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Chapter 1

Generalized coordinates

Problem 1.1

Four mechanical systems are studied. In all cases the number of degrees of

freedom are specified, and an appropriate set of generalized coordinates is

chosen.

a) The first system consists of a pendulum attached to a block which

in turn is attached to a spring. We assume all motion takes place in a two-

dimensional, vertical plane. The block is constrained to move in the hori-

zontal direction, and the pendulum is constrained by the constant length of

the rod. Starting from two degrees of freedom for each of the two objects,

the two constraints reduce the number of degrees of freedom to two, one

for each object. A natural choice of generalized coordinates is the horizon-

tal displacement x of the block and the angle θ of the rod relative to the

vertical direction.

b) The second system consists of a pendulum attached to a vertical

disk, which rotates with a fixed angular frequency. Also here we consider the

motion restricted to a two-dimensional, vertical plane. There is no degree of

freedom related to the rotating disk, since it has an externally determined

angular frequency. The pendulum is again only constrained by the fixed

length of the rod, and the number of degrees of freedom of the system

is therefore one. A natural choice of generalized coordinate is the angle θ

between the pendulum rod and the vertical direction.

c) In the third case a rigid rod can tilt without sliding on the top of

the cylinder, while the cylinder can roll on a horizontal plane. Assuming

again that the motion is restricted to a two-dimensional, vertical plane, the

starting point is three degrees of freedom for each object. For the cylinder

this corresponds to two coordinates for its center of mass and one for its

angle of rotation. For the rod there are two coordinates needed to determine

the position of its center of mass, and one coordinate to determine the angle

of the rod relative to the horizontal (or vertical) direction.

3
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The constraints are the following,

1) For the cylinder the vertical coordinate of the cylinder’s center is fixed,

and since the cylinder is rolling, rather than sliding, the rotation coordi-

nate is linked to the horizontal coordinate of the cylinder. This gives two

constraints for the cylinder.

2) The rod is constrained to lie on the top of the cylinder, and if we assume

that it is not allowed to slide on the cylinder, the only degree of freedom for

the rod is to tilt on the cylinder. This means that there are two constraints

also for the rod.

The number of degrees of freedom is therefore: 3+3− 2− 2 = 2. A possible

choice of generalized coordinates is the horizontal coordinate of the cylinder

and the tilting angle of the rod.

d) In the last case a rotating top moves on a horizontal floor. For a rigid

body in three dimensions the number of degrees of freedom is six, three

to determine the position of its center of mass and three to determine its

orientation (corresponding to the three parameters, which are needed to

specify a rotation in 3D). For the rotating top there is one constraint, with

the vertical coordinate of its tip being fixed by the vertical coordinate of the

floor. Choice of generalized coordinates: The (x, y)-coordinates of the tip

of the rotating top, and the angles (θ, φ, χ) which determine its orientation

(two to determine the direction of its symmetry axis, and one to determine

its rotation angle around the axis).

Problem 1.2

We examine an Atwood’s machine, which consists of three weights, with

masses m1 = 4m, m2 = 2m and m3 = m. The ropes, with fixed lengths l1
and l2, and the two pulleys, are treated as massless.

The number of degrees of freedom is two, since the heights of two of

the weights, m1 and m2, will determine the third one, m3. We choose the

vertical coordinates y1 and y2, shown in Fig. 1.1, as generalized coordinates.

Expressed in these variables the potential energy is

V = −m1y1 +m2(−y2 − (l1 − y1)) +m3((y1 − l1) + (y2 − l2))

= −m1y1 +m2(y1 − y2) +m3(y1 + y2) + const.

= −4my1 + 2m(y1 − y2) +m(y1 + y2) + const.

= −m(y1 + y2) + const. , (1.1)

where the constant can be absorbed in the definition of the zero point of

the potential energy.
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m1

l1-y1

l2-y2

m2
m3

y1

y2

Fig. 1.1 Atwood’s machine with two independent coordinates y1 and y2.

The corresponding expression for the kinetic energy is

T =
1

2
m1ẏ

2
1 +

1

2
m2(ẏ1 − ẏ2)

2 +
1

2
m3(ẏ1 + ẏ2)

2

=
1

2
m(4ẏ21 + 2(ẏ1 − ẏ2)

2 + (ẏ1 + ẏ2)
2)

=
1

2
m(7ẏ21 + 3ẏ22 − 2ẏ1ẏ2) . (1.2)

Problem 1.3

Three identical rods of mass m and length l are connected by frictionless

joints, with the distance between the points of suspension being equal to

the length of the rods. The rods move in the vertical plane. We will show

that the system has only one degree of freedom, where the angle θ of one

of the rods can be used as generalized coordinate. The Lagrangian will be

found, expressed as a function of θ and θ̇.

Two coordinates are needed to determine the position of each of the

joints in the vertical plane. There are three constraints, which give relations

between these positions, corresponding to the fixed lengths of the three rods.

The number of degrees of freedom of the system is therefore 2+2−3 = 1, and

the angle θ in the figure is an obvious choice for the generalized coordinate.

The four endpoints of the rods define a parallelogram, as follows from

the fact that the lengths of all four sides are the same. As a consequence



6 Solution Manual for Classical Mechanics and Electrodynamics (2nd Edition)

two of the rods will rotate about the end points, which are fixed to the roof,

while the third rod will move without rotation, since it is always parallel

to the roof.

The common angular velocity of the rotating rods is ω = θ̇, and the

velocity of the non-rotating rod is v = lθ̇, since this is equal to the velocity

of the lower endpoints of the two rotating rods. The kinetic energy of the

three rods is therefore

T = 2 · 1
2
Iω2 +

1

2
mv2 =

1

3
ml2θ̇2 +

1

2
ml2θ̇2 =

5

6
ml2θ̇2 . (1.3)

With y as the vertical distance of the horizontal rod, the potential energy

of the system is

V = 2 ·mgy
2
+mgy = 2mgy = −2mgl cos θ . (1.4)

This gives for the Lagrangian

L(θ, θ̇) =
5

6
ml2θ̇2 + 2mgl cos θ . (1.5)

Problem 1.4

A particle with mass m moves in three-dimensional space under the

influence of a constraint. The constraint is expressed by the following rela-

tion between the Cartesian coordinates of the particle,

e−(x2+y2) + z = 0 . (1.6)

a) The constraint relation can be used to express z as a function of x

and y. Thus, there are two independent variables, which means that the

system has two degrees of freedom. With x and y chosen as the generalized

coordinates, the position vector of the particle is

r = xi+ yj− e−(x2+y2)k . (1.7)

b) A virtual displacement, with x → x+ δx and y → y + δy, gives the

following variation in z

δz = 2e−(x2+y2)(xδx + yδy) . (1.8)

The expression for the variation of the position vector is therefore

δr = (i+ 2e−(x2+y2)xk)δx + (j+ 2e−(x2+y2)y k)δy . (1.9)

c) The constraint force f satisfies the condition f · δr = 0 for arbitrary

variations of the form (1.9). This implies that the two coefficients of the
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scalar product, proportional to δx and δy respectively, have to vanish sep-

arately,

fx + 2e−(x2+y2)xfz = 0 , fy + 2e−(x2+y2)yfz = 0. (1.10)

In vector form this is

f = fz(−2e−(x2+y2)xi− 2e−(x2+y2)yj+ k) . (1.11)

Only the direction of f is determined by this expression since fz is an

undetermined function of x and y. To fully determine the constraint force

which acts on the particle one needs to know the applied forces and the

velocity of the particle.

z x

δr

f

Fig. 1.2 A section of the constraint surface with directions of a virtual displace-
ment δr of the small body and the constraint force f acting on the body.

d) In the y = 0 plane the constraint is described by the curve z = −e−x2

.

A virtual displacement δr is directed tangentially to the curve, while the

constraint force f is perpendicular to the curve, as illustrated in Fig 1.2.

Problem 1.5

A flexible chain can move without friction on a smooth surface with the

vertical heights of the endpoints denoted zA and zB. The chain has constant

(linear) mass density μ. We shall use the principle of virtual work to find

how zA and zB are related when the chain is at static equilibrium.

A (dimensionless) parameter s, which measures length along the chain

(relative to the total length), will be used as the variable. We set s = 0 at

the right end of the chain and s = 1 at the left end. For a virtual translation
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δs of the chain along the surface, there is a vertical displacement δz, which

varies with the position s along the chain,

δz =
dz

ds
δs . (1.12)

The corresponding virtual work, integrated along the chain is

δW = g

∫
δzdm = gμδs

∫ 1

0

dz

ds
ds = gμδs(zB − zA) . (1.13)

At equilibrium the principle of virtual work gives δW = 0, which implies

zA = zB.

Note that, as a simpler argument, a small displacement of the chain

along the surface is equivalent to taking a small part of the chain at one

end and move it to the other end. At equilibrium the change in potential

energy should vanish, which would again mean that zA = zB.



Chapter 2

Lagrange’s equations

Problem 2.1

A particle with mass m moves freely in a horizontal plane. The problem to

be solved is to give a Lagrangian description of the motion in a rotating

coordinate system, and to compare the corresponding equations of motion

with the standard Newtonian description, where the rotation introduces

centrifugal and Coriolis forces.

a) The coordinate transformation from the rotating Cartesian reference

frame, with coordinates (ξ, η), to the fixed Cartesian frame, with coordi-

nates (x, y), is

x = ξ cosωt− η sinωt ,

y = ξ sinωt+ η cosωt , (2.1)

with the corresponding transformation of velocities,

ẋ = (ξ̇ − ωη) cosωt− (ωξ + η̇) sinωt ,

ẏ = (ξ̇ − ωη) sinωt+ (ωξ + η̇) cosωt . (2.2)

The Lagrangian is identical to the kinetic energy,

L =
1

2
m(ẋ2 + ẏ2)

=
1

2
m
[
(ξ̇ − ωη)2 + (ωξ + η̇)2

]
=

1

2
m
[
(ξ̇2 + η̇2) + 2ω(ξη̇ − ξ̇η) + ω2(ξ2 + η2)

]
. (2.3)

b) The partial derivatives of L with respect to the coordinates and their

time derivative are

∂L

∂ξ
= m(ωη̇ + ω2ξ) ,

∂L

∂ξ̇
= m(ξ̇ − ωη) ,

∂L

∂η
= m(−ωξ̇ + ω2η) ,

∂L

∂η̇
= m(η̇ + ωξ) . (2.4)

9
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This gives as Lagrange’s equations,

d

dt

∂L

∂ξ̇
− ∂L

∂ξ̇
= 0 ⇒ ξ̈ − 2ωη̇ − ω2ξ = 0 ,

d

dt

∂L

∂η̇
− ∂L

∂η̇
= 0 ⇒ η̈ + 2ωξ̇ − ω2η = 0 . (2.5)

Without any external force acting on the particle, Newton’s second law

takes in the rotating frame the following form

mr̈ = −mω × (ω × r)− 2mω × ṙ , (2.6)

where the angular velocity vector ω is orthogonal to the plane of rotation.

The term which is linear in ω is the Coriolis force and the term which is

quadratic in ω is the centrifugal force. To compare the equations in (2.5) and

(2.6) we express the position vector r in (2.6) in terms of the coordinates ξ

and η as

r = ξi′ + ηj′ , (2.7)

where i′ and j′ are rotating unit vectors. In the rotating frame these are

treated as fixed and the velocity and acceleration vectors are therefore given

as

ṙ = ξ̇i′ + η̇j′ , r̈ = ξ̈i′ + η̈j′ . (2.8)

We insert these expressions for the Coriolis and centrifugal forces

ω × (ω × r) = ω(ω · r)− ω2r = −ω2(ξi′ + ηj′) ,

ω × ṙ = ωk× (ξ̇i′ + η̇j′) = ω(ξ̇j′ − η̇i′) . (2.9)

Inserting these in the vector equation (2.6) and extracting the components

proportional to i′ and j′, we find

ξ̈ = 2ωη̇ + ω2ξ ,

η̈ = −2ωξ̇ + ω2η , (2.10)

which are the same two equations as in (2.5). This shows the consistency

between Lagrange’s equations expressed in the (rotating) coordinates ξ and

η, and the standard vector equation used for Newton’s second law in a

rotating reference frame.
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g
l

l

θ

φ

Fig. 2.1 The two-rod problem, with generalized coordinates θ and φ.

Problem 2.2

The system consists here of two identical rods of massm and length l, which

are connected to each other by a frictionless joint, as shown in Fig. 2.1. The

problem is to give a Lagrangian description of the system and to find the

angular frequency for small oscillations about its equilibrium position.

a) The system has two degrees of freedom, and as generalized coordi-

nates we may choose one angle for each of the rods (see Fig. 2.1). With

I1 as the moment of inertia of the upper rod about its fixed endpoint, and

I2 as the moment of inertia of the lower rod about its middle point, the

kinetic energy of the system is

T =
1

2
I1θ̇

2 +
1

2
ml2θ̇2 +

1

2
I2φ̇

2

=
1

6
ml2θ̇2 +

1

2
ml2θ̇2 +

1

24
ml2φ̇2

=
2

3
ml2θ̇2 +

1

24
ml2φ̇2 , (2.11)

and the potential energy is

V = −mg l
2
cos θ −mgl cos θ

= −3

2
mgl cos θ . (2.12)

This gives the Lagrangian L = T − V ,

L =
2

3
ml2θ̇2 +

1

24
ml2φ̇2 +

3

2
mgl cos θ . (2.13)
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b) The derivatives with respect to θ and θ̇ are

∂L

∂θ̇
=

4

3
ml2θ̇ ,

∂L

∂θ
= −3

2
mgl sin θ . (2.14)

This gives Lagrange’s equation for the variable θ,

d

dt

∂L

∂θ̇
− ∂L

∂θ̇
= 0 ⇒ θ̈ +

9g

8l
sin θ = 0 . (2.15)

The derivatives with respect to φ and φ̇ are

dL

dφ̇
=

1

12
ml2φ̇ ,

∂L

∂φ
= 0 . (2.16)

Since φ is cyclic, the derivative with respect to φ̇ is a constant, and therefore

the angular velocity φ̇ is constant. Thus the motion of the two rods are

independent, with the upper rods making oscillations about θ = 0, while the

lower rod is rotating with constant angular velocity. For small oscillations,

with sin θ ≈ θ, the angular frequency of the upper rod is ω =
√

9g
8l .

Problem 2.3

We consider a small body with mass m, which moves without friction along

a rotating rod in the horizontal plane. The angular velocity ω of the rod is

constant, and the center of rotation is assigned the radial coordinate r = 0.

The problem is to use Lagrange’s method to determine the time dependent

coordinate r(t) of the moving body, and to plot the orbit of the body in

the plane.

a) The position vector of the body is

r = r(cosωti+ sinωtj) , (2.17)

which gives the velocity vector

ṙ = −rω(sinωti− cosωtj) + ṙ(cosωti+ sinωtj) . (2.18)

Since the body moves in the horizontal plane there is no potential energy,

and the Lagrangian is identical to the kinetic energy

L =
1

2
mṙ2 =

1

2
m(ṙ2 + r2ω2) . (2.19)

The partial derivatives with respect to r and ṙ are

∂L

∂ṙ
= mṙ ,

∂L

∂r
= mrω2 , (2.20)
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and Lagrange’s equation gives

d

dt

∂L

∂ṙ
− ∂L

∂r
= 0 ⇒ r̈ − ω2r = 0 . (2.21)

Solutions of the equations are

r(t) = Aeωt +Be−ωt . (2.22)

The initial conditions are r(0) = r0 and ṙ(0) = 0, which give A = B = 1
2r0.

This gives the solution

r(t) =
1

2
r0(e

ωt + e−ωt) = r0 coshωt . (2.23)

b) The figure shows a plot of the orbit in the x, y-plane, with t restricted

to the interval 0 < t � π/ω.

y/r0

x/r0

Fig. 2.2 The orbit of the body sliding on a rotating rod.

Problem 2.4

A pendulum consists of a rigid rod of length l, which we consider as massless,

and a pendulum bob of mass m. The point of suspension of the pendulum

has horizontal coordinate x = s and vertical coordinate y = 0. The angle θ

of the pendulum rod, relative to the vertical direction, is used as generalized

coordinate.

a) We assume first that s = 0. The coordinates and velocities of the

pendulum bob are

x = l sin θ , y = −l cos θ ,
ẋ = l cos θ θ̇ , ẏ = l sin θ θ̇ . (2.24)

The kinetic energy is

T =
1

2
m(ẋ2 + ẏ2) =

1

2
ml2θ̇2 , (2.25)
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and the potential energy

V = mgy = −mgl cos θ . (2.26)

This gives as Lagrangian L = T − V ,

L =
1

2
ml2θ̇2 +mgl cos θ , (2.27)

with partial derivatives

∂L

∂θ̇
= ml2θ̇ ,

∂L

∂θ
= −mgl sin θ , (2.28)

and Lagrange’s equation

d

dt

∂L

∂θ̇
− ∂L

∂θ
= 0 ⇒ θ̈ +

g

l
sin θ = 0 , (2.29)

which is the standard pendulum equation.

b) With the point of suspension freely moving, and s and θ as generalized

coordinates, the expressions for x, y, and their time derivatives are

x = s+ l sin θ , y = −l cos θ,
ẋ = ṡ+ l cos θ θ̇ , ẏ = l sin θ θ̇ . (2.30)

This gives for the kinetic energy

T =
1

2
m(ẋ2 + ẏ2)

=
1

2
ml2θ̇2 +ml cos θṡθ̇ +

1

2
mṡ2 , (2.31)

while the potential energy is unchanged from (2.26). The Lagrangian is

then

L =
1

2
ml2θ̇2 +ml cos θṡθ̇ +

1

2
mṡ2 +mgl cos θ , (2.32)

with partial derivatives

∂L

∂θ̇
= ml2θ̇ +ml cos θṡ ,

∂L

∂θ
= −mgl sin θ −ml sin θṡθ̇ ,

∂L

∂ṡ
= mṡ+ml cos θθ̇ ,

∂L

∂s
= 0 . (2.33)
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When introduced in Lagrange’s equation, these expressions give rise to the

following two equations of motion

lθ̈ + g sin θ + cos θs̈ = 0,

s̈− l sin θθ̇2 + l cos θθ̈ = 0 . (2.34)

c) The variable s can be eliminated by a combination of the two equa-

tions, and this gives the following equation for the θ variable

l sin2 θθ̈ + l sin θ cos θθ̇2 + g sin θ = 0 . (2.35)

A particular solution of this is θ = 0, which when applied to (2.34) gives

s̈ = 0. This solution means that the pendulum rod is vertically oriented

and moves with constant speed in the horizontal direction.

Under the assumption θ �= 0, Eq. (2.35) can be written as

d2

dt2
(−l cos θ) = l(sin θθ̈ + cos θθ̇2) = −g , (2.36)

and since the vertical coordinate of the pendulum bob is y = −l cos θ, this
means that the vertical acceleration of the bob is identical to the accelera-

tion of gravity, ÿ = −g.
We further note that the second equation in (2.34) can be written as

s̈ = − d2

dt2
(l sin θ). (2.37)

Since the horizontal coordinate of the bob is x = s+ l sin θ, this means that

the acceleration in the horizontal direction vanishes, ẍ = 0. Combining

the results for the x and y variables, we conclude that the motion of the

pendulum bob is like free fall in the gravitational field, in spite of the fact

that there is a constraint on the motion of the upper end of the pendulum

rod. However, there is a limit to this motion for y = −l or θ = 0, where the

constraint will stop the downward motion.

Problem 2.5

A rigid circular metal hoop rotates with constant angular velocity ω around

an axis through the center. A bead with mass m slides without friction

along the circle and there is no gravity. We use the angular variable θ of

the bead, measured around the hoop, as generalized coordinate. Lagrange’s

equation for the moving bead is established, and the angular frequency of

small oscillations around stable equilibria is found.
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a) The Cartesian coordinates of the particle are

x = R sin θ cosωt , y = R sin θ sinωt , z = −R cos θ. (2.38)

Since there is no potential energy, the Lagrangian is given by the kinetic

energy, L = T ,

L =
1

2
m(ẋ2 + ẏ2 + ż2)

=
1

2
mR2[(θ̇ cos θ cosωt− ω sin θ sinωt)2

+(θ̇ cos θ sinωt+ ω sin θ cosωt)2 + θ̇2 sin2 θ

=
1

2
mR2(θ̇2 + ω2 sin2 θ)] . (2.39)

This gives Lagrange’s equation,

mR2(θ̈ − ω2 sin θ cos θ) = 0 ⇒ θ̈ − ω2 sin θ cos θ = 0 . (2.40)

b) Both terms in the Lagrangian comes from the kinetic energy of the

particle, with no contribution from a potential energy. However, we see

that the Lagrangian is identical to the Lagrangian for a particle with mass

m moving on a circle with radius R, where T = 1
2mR

2θ̇2 is the kinetic

energy and V = − 1
2mR

2ω2 sin2 θ is a periodic potential. The potential has

two minima on the circle, with sin2 θ = 1 for θ = π/2 and θ = 3π/2.

These correspond to stable equilibria. There are also two maxima, with

sin2 θ = 0 for θ = 0 and θ = π, and these correspond to unstable equilibria.

The potential V can be viewed as a centrifugal potential, as described in a

rotating reference frame which is co-rotating with the hoop.

c) With θ0 = π/2 we have for small deviations φ from this value,

sin θ = sin(φ+
π

2
) = cosφ ≈ 1,

cos θ = cos(φ+
π

2
) = − sinφ ≈ φ. (2.41)

The equation of motion (2.40), to first order in the variable φ, is then

φ̈+ ω2φ = 0 (2.42)

which is a harmonic oscillator equation with angular frequency ω.

In the case of the second minimum, θ0 = 3π/2, we note that the shift

θ → θ+π will only introduce a sign change for cos θ and sin θ. The equation

of motion (2.40) is therefore unchanged under this shift, and the small

oscillation form of the equation therefore is the same for θ0 = 3π/2 as for

θ0 = π/2.
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Problem 2.6

We study the motion of an object with massm, which slides without friction

on an inclined plane. The plane, which is tilted with an angle of 30◦ relative

to the horizontal plane, is forced to move horizontally with a constant

acceleration a. The displacement s of the object along the tilted surface

is used as generalized coordinate.

a)We assume first that the inclined plane is at rest, a = 0. The Cartesian

coordinates of the body are, expressed in terms of the parameter s,

x = s cos 30◦ =
s

2

√
3 , y = h− s sin 30◦ = h− s

2
. (2.43)

The kinetic energy is then

T =
1

2
m(ẋ2 + ẏ2) =

1

2
mṡ2 , (2.44)

and the potential energy is

V = mgy = mg(h− s

2
) . (2.45)

This gives the Lagrangian

L =
1

2
mṡ2 −mg(h− s

2
) . (2.46)

b) We assume next that the acceleration a of the inclined plane is con-

stant and non-vanishing. The Cartesian coordinates, and their time deriva-

tives are now

x =
1

2
at2 +

s

2

√
3 , y = h− s

2
,

ẋ = at+
ṡ

2

√
3 , ẏ = − ṡ

2
. (2.47)

This gives the Lagrangian

L =
1

2
m(ṡ2 + atṡ

√
3 + a2t2)−mg(h− s

2
) . (2.48)

c) The partial derivatives with respect to ṡ and s are

∂L

∂ṡ
= m(ṡ+

1

2

√
3at) ,

∂L

∂s
=

1

2
mg , (2.49)

which give Lagrange’s equation

d

dt

∂L

∂ṡ
− ∂L

∂s
= 0 ⇒ s̈ =

1

2
g − 1

2

√
3 a . (2.50)

Since s̈ is constant, it is straight forward to integrate it to give s as a

function of t. With the initial conditions for t = 0, that s = 0 and ṡ = 0,

the solution is

s(t) =
1

4
(g − a

√
3)t2 . (2.51)
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Problem 2.7

Two bodies with the same mass, m, are connected with a massless rope

through a small hole in a smooth horizontal plane. One body is moving on

the plane, the other one is hanging at the end of the rope and can move

vertically. The polar coordinates (r, φ) of the body moving on the plane are

used as generalized coordinates.

a) The kinetic energy of the system is

T =
1

2
m(ṙ2 + r2φ̇2) +

1

2
mṙ2 = m(ṙ2 +

1

2
r2φ̇2) , (2.52)

and the potential energy is

V = −mg(l− r) , (2.53)

with l as the length of the rope. This gives as the Lagrangian L = T − V ,

L = m(ṙ2 +
1

2
r2φ̇2)−mgr + constant . (2.54)

Lagrange’s equation for the r variable then is

d

dt

∂L

∂ṙ
− ∂L

∂r
= 0 ⇒ r̈ − rφ̇2 + g = 0 . (2.55)

b) The variable φ is cyclic, ∂L
∂φ = 0, which reduces Lagrange’s equation

for φ to

∂L

∂φ̇
= mr2φ̇ = md , (2.56)

with d as a constant. The expression it gives for φ̇ can be used to eliminate

φ̇ in the radial equation, which then takes the form

r̈ − d2

r3
+ g = 0 . (2.57)

The equation shows that there is a special solution with constant r, with

the value r0 = (d2/(gl))1/3. For this value of r the body on the horizontal

plane will move with constant angular velocity along the circle with radius

r0. The equation of motion also shows that for r > r0 r̈ will be negative,

and for r < r0 it will be positive. This means that the body will more

generally oscillate about the circle r = r0 under the angular motion.
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Problem 2.8

A pendulum is connected to a block, which can slide without friction in a

horizontal direction. The block and the pendulum bob have equal masses

m, while the pendulum rod, with length d, is considered to be massless. As

generalized coordinates in this problem, we use s as the x-coordinate of the

center of mass of the box, and θ as the angle of the pendulum rod relative

to the vertical direction. At time t = 0 both the block and the pendulum

have zero velocity, with the pendulum angle being θ0.

a) With (x, y) as coordinates of the pendulum bob we have

x = s+ d sin θ , y = −d cos θ. (2.58)

The kinetic energy of the system is

T =
1

2
mṡ2 +

1

2
m(ẋ2 + ẏ2)

=
1

2
m(ṡ2 + (ṡ+ d cos θ θ̇)2 + d2 sin2 θ θ̇2)

= mṡ2 +
1

2
md2θ̇2 +md cos θṡθ̇ , (2.59)

and the potential energy

V = mgy = −mgd cos θ. (2.60)

This determines the Lagrangian L = T − V ,

L = mṡ2 +
1

2
md2θ̇2 +md cos θṡθ̇ +mgd cos θ . (2.61)

The partial derivatives of L with respect to θ̇ and θ are

∂L

∂θ̇
= md2θ̇ +md cos θṡ ,

∂L

∂θ
= −md sin θṡθ̇ −mgd sin θ , (2.62)

which gives Lagrange’s equation as

d

dt

∂L

∂θ̇
− ∂L

∂θ
= 0 ⇒ θ̈ +

1

d
cos θs̈+

g

d
sin θ = 0 . (2.63)

b) Since s is cyclic, which means that ∂L
∂s = 0, Lagrange’s equation

implies that the conjugate momentum is a constant of motion

ps ≡ ∂L

∂ṡ
= 2mṡ+md cos θθ̇ . (2.64)
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This implies

s̈ = −d
2

d

dt
(cos θ θ̇) = −1

2
d cos θ θ̈ +

1

2
d sin θ θ̇2 , (2.65)

which can be used to eliminate the variable s from the θ equation. The

result is

(1− 1

2
cos2 θ)θ̈ +

1

2
sin θ cos θ θ̇2 +

g

d
sin θ = 0 (2.66)

and we note, in particular, that the equation is independent of the value of

the constant ps.

c) A small angle approximation of this equation around the equilibrium

point θ = 0 means to expand all the terms of the equation to first order

in θ and its time derivatives. We first note that the middle term in (2.66)

gives no contribution to first order due to its quadratic dependence of θ̇.

