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Chapter 1

Generalized coordinates

Problem 1.1

Four mechanical systems are studied. In all cases the number of degrees of
freedom are specified, and an appropriate set of generalized coordinates is
chosen.

a) The first system consists of a pendulum attached to a block which
in turn is attached to a spring. We assume all motion takes place in a two-
dimensional, vertical plane. The block is constrained to move in the hori-
zontal direction, and the pendulum is constrained by the constant length of
the rod. Starting from two degrees of freedom for each of the two objects,
the two constraints reduce the number of degrees of freedom to two, one
for each object. A natural choice of generalized coordinates is the horizon-
tal displacement = of the block and the angle 6 of the rod relative to the
vertical direction.

b) The second system consists of a pendulum attached to a vertical
disk, which rotates with a fixed angular frequency. Also here we consider the
motion restricted to a two-dimensional, vertical plane. There is no degree of
freedom related to the rotating disk, since it has an externally determined
angular frequency. The pendulum is again only constrained by the fixed
length of the rod, and the number of degrees of freedom of the system
is therefore one. A natural choice of generalized coordinate is the angle 6
between the pendulum rod and the vertical direction.

¢) In the third case a rigid rod can tilt without sliding on the top of
the cylinder, while the cylinder can roll on a horizontal plane. Assuming
again that the motion is restricted to a two-dimensional, vertical plane, the
starting point is three degrees of freedom for each object. For the cylinder
this corresponds to two coordinates for its center of mass and one for its
angle of rotation. For the rod there are two coordinates needed to determine
the position of its center of mass, and one coordinate to determine the angle
of the rod relative to the horizontal (or vertical) direction.
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The constraints are the following,

1) For the cylinder the vertical coordinate of the cylinder’s center is fixed,
and since the cylinder is rolling, rather than sliding, the rotation coordi-
nate is linked to the horizontal coordinate of the cylinder. This gives two
constraints for the cylinder.

2) The rod is constrained to lie on the top of the cylinder, and if we assume
that it is not allowed to slide on the cylinder, the only degree of freedom for
the rod is to tilt on the cylinder. This means that there are two constraints
also for the rod.

The number of degrees of freedom is therefore: 343 —2 —2 = 2. A possible
choice of generalized coordinates is the horizontal coordinate of the cylinder
and the tilting angle of the rod.

d) In the last case a rotating top moves on a horizontal floor. For a rigid
body in three dimensions the number of degrees of freedom is six, three
to determine the position of its center of mass and three to determine its
orientation (corresponding to the three parameters, which are needed to
specify a rotation in 3D). For the rotating top there is one constraint, with
the vertical coordinate of its tip being fixed by the vertical coordinate of the
floor. Choice of generalized coordinates: The (x,y)-coordinates of the tip
of the rotating top, and the angles (6, ¢, x) which determine its orientation
(two to determine the direction of its symmetry axis, and one to determine
its rotation angle around the axis).

Problem 1.2

We examine an Atwood’s machine, which consists of three weights, with
masses my1 = 4m, mo = 2m and mgz = m. The ropes, with fixed lengths [
and lo, and the two pulleys, are treated as massless.

The number of degrees of freedom is two, since the heights of two of
the weights, mi1 and mo, will determine the third one, ms. We choose the
vertical coordinates y; and 9, shown in Fig.[[.T] as generalized coordinates.
Expressed in these variables the potential energy is

V= —muyr +ma(—y2 — (I —y1)) +ma((yr — 1) + (y2 — 12))
= —may1 + ma(y1 — y2) + ms(y1 + y2) + const.

—4my1 + 2m(y1 — y2) + m(y1 + y2) + const.
= —m(y1 + y=2) + const. (1.1)

where the constant can be absorbed in the definition of the zero point of
the potential energy.
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l1_y1

Y,
m,
Y2 lz_yz
m,
m,

Fig. 1.1 Atwood’s machine with two independent coordinates y; and ys.

The corresponding expression for the kinetic energy is

1 . 1 . . 1 . .
T = —mig; + =ma(91 — 92)° + sms(91 + §2)°

2 2 2
1 . . . . .
= §m(4y% + 201 — 52)* + (11 + 92))
1 . . ..
= §m(7y% + 305 — 20192) - (1.2)

Problem 1.3

Three identical rods of mass m and length [ are connected by frictionless
joints, with the distance between the points of suspension being equal to
the length of the rods. The rods move in the vertical plane. We will show
that the system has only one degree of freedom, where the angle 6 of one
of the rods can be used as generalized coordinate. The Lagrangian will be
found, expressed as a function of # and 6.

Two coordinates are needed to determine the position of each of the
joints in the vertical plane. There are three constraints, which give relations
between these positions, corresponding to the fixed lengths of the three rods.
The number of degrees of freedom of the system is therefore 24-2—3 = 1, and
the angle 6 in the figure is an obvious choice for the generalized coordinate.

The four endpoints of the rods define a parallelogram, as follows from
the fact that the lengths of all four sides are the same. As a consequence
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two of the rods will rotate about the end points, which are fixed to the roof,
while the third rod will move without rotation, since it is always parallel
to the roof.

The common angular velocity of the rotating rods is w = 6, and the
velocity of the non-rotating rod is v = 16, since this is equal to the velocity
of the lower endpoints of the two rotating rods. The kinetic energy of the
three rods is therefore

Lo 1o 1 o 1 9m 5 ok
Tf2~§Iw JrimvfngG Jriml@fgmlﬁ. (1.3)
With y as the vertical distance of the horizontal rod, the potential energy
of the system is

V=2 mg% + mgy = 2mgy = —2mgl cos . (1.4)
This gives for the Lagrangian

L(6,6) = %mZQQQ + 2mglcos . (1.5)

Problem 1.4

A particle with mass m moves in three-dimensional space under the
influence of a constraint. The constraint is expressed by the following rela-
tion between the Cartesian coordinates of the particle,

e~ @) 4 =0, (1.6)

a) The constraint relation can be used to express z as a function of x
and y. Thus, there are two independent variables, which means that the
system has two degrees of freedom. With x and y chosen as the generalized
coordinates, the position vector of the particle is

r=gityj—e @K, (1.7)

b) A virtual displacement, with x — x 4+ dz and y — y + dy, gives the
following variation in z

0z = 26_(‘”2+y2)(m6x + yoy) . (1.8)
The expression for the variation of the position vector is therefore

or=(i+ 2~ @+ k)dxr + (j+ 2¢~ (F*+7)y k)oy . (1.9)

¢) The constraint force f satisfies the condition f - ér = 0 for arbitrary
variations of the form (L9]). This implies that the two coefficients of the

/.
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scalar product, proportional to dz and Jy respectively, have to vanish sep-
arately,

fot2e g p =0, f, 2@y r =0, (1.10)
In vector form this is
f= f,(—2e~@ )i — 26~ @ V)5 1 k). (1.11)

Only the direction of f is determined by this expression since f, is an
undetermined function of x and y. To fully determine the constraint force
which acts on the particle one needs to know the applied forces and the
velocity of the particle.

wy X

Fig. 1.2 A section of the constraint surface with directions of a virtual displace-
ment or of the small body and the constraint force f acting on the body.
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d) In the y = 0 plane the constraint is described by the curve z = —e
A virtual displacement dr is directed tangentially to the curve, while the
constraint force f is perpendicular to the curve, as illustrated in Fig [[2

Problem 1.5

A flexible chain can move without friction on a smooth surface with the
vertical heights of the endpoints denoted z4 and zp. The chain has constant
(linear) mass density p. We shall use the principle of virtual work to find
how z4 and zp are related when the chain is at static equilibrium.

A (dimensionless) parameter s, which measures length along the chain
(relative to the total length), will be used as the variable. We set s = 0 at
the right end of the chain and s = 1 at the left end. For a virtual translation
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ds of the chain along the surface, there is a vertical displacement 0z, which
varies with the position s along the chain,
dz
0z = —0s. 1.12
7 (1.12)
The corresponding virtual work, integrated along the chain is

1
oW = g/ézdm = gués/ %ds = gpos(zp — za) . (1.13)
0o as

At equilibrium the principle of virtual work gives W = 0, which implies
ZA = ZB.

Note that, as a simpler argument, a small displacement of the chain
along the surface is equivalent to taking a small part of the chain at one
end and move it to the other end. At equilibrium the change in potential
energy should vanish, which would again mean that z4 = zp.



Chapter 2

Lagrange’s equations

Problem 2.1

A particle with mass m moves freely in a horizontal plane. The problem to
be solved is to give a Lagrangian description of the motion in a rotating
coordinate system, and to compare the corresponding equations of motion
with the standard Newtonian description, where the rotation introduces
centrifugal and Coriolis forces.

a) The coordinate transformation from the rotating Cartesian reference
frame, with coordinates (£, 7), to the fixed Cartesian frame, with coordi-
nates (z,vy), is

x = £ coswt — nsinwt,
y = Esinwt + ncoswt , (2.1)
with the corresponding transformation of velocities,
i = (€ —wn) coswt — (W€ + 1) sinwt
§ = (£ — wn)sinwt 4 (W + 1) coswt . (2.2)

The Lagrangian is identical to the kinetic energy,

1
L= 5m(;ic? +9%)

= o[ —wn)? + (e + )
= o [@ )t 2len - En) P 0] . (23)

b) The partial derivatives of L with respect to the coordinates and their
time derivative are

OL _ oh w2y 9L i
e = i+, 2= miE—un)
G = ml-wébarn), S (i + ). (2.4)
& ’
&
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This gives as Lagrange’s equations,

d OL L -
_8___8__:0 = £-2wp—wi=0,
dt 9§ D€

doL 9L . TN

Without any external force acting on the particle, Newton’s second law
takes in the rotating frame the following form

mi = —mw X (W Xr)—2mw X r, (2.6)

where the angular velocity vector w is orthogonal to the plane of rotation.
The term which is linear in w is the Coriolis force and the term which is
quadratic in w is the centrifugal force. To compare the equations in (Z3]) and
([28) we express the position vector r in (Z0]) in terms of the coordinates &
and 7 as

=& g, (2.7)

where i’ and j' are rotating unit vectors. In the rotating frame these are
treated as fixed and the velocity and acceleration vectors are therefore given
as

P=& g, F =G (2.8)
We insert these expressions for the Coriolis and centrifugal forces

=~ (el ),

wx T =uwk x (& +79j) = w(& —ni). (2.9)

wX(wxr)=ww-r)—w

Inserting these in the vector equation (2:6]) and extracting the components
proportional to i’ and j’, we find

£ = 2w+ w?¢,
ij = —2wé + w?n, (2.10)

which are the same two equations as in (Z3]). This shows the consistency
between Lagrange’s equations expressed in the (rotating) coordinates £ and
1, and the standard vector equation used for Newton’s second law in a
rotating reference frame.
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Fig. 2.1 The two-rod problem, with generalized coordinates 6 and ¢.

Problem 2.2

The system consists here of two identical rods of mass m and length [, which
are connected to each other by a frictionless joint, as shown in Fig. 2.1l The
problem is to give a Lagrangian description of the system and to find the
angular frequency for small oscillations about its equilibrium position.

a) The system has two degrees of freedom, and as generalized coordi-
nates we may choose one angle for each of the rods (see Fig. [ZI). With
I as the moment of inertia of the upper rod about its fixed endpoint, and
I5 as the moment of inertia of the lower rod about its middle point, the
kinetic energy of the system is

1. 1 . 1.
T = =10* + —ml*0* + = 1,¢*
07 gm0+ 510
I BTSSR SR Y S SO D
76m19 +2m19 +24ml¢)
2 o Lo
= Smil0* + o omi*?, (2.11)
and the potential energy is

l
V= —mgy cos ) — mgl cos 6
3
= —§mgl cosf. (2.12)
This gives the Lagrangian L =T — V,

2 . 1 . 3
L = -ml?0* + —mli?¢* + = . 2.1
3ml 0° + 24ml o7 + 2mglcos@ (2.13)
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b) The derivatives with respect to 6 and 0 are

oL 4 . oL 3
— = -ml*), — =—"mglsind. 2.14
% 30, 5 5Mglsin (2.14)
This gives Lagrange’s equation for the variable 6,
d oL 0L . 9g
——— —=0 0+ —=sinf =0. 2.15
preEY Ry, = + ] sin ( )
The derivatives with respect to ¢ and d) are
dL 1 . oL
— = —ml® — =0. 2.16
W 5 (216)

Since ¢ is cyclic, the derivative with respect to ¢ is a constant, and therefore
the angular velocity ¢ is constant. Thus the motion of the two rods are
independent, with the upper rods making oscillations about # = 0, while the
lower rod is rotating with constant angular velocity. For small oscillations,

99

with sin 6 ~ 6, the angular frequency of the upper rod is w = /7.

Problem 2.3

We consider a small body with mass m, which moves without friction along
a rotating rod in the horizontal plane. The angular velocity w of the rod is
constant, and the center of rotation is assigned the radial coordinate r = 0.
The problem is to use Lagrange’s method to determine the time dependent
coordinate r(t) of the moving body, and to plot the orbit of the body in
the plane.

a) The position vector of the body is
r = r(coswti + sinwtj), (2.17)
which gives the velocity vector
I = —rw(sinwti — coswtj) + 7(cos wti + sin wtj) . (2.18)

Since the body moves in the horizontal plane there is no potential energy,
and the Lagrangian is identical to the kinetic energy

1 1
L= §m1"2 = 5m(7’"2 +r2w?). (2.19)
The partial derivatives with respect to r and 7 are
oL oL
=mr, — =mrw?, (2.20)

or or
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and Lagrange’s equation gives

d oL 0L 5
e - =0. 2.21
wor or 0 T Towr=0 (221)
Solutions of the equations are
r(t) = Ae*' + Be “t. (2.22)

The initial conditions are r(0) = ro and 7*(0) = 0, which give A = B = 1rg.
This gives the solution
1

r(t) = §7°0(e“’t +e ") =rgcoshwt . (2.23)

b) The figure shows a plot of the orbit in the z, y-plane, with ¢ restricted
to the interval 0 < ¢ < 7/w.

4‘—
y/r,

-

-/f _10 8 i) 4 2 X /ro'

Fig. 2.2 The orbit of the body sliding on a rotating rod.

Problem 2.

A pendulum consists of a rigid rod of length [, which we consider as massless,
and a pendulum bob of mass m. The point of suspension of the pendulum
has horizontal coordinate x = s and vertical coordinate y = 0. The angle 6
of the pendulum rod, relative to the vertical direction, is used as generalized
coordinate.

a) We assume first that s = 0. The coordinates and velocities of the
pendulum bob are

r=1Isinf, y=—lcosh,
i =1lcosff, g§=Isinhh. (2.24)
The kinetic energy is
1 1 .
T= 5m(a':2 +9°%) = 5ml?92 : (2.25)
FS
S
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and the potential energy

V =mgy = —mglcos?. (2.26)
This gives as Lagrangian L =T — V,

L= %leQQ + mglcos®, (2.27)

with partial derivatives

oL

L .
8—. =mi?6, 20 = —mglsin @, (2.28)
and Lagrange’s equation
d oL 0L - g
aoL oL _ 9 sing = 2.2
306 90 0 = 9+lsm9 0, (2.29)

which is the standard pendulum equation.

b) With the point of suspension freely moving, and s and 6 as generalized
coordinates, the expressions for z, y, and their time derivatives are

r=s-+1sinb, y = —lcosd,
i=5+1lcoshf, §=1Isinhf. (2.30)

This gives for the kinetic energy
1
T = §m(3'02 +9%)

1 : -1
= §ml292 + ml cos 050 + §m3'2 ) (2.31)

while the potential energy is unchanged from (Z28). The Lagrangian is
then

1 . -1
L= §m1292 + ml cos 056 + §m3'2 + mgl cosf, (2.32)

with partial derivatives

a_L
Bl
oL
00
oL
05
oL
0s

= ml?0 + mlcosfs,
= —myglsinf — mlsin 36 ,
= ms + mlcos00,

=0. (2.33)
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When introduced in Lagrange’s equation, these expressions give rise to the
following two equations of motion

lé+gsin0+cos€§ =0,
§—1sinff% 4 lcoshf = 0. (2.34)

¢) The variable s can be eliminated by a combination of the two equa-
tions, and this gives the following equation for the # variable

Isin? 06 4 I sin 6 cos 06 + gsinh = 0. (2.35)

A particular solution of this is § = 0, which when applied to [234) gives
5§ = 0. This solution means that the pendulum rod is vertically oriented
and moves with constant speed in the horizontal direction.

Under the assumption 0 # 0, Eq. [235]) can be written as

d> o .
ﬁ(_lCOs 0) = I(sin 00 + cos 06%) = —g, (2.36)
and since the vertical coordinate of the pendulum bob is y = —[ cos 6, this

means that the vertical acceleration of the bob is identical to the accelera-
tion of gravity, § = —g.
We further note that the second equation in (Z34]) can be written as

. .
§= _E(l sin6). (2.37)

Since the horizontal coordinate of the bob is x = s-+1[sin#, this means that
the acceleration in the horizontal direction vanishes, & = 0. Combining
the results for the x and y variables, we conclude that the motion of the
pendulum bob is like free fall in the gravitational field, in spite of the fact
that there is a constraint on the motion of the upper end of the pendulum
rod. However, there is a limit to this motion for y = —I or # = 0, where the
constraint will stop the downward motion.

Problem 2.5

A rigid circular metal hoop rotates with constant angular velocity w around
an axis through the center. A bead with mass m slides without friction
along the circle and there is no gravity. We use the angular variable 6 of
the bead, measured around the hoop, as generalized coordinate. Lagrange’s
equation for the moving bead is established, and the angular frequency of
small oscillations around stable equilibria is found.
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a) The Cartesian coordinates of the particle are
= Rsinfcoswt, y= Rsinfsinwt, z=—Rcosé. (2.38)

Since there is no potential energy, the Lagrangian is given by the kinetic
energy, L =T,

1
L= 5m(a':2 + 92 + 2?)
1 :
= §mR2[(9 cos 0 cos wt — w sin @ sin wt)?

+(0 cos O sinwt 4 wsin f coswt)? + % sin? 0

1 .
= §mR2 (62 + w?sin? 0)] . (2.39)

This gives Lagrange’s equation,
mR*(f — w?sinfcosh) =0 = 6—w?sinfcosf=0. (2.40)

b) Both terms in the Lagrangian comes from the kinetic energy of the
particle, with no contribution from a potential energy. However, we see
that the Lagrangian is identical to the Lagrangian for a particle with mass
m moving on a circle with radius R, where T = %mRQQQ is the kinetic
energy and V = —%mRQUJQ sin? @ is a periodic potential. The potential has
two minima on the circle, with sin?§ = 1 for § = 7/2 and § = 37/2.
These correspond to stable equilibria. There are also two maxima, with
sin?@ = 0 for # = 0 and @ = =, and these correspond to unstable equilibria.
The potential V' can be viewed as a centrifugal potential, as described in a
rotating reference frame which is co-rotating with the hoop.

¢) With 6y = /2 we have for small deviations ¢ from this value,
sin @ = sin(¢ + g) =cos¢p ~ 1,
cosf = cos(¢p + g) = —sing = ¢. (2.41)
The equation of motion (240), to first order in the variable ¢, is then
b+wp=0 (2.42)

which is a harmonic oscillator equation with angular frequency w.

In the case of the second minimum, 6y = 37/2, we note that the shift
6 — 6+ m will only introduce a sign change for cos # and sin 8. The equation
of motion (ZA40) is therefore unchanged under this shift, and the small
oscillation form of the equation therefore is the same for 6y = 37/2 as for
9() = 7T/2
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Problem 2.6

We study the motion of an object with mass m, which slides without friction
on an inclined plane. The plane, which is tilted with an angle of 30° relative
to the horizontal plane, is forced to move horizontally with a constant
acceleration a. The displacement s of the object along the tilted surface
is used as generalized coordinate.

a) We assume first that the inclined plane is at rest, a = 0. The Cartesian
coordinates of the body are, expressed in terms of the parameter s,

a:zscosSO":%\/g, yzh—ssinSO"zh—%. (2.43)

The kinetic energy is then
T = %m(a’:g + %) = %méQ , (2.44)

and the potential energy is
V =mgy = mg(h — g) . (2.45)

This gives the Lagrangian
1
L= §m3'2 —mg(h — g) . (2.46)
b) We assume next that the acceleration a of the inclined plane is con-

stant and non-vanishing. The Cartesian coordinates, and their time deriva-
tives are now

1 5 s S
l‘—a@t +§\/§7 y—h_aa
z:at+§\/§, i=-3 (2.47)
This gives the Lagrangian
1
L= §m(3'2 + atsV3 + a*t?) — mg(h — g) . (2.48)
¢) The partial derivatives with respect to $§ and s are
oL 1 oL 1
— =m(5+ = t — == 2.4
= m(s+ 3Vaa), = Zmg, (2.49)
which give Lagrange’s equation
d oL 0L 1 1
— o — = §=—-g— = . 2.
W5 oy 0 = F=39m Vi (2:50)

Since § is constant, it is straight forward to integrate it to give s as a
function of ¢. With the initial conditions for ¢ = 0, that s = 0 and § = 0,

the solution is

s(t) = i(g —aV3)t*. (2.51)
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Problem 2.7

Two bodies with the same mass, m, are connected with a massless rope
through a small hole in a smooth horizontal plane. One body is moving on
the plane, the other one is hanging at the end of the rope and can move
vertically. The polar coordinates (r, ¢) of the body moving on the plane are
used as generalized coordinates.

a) The kinetic energy of the system is
I SRPIC RN ST NN ST R S SR

szm(r +r¢)+2mr = m(r +27"¢)), (2.52)

and the potential energy is
V=-mg(l—r), (2.53)
with [ as the length of the rope. This gives as the Lagrangian L =T — V,

2 Loy

L =m(r* + 57 @°) — mgr + constant . (2.54)

Lagrange’s equation for the r variable then is

d oL 0L ‘5
i P =0. 2.
ior or 0 T TTrote=0 (2:59)
b) The variable ¢ is cyclic, g—g = 0, which reduces Lagrange’s equation
for ¢ to
L .
a—. =mr?p =md, (2.56)
o¢

with d as a constant. The expression it gives for ¢ can be used to eliminate
¢ in the radial equation, which then takes the form

d2
-5 +g=0. (2.57)

The equation shows that there is a special solution with constant r, with
the value 79 = (d?/(gl))"/3. For this value of  the body on the horizontal
plane will move with constant angular velocity along the circle with radius
ro. The equation of motion also shows that for r > ro # will be negative,
and for r < rg it will be positive. This means that the body will more
generally oscillate about the circle r = ry under the angular motion.
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Problem 2.8

A pendulum is connected to a block, which can slide without friction in a
horizontal direction. The block and the pendulum bob have equal masses
m, while the pendulum rod, with length d, is considered to be massless. As
generalized coordinates in this problem, we use s as the x-coordinate of the
center of mass of the box, and 6 as the angle of the pendulum rod relative
to the vertical direction. At time ¢ = 0 both the block and the pendulum
have zero velocity, with the pendulum angle being 6.

a) With (z,y) as coordinates of the pendulum bob we have
x=s+dsinf, y=—dcos. (2.58)

The kinetic energy of the system is
1 1
T = §m32 + §m(j:2 +9?)
1 . .
= §m(32 + (5 4+ dcos00)? + d?*sin? 0 6?)
1 . .
=ms + §md292 + mdcos 036 , (2.59)
and the potential energy
V = mgy = —mgd cosb. (2.60)
This determines the Lagrangian L =T — V,
1 . .
L =ms*+ §md292 + mdcos 030 + mgd cos b . (2.61)

The partial derivatives of L with respect to 6 and 6 are
oL

% = md?6 + md cos 03 ,
g—g = —mdsin 030 — mgdsin , (2.62)
which gives Lagrange’s equation as
%%—‘3—5:0 = é+$cos€§+%sin9:0. (2.63)
b) Since s is cyclic, which means that % = 0, Lagrange’s equation

implies that the conjugate momentum is a constant of motion

I, .
Dy = g_s =2ms$+ mdcos 66 . (2.64)
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This implies

. dd : 1 P B
5——55(00599)——§d00599+ §dsm99 , (2.65)

which can be used to eliminate the variable s from the 6 equation. The
result is

1 .1 .
(1- 3 cos? 0)0 + 3 sin @ cos 0 6% + %sin@ =0 (2.66)

and we note, in particular, that the equation is independent of the value of
the constant p.

