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Preface

Nanotechnology is referred to as a new emerging technology. The reason why nano-
technology is labelled “new” is linked to fascinating advances in novel experimental
techniques, which today allow for controllable fabrication of nanoscale ducts, fluid
channels, and chambers. These nanoscale geometries offer new methods and devices
for chemical separation techniques, fast reactions, and energy conversions.

To fully understand how nanoscale devices operate, and thereby how to control
and optimise the technology, theoretical models act as a key component. Importantly,
we should not expect that nanotechnology is based on fundamental new physics, but
rather that we can apply already established theoretical frameworks. This does not
mean that nanoscale modelling is trivial, and frequently one encounters phenomena
that are not observed on the macroscopic length scale. Nevertheless, the observation
can often be modelled from well-known theories. Richard Feynman’s famous quote
‘There is plenty of room at the bottom’ from 1959 is often referred to as the start
of nanotechnology, and at least from a modelling point of view, nanotechnology is
perhaps not that new.

This book specifically explores nanoscale hydrodynamics of simple systems. ‘Sim-
ple systems’ here refers to simple straight channel geometries and fluids composed of
molecules like methane, butane, and water. As evident from the focus statement – and
book title – the theoretical framework is based on hydrodynamics. The basic explo-
ration workflow is to compare the hydrodynamic model predictions and data from
atomistic computer simulations, which enables a very detailed discussion. Atomistic
computer simulations are widely used today to investigate fluid and liquid dynamics
and structure and are made possible by both efficient algorithms and also improved
hardware performance. This scientific method is relatively new. Of course, the final
test for any theory must be based on physical experiments.

The book aims to give the reader an in-depth understanding of hydrodynamic mod-
elling of fluids and liquids on the nanoscale. To achieve this goal the reader will
learn

1. about different nanoscale hydrodynamic phenomena,

2. how hydrodynamic quantities are defined from the molecular quantities,

3. how the hydrodynamic equations can be formulated from these definitions,

4. how to analyse the hydrodynamic equations and compare the analysis results with
simulation data,

5. when and how classical hydrodynamic theory breaks down,

vii
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viii Preface

6. how hydrodynamics can be extended in order tomodel and understand phenomena,
where classical theory breaks down, and

7. about the synergy between simulations and theory.

The learning outcome is supported by the ‘Further Explorations’ sections at the end
of Chapters 2–6. The explorations are a mixture of short, well-defined exercises and
more open research problems. The open problems often require computer simulations,
and to this end the reader (well, in fact, everyone) has access to computer resources in
the form of a molecular dynamics kernel library and a GNU Octave/Matlab interface.
Some of the simulations can be long, depending on the hardware and the problem,
and here a bit of patience can be required. The software does not need supercomputer
facilities or an IT specialist to install, and can run from a standard desktop or a fast
laptop; a Linux operating system or a Linux emulator is strongly recommended. From
the book web page a series of videos is available showing how to install and use the
software.

The book is written for anyone who wishes to pursue research on the topic, or who
is simply curious about hydrodynamics on the nanoscale. The text difficulty is chosen
such that some prior knowledge of linear algebra, vector calculus, electrodynamics,
and hydrodynamics is required. Concepts like tensors and the outer product will be
briefly introduced, as these may not be known to the reader. These introductions are
meant to enable the reader to move on to the next part of the text, and are not, by any
standard, thorough treatments. Moreover, it is my experience that formulating the rel-
evant differential equation for a given problem is usually tractable, but the techniques
for solving the equation can pose problems. Fortunately, nanoscale hydrodynamics is
mostly almost linear, and the differential equations we encounter are relatively sim-
ple. In any case, I have chosen to explain the steps involved in solving these equations
carefully. Finally, the Appendix contains some clarification regarding the symbolism
used in the book and also literature suggestions for further reading. In case the reader
comes across an unknown concept, an abundance of good resources can be found on
the internet.

Despite the help I have received in writing this book, there will be errors; only the
author is to blame for these, and I hope for the readers’ forgiveness. Also, somemay find
some topics and literaturemissing. The book is not in any waymeant as a prioritisation
of all the great work done by the community.

I would like to thank Bjarke Spangsberg Bak for going through the text minutely,
weeding out numerous typos, sign errors, and even finding calculus mistakes. I thank
Thomas Voigtmann for his many insightful comments and suggestions, Lorenzo
Costigliola, and Solvej Knudsen for reading parts of the manuscript at the early stage
of writing. A special thank-you goes out to Jeppe Dyre for his encouragement over the
years, and also for the financial support for this book (VILLUM Foundation’s Mat-
ter grant – No. 16515). Finally, I must thank my family for their sustained and loving
support.

https://doi.org/10.1017/9781009158749.001 Published online by Cambridge University Press

https://doi.org/10.1017/9781009158749.001


Symbol List

α Thermal gradient or eigenvalue
A Operator representation of Maxwell’s constitutive model
ai General molecular quantity
A General hydrodynamic variable or surface area
Aav,δA Average and fluctuating parts of A
s
A,

os
A Symmetric and traceless symmetric part of tensor A

a
A,

ad
A Antisymmetric part and vector dual of tensor A

⟨A⟩ Ensemble average of a set of independent measurements A1,A2 . . .

⟨A⟩t Time average of A
A Spatial average of A
Ã Fourier coefficient
Â Fourier–Laplace coefficient
Arz Reaction area normal to wavefront propagation
βV Thermal pressure coefficient
βT Isothermal compressibility
ci Thermal (peculiar) velocity of molecule i
C General correlation function
C⊥,C|| Transverse and longitudinal correlation functions
Cxy xy-correlation function
cV ,cP Specific heat capacities at constant volume and constant pressure
cT Transverse shear wave speed
cscr Charge screening function
cmin,crel Minimum and relative chemical wavefront speeds
∆ Slab width of fluid element adjacent to wall or difference
∆ωRa Rayleigh half-peak width
δS Stokes boundary layer for oscillatory flows
D Electric displacement field
Ds,Ds Self-diffusion coefficient and self-diffusion tensor
DA Self-diffusion coefficient of molecule A
DAB Mutual diffusion coefficient of molecule A in A-B mixture

ix
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x Symbol List

DT Thermal diffusivity or thermal diffusion coefficient
De Deborah number
ε Lennard–Jones energy scale or dielectric permittivity
ε0,εr Dielectric permittivity in vacuum and relative dielectric permittivity
ε Small parameter/perturbation parameter
εi Thermal kinetic energy of molecule i
η0,ηv,ηr Shear, bulk, and rotational viscosities
ηt Transverse viscosity ηt = η0 +ηr

E Flow enhancement coefficient
E,Eext Local and external electric fields
F The Fourier transform operator
f Spatial part of transport kernel or generic function
F,Fs The coherent and incoherent intermediate scattering functions
Fi Force acting on molecule i
Fi j Force acting on molecule i due to j
Fc,Fext,Ftot Conservative, external, and total forces
FD,FR Dissipative and random forces in DPD simulations
γ Ratio of heat capacities
γ̇γγ, γ̇ Strain rate tensor and tensor component
Γ Sound attenuation coefficient
G The general microscopic operator
g Radial distribution function
g Applied force per unit mass (applied acceleration).
G,Gs The van Hove function and self-part of the van Hove function
G∞ Modulus of rigidity
H The microscopic hydrodynamic operator
h,h Slit-pore height and half-height
j Momentum density
J General flux tensor
Ji,JA Single-particle flux tensor
Jε Thermal kinetic energy flux
JL Orbital momentum flux
χe Electric susceptibility
κ κ = λ/(cV ρav)

k Chemical reaction rate constant
k Wavevector, k = (kx,ky,kz)

K1,K2,K3 Integration constants
λD Debye length
L The Fourier–Laplace transform operator
l Slit-pore length
lc Characteristic length scale for momentum coupling effect
Li Orbital momentum of molecule i
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xi Symbol List

LK Kapitza length

Ls,L
(1)
s ,L(2)

s Slip length and slip lengths at wall 1 and wall 2
νl Longitudinal viscosity νl = (ηv +4η0/3)/ρav

n,nA Number density and number density of molecule A
nrz Number of molecules in reaction zone
n Normal vector
N,Ni Torque and torque on molecule i
∇∇∇ The del-operator
µµµ i Molecular/microscopic dipole
mi Mass of molecule i
M Constant of proportionality (transport coefficient)
M,Mi Torque, and torque on molecule i with respect to c.o.m.
Ma Mach number
Re Reynolds number
τD,τF , Debye relaxation time, Frenkel escape time, Maxwell relaxation
τM,τs time, and stress relaxation time
τobs Observation time
τpath Characteristic time between particle momentum exchange
ρ Mass density
ρε Thermal kinetic energy density
ρL,ρS Orbital and spin angular momentum densities
u Fluid streaming velocity, u = (ux,uy,uz)

uw Velocity at wall
ω Frequency or eigenvalue
ωpeak Peak frequency
ΩΩΩ,ΩΩΩi Spin angular velocity and spin angular velocity of molecule i
Π Viscous pressure
ϕ Associated field variable per unit mass, or kernel, or auxiliary

function
ΦT Thiele modulus
φc,φq Boltzmann and electric potential functions
pi Momentum of molecule i
peq Equilibrium pressure
P Polarization (rank-1 tensor) or pressure tensor (rank-2 tensor)
Pr Prandtl number
q,qscr Charge and screening charge
Q Volumetric flow rate
Q Spin angular momentum flux tensor
ρq,ρb,ρ f Charge, bound charge, and free charge densities
ρΓΓΓ Torque density
ri Position of molecule i
r Position vector r = (x,y,z)
R Tube radius
R Dipole flux tensor
Rα Atom α position vector with respect to c.o.m.
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xii Symbol List

σ Lennard–Jones length scale, or production term, or stress
tensor component, or electric conductivity

σpath Characteristic mean ‘interaction-free’ length scale
σS Width of Stern layer
∑W Wall charge
S Dynamic structure factor
Sbb Static polarization autocorrelation function
Si Spin angular momentum of molecule i
Se Seebeck coefficient
ST Soret coefficient
ΘΘΘ,ΘΘΘmol,ΘΘΘP,Θ Moment of inertia per unit mass, molecular moment of inertia,

principal molecular moment of inertia, and average of ΘΘΘP

T,Tcl,Text Kinetic temperatures
U Characteristic velocity, or potential function
uEO The Helmholtz–Smoluchowski velocity
V Fluid volume element
vi Velocity of molecule i
w Slit-pore width
Wrz Reaction zone width of chemical wavefront
Wo Womersley number
X General driving force
xA Mass fraction of molecule A
ζ Abbreviation for either ζl or ζt , or electric potential at

Stern-diffuse layer
ζ0,ζv,ζr Shear, bulk, rotational spin viscosities
ζl Longitudinal spin viscosity
ζN Navier friction coefficient
ζt Transverse spin viscosity ζt = ζ0 +ζr

Published online by Cambridge University Press



1 Introduction

Hydrodynamics describes fluid dynamical properties like mass density, streaming
velocity and energy [15]. Understanding and controlling fluids has a long history [50],
and despite the prefix, hydrodynamics extends today beyond the study of water, and
more generally to all fluids. The definition of a fluid is ambiguous, but we here think of
it in an intuitive manner as a material (or substance) that will easily flow when a force
is applied to it. Liquids and gasses are two usual examples of a fluid.

The fundamental assumption in hydrodynamics is that the properties vary suffi-
ciently smoothly in both time and space; this is known as the continuum hypothesis,
see, for example, Ref. [141]. In this way the properties can be treated mathematically
as field variables. The hypothesis is in agreement with our everyday experience: when
we are stirring a cup of coffee or riding a bicycle, the fluid flow appears smooth. How-
ever, the continuum hypothesis is not strictly true. Think of a small fluid volume (or
fluid element), denoted V , embedded in a material at rest. Hydrodynamics will pre-
dict that the mass is constant with respect to time; however, due to thermal motion,
molecules will enter and leave the fluid element, and the mass of V will fluctuate. As the
element volume increases or if we perform a sufficiently long time average, the mass of
V will converge to that of the hydrodynamic prediction. What defines sufficient large
volumes and time averages is not clear, and we return to this example later in this
chapter.

Channels and tubes for fluid flows with nanoscale cross section and nanoscale vol-
ume can now be fabricated with impressive accuracy [88, 170]. In order to control
and utilise such nanoscale fluid volume devices, it is important to develop models that
can describe and predict the fluid dynamics. Is the continuum picture, which has been
applied with great success to micro- and macro-fluid systems, also applicable on the
nanoscale? From the preceding example, it appears that the answer is not trivially ‘yes’
or ‘no’, and this question is the underlying theme of the text.

We must settle on a few important definitions. Eikel and van den Berg [61] define
nanofluidics as the study and application of fluid flows confined in and around
nanosized structures. For fluids confined in nanoscale structures (or geometries) a
non-negligible fraction of the fluid molecules will interact with the wall atoms. To
describe such systems in detail an in-depth knowledge of both the wall–fluid and fluid–
fluid interactions are needed [29, 117, 165]. The complexity can be overwhelming and
appear almost intractable from a modelling point of view. Fortunately, many of the
underlying physical mechanisms relevant in confined fluids are also present in the non-
confined case, and one can simplify the problem considerably by studying these systems

1
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2 Introduction

tFigure 1.1 (a) Illustration of a slit-pore geometry fabricated by etching a silicon base and placing a lit on the cavity. (b) A
snapshot of a computer simulation of water flowing in a region of the slit-pore, highlighted by the punctured box in
(a). In the simulations, the walls and fluid are infinite in extent in the (x,y)-plane. The pore height h is 3.4–3.5 nm.
From Ref. [102] with permission.

[49, 66, 110, 199]. One can even study some of the mechanisms for non-confined
systems in equilibrium [31, 90], that is, in no-flow situations. Therefore, in order to
explore nanofluidic systems in detail, we here extend the scope of the book and define
nanoscale hydrodynamics as

the study and application of fluid systems, where the system characteristic length scale
is in order of nanometres.

Whether the system is confined or not, a nanoscale fluid system is then a system where
the characteristic length scale is in order of nanometres, that is, 1–100 nanometres.
Naturally, the length scale needs to be clearly defined for each system. Notice that the
related field nanofluids is the study of nanosized particles suspended in fluids and is not
the focus of the text.

An example of a nanoscale fluid system that we will explore is water confined in a
slit-pore, where the pore height, h, is around 10 water diameters or 3.4–3.5 nm. In brief,
the slit-pore geometry can be fabricated experimentally from etching a base (typically
a silicon wafer) and placing a lit on the formed cavity; see Fig. 1.1 (a). Figure 1.1 (b)
is a snapshot from a molecular dynamics, MD, simulation that simulates only a small
region of the slit-pore and after the coordinate system has been rotated twice. We have
that w ≫ h and l ≫ h, and h is the characteristic length.

We will often use this simple geometry in our study of confined nanoscale fluids.
Compared to clever choices of coordinate system, where, for example, the walls are
located at dimensionless points z = ±1, the coordinate system shown in Fig. 1.1 (b)
leads to slightly more complicated mathematical expressions. However, the results
will depend explicitly on h, the characteristic length scale, and we will stick with this
more intuitive choice of coordinate system with the exception of Section 5.6, where we
explore molecular fluid flows.

In confinement one can decompose the forces acting in the system into surface forces
(e.g., thewall-fluid frictional force) and volume forces (e.g., the gravitational force). The
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3 Introduction

total surface force and volume forcemust be proportional to the wall–fluid surface area
and fluid volume, respectively. For the geometry in Fig. 1.1 we have

Total surface force
Total volume force

∝
l ×w+h× l

w× l ×h
≈ 1

h
, (1.1)

as h≪w. This is also known as the square-cube law [1] and shows that the surface force
becomes dominant for small characteristic lengths. One immediate result of this is that
confined nanoscale fluid flows cannot be generated by, say, Earth’s gravitational pull,
but must be realised through application of more advanced methods such as electro-
osmosis.

In nanofluidic laboratory experiments the fluid velocity rarely exceeds 0.1 m/s; see
Whitby and Quirke [212], corresponding to a flow rate less than 10−15 L/s. If we define
the Reynolds number, Re, as

Re = ρhU/η0 , (1.2)

where ρ is the mass density,U = 0.1 m/s is the characteristic fluid velocity, and η0 is the
shear viscosity, the Reynolds number is in practise below 0.01. The flow is therefore a
Stokes flow, or creeping flow, and we can safely neglect the advective inertial forces in
the hydrodynamic description of the system.

Molecular dynamics is widely used today to study nanoscale fluid systems. Com-
mon for these computer-based studies is that unrealistically large flow velocities are
simulated. Usually the velocity is in order of 10–102 m/s, nevertheless, due to the small
length scales, the Reynolds number is still small, often between 1 and 10, and inertial
forces can again be ignored when analysing the simulation data.

Another important point about simulation studies is that despite the very large fluid
velocities, the flow speed is usually significantly lower than the corresponding sound
speed, cs. This is commonly quantified through the Mach number,

Ma =U/cs . (1.3)

If Ma< 0.3, the fluid compressibility effects can usually be ignored. For water at ambi-
ent conditions, cs is on the order of 103 m/s and the corresponding Mach number is
below 0.1 in simulations under usual simulation conditions. Nanoscale flow systems,
both real and simulated, are thus characterised as being laminar and incompressible,
and this simplifies the mathematical analysis of the models considerably, as we will see.

In our exploration of nanoscale hydrodynamics we focus on fluid systems charac-
terised by a system relaxation time that is sufficiently small compared to the time scale
at which we perform measurements or simulations. Specifically, if τs is the time for the
fluid internal stress to relax after shearing/deformation and τobs is the time we observe
the system, we define the Deborah number

De = τs/τobs , (1.4)

which then must be significantly smaller than 1. For fluids like methane, butane, and
water at ambient conditions, a small Deborah number is easily obtained, even in com-
puter simulations. On the other hand, polymer and glass systems feature very large
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4 Introduction

relaxation times having a large Deborah number even if τobs is the real laboratory
observation time.

We here refer to fluids with sufficiently small τs compared to τobs as simple fluids; τobs

is often defined by what can be achieved in computer simulations. By simple systems
we mean simple fluids, either unconfined or confined to simple straight channels like
slit-pores or nanochannels.

Nanofluidics is believed to play a critical role in many areas of future engineering
[61, 132, 176]. The purpose here is not to present the many exciting applications, but to
show how nanoscale fluid systems can be modelled and what new insight into fluid and
liquid theory this brings. Often what appears to be a new phenomenon specific to the
nanoscale is actually omnipresent, but can be ignored on larger length scales. The term
nanoscale fluid phenomenon is still used when the phenomenon is particularly relevant
to nanoscale fluid systems.

1.1 Nanoscale Fluid Phenomena

Before going into detail on how tomodel nanoscale fluid systems andwhatwe can learn
from that, it will be enlightening to see a few examples of some of the phenomena we
will explore later. The examples will by no means cover all phenomenology, but they
illustrate at least some unique features of these systems and also motivate the topics in
the book.

1.1.1 Flows in Nanochannels

Horn and Isrealachvili [114] showed in 1981 that the force acting between two mica
surfaces in liquid octamethyl-cyclotetra-siloxane (OMCTS) features oscillations as the
distance between the mica surfaces is varied. Specifically, the oscillations have a period
matching the diameter of OMCTS, and the amplitude decay as the distance between
the surfaces is increased. This seminal result is a fingerprint of a molecular layering
near the surface, a layering which is strong in the fluid region close to the surface and
decays with distance. This layering was also reported in 1977 by Toxvaerd and Præst-
gaard [202] who studied confined systems using molecular dynamics simulations. The
focus here is on the hydrodynamics, and we therefore ask how the layering affects the
fluid flow properties. For simple fluids, as we have defined it above, the effect is surpris-
ingly small, but for non-simple fluids composed of, say, long alkane chains the picture
is much more complicated, and the fluid’s flow resistance increases significantly as
we reach nanoscale confinement [83]. This increase is attributed to adhesion/cohesion
effects coming from molecular layering, but also to crystallisation, vitrification, phase
transitions, and more; see a summary in Ref. [68]. The increased flow resistance has
led to the concept of an effective viscosity, ηeff, which in nanoscale systems can be
many times larger than the shear viscosity η0 characterising the flow properties in the
macroscopic or non-confined case.
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5 1.1 Nanoscale Fluid Phenomena

The opposite effect due to confinement, namely a flow enhancement, has also been
observed. This phenomenon can be quantified through the enhancement coefficient,
E, which is defined as the ratio between the experimentally measured volumetric flow
rate, Qexp, and the theoretical predicted flow rate, Qthe,

E = Qexp/Qthe . (1.5)

Recall, the volumetric flow rate is the fluid volume discharged by the channel per
time unit [38]. The predicted volumetric flow rate Qthe is often calculated from the
Navier–Stokes equation in the given geometry, using η0, and with specified bound-
ary conditions; thus, we assume that the Navier–Stokes equation is applicable on the
nanoscale.

In 2005, Majumder et al. [153] investigated water flow through carbon nanotubes
embedded in a membrane and having diameters of around 7 nm. Using zero veloc-
ity boundary conditions to calculate Qthe, the authors reported a surprisingly large
enhancement coefficient, on the order of 104. One hypothesis for the mechanism
behind the enhancement is that the fluid velocity at the wall–fluid boundary is non-
zero. This is referred to as slippage and can be quantified from the slip enhancement
coefficient,

Eslip = Qslip
the /Qnoslip

the , (1.6)

where Qslip
the is the theoretical prediction for the volumetric flow rate using slip bound-

ary conditions and Qnoslip
the is the prediction using the traditional no-slip boundary

conditions. For a steady flow in slit-pore geometries (Fig. 1.1), the slip-enhancement
coefficient can be evaluated to

Eslip = 1+6Ls/h , (1.7)

where Ls is the slip length. The slip length is the interesting quantity when discussing
flow enhancement, and is, for the planar Poiseuille flow, the distance away from the
wall–fluid interface to where the linearly extrapolated velocity is zero. The slip length
is illustrated in Fig. 1.2 (a).

For highly hydrophobic walls, the slip length is expected to be large; the results for
carbon nanotubes from Majumder et al. suggest Ls to be on the order of 104 nm. The
actual slip length magnitude is still debated. For example, from molecular dynamics
simulations Kannam et al. [125] found a slip length of around 100 nm in a carbon
nanotube with a diameter of 4 nm; this corresponds to a plug-like flow. From exper-
iments on a Landau–Squire flow, Secchi et al. [188] found the same slip length, but
for carbon nanotubes with diameters of around 50 nm. There is general agreement
that the slip length decreases as the tube diameter increases and that it converges to
that of graphene; experimental, theoretical, and simulation studies find Ls = 10–80 nm
for graphene–water; see Ref. [125] and references therein. Figure 1.2(b) plots the slip
enhancement coefficient for graphene–water as a function of slit-pore height h.

Importantly, fluid slippage also occurs on macroscopic length scales, but from Eq.
(1.7) the effect of this on the flow rate is not observed under usual macroscopic
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tFigure 1.2 (a) Illustration of the slip length,Ls, for the planar Poiseuille flow. The dashed line is the tangent line for the fluid
velocity at z = 0. The curve illustrates the fluid velocity x-component. (b) Slip enhancement coefficient for a slit-pore
whereLs = 60 nm (graphene–water).

circumstances, as h is many orders of magnitude larger than the slip length. Even for
microscopic length scales, Eslip is close to unity.

1.1.2 Capillary Raise

A common way to fill nanochannels and nanopores with a fluid is through capillary
filling and, naturally, this method has drawn a lot of attention to the research commu-
nity. Capillary filling in micro- and macropores is, under usual conditions, described
satisfactory by the Lucas–Washburn equation, however, on the nanoscale the slippage
phenomenon introduced in the previous section becomes important. The modified
Lucas–Washburn equation including this effect reads [57, 119]

h2
cap(t) =

γRcos(θ)
2η0

(
1+

4Ls

R

)
t, (1.8)

where hcap is the capillary height, γ is the surface tension, R is the radius of the tube,
and θ is the contact angle between the meniscus and the wall; see Fig. 1.3 (a).

Figure 1.3(b) shows the capillary height hcap as a function of time for two differ-
ent model fluids investigated using molecular dynamics (MD) simulations. It is worth
noting that the typical unit length scale in molecular dynamics is 3–5 Å and the unit
time scale is on the order of picoseconds. After a short inlet transient time, the capil-
lary height predicted by the modified Lucas–Washburn equation is confirmed – even
quantitatively.

The research continues, as questions remain unresolved. For example, it is known
that the contact angle and the slip length are correlated quantities [211], and
this calls for a revision of the fundamental theory behind capillary filling on the
nanoscale.
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tFigure 1.3 (a) Illustration of capillary raise. (b) Capillary height as a function of time in a tube of radius 10 (in MD units); filled
circles are data for a Lennard–Jones liquid and triangles data for a model polymer melt. Punctured lines illustrate the
theoretical predictions for the slopes. From Dimitrov et al. [57].

1.1.3 Anisotropy in Confined Dielectrics

Application of an external electrical field, Eext, to a dielectric material gives rise to
a polarisation, P. Recall, in the static, homogeneous, isotropic, and linear cases, the
polarisation is

P = ε0(εr −1)Eext = ε0χeEext , (1.9)

where εr and ε0 are the relative and vacuum dielectric permittivities, respectively, and
χe = εr−1 is the electric susceptibility. In the situation where an external electric field is
suddenly switched on at, say, t = 0, the system relaxation response can also be studied.
The simplest model for this non-static case is the Debye model,

P(t) = ε0χeEext(1− e−t/τD) ; (1.10)

τD is the Debye relaxation time. Notice that the polarisation P converges to ε0χeEext in
accordance with the static case, Eq. (1.9).

Figure 1.4 shows molecular dynamics results for the polarisation as a function of
time for water confined in a slit-pore. As the field is applied parallel to the walls, the
system response is bulk-like and follows an exponential relaxation in accordance with
the Debye model. On the other hand, the response is significantly changed when the
field is applied normal to the walls; here it resembles a small amplitude step response.
In both experiments [76] and simulations [149] this anisotropy is found for slit-pore
heights up to 100 nm, and we approach the microfluidic length scale.

The reduced polarisation phenomenon indicates that there exist a parallel permit-
tivity ε ||r and a normal permittivity ε⊥r with respect to the wall plane. If the system’s
dielectric response is isotropic, we have ε ||r = ε⊥r = εr.
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tFigure 1.4 Molecular dynamics results for the polarisation as a function of time for water confined in a slit-pore withh = 11 nm;
see the geometry in Fig. 1.1 (b). (a) The external electric field is applied parallel to the wall at t = 0 . Same as (a), but
where the field is applied normal to the wall. Data are from Ref. [149].

To model the reduced normal permittivity, we can divide the confined fluid into lay-
ers with respect to the z-direction. These layers can be considered as capacitors in a
serial arrangement. Each capacitor has capacitance Ci, permittivity ε⊥r,i, and separa-
tion (or height) hi. The fundamental idea now is that the capacitance in the wall–fluid
interface is low, as the water density is low. The total capacitance is

1
C

= ∑
i

1
Ci

. (1.11)

The capacitance for each layer is Ci = ε⊥r,iε0A/hi, where A is the surface area of the
capacitor, and we get

ε⊥r =
h

∑i hi/ε⊥r,i
. (1.12)

Zhang [215] studied the simplest scenario of a fluid next to a wall and included only
two fluid layers: one layer (denoted layer 1) just adjacent to the wall, where the height
was h1, and a layer 2 with height h2, such that h = h1 + h2. If h1 is on the order of
angstroms, then ε⊥r,1 ≈ 1, as this interfacial region is almost a vacuum. The second layer,
we assume, has permittivity ε⊥r,2 ≈ εr. Then Eq. (1.12) simplifies to ε⊥r = h/(h1+h2/εr).
As h → h1 we have h2 → 0 and ε⊥r → 1. As h increases we reach the regime where
h2 ≫ h1 and h1 + h2/εr ≈ h2/εr, that is, ε⊥r ≈ εr. Thus, this simple capacitor model
predicts the monotonic increase in the permittivity as a function of h. Note, however,
that Ballenegger and Hansen have questioned the layering picture [10].

As the dielectric response is anisotropic, the permittivity cannot be described by a
single scalar, but must be considered as a general tensor property [30], in this case
a so-called rank-2 tensor which will be introduced in Chapter 2. For some dielectric
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9 1.1 Nanoscale Fluid Phenomena

materials, for example, multi-component crystals, the anisotropy can result in a polar-
isation which is not parallel to the electric field. To complicate the problem further, the
preceding model also indicates that the permittivity is position dependent, that is, the
permittivity tensor is a function of position in general.

It is not only the dielectric response which features anisotropy and position depend-
ency [102]. Mechanical properties like viscosity also should, in principle, be considered
to be anisotropic and position dependent. In our exploration we will see that this is
complication is usually not needed for simple systems unless we study the dielectric
properties.

1.1.4 Coupling Phenomena

In a molecular dynamics study, de Luca et al. [150] investigated water confined in a
nanoscale slit-pore, where a rotational electric field was applied to the system; see the
illustration in Fig. 1.5. The authors designed the slit-pore such that one wall was a
graphene wall, a hydrophobic material, and the other wall was β -cristobalite which
is hydrophilic. The water molecules’ dipoles will align with the field; of course, due
to thermal fluctuations this alignment is far from perfect. As the field rotates, the
molecules will also rotate because the field exerts a torque on the dipoles and in this
way the water molecules obtain a non-zero average angular momentum. Due to con-
servation of total angularmomentum, this intrinsic molecular rotation results in a fluid
flow, that is, a fluid translational motion. This coupling is not included in the classical
hydrodynamic description, where the local rotation is given directly by the (local) curl
of the streaming velocity field and is therefore not treated as an independent dynamical
variable.

On a small historical note, the coupling was already described in the late 1890s by
the Cosserat brothers [43, 44] and again treated in great detail in the 1950s to the 1980s
[3, 52, 67, 190]. With the increasing interest in nanoscale hydrodynamics in the 2000s
it is again the focus of many research groups [28, 72, 150].

tFigure 1.5 Illustration of the resulting velocity profile when a rotating electric field is applied to a slit-pore with water and
non-symmetric wall hydrophobicity. Here wall 1 is hydrophobic, giving large slippage, and wall 2 is hydrophilic, giving
small slippage. Figure from Ref. [102] with permission.
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10 Introduction

This particular coupling phenomenon has an interesting potential application.
Pumping fluids that are confined in nanoscale geometries is a challenging task.Naively,
one can apply a pressure difference, ∆p, over the channel inlet and outlet. In a first
approximation, assume that the volumetric flow rate is proportional to the pressure
difference applied, Q = ∆p/Rhyd, where Rhyd is the hydraulic resistance. It can be
shown from classical hydrodynamics that Rhyd ∝ 1/h4 [38], and since h is in the order
of nanometres, the hydraulic resistance is extremely large, leaving this simple pump-
ing device unusable under normal circumstances. Other pumping mechanisms are
therefore needed, and exploiting the coupling between the molecular rotation and the
translational motion is one possibility. Also, Felderhof [71] proposes nano-propulsion
systems based on this coupling.

The coupling between the molecular rotation and the flow is just one example of
many coupling phenomena [52] relevant in nanoscale hydrodynamics. In nanoscale
systems very large thermal gradients can be achieved, and these gradients can result
in different mass fluxes for fluid mixtures, an effect referred to as the Soret effect.
Also, Bresme et al. [35] showed that for polar fluids, a large thermal gradient induces
polarisation. We return to these coupling phenomena in Chapter 6.

1.1.5 Non-local Viscous Response

The final example is fromTodd et al. [199]. Here the authors investigated the fluid shear
stress when applying a sinusoidal shear force to the fluid. The shear force acts in the x-
direction and is a function of the z-direction; here we write it in terms of a force density
ρg = ρg0 cos(kz), where g0 is the acceleration amplitude, and k defines wavelength of
the imposed force; see Fig. 1.6. We assume that the system is homogeneous and infinite
in extent, so we need not consider effects from confining walls. For this system there
is only one non-zero shear stress component, σzx, where the first index indicates that
the normal vector to the sheared virtual fluid surface is parallel to the z-direction, and
the second index indicates the force direction; see Fig. 1.6. We here follow the original
work and discuss the system response to the shear force through the stress; however,
with a few exceptions, we use the shear pressure rather than the shear stress, as this is
a more natural choice when deriving the momentum balance equation. Also, we will
from here on omit writing the stress indices and simply use σ = σzx.

In the steady state, the momentum balance equation reads

∂σ
∂ z

=−ρg =−ρg0 cos(kz) . (1.13)

Integration gives

σ(z) =−ρg0

k
sin(kz) , (1.14)

using that the stress is zero at z = 0.
The stress can also be predicted using Newton’s law of viscosity. For the geometry

here we have

σ(z) =−2η0γ̇(z) , (1.15)
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11 1.1 Nanoscale Fluid Phenomena
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tFigure 1.6 Illustration of the applied sinusoidal shear force and the fluid shear surface. The fluid is not shown.

where γ̇ is the strain rate. For the applied force used here, the strain rate is a sine
function, γ̇ = ˜̇γ(k)sin(kz)/2, hence,

σ(z) =−η0˜̇γ(k)sin(kz) . (1.16)

Both η0 and the strain rate amplitude ˜̇γ can be found from independent methods.
The shear stress obtained from the momentum balance equation, Eq. (1.14), and

the shear stress resulting from Newton’s viscosity law, Eq. (1.16), are both shown in
Fig. 1.7. The z-coordinate is given in units of around one atomic diameter, 3–4 Å.
For small k-values (long wavelengths) Newton’s viscosity law predicts the shear stress
satisfactorily; however, as the wavelength approaches the atomic length scale (large k-
values), the stress features significant reduction compared to the prediction from Eq.
(1.16). It is worth noting that the force is sufficiently low such that the system is in the
linear response regime [94].

The mechanism for this stress reduction is believed to reside in the non-local nature
of the fluid response to the shearing force. Newton’s viscosity law is local in the sense
that the stress at some point, r, is proportional to the strain rate at that given point.
More generally, the stress at r is dependent on the entire system strain rate distribution.
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tFigure 1.7 Shear stress profiles for an atomic fluid subjected to a sinusoidal shear force. In the small k-value figure the
wavelength is one order of magnitude larger than in the large k-value figure. The z-coordinate is given in units of
approximately one atomic diameter and the stress is in computer simulation units. Data redrawn from Ref. [102].
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Phenomenologically, this can be modelled by letting the viscosity be a function of
the distance between r and all other points in the system. That is, the viscosity is a
non-local response function. This is equivalent to how we model the temporal visco-
elastic response through a memory kernel; in the most general formulation the fluid
response is modelled through time- and space-dependent, or equivalently frequency-
and wavevector-dependent, response functions. This generalisation was initiated by
Boltzmann [174] and is today referred to as generalised hydrodynamics; we return to
this formalism in Chapter 4.

1.2 Nanoscale Hydrodynamic Modelling

How can we then model, that is better understand, these nanoscale hydrodynamic phe-
nomena? The preceding discussions have all been based on hydrodynamic theory, that
is, the continuum picture. However, we should be a bit concerned for at least two
reasons. (i) One would think that the intrinsic discrete nature of the fluid at very small
scales will destroy the continuum picture. This is also pointed out by Lautrup, who cat-
egorises continuum modelling as physics on the macroscopic scale [141]. (ii) At these
small length scales the system may not behave according to classical mechanics, but be
quantum mechanical in nature.

Let us first address the latter. Quantum mechanical effects become relevant when the
system characteristic length scale is on the order of the de Broglie wavelength, λBr. The
characteristic length scale is not always well defined; here we use the average distance
between the molecules’ centre of mass [90], which for liquids composed of small and
approximately spherical molecules is around 3–4 Å. The de Broglie wavelength is [87]

λBr ≈
1√
mT

10−22m
√

kg K , (1.17)

where m is the molecular mass and T the temperature. Thus, for water m = 2.99×10−26

kg and at ambient temperatures T = 300 K, the de Broglie wavelength is 0.33 Å. Com-
paring this with the intermolecular distance, we must expect the quantum mechanical
effects to be small. In fact, to dismiss the classical picture we will need to be in the very
low temperature regime; say, for atomic hydrogen at the melting point T = 13.95 K we
have λBr ≈ 6 Å, and here classical mechanics breaks down.

When dealing with molecules in the quantum mechanical realm, the molecular rota-
tional energies are discretised, and we must also consider this effect. The different
energy levels lead to a definition of a characteristic rotational temperature,

Trot ≈
4×10−46kg m2 K

Θmol
, (1.18)

where Θmol is the molecular moment of inertia. For small molecules, Θmol is on the
order of 10−47 −10−45 kg m2 and the characteristic temperature typically fulfils Trot <

50 K.Therefore, for the rotationwe require that T ≫ Trot if quantummechanical effects
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13 1.2 Nanoscale Hydrodynamic Modelling

are ignored, and this is the case for the systems we explore here. We will not treat
molecular vibrational degrees of freedom in this text, and therefore assume that this
set of dynamics has no effect on the phenomena we investigate.

What about molecular discreteness? In the continuum model we picture the fluid as
being composed of small fluid elements. Each such element contains a sufficiently large
amount of molecules such that one can define the same quantities (or properties) for
the local fluid element as those of the fluid itself, no matter how small the fluid element
is [207]. The quantities are here denoted hydrodynamic variables, or hydrodynamic
quantities, and can be mass density, streaming velocity, energy, and so on.

Returning to the example of the fluid element V at the beginning of this chapter,
we follow Lautrup [141] and consider the mass density, ρV = ρV(t). The mass of V is
simply the total mass of the constituent molecules inside V , and ρV can then intuitively
be written as

ρV(t) =
1

∆V ∑
i inV

mi , (1.19)

where index i runs over all molecules contained in V , mi is the mass of molecule i,
and ∆V is the fixed fluid element volume. In the absence of a flow, ρV will fluctuate
in time around the average density, ρav, as molecules enter and leave the fluid element
due to thermal motion. The classical continuum model predicts a time-independent
density ρV(t) = ρav, or equivalently a time-independent number of particles Nav in V .
The fluctuations can then be thought of as a measure of the deviation between the
continuum model and the actual situation.

Let us then quantify the fluctuations by the standard deviation, σ , around the aver-
age. If the molecule entering and leaving the fluid element is a true random event, then
the standard deviation is proportional to

√
Nav. It is not the absolute standard devia-

tion itself which is interesting here; one naturally expects the deviation to be smaller in
the dilute case, as fewer molecules enter and leave the fluid element. Instead one can
study the relative standard deviation σ/ρav which is proportional to σ/Nav or 1/

√
Nav

when the volume ∆V is fixed. Therefore, if we accept a relative error in the order of 1
per cent, we have that the average number of molecules in the fluid element must be
greater than 104. There is no general rule for the acceptance threshold value; and this is
perhaps not the interesting point here. The interesting point is that the relative stand-
ard error decreases with increasing density as σ/ρav ∝ 1/

√ρav. Thus, the continuum
model performs poorly at small length scale for gasses when compared to more dense
systems at the same length scale; also see Ref. [127].

To elaborate further, we study another very important hydrodynamic variable,
namely the streaming velocity. This time we do not make the simple statistical argu-
ments we have just made, but rely on a molecular dynamics simulation that includes
correlation effects and so on; the molecular dynamics technique is introduced in what
follows. In the first-order approximation we can ignore the density fluctuations [102],
and the streaming velocity, uV = uV(t), of V is intuitively given by
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tFigure 1.8 (a) Streaming velocity of a cubic fluid element with a volume of approximately 1 nm3. (b) The corresponding standard
deviation. (c) The normalised histogram for the streaming velocity x-component. The densities of the methane fluids
areρ = 270 kgm−3 andρ = 540 kgm−3, and the temperature isT = 222 K.

uV(t) =
1

ρav∆V ∑
i inV

mivi(t) , (1.20)

where vi is the velocity of molecule i. Note that the streaming velocity is defined from
the molecular momenta and gives the correct mass weighted average. Again, there is
no advection in the system, and we simply study the effect of thermal fluctuations.
Figure 1.8(a) shows molecular dynamics simulation results for the x-component of the
streaming velocity of a cubic fluid element with ∆V ≈ 1 nm3 for two cases: (i) a rela-
tive dilute methane fluid and (ii) a relative dense methane fluid. One can see that the
fluctuations in the dilute case are larger than in the dense case. The underlying rea-
son for this important result is that in the dense case the molecules collide, or more
precisely interact, very frequently resulting in a high degree of momentum exchange
compared to the dilute case. The statistics are summarised in Fig. 1.8(b), where the
standard deviations around zero for the two state points are shown for different fluid
element volumes. The punctured line shows a power-law function with an expected
exponent of −1/2. If we accept a standard deviation threshold of around 200 ms−1,
that is, we demand 68 per cent of the data points to be within ux,V(t) = (0± 2)× 102

ms−1, then the continuum model fails for characteristic length scales below 1 nm in
the dense situation. This length scale increases as the density decreases in agreement
with the preceding discussion of momentum exchange. In Fig. 1.8(c) the normalised
frequency for ux,V is plotted in the dense case; this plot indicates that the fluctuations
are Gaussian distributed.
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15 1.2 Nanoscale Hydrodynamic Modelling

Strictly, the definitions ofmass density and streaming velocity, Eqs. (1.19) and (1.20),
make no sense in the coarse-grained continuumpicture since there are no such things as
molecules. Theymust therefore be thought of as microscopic (or molecular) definitions
of the hydrodynamic variables, and not as continuum definitions.

If we insist on a classical continuum picture, the thermal fluctuations are indeed
problematic. However, we could choose to include the fluctuations in our modelling
and, inspired by the Langevin equation, one strategy that comes to mind is to simply
add a stochastic noise (or force) term to the dynamical equations for the hydrodynamic
variables. In this way the many degrees of freedom behind the thermal fluctuations are
coarsened into a single random term, keeping the problem low-dimensional. Adding a
fluctuating stochastic term onto the dynamics means adding energy to the system, and
this must be balanced correctly by an energy drainage, or dissipation, originating from
the system transport processes. Thus, the stochastic force amplitude cannot be chosen
ad hoc, but depends on the system transport coefficients and the temperature; this is the
so-called fluctuation-dissipation theorem. We will adopt the stochastic force method;
however, we only explore situations where we do not need to invoke the fluctuation-
dissipation theorem, and simply require that the force has the following properties:

1. the average over an ensemble is zero, and
2. it is uncorrelated with respect to the hydrodynamic variables.

The term ‘ensemble’ is here used in the general sense as a ‘sufficiently large and statis-
tically independent set’ and not as a specific statistical mechanical ensemble. Adding
such a stochastic force term to the dynamical equations for the hydrodynamics vari-
ables leads to a set of stochastic differential equations which pose new challenges.
However, by performing an ensemble average over a set of independent initial con-
ditions, the equations become deterministic due to the stochastic force properties we
have just listed. For a more careful treatment and discussion of how to treat these
hydrodynamic fluctuations, the reader is referred to the original work by Landau and
Lifshift [139, 140] as well as the book by Zárate and Sengers [56].

By averaging we then suppress the thermal fluctuations, but this still does not
answer our original question, namely whether the continuum picture can be applied to
nanoscale fluid systems, or more precisely, whether the underlying physico-chemical
processes can be modelled using continuum theory; this may fail even in the absence
of fluctuations. We shall address this fundamental question in great detail throughout
the book; but before doing so, we saw in the preceding examples one important point
which is worth recalling:

In the continuum picture, the dynamics of the different hydrodynamic variables, say,
the mass and momentum densities, are given through the balance equations. The bal-
ance equation is a partial differential equation; however, as such it does not form a
mathematical closed problem that can be solved. Therefore, one applies constitutive
equations (or relations) that typically relate the diffusive processes with the system
gradients. The constitutive relations are models, and not fundamental laws of phys-
ics. Newton’s law of viscosity, which we discussed for the shear stress, is an example
of such a model. Then, the continuum description is based on the balance equation
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and a set of constitutive relations. If the theory fails, it may not be because the contin-
uum picture fails, but because the constitutive relations do not model the underlying
physico-chemical processes appropriately. The non-local shear response is an example
where the classical constitutive relation is not appropriate; however, by proposing a
generalised constitutive relation the continuum picture is indeed applicable.

Thus, what may appear to be a breakdown of the continuum picture can simply be
a result of poor modelling and lack of generality.

Often the next step in the theoretical treatment of nanoscale hydrodynamics is based
on Mori–Zwanzig projection-operator formalism [161, 219] that leads to a generalised
Langevin-type equation for the hydrodynamic variable. This equation depends on a
function describing the transport properties, and this can be found from simulations or
theoretically from mode coupling theory [81]. A related yet slightly different theory is
the generalised collective mode theory [54], where the set of hydrodynamic variables is
increased, leading to a larger dynamical space and consequently a better quantitative
agreement between data and theory [40]. These advanced theories are successful in
predicting important phenomenology; however, these are not the topic here, and while
we will treat a lot of the same phenomena, we will do so from a purely hydrodynamic
viewpoint.

1.3 Molecular Dynamics

The microscopic definitions of the hydrodynamic variables given in Eqs. (1.19) and
(1.20) are based on the molecular positions and momenta. If a system is composed of
N molecules, we can envision that a particular system state is defined by 3N position
coordinates and 3N momentum coordinates; this is the molecular phase space point.
As themolecular positions andmomenta evolve in time, the phase space point changes,
resulting in the system phase space trajectory. Molecular dynamics (MD) is a powerful
simulation method to trace out this phase space, or at least parts of it and hopefully the
important parts. From the dynamics of the phase space we can gain general knowledge
of the fluid properties and in particular the hydrodynamics.

It is worth mentioning that many other microscopic and mesoscopic simulation
methods have been applied to study small-length-scale hydrodynamics; these include
Monte Carlo methods [5], the smooth particle applied mechanics (SPAM) method
[111], lattice Boltzmann/lattice gas automata [42, 113], and the direct simulationMonte
Carlo (DSMC) method [20], most of which are mainly applicable for gasses. Molecu-
lar dynamics is highly versatile and plays an ever increasing role in studying nanoscale
phenomena [26], and we will apply only this simulation method. The following is not
meant to be a thorough discussion of the molecular dynamics technique, but rather an
introduction to the necessary terminology that will be used in the remaining chapters,
and, importantly, also a justification for the use of molecular dynamics to explore nan-
oscale hydrodynamics. The interested reader is referred to the classical books on the
subject, for example, Refs. [5, 74, 184].
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17 1.3 Molecular Dynamics

Molecular dynamics is founded in classical mechanics, wherein Newton’s second law
is integrated numerically for each particle in the system. Here a particle can be a single
atom, a molecule, or a group of atoms that move in a coherent fashion. If Fi is the
force acting on particle i, having position ri, velocity vi, and mass mi, the equations of
motion are

dri

dt
= vi and mi

dvi

dt
= Fi . (1.21)

Then, for N particles we solve 6N coupled and, in general, nonlinear differential equa-
tions. In molecular dynamics we obviously assume that quantum effects can be safely
ignored. As we have noticed, at ambient conditions this will indeed be the case for most
liquids and fluids, as the de Broglie wavelength is less than one angstrom and signif-
icantly smaller than the relevant length scale. Not all phenomena can be described
correctly by classical theories; for example, quantum mechanical effects occurring
inside the wall may be relevant for the wall–fluid interactions and therefore also the
hydrodynamics in highly confined geometries. These systems are not treated here.

Molecular dynamics relies on accurate models for the particle interactions; these
inter-particle interactions are conservative and are therefore often given through a
potential function U . In standard simulations we assume that the particles are spher-
ical symmetric point masses and that the interactions are only pairwise such that
Fc

i =−∇∇∇U(ri j), where Fc
i is used to underline that the force is conservative and ri j is the

distance between particle i and particle j. The famous Lennard–Jones pair potential
reads

ULJ(ri j) = 4ε

[(
σ
ri j

)12

−
(

σ
ri j

)6
]
, (1.22)

where ε and σ represent the interaction strength and characteristic diameter of the
particles, respectively; most importantly here is that σ is typically on the order of a few
angstroms. We are already now running out of symbols and do not want to confuse the
length scale symbol with the standard deviation, or the energy scale with the dielectric
constant. The first term is a repulsive term which accounts for the force due to electron
repulsion at small inter-particle distances. The second term models the induced dipole
moment; it is longer ranged and attractive. This is also known as the London dispersion
force.

