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Preface

This book has been written for the introductory course on Fluid Mechanics at
the undergraduate level. This book fulfills the curriculum needs of UG students of
Mechanical Engineering, Mechanical and Automation Engineering, Chemical
Engineering, Electrical Engineering, Civil Engineering, Production Engineering,
Automobile Engineering, aeronautical Engineering, Manufacturing Engineering,
Tool Engineering and Mechatronics Engineering etc. Fluid Mechanics is dividing
into two volumes. Fluid Mechanics Volume-II includesten chapters:

1. Laminar Flow (Viscous Flow), 2. Turbulent Flow, 3. Boundary Layer
Theory, 4. Flow through Pipe, 5. Pipe Flow Measurement,6. Orifices and
Mouthpieces, 7. Flow Past Submerged Bodies, 8. Flow through Open Channels,
9.Notches and Weirs, 10. Compressible Flows. Fluid Mechanics deals with the
innovative use of the laws of Fluid Mechanics in solving the relevant technological
problems. This introductory textbook aims to provide undergraduate engineering
students with the knowledge (basics principles and fluid mechanics laws) they need
to understand and analyze the fluid mechanics problems they are likely to encounter
in practice.

The book is developed in the context of the author’s simpler methodology to
present even complex things. The most positive factor about the book is that it is
concise, and everything is described from an elementary and tangible perspective.

The book presents the concepts in a very logical format with complete word
descriptions. The subject matter is illustrated with a lot of examples. A great deal
of attention is given to select the numerical problems and solving them. The theory
and numerical problems at the end of each chapter also aim to enhance the creative
capabilities of students. Ultimately as an introductory text for the undergraduate
students, this book provides the background necessary for solving the complex
problems in thermodynamics.

Writing this book made me think about a lot more than the material it covers.
The methods I used in this book are primarily those that worked best for my
students. The suggestions from the teachers and students for the further improvement
of the text are welcome and will be implemented in the next edition. The readers
are requested to bring out the error to the notice, which will be gratefully
acknowledged.

Shiv Kumar
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Laminar Flow
(Viscous Flow or Flow with

Low Reynolds Number)

1.1  INTRODUCTION
The flow of real fluid differs from that of ideal fluid in respect of viscous effects that
take place near to the surface of the solid body. As ideal fluid is inviscid, the presence
of a solid body does not affect the flow; the fluid is assumed to slip over the surface

of solid body and no velocity gradient 
du
dy

 
 
 

 exists over the surface of a solid body, and

hence no shear stress = du
dy

 
τ µ 

 
 acts on the layers. On the other hand, when real fluid

flows over the surface of a solid body, the fluid particles contacting with surface get
zero velocity. This flow characteristic of a real fluid at the surface is in accordance with
the no-slip condition. These particles then retard the motion of particles in the adjoining
fluid layer and so on. This change of velocity gradient is responsible for development
of viscous shear resistance which opposes the motion.

The following velocity profile is shown in Fig. 1.1, when ideal and the real fluid
flow through pipes and over the surface of solid body.

du
dy = 0

Solid body

(a) Velocity distribution in ideal fluid flow 0du
dy

 
=  

 through pipe and

over the surface of solid body.

1

© The Author(s) 2023
S. Kumar, Fluid Mechanics (Vol. 2),
https://doi.org/10.1007/978-3-030-99754-0_1

1
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du
dy > 0

Solid body

du
dy > 0

(b) Velocity distribution in real fluid flow 0
 

> 
 

du
dy

 through pipe and

over the surface of solid body.

Fig. 1.1: Comparison of ideal and real fluid flows.

1.2 LAMINAR AND TURBULENT FLOW
The flow of a real fluid is divided into two types:

(i) Laminar flow.
(ii) Turbulent flow.

1.2.1 Laminar Flow
The laminar flow is a smooth regular flow in layers. Such flow exists only at low
velocities. Fluid particles remain in motion in respective layers. In other words there
will be no exchange of fluid particles from one layer to another. Thus, there will be
no momentum transmission from one layer to another. The various particles in a layer
describe definite straight line path as shown in Fig. 1.2.

Fig. 1.2: Laminar flow through pipe.

1.2.2 Turbulent Flow
In the turbulent flow, the fluid particles flow in  zig-zag  way (i.e. the fluid particles
are not moving in layer). In the other words, there will be exchange of fluid particles
from one layer to another. Such flow exists only at high velocities. This type of flow
is shown is Fig. 1.3.

Velocity
distribution
curve

Fig. 1.3: Turbulent flow through pipe.
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The type of flow, either laminar or turbulent, is described on the basis of
Reynolds number (Re).

Reynolds number: Re =
ρ

µ
DV

 = 
µ

DV

where ρ = density of the fluid
D = diameter of the pipe
V = mean velocity of the fluid
µ = viscosity of fluid
ν = kinematic viscosity of the fluid

If  Re < 2000, the flow through pipe is laminar and Re > 4000, the flow through
pipe is turbulent.

1.3 REYNOLDS EXPERIMENT

Osborne Reynolds was a scientist who discovered that Reynolds number 
 ρ

= µ 

VDRe

is the criterion for determining the type of flow (either laminar or turbulent) in a
circular pipe. The arrangement of the apparatus is shown in Fig. 1.4.

Bell-mouthed
entrance

Glass tube

Filament of dyeWater

Water
container

Dye

Dye container

Flow control
valve

Reynolds apparatus for demonstration of laminar and turbulent flow.

(a) Straight line filament of dye shows laminar flow.

Straight line filament of dye

(b) Wavy filament of dye indicating onset of turbulence.

Wavy filament of dye
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(c) Diffused filament of dye indicating turbulent flow.

Diffused filament of dye
Fig. 1.4

The main parts of the apparatus are:
(i) A water container.

(ii) An arrangement to inject a fine filament of dye into the bell-mouthed
entrance of a glass tube through which water flows, and

(iii) A valve to control the flow through the glass tube.
A fine filament of dye was introduced into the glass tube near the smoothly

rounded bell-mouthed entrance. At low rate of flow the filament of dye appeared as
a straight line parallel to the tube axis indicating laminar flow as shown in Fig. 1.4(a).
As the valve was further opened resulting in high velocity of flow, the dye filament
became wavy leading to its breakup and finally diffusing into the flowing water, Fig.
1.4. (b) and (c) shows the flow condition at increasing velocities indicating the onset
of turbulence and then flow completely changing over to turbulence.

By the above experiment Reynolds established that when the velocity is below
a certain limit the fluid particles move in parallel layers or laminae and the layers slide
one over the other. The velocity at which the flow changes from laminar to turbulent
is called critical velocity.

1.4 EXPERIMENTAL DETERMINATION OF CRITICAL VELOCITY
In the previous section, the types of flow i.e., laminar and turbulent were described
clearly. In this experiment, we will see, the range of Reynolds number or velocity up
to which the laminar flow and turbulent flow are maintained in a pipe of constant
diameter and constant fluid properties (i.e., ρ and µ). Finally we will determine the
critical value of velocity and Reynolds number.

The energy loss in certain length of straight circular pipe is determined by
pressure drop measured by a differential manometer as shown is Fig. 1.5 (a).

l

1 2
V

x
Differential 
Manometer

(a) Experimental setup.
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L.F. T.F.
Tr.F.

Linear 
variation
( )hf  ∝ V

Parabolic
variation
(   )hf ∝ V2

O

log hf

log V
l.c.v u.c.v

L.F.   = Laminar flow
T.F.   = Turbulent flow
l.c.v.  =  Low critical velocity
u.c.v = Upper critical velocity
Tr.F.  = Transition flow

B

C

D

A

(b) Energy or head loss variation with velocity

Fig. 1.5

Then mean velocity of flow is calculated from the known volumetric rate of flow (Q)
passing through the pipe. The energy or head loss (hf) and corresponding mean
velocity (V) may be plotted on a log-log graph paper. The head loss (hf) is seen to
increase linearly with velocity (V) till point B. The linear relationship between hf and
V indicates laminar flow while a higher velocities a nearly parabolic relationship (hf µ
V2), the parabolic relationship between hf and V indicates turbulent flow (CD).
Between the two flow regimes there lies a transition zone in which flow is in the
process of changing over from laminar to turbulent. As velocity is increased the head
loss (hf) varies with the mean velocity (V) according to the laws (hf µV, hf µV2) and
is indicated by line OABCD, where for decreasing velocities it will be seen to follow
the path DCAO. From this experiment, it may be deduced that the points A and B lying
on the straight line OB define the lower and upper critical velocities respectively.

In flow through pipe, the values of Reynolds number at point A (i.e., lower
critical velocity): Re = 2000 and at point B (i.e., upper critical velocity): Re = 4000,
the transition from laminar to turbulent may occur at the value of Reynold’s number
between 2000 and 4000.

1.5 STEADY LAMINAR FLOW THROUGH A CIRCULAR PIPE

The laminar, incompressible and steady flow through pipe may be completely analysed
by two laws:

(i) Newton’s law of viscosity and
(ii) Newton’s second law of motion.

Consider a horizontal pipe of radius R and a concentric cylindrical fluid
element of radius r and length dx as shown is Fig. 1.6.
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R

dx

Direction of
flow r

p rπ 2

τ 2π. rdx
dxp + πr2

∂

∂

p

x

Fig. 1.6: Steady, laminar and incompressible flow through pipe.

The forces acting on the fluid element are:
1. The pressure force (pπr2) on the left face (acting from left to right).

2. The pressure force .pp dx
x

∂ +  ∂
πr2 on the right face. (acting from right to left).

3. The shear force (τ.2πrdx) acting on the surface of the fluid element opposing
the motion (acting from right to left).

As the flow is steady, laminar and uniform, the total acceleration is zero.
According to Newton’s second law of motion, the summation of all forces in

the direction of flow is equal to product of mass and acceleration i.e., the summation
of all forces in the direction of flow must be zero ( acceleration is zero).

pπr2 – 
pp dx
x

∂ +  ∂  πr2 – τ . 2πr dx = 0

– 2πp dx r
x

∂
∂

 –  τ . 2πr dx = 0

– p r
x

∂
∂

 –  τ . 2 = 0

or τ – .
2

p r
x

∂
=

∂
...(1.5.1)

This equation gives the distribution of shear stress across a flow section, the

pressure gradient dp
dx

 depends only on the direction of flow i.e. x-direction, hence

above Eq. (1.5.1) provides a linear relationship between shear stress τ and radius r,
it is evident from the equation that the shear stress will be maximum at the pipe

surface where r = R . ., τ .
2max

p Ri e
x

∂ =− ∂ 
and zero at the centre of pipe where r = 0,

as shown in Fig. 1.7.
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Fig. 1.7: Shear stress and velocity distribution across a section.

Velocity distribution:
The shear stress is related to the velocity gradient by Newton’s law of viscosity.

Shear stress : τ =
du
dy

µ

Here, y is distance measured from the pipe wall,
y = R – r

Differentiating, dy = – dr  R = constant

∴ Shear stress in present case: τ = µ 
–
du
dr

τ = – µ
du
dr

...(1.5.2)

It is to be noted that the velocity gradient: 
du
dr

 is negative i.e. as r increases,

u decreases.
Equating Eqs. (1.5.2) and (1.5.1), we get

– du
dr

µ  = – 
dp
dx

 
2
r

du
dr

 =
1

2µ
 

dp r
dx

Integrating w.r.t. r, we get

u =
21

2μ 2
+

dp r C
dx

u = 21
4μ

+
dp r C
dx  ...(1.5.3.)

where C is the constant of integration and its value is obtained from the
boundary condition that at r = R, u = 0

0 =
1

4μ  
dp
dx  R2 + C

or C =
1–

4μ  
dp
dx  R2

Substituting the value of C in Eq. (1.5.3), we get

u = 
1
4μ

dp
dx  r2 – 1

4µ
 dp

dx
 R2
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2 21– R –
4μ

dpu r
dx

 =   ...(1.5.4)

In Eq. (1.5.4), the values of µ, dp
dx

 and R are constant, which means the velocity

u varies with the square of r. This Eq. (1.5.4) is equation of parabola. This shows that
the velocity distribution across the section of a pipe is parabolic. This velocity
distribution is shown is Fig. 1.7

[Note : Pressure variation along the x-direction i.e., along the direction of flow,
dp
dx  is always negative because of continuous decrease of pressure in the direction of

flow].
Ratio of maximum to average velocity:
The velocity is maximum, when r = 0 in Eq. (1.5.4). Thus maximum velocity,

Umax is obtained as

µ
2

max
1U  =–

4
dp R
dx

...(1.5.5)

The average velocity: u  = 2
Discharge through pipe:

Cross-sectionalarea of pipe:π
Q

R

u  = 2π

Q
R

Consider a small circular ring element of radius r and thickness dr as shown in
Fig. 1.8.

The fluid flowing per second through small elementary ring: dQ

R dr
r

Fig. 1.8: Discharge flow through pipe

dQ = velocity at radius r × area of a small ring element.
dQ = u × 2πrdr

Substituting the value of u from Eq. (1.5.4) in above equation, we get

dQ =
1

4
−

µ
dp
dx

 [R2 – r2] 2prdr

Net discharge flow through pipe: Q

Q = 
0
∫
R

dQ
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 =
R

2 2

0

1– [ – ]2
4

π
µ∫

dp R r rdr
dx

 = 2 2

0

1 2 ( )
4

− π −
µ ∫

R
dp R r rdr
dx

 =
2 2 4

0

1 2 –
4μ 2 4

 
− π  

  

R
dp R r r
dx

 =
4 41– 2 –

4μ 2 4
 

π  
  

dp R R
dx

 =
41– 2

4μ 4
π×

dp R
dx

Q = 4–
8

dp R
dx

π
µ

∴ Average velocity: u  =  2π

Q
R

u  =

4

2
8
π

−
µ
π

dp R
dx
R

1=
8µ

2dpu R
dx

− ...(1.5.6)

Dividing Eq. (1.5.5) by Eq. (1.5.6), we get

maxU
u = 

2

2

1–
4μ 2
1–

8

=

µ

dp R
dx
dp R
dx

∴ Maximum velocity: Umax = 2 times average velocity: u

max =2U u
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Drop of pressure head for a given length (l) of a pipe:
Recalling the average velocity through pipe from Eq. (1.5.6)

1

1

2

2

D u

l

Fig. 1.9: Drop of Pressure head in a pipe

u  = 21
8

−
µ

dp R
dx

or – 
dp
dx  = 2

8μu
R

The term  – dp
dx

 
 
 

 represents pressure drop per unit length through pipe and may

be written as

– ∆p
l  = 2 1– ( – )p p

l  = 1 2–p p
l

∴ 1 2–p p
l

 = 2
8µu
R

p1 – p2 = 2
8

2

µ

 
 
 

ul

D
 R  = 

2
D

 =
2

32µul
D

Dividing by ρg on the both sides, we get

1 2–p p
gρ  = 2

32µ

ρ

ul
gD

                          
µ

ρ 2
32

f
ulh

gD
= ... (1.5.7)

where hf = 1 2–p p
gρ , loss of pressure head

µ = viscosity of fluid
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u  = average velocity of flow
ρ = density of fluid

Equation (1.5.7) is called Hagen-Poiseuille equation.

We know that the average velocity : u  = 22

4
Area

= =
π π
4

Q Q Q
DD

Substituting u  = 2
4

π

Q
D

 in Eq.. (1.5.7), we get

µ

πρ 4
128

f
Q lh
gD

= ...(1.5.8)

Equation (1.5.8) is also called Hagen-Poiseuille equation.
Note: Hagen–Poiseuille Eqs. (1.5.7) and (1.5.8) are only applicable for steady,

laminar and incompressible flow through pipe.
If the pressure loss (or head loss) is known, the required pumping power to

overcome the pressure loss is determined from

Ppump, L = Q∆p = Qρghf
= mg hf [ m = ρQ]

where Q = volume flow rate

m = mass flow rate
The average velocity for laminar flow in horizontal pipe is, from Eq. (1.5.7)

u  =
2 2

32 32
ρ ∆

=
µ µ
fgh D pD

l l
 ∆p = ρghf

Then the volume flow rate for laminar flow through a horizontal pipe of diameter
D and length l, from Eq. (1.5.8)

Q =
4 4π

128 128
fg h D p D

l l
=

ρ π∆
µ µ

...(1.5.9)

This equation is known as Poiseuille’s law and this flow is called Hagen-
Poiseuille flow in honour of the works of G. Hagen (1797-1884) and J. Poiseuille
(1799-1869) on the subject. It is to be noted from Eq. (1.5.9) that for a specified
volume flow rate, the pressure drops and thus the required pumping power is directly
proportional to the length of the pipe and viscosity of the fluid, but it is inversely
proportional to the fourth power of the diameter (or radius) of the pipe. Therefore,
the pumping power requirement for a piping system can be reduced by a factor of 16
by doubling the pipe diameter as shown in Fig. 1.10.
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D u

P  = 16 kWpump

2D

P  = 1 kWpump

u
4

Fig. 1.10: Pumping power requirement can be reduced by a
factor 16 by doubling the pipe diameter

Of course  the benefits of the reduction in power costs must be weighed against the
increased cost of construction due to using a larger-diameter pipe.

1.5.1 Comparison between Hagen-Poiseuille Equation and Darcy’s
Formula

Hagen-Poiseuille Equation Darcy’s Formula

Pressure loss: ∆p  = 2
32µul

D
Pressure loss: ∆p =

24
2

f l u
D
ρ

Head loss:  hf = 2
32µ

ρ

ul
gD

Head loss: hf =
24

2
f lu
gD

            = 2
32νul
gD

 ν =
µ
ρ

1. The above equations are valid 1. The above equations are valid
only for fully developed laminar for both laminar and turbulent
flow in horizontal circular pipes flows, in both circular and non-
but not for inclined pipes. circular  pipes, smooth or rough

surface, horizontal or inclined pipes.

2. In these equations, pressure 2. In these equations, pressure loss
or head loss only due to viscous or head loss is due to friction.
effect of the liquid.
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For laminar flow, by equating Hagen-Poiseuille equation and Darcy’s formula,
we get

2
32
ρ

µul
gD

 =
24

2
f l u
gD

16µ
ρDu  = f

or f =
16
ρ

µ
uD

16f
Re

= ...(1.5.10)

where Re =
ρ

µ
uD

, Reynolds number

The above Eq. (1.5.10) gives a relationship between coefficient of friction f and
the Reynolds number Re, for laminar flow through a circular pipe.

Problem 1.1: An oil of viscosity 5 poise flows in a 5.0 mm diameter pipe,
discharge rate being 5.5  liter/s. If the specific gravity of oil is 0.87, state whether flow
is laminar or turbulent.

Solution: Given data:

Viscosity: µ = 5 poise = 
5

10  Ns/m2 = 0.5 Ns/m2

Diameter of pipe: D = 50 mm = 0.05 m

Discharge: Q = 5.5 liter/s = 
5.5

1000  m3/s = 0.005 m3/s

Specific gravity of oil: S = 0.87
∴ Density of oil: ρ = S × 1000 kg/m3 = 0.87 × 1000 kg/m3 = 870 kg/m3

Average velocity: u  = 22

4
=

π π
4

Q Q
DD

 = 2
4 0.0055

3.14 (0.05)
×

×
 = 2.8 m/s

Reynolds number: Re = 
870 2.8 0.05

0.5
ρ × ×

=
µ
u D

 = 243.6

Reynolds number (Re) is less than 2000.
Hence, the flow in pipe is laminar.

Problem 1.2: An oil of specific weight 8930 N/m3 and kinematics viscosity
0.0002 m2/s is pumed through a 150 mm diameter 300 m long pipe at the rate of
200 kN/h. Show that the flow is viscous and find the power required.
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Solution: Given data:
Specific weight: w =  8930 N/m3

Kinematic viscosity: ν = 0.0002 m2/s
Diameter:  D = 150 mm = 0.15 m
Length: l = 300 m

Weight flow rate: W  = 200 kN/h = 200 × 103 N/h

 =
3200 10

60 60
×
×

 N/s = 55.55 N/s

Discharge: Q = mv

 = =
ρ ρ
m mg

g  Weight flow rate: W  = mg

 = W
w



Specific weight: w = ρg

Q =
55.55
8930

 m3/s = 0.00622 m3/s

also Q = Au

0.00622 = 2

4
π D u

0.00622 × 4 = 3.14 × (0.15)2 × u
Or average velocity: u  = 0.352 m/s

Reynolds number: Re =
ν

uD
 = 

0.352 0.15
0.0002

×
 = 264

Since, Reynolds number is less than 2000, the flow is viscous.
According to Hagen-Poiseuille equation, the loss of pressure head:

hf  = 2
32
ρ

µul
gD

 = 2
32νul
gD

 ν = 
µ
ρ

 = 2
32 0.0002 0.352 300

9.81 (0.15)
× × ×

×
 = 3.06 m

∴ Power required = mg hf = W hf  W  = mg

 = 55.55 × 3.06 = 169.98 Nm/s or J/s = 169.98 W

Problem 1.3: An oil of viscosity 0.95 poise and specific gravity 0.92 is flowing
through a horizontal pipe of diameter 120 mm and length 20 m. Find the difference
of pressure of the two ends of the pipe, if 120 kg of the oil is collected in a tank in
40 seconds.
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Solution: Given data:

Viscosity of oil: µ = 0.95 poise = 
0.95
10  Ns/m2 = 0.095 Ns/m2

Specific gravity: S = 0.92
∴ Density of oil: ρ = S × 1000 kg/m3 = 0.92 × 1000 kg/m3 = 920 kg/m3

Diameter of pipe: D = 120 mm = 0.12 m
Length of pipe: l = 20 m
Mass of oil collected: M = 120 kg in time : t = 40s

∴ Mass flow rate: m =
120 kg/s
40

=
M
t = 3 kg/s

Also mass flow rate: m = ρAu  by continuity equation.

3 = 2920 (0.12)
4
π

× ×u

3 = 10.399 u

or u  =
3 0.2884 m/s

10.399
=

Reynolds number: Re = ρ
µ
uD

 =
920 0.2884 0.12

0.095
× ×

 = 335.15

As the Reynolds number is less than 2000. Hence, the flow is laminar.

Loss of head between two ends: hf = 2
32μ
ρ

ul
gD

also hf = 1 2–p p
gρ

∴ 1 2–p p
gρ  = 2

32μ
ρ

ul
gD

p1 – p2 =
2

32μul
D

 = 2
32 0.095 0.2884 20

(0.12)
× × ×

 = 1217.688 N/m2 or Pa = 1.217 kPa

Problem 1.4: A fluid of viscosity 8 poise and specific gravity 1.2 is flowing
through a circular pipe of diameter 100 mm. The maximum shear stress at the pipe
wall is 210 N/m2. Find:

(i) The pressure gradient,
(ii) The average velocity, and

(iii) Reynolds number of the flow.      (GGSIP University, Delhi. Dec. 2006)
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Solution: Given data:

Viscosity: µ = 8 poise = 
8

10  Ns/m2  = 0.8 Ns/m2

Specific gravity: S = 1.2
∴ Density: ρ = S × 1000 kg/m3 = 1.2 × 1000 = 1200 kg/m3

Diameter of pipe: D = 100 mm = 0.1m

∴ Radius of pipe: R =
2
D  = 

0.1
2

 = 0.05 m

Maximum shear stress: τmax = 210 N/m2

(i) Pressure gradient: p
x

∂
∂

The maximum shear stress: τmax = 
2

∂
−

∂
p R
x

210 = 
0.05

2
p
x

∂
− ×

∂

or
p
x

∂
∂

= – 8400 N/m2 per m

(ii) Average velocity: u
We know that the expression of average velocity:

u = 21
8

−
µ

dp R
dx

= – 1
8 0.8×

 × (– 8400) × (0.05)2

= 3.28  m/s
(iii) Reynolds number: Re

Re = 
ρ

µ
Du

 = 
12 0.1 3.28

0.8
× ×

 = 492

Problem 1.5: An oil of specific gravity 0.9 is flowing through a pipe of diameter
110 mm. The viscosity of oil is 10 poise and velocity at the centre is 2 m/s. Find :

(i) Pressure gradient in the direction of flow,
(ii) Shear stress at the pipe wall,

(iii) Reynolds number, and
(iv) Velocity at a distance of 30 mm from the wall.

(GGSIP University, Delhi. Dec. 2007)

Solution: Given data:
Specific gravity of oil: S = 0.9
∴ Density of oil: ρ = S × 1000 kg/m3 = 0.9 × 1000 = 900 kg/m3

Diameter of pipe: D = 110 mm = 0.11 m

Radius of pipe: R =
2
D

 = 
0.11

2  = 0.055 m
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Viscosity of oil: µ = 10 poise = 
10
10  Ns/m2 = 1 Ns/m2

Velocity at the centre i.e., maximum velocity: Umax = 2 m/s

(i) Pressure gradient in the direction of flow: 
p
x

∂
∂

We know that the expression of maximum velocity: Umax

Umax = – 1
4µ

 p
x

∂
∂

 R2

2 = – 
1

4 1×
 × 

p
x

∂
∂

 × (0.055)2

or
p
x

∂
∂

 = –2644.62 N/m3

(ii) Shear stress at the pipe wall: τ0 = τmax

τmax = – 
p
x

∂
∂

.
2
R

 = – (– 2644.62) × 
0.055

2
 = 72.727 N/m2

(iii) Reynolds number: Re  =
ρ

µ
uD

 Umax = 2u     or u  =
2
maxU

=
2
maxU Dρ
µ

 = 900 2 0.11
2 1
× ×

×
= 99

(iv) Velocity at a distance of 30 mm from the wall: u

uR
r

y = 30 mm = 0.03 m

Fig. 8.11: Schematic for Problem 1.5

u =
–1
4µ  

p
x

∂
∂

 (R2 – r2)

where r = R – y
 = 0.055 – 0.03 = 0.025 m

∴ u = – 
1

4 1×  ×  [(0.055)2 × (0.25)2]

 = 661.155 × [3.025 × 10–3 – 6.25 × 10–4]
 = 1.586 m/s
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Problem 1.6: An oil having viscosity of 7.5 poise of specific gravity 0.85 flows
through a horizontal 50 mm diameter pipe with a pressure drop of 18 kN/m2 per metre
length of pipe. Determine (i) the flow rate of oil and centre line velocity (ii) power
required to maintained the flow in 100 m length of pipe (iii) velocity and shear stress
at 8 mm from the wall.

Solution: Given data:

Viscosity of oil: µ = 7.5 poise = 27.5 Ns/m
10 = 0.75 Ns/m2

Specific gravity: S = 0.85
∴ Density of oil: ρ = S × 1000 kg/m3 = 0.85 × 1000 kg/m3 = 850 kg/m3

Diameter of pipe: D = 50 mm = 0.05 m

∴ Radius of pipe: R =
2
D

=
0.05

2
 = 0.025 m

Pressure drop: p1 – p2 = 18 kN/m2 per m length of pipe

i.e., 1 2p p
l
−

 = 18 kN/m3 = 18 × 103 N/m3

Pressure drop for laminar flow through pipe is,

p1 – p2 = 2
32µul

D

1 2p p
l
−

 = 2
32µu

D

18 × 103 = 2
32 0.75

(0.05)
× × u

or u  = 1.87 m/s

Reynolds number: Re =
ρ

µ
Du

 = 
850 0.05 1.87

0.75
× ×

 = 105.96

Reynolds number is less than 2000.
Hence, the flow in pipe is laminar.

(i) Flow rate: Q = Au  = 2

4
D uπ

=
3.14

4
 × (0.05)2 ×1.87 = 0.003669 m3/s

The maximum velocity occurs at centre line of the pipe and it equals twice
the average flow velocity.

Umax = 2u  = 2 × 1.87 = 3.74 m/s
(ii) Power required to maintain the flow in 100 m length of pipe: P

P = mghf
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 = ρQghf  m  = ρQ

where hf = 2
32 ul

gD
µ

ρ
[Hagen–Poiseuille equation]

∴ P = 2
32Qg ul

gD
ρ × µ

ρ

 = 2
32 uQl

D
µ

 l = 100 m

 = 2
32 0.75 1.87 0.003669 100

(0.05)
× × × ×

 = 6586.58 W

(iii) Velocity at radius r is given by

uR
r

y = 8 mm = 0.08 m

Fig. 1.12: Schematic for Problem 1.6

u =
1

4
−

µ
 

dp
dx  (R2 – r2)

Corresponding to 8 mm from the wall,
r = R – y
 = 0.025 – 0.008 = 0.017 m

and 1 2p p
l
−

 =  18 × 103 N/m3

or 2 1p p
l
−

 = –18 × 103 N/m3

or
dp
dx  = –18 × 103 N/m3

∴ u =
1

4 0.75
−

×
 × (– 18 × 103) × [(0.025)2 – (0.017)2]

 = 2.01 m/s

and Shear stress: τ = – 2
dp r
dx

 = – (–18 × 103) × 
0.017

2
= 153 N/m2
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 Problem 1.7: An oil of specific gravity 0.9 and viscosity 10 poise is flowing
through a pipe of diameter 110 mm. The velocity at the centre is 2 m/s. Find:

(i) Pressure gradient in the direction of flow.
(ii) Shear stress at the pipe wall.
Solution: Given data:
Specific gravity of oil: S = 0.9
∴ Density of oil: ρ = S × 1000 kg/m3 = 0.9 × 1000 kg/m3 = 900 kg/m3

Diameter of pipe: D = 110 mm = 0.11 m

Radius of pipe: R =
2
D

 = 
0.11

2
 = 0.055 m

Viscosity of oil: µ = 10 poise = 
10
10

Ns/m2 = 1 Ns/m2

Velocity at the centre i.e., maximum velocity:
Umax = 2 m/s

(i) Pressure gradient in the direction of flow: 
p
x

∂
∂

We know that the expression of maximum velocity:

Umax = 21
4

p R
x

∂
−

µ ∂

2 = 21 (0.055)
4 1

p
x

∂
− × ×

× ∂

     or
p
x

∂
∂

 = –2644.62 N/m2

(ii) Shear stress at the pipe wall:  τ0 = τmax

τmax =
2

p R
x

∂
−

∂
 = – (–2644.62) × 

0.055
2

 = 72.727 N/m2

Problem 1.8: A laminar flow is taking place in a pipe of diameter 250 mm. The
maximum velocity is 2 m/s. Find the mean velocity and the radius at which this
occurs. Also find the velocity at 40 mm from the wall of the pipe.
Solution: Given data:

Diameter of pipe: D = 250 mm = 0.250 m

∴ Radius of pipe: R =
2
D

 = 
0.250

2
 = 0.125 m

Maximum velocity: Umax = 2 m/s
(i) Mean velocity: u

We have u  =
2
maxU

 = 
2
2

 = 1 m/s
(ii) Radius at which u  occurs: r

The velocity u at any radius r is given

u = – 1
4µ

 dp
dx

 [R2 – r2]
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u = – 1
4µ

 dp
dx

 R2
2

21 r
R

 
− 

 

u = Umax

2

1 r
R

  −  
   

where Umax = – 1
4µ

 dp
dx

 R2

Now the radius r at which u = u  = 1 m/s

∴ 1 = 2 
2

1
0.125

r  −  
   

or 1 – 
2

0.125
r 

 
 

 =
1
2

or
2

0.125
r 

 
 

 = 1 – 
1
2

 = 
1
2

 =  0.5

or 0.125
r

 = 0.5

r = 0.125 × 0.5  = 0.08838 m = 88.38 mm
(iii) Velocity at 40 mm from the wall: u

uR
r

y = 40 mm = 0.04 m

Fig. 1.13: Schematic for Problem 1.8

r = R – y = 0.125 – 0.04 = 0.085 m
The velocity at radius: r = 0.085 m

                                    OR
The velocity at 40 mm from pipe wall is

u = UMax 

2

1 r
R

  −  
   

 = 2 × 
20.0851

0.125

  −  
   

= 1.075 m/s

Problem 1.9: An oil of dynamic viscosity 1.5 poise and specific gravity 0.9 a
laminar flows through a 20 mm diameter vertical pipe. Two pressure gauges have been
fixed at 20 m apart. The pressure gauge fixed at higher level roads 600 kPa. Find the
direction of flow and rate of flow through the pipe.
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Solution: Given data:

Dynamic viscosity: µ = 1.5 poise = 
1.5
10  Ns/m2 = 0.15 Ns/m2

Specific gravity: S = 0.9
∴ Density of oil: ρ = S × 1000 kg/m3 = 0.9 × 1000 = 900 kg/m3

Diameter of pipe : D = 20 mm = 0.02 m
Length of pipe between two gauges: l = 20 m
Pressure at higher level gauge:      pB = 200 kPa = 200 × 103 N/m2

Pressure at lower level gauge:       pA = 600 kPa = 600 × 103 N/m2

Total energy per unit weight at lower level A: EA

EA = Ap
gρ

 + 
2

2
AV
g

  + zA

Assuming datum at level A,
∴ zA = 0
Diameter of pipe is same and hence, velocity at

A and B will be same.
i.e., VA = VB = V

EA =
Ap
gρ  + 

2

2
V

g

 =
3600 10

900 9.81
×
×

 + 
2

2
V

g

EA = 67.95 + 
2

2
V

g       ...(i)

Similarly, total energy per unit weight at
higher level B: EB

EB = BP
gρ  + 

2

2
V

g  + zB

 =
3200 10

900 9.81
×
×

 + 
2

2
V

g  + 20  zB = l = 20 m

 = 22.65 + 
2

2
V

g  + 20 = 42.65 +  
2

2
V

g ... (ii)

It is clear from Eqs. (i) and (ii), EA > EB. Hence, the flow takes place from  A to B.
Note: Fluid always flows from higher energy level to lower energy level.
Rate of flow: Q
Loss of head: hf = EA – EB

= 67.95 + 
2

2
V

g
 – 42.65 – 

2

2
V

g
 = 25.3 m

Keep in mind, the Hagen-Poiseuille’s equation is only applicable for horizontal
pipe flow. So, in present case (i.e., vertical pipe), we used Darcy-Weisbach’s formula.

200 kPa

600 kPa

A

B

l = 20 m

Datum line

Fig. 1.14: Schematic
for Problem 1.9
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hf =
24

2
flu
gD

(Darcy-Weisbach’s formula)

where f =
16
Re , Darcy’s coefficient of friction for laminar

flow

  =
16

ρ
µ
uD = 

16µ
ρuD

∴ hf  =
24 16

2
× µ

×
ρ

lu
uD gD

hf = 2
32µ
ρ

lu
gD

25.3 = 2
32 0.15 20

900 9.81 (0.02)
× × ×
× ×

u

or u  = 0.93 m/s
∴ Rate of flow: Q = cross-sectional area  of pipe × average velocity

 = 2

4
π

×D u  = 23.14 (0.02) 0.93
4

× ×

 = 0.000292 m3/s = 0.000292 × 1000 litre/s = 0.292 litre/s

1.6 FLOW BETWEEN PARALLEL PLATES
Consider two parallel plates, bottom being stationary while the top one moving with a
constant velocity U. Let small fluid element of dimensions be dx (length), dy (thickness)
as shown in Fig. 1.15. Let width of the plates be unity not shown in Fig. 1.15.

h

o

y
x

τdx

dx

p.dy

UMoving Plate

Fixed Plate

U

p∂ 
  ∂

+p dx dy
x

 ∂τ
τ  ∂

+ dy dx
y

dy

Fig. 1.15: Flow between two pallet plates.

According to the Newton’s second law of motion for steady, laminar and
incompressible flow is summation of all forces in the direction of flow = m ax

p.dy –
pp dx dy dy dx dx
x y

 ∂ ∂τ + ⋅ + τ + ⋅ − τ ⋅    ∂  ∂  = 0  ax = 0
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p dxdy dydx
x y

∂ ∂τ
− +

∂ ∂  = 0

or
p
x

∂
∂

 =
y

∂τ
∂

Here p = f(x) and τ = f(y) only.
Hence partial derivative can be changed to total derivative.

∴
dp
dx  =

τd
dy

... (1.6.1)

In case of laminar flow, the shear stress is given by the Newton’s law of
viscosity.

Shear stress: τ =
du
dy

µ

Substituting the value of τ in Eq. (1.6.1), we get
dp
dx  =

d
dy

 
du
dy

 
µ 

 

or
dp
dx  = µ

2

2
d u
dy

 µ = constant

or
2

2
d u
dy

 =
1
µ

 
dp
dx

On integrating above equation, we get
du
dy  = 1

µ
 

dp
dx y + A At particular section, 

dp
dx  = c

Again integrating, we get

u = 1
µ

 
dp
dx  

2

2
y

 + Ayy + B

or u =
1

2μ
 dp

dx
 y2 + Ayy + B ...(1.6.2)

where A and B are constants of integration and to be determined from the known
boundary conditions.

In the present case, the boundary conditions are:
u = 0 at y = 0

and u = U at y = h
Substituting these conditions in Eq. (1.6.2), we get

0 = B at u = 0, y = 0
or 0=B
and at u = U    at y = h;

U = 1
2µ

 dp
dx

 h2 + Ah + B
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or Ah = U – 1
2µ

 dp
dx

 h2  B = 0

or
1

2
= −

µ
U dpA h
h dx

Substituting the values of constants A and B in Eq. (1.6.2), we get

u =
1

2µ
dp
dx  y2 + y U

h
– 

1
2µ  hy 

dp
dx

21 ( )
2

y dpu U hy y
h dx

= − −
µ

... (1.6.3)

The flow between two parallel plates, one is fixed and the other is moving is
known as Couette flow.

Rearranging Eq. (1.6.3), we get

u = yU
h

 – 
2

2
h
µ

 dp
dx

 y
h

 1 y
h

 − 
 

or
u
U  =

y
h

 – 
2

2
h

Uµ  
dp
dx  

y
h  1 y

h
 − 
 

 
u
U  = y

h
 + α 

y
h  1 y

h
 − 
 

...(1.6.4)

where α =
2

2
h

Uµ
 dp

dx
 − 
 

 is the dimensionless pressure gradient

For α > 0, the pressure is decreasing in the direction of flow, the velocity is
positive over the whole width between the plates.

For α > 0, the pressure is increasing in the direction of flow and the reverse flow
begins to occur near the fixed plate as the value α becomes less than –1.

The reverse flow near the fixed plate is due to the dragging action of the faster
neighbouring layers on the fluid close to the moving plate is not enough to overcome
the influence of the adverse pressure gradient.

when α = 0, Eq. (1.6.4) becomes

u
U  =

y
h

This pure shearing flow is called simple Couette flow.
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The velocity distribution of the Couette flow is shown in Fig. 1.16 is a function
of the distance from the fixed plate for various dimensionless pressure gradient (α).

h

Moving Plate U

Fixed Plate

Reverse
Flow

α = –2

α 
= 

–1
α 

= 
0

α 
= 

1
α 

= 
2

α 
= 

3

–0.2 0 1 1.3
u
U

Fig. 1.16: Couette Flow

Average velocity and shear stress distribution.
Consider a small fixed element of cross-section with unit width and height dy;
Discharge per unit width through the element:

dq = velocity × cross-sectional of the fluid element
 = u . dy .1
 = u dy

Total discharge per unit width: q

q =
0
∫
h

dq

 =
0
∫
h

udy  = 2

0

1– ( )
2

 
− µ 

∫
h U dpy hy y dy

h dx

 = 2

0 0 0

1
2 2

− −
µ µ∫ ∫ ∫

h h hU h dp dpydy ydy y dy
h dx dx

 =
2 2 3

0 0 0

1
2 2 2 2 3

     
− −     µ µ     

h h h
U y h dp y dp y
h dx dx

   =
2 2 31– .

2 2 2 2 3
U h h dp h dp h
h dx dx

−
µ µ

 =
3 3

2 4 6
− −

µ
Uh h dp h dp

dx dx

 =
3

2 12
Uh h dp

dx
−

µ

Average velocity: u  = Discharge: 
Cross-sectional area of fluid flow

q
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 =

3

2 12
1

−
µ

×

Uh h dp
dx

h

2

2 12
U h dpu

dx
= −

µ
...(1.6.5)

The shear stress distribution may be computed by using the Newton’s law of
viscosity.

τ =
du
dy

µ

 = 21 ( )
2

d U dpy hy y
dy h dx

 
µ − − µ 

1 ( 2 )
2

U dp y y
h dx

τ = µ − − ... (1.6.6)

Pressure head loss for a given length (l):
Recalling average velocity through parallel plates from Eq. (1.6.5)

u  =
2

2 12
U h

−
µ

dp
dx

h
p1

u

1

1

2

2

p2

U

l

Fig. 1.17: Pressure head loss in Couette flow

or
2

12
h dp

dx
−

µ  = u  – 
2
U

dp
dx

−  = 2
12µu

h
 – 2

6 U
h
µ

The term 
dp
dx

 − 
 

 represents pressure drop per unit length of pole and may be
written as

p
l

∆
− = 2 1( )p p

l
−

−  = 1 2p p
l
−
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1 2p p
l
−

 = 2
12 u

h
µ

 – 2
6 U
h
µ

or p1  – p2 = 2
12 ul

h
µ

 – 2
6 U l
h
µ

Dividing by ρg above in both sides, we get

1 2p p
g

−
ρ  = 2

12 ul
gh
µ

ρ  – 2
6 Ul

gh
µ

ρ

hf = 2
12 ul

gh
µ

ρ
 – 2

6 Ul
gh
µ

ρ

where hf =
1 2p p

g
−
ρ , drop of pressure head due to friction.

2
6 2f

lh u U
gh
µ  = − ρ

1.6.1 Both Plates are Fixed
Recalling the general Eq. (1.6.2) for velocity distribution:

u = 21
2

dp y Ay B
dx

+ +
µ

...(1.6.7)

where A and B are constant of integration. Their values are obtained from the
two below boundary conditions:

(i) at y = 0, u = 0
(ii) at y = h, u = 0

Velocity
distribution

y
x

h

Fig. 1.18: Both Plates are fixed.

Substitution of y = 0, u = 0  in Eq. (1.6.7), we get
0 = 0 + 0 + B

or 0=B

and substitution of y = h, u = 0 in Eq. (1.6.7), we get

0 = 21 0
2

dp h Ah
dx

+ +
µ
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or
1

2
dp

A h
dx

= −
µ

Substituting the values of A and B in Eq. (1.6.7), we get

u =
1

2
dp
dxµ

 y2 + y 
1

2
dp
dx

 
− µ 

h + 0

u =
1

2
dp
dxµ

 y2  – 1 .
2µ

dp h y
dx

21
2

dpu hy y
dx

 = − − µ
... (1.6.8)

In the above equation ,µ
dp
dx

 and h are constants. It means u varies with the

square of y. Here Eq. (1.6.8) is a equation of a parabola. Hence velocity distribution
across a section of the two parallel fixed plates is parabolic. This velocity distribution
is shown in Fig. 1.18.

Ratio of Maximum Velocity to average velocity:
The velocity of the fluid is maximum at the centre between two fixed plate,

putting the value of y = 
2
h

 in Eq. (1.6.8), we get

Umax =
1

2
dp
dx

−
µ

 
2 2

2 4
h h 

− 
 

 =
1

2
dp
dx

−
µ  . 

2

4
h

21
8max

dpU h
dx

= −
µ

...(1.6.9)

Average velocity: u  =
Discharge

Cross-sectional area of fluid flow
Consider rate of flow of fluid through the element strip of thickness dy and unit

width.
∴ The rate of flow through small element strip:

dq = velocity at a distance y × cross-sectional area of strip

 =
1

2
dp
dx

−
µ [hy – y2] × dy × 1

Net discharge flow through fixed plates:

q =
h

o

dq∫  = 
21 ( )

2

h

o

dp hy y dy
dx

− −
µ∫
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 = 1
2

dp
dx

−
µ

 
2 3

0
2 3

 
− 

 

h
hy y

 = 1
2

dp
dx

−
µ

 
3 3

2 3
h h 

− 
 

 =
1

2
dp
dxµ

 . 
3

6
h

 = 1
12

dp
dx

−
µ

 .h3

∴ Average velocity: u  =
q
A

 = 

31
12

1

dp h
dx

h

−
µ

×

21
12

dpu h
dx

= −
µ

... (1.6.10)

Dividing Eq. (1.6.9) by Eq. (1.6.10), we get

maxU
u  =

2

2

1
8
1 .

12

dp h
dx
dp h
dx

−
µ

−
µ

 = 
12
8  = 

3
2

 = 1.5

3 1.5
2

maxU
u

= =

Maximum velocity: Umax = 
3
2

 times average velocity: u

i.e.,
3 1.5
2maxU u u= =

Shear Stress Distribution:
In case of fluid flowing through fixed plates, the shear stress is given by the

Newton’s law of viscosity.

Shear stress: τ =
du
dy

µ

Substituting the value of u from Eq. (8.6.8) in above equation, we get

Shear stress: τ =
d
dy  21 ( )

2
dp hy y
dx

 
− − µ 

 =
1 ( 2 )

2
dp h y
dx

 
µ× − − µ 

τ =
1
2

−
dp
dx  [ ]( 2 )h y− ...(1.6.11)

In above Eq. (1.6.11), 
dp
dx  and h are constants.
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Hence shear stress τ varies linearly with y. The shear stress distribution is shown
in Fig. (1.19). The shear stress is maximum when y = 0 and h i.e., at the walls of the
fixed plates.

∴ Maximum shear stress: maxτ = 
1
2

−
dp
dx . h

y

Direction of
flow

h

τmax

Fig. 1.19: Shear stress distribution across a section of  parallel fixed plates.

and shear stress is zero at the centre line between the two i.e., y = 
2
h .

Pressure head loss for a given length:
Recalling the average velocity through parallel fixed plates equation (1.6.10)

u  = 1
12

dp
dx

−
µ

 h2

or dp
dx

−  = 2
12µu

h

y

p1

x
0

u
p2

1

1

2

2
l

Fig. 1.20: Pressure head loss in parallel fixed plates

The term dp
dx

 − 
 

 represents pressure drop per unit length of plate and may be

written as
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∆
−

p
l

 = 2 1( )p p
l

− −
 = 1 2p p

l
−

∴ 1 2p p
l
−

 = 2
12 u

h
µ

p1 – p2 = 2
12 ul

h
µ

Dividing both sides by ρ g, we get

1 2p p
g

−
ρ

 = 2
12µ
ρ

ul
gh

2
12

f
ulh

gh
µ

=
ρ

where hf = 1 2p p
g

−
ρ

, drop of pressure head due to friction.

Table 1.1

S.         Variable Flow through Flow through Plates

No. Pipe One plate Both plates
is fixed are are fixed
and other

moving

1. Velocity: u
1

4
−

µ
dp
dx [R2– r2] 21 ( )

2
Uy dp hy y
h dx

− −
µ

21 ( )
2

− −
µ

dp hy y
dx

2. Average velocity: u 21
8

−
µ

dp R
dx

2

2 12
−

µ
U h dp

dx
21

12
−

µ
dp h
dx

3. Shear stress: τ 2
−

dp r
dx

1 ( 2 )
2

U dp h y
h dx

µ
− −

1 [ 2 ]
2

− −
dp h y
dx

4. Pressure head drop: hf 2
32µ
ρ

ul
gD [ ]2

6 2l u U
gh
µ

−
ρ

2
12µ
ρ

ul
gh

Problem 1.10: An oil of viscosity 0.2 poise flowing between two fixed plates 1 m
wide maintained 12 mm apart. The velocity midway between the plates is 2 m/s. Find

(i) the pressure gradient along flow,
(ii) the average velocity, and

(iii) the rate of flow.
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Solution: Given data:

Viscosity of oil: µ = 0.2 poise = 
0.2
10  Ns/m2 = 0.02 Ns/m2

Width of plates: b = 1 m
Distance between plates: h = 12 mm = 0.012 m
Velocity midway between the plates: Umax = 2 m/s

(i) Pressure gradient: 
dp
dx

As we know, Umax  =
1

8
−

µ
dp
dx h2

2 =
1

8 0.02
dp
dx

−
×

 × (0.012)2

or  
dp
dx  = – 2222.22 N/m3

(ii) Average velocity: u
Umax =  1.5 u

or u  = 1.5
maxU

 = 
2

1.5 = 1.33 m/s

(iii) Rate of flow: Q
Q = cross-sectional area of flow × average velocity

 = b. h × u
 = 1 × 0.012 × 1.33 = 0.01596 m3/s = 15.96 litre/s

Problem 1.11: An oil of viscosity 18 poise flows between two horizontal fixed
parallel plates which are kept at distance 150 mm apart. The maximum velocity of flow
is 1.5 m/s. Find

(i) the pressure gradient,
(ii) the shear stress at the two horizontal parallel plates, and

(iii) the discharge per unit width for laminar flow of oil.

Solution: Given data:

Viscosity of oil: µ = 18 poise = 
18
10  Ns/m2  = 1.8 Ns/m2

Distance between two plates: h = 150 mm = 0.15 m
Maximum velocity: Umax  = 1.5 m/s

(i) Pressure gradient: 
dp
dx

We have maximum velocity: Umax = 21
8

−
µ

dp h
dx
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1.5 =
1

8 1.8
−

×
 × 

dp
dx × (0.15)2

or
dp
dx  = –960 N/m3

(ii) Shear stress at the wall: τ0

Maximum shear stress: τmax  = τ0 =
1
2

dp h
dx

−  = 
1
2

−  × (–960) × (0.15)2

= 10.8 N/m2

(iii) Discharge per meter width: Q
Q = average velocity × cross-sectional

area of flow
 = u  × h × b

 =
2 1
3 MaxU h× ×  b = 1m

 =
2 1.5 0.15
3

× × = 0.15 m3/s

Problem 1.12: An oil of viscosity 8 poise flows between two parallel fixed plates
which are kept at a distance of 60 mm apart. Find the rate of flow of oil between the
plates if the drop of pressure in a length of 1.2 m be 3 kPa. The width of the plates
is 150 mm.

Solution: Given data:

Viscosity: µ = 8 poise = 
8

10 Ns/m2 = 0.8 Ns/m2

Distance between plates: h = 60 mm = 0.06 m
Drop of pressure: p1 – p2 = 3 kPa = 3 × 103 Pa or N/m2

Length: l = 1.2 m
Width: b = 150 mm = 0.15 m
We have,

Loss of head: hf =
1 2−
ρ

p p
g

also hf = 2
12µ
ρ

ul
gh

∴   
1 2−
ρ

p p
g  = 2

12µ
ρ

ul
gh

p1 – p2 = 2
12µul

h

3 × 103 = 2
12 0.8 1.2

(0.06)
× × ×u

or u  = 0.9375 m/s
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Rate of flow: Q
Q = average velocity × cross-sectional area of flow

 = u  × b × h = 0.9375 × 0.15 × 0.06
 = 8.43 × 10–3 m3/s = 8.43 liters/s

Problem 1.13: There is a horizontal crack 30 mm wide and 3 mm deep in a wall
of thickness 100 mm. Water leaks through the crack. Find the rate of leakage of water
through the crack if the difference of pressure between the two ends of the crack is
298 N/m2. Take the viscosity of water is 0.01 poise.

Solution: Given data:
Width of crack: b = 30 mm = 0.03 m
Depth of crack: h = 3 mm = 0.003 m
Length of crack: l = 100 mm = 0.1 m
Pressure difference: p1 – p2 = 295 N/m2

Viscosity: µ = 0.01 poise = 
0.01
10  Ns/m2 = 0.001 Ns/m2

Loss of head: hf = 1 2−
ρ

p p
g  = 

298
1000 9.81×

 = 0.03037 m

also hf =  2
12   

  
µ

ρ
u l

g h

0.03037 = 2
12 0.001 0.1

1000 9.81 (0.003)
× × ×
× ×

u

or u  = 2.23 m/s
Rate of leakage = average velocity × cross-sectional area of crack

 = u × bh = 2.23 × 0.03 × 0.003 m3/s = 2 × 10–4 m3/s
 = 0.20 litre/s

1.7 MOMENTUM CORRECTION FACTOR
Momentum correction factor is defined as the ratio of the momentum  of the flow per
second based on actual velocity a is cross a section to the momentum of the flow per
second based on average velocity across the same section. It is denoted by β.

Mathematically,
Momentum correction factor:

β = Momentum per second based on actual velocity
Momentum per second based on average velocity

Momentum correction factor:

β  =
4
3  for fully developed laminar flow through pipe.

 = 1.01 to 1.04 for fully developed turbulent
flow through pipe.
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Problem 1.14: Show that the momentum factor for laminar flow through a circular

pipe is 
4
3 .

Solution:
We know that the velocity distribution through a circular pipe for laminar flow

at any radius r is given by

u = 1
4

−
µ

 
dp
dx

 (R2 – r2) ... (i)

Consider a small fluid element ring at radius r and width dr

R
dr

r

Fig. 1.21: Schematic for Problem 1.14

∴ Cross-sectional area of small ring: dA = 2πrdr
dQ = u × 2πrdr = 2π urdr

Mass flow rate through small ring =  ρdQ = ρ × 2 π urdr = 2πρu rdr
Momentum of the fluid through a small ring per second:

 = mass flow rate × velocity
 = 2 π ρ ur dr × u = 2 π ρ u2r dr

Substituting the value of u from Eq. (i), we get

 = 2π ρ 
2

2 21 ( )
4

 
− − µ 

dp R r rdr
dx

= 2π ρ 2
1

16µ
 

2
 
 
 

dp
dx  (R4 + r4 – 2R2 r2) rdrdr

Total actual momentum of the fluid per second

 =
0

2πρ∫
R

× 2
1

16µ  
2

 
 
 

dp
dx  (R4 + r4 – 2R2 r2) rdrdr

  = 28
πρ
µ

 
2

 
 
 

dp
dx 0

∫
R

(R4r + r5 – 2R2 r3) dr

= 28
πρ
µ

 
2

 
 
 

dp
dx

4 2 6 2 4

0

2
2 6 4

R
R r r R r 

+ − 
 

=  28
πρ
µ

 
2

 
 
 

dp
dx

4 2 6 2 4

2 6 4
 

+ − 
 

R r R R r
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 = 28
πρ
µ

 
2

 
 
 

dp
dx

6 6 6

2 6 2
 

+ − 
 

R R R

 = 28
πρ
µ

2
 
 
 

dp
dx × 

6

6
R

= 248
πρ
µ

2
 
 
 

dp
dx R6 ...(ii)

Now we know the expression of average velocity: u

u  =
1

8
−

µ
 dp

dx
 R2

∴ Momentum of the fluid per second based on average velocity
 = mass flow rate × average velocity

= ρ A u  × u  = 2ρAu

=  ρ × πR2 × 
2

21
8

dp R
dx

 
− µ 

= ρ  π R2  × 2
1

16µ  
2

 
 
 

dp
dx R4

= 264
πρ
µ  

2
 
 
 

dp
dx R6 ... (iii)

∴ Momentum correction factor:

β = act

avg

(Momentum/second)
(Momentum/second)

=
Eq. ( )
Eq. ( )

ii
iii

=

2
6

2

2
6

2

48

64

πρ  
 µ  

πρ  
 µ  

dp R
dx
dp R
dx

= 
64
48 = 

4
3

1.8 KINETIC ENERGY CORRECTION FACTOR
Kinetic energy correction factor is defined as the ratio of the kinetic energy of flow
per second based on actual velocity across a section  to the kinetic energy of flow per
second based on average velocity across the same section. It is denoted by α

Mathematically,

Kinetic energy correction factor: α = act

avg

KE /second
KE /second
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where KEact/s =
A

0

1
2∫ dm u2

=
A

0

1
2∫ ρ u dA u2  dm = ρu dA

 =
A

0

1
2∫ ρu3 dA = 

2
ρ

 
3

0

 ∫
A

u dA

and KEavg/s =
21

2
mu  = 

21
2

uAuρ   m = Auρ

=
3

2
Auρ

∴  α =

3

0
3

2

2

ρ

ρ

∫
A

u dA

Au
 = 3

1

Au
 3

0

 ∫
A

u dA

Kinetic energy correction factor:
α = 2 for fully developed laminar flow through pipe.

 = 1.04 to 1.11 for fully developed turbulent flow
through pipe.

Problem 1.15: Show that the kinetic energy factor for fully laminar flow through
a circular pipe is 2.

Solution: We know that velocity distribution through a circular pipe for laminar flow
at any radius r is given by

u = 1
4

−
µ

dp
dx

 (R2 – r2) ...(i)

Consider a small fluid element ring at radius r and width dr.

R
dr

r

Fig. 1.22: Schematic for Problem 1.15

∴ Cross-sectional area of small ring: dA = 2π r dr
Rate of  fluid flow through small ring: dQ = u × dA

= u × 2π r dr = 2π ur dr
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Mass flow rate through small ring = ρdQ = ρ × 2π ur dr
= 2π ρ ur dr

Kinetic energy of the fluid flowing through a small ring per second

=
1
2

 × mass flow rate × (velocity)2

 =
1
2

× 2π ur dr × u2 = π ρ u3r dr

Substituting the value of u from Eq. (i), we get

= π ρ 
3

2 21 ( )
4

 
− − µ 

dp R r
dx  rdr

= π ρ 
3

1
4

 
− µ 

3
 
 
 

dp
dx [R2 – r2]3 r dr

= – π ρ × 3
1

64µ

3
 
 
 

dp
dx [R6 – r6 + 3R2 r2 (R2 – r2)] rdrdr

= – 364
πρ
µ  

3
 
 
 

dp
dx [R6 – r6 + 3R4 r2 – 3R2r4] rdrdr

= – 364
πρ
µ  

3
 
 
 

dp
dx [R6r – r7 + 3R4 r3 – 3R2r5] dr

∴ Total actual kinetic energy of flow per second

= 3
0 64

πρ
−

µ∫
R 3

 
 
 

dp
dx

[R6r – r7 + 3 R4 r3   – 3 R2r5] dr

= 364
πρ

−
µ

 
3

 
 
 

dp
dx 0

∫
R

[R6r – r7 + 3 R4 r3   – 3 R2r5] dr

= 364
πρ

−
µ

 
3

 
 
 

dp
dx 0

6 2 8 4 4 2 63 3
2 8 4 6

R
R r r R r R r 

− + − 
 

= 364
πρ

−
µ

 
3

 
 
 

dp
dx

8 8 8 83
2 8 4 2

R R R R 
− + − 

 

= 364
πρ

−
µ

 
3

 
 
 

dp
dx

8

2
 
 
 

R

= 3512
πρ

−
µ

 
3

 
 
 

dp
dx R8 ...(ii)

Now we know the expression of average velocity: u
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u  =
1

8µ
dp
dx  R2

∴ Kinetic energy of the fluid flowing through pipe per second based on average
velocity

=  × mass flow rate × (average velocity)2

= 21
2

× ρ ×Au u  = 
1
2

 ρ A 3
u

= 1
2

ρ π R2 × 
3

21
8

dp R
dx

 
− µ 

 A = π R2

=
1
2

ρ π R2 

3 3
61

8
dp R
dx

   −   µ   

=
3

8
31024

dp R
dx

ρπ  −  µ  
...(iii)

∴ Kinetic energy correction factor:  α

α = act

avg

 /second
/second

KE
KE

=
Eq.( )
Eq.( )

ii
iii

=

3
8

3

3
8

3

512

1024

dp R
dx
dp R
dx

πρ  −  µ  
πρ  −  µ  

 = 
1024
512  = 2

1.9 POWER ABSORBED IN VISCOUS RESISTANCE
Oil used as lubricant in the bearings is example of viscous flow. In order to minimize
the frictional loss a thin layer of oil is maintained between the fixed and rotating parts
of the bearings. Viscosity is a very important property of the lubricating oil since its
load-carrying capacity at higher pressure and temperature is proportional to the
viscosity. If the viscosity of the oil is too low, a liquid film cannot be maintained
between the rotating and fixed parts. On the other hand, if the viscosity is too high,
it will offer more resistances to the rotating parts. So, it is very essential to use correct
viscosity of oil for lubrication. The power required to overcome the viscous resistance
in the following three types of bearing:

(i) Journal bearing,
(ii) Foot-step bearing, and

(iii) Collar bearing.
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1.9.1 Journal Bearing
Let d = diameter of shaft

t = thickness of oil film
l = length of the bearing

t

N

Shaft

BearingOil film

d

l

Fig. 1.23: Journal Bearing.

N = speed of shaft in rpm
ω = angular velocity of the shaft in rad/s
µ= viscosity of the oil film

We know that the angular velocity of the shaft: ω

ω =
2
60

Nπ

∴ Tangential velocity of the shaft: u = ωR =
2
d

ω

=
2
60

Nπ
 

2
d

 = 60
dNπ

According to Newton’s law of viscosity,

Shear stress: τ = du
dy

µ

where
du
dy

 = velocity gradient

=
– 0u
t = 

u
t

∴ Shear stress: τ =
u
t

µ  = t
µ

60
dNπ

 = 60
dN
t

µπ

Shear force: F = shear stress × surface of the shaft contact with oil (i.e., wetted
area of the shaft)

= 60
dN dl
t

µπ
× π  = 

2 2  
60
d Nl

t
µπ
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Torque required to overcome the viscous resistance (i.e., shear force):

T = shear force × 
2
d

 =
2
dF ×

=
2 2  
60
d Nl

t
µπ

 × 
2
d

=
2 3  
120

d Nl
t

µπ

Power absorbed in overcoming the viscous resistance: P

P = ωT = 
2 32  

60 120
N d Nl

t
π µπ

×

3 3 2 W
3600
d N lP

t
µπ

=

P in W
when m in Ns/m2

N in rpm and d, t, l in m.

1.9.2 Foot-Step Bearing
In this types of bearing, the shaft is vertical rotating. An
oil film is maintained between the bottom surface of the
shaft and bearing as shown in Fig. 1.24.

Let N = speed of the shaft in rpm
t = thickness of oil film

R = radius of the shaft
Let a small element ring of radius r and thickness dr.
Area of small element ring: dA = 2 πrdr
Now stear stress on the ring:

dτ =
du
dy

µ  = 
u
t

µ

where u is the tangential velocity of the shaft at
radius r:

∴ u = ωr = 
2
60

N rπ

The shear force on the ring: dF = dτ × area of the ring

= dτ × 2π r dr = 2  u rdr
t

µ × π

= 2  2  
60

u Nr r dr
t

π
× × π  = 2 2 

15
N r dr

t
µ

π

R

t

dr
r

Fig. 1.24: Foot-step bearing.
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∴ Torque required to overcome the viscous resistance:

dT = dF × r = 15t
µ

 2 2 N r drπ

Total torque required to overcome the viscous resistance:

0

T

dT∫  = 2 3

0

 
15

R

N r dr
t

µ
π∫

T = 15t
µ

 π2N 
3

0

R

r dr∫  = 15t
µ

p2N 
4

0
4

R
r 

 
 

T = 15t
µ

π2N 
4

4
R

= 60t
µ

π2N R4

∴ Power absorbed in overcoming the viscous resistance: P

P =
2

60
NTπ

 W

Here P in W
when T in Nm
and N in rpm

Substituting the value of T, we get

P = 
2
60

Nπ
 × 60t

µ
 π2 NR4

3 2 4

1800
N RP W

t
µπ

=

Here P in W
when µ in Ns/m2

R and t in m
N in rpm

1.9.3 Collar Bearing
The collar bearing is shown in Fig. 1.25 where an oil film of uniform thickness
separates the face of the collar from the surface of the bearing.

t
Collar

Shaft

Oil

R1

R2
r

dr

Fig.  1.25: Collar bearing.
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The collar bearing is employed to take up the axial thrust of a rotating shaft.
Let N = speed of the shaft in rpm

R1 = radius of the shaft
R2 = radius of the collar

t = thickness of oil film
Consider an elementary circular ring of radius r and width dr of the bearing

surface.
∴ Area of elementary ring: dA = 2π r dr

Now shear stress on the ring: dτ = 
du
dy

µ = 
u
t

µ

where u is the tangential velocity of the shaft at radius r:

∴ u = ωr  = 
2
60

N rπ
× = 

 
30
Nrπ

∴ dτ = 30
Nr

t
µ π

×  = 
 

30
Nr
t

πµ

The shear force on the ring: dF = d τ  × 2πr dr

dF =
 

30
Nr
t

πµ
× 2πr dr = 

2 2 
15
Nr dr

t
µπ

Torque required to overcome the viscous resistance: dT = dF × r

 =
2 3 
15
Nr dr

t
µπ

Total torque required to overcome the viscous resistance:

0

T

dT∫  =
2

1
15

R

R t
µ

∫ π2N r3 dr

T = 15t
µ

π2N
2

1

3
R

R

r dr∫  = 15t
µ

π2N
2

1

4

4

R

R

r 
 
 

= 15t
µ

π2N 
4 4
2 1–

4
R R 

 
 

 = 2 4 4
2 1–

60
N R R

t
µ  π  

Power absorbed in overcoming the viscous resistance: P

P =
2

60
NTπ

W

Here P in W
when T in Nm
and N in rpm
Substituting the value of T, we get

P =
2
60

Nπ
× 60t

µ
π2N [R4

2 – R 4
1]

P =
3 2 

1800
N

t
µπ

 [R4
2 – R 4

1] W
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Here P in W
when µ in Ns/m2

N in rpm
R1, R2 and t in m.

Problem 1.16: A shaft of 100 mm diameter rotates in journal bearing at 60 rpm in
a 200 mm long bearing. Taking  that the two surfaces are uniformly separated by a
distance of 0.5 mm and taking linear velocity distribution in the lubricating oil having
dynamic viscosity of 0.004 N s/m2, find the power absorbed in the bearing.

Solution: Given data:
Diameter of shaft: d = 100 mm
Speed: N = 60 rpm
Length of bearing: l = 200 mm = 0.2 m
Thickness of the oil film: t = 0.5 mm = 0.5 × 10–3 m
Viscosity: µ = 0.004 Ns/m2

We know that the power absorbed in the journal bearing:

P = 
3 3 2  
3600
d N l

t
µπ

W

= 
3 3 2

–3
0.004 (3.14) (0.1) (60) 0.2

3600 0.5 10
× × × ×

× ×
W = 0.0495 W

Problem 1.17: A journal bearing has a length of 300 mm and supports a shaft of
150 mm diameter rotating at 120 rpm. If the internal diameter of the bearing is
150.25 mm, find the torque required to keep the shaft in rotation at the speed
mentioned above. Find also the power required. The viscosity of the oil film is 0.25
Ns/m2.

Solution: Given data:
Length of bearing: l = 300 mm = 0.3 m
Diameter of shaft: d = 150 mm = 0.15 m
Diameter of bearing: D = 150.25 mm = 0.15025 m
Speed of shaft: N = 120 rpm

t

N

l

dD

Fig. 1.26: Schematic for Problem 1.17
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Thickness of oil film:

t =
2

D d−
= 

0.15025 0.15
2

−
 = 1.25 × 10–4 m

Viscosity of oil film:
µ = 0.25 Ns/m2

Tangential viscosity of shaft:

u = 60
dNπ

= 
3.14 0.15 120

60
× ×

 = 0.942 m/s

∴ Shear stress:  τ =
du
dy

µ  = 
u
t

µ  = –4
0.25 0.942
1.25 10

×
×

 = 1884 N/m2

Shear force: F = τ × πdl
= 1884 × 3.14 × 0.15 × 0.3 = 266.20 N

Torque required: T = F 
2
d

 = 266.20 × 
0.15

2
 = 19.965 Nm

Power required: P =
2

60
NTπ

 = 
2 3.14 120 19.965

60
× × ×

W = 250.76 W

OR

Torque required: T =
2 3

120
d Nl

t
µπ

=
2 3

–4
0.25 (3.14) (0.15) 120 0.3

120 1.25 10
× × × ×

× ×
 = 19.965 Nm

Power required: P =
3 3 2

3600
d N l W

t
µπ

 = 
2 3

–4
0.25 (3.14) (0.15) 120 0.3

3600 1.25 10
× × × ×

× ×
= 250.76 W

Problem 1.18: A shaft 100 mm in diameter runs in a bearing of length 150 mm with
a radial clearance of 0.025 mm at 60 rpm. Find viscosity of the oil, if the power
required to overcome the viscous resistance is 185 W.

Solution: Given data:
Diameter of shaft: d = 100 mm = 0.1 m
Length of bearing: l = 150 mm = 0.15 m
Radial clearance: t = 0.025 mm = 0.025 × 10–3 = 2.5 × 10–5 m
Speed of shaft: N = 60 rpm
Power required: P = 185 W

We know that the power required: P = 
3 3 2

W
3600

d N l
t

µπ

185 =
3 3 2

–5
(3.14) (0.1) (60) 0.15

3600 2.5 10
µ× × × ×

× ×
or µ = 0.9959 Ns/m2 = 9.959 poise
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Problem 1.19: A vertical shaft of diameter 100 mm rotates at 650 rpm. The lower
end of the shaft rests on a foot-step bearing. The end of the shaft and surface of the
bearing are both flat and are separated by an oil film of thickness of 0.4 mm. The
viscosity of the oil is given 1.5 poise. Find the torque and power required.
Solution: Given data:

Diameter of shaft: d = 100 mm = 0.1 m

Radius of shaft: R =
2
d

= 
0.1
2

 = 0.05 m

Speed of shaft: N = 650 rpm
Thickness of oil film: t = 0.4 mm = 0.4 × 10–3m

Viscosity of oil: µ = 1.5 poise = 
1.5
10 Ns/m2 = 0.15 Ns/m2

We know that the torque required for a food–step bearing: T = 60t
µ

π2 N R2

=
2 2

–3
0.15 (3.14) 650 (0.05)

60 0.4 10
× × ×

× ×
= 100.13 Nm

Power required: P =
2

60
NTπ

= 
22 3.14 650 100.13

60
× × ×

= 6812.17 W

 = 6.81 kW

Problem 1.20: The external and internal diameters of a collar bearing are 200 mm
and 150 mm respectively. An oil film 0.30 mm thick is maintained between the collar
surface and the bearing. Find the power lost in overcoming the viscous resistance of
the oil when the shaft is running at 240 rpm. Take µ = 0.10 Ns/m2.

Solution: Given data:
External diameter of collar: D = 200 mm = 0.2 m

∴ External radius of collar: R2  = 2
D

= 
0.2
2

= 0.1 m

Internal diameter of collar: d  = 150 mm = 0.15 m

∴ Internal radius of collar: R1  = 2
d

 = 
0.15

2
 = 0.075 m

Thickness of oil: t = 0.30 mm = 0.3 × 10–3 m
Speed of shaft: N = 240 rpm
Viscosity: µ = 0.10 Ns/m2

Power lost in overcoming the viscous resistance of oil in collar bearing: P

P =
3 2

1800
N

t
µπ

[R2
4 – R4

1]

=
3 2

–3
0.10 (3.14) (240)

1800 0.3 10
× ×

× ×
[(0.1)4 – (0.075)4]

= 22.57 W
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1.10 DASH-POT MECHANISM: MOVEMENT OF A PISTON IN A
DASH-POT

Dash-pot mechanism is used to damp the mechanical vibrations of the machine
element that communicates with the piston. It consists of a piston that moves within
a cylinder, the diameter of the cylinder is slightly greater than the diameter of the
piston. The cylinder is filled with a highly viscous fluid. When piston moves downwards
under the influence of load W, oil moves upwards through the clearance between
cylinder and piston. When piston moves upwards, the oil moves downwards through
the clearance. The flow of oil offers viscous resistance to the movement of piston.
This helps to absorb the mechanical vibrations of the machine element that communicates
with the piston.

Let D = diameter of the piston
l = length of the piston

W = load exerted by the machine member
µ = viscosity of oil
V = velocity of the piston
u  = average velocity of oil flow in the clearance
b = clearance between the piston and cylinder

dp = pressure difference across the two ends of the piston.

dp =
2

4

W

Dπ  = 2
4W
Dπ

...(i)

Dl b

Cylinder

Piston

Oil

W

Fig. 1.27: Dash-Pot Mechanism.

The flow of oil through clearance is a similar case to the laminar flow between
two parallel plates. The pressure difference for parallel plate for length l is given by

dp = 2
12µul

b
...(ii)

Equating Eqs. (i) and (ii), we get

2
4W
Dπ

 = 2
12µul

b

or µ =
2

23   
Wb

l Dπ µ
...(iii)



Laminar Flow 49

Rate of flow of oil in dash-pot
 = velocity of the piston × cross-sectional area of dash pot.

= V × 2

4
Dπ

= 2

4
D Vπ

...(iv)

Rate of flow of oil through clearance = average velocity of oil through clearance
× cross-sectional area of flow

= u  × πDb ...(v)
According to continuity equation, rate of flow through clearance must be equal

to rate of flow through dash-pot
Equating Eqs. (v) and (iv), we get

u πDb = 2

4
D Vπ

 u  = 4
DV

b ...(vi)

Equating Eqs. (iii) and (vi), we get
2

23
Wb

lDπµ  = 4
DV

b

or
3

3
4

3
Wb
lD V

µ =
π

Velocity of the piston: V =
3

3
4

3
Wb
lDπ µ

Problem 1.21: An oil dash pot consists of a piston moving in a cylinder having oil.
This arrangement is used to damp out the vibrations. The pistons falls with uniform
speed and covers 50 mm in 100 seconds. If an additional weight of 1.35 N is placed
on the top of the piston, it falls through 5 mm in 86 seconds with uniform speed. The
diameter of the piston is 75 mm and its length is 100 mm. The clearance between the
piston and the cylinder is 1.20 mm which is uniform throughout. Find the viscosity
of oil.

Solution: Given data:
Distance moved by piston due to own weight = 50 mm = 0.05 m

Time taken = 100 s
Additional weight: w = 1.35 N
Time taken to cover distance of 50 mm due to additional weight (w),

= 86 s
Diameter of the piston:D = 75 mm = 0.075 m
Length of the piston: l = 100 mm = 0.1 m
Clearance: b = 1.20 mm = 0.0012 m
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Velocity of piston without additional weight:

V =
Distance moved

Time taken  = 
0.05
100 = 5 × 10–4 m/s

Velocity of piston with additional weight:

V′ =
Distance moved

Time taken  = 
0.05
86  = 5.81 × 10–4 m/s

We know the expression of viscosity in dash-pot:

µ =
3

3
4Wb

3 lD Vπ
for own weight of piston W

 =
3

3
4[ + ]
3
W w b

lD Vπ ′
 for additional weight (W + W)

3

3
4

3π
Wb
lD V

 =
3

3
4[ + ]

3
W w b

lD Vπ ′

W
V  =

+W w
V ′

45 10−×
W

 = 4
+1.35

5.81 10−×
W

5
W

 =
+1.35
5.81

W

5.81 W = 5W + 1.35 × 5
5.81 W – 5 W = 6.75

0.81 W = 6.75
or W = 8.33 N

We know that the viscosity of oil: µ = 
3

3
4Wb

3 lD Vπ
 = 

3

3 –4
4 8.33 (0.0012)

3 3.14 0.1 (0.075) 5 10
× ×

× × × × ×
       = 0.289 Ns/m2 = 2.89 poise

1.11 STOKES’ LAW
If a sphere is placed in a flow of a highly viscous fluid at low velocity, the drag force
acting on a sphere and drag coefficient are given by

Drag force: FD =
2

2f
UC A ρ

where U = velocity of free stream.

ρ = density of fluid

If fluid is stationary, sphere is moving with constant velocity V. The motion of
the sphere is resisted by the drag force, which acts in the direction opposite to motion.
As the velocity of the body increases, so does the drag force. This continues until all
the forces balance each other and the net force acting on the body is zero.
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Drag force acts on sphere: FD = 
2

2f
VC A ρ

The drag coefficient ( )fC exhibits different behaviour in the low (creeping),
moderate (laminar), and high (turbulent) regions of the Reynolds number. The inertia
effects are negligible in low Reynolds number flows (Re < 1), called creeping flows,
and the fluid crops around the body smoothly. The drag coefficient in this case is
inversely proportional to the Reynolds number, and for sphere it is determined to be

fC  = 24
Re

for sphere when Re ≤ 1

Then the drag force acting on spherical object at low Reynolds number becomes

FD =
224

2
A V

Re
ρ 2 , Re4

VdA d ρπ= =
µ



 =

24

μ
Vdρ

 × 
4
π

d2 × 
2

2
Vρ

FD = 3πµVd ...(1.11.1)

Equation (8.11.1) is known as Stokes’ law. This relation shows that for a very
low Reynolds number, the drag force acting on spherical objects is proportional to the
diameter (d), the velocity (V), and the viscosity of the fluid. This relation is often
applicable to dust particles in the air and suspended solid particles in water.

1.12 MEASUREMENT OF VISCOSITY
The device used to determine the viscosity of fluid is called viscometer or viscosimeter.
The devices which are used to measure the viscosity are based on the principle of
existence of fully established laminar flow. Some of the common devices for the
measurement of viscosity may be classified as:

(1) Capillary tube viscometer.
(2) Rotating cylinder viscometer.
(3) Falling sphere viscometer.
(4) Industrial viscometers.

1.12.1 Capillary Tube Viscometer
A capillary tube viscometer consists of a horizontal capillary tube through which the
given fluid is made to flow. A large tank in which the liquid whose viscosity is to be
determined is filled, and one end of a capillary tube is connected horizontally to the
tank and other end open to atmosphere. The pressure in the capillary at a distance ‘l’
upstream the open end is recorded by means of a vertical piezometer. It is necessary
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to leave some distance the flow at the entry to the capillary tube is of developing
nature, the flow of liquid must be laminar through considering length l of capillary tube
as shown in Fig. 1.28.

Capillary
tube

Tank

h

d

Measuring 
tank

Piezometric head

Piezometer

l

Fig. 1.28: Capillary tube viscometer.

The level of the liquid in tank is maintained constant so as to ensure steady flow
through the tube. The rate of discharge through the tube is estimated by the quantity
of fluid collected in measuring tank for a given interval of time using a stop watch and
head loss h over length l of the capillary  tube determined by using piezometer.

Using Hagen–Poiseuille equation

Head loss: hf = 2
32 ul

gd
µ

ρ
where hf = h, pressure head loss over the fully developed laminar

flow through length l of the tube
u  = average velocity of flow.

Q = 2

4
d uπ

or u  = 2
4Q
dπ

∴ h = 4
128 Ql

gd
µ

πρ

or Viscosity of liquid: µ =
4

128
ghd

lQ
πρ

Here viscosity: µ in Ns/m2

when ρ in kg/m3

g = 9.81 m/s2

h, d, l in m
Q in m3/s
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Demerits of using of this viscometer
It is difficult to install piezometer in a fine capillary tube capable of providing laminar
flow. Further, it may be difficult to measure accurately diameter of such a tube. A small
error in measuring the diameter will cause an appreciable error in the viscosity because
viscosity µ is proportional to fourth power of diameter, i.e., µ ∝ d4

1.12.2 Rotating Cylinder Viscometer
This viscometer consists of two concentric cylinders of radii R1 and R2 as shown in
Fig. 1.29, where R1 and R2 are the radii of inner stationary cylinder and outer rotating
cylinder respectively. The space between two cylinders is filled with liquid of which
the viscosity is required to be determined. The torque applied on the outer cylinder is
transferred to the inner cylinder through the shear resistance or viscosity of the liquid
which is absorbed by torsional spring and measured on the dial means of the pointer
as shown in Fig. 1.29.

Let the outer cylinder is rotated at a constant angular speed of ω.
Peripheral (i.e., tangential) speed of the outer cylinder: u2 = ωR2

Peripheral velocity of liquid layer in contact with outer cylinder will be equal to the
peripheral velocity of outer cylinder.

R1

R2

ω

H

h

Pointer
Torsional spring

dr

Dial
Inner Stationary Cylinder

Outer Rotating Cylinder

Fig. 1.29: Rotating cylinder viscometer.

∴ Velocity of liquid layer with outer cylinder: u2
u2 = ωR2

and velocity of liquid layer with inner cylinder: u1 = 0 because inner cylinder
is stationary.

∴ Velocity gradient over the radial distance (R2 – R1): 
du
dr

du
dr

 = 2 1 2

2 1 2 1

– – 0
– –

u u R
R R R R

ω
=

or = 2

2 1–
R

R R
ω
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According to Newton’s law of viscosity,

Shear stress: τ =
du
dr

µ = 2

2 1–
R

R R
µω

∴ Shear force: F = shear stress × wetted area of inner cylinder
= τ × 2πR1H

= 2

2 1–
µωR
R R  × 2πR1H

Torque acting on the inner cylinder due to shearing action on the fluid: T1
T1 = shear force × radius (R1)

= 2
1 1

2 1
2

–
µω

π
R v R H R

R R  = 
2

2 1

2 1

ω R H
R – R

R2πµ

The torque transferred to the inner cylinder through its bottom surface, by the
bottom surface of the outer cylinder, will be determined as follows:

Consider an elementary ring of the bottom of the outer
cylinder of radius r and thickness dr circumferential velocity
at radius, r : u

u = ωr
According to Newton’s law of viscosity,

Shear stress: τ =
du
dy

µ  = 
( – 0)u

h
µ

 =
u
h

µ
 = 

r
h

µω
[ u = ωr]

∴ Shear force on the ring: dF = τ × area of elementary ring
= τ2πrdr

=
r

h
µω

2πrdr = 
22 r dr

h
πµω

∴ Torque acting on the elementary ring: dT2 = dF × r

=
22 r dr

h
πµω

 × r = 
32 r dr

h
πµω

∴ Total torque: 2∫dT  =
1 3

0

2πμ
R

r dr
h
ω

∫

T2 =
2πμ

h
ω

 
1

3

0
∫
R

r dr

T2 =
2πμ

h
ω

 
14

0
4

R
r 

 
  

 = 
2

h
πµω

 × 
4
1
4

R

dr
r

R1
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T2 =
4
12πμ

2
R

h
ω

Total torque acting on the inner cylinder: T
T = T1 + T2

 =
2 4

2 1 1

2 1

2πμ
( – ) h

R R H R
R R
ω πµω

+
2

=
2 4

2 1 1 2 1

2 1

(2 )×2 ( – )
2 ( – )

R R H h R R R
h R R

πµω + πµω

 =
2 4

2 1 1 2 1

2 1

4 ( – )
2 ( – )

R R Hh R R R
h R R

πµω + πµω

T =
2 2
1 2 1 2 1

2 1

[4H ( – )]
2 ( – )

R h R R R R
h R R

πω µ +

or Dynamic viscosity of the liquid: µ

µ = 2 1
2 2
1 2 1 2 1

2 ( – )
[4 ( – )]

h R R T
R HhR R R Rπω +

where T = torque measured on the dial by means of torsion
spring. Dynamic viscosity µ is determined when other parameter

R1 and R2 = radii of inner and outer cylinder
h = clearance at the bottom of cylinders
H = height of the stationary cylinder submerged in liquid
ω = angular velocity of the other cylinder; are known.

1.12.3 Falling Sphere Viscometer
This viscometer consists of a long vertical transparent cylindrical tank, which is
filled with the liquid where viscosity is to be measured.

d

l

Transparent
cylindrical tank

Transparent tank

Fixed mark

Constant
temperature bath

Viscous
liquid

Small sphere gently
dropped here.

Force acting on a falling
sphere in given liquid.

V

Fig. 1.30: Falling sphere viscometer.
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This transparent tank is surrounded by another transparent tank to keep the
temperature of the liquid in the cylindrical tank constant.

The experiment consists of gently dropping a small sphere on the surface of the
liquid as shown in Fig. 8.30. After the sphere has attained a constant velocity (V), the time
taken (t) by the sphere in covering a known distance ‘l’ marked between two points.

Thus the constant velocity of sphere: V = 
l
t  while moving downward through

the viscous fluid, three forces are acting on the ball:
(i) Its own weight: W ↓ [By law of gravitation]

(ii) Drag force: FD ↑ [By Stokes’ law]
(iii) Buoyant force: FB ↑ [By Archimede’s principle]

For equilibrium:
Weight of sphere = drag force + buoyant force

 D BW = F + F ...(i)
We know, Weight of sphere: W = mg [Mass = density × volume]

W = ρs × volume × g
3Volume of sphere is 

6
dπ 

  

W = 6
π

ρsgd3

where ρs = density of sphere
d = diameter of sphere

and Buoyant force: FB = ρVl g

where ρ = density of liquid

Vl = volume of liquid displaced

= 6
π

 d3

FB = 6
π

d3ρg

and Drag force: FD = 3πµVd. [By Stokes’ law]
where d = diameter of sphere

µ = viscosity of liquid
V = constant velocity of sphere through a liquid

Substituting the values of W, FB and FD in Eq. (i), we get

6
π

 ρs gd3 = 3πµVd + 6
π

 d3ρg

or 3πµV = 6
π

 ρsgd2 – 6
π

 d2ρg

3µV =
2

6
gd

 [ρs – ρ]
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or Dynamic viscosity:µ =
2

[ – ]
18 s
g d

V
ρ ρ

By using of above equation, the dynamic viscosity of a liquid can be measured if ρs,
ρ, d and V are density of sphere, density of liquid, diameter of sphere and constant
velocity of sphere through the liquid are known.

1.12.4 Industrial Viscometers
These viscometer require the measurement of time taken by a certain quantity of the
liquid to flow through a short capillary tube. The coefficient of viscosity is then
obtained by comparing with the coefficient of a liquid whose viscosity is known or
by the use of conversion factor.

Viscometers of different designs but based on the same principle are used in
different countries. USA favours the use of Saybolt viscometer while in the United
Kingdom (UK) Redwood viscometer is more commonly used. Both the methods are
described as following:

Saybolt Viscometer
This viscometer is shown as Fig.1.31, which consists of a tank at the bottom of which
a short capillary tube is fitted. In this tank the liquid whose viscosity is to be measured
is filled. This tank is surrounded by another tank, called constant temperature bath.
The liquid is allowed to gravity flow through the capillary tube at constant temperature.
The time taken by 60 cc (i.e., 60 ml or 0.06 litre) of liquid  to flow through the capillary
tube is noted down. From the time t required for the gravity flow of 60 cc of the given
liquid, known as Saybolt Universal Seconds (SUS), the kinematic viscosity of the
liquid can be determined from the following equations.

60cc

Constant temperature
bath

Capillary tube

Stopper

Volumetric
flask

Liquid

Fig. 1.31: Saybolt viscometer.

Kinematic viscosity: ν = 1950.22 t
t

 − 
 

stokes for t > 50 and < 100 SUS

= 1350.22 –t
t

 
  

 stokes for t > 100 SUS
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where t is time noted in seconds, known as Saybolt Universal Seconds (SUS)
ν = kinematic viscosity  in stokes

and Dynamic viscosity: µ =νρ
where ρ = density of the liquid at same temperature

Redwood Viscometer
In the Redwood viscometer, the time t required for the gravity flow of 50 cc of the
given liquid known as Redwood Seconds (RWS). The kinematic viscosity of the
liquid can be determined from the following equations.

[Same Fig. 1.31, only 50 cc volumetric flask is used instead of 60 cc]

Kinematic viscosity: ν = 0.90.00246 –
t

 
  

 stokes for t > 40 and < 85 RWS

= 0.850.00246 –
t

 
  

stokes for  t > 85 and and < 200 RWS

where t is time noted in seconds, known as Redwood seconds (RWS).
ν = kinematic viscosity in stokes.

and Dynamic viscosity: µ = ν ρ
where ρ = density of the liquid at same temperature.

Problem 1.22: The specific gravity of an oil of 0.85 is flowing through capillary
tube of diameter 40 mm. The difference of pressure head between two points 2 m
apart is 0.5 m of water. The mass of oil collected in a measuring tank is 60 kg in
100 seconds. Find the viscosity of oil.

Solution: Given data:
Specific gravity of oil: ρ = 0.85
∴ Density of oil: ρ = S × 1000 = 0.85 × 1000 kg/m3 = 850 kg/m3

Diameter of tube: d  = 40 mm = 0.04 m
Length of tube: l = 2 m
Difference of pressure head: h = 0.5 m of water

= water

oil

0.5×ρ
ρ

 m of oil  = 
0.5 1000

550
×

 = 0.588 m of oil

Mass of oil collected: M = 60 kg
Time taken: t = 100 s

∴ Mass flow rate: m =
M
t  = 

60
100  = 0.6 kg/s

Discharge: Q = mv

 =
m
ρ  = 

0.6
850  = 7.05 × 10–4 m3/s
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According to Hagen-Poiseuille equation,

Head loss: hf = 4
128 Ql

gd
µ

πρ

or Viscosity: m =
4

Q
fg h d

l
πρ

128
 = 

4

–4
3.14 850 9.81 0.588(0.04)

128 7.05 10 2
× × ×

× × ×
 hf = h

= 0.2183 Ns/m2 = 0.2183 × 10 poise = 2.183 poise

Problem 1.23: A capillary tube of diameter 30 mm and length 2 m is used for
measuring viscosity of a liquid. The difference of pressure between two ends of the
tube is 40 kPa and viscosity of liquid is 0.8 poise. Find the rate of flow of liquid
through the tube.

Solution: Given data:
Diameter of tube: d = 30 mm = 0.03 m
Length of tube: l = 2 m
Difference of pressure: p1 – p2 = 40 kPa = 40 ×103 Pa or N/m2

Viscosity of liquid: µ = 0.8 poise = 0.08 Ns/m2

According of Hagen–Poiseuille equation,

Loss of head: hf = 4
128 Ql

gd
µ

πρ

also hf =
1 2–p p

gρ

∴ 1 2–p p
gρ

 = 4
12 Q

gd
µ ρ

πρ

or p1 – p2 = 4
128µ

π

Ql
d

40 × 103 = 4
128 0.08 2

3.14×(0.03)
× × ×Q

or Q = 4.96 × 10–3 m3/s = 4.96 × 10–3 × 1000 litre/s
= 4.96 litre/s

 Problem 1.24: A capillary tube of diameter 4 mm and length 150 mm is used for
measuring viscosity of a liquid. The pressure difference between the two ends of the
tube is 0.7848 N/cm2 and the viscosity of liquid is 0.2 poise. Find the rate of flow of
liquid through the tube.

Solution: Given data:
Diameter of tube: d = 4 mm = 0.004 m
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Length of tube: l = 150 mm = 0.15 m
Difference of pressure: p1 – p2 = 0.7848 N/cm2 = 0.7848 × 104 N/m2

Viscosity of a liquid: µ = 0.2 poise = 
0.2
10

 Ns/m2 = 0.02 Ns/m2

According to Hagen-Poiseuille equation:

Loss of head : hf = 4

128 Ql
g d
µ

πρ

also hf = 1 2p p
g

−
ρ

∴ 1 2p p
g

−
ρ

 = 4

128 Ql
g d
µ

πρ

or p1 – p2 = 4

128 Ql
d
µ

π

0.7848 × 104 = 4

128 0.02 0.15
3.14 (0.004)

Q× × ×
×

or Q = 1.6428 × 10–5 m3/s

 Problem 1.25: Find the viscosity of an oil for the following data:
Diameter of inner and outer cylinder and 250 mm and 255 mm respectively.
Height of liquid in the cylinder = 320 mm
Clearance at the bottom of two cylinders = 6 mm
Speed of outer cylinder = 350 rpm
Reading of the torsion meter = 5.2 Nm

Solution: Given data:
Diameter of inner cylinder:

D1 = 250 mm = 0.25 m
∴ Radius of inner cylinder:

R1 = 1
2

D
 = 

0.25
2

= 0.125 m
Diameter of outer cylinder:

D2 = 255 mm = 0.255 m
∴ Radius of outer cylinder:

R2 = 2
2

D
 = 

0.255
2

= 0.1275 m

R1

R2

N

h

H 320 mm

Fig. 1.32: Schematic for
Problem 1.25
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Height of liquid from the bottom of outer cylinder = 320 mm = 0.32 m
Clearance at the bottom of two cylinders: h = 6 mm = 0.006 m
∴ Height of inner cylinder immersed in liquid H = 0.32 – h = 0.32 – 0.006 = 0.314 m
Speed of outer cylinder:      N = 350 rpm

∴ Angular speed:            ω = 
2π
60

N
 = 

2 3.14 350
60

× ×
= 36.63 rad/s

Reading of the torsion meter: T = 5.2 Nm
By using rotating cylinder viscometer,

Viscosity of oil: µ = 2 1
2 2
1 2 1 2 1

2 ( – )
[4 + ( – )

h R R T
R HhR R R Rπω

 = 2 2
2×0.006×(0.1275 – 0.125)×5.2

3.14 36.63 (0.125) .[4 0.314 0.006 0.1275 0.125 (0.1275 – 0.125)]× × × × × +

=
–4

–4 –5
1.56 10

1.797 [9.608 10 3.906 10 ]
×

× × + ×

=
–4

–4 –4
1.56 10

1.797 [9.608 10 0.3906 10 ]
×

× × + ×

=
–4

–4
1.56 10

17.967 10
×

×
 = 0.08682 Ns/m2 = 0.8682 poise

Problem 1.26: A sphere of diameter 2.5 mm falls 200 mm in 25 seconds in a
viscous liquid. The density of the sphere is 7000 kg/m3 and the liquid is 900 kg/m3.
Find the dynamic viscosity of the liquid.

Solution: Given data:
Diameter of sphere:    d = 2.5 mm = 0.0025 m
Distance travelled by sphere: l = 200 mm = 0.2 mm
Time taken:      t = 25 s

∴ Velocity of sphere:  V =
l
t  = 

0.2
25  = 0.008 m/s

Density of sphere:     ρs = 7000 kg/m3

Density of liquid: ρ = 900 kg/m3

According to falling sphere viscometer,

Dynamic viscosity: µ =
2

18
g

V
ρ

 [ρs – ρ] = 
29.81 (0.0025)

18 0.008
×
×

 [7000 – 900]

= 2.597 Ns/m2 = 2.597 × 10 poise = 25.97 poise

Problem 1.27: Find the viscosity of an oil of specific gravity 0.8, when a gas
bubble of diameter 12 mm rises steadily through the oil at a  velocity of 0.02 m/s.
Neglect the weight of the bubble.
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Solution: Given data:
Specific gravity of oil: S = 0.8
∴ Density of oil: ρ = S × 1000 kg/m3 = 0.8 × 100 = 800 kg/m3

Diameter of gas bubble:d = 12 mm = 0.012 m
Velocity of bubble: V = 0.02 m/s
According of falling sphere viscometer,

Viscosity: µ =
2

18V
gd

 [ρs – ρ] when ρs > ρ

=
2

18V
gd

 [ρ – ρs] when ρs < ρ

=
29.81 (0.012) [800 – 0]

18 0.02
×

×
×

 Weight of bubble neglected, so ρs = 0
= 3.139 Ns/m2 = 31.39 poise

1.13 NAVIER-STOKES EQUATIONS OF MOTION
Navier-Stokes equation based on the law of conservation of momentum or the
momentum acting on a fluid states that the sum of the forces acting on a fluid mass
is equal to the change in momentum of flow per unit time in the direction of flow.

If 
→

BF  is the body force per unit volume (e.g. 
→

BF = gρ


) and Fs is the surface
force per unit volume, then according to momentum equation

ρ 


DV
Dt

 = +
 

B SF F ...(1)

where the operator:
D
Dt  = t

∂
∂

 + u x
∂
∂

 + v y
∂
∂  + w z

∂
∂

is sometimes called the Eulerian derivative which implies the rate of change of
a certain fluid particle due to both non-stationary effects and convective effects in the
direction of fluid particle motion.


BF  = FBxi + FBy j + FBzk, body force vector per unit volume.

SF


= FSxi + FSy j + FSzk,surface force vector per unit volume

V  = ui + vj + wk , velocity vector.

Eq. (1), written along x, y and z-directions.
along x-direction,

t
Du
D

ρ
 = FBx + FSx ...(2)

along y-direction,
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Dv
Dt

ρ
 = FBy + FSy ...(3)

and along z-direction,
Dv
Dt

ρ
 = FBz + FSz ...(4)

Consider an elementary parallelepiped of dimension dx, dy and dz along x, y and
z-axes respectively. All normal and shear stresses are shown on elementary parallelepiped
in Fig. 1.33.

Net force in the x-direction due to stress;

σy +
∂σy

y∂
·dy 

τxy +
∂τxy

∂y ·dy 

τzy +
∂τzy

∂y ·dy 

τyz +
∂τyz

∂z ·dz 

σz +
∂σz

z∂ ·dz 

τxy +
∂τxz

∂z ·dz 

τxz
σz

τyz σx +
∂σx

x∂
·dx 

τyx +
∂τyx

∂x ·dx 

τyx +
∂ yxτ
∂x ·dx 

τzx

τyx

σx

τzy

σy

τxy

dx

dz

y

x

z

dy

Fig. 1.33: Elementary Parallel piped

 = . – τ xyx
x x xydx dy dz dy

x y
∂τ ∂σ σ + σ + +  ∂ ∂   

 dx dz

– – .xz
xy xz xzdxdz dz dx dy

z
∂τ τ + τ + τ  ∂

= . . . . . . .xyx
xzdx dx dz dx dy dz dx dy dz

x y z
∂τ∂σ ∂

+ + τ
∂ ∂ ∂

= . .xyx xz dx dy dz
x y z

∂σ ∂σ ∂τ
+ + 

∂ ∂ ∂ 
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Net surface force per unit volume along x-direction

Fsx = x
x

∂σ
∂

 + 
xy

y
∂τ

∂  + xz
z

∂τ
∂

where σx is normal stress along x-axis and plane ⊥ar to x-axis.
τxy is shear stress in x-direction, plane ⊥ar to y-axis (or plane parallel to x-axis).
τxz is shear stress in x-direction, plane ⊥ar to z-axis (or plane parallel to z-axis).
Experimental investigations have shown that the stresses in newtonian fluids are

related linearly to the derivatives of velocities and that most fluids are isotropic i.e.,
the fluid properties are not dependent on the direction in space. In other words, an
isotropic fluid has the same properties in all directions. The stresses do not explicitly
depend upon the space co-ordinates and the velocity of the fluid. If the fluid element
is considered to be very small in size, we may be justified in assuming that

τxy = τyx, τyz = τzy and τzx = τxz
The above mentioned assumption leads to a unique form of relationship between

the stresses and the velocity gradients, which may be expressed as:

σx = – p – 
2
3  µ V

→
∇  + 2µ 

u
x

∂
∂

σy = – p – 
2
3  µ V

→
∇  + 2µ 

v
y

∂
∂

Stokes hypotheses equations.

