximum MRR, minimum cutting force and SR 
were determined using different input variables of speed (700, 950 and 1200 rpm), feed 
rates (0.1, 0.13 and 0.16 mm/rev), depths of cut (0.1, 0.2 and 0.3 mm) and TiC reinforce-
ment rates (5, 10 and 15 Wt.%). It was determined that all experimental outputs were 
affected by speed, feed rate and reinforcement ratio. While MRR and SR were affected 
from speed by 53.41% and 47.75%, respectively. Cutting force was affected from feed 
rate by 59.25%. It was observed that WASPAS and MOORA exhibited similar results 
[39]. Reddy et al. optimized the AWJM process parameters for the Inconel-625 alloy 
using WASPAS and MOORA. While different SOD (1, 1.5 and 2 mm), traverse speed 
(97, 117 and 146 mm/s) and sand flow rate (200, 220 and 250 g/min) were used for 
independent variables, MMR, KW and SR were used for dependent variables. It was 
determined that MRR increased with the increase of traverse speed and abrasive 
flow rate, and while SR increased with the increase of abrasive flow rate, it decreased 
with the increase of traverse speed. While KW increased with increasing of SOD, 
it decreased with increasing of traverse speed. It was found that the ranking of the 
alternatives obtained with WASPAS and MOORA was the same [40]. Prasad et al. 
optimized AJM process parameters of nickel 233 alloy with WASPAS and MOORA 
using different pressure (5, 6 and 7 kgf/cm2), abrasive grain size (300, 400 and 500 µm) 
and SOD (5, 7 and 9 mm) according to MRR, SR and Ta outputs. Optimum output 
values with WASPAS were determined as maximum MRR: 1 mg/min, minimum SR: 
0.5679 µm and Ta: 0.2977°. According to the results, it was observed that there was a 
parallelism between WASPAS and MOORA [43]. Tudu et al. optimized the indepen-
dent variable parameters in the EDM and WEDM processes of Ti-6Al-4V alloy with 
WASPAS and multi-objective genetic algorithm (MOGA). Experimental outputs were 
calculated as MRR and SR, while the independent variables were used as Ton, Toff, Wf 
and wire tension (Wt). It was revealed that MOGA was more flexible for constrained 
and unconstrained complex integer problems to find optimum parameters [44]. Sahoo 
et al. optimized spindle speeds (600, 650 and 700 rpm), feeds (0.25, 0.375 and 0.5 mm/
min) and depths of cut (0.2, 0.3 and 0.4 mm) variables with WASPAS according to tool 
vibration (V) and SR in turning of Al6063-T6 alloy. Optimum cutting parameters were 
calculated as spindle speed: 600 rpm, feed rate: 25 mm/min and depth of cut: 0.3 mm 
for minimum V: 69.580 dB and SR: 0.596 µm [45].

3.3.5 EVA luation of MIXed Data (EVAMIX)

EVAMIX, which is among the decision-making analysis approach systems, reduces 
the selection time or decision-making process by using complex, independent quan-
titative and qualitative features. Because of these features, EVAMIX is flexible 
and different from other methods [46]. It is among the compensatory methods and 
the qualifications are independent of each other. It is not necessary to convert the 
qualitative features into quantitative features in this method. The input information 
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of EVAMIX is explained using a matrix of alternatives and attributes based on 
information obtained from the decision-maker [47]. Firstly, the (m×n) size decision 
matrix is created in this technique and the weights of the criteria are calculated 
[48]. Here, n is the number of alternatives and m is the number of relative features 
selected [49]. In the next step, linear normalization is performed in the range of 0–1. 
The dominance scores of each pair of alternatives ( )′i i,  are calculated for all rank 
and main criteria using Eqs. 3.21–3.23. Here, the features are divided into two cat-
egories as ordinal (O) and cardinal (C). Here rij refers to the evaluation of alternative 
Ai based on attribute C j. ′ri j is the evaluation of alternative Ai

' based on the attribute 
C j. Wj is the weight attributed to the feature calculated by both techniques. Cardinal 
attributes are compared with the calculation of the dominant factor ′aii , which indi-
cates the superiority of Ai to Ai

'. ′aii  is calculated according to Eq. 3.21.
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′aii  and γ ′ii  are dominance scores for alternative pairwise (ii′) scores according to 
ordinal and cardinal criteria. Since ′aii  and γ ′ii  will have different units of measure, 
a standardization in the same unit is required. Standardized dominance scores can 
be written as Eq. 3.24.

	 ( )( )δ = = γ′ ′ ′ ′h a d hii ii ii iive  	 (3.24)

h represents a standardization function. Standardized dominance scores can be 
obtained using three different approaches. Standardized rank score δ ′ii( ) and car-
dinal dominance score ′dii( ) for the alternative pair (i,i′) using the additive interval 
technique is calculated according to Eqs. 3.25 and 3.26.
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Standardized cardinal dominance score in case of the highest rank dominance score 
for the alternative pair is calculated according to Eq. 3.26. Here ( )γ γ+ −,  is the highest 
(lowest) cardinal dominance score for the alternative pair (i, i′).
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Assuming that the wj  weights have quantitative properties, the general dominance 
scale ′Dii  for each pair of (i, i′) alternatives is calculated according to Eq. 3.27.

	 = δ +′ ′ ′D w w dii O ii C ii 	 (3.27)

wO is the sum of the weights for ordinal criteria = ∑ ∈( )w wO j O j . wC is the sum of 
the weights for the cardinal criteria = ∑ ∈( )w wC j C j . This overall dominance score 
indicates the degree of dominance of ai over ′ai  for the given feature set and weights. 
In other words, the ′Dii  can be accepted as a k function of the founder evaluation 
scores according to Eq. 3.28.

	 ( )=′ ′D k s sii i i, 	 (3.28)

In the final stage, the evaluation score is calculated for the alternative (Si). According 
to this result, the final preference of the candidate alternatives is determined. The 
best alternative is the one with the highest value of the evaluation score. Accordingly, 
the evaluation score of the alternatives is calculated according to Eq. 3.29. The result-
ing Si values are ranked in descending order [48–50].
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It was determined that the material selection has been made for the appropriate 
manufacturing conditions using EVAMIX in the literature [48, 51]. In another study, 
Chatterjee and Chakraborty found optimum non-traditional machining (NTM) tech-
nique using EVAMIX. Criteria affecting the NTM selection decision were deter-
mined as tolerance and surface quality (TSF), power requirement (PR), MRR, cost 
(C), tooling and fixtures (TF), tool consumption (TC)), safety (S), workpiece mate-
rial (M) and shape property (F). In the first example, the Electrochemical machining 
(ECM) method was in the first place in the machining of a stainless steel material 
according to the ranking, while Abrasive jet machining (AJM) was in the last place. 
The best result was obtained with Electrochemical machining (EDM in the machin-
ing of aluminum alloy, while the worst result was obtained with AJM. The best result 
was obtained with USM for ceramic materials, while the worst result was obtained 
with the ECM process. They also stated that the EVAMIX algorithm provided much 
more flexibility than other MCDM methods due to the characteristics of cardinal 
and ordinal data designed to combine the output into a single evaluation score[52].

3.3.6 OC cupational Repetitive Actions (OCRA)

OCRA was developed by Parkan in 1991 to calculate the performance of alternatives 
in performance and efficiency measurement and analysis problems. It uses a heuris-
tic approach to combine the decision-maker’s preferences with the relative impor-
tance of the criteria [53]. The main purpose of the OCRA method is to evaluate the 
alternatives based on benefit and non-benefit criteria and to obtain the final ranking 
by combining these two classification sets [54]. The relative weights of the criteria 
depend on the alternatives in the OCRA method. Different alternatives in different 
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weight distributions are assigned to the criteria. It can be applied to all alternatives. 
Benefit (maximization) and non-benefit (minimization) criteria can be handled sepa-
rately in this method. This helps decision-makers not to lose information in the deci-
sion-making process. Another important advantage of the OCRA method is that it is 
a non-parametric approach. In other words, the calculation procedure is not affected 
by the addition of any additional parameters, as in other MCDM methods. The result 
can be achieved with less calculation processes. While only six steps are required 
to solve a particular decision-making problem using the OCRA method, nine steps 
are required in the TOPSIS method [54]. According to Eq. 3.30, decision matrix is 
formed in the OCRA method as in other methods. Here, aij, represents the perfor-
mance value of i alternative in the j criterion. m and n are the number of alternatives 
and criteria, respectively.
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Preference ratings are determined according to non-benefit criteria. According to 
all non-benefit criteria, the total performance of the i. alternative is calculated. 
According to criteria, the ranking of preference is determined by Eq. 3.31. Here, 
Ii is the i. the relative performance value of the alternative according to the non-
benefit criteria, q: number of non-benefit criteria, ai

k : the performance score of i 
alternative in the k criterion and wk: the weight of the non-benefit k criterion. When 
i alternative is preferred according to the k criterion unlike the m alternative, it is 
accepted as <a ai

k
m
k .
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According to Eq. 3.32, linear preference ranking is performed for non-benefit cri-
teria. Here, according to non-benefit criteria, the value of I i  is the total ranking of 
preferences for the i. alternative.

	 ( )= −I I Ii i imin 	 (3.32)

According to benefit criteria, preference rankings are calculated using Eq. 3.33. 
Here, Oi: the relative performance value of the i alternative with respect to useful 
criteria, b: the number of benefit criteria, and wh: the weight of the benefit h criterion. 
The higher an alternative score for a useful criterion, the higher the preference for 
that alternative.
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Eq. 3.34 is used for determining linear preference ranking for benefit criteria. Here 
Oi  value, refers to the total preference ranking for the i. alternative according to 
benefit criteria.

	 ( )= − minO O Oi i i 	 (3.34)

According to Eq. 3.35, the general preference ranking is calculated at the last stage. 
Here, Pi represents the total preference value and this value is obtained for each 
alternative. Thus, the full ranking of the alternatives is revealed based on the general 
preference stages. The alternative with the highest general performance rating is in 
first rank. The alternative with the highest total preference value is determined as the 
best alternative [54, 55].

	 ( ) ( )= + − +minP I O I Oi i i m m 	 (3.35)

In studies on the OCRA method, Madic et al. used the OCRA method for optimum 
non-conventional machining technique selection [54]. Non-conventional machin-
ing technique selection was also made using different MCDM methods in [56] 
and [57]. As a result, it was stated that a good correlation was obtained with the 
study results of the mentioned authors [54]. A similar finding was also found in 
[58]. Patel and Maniya optimized the process parameters in the WEDM process 
of Al-SiC composite material with OCRA. They used different Ton (108, 115, 123 
and 130 µs), Toff (50, 54, 58 and 62 µs), wire diameter (0.25 and 0.3 mm), uncoated 
and zinc coated wire as independent variables. MRR, SR and cutting velocity (CV) 
were calculated as experimental results. Optimum parameters for uncoated elec-
trode wire were measured as Ton: 123 µs, Toff: 58 µs and wire diameter: 0.25 mm. 
Optimum parameters for zinc-coated electrode wire were calculated as Ton: 130 
µs, Toff: 50 µs and wire diameter: 0.3 mm. While MRR and CV improved under 
the same conditions with zinc-coated wire, SR increased with uncoated wire. 
Small wire diameter increased MRR and CV, while large wire diameter increased 
machined SR [59]. Kumar and Ray selected the optimum gear material with 
OCRA, EXPROM-2, ORESTE and MOOSRA. Alternatives were selected as cast 
iron, ductile iron, Spheroidal graphite (S.G.) iron, cast alloy steel, through hard-
ened alloy steel, surface hardened alloy steel, carburized steels, nitrided steels and 
through hardened carbon steel. Criteria were determined as surface hardness, core 
hardness, surface fatigue limit, bending fatigue limit and ultimate tensile strength. 
It was determined that OCRA and EXPROM-2 techniques gave better results than 
other MCDM methods and the calculation process was easier [60]. Patel and Maniya 
optimized the WEDM process parameters of Al6061 metal matrix composite mate-
rial different reinforced (SiC, B4C and ZrO2) using OCRA, ARAS (Additive ratio 
assessment), TOPSIS, MOORA and GRA techniques. For this, they used different 
wire materials (copper, brass and molybdenum), wire diameters (0.2, 0.25 and 0.3 
mm), Ton (108, 118 and 128 µs), Toff (50, 55 and 60 µs), PCs (100, 150 and 200 amp) 
wire tensions (4, 7 and 10 kgf) and wire feeds (3, 6 and 9 m/min). MRR, CV and 
SR were measured as experimental output. Optimal parameters in SiC reinforced 
material for maximum MRR and CV, and minimum SR were determined brass  
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wire material, wire diameter of 0.25 mm, Ton of 128 µs, Toff of 50 µs, PC of 150 
amp, wire tension of 10 kgf, wire feed rate of 3 mm/min. The optimum parameters 
for B4C and ZrO2 reinforced material were determined as brass wire material, 
wire diameter of 0.25 mm, Ton of 128 µs, Toff of 50 µs, PC of 100 amp, wire tension 
of 7 kgf, wire feed rate of 9 mm/min. In addition, it was found that the proposed 
ranking methods were successful to reveal the best alternative [61].

3.3.7 � Multi-Attributive Border Approximation 
Area Comparison (MABAC)

It is the new MCDM method used by Pamucar and Cirovicfoth for rational decision-
making and obtaining consistent solutions. This method is capable of calculating 
the distance measure between each alternative and the border approximation area 
and making reasonable decisions. It is recommended as one folded because it pro-
vides stable solutions compared to other MCDM methods. In addition, this method 
takes into account hidden gain and loss values and can be used as a hybrid with 
other approaches [62–64]. In the first stage, a decision matrix is created according to 
Eq. 3.36, and the weight of the criteria is decided for this method. Here, m and n are 
the number of alternatives and criteria, respectively.
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In the second step, the decision matrix is normalized for easy comparison and 
conversion to dimensionless. For each criterion, the maximum value aj,max and the 
minimum value aj,min are calculated. The decision matrix is normalized according 
to Eq. 3.37 and Eq. 3.38 for the benefit and cost type criteria, respectively. Here, aij 
is performance measurement of the i alternative of j criterion.

	 =
−

−
a

a a

a a
ij
n ij j

j j

,min

,max ,min

	 (3.37)

	 =
−

−
a

a a

a a
ij
n j ij

j j

,max

,max ,min

	 (3.38)

The weighted normalized decision matrix is created by calculating according 
to = +a w a wij

w
j ij

n
j mathematical formula. wj  is the weight of j criterion in this 

formula. Border approximation area matrix values are calculated according to 
Eq. 3.39.
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Distance from border approximation of alternatives area is determined according to 
Eq. 3.40. The total distance of each alternative from the border approximation area 
is calculated according to Eq. 3.41. In the last step, the total distances of the alterna-
tives from the border approximation area are determined in descending rank and the 
final ranking of the alternatives is created [64–67].
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In studies about MABAC, Paramasivam et al. optimized with MABAC the machin-
ing parameters of AM-60 magnesium alloy under different conditions using a cryo-
genic-treated tool. Different cutting speeds (2000, 2500 and 3000 rpm), feeds (0.24, 
0.3 and 0.36 mm/rev) and drill bit treatment were used as input parameters, while 
output parameters were MMR, SR, PR, feed force, burr height and circularity error 
(Figure 3.6). It was stated that the result classification scheme was used to optimize 
the machining parameters with MABAC. Therefore, it was revealed that it was a 
simple and useful tool for practical decision-making problems. The optimum param-
eters with this method were calculated as a cutting speed of 3000 rpm, feed rate of 
0.36 mm/rev and two tempering cycled tools [68].

Shivakoti et al. optimized Ton, Toff, wire tension and servo voltage according to CS 
and SR in the WEDM process of D3 die steel using MABAC. Optimum parameters 
for minimum SR and maximum cutting speed were determined as servo voltage: 40 V, 
Ton: 115 µs, Toff: 45 µs and wire tension: 7 kgf. According to the optimum points, the 
SR and cutting speed values were calculated as 1.556 µm and 2.54 mm/min, respec-
tively [64]. Chatterjee et al. studied the selection of unconventional machining pro-
cesses with FARE (Factor relationship)-MABAC. When the results were compared 

FIGURE 3.6  Block schema for MABAC [68].
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with the reference [69], it was revealed that it was quite compatible with the results of 
the current algorithm. It was stated that it could contribute to the decision-making of 
engineers and designers in the selection of the best alternative [70].

3.4  CONCLUDING REMARKS

There are many different types of MCDM used in the literature. Different methods 
are preferred according to different sectoral applications. Many MCDM techniques 
continue to be developed according to the needs. VIKOR is a consensus-based rank-
ing method that provides the closest decision to the ideal solution under certain con-
ditions by creating a multi-criteria ranking index among the alternatives. COPRAS 
compares the alternatives with each other and reveals how good or how bad they 
are compared to the other alternatives as a percentage. As a result, it contributes to 
the ranking of alternatives. It shows the degree of utility of the alternatives and can 
be used with other methods for criterion weighting. The COPRAS method shows 
the degree of benefit of the alternatives and can be used with other methods for 
criterion weighting. Calculations can be performed for both maximizing and mini-
mizing criteria. The criteria can be handled and evaluated separately during the 
evaluation process. MULTIMOORA is a method based on numerical data. It is a 
process of simultaneous optimization of alternatives under certain constraints. The 
results obtained by using the MOORA method and Fully Multiplicative Form are 
combined according to their order-dominance status. It is more robust than other 
methods based on ordinal measures. It is possible to work on positive data. WASPAS 
is preferred in applications where high consistency is desired in the ranking of alter-
natives by increasing the ranking accuracies and optimizing the calculated weighted 
integrated function. The ranking of alternatives according to performance is taken 
into account in the OCRA method. Criteria including numerical and verbal data with 
EVAMIX can be examined at the same time and used to rank the alternatives. The 
MABAC method is used to determine the most suitable alternatives. It handles com-
plex and uncertain decision-making problems by calculating the distance between 
each alternative and the boundary approach area. MCDM comes to the fore in sub-
jects and engineering applications where many options have an impact on the pro-
cess. The concepts of cost, quality and time come to the fore in the manufacturing 
industry. In this context, manufacturing methods include many variables. For this 
reason, MCDM is preferred as an assist tool in determining the most appropriate 
performance conditions by reducing cost and time in manufacturing. In particu-
lar, different results can be obtained depending on the cutting parameters inputs in 
machining techniques. In this context, it is necessary to determine the suitability of 
processing parameters such as Ton, Toff, SOD, PC, wire diameter, wire type, servo 
voltage, pressure, abrasive grain size, feed, cutting speed and depth of cut which 
can affect the result in cutting processes. For this, it is possible to avoid unnecessary 
cutting operations by first analyzing experimental outputs such as MRR, SR, KW, 
cutting force and Ta with MCDM methods. The aim of the analysis is to obtain the 
best solution that provides the manufacturing conditions. On the other hand, MCDM 
accelerates decision-making processes and increases decision quality. Effective, 
accurate and real-time solutions of real-life problems can be realized by using these 
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methods. Results with high accuracy values are obtained with mathematical models 
that best reflect the characteristics of the cutting process and their interactions with 
other factors in the environment using MCDM methods. Thus, it is possible to prefer 
MCDM techniques in different disciplines.
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4.1  INTRODUCTION

Depending on the industrial application and service requirement, die sinking electri-
cal discharge machining (EDM) and wire electrical discharge machining (WEDM) 
are the two major variants of EDM. Material removal in EDM machining is done 
by melting, vaporizing and controlled erosion by continuous electric sparks between 
workpiece and tool immersed in a dielectric medium [1]. Unlike the die sinking elec-
trode, metal wire is used as the electrode in WEDM [1]. Commonly used wire elec-
trodes are made from brass and coated steel wires, however, tungsten or molybdenum 
wires are preferred when a thin wire is required for machining [2]. During machining, 
two guide wires provided on above and below the workpiece are used to control the 
longitudinal movement of the wire. Wires ranging from 0.05 to 0.30 mm in diameter 
are used, which helps to cut difficult contours in hard-to-machine surfaces. A pulsed 
DC supply is used to generate a potential difference between the electrode and the 
workpiece [3]. The sparking between electrode and workpiece leads to the genera-
tion of heat, which results in the removal of material in the form of debris. Material 
is removed both from wire electrode and workpiece. WEDM machine also uses a 
nozzle that functions by injecting the coolant, commonly referred as dielectrics, into 
the machining zone and flushing away the debris. A computer-based positioning 
system maintains a constant gap between the wire electrode and the workpiece to 
be machined. WEDM is especially used in machining area, where close precision 
and very fine machined surface is a prerequisite. Different areas of application are 
in aerospace, medical, semiconductor, tool and die making and micro tooling. An 
electro-hydraulic servo valve (EHSV) is a major component of servo systems due to 
high degree of control precision, high reputability and accuracy, less weight, quick 
response and immunity from variations in load. Despite of many advantages offered 
by EHSV, it is a failure prone component that affects the reliability of a servo control 
system. Since inception, the technology of WEDM has undergone significant improve-
ments to achieve the manufacturing requirements, and thus WEDM has developed as 
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a suitable method for machining of EHSV [4]. To achieve a high rate of production in 
WEDM, economics of machining and optimization of processing parameter is very 
necessary. The study presents an experimental analysis with the aim of optimizing the 
WEDM process for machining of spool bore in EHSV. Optimization is proposed to 
control the performance measures, namely MRR, Cyl. and Ra. In a WEDM operation 
of spool bore, MRR determines the rate of production; Ra shows the machining qual-
ity and Cyl. is a measure of the deviation of a machined surface from that of a perfect 
cylinder [5]. Selections of optimal processing parameters have been investigated by 
many researchers, but the studies were mainly concentrated toward optimization of 
MRR, Ra and kerf width [5–10]. However, the major problem lies in the maintaining 
of cylindricity and smooth surface finish for maintaining the accuracy and reliability 
of the system. Thus, the following research gaps were recognized: (i) Optimization 
mainly focused toward improvement in MRR, Ra and kerf width (ii) Being a critical 
response affecting the system performance and reliability, cylindricity (Cyl.) is not 
valued by previous researchers. Thus authors got motivated to bridge this gap by 
considering the cylindricity of spool bore and its smooth surface finish as their prime 
performance output. The economy of machining is also considered by adding MRR 
into the list of investigating responses.

