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Preface

Classical mechanics is more than 300 years old and dozens,
maybe even hundreds, of textbooks on the subject have already
been written. So why another one?

First of all, this book focuses solely on the fundamental aspects
of classical mechanics.1 This narrow focus allows us to discuss 1 Applications are only discussed

insofar as they help to deepen our
understanding of the fundamental
concepts and not as an end in
themselves. In addition, there are
already dozens of great books
which discuss applications or other
special topics in great detail. Some
of the best ones are recommended
in Chapter 13.

all of the important concepts several times from various per-
spectives.

In contrast, most other classical mechanics textbooks try to do
a lot at once. For example, it’s not uncommon that in addition
to the Newtonian, Lagrangian and Hamiltonian formulations,
dozens of applications, edge cases, advanced topics, historical
developments or even biographies of the most important con-
tributors are discussed. I think this is problematic because, as
the saying goes, if you try to be good at everything, you will not
be great at anything.

So a clear advantage of the approach used in this book is that
the reader has multiple chances to understand a given concept,
while in a "normal" textbook the reader immediately has a prob-
lem when a passage is not understood perfectly.2 A second

2 In a "normal" textbook, each topic
is only introduced once. As a result,
later chapters become harder and
harder to understand without a
full understanding of all previous
chapters. Moreover, it’s easy to
become discouraged when a few
passages are not perfectly clear
since you know that you need the
knowledge to understand later
chapters.

advantage of our narrow focus is that it minimizes the risk of
unnecessarily confusing the reader. Like all other fundamental
theories, classical mechanics is, at its heart, quite simple. How-
ever, using it to describe complicated systems is far from easy
and this is where most of the difficulties usually arise.3 3 Most of the difficulties are really

mathematics problems, not physics
problems anyway, e.g., solving a
difficult integral or solving a given
differential equation.
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In summary, restricting ourselves to the fundamentals allows us
to introduce classical mechanics as gently as possible.44 While advanced applications are,

of course, important, they are not
essential to understand the fun-
damentals of classical mechanics.
There are many great books which
focus on specific applications. After
you’ve developed a solid under-
standing of the fundamentals, it’s
far easier to learn more about those
applications you’re really interested
in.

While this alone may already justify the publication of another
classical mechanics textbook, there are a few other things which
make this book different:

� Firstly, it wasn’t written by a professor. As a result, this book
is by no means an authoritative reference. Instead, this book
is written like a casual conversation with a more experienced
student who shares with you everything he wishes he had
known earlier. I’m convinced that someone who has just
recently learned the topic can explain it much better than
someone who learned it decades ago. Many textbooks are
hard to understand, not because the subject is difficult, but
because the author can’t remember what it’s like to be a
beginner5.5 This is known as the "Curse of

Knowledge."

� Secondly, this book is unique in that it contains lots of id-
iosyncratic hand-drawn illustrations. Usually, textbooks
include very few pictures since drawing them is either a lot
of work or expensive. However, drawing figures is only a lot
of work if you are a perfectionist. The images in this book
are not as pretty as the pictures in a typical textbook since I
firmly believe that lots of non-perfect illustrations are much
better than a few perfect ones. The goal of this book, after all,
is to help you understand classical mechanics and not to win
prizes for my pretty illustrations.

� Finally, my only goal with this book was to write the most
student-friendly classical mechanics textbook and not, for
example, to build my reputation. Too many books are unnec-
essarily complicated because if a book is hard to understand
it makes the author appear smarter.6 To give a concrete ex-6 To quote C. Lanczos: "Many of

the scientific treatises of today
are formulated in a half-mystical
language, as though to impress
the reader with the uncomfortable
feeling that he is in the permanent
presence of a superman."

ample, nothing in this book is assumed to be "obvious" or
"easy to see". Moreover, calculations are done step-by-step
and are annotated to help you understand faster.

Without any further ado, let’s begin. I hope you enjoy reading
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this book as much as I have enjoyed writing it.

Karlsruhe, June 2018 Jakob Schwichtenberg

PS: I regularly incorporate reader feedback. So if you find an
error or have any other kind of comment, I would appreciate an
email to errors@jakobschwichtenberg.com.
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Before we dive in, we need to talk about two things. First, a
crucial question:

Why should you care about classical mechan-
ics?

First of all, classical mechanics is still the state of the art when
it comes to many problems. Modern theories like quantum
mechanics or quantum field theory do not help us when we
want to describe how a ball rolls down a ramp or how a rocket
flies. While classical mechanics does not help us to describe the
fundamental building blocks of nature, it’s still the best theory
of macroscopic objects that we have.77 We will talk about the relationship

of classical mechanics to modern
theories like quantum mechan-
ics and quantum field theory in
Section 12.1.

This alone makes classical mechanics an invaluable tool in the
toolbox of any competent physicist.

But even if you only care about truly fundamental aspects of
physics, there are several reasons why learning classical me-
chanics makes sense:

� Firstly, classical mechanics is an ideal playground to learn
many of the most important concepts which are used ev-
erywhere in modern physics. For example, the Lagrangian
formalism is presently our best tool to explore new mod-
els of nature, and there is no better way to learn it than by
studying how we can use it in classical mechanics.8 In addi-8 To quote Roger Penrose: "In

modern attempts at fundamental
physics, when some suggested new
theory is put forward, it is almost
invariably given in the form of some
Lagrangian functional." [Penrose,
2016] This is discussed in more
detail Section 12.4.

tion, Noether’s theorem —a cornerstone of modern physics
—can be understood in beautiful and natural terms using the
framework of classical mechanics.

� Secondly, by discussing the various formulations of classical
mechanics we can understand why there are usually multi-
ple ways to describe a given system, how these alternative
descriptions are related and why studying multiple formula-
tions is often a smart thing to do. Understanding this aspect



11

of modern physics is especially important if we want to think
about new theories of fundamental physics.9 9 To quote Paul Dirac: "It is not

always so that theories which are
equivalent are equally good, because one
of them may be more suitable than the
other for future developments."

� Finally, classical mechanics provides an intuitive arena to
study basic mathematical tools and basic mathematical are-
nas which we need all the time.

The second thing we need to talk about is the meaning of a few
special symbols which we will use in the following chapters.

Notation

� Three dots in front of an equation ∴ mean "therefore", i.e.,
that this line follows directly from the previous one:

ω =
E
h̄

∴ E = h̄ω .

This helps to make it clear that we are not dealing with a
system of equations.

� Three horizontal lines ≡ indicate that we are dealing with a
definition.

� The symbol !
= means "has to be", i.e., indicates that we are

dealing with a condition.

� The most important equations, statements and results are
highlighted like this:

∂L
∂q

− d
dt

�
∂L
∂q̇

�
= 0 (1)

� ∂ f (x,y,z,t)
∂t denotes the partial derivative with respect to t,

while d f (x,y,z,t)
dt denotes the total derivative.10 10 The difference between partial

and total derivatives is discussed in
Appendix A.3.

� A dot above a function denotes the derivative with respect to

time q̇(t) ≡ dq(t)
dt and q̈(t) ≡ d2q(t)

dt2 .
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� To unclutter the notation, we often use q as a shorthand for
all coordinates, i.e., q ≡ (q1, ..., q2). So for example, instead of
f (x, y, z), we write f (q).

That’s it. We are ready to dive in (after a short look at the table
of contents).
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1

Bird’s-Eye View of Classical
Mechanics

As mentioned in the preface, classical mechanics is, at its heart,
quite simple. However, specific applications can be extremely
complicated. For this reason it’s easy to lose the forest for the
trees. To prevent this, we start this book with a quick overview.
Afterwards, we will talk about the various concepts in more
detail and gradually refine our understanding until we are
ready for concrete applications.

So don’t worry if not everything is immediately clear in this
chapter. Our goal is solely to get an overview and each idea
mentioned here will be discussed later in more detail.

Now first of all, what is our goal in classical mechanics?

The short version is:1 1 Macroscopic means big enough
such that we don’t need quantum
mechanics or quantum field theory
to describe it.We want to describe how macroscopic objects behave.
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A bit more technically we can say that:

We want to derive and solve the equations of motion

for macroscopic systems.

One way to accomplish this is by using Newton’s second law

d
dt
�p = �F , (1.1)

where �p denotes the momentum of a given object and �F is the
total force acting on it.

But one thing which makes classical mechanics (and physics
in general) extremely interesting is that physicists are quite
imaginative. Since it is so hard to discover a new theory, it is
often a huge step forward to find an alternative method to
describe an existing theory. And in fact, for each theory there
are different ways of how we can use it to describe a given
situation.

This is possible because there are different mathematical arenas
we can use as the stage on which we describe what happens.
The easiest one is the physical space we live in, but there are
also more abstract ones like configuration space, phase space
and Hilbert space. Each of these mathematical arenas have
particular advantages.22 We will talk about these arenas in

detail in Section 2.3.

The laws of classical mechanics were originally written down
using vectors living in physical space. We can describe the be-
havior of these vectors by using Newton’s second law (Eq. 1.1).
Nowadays this is known as the Newtonian formulation.

But it’s equally possible to describe macroscopic systems using
configuration space or phase space. If we write down the laws
of classical mechanics in configuration space, we end up with
the Lagrangian formulation of classical mechanics. And if
we use instead phase space, we end up with the Hamiltonian
formulation.3

3 It’s also possible to formulate
classical mechanics in Hilbert space.
This is known as the Koopman-von
Neumann formulation and we
will discuss it in Section 11.3. In
contrast, quantum mechanics was
originally formulated in Hilbert
space. But it’s equally possible
to formulate it in phase space,
configuration space or physical
space.
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In general, we call the description of a given theory in a particu-
lar mathematical arena a formulation of the theory. So in other
words, there are always different formulations of each theory.4 4 To define what a theory is all

about, we need to use a specific
formulation. But none of the for-
mulations are more fundamental
than the others. We can imagine a
theory as something abstract living
in "theory space". And to really
investigate it, we need to map this
abstract thing to something more
tangible, i.e., to a set of rules act-
ing on objects living in a specific
mathematical arena. Each such map
yields a different formulation. (See
the diagram below.)

This is similar to how we can describe the number 1021 using
the English word "one thousand twenty-one" or using the Ger-
man word "Eintausendeinundzwanzig" or "MXXI " in Roman
numerals or "1111111101" in the binary numbering system. Each
of these descriptions has particular advantages depending on
the problem at hand. For example, saying "1111111101" is ex-
tremely awkward in everyday life but essential if we want to do
calculations using a computer.

Analogously, the Newtonian formulation of classical mechanics
is extremely useful for simple systems because all we have to
do is to specify a few vectors in physical space. But for more
complicated systems involving constraints, the Lagrangian for-
malism is a much better choice. And the Hamiltonian formula-
tion is awesome to understand the general structure of classical
mechanics and to describe systems consisting of lots of objects.

As mentioned above, in the Newtonian formulation, we use
Newton’s second law (Eq. 1.1) to derive the equations of mo-
tion.

In contrast, in the Lagrangian formulation, our first task is al-
ways to write down the appropriate Lagrangian for the system
at hand

L = T − V , (1.2)

where T denotes the kinetic energy and V the potential energy.

As soon as we have a concrete Lagrangian, we can derive the
corresponding equations of motion by using the Euler-Lagrange
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equation

∂L
∂q

− d
dt

�
∂L
∂q̇

�
= 0 . (1.3)

In the Hamiltonian formulation, we start by writing down the
Hamiltonian for the system at hand

H = pq̇ − L (1.4)

where p denotes the momentum, q̇ the velocity and L, as before,
the Lagrangian.55 In mathematical terms, the con-

nection between the Hamiltonian
and Lagrangian is given by the
Legendre transform. The Legendre
transform is discussed in detail in
Appendix B.

As soon as we have a concrete Hamiltonian, we can derive the
equations of motion by using Hamilton’s equations

dp
dt

= −∂H
∂q

dq
dt

=
∂H
∂p

. (1.5)

All of this is summarized by the following diagram:

Equations of Motion

Newtonian Mechanics

Newton’s Second Law

��

Hamiltonian Mechanics

Hamilton’s Equations

��

Classical Mechanics

Physical Space

��

Configuration Space ��Phase Space��
Lagrangian Mechanics

��

Legendre Transform

��

Euler-Lagrange Equation

��
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Now after this quick overview, let’s move on and discuss every-
thing mentioned here in more detail.
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Part I
What Everybody Ought to Know About

Classical Mechanics

"The action principle turns out to be universally applicable in physics. All
physical theories established since Newton may be formulated in terms of

an action. The action formulation is also elegantly concise. The reader
should understand that the entire physical world is described by one single

action."

Anthony Zee

PS: You can discuss the content of Part I with other readers and give feedback at
www.nononsensebooks.com/cm/bonus.
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Fundamental Concepts

Before we can start talking about classical mechanics, we should
talk about what exactly we want to describe.

In short, we want to describe macroscopic (big) objects and we
characterize them by using labels like their position, velocity, ac-
celeration, momentum, mass and energy. Since in this book we
only care about fundamental aspects, we will treat all objects as
if they were mass points. This means that we ignore all effects
which arise as a result of the size of objects. There are many im-
portant effects which only arise for extended objects, but since
each extended object can be considered as a collection of mass
points, we will focus on these elementary building blocks.1 1 Detailed discussions of extended

objects can be found in most of
the textbooks recommended in
Section 13. But be warned that
the motion of rigid bodies like a
spinning top are among the most
complicated things students usually
have to learn.

Our goal in classical mechanics is to find the correct equation
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of motion which allows us to calculate how objects move as
time passes in each system. Formulated more technically, the
solutions of the equation of motion describe the trajectories of
the various objects within the system.

But especially for systems containing multiple objects, keeping
track of the various trajectories can become quite cumbersome.
For such systems, a better approach is to treat the system as one
big thing. We can then describe the time evolution of the system
as a path in either configuration space or phase space.

Next, let’s talk about all these fundamental concepts one by
one.22 If you’re already familiar with the

notions mentioned above and don’t
need a refresher, feel free to skip
this chapter. But at least make sure
to skim Section 2.3 because a solid
understanding of configuration
space and phase space is essential
for everything that follows.

2.1 Basic Quantities

Any object can be described using a few key quantities. For
example, in classical mechanics our main goal is usually to
calculate a function x(t) which tells us for each moment in time
t, at which position we can find a given object.

If our object moves in three dimensions, we need three such
functions3

3 The dimension of a space corre-
sponds to the smallest number of
coordinates which is sufficient to
localize an object in the space. To
describe the location of an object on
a line, we only need one number
which indicates the distance from
the origin. Similarly, to describe
an object which moves on a circle,
we only need the angle ϕ. Usually
objects are free to move in all three
dimensions. But to keep the nota-
tion as simple as possible, we will
usually consider the case where
our object can only move freely in
one dimension. This is the case, for
example, for a bead on a wire.
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�q(t) =




x(t)
y(t)
z(t)


 . (2.1)

But there are also additional quantities we often use to describe
objects. For example, we often want to know how quickly an
object moves around. This is described by the velocity function
v(t) which is defined as the rate of change of the location:

v(t) =
dx(t)

dt
. (2.2)

In words, this means that v(t) tells us exactly how quickly the
position of the object changes as time passes. Since derivatives
with respect to t are so common in physics, we introduce the
shorthand notation

ẋ(t) ≡ dx(t)
dt

. (2.3)

This means that whenever we write a function with a little dot
on top of it, we mean its rate of change.

Again, if our object moves in three dimensions, we need three
velocity functions

�v(t) =




vx(t)
vy(t)
vz(t)


 . (2.4)
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Using our shorthand notation, we can write this as

�̇q(t) =




ẋ(t)
ẏ(t)
ż(t)


 . (2.5)

Sometimes, we not only care about how quickly a given object
moves around but also about how quickly its velocity changes.44 We will see later why we care

about how quickly the velocity
changes. But to spoil the surprise:
the velocity of an object changes
whenever a force acts on it. De-
scribing how objects react when
forces act on them is what classical
mechanics (or really almost all of
physics) is all about.

The rate of change of the velocity function is known as the
acceleration

ẍ(t) ≡ d2x(t)
dt2 =

d
dt

dx(t)
dt

≡ d
dt

ẋ(t) . (2.6)

The relationship between the position �q(t), velocity �̇q(t) and
acceleration �̈q(t) is illustrated in the following figure.

2.1.1 Mass

The most important additional property of objects in classical
mechanics is their mass. Historically, even Newton only gave
a hopelessly circular definition of mass as the object’s volume
times its density.5 From a modern perspective, we can under-5 This definition is circular because

a (mass) density is defined as an
object’s mass divided by its volume.

stand mass as the "charge" of gravity, analogous to how the
electric charge is the charge of electromagnetic interactions. A
large mass means that an object has a big gravitational impact,
analogous to how an object with a large electric charge has a big
electrodynamical impact on other electrically charged objects.
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But the main reason why we care about mass in classical me-
chanics is that it encodes the resistance of an object to being
moved or to having its velocity changed if it already moves with
uniform velocity.6 In other words, the mass of an object is a la-

6 You might rightfully wonder how
these two descriptions of mass fit
together. Historically, physicists
used the notions of "gravitational
mass" and "inertial mass" because
they thought that the two roles
played by mass meant that they
are actually two kinds of mass
and that we need to consider them
separately. However, the idea that
inertial mass and gravitational
mass are actually the same thing
(which we now simply call the
mass) was one of the key insights
which led Einstein to his famous
theory of general relativity. From
this perspective, the resistance
of an object to being moved is a
result of the gravitational pull of all
surrounding objects in the whole
universe.

This idea is known as Mach’s
principle. However, take note
that there are still lots of ongoing
discussions about the validity
of Mach’s principle and how to
formulate it properly.

bel we use to describe how difficult it is to change its velocity
with a force.7 For example, it’s much easier to push a ball made

7 Intuitively, we can define a force
as something which changes the
velocity of objects.

of cork than a ball of equal size made of iron.

2.1.2 Momentum and Angular Momentum

There are three further basic quantities that we regularly use
in classical mechanics: momentum, angular momentum and
energy. These quantities are useful because they are conserved.
This means that while everything within the system may change
all the time (in particular, the locations and velocities of the
objects), these quantities remain unchanged. In this sense, con-
served quantities are like anchors which we can always cling to
in an otherwise chaotic world.8 However, take note that the mo-

8 Mathematically, a conserved
quantity is something with a van-
ishing rate of change, for example,
d
dt E = 0.

mentum, angular momentum and energy of individual objects
can change. Only the total momentum, total angular momentum
and total energy within a closed system remain constant.9

9 A closed system is sufficiently
isolated such that we can ignore all
effects from the outside world. In
particular, no energy or momentum
is leaking out from a closed system.

One of the most beautiful aspects of classical mechanics is that
we can actually understand the origin of conserved quantities.
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In other words, we do not need to introduce momentum, angu-
lar momentum and energy ad hoc as additional quantities but
we can actually derive them. In Chapter 10, we will talk about
this in detail.10 But for the moment it is sufficient to use the10 To spoil the surprise: for each

symmetry of a system, we get a
conserved quantity. For example,
whenever it makes no difference
whether we perform an experiment
today or tomorrow, the energy
within the system is conserved.
This is known as Noether’s theo-
rem.

following rather rough definitions:

� Momentum is the velocity of an object times its mass

�p(t) ≡ m�̇q(t) . (2.7)

� Angular momentum is defined as the cross product of the
position vector and the momentum vector11

11 If you’re unfamiliar with the
cross product, see Appendix G. We
use the cross product because it
allows us to multiply two vectors
and get another vector as a result.
This is what we need because to
describe angular momentum, we
need to know the axis about which
an object is rotating (a direction)
and the speed of the rotation (a
magnitude). Angular momentum is,
therefore, naturally represented by
a vector. And it is the cross product
that allows us to take two vectors,
position and momentum, and
combine them to obtain the angular
momentum. In contrast, the dot
product of two vectors�a ·�b yields
a number and therefore cannot
encode any directional information.

�L(t) = �q(t)× �p(t) = m�q(t)× �̇q(t) . (2.8)

In intuitive terms, we can say that:

� Momentum is the total "oomph" an object has behind it. To
understand how this interpretation comes about, we can use
the fact that the rate of change of the momentum of an object
is always equal to the force acting on it:12

12 As mentioned above, this is
known as Newton’s second law and
we will discuss it in more detail in
Chapter 3 .

dp
dt

= F . (2.9)

Therefore, the total change in momentum Δp = p(t f )− p(ti)

during some time interval Δt = t f − ti is equal to the force F
times the time interval Δt:13

13 We can multiply by dt because dt
simply means a little bit of t, i.e., a
really short time interval.

dp
dt

= F �

multiplication by dt and integrating� t f

ti

dp =
� t f

ti

Fdt

�

assuming the force is constant

Δp = FΔt .

In words, this means that the momentum of an object tells
us how long it takes a given force F to stop it. An object
with a large momentum is much harder to stop. Formulated
differently, we need a much bigger force to stop it quickly.

Alternatively, we can consider collisions of two objects. The
main point here is that the object with the larger momentum
"wins".
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Winning in such a collision can either be achieved by having
a large mass or having a large velocity and this is exactly
what momentum encodes: p = mv.

� Angular momentum is the total "rotational oomph" an object
has behind it. While (linear) momentum tells us how hard it
is to stop an object using a specific force, angular momentum
tells us how hard it is to stop it spinning. For example, it’s
certainly much harder to stop the rotation of a dumbbell
made of iron than to stop the rotation of a dumbbell made of
Styrofoam.

Similarly, it’s much harder to stop a fast-spinning dumbbell
than a slowly spinning one. A third (but a bit more subtle)
aspect of angular momentum is that it’s much harder to stop
a long dumbbell.

And that’s why angular momentum is proportional to mass
× velocity × radius.14

14 Don’t worry if the meaning and
importance of angular momentum
is not immediately clear. For the
moment it is sufficient to keep in
mind that angular momentum is
a useful quantity whenever things
are spinning around. In modern
physics, angular momentum is
extremely important because all
elementary particles except for the
Higgs boson carry some kind of
internal angular momentum which
we call spin. Using this property
of elementary particles we can
understand, for example, why
matter is stable at all.

As mentioned above, we are primarily interested in momentum
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and angular momentum because they are conserved. To under-
stand why conserved quantities are so helpful, let’s consider a
head-on collision of two objects. For simplicity, let’s assume that
the two objects stick together after the collision.1515 In more technical terms, this

means that the collision is com-
pletely inelastic. An elastic collision
is one in which both momentum
and kinetic energy are conserved.
In an inelastic collision, some of
the kinetic energy is transferred
to internal degrees of freedom of
the objects. Parts of the object may
crumble or bend, for example. For
the collision we consider here, a
maximum amount of kinetic en-
ergy is "lost" to internal degrees of
freedom. (This is necessarily the
case here because otherwise the two
objects wouldn’t stick together.) But
take note that the total energy is
always conserved. It’s just that after
the collision some of the energy is
now present in different forms.

Then, solely using the fact that momentum is conserved, we can
calculate the velocity that the combined objects have after the
collision:

psystem
i = psystem

f �

definition of momentum

(m1v1 + m2v2) = (m1 + m2)v �

rearranging terms

v =
m1v1 + m2v2

m1 + m2
.

Next, let’s talk about one additional conserved quantity which
we use all the time in classical mechanics: energy.

2.1.3 Energy

Energy is a bit more tricky because it comes in different forms.
At first, physicists believed that energy could be described by
the formula1616 Take note that �̇q2 = �̇q · �̇q, i.e., the

dot product of the velocity vector
with itself. If you’re unfamiliar
with the dot product, have a look at
Appendix G.1.

T =
1
2

m�̇q2 . (2.10)

But it was quickly noted that this quantity is not always con-
served. From a modern perspective, we say that energy comes
in two forms: kinetic and potential. The formula in Eq. 2.10
only describes kinetic energy and is therefore incomplete. The
total energy is always conserved and therefore, whenever the ki-
netic energy becomes smaller, it doesn’t vanish but is converted
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into potential energy. Mathematically, this means that the total
energy can be written as

E = T + V , (2.11)

where V denotes the potential energy. The specific formula for
the potential energy V always depends on the system at hand.

In general, kinetic energy is the energy associated with motion,
while potential energy represents the energy which is "stored"
in a physical system. Moreover, the total energy is always con-
served. But while the total energy remains unchanged, the
kinetic and potential parts of the total energy can change all the
time.

Imagine, for example, a pendulum which swings back and
forth. When it swings, it sweeps out an arc and then slows
down as it comes closer to its highest point. At this highest
point the pendulum does not move at all. So at this point, the
energy is completely given in terms of potential energy. But af-
ter this brief moment of rest, the pendulum swings back again
and therefore part of the total energy is then given in the form
of kinetic energy. So as the pendulum swings, kinetic and po-
tential energy are constantly converted into each other.

To understand the interplay between kinetic and potential en-
ergy a little better, let’s assume that we are dealing with an
object with constant mass and we notice that its kinetic energy
is getting smaller.17 This can happen whenever a force �F acts on 17 Take note that the mass is often

constant but not always. For ex-
ample, the mass of a rocket gets
smaller because it burns fuel.
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the object. We can define a force as something which causes the
momentum of our object to change1818 This is, in fact, Newton’s second

law and we will talk about it in
more detail in Chapter 3. �F = �̇p . (2.12)

Using this, we can write the rate of change of the kinetic energy
as follows:1919 Don’t worry if some of the steps

are not completely clear. We’ll talk
about everything mentioned here
in more detail below. The sole goal
in this section is to get a rough
understanding for what we mean
by potential energy and a potential.

dT
dt

=
d
dt

�1
2

m�̇q2
�

� d
dt
�̇q · �̇q = �̈q · �̇q + �̇q · �̈q = 2�̈q · �̇q (product rule)

= m�̈q · �̇q �
�p = m�̇q ⇒ �̇p = m�̈q

= �̇p · �̇q �

Eq. 2.12

= �F · �̇q . (2.13)

So the change in kinetic energy of the object, as it travels from
some specific location qi at ti to another location q f at t f , is
given by2020 We calculate this because changes

in the kinetic energy mean that
the potential energy must change.
Therefore, we can learn some-
thing about the potential energy.
Moreover, take note that

T(t f )− T(ti) =
� t f

ti

dT
dt

dt

follows from the fundamental
theorem of calculus

� b

a

d
dx

f (x) dx = f (b)− f (a).

T(t f )− T(ti) =
� t f

ti

dT
dt

dt =����
Eq. 2.13

� t f

ti

dt �F · �̇q

�

�̇q =
d
dt
�q

=
� t f

ti

dt �F · d
dt
�q

� dt
dt

= 1

=
� �q f

�qi

�F · �dq . (2.14)

This final expression is known as the work done by the force �F
as the object moves from qi to q f . What we’ve calculated here
therefore means in words: the change in kinetic energy is equal
to the work done.

Now the key idea is that we can imagine that (at least all funda-
mental) forces originate from an underlying potential2121 More precisely, forces for which

this is the case are known as con-
servative forces because the work
done by them as we move an object
along a closed curve is zero, i.e.,
nothing gets lost or added. Conser-
vative forces only depend on the
location �q and not on the velocity �̇q,
etc.

�F = −∇V(�q) ≡ −




∂
∂x
∂

∂y
∂
∂z


V(�q) = −




∂V(�q)
∂x

∂V(�q)
∂y

∂V(�q)
∂z


 . (2.15)

For one-dimensional problems, the relationship between a force
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and the corresponding potential simplifies to

F = −∂V(q)
∂q

. (2.16)

Using this, we can rewrite Eq. 2.14 as follows:22 22 If you’re confused by the steps
here, it may be helpful to consider
a one-dimensional problem. The
calculation then reads

T(t f )− T(ti) =
� q f

qi

Fdq

=
� q f

qi

�
− ∂V(q)

∂q

�
dq

= −
�

V(q f )− V(qi)
�

.

T(t f )− T(ti) =
� �q f

�qi

�F · �dq this is Eq. 2.14

�

Eq. 2.15

=
� �q f

�qi

�
−∇V(�q)

�
· �dq

� � b

a
f �(x)dx = f (b)− f (a)

= −
�

V(�q f )− V(�qi)
�

. (2.17)

By rearranging the terms, we can therefore conclude that

T(t f ) + V(�q f ) = T(ti) + V(�qi) . (2.18)

In words, this means that the sum of kinetic and potential en-
ergy at the initial moment in time (for which the object is at �qi)
is equal to the sum of kinetic and potential energy at the final
moment in time (for which the object is at �q f ). We’ve therefore
derived that changes in the kinetic energy can always be ac-
counted for by changes in the potential energy. The total sum
of kinetic and potential energy always stays the same. In other
words, the total energy E = T + V is conserved.23 23 This is only the case for systems

in which all forces can be writ-
ten using a potential (Eq. 2.15).
But since this is the case for all
fundamental forces (gravity, elec-
tromagnetic force, weak nuclear
force and strong nuclear force) and
we only care about fundamental
aspects, this is all we need to know.

Here’s another perspective.

When we move an object attached to a spring away from its rest
position, there will be a force which pushes the object back to
this rest position.



36 no-nonsense classical mechanics

One way to understand this is by describing the spring using
the potential V(x) = Cx2. This potential has its minimum at the
rest position, and any movement away from it results in a force
F = − ∂V(x)

∂x = −2Cx which pushes the object back to the rest
position.

For concreteness, we are dealing with a spring described by the
constant C = 1 kg

s2 .24. When we pull the object attached to this24 The constant C has units kg
s2 ,

where "kg" denotes kilograms and
"s" denotes seconds, because then
F = −2Cx has the correct units of a
force kg·m

s2 .

spring to the x = 2 m location, there will be a force

F = −2Cx = −4
kg · m

s2 ,

which is directed toward the equilibrium position at x = 0. And
if we push the object in the opposite direction to x = −2 m,
there will be a force

F = −2Cx = 4
kg · m

s2 ,

which again points toward the equilibrium position.

One final comment before we move on: we can’t measure the
potential or potential energy of an object directly. Instead, we
can only measure the resulting force F = − ∂V(x)

∂x . This follows
because we can add an arbitrary constant V(x) → Ṽ(x) =

V(x) + c without changing the resulting force:

V(x) ⇒ F(x) = −∂V(x)
∂x

Ṽ(x) = V(x) + c ⇒ F̃(x) = −∂Ṽ(x)
∂x

= −∂(V(x) + c)
∂x

= −∂V(x)
∂x

= F
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because ∂c
∂x = 0. This means that we can shift the potential

however we want.25 In geometrical terms, we can say that the 25 Historically, physicists used
this observation to conclude that
potentials are solely convenient
calculation devices which, however,
aren’t really real because we can’t
measure them directly. Working
with a potential is much simpler
than working with a force because
a force is described by a vector
function �F(x) while a potential is an
ordinary function φ(x). Moreover,
the freedom to shift the potential
often allows important calculatory
simplifications. But from a modern
perspective, potentials are more
than purely mathematical tools. For
example, the famous Aharonov-
Bohm experiment demonstrated
that particles can be affected in re-
gions in which only the potential is
non-zero but nothing else. In other
words, it has been experimentally
verified that potentials are indeed
real. In some sense, potentials
are really at the heart of modern
physics and if you want to learn
more about how we understand
their role in nature, you might
enjoy:

Jakob Schwichtenberg. Physics
from Finance. No-Nonsense Books,
Karlsruhe, Germany, 2019b. ISBN
978-1795882415

force remains unchanged because the slope remains unchanged
by constant shifts of the potential:26

26 The slope of a potential corre-
sponds to the force since F = − ∂V

∂q .

The freedom in how we define the potential for any system also
implies that we can’t measure the potential energy of an object
directly. Instead, only differences between the potential energy
of an object at one position and its potential energy at some
reference position are physically important. We usually shift
the potential such that any object at the equilibrium position
has potential energy zero and then specify the potential energy
at other positions relative to this position. For example, we
usually shift the Earth’s gravitational potential such that it is
zero when the ball lies on the ground. We are then able to write
the potential energy as V(z) = mgz, where z is the height above
the ground.27 But we could equally shift the potential such that 27 Semantics: the potential here

reads φ(z) = gz and an object
of mass m which is located at z
therefore has the potential energy
V(z) = mgz.

it is non-zero at the ground, and then we would have to use the
formula Ṽ(z) = mgz + c, where c is the value of the potential
at the ground (z = 0). For example, we could shift the potential
such that it is zero for z = 2 m. The potential energy would then
read

≈
V(z) = mgz − 2mg because then we get zero for z = 2 m:

≈
V(2) = mg(2)− 2mg = 0.

However, everything we can measure in experiments remains
completely unaffected by such shifts of the potential. This fol-
lows because only forces play a role in our equations of motion
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(which we will discuss next), and all constant shifts leave the
resulting forces unchanged:

V(z) = mgz ⇒ F = −∂V(z)
∂z

= −mg

Ṽ(z) = mgz + c ⇒ F̃ = −∂Ṽ(z)
∂z

= −mg

≈
V(z) = mgz − 2mg ⇒

≈
F = −∂

≈
V(z)
∂z

= −mg

To summarize:

� Energy is defined as the sum of an object’s kinetic energy T
and its potential energy V

E = T + V . (2.19)

– The kinetic energy is defined as

T =
1
2

m�̇q2 . (2.20)

– There is no general formula for the potential energy be-
cause different systems are characterized by different po-
tentials and, therefore, we need different formulas for the
potential energy. But take note that usually the formula for
potential energy of an object only depends on its location
�q(t) and not on its velocity �̇q(t) or acceleration �̈q(t). For
example, the potential energy in the Earth’s gravitational
field can be described by

V = mgz , (2.21)

where z is the height above sea level, m the mass and
g ≈ 9.81 m

s2 , a constant which characterizes the Earth’s
gravitational field.

In intuitive terms, we can say that:
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� Kinetic energy is a measure for how much is going on in our
system.

– If all objects are moving around quickly, the kinetic energy
is high.

– In contrast, if all objects are sitting still, the kinetic energy
is zero.

� Potential energy is a measure for how much could happen,
but isn’t.

– If all objects are placed on the top of a mountain, they
have a large (gravitational) potential energy and they
could start moving quickly by falling down. Currently,
they are stationary. In this sense, their large potential
energy is unrealized potential, which is why we use the
word potential energy.

– In contrast, if all objects are placed on the floor, they have
zero potential energy since they can’t fall any further
down.

Finally, to demonstrate once more that conserved quantities
are indeed useful, let’s try to describe a ball which is thrown
straight up into the air. The ball’s total energy is

E = T + V �

T =
1
2

mż2, V = mgz

=
1
2

mż2 + mgz �

definition of momentum p = mż

=
p2

2m
+ mgz .

For concreteness, let’s assume that the ball’s mass is 1 kg and
we throw it with ż = 2 m

s starting from z = 2 m into the air.

Therefore, the ball’s initial momentum is p = 2 kg·m
s . Moreover,

the ball’s energy at the moment we throw it is
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E =
1

2m
p2 + mgz

�

p = 2
kg · m

s
, z = 2 m

=
1

2m

�
2

kg · m
s

�2
+ mg (2 m)

�

g ≈ 9.81
m
s2 , m = 1 kg

=
1

2(1 kg)

�
2

kg · m
s

�2
+ (1 kg)(9.81

m
s2 )2 m

�
simplifying

= 2
kg · m2

s2 + 19.62
kg · m2

s2

= 21.62
kg · m2

s2 . (2.22)

Using only these numbers and that the ball’s energy is con-
served, we can directly predict the ball’s maximum height.2828 Maybe you wonder about the con-

servation of momentum. While the
ball’s momentum is not conserved
(and even becomes zero at the point
of maximum height), the total mo-
mentum of the system consisting of
ball + Earth is conserved.

This is possible because when the ball reaches its maximum
height, it will stop moving upward. This means that ż = 0
and therefore that the kinetic energy vanishes T = 1

2 mż2 = 0.
But since the total energy is conserved, we know automatically
that at this point, the ball’s total energy must be in the form of
potential energy:

Vmax = mgzmax
!
= 21.62

kg · m2

s2 = E

�

g ≈ 9.81
m
s2 , m = 1 kg

(1 kg)(9.81
m
s2 )zmax

!
= 21.62

kg · m2

s2 �

zmax
!
= 2.204 m .

This means that we can predict correctly how high the ball will
fly solely by using the fact that energy is conserved.

Of course, there are additional properties of objects which can
be important in specific systems like, for example, the electric
charge. But since these are only important for specific systems,
we will not discuss them any further here.2929 In particular, to describe the

behavior of electrically charged
objects, we need electrodynamics. If
you want to learn about electrody-
namics, you might enjoy

Jakob Schwichtenberg. No-
Nonsense Electrodynamics. No-
Nonsense Books, Karlsruhe, Ger-
many, 2018a. ISBN 978-1790842117

Next, let’s talk about how we can describe objects at all times
(and not just at some extremal point like the point of maximal
height).
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2.2 Equations of Motion

While there are different formulations of classical mechanics,
our goal is usually to find the correct equation of motion for
each system. Solutions of the equation of motion describe how
the objects in our system move as time passes.

For simplicity, let’s restrict ourselves to one object moving in one
dimension.30 30 This means that we don’t need

vectors.

In mathematical terms, an equation of motion is a differential
equation. This means that we have the first or second derivative
of a function which describes the position of the object x(t) on
one side of the equation and something else on the other side.
For example, the equation of motion for a free object is31 31 We will discuss in detail below

how we can derive the correct
equation for any system.

d2x(t)
dt2 = 0 . (2.23)

But usually the equation of motion is more complicated. For
example, if a force F(x) = Cx(t) acts on the object, where C is
some constant, the equation of motion becomes32 32 This is the equation of motion

for an object attached to a spring.
This system is known as a harmonic
oscillator and we will discuss it in
more detail in Chapter 8.

d2x(t)
dt2 = Cx(t) . (2.24)

In either case, our goal is to find the correct function x(t) which
yields the same expression if we put it into the right-hand and
left-hand side of the equation. There are sophisticated methods
for solving differential equations and big cookbooks full of
mathematical recipes which you can try. But sometimes, we can
simply guess the right solution.

The equation of motion for the free object (Eq. 2.23) tells us that
we need a function x(t) which yields zero if we differentiate it
twice. There are, in general, infinitely many such functions. In
particular, x(t) = a for any constant number a yields zero if
we differentiate it twice. Similarly, x(t) = bt for any constant
number b yields zero. But higher order terms in t do not vanish
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as we can check explicitly, e.g., for x(t) = ct2:

d2x(t)
dt2 =

d2(ct2)

dt2 = 2c �= 0,

where c is some constant.

This means that the most general solution of the equation of
motion for a free object (Eq. 2.23) reads3333 We will talk about the meaning of

the constants a and b in a moment.
x(t) = a + bt (2.25)

since for any value of the two constants a and b we find

d2x(t)
dt2 =����

Eq. 2.25

d2(a + bt)
dt2 = 0 � .

Finding solutions of the equation of motion for a non-free object
(e.g., Eq. 2.24) is a bit more difficult. Specifically, for Eq. 2.24 we
need a function x(t) which yields itself times some constant if
differentiated twice. Two functions with this special property
are sin(ωt) and cos(ωt), where ω is an arbitrary number. We
have

d
dt

sin(ωt) = ω cos(ωt)

⇒ d2

dt2 sin(ωt) = ω
d
dt

cos(ωt) = −ω2 sin(ωt) (2.26)

d
dt

cos(ωt) = −ω sin(ωt)

⇒ d2

dt2 cos(ωt) = −ω
d
dt

sin(ωt) = −ω2 cos(ωt) . (2.27)

Therefore, we try the ansatz

x(t) = A cos(ωt) (2.28)

in Eq. 2.24:

d2x(t)
dt2 = Cx(t) �

x(t) = A cos(ωt), Eq. 2.28
d2 A cos(ωt)

dt2 = CA cos(ωt)

� d2

dt2 cos(ωt) = −ω2 cos(ωt), Eq. 2.27

−Aω2 cos(ωt) = CA cos(ωt) �

✚A✟✟cos(ωt)
−ω2 = C . (2.29)
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This tells us that our ansatz in Eq. 2.28 is indeed a solution
of Eq. 2.24 if ω =

√
−C. Analogously, we can check that

x(t) = B sin(ωt) is a solution too. And we can construct fur-
ther solutions by using linear combinations of the form34 34 Take note that the constant ω is

the same number in both terms
because its value is fixed through
the constant C appearing in the
equation of motion (Eq. 2.24). (In
Eq. 2.29 we found ω =

√
−C.)x(t) = A cos(ωt) + B sin(ωt) . (2.30)

Take note that we haven’t used any proper solution finding
techniques here. Instead, we’ve guessed what the correct so-
lutions could look like and then checked that they have the
properties we are looking for. This is often possible and if not,
we usually need to ask a friend in the math department anyway.

In other words, since solving a given equation of motion is a
math problem, not a physics problem, we will often simply use
the solutions some mathematician found and then investigate its
properties.

Writing down the correct equation of motion and understanding
its solutions are physics problems. But the technical task of
finding these solutions is a pure math problem. And for most
equations we are interested in, we can either guess the right
solution directly, the solution is complicated but well known, or
the equation can only be solved numerically.35 35 You can recognize that a solution

is complicated whenever it is
named after a mathematician.

But as an example, let me show you one of the most famous
solution strategies which works for many simple equations. For
concreteness, let’s consider the equation

d
dt

x(t) = Cx(t) , (2.31)

where C is again some constant characterizing our system. We
can solve this equation by formally multiplying it by dt and
then integrating:36

36 If you’re unsure why we are
allowed to do this, remember that
dt simply means "a little bit of
t". Moreover, ln(x) is the natural
logarithm which is the inverse
of the exponential function, i.e.,
eln(x) = x.
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d
dt

x(t) = Cx(t) �

multiplying by dt
dx(t) = Cx(t)dt �

dividing by x(t)
dx(t)
x(t)

= Cdt

�
integrating� dx(t)

x(t)
=

�
Cdt

� � dx(t)
x(t)

= ln(x(t))

ln(x(t)) = Ct + c �

exponentiating

x(t) = eCt+c

�

eCt+c = eceCt

x(t) = eceCt .

We’ve therefore learned that a function of the form x(t) = eceCt

solves Eq. 2.31. The method we used is known as separation
of variables and it sometimes works for a particular type of
differential equation. For more complicated equations, we need
more sophisticated methods, but we will not discuss them here
because, after all, our goal is solely to understand classical me-
chanics.

Now, what’s the meaning of the constants a, b, A which ap-
peared in the solutions?

These constants encode information about the initial condi-
tions. We’ve seen above that for each equation of motion there
are infinitely many solutions. For example, the function in
Eq. 2.25 solves Eq. 2.23 for any choice of the constants a and b.3737 For your convenience: Eq. 2.25

reads
x(t) = a + bt

and Eq. 2.23 reads

d2x(t)
dt2 = 0 .