σx = – p – 
2
3  µ V

→
∇  + 2µ 

w
z

∂
∂

τxy = τyx = µ 
u v
y x

 ∂ ∂
+  ∂ ∂ 

τxz = τzx = µ 
u w
z x

∂ ∂ +  ∂ ∂

and τyz = τzy = µ 
v w
z y

 ∂ ∂
+  ∂ ∂ 

Substituting the value of Fsx in Eq. (2), we get

ρ 
Du
Dt  = FBx + x

x
∂σ
∂

 + 
xy

y
∂τ

∂  + xz
z

∂τ
∂

Similarly along y and z-directions

ρ 
Dv
Dt  = FBy + yx

x
∂τ

∂
 + 

y

y
∂σ

∂  + yz

z
∂τ

∂

and r
Dw
Dt  = FBz + zx

x
∂τ
∂

 + 
zy

y
∂τ

∂  + z
z

∂σ
∂

Substituting the values of stresses in above equations, we get

ρ
Du
Dt  = FBx–

p
x

∂
∂

 + x
∂
∂

 
22 –
3

u V
x

→ ∂
µ µ∇ ∂ 

+ y
∂
∂  

u v
y x

 ∂ ∂
µ + ∂ ∂ 
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+ 
u w

z z x
∂  ∂ ∂  µ +   ∂ ∂ ∂ 

...(5)

ρ
Dv
Dt  =   FBy – 

p
y

∂
∂  + x

∂
∂

 –u v
x x

 ∂ ∂  µ  ∂ ∂  

+ y
∂
∂

22 –
3

v V
y

→ ∂
µ µ∇ ∂ 

 + z
∂
∂

 
v w
z y

  ∂ ∂
µ +   ∂ ∂  

...(6)

ρ 
Dw
Dt  = FBz – 

p
y

∂
∂  + x

∂
∂

 –u w
z x

 ∂ ∂  µ   ∂ ∂ 

+ y
∂
∂  

v w
z y

  ∂ ∂
µ +   ∂ ∂  

 + 22 –
3

w V
z z

→ ∂ ∂
µ µ∇ ∂ ∂ 

...(7)

The above differential Eqs. (5), (6) and (7) are known as the Navier-Stokes
equations along x, y and z-directions respectively.

These Navier-Stokes equations of motions for a newtonian fluid of varying
density and viscosity in a gravitational field. (i.e., N.S. equations of motion of a
viscous and compressible fluid]

If the viscosity is assumed to be constant, these equations may be simplified and
rearranged as:

ρ 
Du
Dt

 = FBx – p
x

∂
∂

 + 2µ 
2

2
u

x
∂
∂

 – 2
3

µ x
∂
∂

(D.
→
V )

+ 
2

2
u

y
∂

µ
∂

 + µ 
2v

y x
∂

∂ ∂
 + 

2w
z x

µ∂
∂ ∂

 + 
2

2
u

z
µ∂
∂

ρ 
Du
Dt   = FBx – p

x
∂
∂

 + 
2

2
u

x
µ∂

∂
 + 

2

2
u

y
µ∂

∂
 + 

2

2
u

z
µ∂

∂

+ 
2

2
u

x
µ∂

∂
 + 

2v
y x

µ∂
∂ ∂

 + 
2w
z x

∂
µ

∂ ∂
 – 

2
3  µ x

∂
∂

 ( . )V
→

∇

ρ 
Du
Dt  = FBx – 

p
x

∂
∂

 + µ 
2 2 2

2 2 2
u u u

x y z

 ∂ ∂ ∂
+ + 

∂ ∂ ∂  

+ µ x
∂
∂

u v w
x y z

 ∂ ∂ ∂
+ + ∂ ∂ ∂ 

 – 
2
3 µ  x

∂
∂ ( . )V

→
∇

ρ 
Du
Dt  = FBx – 

p
x

∂
∂

 + µ 
2 2 2

2 2 2
u u u

x y z

 ∂ ∂ ∂
+ + 

∂ ∂ ∂  

+ µ x
∂
∂

 – 
2
3  µ x

∂
∂ ( . )V

→
∇

ρ 
Du
Dt  = FBx – 

p
x

∂
∂

 + µ 
2 2 2

2 2 2
u u u

x y z

 ∂ ∂ ∂
+ + 

∂ ∂ ∂  
 + 

1
3  µ x

∂
∂

 ( . )V
→

∇
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Similarly for y and z-directions, we get

ρ 
Dv
Dt  = FBy – p

y
∂
∂

 + µ 
2 2 2

2 2 2
v v v

x y z

 ∂ ∂ ∂
+ + 

∂ ∂ ∂  
 + 

1
3 µ y

∂
∂  ( . )V

→
∇ )

ρ 
Dw
Dt  = FBz –

p
z

∂
∂

 + µ 
2 2 2

2 2 2
w w w

x y z

 ∂ ∂ ∂
+ + 

∂ ∂ ∂  
 + 

1
3 µ 

z
∂
∂

 ( . )V
→

∇

For incompressible fluid where both the density ρ and viscosity coefficient µ are

constant. Then .V
→

∇  becomes zero.

Thus ρ 
Du
Dt  = FBx – 

p
x

∂
∂

 + µ
2 2 2

2 2 2
u u u

x y z

 ∂ ∂ ∂
+ + 

∂ ∂ ∂  

ρ 
Du
Dt  = FBx – 

p
x

∂
∂

 + 2uµ∇ ...(8)

Similarly for y and z-directions, we get

ρ 
Dv
Dt  = FBy – 

p
y

∂
∂  + 2vµ∇ ...(9)

ρ
Dw
Dt

 = FBz – 
p
z

∂
∂

 + 2wµ∇ ...(10)

Eqs. (8), (9) and (10) are Navier-Stokes equations of motion of a viscous in
compressible fluid in cartesian co-ordinates.

Navier-Stokes equation in vector form.

2– grad .B
DV F p V
Dt

→
→ →

ρ = +µ∇

where 
→

BF  = body force per unit volume.

DV
Dt


 =

1BF
−

ρ ρ



 grad p +  2.Vµ
∇

ρ



21 grad .B
DV F p V
Dt

= − + ν∇
ρ

  
... (11)

where BF


 = body fore per unit volume,

ν =
µ
ρ , kinematic viscosity..

Equation (11) in x, y and z-directions as
Du
Dt  = FBx – 

1
ρ  

p
x

∂
∂

+ 2uν∇

Dv
Dt  = FBy – 

1
ρ  

p
y

∂
∂ + 2ν∇ ν

Dw
Dt  = FBz – 

1
ρ  

p
z

∂
∂

+ 2wν∇
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Problem 1.28: A viscous liquid of density ρ and viscosity µ flows down a wide
include plate under the influence of gravity. The angle of inclination of the plate with
horizontal is θ. For all practical purposes the flow is parallel to the plate and a fully
developed. The velocity is not a function of the distance down the plate. The depth
of liquid normal to the plate is h. The viscosity of the air in contact with the upper
surface of the liquid may be neglected. For steady laminar two-dimensional flow of
the incompressible liquid, determine.

(i) the velocity distribution normal to the flow.
(ii) the shear stress at the plate boundary

(iii) the average velocity,
(iv) the discharge per unit width of the plate
(v) the free surface velocity of flow.
Solution: For steady two dimensional flow of an incomplete viscous liquid, the

Navier-Strokes equations of motion in x and y-directions are

u u
x
∂
∂

+ v u
y

∂
∂

 = FBx – 
21 p v u

x
∂

− + ∇
ρ ∂

...(i)

and
u v

x
∂
∂

+
v v

y
∂
∂

 = FBx – 21 p v v
y

∂
− + ∇

ρ ∂
...(ii)

Since the steady flow is in the x-direction and is fully developed the force,
u = f (y) and v = 0. On the liquid-air interface, the pressure is everywhere atmospheric

and since the depth of flow is constant throughout, therefore, p
x

∂
∂

 = 0.

Under these conditions, the Navier-Strokes equations are reduced to

4 
u
x

∂
∂

 = FBx – 
2

2
uv

y
∂

∂
...(iii)

0 = FBy – 1 p
y

∂
ρ ∂

...(iv)

u
x

∂
∂

 = 0  u = f(y)

x

θ
u

W sin θ

dx

y

W cos θ

W

h

Fig. 1.34: Schematic for Problem 1.28
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Consider a length dx and unit width of flow. The weight of the liquid contain
in small volume is

W = ρg dx.h
Body force in the x-direction = W sin θ = ρg dxh sin θ

Body force per unit mass of liquid in the text x-direction,

FBx =
sing dx h

dx h
ρ θ

ρ
 = g sin θ

Similarly the body force per unit mass of liquid in the y-direction,

FBy =
cosg dx h

dx h
ρ θ

ρ
 = g cos θ

Substituting the values of u
x

∂
∂

 = 0, and FBx = g sin θ in Eq. (iii), we get

0 = g sin θ + ν
2

2
d u
dy

 or ν
2

2
d u
dy

 = – g sin θ ∴ ν = 
µ
ρ

u
ρ

2

2
d u
dy

 = – g sin θ

or
2

2
d u
dy

 = – gρ
µ

 sin θ ...(v)

Substituting the value of FBY = g cos θ  in eq. (iv), we get

0 = g cos θ – 1
ρ

dp
dy

or
1 dp

dyρ
 = g cos θ

or dp
dy

 = ρg cos θ

If angle θ is small, cos θ ≈ 1 and we get

dp
dy

 = ρg

dp
dy

 = constant ...(vi)
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Equation (vi) indicates the hydrostatic variation of pressure in the y-direction.
On integrating Eq. (v), we get

du
dy

 = – gρ
µ

 sin θ  × y + A

Again integrating, we get

u =
g−ρ

µ
 sin θ  × 

2

2
y  + Ayy + B ...(vii)

where A and B are constants of integration and the values of A and B are to
be determined from the boundary conditions.

At y = h,
τyx = 0

du
dy

µ  = 0

or du
dy

 = 0

∴ 0 = –
singρ θ
µ

 y + A

or A =
sing hρ θ

µ

At y = 0, u = 0
we get from Eq (vii)

0 = 0 + 0 + B
Or B = 0
Substituting the values of A and B in Eq. (vii), we get

u =
2 sinsin

2
gy ghyρ ρ θ

θ +
µ µ

u = g sin θ
2μ

ρ  (2 hy – y2)

(i) The velocity distribution normal to the flow,

u = g sin θ
2μ

ρ  (2 hy – y2)

(ii) The shear stress at the plate boundary,

(τyz)y =0 =
0y

du
dy =

 
µ   

 = ( )
0

sin 2 2
2 y

g h y
=

 ρ θ
µ − µ 
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= ( )sin 2 0
2

g h ρ θ
µ − µ 

(τyz)y = 0 = ρgh sin θ

(iii) The average velocity of flow,

u  =
0

1 h

u dy
h ∫

= 2

0

1 sin (2 )
2µ

h g hy y dy
h

ρ θ
−∫

 =
2 3

0

1 sin 2
2 2 3

h
g hy y

h
 ρ θ

− 
µ   

=
3 3sin 2 0

2 2 3
g h h

h
 ρ θ

− − 
µ   

=
3

3sin
2 3
g hh

h
 ρ θ

− 
µ   

= 3sin 2
2 3
g h

h
ρ θ

×
µ

u  =
2 sinθ

3μ
g hρ

(iv) The discharge per unit width of plate
= Area of flow × average velocity
= h × 1 × u

= h × 
2 s i n
3

g hρ θ
µ

=
3

2sinθ m s
3μ

ghρ

=
ν

3
2sinθ m s

3
gh  ν = 

µ
ρ

(v) The free surface velocity of flows: U
 At y = h, U = (u)y = h

 =
sin

2
gρ θ

µ
 ( 2h2 – h2 )

=
2sin

2
g hρ θ×

µ
 = 

2ρ sinθ
2μ

g h
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 Problem 1.29: A thin film of lubricating oil ( µ  = 0.9 Pa.s, ρ = 1260 kg/m3) is

flowing uniformly down an inclined plane θ  = 30º. Calculate the free surface velocity
and the flow rate per unit width of the plate, if the depth is 5 mm.

Solution: Given Data
µ = 0.9 Pa.s = 0.9 Ns/m2

ρ = 1260 kg/m3

θ = 30º
Depth of flow : h = 5 mm = 0.005 m
Free surface velocity of flow is given by

U =
2 sin
2

g hρ θ
µ

=
( )21260 9.81 0.005 sin 30º

2 0.9
× × ×

×

= 0.0858 m/s = 85.8 mm/s

Flow rate per unit width =
3 sin
3

ghρ θ
µ

=
( )31260 9.81 0.005 sin 30º

3 0.9
× ×

×

= 2.86 × 10–4 m2/s

1.14 FLUIDIZATION

When liquid or gas is passed at low velocity through the horizontal bed of solid
particles in upward direction, the particles do not move, and the pressure drops. If the
fluid velocity is steadily increased, the pressure drop and drag on individual particles
increase, and the particles start to move and become suspended in the fluid. The terms
fluidization and fluidized bed are used to describe the condition of fully suspended
particles, since the suspension behaves as a dense fluid. If the bed is tilted, the top
surface remains horizontal and large objects will either float or sink in the bed
depending on their density relative to the suspension. The fluidized solids can be
drained from the bed through pipes and valves just as a liquid can, and this fluidity is
one of the main advantages of the use of the fluidization for handling solids.

1.14.1 Conditions for Fluidization

Consider a vertical tube filled with fine solid particles. The tube is open at the top and
has a porous plate at the bottom to support the bed of solid particles and to distribute
the flow uniformly over the entire cross section. Air is admitted below the distributor
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plate at a low flow rate and passes upward through the bed without causing any
particle motion. If the particles are quite small, flow in the channels between the
particles will be laminar and the pressure drop across the bed will be proportional to
the superficial velocity V0. As the velocity is gradually increased, the pressure drop
increases, but the particles do not move and the bed height remains the same. At a
certain velocity, the pressure drop across the bed counterbalances the force due
gravity on the particles or the weight of the bed, and any further increase in velocity
causes the particles to move. This is point A on the graph. Sometime the bed expands
slightly with grains still in contact since just a slight increase in porosity or void
fraction can offset an increase of serval percentage in Vo and keep ∆p constant. With
a further increase in velocity, the particles become separated enough to move about
in the bed, and true fluidization starts at point B.

Once the bed is fluidized, the pressure drop across the bed stays constant, but bed
height continues to increase with increasing flow. The bed can be operated at quite high
velocities with very little or no loss of solids, since the superficial velocity needed to
support a bed of particles in much less than the terminal velocity for individual particles.

Be
d 

he
ig

ht
 : 

h
Pr

es
su

re
 d

ro
p 

: ∆
p

Superficial velocity : V0

VOM

∆p

h C
Fixed bed Fluidized bed

A
B

Fig. 1.35: Pressure drop and bed height versus superficial velocity for a bed.

 If the flow rate to the fluidized bed is gradually reduced, the pressure drop
remains constant, and the bed height decreases, following the line BC which was
observed for increasing velocities. However, the final bed height may be greater than
the initial value for the fixed bed, since solids dumped in a tube tend to pack more
tightly than solids, slowly settling from a fluidized state. The pressure drop at low
velocity is then less than that in the original fixed bed. On the starting up again, the
pressure drop offsets the weight of the bed at point B, and this point, rather than point
B, should be fluidization velocity VoM. To determine VoM, the considered to give the
minimum bed should be fluidized vigorously and allowed to settle with the gas turned
off, and the flow rate increased gradually until the bed starts to expand. More
reproducible values of VoM can sometimes be obtained from the intersection the fixed
bed and the fluidized bed.

1.14.2 Types of Fluidization
The fluidization has the following two types as:

(i) Particulate fluidization.
(ii) Aggregative or bubbling fluidization
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(i) Particulate fluidization:
When fluidizing sand with water, the particles move farther apart and their
motion becomes more vigorous as the velocity is increased, but the average
bed density at a given velocity is the same in all sections of the bed. This
is called particulate fluidization and is characterized by a large but uniform
expansion of the bed of high velocities.

(ii) Aggregative or bubbling fluidization:
Beds of solids fluidized with air usually exhibit what is called aggregative or
bubbling fluidization. At superficial velocities greater than Vom, most of the
gas passes through bed as bubbles or voids which are almost free of solids,
and only a small fraction of the gas flows in the channels between the
particles. The particles move erratically and are supported by the fluid, but
in the space between bubbles, the void fraction is about the same as that at
incipient fluidization. The non-uniform nature of the bed was first attributed
to aggregation of the particles, and the term aggregation fluidization wall
applied, but there is no evidence that the particles stick together, and the term
bubbling fluidization is a better description of the phenomenon. The bubbles
that form, behave much as air bubbles in water or bubbles of vapour in
boiling liquid.

SUMMARY

1. The viscous flow is a smooth regular flow in layers. Such flow exists only
at low velocities.

2. Reynolds number: Re =
DVρ
µ  for flow through pipe

=
DV
ν

If Re < 2000, the flow through pipe is laminar.
and Re > 4000, the flow through pipe is turbulent.

3. Viscous flow though pipe:

(a) Shear stress: τ = 
2

p r
x

∂
−

∂
 shear stress distribution

τ = f (r)

(b) Velocity: u = –
1

4µ  
dp
dx  [R2 – r2] velocity distribution

u = f (r)

(c) Maximum Velocity: Umax = –
1

4µ  
dp
dx   R2

(d) Average velocity: u  =
1

8
−

µ
dp
dx  R2

Contd...
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Contd...

(e) Umax = 2u
(f) Hagen–Poiseuille equation,

Loss of pressure head: hf = 2
32 ul

gD
µ

ρ

also hf =
1 2p p

g
−
ρ

Average velocity: u  =
2

4

Q

Dπ  = 2
4Q
Dπ

∴ hf = 4
128Q l

gD
µ

πρ
4. Viscous flow between parallel plates.

Case I : One plate is fixed and the other is moving: Couette flow.

(a) Velocity: u = 21 ( )
2

y dpU yh y
h dx

− −
µ

u = f (y)
velocity distribution

(b) Average velocity: u  =
2
U

 – 
2

12
h

µ
 dp

dx

(c) Shear stress: τ  =
U
h

µ  – 1
2

 dp
dx

 [h – 2y]

τ  = f (y) shear stress distribution

(d) Loss of pressure head: hf = 2
6 l
gh
µ

ρ
[2 ]u U−

Case II : Both plates are fixed:

(a) Velocity: u =
1

2
−

µ  
dp
dx   [hy – y2]

u =  f(y)  velocity distribution

(b) Maximum velocity: Umax =
1

8
−

µ
dp
dx  h2

(c) Average velocity: u  =
1

12
−

µ  
dp
dx  h2

(d) Umax = 1.5u

(e) Shear stress: τ  = –
1
2

 
dp
dx [h – 2y]
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Contd...

τ  = f (y) shear stress distribution

(f) Maximum shear stress: maxτ  = –
1
2

 
dp
dx  h

(g) Loss of pressure head: hf = 2
12 ul

gh
µ

ρ

5. Momentum correction Factor: β

β = 
Momentum per second based on actual velocity

Momentum per second based on average velocity

 =
4
3  for laminar flow through pipe.

 = 1.01 to 1.04 for turbulent flow through pipe.
6. Kinetic energy correction factor: α

α = act

avg

/second
/second

KE
KE

 = 2 for laminar flow through pipe
 = 1.04 to 1.11 for turbulent flow through pipe.

7. Power absorbed in overcoming the viscous resistance in journal bearing is
given by

P =
3 3 2

3600
d N l

t
µπ

  watt

where d = diameter of shaft in m
N = Speed of shaft in rpm
l = length of bearing in m
t = thickness of oil film in m

µ = viscosity of oil in Ns/m2

8. Power absorbed in overcoming the viscous resistance in foot-step bearing
is given by

P =
3 2 4

1800
N R

t
µπ

watt

µ in N3/m2, N in rpm, R and t in m
9. Power absorbed in overcoming the viscous resistance in collar bearing is

given by

P =
2 2 4 4

2 1[ ]
1800

N R R
t

µπ −
 watt

µ = viscosity of oil in Ns/m2

N = speed of shaft in rpm
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Contd...

R1 = radius of shaft in m
R2 = radius of Collar in m
T  = thickness of oil film in m

10. Velocity of the piston in a dash-pot: V

V =
3

3
4

3  
Wb
lDπ µ m/s

where W = load exerted by the machine member in N
b = clearance between the piston

and cylinder in m
l = length of the piston in m

D = diameter of the piston  in m
µ = viscosity of oil in Ns/m2

11. Stokes law:
Drag force act on sphere: FD = 3πµ Vd.
where V = velocity of sphere in stationary fluid

µ = viscosity of fluid
d = diameter of sphere.

12. Measurement of viscosity: The devices used to determine the viscosity
of fluid is called viscometer or viscosimeter. Some of the common devices
for the measurement of viscosity may be classified as:

(i) Capillary tube viscometer:

Dynamic viscosity: µ =
4  

128 
g hd

lQ
π ρ

where ρ = density of  liquid
h = pressure head loss
d = diameter of tube
l = length of tube

Q = discharge flow through pipe
(ii) Rotating cylinder viscometer:

Dynamic viscosity: µ = 2 1
2 2
1 2 1 2 1

2 ( )
 [4  ( )]

h R R T
R Hh R R R R

−
πω + −

where h = clearance at the bottom of the cylinders
R1, R2 = radii of inner and out cylinder

ω = angular velocity of the outer cylinder
T = torque measured on the dial by means

of torsion spring.
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(iii) Falling sphere viscometer:

Dynamic viscosity: µ =
2

[ ]
18 s
gd

v
ρ − ρ

         where d = diameter of sphere
V = velocity of sphere

ρs  = density of sphere
ρ = density of liquid

(iv) Industrial viscometers:
(a) Saybolt viscometer:

Kinematic viscosity:ν  =
1950.22t

t
 −  

 stokes for t > 50 and < 100 SUS

=
1350.22t

t
 −  

 stokes for t > 100 SUS

where  the t is time noted in seconds, known as Saybolt Universal Seconds
(SUS) and dynamic viscosity: µ = νρ

where ρ = density of the liquid at the same temperature
(b) Redwood viscometer,

Kinematic viscosity: ν =
0.90.00246
t

 −  
stokes

for t > 40 and < 85 RWS

   = 
0.850.00246

t
 −  

stokes

for t > 85 and < 200 RWS
where t is time noted in seconds, known as Redwood Second (RWS) and
dynamic viscosity: µ = νρ
where ρ = density of the liquid at same temperature.

ASSIGNMENT - 1

1. What do you mean by viscous flow?
2. Differentiate between laminar and turbulent flow.
3. Describe Reynolds experiment to demonstrate the two types of flow.
4. What do you mean by critical velocity of a fluid through a circular pipe?
5. What is the relation between shear stress and the velocity gradient?
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6. Show for viscous flow through a circular pipe and the velocity distribution
across the section is parabolic. Show that the mean velocity is equal to one
half of the maximum velocity.

7. Prove that the loss of pressure head for the viscous flow through a circular
pipe is given by

hf = 2
32µ
ρ

ul
gD

where u  = average velocity of flow
µ = viscosity of flowing fluid
L = length of pipe
D = diameter of pipe and
ρ = density of fluid

(GGSIP University Delhi, 2006)
8. What is a Couette flow? (GGSIP University, Delhi, Dec. 2005)
9. Derive an expression for velocity distribution for laminar flow through  a

circular pipe. Show that the Darcy friction coefficient is equal to 16/Re where
Re is the Reynolds number. (GGSIP University, Delhi, Dec. 2008)

10. Prove that for a steady laminar flow between two fixed parallel plates, the
velocity distribution across a section is parabolic and the average velocity is
2/3rd of the maximum velocity.

11. Prove that the maximum velocity of flow between two fixed parallel plates
and for laminar flow, is equal to 1.5 times of the average velocity of flow.

(GGSIP University, Delhi, Dec. 2005)
12. What do you mean by momentum correction factor and kinetic energy

correction factor?
13. Show that the momentum correction factor is 4/3 for viscous flow through

a pipe.
14. Show that the kinetic energy correction factor is 2 for viscous flow through

a pipe.
15. What are the various types of bearings?
16. Prove that power absorbed in overcoming viscous resistance in foot-step

bearing is given by

P  =
3 2 4

1800
N R

t
µπ

 watt

where µ = viscosity of liquid in Ns/m2

N  = speed of shaft in rpm
R  = radius of shaft in m
t  = clearance between shaft and

foot-step bearing in m
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17. Prove that power absorbed in overcoming viscous resistance in collar bearing
is given by

P =
3 2

1800
N

t
µπ

[R4
2 – R4

1] watt

where N = speed of shaft in rpm
R1 = radius of shaft in m
R2 = radius of collar in m

t = thickness of oil film in m
18. Show that the velocity of the piston in a dash pot is given by

V =
3

3
4

3
Wb
lDπ µ

 with the usual notations

19. What are the different methods of determining the co-efficient of viscosity of
a liquid? Describe with neat sketch any one method in detail.

20. What are the differents methods of measurement of viscosity of a liquid?
Describe any one method in detail.

21. Describe the rotating cylinder method of determining the coefficient of
viscosity of a liquid. (GGSIP University, Delhi, Dec. 2005)

22. Derive an expression for Navier-Stokes equations of motion of a viscous
incompressible fluid in cartesian co-ordinates.

23. The Navier-Stokes equations for incompressible flow in vector notation is
given by

DV
Dt

ρ


 = BF


– grad p + 2Vµ∇


Where V
  = velocity vector

BF
  = body force vector, and

2∇  = laplace operator
Derive the above equations in cartesian co-ordinates

24. What do mean by fluidization?

ASSIGNMENT - 2

1. An oil of viscosity 4.5 poise flows in a 40 mm diameter pipe, discharge rate
being 5 litre/s. If the specific gravity of oil is 0.85, state whether flow is
laminar or turbulent. Ans. Laminar

2. An oil of specific weight 8910 N/m3 and kinematic viscosity of 1.5 stoke is
pumped through a 160 mm diameter and 250 mm long pipe at the rate of
210 kN/h. Show that the flow is viscous and find the power required.

Ans. The flow is viscous, 90.77 W
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3. A crude oil of viscosity 0.97  poise and specific gravity 0.9 is flowing through
a horizontal circular pipe of diameter 100 mm and length 10 m. Find the
difference of pressure at the two ends of the pipe, if 100 kg of the oil is
collected in a tank in 30 seconds. Ans. 1.462 kPa

4. A fluid of viscosity 7 poise and specific gravity 1.3 is flowing through a
circular pipe of diameter 100 mm. The maximum shear stress at the pipe wall
is given as 196.2 N/m2, find (i) the pressure gradient (ii) the average velocity
and (iii) Reynolds number of flow.

Ans. (i) – 7848 N/m2 per m (ii) 3.5 m/s (iii) 650
5. A laminar flow is taking place in a pipe of diameter of 200 mm. The maximum

velocity is 1.5 m/s. Find the mean velocity and the radius at which this
occurs. Find also the velocity at 40 mm from the wall of the pipe.

Ans. 0.75 m/s, r = 70. 71 mm, 0.96 m/s
6. An oil of viscosity 20 poise flows between two horizontal fixed parallel plates

which are kept at a distance 100 mm apart. The maximum velocity of flow
is 2 m/s. Find

(i) the pressure gradient,
(ii) the shear stress at the two horizontal parallel plates, and

(iii) the discharge per unit width for laminar flow of oil.
Ans. (i) – 3200 N/m3 (ii) 160 N/m2 (iii) 0.1333 m3/s

7. A shaft of diameter of 50 mm rotates in a journal bearing having a diameter
of 50.15 mm and length 100 mm. The angular space between the shaft and
the bearing is filled with oil having viscosity of 0.9 poise. Find the power
absorbed in the bearing when the speed of the shaft is 60 rpm.

Ans. 46.43 W
8. A shaft 100 mm diameter runs in a bearing of length 200 mm with a radial

clearance of 0.025 mm at 30 rpm. Find the viscosity of oil, if the power
required to overcome the viscous resistance is 184 W. Ans. 29.71 poise

9. Find the power required to rotate a circular disc of diameter 200 mm at
250 rpm. The circular disc has a clearance of 0.5 mm from the bottom flat
plate and clearance contains oil of viscosity 1.5 poise. Ans. 32.249 W

10. The external and internal diameter of a collar bearing are 200 mm and 150 mm
respectively. Between the collar surface and bearing, an oil film of thickness
0.25 mm and of viscosity 1 poise is maintained. Find the torque and power
lost in overcoming the viscous resistance of oil when shaft is running at
500 rpm. Ans. 2.246 Nm, 117.54 W

11. The specific gravity of an oil of 0.9 is flowing through capillary tube of
diameter 50 mm. The difference of pressure head between two points
2.5 m apart is 0.6 m of oil. The mass of oil collected in a measuring tank is
70 kg in 100 seconds. Find the viscosity of oil. Ans. 4.177 poise
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12. A capillary tube of diameter 20 mm and length 1.5 m is used for measuring
viscosity of a liquid. The difference of pressure between the two ends of the
tube is 50 kPa and viscosity of liquid is 0.2 poise. Find the rate of flow of
liquid through the tube. Ans. 6.54 litre/s

13. A sphere of diameter 2 mm falls 200 mm in 20 seconds in a viscous liquid.
The density of the sphere is 800 kg/m3 and a liquid is 850 kg/m3. Find the
viscosity of the liquid. Ans. 15.58 poise

14. A sphere of diameter 1 mm falls  through 335 mm in 100 seconds in a viscous
fluid. If the relative densities of the sphere and the liquid are 7 and 0.96
respectively, find the dynamic viscosity of the liquid. Ans. 9.82 poise
Hint: d = 1 mm = 0.001 m

l = 335 mm = 0.335
t = 100 s

V =
l
t  = 

335
100  = 0.00335 m/s

Relative density of sphere = 7
∴ Density of sphere: ρs = 7 × 1000 kg/m3 = 7000 kg/m3

Relative density of liquid  = 0.96
∴ Density of liquid: ρ = 0.96 × 1000 kg/m3 = 960 kg/m3

∴ µ =
28

18
d
V [ρs – ρ] = 

28 (0.001) [7000 960]
18 0.00335

×
−

×
= 0.9826 Ns/m2 = 9.82 poise

15. Find the viscosity of a liquid for the following given data:
Diameters of inner and outer cylinder are 200 mm and 205 mm respectively
Height of liquid in the cylinder = 300 mm
Clearance at the bottom of two cylinders = 5 mm
Speed of  outer cylinder = 400 rpm
Reading of the torsion meter = 4.5 Nm Ans. 1.474 poise





Turbulent Flow

2.1 INTRODUCTION
In the previous chapter with the help of Reynolds experiment, we explained the types
of flow i.e., laminar or turbulent. In practical application most fluid flows are turbulent
in nature. This term (turbulent) denotes a motion in which an irregular fluctuation
(mixing, or eddying motion) is superimposed on the main stream. This chapter deals
with the fundamental concepts of turbulence, various theories of turbulence and the
derivation of equation for velocity distribution and frictional resistance in turbulent
flow through pipes.

2.2 TYPES OF VELOCITIES IN A TURBULENT FLOW
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Fig. 2.1: Variation of velocity with time in turbulent flow.

2

© The Author(s) 2023
S. Kumar, Fluid Mechanics (Vol. 2),
https://doi.org/10.1007/978-3-030-99754-0_2

83

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99754-0_2&domain=pdf


Fluid Mechanics84

Turbulent flow is three-dimensional flow. The velocity at any point in a turbulent
flow fluctuates both in magnitude and direction in all the three axes. H.L. Dryden first
measured the velocity fluctuating using a hot wire anemometer. Figure 2.1 shows the
u-component of instantaneous velocity varying with the t. Similar variation can be
shown for v and w components.

In turbulent flows, three types of velocities involved are:
(i) Instantaneous velocity

(ii) Fluctuation velocity
(iii) Average velocity.

(i) Instantaneous Velocity: The velocity of turbulent flow at any instant known
as instantaneous velocity. It is denoted by u, v and w along x, y and z-axes
respectively.

(ii) Fluctuation Velocity: The variation of the velocity in turbulent flow with
respect to average velocity is called fluctuation velocity. It is denoted by u′,
v′ and w′ along x, y and z-axes respectively.

(iii) Average Velocity: The velocity noted at a point over a certain period of time
and there after time averaged, is called as average velocity. It is denoted
by ,u v  and w  along x, y and z-axes respectively. Average velocity is also
known as temporal velocity. By definition, the average velocity at any
quantity, a = f(x, y, z, t) may be denoted by a  and expressed as:

a  =
0

1 T

a d t
T ∫

Average velocity components may be expressed as

u  =
0

1 T

u dt
T ∫

v  =
0

1 T

v dt
T ∫

and w  =
0

1 T

wdt
T ∫

and by the definition of u′, the average of u′ is

u′  =
0

1 T

u dt
T

′∫  
0

1
( )

T

u u dt
T

= −∫  u u u′ = −

=
0 0 0

1 1 1( )
T T T

u u dt u dt u dt
T T T

− = −∫ ∫ ∫

= u u−  
0

1 T

u dt u
T

=∫
= 0

Similarly, v′  = 0w′ =
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where T is the period of sampling which must be sufficiently large to include
an adequate number of fluctuations.

2.2.1 Relation between Various Velocities
The relationship between the instantaneous velocity, fluctuation velocity and time
average velocity is shown in Fig. 9.1.

Time average velocity along x-axis : u = u ± u′
Similarly along y-axis: v = v ± v′
and along z-axis: w = w ± w′
RMS (root-mean square) value of turbulent fluctuation of velocity:

´u
22

0

1 ´ ´
T

u dt u
T

= =∫
where ´u  is RMS value on x-axis.
Similarly v́  is RMS value of turbulent fluctuation of velocity in y-axis:

v́
22

0

1 ´ ´
T

v dt v
T

= =∫
and ẃ  is RMS value of turbulent fluctuation of velocity:

ẃ
22

0

1 ´ ´
T

w dt w
T

= =∫

2.2.2 Degree or Level of Turbulence
It is the square root of the arithmetic mean of the mean squares values of velocities
in x, y and z axes. It is denoted by D.

Degree or level of turbulence:

D ( )2 2 21 ´ ´ ´
3

u v w= + +

2.2.3 Intensity of Turbulence
It is the ratio of the degree of turbulence (D) and the free-stream velocity (U). It is
denoted by I.

Mathematically,
Intensity of turbulence:

I
Degree of turbulence :
Free - stream velocity :

D
U

=

( )2 2 21 1 ´ ´ ´
3

u v w
U

= + +

An isotropic flow is a turbulent flow for which the average fluctuation velocity
is same in all three coordinate directions.

i.e.,  2
´u

2 2
´ ´v w= =
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In this case the longitudinal velocity u´ alone can be used for the turbulence
intensity; thus

I
2

´u
U

=

The drag measurement at spheres in different wind tunnels show great dependence
of the critical flow Reynolds number (Rec) or turbulence intensity (I); Rec increases
greatly with decreasing I. The turbulence intensity in older wind tunnels was about 0.01.

u u

t t
( ) Low degree turbulencea ( ) High degree turbulenceb

Fig. 9.2: Turbulence

2.3 CLASSIFICATION OF TURBULENCE
Turbulence may be generated in various ways other than just flowing through a pipe.
In general, it can result either from contact of the flowing fluid with solid boundaries
or from contact between two layers of fluid flow moving at different velocities.

There are two types of turbulence (i) Wall turbulence, (ii) Free turbulence.
(i) Wall Turbulence: The turbulence generated by the viscous effect of the

flowing fluid due to the presence of a solid boundary is called wall turbulence.
For example: flow through pipes, flow through open channels and flow over
solid bodies.

(ii) Free Turbulence: If turbulence is generated, in the absence of a solid
boundary, by contact between two layers of fluid flow at different velocities,
it is called free turbulence. For example: turbulence in jet mixing region.

2.4 SHEAR STRESS IN TURBULENT FLOW
The mechanism of turbulence is very complex because of three-dimensional velocity
fluctuation occurring rapidly, mixing of fluid particles causing creation of eddies and
transfer of momentum. The following numbers of semi-empirical theories and formulae
were developed to find the shear stress in turbulent flow as:

(i) Reynolds theory.
(ii) Boussinesq eddy-viscous theory.

(iii) Prandtl’s mixing length theory, and
(iv) Von-Karman’s theory.
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2.4.1 Reynolds Theory
Osborne Reynolds in 1894 developed an expression for turbulent shear stress between two
layers of a fluid due to the transverse momentum exchange in turbulent mixing process.

Consider an arbitrary plane AB between two layers of fluid, separated by a
distance dy (or l) as shown in Fig. 2.3. At the point of intersection of the plane AB
with velocity profile.

dy = l u

u du + 

A B

du u= ′

Velocity profile

dA

v′

mass : m

u

y

O

Fig. 2.3: Transverse momentum exchange in turbulence.

Let
du
dy  = velocity gradient,

m = mass of small fluid element,
dA = area of the small fluid element,
v′ = fluctuating component of velocity in the direction of y

due to turbulence.
Mass per second moving across AB = ρdAv′

Turbulent shear force = rate of change of momentum.
= mass per second × change in velocity
= ρdAv′du

where du = u′, the longitudinal turbulent fluctuation.
∴ Turbulent shear force = ρdAv′(–u′)
where –ve sign shows v´ increases then u′ decreases.

= –ρdAv′u′

Turbulent shear stress: τt =
Turbulent shear force

Area

=
dAv u v u
dA

−ρ ′ ′
= −ρ ′ ′ …(2.4.1)

As u′ and v′ are varying and hence τt will also vary. Hence to find turbulent shear
stress, the time average on both sides of the Eq. (2.4.1) is taken

∴ tτ  = v u−ρ ′ ′ …(2.4.2)
The turbulent shear stress in Eq. (2.4.2) is known as ‘apparent’ or Reynolds

stress.
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2.4.2 Boussinesq Eddy-viscous Theory
According to Boussinesq (1877), in a turbulent flow, apart from the viscous shear
stress, there is shear stress due to eddies formation. Time average shear stress in
turbulent flow is

tτ  =
du
dy

η

where η (eta) = eddy viscosity

tτ  = time average shear stress due to turbulence

u  = average velocity at a distance y from boundary.
The ratio of η (eddy viscosity) and ρ (mass density) is called kinematic eddy

viscosity (ε).

i.e., ε (epsilon) =
η
ρ

If the shear stress due to viscous flow is also considered, then the total shear
stress becomes:

τ  = v tτ + τ

=
du du
dy dy

µ + η  = ( ) du
dy

µ + η

Actually η varies widely in magnitude, not only with general direction of flow
but also from point to point in a given flow. While µ represents a fluid property
independent of the type of flow, η depends upon the fluid density as well as upon the
intensity of turbulent fluctuations.

In laminar flow there being no transverse fluctuation, η = 0. For other cases the
value of η may be several thousand times the value of µ.

Dynamic viscosity: µ = kinematic viscosity (ν) × mass density (ρ)
i.e., µ = νρ
and Eddy viscosity: η = kinematic eddy viscosity (ε) × mass density (ρ).
i.e., η = ερ
SI units of µ and η is Ns/m2 and ν and ε is m2/s.
Kinematic eddy viscosity (ε) may be treated as a measure of the transporting

capacity of the turbulent mixing process.

2.4.3 Prandtl’s Mixing Length Theory
Recalling Reynolds shear stress in turbulent flow,

tτ  = ´ ´v u−ρ …(2.4.3)

tτ  can only be calculated if the value of u´v´ is known. But it is very difficult to

measure .u v  To overcome this problem, Prandtl in 1926, presented mixing length hypothesis
which can be used to express turbulent shear stress in terms of measurable quantities.
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According to Prandtl, mixing length (l) is defined as the average distance
between two layers in the transverse direction such that small mass of fluid particles
from one layer could reach the other layer in such a way that the momentum of the
particles in the direction of x is same. He also assumed that the velocity fluctuation
in the x-direction u´ is related to mixing length l as (see Fig. 2.3)

u′ =
dul
dy

and v´ the fluctuation component of velocity in y-direction is of the same order
of magnitude as u´ and hence

v′ = ´dul u
dy

=

´u  = ´dul v
dy

=

∴ ´ ´u v  =
2

2du du dul l l
dy dy dy

 
× =   

Substituting the value of ´ ´u v  in Eq. (2.4.3), we get, the expression for shear
stress in turbulent flow due to Prandtl as:

tτ  =
2

2 du
l

dy
 

ρ   
Thus, the total shear stress at any point in turbulent flow is sum of shear stress

due to viscous shear and turbulent shear and can be written as:

τ = v tτ + τ

τ =
2

2du du
l

dy dy
 

µ + ρ   
But the viscous shear stress is negligible except near the boundary. Prandtl’s

mixing length (l) is influenced by Reynolds number and transverse distance from
boundary (y). The simplest relation between l and y is given by:

l = ky
where k is a proportionality constant which must be determined from experiments.

In region close to the boundary the value of k = 0.4.

2.4.4 Von-Karman’s Theory
Von-Karman (1936) developed a mathematical expression for mixing length (l) of
Prandtl, in terms of the derivatives of the time average velocity, Von-Karman found
that:

l 2 2

/
/

du dy
d u dy

= κ
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So that turbulent shear stress:

tτ  =
( )

( )

2 22
2 2

22 2

/

/

du dydu du
l

dy dyd u dy

   
ρ = ρκ ×      

tτ  =
( )

( )

22

22 2

/

/

du dy

d u dy

ρκ

where κ (kappa) is a universal constant known as Karman’s mixing length
constant (determined from experiments) and is independent of the boundary geometry,
roughness and Reynolds number.

2.5 VELOCITY DISTRIBUTION LAW IN TURBULENT FLOW
The flow decelerates near a solid boundary due to viscous effect by the formation of
boundary layer. The velocity of fluid particles decreases towards the solid boundary
due to the action of viscous shear and becomes equal to zero at the solid boundary.

δ

Velocity
Distribution

Laminar flow
(  >> µ η)

Turbulent flow
(  >> µη )

Zone II : Turbulent
 > , Reynolds stresses 

are dominant, viscous 
stresses are
negligible

y δ

Zone I : Laminar
 > , Viscous stresses 

are dominant, Reynolds
stress are negligible

δ y

y

x

Fig. 2.4: Comparative role of Reynolds stresses and viscous stresses in affecting flow
phenomena near a smooth boundary.

According to Nikurades and Karman, turbulent flow over a solid boundary may
be divided into three zones. The first zone consist of a thin layer near a solid boundary
in which the viscous shear stress predominates while the Reynolds stress is negligible.
This zone is the region of laminar sub-layer. The second zone immediately above the
laminar sub-layer is called the ‘buffer-zone’ in which the viscous shear stress is equal
to the Reynolds stresses. In buffer zone, the flow changes from laminar to turbulent
flow. The third zone above the buffer zone in which the Reynolds stresses are
predominant while the viscous shear stress is negligible. This zone lies between
turbulent boundary layer and buffer zone. This zone is called the turbulent zone.

For convenience, the flow is usually divided into two zones. The first zone near
the solid boundary accommodating the laminar sub-layer is called the zone of laminar
layer. In this layer, the viscous shear stresses are predominant over the Raynolds stress
i.e., dynamic viscosity is greater than eddy viscosity i.e., µ >> η.

The second zone represents the remaining portion up to turbulent boundary
layer, is called turbulent layer. In this layer, the Reynolds stresses are predominant over
viscous shear stress i.e., the eddy viscosity: η >> µ, dynamic viscosity. These two
zones are shown in Fig. 2.4.
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2.5.1 Velocity Distribution in Laminar Region: Zone-I
The shear stress very close to the boundary may be taken as equal to the surface shear
stress (τ at y = 0).

According to Newton’s law viscosity,

0τ  =
du
dy

µ

0τ  =
u
y

µ 
du u
dy y

=  in laminar region

Dividing by ρ on both sides, we get

0τ
ρ

 = u
y

µ
ρ

Here 0τ
ρ

 has the dimension 
1 2 2

3 2

ML T L L
TML T

− −

− = =

This is dimension of velocity and is generally known as shear velocity u*.

i.e. 0τ
ρ  = u*

or 0τ
ρ  = 2

*u

Substituting 0 2
*u

τ
=

ρ
 in above equation, we get.

2
*u  =

u
y

µ
ρ

2
*u  =

u
y

ν 
µ

= ν
ρ  : kinematic viscosity

or *u y
ν

 =
*

u
u

or
*

u
u

 = *u y
ν

…(2.5.1)

Above Eq. (2.5.1) shows a linear variation between u and y in the laminar flow.

2.5.2 Velocity Distribution in the Turbulent Region: Zone-II
According to Prandtl’s mixing length theory, the time-average turbulent shear

stress:

τ  =
2

2 du
l

dy
 

ρ    …(2.5.2)

and Prandtl also assumed that mixing length l is linear variation to distance from the
boundary of the flow y.
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i.e., l ∝ y
l = ky

where k is the Karman’s constant to be determined from experiments.
Substituting the value of l in Eq. (2.5.2), we get,

τ =
2

2 2 du
k y

dy
 

ρ   

Thus, turbulent shear stress near the boundary.

τ0 =
2

2 2 du
k y

dy
 

ρ   

0
2 2

1
k y

τ
ρ

 =
2du

dy
 
  

or
du
dy

  = 01
ky

τ
ρ

du
dy

 = *
1 u
ky

 0τ
ρ

 = u*, shear velocity

du  = *u dy
k y

On integration above equation, we get

u  = * loge
u

y c
k

+ …(2.5.3)

where c is the constant of integration and determined from the boundary
condition.

At distance y´ from the solid boundary, u = 0.

0 = * log ´e
u

y c
k

+

or c = * log ´e
u

y
k

−

Substituting the value of c in Eq. (2.5.3), we get

u = * *log log ´e e
u u

y y
k k

−

u = * log log ´e e
u

y y
k

 − 

*

u
u

 =
1 log

´e
y

k y
 
  

Nikuradse’s experiments have revealed that, k = 0.4 for regions very close to the
boundary.
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*

u
u  =

1 log
0.4 ´e

y
y

 
  

*

u
u  = 2.5 log

´e
y
y

 
  

…(2.5.4)

Case-I: For smooth pipes: Nikuradse’s experiments on smooth pipes yielded a
value of

y´ =
*

0.111
u

ν

where ν = kinematic viscosity of fluid.
substituting the value of y´ in Eq. (2.5.4), we get

*

u
u

 =
*

2.5 log
0.111 /e

y
u

 
 ν 

= *2.5 log
0.111e

yu 
 ν 

= *2.5 log 2.5log (0.111)e e
yu 

− ν 

= *2.5 log – 2.5 ( 2.198)e
yu 

− ν 

= *2.5 log 5.50e
yu 

+ ν 

= *
102.5 2.3log 5.50

yu 
× + ν 

∴
*

u
u

 =
 
  105.75log + 5.50*yu

ν …(2.5.5)

The above Eq. (2.5.5) is known as the Karman-Prandtl equation for turbulent
flow near smooth boundaries.

Case-II: For rough pipes.
In this case, the roughness projections are larger than the thickness of laminar

sub-layer i.e., k > δ´.

Nikuradse’s experiments on rough pipes yielded as value of ´
30
ky =

Substituting the value of y´ in Eq. (2.5.4), we get

*

u
u  =

302.5log 2.5log
/ 30e e
y y

k k
×   =      

= 2.5log 2.5log 30e e
y
k

  +  



Fluid Mechanics94

= 102.5 2.3log 2.5 3.4y
k

 × + ×  

*

u
u

 = 105.75log 8.5y
k

  +  
…(2.5.6)

The above Eq. (2.5.6) is known as the Karman-Prandtl equation for turbulent
flow near rough boundaries.

2.5.3 Relation between umax and u
Recalling equation (2.5.3),

u = * loge
u

y C
k

+ …(2.5.7)

y

x

R

Fig. 2.5: Flow through pipe

The velocity of fluid particles maximum at the centre of pipe,
at y = R, u = umax

∴ umax = * loge
u

R C
k

+

or c = *
max loge

u
u R

k
−

Substituting the value of c in Eq. (2.5.7), we get

u = * *
maxlog loge e

u u
y u R

k k
+ −

u = *
max log loge e

u
u y R

k
 + − 

Karman constant: k = 0.4

∴ u = *
max log

0.4 e
u yu

R
 +   

u = max *2.5 loge
yu u
R

 +   
…(2.5.8)

The above Eq. (2.5.8) is known as Prandtl’s universal velocity distribution
equation for turbulent flow in pipes. This equation is applicable to smooth as well as
rough pipe boundaries.
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Eq. (8) is also written as:

maxu u−  = * *2.5 log 2.5 loge e
y Ru u
R y

  − =      
Dividing by u* on both sides, we get

max

*

u u
u

−
 = 102.5log 2.5 2.3loge

R R
y y

   
= ×      

max

*

u u
u

−  = 105.75log R
y

 
   …(2.5.9)

Eq. (2.5.9) the difference between the maximum velocity (umax) and local
velocity (u) at any point i.e., (umax–u) is known as velocity defect.

2.6 HYDRODYNAMICALLY SMOOTH AND ROUGH BOUNDARIES
For laminar flow, all rough pipes irrespective of their roughness size and pattern offer
the same resistance as that offered by a smooth pipe under similar condition of flow.
As a matter of fact, there is no surface which may be regarded as perfectly smooth.

Let k be the average height of the irregularities projecting from the surface of
a boundary as shown in Fig. 2.6.

( ) Hydrodynamically smooth surface ( ., k < )a i.e δ′

( ) Hydrodynamically rough surface b ( ., k > )i.e δ′

Laminar
sub-layer

k

δ′

k
Laminar
sub-layerδ′

Fig. 2.6: Smooth and rough boundaries and δ′ is the thickness of laminar sub-layer.

2.6.1 Hydrodynamically Smooth Boundary
If the irregularities of any actual surface are such that the surface projections are
completely covered by the laminar sub-layer i.e., the average height k of the irregularities
projecting from the surface of a boundary is much less than δ′, the thickness of
laminar sub-layer as shown in Fig. 2.6(a). This type of boundary is called
hydrodynamically smooth boundary. This is because, outside the laminar sub-layer,
the flow is turbulent and eddies of various size present in turbulent flow try to
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penetrate the laminar sub-layer and reach the surface of the boundary. But due to great
thickness of laminar sub-layer the eddies are unable to reach in the irregularities of the
surface and hence the boundary behaves as a smooth boundary.

2.6.2 Hydrodynamically Rough Boundary
If the irregularities of the surface are above the laminar sub-layer and eddies present
in turbulent zone will come in contact with the irregularities of the surface and lot of
energy will be lost. Such a boundary is called hydrodynamically rough boundary as
shown in Fig. 2.6(b). The thickness of laminar sub-layer depends upon Reynolds
number, if the Reynolds number of the flow is increased then the thickness of laminar
sub-layer will decrease. In case of hydrodynamically rough boundary, the average
height k of the irregularities projecting from the surface of a boundary is much greater
than δ′, the thickness of laminar sub-layer.

From Nikuradse’s experiment:

(a) if
k
δ′

 < 0.25, the boundary is called smooth boundary

(b) if
k
δ′

 > 6.0, the boundary is called rough boundary

(c) if 0.25 <
k
δ′

 < 6.0, the boundary is called transition.

In terms of roughness Reynolds number: *u k
v

(a) if *u k
v

 < 4, the boundary is considered smooth

(b) if *u k
v

 > 100, the boundary is considered rough

(c) if 4 < *u k
v

 < 100, the boundary is in transition stage.

2.7 VELOCITY DISTRIBUTION IN TERMS OF MEAN VELOCITY
Considering a circular ring of radius r and width dr in the cross-section of circular
pipe of radius R as shown in Fig. 2.7.

y

x

R
y

r

dr
R

r

Direction 
of flow

Fig. 2.7: Average velocity for turbulent flow.
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Let u is velocity of fluid at radius r and area of small circular ring: dA = 2πrdr
Discharge through small circular ring:

dQ = dA.u = 2πrdru
Net discharge through pipe:

dQ∫  =
0

2
R

rudrπ∫

Q =
0

2
R

ru drπ∫ …(2.7.1)

Case-I: For smooth pipe: Considering the pipe boundary to be smooth and using
the corresponding velocity distribution Eq. (2.5.5), we get

*

u
u

 = *
105.75log 5.50

u y
v

 
+  

…(2.7.2)

Here y = R – r

∴
*

u
u

 = *
10

( )
5.75log 5.50

u R r
v

−
+

or u = *
* 10

( )
5.75log 5.50

u R r
u

v
− 

+ 
 

Substituting the value of u in above Eq. (2.7.1), we get

Q = *
* 10

0

( )
2 5.75log 5.50

R u R r
ru dr

v
− 

π + 
 

∫
Integrating by parts, we get

Q = *2
* 10(5.75log 1.75

u R
R u

v
π +

The mean velocity is given by

u  =
2 *

* 10

2 2

(5.75log 1.75
u R

R uQ v
R R

π +
=

π π

*

u
u

 = *
105.75log 1.75

u R
v

+ …(2.7.3)

Subtracting Eq. (2.7.3) from Eq. (2.7.2), we get,

*

u u
u
−  = 105.75log 3.75y

R
+

Case-II: For rough pipe:
Considering the pipe boundary to be rough and using the corresponding velocity

distribution Eq. (2.5.6), we get

*

u
u

 = 105.75log 8.5y
k

  +  
…(2.7.4)

Here y = R – r



Fluid Mechanics98

∴
*

u
u

 = 105.75log 8.5R r
k
−  +  

or u = * 10
( )5.75log 8.5R ru

k
− +  

Substituting the value of u in Eq. (9.7.1), we get

Q = * 10
0

( )2 5.75log 8.5
R R rru dr

k
− π +  ∫

Integrating by parts, we get

Q = 2
* 10(5.75log 4.75)

RR u
k

π +

The mean velocity is given by

u  =

2
* 10

2 2

(5.75log 4.75RR uQ k
R R

π +
=

π π

u  = * 10(5.75log 4.75)Ru
k

+ …(2.7.5)

Subtracting Eq. (2.7.5) from Eq. (2.7.4), we get

*

u u
u
−

 = 105.75log 3.75y
R

+ …(2.7.6)

Thus when expressed in terms of mean velocity, Karman-Prandtl velocity
distribution equation for both smooth and rough boundaries becomes same.

2.8 POWER LAW FOR VELOCITY DISTRIBUTION IN
SMOOTH PIPES

The velocity distribution formulae developed in the previous articles are logarithmic in
nature. These formulae are not so convenient to use as compare to exponential ones.
Nikuradse carried out experiments for wide range of Reynolds number 4 × 103 ≤ Re
< 2 × 106. The dimensionless velocity distribution law in smooth pipes, based on his
work may be represented by an empirical equation in exponent form as:

max

u
u

 =
ny

R
 
   …(2.8.1)

where exponent n is dependent on the Reynolds number Re. The value of
exponent n decreases with increasing Reynolds number Re.

For Reynolds number:

Re = 4 × 103, n = 
1
6

Re = 1.1 × 105, n = 
1
7
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Re ≥ 2 × 106, n = 
1

10

If n = 
1
7 , the velocity distribution law becomes as

max

u
u

 =
1/ 7y

R
 
    for Re ≤ 105 …(2.8.2)

Equation (2.8.2) is known as one-seventh power law of velocity distribution
for smooth pipes. This equation is also known as the Blasius one-seventh power
velocity distribution law.

2.9 DETERMINATION OF COEFFICIENT OF FRICTION f
(a) For laminar flow:

Coefficient of friction: f = 
16
Re …(2.9.1)

Equation (2.9.1) is valid for laminar flow, Re < 2000.
(b) For turbulent flow through smooth pipes.

(i) Coefficient of friction: f 1/ 4

0.0791
Re

=

where 4000 ≤ Re < 105.

(ii) ( )10
1 2.03log Re 4 0.9
4

f
f

= −

This equation is valid up to Re = 4 × 106

(iii) Nikuradse’s experimental result for coefficient of friction f

( )10
1 2 log Re 4 0.8
4

f
f

= − …(2.9.2)

This equation is valid up to Re = 4 × 107.
But the Eq. (2.9.2) is solved by hit and trial method. The value of coefficient of

friction can alternately be obtained as:

f 0.237

0.05525
0.0008

(Re)
= + …(2.9.3)

(c) For turbulent flow through rough pipes:
Niuradse’s experiment result gave the following relation for coefficient of
friction f:

1
4 f 10

R2log 1.74
k

 = + 
 

…(2.9.4)

(d) For turbulent flow through commercial pipes:
(i) Smooth pipes:

             
10

Re 41 2log 0.8
/4

f
R kf

 
= −  

 
…(2.9.5)
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(ii) Rough pipes:

             
10

1 R2 log 1.74
4 kf

 = + 
 

…(2.9.6)

Problem 2.1: A pipeline carrying water has surface irregularities of average height
0.10 mm. If the shear stress developed is 7.85 N/m2. Determine whether the pipe
surface acts as smooth, rough, or in transition. The kinematic viscosity of water is
0.95 × 10–2 stokes.

Solution: Given data:
Average height of irregularities:

k = 0.10 mm = 0.10 × 10–3 m.
 Shear stress developed: τ0 = 7.85 N/m2

Kinematic viscosity: v = 0.95 × 10–2 stokes
= 0.95 × 10–2 × 10–4 m2/s = 0.95 × 10–6 m2/s

We know that the shear velocity:

u* = 0 7.95 0.089 m/s
1000

τ
= =

ρ

Roughness Reynolds number = *u k
v

 = 
-3

6

0.089×0.10×10 9.36
0.95 10− =

×

Since the roughness Reynolds number *u k
ν

 lies between 4 and 100 and hence,
the pipe surface acts in transition.

Problem 2.2: A rough pipe is of diameter 100 mm. The velocity at a point 40 mm
from wall is 35% more than the velocity at a point 10 mm from pipe wall. Find the
average height of the roughness.

Solution: Given data:
Diameter of rough pipe:

D = 100 mm = 0.1 m
Let velocity of flow at 10 mm from pipe wall = u
Then, the velocity of flow at 40 mm from pipe wall = u + 0.35u = 1.35 u
We know that the velocity distribution for rough pipe from equation (9.5.6) is

*

u
u

 = 105.75log 8.5y
k

  +  

where k = average height of the roughness.
at y = 10 mm,

*

u
u

 = 10
105.75log 8.5
k

  +   …(i)

at y = 40 mm,
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*

1.354
u

 = 10
405.75log 8.5
k

  +  
…(ii)

Dividing Eq. (i) by (ii), we get

1
1.35  =

10

10

105.75log 8.5

405.75log 8.5

k

k

  +  
  +  

10
405.75log 8.5
k

  + 
 

 = 10
101.35 5.75log 1.35 8.5
k

 × + ×  

10
405.75log 8.5
k

  + 
 

 = 10
407.76log 11.47
k

  +  

5.75 log10 40 – 5.75 log10 k + 8.5 = 7.76 log10 40 – 7.76 log10 k + 11.47
9.21 – 5.75 log10 k + 8.5 = 12.43 – 7.76 log10 k + 11.47

17.71 – 5.75 log10 k  = 23.9 – 7.76 log10 k
or 7.76 log10 k = 23.9 – 17.71 = 6.19

or log10 k =
6.19
7.76  = 0.7976

or k = 6.27 mm.

Problem 2.3: Find the wall shearing stress in a pipe of diameter 200 mm which
carries water. The velocities at the pipe centre and 60 mm from the pipe centre are
3 m/s and 2 m/s respectively. The flow in pipe is given as turbulent.

Solution: Given data:
Diameter of pipe:   D = 200 mm = 0.2 m

∴ Radius of pipe: R = 0.2 0.1m
2 2
D

= =

Velocity at centre: umax = 3 m/s
Velocity at 60 mm from centre = 2 m/s
i.e., Velocity at r = 60 mm : u = 2 m/s

y = R – r = 0.1 – 0.06 = 0.04 m
For turbulent flow, the velocity distribution in terms of maximum velocity (umax)

is given by Eq. (9.5.9) as

max

*

u u
u

−
 = 105.75log R

y
 
  

*

3 2
u
−

 = 10
0.15.75log

0.04
 
  

*

1
u

 = 2.288



Fluid Mechanics102

or u* = 0.437 m/s

also u* = 0τ
ρ

0.437 = 0

1000
τ

 ρ = 1000 kg/m3 for water

Squaring both sides, we get

(0.437)2 = 0

1000
τ

or τ0 = 190.96 N/m2

 Problem 2.4: For a turbulent flow in a pipe of diameter 300 mm, find the
discharge when the centerline velocity is 2 m/s and the velocity of a point 100 mm
from the centre as measured by pitot-tube is 1.6 m/s.

Solution : Given data :
Diameter of pipe : D = 300 mm = 0.3 m

∴ Radius of pipe : R =
0.3

2 2
D

=  = 0.15 m

Velocity at a centre : umax = 2 m/s
Velocity at a point 100 mm from the centre is 1.6 m/s
i.e., r = 100 mm = 0.1 m

u = 1.6 m/s
∴ y = R – r = 0.15 – 0.1 = 0.05 m
We know that the velocity in terms of maximum velocity

max

*

u u
u

−
 = 105.75 log R

y
 
 
 

*

2 1.6
u
−

 = 10
0.155.75 log
0.05

 
 
 

*

0.4
u

 = 2.743

or u* =
0.4

2.743
 = 0.1458 m/s

Also we know that the relation between velocity at any point and average velocity

*

u u
u
−

 =
105.75 log 3.75y

R
+

at y = R,         u = umax
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∴ max

*

u u
u

−
 = 105.75 log 3.75R

R
+

2
0.1458

u−
 = 5.75 × 0 + 3.75

2
0.1458

u−
 = 3.75

2 u−  = 3.75 × 0.1458

2 u−  = 0.5467

or u  = 2 – 0.5467 = 1.4533 m/s

Discharge: Q = cross-sectional area × average velocity

 = 2

4
D uπ

×  = 23.14 (0.3) 1.4533
4

× ×  = 0.10267 m3/s

Problem 2.5: For turbulent flow in a pipe of diameter 300 mm, find the discharge
when the centreline velocity is 2 m/s and the velocity at a point 60 mm from the centre
is 1.7 m/s.

Solution: Given data:
Diameter of pipe: D = 300 mm = 0.3 m

∴ Radius of pipe: R = 
0.3 0.15 m

2 2
D

= =

Velocity at centre: umax = 2 m/s
Velocity at a point 60 mm from the centre is 1.7 m/s
i.e., r = 60 mm = 0.06 m

u  = 1.7 m/s
∴ y = R – r = 0.15 – 0.06 = 0.09 m
We know that the velocity in terms of maximum velocity from Eq. (9.5.9) as:

max

*

u u
u

−
 = 105.75log R

y
 
  

*

2 1.7
u
−

 = 10
0.155.75log
0.09

 
  

*

0.3
u

 = 1.27

or u* =
0.3

1.27
 = 0.236 m/s
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Also we know that the relation between velocity at any point and average velocity
from Eq. (2.7.6), we get

*

u u
u
−  = 105.75log 3.75

y
R

+

at y = R, u = umax

∴ max

*

u u
u

−
 = 105.75log 3.75

R
R

+

2
0.236

u−
 = 5.75 × 0 + 3.75

or
2
0.236

u−
 = 3.75

or 2 u−  = 3.75 × 0.236
2 u−  = 0.885

or u  = 2 – 0.885 = 1.115
∴ Discharge: Q = cross-sectional area × average velocity

= 2 23.14
(0.3) 1.115

4 4
D uπ

× = × ×

= 0.07877 m3/s = 78.77 litre/s

Problem 2.6: An oil of specific gravity 0.9 is flowing through a rough pipe of
diameter 400 mm and length 4 km at the rate of 0.4 m3/s. Find the power required
to maintain this flow. Take the average height of roughness as k = 0.5 mm.

Solution: Given data:
Specific gravity of oil: S = 0.9
∴ Density of oil: ρ = S × ρwater = 0.9 × 1000 = 900 kg/m3

Diameter of rough pipe: D = 400 mm = 0.4 m

∴ Radius of pipe: R =
0.4 0.2 m

2 2
D

= =

Length of pipe: l = 4 km = 4 × 1000 m = 4000 m
Discharge: Q = 0.4 m3/s
Average height of roughness:

k = 0.5 mm = 0.5 × 10–3 m
For a rough pipe, the value of coefficient of friction f is given by the Eq. (9.9.6),

we get

1
4 f

 = 102 log 1.74R
k

  +  

1
4 f  = 10 3

0.22log 1.74
0.5 10−

  +  ×
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1
4 f  = 5.20 + 1.74

1
4 f  = 6.94

or 4 f  =
1

6.94
Squaring both sides, we get

4f =
( )2

1
6.94

or f = 0.00519

The average velocity: u  =
Discharge : Q

Cross - sectionalarea : A

u  = 2
2

4

4

Q Q
DD

=
π π

 = 2

4 0.4 3.18 m/s
3.14 (0.4)

×
=

×

Head loss due to friction: hf =
24

2
flu
gd

24 0.00519 4000 (3.18)
2 9.81 0.4

× × ×
=

× ×
 = 106.99 m

∴ Power required: P = ρ Q g hf = 900 × 0.6 × 9.81 × 106.99 watt
= 566768.82 W = 566.768 kW

Problem 2.7: A smooth pipe of diameter 400 mm and length 1000 m carries water
at the rate of 40 litre/s. Find the head lost due to friction, wall shear stress, maximum
velocity and thickness of laminar sub-layer. Take the kinematic viscosity of water as
0.018 stokes.

Solution: Given data:
Diameter of pipe: D = 400 mm = 0.4 m

∴ Radius of pipe: R =
0.4 0.2 m

2 2
D

= =

Length of pipe: l = 1000 m
Discharge: Q = 40 litre/s = 0.04 m3/s
Kinematic viscosity: v = 0.018 stokes = 0.018 × 10–4 m2/s
We know that the discharge:Q = Au

or u  = 2
2

4

4

Q Q Q
A DD

= =
π π

= 2

4 0.04 0.3184 m/s
3.14 (0.4)

×
=

×

∴ Reynolds number: Re =
uD
v

 4

0.3184 0.4 70755.55
0.018 10−

×
= =

×
As Re > 4000, the flow is turbulent.
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The coefficient of friction: f = 1/ 4

0.0791
Re

where 4000 ≤ Re < 105

f = 1/ 4

0.0791 0.00485
(70755.55)

=

(i) Head loss due to friction: hf = 
24

2
flu
gD  

24 0.00485 1000 (0.3184)
2 9.81 0.4

× × ×
=

× ×
= 0.25 m

(ii) Wall shear stress:  τ0 =
2

2
f uρ

= 
20.00485 1000 (0.3184)

2
× ×

= 0.2458 N/m2

(iii) The maximum velocity (umax) for smooth pipe is given by eq. (9.5.5) as in
which u = umax at y = R

∴  max

*

u
u  = *

105.75log 5.55
u R

v
+

where u* = 0 0.2458 0.0156 m/s
1000

τ
= =

ρ

∴
max

0.0156
u

 = 10 4

0.0156 0.25.75log 5.55
0.015 10−

×  +  ×

max

0.0156
u

 = 18.62 + 5.55

or umax = 0.377 N/m2

(iv) Thinkness of laminar sub-layer is given by:

δ′ =
4

*

11.6 11.6 0.018 10
0.0156

v
u

−× ×
=

= 0.001338 m = 1.338 mm

 Problem 2.8: The universal velocity distribution for the turbulent flow in a

smooth pipe is given by the equation *
u
u  = 5.5 + 2.5 loge 

*y u
v

. Calculate the ratio

of the mean velocity to maximum velocity and the radius at which the local velocity
is equal to the mean velocity.
Solution: The universal velocity distributions for the turbulent flow in a smooth pipe
is given by

*
u

u  = 5.5 + 2.5 loge
*yu

ν
...(i)

where y = R – r

∴
*

u
u

 = 5.5 + 2.5 loge 
( ) *R r u−

ν
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Direction
of flow

R r
y

Rr

dr

Fig. 2.8: Schematic for Problem 2.8

Discharge through a small circular ring,

Qδ  = dA × u

 = 2 π r dr × *u  [5.5 + 2.5 loge
( )

*
R r

u
− 

ν 

Net discharge through pipe,

0

Q

dQ∫  = * *
0

( )2 5.5 2.5 log
R

e
R ru r u− π + ν ∫

Q = *2π µ *
0

( )5.5 2.5 log
R

e
R rr u− + ν ∫

= 2 *
* 1.75 2.5loge

Ru
R  π µ +  ν

The average velocity is given by

–u = 2
Q
Rπ

=

2 *
*

2

1.75 2.5loge
RuR

R

 π µ +  ν
π

= *
* 1.75 2.5loge

Ru
u  +  ν

or
*

u
u

 = *1.75 2.5 loge
R u

+
ν

...(ii)

Subtracting Eq. (ii) from Eq. (i), we get

* *

u u
u u

−  = 5.5 + 2.5 loge
*y u

ν
 – 1.75 – 2.5 loge

*R u
ν

*

u u
u
−

 = 3.75 + 2.5 loge
*y u

ν
 × 

*R u
ν
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= 3.75 + 2.5 loge 
y
R

...(iii)

The maximum velocity would occur at y = R

∴
max

*

u u
u

−
 = 3.75 + 2.5 loge

R
R

= 3.75

or maxu u−  = 3.75 u*

or umax = u + 3.75 u*

umax = u *3.751 u
u

 + 
 

or maxu
u  = 1 + *3.75u

u
Give condition,
Local velocity at a point = Average velocity

u  = u
Substituting u = u  in Eq. (iii), we get

*

u u
u
−

 = 3.75 + 2.5 loge
y
R

0 = 3.75 + 2.5 loge
y
R

or 2.5 loge
y
R

 = –3.75

or loge
y
R

 =
3.75
2.5

−
 = –1.5

or
y
R

 = e–1.5 = 0.2231

or y = 0.2231 R
also y = R – r
∴ 0.2231 R = R – r
or r = R – 0.2231 R = 0.7769 R

Problem 2.9: Find the distance from the pipe wall at which the local velocity is
equal to the average velocity for turbulent flow in pipe. Also find the distance from
the centre of the pipe.
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Solution: Given condition:
Local velocity at a point = average velocity

i.e. u = u
For a smooth or rough pipe, the difference of velocity at any point and average

velocity is given by Eq. (9.7.6) as

*

u u
u
−

 = 105.75log 3.75y
R

  +  

Substituting the given condition i.e., u u= , we get

*

u u
u
−

 = 105.75log 3.75y
R

  +  

0 = 105.75log 3.75y
R

  +  

or 105.75log y
R

 
 
 

 = – 3.75

or 10log y
R

 
 
 

 =
3.75

0.6521
5.75

−
= −

or
y
R

 = 0.2227

or y = 0.2227 R
also y = R – r
where r is distance from the centre of the pipe.
∴ 0.2227 R = R – r
or r = R – 0.2227 R

r = 0.7773 R

2.10 THERMAL (HOT-WIRE AND HOT FILM) ANEMOMETERS
Thermal anemometers are used for determining velocity at any point in fluid flow.
Thermal anemometers consist of an electrically heated sensor and make use of thermal
effect to measure velocity. Thermal anemometer has an extremely small sensor, so
they can be used to measure velocity at any point in the flow without disturbing the
flow. Thousands of velocity measurements can be taken per second so details of
fluctuations in turbulent flow can be studied.

Depending on the sensor there are two types of thermal anemometers:
(i) Hot wire anemometer.

(ii) Hot film anemometer.
(i) Hot wire anemometer: If the sensing element is wire, the thermal

anemometer is called hot wire anemometer. The hot wire anemometer
consists of a very fine sensing wire having few microns of diameter (about
8 µm) and few millimeters (1 mm) of length. This sensing wire is made of
platinum, tungsten, or platinum-iridium alloys, and is mounted on non-
conducting structure.
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(ii) Hot film anemometer: If the sensing element is a thin metallic film (less
than 0.1 µm thick), the thermal anemometer is called hot film anemometer.
This sensing element is mounted on a relatively thick ceramic support. Since
the fine wire sensor of hot wire anemometer can easily break if the fluid
contains excessive amounts of particulate matter. In such cases the hot-film
anemometer is highly useful. But it is not suitable for studying the fine details
of turbulent flow.

The two commercial setups of hot-wire anemometers are available of a constant
temperature anemometer (CTA) and constant current anemometer (CCA). The operating
principle of constant temperature is most common and is explained with the schematic
in Fig. 2.9.

×
connector
box and

computer

CTA Signal conditioner

Filter GainBridge

Sensor

Probe

Flow of Fluid

Fig. 2.9: Thermal anemometer system.

The sensor is heated to a specified temperature (normally about 200°C). When
sensor is placed in a flowing fluid, it tends to cool due to exchange of heat between
the wire and surrounding flowing fluid. The electronic control temperature by varying
the electric current. The rate of heat transfer will increase with increasing fluid flow.
So large voltage is applied across the sensor to maintain it at a constant temperature.
Thus a close correlation exists between the flow velocity and voltage i.e., flow
velocity can be determined by electric current passing through the sensor.

The sensor is maintained at a constant temperature during the whole operation,
thus its thermal energy remains constant. So the conservation of energy principle

requires that the electrical Joule heating: Q = I2Rw =
2

W

E
R  of sensor must be equal to

total heat loss (QT) from the sensor.
So, using proper relations, the energy balance can be expressed by King’s law as:

E2 = a + bVn …(2.10.1)
where E is the voltage.

a, b and n are constants for a given probe, whose values will be given by the
manufacture. Once the voltage E is measured, by using relation in Eq. (2.10.1) gives
the flow velocity V directly.

2.11 LASER DOPPLER VELOCIMETRY
Laser Doppler Velocimetry (LDV), also called Laser Doppler Anemometry (LDA), is
an optical technique to measure flow velocity at any desired point in fluid flow without
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disturbing the flow. LDA technique involves no sensing wire inserted into the flow so
it is a non-intrusive technique. It can accurately measure velocity at a very small
volume, and thus it can also be used to study the details of flow at a locality, including
turbulent fluctuations, and it can be traversed through the entire fluid flow without any
kind of intrusion.

The LDA technique was developed in mid-1960’s and was highly adopted due
to its high accuracy in measuring velocity for both gas and liquid flows. It can measure
all three velocity components (i.e., u, v and w along x, y and z-axes respectively). As
compared to hot wire anemometer, LDA is quite costly. It requires a sufficient
transparently between the laser source, the target location in the flow, and photodetector,
and requirement for careful alignment of emitted and reflected beam for accuracy.

2.11.1 Operating Principle
The operating principle of LDA is based on sending a highly coherent monochromatic
light beam toward the target area and determining the change in frequency of reflected
radiation due to Doppler effect and relating this change in frequency to flow velocity
of the fluid at the target area.

Signal  processing
and display

V
Beam
splitter

Laser
source

α

Measurement
Volume
(target)

Receiving
lens

Photodetector

Sending
lens

Fig. 2.10: Dual Beam Lasser Doppler Anemometry.

The basis setup of LDA to measure single velocity component is shown in
Fig. 2.10. The heart of LDA systems is a laser power source which is usually a helium-
neon or argon-ion laser with a power output of 10 mW to 20 W. Lasers are preferred
over other light source because laser beams are highly focused and highly coherent.
The laser beam is firstly splitted into two parallel beams of equal intensity by a beam
splitter. Both beams are then passed through at a point in the flow (the target). The
small fluid volume where these two beams intersect in the region where the velocity
is measured and this region is called measurement volume or focal volume or target
area. The laser light is scattered by particles in the measurement volume. The light
scattered in a certain direction is collected by a receving lens and is passed through
a photodetector that converts the fluctuating in light intensity into fluctuating in voltage
signal. Finally a signal processor determines the frequency of the voltage signal and
thus velocity of the flow.
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Fringe
lines s

α

V

Fringe lines

Measurement
volume

Laser
beam

Fig. 2.11: Fringes that form as a result of the interference at the intersection of two
laser beams of an LDA system. The top diagram is a close-up view of two fringes.

The waves of the two laser beams that cross in the measurement volume are
shown in Fig. 2.11. The waves of the two beams interfere in the measurement volume,
creating a bright fringe where they are in phase and thus support each other and creating
a dark fringe where they are out of phase and thus cancel each other. The bright and
dark fringe form lines parallel to the mid plane between the two incident laser beams.
Using trigonometry, the spacing s between the fringe lines, can be shown to be:

s =
2sin

2

λ
α

where λ is the wavelength of laser and α is the angle between the two laser
beams. When a particle traverses these fringe lines at a velocity V, the frequency of
the scattered fringe lines is:

f =
2 sin / 2V V

s
α

=
λ

This fundamental relation shows that the flow velocity to be proportional to the
frequency and is known as the LDV equation.
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SUMMARY

1. Three types of velocities involved in turbulent flows:
(i) Instantaneous velocity

(ii) Fluctuation velocity
(iii) Average velocity.

2. Degree or level of turbulence: It is the square root of the arithmetic mean
of the mean squares values of velocities in x, y and z-axes. It is denoted by
letter D.

Degree or level of turbulence: D = ( )2 2 21 ´ ´ ´
3

u v w+ +

3. Intensity of turbulence: It is the ratio between the degree of turbulence
(D) and the free-stream velocity (U). It is denoted by letter I.

Intensity of turbulence:         I = ( )2 2 21 1 ´ ´ ´
3

u v w
U

+ +

4. Classification of turbulence:
(i) Wall turbulence: If turbulence generated by the viscous effect of the

flowing fluid due to the presence of a solid boundary it is called the
wall turbulence.

(ii) Free turbulence: If turbulence generated, in the absence of a solid
boundary, by contact between two layers of fluid flow at different
velocities is called free turbulence.

5. Turbulent shear stress : τt

(i) ´ ´t v uτ = −ρ (Reynolds theory)

(ii) t
du
dy

τ = η (Boussinesq eddy-viscous theory)

where η = eddy viscosity
If the shear stress due to viscous flow is consider, then the total shear stress
becomes as

 v tτ = τ + τ

where vτ  = shear stress due to viscosity

tτ  = shear stress due to turbulence.

∴  ( )du du du
dy dy dy

τ = µ + η = µ + η

(iii)  
2

2
t

dul
dy

 
τ = ρ   

(Prandtl’s mixing length theory)
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where l = mixing length
2

2du dul
dy dy

 
τ = µ + ρ   

 

(iv)
2 2

2 2 2

( / )
( / )t
k du dy
d u dy

ρ
τ = (Von-Karman’s theory)

6. The velocity distribution in the turbulent flow for pipes is given by the
expression

max

*

u u
u

−
105.75log R

y
 

=  
 

where umax = maximum velocity at the centre-line
u = local velocity

u* = 0τ
ρ , shear velocity

R = radius of pipe
y = distance from the pipe wall.

7. Hydrodynamically smooth and rough boundaries:
If the average height k of the irregularities projecting from the surface of
a boundary is much less than d¢, the thickness of laminar sub-layer, such
a boundary is called hydrodynamically smooth boundary.
If the irregularities of the surface are above the laminar sub-layer and eddies
present in turbulent zero will come in contact with the irregularities of the
surface, such a boundary is called hydrodynamically rough boundaries.

From Nikuradse’s experiment

(i) if
k
δ′

 < 0.25, the boundary is called smooth boundary..

(ii) if
k
δ′

 > 6.0, the boundary is called rough boundary..

(iii) if 0.25 <
k
δ′

 < 6.0, the boundary is called transition.

where k = average height of the irregularities of the surface.
δ′ = thickness of the laminar sub-layer boundary.

In term of roughness Reynolds number: *u k
v

(i) if *u k
v

 < u, the boundary is considered smooth.
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(ii) if *u k
v

 > 100, the boundary is considered rough.

(iii) if 4 < *u k
v

 < 100, the boundary is in transition stage.

8. Difference of local velocity and average velocity for smooth and rough
pipes is

                    10
*

5.75log 3.75u u y
u R
−  = + 

 
9. Power law for velocity distribution in smooth pipes

                     
max

nu y
u R

 =  
 

where exponent n is dependent on the Reynolds number Re. The value of
exponent n decreases with increasing Reynolds number Re.
For Reynolds number:

Re = 4 × 103, n = 
1
6

Re = 1.1 × 105, n = 
1
7

Re ≥ 2 × 106, n = 
1

10
10. Determination of coefficient of friction: f

(i) f =
16
Re  for laminar flow i.e., Re < 2000.

(ii) f = 1/ 4

0.0791
Re  for turbulent flow i.e., 4000 ≤ Re < 105

(iii) ( ) 7
10

1 2 log R 4 0.8 for Re 4 10
4

f
f

= − = ×

0.237

0.055250.0008
Re

f = + for 105 < Re £ 4 × 107

(iv) 10
1 2 log 1.74
4

R
kf

 = +    for rough pipe.

11. For turbulent flow through commercial pipes:

(i) Smooth pipes: 10

Re 41 2log 0.8
/4

f
R kf

 
= −  

 

(ii) Rough pipes: 10
1 R2 log 1.74
4 kf

 = + 
 



Fluid Mechanics116

12. Thermal (hot-wire and hot film) anemometers: Thermal anemometers
are used for determining velocity at any point in fluid flow. Depending on
the sensor there are two types of thermal anemometers:

(i) Hot-wire anemometer
(ii) Hot-film anemometer.

13. Laser doppler velocimetry: Laser Doppler Velocimetry (LDV), also called
laser Doppler anemometry (LDA), is an optical technique to measure flow
velocity at any desired point in fluid flow without disturbing the flow.

ASSIGNMENT - 1

1. What do you mean by turbulent flow?
2. Define the following terms:

(i) Instantaneous velocity
(ii) Fluctuation velocity

(iii) Average velocity.
3. Explain briefly hydrodynamically smooth and rough boundaries.

(GGSIP University, Delhi, Dec. 2008)
4. Define the terms: degree of turbulence and intensity of turbulence.
5. Distinguish between wall turbulence and free turbulence.
6. What is meant by turbulence? How does it affect the flow properties?
7. Derive an expression for the velocity distribution for turbulent flow in smooth

pipes. (GGSIP University, Delhi, Dec. 2005)
8. Show that velocity distribution for turbulent flow through rough pipe is given

by                                10
*

5.75log 8.5u y
u k

 = +  

where u = shear velocity
y = distance from pipe wall
k = roughness factor.

9. Explain the Prandtl’s mixing length theory for turbulent shear stress.
(GGSIP University, Delhi, Dec. 2005)

10. What are the semi-empirical theories of turbulence? Explain the concept of
mixing length introduced by Prandtl and state the relationship that exists
between the turbulent shearing stress and mixing length.

(GGSIP University, Delhi, Dec. 2008)
11. Prove that the difference of local velocity and average velocity for turbulent

flow through rough or smooth pipes is given by:
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10
*

5.75log 3.75u u y
u R
−  = +  

ASSIGNMENT - 2

1. A pipeline carrying water has average height of irregularities projecting from
the surface of the boundary of the pipe as 0.15 mm. What type of boundary
is it? The shear stress developed is 4.9 N/m2. The kinematic viscosity of
water is 0.02 stokes. Ans. Boundary is in transition

2. A rough pipe is of diameter 50 mm. The velocity at a point 30 mm from wall
is 30% more than the velocity at a point 10 cm from pipe wall. Find the
average height of the roughness. Ans. 77.25 mm

3. Find the wall shearing stress in a pipe of diameter 100 mm which carries
water. The velocity at the pipe centre and 30 mm from the pipe centre are 2
m/s and 1.5 m/s respectively. The flow in pipe is given as turbulent.

Ans. 47.75 N/m2

4. For turbulent flow in a pipe of diameter 300 mm, determine the discharge
when the maximum velocity is 2 m/s and the velocity at point 100 mm from
the centre is 1.6 m/s. Ans. 102.67 litre/s

5. An oil of specific gravity of 0.85 is flowing through a rough pipe of diameter
500 mm and length 4000 m at the rate of 0.5 m3/s. Find the power required
to maintain this flow. Take the average height of roughness as k = 0.40 mm.

Ans. 204.96 kW
6. A smooth pipeline 75 mm in diameter and 500 m long conveys water at the rate

of 75 litre/s. Find the loss of head, wall shear stress, centreline velocity and
thickness of laminar sub-layer. Take kinematic viscosity as .0195 stokes.

Ans. 31m, 6.3 N/m2, 1.89 m/s, 0.285 mm
7. For turbulent flow in a pipe of diameter 200 mm, find the discharge when the

centreline velocity is 1.5 m/s and velocity at a point 50 mm from the wall as
measured by pitot tube is 1.35 m/s. Also find the coefficient of friction and
the average height of roughness projections.

Ans. 0.037 m3/s, 0.0109, 2.99 mm
8. Water is flowing through a rough pipe of diameter 600 mm at the rate of 500

litre/s. The wall roughness is 3 mm. Find the power lost for 1000 m length
of pipe. Ans. 39.57 kW





Boundary Layer Theory

3.1 INTRODUCTION
If a body is placed in the flow of ideal fluid, the fluid particles slip on the surface of
the body in the direction of flow of the fluid due to the property of ideal fluid (i.e.,
zero viscosity), no friction forces are exerted on the fluid in opposite direction of flow
of the fluid. On the other hand if a body is placed in the flow of real fluid, the fluid
particles adhere on the surface of the body and attain zero velocity, because the
particles of real fluid do not slip on the surface of the body due to viscosity of the real
fluid (i.e., in case of real fluid viscosity must be taken into consideration). Now as the
fluid particles on the surface of body have zero velocity (i.e., there is no relative
velocity between the fluid particles and surface of body), they will provide a resistance
to adjacent layer and hence decrease its velocity. Similarly this layer acts as resistance
to the next adjacent layer, which in turn decreases its velocity up to some extent and
this process continues. In this way a thin layer of fluid developed close to the body
surface and in which velocity gradient

 

Solid body Solid body

U
U

U
Boundary layer

Velocity profile

Velocity 
profile

(a) Ideal fluid flow over solid body (b) Real fluid flow over solid body
(No boundary layer formed) (Boundary layer formed)

Fig. 3.1: Concept of boundary layer
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du
dy

 
 
 

 exists normal to the surface of the body. This thin layer across the narrow

region of the solid body is called boundary layer or friction layer. The theory dealing
with the boundary layer flow is called boundary layer theory. In other words, we can
say that in the boundary layer, the velocity of fluid increases from zero velocity on the
surface of the body to free stream velocity (U) of the fluid in the direction normal to
the body.

According to boundary layer theory, fluid flow on the surface of the body can
be divided into two unequal regions:

(i) A very thin layer of the fluid, called boundary layer, at which viscosity must

be taken into account as there exists a velocity gradient du
dy

 
 
 

.

(ii) The region outside the boundary layer where the viscosity can be neglected

and no velocity gradient du
dy

 
 
 

exists.

3.2 BOUNDARY LAYER FORMATION OVER A FLAT PLATE
Consider the flow of a fluid having free stream velocity (U) over a smooth thin flat
plate placed at zero incidence (i.e., flow direction makes zero angle with the plate
surface) as shown in Fig. 3.2.

y

A
E F

B

C
D

G
Laminar sub-layer

Turbulent zone
Laminar

zone
Transition

zone

Laminar
b. .l

Flat plate Trailing edgeLeading
edge

Turbulent b. .l

x

Free-stream
velocity: U

Fig. 3.2: Boundary layer formation over a flat plate at zero incidence.

The fluid particles adhere on the surface of the plate and attain zero velocity and
that frictional (viscous) force retards the fluid flow within a thin layer near the flat plate
surface. This thin layer is called boundary layer. Inside the boundary layer, the
following types of variations take place:

(i) The velocity of fluid increases from zero velocity on the plate surface to
free-stream velocity (U) of the fluid in the direction normal to the plate
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surface (i.e., velocity gradient du
dy

 
 
 

exists normal to the plate surface).

(ii) The boundary layer thickness (δ) increases continuously from the leading
edge of the plate to the downstream direction.

Let ABCD is boundary layer formation over a flat plate as shown in Fig. 3.2. This
boundary layer is classified into three stages as:

1. Laminar boundary layer.
2. Transition boundary layer.
3. Turbulent boundary layer.

3.2.1 Laminar Boundary Layer

The initial stage of boundary layer development exhibits characteristics of laminar flow
i.e., the fluid particles at the leading edge of plate moves orderly in laminas parallel to
the flat plate surface as shown in Fig. 3.3. In this figure AB is called laminar boundary
layer. The length of the plate from the leading edge up to which the laminar boundary
layer exists is called laminar zone.

A
E

Laminar b. .l

Laminar flow in
boundary layer .AB

δ( )x

A
E

y

x
u y( )

B

U

Laminar zone

Fig. 3.3: Laminar boundary layer.

The Reynolds number for the flow of fluid in the boundary layer is expressed as

Rex =
Ux
v

where x = distance from the leading edge.
U = free-stream velocity of the fluid flow.
v = kinematic viscosity of the fluid.

Reynolds number for laminar boundary layer is
Rex ≤ 3 × 105

Ux
v

 ≤ 3 × 105

It means, Reynolds number (Rex) at point ‘E’ is 3 × 105. If the Reynolds
number (Rex) > 3 × 105 then the next transition zone begins. So the laminar
boundary layer is maintained upto point ‘E’ at which Rex= 3 × 105.
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Experiments have shown that for laminar boundary layer, the velocity profile
is parabolic, and the velocity profiles at different locations along the plate are
geometrically similar.

3.2.2 Transition Boundary Layer
The short length over which the boundary layer flow changes from laminar to
turbulent is called transition zone. This is shown by distance EF in Fig. 3.4. The
formation of boundary layer over transition zone is called transition boundary layer.

Fig. 3.4: Transition Boundary Layer.

The boundary layer thickness will go on increasing in the direction of flow. The
range of Reynolds number for the zone is

Rex > 3 × 105 and < 5 × 105

i.e., 3 × 105 < Rex < 5 × 105

3.2.3 Turbulent Boundary Layer

C

F G

D

Turbulent flow in
boundary layer ‘CD’

Turbulent b.l.

C

F G

DU

δ( )x

Logarithmic
profile

u y( )

Laminar
sub-layer

0.99 U

Turbulent zone

Fig. 3.5: Turbulent Boundary Layer.

The zone next to transition zone is called turbulent zone. This is shown by FG
in Fig. 10.5. In this zone, the fluid flows in zig-zag manner.* If Reynold’s number
(Rex) is ≥ 5 × 105 then formation of this zone begins. The boundary layer thickness
will go on increasing in the direction of flow. The experiments have shown that for
turbulent boundary layer, the velocity profile is logarithmic, and the velocity profile at
different locations along the plate are geometrically similar.

 *The formation of b.l. over this zone is called turbulent boundary layer.
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3.2.4 Laminar Sub-layer
If the plate surface is very smooth, a thin layer develops very close to the plate surface
(or boundary of solid body) due to viscous effects of the fluid, in turbulent zone. This
thin layer is called laminar sub-layer (or viscous sub-layer). The nature of the flow in
this layer is laminar.

As shown in Figs. 3.2 and 3.5, the turbulent boundary layer has a double layered
structure, the large part of boundary layer due to turbulent fluctuation motion (i.e.,
exchange of momentum in a transverse direction) and is unaffected by the viscosity.
The thin laminar sub-layer close to the solid surface in turbulent zone is only affected
by the viscosity. Due to thin laminar sub-layer, we assume that velocity variation is
linear and so the velocity gradient can be considered constant. Therefore, the shear
stress in the laminar sub-layer would be constant and equal to the boundary shear
stress (τ0). Thus the shear stress in the laminar sub-layer is

τ0 = µ
0y

u
y =

 ∂
  ∂ 

τ0 = µ u
y

 for linear variation,
u
y

∂
∂

 = 
u
y

3 .3 BOUNDARY LAYER THICKNESS: δ

When real fluid flows over a solid
body, the fluid particles contact
to surface of solid body and attain
zero velocity. These fluid particles,
then retards the motion of fluid
particles in the adjoining fluid layer,
which retards the motion of fluid
particles in next layer and so on,
until a distance y = δ from the
surface of solid body reaches
where these effects become
negligible. The distance δ normal to the surface of solid body is called boundary layer
thickness. It is denoted by δ (greek letter ‘delta’).

The boundary layer thickness (δ) is defined as the normal distance from the
surface of solid body to the point where the velocity of flow (u) is 99% of the free
stream velocity (U).

Mathematically, it is defined
y = δ for u = 99% U = 0.99 U

1 2 3 4
δ2

δ3
δ4u U  =0.99

u U  =0.99
u U  =0.99

δ1 = 0

Leading
edge

Fig. 3.7: Boundary layer thickness increasing in the direction of flow.

y

x

U

x

δ( )x

u U = 0.99 

Boundary
layer

U

Fig. 10.6: Boundary layer thickness.
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As shown in Fig. 10.7, the boundary layer thickness is zero at leading edge i.e.,
at point 1 on the flat plate and increasing in the direction of flow.

i.e., δ 4 > δ3 > δ2 > δ1

3.4 DISPLACEMENT THICKNESS: δ*
The velocity distribution caused by boundary layer formation displaces the flow rate
slightly outward from the solid boundary. As in case of ideal flow, no boundary layer
formation occurs hence no displacement of flow takes place. Figure 3.8(b) shows the
streamlines in boundary layer. The deflecting streamlines and the widening gap in
between indicate retardation of flow and a small vertical velocity component.

The displacement thickness (δ*) may be defined in any one of the following
ways:

Streamlines
U

y y

Streamlines
U

y
y+ * δ 

Boundary
layer

(a) Ideal fluid flow over solid boundary (b) Real fluid flow over solid boundary
[Absence of boundary layer]  [Formation of boundary layer]

Fig. 3.8: Concept of displacement thickness.

(a) It is the distance measured perpendicular to the solid boundary, by which
the free stream is displaced due to formation of boundary layer.

(b) The distance by which the boundary of solid body is displaced if the entire
flow is imagined to be frictionless and the same mass flow rate maintained
at any section is shown in Fig. 3.9(b).

y

x

U

δ*

y

x

u y( )

U

(a) Real Flow (b) Ideal flow with displaced solid boundary

Fig. 3.9: Displacement thickness.

Now consider the flow of a fluid having free stream velocity (U) over a smooth
flat plate at zero incidence as shown in Fig. 3.10. At a certain distance x from the
leading edge consider a section 1–1.

The velocity at point B is zero and at point C is nearly U, where BC is equal to
the thickness of boundary layer i.e.,

Distance BC = δ
At the section 1–1, consider a small fluid element strip of thickness dy and
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distance y from the plate surface.

Fig. 3.10: Flow over a flat plate.

Let u = velocity of fluid at a small element strip.
b = width of a flat plate, not shown in Fig. 3.10.

∴ The cross-sectional area of small fluid element strip:
dA = b × dy

Mass of fluid per second flowing through small element strip:
m  = density × velocity

× cross-sectional area of small element strip
 = ρudA = ρubdy  dA = bdy

If there is no plate in the flow, then the fluid will flow with a constant velocity
equal to free stream velocity (U) at the section 1–1.

Then mass of fluid per second flowing through small element strip:

M  = density × velocity
× cross-sectional area of small element strip

M  = ρUdA = ρUbdy
We have U > u, the formation of the boundary layer due to the presence of the

plate in the fluid will be a reduction in mass flowing per second through the small
element strip.

∴ The reduction in mass per second flowing through small element strip

= M m−   = ρUbdy – ρubdy = ρb(U – u)dy
∴ Total reduction in mass of fluid per second flowing through BC due to

presence of plate in the fluid

= 0
( )b U u dy

δ
ρ −∫  BC = δ

=
0

( )b U u dy
δ

ρ −∫  | if fluid is incompressible i.e., ρ = C

=
0

( )b U u dy
δ

ρ −∫ ... (3.3.1)

Let the plate is displaced by a vertical distance δ* and velocity of flow for the
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distance δ* is equal to the free stream velocity U [i.e., frictionless flow passing
through an area (bδ*)]

∴ The loss of the mass of the fluid per second through distance δ*
= density × velocity × cross-sectional area of flow
= ρUbδ* ... (3.3.2)

Equating Eqs. (3.3.1) and (3.3.2), we get

0
( )b U u dy

δ
ρ −∫  = ρUbδ*

or δ*U =
0

( )U u dy
δ

−∫

δ* =  
  ∫ 0
1

δ
−
u dy
U

Displacement thickness (δ*) tells us how far the streamlines of the flow are
displaced outwards due to the decrease in velocity in the boundary layer.

3.5 MOMENTUM THICKNESS: θ

It is defined as the distance measured perpendicular to the solid boundary, by which
the boundary is displaced to compensate the reduction in momentum of the flow fluid
due to formation of boundary layer. It is denoted by θ.

Fig. 3.11: Flow over a flat plate.

Now consider the flow over a plate as shown in Fig. 3.11. Let the section 1–
1 is at a distance x from leading edge. Consider a small fluid element strip of thickness
(dy) and distance y from the plate surface.

[Note: As derived in a similar manner for a previous article 3.4]

Mass of fluid per second flowing through small element strip: m  = ρudA = ρubdy
If there is no plate in the flow, then the fluid will be flowing with a constant

velocity equal to free stream velocity (U) at the section 1–1.
Then
Mass of fluid per second flowing through small element strip:

M  = ρUdA = ρUb · dy
∴ The reduction in mass per second flowing through small element strip
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 = M m−   = ρUbdy – ρubdy = ρb(U – u)dy
The reduction in momentum per second through small element strip

 = reduction in mass/s × velocity of flow

= ( )M m u−   = ρb(U – u)dy × u = ρbu(U – u)dy
Total reduction in momentum per second through BC (i.e., δ)

=
0

( )bu U u dy
δ
ρ −∫ ... (3.5.1)

Let θ = vertical distance by which plate is displaced when the fluid is flowing
with a free stream velocity U [i.e., frictionless flow passing through
an area (bθ).]

∴ Loss of momentum/s of fluid flowing through distance θ with a free stream
velocity (U)

= mass/s of fluid flow through distance θ × free stream velocity U
= [ρ × Area × U] × U
= ρbθ U2  Area = bθ
= ρbθ U2 ... (3.5.2)

Equating Eqs. (3.5.2) and (3.5.1), we get

ρbθU2 =
0

( )bu U u dy
δ
ρ −∫

ρbθU2 =
0

( )b u U u dy
δ

ρ −∫
[Let fluid is incompressible i.e., ρ = C]

θU2 =
0

( )u U u dy
δ

−∫

θ = 20
( )u U u dy

U
δ

−∫

θ = 0
1

δ  −  ∫
u u dy
U U

For parallel flow past a flat plate held at zero incidence, the approximate
relationship among the boundary layer, displacement and momentum thicknesses are:

δ = 3δ* = 7.5θ
y

δ*( )x

δ( )x

θ( )x

x

Fig. 3.12: Variation of boundary layer, displacement and momentum
thickness over flat plane in the direction of flow.
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The ratio of displacement thickness (δ*) to momentum thickness (θ) is called
the shape factor. It is denoted by H.