Taguchi-based orthogonal arrays (OAs) method is used for designing the experi-
ments [11]. The predominant advantage of this technique lies in its simplicity and 
adaptability. They provide the required information making use of only the mini-
mum number of experiments and still give outcomes which have good accuracy and 
are reproducible. The present work uses the Taguchi technique to design the experi-
ment and optimizes the parameter with respect to the quality measures considered 
one at a time. Grey-based Taguchi analysis is used as a multi-response optimization 
method for simultaneous optimization of input variables i.e. Average machine volt-
age (A), time interval between two pulses (B), frequency (C) and wire tension (D) 
on different quality measures, namely MRR, Ra and Cyl. Taguchi-grey relational 
analysis (GRA) uses simple calculations and smaller sample size without any typical 
sample distribution and yields the result which does not have the conflicting conclu-
sions from the qualitative analysis [12].

4.2  EXPERIMENTAL DETAILS

An EHSV, shown in Figure 4.1, is an electrically operated valve which regulates 
the hydraulic fluid sent to the actuator. It also offers accurate positional control, 
velocity and pressure control, force with good post-movement damping character-
istics. The body of the EHSV is made of stainless steel (SS) 440C, which possesses 
high carbon content, shows higher strength, modest corrosion resistance and also has 
good hardness and wear resistance property. Grade 440C can be post-heat-treated 
to achieve the maximum wear resistance, hardness and strength among all the 
stainless steel alloy families. Table 4.1 presents the composition of 440C graded 
stainless steel. WEDM of 440C graded stainless steel is done using a brass wire elec-
trode of 0.25 mm diameter with a vertical arrangement. ROBOFIL 240CC 5 axis  
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CNC WEDM machine, manufactured by Charmilles (Figure 4.2), was used to con-
duct the experimentation in accordance with Taguchi L9 OA.
The machine setup has a work table, power supply system, a dielectric flushing 
system, a positioning control system and a wire drive system. The machine offers the 
option of either coaxial flushing of the dielectric or having the workpiece submerged 
within the dielectric. The present work uses the submerged mode of arrangement as 
it ensures greater accuracy and better surface finish because of better cleaning of the 
debris provided in the gap between the workpiece and wire electrode and also better 
thermal stability. The process parameters are varied using the control panel.

4.2.1 S election of Processing Parameters

The parameters which were kept constant throughout the experimentation are 
referred as fixed parameters and are shown in Table 4.2. The process parameters 
were selected based on the preset arrangement of the settings for the production and 
process and from conducting the pilot experiments by varying one factor at a time. 
The process parameters taken into account are, namely, set value of average machine 
voltage (A), interval between two pulses (B), frequency (C) and wire tension (D).

Input parameters and their corresponding levels are presented in Table 4.3. The 
levels are chosen based on the data collected by running pilot experiments at different 

FIGURE 4.1  Body of a Type II EHSV.

TABLE 4.1
Composition of 440C Graded Stainless Steel in Wt%

Fe C Cr Mn Si Mo
79.15 1.10 17.00 1.00 1.00 0.75
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values for the four process parameters varied one at a time and selecting those levels 
where an appreciable amount of change in the quality characteristics is observed.

4.2.2  Machining Profile

The machining process under investigation involves the enlargement of a spool bore 
from a given diameter of 4.00 mm to 4.480 mm. The cylindrical bore has a depth 
(height) of 30.50 mm. The Brass wire moves in a circular path following the inner 
periphery of the spool bore. During machining, the wire and the wall of the spool 
bore should be close enough without actually making any contact. The wire tool 
hence traces a circular path. A single experiment consists of 4 complete passes, two 

FIGURE 4.2  ROBOFIL 240CC WEDM setup.

TABLE 4.2
Fixed Parameters

Parameters Value
Workpiece Stainless steel 440C

Angle of cut Vertical

Wire type Brass (0.25 mm diameter)

Location of workpiece Center of the table

Dielectric used Water

Depth of workpiece 30.50 mm

Injection pressure 10 bar
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clockwise passes and two anticlockwise. The first run is anticlockwise, which per-
forms a roughing operation, followed by three runs of finishing operations where 
the run occur in a sense that is clockwise, anticlockwise and clockwise, respectively. 
Numerical control part programming is generated in accordance with the defined 
wire path and fed into the machine through the control panel/computer. Required 
corrections can be made directly through the control panel on the machine or through 
the computer connected to the machine.

4.2.3  Modules of Data Collection

Material removal rate (MRR) – MRR is computed in accordance with the Eq. (4.1):

	 =MRR
Volume of  the work piece lost during machining

Time taken for machining
	 (4.1)

Workpiece dimensions are measured before and after machining using co-ordinate 
measuring machine (CMM) as shown in Figure 4.3. The difference in the volume of 

TABLE 4.3
Input Parameters and Their Levels

Parameters Unit Symbol

Levels

1 2 3
Set value of average machine voltage V A 48.1 49.0 50.0

Time interval between two pulses µs B 6.50 7.00 7.50

Frequency kHz C 40.0 50.0 60.0

Wire tension N D 1.00 1.50 1.60

FIGURE 4.3  Hexagonal DEA CMM setup.



89Taguchi-Based GRA Method

the spool bore before and after machining is then divided with the total machining 
time to obtain the MRR. MRR is measured in mm3/sec.

Surface roughness (Ra) – Taylor Hobson SURTRONIC 25 machine, as shown 
in Figure 4.4, is used to measure the average Ra value. A probe of diameter 4 mm 
is calibrated to a reference value of 6 microns using a reference plate (Figure 4.4). 
The traverse length is set as 30 mm and the three measurements taken are all along 
different traverse lines so as to not distort the succeeding reading due to the probe 
picking up any abnormality caused by the preceding traverse.

Cylindricity (Cyl.): Cylindricity of the hole is measured using a Taylor Hobson 
Talyrond 365 machine, as displayed in Figure 4.5. Eight reference circles at various 

FIGURE 4.4  Taylor Hobson SURTRONIC 25.

FIGURE 4.5  Taylor Hobson Talyrond 365 used to measure cylindricity.
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heights in the spool hole are taken and the corresponding values are averaged to give 
us the average cylindricity value. The minimum zone reference circle method (LSCI) 
is used to calculate Ra value (Peak to valley out of roundness). In order to measure the 
roundness of the circle, rotation is coupled with the ability to measure the change in the 
radius. To achieve this profile of the component (spool bore) under testing is compared 
to a circular datum. Circular datum is provided by the rotation of the component on 
a highly accurate spindle. The axis of the spool bore is aligned with the axis of the 
spindle. As the component is rotated, a probe is entered from the top and measures the 
variations in the profile along the eight reference circles mentioned above.

4.2.4 D esign of Experiment

Three quality characteristics, namely MRR, Cyl. and Ra, were evaluated. Experiments 
are designed in accordance with the full factorial design approach, which covers all 
the possible arrangements for a particular experimental setup. Taguchi’s OA reduces 
the number of experimental trials required [12, 13]. Four process parameters each of 
three different levels are used, and thus each process parameter will contribute two 
degrees of freedom, thereby making total degree of freedom (DOF) as 8. Interactions 
among the parameters are neglected [14]. For the selection of OAs, DOF of the OAs 
must be equal to or greater than those of the process parameters. An L9 array will 
have eight degrees of freedom (i.e.: 9 – 1 = 8). It has already been specified that the 
process parameters used here have eight degrees of freedom. The DOF for the OAs 
is equal to the DOF of the process parameters, and hence L9 for the experiments is 
chosen. Table 4.4 presents the experimental sequences in terms of an L9 array con-
sidering the process parameters A, B, C and D.

4.3  METHODOLOGY

In accordance to Taguchi standard, S/N ratio signifies the signal-to-noise ratio where 
signal is the requisite value and the noise represents the unwanted value. This ratio 
also represents the ratio between mean and square deviation. It is designated by “n” 
and labeled in decibel (dB). Higher the better (HB) characteristic is chosen for MRR, 

TABLE 4.4
Experimental Layout of L9 Array

Exp. No. A B C D
1 48.1 6.5 40 1.0

2 48.1 7.0 50 1.5

3 48.1 7.5 60 1.6

4 49.0 6.5 50 1.6

5 49.0 7.0 60 1.0

6 49.0 7.5 40 1.5

7 50.0 6.5 60 1.5

8 50.0 7.0 40 1.6

9 50.0 7.5 50 1.0
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whereas lower the better (LB) option is preferred for Ra and Cyl. S/N ratio for MRR 
is computed using Eq. (4.2) and Ra and Cyl. are calculated using Eq. (4.3).
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Taguchi method is preferred for optimization of a single objective function, but it 
cannot be implemented for optimization of multiple objective functions or responses 
directly. Hence, the data for every response observed using Taguchi’s designs can 
be analyzed by other methods to obtain a solution for the multi-responses prob-
lems. The present research used Taguchi-based GRA method for multiple optimi-
zations of the responses. The grey Taguchi technique is an approach for dealing 
with systems that are incomplete, uncertain or poor. The technique of GRA finds 
wide applications in processes with multiple responses or multiple quality charac-
teristics such as rapid prototyping, EDM and welding [14–17]. GRA method trans-
lates multiple performance measures into a single response, namely grey relational 
grade (GRG) and GRG will help in determining the optimal combination of process 
parameters for all the responses simultaneously [18].

The steps used in the GRA method are:

i.	Step 1 – Depending on the nature of response i.e. either HB or LB, data 
obtained for quality characteristic is converted in terms of its S/N ratio (Yij) 
using the appropriate formula.

ii.	Step 2 – To reduce variability and to avoid the confusion of using different 
units for different quality characteristics Yij is normalized as Zij (0 ≤ ZIJ ≤ 1). 
Normalizing is to transform the inputs, evenly distribute the data and scale 
it to an acceptable range.

iii.	Step 3 – From the normalized S/N ratios, grey relational coefficient (GC) 
is then calculated.

iv.	Step 4 – Grey relational grade (Gi) is computed.
v.	Step 5 – Optimal levels for the input variables or factors are then selected 

by using maximum average Gi values using the response graph method or 
ANOVA.

4.3.1 G rey Relational Generation

It is commonly observed that while measuring the performances of different quality 
characteristics, the influence of a few of them is neglected owing to the difference 
in the units of the characteristics. Sometimes this could also occur if some charac-
teristics occur over a large range. This may also lead to incorrect result if the objec-
tive of quality characteristics is different. Hence, it becomes vital to normalize the 
data points, thereby processing the performance values for every alternative. This is 
called grey relational generation.
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If the target value of the selected response is much larger, then “larger-the-better” 
characteristic is used and the results are expressed in accordance with Eq. (4.4). 
Here, in this study, this type of equation is used to normalize the values obtained 
for MRR.

	 =
−

−
Z

Y Y

Y Y
ij

ij ij

ij ij

min( )

max( ) min( )
	 (4.4)

The normalized smaller the better characteristic is expressed in accordance with 
Eq. (4.5). Eq. (4.5) is used to normalize the values obtained for Cyl. and Ra.
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After performing the grey relational generation operation, every responses are scaled 
into [0, 1], where closeness to 1 or equal to 1 is considered as the best alternative 
or vice-versa. While, alternative closest to or equal to 1 does not actually exist and 
hence reference sequence Yo = {Yoj = 1| j = 1, 2, 3, …, n} is opted to suggest the alter-
nate having comparability sequence closest to the reference sequence. For the same, 
grey relational coefficient (GC) is considered. For a larger value of GC Yij and Yoj are 
closer. Eq. (4.6) is used to compute the GC,

	 = ∆ + λ∆
∆ + λ∆

GCij
ij

,min max

max

	 (4.6)

where ∆ denotes the absolute difference between Yoj and Yij, which shows its deviance 
from the target value and it is considered as quality loss. ∆min and ∆max refer to the 
minimum and the maximum values of the delta. Yoj and Yij are the optimal perfor-
mance or normalized value and the ith normalized value of the jth response variable.

λ denotes the distinguishing coefficient defined in the range 0 ≤ λ ≤ 1. Here we 
have taken the value of λ to be 0.33 since we have three quality characteristics and 
we are giving the three of them equal weightage. λ is employed for expanding or 
compressing the range of grey relation coefficient [13]. λ in the defined range pro-
vides the equal design of levels of factor without disturbing them [13].

4.3.2 C alculation of Grey Relational Grade (Gi)

Gi is used to represent the relationship between the comparability sequence and the 
reference sequence and is computed using Eq. (4.7).

	 = ∑G
m

GCi ij
1

	 (4.7)

Higher value of Gi represents the closer corresponding combination of factors to the 
optimal value. Gi is considered as a single response problem and values are analyzed 
to decide the optimal factors and their corresponding levels.
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4.4  RESULTS AND ANALYSIS

The experiments are conducted following the OA given in Table 4.4. Three sets of 
experiments are conducted for each run, and the average values of the quality mea-
sures are calculated and tabulated. Table 4.5 shows the results from experimentation. 
The S/N ratios for MRR are calculated using Eq. (4.2) and Cyl. and Ra are computed 
in accordance with Eq. (4.3).

Once the calculations are made, the graphs for the particular control parameters 
at their three levels of application are plotted. Figures 4.6–4.8 show the graphs 
obtained for S/N ratios at different levels of application. The maxima of the 
main effects plot of each control parameter correspond to the optimal level of 

TABLE 4.5
Experimental Results

Exp. No.
MRR 

(mm3/s)
S/N ratio for 
MRR (dB) Cyl. (µm)

S/N ratio 
for Cyl. (dB) Ra (µm)

S/N ratio for 
Ra (dB)

1 0.089773 −20.9371 4.71667 −13.4727 0.723333 2.81323

2 0.103887 −19.6688 5.22333 −14.3590 0.650000 3.74173

3 0.101803 −19.8448 5.67000 −15.0717 0.670000 3.47850

4 0.102590 −19.7779 5.31000 −14.5019 0.620000 4.15217

5 0.090570 −20.8603 5.38333 −14.6210 0.636667 3.92176

6 0.102977 −19.7452 4.92667 −13.8511 0.603333 4.38885

7 0.095690 −20.3827 5.58333 −14.9379 0.536667 5.40591

8 0.100597 −19.9483 4.97667 −13.9388 0.556667 5.08810

9 0.089033 −21.0089 5.06000 −14.0830 0.616667 4.19899

FIGURE 4.6  Main effects plot for S/N ratios of MRR.
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the levels so chosen during the design of experiment for that quality characteris-
tic. Table 4.6 gives the optimal levels of factors achieved using main effect plots 
shown in Figures 4.6–4.8. The relative significance of each factor is established 
using ANOVA and Tables 4.7– 4.9 present the result conforming to each studied 
response [19, 20]. Here, the degree of freedom is represented by DOF, SS repre-
sents the sum of square, Variance is denoted by v and percentage contribution by 
(% C). It is observed from Table 4.7 that D and A are the two main factors for deter-
mining the material removal of the spool bore (SS 440C) by WEDM. Analysis of 
results showed that machining speed is inversely proportional to the set voltage 

FIGURE 4.8  Main effect plot for S/N ratio of Ra.

FIGURE 4.7  Main effect plot of S/N ratio for Cyl.
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value. Ionization takes place in the dielectric with the decrease in the voltage value 
hence causing more erosion of the workpiece, whereas a larger wire tension leads 
to a quick escape of the eroded material from within the spark gap, which aids in 
an increased MRR. Table 4.8 proposes that the frequency of the pulses (C) and the 
wire tension (D) play a major role in obtaining the best cylindrical bores. As C is 
increased, the energy available to erode the workpiece is distributed over a larger 
number of sparks, and hence the craters formed due to the erosion are reduced in 
size, which not only leads to a better surface finish but also helps maintain the 
machining profile better hence helping to maintain better cylindricity. The change 
in the tension of the wire may lead to varying overcuts and undercuts that affect 
the circularity for the difference reference circles taken, which in turn affect the 
cylindricity. Machine voltage (V) and wire tension (D) significantly affect the Ra 
value of the machined surface, as depicted in Table 4.9.

Increase in D reduces the vibrations that are caused in the wire and it can be 
observed that the direction in which the wire is fed has lesser variations in vibrations 
giving rise to a better surface finish. Increase in V also shows an increase in Ra that 
can be attributed to the craters created due to erosion being larger in size.

TABLE 4.6
Optimal Levels of Process Parameters

Process Parameter

Optimal Level

MRR Cyl. Ra
A 49.0 48.1 50.0

B 7.00 6.50 7.00

C 50.0 40.0 60.0

D 1.60 1.00 1.50

TABLE 4.7
ANOVA for MRR

Parameters DOF SS V % C F-value
A 2 2.45 × 10−5 1.22 ×10−5 7.96748 1.282723

B – 9.3 × 10−6a – – –

C – 9.8 × 10−6a – – –

D 2 0.000264 0.000132 85.82114 13.81675

Error 4 0.0000191 –

Total 8 0.000308

a Pooled
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4.4.1  Multi-Response Optimization

Table 4.6 reveals that the optimal factor levels for MRR, Cyl. and Ra are differ-
ent. ANOVA tables, as presented in Tables 4.7–4.9 for individual responses, also 
present the significant factors are also different for all the responses studied. As 
the industrial requirement needs only one factor setting at which part must be 
machined to yield optimum responses and thus multi-response optimization tech-
nique is needed to propose one optimal factor setting at which WEDM should be 
performed. Since it has already been discussed in the chapter that Taguchi method 
alone is not capable of solving problems involving multiple responses. Hence, the 
present study makes use of a Taguchi technique in combination with GRA method 
for the optimization of multiple responses (MRR, Ra and Cyl.). The present work 
uses L9 OA for designing of experimental sequence and GCij and Gi for each experi-
ment performed is presented in Table 4.10. Figure 4.9 shows the main effect plot 
for Gi, which proposes the factors and levels: A1, B3, C3 and D3 as the optimal factor 
setting. ANOVA analysis performed on Gi, as given in Table 4.11, suggest that factor 
A and D are significant.

TABLE 4.9
ANOVA for Ra 

Parameters DOF SS V % C F-value
A 2 0.01858 0.00929 72.93063 23.51614

B – 0.000403a 0.000201 1.579894 –

C – 0.000388a 0.000194 1.521408 –

D 2 0.006106 0.003053 23.96806 7.728389

Error 4 0.00079 –

Total 8 0.025476

a Pooled

TABLE 4.8
ANOVA for Cyl.

Parameters DOF SS V % C F-value
A – 0.000022a – – –

B – 0.000919a – – –

C 2 0.678085 0.339043 85.65876 720.6004

D 2 0.112586 0.056293 14.22237 119.6451

Error 4 0.000941 –

Total 8 0.791612

a Pooled
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4.5  CONFIRMATION TESTS

To verify and validate the experimental conclusions, confirmation experiments are 
conducted by determining the results of the test using a specific combination of the 
factors and levels. Eq. (4.8) is used to predict and verify the experimental conclusion.

	 ∑η = η + η − η
=

opt m

j

k

j m( ),
1

	 (4.8)

FIGURE 4.9  Main effect plot for Gi.

TABLE 4.10
Calculation of Grey Relational Grade (Gi)

Exp. 
No.

Normalized S/N ratios (Zij) Quality Loss Function (∆)
Grey Relational Coefficient 

(GCij) Grey 
Relational 
Grade (Gi)MRR Cyl. Ra MRR Cyl. Ra MRR Cyl. Ra

1 0.05358 0.00000 1.00000 0.94642 1.000000 0.000000 0.25854 0.24812 1.00000 0.50222000

2 1.00000 0.55426 0.64188 0.00000 0.445716 0.358124 1.00000 0.42540 0.47956 0.63498667

3 0.86867 1.00000 0.74340 0.13133 0.000000 0.256595 0.71532 1.00000 0.56257 0.75929667

4 0.91859 0.64365 0.48357 0.08141 0.356348 0.516431 0.80212 0.48080 0.38987 0.55759667

5 0.11089 0.71814 0.57244 0.88911 0.281864 0.427561 0.27069 0.53934 0.43561 0.41521333

6 0.94299 0.23665 0.39228 0.05701 0.763352 0.607719 0.85269 0.30182 0.35192 0.50214333

7 0.46728 0.91632 0.00000 0.53272 0.083677 1.000000 0.38251 0.79772 0.24812 0.47611667

8 0.79143 0.29149 0.12258 0.20857 0.708505 0.87742 0.61273 0.31776 0.27331 0.40126667

9 0.00000 0.38168 0.46551 1.00000 0.618324 0.534489 0.24812 0.34798 0.38173 0.32594333
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where ηopt is grand mean of S/N ratio, η j is mean S/N ratio at optimum level and k is 
the number of main input parameters affecting the responses.

Using the relationship given in Eq. (4.8), we calculate the theoretical values for 
the S/N ratios for the different responses at their optimum level. The results are cor-
related with the values obtained by performing the experiments at the optimized lev-
els and are tabulated in Table 4.12. At optimal factor setting for different individual 
responses, experiments were conducted and the result obtained was compared with 
the value achieved using the predictive confirmation equation as given in Eq. (4.8).

Based on the percentage error as obtained in Table 4.12, the resulting model is 
expected to predict the reasonable value of MRR, Cyl. And Ra. Error % of 0.48, 
0.18 and 6.78 are observed for the S/N ratio of MRR, Cyl. and Ra, which shows 
the predicting accuracy of the proposed model. Small error percentage of 7.64 
between the experimental and predictive value of Gi proves the appropriateness of 
the resulting model for multiple responses during WEDM of stainless steel 440C, 
which is used in spool bore type II EHSV. It is important to mention that increase 
in the number of experimental runs can further reduce the error and can be treated 
as a future work. This confirms the need for a mathematical model for predicting 
the measures of responses according to the input parameter assigned.