So an equation of motion alone does not tell us how a system
will evolve. Instead, we need to supplement it with appropri-
ate initial conditions. These conditions specify what the system
looks like at one specific point in time. Only if this is known
does the equation of motion tell us uniquely what happens
afterwards.
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For the free object described by Eq. 2.23, we need to specify its
initial position and velocity. We can see this because we have
two constants in the general solution (Eq. 2.25) that we need to
determine. Mathematically, this follows because Eq. 2.23 is a
second-order differential equation, which means that the second
derivative of x(t) appears in it.

For concreteness, let’s say our object is at x = 0 m at t = 0 s
and moves with dx

dt (0) = 2 m
s .38 This allows us to determine the 38 Take note that we do not neces-

sarily need to choose t = 0 s as our
initial moment in time. We could
equally specify the location and
velocity at some other moment in
time like t = 2 s and then follow
the same steps to determine the
constants a and b. But t = 0 s is a
convenient choice because it often
makes the equations simpler since
terms drop out if we put in a zero.
Moreover, we can always choose
t = 0 s as our initial moment in
time because different choices sim-
ply correspond to a different choice
of coordinate system. In other
words, we always choose when the
clock starts ticking. But choosing a
different coordinate system cannot
make any difference and hence,
specifying the position and velocity
at t = 0 is a completely general
approach.

constants a and b in Eq. 2.25:

x(t) = a + bt �
initial condition x(0) = 0

x(0) = a + b0 !
= 0 ⇒ a = 0 . (2.32)

dx(t)
dt

=
d(a + bt)

dt
= b

�

initial condition
dx
dt

(0) = 2
m
s

dx
dt

(0) = b !
= 2

m
s

⇒ b = 2
m
s

. (2.33)

Therefore, the correct function which describes our object reads

x(t) = a + bt �

a = 0, b = 2
m
s

, (Eq. 2.32, Eq. 2.33)

x(t) = 2
m
s

t . (2.34)

We call the specific path described by a solution the trajectory
of the object.

Of course, we can also imagine that our object is at x = 3 m at
t = 0 s and moves with some other initial velocity like dx

dt (0) =
0 m

s . Then, we can again determine the constants a and b in
Eq. 2.25:
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x(t) = a + bt �

initial condition x(0) = 3 m

x(0) = a + b0 !
= 3 m ⇒ a = 3 m . (2.35)

dx(t)
dt

=
d(a + bt)

dt
= b

�
initial condition

dx
dt

(0) = 0
m
s

dx
dt

(0) = b !
= 0

m
s

⇒ b = 0
m
s

. (2.36)

Therefore, the correct function which describes our object for
these initial conditions reads

x(t) = a + bt �

a = 3 m, b = 0
m
s

(Eq. 2.35, Eq. 2.36)

x(t) = 3 m (2.37)

In words, this means that the object sits still at the location
x = 3 m.

We can therefore see that there is a very direct connection be-
tween the two constants a, b and the initial position and velocity
of the object. A better notation would therefore be a → x0 and
b → v0:

x(t) = a + bt → x(t) = x0 + v0t . (2.38)

This makes it immediately clear that x0 describes the initial
position of the object and v0 describes its initial velocity.

We can now understand in physical terms why we get infinitely
many solutions for our equation of motion in Eq. 2.25. For each
possible initial position x0 and each possible initial velocity v0,
we get a different trajectory.
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Completely analogously, we can determine the constants A and
B which appear in our general solution (Eq. 2.30) of the second
equation of motion that we considered (Eq. 2.24).39

39 For your convenience: Eq. 2.24
reads

d2x(t)
dt2 = Cx(t)

and Eq. 2.30 reads

x(t) = A cos(ωt) + B sin(ωt) .

Moreover, recall that ω is not some-
thing that we need to determine
using initial conditions because the
value of this constant is determined
completely by the constant C which
describes a specific property of our
system (e.g., the stiffness of a spring
to which the object is attached).

For concreteness, let’s say again that our object is at x = 0 m at
t = 0 s and moves with dx

dt (0) = 2 m
s . As soon as these initial

conditions are fixed, we can calculate A and B explicitly:

x(t) = A cos(ωt) + B sin(ωt) �

initial condition x(0) = 0

∴ x(0) = A cos(ω0) + B sin(ω0) !
= 0 �

cos(0) = 1 and sin(0) = 0

∴ x(0) = A !
= 0 ⇒ A = 0 . (2.39)

d
dt

x(t) =
d
dt

�
A cos(ωt) + B sin(ωt)

�

� d
dt

cos(ωt) = −ω sin(ωt) and
d
dt

sin(ωt) = ω cos(ωt)

∴ d
dt

x(t) = −Aω sin(ωt) + Bω cos(ωt)

�

initial condition
dx
dt

(0) = 2
m
s

∴ dx
dt

(0) = −Aω sin(ω0) + Bω cos(ω0) !
= 2

m
s �

cos(0) = 1 and sin(0) = 0

∴ dx
dt

(0) = Bω
!
= 2

m
s

⇒ B =
2 m

s
ω

(2.40)
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The trajectory of our object is therefore described by

x(t) = A cos(ωt) + B sin(ωt) �

A = 0, B =
2 m

s
ω

(Eq. 2.39, Eq. 2.40)

x(t) =
2 m

s
ω

sin(ωt) . (2.41)

In physical terms, this solution describes an oscillatory mo-
tion.4040 Eq. 2.24 is the equation of motion

of an object attached to a spring.
This solution therefore tells us that
the object bounces back and forth.

And once more, we can understand that we get a different tra-
jectory for each possible initial position and velocity of the
object.
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To summarize:

equation of motion describes ��

initial conditions

��

system abstractly

solution describes �� evolution of concrete preparation of system

The next thing we need to talk about is that it often makes
sense to not consider the trajectories of each object individually.
Instead, we can describe our system as a whole, no matter how
many objects it consists of, using a single trajectory. This is what
the next section is all about.

2.3 Mathematical Arenas

The simplest arena we can use to describe nature is, of course,
our physical space.41 We describe the location and the momen- 41 By physical space, I mean the

usual Euclidean three-dimensional
space R3 or R (if for some reason
our objects can only move in one
dimension).

tum of each object using an individual vector. These vectors all
live in the same arena which we call physical space.42

42 All of this will make a lot more
sense as soon as we talk about
alternative arenas.

For simplicity, let’s consider an object which moves in just one
dimension. Our mathematical arena is then simply a line (R):

Now, if we want to describe two objects which move in one
dimension, the first method that comes to our mind is to use
two vectors:
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In addition to two vectors that keep track of the locations, we
need two further vectors that keep track of the momenta.

This is what we do in the Newtonian formulation of classical
mechanics. Such a description in physical space is handy since
we can immediately understand everything that is going on in
the system. Each vector is simply an arrow that points from one
location to another. However, in practice, this approach is often
laborious — especially when we are dealing with lots of objects.

So how else can we describe our system consisting of, for exam-
ple, two objects that move along a line?

2.3.1 Configuration Space

What we need, mathematically, is a tool that allows us to keep
track of the locations and momenta of the two objects. In the
physical space description, we need four vectors to accomplish
this: two for the locations and two for the momenta.

Using the following idea, we can describe the whole system
with just two vectors.4343 We also need only two vectors if

there are three or more objects in
the system.

� First, we act as if there were a separate arena for each object:

� Then we glue these separate spaces together:
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So for the example discussed above, this means that instead of
just one line, we now use two. We say our first object moves
along one line and the second object along another line. At each
possible location of the first object, we need to take into account
the possibility that the second object could be anywhere. Hence
we need a complete copy of our line R that we use to keep track
of the location of the second object at each location of the line
R that we use to keep track of the location of the first object.
Gluing a copy of R to each point of R yields a rectangle.44. 44 The mathematical name for this

kind of construction is product
space We will talk about another
example of a product space in a
moment.

So why is this a clever idea?

Well, instead of using two functions ( f (x), g(x)), we can de-
scribe our whole system with just one vector�r = ( f (x), g(x)).
But this vector lives in a higher-dimensional space. So instead of
pointing to a point on a line, this new vector�r points to a point
on a rectangle.

In the physical space description, we need N vectors to keep
track of the locations of N objects. Using the idea of gluing the
spaces together, we always only need one vector which lives in
an RN-dimensional space. If the objects are allowed to move
freely in three dimensions, our vector�r lives in R3N since we are
gluing N times R3 together.

The resulting arena is known as configuration space. The basic
idea is that instead of keeping track of the N individual objects
in our system, we treat the system as a whole. We can imagine
the whole system as just one point that moves through this
higher-dimensional space called configuration space. Each point
in configuration space corresponds to one specific configuration
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the system can be in.

As time passes, the configuration of the system usually changes.
This means that the point which describes the configuration of
our system moves around. Therefore, the time evolution of a
system is described in configuration space by a single path.

Let’s have a look at two concrete examples.

The configuration space of a harmonic oscillator is simply a
line:4545 We discuss the harmonic oscilla-

tor in Section 8.

For a second harmonic oscillator, our configuration space is also
a line which we rotate by 90◦ for reasons that will become clear
in a moment:



fundamental concepts 53

If we now consider the system that consists of the two harmonic
oscillators, we need to attach the configuration space of the
second object to each point of the configuration space of the first
object. Again, what we end up with is a rectangle:

Our second example is a pendulum. The configuration space of
a pendulum is a circle since it can rotate around its suspension:

We can then construct the configuration space for a system that
consists of two pendulums by attaching to each point of the
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configuration space of the first pendulum the configuration
space of the second one. The result of this procedure is a torus:

To summarize: while individual objects move in the three-
dimensional physical space, the time evolution of a system
as a whole takes place in a higher-dimensional configuration
space. A single trajectory in configuration space describes the
evolution of a system as a whole.

2.3.2 Phase Space

An important observation is that configuration space only keeps
track of the locations of the various objects. But to describe the
state of a system completely, we need additionally to keep track
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of how the objects move. Mathematically, this means that we
need to keep track of their momenta. So in addition to a vector
�r that keeps track of the locations, we need a vector �p that keeps
track of the momenta.

This motivates the construction of the next mathematical arena
which works completely analogously to how we constructed
configuration space. However, this time we also act as if the
momenta live in a different space and then glue the momentum
spaces to our location spaces. As a result, we can describe the
complete state (not just the configuration) of our system with a
single vector.46 46 By the configuration of our sys-

tem, we mean a complete descrip-
tion of all locations. In contrast, the
state of a system corresponds to a
complete description of all locations
and all momenta.

The resulting mathematical arena is known as phase space.
Each point in phase space corresponds uniquely to one specific
location and momentum of each object. So everything that is go-
ing on in the system is described by just one vector (or equally
the point the vector points to) that moves through phase space.

Now, the price we have to pay for this is that the vector we use
to describe the system lives in a 2 × 3N-dimensional space for N
objects that move in three dimensions.

Phase space is notoriously difficult to visualize since even for
just two objects moving in one dimension, phase space is al-
ready four-dimensional. However, for just one object in one
dimension, it is possible.

Here’s a concrete example: the phase space path of a swinging
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pendulum.

If we consider different paths of the pendulum in phase space
(corresponding to different initial conditions), we end up with
the following phase space portrait:

Now, before we move on and discuss how we can describe
systems using the various mathematical arenas discussed in this
section, let’s summarize what we have learned so far.
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� One possibility to describe nature is to keep track of every-
thing using various vectors living in physical space.

� A bit more convenient is a description in configuration space.
In configuration space, a single point is enough to keep track
of the locations of all of the objects in our system.

� Even better is a description in phase space. Each phase space
point corresponds to one specific state of the system (includ-
ing all locations and all momenta).

Take note that these are really just different mathematical tools
that allow us to describe a given system in different ways. It is
up to you which one you like best.

However, the crucial point is the following:

We can describe any given system

using any of these mathematical arenas.

This is why there are different formulations of classical mechan-
ics.

Specifically, we have the following well-known formulations:47 47 There is one additional important
arena known as Hilbert space,
and we can describe classical
mechanics in Hilbert space too.
The resulting formulation is known
as the Koopman-von Neumann
formulation and we will talk about
it in Section 11.3.

� Classical mechanics in physical space is what we call the
Newtonian formulation.

� Classical mechanics in configuration space is what we call the
Lagrangian formulation.

� Classical mechanics in phase space is what we call the
Hamiltonian formulation.

Next, let’s talk about these formulations.





3

Newtonian Mechanics

I’m pretty sure you’re not reading this book to learn about Newtonian
mechanics. The Newtonian formulation of classical mechanics is an
extremely flexible and useful framework which allows us to describe
almost anything. But at the same time, for anyone interested in funda-
mental questions, it’s extremely unsatisfying. Newtonian mechanics
is simply a collection of formulas ("laws") which allow us to describe
things. But it offers no explanation for why these formulas are the
right ones. In contrast, in the Lagrangian and Hamiltonian formalism,
there are deeper principles from which not only the laws of mechanics,
but really all modern theories of physics, can be derived. And to quote
Steven Weinberg:1 "After all, this is our aim in physics, not just to 1 Steven Weinberg. What is quan-

tum field theory, and what did we
think it is? In Conceptual Foundations
of Quantum Field Theory. Proceed-
ings, Symposium and Workshop,
Boston, USA, March 1-3, 1996, pages
241–251, 1996

describe nature, but to explain nature." This is why physicists love the
Lagrangian and Hamiltonian formalisms. Thus, I’ve tried to keep the
following discussion to a minimum so that we can move on as quickly
as possible to the good stuff.

The most important concept in the Newtonian formulation of
mechanics is that of a force. A force is something which changes
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the momentum of an object. Mathematically, this means that

d�p
dt

= �F . (3.1)

This is Newton’s second law.2 Formulated differently:2 We’ll talk about Newton’s other
laws in a moment.

The rate at which the momentum of an object

changes is exactly equal to the force acting on it.

Newton’s little formula (Eq. 3.1) allows us to predict how any
object will move starting from some specific position and veloc-
ity (initial conditions).

The definition of a force given here is an extremely general one.
In Chapter 2, we’ve already discussed two simple examples.33 Take note that these examples

are especially simple because our
object moves effectively only in one
dimension, and therefore, we don’t
need vectors to describe the forces.

� The force a spring exerts on an object attached to it can be
described by F(x) = −kx, where k is known as the spring
constant and characterizes the spring in question.

� The (gravitational) force Earth exerts on an object we throw
into the air can be described by F(x) = −mg, where m is the
object’s mass and g ≈ 9.81 m

s2 a constant

Historically, these formulas (and really most of the formulas we
use in classical mechanics to describe forces) were discovered
experimentally. We simply use them because we’ve discovered
that by putting them into Newton’s second law, we get the
correct equations of motion.

In general, we need to find all forces �F1,�F2, . . . that act on the
object in question. The total force �F is then given by

�F(�q) =
n

∑
i=1

�Fi(�q) = �F1(�q) + �F2(�q) + . . . (3.2)

For example, an object attached to a spring will realistically not
only feel the force exerted by the spring but additionally will
feel a gravitational force.
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This is what we use on the right-hand side of Newton’s second
law (Eq. 3.1). On the left-hand side, we use the definition of the
momentum �p = m�̇q:

d
dt
�p = �F �

Eq. 3.2 and �p = m�̇q
d
dt

�
m�̇q

�
= �F1(�q) + �F2(�q) + . . . . (3.3)

This is the equation of motion for the object, and its solutions
tell us explicitly how the object moves around.

While this procedure may sound simple, for most systems it
isn’t. There are two major difficulties. It’s often cumbersome to
write down all the forces acting on a given object in a consistent
way. In particular, we need to take the various directions of the
different forces into account. And secondly, solving the equation
of motion is, for most realistic systems, an extremely difficult
math problem.

We will see this explicitly in Part II when we discuss various
systems in detail. But already here we take note that these dif-
ficulties are one of the main reasons people use alternative
formulations of classical mechanics.4 4 There are additional reasons to

consider these alternative formu-
lations of classical mechanics. The
Lagrangian formulation not only
allows us to describe many systems
in much simpler terms, but is at the
same time conceptually beautiful
and helps us to understand classical
mechanics on a deeper level.

Take note that if the mass of the object in question is constant,
Newton’s second law becomes

d
dt
�p = �F �

�p = m�̇q
d
dt

�
m�̇q

�
= �F �

product rule� d
dt

m
�
�̇q + m

d
dt

�
�̇q
�
= �F

�

m = const. ⇒ d
dt

m = 0 and �̈q ≡ d
dt

�
�̇q
�

m�̈q = �F . (3.4)

In words, this means that whenever there is a non-zero acceler-
ation of an object �̈q �= 0, this change in the velocity �̈q ≡ d

dt

�
�̇q
�

is directly proportional to the total force �F acting on it. The pro-
portionality constant is what we call the mass of the object. This
is why it’s more difficult to push an object with large mass.
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Now you probably wonder, since Eq. 3.1 is Newton’s second law,
what are the remaining laws?

Newton’s first law states that, at least for one specific observer,
an object which moves with constant velocity will always con-
tinue to move with this constant velocity unless a force acts on
it. In particular, this implies that a particle at rest will stay at
rest unless a force acts upon it.

objects at rest (v = 0 m/s)

no net force, a = 0 m/s2

��

objects in motion (v �= 0 m/s)

no net force, a = 0 m/s2

��
stay at rest stay in motion

So in other words, no object likes to have its state of motion
changed.

In this sense, Newton’s first law is often called the law of iner-
tia.

Although this law may seem really simple, it needs some ex-
plaining.

Newton’s second law tells us that forces can change the mo-
mentum of objects. But Newton’s first law tells us that forces
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are the only thing which change the momentum of objects. In
other words, there is nothing else which causes a change in
momentum.5 5 One may argue that the force

framework is so general that we can
always define a force to account for
any change in momentum that we
observe.

Secondly, take note that if you observe an object while you are
accelerating yourself, the object will appear to be accelerating as
a result.

Therefore, objects will continue to move with uniform velocity
unless acted upon by a force only for very specific observers.
We call them inertial observers. In other words, an inertial
observer is someone for whom an object with zero net force
acting upon it is not accelerating. Newton’s first law therefore
says that for each object, at least one such observer exists. Only
for inertial observers is Newton’s second law (Eq. 3.1) true.

That’s why Newton’s first law, technically, needs to be estab-
lished before we can use Newton’s second law. In particular,
Newton’s first law establishes that for an inertial observer �F = 0
really implies �̇p = 0.6

6 All this may seem really pedantic
or even trivial at the moment. But
thoughts like these about how
different observers perceive the
same situation are at the heart
of many of the most important
insights in modern physics, e.g.,
special relativity. So for the moment
you shouldn’t worry about issues
like this too much. But keep them
in the back of your head as they
will become a lot more important
further down the road.

However, take note that we can describe how objects behave
from the perspective of accelerating observers by introducing
so-called fictitious forces.7

7 We call them fictitious because
they’re a consequence of the ref-
erence frame and not of any inter-
action. However, for an observer
within such a non-inertial system,
they are as real as any other force.
In fact, there is no possible way to
determine the difference without
looking outside of the system. The
most famous fictitious force is prob-
ably the Coriolis force which can
be used to explain many important
meteorological effects. We need a
fictitious force here because Earth is
spinning and therefore any observer
on Earth lives in an accelerating
non-inertial frame. Moreover, in
Einstein’s theory of general rela-
tivity, gravity is, in some sense, a
fictitious force. We will discuss this
in more detail in Section 12.3.6.In addition to the first and second law, there’s Newton’s third

law. In Newton’s own words: "To any action there is always an
opposite and equal reaction; in other words, the actions of two bodies
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upon each other are always equal and always opposite in direction."
Formulated differently, action = − reaction.

In more concrete terms, this third law tells us that whenever
an object exerts a force �F on another object, this second object
always exerts the force −�F on the first.

This phenomenon is sometimes hard to believe. For example,
when we jump into the air there is a gravitational force �F that
pulls us back toward the ground. However, at the same time, we
pull the Earth a little bit upward through a gravitational force
of equal magnitude −�F. Since the Earth’s mass is so huge, the
effects of this force are basically unnoticeable and the resulting
change in the Earth’s velocity is tiny.

In practice, the equality of the forces two objects exert on each
other are directly encoded in the formulas which describe the
force in general. For example, the gravitational force an object
with mass M located at �q1 exerts on an object with mass m
located at �q2 is described by8

8 This formula may look frightening.
Simply put, it says that the gravi-
tational force between two objects
is directly proportional to their
masses and is inversely propor-
tional to their distance r ≡ |�q1 −�q2|
squared. (The farther they are away
from each other, the smaller is the
resulting force). Thus, the abso-
lute magnitude of the force can be
written as

F = G
mM
r2 .

The remaining stuff in the formula

�q1 −�q2

|�q1 −�q2|
yields a vector of length one which
points from the location of the
second object to the location of the
first object.

�FM→m = G
mM

|�q1 −�q2|3
(�q1 −�q2) , (3.5)

where G is a constant known as the gravitational constant.
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If we want to calculate the force that the second object exerts
on the first, we only need to switch their roles in the formula
�q1 ↔ �q2, and m ↔ M:9 9 Take note that switching m ↔ M

makes no difference, but �q1 ↔
�q2 changes the direction of the
resulting vector.�Fm→M = G

Mm
|�q2 −�q1|3

(�q2 − �q1) (3.6)

This is a force of equal magnitude which points in the opposite
direction.

That’s all we need to know for now about Newtonian mechanics
and we are ready to discuss alternative formulations of classical
mechanics.





4

Lagrangian Mechanics

The main idea of the Lagrangian formalism is that:

Nature is lazy.

This little fact allows us to derive the correct equations of mo-
tion for any system.1 We will discuss how we can do this in 1 The idea is so general that we can

even use it to derive the correct
equations of motion in quantum
field theory.

a moment. But first, let’s talk about a simple example which
nicely demonstrates the laziness of nature.

Let’s say we ask ourselves: how does light travel between two
points A and B?

Well, in a vacuum, light travels in a straight line:
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This is certainly an economical choice. But the laziness of nature
becomes even more obvious when A is in a vacuum and B in
some medium, say, water.

In such a situation, light no longer travels in a simple straight
line. Instead, its path looks roughly as follows:

To understand this, imagine that you’re a rescue swimmer who
sees someone drowning in the water. Which path would you
choose to get to the swimmer as fast as possible? An important
factor which you need to take into account is that you’re much
slower in water. So a straight path is certainly not the fastest
route. But minimizing the swimming distance isn’t the optimal
choice either because the total distance is quite long for this
path. Instead, the optimal path is a trade-off between these two
extremes.
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This is exactly the path light travels between two points. Light
always travels the path between two points which requires the
least travel time. For this exact reason, we say that nature is
lazy.2 2 This observation is known as Fer-

mat’s principle, named after Pierre
de Fermat who first concluded that:
"Nature operates by means and ways
that are easiest and fastest."

However, massive objects, in general, do not travel the path
between two points which requires the least travel time.3 Never-

3 However, this is only true for
slowly moving objects. Objects
which move extremely fast are
described by special relativity, and
we can understand that massive
objects follow the path which
requires the least travel time too.
But this fact gets hidden when
we consider the approximation of
slowly moving objects. We will
talk about this in more detail in
Chapter 6.

theless, we can understand their behavior by using the idea that
nature is lazy. This requires a different definition of what we
mean by lazy. To that end, we introduce a new quantity called
the action which describes how much diligence is necessary for
each possible path between two points. This is what we will talk
about next.

First of all, we can reformulate the main idea of the Lagrangian
formulation in more technical terms by saying that:4 4 Take note that sometimes the

correct path is not the path with
minimal action, but the path with
maximal action or path for which
the action is a saddle point. So in
general, the correct path is always
the path with extremal action (or
stationary action). Please keep
this in mind, but in the following
we will always talk about minima
of the action because it helps to
reinforce the idea that nature is lazy.

Any system evolves in such a way that

the action required is minimal.

The key observation which allows us to understand this is that
there are always infinitely many possibilities how a given sys-
tem can evolve from one initial state A to a specific final state
B. For example, there are infinitely many possible paths a given
object could take between two specific locations:
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And similarly, there are infinitely many paths that two or
more objects could take between a fixed set of initial positions
(A1, A2, . . .) and final positions (B1, B2, . . .):

Since talking about lots of paths for several particles quickly
becomes cumbersome, we will switch perspectives and talk
about paths in configuration space.5 A point in configuration5 We talked about configuration

space in Section 2.3. space corresponds to a specific configuration of the system.
Therefore, a path in configuration space between two fixed
points X and Y corresponds to one specific possibility for how
our system evolves between two fixed configurations.

Using configuration space, we can therefore always talk about
individual specific paths which describe how our system
evolves as a whole.

Now, which path (in configuration space) is the right one?
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The correct answer is that it’s always the path with minimal ac-
tion. This means that each of the infinitely many paths involve a
specific amount of action. For example, we can imagine that one

specific path q1(t) involves 8.73 kg·m2

s of action, while a second

path q2(t) involves 9.21 kg·m2

s of action. We usually denote the
action by S and thus write these statements in mathematical
terms as:

S[q1(t)] = 8.73
kg · m2

s

S[q2(t)] = 9.21
kg · m2

s
. (4.1)

Therefore, we can visualize the situation here as follows:

Nature prefers to minimize the action and hence, the path with
minimal action (here q3(t)) is "chosen."6 6 In this chapter, we will simply

use this as an almost magical
fundamental principle. But in
Chapter 6, we will talk about
exactly why the path with minimal
action is the right one.

Before we can use this idea, we need to answer two crucial
questions:

� How can we calculate the action?

� How can we find the path of least action?
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As soon as we’ve answered these questions, we are ready to
tackle any classical mechanics system. In particular, using the
formula for the action of a given system, we can calculate the
path involving a minimum amount of action between a fixed
initial and final configuration.7 This path with minimal action7 Maybe you are wondering why

we talk about fixed initial and
final configurations. Especially
if we need to specify the final
configuration, how does all this
help us to predict how a system
will evolve? Isn’t our goal to find
the correct final configuration?

The logic here is that the least
action principle allows us to un-
derstand how the system evolves
between any fixed but arbitrary
initial and final configuration. In
this sense, the principle allows us
to learn everything there is to learn
about how the system evolves in
general. And we can then use this
knowledge to predict which final
configuration is the right one for a
given initial configuration (at least
if we additionally specify the initial
velocities of the various objects). In
particular, we will see below that
we can use the least action principle
to derive the equation of motion for
the system in question. By solving
these equations, we can predict
which final configuration is the
right one for each possible initial
condition.

describes how the system will evolve.

The short answer to the first question is that the action required
for a specific path q(t) between an initial configuration qi(ti)

and a final configuration, q f (t f ), is the integral over the La-
grangian L = T − V, where T denotes the kinetic energy and V
the potential energy:8

8 We will rewrite this more precisely
below. Take note that only in
classical mechanics does the action
look like this. In quantum field
theory, we can also describe systems
by minimizing an action, but this
requires a different definition of the
action. We will discuss this in detail
in Part III.

action[q(t)] = S[q(t)] =
� t f

ti

dtL =
� t f

ti

dt(T − V) . (4.2)

To answer the second question, we need a new mathematical
toolbox known as variational calculus. We will talk about varia-
tional calculus in a moment, but first, let’s talk about the action
and Lagrangian in a bit more detail.
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4.1 Action and the Lagrangian

First of all, why do we call the quantity

� t f

ti

dtL =
� t f

ti

dt(T − V) (4.3)

the action?9 9 In this section, we want to un-
derstand the general idea behind
the definition of the action and
Lagrangian. We will talk about
concrete examples in Part II.

There are two puzzle pieces that we need to understand here.
First, we need to understand why we use an integral and sec-
ondly, why we integrate over the difference between the kinetic
and potential energy. Let’s talk about these puzzle pieces one
after another.

To understand the first one, recall that an integral is something
like a sum. We can imagine that the total time interval T =

t f − ti consists of N discrete time steps Δt.

The action then reads

N

∑
k

LΔt =
N

∑
k
(T − V)Δt . (4.4)

In the limit N → ∞ our discrete steps become smaller and
smaller (Δt → dt) and ultimately, we find the integral as given
in Eq. 4.3. The integral formula is the right one because, as far
as we know, time is continuous and time steps are infinitesi-
mally small. But the discrete perspective is helpful because it
allows us to discuss the definition of the action literally step by
step.

We start at t = ti with one fixed initial configuration of the
system qi(ti).
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Then, during each time step there are infinitely many possibili-
ties for how our system can evolve. Each possibility corresponds
to a step in a specific direction in configuration space.1010 Only a few steps are shown in

the picture, because, of course, we
can’t draw all of the infinitely many
steps which are possible. Moreover,
take note that if there is only one
object in the system, each step
corresponds to a real step in space.
Only for many particles do we talk
about the more abstract steps in
configuration space.

The main idea of the Lagrangian formalism is that each possible
step involves a specific amount of action. We can calculate the
action involved in each step by using the Lagrangian L = T − V.
The step which accurately describes how our system evolves
during the interval from ti to ti + Δt is the step which involves
a minimum amount of action. Analogously, for the second step
there are infinitely many possible steps, and again each of them
involves a specific amount of action. Once more our system
moves in the configuration space direction which involves a
minimum amount of action. This game goes on until, after N
steps, we reach the final configuration q f .
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Therefore, the sum in Eq. 4.4 means that we calculate here the
total amount of action involved in a specific path between qi

and q f .11 Since an integral is just a finely grained sum, we can 11 Reminder: Eq. 4.4 reads

N

∑
k

LΔt =
N

∑
k
(T − V)Δt

conclude that in Eq. 4.3, we calculate the total amount of action
necessary to move between two given configurations.12

12 Reminder: Eq. 4.3 reads
� t f

ti

dtL =
� t f

ti

dt(T − V) .

Moreover, the path which correctly
describes how our system evolves is
the one which costs the minimum
amount of total action.

Now, let’s return to the question of why we integrate over L =

T − V. What does the difference between kinetic and potential
energy have to do with laziness?

To understand this, we need the fact that the total energy
E = T + V is always conserved.13 But the two possible forms

13 One of the most beautiful aspects
of classical mechanics is that we can
actually derive this. We will discuss
how the conservation of energy
follows from Noether’s theorem in
Chapter 10.

of energy T (kinetic) and V (potential) can change because only
their sum has to remain unchanged. This means that as the sys-
tem evolves from qi to q f , the total amount of energy can slosh
back and forth between potential energy and kinetic energy.

Moreover, before we can understand the meaning of the La-
grangian, we need to recall that:14 14 This was already mentioned in

Section 2.1.

� Kinetic energy is a measure for how much is going on in our
system.

– If all objects move around quickly, the kinetic energy is
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high.

– In contrast, if all objects sit still, the kinetic energy is zero.

� Potential energy is a measure for how much could happen,
but isn’t.

– If all objects are placed on the top of a mountain they have
a large (gravitational) potential energy and they could start
moving quickly by falling down. But currently they don’t.
In this sense, their large potential energy is unrealized
potential, which is why we use the word potential energy.

– In contrast, if all objects are placed on the floor, they have
zero potential energy since they can’t fall any farther
down.

The Lagrangian L = T − V depends crucially on the interplay
between kinetic and potential energy and looks almost exactly
like the total energy E = T + V. The only difference is the
minus sign between kinetic and potential energy. This minus
sign is really important because it means that the Lagrangian is
not necessarily constant while E always remains unchanged.

The Lagrangian takes on large values whenever most of the
energy is in kinetic form. And whenever most of the energy is
in potential form, the Lagrangian is small because of the minus
sign.

The Lagrangian is therefore a direct measure for the "liveli-
ness" within a system at a specific moment in time. A high
kinetic energy implies a large Lagrangian and that our system
is extremely lively. A high potential energy implies a small La-
grangian and a less lively system.

The action is defined as the integral over the Lagrangian (Eq. 4.3)
and is therefore a measure for the total "liveliness" within the
system between two given configurations (qi , q f ).

The statement that nature chooses the path which requires a
minimum amount of action therefore tells us that nature prefers
to minimize the "liveliness" within a system. In this sense, na-
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ture is really always as lazy as possible.

Let’s discuss a concrete example.

How does a ball move when we throw it in the Earth’s gravita-
tional field?

Near the bottom, the potential energy V is small and therefore
the Lagrangian large (if we assume a fixed, given total energy).
This means that the ball wants to move away from such an
unwanted configuration quickly. But it doesn’t want to move
too quickly because quick movements imply a large kinetic
energy and therefore a large value of the Lagrangian.

The ball prefers the configurations near the top of the trajectory
because its potential energy is greatest there. But the ball will
not spend too much time near the top because this would mean
that it has to move extremely quickly downward, and this im-
plies a large Lagrangian during this period. Moreover, take note
that the ball cannot stay at the top indefinitely since we consider
paths between a fixed initial position at a fixed initial time and a
fixed final position at a fixed final time.
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Therefore, the correct path will be a parabola, and it will move
quickly near the bottom and really slowly near the top. The
parabola is a perfect compromise, analogous to what we dis-
cussed in the rescue swimmer example.1515 As a reminder: a ball does not

make any conscious choices. We
are saying that the ball wants
something because it helps us to
understand the minimum action
principle. We will discuss in Chap-
ter 6 how objects "choose" the paths
they are following.

One key observation before we move on is that the action
S[q(t)] is not a function but a functional. A function eats a
number x and spits out a number f (x):

In contrast, a functional eats a function f (x) and spits out a
number F[ f (x)]:
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Specifically, the action functional S[q(t)] yields a number for
each path q(t). We call this number the action of the path.

The Lagrangian is what we see if we peek inside the action
functional:16 16 To unclutter the notation, we

neglect the units of all quantities.
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At each moment in time (e.g., t = 7) we can use the explicit
formula for the specific path q(t) to calculate where exactly in
configuration space we are.17 We then plug these numbers into17 If configuration space is one-

dimensional, a location in configu-
ration space is described by a single
number. Otherwise we get multiple
numbers qA(t).

the Lagrangian function L(q(t), q̇(t), t) and this yields a single
number, say, L(q(7), q̇(7), 7) = 5. The action functional S records
these numbers (the values of the Lagrangian function) for each
moment in time between ti and t f . The final number that the
action functional spits out is a single number, which is the sum
over all the individual values of the Lagrangian function.

A second key observation is that the Lagrangian is a function
of the location q and the velocity dq

dt :18 L = L(q, q̇). In partic-

18 If we are dealing with multiple
objects moving in three dimensions,
the Lagrangian is a function of the
various locations and velocities
L = L(qA, q̇A), where A is an index
which runs from 1 to 3N for N
objects. For example q1 can denote
the x coordinate of the first object,
q4 can denote the x coordinate
of the second object and q2 can
denote the y coordinate of the first
object, etc. But in the following,
to unclutter the notation, we will
simply write q(t) for the path in
configuration space.

ular, this means that the Lagrangian does not depend on the

acceleration d2q
dt2 or even higher derivatives.

To understand this, we need to recall that the usual formula for
the kinetic energy of an object is

T =
1
2

m
�

dq
dt

�2
, (4.5)
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where dq
dt is the velocity of the object and m its mass. To simplify

the notation, we again write derivatives with respect to time
using a dot above the variable:

q̇ ≡ dq
dt

. (4.6)

The formula for the kinetic energy then reads

T =
1
2

mq̇2 . (4.7)

Moreover, the potential energy V usually only depends on the
position of the object V = V(q). For example, the potential
energy in the Earth’s gravitational field is

V = mgq , (4.8)

where q denotes the height above the ground.

If we combine these two observations, we end up with the con-
clusion that the Lagrangian L = T(q̇)− V(q) is a function which
only depends on the location q and the velocity q̇:

L = L(q, q̇) . (4.9)

In addition, take note that the potential sometimes varies in
time V = V(q, t). The Lagrangian then additionally depends on
t:

L = L(q, q̇, t) . (4.10)

Now, how can we find the path which involves a minimal
amount of action?

4.2 Variational Calculus

For an ordinary function f (x), we can find the minimum by
calculating the zeroes of its derivative:

d f (x)
dx

!
= 0 . (4.11)
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For example, for f (x) = 3x2 + x, we calculate d f (x)
dx = 6x + 1 and

then find

6x + 1 !
= 0 (condition in Eq. 4.11)

∴ x =
−1
6

. (4.12)

And indeed, a minimum of our function f (x) is located at x =
−1
6 .

This method works because the derivative tells us something
about the slope of f (x) and the slope at a minimum is necessar-
ily zero.1919 Take note that the slope is zero at

a maximum or inflection point too.
If you’re unsure why the derivative
tells us something about the slope,
have a look at Appendix A.

Now the bad news is that this simple method does not work
for functionals like the action S[q(t)]. Instead, we need a new
method to calculate the minimum of a functional.

To understand this alternative method, we need to take a step
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back and answer the question: what exactly characterizes a
minimum?

Let’s imagine that we have a function which describes the
height of some terrain and want to find out where exactly the
terrain height is a minimum.

The key observation is that if we stand at the minimum and
look around, we will notice that it’s going upward in all direc-
tions. This is necessarily the case because otherwise the point
we are standing at wouldn’t be a minimum.

This means that a minimum is characterized by its neighbor-
hood. If all neighboring points lie higher, the point in question
is a minimum.20

20 Take note that this criterion only
tells us that we are dealing with
a local minimum. There can be
much deeper minima in some other
region.

Let’s use this idea to once more find the minimum of the func-
tion f (x) = 3x2 + x that we already considered above.21

21 We do this to demonstrate how
the method works. In the following
section, we will use it to derive the
minimum of the action functional.

We now pick one specific location x = a and start investigating
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its neighborhood a → a + �, where � is an infinitesimally small
(positive or negative) number. In general, we call � a variation.

Putting this into the function yields

f (a + �) = 3(a + �)2 + (a + �)

= 3(a2 + 2a� + �2) + a + �. (4.13)

If the location a is a minimum, we can’t get lower by going in
any direction �. Mathematically, this implies:2222 First order terms are all terms

containing � but not �2, �3, etc.

All terms first order in � must vanish.

Otherwise, for a negative � the function value f (a + �) would
be smaller than f (a) and therefore, a wouldn’t be a minimum.
To understand this, take note that if � is an infinitesimally small
number, we have |�2| � |�|. This is true for any small number,
e.g., 0.12 = 0.01 � 0.1. Therefore, the negative shift due to a
negative � cannot be compensated by quadratic or even higher
order terms in �.2323 Don’t worry if you’re not com-

pletely satisfied with this expla-
nation because in Section 12.2, we
will discuss the real reason why
we demand that first order terms
vanish.

If we collect all terms linear in � and demand that they vanish,

3 · 2a� + �
!
= 0 �

cancel �

∴ 6a + 1 !
= 0,
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we find
a =

−1
6

. (4.14)

This specific location has exactly the property we are looking
for (in its neighborhood all first order variations vanish, and
therefore, it goes upward in all directions) and we can conclude
that we’ve found a minimum.

Of course, the result here is exactly equal to what we calculated
using the standard method (Eq. 4.12). Thus, for ordinary func-
tions what we’ve discovered is just another way of reaching the
same conclusion. However, the variational method of finding
minima can also be applied to functionals like the action S[q(t)],
not just functions. Take note that for functionals, our goal isn’t
to find a location like a which is the minimum of a function but
instead, to find a function q(t) which is the minimum of a func-
tional. And this is what we will talk about in the next section.

But first, let’s summarize the main lessons learned in this sec-
tion.

� Minima are characterized by their neighborhood. If we are
dealing with a minimum, it has to go upward everywhere in
its neighborhood.

� Mathematically, this means that we can find minima by mak-
ing a specific choice x = a and then varying it a → a + �. If a
is a minimum, all first order variations � must vanish.

� Through this condition, we can find locations a which are
minima.
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4.3 The Euler-Lagrange Equation

We learned above that the main idea of the Lagrangian for-
malism is that the path of least action in configuration space
correctly describes how a given system evolves. Moreover, we
have learned that the action functional24 (Eq. 4.3)24 As discussed at the end of Sec-

tion 4.1, the Lagrangian is in gen-
eral a function of the path q(t)
and its velocity q̇ but not of higher
derivatives like q̈, i.e., does not
depend on the acceleration.

S[q(t)] ≡
� t f

ti

dtL
�

q(t), q̇(t)
�

(4.15)

is a mathematical object which assigns a number to each possi-
ble path q(t) between two fixed configurations (qi(ti), q f (t f )).2525 As before, we write q(t) instead of

qA(t), etc., to unclutter the notation.
In other words, we use q(t) and
q̇(t) as a convenient notation for a
path and the velocity in the possibly
high-dimensional configuration
space.

Therefore, our task is to find a method which allows us to cal-
culate the path qm(t) for which the action functional is a mini-
mum. This path qm(t) correctly describes the evolution of our
system. Luckily, we can derive a method which allows us to
find qm(t) for any system by repeating everything we did in the
previous section.

We start again with a concrete choice q(t) and consider small
variations around this specific path

q(t) → q(t) + �(t) , (4.16)

where � is again an infinitesimally small variation.

Moreover, since the Lagrangian not only depends on q(t) but
also on the velocity q̇(t), we need to consider velocity variations,
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too:

q̇(t) → q̇(t) + �̇(t) . (4.17)

We consider variations between two fixed configurations (qi(ti),
q f (t f )). Therefore, the variation � has to vanish at ti and t f :

0 = �(ti) = �(t f ) . (4.18)

Analogously to what we did in the previous section, we use
these variations explicitly

S =
� t f

ti

dtL
�

q(t) + �(t), q̇(t) + �̇(t)
�

. (4.19)

The key idea is again that our specific path q(t) is indeed a min-
imum of the action if all terms that are first order in � vanish.
This yields a condition which allows us to identify the correct
path q(t) which is a minimum of the action, analogously to
how in the previous section we were able to find the location at
which a given function has a minimum.

We could do this for each possible Lagrangian L individually.
But since this is quite cumbersome, it makes sense to try to
move forward with a general Lagrangian. We can do this by
using the Taylor expansion26

26 The Taylor expansion is explained
in Appendix F. In words, it tells
us that the value of a function
at a neighboring point is given
approximately by the value of
the function at the original point
plus the rate of change times
the distance we are going. For a
function which only depends on
one variable f = f (x), this means
that its value at the point x + � is
approximately

f (x + �) ≈ f (x) + �
∂ f
∂x

.

If we are dealing with a function
which depends on multiple vari-
ables g = g(x, y), we need to take
the rate of change in all directions
into account as we move from our
original point to the new point

g(x + �, y + �̃) ≈ g(x, y) + �
∂g
∂x

+ �̃
∂g
∂y

.

Moreover, take note that to unclut-
ter the notation, we do not write the
arguments of q = q(t), � = �(t), etc.,
explicitly.