Mathematically,

Shape factor: H =
Displacement thickness: *

Momentum thickness: 
δ
θ

H =
*δ

θ

3.6 ENERGY THICKNESS: δ**
It is defined as the distance measured normal to the solid boundary, by which the
boundary is displaced to compensate the reduction in kinetic energy of the flowing
fluid due to formation of boundary layer. It is denoted by δ**.

Now consider the flow over a plate as shown in Fig. 3.13. Let the sections 1–
1 is at a distance x from leading edge.

Consider a small fluid element strip of thickness (dy) and distance y from the
plate surface.

Fig. 3.13: Flow over a flat plate.

The mass of fluid per second flowing through small element strip:
 m  = ρudA = ρubdy

Kinetic energy/s of fluid through strip = 
1
2

m u2

Kinetic energy/s of fluid through strip in the absence of boundary layer = 21
2

mU

∴ Loss of kinetic energy/s through strip = 2 21 1
2 2

mU mu− 

 = 2 21 [ ]
2

m U u−

= 2 21 [ ]
2

ubdy U uρ −  m  = ρubdy

= 2 21 [ ]
2

bu U u dyρ −

∴ Total loss of kinetic energy/s of fluid passing through BC (δ)
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= 2 2
0

1
[ ]

2
bu U u dy

δ
ρ −∫

= 2 2
0

1
[ ]

2
b u U u dy

δ
ρ −∫ ... (3.6.1)

Let δ** = vertical distance by which the plate is displaced to
compensate for the reduction in kinetic energy per second.

∴ Loss of kinetic energy/s through distance δ** of fluid flowing with a free
stream velocity (U):

= 21 mass (velocity)
2

× ×

= ** 21
2

b U U×ρ δ × [ *M b U= ρ δ ]

= ** 31
2

b Uρ δ ... (3.6.2)

Equating Eqs. (3.6.2) and (3.6.1), we get

** 31
2

b Uρ δ  = 2 2
0

1
[ ]

2
b u U u dy

δ
ρ −∫

δ** = 2 2
3 0

1 [ ]u U u dy
U

δ
−∫

δ** = 2 2
30

[ ]u U u dy
U

δ
−∫

δ** =
2 2

2 20

u U u dy
U U U

δ  
− 

 
∫

δ** =
2

20
1

δ  
− 

 
∫

u u dy
U U

With the energy thickness (δ**) known, the loss of kinetic energy/s can be
determined from the following relation:

EL = ** 31
2

ρ δb U

Problem 3.1: A linear distribution of velocity in the boundary on a flat plate is
given by

u
U

 =
y
δ

where u = velocity at a distance y from the flat plate and
 = U at y = δ where δ is boundary layer thickness.

Find: (i) 
*δ

δ
(ii) 

*δ
θ

(iii) 
*

**
δ
δ

Solution: Given:
Linear distribution of velocity in the boundary layer:

u
U

= 
y
δ
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The displacement thickness:

δ* =
0

1 u dy
U

δ  −  ∫

=
0

1 y dy
δ  −  δ∫

=
2

0
2
yy

δ
 

− δ 
 δ = C, at particular section

=
2

2
δ

δ −
δ

 =
2
δ

δ −  = 
2
δ

The momentum thickness:

θ =
0

1 u u dy
U U

δ  −  ∫  = 
0

1 y y dy
δ  −  δ δ∫

=
2

20

y y dy
δ  

− δ δ ∫

=
2 3

2
0

2 3
y y

δ
 

− δ δ 
 = 

2 3

22 2 3 63
δ δ δ δ δ

− = − =
δ δ

The energy thickness: δ** =
2

20
1 u u dy

UU
δ  

−  ∫  = 
3

30

u u dy
U U

δ  
−  ∫

=
3

30

y y dy
δ  

− δ δ ∫  = 
2 4

3
0

2 4
y y

δ
 

− δ δ 

=  
2 4

3
0

2 4

δ
 δ δ

− δ δ 
 =

2 4
δ δ

−  = 
4
δ

(i)
*δ

δ
 =

2
δ
× δ

 = 1
2

 = 0.5

(ii)
*δ

θ
 =

/ 2
/ 6

δ
δ

 = 6
2

 = 3

(iii)
*

**
/ 2 4
/ 4 2

δ δ
= =

δδ
 = 2

Problem 3.2: Determine the displacement thickness and momentum thickness in
terms of boundary layer thickness for the given velocity profile.

u
U

 =
2

2 y y   −   δ δ   
where u is the velocity at a height y above the surface and U is the free-stream velocity.

(GGSIP University Delhi, 2004, 2007, 2008)
Solution: Given data:
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Velocity profile:
u
U

 =
2

2 y y   −   δ δ   

We know, displacement thickness: δ* = 
0

1 u dy
U

δ  −  ∫ ... (i)

Substituting the value of
u
U

 = 
2

2 y y   −   δ δ   
 in Eq. (i), we get

δ* =
2

0
1 2 y y dy

δ     − +       δ δ  
∫  = 

2 3

2
0

2 1·
2 3
y yy

δ
 

− + δ δ 

=
3

2
2

1 1
3
δ

δ − × δ + ×
δ δ

 = δ – δ + 
3
δ

 = 
3
δ

and momentum thickness: θ = 
0

1u u dy
U U

δ  −  ∫ ... (ii)

Substituting the value of
u
U

 = 
2

2 y y   −   δ δ   
 in Eq. (ii), we get

θ =
2 2

0
2 1 2y y y y dy

δ           − − +                 δ δ δ δ      
∫

=
2 3 2 3 4

2 3 2 3 40

22 4 2y y y y y y dy
δ    − + − + −   δ δ δ δ δ δ 

∫

=
2 3 4

2 3 40
2 5 4y y y y dy

δ  
− + − δ δ δ δ 

∫

=
2 3 4 5

2 3 4
0

2 5 4 1
2 3 4 5
y y y y

δ
 

× − × + × − × δ δ δ δ 

=
2 3 4 5

2 3 4
5 4 1

3 4 5
δ δ δ δ

− × + × − ×
δ δ δ δ

 =
5
3 5

δ
δ − δ + δ −

=
52
3 5

δ
δ − δ −  = 

30 25 3
15

δ − δ − δ
 = 

2
15
δ

Problem 3.3: The velocity distribution in the boundary layer over a high spillway
face is to have the following form:

u
U

 
 
 

 =
0.22y 

 δ 
Prove that the displacement thickness, the momentum thickness and the energy
thickness can be expressed as

*δ
δ

= 0.180,
θ
δ

 = 0.125 and
**δ
δ

 = 0.217 respectively..

(GGSIP University, Delhi, Dec. 2005)
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Solution: Given data:

Velocity distribution:
u
U

 = 
0.22y 

 δ 
We know,

Displacement thickness: δ* = 
0

1 u dy
U

δ  −  ∫

Momentum thickness: θ = 
0

1u u dy
U U

δ  −  ∫

and energy thickness: δ** = 
2

20
1u u dy

U U
δ  

− 
 

∫

Now displacement thickness: δ* = 
0

1 u dy
U

δ  −  ∫ ... (i)

Substituting the value of
u
U

 =
0.22y 

 δ 
 in Eq. (i), we get

 δ* =  
0.22

0.220
1 y dy

δ  
− δ ∫

δ* =  
0.22 1

0.22
01.22

yy
δ+ 

− 
δ × 

 = 
1.22

0.221.22
 δ
δ − 

δ 

=
0.22

0.22
·

1.22
 δ δ
δ − 

δ 
 = 

1.22
δ δ −  

=
11

1.22
 δ −  

 =
1.22 1

1.22
− δ   

 = 
0.22
1.22

δ×

δ* = 0.180 δ

or
*δ

δ  = 0.180

Similarly for momentum thickness: θ = 
0

1u u dy
U U

δ  −  ∫ ... (ii)

Substituting the value of
u
U

 =
0..22y 

 δ 
 in Eq. (ii), we get

=
0..22 0.22

0
1y y dy

δ     −       δ δ  
∫

=
0.22 0.44

0

y y dy
δ     −       δ δ  

∫

=
1.22 1.44

0.22 0.44
0

1 1· ·
1.22 1.44
y y

δ
 

− 
δ δ 
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=
1.22 1.44

0.22 0.44
1 1

1.22 1.44
δ δ

× − ×
δ δ

=
1.22 1.44

δ δ
−  = 1 1

1.22 1.44
 δ −  

 = δ[0.819 – 0.694]

θ = 0.125δ

or
θ
δ

 = 0.125

and energy thickness: δ** = 
2

20
1u u dy

U U
δ  

− 
 

∫ ... (iii)

Substituting the value of
u
U

 =
0.22y 

 δ 
 in Eq. (iii), we get

δ** =
0.22 0.44

0
1y y dy

δ     −       δ δ  
∫

=
0.22 0.66

0

y y dy
δ     −       δ δ  

∫

=
1.22 1.66

0.22 0.66
0

1 1
1.22 1.66
y y

δ
 

− × 
δ δ 

=
1.22 1.66

0.22 0.66
1 1

1.22 1.66
δ δ

× − ×
δ δ

= 1.22 1.66
δ δ

−

=
1 1

1.22 1.66
 δ −  

 = δ[0.819 – 0.602]

or δ** = δ × 0217

or
**δ
δ  = 0.217

Problem 3.4: Find the displacement thickness and momentum thickness in terms
of the normal boundary layer thickness δ in respect to the following velocity profile
in the boundary layer on a flat plate:

(i)
u
U

 = 
1
my 

 δ 
(ii) 

1
7

.u y
U

 =  δ 
where u = velocity at a height y above the surface of flat plate and

U = free stream velocity.
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Solution:
(i) Given:

Velocity profile: 
u
U

 = 
1
my 

 δ 
The displacement thickness:

δ* =
0

1 u dy
U

δ  −  ∫  = 
1/

0
1

my dy
δ   −   δ  

∫

 =

1 1

1

0

1 ·
1 1

m

m

yy

m

δ
+ 

 −   +δ     

 = 
1

1

0

1 ·
1

m
m

m

my y
m

δ+  −  +  δ 

=
1

1
1 ·

1

m
m

m

m
m

+  δ − δ  +  δ 
 = 

1 1

·
1

m
m mm

m

+
− δ − δ + 

=
1

m
m

 δ − δ + 

= 1
1

m
m

 − δ + 
 = 1

1
m m

m
+ − δ + 

 = 1
1

  δ  +m

The momentum thickness: θ = 
0

1 u u dy
U U

δ  −  ∫  = 
2

0

u u dy
U U

δ   −     
∫

 =
1 2

0

m my y dy
δ

 
    −       δ δ 

∫  = 
1 2

1 20

1 1m m

m m

y y dy
δ  

− 
 δ δ 

∫

=
1 1 2 2

0
m m m my y dy
− −

δ  
δ − δ  ∫

=

1 1 2 21 1

0

· ·
1 21 1

m m m my y

m m

δ
− −

+ +
 
 δ δ −

    + +        

=
1 1 2 2

1 2

m m
m m m mm m

m m

− + − +
   δ δ − δ δ   + +   

=
1 2

m m
m m

 δ − δ + + 
 = 

1 2
m m

m m
 − δ + + 

= ( 2) ( 1)
( 1)( 2)

m m m m
m m

 + − +
δ + + 

 = 
2 22
( 1)( 2)

m m m m
m m

 + − −
δ 

+ + 

θ =
( 1)( 2)

δ
+ +

m
m m
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(ii)Given:

Velocity profile:
u
U

= 
1
7y 

 δ 

The displacement thickness: δ* = 
0

1 u dy
U

δ  −  ∫  = 
1
7

0 1 y dy
δ  

  −    δ 
∫

 =

1
7

10
7

1 y dy
δ
 
 − 
 δ 

∫  = ( )1 1
7 70 1 dyy

δ −

− δ∫

=  

1 1 1
7 7

0

·
1 1
7

yy

δ
−

+
 
 δ −

  +    

=

1 8
7 7·
8
7

−

δ δ
δ −  = 

7
8

δ − δ

=
8
δ

The momentum thickness: θ =
0

1 u u dy
U U

δ  −  ∫  = 
11
77

0 1
yy dy

δ        −    δ  δ 
∫

=
1 2
7 7

0
y y dy

δ  
    −       δ δ 

∫

=  ( )1 1 2 2
7 7 7 70 · dyy y

δ − −

δ − δ∫

=

1 1 2 21 1
7 7 7 7

0

1 21 1
7 7

y y

δ
− −

+ +
 
 δ δ −

    + +        

=
1 8 2 9

7 7 7 77 7 ·
8 9

− − 
δ δ − δ δ 

 

θ =
7 7
8 9

δ − δ  = 1 17
8 9

 δ −  

θ =
9 87
72
− δ   

 = 
7 δ
72

3.7 DRAG FORCE ON A FLAT PLATE DUE TO BOUNDARY LAYER
As we know, the boundary layer (b.l.) is developed when liquid flows over flat plate.
Let a small length dx of a flat plate at a distance x from the leading edge O,
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x

dx

b.l.
y

O
x

d c

ba

O ′U dy
d

a b

c

τ0

dx

u

y

OO ′ = b.l.

(a) Drag force on a flat plate (b) Enlarged view of the
due to boundary layer  small length of plate

Fig. 3.14: Drag Force

as shown in Fig. 3.14(a), and the enlarged view shown in Fig. 3.14(b).
The shear stress exerted by the fluid on the flat plate: τ0

τ0 =
0

µ
y

du
dy =

 
  

where
0y

du
dy =

 
 
 

 is velocity gradient near the flat plate at y = 0.

∴ The shear force or drag force on a small length dx: dF0
dF0 = shear stress × surface area

= τ0dA
= τ0 dxb ... (3.7.1)  dA = dx·b

where b = width of flat plate, not shown in Fig. 3.14
Consider abcd is a control volume of the fluid over the distance dx as shown in

Fig. 3.14(b). The edge dc represents the outer edge of the boundary layer.
Let u = velocity at any point within the b.l.
The mass flow rate entering through face ad: mad

mad =
0

δ
ρ∫ × velocity × cross-section area of

strip of thickness dy

=
0

u bdy
δ
ρ∫

The mass flow rate leaving through face bc : mbc

mbc = ad adm m dx
x

∂
+ ×

∂

=
0 0

u bdy u bdy dx
x

δ δ∂  ρ + ρ  ∂∫ ∫
According to continuity equation for a steady and incompressible fluid flow;
The mass flow rate entering through face ad + mass flow rate entering through

face dc = mass flow rate leaving through face bc
mad + mdc = mbc

or mdc = mbc – mad
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 =
0 0 0

ubdy ubdy dx ubdy
x

δ δ δ∂  ρ + ρ − ρ  ∂∫ ∫ ∫

mdc =
0

ubdy dx
x

δ∂  ρ  ∂ ∫
Now find out momentum per second along x-axis:
The rate of change of momentum entering face ad:

= abm u× = 
0

ubdy u
δ
ρ ×∫  = 2

0
u bdy

δ
ρ∫

The rate of change of momentum leaving face bc:

= mbc × u = 2 2
0 0

u bdy u bdy dx
x

δ δ∂  ρ + ρ  ∂∫ ∫
The rate of change of momentum entering face dc:

 = mdc × U[ fluid entering through face dc with uniform velocity U]

=
0

·ubdy dx U
x

δ∂  ρ  ∂ ∫

=
0

·Uubdy dx U
x

δ∂  ρ  ∂ ∫ [ U = constant, it can be taken inside
the differential and integral for simplification]

Now the rate of change of momentum of the control volume = the rate of change
of momentum entering face ad + entering face dc – leaving face bc

 = 2 2 2
0 0 0 0

u bdy ubdy dx u bdy u bdy dx
x x

δ δ δ δ∂ ∂   ρ + ρ − ρ − ρ      ∂ ∂∫ ∫ ∫ ∫

= 2
0 0

Uubdy dx u bdy dx
x x

δ δ∂ ∂   ρ − ρ      ∂ ∂∫ ∫

= 2
0

( )Uub u b dy dx
x

δ∂  ρ − ρ  ∂ ∫

= 2
0

( )b Uu u dy dx
x

δ∂  ρ −  ∂ ∫  ρ and b are constant

=
2

2
20

u ub U dy dx
x U U

δ  ∂
ρ −  ∂    

∫

 =
2

2
20

u ubU dy dx
x U U

δ  ∂
ρ −  ∂    

∫

= 2
0

1 u ubU dy dx
x U U

δ∂   ρ −   ∂  
∫

= 2bU dx
x

∂θ
ρ

∂ ... (3.7.2)
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where θ = momentum thickness

=
0

1 u u dy
U U

δ  −  ∫
In the absence of any pressure and gravity forces the drag or shear force at the

flat plate surface must be balanced by the net rate of change of momentum of the
control volume.

i.e., Eq. (3.7.1) = Eq. (3.7.2)

t0dx · b = 2bU dx
x

∂θ
ρ ⋅

∂

τ0 = 2U
x

∂θ
ρ

∂

or 0
2

τ
ρU

 = ∂θ
∂x

... (3.7.3)

Equation (3.7.3) is known as Von-Karman momentum integral equation for
the hydrodynamic boundary layer over a flat plate.

From Eq. (10.7.3), the drag force on a small length dx: dFD = τ0 dx b
The total drag force on the plate of length l on one side: FD

FD = 0 00 0

l l
dF bdx= τ∫ ∫

Local skin friction coefficient (Cf ): It is defined as the ratio of the local wall

shear stress (τ0) to the dynamic pressure 21
2

U ρ 
 

 of the uniform flow stream-

Mathematically,
Local skin friction coefficient:

Cf =
Local wall shear stress

Dynamic pressure of the free stream

Cf =
0

21
2

U

τ

ρ
 = 0

21
2

y

duµ
dy

U

+=

 
  

ρ

The local skin friction coefficient is also local coefficient of drag.
Average skin friction coefficient ( )fC : It is defined as the ratio of the total

drag force (FD) to the dynamic force 21
2

AU ρ 
 

. It is also called average coefficient

of drag.
Mathematically,

fC  =
21

2

DF

AUρ
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where ρ = density of fluid
A = area of the plate
U = free stream velocity.

Drag force: FD
The force exerted by flowing fluid on a body in the direction of flow is called

drag force or simply drag. The drag force can be measured directly by simply
attaching the body subjected to fluid flow to a calibrated spring and measuring the
displacement in the flow direction.

3.8 ESTIMATION OF THE LAMINAR
BOUNDARY LAYER THICKNESS

For laminar boundary layer, the boundary layer thickness can easily be estimated as
follow:

In the laminar boundary layer, the inertia force and the friction force are same:
The inertia for per unit volume = the friction force per unit volume

ma
V

 =
A

V
τ ⋅

V du
V dt

ρ
 = µ du A

dy V

du
dt

ρ  =
1µ du

dy y
×

 =  
Vy
A



du
dx
du

ρ  = 2µ du
dy

2d u
dx

ρ  = 2µ du
dy

... (10.8.1)

where x is length of the plate,
u
x

∂
∂

 is proportional to 
U
x

where U is the velocity of free stream. The velocity gradient perpendicular to

the plate:
du
dy

 is proportional to 
U
δ

.

where δ is boundary layer thickness. Eq. (3.8.1) becomes
2U

x
ρ  = 2

uk ′µ
δ

where k′ is constant
U
x

ρ  = 2k µ
′
δ

or δ2 = k x
U

′ µ
ρ
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or δ = k x
U

′ µ
ρ

δ = xk
U

µ
′

ρ

δ = xk
U

µ
ρ

... (3.8.2)

where k is numerical constant factor. By exact analytical solution of boundary
layer equation found by H. Blasius (1908), is 5 (i.e., k = 5)

δ = 5 x x
U x

µ
×

ρ
 = 

2

5 x
Ux

µ
ρ

δ = 5x
Ux
µ

ρ

δ = 5 vx
Ux

 = 
5x
Ux
v

δ =
5
Rex

x
 Rex

Ux Ux
v

ρ
= =

µ

∴ δ =
5
Rex

x
... (3.8.3)

From Eq. (3.8.3), the following important conclusion can be drawn:
(i) At a given section along the plate length (i.e., x = constant), the boundary

layer thickness (δ) decrease with the increasing Reynolds number (Rex).
For a given fluid, Reynolds number will depend on the free stream velocity
(U). Thus for a high velocity flow, the boundary layer will be very thin. For
limiting case of frictionless flow (i.e., ideal fluid flow), with Rex = ∞, the
boundary layer thickness vanishes

(ii) For a given fluid flowing at a certain free stream velocity (i.e., v and U both
are constant), the boundary layer thickness (δ) increases in proportion to x1/
2. (i.e., δ ∝ x1/2)

Local drag coefficient: Cfx = 0

21
2

U

τ

ρ

As we know that the shear stress on the plate: τ0

τ0 = 1
0y

u UC
y =

 ∂
µ = µ ∂ δ 

... (3.8.4)
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Substituting the value of δ from Eq. (3.8.2) in above Eq. (3.8.4), we get

τ0 = 1
UC

xk
U

µ
µ
ρ

 = 1C UU
k x

ρ
µ

µ

τ0 =
3

2
UC
x

ρµ

where C2 = ,
C
k
′  another constant

Local drag coefficient: Cf =

3

2

21
2

UC
x

U

ρµ

ρ

Cf = 22C
Ux
µ

ρ

Cf = Rex

C
 constant: C = 2C2 ... (3.8.5)

In Eq. (3.8.5) the value of the constant of proportionality has been obtained
by H.Blasius by exact analytical solution for the laminar boundary layer
equations as 0.66 u. Thus Eq. (3.8.5) becomes

Cf =
0.664

Rex

Cf =
0

21
2

U

τ

ρ
 = 

0.664
Rex

... (3.8.6)

τ0 =
20.664

2 Rex

Uρ
 = 0.332 U Ux

Uxx

µ ρ
µρ

µ

τ0 = 0.332 Rex
U
x

µ

The total horizontal drag force (FD) on one side of the plate on which
laminar boundary layer is developed can be obtained as:

FD = 00

l
bdxτ∫

where b = width of the plate
l = length of the plate

Surface area of the plate: A = b.l.
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The average drag coefficient ( )fC  may be obtained as

fC  =
21

2

DF
bl

Uρ
 = 

21
2

DF

bl Uρ

fC  =
1.328

Rel

fC  =
1.328

Rel
 = 

21
2

DF

bl Uρ

or
21

2

DF

bl Uρ
 =

1.328
Rel

or FD =
21.328

2 Rel

bl Uρ

 =
2

0.664
Rel

bl Uρ
 = 0.664

Rel

bU Ulµ ρ
×

µ

FD = 0.664 ρ
µ ×

µ
UlbU

From the exact analytical solution of the boundary layer equations by H.
Blasius, the following expression for displacement thickness (δ*) and the
momentum thickness has been obtained.

*

x
δ

 =
1.729

Rex
and

x
θ

 = 
0.664

Rex

Problem 3.5: Find an expression for boundary layer thickness (δ), shear stress
(τ0), average coefficient of drag ( )fC  in terms of Reynolds number for the following
velocity profile for laminar boundary layer given as:

(i)
u
U

 = 
y
δ

(ii)
u
U

 = 
2

2 y y   −   δ δ   

(iii)
u
U

 =
33 1

2 2
y y   −   δ δ   

(iv)
u
U

 = 
3 4

2 2y y y     − +     δ δ δ     

(v)
u
U

 = sin .
2

yπ 
 δ 

Solution: Given:
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(i) The velocity profile:
u
U

 =
y
δ

... (i)

We know that the Von Karman momentum integral equation:

0
2U

τ
ρ

 =
x

∂θ
∂

where θ =
0

1u u dy
U U

δ  −  ∫

∴ 0
2U

τ
ρ

 =
0

1u u dy
x U U

δ∂   −   ∂  
∫

0
2U

τ
ρ

 =
0

1y y dy
x

δ∂   −   ∂ δ δ 
∫

=
2

20

y y dy
x

δ  ∂
−  ∂ δ δ   

∫

=
2 3

2
0

2 3
y y

x

δ
 ∂

− ∂ δ δ 
 = 

2 3

22 3x
 ∂ δ δ

− ∂ δ δ 

=
2 3x

∂ δ δ − ∂  
 = 

6x
∂ δ 

 ∂  

0
2U

τ
ρ

 =
1
6 x

∂δ
∂

or τ0 = 21
6

U
x

∂δ
δ

∂
... (ii)

Also the shear stress at the surface in laminar layer:

τ0 =
0y

du
dy =

 
µ 

 
... (iii)

From Equation (i), we get

u =
yU
δ

∴
u
y

∂
∂

 =
U
δ

or
0y

u
y =

 ∂
 ∂ 

 =
U
δ

Substituting this value in Eq. (iii), we get

τ0 =
U

µ
δ

... (iv)

Equating Eqs. (ii) and (iv), we get
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21
6

U
x

∂δ
ρ

∂
 =

U
µ

δ

or
x

∂δ
δ

∂
 = 26 U

U
µ
ρ

 = 6
U
µ

ρ

or δ∂δ = 6 dx
U
µ

ρ
As δ = f (x) only
Hence partial derivative can be changed to total derivative.

δdδ = 6 dx
U
µ

ρ
By integrating the above expression, we get

2

2
δ  = 6 x C

U
µ

+
ρ

constant
U

 µ
= ρ 



where C is constant of integration and its value is determined by boundary
condition at x = 0, δ = 0 and hence C = 0.

∴
2

2
δ

 = 6 x
U
µ

ρ

δ2 = 12 x
U
µ

ρ

δ = 12 x
U
µ

ρ
 = 3.464 x

U
µ
ρ

... (v)

δ = 3.464 x x
U x

µ
×

ρ
 = 

2

3.464 x
Ux

µ
ρ

δ =
2

3.464 x
Uxρ
µ

δ = 3.464 x
Uxρ
µ

 = 3.464
Rex

x
Rex

Ux ρ
=  µ 



δ = 3.464
Rex

x
... (vi)

It is clear from Eq. (v), as µ, ρ and U are constants hence d ∝ x  i.e.,
thickness of laminar boundary layer is directly proportional to square root
of the distance from the leading edge. Equation (vi) shows that the thickness
of laminar boundary layer is inversely proportional to the square root of
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Reynolds number.
Shear stress (τ0) in terms of Reynolds number Rex:
From Eq. (iv), the shear stress:

τ0 =
U

µ
δ

Substituting the value of δ from Eq. (vi) in above equation, we get

τ0 =
3.464

Rex

U
xµ  = 

Re1
3.464

xU
x

µ

τ0 =
Re

0.288
µ xU

x

Average coefficient of drag ( )fC in terms of Reynolds number:

By definition of average coefficient of drag: fC  = 
21

2

DF

AUρ
(A = bl)

fC  = 2
2 DF
blUρ

where FD = 00

l
bdxτ∫

=
0

Re
0.288

l xU
bdx

x
µ

⋅∫

=
0
0.288

l U Ux bdx
x

µ ρ
µ∫

=
0

0.288
lU xbU dx

x
ρ

µ
µ ∫

=
0

10.288
lUbU dx

x
ρ

µ
µ ∫

= 1/ 2
0

0.288
lUbU x dx−ρ

µ
µ ∫

=
1/ 2

0

0.288
1/ 2

l
U xbU

 ρ
µ  µ  

= 1/ 20.288 2UbU lρ  µ  µ

FD = 0.576 UlbU ρ
µ

µ
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∴ fC  = 2
2 0.576 bU Ul

blU
× µ ρ

µρ

= 1.152 Ul
lU

µ ρ
ρ µ

 = 1.152
lU
µ

ρ

fC  =
1.152

Rel
 Rel = lUρ

µ

(ii) Given velocity profile:
u
U

 = 
2

2 y y   −   δ δ   
... (vii)

We know, Von Karman momentum integral equation:

0
2U

τ
ρ

 =
x

∂θ
∂

where θ =
0

1u u dy
U U

δ  −  ∫

∴ 0
2U

τ
ρ

 =
0

1u u dy
x U U

δ∂   −   ∂  
∫

=
2 2

2 20

2 21y y y y dy
x

δ     ∂  − − −     ∂ δ δδ δ       
∫

=
2 2

2 20

2 21y y y y dy
x

δ    ∂
− − +    ∂ δ δδ δ     

∫

=
2 3 2 3 4

2 3 2 3 40

2 4 2 2y y y y y y dy
x

δ  ∂
− + − + −  ∂ δ δ δ δ δ δ   

∫

 =
2 3 4

2 3 40

2 5 4y y y y dy
x

δ  ∂
− + −  ∂ δ δ δ δ   

∫

=
2 3 4 5

2 3 4
0

2 5 4
2 3 4 5
y y y y

x

δ
 ∂

− + − ∂ δ δ δ δ 

=
2 3 4 5

2 3 4
5
3 5x

 ∂ δ δ δ δ
− + − ∂ δ δ δ δ 

=
x

∂
∂

[δ – 1.6666δ + δ – 0.2δ] = 
x

∂
∂

(0.1334δ)

0
2U

τ
ρ

 = 0.1334
x

∂δ
∂
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or τ0 = 20.1334 U
x

∂δ
ρ

∂
... (viii)

Also the shear stress at the surface in laminar layer:

τ0 =
0y

u
y =

 ∂
µ ∂ 

... (ix)

From Eq. (vii), we get

u =
2

2
2y yU

 
− δ δ 

∴
u
y

∂
∂

 = 2
2 2yU  − δ δ 

0y

u
y =

 ∂
 ∂ 

 = 2
2 2 0U × − δ δ 

 = 
2U
δ

Substituting this value in Eq. (ix), we get

τ0 =
2U

µ
δ

 = 
2 Uµ

δ
... (x)

Equating Eqs. (viii) and (x), we get

20.1334 U
x

∂δ
ρ

∂
 = 2 Uµ

δ

δ∂δ = 214.99 U x
U

µ
∂

ρ

δ∂δ = 14.99 U x
U

µ
∂

ρ
As δ = f (x) only
Hence partial derivative can be changed to total derivative.

δdδ = 14.99 dx
U
µ

ρ
By integrating the above expression, we get

2

2
δ

 = 14.99 x C
U

µ
+

ρ
x = 0, δ = 0 and hence C = 0

∴ δ2 = 29.98 x
U

µ
ρ

δ = 29.98 x
U

µ
ρ

 = 5.475 x
U

µ
ρ

δ = 5.48 x x
U x

µ
×

ρ
 = 

2

5.48 x
Ux

µ
ρ
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δ = 5.48 x
Uxρ
µ

 = 
5.48

Rex

x

δ =  
5.48

Rex

x
(xi)

Shear stress (τ0) in terms of Reynolds number:
From Eq. (x), the shear stress:

τ0 =
2 uµ

δ
Substituting the value of δ from Eq. (xi) in above equation, we get

τ0 = 2

5.48
Rex

u
x

µ  = 0.365 Rex
U
x

µ

τ0 = 0.365 Reµ
x

U
x

Average coefficient of drag ( )fC in terms of Reynolds number:

By definition of average coefficient of drag:

fC =
21

2

DF

AUρ
 = 2

2 DF
blUρ

 A = bl

where FD = 00

l
b dxτ∫

 =
0
0.365 Re

l
x

U bdx
x

µ
∫

=
0

0.365
l U Uxbdx

x
µ ρ

µ∫

=
0

10.365
l UU bdx

x
ρ

µ ×
µ∫

= 1/ 2
0

0.365
lUU b x dx−ρ

µ ×
µ ∫

=
1/ 2

0

0.365
1/ 2

l
U xU b

 ρ
µ ×  µ  

= 1/ 20.365 2UU b lρ
µ ×

µ
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FD = 0.73 UlUb ρ
µ

µ

∴ fC  = 2
2 0.73 Ub Ul

blU
× µ ρ

µρ

= 1.46 Ul
lU
µ ρ

ρ µ
 = 1.46

lU
µ

ρ

fC  =
1.46
Rel

 Rel
lUρ

=
µ

(iii) Given velocity profile:
33 1

2 2
u y y
U

 = −  δ δ 
... (xii)

We know, Von-Karman momentum integral equation:

0
2U

τ
ρ

 =
x

∂θ
∂

where θ =
0

1u u dy
U U

δ  −  ∫

∴ 0
2U

τ
ρ

 =
0

1u u dy
x U U

δ∂   −   ∂  
∫

=
3 3

0

3 1 3 11
2 2 2 2

y y y y dy
x

δ     ∂          − − −                  ∂ δ δ δ δ          
∫

=
3 3

3 30

3 31
2 22 2

y y y y dy
x

δ    ∂
− − +    ∂ δ δδ δ     

∫

=
2 4 3 4 6

2 4 3 4 60

3 9 3 3
2 4 2 2 4 4

y y y y y y dy
x

δ  ∂
− + − + −  ∂ δ δ δ δ δ δ   

∫

=
2 3 5 4 5 2

2 4 3 4 6
0

3 9 3 3
2 2 3 4 5 4 4 2 5 4 7 4

y y y y y y
x

δ
 ∂

− + − + − ∂ × δ × δ × δ × δ × δ × δ 

=
2 3 5 4 5 7

2 4 3 4 6
3 3 3 1 3 1
4 20 8 20 284x

 ∂ δ δ δ δ δ δ
− + − + − ∂ δ δ δ δ δ δ 

= 3 3 3 1 3 1
4 4 20 8 20 28x

∂  δ − δ + δ − δ + δ − δ ∂  

0
2U

τ
ρ

 = 6 1 1
20 8 28x

∂  δ − δ − δ ∂  
 = 84 35 10

280x
∂δ − − 

 ∂  
 = 

39
280 x

∂δ
∂

or τ0 = 2 39
280

U
x

∂δ
ρ ×

∂
 = 239

280
U

x
∂δ

ρ
∂

... (xiii)



Fluid Mechanics150

Also the shear stress at the surface in laminar layer:

τ0 =
0y

du
dy =

 
µ 

 
... (xiv)

From Eq. (xii), we get

u =
3

3
3
2 8 2

y yU
 

− 
δ 

∴
du
dy

 =
2

3
3 3

2 2
yU

 
− δ δ 

Hence
0y

du
dy =

 
 
 

 = 3
3 3 30

2 22
UU  − × = δ δδ 

∴ τ0 =
0y

du
dy =

 
µ 

 
 =

3
2
U

µ
δ

 = 
3
2

Uµ
δ

... (xv)

Equating Eqs. (xiii) and (xv), we get

239
280

U
x

∂δ
ρ

∂
 =

3
2

Uµ
δ

∴ δ∂δ = 2
3 80 1
2 39

U x
U

2
µ × × ∂

ρ
 = 420

39
x

U
µ

∂
ρ

On integrating above equation, we get
2

2
δ  = 420

39
x C

U
µ

+
ρ

where x = 0, δ = 0, ∴ C = 0

∴
2

2
δ  = 420

39
x

U
µ

⋅
ρ

or δ =
420 2

39
x
U

× µ
ρ

= 4.64 x
Ux
µ

ρ
 = 4.64 x x

Ux
µ ×
ρ

δ = 4.64 x
Ux
µ

ρ
= 

4.64
Rex

x

δ =
4.64

Rex

x
... (xvi)

Shear stress (τ0) in terms of Reynolds number:
From equation (xv), the shear stress:

τ0 =
3
2

Uµ
δ
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Substituting the value of δ from Eq. (xvi) in above equation, we get

τ0 = 3
4.642

Rex

U
x

µ  = 
3

9.28
RexU

x
µ

τ0 = 0.323 Rex
U
x

µ

Average coefficient of drag ( )fC in terms of Reynolds number:
By definition of average coefficient of drag:

fC  =
21

2

DF

AUρ
 = 2

2 DF
blUρ

 A = bl

where FD = 00

l
bdxτ∫

=
0
0.323 Re

l
x

U bdx
x

µ
∫

=
0

0.323
l U Ux b dx

x
µ ρ

× ×
µ∫

=
0

10.323
lUU b dx

x
ρ

µ ×
µ ∫

= 1/ 2
0

0.323
lUU b x dx−ρ

µ ×
µ ∫

=
1/ 2

0

0.323 1
2

l
xUU b

 ρ  µ ×
 µ
 

= 0.323 2 [ ]UU b lρ
× µ ×

µ

FD = 0.646 UlUb ρ
µ

µ

∴ fC  = 2
2 0.646 Ub Ul

blU
× µ ρ

µρ

= 1.292 Ul
lU
µ ρ

ρ µ
 = 1.292

lU
µ

ρ

fC  =
1.292

Rel

(iv) Given velocity profile: 
3 4

3 4
2 2u y y y

U
= − +

δ δ δ
... (xvii)
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We know, Von-Karman momentum integral equation:

0
2U

τ
ρ

 =
x

∂θ
∂

where θ =
0

1u u dy
U U

δ  −  ∫

∴ 0
2U

τ
ρ

 =
0

1u u dy
x U U

δ∂   −   ∂  
∫

=
3 4 3 4

3 4 3 40

2 2 2 21y y y y y y dy
x

δ     ∂
− + − − +    ∂ δ δδ δ δ δ      

∫

=
3 4 3 4

3 4 3 40

2 2 2 21y y y y y y dy
x

δ    ∂
− + − + −    ∂ δ δδ δ δ δ     

∫

=
2 4 5 3 4 6

2 4 5 3 4 60

2 4 4 2 2 4 4y y y y y y y
x

δ ∂
− + − − + − + ∂ δ δ δ δ δ δ δ

∫
7 4 5 7 8

7 4 5 7 8
2 2 2y y y y y dy


+ − + − δ δ δ δ δ  

=
2 3 4 5 6 7 8

2 3 4 5 6 7 80

2 4 2 9 4 4 4y y y y y y y y dy
x

δ  ∂
− − + − − + −  ∂ δ δ δ δ δ δ δ δ   

∫

=
2 3 4 5 6 7 8 9

2 3 4 5 6 7 8
0

2 4 2 9 4 4 4
2 3 4 5 6 7 8 9
y y y y y y y y

x

δ
 ∂

− − + − − + − ∂ δ δ δ δ δ δ δ δ 

= 4 9 2 4 1
3 5 3 7 9x

∂  δ − δ + δ − δ − δ − δ ∂  

= 315 420 63 9 210 45 4 35
315x

∂ − + × − − × −  δ ∂  

= 315 420 567 210 180 35
315x

∂ − + − − −  δ ∂  

0
2U

τ
ρ

 = 882 845
315x

∂ −  δ ∂  
 = 37

315x
∂   δ ∂  

 = 
37
315 x

∂δ
∂

or τ0 = 237
315

U
x

∂δ
ρ

∂
... (xviii)

Also the shear stress at the surface in laminar layer:

τ0 =
0y

u
y =

 ∂
µ ∂ 

... (xix)
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From Eq. (xvii), we get

u =
3 4

3 4
2 2y y yU

 
− + 

δ δ δ 

∴
u
y

∂
∂

 =
3

2 4
2 4 4y yU

 
− − δ δ δ 

0y

u
y =

 ∂
 ∂ 

 = 2 4
2 4 4(0) (0)U  − − δ δ δ 

 = 
2U
δ

∴ τ0 =
0y

u
y =

 ∂
µ ∂ 

 =
2U

µ×
δ

 = 
2Uµ

δ

τ0 =
2Uµ

δ
... (xx)

Equating Eqs. (xviii) and (xx), we get

237
315

U
x

∂δ
ρ

∂
 =

2Uµ
δ

or δ∂δ = 2
315 2
37

U dx
U

µ
×

ρ
 = 630

37
dx

U
µ

ρ

As δ = f (x) only
Hence partial derivative can be changed to total derivative

δdδ = 630
37

dx
U
µ

ρ
By integrating the above expression, we get

2

2
δ  = 630

37
x C

U
µ

+
ρ

where C = constant of integration As x = 0, δ = 0 and hence C = 0
2

2
δ  = 630

37
x

U
µ

ρ

δ = 630 2
37

x
U

× µ
ρ

 = 5.84 x
U

µ
ρ

= 5.84 x x
Ux

µ ×
ρ

 = 5.84 x
Ux
µ

×
ρ

δ =
5.84

Rex

x
... (xxi)

Shear stress (τ0) in terms of Reynolds number:
From Eq. (xx), the shear stress:
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τ0 =
2Uµ

δ
Substituting the value of δ from Eq. (xxi) in above equation, we get

τ0 = 2
5.84

Rex

U
x

µ  = 
2

5.84 Rex

U
x

µ

τ0 = 0.34 Rex
U
x

µ

Average coefficient of drag ( )fC in terms of Reynolds number:

By definition of average coefficient of drag:

fC  =
21

2

DF

AUρ
 = 2

2 DF
blUρ

 A = bl

where FD = 00

l
bdxτ∫

=
0
0.34 Re

l
x

U bdx
x
µ

∫

=
0
0.34

l U Uxbdx
x
µ ρ

µ∫

=
0

10.34
lUU b dx

x
ρ

µ ×
µ ∫

= 1/ 2
0

0.34
lUUb x dx−ρ

µ
µ ∫

=
1/ 2

0

0.34 1
2

l
xUUb

 ρ  µ
 µ
 

= 0.34 2 UUb lρ
× µ

µ

FD = 0.68 UlUb ρ
µ

µ

∴ fC  = 2
2 0.68 Ub Ul

blU
× µ ρ

µρ

= 1.36 Ul
Ul
µ ρ

× ×
ρ µ

 = 1.36 1
Ul
x

×
ρ
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∴ fC  =
1.36
Rex

(v) Given velocity profile: sin
2

u y
U

π =  δ 
... (xxii)

We know, Von-Karman momentum integral equation:

0
2U

τ
ρ

 =
x

∂θ
∂

where θ =
0

1u u dy
U U

δ  −  ∫

∴ 0
2U

τ
ρ

 =
0

1u u dy
x U U

δ∂   −   ∂  
∫

=
0

1u u dy
x U U

δ∂   −   ∂  
∫

=
0

sin 1 sin
2 2

y y dy
x

δ ∂ π  π    − ⋅        ∂ δ δ  
∫

= 2
0

sin sin
2 2

y y dy
x

δ ∂  π π    −        ∂ δ δ  
∫

=

0

1 sin 2cos 22 2

4
2 2 2

yy y

x

δ
  π  π π − ×    ∂ δ δ 2δ  − − π π π∂     ×   δ δ δ    

2

1 sin 2
22 2sin

2 4
2 2

yy
y dy

 π  π
×   π δ   δ = −  π πδ   × δ δ 

∫

0
2U

τ
ρ

 =

0 1cos cos
2 2 2 2 0

2 2 2
x

 π δ π π δ    − × ×    ∂ δ δ δ+ − −    π π π∂         δ δ δ    

0
2U

τ
ρ

 = 1 40

2 2
x

  π       ∂    + − π π∂        δ δ    

 = 2 2
4x

∂ δ π δ − × ∂ π π 

0
2U

τ
ρ

 = 2 4 4
2 2 2x x x

∂ δ δ ∂ − π − π ∂δ     − = δ =     ∂ π ∂ π π ∂     
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or τ0 = 24
2

U
x

− π ∂δ ρ π ∂ 
... (xxiii)

Also the shear stress at the surface in laminar layer:

τ0 =
0y

u
y =

 ∂
µ ∂ 

... (xxiv)

From Eq. (xxii), we get

u = sin
2

yU π 
  δ

u
y

∂
∂

 = cos
2 2

yU π π × δ δ 

0y

u
y =

 ∂
 ∂ 

 = 0cos
2 2

U π π × δ δ 

= cos 0
2

U π
δ

 cos 0° = 1

=
2

U π
δ

∴ τ0 =
0y

u
y =

 ∂
µ ∂ 

 = 
2
U π

µ
δ

τ0 =
2
Uµ π
δ

... (xxv)

Equating Eqs. (xxiii) and (xxv), we get

24
2

U
x

− π ∂δ ρ π ∂ 
 =

2
U π

µ
δ

δ∂δ = 2
2 1

3 (4 )
U x

U
µ π π

× × ∂
− π ρ

∴ δ∂δ =
2

2(4 )
U x
U

π µ
∂

− π ρ

δ∂δ = 11.4975 x
U
µ

∂
ρ

As δ = f (x) only
Hence partial derivative can be changed to total derivative.

δdδ = 11.4975 dx
U
µ

ρ
By integrating the above expression, we get

2

2
δ  = 11.4975 x C

U
µ

+
ρ

where C = constant of integration



Boundary Layer Theory 157

At x = 0, δ = 0 and hence C = 0

∴
2

2
δ  = 11.4975 x

U
µ

ρ

δ  = 2 11.4975 x
U
µ

×
ρ

 = 4.795 x
U
µ

ρ

= 4.795 4.795
xx x

U x Ux
µ µ

× = ×
ρ ρ

= 4.795x
Uxρ
µ

δ =
4.795

Rex

x
... (xxvi)

Shear stress (τ0) in terms of Reynolds number:
From Eq. (xxv), the shear stress:

τ0 =
2
Uµ π
δ

Substituting the value of δ from Eq. (xxvi) in above equation, we get

τ0 = 4.7952
Rex

U
x

µ π

×
 = 

Re
2 4.795

xU
x

µ π
×

= 3.14
Re

2 4.795 x
U
x

µ
×

×

τ0 =
μ0.327 Re
x x
U

Average coefficient of drag ( )fC  in terms of Reynolds number:
By definition of average coefficient of drag:

fC  =
21

2

DF

AUρ
 = 2

2 DF
blUρ

where FD = 00

l
bdxτ∫

=
0
0.327 Re

l
x

U bdx
x

µ
×∫

=
0

1
0.327

l UxbU dx
x

ρ
µ ×

µ∫

= 1/ 2
0

0.327
lUUb x dx−ρ

µ
µ ∫
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=
1/ 2

0

0.327 1
2

l
xUbU

 ρ  µ
 µ
 

= 0.327 2 UbU lρ
× µ

µ

FD = 0.655 UlbU ρ
µ

µ

∴ fC  = 2
2 0.655 bU Ul

blU
× µ ρ

×
µρ

= 1.31 Ul
Ul
µ ρ

×
ρ µ

 = 1.31
Ul
µ

×
ρ

 = 1.31
Ulρ
µ

fC  =
1.31
Rel

Table 3.1 Shows the values of boundary layer thickness (δ), shear stress
(τ0) and coefficient of drag ( )fC in terms of Reynolds number for
various velocity profiles:

S. Velocity Profile Boundary Shear Coeff- Drag
Layer Stress: icient Force:

No. Thickness: τ 0 of Drag: FD

δ fC

1. u y
U

=
δ

3.464
Rex

x
0.288 Rex

U
x

µ 1.152
Rel

0.576 UlbU ρ
µ

µ

2.
2

2u y y
U

   = −   δ δ   

5.48
Rex

x
0.365 Rex

U
x

µ 1.46
Rel

0.73 UlbU ρ
µ

µ

3.
33 1

2 2
u y y
U

   = −   δ δ   

4.64
Rex

x
0.323 Rex

U
x

µ 1.292
Rel

0.646 UlbU ρ
µ

µ

4.
3 4

2 2u y y y
U

     = − +     δ δ δ     
5.84

Rex

x 0.34 Rex
U
x

µ 1.36
Rel

0.68 UlbU ρ
µ

µ

5. sin
2

u y
U

π =   δ
4.795

Rex

x
0.327 Rex

U
x

µ 1.31
Rel

0.655 UlbU ρ
µ

µ

6. Blasius’s solution
5
Rex

x
0.332 Rex

U
x

µ 1.328
Rel

0.664 UlbU ρ
µ

µ
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Problem 3.6: Find the thickness of the boundary layer at the end of the flat plate
and the drag force on one side of a plate 0.9 m long and 0.6 m wide when placed in
water flowing with a velocity of 0.12 m/s. Find also the value of coefficient of drag.
For the following velocity profiles:

(i)
u y
U

=
δ

(ii)
2

2u y y
U

   = −   δ δ   
Take dynamic viscosity for water = 0.011 poise.
Solution: Given data:

Length of plate:  l = 0.9 m
Width of plate:  b = 0.6 m
Velocity of water: U = 0.12 m/s

Dynamics of viscosity: µ = 0.011 poise = 20.011 N.s/m
10

 = 0.0011 Ns/m2

Reynolds number at the end of the plate i.e., at a distance of 0.9 m from the
leading edge is given by,

Rel =
Ulρ
µ

 =
1000 0.12 0.9

0.0011
× ×

 = 98181.81

As we know that the laminar boundary layer exists up to Reynolds number = 3
× 105. Hence given data for laminar boundary layer:

(i) Given velocity profile:
u
U

 = 
y
δ

We know that the thickness of boundary layer for given velocity profile at
x = 0.9 m:

δ =
3.464

Rex

x
 = 3.464 0.9

98181.81
×

= 9.95 × 10–3 m = 9.95 mm
The drag force on one side of the plate: FD

FD = 0.576 UlbU ρ
µ

µ

= 0.576 × 0.0011 × 0.6 × 0.12 × 98181.81
= 0.01429 N = 14.29 kN

Coefficient of drag:

fC  =
1.152

Rel
 = 1.152

98181.81
 = 3.676 × 10–3 = 0.00367

(ii) Given velocity profile: 
2

2u y y
U

   = −   δ δ   
We know that the thickness of boundary layer for given velocity profile:
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δ =
5.48

Rex

x

=
5.48 0.9
98181.81

×
 = 0.01574 m = 15.74 mm

The drag force on one side of the plate: FD

FD = 0.73 UlbU ρ
µ

µ

= 0.73 × 0.0011 × 0.6 × 0.12 × 98181.81
= 0.018116 N = 18.116 kN

Coefficient of drag:

fC  =
1.46
Rel

 = 1.46
98181.81

= 3.1914 × 10–3 = 0.00319

Problem 3.7: Air is flowing over a smooth flat plate with a velocity of 8 m/s. The
length of the plate is 1.5 m and with 0.7 m. If laminar boundary layer exists upto the
value of Re = 3 × 105, find the maximum distance from the leading edge upto which
laminar boundary layer exists. Find also the maximum thickness of laminar boundary
layer if the velocity profile is given as

u
U

 =
2 4

2 2y y y     − +     δ δ δ     
Take kinematic viscosity for air = 0.14 stokes.

Solution: Given data:
Velocity of air: U = 9 m/s
Length of plate:  l = 1.5 m
Width of plate: b = 0.7 m
Reynolds number: Re = 3 × 105 upto which laminar b.l. exists
Kinematic viscosity: v = 0.14 stokes or cm2/s

= 0.14 × 10–4 m2/s
Now

We know, Reynolds number: Rex =
Uxρ
µ

 = Ux
v

where x = distance from the leading edge at which Reynolds number is 3 × 105.

∴ 3 × 105 = 4
9

0.14 10
x

−

×
×

or x = 0.46666 m = 466.66 mm
The maximum thickness of the laminar boundary for given velocity profile:

δ =
5.84

Rex

x
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=
5

5.84 0.466

3 10

×

×
 = 0.004968 m = 4.96 mm

Problem 3.8: Air is flowing over a flat plate 600 mm long and 500 mm wide with
a velocity of 4 m/s. The kinematic viscosity of air is given as 0.15 stokes. Find (i) the
boundary layer thickness at the end of the plate, (ii) shear stress at 150 mm from the
leading edge, and (iii) drag force one side of the plate if the velocity profile is given by

u
U

 = sin
2

yπ 
 δ 

Take density of air is 1.23 kg/m3.
Solution: Given data:

Length of plate: l = 600 mm = 0.6 m
Width of plate: b = 500 mm = 0.5 m
Velocity of air: U = 4 m/s
Kinematic viscosity: v = 0.15 stokes or cm2/s = 0.15 × 10–4 m2/s
Density of air: ρ = 1.23 kg/m3

Reynolds number at the end of the plate i.e., at a distance of 0.6 m from the
leading edge is given by

Rel =
Ulρ
µ

 =
Ul
ν

 = 4
4 0.6

0.15 10−

×
×

= 16 × 104

As we know that the laminar boundary layer exists upto Reynolds number is 3
× 105. Hence given data shows that the laminar boundary layer is maintained on the
whole length of flat plate.

For given velocity profile:
u
U

 = sin
2

yπ 
 δ 

We know that the thickness of boundary layer for a given velocity profile at x
= l = 0.6 m

δ =
4.795

Rex

x
 = 4.795 0.6

160000
×  = 0.00719 m = 7.19 mm

The shear stress at any distance from leading edge for given profile: τ0

τ0 = 0.327 Rex
U
x

µ

At x = 150 mm = 0.15 m

Rex =
Ux
v

 = 4
4 0.15

0.15 10−

×
×

 = 40000

∴ τ0 =
0.327 4

40000
0.15

v× ρ ×
×  µ = vρ

=
40.327 0.15 10 1.23 4 40000

0.15

−× × × ×
×
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= 0.03217 N/m2 = 31.17 kN/m2

Drag force on one side of the plate for given velocity profile: FD

FD = 0.655 UlbU ρ
µ ×

µ
 = 0.655 Ulv bU

v
ρ ×

= 0.655 × 0.15 × 10–4 × 1.23 × 0.5 × 4 Rel

= 52.416 10 160000−× ×  = 0.00966 N = 9.66 kN

Problem 3.9: A thin plate is moving in still atmospheric air at a velocity of 4.5 m/s.
The length of the plate is 0.7 m and width 0.6 m. Find:

(i) Thickness of boundary layer at the end of the plate, and
(ii) Drag force on both sides of the plate.

Take density and kinematic viscosity of air as 1.24 kg/m3 and 0.15 stokes
respectively.

Solution: Given data:
Velocity of plate: U = 4.5 m/s
Length of plate: l = 0.7 m
Width of plate: b = 0.6 m
Density of air: ρ = 1.24 kg/m3

Kinematic viscosity: v = 0.15 stokes or cm2/s = 0.15 × 10–4 m2/s

Reynolds number: Re =
Ul
v

 = 4
4.5 0.7

0.15 10−

×
×

 = 210000

It is clear, Re < 3 × 105, hence boundary layer is laminar over the whole length
of the plate.

(i) Thickness of boundary layer at the end of the plate by Blasius’s solution is

δ =
5
Rex

x
 = 5 0.7

210000
×  = 0.00763 m = 7.63 mm

(ii) Drag force on both sides of the plate: 2FD
Drag force on one side of the plate: FD

FD = 0.664 UlbU ρ
µ

µ
from Blasius’s solution

= 0.664 RelbUµ  = 0.664 RelbU× ρν

= 0.664 × 1.28 × 0.15 × 10–4 × 0.6 × 4.5 × 210000
Re Rex l=

= 0.01577 N = 15.77 kN
∴ Drag force on both sides of the plate:

= 2FD = 2 × 15.77 kN = 31.54 kN
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 Problem 3.10: A viscous fluid flows over a flat plate such that the boundary layer
thickness at a diameter 1.3 m from the leading edge is 12 mm. Assuming the flow to
be laminar, determine the boundary layer thickness at a distance of (i) 0.2 m, (ii) 2
m, and (iii) 10 m from the leading edge.
Solution: Given data:

x = 1.3 m

δ  = 12 mm = 0.012 m

We know that the boundary layer thickness for laminar boundary layer is

δ  =
5
Rex

x

where x is the distance from the leading edge.

∴ 0.012 = 5 1.3
Rex

×  = 1 2
5 1.3
Rex

×

or 1 2Rex  =
5 1.3
0.012

×
 = 541.66

or Rex = 293402.77

also Rex = Uxρ
µ

∴ 293402.77 = 1.3Uρ
×

µ

or Uρ
µ

 = 225694.43

(i) x1 = 0.2 m

Re1 = 1Uxρ
µ

  assuming ρ, U, and µ  are constant

 = 225694.43 × 0.2 = 45138.88
Therefore, the boundary layer thickness at x1 = 0.2 m becomes

δ1 = 1

1

5
Re
x

 = 
5 0.2

45138.88
×

= 4.706 × 10-3 m = 4.706 mm
(ii) x2 = 2 m

Re2 = 2U xρ
µ

 = 225694.43 × 2 = 451388.86

Therefore, the boundary layer thickness at x2 = 2 m becomes
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δ2 =  
2

2

5
Re
x

 =
5 2

451388.86
×

= 0.01488 m = 14.88 mm
(iii) x3 = 10 m

Re3 = 3Uxρ
µ

 = 225694.43 × 10 = 2256944.3

Therefore, the boundary layer thickness at x2 = 10 m becomes

δ3 =
3

3

5
Re
x

 = 
5 10

2256944.3
×

 = 0.03328 m = 33.28 mm

3.9 TURBULENT BOUNDARY LAYER ON A FLAT PLATE
As we know turbulent boundary layer exists next to transition boundary layer at which
the Reynolds number (Re) > 5 × 105. In this boundary layer, the fluid flows in zig-
zag manner. The turbulent boundary layer is thicker than transition boundary layer and
transition boundary layer is thicker that laminar boundary layer thickness (i.e., the
boundary layer thickness increases from leading edge to the direction of flow, hence
turbulent boundary layer thickness > transition b.l. thickness > laminar b.l. thickness).
The velocity distribution in a turbulent boundary layer follows a logarithmic law (i.e.,
u ∝ logey), which can also be represented by a power law as:

u
U

 =
ny 

 δ 

where the value of the exponent n =
1
7

 for Reynolds number Rel
Ul =  ν

 ranging from

5 × 105 to 107 over a flat plate.

∴
u
U

 =
1/ 7y 

 δ 
... (3.9.1)

u = 1/ 7
1/ 7
U y

δ
Differentiating above equation w.r.t. y, we get

du
dy

 = 1/ 7 1
1/ 7

1
7

U y −

δ

du
dy

 = 6/ 7
1/ 7

1
7

U y−

δ

du
dy

 = 1/ 7 6 / 7
1
7

U
yδ
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0y

du
dy =

 
  

 =
1
0

= ∞

Hence Eq. (3.9.1) cannot be applied at the surface of plate because 
0y

du
dy =

 
 
 

= ∞.

However, immediately adjacent to the surface of plate, there is laminar sublayer, which
is so thin that its velocity profile may be taken as linear and tangential to the ‘seventh
root’ profile at the point where the laminar sublayer merges with the turbulent part of
the boundary layer.

For turbulent boundary layer:

Boundary layer thickness:δ = 1/ 5
0.376

Rex

x
... (3.9.2)

δ = 1/ 5
0.376x
Ux
v

 
  

 = 1/ 5
1/5

0.376
( / )

x x
U v

−⋅  = 
4 / 5

1/ 5
0.376
( / )

x
U v

At constant values of U and v.

δ ∝ x4/5

As we know that in laminar boundary layer, δ ∝ x1/2, but in case of turbulent
boundary layer, δ ∝ x4/5. Hence the turbulent boundary layer thickness increases faster
than that of laminar boundary layer thickness.

Remember some other expressions for turbulent boundary layer:

Average coefficient of drag: fC  = 1/5
0.074

xeR

Local coefficient of drag: Cf = 1/ 5
0.059
Rex

Average coefficient proposed by Prandtl as

fC  = 1/ 5
0.074
Rel

– 
Rel

C ... (3.9.3)

where constant C in Eq. (3.9.3) depends on the value of the Reynolds number
(Rex) at which the laminar boundary layer becomes turbulent. The values of C for
various values of critical Reynold’s number are as given below:

S. No. Critical Reynold’s Constant: C
Number: Rex

1 3 × 105 1050
2 5 × 105 1700
3 106 3300
4 3 × 106 8700
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In maximum cases the value of critical Reynolds number (Rex) may be taken as
5 × 105 and hence C = 1700, Eq. (3.9.3) then becomes

fC  = 1/ 5
0.074 1700

ReRe ll

−

Problem 3.11: Find the thickness of the boundary layer at the trailing edge of a
smooth plate of length 5 m and a width 1.2 m, when the plate is moving with a moving
of 5 m/s in stationary air. Take kinematic viscosity of air as 0.11 stokes.
Solution: Given data:

Length of plate: l = 5 m
Width of plate: b = 1.2 m
Velocity of plate: U = 5 m/s
Kinematic viscosity: v = 0.11 stokes = 0.11 × 10–4 m2/s

Reynolds number: Rel =
Ul
v  = 4

5 5
0.11 10−

×
×

 = 227.27 × 104

As the Reynolds number is more than 5 × 105 and hence the boundary layer at
the trailing edge is turbulent.

The boundary layer thickness for turbulent b.l.: δ

δ = 1/5
0.376
Rex

x
 = 4 1/ 5

0.376 5
(227.27 10 )

×
×

 x = l, Rex= Rel

= 0.10065 m = 100.65 mm

Problem 3.12: It is required to determine the frictional drag of a submarine. The
length of the hull is 75 m and its surface area is 3000 m2. The submarine is travelling
at a constant speed of 5 m/s. Critical Reynolds number at which the flow in the
boundary layer changes from laminar to turbulent is 5 × 105. Assuming that the
boundary layer at the leading edge is laminar, obtain the frictional drag and
the power required to propel the submarine at 5 m/s. Take kinematic viscosity = 0.01
stokes and density = 1000 kg/m3.
Solution: Given data:

Length of the hull:  l = 75 m
Surface area: A = 3000 m2

Speed of submarine: U = 5 m/s
Critical Reynolds number: Rec = 3 × 105

Kinematic viscosity: v = 0.01 stokes or cm2/s = 0.01 × 10–4 m2/s
Density: ρ = 1000 kg/m3

Reynolds number: Rel =
Ul
ν

 = 4
5 75

0.01 10−

×
×

 = 3.75 × 108

Since at leading edge b.l. is laminar, it changes from laminar to turbulent on the
surface of the submarine

At critical Reynolds number: Rec  = 5 × 105
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Average drag coefficient: fC  = 1/ 5
0.074

(Re )l

– 1700
Rel

= 8 1/ 5
0.074

(3.75 10 )×
– 8

1700
3.75 10×

 = 1.422 × 10–3

The frictional drag: FD =
2

2f
UC Aρ

= 1.422 × 10–3 × 1000 × 3000 × 
2(5)

2
= 53325 N = 53.325 kN

Power required: P = FD · U = 53.325 × 5 = 266.625 kW

Problem 3.13: Oil with a free stream velocity of 2 m/s flows over a thin plate 2
m wide and 2 m long. Calculate the boundary layer thickness and the shear stress at
the trailing end point and determine the total surface resistance of the plate. Take
specific gravity as 0.86 and kinematic viscosity as 10–5 m2/s.
Solution: Given data:

Free stream velocity of oil: U = 2 m/s
Width of plate: b = 2 m
Length of plate: l = 2 m
∴ Area of plate: A = b × l = 2 × 2 = 4 m2

Specific gravity of oil: S = 0.86
∴ Density of oil: ρ = 0.86 × 1000 = 860 kg/m3

Kinematic viscosity: v = 10–5 m2/s
Now the Reynolds number at the trailing end:

Rel = Ul
v

 = 5
2 2
10−

×  = 4 × 105.

Since Rel is less than 5 × 105, the boundary layer is laminar over the entire length
of the plate.

∴ Thickness of boundary layer at the end of the plate from Blasius’s solution is:

δ =
5
Rex

x
Here x = l, Rex = Rel

= 5

5 2

4 10

×

×
 = .01581 m = 15.81 mm

Shear stress at the end of the plate: τ0

τ0 = 0.332 Rex
U
x

µ  = 0.332 Rex
v U

x
ρ

×

=
5

50 860 20.332 4 10
2

−1 × ×
× × ×  = 1.805 N/m2

Surface resistance on one side of the plate: FD

FD = 21
2 fC AUρ
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where fC =
1.328

Rel
 =

5

1.328

4 10×
 = 0.0021

∴ FD = 21 0.0021 860 4 (2)
2

× × × ×  = 14.448 N

∴  Total resistance = 2FD = 2 × 14.448 = 28.896 N

 Problem 3.14: Calculate the friction drag on a plate 15 cm wide and 45 cm long
placed longitudinal in a stream of oil specific gravity 0.90 m and kinematic viscosity
= 0.90 stokes, flowing with a free stream velocity of 6 m/s. Also, find out of the
thickness of the boundary layer and shear stress at the trailing edge.
Solution: Given Data:

Width : b = 15 cm = 0.15 m
Length : l = 45 cm = 0.45 m

∴ Area of plate : A = b × l
= 0.15 × 0.45
= 0.0675 m2

Specific gravity : S = 0.90
∴ Density of oil : ρ = 1000 S

= 1000 × 0.90 kg/m3

= 900 kg/m3

Kinematic viscosity: ν = 0.90 stokes
= 0.90 × 10–4 m2/s

Free stream velocity: U = 6 m/s

Reynolds number at end of the place: Rel = 
Ulρ
µ

 = 
Ul
ν

= 4
6 0.45

0.90 10−

×

×
 = 3 × 104

As we know that the laminar boundary layer exist upto Reynolds number is
3 × 105. Hence, given data shows that the laminar boundary layer is maintained on
the whole length of flat plate. Therefore, the skin friction coefficient is

fC  =
1.328

Re l
 = 

4

1.325

3 10×
 = 0.00764

Friction drag on a plate : FD = 21
2 fC AUρ

=
1
2 × 0.00764 × 900 × 0.0675 × (6)2
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= 8.35 N
∴ Total friction drag = 2 FD = 2 × 8.35 = 16.7 N
The boundary layer thickness at the trailing edge of the plate is

δ =
5
Rel

l
 = 

4

5 0.45

3 10

×

×

= 0.01299 mm = 12.99 mm

≈ 13 mm
Shear stress at the starling edge,

τo = 0.332 Rel
U
l

µ

= 0.332 Rel
U

l
νρ

= 0.332
4

40.90 10 900 3 10
0.45

−× ×
× ×  = 10.35 N/m2

3.10 BOUNDARY LAYER ON ROUGH SURFACES
In previous sections the development of the boundary layer along smooth plates has
been considered. However, in most practical applications related with boundary layer
development on solid boundary such as airplane wings, turbine blades etc., the surface
cannot be considered smooth. For a rough plate if k is the average height of roughness
projections on the surface of the plate and δ is the boundary layer thickness, then the

relative roughness k 
 δ 

 is a significant parameter showing the behaviour of the
boundary surface. For k = C

Then 
k
δ

decreases along the plate in the direction of flow because δ increases
in the direction of flow.

Nikuradse was introducing a dimensionless roughness parameter * sV k
v

 
  

 on
which smooth and rough surfaces are differentiates:

* sV k
v

< 5 for hydrodynamical smooth boundary

5 < * sV k
v

< 70 for transition

* sV k
v

> 70 for hydrodynamically rough (or completely rough)

where V* = 0 ,
τ
ρ

 shear or friction velocity
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ks = equivalent sand grain roughness defined as that value of the
roughness which would offer the same resistance to the flow past
the plate as that due to the actual roughness on the surface of the
plate.

v = kinematic viscosity
For completely rough zone, the local drag coefficient (Cf ) and the average drag

coefficient ( )fC  are given as:

Cf = 
2.5

102.87 + 1.58log
s

l
k

−
  
    

fC = 
2.5

101.89 1.62 log
s

l
k

−
  

+    

which are valid for 102 <
s

l
k

 < 106

3.11 SEPARATION OF BOUNDARY LAYER
As we know if a solid body is immersed in a flow of real fluid, a thin layer of fluid

developed close to the body surface in which velocity gradient du
dy

 
 
 

 exists normal to

the surface of the body. This thin layer across the narrow region of the solid body is
called boundary layer. The fluid particles moving on the wall (or the body in the
boundary layer are decelerated because of surface friction due to viscous effect, and
thus their kinetic energy is decreased. If there is a pressure drop in the direction of
flow (dp/dx < 0, favourable or desirable pressure gradient), the pressure can
overcome the deceleration of the particles so that they continue to move along the
surface of the body. Somewhere the pressure of fluid particles increases in the
direction of flow (dp/dx > 0, unfavourable or adverse pressure gradient) due to
passage of flow (i.e., diverging passage acts diffuser). In this way, some kinetic
energy of fluid particles is utilized to increase the pressure and the remaining part of
kinetic energy is not enough to overcome the surface friction of the solid body. Due
to above reason the thickness of the boundary layer increases, the layer of fluid
particles stop and then separate from the wall (or boundary of solid body). This
phenomenon which separates the boundary layer from the wall is called separation or
separation of boundary layer. The point on the surface of the solid body at which the
separation takes place is called separation point.

At separation point:

(i) Adverse pressure gradient i.e., 0.dp
dx

>

(ii)
0

0
y

u
y =

 ∂
= ∂ 

(iii) The wall shear stress is zero i.e., τ0 = 0.
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Beyond the separation point, the adverse pressure gradient is large

enough 0 ,p
x

∂ >>  ∂
 the wall shear stress is negative due to the negative value of

0

.
y

u
y =

 ∂
 ∂ 

 That region is called reverse flow (or back flow).

Effect of pressure gradient along the direction of flow on boundary
layer separation:

Consider a fluid flow on a convex shape solid body (i.e., fluid flow on a
converging-diverging of solid body) as shown in Fig. 10.15. The boundary of solid
body is converging from A to C and diverging from C to F.

Fig. 3.15: Separation of boundary layer: Fluid flow on convex shape of solid body.

The converging zone (A to C) acts nozzle in which the velocity of fluid particles
increase and the pressure decrease in the direction of the flow and hence the pressure

gradient is negative 0 .p
x

∂ < ∂ 
 This negative pressure gradient is favourable or desirable

because the loss of kinetic energy of the fluid layer moving on the boundary of solid
body against surface friction is recovered by decrease in pressure. As long as negative
pressure gradient is maintained, the layer of fluid particles is easily moving on the
boundary of solid body.

The diverging zone (C to F) acts diffuser in which the velocity of fluid particles
decrease and the pressure increases in the direction of the flow and hence the pressure

gradient is positive 0 .p
x

∂ > ∂ 
 This positive pressure is unfavourable or not desirable

because some kinetic energy of fluid particles is utilized to increase the pressure and
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the remaining part of kinetic energy is not enough to overcome the surface friction
of the solid body. Beyond point C, say point D as shown in Fig. 10.15, the layer of
fluid particles stop and then separate from the boundary of solid body. Beyond point

D, the adverse pressure gradient is large enough 0 ,p
x

∂ >> ∂ 
 the wall shear stress (τ0)

is negative due to negative value of velocity gradient.
0

0 .
y

u
y =

  ∂
<  ∂   

 That region is

called reverse flow (or back flow).
Similar explanation of the boundary layer separation for the flow around a long

circular cylinder and an airfoil are shown in Fig. 3.16 (a) and (b) respectively.

A

B

D

B′
C′

C

b.l.

b.l.

Streamline
separation

Streamline
separation

U

A
B C

b.l.
Streamline
separation

U

(a) Flow around a circular cylinder (b) Flow around an airfoil

Fig. 3.16: Separation for the flow around a long circular cylinder and an airfoil

3.12 CONTROL OF BOUNDARY LAYER SEPARATION
The boundary layer separation is ill phenomenon, by this the energy losses increase
due to increases in the drag. Hence it is necessary to control the separation of
boundary layer in order to reduce the drag on an airfoil or any other solid body. Some
methods for the control of boundary layer separation are discussed below:

3.12.1 Suction Method
By this method the slow moving fluid particles layer on the boundary of solid body
is removed by suction through slots as shown in Fig. 3.17, so that on the downstream
of the point of suction a new boundary layer starts developing which is able to
withstand an adverse pressure gradient and hence separation is prevented:

Fig. 3.17: Suction of fluid from boundary layer.
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Moreover, the suction of the fluid from the boundary layer also delays its
transition from laminar to turbulent flow due to which skin friction drag is reduced.

This method is successfully used in the design of aircraft wings.

3.12.2 By Pass Method
By this method, additional energy is supplied to the fluid particles layer being moved
on the surface of solid body. This additional supplied energy accelerates the fluid
particles and hence prevents separation of boundary layer.

Fig. 3.18: By-pass slotted wing.

This can be achieved by diverting a portion of the fluid of the main stream from
the region of high pressure to the retarded
region of boundary layer through a slot
provided in body as in the case of the
slotted wing as shown in Fig. 3.18. This
method is also known as acceleration of
boundary layer. Disadvantage of this method
is that if the fluid is injected into a laminar
b.l., it undergoes a transition from laminar
to turbulent layer which results in an increased skin friction drag.

3.12.3 Injection Method
The injection of fluid through porous wall controls the boundary layer separation. This
may be achieved by blowing high energy fluid particles tangentially from the region
where the chance of separation takes place. This is shown in Fig. 3.19. The injection
of fluid promotes turbulence and thereby increases skin friction drag. But the form drag
is reduced considerably due to suppression of flow separation and this reduction can be
of significant magnitude so as to ignore the enhanced skin friction drag.

3.12.4 Rotating of Cylinder Method
As we know, the formation of the boundary layer is due to the difference between the
velocity of the flowing fluid and the solid boundary. According to this method to eliminate
the formation of a boundary layer, the solid body is rotated in the flowing fluid.*

* The drag on the solid body is basically caused by pressure difference. This force brought about
by the pressure difference is known as form drag whereas the shear stress at the wall gives
rise to skin friction drag. Generally, these two drag forces together are responsible for resultant
drag on a body.

Fig. 3.19: Control separation by
blowing of fluid.
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Contd...

Rotating
cylinder

Stream
lines

Fig. 3.20: Flow Past a Rotating Cylinder.

In this method, a rotating cylinder is provided in the stream of fluid as shown in
Fig. 3.20.

On the upper side of the cylinder, where the fluid as well as the cylinder move
in the same direction, the boundary layer does not form and hence the separation is
completely eliminated. However, on the lower side of the rotating cylinder, where the
fluid motion is opposite to cylinder motion, separation would occur.

3.12.5 Streamlining of Body Shape
In this method, we change the profile of the body to a streamlined shape as shown
in Fig.3.21. The streamlined body has rounded nose and long tapered tail, to reduce
the magnitude of the positive (or adverse) pressure gradient. As positive pressure
gradient can be reduced to the minimum, separation can be delayed or eliminated.

Fig. 3.21: Delay of separation by use of the profile a streamlined shape.

SUMMARY

1. A thin layer of fluid developed close to the body surface and in which

velocity gradient         exists normal to the surface of the body. This thin
layer across the narrow region of the solid body is called boundary layer
or friction layer.

2. Boundary layer formation over a flat plate is classified into three stages as:
(i) Laminar boundary layer.

(ii) Transition boundary layer.
(iii) Turbulent boundary layer.

Ux
v

du
dy

 
 
 
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Contd...

3. Laminar boundary layer: The initial stage of boundary layer development
exhibits characteristics of laminar flow i.e., the fluid particles at the leading
edge of plate move orderly in laminas parallel to the flat plate surface.
The Reynolds number for the flow of fluid in the boundary layer is
expressed as:

Rex =

where x = distance from the leading edge,
U = free-stream velocity of the fluid flow
v = kinematic viscosity of the fluid.

Reynolds number for laminar boundary layer is;
Rex ≤ 3 × 105

4. Transition boundary layer: The length of plate over which the b.l. flow
changes from laminar to turbulent is called transition zone and the formation
of b.l. over this zone is called transition boundary layer.
The range of Reynolds number for this zone is;

3 × 105 < Rex < 5 × 105

5. Turbulent boundary layer: The zone next to transition zone is called
turbulent zone. In this zone, the fluid flows in zig-zag manner. The
formation of b.l. over this zone is called turbulent boundary layer. If
Reynolds number (Rex) is ≥ 5 × 105 then formation of this zone begins.

6. Laminar sub-layer: If the plate is very smooth, a thin layer develops very
close to the plate surface due to only by viscous effects of the fluid, in
turbulent zone. This layer is called laminar sub-layer. The nature of the flow
in this layer is laminar.

7. Boundary layer thickness: δ
It is defined as the normal distance from the surface of solid body to the
point where the velocity of flow (u) is 99% of the free stream velocity (U)
Mathematically, it is defined as
y = δ for u = 99% U = 0.99 U

8. Displacement thickness: δ* = 
0

1 u dy
U

δ  −  ∫
Displacement thickness (δ*) tells us how far the streamlines of the flow are
displaced outward due to the decrease in velocity in the boundary layer.

9. Momentum thickness: θ =
0

1u u dy
U U

δ  −  ∫

10. Energy thickness: δ** =
2

20
1u u dy

U U
δ  

−  ∫
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11. Von-Karman momentum integral equation for the hydrodynamic b.l.
over a flat plate:

0
2U

τ
ρ

 =
x

∂θ
∂

where θ = momentum thickness

=
0

1u u dy
U U

δ  −  ∫
12. Local skin friction coefficient: Cf

Cf =
0

2

Local wall shear stress:
1Dynamic pressure of the free stream:
2

U

τ

ρ

Cf = 0

21
2

U

τ

ρ
13. Average coefficient of drag: fC

fC = 
2

2

DF

AU1
ρ

where FD = drag force

= 00

l
bdxτ∫

where b = width of the plate
l = length of the plate

14. In Laminar boundary layer:
Velocity distribution is parabolic boundary layer thickness: δ ∝ x1/2

15. In turbulent boundary layer: Velocity distribution is logarithmic, boundary
layer thickness: δ ∝ x4/5

16. Boundary layer separation: The layer of fluid particles which separates
from the boundary (surface) of solid body is called separation of boundary
layer. The point on the surface of the solid body at which the separation
takes place is called separation point.

At separation point:

(i) Adverse pressure gradient i.e., 0
p
x

∂
>

∂

(ii)
0

0
y

u
y =

 ∂
= ∂ 

(iii) The wall shear stress is zero i.e., τ0 = 0
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Beyond the separation point, the adverse pressure gradient is large

enough 0 ,p
x

∂ >> ∂ 
 the wall shear stress is negative due to the negative value

of 
0

.
y

u
y =

 ∂
 ∂ 

 That region is called reverse flow (or back flow)

17. Methods for the control of boundary layer separation:

(i) Suction method
(ii) By-pass method

(iii) Injection method
(iv) Rotating of cylinder method
(v) Streamlining of body shape

ASSIGNMENT - 1

1. What is a boundary layer?
2. Explain briefly boundary layer and its significances.

(GGSIP Uniersity of Delhi Dec. 2008)
3. Define:

(i) Laminar boundary layer
(ii) Turbulent boundary layer

(iii) Laminar sub-layer and
(iv) Boundary layer thickness.

4. Define and explain any two of the following:

(i) Displacement thickness,
(ii) Momentum thickness,

(iii) Energy thickness as applied to boundary layer flow.
5. Prove that the momentum thickness (θ) and energy thickness for boundary

layer flows are given by:

θ =
0

1u u dy
U U

δ  −  ∫  and

δ** = 
2

20
1u u dy

U U
δ  

−  ∫
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6. Define and explain the terms: displacement thickness and momentum thickness
as applied to boundary layer flows. Derive also the expression for the above
two quantities.

7. Define and explain the terms: Laminar boundary layer, turbulent boundary
layer and laminar sub-layer. (GGSIP University Delhi, Dec. 2007)

8. Derive expression for the momentum thickness and the energy thickness for
boundary layer flows. (GGSIP University Delhi, Dec. 2006)

9. Derive an expression for Von-Karman momentum integral equation.
10. Discuss:

(i) the concept of the boundary with reference to fluid motion over a flat
plate;

(ii) phenomenon of separation for flow over curved surfaces;

(iii) the prevention of separation.
11. Define boundary layer and explain the fundamental causes of its existence.

Also discuss the various methods of controlling the boundary layer.

ASSIGNMENT - 2

1. Show that for linear distribution of velocity in the boundary layer; 6.δ
=

θ
2. Show that the ratio of the boundary layer thickness to displacement

thickness *
δ 

 δ 
 for the velocity profile given by

u
U

 = sin
2

πδ 
 
 

is 2.75.

3. Show that for the velocity profile,
u
U

 = 2η – η2

where η = ,y
δ

 that ratio *
δ
δ

 = 3.

4. The velocity distribution in the boundary layer was found to fit the equation

u
U

 =
ny 

 δ 
Show that the displacement and the energy thicknesses can be expressed as

δ* =
1n

δ
δ −

+

δ** = 1 3 1n n
δ δ

−
+ +
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5. For a velocity profile within the boundary layer:

u
U

 =
33 1

2 2
y y   −   δ δ   

Find the ratio of displacement thickness to normal boundary layer thickness.
* 3

8
Ans.

 δ
= δ 

6. For the velocity profile in laminar boundary layer as,

u
U

 =
33 1

2 2
y y   −   δ δ   

find the thickness of the boundary layer and the shear stress 1.5 m from the
leading edge of a plate. The plate is 2 m long and 1.4 m wide and is placed
in water which is moving with a velocity of 200 mm per second. Find the total
drag force on the plate if m for water = 0.01 poise.

Ans. 12.7 mm, 0.2276 N
7. Air is flowing over a smooth plate with a velocity of 10 m/s. The length of

the plate is 1.2 m and width 0.8 m. If laminar boundary layer exists up to a
value of Re = 2 × 105, find the maximum distance from the leading edge up
to which laminar boundary layer exists. Find the maximum thickness of
laminar boundary layer if the velocity profile is given by

u
U = 

2

2 y y   −   δ δ   

Take kinematic viscosity for air = 0.15 stokes. Ans. 300 mm, 3.67 mm
8. Air is flowing over a flat plate 500 mm long and 600 mm wide with a velocity

of 4 m/s. The kinematic viscosity of air is given as 0.15 × 10–4 m2/s. Find
(i) the boundary layer thickness at the end of the plate, (ii) shear stress at
200 mm from the leading edge and (iii) drag force on one side of the plate.

Take the velocity profile over the plate as
u
U

 = sin
2

yπ ⋅ δ 
 and density of air

1.24 kg/m3. Ans. 6.56 mm, 0.02805 N/m2, 0.01086 N
9. A plate of 600 mm length and 400 mm wide is immersed in a fluid of specific

gravity 0.9 and kinematic viscosity 10–4 m2/s. The fluid is moving with a
velocity of 6 m/s. Determine (i) boundary layer thickness, (ii) shear stress
at the end of the plate, and (iii) drag force on one side of the plate.

Ans. (i) 15.81 mm, (ii) 56.6 N/m2, (iii) 26.78 N





Flow Through Pipe

4.1 INTRODUCTION
A closed conduit, carrying fluid under pressure is called pipe. The terms pipe and duct
are usually used interchangeably for flow sections. In general, flow sections of
circular cross section are referred to as pipes (especially when the fluid is a liquid),
and flow sections of non-circular cross section as ducts (especially when the fluid is
a gas). Small-diameter pipes are usually referred as tubes.

You have probably noticed that most fluids, especially liquid, are transported in
circular pipes. This is because pipes can withstand large pressure differences between
the inside and the outside without undergoing significant distortion. Ducts are usually
used in the air-conditioning such as the heating and cooling system of buildings where
the pressure difference is relatively small, the manufacturing and installation costs are
lower, and the available space is limited for ductwork.

The pressure in a pipe may be above or below atmosphere pressure as desired.
This chapter deals with the study of energy (or head) losses when a fluid is flowing
through a long pipe of constant cross-sectional area, various fittings, valves, bends, tees,
inlets, exists, sudden enlargement, and sudden contraction in addition to the pipes.

4.2 ENERGY LOSSES IN PIPES
When a real fluid is flowing through a pipe, energy (or head) losses through pipes are
classified in two categories:

(i) Major losses (ii) Minor losses

4.2.1 Major Losses
Energy (or head) losses due to friction among fluid particles or between fluid particles
and surface area of a pipe at constant cross-sectional area of fluid flow are known
as major losses. It is calculated by the following formulae:

(a) Darcy-Weisbach formula and (b) Chezy’s formula

4
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(a) Darcy-Weisbach Formula:

Let V = mean velocity of fluid flow through pipe.

d = diameter of pipe.

l = length of pipe between sections (1) and (2) as shown in
Fig. 11.1.

1

1 2

2

Direction
of Flow d

p A1 1 p A2 2
V

τ π0 dl

l

Fig. 4.1: Pressure and shear forces in pipe flow.

p1, p2 = pressure at sections (1) and (2) respectively.

A1, A2 = cross-sectional areas at sections (1) and (2) respectively.

∴ A1 = A2 = A = 2

4
dπ

τ0 = shear stress at pipe surface which offers the resistance to motion
According to momentum equation, which states that the net force exerted
in the direction of flow is equal to the rate of change of momentum in the
direction of flow.

p1A1 – p2A2 – τ0πdl = m(V2 – V1)

p1A – p2A – τ0πdl = 0  V1 = V2 = V

(p1 – p2)A = τ0πdl  τ0 = 
2

,
2

f Vρ

2
1 2( )

4
p p dπ

−  =
2

2
f V dlρ

π

or 1 2p p−
ρ

 =
24

2
f lV

d
Dividing  by ‘g’ on both sides, we get

1 2p p
g

−
ρ

 =
24

2
f lV

gd
... (4.2.1)

where f = coefficient of friction.
ρ = density of fluid.

it can be shown from
dimensional analysis.



Flow Through Pipe 183

Applying modified Bernoulli’s equation at sections (1) and (2), we get
2

1 1
12

p V z
g g

+ +
ρ  =

2
2 2

22 f
p V z h
g g

+ + +
ρ

where hf = loss of head due to friction.
V1 = V2 = V i.e., velocity of fluid flow is uniform.

and z1 = z2, pipe is horizontal.

∴ 1 2p p
g g

−
ρ ρ

 = hf

1 2p p
g

−
ρ

 = hf ... (4.2.2)

Equating Eqs. (4.2.2) and (4.2.1), we get

hf =
24f lV

2gd ... (4.2.3)

=
2f´lV

2gd ... (4.2.4)

where  f ′ = friction factor.
f ′ = 4 f

= 4 times coefficient of friction.
Equations (4.2.3) and (4.2.4) are called Darcy-Weisbach formula.
f, f ′ = both coefficient of friction and friction factor are function of

 Reynold’s number.

f =
16
Re

f ´ = 4 f for Re < 2000, laminar flow

f ´ =
64
Re

f = 1/ 4
0.079
Re

for 4000 < Re < 106, turbulent

flow

f ´ = 1/ 4
0.316
Re

Decrease in pressure from Eq. (4.2.2), we get
p1 – p2 = ρghf For horizontal pipe

Loss of fluid power: P = mghf   watt Q = mv = m
ρ

  or  m = ρQ

= ρQghf   watt















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where m = mass flow rate, kg/s
g = 9.81 m/s2

Q = discharge, m3/s
ρ = density of fluid, kg/m3

hf = head loss due to friction, m
(b) Chezy’s formula:

Starting from Darcy-Weisbach formula, loss of head due to friction:

hf = 
24

2
f lV
gd

fh
l

= 
24

2
f V
gd

i = 
24

2
f V
gd

where i = ,fh
l

loss of head due to friction per unit
length of pipe is called slope of
hydraulic gradient.

i = 
24

2
f V d
gd d

π
×

π

= 
2

22
4

f V d
g d

π
×

π

= 
2

2
f V P

g A
×

= 
2 1

2
f V

g m
×

where m = ,A
P

 hydraulic mean depth  OR hydraulic
radius.

Cross-sectional area: A = 2

4
dπ

Perimeter: P = πd

∴ i = 
2

2
f V
gm

ρ
ρ

i = 
2

1f V
g mρ

where f 1 = ,
2
fρ

 coefficient depending on the roughness of the pipe.
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Let C2 =
1

,g
f

ρ where C is called Chezy’s constant.

i =
2

2
1 V

mC

or V2 = C2im

or V = C im ... (4.2.5)
Equation (4.2.5) is known as Chezy’s formula. Thus, the loss of head due to friction in
pipe from Chezy’s formula can be obtained if the velocity of flow through pipe and the value

of C is known. The value of m for pipe is always equal to 
4
d  

2

. ., .
4 4

A d di e m
P d

 π
= = = 

π 

Determination of Friction Factor Using Moody’s Diagram

The diagram developed by Prof. Lewis F. Moody for commercial pipes has become
a convenient and reliable tool for solving practical problems in pipe flow. Moody’s
diagram gives the value of friction factor f ′ of any pipe provided its relative roughness
∈/d and Reynolds number of flow Re are known. ∈ is absolute (or average)
roughness, or equivalent sand roughness and d is diameter of pipe.

We make the following observations from the Moody’s diagram:
(i) For laminar flow, the friction factor f ′ decreases with increasing Reynold’s

number, and it is independent of surface roughness. The friction factor f ′
is also found by the following equation for laminar flow.

Friction factor: f ′ = 
64
Re    for   Re < 2000

(ii) The critical (or transition) region from the laminar to turbulent regime
(2000 < Re < 4000) is indicated by the shaded area in the Moody’s diagram.
The flow in this region may be laminar or turbulent, depending on flow
disturbances, or it may alternate between laminar and turbulent, and thus the
friction factor may also alternate between the values for laminar and
turbulent flow. The data in this range are the least reliable and not of much
practical significance.

(iii) At very large Reynold’s number (i.e., Re ≥ 106) the friction factor curves
corresponding to specified relative roughness curve are nearly horizontal,
and thus the friction factor is independent of the Reynold’s number and

dependent upon only relative roughness 
d
∈

 as shown in Fig. 4.2. The flow

in that region is called fully rough turbulent flow or just fully rough flow
because the thickness of the viscous sublayer decreases with increasing
Reynold’s number.
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The friction factor f ′ is also found by the following equation for turbulent
flow:

Friction factor: f ′ = 1/4
0.316
Re

   only for   4000 < Re < 106

Table 4.1: Equivalent Roughness Values for New Commercial Pipes

S. No. Material Absolute Roughness: ∈ mm

1. Glass, plastic 0 (smooth)
2. Concrete 0.3 – 3
3. Riveted steel 0.9 – 9
4. Wood slave 0.18 – 0.9
5. Rubber smoothed 0.01
6. Copper or brass tubing 0.0015
7. Cast iron 0.26
8. Galvanized iron 0.15
9. Wrought iron 0.046

10. Stainless steel 0.002
11. Commercial steel 0.045

The procedure for determination of the friction factor of any pipe is demonstrated
through the following example. Let the velocity of water through a new galvanized iron
pipe of 200 mm diameter be 5 m/s.

Let ρ = 1000 kg/m3, µ = 0.002 Ns/m2

From table 11.1, absolute roughness:
∈ = 0.15 mm

Hence relative roughness:

d
∈

 =
0.15
200

 = 0.00075

Reynold’s number: Re =
Vdρ
µ

 = 
1000 5 0.2

0.002
× ×

 = 500000

For these values of
d
∈

 = 0.00075 and Re = 500000

Moody’s diagram gives friction factor: f ′ = 0.018

Problem 4.1: Determine the head lost due to friction in a pipe of diameter 400 mm
and length 100 m, through which water is flowing at a velocity 2.5 m/s by using (a)
Darcy-Weisbach formula (b) Chezy’s formula for which C = 60.
Take kinematic viscosity (ν) for water = 0.01 stoke.
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Solution: Given data:
Diameter of pipe: d = 400 mm = 0.4 m
Length of pipe: l = 100 m
Velocity of flow: V = 2.5 m/s
Chezy’s constant: C = 60
Kinematic viscosity: ν  = 0.01 stoke = 0.01 cm2/s  1 stoke = 1 cm2/s

= 0.01 × 10–4 m2/s
(a) By using Darcy-Weisbach formula

Head lost due to friction: hf  =
24

2
f lV
gd

where f = coefficient of friction is a function of Reynold’s number, Re

Reynold’s number: Re =
Vd
ν

 = 4
2.5 0.4

0.01 10−

×
×

 = 100 × 104 = 10 × 105

Hence, flow is turbulent because of Re > 4000

∴ Coefficient of friction: f = 0.25
0.079
Re

 = 5 0.25
0.079

(10 10 )×
 = 0.00249

∴   Head lost: hf =
24 0.00249 100 (2.5)

2 9.81 0.4
× × ×

× ×
= 0.7931 m of water

(b) By Chezy’s formula

Velocity: V = C im
where C = 60

m =
Area

Perimeter
 = A

P
 = 

2

4
d

d

π

π
 = 

4
d

m = 0.4
4

  0.1 m

∴ 2.5 = 60 0.1i ×
or i = 0.01736

also i = fh
l

0.01736 =
100

fh

or Head lost: hf = 1.73 m of water

Head lost: hf = 0.7931 m of water by using Darcy-Weisbach formula.
= 1.73 m of water by using Chezy’s formula.
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Problem 4.2: Water is flowing through a pipe 1.5 km long with a velocity of
1.5 m/s. What should be the diameter of the pipe, if the loss of head due to friction
10 m. Take coefficient of friction f = 0.01.
Solution: Given data:

Length of pipe: l = 1.5 km = 1500 m
Velocity of water: V = 1.5 m/s
Loss of head due to friction: hf = 10 m
Coefficient of friction: f = 0.01
We know that the loss of head due to friction:

hf =
24

2
f lV
gd

(By Darcy’s formula)

10 =
24 0.01 1500 (1.5)

2 9.81 d
× × ×

× ×
or d = 0.68807 m = 688.07 mm

Problem 4.3: A reservoir has been built 3 km away from a college compus having
4000 inhabitants. Water is to be supplied from the reservoir to the campus. It is
estimated that each inhabitant will consume 200 litres of water per day, and that half
of the daily supply is pumped within 10 hours. Find the size of the supply main, if the
loss of head due to friction in pipeline is 15 m. Take coefficient of friction for the pipe
is 0.007.
Solution: Given data:

Length of pipe: l = 3 km = 3000 m
Number of inhabitants: n = 4000
Consumption of water by each inhabitant = 200 litre/day = 0.2 m3/day
∴ Total supply = number of inhabitants × consumption by each

inhabitant
= 4000 × 0.2 m3/day = 800 m3/day

Since half of this supply is to be pumped in 10 hours,
∴ Maximum flow through pipe:

Q =
1 800
2 10 60 60

×
× ×

 m3/s = 0.0111 m3/s.

Loss of head due to friction: hf = 15 m
Coefficient of friction: f = 0.007
We know that the loss of head due to friction:

hf =
24

2
f lV
gd

(By Darcy’s formula)

hf =
2

2 4
4 16
2

f l Q
gd d

×
π

Q = AV = 2

4
d Vπ or V = 2

4Q
dπ

hf = 
2

2 5
32 f lQ
g dπ
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15 = 
2

2 5
32 0.007 3000 (0.0111)

9.81 (3.14) d
× × ×

× ×
or d5 = 5.7068 × 10–5

d = 0.14167 m = 141.67 mm

Problem 4.4: In a refinery, crude oil of specific gravity 0.85 and viscosity
0.1 poise, flow through a pipe of 300 mm diameter with an average velocity of 3 m/
s. Find the pumping power required to maintain the flow per km length of the pipe.
Solution: Given data:

Specific gravity: S = 0.85
∴ Density: ρ = S × 1000 kg/m3 = 0.85 × 1000 = 850 kg/m3

Viscosity: µ = 0.1 poise = 
0.1
10

 Ns/m2 = 0.01 Ns/m2

Diameter of pipe: d = 300 mm = 0.3 m

∴ Cross-sectional area:A = 2

4
dπ  = 23.14 (0.3)

4
×  = 0.067065 m2

Average velocity: V = 3 m/s

Reynold’s number: Re = Vdρ
µ

 = 
850 3 0.3

0.01
× ×

 = 76500

The nature of flow is turbulent, because of Reynold’s number Re > 4000.
Assuming that the pipe surface is smooth, the coefficient of friction can be

obtained as:

f = 0.25
0.079
Re

f = 0.25
0.079

(76500)
 = 0.00475

Loss of head due to friction per km length (i.e., l = 1 km = 1000 m) of pipe is

hf =
24

2
f lV
gd

 = 
24 0.00475 1000 (3)

2 9.81 0.3
× × ×

× ×
 = 29.05 m

Discharge: Q = AV = 0.7065 × 3 = 0.2119 m2

Power required to maintain the flow: P
P = ρQghf = 850 × 0.2119 × 9.81 × 29.05

= 51329.26 W ≈ 51.33 kW

Problem 4.5: A town having a population of 100000 is to be supplied with
water from a reservoir at 6 km distance. It is estimated that one-half of the daily supply
of 125 litres per head should be delivered within eight hours. Find the size of the pipe
through which water is supplied, if the head available is 16 m. Take C = 45 in Chezy’s
formula.
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Solution: Give data:
Population of town: n  = 100000
Length of pipe: l  = 6 km = 6000 m

Daily supply = 1 125
2

× litre/head = 62.5 litre/head = 0.0625 m3/head

∴ Total supply = population of town × daily supply
= 100000 × 0.0625 = 6250 m3/day

Heat available = loss of head due to friction
∴ hf = 16 m
Chezy’s constant: C = 45
Since supply of water in 8 hours;

Q =
6250

8 60 60× ×
 = 0.217 m3/s

also Q = AV = 2

4
d Vπ

0.217 = 23.14
4

d V

or d2V = 0.27643

or V = 2
0.27643

d

We know that the hydraulic mean depth for a circular pipe: m = 
4
d

and i =
16

6000
fh
l

=  = 0.00266

According to Chezy’s formula,

Velocity of water: V = C im

2
0.27643

d
  = 45 0.00266

4
d

×

or 0.27643 =
245 0.00266

4
d d×

0.27643 = 5 / 245 0.00266
2

d× ×

or d5/2 = 0.23821
or d = 0.56335 m = 563.35 mm

Problem 4.6: An oil of specific gravity 0.85 and viscosity 0.05 poise is flowing
through a pipe of diameter 250 mm at the rate of 75 litre/s. Find the head lost due to
friction for a 600 m length of pipe. Find also the power required to maintain the flow.
Solution: Given data:

Specific gravity of oil: S = 0.85
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∴ Density of oil: ρ = S × 1000 = 0.85 × 1000 = 850 kg/m3

Viscosity of oil: µ = 0.05 poise = 
0.05
10

 Ns/m2 = 0.005 Ns/m2

Diameter of pipe: d = 250 mm = 0.25 m
∴ Cross-sectional area of pipe:

A = 2

4
dπ = 23.14 (0.25)

4
×  = 0.04906 m2

Discharge: Q = 75 litre/s = 
75

1000
 m3/s = 0.075 m3/s

also Q = AV
∴ 0.075 = 0.04906 × V
or V = 1.528 m/s
Length of pipe: l = 600 m

Now Reynold’s number: Re = Vdρ
µ

 = 
850 1.528 0.25

0.005
× ×

 = 64940

Hence, flow is turbulent because of Re > 4000

∴ Coefficient of friction: f = 0.25
0.079
Re

 = 0.25
0.079

(64940)
= 0.00494

∴ Head lost due to friction:

hf =
24

2
f lV
gd

 = 
24 0.00494 600 (1.528)

2 9.81 0.25
× × ×

× ×

= 5.64 m of water
∴ Power required to maintain the flow: P

P = mghf = ρQghf  m = ρQ
= 850 × 0.075 × 9.81 × 5.64
= 3527.18 W = 3.527 kW

Problem 4.7: The friction factor for turbulent flow through rough pipes can be
determined by Karman-Prandtl equation,

1
f ′

 =
2

10log 1.74
2
d  + ∈ 

where f ′ = friction factor,
d = diameter of pipe,
∈ = average roughness.