¢) A small angle approximation of this equation around the equilibrium
point # = 0 means to expand all the terms of the equation to first order
in 0 and its time derivatives. We first note that the middle term in (2:66))
gives no contribution to first order due to its quadratic dependence of 0.
Using the first order approximations cosf ~ 1 and sinf ~ 6, we get the
following simplified equation

9+2%9 = 0. (2.67)

This has the form of a harmonic oscillator equation with angular momentum

w=/2g/d.

Problem 2.9

A small body with mass m is constrained to move along a spiral-shaped
channel on a circular disk with radius R. The disk rotates in the horizontal
plane, with constant angular velocity w about an axis through the center
of the disk. The points on the spiral are characterized by polar coordinates
(r,0), with r = af, where a is a constant, and 6 is measured relative to a
reference frame which rotates with the disk.

a) The Cartesian coordinates (z,y) of a point on the spiral, measured in
a non-rotating reference frame, are related to the coordinates of the rotating
frame by

x =rcos(f + wt) = ab cos(d + wt) ,
y = rsin(f + wt) = af sin(0 + wt) . (2.68)
The corresponding velocity components are
i = af cos(6 + wt) — af(f + w) sin(6 + wt)
3§ = afsin(f + wt) + ab (0 4 w) cos(0 + wt) . (2.69)
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The Lagrangian, which is identical to the kinetic energy, then is
1
L= §m(3'02 +97)
1 . .
= §ma2((1 + 0262 + 2w0%0 + W6?) . (2.70)

b) We find the partial derivatives

oL 2 2\ 2
— =ma“((1+6°)0 + wb?),
=% = ma (1 + 66 + wf?)
oL 202 ; 2
2 = Ma (007 + 2wh0 + w?0) , (2.71)
and from these Lagrange’s equation
4oL 0L
dt o 00
(14 6%)0 + 60 — w0 =0. (2.72)

For large angles, 6 >> 1, the following approximation is justified, (1+92)é =~
6%6. This changes the equation of motion to

00 + 6% —w? =0. (2.73)
¢) The simplified equation can be written as
1d* , 9
which has the solution
0% = w*? + At + B, (2.75)

with A and B as integration constants. With the initial conditions r(0) = rg
and 7(0) = 0, which implies #(0) = r9/a and 6(0) = 0, we get A = 0 and
B = r2/a?, the solution is

0(t) = \Jwt2 4+ 12 /a?. (2.76)

With ro >> a this gives 0(¢) >> 1, which shows that the approximation
which leads to Eq. (Z73)) is satisfied.

d) The time needed for the body to reach the edge of the disk, is deter-
mined by 7(t) = R, which means 0(¢t) = R/a. This gives

R = \/a?w?t? + 12, (2.77)

which determines the time as
1
t=—1\/R2—1r2. 2.78
o ) ( )
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Problem 2.10

We study here the motion of a particle with mass m and charge ¢ in an
electromagnetic field. The field is described by a time dependent vector
potential A, which in cylindrical coordinates has the form

1
A=A, =0, Ay = 5rB(0). (2.79)

a) The corresponding magnetic and electric fields, expressed in cylindri-
cal coordinates, are

B=VxA B.=By=0, B,=—-—(rAy) = B,
x = s =5y (r4s)
0 1 d
E=—-——A E.=E,=0, Ey=—=r—2=B. 2.
ot = T z Oa o) 2rdt ( 80)
b) The Lagrangian of the charged particle is
1 1 . 1 .
L= 5ml'rQ +qA T = §m(7'"2 +7r2¢%) + 5qBrQ(;s, (2.81)
with partial derivatives
oL oL ‘o .
2 — my D B 2.82
L= mi, Sl = mrd? 4 qBro, (2.82)
and
oL 5. 1 9 oL
— =mr‘¢p+ —qBr*, — =0. 2.83
9% ¢+ 54 9% (2.83)
Lagrange’s equation gives the following equation of motion for the r vari-
able,
d (0L oL . 5 qB .
— = -== — ——r¢= 2.84
(87‘“) 5 =0 = F—-rd mrqf) 0, (2.84)
and for the ¢ variable,
4 (o) 2
op) 0¢
1¢B 1 dB
r¢>+2r(¢>+—q—)+—i %:0. (2.85)
The standard expression for the equation of motion on vector form is
mi=q(E+1 xB). (2.86)

Decomposition of both sides of the equation in radial and angular parts
gives
i = (¥ —r¢?)e, + (ré + 2¢d)ey,

gB 1 q dB

. .qB
E B)=r¢o—e, — —r—— 2.
(E+1 x B) rqﬁme, (7“ + 5T ey (2.87)

3=
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and equality of the radial and angular components separately reproduces
the Lagrange’s equations in (Z:84]) and (2:85]).
¢) With B constant there are two constants of motion:
1) Since ¢ is cyclic the conjugate momentum is a constant,
g—g =0 = Z—g =mrid + %qBr2 = { (const) . (2.88)
2) B = By implies that L is time independent, and the Hamiltonian H is
therefore a constant of motion,
oL
ot
oL, - _¢ B
= o Do

= %m(f*Q +1r2¢%) = & (const).. (2.89)

=0

We assume circular motion, » = r¢. Inserted in the radial equation this
gives

.. : qB qB
g - re = —rod(d + —0) =0, (2.90)
and in the angular equation
1¢B 1q dB -
9 z -4 — =0. 2.91
ré + T(QSJr )+2mrdt rod =0 (2.91)
Both equations are satlsﬁed, provided the angular frequency is constant
with value
B
o=-320_ . (2.92)
m

The two constants of motion in this case take the values
1 1
l= mr(%wo , &= mr(%wg (2.93)

d) We assume now that B is slowly changing with time, from an initial
value By to a final value B;. The circular motion will then change from
the initial radius 7o to the final radius r1. When B changes H is no longer
constant, while ¢ continues to be constant since ¢ remains cyclic. This can
be used to relate rg to rq,

/ | B
rjwo =riw; = :—1 = % = B—O (2.94)
0 1 1

For the initial and final energies this gives

22
& rwi B

= = . 2.95
& 1w Bo (2.95)
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Problem 2.11

A particle moves on a parabolic surface given by the equation z =
(A/2)(2? +?), where z is the Cartesian coordinate in the vertical direction
and A is a constant. The particle has mass m and moves without friction on
the surface under influence of gravitation. The particle’s position is given
by the polar coordinates (r,8) of the projection of the position vector into
the z,y plane.

a) The coordinates x and y of the plane, when expressed in polar coor-
dinates, give

z=rcosl, y=rcos = i>+y>=7r>+1r%0". (2.96)

The vertical coordinate z, when restricted to the parabolic surface, depends
on r and 0 as

1 1
z= 5)\(332 +y?) = 5)\7“2 = Z=\r. (2.97)

This gives for the Lagrangian,
1
L= §m(a:2 + 9% 4 %) —mgz
1 .
= §m[(1 + A2r2)r2 41207 — gar?] (2.98)

and the partial derivatives of this with respect to r and 7 are

L
?’)_r =m(\2 % i — gAr),
L
% =m(1+ \*r?)i. (2.99)
Lagrange’s equation for the radial variable is then
dor_oL_
dt or  Or
(14 X2r2)i + X272 — 6% 4 ghr = 0. (2.100)
Since the 6 variable is cyclic, we have
oL doL d 9z
oL _ QoL Q) =0 2.101
a0 T G am =0 (2.101)
which can be integrated to give
PO
=5, (2.102)

with « as an integration constant.
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b) This result can be used to eliminate the 6 variable from the radial
equation, which then takes the form

2
(1 + A2r2)i + A2 — i‘—g +ghr=0. (2.103)

This has a circular solution, r = rg,7 = # = 0, provided the following
equation is satisfied,

[

—gA = 06=1/g\. (2.104)

Ik

¢) We consider small deviations from the circular motion by setting
r =1y +p, 7 = p,i = p, and keeping only linear terms in p and its time
derivatives in the radial equation. This gives

2

e
(L+Nrg)p + (37,—4 +9Np=0

0

gA

———p=0. 2.1
T2 =0 (2.105)

= p+4

This is a harmonic oscillator equation with angular frequency

gA
=2/ ——. 2.106
@ \/ 1+ A\2rd ( )

The solution to the harmonic oscillator equation can be written as

plt) = po coslu(t — to)] (2.107)
which gives
2(t) = %)\rg + Aropo cosw(t — to)], (2.108)
and
0(t) = /gr(1 — 2%) coslw(t — to)]). (2.109)

This describes motion with small oscillations in the vertical coordinate z
around the value 2 A\r combined with small oscillations in the angular veloc-
ity around the value /gl.
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Problem 2.12

A small body with mass m and charge ¢ is moving in the horizon-
tal plane (z,y-plane), under influence of a harmonic oscillator potential,
V(r) = £mwgr? and a constant magnetic field B = Bk, which is directed
perpendicular to the plane of the moving particle. The vector potential cor-
responding to B can be written as A = f%r x B, with r as the position

vector of the particle.

a) We treat the small body as point-like. The Lagrangian is

L:lmVQfV(r)+qv~A

2
1 1 1
= §mi'2 - §mw(2)7"2 AR (r x B)
S ST ST ST NS SRR AT S By
= —m(r° 4+ r<¢°) mwyre + —qBre¢
2 2 2
1. . .
= §m(r2 +1%(¢? —wpd — wi)), (2.110)

with wp = —¢B/m.

b) The polar angle ¢ is cyclic, which means that it does not appear in
the Lagrangian. The conjugate momentum pg is then a constant of motion,
oL .1
= — =mr?(¢ — -wp) ="L. (2.111)
fol0) 2
{ can be interpreted as the conserved angular momentum. It has two con-
tributions, the mechanical angular momentum, which is proportional to ¢,

Py

and an electromagnetic field contribution, which is proportional to ¢B.
Since the Lagrangian is time independent the Hamiltonian is a conserved
quantity. Here, it has the form

. 1 .
H=p++psp— L= §m(7'"2 +r3 PP+ wd)=T+V, (2.112)

and is interpreted as the conserved energy of the system.

¢) Lagrange’s equation for the variable r is
d oL 0L N ) ; 2
= — — — =0. 2.11
%o o 0 = i—r(¢°—wpd—wj) =0 (2.113)

We note that the squared angular momentum is

) .1
2 = m?r*($? — wpd + Zw%) . (2.114)
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This expression can be used to remove d) from the radial equation, which

then takes the form
. 62 2 ]- 2y
T*W‘FT(WO*FZ{U )—0 (2115)
d) When /¢ # 0 the radial equation has solutions corresponding to cir-
cular motion in the plane, with radius r¢ given by

[ L / 1
To = m— s Q)= wg + ZW2B . (2116)

The corresponding expression for ¢, as shown by @III), is

. ¢ 1 1
- s =01 cwp. 2.11
¢ mré + oWh + oWh ( 7

When £ = 0 the radial equation (ZITH]) is reduced to
P+ Q%r =0, (2.118)

with solutions of the form r = RcosQt, and with angular velocity ¢ =
%w 5. It shows harmonic oscillations in the radial coordinate combined with
a constant angular velocity of the particle. Note that radial frequency is
higher than the angular frequency, since Q > %|wp].

When ¢ # 0 we have # < 0 for » > ro and # > 0 for » < 0. This shows
that the general solution describes oscillations in the radial coordinate,
about 19 = /¢/m. Similarly, the angular velocity & will oscillate around
the value Q) + %w 5. This means that the general solution will be a periodic
modulation of the special solution where the particle moves with constant
angular velocity in a circular orbit.

Problem 2.13

We study here the motion of a Foucault pendulum. The pendulum is situ-
ated at the latitude 60° north, and we have the following information about
the pendulum: The length of the pendulum wire is [ = 14m and the mass
of the brass sphere at the end of the wire is m = 20kg. The idea is to
use Lagrange’s formalism to study the effect of the earth’s rotation on the
motion of the pendulum.

A set of earth-fixed orthogonal unit vectors are introduced, ey, k =
1,2,3, with e3 pointing in the vertical direction, e; pointing to the north,
and es orthogonal to the two. The three unit vectors are used as the basis
vectors of an earth-fixed reference frame S, with the origin of the reference
frame taken as the equilibrium position of the pendulum sphere. In addition
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k is a unit vector in the plane spanned by e; and es, with direction parallel
to the earth’s rotational axis. The angle between ez and k is referred to as

0.
a) The position and velocity vectors of the pendulum sphere are
r = re; + yes + zes,
I =de; +Jes+ fes+ 2w X e +yw X e2 + zw X ez,  (2.119)
with
w =wk, k=sinfe; + cosfes, (2.120)
where w is the angular velocity of the rotating earth. This gives
k x e; =cosfes,
k X e = —cosf e + sinfes,
k X e3 = —sinfley, (2.121)
and

r=(&—wycosh)er + (§+w(xzcosh — zsinb))es + (£ + wysinh)es .

(2.122)
The kinetic energy is
T = %m (i + 97 + 2% + 2w cos O(xy — yi)
+2wsinO(yz — zy) + O(w?)] . (2.123)

To judge the importance of higher order terms in w, the relevant comparison
is with the angular frequency of the pendulum, w,. The periods of these
two are

Teqrih = 1day = 8640s, T, =+/g/l=0.84s. (2.124)

This gives
w Ty -4
— = ~ 10 (2.125)
Wp Tearth

which shows that the quadratic terms in w can safely be neglected. The

potential energy of the pendulum is
V =mgz. (2.126)

b) The z coordinate can be expressed in terms of 2 and y in the following

way,

2224 2°+y* =0 =

1
o /12_302_y2%2_1(332_,_y2)7 (2.127)
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where we have applied the small oscillation approximation. This shows that
z/l is second order in the small quantities x/l and y/I. Therefore it is
sufficient, in the Lagrangian, to include only first order terms in z, which
gives

1 1
L= §m(3'02 +9°) + 2wcos O(xy — yi) — Emg(axQ +92%).  (2.128)

¢) We change to polar coordinates,
T =pcos¢p, T =pcoso— pzj}singb,
y=psing, y=psing+ pdcose. (2.129)
This gives the following expression for the Lagrangian

1 . . 1
L= 5([)2 + p?¢?) + mw cos 0p*p — Emgp2 . (2.130)

Since the angle ¢ is cyclic, the corresponding conjugate momentum is a
constant of motion,

oL

— =mp>p+mp*wcosh = k. (2.131)
o
Solved for the angular velocity this gives
. k
¢=—wcos + —. (2.132)
mp

Lagrange’s equation for the radial variable is

g

mp — mp(,z.ﬁ2 — 2mw cos sz,z.ﬁ +m ;

p=0. (2.133)

d) We make now the assumption that the angular velocity wy = d) is
constant and that p oscillates with time. As shown by (2132) this happens
only if £ = 0, and it determines the value of the angular velocity as

Wy = —wcosh. (2.134)
The radial equation is then reduced to
5+ p(d+w?cos?d) =0. (2.135)

l
This is a harmonic oscillator equation for the pendulum, with angular fre-

quency
W, = 1(——’—(72(:08 9— \/79 _O(U ) (2 3“)
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e) The rotation of the plane of oscillations of the pendulum, relative to
the building, is determined by the angle ¢. In one period of the rotation of
the earth the rotation angle of the pendulum plane is

A = wyTeqrih = —wleqrin c0s0 = —2m cos b . (2.137)

Expressed in radians, and with § = 30°, corresponding to the latitude 60°
for the position of the pendulum, we get

A¢ = —360° cos(30°) = —312° . (2.138)



Chapter 3

Hamiltonian dynamics

Problem 3.1

In Problem 2.12 the following Lagrangian has been introduced

L= %m(7‘2+r2(q52 —qu.b—w(Q))). (3.1)

It describes the motion of a charged particle in a combination of a harmonic
oscillator potential and a constant magnetic field, with wgy as the harmonic
oscillator angular frequency and wp as the cyclotron angular frequency. We
will here study the Hamiltonian description of the same system.

a) To find the Hamiltonian corresponding to the Lagrangian [B1]) we
need the canonical momenta corresponding to the variables r and ¢,

oL oL |
pr=go = mr, pe= i mr? (0 — §wB). (3.2)
The general definition of the Hamiltonian then gives
H = p,i +peb — L
-2 252 1 Lo 1 500 ) 2
= mr® +mrs(6° — §wB9) - 5t = mr (0° —wpb — wy)
1 1 .
= §m7'“2 + §m7°2(92 + wd)
Loy 15 pe 1 2, 1 59
= guPr T M (E tgws) + gmren
L 5 Lo, 1 Lo o, 1,
= %}%. + ng + 5&)3]?9 + imr (wy + Zw ). (3.3)

b) We derive from this Hamilton’s equations of the system,

. 0H p, oH v; 2, 1 4

e T me T T T e T gen)

- oOH Po 1 . oH

0 — S S — 3.4
Opg  mr? + pWB, PO 00 (3-4)

31
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2F \x

1F i
P, o :
-1k 1
2 . //,‘,
0.0 15 20

Fig. 3.1 Phase space plot, Problem 3.1

There are two constants of motion.

1) Angular momentum
1
Pe=0 = pg=mri(f— §w3) =/. (3.5)

We note that in this expression, in addition to the standard term interpreted
as the (mechanical) angular momentum of the particle, there is a term,
proportional to wp, which comes from the coupling of the electric charge
to the magnetic field. This can be interpreted as an electromagnetic field
contribution to the angular momentum.

2) Energy,
an _om_
dt ot
H= Lp2 + r + 1mrQQ2 - leé = F (const) (3.6)
2m" " 2mr? 2 2 ’

with pg replaced by ¢ and Q = \/wi + w% /4.

¢) In dimensionless units, and with the constant term (-wpf/2) omitted,
the energy function can be written as

-1 1,1
E=-p+ (= +7° .
S+ 5 (s 7). (3.7)
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with
mS2 1

F=1/—r, pr=—=p,. 3.8
7 P —P (3.8)

The expression (3.0) is used in the phase-space plot in Fig. Bl The relation,
7 = p,/m, implies that 7 is positive in the upper half-plane and negative in
the lower half-plane. This means that the circulation around the equilibrium
point has negative orientation, indicated by arrows in the plot.

This circulation in the (reduced) phase space corresponds to oscillations
in the radial coordinate under the motion in the two-dimensional, physical
plane. The center of the oscillations corresponds to 7 = 1 or r = /£/m§)
(see also Problem 2.12).

Problem 3.2

We study here the motion of a particle with mass m, which moves in a
one-dimension potential,

1 1
V(z) = ~az* — ~ka® 3.9
(x) 790 — gk, (3.9)
with a and k as positive constants, and = as the position coordinate of the
particle.

a) The Lagrangian is

1 1 1
L=T-V= imj:QfZaz‘lJrisz, (3.10)
and the corresponding Lagrange’s equation is
d oL 0L . 3
5%7%70 = mi+azr’—kr=0. (3.11)

b) The equilibrium points are points z, where the equation of motion is
satisfied with & = & = 0. The points are thus determined by the equation

ar® —kr =0 = a::{i\/é,()}. (3.12)

The point x = 0 is an unstable equilibrium since ‘f;‘; (0) = —k < 0, and the

points © = ++/k/a = x4 are stable equilibria, since %(xi) =2k > 0.
Assume x = x4 + 1, with 1 as a small deviation from the equilibrium

point. With n included only to first order in the equation of motion, this

gives

k
mij+ 3axin —kn=0 = 7'7'—!—2%77:0. (3.13)
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This shows that the angular frequency for small oscillations about the stable
equilibria is w = +/2k/m.

¢) The conjugate momentum is p = % = max, and the Hamiltonian
then is

Hiop) = pi— L= 2 1 Lot = Ly (3.14)
xr,p) = pit =5 T 9% 5 kz” .
Hamilton’s equations are
OH p OH 3
. = ——— = —kx. 3.15
T o m’ D o ax T ( )

stable equilibria

[\

\

N

N

unstable equilibrium

Fig. 3.2 Phase space plot of model with two stable equilibria. Dimensionless
variables are used, with m =a =k = 1.

d) The plot in Fig. shows the equipotential curves of the energy
function H(x,p), with the arrows pointing in the directions of the phase
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space flow. There are two different types of motion. For low energies the
closed curves correspond to oscillations about one of the stable equilibrium
points, while for higher energies both equilibrium points will be passed in
the oscillations.

Problem 3.3

We consider here a particle of mass m, which moves in a one-dimensional
periodic potential

V(z) = Vp(sinz + asin® z), (3.16)

where z is the coordinate of the particle in the direction of motion, a > 0
is an external parameter, which can be varied, and where V| is a constant
which measures the strength of the potential.

a) The potential and its derivatives are

V(z) = Vo(sinz + asin® ),

V'(z) = Vo(cosz + asin 2z),
V" (x) = Vo(—sinz + 2a cos 2z) . (3.17)

There are two types of equilibrium points, determined by V' (z) = 0,
1
I cose=0 = z=(Mn+ 5)7r, n=0,+1,..,

1 1
II sinz = 5, T = —arcsin(%). (3.18)

For a < % there are only type I solutions, but for a > I there are both

2
types of solutions.