L(q + �, q̇ + �̇) = L(q, q̇) + �
∂L
∂q

+ �̇
∂L
∂q̇

+ . . . , (4.20)

where the dots indicate higher order terms in the expansion.
Putting this Taylor expansion of the Lagrangian into the action
(Eq. 4.19) yields

S =
� t f

ti

dtL
�

q(t) + �(t), q̇(t) + �̇(t)
�

�

Taylor expansion

=
� t f

ti

dt
�

L(q, q̇) + �
∂L
∂q

+ �̇
∂L
∂q̇

+ . . .
�

.

All additional terms in the Taylor expansion are proportional to
�2, �̇2 or even higher powers. Therefore, we already have every-
thing we need to use our idea that minima are characterized by
vanishing first order variations.



88 no-nonsense classical mechanics

So again, we collect all terms first order in the variations and
demand that they vanish:

� t f

ti

dt
�

�
∂L
∂q

+ �̇
∂L
∂q̇

�
!
= 0. (4.21)

The path q(t) for which this is true is a minimum of the action.

The key idea is that we can rewrite this condition by using a
few mathematical tricks and derive a specific condition for the
function q(t) this way.27 This condition is the equation of mo-27 In particular, we can get rid of the

nasty integral. tion which allows us to predict how systems evolve in general.

So, first of all, we integrate by parts the second term on the
right-hand side2828 We will see why this is a clever

idea in a moment. Integration by
parts is a direct consequence of
the product rule and derived in
Appendix A.2.

� t f

ti

dt �̇
∂L
∂q̇

=
� t f

ti

dt
�

d
dt

�

�
∂L
∂q̇

= �
∂L
∂q̇

����
t f

ti

−
� t f

ti

dt �
d
dt

�
∂L
∂q̇

�
. (4.22)

Since the variation �(t) vanishes for t = ti and t = t f (Eq. 4.18),
the first term on the right-hand side in Eq. 4.22 vanishes:

�
∂L
∂q̇

����
t f

ti

= 0 . (4.23)

Therefore, we can write Eq. 4.21 as
� t f

ti

dt
�

�
∂L
∂q

+ �̇
∂L
∂q̇

�
!
= 0

�

Eq. 4.22 and Eq. 4.23

∴
� t f

ti

dt
�

�
∂L
∂q

− �
d
dt

�
∂L
∂q̇

��
!
= 0

�

factoring out �

∴
� t f

ti

dt �

�
∂L
∂q

− d
dt

�
∂L
∂q̇

��
!
= 0 . (4.24)

Now we’re almost finished. We only need to recall that if q(t)
is indeed the path of least action that we are looking for, the
condition must be correct for any possible variation � = �(t).
But this can only be correct if, in the last line of Eq. 4.24, the
expression between the two big square brackets vanishes:

∂L
∂q

− d
dt

�
∂L
∂q̇

�
!
= 0 (4.25)
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This equation is the famous Euler-Lagrange equation. We can
use it for any given Lagrangian L to derive the corresponding
equation of motion.29 Solutions of this equation of motion cor- 29 We will discuss below how this

works concretely.rectly describe how a system evolves.

Before we discuss a few concrete examples, take note that, in
general, our function q(t) describes a path in a high-dimensional
configuration space. This means that we get a condition like this
for each coordinate qA(t):30 30 Recall that q(t) is only our short-

hand notation. In general, a path
in configuration space needs to be
described by multiple coordinates.
For example, for N freely-moving
objects, we need 3N coordinates,
i.e., the index A runs from 1 to 3N.

∂L(qA, q̇A)

∂qA
− d

dt

�
∂L(qA, q̇A)

∂q̇A

�
!
= 0 (4.26)

Let’s try to understand the meaning of the Euler-Lagrange
equation by using a simple example.31 31 Further examples will be dis-

cussed in detail in Part II.
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4.3.1 Meaning of the Euler-Lagrange Equation

The easiest example is, of course, a system which consists of
just one object with no external potential V = 0. For such a free
object, the Lagrangian reads

L = T − V = T =
1
2

mq̇2. (4.27)

The Euler-Lagrange equation (Eq. 4.25) then tells us

∂L
∂q

− d
dt

�
∂L
∂q̇

�
= 0

�

L =
1
2

mq̇2

∴ ∂( 1
2 mq̇2)

∂q
− d

dt

�
∂( 1

2 mq̇2)

∂q̇

�
= 0

� ∂( 1
2 mq̇2)

∂q
= 0

∴ − d
dt

�
∂( 1

2 mq̇2)

∂q̇

�
= 0

� �
∂( 1

2 mq̇2)

∂q̇

�
= mq̇

∴ − d
dt

(mq̇) = 0

� d
dt

q̇ = q̈ and assuming m = const.

∴ mq̈ = 0 .

This is exactly the equation of motion for a free object that we
also get by using Newton’s second law

d
dt

p = F �

F = 0 for a free object

∴ d
dt

p = 0 �

p = mq̇ is the momentum for a single object

∴ d
dt

(mq̇) = 0

� d
dt

q̇ = q̈ and assuming m = const.

∴ mq̈ = 0 .
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This little calculation is not only an important consistency
check. It also allows us to understand the Euler-Lagrange equa-
tion a little better. In particular, we’ve seen that the first term
∂L
∂q yields zero if there is no potential because the kinetic energy
only depends on q̇ and not on q. Therefore, this term describes
the forces F in the system because it is only non-zero if there are
forces. In particular, for a general potential V = V(q), this first
term yields

∂L
∂q

=
∂
�

T(q̇)− V(q)
�

∂q
= −∂V(q)

∂q
≡ F . (4.28)

Moreover, we’ve seen that the second term d
dt

�
∂L
∂q̇

�
yields the

time derivative of the momentum d
dt p ≡ d

dt mq̇ for a single
object. This motivates us to propose that the term between the
parentheses describes, in general, the momentum:32 32 Take note that this quantity is not

always the usual momentum. We
will talk about this subtlety below.

p ≡ ∂L
∂q̇

. (4.29)

With this in mind, we can rewrite the Euler-Lagrange equation
as follows:

∂L
∂q

− d
dt

�
∂L
∂q̇

�
= 0

�

rearranging

∴ d
dt

�
∂L
∂q̇

�
=

∂L
∂q �

Eq. 4.28 and Eq. 4.29

∴ d
dt

p = F. (4.30)

This is exactly Newton’s second law!33 While there are many 33 Maybe it helps to recall that
we can understand a force F as
something which originates from an
underlying potential V (Eq. 2.15):

F = − ∂V(q)
∂q

.

In a similar sense, we can argue
that Newton’s second law (or the
equation of motion in general)
originates from an underlying
Lagrangian.

subtleties which we are glossing over here, it is very helpful to
keep in mind that ∂L

∂q̇ yields the momentum (Eq. 4.29) and that
the Euler-Lagrange equation therefore says:

The rate of change of the momentum equals the force.

Now, before we move on, we need to talk about one subtlety.
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The quantity in Eq. 4.29 that we simply called the momentum,
is more properly called the conjugate momentum, canonical
momentum or generalized momentum. It is necessary to em-
phasize that there is a close connection to a specific variable q.
For example, if we describe our system using angles instead of
Cartesian coordinates, the corresponding conjugate momenta
would be angular momenta. Moreover, for an object with elec-
tric charge e which moves in a magnetic potential �A, Eq. 4.29
yields3434 Don’t worry if you don’t know

what a magnetic potential is.
This formula is only shown here
to emphasize that Eq. 4.29 does
not always yield what we call
momentum in the Newtonian
formulation.

�p = m�̇q + e�A, . (4.31)

This is not just the usual momentum �p = m�v. What we there-
fore learn is that to include the effects of the magnetic potential,
we need to replace our ordinary momentum with the more
general canonical momentum.

In general, the canonical momentum is a measure of how re-
sponsive a Lagrangian is to changes in the velocity.

Similarly, the quantity in Eq. 4.28 that we simply called the force
is more properly called the generalized force. Again, this is
necessary because it clearly depends on which coordinates we
use. If we use angles instead of Cartesian coordinates, Eq. 4.28
does not yield an ordinary force but a torque.3535 A bit more abstractly, we can say

that a generalized force describes
the applied work done per unit dis-
placement in the direction defined
by the (generalized) coordinate q.



5

Hamiltonian Mechanics

In the Newtonian formulation of classical mechanics, we de-
scribe a given system by using for each object and each force �F
a vector in physical space�rA(t). In the Lagrangian formulation,
we describe the system using one big vector �q(t) which de-
scribes a path in configuration space and a Lagrangian function
L(�q,�̇q). This approach has the big advantage that everything
which influences the dynamics within the system is described
by a single function L(�q,�̇q).

Now, as discussed in Section 2.3, there is another useful mathe-
matical arena known as phase space which allows us to derive
a third formulation of classical mechanics. The main observa-
tion which motivates us to introduce this new space is that a
point in configuration space only encodes information about
the locations of the various objects. But to describe everything
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that is going on in a system at a specific moment in time, we
not only need to keep track of the locations of objects, but also
of their momenta (or alternatively their velocities). In other
words, we need both, the position and momentum (�q(t),�p(t))
(or (�q(t),�̇q(t))), in order to determine the future behavior of that
system, not just �q(t).1

1 We will see below why we use
momenta when we formulate clas-
sical mechanics in phase space
and not velocities. Moreover, take
note that this is by no means a
hard argument in favor of the
Hamiltonian formalism. Of course,
we can describe the state of sys-
tems using configuration space as
demonstrated by the Lagrangian
formalism. But this requires that
we use the velocities �̇q(t) as addi-
tional input data. Since this data
is not part of configuration space,
it’s much harder to develop a ge-
ometrical understanding. In other
words, in configuration space the
velocities appear as a somewhat
awkward surplus structure and by
switching to phase space we can
put this additional input data on
the same footing as the locations.

In phase space, each point corresponds to one specific state that
the system can be in (�q(t),�p(t)) and not just a configuration
q(t).2

2 In contrast, in configuration space,
multiple states correspond to the
same point. All states for which
our objects are located at the same
positions but possibly having
different momenta, correspond to
the same point in configuration
space:

This allows us to get a geometrical understanding of how a spe-
cific initial state evolves as time passes. And this is especially
useful whenever we are dealing with uncertainty. In a real sys-
tem, we are never 100% sure in which initial state a given sys-
tem is since there is always experimental uncertainty. In phase
space, this means that our initial state is not exactly a point. We
need to take a region of phase space into account.

Then, using that probabilities must always add up to 100%, we
can derive powerful and beautiful theorems which allow us to
understand how uncertainty evolves as time passes.3

3 The most important theorem in
this context is known as Liouville’s
theorem, which is the topic of
Section 11.2.4.

All this leads to the beautiful interpretation that we can under-
stand the evolution of a system in classical mechanics as the
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flow of some kind of (incompressible) probability fluid in phase
space.

Now, how can we describe classical mechanics in phase space?

5.1 Hamilton’s Equations

While there are various ways of deriving the fundamental equa-
tions which describe classical mechanics in phase space, we will
start with arguably the simplest one. The starting point for this
derivation are our results from the previous section.

In the Hamiltonian formulation of classical mechanics, we de-
scribe the evolution of our system as a path in phase space. The
new thing about phase space is that we not only use the vari-
ous locations qi to specify a point, but at the same time use the
momenta pi of the objects.

The first key idea is that we act as if qi and pi are completely
independent variables. Of course, for a single object we have
pi = mq̇i, and we will see in a moment that there is always a
close connection between qi and pi. But for the moment, we
act as if they are truly independent. Take note that this is not
possible for the velocity q̇i because the velocity is always simply
the rate of change of the location d

dt qi(t) = q̇i(t). In contrast,
the relationship between the location and the (generalized)
momentum is not always so direct. For example, as mentioned
at the end of the previous chapter, for a charged object moving
in a magnetic potential �A, the (generalized) momentum is �p =

m�̇q + e�A (Eq. 4.31). This quantity certainly can be completely
independent of q(t) because �A can change independently.4

4 Again, the detailed form of this
formula and what exactly a mag-
netic potential is, is not important
for us here. The point to take
away is that when we speak of
momentum, we mean the general-
ized momentum that is defined in
Eq. 4.29:

p ≡ ∂L
∂q̇

.

If we evaluate this formula explic-
itly for certain Lagrangians, we find
a quantity which can be completely
independent of q(t). This is why we
can treat q(t) and the generalized
momentum p(t) as independent
variables. Moreover, take note that
the difference between a partial
derivative like ∂L

∂q and a total deriva-

tive like dp
dt is discussed in detail in

Appendix A.3.
This is, in some sense, what we mean when we say that in
phase space, we not only have an axis for each qi but also for
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each pi.5 The momenta are on a completely equal footing with5 For example, for a free object the
x coordinate of an object is inde-
pendent of the y and z coordinate.
That’s why we have three axes to
describe the location of a free object.

the locations.

Secondly, we recall the definition of the momentum (Eq. 4.29)

p ≡ ∂L
∂q̇

. (5.1)

Using this definition, we can write the Euler-Lagrange equation
as

dp
dt

=
∂L
∂q

. (5.2)

Moreover, the second defining equation in the Lagrangian for-
malism is the definition of the velocity as the rate of change of
the location66 It may seem strange why this

point is emphasized here. We will
see below, however, that we really
need this equation.

dq
dt

= q̇ . (5.3)

Our goal is to rewrite these two equations (Eq. 5.2, Eq. 5.3) in
such a way that they only depend on p and no longer on q̇. We
can do this by using the explicit definition of the momentum.

First of all, we can invert Eq. 5.1 to get a formula for the velocity
in terms of the momentum: q̇ = q̇(q, p).7 We can then use this7 For example, when we have

p = q̇m, we can calculate that
q̇ = p

m . This is a function q̇ = q̇(p).
result to derive an equation from which q̇ has been eliminated.

But we need to be careful. The Lagrangian is a function which
depends on q and q̇: L = L(q, q̇). Therefore, in general, we don’t
get the same result when we take the derivative of L(q, q̇) and
when we take the derivative of the new function L̃(q, p):

∂L̃(q, p)
∂q

�= ∂L(q, q̇)
∂q

, (5.4)

where
L̃(q, p) ≡ L

�
q, q̇(q, p)

�
. (5.5)

In words, L̃(q, p) is the function that we get if we use the for-
mula q̇ = q̇(q, p) to eliminate q̇ from L(q, q̇). In particular, take
note that, in general,

L̃(q, p) �= L(q, p) . (5.6)

For example, for the free Lagrangian (Eq. 4.27)

L(q, q̇) =
mq̇2

2
(5.7)
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and the explicit formula for the momentum (p = mq̇), we find:

L̃(q, p)
(5.5)≡ L

�
q, q̇(q, p)

�

�

L(q, q̇) =
mq̇2

2

=
m
�

q̇(q, p)
�2

2 �

q̇ =
p
m

=
m
�

p
m

�2

2 �

=
p2

2m
. (5.8)

Therefore8 8 If this is unclear, please have a
look at Appendix D.

L(q, p) =
mp2

2
�= p2

2m
= L̃(q, p) . (5.9)

So when we calculate the derivative, we find

∂L̃(q, p)
∂q

(5.5)
=

∂L
�

q, q̇(q, p)
�

∂q �

chain rule

∴ ∂L̃(q, p)
∂q

=
∂L(q, q̇)

∂q
+

∂L(q, q̇)
∂q̇

∂q̇(q, p)
∂q �

p ≡ ∂L
∂q̇

, Eq. 5.1

∴ ∂L̃(q, p)
∂q

=
∂L(q, q̇)

∂q
+ p

∂q̇(q, p)
∂q �

rearranging terms

∴ ∂L(q, q̇)
∂q

=
∂L̃(q, p)

∂q
− p

∂q̇(q, p)
∂q � ∂

∂q
pq̇ = p

∂

∂q
q̇ because

∂

∂q
p = 0

∴ ∂L(q, q̇)
∂q

=
∂

∂q

�
L̃(q, p)− pq̇(q, p)

�
. (5.10)

This is the equation that we need to use to eliminate q̇ from the
right-hand side in Eq. 5.2

dp
dt

=
∂L
∂q �

Eq. 5.10

=
∂

∂q

�
L̃(q, p)− pq̇(q, p)

�

�

definition H ≡ pq̇(q, p)− L̃(q, p)

= −∂H
∂q

. (5.11)
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We can see that the new function

H ≡ pq̇(q, p)− L̃(q, p) (5.12)

which we defined here, determines the time-evolution of the
momentum p and is known as the Hamiltonian function or
simply the Hamiltonian.9 While in the Lagrangian formulation,9 We will see in Section 5.1.1 why

we define the Hamiltonian function
like this. Moreover, take note that
mathematically, the Hamiltonian
and the Lagrangian are related
by a Legendre transform. The
Legendre transform is discussed in
Appendix B.

the Lagrangian L is the most central object, in the Hamiltonian
formulation, the Hamiltonian H is central.10

10 We will discuss the meaning of H
in more detail below.

Following similar steps, we can rewrite the second defining
equation of Lagrangian mechanics (Eq. 5.3).11 To do this, we

11 For your convenience: Eq. 5.3
reads

dq
dt

= q̇ .

calculate the derivative of L̃(q, p) with respect to p:12

12 We will see in a moment why this
is useful.

∂L̃(q, p)
∂p

(5.5)
=

∂L
�

q, q̇(q, p)
�

∂p �

chain rule

∴ ∂L̃(q, p)
∂p

=
∂L(q, q̇)

∂q̇
∂q̇
∂p �

p ≡ ∂L
∂q̇

, Eq. 5.1

∴ ∂L̃(q, p)
∂p

= p
∂q̇
∂p � ∂

∂p

�
pq̇
�
= p

∂q̇
∂p

+ q̇

∴ ∂L̃(q, p)
∂p

=
∂

∂p

�
pq̇
�
− q̇

�

rearranging terms

∴ ∂L̃(q, p)
∂p

− ∂

∂p

�
pq̇
�
= −q̇

�

factoring out
∂

∂p

∴ ∂

∂p

�
L̃(q, p)− pq̇

�
= −q̇

�

H ≡ pq̇(q, p)− L̃(q, p)

∴ ∂H
∂p

= q̇ . (5.13)

This result allows us to eliminate q̇ from Eq. 5.3, which then
becomes

dq
dt

= q̇

�

Eq. 5.13

∴ dq
dt

=
∂H
∂p

. (5.14)
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The two equations (Eq. 5.11, Eq. 5.14) we derived by eliminating
q̇ in favor of p from the two defining equations of Lagrangian
mechanics (Eq. 5.2, Eq. 5.3) are known as Hamilton’s equations.
Since they are so important, we recite them here for further
convenience:13 13 Don’t worry if you didn’t like the

derivation of Hamilton’s equations
that we discussed above because we
will next discuss a second way to
derive them.

dp
dt

= −∂H
∂q

dq
dt

=
∂H
∂p

. (5.15)

Take note how symmetrical these two equations are in how they
treat q and p. As mentioned at the beginning of this chapter,
putting the locations and momenta on an equal footing is one of
the main motivations behind the Hamiltonian formalism.

While in the Lagrangian formalism, we also have a simple equa-
tion for the rate of change of the location (Eq. 5.3): dq

dt = q̇, there

is no similarly simple equation for dq̇
dt . In other words, there is

no general way to dig dq̇
dt out of the Euler-Lagrange equations

(Eq. 5.2). But in contrast, by switching variables, we get a simple
equation for the time evolution of q and a simple equation for
the time evolution of p.14 14 Mathematically, we have first-

order evolution equations in the
Hamiltonian formalism while in
the Newtonian and Langrangian
formulations of classical mechanics,
we have second-order differential
equations. The price we have to
pay is that we have twice as many
equations in the Hamiltonian
formalism since we’ve doubled the
size (dimensions) of the space we
are describing our system in:

configuration space → phase space.

For example, for N free parti-
cles configuration space is 3N-
dimensional but phase space is
6N-dimensional.

As before, if there are multiple objects in the system moving
in three dimensions, we need to take all their locations and
momenta into account . Hamilton’s equations then read

dpi
dt

= −∂H
∂qi

dqi
dt

=
∂H
∂pi

. (5.16)

The index i is used to distinguish all the different momentum
coordinates p1, p2, p3, p4, . . . and all the different position coordi-
nates x1, x2, x3, x4, . . ..

Before we move on and discuss the meaning of Hamilton’s
equations in a bit more detail, let’s talk about an alternative way
of deriving them.
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In the Lagrangian formalism, our central object is the action
which is defined as the integral over the Lagrangian (Eq. 4.15)1515 As before, we restrict ourselves

to one object moving in one dimen-
sion. The derivation for a general
set of positions qi , velocities q̇i and
momenta pi follows analogously.

S ≡
� t f

ti

L dt . (5.17)

Above, we’ve already learned that the fundamental function in
the Hamiltonian formalism is the Hamiltonian, which is defined
as (Eq. 5.12)1616 Mathematically, the Hamiltonian

function is the Legendre transform
of the Lagrangian function. The
Legendre transform is discussed in
Appendix B.

H ≡ pq̇ − L . (5.18)

We can use this explicit relationship between the Hamiltonian
function H and Lagrangian L to derive Hamilton’s equations
completely analogously to how we derived the Euler-Lagrange
equation in Section 4.3.

When we rearrange the terms in Eq. 5.18, we find

L = pq̇ − H . (5.19)

Using this, we can rewrite the action (Eq. 5.17) in terms of the
Hamiltonian:

S =
� t f

ti

dtL

�

Eq. 5.19

=
� t f

ti

dt
�

pq̇ − H
�

. (5.20)

This is useful because now we can once more use the least ac-
tion principle to derive the correct equations of motion.1717 In Section 4.3, we used the least

action principle to derive the Euler-
Lagrange equation.

Again, our goal is to find the path which minimizes the action.
But take note that now the functional S assigns a value to each
path (Q(t) = (q(t), p(t))) in phase space. In other words, we are
now searching for a path in phase space and not for a path in
configuration space. To find this path, we again consider small
variations around some arbitrary but fixed path (q(t), p(t)) →
(q(t) + �(t), p(t) + �̃(t)). The main idea is then once more that
we can find the correct path by demanding that all terms that
are first-order in the variations must vanish.1818 This is the key idea of variational

calculus which we discussed in
Section 4.2.
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Putting the variations into Eq. 5.20 and using the Taylor expan-
sion yields19

19 The Taylor expansion that we use
for H is completely analogous to
the expansion in Eq. 4.20.

S =
� t f

ti

dt
�

pq̇ − H(q, p)
�
=

� t f

ti

dt
�

p
d
dt

q − H(q, p)
�

�

variations

→ S =
� t f

ti

dt

��
p + �̃

� d
dt
(q + �)− H(q + �, p + �̃)

�

�

Taylor expansion

=
� t f

ti

dt

�
(p + �̃)

d
dt
(q + �)

− H(q, p)− �
∂H(q, p)

∂q
− �̃

∂H(q, p)
∂p

− . . .

�

�

rearranging terms

=
� t f

ti

dt

�
p

dq
dt

− H + �̃
� d

dt
q − ∂H

∂p

�
+ . . .

− �
∂H
∂q

+ p
d�

dt
+ �̃

d�

dt

�
. (5.21)

This looks like a huge mess, but luckily all we are interested in
are the terms first order in � and �̃.20

20 Recall that we are looking for
the path for which the action is
a minimum. To get a condition
which allows us to calculate this
path, we use the fact that minima
are characterized by vanishing first
order variations.

In the last line of Eq. 5.21, we have a term proportional to d�
dt .

But we can turn it into a term proportional to � by integrating
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by parts2121 Integration by parts is explained
in Appendix A.2. Moreover, we
will see in a moment why it makes
sense to use it here. The boundary
term

�p
���
t f

ti
≡ �(t f )p(t f )− �(ti)p(ti)

vanishes because we are consider-
ing variations between fixed initial
and final configurations. Mathemat-
ically this means that �(ti) = 0 and
�(t f ) = 0 (Eq. 4.18).

� t f

ti

dtp
d�

dt
= �p

���
t f

ti
−
� t f

ti

dt
dp
dt

�

�

�(ti) = �(t f ) = 0, (Eq. 4.18)

= −
� t f

ti

dt
dp
dt

� . (5.22)

By using this, we can factor out � in the last line of Eq. 5.21:22

22 We want to factor out � because
this tells us which terms have to
vanish.

S =
� t f

ti

dt

�
p

dq
dt

− H + �̃
� d

dt
q − ∂H

∂p

�
+ . . . this is Eq. 5.21

− �
∂H
∂q

+ p
d�

dt
+ �̃

d�

dt

�

�

Eq. 5.22

=
� t f

ti

dt

�
p

dq
dt

− H + �̃
� d

dt
q − ∂H

∂p

�
+ . . .

− �
∂H
∂q

− dp
dt

� + �̃
d�

dt

�

�

factoring out −�

=
� t f

ti

dt

�
p

dq
dt

− H + �̃
� d

dt
q − ∂H

∂p

�
+ . . .

− �
�∂H

∂q
+

dp
dt

�
+ �̃

d�

dt

�
. (5.23)

Here, the dots indicate higher order terms in the Taylor expan-
sion. We can ignore them because we are only interested in
terms linear in � and �̃.2323 All higher order terms are propor-

tional to �2, �̃2, �3, �̃3, etc.

The correct path describing our system is the one for which the
terms linear in � and �̃ vanish. However, we need to be careful
because � and �̃ are completely independent variations of the
path. While in Section 4.3 we also considered variations of the
velocity q̇ → q̇ + �̇, this is not an independent variation because
�̇ ≡ d�

dt . In other words, the variation of the velocity function q̇
is automatically fixed once we specify the variation of the path
q. But in phase space, we treat the position and momentum as
independent variables and therefore assume that we can vary �

and �̃ independently.

This means that the terms linear in � and �̃ only vanish, in gen-
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eral, if the following two conditions are fulfilled:24 24 These are the terms proportional
to � and �̃ in Eq. 5.23.

∂H
∂q

+
d
dt

p !
= 0

∂H
∂p

− d
dt

q !
= 0 . (5.24)

The path (q(t), p(t)) which fulfills these two conditions is the
correct path which minimizes the action and therefore describes
the evolution of our system. These equations are exactly Hamil-
ton’s equations (Eq. 5.15).

To summarize:

� In the Hamiltonian formulation of classical mechanics, we
describe the evolution of a system as a path in phase space.

� This requires that we eliminate the velocity q̇ in favor of the
momentum p. When we do this in the defining equations of
the Lagrangian formulation (Eq. 5.2, Eq. 5.3) we get Hamil-
ton’s equations (Eq. 5.15).

� Alternatively, we can start again from the action and elimi-
nate the Lagrangian in favor of the Hamiltonian (Eq. 5.19). If
we then calculate (using variational calculus) which condition
a path in phase space (q(t), p(t)) minimizing this new action
must fulfill, we find Hamilton’s equations once more.

The following diagram illustrates the relationship between the
derivations discussed above.

action: S[q(t)] =
� t f

ti
dtL

variational calculus

��

q̇→p �� action: S[Q(t)] =
� t f

ti
dt
�

pq̇ − H
�

variational calculus

��
Euler-Lagrange equation q̇→p �� Hamilton’s equations

Next, let’s talk about the meaning of Hamilton’s equations.
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5.1.1 Meaning of Hamilton’s Equations

Again, the best way to get a feeling for the meaning of the
Hamiltonian function H and Hamilton’s equations is to con-
sider a simple example. Let’s consider a system which consists
of only one object and some general potential V = V(q). The
Lagrangian for this object reads L = T − V = 1

2 mq̇2 − V(q).

We can calculate the corresponding Hamiltonian by using the
definition in Eq. 5.12 and the definition of the momentum in
Eq. 4.29. First of all, we need to calculate the momentum explic-
itly:

p ≡ ∂L
∂q̇

definition of the momentum, (Eq. 4.29)

�

L =
1
2

mq̇2 − V(q)

=
∂
�

1
2 mq̇2 − V(q)

�

∂q̇

� ∂V(q)
∂q̇

= 0 and
∂q̇2

∂q̇
= 2q̇

= mq̇ (5.25)

This implies that

q̇ =
p
m

. (5.26)

Using this result, we can derive the Hamiltonian:

H = pq̇ − L this is Eq. 5.12

�

L =
1
2

mq̇2 − V(q)

= pq̇ −
�1

2
mq̇2 − V(q)

�

�

q̇ =
p
m

, (Eq. 5.26)

= p
p
m

−
�1

2
m
� p

m

�2
− V(q)

�

�

rearranging terms

=
p2

2m
+ V(q) . (5.27)

This is exactly the total energy of the object:25

25 The formula

T =
p2

2m
=

1
2

mq̇2

describes exactly the kinetic energy,
where we used once more that
q̇ = p

m (Eq. 5.26).

H =
p2

2m
+ V(q) = T + V = kinetic energy + potential energy!

Similar results can be obtained for many systems and we can
therefore summarize that often:26

26 Take note that this is not correct
for open systems, i.e., systems in
which energy is not conserved.
(A closed system is one for which
no energy is leaking out.) This is
the case, for example, whenever
the potential is time-dependent
V = V(q, t). For such systems, the
Hamiltonian (like the Lagrangian) is
merely an abstract, but useful, func-
tion which allows us to describe the
system.
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The Hamiltonian represents the total energy.

Next, let’s try to understand the physical meaning of Hamil-
ton’s equations.

Once more, it’s instructive to use the simple example that we
discussed above. Putting the explicit form of the Hamiltonian
that we calculated in Eq. 5.27 into Hamilton’s first equation
(Eq. 5.15) yields

dp
dt

= −∂H
∂q

this is Hamilton’s first equation (Eq. 5.15)
�

H =
p2

2m
+ V(q), Eq. 5.27

= −
∂
�

p2

2m + V(q)
�

∂q � ∂p
∂q

= 0

= −∂V(q)
∂q

. (5.28)

This is exactly Newton’s second law! Therefore, since the
derivative of the potential with respect to the location q yields
the force (F = − ∂V

∂q ), we can conclude that Hamilton’s first
equation effectively tells us that:

The rate of change of momentum equals the force.

Hamilton’s second equation (Eq. 5.15) reads

dq
dt

=
∂H
∂p

. (5.29)

Using the explicit Hamiltonian we derived above, we can evalu-



106 no-nonsense classical mechanics

ate it explicitly:

dq
dt

=
∂H
∂p

�

H =
1
2

p2

m
+ V(q), Eq. 5.27

=
∂
�

1
2

p2

m + V(q)
�

∂p

� ∂V(q)
∂p

= 0 and
∂p2

∂p
= 2p

=
p
m

. (5.30)

Therefore, we can now understand that the purpose of Hamil-
ton’s second law is to establish a relationship between the mo-
mentum and the rate of change of the position. In other words,
Hamilton’s second equation tells us what the momentum really
is for our system.2727 This is analogous to how the

second fundamental equation in
the Lagrangian formalism (Eq. 5.3)
dq
dt = q̇ tells us how the velocity is
defined in terms of the location.

All this can be summarized perfectly as follows:

“ Hamilton’s Equations show how the qi’s and pi’s un-
dergo a ’dance to the music of time’, a dance in which,
as some qi’s or pi’s increase in value, others decrease in
value, but always such as to keep the energy constant
(in conservative systems), and always such as to keep
the total action minimized, both instant by instant,
and over the whole path between ’surfaces-of-common-
action’. This ’dance’ is governed by one function, H, -
that is to say, while H is different for different systems
(orbiting planets, a statistical ensemble, an electrical
circuit, positrons orbiting an atomic antinucleus, a spin-
ning top, juggling pins, a flowing river and so on), yet
within any one system there is just one overarching
function (there is no need for individual functions, H1,
H2,...,Hn). ”

Jennifer Coopersmith, 2017, The Lazy Universe
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Before we summarize what we’ve learned in this and all pre-
vious chapters, let’s discuss one alternative way for how we
can understand why the Hamiltonian is so important. What we
will learn in the following section is a first glance at the deeper
structure underlying classical mechanics.

5.2 Hamilton’s General Equation

First of all, we can imagine that sometimes we are not only in-
terested in the locations and momenta of the various objects in
the system but other quantities too. For instance, the temper-
ature or how the kinetic energy evolves as time passes can be
interesting things to investigate.

As discussed at the beginning of this chapter, in the Hamilto-
nian formulation of classical mechanics, we describe our system
using phase space. This implies that quantities like the tem-
perature or kinetic energy are functions of the locations qi and
momenta pi.28 28 Recall that the defining feature

of phase space is that we use the
locations and momenta of all
objects as coordinates.But how can we calculate the time evolution of such functions

depending on the locations qi(t) and momenta pi(t)?

For simplicity, let’s restrict ourselves to one object moving in
one dimension. Then the total rate of change of a function F =

F(q(t), p(t)) along a single object’s trajectory reads29 29 This is the total derivative of the
function F. If you’re unfamiliar
with the distinction between the
total and partial derivative, see
Appendix A.

d
dt

F(q, p) =
∂F(q, p)

∂q
dq
dt

+
∂F(q, p)

∂p
dp
dt

. (5.31)

Using Hamilton’s equations (Eq. 5.15), we can rewrite this result
as follows:

d
dt

F(q, p) =
∂F(q, p)

∂q
dq
dt

+
∂F(q, p)

∂p
dp
dt � dp

dt
= − ∂H

∂q
,

dq
dt

=
∂H
∂p

(Eq. 5.15)

=
∂F(q, p)

∂q
∂H(q, p)

∂p
− ∂F(q, p)

∂p
∂H(q, p)

∂q
. (5.32)
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In words, this means that the time evolution of a general func-
tion in phase space is completely determined by the Hamilto-
nian function H!3030 We will make this more concrete

in a moment.

Since the structure that appears on the right-hand side here is
so important, it is conventional to introduce a more compact
notation. We therefore introduce the Poisson bracket { , } of
two phase space functions A(q, p), B(q, p) by defining:

{A, B} ≡ ∂A
∂q

∂B
∂p

− ∂A
∂p

∂B
∂q

. (5.33)

A helpful way of thinking about the Poisson bracket is that it
describes a natural product of two phase space functions:3131 If you don’t find this helpful, sim-

ply ignore this remark. Technically,
the Poisson bracket is not the prod-
uct but actually the (Lie) derivative
in phase space. So {A, B} yields the
phase space derivative of A with
respect to B, i.e., ∂B A ≡ {A, B}.
We will discuss in Section 11.2
that a phase space function, like
the Hamiltonian H, defines a flow
(a vector field) in phase space if
we put it into the Poisson bracket.
Therefore, by calculating the Pois-
son bracket {A, B}, we find the
derivative of A in the direction
defined by the flow of B.

A ◦ B ≡ {A, B} ≡ ∂A
∂q

∂B
∂p

− ∂A
∂p

∂B
∂q

. (5.34)

This means that you can’t combine two functions in phase space
which describe properties of our system arbitrarily and ex-
pect to get something that describes another useful property of
the system. But if you calculate the Poisson bracket of the two
functions, you’ll get something sensible. In this sense, the Pois-
son bracket is the natural product (the correct rule to combine
things) in the phase space of a specific system.32

32 We will see in Chapter 10 that any
function F for which

{F, H} = 0,

where H is the Hamiltonian func-
tion, represents a conserved quan-
tity. Moreover, let’s assume we find
another function G for which

{G, H} = 0

also holds (i.e., another conserved
quantity). The quantity we then get
by putting F and G into the Poisson
bracket

{F, G} = I

will be a conserved quantity, too:

{I, H} = 0.

This result is known as the Poisson
theorem. In this sense, the natural
product that allows us to combine
conserved quantities in such a
way that we get new conserved
quantities is indeed given by the
Poisson bracket.

Using the definition of the Poisson bracket, we can write Eq. 5.32
more compactly

d
dt

F = {F, H}

�

check using Eq. 5.33

=
∂F
∂q

∂H
∂p

− ∂F
∂p

∂H
∂q

� . (5.35)

This equation

d
dt

F = {F, H} (5.36)

describes the time evolution of a general phase space function
and we call it Hamilton’s equation of motion.

We don’t introduce a new name for this equation because the
equations which we called Hamilton’s equations previously are
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simply special cases of this general formula. For instance, one
of the simplest examples of a phase space function is certainly
q(t). For F = q, we find

d
dt

q = {q, H} this is Eq. 5.36 with F → q�

definition of Poisson bracket (Eq. 5.33)

=
∂q
∂q

∂H
∂p

− ∂q
∂p

∂H
∂q � ∂q

∂q
= 1 and

∂q
∂p

= 0

=
∂H
∂p

. (5.37)

This is exactly Hamilton’s second equation (Eq. 5.15). Analo-
gously, for F = p we find

d
dt

p = {p, H} this is Eq. 5.36�

definition of Poisson bracket (Eq. 5.33)

=
∂p
∂q

∂H
∂p

− ∂p
∂p

∂H
∂q � ∂p

∂q
= 0 and

∂p
∂p

= 1

= −∂H
∂q

. (5.38)

This is exactly Hamilton’s first equation (Eq. 5.15).

So, to summarize:

General: d
dt F = {F, H}

F=p
��

F=q
��

1.) dp
dt = − ∂H

∂q 2.) dq
dt = ∂H

∂p

To understand our new equation (Eq. 5.36) a little better, we
rewrite it as follows:

d
dt

F = {F, H} �

multiplying by dt
dF = {F, H}dt �

switching to finite intervals

ΔF = {F, H}Δt . (5.39)
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The object on the left-hand side describes how much F changes
during the interval Δt. In other words, as time passes from t to
t + Δt, our function F becomes F + ΔF. Therefore, {F, H} yields
the rate of change of F.

So one way to understand Hamilton’s general equation of mo-
tion is by imagining that we have a new kind of object { , H}
(an operator) which eats any function F on phase space ({F, H})
and spits out the correct time evolution of F.

For example, as we’ve just discovered, for F = p we get Hamil-
ton’s first equation and for F = q we get Hamilton’s second
equation.

So the Hamiltonian and the Poisson bracket together yield
something which allows us to calculate how functions evolve
as time passes.33 In this sense, it is conventional to say that33 From a more abstract perspective,

the Hamiltonian together with the
Poisson bracket yields a vector field
in phase space. This vector field
tells us how functions get pushed
along as time passes.

Hamilton’s equation of motion tells us that:

The Hamiltonian generates time evolution in phase space.

You’ll probably still find this formulation somewhat strange and
it takes some time getting used to it. But be assured that this is
an extremely powerful perspective.3434 To spoil the surprise: we can un-

derstand other important quantities
like the momentum or angular
momentum analogously. In partic-
ular, momentum generates spatial
translations and angular momen-
tum generates rotations. And this
perspective leads us directly to
quantum mechanics. We will ex-
plore the connection between the
physical (conserved) quantities and
how they generate changes in more
detail in Chapter 10.

In particular, in quantum mechanics this way of thinking is in-
credibly important. For example, the equation which describes
the time-evolution of observables in quantum mechanics reads

dF̂
dt

= − i
h̄
[F̂, Ĥ] , (5.40)

where [F̂, Ĥ] = F̂Ĥ − ĤF̂ is known as the commutator bracket.
This equation is known as the Heisenberg equation. In some
sense, the Heisenberg equation is completely analogous to
Hamilton’s general equation that we derived above. The main
difference is that we use a different bracket.35 In fact, many35 As an aside: mathematically, the

Poisson bracket and commutator
bracket are examples of a larger
category of brackets known as Lie
brackets.

textbooks introduce quantum mechanics by proposing the re-
placement rule

Poisson bracket {F, H} → Commutator [F̂, Ĥ].
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Here’s one final comment before we summarize everything
we’ve learned so far.

Sometimes we are dealing with a function in phase space which
not only depends on q and p, but also explicitly on t. For ex-
ample, this is necessarily the case if there is a time-dependent
potential V = V(q, t). The total rate of change then reads36 36 This is the total derivative of a

general function. The difference be-
tween a total and partial derivative
is discussed in Appendix A.3.

d
dt

F(q, p, t) =
dq
dt

∂F
∂q

+
dp
dt

∂F
∂p

+
∂F
∂t

. (5.41)

In words, this means that we get an additional term which takes
this additional explicit dependence on t into account. Then,
following exactly the same steps we can derive

d
dt

F(q, p, t) = {F, H}+ ∂F
∂t

. (5.42)

This is Hamilton’s equation of motion for a phase space general
function F = F(q, p, t).
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Summary

Let’s summarize what we’ve learned so far.

In the previous three chapters, we discussed three different for-
mulations of classical mechanics. In the Newtonian formulation,
we keep track of objects using vectors in physical space. In the
Lagrangian formulation, we describe a system using a path in
configuration space. And, in the Hamiltonian formulation, we
use a path in phase space. While the goal in classical mechanics
is usually to derive (and solve) the equations of motion for a
given system, the way we derive them in the various formula-
tions is quite different.

In the Newtonian formulation, the equation of motion for any
system can be calculated by adding all forces acting on some
object to the right-hand side of Newton’s second law (Eq. 3.1)

d
dt
�p = �F . (6.1)

In words it tells us:1

1 Reminder: this law is supple-
mented by Newton’s first and
third law. The first law establishes
that there is always an observer
for whom Newton’s second law
holds. (We call observers for whom
Newton’s second law holds inertial
observers. Speaking colloquially,
these inertial observers are ob-
servers which are not accelerated
themselves.) Newton’s third law
tells us that for every force �F ex-
erted by some object A on another
object B, there is necessarily a force
−�F of equal magnitude but point-
ing in the opposite direction exerted
by B on A.

The rate at which the momentum of an object

changes is exactly equal to the force acting on it.
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In the Lagrangian formulation, we can calculate the equation of
motion for a given system by using the Euler-Lagrange equation
(Eq. 4.25)

∂L
∂q

− d
dt

�
∂L
∂q̇

�
= 0 , (6.2)

where L is the Lagrangian. The Lagrangian is the difference
between the kinetic energy T and the potential energy V:22 Take note that this formula for the

Lagrangian only works for non-
relativistic classical mechanics. In
special relativity or other theories
like quantum field theory, the
Lagrangian looks quite different.
We will discuss this in more detail
in Chapter 12.

L(q, q̇, t) = T(q̇)− V(q, t) . (6.3)

In words, the Euler-Lagrange equation is a condition which the
path q(t) that minimizes the action functional (Eq. 4.15)

S[q(t)] ≡
� t f

ti

dtL
�

q(t), q̇(t), t
�

(6.4)

has to fulfill. In other words, a solution of the Euler-Lagrange
equation yields a path which is a minimum of the action. The
key idea at the heart of the Lagrangian formulation is that na-
ture is lazy and hence the path of least action is the correct path
that describes how our system behaves.

Here q(t) describes a path in configuration space and there-
fore if we want to use it to describe concrete systems, we need
to recall that we’ve really lots of Euler-Lagrange equations
(Eq. 4.26)33 For example, we get three Euler-

Lagrange equations for each object
moving freely in three dimensions.
For N objects moving freely, con-
figuration space is 3N-dimensional
and therefore we have 3N Euler-
Lagrange equations, one for each
component (i.e., for each direction
in configuration space we can vary
our path in qA → qA + �A(t)).