Two reservoirs with a surface level difference of 20 m are to be connected by 1 m
diameter pipe 6 km long. What will be the discharge when a cast iron pipe of
roughness ∈ = 0.26 mm is used? What will be the percentage increase in the discharge
if the cast iron pipe is replaced by a galvanized iron pipe of roughness ∈ = 0.15 mm?
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Neglect all minor losses.
Solution: Given data:

Difference in surface level between two reservoirs: h = 20 m
Diameter of pipe: d = 1 m
Length of pipe: l = 6 km = 6000 m
Roughness of cast iron pipe: ∈ = 0.26 mm = 0.00026 m
Roughness of galvanized iron pipe:∈ = 0.15 mm = 0.00015 m
Case I: Cast iron pipe:

Given equation: 1
f ′

 =
2

10log 1.74
2
d  + ∈ 

1
f ′

 =
2

10
1log 1.74

2 0.00026
  + × 

1
f ′

 = 6.568 + 1.74 = 8.308

Squaring both sides, we get
1
f ′

 = (8.308)2 = 69.02 = 
1

69.02
 = 0.01448

also f ′ = 4 f
or Coefficient of friction:

f =
4
f ′  = 0.01448

4
 = 0.00362

Now loss of head due to friction:

hf = h = 
24

2
f lV
gd

 Minor losses are neglected

∴ 20 =
24 0.00362 6000

2 9.81 1
V× × ×

× ×
or V2 = 4.5165
or V = 2.125 m/s
∴ Discharge flow through pipe:

Q = AV = 2

4
d Vπ

× = 23.14 (1) 2.125
4

× ×  m3/s

= 1.668 m3/s
Case II: Galvanized iron pipe:

Given equation: 1
f ′

 =
2

10log 1.74
2
d  + ∈ 

1
f ′

 =
2

10
1log 1.74

2 0.00015
  + × 

1
f ′

 = 7.045 + 1.74 = 8.785
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Squaring both sides, we get
1
f ′  = (8.785)2 = 77.176

or f ′ =
1

77.176
 = 0.01295

also f ′ = 4 f
or Coefficient of friction:

f =
4
f ′  = 0.01295

4
 = 0.00323

Now loss of head due to friction: hf = h = 20 m

hf =
24

2
f lV
gd

 Minor losses are neglected

20 =
24 0.00323 6000

2 9.81 1
V× ×

× ×
or V2 = 5.062
or V = 2.249 m/s
∴ Discharge flow through pipe:

Q ′ = AV = 2

4
d Vπ

× = 23.14 (1) 2.249
4

× ×  = 1.765 m3/s

% Increase in the discharge = 100Q Q
Q

 ′ −
× 

 
 = 1.765 1.668 100

1.668
−  ×  

= 5.81 %

Problem 4.8: Glycerine (specific gravity 1.26, viscosity 0.9 Pa.s) is pumped at
the rate of 20 litre/s through a straight pipe, diameter 100 mm, 45 m long and inclined
upward at 15° to the horizontal. The gauge pressure at inlet is 590 kPa. Find the gauge
pressure at the outlet end and the average shear stress at the wall.
Solution: Given data:

Specific gravity: S  = 1.26
∴ Density: ρ = S × 1000 kg/m3 = 1.26 × 1000 = 1260 kg/m3

Viscosity: µ = 0.9 Pa.s = 0.9 Ns/m2

Discharge: Q  = 20 litre/s = 
20

1000
 m3/s = 0.02 m3/s

Diameter of pipe: d  = 100 mm = 0.1 m

∴ Cross-sectional area:A = 2

4
dπ = 23.14 (0.1)

4
×  = 7.85 × 10–3 m3

Length of pipe: l  = 45 m
Angle: θ  = 15°
Pressure at inlet: p1 = 590 kPa = 590 × 103 N/m2

Mean velocity of flow: V =
Discharge: 

Cross-sectional area: 
Q

A
 = 3

0.02
7.85 10−×

 = 2.547 m/s
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Reynolds number: Re = Vdρ
µ

 = 
1260 2.547 0.1

0.9
× ×

= 355.6

1

2

l

V

W θ

W sin
 θ

z2

z1

θ=15º

p A1 1

p A2 2

τ0

Fig. 4.3: Schematic for Problem 4.8

The nature of given flow is laminar, because of Reynolds number Re < 2000

∴ Coefficient of friction: f = 
16
Re  = 

16
355.6

 = 0.045

and head lost due to friction:

hf =
24

2
f lV
gd

 = 
24 0.045 45 (2.547)

2 9.81 0.1
× × ×

× ×
 = 26.78 m of glycerine

Now applying modified Bernoulli’s equation between two ends, we get
2

1 1
12

p V z
g g

+ +
ρ  =

2
2

22 f
Vp z h

g g
+ + +

ρ

1
1

p z
g

+
ρ  =

2
2 f

p z h
g

+ +
ρ  V1 = V2

2p
gρ

 =
1

1 2 f
p z z h
g

+ − −
ρ

=
1

2 1( ) f
p z z h
g

− − −
ρ

∴ 2p
gρ

 = 1 sin f
p l h
g

− θ −
ρ

2

1260 9.81
p
×

 =
3590 10 45sin15 26.78

1260 9.81
×

− ° −
×

2

1260 9.81
p
×

 =  9.305 sin θ = 2 1z z
l
−

or p2 = 9.305 × 1260 × 9.81 or (z2 – z1) = l sin θ
= 115015.38 N/m2 = 115.015 × 103 Pa = 115.015 kPa

According to momentum equation which states that the net force exerted in the
direction of flow is equal to the rate of change of momentum in the direction of flow.

p1A1 – p2A2 – τ0πdl – W sin θ = m(V2 – V1)

where V1 = V2  and  A1 = A2 = 2

4
dπ

θ

l z2 1 – z
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W = Mg = ρ × volume × g

= 2

4
d l gπ

ρ ⋅ × = 2

4
gl dπ

ρ

∴ 2 2
1 2 0( ) sin

4 4
d p p dl gl dπ π

− − τ π − ρ θ  = 0

1 2 0
sin( )

4 4
d g dp p l ρ θ

− − τ −  = 0

1 2
sin( )

4 4
d g dp p ρ θ

− −  = τ0l

or τ0 = 1 2
sin( )

4 4
d gdp p
l

ρ θ
− −

= 3 30.1 1260 9.81 0.1 sin15(590 10 115.015 10 )
4 45 4

× × × °
× − × −

×
= 263.88 – 79.97 = 183.91 N/m2

OR
Head lost is due to the viscous forces.

i.e., 2

4fgh dπ
ρ ⋅  = 0 dlτ × π

4f
dghρ  = τ0l

1260 × 9.81 × 26.78 × 0.1
4

 = τ0 × 45

or τ0 = 183.89 N/m2

4.2.2 Minor Losses
The loss of energy (or head) due to local disturbances in pipelines such as sudden
enlargements, sudden contractions, pipe bends, valves and other fittings is called local
or secondary or minor losses. They are so called because the friction loss is the major

loss in long pipe. If 
l
d ≥ 1000, minor losses may be neglected as they are relatively

small in magnitude. In short pipes, however, minor losses assume considerable
significance. In some cases, the minor losses may be greater than the major losses.
This is the case, for example, in system with several turns and valve in a short distance.

The minor losses in pipeline problem are discussed below:
(i) Loss of head due to sudden enlargement.

(ii) Loss of head due to sudden contraction.
(iii) Loss of head at the entrance to a pipe.
(iv) Loss of head at the exit of a pipe.
(v) Loss of head due to an obstruction in pipe.

(vi) Loss of head in pipe fittings.
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Loss of head due to sudden enlargement
Eddies 

(Reverse flow)

d1

V1 V2p A1 1
p A2 2

p′

Direction
of flow

1

1 2

2

Fig. 4.4: Flow through a sudden enlargement.

The loss of energy or head in sudden enlargement or expansion is mainly due to
turbulent eddies that are formed in the corner as shown in Fig. 4.4.

Consider two sections (1) – (1) and (2) – (2) before and after the enlargement.
Let p1 = pressure intensity at section (1) – (1).

V1 = velocity of flow at section (1) – (1).
A1 = cross-sectional area of pipe at section (1) – (1).

p2, V2 and A2 = pressure, velocity and cross-sectional area at section
(2) – (2) respectively.

p′ = pressure intensity of the liquid eddies on the area (A2 – A1).
he = loss of head due to sudden enlargement.

Applying modified Bernoulli’s equation to sections (1) – (1) and (2) – (2),
we get

2
1 1

12
p V z
g g

+ +
ρ  =

2
2 2

22
p V z
g g

+ +
ρ + loss of head due to sudden enlargement.

2
1 1

2
p V
g g

+
ρ  =

2
2 2

2 e
p V h
g g

+ +
ρ

 z1 = z2, pipe is horizontal

or 1 2p p
g g

−
ρ ρ

 =
2 2

2 1

2 2 e
V V h

g g
− + ... (4.2.6)

According to momentum equation which states that the net force exerted in
the direction of flow is equal to the rate of change of momentum in the
direction of flow.

p1A1 + p′(A2 – A1) – p2A2 = m(V2  – V1)
Actual measurements have shown that the pressure p´ in the eddies is equal
to p1.
i.e., p′ = p1

∴ p1A1 + p1(A2 – A1) – p2A2 = ρQ(V2 – V1)

or

Q mv
mQ

m Q

 =
 
 =
 ρ
 ∴ = ρ  
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p1A1 + p1A2 – p1A1 – p2A2 = ρQ(V2 – V1)
p1A2 – p2A2 =  ρQ(V2 – V1)
(p1 – p2)A2 = ρQ(V2 – V1)

or p1 – p2 = 2 1
2

( )Q V V
A

ρ − 2
2

QV
A

=

1 2p p−
ρ

 = V2(V2 – V1)

Dividing by ‘g’ on both sides, we get

1 2p p
g

−
ρ

 = 2
2 1( )V V V

g
− ... (4.2.7)

Equating Eqs. (4.2.6) and (4.2.7), we get
2 2

2 1

2 2 e
V V h

g g
− +  = 2

2 1( )V V V
g

−

or he =
2 2

2 2 1
2 1( )

2 2
V V VV V
g g g

− − +

=
2 2 2

2 1 2 2 1

2 2
V V V V V
g g g g

− − +

=
2 2 2

2 1 2 2 12 2
2

V V V V V
g

− − +

he =
2 2

1 2 1 22
2

V V V V
g

+ −
 = 

2
1 2( )

2
V V

g
−

he =
2

1 2

2
(V -V )

g ... (4.2.8)

Change in pressure: ∆p = p2 – p1

= 2 2
1 2( )

2 eV V ghρ
− − ρ for horizontal pipe

= 2 2
1 2 1 2( ) ( )

2 eV V g z z ghρ
− + ρ − − ρ

for inclined pipe
Loss of fluid power: P = mghe watt

= ρQghe watt
where m = mass flow rate, kg/s

g = 9.81 m/s2

he = loss of head due to sudden enlargement, m
ρ = density of fluid, kg/m3

Q = discharge, m3/s
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Total energy line (TEL) and hydraulic grade line (HGL) for flow
through pipe with sudden enlargement:

Fig. 4.5: Total energy and hydraulic grade lines for flow through a sudden enlargement.

Hydraulic grade line (HGL):
Hydraulic grade line is obtained by joining piezometric head (i.e., sum of
pressure and datum heads) in the direction of flow.
Total energy line (TEL):
Total energy line is obtained by joining total head (i.e., sum of pressure,
datum and velocity heads) in the direction of flow. In present case, datum
line is passing through the centre of pipe line so, datum head is zero at all
points at the centre of pipe.

Loss of head due to sudden contraction

1

C

C

1

2

2

p1A1 p2A2

Direction
of flow

d V1, A1 1

d V2, A2 2

Fig. 4.6: Flow through a sudden contraction.

Consider a liquid flowing in a pipe which has a sudden contraction in area
as shown in Fig. 4.6. Consider two sections (1) – (1) and (2) – (2) before
and after the contraction. As the liquid flows from large pipe to small pipe,
the area of flow goes on decreasing and becomes minimum at a section (C)
– (C) as shown in Fig. 4.6. This section at which the area of flow is
minimum is called vena-contracta. [i.e., the minimum cross-sectional area
of flow at which the area of flow changes from a contraction to expansion
is called the vena-contracta].
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After section (C) – (C), a sudden enlargement of the area of flow takes place.
Based on this assumption, application of Eq. (4.5.3) gives

hc =
2

2( )
2

cV V
g

−
 = 

2
2

2
1

2
cVV

g V
 

− 
 

... (4.2.9)

Applying the equation of continuity between sections (C) – (C) and (2) – (2),
we get

AcVc = A2V2

or
2

cV
V

 = 2

c

A
A

2

cV
V

 =
2

1
/cA A

 = 
1

cC
where Cc = coefficient of contraction and it is defined as the ratio of a

cross-sectional area at vena-contracta to cross-sectional area
of section (2) – (2).

i.e., Cc =
2

cA
A

Substituting the value of 
2

cV
V

 in Eq. (4.5.4), we get

hc =
22

2 1 1
2 c

V
g C

 
− 

 
... (4.2.10)

hc = Kc

2
2

2
V

g ... (4.2.11)

where Kc = 
2

1 1
cC

 
− 

 
, coefficient of sudden contraction is function of

diameters ratio 2

1
.d

d
 
 
 

Equation (4.2.11) is general form of head loss due to sudden contraction.
If the values of Cc is not given then the head loss due to the contraction is

given as 0.5 
2

2

2
V

g .

The coefficient of sudden contraction Kc which is a function of the diameter

ratio 2

1
.d

d
 Its value is given in Table 4.2 for different values of 2

1
.d

d
Table 4.2

2

1

d
d

0 0.2 0.4 0.6 0.8 1.0

Kc 0.5 0.42 0.36 0.28 0.15 0
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Change in pressure: ∆p = p2 – p1

= 2 2
1 2( )

2 cV V ghρ
− − ρ  for horizontal pipe

= 2 2
1 2 1 2( ) ( )

2 cV V g z z ghρ
− + ρ − − ρ

for inclined pipe.
Loss of fluid power: P = mghc watt

= ρQghc watt
where ρ = density of fluid, kg/m3

g = 9.81 m/s2

hc = loss of head due to sudden contraction, m
m = mass flow rate, kg/s
Q = discharge, m3/s

Total energy line (TEL) and hydraulic grade line (HGL) for flow
through pipe with sudden contraction:

Fig. 4.7: Total energy and hydraulic grade lines for flow through a sudden contraction.

Loss of head at the entrance to a pipe

Reservoir

R

d dV Vd V

Pipe e

(a) Well rounded (b) Sharp edged (c) Re-entrant or protruding
entrance entrance entrance
(R > 0.14 d) (e > 0.5 d)

Fig. 4.8: Various pipe entrance.
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When liquid enters in a pipe from a large vessel e.g., tank or reservoir, some
loss of head or energy occurs at the entrance to the pipe which is known
as inlet loss of energy or head. While the liquid enters the pipe, it gets
contracted to a narrow neck and again expands to the entire cross-section
of the pipe. The expression for loss of head at entrance ‘hi’ will be similar
to that the loss of head due to sudden contraction ‘hc’, starting the
expression from Eq. (4.5.5), in loss of head due to sudden contraction:

hi =
22 1 1

2 c

V
g C

 
− 

 
 V = V2

Such type of flow will give rise to a condition in which cross sectional

area of tank A → ∞ and diameter ratio D
d

 tends to zero. Thus, from Table
4.2, loss coefficient KL corresponding to this condition is 0.5. The various
kinds of pipe entrances are shown in Fig. 4.8.

  Let    d = diameter of pipe
  R = radius of bend in Fig. 4.8(a)

For Fig. 4.8(a), radius: R > 0.14d and hi = 0

For Fig. 4.8(b), hi = 0.5
2

2
V

g

For Fig. 4.8(c), hi = 
2

2
V

g
Loss of head at the exit of a pipe

V

V

(a) (b)
Fig. 4.9: Exit losses.

The outlet end of a pipe carrying a liquid may be either left free so that liquid
is discharged freely or it may be connected to a large reservoir as shown
in Fig. 4.9. In case of a reservoir the pipe outlet becomes submerged and
the liquid is discharged into a large body of static liquid. This case may be
treated in the similar manner as that of loss of head due to sudden
enlargement. The expression is

ho =
22

1

2
1

2
AV

g A
 

− 
 

For A2 → ∞

∴ ho =
2

2
V

g
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The velocity head in the pipe 
2

2
V

g
 
 
 

 which corresponds to the kinetic energy

per unit weight is lost in turbulence of eddies in the reservoir. This loss is
usually termed as the exit loss for the pipe.
Loss of fluid power: P = mgho watt

= ρQgho watt
where ρ = density of fluid, kg/m3

g = 9.81 m/s2

Q = discharge, m3/s
m = mass flow rate, kg/s
ho = loss of head at the exit pipe, m

Loss of head due to an obstraction in pipe
Consider a pipe of cross-sectional area ‘A’ having an obstruction as shown
in Fig. 4.10.

V

1

1 2

2

Fig. 4.10: An obstruction in a pipe.

Let a = maximum cross-sectional area of obstruction.
V = velocity of liquid in pipe.

Then (A – a) = cross-section of liquid at section (1) – (1)
As the liquid flows and passes through section (1) – (1), a vena-contracta
is formed beyond section (1) – (1), after which the stream of liquid widens
again and velocity of flow at section (2) – (2) becomes uniform and equal
to velocity V in the pipe. This situation is similar to the flow of liquid through
sudden enlargement.
Let Vc = velocity of liquid at vena-contracta. Then, loss of head due to
obstruction is equal to the head due to enlargement from vena-contracta to
section (2) – (2),

hob =
2( )

2
cV V

g
−

... (4.2.12)

From continuity equation, we have
AcVc = AV ... (4.2.13)

where ac = cross-sectional area at vena-contracta.
if Cc = coefficient of contraction

Then, Cc =
cross-sectional area at vena-contracta

cross-sectional area of flow at section (1) – (1)
 = ca

A a−
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∴ ac = Cc(A – a)
Substituting the value of ac in Eq. (4.2.13), we get

Cc(A – a) Vc = AV

or Vc =
( )c

AV
C A a−

Substituting the value of Vc in Eq. (4.2.12), we get

hob =

2

( )
2

c

AV V
C A a

g

 
− − 

hob =
 

− 
 

22

1
2 c

V A
g C (A - a) ... (4.2.14)

where A = 2

4
Dπ

a = 2

4
dπ if obstruction is circular

∴ hob =

2
2

2

2 2

4 1
2

4 4c

DV
g C D d

 π
 
 −

π π  −    

hob =
 
  
 

22 2

2 2 -1
2 ( - )c

V D
g C D d ... (4.2.15)

Loss of fluid power: P = mghob watt
 = ρQghob watt

where ρ = density of fluid, kg/m3

Q = discharge, m3/s
g = 9.81 m/s2

hob = loss of head due to obstruction, m
m = mass flow rate, kg/s

 Loss of head in pipe fitting
The loss of head in the various pipe fittings, such as valves, elbows and
bends etc., occurs because of their irregular interior surfaces which produce
large scale turbulence.
The loss of head or energy in various pipe fittings is expressed as:

hfitting =
2

2L
VK

g
where V is the mean velocity in the pipe and KL is the head loss coefficient
which is dependent on Reynolds number and the magnitude of which
depends upon the shape of the fitting (i.e., angle of bend, radius of bend,
opening of the valve etc.). The value of KL is found by experiment. Table
4.3 gives the values of KL for various common pipe fitting.
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Loss of fluid power: P = mghfitting watt
= ρQghfitting watt

where ρ = density of fluid, kg/m3

g = 9.81 m/s2

m = mass of flow rate, kg/s
Q = discharge, m3/s

hfitting = loss of head in pipe fitting, m

Table 4.3: Head Loss Coefficient for Pipe fitting

S. No. Name of Pipe Fitting Loss Coefficient: KL
1. Globe valve: Fully open 10

Half open 20
2. Gate valve: Fully open 0.2

Three-fourth open 1.15
Half open 5.6
One-fourth open 24.0

3. Pump’s foot valve 1.5
4. 45° elbow 0.4

90° elbow: Short radius 0.9
Medium radius 0.75
Large radius 0.60

5. 90° bend 0.6
180° bend 2.2

6. Check valve: Fully open 3

v

v

( ) 90º benda ( ) 45º bendb

v

( ) Gate valued( ) Globle valuec
Fig. 4.11: Pipe fittings.
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Problem 4.9: The rate of flow of water through a horizontal pipe is 250 litre/s.
The pipe diameter 200 mm is suddenly enlarged to 400 mm. Find

(i) loss of head
(ii) change in pressure

(iii) loss of fluid power.
Solution: Given data:

Discharge: Q = 250 litre/s = 
250

1000
 = 0.25 m3/s

Diameter of smaller pipe: d1 = 200 mm = 0.2 m
∴ Cross-sectional area of smaller pipe:

A1 = 2
14

dπ  = 23.14 (0.2)
4

×  = 0.0314 m2

Diameter of larger pipe: d2 = 400 mm = 0.4 m
∴ Cross-sectional area of larger pipe:

A2 = 2
24

dπ  = 23.14 (0.4)
4

×  = 0.1256 m2

We know that the discharge: Q = A1V1 = A2V2

Velocity at smaller pipe: V1 =
1

Q
A

 = 
0.25

0.0314
 = 7.96 m/s

Velocity at larger pipe: V2 =
2

Q
A

 = 
0.25

0.1256
 = 1.99 m/s

(i) We know that the loss of head due to sudden enlargement:

he =
2

1 2( )
2

V V
g

−
 = 

2(7.96 1.99)
2 9.81

−
×

 = 1.81 m of water

(ii) Change in pressure: ∆p = p2 – p1 = 2 2
1 2( )

2 eV V ghρ
− − ρ

= 2 21000 (7.96) (1.99) 1000 9.81 1.81
2

 − − × × 

= 29700.75 – 17756.1
= 11944.65 N/m2 or Pa = 11.944 kPa

(iii) Loss of fluid power: P = ρQghe = 1000 × 0.25 × 9.81 × 1.81
= 4439.02 watt = 4.439 kW

Problem 4.10: At a sudden enlargement of a pipe from diameter 300 mm to
450 mm piezometric head increases by 20 mm. Determine the discharge flow
through pipe.
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Solution: Given data:
Diameter of smaller pipe: d1 = 300 mm = 0.3 m

∴ Cross-sectional area: A1 = 2
14

dπ  = 23.14 (0.3)
4

×  = 0.0706 m2

Diameter of larger pipe: d2 = 450 mm = 0.45 m

∴ Cross-sectional area: A2 = 2
24

dπ  = 23.14 (0.45)
4

×  = 0.15896 m2

Increases of piezometric head = 20 mm = 0.02 m

i.e., 2 1
2 1

p pz z
g g

   
+ − +   ρ ρ   

 = 0.02 m

Loss of head due to sudden enlargement:

he =
2

1 2( )
2

V V
g

−

A1V1 = A2V2    by continuity equation

or V1 = 2
2

1

A V
A

 = 2
0.15896
0.0706

V  = 2.25 V2

∴ he =
2

2 2(2.25 )
2

V V
g
−

= 
2

21.562
2

V
g

Now applying modified Bernoulli’s equation,
2

1 1
12

p V z
g g

+ +
ρ  =

2
2 2

22 e
p V z h
g g

+ + +
ρ

2
1

2
V

g
 =

2
2 1 2

2 1 2 e
p p Vz z h
g g g

   
+ − + + +   ρ ρ   

2
2(2.25 )

2
V
g

 =
2 2

2 21.5620.02
2 2
V V

g g
+ +

2
25.062

2
V

g
 =

2 2
2 21.5620.02

2 2
V V

g g
+ +

or
2 2 2

2 2 25.062 1.562
2 2 2

V V V
g g g

− −  = 0.02

( )
2

25.062 1 1.562
2
V

g
− −  = 0.02

2
22.5

2
V

g
 = 0.02

or 2
2V  =

0.02 2 9.81
2.5

× ×
 = 0.15696
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or V2 = 0.396 m/s
∴ Discharge: Q = A2V2 = 0.15896 × 0.396 = 0.06295 m3/s

= 62.95 litre/s

 Problem 4.11: The rate of flow through a horizontal pipe is 0.3 m3/s. The diameter
of the pipe is suddenly enlarged from 250 mm to 500 mm. The pressure in the smaller
pipe is 13.734 N/cm2. Determine:

(i) The loss of head due to sudden enlargement.
(ii) The pressure in the larger pipe.
Solution: Given data:
Discharge: Q = 0.3 m3/s
Diameter of smaller pipe:d1 = 250 mm = 0.25 m

∴ Cross-sectional area: A1 = 2 2
1

3.14 (0.25)
4 4

dπ
= ×  = 0.049 m2

Diameter of large pipe: d2 = 500 mm = 0.5 m

∴ Cross-sectional area: A2 = 2 2
2

3.14 (0.5)
4 4

dπ
= ×  = 0.19625 m2

Pressure intensity in smaller pipe:
p1 = 13.734 N/cm2 = 13.734 × 104 N/m2

We know that Q = A1V1 = A2V2

∴ V1 = 
1

0.3
0.049

Q
A

=  = 6.122 m/s

and V2 = 
2

0.3
0.19625

Q
A

=  = 1.528 m/s

(i) Loss of head due to sudden enlargement:

he =
2

1 2( )
2

V V
g

−
 = 

2(6.122 1.528)
2 9.81

−
×

 = 1.075 m of oil

(ii) Pressure in the large pipe: p2
 According to modified Bernoulli’s equation

2
1 1

12
p V z
g g

+ +
ρ

 =
2

2 2
22 e

p V z h
g g

+ + +
ρ

or
2

1 1

2
p V
g g

+
ρ

 =
2

2 2

2 e
p V h
g g

+ +
ρ 1 2  for horizontal pipez z=

or
2 2

1 2

2 e
V V h

g
−

−  = 2 1p p
g
−

ρ

or p2 – p1 = ( )2 2
1 22 eV V g hρ

− − ρ
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p2 – 13.734 × 104 = 2 21000 ((6.122) (1.528) 1000 9.81 1.075
2

− − × ×

p2 – 13.734 × 104 = 17572.05 – 10545.75
p2 – 13.734 × 104 = 7026.3

or p2 = 14.436 × 104 N/m2 = 14.436 N/cm2

Problem 4.12: The rate of flow of water through a horizontal pipe is 250 litre/s.
The diameter of the pipe which is 200 mm is suddenly enlarged to 400 mm. The
pressure intensity in the smaller pipe is 150 kPa. Find

(i) loss of head
(ii) pressure intensity in the larger pipe

(iii) loss of power.

Solution: Given data:

Discharge: Q = 250 litre/s = 
250

1000
 m3/s = 0.25 m3/s

Diameter of smaller pipe: d1  = 200 mm = 0.2 m

∴ Cross-sectional area: A1 = 2
14

dπ  = 23.14 (0.2)
4

× = 0.0314 m2

Diameter of large pipe: d2 = 400 mm = 0.4 m

∴ Cross-sectional area: A2 = 2
24

dπ  = 23.14 (0.4)
4

×  = 0.1256 m2

Pressure intensity in smaller pipe:
p1 = 150 kPa = 150 × 103 N/m2

We know that Q = A1V1 = A2V2

∴ V1 =
1

Q
A

 = 
0.25

0.314
 = 7.96 m/s

and V2 =
2

Q
A

 = 
0.25

0.1256
 = 1.99 m/s

(i) Loss of head due to sudden enlargement:

he =
2

1 2( )
2

V V
g

−
 = 

2(7.96 1.99)
2 9.81

−
×

= 1.816 m of water
(ii) Pressure intensity in the large pipe: p2

According to modified Bernoulli’s equation,
2

1 1
12

p V z
g g

+ +
ρ  =

2
2 2

22 e
p V z h
g g

+ + +
ρ

2
1 1

2
p V
g g

+
ρ

= 
2

2 2

2 e
p V h
g g

+ +
ρ

 z1 = z2 for horizontal pipe
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2 2
1 2

2 e
V V h

g
−

− = 2 1p p
g
−

ρ

or p2 – p1 = 2 2
1 2( )

2 eV V ghρ
− − ρ

or p2 – 150 × 103 = 2 21000 (7.96) (1.99) 1000 9.81 1.816
2

 − − × × 

p2 – 150 × 103 = 29.7 × 103 – 17.815
or p2 = 161.885 × 103 N/m2 = 161.885 kPa

(iii) Loss of power: P = ρQghe = 1000 × 0.25 × 9.81 × 1.816 watt
= 4453.74 W = 4.453 kW

Problem 4.13: A horizontal pipe carries water at the rate of 0.04 m3/s. Its diameter,
which is 300 mm reduces abruptly to 150 mm. Calculate the pressure loss across the
contraction. Take the coefficient of contraction Cc = 0.62.

(GGSIP Univeristy, Delhi. Dec. 2005)
Solution: Given data:

Discharge: Q = 0.04 m3/s
Diameter of pipe at section (1) – (1): d1 = 300 mm = 0.3 m
∴ Cross-sectional area at section (1) – (1):

A1 = 2
14

dπ  = 23.14 (0.3)
4

×  = 0.07065 m2

1

2

2
1

Q

Fig. 4.12: Schematic for Problem 4.13

Diameter of pipe at section (2) – (2):
d2 = 150 mm = 0.15 m

∴ Cross-sectional area at section (2) – (2):

A2 = 2
24

dπ  = 23.14 (0.15)
4

×  = 0.01766 m2

Coefficient of contraction: Cc = 0.62
According to continuity equation:

Q = A1V1

or Velocity at section (1) – (1): V1 = 
1

Q
A

 = 
0.04

0.07065  = 0.5661 m/s
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and similarly the velocity at section (2) – (2):

V2 = 
2

Q
A

 = 
0.04

0.01766
 = 2.26 m/s

We know that the head loss due to sudden contraction: hc = 
2

2

2c
V

K
g

where Kc = coefficient of sudden contraction.

= 
2

1 1
cC

 
− 

 

∴ hc = 
2 2

21 1
2c

V
C g

 
− ⋅ 

 
 = 

2 21 (2.26)1
0.62 2 9.81

 − ×  × 
= [1.612 – 1]2 × 0.2603 = 0.0974 m of water.

Now applying Bernoulli’s equation at section (1) – (1) and at section (2) – (2),
we get

2
1 1

12
p V z
g g

+ +
ρ = 

2
2 2

22 c
p V z h
g g

+ + +
ρ

1 2p p
g g

−
ρ ρ

= 
2 2

2 1

2 2 c
V V h

g g
− +  z1 = z2

= 
2 2(2.26) (0.5661) 0.0974

2 9.81 2 9.81
− +

× ×
= 0.34139 m of water

∴ Pressure loss across the contraction: p1 – p2 = 0.34139 × ρg
= 0.34139 × 1000 × 9.81 = 3349.03 N/m2

= 3.349 kPa

Problem 4.14: A horizontal pipe of diameter 500 mm is suddenly contracted to a
diameter of 250 mm. The rate of flow of water is 300 litre/s. Find the pressure loss
across the contraction. Take coefficient of contraction as 0.6.
Solution: Given data:

Diameter of large pipe: d1 = 500 mm = 0.5m

∴ Cross-sectional area: A1 = 2
14

dπ  = 23.14 (0.5)
4

×  = 0.19625 m2

Diameter of smaller pipe: d2 = 250 mm = 0.25 m

∴ Cross-sectional area: A2 = 2
24

dπ  = 23.14 (0.25)
4

×  = 0.049 m2

Rate of flow: Q = 300 litre/s = 
300

1000
 m3/s = 0.3 m3/s

Coefficient of contraction: Cc = 0.6
We know that the rate of flow:

Q = A1V1 = A2V2
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∴ V1 = 
1

Q
A

 = 
0.3

0.19625
 m/s = 1.528 m/s

and V2 = 
2

Q
A

 = 
0.3

0.049
 m/s = 6.122 m/s

We know that the loss of head due to contraction:

hc = 
22

2 1 1
2 c

V
g C

 
− 

 
 = 

22(6.122) 1 1
2 9.81 0.6

 − ×  

= 1.91 × (0.6666)2 = 0.8487 m
Now applying modified Bernoulli’s equation before and after contraction, we get

2
1 1

12
p V z
g g

+ +
ρ = 

2
2 2

22 c
p V z h
g g

+ + +
ρ

1 2p p
g g

−
ρ ρ

=  
2 2

2 1

2 2 c
V V h

g g
− +  z1 = z2 for horizontal pipe

1 2p p
g

−
ρ

= 
2 2

2 1

2 2 c
V V h

g g
− +

p1 – p2 = 2 2
2 1( )

2 cV V ghρ
− + ρ

p1 – p2 = 2 21000 [(6.122) (1.528) ]
2

− + 1000
   × 9.81 × 0.8487

p1 – p2 = 17572.05 + 8325.74 = 25897.79 N/m2 or Pa
= 25.897 kPa

 Problem 4.15: In a city water supply system, water is following through a pipe line
30 cm in  diameter. The pipe diameter is suddenly reduced to 20 cm. Estimate the
discharge through the pipe if the difference in pressure across the sudden is 5 kPa.
Solution: Given data:

Diameter of pipe at section (1)–(1): d1 = 30 cm = 0.3 m

∴ Cross-sectional area : A1 = 2
14

dπ  = 3.14
4

 × (0.3)2 = 0.07065 m2

1

1

2

2

Fig. 4.13: Schematic for Problem 4.15
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Diameter of pipe at section (2)–(2): d2 = 20 cm = 0.20 m

∴ Cross-sectional area: A2 =
4
π

d2
2 = 3.14

4
 × (0.20)2 = 0.0314 m2

  Pressure difference across a sudden contraction,
p1 – p2 = 5 kPa = 5 × 103 Pa

According to continuity equation,
Q = A1V1 = A2V2

or A1V1 = A2V2
0.07065 × V1 = 0.0314 × V2

or V1 = 0.444V2

We know that the head loss to sudden contraction: hc = Kc 
2

2
2
V

g

where Kc = coefficient sudden contraction.

 =
2

1 1
cC

 
− 

 

Assume coefficient of contraction: Cc = 0.62

∴ Kc =
21 1

0.62
 −    = 0.375

Therefore, hc =
2

20.375
2

V
g

hc =
2

20.1875V
g

Now applying Bernoulli’s equation at sections (1)–(1) and (2)–(2), we get

1p
gρ

 + 
2

1
2
V

g
 + z1 = 2p

gρ
 + 

2
2

2
V

g
 + z2 + hc

2
1 2 1

2
p p V
g g g

− +
ρ ρ

 =
2

2
2 c
V h

g
+ ∴ z1 = z2

1 2p p
g

−
ρ

 + 
( )2

20.444
2

V
g  =

2
2

2
V

g  + 
2

20.1875V
g

 or 1 2p p−
ρ

 + 
( )2

20.444
2

V
 =

2
2
2

V
 + 0.1875 V2

2
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35 10
1000
×

 + 0.0985 V2
2 = 2 2

2 20.5 0.1875V V+

5 + 0.0985 V2
2 = 0.6875 V2

2

or V2
2 = 8.4889

or V2 = 2.91 m/s
∴ Q = A2V2 = 0.0314 × 2.91 = 0.09137 m3/s

= 91.37 liter/s

Problem 4.16: Oil of specific gravity 0.85 is flowing through a horizontal pipe of
diameter 250 mm at a velocity of 2 m/s. A circular solid plate of diameter 150 mm is
placed in the pipe to obstruct the flow. Find the loss of head due to obstruction in the
pipe. Take coefficient of contraction as 0.7. Find also the loss of fluid power.
Solution: Given data:

Specific gravity of oil: S = 0.85
∴ Density of oil: ρ = S × ρwater = 0.85 × 1000 kg/m3 = 850 kg/m3

Diameter of pipe: D = 250 mm = 0.25 m
Velocity of oil through pipe: V = 2 m/s
Diameter of obstruction: d = 150 mm = 0.15 m
Coefficient of contraction: Cc = 0.7
Loss of head due to obstruction in pipe is given by Eq. (11.5.10):

hob =
22 2

2 2 1
2 ( )c

V D
g C D d

 
−  − 

=
22 2

2 2
2 0.25 1

2 9.81 0.7(0.25 0.15 )
 

× − 
× − 

= 0.3095 m of oil.
Loss of fluid power: P = ρQghob
where Q = AV

= 2

4
D Vπ

×  = 23.14 (0.25) 2
4

× ×  = 0.09812 m3/s

∴ P = 850 × 0.09812 × 9.81 × 0.3095 W = 253.22 W

Problem 4.17: Find the rate of flow of water through pipe of diameter 300 mm and
length 100 m when one end of the pipe is connected to a tank and other end of the
pipe is open to the atmosphere. The pipe is horizontal and the height of water in the
tank is 6 m above the centre of the pipe. Consider all minor losses and take coefficient
of friction as 0.004.



Flow Through Pipe 215

Solution: Given data:
Diameter of pipe: d = 300 mm = 0.3 m
Length of pipe: l = 100 m
Head of water available at inlet of pipe: H = 6 m
Coefficient of friction: f = 0.004
Now net available head at inlet of pipe = minor losses + major loss

  H = (hi + ho) + hf

d = 300 mm

Pipe

WaterTank

l = 100 m

ExitH = 6 m

Fig. 4.14: Schematic for Problem 4.17

where hi = 
2

0.5 ,
2
V

g
 loss of head at entrance of pipe.

ho = 
2

,
2
V

g
 loss of head at exit of pipe.

hf = 
24 ,

2
f lV
gd

 loss of head due to friction.

∴ H =
2 2 240.5

2 2 2
V V f lV

g g gd
+ +

6 =
240.5 1

2
f l V
d g

 + + 
 

6 =
20.004 1000.5 1

0.3 2
V

g
4× × + + 

 

6 =
2

(0.5 1 5.33)
2
V

g
+ +

6 =
2

6.83
2
V

g

or V 2 =
6 2 9.81

6.83
× ×  = 17.23 or V = 4.15 m/s

We know that the rate of flow:

Q = AV = 2

4
d Vπ

 = 23.14 (0.3) 4.15
4

× ×  m3/s = 0.29319 m3/s
 = 293.19 litre/s
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Problem 4.18: Find the rate of flow through a horizontal pipe line 50 m long which
is connected to a water tank at one end and discharged freely into the atmosphere at
the other end. For the first 30 m of its length from the tank, the pipe is 200 mm
diameter and its diameter is suddenly enlarged to 300 mm. The height of water level
in the tank is 10 m above the centre line of the pipe. Considering all minor losses. Take
f = 0.02 for both sections of the pipe.
Solution: Given data:

Total length of pipe: l = 50 m
Length of 1st pipe: l1 = 30 m
Length of 2nd pipe: l2 = 20 m

d1, V1

d2, V2

Water

l  = 30 m1 l  = 20 m2

ExitH = 10 m

Fig. 4.15: Schematic for Problem 4.18

Diameter of 1st pipe: d1 = 200 mm = 0.2 m
Diameter of 2nd pipe: d2 = 300 mm = 0.3 m
Head of water available at inlet of pipe: H = 10 m
Coefficient of friction: f = 0.02
Now net available head at inlet of pipe = minor losses + major losses

H =
1 2i f e f oh h h h h+ + + +

where hi = 
2

10.5 ,
2
V

g
loss of head at entrance of pipe (i.e., minor loss)

1fh = 
2

1 1

1

4 ,
2
f l V
gd

 loss of head due to friction in 1st pipe (i.e., major loss)

he = 
2

1 2( ) ,
2

V V
g

−
 loss of head due to sudden enlargement (i.e., minor loss)

2fh = 
2

2 2

2

4 ,
2
f l V
gd

 loss of head due to friction in 2nd pipe (i.e., major loss)

ho = 
2

2 ,
2
V

g
 loss of head at exit of pipe (i.e., minor loss)

∴ H = 
2 2 2 2 2

1 1 1 1 2 2 2 2

1 2

4 ( ) 40.5
2 2 2 2 2
V f l V V V f l V V

g gd g gd g
−

+ + + + …(i)
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According to continuity equation Q = A1V1 = A2V2
or A1V1 = A2V2

2
1 14

d Vπ = 2
2 24

d Vπ

2
1 1d V = 2

2 2d V

or V1 = 
2

2
2

1

d V
d

 
 
 

 = 
2

2 2
0.3 2.25
0.2

V V  = 
 

Substituting the value of V1 = 2.25V2 in above Eq. (i), we get

H =
2 2 2

2 22 1 2 2
2

1

(2.25) 4 (2.25 )0.5 (2.25)
2 2 2

V f l V VV
g gd g

−
+ +

2 2
2 2 2

2

4
2 2
f l V V
gd g

+ +

 10 =
2 2 22

2 2 24 0.02 30 (2.25)2.53 1.56
2 0.2 2 2
V V V

g g g
× × ×

+ +  + 
2 2

2 24 0.02 20
0.3 2 2

V V
g g

× ×
+

10 = [2.53 + 60.75 + 1.56 + 5.33 + 1]
2

2

2
V

g

10 =
2

271.17
2
V

g

or 2
2V  =

10 2
71.17

g×  = 
10 2 9.81

71.17
× ×

 = 2.756

or V2 = 1.66 m/s

∴ Rate of flow: Q = A2V2 = 2
2 24

d Vπ = 23.14 (0.3) 1.66
4

× ×  m3/s

= 0.11728 m3/s = 117.28 litre/s

Problem 4.19: Water at 10°C flows from a large reservoir to a smaller one through
a 50 mm diameter cast iron piping system, as shown in Fig. 4.16. Determine the
elevation z1 for a flow rate of 6 litre/s.

z1 = ?

z2 = 4 m

1

2

d = 50 mm

80 m

90º elbow, = 0.3KL

Exit,  = 1.06K2

9 m
Gate valve, 
fully open
KL= 0.2

Fig. 4.16: Schematic for Problem 4.19

Properties of water at 10°C,
ρ = 999.7 kg/m3, µ = 1.307 × 10–3 Ns/m2
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Solution: Given data:
Diameter of pipe: d  = 50 mm = 0.05 m
∴ Cross-sectional area of pipe:

A  = 2

4
dπ  = 23.14 (0.05)

4
×  = 1.962 × 10–3 m2

Discharge: Q = 6 litre/s = 0.006 m3/s
also Q = AV
∴ Average velocity in pipe:

V = Q
A

 = 3
0.006

1.962 10−×
 = 3.058 m/s

Total length of pipe: l = 80 + 9 = 89 m
The roughness of cast iron pipe:

∈ = 0.26 mm from Table 4.1.
= 0.00026 m

Relative roughness:
d
∈

 =
0.00026

0.05
 = 0.0052

Reynold’s number: Re = Vdρ
µ

 = 3
999.7 3.058 0.05

1.307 10−

× ×
×

 = 116950.36

The flow is turbulent since Re > 4000.
The friction factor  f′ can be determined from the Moody chart on the basis of

Re = 116950.36 and relative roughness: 
d
∈

 = 0.0052

i.e., Moody’s chart gives:
  f′ = 0.0315

also  f′ = 4 f

or Coefficient of friction: f =
0.0315

4 4
f ′

=  = 0.00787

Applying the energy equation points (1) and (2) on the free surfaces of the two
reservoirs.

2
1 1

12
p V z
g g

+ +
ρ  =

2
2 2

22
p V z
g g

+ +
ρ  + head losses in pipe

where 1p
gρ

 = 2p
gρ

 = patm

V1 = V2 = 0
z2 = 4 m

Head losses in pipe = minor losses + major losses
= hi + 2helbow + hvalve + ho + hf

=
2 2 2 2 240.5 2

2 2 2 2 2L L L
V V V V f lVK K K

g g g g gd
+ + + +

=
240.5 2 0.3 0.2 1.06

2
f l V
d g

 + × + + +  

=
24 0.00787 89 (3.058)0.5 0.6 0.2 1.06

0.05 2 9.81
× × + + + + ×  × 
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= [58.394] × 0.4766 = 27.83 m
∴ patm + 0 + z1 = patm + 0 + 4 + 27.83
or z1 = 31.83 m

4.3 SIPHON
A long bent pipe which rises above its hydraulic grade line and has negative pressure,
is called siphon. In the other words, siphon is a long bent pipe which carries liquid
from a reservoir at a higher level to another reservoir at a lower level when the two
reservoirs are separated by a hill or high obstruction as shown in Fig. 4.17. The portion
of the pipe which lies above the hydraulic gradient line, marked by M, C, N, has
negative pressures, is called a siphon. The highest point of the siphon has the largest
negative pressure, is called the summit, marked by C. The pressure at
C can be reduced theoretically to –10.3 m of water but in actual practice this pressure
is only –7.6 m of water (or 10.3 – 7.6 = 2.7 m of water absolute). The absolute
pressure head at the point C should not be less than 2.7 m of water. If it is less than
this, the flow would stop due to separation, water will start vapourising and the
dissolved gases will be given off from the water. Thus, the maximum height of the
hill should not be more than 7.6 m above the hydraulic gradient line.

Outlet leg

Hydraulic grade line

Reservoir at 
high level

Reservoir at low level

Hill
y

N

MA

B

C
Summit

h

Inlet-leg

Fig. 4.17: Flow through a siphon.

The siphon can be made to work by exhausting air, thus creating vacuum in it,
or by filling it completely with water.

Problem 4.20: A siphon of diameter 150 mm connects two reservoirs having a
difference in elevation of 25 m. The length of the siphon is 400 m and the summit is
3.5 m above the water level in the upper reservoir. The length of the pipe from upper
reservoir to the summit is 50 m. Determine:

(i) Discharge through the siphon and
(ii) Pressure at the summit.

Neglect minor losses. The coefficient of friction,  f = 0.004.
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Solution: Given data:
Diameter of siphon: d = 150 mm = 0.15 m
Length of siphon: l = 400 m

Reservoir at 
high level

Reservoir at 
low level

A

B

C

zA
zC

zB

50
 m

Datum line

25 m

3.5 m

Fig. 4.18: Schematic for Problem 4.20

Difference between level of two reservoirs: zA – zB = 25 m.
Height of summit from upper reservoir: h = 3.5 m
Length of the pipe from upper reservoir to the summit: l1 = 50 m
Coefficient of friction: f = 0.004.
Now applying modified Bernoulli’s equation to points A and B, we get

 
2

2
A A

A
p V z
g g

+ +
ρ  = 

2

2
B B

B
p V z
g g

+ +
ρ  + loss of head due to friction from A to B (neglect

     minor losses)
or 0 + 0 + zA = 0 + 0 + zB + hf

[ pA = pB = atmospheric pressure, VA = VB = 0]
∴ zA – zB = hf

 hf = 
24

2
f lV
gd

 By Darcy’s formula, zA – zB = 25 m (given)

25 =
24

2
f lV
gd

25 =
24 0.004 400

2 9.81 0.15
V× × ×

× ×
or 25 = 2.174V2

or V2 = 11.494
or V = 3.39 m/s
(i) Discharge through the siphon: Q

Now discharge flow through the siphon:
Q = velocity × cross-sectional area of the siphon

= VA = 3.39 × 
4
π

d2 = 23.143.39 (0.15)
4

×

= 0.05987 m3/s = 59.87 litre/s
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(ii) Pressure at the summit: pc
Now applying modified Bernoulli’s equation to points A and C, we get

2

2
A A

A
p V z
g g

+ +
ρ  =

2

2
c c

C
p V

z
g g

+ +
ρ  + loss of head due to friction
                   between A and C

0 + 0 + zA = 1

2

2
c c

C f
p V

z h
g g

+ + +
ρ

or cp
gρ

 =
1

2

2
c

A C f
Vz z h

g
− − −  = 

1

2

( )
2

c
C A f

Vz z h
g

− − − −

=
22

14(3.39)3.5
2 9.81 2

f l V
gd

− − −
×  Vc = V

= – 3.5 – 0.585 – 
24 0.004 50 (3.39)

2 9.81 0.15
× × ×

× ×
= – 3.5 – 0.586 – 3.123

cp
gρ

 = 7.208 m of water

cp
gρ

 = 10.3 – 7.208 m of water absolute

cp
gρ

 = 3.092 m of water absolute

pc = 3.092 × ρg = 3.092 × 1000 × 9.81 N/m2

= 30332.52 N/m2 = 30.33 kN/m2 absolute.

Problem 4.21: Two reservoirs are connected by a pipeline which rises above the
level of the higher reservoir. What will be the highest point of the siphon above the
water surface level in the higher tank if the length of the pipe leading upto this point
is 450 m, the total length of the pipeline is 1000 m and the diameter of the pipe is
300 mm? The difference in the levels of the two reservoirs is 12.5 m. Take coefficient
of friction as 0.01. The siphon must run full. Assume that the separation will occur
if the absolute pressure in the pipe falls
below 2.44 m of water.
Solution: Given data:

Length of pipe from upper reservoir
to the summit:

l1 = 450 m
Length of siphon:

l = 1000 m
Diameter of siphon:

d = 300 m = 0.3 m

Reservoir at high level

Reservoir at low level

V

V

hs

12.5 m

A

B

C

Fig. 4.19: Schematic for Problem 4.21
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Difference between level of two reservoirs: zA – zB = 12.5 m
Coefficient of friction: f = 0.01
Absolute pressure head at summit = 2.44 m of water
∴ Vacuum pressure head at summit:

                    Cp
gρ

= 10.3 – 2.44 = 7.86 m of water

i.e., Pressure head at summit: Cp
gρ

= – 7.86 m of water

Now applying modified Bernoulli’s equation at points A and B, we get
2

2
A A

A
p V z
g g

+ +
ρ  =

2

losses of head
2

B B
B

p V z
g g

+ + +
ρ

0 + 0 + zA = 0 + 0 + zB + losses of head
or zA – zB = losses of head
where losses of head = hi + hf + ho

=
2 2 240.5

2 2 2
V f lV V

g gd g
+ +

∴ zA – zB =
2 2 20.5 4

2 2 2
V f lV V
g gd g

+ +

zA – zB =
240.5 1

2
f l V
d g

 + +  

12.5 =
24 0.01 10000.5 1

0.3 2
V

g
× × + +  

12.5 =
2

134.83
2 9.81

V
×

×
or V 2 = 1.8189
or V = 1.348 m/s
Now applying modified Bernoulli’s equation at points A and C, we get

2

2
A A

A
p V z
g g

+ +
ρ  =

2

losses of head
2

C C
C

p V z
g g

+ + +
ρ

0 + 0 + zA = – 7.86 + 
2

losses of head
2

C
C

V z
g

+ +

or
2

7.86 losses of head
2

CV
g

− −  = zC – zA

where losses of head = hi + hf1 + ho

=
22 2

140.5
2 2 2

f l VV V
g gd g

+ +
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and Vc = V
zC – zA = hs

∴
22 2 2

147.86 0.5
2 2 2 2

f l VV V V
g g gd g

 
− − + + 

 
 = hs

22 2 2
147.86 0.5

2 2 2 2
f l VV V V

g g gd g
− − − −  = hs

2
147.86 1 0.5 1

2
f l V
d g

 − + + + 
 

 = hs

24 0.01 450 (1.348)7.86 1 0.5 1
0.3 2 9.81

× × − + + +  × 
 = hs

7.86 – (1 + 0.5 + 60 + 1) × 0.0926 = hs
7.86 – 5.787 = hs

or hs = 2.073 m

4.4 PIPES IN SERIES: COMPOUND PIPES
In piping systems, two or more pipes of different diameters are connected end to end,
is called pipes in series or compound pipes. Let three pipes in series as shown in
Fig. 4.20.

d1
d2 d3

1
2

3

V1
V2

V3

l1 l2 l3

Fig. 4.20: Pipe in series.

l1, l2, l3 = length of pipes 1, 2 and 3 respectively
d1, d2, d3 = diameter of pipes 1, 2 and 3 respectively

V1, V2, V3 = velocity of flow through pipes 1, 2 and 3 respectively
f1, f2, f3 = coefficient of frictions for pipes 1, 2 and 3 respectively.

The rate of flow through the entire system remains constant regardless of the
diameters of the individual pipes in the system. This is a natural consequence of the
conservation of mass principle for steady incompressible flow.

Mathematically,
Q1 = Q2 = Q3

A1V1 = A2V2 = A3V3

2
1 14

d Vπ  = 2
2 24

d Vπ  = 2
3 34

d Vπ

or 2
1 1d V  = 2

2 2d V  = 2
3 3d V
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The total head loss in this case is equal to the sum of the head losses in individual
pipes in the system, including the minor losses.

Mathematically,
Total head loss =

1 2 3f c f e fh h h h h+ + + +
where

1fh  =
2

1 1 1

1

4 ,
2
f l V
gd

 loss of head due to friction in pipe-1.

hc =
2

20.5 ,
2
V

g
loss of head due to sudden contraction from pipe-1 to pipe-2.

2fh  =
2

2 2 2

2

4 ,
2
f l V
gd

 loss of head due to friction in pipe-2.

he =
2

2 3( )
,

2
V V

g
−

loss of head due to sudden enlargement from pipe-2 to pipe-3.

3fh  =
2

3 3 3

3

4
2
f l V
gd

, loss of head due to friction in pipe-3.

∴ Total head loss =
2 22 2 2

2 3 3 3 31 1 1 2 2 2 2

1 2 3

( ) 44 40.5
2 2 2 2 2

V V f l Vf l V V f l V
gd g gd g gd

−
+ + + +

Two reservoirs are connected through pipes in series:

V1
V2

V3

Pipe-1

Pipe-2
Pipe-3

l
f1 1 1

, , d l
f2 2 2

, , d

l
f3 3 3

, , d

H = z  – zA B

A

B

Fig. 4.21: Two reservoirs are connected through pipes in series

Q1 = Q2 = Q3
A1V1 = A2V2 = A3V3

2
1 14

d Vπ  = 2
2 24

d Vπ  = 2
3 34

d Vπ

or 2
1 1d V  = 2

2 2d V  = 2
3 3d V

Total head loss =
1 2 3i f e f c f oh h h h h h h+ + + + + +

hi =
2

10.5 ,
2
V

g
 loss of head at the entrance of pipe-1.

1fh  =
2

1 1 1

1

4 ,
2
f l V
gd

loss of head due friction in pipe-1
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he =
2

1 2( ) ,
2

V V
g

−
 loss of head due to sudden enlargement from pipe-1

2fh  =
2

2 2 2

2

4
2
f l V
gd

, loss of head due to friction in pipe-2

hc =
2

30.5
,

2
V
g

loss of head due to sudden contraction from pipe-2 to pipe-3

3fh  =
2

3 3 3

3

4
,

2
f l V
gd

 loss of head due to friction in pipe-3.

ho =
3

3 ,
2
V

g
 loss of head at the exit of pipe-3.

∴ Total head loss = 
2 2 2 2 2 2 2

1 1 1 1 1 2 2 2 2 3 3 3 3 3

1 2 3

0.5 4 ( ) 4 0.5 4
2 2 2 2 2 2 2

V f l V V V f l V V f l V V
g gd g gd g gd g

−
+ + + + + +

...(4.4.1)
Now applying modified Bernoulli’s equation at points A and B (i.e., points on the

free surfaces of liquid in reservoirs), we get
2

2
A A

A
p V z
g g

+ +
ρ  =

2

total head loss
2

B B
B

p V z
g g

+ + +
ρ

0 + 0 + zA = 0 + 0 + zB + total head loss ...(4.4.2)
zA – zB = total head loss

or H = total head loss
From Eqs. (4.4.1) and (4.4.2), we get

                H =
2 2 2 2 2 2 2

1 1 1 1 1 2 2 2 2 3 3 3 3 3

1 2 3

0.5 4 ( - ) 4 0.5 4+ + + + + +
2 2 2 2 2 2 2
V f l V V V f l V V f l V V
g gd g gd g gd g

4.5 CONCEPT OF EQUIVALENT LENGTH AND EQUIVALENT PIPE

4.5.1 Equivalent Length
The loss of head in pipe fittings  are expressed in terms of an equivalent length which
is the length of uniform diameter pipe in which an equal loss of head (i.e., due to
friction) would occur for the same discharge.

2
2

2
2

1
1

1
1

d
dV

Fig. 4.22: Head loss caused by a component (valve as shown in Fig.) is equivalent to
the head loss caused by a same cross-sectional area of the pipe whose length is the

equivalent length.
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The equivalent length le is obtained by equating minor loss equal to major loss.

KL 
2

2
V

g  =
24  

2
ef l V

gd

or KL =
4  ef l

d

KL =
´ ef l
d  4 f = f ′

or Equivalent length: le = KL 

d
f

where f = coefficient of friction
f ′ = friction factor

For a known value of f ′ which depends upon the Reynold’s number and the pipe
roughness, the equivalent length for a given pipe fitting can be expressed in terms of
pipe diameter.

4.5.2 Equivalent Pipe
It is defined as the pipe of uniform diameter having loss of head equal to the total loss
of head as the compound pipe (i.e., pipes in series) at same discharge (Q). The
uniform diameter of the equivalent pipe is called equivalent size of the pipe. The length
of equivalent pipe is equal  to sum of lengths of the compound pipe.

( ) b Equivalent pipe

de

d1

d2

d3

V1
V2

V3

l1 l2 l3

( ) a Pipe in series

V

Pipe-1
Pipe-2

Pipe-3

le

Fig. 4.23: Pipes in series and its equivalent pipe
Mathematically,
Equivalent length: le = l1 + l2 + l3
Let de = diameter of the equivalent pipe.
Head loss in equivalent pipe = sum of head loss in pipes in series

efh = 1fh + hc + hf2 + he + hf3
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where cfh  =
24

2  
e e

e

f l V
g d , loss of head due to friction in equivalent pipe.

1fh  =
2

1 1 1

1

4
2  
f l V
g d , loss of head due to friction in pipe-1.

hc =
2

20.5
2

V
g , loss of head due to sudden contraction from pipe-I to pipe-2

2fh  =
2

2 2 2

2

4
2  
f l V

g d , loss of head due to friction in pipe-2.

he =
2

2 3( )
2

V V
g

−
, loss of head due to sudden enlargement from pipe-2

       to pipe-3

3fh  =
2

3 3 3

3

4
2  
f l V
g d , loss of head due to friction in pipe-3.

∴
24

2
e e

e

f l V
gd

 =
2

1 1 1

1

4
2
f l V

gd
 + 0.5 

2

2
V

g
+ 

2
2 2 2

2

4
2
f l V

gd
 + 

2
2 3( )

2
V V

g
− + 

2
3 3 3

3

4
2
f l V

gd

24
2

e e

e

f l V
gd

 =
2

1 1 1

1

4
2
f l V

gd
 + 

2
2 2 2

2

4
2
f l V

gd
 + 

2
3 3 3

3

4
2
f l V

gd
...(11.5.1)

[ neglecting minor losses]
Assuming fe = f1 = f2 = f3 = f
Equation (4.5.1) becomes

2
e

e

l V
d

 =
2

1 1

1

l V
d

 + 
2

2 2

2

l V
d

 + 
2

3 3

3

l V
d

...(4.5.2)

Discharge: Q = AeV = A1V1 = A2V2 = A3V3

or V =
e

Q
A

 = 
2

4 e

Q

dπ  = 2
4

e

Q
dπ

V1 = 2
21 1
1

4

4

= =
π π

Q Q Q
A dd

V2 = 2
22 2
2

4 4

4

= =
π π

Q Q Q
A dd

and V3 = 2
23 3
3

4 4

4

Q Q Q
A dd

= =
π π
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Substituting the values of V1, V2, and V3 in above equation (4.5.2), we get

e

e

l
d

× 
2

2 4
16

e

Q
dπ

 = 1

1

l
d

 × 
2

2 4
1

16Q
dπ

 + 2

2

l
d

 × 
2

2 4
2

16Q
dπ

+ 3

3

l
d

 × 
2

2 4
3

16Q
dπ

or 5
e

e

l
d

 = + + 31 2
5 5 5
1 2 3

ll l
d d d

(4.5.3)

The above Eq. (4.5.3) is known as Dupuit’s equation. In this equation le
= l1 + l2 + l3 and d1, d2  and d3 are known. Hence diameter of the equivalent pipe
de can be determined.

If the diameter of the equivalent pipe de is fixed up, its length le can be determined
from Eq. (4.5.3). In that case, le ≠ l1 + l2 + l3

If coefficient of friction is not same, the above Eq. (4.5.3) is written as:

5
e e

e

f l
d  = + + 3 31 1 2 2

5 5 5
1 2 3

f lf l f l
d d d

4.6  PIPES IN PARALLEL
In piping system, two or more pipes are connected between the main pipe, is called
pipes in parallel as shown in Fig. 4.24. The rate of flow through main pipe is equal
to the sum of rate of flow through branch pipes. Hence from Fig. 4.24, we get

Q V1 1, 

d1 1, l

d2 2, l

Q V2 2, 

Q

d V, 

Main pipe Main pipe

Q

Pipe-1

Pipe-2

Fig. 4.24: Two pipes in parallel.

Q = Q1 + Q2

2

4
d Vπ

= 2
1 14

d Vπ
 + 2

2 24
d Vπ

or 2d V = 2
1 1d V + 2

2 2d V

The same head loss occurs in each branch between the main pipe.
i.e., hf1 = hf2

2
1 1 1

1

4  
2
f l V

gd = 
2

2 2 2

2

4  
2
f l V

gd
2

1 1 1

1

f  l V
d = 

2
2 2 2

2

f  l V
d

where  f1, f2 are coefficients of friction in pipes 1 and 2 respectively.
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4.6.1 Three Pipes in Parallel

Q V1 1, 

Q V3 3, 

Q V2 2, Q

Main pipe Main pipe

Q

Fig. 4.25: Three pipes in parallel.

Discharge through main pipe:
Q = Q1 + Q2 + Q3

and head loss: hf1 = hf2 = hf3

2
1 1 1

1

4  
2
f l V

gd  =
2

2 2 2

2

4  
2
f l V

gd  = 
2

3 3 3

3

4  
2
f l V

gd

or
2

1 1 1

1

f l V
d

 =
2

2 2 2

2

f l V
d

 = 
2

3 3 3

3

f l V
d

where       f1,  f2,  f3 are coefficients of friction in pipes 1, 2 and 3 respectively.

4.6.2 Four Pipes in Parallel
Discharge through main pipe:

Q V3 3, 

Q V4 4, 

Q

Main pipe Main pipe

Q

Q V1 1, 

Q V2 2, 

Fig. 4.26: Four pipes in parallel.

Q = Q1 + Q2 + Q3+ Q4
and head loss: hf = hf2 = hf3 = hf4

2
1 1 1

1

4  
2
f l V

gd  =
2

2 2 2

2

4  
2
f l V

gd  = 
2

3 3 3

3

4  
2
f l V

gd = 
2

4 4 4

4

4  
2
f l V

gd

or
2

1 1 1

1

 f l V
d

 =
2

2 2 2

2

 f l V
d

 = 
2

3 3 3

3

 f l V
d

 =  
2

4 4 4

4

 f l V
d

where  f1,  f2,  f3,  f4 are coefficients of friction in pipes 1, 2, 3 and 4
respectively.



Fluid Mechanics230

Problem 4.22: What is discharged from one tank to another with 30 m difference
of water levels through a pipe 1200 m long. The diameter for the first 600 m length
of the pipe is 400 mm and 250 mm for the remaining 600 m long. Find the discharge
in litre/s through the pipe. Assume the coefficient of friction as 0.008 for both the
pipes, neglecting minor losses.

V1,Q

V
2 ,QPipe-1

Pipe-2

l1 1
, d

l2 2
, d

H

A

B

Fig. 4.27: Schematic for Problem 4.22

Solution:  Given data:
Difference of water level in the two tanks: H = 30 m
Length of pipe-1: l1 = 600 m
Diameter of pipe-1: d1 = 400 mm = 0.4 m
Length of pipe-2: l2 = 600 m
Diameter of pipe-2: d2 = 250 mm = 0.250 m
Coefficient of friction for both the pipes : f = 0.008
Let Q = discharge passing through each pipe is same.
We know that the difference of water level in the two tanks: H

H = 1 2f fh h+ (neglecting minor losses)

H =
2

1 1

1

4  
2
f l V
gd   + 

2
2 2

2

4  
2
f l V
gd

where  V1 =
1

Q
A

 = 
2
14

Q

dπ  = 2
1

4Q
dπ

and V2 = 2
2

4Q
dπ

∴ H =
2 2

1 2
2 4 2 4

1 21 2

4  416 16
2 2

f l flQ Q
gd gdd d

× + ×
π π

H =
2 2

1 2
2 5 2 5

1 2

32  32  f l Q f l Q
g d g d

+
π π

H =
2

1 2
2 5 5

1 2

32 l lf Q
g d d

 
+ 

π  
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30 =
2

2 5 5
32 0.008 600 600
9.81 (3.14) (0.4) (0.25)

Q  × ×
+ 

×  
11334.688 = Q 2 [58593.75 + 614400]

or Q2 = 0.01684
Q = 0.12976 m3/s = 0.12976 ×1000 litres/s = 129.76 litre/s

 Problem 4.23: Two reservoirs are connected by a 1500 m pipeline. The first
700 m of the pipe- line is 300 mm diameter and has a frictional of 0.020. The remaining
pipe is 600 mm in diameter and its frictional coefficient is 0.018. Estimate the
difference of water level in the two reservoirs when the flow is 9000 liter/minute and
the ends of the pipe line at the reservoirs are sharp.
Solution: Given data:

Length of pipe : l = 1500 m
Length of pipe–1 : l1 = 700 m
Diameter of pipe–1 : d1 = 300 mm = 0.30 m
Frictional coefficient or friction factor,

f′1 = 0.020
Length of pipe–2 : l2 = l – l1 = 1500 – 700 = 800 m
Diameter of pipe–2 : d2 = 600 mm = 0.60 m

Reservoir-A

Reservoir-B

l d1 1,

Pipe-1

V1

Pipe-2

l d2 2,

V2

H

Fig. 4.28: Schematic for Problem 4.23

Frictional coefficient or friction factor,
f ′2 = 0.018

Discharge: Q =  9000 litre/minute

= 9000
1000 600×

 m3/s = 0.15 m3/s

We known that the difference of water level in the two tanks;
H = head loss in pipe–1 + head loss in pipe–2
H = hf1 + hf2

=
2 2

1 1 1 2 2 2

1 22 2
f l v f l V

g d g d
′ ′

+
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where V1 =
1

Q
A

 = 
1

Q
A

 = 2
1

4Q
dπ

and V2 = 2
2

4Q
dπ

∴ H = 1 1

12
f l
g d
′ 2

2
1

4Q
d

 
 

π 
 + 2 2

22
f l
g d
′

 
2

2
2

4Q
d

 
 

π 

H =
2

1 1
2 5

1

8 f l Q
g d
′

π
 + 

2
2 2
2 5

2

8 f l Q
gd

′

π

                     =
( )

( ) ( )

2 2

2 5 2 5
8 0.020 700 0.15 8 0.018 800 (0.15)

(3.14) 9.81 (0.60)3.14 9.81 0.30

× × × × × ×
+

× ×× ×
 = 10.72 + 0.34 = 11.06 m

Problem 4.24: The difference in water surface levels in two tanks, which are
connected by three pipes in series of length 200 m, 300 m and 150 m and of diameters
400 mm, 200 mm and 300 mm respectively is 20 m. Find the rate of water if
coefficients of friction are 0.004, 0.0045, 0.005 respectively, considering: (i) minor
losses (ii) neglecting minor losses.
Solution: Given data:

Length of pipe-1: l1 = 200 m
Diameter of pipe-1: d1 = 400 mm = 0.4 m

V1,Q

V
2 

V
2 

Pipe-1 Pipe-2

Pipe-3

l1 1
, d

l2 2
, d

l3 3
, d

H

Fig. 4.29: Schematic for Problem 4.24

Coefficients of friction of pipe – 1:
f1 = 0.004

Length of pipe-2: l2 = 300 m
Diameter of pipe-2: d2 = 200 mm = 0.2 m
Coefficient of friction of pipe : 2:

f2 = 0.0045
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Length of pipe-3: l3 = 150 m
Diameter of pipe-3: d3 = 300 m = 0.3 m
Coefficient of friction of pipe-3:

f3 = 0.005
Difference of water level in the two tank: H = 20 m
Let Q = discharge passing through each pipe is same
We know that the difference of water level in the two tank: H

H = 1 2 3f f fh h h+ + (neglecting minor losses)

H =
2

1 1 1

1

4  
2
f l V

gd  + 
2

2 2 2

2

4  
2
f l V

gd  + 
2

3 3 3

3

4  
2
f l V

gd

where V1 =
1

Q
A  = 

2
14

Q

dπ  = 2
1

Q
dπ

V2 = 2
2

4Q
dπ

and V3 = 2
3

4Q
dπ

∴ H =
2 2 2

3 31 1 2 2
2 4 2 4 2 4

1 2 31 2 3

44 416 16 16
2 2 2

f lf l f lQ Q Q
gd gd gdd d d

× + × + ×
π π π

H =
2

2
32Q
gπ

3 31 1 2 2
5 5 5
1 2 3

f ff f f f
d d d

 
+ + 

 

20 =
2

2
32

9.81 (3.14)
Q×

× 5 5 5
0.004 200 0.0045 300 0.005 150

(0.4) (0.25) (0.3)
 × × ×

+ + 
 

20 = 0.3308 Q2  [78.125 + 4218.75 + 308.64]
20 = 0.3308 Q2 × 4605.515

or Q 2 = 0.013127
Q = 0.114572 m3/s = 114.572 litre/s

Problem 4.25: A 30 m long pipe line connects two reservoirs, both of which are
open to the atmosphere. The difference in their water level is 12 m. The pipe has three
equal sections of 10 m each. The first and last sections are 60 mm in diameter and
the intermediate section is 40 mm in diameter. The value of f for the pipes is 0.0054.
Calculate the flow rate and draw the total energy and hydraulic grade lines.
Solution: Given data:

Length of pipe: l = 30 m
Difference of water level between two reservoirs: H = 12 m

l1 = l2 = l3 = 10 m
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Pipe-1 Pipe-2

Pipe-3

l1 1  
, d , V1

l2 2
, d , 2

V
l3 3

, d , 3
V

H = 12 m

Fig. 4.30: Schematic for Problem 4.25

Diameter of pipe-1: d1 = 60 mm = 0.06 m
Diameter of pipe-2: d2 = 40 mm = 0.04 m
Diameter of pipe-3: d3 = d1 = 0.06 m
Coefficient of friction: f = 0.0054
We know that the difference of water level between two reservoirs: H

H = 1 2 3f f fh h h+ + (neglecting minor losses)

where hf1 =
2

1 14  
2
f l V

gd , loss of head due to friction in pipe-1

hf2 =
2

2 2

2

4  
2
f l V
gd , loss of head due to friction in pipe-2

and hf3 =
2

3 3

3

4  
2
f l V
gd

, loss of head due to friction in pipe-3

∴ H =
2

1 1

1

4  
2
f l V
gd

 + 
2

2 2

2

4  
2
f l V
gd    +  

2
3 3

3

4  
2
f l V
gd

H = 14
2
f l
g

22 2
31 2

1 2 3

VV V
d d d

 
+ + 

 
 l1 = l2 = l3

H = 14
2
f l
g

22 2
31 2

1 2 3

VV V
d d d

 
+ + 

 
We know that the discharge flow pipes in series are constant.
i.e., Q = A1V1 = A2V2 = A3V3

or V1 =
1

Q
A  = 

2
14

Q

dπ  = 2
1

4Q
dπ

Similarly V2 = 2
2

4Q
dπ

and V3 = 2
3

4Q
dπ
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∴ H = 14  
2
f l
g

2 2 2

2 5 2 5 2 5
1 2 3

16 16 16Q Q Q
d d d

 
+ + 

π π π 

H = 14  
2
f l
g  × 

2

2
16Q

π
5 5 5
1 2 3

1 1 1
d d d

 
+ + 

 

12 =
2

2
4 0.0054 10 16

2 9.81 (3.14)
Q× × ×

× × 5 5 5
1 1 1

(0.06) (0.04) (0.06)
 

+ + 
 

12 = 0.01786 Q2  [0.1286 × 107 + 0.976 × 107 + 0.1286 × 107]
12 = 0.01786 Q2 × 1.2337× 107

or Q2 = 0.00005446
Q = 0.00737 m3/s = 7.379 litre/s

Total Energy Line (TEL) and Hydraulic Grade Line (HGL) for neglecting
minor losses.

TEL

HGL2
1 / 2V g

2
3 / 2V g

2
2

2
V

g

1p
gρ

2p
gρ

3p
gρ

Fig. 4.31: Total energy and hydraulic grade lines for neglecting minor losses.

Total Energy Line (TEL) and Hydraulic Grade Line (HGL) for considering
minor losses.

TEL

HGL

Exit loss

Entry loss

H

Fig. 4.32: Total energy and hydraulic grade lines for considering minor losses.

Problem 4.26: An old water supply distribution pipe of 250 mm diameter of a city
is to be replaced by two parallel pipes of smaller equal diameter having equal lengths
and identical friction factor values. Find out the new diameter required.

(GGSIP University Delhi, Dec. 2001)
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Solution: Given data:
Diameter of old pipe: D = 250 mm = 0.25 m
Let Q = discharge in old pipe

d = diameter of each of the new pipes

Q/2

Q/2

DQ

l

l

d

d

( ) a Old pipe

( ) b Two parallel pipes

Fig. 4.33: Schematic for Problem 4.26

Since the new pipes are of the same length, diameter and have identical value
of friction factor, thus they have equal discharges.

(i.e., discharge in each new pipe is half of discharge in old pipe)
Mathematically,

Discharge in each new pipe = 
2
Q

We know that the loss of head in the old pipe:

hf =
24  

2
fl V
gd

where V =
2

4

Q

Dπ  = 2
4Q
Dπ

4f = f ′, friction factor

hf = 2
f' l
gd  × 4

16Q
Dπ

hf =
2

2 5
8  f'l Q

gDπ
...(i)

and loss of head in each of new pipes

hf =
2

2 5
8  ( / 2)f'l Q

gdπ
 = 

2

2 5
2  f'l Q

gdπ
...(ii)

Equating Eqs. (i) and (ii), we get
2

2 5
8  f'l Q

gDπ
 =

2

2 5
2  f'l Q

gdπ
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or 5
4

D
 = 5

1
d

or d5 =
5

4
D

 = 
5(0.25)

4
d5 = 0.000244

or d = 0.18944 m = 189.44 mm

Problem 4.27: A straight 25 cm diameter pipeline 5 km long is laid between two
reservoirs having a difference of levels of 40 m. To increase the capacity of the
system, an additional 2.5 km long 25 cm diameter pipe is laid parallel from the reservoir
to the mid-point of the original pipe. Find the increase in discharge due to installation
of a new pipe. Assume 4f = 0.025 in the Darcy-Weisbach equation for both the pipes.

(GGSIP University, Delhi, Dec. 2008)

Solution: Given data:

Case-1
Diameter of pipeline: d = 25 cm = 0.25 m
Length of pipeline: l = 5 km = 5000 m
Difference of levels between two reservoirs: H = 40 m

4f = 0.025
or  Coefficient of friction:

f =
0.025

4
 = 0.00625

Q

l, d

40 m

( ) a Case-1

l , d1
 

1
1

, Q

l , d2
 

2
2

, Q
l , d3

3
3 , Q

40 m
A

B
C

C
D

( ) b Case-2
Fig. 4.34: Schematic for Problem 4.27
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We know that the difference of water level in the two reservoirs: H
H = hf

H =
24   

2
f l V

gd

H =
2

2 4
4  16
2

f l Q
gd d

×
π

   V = 
Q
A  = 

2

4

Q

dπ  = 2
4Q
dπ

H =
2

2 5
32  f lQ

g dπ

40 =
2

2 5
32 0.00625 5000
9.81 (3.14) (0.25)

Q× × ×
× ×

or Q2 = 0.003778
Q = 0.06146 m3/s

Case-2: The old pipe 5000 m length and diameter 25 cm (0.25 m) with
f = 0.00625. In addition to this, a new pipe 2500 m length and 25 cm (0.25 m) diameter
with same value of  f = 0.00625 is installed as AC as shown in Fig. 4.32 (b).

Length of pipe AC = length of pipe BC = length of pipe CD
i.e., l1 = l2 = l3 = 2500 m
coefficients of friction for pipes is same
i.e., f1 = f2 = f3 = 0.00625
Also diameters of three pipes is same
i.e., d1 = d2 = d3 = 0.25 m
Discharge through pipe CD:

Q3 = Q1 + Q2

= Q1 + Q1 = 2Q1   Q2= Q1

Now consider the flow through ACD. We know that the difference of  water
levels (H),

H =
22

3 3 31 1 1

1 3

44
2 2

f l Vf l V
gd gd

+

where V1 =
1

1

Q
A  = 1

2
14

Q

dπ  = 1
2
1

4Q
dπ

and V3 =
3

3

Q
A  = 3

2
34

Q

dπ  = 3
2
3

4Q
dπ

H = 1 1

1

4
2

f l
gd

 × 
2

1
2 4

1

16Q
dπ

 + 3 3

3

4
2

f l
gd

 × 
2
3

2 4
3

16Q
dπ

H = 
2

1 1 1
2 5

1

32 f l Q
gdπ

 + 
2

3 3 3
2 5

3

32 f l Q
gdπ
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H = 
2

1 1 1
2 5

1

32 f l Q
gdπ

 + 
2

1 1 1
2 5

1

32 (2 )f l Q
gdπ

[ f3 = f1, l3 = l1, Q3 = 2Q1, d3 = d1]

H = 
2

1 1 1
2 5

1

160 f l Q
gdπ

40 = 
2
1

2 5
160 0.00625 2500

(3.14) 9.81 (0.25)
Q× × ×

× ×
or Q1

2 = 0.001511
or Q1 = 0.03887 m3/s
∴ Q3 = 2Q1 = 2 × 0.03887 = 0.07774 m3/s
∴ Increase in discharge = Q3 – Q = 0.07774 – 0.06146 = 0.01628 m3/s

OR

Increase in discharge = 3Q Q
Q
−

 = 
0.0774 0.06146

0.06146
−

= 0.2648 = 26.48%

Problem 4.28: Find the capacity of a pump that is required in a 75 mm line so that
20 litre/s flow through each pipe as shown in Fig. 4.33. Neglect minor losses. Assume
that water is flowing at 20°C in smooth pipes. At 20°C, for water;
viscosity = 10–3 Ns/m2 and density = 103 kg/m3.

Pump

Q = 40 litre/s

l2 = 30 m

l1 = 30 m,  d Q1 1 = 150 mm,  = 20 litre/s

d2 = 75 mm
Q  = 20 litre/s2

Q

Fig. 4.35: Pipes in parallel with a pump.

Solution: Given data:
Pipe-1:
Length of  pipe: l1 = 30 m
Diameter of pipe: d1 = 150 mm = 0.15 m

∴ Cross-sectional area: A1 = 2
14

dπ
 = 23.14 (0.15)

4
×  = 0.01766 m2

Discharge: Q1 = 20 litre/s = 
20

1000  m3/s = 0.02 m3/s

∴ Velocity of water: V1 = 1

1

Q
A

 = 
0.02

0.01766
 = 1.132 m/s
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Reynolds number: Re1 = 1 1V dρ
µ

 = 
3

–3
10 1.132 0.15

10
× ×

 = 169800

The nature of flow is turbulent, because Reynolds number Re1 > 4000.

∴ Coefficient of friction: f1 = 0.25
1

0.079
Re  = 0.25

0.079
(169800)  = 0.00389

and the head loss due to friction:

hf1 = 
2

1 1 1

1

4
2
f l V
gd  = 

24 0.00386 30 (1.132)
2 9.81 (0.15)

× × ×
× ×

= 0.2016 m
For pipe-2:
Length of pipe: l2 = 30 m
Diameter: d2 = 75 mm = 0.075 m

∴ Cross-sectional area: A2 = 2
24

dπ
 = 23.14 (0.075)

4
×  = 0.00441 m2

       Discharge: Q2 = 20 litre/s = 0.02 m3/s

∴ Velocity: V2 = 2

2

Q
A = 

0.02
0.00441   = 4.535 m/s

Reynold’s number: Re2 = 2 2V dρ
µ

 = 
3

–3
10 4.535 0.075

10
× ×

 = 340125

The nature of flow in pipe-2 is turbulent, because Reynold’s number Re2 > 4000.

∴ Coefficient of friction: f2 = 0.25
2

0.079
Re

 = 0.25
0.079

(340125)
 = 0.00327

and the head loss due to friction: hf2
 = 

2
2 2 2

2

4
2
f l V
gd

= 
24 0.00327 30 (4.535)

2 9.81 0.075
× × ×

× ×
 = 5.484 m

As we know that the head loss due to friction in each pipe in parallel is same.
But in present case, head loss due to friction in pipe-2 is more than head loss due to
friction in pipe-1. So, we condude that the pump placed in pipe-2 must provide the
power required to overcome this extra loss of head due to friction.

hf = hf2
 – hf1

 = 5.484 – 0.2016 = 5.282 m
∴ Power of pump: P = ρ Q2 g hf

= 1000 × 0.02 × 9.81 × 5.282 W
= 1036.32 W = 1.036 kW

Problem 4.29: Calculate the quantity of water from the reservoir through the pipe
system shown in Fig. 11.36. The water drives a water turbine which develops 100 kW.
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Dam

l = 100 m
 = 300 mmd

50 m

P = 100 kW

Velocity
V

Turbine

Fig. 4.36: Power produced by a turbine.

Solution: Given data:
Power produced by the turbine: P = 100 kW = 100 × 103 W
Gross head: HG = 50 m
Length of pipe: l = 100 m
Diameter of pipe: d = 300 mm = 0.3 m

∴ Cross-sectional area: A = 2

4
dπ

 = 23.14 (0.3)
4

×  = 0.07065 m2

Power produced by the turbine: P = ρQgH

or H = 
P
Qgρ

where H = head utilized by the turbine.

H = 
3100 10

1000 9.81AV
×

× ×

= 
3100 10

1000 0.07065 9.81V
×

× × ×
 = 

144.28
V

By energy balance, we get
Gross head = head utilized + loss of head due to friction + head at outlet of

turbine

HG = H + hf + 
2

2
V

g

where hf = 
24

2
flV
gd

Let f = 0.0025

∴ 50 = 
2 2144.28 4 0.0025 100

2 9.81 0.1 2 9.81
V V

V
× × ×

+ +
× × ×

50 = 2 2144.28 0.5096 0.0509V V
V

+ +
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50 = 2144.28 0.5005V
V

+

or 50 V = 144.28 +  0.5605 V3

or 0.5605 V 3 – 50 V + 144.28 = 0
or V 3 – 89.20 V + 257.41 = 0
By trial and error: V = 3.25 m/s

Reynold’s number: Re = 
dVρ
µ

 = 
1000 0.3 3.25

0.001
× ×

  µ = 0.001 Ns/m2

= 975000 for water
The nature of given flow is turbulent, because Reynold’s number Re > 4000.

Coefficient of friction: f = 0.25
0.079
Re

 = 0.25
0.079 0.0025

(975000)
=

We get the coefficient of friction (f) almost equal to 0.0025 and therefore, we
can accept the value of V as 3.25 m/s

∴ Discharge: Q = AV = 0.07065 × 3.25 = 0.22961 m3/s
= 229.61 litre/s

4.7 TRANSMISSION OF HYDRAULIC POWER
THROUGH PIPELINES

The transmission of hydraulic power through pipe lines is commonly used for
working of several hydraulic machines. The hydraulic power transmitted depends
upon:

V Q

(Pipe inlet)
M N (Pipe outlet)

d

l

H

Tank

Pipe

Fig. 4.37: Transmission of hydraulic power through pipe line.

(a) The discharge of liquid flowing through the pipe and
(b) The total head available at the end of the pipe (at point N in present case.)
Consider a pipe MN connected to a high level storage tank as shown in Fig. 4.37.
Let d = diameter of the pipe

l = length of the pipe
Q = discharge flow through pipe
V = velocity of flow in pipe
hf = loss of head in pipe MN, due to friction
H = total head available at the inlet of pipe or total head

supplied.
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The head available at the outlet of the pipe N (neglecting minor losses) = total
head at inlet of pipe at point M – loss of head due to friction in pipe MN

= H – hf

= H – 
24

2gd
flV  [by Darcy’s formula, hf =

24
2gd
flV

]

Mass of water flowing through the pipe per second,
m = ρQ

Weight of water flowing through the pipe per second,
W = mg = ρgQ

Power available at inlet of the pipe at point M,
= weight of water per second × head available at

inlet of the pipe
= ρgQH

and power available at outlet of the pipe at point N,
P = weight of water per second × head available at the

outlet of the pipe at point N
= ρgQ [H – hf]

where H – hf = head available at outlet of the pipe.

P =
24

2
flVgQ H
gd

 
ρ − 

 
Efficiency of power transmission:

η = Power available at outlet of the pipe
Power available at the inlet of the pipe

= 
[ ]fgQ H h
gQH

ρ −

ρ
 = 

 
fH h

H
−

...(i)

4.7.1 Condition for Maximum Transmission Power
The power available at the pipe at point N,

P = ρgQ 
24  

2 
f lVH

gd
 

− 
 

= ρgAV 
24  

2 
f lVH

gd
 

− 
 

( Q = AV)

= ρgA
34  

2 
f lVHV

gd
 

− 
 

...(ii)

It is evident from Eq. (ii) that power transmitted depends upon the velocity of
water through pipe (V), as the other things are constant.
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∴ Power transmitted will be maximum, when

dP
dV = 0

34
2

d flVgA HV
dV gd

  
ρ −     

= 0

or
24  .1 3

2
flgA H V
gd

 
ρ − ×   = 0

or
24   3

2  
f lVH

g d
− × = 0

or H – hf × 3 = 0
24  

2  f
flVh
g d

 
−  

or 3 hf = H

hf = 3
H

It means that power transmitted through the pipe is maximum, when the loss
of head due to friction is one-third of the total head at inlet (or total head supplied).

4.7.2 Maximum Efficiency of Transmission of Power
Efficiency of power transmission though pipe is given by Eq. (i) as:

η = 
− fH h
H

The maximum efficiency would correspond to the maximum power transmitted,

3f
Hh =  

∴ Maximum efficiency: ηmax = 3
HH

H

−

= 1 – 
1
3  = 

2
3  = 0.66666 = 66.666%

= 66.67%

Problem 4.30: A pipe of diameter 300 mm and length 3000 m is used for transmission
of power by water. The total head at the inlet of pipe is 400 m. Find the maximum
power available at the outlet of pipe, assume f = 0.005.

(GGSIP University, Delhi, May-June, 2007).
Solution: Given data:

Diameter of the pipe: d = 300 mm = 0.3 m
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Length of the pipe: l = 3000 m
Total head at inlet: H = 400 m

f = 0.005
Condition for maximum power transmission

hf = 3
H

∴ hf = 
400

3  = 133.33m

 also, hf = 
24

2
flV
g d

133.33 = 
240 0.005 3000

2 9.81 0.3
V× × ×

× ×
or V2 = 13.079

V = 3.616 m/s

∴ Discharge: Q = 2

4
d Vπ

×  = 23.14 (0.3) 3.616
4

× ×  = 0.2554 m3/s

Maximum head available at the outlet of pipe   = H – hf

Maximum power available at the outlet of pipe = ρ g Q [H – hf]
= 1000 × 9.81 × 0.2554 × (400 – 133.33)
= 668134.75 W = 668.134 kW

Problem 4.31: The maximum power is to be transmitted through a pipeline.
Workout the conditions for maximum transmission of power. It is desired to develop
1000 kW of power at 85% efficiency by supplying water to a hydraulic turbine
through a horizontal pipe 500 m long. Determine the necessary flow rate and minimum
diameter of pipe to carry that discharge. Water is available at a head of 150 m. Take
f = 0.006 in the formula.

hf = 4 f  × l × 
2

2
V

d g×
(GGSIP University, Delhi, May 2003)

Solution: Given data:
Power transmission:        P = 1000 kW = 1000 ×103 W
Efficiency:     η = 85% = 0.85
Length of pipe: l = 500 m
Water is available at a head:

H = 150 m
f = 0.006

Given head loss due to friction:

hf = 
24   

2
f l V

gd
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Now, condition for maximum transmission of power:
Head loss due to friction is one-third of available head and

ηmax = 66.67%

i.e., hf = 3
H

  and   ηmax = 66.67%

But given maximum efficiency (85%) is greater than theoretical maximum effi-
ciency (66.67%)

So, hf = 3
H

  cannot be applied in given case

We know, efficiency: η = 
Head available at outlet of the pipe
Head available at inlet of the pipe

 = fH h
H
−

0.85 = 
150

150
fh−

or 127.5 = 150 – hf

or hf = 22.5 m
Power transmission: P = ρ Q g (H – hf)

1000 × 103 = 1000 × Q × 9.81 × (150 – 22.5)
or Discharge: Q = 0.7995 m3/s

We know, discharge: Q = AV = 2

4
d Vπ

×

or V = 2
4Q
dπ

 = 2
4Q
dπ

Head loss due to friction:

hf = 
24   

2
f l V

gd  = 
4   
2
f l
gd

2

2
4Q
d

 
 π 

 = 
2

2 5
64   
2  

f l Q
g dπ

22.5 = 
2

2 5
64 0.006 500 (0.7995)

2. 9.81 (3.14) d
× × ×

× × ×

or d 5 = 0.028196
Minimum diameter of the pipe: d = 0.4898 m.

Problem 4.32: Power is to be transmitted hydraulically along a distance of 7500 m
through a number of 125 mm diameter pipes, laid in parallel. The pressure at the
discharge end is maintained constant at 6000 kPa. Determine the minimum number of
pipes required to ensure an efficiency of at least 85% when the power delivered is
156 kW. Take coefficient of friction, f = 0.006 for all pipes and neglect losses other
than pipe friction.
Solution: Given data:

Length of each pipe: l = 7500 m
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Diameter of each pipe: d = 125 mm = 0.125 m
The pipes are used in parallel i.e., head loss due to friction is same in each pipe
Pressure at the discharge end = 6000 kPa = 6000 ×103 Pa or  N/m2

Head available at the end of pipe = head available at inlet of the pipe
– head loss due to friction

= H – hf

∴ Pressure at the discharge end = ρQ (H – hf)
6000 × 103 = 1000 × 9.81 (H – hf)

or (H – hf) = 611.62 m

We know, Efficiency: η =
− fH h
H

0.85 =
611.62

H
or H = 719.55 m
∴ Head loss due to friction: hf = 719 – 611.62 = 107.38 m
Power delivered: P = 156 kW = 156 × 103 W
Also power: P = ρQg (H – hf)

156 × 103 = 1000 × Q × 9.81 × 611.62
or  Total discharge: Q = 0.0260 m3/s
Head loss due to friction in each pipe is same.

hf =
24

2
flV
g d

Let q is discharge passing through to each pipe.

Discharge: q = 2

4
d Vπ

V = 2
4q
dπ

∴ hf =
2

2
4 4.
2

fl q
gd d

 
  π

107.38 =
2

2 4
4 0.006 7500 16
2 9.81 0.125 (3.14) (0.125)

q× ×
×

× × ×

or q2 = 2.201 × 10–4

or q = 0.0483 m3/s

∴ Number of pipes required =
Q
q  = 

0.0260
0.1483  = 1.75 ≈  2

Hence number of pipes required = 2.
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4.8 WATER HAMMER
When flow of a liquid in a long pipe is decreased or stopped by closing the valve
rapidly, velocity of liquid decreases. This decrease in velocity always gives increase
in pressure and increase in pressure causes the formation of pressure wave which
propagates throughout the liquid. A sudden rise in pressure has the effect of hammering
action on the walls of the pipe. This phenomenon of sudden increase of pressure
caused by a rapid closing of valve is known as water hammer or hammer blow. The
water hammer is a very serious problem in case of pipes and penstock (hydroelectric
power plant component), in supply lines for drinking water, in discharge lines for
sewage water and in oil transmission pipe lines. A common example of water hammer
is the knocking often heard in domestic water pipes when the tap is closed quickly.

The rise in pressure in some cases may be so large that pipes may even burst and
therefore it is essential to take into account this pressure rise in the design of the pipes
and penstocks. The magnitude of pressure rise due to water hammer depends on:

(i) Velocity of flow of liquid in the pipe
(ii) Length of the pipe

(iii) Elastic properties of the pipe material, whether rigid or elastic
(iv) Time taken to close the valve; gradual or quick closure of the valve.

l

Reservoir

h

C

B

A

d Valve

H.G.L. for rapid
closure of valve

f
V

h
g

2

+
2

Fig. 4.38: Pressure rise due to closure of valve.

4.8.1 Pressure Rise due to Gradual Closure of Valve
Considering liquid to be incompressible and pipe walls to be rigid and inelastic, gradual
closure of valve will cause uniform retardation and less increase in pressure.

The closure of valve is said to be  gradual when t > 
2l
a

where t = time taken to close the valve in seconds
l = length of pipe in metre
a = velocity of pressure wave in m/s

= /K ρ , where K is bulk modulus of water, ρ is
density of water.
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The time 2l
a

 
 
 

is called critical time (tc)

i.e., tc = 
2l
a

Mass of water in the pipe = ρ × volume of water = ρAl
where A = cross-sectional area of pipe
Let t be time required for gradual closure of the valve, i.e., the time required to

bring the water to zero velocity from initial velocity, V.

Retardation = 
Change of velocity

Time

= 
Initial velocity – Final velocity 

t

= 
0V

t
−

 = 
V
t

Retarding force = mass × retardation
= ρAl × V/t

If p is the rise in pressure due to closure of the valve, then force due to pressure
wave

= pA
If friction is neglected, then the equilibrium between pressure and retarding force

gives:

pA = ρ
VAl
t

or p = 
lV
t

ρ
...(i)

∴ The pressure head due to rise in pressure: h

h = 

lV
p t
g g

ρ

= =
ρ ρ

ρV
gt

...(ii)

As shown in Fig. 4.38, the sudden rise in pressure head is due to gradual closure
of the valve. The pressure head is maximum at the valve and linearly decreases
towards the reservoir end. The line AB is the hydraulic gradient line just after the
closure of the valve.

4.8.2 Pressure Rise due to Instantaneous Closure of Valve
In this case the valve is instantaneously closed, i.e., when the time to closure of valve
is zero, the pressure increases to attain an infinite valve.
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From Eq. (i), the relation for the sudden rise in pressure, p = 
lV
t

ρ

As t = 0, then p = ∞ for instantaneous closure of valve. But instantaneous closure
of the valve is not possible and such concept of infinite pressure rise is only
hypothetical. In reality at such higher pressure the liquid actually gets compressed.
Further it is not possible to close the valve in a zero interval. Moreover the pipe material
being elastic, it will also expand. The relation above therefore does not hold good for
the condition  t = 0.

So, practically instantaneous closure of valve means that time taken to close the
valve is less than the critical time.

i.e., t < 
2l
a

or t < tc

where tc = critical time = 
2l
a

Let the flow of liquid in the pipe line be brought to rest instantaneously by the
closure of a valve. As the flow of liquid is brought to rest, its kinetic energy is
transferred into strain energy of the liquid, then strain energy in the liquid is absorbed
by pipe material.

Kinetic energy of the flow of liquid before the valve closure = 
1
2

mV2

where m = mass of liquid in whole pipe
= density of liquid × volume
= ρ. Al

∴ Kinetic energy = 21 ( . )
2

Al Vρ

Let the pressure intensity caused due to valve closure is p

∴ Strain energy of the liquid in pipe = 
2

2
p
K

× volume of  liquid in pipe

= 
2

2
p
K

× Al

where K = bulk modulus of liquid.
Equating the loss of kinetic energy to the gain of strain energy.

∴ 21 ( . )
2

Al Vρ = 
2

2
p
K

Al

or p2 = ρ.KV2

or p = .K Vρ

As we know, the velocity of pressure wave:

a = 
K
ρ
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or a2 = 
K
ρ

or K =  ρa2

∴ p = 2. .a Vρ ρ  = ρVaa ...(iii)

Equation (iii) is for rigid pipe material and compressible liquid flow through pipe.
The pressure rise due to instantaneously closure of valve is equal to the product of
the density of liquid, velocity of liquid flow pipe before closure of valve and velocity
of pressure wave.

4.8.3 Pressure Rise due to Instantaneous Closure of
Valve in an Elastic Pipe

The pressure rise due to rapid closure of the valve causes radial expansion of the walls
of an elastic pipe. The hoop or circumferential and longitudinal stresses are produced
and consequently some of the kinetic energy of the liquid is absorbed by the pipe as
strain energy.

As we know, hoop or circumferential stress,

f1 = 2
pd

t

and longitudinal stress: f2 = 4
pd

t
where t = thickness of the pipe wall.
∴ Strain energy per unit volume stored in the pipe material

= 2 2
1 2 1 2

1 [ 2 ]
2

f f f f
E

+ − µ

where E = modulus of elasticity of the pipe material.
and µ = poisson’s ratio of the pipe material,
Volume of the pipe material = π d t. l
∴ Strain energy of the material

= 2 2
1 2 1 2

 [ 2 ]
2
dt l f f f f
E

π
+ − µ

= 
2 2 2

2 2 4 2 4
dt l pd pd pd pd
E t t t t

 π       + − µ×       
        

= 
2 2 2 2 2 2

2 2 2
 

2 4 16 4
dt l p d p d p d
E t t t

 π µ
+ − 

 

Taking Poisson’s ratio: µ = 
1
4

= 
2 2 2 2 2 2

2 2 2
 

2 4 16 16
dt l p d p d p d
E t t t

 π
+ − 

 
 = 

2 2

2
 

2 4
dt l p d
E t

 π
 
 
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= 
2 3

8  
p d l
t E

π

= 
2  

2  
p d l

E t × 
2

4
dπ

[ cross-sectional area of the pipe: A = 2

4
dπ

]

= 
2  .