We will often use molecular dynamics simulations of methane fluid as controlled
numerical experiments to test the hydrodynamic theories. The molecule is approxi-
mated to be a point mass spherical molecule – by far most of the mass is located in the
carbon atom nucleus. The intermolecular interactions are modelled via the Lennard–
Jones potential, where m = 16 g/mol, ε/kB = 148 K, and σ = 3.7 Å [155]. The results
from the molecular dynamics simulations can be presented in standard SI-units, but
sometimes it is more convenient and insightful to list the results in units of σ ,ε , and
molecular mass mi. Importantly, the unit of time in this unit system is σ

√
m/ε and

length is σ . We will use both SI units and molecular dynamics unit; the latter we denote
MD units.
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Table 1.1 Self-diffusivity,Ds, shear viscosity,η0, relative
permittivity, εr , heat of vaporisation,∆Hvap, isothermal
expansivity, χT , Debye relaxation time, τD, and thermal

expansivity,αp, for the SPC/Fw water model under ambient
conditions. Both molecular dynamics results and the

corresponding experimental values are listed. From Ref. [213].

Units SPC/Fw (MD) Exp.

Ds 10−9 m2 s−1 2.35 ± 0.05 2.3
η0 10−3 Pa s 0.75 0.85
εr 80 ± 2 78.5
∆Hvap kcal mol−1 K−1 10.7 ± 0.1 10.52
χT 10−5 atm−1 4.50 4.58
τD psec. 9.5 8.3
αp 10−4 K−1 4.98 2.0

A lot of general information can be obtained by studying point mass particles like
methane. However, some phenomena require that we use a more detailed model for the
molecules, and today the molecular dynamics community simulates complex molecu-
lar systems with advanced interaction models; see Sadus [186] and Leach [142] for an
overview. In general, we can write up a force field model that also includes Coulomb
interactions, covalent bonds, forces due to angles and dihedral angles, and so forth. In
terms of the potential function this is written as

U =ULJ+Ucoulomb+Ubonds+Uangles+Udihedral+ . . . . (1.23)

Widely used models are, for example, the CHARMM [36] and OPLS [122] force
fields that give explicit expressions for the different terms and model parameter val-
ues depending on the specific systems under investigation. Again, we will not go
into detail with the different interaction models, as this is far outside the scope
of the text. It is, however, important to highlight that molecular dynamics can,
with an accurate interaction model, predict the different mechanical, dynamical,
and thermodynamic properties quite well under normal pressures and temperatures,
where nanoscale fluid systems often operate. As an example of this, Table 1.1 lists
different physical coefficients calculated from molecular dynamics simulations at
equilibrium for the flexible simple point charge water model (SPC/Fw) [181, 213].
For comparison purposes, the corresponding experimental values are also given.
Except for the thermal expansivity, the model results agree well with the experi-
mental measured values. This indicates that molecular dynamics indeed can capture
many of the underlying physical processes correctly, including the processes rele-
vant for hydrodynamics. Importantly, water is not easily modelled, as the different
properties of the liquid are a result of the complex long-ranged hydrogen-bond
network.

Since we are solving a very large set of coupled differential equations, the number
of particles and the time we can reach are both limited. In molecular dynamics large
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19 1.3 Molecular Dynamics

tFigure 1.9 Molecular dynamics simulation of a planar Poiseuille flow. Symbols represent simulation data for the streaming
velocity, and lines are the Navier–Stokes predictions; the two lines indicate the extremes in the uncertainty coming
from the viscosity. Arrows illustrate the external force. Reprinted with permission from Ref. [102].

implies small: in 2013, the SuperMUC supercomputer simulated an impressively large
system of 4.125×1012 particles, but here each time step (corresponding to approxi-
mately a femtosecond) took the computer 40 seconds, seriously limiting the time scale
that can be studied. In the other extreme, one can reach 2 ×104 integration times
steps per second for a small system size of 103 particles using Graphical Processor
Units (GPUs) [9]. In the context of nanoscale hydrodynamics the number of particles
is usually not too critical. For example, to simulate a methane fluid flow in a slit-pore
geometry of height 10 nm we will need around 27×103 methane molecules if the sim-
ulation box is a perfect cube. For water in the same geometry we need approximately
105 hydrogen and oxygen atoms. The problem often lies in reaching realistic times,
especially for charged systems like water, where the long-ranged Coulomb interactions
are very computationally demanding. Even with a small number of particles, the time
reached, τobs, with current computers usually does not exceed 10–100 nanoseconds.
Thus, the phenomena we study with molecular dynamics must have small charac-
teristic time scales. Often we must apply large external forces in order to excite the
relevant physical mechanisms needed to reach a sufficiently small Deborah number,
De = τs/τobs.

Figure 1.9 shows a snapshot from a molecular dynamics simulation of a methane
fluid flowing in a slit-pore geometry similar to the one in Fig. 1.1. The molecular inter-
action is modelled through the Lennard–Jones potential, Eq. (1.22). The confining
walls are also composed of Lennard–Jones particles and are positioned in a graphene-
type lattice. The flow is generated by applying a constant external force that acts on the
centre of mass of the methane molecules, and the resulting viscous heating is removed
by applying a thermostat. In this manner a planar Poiseuille flow is simulated.

Even if equilibrium molecular dynamics results for the transport properties agree
well with the experimental data, it is by no means trivial that the hydrodynamic model,
in this case the Navier–Stokes equation, and the non-equilibrium simulations agree.
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To make a direct comparison for the system in Fig. 1.9, we note that h = 3.3 nm, the
density is ρ = 270 kgm−3, the shear viscosity is η0 = 9.3 ± 0.6 µPa·s, and that the
external acceleration applied is a staggering g = 5.0×1012 ms−1. Using U ≈ 100 ms−1

as the characteristic velocity, the Reynolds number, Eq. (1.2), is around 10. Hence, the
flow is laminar. Furthermore, as the speed of sound for methane at this state point is
approximately 103 ms−1, the Mach number M =U/cs < 0.3 and we need not consider
fluid compressibility effects. In the slit-pore geometry the Navier–Stokes equation is
reduced to a tractable boundary value problem

η0
d2ux

dz2 +ρg = 0, (1.24)

with

ux(0) = ux(h) = uw = 62 ms−1, (1.25)

where uw is the slip velocity at the wall. The solution for this problem gives the well-
known Poiseuille flow quadratic profile

ux(z) =
ρg
2η0

z(h− z)+uw . (1.26)

The prediction from the Navier–Stokes equation is also shown in the figure (lines), and
is in very good agreement with the time-averaged simulation data (filled circles). This is
a crucial result; the hydrodynamic prediction, Eq. (1.26), where molecular details are
strictly not considered agrees with the (time-averaged) molecular simulation results
coming from solving the Newtonian equation of motion for each molecule, Eq. (1.21).
The scenario that both of these very different descriptions of the flow are incorrect
yet still produce the same result is highly unlikely. While definitely not being a proof,
this example illustrates that hydrodynamics can for simple systems be applied on the
nanoscale, and molecular dynamics can be applied to perform idealised numerical
experiments of nanoscale fluid systems. Now, almost all real nanoscale fluid systems
are not as simple and idealised as this, and laboratory experiments must, of course,
always be the final test of our theoretical predictions.

As we have mentioned, the time scales we can reach with molecular dynamics are
small compared to typical hydrodynamic time scales. In our Poiseuille flow simulation
the external acceleration applied to drive the flow is of literally astronomical mag-
nitude. This is necessary in order to obtain a well-developed velocity profile within
the nanoscale time frame available. This large acceleration produces unrealistically
large streaming velocities and strain rates, and yet, the simulation data agree with the
Navier–Stokes predictions. The reason for this lies in the fact that the local Newtonian
viscosity law for shear stress, Eq. (1.15), applies, that is, the system response is still lin-
ear and local. Lennard–Jones-type systems show a strain-rate-independent viscosity
(Newtonian behaviour) for strain rates less than 1010–1011 s−1 in the liquid phase [200]
which is the same order of magnitude as the flow in Fig. 1.9. Non-Newtonian effects
must always be considered, and for more complex fluids the regime where Newton’s
viscosity law is valid may not be accessible by molecular dynamics even when using
highly optimised algorithms and hardware [146].
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EMD

NEMD

d-NEMD

s-NEMD

MD

tFigure 1.10 Schematic diagram of the three standard molecular dynamics (MD) techniques. Equilibrium (EMD), direct
non-equilibrium (d-NEMD), and synthetic non-equilibrium (s-NEMD) simulations.

1.3.1 Molecular Dynamics Simulation Techniques

Simulations in molecular dynamics are divided into two main categories, equilib-
rium simulations (EMD) and non-equilibrium simulations (NEMD). With EMD
we simulate the system in some well-known statistical mechanical ensemble, for
example, the microcanonical ensemble where the number of molecules, volume,
and energy are constants along the phase space trajectory. In this way we can
use classical statistical mechanical results for the particular ensemble to derive the
given properties we are studying. The properties listed in Table 1.1 are an exam-
ple of a simulation in the canonical ensemble, where the number of molecules,
volume, and temperature are constants. In Chapters 3 and 4 we rely heavily on
equilibrium simulations to test how hydrodynamics predict relaxation phenomena in
equilibrium.

In Chapters 5 and 6 we explore non-equilibrium systems. In non-equilibrium
we can perform either direct (d-NEMD) or synthetic (s-NEMD) simulations. For
d-NEMD we try to mimic the real physical experiment, at least to some approx-
imation. Our Poiseuille flow is an example of this. The fluid flow is generated by
application of some external driving force, Fext

i = mig, by moving a wall or simi-
lar, and the resulting viscous heating is removed by thermostating the confining wall
atoms; a discussion of the different thermostating methods can be found in Ref.
[18]. The d-NEMD method is relatively straightforward to implement; for example,
the driving force can be added directly to Eq. (1.21), so that for the fluid particles
we have

dri

dt
= vi and mi

dvi

dt
= Fi = Fext

i +Fc
i . (1.27)

However, d-NEMD is not always suitable if one needs to study and isolate a specific
fluid phenomenon, as the confining walls often complicate and clutter the problem.
Another problem with d-NEMD is that the statistical mechanics for such systems is
not well developed, and we need to approach the analysis of our simulation results with
care.

To overcome the problem associated with d-NEMD, one can perform s-NEMD
simulations. Here the equations of motion are changed in order to probe a spe-
cific dynamical feature. The particles do not follow the simple Newtonian equations
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of motion, but their dynamics are changed synthetically such that the system pos-
sesses, for example, a constant [65, 145] or spatially varying [12, 80] strain rate
while keeping the local density and temperature constant (on average). s-NEMD
is for this reason also referred to as homogeneous NEMD. In Section 1.1.5 this
technique was used to investigate the fluid response to an imposed sinusoidal strain
rate.

It is important to note that while the equations of motion are synthetic (also
referred to as fictitious) and often not realisable in the laboratory, the system tra-
jectory follows Gauss’ principle of least constraints [66], and we can expect that the
s-NEMD method probes the correct physics. The hydrodynamic equations derived
from s-NEMD equations of motion are effected by the thermostat and are not the
same as those derived directly from Eq. (1.21). Therefore, great care must be taken
when interpreting and analysing results from such simulations [200]. Again, it is out-
side the scope of this text to pursue an in-depth introduction to the different MD
techniques. For more details on how to implement the d-NEMD and s-NEMD meth-
ods, the reader is referred to the books by Evans and Morriss [66] and Todd and
Daivis [200].

1.3.2 Mesoscale Molecular Dynamics

In order to extend the time scales we can reach with standard molecular dynamics
methods, that is, increase τobs and reduce the Deborah number, alternative simulation
methods have been devised. One such method is dissipative particle dynamics (DPD)
[63, 112]. Rather than solving Newton’s equations of motion for the individual atom
or molecule, DPD solves the equation of motion for a collection of particles moving in
a coherent fashion. This coherent motion is described through a single DPD particle,
and in order to account for the coarse graining, the random force, FR

i , and dissipative
force, FD

i terms are augmented to the Newtonian equation of motion, that is,

dri

dt
= vi and mi

dvi

dt
= Fc

i +FR
i +FD

i , (1.28)

in the absence of any external forces. Importantly, these two forces are defined such that
the total momentum is conserved, and this makes DPD fundamentally different from
Brownian simulations and ensures hydrodynamic conservation of momentum. As with
standardmolecular dynamics, the force Fc

i represents the conservative interactionswith
other particles; but due to the coarse graining, these interactions are usually modelled
as being ‘soft’, allowing the DPD particles to overlap; and a larger integration time
step can be applied, which is important if we wish to simulate the system for a larger
period of time. DPD is then based on a set of stochastic differential equations and is
a mesoscopic description of the fluid. It is not always straightforward to extract the
physical time and length scales in such simulations, that is to say, what size a DPD
particle has. Moreover, while it has been shown that the balance equations for mass
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and momentum densities are obeyed, the total energy density is not conserved due
to the random and dissipative forces [154]. However, it has been shown that DPD do
capture many of the underlying hydrodynamics processes [103]; it is therefore a very
potent alternative to classical molecular dynamics simulations, and we will use DPD
to explore viscoelastic phenomena.
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2 Balance Equations

This chapter introduces a microscopic formalism to derive the balance equation for
any hydrodynamic variable. This can be, as we shall see, the balance equation for mass
density, momentum density, or kinetic temperature. The formalism is based on the
molecular definitions of the variables, and is therefore fundamentally different from
the classical macroscopic treatment used in standard textbooks [15, 38, 207]. One
advantage of the formalism is that the terms entering the equations are associated
with molecular quantities and thus provide the link between the detailed microscopic
and coarse-grained continuum pictures. Derivation of the balance equations based
on the molecular quantities is not new; see, for example, more recent treatments in
[66, 90, 102, 195, 200]. Here it is introduced in a more general setting and illustrated
with several examples.

Even if the terms in the balance equations are expressed through themolecular quan-
tities, the balance equations do not form closed mathematical problems, as the terms
are still unknown functions of the hydrodynamic variables. One therefore introduces
constitutive relations between the system fluxes and the corresponding system forces.
The forces are typically given by gradients of the variables themselves; Newton’s law
of viscosity, Eq. (1.15), is an example of such a relation. The constitutive relations are
models. Usually, the relations are local in time and space in the sense that the flux is
dependent only on the force at that particular point and at that instant in time. Spatio-
temporal correlation effects are therefore ignored. Moreover, one typically assumes
linearity, that is, the fluxes are linearly dependent on the forces. Applying the constitu-
tive relations leads to closed mathematical problems, which are solvable through either
mathematical analysis or standard numerical methods. We shall see examples of this
throughout the text, but in this chapter we start by deriving the underlying balance
equations.

Let us sidetrack a bit already and introduce how we characterise the hydrodynamic
variables; this leads to the concept of tensors. If you are a mathematician, you may
associate a tensor with amapping fromone abstractmathematical structure to another,
say, from a vector space into the real numbers (i.e., a scalar product). The formal the-
ory on tensors is rather involved, but we need not go through the details here. For our
purpose it suffices to use a much more informal definition: a tensor is a physical prop-
erty or quantity which is independent of the choice of coordinate system. For example,
the velocity at a given point does not change because we change the coordinate system;
only how we represent the velocity components depends on the specific coordinate sys-
tem. The moment of inertia is another example: in the fixed (or lab) frame of reference

24
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tFigure 2.1 The reflection of vectors a,b, and a+b.

it is represented by a symmetric 3× 3 array, and in the so-called principal coordinate
system it can be reduced to a diagonal array.

The tensor rank is defined by how the tensor is represented, such that a rank-0 ten-
sor is represented by a scalar, a rank-1 tensor by a one-dimensional number array (a
vector), rank-2 by a two-dimensional array (analogous to how we represent a matrix),
and so forth. Here we use the terms scalar and vector for rank-0 and rank-1 tensors,
respectively, and otherwise we use the more general tensor term specifying the rank.

In our treatment here we only distinguish between quantities that are tensors and
pseudo-tensors. Pseudo-tensors can be formed from a binary operation of two ten-
sors. For example, the cross-product of two vectors results in a pseudo-vector; but
addition of two vectors, on the other hand, results in a vector. One way to illustrate
the distinction between a tensor and a pseudo-tensor is by how they behave under
reflection. Let a and b be vectors and T be a linear map that reflects a vector about
the y-axis; T can be represented as a simple matrix that flips the sign of the x-vector
components. We first let the vector c = a+b and we then have from the linearity of
T that T (c) = T (a+b) = T (a)+T (b). Thus, the reflection of the vector c is given by
the sum of the reflection of a and b. See Fig. 2.1. Now, if c = a×b, which is parallel
to the z-axis, we have from the right-hand rule T (c) = T (a×b) = −T (a)×T (b); that
is, the reflection of c is given by the cross-product of the reflections of a and b, but with
an additional sign flip and c is a pseudo-vector. To make the distinction clear, tensors
are often referred to as polar-tensors, but we will simply write tensor.

We will deal mostly with tensors and pseudo-tensors in three-dimensional Cartesian
coordinates. The components for vectors and pseudo-vectors are identified through
the subscripts x, y, and z. The components of rank-2 tensors (and pseudo-tensors) will
be given subscripts xx, xy, xz, and so on.1 A quantity of rank-0 or of unknown rank
is given by an ordinary mathematical symbol, and rank-1 and above are denoted with
boldface.

Let us return to the main track again. If r = (x,y,z) denotes the position vector
and t the time, then we write a hydrodynamic quantity as A = A(r, t). A can be a scalar
quantity, say, the mass density; a vector quantity, say, the momentum density; or even a
pseudo-vector like the vorticity. A is assumed to be ‘well’ behaved, that is, the derivatives

1 So we do not distinguish between covariant and contravariant tensors.
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with respect to time and space exist, and it has a Fourier transform. A can then be
described mathematically as a field variable; this is in accordance with the continuum
hypothesis.

A is often written as a product of the mass density, ρ = ρ(r, t), and the associated
field variable per unit mass, ϕ = ϕ(r, t), namely,

A(r, t) = ρ(r, t)ϕ(r, t) . (2.1)

From here on the explicit position and time dependencies are given only if they pro-
vide important information or for clarity. We will explore systems where the rate of
change of A is due to three different processes: (i) a production process (for example,
an external force field can be applied generating linear momentum), (ii) an advective
process wherein A is carried along the bulk fluid streaming motion, and (iii) a diffusive
process which tends to remove any gradients, that is, to homogenise the system. The
general expression for the rate of change of A is written in the differential form [52],

∂ρϕ
∂ t

= σ −∇∇∇ · (ρuϕ)−∇∇∇ ·J , (2.2)

where σ is the production term, u is the streaming velocity, and J is the flux of A, that
is, the rate at which A flows through a unit surface area. ∇∇∇ is the usual del (or nabla)
operator known from vector calculus. In Cartesian coordinates this is

∇∇∇ =

(
∂
∂x

,
∂
∂y

,
∂
∂ z

)
, (2.3)

and ∇∇∇ ·J is then the divergence of J. Equation (2.2) is the general balance equation for
A, accounting for the three processes described earlier. A special case is for the mass
density, where we have ϕ = 1 and σ = 0.

Importantly, each term in the balance equation must have same tensorial charac-
ter. This means that they must have the same tensorial rank and must transform the
same way; hence, we cannot add, for example, vectors and pseudo-vectors. Also, hav-
ing introduced the del operator, we can list the following important results concerning
tensors that we need for later:

∇∇∇×a is a pseudo-vector if a is a vector,

∇∇∇×a is a vector if a is a pseudo-vector, and

a×b is a vector if a is a pseudo-vector and b is a vector. (2.4)

Instead of studying the balance equation directly in real space, it can be advan-
tageous to study the dynamics in Fourier space, or specifically, the dynamics of the
Fourier coefficients. To this end, recall that the Fourier coefficients can be found from
the (three-dimensional) Fourier transform, F , acting on a function f as

F [ f (r, t)] = f̃ (k, t) =
∫ ∞

−∞
f (r, t)e−ik·r dr , (2.5)

where k = (kx,ky,kz) is the wavevector. Notice that we are using an abbreviation format
here; the integral in Eq. (2.5) represents the volume integral over all three Cartesian
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coordinates and therefore, dr = dxdydz. See the Appendix for further clarifications.
From integration by parts, two useful properties of the Fourier transform can be
shown:

F [∇∇∇ · f (r, t)] = ik · f̃ (k, t) (2.6a)

F [∇∇∇× f (r, t)] = ik× f̃ (k, t). (2.6b)

From Fourier transforming Eq. (2.2), one obtains the equation for the Fourier
coefficients; using the identity in Eq. (2.6a),

∂
∂ t

ρ̃ϕ(k, t) = σ̃(k, t)− ik · ρ̃uϕ(k, t)− ik · J̃(k, t), (2.7)

due to the linear properties of F . We refer to this as the balance equation in Fourier
space.

The balance equation can be studied in the limit of zero wavevector, k → 0, or
equivalently on large wavelengths. To this end, all the terms on the right-hand side
are expanded and written in the following form:

σ̃(k, t) = σ̃0(t)+ σ̃1(k, t)+ . . . (2.8a)

ρ̃uϕ(k, t) = (ρ̃uϕ)0(t)+(ρ̃uϕ)1(k, t)+ . . . (2.8b)

J̃(k, t) = J̃0(t)+ J̃1(k, t)+ . . . , (2.8c)

where σ̃0 is the zeroth-order term in the expansion for the production term, σ̃1 is the
first-order term, and so forth. To first order the balance equation reads

∂
∂ t

ρ̃ϕ(k, t) = σ̃0(t)+ σ̃1(k, t)− ik · (ρ̃uϕ)0(t)− ik · J̃0(t) , (2.9)

and for zero wavevector the balance equation is

∂
∂ t

ρ̃ϕ(k, t) = σ̃0(t), (2.10)

as σ1 = 0 for k = 0. The hydrodynamic quantity A is said to be a globally conserved
quantity if the wavevector-independent part of the production term is zero, that is,
σ̃0 = 0 for all t.

The programme is now to derive the balance equation for the Fourier coefficients,
Eq. (2.7), from fundamental molecular definitions of A. Once this is done, we can
infer the real space balance equation in the form of Eq. (2.2), having molecular or
microscopic interpretations of the relevant fluxes.

2.1 TheMicroscopic Operators

Intuitively, A is the volume average of the corresponding molecular variable a in some
small fluid element V ; see Eqs. (1.19) and (1.20). For simplicity assume that the fluid
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element is a sphere with centre r and radius ε . Let ri be the molecular centre of mass.
Then the molecule is located in V if the norm ||r− ri|| ≤ ε ; that is, we can define the
step function

Π(r− ri(t)) =

{
1 if ||r− ri|| ≤ ε
0 otherwise.

(2.11)

In general, one can chose any fluid element geometry and from that define the appro-
priate norm. The hydrodynamic variable A is then defined from the corresponding
molecular quantity, a, by

A(r, t) =
1

∆V ∑
i

ai(t)Π(r− ri(t)) , (2.12)

where ∆V is the volume of V . In the limit of ∆V → 0 we write this in terms of the Dirac
delta:

A(r, t) = ∑
i

ai(t)δ (r− ri(t)) . (2.13)

Strictly, from Eq. (2.13) the hydrodynamic variables will be zero at points where there
are no particles and diverge at points r = ri. Hence, over time, A at some point will
fluctuate between zero and infinite, which is not really meaningful and definitely not in
accordance with the continuum hypothesis. However, this definition of the distribution
is extremely powerful and unambiguous when the Dirac delta is used together with an
integral over a fluid volume, as we will see soon. The Dirac delta has units of inverse its
argument, here inverse length cubed (inverse volume). Also, see the Appendix for the
three-dimensional Dirac delta and its properties. Evans and Morriss [66] refer to Eq.
(2.13) as the instantaneous microscopic definition of A, and we will use this throughout
the book.

The advantage of writing the limit of Eq. (2.12) in terms of the Dirac delta is evident
when Fourier transforming Eq. (2.13),

Ã(k, t) = ρ̃ϕ(k, t) = ∑
i

ai(t)
∫ ∞

−∞
δ (r− ri)e−ik·r dr

= ∑
i

ai(t)e−ik·ri , (2.14)

using the properties of the Dirac delta; again see the Appendix. The derivative of Eq.
(2.14) with respect to time follows:

∂
∂ t

ρ̃ϕ(k, t) = ∑
i

dai

dt
e−ik·ri +ai(−ik ·vi)e−ik·ri

= ∑
i

(
dai

dt
− ik · (viai)

)
e−ik·ri , (2.15)

where vi is the centre-of-mass velocity of molecule i. In Eq. (2.15) the identity

a(b · c) = b · (ca) (2.16)
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is used. This identity is, perhaps, trivial when a is a scalar quantity. When a is a vector
(or pseudo-vector), a = a, the product ca is an outer product (or dyadic) and the result
is a rank-2 tensor with components

(ca)αβ = cα aβ , (2.17)

where α and β runs over the x,y,z vector components.
FromEq. (2.17) we see that the outer product is not commutative in general, ca ̸= ac.

In the special case where the vectors a and c are parallel, commutation of the outer
product is fulfilled, and the resulting rank-2 tensor is a symmetric tensor. To see this
we write a = Ac, where A is a real number, and we have (ac)αβ = Acα cβ = Acβ cα or, in
vector notation, ac = (ac)T = ca, where the superscript T means the tensor transpose.

The molecular velocity can be decomposed into a peculiar or thermal part, c, and
an advective part, u, [66, 195]:

vi = ci +u(ri, t) . (2.18)

The advective part is the mass-weighted average fluid velocity (streaming velocity) of
the fluid element with centre of mass located at ri. The thermal and advective velocities
are uncorrelated and from conservation of momentum we have ∑i mici = 0, where mi

is the mass of the molecule. The outer product is distributive, so we have viai = ciai +

u(ri, t)ai. Equation (2.15) is therefore written as

∂
∂ t

ρ̃ϕ(k, t) = ∑
i

(
dai

dt
− ik · ciai − ik ·u(ri, t)ai

)
e−ik·ri . (2.19)

If we compare this result with Eq. (2.7), we see that it is the equation for the Fourier
coefficients of A, but expressed in terms of molecular quantities.

The right-hand side of Eq. (2.19) defines the operator,

G[ai] = ∑
i

(
dai

dt
− ik · ciai − ik ·u(ri, t)ai

)
e−ik·ri , (2.20)

and we can write Eq. (2.19) in terms of this operator, namely,

∂
∂ t

ρ̃ϕ(k, t) = G[ai] . (2.21)

From the G-operator we can also express the dynamics of A in the small wavevector
limit. First, expanding the exponential function around zero wavevector gives

e−ik·ri = 1− ik · ri −
1
2
(k · ri)

2 + . . . . (2.22)

Substituting Eq. (2.22) into Eq. (2.20) and collecting the terms with respect to
wavevector, one has

G[ai] = ∑
i

dai

dt
− ik ·∑

i
ri

dai

dt
− ik ·∑

i
ciai − ik ·∑

i
u(ri, t)ai

−1
2 ∑

i
(k · ri)

2 dai

dt
−∑

i
(k · ri)k · (ciai +u(ri, t)ai)+ . . . . (2.23)

From this it is convenient to define an operator up to first order in the wavevector

H[ai] = ∑
i
(1− ik · ri)

dai

dt
− ik ·∑

i
ciai − ik ·∑

i
u(ri, t)ai , (2.24)
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such that the dynamics in the small wavevector limit is given by

∂
∂ t

ρ̃ϕ(k, t) =H[ai] . (small k) (2.25)

The H-operator has been denoted the microscopic hydrodynamic operator [102], and
we will adopt this name. As we will see, the balance equations can often be derived by
studying only the small wavevector limit and simply applying Eq. (2.24).

2.2 Application of the Operators

Hydrodynamics considers the balance equations for mass, momentum, and energy
densities. In this section we will use the operators G and H to derive these balance
equations; however, the classical total energy balance is replaced with the balance
equation for the thermal kinetic energy, as this readily gives the equation for the kinetic
temperature that we use in the subsequent chapters.

2.2.1 Mass Balance

The mass density is defined from the molecular masses mi [90]:

ρ(r, t) = ∑
i

miδ (r− ri) . (2.26)

Comparing with Eq. (2.13), we identify ai = mi. The dynamics given by the G-
operator is

G[mi] = ∑
i

(
dmi

dt
− ik ·mici − ik ·miu(ri, t)

)
e−ik·ri

=−ik ·∑
i

mi (ci +u(ri, t)) e−ik·ri

=−ik ·∑
i

mivie−ik·ri , (2.27)

as the mass of each molecule is constant. The equation for the Fourier coefficients is
therefore

∂ ρ̃
∂ t

=−ik ·∑
i

mivi e−ik·ri . (2.28)

Equation (2.28) provides the microscopic definition of the linear momentum density
(or mass current), j. To see this, let

j(r, t) = ρ(r, t)u(r, t) = ∑
i

mivi(t)δ (r− ri) . (2.29)

Taking the divergence and then Fourier transforming, we obtain

ik · ρ̃u = ik ·∑
i

mivie−ik·ri , (2.30)
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31 2.2 Application of the Operators

and we can write Eq. (2.28) as
∂ ρ̃
∂ t

=−ik · ρ̃u . (2.31)

This is the Fourier transform of the well-known mass balance (or continuity) equation:

∂ρ
∂ t

=−∇∇∇ · (ρu) =−∇∇∇ · j . (2.32)

Hence we have shown that the definition of j, Eq. (2.29), is consistent with the
continuity equation.

Note that for zero wavevector the rate of change of the mass density is zero, meaning
that mass is a conserved quantity.

From the G-operator, the linear momentum is given by the total molecular velocity,
that is, the sum of the thermal and streaming parts. An important note here: if we apply
the H-operator, we get

H[mi] = ∑
i
(1− ik · ri)

dmi

dt
− ik ·∑

i
mici − ik ·∑

i
miu(ri, t)

=−ik ·∑
i

miu(ri, t) , (2.33)

as, by definition, ∑i mici = 0. In terms of the molecular quantities and in the small
wavevector limit, the dynamics are then given by

∂ ρ̃
∂ t

=−ik ·∑
i

miu(ri, t) . (2.34)

This result is different from Eq. (2.28), and the mass balance equation must be derived
from the G-operator, as this correctly defines the linear momentum from the molecular
velocity v.

2.2.2 Linear Momentum Balance

We have now defined the linear momentum density j microscopically in Eq. (2.29); but
before we apply the microscopic operators and derive the balance equation for this
quantity, we need to show an important lemma regarding the uncorrelated velocities
ci and u [195].

The outer product of the streaming velocity follows the straightforward identities

ρ(uu) = (ρu)u = u(ρu) . (2.35)

Equivalently, the identities can be written in terms of the Fourier transforms

F [ρ(uu)] = F [(ρu)u] = F [u(ρu)] . (2.36)

Having established the microscopic definitions of the mass and momentum densities,
we can express each outer product in terms of the molecular quantities. First,

F [ρ(uu)] = F

[(
∑

i
mi δ (r− ri)

)
u(r, t)u(r, t)

]
= ∑

i
miu(ri, t)u(ri, t)e−ik·ri . (2.37)
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Then,

F [(ρu)u] = F

[(
∑

i
mivi δ (r− ri)

)
u(r, t)

]
= ∑

i
mi(ciu(ri, t)+u(ri, t)u(ri, t))e−ik·ri , (2.38)

and finally,

F [u(ρu)] = F

[
u(r, t)∑

i
mivi δ (r− ri)

]
= ∑

i
mi(u(ri, t)ci +u(ri, t)u(ri, t))e−ik·ri . (2.39)

Note, we do not have a microscopic definition of the streaming velocity u, albeit later
we will present an approximation for this. By equating Eqs. (2.37), (2.38), and (2.39),
one has

∑
i

miciu(ri, t) = ∑
i

miu(ri, t)ci = 0 , (2.40)

that is, the sum of the outer product of the thermal and the streaming velocities is zero.
Specifically, each component of the tensor is zero, and since the mass is non-zero we
have

∑
i

ci,α uβ (ri, t) = ∑
i

uα(ri, t)ci,β = 0 . (2.41)

Contrary to the mass balance equation, we will derive the balance equation for linear
momentum density by simply applying the H-operator and show that this gives the
correct form.

From Eq. (2.29) we readily identify ai = mivi, and we have

H[mivi] = ∑
i
(1− ik · ri)mi

dvi

dt
− ik ·∑

i
micivi − ik ·∑

i
miu(ri, t)vi .

(2.42)

Again, the molecular velocity is decomposed into thermal and advective parts, vi =

ci +u(ri, t), and due to the identity Eq. (2.40) the cross terms vanish, giving the result

H[mivi] = ∑
i
(1− ik · ri)Fi − ik ·∑

i
micici − ik ·∑

i
miu(ri, t)u(ri, t) . (2.43)

Fi = midvi/dt is the total force acting on molecule i and is due to conservative
interactions with other molecules, denoted Fc

i , and the external force, Fext
i , that is,

Fi = Fc
i +Fext

i . (2.44)

The first term on the right-hand side in Eq. (2.43) then reads

∑
i
(1− ik · ri)Fi = ∑

i
(1− ik · ri)Fext

i − ik ·∑
i

riFc
i (2.45)
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since ∑i Fc
i = 0 and by using the identity Eq. (2.16). Substitution gives

H[mivi] = ∑
i
(1− ik · ri)Fext

i − ik ·∑
i

miu(ri, t)u(ri, t)

− ik ·

(
∑

i
micici +∑

i
riFc

i

)
. (2.46)

By comparison with Eq. (2.8), one identifies the first term in the Taylor expansions

σ̃σσ(k, t) = ∑
i
(1− ik · ri)Fext

i + . . . (2.47a)

ρ̃uu(k, t) = ∑
i

miu(ri, t)u(ri, t)+ . . . (2.47b)

P̃(k, t) = ∑
i

micici +∑
i

riFc
i + . . . . (2.47c)

The momentum flux in real space, P, also has units of force per unit area, that is, pres-
sure, and is therefore referred to as the pressure tensor (and is a rank-2 tensor). From
the relations in Eq. (2.47), the Fourier coefficient dynamics is written as

∂
∂ t

ρ̃u(k, t) = σ̃σσ(k, t)− ik · ρ̃uu(k, t)− ik · P̃(k, t) . (2.48)

Thus, by simply deriving the different terms entering the balance equation to first order
in wavevector we can infer the general balance equation in Fourier space.

It is informative to decompose the pressure tensor into different contributions. For
zero wavevector we just showed that

P̃(k = 0, t) = ∑
i

micici +∑
i

riFc
i . (2.49)

The first term is the kinetic part (as it depends only on the thermal velocities) and the
second term is the configurational part (as it depends on the positions). The config-
urational part can be rewritten by assuming pair interactions only, and by Newton’s
third law we have

∑
i

riFc
i = ∑

i
ri ∑

j ̸=i
Fi j = ∑

i
∑
j>i

ri jFi j , (2.50)

where Fi j is the conservative force acting on i due to j, and ri j = ri −r j is the vector of
separation. This means that

P̃(k = 0, t) = ∑
i

micici +∑
i

∑
j>i

ri jFi j . (2.51)

In real space this is

P0(t) =
1
V

[
∑

i
micici +∑

i
∑
j>i

ri jFi j

]
, (2.52)

where V is the system volume. Equation (2.52) is the famous Irving–Kirkwood [116]
expression for the pressure tensor.

The kinetic part of the pressure tensor is the outer product of the thermal velocity
and is therefore as previously shown, a rank-2 symmetric tensor. The configurational
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tFigure 2.2 Illustrations of the situations where the pressure tensor is symmetric and non-symmetric. (a) Symmetry: the vector of
separation ri j is always parallel with the force,Fi j . (b) Non-symmetry: the vector of separation ri j is, in general, not
parallel with the force,Fi j .

part, on the other hand, is an outer product between two vectors which are not in
general parallel, and is therefore not guaranteed to be symmetric.

We will make the distinction between atomistic systems and molecular systems. The
atomistic system models the case where the particles, that is, atoms, groups of atoms
or entire molecules, are considered as being simple structureless point masses; see Fig.
2.2(a). In this case the vector of separation ri j is always parallel to the pair force Fi j,
and the outer product is symmetric. Hence, the pressure tensor is symmetric. For struc-
tured molecules, this is, however, not the case. Figure 2.2(b) illustrates this point with
two dumbbell molecules. Here only atoms α in molecule i and β in molecule j will have
any significant interaction, and the force on i due to j then acts horizontally. The vector
of separation of the two centres of mass is not parallel to the force, and the outer prod-
uct ri jFi j is therefore not symmetric. Note that while the configurational part of the
pressure tensor is not, in general, symmetric, the kinetic part of the pressure tensor is.

For molecular systems, one can adopt a purely atomistic definition of the pressure
tensor where i and j loop over atoms composing the molecules rather than looping
over the molecules. The two formalisms are related by the mass dispersion tensor; the
interested reader is referred to [4, 195]. We will proceed using the molecular formalism
here.

A non-symmetric tensor can be written as a sum of the symmetric and the antisym-
metric parts. For the pressure tensor at zero wavevector this means that

P0 =
s
P0 +

a
P0 , (2.53)

where the symmetric and antisymmetric parts are, respectively, defined as

s
P0 =

1
2
(P0 +PT

0 ) and
a
P0 =

1
2
(P0 −PT

0 ) . (2.54)

Notice that because the kinetic part of the pressure tensor is symmetric, the thermal
velocity will not enter the antisymmetric part of the pressure tensor.

The symmetric part of the pressure tensor is further decomposed into a sum of the
diagonal components, the trace, and a traceless part, that is,

s
P0=

1
3
Tr(P0)I+

os
P0 , (2.55)
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35 2.2 Application of the Operators

where I is the rank-2 identity tensor. Now, the trace defines the equilibrium normal
pressure, peq, and the viscous pressure, Π, which is non-zero for compressible flows,
and the symmetric part of the pressure tensor is written up in the final form:

s
P0 = (peq +Π)I+

os
P0 . (2.56)

The antisymmetry of
a
P is clear if we write up the tensor component from the definition

2
a
P0 =

 0 P0,xy −P0,yx P0,xz −P0,zx

P0,yx −P0,xy 0 P0,yz −P0,zy

P0,zx −P0,xz P0,zy −P0,yz 0

 . (2.57)

By inspection it can be seen that there are three independent components. These can
be represented by a pseudo-vector rather than a rank-2 tensor, namely as

ad
P0 =(

a
P0,yz,

a
P0,zx,

a
P0,xy) . (2.58)

From the Irving–Kirkwood definition, Eq. (2.52), we can write the vector components
in terms of the forces and positions:

2V
ad
P0 = ∑

i

(
yiFc

z,i − ziFc
y,i,ziFc

x,i − xiFc
z,i,xiFc

y,i − yiFc
x,i
)

= ∑
i

ri ×Fc
i = ∑

i
∑
j>i

ri j ×Fi j . (2.59)

We see that the antisymmetric pressure is due to the torque on i about j, resulting in a
change of the orbital angular momentum of the centre of mass of molecule i.

This pressure tensor decomposition is not limited to zero wavevector but can be
carried out in general; that is, dropping the subscript, we get

P = (peq +Π)I +
os
P +

a
P . (2.60)

The dynamics of the Fourier coefficients for the linear momentum then take the form

∂ ρ̃u
∂ t

= σ̃σσ − ik · (ρ̃uu)− ik · P̃

= σ̃σσ − ik · (ρ̃uu)− ik · (p̃eq + Π̃)I− ik·
os

P̃ −ik×
ad

P̃ , (2.61)

using the identity ik·
a

P̃= ik×
ad

P̃ . From Eqs. (2.8a) and (2.8b) we see that Eq. (2.61) is
the Fourier transform of the balance equation in real space:

∂ρu
∂ t

= σσσ −∇∇∇ · (ρuu)−∇∇∇ · ((peq +Π)I+
os
P)−∇∇∇×

ad
P . (2.62)

For a system composed of point mass particles the last term is zero, and notice that all
terms have the same tensorial character.

Equation (2.62) is known as the conservation form of the linear momentum balance
equation. Often one writes the balance equations in a slightly different form using the
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mass balance equation, Eq. (2.32), and for completeness we derive this here. From the
chain rule we have

∂ρu
∂ t

+∇∇∇ · (ρuu) = ρ
∂u
∂ t

−u(∇∇∇ ·ρu)+ρu ·∇∇∇u+u(∇∇∇ ·ρu)

= ρ
(

∂u
∂ t

+u ·∇∇∇u
)
. (2.63)

Note that for the last term we have used the identity u · (∇∇∇u) = (u ·∇∇∇)u. This result can
be generalised for any associated field variable, and this defines the so-called material
derivative as

Dϕ
Dt

=
∂ϕ
∂ t

+u ·∇∇∇ϕ . (2.64)

Thus, the linear momentum balance equation can be written as

ρ
Du
Dt

= σσσ −∇∇∇ · ((peq +Π)I+
os
P)−∇∇∇×

ad
P (2.65)

and is referred to as the convective form.
The balance equation is derived by studying only the small wavevector limit, that

is, by application of the H-operator. From this we also obtained the zero wavevector
microscopic expression for the pressure tensor which is the Irving–Kirkwood def-
inition. We can derive the wavevector-dependent pressure tensor by application of
the G-operator; this can give valuable insight into the multi-scale fluid internal stress
relaxations. Now, since ai = mivi we have

G[mivi] = ∑
i

(
mi

dvi

dt
− ik · (micivi)− ik · (miuvi)

)
e−ik·ri

= ∑
i

(
Fi − ik ·micici − ik ·miu(ri, t)u(ri, t)

)
e−ik·ri .

(2.66)

Again, Fi is the total force acting onmolecule i due to interaction with other molecules,
denoted Fc

i , and Fext, the external force. Thus,

∑
i

Ftote−ik·ri = ∑
i

Fc
i e−ik·ri +∑

i
Fexte−ik·ri . (2.67)

Assuming pairwise interactions only and by application of Newton’s third law, Fi j =

−F ji,

∑
i

Fc
i e−ik·ri = ∑

i
e−ik·ri ∑

j ̸=i
Fi j

= ∑
i

∑
j>i

(
e−ik·ri − e−ik·r j

)
Fi j

=−∑
i

∑
j>i

Fi j(eik·ri j −1)e−ik·ri . (2.68)

Moreover, for non-zero wavevector the force can be written as

Fi j =
Fi j · (ik · ri j)

ik · ri j
=

ik · (ri jFi j)

ik · ri j
(k ̸= 0) (2.69)
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using the relation given in Eq. (2.16) and we have

∑
i

Fc
i e−ik·ri =−ik ·∑

i
∑
j>i

ri jFi j
eik·ri j −1

ik · ri j
e−ik·ri . (2.70)

The dynamics are given by substitution into Eq. (2.66):

G[mivi] = ∑
i

Fext
i e−ik·ri − ik ·∑

i
miu(ri, t)u(ri, t)e−ik·ri

− ik ·∑
i

(
micici +∑

j>i
ri jFi j

eik·ri j −1
ik · ri j

)
e−ik·ri , (2.71)

and each term in Eq. (2.7) is readily identified. In particular, the wavevector-dependent
pressure tensor is

P̃(k, t) = ∑
i

(
micici +∑

j>i
ri jFi j

eik·ri j −1
ik · ri j

)
e−ik·ri . (2.72)

The Irving–Kirkwood tensor is recaptured in the zero wavevector limit

lim
k→0

eik·ri j −1
ik · ri j

= 1 , (2.73)

and the pressure tensor in this limit is

lim
k→0

P̃(k, t) = ∑
i

micici +∑
i

∑
j>i

ri jFi j, (2.74)

in agreement with Eq. (2.52). See also Evans and Morriss [66] and Todd and Daivis
[195]. It is worth noting that the wavevector-dependent pressure tensor can also be
computed directly from the momentum balance equation, assuming zero advection;
see Section 2.4, ‘Further Explorations’.

2.2.3 Thermal Kinetic Energy Balance

As mentioned in the introduction to this section, the classical treatment deals with the
mass, linear momentum, and total energy balance equations which form the dynamical
set of equations. We have seen how to apply the microscopic hydrodynamic operators
in order to derive the first two equations. Rather than deriving the balance equation
for the total energy, we here follow Alley and Alder [6] and derive the balance equation
for the thermal kinetic energy density, ρε , This immediately leads to the equation for
the kinetic temperature that we will use in our further explorations. Furthermore, in
order to avoid fatigue we derive the balance equation for the zero-flow situation and
simply list the more general flow case and refer to the existing literature.

We do not assign the thermal kinetic energy density a symbol, but write it in terms of
the product of density ρ and the associated field variable, ε , the thermal kinetic energy
per unit mass.

The thermal kinetic energy density is microscopically defined from the molecular
thermal velocities
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ρ(r, t)ε(r, t) = ∑
i

εiδ (r− ri) =
1
2 ∑

i
mic2

i δ (r− ri) , (2.75)

where c2
i = ci · ci is the usual dot product. As we have stated, we limit ourselves to the

case u = 0 at all times and in every point. This instantaneous zero-flow assumption
implies that Fi = Fc

i , that is, only conservative forces act on the molecules. In this case
the H-operator reads

H[εi] = ∑
i
(1− ik · ri)

dεi

dt
− ik ·∑

i
ciεi . (2.76)

First term on the right-hand side is (leaving out the summation)

(1− ik · ri)
dεi

dt
= (1− ik · ri)

mi

2
d
dt
(ci · ci)

= (1− ik · ri)mici ·
dci

dt
= (1− ik · ri)(ci ·Fi)

= ci ·Fi − ik · (riFi) · ci . (2.77)

For the second term in Eq. (2.76) we have

ciεi =
1
2

mic2
i ci =

1
2

micici · ci . (2.78)

Collecting the terms, the microscopic hydrodynamic operator reads (this time with the
summations)

H[εi] = ∑
i

ci ·Fi − ik ·∑
i

(
1
2

micici + riFi

)
· ci. (2.79)

The first term is wavevector independent, hence, the thermal kinetic energy density
is not a conserved quantity as we expect. The second term in the H-operator is the
diffusive process. The terms in the balance equation are then identified as

σ̃ε(k, t) = ∑
i

ci ·Fi + . . . (2.80a)

J̃ε(k, t) = ∑
i

(
1
2

micici + riFi

)
· ci + . . . , (2.80b)

and the balance equation for the Fourier coefficients is

∂ ρ̃ε
∂ t

= σ̃ε − ik · J̃ε , (2.81)

which is the Fourier transform of

∂ρε
∂ t

= σε −∇∇∇ ·Jε . (2.82)

Jε is here referred to as the thermal kinetic energy flux. Let us address the production
term σε . First, we assume (i) that the system is locally in thermodynamic equilibrium,

https://doi.org/10.1017/9781009158749.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009158749.003
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(ii) that the local density change is large compared to the change in heat; this is the
local adiabatic approximation, and (iii) the kinetic temperature is the same as the
thermodynamic temperature, which is strictly true only at equilibrium.

If the system is in local thermodynamic equilibrium, the system state can be
described by the entropy function S = S(T,V,N), where T is the temperature, V the
volume, and N the number of particles. If we keep the local number of particles fixed,
then the entropy is dependent only on temperature and number density n = N/V , that
is, S = S(T,n). The change in the (local) entropy is therefore to first order

dS =

(
∂S
∂T

)
n

dT +

(
∂S
∂n

)
T

dn . (2.83)

where subscripts indicate that n and T are held fixed. Using the chain rule and the
Maxwell relation (∂S/∂V )T = (∂ p/∂T )V , we obtain

dS =

(
∂S
∂T

)
n

dT − V
n

(
∂ p
∂T

)
V

dn

=
mNcV

T
dT − V βV

ρ
dρ , (2.84)

where cV is the specific heat capacity at constant volume, βV is the thermal pressure
coefficient, βV = (∂ p/∂T )ρ , and ρ =mn as we consider a single-component fluid. Now,
the entropy and heat Q are related through dS = dQ/T ; thus, we can write the heat
density as

dQ
V

= ρcV dT − T βV

ρ
dρ . (2.85)

By invoking the local adiabatic approximation, dQ = 0, we arrive at

dT =
T βV

ρ2cV
dρ. (2.86)

In thermodynamic equilibrium the thermal kinetic energy and kinetic temperature are
related through

cV ρT = ρε , (2.87)

and therefore

dρε =
T βV

ρ
dρ. (2.88)

The local rate of change (i.e., the production term) is therefore

σε =
T βV

ρ
∂ρ
∂ t

. (2.89)

Notice that the thermal kinetic energy then couples to the mass density. Substituting
Eq. (2.89) into Eq. (2.82), we arrive at the balance equation for the thermal kinetic
energy in the zero flow case

∂ρε
∂ t

=
T βV

ρ
∂ρ
∂ t

−∇∇∇ ·Jε . (2.90)
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The zero-flow balance equation for the kinetic temperature is readily obtained by
inserting Eq. (2.87) into Eq. (2.90).

In the general case an additional advection term and a viscous heating term arise.
In fact, we will see two examples of this in the last chapter, and it is relevant to write
the general result

cV
∂ρT
∂ t

=
T βV

ρ
∂ρ
∂ t

− cV ∇∇∇ · (ρuT )−∇∇∇ ·Jε −PT : ∇∇∇u. (2.91)

The viscous heating term is given by a double contraction of the pressure tensor trans-
posed, PT , and the outer product, ∇∇∇u. In general, the double contraction is defined
as

A : B = ∑
i

∑
j

Ai jB ji. (2.92)

For more details the interested reader is referred to Todd and Daivis [200] and Evans
and Morriss [66].