Using the first order approximations cos θ ≈ 1 and sin θ ≈ θ, we get the

following simplified equation

θ̈ + 2
g

d
θ = 0 . (2.67)

This has the form of a harmonic oscillator equation with angular momentum

ω =
√
2g/d.

Problem 2.9

A small body with mass m is constrained to move along a spiral-shaped

channel on a circular disk with radius R. The disk rotates in the horizontal

plane, with constant angular velocity ω about an axis through the center

of the disk. The points on the spiral are characterized by polar coordinates

(r, θ), with r = aθ, where a is a constant, and θ is measured relative to a

reference frame which rotates with the disk.

a) The Cartesian coordinates (x, y) of a point on the spiral, measured in

a non-rotating reference frame, are related to the coordinates of the rotating

frame by

x = r cos(θ + ωt) = aθ cos(θ + ωt) ,

y = r sin(θ + ωt) = aθ sin(θ + ωt) . (2.68)

The corresponding velocity components are

ẋ = aθ̇ cos(θ + ωt)− aθ(θ̇ + ω) sin(θ + ωt) ,

ẏ = aθ̇ sin(θ + ωt) + aθ(θ̇ + ω) cos(θ + ωt) . (2.69)
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The Lagrangian, which is identical to the kinetic energy, then is

L =
1

2
m(ẋ2 + ẏ2)

=
1

2
ma2((1 + θ2)θ̇2 + 2ωθ2θ̇ + ω2θ2) . (2.70)

b) We find the partial derivatives

∂L

∂θ̇
= ma2((1 + θ2)θ̇ + ωθ2) ,

∂L

∂θ
= ma2(θθ̇2 + 2ωθθ̇ + ω2θ) , (2.71)

and from these Lagrange’s equation

d

dt

∂L

∂θ̇
− ∂L

∂θ
= 0 ⇒

(1 + θ2)θ̈ + θθ̇2 − ω2θ = 0 . (2.72)

For large angles, θ >> 1, the following approximation is justified, (1+θ2)θ̈ ≈
θ2θ̈. This changes the equation of motion to

θθ̈ + θ̇2 − ω2 = 0 . (2.73)

c) The simplified equation can be written as

1

2

d2

dt2
θ2 = ω2 , (2.74)

which has the solution

θ2 = ω2t2 +At+B , (2.75)

with A and B as integration constants. With the initial conditions r(0) = r0
and ṙ(0) = 0, which implies θ(0) = r0/a and θ̇(0) = 0, we get A = 0 and

B = r20/a
2, the solution is

θ(t) =
√
ω2t2 + r20/a

2 . (2.76)

With r0 >> a this gives θ(t) >> 1, which shows that the approximation

which leads to Eq. (2.73) is satisfied.

d) The time needed for the body to reach the edge of the disk, is deter-

mined by r(t) = R, which means θ(t) = R/a. This gives

R =
√
a2ω2t2 + r20 , (2.77)

which determines the time as

t =
1

aω

√
R2 − r20 . (2.78)
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Problem 2.10

We study here the motion of a particle with mass m and charge q in an

electromagnetic field. The field is described by a time dependent vector

potential A, which in cylindrical coordinates has the form

Ar = Az = 0, Aφ =
1

2
rB(t). (2.79)

a) The corresponding magnetic and electric fields, expressed in cylindri-

cal coordinates, are

B = ∇×A ⇒ Br = Bφ = 0 , Bz =
1

r

∂

∂r
(rAφ) = B,

E = − ∂

∂t
A ⇒ Er = Ez = 0 , Eφ = −1

2
r
d

dt
B . (2.80)

b) The Lagrangian of the charged particle is

L =
1

2
mṙ2 + qA · ṙ = 1

2
m(ṙ2 + r2φ̇2) +

1

2
qBr2φ̇ , (2.81)

with partial derivatives

∂L

∂ṙ
= mṙ ,

∂L

∂r
= mrφ̇2 + qBrφ̇ , (2.82)

and
∂L

∂φ̇
= mr2φ̇+

1

2
qBr2 ,

∂L

∂φ
= 0 . (2.83)

Lagrange’s equation gives the following equation of motion for the r vari-

able,

d

dt

(
∂L

∂ṙ

)
− ∂L

∂r
= 0 ⇒ r̈ − rφ̇2 − qB

m
rφ̇ = 0 , (2.84)

and for the φ variable,

d

dt

(
∂L

∂φ̇

)
− ∂L

∂φ
= 0 ⇒

rφ̈+ 2ṙ(φ̇+
1

2

qB

m
) +

1

2

q

m
r
dB

dt
= 0 . (2.85)

The standard expression for the equation of motion on vector form is

mr̈ = q(E+ ṙ×B) . (2.86)

Decomposition of both sides of the equation in radial and angular parts

gives

r̈ = (r̈ − rφ̇2)er + (rφ̈ + 2ṙφ̇)eφ ,

q

m
(E+ ṙ×B) = rφ̇

qB

m
er − (ṙ

qB

m
+

1

2
r
q

m

dB

dt
)eφ , (2.87)
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and equality of the radial and angular components separately reproduces

the Lagrange’s equations in (2.84) and (2.85).

c) With B constant there are two constants of motion:

1) Since φ is cyclic the conjugate momentum is a constant,

∂L

∂φ
= 0 ⇒ ∂L

∂φ̇
= mr2φ̇+

1

2
qBr2 ≡ � (const) . (2.88)

2) B = B0 implies that L is time independent, and the Hamiltonian H is

therefore a constant of motion,

∂L

∂t
= 0 ⇒

H =
∂L

∂ṙ
ṙ +

∂L

∂φ̇
φ̇− L

=
1

2
m(ṙ2 + r2φ̇2) ≡ E (const) . (2.89)

We assume circular motion, r = r0. Inserted in the radial equation this

gives

r̈ − rφ̇2 − qB

m
rφ̇ = −r0φ̇(φ̇ +

qB0

m
) = 0 , (2.90)

and in the angular equation

rφ̈+ 2ṙ(φ̇+
1

2

qB

m
) +

1

2

q

m
r
dB

dt
= r0φ̈ = 0 . (2.91)

Both equations are satisfied, provided the angular frequency is constant

with value

φ̇ = −qB0

m
= ω0 . (2.92)

The two constants of motion in this case take the values

� =
1

2
mr20ω0 , E =

1

2
mr20ω

2
0 . (2.93)

d) We assume now that B is slowly changing with time, from an initial

value B0 to a final value B1. The circular motion will then change from

the initial radius r0 to the final radius r1. When B changes H is no longer

constant, while � continues to be constant since φ remains cyclic. This can

be used to relate r0 to r1,

r20ω0 = r21ω1 ⇒ r1
r0

=

√
ω0

ω1
=

√
B0

B1
. (2.94)

For the initial and final energies this gives

E1
E0 =

r21ω
2
1

r20ω
2
0

=
B1

B0
. (2.95)
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Problem 2.11

A particle moves on a parabolic surface given by the equation z =

(λ/2)(x2+y2), where z is the Cartesian coordinate in the vertical direction

and λ is a constant. The particle has mass m and moves without friction on

the surface under influence of gravitation. The particle’s position is given

by the polar coordinates (r, θ) of the projection of the position vector into

the x, y plane.

a) The coordinates x and y of the plane, when expressed in polar coor-

dinates, give

x = r cos θ , y = r cos θ ⇒ ẋ2 + ẏ2 = ṙ2 + r2θ̇2 . (2.96)

The vertical coordinate z, when restricted to the parabolic surface, depends

on r and θ as

z =
1

2
λ(x2 + y2) =

1

2
λr2 ⇒ ż = λrṙ . (2.97)

This gives for the Lagrangian,

L =
1

2
m(ẋ2 + ẏ2 + ż2)−mgz

=
1

2
m[(1 + λ2r2)ṙ2 + r2θ̇2 − gλr2] (2.98)

and the partial derivatives of this with respect to r and ṙ are

∂L

∂r
= m(λ2rṙ2 + rṙ − gλr) ,

∂L

∂ṙ
= m(1 + λ2r2)ṙ . (2.99)

Lagrange’s equation for the radial variable is then

d

dt

∂L

∂ṙ
− ∂L

∂r
= 0 ⇒

(1 + λ2r2)r̈ + λ2rṙ2 − rθ̇2 + gλr = 0 . (2.100)

Since the θ variable is cyclic, we have

∂L

∂θ
= 0 ⇒ d

dt

∂L

∂θ̇
=

d

dt
(mr2θ̇) = 0 , (2.101)

which can be integrated to give

θ̇ =
α

r2
, (2.102)

with α as an integration constant.
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b) This result can be used to eliminate the θ variable from the radial

equation, which then takes the form

(1 + λ2r2)r̈ + λ2rṙ2 − α2

r3
+ gλr = 0 . (2.103)

This has a circular solution, r = r0, ṙ = r̈ = 0, provided the following

equation is satisfied,

α2

r40
= gλ ⇒ θ̇ =

√
gλ . (2.104)

c) We consider small deviations from the circular motion by setting

r = r0 + ρ, ṙ = ρ̇, r̈ = ρ̈, and keeping only linear terms in ρ and its time

derivatives in the radial equation. This gives

(1 + λ2r20)ρ̈+ (3
α2

r40
+ gλ)ρ = 0

⇒ ρ̈+ 4
gλ

1 + λ2r20
ρ = 0 . (2.105)

This is a harmonic oscillator equation with angular frequency

ω = 2

√
gλ

1 + λ2r20
. (2.106)

The solution to the harmonic oscillator equation can be written as

ρ(t) = ρ0 cos[ω(t− t0)] (2.107)

which gives

z(t) =
1

2
λr20 + λr0ρ0 cos[ω(t− t0)] , (2.108)

and

θ̇(t) =
√
gλ(1− 2

ρ0
r0

cos[ω(t− t0)]) . (2.109)

This describes motion with small oscillations in the vertical coordinate z

around the value 1
2λr

2
0 combined with small oscillations in the angular veloc-

ity around the value
√
gl.
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Problem 2.12

A small body with mass m and charge q is moving in the horizon-

tal plane (x, y-plane), under influence of a harmonic oscillator potential,

V (r) = 1
2mω

2
0r

2 and a constant magnetic field B = B k, which is directed

perpendicular to the plane of the moving particle. The vector potential cor-

responding to B can be written as A = − 1
2r × B, with r as the position

vector of the particle.

a) We treat the small body as point-like. The Lagrangian is

L =
1

2
mv2 − V (r) + qv ·A

=
1

2
mṙ2 − 1

2
mω2

0r
2 − 1

2
qv · (r×B)

=
1

2
m(ṙ2 + r2φ̇2)− 1

2
mω2

0r
2 +

1

2
qBr2φ̇

=
1

2
m(ṙ2 + r2(φ̇2 − ωBφ̇− ω2

0)) , (2.110)

with ωB = −qB/m.

b) The polar angle φ is cyclic, which means that it does not appear in

the Lagrangian. The conjugate momentum pφ is then a constant of motion,

pφ =
∂L

∂φ̇
= mr2(φ̇− 1

2
ωB) ≡ � . (2.111)

� can be interpreted as the conserved angular momentum. It has two con-

tributions, the mechanical angular momentum, which is proportional to φ̇,

and an electromagnetic field contribution, which is proportional to qB.

Since the Lagrangian is time independent the Hamiltonian is a conserved

quantity. Here, it has the form

H = pr ṙ + pφφ̇− L =
1

2
m(ṙ2 + r2(φ̇2 + ω2

0)) = T + V , (2.112)

and is interpreted as the conserved energy of the system.

c) Lagrange’s equation for the variable r is

d

dt

∂L

∂ṙ
− ∂L

∂r
= 0 ⇒ r̈ − r(φ̇2 − ωBφ̇− ω2

0) = 0 . (2.113)

We note that the squared angular momentum is

�2 = m2r4(φ̇2 − ωBφ̇+
1

4
ω2
B) . (2.114)
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This expression can be used to remove φ̇ from the radial equation, which

then takes the form

r̈ − �2

m2r3
+ r(ω2

0 +
1

4
ω2
B) = 0 . (2.115)

d) When � �= 0 the radial equation has solutions corresponding to cir-

cular motion in the plane, with radius r0 given by

r0 =

√
�

mΩ
, Ω =

√
ω2
0 +

1

4
ω2
B . (2.116)

The corresponding expression for φ̇, as shown by (2.111), is

φ̇ =
�

mr20
+

1

2
ωB = Ω +

1

2
ωB . (2.117)

When � = 0 the radial equation (2.115) is reduced to

r̈ +Ω2r = 0 , (2.118)

with solutions of the form r = R cosΩt, and with angular velocity φ̇ =
1
2ωB. It shows harmonic oscillations in the radial coordinate combined with

a constant angular velocity of the particle. Note that radial frequency is

higher than the angular frequency, since Ω ≥ 1
2 |ωB|.

When � �= 0 we have r̈ < 0 for r > r0 and r̈ > 0 for r < 0. This shows

that the general solution describes oscillations in the radial coordinate,

about r0 =
√
�/mΩ. Similarly, the angular velocity φ̇ will oscillate around

the value Ω+ 1
2ωB. This means that the general solution will be a periodic

modulation of the special solution where the particle moves with constant

angular velocity in a circular orbit.

Problem 2.13

We study here the motion of a Foucault pendulum. The pendulum is situ-

ated at the latitude 60◦ north, and we have the following information about

the pendulum: The length of the pendulum wire is l = 14m and the mass

of the brass sphere at the end of the wire is m = 20kg. The idea is to

use Lagrange’s formalism to study the effect of the earth’s rotation on the

motion of the pendulum.

A set of earth-fixed orthogonal unit vectors are introduced, ek, k =

1, 2, 3, with e3 pointing in the vertical direction, e1 pointing to the north,

and e2 orthogonal to the two. The three unit vectors are used as the basis

vectors of an earth-fixed reference frame S, with the origin of the reference

frame taken as the equilibrium position of the pendulum sphere. In addition
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k is a unit vector in the plane spanned by e1 and e3, with direction parallel

to the earth’s rotational axis. The angle between e3 and k is referred to as

θ.

a) The position and velocity vectors of the pendulum sphere are

r = xe1 + ye2 + ze3 ,

ṙ = ẋe1 + ẏe2 + że3 + xω × e1 + yω × e2 + zω × e3 , (2.119)

with

ω = ωk , k = sin θe1 + cos θe3 , (2.120)

where ω is the angular velocity of the rotating earth. This gives

k× e1 = cos θ e2 ,

k× e2 = − cos θ e1 + sin θe3 ,

k× e3 = − sin θ e2 , (2.121)

and

ṙ = (ẋ− ωy cos θ)e1 + (ẏ + ω(x cos θ − z sin θ))e2 + (ż + ωy sin θ)e3 .

(2.122)

The kinetic energy is

T =
1

2
m
[
ẋ2 + ẏ2 + ż2 + 2ω cos θ(xẏ − yẋ)

+2ω sin θ(yż − zẏ) +O(ω2)
]
. (2.123)

To judge the importance of higher order terms in ω, the relevant comparison

is with the angular frequency of the pendulum, ωp. The periods of these

two are

Tearth = 1day = 8640 s , Tp =
√
g/l = 0.84 s . (2.124)

This gives

ω

ωp
=

Tp
Tearth

≈ 10−4 (2.125)

which shows that the quadratic terms in ω can safely be neglected. The

potential energy of the pendulum is

V = mgz. (2.126)

b) The z coordinate can be expressed in terms of x and y in the following

way,

z2 − 2lz + x2 + y2 = 0 ⇒

z = l−
√
l2 − x2 − y2 ≈ 1

2l
(x2 + y2) , (2.127)
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where we have applied the small oscillation approximation. This shows that

z/l is second order in the small quantities x/l and y/l. Therefore it is

sufficient, in the Lagrangian, to include only first order terms in z, which

gives

L =
1

2
m(ẋ2 + ẏ2) + 2ω cos θ(xẏ − yẋ)− 1

2l
mg(x2 + y2) . (2.128)

c) We change to polar coordinates,

x = ρ cosφ , ẋ = ρ̇ cosφ− ρφ̇ sinφ ,

y = ρ sinφ , ẏ = ρ̇ sinφ+ ρφ̇ cosφ . (2.129)

This gives the following expression for the Lagrangian

L =
1

2
(ρ̇2 + ρ2φ̇2) +mω cos θρ2φ̇− 1

2l
mgρ2 . (2.130)

Since the angle φ is cyclic, the corresponding conjugate momentum is a

constant of motion,

∂L

∂φ̇
= mρ2φ̇+mρ2ω cos θ ≡ k . (2.131)

Solved for the angular velocity this gives

φ̇ = −ω cos θ +
k

mρ2
. (2.132)

Lagrange’s equation for the radial variable is

d

dt

∂L

∂ρ̇
− ∂L

∂ρ
= 0 ⇒

mρ̈−mρφ̇2 − 2mω cos θρφ̇+m
g

l
ρ = 0 . (2.133)

d) We make now the assumption that the angular velocity ωφ = φ̇ is

constant and that ρ oscillates with time. As shown by (2.132) this happens

only if k = 0, and it determines the value of the angular velocity as

ωφ = −ω cos θ . (2.134)

The radial equation is then reduced to

ρ̈+ ρ(
g

l
+ ω2 cos2 θ) = 0 . (2.135)

This is a harmonic oscillator equation for the pendulum, with angular fre-

quency

ωp =

√
g

l
+ ω2 cos2 θ =

√
g

l
+O(ω2) . (2.136)
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e) The rotation of the plane of oscillations of the pendulum, relative to

the building, is determined by the angle φ. In one period of the rotation of

the earth the rotation angle of the pendulum plane is

Δφ = ωφTearth = −ωTearth cos θ = −2π cos θ . (2.137)

Expressed in radians, and with θ = 30◦, corresponding to the latitude 60◦

for the position of the pendulum, we get

Δφ = −360◦ cos(30◦) = −312◦ . (2.138)



Chapter 3

Hamiltonian dynamics

Problem 3.1

In Problem 2.12 the following Lagrangian has been introduced

L =
1

2
m(ṙ2 + r2(φ̇2 − ωBφ̇− ω2

0)) . (3.1)

It describes the motion of a charged particle in a combination of a harmonic

oscillator potential and a constant magnetic field, with ω0 as the harmonic

oscillator angular frequency and ωB as the cyclotron angular frequency. We

will here study the Hamiltonian description of the same system.

a) To find the Hamiltonian corresponding to the Lagrangian (3.1) we

need the canonical momenta corresponding to the variables r and φ,

pr =
∂L

∂ṙ
= mṙ , pθ =

∂L

∂θ̇
= mr2(θ̇ − 1

2
ωB) . (3.2)

The general definition of the Hamiltonian then gives

H = prṙ + pθθ̇ − L

= mṙ2 +mr2(θ̇2 − 1

2
ωB θ̇)− 1

2
mṙ2 − 1

2
mr2(θ̇2 − ωB θ̇ − ω2

0)

=
1

2
mṙ2 +

1

2
mr2(θ̇2 + ω2

0)

=
1

2m
p2r +

1

2
mr2(

pθ
mr2

+
1

2
ωB)

2 +
1

2
mr2ω2

0

=
1

2m
p2r +

1

2mr2
p2θ +

1

2
ωBpθ +

1

2
mr2(ω2

0 +
1

4
ω2
B) . (3.3)

b) We derive from this Hamilton’s equations of the system,

ṙ =
∂H

∂pr
=
pr
m
, ṗr = −∂H

∂r
=

p2θ
mr3

−mr(ω2
0 +

1

4
ω2
B)

θ̇ =
∂H

∂pθ
=

pθ
mr2

+
1

2
ωB , ṗθ = −∂H

∂θ
= 0 . (3.4)

31
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Fig. 3.1 Phase space plot, Problem 3.1

There are two constants of motion.

1) Angular momentum

ṗθ = 0 ⇒ pθ = mr2(θ̇ − 1

2
ωB) ≡ � . (3.5)

We note that in this expression, in addition to the standard term interpreted

as the (mechanical) angular momentum of the particle, there is a term,

proportional to ωB, which comes from the coupling of the electric charge

to the magnetic field. This can be interpreted as an electromagnetic field

contribution to the angular momentum.

2) Energy,

dH

dt
=
∂H

∂t
= 0 ⇒

H =
1

2m
p2r +

�2

2mr2
+

1

2
mr2Ω2 − 1

2
ωB� ≡ E (const) , (3.6)

with pθ replaced by � and Ω =
√
ω2
0 + ω2

B/4.

c) In dimensionless units, and with the constant term (-ωB�/2) omitted,

the energy function can be written as

Ẽ =
1

2
p̃2r +

1

2
(
1

r̃2
+ r̃2), (3.7)
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with

r̃ =

√
mΩ

�
r , p̃r =

1√
m�Ω

pr. (3.8)

The expression (3.6) is used in the phase-space plot in Fig. 3.1. The relation,

ṙ = pr/m, implies that ṙ is positive in the upper half-plane and negative in

the lower half-plane. This means that the circulation around the equilibrium

point has negative orientation, indicated by arrows in the plot.

This circulation in the (reduced) phase space corresponds to oscillations

in the radial coordinate under the motion in the two-dimensional, physical

plane. The center of the oscillations corresponds to r̃ = 1 or r =
√
�/mΩ

(see also Problem 2.12).

Problem 3.2

We study here the motion of a particle with mass m, which moves in a

one-dimension potential,

V (x) =
1

4
ax4 − 1

2
kx2 , (3.9)

with a and k as positive constants, and x as the position coordinate of the

particle.

a) The Lagrangian is

L = T − V =
1

2
mẋ2 − 1

4
ax4 +

1

2
kx2 , (3.10)

and the corresponding Lagrange’s equation is

d

dt

∂L

∂ẋ
− ∂L

∂x
= 0 ⇒ mẍ+ ax3 − kx = 0 . (3.11)

b) The equilibrium points are points x, where the equation of motion is

satisfied with ẍ = ẋ = 0. The points are thus determined by the equation

ax3 − kx = 0 ⇒ x = {±
√
k

a
, 0} . (3.12)

The point x = 0 is an unstable equilibrium since d2V
dx2 (0) = −k < 0, and the

points x = ±√k/a ≡ x± are stable equilibria, since d2V
dx2 (x±) = 2k > 0.

Assume x = x± + η, with η as a small deviation from the equilibrium

point. With η included only to first order in the equation of motion, this

gives

mη̈ + 3ax2±η − kη = 0 ⇒ η̈ + 2
k

m
η = 0 . (3.13)
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This shows that the angular frequency for small oscillations about the stable

equilibria is ω =
√
2k/m.

c) The conjugate momentum is p = ∂L
∂ẋ = mẋ, and the Hamiltonian

then is

H(x, p) = pẋ− L =
p2

2m
+

1

4
ax4 − 1

2
kx2 . (3.14)

Hamilton’s equations are

ẋ =
∂H

∂p
=

p

m
, ṗ = −∂H

∂x
= ax3 − kx . (3.15)

- 2 - 1 0 1 2
- 2

- 1

0

1

2

p

x

stable equilibria

unstable equilibrium

Fig. 3.2 Phase space plot of model with two stable equilibria. Dimensionless
variables are used, with m = a = k = 1.

d) The plot in Fig. 3.2 shows the equipotential curves of the energy

function H(x, p), with the arrows pointing in the directions of the phase
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space flow. There are two different types of motion. For low energies the

closed curves correspond to oscillations about one of the stable equilibrium

points, while for higher energies both equilibrium points will be passed in

the oscillations.

Problem 3.3

We consider here a particle of mass m, which moves in a one-dimensional

periodic potential

V (x) = V0(sinx+ a sin2 x) , (3.16)

where x is the coordinate of the particle in the direction of motion, a > 0

is an external parameter, which can be varied, and where V0 is a constant

which measures the strength of the potential.

a) The potential and its derivatives are

V (x) = V0(sinx+ a sin2 x),

V ′(x) = V0(cosx+ a sin 2x),

V ′′(x) = V0(− sinx+ 2a cos 2x) . (3.17)

There are two types of equilibrium points, determined by V ′(x) = 0,

I cosx = 0 ⇒ x = (n+
1

2
)π , n = 0,±1, ... ,

II sinx = − 1

2a
⇒ x = − arcsin(

1

2a
) . (3.18)

For a < 1
2 there are only type I solutions, but for a > 1

2 there are both

types of solutions.