2  
p d l A

E t

Applying Energy Balance equation
Kinetic energy of liquid = strain energy of liquid + strain energy of pipe material

1
2

ρAlV2 = 
2 2

.
2 2
p p ldAl A
K Et

+

ρV2 = 
2 2p p d

K Et
+

or  ρV2 = 
2 1 dp

K Et
 +  

p2 = 
2

1
V

d
K Et

ρ
 + 
 

or p = 
2

1 1
ρ ρ

=
   + +   
   

V V
d d

K Et K Et
∴ Pressure rise due to instantaneous closure valve in an elastic pipe:

p = 
1

V
d

K Et

ρ
 + 
 

For a rigid pipe, modulus of elasticity: E = ∞

or
d
Et  = 0

Then above equation is reduced to

p = 
1

V

K

ρ  = ρV K

which is same as equation derived for pressure rise due to instantaneous closure
of  valve in rigid pipe.
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Problem 4.33: Water is flowing in a pipe line of 200 mm diameter at the rate of the
40 litre/s. A valve is introduced in the pipe line at a distance of 600 m. The valve is
gradually closed  in a time of 1.5 seconds. Calculate the increase in pressure intensity.
Solution: Given data:

Diameter of pipe: d = 200 mm = 0.2 m

Discharge: Q = 40 litre/s = 
40

1000
m3/s = 0.04 m3/s

Length of pipe: l = 600 m
Time taken to gradually close the valve: t = 1.5 s
Now, average velocity of flow:

V = 
Discharge

Cross-sectional area of the pipe
= 

Q
A

= 
2

0.04

4
dπ  = 

2

0.04
3.14 (0.2)

4

 = 1.27 m/s

Pressure rise due to gradual closure of valve:

p = 
lV
t

ρ
 = 

1000 600 1.27
1.5

× ×
= 508000 N/m2 ro Pa.

= 508 kPa.

Problem 4.34: A rigid pipe conveying water is 2500 m long. The velocity of flow
is 1.2 m/s. Calculate the rise of pressure caused within the pipe due to valve closure
in (i) 10 seconds  (ii) 2.5 seconds.
Take bulk modulus of water equal to 20 × 108 N/m2

Solution. Given data:
Length of pipe: l = 2500 m
Velocity of water flowing through pipe:

V = 1.2 m/s
Now, velocity of the pressure wave:

a = 
K
ρ = 

820 10
1000

×  = 1414.21 m/s

Critical time: tc = 
2l
a = 

2 2500
1414.21

×
 = 3.53 s

(i) When the valve is closed in 10 seconds
i.e., t = 10 s and tc = 3.53 s

t < tc
∴ This is a case of gradual valve closure
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∴ Pressure rise: p = 
lV
t

ρ
 = 

1000 2500 12
10

× ×

= 300000 N/m2  = 300 kPa ( 1 N/m2 = 1 Pa)
(ii) When the valve is closed in 2.5 seconds
i.e., t = 2.5 s and tc = 3.53 s

t < tc

∴This will be regarded as instantaneous valve closure.
Since the pipe is rigid, pressure rise: p = ρVa

p = 1000 × 1.2 × 1414.21 = 1697052 N/m2 or Pa
= 1697.05 kPa.

Problem 4.35: A  800 mm diameter steel pipe carries water at the rate of 0.75 m3/s.
The pipe wall has a thickness of 10 mm. The elastic modulus of steel is 20 × 1010 N/m2

and the bulk modulus of water is 2 × 109 N/m2. Determine the increase in pressure
if the valve at the end of 3500 m long pipeline is closed in 5 seconds.
Solution: Given data:

Diameter of pipe: d = 800 mm = 0.8 m
Discharge: Q = 0.75 m3/s
Thickness of pipe: t = 10 mm = 0.01 m
Elastic modulus of steel: Es = 20 × 1010 N/m2

Elastic modulus of water: E = 2 × 109 N/m2

Length of pipe: l = 3500 m
Time of valve closure: t = 5 s
Now, the combined modulus of elasticity,

K = 
1 .

s

E
d E
t E

+

= 
9

9

10

2 10
0.8 2 101
0.01 20 10

×
×

+ ×
×

 = 
92 10

1 0.8
×
+

= 1.11× 109 N/m2

Velocity of pressure wave: a = 
K
ρ  = 

91.11 10
1000

×  = 1053.56 m/s

The critical time for valve closure is given by

tc = 
2l
a  = 

2 3500
1053.58

×
 = 6.64

since t < tc the valve closure is rapid.

The average velocity of flow: V = 
Q
A

 = 
2

4

Q

dπ  = 2
4Q
dπ
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= 2
4 0.75

3.14 (0.8)
×
×

 = 1.49 m/s

∴ The rise of pressure: p = ρVa
= 1000 × 1.49 × 1053.56
= 1569904.4 N/m2 or Pa = 1569.90 kPa .

4.9 PIPE NETWORKS
Pipe networks consist of multiple pipes interconnected in series, parallel and forming
several loops or circuits. A typical example of such system is the municipal water
distribution system in our cities. Multiple pipe systems reach a limit of complexity in
the problems of distribution of flow in pipe-networks. A sample pipe networks is
shown in Fig. 4.39.

Flow out

Flow out

Flow out

Flow out

Flow in

Node
(Junction)

Junction

Fig. 4.39: A simple pipe network.

The most important factor is that the flow rate through the entire system
(i.e., in each pipe) should remain constants regardless of the diameters of the
individual pipe in the system. The fluid flow in a pipe network must satisfy the
following conditions:

1. The total flow into each junction must be equal to the total flow out of the
junction (i.e., to satisfy the continuity equation).

2. The head loss between two junctions must be the same for all points
between the two junctions.

3. The algebraic sum of head losses in each loop must be zero. A head loss is
taken to be positive for flow in the clockwise direction and negative for flow
in anti-clockwise direction.

4. The head loss in each pipe is expressed by:
hf = KQ n (i)

where K is a constant for each pipe which depends upon the fluid viscosity
and the  length of pipe, diameter of pipe and coefficient of friction of pipe.
For turbulent flow,

n = 2 for rough pipe
n = 1.85 for smooth pipe
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4.9.1 Hardy Cross Method (HCM)
The pipe network problems are generally solved by trail and error procedure. The
most practical and widely used method of flow analysis is that of successive
approximations developed by Hardy Cross.

The procedure of Hardy cross method is as follows:
(a) Assume the reasonable discharge in each pipe which satisfied the continuity

equation at each junction.
(b) The head loss in each pipe is calculated according to Eq. (i),

hf = KQ n

where K is constant for each pipe which depends upon µ, d, l, and f and
for turbulent flow:

n = 2          for rough pipe
n = 1.85     for smooth pipe

We know that head loss:

hf = 
24

2
flV
g d

(by Darcy-Weisbach formula)

Discharge: Q = AV (by continuity equation)

 Q = 2

4
d Vπ

or V = 2
4Q
dπ

∴ hf = 
2

2 4
4  16
2

fl Q
gd d

×
π

 = 
2

2 5
32  

 
flQ

g dπ

hf = K Q2

where K = 2 5
32  
 

fl
g dπ

n = 2, for turbulent flow in rough pipe
(c) The net head in each loop, i.e., ∑hf = ∑KQn. A head loss is taken to be

positive for flow in the clockwise direction and negative for flow in anti-
clockwise direction.

(d) In order to satisfy condition (3), ∑hf = ∑KQn = 0, if the net head loss due to
assumed value of discharge Q0 of the loop is zero, then the assumed value of
Q0 in that loop is correct. But if the net head loss due to assumed value of Q0
is not zero, then the assumed value Q0

 is corrected by introducing a correction
∆Q for the flow till a correction is balanced.
For any pipe we may write

Q = Q0 – ∆Q
where Q0 = assumed discharge

Q = correct discharge
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Then for each pipe
hf = KQ n = K (Q0 – ∆Q)n

= K (Q0
n  –  nQ0

n–1 ∆Q ...)
where the remaining terms of the series may be ignored if ∆Q is small as

compared with Q0.
hf = K (Q0

n –  nQ0
n–1 ∆Q)

For a single loop or circuit, with ∆ Q same for all pipes.
 ∑hf = ∑KQ n

=  ∑KQn
0 – ∆Q ∑nKQ 0

n–1  = 0
or ∑KQn

0 – ∆Q ∑nKQ 0
n –1 = 0

or   ∆Q ∑nKQ 0
n –1 = ∑KQ n

or ∆Q = 
n
0
n-1
0

KQ
nKQ

∑
∑

...(ii)

It may be emphasised that numerator of Eq. (ii) is to be summed algebraically
with due consideration of sign, while the denominator is summed arithmetically
without any consideration of direction of flow. It may be noted that the
assumption of considering only the first two terms of the series is not
accurate if ∆Q is of the same order of magnitude as Q0. The direction of
∆Q will be anti-clockwise if it is positive and the direction of
∆Q will be clockwise if it is negative.

(e) Revise the assumed discharge and repeat the process until the desired
accuracy is obtained. Usually not more than three trials are necessary except
for very complex system.

(f) After the corrections have been applied to each pipe in a loop and to all loops,
a second trial calculation is made for all loops. The procedure is repeated till
correction ∆Q becomes negligible.

Problem 4.36: A pipe network shown in Fig. 4.38 in where Q and hf   refer to
discharges and head losses respectively. Find the values of discharges QB, Q2, Q4 and

Q5, and head losses 4fh  and 5fh  and gives these computed values at their respective
places on a neat sketch of the network along with flow direction.

QA = 20 Q h1 = 30,  = 60f1

Q h3 3 = 40,  = 120f 

Q
h

2

2

 = ? 
 = 40f 

Q
h

4

4

 = ? 
 = ?f 

QB = ?

QC = 30QD = 100

A B

CD

Q
h

5

5

 = ? 
 = ?f

Fig. 4.40: Schematic 1 for Problem 4.36

Solution:  At each junction,  ΣQ = 0
i.e., Discharge incoming = discharge leaving the junction
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At junction D: Qo = Q3 + Q4
100 = 40 + Q4

or Q4 = 100 – 40 = 60(Q4 leaves the junction D)
At junction A:

Q4 = QA + Q1 + Q5
60 = 20 + 30 + Q5

or Q5 = 10 (Q5 leaves the junction A)
At junction C:

Q3 + Q5 + Q2 = Qc
40 + 10 + Q2 = 30

or Q2 = – 20 (–ve sign shows that Q2 leaves
the junction C)

At junction B:
Q1 + Q2 = QB
30 + 20 = QB

or QB = 50 (QB leaves the junction B)
For each loop or circuit, ∑hf = 0
For loop  ACB:

1fh  – 2fh  – 5fh = 0

60 – 40 – 5fh = 0

or 5fh = 20
For loop ACD:

5fh  – 3fh  – 4fh = 0

20 – 120 – 4fh = 0

or 4fh = 100
The computed values and the flow directions are shown in the Fig. 4.39

QA = 20 Q h1 1 = 30,  = 60f 

Q h3 3 = 40,  = 120f 

Q
h

2

2

 = 20 
 = 4f 

Q
h

5

5

 = 10 
 = 20fQ

h
4

4

 = 60 
 = 100f 

QB = 50

QC = 30QD = 100

A B

CD

Fig. 4.41: Schematic 2 for Problem 4.36

Problem 4.37: Find the distribution of discharge in pipe network as shown  in Fig.
11.42. The head loss hf = KQ 2. The value of K for each pipe is indicated in the figure.
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25

K = 1

K = 1

K = 2

K = 3

K = 2

100 75

Fig. 4.42: Schematic 1 for Problem 4.37

Solution: By Hardy cross method:
Assume a suitable distribution of flow

as shown in Fig. 4.41. So that the continuity
equation is satisfied at each node. For this
distribution of discharge, the corrections
DQ for the loops ABC and BCD are
calculated.

Given the head loss: hf = K Q2

where n = 2

Correction discharge: ∆Q = 
2
0

02
KQ
KQ

∑
∑

Loop ABC Loop BCD

Pipe K Q0 hf = KQ0
2 2KQ0 PipeK Q0 hf = KQ0

2 2KQ0

AB 1 60 1×(60)2 = 3600 2×1×60 = 120 BD 2 20 2×(20)2 = 800 2×2×20 = 80
BC 3 15 3×(15)2 = 675 2×3×15 = 90 DC 1 55 –1×(55)2 = –3025 2×1×55 = 110
CA 2 40 –2×(40)2 = –3200 2×2×40 = 160 CB 3 15 – 3×(15)2 = 675 2×3×15 = 90

2
0åKQ  = 1075 02å KQ  = 370 2

0åKQ  = – 2900 2å KQ  = 280

For loop ABC:

∆Q = 
2
0

02
KQ
KQ

∑
∑

 = 
1075
370

 = 2.9 ≈ 3

For loop BCD:

∆Q =  
2
0

02
KQ
KQ

∑
∑

 = 2900
280

−  = – 10.35

+ ve ∆Q is to be added to anti-clockwise flow and subtracted from clockwise and
the – ve ∆Q added to clockwise and subtracted from anti-clockwise flow. The
revised distribution of discharge is shown in Fig. 4.44

25

60

55

20

15

40

100 75
A

C

D

B

Fig. 4.43: Schematic 2 for
Problem 4.37
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25

57

44.65

30.35

1.65

43

100 75
A D

B

Fig. 4.44: Schematic 3 for Problem 4.37

Repeating the same procedure as above for the two circuits.

Loop ABC Loop BCD

Pipe K Q0 hf = KQ0
2 2KQ0 Pipe K Q0 hf = KQ0

2 2 KQ0

AB 1 57 1×(57)2 = 3250 2×1×57 = 144 BD 2 30.35 2×(30.35)2=1842.24 2×2× 30.35=121.4
BC 3 1.65 3×(1.65)2 = 8.16 2×3×16.5=9.9 DC 1 44.65 –1×(44.65)2= –1993.62 2×1×44.65 = 89.3
CA 2 43 – 2×(43)2= –3700 2×2×43 = 172 CB 3 1.65 – 3×(1.65)2 = –8.16 2×3×16.5 = 9.9

2
0åKQ = –441.84 02å KQ =295.9

2
0åKQ  = – 159.54 2å KQ = 220.6

For loop ABC:

∆Q = 
2
0

02
KQ
KQ

∑
∑

 = 
441.84
295.9

−
 = – 1.49

For loop BCD:

∆Q = 
2
0

02
KQ
KQ

∑
∑

 = 159.54
220.6

−  = – 0.72

To apply the correction ∆Q = – 1.49 for loop ABC and ∆Q = – 0.72 for loop
BCD, we obtain the distribution of flow as shown in Fig. 4.43 which may be taken as
almost correct.

C

25

58.49

43.93

30.97

2.42

41.51

100 75
A D

B

Fig. 4.45: Schematic 4 for Problem 4.37

4.10 SURGE TANK

Surge tank is main component of hydro-electric power plant. It is located on the
penstock (penstock is a pipeline which carries the water from reservoir and supplies
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to the turbine inlet) and near to the turbine as far as possible. The height of surge tank
is generally kept above the maximum water level in the reservoir. It is very necessary
when the length of penstock is long. It serves the following two functions:
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HGL for
Increased flow

Normal HGL

HGL for rapidly
decreased flow

Reservoir

Head race

Penstock

Surge tank

Fig. 4.46: Surge tank in hydro-electric power plant.

(1) It acts as a temporary storage device to store the water when the governor
reduces the supply of water to the turbine. On the other hand, if the turbine
needs more water, then load on turbine increases, the excess water made
available to the turbine from storage tank.

(2) It protects the penstock against water hammer.

Working
When the flow of water in a penstock is decreased or stopped by closing the valve
or turbine gate, the velocity of water decreases and consequently pressure increases.
This increase in pressure causes the formation of pressure wave which raises the
water into surge tank (if surge tank is not used, this pressure wave causes water
hammer). On the other hand, when turbine needs more water, then excess water is
supplied to the turbine by surge tank.

4.10.1 Types of Surge Tanks

Surge tank may be of the following types:
(1) Simple surge tank
(2) Restricted orifice type surge tank, and
(3) Differential surge tank.
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Outer tank

Chamber

Riser

Ports

Orifice

(a) Simple surge tank (b) Restricted orifice (c) Differential surge tank
surge tank

Fig. 4.47: Surge tanks.

Simple Surge Tank
Simple surge tank is a cylindrical tank which is connected directly to the penstock as
shown in Fig. 4.47 (a). The water flows into and out of the tank without any
appreciable loss of head. If the overflow is allowed, the rise in pressure can be
eliminated but overflow surge tank is seldom satisfactory and usually uneconomical.
It is built high enough so that water cannot overflow even with a full load removed
on the turbine. But the use of this surge tank is restricted.

Restricted Orifice Type Surge Tank
The surge tank is connected to the penstock through an orifice provided at the tank
as shown in Fig. 4.47 (b). The main objective of providing a throttle or restricted
orifice is to create an appreciable friction loss when the water is flowing to or from
the tank. When the load on the turbine is reduced, the surplus water passes through
the orifice and a retarding head equal to the loss due to throttle is built up in the
penstock. The size of the throttle can be designed according to designed retarding
head. The size of the throttle adopted is usually such as the initial retarding head is
equal to the rise of water surface in the tank when the full load is rejected by the turbine
(i.e., water supply to the turbine is stopped by closure of the gate valve). At small and
full load changes, such surge tank is not very effective in speed regulation. The design
is also complicated and hence this type of surge tank is not much in use.

Differential Surge Tank
It is much more efficient than simple and restricted orifice surge tanks. In this surge
tank, the tank is connected at its bottom to the penstock through a small vertical pipe
called riser as shown in figure 4.47 (c). The riser is provided with a number of ports
at its bottom to connect with the tank. When there is decrease in load on the turbine,
the water rises fast in the riser and provides a quick retarding effect. Similarly, when
the load increases, the water falls first in the riser quickly, thus creating a large
accelerating head on the penstock in a short time (i.e., enough water supply to the
turbine). The water falls slowly in the outer  tank being a larger area and water flows
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through the ports  into the riser pipe. In differential surge tank, the head building
function is achieved by the riser (high height, small cross-sectional area vertical pipe),
while the storage function is achieved through the outer tank.

4.11 THREE RESERVOIR PROBLEM
The three reservoir problem has three interconnected pipelines meeting at a common
junction and originating from three reservoirs having different water surface levels.
The three reservoir problem is about finding the direction and magnitude of the dis-
charges in the three pipes when the geometric characteristics of the pipes and water
surface elevations of the three reservoirs are known. Referring to Fig. 4.48, three
reservoir A, B and C are connected by three pipes 1, 2 and 3 meet at the common
junction J. The friction loss in the three pipe lines is sufficient large to permit the
neglecting of minor losses (entry and exit losses). For solving any problem related to
three reservoirs, the following basic principles apply:

(1) Continuity equation must be obeyed at junction J i.e., total flow into the
junction must be equal total flow out.

(2) Darcy's equation must be satisfied for each pipe.
(3) There can only be one value of head at any point in the system.

A

H1

HJ

d ,1 l1
1

,f
Pipe-1

J
Pipe-3

d ,3 l3
3

,f
hf3

d ,2 l2 2,f

Pipe-2

Bhf2

hf1

H2

Piezometer

H3

C

Fig. 4.48: Three reservoir problem.

Consider the reservoir A is the highest, B the interpediate and C the lowermost.
HJ = piezometric head at the junction J.
H1 = head at the reservoir A

 H2 = head at the reservoir B
 H3 = head at the reservoir C
 Q1 = rate of flow in pipe-1
 Q2 = rate of flow in pipe-2
 Q3 = rate of flow in pipe-3
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Following two methods are used to solve the three reservoir problem:
(1) Exact method, and
(2) Trial and error method.

In this type of problem the calculations are mostly simplified by putting

hf  = KQ2       where   32
2 5

fK
gd

=
π



where hf = head loss
K = resistance parameter which is constant for given pipe and its

value can be calculated if pipe length l, diameter d and co-efficient of friction f
and minor losses can be neglected.

4.11.1 Exact Method
The procedure described below is based on this method.
(i) To determine the direction of flow:

Let 1 2
2 3

H H
H H

−
−  = h  and 1

3

K
RK =

(a) If h>R, the flow is of type-1 with hJ>H2 and Q1 = Q2+Q3 as shown in Fig.4.46
(b) If h<R, the flow is of type-2 with HJ<H2 and Q1+Q2 = Q3

(c) If h = R, the flow is of type-3 with HJ = H2 and Q1= Q3. This is a rare situation
and the problem becomes similar as the two pipe in series.

(ii) Solution procedure for Type-1 flow:
By the application of energy equation between the junction J and the reservoir A,
B and C.
H1 = HJ + hf1

H1 = HJ + K1Q
2

(1)
H2 = HJ – hf2

H2 = HJ – K2Q
2

(2)
and H3 = HJ – hf2

H3 = HJ – K3 Q3
2 (3)

We know that the continuity equation for type-1 flow,
Q1 = Q2 + Q3

Let Q3 = nQ2

∴ Q1 = Q2 + nQ3

Q1 = (1+n) Q2 (4)
Eq (1) – Eq (2), we get
H1–H2 = K1 Q1

2 + K2 Q2
2
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Substituting the value of Q1 from Eq. (4) in above equation, we get
H1–H2 = K1(1+n)2 Q2

2 + K2 Q2
2

H1–H2 = [K1(1+n)2 + K2] Q2
2 (5)

Eq (2) – Eq (3), we get

H2–H3 = K3 Q3
2 – K2 Q2

2

H2–H3 = K3 n
2 Q2

2 – K2 Q2
2                                    Q3 = nQ2

H2–H3 = (K3 n
2 – K2) Q2

2

(6)

Dividing Eq (5) by Eq (6), we get
2(1 )1 2 1 2

22 3 3 2

H H K n K
h

H H K n K

− + +
= =

− −
(7)

Eq. (7) is a quadratic equation in n. Considering the positive root as the relative value,
Q2 is found by applying the value of n in Fig. (5) or Eq (6) and hence value of Q3
is found by relation Q3 = n Q2

  and Q1 is found by continuity equation
Q1 = Q2 + Q3

The head at the junction HJ is found by energy relationship between a reservoir
and the junction, e.g., H1 = HJ + K1 Q1

2.
(iii) Solution procedure for Type-2 flow:

By the application of energy equation between the junction J and the reservoir A,
B and C.

H1 = HJ+ hf1

H1 = HJ + K1Q
2 (8)

H2 = HJ + hf2

H2 = HJ + K2Q2
2 (9)

and H3 = HJ – hf2

H3 = HJ – K3 Q3
2 (10)

We know that the continuity equation type-2 flow,
Q1 + Q2 = Q3

Let Q3 = n Q2

∴ Q1 +  Q2 = n Q2

or Q1 = (n–1) Q2

Eq (8) – Eq (9), we get
H1 – H2 = K1 Q1

2 – K2 Q2
2

H1–H2 = K1 (n–1)2  Q2
2 – K2 Q2

2

H1-H2 = [K1 (n–1)2  – K2] Q2
2 (11)
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Eq (9) – Eq (10) , we get
H2–H3 = K2 Q2

2 + K3 Q3
2

H2–H3 = K2 Q2
2 + K3 n

2  Q2
2

H2–H3 = (K2 + K3
 n2) Q2

2 (12)
Dividing Eq (11) by Eq (12), we get

2( 1)1 2 1 2
22 3 3 2

H H K n K
h

H H K n K

− − −
= =

− +
(13)

Eq (13) is a quadratic equation in n which two positive roots. Selecting the root where
n >1 as relevent (as n <1 gives –ve Q1 values) the discharge Q2 is found from Eq (11),
hence value of Q3 is found by relation Q3 = n Q2  and Q1 is found by continuity equation
Q1 + Q2 = Q3

The head at the junction HJ is found by relationship between a reservoir and the junc-
tion, e.g., H1 = HJ + K1 Q1

2

4.11.2 Trial and Error Method
The procedure described below is based on this method.

(i) Assume a trial value of HJ. The first trial HJ may be taken around the average
value of the lowest and highest reservoir levels.

(ii) For each HJ calculate Qi in each pipeline with positive sign if it is towards the
junction and negative sign if it is away from the junction. Find ∆ Q = Σ Qi and

also find 
f

Q
h

Σ .

(iii) The additive correction, to be added to the assumed value of HJ for purposes of
next trial, is

J

2 QH
Q
h f

∆
∆ =

Σ

(iv) For next trial, HJ = previous HJ + ∆ HJ

(v) Continue till ∆Q is very small.

Notice: In this book, friction factor is denoted by f ' and co-efficient of friction is
denoted by f.

we know that
            f ' = 4f

Friction factor = 4 times co-efficient of friction.

Problem 4.38: Determine the rate of flow through the pipes shown in Fig 11.49.
Take the friction factor: f ' = 0.02 for all pipes.
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Pipe Diameter Length Connectivity
(mm) (m)

1 150 350 AJ
2 100 200 BJ
3 100 250 CJ

A

B

C

Pipe-1

J

Pipe-2

Pipe-3
H1= 126 m

H2= 109 m

Fig. 4.49: : Schematic for Problem 4.38

Solution: Given data.
For pipe-1, H1 = 126 m

 d1 = 150 mm = 0.15 m
   l1 = 350 m

For pipe -2,
H2 = 109 m
 d2 = 100 mm = 0.1 m
  l2 = 200 m

For pipe-3,
H3 = 100 m
d3 = 100 mm = 0.1 m

  l3 = 250 m
Friction factor for all pipe: f ′ = 0.02

     ∴  Coefficient of friction: f = 
4
f ′

 
0.02

4
=  = 0.005

We know that

h = 1 2
2 3

H H
H H

−

−
= 

126 109 17
109 100 9

−
=

−
= 1.88

Resistance parameter for pipe-1,
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K1 = 
32 1
2 5

1

f l

gdπ
 = 

32 0.005 350
2 5(3.14) 9.81 (0.15)

× ×

× ×
 = 7624.36

Resistance parameter for pipe-2,

K2 = 
32 2
2 5

2

f l

gdπ
= 

32 0.005 200
2 5(3.14) 9.81 (0.1)

× ×

× ×
 = 33084.27

Resistance parameter for pipe-3

K3 = 
32 3
2 5

3

f l

gdπ
 = 

32 0.005 250
2 5(3.14) 9.81 (0.1)

× ×

× ×
 = 41355.34

R = 1

3

K
K

 = 
7624.36
41355.34

 = 0.184

Since h > R, the flow is type-1, i.e., HJ > H2 and Q1 = Q2 + Q3

We know that for type-1 flow,

h = 
2

1 2
2

3 2

(1 )K n K
K n K

+ +

−

1.88 = 
2

2
7624.36(1 ) 33084.27

41355.34 33084.27
n

n
+ +

−

1.88 = 
2

2
(1 ) 4.34
5.42 4.34

n
n

+ +

−
10.18 n2 – 8.15 = (1+n)2 + 4.34

or 10.18 n2 – 12.49 = 1+ n2 + 2n
or 9.18 n2 – 2n – 13.49 = 0

n = 
2 4

2
b b ac

a
− ± −

= 
2 4 4 9.18 ( 13.49)

2 9.18
± − × × −

×

n = 
2 23.09

18.36
±

 = 1.336

For type-1 flow,
H1 – H2 = [K1 (1+n)2 + K2] Q2

2

126 – 109 = [7624.36 (1+1.366)2 + 33084.27] Q2
2

        17 = 75765.10 Q2
2

or        Q2
2 = 2.2437 × 10-4

or Q2 = 0.01497 m3/s
Discharge through pipe -3,

       Q3 = nQ2 = 1.366 × 0.01497 = 0.02044 m3/s
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Discharge through pipe-1,
        Q1 = Q2 + Q3 = 0.01497 + 0.02044 = 0.03541 m3/s

Problem 4.39: The water levels in two reservoirs A and B are 104.5 m and 100 m
respectively above the datum. A pipe joins each to a common point J, where pressure
is 9.81 kn/m2 gauge and height is 83.5 m above datum. Another pipe connects J to
another tank C. What will be the height of water level in C assuming the same value
of coefficient of friction f for all pipes.

Take f = 0.0075.

Pipe Length Diameter
m mm

AJ 240 300
BJ 270 450
CJ 300 600

Solution: Given data:
  H1 = 104.5 m

               H2 = 100 m
Gauge pressure at junction J : pg = 98.1 kN/m2 = 98.1 ×103  N/m2

also    pg = ρgh
∴ 98.1 × 103 = 1000×9.81× h

   Pressure head at junction J : h = 10 m

A

B

C

d ,2 l2,f

d ,1 l
1 ,f

83.5 m

Datum

d
,3 l

3 ,f

J

Fig. 4.50: Schematic for Problem 4.39
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Position of junction J form datum= 8.35 m
∴  Piezometric head at J : HJ = 83.5 + 10 = 93.5 m
Head loss between A and J : hf1 = H1 – HJ = 104.5 –  93.5 = 11 m
Head loss between B and J : hf2 = H2– HJ = 100 – 93.5 = 6.5 m
Applying the Darcy's equation for pipe-1,

2

1

2
1 1

1
1

4
2

4 0.0075 240
11

2 9.81 0.3

f
fl Vh
g d

V

=

× × ×
=

× ×

or V1
2 = 8.992

or V1  = 2.998 m/s
Similarly applying the Darcy's equation for pipe-2,

  

2
2 2

2
2

2
2

4
2

4 0.0075 270
6.5

2 9.81 0.45

f
f l V

h
g d

V

=

× × ×
=

× ×

or  V2
2 = 7.085

or   V2 = 2.66 m/s
From the continuity equation,

                             Q1 + Q2 = Q3

             
2 2 2

1 1 2 2 3 34 4 4
d V d V d Vπ π π

+ =

or d1
2 V1 + d2

2 V2 = d3
2 V3

(0.3)2 × 2.998 + (0.45)2 × 2.66 = (0.6)2 × V3
0.2698 + 0.5386 = 0.36 V3

or V3 = 2.24 m/s
Head loss in pipe-3,

               
2 2

3 3
3

3

4 4 0.0075 300 (2.24)
3.83

2 2 9.81 0.6f
f l V

h m
g d

× × ×
= = =

× ×

∴  Water level in tank C,
                   H3 = HJ – hf3 = 93.5–3.83 = 89.697 m

Problem 4.40: Three reservoirs A, B and C have elevations 40 m , 34 m and
20 m respectively. A 300 mm diameter pipeline, 1500 m long, connects reservoirs A
and B while another 300 mm diameter pipe, 2400 m long, connects reservoirs A and
C. For a distance of 600 m from A both the pipes lie side by side upto a junction
point J, where they are inter connected by a short branch pipe. Assuming that the pipe
friction factor is 0.02, and neglecting losses at entry, exit and junction, find
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(a) the direction of flow in reservoir B, and
(b) the flows leaving or entering the reservoir in litre/s.

Solution: Given data:
H1 = 40 m
H2 = 34 m
H3 = 20 m

For pipe-1,
Diameter: d1 = 300 mm = 0.3 m
Length:  l1 = 600 m
For pipe-2,

A

B

C

l1 1 ,d

l2 2 
,d

l
3

3 
,d

Pipe-2

Pipe-3

Pipe-1

Datum

Fig. 4.51: Schematic for Problem 4.40

Diameter: d2 = 300 mm = 0.3 m
Length:  l2 = 900 m
For pipe-3:
Diameter: d3 = 300 mm = 0.3 m
Length:  l3 = 1800 m
Friction factor: f ′ = 0.02

Coefficient of friction :
4
ff

′
=

0.02 0.005
4

= =  4f f=′

Heads loss in the pipe line:    2h K Qf =

where 2 2
32 f lK

gd
=

π
, resistance parameter

Resistance parameter for pipe-1: 1
1 2 5 2 5

1

32 32 0.005 600 408.44
(3.14) 9.81 (0.3)

f l
K

gd
× ×

= = =
π × ×
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Resistance parameter for pipe-2,

                                            
2

2 2 5
2

32 f lK
gd

=
π 2 2

32 0.005 900 612.67
(3.14) 9.81 (0.3)

× ×
= =

× ×
Resistance parameter for pipe-3,

                              
3

3 2 5 2 5
3

32 22 0.005 1800 1225.34
(3.14) 9.81 (0.3)

f l
K

gd
× ×

= = =
π × ×

1

3

408.44 0.333
1225.34

KR K= = =

and
1 2

2 3

40 34
0.428

34 20
H H

h
H H

− −
= = =

− −

Since h > R, the flow is of Type-1 flow, i.e., HJ > H2. The flow takes place from
the junction toward reservoir B. The flow takes place from reservoir A to reservoir B
and reservoir C and the continuity equation is

    2 Q1 = Q2 + Q3 (1)
Using the Darcy’s equation

H1– H3 = K1 Q1
2 +K3 Q3

2

H1– H2 = K1 Q1
2 +K2 Q2

2

Substituting the values, we get
20 = 408.44 Q1

2 + 1225.34 Q3
2 (2)

and   6 = 408.44 Q1
2 + 612.67 Q2

2 (3)

Let 2
1

Q
n

Q
=

Q2 = n Q1

Substituting Q2 = nQ1 in Eq (2), we get
2Q1 = nQ1 + Q3

or  Q3 = (2-n) Q1

Substituting the value of  Q3 = (2-n) Q1 in Eq. (2), we get
  20 = 408.44 Q1

2 + 1225.34 (2-n)2 Q1
2

  20 = [408.44 + 1225.34 (2-n)2] Q1
2 (4)

Substituting the value of   Q2 = n Q1
  in Eq. (3), we get

    6 = 408.44 Q1
2 + 612.67 n2 Q1

2

    6 = [408.44 + 612.67 n2] Q1
2 (5)
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Dividing Eq (4) by Eq (5), we get

                                                            

2

2

2

2

2

2

2 2

2 2

2

22

20 408.44 1225.34(2 )
6 408.44 612.67

10 408.44 [1 3(2 ) ]
3 408.44[1 1.5 ]

10 1 3(2 )
3 1 1.5

10 15 3 9(4 4 )

10 15 3 36 9 36

6 36 29 0

36 (36) 4 6 ( 29)4
2 2 6

36 44.63
0.71

12

n
n

n
n

n
n

n n n

n n n

n n

b b acn
a

+ −
=

+

+ −
=

+

+ −
=

+

+ = + + −

+ = + + −

+ = =

− ± − × × −− ± −
= =

×
− ±

= = 9

Substituting n = 0.719 in Eq. (5) , we get
6 = [408.44 + 612.67 × (0.719)2] Q1

2

6 = 725.16 Q1
2

or   2
1

3
1

2 1
3

3
3 1

6
0.00827

725.16
0.0909m /s 90.9 litre/s

0.719 0.0909 0.06535 m /s 65.35litre/s

(2 ) (2 0.719) 0.0909 0.11644 m /s

Q

Q
Q nQ

Q n Q

= =

= =
=

= × = =

= − = − × =
Flow leaving reservoir A = 2Q1 = 2 × 0.0909 = 0.1818 m3/s = 181.8 litre/s
Flow entering reservoir B : Q2 = 0.06535 m3/s = 65.35 litre/s
Flow entering reservoir C : Q3 = 0.11644 m3/s = 116.44 litre/s

Problem 4.41: Determine the rate of flow through the pipes shown in Fig. 4.52.
The free surface levels in the reservoir A, B and C are given, l1 = 700 m,
l2 = 1200 m, l3 = 1000 m. d1 = 400 mm, d2 = 300 mm, d3 = 200 mm. Determine
also the piezometic head at junction J. Take coefficient of friction: f = 0.005.

A
B

C
70 m

J
(3)

Datum

50 m

60 m
(2)

Piezometer tube

(1)

Fig. 4.42: Schematic for Problem 4.41
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Solution: Given data:
H1 = 70 m
H2 = 60 m
H3 = 50 m
  l1 = 700 m
  l2 = 1200 m
  l3 = 1000 m
 d1 = 400 mm = 0.4 m
 d2 = 300 mm = 0.3 m
 d3 = 300 mm = 0.2 m
   f = 0.005

We know that         
1 2

2 3

70 60 10 1
60 50 10

H Hh
H H

− −
= = = =

− −

Resistance parameter for pipe-1,

      
1

1 2 5 2 5
1

32 32 0.005 700 113.08
(3.14) 9.81 (0.4)

f l
K

g d
× ×

= = =
π × ×

Resistance parameter for pipe-2,

     
2

2 2 5 2 5
2

32 32 0.005 1200 816.89
(3.14) 9.81 (0.3)

f l
K

g d
× ×

= = =
π × ×

Resistance parameter for pipe-3,

     
3

3 2 5 2 5
3

32 32 0.005 1000 5169.41
(3.14) 9.81 (0.2)

f l
K

g d
× ×

= = =
π × ×

      
1

2

113.08
0.0218

5169.41
K

R
K

= = =

Since h > R, the flow is of type-1 flow, i.e., HJ > H2. The flow takes place from
reservoir A to reservoir B and reservoir C and the continuity equation is

          Q1 = Q2 + Q3

We know that for type-1 flow,

           
2

1 2
2

3 2

(1 )K n Kh
K n K

+ +
=

−

     1 = 
2

2
113.08(1 ) 816.89

5169.41 816.89
n

n
+ +

−
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2 2

2 2

2 2

2 2

2

22

or 5169.41 816.89 113.08(1 ) 816.89

or 5169.41 1633.76 113.08(1 )

54.71 14.44 (1 )

54.71 14.44 1 2

or 53.71 2 15.44 0

2 (2) 4 53.71 ( 15.44)2
2 2 53.71

2 57.62
0.555

107.42

n n

n n

n n

n n n

n n

b b acn
a

− = + +

− = +

− = +

− = + +

− − =

± − × × −− ± −
= =

×
±

= =

For type-1 flow,
H1– H2 = [K1 (1+n)2 +K2] Q2

2

                            70–60 = [113.08 (1+0.555)2  + 816.89] Q2
2

      10 = 1090.32  Q2
2

or    Q2
2 = 0.00917

   Q2 = 0.0957 m3/s
Discharge through pipe-3,

Q3 = n Q2 = 0.555 × 0.0957 = 0.0531 m3/s
Discharge through pipe-1,

            Q1 = Q2 + Q3 = 0.0957 + 0.0531 = 0.1488 m3/s
By the application of energy equation between the junction J and the reservoir A.

  H1 = HJ + hf1

  H1 = HJ + K1 Q1
2

   70 = HJ + 113.08 × (0.1488)2

   70 = HJ + 2.50
or HJ = 70 – 2.50 = 67.5 m
Piezometric heat at junction J, HJ = 67.5 m

SUMMARY

1. When real fluid is flowing through a pipe, energy (or head) losses through pipe
are classified in two categories:

(i) Major losses
(ii) Minor losses

2. Major losses: Energy (or head) losses  due to friction among fluid particles
or between fluid particles and surface area of a pipe at constant cross-sectional
area of fluid flow is known as major losses. It is calculated by the following
formulae:

Contd...
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(i) Darcy-Weisbach formula:

Head loss due to friction: hf = 
24

2
flV
gd

where f = coefficient of friction
4 f = f ′, friction factor

hf = 
2

2
f lV

gd
′

f = 
16
Re for Re < 2000, laminar flow

 f ′ = 
64
Re

f = 1/ 4
0.079
Re

 for 4000 < Re < 106, turbulent
        flow

and  f ′ = 1/ 4
0.316
Re

(ii) Chezy’s formula:

Velocity of flow: V = C im
where C = Chezy’s constant

m = hydraulic mean depth

= 
A
P

, A = 2

4
dπ

, P = πd

m = 
4
d

  for pipe

i = fh
l , loss of head due to friction per

         unit length.
3. Moody’s diagram: Moody’s diagram gives the value of friction factor f ′

of any pipe provided its relative roughness ∈ /d and Reynolds number of
flow Re are known where ∈  is absolute (or average) roughness, or
equivalent sand roughness and d is diameter of pipe.

4. Minor losses: The loss of energy (or head) due to local disturbance in
pipelines such as sudden enlargement, sudden contractions, pipe bends,
valves and other fittings is called local or secondary or minor losses.

(i) Loss of head due to sudden enlargement: he

he = 
2

1 2( )
2

V V
g

−

(ii) Loss of head due to sudden contraction: hc  
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hc = Kc 
2

2
V

g

where Kc = 
2

1 1
cC

 
− 

 
, coefficient of sudden

              contraction
Cc = coefficient of contraction.

(iii) Loss of head at the entrance to a pipe: hi

hi = 0.5
2

2
V

g
(iv) Loss of head at the exit of a pipe: ho

ho = 
2

2
V

g
(v) Loss of head in pipe fitting: hfitting

hfitting =   KL

2

2
V

g

where KL = head loss coefficient
5. Siphon: A long bend pipe which rises above its hydraulic grade line has

negative pressure, is called siphon.
6. Pipes in series: In piping systems, two or more pipes of different

diameters are connected end to end, are called pipes in series or compound
pipes. The rate of flow through the entire system remains constant regardless
of the diameters of the individual pipes in the system.
Mathematically,

Q1 = Q2 = Q3

7. Equivalent length: The loss of head in pipe fitting is expressed in terms
of an equivalent length which is the length of uniform diameter pipe in
which an equal loss of head would occur for same discharge.

8. Equivalent pipe: It is defined as the pipe of uniform diameter having loss
of head equal to the total loss of head as the compound pipe (i.e., pipes in
series) at same discharge. The uniform diameter of the equivalent pipe is
called equivalent size of the pipe. The length of equivalent pipe is equal to
sum of lengths of the compound pipe.

9. Dupuit’s equations:

5
e

e

l
d

 = 31 2
5 5 5
1 2 3

ll l
d d d

+ + + ... (for constant coefficient of friction)

5
e e

e

f l
d

= 3 31 1 2 2
5 5 5
1 2 3

f lf l f l
d d d

+ + + ... (for not constant coefficient of friction)
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10. Pipes in parallel: In piping systems, two or more pipes are connected
between a main pipe, is called pipes in parallel. The rate of flow through main
pipe is equal to the sum of rate of flow through branch pipes.
Mathematically,

Q = Q1 + Q2 + Q3 + ...........
11. Transmission of hydraulic power through pipe lines:

Power available at inlet of the pipe   = ρQgH
Power available at outlet of the pipe = ρQg (H – hf)
where H = total head available at the inlet of

pipe
hf = loss of head in pipe due to friction.

= 
24

2
flV
g d  (by Darcy’s formula)

Efficiency of power transmission: η = fH h
H
−

Power transmitted will be maximum when,

hf = 3
H

Then, maximum efficiency: ηmax = 66.67%
12. Water hammer: The phenomenon of sudden rise in pressure in a pipe when

water flowing in it is suddenly brought to rest by closing the valve is known as
water hammer or hammer blow.

(i) Pressure rise due to gradual closure of valve:
In this case, t > tc
where t = time taken to close the valve

tc = 
2l
a , critical time

l = length of pipe
a = velocity of pressure wave

Pressure rise: p = 
lV
t

ρ

where V = velocity of liquid in the pipe.
(ii) Pressure rise due to instantaneous closure of valve in a rigid pipe.

In this case, t < tc
Pressure rise: p = ρ  V a

(iii) Pressure rise due to instantaneous closure of valve in an elastic pipe,

p =
1

ρ
 + 
 

V
d

K Et
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where K = bulk modulus of liquid
E = modulus of elasticity of pipe

13. Pipe networks: Pipe networks consist of multiple pipes interconnected in
series, parallel and forming several loops or circuits.

14. Surge tank: Surge tank is main component of hydro electric power plant.
It is located on the penstock and near to the turbine as far as possible. It
serves the following two functions:

(i) It acts as a temporary storage device to store the water when the
governor reduces the supply of water to the turbine. On the other
hand, if the turbine needs more water, then load on turbine increases,
the excess water made available to the turbine from surge tank.

(ii) It protects the penstock against water hammer.

ASSIGNMENT - 1

1. What do you mean by the terms:
(i) Major energy loss and

(ii) Minor energy losses in pipes.
2. Explain briefly: Major and Minor losses in pipe lines.

(GGSIP University, Delhi, Dec. 2008)
3. Derive an expression for the loss of head due to sudden enlargement in pipe

diameter. (GGSIP University, Delhi, Dec. 2005)
4. Derive an expression for the loss of head due to sudden contraction of a pipe.

(GGSIP University, Delhi, Dec. 2001)
5. Derive an expression for the head loss due to sudden enlargement in pipe flow

and therefrom deduce the head loss due to sudden contraction.
(GGSIP University, Delhi, Dec. 2008)

6. Define and explain the terms: Pipes in series and pipes in parallel, equivalent
pipe, minor energy losses and major energy loss.

(GGSIP University, Delhi, Dec. 2004)
7. Define and explain: Equivalent pipe, minor and major losses in pipe, hydraulic

gradient line and total energy line. (GGSIP University, Delhi, Dec. 2002)
8. What is a syphon? On what principle it works?
9. Explain the terms:

(i) Pipes in parallel
(ii) Equivalent pipe and

(iii) Equivalent size of the pipe.
10. What do you mean by the term pipe networks?
11. Show that for maximum transmission of power by means of water under pressure,

the frictional loss of head in the pipe equals one-third of the total head supplied.
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12. Explain the phenomenon of water hammer. Obtain an expression for the rise of
pressure, when the flowing water in a pipe is brought to rest by closing the valve
gradually.

13. What do you understand by water hammer? What provision is made in hydro
electric power plant to minimize the effects of water hammer?

14. Water flowing in a pipe is brought to rest by instantaneous closure of valve in
an elastic pipe. Show that the pressure rise due to valve closure is given by

p = V 1 d
K Et

ρ
 + 
 

where K = bulk modulus of liquid
E = modulus of elasticity of pipe
t = thickness of pipe

15. What is the function of surge tank in hydro-electric power plant?

ASSIGNMENT - 2

1. Determine the head loss due to friction in a pipe of diameter 300 mm and length
75 m, through which water is flowing  at a velocity 3 m/s by using

(a) Darcy-Weisbach formula
(b) Chezy’s formula for which C = 6.Take kinematic viscosity (ν) for water =

0.01stoke.Ans. (a) hf = 1.174 m of water (b) hf = 2.5 m of water
2. Water is flowing through a pipe 1.4 km long with a velocity of 0.9 m/s. What

should be the diameter of the pipe, if the loss of head due to friction is 7 m.
Take coefficient of friction: f = 0.005. Ans. 399.59 mm

3. A reservoir has been built 3.5 km away from a college campus having 5000
inhabitants. Water is to be supplied from the reservoir to the campus. It is
estimated that each inhabitant will consume 250 litre of water per day, and that
half of the daily supplied water is pumped within 10 hours. Find the size of
the supply main, if the loss of head due to friction in pipeline is 20 m. Take
coefficient of friction for the pipeline as 0.006. Ans. 159.95 mm

4. An oil of specific gravity 0.9 and viscosity 0.06 poise is flowing through a
pipe of diameter 200 mm at the rate of 60 litre/s. Find the head lost due to
friction for a 500 m length of pipe. Find also the power required to maintain
the flow. Ans. 9.49 m of water, 5.027 kW

5. The rate of flow of water through a horizontal pipe is 300 litre/s. The pipe of
diameter 200 mm is suddenly enlarged to 400 mm. Find:

(i) Loss of head
(ii) Change in pressure

(iii) Loss of fluid power
Ans. (i) 2.617 m of water (ii) 17.07 kPa (iii) 7.70 kW
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6. At a sudden enlargement of a pipe from 240 mm to 480 mm and piezometric head
increases by 10 mm. Find the rate of flow. Ans. 32.70 litre/s

7. A horizontal pipe of diameter 150 mm is suddenly contracted to a diameter of
100 mm. The rate of flow of water is 30 litre/s. Find the pressure loss across the
contraction. Take Cc= 0.6Ans. 9.094 kPa

8. Water is following through a horizontal pipe of diameter 200 m at a velocity of
3 m/s. A circular solid plate of diameter 150 mm is placed in the pipe due to
obstruction in the pipe. Take coefficient of contraction in the pipe as 0.65. Find
also loss of fluid power. Ans. 2.905 m of water, 2.684 kW

9. Find the rate of flow of water through pipe of diameter 200 mm and length 50
m when one end of the pipe is connected to a tank and other end of the pipe is
open to the atmosphere. The pipe is horizontal and the height of water in the  tank
is 4 m above the centre of the pipe. Consider all minor losses and take coefficient
of friction as 0.009.Ans. 85.72 litre/s

10. Find the rate of flow through a horizontal pipe line 40 m long connected to a
water tank at one end and discharges freely into the atmosphere at the other end.
For the first 25 m of its length from the tank, the pipe is 150 mm diameter and
its diameter is suddenly enlarged to 300 mm. The height of water level in the tank
is 8 m above the centre of the pipe. Considering all minor losses take coefficient
of friction as 0.01. Ans. 78.63 litre/s

11. A pipe line AB of diameter 300 mm and length 400 mm carries water at the rate
of 50 litre/s. The flow takes place from A to B where point B is 30 m above A.
Find the pressure at point A if the pressure at point B is
19.62 N/cm2. Take coefficient of friction as 0.008. Ans. 50.12 N/cm2

12. What is syphon? On what principle it works? A syphon of diameter 200 mm
connects two reservoirs having a difference of water level as 20 m. The total
length of syphon is 500 m and the summit is 3 m above the water level in the
upper reservoir. The length of the pipe from upper reservoir to the summit
is 100 m. Determine:

(i) the discharge through the syphon and
(ii) the pressure head of pressure at the summit.

Neglect minor losses and take coefficient of friction  f = 0.005
(GGSIP University, Delhi, Dec. 2004)

Ans. (i) 87.96 litre/s (ii) – 7.399 mm of water or 2.901 m of water absolute
13. Water is discharged from one tank to another with 40 m difference of water

levels through a pipe 1200 m long. The diameter for the first 600 m length
of pipe is 400 mm and 250 mm for the remaining 600 m length. Find the
discharge in litre/s through pipe. Assume coefficient of friction as 0.009 for
both the pipes. Neglect minor losses. Ans. 140.78 litre/s

14. A pipe of diameter 500 mm and length 4 km is used for the transmission of power
by water. The total head at the inlet of the pipe is 520 m. Find the maximum power
available at the outlet of the pipe. Take coefficient of friction. f = 0.006.

Ans. 2808.40 kW



Fluid Mechanics282

15. The maximum power is to be transmitted through a pipe line. Work-out the
condition for maximum transmission of power. It is desired to develop
1200 kW of power at 85% efficiency by supplying water to a hydraulic turbine
through a horizontal pipe 600 m long. Determine the necessary flow rate and
minimum diameter of pipe to carry that discharge, water is available at head of

200 m. Take f = 0.0063 in the formula, hf = 
24

2
flV
g d

Ans. 0.71955 m3/s, 0.4643 m
16. Power is to be transmitted hydraulically along a distance of 8500 m through a

number of 100 mm diameter pipes, laid is parallel. The pressure at the discharge
end is maintained constant at 7200 kPa. Find the maximum number of pipes
required to ensure an efficiency of at least 91% when the power delivered is 182
kW. Take f = 0.0061 for all pipes and neglect losses other than friction.

Ans. 4
17. A rigid pipe conveying water is 3000 m long. The velocity of flow is

1.3 m/s. Calculate the rise in pressure caused within the pipe due to valve
closure in  (i) 20 seconds, (ii) 3 seconds.
Take bulk modulus of water as 20 × 108 N/m2.

Ans. (i) 195 kPa, (ii) 1838.47 kPa
18. A water supply consists of three reservoirs A, B and C connected to a

common junction J as shown in Fig. 4.60

Pipe Diameter Length Coefficient of
mm m friction of

1. 300 200 0.005
2. 300 125 0.004
3. 300 250 0.004

Calculate the discharge in each pipe and the piezometric head at the junction.
[Ans. Q1 = 0.139 m3/s, Q2 = 0.095 m3/s

Q3 = 0.234 m3/s, HJ = 97.447m]

A
B

C

100 mm
Pipe-1

Pipe-2

Pipe-3
J

90 m
Datum

98 m

Fig. 4.60: Q.18





Pipe Flow Measurement

5.1 INTRODUCTION
After designing a system, it is fabricated and tested to determine whether it is

reliable, cost effective and serves the proposed purpose. In engineering, designing,
fabrication and testing involve measurements. Measurements signify whether constituent
system elements are working as per the design expectations and then evaluate the
system’s performance as a whole under diverse working conditions. Measurements
are vital to measuring different variables. For example, in fluid mechanics, the
discharge, pressure, viscosity, density gradients, turbulence, velocity etc. are the
essential variables that affects fluids’ flow properties. Various instruments/devices are
used to measure these variables. This chapter measures two variables, discharge and
velocity of the fluid flowing through the pipe.

5.2 VENTURIMETER
Function: It is used for measuring the discharge (i.e., rate of fluid flow) through

a pipe.
Principle: A venturimeter* is based on the principle of Bernoulli’s equation.

When the velocity head increases in an accelerated flow, there is a corresponding
reduction in the pressure head.

Main parts of Venturimeter: The following are three main parts of a venturimeter:
1. A short converging part (acts as a nozzle),
2. Throat, and
3. Diverging part (acts as diffuser).

5

* Venturi was an Italian engineer who discovered in 1791 that a pressure difference related to the
rate of flow could be created in a pipe by reducing cross-sectional area in a pipe.
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Design Aspects of a Venturimeter:
Let D = diameter of a pipe in which liquid flowing.
and d = diameter of throat

Length of converging part = 2.5 D
Length of throat = Diameter of throat

Length of diverging part = 7.5 D

d
D

= 0.25 to 0.75

Angle of converging cone : α = 19° to 23°
Angle of diverging cone : β = 5° to 7° for maximum pressure recovery.

= 14° for maximum pressure recovery
is not much importance.

d

d

α β

Throat

D
Q

Diverging part

7.5 D2.5 D

.

Fig.  5.1: Design aspects of a Venturimeter.

Types of Venturimeter:
A Venturimeter consists in three types according to the position (or placement)
1. Horizontal Venturimeter,
2. Vertical Venturimeter, and
3. Inclined Venturimeter.

1. Horizontal Venturimeter:
Consider a venturimeter fitted in a horizontal pipe through which a fluid (say

water) is flowing as shown in Fig. 5.2.

Fig. 5.2: Horizontal Venturimeter with differential manometer.

Let D = diameter of a pipe or at section (1)
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p1 = pressure of fluid at section (1)
V1 = velocity of fluid at section (1)
A = cross-sectional area at section (1)

= 2

4
Dπ

and d, p2, V2, a 2

4
dπ =  

 are corresponding values at section (2).

Applying the Bernoulli’s equation at section (1) and (2), neglecting head losses,
we get

2
1 1

12
p V z
g g

+ +
ρ =

2
2 2

22
p V z
g g

+ +
ρ

2
1 1

2
p V
g g

+
ρ =

2
2 2

2
p V
g g

+
ρ [z1 = z2, Venturimeter

(or pipe) is horizontal.]

or
2 2

2 1

2 2
V V

g g
− =

1 2p p
g g

−
ρ ρ

2 2
2 1

2
V V

g
−

= h

where h = 1 2p p
g g

−
ρ ρ

= pressure head difference at sections (1) & (2)
or V2

2–V1
2 = 2gh By continuity equation,

2 2

2 2

Q Q
a A

− = 2gh

Q = aV2 or V2 = 
Q
a and Q = AV1, V1=

Q
a

Q2
2 2

1 1
a A

 −  
= 2gh

Q2
2 2

2 2

A a
a A

 −
 
 

= 2gh

or Q2 =
2 2

2 2

2a A gh
A a

 ×
 − 



Fluid Mechanics286

orQ =
2 2

2 2

2a A gh
A a

×
−

Theoretical discharge : Q th = 2 2

2aA gh

A a−
...(5.1)

Equation (5.1) is derived under ideal condition. So, it is called theoretical
discharge. The actual discharge is always less than theoretical discharge because
energy losses involved. The equation of actual discharge is written as

Qact = CdQth

Qact = 
2d

2 2

C aA gh

A - a
...(5.2)

where Cd = coefficient of discharge
which accounts for losses of energy which have been ignored earlier.
Coefficient of discharge: Cd : It is defined as the ratio of actual discharge

(Qact) to theoretical discharge (Qth).
Mathematically,

Coefficient of discharge :Cd = act

th

Q
Q

The value of Cd is always less than one. For venturimeter, Cd lies between 0.97
to 0.99. Average value of Cd = 0.97 is taken.

The value of ‘h’ from equation (5.9.2) is obtained by the differential U-tube
manometer

Case I: If the differential U-tube manometer contains a liquid which is heavier
than the liquid flowing though the pipe then

h = x
mano

pipe

1
 ρ

− 
ρ  

 for mano pipeρ > ρ ...(5.3)

also h = 
1 2p p
g g

−
ρ ρ

where manoρ = density of the heavier liquid used in U-tube

manometer.

pipeρ = density of the liquid flowing though pipe.

x = difference of the heavier liquid column in

U-tube manometer.
Let water flow through pipe and mercury used in manometer. Then equation

(5.9.3) becomes



Pipe Flow Measurement 287

=
2

Hg

H O

1x
 ρ

− 
ρ  

 Hgρ = 13600 kg. & 
2H Oρ = 1000 kg/m3

= 
13600 1
1000

x  −  
h = 12.6x  ...(5.4)

Case II: If the differential manometer contains a liquid which is lighter than the
liquid flowing through the pipe then

h = x
mano

pipe

1
 ρ

− 
ρ  

 for pipe manoρ > ρ

also h = 
1 2p p
g g

−
ρ ρ

Inclined and vertical Venturimeter with differential U-tube manometer:

Case I: If the differential U-tube manometer contains a liquid which is heavier
than the liquid flowing though the pipe then

h = 
mano

pipe

1x
 ρ

− 
ρ  

 for mano pipeρ > ρ

Also h = 1 2
1 2

p pz z
g g

   
+ − +    ρ   ρ 

Case II: If the differential U-tube manometer contains a liquid which is lighter
than the liquid flowing through the pipe then

h = x
mano

pipe

1
 ρ

− 
ρ  

 for pipe manoρ > ρ

also h = 1 2
1 2

p pz z
g g

   
+ − +    ρ   ρ 

On simplification of equation (5.2)

A = 2

4
Dπ

a = 2

4
dπ

, Let    Qact = Q
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∴ Q = 
2 2

2 2
2 2

. 2
4 4

4 4

dC d D gh

D d

π π

π π   −      

= 

( )

2
2 2

2
4 4

2
4

4

dC d D gh

D d

π 
  

π  −  

= 

2
2 2

4 4

2
4

4

dC d D gh

D d

π 
  
π  −  

= 

2 2

4 4

2
4dC d D gh

D d

π 
  

−

= 
2 2

4 4

2
4 dg C d D h

D d

π
×

−

= 
2 2

4 4

22 2 9.81
7 4

dC d D h
D d

× ×
× −

       (Take π=
22
7 )

= 3.48 
2 2

4 4
dC d D h

D - d
...(5.5)

Equation (5.5) applicable only when d & D in m and h in m of liquid flow through
pipe then discharge (Q) will be measured in m3/s.

If water flows through pipe and mercury contained in differential U-tube
manometer. Then substituting the value of h = 12.6x from equation (5.9.4) in equation
(5.5), we get

Q = 3.48 
2 2

4 4

12.6dC d D x
D d−

Q = 12.35
2 2

4 4
dC d D x
D d−

...(5.6)
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Equation (5.6) is used to determine the discharge for specific case when water
flows through pipe and mercury contained in differential U-tube manometer where x
in meter of mercury. From equation (5.6), we get discharge (Q) in m3/s when x in
m of Hg, d and D in m only.

No other units of x, d & D are applicable in equation (5.6).
Note:Author recommends equation (5.6) for specific case mentioned above, in order

to consume less time (i.e., less no. of calculation) and less chance of error
involved in the result.

2.  Vertical Venturimeter:
Applying the Bernoulli’s equation at sections (1) and (2), neglecting head losses,

we get

Fig. 5.3: Vertical Venturimeter with differential manometer

2
1 1

12
p V z
g g

+ +
ρ = 

2
2 2

22
p V z
g g

+ +
ρ

or
2 2

2 1

2 2
V V

g g
− = 1 2

1 2
p pz z
g g

   
+ − +   ρ ρ   

2 2
2 1

2
V V

g
−

= h
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where h = 1 2
1 2

p pz z
g g

   
+ − +   ρ ρ  

= piezometric head difference.

= ( )1 2
1 2

p p z z
g g

 
− + − ρ ρ 

= pressure head difference
+ datum head difference

V2
2 – V1

2 = 2gh
By continuity equation

2 2

2 2

Q Q
a A

− = 2gh Q = aV2 or V2= 
Q
a

Q2
2 2

1 1
a A

 −  
= 2gh and Q = AV1 or V1 =

Q
A

Q2
2 2

2 2

A a
a A

 −
 
 

= 2gh

or Q2 = 
2 2

2 2

2A a gh
A a−

Q = 
2 2

2 2

2A a gh
A a−

Q = 2 2

2Aa gh

A a−

Theoretical discharge: Q th = 
2 2

2Aa gh

A a−

Actual discharge: Qact = Cd Qth

Qact = 2 2

2dC Aa gh

A a−

The expression of discharge for vertical venturimeter is similar to that of
horizontal Venturimeter. The difference is only that the value of ‘h’

For horizontal venturimeter

h =
1 2p p
g g

−
ρ ρ  = pressure heads difference for horizontal
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 venturimeter

=
mano

pipe

1x
 ρ

− 
ρ  

for mano pipeρ > ρ

= x
mano

pipe

1
 ρ

− 
ρ  

for pipe manoρ > ρ

  For vertical venturimeter

h = 1 2
1 2

p pz z
g g

   
+ − +   ρ ρ   

= piezometric head difference for vertical
venturimeter

=
mano

pipe

1x
 ρ

− 
ρ  

for mano pipeρ > ρ

= x
mano

pipe

1
 ρ

− 
ρ  

for pipe manoρ > ρ

3. Inclined Venturimeter

Fig. 5.4: Inclined Venturimeter with differential manometer

The expression of inclined venturimeter is same as vertical venturimeter

Qact = 
2 2

2dC Aa gh

A a−

where h = 1 2
1 2

p pz z
g g

   
+ − +   ρ ρ   

 piezometric head difference
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Problem 5.1: What should be pressure difference between the upstream section
and throat of a 60 mm by 30 mm horizontal venturimeter carrying 60 litre/s of water
at room temperature.
Solution: Given data:

Diameter at upstream i.e., at section (1)-(1) : D = 60 mm = 0.06 m

∴ Cross-sectional area : A = 2

4
Dπ

 = 23.14 (0.06)
4

×

= 0.00282 m2

Fig. 5.5: Schematic for Problem 5.1

Diameter at throat i.e., at section (2)–(2) : d = 30 mm = 0.03 m
∴ Cross-sectional area :

a = 2

4
dπ

 = 23.14 (0.03)
4

×

= 0.000706 m2

Discharge : Q = 60 litre/s = 
60

1000  m3/s

= 0.06 m3/s
also Q = AV1 = aV2

∴ V1 = 
Q
A

 = 
0.06

0.00282  = 21.27 m/s

and V2 = 
Q
a  = 

0.06
0.000706  = 84.98 m/s

Applying Bernoulli’s equation at section (1)–(1) and (2)–(2), we get
2

1 1
12

p V z
g g

+ +
ρ =

2
2 2

22
p V z
g g

+ +
ρ

2
1 1

2
p V
g g

+
ρ =

2
2 2

2
p V
g g

+
ρ z1 = z2 because of

venturimeter is horizontal
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1 2p p
g

−
ρ =

2 2
1 2

2
V V

g
−

or p1 – p2 =
( )2 2

1 2

2

V V

g

ρ −

= 1000 ( ) ( )2 284.98 21.27
2
−

ρ = 1000 kg/m3

= 3384593.75 N/m2 or Pa
= 3.384 MPa

Problem 5.2: A 200 mm × 120 mm venturimeter is installed in a horizontal pipe
carrying water. If the mercury differential manometer shows a reading of 200 mm,
find the discharge through the pipe. Take coefficient of discharge : Cd = 0.98

Solution : Given data:
Diameter at inlet : D = 200 mm = 0.2 m

∴ Cross-sectional at inlet :

A = 2

4
Dπ

 = 23.14 (0.2)
4

×  = 0.0314 m2

Fig. 5.6: Horizontal Venturimeter with U-tube differential manometer.

Diameter at throat : d = 120 mm = 0.12 m
∴Cross-sectional area at throat :

a = 2

4
dπ

 = 23.14 (0.12)
4

×  = 0.0113 m2

Differential manometer reading :
x = 200 mm of mercury (Hg)

= 0.2 of Hg
We know manometer reading in term of water : h

h =
mano

pipe

1x
 ρ

− 
ρ  
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where ρmano = density of liquid used in manometer
= ρHg = 13600 kg/m3

and ρpipe = density of liquid flow through pipe
= ρwater = 1000 kg/m3

∴ h = 0.2
13600 1
1000

 −  
 = 2.52 m of water

We know discharge through venturimeter :

Q =
2 2

2dC Aa gh

A a−

=
2 2

0.95 0.0314 0.0113 2 9.81 2.52

(0.0314) (0.0113)

× × × ×

−

=
32.445 10

0.02929

−×
 = 0.083475 m3/s

= 0.083475 × 1000 litre/s
( 1 m3 = 1000 litre)

= 83.47 litre/s
Note:Given problem 5.2 is also solved by simplified equation (5.6)
Given data:
Diameter at inlet : D = 200 mm = 0.2 m
Diameter at throat : d = 0.12 m
Differential manometer reading :

x = 200 mm of Hg = 0.2 m
Cd =  0.98

Discharge through venturimeter given by equation (5.9.6), we get

Q =
2 2

4 4

12.35 0.98 (0.12) (0.2) 0.2

(0.2) (0.12)

× × ×

−

=0.08354 m3/s = 83.54 litre/s

Problem 5.3: A horizontal venturimeter with inlet diameter 20 cm and throat
diameter 10 cm is used to measure the flow of oil of specific gravity 0.8. The
discharge of oil through Venturimeter is 60 litre/s. Find the reading of the oil-mercury
differential manometer. Take Cd = 0.98
(GGSIP University, Delhi, Dec. 2005)

Solution: Given data:
Inlet diameter of venturimeter :

D = 20 cm = 0.20 m
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Throat diameter : d = 10 cm = 0.10 m
Specific gravity of oil = 0.8
∴density of oil : ρ = 0.8 × 1000

= 800 kg/m3

Dscharge, Q = 60 litre /s  = 
60

1000  = 0.06 m3/s

Coefficient of discharge,Cd = 0.98

Cross-sectional area of venturimeter at inlet, A = 2

4
Dπ

 = 23.14 (0.20)
4

×

= 0.0314 m2

Cross-sectional area at throat,

a = 2

4
dπ

 = 23.14 (0.10)
4

×

= 0.00785 m2

We know,

Discharge, Q = 2 2

2dC aA gh
A a−

0.060 = 
( )22

0.98 0.00785 0.0314 2 9.81

(0.0314) 0.00725

h× × × × ×

−

or 2 9.81 h× × = 7.5516
2 × 9.8 × h = 57.026

∴ Diffrential head, h = 2.9065 m of oil

Also we know h = 
Hg

Oil

1x
ρ 

− ρ 
where x  = reading of the oil mercury differential manometer as shown in Fig.

5.7

Fig. 5.7: Venturimeter with oil-mercury differential manometer.

2.9065 = x
13600 1

800
 −  

= x[17 – 1]
(Density of the mercury,,

ρHg =13600 kg/m3
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or x =
2.9065

16  = 0.18165 m of Hg

= 18.165 cm of Hg.

Problem 5.4: A venturimeter is installed in a 300 mm diameter horizontal pipeline.
The throat diameter is 1/3 of pipe diameter. Water flows through the installation. The
pressure in the pipe line is 13.8 N/cm2 (gauge) and vacuum in the throat is 37.5 cm
of mercury. Determine the rate of flow of water in the pipe line. Take Cd = 0.98.

Solution: Given data :
Diameter of pipe, D = 300 mm = 0.3 m
∴Cross-sectional area of pipe,

A = 2

4
Dπ

 = 23.14 (0.3)
4

×  = 0.07065 m2

Diameter of throat, d =
1
3  of pipe diameter = 

1
3  × D

=
1
3  × 0.3 = 0.1 m

∴Cross-sectional area of throat, a = 2

4
dπ

= 23.14 (0.1)
4

×  = 0.00785 m2

Pressure in the pipe line, p1= 13.8 N/cm2 = 13.8 × 104 N/m2

∴Pressure head in the pipeline, h1 = 
1p
gρ  = 413.8 10

1000 9.81
×
×

 = 14.067 m

Vacuum pressure head in throat,

h2=
2

Hg

p
gρ  = – 37.5 cm of Hg

= – 0.375 m of Hg

h2 =
2

Hg

p
gρ × Hgρ

ρ  m of water

where ρHg = density of mercury = 13600 kg/m3

and ρ = density of water = 1000 kg/m3

h2 = –0.375 × 
13600
1000  m of water

= –5.1 m of water
(–ve sign shows that pressure in throat is vacuum.

∴ Difference of pressure head,

h =
1 2p p
g g

−
ρ ρ  = h1 – h2 = 14.067 – (–5.1)

= 14.067 + 5.1 = 19.167 m of water.
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∴ Rate of flow :Q = 2 2

2dC Aa gh

A a−

=
2 2

0.98 0.00785 0.07065 2 9.81 19.167

(0.07065) (0.00785)

× × × × ×

−

=  0.15011 m3/s = 150.11 litre/s
Problem 5.5: The inlet and throat diameters of a horizontal venturimeter are
200 mm and 100 mm respectively. The liquid flowing through the venturimeter is
water. The pressure at inlet is 120 kPa while the vacuum pressure head at the throat
is 150 mm of mercury. Find coefficient of discharge. Assume that 3.33% of the
differential head is lost between the inlet and throat. Find also the rate of flow.
Solution: Given data :
Diameter at inlet : D = 200 mm = 0.2 m
∴   Cross-sectional area at inlet :

 A = 2

4
Dπ

 = 23.14 (0.2)
4

×  = 0.0314 m2

Diameter at throat : d = 100 mm = 0.1 m
∴Cross-sectional area at throat :

a = 2

4
dπ

 = 23.14 (0.1)
4

×  = 0.00785 m2

Pressure at inlet : p1 = 120 kPa = 120 × 103 Pa or N/m2

∴

Pressure head at inlet : 1p
gρ

=
3120 10

1000 9.81
×
×

 = 12.23 m of water

Vacuum pressure head at throat : 
2p
gρ  = –150 mm of Hg

= – 0.15 m of Hg
= 0.015 × 13.6 m of water
= – 2.04 m of water

∴ Differential head : h = 1p
gρ

– 2p
gρ

 = 12.23 – (–2.04)

= 14.27 m of water
Head lost : hf = 3.33% of differential head

= 3.33 % × h = 0.0333 × 14.27
= 0.4752 m of water
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∴Coefficient of discharge : Cd = fh h
h

−
 = 

14.27 0.4752
14.27

−

= 0.983

Rate of flow : Q =  2 2

2dC Aa gh

A a−

= 2 2

0.983 0.0314 0.00785 2 9.81 14.27

(0.0314) (0.00785)

× × × ×

−

= 0.13335 m3/s = 133.35 litre/s
Note :Discharge can also calculated by simplified equation (5.9.5)

Q =
2 2

4 4

3.48 dC d D h
D d−

where d and D are in metre
h = differential of pressure head in metre of

liquid flow through venturimeter

∴ Q =
2 2

4 4

3.48 0.983 (0.1) (0.2) 14.27

(0.2) (0.1)

× × ×

−

= 0.13346 m3/s

= 133.46 litre/s

Problem 5.6: If an oil of specific gravity 0.8 is flowing through horizontal
venturimeter instead of water in above problem 5.16, remaining data is same.
Solution: Given data:

Specific gravity of oil : S = 0.8
∴ Density of oil : ρ = 0.8 × 1000 = 800 kg/m3

Pressure head at inlet : 
1p
gρ  =

3120 10
800 9.81

×
×

 = 15.29 m of oil

Vacuum pressure head at throat : 2p
gρ

= – 150 mm of Hg

= – 0.15 m of Hg

=
0.15 13.6

0.8
− ×

m of oil

= – 2.55 m of oil
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∴ Difference of pressure head : h= 1p
gρ

– 2p
gρ

 = 15.29 – (–2.55)

=  15.29 + 2.55 = 17.84 m of oil
Head lost : hf = 3.33% of differential head

= 0.0333 × h
= 0.0333 × 17.84 = 17.84 = 0.594 m of oil

∴ Coefficient of discharge : Cd = fh h
h

−

=
17.84 0.594

17.84
−

 = 0.9667  = 0.983

Rate of flow : Q = 2 2

2dC Aa gh

A a−

= 2 2

0.983 0.0314 0.00785 2 9.81 17.84

(0.0314) (0.00785)

× × × ×

−

= 0.14910 m3/s
= 149.10 litre/s

Problem 5.7: A venturimeter is used for measurement of discharge of water in a
horizontal pipeline. If the ratio inlet diameter to that of throat diameter is 2 : 1, inlet
diameter is 300 mm, the difference of pressure head between inlet and throat is 3 m
of water and loss of head between inlet and throat is one-eighth of the throat velocity
head. Calculate discharge in pipe.
Solution: Given data:

D
d  = 2

Diameter at inlet: D = 300 mm = 0.3 m

∴Cross-sectional area at inlet: A = 2

4
Dπ

 = 23.14 (0.3)
4

×  = 0.07065 m2

Diameter at throat: d =
2
D

=
300

2
 = 150 mm

= 0.15 m
∴Cross-sectional area at throat: a

= 2

4
dπ

 = 23.14 (0.15)
4

×  = 0.01766 m2

Difference of pressure head between inlet and throat:
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1p
gρ

– 
2p
gρ  = 3 m of water

Loss of head : hL =
1
8 ×throat velocity head

=
1
8 × 

2
2

2
V

g  = 
2

2

16
V

g

Now applying modified Bernoulli’s equation at inlet & throat, we get
2

1 1
12

p V z
g g

+ +
ρ  =

2
2 2

22
p V z
g g

+ +
ρ + hL

( z1 = z2 for horizontal pipeline)

1p
gρ

– 2p
gρ

+
2

1

2
V

g
 =

2 2
2 2

2 16
V V

g g
+

3 + 
2

2
1

2
a V
A g

  ×    =
2 2

2 2

2 16
V V

g g
+

(By continuity Eq.  AV1 = aV2, V1 = 2
a V
A

)

3 + 
2 2

20.01766
0.07065 2

V
g

 
 
 

 =
2 2

2 2

2 16
V V

g g
+

3 + 0.06248 
2

2

2
V

g  =
2 2

2 2

2 16
V V

g g
+

On multiplying 16g both sides, we get
16g × 3 + 8 × 0.06248 V2

2 = 4 V2
2 + V2

2

16 × 9.81 × 3 + 0.4998 V2
2 = 5 V2

2

470.88 + 0.4998 V2
2 = 5 V2

2

470.88 = 4.50 V2
2

or V2
2 = 104.65

V2
 = 10.23 m/s

∴ Discharge : Q = aV2
= 0.01766 × 10.23
= 0.18066 m3/s
= 180.66 litre/s

Problem 5.8:  The maximum flow through a 300 mm diameter horizontal pipe line
is 300 litre/s. A venturimeter is introduced at a point of the pipe where the pressure
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head is 5 m of water. Find the diameter of throat so that the pressure at the throat is
never negative. Take Cd = 1
Solution: Given data:

Diameter at inlet : D = 300 mm = 0.3 m
∴ Cross-sectional area at inlet :

A = 2

4
Dπ

 = 23.14 (0.3)
4

×  = 0.07065 m2

Discharge through pipe : Q = 300 litre/s = 0.3 m3/s

Pressure heat at inlet : 1p
gρ

= 5 m of water.

Pressure heat at throat : 
2p
gρ = 0

∴Difference of pressure head : h

= 1p
gρ

– 
2p
gρ  = 5 m of water

We know,

Discharge Q = 2 2

2dC Aa gh

A a−

0.3 = 2 2

1 0.07065 2 9.81 5

(0.07065) ( )

a
a

× × × ×

−

or 0.4287 = 2 2(0.07065) ( )

a
a−

or 0.4287× 2 2(0.07065) ( )a−  = a

Squaring both sides, we get
(0.4287)2 × [(0.07065)2 – a2] = a2

0.1837 [(0.07065)2 – a2] = a2

9.169 ×10–4 – 0.1837 a2 = a2

 9.169 ×10–4  = 0.8163 a2

or a2 = 11.2323 × 10–4 m2

a = 0.03351 m2

Also a = 2

4
dπ

×

∴ 0.03351 = 23.14
4

d×

or d 2 = 0.04268
d = 0.20661 m  = 206.61 mm



Fluid Mechanics302

Problem 5.9: A venturimeter is installed in a 300 mm diameter vertical pipe carrying
water, flowing in the upward direction. The throat diameter is 150 mm. A differential
mercury manometer connected to the inlet and throat gives a reading of 200 mm. Find
the rate of flow of water in litre/s. Take Cd = 0.98
Solution: Given data:
Diameter of vertical pipe : D = 300 mm = 0.3 m

∴Cross-sectional area of the pipe, A = 2

4
Dπ

 = 23.14 (0.3)
4

×

= 0.07065 m2

Diameter of throat, d = 150 mm = 0.150 m

∴Cross-sectional area of throat, a = 2

4
dπ

 = 23.14 (0.150)
4

×

= 0.01766 m2

Reading of differential mercury manometer,
x = 200 mm of Hg

= 0.20 m of Hg
Let h  = manometer reading in terms of water

∴ h = x
Hg

wager

1
 ρ

− 
ρ  

= 0.20 
13600 1
1000

 −  

= 2.52 m of water
The rate of flow of water,

Q = 2 2

2dC Aa gh

A a−

= 2 2

0.98 0.01766 0.07065 2 9.81 2.52

(0.07065) (0.01766)

× × × ×

−

= 0.125683 m3/s
= 125.683 litre/s
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Problem 5.10: A  20 × 10 cm venturimeter is provided in a vertical pipe line carrying
oil of specific gravity 0.8, the flow being upwards. The difference in elevation of the
throat and entrance section of the venturimeter is 50 cm. The differential U-tube
mercury manometer shows a deflection of 40 cm of mercury. Calculate (i) the
discharge of oil and (ii) the pressure difference (in N/cm2) between entrance and
throat sections. Assume Cd = 0.98 and specific gravity of mercury as 13.0
Solution: Given data:
Diameter at throat, at section (2)–(2), d = 10 cm = 0.1 m

∴Cross-sectional area at throat, a = 2

4
dπ

 = 23.14 (0.1)
4

×

= 7.85 × 10–3 m2

Diameter of pipe at section (1)–(1), D = 20 cm
= 0.2 m

∴Cross-sectional area at inlet of the venturimeter,

A  = 2

4
Dπ

 = 23.14 (0.2)
4

×

= 0.0314 m2

Fig. 12.8: Schematic for Problem 5.10

Specific gravity of oil flow though pipe, Soil = 0.8
The difference in elevation of the throat and entrance section of the venturimeter,

z2–z1 = 50 cm = 0.50 m
or z2–z1 = – 0.50 m
Manometer reading, x = 40 cm = 0.4 m of Hg
Specific gravity of mercury, SHg = 13
The manometer reading in term of oil,
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h =
Hg

Oil

1
S

x
S

 
− 

 

= 0.40 
13 1
0.8

 −  

= 6.1 m of oil
Coefficient of discharge, Cd =0.98

(i) We know, discharge: Q = 2 2

2dC Aa gh

A a−

=
–3

2 –3 2

0.98 0.0314 7.85 10 2 9.81 6.1

(0.0314) (7.85 10 )

× × × × ×

− ×

= 0.086920 m3/s
= 86.92 litre/s

(ii)The manometer reading in term of oil,

h = 1 2p p
g g

 
− ρ ρ 

+(z1–z2)

6.1 = 1 2p p
g g

 
− ρ ρ 

– 0.50

or 1 2p p
g g

 
− ρ ρ 

 = 6.1 + 0.5 = 6.6 m of oil

or p1–p2 = (6.6) ρg
where ρ = density of oil

= 0.8 × 1000 = 800 kg/m3

∴  The pressure difference between sections (1) – (1) and (2) – (2)
p1 – p2 = 6.6 × 800 × 9.81

= 51796.8 N/m2

= 5.179 N/cm2

Probme 5.11: The water is flowing through an inclined venturimeter in the
upward direction. The inlet and throat diameters of the venturimeter are 200 mm and
100 mm respectively. The pressure of inlet is 19.62 N/cm2  (gauge) and at throat is
3.924 N/cm2 (vacuum). The length between inlet and throat is 500 mm and venturimeter
is inclined at an angle of 60° with horizontal. Find the discharge through venturimeter.
Take Cd = 0.98

Solution: Given data :
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50
0 m

m

60º
z1

z2
Datum line

Fig. 5.9: Schematic for Problem 5.11

Diameter at inlet at section (1) – (1) : d1 = 200 mm = 0.2 m
Diameter at throat at section (2)–(2):d2 = 100 mm = 0.1 m
∴Cross-sectional area at section (1)–(1)

A1 = 
2

14
dπ

= ( )23.14 0.2
4

×

= 0.0314 m2

And cross-sectional area at section (2)–(2) :

A2 = 2
24

dπ
 = 23.14 (0.1)

4
×

= 0.00785 m2

Pressure at section (1)–(1):p1 = 19.62 N/cm2

= 19.62 × 104 N/m2

Pressure at throat i.e., at section (2)–(2) : p2 = –3.924 N/cm2

= 3.924 × 104 N/m2

Length between inlet and throat : L = 500 mm = 0.5 m
Difference in elevation between the throat and the inlet

= z2 – z1 = L sin θ
z2 – z1 = 0.5 × sin 60º

= 0.4330 m

h = 1
1

p z
g

 
+  ρ 

– 2
2

p z
g

 
+  ρ 

= 1 2p p
g g

 
−  ρ ρ 

– (z2–z1)
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=
4 419.62 10 3.924 10

1000 9.81 1000 9.81
 × − ×

−  × × 
–0.4330

= 20 + 4 – 0.4330
= 23.567 m

The discharge Q by the venturimeter equation is

Q =
1 2

2 2
1 2

2dC A A gh

A A−

= 2 2

9.81 0.0314 0.00785 2 9.81 23.567

(0.0314) – (0.00785)

× × × ×

=
–42.4156 10 21.503

0.030429
×

×

= 0.17084 m3/s
= 170.84 litre/s

Problem.5.12: Find the discharge of water flowing a pipe 200 mm diameter placed
in an inclined position where a venturimeter is inserted, having throat diameter of 100
mm. The difference of pressure between the main and throat is measured by a liquid
of specific gravity 0.75 in an inverted U-tube which gives a reading of 300 mm. The
loss of head between the main and throat is 0.3 times the kinetic head of the pipe.

Solution: Given data:
Diameter at inlet : D = 200 mm = 0.2 m

∴Cross-sectional area at inlet :

A = 2

4
Dπ

 = 23.14 (0.2)
4

×  = 0.0314 m2

Diameter at throat : d = 100 mm = 0.1 m

Fig. 5..10 Inclined Venturimeter with inverted U-tube differential manometer
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∴ Cross-sectional area at throat : a = 2

4
dπ

 = 23.14 (0.1)
4

×  = 0.00785 m2

Specific gravity of liquid used in manometer : S = 0.75
∴ Density of manometer liquid : ρ = S × 1000 = 0.75 × 1000

= 750 kg/m3

Manometer reading : x = 300 mm of manometer liquid
= 0.3 m of manometer liquid

Difference of pressure head : h = 
mano

pipe

1x
 ρ

− 
ρ  

for  pipe manoρ > ρ

where    ρmano = density of liquid used in manometer
ρpipe = density of liquid flow through pipe.

∴ h = 0.3
7501

1000
 −  

= 0.3 × 0.25 = 0.075 m of water

also h = 1 2
1 2

p pz z
g g

   
+ − +   ρ ρ   

Loss of head : hL = 0.3 × kinetic head of the pipe

= 0.3 × 
2

1

2
V

g

Now applying the modified Bernoulli’s equation for real fluid at sections (1) and
(2), we get

2
1 1

12
p V z
g g

+ +
ρ  =

2
2 2

22
p V z
g g

+ +
ρ + hL

or  1 2
1 2

p pz z
g g

   
+ − +   ρ ρ   

+
2

1

2
V

g
 =

2
2

2
V

g
 + 0.3

2
1

2
V

g

0.075 + 
2

1

2
V

g
– 0.3

2
1

2
V

g
–

2
2

2
V

g
 = 0

0.075 + 0.7 
2

1

2
V

g
–

2
2

2
V

g
 = 0 …(i)

Applying the continuity equation at sections (1) and (2), we get
A1V1 = aV2
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0.0314 V1 = 0.00785 V2
or 4V1 = V2
or V2 = 4V1
Putting the value of V2 in equation (i), we get

0.075 + 0.7
2

1

2
V

g
–

2
1(4 )

2
V
g

 = 0

0.075 + 0.7
2

1

2
V

g
–

2
116

2
V
g

 = 0

0.075 – 15.3
2

1

2
V

g
 = 0

or 0.075 = 15.3
2

1

2
V

g

or
0.075 2 9.81

15.3
× ×

 = V1
2

or V1
2 = 0.096176

V1 = 0.310 m/s
∴ Discharge : Q = AV1

= 0.314 × 0.310 = 0.09737 m3/s
= 97.37 litre/s

5.3 ORIFICE METER OR ORIFICE PLATE
Function: It is used for measuring the discharge (i.e., rate of fluid flow) through

a pipe.
Principle: Same as that of venturimeter. The orifice is a circular thin metal plate

with a small hole on its centre. The plate in held in the pipeline between two flanges
called orifice flanges. The plane of orifice plate is perpendicular to the axis of the pipe
and hole is concentric with the pipe. The area of flow decreases and then increases
in direction of flow. The minimum called cross section of flow between the two is
vena–contracta as shown in Fig. 12.11.

Design aspects of a orifice meter:
Let D = diameter of pipe.

d = diameter of orifice

d
D

 = 0.4 to 0.8
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Flange

D
Vena Contracta

d

0.5DD

Fig. 5.11: Orifice meter.

HYDRAULIC COEFFICIENTS OF ORIFICE METER
(1)Coefficient of Velocity (Cv):
It is defined as the ratio of actual velocity (V) of the jet at vena contracta to the

theoretical (or ideal) velocity (Vth) at vena contracta.
Mathematically,

Coefficient of velocity :Cv = 
th

Actual velocity of jet at vena contracta : 
Theoretical velocity of jet at vena contracta : 

V
V

Cv =
th

V
V  =

2
V

gh

The value of Cv lies between 0.95 to 0.99
2.Coefficient of Contraction (Cc)
It is defined as the ratio of the cross-sectional area of the jet at vena-contracta

to the cross-sectional area of the orifice.
Mathematically,

Coefficient of contraction :Cc = Cross-sectional area of jet at vena contract : 
Cross-sectional area of the orfice : 

ca
a

Cc = ca
a

The value of Cc lies between 0.61 to 0.69. Average value of Cc taken as 0.64
3.Coefficient of discharge (Cd)
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The ratio of actual discharge (Q) through an orifice to the theoretical discharge
(Qth) is called coefficient of discharge.

Mathematically,

Coefficient of discharge : Cd = 
th

Q
Q

Cd =
Actual area × actual velocity

Theoretical area × theoretical velocity

=
c

h

a V
a Vt

×

Cd = Cc.Cv

The coefficient of discharge (Cd) is also defined as the product of coefficient
of contraction (Cc) and coefficient of velocity (Cv).

The value of Cd lies between 0.62 to 0.65.
Derivation of discharge for orifice meter:
Consider an orifice meter fitted in a horizontal pipe through which a fluid is

flowing, as shown in Fig. 5.12

D

dc

d 21
Vena Contracta

x
mano

pipe
1h x

 ρ
= − 

ρ  
for > ρ ρmano pipe

Fig. 5.12: Orifice meter with differential U-tube manometer.

Let D = diameter of pipe (or at section (1),
d = diameter of orifice

dc = diameter of vena-contracta.

A = 2

4
Dπ

, cross-sectional area of the pipe

(or at sectional (1),
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a = 2

4
dπ

, cross-sectional area of the orifice.

ac = 2

4 cdπ
, cross-sectional area of vena-contracta.

p1, v1, z1 are pressure, velocity and datum head at section (1) respectively and
p2, v2, z2 are corresponding values at section (2)

Applying the Bernoulli’s equation at sections (1) and (2), neglecting head losses,
we get

2
1 1

12
p V z
g g

+ +
ρ

 =
2

2 2
22

p V z
g g

+ +
ρ

2
1 1

2
p V
g g

+
ρ

 =
2

2 2

2
p V
g g

+
ρ

(z1 = z2   orificemeter is horizontal)

1 2p p
g g

−
ρ ρ

 =
2 2

1 2–
2 2
V V

g g

h =
2 2

1 2–
2 2
V V

g g …(5.7)

According to continuity equation, at sections (1) and (2), we get
AV1 = acV2

or V1 = 2ca V
A

...(5.8)

and Cc = ca
a  = 1 for ideal flow

or ac = a

Putting  ac = a  in equation (12.8), we get

V1 = 2
a V
A

Substituting V1 = 2
a V
A

  in equation (5.7), we get

h = 
2

2

2
V

g – 
2 2

2
2 2

a V
A g
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or h = 
2

2

2
V

g

2

21 a
A

 
− 

 

or 2gh = V2
2

2 2

2

A a
A

 −
 
 

V2
2 = 

2

2 2

A
A a

 
 − 

× 2gh

or V2 = 
2 2

2A gh

A a−

Theoretical (or ideal) velocity at section (2).

i.e., (V2)th = 
2 2

2A gh

A a−

and coefficient of contraction: Cc = ca
a

for real fluid
or ac = Cca
Putting the value of ac = Cca  in equation (5.8), we get

V1 = 2cC aV
A

Substituting V1 = 2cC aV
A

 in equation (5.7), we get

h = 
2

2

2
V

g – 
2 2 2

2
2

cC a V
A

=  
2

2

2
V

g

2 2

21 cC a
A

 
− 

 

2gh = V2
2

2 2

21 cC a
A

 
− 

 

=  V2
2

2 2 2

2
cA C a

A
 −
 
 

or V2
2 = 

2

2 2 2

2

c

A gh
A C a

 ×
 − 
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V2 = 2 2 2

2

c

A gh

A C a−

Actual velocity at section (2)

i.e., (V2)act = 2 2 2

2

c

A gh

A C a− ...(5.9)

Coefficient of velocity: Cv = 
2 act

2 th

( )
( )
V
V

= 
2 2 2

2

c

A gh

A C a−
×

2 2

2
A a

A gh
−

= 
2 2

2 2 2
c

A a
A C a

−

−

As we know coefficient of discharge : Cd = CcCv

Cd = Cc

2 2

2 2 2
c

A a
A C a

−

−

or Cc = 
2 2 2

2 2

d cC A C a

A a

−

−
...(5.10)

We know discharge : Q = acV2

For real fluid ac = Cc.a
Q = CcaV2 ...(5.11)

Substituting the value of Cc from equation (5.10) and  V2 from equation (5.11)
in equation (5.12), we get

Q = 
2 2 2

2 2

d cC A C a

A a

−

−
× a ×

2 2 2

2

c

A gh

A C a−

Q = 
2 2

2dC aA gh

A a−

where Cd = coefficient of discharge

= 0.62 to 0.65

a = cross-sectional area of the orifice

A = cross-sectional area of the pipe.
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the formula of discharge for orifice meter and venturimeter is same.

i.e., Q =
2 2

2dC aA gh

A a−
... (5.12)

On simplifying equation (5.10.6) like equation (5.11)

Q =
2 2

4 4

3.48 dC d D h
D d−

    (general equation)

where h = pressure difference in metre liquid
flow through pipe

D & d = diameters in metre
Another simplified equation, like equation

Q =
2 2

4 4

12.35 dC d D x
D d−

(specific equation)

where x = manometer reading in metrr of mercury
D, d = diameters of pipe & orifice

respectively
The above specific equation is used only when water flows through pipe &

mercury contains in manometer.

Problem 5.13: An orifice metre consisting of 100 mm diameter orifice in a 250 mm
diameter pipe has Cd = 0.65. The pipe delivers oil of specific gravity of 0.8. The
pressure difference on the two sides of the orifice plate is measured by a mercury oil
differential manometer. If the differential gauge reading is 800 mm of mercury, find
the rate of flow in litre/s.
Solution. Given data:

Diameter of pipe : D = 250 mm = 0.25 m

∴ Cross-sectional area of pipe : A = 2

4
Dπ

 = 23.14 (0.25)
4

×

= 0.04906 m2

Diameter of orifice : d = 100 mm = 0.1 m
∴Cross-sectional area of orifice :

a = 2

4
dπ

 = 23.14 (0.1)
4

×

= 7.85 × 103 m2

Coefficient of discharge : Cd  = 0.65
Specific gravity of oil :
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S = 0.8
∴Density of oil : ρ = S × 1000

= 8 × 1000 = 800 kg/m3

Differential manometer reading : x = 800 mm of Hg
= 0.8 m of Hg

Pressure difference : h = x
mano

pipe

1
 ρ

− 
ρ  

= 0.8
13600 1

800
 −  

 = 0.8 × [17.1]

= 0.8 × 16 = 12.8 m of oil

Rate of flow : Q = 2 2

2dC Aa gh

A a−

=
–3

2 –3 2

0.65 0.0490 7.85 10 2 9.81 12.8

(0.04906) (7.85 10 )

× × × × ×

− ×

= 0.08191 m3/s
= 0.08191 × 1000 litre/s
= 81.916 litre/s

5.4 PITOT TUBE
Function: It is used for measuring the velocity of liquid flow at any point in a

pipe or a channel.
Principle: If the velocity of flow at a point becomes zero, the pressure is

increased there due to the conversion of the kinetic energy into pressure energy. The
point at which the velocity of flow becomes zero is called stagnant point or state. The
pressure at stagnant state is called total pressure (or head) or stagnation  pressure (or
head).

Shape: Pitot tube consists of L-shaped glass tube, a tube bent at 90° and with
ends unsealed, the horizontal part is called ‘body’, placed in parallel and opposite to
the direction of flow and the other part is called ‘stem’, vertical and open to
atmosphere as shown in Fig. 5.13.

Fig. 5.13: Pitot Tube

Consider two points (1) and (2) at the same level in such a way that point (2)
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is just at the inlet of the Pitot tube and point (1) is for away from the tube at same
level of point (2)

Let, p1, v1 = pressure, velocity at point (1)
p2, v2 = pressure, velocity at point (2)

H = depth of tube in the liquid or depth of points
(1) and (2) from the free surface of liquid.

Fig. 5.14: Pitot tube used in liquid flow through channel.

h = rise of liquid in the tube above the free surface of liquid.
Applying Bernoulli’s equation at point (1) and (2) we get,

2
1 1

12
p V z
g g

+ +
ρ  =

2
2 2

22
p V z
g g

+ +
ρ …(5.13)

Datum head, z1 = z2
Velocity at point (2), V2 = 0

1p
gρ

 = H,   
2p
gρ  = H + h

Equation (5.13) becomes

H + 
2

1

2
V

g  = H + h

2
1

2
V

g  = h

V1 = 2gh

This is theoretical velocity at point (1).
Actual velocity at point (1),

V1act = Cv × theoretical velocity at point (1)

= Cv 2gh
where Cv = coefficient of Pitot tube

= 0.96 to 0.99
∴ The velocity of fluid flow at any point in the channel is measured by Pitot tube by

equation V = Cv 2gh
Pitot tube is also used for measuring the state head, dynamic head and stagnation

head (or total head) of the liquid flow at any point in a pipe or a channel.
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Stagnation or total head:
It is sum of static head and dynamic head.

Direction 
of flow

1 2

Stagnant point:

2
1

2
V

g
2p
gρ

p , V1 1 p , V = 02 2 

1p
gρ

Fig. 5.15: Pitot tube used in liquid flow through channel.

Total head :
2p
gρ  = 1p

gρ
+ 

2
1

2
V

g

or total pressure at point 2,  p2= p1 + 
2

1

2
Vρ

OR
Total pressure at point 1 = static pressure + dynamic pressure

= p1 + 
2

1

2
Vρ

Static Pressure: It is defined as the pressure of liquid measured when the liquid
is static.

When the liquid flows through pipe or in channel, the total pressure at any point
in the flow is the sum of static pressure and dynamic pressure. It means the flow of
liquid possess both the static pressure and dynamic pressure (pressure due velocity
of the liquid).

h2

Direction 
of flow

Piezometer

h1

Pilot tube

Total head =  + h h1 2

2
1

Fig. 5.16: Liquid flow is channel

Static pressue head = h1
Dynamic pressure head = h2

Total pressure head = h1 + h2



Fluid Mechanics318

A simple piezometer tube is used at point 1 in such a way that there is no
component of velocity along the axis of the piezometer tube at which liquid enters to
it.

Fig. 5.17: Liquid at rest.

Static pressue head = h1
Dynamic pressure head = 0

Total pressure head = static presure head = h1
So the level of the liquid raise in tube is called static pressure head. Say h1. the

liquid raise in piezometer tube upto free surface of the liquid. On the other hand, a Pitot
tube is used at another point 1 at same level from the free surface of liquid, the
direction of the velocity is parallel to the axis of horizontal point of the Pitot tube. The
liquid raise in Pitot tube partly due to static pressure and partly due to dynamic
pressure (i.e., pressure due to velocity of the liquid)

i.e., Total pressure head = static pressure + dynamic pressure = h1 + h2
If the flow of liquid stop in the channel, the level of the liquid in Pitot tube falls

and became equal to the level of the liquid in piezometer (or level of free surface of
liquid) as shown in Fig. 5.17. It shows that the dynamic pressure (i.e., pressure due
to velocity) becomes zero. The level of the liquid in the Pitot tube shows the static
pressure head. So the pitot acts as piezometer tube if liquid is at rest.