2.3 More Examples

The microscopic hydrodynamic operators offer a general framework to derive the bal-
ance equation for any dynamical variable. In this section this will be shown for the
balance equations for the angular momenta and the polarisation.

2.3.1 Angular Momenta Balances

We make the distinction between the orbital angular momentum density, ρL, and the
spin angular momentum, ρS. The former is the angular momentum of the fluid with
respect to a given origin, and the latter the angular momentum with respect to the fluid
element centre of mass. As for the thermal kinetic energy, we will not assign symbols
for the two angular momentum densities, but simply write them in terms of the density
and the associated field. Recall that in the limit of zero wavevector the total angular
momentum is a constant of motion, that is, it is a conserved quantity.

We start from the orbital angular momentum density, ρL = ρ(r, t)L(r, t). The
molecular definition is

ρ(r, t)L(r, t) = ∑
i

Liδ (r− ri) = ∑
i
(ri ×pi)δ (r− ri) , (2.93)

where Li is themolecular angularmomentum, and pi is the centre-of-massmomentum.
Note, the orbital angular momentum is defined from the cross product of two vectors
and is therefore a pseudo-vector.

In the following we let the external force be zero. H acting on the molecular variable
yields

H[Li] = ∑
i
(1− ik · ri)

dLi

dt
− ik ·∑

i
ciLi − ik ·∑

i
u(ri, t)Li . (2.94)
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41 2.3 More Examples

tFigure 2.3 Illustration of the vectorsRα and ri entering Eq. (2.99).

The first term on the right-hand side is (again, excluding the summation over
molecules)

(1− ik · ri)
dLi

dt
= (1− ik · ri)

d
dt
(ri ×pi)

= (1− ik · ri)

(
dri

dt
×pi + ri ×

dpi

dt

)
= Ni − ik · riNi, (2.95)

where Ni = ri ×Fc
i is the torque on molecule i. The H-operator can then be written as

H[Li] = N− ik ·∑
i
(ciLi − riNi)− ik ·∑

i
u(ri, t)Li , (2.96)

where, by virtue of Eq. (2.59), we have that the total torque is

N = ∑
i

ri ×Fc
i = 2V

ad
P0 . (2.97)

From this we can infer the orbital angular momentum balance equation for the Fourier
coefficients,

∂
∂ t

ρ̃L(k, t) = 2
ad

P̃ −ik · ρ̃uL− ik · J̃L , (2.98)

where JL is the orbital angular momentum flux tensor; the zero wavevector limit is
given in Eq. (2.96). We recognise that ρL is not a conserved quantity.

The spin angular momentum density, ρS = ρ(r, t)S(r, t), is defined from the molec-
ular angular momenta by

ρ(r, t)S(r, t) = ∑
i

Siδ (r− ri) = ∑
i

(
∑
α∈i

Rα ×pα

)
δ (r− ri) . (2.99)

The index α denotes atom or particle α in molecule i, Rα is the vector from the molec-
ular centre of mass to atom α ; see Fig. 2.3. Si = ∑α∈i Rα ×pα is then the molecular
spin angular momentum (i.e., the rotation around the centre of mass), and pα is the
momentum of atom α . As the case for the orbital angular momentum, we see from the
definition that the spin angular momentum is a pseudo-vector.
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Letting theH-operator act on Si, one gets the dynamics in the small wavevector limit
(here leaving out a few details in the derivation),

H[Si] = M− ik ·

(
∑

i
ciSi −∑

i
riMi

)
− ik ·∑

i
u(ri, t)Si , (2.100)

where Mi = ∑α∈i Rα ×FC
α is the total torque on i with respect to the centre of mass

and M = ∑i Mi. From the H-operator we readily see that the spin angular momentum
is not conserved as expected.

The second term on the right-hand side of Eq. (2.100) is the Irving–Kirkwood spin
angular momentum flux tensor at zero wavevector, that is,

Q̃(k = 0, t) = ∑
i

ciSi +∑
i

riMi

= ∑
i

ciSi +∑
i

∑
j>i

ri jMi j. (2.101)

Mi j is the torque on molecule i due to molecule j. From the first-order wavevec-
tor dynamics, Eq. (2.100), we get the general balance equation for the spin angular
momentum,

∂
∂ t

ρ̃S(k, t) = M̃− ik · ρ̃uS− ik · Q̃ . (2.102)

This equation can be reformulated. We recall that the total angular momentum is a
conserved quantity, which implies that for zero wavevector

∂
∂ t

(ρ̃L+ ρ̃S) = 0 (k = 0), (2.103)

that is, M+N = 0 according to Eqs.(2.98) and (2.102), and therefore,

M =−2V
ad
P0 . (2.104)

Moreover, it can be seen that the spin angular momentum flux tensor is not symmetric;
and as for the pressure tensor, it can be decomposed into the trace, traceless symmetric,
and antisymmetric parts, that is, in general we have

Q = QI+
os
Q +

a
Q . (2.105)

Writing the antisymmetric part as the vector
ad
Q, the balance equation for the spin

angular momentum can be written as

∂
∂ t

ρ̃S(k, t) =−2
ad

P̃ −ik · (ρ̃uS)− ik · Q̃I− ik·
os

Q̃ −ik×
ad

Q̃ (2.106)

in the absence of external driving forces. This result is the Fourier transformation of
the real space balance equation,

∂
∂ t

ρS(r, t) =−2
ad
P −∇∇∇ · (ρuS)−∇∇∇ · (QI+

os
Q)−∇∇∇×

ad
Q . (2.107)
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Since
ad
Q is a vector,2 we have from Eq. (2.5) that the requirement of the same tensorial

character is fulfilled.
More can be done: the spin angular momentum can be written in terms of the spin

angular velocity ΩΩΩ,

ρ(r, t)S(r, t) = ρ(r, t)ΘΘΘ(r, t) ·ΩΩΩ(r, t) . (2.108)

The inertia tensor per unit mass, ΘΘΘ, is the local average molecular inertia. For a single-
component system, this is then simply ΘΘΘ = ΘΘΘmol, where

ΘΘΘmol =
1
mi

∑
α∈i

mα(R2
α I−Rα Rα), (2.109)

where mi = ∑α∈i mα is the molecule mass. It is clear from Eq. (2.109) that the molec-
ular moment of inertia tensor is real and symmetric. This means that there exists an
orthogonal matrix T such that ΘΘΘP = T−1 ·ΘΘΘmol ·T, where ΘΘΘP is the moment of inertia
diagonal tensor in the principal coordinate system, that is, in the molecular rotat-
ing coordinate system spanned by the eigenvectors of ΘΘΘmol. Since T is an orthogonal
matrix, its inverse equals its transpose, T−1 = TT , and it can be shown (e.g. via direct
computation) that for any vector a we have the identity T · a = a ·T−1. We can then
conclude

ΘΘΘmol ·ΩΩΩ = T ·T−1 ·ΘΘΘmol ·T ·T−1 ·ΩΩΩ
= T ·ΘΘΘP ·T−1 ·ΩΩΩ
= T · (ΘΘΘP ·ΩΩΩ) ·T
= ΘΘΘP ·ΩΩΩ . (2.110)

For rigid molecules, the molecular principal moment of inertia ΘΘΘP is constant. If we
assume homogeneity and isotropy, the molecular inertia is a scalar quantity and can
therefore be expressed through a scalar which is the average of the principal molecular
inertia tensor,

Θ =
1
3
TrΘΘΘP . (2.111)

In this case, the spin angular momentum density takes a particularly simple form,

ρS = ρ(r, t)ΘΩΩΩ(r, t), (2.112)

and the balance equation, Eq. (2.107), is then

Θ
(

∂ρΩΩΩ
∂ t

+∇∇∇ · (ρuΩΩΩ)

)
=−2

ad
P −∇∇∇ · (Q+

os
Q)−∇∇∇×

ad
Q . (2.113)

Notice that in the balance equations for the spin angular momentum and the linear
momentum, the antisymmetric part of the pressure appears. We will later see that the

constitutive model for
ad
P involves both the velocity, u, and the spin angular veloc-

ity, ΩΩΩ, hence these two associated field variables couple, as was also discussed in the

2 I will leave it up to the reader to verify this.
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44 Balance Equations

tFigure 2.4 Illustration of the polarisation of fluid elementV due to application of an external electric field,Eext. µµµ represents
the molecular dipole vector. Due to thermal fluctuations, the molecular dipoles are far from perfectly aligned with the
field, and the alignment illustrated here is exaggerated.

introduction. This extends the hydrodynamic description. Naturally, we will not expect
this coupling to be relevant on the macroscopic length scale; we return to this point in
Chapter 4.

2.3.2 Polarisation Balance

Consider a fluid element V composed of molecules with permanent dipoles. In the
presence of an electric field, the molecular dipoles will partially align with the field.
The resulting charge on the element surface is a bound charge in that it is bounded
by the molecular structure (and therefore the fluid element) and cannot freely move
in response to the field. The molecular alignment will induce two opposite non-zero
net charges on the fluid element in alignment with the field, and the element becomes
polarised; see the illustration in Fig. 2.4.

Of course, not all charge is bounded; for example, ions in an electrolyte solution
can perform translational motion in response to a field, and electrons can jump from
molecule to molecule. Charge which is not bounded is called free charge [86] and the
charge density, ρq, can be written as

ρq = ρ f +ρb, (2.114)

where ρ f and ρb are the free and bound charge densities, respectively.
Nowwe return to the bound charges.We define the polarisation P, or dipolemoment

density, at a given point from the bound charge density,

∇∇∇ ·P =−ρb . (2.115)

This definition can be thought of as a Gauss law for the bound charge. As we see
later, Eq. (2.115) gives a direct way to calculate the polarisation in simulations; how-
ever, it is not very helpful unless the full set of Maxwell equations is invoked [52, 53].
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Alternatively and with some approximations, the H-operator can be applied, giving
the balance equation for P, and we pursue this approach here.

We ignore induced polarisation effects and consider only polarisation due to molec-
ular alignment. Also, we will initially not include the presence of an external electric
field, but will add this later. Let the dipole moment of molecule i be µµµ i and the
polarisation density be defined microscopically as [90],

P(r, t) = ρ(r, t)p(r, t) = ∑
i

µµµ i(t)δ (r− ri) , (2.116)

where the associated field p is the dipole momentum per unit mass. Notice that this
definition is only the second-order term in the multipole expansion of P and will fail
at large wavevectors; we return to this in Chapter 4. The H-operator acting on µµµ i is

H[µµµ i] = ∑
i
(1− ik · ri)

dµµµ i
dt

− ik ·∑
i

ciµµµ i − ik ·∑
i

u(ri, t)µµµ i . (2.117)

In the principal coordinate system (rotating molecular reference frame), µµµ i is constant
since the dipole moment is permanent. In the fixed reference frame, Euler’s rotation
equation for µµµ i gives

dµµµ i
dt

= ΩΩΩi ×µµµ i , (2.118)

where ΩΩΩi is the dipole angular velocity. Substitution in Eq. (2.117) and rearranging the
dynamics in the small wavevector regime is governed by

H[µµµ i] = ∑
i

ΩΩΩi ×µµµ i − ik ·∑
i

u(ri, t)µµµ i − ik ·∑
i
(ciµµµ i + ri(ΩΩΩi ×µµµ i)) . (2.119)

The first term on the right-hand side shows that P is not conserved.
In order to interpret the production term macroscopically, note first that the cross

product between the spin angular velocity and the polarisation in real space is

ΩΩΩ×ρp = ΩΩΩ(r, t)×∑
i

µµµ i(t)δ (r− ri)

= ∑
i

ΩΩΩ(r, t)×µµµ i(t)δ (r− ri) (2.120)

due to the distributive properties of the cross product. Ignoring density fluctuations, we
can write the spin angular velocity at the molecular point ri as ΩΩΩ(ri, t)≈ ΩΩΩi(t). Then,
from Fourier transforming Eq. (2.120), we get

F [ΩΩΩ×ρp] = ∑
i

ΩΩΩ(ri, t)×µµµ i(t)e
−ik·ri ≈ ∑

i
ΩΩΩi(t)×µµµ i(t) (2.121)

in the limit of small wavevectors. We now see that the production term found from
theH-operator is a coupling between the polarisation density (dielectrics) and the spin
angular velocity (mechanics); the term is non-linear and only zero if the polarisation
follows the local fluid angular velocity.

From Eq. (2.119) one can also immediately define the Irving–Kirkwood dipole flux
tensor as

R̃(k = 0, t) = ∑
i

ciµµµ i + ri (ΩΩΩi ×µµµ i) , (2.122)
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and we see that this tensor is not, in general, symmetric. Again, the tensor R can
be composed into trace, traceless symmetric, and antisymmetric parts; however, for
brevity we write the balance equation in a more compact form,

∂
∂ t

ρ̃p(k, t) = Ω̃ΩΩ×ρp− ik · (ρ̃up)− ik · R̃. (2.123)

This is the Fourier transform of the real space balance equation,

∂ρp
∂ t

= σσσ +ΩΩΩ×ρp−∇∇∇ · (ρup)−∇∇∇ ·R, (2.124)

when allowing for a production term.
The last term in this derivation indicates that there exists a diffusive process which

tends to remove gradients in the polarisation itself. While this process was described
by, for example, Dahler and Scriven [46], in 1963 it is often ignored. However, it must
be included in the multiscale description, as we will see later.

In Fig. 1.4 the polarisation was plotted as a function of time for water after applica-
tion of an external electric field, Eext. The response is modelled via the Debye equation;
this reads in a more general differential form as

dρp
dt

=
1

τD

(
ε0χeEext−ρp

)
. (2.125)

This linear differential equation is easily solved once the initial condition is specified.
TheDebye equation can also be formulated in terms of the local field E, that is, the field
due to the external electric field (if this is applied) and the resulting screening field. Even
in the case where the external field is zero, there will still be a local thermally fluctuating
field arising from the bound charges. For our purposes, Eq. (2.125) is used. Thus, if we
let the production term be written by Eq. (2.125), we arrive at the final form for the
polarisation balance equation,

∂ρp
∂ t

=
1

τD

(
ε0χeEext−ρp

)
+ΩΩΩ×ρp−∇∇∇ · (ρup)−∇∇∇ ·R . (2.126)

2.4 Further Explorations

1. Let a = (ax,ay,az),b = (bx,by,bz), and c = (cx,cy,cz). From direct calculus, verify
the identity, Eq. (2.16),

a(b · c) = b · (ca) .

Recall, the outer product is not commutative!

2. Prove the identities k·
a

P̃= k×
ad

P̃ and u · (∇∇∇u) = (u ·∇∇∇)u.
3. From the microscopic definition of the spin angular momentum, Eq. (2.99), derive

the dynamics in Eq. (2.100).
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47 2.4 Further Explorations

4. Use the non-advective form of the momentum balance equation,

∂ρu
∂ t

=−∇∇∇ ·P, (2.127)

to show that, for this case, we have

ik · P̃(k, t) =−∑
i
(Fi − ik ·vivi)e−ik·ri .

Give explicit expressions for the shear pressure component P̃yx and the normal
pressure component P̃yy when k = (0,ky,0).

5. For fluid mixtures, we define the mass density of, say, the A component by

ρA(r, t) = ∑
i∈A

miδ (r− ri) .

i ∈ A symbolises that index i runs over the set A composed of the indices of A
particles. From the G-operator, show the mass balance equation for A is

∂ρA

∂ t
=−∇∇∇ · jA,

where jA = ∑i∈A miviδ (r− ri).
Then derive the balance equation for jA using the H-operator and show that jA is

a non-conserved quantity.

https://doi.org/10.1017/9781009158749.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009158749.003


3 Nanoscale Hydrodynamic Relaxations

At first sight, one molecule’s thermal motion appears uncorrelated with the motion
of other molecules further away as well as the motion at earlier times. This is, in fact,
not the case. Themolecularmotion, andmore generally the system dynamic quantities,
are indeed correlated with the system’s dynamics at other points and earlier times. This
phenomenon is referred to as spatio-temporal correlations. For the fluids we study here,
the correlations are short ranged, both with respect to time and space, often on the
order of picoseconds and nanometres.

Depending on the actual quantity we study, the correlations can be fingerprints of
different underlying hydrodynamic processes, and in this chapter we will explore this
topic in detail. In doing so we not only gain insight into the hydrodynamic processes
behind the correlations, we can also perform a highly controlled exploration of the
validity of hydrodynamics on the nanoscale.

The idea of applying hydrodynamics on these small scales is founded in Onsager’s
regression hypothesis from 1931. This states that the regression of microscopically
induced fluctuations in equilibrium follows, on average, the macroscopic laws of
small non-equilibrium disturbances [168]. Thus, thermally induced perturbations relax
according to the hydrodynamic equations. The relaxations here refer not to quantities
like mass density directly, as they are constantly fluctuating and not relaxing, but to
the decay of the associated correlation functions [3, 31, 147, 182]. Therefore, we need
to derive these hydrodynamic correlation functions and compare the predictions with
experimental data (where available) or molecular dynamics results. Interpretation of
small-scale correlations on the basis of hydrodynamics is a well-known trade, andBoon
and Yip [31] call this Molecular Hydrodynamics.

As an introductory example, we will explore how the density for a single-component
fluid at a point r1 and at time t1 is correlated with the density at point r2 at time t2; see
the illustration in Fig. 3.1. We define the correlations through the famous van Hove
correlation function G [156],

ρavmG(r1, t1,r2, t2) = ⟨ρ(r1, t1)ρ(r2, t2)⟩ , (3.1)

where ρav is the system’s average density, and m the molecular mass. Notice that
the correlations are given via the expected value of the product ρ(r1, t1)ρ(r2, t2),
as indicated with brackets ⟨. . .⟩. In practise we approximate the expected value
with an ensemble sample average over a sufficiently large set of independ-
ent and equally probable initial conditions. Also, see Appendix A.3 for further
details.

48
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49 Nanoscale Hydrodynamic Relaxations

tFigure 3.1 Illustration of the densities located at r1 and r2, and at two different times, t1 and t2.

If the system is homogeneous and isotropic, then the system is both translational
and rotational invariant. This means that only the distance between the two points,
r = ||r2 −r1||, is relevant. Furthermore, for time-translational invariance, it is the time
difference, t = t2 − t1, which is the relevant variable. Sometimes these invariances are
implicitly stated by simply letting, for example, r1 = 0 and t1 = 0. The invariancesmeans
that we can write the van Hove correlation function as

ρavmG(r, t) = ⟨ρ(r, t)ρ(0,0)⟩ . (3.2)

Since we are interested in the density fluctuations, the density itself is decomposed into
a sum of the average density, ρav, and the fluctuation part, δρ , that is,

ρ = ρav +δρ . (3.3)

The ensemble average is

⟨ρ⟩= ⟨ρav +δρ⟩= ⟨ρav⟩+ ⟨δρ⟩= ρav (3.4)

due to linearity and since ⟨δρ⟩ = 0 by definition. We can now interpret the average
density ρav as the ensemble averaged density. In equilibrium this is equivalent with the
time average. This is a general decompositionwe use for all the hydrodynamic variables;
however, we will for purposes of clarity use both the subscript ‘av’ and the bracket
notation ⟨. . .⟩. The van Hove function is now written as

ρavmG(r, t) = ⟨(ρav +δρ(r, t))(ρav +δρ(0,0))⟩
= ρ2

av + cρρ(r, t), (3.5)

where the density fluctuation correlation function cρρ is defined as

cρρ(r, t) = ⟨δρ(r, t)δρ(0,0)⟩ . (3.6)

For this introductory example, we simply calculate cρρ for a Lennard–Jones fluid and
divide the system into slabs and where the local fluctuating part of the density, δρV , is
then given from the definition Eq. (1.19),

δρV(t) =
1

∆V ∑
i∈V

mi −ρav, (3.7)
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tFigure 3.2 Density autocorrelation function as function distance for Lennard–Jones model methane at the liquid state point. Four
time snapshots are shown: tn, n = 0,1,2,3, where t0 < t1 < t2 < t3. Insert: Correlation at r ≈ 10 Å as
function of time.

where ∆V is the fluid slab volume and i runs over particles in the slab V . The correla-
tion with respect to r can be evaluated as the correlation between slabs where the slab
midpoint represents r. While this calculation fulfils the purpose, it is rather heuristic
and we will see a more careful treatment later.

Figure 3.2 shows the density correlation function cρρ as a function of distance r and
time t. As expected, the correlation decreases as time increases, and eventually goes to
zero as the density at long times becomes completely uncorrelated with the density at
t = 0. As seen, there exists a sharp peak for r = 0 that broadens with time; this happens
through a diffusive process and is the so-called self-part of the van Hove function. We
return to this in the last part of the chapter.

With respect to spatial coordinate r, the correlation function features damped oscil-
lation with a characteristic length scale of around one molecular diameter, that is,
around 3.7 Å. These oscillations were first observed in computer simulations by Rah-
man in 1964 [182]; they are due to the molecular packing present in the liquid and are
referred to as the liquid structure. This structure is mostly pronounced on very small
length scales. The insert in Figure 3.2 plots the correlation function at r ≈ 10 Å, or 1
nm, as a function of time; that is, even on the nanometre length scale correlations exist,
which is the focus of our exploration.

As outlined in Chapter 2, rather than investigating the dynamics in real space one
often studies the correlations of the corresponding Fourier coefficients. We will write
this as

ρavmF(k, t) = ⟨δ̃ ρ(k, t)δ̃ ρ(−k,0)⟩ , (3.8)

where F is the so-called coherent intermediate scattering function (a name that comes
from the experimental method), and k is the wavevector magnitude.

Now, to complicate things a bit further, scattering experiments do not provide
the scattering function F directly, that is, the time dependence of the Fourier coef-
ficients, but the frequency dependency. This is the dynamic structure factor (even if
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it is a function), and we write it as S = S(k,ω), with ω being the angular frequency.
Figure 3.3 shows experimental results for the dynamic structure factor for liquid
caesium by Bodensteiner et al. [27] Notice that the length scales in the spectra are
2π/0.4 Å−1 and 2π/0.6 Å−1, that is, 1.57 and 1.05 nm, respectively.

The dynamic structure factor features two peaks; one peak centred around zero
frequency and one peak at non-zero frequency. The former is referred to as the Ray-
leigh peak and the latter as the Brillouin peak. In this chapter we will explore these
types of spectra in detail using the hydrodynamic model and, based on this, make
interpretations of the underlying physical processes.

At this point there is an interesting result we can give right away: for fluid systems
composed of point mass particles like methane, the classical hydrodynamic theory can
predict, at least qualitatively, the correlation functions (and their spectra) down to
surprisingly small length and time scales. On extremely small scales, the classic hydro-
dynamic model is too simple and will be unsatisfactory, and a multiscale model that
includes the relevant physical processes must be formulated. These theories are outside
the scope of this chapter, as we focus on the application of classical hydrodynamics
only.

3.1 Classical Hydrodynamics

The balance equations derived in Chapter 2 do not form closedmathematical problems
because the fluxes are unknown functions of the hydrodynamic variables – even if we
have a microscopic interpretation of them. However, experimentally we know that the
fluxes can be functions of the system gradients. For example, Fourier’s law of heat con-
duction states that the heat flux is proportional to the gradient of the temperature. In
the context of the thermal kinetic energy flux, Eq. (2.92), this means that Jε ∝ ∇∇∇(ρε).
The proportionality is a linear model, or a first-order expansion in the gradient, and
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we must expect that this linear relationship only holds for sufficiently small gradients.
In the case of isotropic homogeneous systems, the coefficient of proportionality is
represented by a constant scalar.

The modern theory1 treating this in a formal manner is irreversible non-equilibrium
thermodynamics [52]. We will use the empirically founded approach, where the con-
stants of proportionality are directly related to the (scalar) transport coefficients like
heat conductivity and viscosity. Independent of the theoretical framework, we can, in
general, assume that a given scalar flux Ji of a given quantity is depending on a set of
driving forcesX= (X1,X2, . . . ,XN). The term driving force is here used to indicate that
X j causes a flux; it does not have dimension of force (or force density) and is therefore
not a regular force. We can write the linear relationship in general as

Ji = ∑
j

Mi jX j , (3.9)

where Mi j is the constant of proportionality with units depending on the driving force,
and j runs over all N driving forces. Equation (3.9) is easily extended to vector fluxes
and so forth. In most nanoscale fluid systems, the linear relationship between the flux
and driving forces suffices; however, in some cases, for example, for gas flows, higher-
order terms in the gradient expansion are needed, leading to the Burnett equations. We
do not consider these situations.

Important note: in this treatment, Mi j are not phenomenological coefficients known
from thermodynamics and do not follow Onsager’s reciprocal relation in general, that
is, Mi j ̸= M ji.2 However, we will still use the fundamental result that if a driving force
X j leads to flux Ji, we also have that the force Xi leads to a flux J j.

One natural next question to ask is what driving forces cause a given flux. According
to Curie’s principle [52], the forces and the flux must have the same tensorial character;
see page 26. Thus, if a flux is a vector, the driving force must also be a vector. Aside
from this restriction, a flux can, in principle, be dependent on any driving force present
in the system. A few examples:

• In fluid mixtures the fluxes of the different constituents depend not only on the gra-
dients of the concentrations, but also on the temperature gradient [183]. The total
mass flux of one component is therefore given as a sum of two gradients: a concen-
tration gradient and a temperature gradient. This is called thermophoresis or the
Soret effect.

• For dielectric materials the polarisation rate of change (which we can think of as
a flux) depends not only on the electric potential gradient, but also on the temper-
ature gradient [35]; this is relevant for nanoscale systems, where large temperature
gradients can be achieved.

• As shown in Chapter 1, for molecular fluids there exists a coupling between the spin
angular momentum (a pseudo-vector) and the linearmomentum (a vector).We shall

1 Perhaps it is appropriate to reformulate this as “The most modern theory.”
2 Not to be confused with Onsager’s regression hypothesis.
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see later that even though the two quantities have unlike tensorial character, the
coupling can still be realised under the constraint of Curie’s principle.

The underlying thermal fluctuations of the fluid leaves the hydrodynamic quantities as
random variables. To model this, we introduce the stochastic force method [56, 140].
Basically, we add a stochastic term δJi to Eq. (3.9); that is, in the linear regime we get
for the flux Ji

Ji = ∑
j

Mi jX j +δJi . (3.10)

The term δJi is called the fluctuating dissipative flux [56]; however, we will frequently
refer to it as simply the forcing term. For our purpose it suffices that the forcing term
has zero mean, and the Fourier coefficients of the force are uncorrelated with the
Fourier coefficients of the hydrodynamic variables Ã, at all times and wave-vectors;
that is,

⟨δJi⟩= 0 and
〈

δ̃Ji(k, t) Ã(−k, t ′)
〉
= 0 . (3.11)

Again, the brackets denote the average over an ensemble of independent initial
conditions.

We study the fluctuations of the hydrodynamic quantities in equilibrium. As we have
seen for the density, these quantities are written as a sum of the average and fluctuating
parts. In general, we write A = ρϕ = (ρϕ)av +δ (ρϕ) or, by writing out the terms,

A = (ρav +δρ)(ϕav +δϕ)
≈ ρavϕav +ρavδϕ +ϕavδρ (3.12)

to first order in the fluctuations. Comparing terms, we then identify (ρϕ)av = ρavϕav

and δ (ρϕ)≈ ρavδϕ +ϕavδρ . The rate of change of A reads

∂ρϕ
∂ t

=
∂δρϕ

∂ t
= ρav

∂δϕ
∂ t

+ϕav
∂δρ
∂ t

(3.13)

since the ensemble average is constant in equilibrium (but not in general!). The advec-
tive term in the balance equation is of second order with respect to the fluctuations;
hence, this can be ignored in the linear regime. The linearised balance equation is in
terms of the fluctuations then, in general,

∂δ (ρϕ)
∂ t

= σ −∇∇∇ ·J , (3.14)

and if ϕav = 0,

ρav
∂δϕ
∂ t

= σ −∇∇∇ ·J . (3.15)

Since the fluxes are linear with respect to the hydrodynamic variables, we then have
only linear problems, which simplifies the mathematical problem significantly.
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3.1.1 Dynamical Equations for the Fluctuations

The starting point for our discussion will be fluids composed of point mass molecules.
For these systems the antisymmetric part of the pressure tensor is zero and the coupling
to the spin angularmomentum can be ignored in the next chapter we return to themore
general case.

In equilibrium the average streaming velocity is zero, uav = 0, and we have for the
linear momentum density

j = (ρav +δρ)δu ≈ ρavδu (3.16)

to first order in the fluctuations. Recall, the mass balance equation

∂ρ
∂ t

=−∇∇∇ · j . (3.17)

Substitution of Eq. (3.16) gives

∂δρ
∂ t

=−ρav∇∇∇ ·δu . (3.18)

Likewise, for the linear momentum density, Eq. (2.62), we get

ρav
∂δu
∂ t

=−∇∇∇ ·
(
(peq +Π)I+

os
P
)

(3.19)

since the advective term is non-linear and we have no external forces acting on the
system. Finally, we also need the balance equation for the thermal kinetic energy den-
sity fluctuations (or equivalently the kinetic temperature, if you prefer). The average
thermal kinetic energy is non-zero and we have that

ρε = (ρε)av +δ (ρε) . (3.20)

Again, in equilibrium we have that (ρε)av is constant, and substitution into Eq. (2.90)
gives

∂δ (ρε)
∂ t

=
T βV

ρav

∂δρ
∂ t

−∇∇∇ ·Jε . (3.21)

Equations (3.18), (3.19), and (3.21) are the linearised balance equations for the
fluctuations.

To proceed, we assume homogeneity and isotropy. The fluxes, Π,
os
P, and Jε , are

modelled through classic hydrodynamic constitutive relations, but with the addition
of stochastic forcing; the general form is given in Eq. (3.10):

Π =−ηv(∇∇∇ ·u)+δΠ (3.22a)

os
P =−2η0(

os
∇∇∇u)+δ

os
P =−η0

(
(∇∇∇u+u∇∇∇)− 2

3
Tr(∇∇∇ ·u)I

)
+δ

os
P (3.22b)

Jε =− λ
cV ρav

∇∇∇(ρε)+δJε , (3.22c)
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where ηv and η0 are the bulk and shear viscosities, and λ is the heat conductivity.Notice
that Curie’s constraint is obeyed and that the constitutive models are simply Newton’s
law of viscosity and Fourier’s law of heat conduction with added stochastic forcing.

The reader may be more familiar with Newton’s law written in terms of the strain

rate, γ̇γγ =
os

∇∇∇u. For completeness we list this formulation as well; thus, for isotropic
systems the symmetric pressure tensor reads

s
P= peqI−ηv(∇∇∇ ·u)I−2η0γ̇γγ . (3.23)

Moving on, using the identities from vector calculus,

∇∇∇ · (
os

∇∇∇u) =
1
2

∇2u+
1
2

∇∇∇(∇∇∇ ·u) (3.24a)

∇∇∇ ·aI = ∇∇∇a, (3.24b)

where a is a real scalar, we have the linearised dynamical equations for the fluctuations

∂δρ
∂ t

=−ρav∇∇∇ ·δu (3.25a)

ρav
∂δu
∂ t

=−∇∇∇δ peq +(ηv +η0/3)∇∇∇(∇∇∇ ·δu)+η0∇2δu−∇∇∇ ·δP (3.25b)

∂δ (ρε)
∂ t

=
T βV

ρav

∂δρ
∂ t

+
λ

cV ρav
∇2δ (ρε)−∇∇∇ ·δJε , (3.25c)

where δP = (δΠ)I+δ
os
P.

In our treatment of equilibrium relaxations we are interested in the Fourier coef-
ficients of the dynamical variables. By Fourier transforming, see Eq. (2.6a), we get

∂ δ̃ρ
∂ t

=−iρavk · δ̃u (3.26a)

ρav
∂ δ̃u
∂ t

=−ik · δ̃ peq − (ηv +η0/3)k(k · δ̃u)−η0k2δ̃u− ik · δ̃P (3.26b)

∂ δ̃ (ρε)
∂ t

=
T βV

ρav

∂ δ̃ρ
∂ t

− λ
ρavcV

k2δ̃ (ρε)− ik · δ̃J
ε
. (3.26c)

Thus, these equations for the density, momentum, and energy Fourier coefficients form
our classical hydrodynamic model of the fluid system at equilibrium.

3.1.2 Transverse Relaxations

One can make a simple choice for the wavevector (or equivalently the system coor-
dinate) such that the dynamics will decompose into one parallel mode (longitudinal
dynamics) and two perpendicular modes (transverse dynamics). For example, let k =

(0,ky,0); then the streaming velocity x and z components, denoted the transverse
components, read from Eq. (3.26b) as follows:
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ρav
∂ δ̃ux

∂ t
=−η0k2

y δ̃ux − ikyδ̃Pyx (3.27a)

ρav
∂ δ̃uz

∂ t
=−η0k2

y δ̃uz − ikyδ̃Pyz. (3.27b)

Importantly, these Fourier coefficients decouple from the dynamics of the other hydro-
dynamic variables (i.e., density and kinetic energy) and therefore pose a particular
simple problem. Eqs. (3.27a) and (3.27b) are identical, and the dynamics depend on
the same fluid property, namely, the shear viscosity. Thus, the transverse dynam-
ics is a purely shear viscous dynamics. We can simply continue by using one of
the two transverse dynamical equations, say Eq. (3.27a), to study the transverse
dynamics.

As we have noted, we do not study the hydrodynamics directly via Eq. (3.27a), but
through the corresponding hydrodynamic correlation function, namely, the transverse
velocity autocorrelation function, C⊥

uu:

C⊥
uu(k, t) =

1
V

〈
δ̃ux(k, t)δ̃ux(−k,0)

〉
. (3.28)

In a more rigorous treatment [31], one will study the transverse linear momentum
autocorrelation; however, to first order in the fluctuations Eq. (3.28) suffices.

To derive the equation for C⊥
uu, Eq. (3.27a) is multiplied by δ̃ux(−ky,0), and we per-

form an ensemble average over independent initial conditions. First, notice that the
left-hand side reads〈(

ρav
∂
∂ t

δ̃ux(k, t)
)

δ̃ux(−k,0)
〉
= ρav

∂
∂ t

〈
δ̃ux(k, t)δ̃ux(−k,0)

〉
(3.29)

since δux(k,0) is constant with respect to time. Also, recall that the stochastic force has
the property that

⟨δ̃Pyx(k, t)δ̃ux(−k,0)⟩= 0 (3.30)

and, hence, we arrive at

ρav
∂
∂ t

C⊥
uu(k, t) =−η0k2

yC⊥
uu(k, t). (3.31)

The dynamics for the transverse velocity autocorrelation function is then given by a
simple deterministic first-order differential equation. The solution is

C⊥
uu(k, t) =C⊥

uu(k,0)e−η0k2
y t/ρav . (3.32)

The initial condition (or prefactor), C⊥
uu(k,0), can be expressed in terms of density and

temperature. To see this we write the fluctuations in streaming velocity through the
molecular definition. Again, to first order,

ρavδ̃u ≈ m∑
i

vi e−ik·ri (3.33)
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for a single-component fluid with the molecular mass m. At t = 0,

VC⊥
uu(k,0) =

〈
δ̃ux(k,0)δ̃ux(−k,0)

〉
=

m2

ρ2
av

〈[
∑

i
vi,x(0)e−ikyyi

][
∑

i
vi,x(0)eikyyi

]〉

=
m2

ρ2
av

〈
∑

i
v2

i,x(0)

〉
(3.34)

since the microscopic velocities are initially uncorrelated, and the instantaneous cross-
correlations are zero. From the equipartition theorem, ⟨∑i mv2

i,x(0)⟩ = NkBT , where N
is the number of particles, and since Nm is total mass we obtain

C⊥
uu(k,0) =

kBT
ρav

. (3.35)

We can then write the solution as

C⊥
uu(k, t) =

kBT
ρav

e−ω0t , (3.36)

where the characteristic transverse frequency (which is the eigenvalue of the problem)
is defined from Eq. (3.32) to be

ω0 =
η0k2

y

ρav
. (3.37)

The fact that the characteristic frequency depends on the wavevector squared is a fin-
gerprint of a diffusion process; in this case, diffusion of linear momentum transverse
to the wavevector direction.

We can make a detailed comparison of the theoretical predictions with molecular
dynamics simulations, where the correlation function can be calculated directly from
the definitions in Eqs. (3.33) and (3.28). In Fig. 3.4 results are plotted for model liquid
methane, where the molecular interactions are given through the standard Lennard–
Jones potential, Eq. (1.22).

To compare the simulation data with the hydrodynamic predictions without per-
forming any fitting, the methane model’s shear viscosity can be evaluated from
independent simulations using the Green–Kubo integral [85, 137],

η0 =
V

kBT

∫ ∞

0

〈
P0,xy(t)P0,xy(0)

〉
dt , (3.38)

where P0,xy(t) is the xy-tensor component of the zero wavevector pressure tensor, Eq.
(2.52). SeeDaivis andEvans [47] for an elegantmethod to use all shear pressure compo-
nents to calculate the shear viscosity. This integration gives η0 = 0.15 mPa·s [185] at the
state point chosen. The hydrodynamic predictions are shown in Fig. 3.4 as punctured
lines for the two smallest wavevectors. It is observed that for wavevectors ky ≤ 0.12
Å−1 the hydrodynamic theory is in fair agreement with simulation data, at least for
sufficiently long times. This corresponds to wavelengths larger than 2π/ky = 5.2 nm.
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η0 = 0.15mPa · s. The arrow indicates increasing wavevector; the interval is ky = 0.06 Å−1 to ky = 0.31
Å−1. Data are re-plotted from Ref. [91].

The agreement should be quantified in some manner. For example, we here use an
error estimator, err, as the mean squared deviation normalised with respect to the
squared prediction [91]. If C⊥

uu is the true (here from simulation) transverse velocity
autocorrelation function and Chyd the hydrodynamic predictions, err is given as

err(ky) =

∫ [
C⊥

uu(ky, t)−Chyd(ky, t)
]2 dt∫

C2
hyd(ky, t)dt

. (3.39)

The error estimator is plotted in Fig. 3.5 as a function of wavevector; at ky = 0.12 Å−1

we have err = 0.4 per cent. There is no general criterion for a threshold acceptance
value or even a standard for the error estimator; hence, determining a hydrodynamic
limit is ambiguous.

On a very short time scale, the molecules are bounded by cages formed by the sur-
rounding fluid, and the molecular motion is a rattling one, like atoms in a crystal. This

tFigure 3.5 Error estimator for the liquid methane model. Data re-plotted from Ref. [91].
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leads to solid-like elastic behaviour and allows for additional propagating transverse
shear waves [75, 203]. The shear waves are observed as anti-correlations at small length
and time scales, see Fig 3.4 for ky = 0.31−1, and thus not predicted by the classical
theory, Eq. (3.36), which includes only the presence of a diffusive process.

From this picture we can define a characteristic escape time, τF , which is the average
time it takes the molecules to escape the fluidic cage [75, 203]; we will denote τF the
Frenkel time after Y. Frenkel, who made significant contributions to the theory of con-
densed matter. For timescales larger than τF the molecules enter the diffusive regime
and the system’s dynamics becomes fluidic and viscous. The cage and rattling motion
is a rare event for gasses, and we here only discuss the Frenkel time in connection with
dense systems, which is also the scope of the book. At the end of the chapter we will
return to how τF can be estimated.

It is evident from both the theory and simulation data, Fig. 3.4, that the correla-
tion decay time depends on the specific wavevector (i.e., the characteristic length scale
we study). At small length scales the relaxation is extremely fast, and the system never
enters the fluidic regime. From Eq. (3.37) we define a wavevector-dependent relaxation
time, τ(ky) = 2πρav/(η0k2

y). If τ is larger than the time it takes for the fluid inter-
nal stress to relax, denoted τs, then Bocquet and Charlaix [25] conjectured that the
continuum approximation is applicable, that is, when

τ > τs implying ky <

√
2πρav

η0τs
. (3.40)

We refer to this as the Bocquet–Charlaix criterion. Hansen et al. [91, 102] used the time
where the pressure tensor autocorrelation, defined in Eq. (3.38), is fully relaxed as an
estimator for τs. For the liquidmethanemodel, this gives τs ≈ 4 psec., and we have from
the Bocquet–Charlaix criterion that ky < 0.27Å

−1
or a wave-length of approximately

2.3 nm. This corresponds to an error, Eq. (3.39), of around 4 per cent.
Note that the Bocquet–Charlaix criterion pertains to the collective dynamics,

whereas the Frenkel escape time is determined by the single-particle escape time.
It is often informative to evaluate the correspondingmechanical spectrum; that is, we

transform the correlation function from the time domain into the frequency domain.
The transformation is carried out using the Fourier–Laplace transform defined as

L[ f (t)] = f̂ (ω) =
∫ ∞

0
f (t)e−iωt dt , (3.41)

where ω is the angular frequency. The theoretical predicted spectrum for the transverse
velocity autocorrelation function is then

Ĉ⊥
uu(k,ω) =

kBT
ρav

∫ ∞

0
e−(ω0+iω)t dt =

kBT
ρav

1
ω0 + iω

. (3.42)

The mechanical spectrum has a real part and an imaginary part. The imaginary part
of the spectrum for Ĉ⊥

uu is

Im
[
Ĉ⊥

uu

]
=

kBT ω
ρav(ω2 +ω2

0 )
, (3.43)
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tFigure 3.6 (a) Imaginary part of the mechanical spectrum of the transverse velocity autocorrelation function for model liquid
methane. The wavevector interval is from ky = 0.06 Å−1 to ky = 0.25 Å−1. (b) The dispersion relation curve.
Punctured line is the theoretical prediction.

which has maxima (or peaks) at the frequencies ±ωpeak with

ωpeak = ω0 =
η0k2

y

ρav
. (3.44)

This relation between the peak frequency and the wavevector is the dispersion relation.
Notice that the fingerprint of the diffusive process, namely, the k2

y -dependency is also
found in the dispersion relation.

In Fig. 3.6(a) the imaginary part of the spectrum of C⊥
uu is plotted for different

wavevectors for the methane model; we only plot the results for positive ω due to the
spectrum symmetry. The peak is clearly visible and shifts to higher frequencies with
increasing wavevector as expected from the derived dispersion relation, Eq. (3.44).
In fact, in the low-wavevector regime it can be seen from Fig. 3.6 (b) that the peak
frequency is, within statistical errors, proportional to k2

y (punctured line). Using the
viscosity found from the Green–Kubo integral, the predicted dispersion relation is also
plotted; the slope is given by η0/ρav. It is possible to calculate the shear viscosity from
the plot; however, this can be associated with relatively large statistical uncertainties,
partly due to the numerical Fourier–Laplace transform, and must be done with some
care.

One can also explore the real part of the spectrum. However, the real part has the
exact same information as the imaginary part and, in fact, the two have an integral
relation formalised elegantly by the Kramer–Krönig relation. Nevertheless, sometimes
it can be helpful to study both parts, as they highlight different features of the spectrum;
for the transverse dynamics, the imaginary part suffices for our purpose.

Moving on to structured molecules, the transverse dynamics for water at ambient
conditions has also been studied; see, for example, [19, 91]. For water at ambient con-
ditions, τs does not exceed 10 psec., and then, according to the Bocquet–Charlaix
criterion, the classical hydrodynamic theory is applicable for ky < 0.07Å

−1
. This

corresponds to a characteristic length scale of 9 nm. Figure 3.7 plots the transverse
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velocity autocorrelation function for water. The smallest wavevector, ky = 0.06Å
−1

,
fulfils the Bocquet–Charlaix criterion; the error estimator here is again 4 per cent.
Note that for large wavevectors the viscoelastic behaviour observed for the point mass
Lennard–Jones type systems also is present.

In summary: for simple fluids, classical hydrodynamics successfully describes the
transverse relaxations down to the nanoscale and for times above just a few pico-
seconds. This result, surprising to many, is due to the large degree of molecular
interactions or, equivalently, the frequent momentum exchange events [11]. If σpath

is a characteristic mean ‘interaction-free’ length scale and τpath the timescale between
momentum exchange, the hydrodynamic regime is often expressed by [11, 90],

τpathω ≪ 1 and σpathky ≪ 1 . (3.45)

For relatively dense fluids, τpath and σpath are small compared to relatively dilute fluids;
hence, the hydrodynamic frequency and wavevector limit are larger for dense fluids.
This is in accordance with our discussion in Chapter 1. By cooling the system into
the glass state, we can envision that the momentum exchange frequency decreases,
increasing τpath; hence the hydrodynamic frequency limit decreases. This is in agree-
ment with the Frenkel time picture, where τF can be on the order of years. Also, the
stress relaxation time τs and the viscosity η0 are many orders of magnitude larger at
the glass state compared to the liquid state; hence, according to the Bocquet–Charlaix
criterion, both the frequency and the wavevector limit decrease dramatically, and the
classical hydrodynamic theory will be grossly unsatisfactory at the nanoscale.

3.1.3 Longitudinal Relaxations

Recall Eq. (3.26). If we again choose the wavevector k = (0,ky,0), we obtain a set of
coupled differential equations for the density, y-component streaming velocity, and
thermal kinetic energy, namely,
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∂ δ̃ρ
∂ t

=−iρavkyδ̃uy (3.46a)

∂ δ̃uy

∂ t
=−

iky

ρav
δ̃ peq −νlk2

y δ̃uy −
iky

ρav
δ̃Pyy (3.46b)

∂ δ̃ (ρε)
∂ t

=
T βV

ρav

∂ δ̃ρ
∂ t

−κk2
y δ̃ (ρε)− ikyδ̃J

ε
y . (3.46c)

To ease the reading a bit, we have introduced the longitudinal viscosity,

νl = (ηv +4η0/3)/ρav (3.47)

and κ = λ/(cV ρav).
To proceed, we (again) assume local thermodynamic equilibrium such that the

pressure fluctuations appearing in Eq. (3.46b) can be written as a function of the
density and kinetic temperature fluctuations; that is, δ peq = δ peq(δρ ,δT ). For small
fluctuation amplitudes, we expand to first order,

δ̃ peq =

(
∂ p
∂ρ

)
T

δ̃ ρ +

(
∂ p
∂T

)
ρ

δ̃T . (3.48)

Recall, the subscripts indicate that the temperature and density are fixed during the
differentiation. If the number of particles is fixed, then by the chain rule(

∂ p
∂ρ

)
T
=− V

ρav

(
∂ p
∂V

)
T
=

1
ρavβT

, (3.49)

where βT = −(∂V/∂ p)T/V is the isothermal compressibility. Furthermore, the ther-
mal pressure coefficient is defined as βV = (∂ p/∂T )ρ and we obtain for the pressure
fluctuations (now in terms of the thermal kinetic energy)

δ̃ peq =
1

ρavβT
δ̃ ρ +

βV

ρavcV
δ̃ (ρε) . (3.50)

The thermal kinetic energy depends on the density, see Eq. (3.46c), through its time
derivative. This is not the convenient form, however; from the mass balance equation
we have

T βV

ρav

∂ δ̃ρ
∂ t

=−ikyT βV δ̃uy ; (3.51)

thus, substituting Eqs. (3.50) and (3.51) into Eq. (3.46), we arrive at

∂ δ̃ρ
∂ t

=−iρavkyδ̃uy (3.52a)

∂ δ̃uy

∂ t
=−

iky

ρ2
avβT

δ̃ ρ −νlk2
y δ̃uy −

ikyβV

cV ρ2
av

δ̃ (ρε)−
iky

ρav
δ̃Pyy (3.52b)

∂ δ̃ (ρε)
∂ t

=−iT βV kyδ̃uy −κk2
y δ̃ (ρε)− ikyδ̃J

ε
y . (3.52c)

These equations are the dynamical equations for the longitudinal Fourier coefficients.
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From Eqs. (3.52) we can form nine correlation functions, three from each of the Eqs.
(3.52a)–(3.52c). For example, dynamical equations for the density–density, Cρρ , the
density–velocity, Cρu, and the density–energy, Cρe, correlation functions are defined

from multiplying Eq. (3.52a) by δ̃ ρ(−ky,0), δ̃uy(−ky,0), and δ̃ (ρε)(−ky,0), respec-
tively, and performing the usual ensemble average over independent initial conditions.
The dynamical equations for the correlation functions can be written in a compact
matrix notation as

∂
∂ t

Cρρ Cρu Cρe

Cuρ Cuu Cue

Ceρ Ceu Cee

=−

 0 iρavky 0
iky

ρ2
avχT

νlk2
y

ikyβV
cV ρav

0 iT βV k
ρav

κk2
y

 ·
Cρρ Cρu Cρe

Cuρ Cuu Cue

Ceρ Ceu Cee

 . (3.53)

The coefficient matrix is referred to as the hydrodynamic matrix. From Eq. (3.53) we
can identify three sets of co-dependent functions, namely,

{Cρρ ,Cuρ ,Ceρ},{Cuu,Cρu,Ceu}, and {Cee,Cue,Cρe} . (3.54)

Each set then forms a closed three-dimensional problem wherein the constant coeffi-
cientmatrix is given by the hydrodynamicmatrix, that is, the eigenvalues of the problem
are the eigenvalues of the hydrodynamic matrix. The general solution to such a linear
three-dimensional problem is a sum of three exponential functions; that is, for each
correlation function the solution can be written as

C(ky, t) =C1eω1(ky)t +C2eω2(ky)t ++C3eω3(ky)t , (3.55)

where C1, C2, and C3 are determined by the initial conditions.
It can be verified that the discriminant of the characteristic polynomial associated

with the hydrodynamic matrix is positive. This means the hydrodynamic matrix always
has one real and two complex conjugated eigenvalues. Without going through too
much tedious algebra, we quickly list the results for these eigenvalues up to second
order in wavevector

ω1 = DT k2
y + . . . (3.56a)

ω2,3 =±icsky +Γk2
y + . . . . (3.56b)

Here cs is the adiabatic speed of sound given by

c2
s =

β 2
V βT T +ρavcV

βT cV ρ2
av

, (3.57)

DT is the thermal diffusivity

DT =
λ

β 2
V βT T +ρavcV

, (3.58)

and Γ the sound attenuation coefficient

Γ =
1
2
[νl +κ −DT ] . (3.59)
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The coefficients can be written in a more attractive (and indeed standard) form by
introducing the ratio of heat capacities,

γ =
cp

cV
= 1+

T βT β 2
V

ρavcV
, (3.60)

where cp is the specific heat capacity at constant normal pressure. This gives

c2
s =

γ
ρavβT

, DT =
λ

ρavcp
, and Γ =

1
2

(
γ −1

γ
κ +νl

)
. (3.61)

For a ratio of specific heats close to unity (which is the case for many real liquids),
the system features little thermal expansivity. In this limit the attenuation coefficient is
simplified to Γ ≈ νl/2.