The values of V ′′(x) at the equilibrium points are

Type I V ′′ = V0((−1)n+1 − 2a) ,

Type II V ′′ = V0(2a− 1

2a
) . (3.19)

Stable equilibria are determined by V ′′ > 0, and the expressions above show

that this is satisfied for the Type I equilibria if a < 1
2 and n is odd, and for

the Type II equilibria if a > 1
2 .
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We sum up the results concerning the equilibrium points, with n taking

the values 0,±1...,

a <
1

2
stable equilibria : x = (2n+

3

2
)π ,

unstable equilibria : x = (2n+
1

2
)π ,

a >
1

2
stable equilibria : x = − arcsin(

1

2a
) ,

unstable equilibria : x = (n+
1

2
)π . (3.20)

-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

1.5

2.0

x/π

a = 1.0

a = 0.5

a = 0

V

Fig. 3.3 The form of the potential in Problem 3.3, for three values of the param-
eter a. Dimensionless variables are used, with m = V0 = 1.

b) The plot in Fig. 3.3 shows that when a− 1/2 changes from negative

to positive, the stable equilibrium at x = (2n+ 3
2 )π becomes unstable, and

two new, stable equilibria appear in a symmetric way on both sides of these

points.

c) The Lagrangian of the particle is

L = T − V =
1

2
mẋ2 − V0(sin x+ a sin2 x) , (3.21)

with Lagrange’s equation

d

dt

∂L

∂ẋ
− ∂L

∂x
= 0 ⇒ mẍ+ V ′(x) = 0 . (3.22)

This gives

mẍ+ V0 cosx(1 + 2a sinx) = 0 . (3.23)
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d) Let x0 be any of the stable equilibrium points. To study small oscil-

lations around the point, we write x = x0 + ξ, and expand the potential to

first order in ξ. This gives V ′(x) = V ′(x0)+V ′′(x0)ξ+ ..., where V ′(x0) = 0

and V ′′(x0) > 0. The equation of motion then takes the form

mξ̈ + V ′′(x0)ξ = 0 . (3.24)

It has the form of a harmonic oscillator equation with angular frequency

ω =
√
V ′′(x0)/m. The values of V ′′(x0) are determined in a),

a <
1

2
: V ′′ = V0(1− 2a) ⇒ ω =

√
V0
m

(1− 2a)

a >
1

2
: V ′′ = V0(2a− 1

2a
) ⇒ ω =

√
V0
m

(2a− 1

2a
) . (3.25)

e) The Hamiltonian is H = pẋ− L, with p = ∂L/∂ẋ = mẋ. This gives

H(x, p) =
p2

2m
+ V0(sinx+ a sin2 x) . (3.26)

H(x, p) defines a phase-space potential, with the motion following equipo-

tential curves. The direction and speed of the motion is determined by the

gradient of the function,

(ẋ, ṗ) = (∂H/∂p,−∂H/∂x) . (3.27)

f) A contour plot of the function H(x, p) is shown in Fig. 3.4, for the

three values a = 0, 0.5 and 1.0. The dotted curves represent separatrices,

which separate different types of motion. In the first case (a = 0) the

diagram has the same form as for a planar pendulum, but here without the

periodic identification of points along the x-axis. There are two types of

motion, oscillations about the stable equilibria, and unbounded motion in

the positive or negative x-direction for higher values of the energy.

The second case (a = 0.5) is a limit case where the energy minimum for

a < 0.5 turns into a local maximum for a > 0.5. For a = 0.5 there still are

only two types of motion, oscillations about the minimum for small energies

and unbounded motion for higher energies. However, since in this case V ′′ =
0 at the potential minima, the small oscillations are not harmonic.

When a = 1.0 there are, as shown in the diagram, three types of motion.

For sufficiently low energy, there will be small oscillations about a single

equilibrium point. For somewhat higher energy there will be oscillations

where the motion is bound to a pair of neighboring minima. Finally there

are solutions with unbounded motion.
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Fig. 3.4 Phase space plots of the model in Problem 3.3, for three values of the
parameter a.

Problem 3.4

In this problem we apply Fermat’s principle to light rays restricted to a

plane with Cartesian coordinates (x, y). Fermat’s principle determine the

light paths as solutions to the variational problem, where the optical path

length, defined (in the present case) as

S[y(x)] =

∫ x2

x1

n(x, y)
√
1 + y′2dx , y′ =

dy

dx
, (3.28)

is stationary. Here n(x, y) is the position dependent refraction of the optical

medium.

a) The variational problem can be solved by reformulating it as a

Lagrangian problem. The Lagrangian in this problem is

L(y, y′, x) = n(x, y)
√
1 + y′2 . (3.29)
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The variational problem δS = 0, for variations in the path y(x) with fixed

end points (x1, y1) and (x2, y2), is equivalent to Lagrange’s equation

d

dx

∂L

∂y′
− ∂L

∂y
= 0 ⇒

d

dx

(
n(x, y)y′√
1 + y′2

)
− ∂n

∂y

√
1 + y′2 = 0 . (3.30)

We first consider the case where n is constant. The equation reduces to

d

dx

(
y′√

1 + y′2

)
= 0 , (3.31)

which implies that y′′ = 0, and therefore that y(x) is a straight line between

the endpoints (x1, y1) and (x2, y2)

b) We next make the assumption that the medium has two different,

constant indices of refraction, with n = n1 for x < 0 and n = n2 for x > 0.

This implies that the variational problem is a curve which is a straight

line on both sides of the boundary x = 0 where n changes value. The only

variable to be determined by the variational problem is thus the crossing

point y0 = y(0) at the boundary. The functional S[y(x)] is then reduced to

a function of y0,

S(y0) = n1

√
x21 + (y1 − y0)2 + n2

√
x22 + (y2 − y0)2 , (3.32)

and the variational problem is reduced to finding a stationary point of this

function,

dS

dy0
= 0 ⇒

n1
y0 − y1√

x21 + (y1 − y0)2
+ n2

y0 − y2√
x21 + (y1 − y0)2

= 0 . (3.33)

c) With θ1 as the angle of the light ray for x < 0 measured relative to

the normal of the boundary, and similarly θ2 as the angle of the light ray

for x > 0, we have

sin θ1 =
y1 − y0√

x21 + (y1 − y0)2
, sin θ2 =

y0 − y2√
x21 + (y1 − y0)2

, (3.34)

and by use of these identities, Eq. (3.33) is simplified to

n1 sin θ1 = n2 sin θ2 , (3.35)

which we recognize as Snell’s law of refraction.
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Problem 3.5

Fermat’s principle is here applied to the light path in an optical medium,

where the index of refraction n(y) changes with the height y in a vertical

plane. With x as the horizontal coordinate, the action integral is

S[y(x)] =

∫ x2

x1

n(y)
√
1 + y′2dx. (3.36)

a) From the above expression follows that the corresponding Lagrangian

can be identified as

L(y, y′) = n(y)
√
1 + y′2 . (3.37)

We derive from this Lagrange’s equation,

d

dx

∂L

∂y′
− ∂L

∂y
= 0 ⇒

d

dx

(
n(y)

y′√
1 + y′2

)
− dn

dy

√
1 + y′2 = 0 . (3.38)

We perform the differentiations and simplify the expression in the following

way,

dn

dy

y′2√
1 + y′2

+ n(y)
y′′√
1 + y′2

− n(y)
y′2y′′

(
√
1 + y′2)3

− dn

dy

√
1 + y′2 = 0

⇒ −dn
dy

1√
1 + y′2

+ n(y)
y′′

(
√
1 + y′2)3

= 0 . (3.39)

Solving this with respect to y′′, we find

y′′ =
1

n(y)

dn

dy
(1 + y′2) . (3.40)

b) We want to show that the following first order equation solves the

second order equation (3.40)(
n(y)

n0

)2

= 1 + y′2 , (3.41)

with n0 as a constant. To demonstrate this we differentiate the equation

with respect to x. This gives

y′′y′ =
n(y)

n2
0

dn

dy
y′ . (3.42)
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It has one (spurious) solution, y′ = 0, which we disregard, and making use

of (3.41) again, we reproduce, from (3.42), Eq. (3.40),

y′′ =
(
n(y)

n0

)2
1

n(y)

dn

dy

=
1

n(y)

dn

dy
(1 + y′2). (3.43)

c) The index of refraction is assumed to decrease with height inside the

container, in the following way

n(y) = n0 e
−αy. (3.44)

At the point of entrance into the container the light beam is assumed to

satisfy the conditions y(0) = y′(0) = 0, and n(0) = n0. Inside the container,

we have, as shown in b), the following relation

n(y) =
√
1 + y′2 n0 . (3.45)

Since y′ = 0 has been excluded as a false solution, we conclude from the

expression above that n(y) > n0 and increases along the path. This implies

that the path is bent downwards when the light beam propagates through

the solution.

d) We will check that the following expression gives a solution to

Eq. (3.41) for the path of the light beam

e−αy =
1

cosαx
. (3.46)

We first apply the relation to the left-hand side of (3.41)(
n(y)

n0

)2

= e−2αy =
1

cos2 αx
. (3.47)

Next we find by differentiating (3.46) with respect to x,

− αy′e−αx = α
sinαx

cos2
αx ⇒ y′ = − tanαx . (3.48)

When this is inserted in the right-hand side of (3.41) the result is

1 + y′2 = 1 + tan2 αx =
1

cos2 αx
. (3.49)

This confirms that (3.46) gives a solution to Eq. (3.41).

e) The deflection angle θ of the light beam is at the end of the container,

x = L, given by

tan θ =

(
dy

dx

)
x=L

= − tanαL , (3.50)

which gives θ = −αL, where the sign is consistent with the beam being

deflected downwards.
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Problem 3.6

The brachistochrone problem is the following:

Given two points A and B in a vertical plane, what is the curve traced out

by a point acted on only by gravity, which starts at A and reaches B in the

shortest time.

We solve this as a variational problem, where the time T spent on the

path is written as

T [y(x)] =

∫ xB

xA

L(y, y′)dx , y′ =
dy

dx
. (3.51)

y(x) is here the path followed by the particle, with x as the horizontal

coordinate, and y as the vertical coordinate of the particle. The origin of

the coordinate system is chosen with xA = yA = 0, and the potential energy

is assumed to vanish at this point.

a) The first problem to be solved is to determine the form of the

Lagrangian L(y, y′). We write the velocity of the particle as

v =
ds

dt
⇒ dt =

ds

v
, (3.52)

with

ds =
√
dx2 + dy2 =

√
1 + y′2dx , y′ ≡ dy

dx
. (3.53)

The velocity of the particle is assumed to vanish at the starting point, and

energy conservation determines the velocity as a function of y,

1

2
mv2 +mgy = 0 ⇒ v =

√
−2gy , (3.54)

where for convenience, we have chosen for the potential energy to vanish at

y = 0. This determines the time spent on the path to be

T [y(x)] =

∫ tB

tA

dt

=

∫ xB

xA

1

v

ds

dx
dx

=

∫ xB

xA

√
1 + y′2

−2gy
dx , (3.55)

which gives the effective Lagrangian as

L(y, y′) =

√
1 + y′2

−2gy
. (3.56)
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b) The coordinate x in this problem has taken the place of time t in the

usual formulation of Lagrange’s equations, and the momentum conjugate

to y is therefore

p =
∂L

∂y′
=

y′

(−2gy)(1 + y′2)
, (3.57)

and the Hamiltonian is

H = py′ − L

=
y′2

(−2gy)(1 + y′2)
−
√

1 + y′2

−2gy

= − 1

(−2gy)(1 + y′2)
. (3.58)

Since H has no explicit x dependence, it is a constant along the path in

the x, y-plane. (This corresponds to energy conservation when H is time

independent in the standard Lagrange formulation.) This gives

(1 + y′2)y = −k2 , (3.59)

with k as a (positive) constant.

c) The assumption now is that paths defined by the parametric expres-

sions

x =
1

2
k2(θ − sin θ) , y =

1

2
k2(cos θ − 1) , (3.60)

are solutions of Eq. (3.59). To show that this is the case, we determine y′

from the above expressions,

y′ =
dy

dx
=
dy

dθ

dθ

dx
=
dy

dθ

/
dx

dθ
. (3.61)

The derivatives with respect to the parameter θ are
dx

dθ
=

1

2
k2(1 − cos θ) = −y ,

dy

dθ
= −1

2
k2 sin θ . (3.62)

This gives

(1 + y′2)y =

(
1 +

1

y2

(
dy

dθ

)2
)
y

=
1

y

(
y2 +

(
dy

dθ

)2
)

=
k4

4y
((cos θ − 1)2 + sin2 θ)

=
k4

2y
(1− cos θ) = −k2 . (3.63)
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The boundary conditions at the starting point, xA = yA = 0, are satisfied

if the start value of the path parameter is θA = 0. This is clear from (3.60).

The boundary conditions at the end point are

xB =
1

2
k2(θB − sin θB) , yB =

1

2
k2(cos θB − 1) . (3.64)

These equations determine the two free parameters of the solution, k2 and

θB.

d) The form of the path, as a cycloid, is shown in Fig. 3.5.

0.5 1.0 1.5 2.0 2.5 3.0
-0.2

-0.4

-0.6

-0.8

-1.0

x

y

(xA , yA)

(xB , yB)

       The cycloid

Fig. 3.5 The cycloid defines the path which minimizes the transit time between
the chosen endpoints. The parameter k is set to 1, and the end point (xB, yB) is
chosen arbitrarily on the curve.

e) At the bottom of the cycloid we have

dy

dθ
= 0 ⇒ sin θ = 0 ⇒ θB = π . (3.65)

With this as the end point of the path, we have

xB =
1

2
πk2 , yB = −k2 ⇒ yB = − 2

π
xB . (3.66)

The time spent on the path is in this case

T =

∫ xB

0

√
1 + y′2

−2gy
dx =

∫ π

0

√
1 + y′2

−2gy

dx

dθ
dθ

=

∫ π

0

√
k2

2gy2
(−y)dθ = k√

2g

∫ π

0

dθ =
πk√
2g
. (3.67)

The length of the straight line between the end points of the path is

s =
√
x2B + y2B = k2

√
π2

4
+ 1 . (3.68)

https://avxhm.se/blogs/hill0
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If the particle follows this line between the end points, it will have a constant

acceleration

a = g cosα = g
|yB]
s

=
g√

π2/4 + 1
, (3.69)

where α is the angle between the line followed by the particle and the

vertical line. With T ′ as the time spent on this path, we have s = (1/2)aT ′2,
which gives

T ′ =

√
2s

a
= k

√
2

g
(
π2

4
+ 1) =

√
1 +

4

π2
T . (3.70)

Numerically this gives T ′ = 1.185T , which demonstrates, in this particular

case, that the motion along the cycloid indeed is faster than along the

straight line.
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Chapter 4

The four-dimensional space-time

Problem 4.1

Two inertial reference frames, S and S′, are related by the Lorentz trans-

formation

x′ = γ(x− vt) , t′ = γ(t− v

c2
x) , y′ = y , z′ = z. (4.1)

a) We want to invert the transformation. In order to do so we combine

the first two equations in the following ways,

x′ + vt′ = γ(1− v2

x2
)x =

1

γ
x ,

t′ +
v

c2
x′ = γ(1− v2

x2
)t =

1

γ
t . (4.2)

From this follows

x = γ(x′ + vt′) , t = γ(t′ +
v

c2
x′) , (4.3)

which confirms that the inverted transformation has the same form as the

original transformation, only with a sign change of the velocity, v → −v.
b) We use the Lorentz transformations to relate the velocity components

in S and S′ of a moving object,

u′x =
dx′

dt′
=

γ(dx− vdt)

γ(dt− v
c2 dx)

=
ux − v

1− vux

c2
,

u′y =
dy′

dt′
=

dy

γ(dt− v
c2 dx)

=
1

γ

uy
1− vux

c2
,

u′z =
dz′

dt′
=

dz

γ(dt− v
c2 dx)

=
1

γ

uz
1− vux

c2
. (4.4)

c) The following values are now assumed: The relative velocity of S′

and S is v = 0.5c, the velocity of the object, as measured in S′, is u′ =
0.8c, and the angle of the velocity vector u′ is θ′ = 45◦ relative to the x′

and y′ axes. This implies that the vector u′ lies in the x′, y′-plane. Thus,
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u′z = uz = 0, and for the two other components we have, u′x = u′y =

(0.8/
√
2)c. The gamma factor for the transformation between S and S′ is

γ = (1− (v/c)2)−1/2 = 1.155.

The corresponding velocity components in S are

ux =
u′x + v

1 +
vu′

x

c2

=
(0.8/

√
2) + 0.5

1 + 0.5(0.8/
√
2)
c = 0.83c ,

uy =
1

γ

u′y
1 +

vu′
x

c2

= 0.866
0.8/

√
2

1 + 0.5(0.8/
√
2)
c = 0.38c, (4.5)

where the expressions in (4.4) have been used, with v → −v due to the

inverted direction of the transformation. This gives

u =
√
u2x + u2y = 0.91c , (4.6)

and the angle of the velocity, relative to the x-axis,

θ = arctan

(
uy
ux

)
180◦

π
= arctan

(
u′y

γ(u′x + v)

)
180◦

π
= 24.7◦ . (4.7)

In a non-relativistic treatment we see that the denominators 1+
vu′

x

c2 in

the above expressions would be replaced by 1, and γ replaced by 1. This

would give a superluminal velocity of the object as seen in S,

u =

√
(0.8/

√
2) + 0.5)2 + (0.866 · 0.8/

√
2))2 = 1.21c . (4.8)

The ratio between the velocity components would be modified by the change

of the gamma factor,

θ = arctan

(
u′y

u′x + v

)
180◦

π
= 28.0◦ . (4.9)

Problem 4.2

We examine here a combination of two boosts, which both mix the x and

t coordinates. Expressed as 2× 2 matrices they have the form,

L =

(
γ −βγ

−βγ γ

)
=

(
coshχ − sinhχ

− sinhχ coshχ

)
, (4.10)

where the parameter χ is the rapidity. The problem to be solved is to show

that in a combination of two such boosts the rapidity acts additively.
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We show this by an explicit evaluation of the product, where we make
use of the properties of the hyperbolic functions,

L = L2L1

=

(
coshχ2 − sinhχ2

− sinhχ2 coshχ2

)(
cosh χ1 − sinhχ1

− sinhχ1 coshχ1

)

=

(
coshχ1 coshχ2 + sinhχ1 sinhχ2 − sinhχ1 cosh χ2 − coshχ1 sinhχ2

− sinhχ1 coshχ2 − coshχ1 sinhχ2 cosh χ1 coshχ2 + sinhχ1 sinhχ2

)

=

(
cosh(χ1 + χ2) − sinh(χ1 + χ2)

− sinh(χ1 + χ2) cosh(χ1 + χ2)

)

≡
(

coshχ − sinhχ

− sinhχ coshχ

)
, (4.11)

where χ = χ1+χ2. We have here used the composition rules for the hyper-

bolic functions

cosh(χ1 + χ2) = coshχ1 coshχ2 + sinhχ1 sinhχ2 ,

sinh(χ1 + χ2) = sinhχ1 coshχ2 + coshχ1 sinhχ2 , (4.12)

which are straight forward to check using the definition of these functions.

As shown, the composition rule for the Lorentz transformations gives

the simple additive rule for the rapidity, χ = χ1+χ2. This is to be compared

with the composition rule for the corresponding velocities.

v =
v1 + v2
1 + v1v2

c2
. (4.13)

Problem 4.3

A thin rigid rod has rest length L0. It moves relative to an inertial refer-

ence frame S′, so that the midpoint A of the rod has the time dependent

coordinates x′A = 0, y′A = ut′, z′A = 0, with u as the velocity of the rod. In

this reference frame the rod is at all times parallel to the x′-axis.

a) Since the motion of the rod, as seen in S′, is in the y′-direction, the
length of the rod in the x′-direction is the same as in the rest frame of the

rod. This implies that the end point B has the x′ coordinate x′B = L0/2 (or

alternatively −L0/2). Since the rod is at all times parallel to the x′-axis,
we have y′B = y′A = ut′ and z′B = z′A = 0.
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b) We consider the Lorentz transformations between the reference

frames S′ and S, with S′ moving with velocity v along the x-axis rela-

tive to S. We are interested in finding the space coordinates in S expressed

as functions of the time coordinate t in the same reference frame. Since the

time coordinate t′ will then depend on the space coordinates, we consider

the two points A and B on the rod separately.

Lorentz transformation of the coordinates at A gives

t = γ(t′ +
v

c2
x′A) = γt′ ,

xA = γ(x′A + vt′) = γvt′ ,

yA = y′A = ut′ ,

zA = z′A = 0 . (4.14)

The first equation shows that the time coordinate in this case is t′ = t/γ.

Inserted in the other equations we find

xA = vt , yA =
1

γ
ut , zA = 0 . (4.15)

Lorentz transformations of the coordinates at B give

t = γ(t′ +
v

c2
x′B) = γ(t′ +

v

c2
L0

2
) ,

xB = γ(x′B + vt′) = γ(
L0

2
+ vt′) ,

yB = y′B = ut′ ,

zB = z′B = 0 . (4.16)

In this case we have t′ = 1
γ t− v

c2
L0

2 , which inserted in the equations for the

space coordinates gives

xB = vt+ γ(1− v2

c2
)
L0

2
= vt+

1

γ

L0

2
,

yB =
1

γ
ut− uv

c2
L0

2
,

zB = 0 . (4.17)

c) The angle φ of the rod relative to the x-axis in S is

tanφ =
yB − yA
xB − xA

= −uvL0/(2c
2)

L0/(2γ)
= − 1

γ

uv

c2
. (4.18)

This shows that the rod, as seen in reference frame S, is tilted relative to

the x-axis.
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d) The velocity of the rod in reference S has the two vector components

vx = ẋA = ẋB = v ,

vy = ẏA = ẏB =
1

γ
u . (4.19)

Problem 4.4

We consider here a situation where a railway carriage is moving in a straight

line with constant velocity v relative to the earth. The earth is considered

as an inertial reference frame S, and in this reference frame the moving

carriage has the length L. A and B denote points on the rear wall and

front wall of the carriage, respectively. C is a point in the middle of the

carriage.

a) The situation is illustrated in the Minkowski diagram shown in

Fig. 4.1 below. In the diagram the points A, B, and C form parallel lines,

as they represent the worldlines of points which are fixed in the carriage,

and therefore move with the same speed relative to the earth. The angle

between each of these lines and the time axis is determined as

tanα =
1

c

dx

dt
=
v

c
. (4.20)

At a given time t0 = 0 a flash tube is discharged at point C. This event

is referred to as E0. The points E1 and E2 represent events where the light

signals hit the rear wall and front wall of the carriage, respectively. The

light is reflected from A and B, and the two reflected light signals meet at

a space-time point E3.

b) In the Minkowski diagram the light signals and the events are shown

in the following way. The event E0 is the point where the worldline C crosses

the x-axis. As light moves with the speed c, the light signals are described

in the diagram with (dotted) lines, which are tilted with angles θ = ±45◦

relative to the x-axis. The events E1 and E2 lie where the light signals

hit the ends of the carriage, which means where the light paths reach the

worldlines A and B. The light signals are reflected back from these points

to meet at the event E3.

c) In the co-moving reference frame S′ of the carriage, the two events

E1 and E2 will be simultaneous, since the distance traveled by the light

signals from point C, in the middle of the carriage, to the rear and front

ends of the carriage is the same. For the same reason the reflected light
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A C

ct

x

B

α

E0

E1

E2

E3

α

ct’

x’

Fig. 4.1 Space-time diagram for the moving train carriage with the light signals.

signals will meet in the middle of the carriage. This is consistent with the

drawing, with the event E3 placed on the worldline C.

d) The coordinate axes of the co-moving reference frame S′ are included
in the diagram. Since E1 and E2 are simultaneous in the reference frame

S′, the line between the two is parallel to the x′-axis of this reference frame.