The values of V" (z) at the equilibrium points are

Typel V" = Vo((=1)""* = 2a),

1
Type IT V" =Vy(2a — %) (3.19)
Stable equilibria are determined by V" > 0, and the expressions above show
that this is satisfied for the Type I equilibria if a < % and n is odd, and for
the Type II equilibria if a > %
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We sum up the results concerning the equilibrium points, with n taking
the values 0, +1...,
1 A 3
a<sy stable equilibria: = = (2n + 5)#,

unstable equilibria: = = (2n+ =)=,

2
1
a > 3 stable equilibria: = = — arcsin(%) ,
1
unstable equilibria: x = (n + 5)77 (3.20)

Fig. 3.3 The form of the potential in Problem 3.3, for three values of the param-
eter a. Dimensionless variables are used, with m = Vj = 1.

b) The plot in Fig. B3 shows that when a — 1/2 changes from negative
to positive, the stable equilibrium at x = (2n + %)w becomes unstable, and
two new, stable equilibria appear in a symmetric way on both sides of these
points.

¢) The Lagrangian of the particle is

1
L=T-V= §m:'p2 — Vo(sinz + asin® ), (3.21)
with Lagrange’s equation
d oL 0L ,
i i =0. .22
%95 Ba 0 = mi+V'i(r)=0 (3.22)

This gives
mi + Vycosz(l + 2asinz) =0. (3.23)
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d) Let xg be any of the stable equilibrium points. To study small oscil-
lations around the point, we write z = x¢ + £, and expand the potential to
first order in £. This gives V'(z) = V' (x0)+ V" (20)€+ ..., where V'(z9) =0
and V" (zg) > 0. The equation of motion then takes the form

mé + V" (x0)€ = 0. (3.24)

It has the form of a harmonic oscillator equation with angular frequency

w = /V"(z0)/m. The values of V" (z) are determined in a),

a<%: V'=V(1-2a) = w= %(1—2@
1 "o 1 W 1
a>g: V" =Vy(2a — 2a) = w= m(2a 2a)' (3.25)

e) The Hamiltonian is H = pi — L, with p = 0L/0% = md. This gives
2

H(z,p) = 2p_m + Vo(sinz + asin®z). (3.26)

H(x,p) defines a phase-space potential, with the motion following equipo-
tential curves. The direction and speed of the motion is determined by the
gradient of the function,

(i,p) = (OH/8p, —OH dz) . (3.27)

f) A contour plot of the function H(x,p) is shown in Fig. B4l for the
three values a = 0,0.5 and 1.0. The dotted curves represent separatrices,
which separate different types of motion. In the first case (a = 0) the
diagram has the same form as for a planar pendulum, but here without the
periodic identification of points along the z-axis. There are two types of
motion, oscillations about the stable equilibria, and unbounded motion in
the positive or negative z-direction for higher values of the energy.

The second case (a = 0.5) is a limit case where the energy minimum for
a < 0.5 turns into a local maximum for a > 0.5. For a = 0.5 there still are
only two types of motion, oscillations about the minimum for small energies
and unbounded motion for higher energies. However, since in this case V' =
0 at the potential minima, the small oscillations are not harmonic.

When a = 1.0 there are, as shown in the diagram, three types of motion.
For sufficiently low energy, there will be small oscillations about a single
equilibrium point. For somewhat higher energy there will be oscillations
where the motion is bound to a pair of neighboring minima. Finally there
are solutions with unbounded motion.
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Fig. 3.4 Phase space plots of the model in Problem 3.3, for three values of the
parameter a.

Problem 3.4

In this problem we apply Fermat’s principle to light rays restricted to a
plane with Cartesian coordinates (z,y). Fermat’s principle determine the
light paths as solutions to the variational problem, where the optical path
length, defined (in the present case) as

sl = [ aaVTTRe, v =2 e

is stationary. Here n(z,y) is the position dependent refraction of the optical
medium.

a) The variational problem can be solved by reformulating it as a
Lagrangian problem. The Lagrangian in this problem is

L(y,y' ) = n(z,y)v/1+y?. (3.29)
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The variational problem 65 = 0, for variations in the path y(z) with fixed
end points (z1,y1) and (x2,y2), is equivalent to Lagrange’s equation
d OL OL
dz dy' 0Oy

d [ n(z,y)y on
—_— _— —— 1 2 — . .
- < ) g VitvR=o (3.30)

We first consider the case where n is constant. The equation reduces to

=0

d Y

— | —= ] =0 3.31

dz < J1+ y’2> ’ ( )
which implies that ¢ = 0, and therefore that y(z) is a straight line between
the endpoints (z1,y1) and (22, y2)

b) We next make the assumption that the medium has two different,
constant indices of refraction, with n = ny for x < 0 and n = ns for z > 0.
This implies that the variational problem is a curve which is a straight
line on both sides of the boundary « = 0 where n changes value. The only
variable to be determined by the variational problem is thus the crossing
point yo = y(0) at the boundary. The functional S[y(z)] is then reduced to
a function of yyo,

S(yo) = niy/z? + (y1 — o) + n24/ z3 + (y2 — v0)?, (3.32)

and the variational problem is reduced to finding a stationary point of this
function,

dS
e |
dyo
Yo — Y1 Yo — Y2
D) 7 2T~ 2
r1 + (y1 — Yo) r1 + (y1 — yo)

ny =0. (3.33)

¢) With 0; as the angle of the light ray for < 0 measured relative to
the normal of the boundary, and similarly fy as the angle of the light ray
for x > 0, we have

Y1 — Yo Yo — Y2

sinfy = , sinfy = . (3.34)
3+ (y1 — vo)? 3+ (y1 — yo)?
and by use of these identities, Eq. (333) is simplified to
nyisinf; = nosinbs (3.35)

which we recognize as Snell’s law of refraction.
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Problem 3.5

Fermat’s principle is here applied to the light path in an optical medium,
where the index of refraction n(y) changes with the height y in a vertical
plane. With x as the horizontal coordinate, the action integral is

Sly(@)] = /“ n(y)v'1+y?de. (3.36)

a) From the above expression follows that the corresponding Lagrangian
can be identified as

L(y,y') =n(y)vV1+y?. (3.37)
We derive from this Lagrange’s equation,

oL oL _
dr oy Oy

d Y dn
<4 Y ) Ar2—0. ,
T <n(y) = y’2> i +y 0 (3.38)

We perform the differentiations and simplify the expression in the following

way,
dn y/2 y// y/2y// dn
R N XY
Y \/1+ y/2 14 y/2 ( 14 y/2)3 dy
dn 1 y"
- +n(y =0. 3.39
dy /1+y/2 ( )( /1+y/2)3 ( )
Solving this with respect to y”, we find
1 dn
"= ———(1+y?). 3.40
) dy( ) (3.40)

b) We want to show that the following first order equation solves the
second order equation (3.40)

n(y) 2 12
—= ) =1+y"~, (3.41)
no
with ng as a constant. To demonstrate this we differentiate the equation
with respect to z. This gives

y// r n(y) dn ’

Cong dyt

(3.42)
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It has one (spurious) solution, ¢y’ = 0, which we disregard, and making use

of B41) again, we reproduce, from [B42)), Eq. (340),

2
) = (n(y)) 1 dn
no n(y) dy
1 dn
= ———(1+97). 3.43
n) ) (3.43)
¢) The index of refraction is assumed to decrease with height inside the
container, in the following way

n(y) = nge Y. (3.44)
At the point of entrance into the container the light beam is assumed to
satisfy the conditions y(0) = ¢'(0) = 0, and n(0) = ng. Inside the container,
we have, as shown in b), the following relation

n(y) =vV1+y?ng. (3.45)

Since ¥’ = 0 has been excluded as a false solution, we conclude from the
expression above that n(y) > ng and increases along the path. This implies
that the path is bent downwards when the light beam propagates through
the solution.

d) We will check that the following expression gives a solution to
Eq. (840) for the path of the light beam
1

cosax

We first apply the relation to the left-hand side of (B:4T])
2
1

e~ W =

(3.46)

no cos? ax
Next we find by differentiating ([3.46]) with respect to x,
—ayle™® = o= o;x ar = y =—tanaz. (3.48)
cos
When this is inserted in the right-hand side of (8:41]) the result is
1
1+y? =1+ tan” o = ——. (3.49)
cos? ax

This confirms that (346]) gives a solution to Eq. (34T]).

e) The deflection angle # of the light beam is at the end of the container,
x = L, given by

d
tanf = (_y) = —tanal, (3.50)
L) =L
which gives § = —alL, where the sign is consistent with the beam being

deflected downwards.
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Problem 3.6

The brachistochrone problem is the following:
Given two points A and B in a vertical plane, what is the curve traced out
by a point acted on only by gravity, which starts at A and reaches B in the
shortest time.

We solve this as a variational problem, where the time 7" spent on the
path is written as

Tly@) = [ Llyde, o =5 (351)

y(x) is here the path followed by the particle, with x as the horizontal
coordinate, and y as the vertical coordinate of the particle. The origin of
the coordinate system is chosen with 4 = y4 = 0, and the potential energy
is assumed to vanish at this point.

a) The first problem to be solved is to determine the form of the

Lagrangian L(y,y’). We write the velocity of the particle as

ds ds
=— = dt=— 3.52
o o (3.52)

[

with

ds = \/da? + dy? = /1 +y2de, o = Z—i. (3.53)
The velocity of the particle is assumed to vanish at the starting point, and
energy conservation determines the velocity as a function of y,

%va +mgy=0 = v=+/-2gy, (3.54)
where for convenience, we have chosen for the potential energy to vanish at

y = 0. This determines the time spent on the path to be

Twun/mﬁ

ta

B 1 ds
= ——d
/i vdx

A

X
B 1 12
— / Y (3.55)
T A 72gy

which gives the effective Lagrangian as

1+y12

L(y,y') = Sy

(3.56)



Hamiltonian dynamics 43

b) The coordinate z in this problem has taken the place of time ¢ in the
usual formulation of Lagrange’s equations, and the momentum conjugate

to y is therefore

oL y
=—=_——<2 3.57
P= %y ~ (201 +v?) (3:57)

and the Hamiltonian is

H=py L
y/2 1 +y/2
(299 (1 +y?) —2gy
1

= oy (3.58)

Since H has no explicit x dependence, it is a constant along the path in
the z,y-plane. (This corresponds to energy conservation when H is time
independent in the standard Lagrange formulation.) This gives
(1+y?)y = -k, (3.59)
with k as a (positive) constant.
¢) The assumption now is that paths defined by the parametric expres-
sions

1 1
x = §k2(9—sin9), y = 5/@’2(0059—1), (3.60)
are solutions of Eq. (B329). To show that this is the case, we determine y’

from the above expressions,
,_dy_dyd)_dy Jdo

= =2 = ——— 3.61
V"4 " dodz do/ do (3.61)
The derivatives with respect to the parameter 6 are
d 1
d_z = §k2(1 —cosf) = —y,
d 1
d—g = —5k?sing. (3.62)
This gives
1 [dy 2
1 12 — 1 _ _J
(L+y™)y < o (d@) )y
_ 1 2 dy :
Y <y i <d9)
]{34
= 4—((0089 —1)% 4 sin?4)
Y
k4
= —(1—cos) = —k?. (3.63)

2y



44 Solution Manual for Classical Mechanics and Electrodynamics (2nd Edition)

The boundary conditions at the starting point, x4 = ya = 0, are satisfied
if the start value of the path parameter is #4 = 0. This is clear from (B.60]).
The boundary conditions at the end point are

1 1
TB = §k2(93 —sinfp), yp= §k2(0059B -1). (3.64)

These equations determine the two free parameters of the solution, k? and
0p.

d) The form of the path, as a cycloid, is shown in Fig.

The cycloid
(X, Y,) X
‘ 10 s 20 25 30
02 /
-0.4 /
y -0.6 //
08 -
10 (X5 ¥g)

Fig. 3.5 The cycloid defines the path which minimizes the transit time between
the chosen endpoints. The parameter k is set to 1, and the end point (zp,yn) is
chosen arbitrarily on the curve.

e) At the bottom of the cycloid we have

dy _

g

With this as the end point of the path, we have

0 = sinl=0 = dOp=m. (3.65)

1 2
rp = 5’/Tk2, yp = 71172 = yp = 7;13. (366)

The time spent on the path is in this case

B 12 ™ 12
T:/ H_ydx:/ 1+y?dz
0 —2gy 0 —2gy db
T k,2 k ﬂ' wk
/0 \/ 2gy2( ) V29 Jo V29 (3.67)

The length of the straight line between the end points of the path is

2
s=y/th+yh =k 41 (3.68)

https:/favxhm.se/blogs/hill0
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If the particle follows this line between the end points, it will have a constant
acceleration

_ ~ lysl g
a=gcosa = g——— =

s NI
where « is the angle between the line followed by the particle and the
vertical line. With 7" as the time spent on this path, we have s = (1/2)aT"?,

which gives
/25 [2 w2 / 4
T == =ki{/=(—+1)=4/1+=T. 3.70
a g(4 +1) +7r2 ( )

Numerically this gives 7" = 1.185T, which demonstrates, in this particular
case, that the motion along the cycloid indeed is faster than along the
straight line.

(3.69)
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Chapter 4

The four-dimensional space-time

Problem 4.1

Two inertial reference frames, S and S’, are related by the Lorentz trans-

formation
!

v
2 =~(x —ot), t’:'y(tfc—Qa:), Yy =y, 2=z (4.1)

a) We want to invert the transformation. In order to do so we combine
the first two equations in the following ways,

2
1
/ t = 1— 1)_ — _
' +v ~( a:Q)x ,yx,
v v2 1
'+ =2 =~(1 - <)t=—t. 4.2
Ml G- s (4.2)
From this follows
z=r@ +ot), t=~ + 5a'), (4.3)
c

which confirms that the inverted transformation has the same form as the
original transformation, only with a sign change of the velocity, v — —v.

b) We use the Lorentz transformations to relate the velocity components
in S and S’ of a moving object,

o - de’  y(de —wvdt)  uy —v

CTA T A(dt— Sdr) T 1 S

,dy' dy 1w,

Y T
W= dr 1 (4.4)
=oodt A(dt— Hdr) oy 11— ’

¢) The following values are now assumed: The relative velocity of S’
and S is v = 0.5¢, the velocity of the object, as measured in S’, is v’ =
0.8¢, and the angle of the velocity vector u' is 8 = 45° relative to the
and 3y’ axes. This implies that the vector u’ lies in the 2/, y'-plane. Thus,

49
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u, = u, = 0, and for the two other components we have, uj, = u;, =

(0.8/v/2)c. The gamma factor for the transformation between S and S" is
7= (1-(v/c)?) "% =1.155.
The corresponding velocity components in S are

li
v — ul.—i-lv ~ (0.8/v2)+0.5 ¢ — 083,
Yo 14 0.5(0.8/v/2)

1 0.8
u, = % = 0.866¢C = 0.38¢, (4.5)
Y14+ 14 0.5(0.8/v/2)

where the expressions in ([£4) have been used, with v — —v due to the
inverted direction of the transformation. This gives

= /u2+u2=09Ic, 4.6
x T Uy

and the angle of the velocity, relative to the z-axis,

° ul 180°
f = arctan 1807 _ = arctan Y 80T 24.7°.  (4.7)
ug) y(u,+v)) =«

In a non-relativistic treatment we see that the denominators 1 + 2; in
the above expressions would be replaced by 1, and ~ replaced by 1. This
would give a superluminal velocity of the object as seen in S,

w=1/(0.8/V3) +05)2 + (0.866-0.8/v2)? = 1.21c.  (4.8)

The ratio between the velocity components would be modified by the change
of the gamma factor,

u, 180°
0 = arctan ( Y ) = 28.0°. (4.9)

/
Uy, +v ™

Problem 4.2

We examine here a combination of two boosts, which both mix the z and
t coordinates. Expressed as 2 x 2 matrices they have the form,

v =By coshxy —sinhy
L= 4.1
( By ) ( sinh y coshx) ’ (4.10)

where the parameter y is the rapidity. The problem to be solved is to show
that in a combination of two such boosts the rapidity acts additively.

https:/favxhm.se/blogs/hill0
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We show this by an explicit evaluation of the product, where we make
use of the properties of the hyperbolic functions,

L = Loly

__( coshxa —sinhyo cosh x1 —sinh x;
" \ —sinhys coshyxs —sinhy; cosh x1

_( cosh xq cosh x2 + sinh x1 sinh yo — sinhx1 cosh x2 — cosh x1 sinh x2
"\ —sinh 1 cosh x2 — cosh x1 sinh x2 cosh 1 cosh x2 + sinh x7 sinh x»

_ cosh(x1 + x2) —sinh(x1 + x2)
—sinh(x1 + x2) cosh(x1 + x2)

_ ( coshx —sinhyx
- (fsinhx coshy )’ (4.11)

where x = x1 + x2. We have here used the composition rules for the hyper-
bolic functions

cosh(x1 + x2) = cosh x1 cosh x2 + sinh 1 sinh x2,
sinh(x1 + x2) = sinh y; cosh x2 + cosh 1 sinh x2 , (4.12)

which are straight forward to check using the definition of these functions.
As shown, the composition rule for the Lorentz transformations gives
the simple additive rule for the rapidity, x = x1+ x2. This is to be compared
with the composition rule for the corresponding velocities.
vy +v
po v (4.13)

- V1V2
1+ upz

Problem 4.3

A thin rigid rod has rest length Lg. It moves relative to an inertial refer-
ence frame S’ so that the midpoint A of the rod has the time dependent
coordinates 2’y = 0,9/, = ut’, 2y, = 0, with u as the velocity of the rod. In
this reference frame the rod is at all times parallel to the 2/-axis.

a) Since the motion of the rod, as seen in §’, is in the y’-direction, the
length of the rod in the z’-direction is the same as in the rest frame of the
rod. This implies that the end point B has the 2’ coordinate 'y = Lo /2 (or
alternatively —Ly/2). Since the rod is at all times parallel to the z’-axis,
we have y; =y, = ut’ and 2j; = 2/, = 0.
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b) We consider the Lorentz transformations between the reference
frames S’ and S, with S’ moving with velocity v along the z-axis rela-
tive to S. We are interested in finding the space coordinates in S expressed
as functions of the time coordinate ¢ in the same reference frame. Since the
time coordinate ¢’ will then depend on the space coordinates, we consider
the two points A and B on the rod separately.

Lorentz transformation of the coordinates at A gives

t=~("+ :—ch’A) =t
za =y(xy +ot') =yt
ya =y, =ut',
za=24=0. (4.14)

The first equation shows that the time coordinate in this case is ' = ¢/~.
Inserted in the other equations we find

xa =0t, yA:%ut, z4=0. (4.15)
Lorentz transformations of the coordinates at B give
E= A+ o) =2+ 52,
xp =(vs +ot') = 'y(% +ot'),
yp = yp = ut’,
zp =25 =0. (4.16)

In this case we have t/ = Lt — % Lo which inserted in the equations for the

space coordinates gives

’U2 LO 1 LQ
rp = ”Ut+"}/(1 — g)7 = ’Ut+ ;7,
1 ; uv Lo
= —UuUt — ——
yp = 25
zp =0. (4.17)
¢) The angle ¢ of the rod relative to the z-axis in S is
- Lo/(2¢2 1
tand): yB yA :77““) ()/( C):i_u_;) (418)
T —Tp Lo/ (27) v e
This shows that the rod, as seen in reference frame S, is tilted relative to

the z-axis.
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d) The velocity of the rod in reference S has the two vector components
Uy = &g =1TR = v,

UyzyAZjl)BZ;u. (4.19)

Problem 4.4

We consider here a situation where a railway carriage is moving in a straight
line with constant velocity v relative to the earth. The earth is considered
as an inertial reference frame S, and in this reference frame the moving
carriage has the length L. A and B denote points on the rear wall and
front wall of the carriage, respectively. C is a point in the middle of the
carriage.

a) The situation is illustrated in the Minkowski diagram shown in
Fig. 41 below. In the diagram the points A, B, and C form parallel lines,
as they represent the worldlines of points which are fixed in the carriage,
and therefore move with the same speed relative to the earth. The angle
between each of these lines and the time axis is determined as

1d
tana = - — = = (4.20)

At a given time tg = 0 a flash tube is discharged at point C. This event
is referred to as Ey. The points E; and Es represent events where the light
signals hit the rear wall and front wall of the carriage, respectively. The
light is reflected from A and B, and the two reflected light signals meet at
a space-time point FEj.

b) In the Minkowski diagram the light signals and the events are shown
in the following way. The event Ej is the point where the worldline C' crosses
the z-axis. As light moves with the speed ¢, the light signals are described
in the diagram with (dotted) lines, which are tilted with angles § = £45°
relative to the z-axis. The events E; and FEs lie where the light signals
hit the ends of the carriage, which means where the light paths reach the
worldlines A and B. The light signals are reflected back from these points
to meet at the event Es.

¢) In the co-moving reference frame S’ of the carriage, the two events
F, and Es will be simultaneous, since the distance traveled by the light
signals from point C, in the middle of the carriage, to the rear and front
ends of the carriage is the same. For the same reason the reflected light
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x

Fig. 4.1 Space-time diagram for the moving train carriage with the light signals.

signals will meet in the middle of the carriage. This is consistent with the
drawing, with the event F5 placed on the worldline C.

d) The coordinate axes of the co-moving reference frame S’ are included
in the diagram. Since F; and E5 are simultaneous in the reference frame
S’, the line between the two is parallel to the x’-axis of this reference frame.
Similarly the lines A, B and C', which describe points which are fixed rela-
tive to the carriage, are parallel to the ct’-axis of S’. The time axis in S’ is
tilted relative to the time axis in S with the same angle (up to a sign) as
the space 2’-axis is tilted relative to the z-axis. This implies that the angle
between the line F; — Fs and the z-axis is the same as the angle o between
the line A and the ct-axis, as shown in the diagram.

e) Lorentz transformations between the two reference frames gives for
the relative coordinates of two spacetime points F; and Fo,

v
At =~y (At — C—QA:::) . (4.21)
If the two points are simultaneous in S’, we have At' = 0, which implies
Az 2
— = — . 4.22
At v - ( )

This will be the (superluminal) velocity for an object which follows the line
in Minkowski space between F; and FEs.
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Chapter 5

Consequences of the Lorentz
transformations

Problem 5.1

In this problem we study relativistic effects in a rotating disk. The radius
of the disk is R and the angular velocity is w.

a) A small piece of the disk has length dr in the radial direction and
rdf in the angular direction, both lengths measured in the lab frame, where
the center of the disk is at rest. The instantaneous inertial rest frame of the
small piece moves in the angular direction with the velocity of the small
piece. In the lab frame, the tangential length of this piece will be Lorentz
contracted compared to length measured in the co-moving frame. In the
radial direction there is no similar contraction effect. The lengths measured
on the rotating disk therefore are

ds, =dr, dsg=,rdl, (5.1)
where 7, is the r-dependent, relativistic gamma factor
1
’y,,. = 72 5 . (52)
1— =

b) The integrated length around the circumference of the disk, when
measured on the rotating disk, is then
27 R
Sp = — (5.3)

)
R20J2
— 5—2

while the radial distance measured on the disk is unchanged, sp = R. The
ratio between the length of the circumference and the radius, as measured
on the rotating disk is therefore

S 27

LS ——— (5.4)

SR 1— R2w?2

02
¢) Compared to the clock of the lab frame the clocks attached to the

rotating disk appear to go slower by the local time dilatation factor 1/7,.