∂L(qA, q̇A, t)
∂qA − d

dt

�
∂L(qA, q̇A, t)

∂q̇A

�
!
= 0 , (6.5)

where, for example,

(q1, q2, q3, q4, q5, q6, q7, . . .) ≡ (x1, y1, z1, x2, y2, z2, x3, . . .)

and x1 denotes the x-coordinate of the first object, x2 the x-
coordinate of the second object, etc.

In the Hamiltonian formalism, we can calculate the equation
of motion for any given system by using Hamilton’s equations
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(Eq. 5.15)

dp
dt

= −∂H
∂q

dq
dt

=
∂H
∂p

, (6.6)

where H is the Hamiltonian. The Hamiltonian is the sum of the
kinetic energy T and the potential energy V:4 4 More generally, the Hamiltonian is

defined as the Legendre transform
(see Appenidx B) of the Lagrangian.
For some systems, the Hamiltonian
function is not equal to the total
energy. This is the case because the
Hamiltonian always represents a
conserved quantity, but the total
energy isn’t necessarily conserved
within a given system, e.g., when
energy is pumped from the outside
into the system or energy is leaking
out. We will discuss this in more
detail in Chapter 10.

H(q, p) = T(p) + V(q, t) . (6.7)

Again, whenever we want to use Hamilton’s equations to de-
scribe concrete systems, we need to remember that we need to
take all coordinates of phase space into account

dpi
dt

= −∂H
∂qi

dqi
dt

=
∂H
∂pi

. (6.8)

We discussed two derivations of Hamilton’s equations. First,
we derived it by switching from q̇ to p in the Euler-Lagrange
equation by using the explicit formulas of the form q̇ = q̇(q, p).
And secondly, we derived it by switching variables in the action
functional (Eq. 5.20):

S[q(t), p(t)] =
� t f

ti

dt
�

pq̇ − H
�

. (6.9)

If we use variational calculus to find the minimum of this func-
tional, we find Hamilton’s equations.

Moreover, we derived the more general Hamilton equation
(Eq. 5.36):

d
dt

F = {F, H} (6.10)

where { , } denotes the Poisson bracket (Eq. 5.34):

{A, B} ≡ ∂A
∂q

∂B
∂p

− ∂A
∂p

∂B
∂q

. (6.11)
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If we use F = q and F = p in Hamilton’s general equation, we
find Hamilton’s equations (Eq. 5.15) once more. But Eq. 5.36 is
more general because it allows us to calculate the time evolution
of any phase space function.

Now it’s time to see how all this works in practice. In the fol-
lowing chapters, we will talk about the most important systems
in classical mechanics and how we can describe them using the
frameworks that we have just talked about.
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Part II
Essential Systems and Tools

"The only way to learn it is to do it."

Archimedes

PS: You can discuss the content of Part II with other readers and give feedback at
www.nononsensebooks.com/cm/bonus.
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Algorithms and Tools

In this second part of the book, we discuss how we can use the
various formulations of classical mechanics to describe concrete
systems.

Let me shortly outline our plan for this chapter.

We will start by talking about the Newtonian, Lagrangian, and
Hamiltonian algorithms. This means that we will discuss in
quite general terms how we can use Newton’s second law, the
Euler-Lagrange equation and Hamilton’s equations to derive the
equations of motion.

solutions

equations of motion

��

Newton’s second law

��

Euler-Lagrange equation

��

Hamilton’s equations

��

forces

��

Lagrangian

��

Hamiltonian

��
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In addition, we will discuss several tools which allow us to
simplify problems. For example, one of the most powerful tools
that we can use to simplify problems is our freedom to choose a
suitable coordinate system.

However, especially in the Newtonian formalism, switching
coordinates can sometimes be more difficult than solving the
problem in an inconvenient one.

In contrast, in the Hamiltonian and Lagrangian formalism,
switching coordinates is easy because the fundamental equa-
tions (Hamilton’s equations, Euler-Lagrange equation) have the
same form no matter which coordinates we choose.11 We will discuss this in detail

below.

In this context, it is important to recall that the main difference
between the various formalisms is that we use different mathe-
matical arenas.

While in the Newtonian formalism, we use coordinates to de-
scribe vectors in physical space, in the Lagrangian formalism,
we use coordinates in configuration space, and in the Hamilto-
nian formalism, we use coordinates in phase space. Since the
structure of these spaces is quite different, the transformations
which allow us to switch coordinates work quite differently.

For this reason, we introduce special names for these different
kinds of coordinate transformations:

� A switch of coordinates in physical space is an ordinary
coordinate transformation.

� A switch of coordinates in configuration space is a point
transformation.

� A switch of coordinates in phase space is a canonical trans-
formation.22 Canonical transformation is really

the umbrella term for all trans-
formations that leave Hamilton’s
equations unchanged.
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Diagrammatically this means:

Newton’s second law��

��

Euler-Lagrange equation
��

��

Hamilton’s equation
��

��
d�p
dt = �F

coordinate transformation
��

∂L
∂q = d

dt

�
∂L
∂q̇

�

point transformation
��

d
dt f = { f , H}

canonical transformation

��
d�p�
dt + . . . = �̃F ∂L̃

∂q� =
d
dt

�
∂L̃
∂q̇�

�
d
dt f � = { f �, H̃}

Here �̃F, L̃ and H̃ denote the forces, Lagrangian, and Hamilto-
nian, in new coordinates (p�, q�, q̇�), respectively. Moreover, f and
f � are phase space functions.

The main point is that in the Newtonian formalism, depending
on the coordinate system, new terms appear on the left-hand
side and therefore Newton’s second law takes on a completely
different form. Alternatively, these new terms can be under-
stood as new (fictitious) forces.3 3 In non-inertial coordinate systems,

we need to take so-called fictitious
forces into account.

But we cannot only modify the coordinate systems we use to
describe the locations and momenta of objects. We can also
modify the coordinate systems we use to describe the some-
what more abstract spaces that the action and Lagrangian live
in. To understand this, recall that the action functional assigns
a specific number to each possible path. Mathematically, these
numbers are points on the real line R. However, it doesn’t mat-
ter where we put the origin of our real line coordinate system.
In other words, it doesn’t matter which absolute number we
assign to each path. Only the relative differences between the
numbers for different paths are important because the only rea-
son we care about the action is to find the path of least action. If
we shift all numbers assigned to individual paths equally by a
constant factor, it doesn’t make any difference because the path
of least action stays the path of least action.

Moreover, since the Lagrangian and Hamiltonian are directly
connected to the action functional, we have similar freedom
in how we choose the absolute numbers the Lagrangian and
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Hamiltonian function spit out. It is conventional to call these
kinds of transformations gauge transformations.4

4 We will talk about gauge transfor-
mation in detail in Section 7.2.3 and
Section 7.3.2.

Action Lagrangian Hamiltonian

S[q(t)]

gauge transformation
��

L(q, q̇, t)

gauge transformation
��

H(q, p, t)

gauge transformation
��

S[q(t)] + C L(q, q̇, t) + d
dt F(q, t) H(q, p, t)− ∂

∂t F(q, t)

In addition, we will discuss two concrete examples: the har-
monic oscillator and the pendulum.5 We will derive the equa-

5 We restrict ourselves to just two
examples but discuss them carefully
step by step. This should give you
a solid first idea of how the various
formalisms are used in practice. We
will not discuss additional or more
advanced examples for two reasons.
First, you’ll probably feel obliged
to go through all of the examples
presented here before you move on
to Part III. But the content of Part
III is extremely important, so I tried
to keep the hurdle to get there as
small as possible. And second, there
are usually no deep truths to be
learned from complicated applica-
tions. It’s the same story but told in
more complicated terms. The only
thing you really learn by studying
many complicated problems is how
to solve complicated problems.
There are no further deep insights
regarding the structure and inter-
pretation of classical mechanics.
Moreover, the skills you get by
studying lots of problems usually
don’t help when you engage in
research projects. Exactly solvable
problems are usually only found
in textbooks. So for real research
projects you need a very different
skillset. A great way to learn about
these real-world problem solving
skills is by reading Street-Fighting
Mathematics by Sanjoy Mahajan.
But, of course, if your goal is to
pass some university exam, you’ll
need to study a lot more examples.
You can find many worked exam-
ples in the books recommended in
Chapter 13.

tion of motion for both systems step by step using all three
formulations. Moreover, we will discuss how we can solve the
resulting equations.

Let’s now talk about all this in more detail.
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7.1 The Newtonian Algorithm

In the Newtonian formalism, our main task is to identify all of
the forces which act on a given object. Afterwards, we need to
write down formulas which describe the strength and direction
of the various forces. Then, given these concrete formulas, we
can use Newton’s second law (Eq. 3.1)

d�p
dt

= �F , (7.1)

where �p = m�v, to find the acceleration�a = �̇v. Finally, using
the acceleration, we can calculate how exactly the object in
question moves around. Formulated more technically, given the
acceleration�a, we can derive its velocity �v and location�r since
�a = �̇v = �̈r.

While this procedure may sound straightforward, there are two
main difficulties:

� Finding all of the forces acting on all of the objects is not an
easy task. Usually, the forces point in various directions and
it’s quite easy to lose track of things.

� Solving the equation of motion can be challenging or even
impossible. Depending on the forces, the differential equa-
tion we end up with by using Newton’s second law can be
extremely difficult to solve exactly.6

6 The problems usually handed
to students are exactly those for
which the equation of motion
can be solved quite easily. But for
most real-world applications, the
equations need to be evaluated
numerically.

Let’s consider a simple example.

We stand at the top of the Leaning Tower of Pisa and let a ball
fall to the ground. How is the ball moving?7

7 In other words, our task is to
describe the movement of a freely
falling object.

The only force acting on our ball (neglecting air resistance) is
gravity. Let’s choose our coordinate system such that the z-axis
points upward toward the sky and its origin is exactly at the
point from which we release the ball. The gravitational force can
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then be described by the formula

�F =




0
0

−mg


 . (7.2)

Newton’s second law (Eq. 3.1) tells us
d�p
dt

= �F

�

Eq. 7.2 and �p = m�v

d(m�v)
dt

=




0
0

−mg




�

m = const.

m
d
dt




vx
vy
vz


 =




0
0

−mg




�

✚m

d
dt




vx
vy
vz


 =




0
0
−g


 . (7.3)

Our task is to solve these three equations of motion. Luckily,
we can simply integrate the equations twice since gravity is
constant:

d
dt




vx
vy
vz


 =




0
0
−g




� � t

0
dt� and t → t�

� t

0
dt�

d
dt�




vx
vy
vz


 =

� t

0
dt�




0
0
−g




�




vx(t)
vy(t)
vz(t)


−




vx(0)
vy(0)
vz(0)


 =




0
0

−gt




� � t

0
dt�

� t

0
dt�




vx(t�)
vy(t�)
vz(t�)


−

� t

0
dt�




vx(0)
vy(0)
vz(0)


 =

� t

0
dt�




0
0

−gt




�




x(t)
y(t)
z(t)


−




x(0)
y(0)
z(0)


−




vx(0)t
vy(0)t
vz(0)t


 =




0
0

− 1
2 gt2


 . (7.4)

Next, we need to determine the integration constants

vx(0), vy(0), vz(0), x(0), y(0), z(0)
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using concrete initial conditions.

Since we don’t throw the ball, its initial velocity is zero



vx(0)
vy(0)
vz(0)


 =




0
0
0


 . (7.5)

Moreover, since we put the origin of our coordinate system
exactly at the spot from which we release the ball, we also have




x(0)
y(0)
z(0)


 =




0
0
0


 . (7.6)

Therefore, for our concrete situation, Eq. 7.4 becomes



x(t)
y(t)
z(t)


 =




0
0

− 1
2 gt2


 . (7.7)

These three functions correctly describe how the ball falls down
to the ground. Since there is no force acting in the x and y di-
rection, the location on these axes remains constant. In addition,
gravity pulls the ball in the negative z-direction and that’s why
the ball moves downward.

7.2 The Lagrangian Algorithm

If we want to use the Lagrangian formalism to describe a given
system, our main task is to write down the correct Lagrangian
L. As discussed already in Part I, in classical mechanics the
Lagrangian is simply the difference between the kinetic and
potential energy:

L(q, q̇) = T(q̇)− V(q) . (7.8)

For the kinetic energy of an object we use T = 1
2 m�̇q2. Therefore,

the main difficulty is to specify the potential energy V(q) of the
object in question which possibly consists of various contribu-
tions V(q) = V1(q) + V2(q) + . . . analogous to how there can be
multiple forces.
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Afterwards, we can use the Euler-Lagrange equation (Eq. 4.25)88 We use here and in the following
the notation vq = q̇.

∂L
∂q

=
d
dt

�
∂L
∂vq

�
, (7.9)

to derive the equation of motion. Our final task is then once
more to solve the equation of motion.

Again, as a concrete example, let’s consider the ball that we
drop from the Leaning Tower of Pisa.

The Lagrangian for this system reads

L = T − V =
1
2

m�v2 − mgz

�

=
1
2

m(v2
x + v2

y + v2
z)− mgz (7.10)

where we used Eq. 2.21 for the potential energy of the ball in
the Earth’s gravitational field.

The Euler-Lagrange equation (Eq. 4.25) for the x-coordinate tells
us

∂L
∂x

=
d
dt

�
∂L
∂vx

�

�

Eq. 7.10

∂
�

1
2 m(v2

x + v2
y + v2

z)− mgz
�

∂x
=

d
dt




∂
�

1
2 m(v2

x + v2
y + v2

z)− mgz
�

∂vx




�

0 = m
d
dt

vx . (7.11)

Following exactly the same steps, we find for the y-coordinate

0 = m
d
dt

vy . (7.12)

And using the Euler-Lagrange equation (Eq. 4.25) for the z-
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coordinate yields

∂L
∂z

=
d
dt

�
∂L
∂vz

�

�
Eq. 7.10

∂
�

1
2 m(v2

x + v2
y + v2

z)− mgz
�

∂z
=

d
dt




∂
�

1
2 m(v2

x + v2
y + v2

z)− mgz
�

∂vz




�

−mg = m
d
dt

vz . (7.13)

These three equations (Eq. 7.11, Eq. 7.12, Eq. 7.13) are exactly
the equations of motion that we already derived using the New-
tonian formalism (Eq. 7.3). So it may seem as if the Lagrangian
formalism were merely another way of doing the same thing.
However, take note that in the derivations above, we didn’t
have to think about vectors at all. This is one advantage of the
Lagrangian formalism.

In addition, the Lagrangian formulation of classical mechanics
is always a good choice whenever we are dealing with a system
which is subject to constraints. This may sound abstract, but
constraints are really common. For example, if we want to de-
scribe a pendulum we need to take into account that the object
attached at the end of the string cannot move around freely. In-
stead, the object always remains attached to the string and this
is what we call a constraint.9 Moreover, for any object which 9 We will discuss the pendulum in

detail in Chapter 9.slides along some surface we need to take the constraint that it
will not fall through the surface into account.
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While we can incorporate constraints in the Newtonian for-
malism by introducing so-called constraint forces, this is quite
cumbersome.10 In contrast, in the Lagrangian framework, we10 We will see this explicitly in

Section 9.1. only need to add one or several terms to the Lagrangian which
follow automatically once we’ve identified all constraints for the
given system. Afterwards, we can calculate the equations of mo-
tion, as usual, by using the Euler-Lagrange equation. Why and
how this works is what we will talk about in the next section.

7.2.1 Constraints

We are dealing with constraints whenever an object is attached
to other objects or to its surroundings. As a result, the objects
influence each other and can’t move around freely. A typical
example is when an object is forced to slide along a wire or
along a specific surface.

In mathematical terms, a constraint is a relationship between
coordinates. For example, for a mass attached to a circular loop
with radius l, we have the constraint

x2 + y2 = l2 . (7.14)

In words this constraint encodes that our mass is only allowed
to move in a circle.
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More generally, a constraint is a formula of the form11

11 It is conventional to call this
type of constraint a holonomic
constraint. Take note that there
are other types of constraints
which cannot be written like
this. Such constraints are called
non-holonomic constraints. One
example is when a constraint can
only be formulated in terms of an
inequality

f (q1, q2, . . .) ≥ const. .

We encounter this kind of con-
straint, for example, when we
want to describe an object moving
under the influence of gravity in
the region outside of some sphere
of radius R. Mathematically, this
implies

x2 + y2 + z2 ≥ R2 .

Another instance when we en-
counter non-holonomic constraints
is when they depend on the rates of
change

f (q, q̇, t) = const.

in such a way that we can’t inte-
grate the equation to get something
of the form f (q, t) = const. How-
ever, since there is no general
method to solve systems with non-
holonomic constraints, we need to
evaluate them for each system in-
dividually, and we will not discuss
them any further. Additionally, take
note that it is conventional to call a
constraint which does not explicitly
depend on t scleronomic (Greek
for "rigid") and a constraint with
explicit dependence on t rheonomic
(Greek for "moving").

f (q1, q2, . . . , t) = const. (7.15)

The trick which allows us to incorporate constraints in the La-
grangian formalism is known as the method of Lagrange multi-
pliers and works as follows.12

12 Lagrange multipliers are dis-
cussed in more general terms in
Appendix C.

First of all, we rewrite our constraint equation such that we have
zero on the right-hand side:

f (q1, q2, . . . , t) = const.

∴ f (q1, q2, . . . , t)− const. = 0

∴ g(q1, q2, . . . , t) = 0 , (7.16)

where we defined a new function

g(q1, q2, . . . , t) ≡ f (q1, q2, . . . , t)− const. .

We then take the Lagrangian Lfree that we would use if the
object could move around freely without constraints and add a
new term Lcon which encodes the constraint

Lfull = Lfree + Lcon

= Lfree + λg(q, t) . (7.17)

This additional term has the form Lcon = λg(q, t), where g(q, t)
is the function that describes the constraint and λ is something
new which we call a Lagrange multiplier.13 13 Here, as usual, q is a shorthand

notation for all coordinates q =
(q1, q2, . . .).

This is a clever trick because if we treat λ as a new coordinate,
the Euler-Lagrange equation (Eq. 4.25) for λ tells us
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∂L
∂λ

=
d
dt

�
∂L
∂λ̇

�

�

Eq. 7.17

∂
�

Lfree + λg(q, t)
�

∂λ
=

d
dt




∂
�

Lfree + λg(q, t)
�

∂λ̇




�

λ and λ̇ do not appear in Lfree.

∂
�

λg(q, t)
�

∂λ
=

d
dt




∂
�

λg(q, t)
�

∂λ̇




�
λ̇ appears nowhere.

∂
�

λg(q, t)
�

∂λ
= 0

�

g(q, t) = 0 . (7.18)

This is exactly our constraint formula (Eq. 7.16). Therefore,
we can see that by adding the constraint term λg(q, t) to the
Lagrangian, the constraint becomes a part of our Lagrangian
description.

In addition, by using the Euler-Lagrange equation (Eq. 4.25) for
our ordinary coordinates q, we find

∂L
∂q

=
d
dt

�
∂L
∂q̇

�

�

Eq. 7.17

∂
�

Lfree + λg(q, t)
�

∂q
=

d
dt




∂
�

Lfree + λg(q, t)
�

∂q̇




�

g = g(q, t)

∂
�

Lfree + λg(q, t)
�

∂q
=

d
dt

�
∂Lfree

∂q̇

�

�

rearranging
∂Lfree

∂q
+ λ

∂g(q, t)
∂q

=
d
dt

�
∂Lfree

∂q̇

�
. (7.19)

In Section 4.3.1, we’ve learned that the term on the right-hand
side d

dt

�
∂Lfree

∂q̇

�
is analogous to dp

dt in the Newtonian formalism.

Moreover, the first term on the left-hand side ∂Lfree
∂q describes the

forces.14 Therefore, the last line in Eq. 7.19 tells us that the effect14 Recall that Newton’s second law
reads F = dp

dt . of the constraint (Eq. 7.16) is to add new forces to the equation
of motion. In other words, λ

∂g(q,t)
∂q yields exactly the constraint
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forces, which are cumbersome to find in the Newtonian formu-
lation of classical mechanics.15 15 Once we’ve derived the equation

of motion including the constraint
forces, we can proceed as usual, i.e.,
search for solutions, etc.This demonstrates nicely why the Lagrangian formalism is ex-

tremely powerful. But in the following section we will see that
it gets even better. By using a specific feature of the Lagrangian
formalism, the description of a system involving constraints
becomes even simpler.

To summarize: by using appropriate Lagrange multiplier terms,
we can transform the variational problem with constraints to a
variational problem without constraints.

As a final comment before we move on, take note that if there is
more than one constraint

g1(q, t) = 0

g2(q, t) = 0

... (7.20)

we need to add a Lagrange multiplier term for each constraint:

Lfull = Lfree + λ1g1(q, t) + λ2g2(q, t) + . . . (7.21)

Then using the Euler-Lagrange equation for each Lagrange mul-
tiplier λ1, λ2, . . . yields the corresponding constraint equation.
Moreover, using the Euler-Lagrange equation for the regular co-
ordinate q yields the equation of motion including all constraint
forces:

∂Lfree
∂q

+ λ1
∂g1(q, t)

∂q
+ λ2

∂g2(q, t)
∂q

+ . . . =
d
dt

�
∂Lfree

∂q̇

�
. (7.22)
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7.2.2 Point Transformations and Generalized Coordi-
nates

In the previous section, we’ve learned that whenever we want
to describe a system which is subject to constraints, we simply
need to add Lagrange multiplier terms to the Lagrangian. This
is already a lot easier than figuring out the constraint forces in
the Newtonian formalism. But there is one additional trick we
can use in the Lagrangian formalism which makes the whole
issue even simpler.

First of all, it’s a truism that:

Nature doesn’t care about how we describe her.

This means that we can describe any system in any formulation
of classical mechanics using any coordinate system.16

16 However, take note that the num-
ber of independent coordinates
must be at least equal to the num-
ber of degrees of freedom within
the system. For example, to de-
scribe a free particle moving freely
in three dimensions, you’ll always
need three coordinates, say, (x, y, z)
or (r, φ, θ). Moreover, the formulas
which tell us how the new and old
coordinates are related must be
sufficiently smooth and invertible.
This means that it must be possible
to switch back to the old coordi-
nates. For example, you can’t use
x → 0, y → 0, and z → 0. In other
words, you can’t use completely
wild new coordinates. Any reason-
able choice of new coordinates will
do. In technical terms, the condition
on the map from the old to new
coordinates is that it has to be a
diffeomorphism.

But while we have the freedom to choose any coordinate sys-
tem, not all choices are equally good. In some coordinate sys-
tems, the description of a given system can appear incredibly
complicated, while in a better suited coordinate system, the
description becomes almost trivial.

For example, when we want to describe a pendulum we can,
of course, use the usual Cartesian coordinates (x(t), y(t)) to
describe the location of the bob at any given moment t. But
describing the pendulum is much easier using the angle φ(t)
which parameterizes the distance from the equilibrium position.
We will see this explicitly in Chapter 9.

In general, we call a transformation from one set of coordinates
in configuration space q = (q1, q2, . . .) to a new set of coordi-
nates q� = (q�1, q�2, . . .) a point transformation.17

17 Take note that point transfor-
mations must be reversible, i.e., it
must be possible to switch back to
the original coordinates without
problems. In other words, nothing
is allowed to get lost through the
transformation. Moreover, the total
number of generalized coordinates
is fixed and determines the degrees
of freedom in the system. We need
a specific name because later we
will talk about transformations in
phase space, and like everything
else, coordinate transformations
work a little differently in phase
space. Thus, coordinate transforma-
tions in configuration space q → q�

are called point transformations
and coordinate transformations in
phase space (q, p) → (q�, p�) are
called canonical transformations
(or alternatively contact transforma-
tions). We will talk about canonical
transformations in Section 7.3.1.

We can use the freedom to choose a suitable coordinate system
in any formulation of classical mechanics. However, switching
coordinate systems is not always easy. In particular, in the New-
tonian formalism, we need to transform Newton’s second law
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(Eq. 3.1) by using the transformation rules explicitly.18 This is 18 For example, the acceleration
vector in Cartesian coordinates�a
which appears in Newton’s second
law m�a = �F reads in spherical
coordinates:

�a =
�

r̈ − rθ̇
2 − rϕ̇2sin2θ

�
�er

+
�

rθ̈ + 2ṙθ̇ − rϕ̇2 sin θ cos θ
�
�eθ

+
�
rϕ̈ sin θ + 2ṙϕ̇ sin θ + 2rθ̇ ϕ̇ cos θ

�
�eφ.

Moreover, switching to a new
coordinate system which accelerates
relative to the old coordinate
system usually requires page-long
calculations.

often extremely cumbersome.

In contrast, in the Lagrangian formalism switching coordinates
is always much simpler no matter how complicated your coor-
dinate choice is. This is where the Lagrangian formalism shows
its real strength. In particular:19

19 We will discuss why this is true
below.

The Euler-Lagrange equation (Eq. 4.25) is valid for any

choice of coordinates.

For example, if we want to describe a given system using Carte-
sian coordinates (x, y), the equations

∂L(x, ẋ, y, ẏ)
∂x

=
d
dt

�
∂L(x, ẋ, y, ẏ)

∂ẋ

�

∂L(x, ẋ, y, ẏ)
∂y

=
d
dt

�
∂L(x, ẋ, y, ẏ)

∂ẏ

�
(7.23)

yield the correct equations of motion in terms of x(t) and y(t).

And if we want to use polar coordinates (r, φ), we can use20

20 In general, we have

L̃(q�, q̇�) = L
�

q(q�), q̇(q�, q̇�)
�

,

where q� and q̇� represent our new
coordinates and q, q̇ represent the
old ones. If you’re unsure why and
what this means, have a look at
Appendix D.∂L̃(r, ṙ, φ, φ̇)

∂r
=

d
dt

�
∂L̃(r, ṙ, φ, φ̇)

∂ṙ

�

∂L̃(r, ṙ, φ, φ̇)

∂φ
=

d
dt

�
∂L̃(r, ṙ, φ, φ̇)

∂φ̇

�

(7.24)

to calculate the correct equations of motion in terms of r(t) and
φ(t). In other words, no matter which coordinates we choose,
the Euler-Lagrange equations always look exactly the same.21

21 Formulated differently, the Euler-
Lagrange equation maintains its
general form. In technical terms,
we say the Euler-Lagrange equation
is covariant under arbitrary point
transformations q → q�. Covariant
means that the form of the equation
remains unchanged, i.e., no new
terms appear after the transforma-
tion. But take note that covariant
does not mean invariant. The Euler-
Lagrange equation is only invariant
under invariance transformations
for which

L̃(q�, q̇�) = L(q, q̇)

holds. Only then, the form of the
Euler-Lagrange equation is not
only preserved, but it’s actually
completely equivalent. We discuss
this in more detail in Chapter 10
and Appendix D.

It is conventional to rephrase this by saying that in the La-
grangian formalism, we are free to use generalized coordinates.
In particular, these generalized coordinates are not necessar-
ily quantities with dimension "length". For example, angles
φ do not have dimension length. Moreover, they are coordi-
nates which we calculate through suitable combinations of the
traditional Cartesian coordinates in configuration space. As a
result, the generalized coordinates that we construct this way
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are sometimes difficult to interpret because they are simply
a convenient way to characterize the whole system and there
is no longer a clear connection to individual objects within the
system.22

22 We will discuss in a moment
why we sometimes switch to such
strange coordinates. The main
idea is that we often use whatever
coordinates simplify the Lagrangian
as much as possible. Since the
Euler-Lagrange equations remain
unchanged, this is all we care about.

Before we check that this is true, let’s discuss why this is an
extremely powerful observation.

In the previous section, we’ve learned that in the Lagrangian
formalism, we describe constraints using Lagrange multiplier
terms. We use the Lagrangian that we would use if the object
in question could move around freely Lfree and then add a new
term Lcon which encodes the constraint

Lfull = Lfree + Lcon . (7.25)

This additional term has the form Lcon = λ f (q), where λ is
our Lagrange multiplier and f (q) a function that describes the
constraint.2323 Here, as usual, q is a shorthand

notation for all coordinates q =
(q1, q2, . . .). Moreover, for example,
for a pendulum the function f
reads f (x, y) = x2 + y2 − l2

where l denotes the length of the
pendulum.

An extremely clever idea is that we can use our freedom to
choose suitable coordinates to pick a specific coordinate system
for which the Lagrangian becomes especially simple.

In particular, we can choose new coordinates q� such that
f̃ (q�) = f (q(q�)) vanishes.24 In words, this means that in terms24 In words, this means that we use

the explicit formulas which express
q in terms of the new coordinates
q� to eliminate them from f . Since
we can choose our new coordinates
q� cleverly such that f̃ (q�) = 0,
we certainly have, in general,
f (q�) �= f̃ (q�). The expression
f (q�) means that we use the old
formula for f in terms of the old
coordinates q and simply replace
them directly by q� without using
the transformation formulas. This
is not possible in general, but is
possible for some choices of q�. We
will see this explicitly in Section 9.2.

of the new coordinates q� our object can move around freely.
There are no longer any restrictions when it comes to how our
object can move along the coordinate axis corresponding to
the new q�. Formulated differently, if we find such coordinates
for which the constraint term vanishes, we’ve found the most
natural coordinates to describe our system.25 And rather unsur-

25 Take note that many authors
call those coordinates for which
the constraint terms vanish the
generalized coordinates.

prisingly, the description of the system in terms of these new
coordinates is as simple as it gets.

For example, when we want to describe an object which slides
along the surface of a sphere, mathematically, we have the con-
straint

R2 = x2 + y2 + z2 . (7.26)

In words, this means that our object remains attached to the sur-
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face of the sphere. If we now switch to spherical coordinates26 26 Take note that we do not switch
to arbitrary spherical coordinates
but keep r = R fixed, where R is
the radius of our sphere. These
are the most natural coordinates
for our problem because only
for r = R does the constraint
become implicitly encoded in the
coordinates.

x = R sin φ cos θ

y = R sin φ sin θ

z = R cos φ (7.27)

the constraint equation becomes trivially true, as we can check
explicitly:

R2 = x2 + y2 + z2

�
Eq. 7.27

R2 = (R sin φ cos θ)2 + (R sin φ sin θ)2 + (R cos φ)2

�

R2 = R2 sin2 φ(cos2 θ + sin2 θ) + (R cos φ)2

�

cos2 θ + sin2 θ = 1

R2 = R2 sin2 φ + R2 cos2 φ �

sin2 φ + cos2 φ = 1

R2 = R2 � .

This means that if we switch to these coordinates, the otherwise
necessary constraint term Lcon = λ(x2 + y2 + z2 − R2) simply
vanishes. Therefore, in terms of our new coordinates (θ and
φ), our object can move around freely and we can describe it
without any constraint. This is possible because by choosing the
coordinates in Eq. 7.27, we’ve hard-coded the constraint into our
description of the system.

A second reason why the fact that the Euler-Lagrange equations
hold in any coordinate system is useful is that it allows us to
calculate quite easily what a given system looks like for a non-
inertial observer.27 All we have to do is switch coordinates and 27 For an inertial observer an object

with zero net force acting upon it is
not accelerating. This is Newton’s
first law, which we discussed in
Chapter 3. Non-inertial observers
accelerate relative to inertial ob-
servers.

then use, as usual, the Euler-Lagrange equation. In contrast, in
the Newtonian formalism, we need to introduce so-called fic-
titious forces to describe what observers in non-inertial frames
see.

To summarize:



138 no-nonsense classical mechanics

� The Lagrangian formalism makes it particularly easy to
switch coordinates because the Euler-Lagrange equations
have exactly the same form in all coordinate systems. Our
only task when we want to use new coordinates is to rewrite
the Lagrangian.

� This allows us to simplify problems involving constraints
because we can choose coordinates for which the constraint
terms vanish and the Lagrangian therefore becomes espe-
cially simple.

Now, why does the Euler-Lagrange equation look exactly the
same no matter which coordinates we choose?

The Euler-Lagrange equation reads (Eq. 4.25)

∂L
∂q

− d
dt

�
∂L
∂q̇

�
= 0 . (7.28)

We want to show that no matter which transformation formulas
we use,28

28 As usual, q is our shorthand
notation for all coordinates. This
means that our transformation
formulas read

q�i = q�i(q1, q2, q3, . . .),

i.e., each new coordinate q�i is possi-
bly a function of all old coordinates
q1, q2, . . . q� = q�(q, t)

∴ q̇� = q̇�(q, q̇, t) (7.29)

the Euler-Lagrange equation in terms of the new coordinates

∂L̃
∂q�

− d
dt

�
∂L̃
∂q̇�

�
= 0 , (7.30)

yields the correct equations of motion.29 Here L̃ is the La-

29 This is not trivial because there
could be additional terms through
the transformation q → q�.

grangian that we get by using the replacement rules (Eq. 7.29) in
the original Lagrangian:30

30 We discussed this already in Sec-
tion 5.1. (See Eq. 5.5.) Moreover,
take note that in order to elimi-
nate the original coordinates q, q̇
from the Lagrangian, we need to
invert the transformation formulas
(Eq. 7.29). In other words, to substi-
tute for q, q̇ in L we need to know
how exactly they are related to the
new coordinates

q = q(q�, t)

∴ q̇ = q̇(q�, q̇�, t) .

L̃(q�, q̇�, t) = L
�

q(q�, t), q̇(q�, q̇�, t), t
�

. (7.31)
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Now, to show that the Euler-Lagrange equation holds for any
choice of coordinates, we rewrite the left-hand side of the "new"
Euler-Lagrange equation (Eq. 7.30) in such a way that we can
see that this expression indeed vanishes provided that the
Euler-Lagrange equation in terms of the original coordinates
(Eq. 7.28) holds.

For this demonstration, we need a few puzzle pieces:31 31 We need these puzzle pieces to
translate the "new" Euler-Lagrange
equation (Eq. 7.30) into the lan-
guage of the old coordinates be-
cause only then can we use Eq. 7.28
to show that it is indeed correct.
We will see below that each of the
puzzle pieces is essential.

First:

q̇ =
d
dt

q(q�, t) �

chain rule

=
∂q
∂q�

dq�

dt
+

∂q
∂t � dq�

dt
≡ q̇�

=
∂q
∂q�

q̇� +
∂q
∂t

(7.32)

which implies

∂

∂q̇�
q̇

(7.32)
=

∂

∂q̇�

�
∂q
∂q�

q̇� +
∂q
∂t

�

�

=
∂q
∂q�

. (7.33)

Secondly:

∂L̃
∂q�

(7.31)
=

∂L
�

q(q�, t), q̇(q�, q̇�, t), t
�

∂q� �

chain rule

=
∂L
∂q

∂q
∂q�

+
∂L
∂q̇

∂q̇
∂q�

. (7.34)

And thirdly:

∂L̃
∂q̇�

(7.31)
=

∂L
�

q(q�, t), q̇(q�, q̇�, t), t
�

∂q̇� �

chain rule

=
∂L
∂q̇

∂q̇
∂q̇� �

Eq. 7.33

=
∂L
∂q̇

∂q
∂q�

(7.35)
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which implies:3232 The product rule is derived in
Appendix A.1.

d
dt

∂L̃
∂q̇�

(7.35)
=

d
dt

�
∂L
∂q̇

∂q
∂q�

�

�
product rule

=

�
d
dt

∂L
∂q̇

�
∂q
∂q�

+
∂L
∂q̇

�
d
dt

∂q
∂q�

�
�

=

�
d
dt

∂L
∂q̇

�
∂q
∂q�

+
∂L
∂q̇

∂q̇
∂q�

. (7.36)

With these formulas at hand, let’s rewrite the "new" Euler-
Lagrange equation (Eq. 7.30)

0 !
=

∂L̃
∂q�

− d
dt

�
∂L̃
∂q̇�

�

�

Eq. 7.34, Eq. 7.36

=

�
∂L
∂q

∂q
∂q�

+
∂L
∂q̇

∂q̇
∂q�

�
−
��

d
dt

∂L
∂q̇

�
∂q
∂q�

+
∂L
∂q̇

∂q̇
∂q�

�

�

✚
✚✚

∂L
∂q̇

∂q̇
∂q�

=
∂L
∂q

∂q
∂q�

−
�

d
dt

∂L
∂q̇

�
∂q
∂q� �

rearranging terms

=

�
∂L
∂q

− d
dt

∂L
∂q̇

�
∂q
∂q� �

Eq. 7.28

= (0)
∂q
∂q� �

= 0 � (7.37)

We’ve therefore demonstrated that the "new" Euler-Lagrange
equation is indeed fulfilled provided that the Euler-Lagrange
equations for the original coordinates (Eq. 7.28) holds. There-
fore, Eq. 7.30 correctly describes the system in terms of the new
coordinates.

However, take note that we’ve only shown that the Euler-
Lagrange equation has the same form no matter which coor-
dinates we use. In technical terms, we say the Euler-Lagrange
equation is only covariant but not invariant under general coor-
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dinate transformations. Only for very special coordinate trans-
formations is the Euler-Lagrange equation actually invariant.
We will talk a bit more about the distinction between covariance
and invariance in Chapter 10.33 33 Covariance and invariance are

also discussed in Appendix D.

There is one more thing that we need to talk about before we
move on and discuss how we can solve problems using the
Hamiltonian formalism.

7.2.3 Gauge Transformations

In addition to the point transformations we discussed in the
previous section, we can discover even more freedom in how
we describe things. In particular, not only can we change our
configuration space coordinates q, but we can also change the
Lagrangian itself and consequently also the action itself without
changing the Euler-Lagrange equations. This is possible because
the number which the action functional S[q(t)] assigns to each
path q(t) is not really important. Instead, the only thing we
really care about is the relative difference between the numbers
assigned to different paths.

For example, if we add some number C to the action functional

S → S + C , (7.38)

the action of all paths is shifted by the same constant amount.
Therefore, the path of least action will still be the path of least
action:
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For a slightly different perspective, recall that the action func-
tional assigns an ordinary number to each possible path. Math-
ematically, these numbers live simply on a number line denoted
by R.34 However, it doesn’t matter how we choose our coor-34 The symbol R denotes the real

numbers. dinate system for this space (in which the values the action
assigns to paths live). In particular, we can freely choose where
we put the origin of this space.

For the Lagrangian, this freedom implies that we can add new
terms to the Lagrangian L → L + LG as long as these terms LG

fulfill a few special conditions.

In particular, the Euler-Lagrange equation does not change
when we add the total time derivative of any (differentiable)
function F which only depends on the location q and possibly
the time coordinate t to the Lagrangian3535 We will show this explicitly

below.

L → L� = L +
dF(q, t)

dt
. (7.39)

We call this kind of transformation a gauge transformation.

To understand why we have this freedom, recall that we derived
the Euler-Lagrange equation by invoking the principle of least
action.36 Solutions of the Euler-Lagrange equation yield the36 We did this explicitly in Sec-

tion 4.3. path of least action which correctly describes the time evolution
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of the system in question. Moreover, L and L� differ by Ḟ ≡
dF(q,t)

dt . This allows us to calculate:

S[q(t)] =
� t f

ti

dt L
�

q(t), q̇(t), t
�

S�[q(t)] =
� t f

ti

dt L�
�

q(t), q̇(t), t
�

=
� t f

ti

dt

�
L
�

q(t), q̇(t), t
�
+ Ḟ

�
q(t), t

��

� � b

a
dx

d f (x)
dx

= f (b)− f (a)

=

�� t f

ti

dt L
�
+ F

�
q(t f ), t f

�
− F

�
q(ti), ti

�

= S + F
�

q(t f ), t f

�
− F

�
q(ti), ti

�
. (7.40)

But F
�

q(t f ), t f

�
− F

�
q(ti), ti

�
is a constant which only depends

on q(t f ), q(ti), t f and ti.37 The initial and final points are fixed. 37 Take note that we are only able
to reach this conclusion because
F does not depend on q̇. If we use
a function G which additionally
depends on the velocities G =
G(q, q̇, t), the additional term we
get can be different for different
paths because the initial and final
velocities q̇(ti), q̇(t f ) are not fixed.
Only the initial and final position
in configuration space are fixed
when we consider all possible paths
between them. We discussed this in
Section 4.3.

Therefore, this additional term in S� only provides an equal shift
of the action for all paths. So the path of least action of S will
also be the path of least action of S�.

Therefore, we can conclude that the Euler-Lagrange equation
indeed does not change under gauge transformations (Eq. 7.39).

In addition, we can also check explicitly that the Euler-Lagrange
equation (Eq. 4.25) remains unaffected if we add the total time-
derivative of a function F(q, t) to the Lagrangian:38

38 As usual, feel free to skip the fol-
lowing somewhat lengthy demon-
stration.

∂L�

∂q
=

d
dt

�
∂L�

∂q̇

�

�

L� = L +
dF
dt

∂
�

L + dF
dt

�

∂q
=

d
dt




∂
�

L + dF
dt

�

∂q̇




�

rearranging terms
∂L
∂q

+
∂

∂q
dF
dt

=
d
dt

�
∂L
∂q̇

�
+

d
dt

∂

∂q̇
dF
dt

. (7.41)

We want to show that this is equal to

∂L
∂q

=
d
dt

�
∂L
∂q̇

�
, (7.42)
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which is the Euler-Lagrange equation for the original La-
grangian. In other words, if we can show that3939 These are the additional terms in

Eq. 7.41 which need to vanish such
that we get Eq. 7.42.

∂

∂q
dF
dt

=
d
dt

∂

∂q̇
dF
dt

, (7.43)

we’ve proven that the Euler-Lagrange equation remains unaf-
fected by gauge transformations (L → L + dF(q,t)

dt , Eq. 7.39).

To show this, we use the general formula for the total derivative
of a function F(q, t):4040 The total derivative is explained

in Appendix A.3.

dF
dt

=
∂F
∂q

dq
dt

+
∂F
∂t

. (7.44)

This yields

∂

∂q
dF
dt

!
=

d
dt

∂

∂q̇
dF
dt

Eq. 7.43

�

Eq. 7.44
∂

∂q

�
∂F
∂q

dq
dt

+
∂F
∂t

�
!
=

d
dt

∂

∂q̇

�
∂F
∂q

dq
dt

+
∂F
∂t

�
. (7.45)

On the right-hand side, we can use the fact that since F only
depends on q and t but not on q̇, we have ∂

∂q̇
∂F
∂t = 0 and ∂

∂q̇
∂F
∂q =

0. Moreover, ∂
∂q̇

dq
dt = 1 since dq

dt ≡ q̇. Therefore41, ∂
∂q̇

∂F
∂q

dq
dt = ∂F

∂q
41 We use the product rule

∂

∂q̇
∂F
∂q

dq
dt

=
� ∂

∂q̇
∂F
∂q

� dq
dt

+
∂F
∂q

� ∂

∂q̇
dq
dt

�

=
�

0
� dq

dt
+

∂F
∂q

�
1
�

=
∂F
∂q

.