Note: Total pressure is also known as stagnation pressure.
Pitot tube with Piezometer raised in flow through pipe:

Velocity act point 1, V1 = Cv 2gh

where Cv = coefficient of pitot tube.
Its value lies 0.96 to 0.99

Fig. 5.18: Pitot tube with piezometer used in flow through pipe
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Pitot tube with differential manometer :

Velocity at point 1, V1 = Cv 2gh

where  h =
Hg

pipe

1x
 ρ

− 
ρ  

x= differential manometer reading in mm of mercury
ρHg = density of the mercury.

OR
density of the liquid used in manometer

ρpipe = density of liquid flow through pipe

Fig. 5.19: Pilot tube with differential manometer

Pitot Static Tube : It consists of two circular concentric tubes one inside the
other with some angular spare in between as shown in Fig. 5.20. The holes are added
to the sides of the tube and simple Pitot tube and connected to differential manometer

Fig. 5.20: Pitot-Static tube used in flow through pipe.

Holes added to the sides of the pilot tube to sence static pressure because there is no component
of velocity along the axis of the holes. And hole ‘A’ to sense stagnaton or total pressure.
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Fig. 5.21: Pitot Static tube used in flow in Channel.

Holes added to the sides of the Pitot tube to sense static pressure because there is no component
of velocity along the axis of the holes. And hole A to sense stagnation or total pressure

Pressure measurement at B gives the static pressure and the difference between
pA and pB determines the dynamic pressure. The dynamic pressure head (x) is
measured by differential manometer reading.

Then, h = 
Hg 1x

ρ 
− ρ 

where h in metre of liquid flow in channel or through pipe.
ρHg = density of the liquid used in manometer

(normally mercury is used)
ρ =density of the liquid flow through pipe or in channel.

5.5 CURRENT METER
The current meter is a mechanical device used to measure the velocity of water in

rivers and in open channels. Current meter consists of hollow hemisphere or cups mounted
on spokes so as to cause rotation about a shaft perpendicular to the direction of flow.

Fig. 5.22: Current Meter.
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The entire setup shown in Fig. 5.22, is lowered into water from a bridge or a
boat. The drag on a hollow hemisphere or cups is greater when its open side faces
the liquid stream and so there is a net torque on assembly when flow comes from any
direction in the plane of rotation. This rotation is converted into an electrical signal by
means of a circuit into an electrical signal by means of a circuit into which a set of
earphones are plugged in. A fixed number of revolutious of wheel on which cups are
mounted, produce a beat that can be heard clearly through the ear phones. The number
of beats in a given period of time is a function of fluid velocity.

5.6 ROTAMETER

It is a device used for measuring discharge in pipelines. A rotameter consists of
a tapered metering glass tube inside which a rotor or active element (float) is located.
The tube is provided with suitable inlet and outlet connections. The float has a specific
gravity higher than that of the fluid flowing through the tube. A very small slot cut in
the centre of rotor causes it to move up and down about the guide wide and also keep
it centered.

With the increase in the flow rate, the float rises in the tube and there occurs an
increase in angular area between the float and the tube the float adjust its position in
relation to the discharge through the passage i.e., float rides higher or lower depending
on the flow rate.

A rotameter has the advantage of simplicity, relatively low cost and ability to
handle variety of corrosive fluids.

Fig. 5.23: Rotameter

The meter however is to be mounted vertically is limited to small pipe sizes and
capacities and is less accurate compared to venture and orifice meter.
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5.7 BEND METER

A bend meter is also called elbow meter, makes use of fact that when a liquid
flow through a curved pipe (elbow), centrifugal forces cause a pressure difference
between the outer and inner sides of the curved pipe. This defference in pressure is
utilized to measure discharge. The pressure diference generated by an elbow flowmeter
is smaller than that by other pressure differential flow meters.

Pipe bend

Q
2

1

p p1 2> 

z2

Q

z1

Datum line

Manometer

Hose

1mano

pipe
h x

 ρ
= −  ρ 

x

p1

p2

Fig. 5.24: Bend meter

In bend meter, the pipe is given two pressure tappings, one at the inner and other
at the outer wall of the pipe at bend. These tappings are comected with a U-tube
differential menometer as shown in Fig. 5.24. The velocity of flow in pipe is given by
following relation.

2

2
KV h

g
= (5.14)

where h is piezometric head difference and is given by

2 1
2 1

2 1
2 1( )

p ph z z
g g

p p z z
g g

   
= + − +    ρ ρ  
 

= − + − ρ ρ 

p2 > p1
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= pressure head difference + datum head difference.
Here p2 is pressure at outer wall of the pipe bend
p1 is pressure at inner wall of the pipe bend
In Eq. (5.14) K is a constant and it depends upon the size and shape of the pipe.

Its value ranges between 1.3 to 3.2.
The relationship expressing discharge through bend may be written as:

2 1
2 12 ( )

2

2
d

d

A p pQ g z z
g gK

Q AC g h

Q AC gh

 
= − + − ρ ρ 

=

=

Here 1
dC

K
= , is a dimensionless discharge coefficient.

A is cross-sectional area of pipe.
In general, Cd can vary from 0.55 to 1.2 and empirically it is given by :

2d
RC
d

=

where R = radius of pipe
d = diameter of pipe bend.

In bend meter, as bend itself is a part of piping system, therefore no additional
fitting is required for this meter. Also if calibrated properly in place, accurate results
can be obtained from bend meter.
Problem 5.14: A Pitot tube was inserted in a river to measure the velocity of water
in it. If the water rises in the tube above free surface of water is 300 mm. Find the
velocity of water. Take Cv = 0.98
Solution: Given data :
Rise of water above free surface : h = 300 mm = 0.3 m

Cv = 0.98
We know,

V = Cv 2gh

= 0.98 × 2 9.81 0.3× ×
= 2.37 m/s
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Problem 5.15: A Pitot static tube is used to measures the velocity of water in the
centre of pipe. The static and total pressures are 6 m and 7.5 m respectively. Find the
velocity of flow. Take coefficient of Pitot tube as 0.98.
Solution: Given data:

Static pressure head : hst = 6 m
Total pressure head : hT = 7.5 m

Also total pressure head : hT = hst + dynamic pressure head
hT = hst + h

7.5 = 6 – h
or h = 1.5 m of water

∴ Velocity of flow : V = Cv 2gh

= 0.98× 2 9.81 1.5× ×  = 5.31 m/s
Problem 5.16: Find the velocity of the flow of an oil through a pipe, when the
difference of mercury level in a differential U-tube manometer connected to the two
tapping-tube is 200 mm. Take Cv = 0.98 and specific gravity of oil is 0.85.
Solution: Given data:
Difference of mercury level : x = 200 mm of Hg = 0.2 m of Hg

Cv = 0.98
Specific gravity of oil : S = 0.85
∴ Density of oil : ρ = S × 1000

= 0.85 × 1000 kg/m3

= 850 kg/m3

We know,

Difference of pressure head :h =
Hg 1x

ρ 
− ρ 

= 0.2 
13600 1

850
 −  

= 3 m of oil

∴ Velocity of oil : V = Cv 2gh

= 0.98× 2 9.81 3× ×   = 7.51 m/s

Problem 5.17: A Pitot static tube placed in the centre of a 250 mm pipe line has one
orifice pointing upstream and other perpendicular to it. The mean velocity in the pipe
75% of the central velocity. Find  the discharge through the pipe if the pressure
difference between the two orifices is 80 mm of water.  Take Cv = 0.99.
Solution: Given data:
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Density of pipe : D = 250 mm = 0.25 m

Mean velocity : V  = 75% central velocity
= 0.75 × V

Difference of pressure head :
h = 800 mm of water

= 0.08 m of water

Central Velocity : V = Cv 2gh

= 0.99× 2 9.81 0.08× ×
= 1.24 m/s

∴ Average velocity : V  = 0.75 × 1.25
= 0.9375 m/s

According to continuity equation :

Discharge : Q = cross-sectional area of pipe × V

= AV  = 2

4
Dπ

× 0.9375

= 23.14 (0.25) 0.9375
4

× ×

= 0.04599 m3/s = 45.99 litre/s

Problem 5.18: A Pitot tube is used in river to determine the following terms at point
1;

1.5 m

1 m Water

21

Fig. 5.25: Schematic for Problem 5.18

(i) Velocity,
(ii) Static pressure,

(iii) Dynamic pressure, and
(iv) Total (or Stagnation) pressure.

Suitable data are mentioned in Fig. 5.25. Take coefficient of Pitot tube is 0.98.
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Solution: Given data:
Static head : hst = 1 m

Dynamic head : h = 1.5 m
Total head : hT = hst + h

= 1 + 1.5 = 2.5 m of water

(i) Velocity at point 1 : V = Cv 2gh

= 0.98× 2 9.81 1.5× ×
= 5.31 m/s

    (ii) Static pressure : pst

Static pressure head : hst =
stp
gρ

or pst = ρghst =  1000 × 9.81 ×1
= 9810 N/m2

= 9.81 kN/m2

   (iii) Dynamic pressure : p

Dynamic pressure : h =
p
gρ

or p = ρgh = 1000 × 9.81 × 1.5
= 14715 N/m2

= 14.715 kN/m2

    (iv)   Total pressure : pT

Total pressure head : hT = Tp
gρ

or pT = ρghT = 1000 × 9.81 × 2.5
= 24525 N/m2

= 24.52 kN/m2

OR
pT = pst + p

= 9.81 + 14.71
= 24.52 kN/m2
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Contd...

      SUMMARY

1. Venturimeter: It is used for measuring the discharge through a pipe.

Discharge: Q = 2 2

2dC aA gh

A a−

where Cd = coefficient of discharge
A = cross-sectional area at inlet of venturimeter.
a = cross-section area at throat of venturimeter.
h = difference of pressure head in terms of liquid

flowing, through the pipe.

h =
mano

pipe

1x
 ρ

− 
ρ  

for mano pipeρ > ρ

where x = differential manometer reading
ρmano = density of liquid used in manometer
ρpipe = density of liquid flowing through pipe.

h = x
mano

pipe

1
 ρ

− 
ρ  

for pipe manoρ > ρ

Also h = 1p
gρ

– 2p
gρ

for horizontal venturimeter

h = ( 1p
gρ

+z1) – ( 2p
gρ

+z2)

for vertical and inclined venturimeter
2. Discharge through venturimeter

Q =
2 2

4 4

3.48 dC d D h

D d−
where D = diameter at inlet.

d = diameter at throat.
h = difference of pressure head at inlet and throat in terms

of liquid flowing through pipe.
All  D, d and h are in m.

3. The specific equation for venturimeter is used when water flow through pipe
and mercury is used in manometer :

Q =
2 2

4 4

12.35 dC d D x
D d−

where x = differential manometer reading in m of Hg
All  D, d and h are in m.
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4. Orifice Meter: It is used for measuring the discharge through a pipe

Discharge:  Q = 2 2

2dC Aa gh

A a−

where a = cross-sectional area of the orifice.
A = cross-sectional area of the pipe.

5. Pitot tube: It is used for measuring the velocity of liquid at any point in a pipe
or a channel.

Velocity: V = Cv 2gh

where Cv = coefficient of pitot-tube.
h = rise of liquid in the tube above the free

surface of liquid\
6. Current Meter: It is a mechanical device used to measure the velocity of water

in rivers and in open channels.
7. Rotameter: It is a device used for measuring discharge in pipelines.
8. Bend Meter: It is also called elbow meter, makes use of fact that when a liquid

flow through a curved pipe (elbow), centrifugal cause a pressure difference
between the outer and inner sides of the curved pipes. This pressure difference
is utilized to measure discharge .

ASSIGNMENT - 1

1. Define a venturimeter. Prove that the discharge through a venturimeter is given
by the relation.

Q = 2 2

2dC Aa gh

A a−

where A = cross-sectional area of pipe.
a = cross-sectional area of throat.

  2. Prove that the discharge through a venturimeter is given by the relation :

Q =
2 2

4 4

3.48 dC d D x
D d−

where D = diameter at inlet,
d = diameter at throat
h = pressure head difference between, inlet and

throat
3. Prove that the discharge through a venturimeter is given by relation, when water

flows through pipe and mercury contained in manometer :
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Q =
2 2

4 4

12.35 dC d D x

D d−
where x = manometer reading in m of Hg

D, d = diameters at inlet & throat respectively in m.
4. What is a venturimeter ? Derive an expression for the rate of discharge through

the venturimeter.
5. Define an orifice meter. Prove that the discharge through an orifice meter is

given by the relation

Q = 2 2

2dC Aa gh

A a−
where A = cross-sectional area of pipe in which orifice-meter

is filled.
a = area of orifice.

6 What is an orifice plate ? How will the discharge through a pipeline be measured
with the help of an orifice plate ? Compare and contrast the use of orificemeter
and Venturimeter. (GGSIP University, Delhi Dec.2008)

7. Describe with a neat sketch, the principle and working of a pitot-tube.
(GGSIP University, Delhi Dec. 2002, Dec.2007)

8. What is pitot ? how is it used to measue the velocity of flow at any point in a
pipe or channel. (GGSIP University, Delhi 2005)

9. What is the difference between pitot tube and pitot static tube ?
10. What is a current meter and how does it work?
11. What is a rotameter?
12. What is a bend meter?

ASSIGNMENT - 2

1. A horizontal venturimeter with inlet and throat diameter 300 mm and 150 mm
respectively is used to measure the flow of water. The reading of differential
manometer connected to the inlet and the throat is 20 cm of mercury. Find the
rate of flow. Take Cd = 0.98 [Ans. 125.75 litre/s]

2. An oil of specific gravity 0.8 is flowing through a venturimeter having inlet
diameter 200 mm and throat diameter 100 mm. The oil mercury differential
manometer shows a reading of 250 mm. Find the discharge of oil through the
horizontal venturimeter. Take Cd = 0.98 [Ans. 70.44 litre/s]

3. A horizontal venturimeter with inlet diameter 300 mm and throat diameter 150
mm is used to measure the flow of oil of specific gravity 0.8. The discharge
of oil through venturimeter is 100 litre/s. Find the reading of the oil mercury
differential manometer. Take Cd = 0.98 [Ans. 10.48 cm of Hg]

4. A horizontal venturimeter with inlet diameter 300 mm and throat diameter 150



Pipe Flow Measurement 331

mm is used to measure the flow of water. The pressure at the throat is 250 mm
of mercury. Find the discharge of water through venturimeter. Take Cd = 0.987

[Ans. 363.39 litre/s]

5. The inlet and throat diameters of a horizontal Venturimeter are 300 mm and 100
mm respectively. The liquid flowing through the Venturimeter is water. The
vacuum pressure head at the throat is 370 mm of mercury. Find coefficient of
discharge. Assume that 4% of the differential head is lost between the inlet and
throat. Find also the rate of flow. [Ans. Cd = 0.989, Q = 149.39 litre/s]

6. A 300 mm × 150 mm venturimeter is inserted in a vertical pipe carrying water,
flowing in upward direction. A differential mercury manometer connected to the
inlet and throat gives a reading of 300 mm. Find the discharge. Take coefficient
of discharge as 0.98. [Ans. 154.04 litre/s]

Hint: Simplified equation is used in this problem:

Q =
2 2

4 4

12.35 dC d D x

D d−

where  x = 0.3 m of Hg
D = 0.3 m
d = 0.15 m

7. 200 mm × 100 mm venturimeter is mounted in a vertical pipe carrying water.
the flow being upwards. The throat section is 200 mm above the entrance
section of the venturimeter. For a certain flow through the meter, the differential
gauge between the throat and entrance indicates a gauge of deflection of 250
mm of mercury. Assuming the venturi coefficient as 0.98, find the discharge.

[Ans. 62.49 litre/s]

8. Find the throat diameter of a venturimeter, when fitted to a horizontal main 100
mm diameter having a discharge of 20 litre/s. The differential U-tube mercury
manometer shows a deflection giving a reading of 0.6 m. Take coefficient of
discharge as 0.95.
In case, this venturimeter is introduced in a vertical pipe with the water flowing
upwards, find the difference in the readings of mercury gauge. The dimensions
of pipe and venturimeter remain unaltered as well as the discharge through the
pipe.

[Ans. d = 46 mm, the manometer reading will be same, when
Venturimeter is introduced in vertical pipe.]

9. A 300 mm × 150 mm venturimeter is provided in a vertical pipeline carrying oil
of specific gravity 0.9, the flow being upwards. The difference in elevations of
the throat section and entrance section of the venturimeter is 300 mm. The
differential U-tube mercury manometer shows a gauge deflection of 250 mm.
Calculate:
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(i) discharge of the oil, and
(ii) pressure difference between the entrance and throat section.

Take the coefficient of discharge as 0.98 and the specific gravity of the mercury
as 13.6. [Ans. 149 litre/s, 3.695 m of oil]

10. An orifice meter consisting of 150 mm of diameter orifice in a 300 mm diameter
of pipe has coefficient of discharge to 0.64. The pressure difference on the two
sides of the orifice plate is measured by a mercury water differential manometer.
If the differential gauge reading is 100 mm of mercury, find the rate of flow in
litre.[Ans. 58.08 litre/s]

11. A pitot tube was inserted in a pipe to measure the velocity of water in it. If the
water rises in the tube is 400 mm, find the velocity of water. Take Cv = 0.98

[Ans. 2.74 m/s]
12. Find the velocity of the flow of an oil through a pipe, when the difference of

mercury level in differential U-tube manometer connected to the two tapping-
tube is 150 mm. Take Cv = 0.98 and specific gravity of oil is 0.8.

[Ans. 6.72 m/s]
13. A pitot static tube is used to measure the velocity of water in the centre of pipe.

The static and total pressures are 6.5 m and 8.5 respectively. Find the velocity
of flow. Take Cv = 0.98. [Ans. 6.13 m/s]

14. A pitot-static tube placed in the centre of a 400 mm pipe line has one orifice
pointing upstream and other perpendicular to it. The mean velocity in the pipe is
0.80 of the central velocity. Find the discharge through the pipe if the pressure
difference between the two orifices is 60 mm of water. Take Cv = 0.97

[Ans. 105.74 litre/s]





Orifices and Mouthpieces

6.1 INTRODUCTION
An orifice may be defined as a small opening with a closed perimeter located in the
side or bottom of the tank or vessel. The level of the liquid in the vessel must be above
the top edge of the orifice. A mouthpiece is a short length of a pipe which is two to
three times of diameter of the pipe; fitted in a tank or vessel which contains the liquid.
Both the orifices and mouthpieces are used for measuring the discharge of the liquid
in the tank or vessel.

The stream of liquid issuing from an orifice is called the jet of liquid or simply
‘jet’. The minimum cross-sectional area of the jet is called vena-contracta as shown
by section C-C in Fig. 6.1.

d h

C

C JetH

Cross-sectional area
of the orifice may be
circular, triangular or
rectangular

Fig. 6.1: Cross-sectional area of the orifice may be circular, triangular or rectangular.

6.2 TYPES OF ORIFICES
The orifices may be classified as:

1. According to size:
(i) Small orifice

(ii) Large orifice

6
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2. According to shape:
(i) Circular orifice

(ii) Rectangular orifice
(iii) Triangular orifice.

3. According to shape of the edge:
(i) Sharp-edged orifice

(ii) Bell-mouthed orifice
4. According to nature of discharge:

(i) Fully submerged orifice
(ii) Partially submerged orifice.

6.3 HYDRAULIC COEFFICIENTS
The following three types of coefficients used in an orifice, are called hydraulic
coefficients:

(i) Coefficient of contraction: Cc
(ii) Coefficient of velocity: Cv

(iii) Coefficient of discharge: Cd

6.3.1 Coefficient of Contraction: Cc
It is defined as the ratio of the cross-sectional area of the jet at vena-contracta to the
cross-sectional area of the orifice. The coefficient of contraction is denoted by Cc.

Mathematically,

Coefficient of contraction: Cc = 
Cross - sectional area at vena - contracta:

Cross - sectional area of the orifice :
ca

a

Cc = ca
a

The value of Cc varies from 0.61 to 0.69. The variation in value depends upon
size, shape of the orifice and the head of liquid under which the flow takes place. An
average value of 0.65 may be taken.

6.3.2 Coefficient of Velocity: Cv
It is defined as the ratio of actual velocity of jet at vena-contracta to the theoretical
velocity at vena-contracta. The coefficient of velocity is denoted by Cv.

Mathematically,

Coefficient of Velocity: Cv = 
Actual velocity of  jet at vena - contracta:

Theoretical velocity of  jet at vena - contracta : th

V
V

∴ Cv = 
th

V
V

Theoretical velocity of jet at vena-contracta:
Vth = 2 ,g H  is also called velocity of spout.

∴ Cv = 
2
V
g H
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or  Actual velocity: V = 2vC g H
The value of Cv varies from 0.95 to 0.99. The variation in value depends upon

size, shape of the orifice and the head of liquid under which the flow takes place. An
average value of 0.97 may be taken.

6.3.3 Coefficient of Discharge: Cd
It is defined as the ratio of actual discharge through an orifice to the theoretical
discharge through an orifice. It is denoted by Cd.

Mathematically,

Coefficient of discharge: Cd = 
Actual discharge through an orifice:

Theoretical discharge through an orifice : th

Q
Q

Cd = 
th

Q
Q

where Q = actual velocity  × actual area = V ac
and Q th = theoretical velocity × theoretical area = Vth a

∴ Cd = c c

th th

V a aV
V a V a

= ×

Cd = Cv × Cc
It is also defined as the product of coefficient of velocity and coefficient of contraction.

The value of Cd varies from 0.60 to 0.64. An average value of 0.62 may be taken.

6.4 EXPERIMENTAL DETERMINATION OF
HYDRAULIC COEFFICIENTS

Consider a tank containing water at a constant level. The constant level of water is
maintained by a continuous supply of water as shown in Fig. 6.2.

Water
supply

H

Tank

h
Measuring 
tank

x

y
C

C



Fig. 6.2: Experiment for hydraulic coefficient.

Let the water be allowed to flow through an orifice fitted in one side of the tank.
Let the section C-C represent the vena-contracta of a jet of water coming out

from orifice under constant head H. Consider a water particle which is at vena-
contracta at any time and takes the position at point P along the jet in time t.
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Let H = constant water head
x = horizontal distance travelled by the water particle

from section C-C to point P in time t.
y = vertical distance between the centre of

vena-contracta and point P.
V = actual velocity of jet at vena-contracta.

We know that

Vertical distance: y = 21
2

g t …(6.4.1)

and horizontal distance: x = V × t

or t = 
x
V

Substituting the value of t in Eq. (6.4.1), we get

y = 
2 2

2

1 1
2 2

x g xg
V V

  = 
 

or V2 = 
2

2
g x

y

or V = 
2

2
g x

y
and we know that the theoretical velocity of jet at vena-contracta:

V th = 2 g H

∴ Coefficient of velocity: Cv = 
Actual velocity :

Theoretical velocity : th

V
V

= 

2

22
2 22

g x
y g x

y gHg H
=

×

2

4 4
x x
y H y H

= =

Cv
=

4
x
y H

6.4.1 Coefficient of Discharge: Cd
The actual discharge through orifice is measured by the volume of water collected in
measuring tank per unit time.

Mathematically,
Actual discharge: Q = 

Volume of water in collecting tank
Time
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Cross - sectional area of  collecting tank × height of  water in measuring tank

Time
=

    Q = 
A h

t
×

and theoretical discharge:  Qth= area of orifice × theoretical velocity of the jet
= a × Vth = 2a g H

∴ Coefficient of discharge: Cd = 
th

Q
Q

6.4.2 Coefficient of Contraction: Cc

We know that the coefficient of discharge:
Cd = Cv × Cc

or Cc = d

v

C
C

Problem 6.1: A jet of water issues from an orifice of diameter 20 mm under a
head of 1.2 m. Find the coefficient of discharge for the orifice, if actual discharge is
0.94 litre/s.
Solution: Given data:

Diameter of orifice: d = 20 mm = 0.02 m
∴ Cross-sectional area of orifice:

a = 2 2 4 23.14 (0.02) 3.14 10 m
4 4

d −π
= × = ×

Head:  H = 1.2 m
Actual discharge: Q = 0.94 litre/s = 0.94 × 10–3 m3/s.
We know that the theoretical discharge: Qth

Q th = cross-sectional area × theoretical velocity

= 2a g H× 43.14 10 2 9.81 1.2−= × × ×
= 1.52 × 10–3m3/s

Cd = 
3

3
th

0.94 10
1.52 10

Q
Q

−

−

×
= =

×
0.618

Problem 6.2: A 50 mm diameter orifice is discharging liquid under a head of 8 m.
Find the actual discharge and actual velocity of the jet of liquid at vena-contracta.
Take Cd = 0.62 and Cv = 0.98.
Solution: Given data:

Diameter of orifice:   d = 50 mm = 0.05 m
∴ Cross-sectional area of orifice:

a = 2 2 3 23.14 (0.05) 1.96 10 m
4 4

d −π
= × = ×
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Head  : H = 8 m
Cd = 0.62
Cv = 0.98

Theoretical discharge through the orifice: Qth

Q th = 2a g H×

3 31.96 10 2 9.81 8 0.02455m /s−= × × × =
∴ Actual discharge through orifice: Q

Q = Cd × Qth = 0.62 × 0.02455 = 0.01522 m3/s
= 15.22 litre/s

Theoretical velocity at vena-contracta:

Vth = 2 2 9.81 8 12.52 m/sg H = × × =

Actual velocity of jet at vena-contracta: V
V = Cv × Vth = 0.98 × 12.52 = 12.269 m/s.

Problem 6.3: The head of liquid available at the centre of orifice of diameter
100 mm is 10 m. The liquid coming out from orifice is collected in a measuring tank
of diameter 1.5 m. The rise of liquid level in the measuring tank is 0.6 m in 15 seconds.
Also the co-ordinates of a point on the jet, measured from vena-contracta are 3.8 m
horizontal and 0.4 m vertical. Find the hydraulic coefficients Cd, Cv and Cc.
Solution: Given data:

Diameter of orifice: d = 100 mm = 0.1 m
∴ Cross-sectional area of orifice:

a = 2 2 3 23.14 (0.1) 7.85 10 m
4 4

d −π
= × = ×

Head: H = 10 m
Diameter of measuring tank:

D = 1.5 m
Cross-sectional area of measuring tank:

A = 2

4
Dπ 2 23.14 (1.5) 1.766 m

4
= × =

Rise of liquid in measuring tank:
h = 0.6 m

Time: t = 15 seconds
Horizontal distance: x = 3.8 m
Vertical distance: y = 0.4 m

Now theoretical velocity: V th = 2 2 9.81 10 14 m/sg H = × × =

∴ Theoretical discharge: Q th = a × Vth = 7.85 × 10–3 × 14 = 0.1099 m3/s.

Actual discharge: Q = 
Volume of liquid in measuring tank

Time
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1.766 0.6
15

Ah
t

×
= =  = 0.07064 m3/s

∴ Coefficient of discharge: Cd = 
0.07064
0.1099th

Q
Q

= = 0.642

Coefficient of velocity: Cv = 
3.8

4 4 0.4 10
x
yH

= =
× ×

0.95

We know that Cd = Cc × Cv

or Cc = 
0.642
0.94

d

v

C
C

= = 0.67

Problem 6.4: Water discharge at the rate of 67 litre/s through a 100 mm diameter
vertical sharp edge orifice under head of 9.5 m. A point, on the jet, measured from
the vena-contracta has coordinates of 4.2 m horizontal and 0.50 m vertical. Find the
values of hydraulic coefficients Cv, Cc and Cd.
Solution: Given data:

Actual discharge: Q = 67 litre/s = 0.067 m3/s
Diameter of orifice: d = 100 mm = 0.1 m
∴ Cross-sectional area of orifice:

a = 2 2 3 23.14 (0.1) 7.85 10 m
4 4

d −π
= × = ×

Head: H = 9.5 m
x = 4.2 m
y = 0.50 m

We know that the coefficient of velocity: Cv

Cv = 
4.2

4 4 0.50 9.5
x
yH

= =
× ×

0.96

Theoretical discharge: Q th = 2a g H

                                37.85 10 2 9.81 9.5−= × × × ×
= 0.10717 m3/s

We know that the coefficient of discharge: Cd

Cd = 
0.067

0.10717th

Q
Q

= = 0.62

also Cd = Cv × Cc

or Cc = 
0.62
0.96

d

v

C
C

= = 0.64

6.5 SMALL AND LARGE ORIFICES
The size of the orifices may be classified as the relation between the head of water
in the tank from the centre of the orifice and the height of the orifice.
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H
H0

L
Rectangular notch

Fig. 6.3: Orifice

If the head of water in the tank from the centre of the orifice is more than 5 times
the height of the orifice, such type of the orifice is referred as a small orifice.

Mathematically,
H > 5 H0

where H = head of water in the tank from the centre of the
orifice

H0 = height of the orifice

If the head of water in the tank from the centre of the orifice is less than 5 times
of height of the orifice, such type of the orifice is referred as large orifice.

Mathematically,

H < 5 H0

6.6 DISCHARGE THROUGH A SMALL RECTANGULAR ORIFICE
In case of a small rectangular orifice, the velocity of water at every point in the cross-
section of the jet is considered to be constant. The discharge through an orifice is
given by the following relation:

Q = 02 2d dC A g H C LH g H=

where Cd = coefficient of discharge for the orifice

A = cross-sectional area of the orific

= L H0

L = length of the orifice

H0 = height of the orifice

H = height of the water above the centre of the orifice

6.7 DISCHARGE THROUGH A LARGE RECTANGULAR ORIFICE
In case of a large rectangular orifice, the velocity of water at every point in the cross-
section of the jet is not constant, because of a considerable variation of head along the
height of the orifice. So, the effect of head variation leads to the variation of velocity.
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H2

H1 h

dh

L

Fig. 6.4: Large rectangular orifice.

Consider a large rectangular orifice is fitted in one side of the tank as shown in
Fig. 6.4.

Let H1 = height of water above the top of the orifice
H2 = height of water above the bottom of the orifice

L = length of the orifice.
Consider a horizontal strip of thickness dh at depth h from the level of the water

as shown in Fig. 6.4.
∴ Area of strip: dH = L dh

Theoretical velocity of water through the strip = 2 g H
∴ Discharge flow through strip:

dQ = Cd × dA × 2 g H  = Cd L dh 2 g H

= Cd 2g  L h1/2 dh
Total discharge flow though the entire orifice:

Q = 
2

1

H

H

dQ∫

2 2

1 1

1/ 2 1/ 22 2
H H

d d
H H

C g L h dh C g L h dh= =∫ ∫

2

1

3 / 2
3 / 2 3 / 2
2 1

22 2
3/ 2 3

H

d d
H

hC gL C g L H H
 

 = = −   
 

Q   
1.5 1.5
2 1

2= 2 -
3 dC gL H H

Problem 6.5: A small rectangular orifice 150 mm height and 400 mm wide is
discharging water under a constant head of 600 mm. Find the discharge through the
orifice. Take Cd = 0.61.
Solution: Given data:

Height of orifice: H0 = 150 mm = 0.15 m
Width of orifice: L = 400 mm = 0.4 m
Head: H = 600 mm = 0.6 m
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Cd = 0.61

Discharge: Q = 02 2d dC A g H C LH g H=

= 0.61 × 0.4 × 0.15 × 2 9.81 0.6× ×
= 0.12557 m3/s = 125.57 litre/s.

Problem 6.6: Following data is measured in laboratory for a small orifice:llllllllll
Diameter of orifice = 150 mm

Discharge = 33 litre/s
Head = 450 mm

Find the coefficient of discharge.
Solution: Given data:

Diameter of orifice: d = 150 mm = 0.15 m
∴ Cross-sectional area of the orifice:

a = 2 2 23.14 (0.15) 0.01766m
4 4

dπ
= × =

Discharge: Q = 33 litre/s = 0.033 m3/s
Head: H = 450 mm = 0.45 m
We know that the discharge through a small orifice:

Q = 2dC a g H

0.033 = Cd × 0.01766 × 2 9.81 0.45× ×
or Cd = 0.628.

Problem 6.7: A rectangular orifice of 1.5 m wide and 0.5 m height is discharging
water from a tank. If the water level in the tank is 3 m above the top edge of the orifice,
find the discharge through the orifice. Take Cd = 0.62.
Solution: Given data:

Width of orifice: L = 1.5 m
Height of orifice: H0 = 0.5 m
Level of water above the top edge of the orifice:

H1 = 3 m
Level of water above the bottom edge of the orifice:

H2 = H1 + H0 = 3 + 0.5 = 3.5 m
Discharge through orifice:

Q 1.5 1.5
2 1

2 2
3 dC g L H H = − 

1.5 1.52 0.62 2 9.81 1.5 (3.5) (3)
3

 = × × × × × − 

= 3.71 m3/s.
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6.8 DISCHARGE THROUGH FULLY SUBMERGED ORIFICE
If the level of water in downstream is higher than the upper edge of the orifice then,
such type orifice is called fully submerged orifice or wholly drowned orifice. This type
of orifice is shown in Fig. 6.5.

H2

H1

Downstream
21

Upstream
H

Fig. 6.5: Fully submerged orifice.

Let H1 = height of water above the top of the orifice in
upstream side.

H2 = height of water above the bottom of the orifice in
upstream side.

L = length of the orifice.
H = difference in water level between upstream and

downstream.
H0 = height of the orifice.

= H2 – H1
Area of the orifice: a = LH0
Applying Bernoulli’s equation at points 1 and 2, we get

2
1 2

1
p V z
g g

+ +
ρ ρ

2
2 2

2
p V z
g g

= + +
ρ ρ

Here z1 = z2, V1 is negligible

∴ 1p
gρ

= 
2

2 2p V
g g

+
ρ ρ

or
2

2V
gρ

= 1 2p p
g g

−
ρ ρ

2
2V
gρ = H

or 2
2V = 2 g H

or V2 = 2 g H
∴ Discharge through orifice:

Q = Cd × Area × Theoretical velocity

Q = Cd L H0 2 g H

where H0 = H2 – H1
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6.9 DISCHARGE THROUGH PARTIALLY SUBMERGED ORIFICE
If the orifice is partially submerged under downstream water, such type of orifice is
called partially submerged orifice.

H2

H1 H

Fig. 6.6: Partially submerged orifice.

The discharge through partially submerged orifice is equal to the discharges
through free and the submerged portions.

Mathematically,
Total discharge: Q = Q1 + Q2

where Q1 = 1.5 1.5
1

2 2 ( ),
3 dC g L H H−  discharge through free

  portion

Q2 = 2( ) 2 ,dC L H H g H−  discharge through sub-
 merged portion.

where L = length of the orifice.

Problem 6.8: Find the discharge through fully submerged orifice of width 3 m,
if the difference of water levels on both sides of the orifice is 0.4 m. The length of
water from top and bottom of the orifice are 2 m and 2.5 m respectively. Take Cd as
0.61.
Solution: Given data:

Width of orifice: L = 3 m
Difference of water level: H = 0.4 m
Height of water from top of orifice:

H1 = 2m
Height of water from bottom of orifice: H2 = 2.5 m

Cd = 0.61
Height of orifice: H0 = H2 – H1 = 2.5 – 2 = 0.5 m
We know that the discharge through fully submerged orifice:

Q = 0 2dC L H g H

= 0.61 × 3 × 0.5 × 2 9.81 0.4× ×  = 2.56 m3/s.
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Problem 6.9: Find the discharge through a fully submerged orifice 2.5 m wide
and 1.5 m deep, if the difference of water levels on both the sides of the orifice be
3 m. Take Cd = 0.60.
Solution: Given data:

Width of orifice: L = 2.5 m
Depth of orifice: H0 = 1.5 m
Difference of water level on both the sides:

H = 3 m
Cd = 0.60

Discharge: Q = 0 2dC L H g H

= 0.60 × 2.5 × 1.5 × 2 9.81 3× ×  = 17.26 m3/s.

Problem 6.10: A rectangular orifice of 2 m wide and 1.5 m deep is filled in one side
of a large tank. The water level on one side of the orifice is 4 m above the top edge
of the orifice, while on the other side of the orifice, the water is 0.5 m below its top
edge. Find the discharge through the orifice. Take Cd = 0.62.
Solution: Given data:

Width of orifice: L = 2 m
Depth of orifice: H0 = 1.5 m
Height of water from top edge of orifice:

H1 = 4 m
Difference of water level on both sides:

H = H1 + 0.5 = 4 + 0.5 = 4.5 m
Height of water from the bottom edge of orifice:

H2 = H1 + H0 = 4 + 1.5 = 5.5 m
Discharge through free portion: Q1

Q1 = 1.5 1.5
1

2 2 ( )
3 dC g L H H−

= 1.5 1.52 0.62 2 9.81 2 (4.5 4 )
3

× × × × −  = 5.66 m3/s.

Discharge through submerged portion: Q2

Q2 = 2( ) 2dC L H H g H−
30.62 2 (5.5 4.5) 2 9.81 4.5 11.65m /s= × × − × × × =

∴ Total discharge through the orifice:
Q = Q1 + Q2 = 5.66 + 11.65 = 17.31 m3/s.

6.10 CLASSIFICATION OF MOUTHPIECES
The mouthpieces are classified as:

(a) External mouthpieces
(b) Internal mouthpieces
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6.10.1 External Mouthpieces
The external mouthpieces are further classified as:

(i) Cylindrical mouthpieces
(ii) Convergent mouthpieces

(iii) Convergent-divergent mouthpieces

6.10.2 Internal Mouthpiece
The internal mouthpieces are further classified as:

(i) Mouthpieces running full
(ii) Mouthpieces running free.

6.11 DISCHARGE THROUGH EXTERNAL
CYLINDRICAL MOUTHPIECE

A piece of pipe connected to an opening at the side of a tank or vessel such that it
projects outside of the tank, is known as external mouthpiece as shown in Fig 6.7.

A

H 1

1C

C

B

Fig. 6.7: External cylinderical mouthpiece

Let H = height of liquid above the centre of mouthpiece
a = cross-sectional area of the mouthpiece

ac = cross-section area of flow at vena-contracta (C)-
(C).

V = velocity of liquid at outlet of mouthpiece or at
section (1)-(1).

Vc = velocity of liquid at vena-contracta
Cc = coefficient of contraction.

Applying the continuity equation at sections (C)-(C) and (1)-(1), we get
Vc ac = V a

or Vc = V
c

a
a

Vc = 
/c c

V V
a a C

=  0.62 assumec
c

aC
a

= =

Vc = 0.62
V
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As clear from the Fig. 6.7, the liquid flow from the section (C)-(C) is suddenly
enlarged at section (1)-(1). Therefore, due to the sudden enlargement, the loss
of head,

he = 
2 2( ) 0.3750.62

2 2 2
c

V V
V V V

g g g

 − −  = =

Applying Bernoulli’s equation at points A and B, we get

H = 
2

losses
2
V

g
+  = 

2 20.375
2 2
V V

g g
+

H = 
21.375

2
V

g

or V2 = 
2
1.375

gH

or V = 0.855 2 g H

We know that the coefficient of velocity:

Cv = 
Actual velocity

Theoretical velocity

Cv = 
0.855 2

2 2
ghV

gH gh
=  = 0.855

and Cc = 1 for mouthpiece, because of the cross-sectional
area of flow is equal to the cross-sectional area of
mouthpiece at outlet.

∴ Coefficient of discharge for mouthpiece: Cd
Cd = Cc × Cv
Cd = 1 × 0.855 = 0.855

Discharge through mouthpiece:

Q = Cd a 2gh

Q = 0.855 a 2 g H

The discharge through mouthpiece is more than the discharge through orifice,
because of the value of Cd for mouthpiece is more than the value of Cd for orifice.

6.12 DISCHARGE THROUGH A CONVERGENT MOUTHPIECE
Let H = height of free surface of liquid above the centre of the mouthpiece

a = cross-sectional area of the orifice at exit i.e., point B.
V = velocity of jet at point B.
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A

H

B

Fig. 6.8: Convergent mouthpiece.

Applying Bernoulli’s equation at points A and B, we get
2

2
A A

A
p V

z
g g

+ +
ρ

2

2
B B

B
p V

z
g g

= + +
ρ neglecting head losses

where Ap
gρ = H, VA = 0, zA = zB

Bp
gρ = 0, VB = VA

H = 
2

2
V

g

or V2 = 2 gH

V = 2 g H

∴ Actual discharge: Q = aV = a 2 g H

   and theoretical discharge: Q th = a 2 g H

∴ Coefficient of discharge: Cd = 
th

Q
Q

 = 
2

1
2

a g H
a g H

=

∴ Actual discharge: Q = Cd × Qth = Cd × a 2 g H  = a 2 g H

6.13 DISCHARGE THROUGH A CONVERGENT-
DIVERGENT MOUTHPIECE

In this type of mouthpiece, the first section of the mouthpiece is made of convergent
and second section is divergent. The minimum cross-sectional area at which two
sections meet is called throat or vena-contracta.

Let H = height of liquid above the centre of mouthpiece
a = cross-sectional area of mouthpiece at section (1)-(1)
V = velocity of liquid at section (1)-(1)

ac, Vc = cross-sectional area and velocity at vena-contracta
respectively.



Orifices and Mouthpieces 349

H

Free surface

Throat

1

1
C

C

Fig. 6.9: Convergent-divergent mouthpiece.

Applying Bernoulli’s equation at sections (C)-(C) and (1)-(1), we get
2

2
c c

c
p V

z
g g

+ +
ρ

2
1 1

12
p V z
g g

= + +
ρ

But zc = z1, 1p
gρ

 = Ha, atmospheric head

cp
gρ

= Hc

∴ Hc + 
2

2
cV
g = Ha + 

2
1

2
V

g
2

2
cV
g = Ha – Hc + 

2
1

2
V

g
…(i)

Now applying Bernoulli’s equation to the free surface of liquid in tank and section
(C)-(C), we get

2

2
p V z
g g

+ +
ρ

2

2
c c

c
p V z
g g

= + +
ρ

Let the datum line passing through the centre of orifice, we get
p
gρ = Ha, V = 0, z = H, cp

gρ
 = Hc, zc = 0

∴ Ha + 0 + H = Hc + 
2

2
cV
g  + 0

2

2
cV
g = Ha + H – Hc …(ii)

or Vc = 2 ( )a cg H H H+ − …(iii)
Equating Eqs. (i) and (ii), we get

H0 + Hc + 
2

1

2
V

g
= Ha + H – Hc

or
2

1

2
V

g = H
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or V1 = 2 g H
Applying continuity equation at sections (C)-(C) & (1)-(1), we get

acVc = a1V1

or
1

c

a
a 1

2 ( )
2

a cc g H H HV
V gH

+ −
= =

1a c a cH H H H H
H H

+ − −
= = +

Discharge: Q = Cd ac 2 g H

Q = ac 2 g H
Cd = 1 for convergent–divergent mouthpiece.

Problem 6.11: Find the discharge from a 150 mm diameter external mouthpiece,
fitted in one side of a large tank, if the head over the mouthpiece is 3 m.
Solution: Given data:

Diameter of the mouthpiece:
d = 150 mm = 0.15 m

∴ Cross-sectional area of the mouthpiece:

a = 2 2 23.14 (0.15) 0.01766 m
4 4

dπ
= × =

Head: H = 3 m
We know that the external mouthpiece:

Q = 0.855 a 2 g H

= 0.855 × 0.01766 × 32 9.81 3 0.11584 m /s× × =
= 115.84 litre/s.

Problem 6.12: A convergent mouthpiece is discharging water under a constant
head of 4 m. Find the discharge, if diameter of the mouthpiece at exit is 80 mm.
Solution: Given data:

Head: H = 4 m
Diameter at exit: d = 80 mm = 0.08 m
∴ Cross-sectional area of exit:

a = 2 2 3 23.14 (0.08) 5.024 10 m
4 4

d −π
= × = ×

We know that the discharge through a convergent mouthpiece:
Q = a 2 g H  = 5.024 × 10–3

  × 32 9.81 4 0.04450 m /s× × =  = 44.50 litre/s.

Problem 6.13: A convergent-divergent mouthpiece has 60 mm throat diameter and
is discharging water under a constant head of 2 m. Find the discharge through the
mouthpiece.
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Solution: Given data:
Diameter at throat or vena-contracta:

dc = 60 mm = 0.06
∴ Cross-sectional area at throat or vena-contracta:

ac = 2 2 3 23.14 (0.06) 2.826 10 m
4 4

d −π
= × = ×

Head: H = 2 m
We know that the discharge through the convergent-divergent mouthpiece:

Q = ac 2 g H

= 2.862 × 10–3 × 32 9.81 2 0.01770 m /s× × =
= 17.70 litre/s.

6.14 DISCHARGE THROUGH AN INTERNAL MOUTHPIECE
(RE-ENTRANT OR BORDA’S MOUTHPIECE)

A piece of pipe connected to an opening at the side of a tank or vessel such that it
projects inside the tank, is known as internal mouthpiece as shown in Figs 6.10, 6.11.
Following are the two types of internal mouthpieces, depending upon their nature of
discharge:

(i) Borda’s mouthpiece running free, and
(ii) Borda’s mouthpiece running full.

6.14.1 Borda’s Mouthpiece Running Free
If the length of the pipe is equal to its diameter, the jet of liquid, after contraction, does
not touch the sides of the mouthpiece. Such type of mouthpiece is called running free
as shown in Fig. 6.10.

Let H = height of liquid above the centre of the mouthpiece.
a = cross-sectional area of the mouthpiece.

ac = cross-sectional area of flow at vena-contracta.
V = velocity of liquid through mouthpiece.

We know that the pressure of the liquid on the mouthpiece:
p = ρgH

∴ Force acting on the mouthpiece = pressure × area = p × a
= ρgHa …(i)

H

Fig 6.10: Borda’s mouthpiece running free.
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and mass flow rate through mouthpiece:
m = ρacV

∴ Momentum of the flowing liquid
= mV = ρacV

2

Since the water is initially at rest, therefore initial momentum = 0
∴ Change of momentum = ρacV

2 – 0 = ρacV
2 …(ii)

According to Newton’s 2nd law of motion, the force is equal to the rate of
change of momentum. Therefore, equating Eqs. (i) and (ii), we get:

ρgHa = ρacV
2

gHa = acV
2

a = ac 
2V

gH   V = 2gH  or V2 = 2gH or 
2V

gH  = 2

a = ac × 2

or ca
a = 

1 0.5
2

=

∴ Coefficient of contraction: Cc = 0.5ca
a

=

Since, there is no loss of head, coefficient of velocity: Cv = 1
∴ Coefficient of discharge: Cd = Cc × Cv = 0.5 × 1 = 0.5
∴ Discharge through the mouthpiece running free:

Q = Cd a 2gH  = 0.5 a 2gH

6.14.2 Borda’s Mouthpiece Running Full
If the length of the pipe is more than 2.5 times its diameter, the jet of liquid, after
contraction, expands and fills up the whole mouthpiece. Such type of mouthpiece is
called running full as shown in Fig. 6.11.

H
1C

C
1

Free surface

Fig. 6.11: Borda’s mouthpiece running fall.

Let H = height of liquid above the centre of the mouthpiece
a = cross-sectional area of the mouthpiece

ac = cross-sectional area of flow at vena-contracta
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V = velocity of the liquid at the outlet i.e., at section
(1)-(1).

Vc = velocity of the liquid at the vena-contracta.
Applying continuity equation at sections (C)-(C) and (1)-(1), we get

acVc = aV

or c
c

a V
a = V

Cc Vc = V  Cc = 0.5
0.5 Vc = V

or Vc = 2V
As clear from the Fig. 6.11, the jet of liquid passing through section (C)-(C)

suddenly enlarges at section (1)-(1). Therefore, there will be a loss of head due to
sudden enlargement. We know that the loss of head due to sudden enlargement (he)
is given by:

he = 
2 2( ) (2 )

2 2
cV V V V

g g
− −

= = 
2

2
V

g  Vc = 2V

Applying Bernoulli’s equation to the free surface of liquid in the tank and section
(1)-(1), we get:

2
t t

t
p V z
g g

+ +
ρ

2
1

12
i

e
p V z h
g g

= + + +
ρ

Let datum line passing through the centre of the mouthpiece at the free surface
of liquid in tank,

tp
gρ = 0, 2

tV
g  = 0, zt = H

and at section (1)-(1),

1p
gρ = 0, z1 = 0, V1 = V

∴ 0 + 0 + H = 0 + 
2

2
V

g  + 0 + he

or H = 
2

2
V

g  + 
2

2
V

g = 
2

2
V

g  he = 
2

2
V

g

or V = gH

∴ Actual discharge: Q = a gH
We know that theoretical discharge:

Q th = a 2gH
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∴ Coefficient of discharge:

Cd = 
Actual discharge

Theoretical discharge

Cd = 
2 1

2 2
gH

a gH
=  = 0.707

∴ Discharge: Q = Cd a 2gH  = 0.707 a 2gH  = a gH .

Problem 6.14: A Borda’s mouthpiece of 50 mm diameter is fitted on one side of
a tank containing liquid upto a height of 3 m above the centre line of the mouthpiece.
Find the discharge through the mouthpiece, if the mouthpiece is running free.
Solution: Given data:

Diameter of mouthpiece:
d = 50 mm = 0.05 m

∴ Cross-sectional area of the mouthpiece:

a 2

4
dπ

= 2 3 23.14 (.05) 1.962 10 m
4

−= × = ×

Head: H = 3 m
We know that the discharge through the mouthpiece running free:

Q = 0.5 2a gH  = 0.5 × 1.962 × 10–3 2 9.81 3× ×

= 0.00752 m3/s = 7.52 litre/s.

Problem 6.15: A Borda’s mouthpiece of 50 mm diameter is fitted on one side of
a tank containing liquid up to a height of 4 m above the centre line of the mouthpiece.
Find the discharge through the mouthpiece, if the mouthpiece is running full.
Solution: Given data:

Diameter of mouthpiece: d = 50 mm = 0.05 mm
∴ Cross-sectional area of the mouthpiece:

a 2

4
dπ

=  2 3 23.14 (0.05) 1.962 10 m
4

−= × = ×

Head: H = 4 m
We know that the discharge through the mouthpiece running full:

Q = a gH  = 1.962 × 10–3 × 9.81 4×

= 0.01229 m3/s = 12.29 litre/s.

Problem: 6.16  A rectangular tank with vertical sides is provided with an office of
diameter 50 mm at  the bottom of the tank. During the inflow into the tank at a uniform
rate from an external source and outflow from the orifice it was observed that the level
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of water rose from 2 m to 2.5 m in 100 seconds and from 3.5 to 3.75 m in
120 seconds. Assuming Cd for the office is 0.62, determine the rate of inflow and the
cross-sectional area of the tank
Solution: Given data Diameter of the orifice: d = 50 mm = 0.050 m

 ∴ Cross-sectional area of the office: a = 
4
π

d2 = 
3.14

4
 × (0.050)2

= 1.962 × 10–3 m2

At an average head: h = 2.5 2
2
+  = 2.25 m

dh = 2.5 – 2 = 0.5 m
and dt = 100 s

Similarly, at an average head, h = 3.5 3.75
2

+  = 3.625 m

dh = 3.75 – 3.5 = 0.25 m
 and dt = 120 s

dt = ( )2d

Adh
Q C a gh−

or A dh
dt

= Q – Cd 2a gh

when h = 2.25 m

                 A × 0.5
100

 = 30.62 1.962 10 2 9.81 2.25Q −− × × × × ×

200
A = Q – 8.08 × 10–3

or A = 200 Q – 200 × 8.08 × 10–3

A = 200 Q – 1.616 ...(i)
when h = 3.625 m

                A × 0.25
120

 = 30.62 1.962 10 2 9.81 3.625Q −− × × × × ×

480
A = Q – 1.025 × 10–2

or A = 480 Q – 480 × 1.025 × 10–2

A = 480 Q – 4.92 ...(ii)
Equating Eqs. (i) and (ii), we get

480 Q – 4.92 = 200 Q – 1.616
or 280 Q = 3.304
or Q = 0.0118 m3/s
Substituting the value of Q in Eq. (ii), we get

A = 480 × 0.0118 – 4.92 = 0.744 m2
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Contd...

SUMMARY

1. An orifice may be defined as a small opening with a closed perimeter located
in the side or bottom of the tank or vessel. The level of the liquid in the
vessel must be above the top edge of the orifice. A mouthpiece is a short
length of a pipe which is two to three times of diameter of the pipe, fitted
in a tank or vessel which contains the liquid. Both the orifices and
mouthpieces are used for measuring the discharge of the liquid in the tank
or vessel.

2. The stream of liquid issuing from an orifice is called the jet of liquid or
simply ‘jet’.

3. Hydraulic coefficients:
(i) Coefficient of contraction: Cc

Cross - sectional area at vena - contracta :
Cross - sectional area of the orifice :

c
c

aC
a

=

c
c

aC
a

=

The value of Cc varies from 0.61 to 0.69.
(ii) Coefficient of velocity:

th

Actual velocity of  jet at vena - contracta :
Theoretical velocity of  jet at vena - contracta :v

VC
V

=

v
th

VC
V

=

The value of Cv varies from 0.95 to 0.99.
(iii) Coefficient of discharge:

Actual discharge through an orifice :
Theoretical discharge through an orifice :d

th

QC
Q

=

d
th

QC
Q

=

also Cd = Cv × Cc.
The value of Cd varies from 0.60 to 0.64.

4. Theoretical velocity of jet at vena-contract: Vth

th 2V g H=

5. The minimum cross-sectional area of the jet is called vena-contracta.
6. Experimental determination of hydraulic coefficient.

Coefficient of velocity:

4v
xC
y H

=
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where x = horizontal distance travelled by the water particle from section
C–C to point P in time t.

y = vertical distance between the centre of vena-contracta and
point P.

7. If the head of water in the tank from the centre of the orifice is more than
5 times the height of the orifice, such type of the orifice is referred as a
small orifice.
Mathematically,

 H > 5 H0
where  H = head of water in the tank from the centre of the orifice.

H0 = height of the orifice.
If the head of water in the tank from the centre of the orifice is less than
5 times the height of the orifice, such type of the orifice is referred as large
orifice.
Mathematically,

H < 5 H0
8. Discharge through a small rectangular orifice:

 0 2dQ C LH gH=

where Cd = coefficient of discharge for the orifice
  L = length of the orifice
H0 = height of the orifice
 H = height of the water above the centre of the orifice.

9. Discharge through a large rectangular orifice:

  1.5 1.5
2 1

2 2
3 dQ C gL H H = − 

where H1 = height of the water above the top of the orifice.
H2 = height of water above the bottom of the orifice.
  L = length of the orifice.

10. Discharge through fully submerged orifice:

0 2dQ C L H gH=

11. Discharge through partially submerged orifice.

1.5 1.5
1 2

2
2 ( ) ( ) 2

3 d dQ C L g H H C L H H gH= − + −

12. Discharge through external cylindrical mouthpiece:

0.855 2Q a gH=

where a = cross-sectional area of the mouthpiece.
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H = height of liquid above the centre of mouthpiece.
13. Discharge through a convergent mouthpiece:

2Q a gH=
where a = cross-sectional area at exist of the mouthpiece

14. Discharge through a convergent-divergent mouthpiece

2cQ a gH=
where ac = cross-sectional area at the throat or at vena-contracta.

15. Discharge through Borda’s mouthpiece running free:

0.5 2Q a gH=
where a = cross-sectional area of the mouthpiece.

16. Discharge through Borda’s mouthpiece running full: Q a gH=

ASSIGNMENT - 1

1. Define an orifice and a mouthpiece.
2. What is the difference between an orifice and a mouthpiece?
3. Define the following hydraulic coefficients:

(a) Coefficient of contraction.
(b) Coefficient of velocity.
(c) Coefficient of discharge.

4. What do you mean by the term vena-contracta and how does it occur?
5. Prove that: Coefficient of velocity:

2v
x

C
yH

=

where x = horizontal distance travelled by water particle from section C-C
to any point P in time t.

y = vertical distance between the centre of vena-contracta and
point P.

H = constant water head.
5. Prove that: Cd = Cc × Cv
6. What is the difference between a large and a small orifice?
7. Obtain an expression for discharge through a large rectangular orifice.
8. What do you understand by the terms fully submerged orifice and partially

submerged orifice?
9. Prove the expression for discharge through fully submerged orifice is given by:

0 2dQ C L H gH=
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where Cd = coefficient of discharge.
  L = length of the orifice.
H0 = height of the orifice.
 H = difference in water level between upstream and downstream.

10. Prove that the expression for discharge through an external mouthpiece is
given by:

 0.855 2Q a gH=
where  a = cross-sectional area of the mouthpiece.

H = height of liquid above the centre of mouthpiece.
11. What is a convergent-divergent mouthpiece? Prove that the expression for

discharge through a convergent-divergent mouthpiece is given by:
2cQ a gH=

where  ac = cross-sectional area at vena-contracta.
H = height of liquid above the centre of mouthpiece.

12. Differentiate between:
(i) External mouthpiece and internal mouthpiece.

(ii) Mouthpiece running full and mouthpiece running free.
13. Obtain an expression for discharge through a Borda’s mouthpiece running

free.
14. Prove that the expression for discharge through a Borda’s mouthpiece

running full is given by:
Q a gH=

where a = cross- sectional area of the mouthpiece.
H = height of liquid above the centre of the mouthpiece.

ASSIGNMENT - 2

1. A jet of water issues from an orifice of diameter 20 mm under a head of 1
m. Find the coefficient of discharge for the orifice, if actual discharge is
0.9 litre/s. Ans. 0.64

2. The head of liquid over an orifice of diameter 40 mm is 10 m. Find the actual
discharge and actual velocity of the jet of liquid at vena-contracta, if Cd = 0.6
and Cv = 0.98. Ans. 10.55 litre/s, 13.72 m/s

3. The head of liquid available at the centre of orifice of diameter 100 mm is
10 m. The liquid coming out from orifice is collected in a measuring tank of
diameter 1.5 m. The rise of liquid level in the measuring tank is 1 m in
25 seconds. Also the coordinates of a point on the jet, measure from vena-
contracta are 4.3 m horizontal and 0.5 m vertical. Find the hydraulic coefficients
Cd, Cv and Cc. Ans. 0.64, 0.96, 0.666

4. The head of water over an orifice of diameter 40 mm is 10 m. What is the
actual discharge and actual velocity of the jet?
Take Cd = 0.6 and Cv = 0.98. Ans. 10.6 litre/s; 13.73 m/s
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5. In experiment, water issues horizontally from an orifice under a head of
160 mm. Determine the coefficient of velocity of the jet, if the horizontal
distance travelled by a point on the jet is 320 mm and vertical distance is
170 mm. Ans. 0.97

6. A jet of water issues from an orifice 1250 mm2 in area under a constant head
of 1.125 m. It falls vertically 1 m before striking the ground at a distance of
2 m measured horizontally from the vena-contracta. If the flow rate of water
through the orifice is 3.653 litre/s, calculate the coefficients of discharge,
velocity and contraction. Ans. 0.622; 0.943; 0.66

7. A small rectangular orifice 100 mm height and 500 mm wide is discharging
water under a constant head of 400 mm. Find the discharge through the
orifice. Take Cd = 0.62. Ans. 86.84 litre/s

8. Following data is measured in laboratory for a small orifice:
Diameter of orifice = 100 mm

Discharge = 13.6 litre/s
Head = 400 mm

Find the coefficient of discharge. Ans. 0.618
9. A rectangular orifice 2 m wide and 0.5 m height is discharging water from

a tank. If the water level in the tank is 2 m above the top edge of the edge
of the orifice. Find the discharge through the orifice.
Take Cd = 0.61. Ans. 4.05 m3/s

10. Find the discharge through fully submerged orifice of width 2 m, if the
difference of water levels on both sides of the orifice is 0.5 m. The height of
water from top and bottom of the orifice are 2 m and 2.5 m respectively.
Take Cd = 0.62. Ans. 1.94 litre/s

11. Find the discharge through a fully submerged orifice 2 m wide and 1 m deep,
if the difference of water levels on both sides of the orifice be 4 m.
Take Cd = 0.61. Ans. 10.80 m3/s

12. Find the discharge from a 100 mm diameter external mouthpiece, fitted in one
side of a large tank, if the head over the mouthpiece is 2.5 m.Ans. 47 litre/s

13. A convergent-divergent mouthpice has 50 mm throat diameter is discharging
water under a constant head of 2 m. Find discharge through the mouthpiece.

Ans. 12.29 litre/s
14. A Borda’s mouthpiece of 60 mm diameter is fitted on one side of a tank

containing liquid upto a height of 4 m above the centre line of the mouthpiece.
Find the discharge through the mouthpiece, if the mouthpiece is running free.

Ans. 12.51 litre/s
15. A Borda’s mouthpiece of 60 mm diameter is fitted on one side of a tank

containing liquid upto height of 5 m above the centre line of the mouthpiece.
Find the discharge through the mouthpiece, if the mouthpiece is running full.

Ans. 19.79 litre/s





Flow Past Submerged Bodies

7.1 INTRODUCTION
When a solid body is placed in the flowing fluid, force is exerted by the fluid on the
body. According to Newton's third law of motion, an equal and opposite force is
exerted by the solid body on the fluid. Examples are flow of air over buildings,
chimneys and towers.

In another case, when the fluid is at rest and the solid body moving through it,
force is exerted by the solid body on the fluid. For examples: (i) Automobiles moving
through air (ii) Airplanes moving through air (iii) Ships and submarines moving
through water.

This chapter deals with the study of force exerted by the fluid on the stationary
submerged body.

7.2 DRAG AND LIFT
When a solid body is placed in the flow of real fluid.

FL
FR

FD

Stationary body

F FD R =  cos 

F FL R =  sin 

Fig. 7.1: Drag and Lift on a stationary body.

The fluid will exert the resultant force FR on the stationary body making an angle
φ in the direction of motion. The resultant force can be resolved in two components,
one in the direction of flow and other normal to the flow.

7
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Drag
The force in the direction of flow exerted by the fluid on the solid body is called drag
force or drag. (i.e., the component of the resultant force in the direction of flow) It
is denoted by FD.

Lift
The force exerted by the fluid in the direction perpendicular to the flow is called lift
(i.e., the component of the resultant force in the direction perpendicular to the flow)
It is denoted by FL.

7.3 TYPES OF DRAG FORCE
The pressure difference over the surface of the object causes a pressure force on the
object. In addition to the force due to pressure difference, there is another force which
is everywhere trangential to the surface of the object and due to action of viscous or
wall shear stress (τ0).

The component of these forces parallel to the flow direction is called drag force
or simply “drag” and the component normal to drag is called 'lift' from above text it
is clear that drag force has two types:

(i) Friction drag or wall drag
(ii) Pressure drag or form drag
(i) Friction Drag: When the surface of the object is parallel with the direction

of flow, as in case of the thin flat plate as shown in Fig. 7.2, the fluid exerts
a force on the surface due to viscous action. The friction force acts in the
direction of flow is called friction drag. It is also called wall or skin drag.

Uniform velocity Varying velocity

(a) Flow parallel with flat plate

          
tW

(b) Free body diagram of flat plate

Fig. 7.2: Friction drag.

(ii) Pressure Drag: When the surface of the object is not parallel with the
direction of flow, an additional drag force due to pressure difference on the
surface of object acts. This is called pressure drag or form drag.
As shown in Fig. 7.3, the thin flat plate is perpendicular to the direction of
flow, then only pressure drag is exerted on the plate.
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Eddies

(a) Flow normal with flat plate

+
+
+
+
+
+
+

–
–
–
–
–
–

Low pressureHigh pressure

τ0

(b) Free body diagram of flat plate

Fig. 7.3: Pressure drag.

When the surface of the object is neither parallel to the flow nor perpendicular
to the flow i.e., the surface of the object is inclined with the direction of flow, then
fluid exerts both friction and pressure drag on the body. The total drag is equal to the
sum of friction drag and pressure drag.

Mathematically:
Total drag, FD = friction drag (FDf) + pressure drag (FDp)

FD = FDf + FDp

7.3.1 Streamlined and Bluff Bodies
A streamlined is that body whose surface coincides with the stream-line, when body
is placed in a flow. In such a shape of body the boundary layer separation occurs
towards the rear most part (i.e., at trailing edge) of the body and small eddies
formation (wake) takes place at rear end. Small eddies formation gives rise to a small
pressure drag. Thus, the function drag makes a major contribution to the total drag
in a streamlined body. The fluid flow over an airfoil is called the streamlined body.

Eddies formation
Flow part an airfoil (or aircraft wing)

Fig. 7.4: Streamlined body.
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A bluff body is that body whose surface does not coincide with the stream-line
when placed in a flow. In such a shape of body, the flow is separated much ahead
of its rear end, resulting in large eddies (wake). Thus pressure drag becomes much
greater than friction drag. A flat plate placed normal to the direction of flow as shown
in Fig. 7.3 and the fluid flow over a sphere as shown in Fig. 7.5 are called the bluff
bodies.

Eddies

.

Flow past a sphere

Fig. 7.5: Bluff body.

7.4 EXPRESSION FOR DRAG AND LIFT
Consider a solid body immerged in a real fluid. The surface of the body is neither
parallel nor perpendicular to the direction of flow as shown in Fig. 7.6.

α

α

τ0dA
pdA cos α

pdA

dA pdA sin α

pdA sin α

pdA cos α

Direction
of flow

U

Fig. 7.6: Flow past immerged solid.

Let dA = small elemental area on the surface of the body.
The forces acting on the small element:
(i) pressure force = pdA, acting perpendicular to the elemental area dA.

(ii) shear force = τ0dA, acting along the tangential direction to the elemental area
dA.
Let θ = angle made by pressure force with horizontal direction.

7.4.1 Drag Force: FD
Small drag force on elemental area;

dFD = force due to pressure in the direction of flow +
force due to shear stress in the direction of flow
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dFD = pdA cos α + τ0 dA sin α

∴ Total drag:  FD = 0cos sinα + τ α∫ ∫pdA dA …(7.4.1)

= FDp + FDf

where FDp = cos α∫ pdA , pressure drag

FDf = 0 sinτ α∫ dA , friction drag

7.4.2 Lift Force: FL
Small lift force on elemental area,

dFL = force due to pressure in the direction perpendicular
to the direction of flow + force due to shear stress
in the direction perpendicular to the direction of
flow.

dFL = –pdA sin α + τ0 dA  cos α
where negative sign show that the pressure force acting in downward direction

= τ0 dA cos α – pdA sin α

∴ Total lift: FL = 0 cos sinτ α − α∫ ∫dA pdA …(7.4.2)

Equations (7.4.1) and (7.4.2) are used to predict the total drag and lift forces
on the bodies.

The process to obtain both the total drag and total lift in actual fluids is very
complicated. Equations (7.4.1) and (7.4.2) are not practical since the detailed
distributions of pressure and shear forces are difficult to obtain by measurements
especially for irregular shapes. To overcome this problem, the resultant drag force and
lift acting on the irregular shape of body are most easily determined by direct
experiment. In case of sphere and other regular shape at low fluid velocity,  the lift
and drag forces may be estimated by using Eqs. (7.4.1) and (7.4.2).

7.4.3 Co-efficient of Drag: CD

It is defined as the ratio of the drag force per unit projected area  
 
 

DF
A

 to the dynamic

pressure 21
2

 ρ 
 

U  of the uniform flow stream.

Mathematically

Co-efficient of drag: CD = 2
/
/ 2ρ

DF A
U

 = 2
2
ρ

DF
A U

or Drag force: FD =
2

2
ρDC A U

…(7.4.3)

where A is the projected area. The projected area of the solid body is defined as the
area obtained by projecting the object on a plane perpendicular to the direction of flow.
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For sphere,  A = 2

4
π D where LD is diameter of the

sphere
For cylinder,  A = LD, axis of cylinder is perpendicular

to the direction of flow.

A = 2

4
π D , axis of cylinder is parallel to the

direction of flow, the same as for
sphere of the same diameter.

7.4.4 Co-efficient of Lift: CL

It is defined as the ratio of the lift force per unit projected area  
 
 

LF
A

 to the dynamic

pressure 21
2

 ρ 
 

U  of the uniform flow stream.

Mathematically:

Co-efficient of lift:  CL = 2
/
/ 2ρ

LF A
U

 = 2
2
ρ

LF
A U

or Lift force:  FL =
2

2
ρLC A U

…(7.4.4)

where A is the projected area. Define the projected area of the solid body as the
area obtained by projecting the body from above in a direction normal to the body (the
projected area is top view of solid body).

For sphere, A = 2

4
π D

For cylinder, A = 2

4
π D , axis of cylinder is horizontal and

perpendicular to the direction of
flow

= LD, axis of cylinder is parallel to the
direction of flow.

The resultant force on the body,

FR = 2 2+D LF F

where FD, FL are determined by using Eqs. (7.4.3) and (7.4.4) respectively.

Problem 7.1: A circular disc of 2 m in diameter is held normal to a 30 m/s wind
of density 1.2 kg/m3. What force is required to hold it at rest ? Assume co-efficient
of drag of disc is 1.2.

Solution: Given data:
Diameter of disc:  D = 2 m
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∴ Area:  A = 2

4
π D  = 

23.14 (2)
4
×

 = 3.14 m2.

Velocity of wind: U = 30 m/s
Density of wind: ρ = 1.2 kg/m3

Co-efficient of drag: CD = 1.2
The force required to hold the disc at rest is equal to the drag force exerted by

wind on the disc,

We know, Drag force: FD =
2

2D
A UC ρ

 = 
21.2 3.14 1.2 (30)

2
× × ×

= 2034.72 N

Problem 7.2: A man weighing 735.75 N descends to the ground from an aeroplane
with the help of a parachute against the resistance of air. The shape of the parachute
is hemispherical of 3 m diameter. Find the velocity of the parachute with which it
comes down. Assume CD = 0.5 and density for air is 1.2 kg/m3.

Solution: Given data:
Weight of the main: W = 735.75 N
∴ Drag force: FD = W = 735.75 N
Diameter of the parachute: D = 3 m

∴ Projected area: A = 2

4
π D  = 23.14

(3)
4

×  = 7.065 m3

CD = 0.5
Density of air: ρ = 1.2 kg/m3

Let U = velocity of the parachute
We know that the drag force:

FD =

735.75 =
20.5 7.065 1.2

2
U× × ×

or U2 = 347.133
U = 18.63 m/s

Problem 7.3: A flat plate 2 m × 2 m moves at 40 km/hr in a stationary air of
density 1.2 kg/m3. If the co-efficients of drag and lift are 0.1 and 0.5 respectively, find

(i) the lift force
(ii) the drag force

(iii) the resultant force, and
(iv) the power required to keep the plate in motion.

2

2
DC A Uρ
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Solution: Given data:
Area of the plate: A = 2 × 2 = 4 m2

Velocity of the plate: U = 40 km/hr = 
40 1000

3600
×

 m/s = 11.11 m/s

Density of air: ρ = 1.2 kg/m3

Co-efficient of drag : CD = 0.1
Co-efficient of lift: CL = 0.5

(i) Lift force: FL = 
2

2
LC A Uρ

 = 
20.5 4 1.2 (11.11)

2
× × ×

= 148.11 N

(ii) Drag force: FD = 
2

2
DC A Uρ

 = 
20.1 4 1.2 (11.11)

2
× × ×

= 29.62 N

(iii) Resultant force: FR = 2 2
D LF F+  = 2 2(29.62) (148.11)+

= 877.34 21936.57+  = 151.04 N
(iv) Power required to keep the plate in motion:

P = force in the direction of motion × velocity
= FD × U = 29.62 × 11.11 = 329.07 W

Problem 7.4: Experiments were conducted in a wind tunnel with a wind speed
60 km/hr on a flat plate of size 3 m long and 1.5 m wide. The density of air is 1.22 kg/m2.
The co-efficients of lift and drag are 0.80 and 0.20 respectively.
Find: (i) the lift force

(ii) the drag force
(iii) the resultant force
(iv) direction of resultant force, and
(v) power exerted by air on the plate.

Solution: Given data:

Speed of wind: U = 60 km/hr = 
60 1000

3600
×

 m/s = 16.66 m/s

Length of flat plate: L = 3 m
Width of flat plate: b = 1.5 m
∴ Area of plate: A = L × b = 3 × 1.5 = 4.5 m2

Density of air: ρ = 1.22 kg/m3

CL = 0.80
CD = 0.20

(i) Lift force: FL

We know, FL = 
2

2
LC A Uρ

 = 
20.80 4.5 1.22 (16.66)

2
× × ×

= 609.51 N
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(ii) Drag force: FD

we know, FD = 
2

2
DC A Uρ

 = 
20.2 4.5 1.22 (16.66)

2
× × ×

= 152.37 N
(iii) Resultant force: FR

We know, FR = 2 2
D LF F+  = 2 2(152.37) (609.51)+

= 628.26 N
(iv) Direction of the resultant force: θ

we know, tan θ = L

D

F
F

 = 
609.51
152.37

tan θ = 4
or θ = tan–1 4 = 75.96º

(v) Power exerted by air on the plate: P
we know, P = FD × U = 152.37 × 16.66 W = 2538.48 W

Problem 7.5: A truck having a projected area of 10 m2 travelling at 60 km/hr has
a total resistance of 2500 N. Of this 20% is due to rolling friction and 15% is due to
surface friction. The rest is due to form drag. Find the co-efficient of form drag. Take
ρ = 1.22 kg/m3 for air.

Solution: Given data
Projected area: A = 10 m2

Speed of truck: U = 60 km/hr = 
60 1000

3600
×

 m/s = 16.66 m/s

Total resistance: FT = 2500 N
Resistance due to rolling friction:  Fr = 20% of FT = 0.20 × 2500 = 500 N

Resistance due to surface friction:  Fs = 15% of FT = 0.15 × 2500 = 375 N
∴ Form drag: FD = FT – Fr – Fs = 2500 – 500 – 375

= 1625 N
Density of air: ρ = 1.22 kg/m3

also we know FD =
2

2
DC A Uρ

1625 =
210 1.22 (16.66)

2
DC × × ×

or CD = 0.959

Problem 7.6: A kite of dimension 0.9 m × 0.9 m and weight 7.9 N is maintained
in air at an angle 10º to the horizontal. The string attached to the kite makes an angle
of 45º to the horizontal. The pull on the string is 32 N when the wind is flowing at a
speed 30 km/hr. Find the co-efficients of drag and lift. Take density of air as 1.2 kg/m3.

Solution: Given data:
Projected area of kite: A = 0.9 × 0.9 = 0.81 m2

Weight of kite: W = 7.9 N
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θ2 = 45º

θ1 = 10º

P = 32 N

W

U
Kite

FL

FD

Fig. 7.7: Schematic for Problem 7.6

Angle made by kite with horizontal:   θ1 = 10º
Angle made by string with horizontal: θ2 = 45º
Pull on the string: P = 32 N

Speed of wind: U = 32 km/hr = 
32 1000

3600
×

 m/s = 8.888 m/s

Density of air:  ρ = 1.2 kg/m3

Drag force: FD = force exerted by wind on the kite in the
direction of wind

= component of pull P along x-axis
= P cos 45º = 32 × cos 45º = 22.62 N

and Lift force: FL = force exerted by wind on the kite
perpendicular to the direction of wind

= component of P in vertical downward
direction + weight of kite.

= P sin 45º + W = 32 × sin 45º + 7.9
= 30.527 N

(i) Drag co-efficient:  CD

We know, FD = 
2

2
DC A Uρ

22.62 = 
20.81 1.2 (8.888)

2
DC × × ×

or CD = 0.589
(ii) Lift co-efficient: CL

we know, FL = 
2

2
LC A Uρ

30.527 = 
20.81 1.2 (8.888)

2
LC × × ×

or CL = 0.795
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Problem 7.7: A body of length 2.5 m has a projected area 2 m2 normal to the
direction of its motion. The body is moving through water, which is having dynamic
viscosity = 0.01 poise. Find the drag on the body if it has a drag co-efficient 0.5 for
Reynold’s number of 8 × 106.

Solution: Given data:
Length of body:  L = 2.5 m
Projected area: A = 2 m2

Dynamic viscosity of water: µ = 0.01 poise = 
0.01
10  Ns/m2 = 0.001 Ns/m2

Drag co-efficients: CD = 0.05

Reynold’s number: Re = µ
LUρ

8 × 106 =
1000 2.5

0.001
U× ×

 ( ρ = 1000 kg/m3 for water)

or U = 3.2 m/s

We know, Drag force:  FD = 
2

2D
A UC ρ

 = 
20.5 2 1000 (3.2)

2
× × ×

= 5120 N

Problem 7.8: A jet plane which weighs 30 kN and having a wing area of 20 m2

flies at a velocity of 850 km/hr, when the engine delivers 8 MW power, 70% of the
power is used to overcome the drag resistance of the wing. Find the co-efficients of
lift and drag for the wing. Take density of the atmospheric air as 1.2 kg/m3.

Solution: Given data:
Weight of plane: W = 20 kN = 30 × 103 N
Wing area: A = 20 m2

Speed of plane: U = 850 km/hr = 
850 1000

3600
×

m/s = 236.11 m/s

Engine power: P = 8 MW = 8 × 106 W
Power used to overcome drag resistance:

= 70% of P = 0.70 × 8 × 106 = 5.6 × 106 W
Density of air: ρ = 1.2 kg/m3

The lift force should be equal to weight of the plane
i.e., FL = W = 30 × 103 N

also FL =
2

2
LC A Uρ

30 × 103 =
220 1.2 (236.11)

2
LC × × ×
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or CL = 0.0448
Power used to overcome drag resistance = FD × U

5.6 × 106 = FD × 236.11
or FD = 23717.75 W

also FD =
2

2
DC A Uρ

23717.75 =
220 1.2 (236.11)

2
DC × × ×

or CD = 0.03545

7.5 DRAG ON A SPHERE
Consider a smooth sphere immersed in a flowing fluid.

Let U = velocity of free steam
D = diameter of sphere
ρ = density of fluid, and
µ = dynamic viscosity of fluid

We know, Reynold’s number:  Re = Inertia force:
Viscous force: 

i

V

F
F

 = 
DUρ
µ

Fig. 7.8: Flow past immersed sphere.

If Reynold’s number, Re < 0.2: In this case, viscous force is more predominant
than the inertia force. So, the drag on a sphere, is entirely due to friction only and is
prescribed by Stokes law:

FD = 3πDµU …(7.5.1)

Also we know FD = 21
2 DC AUρ …(7.5.2)

Equating Eqs. (7.5.1) and (7.5.2), we get

3 π D µ U = 21
2 DC AUρ

or
6 D

AU
π µ

ρ
= CD

where A = 2

4
Dπ
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∴
2

6

4

D

D U

π µ
π

ρ
= CD

24
DU

µ
ρ

= CD

or CD =
24
Re …(7.5.3)

Equation (7.5.3) is called Stokes law. It is applicable for sphere when Reynold’s
number is less than 0.2.

Oseen has modified the stokes law as

CD =
24 31

16Re Re
 + 
 

…(7.5.4)

Equation (7.5.4) is applicable for sphere when Reynold’s number lies between
0.2 and 5.

CD = 0.4 for 5 ≤ Re < 103

= 0.5 for 103 ≤ Re < 105

= 0.2 for Re ≥ 105

7.6 DRAG ON A CYLINDER
Consider cylinder of diameter D and length L when the cylinder is placed in the fluid
such that its axis is horizontal and perpendicular to the direction of flow as shown in
Fig. 7.9, we know that

Reynolds number:  Re = 
DU DUρ

=
µ ν

where, U = velocity of free stream, ν = kinematic viscosity.

Eddies

U

Fig. 7.9: Laminar boundary layer separation with eddies formation; flow over circular
cylinder at Re = 2000.

At very low upstream  velocity (Re ≤ 1), the fluid completely wraps around the
cylinder and the fluid on the top and the bottom meet on the rear side of the cylinder
in an orderly manner. Thus, the fluid follows the curvature of the cylinder.

At higher velocities, the fluid still hugs the cylinder on the frontal side, but it is
too fast to remain attached to the surface as it approaches the top or bottom of the
cylinder. As a result, the boundary layer detaches from the surface, forming a
separation region behind the cylinder and results in eddies formation. Thus, the
pressure at the rear side is much lower than the pressure in front side.
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The nature of the flow across a cylinder strongly affects the drag co-efficient
CD. The value of CD changes with the variation of Reynolds number has been
observed by following experiments:

(i) For Re ≤ 1, the drag co-efficient decreases with increasing Reynolds
number.

(ii) At about Re = 10, separation starts occurring on the rear of the body and
starting vortex at about Re = 90. The region of separation increases with
increasing Reynolds number upto about Re = 103.
i.e., CD = 4.5 at Re = 10

= 2 at Re = 90
= 0.95 at Re = 103

The drag co-efficient continues to decrease with increasing Reynold’s
number in this range of 10 ≤ R ≤ 103. A decrease in the drag co-efficient
does not necessarily indicate a decrease in drag. The drag force is proportional
to the square of the velocity, and the increase in velocity at higher Reynold’s
number usually more than offsets the decrease in the drag co-efficient.

(iii) In the moderate range of 103 ≤ Re ≤ 105, the drag co-efficient remains
relatively constant. Thus behaviour is characteristic of blunt bodies. The
flow in the boundary layer is laminar in this range, but the flow in the
separated region past the cylinder is highly turbulent with wide turbulent
eddies.
The value of co-efficient of drag, CD = 0.95 at  Re = 103

= 1.3 at  Re = 104

= 1.1 at  Re = 105

(iv) There is a sudden drop in the drag co-efficient some where in the range of
105 < Re < 106, usually at Re = 3 × 105. This large reduction in Cd is due
to fact that the flow in the boundary layer become turbulent, which moves
the separation point further on the rear of the body, reducing the size of the
eddies and thus the magnitude of the pressure drag.
The value of CD = 0.3 at  Re = 3 × 105

(v) For Re > 106, the value of CD increases and it becomes equal to 0.7 at
the end.

7.7 LIFT AND CIRCULATION ON A CIRCULAR CYLINDER
Lift was defined earlier as the component of the net force (due to viscous and pressure
forces) perpendicular to direction of flow. It is zero, when a body is placed in fluid
in such a way that axis of body is parallel to the direction of flow and body is
symmetrical. In this case only drag force acts on the body.

Lift will act on the body when the axis of symmetrical body is inclined to the
direction of flow or body is unsymmetrical. Consider the case of a circular cylinder
whose axis is parallel to the direction of flow and cylinder is stationary. So in this the
lift will be zero. But if the cylinder is rotated, the axis of the cylinder is not maintained
parallel to the direction of flow and hence, lift will act on the rotating cylinder. Consider
the following cases:



Flow Past Submerged Bodies 375

(i) Ideal fluid flow over stationary cylinder.
Consider an ideal fluid flow over stationary cylinder as shown in Fig. 7.5.
Let U = velocity of free stream fluid

R = radius of the cylinder
θ = angle made by any point C on the circumference of the

cylinder with direction of flow.
The velocity at any point C on the cylinder is given by:

uθ = 2U sin θ …(7.7.1)
The velocity distribution over the upper half and lower half of the cylinder
from the axis AB of the cylinder are identical and hence, the pressure
distributions will also be same. Hence, the lift acting on the cylinder will be
zero.

U

θ
R

BA O

C

uθ

Fig. 7.10: Ideal fluid flow over stationary cylinder.

(ii) Circulation
Consider a closed curve ABC of fluid flow around the cylinder. The
circulation around such a curve is defined as the summation of product of
velocity component along the element (such as ds) of the curve and the
elemental length ds. It is denoted by Γ (Greek capital letter ‘gamma’)

A

B

C

ds
θ1

uθ1

U

Fig. 7.11: Circulation.
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Let uθ = component of free stream velocity (U)
along the tangent on element ds

= U cos θ1
θ1 = angle made between the length of element

ds and free stream velocity U
∴ Circulation along the closed curve:

Γ =  velocity component along the element

× length of element

=  uθ1. ds =  U cos θ1. ds …(7.7.2)

Circulation for the flow field in a free-vortex flow:
We know that the equation for the free vortex flow,

uθ1R = C
where uθ1 = velocity of fluid in a free vortex flow

R = radius, where velocity is uθ1

A BO

R

Stream
lines 

C

R
ds

dθ

( )a ( )b

Fig. 7.12: Stream lines for free vortex.

The flow pattern for the free vortex flow consists of stream lines which are
series of concentric circles as shown in Fig. 7.12(a). The stream velocity
at any point on a circle of radius R is equal to the tangential velocity at that
point. It means that the angle between the stream lines and tangent on the
stream is zero.

∴ U = uθ1
cos θ1 = cos 0° = 1

ds = Rdθ From Fig. 7.12(b)
Substituting these values in Eq. (7.7.2), we get

Γ =  uθ1
 × 1 × Rdθ

=  uθ1
 Rdθ ( uθ1

 R = C)
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= C ∫ dθ = ∫ Cdθ

= C × 2π ( 2dθ = π∫ )

Γ = uθ1 R × 2π

or uθ1
= 2 R

Γ
π

…(7.7.3)

Flow over a rotating cylinder due to constant circulation:

Fig. 7.13: Flow over a rotating cylinder.

The flow pattern over a rotating cylinder to which constant circulation is
imparted is obtained by combining the flow patterns as shown in Fig. 7.10
and 7.12(a). The resultant flow pattern is shown in Fig. 7.13. The velocity
at any point on the surface of the cylinder is obtained by adding Eqs. (7.7.1)
and (7.7.3) as

u = uθ + uθ1

u = 2 sin
2

U
R

Γ
θ +

π
…(7.7.4)

For upper half portion of the cylinder (i.e., above AB), θ varies from 0º to
180º and hence the velocity component 2 U sin θ is positive.
For lower half portion of the cylinder (i.e., below AB), θ lies between 180º
and 360º and hence the velocity component 2U sin θ will be negative. It
means, the velocity on the upper half portion of the cylinder will be more
than the velocity on the lower half portion. According to Bernoulli’s equation,
the surface where velocity is less, pressure will be more and vice-versa.
Hence, the lower half portion of the cylinder, where velocity is less, pressure
will be more than the pressure on the upper half portion of the cylinder. Due
to this pressure difference on the two portions of the cylinder, a force will
be acting on the cylinder in a direction perpendicular to the direction of flow,
is called lift. The lift can be exerted even if the cylinder is rotating at constant
speed in a uniform flow.

(iii) Expression for lift force and lift co-efficient acting on rotating cylinder:
Consider a small element of the surface of the cylinder shown in Fig. 7.14.
Let ds = length of a small element
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ps = pressure on the surface of the element
R = radius of cylinder

dθ = angle made by the length ds at the centre
of the cylinder

p = pressure of the free stream of fluid
U = free stream velocity of fluid
us = velocity of fluid on the surface of the

cylinder

R

ds

dθ
θ

ps

θ

Fig. 7.14: Lift on a rotating cylinder.

Applying Bernoulli’s equation to a point away from cylinder in free stream
to a point laying on the surface of cylinder such that both the points are on
the same horizontal line, we have

2

2
p U
g g

+
ρ

=
2

2
s sp u
g g

+
ρ

∴ sp
gρ

=
22

2 2
sup U

g g g
+ −

ρ

=
22

21
2

sup U
g g U

 
+ − 

ρ  
…(7.7.5)

The value of us from Eq. (7.7.4), we get

us = u = 2 sin
2

U
R

Γ
θ +

π
Substituting the value of us in eq.(7.7.5), we get

sp
gρ =

2

2

2

2 sin
21

2

U
p U R
g g U

 Γ θ +  π  + −
 ρ  

=

2
2 2

2 2 2

2

4 sin 4 sin
241

2

U Up U RR
g g U

 Γ Γ
θ + + θ ππ + −

 ρ  
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ps =
2 2

2
2 2 2

4 sin1 4sin
2 24
Up

URR U
 ρ Γ Γ θ

+ − θ − − ππ 
…(7.7.6)

The lift force acting on the small length ds on the element, due to pressure
ps is

dFL = component of ps in the direction perpendicular to flow ×
area of the element

= –ps sin θ × ds L
–ve sign shown that the pressure force component acts downward direction.
where, L = length of the cylinder

  ds = Rdθ
∴ dFL = –ps sin θ × dθ . L
The total lift force is obtained by integrating above equation, so

∴ FL =
2

0

sin .sp Rd L
π

− θ× θ∫

=
2

0

sin .sp RL d
π

− θ θ∫

Substituting the value of ps from Eq.(7.7.6), we get

=
2 2 2

2
2 2 2

0

4 sin1 4sin sin .
2 24
Up RL d

URR U

π   ρ Γ Γ θ
− + − θ − − θ θ  

ππ  ∫

=
2 2 2 2

3
2 2 2

0

sin 4 sinsin sin 4sin
2 24
URL p d

URR U

π   ρ Γ θ Γ θ
− θ + θ − θ − − θ  

ππ  ∫

But
2

0

sin .d
π

θ θ∫ =
2

3

0

sin .d
π

θ θ∫ = 0

∴ FL =
2 2

0

4 sin
2 2
URL d

UR

π ρ Γ θ − − θ 
π ∫

=
22

2

0

4 sin
2 2
URL d

UR

πρ Γ
× θ θ

π ∫

=
2

2

0

sinL U d
πρ Γ

θ θ
π ∫

But
2

2

0

sin d
π

θ θ∫ =
22

0

sin 2
2 4

π
θ θ

−  = 
2 sin 4
2 4
π π − 

 
= π
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∴ FL =
L Uρ Γ

× π
π

FL = ρLUΓ …(7.7.7)
Equation (7.7.7) is known as Kutta-Joukowaski equation.

also FL =
2

2L
A UC ρ

∴ ρLUΓ =
2

2L
A UC ρ

or CL =
2L
AU

Γ

where A = 2RL, projected area.
From Eq. (7.7.3),

uθ1 = 2 R
Γ
π

T
R

= 2πuθ1

∴ CL =
2

2
L

RLU
Γ

 = RU
Γ

CL = 12 u
U

θπ
( 12 u

R θ
Γ

= π )

where uθ1 = velocity of rotation of the cylinder in the tangential direction.
(iv) Drag force acting on a rotating cylinder:

The drag force acting on the rotating cylinder in a uniform flow is zero
because the velocity and pressure distribution on symmetrical about the
vertical axis of the cylinder.

(v) Location of stagnation points for a rotating cylinder in a uniform flow:
Stagnation point is defined as the point at which the velocity of flow is zero.
The cylinder is rotating in the uniform velocity as shown in Fig. 7.13. The
velocity at any point on the surface of the cylinder is given by Eq. (7.7.4)
as

= U cos θ1

u = 2 sin
2

U
R

Γ
θ +

π
For stagnation point, u = 0

∴ 0 = 2 sin
2

U
R

Γ
θ +

π

or 2 sinU θ = 2 R
Γ
π
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or sin θ = 2 UR
Γ

−
π

…(7.7.8)

Equation (7.7.8) gives the location of stagnation points on the surface of the
cylinder. There are two values of θ, which satisfy the Eq. (7.7.8). As sin
θ is –ve in Eq. (7.7.8), it means θ is more than 180º but less than 360º. The
two values of θ are such that one value is between 180º to 270º and other
value is between 270º and 360º.
For a single stagnation point, θ = 270º and then Eq. (7.7.8) becomes as

sin 270º =
2 UR

Γ
−

π

or –1 =
2 UR

Γ
−

π

or Γ = 4πUR …(7.7.9)
Equation (7.7.9) shows that the condition of single stagnation point in terms
of circulation Γ.
From Eqs. (7.7.3) we get

uθ1 = 2 R
Γ
π

or Γ = 2πRuθ1 …(7.7.10)
Equating Eqs. (7.7.9) and (7.7.10) we get

4πUR = 2πRuθ1
2U = uθ1

or uθ1 = 2U

7.8 MAGNUS EFFECT: LIFT GENERATED BY SPINNING
When a cylinder or sphere in a flow is rotated at a sufficiently high rate, a lift

is produced on the cylinder. The phenomenon of producing lift by the rotation of a
solid body is called the Magnus effect after the German scientist Heinrich Magnus
(1802-1870), who was the first to study the lift of rotating bodies, which is shown
in Fig. 7.15 for the simplified case of ideal flow. When the ball is not spinning, the lift
is zero because of top-bottom symmetry. But when the cylinder is rotated about its
axis, the cylinder drags some fluid around because of the no-slip condition and the
flow field reflects the superposition of the spinning and non-spinning flows. The
stagnation points shift down, and the flow is no longer symmetric about the horizontal
plane that passes through the centre of the cylinder. The average pressure on the upper
half is less than the average pressure at the lower half because of the Bernoulli’s effect,
and thus there is a net upward force (lift) acting on the cylinder.
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Stagnation
points

(a) Irrotational flow over a stationary cylinder

High velocity,
low pressure

Low velocity,
high pressure

Stagnation
points

Lift

(b) Irrotational flow over a rotating cylinder

Fig. 7.15: Lift on a rotating circular for the case of ideal flow.

Problem 7.9: A metallic sphere of specific gravity of 6 falls in an oil of specific
gravity 0.85. The diameter of the sphere is 10 mm and it attains a terminal velocity
of 0.05 m/s. Find the viscosity of the oil.

Solution: Given data:
Specific gravity of metallic sphere: Ss = 6
∴ Density of metallic sphere: ρs = Ss × ρwater = 6 × 1000 kg/m3 = 6000 kg/m3

Specific gravity of oil: So = 0.85
∴ Density of oil: ρo = So × ρwater = 0.85 × 1000 kg/m3

= 850 kg/m3

Diameter of sphere: D = 10 mm = 10 × 10–3 m
Terminal velocity of sphere: U = 0.05 m/s
Weight of sphere: W = Mg

= ρs × volume of sphere × g = 3

6s D gπ
ρ × ×

= 33.146000 (10 10 ) 9.81
6

−× × × ×  = 0.0308 N
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Buoyant force on sphere:  FB = ρogV
where ρo = density of oil

V = volume of sphere

∴ FB = 3850 9.81
6

Dπ
× ×

= 3 33.14850 9.81 (10 10 )
6

−× × ×  = 0.00436 N

Drag force on the sphere:  FD
FD = 3 πµDU (by Stokes law)

= 3 × 3.14 × µ × 10 × 10–3 × 0.05
= 0.00471 µ

For equilibrium condition,
Equating downward force = upward forces

W = FD + FB
0.0308 = 0.00471 µ + 0.00436

or 0.00471 µ = 0.02644
or µ = 5.613 Ns/m2 = 5.613 × 10 poise

= 56.13 poise
The expression for drag force:  FD = 3πµDU,
Stokes law is valid only upto Reynolds number less

than 0.2. Hence, it is necessary to calculate Reynolds number
for the flow.

∴ Re = µ
UDρ

=
3850 0.05 10 10

5.613

−× × ×
=  0.0757

Hence, Re < 0.2 and so the expression for drag force,
FD = 3πµDU is valid.

Problem 7.10: Find the velocity of fall of rain drop of 0.3 mm diameter in
atmospheric air having density 1.2 kg/m3 and kinematic viscosity 0.15 stokes.

Solution: Given data:
Diameter of rain drop: D = 0.3 mm = 0.3 × 10–3 m
Density of air: ρ = 1.2 kg/m3

Kinematic viscosity of air: ν = 0.15 stokes = 0.15 × 10–4 m3/s
Weight of rain drop: W = Mg = ρwVg

where V = 3

6
Dπ

, volume of rain drop

∴ W = 3

6w D gπ
ρ × ×

= 33.141000 (0.3 10 ) 9.81
6

−× × × ×

FB

FD

U

W

Fig. 7.16: Schematic
for Problem 7.9
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= 1.386 × 10–7 N
Drag force on rain drop is given by stokes law:

FD = 3π µ DU
where U = uniform velocity of rain drop

µ = ρν, viscosity of the air
∴ FD = 3 π ρνDU

= 3 × 3.14 × 1.2 × 0.15 × 10–4 × 0.3 × 10–3 U
= 5.086 × 10–8 U

Buoyant force: FD = ρgV = 3

6
g Dπ

ρ ×

= 3 33.141.2 9.81 (0.3 10 )
6

−× × × ×

= 1.66 × 10–10 N
For equilibrium condition,
Equating downward force = upward force

W = FD + FB
1.386 × 10–7 = 5.086 × 10–8 U

+ 1.66 × 10–10

or 5.086 × 10–8 U = 1.384 × 10–7

U = 2.72 m/s

Reynolds number: Re = µ
UDρ

 = 
UD
ν

=
3

4
2.72 0.3 10

0.15 10

−

−

× ×
×

 = 54.4

Thus, Re > 0.2 and therefore the Stokes law cannot be applicable.
2nd approach:

Drag force: FD =
2

2
DC U Aρ

where CD = co-efficient of drag
= 0.4     for 5 < Re < 1000

FD = 0.4 × 1.2 × U2 × 2

4
Dπ

= 2 3 23.140.4 1.2 (0.3 10 )
4

U −× × × ×

= 3.39 × 10–8 U2

Now W = FD + FB
1.386 × 10–7 = 3.39 × 10–8 U2 + 1.66 × 10–10

or 3.39 ×10–8 U2 = 1.38 × 10–7

Fig. 7.17: Schematic
for Problem 7.10

FB

FD

U

W



Flow Past Submerged Bodies 385

or U2 = 4.07
U = 2.01 m/s

Reynolds number: Re =
µ
UDρ

 = 
UD
ν

 = 
3

4
2.01 0.3 10

0.15 10

−

−

× ×
×

 = 40.2

The value of Reynolds number lies between 5 and 1000. So, assumed values of
CD = 0.4 is right.

Hence, the velocity of fall of rain drop = 2.01 m/s.

Problem 7.11: During the flood a very fine silt of diameter 0.002 mm and specific
gravity 2.8, enters the reservoir 40 m deep. Find the time required for all the silt to
settle down. Take viscosity for water as 0.01 poise.