55
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This implies that at time ¢ of the lab frame the clock at radial coordinate
r will show the time

2002
tr =1/1—

= t. (5.5)

d) We consider an infinitesimal spacetime displacement along the edge
of the disk. With dt as the time interval measured in the lab frame, dt’
as the time interval in the instantaneous rest frame of the disk, and dx’ as
the displacement along the edge, measured in the same reference frame, the
Lorentz transformation between the reference frames gives

R
dt = yr(dt’ + ‘“Z—de') : (5.6)

Assuming the spacetime displacement relates simultaneous events in the
local, co-moving frame, we have dt’ = 0, and as follows from a), dz’ =
vyrRdf. This gives

o wR?
and integrated around the full circle the result is
2rwR?
At = ~% 2 (5.8)

This is the time jump measured in the lab frame, for a spacetime curve
around the edge of the disk, which connects events that are locally simul-
taneous in the co-moving reference frame. By use of the time dilatation
formula we then obtain for the time jump measured by the local, co-moving

clocks,
1 27w R? 27w R?
Al = —At =yt = T2 . (5.9)
YR c 2 R2w?
c?y/1— =
Problem 5.2

A spacecraft moves with the velocity v = 3¢/5 to a point located at the
distance D = 30 light days from the earth. After a short stop it returns with
the same speed to earth. The short periods of acceleration are neglected in
the following.

a) The total time measured on earth is

2D 10D
T. = — = —— =100 days. (5.10)
v 3 ¢
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The total time measured on the spacecraft is equal to the proper time of
the spacecraft during the travel. We use the general formula for the proper
time A7 = At/~, with the gamma factor given by

B 1 B 1 5 (5.11)
K V1I—v?/2  \J1-9/25 4 '
This, gives as the proper time of the travel,
1 4
T, = —-T, = =T, = 80 days. (5.12)
¥ 5
A ct ) A ct
spacecraft 2. signal
\ /( i
/
// cAt
2. signal
signa At y o spacecraft
/ cA; v
/
X / 0
/ Ax
/
7 /
/ . / .
’ ~ 1. signal ’ 1. signal

Fig. 5.1 Space-time diagrams for the radio signals received by the spacecraft, to
the left, for the travel away from earth, and to the right for the travel back.

b) Every hour a signal is sent from earth to the space craft. We consider
two events, where subsequent signals are received on the space craft during
the travel out. Measured on earth, the coordinate difference between these
events is given by (see diagram to the left in Fig. [B.1]),

¢

)
Ax =vAt =c(At—Ag) = At= Ay = §A0 . (5.13)

c—v
The time difference between the events, measured on the spacecraft is then,
due to time dilatation,
1 45
Ay = At = ==Ay =27y = 2 hours. (5.14)
v 52
On the travel back the corresponding expressions are (see diagram to

the right in Fig. B.1]),

Az =vAt = c(Ag — At) = At = —

c+v

5
A() = gA(), (515)
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with the time difference measured on the spacecraft as

1 45

Ay = —-At=—-=

¥ 58

¢) A Minkowski diagram which shows the signals from earth to the
spacecraft is shown as the diagram to the left in Fig.

1
A() = §A() = 30 min. (516)

A ct A ct

T T

e e

Tt

spacecraft
TJ/2 T/2 N\~
earth
X X
signals sent from earth signals sent from the spacecraft

Fig. 5.2 Minkowski diagrams with the worldlines of radio signals sent from earth
to the spaceship (to the left) and radio signals sent from the spacecraft to earth
(to the right).

d) The situations with respect to the time intervals of the signals at the
receivers are fully symmetric, whether the signals are sent from the space
craft or from the earth. Only the relative velocity between the emitter and
the receiver matters. This explains why the signals received on earth, on
the first part of the spacecrafts travel out is A; and on the second part is
AQ.

The time when the intervals of the signals received on earth change is
the time when the signal sent from the space craft at halftime reaches the
earth,

1 D

T,=:T.+—=
C

D 1 8D
2

D D
42 = —4+1)=-——=280d . 1
v+c c(ﬁ+) 3% 80 days (5.17)

e) The Minkowski diagram with the signals sent from the spacecraft to
earth is shown to the right in the figure.
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Problem 5.3

A particle is circulating with constant speed in an accelerator ring of radius
R = 10m. The speed of the particle corresponds to a relativistic gamma
factor v = 100. The laboratory frame S is the rest frame of the accelerator
ring, and we assume the ring to lie in the x, y-plane, with the center of the
ring at the origin.

a) To determine the velocity v of the circulating particle, with relativistic
gamma factor v = 100, we use the relations

1 1
/BZU C, — S — B: 1—— 518
fo = 2 (5.18)
This gives
I 1

The velocity v is very close to the speed of light and can be put equal to
¢ in the expressions to follow. The period of circulation in the accelerator

ring is
2rR  27R 10

T= ~ =2 =21-10"" 5.20
v ¢~ "30-108" ® (5.20)

and the angular velocity is

2T c

= =—-=30-10"s"", 21
w=-—7=7 3.0-10"s (5.21)

The proper time 7 is the time measured on an imagined co-moving clock.
It is related to the time ¢ on a coordinate clock by the time dilatation factor

1/7,
r=t/y = T,=T/y=21-10""s, (5.22)

with T, as the period of circulation measured in proper time.

b) An instantaneous inertial rest frame of the particle is an inertial
reference frame where the particle has zero velocity at a specific instant.
We denote by S’ the instantaneous inertial rest frame of the particle when
it passes the point (x,y) = (0, —R) of the accelerator ring. This event is
assumed to correspond to vanishing time coordinates in both the lab frame
S and the rest frame S’, t =t/ = 0. The Lorentz transformations between
the two reference frames then take the form,

? =y —vt), ¥ =y+R, t=r(t— =), (5.23)
C
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with the origin of the coordinate system of S’ here placed at the position
of the particle.

¢) In S, the coordinates of the accelerator ring satisfy the circular con-
dition
2 +y® = R%. (5.24)

The condition ¢’ = 0 gives the following relation when applied to the coor-
dinates of S,

v
=0 = t:C—Qz. (5.25)

When inserted in the transformation formula (523)) this gives

/

1
==z = z=n~2. (5.26)
v
With this and y = ¢’ — R introduced in the circular condition (524, this
gives the following form for the accelerator ring in S’, at time t' = 0,
22 (y/ _ R)Q

2 .12 I_R2:R2
Y+ (y ) = (R/’y)2+ R2

=1. (5.27)

The last equation can be identified as ellipse equation where the length of
the long half axis, in the y’-direction is R, and the length of the short half
axis, in the a’-direction, is R/~y. This result is consistent with the accelerator
ring being seen in S’ as Lorentz contracted in the direction of the relative
motion between the ring and the reference frame.

d) The particle trajectory as described in the coordinates of S is
2z = Rsinwt = Rsin(ywT),
y = —Rcoswt = —Rcos(ywT) ,
t=n~T. (5.28)
When re-expressed in the coordinates of S’, we find
' =y(x —vt) = y(Rsin(ywr) — ywRT),

v =y+ R = R(1— cos(ywt)),
, v 5 wR? |
t'=n~(t — C—Qz) =TT sin(ywt) . (5.29)

A graphical representation of the trajectory in the z’,y’-plane is shown in
Fig.
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Fig. 5.3 The particle trajectory as viewed in the moving reference frame S’.

Problem 5.4

In a particular inertial reference frame S the coordinates of a spaceship are
given as

C 62

. aop ap
o sinh( . T), o cosh( p T), Yy=2 , (5.30)

with ag as a constant and 7 as a time parameter.

a) The proper time 7 of the space ship is related to the coordinate time

t by the formula
1 2
= dr=-dt=\/1-Zdt, (5.31)
¥ c

where v = dz/dt is the velocity of the space ship in the arbitrarily chosen
reference frame. The formula is valid for any infinitesimal section of the
spaceship’s worldline.

To check that the parameter 7 in (B.30) satisfies this condition, we
differentiate the expressions given there for ¢ and =,

dt = cosh(@T)dT, dzx = CSinh(@T)dT. (5.32)
c c

This gives
de? — 2dt* = CQ(SinhQ(@T) - coshQ(@T))dT2 = —c*dr*, (5.33)
c c

which is equivalent to the condition (B.31)).

b) A space station has z-coordinate d = ¢?/ag and is at rest in reference
frame S. It sends radio messages to the spaceship at regular intervals ¢,,,n =
0,1,2,.... The message sent from the space station at time t, is received
at the spaceship at a later time denoted ¢,. Both refer to time measured
in S. Since the message propagates with the speed of light, we have the
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following relation between the z and t coordinates of the spaceship when
the message is received,

2(ty) —d=c(ty, —t,) . (5.34)
Expressing this in terms of the proper time 7, when the message is received,
we get
= (cosh(%2r,) ~ 1) = < sinh(%r,) - a (5.35)
—(cosh(—m,) — 1) = —sinh(—7,) — ¢ .
a0 c n ao c n n

and from this follows

cosh(a—cor,b) = sinh(a—cor,b) - (a—cot” -1). (5.36)

Since cosh(%2,) > sinh(%27,) this implies that the equation can be satis-
fied only as long as t, < ¢/ag = tmaz. In the limit ¢, — tpaez, we clearly
have 7, — oo for the proper time when the message is received.

Act

. e
__ space station 2
7/

7
limit path .
////
///
7/
L7,
//// ~ spaceship
ct 7,0
| _ _ max _ //

e last message

X

Fig. 5.4 Minkowski diagram with the hyperbolic worldline of the spacecraft, and
with radio signals sent from the space station. Only signals sent before t,,q, will
reach the spacecraft (as long as the hyperbolic path is followed).

¢) Figure B4 shows a Minkowski diagram with the worldlines of the
spaceship and the space station in the coordinate system of reference
frame S. The worldline of messages sent from the space station are also
shown. Due to the hyperbolic form of the spaceship’s worldline, only mes-
sages sent before t,,,, will reach the spaceship.
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Chapter 6

Four-vector formalism and covariant

equations

Problem 6.1
Two four-vectors A and B satisfy the orthogonal relation
A-B=A-B-A'"B"=9,

with A as a timelike vector, A* = A2 — (A°)% < 0.

We will show that this implies that B is a spacelike vector.

Since A is a timelike vector we have
A
Al < A% = F' <1.
The orthogonality relation A - B = 0 implies
A
0 _
B” = 10 -B.
From this follows
A
1B] < |51 B] < B
which shows that B is spacelike,
EQ :B2 _ (BO)Q >0.

Problem 6.2

a) We are given the following set of equations,

(6.1)

CF=TH A", D,=TA, Euy=T,5". G=5,T A% (6.6)

and the problem is to identify and correct those which do not satisfy the

conditions of covariance.

We find that only the equation D, = T* A, is correct, while the others

are

C

CH=TH A", Eu=Tw5",, G.=8,T"A".

63

(6.7)
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b) Starting with a set of two four-vectors and a tensor, A¥*, BH, TH,
new scalars and vectors can be formed as follows:

e scalars A A", A,B", TV THT,,, T'A,B,,...

w

e vectors TH'A,,, T"T,,B”, .... (6.8)

¢) By manipulating L L¥,, with raising and lowering operators, and
making use of the identity

L)LYy = Gpo (6.9)
we obtain
thpLHo = gltaLaﬁ ngLHU
= gﬁp(guaL#a Laﬁ)
= gopg"" =05 (6.10)
Problem 6.3

The functions to differentiate are

z/J'

flx) =z, 2, at(z)=2a", WW(x)=2z"2", hM(x)= (6.11)

T,V
In the following we freely change the names of repeated indices, in order to
avoid unintended reuse of index names in the same equation. We evaluate
the following derivatives,

Ouf(z) = @(ﬂfaza) = @(gaﬁzaﬂfﬁ)
_ a, B asB
- gaﬂ((sﬂ.ﬁ +x 6;L)
= guﬁxﬁ + gauﬂja
=2, (6.12)
oxH

aﬂa“(a}) = @ = 6;: = 4, (613)

oV
00" (x) = % = oha¥ + 0,2t = 4x” + 2¥ = ba", (6.14)
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0 xH
uht(x) = e (z :c”)

4 xh

= _—_— e — .8
:ny” (xyzy)anBax# (x * )

4 xt o o
2 W%‘B(éﬂxﬂ +65$ )
_ 4 2ztw,
Cxyar (xav)?

2
=" (6.15)

Problem 6.

An inertial reference frame S has time and space axes defined by the basis
vectors e, u = 0,1,2,3, with the generalized orthonormalization condition

e, € = Gu- (6.16)
A second inertial frame S’ has coordinate axes with unit vectors that mix
those of S in the following way,

e, = coshy e, +sinh x e ,
€] =sinh ye, + coshxe, , (6.17)
while e, and e, are left unchanged.

a) We will find the relation between the parameter x and the relative
velocity v between the two reference frames. In order to do so, we make use
of the following relations between the spacetime coordinates and the unit
vectors in the reference frame S,

x=za'"e, = z,=¢, X, (6.18)
with similar expressions in reference frame S’. The transformation equa-
tions between the two sets of unit vectors then give,

x( = cosh x zg + sinh y x1 ,

x) = sinh y zo + cosh y x1 ,

Th =1y, Th=u1x3. (6.19)
With g = —ct, 1 =z, 2 = y, x3 = 2, etc., this gives the coordinate
transformations

ct' = coshyct —sinhyz,

x' = —sinh x ¢t + cosh y x,
Yy =y, Z==z. (6.20)
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The equations have the standard form of a Lorentz transformation formula,
where reference frame S’ moves with velocity v along the z-axis relative to
to reference system S, provided we make the identifications

coshy =+, sinhy=03y. (6.21)

b) We assume that in a (two-dimensional) Minkowski diagram the basis
vectors of reference system S, (e, e,), are treated as orthogonal and nor-
malized to 1. The corresponding basis vectors of S’, which are related to the
basis vectors of S by e[, = cosh x e,+sinh x e, and €] = sinh y e,+cosh x e;,
will not be orthogonal in the same diagram, and neither are normalized to
1. In particular the basis vector €{, will be rotated by an angle ¢ relative to
€y, with cosh x = acos¢ and sinh x = asin¢, where a is a normalization
factor. This gives

tan¢ = tanh x = 8 =v/c. (6.22)

Similarly €] will be rotated by the same angle relative to e, but in the
opposite direction. For the angle ¢ = 30° we have

v = tan 30°¢ = ¢/V/3 = 0.577c. (6.23)
For ¢ = 15° we similarly find
sin 30°
v = tan 15°¢ 0s30° 1 ¢/(V3+2) = 0.268¢ (6.24)

¢) We express the vector €, in terms of the basis vectors of S as
e, = coshx e, +sinhye, = zogo +rle . (6.25)
The coefficients satisfy
(2°)% — (2)? = cosh? y —sinhy =1, (6.26)

which show that the two parameters 20 and 2! define a hyperbola in the
diagram. For €} we find the same equation, but with a switch of the param-
eters £° and 2'. This means that the hyperbola in this case is obtained by

reflecting the first hyperbola about the line 20 = x!.
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Chapter 7

Relativistic kinematics

Problem 7.1

a) An electron is moving in a storage ring of radius R = 10m, with a
speed that corresponds to the gamma factor v = 30. The velocity of the
particle is determined by the gamma factor in the following way

1 1

YTE=E—— = v=4/l-—c. (7.1)
1-4 v
With v = 30 this gives
v =0.9994c = 2.998 - 10°m/s . (7.2)
The period of circulation, measured in the lab frame, is
T = @ =2.0956-10""s (7.3)

and the proper time of one period is reduced by the time dilatation factor,
T,=T/y=06.985-10""s. (7.4)

The acceleration measured in the lab frame is

’U2

=5 =899 10 m/s? (7.5)
and the corresponding proper acceleration, evaluated for circular motion
with constant velocity, is

ap = v*a = 8.091- 10" m/s?. (7.6)

b) We now study a different system. The motion of a particle in two
dimensions is described by the time dependent position vector

1
r = uti+ Ethj , (7.7)
with the velocity
v =ui+ gtj, (7.8)

67
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and acceleration,

dv .
a—= % =gj- (79)
The corresponding gamma factor is
1
1 — ==

We make use of the general formula for the absolute value of the proper

acceleration
(v-a)?
ag = y'a’ + 95—
92 g4t2
= +
(1— )2 21— gl
1 3 9 U2+g2t2 922«:2
= (u2+g2t) (( - 2 ) 2
_u?
_ 2 2
=g W . (7.11)
02
This gives

2 — 2
ag = g\/(c2 — u2 — 92t2)3 . (712)

The proper acceleration is seen to increase with increasing t. It goes in fact
to infinity when ¢t — v/¢? — u?/g. This corresponds to the time where the
particle velocity reaches the velocity of light, v — ¢, which is, of course, an
unrealistic limit.

Problem 7.2

A spacecraft leaves the earth at local time ¢ = 0 and travels to the star
Proxima Centauri, at a distance of d = 4.2 light years. The spacecraft
follows a linear path, along the x-axis in an earth-fixed reference frame.
The initial value of the position coordinate is @ = 0, and the (proper) time
coordinate measured on the spacecraft is set to 7 = 0 on departure.

The spacecraft follows on the first part of the journey, until it is halfway
to the star, a hyperbolic path of the form

2 a c a
— 27 = — cosh(=(7 — t—t; = —sinh(=(7 — . 7.13
T =y = cos (C(T 1)), 1= s (C(T 7). (7.13)
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The same type of spacetime path is followed on the second part of the
journey, until it reaches Proxima Centauri, but with the opposite sign of
the parameter a. The journey back from the star is performed in the same
way, in the opposite direction. A short stop at the star is disregarded in the
description.

a) The initial conditions for part I of the journey, t = 0,2 = 0,v =
0,7 = 0, determines the coefficients zy, t; and 7; of (TI3),

v = ctanh(gn) =0 = 717=0,
c

c? c?

r=r7+—=0 = z1=-——,
a a

t=t;=0. (7.14)

This gives for the spacetime coordinates of the spaceship on part I of the
journey,

? a c . .a
x = Z(COSh(ET) -1), t= - smh(zT) . (7.15)

b) To show that the parameter 7 is the proper time of the spaceship,
we consider an infinitesimal change in the space-time coordinates of the
spacecraft,

dx = CSiHh(ET)dT, dt = COSh(gT)dT. (7.16)
c c
The corresponding Lorentz invariant line element is
ds* = da? — Adt* = —c*1% (7.17)

which gives

1 v2 1
dr = dt2——d2=\/1——dt=—dt. 7.18
T \/ 2 € 2 v ( )

This shows that 7 satisfies the definition of proper time of the spacecraft.
The components of the four-velocity are

t a

0

= = h —_ =

U e = cceos (CT) e,
d

Ul = d—i = csinh(%T) =,

U*=U%=0, (7.19)
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and the components of the four-acceleration are

0
AY = —dfl] = asinh(gT) ,
T
dut a
Al = — — h(—
g, = acos (CT),
A? = A3 =0. (7.20)

The proper acceleration is determined by
a@=A*= (A" - (A2 =d®> = ay=a. (7.21)

This shows that the parameter a in the definition of the coordinates of the
spacecraft is identical to its proper acceleration. The proper acceleration is
therefore constant, except for a sign change under parts II and I of the
journey.

¢) The Minkowski diagram with the four parts of the journey is shown
in Fig. [Tl Parts II — IV of the journey are generated from part I by
reflections in the space and time coordinates, combined with a shift in
positions.

d) We assume now that the proper acceleration is equal to the accel-
eration of gravity on earth, a = 9.8 m/s?. The proper time 75 when the
acceleration is reversed, corresponds to the position of the spacecraft being
halfway to Proxima Centauri, « = d/2. This gives

c? a d
Cleosh(Er)—1) =2 =
- (cos (CTQ) ) 5
a ad
h(— =14+ — =23.16. 7.22
cos (CTQ) + 502 (7.22)
This determines 7y as
To = garccosh(3.16) = 1.76 years. (7.23)

From this follows that the total proper time and the earth time spent on
the full journey are

Tiot = 4719 = 7.1 years,
¢ a
tior = 4—sinh(—7p) = 11.7 years. (7.24)
a ¢
e) The spacecraft has the maximum speed at the point where the accel-
eration is reversed, which means when 7 = 7,

Vmaz = tanh(%ro)c = 0.95¢c. (7.25)
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7
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Fig. 7.1 Minkowski diagram of the space-time journey to Proxima Centauri and
back.

Problem 7.3

The two end points of a moving rod have the following time dependent
coordinates in a reference frame S,

TaA=c\i2+c32/a?, zp=c\2+A/%, a>b. (7.26)

a) A second reference frame moves in the same direction with a velocity
v relative to S. We will show that the end points of the rod satisfy the same
equations when expressed in the coordinates of S’.

We make use of the following relations, which follow from ([T.26]),

2 2,2 02 2 2,2 5
A tig, xcht:b—Q, (727)

and since 22 — ¢t? is a Lorentz invariant, the following equality is valid for
both points A and B,

x? — At =2 - A2 (7.28)
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This implies also that the coordinates in reference frame S’ satisfy the
relations

Py =c\/t2+c2Ja?, alg=c\t?+2/b2, a>b. (7.29)

b) The velocities of the end points A and B, measured in S are

f = dra ct
A= T B e
d t
O L A — (7.30)

dt /12 1 2 /b2 ’

At time t = 0 this implies

va=vp =0, (7.31)
which shows that S is an instantaneous rest frame for both points A and B
at t = 0. Similarly we find, for the velocities of the end points in reference
frame S’, at time t' = 0

vy =05 =0. (7.32)
This shows that reference frame S’ is a common rest frame for A and B at
t'=0.