Invoking Euler’s identity, we can re-write to second order in wavevector the general
form, Eq. (3.55), for the nine correlation functions

C(ky, t) = K1e−DT k2
y t + e−Γk2

y t [K2 cos(cskyt)+ iK3 sin(cskyt)] , (3.62)

where K1 =C1, K2 =C2 +C3, and K3 =C2 −C3. We only need to explore a single cor-
relation function, since the hydrodynamic processes are all featured in each function.
We here choose the density autocorrelation function, as this is related to the dynamic
structure factor, which can be found experimentally. Our construction of the autocor-
relation function implies that it is an even function, see AppendixA.3, and the last term
in Eq. (3.62) must be zero, K3 = 0. The normalised density autocorrelation function
then comes in the form

CN
ρρ(ky, t) =

Cρρ(ky, t)
Cρρ(ky,0)

=
1
γ

[
(γ −1)e−DT k2

y t + e−Γk2
y t cos(cskyt)

]
. (3.63)

We see that the classical hydrodynamic theory predicts that:

1. There exists an exponential relaxation process determined by the thermal diffusivity
DT ; the process is a diffusive process (seen by the k2

y dependency). For a ratio of
specific heats of unity, γ = 1, this process is suppressed. This is the Rayleigh process.

2. There exists an oscillatory relaxation process with a wavevector-dependent fre-
quency, csky. The dampening of the oscillations is given through a diffusive process
depending on the attenuation coefficient Γ, that is, the longitudinal viscosity and
heat conductivity. The process accounts for the density waves induced by thermal
fluctuations and propagates adiabatically (without exchange of heat with the sur-
roundings) through the system. The propagation speed is given by cs. This is the
Brillouin process.

To make a comparison with experimental results, we study the corresponding mechan-
ical spectrum. To this end it is noted that the Fourier–Laplace transformation is linear,
that ∫ ∞

0
e−(iω+DT k2

y )t dt =
1

DT k2
y + iω

, (3.64)
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and, that for ω ≥ 0,∫ ∞

0
e−(iω+Γk2

y )t cos(cskt)dt =
iω +Γk2

y

(iω +Γk2
y)

2 +(csky)2 , (3.65)

such that we end with the normalised frequency-dependent density correlation func-
tion

ĈN
ρρ(ky,ω) =

1
γ

[
γ −1

DT k2
y + iω

+
iω +Γk2

y

(iω +Γk2
y)

2 +(csky)2

]
. (3.66)

The real part of the spectrum, Eq. (3.66), is proportional to the dynamical structure
factor S, and from Eq. (3.66) we have

S(ky,ω) =
∆S
γ

[
(γ −1)DT k2

y

D2
T k4

y +ω2 +
(c2

s k2
y +Γ2k4

y +ω2)Γk2
y

(c2
s k2

y +Γ2k4
y −ω2)2 +4ω2Γ2k4

y

]
, (3.67)

where ∆S is the amplitude. The first term on the right-hand side is the Rayleigh proc-
ess, and the second term is the Brillouin process. This form is in agreement with the
experimental data by Bodensteiner et al., Fig. 3.3.

As for the transverse dynamics, it is possible to make a more detailed comparison
with simulation data. To this end, recall that the density Fourier coefficient for general
wavevector k, defined microscopically by

ρ̃(k, t) = ∑
i

mie−k·ri , (3.68)

and the density correlation function may then be calculated directly from this defi-
nition. Figure 3.8 (a) plots molecular dynamics simulation data for the normalised
density autocorrelation function CN

ρρ at three different wavevectors; the system is the
usual model methane liquid. It is observed that the correlation function feature’s
damped oscillations superimposed an exponential decay, as predicted by the theory.
Both the exponential decay rate and the dampening of the oscillations we expect from
the theory to increase with increasing wavevector, and again this also is observed in
the simulations.

Figure 3.8(b) shows the corresponding spectrum, and the Rayleigh and Brillouin
processes are immediately clear. The spectrum is remarkably similar (qualitatively)
to the experimental findings (see Fig. 3.3), and we now understand the underlying
hydrodynamic processes behind the spectrum features.

A direct and quantitative comparison between the theory and data is not straight-
forward as it was for the transverse dynamics because of the very large number of
parameters involved in the longitudinal dynamics. However, we can compare predicted
dispersion relations with molecular dynamics results. We choose two such relations: (i)
The Rayleigh half-peak width and (ii) the Brillouin peak frequency. For the former we
first explicitly write the Rayleigh process term, that is, the first term on the right-hand
side of Eq. (3.67), as

R(k,ω) =
∆S
γ

(γ −1)DT k2
y

D2
T k4

y +ω2 . (3.69)
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tFigure 3.8 Molecular dynamics simulations of liquid methane at state point (ρ,T ) = (446 kgm−3;166 K). (a) The
normalised density autocorrelation functionCN

ρρ at different wavevectors. Lines serve as a guide to the eye. (b) The
corresponding dynamical structure factor for wavevector ky = 0.12 Å−1. The shaded regions under the punctured
lines represent the Rayleigh and Brillouin processes found from fitting Eq. (3.63) to data and then using the
parameters in Eq. (3.67).

From this we can define the half-peak width ∆ωRa as

R(k,∆ωRa)

R(k,0)
=

D2
T k4

y

D2
T k4

y +∆ω2
Ra

=
1
2
, (3.70)

implying
∆ωRa = DT k2

y . (3.71)

This is the first dispersion relation we seek. Notice that when comparing this relation
with data we assume that the Brillouin process does not contribute significantly to the
peak height at ω = 0; that is, the two processes must be clearly separated in frequency
space. Fig. 3.8 shows that this is not strictly true for methane at ky = 0.12 Å−1.

∆ωRa is plotted for supercritical fluid methane in Fig. 3.9(a). The symbols are molec-
ular dynamics simulation data, and the punctured line Eq. (3.71) where DT is found
from fit to data for the lowest wavevector ky = 0.06 Å−1. In the low wavevector limit
the classical hydrodynamic theory correctly predicts the wavevector square depend-
ency, and ∆ωRa grows linearly with respect to the wavevector squared. It is observed
that the Rayleigh peak widens for ky < 1 Å−1, reaching a maximum value at approxi-
mately 1 Å−1, and then decreases for ky > Å−1. The last phenomenon is referred to as
de Gennes narrowing [51], and if we interpret this in terms of classical hydrodynamics
must be related to a decreasing thermal diffusivity as the length scale decreases. As
the length scale becomes even smaller, ∆ωRa again increases, entering a free flight limit
[90].

Next, we derive the dispersion relation for the Brillouin peak.Here wewill only study
the peak position as a function of wavevector and derive an approximate relation. The
Brillouin process, the second term in Eq. (3.67), is re-written as
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tFigure 3.9 Model supercritical fluid methane at state point (ρ,T ) = (446 kgm−3;410 K). (a) Dispersion relation for the
Rayleigh half-peak width. (b) Dispersion relation for the Brillouin peak. From Ref. [91].

B(k,ω) =
1
2γ

[
Γk2

y

(ω + csky)2 +(Γk2
y)

2 +
Γk2

y

(ω − csky)2 +(Γk2
y)

2

]
. (3.72)

This is exact and can be shown by straightforward, albeit tedious, algebra. To find the
maxima, we write the derivative

∂B
∂ω

=−
Γk2

y

γ

[
csky +ω

((ω + csky)2 +(Γk2
y)

2)2 +
ω − csky

((ω − csky)2 +(Γk2
y)

2)2

]

≈−
Γk2

y

γ
ω − csky

((ω − csky)2 +(Γk2
y)

2)2 for ω > 0. (3.73)

This is zero for ω = csky; hence, the peak frequency follows a linear relationship with
respect to the wavevector

ωpeak = csky . (3.74)

Figure 3.9(b) shows the dispersion relation for ωpeak. The prediction here (punc-
tured line) uses the adiabatic speed of sound cs found by Mairhofer and Sadus
[152]; hence, no fitting is performed. It is seen that at low wavevector the Bril-
louin peak is shifted linearly with respect to wavevector, as expected. This very
good agreement is not a general result. For caesium near the melting point the
dispersion relation does not follow the relation using the (experimentally) meas-
ured adiabatic speed of sound [27, 90]. This has been confirmed by Bryk et al.
[40], who showed that the agreement depends on the specific state-point even for
supercritical fluids and liquids. The disagreement gives rise to the terms positive
and negative dispersions [11], depending on whether the slope is smaller or larger
than cs. The exact length scale where classical hydrodynamic theory satisfacto-
rily predicts the dispersion curve for the Brillouin peak is still being investigated
today.
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In liquid state theory the density correlations are traditionally studied through the
van Hove function, Eq. (3.2), or its Fourier transform, the coherent intermediate scat-
tering function, Eq. (3.8). We will also use the abbreviation scattering function for F ;
it is microscopically and for general wavevector defined as

F(k, t) =
1
N
⟨ñ(k, t)ñ(−k,0)⟩, (3.75)

where ñ = ∑i e−k·ri is the number density Fourier coefficient, and N is the number
of molecules in the system. For a single-component fluid the density autocorrelation
function can be written as

Cρρ(k, t) =
m2

V
⟨ñ(k, t)ñ(−k,0)⟩ , (3.76)

that is, we have the relation

F(k, t) =
Cρρ(k, t)

mρav
. (3.77)

The instantaneous density correlations, that is, the correlations at t = 0, are given by
F(k,0), or equivalently Cρρ(k,0). This wavevector-dependent correlation function is
called the static structure factor, S(k), and is, from Eq. (3.77), given by

S(k) =
Cρρ(k,0)

mρav
. (3.78)

Note that if the system is isotropic, we need not be concerned with the direction of
the wavevector; thus, we can simply choose k = (0,ky,0) as usual. The structure factor
for the model methane liquid is plotted in Fig. 3.10(a). One clearly observes that the
density correlations are highly non-trivial and feature several characteristic peaks. This
is simply confirming the results we saw for the van Hove function, Fig. 3.2. For small
wavevectors it can be shown that the structure factor converges to a non-zero value,
limky→0 S(ky) = ρavkBT βT [31]; hence, the system possesses instantaneous long-ranged
correlations, which is a compressibility effect.

As ky increases, the structure factor increases and peaks at ky ≈ 1.7 Å−1, which cor-
responds to approximately one molecular diameter, 2π/1.7Å−1 ≈ 3.7Å. In Fig. 3.10(a)
it is also seen that the density correlations persist even for submolecular length scale.
Obviously, these atomistic length scales are outside the realm of classical hydrody-
namic theory and will not be treated in depth here; however, we do wish to address
one further point.

Intuitively it is, perhaps, more informative to study the fluid structure in real space.
To this end we define the radial distribution function, g, from the inverse Fourier
transform of the static structure,

g(r) = 1+
1

2π2r

∫ ∞

0
(S(ky)−1)sin(kyr)dky , (3.79)

where r > 0 and is to be understood as the radial distance to a central molecule or
atom, which coordinate frame we then follow. The (average) local density surrounding
this particle is related to the radial distribution function by ρ(r) = ρavg(r). The radial
distribution function for liquid methane is shown in Fig. 3.10(b), and we clearly see a
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tFigure 3.10 (a) Structure factor for a Lennard–Jones model of liquid methane at (ρ,T ) = (445 kgm−3,166 K). The line
connects the data and serves as a guide to the eye. (b) The corresponding radial distribution function. Filled circles
result from the inverse Fourier transform definition, Eq.(3.79). The punctured line is from a direct evaluation of g.

very high density layer around onemolecular diameter away from the central molecule;
this is a molecular packing effect. For longer distances the radial distribution function
features dampened oscillations around unity. This we interpret as the positions of the
molecules further away becoming more and more uncorrelated with respect to the cen-
tral one. Hence, the packing and structuring around a central molecule is less ordered.
For sufficiently long distances this fluid structure is lost and g becomes unity; this long
length-scale limit is the hydrodynamic regime

In our exploration of the longitudinal dynamics we have only discussed the density
correlations. As has been shown, all the longitudinal hydrodynamic correlation func-
tions depend on the same underlying physical processes, so we do not gain new insight
from other longitudinal correlations. In fact, the longitudinal correlation functions are
connected elegantly through the hydrodynamic relations; for example, we have that

∂Cρu

∂ t
=

1
V

∂
∂ t

〈
δ̃ ρ(ky, t)δ̃uy(−ky,0)

〉
=

1
V

〈(
∂
∂ t

δ̃ ρ(ky, t)
)

δ̃uy(−ky,0)
〉

=−ikyρavCuu (3.80)

from the mass balance equation. Similar relations can be found for other correlation
functions (see also Further Explorations).

3.2 Single-Particle Dynamics

Hydrodynamics deals with collective properties; recall the microscopic definition of a
hydrodynamic variable A = A(r, t),

A(r, t) = ∑
i

ai(t)δ (r− ri(t)) , (3.81)
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where ai is the corresponding microscopic quantity. Also, recall that the Fourier
coefficients of A are microscopically given by

Ã(k, t) = ∑
i

ai(t)e−ik·ri(t) . (3.82)

We can write out the autocorrelation function for A,

VCAA(k, t) =

〈(
∑

i
ai(t)e−ik·ri(t)

)(
∑

i
ai(0)eik·ri(0)

)〉
= ∑

i

〈
ai(t)ai(0)e−ik·[ri(t)−ri(0)]

〉
+∑

i
∑
j ̸=i

〈
ai(t)a j(0)e−ik·[ri(t)−r j(0)]

〉
, (3.83)

using the linearity of the expected value. The first term on the right-hand side of Eq.
(3.83) is a sum of single-particle correlations. The single-particle correlation is also
denoted the self-part of the collective correlations. The second term in Eq. (3.83)
is the cross-correlation part of the collective correlation. The cross-correlation can
be very important to study; for example, it gives insight to the deviation from the
Nernst–Einstein equation, which relates the self-diffusivity (single-particle process) to
the charge conduction (collective property) in electrolytes [106, 107].

Based on this we define a single-particle variable as

Ai(r, t) = ai(t)δ (r− ri) , (3.84)

with Fourier coefficients

Ãi(k, t) = aie−k·ri . (3.85)

From this we can evaluate the single-particle autocorrelation function using〈
Ãi(k, t)Ãi(−k,0)

〉
=

1
V

〈
ai(t)e−ik·ri(t)ai(0)eik·ri(0)

〉
. (3.86)

As for the collective dynamics, the dynamics for the single-particle correlation are
found by taking the derivative, giving

∂ Ãi

∂ t
=

(
dai

dt
− ik ·viai

)
e−ik·ri

≈ (1− ik · ri)
dai

dt
− ik · ciai − ik ·u(ri, t)ai (3.87)

in the low wavevector regime. We see that the dynamics of the single-particle quantities
follow the same underlying dynamical structure as that of the collective dynamics.

Let us investigate the single-particle mass density ρi. This is defined as

ρi(r, t) = miδ (r− ri(t)) , (3.88)

or in Fourier space ρ̃i(k, t) = mie−ik·ri . To lowest order in wavevector we have the
dynamics, Eq. (3.87),

∂ ρ̃i

∂ t
=−ik ·mici − ik ·miu (3.89)
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71 3.2 Single-Particle Dynamics

since mi is constant. This is the low wavevector approximation of the balance equation

∂ρi

∂ t
=−∇∇∇ ·Ji −∇∇∇ · (ρiu) , (3.90)

where Ji is the single-particle flux which is due to random thermal motion of the
molecules. The relevant constitutive relation here is Fick’s law which, with stochastic
forcing, reads

Ji =−Ds∇∇∇ρi +δJi . (3.91)

Ds is the self-diffusion coefficient and is a single-particle transport coefficient. Sub-
stituting Eq. (3.91) into Eq. (3.90), we obtain the advection-diffusion equation for
ρi,

∂ρi

∂ t
= Ds∇∇∇2ρi −∇∇∇ · (ρiu)−∇∇∇ ·δJi . (3.92)

Ignoring advection, we end up with the diffusion equation,

∂ρi

∂ t
= Ds∇∇∇2ρi −∇∇∇ ·δJi , (3.93)

with Fourier coefficients
∂ ρ̃i

∂ t
=−Dsk2ρ̃i + ik · δ̃J

i
, (3.94)

where k2 = k ·k. Again, it is not the fluctuating quantity that we seek, but the relaxation
of the correlation function. For a single-component fluid we define the single-particle
correlation function

Cs(k, t) =
1
V
⟨ρ̃i(k, t)ρ̃i(−k,0)⟩

=
m2

V

〈
e−ik·ri(t)eik·rt (0)

〉
=

m2

V
Fs(k, t) , (3.95)

where Fs is the incoherent intermediate scattering function. This is the traditional
single-particle correlation function to study, and can be measured experimentally.
Multiplying Eq. (3.94) by ρ̃i(−k,0) and ensemble averaging over initial conditions,
we arrive at the dynamical equation for Fs (or equivalently Cs):

∂
∂ t

Fs(k, t) =−k2DsFs(k, t) . (3.96)

The general solution is, hardly surprising, an exponential function, and since

Fs(k,0) =
〈

e−ik·r(0)eik·r(0)
〉
= 1, (3.97)

we have the particular solution

Fs(k, t) = e−Dsk2t . (3.98)

This is the so-called Gaussian approximation for Fs. To understand this particu-
lar name we need to derive the corresponding real-space correlation function; this
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tFigure 3.11 Mean square displacement (symbols connected with lines) for model liquid methane at
(ρ,T ) = (446kgm−3,166 K). The punctured line represents a function proportional to time t and serves as a
guide to the eye.

also helps to obtain a more physical intuitive understanding of the result. With our
definition of the Fourier transform, Eq. (2.7), we get

Gs(r, t) =
1

(2π)3

∫ ∞

−∞
e−Dsk2t eik·rdk

=
1

8(πDst)3/2 e−r2/4Dst . (3.99)

This is a Gaussian function and is the self-part of the van Hove correlation function
G discussed in the beginning of the chapter. The term Gaussian approximation is now
clear. We can interpret Gs as proportional to the conditional probability of finding the
particle at position r at time t, if the particle was located at r = 0 at t = 0; r is therefore
also called the particle displacement. Gs has dimensions of inverse volume (in three
dimensions) and cannot strictly be a probability distribution. Clearly, the Gaussian
function is the real-space fingerprint of a diffusive process.

From the interpretation that Gs is associated with a probability distribution we can
evaluate the mean, variance, and so forth of the displacement as a function of time;
that is, we can evaluate the moments of Gs. The first moment is zero (i.e., the mean is
zero). More interestingly, we have for the second moment, namely, the variance, ⟨r2⟩,

⟨r2⟩= 1
8(πDst)3/2

∫ ∞

−∞
r2 e−r2/4Dstdr = 6Dst . (3.100)

In liquid state theory ⟨r2⟩ is referred to as the mean square displacement, and we will
adopt this term here. Importantly, the Gaussian approximation predicts that the mean
square displacement is linear with respect to time. Figure 3.11 shows the mean square
displacement of model liquid methane found from simulation. Clearly, at very short
times the linear prediction fails; this is denoted the free flight or ballistic regime. For
later times we see a qualitative agreement with Eq. (3.100), which we use as a definition
of the Frenkel time; hence, t > τF for Eq. (3.100) to hold.
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tFigure 3.12 The incoherent intermediate scattering function for model methane at (ρ,T ) = (435 kgm−3, 166 K). Dashed lines
are the predictions from Eq. (3.98) using the self-diffusion coefficientDs = 6.2×10−9 m2s−1. Note, this state
point is slightly different from the previous state point.

Let us return to the incoherent scattering function Fs and the theoretical predicted
dynamics, Eq. (3.98). Fs can be calculated directly from the preceding definitions
using equilibrium molecular dynamics simulations. The statistics can be improved
considerably if we also average over all particles in the system, that is,

Fs(k, t) =
1
N ∑

i
⟨e−ik·(ri−ri(0))⟩. (3.101)

As for the transverse velocity autocorrelation function, we will perform a direct com-
parison of the theoretical predictions to data without any fitting. To this end we need
the self-diffusion coefficient Ds; this can be found from the Green–Kubo integral of
the single-particle velocity autocorrelation function [156]:

Ds =
1
3

∫ ∞

0
⟨ci(t) · ci(0)⟩ dt . (3.102)

We compare the data to the theory for the methane system near the triple point at two
different wavevectors, Fig. 3.12. At this state point, Ds = 6.2× 10−9 m2s−1. The pre-
dictions from the Gaussian approximation, Eq. (3.98), also are shown. Clearly, good
agreement is observed. The Frenkel escape time is 2-3 psec., and the fluidic regime is
reached rapidly compared to the relaxation at lowwavevector. At larger wavevector the
agreement is good for large times, however, the theory fails at very small time scales as
expected.

This result is also observed for water at ambient conditions, see Fig. 3.13(a), where
τF is around 7–8 psec. For the lowest wavevector the corresponding transverse veloc-
ity autocorrelation function is shown in Fig. 3.12(b). For this wavevector, C⊥

uu decays
on a timescale much smaller than τF , and the relaxation does not follow simple dif-
fusive dynamics. Thus, even if the single-particle dynamics are diffusive, the collective
dynamics may not be diffusive because of cross-correlation effects.
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autocorrelation function.

For highly viscous systems the incoherent scattering function may feature two relax-
ation regimes separated by a plateau that can expand over many decays [134]. Thus, a
single exponential decay predicted by Eq. (3.98) fails.

3.3 Further Explorations

1. First, verify the vector identities in Eq. (3.24). Then, use these identities and the
linear constitutive relations, Eqs. (3.22), to derive the linear dynamical equations,
Eqs. (3.25).

2. Derive the relation between the hydrodynamic correlation functions Cρρ and Cuρ .

3. In Section 3.2 we treated single-particle diffusion in three dimensions. We will here
study diffusion in a single dimension.

The incoherent intermediate scattering function is still Fs(k, t) = e−Dsk2t , where k
is a scalar. Use the inverse Fourier transform in one dimension,

F−1[ f̃ (k, t)] =
1

2π

∫ ∞

−∞
f̃ (k, t)eikr dk,

to find the self-part of the van Hove, Gs. From this show that the mean square
displacement is ⟨r2⟩ = 2Dst. Use this to guess the expression for the mean square
displacement in two dimensions.

Useful integrals: ∫ ∞

−∞
e−ak2+bk dk =

√
π
a

e−b2/4a (a > 0,b > 0)∫ ∞

−∞
r2e−r2/4a dr = 4

√
πa3/2 (a > 0)
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4. From the non-advective momentum balance equation, Eq. (2.127), the shear pres-
sure yx Fourier component can be found to be

P̃yx(ky, t) = ∑
i

(
iFi,x

ky
−mivi,xvi,y

)
eikyyi

for wavevector k = (0,ky,0). Run a molecular dynamics simulation of a Lennard–
Jones liquid, see the Lennard–Jones phase diagram in Fig. 4.3, and calculate the
correlation function,

C(ky, t) =
1
V

〈
P̃yx(ky, t)P̃yx(−ky,0)

〉
.

Explore the behaviour of C as a function of wavevector and offer hypotheses that
can explain the observations.

Computational resources available.

5. In this exploration we will see that what appears to be a simple system composed
of point mass molecules can in fact feature large relaxation times. This challenges
both the classic hydrodynamic description and the molecular dynamics studies of
these systems due to the relatively large Deborah number.

The system is the well-known Kob–Andersen binary Lennard–Jones mixture.
The system is composed of two different particle types denoted A and B, and the
particles interact in such a way that the A–B interaction is energetically favourable;
this enables super-cooling while preventing phase separation. However, we shall
start the exploration far away from the super-cooled regime.

First, set the mixture ratio between A and B particles to 4:1, and let ρ = 1.2
and T = 1.5 in MD units; this corresponds to a liquid state. Estimate the pressure
tensor relaxation time τs and viscosity η0 from the shear pressure autocorrelation
function, Eq. (3.38). From this and the Bocquet–Charlaix criterion, estimate the
minimum wavelength (in MD units) where we can expect the classical picture to
hold. (For reference, the standard one-component Lennard–Jones yields a wave-
length of approximately 6–7σ .) You can compare your findings with the transverse
velocity autocorrelation function.

Lower the temperature in small steps of 0.1 and investigate how the minimum
wavelength changes. Make sure that the system is well equilibrated and that the
shear pressure autocorrelation function is fully relaxed (this will require some
patience). The super-cooled regime is below T = 1.05; attempt to find the minimum
wavelength in this region of the phase diagram.

For further information on the Kob–Andersen fluid, see Kob and Andersen, Ref.
[134], Furukawa and Tanaka, Ref. [77], and Pedersen et al., [208].

Computational resources available.
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4 Extensions to Classical Hydrodynamics

In Figs. 3.4 and 3.7 we saw that the transverse velocity autocorrelation function fea-
tures anti-correlations at small time and length scales. This is not predicted by the
classical hydrodynamic model and thus motivates an extension to the theory. Moreo-
ver, in the classical theory the coupling between the fluid linear momentum and spin
angular momentum is absent; however, in Chapter 2 we noted that in general the bal-
ance equations for these two quantities depend on the antisymmetric pressure; again,
this motivates a further exploration and extension of the classical picture.

This chapter falls in two parts. In the first part we revisit the transverse velocity
autocorrelation function introduced in Chapter 3. Special focus is on generalisations of
Newton’s law of viscosity such that short time anti-correlations and short-wavelength
dynamics can be modelled in the hydrodynamic frame work.

In the second part, the hydrodynamic theory is extended to include nanoscale relax-
ation phenomena in molecular liquids. We then add the spin angular momentum as
a new hydrodynamic variable for which the balance equation was derived in Chap-
ter 2. Following the ideas from Chapter 3, the extended hydrodynamics is studied in
detail through the relevant correlation functions in equilibrium. We also explore die-
lectric materials composed of permanent molecular dipoles. This is done through the
polarisation density correlation function, and we will investigate the physical processes
behind the relaxations of this. As a final result, we will see that the multiscale dielectric
response features surprising singularities.

4.1 Viscoelastic Relaxations

The anti-correlations seen in Figs. 3.4 and 3.7 are believed to be a fingerprint of so-
called shear waves and a result of an elastic component in the system’s response to
thermal perturbations. For water the anti-correlations are present for wavelengths on
the order of nanometers and are therefore relevant for our exploration.

To highlight the phenomenon, Fig. 4.1 shows results from a DPD simulation, a sim-
ulation technique briefly introduced in Chapter 1. In what followswewrite the different
quantities in dimensionless DPD units, hence, we do not study any specific system and
we do not give the quantities any dimensions. Note that the anti-correlation, that is,
the shear waves at a given wavevector, becomes more pronounced as the temperature
decreases. In the temperature range shown here, the viscosity changes by three orders
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of magnitude; thus, the presence of the shear waves is correlated with high viscosity,
and we refer to it as a viscous phenomenon (not saying that the increasing viscosity is
the cause!).

We have seen that the classical hydrodynamic theory cannot model the super-
imposed oscillations, and wewill need to extend the constitutive relations that we apply
to the momentum balance equation. Specifically, for the present case this means that
we need a new model for the shear pressure tensor components. Recall that for the
point mass atomistic systems we explore here the pressure tensor is a symmetric rank-
2 tensor and we therefore only consider the trace and symmetric traceless parts. The
balance equation for the fluctuations to first order is, by Eq. (3.19),

ρav
∂δu
∂ t

=−∇∇∇ ·
(
(peq +Π)I+

os
P
)
, (4.1)

and therefore the Fourier coefficients are given by

ρav
∂ δ̃u
∂ t

=−ik ·
(

p̃eq + Π̃
)

I− ik·
os

P̃ . (4.2)

As usual, we choose k = (0,ky,0) and the dynamics for the x-velocity component is

ρav
∂ δ̃ux

∂ t
=−

iky

2
(P̃xy + P̃yx) =−ikyP̃yx (4.3)

due to the symmetry of
os
P.

Like Newton’s law of viscosity, the Maxwell constitutive model for viscoelasticity
relates the gradient of the velocity field with the pressure tensor. Going back to real
space, it reads in standard form, without stochastic forcing,

∂ux

∂y
=− 1

η0

(
1+ τM

∂
∂ t

)
Pyx , (4.4)

where τM is the Maxwell relaxation time. The Maxwell model is often formulated in
terms of the stress tensor and strain rate tensor; however, we will continue to use the
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pressure formalism in order not to introduce unnecessary symbolism. For sufficiently
small Maxwell times, denoted the viscous regime, we have that

∂ux

∂y
=−

Pyx

η0
, (4.5)

which is just Newton’s law of viscosity, Eq. (3.22b). In this limit the system behaves
dissipatively. In the other extreme, for large Maxwell times, that is the elastic regime,
we have

∂ux

∂y
=−τM

η0

∂Pyx

∂ t
=− 1

G∞

∂Pyx

∂ t
, (4.6)

where G∞ = η0/τM is the modulus of rigidity. Taking this limit, we see that the shear
pressure magnitude or, if you prefer, the fluid’s internal stress, builds up in points,
where the velocity gradient is non-zero. Equation (4.4) is a linear interpolation, or a
viscoelastic model, between these two extremes.

It is worth giving a concrete example for use as a reference later. If the system under-
goes a constant rate of deformation (i.e. ∂ux/∂y= γ̇0 everywhere and for t ≥ 0), we have,
from Eq. (4.4),

∂Pyx

∂ t
+

1
τM

Pyx =−G∞γ̇0 . (4.7)

If the deformation starts from equilibrium, Pyx(0) = 0, this solves to

Pyx(t) =−η0γ̇0

(
1− e−t/τM

)
. (4.8)

In the Appendix, the method of undetermined coefficients is discussed and can be used
to solve Eq. (4.7) with the given initial condition. Thus, the shear pressure relaxes at
a rate determined by the Maxwell relaxation time and converges to a plateau with
magnitude η0γ̇0. Using the inelastic Newtonian model, the shear pressure will jump to
this plateau instantaneously.

Clearly, the Maxwell model is a differential equation with respect to time for the
shear pressure and is therefore an implicit expression, which cannot be applied directly
to the balance Eq. (4.3). However, if the strain rate is well behaved,1 then by the exist-
ence and uniqueness theorem [109] there exists an explicit and unique solution for Pyx;
one such example we saw just above for constant strain rate.

With this in mind, we proceed in a more general manner and write Maxwell’s model
in terms of a linear differential operator, A [203]; that is, we can write(

1+ τM
∂
∂ t

)
Pyx(t) =A[Pyx] =−η0

∂ux

∂y
. (4.9)

As just discussed, we know this equation can be solved; this we express abstractly via
the operator inverse,

Pyx(t) =−η0A−1[∂ux/∂y], (4.10)

1 This term here means Lipschitz continuous.
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such that A−1A[Pyx] = AA−1[Pyx] = Pyx. Proving the properties of A and its inverse
usually involves analysing the integral of the Green’s function; however, we will not
embark on this endeavour. Thus, by proceeding and Fourier transforming with respect
to spatial coordinate, the Maxwell model reads

ikyδ̃ux =− 1
η0

A[P̃yx], (4.11)

giving the explicit expression for the shear pressure, with stochastic forcing this time

P̃yx =−ikyη0A−1[δ̃ux]− δ̃Pyx. (4.12)

By substitution of Eq. (4.12) into Eq. (4.3), we have

ρav
∂ δ̃ux

∂ t
=−η0k2

yA−1[δ̃ux]+ ikyδ̃Pyx. (4.13)

Using the properties of the operator, this can be rearranged to give

ρav

(
1+ τM

∂
∂ t

)
∂ δ̃ux

∂ t
+η0k2

y δ̃ux − iky

(
1+ τM

∂
∂ t

)
δ̃Pyx = 0, (4.14)

and collecting the terms,

∂ 2

∂ t2 δ̃ux +
1

τM

∂
∂ t

δ̃ux + c2
T k2

y δ̃ux − iky

(
τM

∂ δ̃Pyx

∂ t
+ δ̃Pyx

)
= 0, (4.15)

where the transverse shear wave speed,

c2
T = η0/(ρavτM), (4.16)

is introduced.
Recall, we wish to derive the equation for the correlation function C⊥

uu; thus,
multiplying with δ̃ux(−ky,0) and ensemble averaging, we arrive at the differential
equation

∂ 2

∂ t2 C⊥
uu +

1
τM

∂
∂ t

C⊥
uu + c2

T k2
yC⊥

uu = 0. (4.17)

This is a linear second-order differential equation with constant coefficients, and the
eigenvalues for this problem are found to be

ω1,2 =−1
2

(
1

τM
±
√

1/τ2
M − (2cT ky)2

)
. (4.18)

In the wavevector regime ky > 1/(2cT τM), the two eigenvalues are complex (and they
always come in complex conjugated pairs); and since C⊥

uu is a real-valued function, a
property of the autocorrelation function, we have

C⊥
uu(ky, t) =

kBT
ρav

e−t/2τM cos(ωT t), (4.19)

where the characteristic frequency is

ωT =
1
2

√
(2cT ky)2 −1/τ2

M > 0. (4.20)
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This also defines the dispersion relation for the shear wave oscillations; for sufficiently
large Maxwell relaxation times, the dispersion relaxation, Eq. (4.20), is to a good
approximation

ωT = cT ky. (4.21)

In Fig. 4.2(a) the dispersion curve for ωT is plotted for different temperatures. We see
that for low wavevectors ωT is very low indicating a relatively large Maxwell relaxation
time, thus invoking the approximation leading to Eq. (4.21). This is plotted in Fig.
4.2(b) and the slope gives the shear wave speed, Fig. 4.2(c). As can be seen, cT increases
as we approach the low-temperature viscous regime. In general, we have that the shear
wave speed is smaller than the adiabatic speed of sound, cT < cs.

We have discussed the high-wavevector regime. In the low-wavevector regime,
ky ≪ 1/(2cτM), the eigenvalues can be expanded to second order:

ω1 =−η0k2
y/ρav + . . . and ω2 =−1/τM +η0k2

y/ρav + . . . . (4.22)

Substituting into the general solution for Eq. (4.17), we have

C⊥
uu(ky, t) =C1e−η0k2

y t/ρav +C2e(η0k2
y/ρav−τ−1

M )t . (4.23)

For zero wavevector this gives C⊥
uu(0, t) = C1 +C2e−t/τM , and therefore the integration

constant C2 must be zero since we require conservation of momentum. We then have

C⊥
uu(ky, t) =

kBT
ρav

e−ω0t , (4.24)

where ω0 = η0k2
y/ρav, which is the well-known result from Chapter 3, where we ignored

any elastic effects.
We can define a critical wavevector, kcrit = 1/(2cT τM), such that, if ky > kcrit, the

fluid supports shear waves, but not when ky < kcrit. This is sometimes formulated as the
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presence of a wavevector gab, 0 ≤ ky < kcrit, wherein the shear waves are not present
[214]. For atomistic liquids, for example liquid argon, the critical wavelength is found to
be around 0.5–1.5 nm and increases with decreasing temperature; that is, kcrit increases
as we enter the more-viscous regime. The exact value is still debated [39].

4.1.1 Generalised Viscoelastic Modelling

A more general way to model the viscoelastic response is through a so-called transport
kernel, ϕ . In this picture the momentum flux at some time t depends on the entire
history of the driving force, that is, from time t ′ = 0 to t ′ = t. If γ̇ is the strain rate, the
shear pressure is in this formalism given by a convolution integral, excluding stochastic
forcing:

Pyx(t) =−η0

∫ t

0
ϕ(t − t ′)γ̇(t ′)dt ′. (4.25)

Notice that, like the Dirac delta, the transport kernel has dimension of the inverse of
the argument, here inverse of time. Treating the same case as above, we let the strain
rate be zero for t ′ ≤ 0 and constant γ̇ = γ̇0 for t ′ > 0; we get

Pyx(t) =−η0γ̇0

∫ t

0
ϕ(t − t ′)dt ′. (4.26)

Introducing the Maxwell kernel ϕ(t) = 1/τMe−t/τM , we can evaluate the convolution
integral directly, giving

Pyx(t) =−η0γ̇0

τM

∫ t

0
e−(t−t ′)/τM dt ′ =−η0γ̇0(1− e−t/τM ), (4.27)

which is consistent with Maxwell’s constitutive model, Eq. (4.4). The Maxwell relax-
ation time can now be interpreted as the system characteristic memory time. In
particular, we have that as τM → 0, the Maxwell kernel resembles a spike which we
can approximate as a Dirac delta; that is, in this small time memory limit we get

Pyx(t) =−η0γ̇0

∫ t

0
δ (t − t ′)dt ′ =−η0γ̇0 , (4.28)

which is the Newtonian viscosity law.
Of course, we can only expect the Maxwell kernel to be applicable for certain simple

fluids; a more general transport kernel can be composed of a series of Maxwell kernels
with different relaxation times [174].

In the generalised formalism, we often wish to work in the frequency domain; thus,
we Fourier–Laplace transform the constitutive model, using the definition from Eq.
(3.41). A very important theorem that we will use a few times in what follows is the
convolution theorem; this states the identity

L
[∫ ∞

0
f (t − t ′)g(t ′)dt ′

]
= L[ f (t)]L[g(t)], (4.29)
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respectively.

that is, the Fourier–Laplace transform of the convolution between functions f and g
equals the product of the Fourier–Laplace transforms. The convolution theorem also
applies for the Fourier transform F ; we will use this below. Using the Maxwell kernel,
the shear pressure in frequency domain becomes

P̂yx(ω) =−η0γ0

τM

∫ ∞

0
e−(1/τM+iω)t dt =− η0γ0

1+ iωτM
(4.30)

at constant strain rate. It is seen that Newton’s viscosity law is recaptured in the limit
of zero frequency, a limit that corresponds to large times compared to the system
relaxation time.

4.1.2 Hydrodynamic Invariance in Viscous Fluids

A particular type of fluid shows strong correlation between system potential energy
and pressure, and is therefore named a strongly correlating system [169] or R-simple
system [187]. R-simple systems feature lines in the phase diagram where dynamics
and structure are invariant if expressed in the appropriate reduced units. These lines
are called isomorphs [79]. Examples of strongly correlating systems include Lennard–
Jones systems and simple united-atomic models of molecules in the dense viscous
regime. Hydrogen-bonding liquids like water, on the other hand, are not strongly
correlating.

Figure 4.3 shows two isomorphs superimposed on the phase diagram for the
Lennard–Jones system. The isomorphs are traced using the so-called direct iso-
morph check iterative algorithm [79]: At some state point (ρ1,T1) where the sys-
tem is strongly correlating the system is simulated, and the configurations R1(t) =
(r1(t),r2(t), . . . ,rN(t)) are saved as a function of time. Each of the configurations cor-
responds to a potential energy U = U(R1(t)). R1(t) is now scaled for each t, giving
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Lennard–Jones system. Lines serve as a guide to the eye. Data are taken from Ref. [133].

configurational vector R2(t) corresponding to a new system density, ρ2, and a poten-
tial energy,U(R2(t)). In order to find the new system temperature, T2, one exploits that
U(R2) and U(R1) are related through the correlation expression

U(R2) =
T2

T1
U(R1)+C, (4.31)

hence, the next state point on the isomorph is (ρ2,T2). The algorithm is then repeated
using this new state point, producing state point three on the isomorph, and so
forth.

To study the invariance, the appropriate reduced units of length, time, and energy
are

σ∗ = n1/3σ and t∗ = n1/3
√

kBT/mt and e∗ = kBT, (4.32)

where n is the number density and m the particle mass. In Fig. 4.4 the transverse veloc-
ity autocorrelation function is plotted for two different state points using the reduced
units, Eq. (4.32). The state points are (ρ,T ) = (0.85,1.00) and (ρ,T ) = (1.133,4.233)
and lie on the same isomorph. Note that since the Lennard–Jones fluid is only
approximately invariant along an isomorph, there exist small deviations in Fig. 4.4.
Importantly, the long-wavelength longitudinal dynamics are not isomorphic invariant,
which is a consequence of the non-invariance of the reduced isothermal bulk modulus
[133].

4.2 Non-local Viscous Response

In Sect. 4.1 the viscoelastic kernel was introduced to account for the temporal corre-
lation effects. This idea can be extended to the spatial coordinate as well, such that,
for example, the shear pressure at a given point depends on the entire strain-rate his-
tory as well as the spatial strain rate distribution in the system. Here we will revisit the
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transverse dynamics once more and go into detail with the kernel, focusing on the long
time regime or, equivalently, small frequencies.

First, however, we will make a few general remarks, and to ease the formalism we
simply consider a scalar flux J which depends on a single scalar driving force X. For
time and spatial translational invariance, the system response is independent of both
the time origin and the choice of coordinate system. In this case, the flux is given by
the double convolution integral,

J(r, t) =−M0

∫ t

0

∫ ∞

−∞
ϕ(r− r′, t − t ′)X(r′, t ′)dr′dt ′, (4.33)

where M0 is the frequency- and wavevector-independent part of the transport function.
Wemay add a stochastic forcing term, but for these general remarks it plays no role and
is omitted. If the timescale is large compared to the Maxwell relaxation time (assuming
this is well defined for the systemwe study), we can ignore the temporalmemory effects,
and the system response to a driving force will only depend on the force at time t; hence,
we can write the kernel as

ϕ(r− r′, t − t ′) = f (r− r′)δ (t − t ′). (4.34)

Note that this separation into two functions is, in general, not true. The flux then reads

J =−M0

∫ t

0
δ (t − t ′)

∫ ∞

−∞
f (r− r′)X(r′, t ′)dr′ dt ′

=−M0

∫ ∞

−∞
f (r− r′)X(r′, t)dr′. (4.35)

Equivalently, if we ignore the spatial correlation effects, f (r) = δ (r), we have

J =−M0

∫ ∞

−∞
δ (r− r′)X(r′, t)dr′ =−M0X(r, t), (4.36)

which is simply the classical local description.
From this we see that f fulfils (by design) the property∫ ∞

−∞
f (r)dr = 1, (4.37)

which in turn implies that

f̃ (k) =
∫ ∞

−∞
f (r)e−ik·r dr = 1 for k = 0. (4.38)

Let us now focus on the specific case of the relaxation of the transverse autocorrelation
function, C⊥

uu. Again, the fundamental equation is the momentum balance equation;
choosing k = (0,ky,0), we have to first order in the fluctuations the streaming velocity
x-component,

ρav
∂ δ̃ux

∂ t
=−ikyP̃yx. (4.39)
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Applying stochastic forcing to the generalised linear constitutive relation, Eq. (4.35),
the shear pressure reads for sufficiently small Maxwell relaxation times

Pyx(r, t) =−2η0

∫ ∞

−∞
f (r− r′)γ̇(r′, t)dr′+δPyx, (4.40)

where γ̇ is the yx-component of the strain-rate tensor
os

∇∇∇u, that is,

γ̇ =
1
2

(
∂δuy

∂x
+

∂δux

∂y

)
. (4.41)

According to the convolution theorem, we have

F
[∫ ∞

−∞
f (r− r′)γ̇(r′, t)dr′

]
= f̃ (ky)F [γ̇(r, t)]

=
iky

2
f̃ (ky) δ̃ux(ky, t), (4.42)

since we have chosen the wavevector k = (0,ky,0). In Fourier space the shear pressure
is then

P̃yx =−ikyη0 f̃ (ky)δ̃ux + δ̃Pyx. (4.43)

Substitution of this result into Eq. (4.39) yields

ρav
∂ δ̃ux

∂ t
=−k2

yη0 f̃ (ky)δ̃ux − ikyδ̃Pyx. (4.44)

The dynamical equation for the transverse velocity autocorrelation function is readily
obtained as

ρav
∂
∂ t

C⊥
uu(ky, t) =−k2

yη0 f̃ (ky)C⊥
uu(ky, t), (4.45)

with the solution

C⊥
uu(ky, t) =

kBT
ρav

e−η0 f̃ (ky)k2
y t/ρav . (4.46)

This is in the same exponential form as the classical treatment, where the local consti-
tutive relation is applied; however, the relaxation is not, in general, proportional to the
wavevector squared. As for the classical treatment, Eq. (4.46) only holds for sufficiently
large times, t > τM, and will not include the shear wave phenomenon; but contrary to
the classical treatment, it is valid for arbitrary wavevectors.

Equation (4.46) is not really helpful unless the function f is known; and, of course,
one may propose a functional form. We here seek an expression based on data from
simulations, and for this purpose we first transform Eq. (4.46) into frequency domain
applying L:

Ĉ⊥
uu(ky,ω) =

kBT
ρav

1
η0 f̃ (ky)k2

y
ρav

+ iω
. (4.47)
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Again, this only holds for sufficiently small frequencies. Especially, for ω = 0 we get
an expression for f̃ in terms of the transverse velocity autocorrelation function when
ky ̸= 0:

η0 f̃ (ky) =
kBT

k2
yĈ⊥

uu(ky,0)
. (4.48)

Since we can evaluate C⊥
uu directly in simulations, this provides a very useful way to

calculate f̃ .
Figure 4.5 plots the function f̃ for liquid methane, butane, and water for different

wavevector ky. The wavevector is given in units of inverse molecular diameters, σ =

3.1−3.9 Å. It is seen that for ky ≈ 1σ−1, f̃ approaches the zero wavevector limit, f̃ → 1.
This indicates that the local description (i.e., Newton’s law of viscosity) holds down to
a few nanometres for these simple systems.

There are no satisfactory theories that can predict the kernels from first principles;
for example, standard mode coupling theory fails [77]. Different empirical functional
forms have been suggested, for example,

f̃ (ky) =
1

1+(γky)2 +(ξ ky)4 (4.49)

by Furukawa and Tanaka [77], and

f̃ (ky) =
1

1+αkβ
y

(4.50)

by Hansen et al. [94]. The punctured lines in Fig. 4.5 represent best fit of Eq. (4.50) to
data.

From these fits one can define a transverse dynamical length scale,

L⊥ = α1/β . (4.51)

This quantifies a length where the collective spatial correlations in the liquid affects the
viscosity. For non-viscous fluids L⊥ is usually on the order of around one molecular
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diameter or less, but it increases as the system approaches the viscous regime [77, 104].
Figure 4.6 shows the wavevector-dependent zero frequency viscosity η(ky) = η0 f (ky)

for a two-component Lennard–Jones system at three different temperatures. The quan-
tities are given in MD units and not written explicitly. The binary mixture allows the
system to be super-cooled and feature very slow dynamics without crystallising. The
result shows that, on approaching the viscous regime, the viscosity η0 increases dra-
matically; but the length scale L⊥ does not increase with the same rate, meaning that the
spatial correlations are not affected in the same dramatic manner. This indicates that it
is not an increase in correlation length that is the physics behind the increasing viscous
behaviour in the super-cooled regime of simple liquids. For polymer melts approach-
ing the glassy state, on the other hand, molecular dynamics simulations have indicated
that L⊥ diverges [180]; hence, the correlation length is still not fully understood.