TABLE 4.11
ANOVA Table for Gi

Parameters DOF SS v % C F-value
A 2 0.08133 0.040665 59.81686 25.90953

B – 0.003139a 0.00157 2.308682 –

C 2 0.010024 0.005012 7.372486 3.193374

D 2 0.041471 0.020736 30.50123 13.21153

Error 2 – –

Total 8 0.135965

a Pooled

TABLE 4.12
Comparison of S/N Ratios between Experimental and Predicted 
Optimized Results

Responses
Optimized 
Setup

Predicted S/N 
Ratio (in dB)

Experimental 
S/N Ratio (dB) Error (%)

MRR A2B2C2D3 −19.7432 −19.6492 0.48

Cyl. A1B1C1D1 −13.4979 −13.4727 0.18

Ra A3B2C3D2 5.27769 5.66140 6.78

Gi A1B3C3D3 0.701227 0.759297 7.64
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4.6  CONCLUSIONS

An experimental investigation was performed to obtain an optimal combination of 
process parameters for the WEDM of a spool bore for a type II EHSV. The spool 
bore is made by machining of stainless steel of grade 440C. Average machine 
voltage (V), interval between two pulses (B), frequency (C) and wire tension (D) 
were chosen as the driving parameters and material removal rate (MRR), cylindricity 
(Cyl.) and surface roughness (Ra) were recorded as the output response. Experiments 
were conducted in accordance with Taguchi L9 array. Taguchi-based GRA method is 
employed as a multi-response optimization method to simultaneously optimize the 
MRR, Cyl. and Ra. Key conclusions drawn from the investigation are:

1.	For optimum MRR, the recommended parametric combination is A2B2C2D3, 
where A2 is 49 V, B2 is 7 μs, C2 is 50 kHz and D2 is 1.5 N. For better 
cylindricity (Cyl.), optimal parametric combination is A1B1C1D1, where A1 is 
48.1 V, B1 is 6.5 μs, C1 is 40 kHz and D1 is 1 N. For optimal Ra the recom-
mended parametric combination is A3B2C3D2, where A3 is 50 V, B2 is 7 μs, 
C3 is 60 kHz and D2 is 1.5 N.

2.	Optimization of machining process revealed that A and D are the key factors 
affecting the MRR. Frequency of the pulses (C) and the wire tension (D) are 
important to achieve the best cylindrical bores. Ra of the machined SS 440C 
spool bore is primarily influenced by A and D during WEDM operation.

3.	 Interval between two pulses (B) is not found to be significantly affecting 
either of the performance measure studied.

4.	Multi-response optimization was performed for all the chosen responses by 
using grey Taguchi method and the optimal factors and levels were deter-
mined. Optimal parametric combination found is A1B3C3D3.

5.	ANOVA analysis of Gi proposes A and D as the major factors affecting 
the WEDM process of spool bore for a type II EHSV made from stainless 
steel 440C.

6.	To validate the efficacy of the developed model, confirmation experiments were 
conducted and the results were compared with experimental results. The small 
error of magnitude 0.48%, 0.18%, 6.78% and 7.64% between the experimental 
result and model result is observed for MRR, Cyl., Ra and Gi, respectively, 
which shows the developed model is capable of predicting significant results.
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5.1  INTRODUCTION

Electrical discharge machining (EDM) is a non-traditional machining process that 
uses energy from repetitive sparks occurring between tool and workpiece to finish 
the work material [1–3]. Two main components in EDM are workpiece and tool, 
where the tool is also referred as an electrode. The workpiece is clamped and 
fixed in a fixture and the electrode is held in a tool holder. The schematic diagram 
explaining the machining process is shown in Figure 5.1. The entire process of 
machining takes place inside an insulating medium which is industrially known 
as dielectric [4]. This dielectric helps in maintaining a plasma channel between 
the electrode and workpiece. The sudden collapse of the plasma channel creates a 
series of sparks between electrode and workpiece which promotes the machining 
of workpiece [5]. A precise gap is maintained between the electrode and workpiece 
using a servo controller to help the timely occurrence of the spark. The most com-
mon dielectric used in industrial applications is kerosene, but other hydrocarbon-
based oils and silicon-based oils are also used. Recent advances, research, and 
development in the field showed that deionized water and air can also be used as 
dielectric fluid [6].

For a workpiece, machining performances are measured in terms of mate-
rial removal rate (MRR), surface roughness (SR), and dimensional accuracy (DA) 
[7]. For the determination of MRR, the weight of the workpiece before and after 
machining is recorded (for each cavity), and the difference in weight is divided by 
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the time of machining for that particular cavity. It is generally expressed in grams 
per minute (g/min) [7]. SR is determined by roughness testing machines or using 
coordinate measuring machines. SR is generally expressed in micrometre (µm). 
The DA of the machined cavity is calculated by finding the deviations in machined 
diameter from the original diameter (ΔD) and deviations in machined depth from 
the original depth (ΔH) [7]. Since repetitive sparks not only result in finishing 
of workpiece but in addition undesirable wearing of electrode also occur which 
makes tool wear ratio (TWR) as an important performance measure. Since, mini-
mum TWR is important in EDM, it is necessary to understand the complex wearing 
behaviour of electrodes obtained during machining. Wear variation in electrodes 
was determined by Mohri et al. [8] for different electrode profiles in EDM. They 
observed that the edge of the electrodes adds to the maximum electrode wear. They 
also proposed that major electrode wear take place at the beginning of machining. 
As the machining progresses, a black layer of carbon gets deposited on the sur-
face of the electrode, which minimizes the electrode wear. They also observed 
that electrode wear is significantly affected by the chosen machining factors and 
witnessed zero electrode wear at a longer pulse on time. A study on wearing of 
electrode was also performed by Pham et al. [9] during micro-EDM. A method for 
calculation of volumetric wear ratio was suggested. They mentioned that wear is 
dominated by machining factors proposed and wear compensation method to min-
imize the wear of electrode. The wear compensation method was also suggested 
by Kar and Patowari [10] for less electrode wear during the micro-EDM. Khan [11] 
investigated the wear of copper and brass electrodes during EDM of aluminium 
and mild steel. It was noticed that electrode wear significantly increases with the 
rise in current and voltage. In addition, they concluded that wear observed along 
the cross section of electrode is higher than wear observed along the length of the 
electrode. Laurenţiu et al. [12] experimentally suggested that electrodes wear also 
depends on the material of electrode. They verified that minimal electrode wear 
was observed while using steels and aluminium in comparison to copper, which 

FIGURE 5.1  Schematic diagram showing mechanism in EDM.
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shows intense wear. Sltineanu et al. [13] investigated the wear of tool electrodes 
during EDM of smaller holes. They concluded that electrode wear significantly 
increases for a smaller diameter of electrode. Once the diameter of the working 
electrode increases, electrode wear decreases because of improved heat evacuation 
from the work zone or less heat transferred to the tool electrode. Equbal et al. [7] 
use the copper metallization technique over FDM (fused deposition modelling) 
fabricated parts to convert them into conductive tool electrodes. The use of FDM-
based EDM electrode also reflected that its wear is mostly affected by chosen 
EDM factors. For minimizing the TWR, optimization of EDM factors was sug-
gested. Heidari et al. [14] suggested that the wear resistance of copper electrode 
increases by the use of a very fine-grained structure.

Literature manifest that electrode wear in EDM is affected by a number of fac-
tors like electrode material, carbon deposition on electrode, size of hole machined, 
and chosen machining factors. While it is difficult to control the other parameters 
involved in machining, it is a wise decision to choose an optimal range of machin-
ing factors. To achieve a good electrode performance, minimum wear of electrode 
is desirable, and hence this chapter is aimed at optimization of EDM parameters to 
achieve minimum TWR. Current work undertaken the machining of AISI 1035 steel 
under the influence of three main EDM parameters, viz. current (I), pulse on time 
(Ton), and pulse off time (Toff). For a better understanding of the influence of these 
factors on TWR, they are varied at three levels each.

5.2  METHODOLOGY

Design of experimentation is done by using the full factorial design (FFD) technique 
[15]. FFD considers all the possible experimental runs combining factors and levels 
undertaken. The present study used three EDM factors, viz. current (I), pulse on 
time (Ton), and pulse off time (Toff), and AISI 1035 steel was chosen as the workpiece 
material. The cylindrical electrode of a diameter 5.8 mm was prepared and finished 
by machining on CNC lathe. Selected EDM factors and their levels are shown in 
Table 5.1.

TABLE 5.1
EDM Factors and Their Levels [16]

EDM Factors Notation

Levels

Unit

1 2 3

Low Level (1) Centre Level (2) High Level (3)
Current I 5 10 15 A

Pulse on time Ton 150 300 450 µs

Pulse on time Toff 90 150 210 µs
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The factors and levels are selected in accordance with machining conditions used 
in EDM i.e. rough machining, semi-finish machining, and finish machining [16]. 
EDM was done using Vidyunt (MMT, ZNC) EDM machine, and data for tool wear 
rate (TWR) are collected as under:

Tool wear rate (TWR): Wears out material from the electrode was computed in g/
min using Eq. (5.1).

	 =
−

TWR
m m

t
i f ,	 (5.1)

where, mi and mf are the electrode weight in grams prior to and post-machining mea-
sured using a weighing machine (Model: Mettler PM1200, Make: India) and t is the 
machining time (in minutes) noted down using the stopwatch of the mobile phone. 
For analysing the result of experimentation analysis of variance (ANOVA) technique 
is used [17]. ANOVA is to evaluate the influence of parameters and interactions on 
TWR. Significance factors and interactions were determined using a p-value where 
p value ≤ 0.05 is considered as significant for a significance level of 5%. The effec-
tiveness of the model is established using the Anderson-Darling (A-D) plot. Further, 
the setting of the EDM factors for optimum TWR was demonstrated using the main 
effect plot. To verify the results, optimization is also done using the desirability 
function approach.

5.3  RESULTS AND DISCUSSION

The results of experimentation are tabulated in Table 5.2. Here, 1 corresponds to 
the lower level, 2 corresponds to the middle level, and 3 corresponds to the higher 
level as shown in Table 5.1. TWR is computed in g/min. ANOVA result for TWR is 
presented in Table 5.3.

Here, SS denotes the sum of square and DF means the degrees of freedom. As 
per ANOVA analysis, it was observed that I, Ton and I × Ton was significant. For the 
better understanding of the reader interaction plot is also presented in Figure 5.2, 
which also shows I × Ton was significant. A-D plot, as shown in Figure 5.3, shows 
that residuals are near to the centreline, and their deviations are within the control 
line. The regression equation for TWR is given in Eq. (5.2), which is valid at R2 of 
99%. The R2 of 0.99 showed that the model defined in Eq. (5.2) is very accurate for 
the prediction of TWR.

	
  1.06678 0.796 0.396 0.005

0.287 0.031 0.017

= − + + −

− + −

TWR A B C

AB AC BC
	 (5.2)

ANOVA analysis showed that interaction I × Ton is significant, and hence 3D surface 
plot for I × Ton is presented in Figure 5.4. The surface plot presented in Figure 5.4 
concludes that TWR increases with the rise in I. At higher I, the intensity of the spark 
is increased, which results in greater TWR [18]. However, the increase in tool wear at 
a lower value of Ton is more significant.
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At lower Ton more heat is transferred to the tool, and hence TWR is more. At 
higher Ton the diameter of spark is increased owing to which more heat is transferred 
to work, but heat transfer to the tool is decreased as only a portion of the tool bot-
tom is exposed to heat and the remaining is lost to surrounding, thus resulting in low 
TWR [19]. Figure 5.5 showed that the effect of Toff on TWR is not significant, which 
can also be verified from the ANOVA table presented in Table 5.3. At low Toff, TWR 
increases marginally as the duration between successive sparks is less, but once the 
Toff is increased to a higher value, ample time is available for repossession of dielec-
tric strength. Once the dielectric strength is regained, a major portion of discharge 
energy in the next cycle is used in overcoming that regained strength which results 
in minimal tool wear [20].

TABLE 5.2
EDM Experimental Result

Run

Factors

Current (I) Spark on Time (Ton) Spark off Time (Toff) TWR (g/min)
1 1 1 1 0.012

2 1 1 2 0.011

3 1 1 3 0.012

4 1 2 1 0.008

5 1 2 2 0.004

6 1 2 3 0.005

7 1 3 1 0.001

8 1 3 2 0.001

9 1 3 3 0.001

10 2 1 1 0.104

11 2 1 2 0.154

12 2 1 3 0.125

13 2 2 1 0.047

14 2 2 2 0.049

15 2 2 3 0.067

16 2 3 1 0.016

17 2 3 2 0.039

18 2 3 3 0.035

19 3 1 1 1.142

20 3 1 2 1.335

21 3 1 3 1.443

22 3 2 1 0.278

23 3 2 2 0.287

24 3 2 3 0.245

25 3 3 1 0.118

26 3 3 2 0.105

27 3 3 3 0.221
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5.4  OPTIMIZATION

To show the individual effect of chosen EDM factors on TWR, main effect plot is 
shown in Figure 5.6. In the main effect plot, the mean response of each level factor 
is linked by a line. A horizontal line demonstrates that no effect is present. A small 
deflection from a horizontal line minutely affects the response. The large slope of 
the line from a horizontal orientation demonstrates the greater magnitude of the 
main effect. Here, for a minimum TWR individual I (5A), large Ton (450 µs), and low 

TABLE 5.3
ANOVA Table for TWR

Source DF Seq SS Adj SS Adj MS F p
I 2 1.74575 1.74575 0.87287 320.1 0.000

Ton 2 0.95785 0.95785 0.47892 175.63 0.000

Toff 2 0.01033 0.01033 0.00516 1.89 0.212

I X Ton 4 1.4899 1.4899 0.37248 136.59 0.000

I X Toff 4 0.01367 0.01367 0.00342 1.25 0.363

Ton X Toff 4 0.01156 0.01156 0.00289 1.06 0.435

Error 8 0.02182 0.02182 0.00273

Total 26 4.25087

R2 0.99

FIGURE 5.2  Interaction plot for TWR.
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Toff (90 µs) are required. The optimal setting of EDM parameters which results in 
minimal TWR, is also verified using the desirability function approach. The result of 
desirability is shown in Figure 5.7. The optimization showed that minimal TWR is 
obtained at I = 1.54 A, Ton = 2.18 µs, and Toff = 1 µs in coded form. From both main 
effect plot and desirability function, it was established that lower I, higher Ton, and 
lower Toff is preferred for minimum TWR.

FIGURE 5.3  A-D plot for TWR.

FIGURE 5.4  Surface plot for I × Ton.
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FIGURE 5.5  Surface plot for Ton × Toff.

FIGURE 5.6  Main effect plot showing the effect of EDM factors on TWR.
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5.5  CONCLUSIONS

The present study investigates the wearing of the copper electrode (TWR) during the 
EDM of AISI 1035 steel. Electrode wear is estimated varying three important EDM 
factors, viz. current (I), spark on time (Ton), and spark off time (Toff). Results are 
analysed with the help of an ANOVA table, A-D plot, and 3D surface plots. After the 
determination of significant EDM factors affecting the TWR, the optimal set of fac-
tors which yield lower TWR is determined using the main effect plot and desirability 
function approach. Important conclusions drawn are:

1.	Electrode wear in EDM is affected by a number of parameters including 
electrode material, electrode shape, carbon layer deposition on electrode, 
diameter of electrode, and machining factors.

2.	While it is inevitable to compromise over other EDM parameters, it is more 
appropriate to choose an optimal range of EDM machining factors for min-
imization of TWR.

3.	EDM of AISI 1035 using copper electrode demonstrates that TWR is signif-
icantly affected by current (I) and spark on time (Ton). At higher I, intensity 
of spark is higher, resulting in more TWR.

4.	 It was established that TWR is mostly affected by I at a low value of Ton. Higher 
Ton leads to decreases heat transfer to the electrode, and hence TWR decreases.

5.	Spark off time (Toff) has minimal effect on TWR, especially at a higher 
value of Toff. At higher Toff, ample time is available for regaining of dielectric 
strength, which results in lower TWR in the next EDM cycle.

6.	The main effect plot and optimization using the desirability method showed 
that minimal TWR is obtained at lower I, higher Ton, and lower Toff.

FIGURE 5.7  Optimized factor setting for minimal TWR using desirability function.
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6.1  INTRODUCTION

Over the years, the use of additive manufacturing (AM) techniques is gained 
importance in diverse applications domain [1–6]. In particular, fused deposition 
modeling (FDM) process is the most commonly utilized owing to its easy use, 
low cost, affordability of both materials and machines, etc. [7]. This technique is 
based on material extruding principle (Figure 6.1). In detail, the feedstock mate-
rial in the form of a neat or reinforced polymer filament with a circular section 
(often a diameter of 1.75 mm) is introduced into a liquefier via drive rollers and 
heated to a semi-molten state using an electrical resistance, which enables it to 
pass through a moveable hot end nozzle. Then, the extruded line is deposited onto 
a building platform and solidified. With the moving of a hot end nozzle on an x-y 
axis system of 3D machine gantry, the deposition of adjacent lines is done and the 
entire layer is created. The building platform moves downward along the z-axis to 
deposit the subsequent layer. The cycle is repeated until the part is printed com-
pletely. However, the most used and compatible thermoplastics for FDM method 
are limited to those which have a low melting temperature, are much available 
and easy to process. Among these filaments, polylactic acid (PLA), acryloni-
trile butadiene styrene (ABS). With these state of starting materials and working 
principle, the manufacture using FDM involves the setting of various PPs and 
the resulted parts depends on the combination of these PPs. Thus, the optimal 
selection of operating conditions has to be more evaluated and understood. Also, 
the majority of limitations which impair the functionality of the FDM end use 
parts results in the non-suitable combination of machine and fabrication settings. 
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FIGURE 6.1  FDM process principle and schematic [8].
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Dimensional inaccuracy, mediocre surface roughness, internal porosities forma-
tion and poor mechanical properties are the frequent drawbacks. The next lines 
present the efforts that have been undertaken to enhance the functionality of 
FDM components.

Interestingly, improving knowledge regarding the overall influence of the whole 
process is crucial to reach a desirable functionality and reproducibility. By examin-
ing the published literature, it can be noted that the attempts to overcome the above-
mentioned limitations range between the development of raw materials, single and 
multiple ones [9–11], post-processing [12–21], reinforcement in particle and blend 
forms [22–31] and fibers (milled, chopped or continuous) [32–40] and investigation 
of PPs [41–76]. The latter is the most extensively studied as it is important regardless 
of adopted materials and methods. Basing on the review of literature, the main con-
clusions about optimization of processing parameters are the following: efficiency 
of study results is hampered by lack of standards for FDM technique and testing 
and limited or missing information about certain experiment elements. Therefore, 
an incongruence of test and operating settings was observed. For instance, with the 
smallest layer thicknesses (LT), the maximum performance is reached [77–78], while 
another work [51] showed that rising layer height leads to decreasing then increasing 
of tensile strength of tested specimens. In addition, a full and valid combination of 
raw material, 3D machine and all manufacturing settings that have not been con-
sidered in almost of these works contributed to the variability of findings. In other 
words, generalizing of the results and their comparison should be carried out care-
fully or should not be made. Another statement concerns the obvious effect and sig-
nificance of some factors such as infill percent, build direction and raster orientation. 
These parameters, air gap and LT, have been reported as the key influencing operat-
ing conditions and have been actively assessed. But, the focus was on neat polymers 
such as ABS and PLA more than other materials. Another conclusion can be drawn; 
the tensile test is the most evaluated in comparison to other mechanical properties, 
surface roughness (Ra), quality part and total cost. Regarding the temperature in 
the FDM technique, few researches dealt with its effect taking into account that the 
process temperatures strongly affect the filament bonding and its viscosity. In this 
context, much researches dealing with the optimizing of PPs, especially those which 
were insufficiently studied, with variability in outcomes and for polymer composites, 
are necessary. Functionality in terms of mechanical performance, dimensional accu-
racy and quality surface should be the focus as this corresponds to real manufactur-
ing conditions and applications.

Unlike previous works, in this study, a detailed investigation of performance 
and quality of 3D printed polyamide composites (with chopped glass fiber and 
Kevlar fiber reinforcement) was conducted. The comparison of these composites 
with fabricated additively neat polyamide and ABS parts and those processed 
by injection molding was carried out. And it involves mechanical performance 
(tensile test), quality (dimensional accuracy and surface roughness) and total 
cost. Full data on 3D printing conditions, tests and measurements were given. 
Thus, the overall influence of extrusion temperature (ET), LT and deposition 
speed was assessed. Interestingly, a specific comparison was done carefully, tak-
ing into account as possible raw material, 3D printer, reinforcement, performed 
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test, testing equipment and other manufacture settings for better conclusions. This 
work is a completion of the published paper [52].

6.2  EXPERIMENTAL PROCEDURE

6.2.1  Materials, 3D Printer and Sample Preparation

Chopped glass fiber reinforced polyamide (GRPA) and chopped Kevlar fiber rein-
forced polyamide (KRPA) filaments were used to evaluate the FDM process of nylon 
composites. They are in filament form with a diameter of 1.75 mm (TAGin3D as 
brand, corextrusion group as supplier). They are available and known commercially by 
TECHStrong and TECHArmed, respectively [53–54]. They have a protective thin skin 
to reduce the abrasive effect of reinforcement on the liquefier and also moisture impact. 
They consist of nylon polymer (neat PA) and 15% of glass fiber and 10% Kevlar fiber 
with 4 mm in length, respectively. For a comparison purpose, neat PA and ABS fila-
ments were processed for one parameter selection (reference levels). Their brand and 
supplier are similar to those of polyamide composites. These neat filaments are provided 
in the market by their commercial name TECHLineTM and UNIVERSALAbsTM [55]. 
The main properties of used filaments are presented in Table 6.1.

Figure 6.2 shows a photograph of the Volumic STREAM 30 PRO MK2 3D machine, 
which is used to manufacture all the test specimens [61–62]. It is developed by the 
French manufacturer Volumic. This 3D printer uses various polymer materials such 
as PLA, ABS, NinjaFlex, and Nylon; its typical size nozzle is 0.4 mm. As all desk-
top FDM systems, STREAM 30 Pro MK2 can be controlled with any open-source 

TABLE 6.1
Properties of Used Filaments

Properties Standards PA ABS
PA + Glass 
Fiber (GRPA)

PA + Kevlar 
Fiber (KRPA)

Ultimate tensile 
strength [MPa]

ISO527 [56] 34.4 33.9 More than 175% 
of ABS strength

 

Tensile modulus 
[MPa]

ISO 527 579.0 MPa 1681.5    

Strain at break [%] ISO 527 20% 4.8%    

MRF [g/10 min] ISO 1133 [57] 6.2 g/10 min 4.1    

Melting temperature 
[°C]

ISO 294 [58]/
ISO 11357 [59]

185–195°C 225–245°C    

Density ISO 1183 [60] 1.14 1.10 1.37 1.18

Fiber diameter [mm]     0.215 0.215

Fiber length [mm]     4 4

Fiber content [%]     15% 10%

Flexibility, resistance to impact, to fatigue, to chemical agents, to tensile, to wear 
and abrasion and to temperature, high resistance to weight ratio

      Low moisture absorption, 
dimensional stability
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software. The geometry of additively manufactured samples was modeled using Catia 
V5 software exported as an STL file and imported to the 3D printing software Simplify 
3D for G-code generation. Examined PA specimens were prepared in compliance with 
DIN EN ISO 527, having dimensions depicted in Figure 6.3.