The distance between A and B, measured in S at time ¢ = 0, is
2 2

c c a—2>b
d=zp—a24=———=¢" : 7.33
T oA b a ¢ a+b ( )
Similarly the distance between A and B, measured in S’ at time ¢ =0 is
P _ ,a—b

d/:/_/:____ _
B~ %A b a Ca+b

The length measured in the two instantaneous inertial rest frames, at t = 0
and t’ = 0, respectively, is therefore the same.

The velocity v of the reference frame S’ relative to S can be regarded
as a free variable. It is, as shown above, identical to the velocity of the end
points A and B at time t’ = 0, as measured in S. When v is continuously

(7.34)

changed, this will correspond to moving continuously along the worldlines
of the two end points. Thus, the motion of the end points is such that they
will always have a common instantaneous inertial rest frame, and the length
will be constant in this frame, equal to d. The rod will therefore move like
a rigid body, in spite of the fact that the motion is relativistic.

¢) The acceleration of A, measured in S, is at time ¢t = 0,

dva

aa(0) = (W)t:O =a. (7.35)
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Similarly, at ¢ = 0 in 5",

dv’

a4 (0) = ( df)tfzo =a. (7.36)

This means that the accelerations, measured in the instantaneous inertial
rest frame at different points along the worldline of A, all have the same
value a. The same result applies to B with a replaced by b.

d) A light signal which is sent from A at time ¢ = 0 is received at B at
time tp. We have

/ 2 A2
xB(tB)za:A(O)—i—ctB, = c tQB+b—2=;+CtB. (7.37)

The squared equation determines tp,

4 3 4
2,2 | C 9.9 c c 1 1 1

CtB+b_2_CtB+2tBZ+¥ = tB—aCG(b?—E), (738)

and the coordinate xp at this instant,

c? 1, 1 1
$B(tB):;+CtB:§C a(;+b—2) (739)
The velocity of B at tp is then
t t 2 p?

vp(t) = ——B =SB 2 (7.40)

NG T

The light signal, which is sent with frequency vg from A at ¢ = 0, is received
at B with frequency vp determined by the Doppler formula,

= —-1. 7.41
0] al/o ( )

Problem 7.4

A spacecraft passes the earth with velocity v = 0.8¢, with d as the shortest
distance between the spacecraft and the earth. In an earth-fixed frame S
the position of the spacecraft is described by coordinates

z(t)=vt, y=d, z=0. (7.42)

When passing, the spacecraft is continuously submitting radio messages to
the earth on frequency . An antenna on earth, located at the origin of
the coordinate system, receives the messages and registers the frequency
v(t) and direction of the received signal during the passage. This direction
is measured by the angle 6(¢) between the signal and the z-axis.
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Fig. 7.2 Illustration of the emission of messages from a passing spacecraft.

a) A radio signal is received at time t on earth. It is emitted a bit earlier,
at time t, = t — At. We will determine At as a function of ¢.

The coordinates (ct, x,y) for emission E, and for reception R of a mes-
sage, are in the earth-fixed reference frame S (see Fig. [[2),

E: (cte,vte,d), R: (ct,0,0). (7.43)
The time difference and distance between the two events are
At=t—t,, D= \/v*2+d?. (7.44)
Since the separation of the two events is lightlike, this implies
AA = D? = 0*(t — At)? + d?, (7.45)
which gives a second order equation for At,
(c —v?)AL? + 20%tAt — 0?12 —d* = 0. (7.46)
This is rewritten as
At? 4 26272 At — 2 (B2t + d*/c?) =0, (7.47)
and with At positive, the solution is
At = —B2~%t + \/(’7454 + 28212 4 2d2 /2

= —B2y%t + /71822 + 12d2 /2 . (7.48)
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t
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-‘I‘S 1‘0 [ lp 1§
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Fig. 7.3 Diagrams for the time dependence of frequency and direction of signals
sent from the passing spacecraft to earth. In Panel a) is shown the change in direc-
tion of the signals, and in Panel b), the change in frequency. The dimensionless
time coordinate £ = ct/d is used.

b) The angle 6 of the signal when reached on earth, is determined by

—A
cosf = _Ye __ vl D (7.49)

D VRt — A2 +d2

The result for cosf is plotted as a function of the dimensionless time coor-
dinate ¢ = ct/d in the upper panel of Fig
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¢) The relevant Doppler formula (see the textbook) gives, for the fre-
quency of the signal registered in the receiver,
&\

B ~v(1 = Bcosh)

The ratio v/vy is shown as a function of ¢ in the lower panel of the figure.
When ¢t — £oo we have cos§ — F1. The asymptotic values of the
frequency v in these limits are

40 _1FB
Voo — ’y(liﬁ) = 1i61/(). (751)

This gives the asymptotic values, v_o = 319 and V4., = 15/3.

v

(7.50)
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Chapter 8

Relativistic dynamics

Problem 8.1

Two photons in the laboratory system have frequencies v1 and vs. The
angle between the propagation directions is 6.

a) The problem here is to find the total energy and the absolute value of
the total momentum of the photons in the lab frame. We choose the z-axis
in the direction of photon 1, and the y-axis orthogonally directed, in the
plane of the two photons. The four-momenta of the two photons are then
hin
¢
and the total four-momentum is

h
P, = (1,1,0,0), Py,= ﬂ(l,COSH,SiHG,O), (8.1)
c
h .
P=P +P,= Z(l/l + vo,v1 + v cosb, vy + 12 sin b, 0) . (8.2)
The total energy is determined by the Oth component of the four-
momentum,
E =cP° = h(v) +1»), (8.3)

and the total momentum is determined by the three-vector part of the
four-momentum. The absolute value is

h
= —\/(v1 + 9 c080)2 + 12 sin? 0
P - 2

h [ s
= - 2 0. 8.4
C\/Vl + v3 + 2v1v5 cos (8.4)

b) To find the photons’ frequency in the CM-system we exploit the fact
that the total momentum of the two photons vanishes in this reference
frame, and that P? = p2 — E2/¢? is a Lorentz invariant. This gives the
following relation between the values of the invariant in the CM-system
and the lab-system,

E%‘M _ E2 _ 02p2
= h?[(v1 + 12)? — v} — V3 — 2v115 cosB)]

= 2h%v1v5(1 — cosb). (8.5)

7
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Since Ecpr = 2hveny, with vops as the photon frequency, which is equal
for the two photons in the CM-system, we find

vor = /riva(l — cos) = 2uiv; sin (g) : (8.6)

¢) If the momenta of the two photons are collinear, both photons will
propagate with the speed of light in the same direction. In this case there is
no inertial reference frame where the two photons have the same momen-
tum. Thus, the limit § — 0 can be viewed as the limit where the velocity of
the CM-system goes to the speed of light. In this limit, as the result above
shows, the frequency of the photons in the CM-system goes to zero.

Problem 8.2

a) The problem here is to determine the minimum energy of the photon,
if the following process should be possible,

y4+e e +e +et, (8.7)

with the electron being at rest before the collision with the photon.

It is convenient to consider the situation in the CM-system, where the
total momentum vanishes, i.e. p = 0. In this system the smallest energy
of the three particles corresponds to the situation where all three particles
are at rest. The value of the total energy is then Ecys = 3mec?, with me.
the electron mass. Energy conservation implies that the photon and the
electron, before the collision, have the same minimum energy Ecas, in the
CM-system.

We next make use of the Lorentz invariant E? — p?c* = E2,,,, with F
and p as the total energy and momentum of the photon and electron in the
lab system. Since the photon momentum is hv/c, the equality gives

(hv +mec?)? — (Ww)? = (3mec?)? = hv=4m.c?. (8.8)
Thus, the minimum energy of the photon needed for the given process to
happen is four times the rest energy of an electron.
b) One way to see that the process
y—=e +et (8.9)

is impossible, is to note that since the electron and positron have masses
different from zero, one can always find a CM-system for the e~ +eT-system.
However, since the photon is massless, a CM-system does not exist for a
single photon.
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The impossibility can also be seen as a conflict between conservation
of energy and momentum in the given process. With the z-axis taken as
the direction of propagation of the photon, and v as the frequency of the
photon, conservation of momentum can be written as

hV/C:pla: + pog Py +p2y :07 (810)

and conservation of energy as

hy = \/p%CQ +m2c? + \/p302 +m2c?. (8.11)

But clearly /p2c? + m2¢2 > |p,|c, and the equations for conservation of
energy and momentum therefore cannot both be satisfied.

Problem 8.3

a) We consider the situation where two colliding particles form a single
particle after the collision. The velocity of one of the particles is v, along
the x-axis, while the other is at rest before the collision. The total energy
and momentum of the compound particle are determined by conservation
of the below quantities in the collision,

E=TMc* = (v + 1)mc?,
P=TMV =~ymuv, (8.12)

with y = (1-v%/c?)"/2 and T = (1-V?/c?)~'/2 and with V the velocity of
the compound particle. The mass M of the compound particle is determined
by the relativistic energy-momentum relation, E? — ¢2P? = M?c?,

M = (3 1)Pm? — P (2/e?)
2
v
= (- Z)+2y+1m’
=2(y+ 1)m?, (8.13)
which gives M = /2(y + 1)m. The velocity V of the compound particle is

2P 2 7] v—1
V=—"ym=——c= c.
E y+1 y+1

(8.14)

b) We now assume that the two particles collide elastically. Momentum
conservation gives, for the components of the particle momenta after the
collision,

Ple + P2 = ymu, P1y + P2y = 05 (815)
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where the particle velocities are assumed to make the same angle with the
z-axis. The conservation equation for the y-components of the momenta
gives

|p1/cost = [p2|cost = |pi| = |p2| =p. (8.16)

From this follows that the energies of the two particles are the same
Ey = Ey = \/p%2c®2 + m32ct. (8.17)

¢) Energy conservation gives
1
E,=FE, = 5(7 +1)mc?, (8.18)

and from this follows that the particle momentum is

1
—m202=§\/72+27—3mc. (8.19)

d) The angle 0 is determined in the following way. The conservation of
the z-component of the momentum gives

V8

1
pcost = gy = cosf =

The expression can be simplified by using the identities 5 = /1 — (1/9?)
and 72 +2y -3 = (y—1)(y+3),

| 'y—i—l
0=/ —./ 8.21
o8 Z+27-3 V753 (8.21)

In the limit v — 1 we have cos @ = 1/4/2, which means § = 7/4, and in the
limit v — oo we have cos = 1, which means 8 = 0. The ratio

1 2
T+l

=1-— 8.22
v+3 v+3 ( )

increases monotonically with « in the interval 1 < « < oco. This implies that
0 decreases monotonically in the same interval, and thus is always smaller
than the limit value 6 = 7/4.
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Problem 8.4

A photon with energy F,, = 100keV is scattered on a free electron, which
is, before the scattering, at rest in the laboratory frame. After the scattering

the energy of the photon is E!,, and the energy of the electron is E.. The

ho
photon is scattered in a directipon which makes an angle 6 with the direction
of the incoming photon.

a) The center of mass (CM) system is an inertial reference frame, where
the total momentum of the particle system vanishes. Using the transfor-
mation formulas for energy and momentum, we obtain, for the photon and

electron momenta in the CM-system,

_ E, h E h E h
Pph = —= = y(ppr — B—2) =~v(1 - B) ==,
C C C
~ E,
Pe = —767 = —yfmec, (8.23)

where [ and v refer to the relative velocity of the two reference systems.
In the CM-system we have py, 4+ p. = 0, which gives

E
~v(1— ﬂ)%h =qBmec = (1 —B)E,n = fmec”. (8.24)
Extracting the relative velocity of the reference systems from this we find
Epn
= ————c=0.164 8.25
! Epp, + mc? ¢ © (8.25)

where we have used E,, = 100keV and mec® = 0.51 MeV.

b) Energy conservation gives, in the CM-system,
Epn+ E.=Ey, + E, (8.26)

which we rewrite as

Eph + VP22 + mec = Elyy + 1\ oc? + mec?. (8.27)

2
e

In the CM system we also have p?c? = ﬁihCQ = Ef)h, with similar identities

for the outgoing particles. This implies

Eppy + £\ B2, +mec? = By + By + mec?. (8.28)

We note that the same function appears on both sides of the equation,

and that this equation is monotonically increasing with the argument. This

implies that arguments on both sides have to be equal, thus Eph =F ph-
To find the value of this energy we use the Lorentz transformation for-

mula between the reference frames S and S,

Epn = Y(Eph — Bpprc) = v(1 — B)Epp, = 84.7keV . (8.29)
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¢) If 6 = 90° the z-component of p;)h vanishes, and the transformation
formula for the outgoing photon simplifies to E;)h = vE,,, which gives

1_
.= ~Fpn = (1= 8) Epy = 83.6keV. (8.30)

Energy conservation then determines the energy of the outgoing electron,
E.=E.+ Ep, — E;),L
= meCQ + ﬁEph
= 527keV.
(8.31)

Problem 8.5

A Lambda particle (A) has momentum pa along the z-axis in the laboratory
frame S. The energy of the particle in S is Ey = 3 GeV(= 3000 MeV). The
mass of A is mpy = 1116 MeV/cQ. In its rest frame S, the life time of A is
Ta = 2.63 x 10719, The A particle decays to a nucleon N and a pion 7.
They have masses my = 940 MeV and m, = 140 MeV, respectively.

a) The problem to solve here is to find the distance travelled by the
Lambda particle within its life time. The gamma factor of the Lorentz
transformation between the lab frame and the rest frame of A is

E
v =22 = 2688 (8.32)
mac

The life time of the particle in the lab frame, Ty, is longer than in its rest
frame, due to the relativistic time dilatation effect,
A=A =T7.1-1070s. (8.33)

With v as the velocity of A in the lab frame, the distance travelled by the
particle in the time 7, is

1
d=vTpA = /1= S cTa = /T3 —7Rc=020m. (8.34)
Y

b) We determine next the energies of the nucleon and the pion in the rest
frame S of A. In this reference frame conservation of energy and momentum
in the decay of A is expressed as

EN + ETr - mA02 3 PN + Pr = O) (835)
and the energy-momentum relations are
E% = p 2 +mict, E2=p2c2 +mict. (8.36)
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From these equations we derive the following two equations
EJQV = (mA02 - EW)Q,
E% —m%ct = B2 —m2ct, (8.37)
By combining these E can be eliminated and F, determined as

2 2 2
my +m; —m

B, = N2 =171 MeV. (8.38)

2ma
The energy E is then determined as
2 2 _ 2
Ey =mac® — B, = TATTIN T Mr 2 _ a5 0oV, (8.39)
QmA

c) To determine the energies £, and Ey in the lab frame, we need the
momenta in the rest frame of A,

epN = cpr =V E2 —m2c2 = 98.0MeV. (8.40)

In the Lorentz transformation formula we also need

52’/1—%20.928. (8.41)

With the angle of the pion momentum relative to the z-axis given as 45°
we have

(Pr)z = —(PN)2 = pﬂ'/\/é, (8.42)
and the transformation to the lab frame then gives

_ 1
E, = v(E, + —fcp,) = 632 MeV 8.43
¥( \/55 Pr) (8.43)

and
Ey = Exn — E, = 2368 MeV . (8.44)

d) To determine the angle 6, we use the transformation formula for the
y-component of the m-momentum
i
 V2pr

By use of the energy-momentum relation ¢>p2 = E2 —m2c* we rewrite this

Prsinfy = prsinf, = sinf, (8.45)

as
i 1 CPr
sinf, = —= ——=———== =0.112. 8.46
V2 \/E2 —m2ct (8.46)
This corresponds to the angle #, = 6.45°. For the angle of the nucleon we
similarly find

Dr — 0.0319 (8.47)

i 1
sinfly = —— ————m———
V2 E% —mZct

which corresponds to the angle 6 = —1.83°.
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Problem 8.6

The relativistic Lagrangian is

2
L:—mCQ\/l—U—Q—eq)—i-ev-A. (8.48)
¢

In order to show that the corresponding Lagrange’s equation reproduces the
standard, relativistic equation for a charged particle in an electromagnetic
field, we first derive the partial derivatives of L with respect to the particle’s
coordinates x; and their time derivatives,

L )
8_ :ﬂ—kezﬁlizvmh—i—ezﬁli,
0, 2
CZ
oL o 0A
_ il 4
aﬂfi eaa:i tev 8:& (8 9)

Lagrange’s equation then gives

o0d 0A

d
a . A v - — )
7 (ymi; + eA;) + T 0, (8.50)
which we rewrite as
d i) A; A; A
—(fym:i:i)Jrea + 0 0 0 1)y=0, (8.51)

e + ex; —
dt 8331 ot J ( aa:j 8331
with sum over repeated index j. We have here used the expression for the

total time derivative
dA; . 0A; 0A;

= G } 8.52
dt i 8x]- 815 ( )
The contribution from the electric field we recognize as
0P  0A;
B = — . 8.53
‘ G o) (8.53)

To find the contribution from the magnetic field, we express the magnetic
field in terms of the vector potential in the expression,

e(v X B)l = eeijkj:j(V X A)k

= €€ijkErtmTiO1Am

. 0A,,
= e(0idjm — 5im5jl)xja—ml
= ez, — . .54
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We find both expressions (B853) and (854) in Eq. (851]), which then can
be written as

d
E(vmﬁci) =eE; +e(v x B);, (8.55)
or in vector form
d
E(fymv) =eE+evxB. (8.56)

This is the correct relativistic form of the equation of motion for a charged
particle in the electromagnetic field, where the only change compared to the
non-relativistic equation is the appearance of the factor v in the expression
for the (mechanical) momentum of the particle.

Problem 8.7

a) The equation of motion for a charged particle in an electric field is

%p =eE. (8.57)
When E is constant, and the initial condition is p(0) = 0, the solution is
p =cEt. (8.58)
The relativistic expression for the energy is
£ = /P2 +m2ct = ymec?, (8.59)
which gives for the gamma factor

1 2E?
v = VP22 +miet =1+ T e (8.60)

2.2 2047
mic mac

This is of the form v = V1 4 x2t2, with k = —<£

mec?”
b) We invert the expression found for «, and introduce the definition
v = cosh kT,

1 1 1
t=—y\/72—-1=-V cosh? kT — 1 = —sinh k7. (8.61)
K K K

Differentiation of this with respect to 7 gives

dt
= coshkT = . (8.62)

This shows that 7 satisfies the condition to be the proper time of the elec-
tron.



86 Solution Manual for Classical Mechanics and Electrodynamics (2nd Edition)

¢) For linear motion, the equation of motion of the electron can be

written as
d
E(fymev) =eF, (8.63)
which gives
ymea + ymev = eE . (8.64)
The time derivative of 7y is found as
v a1 _ v2 _swva 30a
y=0-3)"F = A=0-3)5 =75 (8.65)
Inserted in Eq. (8.64) this gives
2
ymea(l 4+ 721)—2) =eE = ~la=eE/m.. (8.66)
¢

Since the proper acceleration ag, in the case of linear motion, is related to
the acceleration a, measured in any inertial reference frame, by the formula
ap = Y3a, the result above shows that for linear motion of a charged particle
in an electric field, the proper acceleration is given by ag = eE/me.

Problem 8.8

A particle with charge ¢ and mass m moves with relativistic speed through
a region 0 < x < L where a constant electric field E is directed along the
y-axis, as indicated in the figure. The particle enters the field at x = 0
with momentum pg in the direction orthogonal to the field. The relativistic
energy at this point is denoted &.

a) We determine here the time dependent momentum p(¢), the rela-
tivistic energy £(t) and the gamma factor v(¢). The equation of motion of
the charged particle is

dp
P _E, 8.67
ik’ (8.67)
with the solution
p(t) = po + qEt. (8.68)

Since pg - E = 0, the energy of the particle is

E(t) =/ c2p? + m2ct

= \/62]7% +m2ct + (qBct)?

= \/E2 + (qEct)?. (8.69)
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The relativistic gamma factor is then

&) & qEo
~(t) = T3 14+ ( 3 ct)?. (8.70)

b) We next determine the components of the particle velocity v =

p/(ym),

2

v, = Po _ Poc
oam 2+ (qBect)?’
Et Ec?t
py = B __aBPt ®71)

ymo \JEZ + (qEct)?
There is no force acting in the z-direction, which implies that p, is constant.
However, the velocity component v, decreases with time as a consequence of
the increasing value of . This can be understood as a time dilatation effect,
which follows from the fact that the velocity v of the particle increases.
¢) The derivative of the z-coordinate with respect to proper time 7 is

Z—i:fl—fs—i:vxvz%. (8.72)
This implies that the increase in proper time, A7 during the transit of the
interval 0 < x < L, is

AT L
AT = / dr=" [ dz="1L. (8.73)
0 Po Jo Po

Thus, the proper time interval A7 is proportional to the length L with the
proportionality factor a = m/py.

d) To find the transit time At, we change the integration variable to ¢
in the expression for A,

At 1
AT = / —dt
o ()

me® A
B 50 / /1 + cht
~ mc? At
qEc 0 v1+ 22
2
qFc
= %arcsmh(g—OAt) (8.74)
which gives
50 50 qEL
At = —— sinh AT inh 8.75
qFEc (m02 )= Ec ( PocC ( )
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Chapter 9

Maxwell’s equations

Problem 9.1

A vector potential is expressed in cylindrical coordinates as
A(p,¢,2) = Algpe P/ De, +be (P1D’e,). (9.1)

We determine first the corresponding magnetic field B =V x A by use of
the formulas for the curl in cylindrical coordinates,

_10A, 04y
P p 0g 0z
04, 0A b _ 2
_ _ 2 94— (p/a)
¢ 0z op a2’ ’
10(pAgy) 104, _ 2
B,=——+~—--——Lt =Ae (p/a)” 9.2
p Op p 0 (9.2)
In vector form this is
B(p, ¢,2) = fZA%pe_(”/“)Qegb + Ae~ Pl e, . (9.3)
a

The current density we determine by use of Ampere’s law, with E = 0,
ji= #—10V x B. In cylindrical coordinates the components are

)

. 1 [10B. aBﬂ
= o oe T oz

. 17[4B, 0B, 24
jo = — | 9Be _ ] _pe~ 0/
po | 0z dp Hoa
r 2
o= L [L20Bs) 1‘939} _ 4 (1 _ P_> e~ 6l* (9.4)
po Lp  Op p 0¢ poa® a?

which in vector form is expressed as

. 24 (02 4Ab 2\ (a2
i(ps ¢, 2) = T nd? pe P/ ey — od? (1 - ;) e~ P/ e, . (9.5)

91
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Problem 9.2
Two inertial reference frames, S and S’, are related by the Lorentz trans-
formation

t’:fy(tfﬁa:), ¥ =r@—-vt), y=y, ==z (9.6)

2

A point charge ¢ sits at rest at the origin of .S, and the electromagnetic field
in this reference frame is therefore a pure Coulomb field. We will examine
the electromagnetic field in 5.

a) The Lorentz transformations of the potentials have the general form

(¢!, #) = (B, 6) — vAL(5,1))

A1) = A(Aalr ) — S (r,1)
A1) = Aye,0),

AL (x',t) = A.(r, 1), (9.7)

with the potentials in reference frame S here given by

q
O(r) = , A =A4,=A4,=0. 9.8
) = ) 98)
To find the potentials expressed in the coordinates of S’, we make use of
the coordinate transformations from S to S’,

O (2 y 2 ) = AP (y(2' +ot'), Y, 2")
v4q
471.60\/72(30/ +vt’)2 +y/2 ) ’

Ay 2 ) = =y 0y +vt), Y 2)
_ VB4
47TGOC\/’)/2(33I+'U?§I)2+y/2+2127

A= AL =0, 9.9)

b) The corresponding electric and magnetic fields in the reference frame
S’ are

E =-Vd - %A’, B =V xA. (9.10)
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We evaluate these for each component, first for the electric field

g g 0 e’ + ot
T o ot Arweg 37
[V or )y 2
o g _ 4 Y
y / - 37
oy 4dreg [\/,yz(x/Jrvt/)ery/erZ/z}
0 q ~z'
E/ :7_(1)/7: . 9.11
# 0z 4eq ( )

3
{\/72($'+Ut')2+y12+212}

The components of the magnetic field in moving reference frame S’ are

B, =0,
B — iA/ __ 4 87’
Y927 dmege E
|:\/’)/2(£E/+'Ut/)2+y/2+zl2:|
8 !
Bl=—5 A, = 1 7By ~. (9.12)

dmege {\/72(30/ Tot)? + 2 +z’2}
¢) We now restrict the scalar potential to the two-dimensional z’,y’-

plane at time t' = 0,

'(a,y) = 2 (9.13)

4ren /,y2x/2+y/2’

and similarly the electric field

/

q T
R e —
0 [\/m}
!/
E,(zy) = q 1Y . (9.14)

o 47T€() [ /’}/293/2+yl2}3

Since E/ is proportional to z’, it vanishes in the 2/, 3/-plane.