The product rule is derived in
Appendix A.1.

and using this our equation reads

∂

∂q

�
∂F
∂q

dq
dt

+
∂F
∂t

�
!
=

d
dt

∂F
∂q

. (7.46)

To show that the left-hand and right-hand sides are indeed
equal, we use our general formula for the total time derivative
once more. This time, we use it for ∂F

∂q ≡ G(q, t) which appears
on the right-hand side:42

42 G is simply the name we give to
the expression on the right-hand
side.

d
dt

G =
∂G
∂q

dq
dt

+
∂G
∂t

general formula

�

G ≡ ∂F
∂q

d
dt

∂F
∂q

=
∂

∂q
∂F
∂q

dq
dt

+
∂

∂t
∂F
∂q

(7.47)
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If we plug this into Eq. 7.46, we find:

∂

∂q

�
∂F
∂q

dq
dt

+
∂F
∂t

�
!
=

d
dt

∂F
∂q

this is Eq. 7.46

�

Eq. 7.47
∂

∂q

�
∂F
∂q

dq
dt

+
∂F
∂t

�
!
=

∂

∂q
∂F
∂q

dq
dt

+
∂

∂t
∂F
∂q �

rearranging terms
∂

∂q
∂F
∂q

dq
dt

+
∂

∂q
∂F
∂t

!
=

∂

∂q
∂F
∂q

dq
dt

+
∂

∂t
∂F
∂q � ∂

∂q
∂F
∂t

=
∂

∂t
∂F
∂q

∂

∂q
∂F
∂q

dq
dt

+
∂

∂t
∂F
∂q

!
=

∂

∂q
∂F
∂q

dq
dt

+
∂

∂t
∂F
∂q

�

In the final step, we used the fact that partial derivatives com-
mute, which is a property that holds in general.43 43 The freedom to switch partial

derivatives is known as Schwarz’s
theorem.

We’ve therefore successfully demonstrated that the Euler-
Lagrange equation is completely unaffected by gauge trans-
formations.

As a final comment, take note that we can also add an arbitrary
constant C to the Lagrangian44 44 This is, of course, a special case of

the more general transformation in
Eq. 7.39. For example, for F(q, t) =
Ct we have dF

dt = C.
L → L� = L + C (7.48)

because the Euler-Lagrange equation (Eq. 4.25) only involves
derivatives of the Lagrangian:

∂L�

∂q
=

d
dt

�
∂L�

∂q̇

�

�

L� = L + C

∂
�

L + C
�

∂q
=

d
dt




∂
�

L + C
�

∂q̇




�

rearranging terms
∂L
∂q

+
∂

∂q
C =

d
dt

�
∂L
∂q̇

�
+

d
dt

∂

∂q̇
C

�

C is constant
∂L
∂q

=
d
dt

�
∂L
∂q̇

�
� (7.49)

This freedom to add constants to the Lagrangian is equiva-
lent to our freedom to shift any given potential by a constant
amount45

45 We use a minus sign because
this allows us to see the equality
to what we did previously. But the
minus sign is not important because
we could always use a different
constant C̃ = −C instead and then
we would have

V → V� = V − C = V + C̃.
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V → V� = V − C (7.50)

since4646 We have this freedom because
we can only measure the resulting
forces but not potentials themselves.
We have F = − ∂V

∂q and therefore a
constant shift (Eq. 7.50) leaves the
resulting force unchanged

F� = − ∂V�

∂q

= − ∂(V − C)
∂q

= − ∂V
∂q

= F .

We talked about this in Sec-
tion 2.1.3.

L = T − V → L� = T − (V − C) = T − V + C = L + C . (7.51)

But in the Lagrangian formalism, we have a lot more freedom.
Not only we can add some constant but also the total derivative
of an arbitrary function (as long as it only depends on q and t).

Moreover, not only we can add a constant to the action but we
can also multiply it by a constant (non-zero) factor

S → kS . (7.52)

Such a constant factor has no influence on which path is the
path of least action because the action involved in all paths is
scaled equally:

Therefore, rescaling the action by some arbitrary constant factor
has no influence on the dynamics of the system.

This observation directly implies that we can also scale the
Lagrangian by a constant factor

L → L� = kL . (7.53)

We can also see this by observing that the Lagrangian appears
on both sides of the Euler-Lagrange equation (Eq. 4.25) and
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therefore, such a constant factor simply drops out:

∂L�

∂q
=

d
dt

�
∂L�

∂q̇

�

�

L� = kL, Eq. 7.53

∂
�

kL
�

∂q
=

d
dt




∂
�

kL
�

∂q̇




�

rearranging terms

k
∂L
∂q

= k
d
dt

�
∂L
∂q̇

�

�

✄k
∂L
∂q

=
d
dt

�
∂L
∂q̇

�
� (7.54)

To summarize: there are always infinitely many Lagrangians
describing the same system. The situation is somewhat analo-
gous to how there is usually more than one word to describe a
particular thing within a given language (synonyms).47 47 Recall that the various formu-

lations of classical mechanics are
analogous to how we can describe
the same thing using different lan-
guages. Here we describe the same
thing in different ways using the
same language.

More specifically:

� We always have the freedom to add a constant to our La-
grangian (Eq. 7.48)

L → L� = L + C (7.55)

and to multiply it by some constant factor (Eq. 7.53)

L → L� = kL (7.56)

because such transformations have no effect on the Euler-
Lagrange equation.

� But there is even more freedom since we can add the total
derivative of a general (differentiable) function F to our La-
grangian, as long as it only depends on the location q and
time coordinate t (Eq. 7.39)

L → L� = L +
dF(q, t)

dt
. (7.57)

Above, we’ve demonstrated explicitly that any such term
drops out from the Euler-Lagrange equation and therefore
has no effect on the equations of motion.
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� In general, we call such transformations of the Lagrangian
itself gauge transformations.

� Additionally, we discussed this from a slightly different per-
spective. In Eq. 7.40 we demonstrated explicitly that a gauge
transformation leads to an equal shift of the action for all
paths. Therefore, the path of least action is the same for the
original and shifted action functional. In physical terms, this
means that we find exactly the same (correct) path using the
original and the gauge transformed action functional.

Now, it’s time to move on and talk about how all this works in
the Hamiltonian formalism.

7.3 The Hamiltonian Algorithm

If we want to use the Hamiltonian formalism to describe a given
system, our main task is to write down the correct Hamiltonian
H. However, usually this requires a few intermediate steps.

� First of all, we write down the Lagrangian L = T − V.

� Then we calculate the corresponding generalized momenta
p = ∂L

∂q̇ .

� Afterwards, we solve the formulas we found in the previous
step for q̇.

� This allows us to eliminate q̇ from L = L(q, q̇, t) and to use
the formula

H(q, p, t) = pq̇(q, p, t − L(q, q̇(q, p, t), t) . (7.58)

Finally, as soon as we’ve successfully calculated the Hamilto-
nian H, we can use Hamilton’s equations (Eq. 5.15)

dp
dt

= −∂H
∂q

dq
dt

=
∂H
∂p

, (7.59)
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to derive the equation of motion.

As a concrete example, let’s discuss the falling ball a third time.

In Section 7.2, we already calculated the correct Lagrangian
(Eq. 7.10)

L =
1
2

m(v2
x + v2

y + v2
z)− mgz . (7.60)

Using this Lagrangian, we can calculate the conjugate mo-
menta:48 48 We use again the notation vq = q̇.

px =
∂L
∂vx

(7.60)
=

∂
�

1
2 m(v2

x + v2
y + v2

z)− mgz
�

∂vx �

= mvx

py =
∂L
∂vy

(7.60)
=

∂
�

1
2 m(v2

x + v2
y + v2

z)− mgz
�

∂vy �

= mvy

pz =
∂L
∂vz

(7.60)
=

∂
�

1
2 m(v2

x + v2
y + v2

z)− mgz
�

∂vz �

= mvz . (7.61)

Inverting these equations yields

vx =
px

m
, vy =

py

m
, vz =

pz

m
. (7.62)

This allows us to derive the Hamiltonian49

49 Take note that the final result
is indeed simply H = T + V.
However, the method we used here
to derive the Hamiltonian is more
general, while H = T + V is not
always correct.

H = �p · �̇q − L �

Eq. 7.60

= (pxvx + pyvy + pzvz)−
�1

2
m(v2

x + v2
y + v2

z)− mgz
�

�

Eq. 7.62

=
�

px
px

m
+ py

py

m
+ pz

pz

m

�

−
�

1
2

m
� � px

m

�2
+
� py

m

�2
+
� pz

m

�2 �
− mgz

�

�

rearranging terms

=
1
2

� p2
x

m
+

p2
y

m
+

p2
z

m

�
+ mgz . (7.63)
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Finally, we can put this Hamiltonian into Hamilton’s equations.
For the x-coordinate we find

dpx

dt
= −∂H

∂x �

Eq. 7.63

= −
∂

�
1
2

�
p2

x
m +

p2
y

m + p2
z

m

�
+ mgz

�

∂x �

= 0 (7.64)

dx
dt

=
∂H
∂px �

Eq. 7.63

=

∂

�
1
2

�
p2

x
m +

p2
y

m + p2
z

m

�
+ mgz

�

∂px �

=
px

m
. (7.65)

We can then use Eq. 7.65 to eliminate px from Eq. 7.64:

dpx

dt
= 0 this is Eq. 7.64�

Eq. 7.65

d
�

m dx
dt

�

dt
= 0 �

m = const.

m
d2x
dt2 = 0 . (7.66)

Analogously, for the y-coordinate we find

m
d2y
dt2 = 0 . (7.67)
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Moreover, for the z-coordinate we find

dpz

dt
= −∂H

∂z �

Eq. 7.63

= −
∂

�
1
2

�
p2

x
m +

p2
y

m + p2
z

m

�
+ mgz

�

∂z �

= −mg (7.68)

dz
dt

=
∂H
∂pz �

Eq. 7.63

=

∂

�
1
2

�
p2

x
m +

p2
y

m + p2
z

m

�
+ mgz

�

∂pz �

=
pz

m
. (7.69)

We can then use Eq. 7.69 to eliminate pz from Eq. 7.68:

dpz

dt
= −mg this is Eq. 7.68�

Eq. 7.69

d
�

m dz
dt

�

dt
= −mg �

m = const.

m
d2z
dt2 = −mg . (7.70)

These three equations (Eq. 7.66, Eq. 7.67, Eq. 7.70) are exactly
the equations of motion which we already derived using the
Newtonian formalism (Eq. 7.3) and Lagrangian formalism
(Eq. 7.11, Eq. 7.12, Eq. 7.13). However, the Hamiltonian way
to derive them was far more cumbersome. So you’ll probably
not be surprised when I tell you that the real advantage of the
Hamiltonian method is not a practical but mostly a conceptual
one.

To understand this, we need to talk once more about coordinate
and gauge transformations.
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7.3.1 Canonical Transformations and Canonical Co-
ordinates

We already discussed in Section 7.2.2 that switching coordi-
nates is often a powerful tool. In particular, we’ve learned that
the Euler-Lagrange equation remains valid no matter which
coordinates we choose.

Now here is some good news: (almost) exactly the same state-
ment is true for the Hamiltonian formalism and Hamilton’s
equations. Since we end up with the Hamiltonian formalism by
modifying the Lagrangian formalism a little bit, this shouldn’t
be too surprising.5050 This was shown in Chapter 5.

However, we need to be careful. In the Lagrangian formal-
ism, we describe any system using locations q in configuration
space, and the coordinates we use to describe them can be cho-
sen freely. In the Hamiltonian formalism, we describe systems
in terms of the locations q and momenta p. So the freedom to
choose coordinates for the locations q carries over to the Hamil-
tonian formalism.51 But additionally, a general coordinate trans-51 We will show this explicitly

below. formation in phase space intermingles location and momentum
coordinates while a transformation in configuration space only
mixes location coordinates.

In other words, in the Hamiltonian formalism we have even
more freedom to choose coordinates.5252 Formulated differently, in the

Hamiltonian formulation of me-
chanics, we have twice as many
variables and this widens the realm
of possible transformations. This is
one of the advantages of the Hamil-
tonian formalism. In Section 11.1,
we will see that it’s possible to use
this freedom to switch to coordi-
nates in which the equations of
motion are trivial to solve.

But we don’t have absolute freedom. Although we act as if q
and p are completely independent parameters, there is a close
connection between them since:53

53 This is the general definition of
the conjugate momentum as given
in Eq. 4.29.

p ≡ ∂L
∂q̇

. (7.71)

In particular, there is a direct connection between each location
coordinate q (to be precise: its rate of change q̇) and each mo-
mentum coordinate p. For exactly this reason, we often call p in
this context conjugate momenta.
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Since there is a close connection between the two, we can’t
transform our location and momentum coordinates completely
arbitrarily and still expect that Hamilton’s equations remain
valid. The interplay between the locations and momenta is
precisely what determines the dynamics within the system and
therefore we can’t change them too wildly.54 54 From a slightly different per-

spective, we can imagine that if we
change to wildly new coordinates
and then try to calculate the dy-
namics as usual using Hamilton’s
equations, we find that the system
behaves completely differently. For-
mulated differently, if we switch to
such coordinates and don’t modify
Hamilton’s equations appropriately,
we end up with new dynamical
rules which no longer describe our
original system appropriately.

In other words, there are important restrictions which our co-
ordinate transformations q → Q(q, p) and p → P(q, p) must
fulfill.55 Good transformations respect the structure of the

55 Take note that transformations
in configuration space are of the
form q → Q(q). The corresponding
transformation of q̇ follows auto-
matically since q̇ is defined as the
time derivative of q.

Hamiltonian formalism and we call them canonical transfor-
mations.56

56 Take note that sometimes the
word contact transformation is
used instead of canonical transfor-
mation.

Moreover, we call good coordinates which we can use in the
Hamiltonian formalism canonical coordinates.57 Only if we

57 With enough mathematical
shrewdness you can, of course,
use non-canonical coordinates. But
this requires a modification of the
Hamiltonian formalism.

use canonical coordinates can we use Hamilton’s equations in
their usual, simple form. In other words, a canonical transfor-
mation is a switch in coordinates which does not "break" our
Hamiltonian framework.

The term "canonical" is used because Hamilton’s equations are
often the starting point for advanced investigations in classical
mechanics and are therefore so important that they are often
called the canonical equations.

Our task is therefore to calculate which conditions suitable
coordinates (and transformations between them) have to fulfill.
Let’s start by deriving the conditions canonical coordinates have
to fulfill. In a second step, we will then take a closer look at
canonical transformations.

We want to derive a condition on our new coordinates (Q, P)
which makes sure that Hamilton’s equations remain valid. In
particular, this means that we now investigate which properties
our new coordinates must have in order that the time evolution
of the system is described by the simple equations58

58 We are only interested in co-
ordinates in which Hamilton’s
equations remain valid. What we
have here are Hamilton’s equations
(Eq. 5.15):

dp
dt

= − ∂H
∂q

dq
dt

=
∂H
∂p

,

in terms of the new coordinates.
The important thing is that the form
of the equations is exactly the same
and no new terms are necessary on
the left-hand or right-hand sides.
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dQ
dt

=
∂H̃
∂P

dP
dt

= −∂H̃
∂Q

, (7.72)

where H̃(Q, P) = H
�

q(Q, P), p(Q, P)
�

is the original Hamilto-

nian rewritten in terms of the new coordinates.5959 Once more it is important to keep
in mind that, in general, we have
H̃(Q, P) �= H(Q, P). We discussed
this subtlety in Section 5.1 and you
can find a few more comments in
Appendix D.

In general, we have some formulas which relate the old coordi-
nates (q, p) to the new coordinates (Q, P):60

60 In words, this means that our new
coordinates are defined as some
function of the old coordinates.
For example, if we switch from
Cartesian coordinates to polar
coordinates, we have

r(x, y) =
�

x2 + y2

φ(x, y) = arccos

�
x�

x2 + y2

�
.

Q = Q(q, p) , P = P(q, p) . (7.73)

In Section 5.1.1, we learned that the time-evolution of any phase
space function is described by Hamilton’s general equation of
motion (Eq. 5.36), which we recite here for convenience:

d
dt

F = {F, H} . (7.74)

Since our new coordinates (Q, P) are defined as functions of the
old coordinates (q, p) (Eq. 7.73), we have

d
dt

Q = {Q, H}q,p =
∂Q
∂q

∂H
∂p

− ∂Q
∂p

∂H
∂q

d
dt

P = {P, H}q,p =
∂P
∂q

∂H
∂p

− ∂P
∂p

∂H
∂q

. (7.75)

Here we’ve added subscripts to the Poisson brackets to remind
us that we need to evaluate them in terms of the old coordinates
(q, p).61 We are not finished, because we still have expressions

61

{A, B}q,p ≡ ∂A
∂q

∂B
∂p

− ∂A
∂p

∂B
∂q

.

This is the definition of the Poisson
bracket as given in Eq. 5.33.

involving the old coordinates and the original Hamiltonian H
on the right-hand side.

To change this, we can invert the formulas in Eq. 7.73.62 This

62 For example, for the switch from
Cartesian to polar coordinates this
would mean that we use

x = r cos φ

y = r sin φ .
yields formulas which allow us to calculate what the Hamilto-
nian looks like in terms of the new coordinates:

H(q, p)
Eq. 7.73−→ H

�
q(Q, P), p(Q, P)

�
≡ H̃(Q, P) . (7.76)

This allows us to evaluate the partial derivatives that appear in
Eq. 7.75 using the chain rule:63

63 Recall that our goal is to calculate
the equations of motion for our
new coordinates Q and P which no
longer depend on the old coordi-
nates. See Eq. 7.72. The chain rule is
explained in Appendix A.4.
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∂H
�

q(Q, P), p(Q, P)
�

∂q
(7.76)
=

∂H̃(Q, P)
∂q �

chain rule

=
∂H̃
∂Q

∂Q
∂q

+
∂H̃
∂P

∂P
∂q

∂H
�

q(Q, P), p(Q, P)
�

∂p
(7.76)
=

∂H̃(Q, P)
∂p �

chain rule

=
∂H̃
∂Q

∂Q
∂p

+
∂H̃
∂P

∂P
∂p

. (7.77)

Substituting these expression into the first line in Eq. 7.75 yields

d
dt

Q =
∂Q
∂q

∂H
∂p

− ∂Q
∂p

∂H
∂q �

Eq. 7.77

=
∂Q
∂q

�
∂H̃
∂Q

∂Q
∂p

+
∂H̃
∂P

∂P
∂p

�
− ∂Q

∂p

�
∂H̃
∂Q

∂Q
∂q

+
∂H̃
∂P

∂P
∂q

�

�

✟✟✟✟✟∂Q
∂q

∂H̃
∂Q

∂Q
∂p

=
∂Q
∂q

∂H̃
∂P

∂P
∂p

− ∂Q
∂p

∂H̃
∂P

∂P
∂q �

rearranging terms

=
∂H̃
∂P

�
∂Q
∂q

∂P
∂p

− ∂Q
∂p

∂P
∂q

�

�

definition of { , }, Eq. 5.33

=
∂H̃
∂P

{Q, P}q,p . (7.78)

Analogously, for the second line in Eq. 7.75 we find

d
dt

P =
∂P
∂q

∂H
∂p

− ∂P
∂p

∂H
∂q �

Eq. 7.77

=
∂P
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�
∂H̃
∂Q

∂Q
∂p

+
∂H̃
∂P

∂P
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�
− ∂P

∂p

�
∂H̃
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∂Q
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+
∂H̃
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∂P
∂q

�

�

✟✟✟✟∂P
∂q

∂H̃
∂P

∂P
∂p

=
∂P
∂q

∂H̃
∂Q

∂Q
∂p

− ∂P
∂p

∂H̃
∂Q

∂Q
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rearranging terms

=
∂H̃
∂Q

�
∂P
∂q

∂Q
∂p

− ∂P
∂p

∂Q
∂q

�

�

rearranging terms

= − ∂H̃
∂Q

�
∂Q
∂q

∂P
∂p

− ∂Q
∂p

∂P
∂q

�

�

definition of { , }, Eq. 5.33

= − ∂H̃
∂Q

{Q, P}q,p . (7.79)
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Now compare this to Eq. 7.72, which is what we want our
equations of motion to look like.6464 For your convenience: Eq. 7.72

reads

dQ
dt

=
∂H̃
∂P

dP
dt

= − ∂H̃
∂Q

.

We can see that Eq. 7.78/Eq. 7.79 and Eq. 7.72 are equal if65

65 Strictly speaking, we have

{Q, P}q,p = k,

where k is some arbitrary non-zero
number, which would work, too,
because we can always absorb such
a constant in our new Hamiltonian

≈
H ≡ kH̃.

Therefore, such a constant would
not affect the form of the equations.
However, it is conventional to choose
k = 1 because usually we are not
interested in such a change of scale.

{Q, P}q,p = 1 . (7.80)

We can therefore conclude that only if our new coordinates
(Q, P) fulfill this condition will Hamilton’s equations remain
valid. Therefore, this is the condition good, new coordinates
must fulfill. Formulated differently, Eq. 7.80 is the defining
condition of canonical coordinates. Any set of coordinates
which fulfills this condition is canonical. For this reason, we call
Eq. 7.80 the canonical Poisson bracket relation.

So whenever someone hands us some wild new coordinates
like, for example,6666 These are indeed extremely useful

coordinates, at least when we want
to describe the harmonic oscillator.
We will discuss this in Section 8.5. Q =

�
2p
mω

sin q

P =
�

2mωp cos q (7.81)

we can check immediately if this is a valid choice by calculating

{Q, P}q,p =
∂Q
∂q

∂P
∂p

− ∂Q
∂p

∂P
∂q �

=

∂

��
2p
mω sin q

�

∂q
∂
��

2mωp cos q
�

∂p
−

∂

��
2p
mω sin q

�

∂p
∂
��

2mωp cos q
�

∂q �

=

�
2p
mω

cos q
�

mω

2p
cos q − 1�

2mωp
sin q

�
2mωp(− sin q)

�

= cos2 q + sin2 q �

= 1 � (7.82)

This tells us that the new coordinates in Eq. 7.81 are indeed
canonical and therefore are a valid choice.



algorithms and tools 157

For an alternative perspective on why the condition in Eq. 7.80
is so important, we can investigate how Hamilton’s general
equation (Eq. 5.36) changes under phase space transforma-
tions.67 Our goal is to show that as long as {Q, P}q,p = 1, we 67 Reminder: Eq. 5.36 reads

dF
dt

= {F, H}q,p.
have

dF̃
dt

= {F̃, H̃}Q,P , (7.83)

where F̃ and H̃ are the functions that we get if we substitute q, p
with their expressions in terms of Q and P, i.e., q(Q, P), p(P, Q):

F̃(Q, P) ≡ F
�

q(Q, P), p(Q, P)
�

H̃(Q, P) ≡ H
�

q(Q, P), p(Q, P)
�

. (7.84)

If we can demonstrate this, we have proven that Hamilton’s
general equation is valid for any choice of coordinates that
fulfill {Q, P}q,p = 1, i.e., all canonical coordinates.

So let’s check this explicitly:

dF
dt

= {F, H}q,p

�

substitute old coordinates

∴
dF
�

q(Q, P), p(Q, P)
�

dt
= {F

�
q(Q, P), p(Q, P)

�
, H

�
q(Q, P), p(Q, P)

�
}q,p

�

Eq. 7.84

∴ dF̃
dt
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�

def. of { , }, Eq. 5.34
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Eq. 7.77
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expanding the products
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∴ dF̃
dt

=
∂F̃
∂Q

∂Q
∂q

∂H̃
∂P

∂P
∂p

+
∂F̃
∂P

∂P
∂q

∂H̃
∂Q

∂Q
∂p
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∂Q
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sharp observation

∴ dF̃
dt

=

�
∂F̃
∂Q

∂H̃
∂P

− ∂F̃
∂P

∂H̃
∂Q

��
∂Q
∂q

∂P
∂p

− ∂Q
∂p

∂P
∂q

�
�

def. of {, }q,p and {, }Q,P

∴ dF̃
dt

= {F̃, H̃}Q,P{Q, P}q,p (7.85)

Therefore, Hamilton’s general equation (Eq. 5.36) remains valid
for all new coordinates for which {Q, P}q,p = 1 (Eq. 7.80) holds.

Now that we’ve established how we can identify canonical co-
ordinates, we want to understand the transformations between
them a little better.

In other words, we have talked so far about canonical coordi-
nates and now we want to talk about canonical transformations.
Of course, these two notions are directly connected and each
new set of canonical coordinates Q, P comes necessarily with a
canonical transformation that tells us how the old coordinates
are related to the new ones Q = Q(q, p), P = P(q, p).

But it makes sense to study canonical transformations in a bit
more detail because we have not yet developed any understand-
ing of how we can use them.

There are three approaches that we will talk about in the fol-
lowing sections. Each approach will reveal something important
about canonical transformations.

� First, to get some rough understanding for what canonical
transformations are, we translate the transformations we
already know (point transformations, gauge transformations)
into the language of the Hamiltonian formalism.6868 We discussed point transforma-

tions in Section 7.2.2 and gauge
transformations in Section 7.2.3.

We will discuss how this works in Section 7.3.2.

� A second approach is to study (infinitesimally) small canon-
ical transformations. Studying (infinitesimally) small trans-
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formations is a standard approach in physics because un-
derstanding them is much easier than understanding large
ones.

Moreover, large transformations can be generated by combin-
ing many small ones. Often, a small set of small transforma-
tions is sufficient to understand all possible large transforma-
tions.69 69 In mathematical terms, this means

that we study the corresponding
Lie algebra instead of the Lie group
itself.Infinitesimal transformations are especially important in the

context of Noether’s theorem which establishes a connection
between conserved quantities and symmetries. Noether’s
theorem is the topic of Chapter 10, and in Section 7.3.3, we
will talk about infinitesimal canonical transformations.

� Finally, there is a completely general method for constructing
canonical transformations which is especially important for
practical applications. This method is based on so-called
generating functions and allows us to find exactly those
canonical transformations which simplify a given problem.

We will talk about generating functions and how they help us
to categorize canonical transformations in Section 7.3.4.

We will start by studying transformations that we already know.
In particular, we will see that point transformations in con-
figuration space correspond to a particular type of canonical
transformation in phase space.

Moreover, the second type of allowed transformation that we
discovered in the Lagrangian formalism (gauge transforma-
tions) corresponds to another type of canonical transforma-
tions:70

70 We discussed point transforma-
tions in Section 7.2.2 and gauge
transformations in Section 7.2.3.

All this is summarized in the following diagram:
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configuration space:

point transformation
q → Q = Q(q)
q̇ → Q̇ = ∂Q

∂q q̇
L(q, q̇, t) → L̃ = L̃(Q, Q̇, t)

��

gauge transformation
q → Q = q
q̇ → Q̇ = q̇

L → L� = L + dF(q,t)
dt

��

phase space:

canonical transformation
q → Q = Q(q)
p → P = ∂q

∂Q p
H → H̃ = H̃(Q, P, t)

canonical transformation
q → Q = q

p → P = p + ∂F(q,t)
∂q

H → H� = H − ∂F(q,t)
∂t

7.3.2 Canonical Point and Gauge Transformations

First of all, let’s check that point transformations in configura-
tion space do indeed correspond to canonical transformations
in phase space. In addition, this allows us to understand exactly
how a change of coordinates (e.g., rectangular coordinates to
polar coordinates) affects our phase space description. In par-
ticular, we see that such a change in coordinates modifies the
Hamiltonian and the canonical momenta directly. Moreover,
this allows us to understand that point transformations are one
important class of canonical transformations.7171 As mentioned above, we’ll talk

about a second class of canonical
transformations afterwards and
about canonical transformations in
more general terms in Section 7.3.4.

A point transformation in configuration space reads

q → Q = Q(q) . (7.86)

In words, this means that our new coordinates Q are defined as
some function of the old ones.7272 For example, when we switch to

polar coordinates, we have

r(x, y) =
�

x2 + y2. If we now want to translate a point transformation into a phase
space transformation, we need to be careful. Naively, we could
think that since a point transformation only influences the loca-
tions q, we have for the momentum simply p → P = p. But this
is wrong, as we will see in a moment.

First of all, take note that a point transformation (Eq 7.86) di-
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rectly modifies the velocities, too:

q̇ → Q̇ = Q̇(q) =
d
dt

Q(q) =
∂Q(q)

∂q
dq
dt

=
∂Q(q)

∂q
q̇ . (7.87)

This tells us73 73 We will need this result in a
moment.

∂Q̇
∂q̇

(7.87)
=

∂

∂q̇

�
∂Q(q)

∂q
q̇
�
=

∂Q(q)
∂q

. (7.88)

This, in turn, implies that the momentum p is also directly
modified whenever we perform a point transformation

p =
∂L
∂q̇

→ P =
∂L̃(Q, Q̇))

∂Q̇ �
L̃(Q, Q̇) ≡ L

�
q(Q), q̇(Q, Q̇)

�

=
∂L(q(Q), q̇(Q, Q̇))

∂Q̇ �

chain rule

=
∂L(q, q̇)

∂q̇
∂q̇
∂Q̇ �

Eq. 7.88 and p ≡ ∂L(q, q̇)
∂q̇

= p
∂q
∂Q

. (7.89)

This tells us that the new momentum P is not simply the old
one p. Instead, there is a factor ∂q

∂Q which directly depends on
the point transformation q → Q(q).

Now, with Eq 7.86 and Eq 7.89 in hand, we can check that point
transformations really correspond to canonical transformations
in phase space.

In Section 7.3.1, we discovered that canonical coordinates are
characterized by the condition (Eq 7.80)

{Q, P}q,p = 1 , (7.90)

where { , }q,p denotes the Poisson bracket evaluated with re-
spect to the old coordinates. Therefore, to check whether a point
transformation leads to a canonical phase space transformation,
we have to evaluate:74

74 To get to the second line, we use
that the defining feature of a point
transformation is that q → Q(q).
In words, this means that our new
location coordinates do not depend
on the momentum p.
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{Q, P}q,p =
∂Q
∂q

∂P
∂p

− ∂Q
∂p

∂P
∂q � ∂Q

∂p
= 0

=
∂Q
∂q

∂P
∂p �

Eq. 7.89

=
∂Q
∂q

∂

∂p

�
p

∂q
∂Q

�
� ∂p

∂p
= 1

=
∂Q
∂q

∂q
∂Q � ∂q

∂Q
=

1
∂Q
∂q

= 1 � (7.91)

Therefore, we can conclude, as promised, that point transfor-
mations indeed correspond to canonical phase space transfor-
mations. From a slightly different perspective, we can see this
by investigating how the Hamiltonian changes under a point
transformation:

H(q, p)
(5.12)≡ pq̇ − L̃(q, q̇)

⇒ H̃(Q, P) = p(Q, P)q̇(Q, Q̇, P)− L
�

q(Q, P), q̇(Q, Q̇, P)
�

�

Eq. 7.87, Eq. 7.89

= P
∂Q
∂q

Q̇
∂q
∂Q

− L
�

q(Q, P), q̇(Q, Q̇, P)
�

� ∂Q
∂q

∂q
∂Q

= 1

= PQ̇ − L
�

q(Q, P), q̇(Q, Q̇, P)
�

. (7.92)

We can rearrange the terms to calculate the corresponding
transformed "Hamiltonian-Lagrangian"

L
�

q(Q, P), q̇(Q, Q̇, P)
�
= PQ̇ − H̃(Q, P) . (7.93)

With this Lagrangian in hand, we can follow exactly the same
steps as in Section 5.1 to calculate the resulting equation of
motion using the principle of least action.

Since this Hamiltonian has exactly the same form as the un-
transformed Hamiltonian LH = pq̇ − H (Eq. 5.19), this yields
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Hamilton’s equations once more, but with a Hamiltonian H̃.75 75 Specifically, we find

dQ
dt

=
∂H̃
∂P

dP
dt

= − ∂H̃
∂Q

.

Now secondly, let’s check what gauge transformations look like
in the Hamiltonian formalism.

The first main observation is that the definition of the conjugate
momentum p = ∂L

∂q̇ (Eq. 4.29) directly involves the Lagrangian
L. Moreover, recall that in Section 7.2.3, we’ve discovered that
there isn’t one unique Lagrangian for a given system. Instead,
there are infinitely many since we can always add the total time
derivative of an arbitrary function F = F(q, t):76 76 This is how we defined a gauge

transformation in Eq. 7.39.

L → L� = L +
dF
dt

. (7.94)

If we combine these two puzzle pieces, we reach the conclusion
that each such choice leads to a different conjugate momentum
(Eq. 4.29):

p =
∂L
∂q̇

→ P =
∂L�

∂q̇ �

Eq. 7.94

=
∂
�

L + dF(q,t)
dt

�

∂q̇ �

rearranging terms

=
∂L
∂q̇

+
∂

∂q̇
dF(q, t)

dt � d
dt

F(q, t) =
∂F
∂q

dq
dt

+
∂F
∂t

=
∂L
∂q̇

+
∂

∂q̇

�∂F
∂q

dq
dt

+
∂F
∂t

�

� ∂

∂q̇
∂F
∂t

= 0 and
∂

∂q̇
dq
dt

= 1

=
∂L
∂q̇

+
∂F
∂q � ∂L

∂q̇
= p

= p +
∂F
∂q

. (7.95)

Moreover, the location coordinates remain completely unaf-
fected by a gauge transformation:77 77 This is, after all, one of the defin-

ing features of a gauge transforma-
tion. While a point transformation
modifies the location coordinates
(plus conjugate momentum coordi-
nates), a gauge transformation only
modifies the Lagrangian and, as a
result, also the conjugate momenta.

q → Q(q) = q . (7.96)

Using these formulas we can check whether a gauge transfor-
mation indeed corresponds to a canonical phase space transfor-
mation:
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{Q, P} =
∂Q
∂q

∂P
∂p

− ∂Q
∂p

∂P
∂q �

Eq. 7.95, Eq. 7.96

=
∂q
∂q

∂
�

p + ∂F
∂q

�

∂p
− ∂q

∂p

∂
�

p + ∂F
∂q

�

∂q � ∂q
∂q

= 1,
∂q
∂p

= 0

=
∂
�

p + ∂F
∂q

�

∂p �

rearranging terms

=
∂p
∂p

+
∂

∂p
∂F
∂q � ∂

∂p
∂F
∂q

= 0 since F = F(q, t)

=
∂p
∂p �

= 1 � (7.97)

So we can conclude that the gauge transformations (which we
discovered in Section 7.2.3) are indeed canonical transforma-
tions. Once more we can understand this from a slightly differ-
ent perspective by investigating how the Hamiltonian changes
under a gauge transformation:

H(q, p)
(5.12)≡ pq̇ − L �

Eq. 7.94, Eq. 7.95, Eq. 7.96

= (P − ∂F
∂Q

)Q̇ − (L� − dF
dt

)

�

rearranging

= PQ̇ − L� − ∂F
∂Q

Q̇ +
dF
dt �

H� ≡ PQ̇ − L�

= H�(Q, P)− ∂F
∂Q

Q̇ +
dF
dt � dF

dt
=

∂F
∂Q

dQ
dt

+
∂F
∂t

= H�(Q, P)− ∂F
∂Q

Q̇ +

�
∂F
∂Q

dQ
dt

+
∂F
∂t

�

�

✚
✚
✚∂F

∂Q
dQ
dt

= H�(Q, P) +
∂F
∂t

(7.98)
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Therefore, we learn here that while the Lagrangian changes by a
total derivative under a gauge transformation:

L → L� (7.94)
= L +

dF
dt

, (7.99)

the Hamiltonian changes by a partial derivative

H → H� (7.98)
= H − ∂F

∂t
. (7.100)

In particular, this implies that our Hamiltonian is only modified
at all if F depends explicitly on t.78 78 Maybe you find it puzzling

that we can shift the Hamiltonian
since it usually represents the
total energy. To understand this,
recall that we can always shift any
potential by a constant amount
because the resulting force remains
unchanged. This, in turn, implies
that we can shift the potential
energy of an object analogously.
(In physical terms, this is possible
because only potential energy
differences are important and not
the absolute value of the potential
energy itself.) And therefore, we
can also shift the Hamiltonian.

Moreover, we can rearrange the terms in

H� ≡ PQ̇ − L� (7.101)

to calculate the corresponding transformed "Hamiltonian La-
grangian"

L� = PQ̇ − H� . (7.102)

With this Lagrangian in hand, we can follow exactly the same
steps as in Section 5.1 to calculate the resulting equation of
motion using the principle of least action. And since the form
of this Hamiltonian only differs from the form of the untrans-
formed Hamiltonian Lagrangian L = pq̇ − H (Eq. 5.19) by the
total derivative dF

dt (c.f. Eq. 7.94), this yields Hamilton’s equation
once more but this time with Hamiltonian H�.79 79 Recall that in Section 7.2.3, we

discovered that a term of the
form dF

dt in the Lagrangian has no
influence on the resulting equations
of motion.

Using these results, we can check explicitly that Hamilton’s
equations are unchanged under gauge transformations.80 80 We’ve already shown this above.

But still it is instructive to see
how it works out if we simply
calculate everything by brute force.
Nevertheless, as usual, feel free
to skip the following calculation
because we are not really learning
something new.

We can demonstrate the invariance of Hamilton’s first equation
(Eq. 5.15)

dq
dt

=
∂H
∂p

(7.103)
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without major problems:

dQ
dt

=
∂H�

∂P �

Eq. 7.100

∴ dQ
dt

=
∂
�

H − ∂F
∂t

�

∂P �

rearranging terms

∴ dQ
dt

=
∂H
∂P

− ∂

∂P

�
∂F
∂t

�
�

F = F(q, t) does not depend on P.

∴ dQ
dt

=
∂H
∂P �

chain rule

∴ dQ
dt

=
∂H
∂p

∂p
∂P �

Q = q, Eq. 7.96

∴ dq
dt

=
∂H
∂p

∂p
∂P �

P = p +
∂F
∂q

, Eq. 7.95

∴ dq
dt

=
∂H
∂p

∂

∂P

�
P − ∂F

∂q

�

� ∂P
∂P

= 1,
∂

∂P
∂F(q, t)

∂q
= 0

∴ dq
dt

=
∂H
∂p

� (7.104)

Demonstrating the invariance of Hamilton’s second equation
(Eq. 5.15)

dp
dt

= −∂H
∂q

(7.105)

is a bit more difficult.

After the gauge transformation, the equation reads

dP
dt

= −∂H�

∂Q �

Eq. 7.100

∴ dP
dt

= −
∂
�

H − ∂F
∂t

�

∂Q �

rearranging terms

∴ dP
dt

= −∂H
∂Q

+
∂

∂Q

�
∂F
∂t

�
, (7.106)

and we need to be very careful when we evaluate the first term
on the right-hand side. The key observation is that P = p + ∂F

∂q
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(Eq. 7.95) implies that p can also be a function of Q since F =

F
�

Q, t
�

depends on Q.81 Therefore:

81 Maybe you are now a bit scared
because you would’ve made a
mistake here. So it will probably
make you feel better when I tell
you that a few years ago there was
a little controversy because several
professional physicists missed this
subtlety. To learn more about this
story, see

Z. K. Silagadze. Gauge transfor-
mations are canonical transforma-
tions, redux, 2014

∂H�(Q, P)
∂Q

=
∂H

�
q(Q), p(Q, P), t

�

∂Q �

chain rule

=
∂H(q, p, t)

∂q
∂q(Q)

∂Q
+

∂H(q, p, t)
∂p

∂p(Q)

∂Q �
Eq. 7.96, Eq. 7.95

=
∂H
∂q

∂Q
∂Q

+
∂H
∂p

∂

∂Q

�
P − ∂F

∂q

�
� ∂Q

∂Q
= 1 and

∂P
∂Q

= 0

=
∂H
∂q

− ∂H
∂p

∂2F
∂q2 �

Eq. 7.103

=
∂H
∂q

− q̇
∂2F
∂q2 . (7.107)

Moreover, for the term on the left-hand side, we find

dP
dt

(7.95)
=

d
dt

�
p +

∂F
∂q

�

�

rearranging terms

=
d
dt

p +
d
dt

∂F
∂q �

G ≡ ∂F
∂q

(definition)

=
d
dt

p +
d
dt

G �

evaluating total derivative

=
d
dt

p +
∂G
∂q

dq
dt

+
∂G
∂t �

substituting back

=
d
dt

p +

�
∂

∂q
∂F
∂q

�
dq
dt

+
∂

∂t
∂F
∂q �

simplifying the notation

=
d
dt

p +
∂2F
∂q2 q̇ +

∂

∂t
∂F
∂q

. (7.108)

Using these two results we can rewrite our gauge transformed
second Hamilton equation (Eq. 7.106) as follows:
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dP
dt

= −∂H
∂Q

+
∂

∂Q
∂F
∂t �

Eq. 7.107 and Eq. 7.108

d
dt

p +
∂2F
∂q2 q̇ +

∂

∂t
∂F
∂q

= −∂H
∂q

+ q̇
∂2F
∂q2 +

∂

∂Q
∂F
∂t �

Eq. 7.96

d
dt

p +
∂2F
∂q2 q̇ +

∂

∂t
∂F
∂q

= −∂H
∂q

+ q̇
∂2F
∂q2 +

∂

∂q
∂F
∂t � ∂

∂q
∂

∂t
=

∂

∂t
∂

∂q
d
dt

p +
∂2F
∂q2 q̇ +

∂

∂t
∂F
∂q

= −∂H
∂q

+ q̇
∂2F
∂q2 +

∂

∂t
∂F
∂q

�

�
��∂

∂t
∂F
∂q

and
�

��∂2F
∂q2 q̇

d
dt

p = −∂H
∂q

� (7.109)

So once more we’ve successfully shown that Hamilton’s equa-
tions are unchanged by gauge transformations.

The following diagram summarizes what we’ve discovered in
this section:

configuration space:

point transformation
q → Q = Q(q)
q̇ → Q̇ = ∂Q

∂q q̇
L(q, q̇, t) → L̃ = L̃(Q, Q̇, t)

��

gauge transformation
q → Q = q
q̇ → Q̇ = q̇

L → L� = L + dF(q,t)
dt

��

phase space:

canonical transformation
q → Q = Q(q)
p → P = ∂q

∂Q p
H → H̃ = H̃(Q, P, t)

canonical transformation
q → Q = q

p → P = p + ∂F(q,t)
∂q

H → H� = H − ∂F(q,t)
∂t

Next, let’s talk about tiny canonical transformations. This allows
us to develop a much deeper understanding of the underlying
structure.
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7.3.3 Infinitesimal Canonical Transformation

Mathematically, we can write a tiny transformation of our phase
space coordinates as82 82 Take note that if we include more

than one dimension, we have

qi → Qi = qi + �Di(qj, pj)

pi → Pi = pi + �Ei(qj, pj) .