6.2.2  Process Parameters and Experimental Set-up

As it is well known that PPs affect the performance and functionality of components 
processed by the FDM technique. The FDM settings investigated in this paper are 
tabulated in Table 6.2. A total of 78 reinforced PA samples were printed, where 13 
samples run for each type of reinforcement and for each sample run 3 specimens 
were built using the same parameters setting to analyze the repeatability of FDM 
process (Table 6.3). In addition, three samples of neat ABS and those of neat PA were 
created considering their parameters reference levels to make a valid comparison.

For fixed parameters, they are outlined in Table 6.4. A range of evaluated printing 
conditions was selected based on literature study, serial trials/preliminary investiga-
tions and recommended intervals of material and 3D machine suppliers and slic-
ing software. For instance, the strongest printing orientation and significant build 
direction are coincided with the pull direction during the deposition; flat orientation 

FIGURE 6.2  3D printer used in the present research.

FIGURE 6.3  Nominal dimensions in mm according to the ISO 527 standards [63].
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TABLE 6.2
Investigated Parameters and Their Levels

Parameter Values for GRPA and KRPA Reference Levels

Extrusion temperature [°C] 245, 255, 265 245

Print speed [mm/s] 30, 40, 50, 60, 70 50

Layer thickness [mm] 0.1, 0.15, 0.2, 0.25, 0.3 0.2

TABLE 6.3
Sample Processing Parameters Specification

Sample Material
Extrusion 

Temperature [°C] Print Speed [mm/s]
Layer Thickness 

[mm]
1

GRPA

245 50 0.2

2 245 40 0.2

3 245 60 0.2

4 245 70 0.2

5 245 30 0.2

6 225 50 0.2

7 235 50 0.2

8 255 50 0.2

9 265 50 0.2

10 245 50 0.1

11 245 50 0.15

12 245 50 0.25

13 245 50 0.3

1

KRPA

245 50 0.2

2 245 40 0.2

3 245 60 0.2

4 245 70 0.2

5 245 30 0.2

6 225 50 0.2

7 235 50 0.2

8 255 50 0.2

9 265 50 0.2

10 245 50 0.1

11 245 50 0.15

12 245 50 0.25

13 245 50 0.3

# Neat PA 245 60 0.2

Neat ABS 240 60 0.2
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(Z direction, which is perpendicular to the layer plane XY). This build direction is 
optimal as it yields high strength and enables variations of process parameters.

6.2.2.1  Surface Roughness
Specimens surface roughnesses (Ra [µm]) were averaged into a single value for each 
sample. It concerns top layer roughness. Measurements were conducted via RT-90G 
roughness tester parameters according to the following standards: ISO 4287:1997 
[64] and ISO 12085:1998 [56].

6.2.2.2  Dimensional Accuracy and Repeatability
All 3D printed samples for both materials KRPA and GRPA were measured and 
compared to created 3D model. In this study, 13 measurements for each specimen 
were conducted; they included total length (L), width (W), width of narrow section 
(Wn) and thickness (T). Figure 6.4 depicts these dimensions in detail. The measuring 
is ensured by means of a micrometer. The values of each dimension were averaged.

TABLE 6.4
Fixed Printing Conditions for Reinforced Materials GRPA and KRPA

Information/Process Parameters GRPA KRPA

Bed temperature [°C] 70 70

Envelope temperature [°C] 25 25

Contours number 3 3

Bottom layers number 3 3

Top layers number 3 3

Layer thickness [mm] 0.2 (as reference) 0.2 (as reference)

Building orientation XYZ (Flat) XYZ (Flat)

Raster angle [°]:crisscross +45/−45 +45/−45

Width road [mm] 0.4 0.4

Air gap [mm] 0 0

Nozzle diameter [mm] 0.4 0.4

Infill degree [%] 100 100

Ventilation [%] 0 0

Bottom layers speed 40% × print speed 40% × print speed

Infill pattern Diamond Diamond

Filament diameter [mm] 1.75+/−0.01 1.75+/−0.01

Filament suppliers TAGIN3D/CorExtrusion TAGIN3D/CorExtrusion

Adhesive spray GeckoTek GeckoTek

Support material NA NA

Fiber content percent 15% 10%

Short fiber length 4 mm 4 mm

Filament color White Ivory

CAD software Catia V5 Catia V5

Slicing software Simplify 3D Simplify 3D

File transfer format STL STL
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6.2.2.3  Tensile Tests and Total Costs
A universal testing machine, Zwick/Roell Z050, equipped with a 50 kN load cell, 
was utilized to perform the tensile testing following the ISO 527 standards [56]. 
All specimens were tested at a speed of 10 mm/min at room temperature (~23°C). 
The load is increased until the specimen gets a break. The real time data recorded 
during the performing of the test were recovered by means of testing software and 
computer. The machine is shown in Figure 6.5.

The measuring of specimen’s weight was ensured by means of a balance. As 
aforementioned, for each specimen number, three samples were prepared to obtain 
an average value of the measured properties and characteristics such as the ultimate 
tensile strength, build time and weight. In our case, total cost equation is mainly 
composed by the material cost per g, and fabrication cost per minute. These detailed 
components are illustrated in equation 6.1.

	
( )
( )

[ ][ ] [ ]

[ ] [ ]

= ×

+ ×

Total cost  MAD material g material cost per g  MAD

built up time  min    machine cost  MAD
	 (6.1)

As a detail, the cost of used glue is included in fabrication cost.

FIGURE 6.4  Locations of ISO 527 specimen dimensions.

FIGURE 6.5  View of the tensile machine used in this study.
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6.3  RESULTS AND DISCUSSION

6.3.1 S urface Roughness

The influence of PPs on surface roughness was assessed. Table 6.5 illustrates the 
values in terms of surface roughness (Ra). The impact of reinforcement nature on 
surface quality was clearly observed. Compared to pure materials, reinforced mate-
rials exhibit higher values of surface roughness.

6.3.1.1  Impact of Print Speed
The following graph highlights the impact of print speed (PS) on surface roughness 
for both reinforced polyamide materials. KRPA roughness is highly influenced by 

TABLE 6.5
Measurements of Surface Roughness (Ra)

Specimen 
Number Material

Extrusion 
Temperature [°C]

Print Speed 
[mm/s]

Layer Thickness 
[mm]

Surface Roughness 
Ra [µm]

1

GRPA

245 50 0.2 5.041

2 245 40 0.2 6.427

3 245 60 0.2 8.262

4 245 70 0.2 5.787

5 245 30 0.2 7.258

6 225 50 0.2 8.013

7 235 50 0.2 4.027

8 255 50 0.2 12.050

9 265 50 0.2 15.512

10 245 50 0.1 4.021

11 245 50 0.15 5.591

12 245 50 0.25 16.155

13 245 50 0.3 19.220

1

KRPA

245 50 0.2 9.648

2 245 40 0.2 18.590

3 245 60 0.2 11.788

4 245 70 0.2 23.628

5 245 30 0.2 18.082

6 225 50 0.2 12.626

7 235 50 0.2 14.623

8 255 50 0.2 12.122

9 265 50 0.2 21.777

10 245 50 0.1 5.411

11 245 50 0.15 14.049

12 245 50 0.25 29.281

13 245 50 0.3 21.040

#
Neat PA 245 60 0.2 5.412

Neat ABS 240 60 0.2 5.424
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velocity compared to GRPA one. From Figure 6.6, it can be seen the significant 
impact of PS over the surface roughness of KRPA samples. Kevlar reinforcement 
tended to promote higher roughnesses when varying print velocity.

6.3.1.2  Impact of Extrusion Temperature
The graph below shows the surface roughness of reinforced PA specimens as a func-
tion of ET (Figure 6.7). The effect of ET due to the used filament was different for 
KRPA and GRPA samples. It is worth mentioning that the temperature has a direct 
relation with surface roughness. This trend can be interpreted by an unsuitable flow 
of extruded materials due to higher temperatures.

FIGURE 6.6  Surface roughness (Ra) versus print speed.

FIGURE 6.7  Surface roughness (Ra) versus extrusion temperature.
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6.3.1.3  Impact of Layer Thickness
Figure 6.8 shows the variation of surface roughness of reinforced PA parts with 
the altering of LT. For both materials, there is an increase of roughness with rising 
of thickness. However, the impact in the case of glass reinforcement is lower than 
Kevlar reinforcement case. The impact of LT on surface quality can be explained by 
that a higher layer yields voids between deposited lines along the deposition direc-
tion. Thereby higher values of surface roughness (Ra).

6.3.2 D imensional Accuracy and Repeatability

The effect of process parameters on dimensional accuracy was observed. The obser-
vations in terms of a reduction in length and an increase in thickness have been 
confirmed in previous works [49, 79]. Also, an increment in widths was seen for all 
measured specimens. Results are presented in Table 6.6. Likewise, larger deviations 
for the dimensions variations of specimens under certain fabrication settings are 
shown in this table.

The dimensional error is calculated using the following equation: 

	 = −Error Measured value 3D model value	 (6.2)

6.3.2.1  Influence of Print Speed
The following graph highlights the impact of PS on dimensional accuracy for both 
reinforced polyamide materials. Width and LT errors were negative, which means 
there is a reduction of these dimensions, while errors of length were positive with 
slight fluctuations. The effect of PS on width and thickness errors due to the used 
filament was different for KRPA and GRPA samples. The trend was not the same. 
A detailed description of these graphical data is presented below.

FIGURE 6.8  Surface roughness (Ra) versus layer thickness.
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(Continued)

TABLE 6.6
Samples Measurements Averaged Results of Dimensions in mm

Specimen 
Number Materials

Extrusion 
Temperature 

[°C]
Print Speed 

[mm/s]

Layer 
Thickness 

[mm]
Total Length 

[mm]
Width 
[mm]

Reduced 
Section 

Width [mm]
Thickness 

[mm]
3D model – – – – 150 20 10 4

1

GRPA

245 50 0.2 149.82

(0.007)

20.35

(0.088)

10.428

(0.017)

4.056

(0.162)

2 245 40 0.2 149.32

(0.042)

20.336

(0.098)

10.423

(0.026)

4.09

(0.115)

3 245 60 0.2 149.345

(0.007)

20.263

(0.096)

10.341

(0.027)

4.11

(0.071)

4 245 70 0.2 149.505

(0.120)

20.253

(0.075)

10.305

(0.044)

4.078

(0.171)

5 245 30 0.2 149.505

(0.120)

20.296

(0.109)

10.36

(0.027)

4.13

(0.157)

6 225 50 0.2 149.525

(0.035)

20.262

(0.041)

10.363

(0.039)

4.13

(0.088)

7 235 50 0.2 149.095

(0.021)

20.266

(0.095)

10.34

(0.059)

4.1

(0.126)

8 255 50 0.2 149.37

(0.014)

20.35

(0.067)

10.43

(0.031)

4.16

(0.146)

9 265 50 0.2 149.32

(0.084)

20.39

(0.075)

10.53

(0.019)

4.189

(0.099)

10 245 50 0.1 149.755

(0.007)

19.975

(0.049)

10.1

(0.035)

4.128

(0.124)

11 245 50 0.15 149.75

(0.014)

20.126

(0.070)

10.245

(0.022)

4.25

(0.143)

12 245 50 0.25 149.73

(0.028)

20.52

(0.073)

10.588

(0.042)

4.347

(0.090)

13 245 50 0.3 149.72

(0.014)

20.573

(0.087)

10.69

(0.038)

4.35

(0.094)

1

KRPA

245 50 0.2 149.995

(0.035)

20.537

(0.032)

10.55

(0.039)

4.167

(0.130)

2 245 40 0.2 149.95

(0.099)

20.56

(0.096)

10.52

(0.026)

4.14

(0.148)

3 245 60 0.2 149.925

(0.007)

20.578

(0.062)

10.668

(0.035)

4.166

(0.177)

4 245 70 0.2 149.975

(0.021)

20.526

(0.097)

10.543

(0.089)

4.147

(0.119)

5 245 30 0.2 149.995

(0.021)

20.641

(0.056)

10.666

(0.017)

4.255

(0.117)

6 225 50 0.2 149.835

(0.177)

20.447

(0.030)

10.485

(0.130)

4.131

(0.092)

7 235 50 0.2 149.86

(0.028)

20.481

(0.077)

10.51

(0.035)

4.199

(0.098)

8 255 50 0.2 149.83

(0.014)

20.608

(0.053)

10.678

(0.084)

4.243

(0.141)

9 265 50 0.2 149.83

(0.015)

20.672

(0.015)

10.70

(0.049)

4.215

(0.090)

10 245 50 0.1 149.78

(0.254)

20.158

(0.039)

10.226

(0.029)

4.09

(0.091)
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Dimensional error of KRPA specimens against PS is shown in Figure 6.9. From the 
graph, it can be seen that width and thickness errors remain approximately constant 
when the PS increases, except for the lower value 30 mm/s. At this print velocity, the 
errors are at their highest values 0.67 mm, 0.66 mm and 0.38 mm for width, width 
narrow and thickness, respectively. There is an explanation for this trend, a certain 
lower speed may lead to an over deposition of the extruded material at the same area, 
which causes dimensional inaccuracy in terms of bigger dimensions than those of 
CAD files. In addition, as well known, the ET and the PS are dependent; at a limit 
value of speed (minimum or maximum) for a given temperature, a special heat transfer 
or thermal behavior may be developed and affect the process in terms of dimensional 
error. Taking into account this statement, a couple of higher values of temperature and 

11 245 50 0.15 149.765

(0.007)

20.445

(0.023)

10.436

(0.026)

4.268

(0.092)

12 245 50 0.25 149.865

(0.007)

20.71

(0.079)

10.603

(0.207)

4.515

(0.089)

13 245 50 0.3 150.035

(0.007)

20.727

(0.135)

10.6

(0.253)

4.514

(0.064)

# Neat ABS 240 60 0.2 149.339

(0.023)

20.099

(0.027)

10.008

(0.025)

3.989

(0.070)

Neat PA 245 60 0.2 149.018

(0.058)

20.359

(0.101)

10.246

(0.040)

4.115

(0.043)

Note: Standard deviation is depicted in brackets.

TABLE 6.6  (Continued)
Samples Measurements Averaged Results of Dimensions in mm

Specimen 
Number Materials

Extrusion 
Temperature 

[°C]
Print Speed 

[mm/s]

Layer 
Thickness 

[mm]
Total Length 

[mm]
Width 
[mm]

Reduced 
Section 

Width [mm]
Thickness 

[mm]

FIGURE 6.9  Dimensional error versus print speed.
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speed should be avoided to guarantee the feasibility of the process and obtaining good 
parts. For length error, it is constant with negligible fluctuations, in contrast to other 
errors; the lowest value 0.000 mm is reached at the lowest PS 30 mm/s.

The same figure shows the variation of dimensional error of GRPA specimens 
with an increment of PS from 30 mm/s to 70 mm/s. The downward trend is observed 
for widths and thickness errors. In contrast, the length error is approximately con-
stant with fluctuations at speeds 40 mm/s and 60 mm/s, where the errors are higher 
−0.6 mm and 0.5 mm, respectively. Regardless of the dimension, the lower errors are 
obtained at a maximum limit speed 70 mm/s. This finding can be explained by con-
sidering that with increased PS, the deposition for a given parameters combination 
will be suitable, and, therefore, the extruded portion line is deposited without much 
swelling. The fiber content (15%) in comparison to that of KRPA filament (10%) can 
be among the reasons of trend’s difference between the two these materials under 
the same parameter values.

6.3.2.2  Influence of Extrusion Temperature
The graph below shows the dimensional error of reinforced PAs specimens as func-
tion of ET. The effect of ET on dimensional accuracy due to the used filament was 
different for KRPA and GRPA samples. Thus, the widths errors had an upward trend 
for KRPA while they remain constant for GRPA. For length error, it is approximately 
constant for KRPA while it has a downward trend for GRPA. It is worth mentioning 
that the temperature has a direct relation with shrinkage’s effect [67]. The graphical 
representation of these variations is described in detail as follows.

In Figure 6.10, we can observe the significant impact of ET over the widths errors 
of KRPA samples. Higher ET tended to promote higher widths errors. These results 
were in agreement with previous findings [49, 68]. In this latter, the authors stated that 
a polymer is exhibited to be relaxed or expanded with an increased temperature. For 
thickness error, its variation was of slight significance. Nevertheless, a reduction of 

FIGURE 6.10  Dimensional error versus extrusion temperature.
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error was achieved at the lowest value of temperature 225°C. Concerning the length 
error, it decreases as ET increases until 245°C, then it increases. The notable effect 
over the length error is observed when the temperature varies from 235°C to 255°C. 
This trend is in contrast with the drawn conclusion in [69]. Nonetheless, this may be 
due to a developed special temperature gradient and consequently, distortion mani-
fested in a positive way by the reduced error of length. Looking at the same figure, it 
can be observed that the errors in all the measured dimensions were roughly constant 
except that of length, which experienced an upward trend. In other words, ET affected 
significantly only the length on GRPA specimens. This influence has been reported 
in [49], but the variations had not the same pattern. Nevertheless, the lowest errors 
were achieved at the lowest value of temperature 225°C for the length while for other 
dimensions at 245°C. This reduction of errors was not supported by [49].

6.3.2.3  Influence of Layer Thickness
The following graph highlights the impact of LT on the dimensional accuracy for 
both reinforced polyamide materials. The widths and LT  errors were negative, which 
means there is a reduction of these dimensions, while errors of length were almost 
positive with some fluctuations. In general, the variation of dimensional errors is 
greatly affected by LT. This finding does not match the outcomes of a previous study 
[65]. A detailed description of these graphical data is presented below:

In Figure 6.11, we can observe clearly the significant effect of LT on dimensional 
accuracy, in particular for thickness and widths. The smaller errors were obtained 
with the lowest layer height 0.1 mm except that of overall length, whose lower error 
is reached with the slice thickness 0.2 mm. It may be interpreted by the fact that 
with this thickness and the values of other PPs, the shrinkage phenomenon becomes 
reduced yields the part to keep its length. In addition, the graph shows the slight 
effect over length error compared to those of other specimen dimensions, as stated 
in [49]. The thickness specimen equals 4mm, which is an integer multiple of 0.1 mm, 

FIGURE 6.11  Dimensional error versus layer thickness.
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0.2 mm and 0.25 mm. So, this explains why error values of thickness increase 
although the slice height is small. For instance, at 0.15 mm, the error value is 0.268 
mm, while at 0.2 mm, it is worth 0.167 mm. For widths errors, they experienced an 
upward trend. These results are partially supported by the previous work [49].

In Figure 6.11, widths errors rise as LT increases. An increment in LT from 
0.1 mm to 0.3 mm, corresponded to an increment in terms of width error and reduced 
width error from 0 mm to 0.4 mm and from 0.1 mm to 0.6 mm, respectively. In the 
case of thickness error, it had an upward trend as function of LT with some fluctua-
tions due to the values of slice thickness in relationship with the specimen thickness, 
as explained before. An other reason for these fluctuations resides in the combina-
tion parameters effect. Concerning the length error, it decreases and then increases 
as the layer height increases. This may be due to the previous above-mentioned. 
Additionally, the deformation of printed specimens during their processing (shrink-
age, distortion) can yield reduction and variation of the length for a given FDM 
parameters combination. For example, as observed, when the widths and the thick-
ness are measured in some areas of the part, the value is lower and in other location 
is higher, which may influence the volume and the length of the specimen.

6.3.3  Mechanical Properties Results

Table 6.7 resumes the mechanical test values and total cost. The tensile test results 
for each of the reinforced Nylon polymers were compared with data obtained from 
the test of neat Nylon and ABS. In addition to other common fabrication conditions, 

(Continued)

TABLE 6.7
Tensile Test Results (UTS)

Specimen 
Number Material

Extrusion 
Temperature [°C]

Print Speed 
[mm/s]

Layer Thickness 
[mm] UTS [MPa]

1

GRPA

245 50 0.2 24.52
(0.579)

2 245 40 0.2 23.46
(0.739)

3 245 60 0.2 23.67
(0.191)

4 245 70 0.2 21.97
(0.319)

5 245 30 0.2 26.38
(0.070)

6 225 50 0.2 23.05
(1.735)

7 235 50 0.2 22.60
(0.723)

8 255 50 0.2 23.95
(0.106)
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9 265 50 0.2 26.29
(0.127)

10 245 50 0.1 21.22
(0.010)

11 245 50 0.15 23.55
(0.049)

12 245 50 0.25 28.95
(0.350)

13 245 50 0.3 29.50
(1.042)

1

KRPA

245 50 0.2 35.20
(0.070)

2 245 40 0.2 35.27
(0.576)

3 245 60 0.2 35.34
(0.629)

4 245 70 0.2 34.99
(0.637)

5 245 30 0.2 34.66
(0.116)

6 225 50 0.2 34.66
(0.533)

7 235 50 0.2 35.37
(0.718)

8 255 50 0.2 36.48
(1.286)

9 265 50 0.2 37.41
(1.145)

10 245 50 0.1 25.64
(0.346)

11 245 50 0.15 39.55
(0.077)

12 245 50 0.25 35.01
(0.051)

13 245 50 0.3 31.24
(3.853)

# Neat PA 245 60 0.2 28.30
(3.101)

Neat ABS 240 60 0.2 28.50
(3.177)

Note: Standard deviation is depicted in parentheses.

TABLE 6.7  (Continued)
Tensile Test Results (UTS)

Specimen 
Number Material

Extrusion 
Temperature [°C]

Print Speed 
[mm/s]

Layer Thickness 
[mm] UTS [MPa]
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the same 3D printer was used to fabricate all these materials that were supplied by 
the same company for a better and valid comparison. As to used feedstock fila-
ments, GRPA is stronger than ABS, about 75%, as mentioned in the supplier data 
sheet. However, our experimental results showed that there is a slight improvement 
in GRPA strength compared to that of ABS. With regard to pure and reinforced PA 
comparison, Kevlar yields a 30% of enhancement in tensile strength. Furthermore, 
it is worth noting that a higher standard deviation was observed in the results, with 
LT = 0.3 mm and ET = 225°C for GRPA specimens. With regard to KRPA samples, 
larger deviations were observed in the findings with LT = 0.3 mm and ET = {255°C, 
265°C}. Neat materials PA and ABS exhibit higher standard deviations more than 
used reinforced materials. This observation can be explained by considering the 
effect of reinforcement in enhancing printing process stability.