A contour plot of the scalar potential ® and field lines of the electric
field E', in reference system S’, are shown in the left panel of Fig.
There, we have used the value v = 5/3. For comparison the corresponding
diagram, with potential ® and field lines of E in reference S are shown in
the right panel. The equipotential curves of ® are seen to be squeezed in
the z’-direction, compared to the rotationally symmetric curves of ®. The
field lines of E’ are, on the other hand, radially directed, in the same way
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Fig. 9.1 The scalar potential and the electric field lines of a point charge. In the
left panel the charge is moving with velocity in the z-direction, and in the right
panel the charge is at rest.

as the field lines of E. This is a consequence of the ratio between the vector
components of the field being E/ /E; = 2'/y’. However the absolute value
of the field E’ is not rotationally invariant, as shown by the expression

vq /J/JQ +y/2
|E'(«/,y)] = . (9.15)

- 47T€() [ /72$/2+y/2}3

In the figure this effect appears in the form of a denser set of field lines in

the y-direction than in the z-direction.

Problem 9.3

Here we will show how the following higher order Lorentz invariants of the
electromagnetic field,

Is=F"E\F,, I4=F"F \F"F,, (9.16)
can be expressed in terms of the quadratic invariants
1 1 .
I = §F‘“’FW, I = ZFWF‘“" (9.17)

a) By making use of the antisymmetry of F*” and swopping names of
summation indices, one can change the sign of I3,

I3 = FFF,\F, = FYMFy\, F*,
= F"F Fy, = F"Fy,F?,
= —FMEF,. (9.18)
This shows that I3 = —I3 which implies I3 = 0.
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b) To study I4 we choose coordinate axes which simplify the fields in
the following way,

B=DBi, E=Ei+Ej. (9.19)

This implies that the field tensor has only six non-vanishing matrix ele-
ments, FO1, F°2 F23 and their transposed. The invariant I, expressed as
a sum over products of non-vanishing matrix elements, is

Iy = (FO' FioF° Frg + FYOFy F'OFyy)
= (FU'"FioF® Fyy + FFoa F*° Fyy)
— (F® FyoFO' Fio + F2Fyy FYOFy)
— (F"2Fy0 FO2 Fyy + F20Fyy F20 F)
= (F?Fp3 F?*Fyo + F* Fpa F*° Fyp)
— (F®FyFFyy + F32Fy0F Fyy)
— (F®Fyp F? Fyy + FO2Fy3 F5 Fyg)

2 4
= C—4(Ef +2E}ES + E3) — C_QEQQBQ +2B*. (9.20)
The invariants I; and I can be written as
1 1
I, =B - C—Q(Ef + B, L= ~E\B, (9.21)

and by comparing the above expressions we find that they produce the
identity

Iy =217 +4I3 . (9.22)

Problem 9.4

We study the bending of a proton’s trajectory in one of the magnets at the
accelerator ring LHC at CERN. We have the following information about
the proton trajectory. The proton momentum is p = 7.0 TeV /¢, the bending
radius of the magnet is R = 2804 m, and the strength of the magnetic field
is B = 8.33T. The proton mass is m = 938 MeV /c.

a) The equation of motion in the magnetic field is
p=evxB, p=~aymv. (9.23)

This shows that p - v = 0 which implies that v and therefore v are con-
stants of motion. The bending radius of the electron orbit is related to the



96 Solution Manual for Classical Mechanics and Electrodynamics (2nd Edition)

particle’s acceleration by a = v?/R, with a. In the present case we have
yma = evB, which gives
2

'ym% =evB = eBR=~ymv=p. (9.24)

To check this numerically it is convenient to write the relation as e BRc =
pc, where the two terms then have the dimension of energy. With B, ¢, and
R given in Sl-units, the unit charge e will effectively change the energy unit
of the product eBRc to electron volt. We insert the numerical values in the
left-hand side of the equation above,

eBRc = 8.33-(3.0-10%) - 2804 eV = 7.01 - 102 eV, (9.25)

which fits well the given value for the proton momentum.

b) The relativistic energy-momentum relation gives

2

E2 =22 4 m2ct = 2m2ct = A2 = 1’22+1, (9.26)
m2c
which determines v as
SN S O R T (9.27)
m2c? me
The acceleration is
2 2
= % ~ % =32.10%m/s2. (9.28)

¢) We consider the same situation in the instantaneous rest frame of the
proton. Since E = 0 and v - B = 0, the general transformation formula for
the fields, is here simplified to

B'=19B; E =+4vxB, (9.29)

with E’ and B’ as the fields in the instantaneous inertial rest frame of a
proton in the accelerator ring. This gives for the magnetic field

B =~B=62167T. (9.30)

This is, like the magnetic field in the rest frame of the ring, directed orthog-
onally to the plane of the ring. The electric field strength is
E' =~yvB =vB’
=3.0-10%- 62167 Tm/s
=1.86-10"V/m. (9.31)
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The proper acceleration, which is the acceleration in the instantaneous iner-
tial reference frame, is

ag = R = 'yiv x B =~%a, (9.32)
m m

with a as the acceleration in the lab frame. The numerical value is

ap = 74632 -3.2-10% m/s* = 1.78 - 10* m/s” . (9.33)
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Chapter 10

Electromagnetic field dynamics

Problem 10.1

We consider the following case of the electromagnetic wave, where the E
and B fields are parallel,

E(r,t) = Eysinwt(sinkz e, + coskze,),
1

B(r,t) = —Eycoswt(sinkz e, + coskzre,). (10.1)
c

a) Since the E and B fields factorize in a time dependent and a space
dependent part, this implies that the fields at different positions r oscillate
in phase. This means that the wave is non-propagating, it is a standing
wave.

We next check that the given electromagnetic wave satisfies the four
source-free Maxwell’s equations. We write

E(z,t) = Ey(z,t)e, + E.(z,t)e,,

B(z,t) = By(z,t)e, + B.(x,t)e,, (10.2)
with
E, = Epsinwt sinkzr, E, = FEysinwt coskz,
1 1
By, = —Fypcoswt sinkx, B, = —Fgcoswt coskx. (10.3)
c c
I: Gauss’ law;
OF OF
V-E=—Y = =0. 10.4
oy | o- (104)

This is satisfied, since there is no dependence on the coordinates y and z.
II: The curl of B is
VxB=VB, xe,+VDB, xe,
0B,

z
= —-—€; Xe, + -—€; Xe,

ox ox

k
= —Ep[coswt sin ke, + coswt cos kre,], (10.5)
c
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and the time derivative of E is

OE
Frie wEy[coswt sin kze, + coswt coskre,] = >V x B.  (10.6)
This shows that Ampere’s law (without sources) is satisfied,
1 OE
VxB—-—5—=0 10.7
x c? ot (107)

IIT: Gauss’ law for the magnetic field is satisfied by the same argument
as for the electric field,
0B, 0B,
+

B =
v Jy 0z

=0. (10.8)

IV: Faraday’s law is shown in the same way as for Ampere’s law. The
curl of E is

OF, OF,
VxE:—yewxey—l——el.xez

ox ox
= %EO [coswt sinkz e, + coswt coskre,], (10.9)
and the time derivative of B is
%—]? = —%EO [sinwt sin kze, — sinwt coskxe,]. (10.10)
This gives Faraday’s law
V><E+%—]?:O. (10.11)

Thus, all Maxwell’s equations are satisfied.

b) The momentum density is proportional to the Poynting vector
g = 6()E x B = 0, (1012)

where g vanishes since E and B are parallel. This can be understood as
being a consequence of the fact that the wave is non-propagating. The
energy density is

1 1
u= -(eE*+ —B?)

2 o
= L2 + B+ L(B2 1 B)
2 Y * po Y z
1
= 560E§ [sin? wt (sin? kx + cos? kx) + cos® wt (sin® kx + cos® k)]
1
= —eoE} . (10.13)

2
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c¢) We focus first on the electric field,

E = Ey(sinwtsinkre, + sinwtcoskxe,), (10.14)
and make use of the following identities,
1
sinwt sin kx = 3 [cos(kx — wt) — cos(kx + wt)],
1
sinwt coskx = 3 [—sin(kx — wt) + sin(kx + wt)] . (10.15)

This gives
1
E= §E0[cos(kz — wt)e, —sin(kx — wt)e,]
1
fEEO [cos(kx + wt)e, — sin(kx + wt)e.]

=E, +E_. (10.16)

The magnetic field can be decomposed in the same way, which gives
1
B = 2—E0 [sin(kx — wt)e, + cos(kx — wt)e,]
c
1
+2—EO [sin(kx + wt)e, + cos(kx + wt)e,]
c

=B, +B_. (10.17)

The expressions above show that E; and B, define the electric and mag-
netic components of a a right-moving (positive z-direction) wave, and that
E_ and B_ describe a left-moving wave. The expressions also show that
each of the two waves satisfy the orthogonality conditions E4 - By =
E_-B_=0.

The two vector components of E , and of B, in the y- and 2- directions
are 90° out of phase, which shows that the polarization is circular. By
looking at the time dependence of the rotating vectors for z = 0, it is
straight forward to find that the rotation frequency in the y, z-plane is
positive. This means that the polarization is right-handed, circular. For
the components of E_, and of B_ we similarly find circular motion, but
in the opposite direction in the y, z-plane. However, since the direction of
propagation is also inverted, it means that in this case the polarization is
also right-handed, circular.

d) It is clear from the expressions above that the right-moving as well
as the left-moving waves can each be decomposed in two waves, where the
electric field oscillates in either the y-direction or in the z-direction. A plane
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polarized wave is characterized by E and B oscillating in phase and being
orthogonal. In the present case this means that the right-moving and left
moving waves are decomposed in plane polarized waves in the following
way,

Right — moving :
1 1
E; = §E0 cos(kx —wt)e,, Big= 2—E0 cos(kx — wt)e, ,
¢
1 1
E o= —§E0 sin(kz — wt)e,, Bya = 2—E0 sin(kx — wt)e, ,
c
Left — moving :

1 1
E_; = —§E0 cos(kx + wt)e,, B_1= 2—E0 cos(kx + wt)e,,
c

1 1
E_, = §EO sin(kx +wt)e,, B_,= 2—E0 sin(kz + wt)e, . (10.18)
c

Problem 10.2

A monochromatic plane wave of light is sent through a birefringent crystal
in the z-direction. The wave can be decomposed in linearly polarized com-
ponents, where polarization in the z-direction corresponds to a wave with
a faster propagation velocity, cs, than the velocity c,, of a wave which is
polarized in the y-direction. Inside the crystal (with z > 0) the wave has
the form

E
E(z,t) = —O[cos(k:fz — wt)ey + cos(ksz — wt)e,], (10.19)

V2
where ky = w/cy, ks = w/cs, and Ey is the amplitude of the oscillating
field.
a) For z = 0 the electric field vector is

1
E(0,t) = Eycoswt —=(ez +€y) . (10.20)

V2

The expression shows that E oscillates in a fixed direction, determined by
the unit vector (e; + e2)/v/2. This means that the polarization is linear,
halfway between the z- and the y-axis.
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b) We introduce the following variables, ko = (k; + ks)/2 and Ak =
ks — k¢. This gives

cos(kyz — wt) = cos|(ko — %Ak)z — wt)]

1 1
= cosl[koz — wt)] cos[§Ak z| + sinfkoz — wt)] sin[§ Ak z],

(10.21)
and )
cos(ksz — wt) = cos|(ko + §Akz)z — wt)]

1 1
= coslkoz — wt)] cos[aAkz z| — sin[koz — wt)] sin[§Ak] .
(10.22)
With the new variables the electric field gets the form
E 1
E(z,t) = —=[cos[koz — wt)] cos[§Ak z](es +ey)

V2
1
+ sin[koz — wt)] sin[§Ak z](es — ey)] (10.23)
and can be rewritten as
E(Z, t) = El()(Z) COS(k()Z - wt)el -+ EQ()(Z) sin(koz - wt)eg

= Ei(z,t)e1 + Ea(z, t)es (10.24)
where the amplitudes are
1 1
E(2) = Ep cos[§Ak z]l, Ea(z)=Ep sin[§Akz z], (10.25)

and the unit vectors
e1=(es+e,)/V2, ey=(e,—e,)/V2. (10.26)

¢) The amplitudes satisfy the equation
E—% + E_% =1 (10.27)
Ef, E3 . .
For fixed z, with variable ¢, this describes an ellipse, which shows that the
polarization is elliptic, with symmetry axes in the directions of e; and es.
The eccentricity is determined by the ratio |E1g|/|E29|. This ratio changes
continuously as z changes, so the polarization changes continuously through
the crystal from linear to circular and back to linear polarization.

For z = 0 we have Fyy = 0, which means that it is linearly polarized in
the direction of ey, for z = 7/(2Ak) we have Ejy = Fa9 which means left-
handed, circular polarization, and for z = w/Ak there is linear polarization
in the direction of e;. Then there is right-handed circular polarization for
z = 31 /(2Ak), and the wave is back to linear polarization in the direction
e; for z = 27/ Ak.
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Problem 10.3

A point charge ¢ is placed in a constant magnetic field B, with the
electric and magnetic fields given by

q
E = ~, B =DBk. 10.28
47’(6()7”‘2 ¢ ( )
Poynting’s vector is
1
S=—ExB-= X k=-——-sinfey, 10.29
Ho 4’/T€()T‘2 ¢ 47T€()7’2 Y e ( )

where 0 is the angle between r and k, and ey is the angular unit vector
in the x,y-plane. This shows that Poynting’s vector, which describes the
energy current density, circulates around the z-axis. The field momentum
density, which is proportional to Poynting’s vector, g = S/c?, shows the
same behavior.



Chapter 11

Maxwell’s equations with stationary
sources

Problem 11.1

Three point charges, two with charge +¢ and one with charge —¢q are posi-

tioned in the sequence (+¢, —q, +¢) along the a-axis. The distance between

neighboring charges are equal to d, and the middle charge is placed at the
origin z = 0.

a) The potential of the three charges is

R

drey v +di|  r  |r—di

with i as the unit vector along the z-axis. A contour plot of the potential
is shown in panel (a) of Fig. 111

), (11.1)

Fig. 11.1 Contour plot of the potential from three point charges +¢q, —¢, and
+q, located along a line. To the left the full Coulomb potential is shown, to the
right the sum of contributions from the monopole and quadrupole terms in the
multipole expansion of the potential.
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b) The charge distribution is given by

p(r) = Z q:d(r —1;), (11.2)

with the total charge given as
Gtot = Z%‘ =q. (11.3)

The electric dipole moment is
p= [ pwdV = 3" qirs = g(d )i =0 (11.4)

and the quadrupole moment about the axis n = r/r is
Qn= [[3n-1) = 1V
=Y aBm-r;)? -]

= 2¢d? {3 (%)2 - 1} . (11.5)

¢) The sum of the contributions from these to the scalar potential is

d'(r) = 4;_’60 {% + f—j [3 (%)2 - 1]} . (11.6)

A contour plot of the function is shown in panel (b) of the figure. Com-
parison with the plot of the full potential ®(r) in panel (a) shows that the
contributions from the first three terms in the multipole expansion repro-
duce the full potential well for distances r larger than the distance between
the charges, d, but differences appear for smaller values of 7.

Problem 11.2

A non-relativistic particle, with electric charge ¢ and mass m, moves in a

magnetic dipole field, given by the vector potential
)
A= o= (uxr), (11.7)
with g the magnetic dipole moment of a static charge distribution centered

at the origin.

a) The Lagrangian of the particle is

qio
473

1 1
L=§m112+qv-A:§mv2+ v-(puxr). (11.8)
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By use of the cyclic property of the triple product, we re-write the last
term,

1
FH-(rx V)= “mv? + —2H0

1 qto
L=
mv® + 2 4mr3

5 P p-£.  (11.9)

b) With the magnetic dipole moment oriented along the z-axis, and the
particle moving in the z, y-plane we have

L= |pll. = |plmr®s. (11.10)
This gives the following expression for the Lagrangian,
L oo 22 ¢
Lzam(r +7°07) + A=, (11.11)
T
with A = quo|p|/47. The canonical momentum p, conjugate to ¢ is

p¢=g—g=mr2¢3+%=€z+%. (11.12)
It can be interpreted as the total conserved angular momentum about the z-
axis. The first term is the mechanical contribution from the moving particle,
while the second term is an electromagnetic field contribution.
Since L has no explicit time dependence the Hamiltonian is a constant
of motion,

. . 1 .
H =p,#+psp — L =mi* + mr?¢? — L = §m(7'“2 +7r2¢?), (11.13)

which is the conserved kinetic energy of the particle.

¢) Lagrange’s equation for the coordinate r is

d oL 0L &
—— - — = — A= . 11.14
dt or  Or = mi —mrg? + r2 =0 ( )
To eliminate (Z) we write it as
. A
P 2 (11.15)

and exploit that py is a constant. Inserted in Lagrange’s equation this gives

2 2
.. 2 ADg A A, Py A
mre mr(m2r4 B 2m2r5 m2r6) T2 72 (mr2 B m7°3) -
2 2
L NP L U A (11.16)

mr3 mrt mrd
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By multiplying with 7, the equation can be integrated, to give

1 o, 1 P5  peh 1N
5mr + S 3 T 5T = const. , (11.17)
and with
2 2
; p P A
2_ Yo ¢
= - o (11.18)
we recognize that the expression in (III7) is in fact the kinetic energy,
1 1 .
§m7'“2 + §mr2¢2 =T. (11.19)

Problem 11.3

A current I is running in a rectangular wire loop ABCD, with length a
in the z-direction and length b in the y-direction. In the rest frame S of
the loop, the wire is charge neutral. In a second inertial reference frame S’
the current loop moves with velocity v in the positive z-direction. We use,
in the following, e,, e, and e, as unit vectors along the x, y and z axes,
respectively, and introduce the vectors a = ae; and b = be,.

a) Since the charge density is zero, the electric dipole moment vanishes
in the rest frame of the loop. The magnetic moment is

1 - 1
m:—/(rxj(r))ddr:—fj{ r X dr
2 2 Jasep

1| e b
= 5[ [/ dr x e, xew—i-/ dy(ae;c"‘yey) X €y
0 0

0 0

+/ dz(ze; +bey) xez+/
a b

—Jlaxb (11.20)

where at the first step the volume integral is reduced to a line integral by
introducing the current I as the integral of the current density j over the

dyy ey x ey}

cross section of the wire.

b) Due to the motion of the current loop, when viewed in reference frame
S’, there is a length contraction by the factor 1/ in the z-direction, but no
contraction in the y-direction. Therefore, in the S’ frame, the width of the
rectangle in the z-direction is a’ = a/~, while the width in the y-direction
isb =0b.

¢) The Lorentz transformation formulas for the charge and current den-
sities in the present case are

v . v . . . .
p=~(p+ 6—2]1-) =V zle; Je =e +vp) =7,  (11.21)
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and j; = jy. This shows that in reference frame S’ the charge density
vanishes on parts BC and DA of the current loop, where the current runs
orthogonal to the z-axis. The integrated charges on the two other parts,
where the current runs parallel to the z-axis, are

v v
Q+ = ia"yc—QjA = iaIC—2 , (11.22)

where the current is written as I = jA, with A as the cross section of the
current wire. Q1 represents the charge on part AB and Q_ on part CD,
respectively.

d) The electric dipole moment in S’ now gets contributions from parts
AB and CD of the loop, where charge densities are pr = Q+/(a’A) =
vIv/(c*A),

’

I “ o/
p'*’yQ—v A/ da::vefo/ dz(xe; +bey)
A 0 o
Iv Tv 1
= *’yC—QG’bey = gabey = fC—Qm X V. (11.23)

With point A as the origin there are contributions to the loop’s magnetic
dipole moment only from the parts BC and CD. On part BC the cross
section area of the wire is modified by the length contraction, A’ = A/~,
which implies that the current is reduced I — I/7. On part CD, however,
there is not this effect, but the current is instead enhanced by the same
amount, I — I+, as follows from the Lorentz transformation of the current
density. This gives, for the magnetic dipole moment,

0

117
m’ — 27/ dy(a’ eL+yey)xey+2lv/ dr(re; +bey) X e
1 8? B2
= —Tab(1+ — *—I b(l—— 1——)m. 11.24
STab(l+ e, = plaxb (- )= (1= Tm. (120

e) The arguments are as given above, with the current being Iy in AB
and CD and I/+ in BC and DA.

f) To show that we have charge conservation, we focus on one of the
corners (B), where the current running into the corner is different from the
current running out of the corner. We consider the charge balance for an
imagined box, which is at rest relative to reference frame S’, and which
contains the corner B. For infinitesimal step dt’ in time, the difference in
S’ between charge in and out of the box is

dQ' = (I'yg — Ipo)dt = I(y — l)dt = yB*Idt. (11.25)
v



110 Solution Manual for Classical Mechanics and Electrodynamics (2nd Edition)

This change of the charge inside the box can be explained by the fact that
the corner B moves with velocity v inside the box. This implies that the
part of section AB which is inside the box increases with length dz = vdt
in the time interval dt. Since the charge of AB is alv/c?, the charge which
enters the box in this time interval is

2
Q' = e = 712_2‘% =~B21dt. (11.26)

This agrees with the change of charge which follows from the total current
that enters the box. Thus, the results are consistent with charge conserva-
tion.