Solution: Given data:
Diameter of the silt: D = 0.002 mm = 0.002 × 10–3 m

= 2 × 10–6 m
Specific gravity of the silt: S = 2.8
∴ Density of the silt: ρ = S × ρw = 2.8 × 1000 kg/m3 = 2800 kg/m3

Depth of the reservoir: H = 40 m
Viscosity of water: µ = 0.01 poise = 0.001 Ns/m2

According to Stokes law, the drag force on the silt:
FD = 3πµDU = 3 × 3.14 × 0.001 × 2 × 10–6 × U

= 1.884 × 10–8 U

Buoyant force: FB = ρw gV = 3

6w g Dπ
ρ

= 6 33.141000 9.81 (2 10 )
6

−× × × ×

= 4.107 × 10–14 N

Weight of the silt: W = Mg = ρVg = 3

6
D gπ

ρ× ×

= 6 33.142800 (2 10 ) 9.81
6

−× × × ×

= 1.149 × 10–13 N
Now equating the forces i.e.,

Downward force = sum of upward forces
W = FD + FB

1.149 × 10–13 = 1.884 × 10–8 U
+ 4.107 × 10–14

or 1.884 × 10–8 U = 7.383 × 10–14

or U = 3.91 × 10–6 m/s

FB

FD

U

W

Fig. 7.18: Schematic
for Problem 7.11
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also U =
distance travel: 

time take: 
H

t

or 3.91 × 10–6 =
40
t

or t = 6
40

3.91 10−×
 seconds = 10.23 × 106 seconds

=
610.23 10

60 60 24
×

× ×
 days = 118.40 days

Problem 7.12: The air having a velocity of 50 m/s is flowing over a cylinder of
diameter 1 m and length 8 m, when the axis of the cylinder is horizontal and
perpendicular to the direction of flow. The cylinder is rotated about its axis and a lift
of 6500 N per metre length of the cylinder is developed. Find the speed of rotation
and location of the stagnation points. Take density of air as 1.22 kg/m3.

Solution: Given data:
Velocity of air: U = 50 m/s
Diameter of the cylinder: D = 1 m
Length of the cylinder: L = 8 m

Lift per metre length: LF
L

= 6500 N/m

Density of air: ρ = 1.22 kg/m3

We know, FL = ρLUΓ

or LF
L

= ρUΓ

or 6500 = 1.22 × 50 × Γ
∴ Circulation: Γ = 106.55 m3/s
We know from Eq. (7.7.3) the speed of rotation corresponding to circulation,

uθ = 2 R
Γ
π

 = D
Γ

π
 = 

106.55
3.14 1×

= 33.93 m/s

also uθ = 60
DNπ

∴ 33.93 =
3.14 1

60
N× ×

or N = 648.34 rpm
Position of stagnation points are given by Eq. (7.7.8), as

sin θ =
4 UR

Γ
−

π
 = 

2 UD
Γ

−
π

 = – 106.55
2 3.14 50 1× × ×

sin θ = –0.3393
θ = –19.83º

(–ve sin θ lies in 3rd and 4th quadrants)
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θ = 180º + 19.83, 360º – 19.83º
= 199.83º, 340.17º

Problem 7.13: A cylinder rotates at 120 rpm with its axis perpendicular in an air
stream which is having uniform velocity 20 m/s. The cylinder is 0.8 m in diameter and
5 m long.

Find: (i) the circulation, (ii) lift force and (iii) position of stagnation points.
Take density of air as 1.22 kg/m3.

Solution: Given data:
Rotation of the cylinder: N = 120 rpm
Velocity of air: U = 20 m/s
Diameter of the cylinder: D = 0.8 m
Length of the cylinder: L = 5 m
Density of air: ρ = 1.22 kg/m3

Tangential velocity of the cylinder:

uθ = 60
DNπ

 = 
3.14 0.8 120

60
× ×

 = 5.02 m/s

also, uθ = 2 R
Γ
π

From Eq. (7.7.3)

uθ = 2 D
Γ
π

5.02 = 3.14 0.8
Γ
×

or Γ = 12.61 m2/s
(ii)  Lift force: FL = ρLUΓ = 1.22 × 5 × 20 × 12.61

= 1538.42 N
(iii) Position of stagnation points are given by Eq. (7.7.8), as

sin θ = 4 UR
Γ

−
π

sin θ = 2 UD
Γ

−
π

sin θ = 
12.61

2 3.14 20 0.8
−

× × ×
sin θ = – 0.12549

θ = –7.20°
(–ve sin θ lies in 3rd and 4th quadrants)

∴ θ = 180º + 7.20º, 360º – 7.20º
= 187.2º, 352.8º

7.9 LIFT ON AN AIRFOIL
An airfoil is a stream line body. It has a rounded leading edge and profile is gradually
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tapered towards the trailing edge. Such a geometrical configuration produces high lift
and low drag.

The profile of an airfoil is used in aircraft wings (also known as airfoils), blades
of propellers, turbines and pumps etc.

Sp
an

: L

Chord line

Trailing
edge

Leading
edge 

α

Angle ofattack: α

Chord: C

Fig. 7.19: Configuration of an airfoil

Definitions of various terms associated with an airfoil:
(i) Leading and trailing edges: The leading of an airfoil is usually a circular arc

at which the fluid first strikes. The trailing edge is of zero radius is also
known as rear of airfoil.

(ii) Chord line or chord: It is a line joining the leading and trailing edges of the airfoil.
(iii) Profile or centre line: It is a line obtained by joining the mid points of the profile.
(iv) Angle of attack: It is angle between the chord line and the direction of free

stream. It is denoted by α.
(v) Wingspan or span: It is the length of leading or trailing edges.

(vi) Stall: Beyond a certain value of the angle of attack, the separation point
moves toward the leading edge and the lift produced by the airfoil starts
diminishing. The airfoil is then said to be operating under stalled condition.
The value of the angle of attack at which lift reaches its maximum value is
known as the stalling angle.

(vii) Aspect ratio: It is a ratio of the span L to the chord length C.
Mathematically,

Aspect ratio: AR =
Span

Chord length
L
C

=

The condition of flow at the trailing edge depends upon magnitude of
circulation. The circulation required to produce a tangential stream line at the
trailing edge is given by

U

Chord line and
Profile line



Flow Past Submerged Bodies 389

(a) Symmetrical airfoil (Chord line coincides with profile line)

U
Profile line

Chord line

(b) Non-symmetrical airfoil (Chord line does not coincide with profile line)

Fig. 7.20

Γ = π CU sin α
where, C = chord

U = velocity of airfoil
α = angle of attack

According to Kutta-Joukowaki’s Eq. (14.7.7), we get
FL = ρ U L Γ

= ρ U L × π CU sin α ( sin )CUΓ = π α
= π ρ CU2 L sin α …(7.9.1)

Also we know that

FL = 
2

2L
A UC ρ

where CL = co-efficient of lift
A = C × L, projected area

∴ FL = 
2

2L
CL UC ρ

…(7.9.2)

Equating Eqs. (14.9.1) and (14.9.2), we get

π ρ CU2 L sin α = 
2

2L
CL UC ρ

π sin α = 
2

LC

or CL = 2π sin α …(7.9.3)
Thus, it is clear from above Eq. (7.9.3), the co-efficient of lift (CL) depends
upon the angle of attack (α).

7.9.1 Steady State of a Flying Object
When a flying object, for example, airplane is in a steady state, the weight (W) of the
airplane is equal to the lift force (FL) and thrust developed by the engine is equal to
the drag force.

Mathematically,

Weight: W = FL = 
2

2L
AUC ρ

       and thrust by the engine: Ft = FD = 
2

2
DC AUρ
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Problem 7.14: A jet plane which weights 30 kN and has a wing area of 20 m2 flies
at a velocity of 950 km/hr when the engine delivers a power of 7500 kW, 65% of the
power is used to overcome the drag resistance of the wing. Find the co-efficients of
lift and drag for the wing. Take density of air as 1.22 kg/m3.

Solution: Given data:
Weight of the plane: W = 30 kN = 30 × 103 N = FL, lift force
Area of the wing: A = 20 m2

Speed of the plane: U = 950 km/hr = 
950 1000

3600
×

 m/s

= 263.88 m/s
Power delivered by the engine: P = 7500 kW = 7500 × 103 W
Drag power: PD = 0.65 P = 0.65 × 7500 × 103 W

= 4875 × 103 W
also PD = FD . U
∴ 4875 × 103 = FD × 263.88
or FD = 18474.30 N

We know, Lift force: FL =
2

2L
A UC ρ

30 × 103 =
220 1.2 (263.88)

2
LC × × ×

or CL = 0.0359

Drag force: FD =
2

2
DC A Uρ

18474.30 =
220 1.2 (263.88)

2
DC × × ×

or CD = 0.0221

Problem 7.15: An airfoil of chord length 2 m and of span 15 m has an angle of
attack as 6º. The airfoil is moving with a velocity of 360 km/hr in air whose density
is 1.2 kg/m3. Find the weight of the airfoil and the power required to drive it. The
values of co-efficients of drag and lift corresponding to angle of attack are given as
0.035 and 0.52 respectively.

Solution: Given data:
Chord length: C = 2 m
Span: L = 15 m
Angle of attack: α = 6º

Velocity of airfoil: U = 360 km/hr = 
360 1000

3600
×

 m/s = 100 m/s
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Density of air: ρ = 1.2 kg/m3

Co-efficient of drag: CD = 0.035
Co-efficient of lift: CL = 0.52
Area of wind: A = C × L = 2 × 15 = 30 m2

Weight of airfoil: W = FL = 
2

2
LC AUρ

 = 
20.52 1.2 30 (100)

2
× × ×

= 93600 N

Drag force: FD =
2

2
DC AUρ

 = 
20.035 1.2 30 (100)

2
× × ×

= 6300 N
Power required: PD = FD . U = 6300 × 100 W = 630 × 103 W

= 630 kW

Problem 7.16: An airplane weighing 40 kN is flying in a horizontal direction at
350 km/hr and has a wing surface area of 30 m2. Find the lift co-efficient and the
power required to drive the plane. Assume drag co-efficient is 0.03 and density of air
is 1.2 kg/m3.

Solution: Given data:
Weight of the plane: W = 40 kN = 40 × 103 N

Speed of the plane: U = 350 km/hr = 
350 1000

3600
×

m/s = 97.22 m/s

Area of wing: A = 30 m2

Co-efficient of drag: CD = 0.03
Density of air: ρ = 1.2 kg/m3

For equilibrium in vertical direction, lift is equal to the weight of airplane.

i.e., FL = W = 
2

2
LC AUρ

40 × 103 =
21.2 30 (97.22)

2
LC × × ×

or CL = 0.235

Drag force: FD =
2

2
DC AUρ

 = 
20.03 30 1.2 (97.22)

2
× × ×

= 5103.93 N
Power required to drive the plane:

PD = FD × U = 5103.93 × 97.22 W
= 496204.07 W = 496.204 kW
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Contd...

SUMMARY

1. The force in the direction of flow exerted by the fluid on the solid body is
called drag force or drag.

2. The force exerted by the fluid in the direction perpendicular to the flow is
called lift.

3. Types of drag force:
(i) Friction drag or wall drag

(ii) Pressure drag or  form drag
4. Expression for the drag and lift forces are:

Drag force:  FD =
2

2
DC AUρ

Lift force:  FL =
2

2
LC AUρ

where, CD = co-efficient of drag
CL = co-efficient of lift
A = projected area of the body
ρ = density of fluid
U = free stream velocity of fluid

Resultant force exerted by fluid on solid body,

FR = 2 2
D LF F+

5. A body whose surface coincides with the stream-lines, when the body is
placed in a flow is called stream-lined body. In such types of body, the
friction drag is much greater than the pressure drag.

6. A body whose surface does not coincides with the stream-lines, when the
body is placed in a flow is called bluff body. In such types of body, the
pressure drag is much greater than the friction drag.

7. The drag force on the sphere:
FD = 3π DµU

for  Re < 0.2
Co-efficient of drag for sphere: CD

CD =
24
Re for  Re < 0.2

=
24 31

16Re Re
 + 
 

for 0.2 < Re < 5

= 0.4 for  5 ≤ Re < 103

= 0.5 for  103 ≤ Re < 105

= 0.2 for  Re ≥ 105
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8. The velocity at any point C on the cylinder is prescribed by
uθ = 2Usinθ

where, uθ = tangential velocity on the surface of
the cylinder.

U = velocity of free stream fluid
θ = angle made by any point C on the

circumference of
the cylinder with direction of flow.

9. The circulation around the fluid flow curve is defined as the summation of
product of velocity component along the element of the curve and the
element length.
Circulation for free-vortex flow at any radius is given by

Γ = 2 π R uθ1
10. The resultant velocity on a circular cylinder which rotates at constant speed

in uniform flow is given by

u = 2 sin
2

U
R

Γ
θ +

π
11. Lift acting on a rotating cylinder in uniform flow is given by

FL = ρ L U Γ
where ρ = density of fluid

L = length of the cylinder
U = free stream velocity
Γ = circulation

Above equation is known as Kutta-Joukowaski equation.
12. The co-efficient of lift for a rotating cylinder in a uniform flow is given by

CL = RU
Γ

(in terms of circulation)

= 12 u
U

θπ

(in terms of tangential velocity)
13. Stagnation point is defined as the point at which the velocity of flow is zero.
14. The location of stagnation points for a rotating cylinder in a uniform flow

is given by

sin θ =
4 UR

Γ
−

π

where R = radius of cylinder
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U = free stream velocity
15. For a single stagnation point, the condition is

Γ = 4πUR
(in terms of circulation)
or uθ1 = 2U

(in terms of tangential velocity)
16. When a cylinder or sphere in a flow is rotated at a sufficiently high rate,

a lift is produced on the cylinder. The phenomenon of producing lift by the
rotation of a solid body is called the Magnus effect.

17. Circulation developed on the airfoil is given by
Γ = πCUsinα

where C = chord
U = velocity of airfoil
α = angle of attack

18. The co-efficient of lift for an airfoil is given by
CL = 2 π sin α

19. When an airplane is in a steady state, then
Weight of airplane: W = lift force

W = FL = 
2

2
LC AUρ

and thrust by the engine: Ft = Drag force

Ft = FD = 
2

2
DC AUρ

ASSIGNMENT - 1

1. Define the terms,
(i) Drag, and (ii) Lift

2. Define the following terms:
(i) Wall drag (ii) Form drag

(iii) Total drag
3. What is the expression for the drag on a sphere, when Reynold’s number of

the flow is up to 0.2 ? Hence, prove that the co-efficient of drag for sphere
for this range of the Reynold’s number is given by

CD =
24
Re ,  where,  Re = Reynold’s number

4. Explain the variation of co-efficient of drag with Reynold’s number, when
fluid flows over a stationary cylinder.

5. What is circulation ? Find an expression for circulation for a free vortex of
radius R.
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6. Prove that the lift force acting on rotating cylinder in a uniform flow is given by
FL = ρLUΓ

where L = length of the cylinder
U = free stream velocity
Γ = circulation

7. Prove that the co-efficient of lift for a rotating cylinder placed in a uniform
flow is given by

CL = RU
Γ

where Γ = circulation
R = radius of the cylinder
U = free steam velocity

8. Define stagnation points. How the position of the stagnation points for a
rotating cylinder in a uniform flow is determined ? What is the condition for
single stagnation point ?

9. What is Magnus effect ? Why is it known as Magnus effect ?
10. Define the following terms:

(i) Airfoil (ii) Leading and trailing edges
(iii) Chord (iv) Angle of attack
(v) Aspect ratio

11. Prove that the co-efficient of lift for airfoil is given by
CL = 2πsinα

When the circulation developed on an airfoil is equal to  πCUsinα.
where,  α = angle of attack.

ASSIGNMENT - 2

1. A circular disc of 2.5 m in diameter is held normal to a 25 m/s wind velocity
1.2 kg/m3. What force is required to hold it at rest ? Assume co-efficient of
drag of disc is 1.15. Ans. 2115.82 kW

2. A man weighing 784.8 N descends to the ground from an aeroplane with the
help of a parachute against the resistance of air. The shape of the parachute
is hemispherical of 2 m diameter. Find the velocity of the parachute with
which it comes down. Assume CD = 0.6 and density for air is 1.25 kg/m3.

Ans. 25.81 m/s
3. A flat plate 1.5 m × 1.5 m moves at 50 km/hr in stationary air of density

1.15 kg/m3. If the co-efficient of drag and lift are 0.15 and 0.75
respectively, find:

(i) the lift force (ii) the drag force
(iii) the resultant force, and (iv) the power required to keep the

plate in motion
Ans. (i) 187.20 N, (ii) 37.44 N, (iii) 190.90 N, (iv) 520.04 kW
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4. Experiments were conducted in a wind tunnel with speed of 50 km/hr on flat
plate of size 2 m long and 1 m wide. The density of air is 1.15 kg/m3. The
co-efficients of lift and drag are 0.75 and 0.15 respectively. Find:

(i) the lift force (ii) the drag force
(iii) the resultant force (iv) direction of resultant force and
(v) power exerted by air on the plate.

Ans. (i) 166.40 N, (ii) 33.28 N, (iii) 169.69 N, (iv) 78.69º, (v) 462.259 W
5. A truck having a projected area of 7 m2 travelling at 60 km/hr has a total

resistance of 2000 N; of this 20% is due to rolling friction and 10% is due
to surface friction. The rest is due to form drag. Find the co-efficient of form
drag. Take ρ = 1.25 kg/m3. Ans. 1.15

6. A kite of dimension 0.8 m × 0.8 m and weighing 4 N assumes an angle of
15º to the horizontal. The string attached to the kite makes an angle of 45º to
the horizontal. The pull on the string is 24 N when the wind is flowing at a
speed of 30 km/hr. Find the co-efficient of drag and lift. Take density of air
as 1.22 kg/m3. Ans. CD = 0.626, CL = 0.774

7. A submarine which may be supposed to approximate a cylinder 4 m in
diameter and 20 m long travels submerged at 1.4 m/s in sea-water. Find the
drag exerted on it, if the drag co-efficient for Reynolds number greater than
105 may be taken as 0.75. The density of sea-water is given as 1025 kg/m3

and kinematic viscosity as 0.02 stokes. Ans. 60.27 kN
8. A body of length 2.5 m has a projected area 1.8 m2 normal to the direction

of its motion. The body is moving through water with a velocity such that
the Reynold’s number is 6 × 106 and the drag co-efficient is 0.5. Find the drag
on the body. Take viscosity of water as 0.01 poise. Ans. 2592 N

9. A cylinder rotates at 200 rpm with its axis perpendicular in an air stream which
is having uniform velocity of 20 m/s. The cylinder is 2 m in diameter and 8 m
long. Assuming ideal fluid theory, find (i) the circulation, (ii) lift force, and (iii)
position of stagnation points. Take density of air as 1.25 kg/m3.

Ans. (i) 131.57 m2/s, (ii) 26.309 kN, (iii) 211.56º and 328.44º
10. A metallic sphere of specific gravity 8 falls in an oil of specific gravity 0.8.

The diameter of the sphere is 10 mm and it attains a terminal velocity of 0.05
m/s. Find the velocity of the oil in poise. Ans. 78.48 poise

11. A jet plane which weighs 19620 N has a wing area of 25 m2. It is flying at
a speed of 200 km/hr. When the engine develops 588.6 kW, 70% of this
power to overcome the drag resistance of the wing. Find the co-efficient of
lift and co-efficient of drag for the wing. Take density of air as 1.25 kg/m3.

Ans. CL = 0.4068, CD = 0.1538
12. An airplane weighing 50 kN in flying in a horizontal direction at 400 km/hr

and has a wing surface area of 40 m2. Find the lift co-efficient and the power
required to drive the plane. Assume drag co-efficient is 0.03 and density of
air is 1.2 kg/m3. Ans. CL = 0.1687, P = 987.624 kW





Flow Through Open Channels

8.1 INTRODUCTION
The flow of liquid with a free surface is called open channel flow. The upper surface
of the liquid is subject to the atmospheric pressure is known as free surface. Flows
in rivers, natural stream, artificial canals, navigation channels, drainage channels and
sewers are some examples of open channel flow. Pipelines or tunnels which are not
completely full of liquid also treated as open channel flow. All the open channels have
a bottom slope and the component of the weight of the liquid along the slope acts as
the driving force. The boundary resistance at the perimeter acts as the resisting force.

8.2 GEOMETRICAL TERMINOLOGIES:
FLOW THROUGH OPEN CHANNELS
(a) Depth of Flow: H. The depth of flows H at any section is the vertical

distance from the free surface of liquid to the bed of the  channel at that
section.

HDirection
of flow

Free surface

P

B

Fig. 8.1 Geometry of the trapezoidal channel.

(b) Top Breadth: B. It is the breadth of the channel section at the free surface.
(c) Water Area: A. The water area is flow cross-sectional area perpendicular

in the direction of flow.

8
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(d) Wetted Perimeter: P. The wetted perimeter is the perimeter of the solid
boundary in contact with the liquid.

(e) Hydraulic Radius: m. It is defined as the ratio of the water area to the
wetted perimeter. It is also called hydraulic mean depth.
Mathematically,

Hydraulic radius: m = 
Water area or cross-sectional area of flow

Wetted perimeter

m = A
P

8.3 TYPES OF FLOW IN OPEN CHANNELS
The flow in open channel is classified as:

(a) Steady and unsteady flow
(b) Uniform and non-uniform flow
(c) Laminar and turbulent flow, and
(d) Sub-critical, critical and super critical flow.

8.3.1 Steady and Unsteady Flow
Flow is termed steady or unsteady depending upon the velocity at a point in the channel
is invariant with time or not. If the velocity  of the flow at any point does not change
with time, such type of flow is called steady flow. If the velocity of the flow changes
with time, such type of flow is called unsteady flow.

Mathematically,

V
t

¶
¶ = 0 for steady flow

V
t

¶
¶ ≠ 0 for unsteady flow

8.3.2 Uniform and Non-uniform Flow
1. Uniform Flow: Uniform flow occurs in open channel when the cross-

sectional area and depth of flow do not change along the length of the
channel. In this type of flow, the velocity of liquid does not change in
magnitude and direction from one section to another in the part of the
channel along the length under consideration.

2. Non-uniform Flow: Non-uniform flow occurs in open channel when the
cross-sectional area and depth of flow change along the length of the
channel. This flow is also called varied flow because the depth of flow
continuously varies from one section to another. Thus flow occurs in a
channel which is shaped irregularly when depth and the velocity of flow
vary.



Flow Through Open Channels 399

Non-uniform flow is further classified into two types given below:

h V and 
vary gradually
upstream h V and 

vary rapidly

Hydraulic jump
Free surface

(b) Non-uniform flow–gradually and rapidly Varied flow

hDirection
of flow

Free surface

h = Constant
V = Constant

(a) Uniform flow

Fig. 8.2 Uniform and non-uniform flow in open channel.

(a) Gradually varied flow, and
(b) Rapidly varied flow
(a) Gradually Varied Flow: As the depth of flow changes gradually over a

length of the channel, flow is called gradually varied flow. In this non-
uniform flow, the degree of non-uniformity is small and gradual as shown
in Fig. 8.2(b).

(b) Rapidly Varied Flow: As the depth of flow changes rapidly over a small length
of the channel, flow is called rapidly varied flow. In this non-uniform flow, the
degree of non-uniformity is large and rapidly as shown in Fig. 8.2(b).

8.3.3 Laminar and Turbulent Flow
The flow in open channel is said to be laminar or turbulent depending upon the value
of Reynold’s number.

Reynold’s number: Re = mVyρ
µ

for flow in open channel

where ρ = density of the liquid
µ = viscosity of the liquid
V = average velocity of flow

ym = hydraulic mean depth or hydraulic radius

ym = 
A
P

A = cross-section of flow normal to the direction of flow
P = wetted perimeter
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If   Re < 500, the flow in open channel is called laminar flow.
If   Re > 2000, the flow in open channel is called turbulent flow.
If  500 ≤ Re ≤ 2000, the flow in open channel is called transition flow and may

be either laminar or turbulent.

8.3.4 Sub-critical, Critical and Super-critical Flow
An open channel flow is made on the basis of whether a small disturbance in the flow
can travel upstream or not. This depends on flow velocity and is characterised by the
value of Froude’s number.

Froude’s number: Fr =
m

V
gy

where V = average velocity of flow
ym = hydraulic mean depth or hydraulic radius

ym = ,A
B

 the ratio of the cross-sectional area of flow to

the top width (i.e., width of the free surface.)
The magnitude of  Froude’s number determines the type of flow carried by the

channel.
(i) If  Fr < 1, the flow is said to be sub-critical or tranquil. Any small disturbance

can travel against the flow and affects the upstream condition.
(ii) If  Fr = 1, the flow is called critical flow. The velocity of flow is just equal

to the velocity of an elementary wave.
(iii) If  Fr > 1, the flow is called super critical flow. It is also referred to as rapid

or shooting flow. Any disturbance occurring downstream cannot travel
upstream and consequently no change is affected in the upstream conditions.

8.4 CHEZY’S FORMULA
We know that the Chezy’s formula;

V = C im
where V = average velocity of flow

C = Chezy’s constant. It has the dimensions L1/2 T –1

= 
1

g
f

ρ
where f1 is coefficient depending on the roughness of

the channel.
i = slope of the bed of the channel

= tan θ = 
sin
cos

θ
θ

where θ is small angle, cos θ = 1 and sin θ ≈ θ
∴ i = θ
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Free surface

Horizontal

1

2

2

1

i = q
l

Fig. 8.3 Uniform flow in open channel.

m = hydraulic mean depth or hydraulic radius

= ,A
P

 it is ratio of the cross-sectional area of flow to

wetted perimeter.
The discharge of water through the open channel:

Q = cross-sectional area of flow × velocity of  flow
Q = AV

Q = AC im

8.5 EMPIRICAL RELATIONS FOR DETERMINATION OF
CHEZY CONSTANT

We known that the Chezy’s formula;

V = C im

or    C = 
V
im

where      V = LT –1

m = L
and                          i is dimensionless.

∴ C = 
-1LT

L
C = L1/2 T –1

The Chezy constant C is not a dimensionless quantity, it has the dimension
L1/2T –1 and so its numerical value depends upon the units of the system. The
followings are the empirical relations are used to determine the value of the Chezy
constant C.
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(a) Manning’s Formula: The value of the Chezy constant C according to
Manning’s formula is given as:

C = 
1/6m
N

where m = hydraulic mean depth
N = Manning’s constant whose value depends on the roughness

of the channel surface. The value of N are given is Table
8.1.

Table 8.1 Values of N in Manning’s formula

S. No. Nature of the Surface of Channel N

1. Smooth surface of concrete 0.012

2. Rubble masonry 0.018

3. Earthen channel of ordinary surface 0.027

4. Earth channel of rough surface 0.030

(b) Bazin Formula: The value of the Chezy constant C according to Bazin
formula is given as

C = 157.6

1.81 K
m

+

where K = Bazin’s constant and depends upon the roughness of the surface of
the channel. The value of  K are given in Table 8.2

Table 8.2 Values of  K in Bazin’s formula

S. No. Nature of the Surface of Channel K

1. Smooth cement plaster 0.11
2. Smooth brick, stone or wood 0.29
3. Rubble masonry or poor brick work 0.83
4. Earthen channel of very good surface 1.54
5. Earthen channel of ordinary surface 2.36
6. Earthen channel of rough surface 3.17

Problem 8.1: A rectangular channel is 3 m wide. The slope of its bed is 1 in 800.
Determine the discharge when depth of water 1.2 m. Take C = 60.
Solution: Given data:

Width of channel: L = 3 m

Slope of bed: i = 
1

800
Depth of water: H = 1.5 m
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Chezy’s constant: C = 60
Cross-sectional area of flow:

A = LH = 3 × 1.5 = 4. 5 m2

Wetted perimeter: P = L + 2H = 3 + 2 × 1.5 = 3 + 3 = 6 m

∴ Hydraulic mean depth:m = 
A
P

 = 
4.5
6  = 0.75 m

Discharge through channel: Q = AC im  = 
14.5 60 0.75

800
× ×  = 8.267 m3/s

Problem 8.2: Determine the slope of the bed of a rectangular channel of width 4 m
when depth of water is 1.6 m and rate of flow is given as 10 m3/s. Take Chezy’s
constant as 50.
Solution: Given data:

Width of channel: L = 4 m
Depth of water: H = 1.6 m
Rate of flow: Q = 10 m3/s
Chezy’s constant: C = 50
Area of flow: A = LH = 4 × 1.6 = 6.4 m2

and wetted perimeter: P = L + 2H = 4 + 2 × 1.6 = 7.2 m

∴ Hydraulic mean depth:m = 
A
P

 = 
6.4
7.2  = 0.888 m

Rate of flow: Q = AC im

∴ 10 = 6.4 50 0.888i× × ×

or 0.03125 = 0.888i ×
Squaring both sides, we get

(0.03125)2 = i × 0.888

or i = 
2(0.03125)

0888  = 
1

909.31
∴   Slope of the bed is 1 in 909.31

Problem 8.3: Determine the discharge through a rectangular channel 3 m wide,
depth of water 2 m and bed slope as 1 in 5000 by using (i) Chezy’s formula for which
C = 50 (ii) Manning’s formula for which N = 0.012.
Solution: Given data:

Length of the channel: L = 3 m
Depth of water: H = 2 m

Bed slope: i = 
1

5000



Fluid Mechanics404

2 m

3 m

Fig. 8.4: Schematic for Problem 8.3

Area of flow: A = HL = 2 × 3 = 6  m2

Wetted perimeter: P = L + 2H = 3 + 2 × 2 = 7 m

∴ Hydraulic mean depth:m = 
6 m
7

A
P

=

(i) By Chezy’s formula;
Chezy’s constant: C = 50

Discharge: Q = A C i m

= 
1 66 50

5000 7
× × ×  = 3.927 m3/s

(ii) By Manning’s formula;
Manning’s constant: N = 0.019

∴ Chezy’s constant: C = 
1

6m
N

= 

1
66

7
0.019

æ ö÷ç ÷ç ÷÷çè ø
 = 51.30

∴ Discharge: Q = A C i m = 
1 66 51.30

5000 7
× × × = 4.03 m3/s

Problem 8.4: Determine the discharge through a trapezoidal channel of width
6 m and side slope of 1 horizontal to 3 vertical. The depth of flow of water is 3 m
and Chezy’s constant, C = 60. The slope of the bed of the channel is given 1 in 5000.
Solution: Give data:

Width of the bed: L = 6 m
Side slope = 1 horizontal and 3 vertical
Depth of flow: H = 3 m
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3 m

D C

A B

6 m

θ

3
1

1 m
E

tan  =   = 3θ 3
1

Fig. 8.5: Schematic for Problem 8.4

Chezy’s constant: C = 60
Slope of the bed: i = 1 in 5000

Length of horizontal: CE = 
1
3

×H  = 
13
3

×  = 1 m

∴ Width of the free surface:
AB = DC + 2 CE = 6 + 2 × 1 = 6 + 2 = 8 m

Area of flow: A = 2
+  × 

 

DC AB H  = 
6 8 3

2
+  × 

 
 = 21 m2

and wetted perimeter: P = AD + DC + CB = DC + 2CB    AD = CB

= 2 26 2 (3) (1)+ × +  = 6 2 9 1+ × +

= 6 2 10+ ×  = 12.32  m

∴ Hydraulic mean depth:m = 
A
P

 = 
21 1.70 m

12.32
=

Discharge: Q = A C i m  = 
121 60 1.7

5000
× ×  = 23.23 m3/s

Problem 8.5: Determine the bed of slope of trapezoidal channel of bed width
4 m, depth of water 3 m and side slope of 2 horizontal to 3 vertical, when the discharge
through the channel is 20 m3/s. Take manning’s constant, N = 0.03.
Solution: Give data:

Width of the bed: L = 4 m

3 m

D C

A B

4 m 2 m
E

Fig. 8.6: Schematic for Problem 8.5

Depth of flow: H = 3 m
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Side slope = 2 horizontal and 3 vertical
Discharge: Q = 20 m3/s
Manning’s constant: N = 0.03

Length of horizontal: CE = 
2
3

×H  = 
23
3

×  = 2 m

∴ Width of the free surface:
AB = DC + 2 CE = 4 + 2 × 2 = 8 m

Area of flow: A = 
2
+  × 

 

DC AB H  = 
4 8 3

2
+  × 

 
 = 18 m2

and Wetted perimeter: P = DC + 2CB  AD = CB

= 2 24 2 (3) (2)+ × +  = 11.21 m

∴ Hydraulic mean depth:m = 
A
P

 = 
18 1.60 m

11.21
=

Chezy’s constant: C = 
1

6m
N

 = 
1

6(1.60)
0.03

 = 36.04

Discharge: Q = A C i m

20 = 18 36.04 1.60× × ×i

0.0308 = 1.60×i

Squaring both sides, we get
0.00095 = i × 1.60

or i = 5.940 × 10 –4 = 
1

1683
Slope of the bed 1 in 1683.

8.6 MOST ECONOMICAL SECTION
A section of the channel is said to most economical section when we get maximum
discharge with minimum cost of construction of the channel. The cost of construction
depends upon the excavation and the lining material.

Discharge: Q = A C i m

= 
AA C i
P

 = 
3

2A C i
P
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For a given A, C and i, the above equation becomes

Q = 1
1C
P

 where  
1

3
2C A C i=

or Q ∝ 1
P

Hence the discharge Q will be maximum, when the wetted perimeter P is
minimum.

This condition will be used for the construction of the most economical section
of the channel for a given cross-sectional area. Although a semi-circular channel has
the maximum hydraulic mean radius and it is built from prefabricated sections, the
semi-circular shape is impractical for other forms of construction.

The condition for the most economical channel is used for the following channel:
(i) Rectangular channel, and (ii) Trapezoidal channel.

8.6.1 Most Economical Rectangular Channel
For a given channel slope, surface roughness and area of flow, the most economical
is one which has the minimum wetted perimeter. Consider a rectangular channel as
shown in Fig.8.7

L

H

Fig. 8.7 Rectangular channel.

Let L = width of the channel
H = depth of the flow in the channel

∴ Area of flow: A = LH
and wetted perimeter: P = L + 2H

P = 2+
A H
H or

=

=

A LH
AL
H



For most economical section, P should be minimum and 0,=
dP
dH

 keeping A as constant.

dP
dH = 0
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2 + 
 

d A H
dH H = 0

1( 2 )− +
d AH H

dH = 0

2 2−− +AH = 0

or 2 2A
H
−

+ = 0

or A = 2H 2

and Wetted perimeter: P = 2+
A H
H

P = 
22 2+

H H
H

 A = 2H 2

P = 2H + 2H
P = 4H

∴ Hydraulic mean depth:m = 
22

4
=

A H
P H

m = 
2
H

Area of flow: A = LH
Also area of flow: A = 2H 2

∴ LH = 2H 2

or L = 2H
Hence the conclusions are drawn for most economical rectangular channel as
(a) P = 4H  i.e., perimeter is four times the depth of flow.

(b) P = 
2
H

 i.e., hydraulic mean depth is half the depth of flow..

(c) P = 2H  i.e., width of the channel is two times the depth of flow.

8.6.2 Most Economical Trapezoidal Channel
The trapezoidal section of a channel will be most economical, when its wetted
perimeter is minimum. Consider a trapezoidal channel as shown in Fig. 8.8

H

D C

A B

L

θ

nH
E

H

L + 2nH

l : n = side slope
l vertical, n horizontal

Fig. 8.8 Trapezoidal section.



Flow Through Open Channels 409

Let L = width of the channel at bottom
H = depth of the flow in the channel
θ = angle made by the sides with horizontal

1
n = slope of the slanting side

= tan θ

= 
BE
CE

Width at free surface: AB = L + 2nH

∴  Area of flow: A = 
( 2 )

2
L L nH H+ +

( 2 )
2

L L nH H+ +
=  = 

2 2
2

L nH H+ 
 
 

A = (L + nH) H

or
A
H

= L + nH

or L = 
A
H

 – nH ...(i)

and wetted perimeter: P = AD + DC + CB
= DC + 2CB  AD = CB

= L + 22 1+H n ...(ii)

Substituting the value of L from Eq. (i) in above Eq. (ii), we get

P = 22 1− + +
A nH H n
H

...(iii)

1. Minimum perimeter:
For most economical section, differentiating P w.r.t. H and equating to zero,
we get

22 1 − + +  

d A nH H n
dH H = 0

2
2 2 1− − + +

A n n
H

= 0

or 2
A n

H
−

− = 22 1− +n

or 2
A n

H
+ = 22 1+n

2
( )+

+
L nH n

H
= 22 1+n  A = (L + nH)H
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+
+

L nH n
H

= 22 1+n

+ +L nH nH
H

= 22 1+n

2+L nH
H

= 22 1+n

L 2nH+
2

= 2H n + 1 ...(iv)

OB = BC
Hence, the discharge through a trapezoidal channel with a given area will be a

maximum when half of its width at free surface is equal to the sloping side.

H

D C

A B

L

θ
E

H
K

q
O

Fig. 8.9 Most economical trapezoidal section.

L + 2nH

2
2= H n +1

2.  Hydraulic mean depth:

Hydraulic mean depth: m = 
A
P

where A = ( )L nH H+

and P = 22 1L H n+ +

From Eq. (iii) 22 1H n + =  L + 2nH
∴ P = L + L + 2nH

P = 2L + 2nH = 2 (L + nH)

∴ Hydraulic mean depth: m = 
( )
2( )
L nH H

L nH
+
+

m = 
H
2

Hence for most economical trapezoidal channel, hydraulic mean depth is
equal to half the depth of flow.

3. The discharge with a given cross-section will be a maximum when the
sides of the channel are tangential to a semi-circle, drawn with radius
H from the centre O.
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From O i.e., centre of the free surface AB, draw a perpendicular on the
sloping sides AD and BC

From ∆ BOK, sin θ = 
OK
OB

and from ∆ BCE, sin θ = 
2 1

BE H
BC H n

=
+

sin θ = 2

1

1+n

∴
OK
OB = 

2

1

1+n

where OB = half of the free surface

= 
2
2

+L nH

also OB = 2 1+H n

∴ OK = 
2

2

1

1

+

+

H n

n

or OK =  H
Thus, the discharge with a given cross-section will be a maximum when the
sides of the channel are tangential radius H from the centre O.

4. Best side slope:
For the most economical tropezoidal section, the depth of flow and flow
area are constant. Then only n is the variable. Best side slop will be when
the section is most economical, differentiating P w.r.t n and equating to zero,
we get

dP
dn = 0

22 1d A nH H n
dn H

æ ö÷ç - + - ÷ç ÷÷çè ø = 0

12 21
0 – H + 2 ( 1) 2

2
H n n

-
´ - ´ = 0

2

2

1
− +

+

nHH
n

= 0

     or 2

2

1+

nH

n = H

     or 2

2

1+

n

n = 1
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     or 2n = 2 1+n
     Squaring both sides, we get

4n2 = n2 + 1
3n2 = 1

n2 = 
1
3

or n = 
1
3

θ
n

1
1

= 3
n

Fig. 8.10: Most economical rectangular channel

If the sloping sides makes an angle θ with the horizontal, then

tan θ = 
1 1

1 3
=

n  n = 
1
3

tan θ = 3
θ = 60°

Hence, the best side slope with horizontal is 60°.
The conclusions are drawn for most economical rectangular channel as:

(a)
2 2 1
2

L + nH = H n +  i.e., half width of the free surface is equal to the

sloping side.

(b) =
Hm
2

i.e., hydraulic mean depth is equal to half the depth of flow..

(c) A semi-circle drawn from the centre O of free surface with radius equal to
the depth of flow will touch the sides of the channel.

(d) Best side slope with horizontal = 60° i.e., θ = 60°.

Problem 8.6: A rectangular channel 6 m wide has a bed slope of 1 in 2000.
Determine the channel Take C = 50.
Solution: Give data:

Width of channel: L = 6 m

Bed slope: i = 
1

2000
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Chezy’s constant: C = 50
We know the conditions for maximum discharge flow through a rectangular

channel:

(i) Depth of water: H =
2
L

 =
6
2

= 3 m

(ii) Hydraulic mean depth: m = 
3

2 2
=

H
 = 1.5 m

∴ Area of most economical rectangular channel:
A = LH = 6 × 3 = 18 m2

Maximum discharge: Q = A C i m  = 
118 50 1.5

2000
× × ×  = 24.64 m3/s

Problem 8.7: Determine the most economical dimensions of the rectangular
channel when discharge flow through the channel is 500 litre/s and bed slope of 1 in
2000. Take Chezy’s constant as 50.
Solution: Give data:

Discharge: Q = 500 litre/s = 3500 m s
1000

 litre = 31 m
1000

= 0.5 m3/s

Bed slope: i = 
1

2000
We know the conditions for the most economical rectangular channel:

(i) Depth of water: H = 
2
L

(ii) Hydraulic mean depth: m = 
2
H

Area of flow: A = LH = 2H × H  L = 2H
= 2H 2

Discharge: Q = A C i m

0.5 = 2 12 50
2000 2

× × ×
HH

0.5 = 
12 212 50

4000
H H× ×

0.5 = 1.58 H5/2

or H5/2 = 0.3164
or H = 0.631m
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also
2
L

= 0.631

or L = 0.631 × 2 = 1.26 m

Problem 8.8: A trapezoidal channel has side slopes 3 horizontal to 4 vertical and
slope of its bed is 1 in 1500. Determine the most economical dimensions of the
channel, if it is to carry water at 10 m 3/s. Take C = 60.
Solution: Give data:

Side slopes: n = 
3
4

Slope of bed: i = 
1

1500

Discharge: Q = 10 m 3/s

L

H
4

3

3
4H

Fig. 15.11

Chezy’s constant: C = 60

We know that the conditions for the most economical channel:

(i) 22 1
2

L nH H n+
= +

(ii)
2

=
Hm

From condition (i), we get

32
4

2

+ ×L H
= 

23 1
4

  + 
 

H

1.5
2

+L H
= 

25
16

×H

1.5
2

+L H
= 

5
4

×H
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or L + 1.5H = 
5 2
4

× ×H

L + 1.5H = 2.5H
or L = H

Area of flow: A = 
( 2 )

2
+ +  ×  

L L nH H  = 
2

2
+ +  ×  

L L nH H

= (L + nH) H = 
3
4

 + × 
 

H H H  = 2 27 1.75
4

−H H

Discharge: Q = A C i m

10 = 2 11.75 60
1500 2

× × ×
HH

10 = 2 1/21105
300

×H H

10 = 1.917 H5/2

or H 5/2 = 5.216
or H = (5.216)2/5 = 1.936 m
From Eqs. (i), we get

L = H = 1.936 m
∴ The most economical dimensions of the channel are L = H = 1.936 m.

SUMMARY

1. The flow of liquid with a free surface is called open channel flow. The
upper surface of the liquid is subjected to the atmospheric pressure is
known as free surface.

2. Depth of flow: H. The depth of flow H at any section is the vertical
distance from the free surface of liquid to the bed of the channel at that
section.

3. Top breadth: B. It is the breadth of the channel section at the free surface.
4. Water area: A. The water area is flow cross-sectional area perpendicular

in the direction of flow.
5. Wetted perimeter: P. The wetted perimeter is the perimeter of the solid

boundary in contact with the liquid.
6. Hydraulic radius: m. It is defined as the ratio of the water area to the

wetted perimeter. It is also called hydraulic mean depth.

Contd...
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Contd...

Mathematically,

Hydraulic radius: m = 
A
P

7. Steady and unsteady flow: If the velocity of the flow at any point does
not change with time, such type of flow is called steady flow. If the velocity
of flow changes with time, such type of flow is called unsteady flow.

8. Uniform and non-uniform flow: If the velocity of flow does not change
in magnitude and direction from one section to another in the part of the
channel along the length, is called uniform flow. If the velocity of flow
changes from one section to another in the part of the channel along the
length, is called non-uniform flow.

9. Gradually varied flow: It is the type of non-uniform flow in which the
depth of flow changes gradually over a length of the channel.

10. Rapidly varied flow: It is the type of non-uniform flow in which the depth
of flow changes rapidly over a small length of the channel.

11. Laminar and turbulent flow: The flow in open channel is said to be
laminar or turbulent depending upon the value of Reynolds number.

Re = 
ρ

µ
mVy

where ρ = density of the liquid
µ = viscosity of the liquid
V = average velocity of flow

ym = hydraulic mean depth
(i) If  Re < 500, the flow in open channel is called laminar flow.

(ii) If  Re > 2000, the flow in open channel is called turbulent flow
(iii) If  500 ≤ Re ≤ 2000, the flow in open channel is called transition flow.

12. Sub-critical, critical and super critical flow:

Froude’s number: Fr = 
m

V
gy

(i) If Fr < 1, the flow is said to be sub-critical or tranquil.
(ii) If Fr = 1, the flow is called critical flow.

(iii) If Fr > 1, the flow is called super-critical.
13. Chezy’s formula:

Average velocity: V = C im
Discharge: Q = AV
where A = area of flow

C = Chezy’s constant.
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Contd...

It the has the dimension L1/2T–1

i = slope of the bed of the channel

m = ,A
P

 hydraulic mean depth

14. Empirical Relations for Determination of Chezy constant:

(i) C = 
1/6m
N

Manning’s formula
where m = hydraulic mean depth

N = Manning’s constant

(ii) C = 157.6

1.81+
K
m

Bazin formula
where m = hydraulic mean depth

K = Bazin’s constant
15. Most Economical Section: A section of the channel is said to most

economical section when we get maximum discharge with minimum cost
of construction of the channel. The cost of construction depends upon the
excavation and the lining material.

16. Condition for Most Economical Section:
(a) Rectangular section;

(i) P = 4 H  i.e., perimeter is four times the depth of flow

(ii) m = 
2
H

 i.e., hydraulic mean depth is half the depth of flow..

(iii) L = 2H i.e., width of the channel is two times the depth of
flow.

(b) Trapezoidal channel:

(i) 2
2

+L nH  = 2 1+H n , i.e  half width of the free surface is

equal to the sloping side.

(ii) m = 
2
H , i.e  hydraulic mean depth is equal to half the depth of flow..

(iii) A semi-circle drawn from the centre O of free surface with
radius equal to the depth of flow will touch the sides of the
channel.

(iv) Best side slope with horizontal = 60° i.e., θ = 60°
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ASSIGNMENT - 1

1. Define an open channel. How does it differ from a pipe running full ?
2. Why is it necessary to provide longitudinal slope to the bed of channel ?
3. Differentiate between:

(i) Steady and unsteady flow
(ii) Uniform and non-uniform flow.

(iii) Laminar and turbulent flow in open channel.
4. What do you understand by critical, sub-critical and super-critical flow in

open channel ?
5. Explain the terms:

(i) Water area
(ii) Wetted perimeter

(iii) Hydraulic mean depth.
6. Explain the terms:

(i) Rapidly varied flow, and
(ii) Gradually varied flow.

7. Describe the Chezy’s formula for flow through open channel.
8. How the value of Chezy’s constant is determined by different empirical relations ?
9. What is the relation between Manning’s  constant and Chezy’s constant ?

10. What is the dimensions of Chezy’s constant ?
11. What is meant by an economical section of a channel ?
12. Derive the conditions for the economical conditions for:

(i) Rectangular Channel
(ii) Trapezoidal Channel

13. Derive the condition for the best side slope of the most economical trapezoidal
channel.

ASSIGNMENT - 2

1. A rectangular channel is 4 m wide. The slope of its bed is 1 in 1000. Determine
the discharge when depth of water 2 m. Take C = 60. [Ans. 15.17m3/s

2. Determine the slope of the bed of a rectangular channel of width 3 m when
depth of water is 2 m and rate of flow is given as 12 m3/s. Take Chezy’s
constant as 51. [Ans. 1 in 557.33]

3. Determine the discharge through a trapezoidal channel of width 5 m and side
slope of 2 horizontal to 3 vertical. The depth of flow of water is 3 m and
Chezy’s constant, C = 60. The slope of the bed of the channel is given 1 to
4000. [Ans. 26.12 m3/s]
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4. Determine the bed slope of trapezoidal channel of bed width 6 m, depth of
water is 3m and side slope of 3 horizontal to 4 vertical, when the discharge
through the channel is 30 m3/s.Take C = 70. [Ans. 1 in 6133]

5. Determine the discharge through a trapezoidal channel of width 8 m and side
slope of 1 horizontal to 3 vertical. The depth of flow of water is 2.4 m and
bed slope as 1 in 4000. Take the Chezy’s constant as 50.[Ans. 21.23 m3/s]

6. A rectangular channel is 4 m wide has a bed slope of 1 in 1500. Determine
the discharge the channel. Take C = 50. [Ans. 10.32 m3/s]

7. Determine the most economical dimensions of the rectangular channel when
discharge flow through the channel is 600 litre/s and bed slope of 1 in 1500.
Take Chezy’s constant as 54. [Ans. H = 0.6213, L = 1.24 m]

8. A trapezoidal channel has side slopes of 1 horizontal to 2 vertical and the slope
of the bed is 1 in 1500. The area of the section is 40 m2. Determine the most
economical dimensions of the section. Determine also the discharge of the
most economical section. Take C = 50.

[Ans. H = 4.8 m, L = 5.93 m, Q = 80 m3/s]
9. A trapezoidal channel has side slopes of 3 horizontal to 4 vertical and the slope

of the bed is 1 in 2000. Determine the most economical dimension of  the
channel, if it is to carry water at 0.5 m3/s. Take Chezy’s constant as 80.

[Ans. H = 0.55 m, L = 0.55 m]





Notches and Weirs

9.1 INTRODUCTION
Notches and Weirs are used for measuring the rate of flow of liquid through open
channel. Both are having same function i.e., to measure the rate of flow. Difference
between the two is their size and the quantity of discharge. Notches are small in size,
hence used to measure small discharge through tank in laboratory. Weirs are big in
size, thus measure large discharge in dams, rivers, etc.

A notch may be defined as an opening provided in the side of tank (or channel)
in such a way that the liquid surface in the tank or channel is below the top edge of
the opening. Normally, there is no need of upper edge of a notch. Liquid flows over
a notch or weir while it passes through an orifice. The stream of liquid issuing from
the orifice is called a jet while the stream of liquid issuing from a notch or weir is called
a nappe or vein. The upper surface of the notch or weir over which the liquid flows
is called the crest or sill of the weir.

9.2 DIFFERENCE BETWEEN NOTCH AND ORIFICE

Jet
Crest or sill

Nappe

(a) Orifice (b) Notch

Fig. 9.1 Orifice and notch.

9
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A weir is made of masonary or
concrete.

A weir is big in size, hence used to
measure large discharge.
The edges of a weir are much
wider as compared to notch.
It is used in an ancient or spillway,
canal or river for the purpose of storing
and regulating the flow.

A notch is an opening provided in
the side of tank in a such a way
that the level of liquid in the tank is
below the top edge of the opening
as shown in Fig. 9.1 (b).

It can only be provided on the side
of the tank.
The liquid flowing out over a notch
is called nappe or vein.
A notch is used to measure
discharge through small open
channels.
In a notch, the free surface of
flowing liquid is always below the
top edge of the notch.

S.No. Orifice Notch

1. An orifice is an opening provided in
the side or bottom of the tank or
vessel in a such a way  that the
level  of liquid in the tank is above
the top edge of the opening as
shown in Fig. 9.1 (a).

2. It can be provided on the side or at
the bottom of a tank.

3. The liquid flowing out of orifice is
called a  jet.

4. An orif ice is used to measure
discharge through the tank or vessel
which contains liquid.

5. In an orifice, the free surface of
liquid is always above the top edge
of orifice.

9.3 DIFFERENCE BETWEEN A NOTCH AND A WEIR
The following are main difference between a notch and a weir.

S.No. Notch Weir

1. A notch is an opening made of
metallic plate.

2. A  notch  is  small  in  size,  hence
used to large discharge.

3. The edges of a notch are thin and
sharp

4. It is used in tanks or small open
channels in laboratory for the
purpose of experimental flow.

9.4 CLASSIFICATION OF NOTCHES AND WEIRS
Notches may be classified:
1. According to the shape of the opening:

(i) Rectangular notch
(ii) Triangular notch or V-notch

(iii) Trapezoidal notch
(iv) Stepped notch.

2. According to the effect of the sides on the nappe:
(i) Notch with end contractions

(ii) Notch without end contractions or suppressed notch.
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Weirs may be classified:
1. According to the shape of the opening:

(i) Rectangular weir
(ii) Triangular weir

(iii) Trapezoidal weir.
2. According to the effect of the sides of the nappe.

(i) Weir with end contractions
(ii) Weir without end contractions or suppressed weir.

3. According to the shape of the crest:
(i) Sharp-crested weir

(ii) Broad-crested weir
(iii) Narrow-crested weir
(iv) Ogee-shaped weir

9.5 DISCHARGE OVER A RECTANGULAR NOTCH OR WEIR

Front View

h

L

H

(a) (b)

Fig. 9.2: Rectangular notch or weir.

Consider a rectangular weir from which the liquid is flowing as shown in Fig. 9.2.
Let L = length of the weir,

H = head of liquid over the crest of the weir.
Let us consider a horizontal strip of liquid of thickness dh at the depth h from

the free surface of liquid as shown in Fig. 16.2 (b).
∴ Area of strip: dA = Ldh

and the theoretical velocity of liquid flowing through the elemental strip = 2 g h

∴ Theoretical discharge through elemental strip:
dQth = area of strip × theoretical velocity

= 2Ldh g h× …(9.5.1)
The total theoretical discharge, over the weir, may be determined by integrating

the above Eq. (16.5.1) within the limits 0 and H, we get

Q th = 
0

2
H

Ldh g h×∫
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3 / 2

0 0

2 . 2
3 / 2

HH hL g h dh L g
 

= =  
 

∫

3/ 22 2 0
3

L g H = − 

Q th
3/ 2 1.52 22 2

3 3
g LH g LH= =

Actual discharge: Q = Cd Qth
where   Cd = coefficient of discharge.

Q 1.52= 2
3 dC gLH

Note: The expression for discharge over a rectangular notch or weir is the same.

Q 1.52= 2
3 dC gLH

9.6 TRIANGULAR NOTCH OR V-NOTCH
Let H = head of liquid over the apex of the notch

θ = angle of notch

Fig. 9.3: Triangular notch.

Let us consider a horizontal elemental strip of liquid of thickness dh at the depth
h from the free surface of liquid as shown in Fig. 9.3 (a).

Width of the elemental strip:
AB = AC + CB = 2 CB  AC = CB

= 2x = 2(H – h) tan 
2
θ

∴ Area of elemental strip:

dA = AB × dh = 2(H – h) tan 
2
θ

 × dh

= 2(H – h) dh tan 
2
θ
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and the theoretical velocity of liquid flowing through the elemental strip = 2 g h

∴ Theoretical discharge through elemental strip:
dQth = area of strip × theoretical velocity

= 2(H – h) dh tan 2
2

g hθ
×

= 2 2 tan ( )
2

g H h h dhθ
−

= 1/ 2 3/ 22 2 tan ( )
2

g Hh h dhθ
− …(9.6.1)

The total theoretical discharge, over the notch, may be determined by integrating
the above Eq. (9.6.1) with the limits 0 and H, we get

Qth = 1/ 2 3 / 2

0

2 2 tan ( )
2

H

g Hh h dhθ
−∫

3/ 2 5 / 2

0

2 2 tan
2 3/ 2 5 / 2

H
Hh hg

 θ
= − 

 

5 / 2 5 / 22 22 2 tan
2 3 5

g H Hθ  = −  

5 / 2 2.58 82 tan 2 tan
15 2 15 2

g H g Hθ θ
= =

Actual discharge: Q = Cd Qth
where Cd = coefficient of discharge.

Q 2.58 θ= 2 tan
15 2dC g H …(9.6.2)

The expression for discharge in above Eq. (9.6.2) over a triangular notch or weir
is the same.

Q∇
2.58 θ= 2 tan

15 2dC g H

Problem 9.1: Find the discharge over a rectangular notch of 4 m long when the
head of liquid over the crest in 0.5 m. Take Cd = 0.60.
Solution: Given data for a rectangular notch:

Length of notch: L = 4 m
Head of liquid over the crest:

H = 0.5 m
Cd = 0.60

We know that the discharge over a rectangular notch:

Q 1.52 2
3 dC g LH= 1.52

0.60 2 9.81 4 (0.5)
3

= × × × × ×

= 2.50 m3/s
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Problem 9.2: The discharge over a rectangular notch is 120 litre/s when the water
level is 300 mm above the sill. Find the length of a notch if the coefficient of
discharge is 0.62.
Solution: Given data for a rectangular notch:

Discharge: Q = 120 litre/s = 0.12 m3/s
H = 300 mm = 0.3 m
L = ?

Cd = 0.62

We know that Q 1.52 2
3 dC g LH=

0.12 1.52 0.60 2 9.81 (0.3)
3

L= × × × × ×

or L = 0.39888 m = 398.88 mm.

Problem 9.3: A rectangular weir of 5 m long is used to measure the rate of flow
of water. The head of water over the weir is 800 mm. If the available height of
waterfall is 22 m, find the power of the waterfall. Take Cd = 0.60.
Solution: Given data for rectangular weir:

L = 5 m
H = 800 mm = 0.8 m

Available height of water fall:
H1 = 22 m
Cd = 0.60

Discharge: Q 1.52 2
3 dC g LH= 1.52

0.60 2 9.81 5 (0.8)
3

= × × × × ×

= 6.339 m3/s
Power of the waterfall:

P = ρ Q g H1
= 1000 × 6.339 × 9.81 × 22 W = 1368082.9 W
= 1.368 MW.

Problem 9.4: The maximum flow through a rectangular channel 1.5 m deep and
2 m wide is 1.5 m3/s. It is proposed to install a full width, sharp-edged rectangular
weir across the channel to measure the flow. Find the maximum height at which the
crest of the weir must be placed in order that water may not overflow the sides of
the channel. Take Cd = 0.62.
Solution: Given data for rectangular channel and rectangular weir:

Depth of flow in the channel:
Z = 1.5 m
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Width of the channel = length of weir
i.e., L = 2 m
Discharge through channel:

Q = 1.5 m3/s
Cd = 0.62

Discharge: Q 1.52 2
3 dC g LH=

1.5 1.52 0.62 2 9.81 2
3

H= × × × × ×

or H1.5 = 0.40964
or H = 0.5516 m
Let  h = height of the crest of the weir above the bottom of the channel.
∴ Z = H + h

1.5 = 0.5516 + h
or h = 0.9484 m.

Problem 9.5: The daily rainfall over a catchment area was found to 2.5 × 108 litre.
It was observed that 25% of the rain water is lost due to evaporization and the
remaining reaches the reservoir which passes over a rectangular weir: Find the length
of the weir, if water over the weir will never rise more than 500 mm. Take coefficient
of discharge as 0.62.
Solution: Given data:

2.5 × 108 litre rainfall in 24 hrs.

∴ Discharge: Q1 = 
82.5 10 litre/hr

24
×

8
3 5 32.5 10 1 2.5= m /hr = 10 m /hr

24 1000 24
×

× ×

5 3 32.5= 10 m /s = 2.89 m /s
24×3600

×

25% water is lost due to evaporization and the remaining discharge reaches the
reservoir is 75%.

i.e., Q = 0.75 Q1 = 0.75 × 2.89 m3/s = 2.167 m3/s.
Head of water over the sill of weir:

H = 500 mm = 0.5 m
Cd = 0.62

Discharge: Q = 1.52 2
3 dC g LH

2.89 = 1.52 0.62 2 9.81 (0.5)
3

L× × × ×

or L = 4.46 m.
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Problem 9.6: A right-angled V-notch is used to measure the discharge of a pump.
If the head of water over the sill is 300 mm, find the discharge over the notch in
litre/s. Take Cd = 0.61.
Solution: Given data for V-notch:

Angle of notch: θ = 90°  Right-angled V-notch
H = 300 mm = 0.3 m

Cd = 0.61
We know that the discharge over the V-notch: Q

Q = 2.58 2 tan
15 2dC g Hθ

2.58 90º0.61 2 9.81 tan (0.3)
15 2

 = × × × × ×  

= 0.01863 m3/s = 18.63 litre/s.

Problem 9.7: During an experiment in a laboratory, 140 litres of water flowing
over a right-angled V-notch was collected in 30 seconds. If the head of water over
the sill is 100 mm, find the coefficient of discharge of the notch.
Solution: Given data for V-notch:

140 litres of water flowing over a V-notch in 30 seconds.

i.e.,       Discharge: Q = 
140
30  litre/s = 4.66 litre/s = 0.00466 m3/s

θ = 90°
H = 100 mm = 0.1 m

We know that the discharge over the V-notch: Q

Q = 2.58 2 tan
15 2dC g Hθ

0.00466
2.58 900.61 2 9.81 tan (0.1)

15 2
 = × × × × × 
 

0.00466 = 0.00747 Cd
or Cd = 0.623

Problem 9.8: Water flows over a rectangular notch of 1m length over a head of
water 200 mm. Then, the same discharge over a right-angled triangular notch. Find
the height of water above the sill of the notch. Take Cd for the rectangular and
triangular notches as 0.60 and 0.61 respectively.
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Solution: Given data:
For rectangular notch For right-angled

triangular notch
L = 1 m θ = 90°
H = 200 mm = 0.2 m Cd = 0.61

Cd = 0.60

Discharge: Q = 1.52 2
3 dC g LH

1.5 32 0.60 2 9.84 1 (0.2) 0.1584 m /s
3

= × × × × × =

Given condition:
Q = 3Q 0.1584 m /s∇ =

We know that Q∇ = 2.58 2 tan
15 2dC g Hθ

0.1584
2.58 900.61 2 9.81 tan

15 2
H = × × × × × 

 
or H2.5 = 0.1099
or H = 0.41342 m = 413.42 mm.

 Problem 9.9 Water flows through a triangular right-angled weir first and then
over a rectangular weir of 1 m width. The discharge coefficients of the triangular and
rectangular weirs are 0.6 and 0.7 respectively. If the depth of water over the triangular
weir is 360 mm, find the depth of water over the rectangular weir.

Solution: Given data :
         Right-angled triangular weir         Rectangular weir width

θ = 90° Width:     L = 1 m
Cd = 0.6 Cd = 0.7
H = 360 mm

= 0.36 m

Discharge: Q∇ = 2.58 2 tan
15 2dC g Hθ

= 2.58 900.6 2 9.81 tan (0.36)
15 2

° × × × × 
 

= 0.1102 m3/s
Given condition: Q = Q∇ = 0.1102

We know that Q = 1.52 2
3 dC g LH

∴ 0.1102 = 1.52 0.7 2 9.81 1
3

H× × × ×
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or H1.5 = 0.053312
or H = 0.14167 m = 141.67 mm

9.7 DISCHARGE OVER A TRAPEZOIDAL NOTCH OR WEIR
A trapezoidal notch is a combination of triangular notch and rectangular notch.
Therefore, discharge over a trapezoidal notch is sum of discharge over triangular
notch and discharge over rectangular notch.

θ/2 θ/2

cba d

ef
L

H

Fig. 9.4: Trapezoidal notch or weir.

Consider a trapezoidal notch a b c d e f as shown in Fig. 9.4. This trapezoidal
section is dividing into rectangular and triangular sections. The rectangular section b
c e f is a rectangular notch of length L and the height of liquid over notch H. Two
triangular sections a b f and c d e are having angle of notch equal to θ/2 and height
of liquid is H. The discharge through two triangular sections is equal to the discharge
through single triangular notch with angle of notch θ and same height of liquid H.

(a) Trapezoidal notch (b) Rectangular notch (c) Triangular notch

Fig. 9.5: Trapezoidal section is dividing into rectangular and triangular sections

Discharge over trapezoidal notch = discharge over rectangular notch + discharge
over triangular notch

Q = QQ ∇+

Q = 1.5 2.5
1 2

82 tan
15 2d dC gLH C Hθ

+ …(9.7.1)

where Cd1 = coefficient of discharge for rectangular notch
Cd2 = coefficient of discharge for triangular notch
θ/2 = slope of the side of trapezodial notch.

The expression for discharge in above Eq. (9.7.1) over a trapezoidal notch or
weir is the same.
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Problem 9.10: A trapezoidal weir of 3 m wide at the top and 2 m at the bottom is
800 mm high. Find the discharge over the weir, if the head of water is 500 mm. Take
Cd = 0.61.
Solution: Given data for trapezoidal weir:

Width of weir at the top        = 3 m
Width of weir at the bottom: L = 2 m

Fig. 9.6: Schematic for Problem 9.10

Height of weir = 800 mm = 0.8 m
Head of water: H = 500 mm = 0.5 m

Cd = 0.61
From triangular section on one side of the weir as shown in Fig. 9.6 (b).

tan
2
θ

= 
0.5 0.625
0.8

=

Discharge Q =  Q  Q∇+

= 1.5 2.52 82 2 tan
3 15 2d dC g LH C g Hθ

+

1.52 0.61 2 9.81 2 (0.5)
3

= × × × × ×

2.58 0.61 2 9.81 0.625 (0.5)
15

+ × × × × ×

= 1.273 + 0.159 = 1.432 m3/s

9.8 DISCHARGE OVER A STEPPED NOTCH
A stepped notch is a combination of rectangular notches. The discharge over a stepped
notch is equal to the sum of the discharges over separate notches.

1

2

3

H1

H2

H3

L1

L2
2

L3
3

Fig. 9.7: Stepped notch.
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Consider three steps notch as shown in Fig. 9.7.
Let H1 = height of liquid in notch 1

L2 = length of notch 1
Similarly H2, L2 and H3, L3 are corresponding values for notches 2 and 3

respectively.
∴ Total discharge Q = Q1 + Q2 + Q3

=
1.5 1.5 .51

1 1 2 2 3

2 2 22 2 2
3 3 3d d dC gL H C Hg L H C g L+ +

Q = 1.5 .51 1.5
1 1 2 2 3 3

2 2
3 dC g L H HL L H + + 

where Cd = coefficient of discharge is same for three notches.

9.9 ADVANTAGES OF TRIANGULAR NOTCH OVER
RECTANGULAR NOTCH
Advantages of triangular notch over rectangular notch are listed below:
1. For low discharge, a triangular notch gives more accurate discharge than a

rectangular notch. This is because, a triangular notch provides a greater
head than the rectangular notch for same low discharge. Hence, head
measurement can be done more accurately over the triangular notch than
over the rectangular notch.

2. The coefficient of discharge for a triangular notch is independent of the head
(i.e., Cd = constant, for wide range of liquid head over triangular notch).
Whereas in a rectangular notch, the coefficient of discharge is not constant
(i.e., Cd = f(H)).

3. No need of ventilation for the nappe of a triangular notch. But in a
rectangular notch is necessary.

4. For a right angle V-notch, the expression for discharge becomes very
simple:
i.e., θ = 90°, Cd = 0.6, g = 9.81 m/s2

then, Q = 1.417 H2.5.

Problem 9.11: Find the discharge over a stepped weir of the following dimensions:
Top section: 2 m × 0.5 m
Middle section: 1.5 m × 0.25 m
Bottom section: 1 m × 0.15 m
Take coefficient of discharge for three sections as 0.62.
Solution: Given data for stepped weir:
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H1

H2

H3

1 m
1.5 m
2 m

0.15 m

0.25 m

0.5 m

Free surface of water

Fig. 9.8: Schematic for Problem 9.11

For bottom section: L1 = 1 m
H1 = 0.5 + 0.25 + 0.15 = 0.9 m

For middle section: L2 = 1.5 – L1 = 1.5 – 1 = 0.5 m
H2 = 0.5 + 0.25 = 0.75 m

For top section: L3 = 2 – 1.5 = 0.5 m
H3 = 0.5 m

We know that the discharge through stepped weir:

Q = 1.5 .51 1.5
1 1 2 2 3 3

2 2
3 dC g L H HL L H + + 

= 1.83 × [0.8538 + 0.3247 + 0.1767]
= 1.83 × 1.355 = 2.479 m3/s.

9.10 EFFECT ON THE DISCHARGE OVER A NOTCH DUE TO AN
ERROR IN THE MEASUREMENT OF HEAD

We know that the discharges over a rectangular and triangular notches are:

Q = for rectangular notch

= for triangular notch

Q ∝ H1.5 for rectangular notch
Q ∝ H2.5 for triangular notch.

Thus, the accurate measurement of the head (H) of the water above the sill of
the notch is very essential to know the accurate discharge over the notch. A small error
in the measurement of head (H), will affect in the calculation of the discharge over
the notch, and is generally expressed as the percentage of the discharge.

1.52 2
3 dC gLH

2.58 2 tan
15 2dC g Hθ

1.5 1.5 1.51 (0.9) 0.5 (0.75) 0.5 (0.5) × + × + × 

2
0.6 2 9.812

3
= × × ×
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The following two cases of error in the measurement of head will be considered:
1. Over a rectangular notch,
2. Over a triangular notch.

9.10.1 For a Rectangular Notch

Q = 1.52 2
3 dC gLH

Q = K1 H1.5 …(9.10.1)

where K1 = 
2 2
3 dC gL

Differentiating above Eq. (12.10.1) with respect to H, we get
dQ = K1 × 1.5 H0.5 dH …(9.10.2)

Dividing Eq. (12.10.2) by Eq. (12.10.1), we get

dQ
Q = 

0.5
1

1.5
1

1.5K H dH
K H

×

dQ
Q

= 1.5 dH
H

…(9.10.3)

Equation (9.10.3) shows that an error of 1% in measuring head (H) will produce
1.5% error in discharge over a rectangular notch (same as in case of weir).

9.10.2 For a Triangular Notch

Q = 2.58 2 tan
15 2dC g Hθ

Q = K2 H2.5 …(9.10.4)

where K2 = 
8 2 tan

15 2dC g θ

Differentiating above Eq. (9.10.4) with respect to H, we get
dQ = K2 × 2.5 H1.5 dH …(9.10.5)

Dividing Eq. (9.10.5) by Eq. (9.10.4), we get

dQ
Q = 

1.5
2

2.5
2

2.5K H dH
K H

×

dQ
Q

= 2.5 dH
H

…(9.10.6)

Equation (9.10.6) shows that an error of 1% in measuring head (H) will produce
2.5% error in discharge over a triangular notch (same as in case of weir).

Problem 9.12: A rectangular weir of 500 mm long is used for measuring a distance
of 140 litre/s. An error of 2.5 was made, while measuring the head over the weir. Find
the percentage error in the discharge. Take Cd = 0.61.



Notches and Weirs 435

Solution: Given data for rectangular weir:
Length of weir: L = 500 mm = 0.5 m

Discharge: Q = 140 litre/s = 
140

1000  m3/s = 0.14 m3/s

Error in head: dH = 2.5 mm = 0.0025 mm
Cd = 0.61

Discharge over a rectangular weir:

Q = 1.52 2
3 dC gLH

0.14 1.52 0.6 2 9.811 0.5
3

H= × × × ×

or H1.5 = 0.15544
or H = 0.2891 m
Percentage error in discharge:

dQ
Q = 1.5 100dH

H
×

0.00251.5 100
0.2891

= × × = 1.29%.

Problem 9.13: A discharge of 60 litre/s was measured over a right-angled triangular
notch. While measuring the head over the notch, an error of 1.5 mm was made. Find
the percentage of error in the discharge, if coefficient of discharge is 0.62.
Solution: Given data for right-angled triangular notch:

Q = 60 litre/s = 0.06 m3/s
dH = 1.5 mm = 0.0015 m

θ = 90°
Cd = 0.62

Discharge: Q = 2.58 2 tan
15 2dC g Hθ

0.06 2.58 900.6 2 9.81 tan2
15 2

H°= × × × × ×

or H2.5 = 0.0496
or H = 0.3 m

Error in discharge:
dQ
Q

= 
0.00152.5 2.5

0.3
dH
H

= × = 0.0125 = 1.25%

9.11 CIPOLLETTI WEIR
We know that a discharge over rectangular weir is given by

Q = 1.52 2
3 dC gLH
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end 
contraction

end 
contraction

Nappe H

L

(a) No. of end contractions: n = 2 (b) Effective length = L – 0.2H
Fig. 9.9: Discharge over rectangular weir with ends contraction.

When the length (L) of the weir is less than the width of the channel in which
liquid is flowing. Then, there will be end contraction at each end as shown in Fig. 9.9.
According to Francis, each end contraction is equal to 0.1 H.

If the actual length of weir is L, then the effective length of the weir will be
(L – 0.2H). Hence, the discharge is decreases due to formation of end contraction.

∴ Discharge through rectangular weir with end contraction:

Q = 1.52 2 ( 0.2 )
3 dC g L HH−

= 1.5 2.52 0.42 2
3 3d dC g LH C g H−

Q = Q – Q1

where Q = 1.52 2
3 dC gLH ,

discharge through rectangular weir without end contractions.

Q1 = 2.50.4 2
3 dC g H ,

reduction in discharge due to formation of end contraction.
This reduction in discharge Q1 over rectangular weir is to be compensated by

the addition discharge due to additional area at same base length L as shown in Fig.
9.10(b), is called cipolletti weir.

θ θ

L

H
2θ

H

(a) Additional area acts as (b) Cipoletti  weir if  θ = 14º
triangular weir if   2θ = 28º

Fig. 9.10: Cipolletti weir

Deduction in discharge Q1 over rectangular weir = gain in discharge by
adding area which acts
as triangular notch



Notches and Weirs 437

Q1 = Q∇

2.50.4 2
3 dC g H = 2.58 2 tan

15 dC g Hθ

0.4
3 = 

8
tan

15
θ

or tan θ = 0.25
or θ = tan–1 (0.25) ≈  14°
Cipolletti weir is a specific type of trapezoidal weir in which sloping side makes

an angle of 14° (i.e., θ = 14°) with vertical on each side. In other words sloping sides
have an inclination of 1 horizontal to 4 vertical. The cipolletti weir was invented by
an Italian engineer Cipoletti.

The discharge over cipolletti weir is equal to discharge over rectangular weir
without end contraction at same base length L.

Q = Q = 1.52 2
3 dC gLH

For experimental analysis, Cipolletti proposed following formula for discharge
over cipolletti weir.

Q = 1.86 LH1.5.

9.12 FRANCIS’S FORMULA FOR RECTANGULAR
WEIR WITH END CONTRACTIONS

Francis has given empirical formula for calculation of discharge
Q = 1.84 (L – 0.2 H)H1.5

for single weir or number of contractions: n = 2
Q = 1.84 (L – 0.1 nH)H1.5

where n = number of contractions
L = total length of weir

end 
contraction end 

contractions
end 

contractions

end 
contraction

n = 6

H

Fig. 9.11: Three rectangular weir with six end contraction.

Francis’s formula for rectangular weir without end contractions or for cipoletti
weir:

Q = 1.84 LH1.5
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9.13 VELOCITY OF APPROACH
In the previous articles, the discharge equations are derived on the assumption that the
water on the upstream side of the weir is not in motion. Therefore, the head of water
considered in deriving the equations of discharge was taken as the height of the free
surface of water above the sill of the weir. But in actual practice, the weir is provided
across a river or a stream and the water approaching the weir which gets a certain
velocity is called velocity of approach.

Fig. 9.12: Velocity of approach

Let Va = velocity of approach
2

2
aV
g = ha, head due to the velocity of approach.

Because of velocity of approach, the available total head, upstream the weir, is
not the height of the free surface above the sill, but is equal to height of the free surface
above the sill plus head due to the velocity of approach.

i.e., Total head: H1 = H + ha.
Therefore, the limits of integration for the discharge over a rectangular weir will

be ha to H1 instead of 0 to H.
Discharge over rectangular weir if the velocity of approach considered:

Qva = 1.5 1.5
1

2 2 ( )
3 d aC g L H h−

where H1 = H + ha, called still water head

ha = 
2

2
aV
g

The velocity of approach (Va) can be determined by using continuity equation.
Discharge: Q = A Va
or Velocity of approach:

Va = 
Q
A

where Q = discharge over the weir is determined by neglecting
the velocity of approach.
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A = cross-sectional area of flow of water in the
stream on the upstream side of the weir.

Discharge over rectangular weir with end contraction.

Q = 1.5 1.5
1 1

2 2 ( 0.1 ) ( )
3 d aC g L nH H h− −

where n = number of end contractions
H1 = H + ha, total head over the sill of weir.

Francis’s formula for rectangular weir with end contraction.

Q = 1.84 (L – 0.1 n H1) 1.5 1.5
1( )aH h−

Problem 9.14: Water is flowing over a Cipolletti weir 5 m long under a head of
1.5 m. Find the discharge, if the coefficient of discharge for the weir is 0.60.
Solution: Given data for a Cipoletti weir:

Length: L = 5 m
Head: H = 1.5 m

Cd = 0.60

Discharge: Q = 1.52 2
3 dC g L H  1.52 6.0 2 9.81 5 (1.5)

3
= × × × × ×

= 16.27 m3/s.

Problem 9.15: Find the length of a Cipolletti weir required for a flow of 500 litre/s,
if the head of water is not to exceed one-tenth of its length. Use Francis’s formula for
the weir.
Solution: Given data for Cipoletti weir:

Discharge: Q = 500 litre/s = 0.5 m3/s

H = 
1

10
L

or L = 10H
Francis’s formula for a Cipoletti weir:

Q = 1.84 L H1.5 = 1.84 × 10 H . H1.5

0.5 = 1.84 × 10 × H2.5

or H2.5 = 0.02717
H = 0.2364 m

and L = 10 H = 10 × 0.2364 = 2.364 m.

Problem 9.16: Find the discharge over a rectangular weir 20 m in length with a
head of 2 m. Take the velocity of approach as 1.2 m/s and Cd = 0.59.
Solution: Given data for a rectangular weir:

L = 20 m
H = 2 m

Va = 1.2 m/s
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∴ ha = 
2 2(1.2) 0.073m

2 2 9.81
aV
g

= =
×

∴ Total head: H1 = H + ha = 2 + 0.073 = 2.073 m.
Cd = 0.59

Discharge over the rectangular weir,

Q = 1.5 1.5
1

2 2 [ ]
3 d aC g L H h−

1.5 1.52 2 9.80.59 1 20 [(2.073) (0.073) ]
3

= × × × × × −

= 34.84 × [2.984 – 0.019] = 103.30 m3/s

Problem 9.17: A weir of 25 m long is divided into 10 equal bays by vertical posts
each of 500 mm width. Find the discharge over the weir, if the head over the crest
is 1.5 m and the velocity of approach is 2 m/s.
Solution: Given data for a rectangular weir:

Total length of the weir = 25 m
Number of bays = 10

Width of each post = 500 mm = 0.5 m
H = 1.5 m

Va = 2 m/s
We know that the number of end contractions,

n = 10 × 2 = 20 ( each bay contains two end contractions)
For 10 bays, number of vertical posts = 9
Length of the weir: L = 25 – 9 × 0.5 = 20.5 m
Head due to velocity of approach,

ha = 
2 2(2) 0.203m

2 2 9.81
aV
g

= =
×

∴ Total head: H1 = H + ha = 1.5 + 0.203 = 1.703 m
∴ Discharge over the weir according to Francis’s formula,

Q = 1.84 (L – 0.1 nH1) 1.5 1.5
1[ ]aH h−

= 1.84 (20.5 – 0.1 × 20 × 1.703)
  [(1.703)1.5 – (0.203)1.5]
= 31.45 × [2.222 – 0.091] = 72.74 m3/s.

Problem 9.18: A sharp crested rectangular weir of 1.4 m height extends across a
rectangular channel of 4 m width. If the head of water over the weir is 0.5 m, find
the discharge over the weir. Consider velocity of approach and take coefficient of
discharge as 0.61.
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Solution: Given data for rectangular weir:
Height of weir from base of channel:

h = 1.4 m
Length of weir: L = 4 m
Head of water over the weir:

H = 0.5 m
Height of water in the channel:

= h + H = 1.4 + 0.5 = 1.9 m
Cd = 0.61

For calculation of the velocity of approach.
Discharge of rectangular weir without considering velocity of approach,

Q = 1.52 2
3 dC g L H  1.52 2 9.80.61 1 4 (0.5)

3
= × × × × ×

= 2.547 m3/s.
Wetted cross-sectional area of the channel:

A = width × heights of water in the channel
= 4 × 1.9 = 7.6 m2

∴ Velocity of approach: Va = 
2.547 0.335 m/s
7.6

Q
A

= =

and head due to velocity of approach,

ha = 
2 2(0.335) 0.0057 m

2 2 9.81
aV
g

= =
×

∴ Total head: H1 = H + ha = 0.5 + 0.0057 = 0.5057 m
Now the discharge over rectangular weir with velocity of approach,

Qva = 1.5 1.5
1

2 2 ( )
3 d aC g L H h−

1.5 1.52 2 9.80.61 1 4 [(0.5057) (0.0057) ]
3

= × × × × × −

= 2.588 m3/s.

9.14 VENTILATION OF WEIRS
Some cases, a suppressed weir (i.e., the length of weir is equal to the width of the
channel) is provided in a channel to measure the discharge of water. Then, the nappe
touches the side walls of the channel.
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Suppressed Weir

Ventilation holes

Fig. 9.13: Ventilation of weir

Because of this, a hollow space is maintained among the nappe, the weir, bottom
and side walls of the channel in downstream of the weir as shown in Fig. 9.13. This
space is occupied by air. The air, thus entrapped is slowly carried away by the flowing
water, thus creating a vacuum pressure below nappe. This vacuum pressure below
nappe draws the lower nappe towards the downstream surface of the weir. Because
of the vacuum pressure (i.e., pressure below the atmospheric pressure) below the
nappe, the discharge over weir slightly increases.

In order to keep the atmospheric pressure in the space below the nappe, holes
are provided in the side walls of the channel in the space below the lower nappe, so
that the space is connected to free atmosphere and air is supplied continuously for the
amount of air carried away by flowing water. The number of holes act like ventilators
and are called ventilation holes, and the weir where ventilation holes are provided on
the side walls of the channel in downstream of the weir, is called ventilated weir.

If the weir is well ventilated and the atmospheric pressure is maintained below
the nappe, then it is called free nappe as shown in Fig. 9.13.

If a weir is not properly ventilated, the amount of air which is carried away by
water is more than the quantity of air supplied through ventilation holes. Then, partial
vacuum is created below the nappe. As a result, the nappe is gradually drawn towards
the downstream surface of a weir. Such a nappe is called depressed nappe as shown
in Fig. 9.14. It has been observed that the discharge over weir with depressed nappe
is increased by 6 to 7% as compared with free nappe.
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Fig. 9.14: Depressed nappe.
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If there is no air left between the lower nappe and the down stream surface of
the weir, then the lower nappe adheres the down stream surface of the weir. Such
nappe which adheres to the down stream surface of the weir is called adhering or
clinging nappe as shown in Fig. 9.15. The discharge over clinging nappe is 20 to 30%
more than the free nappe.
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Clinging nappe

Fig. 9.15: Clinging nappe

9.15 DISCHARGE OVER A BROAD CRESTED WEIR
A weir with a wide crest is known as broad crested weir. The width of the crest B
is greater than 0.5 H. This type of weir is shown in Fig. 9.16.
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Fig. 9.16: Broad crested weir.

Let H = head of water on the upstream side of the weir.
h = head of water on the downstream side of the weir.
V = velocity of water on the downstream side of the

weir.
Applying the Bernoulli’s equation to the crest of the weir on the upstream side

and downstream side:

H + 0 + 0 = 
2

0
2
Vh

g
+ +

or H = 
2

2
Vh

g
+

or
2

2
V

g = H – h
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or V = 2 ( )g H h− …(9.15.1)

∴ Discharge over the weir:
Q = Cd × area of flow × velocity

= Cd × Lh × V = Cd L hV …(9.15.2)
where Cd = coefficient of discharge

L = length of the weir
Substituting the value of V from Eq. (9.15.1) in above Eq. (9.15.2) we get

Q = 2 ( )dC L h g H h−

= 2 32 ( )dC L g Hh h− …(9.15.3)

The above Eq. (9.15.3) shows that the discharge will be maximum, when
(Hh2 – h3) is maximum. Therefore, the condition of discharge for constant head H

may be obtained by equating 2 3( )d Hh h
dh

−  to zero.

∴ 2 3( )d Hh h
dh

− = 0

2Hh – 3h2 = 0
2H – 3h = 0

or h = 
2
3

H

Substituting the value of h in Eq. (9.15.3), we get

Qmax = 
2 22 22

3 3dC L g H H H   −   
   

3 3 34 8 42 2
9 27 27d dC L g H H C L g H= − =

3 3 / 22 22 2
3 3 3 3d d

H HC L g C L g= × =

1.5 1.52 22 2 9.81
3 3 3 3d dC L g H C L H= = × ×

Qmax = 1.71 Cd L H1.5

9.16 DISCHARGE OVER A SUBMERGED WEIR
When the water level on the down stream side is above the crest of the weir, then the
weir is said to be submerged or drowned weir. It is used for large discharge capacity.
The discharge over submerged weir may be divided into two portions as discussed
below:
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Fig. 9.17: Submerged weir.

Let H1 = height of water on the upstream side of the weir,
and

H2 = height of water on the downstream side of the
weir.

The portion between upstream and downstream water surface may be treated
as a freely discharge weir for the available head equal to (H1 – H2).

∴ The portion of discharge over the freely discharge weir:

Q1 = 1.5
1 2

2 2 ( )
3 dC g L H H−

The portion between downstream water surface and the crest of the weir may
be considered as a submerged orifice.

∴ The portion of discharge through a submerged orifice.

Q2 = 2 1 22 ( )dC L H g H H−

where Cd = coefficient of discharge
L = length of the weir.

∴ Total discharge over submerged weir:
Q = Q1 + Q2

1.5
1 2 2 1 2

2= 2 ( - ) + 2 ( - )
3 d dC g L H H C L H g H H

9.17 OGEE WEIR
In case of a sharp crested weir, the nappe as it leaves the crest, rises slightly at the
lower surface. The space below the bottom surface of the nappe is filled with masonry
or concrete. In this manner a new weir formed beside a sharp crested weir is called
an ogee weir. Thus in an ogee weir, the solid boundary of the weir remains in contact
with the bottom surface of the nappe of the sharp crested weir under designed head.
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Fig. 9.18: An ogee weir.

Discharge over an ogee weir:

Q 1.52 2
3 dC g L H= …(9.17.1)

According to Francis’s formula;
Q = 1.84 L H1.5 …(9.17.2)

where H = head over the sharp crest weir.
Eqs. (9.17.1) and (9.17.2) same as discharge over rectangular weir.
If H1 = head above the crest of ogee weir be considered,

then the discharge is given by,

Q = 2.20 1.5
1 .L H

Problem 9.19: A submerged sharp crested weir 0.5 m high stands clear across a
channel having vertical sides and a width of 2 m. The depth of water in the channel
is 1.2 m. The depth of water is 0.8 m in downstream and 5 m from the weir. Find
the discharge over the weir. Assume Cd = 0.6.
Solution: Given data:

Length of weir: L = 2 m
Cd = 0.6
H1 = 1.2 – 0.5 = 0.5 m
H2 = 0.8 – 0.5 = 0.3 m

Fig. 9.19: Schematic for Problem 9.19
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Contd...

Discharge over the freely discharge weir:

Q1
1.5

1 2
2 2 ( )
3 dC g L H H= −

1.5 32 0.6 2 9.81 2(0.5 03) 0.3169 m /s
3

= × × × × − =

Discharge through a submerged orifice:

Q2 = 2 1 22 ( )dC L H g H H−

3= 0.6×2×0.3× 2×9.81(0.5- 03) 0.7131 m /s=

∴ Total discharge over submerged weir:
Q = Q1 + Q2 = 0.3169 + 0.7131 = 1.03 m3/s.

Problem 9.20: An ogee weir 5 m long has 400 mm head of water. Find the
discharge over the weir. Take Cd = 0.61.
Solution: Given data:

L = 5 m
H = 0.4 m

Cd = 0.61
We know that the discharge over an ogee weir:

Q 1.52 2
3 dC g L H= 1.52

0.61 2 9.81 5 (0.4)
3

= × × × × ×

= 2.278 m3/s

SUMMARY

1. Notches and weirs are used for measuring the rate of flow of liquid through
open channel. Both are having same function i.e., to measure the rate of
flow. Difference between the two is their size and the quantity of discharge.
Notches are small in size, hence used to measure small discharge through
tank in laboratory. Weirs are big in size, thus measure large discharge in
dams, rivers, etc.

2. Classification of notches:
(a) According to the shape of the opening:

(i) Rectangular notch
(ii) Triangular notch or V-notch

(iii) Trapezoidal notch
(iv) Steeped notch.
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Contd...

(b) According to the effect of the sides on the nappe:
(i) Notch with end contractions

(ii) Notch without end contractions or suppressed weir.
3. Classification of weirs:

(a) According to the shape of the opening:
(i) Rectangular weir

(ii) Triangular weir
(iii) Trapezoidal weir.

(b) According to the effect of the sides of the nappe.
(i) Weir with end contractions

(ii) Weir without end contractions or suppressed weir.
(c) According to the shape of the crest:

(i) Sharp-crested weir
(ii) Broad-crested weir

(iii) Narrow-crested weir
(iv) Ogee-shaped weir

4. The discharge over a rectangular notch or weir:

Q = 1.52Q = 2
3 dC g L H

where Cd = coefficient of discharge.
L = length of the notch or weir.
H = head of liquid over the crest of the notch or weir.

5. The discharge over a triangular notch or weir.

Q = 2.58 2 tan
15 2dQ C g Hθ

=

where θ = angle of notch or weir
H = head of liquid over the apex of the notch or weir.

6. The discharge over a trapezoidal notch or weir.

Q = 1.5 2.5
1 2

2 82 tan
3 15 2d dQ C g L H C Hθ

= +

where Cd1 = coefficient of discharge for rectangular notch.
Cd2 = coefficient of discharge for triangular notch.

2
θ

 = slope of the side of trapezoidal notch.
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7. The effect on the discharge over a notch due to an error in the measurement
of head:

1.5dQ dH
Q H

= for a rectangular notch or weir

2.5 dH
H

= for a triangular notch or weir.

For a rectangular notch or weir, an error of 1% in measuring head (H)
will produce 1.5% error in discharge.
For a triangular notch or weir, an error of 1% in measuring head (H) will
produce 2.5% error in discharge.

8. Cipoletti weir is a specific type of trapezoidal weir in which sloping side
makes an angle of 14° (i.e., θ = 14°) with vertical on each side. In the
other words sloping sides have an inclination of 1 horizontal to 4 vertical.
The cipoletti weir was invented by an Italian engineer Cipoletti.

Discharge over a Cipoletti weir: 1.52 2
3 dQ C g L H=

9. Francis’s formula for rectangular weir with end contractions
Q = 1.84 (L – 0.2H) H1.5   for n = 2

= 1.84 (L – 0.1 nH) H1.5

where n = number of contractions,
L = total length of weir,

10. Francis’s formula for rectangular weir without end contractions or for
Cipolletti weir:

Q = 1.84 LH1.5

11. The discharge over rectangular weir if the velocity of approach considered:

 1.5 1.5
1

2 2 ( )
3av d aQ C g L H h= −

where H1 = H + ha, called still water head.

  
2

2
a

a
Vh

g
=

  Va = velocity of approach
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ASSIGNMENT - 1

1. Define the following terms:
(i) Notch

(ii) Crest
(iii) Nappe.

2. What is a weir? Differentiate between a notch and weir.
3. Differentiate between a notch and a orifice.
4. Derive an expression for the discharge over a rectangular weir.
5. Prove that the discharge over a triangular notch is given by:

 2.58 2 tan
15 2dQ C g Hθ

=

where H = head of water over the sill of a notch.
 θ = angle of notch.

6. Prove that the discharge over a rectangular weir is given by:

 1.52 2
3 dQ C g L H=

where Cd = coefficient of discharge
  L = length of weir
 H = head of water over the sill of a weir.

7. What are the advantages of triangular weir over rectangular weir?
8. Prove that the error in discharge due to the error in the measurement of head

over a rectangular weir is given by

1.5dQ dH
Q H

=

where         Q = discharge over a rectangular weir, and
  H = head over the crest of a weir.

9. Prove that the error in discharge due to the error in the measurement of head
over a triangular weir is given by:

     2.5dQ dH
Q H

=

where Q = discharge over a rectangular weir, and
H = head over the crest of a weir.

10. What is a Cipolletti weir? How does it differ from the rectangular weirs?
11. What do you mean by end contractions of a rectangular weir? How can the

loss of discharge due to end contractions be compensated?
12. Define the velocity of approach.
13. How does the velocity of approach affect the expression for discharge over

a weir?
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14. What are the ventilation holes?
15. What is a nappe of weir? Describe the free, depressed and clinging nappes

with the help of sketches. State how do they effect the discharge measurement
in case of weir.

16. Explain clearly the following weirs:
(i) Broad crested (ii) Submerged (iii) Ogee.

ASSIGNMENT - 2

1. Find the discharge over a rectangular notch 5 m long when the head of liquid
over the sill is 0.4 m. Take Cd = 0.62. Ans. 2.315 m3/s

2. The discharge over a rectangular notch is 90 litre/s when the water level is
250 mm above the crest. Find the length of a notch if the coefficient of
discharge is 0.61. Ans. 399.71 mm

3. A rectangular weir of 4 m long is used to measure the rate of flow of water.
The head of water over the weir is 500 mm. If the available height of waterfall
is 12 m, find the power of the waterfall. Take Cd = 0.62. Ans. 304.78 kW

4. The maximum flow through a rectangular channel 1 m deep and 1.5 m wide
is 0.9 m3/s. It is proposed to install a full width, sharp-edged rectangular weir
across the channel to measure the flow. Find the maximum height at which
the crest of the weir must be placed in order that the water may not overflow
the sides of the channel. Take Cd = 0.6. Ans. 514.12 mm

5. A right-angled V-notch is used to measure the discharge in a small channel.
If the depth of water at V-notch is 200 mm, find the discharge over the notch
in litre per second. Take Cd = 0.62. Ans. 26.20 litre/s

6. Water flows over a rectangular notch of 1.2 m length over a head of water
300 mm. Then, the same discharge over a right-angled triangular notch. Find
the height of water above the sill of the notch. Take Cd for the rectangular
and triangular notches as 0.60 and 0.62 respectively. Ans. 563.65 mm

7. A trapezoidal weir 4 m wide at the top and 3 m at the bottom is 1 m high.
Find the discharge over the weir, if the head of water is 600 mm.
Take Cd = 0.60. Ans. 2.667 m3/s

8. Find the discharge over a stepped notch of the following dimensions:
Top section: 1000 mm × 150 mm
Middle section: 800 mm × 100 mm
Bottom section: 600 mm × 800 mm
Take coefficient of discharge for three sections as 0.62.Ans. 275.28 litre/s

9. A rectangular notch 400 mm long is used for measuring a discharge of
30 litre/s. An error of 1.5 mm was made, while measuring the head over the
sill of the notch. Find the percentage error in the discharge. Take coefficient
of discharge as 0.60. Ans. 1.85 %
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10. A right-angled V-notch is used for measuring a discharge of 30 litre/s. An
error of 2 mm was made while measuring the head over the notch. Find the
percentage error in the discharge.
Take coefficient of discharge as 0.62. Ans. 2.36%

11. Water is flowing over a Cipoletti weir 4 m long under a head of 1 m. Find the
discharge, if the coefficient of discharge for the weir is 0.62.  Ans. 7.32 m3/s

12. Find the length of a Cipoletti weir required for a flow of 500 litre/s, if the head
of water does not exceed one-tenth of its length. Use Francis’s formula for
the weir. Ans. 2.36 m

13. Water is flowing in a rectangular channel 1m wide and 0.75 m deep. Find the
discharge over a rectangular weir of sill length 600 mm if the head of water
over the sill of weir is 200 mm and water from channel flows over the weir.
Take Cd = 0.62, neglecting end contraction, but considering the velocity of
approach. Ans. 98.81 litre/s

14. A rectangular weir is constructed across a channel of 770 mm width with a
head of 390 mm and the sill 600 mm above the bed of the channel. Find the
discharge over a rectangular weir neglecting the end construction and
considering the velocity of approach. Assume Cd = 0.62. Ans. 0.3555 m3/s

15. A submerged sharp crested weir 800 mm high stands clear across a channel
having vertical sides and a width of 3 m. The depth of water in the channel
is 1.25 m. The width of water is 1 m in the downstream and 10 m from the
weir. Find the discharge over the weir. Take Cd = 0.6. Ans. 0.6644 m3/s

16. An ogee weir of 3 m long has 800 mm head of water. Find the discharge over
the weir. Take Cd = 0.62. Ans. 3.93 m3/s





Compressible Flow

10.1 INTRODUCTION
In the previous chapters, we considered the incompressible flow which means that
the density of the fluid is unchanged in the flow. But in this chapter, we will study the
behaviour of the compressible flow. In compressible flow, the density of the fluid
changes from point to point in the fluid flow. Gases (like air, carbon dioxide etc.) are
compressible fluid.

So in this chapter, we will discuss the equation of state, thermodynamics process,
steady and unsteady flow, uniform and non-uniform flow, compressible and
incompressible flow, rate of flow, continuity equation, steady flow energy equation,
stagnation state, velocity of sound in compressible fluids, nozzle and diffuser, Rayleigh
and Fanno flow.

10.2 EQUATION OF STATE
The equation involving temperature, pressure and volume (or specific volume) is used
to describe the condition or state of the system is called an equation of state.
For a perfect (or ideal) gas, the equation of state is

pV = mRT ... (10.2.1)
where p = absolute pressure of a perfect gas in kPa.

V = volume of a perfect gas in m3

m = mass of a perfect gas in kg
R = gas constant in kJ/kgK

= 0.287 kJ/kgK for air
T = absolute temperature i.e., temperature in K (kelvin)

pV
m = RT

pv = RT ... (10.2.2)

10
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where v = ,V
m  specific volume in m3/kg

also v = 
1 ,
ρ  specific volume is the reciprocal of the

density and its SI unit is m3/kg

∴ ρ
p

= RT

or p = ρRT ...(10.2.3)

Gas constant : R. It is defined as the ratio of the universal gas constant ( )R
to the molecular weight of a perfect gas.