6.3.3.1  Effect of Extrusion Temperature
Figure 6.12 offers a graphical representation of data on ET influence on tensile 
properties. Ultimate tensile strength increased with the rising of ET (with an incre-
ment of 10 mm/s) for both filaments. This is obvious as the fusion interlines and 
interlayers bonding and density are improved. These findings support previous 
studies [19, 49, 70], while it was reported in [69] that the optimal temperature is 
reached at the lowest temperature value of the adopted range 210°C–230°C. It is 
interesting to note that after a certain high value of temperature, the performance 
takes a downward trend. In regard to GRPA composite, it experienced slight fluc-
tuations (about 3°C and 2.5°C of difference) at temperatures 235°C and 255°C, 
which is in accordance with the results obtained in [72], where the tensile strength 
increases then decreases when the temperature varies from 218.5°C to 241.5°C. The 
same conclusion was drawn in [40, 73]. According to experimental observations, in  

FIGURE 6.12  UTS versus extrusion temperature.
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our case, this can be explained by changing of environment conditions and a delay 
ET to achieve the nozzle. It may be due to a special heat transfer or temperature 
gradient developed at this temperature. Comparing the two reinforcements, tensile 
strength is in the order: Kevlar fiber > glass fiber. Overall, the temperature did not 
highly affect tensile strength. And the gain in terms of performance is 12% for 
GRPA and 7% for KRPA. In other words, the highest strength values are reached at 
a limit temperature 265°C.

6.3.3.2  Effect of Print Speed
The graph in Figure 6.13 illustrates the evolution of UTS of nylon composites 
in function of PS ranging between 30 mm/s and 70 mm/s with an increment of 
10 mm/s. Strength nylon composite KRPA remains steady while GRPA has a 
downward trend as PS rises. However, there is an exception at a PS 50 mm/s where 
strength increases with 1 MPa in comparison to this of 40 mm/s. Thus, mechani-
cal properties are not highly affected by the PS, which confirms results reported in 
literature, respectively tensile strength and flexural strength [49, 74, 75]. PS con-
tributes in this manner; it should be higher enough to have an appropriate deposi-
tion but not much for suitable impregnation period, pressure and better overlapping 
between adjacent deposited lines. However, it depends on the ET as they cannot 
be both at their high values. Considering the type of material, the trend of both 
filaments is different, which may be due to the fact that the PS range for nylon 
reinforced by short Kevlar fibers lead to a reduction in impregnation period and 
bonding degree as well as increasing in porosities. This explanation is supported 
by [76]. In addition, it was deducted in [77] that effect of print velocity over ulti-
mate tensile strength depends on other parameters fixed such as LT. The strengths 
of KRPA keep higher than those of GRPA.

FIGURE 6.13  UTS versus print speed.
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6.3.3.3  Effect of Layer Thickness
Figure 6.14 shows UTS as a function of LT, among other process parameters. The 
effect of LT on mechanical properties due to raw material was different for KRPA and 
GRPA samples. As to GRPA, higher LT tended to promote higher tensile strength. 
This can be interpreted by that part with less layers is stronger as the number of inter-
faces is lower and distortion effects due to heating and cooling cycles are minimized 
with an increase of strength [74, 77, 78]. Material composition and PPs combination 
also contributed to this enhancement. These results support reported published stud-
ies [37, 49, 78]. In experimental investigation [37], tensile strength increases with the 
evolution of LT from 0.2 mm to 0.3 mm then declines at 0.4 mm. On the other hand, 
these outcomes were in contrast with previous works [49–51, 76, 80–82]. The graph 
indicates enhancing of GRPA UTS with 27% from 0.1 mm thickness to 0.3 mm.

Concerning KRPA, the graphic presentation showed that an increase of LT from 
0.1 mm to 0.15 mm increased significantly UTS, which then keeps a downward trend 
until the limit of used thickness range. This correlation of strength as a function of 
slice thickness was reported in many published works [37, 78, 79]. In other studies 
[49], drawn conclusions do not support this observed correlation. Interpretation of 
contrast in the effect of this parameter over the mechanical performance can be 
made considering that when layer height increases, yields reducing the number of 
layers, thus interfaces leading to less weak bonding.

6.3.4 B uild Time and Total Cost

Table 6.8 depicts the total cost of reinforced PA samples as a function of inves-
tigated PPs. Total cost in terms of printing time is directly related to LT and PS. 
Thereby, total cost decreases as LT increases and increasing of PS leads to their 

FIGURE 6.14  UTS versus layer thickness.
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(Continued)

TABLE 6.8
Build Time and Total Cost Versus PPs. Standard Deviation Is Depicted in Brackets

Specimen 
Number Material

Extrusion 
Temperature 

[°C]
Print Speed 

[mm/s]

Layer 
Thickness 

[mm]
Build Time 

[min]
Total Cost 

[MAD]
1

GRPA

245 50 0.2 45 10.82
(0.017)

2 245 40 0.2 51 10.95
(0.010)

3 245 60 0.2 40 10.74
(0.002)

4 245 70 0.2 37 10.66
(0.007)

5 245 30 0.2 64 11.20
(0.031)

6 225 50 0.2 40 10.77
(0.007)

7 235 50 0.2 45 10.82
(0.027)

8 255 50 0.2 45 10.85
(0.004)

9 265 50 0.2 45 10.87
(0.001)

10 245 50 0.1 89 11.53
(0.008)

11 245 50 0.15 60 11.30
(0.005)

12 245 50 0.25 36 11.10
(0.001)

13 245 50 0.3 29 10.68
(0.005)

1

KRPA

245 50 0.2 45 8.83
(0.012)

2 245 40 0.2 51 8.88 
(0.027)

3 245 60 0.2 40 8.73
(0.015)

4 245 70 0.2 37 8.64
(0.027)

5 245 30 0.2 64 9.22
(0.071)

6 225 50 0.2 40 8.70
(0.020)

7 235 50 0.2 45 8.90
(0.077)

8 255 50 0.2 45 8.91
(0.003)
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decrease. Additionally, rising of ET heighten total cost. However, the significance of 
ET over total cost is lower than that of two other evaluated parameters. These tabu-
lated results are illustrated in Figures 6.15–6.19 for detailed discussion. In addition, 
standard deviations are shown Table 6.8. The majority of deviations for total cost 
values under certain printing conditions are smaller. A higher standard deviation 
was observed in the results of the neat ABS specimen.

FIGURE 6.15  Build time versus layer thickness.

9 265 50 0.2 45 8.95
(0.008)

10 245 50 0.1 89 9.65
(0.001)

11 245 50 0.15 60 9.41
(0.006)

12 245 50 0.25 36 9.16
(0.006)

13 245 50 0.3 29 8.83
(0.024)

#
Neat PA 245 60 0.2 113 7.2 

(0.021)

Neat ABS 240 60 0.2 113 3.56
(0.110)

TABLE 6.8  (Continued)
Build Time and Total Cost Versus PPs. Standard Deviation is Depicted in Brackets

Specimen 
Number Material

Extrusion 
Temperature 

[°C]
Print Speed 

[mm/s]

Layer 
Thickness 

[mm]
Build Time 

[min]
Total Cost 

[MAD]
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The results in average values of total cost including build time of reinforced PA 
samples with different levels of process parameters are shown in Table 6.8.

6.3.4.1  Build Time
Figures 6.15 and 6.16 depict a significant drop in build time with increased PS and 
LT. For ET variations, build time remains constant.

FIGURE 6.16  Build time versus print speed.

FIGURE 6.17  Total cost of reinforced PA specimens versus print speed.
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6.3.4.2  Total Cost
Figures 6.17–6.19 depict a significant drop in total cost with increased PS and LT, 
contrary to ET, which yields a slight rise in total cost when it increases. This differ-
ence can be explained considering that increasing of weight samples (hence mate-
rial price) with an increased temperature is less significant than that of rising of 
printing time due to higher values of slice thickness and print velocity. Thus, LT 
showed the highest reduction for the total cost (Figure 6.19), while ET resulted in 

FIGURE 6.18  Total cost of reinforced PA specimens versus extrusion temperature.

FIGURE 6.19  Total cost of reinforced PA specimens versus layer thickness.
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the lowest one (Figure 6.18) regardless of printed samples (GRPA or KRPA). From 
a material point of view, all the figures show that the total cost of reinforced glass 
polyamide had the highest values, which are mainly associated to the higher price 
of this filament. For the effect of LT, there is a particular case, LT = 0.2 mm, where 
total costs (10.82 MAD and 8.83 MAD) are lower than those of LT = 0.25 mm (11.10 
MAD and 9.16 MAD), respectively for GRPA and KRPA filaments. This exception 
is interpreted that at this layer height, the corresponding specimens’ weights are 
lower than those of LT = 0.25 mm, affecting total cost. In terms of percent, an incre-
ment in the PS from 30 to 70 mm/s corresponded to a reduction of 5% in overall 
cost for GRPA, while for KRPA material, it is about 6.3%. In addition, rising LT 
from 0.1 to 0.3 mm caused a reduction of 7.4% and 8.5% in total costs of GRPA and 
KRPA parts, respectively. Moreover, regarding ET, its decrease from 265 to 225°C 
leads to a diminution of 1% and 2.8% in total cost of GRPA and KRPA samples, 
respectively. Thus, the impact of assessed settings from the cost point of view is 
clearly shown, and polyamide reinforced by Kevlar chopped fibers is more affected 
between two reinforced PAs.

6.4  CONCLUSION

Three controlling process parameters with different ranges were considered. Print 
speed (PS = {30, 40, 50, 60, 70} mm/s), layer thickness (LT = {0.1, 0.15, 0.2, 0.25, 
0.3} mm) and ET (ET = {225, 235, 245, 255, 265} °C), were varied to obtain and 
investigate reinforced PA; KRPA and GRPA. For each parameter, a reference level 
is fixed and other parameters altered within the considered range in order to print 
samples. Tensile mechanical properties observed to be affected by ET, LT and rein-
forcement less than PS. Also, the layer effect is related to reinforcement content, and 
to raise tensile resistance, a higher ET is needed. Optimal parameters settings were 
related to reinforcement content. KRPA tensile strength was 39.55 MPa, while that 
of GRPA equaled 29.5 MPa. These values are more than that of neat PA. Besides, 
variations of tensile properties, related plots and experimental runs showed some 
benefits such as process stability, repeatability and extending parameters range, 
which is suitable for industrial applications. However, other aspects are to be con-
sidered, namely dimensional accuracy, surface roughness, lead time and total cost. 
Thereby, the dimensional accuracy of both PAs was assessed and found to be influ-
enced by ET and LT more than PS and reinforcement. KRPA surface roughness 
was largely affected by process parameters more than GRPA. Total cost was found 
to be notably influenced by PS, LT and nature or reinforcement. Overall, conducted 
experimental works identified the trends of printed samples characteristics under key 
FDM parameters and their combination. In these, detailed data are provided, which 
allows their exploitation, unlike most previous studies, and helps understand results 
variability. They showed the ability of the FDM process to compete with conven-
tional manufacturing processes in various industrial settings. The future direction to 
build on this work is to find a link between LT and percent content of reinforcement, 
considering other characteristics such as surface roughness and dimensional accu-
racy. Moreover, using finite element analysis can help to achieve promising results, 
in particular, coupled to an experimental approach.
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7.1  INTRODUCTION: BACKGROUND AND LITERATURE REVIEW

Additive manufacturing (AM) refers to a set of technologies that enable physical 
components to be created from virtual 3D models by layering the component on top 
of each other until it is complete [1].

In contrast to subtractive manufacturing, which starts with a block of material and 
removes any unwanted material (either by carving it by hand or using a machine like 
a mill, lathe, or CNC machine) until the desired part is left [2, 3], AM starts with 
nothing and builds the part one layer at a time by “printing” each new layer on top 
of the previous one until the part is complete. The layer thickness varies depending 
on the technique utilized, ranging from a few microns to roughly 0.25 mm per layer, 
and a variety of materials are currently available for the various technologies [4].

The earliest AM concepts date back to the late 19th and early 20th centuries, 
with the introduction of layer-based topographical maps as 3D representations of 
terrain, as well as a variety of methods for using these topological models to produce 
3D maps, such as wrapping a paper map over the topological models to create a 3D 
model of the terrain. Photo sculpture, which began at the end of the 19th century and 
involved taking a series of photographs from various angles around an object, which 
were then used to carve out the object using each different angled picture as a tem-
plate [5], making it an initially subtractive process, had several proposed methods 
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for creating models using photosensitive materials. Modern AM can be traced back 
to a patent issued by Otto John Munz in 1951, which could be regarded as the begin-
ning of modern stereolithography technology [6]. It was simply a stack of layered 
2D transparent images printed on photosensitive emulsions that were piled on top 
of one another. He devised a method for selectively exposing transparent materials. 
Each layer of the photo emulsion was exposed with a cross section of an object in 
a layer-by-layer method. The build platform on which the part was being made was 
gradually lowered, and the next layer of photo emulsion and fixing agent was created 
on top of the preceding layer, much like a current stereolithography machine [7]. The 
output of the printing process was a solid transparent cylinder with a 3D image of the 
object. The final true three-dimensional (3D) object had to be manually cut or photo-
chemically etched out of the cylinder as a subsequent procedure, which was a flaw in 
this technology. Swainson proposed a process to directly fabricate a plastic pattern 
through selective 3D polymerization of a photosensitive polymer at the intersection 
of two laser beams in 1968 [8], and the following decades saw the development of a 
succession of new techniques, including those of Swainson, who proposed a process 
to directly fabricate a plastic pattern through the selective 3D polymerization of a 
photosensitive polymer at the intersection of two laser beams in 1968 [9].

Photochemical machining [10], in which an object is created by photochemi-
cally crosslinking or degrading a polymer through simultaneous exposure to 
intersecting laser beams, was also done at Battelle Laboratories. Ciraud presented 
a powder process in 1971 that can be regarded as the forerunner of modern direct 
deposition AM techniques such as powder bed fusion, while Housholder pro-
duced the first powder-based selective laser sintering process in 1979 [11]. He 
talked about applying planar layers of powder in a sequential manner and selec-
tively hardening portions of each layer in his invention. Heat and either a specified 
mask or a controlled heat scanning method such as a laser could be used to solid-
ify the material. The development of commercially available systems and com-
mercial AM, as we know it now, did not begin until 1986, with Charles W. Hull’s 
stereolithography patent [12]. UVP Inc. owned the patent at the time, and the 
company licensed the technology to Charles Hull, a former employee who went 
on to develop 3D Systems. The first commercial SLA machine was introduced in 
1988, and since then, practically every year has seen an exponential increase in 
the number of systems, technology, and materials available [13].

Even AM vocabulary has evolved significantly during the previous three decades. 
Because the primary usage of the different available technologies was to build con-
cept models and pre-production prototypes, rapid prototyping (RP) was the pri-
mary term used to characterize layer-upon-layer manufacturing technologies for the 
majority of the 1990s. Solid freeform fabrication (SFF) and layer manufacturing are 
two more terminologies that have been used over the years.

However, in early 2009, the ASTM International Committee F42 on AM 
Technologies attempted to standardize the industry’s terminology, and after a 
meeting in which many industry experts debated the best terminology to use, the 
term “additive manufacturing” was chosen as the industry’s standard terminology. In 
ASTM F2792 10E1 [14] standard terminology for AM technologies document, they 
described AM as follows:
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the process of joining materials to make objects from 3D model data, usually layer 
upon layer, as opposed to subtractive manufacturing methodologies, such as tradi-
tional machining.

AM made it possible for small parts, small quantities, and one-off goods, such as 
those used in the jewelry and medical and dental technology industries, to become 
increasingly cost-effective to manufacture.

The term “rapid” or “direct” manufacturing was used to describe this method. 
It brought up entirely new design engineering options, such as the production of 
geometrically complicated pieces from high-strength materials for lightweight con-
struction. The leading AM companies in the industry agreed in 2010 to replace the 
multiple application-specific, imprecise, and misleading names prefixed by “rapid” 
with the new term “additive manufacturing”, as illustrated in Figure 7.1.

Unlike subtractive manufacturing, which involves removing material from a 
larger block of material until the desired result is attained, most AM procedures do 
not produce a lot of waste. If a part is appropriately “planned for AM”, as opposed 
to a single part manufactured by traditional manufacturing, it may not require the 
enormous amounts of time required to remove undesired material, potentially sav-
ing time and money. This should not be interpreted to mean that AM can always 
produce cheaper parts than traditional production. Because AM is a rather complex 
and expensive technology, it is frequently the reverse. However, this is dependent on 
the AM technology utilized and the numerous design parameters that can be used.

AM is a capable process to produce 3D components from raw materials and 3D 
design data. This layer-by-layer operating process has many advantages including 
high geometrical freedom to produce complex parts with reduced cost and applied 
especially in the aerospace, medical, and automotive industry.

Support structures are necessary for AM [16]; they achieve many technical func-
tions, they increase the ability to manufacture complex geometries, they play a role 
of heat sink to dissipate the high energy and facilitate heat transfer during part build-
ing; as a result, they manage residual stresses which is very interesting for selective 
laser technology, since high temperature is leading to thermal stresses [17]. Support 
structures can also keep away part distortion and contribute to providing physical 
support for weak geometries; in addition, they play a role separating produced part 

FIGURE 7.1  Terminologies for additive manufacturing [15].
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from the build platform for easy removal [18]. The use of support structures affects 
the cost of manufacture by increasing time and material consumption [19]; they 
might affect also post-processing cost and surface quality of the part due to removal 
consequences. Design challenges are present when working with support structures; 
they must be frangible to achieve an easy removal of parts and at the same time, 
must be as strong as possible to ensure a successful building [20]. However, even 
with these advantages of support structures, there exist a small amount of work in 
literature about optimization of support structure [21–27].

Due to the significant use of aluminum alloy and titanium for the aerospace appli-
cation, we find that studies are focusing on selective laser melting support struc-
tures using titanium and aluminum alloys; however, stainless steel 316L is receiving 
increased research attention for AM as it exhibits better corrosion resistance and 
stronger at elevated temperature, and it can be used in heat exchangers, jet engine 
parts, valve and pump parts, chemical processing equipment, tanks, and evaporators. 
This work is contributing to achieve the following goals.

A full factorial design of experiments (DOE) is generated for cone support, tree 
support, and different cellular supports structures manufactured with stainless steel 
316L using selective laser melting for selected geometric control factors.

Digital microscopy is used to allow the study of upper surface quality and see 
through the cross section to study deformation and then a removability evaluation of 
every sample from the platform is investigated.

7.2  EXPERIMENTAL PROCEDURE

During this experiment, an Nd: YAG laser (Neodymium-doped yttrium aluminum 
garnet) is used with a wavelength of 1070 ± 10 nm. The laser beam is transported to 
the scanner optical system through fiber and then transferred to the machine cham-
ber using the SCANLAB scanner. The focal point size is around 70 mm and the laser 
beam is a continuous laser wave (CW). The research machine’s name is Ep-M250 
located at the laboratory center for AM at the faculty of sciences and techniques of 
Tangier, Abdelmalek Essaadi University. The equipment consists of a scanner, laser 
source, selective laser melting, and chamber that is divided into four main compo-
nents: powder feed storage container, platform of building part, recycled powder 
storage container, and a recoating system, Figure 7.2.

The inert gas used in this work, shown in Figure 7.3, is nitrogen supplied from 
nitrogen generator type Boltec, it can supply nitrogen at the pressure of 0.9 Mpa with 
a purity of 99.99 percent.

The parameters of the SLM machine used during this study are shown in 
Table 7.1.

7.2.1  Material

The stainless-steel 316L exhibit better corrosion resistance and stronger at elevated 
temperature; it can be used in heat exchangers, jet engine parts, valve and pump 
parts, chemical processing equipment, tanks, and evaporators. Table 7.2 shows the 
chemical composition. The powder is melted with 30-µm layer thickness during the 
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building process. The stainless steel 316L is widely used in aerospace, medical, and 
other engineering uses that need high resistance of corrosion and strength. With 
stainless-steel 316L, it can be fabricated spare parts, small series products, func-
tional electromechanical systems, and personalized products.

In this experiment, a prismatic body is designed to create a simplified base for 
evaluating different support structures, the prismatic body is 18 mm long, 12 mm 
wide, and 6 mm high. The support structure studied are cone structures, tree struc-
tures, and other cellular structures named from A to H, as shown in Figure 7.4, a total 
of 10 structures have been inspected.

In this set of experiments, cone, tree support, and cell structures were evaluated 
at two different levels, for the cone and tree support distance between two tubes at 

FIGURE 7.2  Building chamber of SLM machine used in this study.

FIGURE 7.3  Inert gas supply of nitrogen.
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levels 1 and 2 is investigated. For the cellular structures dimension of cell is studied 
in 3 mm and 6 mm levels as shown in Table 7.3, a total of 20 samples were manufac-
tured and inspected. The figure from CAD data preparation software is included in 
order to give an understanding of the design matrix.

After manufacturing, the microstructural inspection was carried out and was con-
ducted with digital microscopy in order to investigate the part distortion, surface 
quality from one hand, from the other hand removability of part was evaluated, the 
removal of part was carried out with hand saw and evaluated by giving six levels 
from 0 to 5 and assigned to criteria from very easy to cut to extremely hard to cut. As 
it can be seen from Table 7.4, a comparison of upper surface quality is established 
by giving six levels from 0 to 5 (5 for excellent, 4 for good, 3 for average, 2 for bad, 
1 for very bad, and 0 for extremely bad).

The top part surface quality of every sample was investigated, Figure 7.7 shows 
micrographs of 11 samples that have been successfully fabricated, however, the other 
samples were not given since there was a failure during part building.