The generalisation presented here for the transverse dynamics can also be applied
to the longitudinal dynamics, leading to kernels for, say, the bulk viscosity and heat
conductivity. A more heuristic approach is to simply fit the classical hydrodynamic
correlation functions to data allowing thermal diffusivity, attenuation coefficient, and
adiabatic speed of sound to be wavevector dependent. We will not pursue this further
here.

4.3 Relaxation Phenomena in Molecular Fluids

We have mainly studied nanoscale fluid systems, where the constituent molecules are
pointmass particles; theworkhorsemethane is an example of such a pointmass system.
The hydrodynamic correlation functions are also applied to study the hydrodynam-
ics of more complex fluids like water; see Bertolini and Tani, Ref. [19], for a very
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comprehensive investigation. However, the theory developed in Chapter 2 allows us to
extend the exploration by including the effects of molecular rotation, that is, molecular
degrees of freedom. In fact, this extension will later be critical in order to understand
certain phenomena for molecular flows on the nanoscale.

4.3.1 Spin Angular Momentum Coupling

In Chapter 1 it was shown from molecular dynamics simulations that a flow can be
achieved by rotating water molecules using an electric field. This coupling between the
molecular rotation and the streaming velocity cannot be explained from the classical
theory, and we must therefore extend the hydrodynamic model. Inspired by Chapter 3,
we begin the investigation of this coupling phenomenon in equilibrium, and we shall
derive the relevant hydrodynamic correlation functions.

First, recall that in our molecular formalism the pressure is not in general a sym-
metric tensor, and that the antisymmetric part appears in both the equation for the
streaming velocity and the spin angular momentum; see Eqs. (2.62) and (2.113). It is
this fact that leads to the coupling between the two hydrodynamic variables.

In equilibrium the average angular velocity is zero, ΩΩΩav = 000; hence, ΩΩΩ = δΩΩΩ and also
we have u = δu. Then the balance equations for the fluctuating parts δu and δΩΩΩ take
the following general forms:

ρav
∂δu
∂ t

=−∇∇∇ · ((peq +Π)I+
os
P)−∇∇∇×

ad
P (4.52a)

ρavΘ
∂δΩΩΩ

∂ t
=−2

ad
P −∇∇∇ · (Q+

os
Q)−∇∇∇×

ad
Q . (4.52b)

We have already introduced the constitutive relations for the viscous normal pressure

Π and the traceless symmetric part of the pressure tensor
os
P in Eqs. (3.22). To proceed,

we need four additional constitutive relations to account for the fluxes
ad
P ,Q,

os
Q, and

ad
Q.

We begin with the pseudo-vector
ad
P ; to this end, we need to discuss the motion of a

rigid body. Microscopically, for a rigid-body fluid element the molecules, on average,
maintain their relative positions; this is denoted local molecular rigidity [67]. Now,
from Eq. (2.59) we saw that there exists a torque due to the non-symmetric molecular
interactions, and this torque will lead to a molecular rotation and, hence, a deviation
from local rigidity. To propose a constitutive relation for this resulting antisymmetric
pressure, we first need a result for the local rotation of a rigid body. For simplicity,
consider a fluid that flows in a circular path around a reference point 0, see Fig. 4.7, and
note that both the orbital angular velocity and the spin angular velocity are given by
the spatially constant angular velocity ΩΩΩ. Moreover, at any point r the local streaming
velocity is u = ΩΩΩ× r, and since the local rotation is given by the vorticity we get

∇∇∇×u = ∇∇∇× (ΩΩΩ× r)
= ΩΩΩ(∇∇∇ · r)− (ΩΩΩ ·∇∇∇)r = 2ΩΩΩ. (4.53)
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tFigure 4.7 Illustration of a rigid body flow. The circles represent the fluid elementV as it undergoes a rigid-body rotation.
Superimposed arrows indicate the local rotation ofV as it flows, indicated by the large arrow.

Thus, for a rigid body rotation, the local spin angular velocity is the same at every point
and given by the velocity field alone.

The deviation from local molecular rigidity is given by the difference between the
vorticity and twice the angular velocity, that is,

ad
P=−ηr(∇∇∇×u−2ΩΩΩ)+δ

ad
P , (4.54)

where ηr is the rotational viscosity. Notice that Curie’s principle is fulfilled.

The spin angular momentum flux tensors Q,
os
Q, and

ad
Q we model in the standard

manner through gradients in the spin angular velocity [52, 67]:

Q =−ζv(∇∇∇ ·ΩΩΩ)+δQ (4.55a)
os
Q =−ζ0

[
(∇∇∇ΩΩΩ+ΩΩΩ∇∇∇)− 2

3
Tr(∇∇∇ ·ΩΩΩ)I

]
+δ

os
Q (4.55b)

ad
Q =−ζr(∇∇∇×ΩΩΩ)+δ

ad
Q. (4.55c)

Here ζ0,ζr, and ζv are called the shear, rotational, and bulk spin viscosities.
Substitution of the constitutive relations into Eqs. (4.52) gives

ρav
∂δu
∂ t

=−∇∇∇peq +(ηv +η0/3−ηr)∇∇∇(∇∇∇ ·δu)+(η0 +ηr)∇2δu

+2ηr∇∇∇×δΩΩΩ+∇∇∇ ·δP (4.56a)

ρavΘ
∂δΩΩΩ

∂ t
= 2ηr(∇∇∇×δu−2δΩΩΩ)− (ζv +ζ0/3−ζr)∇∇∇(∇∇∇ ·δΩΩΩ)

− (ζ0 +ζr)∇∇∇2δΩΩΩ+∇∇∇ ·δQ+2δ
ad
P , (4.56b)

where δP = δΠI + δ
os
P + δ

a
P and δQ = δQI + δ

os
Q + δ

a
Q. For ease of reading, the

transverse viscosity, ηt , and the transverse spin viscosity, ζt , are introduced in the
following:

ηt = η0 +ηr, and ζt = ζ0 +ζr . (4.57)
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In terms of the Fourier coefficients, we get the dynamics

ρav
∂ δ̃u
∂ t

= − ikp̃eq − (ηv +η0/3−ηr)k(k · δ̃u)−ηtk2δ̃u

+ 2iηrk× δ̃ΩΩΩ+ ik · δ̃P (4.58a)

ρavΘ
∂δ̃ΩΩΩ

∂ t
=2ηr(ik× δ̃u−2δ̃ΩΩΩ)− (ζv +ζ0/3−ζr)k(k · δ̃ΩΩΩ)−ζtk2δ̃ΩΩΩ

+ ik · δ̃Q+2δ̃
ad
P . (4.58b)

We have the wavevector k=(0,ky,0), andwe first focus on the longitudinal spin angular
dynamics, as this does not couple to other hydrodynamic variables. From Eq. (4.58b)
we see that

ρavΘ
∂δ̃Ωy

∂ t
=−(4ηr +ζlk2

y)δ̃Ωy + ikyδ̃Qyy +2δ̃
ad
Py , (4.59)

where ζl = ζv + 4ζ0/3 is longitudinal spin viscosity. We can now construct the
longitudinal spin angular velocity autocorrelation function as

C||
ΩΩ(ky, t) =

1
V
⟨δ̃Ωy(ky, t)δ̃Ωy(−ky,0)⟩ , (4.60)

and the dynamical equation for C||
ΩΩ is given by multiplication of δ̃Ωy(−ky,0) and

ensemble averaging Eq. (4.59). One obtains

ρavΘ
∂C||

ΩΩ
∂ t

=−(4ηr +ζlk2
y)C

||
ΩΩ . (4.61)

By applying the equipartition theorem, it can be shown that the initial condition is
[102]

C||
ΩΩ(ky,0) =

9kBT
4ρavΘ

, (4.62)

and therefore the particular solution to Eq. (4.61) reads

C||
ΩΩ(ky, t) =

9kBT
4ρavΘ

e−ωt . (4.63)

The eigenvalue is given by

ω =
4ηr +ζlk2

y

ρavΘ
, (4.64)

which also defines the relevant dispersion relation.
To compare the predictions from this extended hydrodynamicmodel with simulation

data without fitting, we need to calculate the transport coefficients ηr and ζl . Evans
and Hanley [64] argued that, unlike the shear viscosity, the rotational viscosity ηr does
not have a standard Green–Kubo integral, as it describes a wavevector-independent
process. Evans and Hanley also showed that it can be evaluated from the generalised
Langevin equation; however, due to statistical noise in the data, the method can be
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significantly improved by introducing an empirical relation between the antisymmetric

stress autocorrelation function,
a
C, and rotational viscosity

a
C (s) =

ηrs
4ηr/ρavΘ+ s+ s2τ

, (4.65)

where τ is a relaxation time, s is the Laplace coordinate, and

a
C (s) =

V
3kBT

∫ ∞

0

〈
ad
P (t)·

ad
P (0)

〉
e−st dt . (4.66)

The pseudo-vector
ad
P is defined microscopically in Eq. (2.59), the correlation function

a
C (s) can be calculated from Eq. (4.66), and ηr is found from fitting to Eq. (4.65).

We also need the spin viscosity, ζl . From simulations it has been shown that the spin
viscosities ζl and ζt are equal within statistical uncertainty, at least in the limit of small
wavevector and small moment of inertia [101, 98], that is, ζl ≈ ζt . We will therefore
from here on use the same symbol for both the spin viscosities, namely ζ . The spin
viscosity does have an ordinary Green–Kubo integral [67]:

ζ =
V

2kBT

∫ ∞

0

〈
os
Qxy (t)

os
Qxy (0)+

a
Qxy (t)

a
Qxy (0)

〉
dt . (4.67)

The computed values for ηr and ζ for chlorine, butane, and water are listed in Table
4.1.

The correlation function C||
ΩΩ is computed from the microscopic definition of the

spin angular velocity; to first order in the fluctuations we have

δ̃ΩΩΩ ≈ 1
ρavΘ ∑

i
Sie−k·ri(t), (4.68)

where Si is the angular momentum of molecule i, Eq. (2.101). Figure 4.8(a) plots
the spectrum, specifically, the imaginary part of the correlation function C||

ΩΩ for a
generic diatomic molecular fluid. For zero wavevector the dispersion relation, Eq.
(4.64), reveals a characteristic frequency, ωc:

ωc =
4ηr

ρavΘ
. (4.69)

This frequency is indicated by the vertical punctured line in Fig. 4.8(a) using the val-
ues for ηr found from Eq. (4.65). Note, for zero wavevector the relaxation of the spin
angular momentum is governed by the coupling to the linear momentum alone.

For non-zero wave-vectors the peak frequency increases with increasing wavevec-
tor. The underlying process for this behaviour is diffusion of spin angular momentum,
as predicted by the theory. In Fig. 4.8(b) the corresponding dispersion plot is shown.
The dashed line plots the predictions from the theory and is in good agreement with
the simulation data. How well the theory performs for other molecular liquids is still
not known in detail. In the last column of Table 4.1 the characteristic frequency is
given based on the values for the viscosities. Clearly, this relaxation is an extremely
fast process for small-weight molecular fluids.
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Table 4.1 Rotational and spin viscosities for different liquids. The last column lists the
characteristic angular spin relaxation time. From Refs. [160, 92, 102]. a state point: 1,605 kgm−3,

194.0 K, b state point: 582.3 kgm−3, 288.0 K, c state point: 996.3 kgm−3, 298.7 K

Molecule η0 [mPa·s] ηr [mPa·s] ζ [kg ms−1] ωc [THz]

Chlorinea 0.74 0.47 8.3 × 10−24 166
Butaneb 0.18 0.013 4.0 × 10−24 7.4
Waterc 0.75 0.17 2.1 × 10−21 812
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forηr and ζ are calculated via Eqs. (4.65) and (4.67). The system is a generic diatomic molecule at a supercritical
fluidic state; data are re-plotted from Ref. [102].

We now return to the transverse dynamics. From Eqs. (4.58a) and (4.58b) it can be
shown that

ρav
∂ δ̃ux

∂ t
=−ηtk2

y δ̃ux +2iηrkyδ̃Ωz − ikyδ̃Pyx (4.70a)

ρavΘ
∂δ̃Ωz

∂ t
=−2iηrkyδ̃ux − (4ηr +ζ k2

y)δ̃Ωz − ikyδ̃Qyz −2δ̃
ad
Pz. (4.70b)

Thus, the dynamics of the velocity x-component and the dynamics of the angular veloc-
ity z-component are coupled. Following the procedure in Chapter 3, we can define
four correlation functions by multiplying Eqs. (4.70) by δ̃ux(−ky,0) or δ̃Ωz(−ky,0)
and taking the average over an ensemble of independent initial conditions. Similar to
Eq. (3.53), we obtain the matrix system of correlation functions

∂
∂ t

[
C⊥

uu C⊥
uΩ

C⊥
Ωu C⊥

ΩΩ

]
=

 −ηt k2
y

ρav

i2ηrky
ρav

− i2ηrky
ρavΘ − 4ηr+ζ k2

y
ρavΘ

 ·[C⊥
uu C⊥

uΩ
C⊥

Ωu C⊥
ΩΩ

]
. (4.71)
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From this we see that the dynamics can be written as two sets of co-dependent
correlation functions,

{C⊥
uu,C

⊥
Ωu} and {C⊥

ΩΩ,C
⊥
uΩ} . (4.72)

Here we will simply study the first set. The eigenvalues found from the 2-by-2
hydrodynamic matrix are

ω1,2 =
4ηr +(ζ +ηtΘ)k2

y ±
√

d
2ρavΘ

, (4.73)

where the discriminant is

d = 16η2
r +(8ηrζ −16η2

r Θ+8ηrηtΘ)k2
y +(ζ 2 −2ηtζ Θ+η2

t Θ2)k4
y . (4.74)

Using the initial conditions

C⊥
uu(ky,0) = kBT/ρav and C⊥

Ωu(ky,0) = 0, (4.75)

we obtain the particular solution [102]

C⊥
uu(ky, t) =

kBT
2ρav

√
d

(
(
√

d −A)e−ω1t +(
√

d +A)e−ω2t
)

(4.76a)

C⊥
Ωu(ky, t) = i

2kBT ηrky

ρav
√

d
(e−ω1t − e−ω2t), (4.76b)

with A = 4ηr +(ζ −ηtΘ)k2
y .

Before we compare this result with simulation data, it is informative to study
the small wavevector limit. Expansion of the eigenvalues yields to second order in
wavevector

ω1 =
1

ρavΘ
(
4ηr +(ζ +ηrΘ)k2

y
)
+ . . . (4.77a)

ω2 =
η0k2

y

ρav
+ . . . , (4.77b)

and for d we have
√

d = 4ηr +(ζ +2ηrΘ−ηtΘ)k2
y + . . . . (4.78)

From the prefactor in Eq. (4.76b) we then have that

C⊥
Ωu(ky, t)→ 0 as ky → 0, (4.79)

that is, the coupling between the spin angular momentum and the streaming velocity
vanishes in the small wavevector limit, that is, in the classical hydrodynamic regime.

In this limit we also have that the prefactor for the first term in the transverse velocity
autocorrelation function, Eq. (4.76a), is

√
d −A ≈ 2ηrΘk2

y . (4.80)
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tFigure 4.9 Model molecular chlorine in the supercritical fluidic state (ρ,T ) = (795.5 kgm−3, 713.0 K). (a) Transverse velocity
autocorrelation function,C⊥
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Ωu. In (a) the punctured line represents the

classical hydrodynamic prediction usingη0=0.077 mPa ·s. Arrows indicate increasing wavevector in the interval
0.1 Å−1 ≤ ky ≤ 0.7Å−1. Data are re-plotted from Ref. [101].

Since Θ is typically in the order of 10−20 m2 for small molecules like chlorine and
butane, and ηr is of the same order as η0, the first term in Eq. (4.76a) can safely be
ignored and we recapture the classical result from Chapter 3,

C⊥
uu(ky, t) =

kBT
ρav

e−ω0t (smallky and small Θ), (4.81)

where ω0 = η0k2/ρav. The fact that the coupling vanishes in the classical hydrodynamic
regime and we recapture the classical relaxation result for the transverse velocity auto-
correlation function in the low wavevector limit implies that this coupling phenomena
is a true nanoscale phenomenon.

Figure 4.9(a) shows molecular dynamics data for the transverse velocity autocorre-
lation function C⊥

uu for molecular chlorine fluid. Note that the classical hydrodynamic
prediction is recaptured at low wavevectors expected from the preceding discussion. In
Fig. 4.9(b) C⊥

Ωu is shown and the prediction from the theory, Eq. (4.79), is confirmed,
as the coupling between the spin angular velocity and the streaming velocity vanishes
in the small wavevector limit, whereas it increases for increasing wavevector.

We finish this section with an important observation. The spin angular velocity does
not couple to the density and thermal kinetic energy, as pointed out by Evans and
Streett [67]. The hydrodynamic exploration of the Rayleigh and Brillouin processes
discussed in Chapter 3 need not to be extended for molecular systems.

4.4 Polarisation Relaxation

Recall from Chapter 2 that the polarisation P can microscopically be defined as [90]:

P(r, t) = ρ(r, t)p(r, t) = ∑
i

µµµ i(t)δ (r− ri), (4.82)
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where p is the dipole moment per unit mass, and µµµ the microscopic molecular dipole.
It was noted earlier that this definition of the polarisation is, in fact, an approximation
and, as promised in Chapter 2, we will now return to this point.

Let p = pav + δp, where in equilibrium pav = 0 and we have to first order in the
fluctuations

δp(r, t) =
1

ρav
∑

i
µµµ i(t)δ (r− ri). (4.83)

The Fourier coefficients follow directly:

δ̃p(k, t) =
1

ρav
∑

i
µµµ i(t)e

−k·ri . (4.84)

For k = (0,ky,0) we define the dipole moment autocorrelation function, Cpp, as

Cpp(ky, t) =
1
V

〈
δ py(ky, t)δ py(−ky,0)

〉
, (4.85)

where δ py is the dipole moment y-component. This correlation function is the funda-
mental function when studying the polarisation relaxation dynamics.

Figure 4.10(a) shows simulation results for the dipole moment autocorrelation func-
tion Cpp for water at ambient conditions, and Fig. 4.10(b) shows the corresponding
dispersion relation for the peak frequency. From the dispersion relation one observes

1. a relaxation process at zero wavevector, and
2. a relaxation process depending on the wavevector squared, that is, a diffusive

process.

To understand this dispersion relation, we first recall the balance equation for the
polarisation, Eq. (2.126). In equilibrium and to first order in the fluctuations we can
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ignore the cross coupling with the angular velocity, the advective term, and, of course,
the external electric field, that is,

ρav
∂δp
∂ t

=
1

τD
ρavδp−∇∇∇ ·R−∇∇∇ ·δR , (4.86)

where δR are the fluctuating part of the dipole flux tensor. The Debye relaxation
term, the first term on the right-hand side, is kept even in the absence of an electric
field and corresponds to a thermal limit where the molecular dipoles are considered as
independent thermally relaxing entities; this is referred to as the Debye limit.

The second term represents a diffusive process which we expect to be dependent on
the gradient of p. Now, the dipole flux tensor R is not, in general, symmetric, but for
our purpose here we will assume that the antisymmetric part can be ignored, and the
tensor is decomposed into

R = RI+
os
R . (4.87)

R is one third of the trace, and
os
R the traceless symmetric part of R, respectively. Follow-

ing the idea from Chapter 3 these fluxes are modelled from the local linear constitutive
relations [99]:

R =−χv(∇∇∇ ·p)+δR (4.88a)
os
R =−2χ0

os
(∇∇∇p) +δ

os
R. (4.88b)

Here χv and χ0 are the associated linear transport coefficients. Substituting and Fourier
transforming, we end up with the dynamical equation for the Fourier coefficients,

ρav
∂ δ̃p
∂ t

=−ρav

τD
δp−χlk(k · δ̃p)−χ0k2δ̃p− ik · δ̃R , (4.89)

where δ̃R represents the total stochastic forcing and χl = χv+4χ0/3. From this we can
form the dynamical equation for the dipole moment autocorrelation functions, Eq.
(4.85). Since k = (0,ky,0) and we obtain

∂ δ̃ py

∂ t
=−

(
1

τD
+(ν0 +νl)k2

y

)
δ̃ py −

iky

ρav
δ̃Ryy , (4.90)

using the definitions for the kinematic transport coefficients ν0 = χ0/ρav and
νl = χl/ρav. We multiply Eq. (4.90) with δ py(−ky,0), ensemble averaging, and solve
the differential equation, giving the usual exponential relaxation,

Cpp(ky, t) =Cpp(ky,0)e−ωpt , (4.91)

with

ωp =
1

τD
+(νt +νl)k2

y . (4.92)

This is exactly the form of the dispersion relationwe expected from the simulation data.
If we compare with Fig. 4.10, we obtain a Debye relaxation time of approximately

https://doi.org/10.1017/9781009158749.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009158749.005


97 4.4 Polarisation Relaxation

6 psec. and a kinematic transport coefficient ν = νt + νl = 2.9× 10−9 m2s−1 for the
flexible simple point charge water model (SPC/Fw).

For confined dielectric materials, an applied electrical field will induce a local polari-
sation that varies across the channel due to steric constraints and over-screening effects
[10, 210]. From the preceding discussion, this polarisation gradient is, in fact, reduced
due to the presence of the diffusive process. The effect from the diffusion can be quan-
tified from the dimensionless number J = τDνk2

y [99]; using the values for water at
ambient condition, the polarisation reduction is about 10% for wavelength of 3 nm
[99].

Finally, it is worth mentioning that one can also define a transverse dipole moment
autocorrelation function from the dipole x-component δ px. It has been shown that
the relaxation is significantly slower than the longitudinal relaxation at non-zero
wavevector [100].

4.4.1 The Zero Wavevector Dielectric Permittivity

Recall that in the linear and static case the polarisation is given through the relation

P = ρp = ε0χeEext . (4.93)

As for the viscoelastic response, the system response to an electric field can be gener-
alised with respect to time. To this end, we write the polarisation in terms of the electric
susceptibility kernel,

P(t) = ε0χe

∫ t

0
ϕ(t − t ′)Eext(t ′)dt ′ . (4.94)

Applying the convolution theorem, we get in frequency space

P̂(ω) = ε0χeϕ̂(ω)Êext(ω) . (4.95)

The frequency-dependent susceptibility and the frequency-dependent dielectric per-
mittivity are related through χeϕ̂(ω) = ε̂r(ω)−1 [156], and the latter is given through
the dipole moment autocorrelation function [60,32],

ε̂r(ω) =
4πρ2

av

kBT ε0

[
Cpp(0,0)+ iωĈpp(0,ω)

]
+1 , (4.96)

where, as usual, the Fourier–Laplace transformation of the correlation function is

Ĉpp(k,ω) = L[Cpp(k, t)] , (4.97)

for wavevector k. The real part of the complex dielectric permittivity (the dielectric
storage) is found byFourier–Laplace transformingEq. (4.91) and substituting, yielding
the real part of the dielectric permittivity,

ε ′r(ω) =
4πρ2

avCpp(0,0)
kBT ε0

(
1− ω2

ω2
p +ω2

)
+1, (4.98)
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and the imaginary part (the dielectric loss),

ε ′′r (ω) =
4πρ2

avCpp(0,0)
kBT ε0

ωp ω
ω2

p +ω2 , (4.99)

such that ε̂r = ε ′r − iε ′′r . This is on the exact same form as the Debye relaxation
model originally derived on the basis of non-interacting microscopic dipoles with
ωp = 1/τD. For completeness, in the limit of zero frequency we recapture the well-
known expression for the static dielectric permittivity,

εr =
4πρ2

avCpp(0,0)
kBT ε0

+1. (4.100)

In Fig. 4.11 the dielectric loss for water is plotted; both experimental values and pre-
dictions are shown for comparison. The theoretical prediction, Eq. (4.99), is given by
the full line. It is seen that the theory does not correctly account for the high-frequency
part of the spectrum (called the high-frequency wing). These frequencies are charac-
teristic for molecular librational and bond-stretching modes and are often discussed
on the basis of empirical functional forms.

4.4.2 The Static Dielectric Permittivity

We now turn to the limit of zero frequency and non-zero wavevector. In doing this,
we will study the local field E, that is, the total electric field due to both screening and
external field contributions. In this electrostatic limit, the curl of the electric field is
zero:

∇∇∇×E = 0. (4.101)

As we only treat the case of zero free charge density, the divergence of the electric
displacement field is zero, ∇∇∇ ·D = 0, and we have E = −P/ε0. In Fourier space, Eq.
(4.101) therefore reads

https://doi.org/10.1017/9781009158749.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009158749.005


99 4.4 Polarisation Relaxation

− ik
ε0

× P̃ = 0, (4.102)

which we for clarity will write out for k = (0,ky,0):

− i
ε0

(
kyP̃z,0,kyP̃x

)
= 0. (4.103)

From this it is seen that in the static regime, the transverse components of the polari-
sation vanish for non-zero wavevector, and the static dielectric properties are therefore
discussed in terms of the longitudinal dielectric permittivity.

It is indeed possible to theoretically discuss the polarisation relaxation in terms of
the microscopic dipoles as we did previously. However, as pointed out by Bopp et al.
[32], this is just the dipole term in the multipole expansion of the polarisation and fails
at high wavevectors. The polarisation fluctuations are, in general, given by the bound
charge density, ρb, Eq. (2.115):

∇ ·δP =−δρb. (4.104)

Bobb et al. [32] evaluated the bound charge density directly from the local charge
density,

δρb(r, t) = ∑
i

qi δ (r− ri), (4.105)

where qi is the site charge. Since k = (0,ky,0), then in Fourier space

δ̃Py =− δ̃ ρb
iky

, (4.106)

for non-zero wavevector. The static polarisation autocorrelation function can then be
defined in terms of the bound charge density,

Sbb(ky) =
1

V k2
y

〈
δ̃ ρb(ky,0)δ̃ ρb(−ky,0)

〉
, (4.107)

and can be thought of as a bound charge structure factor; hence, the symbol, Sbb.
It is possible to discuss the validity of the dipole moment expansion by comparing

the bound charge structure factorwith the longitudinal dipolemoment autocorrelation
function, Eq. (4.85). Figure 4.12(a) plots Sbb and ρ2

avCpp(ky,0) for the SPC/Fw water
model, and it is clear that the two functions agree well for wavevectors below 2 Å−1,
where Cpp features a peak. For wavevectors larger than 2 Å−1 the agreement is very
poor and functional forms are completely different.

The static (longitudinal) dielectric permittivity is given from the bound charge
structure factor,

1
εr(ky)

= 1− 4π
kBT ε0

Sbb(ky). (4.108)

Fig. 4.12(b) shows εr. As expected for zero wavevector, the permittivity is positive and
we have εr ≈ 80. However, for k≈ 1 Å−1 the permittivity becomes negative; this negative
value is a fingerprint of an over-screening phenomenon at smaller length scales.
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avCpp for the SPC/Fw water model at ambient conditions. (b) Kernel of the

longitudinal dielectric permittivity for water (BJH model); data for (b) is taken from Ref. [32].

The bound charge structure factor is positive, Sbb > 0 for ky ̸= 0, which means
according to Eq. (4.108) that

1− 1
εr(ky)

> 0. (4.109)

This is fulfilled for

εr < 0 and εr > 1, (4.110)

defining a forbidden interval [58], which is evident in Fig. 4.12(b), where two singular-
ities are observed at ky ≈ 1 Å−1 and ky ≈ 12 Å−1.

4.5 Further Explorations

1. In this exploration we will study liquid butane at state point (ρ,T ) = (582.3 kg m−3,
288K). First, assume that the shear pressure relaxes in accordancewith theMaxwell
model, such that the shear pressure time correlation defined by

C(t) =
1

τM

∫ ∞

0

os
Pyx (t ′+ t)

os
Pyx (t ′)dt ′

is proportional to e−t/τM .
Use Eq. (4.7), set the strain rate to zero, and apply initial condition Pyx(0) = P0 to

derive the exact result for C. Does this agree with simulation data? If not, consider
how the Maxwell model can be extended to fit data better.

Computational resources available.

2. The viscosity kernel η0 f̃ (ky) has not (yet) been studied for toluene. Use Eq. (4.48)
to calculate f (ky) at state point (ρ,T ) = (879 kgm−3, 300 K). Estimate the minimum
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length scale where f ≈ 1. Is this length scale significantly different from water and
butane, Fig. 4.5?

Discuss the functional forms, Eqs. (4.49) and (4.50).Which one fits toluene kernel
data the best?

Computational resources available.

3. In this exploration we continue the investigation of the hydrodynamic correlation
function C||

ΩΩ for a generic diatomic molecular liquid. The atomic masses and bond
length are unity (in molecular dynamics units).

(i) Calculate the moment of inertia per unit mass, Θ, for the molecule.
(ii) Run a simulation at state point (ρ,T ) = (0.85,2.0). Evaluate C||

ΩΩ as well as the
(normal) pressure.

(iii) Plot the corresponding dispersion relation, see Fig. (4.8), and from this estimate
the transport coefficients ηr and ζ .

(iv) Repeat (ii) and (iii) for different temperatures.

How do ηr and ζ depend on temperature and pressure?

Computational resources available.

4. We continue the work with the generic diatomic system from Exploration 3. The
molecule atoms now carry charges; one atom is positively charged and one neg-
atively charged; hence, the molecules represent microscopic dipoles. We keep the
system density and temperature fixed to (ρ,T ) = (0.85,1.0).

First, set the charges to unity in molecular dynamics units. Then, calculate the
dipole moment autocorrelation function Cpp for different wavevectors. Plot the dis-
persion relation, Fig. 4.10, and from this extract the Debye relaxation time τD and
the kinematic transport coefficient ν = νt + νl . Repeat this for increasing charges,
and explain your findings.

Is ν correlated with the single-particle diffusion coefficient?

Computational resources available.
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5 Simple Nanoscale Flows

In Chapters 3 and 4 we discussed equilibrium systems and investigated the hydro-
dynamics in terms of equilibrium correlation functions. In this chapter we discuss
standard flows like the planar Poiseuille and Couette flows, where the fluid is confined
and driven by some external force. In nanoscale confinement a considerable fraction
of the fluid molecules interact with the wall atoms, and this results in a fluid structur-
ing in the wall–fluid interface. We must, of course, be concerned if the classical theory
that assumes isotropy, homogeneity, and locality can be used in these cases of extreme
confinement; we will focus on this potential complication throughout the chapter.

Before discussing confined systems, however, it is informative to take one step back
and first investigate flows without the presence of walls. From this we will derive an
important result for the generalised response for flows.

In Chapters 3 and 4 we derived the dynamical equations for the fluctuating parts of
the hydrodynamic quantities. In this chapter we focus on the average quantities which,
importantly, need not be constant in time and space. Recall that a hydrodynamic quan-
tity A can be written as A = ρϕ , where ρ is the mass density and ϕ is the associated field
variable per unit mass. Up to first order in fluctuations we then obtain

⟨A⟩= ⟨(ρav −δρ)(ϕav −δϕ)⟩= ⟨ρavϕav⟩= ρavϕav, (5.1)

since ⟨δρ⟩ = ⟨δϕ⟩ = 0. The dynamics is again given by the balance equation, Eq.
(2.2). Using the linear property of the ensemble average and ignoring higher-order
fluctuations, we have

∂
∂ t

ρavϕav = σav −∇∇∇ · (ρavuavϕav)−∇∇∇ ·Jav . (5.2)

Jav is the average flux resulting from non-zero average driving forces present in the
system. For the mass balance equation we have ϕav = 1 and σav = 0, and we get

∂ρav

∂ t
=−∇∇∇ · (ρavuav) . (5.3)

For ease of reading, we will from now on omit the subscript “av” unless we actually
study the fluctuations.

In Chapter 3 we argued that higher-order fluctuations in equilibrium can be ignored
as long as we are not near the critical point, since the fluctuations are due to small
thermal perturbations. While this also holds for the problems we treat in this chapter,
the argument is, in fact, not general for non-equilibrium systems [45]; in Chapter 6 we
will see one effect of fluctuations in a non-equilibrium system.
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5.1 Homogeneous Flows

In this chapter we will see examples of flows generated by application of some external
force acting in the x-direction. We study the resulting shear force or, equivalently, the
shear pressure on fluid surfaces normal to the z-direction, that is, the only non-zero
average shear component is Pxz = Pxz(z). The force amplitude is sufficiently low; hence,
the flows are, as usual, laminar, and the normal pressure gradient in the x-direction
is negligible. In this first section we explore the fictitious situation where there are no
confining walls, and we envision the system to be infinite in extent; see Fig. 5.1.

In Section 4.2 the non-local model for shear pressure was introduced. In the current
geometry we have the generalised Newtonian law of viscosity,

Pxz(z) =−2η0

∫ ∞

−∞
f (z− z′)γ̇(z′)dz′ , (5.4)

where the strain rate is

γ̇ = (
os

∇∇∇u)xz =
1
2

∂ux

∂ z
. (5.5)

In the following examples we see how different imposed strain rates affect the fluid
shear pressure non-local response. The first two examples are from Ref. [198].
Example I Consider the situation where the strain rate is constant γ̇(z) = γ̇0/2; this

corresponds to a homogeneous Couette flow. The non-local response model yields

Pxz(z) =−η0γ̇0

∫ ∞

−∞
f (z− z′)dz′ =−η0γ̇0 , (5.6)

by virtue of Eq. (4.37). This is the same result as the local model, and we can imme-
diately conclude that non-local viscous effects are not present for constant strain
rates.

x

z

ytFigure 5.1 Schematic illustration of the virtual fluid surface. The arrows indicate the flow direction and the normal direction.
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Example II Let us generalise Example I and let the strain rate be any power function
of the form

γ̇(z) =
γ̇0

2
zn, (5.7)

where n is a natural number. Applying the substitution u = z− z′, Eq. (5.4) is written
as

Pxz(z) =−η0γ̇0

∫ ∞

−∞
f (u)(z−u)n du . (5.8)

To proceed, we expand the power (z−u)n as an alternating binomial series,

(z−u)n =
n

∑
k=0

(−1)k
(

n
k

)
ukzn−k

=

[(
n
0

)
zn −

(
n
1

)
uzn−1 +

(
n
2

)
u2zn−2 − . . .

]
. (5.9)

Therefore,

Pxz(z) =−η0γ̇0

[
zn
∫ ∞

−∞
f (u)du−

(
n
1

)
zn−1

∫ ∞

−∞
f (u)udu

+

(
n
2

)
zn−2

∫ ∞

−∞
f (u)u2 du− . . .

]
. (5.10)

Now,
∫ ∞
−∞ f (u)du = 1 and f is even, thus all odd moments of f are zero. This leads to

Pxz(z) =−η0γ̇0(zn +a2zn−2 +a4zn−4 + . . .), (5.11)

where the coefficients are given by the even moments of f ,

ak =

(
n
k

)∫ ∞

−∞
f (u)uk du (k even). (5.12)

The first term in Eq. (5.11) is the local prediction, and the effect of the spatial correla-
tions is then given by the even moments of the kernel, that is, by Eq. (5.12). This result
can be generalised for any strain rate which is analytical, that is, where one can write
γ̇(z) = ∑n γ̇nzn.

For n = 1 the series Eq. (5.11) truncates after the first term, and the shear pressure
follows the local predictions, Pxz =−η0αz. This situation corresponds to a homogene-
ous Poiseuille flow. Thus, for both the Couette flow and the Poiseuille flow the shear
pressure (or stress) is unaffected by the non-local spatial correlations, which has also
been confirmed by molecular dynamics simulations [198]. More generally, an effect of
non-local response requires that the strain rate profile features non-zero curvature.
Example III It is instructive to see an example where this requirement is fulfilled, and

revisit the system from Section 1.1.5. Recall that the applied force density generating
the flow is

Fe(z) = ρg0 cos(kz)i , (5.13)

where i is the unit vector parallel to the system x-axis. This force is called a sinusoidal
transverse force field (STF) and was first introduced in synthetic molecular dynamics
simulations (s-NEMD) by Gosling et al. [80]
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Since we are in the laminar flow regime, the momentum balance equation reads

ρ
∂u
∂ t

= Fe −∇∇∇ ·P . (5.14)

In the steady state, this reduces to

∇∇∇ ·P = ρg0 cos(kz)i . (5.15)

For our geometry and low Reynolds number Eq. (5.15) is a scalar equation,

∂Pxz

∂ z
= ρg0 cos(kz). (5.16)

Integration leads to the result in Eq. (1.14), but this time in terms of the shear pressure:

Pxz(z) =
ρg
k

sin(kz). (5.17)

Notice that P =−σσσT . This result is derived from the momentum balance equation and
does not involve any transport coefficient. We consider this exact.

We can compare the local and non-local descriptions. If only the fundamental mode
in the velocity field is excited, that is, if

ux(z) = ũx cos(kz), (5.18)

where ũx is the fundamental Fourier coefficient, then the strain rate is

γ̇(z) =−kũx

2
sin(kz). (5.19)

The local description then follows immediately from Newton’s law of viscosity, Pxz =

−2η0γ̇ :

Pxz(z) = η0kũx sin(kz). (5.20)

In the non-local model, we will for simplicity let the kernel in real space be modelled
by a single Gaussian function,

f (z) =
√

σ
π

e−σz2
, (5.21)

in which 1/
√

σ is a length scale and a measure of the kernel width. Substitution of Eqs.
(5.21) and (5.19) into Eq. (5.4) gives

Pxz(z) = η0kũxe−k2/4σ sin(kz). (5.22)

Since e−k2/4σ < 1 for k > 0, the generalised response theory predicts a lower shear
stress than the local theory for non-zero wavevectors. This agrees with findings from
simulations, Fig. 1.7; for simple atomic liquids, σ is around 1/2 Å−2 [102], and the shear
pressure is reduced by half for wavelengths of around 0.5 nm, or a little more than one
atomic diameter. In general, this reduction is significant if

σ > k2, (5.23)
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(a)tFigure 5.2 Molecular dynamics simulation of a confined liquid methane system. The bulk density isρ0 = 445 kg m−3 and
T = 166 K. (a) The simulated system setup. (b) The normalized density profile for the methane liquid.

that is, if the width of the kernel is large compared to the characteristic strain rate
variation. For more general discussions where higher-order Fourier modes are excited,
the reader is referred to Refs. [49, 200].

5.2 Effects of Confinement

Before studying flows, it is worthwhile to show some of the effects confinement has
on both the fluid structure and the dynamics in equilibrium. It is not the purpose
here to reiterate the statistical mechanical theories that exist on the topic or to give
an exhausting review, but to show the examples relevant for our later treatment.

5.2.1 Fluid Structuring

Figure 5.2(a) shows a directmolecular dynamics simulation (d-NEMD) of liquidmeth-
ane next to a wall. The wall is composed of spherical atoms that are arranged on a
simple, or primitive, cubic lattice, and the coordinate system is chosen such that the
centre of mass of the left-most wall layer is positioned at z = 0. We return to the choice
of coordinate system later. The wall atoms are not fixed, but tethered to crystal sites by
a restoring spring force, and during the simulation the wall atoms are thermostated,
keeping the system at a constant average temperature.

Often, in simulations the steady-state quantities are calculated from the correspond-
ing time averages; that is, for the density we can formally write this in terms of the
microscopic definition as

ρ(z) =
1

τobs

∫ τobs

0
ρ(z, t)dt =

1
A

〈
∑

i
miδ (z− zi)

〉
t

, (5.24)

https://doi.org/10.1017/9781009158749.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009158749.006


107 5.2 Effects of Confinement

0 0.005 0.01 0.015 0.02 0.025 0.03
1/d  [Å

–1
]

0

10

20

30

40

∆ 
T

m
  [

K
]

Decalin
Chlorobenzene
Heptane
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where τobs is the simulation or observation time, A is the (x,y)-plane area of the simu-
lation box, and the brackets represent the time average as indicated by the subscript t.
In practice, the Dirac delta is replaced with a so-called bin method, where the system
is divided into a number of bins and the time average mass density in the bin is then
calculated. The density profile is shown in Fig. 5.2(b). The first striking effect of the
confinement is the induced density variation adjacent to the wall [117, 201]. Themolec-
ular diameter of methane is approximately 3.7 Å. This is also the characteristic length
scale for the density variations, indicating that the variation is related to molecular
layer structuring as also reported by Horn and Isrealachvili [114].

This inherent layering is also observed in the radial distribution function g for non-
confined fluid (see Fig. 3.10); hence, the fluid molecules tend to pack against the wall
atoms in a manner similar to the bulk fluid. In fact, the statistical mechanical theories
[90, 156] for the fluid concentration profile is based on a perturbation of the radial
distribution function. For later use we will discuss the layering in more simple terms,
namely through the Boltzmann potential function, φc, such that the density is given by

ρ(z) = ρ0e−φc/kBT . (5.25)

The subscript c indicates that this potential function is associated with confinement.
The potential function depends on the wall density, the specific wall–fluid interactions,
and the wall–fluid geometrical commensurability [117, 165]. It must fulfil

φc → ∞ as z → 0 and φc → 0 as z → ∞ (5.26)

and can be evaluated once the density profile is known or by theoretical means, as we
see in Chapter 6 for electrolytes.

Depending on the specific details of the system, the wall may introduce an interfacial
energy that prevents the liquid from crystallising. This is known as theGibbs–Thomson
effect and can be measured experimentally from the melting temperature depression
∆Tm defined as the difference between the bulk melting temperature and the measured
melting temperature in confinement. Figure 5.3 shows data for themelting temperature
depression for small-weight organic fluids [118] in porous glass with diameters in the
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range 4–73 nm. The inverse relation between the depression temperature and the pore
diameter d is in agreement with the theoretical prediction ∆Tm ∝ 1/d.

Importantly, a melting temperature increase can also be observed, ∆Tm < 0, in
systems where the wall–fluid interaction is energetically favourable compared to the
fluid–fluid interactions (e.g. for very dense walls). The enhanced adhesion gives rise to
crystallisation in the wall–fluid interfacial region even above the melting temperature;
see Ref. [68] for examples of this case.

5.2.2 Molecular Alignment

For molecular fluids the presence of a wall will induce molecular alignment. This
alignment can be quantified by the local order parameter; see Ref. [78]:

S =
1
2
(
3
〈
cos2(θ)

〉
−1
)
, (5.27)

where θ is the angle between a specific molecular vector and the wall surface plane. For
water, a natural choice of such a molecular vector is the dipole moment vector, and for
butane it can be the end-to-end vector denoted Re. If S =−1/2, the molecular vector
is parallel to the wall, for S = 1, it is normal to the wall, and for S = 0, the molecular
vector is randomly distributed and, hence, the molecules are randomly oriented.

Figure 5.4 showsmolecular simulation data for the order parameter profile for liquid
butane confined in a 6 nm slit-pore. The order parameter is defined from the end-to-
end vector. It is seen that in the wall–fluid interface the butane molecules are oriented
and on average align with the wall surface plane in the first 5–8 Å. After this layer, the
molecules then organize normal to thewall in the next layer, before becoming randomly
distributed.

The figure also shows the local average end-to-end vector, that is, a measure of the
average butane molecular length. It is seen that the molecules stretch as they are close
to the wall; this is likely due to the constrained intra-molecular angle rotation in the
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region. Alignment phenomena are also reported for other molecular fluids; for water,
see, for example, Refs. [158, 210].

5.2.3 Dynamics

If we return to the density profile in Fig. 5.2(b) we expect the transport coefficients
to vary significantly in the wall–fluid region, as they are state point dependent. For
example, the self-diffusion coefficient introduced in Chapter 3 depends on the density,
implying that as we consider the diffusion in the confined direction, we have Ds =Ds(z).
Moreover, according to Fick’s law we associate molecular diffusion with a directional
motion down the concentration gradient; and this motion, we can expect, is hindered
in some way by the presence of the wall. That is, in general, the diffusion coefficient
in the confined direction, D⊥

s , is different from the coefficient in the parallel direction,
D||

s . This anisotropy is equivalent to the dielectric permittivity discussed in Chapter 1,
and the diffusion should be described in terms of a rank-2 diffusion tensor. Therefore,
in the current slit-pore geometry, Fick’s law for the single-particle flux is written as

Ji =−Ds(z) ·∇∇∇ρi , (5.28)

where Ds is the self-diffusion tensor,

Ds(z) =

D||
s (z) 0 0
0 D||

s (z) 0
0 0 D⊥

s (z)

 , (5.29)

if we assume that the flux in one direction is only dependent on the gradient in that
particular direction, that is, we ignore any cross-coupling effects.

Magda et al. [151] studied the diffusion of a simple Lennard–Jones fluid confined
in nano-slit-pores of different heights. The wall atoms are not explicitly modelled, and
the wall–fluid interactions are given by a smooth LJ-type potential. In the case where
h is approximately 11 particle diameters, the authors calculated the parallel diffusion
coefficient D||

s in different slabs in the fluid; in Fig. 5.5 these are indicated as regions
I, II, and III. It was found that the diffusion coefficient did not vary significantly with
respect to the slab, and is the same as the bulk value Ds. h = 11 corresponds to around
11 molecular diameters, or approximately 4.1 nm in the case of methane. Even in
the very-high-density region in the wall–fluid interface the particles possess the same
mobility as in the bulk. Thus, for this system the diffusion tensor parallel components
are constants, and the single-particle diffusion dynamics parallel to the confinement
direction are given through the usual scalar expression discussed in Section 3.2.

An important note: for constant chemical potential, Magda et al. [151] also showed
that the average (or effective) diffusion coefficient is reduced below h = 11.

To account for this surprisingly small effect of the local density on the local transport
properties, Bitsanis et al. proposed a local average density model (LADM) [21]. The
fundamental assumption is that the transport coefficients are functions of the spatial
averaged density, which we denote ρ , and not the local density at the point. For the
confined situation above the local average density is computed from the convolution
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ρ(z) =
1
σ

∫ σ/2

−σ/2
w(z− z′)ρ(z′)dz′ , (5.30)

where σ is one molecular diameter and w is a weighting dimensionless kernel. Bitsanis
et al. [22] suggested the kernel

w(z) = 3/2−6(z/σ)2 , (5.31)

but many other functional forms have been used; see, for example, Ref. [110]. Figure
5.6 shows the density ρ and local average density ρ as functions of z-coordinate; ρ
is calculated from the weighting function given in Eq. (5.31). In this way the density
variations are suppressed considerably, and using the LADM to predict, for example,
the single-particle mass diffusion and the local stress agrees well with the results from
direct-NEMD simulations [22, 110]. While the LADM has been applied successfully
to various problems, it cannot account for the reduced stress in STF systems that we
discussed in the previous section because the density is constant in this case. One may
therefore conjecture that the reduced effect of the large density variation is due to the
non-local nature of the transport properties leading to the generalized hydrodynam-
ics formalism discussed in Section 4.2 rather than a non-local density effect. Only a
few modelling attempts using generalised hydrodynamics have been made for confined
fluids [41, 216, 217], and this remains an open question.

For more complex fluids and even smaller confinements, there is a change in
dynamics. Milischuk et al. used molecular dynamics to study water confined in silica
nanotubes [157, 158]. They found that the hydrogen bonding network between water
molecules is significantly affected by the silica tube, and that the diffusion coefficient
parallel to the tube’s longitudinal axis is reduced as a function of tube radius: for a
tube radius of 1 nm, D||

s = 1.6×10−9 m2s−1, and for a radius of 2 nm, D||
s = 2.1×10−9

m2s−1. Importantly, the local diffusion coefficient at the wall–fluid interface is very
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low compared to the diffusion in the tube mid-point, likely because of the different
local hydrogen bond network.

Diffusion pertains to the molecular translational motion. The molecular rotational
dynamics, or specifically, the orientational relaxation has also been studied. Rather
than using the local order parameter defined by de Gennes and Prost, Eq. (5.27), one
can also investigate the relaxation from [90],

CL(t) = ⟨PL (û(t) · û(0))⟩, (5.32)

where PL is the Legendre polynomial of degree L, and û is an intra-molecular unit
vector which must be specified. C2 can be inferred from IR spectroscopy and a neutron
scattering experiment. Again, Milischuck and Ladanyi [158] used the OH-bond vector
and the second-order Legendre polynomial P2(x) = (3x2 − 1)/2, showing that C2 is
greatly affected by the confinement slowing down the orientational relaxation, that is,
the single molecular orientation becomes less randomized with respect to time as the
confinement increases.