By choosing the functions Di and Ei
appropriately, not only can we write
translations like this, but we can
also write, for example, rotations of
our phase space coordinate system.

q → Q = q + �D(q, p)

p → P = p + �E(q, p) , (7.110)

where � is an infinitesimally small number.83 In words, this

83 In some sense, an infinitesimal
number is a very small quantity
which is greater than zero yet less
than any positive number. Formu-
lated differently, an infinitesimal
number is as small as possible but
not yet zero. This implies for an
infinitesimal number � that we have
�2 = 0.

means that our new coordinates Q, P are defined as the old ones
plus a little change.

In the previous sections, we’ve already learned that we can’t
transform q and p completely independently. The relationship
between q and p contains important information about the
dynamics within the system. Therefore, we need to be careful to
keep it intact.

Thus, let’s see what the defining condition in Eq. 7.80

{Q, P}q,p = 1 (7.111)

implies for our new objects D(q, p), E(q, p) which represent the
canonical transformation here:84 84 We will see below that this is a

smart thing to investigate.

{Q, P}q,p =
∂Q
∂q

∂P
∂p

− ∂Q
∂p

∂P
∂q �

Eq. 7.110

=
∂(q + �D)

∂q
∂(p + �E)

∂p
− ∂(q + �D)

∂p
∂(p + �E)

∂q

� ∂q
∂p

= 0,
∂q
∂q

= 1,
∂p
∂q

= 0,
∂p
∂p

= 1

=

�
1 + �

∂D
∂q

��
1 + �

∂E
∂p

�
−
�

0 + �
∂D
∂p

��
0 + �

∂E
∂q

�

�

= 1 + �
∂D
∂q

+ �
∂E
∂p

+ �2 ∂D
∂q

∂E
∂p

− �2 ∂D
∂p

∂E
∂q �

� � 1 ⇒ �2 ≈ 0

= 1 + �
∂D
∂q

+ �
∂E
∂p

. (7.112)

If the transformation in Eq. 7.110 is indeed canonical, {Q, P}q,p = 1
must hold and therefore by comparison with Eq. 7.112, we can
conclude that

∂D
∂q

+
∂E
∂p

!
= 0 . (7.113)



170 no-nonsense classical mechanics

This implies that there must be a connection between D and
E.85 Specifically, we can conclude that Eq. 7.113 is fulfilled if85 This is hardly surprising because

whenever we mix location and
momentum coordinates using a
canonical transformation, we must
be careful how we mix them. This
is how we ended up with the con-
dition in Eq. 7.80 ( {Q, P}q,p = 1) in
Section 7.3.1 .

D =
∂G
∂p

, E = −∂G
∂q

, (7.114)

where G = G(q, p) is some arbitrary function, because

0 !
=

∂D
∂q

+
∂E
∂p �

Eq. 7.114

=
∂

∂q
∂G
∂p

− ∂

∂p
∂G
∂q � ∂

∂q
∂

∂p
=

∂

∂p
∂

∂q

=
∂

∂p
∂G
∂q

− ∂

∂p
∂G
∂q �

= 0 � (7.115)

Motivated by this observation, it is conventional to say that the
new object G generates the transformation. Moreover, G is called
the generator of the canonical transformation.

Our infinitesimal transformation in Eq. 7.110 therefore reads

q → Q = q + �D(q, p)
Eq. 7.114

= q + �
∂G
∂p

p → P = p + �E(q, p)
Eq. 7.114

= p − �
∂G
∂q

. (7.116)

This result allows us to understand canonical transformations
from a completely new perspective.

We already learned in Section 5.1.1 and Section 7.3.1 that the
Poisson bracket is, in some sense, the natural product in phase
space.86 Therefore, if we consider an abstract phase space trans-86 For instance, we’ve learned that

the Poisson bracket allows us to
calculate how functions evolve in
time (Eq. 5.36) and to determine
which coordinates are canonical
(Eq. 7.80).

formation

q → Q = T ◦ q , p → P = T ◦ p , (7.117)

it’s not a huge stretch to expect that in more concrete terms
such a transformation reads

q → Q = T ◦ q , p → P = T ◦ p

= {q, T} , = {p, T} .

(7.118)
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This is exactly what we’ve discovered above! To see this, we
let our generator G act on the coordinates q, p via the Poisson
bracket. To that end, we define an infinitesimal transformation
as a linear combination of the identity transformation I ◦ X = X
(which does nothing) and the generator action:

Tinf ◦ X ≡ (I + �G) ◦ X = X + �G ◦ X . (7.119)

We can then calculate:

q → Q = Tinf ◦ q , p → P = Tinf ◦ p �

Eq. 7.119

= q + �G ◦ q , = p + �G ◦ p �

= q + �{q, G} , = p + �{p, G} �

Eq. 5.33

= q + �
∂q
∂q

∂G
∂p

− �
∂q
∂p

∂G
∂q

, = p + �
∂p
∂q

∂G
∂p

− �
∂p
∂p

∂G
∂q � ∂q

∂p
= 0,

∂p
∂q

= 0

= q + �
∂q
∂q

∂G
∂p

, = p − �
∂p
∂p

∂G
∂q � ∂q

∂q
= 1,

∂p
∂p

= 1

= q + �
∂G
∂p

, = p − �
∂G
∂q

.

(7.120)

This is exactly what we discussed in Eq. 7.116. Therefore, our
generator G really acts on the phase space coordinates via the
Poisson bracket.

In words, this tells us that (infinitesimal) canonical transforma-
tions are not really mysterious after all. We can transform our
phase space coordinates using any phase space function G(q, p).
We only have to make sure that G acts on our coordinates via
the appropriate phase space product, i.e., the Poisson bracket.
This alone makes sure that we end up with a canonical transfor-
mation.

We will talk about the generators G in more detail in Chap-
ter 10. The most important discovery will be that some of the
generators are actually old acquaintances.87 87 To spoil the surprise: we will

discover that the momentum p
generates spatial translations,
the Hamiltonian H generates
temporal translations and angular
momentum generates rotations.
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In the previous sections, we’ve explored canonical transforma-
tion by translating the transformations that we discovered in
the Lagrangian formalism into the language of the Hamiltonian
formalism and by studying infinitesimal canonical transforma-
tions. However, there is also an alternative perspective which
allows us to understand and describe canonical transformations
in more general terms. This is what we’ll talk about in the next
section.

7.3.4 Generating Functions

In this section, we’ll talk about canonical transformations from
yet another perspective. Most importantly, we will discover a
new method that allows us to construct transformations be-
tween canonical coordinates systematically. This allows us to
use canonical transformations as a powerful practical tool.8888 We will discover in Section 11.1

that by performing a particularly
clever canonical transformation, we
can often solve the problem at hand
much easier.

In the previous sections we’ve discovered that we can under-
stand infinitesimal canonical transformations using a single
function G. Therefore, it probably won’t surprise you when
I proclaim that we can understand finite canonical transfor-
mations using a single function too. In other words, the main
idea in this section is analogous to what we discussed in the
previous section. But this time we don’t restrict ourselves to
infinitesimal transformations.

We assume that there is some function F which encodes all of
the information about one particular canonical transformation.
Starting from such a generating function, we can derive what
the corresponding canonical transformation looks like.8989 Take note that: generating func-

tion �= generator.

To understand how this is possible, we first need to talk about
what we really need to specify a canonical transformation. One
possibility are formulas which tell us how each new coordinate
Q, P is related to the old coordinates q, p:9090 As usual, Q, P and q, p represent

symbolically our 2N new and 2N
old coordinates. This means that we
really have here 2N such formulas

Qi = Qi(qj, pj, t) , Pi = Pi(qj, pj, t) .

Q = Q(q, p, t) , P = P(q, p, t) . (7.121)

But it would be equally sufficient to specify the inverse formu-
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las
q = q(Q, P, t) , p = p(Q, P, t) . (7.122)

In addition, relations of the form

p = p(q, Q, t) , P = P(q, Q, t) . (7.123)

work equally well because we can invert the formulas of the
form P = P(q, Q, t) to find out how the old locations q are re-
lated to the new coordinates, i.e., to find q = q(Q, P, t). Then we
can use these formulas to substitute for q in p = p(q, Q, t) to get
the formulas that tell us how the old momentum coordinates
are related to the new ones

p = p(q, Q, t) = p
�

q(Q, P, t), Q, t
�
= p(Q, P, t) .

So in other words, Eq. 7.123 is simply a little bit more indirect
way to relate the old to the new coordinates.91 91 You might rightfully wonder, why

do we consider such an awkward
way to specify our new coordi-
nates? Be assured that there is a
good reason which we will learn
below. For the moment, all we care
about is that relations of this form
are equally sufficient.

With this in mind, I now claim that a canonical transforma-
tion can be specified completely using a single function F =

F(q, Q, t) through the formulas:92

92 For the moment, simply assume
that someone really smart came
up with these formulas that allow
us to specify a canonical trans-
formation completely in terms of
a single function. We specify the
new coordinates rather indirectly
because only in this way can we
make sure that we actually end up
with canonical coordinates. We will
discuss how these two formulas can
actually be derived below.

P =
∂F
∂Q

p = −∂F
∂q

. (7.124)

Since F is a function of q, Q, and t, we know that ∂F
∂Q will be

a function of q, Q, and t too. Analogously, the second line
in Eq. 7.124 is an equation of the form p = p(q, Q, t). We
can then invert this equation to get an expression of the form
Q = Q(q, p, t). So in other words, given some function F, the
second line tells us what our new location coordinates look like
in terms of the original location and momentum coordinates.
The first line yields a formula of the form P = P(q, Q, t). But we
already know from the second line what Q looks like in terms
of the original coordinates. Therefore, we can use this expres-
sion to get a formula that specifies the new momentum coordi-
nates P solely in terms of the original phase space coordinates
P = P(q, p, t).

In this sense, the formulas in Eq. 7.124 are sufficient to establish
relations of the form given in Eq. 7.123. Therefore, Eq. 7.124
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tells us everything that we need to know about how our old
coordinates are related to the new ones.

However, the main point we are interested in is that by us-
ing the formulas in Eq. 7.124, we end up not just with any
coordinates but with canonical coordinates for any function
F = F(q, Q, t). In other words, Eq. 7.124 allows us to write down
canonical coordinates and canonical transformations en masse.

Of course, we need to check such a grand claim.93 As usual, we93 Feel free to skip the following
somewhat lengthy calculations on a
first encounter.

do this by checking that the canonical Poisson bracket relation
remains valid for any choice of F = F(q, Q, t).94 But before we

94 This is the defining property
of canonical coordinates that we
discovered in Section 7.3.1.

can evaluate the canonical Poisson bracket relation explicitly, we
need two formulas which follow directly from Eq. 7.124. First,
we note that if we take the partial derivative of P with respect to
the old momentum coordinates p, we find9595 Here

���
x

denotes that we hold

x fixed when we calculate the
partial derivative. We spell this out
explicitly here because otherwise,
it’s really easy to get confused. ∂P

∂p

�����
q

=
∂P
∂Q

�����
q

∂Q
∂p

�����
q

(7.125)

because p appears only in Q = Q(q, p). Secondly, when we
take the partial derivative of P with respect to the old location
coordinates q, we find

∂P
∂q

�����
p

=
∂P
∂Q

�����
q

∂Q
∂q

�����
p

+
∂P
∂q

�����
Q �

rearranging terms

∂P
∂q

�����
p

− ∂P
∂Q

�����
q

∂Q
∂q

�����
p

=
∂P
∂q

�����
Q

(7.126)

because P = ∂F(q,Q,t)
∂Q and therefore, q can appear directly in P

and in Q = Q(q, p).

Using these two formulas, we can check that the coordinates
we get by using Eq. 7.124 are indeed canonical for any function
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F = F(q, Q, t):

{Q, P}q,p =
∂Q
∂q

�����
p

∂P
∂p

�����
q

− ∂Q
∂p

�����
q

∂P
∂q

�����
p �

Eq. 7.125

=
∂Q
∂q

�����
p

∂P
∂Q

�����
q

∂Q
∂p

�����
q

− ∂Q
∂p

�����
q

∂P
∂q

�����
p �

rearranging terms

= −∂Q
∂p

�����
q


∂P

∂q

�����
p

− ∂Q
∂q

�����
p

∂P
∂Q

�����
q




�
Eq. 7.126

= −∂Q
∂p

�����
q


∂P

∂q

�����
Q




�

Eq. 7.124

= −∂Q
∂p

�����
q


 ∂

∂q

�����
Q

∂F
∂Q

�����
q




� ∂

∂x
∂

∂y
=

∂

∂y
∂

∂x

= −∂Q
∂p

�����
q


 ∂

∂Q

�����
q

∂F
∂q

�����
Q




�

Eq. 7.124

= −∂Q
∂p

�����
q


∂(−p)

∂Q

�����
q




�

= 1 � (7.127)

Thus, as promised, the new coordinates we get through Eq. 7.124
are indeed canonical for any function F = F(q, Q, t).

As a concrete example, let’s calculate the canonical transforma-
tion generated by

F(q, Q) = qQ . (7.128)
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Using Eq. 7.124, we find

P =
∂F
∂Q

=
∂(qQ)

∂Q
= q

p = −∂F
∂q

= −∂(qQ)

∂q
= −Q . (7.129)

This means that the canonical transformation generated by
F(q, Q) = qQ flips the roles of the momentum and location
coordinates.

Now, you are probably wondering why this method works.

Here’s why. First of all, recall that we are able to derive Hamil-
ton’s equations using the principle of least action.96 Hamilton’s96 We discussed this in Chapter 5.

equations follow as a condition on the path of least action for
the Hamiltonian action (Eq 5.20)

S =
� t f

ti

Ldt =
� t f

ti

�
pq̇ − H

�
dt , (7.130)

where

L ≡ pq̇ − H (7.131)

is the "Hamiltonian Lagrangian".

The defining feature of a canonical transformation is that the
form of Hamilton’s equations remains unchanged. This im-
plies that after the transformation q, p → Q, P, the least action
principle with an analogous Hamiltonian action

S̃ =
� t f

ti

L�dt =
� t f

ti

dt
�

PQ̇ − H�
�

(7.132)

must still be valid, where

L� ≡ PQ̇ − H� (7.133)

is the transformed "Hamiltonian Lagrangian".9797 We have already discussed this
at the end of Section 7.3.2. In
particular, see Eq. 7.102.
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The original Lagrangian L and the transformed Lagrangian
differ by the total derivative of an arbitrary function F =

F(q, Q, t):98 98 See Eq. 7.94. Moreover, recall
that this is the case because only
the initial and final locations are
fixed and therefore, this total
derivative term yields zero after the
integration.

L� − L =
dF
dt

. (7.134)

In general, the total time derivative of a function F = F(q, Q, t)
reads:99 99 The total derivative of a gen-

eral function is discussed in Ap-
pendix A.3.dF(q, Q, t)

dt
=

∂F
∂q

∂q
∂t

+
∂F
∂Q

∂Q
∂t

+
∂F
∂t

=
∂F
∂q

q̇ +
∂F
∂Q

Q̇ +
∂F
∂t

. (7.135)

Using this, we can rewrite Eq. 7.134 as follows:

L� − L =
dF
dt �

Eq. 7.102, Eq. 5.12, Eq. 7.135�
PQ̇ − H�

�
−
�

pq̇ − H
�
=

∂F
∂q

q̇ +
∂F
∂Q

Q̇ +
∂F
∂t �

rearranging�
P − ∂F

∂Q

�
Q̇ −

�
p +

∂F
∂q

�
q̇ = H� − H +

∂F
∂t

. (7.136)

Now we can use the fact that none of the functions in Eq. 7.136
depend explicitly on q̇. Therefore, if we calculate the partial
derivative with respect to q̇, we find:

∂

∂q̇

�
P − ∂F

∂Q

�
Q̇ − ∂

∂q̇

�
p +

∂F
∂q

�
q̇ =

∂

∂q̇

�
H� − H +

∂F
∂t

�

−
�

p +
∂F
∂q

�
= 0 . (7.137)

Analogously, since none of the functions depend explicitly on
Q̇, we find that

∂

∂Q̇

�
P − ∂F

∂Q

�
Q̇ − ∂

∂Q̇

�
p +

∂F
∂q

�
q̇ =

∂

∂Q̇

�
H� − H +

∂F
∂t

�

�
P − ∂F

∂Q

�
= 0 . (7.138)

Therefore, we can conclude:

P =
∂F
∂Q

p = −∂F
∂q

. (7.139)
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This is exactly Eq. 7.124.

We ended up with this somewhat indirect relationship between
the generating function F and the new coordinates because
only this way can we make sure that we end up with canonical
coordinates. We achieved this result because the least action
principle holds for the same path expressed in different coordi-
nates.

Moreover, we can also calculate how the Hamiltonian gets mod-
ified by the canonical transformation generated by F. If we use
Eq. 7.139 in Eq. 7.136, we find:
�

P − ∂F
∂Q

�
Q̇ −

�
p +

∂F
∂q

�
q̇ = H� − H +

∂F
∂t

this is Eq. 7.136

�

Eq. 7.139�
0
�

Q̇ −
�

0
�

q̇ = H� − H +
∂F
∂t

0 = H� − H +
∂F
∂t

. (7.140)

This tells us again that the new Hamiltonian H� is related to
the old one H by the partial time derivative of the generating
function:100100 This is exactly what we discov-

ered already in Eq. 7.100. H� = H − ∂F
∂t

. (7.141)

To summarize, the algorithm to produce a canonical transforma-
tion goes like this:

1. Write down a specific generating function F = F(q, Q, t).

2. Use Eq. 7.139 to find the formulas which express the new
coordinates (Q, P) in terms of the old ones (q, p).

3. Use Eq. 7.141 to calculate the new Hamiltonian H�(Q, P, t).

Take note that we can also reverse this procedure. This means
that we can start with a given canonical transformation

Q = Q(q, p), P = P(q, p)
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and then look for the function which generates it. Specifically,
we can use the equations which relate the new coordinates to
the old ones to find formulas which relate p and P to q, Q and
t. We can then use these formulas to eliminate p and P from
Eq. 7.139. This is a system of differential equations that we need
to solve for F = F(q, Q, t). If we find a solution, we’ve suc-
cessfully identified the function which generates the canonical
transformation we started with. Therefore, from a slightly dif-
ferent perspective, we can argue that as soon as we’ve found a
suitable generating function for a given transformation, we can
conclude that the transformation is indeed canonical. In other
words, searching for a suitable generating function F is another
method to check whether a given transformation is canonical.101 101 Alternatively, as discussed

above, we can check if the canonical
Poisson bracket relation {Q, P}q,p =
1 is fulfilled by the new coordinates
Q, P.

Now, it’s finally time to talk about concrete systems.





8

The Harmonic Oscillator

Sidney Coleman once remarked that "the career of a young the-
oretical physicist consists of treating the harmonic oscillator in ever-
increasing levels of abstraction." And Michael Peskin famously
wrote that "physics is that subset of human experience which can be
reduced to coupled harmonic oscillators".1 1 In quantum mechanics, the quan-

tum harmonic oscillator is one of
the best examples to understand
what quantization really means
and how the quantum framework
works. In classical field theory,
we can use that a field is simply
a bunch of harmonic oscillators
coupled together (think: like a
mattress). If we then turn these
harmonic oscillators into quantum
harmonic oscillators, we end up
with quantum field theory.

So it certainly makes sense to study the harmonic oscillator in
some detail. But first, what is a harmonic oscillator?

In fact, we call all systems with a potential of the form V = cx2,
where c is some constant, a harmonic oscillator. The potential of
the harmonic oscillator looks like this:

An example of such a system is an object attached to a spring.
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We can therefore visualize the meaning of the potential as fol-
lows:

Now, why are harmonic oscillators so important?

It turns out that, in the first approximation, lots of potentials are
extremely similar to the harmonic potential. This means that the
first term of the Taylor expansion2 of many potentials is exactly2 For the basic idea behind the

Taylor expansion see Appendix F. the harmonic potential:

For example, the Taylor expansion of a much more complicated
function like cos x is

cos x = 1 − x2

2
+ . . . .

So for small x, the potential can be approximated by 1 − x2

2 ,
which is exactly the potential of a harmonic oscillator shifted
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by +1. A concrete physical example is a pendulum which is
described by the potential V = 1 − cos x:3 3 We will talk about the pendulum

in Chapter 9.

Thus, by studying the harmonic potential closely, we can learn a
lot about many other systems (at least as long as we are dealing
with small excitations/low energies).

The potential of the harmonic oscillator is usually written as4 4 The factor 1
2 is included because,

as we will see below, it makes the
formula for the resulting force
simpler.V(x) =

1
2

kx2 , (8.1)

where k is the spring constant which characterizes the strength
of the spring.

In the following sections, we will derive the correct equation
of motion for the harmonic oscillator using the Newtonian,
Lagrangian, and Hamiltonian algorithm:

m d2x
dt2 = −kx

F = −kx

Newtonian Algorithm

��

L = 1
2 mẋ2 − 1

2 kx2

Lagrangian Algorithm

��

H = 1
2

p2

m + 1
2 kx2

Hamiltonian Algorithm

��
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Afterwards, in Section 8.4 we will discuss how we can solve this
equation of motion.

8.1 Newtonian Description

In the Newtonian formulation of classical mechanics, our first
task is always to determine the forces that act on each object.
Here we are dealing with just one object (the object attached to
the spring) moving in one dimension (up and down) and there
is only one force which is exerted by the spring the object is
attached to.

This force can be described by the law

F(x) = −kx , (8.2)

where k is the spring constant and x the distance that the object
is away from its equilibrium position at x = 0.5 This empirical5 We choose the coordinate system

in such a way that the equilibrium
position is at x = 0.

law is known as Hooke’s law. In words, it tells us that the force
exerted by the spring gets larger if we move the object farther
away from its equilibrium position in a linear manner.
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So it takes twice as much force to stretch our spring twice as far.

Using the general formula that relates a potential V(x) to the
corresponding force

F = −∂V(x)
∂x

(this is Eq. 2.16)

we can check that the force law in Eq. 8.2 is indeed consistent
with the formula for the harmonic oscillator potential given
above:

F = −∂V(x)
∂x �

V(x) =
1
2

kx2, Eq. 8.1

= −∂( 1
2 kx2)

∂x � ∂x2

∂x
= 2x

= −kx �

With this formula in hand, we can immediately write down the
equation of motion for the harmonic oscillator using Newton’s
second law (Eq. 3.1)6 6 We discussed equations of motion

in general terms in Section 2.2.
d
dt

p = F this is Newton’s second law (Eq. 3.1)�

F(x) = −kx, Eq. 8.2
d
dt

p = −kx

�

p = m
dx
dt

, Eq. 2.7
d
dt

�
m

dx
dt

�
= −kx

�

assuming mass m is constant:
d
dt

�
m

dx
dt

�
= m

d
dt

� dx
dt

�

m
d2x
dt2 = −kx . (8.3)



186 no-nonsense classical mechanics

This is the equation of motion for an object attached to a spring.

Maybe you wonder why the gravitational force plays no role
here. To understand this, let’s include it in the equation of mo-
tion

m
d2x
dt2 = Fspring + Fgravity = −kx − mg . (8.4)

Now, we can simply shift our coordinate system

x → x� = x + mg/k (8.5)

and then find

m
d2x
dt2 = −kx − mg �

x = x� − mg/k

→ m
d2(x� − mg/k)

dt2 = −k(x� − mg/k)− mg

� d2(mg/k)
dt2 = 0

m
d2x�

dt2 = −kx� + mg − mg �

✟✟mg

m
d2x�

dt2 = −kx� . (8.6)

This is exactly the equation of motion that we already derived
above. In words, this means that the gravitational force indeed
has an effect, but not on the dynamics of the system. The only
thing the gravitational force does is to shift the equilibrium po-
sition. And that’s why we can ignore it here. We can always
shift our coordinate system such that the equilibrium position is
at the origin of the coordinate system (see Eq. 8.5). Intuitively,
this happens because the gravitational force Fgravity = −mg is
constant. When our object is at the equilibrium position, the
gravitational force is balanced by the spring force. (Otherwise
the object would fall to the floor.) But the gravitational force
remains constant when the object is displaced from the equi-
librium position. Therefore, it yields no contribution to the
restoring force which pushes the object back to the equilibrium
position, and we can conclude that it has no further effect on the
movement of the object.

Next, let’s see how all this works in the Lagrangian formalism.
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8.2 Lagrangian Description

In the Lagrangian formulation of classical mechanics, our first
task is always to write down the correct Lagrangian L = T − V.
The potential energy of the object attached to a spring can be
described by (Eq. 8.1)

V(x) =
1
2

kx2 . (8.7)

The corresponding Lagrangian therefore reads

L = T − V =
1
2

mẋ2 − 1
2

kx2 . (8.8)

We can then calculate the correct equation of motion by putting
this Lagrangian into the Euler-Lagrange equation (Eq. 4.25):

∂L
∂x

=
d
dt

�
∂L
∂ẋ

�

�

L =
1
2

mẋ2 − 1
2

kx2, Eq. 8.8

∂
�

1
2 mẋ2 − 1

2 kx2
�

∂x
=

d
dt




∂
�

1
2 mẋ2 − 1

2 kx2
�

∂ẋ




� ∂x
∂ẋ

= 0 and
∂ẋ
∂x

= 0

∂
�
− 1

2 kx2
�

∂x
=

d
dt




∂
�

1
2 mẋ2

�

∂ẋ




� ∂x2

∂x
= 2x and

∂ẋ2

∂ẋ
= 2ẋ

−kx = m
d
dt

ẋ

�

ẋ ≡ dx
dt

−kx = m
d2x
dt2 . (8.9)

This is exactly the equation of motion that we already derived
using the Newtonian formalism (Eq. 8.3).

Next, let’s derive this equation of motion one more time, using
the Hamiltonian formalism.
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8.3 Hamiltonian Description

In the Hamiltonian formalism our first task is always to deter-
mine the Hamiltonian H, which is defined as (Eq. 5.18)

H = pẋ − L , (8.10)

where p denotes the generalized momentum (Eq. 4.29)

p =
∂L
∂ẋ

. (8.11)

Using the Lagrangian that we’ve discovered in the previous
section, we find for the canonical momentum:

p =
∂L
∂ẋ �

L =
1
2

mẋ2 − 1
2

kx2, Eq. 8.8

=
∂
�

1
2 mẋ2 − 1

2 kx2
�

∂ẋ � ∂x
∂ẋ

= 0 and
∂ẋ2

∂ẋ
= 2ẋ

= mẋ . (8.12)

This tells us that
ẋ =

p
m

. (8.13)

And for the Hamiltonian we find:

H = pẋ − L �

ẋ =
p
m

, Eq. 8.13

= p
� p

m

�
− L

�

L =
1
2

mẋ2 − 1
2

kx2, Eq. 8.8

=
p2

m
−
�

1
2

mẋ2 − 1
2

kx2
�

�

ẋ =
p
m

, Eq. 8.13

=
p2

m
−
�

1
2

m
� p

m

�2
− 1

2
kx2

�

�

rearranging terms

=
1
2

p2

m
+

1
2

kx2 . (8.14)

We can see here that for the harmonic oscillator, the Hamilto-
nian function H represents the total energy E = T + V.
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Next, to derive the equation of motion, we put this result into
Hamilton’s first equation (Eq. 5.15)

dp
dt

= −∂H
∂x �

Eq. 8.14

= −
∂
�

1
2

p2

m + 1
2 kx2

�

∂x �

= −kx . (8.15)

Moreover, Hamilton’s second equation (Eq. 5.15) tells us

dx
dt

=
∂H
∂p

�
H =

1
2

p2

m
+

1
2

kx2, Eq. 8.14

=
∂
�

1
2

p2

m + 1
2 kx2

�

∂p �

=
p
m

. (8.16)

Next, we can take the derivative of Eq. 8.167 7 We will see in a moment why this
is a smart idea.

dx
dt

=
p
m

this is Eq. 8.16

� d
dt

d2x
dt2 =

dp
dt
m �

×m

m
d2x
dt2 =

dp
dt

(8.17)

and use this result to eliminate p from Eq. 8.15:

dp
dt

= −kx this is Eq. 8.15

�

Eq. 8.17

m
d2x
dt2 = −kx . (8.18)

So again, we find the correct equation of motion, but this time
we derived it using Hamilton’s equations.
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8.4 Solving the Equation of Motion

Now, let’s talk about the equation we derived three times
(Eq. 8.3)

m
d2x
dt2 = −kx (8.19)

in a bit more detail.

In Section 2.2, we discussed already that, in general, solutions of
this equation read (Eq. 2.30)

x(t) = A cos(ωt) + B sin(ωt) . (8.20)

Let’s recall the main points. We get solutions like this because
Eq. 8.3 tells us that we need a function which yields itself if we
differentiate it twice. The trigonometric functions cos(ωt) and
sin(ωt) have exactly this property.

We can check88 Completely analogously, we can
check that x(t) = B sin(ωt) and
x(t) = A cos(ωt) + B sin(ωt) solve
the equation of motion.

m
d2x
dt2 = −kx �

ansatz x(t) = A cos(ωt)

m
d2
�

A cos(ωt)
�

dt2 = −kA cos(ωt)

� d2 cos(ωt)
dt2 = −ω2 cos(ωt)

m
�
− Aω2 cos(ωt)

�
= −kA cos(ωt) �

rearranging terms and✚A
mω2 cos(ωt) = k cos(ωt) . (8.21)

We can see that x(t) = A cos(ωt) indeed solves our equation of
motion provided that

ω =

�
k
m

(8.22)
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because then

mω2 cos(ωt) = k cos(ωt) this is the last line in Eq. 8.21

�

ω =

�
k
m

m

��
k
m

�2

cos(ωt) = k cos(ωt)

�

m
k
m

cos(ωt) = k cos(ωt)

� m
m

= 1

k cos(ωt) = k cos(ωt) � (8.23)

Intuitively, these solutions describe a periodic up-and-down
movement of the object attached to the spring. The constant A
is the amplitude of the oscillation and depends on how far we
displace the object from its equilibrium position at t = 0:

x(0) = A cos(ω0) = A . (8.24)

If we don’t displace the object at all, we have A = 0 and there-
fore no oscillation at all. In other words, the object simply re-
mains at its equilibrium position.

The constant ω describes the frequency of the oscillation which
is how often per unit time our object passes a certain location
(e.g., the maximum position). In other words, ω tells us how
many oscillations there are per second. This is a feature of the
system and does not depend on initial conditions. We can see
this because Eq. 8.22 tells us that ω only depends on the mass
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of the object m and the spring constant k. This may be a bit
surprising because it means, no matter how far we displace
the object at t = 0, the time the object needs to move one full
up-and-down cycle is always the same.

Moreover, if we consider the full solution (Eq. 2.30), there is an
additional constant B. This constant encodes information about
the initial velocity of the object (i.e., if we release the object from
its displaced position at rest or give it some initial push):9

9 The constant B plays no role
for the initial position because
sin(0) = 0.

d
dt

x(t) =
d
dt

�
A cos(ωt) + B sin(ωt)

�

� d
dt

cos(ωt) = −ω sin(ωt),
d
dt

sin(ωt) = ω cos(ωt)

= −Aω sin(ωt) + Bω cos(ωt) �

initial condition

∴ dx(0)
dt

= −Aω sin(ω0) + Bω cos(ω0)

�

cos(0) = 1 and sin(0) = 0

= Bω ⇒ B =
dx(0)

dt
ω

, (8.25)

where dx(0)
dt is the initial velocity.

Maybe you are wondering how we can derive the solution of
the equation of motion instead of guessing it. One possible
clever approach works as follows.1010 Of course, if you’re not interested

in a mathematical derivation of
the solution, feel free to skip the
following paragraphs. First of all, we multiply the equation of motion (Eq. 8.3) by the

velocity ẋ

m
d2x
dt2 = −kx this is Eq. 8.3�

×ẋ

mẋ
d2x
dt2 = −kẋx . (8.26)

This is clever because we can now rewrite the left-hand side
using the chain rule

�
d
dt f (t)2 = 2 f (t) d f (t)

dt

�

ẋ
d2x
dt2 = ẋ

dẋ
dt

=
1
2

d
dt

ẋ2 . (8.27)

Moreover, we can rewrite the right-hand side analogously using

xẋ = x
dx
dt

=
1
2

d
dt

x2 . (8.28)
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Eq. 8.26 then reads

mẋ
d2x
dt2 = −kẋx

�

Eq. 8.27 and Eq. 8.28
d
dt

�1
2

mẋ2
�
= − d

dt

�1
2

kx2
�

�

rearranging terms
d
dt

�1
2

mẋ2 +
1
2

kx2
�
= 0 . (8.29)

This means that the expression between the parentheses on
the left-hand side is constant in time. As already discussed in
Section 2.1.3, we usually call this conserved quantity the total
energy

E =
1
2

mẋ2 +
1
2

kx2 ≡ T + V , (8.30)

where T = 1
2 mẋ2 is the kinetic energy and V = 1

2 kx2 the
potential energy.

Equipped with this observation, we can use the separation of
variables method, which we already discussed in Section 2.2.
We now rewrite Eq. 8.30 as follows:

E =
1
2

mẋ2 +
1
2

kx2

�

rearranging terms

E − 1
2

kx2 =
1
2

mẋ2

�

× 2
m

2E − kx2

m
= ẋ2

� √
�

2E − kx2

m
= ẋ

�

ẋ =
dx
dt�

2E − kx2

m
=

dx
dt �

rearranging terms

dt =
�

m
2E − kx2 dx

�

integrating�
dt =

� �
m

2E − kx2 dx

�

t =
� �

m
2E − kx2 dx . (8.31)
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We’ve therefore "reduced" the problem of solving the equation
of motion to the problem of solving the integral on the right-
hand side in Eq. 8.31.

Solving integrals is, like solving differential equations, some-
what of an art. The integral here can be solved by making the
substitution1111 The main idea which motivates

this substitution is the trigonometric
identity cos2(φ) + sin2(φ) = 1, as
we will see below.

x ≡
�

2E
k

sin(φ) , (8.32)

which implies

dx
dφ

=

�
2E
k

cos(φ)

�

multiplying by dφ

dx =

�
2E
k

cos(φ)dφ . (8.33)

This is helpful because the term under the square root simplifies
dramatically.

t =
� �

m
2E − kx2 dx this is the last line in Eq. 8.31

�

substitution, Eq. 8.32, Eq. 8.33

=
� ����

m

2E − k
��

2E
k sin(φ)

�2

�� 2E
k

cos(φ)dφ
�

�

✚✚2E

=

�
m
k

� �
1

1 − sin2(φ)
cos(φ)dφ

�

1 − sin2(φ) = cos2(φ)

=

�
m
k

� �
1

cos2(φ)
cos(φ)dφ

�

✘✘✘cos(φ)

=

�
m
k

�
dφ

�

=

�
m
k
(φ + φ0) , (8.34)

where φ0 is the constant of integration. Solving for φ yields

φ =

�
k
m

t − φ0 . (8.35)

That’s our solution. All we now need to do is put this result



the harmonic oscillator 195

into Eq. 8.32:

x =

�
2E
k

sin(φ) this is Eq. 8.32

�

Eq. 8.35

=

�
2E
k

sin

��
k
m

t − φ0

�
. (8.36)

We can rewrite this result using the trigonometric identity

sin(a − b) = sin(a) cos(b)− cos(a) sin(b) (8.37)

to bring it into the form given above:

x =

�
2E
k

sin

��
k
m

t − φ0

�

�

Eq. 8.37

=

�
2E
k

�
sin

��
k
m

t

�
cos(φ0)− cos

��
k
m

t

�
sin(φ0)

�

�

definitions

≡ B sin

��
k
m

t

�
+ A cos

��
k
m

t

�

�

ω ≡
�

k
m

(Eq. 8.22)

≡ B sin (ωt) + A cos (ωt) .

This is exactly the general solution that we already wrote down
in Eq. 2.30.

Now, before we move on and discuss how we can describe
the pendulum, we will discuss a second method to solve the
equations of motion of the harmonic oscillator. The idea be-
hind this second method is to use a canonical transformation
(q, p) → (Q, P) such that the equation of motion becomes much
easier to solve when rewritten in terms of the new phase space
coordinates (Q, P).

Let’s see how this works.
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8.5 Solving the Harmonic Oscillator Using
a Canonical Transformation

First of all, we assume someone hands us the following generat-
ing function1212 We talked about generating

functions in Section 7.3.4. Moreover,
we will discuss in Section 11.1
how, in general, we can find clever
generating functions like this
which make a given problem much
simpler.

F(q, Q) = −1
2

mωq2 cot(Q) , (8.38)

where ω ≡
�

k
m and cot(x) denotes the cotangent function:

cot(x) ≡ 1
tan(x) =

cos(x)
sin(x) .

We can then use Eq. 7.124 to determine the corresponding
canonical transformation:

P
7.124
=

∂F
∂Q �

Eq. 8.38

=
∂
�
− 1

2 mωq2 cot(Q)
�

∂Q � ∂ cot(x)
∂x

= − 1
sin2(x)

=
mωq2

2 sin2(Q)
(8.39)

p
7.124
= −∂F

∂q �

Eq. 8.38

= −
∂
�
− 1

2 mωq2 cot(Q)
�

∂q

� ∂q2

∂q
= 2q

= mωq cot(Q) . (8.40)

These two formulas implicitly define the new coordinates Q, P
in terms of the old ones q, p. Our next task is to use these for-
mulas to rewrite the Hamiltonian (Eq. 8.14)

H =
1
2

p2

m
+

1
2

kq2

�

ω ≡
�

k
m

=
1

2m
(p2 + m2ω2q2) (8.41)
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in terms of the new coordinates.

This requires that we solve Eq. 8.39 and Eq. 8.40 for q and p.
First of all, we can solve Eq. 8.39 for q:

P =
mωq2

2 sin2(Q) �

rearranging terms
2

mω
P sin2(Q) = q2

� √
�

2
mω

P sin(Q) = q . (8.42)

Putting this into Eq. 8.40 yields

p = mωq cot(Q) �
Eq. 8.42

= mω

��
2

mω
P sin(Q)

�
cot(Q)

�

cot(Q) ≡ cos(Q)

sin(Q)

=
√

2mωP cos(Q) . (8.43)

Using these two results, we can rewrite the Hamiltonian (Eq. 8.41)
in terms of the new coordinates:

H
�

q(Q, P), p(Q, P)
� (8.41)

=
1

2m

��
p(Q, P)

�2
+ m2ω2

�
q(Q, P)

�2
�

�

Eq. 8.42 and Eq. 8.43

=
1

2m

��√
2mωP cos(Q)

�2
+ m2ω2

��
2

mω
P sin(Q)

�2 �

�

=
1

2m

�
2mωP cos2(Q) + m2ω2

�
2

mω
P sin2(Q)

��

� m2ω2

mω
= mω

=
1

2m

�
2mωP cos2(Q) + 2mωP sin2(Q)

�

�

✟✟2m and factor out Pω

= Pω
�

cos2(Q) + sin2(Q)
�

�

cos2(Q) + sin2(Q) = 1
= Pω ≡ H̃(Q, P) . (8.44)

We can see that the Hamiltonian looks much simpler in terms of
the new coordinates.
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Let’s see what Hamilton’s equations tell us if we use this new
Hamiltonian. Hamilton’s first equation (Eq. 5.15) reads

dP
dt

= −∂H̃
∂Q �

Eq. 8.44

= −
∂
�

Pω
�

∂Q �

= 0 . (8.45)

This means that P is a constant.

Moreover, Hamilton’s second equation (Eq. 5.15) tells us that

dQ
dt

=
∂H̃
∂P �

(Eq. 8.44)

=
∂
�

Pω
�

∂P �

= ω . (8.46)

We can immediately integrate this equation to determine how Q
changes in time:

Q = ωt + Q0 , (8.47)

where Q0 is a constant of integration.

Now, as a final step, we can substitute these results into Eq. 8.42
and Eq. 8.43 to determine the solution in terms of our original
coordinates:

q
(8.42)
=

�
2

mω
P sin(Q)

�

Eq. 8.47

=

�
2

mω
P sin(ωt + Q0)

p
(8.43)
=

√
2mωP cos(Q) �

Eq. 8.47

=
√

2mωP cos(ωt + Q0) , (8.48)
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where P is a constant that we need to determine using specific
initial conditions. This solution is exactly what we found in the
previous method using a more conventional approach.13 13 Reminder: in Eq. 8.36 we found:

q =

�
2E
k

sin

��
k
m

t − φ0

�

=

�
2E

mω2 sin (ωt − φ0) ,

where we used ω ≡
�

k
m to get

to the second line. To see the
equivalence, take note that the new
momentum coordinate P (which
we found out is just a constant) is
exactly equal to the total energy
E of the oscillator divided by the
frequency ω: P = E

ω .

Let’s now move on and talk about the pendulum, which is a
bit more complicated because to describe it, we need to take a
constraint into account.





9

The Pendulum

Right after the harmonic oscillator, the second most important
system in physics is the pendulum. In the context of classical
mechanics, it is especially useful to understand why the La-
grangian formalism is helpful.

A pendulum consists of a bob of mass m which is suspended
from some fixed ceiling by a string of length l.1 We want to 1 By the way, "pendulus" is Latin

and means "hanging".describe how the bob swings back and forth under the influence
of the Earth’s gravitational field.2 2 Take note that we will consider

only the mathematical abstraction
of a pendulum and ignore several
effects which play a role for a real-
world pendulum. For example, we
ignore that the string has a mass
and we assume that the string
cannot be bent. So in other words,
instead of a bob attached to a string,
we consider a bob attached to a
massless rigid rod. Moreover, we
assume that the pendulum swings
in a perfect plane and that we can
ignore air resistance.

Using Cartesian coordinates, we need (x, y) to describe the po-
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sition of the bob. However, x and y are not completely indepen-
dent because our bob is not moving around freely but always
remains attached to the string of length l. Mathematically, this
means that we have the constraint

x2 + y2 = l2 . (9.1)

Therefore, our pendulum really only has one degree of freedom.
When x changes, the variation of y is completely fixed by the
condition in Eq. 9.1. Therefore, we could eliminate one of the
coordinates using Eq. 9.1:

x2 + y2 = l2

�

∴ y =
�

l2 − x2 . (9.2)

Using this formula, we can express everything in terms of x.

However, a much more convenient method is to use the angle φ

between the pendulum and its equilibrium position to describe
the configuration of the pendulum. Each value of the angle φ

corresponds to one specific position of the bob. This is another
way to see that there is just one degree of freedom.