TABLE 7.1
SLM Machine Parameters

Parameter Characteristics
Build volume 262 × 262 × 350 mm3

Layer thickness 0.02–0.1 mm

Laser power 200 or 500 W

Scanning system High precision galvanometer

Scanning speed 8 m/s

TABLE 7.2
Powder Stainless Steel Chemical Composition

Element Concentration wt.%
C 0.030

Cr 18.00

Cu 0.50

Fe Balance

Mn 2.00

Mo 5.5

N 0.10

Ni 13

O 0.10

P 0.025

S 0.010

Si 0.75
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After this overall inspection, test samples were cut from the platform, the cross 
sections were prepared for the microstructural analysis, and the cross sections were 
observed compared with digital models in Figure 7.8. It has been shown from the 
figure that presenting the upper surface and compared with cross section of the part 
and digital sample shown in Figure 7.5 that sample 8 have the worst overall surface 
quality and high roughness, this poor overall surface quality might be due to the 
smaller contact area between the support structure and lower surface of the sam-
ple even though there is a higher frequency of support cells of this structure. Samples 
5, 10, 13, and 15 show a better overall surface quality; however, there are some 
deformations of the surface near the part borders, according Figure 7.8 shows the 
cross sections of these samples, and compared with the digital parts, it’s clear that 
the overhang surface that presents these types of support structure near the borders 
increased deformations of the upper surface.

From Figures 7.6 and 7.7, it can be noticed that samples 11, 12, 16, 17, 18, and 19 
show better upper surface quality in the overall surface as well as in borders, and 
this might be due to support structure types that have larger contact area between 
the lower surface of part and support structure as well as it can be seen in the borders 

FIGURE 7.4  Three-dimensional view of different support structures tested.
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there is no overhang surface due to the support structures geometry that doesn’t 
allow gabs in borders.

The tree support and cone-based support shown to be not able to maintain 
the building process from the first scanning layers, they are weak structures, and 
recoating movements affected them and the building is failed. These are shown in 
Figure 7.6.

The sample N° 5, as s shown in Figure 7.8, the support structure was successfully con-
structed, but the upper surface of the part is extremely rough, and warping has occurred 
along the two borders as a result of the gaps not being filled on either side. Because of this 
overhang surface, the construction process was abandoned during this stage.

Sample N°8 in Figures 7.7 and 7.8 shows a correctly constructed structure, but 
it was unable to support the weight of its feature because its borders were warped 
from both sides. The upper surface quality is very low, the heat affected zone was 
extremely high because of the irregularities, and the downward surface is also rough. 
As a result, the structure failed to maintain the building.

It appears that the structure N°10 depicted in the Figures N° 7.7 and 7.8 is stron-
ger; nonetheless, warping has occurred on the left side, primarily as a result of wide 

TABLE 7.3
Dimensions of Cell for Every Part and Type of Structure 
(*for Cone and Tree Structure, the Distance between 
Two Bars Is Considered Instead of Cell Dimension)

Structure Part Number Cell Dimension (mm)
Cone 1 6

2 3

Tree 3 6

4 3

C 5 6

6 3

D 7 6

8 3

E 9 6

10 3

F 11 6

12 3

G 13 6

14 3

H 15 6

16 3

I 17 6

18 3

J 19 6

20 3
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TABLE 7.4
Evaluation of Border Distortion, Upper Surface Quality, and Part Removability

Structure Part Number Cell Dimension 
(mm)

Building 
Situation

Border 
Deformation

Surface 
Quality

Cone 1 6 Failed N/A N/A

2 3 Failed N/A N/A

Tree 3 6 Failed N/A N/A

4 3 Failed N/A N/A

C 5 6 Succeeded 1 0

6 3 Failed N/A N/A

D 7 6 Failed N/A N/A

8 3 Succeeded 0 1

E 9 6 Failed N/A N/A

10 3 Succeeded 2 2

F 11 6 Succeeded 5 5

12 3 Succeeded 5 5

G 13 6 Succeeded 4 5

14 3 Failed N/A N/A

H 15 6 Succeeded 1 4

16 3 Succeeded 5 4

I 17 6 Succeeded 5 4

18 3 Succeeded 5 4

J 19 6 Succeeded 5 5

20 3 Failed N/A N/A

FIGURE 7.5  Digital model of design matrix of the experiment and recoating direction.
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FIGURE 7.7  Upside view of the upper surface of 11 samples fabricate numbered 5, 8, 
10–13, and 15–19.

FIGURE 7.6  Upside view of samples fabricated numbered from 1 to 20.
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gaps in the cell-based support, which has failed to construct the feature even though 
the surface quality is superior.

Samples 11, 12, 13, 16, 17, 18, and 19 are included. The building has been suc-
cessful, and warping has been kept to a minimum. From both sides, these structure 
supports are distinguished by strong cell features, which fill gaps in the borders 
and allow for the proper holding of parts in the platform. The quality of both the 
downward and upward surfaces is significantly higher. These structure supports are 
acceptable; they may, however, have an impact on part removal from the platform, 
making it more difficult to remove.

 

FIGURE 7.8  Cross section view of 11 samples fabricated numbered 5, 8, 10–13, and 15–19 
compared with their 3D model (Continued)
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FIGURE 7.8  (Continued)
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7.3  CONCLUSION

The purpose of this study was to compare the features of two distinct types of sup-
port structures (tree and cellular supports). Each support type was manufactured. 
316L stainless steel was used as the test material. The experiment employed an IPG 
YLS 200W SM CW Ytterbium fiber laser with a wavelength of 1070 nm and an EPM 
250 SLM laser additive machine. The study’s primary focus was on the removability 
of support structures and the surface quality of the components. The removal job 
was performed manually, as the removability of the supports should be determined 
by their ease of removal. The surface properties of every support structure were 
advantageous during the production process, they must be removed afterward. It 
has been found that it has been shown from the figure that presenting upper surface 
and compared with cross section of the part and digital sample shown in Figure 7.5 
that sample 8 have the worst overall surface quality and high roughness, this poor 
overall surface quality might be due to the smaller contact area between the support 
structure and lower surface of the sample even though there is a higher frequency of 

FIGURE 7.8  (Continued)
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support cells of this structure. Samples 5, 10, 13, and 15 show a better overall surface 
quality; however, there are some deformations of the surface near the part borders, 
according to Figure 7.6 showing the cross sections of these samples and compared 
with the digital parts, it’s clear that the overhang surface that presents these types 
of support structure near the borders increased deformations of the upper surface.
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8.1  INTRODUCTION

Carbon nanotubes (CNTs) are cylindrical tubes of covalently bonded carbon atoms 
that display extraordinary electronic and mechanical properties. There are two basic 
types of CNTs: single-wall carbon nanotubes (SWCNTs), which are the fundamen-
tal cylindrical structures, and multi-wall carbon nanotubes (MWCNTs), which are 
made of coaxial cylinders, having interlayer spacing close to that of the interlayer 
distance in graphite (0.34 nm). These cylindrical structures have a diameter in the 
order of nanometers (depending on the number of walls) but a length of several 
microns (100 μm) extendable to up to a few millimeters (about 4 mm) (Upadhyayula 
and Gadhamshetty 2010). They were first discovered by M. Endo in 1978, but the 
real interest in CNTs started when the Japanese scientist Iijima first reported them in 
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1991 (Iijima 1991). The field thrived after that and the first polymer composites using 
CNTs were reported by Ajayan et al. (1994).

CNTs have very attractive properties, such as high surface area per unit vol-
ume, excellent mechanical strength, and high electrical and thermal conductivity 
(Al-Jumaili et al. 2017; Upadhyayula and Gadhamshetty 2010). The antimicrobial 
and antifouling (AF) activities of pristine CNTs have also been reported (Chen et al. 
2013; Kang et al. 2007). However, the use of CNTs in their bulk form results in 
a poor translation of their inherent properties, limiting technological advancement 
(Khan, Sharma, and Saini 2016). To exploit their attributes, it becomes essential to 
mix CNTs with engineered polymers (e.g., thermoplastics, elastomers, conjugated 
polymers) or natural polymers to obtain nanocomposites with augmented benefits 
(Ma et al. 2010; Khan, Sharma, and Saini 2016). Along with the enhancement of the 
structural, thermal, and electronic properties of the final composites, the conjugation 
of CNTs with materials such as polymers, metals, or biomolecules frequently results 
in the production of nanocomposites with increased antimicrobial activity (Teixeira-
Santos, Gomes, and Mergulhão 2020).

The incorporation of CNTs in polymer matrices provides materials that can be 
applied in industrial, environmental, and biomedical fields. Currently, the most 
widespread use of CNT nanocomposites is in industry. They have been used to pro-
duce transistors and chemical sensors (Norizan et al. 2020) and to develop mem-
branes for filtration and other separation processes (Madenli, Yanar, and Choi 2020; 
Zhang et al. 2017). Additionally, CNTs have been used in the formulation of cleaning 
agents, biocides, and disinfectants for industrial processes (Vassallo et al. 2018).

In the environmental field, the AF performance and mechanical properties of 
CNTs allowed their application in marine transportation. The undesired growth 
of marine organisms on ship hulls decreases their speed and increases fuel con-
sumption, with both economic and environmental penalties. Several studies have 
proposed the incorporation of CNTs in the synthesis of fouling-release (FR) coat-
ings against microalgae and barnacles (Beigbeder et al. 2008; Martinelli et al. 2011; 
Cavas et al. 2018). CNTs have also been applied in water and wastewater treatment 
as absorbents for biological and organic/inorganic contaminants due to significant 
discoveries related to antimicrobial and adsorption characteristics of CNTs (Smith 
and Rodrigues 2015; Fan et al. 2019; Cruz-Silva et al. 2019).

More recently, CNTs have been particularly used in pharmacy and medicine as a 
drug delivery system. It has been demonstrated that the chemical stability of these 
nanomaterials enables them to adsorb or conjugate with a wide range of therapeu-
tic molecules such as proteins, antibodies, DNA, etc. (He et al. 2013). CNTs have 
also been used in the construction of biosensors for the detection of biomolecules 
and biological cells, tissue engineering, and neuronal interfaces (Upadhyayula and 
Gadhamshetty 2010; He et al. 2013). Due to their antimicrobial activity, CNTs have 
been studied for the manufacture of medical devices and prosthetic implants (Kim 
et al. 2019; Cho et al. 2019).

Although CNTs showed to reduce biofilm formation in different scenarios, there is 
still little consensus about their mode of action. The partial penetration of nanotubes 
into bacterial cells is pointed out as a potential mechanism to inhibit adhesion. The 
physical piercing of the outer membranes of microorganisms leads to an irrecoverable 
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membrane perturbation and, consequently, to cell disruption and release of intracel-
lular content (Kang et al. 2008). Moreover, the microtexture of CNTs showed to have 
a negative impact on bacterial adhesion (Malek et al. 2016). Additionally, it has been 
suggested that the anti-adhesive effect of MWCNTs is related to their flexibility and 
oscillation in the substrate, which do not provide a stable surface for the adhesion of 
microorganisms and consequent biofilm development (Malek et al. 2016).

This chapter focuses on a few recent advanced applications of CNT composites 
in the domains of industrial processes, environment, and medicine, with particular 
emphasis on their antimicrobial and AF performance. CNT-based materials will be 
presented according to their potential final application, and by discussing some studies, 
the future directions of these nanocomposites in the different fields will be outlined.

8.2  CNT-BASED COMPOSITES IN THE BIOMEDICAL FIELD

CNT-based composite materials have been used in a plethora of biomedical applica-
tions, varying from therapeutic (drug and gene delivery, cancer treatment, and tissue 
engineering and regenerative medicine) to diagnostic applications (biomedical imag-
ing and biosensors) (Raphey et al. 2019; Erol et al. 2018).

Regarding the antimicrobial and anti-adhesive properties of CNT-based materials, 
they have been exploited not only for designing a variety of drug delivery systems 
(where their ability to penetrate through the cellular membranes and the high drug 
carrier capacity are of paramount importance) but also for antimicrobial therapy, and 
the development of high-performance composites for medical devices and implants.

Table 8.1 describes some representative studies reporting the antibiofilm activity 
of MWCNT composites with application in the biomedical field. In the last decade, 
the conjugation of CNTs with compounds displaying antimicrobial activity – anti-
microbial agents, photosensitizers, antimicrobial peptides (AMPs), and enzymes – 
revealed to be a promising approach to prevent biofilm formation (Teixeira-Santos 
et al. 2021). The favorable combination of MWCNTs with AMPs was particularly 
highlighted in a study performed by Qi et al. (2011). In this specific case, the covalent 
immobilization of nisin (a natural AMP with well-known antimicrobial activity) on 
MWCNTs enhanced the antimicrobial and antibiofilm activities of the final compos-
ite, offering new possibilities for the development of novel antimicrobial surfaces.

The functionalization of CNTs with amine and carboxyl groups has also been 
investigated in this field. It is indeed meant to improve CNT solubility in water and 
biological fluids and, consequently, reduce CNT cytotoxicity (Anzar et al. 2020). In 
a study conducted by Zardini et al. (2014), ethanolamine-functionalized MWCNTs 
proved their efficiency against a broad range of species, presenting higher antimicro-
bial activity than pristine MWCNTs (p-MWCNTs). According to the authors, this 
can be explained by the increase in the interaction between amino groups of ethanol-
amine-functionalized MWCNTs and negatively charged cell walls of microorgan-
isms (Zardini et al. 2014). The influence of MWCNT surface chemistry on bacterial 
adhesion was also previously assessed by Vagos et al. (2020). However, in this study, 
p-MWCNTs incorporated in polydimethylsiloxane (PDMS) seemed to be more effi-
cient in the reduction of Escherichia coli adhesion compared to the functionalized 
ones. The authors also reported a significant reduction in cell adhesion by using  
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TABLE 8.1
Studies Demonstrating the Efficacy of MWCNT Composites with Application in the Medical Field

Application MWCNT Composite Species Major Conclusions Reference
Antimicrobial 
surfaces

Nisin immobilized on 
MWCNTs

E. coli
Pseudomonas aeruginosa
Staphylococcus aureus
Bacillus subtilis

Nisin/MWCNT composites showed higher 
antimicrobial and antibiofilm activities (7-fold 
and 100-fold, respectively) than pristine 
MWCNTs (p-MWCNTs) against all tested 
pathogens.

Qi et al. (2011)

Antimicrobial 
agents

Ethanolamine-functionalized 
MWCNTs (f-MWCNTs)

Gram-positive and -negative 
bacteria

The antimicrobial activity of f-MWCNTs was 
higher than p-MWCNTs as demonstrated by 
minimum inhibitory concentration determination 
(2.87 ± 0.11–14.22 ± 0.17 µg mL−1 vs 6.12 ± 
0.16–36.41 ± 0.06 µg mL−1).

Zardini et al. (2014)

Drug delivery TiO2-Au nanoparticles 
embedded on MWCNTs

Gram-positive and -negative 
bacteria

Fusarium solani
Aspergillus niger
Candida albicans

TiO2-Au/MWCNT composites showed high 
antimicrobial activity against all tested isolates 
and inhibited Streptococcus pneumoniae, P. 
aeruginosa, and C. albicans biofilm formation by 
75–90%.

Karthika et al. (2018)

Bone and cartilage 
tissue engineering

Polyethylene glycol (PEG)-
functionalized MWCNT/
gelatin-chitosan loaded with 
ciprofloxacin

Gram-positive and -negative 
bacteria

The antibacterial activity of the drug-loaded 
gelatin-chitosan/MWCNT-PEG composites was 
higher than that of drug-loaded gelatin-chitosan 
composites, as demonstrated by disk diffusion 
assays (30.80 mm vs 24.93 mm).

Sharmeen et al. (2018)

Dental biomaterials MWCNTs incorporated in 
poly(methyl methacrylate) 
(PMMA)

Streptococcus mutans
S. aureus
C. albicans

PMMA/MWCNT composites were able to reduce 
microbial adhesion by 35–95%.

Kim et al. (2019)
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Medical devices Silver-plasma polymer 
fluorocarbon (PPFC) 
fabricated using MWCNTs

S. aureus
Klebsiella pneumoniae

The Ag-PPFC nanocomposites inhibited the 
bacterial growth of S. aureus and K. pneumoniae 
by up to 92% and 45%, respectively, compared to 
uncoated substrates.

Cho et al. (2019)

Urinary tract devices Pristine (p-BM) and carboxyl 
(f-BM) ball-milled 
MWCNT-filled 
poly(dimethylsiloxane) 
(PDMS) composites

E. coli p-BM-MWCNTs and f-BM-MWCNTs showed a 
reduction in cell adhesion of 42% and 18%, 
respectively, compared to the same composites 
without milling; p-BM-MWCNT/PDMS 
composites reduced E. coli adhesion by 60%.

Vagos et al. (2020)

Wound healing Heteroatom (N, F, P/B)-doped 
MWCNTs: NFP/MWCNTs 
and NFB/MWCNTs

B. subtilis
K. pneumoniae
E. coli
P. aeruginosa

NFP/MWCNT composites inhibited biofilm 
formation by 73% for B. subtilis, 78% for E. coli, 
71% for K. pneumoniae, and 80% for P. 
aeruginosa; NFB/MWCNTs showed 83%, 81%, 
77%, and 77% biofilm inhibition against the 
above bacteria, respectively.

Murugesan et al. (2020)

Membranes for 
hemodialysis 
application

Poly(citric acid)-grafted CNTs 
(PCA-g-MWCNTs) 
incorporated as nanofiller in 
polyethersulfone (PES)

N/A Compared to commercial PES hemodialysis 
membranes, the PES/PCA-g-MWCNT 
membranes showed a lower flux decline (5-fold) 
and higher water flux recovery ratio (from 15.8 
Lm−2h−1 to 95.4 Lm−2h−1).

Abidin et al. (2016)

N/A – not applicable.

TABLE 8.1  (Continued)
Studies Demonstrating the Efficacy of MWCNT Composites with Application in the Medical Field

Application MWCNT Composite Species Major Conclusions Reference
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pristine ball-milled MWCNTs (60% reduction), probably driven by a better degree 
of dispersion in PDMS (Vagos et al. 2020).

The combination of MWCNTs with different formulations of silver, titanium, 
and copper is also being tested with the intent of producing new drug delivery sys-
tems and innovative materials for application on medical devices. In a study per-
formed by Karthika et al. (2018), for instance, MWCNTs decorated with titanium 
dioxide-gold nanoparticles exhibited great antibiofilm activity against Shigella dys-
enteriae, Proteus vulgaris, K. pneumoniae, S. pneumoniae, B. subtilis, S. aureus, 
and C. albicans. Similarly, Ag-plasma polymer fluorocarbon (PPFC) nanocompos-
ite thin films fabricated using an MWCNT-Ag-polytetrafluoroethylene composite 
were found to suppress bacterial growth and proliferation by up to 92% (Cho et al. 
2019). These results can be attributed not only to the antimicrobial properties of 
Ag nanoparticles and MWCNTs but also to the super-hydrophobic character of the 
PPFC matrix (Cho et al. 2019).

As previously mentioned, CNT-based composites have been largely investigated 
in the tissue engineering and regenerative medicine fields, where they have been used 
as filler particles in the fabrication of dental and orthopaedical implants (Lekshmi 
et al. 2020). In addition to their role as strengthening agents, MWCNT-based poly-
mer composites have demonstrated palpable success in the inhibition of bacterial 
adhesion and biofilm formation either by using poly(methyl methacrylate) (PMMA) 
(Kim et al. 2019) or PEG/gelatin-chitosan (Sharmeen et al. 2018) polymers.

The association of MWCNT nanocomposites with different heteroatoms (N, F, 
P/B) also seems to generate promising results, significantly changing the properties of 
CNTs and extending their potential applications (Murugesan et al. 2020). Heteroatom 
doping operates in three different ways: it offers the minerals needed for new tissue 
formation in the wound-healing process; it strongly inhibits the biofilm formation of 
Gram-negative and -positive strains; and, finally, it increases the biocompatibility and 
wound healing ability of MWCNT composites (Murugesan et al. 2020).

The incorporation of poly(citric acid)-grafted-MWCNTs as nanofillers in poly-
ethersulfone to produce hemodialysis mixed matrix membranes (MMM) was also 
addressed by Abidin et al. (2016). Overall, the researchers noticed the enhancement 
of MMM hydrophilicity, porosity, and AF properties (Abidin et al. 2016).

Although a vast number of studies have already reported the advantages of using 
MWCNT composites in the medical field, concerns related to their biosafety, toxic-
ity, carcinogenic, and teratogenic effects still exist, limiting their medical application 
(Lekshmi et al. 2020). Even though functionalization can expand the overall perfor-
mance of CNTs, promoting their biocompatibility, further investigations are needed 
to clarify CNT toxicity and thus enable the translation of surface-engineered CNT 
nanocomposites from the laboratory to the clinic.

8.3  CNT-BASED COMPOSITES FOR MARINE APPLICATIONS

In the last decade, different polymer-based nanocomposites incorporating CNTs as 
fillers have been investigated for anti-biofouling applications in the marine industry, 
as seen in Table 8.2. Marine biofouling occurs every time fouling organisms settle 
and colonize surfaces (of either natural or artificial origin) submerged in a marine 
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TABLE 8.2
Studies Demonstrating the Efficacy of CNT Composites for Marine Applications

Application CNT Composite CNT Type Type of Study Species Major Conclusions Reference

Marine FR coatings Silicone-based coatings 
filled with CNTs and 
natural sepiolite

MWCNT In vitro Representative 
soft-fouling (Ulva 
linza) and hard-fouling 
(Balanus cyprid) 
organisms

The percentage removal of Ulva spores from the 
coating containing 0.2% MWCNTs was 
significantly higher (70%) than that from the other 
coatings, including the unfilled control. The addition 
of 0.2% MWCNTs to the PDMS significantly 
decreased the critical removal stress for barnacles.

Beigbeder et al. 
(2008)

Coatings for anti-
biofouling applications

Carboxyl CNT/PDMS 
nanocomposites 
(c-CNT/PDMS)

MWCNT Sea trials Early eukaryotic and 
prokaryotic 
communities

c-CNT/PDMS surfaces prevented biofouling for more 
than 14 weeks. c-CNTs significantly reduced 
eukaryoticmicrobial diversity, which contributes to 
the hindering of biofilm development.

Sun and Zhang 
(2016a)

Eco-friendly coatings for 
marine anti-biofouling 
applications

Carboxyl and hydroxyl 
CNT-filled PDMS 
composites

MWCNT Sea trials (XiaoShi 
Island harbor waters)

Early eukaryotic 
communities

MWCNT- and c-MWCNT/PDMS composites 
demonstrated exceptional AF properties. The 
diversity and richness of species of early eukaryotic 
communities on most CNT-based surfaces were 
significantly lower than those on PDMS control.