Finally, we compare the collective density fluctuations for a confined systemwith the
corresponding non-confined system. The system is in equilibrium, and we can use the
theory developed in Chapter 3 to calculate density autocorrelations along a wavevector
parallel to one of the non-confined directions in the slit-pore. In Fig. 5.7 the dynamic
structure factor is plotted for liquidmethane for a single wavevector parallel to thewall,
k = (0,ky,0). The slit-pore height is h = 3.26 nm. For the comparison, the dynamic
structure factor for a bulk non-confined system is also plotted. It can be seen that the
density correlations are significantly changed. From the classical hydrodynamic theory
developed in Chapter 3 we can conclude the following: First, the Brillouin peak is
shifted to lower frequencies in the confined situation, Fig. 5.7(a). This means that the
adiabatic speed of sound is reduced. By normalisation of the curves with respect to the
Rayleigh peak height, Fig. 5.7(b), we observe a very small increase in the Rayleigh peak
half-width, ∆ωRa; hence, the thermal diffusivity DT is slightly increased in the confined
case. Finally, shifting the frequency and normalising with respect to the Brillouin peak
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height, Fig. 5.7(c), reveal that the attenuation coefficient Γ also increases slightly for
confinement, that is, the dampening of the density wave is increased.

In summary: The presence of a wall introduces a wall–fluid interface (or region)
wherein the fluid density varies significantly and where molecular alignment effects are
present. The effects of this interface are manifold and the effect magnitudes depend
on the system details, such as wall density, wall–fluid interactions, the wall crystal
structure, and so forth. Importantly, the complications in the wall-fluid interface are
not included in the classical hydrodynamic picture, and we must proceed with our
(hydrodynamic) exploration keeping the findings of this section in mind.

5.3 The Planar Poiseuille Flow and the Navier Boundary Condition

One of themostwell studied nanoscale fluid flow is the Poiseuille flow [136, 205, 206]. In
the planar Poiseuille flow, the fluid is confined between two planar walls, thus resem-
bling the slit-pore geometry, and the flow is driven by an external force (especially
relevant in simulations) and/or a constant non-zero pressure gradient. In either case
there will be a net force density acting on the fluid, and we will, as usual, denote this
by ρg. We again choose a coordinate system such that the planar walls lie in the (x,y)-
plane and the direction of confinement is in the z-direction; see Fig. 5.8(a). We will here
assume that the antisymmetric shear pressure can be ignored, and focus on the laminar
case where both theMach andReynolds numbers are sufficiently low. Also, any viscous
heating is conducted away from the system through the wall; hence, the temperature
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Note, the y-axis is normal to the paper. (b) Geometrical illustration of the Navier boundary condition. See also Fig. 1.1.

is constant. Then from the momentum balance equation and Newtonian viscosity law
we have the Navier–Stokes equation for the streaming velocity x-component (recall,
strictly the ensemble averaged streaming velocity),

ρ
∂ux

∂ t
= ρg+η0

∂ 2ux

∂ z2 . (5.33)

In the steady state, ux(z, t) = ux(z) and we arrive at the Stokes equation,

d2ux

dz2 =−ρg/η0 . (5.34)

To solve this problem, we need to specify the boundary conditions. As shown in Chap-
ter 1, the velocity slip at the wall becomes important for nanoscale flows, and we
cannot, in general, assume no-slip boundaries ux(0) = ux(h) = 0. As a first approach,
we can apply a more general Dirichlet boundary condition, that is,

ux(0) = ux(h) = uw. (5.35)

The no-slip boundary condition is, of course, just a special case of the Dirichlet
boundary where uw = 0. Then, integrating Eq. (5.34), we arrive at the general solution,

ux(z) =− ρg
2η0

z2 +K1z+K2 , (5.36)

where K1 and K2 are constants of integration. Application of the boundary conditions
yields the particular solution:

ux(z) =
ρg
2η0

z(h− z)+uw . (5.37)
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The Dirichlet boundary condition is ad hoc in the sense that uw must be known a
priori; for example, frommolecular dynamics simulations. Amore appealing approach,
perhaps, is the application of the Navier boundary condition. The fundamental idea
here is to account for the frictional force the wall with area A exerts on the fluid at the
boundary. A simple linear model for this is [143, 163]

Fw =−AζN∆ux, (5.38)

or, by division with the area,

Pxz =−ζN∆ux, (5.39)

where ζN is theNavier friction coefficient, and ∆ux = ux−Vwall is the relative fluid veloc-
ity with respect to the wall velocity, with ux being the fluid velocity at the wall, ux(0) or
ux(h), and Vwall the wall velocity. For the Poiseuille flow, Vwall = 0. The pressure tensor
index xz indicates that we study a shear pressure at the boundary surface with normal
vector parallel to the z-axis and the force x-component.

Due to continuation of the shear pressure, we also have that Pxz =−η0∂ux/∂ z at the
wall, and hence for the wall at, say, z = 0 we have

ux(0) =
η0

ζN

∂ux

∂ z

∣∣∣∣
z=0

. (5.40)

The fraction on the right-hand side defines a characteristic length scale which is
denoted the slip length, Ls,

Ls = η0/ζN . (5.41)

We can generalize the Navier boundary condition. If ∂Ω is the boundary surface and
n the normal to ∂Ω pointing into the fluid, see Fig. 5.8 (b), then

Ls(∇∇∇ux) ·n = ∆ux, (5.42)

for point (x,y,z) ∈ ∂Ω. From this we see that the Navier boundary condition is simply
a Neumann boundary condition.

Note: For the Poisuille flow, the slip length can be interpreted as a distance away
from the wall–fluid boundary where the linearly extrapolated velocity is zero. The
extrapolation is done via the tangent line t = t(z) at the boundary; see Fig. 5.8(b).

To find the solution to this boundary value problem, we must then solve the
differential equation Eq. (5.34) with Neumann boundary conditions, Eq. (5.42),

Ls
∂ux

∂ z

∣∣∣∣
z=0

= ux(0) and Ls
∂ux

∂ z

∣∣∣∣
z=h

=−ux(h). (5.43)

The general solution is given in Eq. (5.36), and we arrive at the particular solution in
terms of the slip length,

ux(z) =
ρg
2η0

(
h(z+Ls)− z2) . (5.44)

https://doi.org/10.1017/9781009158749.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009158749.006


115 5.3 The Planar Poiseuille Flow and the Navier Boundary Condition

0 5 10 15
z [MD units]

0

0.1

0.2

0.3

0.4

0.5

0.6

u x(z
) 

 [
M

D
 u

ni
ts

]

Hydrodyn. predictions
Simulation data

0
0

0.5

1

1.5

2

ρ(
z)

  [
M

D
 u

ni
ts

]

12 13 14 15
z

0

0.1

0.2

0.3

u x(z
)

Sticky
  wall

Non-sticky
  wall

Density

Velocity

tFigure 5.9 Comparison between the predicted velocity profile and d-NEMD simulation data for a planar Poisuille flow system. For
the hydrodynamic predictions, all parameters are found independently of the NEMD simulation, and no additional
fitting is carried out. From Ref. [105] with permission.

In general, the twowalls need not be identical and can be characterized by two different
slip lengths, L(1)

s and L(2)
s for wall 1 and wall 2, respectively. In this case the solution is

shown to give

ux(z) =
ρg
2η0

(
B(z+L(1)

s )− z2
)
, (5.45)

where

B =
h(h+2L(2)

s )

L(1)
s +L(2)

s +h
. (5.46)

Hansen et al. [105] performed non-equilibrium simulations of a Lennard–Jones fluid
undergoing a planar Poiseuille flow. The wall–fluid interactions at wall 1 were the same
as the fluid–fluid interactions, whereas the wall–fluid interactions at wall 2 had an addi-
tional attractive part. In this way the energetic interaction is controlled and leads to
a more ‘sticky’ surface at wall 2. The two corresponding slip lengths and the fluid
viscosity were found from independent methods, enabling a direct comparison with
the non-equilibrium simulation without any free fitting parameters; see Fig. 5.9. The
streaming velocity in molecular dynamics simulations is calculated from the definition

u(z) =
⟨∑i miviδ (z− zi)⟩t
⟨∑i miδ (z− zi)⟩t

, (5.47)

where i is the fluid particle index, and the brackets represent a time average. As we have
mentioned, the Dirac delta is, in practise, often replaced by a bin method.

We see that themolecular dynamics results and hydrodynamic prediction agree quite
well in the channel interior. Note, however, that at wall 2, where the density features
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Table 5.1 Slip lengths for four different systems.σ is the Lennard–Jones length scale. The
reader is referred to the references for further information. a Ref. [105], b Ref. [125] (also see

refs. therein), c Ref. [135].

Wall Fluid Slip length, Ls

a LJ - simple cubic lattice LJ (fluid) 2 σ
b Graphene Water (liquid) 1–80 nm
c Au - FCC Water (liquid) 36–39 nm
c Au - FCC Glycerol (liquid) 6 ×103 nm

extremely large variations, the fluid streaming velocity does not follow the simple quad-
ratic form; hence, we expect that local constitutive model, Eq. (3.22b), fails. From the
zoom in Fig. 5.9 the velocity in this very dense fluid layer is seen to be almost constant,
that is, the fluid motion is like a ‘solid sliding brick’. Of course, in this extreme case
where the wall–fluid region behaves solid-like, we must expect that the classical theory
performs poorly. Moreover, since the strain rate is non-linear in this region, we also
expect that non-local response phenomena become important in accordance with our
discussion in Section 5.1.

Another important point which is repeated here is that the hydrodynamics model
consists of a dynamical equation and a set of appropriate initial/boundary conditions.
Having a slip boundary condition is not an indication of a breakdown of hydrodynam-
ics. For use later, Table 5.1 lists a few values for the slip length for different wall–fluid
systems. The slip length spans many orders of magnitude and is a function of the
wall–fluid interactions and geometrical commensurability [179, 193].

Thompson and Troian [194] performed a series of d-NEMD simulations of a
Lennard–Jones system undergoing a Couette flow; we will treat this flow in the fol-
lowing section. In their simulations they changed the strain rate and found that the
slip length followed the empirical law

Ls = L0
s (1− γ̇/γ̇c)

−1/2 , (5.48)

where 2γ̇ = ∂ux/∂ z is the strain rate at the wall-fluid boundary, L0
s is the slip-length in

the limit of zero strain-rate, and γ̇c is the so-called critical strain rate, such that when
the strain rate approaches γ̇c, the slip length diverges and the Navier boundary model
breaks down. It is interesting that for the Lennard–Jones model the non-linear depend-
ency of the strain rate happens at very large strain rates,1 yet at strain rates where the
viscosity is constant; that is, the fluid features Newtonian behavior, but the slip length
is in the non-linear regime. Priezjev [177] also reported a simple correlation between
the slip length and the inverse of the in-plane structure factor, which again highlights
the fact that the geometrical commensurability greatly affects the slip.

One obvious effect of the slip is flow enhancement, which is quantified by the
enhancement coefficient, Eslip, already introduced in Eq. (1.6). First, we need to find

1 Which cannot be achieved in the lab
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the volumetric flow rate, Q, which is the fluid volume crossing a surface normal to the
flow direction per unit time; in our geometry, the surface lying in the yz-plane, Fig. 5.8.
Let the surface have area A; then

Q =
∫∫

A
ux(y,z)dydz. (5.49)

For a planar Poiseuille flow and if walls 1 and 2 are identical, we simply need to
integrate Eq. (5.44):

Qslip =
ρg
2η0

∫ w

0
dy
∫ h

0
h(Ls + z)− z2 dz

=
ρgw
12η0

(h3 +6h2Ls), (5.50)

where w is the system length in the y-direction. The flow enhancement due to the slip
is then simply

Eslip =
Qslip

Qnoslip = 1+6Ls/h, (5.51)

as was stated in Chapter 1.
If one considers water confined between two gold FCC sheets separated by 10 nm,

and assumes that hydrodynamics is a good model for the flow, then the flow enhance-
ment is around 24, using the slip length given in Ref. [135], Table 5.1. For slip lengths
on the order of a few nanometres, which is a typical order of magnitude, the last term
in Eq. (5.51) can be safely ignored even for micro-fluidic systems, and no enhancement
is observed.

5.3.1 The Hydrodynamic Channel Height

One very important question has been postponed until now, namely “What exactly
is the channel height h?” We must address this, as the validity of the hydrodynamic
model depends on the choice of h, since this enters the solution to the Navier–Stokes
equation. In Fig. 5.10 the fluid density in the wall–fluid interface is illustrated. As the
minimum centre-of-mass distance between the wall and fluid particles is around one
molecular diameter, σ , there exists a depleted region between the wall and the fluid.
Two heuristic definitions of h that come to mind are (i) the distance between the centre
of mass of the first wall layer in the two walls and (ii) the length over which the density
profile is non-zero. These definitions will give different velocity profiles in nanoscale
geometries.

A simple theoretical treatment of the question is given by Herrero et al. [108]. Here
we focus on the case where the two walls are identical, implying L(1)

s = L(2)
s . As the fluid

moves relative to the surface, we can calculate the wall shearing force, Fw, acting on the
fluid from wall 2, where z= h; see Fig. 5.8(a). This is given by Newton’s law of viscosity,

Fw = Aη0
∂ux

∂ z

∣∣∣∣
z=h

. (5.52)
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tFigure 5.10 Illustration of the depleted region z1 < z < z2 (shaded area) between the wall and the fluid.

Again, A is the wall surface area. By differentiation of either Eq. (5.37) or Eq. (5.44),
thus, approximating the fluid velocity to be in accordance with classical hydrodynam-
ics, we then get h in terms of the shear force

h =− 2Fw

ρgA
. (5.53)

For steady flows, we can apply force balance, and h can be expressed on a very simple
form. If the flow is driven by application of an external force, Fext

i , acting on the fluid
particles, the hydrodynamical force density is ρg = nFext

i , where n is the system number
density. The total applied force is then

Fext
tot = ∑

i
Fext

i =
ρgN

n
, (5.54)

where N is the number of fluid molecules. In the steady state, Fext
tot +2Fw = 0, which is

rearranged to give

h =
N
nA

(5.55)

through Eq. (5.53). Interestingly, experience shows that the resulting h is approximately
the heuristic definition (ii) if the fluid structure in the wall–fluid interface is not too
strong. Definition (ii) is used in the hydrodynamic predictions shown in Fig. 5.9

5.3.2 Failure of the Classical Theory

Recall, Fig. 5.9 shows the velocity profile for a planar Poiseuille flow where the channel
height is around 15 molecular diameters, that is, h is around 4–5 nm. It was concluded
that classical hydrodynamical theory predicts the flow profile satisfactory for this situ-
ation. Travis et al. [205] studied the same system, but in a slit-pore with a height of just
four diameters or just above one nanometre; Fig. 5.11(a) plots the streaming velocity
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tFigure 5.11 Results from a d-NEMD simulation of a Lennard–Jones fluid undergoing a planar Poiseuille flow. (a) The streaming
velocity. (b) The strain rate. (c) Shear pressure. (d) Local viscosity has predicted by Newton’s law of viscosity. The
horizontal punctured line indicates the bulk value.

profile in this situation. One clearly observes that the profile features superimposed
modulations and the classical theory is no longer a satisfactory model.

In fact, Travis et al. showed that under these extreme confinements Newton’s law of
viscosity breaks down. In the current geometry, this reads

Pxz =−2η0γ̇ , (5.56)

where the strain rate is 2γ̇ = ∂ux/∂ z. γ̇ can be calculated directly by numerical differ-
entiation of the velocity profile; see Fig. 5.11(b). The shear pressure can be calculated
from the momentum balance equation, which for the steady state reads

∂Pxz

∂ z
= ρg . (5.57)

Hence, from numerical integration of themass density profile, Pxz is found; Fig. 5.11(c).
Rearranging Eq. (5.56), we get for the local shear viscosity

η0(z) =−Pxz(z)/γ̇(z) . (5.58)

This is plotted in Fig. 5.11(d), showing singularities where the strain rate crosses the
x-axis.
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tFigure 5.12 Schematic illustration of the Hagen–Poiseuille flow (a), Couette flow (b), and oscillatory flows (c).

One may rightly question if the classical hydrodynamic theory breaks down because
the continuum picture breaks down, that is, if the momentum balance equation is not
applicable. This is not the case; Todd et al. [197] have shown from the so-called method
of planes that integration of the density profile gives the correct shear pressure profile;
thus, Eq. (5.57) is valid, and the singularities seen in Fig. 5.11(d) are due to the failure
of the local constitutive relation, Eq. (5.56). As we have mentioned, the non-local con-
stitutive model for the shear pressure has been applied to confinement [41, 216, 217];
however, a general solution to the problem is still not available.

5.4 Other Simple Flows

In this section we will discuss other simple flows, specifically, (i) the Hagen–Poiseuille
flow, (ii) the Couette flow, and (iii) an oscillatory flow. Figure 5.12 illustrates the system
geometries.We shall assume that the classical theory is applicable. The flows are treated
in most hydrodynamic text books; however, it is worth discussing them in the context
of nano-confinement, as some points are important to highlight.

5.4.1 The Hagen--Poiseuille Flow

In the Hagen–Poiseuille flow the fluid flows in a cylindrical geometry, Fig. 5.12 (a),
and is driven by a force density, ρg, that acts parallel to the longitudinal axis, z. Again,
the force density can be due to an external force, a constant pressure gradient, or both.
For low Reynold numbers only the velocity component uz is non-zero, and this only
depends on the radial coordinate r, hence, uz = uz(r). The Navier–Stokes equation in
cylindrical coordinates reads
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η0

(
d2uz(r)

dr2 +
1
r

duz(r)
dr

)
=−ρg. (5.59)

From the chain rule, the left-hand side is re-written as

d2uz(r)
dr2 +

1
r

duz(r)
dr

=
1
r

d
dr

(
r

du
dr

)
(5.60)

and we obtain

d
dr

(
r

du
dr

)
=−ρg

η0
r . (5.61)

Integrating twice, we arrive at the general solution

uz(r) =− ρg
4η0

r2 +K1 ln(r)+K2, (5.62)

where K1 and K2 are constants of integration. Since uz cannot diverge for r = 0, we
must require that K1 = 0, and therefore

uz(r) =− ρg
4η0

r2 +K2 (5.63)

with the Navier boundary condition

Ls
duz(r)

dr

∣∣∣∣
r=R

=−uz(R) , (5.64)

with R being the tube radius. The particular solution to this problem is

uz(r) =
ρg
4η0

(
(R+2Ls)R− r2) . (5.65)

The volumetric flow rate follows from this solution.We express the velocity dependency
of the azimuthal angle explicitly and get

Q =
∫ 2π

0
dθ
∫ R

0
ruz(r)dr

=
πρg
8η0

(R4 +4LsR3). (5.66)

This gives the slip enhancement coefficient

Eslip = 1+4Ls/R . (5.67)

Things are more complicated; Ls depends on the tube radius, that is, Ls = Ls(R). Figure
5.13 plots the slip length for the carbon nanotube and water system as a function of R.
In the small radii regime, the slip length increases rapidly for decreasing R, that is, the
flow enhancement grows much faster than R−1 from Eq. (5.67). Again, this is still an
active research area.
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tFigure 5.13 Slip length dependency of tube radius of a Hagen–Poiseuille flow of water in carbon nanotubes (obtained from
molecular dynamics simulation). The slip length is found frommethods based on both direct-NEMD and EMD
simulations. Data are re-plotted from Ref. [125].

5.4.2 The Couette Flow

For the Couette flow, Fig. 5.12(b), the two planar walls move relative to one another.
Without loss of generality, we let wall 1 be at rest and let wall 2 move in the x-direction
with velocity Vwall. We have no pressure gradient in the x-direction or external forces
acting, hence, ρg = 0. As usual, we assume that the Reynolds number is sufficiently
low, hence the Navier–Stokes equation reduces to a Laplace equation,

d2ux

dz2 = 0, (5.68)

with boundary conditions

L(1)
s

dux

dz

∣∣∣∣
z=0

= ux(0) and L(2)
s

dux

dz

∣∣∣∣
z=h

=Vwall−ux(h). (5.69)

This boundary value problem solves to

ux(z) =
Vwall(z+L(1)

s )

h+L(1)
s +L(2)

s

. (5.70)

The volumetric flow rate is readily found to

Q =
Vwallw(h+2L(1)

s )h

2(L(1)
s +L(1)

s +h)
, (5.71)

and from this the flow enhancement is

Eslip =
h+2L(1)

s

h+L(1)
s +L(2)

s

. (5.72)

We can see that the presence of slip can, in fact, reduce the flow rate for Couette flows
because
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s implies Eslip < 1

L(1)
s = L(2)

s implies Eslip = 1 (5.73)

L(1)
s > L(2)

s implies Eslip > 1.

A special case of the second condition is where there is no slip and we have
L(1)

s =L(2)
s =0, which is the standard macroscopic picture. The velocity profile for this

situation is plotted in Fig. 5.14 together with the case where L(1)
s < L(2)

s . The two shaded
regions illustrate the difference in flow rate, such that in the light shaded region the
local flow rate is larger for case L(1)

s < L(2)
s , but (relatively) much smaller in the dark

shaded region, leading to a net enhancement coefficient below unity.

5.4.3 Oscillatory Flows

The Poiseuille and Couette flows are steady flows. A non-steady flow can be realized by
adding a time-varying pressure gradient or external force field of the form ρgcos(ω0t),
where ρg is the force field amplitude and ω0 the frequency – again, in our geometry
the force acts in the x-direction. We will let the geometry be the same as for the planar
Poisuille flow, and the Navier–Stokes equation becomes

ρ
∂ux

∂ t
= ρgcos(ω0t)+η0

∂ 2ux

∂ z2 . (5.74)

The focus here will not be on the effect of the slip, and we let L(1)
s = L(2)

s = 0 for
simplicity.

To proceed, we assume that the streaming velocity ux(z, t) can be separated into a
product of a function of time and a function of space. For convenience, this is written
in complex form,
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ux(z, t) = Re
[
U(z)eiω0t] , (5.75)

and we can solve the differential equation in terms of the complex function U(z)eiω0t ,
and ux will then be the real part. The external force density can also be written in
complex form,

ρgcos(ω0t) = Re[ρgeiω0t ] , (5.76)

and then by substitution into Eq. (5.74) we get the complex differential equation

iρωeiω0tU(z) = ρgeiω0t +η0eiω0t d2U(z)
dz2 , (5.77)

which is rearranged to

d2U(z)
dz2 − iω0ρ

η0
U(z) =−ρg

η0
. (5.78)

Since the slip length is zero at both walls, the problem is solved using the boundary
values U(0) =U(h) = 0.

Recall, the solution for this inhomogenous second-order differential equation is the
sum of the particular solution Up and the homogenous solution, Uh; that is,

U(z) =Uh(z)+Up(z). (5.79)

The eigenvalues for the homogenous solution is ±
√

iω0ρ/η0, and using the identity√
i=±(1+ i)/

√
2, the homogenous solution is simplyUh(z)=K1e(α+iα)z+K2e−(α+iα)z,

where

α =

√
ω0

2ν0
, (5.80)

with ν0 = η0/ρ being the kinematic viscosity. K1 and K2 are integration constants
determined by the boundary conditions.

The particular solution is easily found in this problem, as we simply guess that
Up(z) = Az2 +Bz+C, giving Up = g/iω0 by inserting this solution into the differen-
tial equation, and compare the terms. This is known as the method of undetermined
coefficients [34].2

Applying the no-slip boundary conditions, we obtain the solution for U ,

U(z) =
g

iω

[
1− e(α+iα)z −

(
1− e(α+iα)h

) sinh((α + iα)z)
sinh((α + iα)h)

]
. (5.81)

Before reaching the final expression for the streaming velocity, it is worthwhile to
discuss the flow in terms of the Womersley number, Wo. This is defined as

Wo =
√

ω0/ν0h , (5.82)

and, hence, can be written in terms of α . For liquid water flowing in a nanochannel
of height 100 nm, the Womersley number is Wo ≈√

ω0 ×10−4s1/2. Thus, for ω0 = 10
MHz, we have Wo≈ 0.32, and for ω0 = 1 GHz, Wo≈ 3.2, assuming that the viscosity
is independent of the frequency. For nanoscale fluid systems at realistic frequencies,

2 Appendix A.4 shows a few worked examples of how to use the method of undetermined coefficients.
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tFigure 5.15 Flow profiles for water confined in a 100 nm slit-pore at different times. The streaming velocity is normalized with
respect to the velocity at z = h/2 for the corresponding steady-state Poisuille flow, that is, whereω0 = 0. (a)
ω0 = 10MHz. (b)ω0 = 10 GHz.

the Womersley parameter is thus low, Wo < 1, and this motivates an expansion of the
exponential and hyperbolic functions

e(α+iα)z = 1+(α + iα)z+
1
2
(α + iα)2z2 + . . . (5.83)

sinh((α + iα)z) = (α + iα)z+ . . . . (5.84)

Substituting up to second order for the exponential function and to first order for the
hyperbolic function, we arrive at the approximate solution for U ,

U(z)≈ gα2

ω0
z(h− z), (5.85)

for sufficiently low Womersley number. The streaming velocity is then

ux(z, t) = Re
[
U(z)eiω0t]≈ ρg

2η0
z(h− z)cos(ω0t). (5.86)

This is simply a Poiseuille flow with a temporal oscillating factor.
Instantaneous profiles for two different Womserley numbers are shown in Fig. 5.15.

The oscillatory Poiseuille-type flow is clearly seen for low Womersley number, whereas
for large values ofWo the profiles behave in a plug-likemanner. The plug flow is an indi-
cation of a decreasing boundary layer, leading to the definition of the Stokes boundary
layer, δS, for oscillatory flows:

δS =
1
α

=

√
2ν0

ω0
. (5.87)

The Womersley number can then be written as Wo=
√

2h/δS, which is less than unity
for δS >

√
2h; thus, for a slit-pore geometry, the Stokes layers may overlap in nanoscale

geometries.
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On a final note here, d-NEMD simulations have been carried out for nanoscale
oscillatory flows [96, 178], showing excellent agreement between the theory and the
simulations data.

5.5 Theory for the Slip Length

The slip length Ls can be estimated from flow rate experiments; however, these exper-
iments are technical challenging, and the results are not always straightforward to
interpret [125, 153]. Therefore, molecular dynamics simulations play (once more) a
critical role when studying the slip phenomenon and thus when determining the slip
length. One straightforward approach here is to perform d-NEMD simulations and
calculate the streaming velocity profile. By application of Eq. (5.42) one can then find
the slip length through fitting in the limit of small strain rates. This is a simple method
which can always be attempted; however, for large slip lengths characterising plug-like
flows, the values are associated with large statistical uncertainties [125].

To overcome this difficulty, different techniques for extracting the slip length using
equilibrium simulations have been developed. The first attempt at such a theory is due
to Bocquet and Barrat [23], who expressed the Navier friction coefficient ζN in terms of
a Green–Kubo integral of the total shearing force in the fluid. This method is, however,
debated [115, 171, 172], including by the authors themselves [24], showing a system size
dependency and a non-convergency of the integral. Other approaches have followed,
and these are typically based on modelling the fluctuating dynamics of either (i) the
wall [24], (ii) a fluid volume element adjacent to the wall [105, 115], or (iii) the entire
fluid volume (based on the original idea from Bocquet and Barrat) [191].

As an example, we discuss the second approach. The strategy here is to

1. Derive the streaming velocity profile for a particular flow – aswe have already done –
but using the average velocity of the interfacial fluid element V as the boundary
condition.

2. Then, using a simple model for interfacial fluid velocity based on the wall–fluid and
fluid–fluid frictional forces, we can express the entire system velocity profile in terms
of a friction coefficient, and

3. from this get the expression for the slip length as a function of the friction coefficient.
4. Devise the method for calculating the friction coefficients.

We will chose a Couette flow with the usual geometry; see Fig. 5.16. The flow is
realised by moving wall 2 with speed Vwall, keeping wall 1 stationary. Recall that for a
Couette flow the Navier–Stokes equation reduces to a simple Laplace equation,

d2ux

dz2 = 0 . (5.88)

The boundary conditions are specified through the velocity of the interfacial fluid vol-
ume, here a slab of width ∆. Specifically, we use the spatial average slab velocity, giving
rise to integral boundary conditions. At wall 1 we have
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tFigure 5.16 The fluid slab element with width∆ adjacent to the wall.

u(1) = ⟨uslab⟩=
1
∆

∫ ∆

0
ux(z)dz, (5.89)

and at wall 2,

u(2) =Vwall−⟨uslab⟩=
1
∆

∫ h

h−∆
ux(z)dz . (5.90)

Strictly, the average streaming velocity must be found from the average linear momen-
tum in the slab. For example, for wall 1 it is assumed that

1
m

∫
V

ρux(z)dr =
1
∆

∫ ∆

0
ux(z)dz, (5.91)

which is valid only if the density is constant, which we know is not the case, and we
must be aware of this assumption.

Proceeding, the general solution to the Laplace equation is ux(z) = K1z+K2, where
the constant of integration is found by the integrals, Eqs. (5.89) and (5.90). The solution
to the problem is

ux(z) =
2⟨uslab⟩−Vwall

∆−h

(
z− ∆

2

)
+ ⟨uslab⟩. (5.92)

Notice that the strain rate γ̇ = 1/2(du/dz) is, in terms of the slab velocity,

γ̇ =
2⟨uslab⟩−Vwall

2(∆−h)
. (5.93)

Next, we seek a model for the average fluid slab-element velocity. For sufficiently large
slab volume, the fluctuations of the mass in the slab can be ignored. The total force
acting on the slab in the x-direction is given by two surface forces, namely the sur-
face frictional force due to wall–fluid interactions, Fw f (t), and a surface frictional force
due to fluid–fluid interactions, Ff f (t). The x-component of the centre-of-mass velocity,
uslab, is then written in terms of Newton’s second law,

m
duslab

dt
= Fw f (t)+Ff f (t). (5.94)
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128 Simple Nanoscale Flows

In the steady state the time average follows the force balance, ⟨Fw f ⟩t + ⟨Ff f ⟩t = 0. To
proceed, we introduce two linear models for Fw f and Ff f , namely,

⟨Fw f ⟩t =−ζ ⟨uslab⟩t and ⟨Ff f ⟩t = 2Aη0⟨γ̇⟩t , (5.95)

where ζ is the friction coefficient between the wall and the slab. Note: in the first equa-
tion we effectively replace the surface frictional force with a volume force. Substitution
then leads to

−ζ ⟨uslab⟩t +2Aη0⟨γ̇⟩t = 0 , (5.96)

implying that

⟨γ̇⟩t =
ζ ⟨uslab⟩t

2Aη0
. (5.97)

Substitution of Eq. (5.97) into Eq. (5.93) gives an expression for the slab velocity in
terms of the friction coefficient:

⟨uslab⟩t =
Aη0uwall

2Aη0 − (∆−h)ζ
. (5.98)

Substituting into Eq. (5.92) and applying the Navier boundary condition,

Ls
∂ux

∂ z

∣∣∣∣
z=0

= ux(0), (5.99)

we obtain the final result for slip length,

Ls =
Aη0

ζ
− ∆

2
=

η0

ζN
− ∆

2
, (5.100)

where we have identified the relation ζN = ζ/A. As ∆ → 0, we retrieve the Navier
definition of the slip length.

The question still remains how to evaluate the friction coefficients ζ and η0. The
viscosity can simply be found from usual methods, for example, through the Green–
Kubo integral, Eq. (3.38). The wall–fluid interfacial friction can be found from the
generalized Langevin equation. If Fw f is the instantaneous force exerted by the wall on
the fluid surface, we can write this as

Fw f (t) =−
∫ t

0
ζ (t − t ′)uslab(t

′)dt ′+δFw f (t), (5.101)

where ζ is the generalized friction kernel analogous to the viscosity kernel in Chapter
4, and δFw f is a random force with zero mean uncorrelated with the slab velocity, that
is,

⟨δFw f (t)uslab(0)⟩= 0. (5.102)

Multiplying by uslab(0), averaging over an ensemble of initial conditions, and applying
the linear properties if the integral, we arrive at an expression for the force–velocity
correlation function,

⟨Fw f (t)uslab(0)⟩=CFu(t) =−
∫ t

0
ζ (t − t ′)Cuu(t ′)dt ′, (5.103)
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tFigure 5.17 Comparison between the predicted slip length (x-axis) and results from direct-NEMD simulations (y-axis) for four
different systems. The systems differ by their interaction potential between wall and fluid as well as densities and
temperatures. The circle highlights two NEMD results from both Couette and Poiseuille flows. The fluids are
Lennard–Jones type fluid systems; see details in Ref. [105].

in terms of the slab velocity autocorrelation function,

Cuu(t) = ⟨uslab(t)uslab(0)⟩. (5.104)

A more convenient form is obtained by a Laplace transformation with respect to the
generalized Laplace complex coordinate s. Applying the convolution theorem once
again, we obtain

ĈFu(s) = ζ̂ (s)Ĉuu(s). (5.105)

Both CFu and Cuu are easily evaluated from EMD simulations [105, 123], and through
the Laplace transform the Navier friction coefficient can be found by taking the s → 0
limit, that is, ζ =− lims→0 ĈFu(s)/Ĉuu(s). This leads to poor statistics, and the authors
advised an alternative approach; see details in Ref. [209].

It is important to note that the slab height ∆ should be approximately 1–2 particle
diameters; for smaller heights, not all relevant wall–fluid interactions are included, and
the friction coefficient will be underestimated. This differs from the original idea of
Navier, where one considers the friction on the wall–fluid interface surface and not
friction in a volume.

Fig. 5.17 shows the slip length obtained from d-NEMD simulations versus the pre-
dicted slip length, Eq. (5.100). Results from both Couette and planar Poiseuille flows
show good agreement for all four different systems investigated, here indicated by
roman numerals. Note that for these systems the slip length is relatively small and
the equilibrium results can, without problems, be compared to d-NEMD simulations
data. The method has also been successfully applied to water in carbon nanotubes
[124, 125], Fig. 5.13.
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5.6 Molecular Flows

We will start our discussion of molecular flows by solving the dynamical equations
for the Couette and planar Poiseuille flows. The system geometries are shown in Figs.
5.12(b) and 5.8(a). However, in this explorationwewill shift the coordinate system such
that z∈ [−h;h], where h is half the slit-pore height, h= h/2.While this may compromise
the intuition of the problem a bit, the coordinate shift reduces the length of the resulting
mathematical expressions considerably.

Since we now consider molecular fluids, we will allow the pressure tensor to have an
antisymmetric part and we therefore include both the streaming velocity field u and
spin angular velocity field ΩΩΩ as hydrodynamical variables. As usual, we focus on the
low Reynolds number situation, as this is the case relevant for nanoscale flows. Then
we ignore advection, viscous heating effects, and, finally, we assume zero divergence,
that is, the usual incompressibility criterion ∇∇∇ ·u = 0, but also ∇∇∇ ·ΩΩΩ = 0.

The relevant balance equations are Eqs. (2.62) and (2.113), and the constitutive rela-
tions are given in Eqs. (3.22), (4.54), and (4.55). The corresponding divergence-free
dynamical equations read

ρ
∂u
∂ t

= ρg+ηt∇2u+2ηr∇∇∇×ΩΩΩ (5.106a)

ρΘ
∂ΩΩΩ
∂ t

= ρΓΓΓ+2ηr(∇∇∇×u−2ΩΩΩ)+ζ ∇2ΩΩΩ. (5.106b)

Recall from Chapter 4 that ηt = η0+ηr and ζ = ζ0+ζr, and ρg and ρΓΓΓ are the applied
force and torque densities.

5.6.1 The Molecular Couette Flow

The Couette flow is boundary driven and there are no external forces acting; that is,
ρu and ρΓΓΓ are both zero. In the current geometry, only the y-component of the spin
angular velocity field is non-zero. Then, for the steady-state flow regime, ux = ux(z) and
Ωy = Ωy(z), we have

ηt
d2ux

dz2 −2ηr
dΩy

dz
= 0 (5.107a)

2ηr

(
dux

dz
−2Ωy

)
+ζ

d2Ωy

dz2 = 0. (5.107b)

Here we will apply the Dirichlet no-slip boundary condition for both dynamical
variables, that is, in our current coordinate system,

ux(−h) = 0,ux(h) =Vwall and Ωy(−h) = Ωy(h) = 0. (5.108)

Application of the no-slip boundary condition is, of course, a special case. A more
general treatment will apply the Neumann boundary condition and include the possi-
bility that these boundary conditions, too, are coupled. A discussion about the angular
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131 5.6 Molecular Flows

velocity boundary condition is made by Badur et al. [8]. For the points made here, the
ad hoc no-slip condition suffices.

Proceeding, integration of Eq. (5.107a) gives

dux

dz
=

2ηr

ηt
Ωy +K1, (5.109)

where K1 is a constant of integration. Substitution into Eq. (5.107b) yields an inho-
mogenous second-order differential equation for the angular velocity, namely,

d2Ωy

dz2 +
4ηr

ζ

(
ηr

ηt
−1
)

Ωy +
2ηr

ζ
K1 = 0. (5.110)

The general solution to this boundary value problem is found using the method of
undetermined coefficients. The specific solution for the corresponding boundary value
problem requires some algebra, and we here simply list the results; for the spin angular
velocity,

Ωy(z) =
2ηrβ
α2ζ

[
cosh(αz)
cosh(αh)

−1
]
, (5.111)

where α is the eigenvalue of the problem,

α = 2
√

ηrη0

ζηt
, (5.112)

and where we have introduced the following auxiliary constants:

β =
Vwallα3ηtζ

8η2
r γ −2hα3ηtζ

and γ = tanh(αh)−αh. (5.113)

The streaming velocity is found by integration of Eq. (5.109) to

ux(z) = β
[

4η2
r

ηtα2ζ

(
sinh(αz)

α cosh(αh)
− z
)
− z
]
+

Vwall

2
. (5.114)

The classical Couette flow solution in terms of the shifted coordinate, h, is
ux = Vwall(z/h + 1)/2. Also, for spin angular velocity we have Ωy = (1/2)dux/dz =

Vwall/(4h). In particular, as the spin angular velocity is given directly from the stream-
ing velocity, the classical theory does not allow for boundary specifications, and the
extended and classical predictions will differ by a magnitude of Vwall/(4h) at z±h. For
sufficiently high channels and as we approach the channel mid-point, we will expect
that the extended theory converges to that of the classical theory.

Figure 5.18 shows the velocity and spin angular velocity profiles obtained from a d-
NEMD simulation of a butane fluid undergoing a Couette flow. The streaming velocity
profile is calculated from the molecular centre-of-mass linear momentum, Eq. (5.47),
and the local angular velocity is calculated using its definition, Eq. (2.99), noting that
the time-averaged spin angular momentum and momentum of inertia are

S(z) =
⟨∑i Siδ (z− zi)⟩t
⟨∑i miδ (z− zi)⟩t

and ΘΘΘ(z) =
⟨∑i miΘΘΘiδ (z− zi)⟩t
⟨∑i miδ (z− zi)⟩t

. (5.115)
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ytFigure 5.18 The streaming velocity and spin angular velocity profiles for a model butane fluid undergoing a Couette flow. Symbols

are results from d-NEMD simulations, and lines are predictions (no fitting) from hydrodynamic theory using
η0 = 0.14mPa·s,ηr = 0.013mPa·s, and ζ = 4×10−24 kg ms−1, Table 4.1. The bulk density is
approximately 582 kgm−3 and temperature isT = 288 K.

The simulation results are accompanied with the hydrodynamic predictions. The agree-
ment is satisfactory away from the wall, but at the wall–fluid interface the predicted
velocity profile does not agree with the molecular dynamics results. As we saw in Figs.
5.2 and 5.4, the system features strong density variation and molecular alignment in
the wall–fluid interface. Our hydrodynamical model here assumes both homogeneity
and isotropy, which is, again, too crude an assumption near the wall, and we expect to
observe deviations.

Importantly, the spin angular velocity is much lower than predicted by the classical
hydrodynamic theory, Vwall/(4h), which is on the order of 1011 s−1.

It is highly informative to study the corresponding symmetric and antisymmetric
shear pressures. They are given directly from the constitutive relations,

os
Pxz (z) =−η0

dux

dz
and

ad
Py (z) =−ηr

(
dux

dz
−2Ωy

)
, (5.116)

and plotted in Fig. 5.19. The classical hydrodynamic theory predicts a constant sym-

metric shear pressure,
os
Pxz= η0Vwall/(2h). From Eqs. (5.109) and (5.114) it is easily seen

that the extended theory predicts that
os
Pxz varies with the spatial coordinate. This is the

result of the coupling and is significant at the wall–fluid interface. This point can also
be concluded from the antisymmetric shear pressure, as this features the same qualita-
tive behaviour. The classical hydrodynamic theory predicts a zero antisymmetric shear
pressure, which is only observed sufficiently far away from the wall–fluid interface.

5.6.2 The Molecular Poiseuille Flow

We continue and explore the planar Poiseuille flow. The extended hydrodynamic
equations are
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tFigure 5.19 The symmetric (full line) and antisymmetric (broken line) shear pressure profiles for butane fluid undergoing a Couette
flow. Notice the two difference scales on the y-axis. The horizontal dots indicate zero antisymmetric stress. The
transport coefficients are given in Fig. 5.18.

ηt
d2ux

dz2 −2ηr
dΩy

dz
=−ρFe (5.117a)

2ηr

(
dux

dz
−2Ωy

)
+ζ

d2Ωy

dz2 = 0, (5.117b)

where we let the flow be generated by an external gravitational-like force. To compare
with data later, we let the boundary conditions be simple Dirichlet boundaries,

ux(−h) = ux(h) = uw and Ωy(−h) = Ωy(h) = 0 . (5.118)

The slip-velocity uw needs to be determined experimentally or from simulations.
The solution to this boundary value problem can be found using the same approach

as previously. Integrating Eq. (5.117a),

dux

dz
=

2ηr

ηt
Ωy −

ρFe

ηt
z+K1, (5.119)

which gives the differential equation for the spin angular velocity,

d2Ωy

dz2 +
4ηr

ζ

(
ηr

ηt
−1
)

Ωy −
2ηrρFe

ηtζ
z+

2ηr

ζ
K1 = 0 . (5.120)

Again, using the method of undetermined coefficients, we arrive, after some algebra,
at

Ωy(z) =
ρFeh
2η0

[
z
h
− sinh(αz)

sinh(αh)

]
(5.121)

for spin angular velocity, and

ux(z) =
ρFeh

2

2η0

[
1−
(

z
h

)2

+
2ηr coth(αh)

ηtαh

(
cosh(αz)
cosh(αh)

−1
)]

+uw (5.122)

for the streaming velocity. See also Eringen, Ref. [62].
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tFigure 5.20 The streaming velocity profile for water flowing in a slit-pore. Open circles are results from d-NEMD, filled squares
connected with lines represent the classical hydrodynamic predictions, and the triangle the extended hydrodynamic
predictions. From Ref. [105] with permission.

The corresponding classical hydrodynamic result is found in the case of ηr = 0; that
is, we get the velocity,

ux(z) =
ρFeh

2

2η0

[
1−
(

z
h

)2
]
+uw, (5.123)

and the corresponding spin angular velocity,

Ωy(z) =−ρFe

η0
z . (5.124)

Figure 5.20 plots the streaming velocity profile obtained from d-NEMD simulations
of water undergoing a planar Poiseuille flow in a slit-pore with a height of 3.6 nm
[105]. To compare the predictions with simulation results, we need to extract the slip
velocity, uw. If the velocity profile is extrapolated only using the velocity profile away
from the (troublesome) wall–fluid interface, an apparent slip velocity (or equivalently
an apparent slip length) can be inferred. This apparent slip can defined from both the
classical and extended theories, Eqs. (5.123) and (5.122). Both predictions are plotted
as symbols connected with lines. Clearly, the extended theory is in good agreement with
the simulation data, whereas the classical theory predicts too large a flow.

From Fig. 5.20 it is evident that the volumetric flow rate is significantly reduced
because of the coupling. The effect can be quantified through the enhancement
coefficient Ecoup = Qextend/Qclass. By integration, we arrive at [102]

Ecoup = 1+
3ηrγ

ηt tanh(αh)(αh)2
. (5.125)

γ is given in Eq. (5.113). The second term on the right-hand side goes to zero as αh
increases. Therefore, for large channel heights the flow rate predicted by the classical
theory is the same as that predicted by the extended theory, which is also expected.

https://doi.org/10.1017/9781009158749.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009158749.006


135 5.6 Molecular Flows

0 10 20 30 40 50
h [nm]

0.8

0.85

0.9

0.95

1

E
co

up

Butane

Water

tFigure 5.21 Coupling enhancement coefficient, Eq. (5.125), as a function of channel height for butane and water fluids. Parameter
values forηr,η0, and ζ can be found in Table 4.1.

In order to quantify the effect of the coupling in terms of a length we introduce [93]

lc =
√

ζ/ηr , (5.126)

such that the fundamental eigenvalue for the problem can be written as

α =
2
lc

√
η0

ηt
≈ 2

lc
, (5.127)

since η0 > ηr for most fluids. Then, large lc, indicates large effect of the coupling on the
flow enhancement due to the additional dissipative process coming from spin angular
velocity diffusion. From Table 4.1, we have for the butane fluid lc ≈ 0.5 nm and for liq-
uid water lc ≈ 3.5 nm; hence, the coupling effect is small for butane compared to water.
This is seen in Fig. 5.21, where the enhancement coefficient is plotted as a function of
channel height for the two fluids.

5.6.3 Torque Insertion

We now consider the situation where the external torque density is non-zero. The
hydrodynamic equations for the slit-pore are

ηt
d2ux

dz2 −2ηr
dΩy

dz
= 0 (5.128a)

2ηr

(
dux

dz
−2Ωy

)
+ζt

d2Ωy

dz2 =−ρΓ. (5.128b)

In this particular example, we let the boundary conditions be mixed in that we allow
for a velocity slip at one wall:

ux(−h) = 0, Ls
∂ux

∂ z

∣∣∣∣
z=h

=−ux(h) and Ωy(−h) = Ωy(h) = 0. (5.129)
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tFigure 5.22 (a) Schematic illustration of an external rotational electric field exerting a torque on water confined in a slit-pore. From
Ref. [92] with permission. (b) Examples of the resulting velocity profiles for no-slip and slip situations. The velocity and
spatial coordinates are normalized.

The differential equation for the spin angular velocity is readily found to be

d2Ωy

dz2 +
4ηr

ζ

(
ηr

ηt
−1
)

Ωy +
2ηr +ρΓ

ζ
K1 = 0. (5.130)

and is seen to be on the same functional form as the equation for the Couette flow. We
therefore write the general solution as

Ωy(z) = Ω0

[
cosh(αz)
cosh(αh)

−1
]
, (5.131)

where Ω0 is the spin velocity amplitude depending on the applied torque. Integrat-
ing Eq. (5.128a) and applying the boundary conditions, we obtain for the streaming
velocity

ux(z) =
2ηrΩ0

ηtα

[
sinh(αz)
cosh(αh)

−
(

α +
2γ

Ls +2h

)
z+
(

1− 2h
Ls +2h

)
γ
]
, (5.132)

where, recall, γ = tanh(αh)−αh.
For dielectric materials, the torque insertion can be realised by application of an

external electric field [28], Eext; see Fig. 5.22. This is, in particular, relevant for nan-
oscale geometries, as large fields can be achieved with realistic experimental electric
potential differences. The external electric field induces a polarisation P, which will
align with the field direction. The polarisation, in turn, leads to a screening field, and
the local field E is a sum of the external field and this screening field; the local electric
field gives raise to the torque density,

ρΓΓΓ = P×E . (5.133)
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137 5.7 Further Explorations

Bonthuis et al. [28] showed through perturbation analysis that the torque is to first
order in the electric field given by the external field, making the theoretical treatment
tractable. Then, let the external electric field be given by

Eext = E0 sin(ω0t)i+E0 cos(ω0t)k , (5.134)

where i and k are the unit vectors parallel to the x and z axes, respectively. If we further
let the polarisation be homogenous and assume that we can ignore the non-linear cross
coupling between the spin angular velocity and polarisation and we have the Debye
equation, Eq. (2.125),

dP
dt

=
1

τD

(
ε0χeEext−P

)
. (5.135)

In the large time limit where transient features are completed, the Debye equation
solves to

P(t) =
ρε0χeE0

1+ω2
0 τ2

D
[(cos(ω0t)+ω0τD sin(ω0t))i+(sin(ω0t)−ω0τD cos(ω0t))k] .

(5.136)

The torque density only has one non-zero component, namely the y-component, which
can be found directly fromEq. (5.133), where the local field E is replaced by the external
field, giving

ρΓ =−
ρε0χeE2

0 ω0τD

1+ω2
0 τ2

D
. (5.137)

From this we see that the torque density depends on the external field frequency and
has a maximum at ω0 = 2π/τD; for water, this corresponds to an angular frequency of
approximately 0.125 THz.