The Cartesian coordinates are related to φ by

x = l sin(φ)

y = l cos(φ) . (9.3)
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From a slightly different perspective, we can see that by using
φ as our new coordinate we are "hard coding" the constraint in
Eq. 9.1 into our description since:

x2 + y2 = l2

�

x = l sin(φ), y = l cos(φ)�
l sin(φ)

�2
+
�

l cos(φ)
�2

= l2

�

l2
�

sin2(φ) + cos2(φ)
�
= l2

�

sin2(φ) + cos2(φ) = 1

l2 = l2 � (9.4)

Now, let’s see how we can describe the pendulum in the vari-
ous frameworks. Again we will derive the correct equation of
motion using the Newtonian, Lagrangian, and Hamiltonian
algorithms:

d2φ

dt2 = − g
l sin(φ)

�F =

�
0

mg

�
+

�
−t sin(φ)
−t cos(φ)

�
Newtonian Algorithm

��

L = 1
2 ml2φ̇2 + mgl cos(φ)

Lagrangian Algorithm

��

H = 1
2

p2

ml2 − mgl cos(φ)

Hamiltonian Algorithm

��

And afterwards, in Section 9.4, we will discuss how we can
solve this equation of motion.

9.1 Newtonian Description

As usual, the first question that we need to answer in the New-
tonian framework is: which forces act on our object in question?

While for the harmonic oscillator system discussed in the pre-
vious chapter, the gravitational force didn’t play an important
role, for the pendulum it is the main actor. The gravitational
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force �FG is what pushes the pendulum back to the equilibrium
position and therefore causes it to swing back and forth. How-
ever, gravity is not the only force acting on our bob. If it was,
the bob would simply fall to the ground. This does not happen
because the string our bob is attached to exerts a tension force
�FT .33 In other words, the string provides

a constant centripetal force.

Our next goal is to write down formulas which describe these
two forces.

The gravitational force always points downward and therefore
reads44 As shown in the images above, we

choose our coordinate system such
that the y-axis points downward.
Therefore, the gravitational force
points in the positive y-direction.

�FG =

�
0

mg

�
. (9.5)

What can we say about the tension force �FT?

Well, we know that it always points radially toward the suspen-
sion of the pendulum. Mathematically, this means that

�FT =

�
−t sin(φ)
−t cos(φ)

�
, (9.6)

where t describes the magnitude of the tension force which we
still need to figure out.55 We can do this by using the

constraint that our bob remains
attached to the string of fixed length
l.

Equipped with Eq. 9.5 and Eq. 9.6 we can write down the equa-
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tion of motion using Newton’s second law (Eq. 3.1):

d
dt
�p = �F �

d
dt
�p = �FG + �FT �

Eq. 9.5 and Eq. 9.6

d
dt
�p =

�
0

mg

�
+

�
−t sin(φ)
−t cos(φ)

�

�

p =

�
mẋ
mẏ

�

d
dt

�
mẋ
mẏ

�
=

�
0

mg

�
+

�
−t sin(φ)
−t cos(φ)

�

�

�
mẍ
mÿ

�
=

�
0

mg

�
+

�
−t sin(φ)
−t cos(φ)

�
. (9.7)

The first row in the last line tells us:

mẍ = −t sin(φ) �

Eq. 9.3

= −t
x
l

(9.8)

and the second row tells us:

mÿ = mg − t cos(φ) �

Eq. 9.3

= mg − t
y
l

. (9.9)

By switching to a description of the pendulum in terms of the
angle φ, we can use these two equations to determine the mag-
nitude of the tension force t and derive the equation of motion
for φ. But first of all, we need

x = l sin(φ) �

chain rule

∴ ẋ = l cos(φ)φ̇ �

product rule

∴ ẍ = −l sin(φ)φ̇2 + l cos(φ)φ̈

y = l cos(φ) �

chain rule

∴ ẏ = −l sin(φ)φ̇ �

product rule

∴ ÿ = −l cos(φ)φ̇2 − l sin(φ)φ̈ . (9.10)
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Putting this into our equations of motion (Eq. 9.8, Eq. 9.9) yields

mẍ = −t sin(φ) �
Eq. 9.10

m
�
− l sin(φ)φ̇2 + l cos(φ)φ̈

�
= −t sin(φ) (9.11)

mÿ = mg − t cos(φ) �

Eq. 9.10

m
�
− l cos(φ)φ̇2 − l sin(φ)φ̈

�
= mg − t cos(φ) . (9.12)

These two equations can be combined cleverly such that we
find66 We will discuss how this can be

done in a moment.
φ̈ = − g

l
sin(φ)

t = mlφ̇2 + mg cos(φ) . (9.13)

The first equation here is the correct equation of motion that
we need to solve for φ(t) as soon as initial conditions are speci-
fied. This resulting function φ(t) describes how our pendulum
swings. The second equation tells us exactly how large the
tension force is. However, often we are not really interested in
things like the tension force explicitly.7 Usually we only care7 The explicit formula for the

tension force is useful, for example,
when we want to calculate how fast
the pendulum can spin before it
breaks.

about how the object in question moves. That’s where the La-
grangian formalism comes in handy.

But first, let’s see how the formulas in Eq. 9.13 follow from
Eq. 9.11 and Eq. 9.12.88 As usual, if you’re not interested

in mathematical details, feel free to
skip the following paragraphs.

Multiplying Eq. 9.11 by sin(φ) and Eq. 9.12 by cos(φ) and then
taking their sum:

�
Eq. 9.11 × sin φ

�
+
�

Eq. 9.12 × cos φ
�

yields

m(lφ̈ cos φ sin φ − lφ̇2 sin2 φ) + m(−lφ̈ sin φ cos φ − lφ̇2 cos2 φ) = −t sin2 φ − t cos2 φ + mg cos φ �

cos2 φ + sin2 φ = 1
∴ −mlφ̇2 = −t + mg cos φ .

Analogously, multiplying Eq. 9.11 by cos(φ) and Eq. 9.12 by
sin(φ) and then taking their difference:

�
Eq. 9.11 × cos φ

�
−
�

Eq. 9.12 × sin φ
�
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yields

m(lφ̈ cos2 φ − lφ̇2 sin φ cos φ)− m(−lφ̈ sin2 φ − lφ̇2 cos φ sin φ) = −t sin φ cos φ + t cos φ sin φ − mg sin φ �

cos2 φ + sin2 φ = 1
∴ mlφ̈ = −mg sin φ .

Next, let’s discuss how all this becomes much easier when we
use the Lagrangian formalism.

9.2 Lagrangian Description

The main new feature of the pendulum compared to the har-
monic oscillator is that we have to take a constraint (Eq. 9.1)9 9 Strictly speaking, this is not quite

true because our object attached
to a spring was not allowed to
move around freely either. We only
allowed up-and-down-movements
but no swinging etc. In other
words, our harmonic oscillator was
restricted to one dimension which
means mathematically that we
introduced the constraints

y = 0

and
z = 0.

Analogously, here we only allow
that the pendulum swings in two
dimensions, which means we have
the additional constraint z = 0.

x2 + y2 = l2 (9.14)

into account.

We can do this by using the method of Lagrange multipliers.10

10 We discussed Lagrange multi-
pliers in Section 7.2.1. Moreover,
the Lagrange multiplier method
is discussed in general terms in
Appendix C.

So, to describe the pendulum, we use the Lagrangian for an ob-
ject moving freely in two dimensions in the Earth’s gravitational
field

Lfree = T − V =
1
2

m(ẋ2 + ẏ2) + mgy (9.15)

and add the Lagrange multiplier term:

Lcon =
1
2

λ(x2 + y2 − l2) (9.16)

which yields

Lpendulum = Lfree + Lcon �

=
1
2

m(ẋ2 + ẏ2) + mgy +
1
2

λ(x2 + y2 − l2) , (9.17)

where λ is our Lagrange multiplier. This Lagrange multiplier
represents the pendulum constraint (Eq. 9.1) in the Lagrangian
formalism.
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Equipped with this Lagrangian for the pendulum, we can di-
rectly calculate the equations of motion by using the Euler-
Lagrange equation (Eq. 4.25)

∂L
∂q

=
d
dt

�
∂L
∂q̇

�
. (9.18)

For q = x, we find

∂L
∂x

=
d
dt

�
∂L
∂ẋ

�

�

Eq. 9.17

∂
�

1
2 m(ẋ2 + ẏ2) + mgy + 1

2 λ(x2 + y2 − l2)
�

∂x
=

d
dt




∂
�

1
2 m(ẋ2 + ẏ2) + mgy + 1

2 λ(x2 + y2 − l2)
�

∂ẋ




�

λx =
d
dt

(mẋ)

�

λx = mẍ . (9.19)

And for q = y, we find

∂L
∂y

=
d
dt

�
∂L
∂ẏ

�

�

Eq. 9.17

∂
�

1
2 m(ẋ2 + ẏ2) + mgy + 1

2 λ(x2 + y2 − l2)
�

∂y
=

d
dt




∂
�

1
2 m(ẋ2 + ẏ2) + mgy + 1

2 λ(x2 + y2 − l2)
�

∂ẏ




�

mg + λy = mÿ . (9.20)

These are the correct equations of motion for our pendulum
that we have already derived using the Newtonian formalism
(Eq. 9.8, Eq. 9.9). By comparing our result here with our previ-
ous result, we can conclude that λ = − t

l , which means that our
Lagrange multiplier λ is directly proportional to the tension t.

Moreover, as a consistency check, we can evaluate the Euler-



the pendulum 209

Lagrange equation for q = λ:

∂L
∂λ

=
d
dt

�
∂L
∂λ̇

�
�

Eq. 9.17

∂
�

1
2 m(ẋ2 + ẏ2) + mgy + 1

2 λ(x2 + y2 − l2)
�

∂λ
=

d
dt




∂
�

1
2 m(ẋ2 + ẏ2) + mgy + 1

2 λ(x2 + y2 − l2)
�

∂λ̇




�

1
2
(x2 + y2 − l2) = 0

�

x2 + y2 − l2 = 0 . (9.21)

This is exactly our pendulum constraint (Eq. 9.1).

There is another cool thing we can do using the Lagrangian for-
malism. First of all, we need to recall that the Euler-Lagrange
equation is valid for any choice of coordinates.11 In addition, 11 We discussed this in Section 7.2.1.

we are often not really interested in constraint forces like the
tension force FT but only want to know how the object in ques-
tion moves. If this is the case, we can use our freedom to choose
suitable coordinates to make the Lagrangian description even
simpler.

In fact, we’ve seen this already at the beginning of this chapter.
When we switch from our Cartesian coordinates (x, y) to a
description in terms of the angle φ, the constraint becomes
trivially true.12 In particular, this means that our Lagrange 12 This was shown in Eq. 9.4.

multiplier term (Eq. 9.16) becomes as simple as it gets:

Lcon =
1
2

λ(x2 + y2 − l2) �

Eq. 9.3

=
1
2

λ
�
(l sin φ)2 + (l cos φ)2 − l2

�

�

=
1
2

λ
�

l2(sin2 φ + cos2 φ)− l2
�

�

sin2 φ + cos2 φ = 1

=
1
2

λ
�

l2 − l2
�

�

= 0 . (9.22)
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In terms of φ, the full pendulum Lagrangian (Eq. 9.17) therefore
reads:

Lpendulum =
1
2

m(ẋ2 + ẏ2) + mgy +
1
2

λ(x2 + y2 − l2)

�

Eq. 9.10 and Eq. 9.22

=
1
2

m

��
l cos(φ)φ̇

�2
+
�
− l sin(φ)φ̇

�2
�
+ mg

�
l cos(φ)

�
�

=
1
2

ml2φ̇2
�

cos2(φ) + sin2(φ)
�
+ mgl cos(φ)

�

sin2 φ + cos2 φ = 1

=
1
2

ml2φ̇2 + mgl cos(φ) . (9.23)

If we now use the Euler-Lagrange equation for q = φ, we find
∂L
∂φ

=
d
dt

�
∂L
∂φ̇

�

�

Eq. 9.17

∂
�

1
2 ml2φ̇2 + mgl cos(φ)

�

∂φ
=

d
dt




∂
�

1
2 ml2φ̇2 + mgl cos(φ)

�

∂φ̇




�

−mgl sin(φ) = ml2 d
dt

(φ̇)

�

−mg sin(φ) = mlφ̈ . (9.24)

This is exactly the equation of motion that we already derived
in Eq. 9.13. However, the derivation using the Lagrangian for-
malism is much simpler. In the Newtonian framework, we have
to perform lots of intermediate steps. In particular, we have to
find the tension force exerted by the string and need to think
carefully about the directions of the various forces. Moreover,
we’ve discovered that the most natural description of the pen-
dulum is in terms of the angle φ. But Newton’s second law is a
relationship between vectors in a Cartesian coordinate system,
and while it is possible to switch to different coordinates, this is
quite cumbersome.

In contrast, in the Lagrangian framework, we only have to fig-
ure out the potential and kinetic energy in terms of the conve-
nient coordinate φ. Since the Euler-Lagrange equation is valid
for any choice of coordinates, we can then directly calculate the
equation of motion without thinking about the tension force
and the directions of the forces.
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In general, in the Lagrangian formalism, as soon as we have
found suitable coordinates which make the constraints trivially
true, we don’t have to care about the constraints at all. This
happens because constraints are implemented in the Lagrangian
framework using Lagrange multipliers and, for a suitable choice
of coordinates, the Lagrange multiplier terms vanish. Therefore,
as soon as we include these additional terms, we no longer need
to think about the constraints.

Next, let’s talk about the Hamiltonian description of a pendu-
lum.

9.3 Hamiltonian Description

As usual in the Hamiltonian framework, our first task is to
calculate the Hamiltonian H and the generalized momentum
p. Using the pendulum Lagrangian we derived in the previous
section (Eq. 9.23) and the general definition of the generalized
momentum p (Eq. 4.29), we can calculate

p =
∂L
∂φ̇ �

Eq. 9.23

=
∂
�

1
2 ml2φ̇2 + mgl cos(φ)

�

∂φ̇ �

= ml2φ̇ . (9.25)

This tells us

φ̇ =
p

ml2 . (9.26)

With this result in hand, we can derive the Hamiltonian using
the general definition in terms of the Lagrangian (Eq. 5.18)13

13 Take note that this Hamiltonian
has the usual form H = T + V
where V = −mgl cos(φ) is the
bob’s potential energy in the Earth’s
gravitational field and T = 1

2 ml2φ̇2

is its kinetic energy.
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H = pφ̇ − L �
Eq. 9.26

=
p2

ml2 − L
�

Eq. 9.23

=
p2

ml2 −
�1

2
ml2φ̇2 + mgl cos(φ)

�

�

Eq. 9.26

=
p2

ml2 −
�

1
2

ml2
� p

ml2

�2
+ mgl cos(φ)

�

�

=
1
2

p2

ml2 − mgl cos(φ) . (9.27)

Then, we can use Hamilton’s first equation to calculate

dp
dt

= −∂H
∂φ �

Eq. 9.27

= −
∂
�

1
2

p2

ml2 − mgl cos(φ)
�

∂φ � ∂ cos(φ)
∂φ

= − sin(φ)

= −mgl sin(φ) . (9.28)

And Hamilton’s second equation tells us

dφ

dt
=

∂H
∂p �

Eq. 9.27

=
∂
�

1
2

p2

ml2 − mgl cos(φ)
�

∂p �

=
p

ml2 . (9.29)

We can then take the derivative of Eq. 9.291414 We will see in a moment why this
is a clever idea.

dφ

dt
=

p
ml2 this is Eq. 9.29

� d
dt

d2φ

dt2 =
dp
dt

ml2 �

×ml2

ml2 d2φ

dt2 =
dp
dt

(9.30)
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and use this result to eliminate p from Eq. 9.28:

dp
dt

= −mgl sin(φ) this is Eq. 9.28�

Eq. 9.30

ml2 d2φ

dt2 = −mgl sin(φ) �

✚✚ml
d2φ

dt2 = − g
l

sin(φ) . (9.31)

Once more, this is the correct equation of motion that we have
already derived above (Eq. 9.13).

We can therefore see that the Hamiltonian formalism does not
offer any further simplifications. It’s merely a different way of
doing the same thing.

9.4 Solving the Equation of Motion

Now, it’s finally time to talk about the equation

d2φ

dt2 = − g
l

sin(φ) (9.32)

that we derived three times in the previous sections in a bit
more detail.

Although this equation seems really simple, it’s extremely diffi-
cult to solve.15 15 To spoil the surprise, we can’t

write down a solution of Eq. 9.32 in
terms of elementary functions.

As a first step, we can use the same trick that we already used
for the equation of motion of the harmonic oscillator.

So first of all, we multiply the equation of motion by the veloc-
ity φ̇

d2φ

dt2 = − g
l

sin(φ)

→ φ̇
d2φ

dt2 = −φ̇
g
l

sin(φ) . (9.33)
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This is clever because we can now rewrite the left-hand side
using the chain rule

�
d
dt f (t)2 = 2 f (t) d f (t)

dt

�
:

φ̇
d2φ

dt2 = φ̇
dφ̇

dt
=

1
2

d
dt

φ̇2 . (9.34)

Moreover, we can rewrite the right-hand side using

φ̇ sin(φ) = − d
dt

cos(φ) . (9.35)

Eq. 9.33 then reads

φ̇
d2φ

dt2 = −φ̇
g
l

sin(φ)

�

Eq. 9.34 and Eq. 9.35
1
2

d
dt

φ̇2 =
g
l

d
dt

cos(φ)

�

rearranging terms
d
dt

�
1
2

φ̇2 − g
l

cos(φ)
�
= 0 . (9.36)

In words, this tells us that the quantity between the big paren-
theses on the left-hand side is constant in time.1616 If we multiply the quantity we

find here by ml2, we get exactly the
Hamiltonian which describes the
total energy. Moreover, we can integrate Eq. 9.36 which yields

d
dt

�
1
2

φ̇2 − g
l

cos(φ)
�
= 0

�

integrating

1
2

φ̇2 − g
l

cos(φ) = C , (9.37)

where C is an integration constant.1717 C is directly proportional to the
energy of the pendulum: C = E

ml2 .
This follows because if we multiply
the quantity on the left-hand side
by ml2, we get exactly the total
energy.

Next, by taking the square root and separating the variables, we
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find
1
2

φ̇2 − g
l

cos(φ) = C �

rearranging terms

φ̇2 = 2C +
2g
l

cos(φ) � √

φ̇ =

�
2C +

2g
l

cos(φ)

�

φ̇ =
dφ

dt
dφ

dt
=

�
2C +

2g
l

cos(φ)

�

separating variables
dφ�

2C + 2g
l cos(φ)

= dt

� �

� dφ�
2C + 2g

l cos(φ)
= t . (9.38)

This type of integral is known as an elliptic integral and there
is no simple solution. But we can solve it, for example, using a
tool like Mathematica or Matlab.

To get at least some insight, we can evaluate the equation of mo-
tion in the limit that the pendulum only swings a little. Mathe-
matically, this means φ � 1. The equation of motion simplifies
dramatically in this limit which follows when we Taylor expand
sin(φ):18 18 The Taylor expansion of sin(φ) is

discussed in Appendix F.
sin(φ) = φ − φ3

6
+

φ5

120
+ . . . (9.39)

As long as the pendulum only swings a little (φ � 1), we can
safely ignore all higher order terms (φ3 ≈ 0, φ5 ≈ 0, etc.)19 and 19 This follows because for any

positive number smaller than 1,
higher orders are much smaller.
For example, for φ = 0.1, we find
φ3 = 0.001 and φ5 = 0.00001.

the equation of motion (Eq. 9.32) therefore reads:

d2φ

dt2 = − g
l

sin(φ) �

Taylor expansion (Eq. 9.39)

= − g
l

�
φ − φ3

6
+

φ5

120
+ . . .

�

�

φ � 1

≈ − g
l

φ . (9.40)



216 no-nonsense classical mechanics

This means that for small excitations of the pendulum, we can
describe it using solutions of the simpler equation of motion

d2φ

dt2 = − g
l

φ . (9.41)

But this is exactly the equation of motion of the harmonic os-
cillator (Eq. 8.3)! In words, this means that as long as the pen-
dulum only swings a little, its movement is analogous to the
movement of the harmonic oscillator. Therefore, in the small
angle limit φ � 1, we can again use the solutions that we dis-
covered in Section 8.4.

Now that we’ve developed some understanding of how the
different formulations of classical mechanics work in practice,
it’s time to move on to the good stuff.
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Part III
Get an Understanding of Classical
Mechanics You Can Be Proud Of

"There will come a time when you believe everything is finished. That will
be the beginning."

Louis L’Amour

PS: You can discuss the content of Part III with other readers and give feedback at
www.nononsensebooks.com/cm/bonus.





In this final part, we’ll elevate our understanding of classical
mechanics to a completely new level. In particular, we’ll talk
about three major topics: Noether’s theorem, additional for-
mulations of classical mechanics and the origin of classical
mechanics.

Let me outline shortly why these topics are interesting.

� Noether’s theorem is one of the most beautiful insights in
all of physics. It allows us to understand that there is a deep
connection between symmetries and conserved quantities.
In particular, it allows us to understand why the concepts of
momentum, energy and angular momentum are so important
in all fundamental theories of physics.

� Alternative formulations like Hamilton-Jacobi mechanics
and Koopman-von Neumann mechanics allow us to tackle
problems in completely new ways and help us to reveal deep
insights about the general structure of classical mechanics. In
addition, we will talk about statistical mechanics. We need
statistical mechanics whenever we are dealing with uncer-
tainty, which is necessarily the case when we want to de-
scribe lots of objects at once. Moreover, a solid understanding
of statistical mechanics is essential to understand the differ-
ence between classical mechanics and quantum mechanics.

� Finally, to really understand classical mechanics, we need to
talk about its origin. This means that we need to understand
how exactly classical mechanics is related to more fundamen-
tal theories like quantum mechanics and special relativity. By
discussing these connections, we will finally understand why
the least action principle works and why the Lagrangian has
the form it has in classical mechanics (L = T − V).

� In addition, we’ll talk about books you should read to learn
more about specific topics.

Without further ado, let’s dive in.





10

Noether’s Theorem

In a nutshell, Noether’s theorem tells us that for each symmetry
of a given system, there must be a conserved quantity:1

1 There is also a converse Noether
theorem which tells us how we
can find the symmetries related to
specific conserved quantities:

Conserved Quantity

converse Noether theorem

��
Symmetry

We will talk about the converse
Noether theorem in Section 10.3.2.

Symmetry Noether’s theorem �� Conserved Quantity

In particular:

� If the system possesses rotational symmetry, we know imme-
diately that angular momentum is conserved. In other words,
this means that if we can rotate our system without changing
anything, angular momentum is conserved.

� If the system is symmetric with respect to spatial translations
x → x + �, we know immediately that momentum is con-
served. This means that if we can change the position of the
whole system and nothing changes, momentum is conserved.

� If the system is symmetric with respect to temporal trans-
lations t → t + �, we know immediately that energy is
conserved. Formulated differently, if the system behaved
yesterday exactly as it does today, energy is conserved.

Before we can really understand Noether’s theorem, we need
to understand what a symmetry is. Additionally, we need to
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find a way to describe in mathematical terms that a physical
system possesses a specific symmetry. So let’s first talk about
symmetries in quite general terms.

10.1 Symmetries

Imagine a friend stands in front of you and holds a perfectly
round red ball in her hand. Then you close your eyes, your
friend performs a transformation of the ball, and afterward you
open your eyes again. If she rotates the ball while your eyes are
closed, it is impossible for you to determine whether or not she
did anything at all. Hence, rotations are symmetries of the ball.

In contrast, if she holds a cube, only very special rotations can
be done without you noticing it. In general, all transformations
which, in principle, change something but lead to an indistin-
guishable result are symmetries. Formulated differently, a sym-
metry takes us from one state to a different one which happens
to have the same properties.22 In contrast, a redundancy takes

us from one description of a state
to another description of the same
state. We will talk a bit more about
this distinction below. 10.1.1 Symmetries of Physical Systems

It’s important to take note that with the definition given in the
previous section, symmetries are observable properties of ob-
jects or systems. In other words, we can find out experimentally
whether a given system or object possesses a specific symme-
try.33 In particular, it is important to

not get confused by coordinate
transformations which are always
possible without physical conse-
quences. This is discussed in a bit
more detail in Appendix E.

This point can be confusing especially when it comes to sym-
metries of physical systems. To understand it, it’s really helpful



noether’s theorem 225

to think about subsystems. A subsystem is a sufficiently iso-
lated part of the universe. And when we are interested in the
symmetries of a physical system, we usually investigate how a
subsystem behaves under specific transformations.4 4 The concept of a subsystem is

crucial because there is no way
we could ever detect a rotation
of the whole universe. Hence,
to establish that symmetries are
indeed observable properties, we
need to talk about subsystems.
Moreover, in physics we almost
always talk about subsystems
even when this is not explicitly
stated and we take the limit r →
∞. (An exception is cosmology
which sometimes deals with the
universe as a whole.) This may
seem pedantic at this point, but I
promise that we can avoid a lot of
confusion by thinking in terms of
subsystems.

For example, let’s imagine there is a physicist inside a boat
who is unable to look outside. Here, the boat is our subsystem.
Moreover, let’s assume that the physicist performs a specific
physics experiment. To find out whether the physics governing
the behavior of the objects in the experiment possesses, say,
rotational symmetry, we rotate the boat as a whole (including
the physicist and his experiment). If the physicist can’t find
any difference in the behavior of the experiment before and
after the rotation, the laws governing the experiment are indeed
rotational symmetric.5

5 Take note that the physicist is only
allowed to compare the behaviour
of the experiment before and after
but not during the rotation. In more
technical terms, we say that we
perform the rotation adiabatically.
This means that the transformation
happens so slowly and gently
that it doesn’t disturb the objects
(including the physicist) within the
subsystem.

Analogously, we could move the boat as a whole to a new lo-
cation and then let the physicist repeat the experiment. If he
still can’t find any difference, we say the physics governing the
experiment possesses spatial translational symmetry.6 If we let 6 A spatial translation is a shift to a

new location x → x + �.the physicist repeat the experiment after waiting for some time
and there is no difference, we say the physics governing the
experiment possesses temporal translational symmetry.7 7 A temporal translation is a shift to

a new point in time t → t + �.

The crucial point in all these examples is that, in principle, it
would be possible to detect a difference, for example, by bring-
ing the subsystem in contact with the outside world. Formu-
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lated differently, the ship and the rotated ship are clearly two
distinct states if we look at them from the outside. But from
inside the boat, it’s impossible to find any difference.88 Again this may seem pedantic,

but I emphasize this point because
otherwise it’s really easy to get con-
fused by the difference between the
invariance under a pure coordinate
transformation (i.e., a redundancy)
and a real symmetry.

Now, how can we describe all this in mathematical terms?

The physicist inside the boat describes the experiment using a
concrete equation of motion. Moreover, to compare the results
of the experiment before and after the transformation, we can
imagine that he prepares it in exactly the same initial configu-
ration.9 Given a specific initial configuration, he can solve the9 If he uses different initial config-

urations, he can’t expect to see the
same behavior.

equation of motion and then compare the resulting solution
with the actual behavior of the system.

If he is able to describe the experiment before and after the
transformation using exactly the same solution:

Solution of E.O.M. Transformation �� Solution of E.O.M.

we say the transformation is a symmetry of the solution.

From a slightly different perspective, we can imagine that our
physicist repeats the experiment several times using different
initial configurations before and after the transformation.
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If the equation of motion he deduces this way before and after
the transformation are exactly the same:

Equation of Motion Transformation �� Equation of Motion

we say the transformation is a symmetry of the equation of
motion. Intuitively, this means that there is no way he can find
any difference in the laws which govern the behavior of the
objects in the experiment. This is really what we mean by a
symmetry in physics.

And finally, we can imagine that the physicist tries to describe
the system using, say, the Lagrangian formalism.

If he finds that before and after the transformation the same
Lagrangian describes the experiment accurately:

Lagrangian Transformation �� Lagrangian

we say the transformation is a symmetry of the Lagrangian.

With this in mind, let’s talk about Noether’s theorem.
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10.2 Noether’s Theorem Intuitively

To get a rough feeling for why there is a connection between
conserved quantities and symmetries, it’s helpful to understand
when quantities are not conserved and when a system is not
symmetric.1010 As discussed in the previous

section, the symmetry of physical
systems is a quite different concept
from the symmetry of concrete
geometric shapes. In particular, a
system can posses a symmetry even
though a concrete configuration is
not invariant under the correspond-
ing transformation. Formulated
differently, there is a distinction
between the symmetries of physical
laws and the symmetries of things.

Again, it’s instructive to think about a physicist in a subsystem.
But this time let’s assume that our subsystem is a spaceship.

Moreover, let’s assume that the experiment our physicist carries
out is that he releases a ball and observes its trajectory.

Since we want to discuss a system in which a specific quantity,
say, momentum is not conserved and which is not translation-
ally symmetric, we assume that there is a potential U(x) which
directly influences the ball. We assume that our physicist can
describe this potential in his specific coordinate system using:1111 Take note that the total momen-

tum is always conserved. But, for
the sake of argument, we imag-
ine that the potential U(x) arises
from some unknown background
structure and simply absorbs the
momentum of the ball and then
leaks it to some object or structure
outside the spaceship. This means
that the momentum inside the
spaceship is not conserved. But
nevertheless the total momentum
in the whole universe is conserved.
In general, a quantity like energy or
momentum is only not conserved
if the subsystem we consider is not
really isolated and therefore some
energy or momentum can leak
out through interactions with the
environment.

U(x) = ax2 , (10.1)

where a is a constant that describes the potential strength.

Moreover, since we are in a spaceship there is no gravitational
pull or any other force acting on the ball.

Let’s assume that the physicist inside the box uses a coordinate
system with its origin exactly at the location of his shoulder
such that the ball’s initial position is x(0) = 1 m. This detail will
be important in a moment. In particular, it will be important
that our physicist uses (at least from his perspective) the same
coordinate system before and after the transformation.

In this setup, our physicist quickly notices that the momentum
of the ball is not conserved. Even if he releases the ball without
giving it a push, it will start moving as a result of the potential
U(x):
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The force resulting from U(x) is

F(x) = −dU(x)
dx

= −d(ax2)

dx
= −2ax . (10.2)

Therefore Newton’s second law (Eq. 3.1) tells us

dp
dt

= F(x) = −2ax . (10.3)

If momentum were conserved, we would have dp
dt = 0, but

Eq. 10.3 tells us that this is not the case here.

Now, what about translational symmetry?

To answer this question, we shift the spaceship 3 meters. Since
we assume that the potential is due to some unspecified back-
ground structure, it stays where it is.

Therefore, the physicist inside the spaceship quickly notices that
we performed a shift because now, he has to use the formula

Ũ(x) = a(x + 3 m)2 (10.4)
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to get the correct equation of motion describing the ball. The
resulting force is now

F̃(x) = −dŨ(x)
dx

= −d(a(x + 3 m)2)

dx

= −d(ax2 + xa6 m + a9 m2)

dx
= −2ax − a6 m (10.5)

and the correct equation of motion after the shift therefore reads

dp
dt

= F̃(x) = −2ax − a6 m . (10.6)

So here we have a system which is not invariant under spatial
translations and in which momentum is not conserved. But this,
of course, does not prove by any means that there really is a
direct connection. Nevertheless, it gives us a first hint of why
they could be connected.

Next, let’s contrast the situation discussed above, with a new
one involving a system that is invariant under spatial transla-
tions. To construct such a system, all we have to do is assume
that there is no longer any background structure which intro-
duced the spatial inhomogeneity in the example above. To get a
non-trivial situation, let’s assume that there is again a potential
V(x), but this time it originates from a second object which is
also located within the spaceship. For simplicity, let’s assume
this object is located exactly at the shoulder of our physicist, i.e.,
directly at the origin of the coordinate system he is using.

So our new potential reads

V(x) = bx2 , (10.7)

where b is again a constant that specifies the potential strength.
If we now shift the spaceship by 3 meters, it’s impossible for the
physicist inside the spaceship to find out that anything changed
because now the potential is shifted too.
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Therefore, after the shift, the potential still reads12 12 From our outside perspective, the
old x is related to the new one by
X = x − 3 m. But this also implies
that the location of the second
object becomes X0 = 0 − 3. (This
is how the origin of the original
coordinate system the physicist
inside the spaceship uses is related
to the origin of the new coordinate
system after the shift, from our
outside perspective.) Therefore, the
potential reads after the shift

V(x(X)) = b(X + 3 − 3)2 = bX2 .

V(x) = bx2 , (10.8)

and the equation of motion remains unchanged.

Now, what about the conservation of momentum in this second
situation?

If our physicist releases the ball without pushing it, it will start
moving again. Therefore, the momentum of this ball is still
not conserved. However, the source of the potential (the sec-
ond ball) is now located within the spaceship too. Thus, our
physicist will observe that as soon as the ball he releases starts
moving in one direction, the second ball will move in the op-
posite direction. If he calculates the total momentum of the two
balls, he will find that it is conserved.

To summarize:

Situation 1: p not conserved �� �� no translational symmetry

Situation 2: p conserved �� �� translational symmetry

So hopefully it now seems a bit more plausible that there is
a connection between conservation of momentum and trans-
lational symmetry and, more generally, between conserved
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quantities and symmetries.13 If not, don’t worry because in13 PS: It’s really fun to think about
similar thought experiments which
connect conservation of energy
with temporal translational sym-
metry and the conservation of
angular momentum with rotational
symmetry.

the following section, we’ll discuss this connection a lot more
systematically.

10.3 Noether’s Theorem in the Hamiltonian
Formalism

To derive Noether’s theorem in the context of the Hamiltonian
formalism, we only have to recall a few things we learned in
previous chapters.

In Section 7.3.1, we’ve learned that Hamilton’s equations have
the same form no matter which canonical transformation q, p →
Q, P we perform. Hamilton’s equations before the transforma-
tion

dp
dt

= −∂H
∂q

,
dq
dt

=
∂H
∂p

, (10.9)

read afterwards

dP
dt

= −∂H̃
∂Q

,
dQ
dt

=
∂H̃
∂P

. (10.10)

This is always true. But when it comes to Noether’s theorem,
we only care about symmetries and about general canonical
transformations. Mathematically, we are only dealing with a
symmetry if1414 This condition is discussed in a

bit more detail in Appendix D.
H̃(Q, P) !

= H(Q, P) (10.11)

where H̃(Q, P) = H(q(Q, P), p(Q, P)) because only then will
Hamilton’s equations not only have the same form but are actu-
ally equivalent before and after the transformation. Formulated
differently, only when Eq. 10.11 holds are Hamilton’s equa-
tions invariant (and not just covariant) under the transformation
q, p → Q, P. And, as discussed in detail in Section 10.1 this is
exactly our criterion for a symmetry.
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To understand this, let’s again consider the situation discussed
in the previous section. The Hamiltonian for our system is

H = T + U =
1
2

mẋ2 + ax2 , (10.12)

which reads after the shift x → X = x − s:15 15 Take note that we have x(X) =
X + s and Ẋ = d

dt (x − s) = ẋ
because s is a constant.

H̃ = H(x(X)) =
1
2

mẊ2 + a(X + s)2 . (10.13)

This is not equal to H(X) = 1
2 mẊ2 + aX2 and therefore the shift

x → X = x − s is not a symmetry.

In contrast, if there is no potential, the Hamiltonian reads16 16 Alternatively, recall the second
situation described above. Here the
key difference was that the potential
is also shifted because the location
of the second object which causes
the potential is actively moved from
x = 0 to x = s:

V(x) = ax2

→ Ṽ(X) = a
�

x(X)− s
�2

= a(X + s − s)2

= aX2 = V(X)

and therefore the Hamiltonian is
indeed invariant:

H̃ = H(x(X))

=
1
2

mẊ2 + aX2

= H(X) .

H = T =
1
2

mẋ2 . (10.14)

This Hamiltonian reads after the shift x → X = x − s:

H̃ = H(x(X)) = T =
1
2

mẊ2 . (10.15)

This is equal to H(X) = 1
2 mẊ2 and therefore the shift x → X =

x − s is indeed a symmetry.

Next, we need to recall that we’ve learned in Section 7.3.3 that
we can describe infinitesimal canonical transformations using
so-called generators G(q, p) (Eq. 7.116):

q → Q = q + �
∂G
∂p

p → P = p − �
∂G
∂q

. (10.16)

By using these transformation rules, we can rewrite the invari-
ance condition in Eq. 10.11 as follows:
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H̃(Q, P) !
= H(Q, P) �

H̃(Q, P) ≡ H(q(Q, P), p(Q, P))

H
�

q(Q, P), p(Q, P)
�

!
= H(Q, P)

�

Eq. 10.16

H
�

q(Q, P), p(Q, P)
�

!
= H

�
q + �

∂G
∂p

, p − �
∂G
∂q

�

�

Taylor expansion, c.f. Eq. 4.20

H
�

q(Q, P), p(Q, P)
�

!
= H(q, p) + �

∂H
∂q

∂G
∂p

− �
∂H
∂p

∂G
∂q

+ . . .
�

✘✘✘H(q, p)

0 !
= �

∂H
∂q

∂G
∂p

− �
∂H
∂p

∂G
∂q

+ . . .

�

def. of. { , }, Eq. 5.34

0 !
= {H, G} (10.17)

To get to the last line, we used the fact that for an infinitesimal
transformation (� � 1) all higher order terms vanish (�2 =

0, �3 = 0, . . .). In words, the final result here tells us that the
canonical transformation generated by G is a symmetry if the
Poisson bracket of G with the Hamiltonian vanishes. This is
how we can check if the transformation generated by G is a
symmetry.

Now comes the key observation.

In Section 5.1.1, we discovered that the time-evolution of any
phase space function F(q, p) is given by Hamilton’s general
equation (Eq. 5.36)

d
dt

F = {F, H} . (10.18)

Therefore, the time-evolution of a generator G(q, p) is also given
by

d
dt

G = {G, H} . (10.19)

If we now recall that in Eq. 10.17, we’ve learned that {H, G} = 0
if G generates a symmetry, we can learn something important
about G. But first, take note that the Poisson bracket is antisym-
metric:

{A, B} = −{B, A} (10.20)
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which follows directly from its definition (Eq. 5.34):

{A, B} =
∂A
∂q

∂B
∂p

− ∂A
∂p

∂B
∂q

= −
�

∂A
∂p

∂B
∂q

− ∂A
∂q

∂B
∂p

�

= −
�

∂B
∂q

∂A
∂p

− ∂B
∂p

∂A
∂q

�

= −{B, A} . (10.21)

Therefore, we can conclude that {H, G} = 0 implies

{G, H} = −{H, G} (10.17)
= −0 = 0 . (10.22)

And putting this into Eq. 10.19 tells us:

d
dt

G = {G, H} (10.22)
= 0 . (10.23)

We therefore learn that if G generates a symmetry, it automati-
cally describes a conserved quantity.17 This is Noether’s theo- 17 In general, a conserved quantity

is defined as something with a
vanishing rate of change, i.e.,

d
dt

F = 0.

rem.

To summarize:

{H, G} = 0 (symmetry) �� d
dt G = {G, H} = 0 (conserved quantity)

As a concrete example, let’s consider the simplest system there
is: a single free object. The Hamiltonian for this system reads18 18 Here the Hamiltonian is simply

equal to the kinetic energy because
there is no potential.

H =
1
2

p2

m
. (10.24)

Our first task is to find a symmetry of this system. Above, we
learned that mathematically a symmetry is a canonical transfor-
mation generated by some phase space function G = G(q, p)
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which has a vanishing Poisson bracket with the Hamiltonian
(Eq. 10.17):

{H, G} = 0 . (10.25)

Let’s try what is arguably the simplest phase space function

G(q, p) = p . (10.26)

Using the explicit definition of the Poisson bracket (Eq. 5.34), we
find

{H, p} (5.34)
=

∂H
∂q

∂p
∂p

− ∂H
∂p

∂p
∂q �

Eq. 10.24

=
∂
�

1
2

p2

m

�

∂q
∂p
∂p

−
∂
�

1
2

p2

m

�

∂p
∂p
∂q � ∂p

∂q
= 0

= 0 . (10.27)

Therefore, G(q, p) = p indeed generates a symmetry. But what
kind of transformation is generated by this generator?

To understand this, we need to recall that a generator acts on
the phase space coordinates via the Poisson bracket (Eq. 7.120)

q → Q = q + �{q, F} = q + �
∂G
∂p

p → P = p + �{p, G} = p − �
∂G
∂q

. (10.28)

Therefore, we calculate

∂G
∂p

(10.26)
=

∂p
∂p

= 1

∂G
∂q

(10.26)
=

∂p
∂q

= 0 . (10.29)

And, using Eq. 10.28, this tells us that the phase space coordi-
nates transform as follows:

q → Q = q + �
∂G
∂p

(10.29)
= q + �

p → P = p − �
∂G
∂q

(10.29)
= p + �0 = p . (10.30)
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This means in words that the location coordinate q is shifted by
a constant amount, while the momentum coordinate p remains
unchanged. We can therefore conclude that p generates spatial
translations.

Finally, it’s time to recall the punchline of Noether’s theorem:
{H, G} = 0 implies directly d

dt G = 0 (Eq. 10.23). For our
concrete example here this implies that the momentum p is
conserved:

dp
dt

= 0 . (10.31)

To summarize: momentum p is conserved whenever the system
is invariant under spatial translations because spatial transla-
tions are generated by p.

As a second example, let’s consider the canonical transforma-
tion generated by the phase space function H (i.e., the Hamilto-
nian itself)19 19 We discovered in Section 7.3.3

that we can use any phase space
function to generate an infinitesimal
canonical transformation.

G(q, p) = H . (10.32)

This is an interesting choice because H certainly generates a
symmetry since20 20 Reminder: the criterion that a

specific phase space function G
generates a symmetry is {G, H} = 0
(Eq. 10.17).

{H, H} =
∂H
∂q

∂H
∂p

− ∂H
∂p

∂H
∂q �

= 0 . (10.33)

Now what kind of transformation is generated by H?

As before, we can understand this by recalling that our genera-
tors act on the phase space coordinates via the Poisson bracket
(Eq. 7.120). We find

{q, H} (5.37)
=

∂H
∂p

{p, H} (5.38)
= −∂H

∂q
. (10.34)
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Therefore, after the infinitesimal transformation generated by H,
our coordinates read (Eq. 10.28)

q → Q = q + �{q, H} = q + �
∂H
∂p

p → P = p + �{p, H} = p − �
∂H
∂q

. (10.35)

And this implies

Δq ≡ Q − q = �{q, H} = �
∂H
∂p

(5.15)
= �

dq
dt

Δp ≡ P − p = �{p, H} = −�
∂H
∂q

(5.15)
= �

dp
dt

(10.36)

where in the last step we used Hamilton’s equations (Eq. 5.15).2121 For your convenience: Hamilton’s
equations (Eq. 5.15) read

dq
dt

=
∂H
∂p

dp
dt

= − ∂H
∂q

.