Problem 11.4

In this exercise the task is to fill in some details in the derivations of the
force and torque on a stationary current in a magnetic field, discussed in
the text book, Sect.11.3.

a) The first point is to prove the following identity, valid for stationary
currents,

/d?’m:kjl(r)(r)xl = €pkiMn (11.27)

where m,, refers to components of the magnetic moment m of the current
distribution.
From Eq. (11.43) in the textbook we derive the following identity

/dBT(ﬂfkjl(r) +21jK(r)) =0 =

d*ray(r) = 1 d*r(zj1(r) — 215k(r)) . (11.28)
2

In component form the magnetic dipole moment is defined as
1 .
ms = S€ski /d?’rzk]l(r) , (11.29)
which implies

1
3 .
EnklMn = §€nkl€n7's d Tm'rjs(r)

- %(6“-6% - 6k56l7-)/d3’r$7.j8(1‘)
:/d3rl‘kjl(r). (11.30)
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b) We next start from the following expression, taken from the text
book, for the leading term in the multipole expansion of the magnetic force,

(Fin)i = €itn (/ dsT%kjl(ﬂ) Ok B (0) (11.31)
and show that it can be rewritten, in vector form, as
F,, = V(m-B). (11.32)
We rewrite (II31)) by use of the result from a),
(£ = o ([ @ ani)) aus,
= €iln€kis Ms OBy
= (8ikOns — GisOnk) Mms Ok Bp
= m,0; B, — m;0, B,
— niBy (11.33)

where we in the last step have made use of V - B = 0. In vector form this

result reproduces Eq. (TT.32)).
¢) The condition V x B = 0 means that 0y B; = 0;By. We use this to
rewrite the expression above as

(Fim)i = mn0iBp = mn0nB; (11.34)
which in vector form is
F,,=(m-V)B. (11.35)

d) We rewrite the expression for the torque (see Eq. (11.58) in the text
book), by use of the identities (IT.28]) and ([I1.30)),

(Tm)i = €iks€sin </ dr :vkjl(r)> B, + ...
= (0:10kn — 9indk1) (/ d>r a:kjl(r)> B, + ...

_ ( / Pr xnji(r)) B, — ( / d3mckjk(r)) Bi+..
= (/d?’ra:nji(r)) By + ...

In vector form this result is

Tm =m X B. (11.37)
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Chapter 12

Electromagnetic radiation

Problem 12.1

An alternating current is running in an antenna of length a, oriented along
the z-axis,

I(z,t) = Iy cos (W—Z) coswt, —af2<z<a/2. (12.1)
a
At time t = 0 the antenna is charge neutral, so that the linear charge

density along the antenna vanishes, A(z,0) = 0.

a) Charge conservation is locally expressed in the form of the continuity
equation

ap .
T vV .i= 12.2
o1 J=0, ( )

with p as the volume density of the charge and j as the current density.
With the current running in the z-direction we have

dj o
V.j=—~ =7,, 12.3
i=— J=] (12.3)

and integrated over the cross section of the antenna, we have the following
expressions for the current and the linear charge density,

I:/jdA, )\:/pdA. (12.4)

This gives

ox 0l dp . _
a-ﬁ-%—/(aﬁ-v-‘])dA—o. (12.5)

With the given form of the current we get

=———=—sIn

ot 0z a
which, with the initial condition A(z,0) = 0, integrates to

oA or _ o (WZ) cos wt, (12.6)

1
Az, t) = % sin (%Z) sinwt . (12.7)

113
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b) The electric dipole moment is

a/2
p:/rpd3r=/ zA(z,t)dzk

—a/2

wa a

I a/2
Hsinw?ﬁ/ zsin (E) dzk. (12.8)
a/2
Integration by parts gives

[ () e [ ()] 42

O (E)
(@ s ()], =222 (129)
This gives for the electric dipole moment
I I
p(t) = 2% sinwtk = pp =222 (12.10)
wm wm

¢) The expressions for electric dipole radiation fields are

B(r,t) = 74?;7“1& X Dret, n=r/r
E(r,t) = cB(r,t) xn (12.11)

with p,e; referring to p at the time ¢, = ¢ — r/c. In the present case we
have

p(t— C) = —w?posin(wt, k. (12.12)
c
For the fields on the z-axis, with r = ri, the magnetic field is
2
B(ri,t) = *HZ:;O sin(wt,) i x k
powaly . .
= sin(wt,) j, (12.13)
and the electric field is
I
E(ri, t) = ug:gro sin(wt, ) k. (12.14)

This shows that the radiation in the plane orthogonal to the antenna is lin-
early polarized (plane polarized), with the electric field oscillating along the
direction of the antenna and the magnetic field oscillating in the direction
orthogonal to the antenna and to the direction of propagation.
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Problem 12.2

We study a simple, classical model of the hydrogen atom, where the neg-
atively charged electron moves in a circular orbit around the positively
charged proton. Due to the large difference in mass of the two, the proton
can be considered as having a fixed position. We regard the radius of the
electron’s orbit to be equal to the Bohr radius ag = 0.53-1071m. The elec-
tron has mass m, = 9.1-1073' kg and a charge e = —1.60-107'? C.We take
the orbit plane to be the z,y-plane. The electric and magnetic constants
are ¢g = 8.85- 10712 C2N~'m~2 and po = 47 - 1077 N/A2,

a) The equation of motion of the electron in the Coulomb field of the

atomic nucleus is

(&

ma =¢eE = (12.15)

- r.
4egrs

2

For circular motion we have a = —w®r, with w as the angular velocity.

Inserted in the equation of motion, this gives
2
9 e

mw (12.16)

- 47T€()7’3 ’
and with 7 = ag (ap here meaning the Bohr radius), this gives for the

angular velocity,

W= e = 411057 (12.17)

/ 3
47reoma0

b) Larmor’s formula determines the radiation power,
2 2

p— Ho€ ol = Ho€

67c 67c

¢) The energy of the electron, expressed as a function of the radius of
the circular orbit, is

whal=46-107%W. (12.18)

e
E(r)=T+V = -mv* —
(r) * 2mv 4dmeor
1 5, e? e?
== — = - . 12.19
2mr v dmeqr 8megr ( )

Assuming a slowly changing radius r, the time derivative of the energy is

d€ d€ dr e?
c _dedr et . 12.2
dt  drdt  Smegr® (12.20)

With the effect of electromagnetic radiation taken into account, energy

conservation implies

d&€ . 87’(6()7”‘2
P+—=0 = —
* dt - e?

P. (12.21)
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Assuming r = ag, this gives

4 whad
= —— 12.22
" 3 3 ( )
and a rough estimate of the life time of this classical atom is then
3 3
02 8 47107 s. (12.23)

T T 4wtad

Problem 12.3

A thin rigid rod of length [ rotates with constant angular velocity w in
a horizontal plane (the z,y-plane). At the two end points there are fixed
charges with opposite signs, +q and —q. This gives rise to a time dependent
electric dipole moment

p(t) = ql(coswti+ sinwtj). (12.24)
a) The magnetic field, in the case of electric dipole radiation, is

Ho .. r
B(r,t):mpretxn, n:;

(12.25)

where Pt is evaluated at the retarded time t, =
electric dipole moment we have

L. For the rotating

.
(&3

P = —w?p = —wlg(coswti+ sinwtj), (12.26)
and the unit vector n, when expressed in polar coordinates, is

n=sinfcos¢i+sinfsingj+ cosfk. (12.27)

With these introduced in the expression for the magnetic field, we find

2]
B(r,t) = 7/2&} q(cos@sinwtri
wer

—cosf coswt, j — sinfsin(wt, — ¢)) k, (12.28)
which gives as amplitude of the oscillating field

- /100021‘1

Bp —
0 dmer

(12.29)

The electric component of the radiation field is determined by the magnetic
component as E(r,t) = ¢B(r,t) x n.
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b) For radiation in the z-direction we have n = i, corresponding to polar
angles (0,¢) = (%,0). This gives
B(r,t) = —Bpsinwt, k, (12.30)
which shows that the radiation is linearly polarized, with the B-field oscil-
lating in the z-direction.

For radiation in the z-direction we have n = k, corresponding to 6 = 0.
In this case we have

B(r,t) = By(sinwt, i — coswt, j), (12.31)

which shows that the radiation is circularly polarized, with the B-field (and
the E-field) rotating in the z, y-plane.

¢) The energy density of the radiation is

1 1
u = 5(eOE2 + —B?)

Ho
1
= — B2 (cos?  + sin® fsin® (wt,. — ¢)). (12.32)
Ho
The time average sin® wt = 1 /2 gives, for the averaged energy density,
1
= —B3(1+ cos?0). (12.33)
210
The energy density current is given by the Poynting vector
1
S= —ExB=-"Bn=cun. (12.34)
Ho Ho

It has its maximal value in the direction where the energy density @ is
largest. This happens when cosf = 41, which means in the positive or
negative direction along the z-axis.

Problem 12.4

In a circular loop of radius a, an oscillating current of the form I = I coswt
is running. The current loop lies in the z,y-plane, with the center of the
loop at the origin. The loop is at all times charge neutral, and the following
inequality, aw << ¢, is satisfied.
a) We evaluate the magnetic dipole moment of the current, defined as
1

m= o /(r x j)dV, (12.35)

where j is the current density (inside the conducting wire). Due to the
circular motion we write it as j = jey, with e as the unit vector tangential
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to the current loop. With the current I as the integral of j over the cross
section of the current wire, and e, as the unit vector in the radial direction,
the magnetic moment is

= ma’Iycoswte, . (12.36)

This shows that the amplitude of the oscillations of m is mg = 7a?Iy.

When aw << ¢, which corresponds to A >> a where A is the (typical)
wave length of the radiation, the radiation field will be dominated by the
lowest multipole terms. In the present case, since the current loop is charge
neutral, both the electric dipole and quadrupole terms vanish, and the
magnetic dipole term is therefore the dominant one.

b) The expression given above for m gives, for m,
M, = —ma’w? Iy cos(w(t — i)) e,. (12.37)
c
With w(t — L) = wt — kr, where k = w/c, the electric and magnetic fields
are then determined as

E(r,t) = —u—orr'hret X n

- uoa2 2 .
=3 Iyw* cos(wt — kr)sinf ey, (12.38)
cr

and
1
B(r,t) = ——E(r,t) xn
c

poa®
4der

Here we have used the relations e, x n = sinfles, e, x n = eg. The

Tow? cos(wt — kr)sinfeg . (12.39)

expressions for E and B show that they define a monochromatic wave with
angular frequency w which propagates in the radial direction, away from the
magnetic dipole. Since the E and B fields oscillate in fixed directions, along
the unit vectors e, and ey, respectively, the radiation is linearly polarized.

¢) The radiated power per unit solid angle is expressed in terms of the
Poynting vector, S = #—10E x B, as

ar S = LE2 _ toa!

0= e~ 167 2w cos®(wt — kr)sin® 0.  (12.40)
0
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Averaged over time gives cos?wt — 1/2, and integrated over angles, the
above expression gives, for the radiated power,

= dP uoa4 . Mo7m4
P= /d—QdQ:27r32c3 Igw‘*/sm?’ 0do = =5 IBwt. (12.41)

d) The induced electric field in the secondary current loop is, according
to Faraday’s law of induction, determined by the time derivative of the
magnetic flux through the loop. With the infinitesimal area vector of the
loop written as dA = edA, where e is a unit vector perpendicular to
the second loop, the loop integral of the electric field is

%E~ds:i/B~edA. (12.42)
c dt Js

This shows that the induced field will be strongest when |B - e| is maximal.
For points in the z,y-plane the B field is oriented along the z-axis. This
implies that the signal received by the secondary loop is maximal for the
orientations, e = +e,.

Problem 12.5

An electron with charge e and mass m is moving with constant speed in
a circle under the influence of a constant magnetic field By. The magnetic
field is directed along the z-axis, while the motion of the electron takes
place in the z,y plane. Since the electron is accelerated, it will radiate
electromagnetic energy and thereby lose kinetic energy. We study this effect,
assuming that the speed of the electron is non-relativistic.

a) For the circular motion we have the following relations between the
velocity v, the acceleration a and the radius r of the circle,

v=wr, a=uwv=uwr, (12.43)
where w = —eBy/m. With this applied to Larmor’s radiation formula, we
find that radiation power is

2 2

p=FE g2 o B0 a2 (12.44)

67c 6mc

b) Energy conservation applied to the electron gives

d 1 1ood 5 poe® 4

2
—(= =P = - —re = . 12.45
AT "M " 6mc | (12.45)

This can be written in the form

d 2 Ho€2 w?
—r® = =2\ A= —. 12.46
dt T 6mc m ( )
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By rewriting the differential equation as

dr

3= 2t (12.47)

the equation can easily be integrated to give the solution

Inr? = —2Xt + Inr (12.48)
with the last term as an integration constant. From this follows
2,2
r = roe~* = rq exp ( poc t) . (12.49)
6mmec

Problem 12.6

An antenna is composed of two parts. One part is a linear antenna along
the z-axis, with end points z = +a/2. Tt carries the current

I = Iy sinwt cos (E) . (12.50)
a

The other part is a circular antenna, which lies in the z,y-plane, and is
centered at the origin of the coordinate system. It has radius 2a and carries
the current

IQ = I() sinwt. (1251)

a) The electric dipole moment is
a/2
p= / zA(z,t)dz k, (12.52)
—a/2
with A(z,t) as the linear charge density along the z-axis. We exploit the
continuity equation of charge in the form
o\ L o6
ot 0z

and find for the time derivative of the electric dipole moment,

a/2 A
p:/ za—tdzk

=0, (12.53)

a/2 0
a/2 I
= f/ 290k
—a/2 82
a/2
:/ Il(z,t)dz—[zll]a/f/gk (12.54)
—a/2
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Since the current vanishes at the endpoints of the conducting wire there is
no contribution from the last term, and integration of the first term gives

a . Z AN
—Ipsinwt {sm (—)}
T

p =
a —a/2
2
= 2y sinwtk. (12.55)
7r
The magnetic dipole moment is given by
1
m= — ?{Igr X dr
2
1 2m
= —I() sinwt(2a)2/ d(bk
2 0
= 4ma*Iysinwtk. (12.56)

b) The dipole contributions to the electric and magnetic radiation fields
are given by

. 1.
E(r,t) = f—ﬂi((p Xn)xXn-— prithy n+ .. et

B(r,t) = f%E(r,t) X n, (12.57)

with n = r/r. The double time derivatives of p and m, which follow from
the expressions above, are

2
p= —awlo coswtk, m = —4ra’w?lysinwt k. (12.58)

7r
We introduce the orthogonal unit vectors e; and ey through the equations
k xn=sinfey, (k xn) xn=sinfe,, (12.59)

which means that (n, eq, e2) defines an orthonormalized basis set in three-
dimensional space.

By use of the expressions for the E and B fields, we find the following
expression for Poynting’s vector,

1 1
S= —_ExB=—E’n

Ho Hoc
Ho .9 1. 2\ .2

The time averages of the contributions to the radiation power from the
electric and magnetic dipole moments are assumed to be equal. That gives

- 11— c
p2=—-m?2 =

62 w = m . (1261)
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Poynting’s vector in this case is time independent and given by
g_ Mo 4a? ( ¢
~ 1672r2¢ 72 \2n2a
Hoc .
= ng SlIl2 Hn, (1262)

and the radiation power per unit solid angle is

2
) 102 sin?fn

P
=S %Iﬁ sin2f . (12.63)

¢) With equal contributions from the electric and magnetic dipole terms,
the electric field is
E(r,t) = %IO sin f(sinwt e; + coswt es) . (12.64)
The electric vector rotates in the plane spanned by e; and es. Since the
rotation is clockwise around the direction of propagation n, the polarization
is left-handed, circular. If the contributions from the electric and magnetic
dipole terms are not equal, the coefficients before sinwt and coswt in the
expressions for E will no longer be equal. The radiation will then be ellip-
tically polarized, with e; and es defining the symmetry axes of the ellipse.

Problem 12.7

An electron, with charge e and mass m, performs oscillations in an electro-
magnetic field with the following components,

E,=Eycos(kz —wt), E,=FE.=0. (12.65)

a) For a monochromatic plane wave the magnetic field is related to the
electric field by

1
B=-nxE, n=k/k. (12.66)
c

In the present case, with the electromagnetic wave propagating in the z-
direction, this gives

1 E
By = —E, = —2cos(kz —wt), B,=B.=0. (12.67)
c c
The Poynting vector is then
1
S=—ExB
Ho
= €pC Ei €,

= ¢gC Eg cos?(kz — wt) e, . (12.68)
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b) The assumed motion of the electron is

E
T = _t%o sin(kz —wt), y=2=0. (12.69)
mw

This gives, for the acceleration,

i:%cos(szwt), j=2=0 = ma=eE. (12.70)
This equation is seen to be correct if we can neglect the magnetic force
ev x B and assume non-relativistic motion. The magnetic force is negligible
relative to the electric force if vB << E, and since for the plane wave we
have B = E/c, this is satisfied if the motion is non-relativistic, v << ¢. With
the motion of the electron given by (I2.69]), this can further be expressed
as a constraint on the ratio between the amplitude and the frequency of
the electromagnetic wave,

eEo

<< 1. (12.71)
mew

¢) The time averaged emitted power from the electron is determined by
Larmor’s formula,

2
5 fwe’—
= a
6me
4
_ o g
6mm2c
4
Ho€ 2

The time averaged energy current density of the plane wave is

E2 (12.73)

with S, as the Poynting vector of the plane wave. This gives for the
interaction cross section

sl

2.4
o= rad _ ‘LLOG
Spw ~ 6Tm?

(12.74)

d) We assume in the following that the electron oscillates about the
origin, r = 0. We denote the Poynting vector of the radiation field from the
electron by S,..q. The corresponding radiated power per unit solid angle is

dPrad

ot =180 1, n:;. (12.75)
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We make use of the following expression for the magnetic component of the
radiation field far from the electron

Ho€ |a X n
Bua(r,t) = — [ } . (12.76)
4me T et
The Poynting vector is then
1
Srad = _Erad X Brad - i]372ng,dn
Ho Ho
c ,u(2)62 axnl?
= — —_— n
o 1672¢2 et
2
Ho€
= W(aQ — (a . n)2),,.et n. (1277)

We introduce 6 as the angle between the xz-axis and n. This gives

(a” = (&~ n)*)rer = a7e (1 — cos™ 0)
2
= %Eg sin? 0 cos? (kz — wtyet) - (12.78)

The time averaged differential power is then

dP 4
d_Q = TQS'I'ad -n = ﬁE& Sil’l2 9 . (1279)

The radiation is maximal when 6 = 7/2, that is in directions perpendicular
to the z-axis, which is the direction of oscillations of the electron. The
radiation is minimal for § = 0 or § = =, that is in the directions of the
2-axis.

The electric component of the radiation field is

Ho€

E qa(r,t) = - [(axmn)xn].,
/1062
= 47rm7"EO cos(kz — wiyet)(€z X 1) X 11, (12.80)

which shows that the radiation is linearly polarized in the direction of (e, x
n) x n.



Electromagnetic radiation 125

Problem 12.8

A linear antenna of length 2a is oriented along the z-axis, with its center
at the origin. The assumption is that the charge of the antenna is at all
times located at the endpoints, and the current in the antenna is given by
I = Iy sinwt. The antenna is electrically neutral at time ¢ = 0. The radiation
from the antenna can be treated as electric dipole radiation. The spherical
coordinates of point A are (r,0,¢), and the corresponding orthonormal
vector basis is {e,, ep, €4}

a) We refer to the endpoint charges as Q(+a,t) = £Q(t), with Q(0) = 0.
Charge conservation implies

d
d—cf =1 = Iysinwt

t
= Q(t)z/ Ipsinwt dt
0

I t
= { 0 cos wt}
w 0

I
=22(1 — coswt) . (12.81)
w

The electric dipole moment is then

- 2(1]()
- w

p(t) = 2Q(t)ak

= Pp=2lwacoswtk. (12.82)

(1 —coswi)k

b) For electric dipole radiation, the magnetic component of the field is

Ho ..
B(I‘,t) = mp'ret Xn

polowa
= coswt,. k X e,
27re

I
= % sinf coswt, ey, (12.83)

with ¢, =t — r/c. The electric component of the field is

1
E(r,t) = cB(r,t) x e, = % sin @ coswt, eg . (12.84)
r
The radiation is linearly polarized, since E oscillates with time in the fixed
direction defined by eg. Similarly B oscillates in the orthogonal direction,

given by eg4.
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c) We write the fields as B = Bey and E = cBey. The Poynting vector
is

1
S=—ExB
Ho
= iBQee X ep = iBQeT
Ho Ho
2 2
= ZOL; g I3 sin? 0 cos® wt, e, . (12.85)
m2rc

The radiation power per unit solid angle is then

dP 2S _ 2B2
dQ Mo
uz: % IO sin? f cos® wt,. (12.86)

and averaged over time the result is

dP ,uow a?

0= s B~ I2sin%0. (12.87)

The integration over angles is

/dQ sin? 6 = 27r/ sin® 0df = gn, (12.88)
0
which for the averaged total power gives

Mow a?

3mc

B 2 2 2
P= 2= RI§ = R=HY7%

12.
3me (12.89)

With Ry as regular resistance and R as radiation resistance, the total power
consumed by the antenna is

- 1
Pior = §(R + Ro)I§ - (12.90)

d) With specified values, 2a = 5 cm, frequency f = 150 MHz and current
Iy = 30 A, the radiation resistance and the time averaged radiation power
are

8puo f2a?

R:
3c

_ 1
=049Q, P= 53[3 =222W. (12.91)
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Problem 12.9

rg cosd

rpsing Y AC

™~ ro

A B

rsing

r cosd r
o

X

Fig. 12.1 Geometric construction of the coordinates of the radiation point C' in
Problem 12.9.