Figure 5.22 plots two velocity profiles for a generic dielectric fluid exposed to a rotat-
ing field giving rise to a torque: one profile for Ls > 0, and one for Ls = 0. It is clear that
for Ls = 0, the volumetric flow rate is zero, whereas it is non-zero for Ls > 0. Thus, if the
slip conditions are asymmetric, the torque insertion method can be used as a pumping
mechanism.

5.7 Further Explorations

1. Simulate a Couette flow for a confined Lennard–Jones liquid, where the channel
height is around 10 Lennard–Jones particle diameters. The fluid state point can be
(ρ,T )= (0.75, 1.0). Change the wall–fluid interaction parameter (see computational
resource); how does this affect the fluid flow velocity and density profiles.

From the velocity profiles, calculate the slip lengths and compare the simulation
data with the hydrodynamic prediction, Eq. (5.70).
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138 Simple Nanoscale Flows

Calculate the hydrodynamic channel height, Eq. (5.55), and compare this length
with the non-zero density profile height.

Computational resources available.

2. An oscillatory Couette flow can be achieved by a periodic shear motion of one or
both walls in a slit-pore. Assume the no-slip boundary conditions ux(0) = 0 and
ux(h) =Vwall, where

Vwall(t) =V0 sin(ω0t),

ω0 being the imposed shear oscillation frequency. Solve the Navier–Stokes equation
for this case.

To compare with simulation data, we take the time average over a small interval
of the oscillation period T0 = 2π/ω0. For example, we can split the period into eight
time intervals such that the time average for the first interval is

⟨ux⟩t =
8
T0

∫ T0/8

0
ux(z, t)dt .

Integrating from T0/8 to T0/4, we obtain the average for the second interval, and
so forth. Derive the time averages for all eight intervals. Compare with molecular
dynamics simulation data for different frequencies ω0; tweak the interaction param-
eter between the wall and fluid particles to reduce the slip length asmuch as possible.
How do you characterise the flow profile for different frequencies?

Computational resources available.

3. Derive the symmetric and antisymmetric shear pressure for a molecular Poiseuille
flow. Use the values for the transport coefficients given in Table 4.1 to compare the
pressure profiles for chlorine, butane, and water.

4. Prove that for no-slip boundary conditions, ux(0) = ux(h) = 0 and Ωy(0) =

Ωy(h)=0, torque insertion cannot result in an average channel flow.
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6 Gradients

The previous chapter dealt with simple nanoscale fluid flows that were characterised
by non-zero gradients in the fluid velocity. In this chapter we explore the formation and
effects of gradients in temperature, electric potential, and chemical concentrations, and
we will see new phenomena arise and how they are modelled using the hydrodynamic
framework.

6.1 Phenomena in Temperature Gradients

In nanoscale systems extremely large temperature gradients can be achieved. For exam-
ple, Fedoruk et al. [70] heated a nano-gold particle with an optical laser, obtaining a
temperature gradient in the fluid surrounding the particle on the order of 1 K/nm. See
also Govorov et al. [82] for a theoretical treatment of this system. Such extreme gradi-
ents enable us to investigate phenomena which cannot, at least so easily, be observed
for macroscopic gradients.

Gradients in temperature give rise to a whole family of coupling phenomena; we
will explore some of the more well-known ones here. We will also see examples that are
perhaps not so commonly discussed in the literature, yet they do provide new insight
into the hydrodynamics of fluids. The purpose of this section is to give an introduction
to the rich dynamical phenomenology, and the reader is referred to the references for
more details.

6.1.1 The Kapitza Length

It is enlightening to first explore a simple system composed of single-type non-charged
molecules with an imposed constant temperature gradient. We envision that such a
system can be realised in a slit-pore and by cooling one wall and heating the other, such
that the temperatures are TC and TH , respectively; see Fig. 6.1. As a first approximation,
we use the standard macroscopic picture and we expect the gradient to be

α = (TH −TC)/h. (6.1)

This need not be true. In particular, the temperature gradient can be smaller.
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x

∆T = T(0) –TC

TC TH

LK

z
ytFigure 6.1 Illustration of the interfacial temperature jump and the Kapitza length. The linear temperature profile is shown as a

black line.

To investigate this claim, we first assume constant density; we have from Eqs. (2.90),
(2.87), and (3.22c) the temperature,

∂T
∂ t

= λ
∂ 2T
∂ z2 , (6.2)

for the slit-pore geometry. Note: as in Chapter 5, we here do not write the subscript
“av” explicitly unless we study the actual fluctuations. This is the one-dimensional heat
equation. The boundary conditions must be specified, and a first reasonable guess
would be the Dirichlet boundaries T (0) = TC and T (h) = TH , giving T (z) = αz+ TC

and hence the expected gradient, Eq. (6.1).
Kapitza [126] showed that at the wall–fluid boundary there exists an abrupt change

in thermal resistance (inversely proportional to the heat conduction). This resist-
ance results in a temperature jump at the interface, for example, for the cold wall
∆T = T (0)−TC as illustrated in Fig. 6.1.

Inspired by the Navier boundary condition discussed in Chapter 5, a linear extrap-
olation of the temperature profile from the wall–fluid boundary to the point where the
extrapolation equals the wall temperature defines a length, LK . This length is denoted
the Kapitza length and we have

T (0)−TC = LK
∂T
∂ z

∣∣∣∣
z=0

and T (h)−TH =−LK
∂T
∂ z

∣∣∣∣
z=h

. (6.3)

In general, this is written as the Neumann boundary,

∆T = LK∇∇∇T ·n, (6.4)

such that n is the wall normal vector pointing into the fluid; also see Fig. 5.8(b). In
the steady state we integrate the right-hand side of Eq. (6.2), and application of the
boundaries Eq. (6.3) yields

T (z) =
TH −TC

h+2LK
(z+LK)+TC. (6.5)

Notice that the presence of an interfacial thermal resistance jump gives rise to a reduced
system temperature gradient.
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Table 6.1 Kapitza lengths for three different systems.σ is the usual Lennard–Jones length
scale. The large interval for the FCC - LJ system is due to different wall–fluid interactions, see

Ref. [7] for details. a Ref. [7] b Ref. [173]

Wall Fluid Kapitza length, LK

a LJ - FCC LJ (fluid) 5–30 σ
b Au - FCC Water (liquid) 6.5 ± 0.7 nm
b Silicon - diamond Water (liquid) 7.5 ± 0.3 nm
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LK = 6.5 nm
LK = 0 

tFigure 6.2 Temperature gradient as function of slit-pore height, whereTH −TC = 1 K andLK = 6.5 nm orLK = 0.

In Table 6.1 LK is listed for a few systems. Like the slip length, the Kapitza length
depends on the detailed wall–fluid interactions, temperature, fluid density, and so on
[69]. The general picture is that LK decreases as the adhesive interactions increase, that
is, as the attractive interactions between the wall and fluid atoms increase. It is worth
noting that the Kapitza length can be evaluated through NEMD or EMD simulations
[7, 14].

For a given Kapitza length and wall temperatures, the solution approaches

T (z) = αz+TC (6.6)

as h increases. Figure 6.2 plots the temperature gradient as a function of slit-pore height
h using LK = 6.5 nm (the Au–Water system) and LK = 0. Thus, for a pore height of
10 nm, the gradient is more than half of what we expect from the classical boundary
condition.

Equation (6.2) is based on a local linear constitutive relation, specifically, Fourier’s
law. Away from the wall–fluid interface, this simple model suffices even for relatively
large temperature gradients. However, in the interface region the different inter-facial
phenomena (density variations, alignment, etc.) affect the transport properties, and
a non-local anisotropic description is needed. Such a careful treatment is not yet
available in the literature.
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6.1.2 The Soret Effect

In the nineteenth century C. Ludwig and C. Soret independently discovered that an
imposed temperature gradient in fluid mixtures induces a concentration gradient in the
components. According to Platten, Ref. [175], it was Soret who made a more detailed
study, and the phenomenon is therefore often referred to as the Soret effect. It is also
known as thermodiffusion, thermomigration, and the Ludwig–Soret effect to com-
memorate Ludwig. Some authors use the term thermophoresis; however, this is also
used specifically for colloidal suspensions, which we do not treat here.

One consequence of the Onsager reciprocal relation [52] is that if a temperature gra-
dient induces a concentration gradient, it is also true that a concentration gradient
induces a temperature gradient. This coupling must, of course, also agree with Curie’s
principle. The latter phenomenon is the Dufour effect. Thus, to model this phenome-
non, we strictly need the equations for both concentrations and temperature, forming
a set of coupled equations that are solved simultaneously. This proves to be a rather
complicated exercise, as the problem is non-linear, and, for example, standard per-
turbation analysis is not very helpful. We here follow Miller et al. [159] and take a
simplified approach, where the temperature profile is given a priori. From this we can
derive the corresponding concentration profile. While this is, perhaps, less elegant, it
still allows us to address the important points.

We base the modelling of the phenomenon on the single-particle dynamics. Recall
Eq. (3.90); we here highlight that we explore the single-particle dynamics of a specific
type of molecule, say type A, and ignoring advection, we get

∂ρA

∂ t
=−∇∇∇ ·JA. (6.7)

Next, we need a constitutive relation for the particle flux JA. Following the standard
formalism, this is expressed through the mass fraction, xA = ρA/ρ , rather than ρA, and
the flux is given by [52],

JA =−ρDAB∇∇∇xA −ρDT xA(1− xA)∇∇∇T, (6.8)

again omitting the subscript av. DAB is the mutual diffusion coefficient describing the
diffusion of A in a system with a specific composition of A and B molecules; hence,
the mutual diffusion coefficient is dependent on both the mixture’s composition and
specific state point. DT is the thermal diffusion coefficient for A and is also mixture and
state-point dependent. The symbol for the thermal diffusion coefficient should not be
confused with the thermal diffusivity from Chapter 3.

Equation (6.8) includes the coupling between the temperature gradient and the mass
flux in accordance with Curie’s principle; notice that the coupling term is non-linear.
Substitution of Eq. (6.8) into Eq. (6.7) yields the dynamical equation for the mass
fraction,

∂xA

∂ t
= ∇∇∇ · (DAB∇∇∇xA +DT xA(1− xA)∇∇∇T ) . (6.9)
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Table 6.2 Soret coefficient for different mixtures. For the water mixtures, the
interval indicates the mixture’s composition with respect to the organic

compound. Parentheses indicate uncertainty on this digit. a Ref. [167] b Refs.
[167, 218] c Ref. [159]

Mixture Composition ST [10−3 K−1]

Water–methanola xmethanol = [0.0125; 0.64] 3.(8) to −3.(2)
Water–ethanolb xethanol = [0.01; 0.2] 8.(4) to −4.(7)
Water–acetonea xacetone = [0.027; 0.903] 6.(7) to −1.(1)
Krypton–argonc Equimolar 13

In the following we focus on the steady state and let the fluid be confined between two
parallel surfaces with different temperatures TC and TH , TC < TH , such that the direction
of confinement is the z-direction; this is analogous to the situation in Fig. 6.1. Notice
that, in accordance with the previous section, we do not demand that T (0) = TC and
T (h) = TH . In the steady state we have that the mass fraction and temperature are
dependent only on the spatial z coordinate, xA = xA(z) and T = T (z). The advection
is zero and we ignore thermal expansion, such that we explore only sufficiently small
temperature differences. In the steady state we also have that the mass flux of A is zero
everywhere, JA = 0. In the current geometry, we get

dxA

dz
=−ST xA(1− xA)

dT
dz

, (6.10)

where ST = DT/DAB is the Soret coefficient. This equation is separable,

dxA

xA(1− xA)
=−ST dT, (6.11)

and integration from z′ = 0 to z′ = z,∫ xA(z)

xA(0)

dxA

xA(1− xA)
=−ST

∫ T (z)

T (0)
dT, (6.12)

yields, after manipulation,

1
xA(z)

= 1+
1− xA(0)

xA(0)
eST (T (z)−T (0)) (6.13)

for temperature profile T (z).
The Soret coefficient for four different mixtures is listed in Table 6.2. Notice that ST

can take both positive and negative values; a positive Soret coefficient means that the
molecule type we investigate, here a generic type A, migrates down the temperature
gradient; and vice versa, for negative values the molecules migrate up the temperature
gradient.

As a first approach, we let the temperature be given by Eq. (6.5), which we write in
the more compact form,

T (z) = αLK (z+LK)+TC. (6.14)
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tFigure 6.3 Concentration profile for methanol. The system is a water–methanol mixture, xmethanol = 0.505, and using
synthetic NEMD the system is held at a constant temperature gradient of around 33 K/nm. Data are from Nieto-Draghi
et al. [167]. Lines are graphs of Eqs. (6.13) and (6.16) using the Soret coefficient 2.5×10−3 K−1.

where αLK = (TH − TC)/(h + 2LK). Substituting of this into Eq. (6.13) and Taylor
expanding around z = 0, we get

1
xA

= 1+
1− xA(0)

xA(0)
eST (αLK (z−LK)−∆T )

= 1+
1− xA(0)

xA(0)
eST αLK LK (1+ST αLK z)+ . . . , (6.15)

for sufficiently small temperature jumps ∆T . For zero Kapitza length, the first-order
Taylor expansion reduces to

1
xA

= 1+
1− xA(0)

xA(0)

(
1+

ST (TH −TC)

h
z
)
, (6.16)

hence, the prefactor eST αLK LK is a measure for the effect of the wall–fluid thermal resist-
ance jump on the concentration. For example, using LK = 10 nm and ST = 0.01 K−1,
we get a prefactor of 1.0033 for h = 10 nm and TH −TC = 1 K; that is, the effect from
the interfacial thermal resistance on the concentration profile is very small.

Figure 6.3 plots simulation data for the concentration profile for methanol in
a water–methanol mixture. The temperature gradient is constant at approximately
33 K/nm and held fixed through a synthetic technique. The theoretical predictions,
Eqs. (6.13) and (6.16), are shown as lines.

6.1.3 Charged Systems in a Temperature Gradient

For electrolyte solutions, a thermal gradient induces an electrical potential gradient (or
voltage). This phenomenon is known as the thermoelectric effect. Also, by imposing
an electric potential gradient, one induces a temperature gradient. If φq is the electric
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potential and σ the electric conductivity, the linear constitutive relation for the charge
flux, that is, the electric current, reads [131]

je =−σ∇∇∇φq −σSe∇∇∇T, (6.17)

where Se is the Seebeck coefficient. Like the Soret coefficient, the Seebeck coefficient
can take negative values; for alkali-halide electrolyte solutions, Lecce and Bresme [144]
found that−1.5×10−4V K−1 < Se < 3×10−4V K−1 over a large range of temperatures
and salt concentrations.

Consider the system in Fig. 6.1. If the walls are not electrodes capable of conducting
charges, the confinement prevents a constant electrical current. Therefore, for suffi-
ciently large times, je = 0 and, if we further assume that the gradients are constants,
we have from Eq. (6.17) the potential difference across the slit-pore,

∆φq =−Se∆T. (6.18)

Using h = 4 nm, and for later comparison a fictitious large temperature difference
∆T = 132K (a gradient of 33 K nm−1), and Se = 10−4V K−1, the potential differ-
ence will be on the order of 10−2 V, corresponding to a very large electric field of
3.3× 106 Vm−1. This crude estimate not only ignores the temperature dependence of
the Seebeck coefficient, it also does not include screening and layering effects, and
other phenomena.

A more careful calculation of the local electric field can be done by application of
Gauss’ law,

E(z) =
1
ε0

∫ z

0
ρq(z′)dz′, (6.19)

where ρq is the total charge density. Figure 6.4 re-plots data from molecular dynam-
ics simulations for the local electric field from Lecce and Bresme [144]. We see that
the crude estimate for the electric field above yields the right order of magnitude, but
it naturally fails as a direct quantitative prediction. In the next section, we return to
charged systems and explore the layering and screening in a more systematic manner.

Finally, it is interesting to note that a temperature gradient also induces popularisa-
tion, leading to so-called thermopolarisation. Using molecular dynamics simulations
of water applying a large temperature gradient on the order of 1 K/nm, Bresme et
al. [35] were able to produce a significant non-zero polarisation, and equivalently a
non-zero local electric field.

6.1.4 Fluctuations in a Temperature Gradient

In Chapters 3 and 4 we studied the dynamics through fluctuations in equilibrium.
We push this idea further and here explore the fluctuations under non-equilibrium
conditions; and a new surprising coupling emerges.

Inspired by Kirkpatrick et al. [129, 130] and Zárate and Sengers [56], we continue
to apply the geometry given in Fig. 6.1. To keep it simple yet still to the point, the
Kapitza length is zero, LK = 0. Then, at z = 0, the temperature is TC, and at z = h, it is

https://doi.org/10.1017/9781009158749.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009158749.007


146 Gradients

0 1 2 3 4
z [nm]

–30

–20

–10

0

10

20

30

E
 [

10
6

V
 m

–1
]

tFigure 6.4 The resulting electric field profile for a LiCl–water solution (1.0 mol kg−1) when applying a temperature gradient of
33 K nm−1. Data are re-plotted from Lecce and Bresme [144]; only part of the system electric field profile is shown.

TH . The fluid is composed of unchargedmolecules all of the same type, so we ignore the
Soret, thermoelectric, and thermopolarization effects. We will exclude external forces,
and therefore uav = 0. The instantaneous temperature profile is decomposed into the
average and fluctuating parts,

T (z, t) = Tav(z)+δT (z, t) = T0 +αz+δT (z, t), (6.20)

where α = (TH −TC)/h, Eq. (6.1).
The effect of the temperature gradient on the fluctuations can be studied using

the Boussinesq approximation [56, 138]. This is defined through the following two
approximations:

1. The density is constant, that is, ρ = ρav.

2. The thermodynamic properties and transport coefficients are constants and inde-
pendent of the local thermodynamic state.

We have, as the reader may note, used the second approximation throughout the book.
Since the density is constant in this approximation, we cannot study density (or sound)
waves; hence, we only include the Rayleigh process in the modelling. Also, from the
mass balance equation, we have in the steady state

∇∇∇ ·ρu = 0, (6.21)

which leads to the instantaneous incompressibility criterion,

ρav∇∇∇ · (uav +δu) = 0 implying ∇∇∇ ·δu = 0. (6.22)

Next, we write up the dynamical equation for the linear momentum fluctuations. From
Eqs. (3.25b), (3.48), and (6.22), the dynamics for the streaming velocity fluctuations is
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ρav
∂δu
∂ t

=−βV ∇∇∇δT +η0∇2δu−∇∇∇ ·δP (6.23)

to first order in the fluctuations, and using ρδT = ρδε/cV .
Recall, the equation for the kinetic temperature, Eq. (2.91). Since the average flow is

zero, we ignore viscous heating and we have

ρavcV

(
∂T
∂ t

+u ·∇∇∇T
)
=−∇∇∇ ·Jε . (6.24)

One could easily be tempted to ignore the advection in a first-order approximation
since we have zero flow; however, we need to be careful. As u = δu, the advective
derivative becomes

u ·∇∇∇T = δu ·∇∇∇(Tav(z)+δT )

= δuz
∂Tav

∂ z
+δu ·∇∇∇δT

≈ δuz
∂Tav

∂ z
= αδuz. (6.25)

The advective term is non-zero even to first order in the fluctuations. By application
of Fourier’s law Eq. (3.22c), the dynamical equation for the temperature fluctuations
reads

ρavcV

(
∂δT
∂ t

+αδuz

)
= λ∇2T −∇∇∇ ·δJε . (6.26)

Equations (6.23) and (6.26) are the linearised Boussinesq equations.
Following the approach we used in Chapter 3, we explore the Fourier coefficients.

Thus,

∂ δ̃u
∂ t

=− iβV k
ρ

δ̃T −ν0k2δ̃u− ik · δ̃P (6.27a)

∂ δ̃T
∂ t

= αδ̃uz −κk2δ̃T − ik
ρcV

· δ̃J
ε
. (6.27b)

Let us choose a wavevector normal to the z-direction, say k = (kx,0,0); then the
momentum z-direction decouples from the temperature:

∂ δ̃uz

∂ t
=−ν0k2

x δ̃uz − i(k · δ̃P)z (6.28a)

∂ δ̃T
∂ t

=−αδ̃uz −κk2
x δ̃T − ikx

ρcV
· δ̃J

ε
x . (6.28b)

We can now form the correlation functionsCuu,CuT ,CTu, andCT T obeying the dynamics

∂
∂ t

[
Cuu CuT

CTu CT T

]
=

[
−ν0k2

x 0
−α −κk2

x

]
·
[

Cuu CuT

CTu CT T

]
. (6.29)
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Here we have the co-dependent pair {CuT ,CT T}. From the hydrodynamic matrix, we
immediately identify two characteristic frequencies (or eigenvalues) for the temperature
autocorrelation function CT T , namely,

ω1 =−ν0k2
x and ω2 =−κk2

x . (6.30)

The relaxation is thus characterised by two exponential processes: (i) a thermal diffu-
sion process and (ii) a viscous process; the latter is not present in equilibrium under the
Boussinesq approximation.

If the two processes have different characteristic relaxation times, we can observe
both of them in a mechanical spectrum; that is, if the Prandtl number,

Pr = ν0/κ, (6.31)

is not unity. For water, Pr ≈ 10 at ambient conditions, whereas for Lennard–Jones-type
liquids, Pr ≈ 1. The coupling is difficult to explore using direct molecular simulations,
since the Boussinesq approximation fails in the presence of large gradients, which are
often employed; the reader is referred to Refs. [45, 55] for further treatments of this
phenomenon.

6.1.5 The Planar Poiseuille Flow Revisited

Fluid flows generate heat due to the internal fluid friction. For sufficiently small flow
rates, the generated heat is conducted away from the fluid through the thermostated
walls, and the temperature can be regarded as constant. For nanoscale fluid systems,
where the surface-to-volume ratio is relative large, this thermostating is highly effective.
Nevertheless, when reaching sufficiently large flow rates in simulations, a temperature
gradient can be generated, and here we address this point.

Figure 6.5 shows the relative temperature difference for a simple Lennard–Jones
fluid undergoing a planar Poiseuille flow. Symbols are data obtained from molecular
dynamics, and T0 is the wall temperature. The punctured line plots the predictions from
the classical theory, or more precisely, where the thermal kinetic energy flux is given
by Fourier’s law. The classical approach clearly fails. The full line is the result of an
extended theory first proposed by Baranyai et al. [12]; before exploring this extended
theory, we first revisit the problem from a classical viewpoint.

The geometry is the usual one, and we only need to consider gradients in the
z-direction. For steady non-advective flows, but with viscous heating, the balance
equation for the kinetic temperature, Eq. (2.91), yields

dJε
z

dz
=−Pxz

dux

dz
. (6.32)

Recall Fourier’s law,

Jε
z =−λ

dTcl

dz
, (6.33)
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tFigure 6.5 Relative temperature difference in a slit-pore for a fluid undergoing a Poiseuille flow.T0 is the fluid temperature at the
walls, and h is 67σ ,σ being the Lennard–Jones length scale parameter. Data are taken from Ref. [196]. The
geometry is the same as in Fig. 5.8(a).

where λ is the heat conductivity, and assume this transport coefficient is constant. Tcl

is used to indicate the classical kinetic temperature. Substitution gives

λ
d2Tcl

dz2 = Pxz
dux

dz
. (6.34)

We need an expression for the right-hand side. If we also assume that the viscosity is
constant, the velocity is given by the standard Poiseuille solution Eq. (5.45), which with
zero slip-length reads

ux(z) =
ρg
2η0

z(h− z). (6.35)

The shear pressure becomes

Pxz(z) =−η0
dux

dz
=−ρg

2
(h−2z), (6.36)

and the right-hand side of Eq. (6.34) is therefore

Pxz(z)
dux

dz
=− (ρg)2

η0
(z2 +h2/4− zh). (6.37)

Substituting, integrating, and applying the Dirichlet boundary conditions,

Tcl(0) = Tcl(h) = T0, (6.38)

yield the solution

Tcl(z) =− (ρg)2

24λη0

(
2z3 −4hz2 +3h2z+h3)z+T0. (6.39)

Using values for the conductivity λ and viscosity η0 found from independent simula-
tions [196], we obtain the punctured line given in Fig. 6.5, showing that the classical
treatment does not suffice. Note: including the state-point dependency and non-local
effects in the heat conductivity will not explain the large deviation.
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Through s-NEMD simulations, Baranyai et al. [12] reported an energy flux even
in the absence of a temperature gradient; Fourier’s law cannot be the whole story.
The authors further noted that the flux was proportional to the gradient of the strain
rate squared, at least for moderate strain rates [48]. For the present geometry, this
means

Jε
z =−λ

dT
dz

−ξ
d
dz

(
dux

dz

)2

. (6.40)

The transport coefficient ξ is referred to as the strain rate coupling coefficient [200].
Substituting, we arrive at

λ
d2T
dz2 = ξ

d2

dz2

(
dux

dz

)2

+Pxz
dux

dz
. (6.41)

Using Eqs. (6.36) and (5.45), and integrating, we can write the solution in the form

T = Tcl+Text, (6.42)

where

Text =
ξ (ρg)2

λη2
0

z(h− z) (6.43)

is the contribution from the extended theory. Notice that this contribution is small
near the wall–fluid boundaries, z ≈ 0 and z ≈ h, and becomes maximum at the channel
centre. Using the same values for the conductivity and shear viscosity as the classical
treatment, but allowing the coupling coefficient to be a fitting parameter, we obtain a
very good agreement between the simulation data and the theory.

Both the classical and extended contributions depend on the external force density
squared. Therefore, the coupling term cannot be ignored even in the small force limit
[200].

6.2 Charged Systems in Confinement

Electrolyte solutions confined between charged surfaces play a very important role in
application in bothmicrofluidics and nanofluidics. In the next section, the fundamental
theory for how electrolyte distributes in such a system is introduced, and we use the
results to explore nanoscale fluid flows and how these are coupled to the distribution
of charges.

6.2.1 The Electric Double Layer

Surface charges are not only realised on conductor surfaces, but can also be formed
from chemical reactions on the surface. Nano-slit pores fabricated from a silicon wafer
is one such example: here the wafer is etched with a strong acid, forming a cavity; and
following the etching, the cavity height can be controlled by allowing the pristine silicon

https://doi.org/10.1017/9781009158749.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009158749.007


151 6.2 Charged Systems in Confinement

tFigure 6.6 (a) Illustration of the dissociation of surface silanol groups in a silica–water system. (b) Illustration of the electric
double-layer model.

in the cavity to oxidise, forming silica. After the oxidation process, a silica/silicon lit
is placed on top of the cavity, forming a rectangular-shaped pore; see also Fig. 1.1.
Impressively, fabrication of pore height down to 2–3 nm can now be controlled [148].
Now, when in contact with de-ionised water, the silica surface is hydroxylated forming
silanol groups, −SiOH. This group can donate a proton according to the equilibrium
reaction scheme [16],

−SiOH ⇌−SiO−+H+. (6.44)

The proton can enter reactions occurring in the fluid, like the auto-dissociation mech-
anism of water, and is thus no longer located near the surface. This means that the
surface becomes charged, while the entire system still features charge neutrality; see
the illustration in Fig. 6.6(a).

If we consider a solution composed of cations and anions (an electrolyte) with
charges ±q, respectively, and focus on the wall–fluid interface, we can suggest a con-
ceptual model like the one illustrated in Fig. 6.6(b). Near the charged surface, counter
ions pack, and for sufficiently small thermal energies (strictly, at zero kinetic energy)
this packing forms an immobile layer of the counter ions that screens the surface
charge. The immobile layer is denoted the Stern layer and has a width, σS, of approx-
imately one counter ion diameter. Further away from the wall, there exists a diffuse
layer (also known as the Gouy–Chapman layer) wherein the ions are mobile. These
two different layers form the basic picture behind the electric double layer (EDL)
model.

We now choose the coordinate system such that z = 0 at the Stern–diffuse layer
boundary. The ion distribution in the diffuse layer can be described through the
Boltzmann distribution introduced in Section 5.2.1, that is,

n+ = n0e−qφq/kBT and n− = n0eqφq/kBT , (6.45)
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where n+ and n− are the number densities of the cation and anion, respectively, n0 is
the concentration in the bulk, and φq = φq(z) is the electric potential function. Notice
that since the unit of φq is volt, qφq has unit of energy. The free charge density, ρ f , is
then given by the sum of the ion concentrations, that is,

ρ f = q(n+−n−) =−2qn0 sinh
(

qφq

kBT

)
. (6.46)

In Section 5.2.1 it was mentioned that the potential function can be evaluated from
density profile. Here, wewill derive an expression for φq and from this obtain the charge
density profile. Importantly, due to the choice of coordinate system, Fig. 6.6(b), we
require the electric potential function to have the boundary value φq(0) = ζ , where ζ
is the potential at the Stern–diffuse layer interface.

The free-charge density is related to the electric displacement field through Gauss’
law,

∇∇∇ ·D = ρ f . (6.47)

In the simplest case, the system is linear and homogeneous. We then assume that the
polarisation is given by the local electric field, E,

P = ε0(εr −1)E . (6.48)

The displacement field is in this linear regime

D = ε0E+P = εE, (6.49)

where ε = ε0εr is the system permittivity. Gauss’ law can therefore be expressed as a
Poisson equation for the electric potential function, ∇∇∇φq =−E; substitution gives

∇2φq =−
ρ f

ε
. (6.50)

For the current geometry, this means that

d2φq

dz2 =
2qn0

ε
sinh

(
qφq

kBT

)
, (6.51)

which is the one-dimensional Poisson–Boltzmann equation.
The one-dimensional Poisson–Boltzmann equation has been solved for the special

case where φq(z)→ 0 as z→∞, which corresponds to studying the electric potential at a
single wall such that n+ = n− = n0 in the bulk. This gives the so-called Gouy–Chapman
solution,

φq(z) =
4kBT

q
tanh−1

[
tanh

(
qζ

4kBT

)
e−z/λD

]
, (6.52)

where λD is the Debye length; more on this in what follows.
Rather than showing how to arrive at this solution,1 we will simplify the problem,

retaining the important point. In the Debye–Hückel limit, the thermal energy is large
compared to the electric energy:

qφq ≪ kBT. (6.53)

1 Bruus [38] details this in a student exercise.
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Notice that this relation cannot be true in the immobile Stern layer. In the Debye–
Hückel limit, sinh(qφq/kBT )≈ qφq/kBT , and we have the linear problem

d2φq

dz2 =
2qn0

εkBT
φq. (6.54)

We solve this using the boundary values

φq(0) = ζ and lim
z→∞

φq(z) = 0, (6.55)

giving

φq(z) = ζ e−z/λD , (6.56)

where the characteristic length scale,

λD =

√
εkBT
2q2n0

, (6.57)

is the Debye length or the Debye layer. As an example from Ref. [38], for a mono-
valent, q = 1.6×10−19 C, binary electrolyte solution with concentration c = n0/NA =

1.0mM = 1.0 mol m−3 at T = 298 K, we can assume that the permittivity is that of
water, ε = εrε0 = 78ε0, giving a Debye length of approximately 9.6 nm. λD can be
thought of as a characteristic screening length of the surface charge; hence, it is a nan-
oscale phenomenon and is particularly important for nanoscale fluid systems, as we
have the relation

λD ≈ h. (6.58)

From Eq. (6.56), the free-charge density is found directly by differentiation,

ρ f (z) =−εζ
λ 2

D
e−z/λD . (6.59)

As just stated, the effect of the mobile charges is that of screening. We have from global
charge neutrality that

lim
z→∞

A
∫ z

−σS

ρ f (z′)dz′+ΣW = 0, (6.60)

where ΣW is the total wall charge, and A is the wall surface area. The screening charge
is given by the first term, which in the limit σS ≪ λD is

qscr(z) =
Aεζ
λD

(1− e−z/λD). (6.61)

For nanoscale slit-pores, this means that the screening from each wall is not com-
plete, as h can be the same order of magnitude as the Debye length. This leads to a
so-called Debye-layer overlap, and this affects the flow profile of electrolyte mixtures
considerably, as we will see in what follows.

Joly et al. [120, 121] did a study of a model electrolyte solution, where the solvent
molecules and ions were simple Lennard–Jones-type particles. From their ion density
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tFigure 6.7 (a) Charge density profile. (b) Electric potential profile. In both (a) and (b) the circle symbols connected with lines
represent results derived from direct-NEMD simulation by Joly et al. [120]. The dashed lines represent the
Poisson–Boltzmann theory in the Debye–Hückel limit, usingλD = 0.6 and ζ =−0.03; values are given in
molecular dynamics units.

profiles, the charge density can be calculated directly, Eq. (6.46), and the result is plot-
ted in Fig. 6.7(a). Notice that the Stern layer is also shown here and is approximately
unity, hence, the abscissa starts at negative one. The exponential prediction from Eq.
(6.59) is also plotted. The charge density clearly features a layering-type profile, and
the simple exponential function predicted by the theory (under the Debye–Hückel
assumption that qζ ≪ kBT ) will, of course, not capture the ionic layering.

Once the charge-density profile is available, the corresponding electric potential
function can be evaluated from the Poisson equation, that is, by integration of the
charge density profile. The constants of integration are found by demanding global
charge neutrality, Eq. (6.60), and limz→∞ φq = 0. In Fig. 6.7(b) the electric potential is
plotted for both the numerical integration of the molecular dynamics data and for Eq.
(6.56). One sees that the integration smears out the effect of the layering in the charge
density, and the simple Poisson–Boltzmann/Debye–Hückel theory compares very well
with the detailed molecular simulations even if the Debye–Hückel limit is not strictly
met.

The unsatisfactory theoretical prediction for the charge density needs further com-
ment. In Section 5.2.1 we saw the existence of fluid layering in the wall–fluid interface
region. The positions of the ions must be coupled to the solvent layering, and we can
model this coupling through the potential function φ = φc +qφq, that is, we assume a
potential given by a sum of the solvent potential function and the electrical potential
function. In the limit of low electrolyte concentration (weak electrolyte), we further
assume that the solvent density ρ(z) is independent of the ion layering; hence, from
Eq. (5.25),

ρ(z) = ρ0 e−
φc

kBT . (6.62)
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dimensionless MD units.

The ion number density distributions can then be rewritten as [120, 121]

n+ = n0e−
qφq+φc

kBT =
n0

ρ0
ρ(z)e−qφq/kBT (6.63)

and

n− = n0e
qφq−φc

kBT =
n0

ρ0
ρ(z)eqφq/kBT . (6.64)

If we let φq be given by Eq. (6.56), we have for the charge density [121]

ρ f (z) =−2qn0

ρ0
ρ(z) sinh

(
qζ

kBT
e−z/λD

)
. (6.65)

In Fig. 6.8 the charge density based on Eq. (6.65) is plotted for two different Debye
lengths, λD. The solvent density profile used for the calculation is similar to Fig. 5.2(b).

We see that for small Debye lengths the system effectively screens the wall charge and
the charge density layering quickly decays. On the other hand, for large Debye lengths
the charge screening is reduced and a clear layering is seen many molecular diameters
away from the wall. Thus, for fixed system permittivity and temperature, this layering
will be pronounced in the dilute electrolyte regime, and the structure can span several
nanometres into the slit-pore even for simple electrolyte solutions.

To form a self-contained closed theory, we must provide an expression of the solvent
density profile ρ(z); however, such an endeavour is outside the scope of this text; see
advanced theories specifically for the EDL [17, 166].

On purpose, the term ζ -potential has not been used for the boundary condition
φq(0) = ζ . In the literature the ζ -potential has slightly different definitions; for exam-
ple, Bruus [38] defines it to be the electric potential at the wall surface, and Karniadakis
et al. [127] as the electric potential at the Stern layer and diffuse layer interface, z = zS.
The latter is a special case of the more general definition [189] that the ζ -potential is
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the electric potential at the so-called slipping plane where the electrolyte solution will
flow by application of shear stress; for many systems, the slipping plane resides inside
the diffuse layer and not at the interface zS. See also Refs. [120, 121] for a discussion of
this. Nevertheless, the mathematical treatment is, of course, independent of the exact
choice.

6.2.2 Counter-ion Systems

Before we explore how the electrolyte nanoscale layering affects the flow properties,
it is worth presenting another classical charged system, which is encountered in the
literature [117]. This system is composed of a charged wall; but rather than an elec-
trolyte solution consisting of wall charge co-ions and counter-ions, the solution only
contains counter-ions. We can again use the Boltzmann distribution function; thus, if
the surface is negatively charged, the cation concentration is

n+ = n0(e−qφq/kBT −1). (6.66)

In contrast to the electrolyte solution, the cation concentration will here approach zero
as z → ∞ due to the screening and charge neutrality requirement. Thus, n0 is here some
reference concentration. The Poisson–Boltzmann equation reads

d2φq

dz2 =−qn0

ε
(e−qφq/kBT −1), (6.67)

which in the Debye–Hückel limit becomes

d2φq

dz2 =
q2n0

εkBT
φq . (6.68)

This is solved using

φq(0) = ζ and lim
z→∞

φ ′
q(z) = 0, (6.69)

the latter being the charge neutrality condition. This yields

φq(z) = ζ e−z/(
√

2λD). (6.70)

The corresponding charge density follows the same simple exponential form as for the
electrolytes, namely,

ρ f (z) =− εζ
2λ 2

D
e−z/(

√
2λD). (6.71)

Molecular dynamics simulations of counter-ion systems [121] reveal the same layer-
ing phenomenon as seen in the electrolyte system, Fig. 6.7; hence, to model the charge
profile more accurately, we can include the solvent layering as we did previously.
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z
c

ztFigure 6.9 Screening function cscr for different CaCl2 electrolyte solutions (symbols connected with lines) confined between
charged silica walls. The punctured line shows the functional form of the Poisson–Boltzmann result in the
Debye–Hückel limit. z = 0 is here the first non-zero density point in the cation concentration; the approximate Stern
layer is indicated by the grey region. Data are taken from Ref. [59].

6.2.3 Over-screening and the Ferroelectric Effect

The charge layering in the wall–fluid interface can give rise to an over-screening. This
phenomenon can be quantified by a screening function [33]; for a negatively charged
surface, we write this as

cscr(z) =
qscr(z)
|ΣW |

, (6.72)

such that cscr is unity for perfect screening, zero for no screening, and above one shows
an over-screening of the wall charge. Figure 6.9 shows the screening function for CaCl2
in water confined between two charged amorphous silicawalls [59]. For comparison the
standard Poisson–Boltzmann result in the Debye–Hückel limit is also shown. Clearly,
in the Stern layer the counter-ions over-screen the wall charge. The over-screening is
naturally not accounted for in the Debye–Hückel theory.

The over-screening phenomenon is not only observed for mobile charges. Fig.
6.10(a) shows the charge density profile obtained from molecular dynamics for water
confined in a nano-slit-pore. The walls are non-charged; hence, there exists a local
“over-screening” in the wall–fluid interface. From the charge distribution we can cal-
culate the electric field shown in Fig. 6.10(b). This induced local electric field causes a
spontaneous polarisation of the dielectric medium and is a fingerprint of the so-called
ferroelectric effect.

The ferroelectric effect emerges due to molecular alignment and packing near the
wall and is thus geometrically induced. It will change the dielectric response of the
system to an external electric field, because in the wall–fluid interface the molecular
dipole rotation is suppressed in the out-of-plane rotation with respect to the wall. Thus,
the dipole orientation with an external field applied normal to the walls will be lowered
compared to the bulk, and this results in a reduced dielectric permittivity. This reduced
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tFigure 6.10 Water in a nano-slit-pore where the walls are neutral. (a) Charge density profile. (b) Electric field profile. Courtesy of S.
Varghese.

permittivity was presented in Fig. 1.4. It has been conjectured that the reduced out-of-
plane rotation is due to the increasing hydrogen-bond density in thewall–fluid interface
[210]; again, an effect due to geometrical constraint.

6.2.4 Electro-osmosis in Nano-confinement

An electro-osmotic flow, abbreviated EOF, is a flow generated by application of an
electric field parallel to the charged walls such that the fluid flows with respect to
these surfaces. This is illustrated in Fig. 6.11. We assume that the screening effect is
sufficiently small, also, at the electrodes. The electric field then exerts a constant body-
type force on each ion, and as the ions migrate, they will move the entire fluid due to
momentum transferal.

For the geometry shown in Fig. 6.11 and for sufficiently low flow velocities, the
Navier–Stokes equation is in the same form as Eq. (5.33); however, here the force den-
sity is given by ρ f Ex, where Ex is the local field, which we assume is constant. The
charge density ρ f is, on the other hand, a function of z, as we have shown; hence, the
local force is not constant, and we must expect that the flow is very different from the
planar Poiseuille flow. We have

ρ
∂ux

∂ t
= ρ f Ex +η0

∂ 2ux

∂ z2 . (6.73)

To proceed, we must find ρ f , and to this end we use the equilibrium assumption, that
the charge density is unaffected by the flow. In the Debye–Hückel limit we solve the
linearised Poisson–Boltzmann equation, Eq. (6.54), with the boundary conditions

φq(0) = φq(h) = ζ . (6.74)

This gives

φq(z) = ζϕ(z), (6.75)
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x
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tFigure 6.11 An electro-osmotic flow (EOF) generated by an external electric field parallel to the x-axis. The resulting velocity,
ux = ux(z), also is illustrated.

where, out of convenience, we have introduced the function

ϕ(z) = e−z/λD +
1− e−h/λD

sinh(h/λD)
sinh(z/λD). (6.76)

Differentiating twice, the corresponding charge density is found to be

ρ f =−εζ
λ 2

D
ϕ(z). (6.77)

Substituting into Eq. (6.73) and applying the steady-state conditions, that is, ux = ux(z),
gives

d2ux

dz2 =
εζ Ex

η0λ 2
D

ϕ(z), (6.78)

which we solve with slip-boundary conditions at the Stern–diffuse layer interface,

Ls
dux

dz

∣∣∣∣
z=0

= ux(0) and Ls
dux

dz

∣∣∣∣
z=h

=−ux(h). (6.79)

From integration, it is seen that the general solution is in the form

ux(z) =
εExζ

η0
ϕ(z)+K1z+K2, (6.80)

where K1 and K2 are integration constants. Using the properties of ϕ ,

ϕ(0) = ϕ(h) = 1 (6.81)
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and

dϕ
dz

∣∣∣∣
z=0

=
1

λD

(
1− e−h/λD

sinh(h/λD)
−1

)
and

dϕ
dz

∣∣∣∣
z=h

=
1

λD

(
1− e−h/λD

tanh(h/λD)
− e−h/λD

)
, (6.82)

it can be seen that K1 is zero for finite channel heights. The solution is written in terms
of the electro-osmotic or Helmholtz–Smoluchowski velocity,

uEO =
εExζ

η0
, (6.83)

giving

ux(z) = uEO

[
ϕ(z)−1+

Ls

λD

(
1− e−h/λD

sinh(h/λD)
−1

)]
. (6.84)

Clearly, if Ls = 0 the streaming velocity is simply ux = uEO(ϕ − 1). In this case and in
the limit of small Debye lengths, the velocity approaches −uEO in the interior of the
channel. This is also clear from Fig. 6.12(a) which shows the velocity profile in the slit-
pore for different Debye lengths; for small λD, the flow features a plug-type profile with
a magnitude of the electro-osmotic velocity.

In the general case, Ls ̸= 0, the magnitude of the velocity exceeds the Helmholtz–
Smoluchowski velocity, and the flow rate is increased significantly. This enhanced can
be quantified by the enhancement coefficient already defined in Eq. (5.51), that is, by
evaluating the volumetric flows rate with and without slippage. The actual analytical
expression is left to the reader in Further Explorations. The result is plotted in Fig.
6.12(b), showing that the flow rate is significantly increased in the regime of small
Debye lengths and large slip length. This combined effect is thus very important to
consider when studying electric currents through nanoscale confinement.
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6.3 Reactive Fluids

By letting a reactive fluid diffuse into a nanochannel, the channel walls can be coated
with a specific product resulting from the reactions between the reactive fluid and the
wall atoms. By repeating such a procedure with different reactive fluids, the channel
walls can be designed with patterns, giving unique functionality [128, 164]. Porous cat-
alyst pellets with nanoscale reaction channels can speed up the product output rate
considerably, and these systems are therefore of great industrial importance [192].

In this last section we investigate some classical reaction models and set them in
the context of nanoscale fluid systems. The underlying mathematical model we apply
here is the reaction-diffusion equation. This is based on the single-particle dynamical
equation, Eq. (3.90), wherein we allow for a production term that accounts for the
reactions. We naturally denote this the reaction term. For molecules of type A we get,
in absence of advection and in terms of the number density nA,

∂nA

∂ t
= σA −∇∇∇ ·JA. (6.85)

The reaction term is modelled from the law of mass action, which states that the reac-
tion rate, r, of a reaction is proportional to the product of the reactants’ concentrations
to their stoichiometric powers. For example, if n molecules of type A react with m
molecules of B, giving product P,

nA+mB k−→ P, (6.86)

the reaction rate is

r = k nn
A nm

B . (6.87)

The constant k is the reaction rate constant. The law of mass action can be derived by
assuming that the molecules undergo independent collision events, and it is therefore
valid only in the limit of infinite dilution. Nevertheless, due to the very high collision
frequency in liquids, it is used successfully also for non-ideal mixtures.

The single-particle flux, JA, follows Fick’s law, introduced in Section 3.2:

JA =−DA∇∇∇nA. (6.88)

We will let DA be constant; that is, it does not depend on time, spatial coordinate, and
the reactive mixture’s composition. This is also strictly true only in the infinite dilute
limit. In our exploration we will have only one independent component, A, and Eq.
(6.85) is written in the final form,

∂nA

∂ t
= σA(nA)+DA∇∇∇2nA. (6.89)

Of course, σA must be specified for each reactive system. This is the reaction-diffusion
equation that we base our modelling efforts on. In the next section we will investigate
one important effect of fluctuations that are due to the reactions, and not, as we have
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been focusing on thus far, fluctuations from the particle flux. We therefore do not need
to include the fluctuating part of the particle flux δJA.

6.3.1 Homogeneous Reactions: Fluctuation Death

First, it is enlightening to consider a simple homogeneous system where we ignore
diffusion. The system is composed of two reactants, namely A and B, which are sub-
merged in a solvent S. The concentration of B is held fixed; this can be achieved by
continuously adding a solution of B into the reaction chamber. If nA denotes the
concentration of A, and b0 the fixed concentration of B, the reaction mechanism we
explore reads

A+B
k1−→ 2A, r1 = k1nAb0,

2A
k2−→ 2P, r2 = k2n2

A,

where P is the product, r1 and r2 are the reaction rates, and k1 and k2 the corresponding
rate constants. The rate of change for A is then written in terms of the number density,
nA = nA(t),

dnA

dt
= σA = r1 −2r2 = nA(k1b0 −2k2nA). (6.90)

For this system we have two steady states, denoted n1 and n2, respectively:

dnA

dt
= 0 ⇒ n1 = 0 and n2 =

k1b0

2k2
. (6.91)

The point n1 is unstable and n2 is stable; this can be seen by plotting the right-hand
side of Eq. (6.90) as a function of nA, Fig. 6.13. If we start with 0 < nA < n2, the rate
of change is positive and nA increases converging to n2; if we start with nA > n2, it
decreases, again converging to n2. Thus, if we initialise the system as nA ̸= 0, we have
nA → n2 as t → ∞. If at any point in time nA = 0, the rate of production of A stops and
nA is zero indefinitely; the system has ended in the unstable state.

In nanoscale systems, the number of reactive molecules can be quite small and
feature fluctuations in the number of molecules as the reactions take place. In constant-
volume geometries, this means that the concentrations fluctuate. The effect of this can
be investigated, and molecular dynamics again provides an approach to this. One can
simulate a simple Lennard–Jones fluid and label the particle A, B, or P. We ensure
that the number of P particles is much larger than the number of A and B particles;
thus, they act as a solvent. Whenever an A and a B particle, or two A particles, are
sufficiently close, the labels change with some probability in accordance with the reac-
tion scheme. To keep the number of B particles fixed, we pick randomly a P particle
and convert it to a B particle, whenever one B is consumed in a reaction. Homogene-
ity is ensured by frequently interchanging labels. It has been shown that this method
yields the same system statistical properties as the Master equation [97] and follows the
law of mass action in the dilute case, as expected. The molecular dynamics method is
significantly slower than many other numerical methods, but offers a straightforward
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nA
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n

n
t

−

−

−

−

tFigure 6.13 Rate of change, dnA/dt , as a function of nA. k1b0/2k2 = 1 in some arbitrary concentration unit. The arrows
indicate the increase or decrease of nA, depending on the initial value.

extension to study non-homogeneous systems, fast reactions, and so on. We will see
one such application later.