Similarly the lines A, B and C, which describe points which are fixed rela-

tive to the carriage, are parallel to the ct′-axis of S′. The time axis in S′ is
tilted relative to the time axis in S with the same angle (up to a sign) as

the space x′-axis is tilted relative to the x-axis. This implies that the angle

between the line E1−E2 and the x-axis is the same as the angle α between

the line A and the ct-axis, as shown in the diagram.

e) Lorentz transformations between the two reference frames gives for

the relative coordinates of two spacetime points E1 and E2,

Δt′ = γ(Δt− v

c2
Δx) . (4.21)

If the two points are simultaneous in S′, we have Δt′ = 0, which implies
Δx

Δt
=
c2

v
> c . (4.22)

This will be the (superluminal) velocity for an object which follows the line

in Minkowski space between E1 and E2.
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Chapter 5

Consequences of the Lorentz
transformations

Problem 5.1

In this problem we study relativistic effects in a rotating disk. The radius

of the disk is R and the angular velocity is ω.

a) A small piece of the disk has length dr in the radial direction and

rdθ in the angular direction, both lengths measured in the lab frame, where

the center of the disk is at rest. The instantaneous inertial rest frame of the

small piece moves in the angular direction with the velocity of the small

piece. In the lab frame, the tangential length of this piece will be Lorentz

contracted compared to length measured in the co-moving frame. In the

radial direction there is no similar contraction effect. The lengths measured

on the rotating disk therefore are

dsr = dr , dsθ = γrrdθ , (5.1)

where γr is the r-dependent, relativistic gamma factor

γr =
1√

1− r2ω2

c2

. (5.2)

b) The integrated length around the circumference of the disk, when

measured on the rotating disk, is then

sθ =
2πR√

1− R2ω2

c2

, (5.3)

while the radial distance measured on the disk is unchanged, sR = R. The

ratio between the length of the circumference and the radius, as measured

on the rotating disk is therefore

sθ
sR

=
2π√

1− R2ω2

c2

. (5.4)

c) Compared to the clock of the lab frame the clocks attached to the

rotating disk appear to go slower by the local time dilatation factor 1/γr.
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This implies that at time t of the lab frame the clock at radial coordinate

r will show the time

tr =

√
1− r2ω2

c2
t . (5.5)

d) We consider an infinitesimal spacetime displacement along the edge

of the disk. With dt as the time interval measured in the lab frame, dt′

as the time interval in the instantaneous rest frame of the disk, and dx′ as
the displacement along the edge, measured in the same reference frame, the

Lorentz transformation between the reference frames gives

dt = γR(dt
′ +

ωR

c2
dx′) . (5.6)

Assuming the spacetime displacement relates simultaneous events in the

local, co-moving frame, we have dt′ = 0, and as follows from a), dx′ =

γRRdθ. This gives

dt = γ2R
ωR2

c2
dθ , (5.7)

and integrated around the full circle the result is

Δt = γ2R
2πωR2

c2
. (5.8)

This is the time jump measured in the lab frame, for a spacetime curve

around the edge of the disk, which connects events that are locally simul-

taneous in the co-moving reference frame. By use of the time dilatation

formula we then obtain for the time jump measured by the local, co-moving

clocks,

Δt′ =
1

γR
Δt = γR

2πωR2

c2
=

2πωR2

c2
√
1− R2ω2

c2

. (5.9)

Problem 5.2

A spacecraft moves with the velocity v = 3c/5 to a point located at the

distance D = 30 light days from the earth. After a short stop it returns with

the same speed to earth. The short periods of acceleration are neglected in

the following.

a) The total time measured on earth is

Te =
2D

v
=

10

3

D

c
= 100 days . (5.10)
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The total time measured on the spacecraft is equal to the proper time of

the spacecraft during the travel. We use the general formula for the proper

time Δτ = Δt/γ, with the gamma factor given by

γ =
1√

1− v2/c2
=

1√
1− 9/25

=
5

4
. (5.11)

This, gives as the proper time of the travel,

Ts =
1

γ
Te =

4

5
Te = 80 days . (5.12)

ct

x

cΔtcΔ0

spacecraft

1. signal

2. signal

Δx

ct

x

cΔt

cΔ0

spacecraft

1. signal

2. signal

Δx

Fig. 5.1 Space-time diagrams for the radio signals received by the spacecraft, to
the left, for the travel away from earth, and to the right for the travel back.

b) Every hour a signal is sent from earth to the space craft. We consider

two events, where subsequent signals are received on the space craft during

the travel out. Measured on earth, the coordinate difference between these

events is given by (see diagram to the left in Fig. 5.1),

Δx = vΔt = c(Δt−Δ0) ⇒ Δt =
c

c− v
Δ0 =

5

2
Δ0 . (5.13)

The time difference between the events, measured on the spacecraft is then,

due to time dilatation,

Δ1 =
1

γ
Δt =

4

5

5

2
Δ0 = 2Δ0 = 2 hours . (5.14)

On the travel back the corresponding expressions are (see diagram to

the right in Fig. 5.1),

Δx = vΔt = c(Δ0 −Δt) ⇒ Δt =
c

c+ v
Δ0 =

5

8
Δ0, (5.15)
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with the time difference measured on the spacecraft as

Δ2 =
1

γ
Δt =

4

5

5

8
Δ0 =

1

2
Δ0 = 30min . (5.16)

c) A Minkowski diagram which shows the signals from earth to the

spacecraft is shown as the diagram to the left in Fig. 5.2.

ct
Te

Te/2

spacecraft

earth

ct
Te

Te/2

Tt

signals sent from earth signals sent from the spacecraft

x x

Fig. 5.2 Minkowski diagrams with the worldlines of radio signals sent from earth
to the spaceship (to the left) and radio signals sent from the spacecraft to earth
(to the right).

d) The situations with respect to the time intervals of the signals at the

receivers are fully symmetric, whether the signals are sent from the space

craft or from the earth. Only the relative velocity between the emitter and

the receiver matters. This explains why the signals received on earth, on

the first part of the spacecrafts travel out is Δ1 and on the second part is

Δ2.

The time when the intervals of the signals received on earth change is

the time when the signal sent from the space craft at halftime reaches the

earth,

Tt =
1

2
Te +

D

c
=
D

v
+
D

c
=
D

c
(
1

β
+ 1) =

8

3

D

c
= 80 days . (5.17)

e) The Minkowski diagram with the signals sent from the spacecraft to

earth is shown to the right in the figure.
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Problem 5.3

A particle is circulating with constant speed in an accelerator ring of radius

R = 10m. The speed of the particle corresponds to a relativistic gamma

factor γ = 100. The laboratory frame S is the rest frame of the accelerator

ring, and we assume the ring to lie in the x, y-plane, with the center of the

ring at the origin.

a) To determine the velocity v of the circulating particle, with relativistic

gamma factor γ = 100, we use the relations

β = v/c , γ =
1√

1− β2
⇒ β =

√
1− 1

γ2
. (5.18)

This gives

v/c =

√
1− 1

γ2
≈ (1− 1

2γ2
) = 0.99995 . (5.19)

The velocity v is very close to the speed of light and can be put equal to

c in the expressions to follow. The period of circulation in the accelerator

ring is

T =
2πR

v
≈ 2πR

c
= 2π

10

3.0 · 108 s = 2.1 · 10−7 s , (5.20)

and the angular velocity is

ω =
2π

T
=

c

R
= 3.0 · 107 s−1 . (5.21)

The proper time τ is the time measured on an imagined co-moving clock.

It is related to the time t on a coordinate clock by the time dilatation factor

1/γ,

τ = t/γ ⇒ Tτ = T/γ = 2.1 · 10−9 s , (5.22)

with Tτ as the period of circulation measured in proper time.

b) An instantaneous inertial rest frame of the particle is an inertial

reference frame where the particle has zero velocity at a specific instant.

We denote by S′ the instantaneous inertial rest frame of the particle when

it passes the point (x, y) = (0,−R) of the accelerator ring. This event is

assumed to correspond to vanishing time coordinates in both the lab frame

S and the rest frame S′, t = t′ = 0. The Lorentz transformations between

the two reference frames then take the form,

x′ = γ(x− vt) , y′ = y +R , t′ = γ(t− v

c2
x) , (5.23)
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with the origin of the coordinate system of S′ here placed at the position

of the particle.

c) In S, the coordinates of the accelerator ring satisfy the circular con-

dition

x2 + y2 = R2 . (5.24)

The condition t′ = 0 gives the following relation when applied to the coor-

dinates of S,

t′ = 0 ⇒ t =
v

c2
x . (5.25)

When inserted in the transformation formula (5.23) this gives

x′ =
1

γ
x ⇒ x = γx′ . (5.26)

With this and y = y′ − R introduced in the circular condition (5.24), this

gives the following form for the accelerator ring in S′, at time t′ = 0,

γ2x′2 + (y′ −R)2 = R2 ⇒ x′2

(R/γ)2
+

(y′ −R)2

R2
= 1 . (5.27)

The last equation can be identified as ellipse equation where the length of

the long half axis, in the y′-direction is R, and the length of the short half

axis, in the x′-direction, is R/γ. This result is consistent with the accelerator

ring being seen in S′ as Lorentz contracted in the direction of the relative

motion between the ring and the reference frame.

d) The particle trajectory as described in the coordinates of S is

x = R sinωt = R sin(γωτ) ,

y = −R cosωt = −R cos(γωτ) ,

t = γτ . (5.28)

When re-expressed in the coordinates of S′, we find

x′ = γ(x− vt) = γ(R sin(γωτ)− γωRτ) ,

y′ = y +R = R(1− cos(γωt)) ,

t′ = γ(t− v

c2
x) = γ2τ − γ

ωR2

c2
sin(γωt) . (5.29)

A graphical representation of the trajectory in the x′, y′-plane is shown in

Fig. 5.3.
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-6 -4 -2 2 4 6 8

1.0

2.0

y’/R

x’/γR

Fig. 5.3 The particle trajectory as viewed in the moving reference frame S′.

Problem 5.4

In a particular inertial reference frame S the coordinates of a spaceship are

given as

t =
c

a0
sinh(

a0
c
τ), x =

c2

a0
cosh(

a0
c
τ), y = z = 0 , (5.30)

with a0 as a constant and τ as a time parameter.

a) The proper time τ of the space ship is related to the coordinate time

t by the formula

⇒ dτ =
1

γ
dt =

√
1− v2

c2
dt , (5.31)

where v = dx/dt is the velocity of the space ship in the arbitrarily chosen

reference frame. The formula is valid for any infinitesimal section of the

spaceship’s worldline.

To check that the parameter τ in (5.30) satisfies this condition, we

differentiate the expressions given there for t and x,

dt = cosh(
a0
c
τ)dτ , dx = c sinh(

a0
c
τ)dτ. (5.32)

This gives

dx2 − c2dt2 = c2(sinh2(
a0
c
τ)− cosh2(

a0
c
τ))dτ2 = −c2dτ2 , (5.33)

which is equivalent to the condition (5.31).

b) A space station has x-coordinate d = c2/a0 and is at rest in reference

frame S. It sends radio messages to the spaceship at regular intervals tn, n =

0, 1, 2, .... The message sent from the space station at time tn is received

at the spaceship at a later time denoted t̃n. Both refer to time measured

in S. Since the message propagates with the speed of light, we have the
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following relation between the x and t coordinates of the spaceship when

the message is received,

x(t̃n)− d = c(t̃n − tn) . (5.34)

Expressing this in terms of the proper time τn when the message is received,

we get

c2

a0
(cosh(

a0
c
τn)− 1) =

c2

a0
sinh(

a0
c
τn)− ctn , (5.35)

and from this follows

cosh(
a0
c
τn) = sinh(

a0
c
τn)− (

a0
c
tn − 1) . (5.36)

Since cosh(a0

c τn) ≥ sinh(a0

c τn) this implies that the equation can be satis-

fied only as long as tn < c/a0 = tmax. In the limit tn → tmax, we clearly

have τn → ∞ for the proper time when the message is received.

ctmax

spaceship

space station
ct

x

last message

limit path

Fig. 5.4 Minkowski diagram with the hyperbolic worldline of the spacecraft, and
with radio signals sent from the space station. Only signals sent before tmax will
reach the spacecraft (as long as the hyperbolic path is followed).

c) Figure 5.4 shows a Minkowski diagram with the worldlines of the

spaceship and the space station in the coordinate system of reference

frame S. The worldline of messages sent from the space station are also

shown. Due to the hyperbolic form of the spaceship’s worldline, only mes-

sages sent before tmax will reach the spaceship.
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Chapter 6

Four-vector formalism and covariant
equations

Problem 6.1

Two four-vectors A and B satisfy the orthogonal relation

A ·B = A ·B−A0B0 = 0 , (6.1)

with A as a timelike vector, A2 = A2 − (A0)2 < 0.

We will show that this implies that B is a spacelike vector.

Since A is a timelike vector we have

|A| < |A0| ⇒ | A
A0

| < 1 . (6.2)

The orthogonality relation A ·B = 0 implies

B0 =
A

A0
·B . (6.3)

From this follows

|B0| ≤ | A
A0

| |B| < |B| , (6.4)

which shows that B is spacelike,

B2 = B2 − (B0)2 > 0 . (6.5)

Problem 6.2

a) We are given the following set of equations,

Cμ = T μ
ν A

μ, Dν = T μ
νAμ, Eμνρ = Tμν S

ν
ρ, G = SμνT

ν
aA

α, (6.6)

and the problem is to identify and correct those which do not satisfy the

conditions of covariance.

We find that only the equation Dν = T μ
νAμ is correct, while the others

are

Cμ = T μ
ν A

ν , Eμρ = Tμν S
ν
ρ , Gμ = Sμν T

ν
αA

α . (6.7)
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b) Starting with a set of two four-vectors and a tensor, Aμ, Bμ, T μν,

new scalars and vectors can be formed as follows:

• scalars AμA
μ, AμB

μ, T μ
μ, T

μνTμν , T
μνAμBν , . . .

• vectors T μνAμ, T
μνTνρB

ρ, . . . . (6.8)

c) By manipulating L ρ
μ Lμ

σ, with raising and lowering operators, and

making use of the identity

gμνL
μ
ρL

ν
σ = gρσ , (6.9)

we obtain

L ρ
μ Lμ

σ = gμαL
α
β g

βρLμ
σ

= gβρ(gμαL
μ
σ L

α
β)

= gσβ g
βρ = δρσ . (6.10)

Problem 6.3

The functions to differentiate are

f(x) = xμx
μ , aμ(x) = xμ , bμν(x) = xμxν , hμ(x) =

xμ

xνxν
. (6.11)

In the following we freely change the names of repeated indices, in order to

avoid unintended reuse of index names in the same equation. We evaluate

the following derivatives,

∂μf(x) =
∂

∂xμ
(xαx

α) =
∂

∂xμ
(gαβx

αxβ)

= gαβ(δ
α
μx

β + xαδβμ)

= gμβx
β + gαμx

α

= 2xμ , (6.12)

∂μa
μ(x) =

∂xμ

∂xμ
= δμμ = 4 , (6.13)

∂μb
μν(x) =

∂(xμxν)

∂xμ
= δμμx

ν + δνμx
μ = 4xν + xν = 5xν , (6.14)
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∂μh
μ(x) =

∂

∂xμ

(
xμ

xνxν

)

=
4

xνxν
− xμ

(xνxν)2
gαβ

∂

∂xμ
(xαxβ)

=
4

xνxν
− xμ

(xνxν)2
gαβ(δ

α
μx

β + δβμx
α)

=
4

xνxν
− 2xμxμ

(xνxν)2

=
2

xνxν
. (6.15)

Problem 6.4

An inertial reference frame S has time and space axes defined by the basis

vectors eμ, μ = 0, 1, 2, 3, with the generalized orthonormalization condition

eμ · eν = gμν . (6.16)

A second inertial frame S′ has coordinate axes with unit vectors that mix

those of S in the following way,

e′0 = coshχ e0 + sinhχ e1 ,

e′1 = sinhχ e0 + coshχ e1 , (6.17)

while e2 and e3 are left unchanged.

a) We will find the relation between the parameter χ and the relative

velocity v between the two reference frames. In order to do so, we make use

of the following relations between the spacetime coordinates and the unit

vectors in the reference frame S,

x = xμeμ ⇒ xμ = eμ · x , (6.18)

with similar expressions in reference frame S′. The transformation equa-

tions between the two sets of unit vectors then give,

x′0 = coshχx0 + sinhχx1 ,

x′1 = sinhχx0 + coshχx1 ,

x′2 = x2, x′3 = x3 . (6.19)

With x0 = −ct, x1 = x, x2 = y, x3 = z, etc., this gives the coordinate

transformations

ct′ = coshχ ct− sinhχx ,

x′ = − sinhχ ct+ coshχx ,

y′ = y, z′ = z . (6.20)
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The equations have the standard form of a Lorentz transformation formula,

where reference frame S′ moves with velocity v along the x-axis relative to

to reference system S, provided we make the identifications

coshχ = γ , sinhχ = βγ . (6.21)

b) We assume that in a (two-dimensional) Minkowski diagram the basis

vectors of reference system S, (e0, e1), are treated as orthogonal and nor-

malized to 1. The corresponding basis vectors of S′, which are related to the

basis vectors of S by e′0 = coshχ e0+sinhχ e1 and e′1 = sinhχ e0+coshχ e1,

will not be orthogonal in the same diagram, and neither are normalized to

1. In particular the basis vector e′0 will be rotated by an angle φ relative to

e0, with coshχ = a cosφ and sinhχ = a sinφ, where a is a normalization

factor. This gives

tanφ = tanhχ = β = v/c . (6.22)

Similarly e′1 will be rotated by the same angle relative to e1, but in the

opposite direction. For the angle φ = 30◦ we have

v = tan 30◦c = c/
√
3 = 0.577c . (6.23)

For φ = 15◦ we similarly find

v = tan15◦c =
sin 30◦

cos 30◦ + 1
= c/(

√
3 + 2) = 0.268c . (6.24)

c) We express the vector e′0 in terms of the basis vectors of S as

e′0 = coshχ e0 + sinhχ e1 ≡ x0e0 + x1e1 . (6.25)

The coefficients satisfy

(x0)2 − (x1)2 = cosh2 χ− sinhχ = 1 , (6.26)

which show that the two parameters x0 and x1 define a hyperbola in the

diagram. For e′1 we find the same equation, but with a switch of the param-

eters x0 and x1. This means that the hyperbola in this case is obtained by

reflecting the first hyperbola about the line x0 = x1.
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Chapter 7

Relativistic kinematics

Problem 7.1

a) An electron is moving in a storage ring of radius R = 10m, with a

speed that corresponds to the gamma factor γ = 30. The velocity of the

particle is determined by the gamma factor in the following way

γ =
1√

1− v2

c2

⇒ v =

√
1− 1

γ2
c . (7.1)

With γ = 30 this gives

v = 0.9994c = 2.998 · 108m/s . (7.2)

The period of circulation, measured in the lab frame, is

T =
2πR

v
= 2.0956 · 10−7 s (7.3)

and the proper time of one period is reduced by the time dilatation factor,

Tp = T/γ = 6.985 · 10−9 s . (7.4)

The acceleration measured in the lab frame is

a =
v2

R
= 8.990 · 1015m/s2 (7.5)

and the corresponding proper acceleration, evaluated for circular motion

with constant velocity, is

a0 = γ2a = 8.091 · 1018m/s2 . (7.6)

b) We now study a different system. The motion of a particle in two

dimensions is described by the time dependent position vector

r = uti+
1

2
gt2j , (7.7)

with the velocity ,

v = ui+ gtj , (7.8)
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and acceleration ,

a =
dv

dt
= gj . (7.9)

The corresponding gamma factor is

γ =
1√

1− u2+g2t2

c2

. (7.10)

We make use of the general formula for the absolute value of the proper

acceleration

a20 = γ4a2 + γ6
(v · a)2
c2

=
g2

(1− u2+g2t2

c2 )2
+

g4t2

c2(1− u2+g2t2

c2 )3

= (
1

u2 + g2t
)3g2

(
(1− u2 + g2t2

c2
) +

g2t2

c2

)

= g2
1− u2

c2

(1− u2+g2t2

c2 )3
. (7.11)

This gives

a0 = g

√
c2 − u2

(c2 − u2 − g2t2)3
. (7.12)

The proper acceleration is seen to increase with increasing t. It goes in fact

to infinity when t → √
c2 − u2/g. This corresponds to the time where the

particle velocity reaches the velocity of light, v → c, which is, of course, an

unrealistic limit.

Problem 7.2

A spacecraft leaves the earth at local time t = 0 and travels to the star

Proxima Centauri, at a distance of d = 4.2 light years. The spacecraft

follows a linear path, along the x-axis in an earth-fixed reference frame.

The initial value of the position coordinate is x = 0, and the (proper) time

coordinate measured on the spacecraft is set to τ = 0 on departure.

The spacecraft follows on the first part of the journey, until it is halfway

to the star, a hyperbolic path of the form

x− xI =
c2

a
cosh(

a

c
(τ − τI)), t− tI =

c

a
sinh(

a

c
(τ − τI)) . (7.13)
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The same type of spacetime path is followed on the second part of the

journey, until it reaches Proxima Centauri, but with the opposite sign of

the parameter a. The journey back from the star is performed in the same

way, in the opposite direction. A short stop at the star is disregarded in the

description.

a) The initial conditions for part I of the journey, t = 0, x = 0, v =

0, τ = 0, determines the coefficients xI , tI and τI of (7.13),

v = c tanh(
a

c
τI) = 0 ⇒ τI = 0,

x = xI +
c2

a
= 0 ⇒ xI = −c

2

a
,

t = tI = 0. (7.14)

This gives for the spacetime coordinates of the spaceship on part I of the

journey,

x =
c2

a
(cosh(

a

c
τ)− 1), t =

c

a
sinh(

a

c
τ) . (7.15)

b) To show that the parameter τ is the proper time of the spaceship,

we consider an infinitesimal change in the space-time coordinates of the

spacecraft,

dx = c sinh(
a

c
τ)dτ , dt = cosh(

a

c
τ)dτ . (7.16)

The corresponding Lorentz invariant line element is

ds2 = dx2 − c2dt2 = −c2τ2 , (7.17)

which gives

dτ =

√
dt2 − 1

c2
dx2 =

√
1− v2

c2
dt =

1

γ
dt . (7.18)

This shows that τ satisfies the definition of proper time of the spacecraft.

The components of the four-velocity are

U0 = c
dt

dτ
= c cosh(

a

c
τ) = γc ,

U1 =
dx

dτ
= c sinh(

a

c
τ) = γv ,

U2 = U3 = 0 , (7.19)
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and the components of the four-acceleration are

A0 =
dU0

dτ
= a sinh(

a

c
τ) ,

A1 =
dU1

dτ
= a cosh(

a

c
τ) ,

A2 = A3 = 0 . (7.20)

The proper acceleration is determined by

a20 = A2 = (A1)2 − (A0)2 = a2 ⇒ a0 = a . (7.21)

This shows that the parameter a in the definition of the coordinates of the

spacecraft is identical to its proper acceleration. The proper acceleration is

therefore constant, except for a sign change under parts II and III of the

journey.

c) The Minkowski diagram with the four parts of the journey is shown

in Fig. 7.1. Parts II − IV of the journey are generated from part I by

reflections in the space and time coordinates, combined with a shift in

positions.

d) We assume now that the proper acceleration is equal to the accel-

eration of gravity on earth, a = 9.8m/s2. The proper time τ0 when the

acceleration is reversed, corresponds to the position of the spacecraft being

halfway to Proxima Centauri, x = d/2. This gives

c2

a
(cosh(

a

c
τ0)− 1) =

d

2
⇒

cosh(
a

c
τ0) = 1 +

ad

2c2
= 3.16 . (7.22)

This determines τ0 as

τ0 =
c

a
arccosh(3.16) = 1.76 years . (7.23)

From this follows that the total proper time and the earth time spent on

the full journey are

τtot = 4τ0 = 7.1 years ,

ttot = 4
c

a
sinh(

a

c
τ0) = 11.7 years . (7.24)

e) The spacecraft has the maximum speed at the point where the accel-

eration is reversed, which means when τ = τ0,

vmax = tanh(
a

c
τ0)c = 0.95c . (7.25)
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x

ct 4τ0

3τ0

2τ0
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I

II

III

IV

spacecraft

earth

light signal

Fig. 7.1 Minkowski diagram of the space-time journey to Proxima Centauri and
back.

Problem 7.3

The two end points of a moving rod have the following time dependent

coordinates in a reference frame S,

xA = c
√
t2 + c2/a2 , xB = c

√
t2 + c2/b2 , a > b. (7.26)

a) A second reference frame moves in the same direction with a velocity

v relative to S. We will show that the end points of the rod satisfy the same

equations when expressed in the coordinates of S′.
We make use of the following relations, which follow from (7.26),

x2A − c2t2 =
c2

a2
, x2B − c2t2 =

c2

b2
, (7.27)

and since x2 − c2t2 is a Lorentz invariant, the following equality is valid for

both points A and B,

x2 − c2t2 = x′2 − c2t′2 . (7.28)
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This implies also that the coordinates in reference frame S′ satisfy the

relations

x′A = c
√
t′2 + c2/a2 , x′B = c

√
t′2 + c2/b2 , a > b . (7.29)

b) The velocities of the end points A and B, measured in S are

vA(t) =
dxA
dt

=
ct√

t2 + c2/a2
,

vB(t) =
dxB
dt

=
ct√

t2 + c2/b2
. (7.30)

At time t = 0 this implies

vA = vB = 0 , (7.31)

which shows that S is an instantaneous rest frame for both points A and B

at t = 0. Similarly we find, for the velocities of the end points in reference

frame S′, at time t′ = 0

v′A = v′B = 0 . (7.32)

This shows that reference frame S′ is a common rest frame for A and B at

t′ = 0.

The distance between A and B, measured in S at time t = 0, is

d = xB − xA =
c2

b
− c2

a
= c2

a− b

a+ b
. (7.33)

Similarly the distance between A and B, measured in S′ at time t′ = 0 is

d′ = x′B − x′A =
c2

b
− c2

a
= c2

a− b

a+ b
= d . (7.34)

The length measured in the two instantaneous inertial rest frames, at t = 0

and t′ = 0, respectively, is therefore the same.

The velocity v of the reference frame S′ relative to S can be regarded

as a free variable. It is, as shown above, identical to the velocity of the end

points A and B at time t′ = 0, as measured in S. When v is continuously

changed, this will correspond to moving continuously along the worldlines

of the two end points. Thus, the motion of the end points is such that they

will always have a common instantaneous inertial rest frame, and the length

will be constant in this frame, equal to d. The rod will therefore move like

a rigid body, in spite of the fact that the motion is relativistic.

c) The acceleration of A, measured in S, is at time t = 0,

aA(0) = (
dvA
dt

)t=0 = a . (7.35)
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Similarly, at t′ = 0 in S′,

a′A(0) = (
dv′A
dt

)t′=0 = a . (7.36)

This means that the accelerations, measured in the instantaneous inertial

rest frame at different points along the worldline of A, all have the same

value a. The same result applies to B with a replaced by b.

d) A light signal which is sent from A at time t = 0 is received at B at

time tB . We have

xB(tB) = xA(0) + ctB , ⇒ c

√
t2B +

c2

b2
=
c2

a
+ ctB . (7.37)

The squared equation determines tB,

c2t2B +
c4

b2
= c2t2B + 2tB

c3

a
+
c4

a2
⇒ tB =

1

2
c a(

1

b2
− 1

a2
) , (7.38)

and the coordinate xB at this instant,

xB(tB) =
c2

a
+ ctB =

1

2
c2a(

1

a2
+

1

b2
) . (7.39)

The velocity of B at tB is then

vB(t) =
ctB√

t2B + c2/b2
= c

ctB
xB

= c
a2 − b2

a2 + b2
. (7.40)

The light signal, which is sent with frequency ν0 from A at t = 0, is received

at B with frequency νB determined by the Doppler formula,

νB =

√
1− βB
1 + βB

ν0 =

√√√√1− a2−b2

a2+b2

1 + a2−b2

a2+b2

ν0 =
b

a
ν0 . (7.41)

Problem 7.4

A spacecraft passes the earth with velocity v = 0.8c, with d as the shortest

distance between the spacecraft and the earth. In an earth-fixed frame S

the position of the spacecraft is described by coordinates

x(t) = vt , y = d , z = 0. (7.42)

When passing, the spacecraft is continuously submitting radio messages to

the earth on frequency ν0. An antenna on earth, located at the origin of

the coordinate system, receives the messages and registers the frequency

ν(t) and direction of the received signal during the passage. This direction

is measured by the angle θ(t) between the signal and the x-axis.
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θ
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D

vte

d

R

E

Fig. 7.2 Illustration of the emission of messages from a passing spacecraft.

a) A radio signal is received at time t on earth. It is emitted a bit earlier,

at time te = t−Δt. We will determine Δt as a function of t.