A charged particle moves with ultrarelativistic speed in a circular orbit.
The radiation which is caused by acceleration of the charge, will almost
exclusively be sent in the forward direction, tangential to the circular orbit.
At time t = 0 the particle is located at a point A. At an earlier time,
tp < 0, the radiation is emitted from the particle at a point B. The angle
¢ between A and B on the circle is given by ¢ = c|tg|/r, with r as the
radius of the circle, when we approximate the speed of the particle with the
speed of light. The radiation radiated from point B will at time ¢ = 0 have
reached a third point C.

a) The coordinates of C' can be found by a simple geometric construc-
tion. As shown in Fig. [2.I] point C' can be reached from the origin by use
of two congruent, right-angled triangles. The upper one is scaled relative to
the lower one by the factor ¢. The corresponding sides of the two are also
different in orientation, corresponding to a reflection x < y. The result for
the coordinates is as stated in the text of the problem,

x=r(sing —pcoso), y=r(cosd+ ¢sing). (12.92)

b) Fig. [2Z32b shows the spatial position of the radiation, close to the
charged particle at time ¢ = 0. The radiation in this case has been emitted
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in a small angular interval 0 < ¢ < 7/10. The radiation forms the curved,
almost vertical curve, and the direction of propagation is indicated by the
arrow. A part of the circular orbit of the particle, which in the figure is
located close to the y-axis, is shown by the slightly curved, almost horizontal
curve.

¢) Fig. shows the location of the radiation that has been emitted
by the particle in the larger angular interval 0 < ¢ < 2m. In this figure
the full circle of the particle orbit is seen, and the spiral like form of the
radiation from the particle is apparent. Here, the direction of propagation
of the radiation is also shown.

y/r

1.021

~—_

1.021

-0.04 -0.02 0,02 0.4 X/T

Fig. 12.2 The location of the synchrotron radiation at the instant when the
charged particle passes the positive y-axis. (b) shows the radiation close to the
particle, while (c) shows the radiation, at the same instant, which has been emit-
ted from the charge during a full period of circulation.
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Chapter 13

Lagrangian and Hamiltonian
formulations

Problem 13.1

This is an electrostatic situation, where p is the electric charge distribution
and ¢ is the electric potential. The Lagrangian density has the form,

1
L=-(Ve)?-—L g (13.1)
2 €0
The problem is to determine the derivatives
oL oL
— — 13.2
9 00, (13.2)

to find the corresponding Euler-Lagrange equation and to check that the
result is in accordance with Poisson’s equation,

V2p— L. (13.3)
€0
The Lagrange density is

1 i P
L=50:0"—— ¢ (13.4)

€0

which gives
oL oL ,

9= _ Py = ¢t (13.5)

and the Euler-Lagrange equation,

oL 0 oL P o
- - —_ - — - )"t = O 136
8(;5 Ox* <8¢71) €0 ¢ 8a:ﬂ¢ ( )
The result is
0? p
. = 13.
FrEr. o (13.7)
which we simplify to
V2= -2, (13.8)
€0

This is in accordance with Poisson’s equation.

131



132 Solution Manual for Classical Mechanics and Electrodynamics (2nd Edition)

Problem 13.2

a) The Lagrangian density with ¢*-theory is
y

1 1 1
L= 5(09)* = 5(0:0)* = 71 (#* = po)”. (13.9)

where ¢ = 1, and A\ and pg are constants.
The Euler-Lagrange equation is found in the following way:

oL 9oL 0 0L

¢ Otoy Orod
= —¢+ ¢ — Ap(¢® — po) =

0
When ¢(t, x) solves the equation, so does —¢(¢, ), since the equation is
symmetric under ¢ — —¢.

(13.10)

(b) The energy density is

o oy
¢

=L+ ¢
1, . 1
— LE Y+ e - (13.11)
(¢) A classical vacuum state is
¢*=po = T =0, (13.12)
which is a minimum for 7%. There are in fact two possible values:

b+ = £/po- (13.13)

(d) The problem now is to show that the following is a static solution
to the Euler-Lagrange equation (with ¢ = 0):

¢+(x) = £4/po tanh l\/ %(x — a)] a = const.

APo
==+/potanh y, y= g (x — a). (13.14)

We study separately the two parts of the equation:

d2
1) ¢"= 22 \Wpotanh g},

(2)  Ap(* — po) = Apo/Apo tanh ytanh?®y. (13.15)
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We make use of this:

d dy d Apo 1
1) — tanh y = —=—tanh y =/ —
( ) dx any dx dy anty 2 cosh? Y

0? Apo d 1 sinh?y
= Cotanhy=4/222 %~ _— o222 (1316
Ox? Y 2 dy cosh?y po cosh® y ( )
(2)  AB(¢® — po) = Apoy/po tanh y(tanh®y — 1)

sinh sinh?
= Apov/po Y ( v 1)

cosh Y cosh2 Y

sinh y
= )‘pO v Po 3 -
cosh” y

(13.17)

This shows that (1) + (2) = 0, which implies that Eq. (13.14) is satisfied:

+ ¢(x) = £+/po tanh [\/ %(z - a)] ; (13.18)

and that Euler—Lagrange equation is therefore confirmed.

(e) To find the energy density for the static Euler-Lagrange equation,
we start as follows:

1 1
7% = §¢’2 + Z>\(<z>2 — po)?. (13.19)
The derivative ¢ is the next step:

d
@' p V/po tanh y

_ \ﬁ 1
— Vo cosh? y

~ %¢’2 _ gpgﬁ, (13.20)
and further,
¢> — po = po(tanh®y — 1)
= %A(cZ)Q —po)? = ipg(tanth —1)?
_lp 1 (13.21)

10 cosh?y’
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This gives the result

1 1 1
T = Z)\p? ( + )
10 cosh?y  cosh?y

2
M (13.22)
2 cosh™ y
with y = 4/ )‘p"(x—a)
(f) The total energy of the “kink” solution is
Eink = /oo daT° 7/ dy dl"Too
_ / / >\P0 1
)\PO 2 cosh4
3 00
_ /20 / Ly
2 J_ o cosh®y
2
= \f A3, (13.23)
(g) Solution when the kink moves with velocity v is
o(2) = ¢(xz — vt). (13.24)
We introduce the derivatives of ¢:
o = 0z 0¢ _ 0¢
0 0z 9z’
o = ia(b 0z 82(725 _ o)
0r 0z 0x 022 922
. 0z0¢ _ ,0¢
°=oio:~ Vo
- az 0%¢ 2 0%¢
= w22 o228 13.2
0= ooz Y 02 (13.25)

This gives
6"+ X6 (6"~ po) =0

2 0%
S (2= 1) 55 + A6 — po) =0
9% A

itk U2¢>(¢2 —po) =0, (13.26)
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and the result for the energy function is

2V2 | \pd
E(v) = — . 13.2
(0) = 205 | 22 (13.27)
Compared to v = 0, there is an additional factor:
1
(13.28)

V1—02’

which is the standard relativistic factor, where the energy of a moving
object increases with the velocity v (or more correctly v/c).

Problem 13.3

(a) For small variations, the Lagrangian density has the form
1
‘6(9527?//72,) = §(My2 _UyIQ +IU/22 _0212)' (1329)

This means that the vibrations take place in both the y- and z-directions.
This is different from the waves on the string in the book, where only
one direction, y, is included. The Lagrangian is the integral over x of the
Lagrangian density,

@ 1 oy\? 02\ 2 1 oy \ > 02\ 2
L= (Y il I d . (13,
/0 dle“{(&t) +(8t> 27 W\oz) T \oz (13:30)
(b) To determine the Euler-Lagrange equations, and solve them, we fol-

low the procedure of the corresponding example in the book. The variation
of the the string is as follows:

0 (0L o (0L
o5~ far [ (5 (55) + 5 (55)
g (0L g (0L
+ (5 (w) + oz (a) 52:|, (13.31)
where the boundary contribution to 65 has been set to zero. This is cor-

rect for any choice of boundary in the (z,t)-plane. The Euler-Lagrange
equations are then

0 (0L 0 (0L 0 (0L o (0L
o () * i (35) =0 ax () + i (52) =0 0999
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where

(13.33)
9 (9L _ QLN _
o \oz) 1 02 )~ 7"
This gives the following equations:
. 0%y 0%y
pi—oy’ =0 = W—ﬁ@:o,
) 5 (13.34)
pi—oz' =0 = &7’02% =
ot? a2 ’
with v = /o /p.
General solutions are
ylz,t) = gvt +z) — gvt —x),
(z,1) = g( ) —9( ) (13.35)

z(x,t) = f(vt +x) — f(vt — ).

(c) The Fourier expansion expressed with g(§) is (see the main book)

9(§) =§:1{ancos (n%é) + by, sin (%)} (13.36)

where x¢€[0, a]. This implies that
y(a,t) = g(vt +x) — g(vt — x)

= zn: [an {eos (“E (vt +2)) = cos (vt — a)) |
(S 0) i ()
2o [ () ()
+ b, {cos (%”ms) sin (%”x)}] (13.37)

We continue with derivatives

% = Z QnTﬂ-v (an {— cos (%Ut) sin (%x)}

n

—b, {sin (na—wvt) sin (%ra:) }), (13.38)
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and further,
a 2 0 2 9
oy 2n°m nmw nmw
— | dx = v? (a2 cos? (—Ut) — b2 sin® (—’Ut)
/0 ((f% 21: a " a " a

+ 2a,b, cos (%Tvt) sin (%Tvt)). (13.39)

With % changed to %, we get

@ ay\° o= 20272 50y g mT 9 o /MT
2 dr = Z v (an sin (—vt) + b5, cos (—’Ut)
0 ox T a a a

—2a,by, sin (Evt) cos (%’Ut)), (13.40)
a

and with the two combined,

[y @)

S )
= E nn o (ai + bi + 2a,b,, sin (Tvt)). (13.41)
a
1

a

A similar result, when y is changed to z, is

[3{G) -=(5) )

0 9 o
= Z nr o (cf1 + di + 2¢,d, sin (Tvt)). (13.42)
a a

1

This gives a form of the Lagrangian density in terms of a Fourier expansion,

e 2,2
L:Z”; 0{A+2Bsin <27;Tﬂvt)} (13.43)
1

with
A% =a? 402 +c2 +d>, B?=anb, + cud,. (13.44)

(d) The next points are the Euler-Lagrange equations expressed in
terms of the Fourier transform. We start with (13.37):

yla,t) =2 ; {an {— sin (%’Ut) sin (%x)}
+ by, {cos (%Tvt) sin (%Ta:) H, (13.45)
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and we find the derivatives,

Oy 20?72 (T nm . (nm
92 = Z o) v (an sin (th) — by, cos th)) sin (Fx)’

n
0%y B on?r?
or2 Z a2
n

The result is

(a” sin (Tvt) — b,, cos Tvt)) sin (Ex) (13.46)
a a a

=0, (13.47)

which confirms that the correct Euler—Lagrange equation can also be found
with the Fourier transform.



Chapter 14

Symmetry transformations

Problem 14.1

The Lagranian density,

3 () G} G (5) ) o

corresponds to the (integrated) Lagrangian in Problem 1.3. The Euler—
Lagrange equations here are therefore the same as in that case:

o (0L 0 (0L g (0L 0 (0L
7 (o) 3 (55) =0 = (50) + o (5) -0 042

As shown there, the equations can be expressed as:
%y ,0% 0%z 5 0%2

R R R i (143)

where v = /o /.

(a) The energy—momentum tensor has the general form

oL, oLc
700 _ _ OL , O~ ,
Etgv ~ a7
IS N AN W N A A
— 2" Y\ ar ot D e oz
=7! (14.4)
and
oL , oL
or _ T~ 0 =
=5 %
__, (%% 020z
=P\ Grar T ot oz
=7, (14.5)
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The question now is: Are the energy and the momentum conserved?

We begin with the energy density, & = T°. It can be split in two:
E=E,+ &,

AR C N N o R (T

Since these two are equal and independent, it is sufficient to examine one
of them. We take &, and change the form of this density by use of the
corresponding part of the Euler-Lagrange equation,

9%y 2 0%y 2_ 9
— V== = = —. 14.
52~V 92 0, wv . (14.7)
This implies that for the time derivative of &,,
08, _ oy oy 0%
ot~ Motorr " 7oz otox
oy %y Oy Oy
ot 9x2  Ox dtdx
_,9 (0y0y
= 70z \ 0t 0z
0jy
= ——= 14.
ox (14.8)

The derivative of £, gives the same result, with y replaced by z, and the
sum of &, and &, gives the same result:

of  0j 9%y

L =0, =g 4G, = — .

ot Tox 0 TN T T 0,
This result is an interpretation of the conservation of energy, where the

change of local energy is compensated by the flow of energy to and from
this locality.

(14.9)

T = T shows that the flux density appears in the same way as the
energy density.

(b) We show that the following transformation is a symmetry transfor-

mation:
<y) — (y> = (C.OS St > <y>7 (14.10)
z z sina  cosa z

with « as an arbitrary constant.
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We note first that

g{:c'osay—smaz, (14.11)
Z = sinay + Ccos oz,
and the result under differential of time ¢,
@ = cos« 9y sin av 0z
ot 2 ED
(14.12)
% =sina @ + cos o %
ot ot ot
A step further gives
o7\’ o\’ dy 0 0z\°
(8_?;) = cos’a (8—§) — ZCosasinaa—ga—i + sin? (8_§) ,
(14.13)

0z\> ., [(oy\’ . Oyoz , (02’
(E) = sin“ « (E) —i—QCosasmaaa + cos (E) ,

with the result,
ag\* [(0z\*  [(oy\® [0z\°
(E) +<E) (E) +<a) . (14.14)

The same follows if instead of differentiation with respect to ¢, one does

that with x:
g\ (9z\* [oy\® [02\°
—= — | == — ) . 14.15
<8m> + ox Ox * ox ( )
This shows that there is a symmetry transformation from (y, z) to (g, 2).
The physical meaning is that the Lagrangian density of the string is
conserved under rotations of the coordinates y and z.

Problem 14.2

A Lagrangian density,

L=—(¢""d,+ 1’d*p), (14.16)
is invariant under the transformation
b — P =¢ e (14.17)

(a) We consider the situation where A is infinitesimal:

5p = iXp, 60" =iro*. (14.18)
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The function N*, which defines the Noether current, in the present case it
takes the form,

O
= NG — ). (14.19)
(b) The above expression for N* gives the following derivative:
dN* )
T = —iA{(0,0"¢™)p — (0,0"P) 9™ }, (14.20)

and by use of the Euler-Lagrange equation,

oL i(az>:0

¢ dar \ 94,
S @) =0, @26 =0, (14.21)
we find
= N2 (06— 66"} =0, (14.22)

which means that the conservation law is satisfied:
dNH
=0
dzt

(14.23)

(c¢) To find the energy—momentum density tensor, T#" in this case, is
as follows:

oL o — oL
. 997,
= —g" (G P+ 2P D) + YT+ eV . (14.24)
We will look at the components, first the energy density,
TO0 — g+0480 L g5k pk 4 2¢%
= 16" + 161 + 1?lol?, (14.25)

TH = ghv [ — ¢

and next the flux density in the direction of 7,

_ 9L o 9L o
99, 997

=¢" " + 4" 09 (14.26)

T30 —
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The k-momentum density is

70k _ﬁ(b,k oL Bk
9,0 %
= ¢ 0 4 ¢ Ok, (14.27)
and finally, the flux density of k-momentum in the direction z7,
T = G (@™ n +12070) + 67 p* + 7 eI (14.28)

Problem 14.3

(a) We study the the following Lagrangian density:

T B, .
L=3il(¢"¢—¢"¢) — 5 -V¢" - Vo~ V', (14.29)

where ¢ = ¢(r,t) and V = V(r,t). The problem is to show that Euler—
Lagrange equations will have the form of a Schrodinger equation and its
complex conjugate.

The Euler-Lagrange equations are

oL d oL
_ = 14.
o¢*  dxt <8¢7*N) 0 (14.30)
and the complex conjugate. We look at the components of the equation:
oL 1. .
% = 5’&FL¢ + V¢,
oL d oL 1. .
= —ih —— = —=1ih
99, ihe = — 9 51, (14.31)
oL h* 99 d oL  h* 9%

— = _ — )
%, 2m Ox-k dzk 0¢, 2m Oxkdzy,

This gives for the Euler-Lagrange equation,

1. 1.. RK 0%
im(’b + im(’b + 2m Oxkdry 0
L 0¢ 0%
—_ = . 14.32
= ih 5t Dk dan + V(r,t) (14.32)

This has the same form as the Schrodinger equation. There is also the
complex conjugate of the equation.
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b) The condition for symmetry under time translation is that the trans-
formation has the form,

P(y) = d(x), with y" =" +b . (14.33)
The corresponding conserved quantity can be expressed as
dTHo
e (14.34)

This means that the energy—momentum density is conserved in the time
direction.

The condition for symmetry under a space translation (in the
k-direction) means that the transformation can now be written as

dTH*
dxt

This means that the energy—momentum density is conserved in the

(14.35)

k-direction.
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Relativistic fields

Problem 15.1
We have in this problem the follow Lagrangian density:

L= —% PO + a(cos d — 1), (15.1)

with « as a real constant.

(a) The Euler-Lagrange equation is

oL d oL
- — N _ [0
96 dur (8(]5,“) =0 — asing—0,0"¢=0, (15.2)
and the following two-dimensional solution is given as
inh
o(z,t) = 4arctan Bsinh(y/ayz) , (15.3)
cosh(y/ayvt)

with f =wv/c and v =1/4/1 — (2.

(b) We study the time evolution of a collision process by plotting ¢ as
a function of x for a series of time ¢. There are two series with different
velocities. In one set, (a), the velocity v is slow, § = 0.1, and in the other
set, (b), the velocity v is large, § = 0.9. The interpretation of the motion
of the kinks is that they first move toward the centre = 0, where they
stop and then move in the opposite direction. In collision (a), the centre
of the kink seems to stop and returns earlier than the kink in collision (b).
This is consistent with the situation where the collision (a) moves slowly
and collision (b) moves fast. It is also consistent with the solitons being
repulsive.
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(a)

S

I
]

Fig. 15.1 Collisions between two kink solitons. There are two different types of
collisions, where (a) is a slow collision and (b) is a rapid collision. The different
colored lines show a sequence of positions of the solitons at increasing times.
Since the solitons before and after the collision are precisely the same, both the
situations before and after the collisions can be seen here.

Problem 15.2

(a) The Lagrangian density for the electromagnetic field with an extra term
added is
1
L= “Tn (FMFy, —2 0MA, 0YA)) + 5, AY
1
= o (0vA* 0,A, —OVA* 0, A, — 0" A, 0"A,) + j AF. (15.4)
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The Euler—Lagrange equation is

oL d (9L _,
9Ar ~ dav \9AF,) ~ 7

W nt3

oL 1 , 18
_( A 20A",

A%A[’,B). (15.5)
This gives

oL 1 0A~
v 3an = - v VAL — Uy LAV 1/—7(1146
0 (aA”,u) fio (8 P = 00 AT+ 0A%, ’ﬁ)

— 7i (0,0" Ay — 0,0, A" + 0,0, A7)

1
=——0,0"A,. (15.6)
Ho

The full result for the Euler-Lagrange equation is then

OA* = —pgjt. (15.7)
(b) This form of the equation is different from which we have met
before:
0 [0AY
no_ o -1
OA Okt (83:”) = —MKo)" - (158)

The difference between the two descriptions of the Euler-Lagrange equa-
tions is a gauge transformation, where the difference has the form,

o*x(x) = 010, A” (). (15.9)

Problem 15.3

The Lagrange density of the complex Klein—-Gordon field which interacts
with a Maxwell field are

E(A#, Au,u? 0, ¢au ) d)t ‘btu)

- _ﬁFle“” - ([(ay — i%Ay)qﬁ} ) [((% - i%A”)qﬁ} + u2<f>*¢)
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o . s y
- 2#0 (A Vil AVH — AV,HA# ) h2c 2A A ¢ ¢
Pl 46,6 — 0,0°) — (6,0" + 126°0) (15.10)

(a) The Euler-Lagrange equations are three equations, with the first

oL d (9L N\ _,
oAY ~ dar \0Av,)

one as

= A~ patv OO TR (00— 0.6,
d oL 1
adi VA;L_ LHAV. 15.11
dxr 0A",  po (99 Ot Av) e

The result is

(8H8 At —0,0"A,) —

140 h2 5407 ¢+ (¢ ¢—¢u0*)=0. (15.12)

The next one is

oL d (9L _,
9" dwr \ 9%, )

2
. OL (—A A+ )(z)ziA"qsy,
he ’

a¢* 52 2
d oL q y y
7 55~ e (0, A"+ A 6.,), (15.13)

with the result

2
q v v _ i v v —
(ﬁQQ(AA +8A)+u)¢> zhc(&,A ¢+24¢,)=0. (15.14)

The last one is the same, up to the difference ¢* — ¢, as in the previous

case:
oL d oL
= _ = 15.1

oo dat (841)7#) 0 (15.15)

which has the result,

2
q v v * i v v _
(h22(AA +8A)+M>¢ +zhc(8l,A ¢+24¢,)=0. (15.16)
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(b) We will now find the Noether current by use of phase transformations
og ¢ and ¢*. The transformation has the form,

¢ — ¢ =eXp, ¢ — ¢ =e Xg*, (15.17)
where x is a real number. When x is infinitesimal we write it as
5p = ixe, 60" = —ixo*. (15.18)
The Noether function N* is defined as
oL oL
Nt = 8¢>,#6¢+ 8¢f#6¢*
= 2 AG6" — ix(67"'6 — 676"). (15.19)

This implies that
9N = 2%x DA p*, (15.20)

and we note that 9, A" is included. But this is a gauge-dependent quantity,
which can be changed to zero. This dependence of A* in N* can thus be
changed so that the derivative is zero:

dNH
=0
dzt

(15.21)

(¢) We will show that the following changes are invariant under gauge
transformations:

Au(x) = Ay + 9,0(x),
6(w) = exp [i20(2)] 6(a),
¢*(z) = exp [fi%O(x)} o* (). (15.22)

To show this, we study how the Lagrangian density is affected by the
changes.

We first look at how the following part of the Lagrangian density is
changed:

(8” — i%A”) b — (8” — i%(fl” + @ﬁ(x)) exp [2%9(30)} o(x)

= exp [z%@(m)} (8” - i%A”) o(x). (15.23)
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We see the result that the exponential part is moved, and the term 9,,6(x)
is removed. This effect disappears altogether when the conjugate part is
introduced as follows:
*
{(au - i%Au) ¢} Kau - i%A”) ,qs] (15.24)
Also, the field equations are invariant under the gauge transformations,
since these are extracted from the Lagrangian density.
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