Sun and Zhang 
(2016b)

MWCNT Sea trials (Weihai 
Western Port, China)

Barnacles, mussels, 
ascidians, Ulva, 
seaweeds

The AF properties of PDMS films were greatly 
improved with the incorporation of a low amount of 
CNTs (0.1 wt%), causing a strong perturbation on 
prokaryotic colonization compared to PDMS.

Ji et al. (2018)

MWCNT
SWCNT

Short-term sea trials 
(XiaoShi Island, near 
the West Port of the 
Weihai city, China)

Pioneer surface-biofilm 
bacteria communities

The incorporation of CNTs in PDMS affected pioneer 
surface-biofilm bacterial communities. While 
Proteobacteria decreased on all CNT/PDMS 
composites compared to PDMS (70 vs 85%), 
Cyanobacteria increased (22 vs 8%). SWCNT/
PDMS composites demonstrated lower AF efficacy 
compared to MWCNT/PDMS surfaces.

Sun et al. (2020)
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environment (Fusetani 2004). As a result of biofouling on ship hulls, some factors are 
compromised, including its speed and maneuverability and fuel consumption, which 
tends to increase (Townsin 2003). Given the widely known technical and economic 
challenges presented by biofouling in the marine industry, the use of CNTs as fillers 
for polymer composites is becoming increasingly important. By applying these nano-
materials, the mechanical strength of the final composite (Cavas et al. 2018) and its 
ability to retard biofouling – either by AF or FR properties – can be enhanced.

The application of AF and FR coatings is indeed the most common strategy 
to combat biofouling (Gule, Begum, and Klumperman 2016; Selim et al. 2017). 
Previously, Beigbeder et al. (2008) have found that the AF and FR properties of 
the PDMS matrix can be greatly enhanced with the incorporation of a very small 
amount of MWCNTs (0.05%).

Once again, CNT functionalization plays a crucial role in the development of 
improved nanocomposites. In fact, recent studies have reported that by incorporating 
carboxyl- and hydroxyl-modified CNTs in the PDMS matrix exposed to the natural 
seawater, excellent anti-biofouling properties can be achieved (Sun and Zhang 
2016a, b; Ji et al. 2018; Sun et al. 2020). Additionally, it was reported that modified 
CNT/PDMS composites are able to significantly reduce the diversity and richness 
of microbial communities, being less prone to the pioneer eukaryotic colonization 
and the subsequent attachment and colonization of macrofoulers (Sun and Zhang 
2016a, b). Although CNTs seem to be good candidates for the preparation of AF and 
FR coatings, the development of new polymer-modified CNTs for anti-biofouling 
applications needs to be further addressed. Furthermore, future efforts should focus 
on the investigation of the anti-biofouling and degradation mechanisms of CNT 
composites, as well as the production of novel eco-friendly coating materials.

8.4 � CNT-BASED COMPOSITES FOR WATER 
TREATMENT APPLICATIONS

CNT-polymer composites continue to stand out due to their excellent properties, 
and water and wastewater treatment and filtration are some of the areas in which 
they have been successfully applied (Sarkar et al. 2018; Kokkinos, Mantzavinos, 
and Venieri 2020). The excellent performance of CNTs in the adsorption of con-
taminants from water derives from their high affinity and selective adsorption 
capacity for contaminants, in particular, organic pollutants, heavy metals, and 
bacteria (Kokkinos, Mantzavinos, and Venieri 2020). Some representative studies 
reporting the efficacy of MWCNT composites for water treatment applications are 
presented in Table 8.3.

Despite the success of p-CNT meshes in the purification of contaminated drink-
ing water (De Volder et al. 2013), there has been a continuous effort towards the 
functionalization of CNTs. Apart from the modification of CNTs with nisin (Dong 
and Yang 2015), recent studies have been emphasizing the importance of associating 
silver and other noble metals with MWCNT/polymer membranes in order to increase 
their antimicrobial activity and fouling resistance (Gunawan et al. 2011; Macevele, 
Moganedi, and Magadzu 2017; Pang, Ahmad, and Zaulkiflee 2019; Fan et al. 2019; 
Ali et al. 2019).
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TABLE 8.3
Studies Demonstrating the Efficacy of MWCNT Composites for Water Treatment Applications

Application MWCNT Composite Species Major Conclusions Reference

Water disinfection 
and biofouling 
control

Silver nanoparticles/MWCNTs coated on a 
polyacrylonitrile (Ag/MWCNT/PAN) hollow fiber 
membrane

E. coli The relative flux drop was 6% for the Ag/MWCNT/PAN membranes, being 
significantly lower than for pristine PAN (55%). The presence of Ag/
MWCNTs inhibited bacterial growth and prevented biofilm formation.

Gunawan et al. 
(2011)

Water disinfection Nisin-MWCNT coated filters Bacillus 
anthracis

Nisin deposited on MWCNT filters increased the B. anthracis capture up to 
3.9 log and significantly reduced their viability by 96–97%.

Dong and Yang 
(2015)

Wastewater 
treatment

Silver/MWCNT/poly(vinylidene fluoride-co-
hexafluoropropene) (Ag/MWCNT/PVDF-HFP) 
membranes

E. coli The 3% Ag/MWCNT/PVDF-HFP membranes showed a high fouling 
resistance rate and bactericidal activity (100% bacterial load reduction).

Macevele, 
Moganedi, and 
Magadzu (2017)

Water treatment 
applications

Polyethyleneimine/MWCNT/trimesoyl chloride (PEI/
MWCNT/TMC)

N/A The hydrophilic and negatively charged PEI/MWCNT/TMC surface 
generates membranes with good AF properties (90% more than PEI/
MWCNT surface).

Liu et al. (2017)

N-halamine epoxide and siloxane grafted onto the 
MWCNTs (N/Si/MWCNTs)

E. coli
S. aureus

The films containing N/Si/MWCNTs displayed a flux recovery ratio value 
above 97% and had excellent antibacterial efficacy (98 and 96% against S. 
aureus and E. coli, respectively).

Huang et al. (2017)

PES membrane incorporated with zinc oxide (ZnO) 
and MWCNTs

Enterobacter sp. ZnO/MWCNT/PES membrane demonstrated efficient AF properties with 
high flux ratios of 28–56 L m−2 h−1 versus 7.8 L m−2 h−1 obtained for PES 
membrane. Additionally, few bacteria were found attached to the 
membrane.

Pang, Ahmad, and 
Zaulkiflee (2019)

Silver nanoparticles with MWCNTs (Ag/MWCNTs) 
on ceramic membrane under electrochemical 
assistance

E. coli Viable cells on the MWCNT/ceramic membrane were reduced to 2.6 log, 
while bacteria were completely inactivated by Ag-MWCNT/ceramic 
membrane.

Fan et al. (2019)

Water and 
wastewater 
treatment

MWCNT/polyethylene (MWCNT/PE) Pseudomonas 
fluorescens

Mycobacterium 
smegmatis

Biofilm growing on MWCNT/PE surface decreased by 89% and 29% for P. 
fluorescens and M. smegmatis, respectively, compared to PE surface.

Jing, Sahle-
Demessie, and 
Sorial (2018)

Dairy wastewater 
treatment

Thermo-responsive N-isopropyle acryleamide 
(NIPAAm) polymerized on the surface of MWCNTs

N/A MWCNT-NIPAAm membranes demonstrated a flux recovery ratio of 
78–99.9% compared to 47% of PES membranes.

Yaghoubi and 
Parsa (2019)

N/A – not applicable
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The combination of MWCNTs, trimesoyl chloride, and polyethyleneimine 
has also been reported as a way to improve membrane hydrophilicity and thus 
increase its AF performance (Liu et al. 2017). Additionally, by using films contain-
ing N-halamine epoxide/MWCNTs, an antibacterial effect of 96 and 98% against 
E. coli and S. aureus, respectively, was previously achieved (Huang et al. 2017). 
Similarly, Jing, Sahle-Demessie, and Sorial (2018) showed great antibiofilm activ-
ity of MWCNT/polyethylene surfaces against Pseudomonas fluorescens (biofilm 
growth was reduced by 89%). Some of these films also present a high water flux 
recovery rate compared to pristine membranes (Huang et al. 2017; Yaghoubi and 
Parsa 2019). In this regard, MWCNT/polymer composites are considered to have a 
promising future for use in next-generation filtration membranes.

In spite of all these successful results, some novel approaches to composite mem-
brane formation using CNTs need to be assessed to achieve maximum contaminant 
removal efficiency, which includes, for instance, the introduction of other types of 
functionalization. Still, some other problems need to be evaluated, such as envi-
ronmental and human exposure to CNTs, scale-up, and CNTs leaching. Further 
investigations are required to evaluate the ability of functionalized CNT composite 
membranes to treat water and wastewater in real conditions, which implies long-term 
applications, as well as to standardize the production procedure of these membranes, 
facilitating the commercialization for full-scale water treatment.

8.5  CNT-BASED COMPOSITES FOR INDUSTRIAL APPLICATIONS

Over the past decade, CNTs have attracted enormous attention in the industrial field. 
They have been used to produce chemical sensors and emission transistors, as well 
as membranes for filtration and separation/purification processes (Zhang et al. 2017; 
Madenli, Yanar, and Choi 2020). As a consequence, there has been a growing inter-
est in the development of CNT composites with highly antimicrobial and AF activity. 
Table 8.4 highlights some of the studies that have been carried out in this area.

Tiraferri, Vecitis, and Elimelech (2011) reported that SWCNTs covalently binding 
to polyamide membranes could efficiently prevent bacterial attachment and, conse-
quently, delay membrane biofouling, being useful for filtration processes. In addi-
tion, the immobilization of silver nanoparticles (AgNPs)/MWCNTs with polymer 
colloids (using a new strategy consisting of a sandwiched type structure) revealed 
great antimicrobial activity against E. coli and S. aureus (Rusen et al. 2014).

Later, it has been shown that it is possible to enhance the AF properties of com-
posite membranes by taking advantage of their inherent conductivity and using dif-
ferent forms of applied electrochemical stimulation. In this regard, interlaced CNT 
electrodes (ICE) on a commercial polyvinylidene fluoride microfiltration membrane 
showed AF properties at direct (DC) and alternating current (AC) electric poten-
tials through filtration and backwash cycles (Zhang et al. 2017). Also, the authors 
have stated that (i) ICE AF mechanism can be related with the dielectrophoretic 
effect in the solution between electrodes, and it is better accomplished at AC in com-
parison with DC; and (ii) electrochemistry changes bacterial morphology, however, 
it presents less effect on bacterial density than electrokinetics (Zhang et al. 2017). 
Recently, Madenli, Yanar, and Choi (2020) revealed the promising antibacterial and  
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TABLE 8.4
Studies Demonstrating the Efficacy of CNT Composites for Industrial Processing Applications

Application CNT Composite CNT Type Species Major Conclusions Reference
Membrane-based 
separation applications

CNTs covalently bound to 
polyamide membranes

SWCNT E. coli SWCNT membranes achieved up to 60% 
inactivation of the attached bacteria after 
1 h of contact. Additionally, SWCNTs 
delayed the onset of membrane biofouling 
during operation.

Tiraferri, Vecitis, and 
Elimelech (2011)

Filtration processes Sandwiched-type structure based 
on polymer colloids, CNTs, and 
AgNPs

MWCNT E. coli
S. aureus

The polymer colloids/AgNPs/MWCNT 
exhibited good antimicrobial activity as 
demonstrated by the disk inhibition zone 
(11.5 and 9.7 mm for E. coli and S. aureus, 
respectively, vs ≈ 7.0 mm obtained for the 
control).

Rusen et al. (2014)

Microfiltration in industrial 
processing

Interlaced CNT electrodes on a 
polyvinylidene fluoride 
microfiltration membrane

MWCNT P. fluorescens The optimal operating conditions (2 V 
alternating current) reduced the fouling rate 
by 75% compared to control and achieved 
up to 96% fouling resistance recovery.

Zhang et al. (2017)

Separation and purification 
applications

CNTs blended PES membranes MWCNT E. coli
P. aeruginosa

No E. coli colonies were observed on the 
composite membranes with 0.5% 
MWCNTs. When the membranes were 
incubated with P. aeruginosa suspensions, 
they showed almost 87% less biofilm 
formation at 24 h compared to PES 
membrane.

Madenli, Yanar, and 
Choi (2020)
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antibiofilm properties of MWCNT/polyethersulfone membranes and indicated their 
potential to be used in separation and purification processes.

All the above studies highlight the potential of CNT membranes to enhance bio-
fouling resistance compared to the conventional polymeric substrates, recommend-
ing their use for industrial processing applications.

8.6  CNT-BASED COMPOSITES AND OTHER APPLICATIONS

Given their outstanding properties, in recent years, CNTs have been used in other 
applications, including the construction of chemical sensors and the development of 
cleaning agents, biocides, and disinfectants.

Graphene oxide/MWCNT/poly(O-toluidine) composite was synthesized to fabri-
cate a sensitive and selective chemical sensor for the detection of Pb2+ ions in the envi-
ronment. Antimicrobial studies demonstrated that this composite was effective against 
both B. subtilis and E. coli bacteria compared to the amoxicillin as demonstrated by 
disk diffusion (21 and 8 mm, respectively) and MIC determination (45 and 60 µg mL−1, 
respectively) methods (Khan et al. 2016).

The antimicrobial properties of some nanomaterials have created interest in their 
use as cleaning agents, biocides, and disinfectants. Vassallo et al. (2018) evaluated 
the antimicrobial activity of MWCNTs and obtained high MIC values (>100 mg L−1), 
suggesting that this nanomaterial displays low toxicity against E. coli cells, although 
several authors have demonstrated the efficacy of MWCNTs against a broad range 
of bacteria (Zhang et al. 2015; Hartono et al. 2018). It is known that the percentage 
of inactivated cells is influenced by the CNT concentration and can be increased by 
their modification or association with polymers, metals, or biomolecules (Hartono 
et al. 2018; Upadhyayula and Gadhamshetty 2010). Therefore, the antimicrobial 
activity of CNTs depends on a multiplicity of factors that may be modulated accord-
ing to the desired application.

8.7  CONCLUSION

CNTs are described as excellent nanomaterials for numerous applications, including 
inhibiting biofilm formation. Although the CNT mechanism of action is still under 
discussion, their antimicrobial and AF activities seem to depend on a variety of 
factors, which may be tuned in order to improve their efficacy. The functionaliza-
tion of CNTs is also essential to increase their hydrophilicity and, consequently, the 
biocompatibility required for medical and environmental applications. According to 
the analyzed studies, there are several materials such as polymers, biomolecules, and 
metals, that may be blended to develop effective CNT-based nanocomposites.

The high antimicrobial activity of CNT-nanocomposites was reported against a 
broad spectrum of microorganisms and their potential for medical and water treat-
ment applications was demonstrated. Also, the significant fouling resistance of 
these nanocomposites was proven at distinct levels, including in the development of 
marine AF or FR coatings, water treatment, and industrial processes such as filtra-
tion. Nevertheless, further studies are needed to validate the efficacy of CNT-based 
composites and to translate these findings from the laboratory to real scenarios.
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9.1  INTRODUCTION

Nanocomposite coating is composed of mixing two or more dissimilar materials at 
the nanoscale to control and form a new and improved structure. The properties of 
nanocomposites coatings and/or materials depend not only on the materials used 
but also on the morphology and the interfacial characteristics [1–3]. Nanocomposite 
coatings and/or materials are one of the most exciting and fastest-growing areas 
of research with new materials and novel properties being continuously developed, 
which are previously unknown in the constituent materials. Because of their unique 
properties and increasing popularity, nanostructured and composite coatings have 
been the subject of numerous books, journal articles, reports, research papers, etc. 
Therefore, nanocomposite materials and coatings have enormous potential for new 
applications emerging in various areas including aerospace, automotive, electronics, 
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biomedical implants, lightweight materials, nanowires, sensors, batteries, bio-
ceramics, energy conversion and many other manufacturing applications. This chap-
ter is intended to provide an overview of recent developments of highly uniform and 
inexpensive nanocomposite coatings. This will also be on the fundamental tribo-
logical mechanisms that control their superior friction and wear properties at severe 
operation conditions (high surface loads and temperatures, lack of lubricants, and 
aggressive oxidising environments).

In general, hard coatings are widely used for many decades in tribological appli-
cations to protect various tools and parts from wear. The development of wear-
resistant coatings started in the 1960s. Chemical vapour deposition (CVD) and 
physical vapour deposition (PVD) techniques are two major techniques that are 
widely used in many industrial fields that not only provide dramatic improvements 
in terms of productivity but also have high hardness and corrosion resistance [4–6]. 
However, the main hurdle is to select the best coating is not often straightforward, 
as the quality of proper hard coating materials, their combinations, and their deposi-
tion process. Other synthesising techniques such as anodising, electroplating, etc., 
for protecting the surface or forming a protective nanostructured layer/or composite 
are constantly increasing. During the time of 1980s and since then, materials such as 
nitrides, carbides, oxides, carbon-based, borides [7–11] are widely being used in hard 
coating technology due to their outstanding mechanical and tribological properties 
that provide high hardness and wear resistance, excellent chemical stability and oxi-
dation resistance in severe environments.

For engineering applications, high hardness must be complemented with high 
fracture toughness. High fracture toughness is necessary when a concentrated 
load is applied for applications such as high contact load applications. When the 
coating substrate materials deform significantly than a tough material with high 
strength provides good elastic recovery. However, the introduction of ductility in 
hard materials is very challenging. Poros anodised alumina (NPA) is one of the 
most widely used wear-resistant ceramics to protect the surface [12]. The coating 
structure can be amorphous or exhibit several crystalline phases, which generally 
show higher hardness [12]. The structure obtained strongly depends upon the 
anodising process parameters, and thus, the film properties can vary considerably. 
Since NPA has excellent hardness and wear resistance, further modification of 
NPA pores filled with metal can be complemented with high hardness as a next-
generation coating.

It is obvious that future tribosystems will be subjected to much more stringent 
operation conditions than before, mainly because of the increased power density 
dissipated (e.g. cutting tools) or transmitted (e.g. gears and bearings) at mechanical 
interfaces and because of the trend towards reduced size and much higher mechani-
cal and thermal loadings at the contact area [13, 14]. To overcome these challenges, 
new coatings are urgently needed with a capacity to further improve durability and 
performance and to adapt to the much harsher and rapidly changing operating con-
ditions of future mechanical systems. Accordingly, in the following sections, we 
provide a brief overview of recent developments in the design and deposition of 
nanostructured and composite coatings. We also review the tribological properties 
of such coatings that are important for their performance in various applications.
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9.2  MANUFACTURING OF NANOCOMPOSITE COATING

Conventional composite materials consist of one or more materials with different 
phases and depending on the phases; the discontinuous phase is called the matrix, 
which is usually harder and has superior mechanical properties, whereas the con-
tinuous phase is called reinforcement or reinforcing materials.

Based on the nature of matrix, nanocomposites can be divided into three main 
groups as follows

•	 Ceramic-matrix nanocomposites
•	 Metal-matrix nanocomposites
•	 Polymer-matrix nanocomposites

Nanocomposite coating depending on their matrix nanocomposites can be prepared 
by different techniques and the deposition method is usually chosen based on the 
required coating application and desired coating properties. There are several meth-
ods such as sol-gel method, cold spray method, CVD method, PVD method, thermal 
spray method, electrodeposition, in-situ polymerisation method, spray coating and 
spin coating methods and dip coating are used. For high deposition rate and uniform 
deposition in the case of complicated geometries, the CVD, PVD and electrodeposi-
tion methods are advantageous and widely used matured techniques compared to 
other methods.

PVD is an excellent technology for nanoparticle encapsulation in ceramic matrix. 
In industries and at a commercial scale, the availability of functionalised and non-
agglomerating nanoparticles would further allow for significant improvements in 
nanocomposite manufacturing. However, it must be pointed out that PVD coatings 
represent a reliable and cost-effective technique for the improvement of tools and 
machine parts, but it is much complicated and increase in cost when a relatively 
small dimension coating or nanocomposite coatings are manufactured [15].

CVD is the process that uses a thermally induced chemical reaction between a 
volatile compound of a material to be added with other gases and produces a non-
volatile material that deposits on the appropriate substrate [16]. However, in the case 
of CVD processes, because the temperatures are typically much higher, CVD may 
not be a good choice for many heat-sensitive substrates [17]. If a low-temperature 
CVD is used, a postdeposition hardening heat treatment is often a must, but depend-
ing on the coating type, major problems may occur on the hard coating itself. Chief 
among them is severe oxidation or partial delamination of coatings from the sub-
strate surface due to chemical reactions and thermal distortions.

In electrodeposition, the deposition of a pure metal or its alloy from an electro-
lyte chemical solution occurs on the cathode when an external current or potential 
is applied. Electrodeposited coatings are commonly used to protect surfaces from 
wear and corrosion, as well as for decorative purposes [18, 19]. In this technique, 
an electrically conductive substrate is required. Nanostructured metal coatings of 
pure metals, alloys and composites have widely been used in industries using the 
electrodeposition technique. Using this technique, we can also produce porous coat-
ings filled subsequent densification such as nanoporous alumina (NPA) coating. 
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The nanopores can be filled with metal like nickel, copper, silver etc., and provide 
a highly protective nanocomposite coating [12, 20]. Therefore, we focus on NPA-
based nanocomposite coating using the electrodeposition technique where NPA is 
formed by adonisation.

9.3 � FORMATION OF NANOPOROUS ALUMINA (NPA)-
BASED NANOCOMPOSITE COATINGS

9.3.1 A nodisation

Anodisation is a surface treatment process commonly used to form a protective 
oxide coating on the surface of metals like aluminium. Anodised coatings show 
excellent adhesion characteristics but are porous and brittle. The porosity of the coat-
ing reduces the hardness, and the brittle nature of the oxide induces cracking. In 
practice, the pores are typically filled with organic dye and sealed. Under certain 
controlled electrochemical conditions, anodisation results in a highly ordered hex-
agonal porous structure in pure aluminium.

Porous alumina formation can be carried out in either galvanostatic or potentio-
static mode depending on whether applied current density or the applied potential 
is kept constant, respectively. The variation of voltage and current in galvano-
static and potentiostatic mode while anodising in 20% H2SO4 at 1ºC is shown in 
Figure 9.1 [3]. In the galvanostatic mode, initially, voltage increases with time 
(stage a), representing gradual growth of the dense oxide layer. As the thickness of 
this compact layer increases, nucleation of pores happens on its surface (stage b). 
The potential reached a maximum and as the pores propagate into the oxide layer 
(stage c) starts decreasing. Eventually, a steady-state voltage is reached, and the 
thickness of the generated ordered porous alumina keeps growing. In potentiostatic 
mode (Figure 9.1b), the initial high current density decreases to a minimum as the 
pores are formed in the compact oxide layer and reach a steady-state value during 
the steady growth of the ordered film.