The coordinates (ct, x, y) for emission E, and for reception R of a mes-

sage, are in the earth-fixed reference frame S (see Fig. 7.2),

E : (cte, vte, d) , R : (ct, 0, 0) . (7.43)

The time difference and distance between the two events are

Δt = t− te , D =
√
v2t2e + d2 . (7.44)

Since the separation of the two events is lightlike, this implies

c2Δt2 = D2 = v2(t−Δt)2 + d2 , (7.45)

which gives a second order equation for Δt,

(c2 − v2)Δt2 + 2v2tΔt− v2t2 − d2 = 0 . (7.46)

This is rewritten as

Δt2 + 2β2γ2tΔt− γ2(β2t2 + d2/c2) = 0 , (7.47)

and with Δt positive, the solution is

Δt = −β2γ2t+
√
(γ4β4 + γ2β2)t2 + γ2d2/c2

= −β2γ2t+
√
γ4β2t2 + γ2d2/c2 . (7.48)
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Fig. 7.3 Diagrams for the time dependence of frequency and direction of signals
sent from the passing spacecraft to earth. In Panel a) is shown the change in direc-
tion of the signals, and in Panel b), the change in frequency. The dimensionless
time coordinate t̃ = ct/d is used.

b) The angle θ of the signal when reached on earth, is determined by

cos θ = −vte
D

= − v(t−Δt)√
v2(t−Δt)2 + d2

. (7.49)

The result for cos θ is plotted as a function of the dimensionless time coor-

dinate t̃ = ct/d in the upper panel of Fig 7.3.
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c) The relevant Doppler formula (see the textbook) gives, for the fre-

quency of the signal registered in the receiver,

ν =
ν0

γ(1− β cos θ)
. (7.50)

The ratio ν/ν0 is shown as a function of t̃ in the lower panel of the figure.

When t → ±∞ we have cos θ → ∓1. The asymptotic values of the

frequency ν in these limits are

ν±∞ → ν0
γ(1± β)

=

√
1∓ β

1± β
ν0 . (7.51)

This gives the asymptotic values, ν−∞ = 3ν0 and ν+∞ = ν0/3.
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Chapter 8

Relativistic dynamics

Problem 8.1

Two photons in the laboratory system have frequencies ν1 and ν2. The

angle between the propagation directions is θ.

a) The problem here is to find the total energy and the absolute value of

the total momentum of the photons in the lab frame. We choose the x-axis

in the direction of photon 1, and the y-axis orthogonally directed, in the

plane of the two photons. The four-momenta of the two photons are then

P1 =
hν1
c

(1, 1, 0, 0) , P2 =
hν2
c

(1, cos θ, sin θ, 0) , (8.1)

and the total four-momentum is

P = P1 +P2 =
h

c
(ν1 + ν2, ν1 + ν2 cos θ, ν1 + ν2 sin θ, 0) . (8.2)

The total energy is determined by the 0th component of the four-

momentum,

E = cP 0 = h(ν1 + ν2) , (8.3)

and the total momentum is determined by the three-vector part of the

four-momentum. The absolute value is

|p| = h

c

√
(ν1 + ν2 cos θ)2 + ν22 sin

2 θ

=
h

c

√
ν21 + ν22 + 2ν1ν2 cos θ . (8.4)

b) To find the photons’ frequency in the CM-system we exploit the fact

that the total momentum of the two photons vanishes in this reference

frame, and that P2 = p2 − E2/c2 is a Lorentz invariant. This gives the

following relation between the values of the invariant in the CM-system

and the lab-system,

E2
CM = E2 − c2p2

= h2[(ν1 + ν2)
2 − ν21 − ν22 − 2ν1ν2 cos θ)]

= 2h2ν1ν2(1 − cos θ) . (8.5)
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Since ECM = 2hνCM , with νCM as the photon frequency, which is equal

for the two photons in the CM-system, we find

νCM =
√
ν1ν2(1− cos θ) =

√
2ν1ν2 sin

(
θ

2

)
. (8.6)

c) If the momenta of the two photons are collinear, both photons will

propagate with the speed of light in the same direction. In this case there is

no inertial reference frame where the two photons have the same momen-

tum. Thus, the limit θ → 0 can be viewed as the limit where the velocity of

the CM-system goes to the speed of light. In this limit, as the result above

shows, the frequency of the photons in the CM-system goes to zero.

Problem 8.2

a) The problem here is to determine the minimum energy of the photon,

if the following process should be possible,

γ + e− → e− + e− + e+, (8.7)

with the electron being at rest before the collision with the photon.

It is convenient to consider the situation in the CM-system, where the

total momentum vanishes, i.e. p = 0. In this system the smallest energy

of the three particles corresponds to the situation where all three particles

are at rest. The value of the total energy is then ECM = 3mec
2, with me

the electron mass. Energy conservation implies that the photon and the

electron, before the collision, have the same minimum energy ECM , in the

CM-system.

We next make use of the Lorentz invariant E2 − p2c2 = E2
CM , with E

and p as the total energy and momentum of the photon and electron in the

lab system. Since the photon momentum is hν/c, the equality gives

(hν +mec
2)2 − (hν)2 = (3mec

2)2 ⇒ hν = 4mec
2 . (8.8)

Thus, the minimum energy of the photon needed for the given process to

happen is four times the rest energy of an electron.

b) One way to see that the process

γ → e− + e+ (8.9)

is impossible, is to note that since the electron and positron have masses

different from zero, one can always find a CM-system for the e−+e+-system.

However, since the photon is massless, a CM-system does not exist for a

single photon.
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The impossibility can also be seen as a conflict between conservation

of energy and momentum in the given process. With the x-axis taken as

the direction of propagation of the photon, and ν as the frequency of the

photon, conservation of momentum can be written as

hν/c = p1x + p2x , p1y + p2y = 0 , (8.10)

and conservation of energy as

hν =
√
p2
1c

2 +m2c2 +
√
p2
2c

2 +m2c2 . (8.11)

But clearly
√
p2c2 +m2c2 > |px|c, and the equations for conservation of

energy and momentum therefore cannot both be satisfied.

Problem 8.3

a) We consider the situation where two colliding particles form a single

particle after the collision. The velocity of one of the particles is v, along

the x-axis, while the other is at rest before the collision. The total energy

and momentum of the compound particle are determined by conservation

of the below quantities in the collision,

E = ΓMc2 = (γ + 1)mc2 ,

P = ΓMV = γmv , (8.12)

with γ = (1−v2/c2)−1/2 and Γ = (1−V 2/c2)−1/2, and with V the velocity of

the compound particle. The massM of the compound particle is determined

by the relativistic energy-momentum relation, E2 − c2P 2 =M2c2,

M2 = (γ + 1)2m2 − γ2m2(v2/c2)

= (γ2(1− v2

c2
) + 2γ + 1)m2

= 2(γ + 1)m2 , (8.13)

which gives M =
√
2(γ + 1)m. The velocity V of the compound particle is

V =
c2P

E
=

γβ

γ + 1
c =

√
γ − 1

γ + 1
c . (8.14)

b) We now assume that the two particles collide elastically. Momentum

conservation gives, for the components of the particle momenta after the

collision,

p1x + p2x = γmv , p1y + p2y = 0 , (8.15)
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where the particle velocities are assumed to make the same angle with the

x-axis. The conservation equation for the y-components of the momenta

gives

|p1| cos θ = |p2| cos θ ⇒ |p1| = |p2| ≡ p . (8.16)

From this follows that the energies of the two particles are the same

E1 = E2 =
√
p2c2 +m2c4 . (8.17)

c) Energy conservation gives

E1 = E2 =
1

2
(γ + 1)mc2 , (8.18)

and from this follows that the particle momentum is

p =

√
E2

1

c2
−m2c2 =

1

2

√
γ2 + 2γ − 3mc . (8.19)

d) The angle θ is determined in the following way. The conservation of

the x-component of the momentum gives

p cos θ =
1

2
γmv ⇒ cos θ =

γβ

γ2 + 2γ − 3
. (8.20)

The expression can be simplified by using the identities β =
√
1− (1/γ2)

and γ2 + 2γ − 3 = (γ − 1)(γ + 3),

cos θ =

√
γ2 − 1

γ2 + 2γ − 3
=

√
γ + 1

γ + 3
. (8.21)

In the limit γ → 1 we have cos θ = 1/
√
2, which means θ = π/4, and in the

limit γ → ∞ we have cos θ = 1, which means θ = 0. The ratio

γ + 1

γ + 3
= 1− 2

γ + 3
(8.22)

increases monotonically with γ in the interval 1 < γ <∞. This implies that

θ decreases monotonically in the same interval, and thus is always smaller

than the limit value θ = π/4.
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Problem 8.4

A photon with energy Eph = 100 keV is scattered on a free electron, which

is, before the scattering, at rest in the laboratory frame. After the scattering

the energy of the photon is E′
ph, and the energy of the electron is E′

e. The

photon is scattered in a direction which makes an angle θ with the direction

of the incoming photon.

a) The center of mass (CM) system is an inertial reference frame, where

the total momentum of the particle system vanishes. Using the transfor-

mation formulas for energy and momentum, we obtain, for the photon and

electron momenta in the CM-system,

p̄ph =
Ēph

c
= γ(pph − β

Eph

c
) = γ(1− β)

Eph

c
,

p̄e = −γβEe

c
= −γβmec , (8.23)

where β and γ refer to the relative velocity of the two reference systems.

In the CM-system we have p̄ph + p̄e = 0, which gives

γ(1− β)
Eph

c
= γβmec ⇒ (1 − β)Eph = βmec

2 . (8.24)

Extracting the relative velocity of the reference systems from this we find

v =
Eph

Eph +mc2
c = 0.164c , (8.25)

where we have used Eph = 100keV and mec
2 = 0.51MeV.

b) Energy conservation gives, in the CM-system,

Ēph + Ēe = Ē′
ph + Ē′

e , (8.26)

which we rewrite as

Ēph +
√
p̄2ec

2 +mec2 = Ē′
ph +

√
p̄′2ec2 +mec2 . (8.27)

In the CM system we also have p̄2ec
2 = p̄2phc

2 = Ē2
ph, with similar identities

for the outgoing particles. This implies

Ēph +
√
Ē2

ph +mec2 = Ē′
ph +

√
Ē′2

ph +mec2 . (8.28)

We note that the same function appears on both sides of the equation,

and that this equation is monotonically increasing with the argument. This

implies that arguments on both sides have to be equal, thus Ēph = Ē′
ph.

To find the value of this energy we use the Lorentz transformation for-

mula between the reference frames S and S̄,

Ēph = γ(Eph − βpphc) = γ(1− β)Eph = 84.7 keV . (8.29)
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c) If θ = 90◦ the x-component of p′
ph vanishes, and the transformation

formula for the outgoing photon simplifies to Ē′
ph = γE′

ph, which gives

E′
ph =

1

γ
Ēph = (1 − β)Eph = 83.6 keV. (8.30)

Energy conservation then determines the energy of the outgoing electron,

E′
e = Ee + Eph − E′

ph

= mec
2 + βEph

= 527 keV .

(8.31)

Problem 8.5

A Lambda particle (Λ) has momentum p̄Λ along the x-axis in the laboratory

frame S̄. The energy of the particle in S̄ is ĒΛ = 3GeV(= 3000MeV). The

mass of Λ is mΛ = 1116MeV/c2. In its rest frame S, the life time of Λ is

τΛ = 2.63 × 10−10s. The Λ particle decays to a nucleon N and a pion π.

They have masses mN = 940MeV and mπ = 140MeV, respectively.

a) The problem to solve here is to find the distance travelled by the

Lambda particle within its life time. The gamma factor of the Lorentz

transformation between the lab frame and the rest frame of Λ is

γ =
ĒΛ

mΛc2
= 2.688. (8.32)

The life time of the particle in the lab frame, τ̄Λ, is longer than in its rest

frame, due to the relativistic time dilatation effect,

τ̄Λ = γτΛ = 7.1 · 10−10 s . (8.33)

With v as the velocity of Λ in the lab frame, the distance travelled by the

particle in the time τΛ is

d = vτ̄Λ =

√
1− 1

γ2
c τ̄Λ =

√
τ̄2Λ − τ2Λ c = 0.20m . (8.34)

b) We determine next the energies of the nucleon and the pion in the rest

frame S of Λ. In this reference frame conservation of energy and momentum

in the decay of Λ is expressed as

EN + Eπ = mΛc
2 , pN + pπ = 0 , (8.35)

and the energy-momentum relations are

E2
N = p2Nc

2 +m2
Nc

4 , E2
π = p2πc

2 +m2
πc

4 . (8.36)
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From these equations we derive the following two equations

E2
N = (mΛc

2 − Eπ)
2,

E2
N −m2

Nc
4 = E2

π −m2
πc

4 . (8.37)

By combining these EN can be eliminated and Eπ determined as

Eπ =
m2

Λ +m2
π −m2

N

2mΛ
c2 = 171MeV . (8.38)

The energy EN is then determined as

EN = mΛc
2 − Eπ =

m2
Λ +m2

N −m2
π

2mΛ
c2 = 945MeV . (8.39)

c) To determine the energies Ēπ and ĒN in the lab frame, we need the

momenta in the rest frame of Λ,

cpN = cpπ =
√
E2

π −m2
πc

2 = 98.0MeV . (8.40)

In the Lorentz transformation formula we also need

β =

√
1− 1

γ2
= 0.928 . (8.41)

With the angle of the pion momentum relative to the x-axis given as 45◦

we have

(pπ)x = −(pN )x = pπ/
√
2 , (8.42)

and the transformation to the lab frame then gives

Ēπ = γ(Eπ +
1√
2
βcpπ) = 632MeV (8.43)

and

ĒN = ĒΛ − Ēπ = 2368MeV . (8.44)

d) To determine the angle θ̄π we use the transformation formula for the

y-component of the π-momentum

p̄π sin θ̄π = pπ sin θπ ⇒ sin θ̄π =
1√
2

pπ
p̄π

. (8.45)

By use of the energy-momentum relation c2p̄2π = Ē2
π−m2

πc
4 we rewrite this

as

sin θ̄π =
1√
2

cpπ√
Ē2

π −m2
πc

4
= 0.112 . (8.46)

This corresponds to the angle θ̄π = 6.45◦. For the angle of the nucleon we

similarly find

sin θ̄N = − 1√
2

cpπ√
Ē2

N −m2
Nc

4
= −0.0319 (8.47)

which corresponds to the angle θ̄N = −1.83◦.
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Problem 8.6

The relativistic Lagrangian is

L = −mc2
√
1− v2

c2
− eΦ+ ev ·A . (8.48)

In order to show that the corresponding Lagrange’s equation reproduces the

standard, relativistic equation for a charged particle in an electromagnetic

field, we first derive the partial derivatives of L with respect to the particle’s

coordinates xi and their time derivatives,

∂L

∂ẋi
=

mẋi√
1− v2

c2

+ eAi = γmẋi + eAi ,

∂L

∂xi
= −e ∂Φ

∂xi
+ ev · ∂A

∂xi
. (8.49)

Lagrange’s equation then gives

d

dt
(γmẋi + eAi) + e

∂Φ

∂xi
− ev · ∂A

∂xi
= 0 , (8.50)

which we rewrite as

d

dt
(γmẋi) + e

∂Φ

∂xi
+ e

∂Ai

∂t
+ eẋj(

∂Ai

∂xj
− ∂Aj

∂xi
) = 0 , (8.51)

with sum over repeated index j. We have here used the expression for the

total time derivative

dAi

dt
= ẋj

∂Ai

∂xj
+
∂Ai

∂t
. (8.52)

The contribution from the electric field we recognize as

eEi = −e( ∂Φ
∂xi

+
∂Ai

∂t
) . (8.53)

To find the contribution from the magnetic field, we express the magnetic

field in terms of the vector potential in the expression,

e(v ×B)i = eεijkẋj(∇ ×A)k

= eεijkεklmxj∂lAm

= e(δilδjm − δimδjl)ẋj
∂Am

∂xl

= eẋj(
∂Aj

∂xi
− ∂Ai

∂xj
) . (8.54)
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We find both expressions (8.53) and (8.54) in Eq. (8.51), which then can

be written as

d

dt
(γmẋi) = eEi + e(v ×B)i , (8.55)

or in vector form

d

dt
(γmv) = eE+ ev ×B . (8.56)

This is the correct relativistic form of the equation of motion for a charged

particle in the electromagnetic field, where the only change compared to the

non-relativistic equation is the appearance of the factor γ in the expression

for the (mechanical) momentum of the particle.

Problem 8.7

a) The equation of motion for a charged particle in an electric field is

d

dt
p = eE . (8.57)

When E is constant, and the initial condition is p(0) = 0, the solution is

p = eEt . (8.58)

The relativistic expression for the energy is

E =
√
p2c2 +m2

ec
4 = γmec

2 , (8.59)

which gives for the gamma factor

γ =
1

m2
ec

2

√
p2c2 +m2

ec
4 =

√
1 +

e2E2

m2
ec

4
t2 . (8.60)

This is of the form γ =
√
1 + κ2t2, with κ = eE

mec2
.

b) We invert the expression found for γ, and introduce the definition

γ = coshκτ ,

t =
1

κ

√
γ2 − 1 =

1

κ

√
cosh2 κτ − 1 =

1

κ
sinhκτ . (8.61)

Differentiation of this with respect to τ gives

dt

dτ
= coshκτ = γ . (8.62)

This shows that τ satisfies the condition to be the proper time of the elec-

tron.
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c) For linear motion, the equation of motion of the electron can be

written as

d

dt
(γmev) = eE , (8.63)

which gives

γmea+ γ̇mev = eE . (8.64)

The time derivative of γ is found as

γ = (1 − v2

c2
)−

1
2 ⇒ γ̇ = (1− v2

c2
)−

3
2
va

c2
= γ3

va

c2
. (8.65)

Inserted in Eq. (8.64) this gives

γmea(1 + γ2
v2

c2
) = eE ⇒ γ3a = eE/me. (8.66)

Since the proper acceleration a0, in the case of linear motion, is related to

the acceleration a, measured in any inertial reference frame, by the formula

a0 = γ3a, the result above shows that for linear motion of a charged particle

in an electric field, the proper acceleration is given by a0 = eE/me.

Problem 8.8

A particle with charge q and mass m moves with relativistic speed through

a region 0 < x < L where a constant electric field E is directed along the

y-axis, as indicated in the figure. The particle enters the field at x = 0

with momentum p0 in the direction orthogonal to the field. The relativistic

energy at this point is denoted E0.
a) We determine here the time dependent momentum p(t), the rela-

tivistic energy E(t) and the gamma factor γ(t). The equation of motion of

the charged particle is

dp

dt
= qE , (8.67)

with the solution

p(t) = p0 + qEt . (8.68)

Since p0 ·E = 0, the energy of the particle is

E(t) =
√
c2p2 +m2c4

=
√
c2p20 +m2c4 + (qEct)2

=
√
E2
0 + (qEct)2 . (8.69)
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The relativistic gamma factor is then

γ(t) =
E(t)
mc2

=
E0
mc2

√
1 + (

qE0

E0 ct)2 . (8.70)

b) We next determine the components of the particle velocity v =

p/(γm),

vx =
p0
γm

=
p0c

2√
E2
0 + (qEct)2

,

vy =
qEt

γm
=

qEc2t√E2
0 + (qEct)2

. (8.71)

There is no force acting in the x-direction, which implies that px is constant.

However, the velocity component vx decreases with time as a consequence of

the increasing value of γ. This can be understood as a time dilatation effect,

which follows from the fact that the velocity v of the particle increases.

c) The derivative of the x-coordinate with respect to proper time τ is

dx

dτ
=
dx

dt

dt

dτ
= vxγ =

p0
m
. (8.72)

This implies that the increase in proper time, Δτ during the transit of the

interval 0 < x < L, is

Δτ =

∫ Δτ

0

dτ =
m

p0

∫ L

0

dx =
m

p0
L . (8.73)

Thus, the proper time interval Δτ is proportional to the length L with the

proportionality factor α = m/p0.

d) To find the transit time Δt, we change the integration variable to t

in the expression for Δτ ,

Δτ =

∫ Δt

0

1

γ(t)
dt

=
mc2

E0

∫ Δt

0

1√
1 + ( qEct

E0
)2
dt

=
mc2

qEc

∫ qEc
E0

Δt

0

1√
1 + z2

dz

=
mc2

qEc
arcsinh(

qEc

E0 Δt) , (8.74)

which gives

Δt =
E0
qEc

sinh(
qEc

mc2
Δτ) =

E0
qEc

sinh(
qEL

p0c
) . (8.75)
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Chapter 9

Maxwell’s equations

Problem 9.1

A vector potential is expressed in cylindrical coordinates as

A(ρ, φ, z) = A(φρ e−(ρ/a)2eρ + b e−(ρ/a)2ez). (9.1)

We determine first the corresponding magnetic field B = ∇ ×A by use of

the formulas for the curl in cylindrical coordinates,

Bρ =
1

ρ

∂Az

∂φ
− ∂Aφ

∂z
= 0 ,

Bφ =
∂Aρ

∂z
− ∂Az

∂ρ
= −2A

b

a2
ρe−(ρ/a)2 ,

Bz =
1

ρ

∂(ρAφ)

∂ρ
− 1

ρ

∂Aρ

∂φ
= Ae−(ρ/a)2 . (9.2)

In vector form this is

B(ρ, φ, z) = −2A
b

a2
ρe−(ρ/a)2eφ +Ae−(ρ/a)2ez . (9.3)

The current density we determine by use of Ampère’s law, with E = 0,

j = 1
μ0
∇×B. In cylindrical coordinates the components are

jρ =
1

μ0

[
1

ρ

∂Bz

∂φ
− ∂Bφ

∂z

]
= 0 ,

jφ =
1

μ0

[
∂Bρ

∂z
− ∂Bz

∂ρ

]
= − 2A

μ0a2
ρe−(ρ/a)2 ,

jz =
1

μ0

[
1

ρ

∂(ρBφ)

∂ρ
− 1

ρ

∂Bρ

∂φ

]
= − 4Ab

μ0a2

(
1− ρ2

a2

)
e−(ρ/a)2 , (9.4)

which in vector form is expressed as

j(ρ, φ, z) = − 2A

μ0a2
ρe−(ρ/a)2eφ − 4Ab

μ0a2

(
1− ρ2

a2

)
e−(ρ/a)2ez . (9.5)

91
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Problem 9.2

Two inertial reference frames, S and S′, are related by the Lorentz trans-

formation

t′ = γ(t− v

c2
x) , x′ = γ(x− vt) , y′ = y , z′ = z . (9.6)

A point charge q sits at rest at the origin of S, and the electromagnetic field

in this reference frame is therefore a pure Coulomb field. We will examine

the electromagnetic field in S′.
a) The Lorentz transformations of the potentials have the general form

Φ′(r′, t′) = γ(Φ(r, t)− vAx(r, t)) ,

A′
x(r

′, t′) = γ(Ax(r, t)− v

c2
Φ(r, t)) ,

A′
y(r

′, t′) = Ay(r, t) ,

A′
z(r

′, t′) = Az(r, t) , (9.7)

with the potentials in reference frame S here given by

Φ(r) =
q

4πε0r
, Ax = Ay = Az = 0 . (9.8)

To find the potentials expressed in the coordinates of S′, we make use of

the coordinate transformations from S to S′,

Φ′(x′, y′, z′, t′) = γΦ(γ(x′ + vt′), y′, z′)

=
γq

4πε0
√
γ2(x′ + vt′)2 + y′2 + z′2

,

A′
x(x

′, y′, z′, t′) = −γ v
c2
Φ(γ(x′ + vt′), y′, z′)

= − γβq

4πε0c
√
γ2(x′ + vt′)2 + y′2 + z′2

,

A′
y = A′

z = 0 . (9.9)

b) The corresponding electric and magnetic fields in the reference frame

S′ are

E′ = −∇Φ′ − ∂

∂t′
A′ , B′ = ∇×A′ . (9.10)
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We evaluate these for each component, first for the electric field

E′
x = − ∂

∂x′
Φ′ − ∂

∂t′
A′

x =
q

4πε0

γ(x′ + vt′)[√
γ2(x′ + vt′)2 + y′2 + z′2

]3 ,
E′

y = − ∂

∂y′
Φ′− =

q

4πε0

γy′[√
γ2(x′ + vt′)2 + y′2 + z′2

]3 ,
E′

z = − ∂

∂z′
Φ′− =

q

4πε0

γz′[√
γ2(x′ + vt′)2 + y′2 + z′2

]3 . (9.11)

The components of the magnetic field in moving reference frame S′ are

B′
x = 0 ,

B′
y =

∂

∂z′
A′

x =
q

4πε0c

γβz′[√
γ2(x′ + vt′)2 + y′2 + z′2

]3 ,
B′

z = − ∂

∂y′
A′

x = − q

4πε0c

γβy′[√
γ2(x′ + vt′)2 + y′2 + z′2

]3 . (9.12)

c) We now restrict the scalar potential to the two-dimensional x′, y′-
plane at time t′ = 0,

Φ′(x′, y′) =
γq

4πε0
√
γ2x′2 + y′2

, (9.13)

and similarly the electric field

E′
x(x

′, y′) =
q

4πε0

γx′[√
γ2x′2 + y′2

]3 ,
E′

y(x
′, y′) =

q

4πε0

γy′[√
γ2x′2 + y′2

]3 . (9.14)

Since E′
z is proportional to z′, it vanishes in the x′, y′-plane.