Figure 6.14 shows the results from two molecular dynamics simulations of the reac-
tion. In one simulation the number of A particles fluctuates around the stable steady
state, but in the other simulation the fluctuations force the system into the unstable
steady state; and once it is in this state, the reactions stop. In fact, the system will end
up in this unstable state for sufficiently large times; this waiting time increases dramat-
ically as the system size increases, since the fluctuation amplitude is on the order of
1/
√

Nreac, where Nreac is the number of reactive molecules.
Again, a first modelling approach that comes to mind is a Langevin-type equation

of the form

dnA

dt
= nA(k1b0 −2k2nA)+ εF(t), (6.92)

tFigure 6.14 Molecular dynamics simulations of the reaction mechanism A + B→ 2A→ 2 P. Initially, the system contains 30 A
particles, and the number of B particles is fixed to 30 throughout the simulation.
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where F is a noise term with zero mean and amplitude ε ∝ 1/
√

Nreac. While this
approach appears straightforward and appealingly simple, it has been shown that it
does not yield the correct probability distribution function of the reactants even if the
noise amplitude follows the fluctuation-dissipation theorem [13]. The theory for chem-
ical fluctuations is therefore outside the scope of the book, and it suffices to point out
here the awareness of unexpected dynamics due to these fluctuations.

6.3.2 Simple Reactions in Nano-geometries

A simplemodel for surface coating is the Langmuir isothermal adsorptionmodel. Here
a reactant, molecule A, binds to a surface site, S, forming a coating product, P; see Fig.
6.15(a). The binding kinetics can be described from the chemical equilibrium

A+S
k1⇌
k2

P , (6.93)

where k1 and k2 are the reaction rate constants. In the situation where the concentra-
tion of binding sites is large compared to the concentration of A, and k1 ≫ k2, we can
assume that all A molecules are adsorbed as they diffuse to the wall surface. We will
assume that fluctuations play no critical role for the dynamics.

Let nA denote the number density of A and consider the geometry shown in Fig.
6.15(a); we then have the Dirichlet boundary nA = 0 at z = 0, also known as reac-
tive boundaries for chemical reactive systems. At the wall located at z = h, we have
a non-reactive wall and apply the Neumann boundary condition. The problem is
then reduced to that of a simple diffusion equation problem with mixed boundary
conditions,

∂nA

∂ t
= DA

∂ 2nA

∂ z2 with nA(0, t) = 0 and
∂nA(z, t)

∂ z

∣∣∣∣
z=h

= 0. (6.94)

Without compromising the point in what follows, we let the initial concentration be
very convenient, namely, nA(z,0) = a0 sin(πz/2h) and do not worry about how this is
realised in experiments. The problem gives the solution

nA(z, t) = a0e−π2DAt/(2h)2
sin
( π

2h
z
)
. (6.95)

Thus, at any point in the system, the concentration decays with the characteristic
diffusive relaxation time,

τ =
4h2

π2DA
. (6.96)

This h2 dependency is perhaps expected, since the adsorption at the surface is com-
pletely determined by diffusion.

The rate of converting the reactant A into product P is then proportional to DAh−2;
thus, the conversion rate for a 10 nm slit-pore is around 1012 times larger than the
conversion rate for a 1 cm channel. This very promising optimisation is, however, lim-
ited by the fact that for nanoscale confinements the reactants must first diffuse into
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tFigure 6.15 (a) Langmuir adsorption. (b) Conversion of reactant A into product P along a pore and in the presence of a catalysis.

the chamber or the chamber can be filled through capillary action; in either case, this
reduces the overall effectiveness of such a device.

Next, we will explore a standard problem in catalysis; see, for example, Thomas
and McGaughey [192]. Here the reactant A diffuses into a pellet pore and undergoes
a reaction in presence of a catalyst, S; see Fig. 6.15(b). Notice that the catalyst is uni-
formly distributed in the pore and not attached to the pore surface. The overall reaction
mechanism is written as

A+S
k1⇌
k2

C∗ k3→ S+P , (6.97)

that is, A and S form a complex C∗ which can result in either the product and the
catalyst itself or simply reverse to A and S. This is the Michaelis–Menten enzyme
mechanism.

From the reaction mechanism we see that the dynamics of A, S, and C∗ define the
problem. We here focus on the special case where the concentration of C∗ is small,
and where the concentration of the catalyst is constant with respect to both time
and space. This leaves only the concentration of A relevant. Now, the reaction is not
localised to the walls, but occurs at any point inside the pore, and the local rate of
changemust include contributions from diffusion and reactions in which A is involved.
Furthermore, it also means that the concentration of A is independent of the radial
coordinate r, and we have that nA = nA(z, t). We therefore write the rate of change as
the reaction-diffusion equation,

∂nA

∂ t
=−knA +DA

∂ 2nA

∂ z2 , (6.98)

where k = k1s0 is a pseudo–first-order rate constant, s0 being the constant catalyst
concentration. We look for the steady-state solution, nA = nA(z),

d2nA

dz2 − k
DA

nA = 0 (6.99)
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n
/

A
n

z/h

T = 1

T = 2

T = 20

0

tFigure 6.16 The concentration profiles for different Thiele modulus.

with

nA(0) = n0 and
dnA

dz

∣∣∣∣
z=h

= 0. (6.100)

The first boundary basically expresses the inlet reactant concentration, and the second
boundary that the concentration of A for z > h is the same as the outlet concentration.
The boundary value problem solves to

nA(z) = n0

[
e−ΦT

cosh(ΦT )
sinh(ΦT z/h)+ e−ΦT z/h

]
, (6.101)

where ΦT = h(k/DA)
1/2 is the Thiele modulus.

In Fig. 6.16 the concentration profile for A is plotted for different Thiele modulus.
Naturally, from a performance point of view we want the concentration of A to be
zero at the tube outlet; this is achieved only in the limit of large ΦT . If h = 100 nm
and we wish a performance corresponding to ΦT = 10, the rate constant must be on
the order of 1012m−2 DA; that is, the reaction must be extremely fast compared to the
diffusion, and this type of homogeneous nanoscale catalysis is relevant mostly for fast
reactions. In Section 5.2.3 we saw that for extreme confinement the diffusion coefficient
is reduced; however, this reduction is not sufficient to change the conclusion from the
analysis above.

6.3.3 Nanoscale Chemical Wave Fronts

Autocatalytic reactions form an important class of chemical reactions. One example is
the iodate–arsenite reaction that follows the overall reaction mechanism [84, 89],

IO−
3 + 5I− + 3H3AsO3 → 6I−+3H3AsO4. (6.102)

Notice that iodide I− acts as both reactant and product, and that one iodide is produced
per reaction; hence, this is a iodide autocatalysis reaction.

In a homogeneous mixture of iodate IO−
3 and arsenite AsO3

3− a chemical wave front
develops by addition of iodide at some point. Ahead of the front, we have the homo-
geneous mixture of iodate and arsenite, and behind the front, a mixture of iodide and
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n
n

z/LtFigure 6.17 (a) Schematic illustration of the Fisher–Kolmogorov front. (b) Concentration profile for A at equidistant times; these
are found from the numerical solution to Eq. (6.106).

arsenite. The realisation of the front is due to the presence of both reaction and dif-
fusion processes. The actual front speed depends on the concentrations; for iodate
concentrations on the order of 10−3M and arsenite in excess, the front speed is around
0.02 mm s−1.

Reaction (6.102) is the overall reaction scheme. The detailed reaction kinetics for the
iodate–arsenite is quite complicated, and it is, perhaps, more enlightening to explore a
simple model autocatalytic reaction. Let nA denote the density of A, and nB the density
of B; then

A+B k→ 2A with r = knAnB. (6.103)

For a front to develop, the system is initialised such that we start with only A at the
inlet, z = 0, and B everywhere else:

nA(z,0) = n0(1−H(z)) and nB(z,0) = n0H(z), (6.104)

where H is the Heaviside step function,

H(z) =

{
0 if z ≤ 0

1 if z > 0
. (6.105)

As for the iodate–arsenite reaction, a chemical wavefront develops due to diffusion
and the autocatalytic nature of the reaction. Rigorously proving that such a propa-
gating wave exists (and is unique) has not yet been done in general [162]. However,
under the fundamental assumption that the propagating wave does exist and has a
constant speed, c, it is possible to show that this speed must be equal to or larger than
some minimum speed cmin. This speed depends on the physico-chemical constants.
From numerical solutions of the reaction-diffusion equation, see Fig. 6.17, the mini-
mum speed has been confirmed; in fact, cmin is the speed of the corresponding stable
propagating wavefront solution when the initial conditions are given by Eq. (6.104).

First, we let A and B have the same diffusion coefficient, DA. Then nA + nB = n0

at any point, and the reaction rate is written as r = knA(n0 − nA). For convenience we
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introduce a dimensionless density, u = nA/n0, which fulfils 0 ≤ u ≤ 1, and we have the
reaction-diffusion equation for u,

∂u
∂ t

= k∗u(1−u)+DA
∂ 2u
∂ z2 . (6.106)

We have used k∗ = kn0; we will omit the asterisk from here on. This is known as the
Fisher–Kolmogorov equation and has been used to study gene population spread [73]
and much more [162]; here it serves as the prototype for a chemical wavefront.

We assume that the front exists and has a constant propagation speed. Notice that,
in general, this can be true only in the large time regime where transient behaviour
has fully decayed. We can follow the wavefront in the frame moving with speed c by a
coordinate transformation x = z− ct, and we write u(z, t) = u(x). By the chain rule,

∂u
∂ t

=−c
du
dx

and
∂ 2u
∂ z2 =

d2u
dx2 . (6.107)

Substitution into Eq. (6.106) leads to

DA
d2u
dx2 + c

du
dx

+ ku(1−u) = 0. (6.108)

This equation is non-linear, and we will not try to solve it. Rather, we will do a simple
phase-plan analysis, and to this end we rewrite the equation as two coupled first-order
differential equations:

du
dx

= v (6.109a)

DA
dv
dx

=−cv− ku(1−u). (6.109b)

We can identify two steady states, namely, (u1,v1) = (0,0) and (u2,v2) = (1,0), corre-
sponding to pure B and A situations, respectively. To evaluate the stability, we linearise
the system around each steady state and evaluate the eigenvalues of the corresponding
Jacobi matrix:

J(u,v) =
[

0 1
k/DA(u/2−1) −c

]
. (6.110)

For the point (1,0) we have

λ1,2 =−1
2

 c
DA

±

√(
c

DA

)2

+
4k
DA

 . (6.111)

Since [c2/D2
A + 4k/DA]

1/2 > c/DA, one eigenvalue will be positive and one negative,
that is, the steady state (1,0) is an unstable saddle point. The Jacobi matrix in (0,0) has
eigenvalues

λ1,2 =−1
2

 c
DA

±

√(
c

DA

)2

− 4k
DA

 . (6.112)
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c c
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c = c

−

−

−

−

tFigure 6.18 Two phase space trajectories (i.e. solutions) for Eq. (6.109); arrows indicate the solutions’ flow direction. The shaded
area is the forbidden region of negative concentration, u = nA/n0, and the filled circles the steady states.

If (c/DA)
2 < 4k/DA, the eigenvalues are complex (and conjugated), and the steady state

is a stable spiral; see the phase plane in Fig. 6.18. However, this violates the physical
constraint that u≥ 0.Wemust therefore require that the eigenvalues for the steady state
(0,0) has zero imaginary part, that is,(

c
DA

)2

≥ 4k
DA

⇒ c ≥ cmin = 2
√

kDA . (6.113)

Thus, for c≥ cmin the origin is a stable node and u→ 0 for z→∞ and u→ 1 for z→−∞.
As we have noted, from numerical integration of the Fisher–Kolmogorov equation, it
has been shown that cmin is, in fact, the stable wave speed of the front.

In the very leading edge of the front, the concentration of A is small, and we can
write r ≈ ku in this region. In the edge we then have

DA
d2u
dx2 + c

du
dx

+ ku = 0, (6.114)

which is a simple linear problem giving an exponential decay of u with respect to x; the
corresponding eigenvalues are given by Eq. (6.112). In nanoscale chemical systems, the
discrete nature of the molecules introduces a discontinuity in the reactive wave front,
so the exponential decay is not obeyed. This is not an effect from fluctuations, but from
the inherent discreteness of small-scale systems.

The discretisation introduces a cutoff, δ , in the reaction diffusion equation, defined
by Brunet and Derrida [37]. A small number of reactive molecules, nrz, in the reaction
zone corresponds to a large cutoff and vice versa; that is, we conjecture that δ = 1/nrz

[95]. The particle number in the reaction zone is defined to be

nrz = nWrzArz , (6.115)

where n is the fluid number density, Wrz is a characteristic reaction zone width parallel
to the front propagation direction, and Arz the reaction zone area normal to the prop-
agation; Arz is in order of nanometres squared in our treatment here. Using the result
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from Brunet and Derrida and the relation between δ and nrz, the effect of the inherent
discrete nature of the system on the wave speed is summarised to

crel =
c− cmin

cmin
∝

1
[ln(δ )]2

=
1

[ln(nWrzArz)]2
. (6.116)

In order to finalise our exploration, we need to specify the reaction zone width, Wrz.
From a simple geometrical perspective, we define

Wrz = − 1
du/dx

∣∣∣∣
x=0

, (6.117)

where x = 0 is chosen such that u(0) = 1/2 [95]. With this definition we must have an
expression for u, and again assuming the front exists and has a speed c, this is possible
within some approximation using a perturbation method.

Defining the perturbation parameter, ε = 1/c2, we can introduce the dimensionless
spatial coordinate [162],

ζ = k
√

εx. (6.118)

Application of the chain rule leads to

εkDA
d2u
dζ 2 +

du
dζ

+u(1−u) = 0 (6.119)

from Eq. (6.108). This form allows for a singular perturbation analysis, that is, we seek
an approximate solution in the limit of small ε , or equivalently, in the limit of large
front propagation speeds. We look for a solution of the form

u = u0 + εu1 + ε2u2 + . . . , (6.120)

hoping that u is well approximated after a few terms. Inserting Eq. (6.120) into Eq.
(6.119) and collecting the powers of ε , we have for the zeroth-order term

du0

dζ
+u0(1−u0) = 0. (6.121)

We specify the initial value shortly. Separation of variables gives

du0

u0(u0 −1)
= dζ ⇒ u0 =

1
1−Keζ , (6.122)

where K is a constant of integration. The coordinate system origin can be chosen arbi-
trarily; here we choose the origin such that u0(0) = 1/2, that is, the point where half of
the B molecules are converted into A in accordance with the preceding discussion. We
then have

u0 =
1

1+ eζ =
1

1+ ekx/c . (6.123)

Interestingly, the zeroth-order approximation is within 5 per cent of the numerical solu-
tion, and we will not consider higher-order terms from here on. The slope at x = 0 is
found to be

du
dx

∣∣∣∣
x=0

=− k
4c

, (6.124)
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c

−

−

tFigure 6.19 Relative wavefront speed reduction as a function of 1/[ln(δ )]2, using 1/δ = 8nArz
√

DA/k. Symbols
represent results from the master equation (open circles) and molecular dynamics simulations in the dilute case,
n = 0.2 (filled squares). Punctured line has slope−π2/2 [37]. Data are re-plotted from Ref. [95].

implying that

Wrz =
4c
k
. (6.125)

Inserting the minimum speed solution, c = cmin, gives the expression for the reaction
zone width in terms of the rate constant and the diffusion constant Wmin = 8

√
DA/k.

Substituting into Eq. (6.116), we get the final result for the effect of the molecular
discreteness on the front speed:

crel ∝
1[

ln(8nArz
√

DA/k)
]2 . (6.126)

Figure 6.19 plots the relative wavefront speed reduction, crel, as a function of the cut-
off, 1/δ = 8nArz

√
DA/k. The symbols represent simulation data, and the punctured

line is the Brunet–Derrida prediction, crel ∝ 1/[ln(δ )]2. Note that the wave speed is sig-
nificantly reduced for the small reaction zone volumes, Arz

√
DA/k; hence, this effect is

important for nanoscale chemical wavefronts.

6.4 Further Explorations

1. Derive the one-dimensional heat equation, Eq. (6.2).

2. Recall that for the slit-pore geometry the kinetic temperature balance equation can
be written as

dJε

dz
=−Pxz

dux

dz
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in the steady state. Derive the temperature profile for a Couette flow in a slit-
pore with two identical walls, L(1)

s = L(2)
s = Ls, using Fourier’s constitutive relation

Jε =−λdT/dz.
How does the temperature gradient depend on the slip length Ls? Compare with

simulations of a Lennard–Jones liquid.
Discuss the extended constitutive relation by Baranyai et al. for the Couette flow.

Computational resources available.

3. In Section 6.2.4 the slip enhancement coefficient Eslip for electro-osmotic flows was
plotted as a function of Debye length, λD. Derive the analytical expression for Eslip.

4. In this exploration we study the counter-ion system described in Section 6.2.2. First,
derive the electric potential function of a counter-ion solution in the Debye–Hückel
regime if the solution is confined between two charged surfaces, and

φq(0) = φq(h) = ζ .

Then, derive the charge density profile. How does this differ from an electrolyte
solution, Eq. (6.77)?

Finally, derive the equation for the corresponding electro-osmotic flow. Again,
consider how this differs from an electrolyte solution, Eq. (6.84).

https://doi.org/10.1017/9781009158749.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009158749.007


7 Epilogue

The continuum picture on which hydrodynamics is historically based stems from
our macroscopic experience of smooth fluid flows. Hydrodynamics is therefore often
regarded, rightly, as a macroscopic theory. Whether the same hydrodynamic equations
are applicable on the nanoscale, where we approach the length scale of the fluid’s intrin-
sic discrete nature, is not trivial. Specifically, we can pose the research question, ‘Are
the underlying physical processes dominant on the macroscopic scale also the domi-
nant processes on the nanoscopic length scale?’. This question is paramount if we wish
to model, that is, understand, predict, and control nanoscale fluid systems.

Onsager’s regression hypothesis has been leading the way to connect the (average)
relaxation of microscopic thermally induced perturbations to macroscopic hydrody-
namics. This microscopic picture was used in Chapter 2 to derive the hydrodynamic
balance equations. From these fundamental equations we revisited the established the-
ory on thermal relaxation dynamics in Chapter 3, focusing on simple point-mass-type
fluids modeled by the Lennard–Jones fluid. The main point of the chapter was that
classical hydrodynamics can, in fact, account for the governing physical processes on
the nanoscale for these systems. An important conclusion of the analysis was that
the agreement depends on the actual dynamics and system we study. For example,
the hydrodynamic prediction for the dispersion relation for the Brillouin peak fails at
wavevectors, where the transverse dynamics follows the predictions (down to just a few
nanometres).

As the system complexity increases, or as the length scale decreases below a few
nanometres, the classical hydrodynamic theory will eventually break down. How-
ever, the hydrodynamic model can be extended, for example, by replacing Newton’s
law of viscosity with the Maxwell viscoelastic model or by introducing a wavevector-
dependent viscosity. This was described in Chapter 4. Interestingly, the Maxwell model
originates from macroscopic modelling of complex molecular systems; but it is the
same viscoelastic effects that govern simple fluids at small time and length scales.

In Chapters 4–6 we explored different coupling phenomena, for example, the spin
angular momentum and linear momentum coupling, the kinetic temperature and
strain rate coupling, and the coupling between the flow profile and charge density dis-
tribution. In all cases the hydrodynamic theory can be extended, and from this we gain
fundamental new knowledge of these coupling phenomena and how they affect the
systems’ dynamics on the nanoscale.

Chapters 3 and 5 showed the fluid structure on small scales. For example, fluid
packing in equilibrium Lennard–Jones systems, Fig. 3.2, and molecular alignment of
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a butane liquid in a slit-pore, Fig. 5.4. Hydrodynamics, as it is defined here, cannot
account for this structuring. However, while a strong structuring can affect the fluid
dynamics, this effect is smaller than one may expect at first for the simple fluid sys-
tems we explored. Studying the structural effects for more complex fluids, like glasses,
calls for different and further extended theoretical frameworks like the Mori–Zwanzig
projection formalism and mode coupling theory.

The statement “Hydrodynamics fails …” is not really meaningful. First, hydrody-
namics is based on models, so it is by definition never exact, but always an approxima-
tion – even on the macroscopic scale. Secondly, if we seek to test the approximation,
we must specify

(i) what system we explore,
(ii) the dynamical phenomenon,
(iii) how we quantify and define ‘failure’, and
(iv) exactly what we mean by hydrodynamics.

An absurd example; if we, strictly, do not allow for fluctuating hydrodynamic variables,
then hydrodynamics is valid only in the thermodynamic limit of infinite system size.

Currently, research on nanoscale hydrodynamics relies heavily on testing the theory
against atomistic computer simulations. This approach, is very appealing as it offers
a great deal of control; however, it can only be as precise as our model of the molecu-
lar interactions, wall properties, and so on. Furthermore, the simulations are severely
limited with respect to both time and length scales, reducing the phenomenology we
can access. Nevertheless, as in all of science, computer simulations will play an ever-
increasing role in our understanding of fluid dynamics. The underlying algorithms and
models that are behind the results need careful attention, and one should always have
access to the computer code in order to perform a fully informed research exploration
and in case of result disagreements. Most importantly, we must always consider simu-
lations as guidelines for the design of the experiments that ultimately corroborate the
theories.
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Appendix: A Bit of Help

A.1 The Fourier Transform

The reader is likely familiar with the Fourier series and the Fourier transform in one
dimension. This appendix mainly seeks to clarify the symbolism which is used in the
text, but also to briefly introduce the three dimensional Fourier transform which may
not be familiar to the reader. For further information on the topic, there are very many
good resources available on the internet. The careful and elegant treatment by Tolstov
[204] is highly recommended.

In the book we explore, for example, the mass density. This is a scalar function of
both time and space. We can study such a function over time at some point or at some
specific time and as a function of a spatial coordinate; see the illustration in Fig. A.1. In
either case, in general we can consider a periodic function (of one-dimensional space
or time) f , where f : R→ R. The period of the function is denoted L (see illustration).
Assume that f can be represented by an infinite trigonometric series

f (x) =
a0

2
+

∞

∑
n=1

an sin(knx)+bn cos(knx) ,

where an and bn are the term amplitudes, known as Fourier coefficients, and kn = nπ/L
is the wavevector. This is the Fourier series.

The Fourier series can be written in an (elegant) complex form. FromEuler’s identity
we have

cos(knx) =
eiknx + e−iknx

2

sin(knx) =
eiknx − e−iknx

2i
.

Inserting this into the Fourier series, we get

f (x) =
a0

2
+

∞

∑
n=1

an

2
(eiknx + e−iknx)+

∞

∑
n=1

bn

2i
(eiknx − e−iknx)

=
a0

2
+

∞

∑
n=1

an − ibn

2
eiknx +

∞

∑
n=1

an + ibn

2
e−iknx.
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tFigure A.1 Illustration of a periodic function in either time or space.L is the function fundamental period with respect to spatial
coordinate x.

Using that −kn = k−n, we can let the index run from −∞ to ∞, and obtain

f (x) =
∞

∑
n=−∞

cneiknx ,

where cn is the complex Fourier coefficient which is a function of an and bn. We will
not show this, but in general the complex Fourier coefficient is given by

cn =
1

2L

∫ L

−L
f (x)e−iknx dx .

For non-periodic functions, we still define the Fourier coefficient by letting the period
go infinite:

cn = lim
L→∞

1
2L

∫ L

−L
f (x)e−iknx dx . (A.1)

This now leads to our definition of the Fourier transform: Let f : R→R be absolutely
integrable, that is, ∫ ∞

−∞
| f (x)|dx

exists, then the Fourier transform of f is

F [ f ] = f̃ (k) =
∫ ∞

−∞
f (x)e−ikxdx (A.2)

for k ∈ R. In the text we refer to f̃ (k) as the Fourier coefficient or Fourier mode
amplitude.

The Fourier transform is not uniquely defined! From our definition, the inverse
Fourier transform is given by

F−1[ f̃ ] =
1

2π

∫ ∞

−∞
f̃ (k)eikxdk

such that F−1[F [ f ]] = F−1[ f̃ ] = f (x).
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These ideas can be extended to three dimensions. Here we have f : R3 →R, and if f
is absolutely integrable, that is, ∫∫∫ ∞

−∞
| f (x,y,z)|dxdydz

exists, we define the Fourier transform of f as

F [ f ] = f̃ (k) =
∫∫∫ ∞

−∞
f (x,y,z)e−i(kxx+kyy+kzz) dxdydz ,

where k = (kx,ky,kz)∈R3. In the text we write this in compact notation. Let r = (x,y,z)
then,

F [ f ] =
∫ ∞

−∞
f (r)e−ik·r dr .

In three dimensions, the inverse Fourier transform is (in compact notation)

F−1[ f̃ ] =
1

(2π)3

∫ ∞

−∞
f̃ (k)eik·r dk

such that, again, F−1[F [ f ]] = F−1[ f̃ ] = f (r).

Example Let f be the three-dimensional Gaussian function

f (x,y,z) = e−(x2+y2+z2) .

Notice that the domain of f is all R3 and that f is absolutely integrable. The three-
dimensional Fourier transform is then, from the definition,

F [ f ] = f̃ (k) =
∫ ∞

−∞
e−(x2+y2+z2)e−i(k2

x+k2
y+k2

z ) dr.

The integrant is separable, and we can write it as the product of three functions,

f̃ (k) =
∫ ∞

−∞
e−(x2+ikxx)e−(y2+ikyy)e−(z2+ikzz) dr

= (
√

π)3e−k2
x/4e−k2

y/4e−k2
z /4 = π3/2e−k2/4,

where k2 = k ·k.
The inverse Fourier transformation of f̃ is (again using separation of the function)

F−1[ f̃ ] =
π3/2

(2π)3

∫ ∞

−∞
e−(k2

x+k2
y+k2

z )/4ei(kxx+kyykzz) dk

=
π3/2

(2π)3 (2
√

π)3e−x2
e−y2

e−z2

= e−(x2+y2+z2) = f (x,y,z) .

Thus, the original function is recaptured.
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A.2 The Dirac Delta

Like the Fourier transform, the reader is probably familiar with the Dirac delta in one
dimension, and again, this appendix acts to clarify the symbolism and extend the idea
of the Dirac delta from one dimension to three dimensions.

In one dimension, the Dirac delta fulfils the following two fundamental properties:

1. Let x ∈ R

δ (x) =

{
∞ if x = 0

0 if x ̸= 0

2. and ∫ ∞

−∞
δ (x)dx = 1.

Notice that the unit of the Dirac delta is the inverse of the argument’s unit. We can
now show a very important property of the Dirac delta, which we use frequently in the
book. Let f : R→ R be continuous; then, from property 1∫ ∞

−∞
f (x)δ (x−a)dx =

∫ a+ε

a−ε
f (x)δ (x−a)dx (ε > 0) .

As ε → 0, we have that f approaches some constant value, f (a), and therefore

lim
ε→0

∫ a+ε

a−ε
f (x)δ (x−a)dx = f (a) lim

ε→0

∫ a+ε

a−ε
δ (x−a)dx = f (a) .

That is, ∫ ∞

−∞
f (x)δ (x−a)dx = f (a) .

The extension to three dimensions is straightforward, albeit the symbolism used in the
book can appear somewhat subtle. The two fundamental properties are

1. Let r ∈ R3, then

δ (r) = δ (x)δ (y)δ (z) =

{
∞ if x = 0 and y = 0 and z = 0

0 otherwise

2. and ∫∫∫ ∞

−∞
δ (x)δ (y)δ (z)dxdydz =

∫ ∞

−∞
δ (r)dr = 1,

using the compact notation introduced in A.1.

Following the idea from the one-dimensional case, we have for the continuous function
f : R3 → R
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∫ ∞

−∞
f (r)δ (r−a)dr = lim

εεε→0

∫ a+εεε

a−εεε
f (r)δ (r−a)dr

= f (a) lim
εεε→0

∫ a+εεε

a−εεε
δ (r−a)dr = f (a) .

This result is used throughout the text for the exponential function, f (r) = eik·r, giving,
for a = ri, ∫ ∞

−∞
eik·rδ (r− ri)dr = eik·ri .

ExampleWe finish with the standard example showing that the microscopic definition
of a hydrodynamic variable in terms of the Dirac delta is not obtuse, even if the distri-
bution features infinite peaks at the molecules’ centre of mass. We will take the mass
density

ρ(r, t) = ∑
i

miδ (r− ri) .

If we integrate the left-hand side over the system volume,∫∫∫
V

ρ(r, t)dxdydz =
∫
V

ρ(r, t)dr = MV ,

we get the total mass in the system. Let us do the same on the right-hand side. Not
being particularly concerned about convergence properties, we move the integration
under the summation sign,∫

V
∑

i
miδ (r− ri)dr = ∑

i
mi

∫
V

δ (r− ri)dr = ∑
i

mi = MV ,

and we recapture the system mass, as expected.

A.3 Expected Value, Average, and Correlation Functions

In our explorations, the hydrodynamic quantities A = ρϕ are random functions, also
referred to as random variables or random processes. The domain of these quantities
is spanned by time and space. Let us simplify the discussion a bit by letting a random
function, denoted x, be a scalar function. The expected value for x is defined by

⟨x⟩=
∫ ∞

−∞
x f (x)dx ,

where f is the probability density function. Sometimes E[x] is used as symbol for the
expected value. The unit of f is the inverse of the unit of x. The expected value is also
related to the so-called first moment of f ; a measure of the function’s “mass”midpoint.

Now, in practice, when we perform simulations, we sample the hydrodynamic quan-
tities from a set of systems initialised at different initial conditions. If we have N such
systems, we obtain an ensemble of N discrete independent measurements, x1,x2, . . . ,xN .
The expected value for the discrete ensemble is

⟨x⟩= ∑
i

xi pi .
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tFigure A.2 Illustration of the different averages ⟨x⟩, xav, and ⟨x⟩t . xi represents one sample in the sample ensemble, and ⟨x⟩t

is the long time average τ → ∞.

Here pi is the probability that xi occurs. The probabilities obey ∑i pi = 1; thus, if we
assume that all xi occur with same probability, p, then ∑i pi = N p = 1, implying p =

1/N. The expected value is then simply the ensemble sample average

⟨x⟩= xav =
1
N ∑

i
xi .

Importantly, we can form the ensemble average at different times, such that ⟨x⟩(t) =
1
N ∑i xi(t). We see that the ensemble sample average is not, in general, the same as the
time average denoted ⟨x⟩t , defined by

⟨x⟩t =
1
τ

∫ τ

0
x(t)dt .

Figure A.2 illustrates the differences between a member of the ensemble, xi(t), the
expected value ⟨x⟩, the sample average xav, and the long time average ⟨x⟩t . Finally,
we also encounter spatial averages in the text; this is indicated by an overline, x. Thus
if x is a function of y, we have

x =
1

b−a

∫ b

a
xdy ,

where the limits a and b are defined by the actual problem.
A special case is equilibrium. From the ergodicity theorem, we have that for N → ∞

and τ → ∞ [90]

⟨x⟩= ⟨x⟩t in equilibrium.

That is, we can replace the expected value, or ensemble sample average, with the time
average and vice versa in equilibrium.

Moving on to correlation functions. Let x,y : I →R, where I = [0;∞[ represents the time
interval. We here define the correlation function to be

Cxy(t) =
1
τ

∫ ∞

0
x(t ′+ t)y(t ′)dt ′ , (A.3)

where τ is a characteristic time that we must define and t ≥ 0. We will not consider
the necessary conditions for existence and boldly proceed. If x ̸= y, the correlation
function is referred to as the cross-correlation function, and if x = y, the correlation
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functionCxx is the autocorrelation function. The correlation function measures, hardly
surprising, the correlation between x and y at different t-lags. That is, how x at time t ′+t
is correlated with y at previous time t ′, on average over I.

The correlation function fulfils two important properties that we use in the book:

1. The cross-correlation function does not, in general, commute: Cxy ̸=Cyx.

2. The autocorrelation function Cxx is even (when the domain is extended
over] −∞;∞[).

In some definitions of the correlation function the t-lag pertains to the second function
factor, and since the correlation function does not commute, one needs to be careful
with the exact definition. Our definition follows the book theory, and we will stick with
this. The two properties given here are independent of the exact definition.

We now arrive at a main point. From the definition we see that the correlation function
is a time average of a product. For time translation invariance we write the correlation
function Cxy(t) = ⟨x(t)y(0)⟩t . Due to the ergodicity in equilibrium, the time average
equals the ensemble average; that is,

Cxy(t) = ⟨x(t)y(0)⟩ .

Therefore, when in equilibrium, we can calculate the correlation functions from simple
ensemble averages of time series.

Example This example shows how to calculate the correlation function, but it also
acts as a proof, by contradiction, of property 1. Let us propose (or assume) that the
correlation function commutes, Cxy =Cyx. Define x,y : I → R by

x(t) = e−t and y(t) = 1+ t .

Then, for t ≥ 0 we have

Cxy(t) =
1
τ

∫ ∞

0
x(t ′+ t)y(t ′)dt ′

=
1
τ

∫ ∞

0
e−(t ′+t)(1+ t ′)dt ′ =

2e−t

τ
,

but

Cyx(t) =
1
τ

∫ ∞

0
y(t ′+ t)x(t ′)dt ′

=
1
τ

∫ ∞

0
(1+ t ′+ t)e−t ′ dt ′

=
1+ t

τ

∫ ∞

0
e−t ′dt ′+

1
τ

∫ ∞

0
t ′e−t ′dt ′ =

2+ t
τ

,

that is, Cxy ̸=Cyx, which contradicts the proposition.

https://doi.org/10.1017/9781009158749.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009158749.009


182 Appendix: A Bit of Help

A.4 Method of Undetermined Coefficients

Our explorations usually end with the problem of solving linear differential equa-
tions. Many of these equations are integrable or homogeneous, and the reader is likely
familiar with solving these equations already. However, a few times we also encounter
inhomogeneous differential equations which are, perhaps, not always straightforward
to deal with. There are different ways to approach these problems, but one simple tech-
nique is themethod of undetermined coefficients; andwhile thismethodwill not always
be applicable, it works for the problems we encounter. If the reader needs additional
resources, the book by Boyce and DiPrima [34] is strongly recommended.

First-Order Differential Equations
Consider the initial value problem

dx
dt

+ax = b with x(0) = 0 ,

where a,b ̸= 0 are constants. This is a linear first-order inhomogeneous differential
equation; b is called the inhomogeneous part. Notice, here one cannot simply perform
separation of variables and integrate; well, not unless we first find a helpful variable
transformation.

The method of undetermined coefficients is based on the superposition principle.
For this problem, it states that the solution, x, is a sum of the homogeneous solution,
xh, and the particular solution, xp; that is,

x = xh + xp .

Thus, we need to find xh and xp.
Homogeneous solution The corresponding homogeneous differential equation is

when b = 0, that is,
dxh

dt
+axh = 0 ,

which has the solution xh(t) = K1e−at .
Particular solution To find the particular solution, we try to guess a solution, and

see if this can fulfil the differential equation. If the right-hand side of the differential
equation is a polynomial, we guess that xp is a polynomial of the same degree as the
differential equation, here first order. Therefore, our guess is

xp = At +B .

Substituting into the original differential equation and rearranging a bit, we obtain

(aA)t +(A+aB−b) = 0 ,

which must be true for all t we study (defined from the original differential equation).
The equation is then fulfilled if each term is zero. Since a ̸= 0 implies A = 0, therefore
B = b/a, leading to xp = b/a.
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The general solution is x = K1e−at +b/a. By applying the initial conditions, K1 can
be determined, resulting in

x(t) =
b
a

(
1− e−at) .

Note, had the inhomogeneous part been, say, a trigonometric function, we would guess
that xp was given by a sine, cosine, a linear combination of the two, and so forth; see
Ref. [34].

More elegantly: it is possible to find an integrating factor for the general case where
a = a(t) and b = b(t). This gives an integral equation solution to any linear first-
order differential equation. Thus, we need not guess a particular solution xp using
this approach.

Second-Order Differential Equations
Themethod of undetermined coefficients for linear second-order differential equations
follows the exact same idea as for first-order problems. However, the reader may find it
useful to see an example of a second-order differential equation, as this will also treat
the homogeneous problem, which we deal with very frequently.

We will simply go through a specific example which is of relevance for the type of
problems we encounter in the text; let

d2x
dt2 +

dx
dt

−2x = 2t.

We seek the general solution. According to the preceding discussion, we need a homo-
geneous and a particular solution.

Homogeneous solution The corresponding homogeneous equation is

d2xh

dt2 +
dxh

dt
−2xh = 0 .

This has the characteristic function

λ 2 +λ −2 = 0 ⇒ λ = {1,−2}

and therefore the homogeneous solution is

xh(t) = K1et +K2e−2t .

Particular solution The inhomogeneous part is a polynomial, and the differential equa-
tion is of second order. We therefore guess that the particular solution is a polynomial
of second order:

xp = At2 +Bt +C .

If we substitute this into the differential equation, we get

−2At2 +2(A−B−1)t +(B+2A−2C) = 0 .
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Equating each term with zero, we see that A = 0, B = −1, and C = −1/2, hence, xp =

−2t +1. The general solution reads

x(t) = K1et +K2e−2t − t −1/2 ,

where the constants K1 and K2 are found from the problem boundary values or initial
values.

A.5 Computational Resources

The book’s additional resources include a molecular dynamics simulation package.
The package consists of a molecular dynamics kernel library,1 as well as a GNU
Octave/Matlab wrapper. With the wrapper, the front-end user can easily access the
functionality from the kernel library, as well as the built-in auxiliary functionality that
GNU Octave and Matlab offer. On the book’s web page a few introductory videos on
the installation and use of the software package can be found. It is recommended that
the reader consult these before using the software. Importantly, the software can run
on a simple desktop or a laptop (depending on one’s patience) and is, under the Linux
operating system, relatively easy to install and to get started with.

The Further Explorations section at the end of each chapter contains a series of
standard well-defined exercises and more open problems that the reader can engage.
The open problems sometimes involve analysis of molecular dynamics data, and these
datamust be produced by the readers themselves. It is recommended to use themolecu-
lar dynamics software package that comes with the book. Table A.2 lists a set of GNU
Octave/Matlab scripts and what Further Explorations they are designed for. Sometimes
the script can be run directly without modifications; other times, the reader must make
a few changes or even code some new functionality in order to explore the problem. The
scripts are provided with a few comments that can help set up and run the simulations,
as well as analyse the results.

The output of the simulations are given in molecular dynamics units. In the book
we have sometimes presented results in these units some times in SI units. To quickly
convert the simulation results to SI units (and vice versa), Table A.2 lists a series of
relevant conversion factors for the methane and butane systems; this can be very con-
venient when analysing the output from the simulations. Conversion factors for any
other molecular model can be derived directly using the table’s second column and
from the model Lennard–Jones parameter σ ,ε , and m.

1 Developed by the author.
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Table A.1 List of scripts and what Further Explorations they are designed for. The auxiliary files
are function files that are used in the data analysis, and are also part of the software package.

Script Exploration Input files Aux. files

run−LJ.m 3.4 start−LJ.xyz evcorr.mex or
evcorr.oct

run−KA.m 3.5 start−KA.xyz
fltrans.m

hann.m
trapz.m

run−butane.m 4.1
start−butane.xyz
start−butane.top

run−toluene.m 4.2
start−toluene.xyz
start−toluene.top

fltrans.m
hann.m
trapz.m

run−diatomic.m 4.3 & 4.4
start−diatomic.xyz
start−diatomic.top

fltrans.m
hann.m
trapz.m

run−Cflow.m 5.1, 5.2 & 6.2 start−Cflow.xyz

Table A.2 Lennard–Jones unit and conversion factors for methane and butane liquids.

Property Lennard–Jones unit Methane-factor Butane-factor

Length σ 3.70 ×10−10 m 3.90 ×10−10 m
Mass m 2.67 ×10−26 kg 2.41 ×10−26 kg
Energy ε 2.04 ×10−21 J 9.94 ×10−21 J
Temperature ε/kB 148 K 72 K
Time σ

√
mε−1 1.33 ×10−12s 1.92 ×10−12s

Mass density mσ−3 524.52 kg m−3 405.91 kg m−3

Force ε/σ 5.52 ×10−12 N 2.55 ×10−12 N
Pressure ε/σ−3 40.34 MPa 16.76 MPa
Viscosity

√
mε/σ2 5.38×10−5 Pa· s 3.22×10−5 Pa· s

Diffusion σ/
√

mε−1 1.03 ×10−7 m2 s−1 7.92×10−8 m2 s−1
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Index

adiabatic speed of sound, 63
alignment order parameter, 108
anisotropy, 7, 9

diffusion, 109
associated field variable, 26
autocatalysis, 166

balance equation, 24
for Fourier coefficients, 27
general form, 26
kinetic temperature, 40
linear and fluctuating, 53
linear momentum, 31
mass balance, 30
orbital angular momentum, 40
polarisation, 44
spin angular momentum, 40
thermal kinetic energy, 37

Bocquet–Charlaix criterion, 59
Boltzmann distribution, 151
bound charge, 44, 99
Boussinesq approximation, 146
Brillouin peak or process, 51, 64, 111
butane, 86, 92, 108, 131

capillary filling, 6
charge

bounded, 44
density, 44
free, 44

chemical surface coating, 164
chemical wave-fronts, 166

front speed, 169
front width, 171
reaction zone, 169

chlorine, 92, 94
classical hydrodynamics, 51

failure of, 118
coherent intermediate scattering function, 50
confinement, 106

Boltzmann potential function, 107, 151

Brillouin peak, 111
diffusion, 110
end-to-end vector butane, 108
order parameter, 108
Rayleigh peak, 111
rotational relaxation, 111

convolution theorem, 81
correlation function, 179

longitudinal dynamics, 61
transverse velocity, 55
bound charge density, 99
density–density correlation, 64
intermediate scattering function

incoherent, 71
intermediate scattering function, 50
longitudinal spin angular momentum, 90
structure factor, 50
transverse velocity, 76, 83, 85
van Hove, 48

Couette flow, 122
molecular fluids, 130

counter-ion solution, 156
coupling phenomena, 9

fluctuations in a thermal gradient, 145
Soret effect, 142
temperature and strain rate, 148
thermoelectric effect, 144
charge density and electro-osmosis, 158
kinetic energy and mass density, 39
spin angular momentum and linear momentum,

9, 88, 92
Curie’s principle, 52, 89

de Gennes narrowing, 66
Deborah number, 3
Debye equation, 7, 46, 96
Debye layer, 153

overlap, 153
Debye relaxation time, 7
Debye–Hückel limit, 152
diffuse layer, 151
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dipole flux tensor, 45
dipole moment

microscopic, 44
per unit mass, 45

Dirac delta, 28, 178
Dirichlet boundary condition, 113
dispersion relation, 60

Brillouin, 67
polarisation, 95, 96
Rayleigh half-peak width, 66
shear waves, 80
spin angular momentum, 92
transverse dynamics, 60

dissociation of silanol, 151
driving force, 52
Dufour effect, 142
dynamic structure factor, 50

electric double layer (EDL), 150, 151
electro-osmosis, 158
electrolyte solution, 150
ensemble, 15, 179
ergodicity, 48, 179

ferroelectric effect, 157
Fick’s law, 71, 161
Fisher–Kolmogorov equation, 168
flow enhancement, 5

coefficient, 5
Couette flow, 122
Hagen–Poiseuille flow, 121
molecular flow, 134
Poiseuille flow, 117
slip length, 5
slippage, 5

fluctuating hydrodynamics, 15, 53
fluctuation death, 162
flux, 52, 84
Fourier coefficients, 175
Fourier transform, 26, 175
Fourier’s law, 54, 148

extension of, 150
free charge, 44
Frenkel escape time, 59, 73

Gaussian approximation, 71
generalised hydrodynamics, 12

dielectric permittivity (frequency), 97
dielectric permittivity (wavevector), 98
spatial correlations, 83, 105
viscoelasticity, 81

Gibbs–Thomson effect, 107
Gouy–Chapman layer, see diffuse layer, 151
Gouy–Chapman solution, 152

Hagen–Poiseuille flow, 120
Helmholtz–Smoluchowski velocity, 160

homogeneous flows, 103
hydrodynamic channel height, 117
hydrodynamic invariance, 82
hydrodynamic matrix, 63, 92, 147
hydrodynamic quantity, 25

microscopic definition, 28

incoherent intermediate scattering function, 71
inertia tensor, 43

molecular, 43
iodate–arsenite reaction, 166
Irving–Kirkwood pressure tensor, 33
isomorph theory, 82

Kapitza length, 139, 141
kinetic temperature, 39

Langmuir isothermal adsorption model, 164
Lennard–Jones, 17, 110, 115, 116, 119, 185

binary system, 87
phase diagram, 82

linear momentum density, 30
liquid cage escape time; see Frenkel time, 59
local average density model (LADM), 109
local molecular rigidity, 88
longitudinal viscosity, 62
Lucas–Washburn equation, 6

Mach number, 3
Maxwell relaxation time, 77
Maxwell’s constitutive model, 77
mean square displacement, 72
mechanical spectrum

transverse dynamics, 59
density–density, 65
longitudinal spin angular momentum, 92

methane, 14, 17, 50, 58, 66, 86, 106
Michaelis–Menten mechanism, 165
microscopic operator, 27

G-operator, 29
H-operator, 29

molecular alignment, 108
ferroelectric effect, 157

molecular dynamics, 16
dissipative particle dynamics, 22, 76
equilibrium simulations, 21
non-equilibrium simulations, 21
sinusoidal transverse force field, 104

molecular dynamics units, 17
molecular flows, 130

generated by torque insertion, 135
molecular velocity, 29
momentum balance equation, 10
momentum flux; see pressure tensor, 33

nanofluidics, 1
nanofluids, 2
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nanoscale catalysis, 164
nanoscale hydrodynamics, 2
Navier boundary condition, 112, 114
Navier friction coefficient, 114
Navier–Stokes equation, 20, 113
Neumann boundary condition, 114, 140
Newton’s law of viscosity, 10, 54, 103

singularities, 118
non-local viscous response, 10, 83

Onsager’s reciprocal relation, 52
Onsager’s regression hypothesis, 48, 173
orbital angular momentum, 40
oscillatory flows, 123
outer product (dyadic), 29
over-screening, 157

Poiseuille flow, 5, 19, 112
molecular fluids, 132
temperature profile, 148

Poisson equation, 152
Poisson–Boltzmann equation, 152, 153
polarisation, 7, 44, 45

relaxation of, 94
Prandtl number, 148
pressure tensor, 33

antisymmetric part, 34, 35
atomistic system, 34
kinetic part, 34
molecular system, 34
symmetric part, 34
traceless symmetric part, 34
wavevector dependency, 37

quantum mechanical effects, 12
de Broglie wavelength, 12
rotational temperature, 12

radial distribution function, 68
ratio of heat capacities, 64
Rayleigh peak or process, 51, 64, 111
reaction-diffusion equation, 161

cutoff, 169
reactive boundaries, 164
Reynolds number, 3
rigid body rotation, 88
rotational viscosity, 89
rotational dynamics in confinement, 111

sample average, 179
screening charge, 153
screening function, 157
Seebeck coefficient, 145
shear wave speed, 79
shear waves, 76

single-particle dynamics, 69
sinusoidal transverse force field, 104
slip length, 5, 6, 114, 116

apparent slip, 134
theory of, 126

slit-pore, 2
Soret coefficient, 143
Soret effect, 142
sound attenuation coefficient, 63
spin angular momentum, 41
spin angular momentum flux tensor, 42
spin angular velocity, 43
Stern layer, 151
stochastic forcing, 53
Stokes boundary layer, 125
Stokes equation, 113

temperature gradient, 139
Soret effect, 142
Kapitza length, 139
thermoelectric effect, 144

tensor, 9, 24
diffusion, 109
polar tensor, 25
pseudo-tensor, 25
rank, 25
same tensorial character, 26

thermal diffusivity, 63
thermal fluctuations, 13, 15
thermal gradient

fluctuation in, 145
thermal kinetic energy density, 38
thermopolarisation, 145
thermoelectric effect, 144
thermophoresis, see Soret effect, 142
Thiele modulus, 166
time average, 106, 179
torque insertion, 135
transverse dynamical length scale, 86

van Hove function, 48
viscoelasticity, 76

generalised formalism, 81
Maxwell relaxation time, 77
Maxwell’s model, 77

volumetric flow rate, 5, 10
Couette flow, 122
Hagen–Poiseuille flow, 121
Poiseuille flow, 117

water, 86, 92
SPC/Fw model, 18, 97, 99

Womersley number, 124

ζ -potential, 155
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