The two basic chemical processes that take place during the anodisation of alumin-
ium are oxidation of aluminium and the dissolution of the formed alumina [22]. The 
aluminium ions form and get uniformly distributed at the aluminium–oxide interface.

	 → ++ −Al Al 3e3 	 (9.1)

FIGURE 9.1  Schematic of the voltage and current transient in (a) galvanostatic and  
(b) potentiostatic modes [3, 21].
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These aluminium ions get oxidised either by oxygen ions or hydroxyl ions.

	 + → ++ − −2Al 3O Al O    6e3 2
2 3 	 (9.2)

	 + → + ++ − + −2Al 3OH Al O 3H 6e3
2 3 	 (9.3)

Either the aluminium cation has to diffuse through interstitial in the oxide layer to 
the electrolyte [23] or the anions (oxygen or hydroxide) have to diffuse through the 
layer to the aluminium metal (Figure 9.2). The necessary oxygen and or hydroxyl 
ions are supplied from the electrolyte by a water-splitting reaction.

	 → ++ −2H O 4H 2O2 aq aq
2

ox 	 (9.4)

	 + → + ++ −Al 3H O Al O 6H 6e2 2 3 	 (9.5)

Negative O2− ions can also form from the absorption of OH− ions at the electro-
lyte interface [23–25]. Under steady-state, the rate of these reactions determines the 
thickness and morphology of the resulting oxide film.

In near-neutral solutions of boric acid, ammonium borate, ammonium tartrate or 
ammonium tetraborate, the rate of water-splitting reaction (Eq. 9.4) is slow. As the 
compact oxide layer grows, the aluminium, oxygen and hydroxyl ions have to transit 
through the existing oxide layer. The currently held view is that all the three ions 
move through the oxide [26, 27]. The movement of these ions is governed by a high 
field conduction equation,

	 ( )=  exp   j A B E 	 (9.6)

where j is the current density contributed by any one of the ion’s transport across the 
oxide film of thickness t under an external applied field E. The electric field can be 
approximated to

	 = /E U t 	 (9.8)

FIGURE 9.2  DC deposited surface showing pores filled with copper revealed after polishing.
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where U is the potential across the film. In galvanostatic mode, the voltage will keep 
on increasing as the oxide layer thickness (t) increases, such that a constant electric 
field of the order 106 to 107 V/cm [26, 28]. This will ultimately lead to dielectric 
breakdown. In potentiostatic mode, since the voltage applied is constant, the electric 
field across the oxide layer will gradually drop as the oxide thickness increases. The 
corresponding current density and hence the transport of the ions through oxide 
drops (Figure 9.1b). The oxidation will eventually stop when the oxide film thickness 
reaches a critical value (tc) [27, 29].

Once the pores are formed in the oxide layer, the local electric field is enhanced 
due to the reduced thickness of the insulating oxide layer. An enhanced electric field 
at the bottom of the pores results in an oxide-metal interface assuming the shape of 
the pore [27]. Getting highly ordered NPA on an Al substrate then can be obtained 
using a two-step anodisation process that was first introduced by Masuda et al. [30]. 
The geometrical parameters of porous alumina such as pore diameter, interpore dis-
tance and film thickness can be altered by controlling the anodising parameters such 
as anodising voltage, electrolyte concentration, temperature and duration of anodisa-
tion. After the anodisation process, two layers, a porous layer and a non-conducting 
dense oxide layer called the barrier layer (BL) form. The BL exists at the interface 
between the porous alumina and aluminium [31]. Since the BL is non-conducting, it 
prevents the formation of porous alumina-based nanocomposites coating via electro-
chemical deposition of metal [29, 32–36]. To fill the pores with metal, the BL needs 
to be thinned or removed. Several studies have shown that the BL can be removed or 
thinned either by cathodic polarisation [37–39] or stepwise reduction in anodisation 
voltage/current [40–45]. However, cathodic polarisation not only etches the BL but 
also etches the pore walls thickness of PAA [39]. After thinning of the BL by such 
a process, metal can be filled into the pore by electrodeposition process and formed 
nanocomposites.

9.3.2 F ormation of Nanocomposite by Electrodeposition

For depositing metal into the pores electrochemically, there has to be a conducting 
path through the oxide layer. Metal filling by electrodeposition into porous alumina 
is usually performed by two processes. One is removing the aluminium completely 
by etching and deposition of conducting layer on the reverse side, but it is difficult 
to handle ultrathin oxide layer [45]. The second process involves removing the BL 
from the bottom of the pores completely, but it is difficult to obtain uniformity over 
the entire surface [37, 45]. We follow the second process to get the electrochemical 
conditions at the bottom of the pores as uniform as possible. However, even after 
the BL thinning, the main challenge was to achieve uniform filling of all the pores 
simultaneously.

Depending on the type of voltage signal used, the electrodeposition of metals into 
the pores can be carried out by three different methods.

•	 DC deposition
•	 AC deposition
•	 Pulse deposition
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9.3.2.1  DC Deposition
Figure 9.2 shows the top view SEM micrograph of porous alumina after filling cop-
per by the DC electrodeposition method. The surface of the alumina was seen scat-
tered with tiny pyramids of copper. The size of the pyramids varied from a few 
nanometres to a few micrometres. To determine the amount of pore filling of copper 
into the samples, they were mechanically polished gently on a selvyt cloth. It can be 
seen from the SEM image (Figure 9.2) that most of the pores are empty. In the DC 
deposition method, it was found that we had very little control over the process.

9.3.2.2  AC Electrodeposition
Without separation or removing BL electrodeposition of metal in porous alumina is 
possible under ac electrodeposition. When an AC voltage or current is applied to the 
BL, it acts as a rectifier allowing current preferentially in one direction [32]. This is 
possible because of the fact that electrons can move through the BL with much ease 
compared to bigger ions like Al3+ or O− and OH− ions. Deposition of metals like 
nickel, cobalt, cadmium, bismuth, iron, silver and gold in porous alumina using ac 
electrodeposition has been reported [46]. However, AC electrodeposition through 
the BL is a complicated process because the deposition depends on the frequency of 
the signal applied [47, 48]. To optimise the metal deposition and effect of deposition 
frequency for ac electrodeposition of copper in porous alumina, a systematic study 
has been performed.

The uniform growth of metal by ac electrodeposition at the voltage-controlled 
mode with a continuous 250 Hz, 500 Hz and 750 Hz frequency sine wave was used 
under 17 V. Figure 9.3a shows the sinusoidal voltage applied and the corresponding 
current (Figure 9.3b) flowing through the electrochemical cell. It can be seen that 
the current is more or less symmetric about the x-axis indicating that the total effec-
tive charge transferred per cycle is very small. The effect of ac electrodeposition on 
porous alumina during copper filling is characterised using SEM.

Figure 9.4 shows the SEM image of the top surface of porous alumina after filling 
copper into porous alumina. When a continuous sine wave of applied voltage 17 V ac 
at 250 Hz frequency was applied (Figure 9.4a), It was seen that the porous alumina 

FIGURE 9.3  (a) Applied voltage transient sine wave during AC electrodeposition.  
(b) Current trace of sine waves during AC electrodeposition.
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surface was damaged in a few places. The operating frequency of applied voltage was 
increased to 500 Hz, numerous pyramids were observed on the top of the surface. 
The size of pyramids varied from ~200 nm to ~800 nm over the surface (Figure 9.4b). 
When the frequency was maintained at 700 Hz, it was seen that bunches of pyra-
mids were accumulated together and formed an island of pyramids. The surface was 
found damaged at the edges of these pyramids. It might be because of aluminium 
oxide/hydroxide dissolution producing hydrogen gas, as discussed by Zhao et al. 
[39]. Therefore, the evolution of hydrogen gas is becoming more dominant, resulting 
in damage to the porous alumina layer.

9.3.2.3  Pulse Electrodeposition
It is identified that damage occurs on the porous alumina layer under continuous ac 
electrodeposition conditions. To avoid this effect, instead of a continuous ac signal, 
the pulse electrodeposition based on a step square wave with relaxing voltage is used 

FIGURE 9.4  SEM images of porous alumina filled with copper using AC electrodeposition 
at various frequencies of (a) 250 Hz, (b) 500 Hz and (c) 750 Hz. Images (d), (e) and (f) are 
zoom-in details of corresponding SEM images (a), (b) and (c), respectively.
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for filling. The square wave signal gives a better pore filling compared to the sine 
waveform [29, 47, 49]. The alternating voltage pulse signal in the millisecond range 
with a delay is used for copper filling into porous alumina.

The pulse electrodeposition with the delay time seems to be an effective method 
for filling metal [29, 36]. The polarisation voltage of 7 V, making the sample positive, 
was applied for 3.2 ms, followed by a negative voltage of 17 V applied for 3.2 ms with 
the applied voltage pulse with the delay time. Switch in voltage values occurred over 
a few microseconds. Deposition of copper happened during this negative pulse. A 
delay time of 50 ms was given before the next cycle. This delay helps in the restora-
tion of copper ion concentration at the pore bottom before the next pulse and prevents 
excessive hydrogen evolution [49, 50]. This improves the homogeneity of deposition. 
The delay should not be more than 2 s because the dissolution reaction between the 
oxide and electrolyte can become dominant [29, 49].

Figure 9.5 shows the current traces measured at the beginning of the deposition. 
As the positive pulse is applied, the current increase to 40 mA and as the voltage 
is held constant at 7 V for 3.2 ms, the current decreases to a value of about 10 mA. 
The positive pulse is applied to discharge the capacitance of the BL. When this 
positive cycle switches to the negative cycle, a sudden jump in the current (250 to 
−230 mA) occurs. During each pulse of negative current, copper is deposited at 
the pore bottom. At the beginning of the delay time, a sharp increment of current 
around 70 mA occurs for a few microseconds and afterwards current decreases 
immediately and reaches zero. The time delay allows for the diffusion of ions 
to take place from the bulk to the pore. The copper filled into porous alumina 
samples was examined by SEM, as shown in Figure 9.6. From the cross-sectional 
images (Figures 9.6c and 9.6e), it is shown that the copper is filled into the pores. 
The top surface is the image after removing the overgrowth shown in Figure 9.6d, 
it can be seen that almost the entire surface is filled with copper nanostructures. 
Cross-section and the surface image after mechanical polishing to remove over-
growth further confirm this.

The ordered porous alumina layer is formed by a two-step anodisation process. 
By optimising the anodisation conditions, the thickness of the coating and the pore 

FIGURE 9.5  Current trace of three different square pulses during pulse electrodeposition.
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size. The interface of the porous structure and aluminium substrate is defined by a 
non-conducting dense barrier oxide layer. However, to deposit metal into the pores, a 
conducting path should be established through the BL. One possibility is to etch out 
the bottom of the pores. But this will reduce the interface strength of the coating. To 
prevent this, we tried to create a dendritic structure in the BL by gradual reduction 
of voltage towards the end of anodisation. Optimisation of the dendritic structure 
led to the uniform deposition of metal into pores, achieved by pulsed electrodeposi-
tion. In pulse electrodeposition, a positive pulse is applied to remove accumulated 
charge near the bottom of pores, a negative pulse to deposit metal, followed by a 
delay to allow diffusion of ions. By optimising the pulse shape and duration, we have 
achieved uniform growth of metal into pores. Further, monitoring the deposition 
current helps to identify different phases in nano growth.

9.4 � TRIBOLOGICAL CHARACTERISATION OF NPA-
BASED NANOCOMPOSITE COATINGS

Nanoindentation of the porous alumina and the copper-filled nanocomposite 
showed that they have higher hardness than the aluminium substrate [20]. The 
hardness of the filled nanocomposite is about 40% higher than the corresponding 

FIGURE 9.6  SEM images of porous alumina using pulse electrodeposition (a) and (b) are 
the top views, (c) and (e) are the cross-section images of porous alumina after copper deposi-
tion and (d) top view of deposited copper on porous alumina after polishing.



185Development of Novel Nanocomposite Coating

unfilled porous alumina [12, 20]. Further, the nanocomposite had no circumfer-
ential cracks. The tribological properties of NPA and NPA-based composite coat-
ing were examined using an inhouse built reciprocating tribometer [51, 52]. The 
reciprocating friction experiments were performed on a ball-on-flat contact under 
dry condition, where a hard Zirconia ball of 6 mm diameter was used as a counter 
surface. The reason for choosing the Zirconia ball is due to its higher hardness 
(hardness 12–14 GPa) compared to the NPA. Hence, the ball will not wear out. 
In previous studies of tribological properties of NPA where the hardness of the 
counter surface was equal or less than the NPA coating resulted in worn of both 
surface and tribochemical reactions at the contacting interface, which influences 
the tribological properties [53, 54].

The schematic diagram of the modified tribometer is shown in Figure 9.7 [51]. 
The applied normal load was ranging from 0.98 N to 4.91 N, and the estimated 
Hertzian contact pressure varied from 700 MPa to 1200 MPa, which was well below 
the hardness of the sample. The normal loads were applied using dead weights. The 
friction force was measured using a high stiffness piezoelectric force sensor and 
real-time wear depth was measured using a highly sensitive non-contact fiberoptic 
displacement sensor at a sampling frequency of 1 kHz. All the experiments were 
performed at room temperature of 25°C and 50% relative humidity. The fiberoptic 
displacement sensor of 10 nm resolution was mounted on a Z-axis positioner with 
a micrometre stage fixed at the back side of the tribometer. The tip of displace-
ment sensor was kept facing a reflecting gold mirror. The complete reciprocating 
system of the tribometer was pivoted, as shown in Figure 9.7. The normal load was 
applied by calibrated dead weights on the front side. As the samples wear out, the 
base plate moves downwards to the sample. Hence, the gap between the displace-
ment sensor tip and the mirror decreases at the back side, which directly gives 
the wear depth of the sample. Thus, the initial contact was in elastic for all NPA 
coating samples. All experiments were done at a constant rate of 4.5 cycles/s and 

FIGURE 9.7  Schematic diagram of a ball-on-flat reciprocating tribometer [51, 52].
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the stroke length of 1 mm. Before reciprocating tests, all samples and the counter 
surface were cleaned with an ultrasonic cleaner in deionised water for 5 min and 
then in ethanol for 10 min.

From the friction force response (Figure 9.8), the mean tangential force was 
obtained by taking a histogram of measured tangential force for every complete 
cycle [51]. The COF was calculated by dividing the mean tangential force with the 
applied normal load. The wear track of all samples and the counter surface (Zirconia 
ball) were examined using SEM. Figure 9.9 shows the variation of friction coefficient 
as the function of reciprocating cycles. The results show that nanocomposite has 
higher wear life compared to the NPA.

9.4.1  Wear Mechanisms

Material properties such as hardness, elastic modulus, thermal conductivity and 
thermal diffusivity influence wear. Yet, at the same time, the parameters that control 
wear are not clear [13]. However, under dry sliding conditions, material properties 
like hardness are important in determining the wear resistance. As we have demon-
strated in our previous work [12, 20], the porous alumina has very high hardness. In 
this section, results from the dry sliding wear test performed on porous alumina and 
porous alumina/copper nanocomposite are discussed.

9.4.1.1  Wear Track on Porous Alumina
The process of wear results in geometrical and structural changes when two surfaces 
come into contact. These changes range from nano-scale to macro-scale [13]. At the 
nano-scale, asperities get reduced under sliding, whereas at the micro-scale, cracks 

FIGURE 9.8  Typical friction force response as a function of time. (a) Friction force response 
of NPA and (b) for nanocomposite [13].
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get generated and debris is released. At the macro-scale, wear debris is agglomer-
ated, and a surface layer is formed and deformed. However, the nanotextured struc-
ture of porous alumina can provide good wear resistance due to the high hardness of 
porous alumina. In this section, we study the wear characteristics of porous alumina.

Figure 9.10 shows the SEM image of wear tracks of porous alumina after a nor-
mal load of 300 g was applied under sliding against the stainless-steel flat substrate. 
Numerous cracks are observed on the surface (Figure 9.10a), which may have been 
caused due to the brittle nature of porous alumina. The porosity and brittle nature of 
porous Aluminium may give rise to cracks when subjected to tangential loads caused 
by sliding. The enlarged image near the crack reveals that pores still exist at the 
bottom (Figure 9.10b). This shows that the cracks are forming only on the top layer 
while the inner subsurface of the porous film still exists without delamination. The 
transfer layer can be a combination of porous alumina and stainless-steel substrate. 
The crack formation and propagation that happens only at the top layer might be due 
to the small penetration depth of the porous alumina against the steel substrate.

The enlarged partial portion of the wear track area of porous alumina in 
Figure 9.10c shows a compacted layer kind of structure with sparsely distributed 
wear debris. The wear debris found adhered inside the wear track area may have 
been formed due to a combination of abrasive and adhesive wear and may result in 
high values of friction coefficients. The sliding wear response in Figure 9.10d shows 
interesting features with few pores found to be filled with wear debris. The filling 
of the pores may have occurred due to the tiny abrasive particles formed just a few 
cycles after the commencement of sliding. The above discussion shows that when 

FIGURE 9.9  Coefficient of friction as a function of reciprocating cycles for NPA and 
nanocomposite [13].
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porous alumina is subjected to sliding under the applied normal load, even though 
crack formation and propagation occurs, the cracks are restricted only to the top 
layers. This shows that porous alumina is strong enough to withstand the contact 
pressure applied under sliding.

With a very hard porous alumina film on a softer aluminium substrate, it has 
been observed in the above section that at the given load, cracks formation occurs 
on the top layer. The coefficient of friction was also found to be high. A combina-
tion of brittle and ductile coating may prove to be more beneficial. For example, in 
the combination of ductile and brittle DLC/Carbide multilayered coating, the elastic 
layer allows the brittle layer to slide over each other in a manner of a multi-leaf book 
when bent [13]. The combination of ceramic/metal nanocomposites can improve 
wear characteristics as it provides one hard phase and one soft phase [1, 2]. Here we 
are studying the wear mechanism of porous alumina/copper nanocomposite coating, 
which is textured within the matrix. In the following section, we have studied the 
wear mechanism of this coating at both low and high coating thickness.

Figure 9.11 shows the SEM image of the wear track of porous alumina/copper 
nanocomposite of the low thickness (~1 µm) sliding against stainless steel after 
applying a normal load of 300 g. The wear mechanism observed is different from that 
of porous alumina. Inside the wear tracks, very little wear debris and fewer cracks 
are observed. In Figure 9.11a, a transfer layer is observed, which could be the com-
bination of porous alumina/copper nanocomposite and stainless steel (Figure 9.11a). 

FIGURE 9.10  SEM images of wear track of (a) porous alumina and (b), (c) and (d) are the 
enlarged image of porous alumina at three different locations.
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At the top, a few scratches are observed, which might have been caused due to a hard 
abrasive particle entrapped in between the contact during sliding. However, these 
scratches confirm that a transfer layer exists. However, the surface beneath the top 
layer seems to be unaffected by the sliding.

A wavy surface morphology with peak and valley is observed in Figures 9.11b 
and 9.11d. This might be because under dry conditions, abrasive wear occurs during 
sliding. The hard abrasive wear particles formed could be a reason for the multi-
tude of scratches observed on the transfer layer. In Figure 9.11c, some cracks are 
observed. The small wear particles that form during the initial cycles after the com-
mencement of sliding would agglomerate to form larger particles in the subsequent 
cycles. These large sharp and hard particles rub against the steel substrate during 
sliding, which eventually results in the generation of the crack. Usually, geometry-
related parameters like surface roughness, film thickness, hardness and wear debris 
influence the wear mechanism of the coating. In this section, we use high thickness 
(~3 µm) of porous alumina/copper nanocomposite coating for sliding. The wear track 
image of porous alumina/copper nanocomposite at high thickness sliding against 
steel is shown in Figure 9.12. From the figure, the surface is completely free from 
cracks. The wear debris formation is almost negligible. As sliding ensued, some Cu 
debris forms on the surface. This Cu debris acts as a lubricating medium between 
the coating and steel and prevents not only the wear of the coating but also the crack 

FIGURE 9.11  SEM images of wear track of (a) porous alumina/copper nanocomposite at a 
low thickness (~1 µm) and (b), (c) and (d) are the enlarged image of porous alumina/copper 
nanocomposite at three different locations.
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formation. The white spots on the surface seen in the image may be the Cu debris 
particles. Hence, we find that porous alumina/copper-based nanocomposite coating 
proves to be extremely effective in improving the abrasive wear resistive coating 
under dry conditions.

9.5  CONCLUSION

In summary, a novel nanocomposite coating with nanoporous alumina as a matrix 
with aligned metal nanorod has been developed. This was achieved by optimally 
modifying the BL without sacrificing the interfacial strength. For filling metal into 
the porous structure, we have tried three different electrodeposition processes: DC, 
AC and pulse electrodeposition. We have found that the use of pulse electrodeposi-
tion is a highly efficient and well-suited method for metal filling into the pores. 
After developing the uniform nanocomposite coating, we have evaluated the tribo-
logical performance of the nanocomposite coating by measuring friction and wear 
in a reciprocating wear test. The coefficient of friction for NPA and Al samples 
were high, while it was 30% less for NPA/Cu. In NPA, crack formation occurs at 
the top layer, but the sub-layers remain unaffected. From the SEM images, wear and 
crack were found to be less in porous alumina/copper than in porous alumina and 
aluminium. A thin transfer layer of copper/steel gets coated on alumina. At a low 
thickness of porous alumina/copper nanocomposite coating, few cracks are found on 
the wear track area. At a high thickness of porous alumina/copper nanocomposite 
coating, no cracks are found. By optimising the nanoporous structure and tuning the 
electrodeposition process, we uniformly filled ordered pores with copper. Uniform 
coating has been achieved over an area. The coating is found to have good tribologi-
cal properties of low friction and high wear resistance. Uniform coating has been 
achieved over an area of 10 mm × 10 mm. The coating is found to have higher hard-
ness and higher wear resistance.

FIGURE 9.12  SEM images of wear track of porous alumina/copper nanocomposite at a 
high thickness (~3 µm).
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