A contour plot of the scalar potential Φ′ and field lines of the electric

field E′, in reference system S′, are shown in the left panel of Fig. 9.1.

There, we have used the value γ = 5/3. For comparison the corresponding

diagram, with potential Φ and field lines of E in reference S are shown in

the right panel. The equipotential curves of Φ′ are seen to be squeezed in

the x′-direction, compared to the rotationally symmetric curves of Φ. The

field lines of E′ are, on the other hand, radially directed, in the same way
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x’

y’

x

y

Fig. 9.1 The scalar potential and the electric field lines of a point charge. In the
left panel the charge is moving with velocity in the x-direction, and in the right
panel the charge is at rest.

as the field lines of E. This is a consequence of the ratio between the vector

components of the field being E′
x/E

′
y = x′/y′. However the absolute value

of the field E′ is not rotationally invariant, as shown by the expression

|E′(x′, y′)| = γq

4πε0

√
x′2 + y′2[√

γ2x′2 + y′2
]3 . (9.15)

In the figure this effect appears in the form of a denser set of field lines in

the y-direction than in the x-direction.

Problem 9.3

Here we will show how the following higher order Lorentz invariants of the

electromagnetic field,

I3 ≡ FμνFνλF
λ
μ , I4 ≡ FμνFνλF

λρFρμ , (9.16)

can be expressed in terms of the quadratic invariants

I1 =
1

2
FμνFμν , I2 =

1

4
FμνF̃μν . (9.17)

a) By making use of the antisymmetry of Fμν , and swopping names of

summation indices, one can change the sign of I3,

I3 = FμνFνλF
λ
μ = F νμFλνF

λ
μ

= FμνFλ
νFλμ = FμνFλνF

λ
μ

= −FμνFνλF
λ
μ . (9.18)

This shows that I3 = −I3 which implies I3 = 0.
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b) To study I4 we choose coordinate axes which simplify the fields in

the following way,

B = Bi , E = E1i+ E2j . (9.19)

This implies that the field tensor has only six non-vanishing matrix ele-

ments, F 01, F 02, F 23 and their transposed. The invariant I4, expressed as

a sum over products of non-vanishing matrix elements, is

I4 = (F 01F10F
01F10 + F 10F01F

10F01)

= (F 01F10F
02F20 + F 10F02F

20F01)

= (F 02F20F
01F10 + F 20F01F

10F02)

= (F 02F20F
02F20 + F 20F02F

20F02)

= (F 02F23F
32F20 + F 20F02F

23F32)

= (F 23F32F
20F02 + F 32F20F

02F23)

= (F 23F32F
23F32 + F 32F23F

32F23)

=
2

c4
(E4

1 + 2E2
1E

2
2 + E4

2 )−
4

c2
E2

2B
2 + 2B4 . (9.20)

The invariants I1 and I2 can be written as

I1 = B2 − 1

c2
(E2

1 + E2
2) , I2 =

1

c
E1B , (9.21)

and by comparing the above expressions we find that they produce the

identity

I4 = 2I21 + 4I22 . (9.22)

Problem 9.4

We study the bending of a proton’s trajectory in one of the magnets at the

accelerator ring LHC at CERN. We have the following information about

the proton trajectory. The proton momentum is p = 7.0TeV/c, the bending

radius of the magnet is R = 2804m, and the strength of the magnetic field

is B = 8.33T. The proton mass is m = 938MeV/c2.

a) The equation of motion in the magnetic field is

ṗ = ev ×B , p = γmv . (9.23)

This shows that ṗ · v = 0 which implies that v and therefore γ are con-

stants of motion. The bending radius of the electron orbit is related to the
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particle’s acceleration by a = v2/R, with a. In the present case we have

γma = evB, which gives

γm
v2

R
= evB ⇒ eBR = γmv = p . (9.24)

To check this numerically it is convenient to write the relation as eBRc =

pc, where the two terms then have the dimension of energy. With B, c, and

R given in SI-units, the unit charge e will effectively change the energy unit

of the product eBRc to electron volt. We insert the numerical values in the

left-hand side of the equation above,

eBRc = 8.33 · (3.0 · 108) · 2804 eV = 7.01 · 1012 eV , (9.25)

which fits well the given value for the proton momentum.

b) The relativistic energy-momentum relation gives

E2 = p2c2 +m2c4 = γ2m2c4 ⇒ γ2 =
p2

m2c2
+ 1 , (9.26)

which determines γ as

γ =

√
p2

m2c2
+ 1 ≈ p

mc
= 7463 . (9.27)

The acceleration is

a =
v2

R
≈ c2

R
= 3.2 · 1013m/s2 . (9.28)

c) We consider the same situation in the instantaneous rest frame of the

proton. Since E = 0 and v ·B = 0, the general transformation formula for

the fields, is here simplified to

B′ = γB ; E′ = γv ×B , (9.29)

with E′ and B′ as the fields in the instantaneous inertial rest frame of a

proton in the accelerator ring. This gives for the magnetic field

B′ = γB = 62167T . (9.30)

This is, like the magnetic field in the rest frame of the ring, directed orthog-

onally to the plane of the ring. The electric field strength is

E′ = γvB = vB′

= 3.0 · 108 · 62167Tm/s
= 1.86 · 1013V/m . (9.31)
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The proper acceleration, which is the acceleration in the instantaneous iner-

tial reference frame, is

a0 =
e

m
E′ = γ

e

m
v ×B = γ2a , (9.32)

with a as the acceleration in the lab frame. The numerical value is

a0 = 74632 · 3.2 · 1013m/s2 = 1.78 · 1021m/s2 . (9.33)
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Chapter 10

Electromagnetic field dynamics

Problem 10.1

We consider the following case of the electromagnetic wave, where the E

and B fields are parallel,

E(r, t) = E0 sinωt(sin kx ey + cos kx ez) ,

B(r, t) =
1

c
E0 cosωt(sin kx ey + cos kx ez) . (10.1)

a) Since the E and B fields factorize in a time dependent and a space

dependent part, this implies that the fields at different positions r oscillate

in phase. This means that the wave is non-propagating, it is a standing

wave.

We next check that the given electromagnetic wave satisfies the four

source-free Maxwell’s equations. We write

E(x, t) = Ey(x, t)ey + Ez(x, t)ez ,

B(x, t) = By(x, t)ey +Bz(x, t)ez , (10.2)

with

Ey = E0 sinωt sinkx, Ez = E0 sinωt cos kx ,

By =
1

c
E0 cosωt sin kx, Bz =

1

c
E0 cosωt cos kx . (10.3)

I: Gauss’ law;

∇ ·E =
∂Ey

∂y
+
∂Ez

∂z
= 0. (10.4)

This is satisfied, since there is no dependence on the coordinates y and z.

II: The curl of B is

∇×B = ∇By × ey +∇Bz × ez

=
∂By

∂x
ex × ey +

∂Bz

∂x
ex × ez

=
k

c
E0[cosωt sinkxey + cosωt cos kxey] , (10.5)
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and the time derivative of E is

∂E

∂t
= ωE0[cosωt sin kxey + cosωt cos kxey] = c2∇×B . (10.6)

This shows that Ampère’s law (without sources) is satisfied,

∇×B− 1

c2
∂E

∂t
= 0 . (10.7)

III: Gauss’ law for the magnetic field is satisfied by the same argument

as for the electric field,

∇ ·B =
∂By

∂y
+
∂Bz

∂z
= 0 . (10.8)

IV: Faraday’s law is shown in the same way as for Ampère’s law. The

curl of E is

∇×E =
∂Ey

∂x
ex × ey +

∂Ez

∂x
ex × ez

=
k

c
E0[cosωt sin kx ey + cosωt cos kx ey] , (10.9)

and the time derivative of B is

∂B

∂t
= −ω

c
E0[sinωt sin kxey − sinωt cos kxey] . (10.10)

This gives Faraday’s law

∇×E+
∂B

∂t
= 0 . (10.11)

Thus, all Maxwell’s equations are satisfied.

b) The momentum density is proportional to the Poynting vector

g = ε0E×B = 0 , (10.12)

where g vanishes since E and B are parallel. This can be understood as

being a consequence of the fact that the wave is non-propagating. The

energy density is

u =
1

2
(ε0E

2 +
1

μ0
B2)

=
1

2
[ε0(E

2
y + E2

z ) +
1

μ0
(B2

y +B2
z)]

=
1

2
ε0E

2
0 [sin

2 ωt (sin2 kx+ cos2 kx) + cos2 ωt (sin2 kx+ cos2 kx)]

=
1

2
ε0E

2
0 . (10.13)
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c) We focus first on the electric field,

E = E0(sinωt sin kx ey + sinωt coskx ez) , (10.14)

and make use of the following identities,

sinωt sinkx =
1

2
[cos(kx− ωt)− cos(kx+ ωt)] ,

sinωt coskx =
1

2
[− sin(kx− ωt) + sin(kx+ ωt)] . (10.15)

This gives

E =
1

2
E0[cos(kx− ωt)ey − sin(kx− ωt)ez]

−1

2
E0[cos(kx+ ωt)ey − sin(kx+ ωt)ez]

≡ E+ +E−. (10.16)

The magnetic field can be decomposed in the same way, which gives

B =
1

2c
E0[sin(kx− ωt)ey + cos(kx− ωt)ez]

+
1

2c
E0[sin(kx+ ωt)ey + cos(kx+ ωt)ez]

≡ B+ +B− . (10.17)

The expressions above show that E+ and B+ define the electric and mag-

netic components of a a right-moving (positive x-direction) wave, and that

E− and B− describe a left-moving wave. The expressions also show that

each of the two waves satisfy the orthogonality conditions E+ · B+ =

E− ·B− = 0.

The two vector components of E+, and ofB+, in the y- and z- directions

are 90◦ out of phase, which shows that the polarization is circular. By

looking at the time dependence of the rotating vectors for x = 0, it is

straight forward to find that the rotation frequency in the y, z-plane is

positive. This means that the polarization is right-handed, circular. For

the components of E−, and of B− we similarly find circular motion, but

in the opposite direction in the y, z-plane. However, since the direction of

propagation is also inverted, it means that in this case the polarization is

also right-handed, circular.

d) It is clear from the expressions above that the right-moving as well

as the left-moving waves can each be decomposed in two waves, where the

electric field oscillates in either the y-direction or in the z-direction. A plane
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polarized wave is characterized by E and B oscillating in phase and being

orthogonal. In the present case this means that the right-moving and left

moving waves are decomposed in plane polarized waves in the following

way,

Right−moving :

E+1 =
1

2
E0 cos(kx− ωt)ey , B+1 =

1

2c
E0 cos(kx− ωt)ez ,

E+2 = −1

2
E0 sin(kx− ωt)ez , B+2 =

1

2c
E0 sin(kx− ωt)ey ,

Left−moving :

E−1 = −1

2
E0 cos(kx+ ωt)ey , B−1 =

1

2c
E0 cos(kx+ ωt)ez ,

E−2 =
1

2
E0 sin(kx+ ωt)ez , B−2 =

1

2c
E0 sin(kx+ ωt)ey . (10.18)

Problem 10.2

A monochromatic plane wave of light is sent through a birefringent crystal

in the z-direction. The wave can be decomposed in linearly polarized com-

ponents, where polarization in the x-direction corresponds to a wave with

a faster propagation velocity, cf , than the velocity cs, of a wave which is

polarized in the y-direction. Inside the crystal (with z > 0) the wave has

the form

E(z, t) =
E0√
2
[cos(kf z − ωt)ex + cos(ksz − ωt)ey] , (10.19)

where kf = ω/cf , ks = ω/cs, and E0 is the amplitude of the oscillating

field.

a) For z = 0 the electric field vector is

E(0, t) = E0 cosωt
1√
2
(ex + ey) . (10.20)

The expression shows that E oscillates in a fixed direction, determined by

the unit vector (e1 + e2)/
√
2. This means that the polarization is linear,

halfway between the x- and the y-axis.
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b) We introduce the following variables, k0 = (kf + ks)/2 and Δk =

ks − kf . This gives

cos(kf z − ωt) = cos[(k0 − 1

2
Δk)z − ωt)]

= cos[k0z − ωt)] cos[
1

2
Δk z] + sin[k0z − ωt)] sin[

1

2
Δk z] ,

(10.21)

and

cos(ksz − ωt) = cos[(k0 +
1

2
Δk)z − ωt)]

= cos[k0z − ωt)] cos[
1

2
Δk z]− sin[k0z − ωt)] sin[

1

2
Δk] .

(10.22)

With the new variables the electric field gets the form

E(z, t) =
E0√
2
[cos[k0z − ωt)] cos[

1

2
Δk z](ex + ey)

+ sin[k0z − ωt)] sin[
1

2
Δk z](ex − ey)] (10.23)

and can be rewritten as

E(z, t) = E10(z) cos(k0z − ωt)e1 + E20(z) sin(k0z − ωt)e2

≡ E1(z, t)e1 + E2(z, t)e2 (10.24)

where the amplitudes are

E10(z) = E0 cos[
1

2
Δk z] , E20(z) = E0 sin[

1

2
Δk z] , (10.25)

and the unit vectors

e1 = (ex + ey)/
√
2 , e2 = (ex − ey)/

√
2 . (10.26)

c) The amplitudes satisfy the equation

E2
1

E2
10

+
E2

2

E2
20

= 1 . (10.27)

For fixed z, with variable t, this describes an ellipse, which shows that the

polarization is elliptic, with symmetry axes in the directions of e1 and e2.

The eccentricity is determined by the ratio |E10|/|E20|. This ratio changes

continuously as z changes, so the polarization changes continuously through

the crystal from linear to circular and back to linear polarization.

For z = 0 we have E20 = 0, which means that it is linearly polarized in

the direction of e1, for z = π/(2Δk) we have E10 = E20 which means left-

handed, circular polarization, and for z = π/Δk there is linear polarization

in the direction of e2. Then there is right-handed circular polarization for

z = 3π/(2Δk), and the wave is back to linear polarization in the direction

e1 for z = 2π/Δk.
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Problem 10.3

A point charge q is placed in a constant magnetic field B, with the

electric and magnetic fields given by

E =
q

4πε0r2
er , B = Bk . (10.28)

Poynting’s vector is

S =
1

μ0
E×B =

qB

4πε0r2
er × k =

qB

4πε0r2
sin θ eφ , (10.29)

where θ is the angle between r and k, and eφ is the angular unit vector

in the x, y-plane. This shows that Poynting’s vector, which describes the

energy current density, circulates around the z-axis. The field momentum

density, which is proportional to Poynting’s vector, g = S/c2, shows the

same behavior.



Chapter 11

Maxwell’s equations with stationary
sources

Problem 11.1

Three point charges, two with charge +q and one with charge −q are posi-

tioned in the sequence (+q,−q,+q) along the x-axis. The distance between

neighboring charges are equal to d, and the middle charge is placed at the

origin x = 0.

a) The potential of the three charges is

Φ(r) =
q

4πε0
(

1

|r+ d i| −
1

r
+

1

|r− d i|) , (11.1)

with i as the unit vector along the x-axis. A contour plot of the potential

is shown in panel (a) of Fig. 11.1.

(a) (b)

Fig. 11.1 Contour plot of the potential from three point charges +q, −q, and
+q, located along a line. To the left the full Coulomb potential is shown, to the
right the sum of contributions from the monopole and quadrupole terms in the
multipole expansion of the potential.
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b) The charge distribution is given by

ρ(r) =
∑
i

qiδ(r− ri) , (11.2)

with the total charge given as

qtot =
∑
i

qi = q. (11.3)

The electric dipole moment is

p =

∫
ρ(r)dV =

∑
i

qiri = q(d− d)i = 0 (11.4)

and the quadrupole moment about the axis n = r/r is

Qn =

∫
[3(n · r′)2 − r′2]dV ′

=
∑
i

qi[3(n · ri)2 − r2i ]

= 2qd2
[
3
(x
r

)2
− 1

]
. (11.5)

c) The sum of the contributions from these to the scalar potential is

Φ′(r) =
q

4πε0

{
1

r
+
d2

r3

[
3
(x
r

)2
− 1

]}
. (11.6)

A contour plot of the function is shown in panel (b) of the figure. Com-

parison with the plot of the full potential Φ(r) in panel (a) shows that the

contributions from the first three terms in the multipole expansion repro-

duce the full potential well for distances r larger than the distance between

the charges, d, but differences appear for smaller values of r.

Problem 11.2

A non-relativistic particle, with electric charge q and mass m, moves in a

magnetic dipole field, given by the vector potential

A =
μ0

4πr3
(μ× r) , (11.7)

with μ the magnetic dipole moment of a static charge distribution centered

at the origin.

a) The Lagrangian of the particle is

L =
1

2
mv2 + qv ·A =

1

2
mv2 +

qμ0

4πr3
v · (μ× r) . (11.8)
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By use of the cyclic property of the triple product, we re-write the last

term,

L =
1

2
mv2 +

qμ0

4πr3
μ · (r× v) =

1

2
mv2 +

qμ0

4πmr3
μ · � . (11.9)

b) With the magnetic dipole moment oriented along the z-axis, and the

particle moving in the x, y-plane we have

μ · � = |μ|�z = |μ|mr2φ̇. (11.10)

This gives the following expression for the Lagrangian,

L =
1

2
m(ṙ2 + r2φ̇2) + λ

φ̇

r
, (11.11)

with λ = qμ0|μ|/4π. The canonical momentum pφ conjugate to φ is

pφ =
∂L

∂φ̇
= mr2φ̇+

λ

r
= �z +

λ

r
. (11.12)

It can be interpreted as the total conserved angular momentum about the z-

axis. The first term is the mechanical contribution from the moving particle,

while the second term is an electromagnetic field contribution.

Since L has no explicit time dependence the Hamiltonian is a constant

of motion,

H = pr ṙ + pφφ̇− L = mṙ2 +mr2φ̇2 − L =
1

2
m(ṙ2 + r2φ̇2) , (11.13)

which is the conserved kinetic energy of the particle.

c) Lagrange’s equation for the coordinate r is

d

dt

∂L

∂ṙ
− ∂L

∂r
= mr̈ −mrφ̇2 + λ

φ̇

r2
= 0 . (11.14)

To eliminate φ̇ we write it as

φ̇ =
pφ
mr2

− λ

mr3
, (11.15)

and exploit that pφ is a constant. Inserted in Lagrange’s equation this gives

mr̈ −mr(
p2φ
m2r4

− 2
λpφ
m2r5

+
λ2

m2r6
) +

λ

r2
(
pφ
mr2

− λ

mr3
) = 0

⇒ mr̈ − p2φ
mr3

+ 3
λpφ
mr4

− 2
λ2

mr5
= 0 . (11.16)
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By multiplying with ṙ, the equation can be integrated, to give

1

2
mṙ2 +

1

2

p2φ
mr2

− pφλ

mr3
+

1

2

λ2

mr4
= const. , (11.17)

and with

φ̇2 =
p2φ
m2r4

− 2
pφλ

m2r5
+

λ2

m2r6
, (11.18)

we recognize that the expression in (11.17) is in fact the kinetic energy,
1

2
mṙ2 +

1

2
mr2φ̇2 = T . (11.19)

Problem 11.3

A current I is running in a rectangular wire loop ABCD, with length a

in the x-direction and length b in the y-direction. In the rest frame S of

the loop, the wire is charge neutral. In a second inertial reference frame S′

the current loop moves with velocity v in the positive x-direction. We use,

in the following, ex, ey and ez as unit vectors along the x, y and z axes,

respectively, and introduce the vectors a = a ex and b = b ey.

a) Since the charge density is zero, the electric dipole moment vanishes

in the rest frame of the loop. The magnetic moment is

m =
1

2

∫
(r× j(r))d3r =

1

2
I

∮
ABCD

r× dr

=
1

2
I

[∫ a

0

dxx ex × ex +

∫ b

0

dy(a ex + y ey) × ey

+

∫ 0

a

dx (x ex + b ey) × ex +

∫ 0

b

dyy ey × ey

]
= Ia× b (11.20)

where at the first step the volume integral is reduced to a line integral by

introducing the current I as the integral of the current density j over the

cross section of the wire.

b) Due to the motion of the current loop, when viewed in reference frame

S′, there is a length contraction by the factor 1/γ in the x-direction, but no

contraction in the y-direction. Therefore, in the S′ frame, the width of the

rectangle in the x-direction is a′ = a/γ, while the width in the y-direction

is b′ = b.

c) The Lorentz transformation formulas for the charge and current den-

sities in the present case are

ρ′ = γ(ρ+
v

c2
jx) = γ

v

c2
jx , j′x = γ(jx + vρ) = γjx , (11.21)
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and j′y = jy. This shows that in reference frame S′ the charge density

vanishes on parts BC and DA of the current loop, where the current runs

orthogonal to the x-axis. The integrated charges on the two other parts,

where the current runs parallel to the x-axis, are

Q± = ±a′γ v
c2
jΔ = ±aI v

c2
, (11.22)

where the current is written as I = jΔ, with Δ as the cross section of the

current wire. Q+ represents the charge on part AB and Q− on part CD,

respectively.

d) The electric dipole moment in S′ now gets contributions from parts

AB and CD of the loop, where charge densities are ρ± = Q±/(a′Δ) =

γIv/(c2Δ),

p′ = γ
Iv

c2Δ

[
Δ

∫ a′

0

dxx ex −Δ

∫ a′

0

dx(x ex + b ey)

]

= −γ Iv
c2
a′b ey = −Iv

c2
ab ey = − 1

c2
m× v . (11.23)

With point A as the origin there are contributions to the loop’s magnetic

dipole moment only from the parts BC and CD. On part BC the cross

section area of the wire is modified by the length contraction, Δ′ = Δ/γ,

which implies that the current is reduced I → I/γ. On part CD, however,

there is not this effect, but the current is instead enhanced by the same

amount, I → Iγ, as follows from the Lorentz transformation of the current

density. This gives, for the magnetic dipole moment,

m′ =
1

2

I

γ

∫ b

0

dy(a′ ex + y ey)× ey +
1

2
Iγ

∫ 0

a′
dx(x ex + b ey)× ex

=
1

2
Iab(1 +

1

γ2
)ez =

1

2
Ia× b (1− β2

2
) = (1− β2

2
)m . (11.24)

e) The arguments are as given above, with the current being Iγ in AB

and CD and I/γ in BC and DA.

f) To show that we have charge conservation, we focus on one of the

corners (B), where the current running into the corner is different from the

current running out of the corner. We consider the charge balance for an

imagined box, which is at rest relative to reference frame S′, and which

contains the corner B. For infinitesimal step dt′ in time, the difference in

S′ between charge in and out of the box is

dQ′ = (I ′AB − I ′BC)dt = I(γ − 1

γ
)dt = γβ2Idt . (11.25)
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This change of the charge inside the box can be explained by the fact that

the corner B moves with velocity v inside the box. This implies that the

part of section AB which is inside the box increases with length dx = vdt

in the time interval dt. Since the charge of AB is aIv/c2, the charge which

enters the box in this time interval is

dQ′ =
aIv

c2
dx

a′
= γI

v2

c2
dt = γβ2Idt . (11.26)

This agrees with the change of charge which follows from the total current

that enters the box. Thus, the results are consistent with charge conserva-

tion.

Problem 11.4

In this exercise the task is to fill in some details in the derivations of the

force and torque on a stationary current in a magnetic field, discussed in

the text book, Sect.11.3.

a) The first point is to prove the following identity, valid for stationary

currents, ∫
d3rxkjl(r)(r)xl = εnklmn , (11.27)

where mn refers to components of the magnetic moment m of the current

distribution.

From Eq. (11.43) in the textbook we derive the following identity∫
d3r(xkjl(r) + xljk(r)) = 0 ⇒∫
d3rxkjl(r) =

1

2

∫
d3r(xkjl(r)− xljk(r)) . (11.28)

In component form the magnetic dipole moment is defined as

ms =
1

2
εskl

∫
d3rxkjl(r) , (11.29)

which implies

εnklmn =
1

2
εnklεnrs

∫
d3rxrjs(r)

=
1

2
(δkrδls − δksδlr)

∫
d3rxrjs(r)

=
1

2

∫
d3r(xkjl(r) − xljk(r))

=

∫
d3rxkjl(r). (11.30)
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b) We next start from the following expression, taken from the text

book, for the leading term in the multipole expansion of the magnetic force,

(Fm)i = εiln

(∫
d3rxkjl(r)

)
∂kBn(0) (11.31)

and show that it can be rewritten, in vector form, as

Fm = ∇(m ·B). (11.32)

We rewrite (11.31) by use of the result from a),

(Fm)i = εiln

(∫
d3r xkjl(r)

)
∂kBn

= εilnεklsms ∂kBn

= (δikδns − δisδnk)ms ∂kBn

= mn∂iBn −mi∂nBn

= mn∂iBn , (11.33)

where we in the last step have made use of ∇ ·B = 0. In vector form this

result reproduces Eq. (11.32).

c) The condition ∇ × B = 0 means that ∂kBl = ∂lBk. We use this to

rewrite the expression above as

(Fm)i = mn∂iBn = mn∂nBi (11.34)

which in vector form is

Fm = (m ·∇)B . (11.35)

d) We rewrite the expression for the torque (see Eq. (11.58) in the text

book), by use of the identities (11.28) and (11.30),

(τm)i = εiksεsln

(∫
d3r xkjl(r)

)
Bn + ...

= (δilδkn − δinδkl)

(∫
d3r xkjl(r)

)
Bn + ...

=

(∫
d3r xnji(r)

)
Bn −

(∫
d3rxkjk(r)

)
Bi + ...

=

(∫
d3r xnji(r)

)
Bn + ...