Mathematically,

Gas constant: R = 
universal gas constant : 

molecular weight : 
R

M

R = 
R
M

where R = 8.314 kJ/k mol K

Substituting R = 
R
M

 in Eq. (16.2.1), we get

pV = 
Rm T
M

pV = nRT ...(10.2.4)

S. No. Ideal Gas Molecular Universal Gas Cons-
Weight : M Gas Cons- tant : R

kg/k mol tant : R kJ/kg K
kJ/k mol K

1. Air 28.92 8.314
8.314 0.287
28.92

=

2. CO2 44 8.314
8.314 0.189

44
=

3. O2 32 8.314
8.314 0.259

32
=

4. N2 28 8.314
8.314 0.297

28
=

5. H2O(v) 18 8.314
8.314 0.462

18
=

(superheated
steam)
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where ,=
mn
M  number of moles. It is defined as the ratio of the mass of a gas to the

molecular weight of a gas. Eqs. (10.2.1), (10.2.2), (10.2.3) and (10.2.4) are all form
of the equation of state. These equations are applicable at any state of system for an
ideal gas. For example: If we know V, m, R and T, then p find out by using Eq.
(10.2.1.).

10.3 THERMODYNAMIC PROCESSES
Thermodynamic processes are used to study the thermodynamics behaviour of a
series of changes in state of the system. Following are the main thermodynamic
processes.

(i) Isothermal process
(ii) Isobaric process

(iii) Isochoric process
(iv) Adiabatic process
(v) Polytropic process

10.3.1 Isothermal Process [T = c]
Isothermal process takes place at constant temperature. The volume (or specific
volume) of the gas varies inversely with pressure at constant temperature in this type
of process.

From the equation of state
pv = RT

For any process, R is constant and T is constant for isothermal process.
∴ pv = c

or
pV
m = c |  v = V/m

or pV = c

2

1
12

T

sv

p

Fig. 10.1 Isothermal compression process
in p–v and T–s diagrams
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Hence, the product of absolute pressure and volume (or specific volume) is
constant.

For isothermal process 1 – 2

p1v1 = p2v2

or 2

1

p
p = 1

2

v
v

Isothermal process follows the Boyle’s law which state that the specific volume
of a perfect gas is inversely proportional to the absolute pressure when the temperature
is kept constant.

Mathematically,

v ∝ 1
p

 at T = c

or pv = c

10.3.2 Isobaric Process [ p = c]
Isobaric process takes place at constant pressure. The volume (or specific volume)
of the gas varies directly with temperature at constant pressure in this type of process.

From the equation of state

pv = RT

or
v
T = 

R
p

v
T = c

p

v

1 2

1

2

T

s

Fig. 10.2 Isobaric process in p–v and T–s diagrams.
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For isothermal process 1 – 2

1

1

v
T

= 2

2

v
T

or 2

1

T
T = 2

1

v
v

Isobaric process follows the Charles’ law which state that the specific volume
of a perfect gas is directly proportional to the absolute temperature when the pressure
is kept constant.

Mathematically,

v ∝ T at p = c

or
v
T = c

10.3.3 Isochoric Process (or Isometric Process) [V = c]
Isochoric process takes place at constant volume. The pressure of the gas varies
directly with temperature at constant volume in this type of process.

From the equation of state
pv = RT

p
T = 

R
v

p
T = c

1

2

p

v

T

s

1

2

Fig. 10.3 Isochoric process in p–v and T–s diagrams.
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For isochoric process 1 – 2

1

1

p
T

= 2

2

p
T

or 2

1

T
T

= 2

1

p
p

Isochoric process follows the Gay-Lussac’s law which state that the absolute
pressure of a perfect gas is directly proportional to the absolute temperature when the
volume is kept constant.

Mathematically,
p ∝ T at v = c

or
p
T = C

10.3.4 Adiabatic Process [ pvγ = c ]
When there is no heat transfer between the system and surroundings during a process,
it is known as an adiabatic process. The properties like a pressure, temperature and
volume of the system will vary during this process. Normally, this process is
considered as ideal process and also called reversible adiabatic (or adiabatic isentropic).
In this process, the entropy of the system will remain constant without transfer of heat
to or from the surroundings.
This process can be represented by the equation

pvγ = c

RT v
v

γ = c
or

pv RT
RTp
v

=

=

Tvγ–1 = c

where γ = ,p

v

c
c

 adiabatic index

= 1.4 for air
Adiabatic index (γ) is defined as the ratio of specific heat at constant pressure

(cp) and the specific heat at constant volume (cv).
For adiabatic process 1 – 2

p1v1
γ = p2v2

γ
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p2

p

p1

v2 v1

1

2

v

T1

T2

T

2

1

ss1 =  s2

Fig. 10.4 Adiabatic process (i.e., adiabatic compression) in p–v and T–s diagrams

2

1

p
p = 1 2

2 1

γ −γ
   

=   
   

v v
v v

...(1)

From the equation of state
pv = RT

pv
T = R = c

For process 1 – 2

1 1

1

p v
T = 2 2

2

p v
T

or 1

2

v
v

= 2 1

1 2
×

p T
p T

Substituting the value of 1

2

v
v

 in Eq. (1), we get

2

1

p
p = 2 1 2 1

1 2 1 2

γ γ γ
     

× = ×     
     

p T p T
p T p T

or 2

1

γ
 
 
 

T
T

= 
1

2

1

p
p

γ−
 
 
 
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or 2

1

T
T = 

1

2

1

p
p

γ −
γ 

 
 

...(2)

Substituting the value of 2

1

p
p

 from Eq. (1) in Eq. (2), we get

2

1

T
T = 

1

1

2

γ−
γ γ  

  
   

v
v

2

1

T
T = 

1
1

2

γ−
 
 
 

v
v ...(3)

From Eqs. (2) and (3), we get

2

1

T
T = 

γ-1 γ-1
γ

2 1

1 2

p v
p v

   
=   

   

also 2

1

T
T = 

γ-1 γ-1 γ-1
γ

2 1 2

1 2 1

p v
p v

     ρ
= =     ρ     

From adiabatic process:
(a) Relation between p and T

2

1

T
T = 

–
 
 
 

γ 1
γ

2

1

p
p

(b) Relation between p and v

1

2

1

γ−
γ 

 
 

p
p

= 
1

1

2

γ−
 
 
 

v
v

or 2

1

p
p = 1

2

 
 
 

γ
v
v

(c) Relation between T and v

2

1

T
T = 

– –
1 2

2 1

   
=   

   

γ 1 1 γ
v v
v v

(d) Relation between T and ρ

2

1

T
T = 

–
2

1

 ρ
 ρ 

γ 1
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10.3.5 Polytropic Process [pvn = c]
Polytropic process is a real process followed by practically compression and expansion
processes. For examples : Actual expansion of gases in the nozzles, turbines, IC
engines and actual compression in the compressors and IC engines are followed the
polytropic process. This process can be represented by the equation.

pvn = c
   where n = polytropic index

n < γ n < γn < γ
n < γ

2 2 2
pv Cγ = pv Cγ= 

pv Cn = pv Cn = 

pv Cn = 

1

2 2
2

1
p C

1 = 

p C
2 = p

v

T

s

Fig. 10.5 Polytropic process in p–v and T–s diagrams.

Characteristics of polytropic process:
(a) Entropy of the process changes.
(b) Both heat and work transfer take place.
The relations between T, p and v are obtained by replacing n instead of γ in

relations for adiabatic process:

2

1

T
T = 

1 1
2 1

1 2

−
−

   
=   

   

n n
np v

p v

For polytropic process:
(a) Relation between p and T

2

1

T
T = 

1

2

1

n
np

p

−

 
 
 

(b) Relation between p and v

2

1

p
p

= 1

2

n
v
v

 
 
 
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(c) Relation between T and v

2

1

T
T = 

1 1
1 2

2 1

n n
v v
v v

− −
   

=   
   

(d) Relation between T and ρ

2

1

T
T = 

1
2

1

n−
 ρ
 ρ 

10.4 STEADY AND UNSTEADY FLOW
A flow is considered to be steady if fluid flow parameters such as velocity, pressure,
temperature etc. at any point do not change with time. If any one  of these parameters
changes with time at particular point, the flow is said to be unsteady.

Mathematically,

V
t

∂
∂

= 0, 
∂
∂
p
t  = 0 for steady flow

V
t

∂
∂

≠ 0, 
∂
∂
p
t

 ≠ 0 for unsteady flow

10.5 UNIFORM AND NON-UNIFORM FLOW
A type of flow in which velocity (V), pressure (p), density (ρ), temperature (T) etc.
at any given time do not change with respect to space (i.e., length of direction of the
flow) is called uniform flow.

Mathematically,
V
s

∂
∂

= 0, 
∂
∂
p
s  = 0 for uniform flow

In case of non-uniform flow, velocity, pressure, density etc. at given time change
with respect to space.

Mathematically,
V
s

∂
∂

≠ 0, 
∂
∂
p
s  ≠ 0 for non-uniform flow

10.6 COMPRESSIBLE AND INCOMPRESSIBLE FLOW

10.6.1 Compressible Flow [ρ ≠ c]
If the density of the fluid changes from point to point in the fluid flow, it is referred
to as compressible flow.
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Mathematically,
Density: ρ ≠ c
For example: Gases (like air, carbon dioxide etc.) are compressible:

10.6.2 Incompressible Flow (ρ = c).
If the density of the fluid remains constant at every point in the fluid flow, it is referred
to as an incompressible flow.

Mathematically,
Density: ρ = c
For example: Liquids are generally incompressible in nature (Solids are also
incompressible in nature).

The compressible or incompressible flows are also defined on basis of Mach
number (M). It is index of the ratio of inertia and elastic forces.

M 2 = 
inertia force
elastic force

M 2 = 
2 2

2
ρL V

KL

M 2 = 
2ρV

K
where K = bulk modulus of the fluid

M 2 = 
2

/ ρ
V

K

M 2 = 
2

2
V
a

where 2ρ
K

= a2

∴ M = 
V
a

where a = speed of sound in the flowing medium
This relation given another important definition of the Mach number (M) as the

ratio of the fluid velocity to the velocity of sound in the flowing medium.

If M > 0.2, the gases are considered to be compressible.

If M < 0.2, the gases are assumed to be incompressible.

10.7 RATE OF FLOW
The quantity of the fluid flowing per unit time through a section of flow is called rate
of flow. The rate of flow is expressed as the weight of the fluid flowing per second
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across the section, is called weight flow rate. It is denoted by W and its unit is
N/s. The rate of flow is expressed as the mass of the fluid flowing across the section
per second, is called mass flow rate. It is denoted by m and its unit is kg/s. The rate
of flow is expressed as the volume of the fluid flowing across the section per second,
is called volume flow rate or commonly known as discharge. It is denoted by Q and
its unit is m3/s.

Mathematically,

Discharge: Q = AV = mv
where A is the cross-sectional area, m2

V is average velocity of flow across the section, m/s

m is mass flow rate, kg/s

v is specific volume, m3/kg

or AV = mv

or m = 
AV
v |  v = 

1
ρ

m = ρAV

10.8 CONTINUITY EQUATION
The equation based on the law of conservation of mass is called continuity equation.
It means that mass of fluid can neither be created nor destroyed. If there is no
accumulation of mass within the control volume, the mass flow rate entering the
system must equal to the mass flow rate leaving the system.

1

1
2

2

V1 V2

Fig. 10.6

According to law of conservation of mass, mass rate of flow at section (1) –
(1) = mass rate of flow at section (2) – (2) (Fig. 10.6)

m1 = m2 |  m = 
AV
v
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1 1

1

AV
v = 2 2

2

A V
v ...(10.8.1)

where m1 = 1 1

1

AV
v

 and m2 = 2 2

2

A V
v

or ρ1A1V1 = ρ2A2V2 ...(10.8.2)
Eqs. (10.8.1) and (10.8.2) are used for compressible fluid where ρ1 ≠ ρ2 or v1

≠ v2. If fluid is incompressible, then v1 = v2 or ρ1 = ρ2, the Eqs. (1) and (2) become
A1V1 = A2V2

ρ1A1V1 = ρ2A2V2 for compressible fluid
A1V1 = A2V2 for incompressible fluid

10.9 STEADY FLOW ENERGY EQUATION [SFEE]
Steady flow means to the flow in which its properties like m, p, T, v, V do not change
with respect to time at any point in the system.

Heat supplied: Q1–2

Work output: W1–2

p u m v A V, , , , , 11 1 1 1 1

p u m v A V, , , , , 2 2 2 2 2 2

1

21

2
z1

z2

Fluid 
inlet

Fluid 
exit

CV
(Open system)

CS
CV
CS

 = Control Volume
 = Control Surface

Datum

Fig. 10.7 Steady flow system

Consider an open system as shown in Fig. 10.7. Let p1, u1, m1, v1, A1 and V1
are pressure, specific internal energy, mass flow rate, specific volume, cross-sectional
area, velocity at section (1) – (1) inlet to the system respectively.

and p2, u2, m2, v2, A2 and V2 are pressure, specific internal energy, mass flow
rate, specific volume, cross-sectional area, velocity at section (2) – (2) outlet to the
system respectively.

z1, z2 are datum heads at inlet and exit respectively

1 2−
Q  is heat supplied to the system.
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1 2−
W  is work output from the system.
[Note : We assumed both heat and work are positive i.e., heat supplied to the

system is +ve and work output by the system is +ve]
Following assumptions are set up to derive the steady flow energy equation:
(i) Mass flow rate at the inlet and outlet is same

(ii) All the parameters of fluid and flow properties like p, u, v, and V do not
change with respect to time at inlet and outlet of the system.

(iii) Both heat and work do not change with respect to time.
According to law of conservation of energy, “energy can neither be created nor

destroyed”
∴ Net inlet energy to the system =net output energy by the system

Energy at section (1) – (1) + heat supplied = energy at section (2) – (2) +
work output

[Internal energy + flow work + KE – PE]1 + 
1 2−
Q

= [internal energy + flow work + KE + PE]2 + 1 2−
W

[m1u1 + m1p1v1 + 
1
2

m1V1
2 + m1gz1] + 

1 2−
Q  = [m2 u2 + m2 p2 v2 + 1

2  m2 V2
2 + m2 gz2] + W1–2

m1 [u1 + p1 v1 + 1
2

2
1V  + gz1] = m2 [u2 + p2 v2 + 

2
2
2

V
 + gz2] + W1–2

By definition of specific enthalpy,

h1 = u1 + p1v1 at inlet

h2 = u2 + p2v2 at outlet

and for steady flow, mass flow rate is constant i.e.,

m1 = m2 = m

∴ m[h1 + 
2

1

2
V

 + gz1] = m[h2 + 
2

2

2
V

 + gz2] + 1 2W −

or
2

1 1 2
1 12

V Qh gz
m

−+ + + = 
2

2 1 2
2 22

V Wh gz
m

−+ + +

or
2

1
1 1 1 22

Vh gz q −+ + + = 
2

2
2 2 1 22

Vh gz w −+ + + ... (10.9.1)

where 1 2
1 2

Qq
m

−
− = , specific heat transfer, which is defined as the rate of heat

transfer per unit mass flow rate. Its SI unit is kJ/kg and 1 2
1 2

Ww
m

−
− = , specific work,

which is defined as the rate of work done per unit of mass flow rate. Its SI unit is
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kJ/kg. Eq. (10.9.1) is called steady flow energy equation. In this equation, the specific
enthalpy, kinetic energy, potential energy, specific heat transfer and specific work do
not change with respect to time in open system.

10.10 STAGNATION STATE
Stagnation state is the state of flowing fluid at which the flow come to stop. This state
is achieved by decelerating the fluid adiabatic isentropically to zero velocity. The
concept of a reference state of the gas in a compressible flow is very useful. The
stagnation state of a gas is often used as a reference state. It is commonly designated
with the subscript zero. The enthalpy, temperature, pressure, density at stagnation
state are called stagnation enthalpy h0, stagnation temperature T0, stagnation pressure
p0 and stagnation density ρ0 respectively.

V1
2

2

0

1

p1 = Static pressure

p0 = Stagnation pressure

V1 = Velocity of fluid

V0 = 0

h0

h1

s

h

Fig. 10.8 Decelerating of flow

Applying the steady flow energy equation at state 1 and stagnation stage 0, we
get

2
1

1 1
1 02

Vh gz q
−

+ + + = 
2

0
0 0 1 02

Vh gz w
−

+ + +

where z1 = z2, flow is horizontal

1 0−
q = 0, adiabatic process

1 0
w
− = 0, no work done

V0 = 0, at stagnation point
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∴
2
1

1 2
+

vh = h0

or Stagnation enthalpy: 
2

1
0 1 2

Vh h= + (10.10.1)

Stagnation temperature: T0
For an ideal gas, a stagnation temperature is defined through stagnation enthalpy.
From equation (10.10.1)

h0 = 
2

1
1 2

Vh +

cpT0 = cpT1 + 
2

1

2
V

or T0 = 
2

1
1 2 p

VT
c

+

Dividing by T1 on both sides, we get

0

1

T
T

= 
2

1

1
1

2 p

V
T c

+

0

1

T
T = 

2
1

1

1
2

1

V
RT

+
γ×

γ −
1p

Rc γ
=

γ −


0

1

T
T

= 
2

1

1
1 ( 1)

2
V
T R

+ γ −
γ

0

1

T
T = 

2
1

2
( 1)1
2

V
a
γ −

+ 1

2
1

Velocity of sound:

for ideal gas

or 

a RT

a RT

= γ

= γ



0

1

T
T

= 
2

1
2

( 1)1
2

V
a

γ −
+  = 211 .

2
Mγ − +  

 

where M = 1V
a , Mach number of the fluid flow at state 1.

 

20

1

( 1)1 .
2

T M
T

γ −
= + ...(10.10.2)

Stagnation pressure: p0
The pressure of a gas or fluid which is obtained by decelerating it in a adiabatic

isentropically to zero velocity is known as the stagnation pressure.
For adiabatic process 1 – 0,
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1

oT
T

= 

γ 1
γ

1

op
p

−

 
 
 

...(10.10.3)

Equating Eqs. (10.10.3) and (10.10.2), we get
γ 1
γ

1

op
p

−

 
 
 

= 2(γ 1)1
2

M−
+

or
12

1

( 1)1
2

op M
p

−− = +  

γ
γγ

Stagnation density: ρ0
The density of a gas at stagnation state is called the stagnation density.
For adiabatic process:

1

oT
T

= 
1

1

0

v
v

γ −
 
 
 

= 
1

1

0

γ−
 ρ
 ρ 

...(10.10.4)

Equating Eqs. (10.10.4) and (10.10.2), we get
1

1

0

γ−
 ρ
 ρ 

= 2( 1)1
2

Mγ −
+

or

1
12

1

( 1)1
2

o M
γ−ρ γ − = + ρ  

10.11 VELOCITY OF SOUND WAVE IN COMPRESSIBLE FLUIDS
In the first chapter, we discussed, solids are incompressible and liquids are also
considered as a incompressible because of the compressibility in liquid is very small
or supposed to be neglected. However, gases are purely compressible in nature. In
solids and liquids, there is compactness and closeness of molecules. Because of this,
if a minor disturbance caused on one end is instantaneously transferred to the other
end of liquids or solids. So in liquid, and solids the disturbance travels at infinite
velocity. But in case of gases, the molecules are spaced at a considerable distance
between molecules. Because of this, if disturbance is applied on gases, it takes time
in transferring the distance from one set of molecules to the other. Hence, the velocity
of disturbance transfer in compressible fluids like gases is finite and its value depends
upon the elastic properties such as bulk modulus of elasticity and density of the gases.

Following assumptions are set up to derive an expression for velocity of sound
wave in a fluid.

(i) Pipe should be rigid.
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(ii) Uniform cross-sectional area.

(iii) Fluid is compressible.

(iv) Pressure waves travel with velocity of sound in one-direction.
Let the pipe is filled with a compressible fluid, which is at rest initially. The piston

is moved towards right and a disturbance is created in the fluid. This disturbance is
in the form of pressure wave, which travels in the fluid with a velocity of sound wave.

Wave Front

a

Piston Pipe

x = Vdt

l adt = 

Fig. 10.9 Propagation of pressure wave.

Let V = velocity of piston.
a = velocity of pressure wave (or velocity of sound

in the fluid)
p = pressure of fluid in pipe before the movement of

the piston.
ρ = density of fluid before the movement of the piston
dt = small interval of time with which piston is moved

Distance travelled by the piston in time dt:
x = velocity of piston × dt = Vdt

Distance travelled by the pressure wave in time dt:
l = velocity of sound × dt = a dt

∴ a dt >> V dt |  a >> V
or l >> x
The length of pipe when fluid compressed in time dt,

= l – x
Due to compression of the fluid, the pressure and density of fluid will change.
Let p + dp = pressure after compression

ρ + dρ = density after compression
Mass of fluid for length l before compression,

= ρAl = ρAa dt ...(10.11.1)
Mass of fluid for length (l – x) after compression,

= (ρ + dρ) A (l – x)
= (ρ + dρ) A (a dt – V dt)
= (ρ + dρ) (a – V) A dt ...(10.11.2)
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According to continuity equation, the mass flow rate is remain constant before
and after compression. So, equating the Eqs (10.11.1) and (10.11.2), we get

ρA a dt = (ρ + dρ) (a – V) A dt
or ρa = (ρ + dρ) (a – V)

ρa = ρa – ρV – Vdρ + adρ

or –ρV – Vdρ + adρ = 0
adρ = ρV + Vdρ

where V = velocity of position is very small as compared
with a,

∴ Vdρ ≈ 0, product of small quantity is neglected.
∴ adρ = ρV
or ρV = adρ ...(10.11.3)
When the piston is moved with a velocity V in time dt, the fluid which is at rest

initially (i.e., velocity of fluid is zero) and then velocity of the fluid is equal to the
velocity of the piston. Also the pressure of the fluid increases from p to p + dp due
to the movement of the piston:

According to impulse momentum equation, the net force exerted on the fluid is
equal rate of change of momentum in the direction of force.

Mathematically,
Net force on the fluid = rate of change of momentum in the direction of force

(p + dp) A – pA = dVM
dt

dp A = [ 0]Al V
dt

ρ
−

1

2

Initial velocity : 0
and final velocity : 

V
V V
=

=

dp A = 
Al V
dt

ρ

dp = 
l V

dt
ρ

or 

l a dt
l a
dt

=

=



∴ dp = ρ aV

or ρV = 
dp
a ....(10.11.4)

Equating Eqs. (10.11.3) and (10.11.4), we get,

adρ = 
dp
a
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or a2 = 
dp
dρ

or    
dpa
d

=
ρ ...(10.11.5)

Equation (10.11.5) gives the velocity of sound which is the square root of the
ratio of change of pressure to the change of density of a fluid.

10.11.1 Velocity of Sound (a) in terms of Bulk Modulus of Elasticity (K)
Bulk modulus of elasticity (K) defined as the ratio of the increase in pressure to
volumetric strain.
Mathematically,
Bulk modules of elasticity:

K = 
Increase in pressure : 

Volumetric strain : v

dp
ε

or
dp
dρ

= 
K
ρ

Substituting dp K
d

=
ρ ρ

 in Eq. (10.12.5), we get

Ka =
ρ ...(10.11.6)

Equation (10.11.6) gives the velocity of sound which is the square root of the
ratio of the bulk modulus of elasticity to the density of fluid. This equation is applicable
for liquids and gases.

K = 
v

dp
ε

where εv = 
dV
V

− , change in volume to original volume. The –ve sign shows

volume decreases with increase in pressure.
We know that the mass of a fluid is constant. Hence

Mass = density × volume
or m = ρV
or ρV = m
Taking loge both sides, we get

loge ρ + loge V = loge m
On differentiating the above equation, we get

d dV
V

ρ
+

ρ
= 0
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or
dρ
ρ

= 
dV
V

−

∴ Volumetric strain: εv = 
dρ
ρ

∴ Bulk modulus of elasticity: K = 
/

dp
dρ ρ

10.12 VELOCITY OF SOUND IN AN IDEAL GAS
(i) Adiabatic isentropic process

Adiabatic isentropic follows the law:
pvγ = C

1p γρ
= C

1| Specific volume: v =
ρ



or pρ–γ = C
Taking loge both sides, we get

loge p – γ loge ρ = loge C
On differentiating the above equation, we get

dp d
p

ρ
− γ

ρ
= 0

dp
p

= 
dρ

γ
ρ

dp
ρ = 

p
γ

ρ

a2 = 
p

γ
ρ

Velocity of second :

dpa
d

∴

=
ρ

a2 = γ pv |   pv = RT
or a2 = γ RT

or    a RT= γ

where γ = adiabatic index
= 1.4 for air

R = gas constant
= 0.287 kJ/kgK  for air = 287 J/kg K

T = absolute temperature of the air i.e., temperature in
K (kelvin).
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Hence, the sound velocity is directly proportional to the square root of absolute
temperature

i.e., a ∝ T  for an ideal gas.
For air at constant values of γ = 1.4
and R = 287 J/Kg K
Velocity of sound in air:

a = RTγ  at 0°C

= 1.4 287 273× ×  = 331.20 m/s

= 1.4 287 288× ×  at 15°C
= 340.17 m/s

= 1.4 287 298× ×  at 25°C
= 346 m/s

The Mach number of the flow defined as the ratio of the velocity of fluid
to the velocity of sound in same fluid. It is denoted by letter M.
Mathematically,

Mach number : M = 
V
a

If 0.9 < M < 1.1, the flow is transonic
M < 1, the flow is subsonic,
M = 1, the flow is sonic,
1 < M < 7, the flow is supersonic
7 ≤ M < 10, the flow is hypersonic, and

M ≥ 10, the flow is high hypersonic.
(ii) For isothermal process

Isothermal process follows the law:
pv = c

p
ρ

= c
1v =
ρ



pρ–1 = c

Taking loge both sides, we get

loge p – loge ρ = logec

On differentiating the above equation, we get

dp d
p

ρ
−

ρ
= 0
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or
dp
p = 

dρ
ρ

or
dp
dρ

= 
p pv=
ρ

a2 = pv  and dpa pv RT
d

= =
ρ



a2 = RT

  a RT=

10.13 PROPAGATION OF PRESSURE WAVES (OR DISTURBANCES
IN A COMPRESSIBLE FLUID)

Whenever any disturbance is produced in a compressible fluid due to movement of
any projectile in fluid, the disturbance propagates in all directions with a velocity of
sound (i.e., a). The nature of propagation of disturbance depends upon the Mach
number.

Consider a small projectile moving in
a stationary fluid. Let the movement of
projectile is from left to right in a straight
line. Due to movement of projectile,
disturbances will be created in fluid and
move with velocity a in all directions.

So consider V =
velocity of the projectile

a =
velocity
o f
disturbances
o r
(pressure
wave)
created
in the
fluid.

Let us study the nature of disturbance
for different Mach numbers.

Case I : M < 1
When Mach number is less than 1.0,

the flow is called subsonic flow. Consider M = 0.5 which is less than 1.0.

For M = 0.5, 
V
a  = 0.5 or 

V
a  = 

1
2

 i.e., if V = 1 unit then a will be 2 units. Let

Fig. 17.10 M < 1

1234

4

6

8

2

1 unit

2 units

3 units

4 units

A
B
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the projectile is at point A and is moving
towards point B. Let in 4 seconds the
projectile reaches at point B. As shown
in Fig. 10.10, at point A, the point 4 is
also marked.

The position of the projectile after
1 sec, 2 sec, 3 sec and 4 sec along the
straight line is shown by points 3, 2, 1
and B respectively. The projectile moves
from A to B in 4 seconds. So distance AB
= 4 × V = 4 × 1 = 4 units. The disturbance
acted at point A in 4 seconds will move
a distance 4 × a = 4 × 2 = 8 units in all
directions. So taking A as centre and
radius = 8 units a circle as shown in Fig.
10.10 is drawn. This will give the position
of disturbance after 4 seconds.

When the projectile is at point 3, it
will reach point B in 3 seconds. So
distance 3B = 3 × V = 3 × 1 = 3 units.
But the disturbance created at point 3 in
3 seconds will move a distance 3 × a =
3 × 2  = 6 units in all directions. So taking point 3 as centre and radius = 6 units, a
circle is drawn. Similarly at point 2 disturbance will have radius = 4 units and at point
1 disturbance will have radius = 2 units.

So we observed that if V < a i.e. M < 1, the pressure wave or disturbance is
always ahead of the projectile and point B is inside the sphere of radius
8 units.

Case II : When M = 1.
When M = 1, the flow is known as sonic flow. In this case, the pressure wave

will always travel with the projectile shown in Fig.10.10. For M = 1, 
V
a  = 1 or V =

a.  Let V = 1 unit, so a will also be 1 unit.
Let the projectile moves from A to B in 4 seconds so the disturbance created

at A will move a distance 4 × a = 4 × 1 = 4 units in all directions. So taking A as centre
draw a circle of radius 4 units. The projectile from point 3 will move to point B in 3
seconds and disturbance created at point B will move a distance 3 × a = 3 × 1 = 3
units in all directions.

So taking point 3 as centre and radius = 3 units a circle is drawn. Similarly at
point 2 and point 1 the disturbance created at these points having radius 2 and 1 unit
respectively in all directions. So we observed that the disturbance always travels with
the projectile.

Case III : When M > 1
When M > 1, flow is called supersonic flow. For M > 1, consider M = 2 which

Fig. 17.11 M = 1

A
B4 3 2 1

1
2

34

4 units

3 units

2 units

1 unit
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means 
V
a

 = 2 so let V = 1 unit and a = 0.5 unit so that M = 
V
c  = 

1
0.5

 = 2 units.

Again consider that projectile moves from point A to B in 4 seconds. Hence distance
travelled by projectile in 4 seconds = 4 × V = 4 × 1 = 4 units. So take AB = 4 units.
The disturbance created at point A will move a distance = 4 × a = 4 × 0.5 = 2 units
in all directions. So taking A as centre draw a circle of radius = 2 units as shown in
Fig. 10.11.

After 1 second, the projectile will be at point 3 and it will reach to point B in 3
seconds. So distance 3B = 3 × V = 3 × 1 = 3 units. Hence, the disturbance created
from point 3 will move a distance having radius = 3 × a = 3 × 0.5 = 1.5 units in add
directions.

Similarly the radius of disturbance at point 2 and at point 1 will be 2 × a = 2 ×
0.5 = 1 unit and 1 × a = 1 × 0.5 = 0.5 unit respectively.

So we observe that the propagation of disturbance always lags behind the
projectile movement. It we draw a tangent to different circles representing the
propagation waves on both sides, we will get a cone with vertex at B. This cone is
called Mach cone.

D

Bθ

0.5

1.5

1.0

2.0

123A

1 unit
2 units
3 units

4 units

Zone of Silence

Zone of
action

Fig. 10.12 M > 1

Mach Angle: It is defined as the half of angle
of Mach cone. In Fig. 10.12, θ is known as Mach
angle.

In ∆ 1BD:
1B = 1 × V = V =

velocity of projectile
Fig. 10.13 Point of distur-

bance is stationary

4a

3a
2a

1a
A

B
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1D = 1 × a = a = velocity of sound wave
Hence we have

sin θ = 
1 1 1
1 /
D a
V V V a M

= = =

Zone of Action: When M  > 1, the disturbances are confined to the cone, the
area within the Mach cone is called zone of action.

Zone of Silence: When M > 1, the disturbance felt only inside the cone, so the
area outside the cone is called zone of silence.

Case IV: If the point of disturbance is stationary, then the wave fronts
(propagation waves) are concentric spheres as shown in Fig. 10.13.

Consider the point of disturbance is at point A and is stationary. so V = 0.
Consider disturbance created from point A at 4th second had moved a distance

having radius = 4 × a = 4 a units so taking A as centre
and radius = 4a units a circle is drawn. The disturbance created at point A in 3rd
second have moved a distance having radius = 3 × a = 3a units in all directions. So
taking A as centre and radius = 3a  unit a circle is drawn. Similarly at 2 second and
1 second circle drawn are having radius = 2a units and 1a units respectively. So we
observed that when the point of disturbance is stationary propagation waves from a
concentric sphere.

10.14 NOZZLE AND DIFFUSER
Both nozzle and diffuser are energy transforming devices. These devices are used to
change fluid energy (pressure or kinetic energies) and total energy in fluid remains
constant.

Nozzle: A nozzle is a device which increases the velocity (i.e., kinetic energy)
of the fluid and simultaneously it decreases the pressure energy of fluid. As the fluid
flows through the nozzle it expands to a lower pressure and in this process the
pressure falls and the velocity increases continuously from the entrance to exit of the
nozzle.

Diffuser: A diffuser is a device which increases the pressure energy of fluid and
simultaneously it decreases the kinetic energy of fluid. As the fluid flows through
diffuser, it compresses to a lower velocity and in this process the velocity falls and
the pressure increases continuously from the entrance to exit of the diffuser. The
function of diffuser is reverse than that of the function of nozzle.

Most of the students always get confused about nozzle of diffuser. Here the
confusing point students feel is that if the cross-sectional area of the duct decreases
gradually it act as nozzle. If cross-sectional area of duct increases gradually it act as
a diffuser. But the fact is not that. Nozzle and diffuser are not defined on the basis of
their shape. In other words, we can say that by just viewing the shape we cannot
determine whether it is a nozzle or diffuser.

Actually these are defined on the basis of inlet condition of fluids or Mach
number (M).
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Inlet
Exit ExitInlet

Converging shape
(It may act as nozzle or diffuser)

Diverging shape
(It may act as nozzle or diffuser)

Fig. 10.14: Nozzle and diffuser

Designing of nozzle and diffuser.
Assumption: The fluid flowing through the nozzle and diffuser is steady and

isentropic in behaviour.
According to continuity equation:
Discharge flow through nozzle or diffuser,

Q = mv = AV
where m = mass flow rate, kg/s,

v = specific volume, m3/kg,
A = cross-sectional area, m2,
V = velocity of fluid, m/s

∴ mv = AV

m = 
AV
v

1Specific volume: v 
= ρ 



m = ρAV ...(10.14.1)

The above Eq. (10.14.1) is also called continuity equation. It states that mass
flow rate at any section in the flow is constant.

For all applications, the mass flow rate is taken constant and hence the Eq.
10.14.1 can be written as

ρ AV = constant = C
Taking loge both sides, we get

loge (ρ AV) = loge C
loge ρ + loge A + loge V = loge C

On differentiating both sides, we get

d dA dV
A V

ρ
+ +

ρ = 0

dA
A

= 
dV d
V

 ρ
− + ρ 

...(10.14.2)

According to Euler’s equation [Momentum equation]

dp V dV g dz+ +
ρ = 0
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Datum heads are same
i.e., dz = 0 [∴ Nozzle is horizontal]

∴
dp VdV+
ρ = 0

VdV = 
dp

−
ρ

dV = 
dp
V

−
ρ

...(10.14.3)

Substituting the value of dV in Eq. (10.14.2), we get

dA
A

= 21 1dV d V dV d V
V V dpdp

V

 ρ ρ − + = − −  ρ     − ρ   

= 
2

1dV V
dpV
d

 
 

− − 
 
 ρ 

...(10.14.4)

Sonic-velocity for isentropic process:

a = 
dp
dρ

 for compressible fluid

or a2 = dp
dρ

or
dp
dρ = a2

Substituting the value of 
dp
dρ

 = a2 in above Eq. (10.14.4), we get

dA
A = 

2

21dV V
V a

 
− − 

 
By definition of Mach number,

Mach number : M = 
Velocity of fluid

Velocity of sound in same fluid

M = 
V
a
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dA
A = 21dV M

V
 − − 

  
2[ 1]dA dV M

A V
= − ...(10.14.5)

The above Eq. (10.14.5) is used to design the nozzle.
From Eq. (10.14.3)

dV = 
dp
V

−
ρ

Substituting the value of dV in above Eq. (10.14.5), we get

2
2 [ 1]dA dp M

A V
= − −

ρ ...(10.14.6)

The above Eq. (10.14.6) is used to design the diffuser.
Nozzles : The following conclusion can be drawn from Eq. (10.14.5)

Inlet
M > 1

p1

p2

V2

V1

Throat

M<1
M<1

M>1
M=1

Inlet
Inlet

Exit
1

1
3

3
2

2

ExitExit

p1 p1

p2 p2

V2 V2

V1
V1

Pressure

Velocity

Converging diffuser
supersonic flow

( )a

Diverging diffuser
Subsonic flow

( )b

Converging-diverging diffuser
( ,  

( )
p p  p V V V2 3 1 2 3 1 <  <  >  > )

c

Fig. 10.15 Nozzles

(i) If Mach number, M < 1, i.e., V < a (for subsonic flow)
From Eq. (10.14.5), we get

dA
A

= 
dV
V

−

or
dV
V

= –
dA
A

As dA and dV must be opposite in sign i.e., decrease in cross-sectional area
causes an increase in velocity. This takes place in converging nozzle as
shown in Fig. (10.15 (a)
i.e., for converging nozzle; M < 1 or V < a. The flow of fluid in converging
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nozzle is called sub-sonic ( Velocity of fluid is less than sonic velocity i.e.,
velocity of sound).

(ii) If Mach number M > 1, i.e., V > a (for supersonic flow)
From Eq. (10.13.5), we get

dA
A

= 
dV
V

As dA and dV are of same sign. An increase of cross-sectional area, then
causes an increase of velocity. This takes place in diverging nozzle as shown
in Fig. 10.15 (b) i.e., for diverging nozzle; M > 1 or V > a. The flow of fluid
in diverging nozzle is called supersonic flow ( Velocity of fluid is more than
sonic velocity).

(iii) If Mach number, M = 1 i.e., V = a (For sonic flow).
As dA must be zero and since the second derivative is positive, area ‘A’ must
be minimum. Thus if the velocity of flow equals the sonic velocity anywhere,
it must do where the cross-section is of minimum area (i.e., at throat) as
shown in Fig. 10.15 (c).

Table 10.1 Flow through converging and diverging nozzles.

Flow Parameter Converging Nozle Diverging Nozzle
(Subsonic Flow, M < 1) (Supersonic Flow, M > 1)

Velocity, V Increases Increases
Pressure, p Decreases Decreases
Cross-sectional Decreases Increases
area, A
Density, ρ Decreases Decreases

Diffusers: The following conclusion can be drawn from Eq. (17.14.6)

Inlet
M > 1

p1

p2

V2

V1

Throat

M<1
M<1

M>1
M=1

Inlet
Inlet

Exit
1

1 3

3
2

2

ExitExit

p1 p1

p2 p2

V2 V2

V1
V1

Pressure

Velocity

Converging diffuser
(supersonic flow)

( )a

Diverging diffuser
(Subsonic flow)

( )b

Converging-diverging diffuser
( ,  

( )
p p  p V V V2 3 1 2 3 1 <  <  >  > )

c

Fig. 10.16 Diffusers
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(i) If Mach number, M > 1, i.e., V > a (For supersonic flow)
From Eq. (10.14.6), dA = – dp
or         dp = – dA
As dA and dp must be opposite in sign i.e., decrease in cross-sectional area
causes increase in pressure. This takes place in converging diffuser as
shown in Fig. 10.16 (a), i.e., for converging diffuser; M = 1 or V > a.
The flow of fluid in converging diffuser is called supersonic flow.

(ii) If Mach number M > 1 i.e., V < a (For subsonic flow)
From Eq. (10.14.6) dA = dp
As dA and dp are of same sign. An increase of cross-sectional area causes
an increase in pressure. This takes place in diverging diffuser as shown in
Fig. 10.16 (b), i.e., for diverging diffuser, M < 1 or V < a. The flow of fluid
in diverging diffuser is sub-sonic flow.

Table 10.2: Flow through converging and diverging diffusers.

Flow Parameter Converging Diffusers Diverging Diffusers
(Super-sonic (Sub-sonic Flow,
Flow, M > 1) M < 1)

Velocity, V Decreases Decreases
Pressure, p Increases Increases
Cross-sectional area, A Decreases Increases
Density, ρ Increases Increases

(iii) If Mach number, M = 1 i.e., V = a (For sonic flow). As dA must be zero
and since the second derivative is positive, area A must be minimum. Thus,
if the velocity of flow equals the sonic velocity anywhere, it must do
where the cross-section is of minimum area (i.e., at throat) as shown in
Fig. 10.16 (c).

10.15 FLOW THROUGH NOZZLE
Let us consider the compressible fluid flow through a convergent-divergent nozzle as
shown in Fig. 10.17.
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1
*

2

2
1

p1
p2

V1

p*

*

Fig. 10.17 Flow through converging-diverging

Let p1, V1 = pressure and velocity at inlet of nozzle respectively.
p* = pressure at the throat.

p2, V2 = pressure and velocity at exit of nozzle respectively.
Applying the steady flow energy equation at sections 1–1 and 2–2, we get

2
1

1 1
1 22

Vh gz q
−

+ + + = 
2

2
2 2 1 22

Vh gz w
−

+ + +

If the flow is adiabatic:
1 2
q
−

= 0

No work interaction involved: 
1 2
w
−

 = 0, and z1 = z2, because of nozzle is
horizontal.

Therefore, the above is reduced to
2

1
1 2

Vh + = 
2

2
2 2

Vh +

If the inlet velocity V1 is small and neglected, then

h1 = 
2

2
2 2

Vh +

or
2

2

2
V

= h1 – h2 ...(10.15.1)

or 2
2V = 2(h1 – h2)

or V2 = 1 22( )h h−  m/s

where h1 and h2 in J/kg.

or V2 = 3
1 22 10 ( )h h× −  m/s

where      h1 and h2 in kJ/kg.

V2 = 1 244.72 ( )h h−

We know that the specific enthalpy :
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h = u + pv
On differentiating, we get

dh = du + pdv + vdp
dh = δq + vdp |  δq = du + pdv

or dh = vdp |  δq = 0 for adiabatic flow
On integrating above equation, we get

or
2

1

dh∫ = 
2

1

vdp∫

h2 – h1 = 
2

1/
1/

1

dpC
p

γ
γ∫

| For adiabatic process pvγ = C or V = 
1/

1/
C
p

γ

γ

= 
2

1/ 1/

1

C p dpγ − γ∫

= 

2
1 1

1/

1

1 1

pC

−
+

γ
γ

 
 
 
 − +
 γ 

 = 1

2
1 1

21/

1

1
p p

C

γ− γ−
γ γ

γ

 
 −
 γ − 
 γ 

= 
2

1 1
1/ 1/

11
C p C p

γ− γ−
γ γγ γ

 γ
 

γ −   

= 
1 1

1/ 1/
2 2 2 1 1 1( ) ( )

1
p v p p v p

γ− γ−
γ γ γ γγ γ

 γ
− 

γ −   

= 
1 1

1 1
1/ 1/
2 2 2 11

p v p p v p
γ− γ−

γ γγ γ
 γ

− 
γ −   

h2 – h1 = [ ]2 2 1 11
p v p vγ

−
γ −

or h1 – h2 = [ ]1 1 2 21
p v p vγ

−
γ −

...(10.15.2)

Substituting the value of (h1 – h2) from Eq. (10.15.2) in Eq. (10.15.1), we get
2

2

2
V

= [ ]1 1 2 21
p v p vγ

−
γ −

| p1v1 – p2v2
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or V2
2 = [ ]1 1 2 2

2
1

p v p vγ
−

γ −

or V2 = [ ]1 1 2 2
2

1 p v p vγ −
γ −

V2 = 2 2
1 1

1 1

2 1
1

p vp v
p v

 γ
− γ −  

V2 = 

1

2 2
1 1

1 1

2 1
1

p pp v
p p

−
γ

 
 γ  − ×  γ −    

1

2 2

1 1

v p
v p

−
γ 

∴ =  
 

V2 = 

1

2
1 1

1

2 1
1

pp v
p

γ−
γ

 
 γ  −   γ −    

...(10.15.3)

Applying continuity equation at section 2–2, we get
mv2 = A2V2

or
2

m
A = 2

2

V
v

Substituting the value of V2 in above equation from Eq. (10.15.3), we get

2

m
A = 

1

2
1 1

2 1

1 2 1
1

pp v
v p

γ−
γ

 
 γ  −   γ −    

 = 

1

1 1 2
2
2 1

2 1
1

p v p
v p

γ−
γ

 
 γ  −   γ −    

= 

1
2

1 1 2
2

11 2

2 1
1

p v p
pv v

γ−
γ

 
 γ  −   γ −    

= 

2 1

1 2 2

1 1 1

2 1
1

p p p
v p p

γ−
γ γ

 
   γ  −    γ −      

2

m
A

= 

2 1

1 2 2

1 1 1

2
1

p p p
v p p

γ+
γ γ

 
   γ  −    γ −      

By analogy, changing
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p1  to p0
v1 to v0
A2  to A
p2  to p

∴
m
A

= 

2 1

2
1

o

o o o

p p p
v p p

γ+
γ γ

 
   γ  −    γ −      

...(10.15.4)

Equation (10.15.4) shows that for given values of p0 and v0, the mass flow rate

of the fluid depends upon the pressure ratio 
o

p
p

. There is a certain pressure ratio for

which mass flow rate per unit area m
A

 
 
 

 is maximum. Therefore, by differentiating

the term in square brackets and equating it to zero.
2 1

( / )o o o

d p p
d p p p p

γ+
γ γ

 
    −         

= 0

2 11 1
2 1

o o

p p
p p

γ+
− −

γ γ    γ +
−    γ γ    

= 0

( )
2 1

2 1
o o

p p
p p

−γ
γ γ   

− γ +   
   

= 0

or

2

2
o

p
p

−γ
γ 

 
 

= ( )
1

1
o

p
p

γ 
γ +  

 

or
2

1γ + = 

1

2
o

o

p
p

p
p

γ

−γ
γ

 
 
 

 
 
 

 = 

1 2

o

p
p

 − γ
−  γ γ  

 
 

2
1γ + = 

1 2

o

p
p

− + γ
γ 

 
 

2
1γ +

= 

1

o

p
p

γ −
γ 

 
 
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o

p
p = 

12
1

γ
γ− 

 γ + 

or
o

p
p = 

12
1

γ
γ− 

 γ + 

or
*

o

p
p = 

12
1

γ
γ− 

 γ + 
...(10.15.5)

Equation (10.15.5) is the critical pressure ratio. It is defined as thze ratio of the
pressure at the throat to the inlet pressure when the Mach number is unity at the throat.
It is standard practice in the analysis of compressible flow to let the superscript asterisk
(*) represent the critical values i.e., p* = critical pressure at which M = 1 (at throat).

The critical pressure is also defined as the pressure at which discharge (or mass
flow rate per unit area) is maximum. This is occurred at the throat when Mach number
is unity.

For air : Adiabatic index : γ = 1.4

∴ Critical pressure :
*
o

p
p = 

1.4
1.4 12

1.4 1
− 

 + 
 = (0.8333)3.5 = 0.528

*

o

p
p

= 0.528

where p0 = pressure at inlet of the nozzle i.e., at section 1–1.

10.16 NOZZLES OPERATING IN THE OFF-DESIGN CONDITION
(i) Converging nozzle: As we explained in section 16.14, that in converging nozzle
flow velocity increases in the direction of flow. The Mach number obtained at the exit
of converging nozzle is unity (i.e., we get flow velocity equivalent to sound velocity
at the exit of the nozzle).

By nozzle operating in the off-design condition means it is not possible to achieve
M = 1 at the exit of the nozzle, reason being that the back pressure is not maintained
in the right range.

Let us consider a convergent nozzle as shown in Fig. 10.18, which also shows
the pressure ratio p/p0 varying along the length of the nozzle. The inlet condition of
an ideal gas is the stagnation state at p0, T0, which is assumed to be constant.
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Fig. 10.18: Pressure ratio as a function of back pressure for a convergent nozzle
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Fig. 10.19: Mass flow rate and exit pressure as function of back
pressure for a convergent nozzle.

Let pE = pressure of the gas at nozzle exit.
pB = back pressure (i.e., pressure at outside the nozzle exit, that can

be varied by the valve)
As the back pressure pB is varied, the mass flow rate m and the pressure
ratio pE/p0 also vary, as shown in Fig. 10.19.

When pB = p0 (i.e., 
0

1Bp
p

= ), there is no flow and also pE = pB = p0, as

designated by point a. If the back pressure is now decreased to represent
by point b, so that pB/p0 is greater than the critical pressure ratio p*/p0. The
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mass flow rate has a certain value and pE = pB. The exit Mach number is
less than one.
Next let the back pressure (pB) is decreased below the critical pressure (p*),
this condition represent by point c. The Mach number at the exit is now
unity, and pE is equal to pB. The mass flow rate is also increased as shown
in Fig. 16.18. Further, when pB is decreased below the critical pressure, the
condition represent by point d, there is no further increase in the mass flow
rate, and pE remains constant at a value equal to the critical pressure (i.e.,
pE = p*), and the exit Mach number is unity. The drop in pressure from pE
to pB takes place outside the nozzle exit. Under these conditions, the nozzle
is said to be choked, which means that for given stagnation condition the
nozzle is passing the maximum possible mass flow rate.

(ii) Converging-diverging nozzle: As we know that the maximum velocity to
which flow rate can be increased in a converging nozzle is limited to sonic
velocity (M = 1), which occurs at the exit (throat) of the nozzle. Further,
increase of flow rate to supersonic velocity (M > 1) can only be achieved
by attaching a diverging flow section to the subsonic nozzle at the throat.
The resulting combined flow section is a converging-diverging nozzle.
There is no guarantee that flow rate in the converging-diverging nozzle will
be increased to supersonic velocity. In fact, flow rate may decelerate in the
diverging section instead of accelerating, if the back pressure is not maintained
in the right range. By off-design condition of converging-diverging nozzle
means that flow rate cannot be accelerated to supersonic velocity (or not
possible to achieve M > 1) due to improper range of back pressure.
Consider the converging-diverging nozzle shown in Fig. 10.20. A fluid enters
the nozzle with a low velocity at stagnation pressure p0. Point a designates
the condition when pB = p0 and thee is no flow through the nozzle. This is
expected since the flow in a nozzle is driven by the pressure difference
between the nozzle inlet and the exit. Now let us examine what happens as
the back pressure is lowered.

(a) When pB is decreased to the pressure indicated by point b, so that
pB/p0 is less than one but considerably greater than the critical
pressure ratio (p*/po), the velocity increases in the converging
section, but M < 1 at the throat. Therefore, the diverging section acts
as a subsonic diffuser (i.e., M < 1) in which the pressure increases
and velocity decreases.

(b) Further, when pB is decreased to the pressure indicated by point c
and pB = pE < p0, the throat pressure become the critical pressure
(p*) and the fluid achieves sonic velocity at the throat (i.e., M = 1).
But the diverging section of the nozzle still acts as a sub-sonic
diffuser (i.e., M < 1) in which the pressure increases and velocity
decreases.
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Fig. 10.20 Pressure distribution in a convergent-divergent nozzle
(c) When pB is decreased and equal to the designing of exit pressure pE,

this condition indicated by point d, this condition permits isentropic
flow, and in this case the diverging section acts as a super-sonic
nozzle (i.e., M > 1), with a decrease in pressure and an increase in
velocity. When back pressure pB is decreased below that designated
by point d, the exit pressure pE remain constant, and drop in pressure
from pE to pB takes place outside the nozzle. This is designated by
point e.
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Fig. 10.21 Normal shock in diverging nozzle.

The flow is not isentropic in the diverging section, when the back pressures lie
between c and d. The acceleration comes to a sudden stop, however, as a normal
shock develops at a section between throat and the exit plane, which causes a sudden
drop in velocity to sub-sonic levels and a sudden increase in pressure. The velocity
of fluid then continues to decrease in the remaining part of diverging section which
acts as diffuser. Properties vary discontinuously across the shock. When the back
pressure is as indicated by point f in Fig. 10.21, the flow throughout the nozzle is
isentropic, with pressure continuity decreasing and velocity increasing, but a shock
appears just at the exit of the nozzle. When the back pressure is increased from f to
g, the shock moves upstream as shown in Fig. 10.21. When the back pressure is
further increased, the shock moves upstream and disappears at the nozzle throat
where the back pressure corresponds to c. Since the flow thought is sub-sonic and
no shock is possible.

Normal shock : It is defined as the shock waves that occurs due to increase
in back pressure above the designing exit pressure of the converging-diverging
nozzle in the diverging section normal to the direction of flow, called normal
shock waves. The flow process through the shock wave is highly irreversible.

10.17 NORMAL SHOCKS
Normal shock waves are compression waves that is seen in converging-diverging
nozzles, turbomachinery blade passages, flow through duct etc. In the first two
examples, normal shock usually occurs under off-design operating condition or during
start-up. The compression process across the shock wave is highly irreversible and
so it is highly undesirable in such cases. In the last example, normal shock is designed
to achieve extremely fast compression and heating of a gas with the aim of studying
highly transient phenomena. The term normal is used to denote the fact that the shock
wave is perpendicular to the flow direction, before and after passage through the
shock waves. This latter fact implies that there is no change in flow direction as a
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result of passing through the shock wave.

10.17.1 Flow of Perfect Gases with Heat-transfer (Rayleigh Flow)
This flow is based upon the conservation of mass and momentum equations. Combining
the conservation of mass and momentum equations into a single equation and plotting
it on the h–s diagram yield a curved called the Rayleigh line.

Assumptions:
(a) One-dimensional flow with heat transfer.
(b) Constant cross-sectional area and frictionless duct.
(c) Perfect gas with constant specific heat and molecular weight.
Governing equations:
(i) Conservation of mass:

ρ1A1V1 = ρ2 A2V2 | A1 = A2

or 1 1 2 2V Vρ = ρ ...(10.17.1)

where state points 1 and 2 represent the conditions at the entrance and the exit
of the duct.

(ii) Conservation of momentum
A1(p1 – p2) = m (V2 – V1)

p1 – p2 = 2 1( )m v v
A

−

We know that the continuity equation :
mv = AV
m
A = 

V
v  = ρV

or
m
A

= ρV
∴ p1 – p2 = ρV (V2 – V1)

 2 2
1 2 2 1( )p p V V− = ρ − ...(10.17.2)

(iii) Conservation of energy:
2

1
1

1 22
Vh q

−
+ + = 

2
2

2 2
Vh +

where 
1 2
q
−

 is the heat interaction per unit mass and is positive when heat is

added to the flow and negative when heat is removed. Upon using the
calorically perfect gas assumption and the definition of the stagnation
temperature:

T0 = 
2

,
2 p

VT
c

+
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we get,  02 01
p

qT T
c

− = ...(10.17.3)

Equation (10.17.3) shows that addition of heat to a flow increases the
stagnation temperature, while heat removal decreases it.

(iv) 2nd law:
ds ≥ 0

where ds = cv loge 2 2

1 1

logp e
p vc
p v

+ ...(10.17.4)

V
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1

1

1

1

1
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M > 1
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Super-sonic flow
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h

s

Control volume for flow across normal shock wave

Fig. 10.22 Normal shock and Rayleigh line

Let state 1 corresponds to the state before the shock and state 2 corresponds
to the state after the shock. Note that the flow is super-sonic before the shock and
sub-sonic afterward. Therefore,  the flow must change from super-sonic to sub-sonic
if a shock is to occur. The larger the Mach number before the shock, the stronger the
shock will be. In the limiting case of M = 1, the shock wave simply becomes a sound
wave.

By simplifying above equations, we get
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dM = 
21

2
M dVM

V
 + γ
 
 

dT0 = 
p

VdVdT
c

+

ds = 2(1 )v
dVc M
V

γ −

dT = 2(1 ) dVM T
V

− γ

dρ = 
dV
V

−ρ

dp = 
dVm
A

Table 10.3 Change in Properties for a Given Change in Velocity V

V ↑ V ↓

M < 1 ρ↓ p↓ T↑ s↑ M↑ T0↑ ρ↑ p↑ T↓ s↓ M↓T0↓

M > 1 ρ↓ p↓ T↓ s↓ M↑T0↓ ρ↑ p↑ T↑ s↑ M↓T0↑

Using symbols ↑ and ↓ to indicate increasing and decreasing trends.

10.17.2 Flow of Perfect Gases with Friction (Fanno Flow)
This flow is based upon the conservation of mass (i.e., continuity equation) and
energy equations. Combining the conservation of mass and energy equations into a
single equation and plotting it on the h–s diagram yield a curve called the Fanno line.

Assumptions:

(a) One-dimensional flow with friction

(b) Constant cross-sectional area of duct.

(c) Perfect gas with constant specific heat and molecular weight.

(d) Adiabatic flow.

Governing equations:

(i) Conservation of mass:

ρ1AV1 = ρ2AV2
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or 1 1 2 2V Vρ = ρ |  A1 = A2

(ii) Conservation of energy :

2 2
1 2

1 22 2
V Vh h+ = +

(iii) Increase in entropy:

                     
2 2

1 1

log logv e p e
p vds c c
p v

= +

The momentum Eq. (10.17.2) has to be modified to take into account frictional
force at the wall and so

p1 – p2 = ρ (V2
2 – V1

2) + 0
0

lP dx
A

τ∫
where P is the wetted perimeter

l is the length of the duct
and τ0 is the wall share stress
The Darcy friction factor f ′ is related to the wall share stress as:

f ′ = 
21

2

o

V

τ

ρ

∴ ( )
2

2 2
1 2 2 1

0 2

lP f Vp p V V dx
A

′ρ
− = ρ − + ∫

By simplifying above equations, we get

dM = 211
2

dVM M
V

γ − + 
 

ds = 2(1 ) dVR M
V

−

where R = gas constant

dp = 2[1 ( 1) ] dVM p
V

− + γ −

dT = 2( 1) dVM T
V

− γ −

dρ = 
dV
V

−ρ
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Table 10.4 Change in Properties for a Given Change in Velocity V

V ↑ V ↓

M < 1 ρ↓ p↓ T↓ s↑ M↑ Not allowed

M > 1 Not allowed ρ↑ p↑ T↑ s↑ M↓

2 M < 1
Sub-sonic flow

No
rm

al
 s

ho
ck

M = 1, sonic flow

1 M > 1
Super-sonic flow

h

s

Fig. 10.23 Normal shock and Fanno line.

The observation in Table 10.4 can be summarised conveniently as follows. The
effect of friction on a sub-sonic flow is to increase the velocity, Mach number and
decrease the static temperature and static pressure. On the other hand, effect of
friction on a supersonic flow, is to increase the static temperature and static pressure,
while velocity and Mach number decrease. But the entropy is increase in both the
cases because of the flow with friction and adiabatic.

 Problem 10.1:  Find the speed of the sound wave in air where the pressure and
temperature are 101 kPa and 15°C respectively.

Solution: Given data:
Pressure: p = 101 kPa
Temperature: T = 15°C = (273 + 15) K = 288 K
For adiabatic process:

Velocity of sound: a = RTγ

where γ = 1.4 for air
R = 287 J/kg K

∴ a = 1.4 287 288× ×  = 340.17 m/s

 Problem 10.2: Determine the Mach number at a point on aircraft, which is flying
at 1200 km/h at sea level where air temperature 25°C.

Solution: Given data:
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Speed of air craft: V = 1200 km/h = 
1200 1000

3600
×

 = 333.33 m/s

Temperature: T = 25°C = (273 + 25) K = 298 K

Velocity of sound: a = RTγ  for adiabatic process

where γ = 1.4 for air
R = 287 J/kg K

∴ a = 1.4 287 298× ×  = 346.03 m/s

Mach number: M = 
V
a

 = 
333.33
346.03

 = 0.96

  Problem 10.3: An aeroplane is flying with Mach number 2.5 at an height of 10 km
where the temperature is –35°C. Find the speed of the plane.

Assuming γ = 1.4 and R = 287 J/kg K
Solution: Given data:
Mach number: M = 2.5
Aeroplane flying at height: h = 10 km
Temperature: T = –35°C

= (273 – 35) K = 238 K

Velocity of sound: a = RTγ  for adiabatic process

where γ = 1.4 for air
R = 287 J/kg K

∴ a = 1.4 287 238× ×  = 309.23 m/s

Mach number : M = 
V
a

2.5 = 
309.23

V

or V = 773.07 m/s = 2783.05 km/h

Problem 10.4: Determine the Mach number when an aeroplane is flying at
1000 km/h through still air having a pressure of 70 kPa and temperature –15°C.
Determine also the pressure, temperature and density of air at the stagnation point on
the nose of the aeroplane.

Solution: Given data:
Speed of aeroplane: V = 1000 km/h

= 
1000 1000

3600
×

 m/s = 277.77 m/s
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Pressure of air: p1 = 70 kPa
Temperature: T1 = –15°C = (273 – 15) K = 258 K

Velocity of sound: a = RTγ  for adiabatic process

where γ = 1.4 for air
R = 287 J/kg K

∴ a = 1.4 287 258× ×  = 321.97 m/s

∴ Mach number: M = 
277.77
321.97

V
a

=  = 0.86 km/h

Stagnation pressure: p0 = 
1

2
1

11
2

p M

γ
γ− γ − +     

= 

1.4
1.4 121.4 170 1 (0.86)

2
− − + ×    

= [ ]3.570 1 0.148+  = 113.47 kPa

Stagnation temperature: T0 = 2
1

11
2

T M γ − +     

= 21.4 1258 1 (0.86)
2

 − +     
= 296.18 K = 23.18°C

Stagnation density: ρ0 = 0

0

p
RT  kg/m3

where p0 = 113.47 kPa = 113.47 × 103 Pa
R = 287 J/kg K

and  T = 258 K

∴ ρ0 = 
3113.47 10

287 258
×

×  = 1.53 kg/m3

 Problem 10.5: A supersonic aircraft flies at an altitude of 2000 m where the air
temperature is 5°C. Determine the speed of the aircraft if its sound is heard 4.5 s after
its passage over the head of an observer.

Solution: Given data:
Altitude: h = 2000 m

Temperature of air:  T = 5°C = (5 + 273) = 278 K
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Fig. 10.24: Schematic for Problem 10.5

Sound heard after aircraft passage over the head of an observer:
t = 4.5 s

Let O represent the observer and P in position of aircraft just over the observer.
After 4.5 s, the aircraft reaches a position represented by Q. Line OQ represents the
wave front and θ is the Mach angle.

Velocity of sound in air: a = RTγ
where γ = 1.4

R = 287 J/kg K
T = 278 K

∴ a = 1.4 287 278× ×  = 334.21 m/s
From Fig. 16.24

tan θ = 
h h
l Vt

=

tan θ = 
2000

4.5V ×

sin
cos

θ
θ

= 
2000
4.5V

or sin θ = 
2000 cos

4.5V
θ

also sin θ = 
1 1 a

VM V
a

= =
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∴
a
V = 

2000 cos
4.5V

θ

or a = 
2000 cos
4.5

θ

334.21 = 
2000 cos
4.5

× θ

cos θ = 0.7519

θ = cos–1 (0.7519) = 41.24°

sin θ = 
a
V

sin 41.24° = 
334.21

V
or V = 506.98 m/s
The speed of aircraft is 506.98 m/s

  Problem 10.6:  Determine the velocity of air flowing at the exit of the nozzle, fitted
to a large container which contains air at a pressure of 30 bar (abs) and at a
temperature of 20°C. The pressure at the exit of the nozzle is 21 bar (abs). Assuming
γ = 1.4 and R = 287 J/kg K.

Solution: Given data:
Pressure of air in the container: p1 = 30 bar = 30 × 105 N/m2

Temperature of air in the container:
T1 = 20°C = (20 + 273) K = 293 K

Pressure at the exit of the nozzle: p2 = 21 bar = 21 × 105 N/m2

Velocity at the exit of the nozzle: V2 = 

1

2
1 1

1

2 1
1

pp v
p

γ−
γ

 
 γ  −   γ −    

From the equation of state,
p1v1 = RT1

30 × 105 × v1 = 287 × 293
∴ v1 = 0.0280 m3/kg

∴ V2 = 

1.4 1
5 1.4

5
5

2 1.4 21 1030 10 0.0280 1
1.4 1 30 10

− 
 × × × × × −   − ×   

= [ ]588000 1 0.903× −  = 57036  = 238.82 m/s
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 Problem 10.7: A nozzle of exit diameter 20 mm is fitted to a large vessel which
contains air at 20°C. The air flows from the vessel into atmosphere through the nozzle.
For adiabatic flow, determine the mass rate of flow of air through the nozzle when
pressure of air in vessel is (i) 58 kPa (gauge), and (ii) 295 kPa (gauge).
Take γ = 1.4, R = 287 J/kg K and atmospheric pressure : patm = 101 kPa.

Solution: Given data:
Diameter at the nozzle exit: d1 = 20 mm = 0.02 m

∴ Cross-sectional area: A2 = 2
24

dπ
 = 23.14 (0.02)

4
×  = 3.14 × 10–4 m2

Temperature of air in vessel: T1 = 20°C = (20 + 273) K = 293 K
Adiabatic index: γ = 1.4
Gas constant: R = 287 J/kg K
Atmospheric pressure: patm = 101 kPa
Case I: Mass rate of flow of air when pressure in vessel is 58 kPa (gauge)
∴ pg1 = 58 kPa
Absolute pressure of air in vessel:

p1 = pg1 + patm = 58 + 101 = 159 kPa
Absolute pressure at nozzle exit:

p2 = patm = 101 kPa

∴ Pressure ratio : 2

1

p
p = 

101
159

 = 0.6352

We know that the critical pressure ratio:

*

o

p
p

= 0.528

As pressure ratio 2

1

p
p

 is more than the critical pressure ratio *

o

p
p

. Then

Mass rate of flow of air: m = 

2 1

2 2
2 1 1

1 1

2
1

p pA p v
p p

γ+
γ γ

 
   γ  −    γ −      

where A2 = 3.14 × 10–4 m2

p1 = 159 × 103 Pa
p2 = 101 × 103 Pa
v1 in m3/kg

From the equation of state,
p1v1 = RT1

159 × 103 × v1 = 287 × 293
∴ v1 = 0.5288 m3/kg
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  ∴ m = 

2 1.4 1
3 31.4 1.4

4 3
3 3

2 1.4 101 10 101 103.14 10 159 10 0.5288
1.4 1 159 10 159 10

+

−
 
   × × × × × × × −    − × ×     

= 14 1.428 1.7143.14 10 588554.4 (0.6352) (0.6352)−  × − 

m = [ ]43.14 10 588554.4 0.5230 0.4594−× −  = 0.06075 kg/s

Case II: Mass rate of flow of air when pressure in vessel is 295 kPa (gauge)
∴ pg1 = 295 kPa
∴ Absolute pressure of air in vessel:

p1 = pg1 + patm = 295 + 101 = 396 kPa
Absolute pressure at nozzle exit: p2 = patm = 101 kPa

∴ Pressure ratio: 2

1

p
p

= 
101
396

 = 0.255

As the pressure ratio 2

1

p
p

 is less than critical pressure ratio *

o

p
p

, the mass rate

of flow is constant and is equal to the mass rate of flow corresponding to critical

pressure ratio 
*

o

p
p

 = 0.528.

∴ m = 

2 1

2 1 1
0 0

2 * *
1

p pA p v
p p

γ+
γ γ

 
   γ  −    γ −      

where A2 = 3.14 × 10–4 m2

p1 = 396 × 103 Pa

*

o

p
p

= 0.528

From equation of state,
p1v1 = RT1

396 × 103 × v1 = 287 × 293

or v1 = 0.2123 m3/kg

∴ m = 
2 1.4 1

4 3 1.4 1.42 1.43.14 10 396 10 0.2123 (0.528) (0.528)
1.4 1

+
−  ×

× × × × − −  

= 4 1.428 1.7143.14 10 588495.6 (0.528) (0.528)−  × − 

= [ ]43.14 10 588495.6 0.4017 0.3346−× −  = 0.06239 kg/s
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SUMMARY

1. Equation of state: The equation in temperature, pressure and volume (or
specific volume or density) which used to describe the condition or state
of the system, is called an equation of state.
For a perfect gas, the equation of state is

pV = mRT
pV
m = RT

pv = RT
p
ρ = RT

p = ρRT
2. Gas constant: R. It is defined as the ratio of the universal gas constant

( R ) to the molecular weight of a perfect gas.
Mathematically,

Gas constant: R = 
Universal gas constant: 

Molecular weight: 
R

M

R = 
R
M

where R = 8.314 kJ/k mol K
3. Thermodynamics processes:

(i) Isothermal process [T = C]
Isothermal process takes place at constant temperature. The volume
(or specific volume) of the gas varies inversely with pressure at
constant temperature in this type of process.
Mathematically,

v ∝ 
1
p

 at T = C

or pv = C
Isothermal process follows the Boyle’s law which state that the

specific volume of a perfect gas in inversely proportional to the absolute
pressure when the temperature is kept constant.
(ii) Isobaric process [p = C]

Isobaric process takes place at constant pressure. The volume (or
specific volume) of the gas varies directly with temperature at constant
pressure in this type of process.

Mathematically,



Compressible Flow 505

Contd...

v ∝ T  at p = C
v
T

= C

Isobaric process follows the (Charles’ law which state that the
specific volume of a perfect gas is directly proportional to the absolute
temperature when the process is kept constant.
(iii) Isochoric process (or isometric process) [V = C]

Isochoric process takes place at constant volume. The pressure
of the gas varries directly with temperature at constant volume in this
type of process.

Mathematically,
p ∝ T at V = C

or
p
T = C

This process follows the Gay-Lussac’s law which state that the
absolute pressure of a perfect gas is directly proportional to the
absolute temperature when the volume is kept constant.
(iv) Adiabatic process [pvγ = C]

When there is no heat transfer between the system and
surroundings during a process, it is known as an adiabatic process.
The properties, pressure, temperature and volume of the system will
vary during this process.

This process is represented mathematically as
pvγ = C

where γ = p

v

c
c

, adiabatic index

= 1.4 for air
p – v – T relationship:

2

1

T
T

= 

1 1
2 1

1 2

p v
p v

γ−
γ−

γ   
=   

   
(v) Polytropic process [pvn = C]:

Polytropic process is a real process followed by compression
and expansion process. For example: Actual expansion in the nozzles,
turbines, IC engines and actual compression in the compressors and
IC engines are followed the polytropic process. This process can be
represented by the equation

pvn = C
where n = polytropic index
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p–v–T relationship:

2

1

T
T

= 

1 1
2 1

1 2

n n
np v

p v

−
−

   
=   

   
4. Steady and unsteady flow:

A flow is considered to be steady if fluid flow parameter such as
velocity (V), pressure (p), temperature (T) etc. at any point do not
change with time. If any one of these parameters changes with time at
particular point, the flow is said to be unsteady.

Mathematically,
V
t

∂
∂

= 0, 
p
t

∂
∂

 = 0 for steady flow

V
t

∂
∂

≠ 0, 
p
t

∂
∂

 ≠ 0 for unsteady flow

5. Uniform and non-uniform flow:
A type of flow in which velocity (V), pressure (p), density (ρ),
temperature (T) etc. at any given time do not change with respect to
space (i.e., length of direction of the flow) is called uniform flow.
Mathematically,

V
s

∂
∂

= 0, 
p
s

∂
∂

 = 0 for steady flow

In case of non-uniform flow, velocity, pressure, density etc at given
time change with respect to space.
Mathematically,

                   
V
s

∂
∂

≠ 0, 
p
s

∂
∂

 ≠ 0 for non-uniform flow

6. Compressible and incompressible flow:
(i) Compressible flow [ρ ≠ C]

If the density of the fluid changes from point to point in the fluid
flow, is referred to as compressible flow

Mathematically,
Density: ρ ≠ C
For example: Gases (like air, carbon dioxide etc) are compressible.

(ii) Incompressible flow [ρ = C]
If the density of the fluid remains constant at every point in the

fluid flow, it is referred to as an incompressible flow.
Mathematically,
Density: ρ = C
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For example: Liquid are generally incompressible in nature (solids
are also incompressible in nature).

Match number: M = 
V
a

where V = velocity of fluid
a = speed of sound in the flowing fluid

If M > 0.2, the gases are considered to be compressible.
If M < 0.2, the gases are considered to be incompressible.

7. Rate of flow:
(i) Volume of the fluid flowing across the reaction per second is

called discharge: Q
Q = AV = mv m3/s

where A = cross-sectional area of pipe
V = average velocity of fluid across the

section.
v = specific volume

= 
1
ρ

(ii) Mass of the fluid flowing across the section per second: m
AV = mv

or m = 
AV
v  = ρAVV kg/s

(iii) Weight of the fluid flowing across the section per second: W

W = mg N/s
= ρAVg N/s

8. Continuity equation: It is based on the law of conservation of mass.
It means mass of fluid can neither be created nor be destroyed.

m = ρAV = constant
ρ1A1V1 = ρ2A2V2 for compressible fluid

A1V1 = A2V2 for incompressible fluid
9. Steady flow energy equation (SFEE):

    
2

1
1 1

1 22
Vm h gz Q

−

 
+ + + 

 
= 

2
2

2 2 2 1 22
Vm h gz W

−

 
+ + + 

 
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2
1

1 1
1 22

Vh gz q
−

+ + + = 
2

2
2 2 1 22
Vh gz w

−
+ +

where 1 2

1 2

Q
q

m
−

−
= , specific heat transfer, which is defined as the rate of

heat transfer per unit mass flow rate. Its SI unit is kJ/kg and 1 2
1 2

W
w

m
−

−
= ,

specific work transfer, which is defined as the rate of work done per
unit mass flow rate. Its SI unit is kJ/kg.

10. Stagnation state:
Stagnation state is the state of flowing fluid at which the flow come
to stop. This state is achieved by decelerating the fluid adiabatic
isentropically to zero velocity. The enthalpy, temperature, pressure,
density at stagnation state are called stagnation enthalpy h0, stagnation
temperature T0, stagnation pressure p0 and stagnation density ρ0
respectively.

Stagnation enthalpy: h0 = 
2

1
1 2

Vh +

0

1

T
T = 

2( 1)1
2

Mγ −
+

0

1

p
p = 

12( 1)1
2

M
γ

γ−γ − +  

0ρ
ρ

= 

1
12( 1)1

2
M

γ−γ − +  

11. Velocity of sound: a = 
dp
dρ  = 

K
ρ

where K = Bulk modulus of elasticity
ρ = density of fluid.

a = RTγ  for adiabatic process

a = RT  for isothermal process
12. Mach number: M. It is defined as the ratio velocity of the fluid to the

velocity of sound in same fluid. It is denoted by letter M.
Mathematically,
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Mach number: M = 
V
a

If 0.9 < M < 1.1, the flow is transonic
M < 1, the flow is subsonic
1 < M < 7, the flow is supersonic
7 ≤ M < 10, the flow is hypersonic, and

M ≥ 10, the flow is high hypersonic

13. Mach angle: sin θ = 
1a

V M
=

θ = sin–1 
1
M

 
 
 

14. Nozzle. It is a device which increases the velocity of the fluid and
simultaneously it decreases the pressure of fluid. As the fluid flows
through the nozzle it expand to a lower pressure and in this process the
pressure falls and the velocity increases continuously from the entrance
to exit of the nozzle.
Types of nozzle:

(i) Converging nozzle (or subsonic nozzle)
(ii) Diverging nozzle (or supersonic nozzle)

(iii) Converging – diverging nozzle.
15. Area-velocity relationship for compressible fluid is used to design the

nozzle.

dA
A

= 2 1dV M
V

 − 

where M = Mach number
16. Velocity at exit of nozzle: V2

V2 = 1 244.72 h h−  m/s

where h1 and h2 in kJ/kg.
and inlet velocity V1 is neglected.

      17.  Critical pressure ratio:
*

o

p
p = 

12
1

γ
γ− 

 γ + 
18. Normal shocks.

Normal shock waves are compression waves that seen in converging-
diverging nozzles and turbomachinery blade passages. It usually occurs
under off–design operating condition. The term ‘normal’ is used to
denote the fact that the shock wave is perpendicular to the flow
direction, before and after passage through the shock waves.
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19. Flow of perfect gases with heat transfer [Rayleigh flow]
This flow is based upon the conservation of mass and momentum equations.
Combining the conservation of mass and momentum equations into a
single equation and plotting it on the h – s diagram yield a curved called
the Rayleigh line.
Assumptions:

(a) One dimensional flow with heat transfer
(b) Constant cross-sectional area and frictionless duct.
(c) Perfect gas with constant specific heat and molecular weight.

20. Flow of perfect gases with friction [Fanno flow]
This flow is based upon the conservation of mass (i.e., continuity equation)
and energy equation. Combining the conservation of mass and energy
equation into a single equation and plotting it on the h–s diagram yield a
curve called the Fanno line.
Assumptions:

(a) One-dimensional flow with friction.
(b) Constant cross-sectional area of duct.
(c) Perfect gas with constant specific heat and molecular weight.
(d) Adiabatic flow

ASSIGNMENT - 1

1. What is equation of state? Write its three different form.
2. Explain the following thermodynamics processes.

(i) Isothermal process (ii) Isochoric process
(iii) Adiabatic process (iv) Polytropic process

3. Explain briefly steady and unsteady flow.
4. Define compressible and incompressible flow.
5. State the equation of continuity. Write down it for compressible and

incompressible flow.
6. State the steady flow energy equation.
7. What do you understand by stagnation state.
8. Prove that the following stagnation parameters.

(i) Stagnation temperature : T0 = 2
1

11
2

T M γ − +     

(ii) Stagnation pressure : p0 = 
12

1
11

2
p M

γ
γ− γ − +     
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(iii) Stagnation density : ρ0 = 

1
12

1
11

2
M

γ− γ − ρ +     
9. Derive an expression for velocity of the sound wave in a compressible fluid

in terms of change of pressure and change of density.
10. Show that the velocity of propagation of the pressure wave in a compressible

fluid is given by

a = 
K
ρ

where K is bulk modulus of elasticity.
11. Derive an expression for velocity of sound for an adiabatic process.

Show that the velocity of sound wave:

(i) a = RTγ  for adiabatic isentropic process

(ii) a = RT  for isothermal process.
12. Define Mach number. What is the significance of Mach number in

compressible flow?
13. Define the following terms:

(i) Transonic flow (ii) Sub-sonic flow
(iii) Sonic flow (iv) Super-sonic flow
(v) Hyper-sonic flow (vi) High hyper-sonic flow

14. Define the following terms:
(i) Mach angle (ii) Mach cone

15. With neat sketches, explain the process of propagation of sound wave due
to disturbance in a compressible fluid for different Mach numbers.

16. Show by means of diagrams the nature of propagation of disturbance in
compressible of propagation of disturbance in compressible flow when Mach
number is less than one, is equal to one and is more than one.

17. What are a nozzle and a diffuser?
18. Explain the effect of area change in sub-sonic and super-sonic flow.
19. What do you understand by choking in nozzle flows?
20. What do you understand by critical pressure ratio? What is its value for air?
21. What is a shock? Where does it occur in a nozzle?
22. What is a Fanno line?
23. What is a Rayleigh line?



ASSIGNMENT - 2

1. Find the speed of the sound wave in air where the pressure and tempera-
ture are 100 kPa and 14°C respectively. Ans. 339.58 m/s

2. Determine the Mach number at a point on aircraft, which is flying at 850
km/h at sea-level where air temperature is 15°C. Take γ = 1.4 and R = 287
J/kg K. Ans. 0.69

3. An aeroplane is flying at an height of 18 km, where the temperature is
–50°C. The speed of the plane is corresponding to M = 1.5. Take γ = 1.4
and R = 0.287 kJ/kg K. Ans. 449 m/s

4. Find the Mach number when an aeroplane is flying at 900 km/h through still
air having a pressure of 80 kPa and temperature –15°C. Find also the
pressure, temperature and density of air at the stagnation point on the nose
of the plane. Ans. 0.77, 118.42 kPa, 15.59°C, 1.43 kg/m3.

5. Determine the velocity of air flowing at the exit of the nozzle, fitted to a
large vessel which contains air at a pressure of 32 bar (abs) and at a
temperature of 30°C. The pressure at the exit of the nozzle is 18 bar (abs).
Assuming γ = 1.4 and R = 287 J/kg K. Ans. 303.35 m/s

6. A vessel contains air at a temperature of 30°C. Air flows from the vessel
into atmosphere through a sub-sonic nozzle. The diameter at the exit of the
nozzle is 25 mm. Assuming the adiabatic flow, determine the mass rate of
flow of air through the nozzle when the pressure of air in tank is (i) 39 kPa
(gauge), and (ii) 330 kPa (gauge). Assuming γ = 1.4, R = 287 J/kg K and
atmospheric pressure = 101 kPa. Ans. 0.0905 kg/s (ii) 0.0991 kg/s

7. A supersonic nozzle is to be designed for air flow with Mach number 3 at
the nozzle exit which is 200 mm in diameter. The pressure and temperature
of air at the nozzle exit to be 7.85 kPa and 200 K respectively. Determine
the reservoir pressure and temperature. Take γ = 1.4 Ans. 287.5 kPa, 560 K
Hints : Since the velocity, in the reservoir is zero, the temperature and
pressure there correspond to the stagnation condition,

p0 = 
1

211
2

p M

γ
γ− γ − +     

T0 = 211
2

T M γ − +     


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Appendices

Standard Prefixes in SI Units

Prefix Symbol Multiple

exa E 1018

peta P 1015

tera T 1012

giga G 109

mega M 106

kilo k 103

hecto h 102

deka da 101

deci d 10–1

centi c 10–2

milli m 10–3

micro µ 10–6

nano n 10–9

pico p 10–12

femto f 10–15

atto a 10–18

© The Author(s) 2023
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CONVERSION FACTORS

Length Mass
1m = 1000 mm 1 kg = 2.204 lb

= 100 cm 1 lb = 0.4537 kg
= 39.37 in 1 kg = 1000 g
= 3.281 ft 1 tonne = 1000 kg
= 1.0936 yd 1 tonne = 0.984 ton

1 cm = 10 mm 1 ton = 1016.26 kg
1 in = 2.54 cm 1 slug = 14.59 kg
1 ft = 30.48 cm

1 mile = 1.609 km
1 yd = 3 ft

Area Density
1 m2 = 104 cm2 1 kg/m3 = 10–3 g/cm3

1 km2 = 0.3862 mi2 = 0.0624 lb/ft3

1 ft2 = 0.09289 m2 1 lb/ft3 = 16.025 kg/m3

1 in2 = 6.4516 cm2

Volume Force
1 litre =1000 cc or cm3 1 N = 1 kg m/s2

= 10–3 m3 = 0.102 kgf
= 0.0353 ft3 = 105 dyne

1 m3 = 35.32 ft3 1 dyne = 1 gm cm/s2

1 m3 = 1000 litres 1 kgf = 9.807 N
= 106 cm3 = 2.204 lbf

1 gallon = 4.546 litres
= 4.546 × 10–3 m3

= 8 pints
1 pint = 568.25 cc

= 568.25 × 10–6 m3

Discharge
1 litre/s = 10–3m3/s

1m3/s = 103 litre/s
= 35.32 ft3/s

1 cusecs = 0.02831 m3/s
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Energy and Work
1 Nm = 1 J = 107 erg
1 erg = 1 dyn. cm 1 kWh = 3600 kJ

= 10–5 × 10–2 Nm = 860 kcal
= 10–7 J = 3.6 MJ

1 kgfm = 9.807 Nm
= 7.229 ft lbf

1 ft lbf = 0.1383 kgfm
= 1.356 Nm
= 1.356 J

Heat

1 kJ = 0.2388 kcal

= 0.9478 Btu Btu = British thermal units

1 Btu = 1.055 kJ

= 0.252 kcal

= 778 ft lbf

1 kcal = 427 kgf m
= 4.187 kJ
= 3.968 Btu

1 cal = 4.187 J

Power
1 Nm/s = 1 J/s = 1 W

1 kW = 1000 W
= 860 kcal/h
= 102 kgf m/s
= 737.5 ft lbf/s
= 1.359 hp (metric)
= 1.341 hp (FPS)

1 hp (metric) = 75 kgf m/s2 (MKS)
= 75g watt
= 735.75 W

1 hp (FPS) = 745.70 W
1 hp (metric) = 4500 kgf m/min
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Pressure
1 N/m2 = 1 Pa 1 torr = 1 mm of Hg

1 bar = 105 N/m2 = 13.6 mm of water
= 102 kPa = 1.334 mbar
= 0.1 M N/m2 = 133.38 Pa
= 1.0197 kgf/cm2 1 mm of water = 1 kgf/m2

1 mbar = 10–3 bar = 9.807 N/m2

= 100 N/m2 = 0.0981 mbar
= 100 Pa 1 ata = 1 kgf/cm2

= 10.2 mm = 9.807 × 104 N/m2

1 atm = 101.325 kPa = 0.981 × 105 N/m2

= 1.01325 bar = 0.981 bar
= 760 mm of Hg
= 10.33 m of water
= 760 torr

Temperature
T(K) = T °C + 273.15
1 °F = 1.8 °C + 32

Dynamic Viscosity
1 Ns/m2 = 1 Pa.s 1 centipoise = 10–2 poise

= 1 kg/ms = 10–3 Ns/m2

= 10 poise 1 kgf s/m2 = 98.1 dyn-s/cm2

1 poise = 
1

10  Ns/m2 = 0.1 Ns/m2 = 98.1 poise

= dyne-s/cm2 1 lbf s/ft = 47.847 Ns/m2

Kinematic Viscosity
1 m2/s = 104 cm2/s

= 104 stokes
1 stokes = 1 cm2/s

1 centistokes = 10–2 stokes
= 10–6 m2/s

1 ft2/s = 0.0929 m2/s


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Mathematical Formulae

1. TRIGONOMETRICAL FORMULAE

cosec A = 
1

sin A sec A = 
1

cos A

tan A = 
sin
cos

A
A  = 

1
cot A

cot A = 
cos
sin

A
A  = 

1
tan A

sin2 A + cos2 A = 1
sec2 A = 1 + tan2 A cosec2 A = 1 + cot2 A

sin(90 )° + A = cos A sin(90 )° − A = cos A

cos(90 )° + A = – sin A cos(90 )° − A = sin A

tan(90 )° + A = – cot A tan(90 )° − A = cot A

sin(180 )° + A = – sin A sin(180 )° − A = sin A

cos(180 )° + A = – cos A cos(180 )° − A = – cos A

tan(180 )° + A = tan A tan(180 )° − A = – tan A

sin(360 )° + A = sin A sin(360 )° − A = – sin A

cos(360 )° + A = cos A cos(360 )° − A = cos A

cos(360 )° + A = tan A tan(360 )° − A = – tan A
sin(A + B) = sin A cos B + cos A sin B
sin(A – B) = sin A cos B – cos A sin B

cos(A + B) = cos A cos B – sin A sin B
cos(A – B) = cos A cos B – sin A sin B

tan(A + B) = 
tan tan

1 tan tan
+

−
A B

A B

tan(A – B) = 
tan tan

1 tan tan
−

+
A B

A B
sin 2A = 2 sin A cos A

cos 2A = cos2 A – sin2 A = 2 cos2 A – 1 = 1 – 2 sin2 A

tan 2A = 2

2 tan
1 tan−

A
A
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sin 2A = 2

2 tan
1 tan+

A
A

cos 2A = 
2

2

1 tan
1 tan
−
+

A
A

sin 3A = 3 sin A – 4 sin3 A
cos 3A = 4 cos3 A – 3 cos A

tan 3A = 
3

2

3 tan tan
1 3tan

−
−

A A
A

sin (A + B) sin (A – B) = sin2 A – sin2 B = cos2 B – cos2 A
cos (A + B) cos (A – B) = cos2 A – sin2 B = cos2 B – sin2 A

sin
2
A

= 
1 (1 cos )
2

± − A

cos
2
A

= 
1 (1 cos )
2

± + A

tan
2
A

= 
sin

1 cos+
A

A

sin
2
A

 + cos 
2
A

= 1 sin± + A

sin cos
2 2
−

A A
= 1 sin± − A

sin (A + B) + sin (A – B) = 2 sin A cos B
sin (A + B) – sin (A – B) = 2 cos A sin B

cos (A + B) + cos (A – B) = 2cos A cos B
cos (A + B) – cos (A – B) = –2 sin A sin B

sin A + sin B = 2 sin 
2

A B+
 cos 

2
A B−

sin A – sin B = 2 cos 
2

A B+
sin 

2
A B−

cos A + cos B = 2 cos 
2

A B+
cos 

2
A B−

cos A – cos B = – 2 sin 
2

A B+
sin 

2
A B−
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2. DIFFERENTIAL CALCULUS FORMULAE

(a)
( )nd x
dx  = nxn–1; 

5dx
dx  = 5x4, 

( )d x
dx  = 1

(b)
d
dx (ax + b)n = n(ax + b)n–1 × a

(c)
( )d C
dx  = 0

(d)
( )d u v
dx
×

 = 
dv duu v
dx dx

+

(e)
d u
dx v

 
 
 

 = 2

du dvv u
dx dx

v

+

(f)
(sin )d x
dx

 = cos x, 
(cos )d x

dx  = – sin x.

(g)
(tan )d x
dx  = sec2 x, 

(cot )d x
dx  = – cosec2 x

(h)
(sec )d x

dx  = sec x tan x, 
(cosec )d x

dx
 = – cosec x cot x

3. INTEGRAL CALCULUS FORMULAE

(a)
1

1

n
n xx dx

n

+

=
+∫ (b) 7 7 ,dx x Cdx Cx= =∫ ∫

(c)
1( )

( )
( 1)

n
n ax bax b dx

n n

++
+ =

+ ×∫ (d)
4

5

04

l
l

o

xx dx
 

=  
 

∫  = 
4 40
4 4 4
l l
− =

(e)
1loge xdx
x

=∫





Index

A

Absolute pressure 61
Adiabatic process 390
Adiabatic index 390
Aneroid barometer 55
Angular (or shear) deformation 239
Angle of attack 352
Archimedes’ principle 159
Assumptions of Bernoulli’s equation 293
Aspect ratio 352
Atmospheric pressure 53
Average velocity 160
Average skin friction coefficient 114

B

Bellows pressure gauge 87
Bernoulli’s equation 293
Bernoulli’s equation Ist form 294
Bernoulli’s equation of 2nd form 295
Bernoulli’s equation of 3rd form 295
Bluff body 328
Borda’s mouthpiece running free 315
Boundary layer 196
Boundary layer theory 196
Boundary layer thickness: 199
Bourdon tube pressure gauge 85
Boussinesq eddy-viscous theory 164
Buckingham’s pi-theorem 414
Bulk modulus of elasticity 20
Buoyancy or buoyant force 157
Buoyant force or buoyancy 159

C

Capillary tube viscometer 127
Cavitation 13
Centre of buoyancy 159
Centre of pressure 95
Chezy’s formula 160
Chezy’s formula 364
Chord line 352
Circulation 267
Cipolletti weir 179
Classification of turbulence 162
Classification of notches and weirs 266
Classification of mouthpieces 309
Coefficient of compressibility 21
Coefficient of discharge 317
Coefficient of contraction 339
Coefficient of discharge 340
Coefficient of velocity: Cv  298
Coefficient of discharge: Cd 299
Coefficient of contraction: Cc 301
Co-efficient of drag CD 329
Co-efficient of lift: CL 330
Collar bearing 119
Compressibility 20
Compressible flow 202
Compressible flow  394
Continuity equation 206
Convective acceleration 218
Control mass system 287
Control volume system 288
Control of boundary layer separation 148
Continuity equation 396

© The Author(s) 2023
S. Kumar, Fluid Mechanics (Vol. 2),
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Couette flow 201
Crest 265
Current meter 350

D

Darcy-Weisbach formula 158
Dash-pot mechanism 124
Dead-weight pressure gauge 86
Degree or level of turbulence 161
Derived quantities 4
Determination of metacentric height 168
Differential manometers 76
Diaphragm pressure gauge 85
Differential surge tank 138
Diffuser 410
Dimensional analysis 403
Dimensional homogeneity 405
Dimensionless numbers 450
Discharge over a broad crested weir 287
Discharge over a submerged weir 288
Displacement thickness δ* 200
Distorted models  167
Dupuit’s equation 204
Drag force 311, 315
Drag and lift 325
Drag 326
Drag force: FD 328
Drag on a sphere 336
Drag on a cylinder 337
Dynamic similarity 248

E
Elastic force 286
Elastic force 250
Energy thickness 304
Energy losses in pipes 357
Equation of state 385
Equilibrium of floating bodies 166
Equipotential line 259
Equivalent length 221
Eulerian method 195
Euler’s equation of motion 287
Euler’s equation of motion 286

Euler’s equation of motion 293
Euler’s number 51
Euler’s law 58
Evaporisation 12
External mouthpieces 310

F
Falling sphere viscometer 131
Fanno flow 426
Filament line 97
Flow net 260
Fluctuation velocity 260
Fluid mechanics 2
Fluid statics 4
Fluid kinematics 4
Fluid dynamics 4
Fluid jet or jet 377
Fluidization 247
Foot-step bearing 118
Forced vortex flow 246
Free vortex flow 247
Free turbulence 162
Friction layer 197
Friction drag 326
Froude’s number 51

G
Gas constant 386
Gauge pressure 62
Gay-Lussac’s law 390
Geometric similarity  247
Gradually varied flow 363
Gravity force 185, 249

H

Hagen Poiseuille equation 187
Half-body 272
Hardy cross method (HCM) 232, 252
High hypersonic flow 203
Hot film anemometer 286
Hot wire anemometer 285
Hydraulic coefficients of orifice meter 139
Hydraulic grade line 112, 275
Hydraulic radius 362
Hydraulic coefficients 298
Hydrodynamically smooth boundary 171
Hydrodynamically rough boundary 172
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Hydrometer 6
Hydrostatic equation 52
Hydrostatic pressure 95
Hydrostatic law 96
Hypersonic flow 203

I

Ideal fluid 10
Ideal plastic fluid 11
Impact of jet 377
Impulse momentum equation 354
Inclined single column manometer 70
Incompressible flow 202
Incompressible flow 395
Injection method 249
Instantaneous velocity 260
Intensity of turbulence 161
Internal mouthpiece 310
Irrotational flow 204
Isobaric process 388
Isochoric process 389
Isolated system 288
Isometric process 389
Isothermal process 22, 887

K

Kinematic viscosity 8
Kinematic similarity 47
Kinetic energy correction factor 113
Kutta-Joukowaski equation 344

L

Laminar flow 100, 178
Laminar boundary layer 197
Laminar sub-layer 198
Langrangian method 195
Laplace’s equation 226
Laser doppler velocimetry 186
Leading and trailing edges 352
Lift 326
Lift force FL  329
Limitations of Bernoulli’s theorem 296
Linear deformation 239
Local atmospheric pressure 53
Local acceleration 218
Local skin friction coefficient 114

M
Mach’s number 52
Mach’s law 59
Magnus effect 344
Major losses 257
Manning’s formula 365
Measurement of viscosity 127
Mechanics of fluids 2
Mechanical gauges 85
Metacentre and metacentric height 165
Metacentric height 166
Micromanometer 69
Minor losses 72
Model 403
Model analysis 145
Modellaws or similarity laws 153
Momentum correction factor 111
Momentum thickness 202
Moody’s diagram 261
Most economical section 370
Mouthpieces 297

N

Nappe 265
Navier-Stokes equation of motion 286
Navier-Stokes equations of motion 138
Neutral equilibrium 167
Newton’s law of viscosity 8
Newtonian fluid 10
Non-newtonian fluid 11
Normal shocks 424
Notches 265
Nozzle 410

O

Ogee weir 289
One-demensional flow 204
Orifice meter or orifice plate 339

P

Pascal’s law 52
Path line 196
Piezometer 66
Pipe networks 131, 151
Pipes in series 299
Pipes in parallel 204
Pitot static tube 350
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Pitot tube 346
Polytropic process 393
Power absorbed in viscous resistance 216
Prandtl’s mixing length theory 264
Pressure 49
Pressure drag 326
Pressure force 86, 149
Pressure head 50
Pressure transducer 87
Primary dimensions 204
Prototype 203
Pure rotation 240
Pure (or linear) translation 239

R

Rate of flow 205
Rapidly varied flow 363
(Rayleigh flow) 424
Real fluid 10
Redwood viscometer 234
Repeating variables 216
Reynolds equation of motion 287
Reynolds experiment 279
Reynolds law 253
Reynolds number 201, 250
Restricted orifice type surge tank 238
Rotating of cylinder method 349
Reynolds theory 63
Reynolds transport theorem 289
Rotameter 351
Rotating cylinder viscometer 129
Rotational flow 204

S
Saybolt viscometer 133
Scale ratio for time 55
Scale ratio for acceleration 55
Scale ratio for discharge 55
Scale ratio for force 56
Scale ratio for pressure intensity 56
Scale ratio for energy or work 56
Scale ratio for torque or moment 56
Scale ratio for power: 57
Scale ratio for momentum 57
Separation of boundary layer 146
Shear stress in turbulent flow 162
Simple surge tank 238

Single column manometer 69
Sink flow 267
Siphon 295
Sonic flow 203
Source flow 263
Specific gravity 5
Specific volume 4
Specific weight 5
Stable equilibrium 166
Stagnation state 399
Stall 352
Standard atmospheric pressure 53
Static pressure 348
Steady and unsteady flow 199
Stream line 196
Streak line 197
Steady non-uniform flow 200
Steady uniform flow 200
Streamlining of body shape 150
Stokes’s law 26
Stream function (ψ) 223
Stream tube 198
Stream line 259
Subsonic flow 203
Suction method 248
Supersonic flow 203
Surface tension 14
Surface tension force 150
Surge tank 236
System 287

T

Three-dimensional flow 205
Three reservoir problem 239
Thyxotropic fluid 11
Torricelli barometer 53
Total energy line 312
Total energy line (TEL) 275
Total head line 312
Total pressure (F) 95
Transonic flow 203
Transition boundary layer 198
Turbulent flow 201
Turbulent force 286
Turbulent flow 278
Types of fluids 10
Types of flow lines 196
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Types of fluid flow 199
Types of fluidization 48
Types of forces influencing motion 285
Types of orifices 197
Types of similarities 447
Types of surge tanks 237
Types of venturimeter 315
Types of models 166
Two-dimensional flow 204

U

U-tube manometer 67
Undistorted models 66
Uniform and non-uniform flow 199
Unstable equilibrium 166
Unsteady uniform flow 200
Unsteady non-uniform flow 200
Uses of flow net 261

V

Vacuum pressure 62
Vapour pressure 11

Index

Velocity of approach 282
Velocity potential (φ) 225
Vein 265
Vena-contracta 339
Ventilation of weirs 285
Venturimeter 314
Von-karman’s theory 165
Vortex flow 246
Vorticity 242
Viscous force 49, 86

W

Wall turbulence 162
Water hammer 224
Weber’s law 58
Weber’s number 52
Weirs 265
Wetted perimeter 362
Whirling flow 246
Wingspan 352
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