= εijnmjBn + .... (11.36)

In vector form this result is

τm = m ×B. (11.37)
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Chapter 12

Electromagnetic radiation

Problem 12.1

An alternating current is running in an antenna of length a, oriented along

the z-axis,

I(z, t) = I0 cos
(πz
a

)
cosωt , −a/2 < z < a/2 . (12.1)

At time t = 0 the antenna is charge neutral, so that the linear charge

density along the antenna vanishes, λ(z, 0) = 0.

a) Charge conservation is locally expressed in the form of the continuity

equation

∂ρ

∂t
+∇ · j = 0 , (12.2)

with ρ as the volume density of the charge and j as the current density.

With the current running in the z-direction we have

∇ · j = dj

dz
, j = jz , (12.3)

and integrated over the cross section of the antenna, we have the following

expressions for the current and the linear charge density,

I =

∫
jdA , λ =

∫
ρdA . (12.4)

This gives

∂λ

∂t
+
∂I

∂z
=

∫
(
∂ρ

∂t
+∇ · j)dA = 0 . (12.5)

With the given form of the current we get

∂λ

∂t
= −∂I

∂z
=
πI0
a

sin
(πz
a

)
cosωt, (12.6)

which, with the initial condition λ(z, 0) = 0, integrates to

λ(z, t) =
πI0
ωa

sin
(πz
a

)
sinωt . (12.7)

113
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b) The electric dipole moment is

p =

∫
r ρ d3r =

∫ a/2

−a/2

z λ(z, t) dz k

=
πI0
ωa

sinωt

∫ a/2

−a/2

z sin
(πz
a

)
dz k . (12.8)

Integration by parts gives∫ a/2

−a/2

z sin
(πz
a

)
dz =

[
− a

π
z cos

(πz
a

)]a/2
−a/2

+
a

π

∫ a/2

−a/2

cos
(πz
a

)
dz

= (
a

π
)2
[
sin
(πz
a

)]a/2
−a/2

= 2(
a

π
)2 . (12.9)

This gives for the electric dipole moment

p(t) = 2
aI0
ωπ

sinωtk ⇒ p0 = 2
aI0
ωπ

. (12.10)

c) The expressions for electric dipole radiation fields are

B(r, t) = − μ0

4πcr
n× p̈ret , n = r/r,

E(r, t) = cB(r, t)× n (12.11)

with p̈ret referring to p̈ at the time tr = t − r/c. In the present case we

have

p̈(t− r

c
) = −ω2p0 sin(ωtr)k . (12.12)

For the fields on the x-axis, with r = ri, the magnetic field is

B(ri, t) = −μ0ω
2p0

4πcr
sin(ωtr) i× k

= −μ0ωaI0
2π2cr

sin(ωtr) j , (12.13)

and the electric field is

E(ri, t) =
μ0ωaI0
2π2r

sin(ωtr)k . (12.14)

This shows that the radiation in the plane orthogonal to the antenna is lin-

early polarized (plane polarized), with the electric field oscillating along the

direction of the antenna and the magnetic field oscillating in the direction

orthogonal to the antenna and to the direction of propagation.
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Problem 12.2

We study a simple, classical model of the hydrogen atom, where the neg-

atively charged electron moves in a circular orbit around the positively

charged proton. Due to the large difference in mass of the two, the proton

can be considered as having a fixed position. We regard the radius of the

electron’s orbit to be equal to the Bohr radius a0 = 0.53 ·10−10m. The elec-

tron has mass me = 9.1 ·10−31 kg and a charge e = −1.60 ·10−19C.We take

the orbit plane to be the x, y-plane. The electric and magnetic constants

are ε0 = 8.85 · 10−12C2N−1m−2 and μ0 = 4π · 10−7N/A2.

a) The equation of motion of the electron in the Coulomb field of the

atomic nucleus is

ma = eE = − e

4πε0r3
r . (12.15)

For circular motion we have a = −ω2r, with ω as the angular velocity.

Inserted in the equation of motion, this gives

mω2 =
e2

4πε0r3
, (12.16)

and with r = a0 (a0 here meaning the Bohr radius), this gives for the

angular velocity,

ω =
e√

4πε0ma30
= 4.1 · 1016 s−1 . (12.17)

b) Larmor’s formula determines the radiation power,

P =
μ0e

2

6πc
a2 =

μ0e
2

6πc
ω4a20 = 4.6 · 10−8W . (12.18)

c) The energy of the electron, expressed as a function of the radius of

the circular orbit, is

E(r) = T + V =
1

2
mv2 − e2

4πε0r

=
1

2
mr2ω2 − e2

4πε0r
= − e2

8πε0r
. (12.19)

Assuming a slowly changing radius r, the time derivative of the energy is

dE
dt

=
dE
dr

dr

dt
=

e2

8πε0r2
ṙ . (12.20)

With the effect of electromagnetic radiation taken into account, energy

conservation implies

P +
dE
dt

= 0 ⇒ ṙ = −8πε0r
2

e2
P . (12.21)
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Assuming r = a0, this gives

ṙ = −4

3

ω4a40
c3

, (12.22)

and a rough estimate of the life time of this classical atom is then

T ≈ a0
|ṙ| =

3

4

c3

ω4a30
= 4.7 · 10−11 s . (12.23)

Problem 12.3

A thin rigid rod of length l rotates with constant angular velocity ω in

a horizontal plane (the x, y-plane). At the two end points there are fixed

charges with opposite signs, +q and −q. This gives rise to a time dependent

electric dipole moment

p(t) = ql(cosωt i+ sinωt j) . (12.24)

a) The magnetic field, in the case of electric dipole radiation, is

B(r, t) =
μ0

4πcr
p̈ret × n , n =

r

r
(12.25)

where p̈ret is evaluated at the retarded time tr = t − r
c . For the rotating

electric dipole moment we have

p̈ = −ω2p = −ω2lq(cosωt i+ sinωt j) , (12.26)

and the unit vector n, when expressed in polar coordinates, is

n = sin θ cosφ i+ sin θ sinφ j+ cos θ k . (12.27)

With these introduced in the expression for the magnetic field, we find

B(r, t) = −μ0ω
2lq

4πcr
(cos θ sinωtr i

− cos θ cosωtr j− sin θ sin(ωtr − φ))k , (12.28)

which gives as amplitude of the oscillating field

B0 = −μ0ω
2lq

4πcr
. (12.29)

The electric component of the radiation field is determined by the magnetic

component as E(r, t) = cB(r, t)× n.
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b) For radiation in the x-direction we have n = i, corresponding to polar

angles (θ, φ) = (π2 , 0). This gives

B(r, t) = −B0 sinωtr k , (12.30)

which shows that the radiation is linearly polarized, with the B-field oscil-

lating in the z-direction.

For radiation in the z-direction we have n = k, corresponding to θ = 0.

In this case we have

B(r, t) = B0(sinωtr i− cosωtr j) , (12.31)

which shows that the radiation is circularly polarized, with the B-field (and

the E-field) rotating in the x, y-plane.

c) The energy density of the radiation is

u =
1

2
(ε0E

2 +
1

μ0
B2)

=
1

μ0
B2

0(cos
2 θ + sin2 θ sin2(ωtr − φ)) . (12.32)

The time average sin2 ωt = 1/2 gives, for the averaged energy density,

ū =
1

2μ0
B2

0(1 + cos2 θ) . (12.33)

The energy density current is given by the Poynting vector

S =
1

μ0
E×B =

c

μ0
B2n = cun . (12.34)

It has its maximal value in the direction where the energy density ū is

largest. This happens when cos θ = ±1, which means in the positive or

negative direction along the z-axis.

Problem 12.4

In a circular loop of radius a, an oscillating current of the form I = I0 cosωt

is running. The current loop lies in the x, y-plane, with the center of the

loop at the origin. The loop is at all times charge neutral, and the following

inequality, aω << c, is satisfied.

a) We evaluate the magnetic dipole moment of the current, defined as

m =
1

2

∫
(r× j)dV , (12.35)

where j is the current density (inside the conducting wire). Due to the

circular motion we write it as j = jeφ, with eφ as the unit vector tangential
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to the current loop. With the current I as the integral of j over the cross

section of the current wire, and er as the unit vector in the radial direction,

the magnetic moment is

m =
1

2
a2I

∫ 2π

0

(er × eφ)dφ

= πa2Iez

= πa2I0 cosωt ez . (12.36)

This shows that the amplitude of the oscillations of m is m0 = πa2I0.

When aω << c, which corresponds to λ >> a where λ is the (typical)

wave length of the radiation, the radiation field will be dominated by the

lowest multipole terms. In the present case, since the current loop is charge

neutral, both the electric dipole and quadrupole terms vanish, and the

magnetic dipole term is therefore the dominant one.

b) The expression given above for m gives, for m̈,

m̈ret = −πa2ω2I0 cos(ω(t− r

c
)) ez . (12.37)

With ω(t − r
c ) = ωt − kr, where k = ω/c, the electric and magnetic fields

are then determined as

E(r, t) = − μ0

4πcr
m̈ret × n

=
μ0a

2

4cr
I0ω

2 cos(ωt− kr) sin θ eφ , (12.38)

and

B(r, t) = −1

c
E(r, t)× n

= −μ0a
2

4cr
I0ω

2 cos(ωt− kr) sin θ eθ . (12.39)

Here we have used the relations ez × n = sin θ eφ, eφ × n = eθ. The

expressions for E and B show that they define a monochromatic wave with

angular frequency ω which propagates in the radial direction, away from the

magnetic dipole. Since the E and B fields oscillate in fixed directions, along

the unit vectors eφ and eθ, respectively, the radiation is linearly polarized.

c) The radiated power per unit solid angle is expressed in terms of the

Poynting vector, S = 1
μ0
E×B, as

dP

dΩ
= r2S =

1

μ0c
E2 =

μ0a
4

16c3r2
I20ω

4 cos2(ωt− kr) sin2 θ . (12.40)
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Averaged over time gives cos2 ωt → 1/2, and integrated over angles, the

above expression gives, for the radiated power,

P̄ =

∫
dP̄

dΩ
dΩ = 2π

μ0a
4

32c3
I20ω

4

∫
sin3 θdθ =

μ0πa
4

12c3
I20ω

4 . (12.41)

d) The induced electric field in the secondary current loop is, according

to Faraday’s law of induction, determined by the time derivative of the

magnetic flux through the loop. With the infinitesimal area vector of the

loop written as dA = e dA, where e is a unit vector perpendicular to

the second loop, the loop integral of the electric field is∮
C

E · ds = d

dt

∫
S

B · e dA . (12.42)

This shows that the induced field will be strongest when |B ·e| is maximal.

For points in the x, y-plane the B field is oriented along the z-axis. This

implies that the signal received by the secondary loop is maximal for the

orientations, e = ±ez.

Problem 12.5

An electron with charge e and mass m is moving with constant speed in

a circle under the influence of a constant magnetic field B0. The magnetic

field is directed along the z-axis, while the motion of the electron takes

place in the x, y plane. Since the electron is accelerated, it will radiate

electromagnetic energy and thereby lose kinetic energy. We study this effect,

assuming that the speed of the electron is non-relativistic.

a) For the circular motion we have the following relations between the

velocity v, the acceleration a and the radius r of the circle,

v = ωr , a = ωv = ω2r , (12.43)

where ω = −eB0/m. With this applied to Larmor’s radiation formula, we

find that radiation power is

P =
μ0e

2

6πc
a2 =

μ0e
2

6πc
ω4r2 . (12.44)

b) Energy conservation applied to the electron gives

d

dt
(
1

2
mv2) = −P ⇒ 1

2
mω2 d

dt
r2 = −μ0e

2

6πc
ω4r2 . (12.45)

This can be written in the form

d

dt
r2 = −2λr2 , λ =

μ0e
2

6πc

ω2

m
. (12.46)
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By rewriting the differential equation as

dr2

r2
= −2λdt , (12.47)

the equation can easily be integrated to give the solution

ln r2 = −2λt+ ln r20 , (12.48)

with the last term as an integration constant. From this follows

r = r0e
−λt = r0 exp

(
−μ0e

2ω2

6πmc
t

)
. (12.49)

Problem 12.6

An antenna is composed of two parts. One part is a linear antenna along

the z-axis, with end points z = ±a/2. It carries the current

I1 = I0 sinωt cos
(πz
a

)
. (12.50)

The other part is a circular antenna, which lies in the x, y-plane, and is

centered at the origin of the coordinate system. It has radius 2a and carries

the current

I2 = I0 sinωt . (12.51)

a) The electric dipole moment is

p =

∫ a/2

−a/2

zλ(z, t)dz k , (12.52)

with λ(z, t) as the linear charge density along the z-axis. We exploit the

continuity equation of charge in the form

∂λ

∂t
+
∂I1
∂z

= 0 , (12.53)

and find for the time derivative of the electric dipole moment,

ṗ =

∫ a/2

−a/2

z
∂λ

∂t
dz k

= −
∫ a/2

−a/2

z
∂I1
∂z

dz k

=

∫ a/2

−a/2

I1(z, t)dz − [zI1]
a/2
−a/2 k . (12.54)
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Since the current vanishes at the endpoints of the conducting wire there is

no contribution from the last term, and integration of the first term gives

ṗ =
a

π
I0 sinωt

[
sin
(πz
a

)]a/2
−a/2

k

=
2a

π
I0 sinωtk . (12.55)

The magnetic dipole moment is given by

m =
1

2

∮
I2r× dr

=
1

2
I0 sinωt(2a)

2

∫ 2π

0

dφk

= 4πa2I0 sinωtk . (12.56)

b) The dipole contributions to the electric and magnetic radiation fields

are given by

E(r, t) =
μ0

4πr
((p̈× n)× n− 1

c
m̈× n+ ...)ret ,

B(r, t) = −1

c
E(r, t)× n , (12.57)

with n = r/r. The double time derivatives of p and m, which follow from

the expressions above, are

p̈ =
2a

π
ωI0 cosωtk , m̈ = −4πa2ω2I0 sinωtk . (12.58)

We introduce the orthogonal unit vectors e1 and e2 through the equations

k× n = sin θ e1 , (k× n)× n = sin θ e2 , (12.59)

which means that (n, e1, e2) defines an orthonormalized basis set in three-

dimensional space.

By use of the expressions for the E and B fields, we find the following

expression for Poynting’s vector,

S =
1

μ0
E×B =

1

μ0c
E2n

=
μ0

16π2r2c
(p̈2 +

1

c2
m̈2) sin2 θ n . (12.60)

The time averages of the contributions to the radiation power from the

electric and magnetic dipole moments are assumed to be equal. That gives

p̈2 =
1

c2
m̈2 ⇒ ω =

c

2π2a
. (12.61)
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Poynting’s vector in this case is time independent and given by

S =
μ0

16π2r2c

4a2

π2

( c

2π2a

)2
I20 sin

2 θ n

=
μ0c

16π8r2
I20 sin

2 θn , (12.62)

and the radiation power per unit solid angle is

dP

dΩ
= r2S =

μ0c

16π8
I20 sin

2 θ . (12.63)

c) With equal contributions from the electric and magnetic dipole terms,

the electric field is

E(r, t) =
μ0c

4π4r
I0 sin θ(sinωt e1 + cosωt e2) . (12.64)

The electric vector rotates in the plane spanned by e1 and e2. Since the

rotation is clockwise around the direction of propagation n, the polarization

is left-handed, circular. If the contributions from the electric and magnetic

dipole terms are not equal, the coefficients before sinωt and cosωt in the

expressions for E will no longer be equal. The radiation will then be ellip-

tically polarized, with e1 and e2 defining the symmetry axes of the ellipse.

Problem 12.7

An electron, with charge e and mass m, performs oscillations in an electro-

magnetic field with the following components,

Ex = E0 cos(kz − ωt) , Ey = Ez = 0 . (12.65)

a) For a monochromatic plane wave the magnetic field is related to the

electric field by

B =
1

c
n×E , n = k/k . (12.66)

In the present case, with the electromagnetic wave propagating in the z-

direction, this gives

By =
1

c
Ex =

E0

c
cos(kx− ωt) , Bx = Bz = 0 . (12.67)

The Poynting vector is then

S =
1

μ0
E×B

= ε0cE
2
x ez

= ε0cE
2
0 cos

2(kz − ωt) ez . (12.68)
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b) The assumed motion of the electron is

ẋ = −eE0

mω
sin(kz − ωt) , ẏ = ż = 0 . (12.69)

This gives, for the acceleration,

ẍ =
eE0

m
cos(kz − ωt) , ÿ = z̈ = 0 ⇒ ma = eE . (12.70)

This equation is seen to be correct if we can neglect the magnetic force

ev×B and assume non-relativistic motion. The magnetic force is negligible

relative to the electric force if vB << E, and since for the plane wave we

haveB = E/c, this is satisfied if the motion is non-relativistic, v << c. With

the motion of the electron given by (12.69), this can further be expressed

as a constraint on the ratio between the amplitude and the frequency of

the electromagnetic wave,

eE0

mcω
<< 1 . (12.71)

c) The time averaged emitted power from the electron is determined by

Larmor’s formula,

P̄rad =
μ0e

2

6πc
a2

=
μ0e

4

6πm2c
E2

=
μ0e

4

12πm2c
E2

0 . (12.72)

The time averaged energy current density of the plane wave is

S̄pw =
1

μ0c
E2 =

1

2μ0c
E2

0 (12.73)

with Spw as the Poynting vector of the plane wave. This gives for the

interaction cross section

σ =
P̄rad

S̄pw
=

μ2
0e

4

6πm2
. (12.74)

d) We assume in the following that the electron oscillates about the

origin, r = 0. We denote the Poynting vector of the radiation field from the

electron by Srad. The corresponding radiated power per unit solid angle is

dPrad

dΩ
= r2 Srad · n , n =

r

r
. (12.75)
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We make use of the following expression for the magnetic component of the

radiation field far from the electron

Brad(r, t) =
μ0e

4πc

[
a× n

r

]
ret

. (12.76)

The Poynting vector is then

Srad =
1

μ0
Erad ×Brad =

c

μ0
B2

radn

=
c

μ0

μ2
0e

2

16π2c2

[
a× n

r

]2
ret

n

=
μ0e

2

16π2c r2
(a2 − (a · n)2)ret n . (12.77)

We introduce θ as the angle between the x-axis and n. This gives

(a2 − (a · n)2)ret = a2ret(1 − cos2 θ)

=
e2

m2
E2

0 sin
2 θ cos2(kz − ωtret) . (12.78)

The time averaged differential power is then

dP̄

dΩ
= r2Srad · n =

μ0e
4

32π2m2c
E2

0 sin
2 θ . (12.79)

The radiation is maximal when θ = π/2, that is in directions perpendicular

to the x-axis, which is the direction of oscillations of the electron. The

radiation is minimal for θ = 0 or θ = π, that is in the directions of the

x-axis.

The electric component of the radiation field is

Erad(r, t) =
μ0e

4πr
[(a× n)× n]ret

=
μ0e

2

4πmr
E0 cos(kz − ωtret)(ex × n)× n , (12.80)

which shows that the radiation is linearly polarized in the direction of (ex×
n)× n.



Electromagnetic radiation 125

Problem 12.8

A linear antenna of length 2a is oriented along the z-axis, with its center

at the origin. The assumption is that the charge of the antenna is at all

times located at the endpoints, and the current in the antenna is given by

I = I0 sinωt. The antenna is electrically neutral at time t = 0. The radiation

from the antenna can be treated as electric dipole radiation. The spherical

coordinates of point A are (r, θ, φ), and the corresponding orthonormal

vector basis is {er, eθ, eφ}.
a) We refer to the endpoint charges asQ(±a, t) = ±Q(t), with Q(0) = 0.

Charge conservation implies

dQ

dt
= I = I0 sinωt

⇒ Q(t) =

∫ t

0

I0 sinωt dt

=

[
−I0
ω

cosωt

]t
0

=
I0
ω
(1− cosωt) . (12.81)

The electric dipole moment is then

p(t) = 2Q(t)ak =
2aI0
ω

(1− cosωt)k

⇒ p̈ = 2I0ωa cosωtk . (12.82)

b) For electric dipole radiation, the magnetic component of the field is

B(r, t) =
μ0

4πrc
p̈ret × n

=
μ0I0ωa

2πrc
cosωtr k× er

=
μ0I0ωa

2πrc
sin θ cosωtr eφ , (12.83)

with tr = t− r/c. The electric component of the field is

E(r, t) = cB(r, t)× er =
μ0I0ωa

2πr
sin θ cosωtr eθ . (12.84)

The radiation is linearly polarized, since E oscillates with time in the fixed

direction defined by eθ. Similarly B oscillates in the orthogonal direction,

given by eφ.
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c) We write the fields as B = Beφ and E = cBeθ. The Poynting vector

is

S =
1

μ0
E×B

=
c

μ0
B2eθ × eφ =

c

μ0
B2er

=
μ0ω

2a2

4π2r2c
I20 sin

2 θ cos2 ωtr er . (12.85)

The radiation power per unit solid angle is then

dP

dΩ
= r2S =

c

μ0
r2B2

=
μ0ω

2a2

4π2c
I20 sin

2 θ cos2 ωtr , (12.86)

and averaged over time the result is

dP

dΩ
=
μ0ω

2a2

8π2c
I20 sin

2 θ . (12.87)

The integration over angles is∫
dΩ sin2 θ = 2π

∫ π

0

sin3 θdθ =
8

3
π , (12.88)

which for the averaged total power gives

P̄ =
μ0ω

2a2

3πc
I20 ≡ 1

2
RI20 ⇒ R =

2μ0ω
2a2

3πc
. (12.89)

With R0 as regular resistance and R as radiation resistance, the total power

consumed by the antenna is

P̄tot =
1

2
(R +R0)I

2
0 . (12.90)

d) With specified values, 2a = 5 cm, frequency f = 150MHz and current

I0 = 30A, the radiation resistance and the time averaged radiation power

are

R =
8πμ0f

2a2

3c
= 0.49Ω , P̄ =

1

2
RI20 = 222W . (12.91)
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Problem 12.9

φ
r

A B

C

x

y

r cosφ

r sinφ

rφ

rφ cosφ 
rφ sinφ 

Fig. 12.1 Geometric construction of the coordinates of the radiation point C in
Problem 12.9.

A charged particle moves with ultrarelativistic speed in a circular orbit.

The radiation which is caused by acceleration of the charge, will almost

exclusively be sent in the forward direction, tangential to the circular orbit.

At time t = 0 the particle is located at a point A. At an earlier time,

tB < 0, the radiation is emitted from the particle at a point B. The angle

φ between A and B on the circle is given by φ = c|tB|/r, with r as the

radius of the circle, when we approximate the speed of the particle with the

speed of light. The radiation radiated from point B will at time t = 0 have

reached a third point C.

a) The coordinates of C can be found by a simple geometric construc-

tion. As shown in Fig. 12.1, point C can be reached from the origin by use

of two congruent, right-angled triangles. The upper one is scaled relative to

the lower one by the factor φ. The corresponding sides of the two are also

different in orientation, corresponding to a reflection x↔ y. The result for

the coordinates is as stated in the text of the problem,

x = r(sin φ− φ cosφ) , y = r(cosφ+ φ sinφ). (12.92)

b) Fig. 12.2b shows the spatial position of the radiation, close to the

charged particle at time t = 0. The radiation in this case has been emitted
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in a small angular interval 0 < φ � π/10. The radiation forms the curved,

almost vertical curve, and the direction of propagation is indicated by the

arrow. A part of the circular orbit of the particle, which in the figure is

located close to the y-axis, is shown by the slightly curved, almost horizontal

curve.

c) Fig. 12.2c shows the location of the radiation that has been emitted

by the particle in the larger angular interval 0 < φ < 2π. In this figure

the full circle of the particle orbit is seen, and the spiral like form of the

radiation from the particle is apparent. Here, the direction of propagation

of the radiation is also shown.

0.02-0.02-0.04 0.04

1.02

1.02

x/r

y/r

2-2-4-6 4 6

-2

 2

-4

(b)

(c)

y/r

x/r

Fig. 12.2 The location of the synchrotron radiation at the instant when the
charged particle passes the positive y-axis. (b) shows the radiation close to the
particle, while (c) shows the radiation, at the same instant, which has been emit-
ted from the charge during a full period of circulation.
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Chapter 13

Lagrangian and Hamiltonian
formulations

Problem 13.1

This is an electrostatic situation, where ρ is the electric charge distribution

and φ is the electric potential. The Lagrangian density has the form,

L =
1

2
(∇φ)2 − ρ

ε0
φ. (13.1)

The problem is to determine the derivatives

∂L
∂φ

,
∂L
∂φ,i

(13.2)

to find the corresponding Euler–Lagrange equation and to check that the

result is in accordance with Poisson’s equation,

∇2φ = − ρ

ε0
. (13.3)

The Lagrange density is

L =
1

2
φ,iφ

,i − ρ

ε0
φ, (13.4)

which gives

∂L
∂φ

= − ρ

ε0
φ,

∂L
∂φ,i

= φ,i (13.5)

and the Euler–Lagrange equation,

∂L
∂φ

− ∂

∂x,i

(
∂L
∂φ,i

)
= − ρ

ε0
φ− ∂

∂x,i
φ,i = 0. (13.6)

The result is

∂2

∂x,i∂x,i
φ = − ρ

ε0
, (13.7)

which we simplify to

∇2φ = − ρ

ε0
. (13.8)

This is in accordance with Poisson’s equation.
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Problem 13.2

(a) The Lagrangian density with φ4-theory is

L =
1

2
(∂tφ)

2 − 1

2
(∂xφ)

2 − 1

4
λ
(
φ2 − ρ0

)2
, (13.9)

where c = 1, and λ and ρ0 are constants.

The Euler–Lagrange equation is found in the following way:

∂L
∂φ

− ∂

∂t

∂L
∂φ̇

− ∂

∂x

∂L
∂φ′

= 0

⇒ −φ̈+ φ′′ − λφ(φ2 − ρ0) = 0 (13.10)

When φ(t, x) solves the equation, so does −φ(t, x), since the equation is

symmetric under φ→ −φ.
(b) The energy density is

T 00 = −L+
∂L
∂φ̇

φ̇

= −L+ φ̇2

=
1

2
(φ̇2 + φ′2) +

1

4
λ(φ2 − ρ0)

2. (13.11)

(c) A classical vacuum state is

φ2 = ρ0 ⇒ T 00 = 0, (13.12)

which is a minimum for T 00. There are in fact two possible values:

φ± = ±√
ρ0. (13.13)

(d) The problem now is to show that the following is a static solution

to the Euler–Lagrange equation (with φ̈ = 0):

φ±(x) = ±√
ρ0 tanh

[√
λρ0
2

(x− a)

]
a = const.

= ±√
ρ0 tanh y, y =

√
λρo
2

(x− a). (13.14)

We study separately the two parts of the equation:

(1) φ′′ =
d2

dx2
{√ρ0 tanh y},

(2) λφ(φ2 − ρ0) = λρ0
√
λρ0 tanh y tanh2 y. (13.15)
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We make use of this:

(1)
d

dx
tanh y =

dy

dx

d

dy
tanh y =

√
λρ0
2

1

cosh2 y

⇒ ∂2

∂x2
tanh y =

√
λρ0
2

d

dy

1

cosh2 y
= −λρ0 sinh

2 y

cosh3 y
, (13.16)

(2) λφ(φ2 − ρ0) = λρ0
√
ρ0 tanh y(tanh2 y − 1)

= λρ0
√
ρ0

sinh y

cosh y

(
sinh2 y

cosh2 y
− 1

)

= λρ0
√
ρ0

sinh y

cosh3 y
. (13.17)

This shows that (1) + (2) = 0, which implies that Eq. (13.14) is satisfied:

± φ(x) = ±√
ρ0 tanh

[√
λρ0
2

(x− a)

]
, (13.18)

and that Euler–Lagrange equation is therefore confirmed.

(e) To find the energy density for the static Euler–Lagrange equation,

we start as follows:

T 00 =
1

2
φ′2 +

1

4
λ(φ2 − ρ0)

2. (13.19)

The derivative φ′ is the next step:

φ′ =
∂

∂x

√
ρ0 tanh y

=

√
λ

2
ρ0

1

cosh2 y

⇒ 1

2
φ

′2 =
λ

4
ρ20

1

cosh4 y
, (13.20)

and further,

φ2 − ρ0 = ρ0(tanh
2 y − 1)

⇒ 1

4
λ(φ2 − ρ0)

2 =
1

4
ρ20(tanh

2 y − 1)2

=
1

4
ρ20

1

cosh4 y
. (13.21)
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This gives the result

T 00 =
1

4
λρ20

(
1

cosh4 y
+

1

cosh2 y

)

=
λρ20

2 cosh4 y
, (13.22)

with y =
√

λρ0

2 (x− a).

(f) The total energy of the “kink” solution is

Ekink =

∫ ∞

−∞
dxT 00 =

∫ ∞

−∞
dy
dx

dy
T 00

=

∫ ∞

−∞

√
2

λρ0

λρ20
2

1

cosh4 y
dy

=

√
λρ30
2

∫ ∞

−∞

1

cosh2 y
dy

=
2
√
2

3

√
λρ30. (13.23)

(g) Solution when the kink moves with velocity v is

φ(z) = φ(x − vt). (13.24)

We introduce the derivatives of φ:

φ′ =
∂z

∂x

∂φ

∂z
=
∂φ

∂z
,

φ′′ =
∂

∂x

∂φ

∂z
=
∂z

∂x

∂2φ

∂z2
=
∂2φ

∂z2
,

φ̇ =
∂z

∂t

∂φ

∂z
= −v2 ∂φ

∂z
,

φ̈ = −v ∂z
∂t

∂2φ

∂z2
= v2

∂2φ

∂z2
. (13.25)

This gives

φ̈− φ′′ + λ φ (φ2 − ρ0) = 0

⇒ (v2 − 1)
∂2φ

∂z2
+ λφ(φ2 − ρ0) = 0

⇒ ∂2φ

∂z2
− λ

1− v2
φ(φ2 − ρ0) = 0, (13.26)
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and the result for the energy function is

E(v) =
2
√
2

3

√
λρ30

1− v2
. (13.27)

Compared to v = 0, there is an additional factor:

1√
1− v2

, (13.28)

which is the standard relativistic factor, where the energy of a moving

object increases with the velocity v (or more correctly v/c).

Problem 13.3

(a) For small variations, the Lagrangian density has the form

L(ẏ, ż, y′, z′) = 1

2
(μẏ2 − σy′2 + μż2 − σz′2). (13.29)

This means that the vibrations take place in both the y- and z-directions.

This is different from the waves on the string in the book, where only

one direction, y, is included. The Lagrangian is the integral over x of the

Lagrangian density,

L =

∫ a

0

dx

[
1

2
μ

{(
∂y

∂t

)2

+

(
∂z

∂t

)2
}

− 1

2
σ

{(
∂y

∂x

)2

+

(
∂z

∂x

)2
}]
. (13.30)

(b) To determine the Euler–Lagrange equations, and solve them, we fol-

low the procedure of the corresponding example in the book. The variation

of the the string is as follows:

δS =

∫
dx

∫
dt

[(
∂

∂x

(
∂L
∂y′

)
+

∂

∂x

(
∂L
∂ẏ

)
δy

+

(
∂

∂x

(
∂L
∂z′

)
+

∂

∂x

(
∂L
∂ż

)
δz

]
, (13.31)

where the boundary contribution to δS has been set to zero. This is cor-

rect for any choice of boundary in the (x, t)-plane. The Euler–Lagrange

equations are then

∂

∂x

(
∂L
∂y′

)
+
∂

∂t

(
∂L
∂ẏ

)
= 0,

∂

∂x

(
∂L
∂z′

)
+
∂

∂t

(
∂L
∂ż

)
= 0, (13.32)
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where

∂

∂t

(
∂L
∂ẏ

)
= μÿ,

∂

∂x

(
∂L
∂y′

)
= −σy′′,

∂

∂t

(
∂L
∂ż

)
= μz̈,

∂

∂x

(
∂L
∂z′

)
= −σz′′.

(13.33)

This gives the following equations:

μÿ − σy′′ = 0 ⇒ ∂2y

∂t2
− v2

∂2y

∂x2
= 0,

μz̈ − σz′′ = 0 ⇒ ∂2z

∂t2
− v2

∂2z

∂x2
= 0,

(13.34)

with v =
√
σ/μ.

General solutions are

y(x, t) = g(vt+ x)− g(vt− x),

z(x, t) = f(vt+ x)− f(vt− x).
(13.35)

(c) The Fourier expansion expressed with g(ξ) is (see the main book)

g(ξ) =

∞∑
n=1

{
an cos

(
nπξ

a

)
+ bn sin

(
nπξ

a

)}
, (13.36)

where xε[0, a]. This implies that

y(x, t) = g(vt+ x)− g(vt− x)

=
∑
n

[
an

{
cos
(nπ
a
(vt+ x)

)
− cos

(nπ
a
(vt− x)

)}

+ bn

{
sin
(nπ
a
(vt+ x)

)
− sin

(nπ
a
(vt− x)

)}]
= 2

∑
n

[
an

{
− sin

(nπ
a
vt
)
sin
(nπ
a
x
)}

+ bn

{
cos
(nπ
a
vt
)
sin
(nπ
a
x
)}]

. (13.37)

We continue with derivatives

∂y

∂t
=
∑
n

2nπ

a
v
(
an

{
− cos

(nπ
a
vt
)
sin
(nπ
a
x
)}

− bn

{
sin
(nπ
a
vt
)
sin
(nπ
a
x
)})

, (13.38)
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and further,∫ a

0

(
∂y

∂t

)2

dx =

∞∑
1

2n2π2

a
v2
(
a2n cos

2
(nπ
a
vt
)
− b2n sin

2
(nπ
a
vt
)

+2anbn cos
(nπ
a
vt
)
sin
(nπ
a
vt
))
. (13.39)

With ∂y
∂t changed to ∂y

∂x , we get∫ a

0

(
∂y

∂x

)2

dx =

∞∑
1

2n2π2

a
v2
(
a2n sin

2
(nπ
a
vt
)
+ b2n cos

2
(nπ
a
vt
)

− 2anbn sin
(nπ
a
vt
)
cos
(nπ
a
vt
))
, (13.40)

and with the two combined,∫ a

0

1

2
μ

{(
∂y

∂t

)2

− v2
(
∂y

∂x

)2
}
dx

=

∞∑
1

n2π2

a
σ
(
a2n + b2n + 2anbn sin

(nπ
a
vt
))
. (13.41)

A similar result, when y is changed to z, is∫ a

0

1

2
μ

{(
∂z

∂t

)2

− v2
(
∂z

∂x

)2
}
dx

=

∞∑
1

n2π2

a
σ
(
c2n + d2n + 2cndn sin

(nπ
a
vt
))
. (13.42)

This gives a form of the Lagrangian density in terms of a Fourier expansion,

L =

∞∑
1

n2π2

a
σ

{
A+ 2B sin

(
2nπ

a
vt

)}
, (13.43)

with

A2 = a2n + b2n + c2n + d2n, B2 = anbn + cndn. (13.44)

(d) The next points are the Euler–Lagrange equations expressed in

terms of the Fourier transform. We start with (13.37):

y(x, t) = 2
∑
n

[
an

{
− sin

(nπ
a
vt
)
sin
(nπ
a
x
)}

+ bn

{
cos
(nπ
a
vt
)
sin
(nπ
a
x
)}]

, (13.45)
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and we find the derivatives,

∂2y

∂t2
=
∑
n

2n2π2

a2
v2
(
an sin

(nπ
a
vt
)
− bn cos

nπ

a
vt
))

sin
(nπ
a
x
)
,

∂2y

∂x2
=
∑
n

2n2π2

a2

(
an sin

(nπ
a
vt
)
− bn cos

nπ

a
vt
))

sin
(nπ
a
x
)
. (13.46)

The result is

∂2y

∂t2
− v2

∂2y

∂x2
= 0, (13.47)

which confirms that the correct Euler–Lagrange equation can also be found

with the Fourier transform.
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Symmetry transformations

Problem 14.1

The Lagranian density,

L =
1

2
μ

{(
∂y

∂t

)2

+

(
∂z

∂t

)2
}

− 1

2
σ

{(
∂y

∂x

)2

+

(
∂z

∂x

)2
}
, (14.1)

corresponds to the (integrated) Lagrangian in Problem 1.3. The Euler–

Lagrange equations here are therefore the same as in that case:

∂

∂x

(
∂L
∂y′

)
+
∂

∂t

(
∂L
∂ẏ

)
= 0,

∂

∂x

(
∂L
∂z′

)
+
∂

∂t

(
∂L
∂ż

)
= 0. (14.2)

As shown there, the equations can be expressed as:

∂2y

∂t2
− v2

∂2y

∂x2
= 0,

∂2z

∂t2
− v2

∂2z

∂x2
= 0, (14.3)

where v =
√
σ/μ.

(a) The energy–momentum tensor has the general form

T 00 = −L+
∂L
∂ẏ

y′ − ∂L
∂ż
z′

=
1

2
μ

{(
∂y

∂t

)2

+

(
∂z

∂t

)2
}

+
1

2
σ

{(
∂y

∂x

)2

+

(
∂z

∂x

)2
}

= T 11 (14.4)

and

T 01 = −∂L
∂ẏ

y′ − ∂L
∂ż
z′

= −μ
(
∂y

∂t

∂y

∂x
+
∂z

∂t

∂z

∂x

)

= T 10. (14.5)
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The question now is: Are the energy and the momentum conserved?

We begin with the energy density, E = T 00. It can be split in two:

E = Ey + Ez ,

Ey =
1

2

{
μ

(
∂y

∂t

)2

+ σ

(
∂y

∂x

)2
}
, Ez =

1

2

{
μ

(
∂z

∂t

)2

+ σ

(
∂z

∂x

)2
}
. (14.6)

Since these two are equal and independent, it is sufficient to examine one

of them. We take Ey, and change the form of this density by use of the

corresponding part of the Euler–Lagrange equation,

∂2y

∂t2
− v2

∂2y

∂x2
= 0, v2 =

σ

μ
. (14.7)

This implies that for the time derivative of Ey,
∂Ey
∂t

= μ
∂y

∂t

∂2y

∂t2
+ σ

∂y

∂x

∂2y

∂t∂x

= σ

{
∂y

∂t

∂2y

∂x2
+
∂y

∂x

∂2y

∂t∂x

}

= σ
∂

∂x

(
∂y

∂t

∂y

∂x

)

= −∂jy
∂x

. (14.8)

The derivative of Ez gives the same result, with y replaced by z, and the

sum of Ey and Ex, gives the same result:

∂E
∂t

+
∂j

∂x
= 0, j = jt + jx = −σ ∂2y

∂t∂x
. (14.9)

This result is an interpretation of the conservation of energy, where the

change of local energy is compensated by the flow of energy to and from

this locality.

T 11 = T 00 shows that the flux density appears in the same way as the

energy density.

(b) We show that the following transformation is a symmetry transfor-

mation: (
y

z

)
→
(
ȳ

z̄

)
=

(
cosα − sinα

sinα cosα

)(
y

z

)
, (14.10)

with α as an arbitrary constant.
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We note first that

ȳ = cosαy − sinαz,

z̄ = sinαy + cosαz,
(14.11)

and the result under differential of time t,

∂ȳ

∂t
= cosα

∂y

∂t
− sinα

∂z

∂t
,

∂z̄

∂t
= sinα

∂y

∂t
+ cosα

∂z

∂t
.

(14.12)

A step further gives(
∂ȳ

∂t

)2

= cos2 α

(
∂y

∂t

)2

− 2 cosα sinα
∂y

∂t

∂z

∂t
+ sin2 α

(
∂z

∂t

)2

,

(
∂z̄

∂t

)2

= sin2 α

(
∂y

∂t

)2

+ 2 cosα sinα
∂y

∂t

∂z

∂t
+ cos2 α

(
∂z

∂t

)2

,

(14.13)

with the result, (
∂ȳ

∂t

)2

+

(
∂z̄

∂t

)2

=

(
∂y

∂t

)2

+

(
∂z

∂t

)2

. (14.14)

The same follows if instead of differentiation with respect to t, one does

that with x: (
∂ȳ

∂x

)2

+

(
∂z̄

∂x

)2

=

(
∂y

∂x

)2

+

(
∂z

∂x

)2

. (14.15)

This shows that there is a symmetry transformation from (y, z) to (ȳ, z̄).

The physical meaning is that the Lagrangian density of the string is

conserved under rotations of the coordinates y and z.

Problem 14.2

A Lagrangian density,

L = −(φ∗,νφ,ν + μ2φ∗φ), (14.16)

is invariant under the transformation

φ→ ψ = φ eiλ. (14.17)

(a) We consider the situation where λ is infinitesimal:

δφ = iλφ, δφ∗ = iλφ∗. (14.18)
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The function Nμ, which defines the Noether current, in the present case it

takes the form,

Nμ =
∂L
∂φ,μ

δφ+
∂L
∂φ∗,μ

δφ∗

= −iλ(φ∗,μφ− φ,μφ∗). (14.19)

(b) The above expression for Nμ gives the following derivative:

dNμ

dxμ
= −iλ {(∂μ∂μφ∗)φ− (∂μ∂

μφ)φ∗}, (14.20)

and by use of the Euler–Lagrange equation,

∂L
∂φ

− d

dxμ

(
∂L
∂φ,μ

)
= 0

⇒ (�− μ2)φ∗ = 0, (�− μ2)φ = 0, (14.21)

we find

dNμ

dxμ
= −iλμ2 {φ∗φ− φφ∗} = 0, (14.22)

which means that the conservation law is satisfied:

dNμ

dxμ
= 0. (14.23)

(c) To find the energy–momentum density tensor, T μν , in this case, is

as follows:

T μν = gμνL − ∂L
∂φ,μ

φ,ν − ∂L
∂φ∗,μ

φ∗,ν

= −gμν(φ∗,λφ,λ + μ2φ∗φ) + φ∗,μφ,ν + φ∗,νφ,μ. (14.24)

We will look at the components, first the energy density,

T 00 = φ∗,0φ,0 + φ∗,kφ,k + μ2φ∗φ

= |φ̇|2 + |φ,k|2 + μ2|φ|2, (14.25)

and next the flux density in the direction of xj ,

T j0 = − ∂L
∂φ,j

φ,0 − ∂L
∂φ∗,j

φ∗,0

= φ∗,jφ,0 + φ∗,0φ,j . (14.26)
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The k-momentum density is

T 0k = − ∂L
∂φ,0

φ,k − ∂L
∂φ∗,0

φ∗,k

= φ∗,kφ,0 + φ∗,0φ,k, (14.27)

and finally, the flux density of k-momentum in the direction xj ,

T jk = −δjk(φ∗,λφ,λ + μ2φ∗φ) + φ∗,jφ,k + φ∗,kφ,j . (14.28)

Problem 14.3

(a) We study the the following Lagrangian density:

L =
1

2
i�(φ∗φ̇− φ̇∗φ)− �

2

2m
∇φ∗ · ∇φ− V φ∗φ, (14.29)

where φ = φ(r, t) and V = V (r, t). The problem is to show that Euler–

Lagrange equations will have the form of a Schrödinger equation and its

complex conjugate.

The Euler–Lagrange equations are

∂L
∂φ∗

− d

dxμ

(
∂L
∂φ∗,μ

)
= 0 (14.30)

and the complex conjugate. We look at the components of the equation:

∂L
∂φ∗

=
1

2
i�φ̇+ V φ,

∂L
∂φ∗,t

= −i�φ ⇒ d

dt

∂L
∂φ

= −1

2
i�φ̇,

∂L
∂φ∗,k

= − �
2

2m

∂φ

∂x,k
⇒ d

dxk
∂L
∂φ∗,k

= − �
2

2m

∂2φ

∂xkdxk
.

(14.31)

This gives for the Euler–Lagrange equation,

1

2
i�φ̇+

1

2
i�φ̇+

�
2

2m

∂2φ

∂xkdxk
= 0

⇒ i�
∂φ

∂t
= − ∂2φ

∂xkdxk
+ V (r, t). (14.32)

This has the same form as the Schrödinger equation. There is also the

complex conjugate of the equation.
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b) The condition for symmetry under time translation is that the trans-

formation has the form,

ψ(y) = φ(x), with yμ = xμ + b δμ0 . (14.33)

The corresponding conserved quantity can be expressed as

dT μ0

dxμ
= 0. (14.34)

This means that the energy–momentum density is conserved in the time

direction.

The condition for symmetry under a space translation (in the

k-direction) means that the transformation can now be written as

dT μk

dxμ
= 0. (14.35)

This means that the energy–momentum density is conserved in the

k-direction.



Chapter 15

Relativistic fields

Problem 15.1

We have in this problem the follow Lagrangian density:

L = −1

2
∂μφ∂

μφ+ α(cosφ− 1), (15.1)

with α as a real constant.

(a) The Euler–Lagrange equation is

∂L
∂φ

− d

dxμ

(
∂L
∂φ,μ

)
= 0 → α sinφ− ∂μ∂

μφ = 0, (15.2)

and the following two-dimensional solution is given as

φ(x, t) = 4 arctan

[
β sinh(

√
αγx)

cosh(
√
αγvt)

]
, (15.3)

with β = v/c and γ = 1/
√
1− β2.

(b) We study the time evolution of a collision process by plotting φ as

a function of x for a series of time t. There are two series with different

velocities. In one set, (a), the velocity v is slow, β = 0.1, and in the other

set, (b), the velocity v is large, β = 0.9. The interpretation of the motion

of the kinks is that they first move toward the centre x = 0, where they

stop and then move in the opposite direction. In collision (a), the centre

of the kink seems to stop and returns earlier than the kink in collision (b).

This is consistent with the situation where the collision (a) moves slowly

and collision (b) moves fast. It is also consistent with the solitons being

repulsive.
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ϕ
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Fig. 15.1 Collisions between two kink solitons. There are two different types of
collisions, where (a) is a slow collision and (b) is a rapid collision. The different
colored lines show a sequence of positions of the solitons at increasing times.
Since the solitons before and after the collision are precisely the same, both the
situations before and after the collisions can be seen here.

Problem 15.2

(a) The Lagrangian density for the electromagnetic field with an extra term

added is

L = − 1

4μ0
(FμνFμν − 2 ∂μAμ ∂

νAν) + jμA
μ

= − 1

2μ0
(∂νAμ ∂νAμ − ∂νAμ ∂νAμ − ∂μAμ ∂

νAν) + jμA
μ. (15.4)
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The Euler–Lagrange equation is

∂L
∂Aμ

− d

dxν

(
∂L
∂Aμ

, ν

)
= 0,

⇒ ∂L
∂Aμ

= jμ,

∂L
∂Aμ

,ν
= − 1

μ0

(
A ,ν

μ −Aν
,μ +

1

2

∂

∂Aμ
,ν
Aα

,αA
β
,β

)
. (15.5)

This gives

∂ν

(
∂L
∂Aμ

,ν

)
= − 1

μ0

(
∂ν∂

νAμ − ∂ν∂μA
ν + ∂ν

∂Aα
,α

∂Aμ
,ν
Aβ

,β

)

= − 1

μ0
(∂ν∂

νAμ − ∂ν∂μA
ν + ∂μ∂νA

ν)

= − 1

μ0
∂ν∂

νAμ. (15.6)

The full result for the Euler–Lagrange equation is then

�Aμ = −μ0j
μ. (15.7)

(b) This form of the equation is different from which we have met

before:

�Aμ − ∂

∂xμ

(
∂Aν

∂xν

)
= −μ0j

μ. (15.8)

The difference between the two descriptions of the Euler–Lagrange equa-

tions is a gauge transformation, where the difference has the form,

∂μχ(x) = ∂μ∂νA
ν(x). (15.9)

Problem 15.3

The Lagrange density of the complex Klein–Gordon field which interacts

with a Maxwell field are

L(Aμ, Aμ,ν ;φ, φ,μ , φ
∗, φ∗,μ)

= − 1

4μ0
FμνF

μν −
([

(∂ν − i
q

�c
Aν)φ

]∗ [
(∂ν − i

q

�c
Aν)φ

]
+ μ2φ∗φ

)
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= − 1

2μ0
(Aν,μ A

ν,μ −Aν,μA
μ,ν)− q2

�2c2
AνA

νφ∗φ

+ i
q

�c
Aν(φ∗,νφ− φ,νφ

∗)− (φ∗,νφ
,ν + μ2φ∗φ). (15.10)

(a) The Euler–Lagrange equations are three equations, with the first

one as

∂L
∂Aν

− d

dxμ

(
∂L
∂Aν

, μ

)
= 0,

⇒ ∂L
∂Aν

= − q2

�c2
Aν φ

∗φ+ i
q

�c
(φ∗,νφ− φ,νφ

∗),

d

dxμ
∂L
∂Aμ

,ν
=

1

μ0
(∂μ∂νA

μ − ∂μ∂
μAν). (15.11)

The result is

1

μ0
(∂μ∂νA

μ − ∂μ∂
μAν)− q2

�2c2
Aνφ

∗φ+
q

�c
(φ∗,νφ− φ,νφ

∗) = 0. (15.12)

The next one is

∂L
∂φ∗

− d

dxμ

(
∂L
∂φ∗,μ

)
= 0,

⇒ ∂L
∂φ∗

= −
(

q2

�2c2
AνA

ν + μ2

)
φ− i

q

�c
Aνφ,ν ,

d

dxν
∂L
∂φ∗,ν

= i
q

�c
(∂νA

νφ+Aνφ,ν), (15.13)

with the result(
q2

�2c2
(AνA

ν + ∂νA
ν) + μ2

)
φ− i

q

�c
(∂νA

νφ+ 2Aνφ,ν) = 0. (15.14)

The last one is the same, up to the difference φ∗ → φ, as in the previous

case:

∂L
∂φ

− d

dxμ

(
∂L
∂φ,μ

)
= 0, (15.15)

which has the result,(
q2

�2c2
(AνA

ν + ∂νA
ν) + μ2

)
φ∗ + i

q

�c
(∂νA

νφ+ 2Aνφν) = 0. (15.16)
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(b) We will now find the Noether current by use of phase transformations

og φ and φ∗. The transformation has the form,

φ→ φ′ = eiχφ, φ∗ → φ′∗ = e−iχφ∗, (15.17)

where χ is a real number. When χ is infinitesimal we write it as

δφ = iχφ, δφ∗ = −iχφ∗. (15.18)

The Noether function Nμ is defined as

Nμ =
∂L
∂φ,μ

δφ+
∂L
∂φ∗,μ

δφ∗

= 2
q

�c
χAμφφ∗ − iχ(φ∗,μφ− φ,μφ∗). (15.19)

This implies that

∂μN
μ = 2

q

�c
χ ∂μA

μ φφ∗, (15.20)

and we note that ∂μA
μ is included. But this is a gauge-dependent quantity,

which can be changed to zero. This dependence of Aμ in Nμ can thus be

changed so that the derivative is zero:

dNμ

dxμ
= 0. (15.21)

(c) We will show that the following changes are invariant under gauge

transformations:

Aμ(x) → Aμ + ∂μθ(x),

φ(x) → exp
[
i
q

�c
θ(x)

]
φ(x),

φ∗(x) → exp
[
−i q

�c
θ(x)

]
φ∗(x). (15.22)

To show this, we study how the Lagrangian density is affected by the

changes.

We first look at how the following part of the Lagrangian density is

changed:(
∂ν − i

g

�c
Aν
)
φ →

(
∂ν − i

g

�c
(Aν + ∂μθ(x)

)
exp

[
i
q

�c
θ(x)

]
φ(x)

= exp
[
i
q

�c
θ(x)

] (
∂ν − i

q

�c
Aν
)
φ(x). (15.23)
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We see the result that the exponential part is moved, and the term ∂μθ(x)

is removed. This effect disappears altogether when the conjugate part is

introduced as follows:[(
∂ν − i

q

�c
Aν

)
φ
]∗ [(

∂ν − i
q

�c
Aν
)
, φ
]
. (15.24)

Also, the field equations are invariant under the gauge transformations,

since these are extracted from the Lagrangian density.
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