On the left-hand side, we have the total change in the coordi-
nates Δq, Δp. On the right-hand side, we have their rates of
change dq

dt , dp
dt multiplied by some interval �. This means that

the change we get by using the transformation generated by H
is exactly the same as the change that we get by waiting for �

seconds. We can therefore conclude that H generates temporal
translations, i.e., shifts to a later point in time!

And once more, we can recall the punchline of Noether’s the-
orem: {H, G} = 0 implies that d

dt G = 0 (Eq. 10.23). For our
concrete Hamiltonian this implies

dH
dt

= 0 . (10.37)

To summarize: the Hamiltonian H represents a conserved quan-
tity whenever the system is invariant under temporal transla-
tions because temporal translations are generated by the Hamil-
tonian. For many systems, the conserved quantity represented
by H is exactly the total energy.

Before we move on and discuss how we can derive Noether’s
theorem in the Lagrangian formulation, it makes sense to talk
about two slight modifications of Noether’s theorem in the
Hamiltonian formulation.
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10.3.1 Noether’s Extended Theorem

In the previous sections, we’ve used the condition (Eq. 10.11)

H̃(Q, P) !
= H(Q, P) (10.38)

to define which transformations are symmetries. However, this
condition is a bit too strict. In Section 7.3.2, we learned that after
a gauge transformation we have (Eq. 7.100)

H�(Q, P) = H(q, p)− ∂F
∂t

(10.39)

since

H�(Q, P)
(7.101)
= PQ̇ − L�(Q, P) (10.40)

and
L�(Q, P)

(7.94)
= L(Q, P) +

dF
dt

. (10.41)

Moreover, we have

H(Q, P)
(5.12)
= PQ̇ − L(Q, P) . (10.42)

By using these equations, we can calculate

H�(Q, P)− H(Q, P) = PQ̇ − L�(Q, P)−
�

PQ̇ − L(Q, P)
�

�

= L(Q, P)− L�(Q, P) �

Eq. 10.41

= L(Q, P)−
�

L(Q, P) +
dF
dt

�

�

✘✘✘L(Q, P)

= −dF
dt

. (10.43)

Additionally, we’ve learned in Section 7.3.2 that gauge trans-
formations have no influence on Hamilton’s equations and are
therefore always symmetries.22 22 Recall that a gauge transforma-

tion is a shift in the abstract "action
space", i.e., a constant shift of the
action functional. But the only
thing we care about is the path
of least action and if we shift the
action associated with all paths
equally, the path of least action will
remain the path of least action. We
discussed this at the beginning of
Section 7.2.3.
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Therefore, it seems reasonable to relax our symmetry condition
(Eq. 10.11) a little bit:2323 It is conventional to call trans-

formations which fulfill the stricter
condition in Eq. 10.11 symmetries,
and transformations which only
fulfill the more generous condi-
tion (Eq. 10.44) quasi-symmetries.
Moreover, take note that the minus
sign is not important because we
can simply absorb it into a redefi-
nition of the arbitrary function F.

H̃(Q, P) !
= H(Q, P)− dF

dt
. (10.44)

Equipped with this new condition, we can once more follow the
exact same steps as in Eq. 10.17:

H̃(Q, P) !
= H(Q, P)− dF

dt
...

0 !
= {H, G}− dF

dt �

{H, G} = −{G, H}, Eq. 10.21

0 !
= −{G, H}− dF

dt
. (10.45)

This means that even if {H, G} is non-zero, the transformation
generated by G can be a symmetry as long as {H, G} is equal to
the total derivative of an arbitrary function F = F(Q, t).

Now let’s assume that we have found a function G for which
Eq. 10.45 holds:

0 = {G, H}+ dF
dt

. (10.46)

We can then use, analogous to what we did in Section 10.3, that
the time-evolution of the function G(q, p) is given by Hamilton’s
general equation of motion (Eq. 10.19)

d
dt

G = {G, H} . (10.47)

Substituting this into Eq. 10.46 yields

0 = {G, H}+ dF
dt �

Eq. 10.47

0 =
d
dt

G +
dF
dt �

rearranging terms

0 =
d
dt

(G + F) . (10.48)

This means that we find once more a conserved quantity

d
dt

Q =
d
dt

(G + F)
(10.48)
= 0 . (10.49)
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This is the extended Noether theorem. We can see that if we
are dealing with a transformation that does not fulfill the strict
symmetry condition (Eq. 7.98) but instead only the extended
condition (Eq. 10.44), the corresponding conserved quantity is
the sum of the generator of the point transformation G and the
additional function F. From a slightly different perspective, this
means that the corresponding conserved quantity is described
solely by the function F if we are dealing with a pure gauge
transformation.

There is one final interesting aspect of Noether’s theorem that
we can discuss using the Hamiltonian formalism.

10.3.2 Noether’s Converse Theorem

In the previous sections, we derived that we find a conserved
quantity for each symmetry. But now we want to investigate
whether the converse statement is true too.24

24 Take note that the inverse state-
ment would be: G does not gen-
erate a symmetry → G is not
conserved. In contrast, the converse
statement is: G is conserved → G
generates a symmetry.

To that end, we start with a specific phase space function G
which describes a conserved quantity:25

25 For simplicity, we assume that
G is not explicitly time dependent.
However, the proof for the time-
dependent case works completely
analogously.

dG
dt

= 0 . (10.50)

Using Hamilton’s equation of motion (Eq. 5.36), this tells us:

d
dt

G = {G, H} (10.50)
= 0 . (10.51)

The key idea is that we discovered in Section 7.3.3 that we can
use any phase space function to generate an infinitesimal canon-
ical transformation. Moreover, we discovered in Section 10.3.1
that the transformation generated by a specific function G is a
symmetry if (Eq. 10.46)26

26 Take note that the following
reasoning also works if we use the
relaxed condition in Eq. 10.45:

{G, H} !
= − dF

dt
.

This follows because for F = const.,
we have dF

dt = 0. Formulated
differently, the condition is fulfilled
because we can write zero as the
total derivative of a function.

{G, H} !
= 0 . (10.52)
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Therefore, our goal is to check if this condition is fulfilled
for any function that describes a conserved quantity. Using
Eq. 10.51 we can check this explicitly:

{G, H} !
= 0 �

Eq. 10.51

0 !
= 0 � (10.53)

Therefore, each phase space function which describes a con-
served quantity indeed generates a symmetry. This is the con-
verse Noether theorem.

10.4 Noether’s Theorem in the Lagrangian
Formalism

In the previous sections, we discussed Noether’s theorem in
the context of the Hamiltonian formalism. We discovered that
Noether’s theorem is an extremely natural consequence of the
general structure of the formalism. Now we want to understand
how Noether’s theorem manifests itself in the Lagrangian for-
malism. While the derivation is not particularly difficult, be
warned that the whole discussion will be a bit more abstract
because, well, the Lagrangian formalism itself is a bit abstract.

First of all, we need to clarify what we mean by a symmetry in
the context of the Lagrangian formulation of mechanics.

In Section 7.2.2, we introduced the following notation

L̃(q�, q̇�) = L
�

q(q�), q̇(q�, q̇�)
�

, (10.54)

for the Lagrangian after a point transformation q, q̇ → q�, q̇�. So
L̃ is the Lagrangian that we find if we replace all coordinates in
the old Lagrangian with our new coordinates using the explicit
transformation rules.2727 This distinction is discussed in

more detail in Appendix D.

The special kind of transformations for which28
28 Take note that this condition
is completely equivalent to our
condition in the Hamiltonian
formalism, i.e., Eq. 10.11.

L̃(q�, q̇�) = L(q�, q̇�) (10.55)
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holds are called invariance transformations and describe sym-
metries of the system. We can understand this definition by
noting that under arbitrary point transformations q → q�, the
Euler-Lagrange equation only keeps its form but is not neces-
sarily invariant.29 If Eq. 10.55 holds, the resulting equation of 29 We discussed this explicitly in

Section 7.2.2.motion is actually invariant, i.e., completely unchanged. As dis-
cussed in detail in Section 10.1, this is exactly our criterion for a
symmetry.

Next, we consider again an infinitesimal transformation

q → q� = q + �g

⇒ q̇ → q̇� = q̇ + �ġ , (10.56)

where g = g(q) is a configuration space function that describes
the infinitesimal transformation in question. By using these
transformation rules, we can rewrite the symmetry condition in
Eq. 10.55 as follows:

L̃(q�, q̇�) = L(q�, q̇�) �

Eq. 10.54 and Eq. 10.56

L
�

q(q�), q̇(q�, q̇�)
�
= L (q + �g, q̇ + �ġ)

�

Taylor expansion, c.f. Eq. 4.20

L(q, q̇) !
= L(q, q̇) + �

∂L
∂q

g + �
∂L
∂q̇

ġ

�

✘✘✘L(q, q̇)

0 = �
∂L
∂q

g + �
∂L
∂q̇

ġ

�

Euler-Lagrange equation
∂L
∂q

=
d
dt

�
∂L
∂q̇

�
, Eq. 4.25

0 = �
d
dt

�
∂L
∂q̇

�
g + �

∂L
∂q̇

ġ

�

product rule and ✄�

0 =
d
dt

�
∂L
∂q̇

g
�

(10.57)

This tells us that if the transformation in Eq. 10.56 is indeed a
symmetry, the function

Q0 ≡ ∂L
∂q̇

g (10.58)

describes a conserved quantity since Eq. 10.57 tells us that
d
dt Q0 = 0. This is Noether’s theorem in the Lagrangian for-
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malism. It is conventional to call the conserved quantities Q0

that we find this way Noether charges.

As an example, let’s consider the simplest configuration space
transformation, a spatial translation:3030 This is Eq. 10.56 with g = 1.

Therefore, ġ = dg
dt = 0.

q → q� = q + �

⇒ q̇ → q̇� = q̇ . (10.59)

For concreteness, let’s use the Lagrangian that describes a free
object

L =
1
2

mq̇2 , (10.60)

which is invariant under translations:

L̃(q�, q̇�)
(10.60)
=

1
2

mq̇�2

�

Eq. 10.59

=
1
2

mq̇2

�

= L(q, q̇) . (10.61)

Therefore, Noether’s theorem tells us that (Eq. 10.58)

Q0 ≡ ∂L
∂q̇

g

�

g = 1 here

=
∂L
∂q̇ �

Eq. 10.60

=
∂
�

1
2 mq̇2

�

∂q̇ �

= mq̇ (10.62)

is a conserved quantity. We can see that the conserved quantity
we get from the invariance of the Lagrangian under translations
is exactly the momentum once more.

Before we summarize what we’ve learned in this chapter, there
are two important generalization of Noether’s theorem that we
need to talk about.
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10.4.1 Noether’s Extended Theorem

In the previous section, we used the condition (Eq. 10.55)

L̃(q�, q̇�) !
= L(q�, q̇�) , (10.63)

to define a symmetry. This definition is motivated by the obser-
vation that if this equation holds, the Euler-Lagrange equation
remains unchanged. However, this condition is actually a bit
too strict. In Section 7.2.3, we learned that the Euler-Lagrange
equation also remains unchanged when the Lagrangian changes
by a total derivative (Eq. 7.39):

L → L� = L − dF(q, t)
dt

, (10.64)

where F is an arbitrary function which only depends on the
locations q and t, and we introduced a conventional minus
sign.31 31 This minus sign is not important

because we could simply absorb it
into the definition of the function F,
i.e., F̃ = −F and then

L → L� = L +
dF̃(q, t)

dt
.

This means that we can relax our symmetry condition a little
bit:

L̃(q�, q̇�) !
= L(q�, q̇�)− dF(q�, t�)

dt
. (10.65)

Using this modified condition, we can repeat the steps that we
performed in Eq. 10.57:

L̃(q�, q̇�) = L(q�, q̇�)− dF(q�, t�)
dt

...

0 = �
d
dt

�
∂L
∂q̇

g
�
− dF

dt �

rearranging terms

0 =
d
dt

�
∂L
∂q̇

g − 1
�

F
�

. (10.66)

This is the generalized Noether theorem. In words, it tells us
that if our Lagrangian changes at most by a total derivative of
some function F = F(q, t), we get a conserved quantity

Q ≡ ∂L
∂q̇

g − 1
�

F
(10.58)
= Q0 −

1
�

F . (10.67)
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In this context it is conventional to call Q the full Noether
charge and Q0 the bare Noether charge.

A great example where we need the extended Noether theorem
is infinitesimal time translation symmetry:3232 We need the extended Noether

theorem here because, in general,
the Lagrangian is not invariant
under time translation. (In contrast
to the Hamiltonian, the Lagrangian
does not describe a conserved
quantity). But we can still find a
conserved quantity associated with
time-translation symmetry which,
in fact, we already discovered at
the end of Section 10.3 using the
Hamiltonian version of Noether’s
theorem.

t → t� = t + � . (10.68)

Our first task is to calculate how such a shift influences the
configuration space coordinates:

q(t) → q�(t) = q(t + �) = q(t) + �
dq
dt

, (10.69)

where we used the Taylor expansion and that all higher order
terms vanish since � is infinitesimal. By comparing this result
with Eq. 10.16, we can conclude that the function which de-
scribes the transformation is3333 For your convenience: Eq. 10.56

reads

q → q� = q + �g

⇒ q̇ → q̇� = q̇ + �ġ .

Below, we need g to calculate the
resulting conserved quantity using
Noether’s theorem.

gt =
dq
dt

. (10.70)

For the velocity coordinates we find analogously

q̇(t) → q̇�(t) = q̇(t + �) = q̇(t) + �
dq̇
dt

. (10.71)

So in words, our new coordinates are the original ones at an
infinitesimally later point in time.

For the Lagrangian, an infinitesimal time translation therefore
implies:

L(q�, q̇�, t�)
(10.69)
= L

�
q + �

dq
dt

, q̇ + �
dq̇
dt

, t + �

�

�

Taylor expansion and �2 = 0, etc.

= L (q, q̇, t) + �
∂L
∂q

∂q
∂t

+ �
∂L
∂q̇

∂q̇
∂t

+ �
∂L
∂t �

factoring out �

= L (q, q̇, t) + �

�
∂L
∂q

∂q
∂t

+
∂L
∂q̇

∂q̇
∂t

+
∂L
∂t

�

�

terms are exactly the total derivative

= L (q, q̇, t) + �

�
dL
dt

�
(10.72)
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Substituting this result into our relaxed symmetry condition
(Eq. 10.65) yields

L̃(q�, q̇�, t�) !
= L(q�, q̇�, t�)− dF

dt �

Eq. 10.72

L̃(q�, q̇�, t�) !
= L (q, q̇, t) + �

�
dL
dt

�
− dF

dt �

L̃(q�, q̇�, t�) ≡ L(q(q�, t�), q̇(q�, q̇�, t�), t(t�))

L (q, q̇, t) !
= L (q, q̇, t) + �

�
dL
dt

�
− dF

dt
. (10.73)

We can see that the condition is indeed fulfilled for

F = �L . (10.74)

In other words, since the Lagrangian changes under an infinites-
imal time translation by at most a total derivative term dL

dt , we
have time translation symmetry.34 We therefore don’t need to 34 Recall that in the Hamiltonian

formalism we reached the same
conclusion because {H, H} = 0, for
any Hamiltonian H.

consider a specific Lagrangian because the conserved quantity
we will find in the following is conserved for all Lagrangians.

The extended Noether theorem (Eq. 10.66) tells us that the asso-
ciated conserved quantity is

Q ≡ ∂L
∂q̇

g − 1
�

F

�

Eq. 10.70 and Eq. 10.74

=
∂L
∂q̇

dq
dt

− L

�

p ≡ ∂L
∂q̇

and q̇ =
dq
dt

= pq̇ − L �

H ≡ pq̇ − L, (Eq. 5.12)

= H . (10.75)

In the final step we used that pq̇ − L is exactly the definition
of the Hamiltonian. So the conserved quantity that we find by
considering time translation symmetry is exactly the Hamilto-
nian.35 35 We discovered this already in

Eq. 10.37 using the Hamiltonian
version of Noether’s theorem.
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10.5 Summary

In this chapter we discovered that whenever a system possesses
a specific symmetry, there is a corresponding conserved quan-
tity. This beautiful insight is commonly known as Noether’s
theorem.36

36 Just for the record: what we
talked about in this chapter is
known as Noether’s first theorem.
Her second theorem deals with
infinite-dimensional "symmetries"
which are commonly discussed in
the context of certain field theories.
The theorem tells us that these
infinite-dimensional "symmetries"
do not give rise to conserved quan-
tities but to constraints. However,
these infinite-dimensional "symme-
tries" are not really symmetries but
rather redundancies which can’t be
observed and are only part of the
formalism. Therefore it shouldn’t be
too surprising that they don’t lead
to new conserved quantities.

We started by talking about symmetries. In general, a symmetry
is a transformation that leaves a given object unchanged.

The symmetries in which we are interested in physics are trans-
formations that leave the equations of motion or the Lagrangian
unchanged.37

37 Most importantly, while any
point transformation leaves the
form of the equation of motion
unchanged, only a few specific ones
leave the equation itself completely
unchanged.

We then discussed that in the Hamiltonian formalism, we can
understand Noether’s theorem beautifully by noting that many
important phase space functions play a double role.

On the one hand, they represent conserved quantities. On the
other hand, they generate symmetry transformations.38 In gen-38 In my humble opinion, this

beautiful insight alone justifies
the introduction of the Hamilton
formalism. Moreover, if we try to
apply the same idea to a new math-
ematical arena (Hilbert space) we
end up with quantum mechanics.
In this sense, Noether’s theorem
can act as a bridge between classical
and quantum mechanics. For a
discussion of this perspective, we
see .

Jakob Schwichtenberg. No-
Nonsense Quantum Mechanics. No-
Nonsense Books, Karlsruhe, Ger-
many, 2018c. ISBN 978-1719838719

eral, a phase space function G generates a symmetry if its Pois-
son bracket with the Hamiltonian can be written as the total
derivative of a function F = F(q, t) (Eq. 10.46):

{G, H} !
= −dF

dt
. (10.76)

In particular, this implies that we are dealing with a symmetry
when the Poisson bracket {G, H} yields zero since for
F = const. we have dF

dt = 0. Moreover, sometimes transforma-
tions which fulfill the more strict condition

{G, H} !
= 0

are called real symmetries, while transformations which only
fulfill

{G, H} !
= −dF

dt
but not the more strict condition, are called quasi-symmetries.
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As soon as we’ve found a function which fulfills this condition,
Noether’s theorem tells us that there is a conserved quantity
(Eq. 10.49):39 39 If {G, H} = 0 the conserved

quantity is simply G.
Q = G + F . (10.77)

Concrete examples are the momentum p which (in some sys-
tems) is a conserved quantity and, at the same time, generates
spatial translations.

A second example is the Hamiltonian H itself which represents
a conserved quantity and, at the same time, generates temporal
translations.40 40 As mentioned above, the con-

served quantity described by the
Hamiltonian is often the total
energy.In the Lagrangian formalism, we were able to derive similar

conclusions although the interpretation of Noether’s theorem is
a bit less transparent.

We defined a symmetry as a transformation which at most
changes the Lagrangian by a total derivative (Eq. 10.65):41 41 Transformations which fulfill the

more strict condition

L̃(q�, q̇�) !
= L(q�, q̇�)

are sometimes called a real sym-
metry while transformations which
only fulfill

L̃(q�, q̇�) !
= L(q�, q̇�)− dF(q�, t�)

dt

but not the more strict condition are
called quasi-symmetries.

L̃(q�, q̇�) !
= L(q�, q̇�)− dF(q�, t�)

dt
. (10.78)

Again, as soon as we’ve found a transformation which fulfills
this condition, Noether’s theorem tells us there is a conserved
quantity (Eq. 10.67):42

42 Here � is the infinitesimal pa-
rameter which parameterizes the
transformation.

Q =
∂L
∂q̇

g − 1
�

F . (10.79)

Concrete examples are again the conservation of momentum,
which follows if the Lagrangian is invariant under spatial trans-
lations, and the conservation of the Hamiltonian, which follows
if the Lagrangian only changes by a total derivative under tem-
poral translations.43 43 Take note that it’s also possible to

derive the conservation of electric
charge using Noether’s theorem.
This is usually discussed in the
context of quantum field theory.
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Additional Formulations of
Classical Mechanics

So far we’ve talked about the three most famous formulations
of classical mechanics.1 Additionally there are further not-so- 1 Newtonian, Lagrangian, Hamilto-

nian.famous formulations and in this chapter we will talk briefly
about three of them. However, strictly speaking, only one of
them is a completely new formulation. The other two are better
described as methods which can be useful to simplify problems.2 2 There are further alternative

"formulations" like Routhian me-
chanics, which is a hybrid of the
Lagrangian and Hamiltonian for-
malism. However, since it doesn’t
reveal any new facets of classical
mechanics and is only useful in
engineering applications, we will
not discuss it here.

To understand this remark, recall that the defining feature of the
three formulations we have talked about so far is that each of
them describes classical mechanics using a different mathemati-
cal arena:

� The Newtonian formulation describes classical mechanics
using trajectories in physical space.

� The Lagrangian formulation describes classical mechanics
using paths in configuration space.

� The Hamiltonian formulation describes classical mechanics
using paths in phase space.
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In this sense, a completely new formulation of classical mechan-
ics requires a description in terms of some new mathematical
arena. There is exactly one such arena which is used all the
time in modern physics: Hilbert space. To understand how
we end up with Hilbert space, recall that the "trick" which we
used as we progressed from physical space via configuration
space to phase space was to make our mathematical arena "big-
ger".3 From this perspective we can say that Hilbert space is the3 For example, for 2 free particles

physical space is, as always, 3-
dimensional, configuration space is
2 × 3 = 6-dimensional and phase
space is 2 × 2 × 3 = 12-dimensional.

next logical step in this direction.4 The formulation of classi-

4 The Hilbert space for a free single
particle is infinite-dimensional!
To quote Carlton Caves: "Hilbert
space is a big place!" Nevertheless,
Hilbert spaces are not the end of the
ladder. For example, in quantum
field theory we use so-called Fock
spaces to describe various quantum
particles at once. In some sense,
a Fock space is a product of the
Hilbert spaces of the individual
particles and therefore even larger.

cal mechanics in Hilbert space is known as the Koopman-von
Neumann formulation.

One of the other remaining "formulations", known as Hamilton-
Jacobi mechanics, does not require any new mathematical
arena and is therefore really just an alternative perspective
on the existing formulations. Similarly, the second alternative
"formulation" we will talk about, known as statistical mechanics,
is more accurately described as a tool that allows us to describe
uncertainty in the context of the Hamiltonian formalism.

Be warned that we will not discuss any details. We will focus on
the fundamental ideas, and one of the main points you should
take away is simply that these alternative formulations exist.
Moreover, while these alternatives are often not really useful
for practical applications, they allow us to develop a deeper
understanding of classical mechanics. This will be especially
important when we want to understand the origin of classical
mechanics.55 We will discuss the origin of

classical mechanics in Chapter 12

Let’s start by talking about Hamilton-Jacobi mechanics which,
in some sense, is a clever strategy to solve Hamilton’s equations.

11.1 Hamilton-Jacobi Mechanics

While Hamilton-Jacobi mechanics is a useful tool for some
applications (especially chaotic systems and geometrical optics),
from a more fundamental perspective we are mainly interested
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in it because it provides a bridge to quantum mechanics.6 6 We will see in Chapter 12 that
Hamilton-Jacobi mechanics is
invaluable when we want to un-
derstand the connection between
classical and quantum mechanics.

To put it in a nutshell, a German mathematician called Carl
Gustav Jacob Jacobi came up with a clever method to simplify
classical mechanics problems using canonical transformations.7

7 We discussed canonical transfor-
mation in Section 7.3.1.And although it’s a method to simplify problems and not a

real new formulation of mechanics like the Newtonian or La-
grangian formulations, it’s conventional to call this method the
Hamilton-Jacobi formulation of classical mechanics or simply
Hamilton-Jacobi mechanics.

The key idea is to simplify the Hamiltonian by using the fact
that it isn’t invariant under canonical transformations. If we
use a canonical transformation generated by some function
F = F(q, Q, t), the Hamiltonian becomes (Eq. 7.141)8 8 In Eq. 7.141, we derived

H → H� = H − ∂

∂t
F.

Therefore, we introduce an addi-
tional minus sign here. We do this
to derive the conventional form
of the Hamilton-Jacobi equation.
However, this additional minus sign
has no deeper significance since it
simply corresponds to a redefinition
of the function F → F̃ = −F.

H → H� = H +
∂

∂t
F . (11.1)

But this means that we can try to find a specific function
W = W(q, Q, t) for which the Hamiltonian becomes zero:

H → H� = 0 = H +
∂

∂t
W . (11.2)

It is conventional to call this special function W Hamilton’s
principal function. If we can find such a function, Hamilton’s
equations become trivial to solve

dp
dt

= −∂H
∂q

→dP
dt

= −∂H�

∂Q
(11.2)
= 0

dq
dt

=
∂H
∂p

→ dQ
dt

=
∂H�

∂P
(11.2)
= 0 . (11.3)

This implies that P and Q are constant! Because these constants
will be important, we give them concrete names:

Q = α P = β . (11.4)

Therefore, finding the generating function W(q, Q, t) for which
Eq. 11.2 holds is really our only job because once we’ve found it,
we can write down the new coordinates directly by using9

9 This is how, in general, we can
calculate the new coordinates
using a given generating function,
i.e., Eq. 7.124. However, since we
now work with a new generating
function which is related to the
original one by F̃ = −F, we have
switched signs in the equations
here.
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P = −∂W
∂Q

p =
∂W
∂q

. (11.5)

To find the differential equation which allows us to find W, we
substitute Eq. 11.5 into Eq. 11.2:

0 = H
�

q,
∂W
∂q

, t
�
+

∂W
∂t

. (11.6)

This is the famous Hamilton-Jacobi equation.

If we are dealing with a Hamiltonian of the usual form

H(q, p, t) = T(p) + V(q) =
p2

2m
+ V(q) , (11.7)

the Hamilton-Jacobi equation reads in more explicit terms:

0 = H
�

q,
∂W
∂q

, t
�
+

∂W
∂t �

Eq. 11.7 with p =
∂W
∂q

0 =
1

2m

�
∂W
∂q

�2
+ V(q) +

∂W
∂t

. (11.8)

So to write down the Hamilton-Jacobi equation, we take the
given Hamiltonian H and use Eq. 11.5 to substitute the momen-
tum coordinates by derivatives of the function W. This yields
a differential equation that we need to solve for W. Moreover,
since our new coordinates Q are constant, the generating func-
tion W is really only a function of the old coordinates q:1010 Take note that the α and β are

integration constants which we
need to determine by using specific
initial conditions.

W = W(q, Q, t)
(11.4)
= W(q, α, t).

This is a clever approach because finding the solution of the
Hamilton-Jacobi equation for a specific Hamiltonian is equiva-
lent to finding the solution of Hamilton’s original equations. In
other words, we’ve replaced the problem of finding a solution
of Hamilton’s equations with the problem of finding a solution
of the Hamilton-Jacobi equation. A solution of the Hamilton-
Jacobi equation yields a generating function that allows us to
"trivialize" Hamilton’s equations (see Eq. 11.3).
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As soon as we’ve found the solution W(q, α, t) of the Hamilton-
Jacobi equation, we can calculate the momenta directly using
the second line in Eq. 11.5. Moreover, we can calculate the con-
stant values of our new momenta P by using the first line in
Eq. 11.5:

P
(11.4)
= β

(11.5)
= −∂W

∂Q
(11.4)
= −∂W(q, α, t)

∂α
(11.9)

This, in turn, allows us to determine our original coordinates
q, p in terms of the constants α, β:

q = q(α, β, t) , p = p(α, β, t) . (11.10)

This is the solution of Hamilton’s equations we’ve been looking
for.

Here we are primarily interested in the Hamilton-Jacobi formal-
ism as a theoretical framework and not so much as a practical
tool.11 Therefore, let’s try to understand the principal function 11 Using the Hamilton-Jacobi for-

malism in practice is quite compli-
cated and we will not discuss any
details. Moreover, for the majority
of examples, the Hamilton-Jacobi
approach is not particularly useful.
Instead, we are mainly interested
in it because it reveals a deep
connection between classical me-
chanics and quantum mechanics.
But if you’re interested in how the
Hamilton-Jacobi formalism is used
in practice, you can find numerous
examples and applications in the
books listed in Chapter 11.

W a little better.

11.1.1 Meaning of Hamilton’s Principal Function

First of all, let’s calculate the total time derivative of
W = W(q, α, t):12

12 Here it is crucial to recall that α is
constant in time (Eq. 11.4).

dW
dt

=
∂W
∂q

dq
dt

+
∂W
∂t �

H +
∂W
∂t

= 0, Eq. 11.6

=
∂W
∂q

dq
dt

− H

�

p =
∂W
∂q

, Eq. 11.5

= p
dq
dt

− H . (11.11)

But this is exactly what the Lagrangian L looks like in terms of
the Hamiltonian (Eq. 5.12)! We can therefore conclude:

dW
dt

= L . (11.12)
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And integrating this equation yields

W =
�

Ldt . (11.13)

This tells us that there is a direct connection between the princi-
pal function W and the action, which is defined as the integral
over the Lagrangian, too:

S =
� t f

ti

Ldt . (11.14)

But there is an important difference between the two. The action
functional S[q(t)] assigns a number to each path between fixed
initial and final points. Using specific initial conditions, the least
action principle allows us to calculate the correct path.

In contrast, for Hamilton’s principal function W the boundary

conditions are not fixed, but the path
�

q(t), p(t)
�

is. Formulated
differently, Hamilton’s principal function tells us the amount of

action required by the correct path
�

q(t), p(t)
�

between arbitrary
initial and final times.

In particular, this means that we can’t use Eq. 11.13 to calculate
Hamilton’s principal function W before we’ve solved the prob-
lem. To evaluate Eq. 11.13, we need to know the correct path
which is, well, the solution of the problem. Therefore, Eq. 11.13
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only helps us to understand the meaning of Hamilton’s princi-
pal functions.

All this probably makes little sense to you at this point. But this
will change as soon as we talk about the origin of classical me-
chanics and, in particular, its relationship to quantum mechanics
in Chapter 12.

To understand how the Hamilton-Jacobi method works in prac-
tice, let’s once more consider the harmonic oscillator.

11.1.2 Harmonic Oscillator

In Section 8.3, we already derived the correct harmonic oscilla-
tor Hamiltonian (Eq. 8.14):

H =
1
2

p2

m
+

1
2

kx2 . (11.15)

To simplify the following calculations, we rewrite the Hamilto-
nian a little bit

H =
1

2m

�
p2 + m2ω2q2

�
, (11.16)

where we introduced ω ≡
√

k/m.

Substituting this Hamiltonian into the Hamilton-Jacobi equation
(Eq. 11.6) yields

0 = H
�

q,
∂W
∂q

, t
�
+

∂W
∂t �

Eq. 11.16 with p =
∂W
∂q

(Eq. 11.5)

=
1

2m

��
∂W
∂q

�2
+ m2ω2q2

�
+

∂W
∂t

. (11.17)

This is a differential equation that we need to solve for W.

This is possible by making the ansatz13

13 We will see in a moment why
this ansatz is clever. As mentioned
before, solving differential equa-
tions is somewhat of an art. The
key observation here is that such a
separation ansatz will be successful
because one term only contains
derivatives with respect to t, and
the remaining terms only involve
q. But for our purposes here, it is
only important to take note that the
equation can be solved.

W(q, t) = A(q) + B(t) . (11.18)
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If we rearrange the terms in Eq. 11.17 and then use this ansatz,
we find

1
2m

��
∂W
∂q

�2

+ m2ω2q2

�
= − ∂W

∂t

�
Eq. 11.18

1
2m







∂
�

A(q) + B(t)
�

∂q




2

+ m2ω2q2


 = −

∂
�

A(q) + B(t)
�

∂t

� ∂B(t)
∂q

= 0,
∂A(q)

∂t
= 0

1
2m

��
∂A(q)

∂q

�2

+ m2ω2q2

�
= − ∂B(t)

∂t
. (11.19)

Now we can see why the ansatz in Eq. 11.18 is clever. The ex-
pression on the left-hand side only depends on q and the ex-
pression on the right-hand side only on t. But q and t are com-
pletely independent.

Still, both sides must be equal. This is only possible if both sides
are constant. If, for example, the right-hand side is not constant,
this would mean that we could change its value by varying t.
But since the left-hand side does not depend on t at all, there
is then no way that both sides are still equal. This observation
allows us to convert our quite complicated differential equation
into two simpler ones.

Let’s call the constant that both sides of the equation are equal
to α because we know that our principal function depends
not only on q and t but also on Q, and the whole point of the
Hamilton-Jacobi method is that this new location coordinate is
actually a constant that we conventionally call α. With this in
mind we find:1414 Take note that what we have

on the left-hand side is really just
the Hamiltonian. Therefore, the
constant α is actually simply the
energy of the harmonic oscillator.

1
2m

��
∂A(q)

∂q

�2

+ m2ω2q2

�
!
= α

!
= −∂B(t)

∂t

⇒ 1.)
1

2m

��
∂A(q)

∂q

�2

+ m2ω2q2

�
= α

⇒ 2.) − ∂B(t)
∂t

= α . (11.20)
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We can integrate the equation for B(t) directly:

−∂B(t)
∂t

= α

� �
dt

−
�

∂B(t)
∂t

dt =
�

α dt �

−B(t) = αt . (11.21)

The equation for A(q) is solved by

A(q) =
� �

2mα − m2ω2q2 dq (11.22)

as we can check explicitly:

1
2m

��
∂A(q)

∂q

�2

+ m2ω2q2

�
= α

�

Eq. 11.22

1
2m







∂
�� �

2mα − m2ω2q2 dq
�

∂q




2

+ m2ω2q2


 = α

�

1
2m

���
2mα − m2ω2q2

�2
+ m2ω2q2

�
= α

�

1
2m

�
2mα − m2ω2q2 + m2ω2q2

�
= α

�

✘✘✘m2ω2q2

α = α �
(11.23)

Therefore, our full solution of the Hamilton-Jacobi equation
reads

W(q, t) = A(q) + B(t) this was our ansatz, Eq. 11.18

�

Eq. 11.22 and Eq. 11.21

=
� �

2mα − m2ω2q2 dq − αt . (11.24)

Next, we can use this solution to determine the solutions we are
really interested in, i.e., q(t) and p(t). Specifically, we now use
Eq. 11.5 and recall that our new coordinates Q, P are actually
constants (α, β).15 Then, the first line in Eq. 11.5 tells us 15 Recall that these are constants

that we need to determine using
specific initial conditions.
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β = −∂W
∂α �

Eq. 11.24

= −
∂
�� �

2mα − m2ω2q2 dq − αt
�

∂α �
= −

� m�
2mα − m2ω2q2

dq + t
� d

dx
sin−1(cx) =

c√
1 − c2x2

= − 1
ω

sin−1

�
q

�
mω2

2α

�
+ t . (11.25)

And finally, we can solve this equation for q:

q = −
�

2α

mω2 sin
�

ωt + ωβ
�

. (11.26)

This is the solution of Hamilton’s equation we’ve been looking
for and exactly the same result that we obtained in Chapter 8.1616 Specifically, in Eq. 8.36 we found

x =

�
2E
k

sin

��
k
m

t − φ0

�
.

Using the definition ω ≡
√

k/m this
is equal to

x =

�
2E

mω2 sin (ωt − φ0) .

By comparing this to Eq. 11.26, we
can conclude that α is indeed equal
to the total energy. Moreover, β
is directly connected to the initial
configuration as specified by φ0.

Next, let’s talk about statistical mechanics.
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11.2 Statistical Mechanics

In this section, we’ll discuss how we can describe situations
in classical mechanics in which we don’t know all the details.
This may seem like an additional complication which we can
safely ignore if we are only interested in fundamental aspects,
analogous to how we usually ignore friction. But this couldn’t
be further from the truth.

Many of the most important discoveries in modern physics
are about how we can describe situations without absolute
knowledge. For example, in quantum mechanics and quantum
field theory we are exclusively calculating probabilities because
there is a fundamental uncertainty we seemingly can’t get rid
of.

But statistical mechanics is not only a great way to get famil-
iar with probabilistic concepts in a familiar context. Statistical
mechanics is also essential to understand the fundamental dif-
ference between quantum mechanics and classical mechanics.

So far, we’ve always assumed that we are dealing with perfectly
known initial conditions. But whenever we perform a real ex-
periment, there is at least some uncertainty.

We never know the location or momentum of a given object
with 100% accuracy because there are always technical limits
to how precisely we can measure them. Of course, for many
applications this uncertainty is so small that we can safely ig-
nore it. For example, if we want to describe a big ball, it usually
doesn’t really matter whether its center is at x = 1.0 m or at
x = 1.0000001 m.
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Especially when we describe small objects or many objects at
once, such uncertainties can become extremely significant.1717 For example, think about a gas

which consists of so many individ-
ual molecules that it’s impossible to
specify all the individual locations
and momenta exactly.

Luckily, we already have everything that we need to understand
how we can take uncertainty into account.

First of all, let’s recall that a point in phase space corresponds to
one specific state of the system. Formulated differently: a point
in phase space corresponds to perfectly known locations and
momenta for all objects in the system.

As time passes by, this point moves through phase space since,
in general, the locations and momenta of the various objects
change. Therefore, a trajectory describes the time evolution of
the system in phase space.

Therefore, whenever we are not 100% certain about the state of
the system, we need more than a single point in phase space to
describe it. Each initial state we think is possible corresponds to
one particular phase space point.

Formulated differently, our limited accuracy means that we
don’t know the exact locations of our objects but only that they
are in a certain spatial region. The same is true for the mo-
menta which have to be within some range. Now, if we take
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uncertainty into account, our time evolution is no longer just a
trajectory in phase space but a collection of trajectories.

Imagine you put a pencil down on each possible initial state
of the system. Then, as time passes by, each of these pencils
traces out the path in phase space that describes the time evolu-
tion if the system was in the corresponding initial state. When
taken together, all of these pencils trace out what we call a flow
in phase space. Formulated differently, while in the previous
chapters we always considered the trajectories of individual
phase space points, we are now interested in the trajectories of a
swarm of points in phase space.

Figure 11.1: In general, for a contin-
uous set of possible initial states, we
get a region in phase space.

We will usually not deal with a finite set of points in practice.
Instead we consider a whole region in phase space as our initial
state. Each point within this region corresponds to a specific
possible initial state of the system. In other words, this means
that we assume that a whole range of locations and momenta
are possible and not just a finite set.

To understand this, let’s imagine that we want to describe a
single object but are somewhat uncertain about its location. We
can then split up the possible locations into discrete boxes. Each
such box corresponds to a range of possible locations. And in
phase space, each box corresponds to a specific region.
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Of course, typically all points in such an initial region are not
equally likely. For example, often we are somewhat sure that
one particular initial state is much more likely than the other
ones. But even if we are 99% certain, it can make sense to con-
sider all of the less likely states too.1818 We will see why below.

Mathematically, we can take this into account by using a so-
called probability density.1919 An alternative name for a prob-

ability density is probability
distribution. For example, the
probability distribution for a regu-
lar die is

χ(1) = 1/6

χ(2) = 1/6

χ(3) = 1/6

χ(4) = 1/6

χ(5) = 1/6

χ(6) = 1/6.

But we can also imagine that we are
dealing with an oddly shaped die.
Then, our probability distribution
could look as follows:

χ(1) = 1/2

χ(2) = 1/6

χ(3) = 1/12

χ(4) = 1/12

χ(5) = 1/12

χ(6) = 1/12.

In words this means that for this
die it is much more likely to get a 1
than, say, a 6.

11.2.1 Probability Density

A probability density ρ(x, p, t) is a function which eats a phase
space point (x, p) plus a specific point in time t and spits out
the probability that this point corresponds to the correct state of
the system.
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Before we discuss this in more technical terms, maybe the fol-
lowing idea helps: If we have definite knowledge about the state
of the system, we have just one point. If we are not exactly sure,
this one point splits up into many points. We can imagine that
now, instead of one perfectly black point (probability = 100%),
we have lots of points which are all a little bit transparent (prob-
ability < 100%). In other words, the level of transparency indi-
cates how confident we are to find the system in this state. More
transparency corresponds to a smaller probability to find the
system in the corresponding state. The crucial point is then that
if we add up all the points we get a completely non-transparent
point which is identical to the definite knowledge point. In
physical terms, this means that probability is conserved. In the
definite knowledge case, we have just one point since we are
100% certain that the system is in this state. If we are not sure,
the 100% gets distributed among all possible states.20 20 We will discuss this using an

explicit example in a moment.

To understand the concept of "probability density" a bit better,
let’s imagine a one-dimensional system with two objects and
that (for some unspecified reason) only very specific positions
and momentum values are possible. This means that only a few
initial states are viable and not a continuous set. Further, let’s
say we are pretty certain that our system is in the state A where
q1 = 2 m, p1 = 3 kg · m/s and q2 = 3 m, p2 = 4 kg · m/s.
However, we can’t exclude the state B where q1 = 3 m, p1 = 4
kg · m/s and q2 = 4 m, p2 = 5 kg · m/s or state C where q1 = 1
m, p1 = 2 kg · m/s and q2 = 2 m, p2 = 3 kg · m/s. Our (now
discrete) initial probability density is then21 21 To unclutter the notation we

dropped all units.

ρ(t = 0, A) = 0.7

ρ(t = 0, B) = 0.2

ρ(t = 0, C) = 0.1 (11.27)

In words this means that we are 70% likely to find the system
in state A, 20% likely to find it in state B, and 10% likely to find
it in state C.22 An important property is that the probabilities 22 From a slightly different perspec-

tive we can imagine that when we
prepare a given experiment mul-
tiple times, we expect to find it at
t = 0 in state A in 70% of all runs,
in state B in 20% of the runs and in
state C only in 10% of the runs.

add to 1 = 100 %. This is necessarily the case because one of
the outcomes must happen and a total probability of more than
100% doesn’t make sense.
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At t = 0, to get the probability of finding our two objects in
the regions (q1, q2) ∈ {2 . . . 3, 3 . . . 4} and with momenta in the
range (p1, p2) ∈ {3 . . . 4, 4 . . . 5}, we have to "integrate" over the
corresponding volume. Since we are dealing with a discrete set
of possible states, our "integration" is simply a sum23

23 Take note that the state C is not in
our region and therefore does not
appear in the sum.

P
�

t = 0, (q1, q2) ∈ {2 . . . 3, 3 . . . 4}, (p1, p2) ∈ {3 . . . 4, 4 . . . 5}
�
=

q1=3,q2=4,p1=4,p2=5

∑
q1=2,q2=3,p1=3,p2=4

ρ(t = 0, p1, q1, p2, q2)

= ρ(t = 0, A) + ρ(t = 0, B)

= 0.7 + 0.2 = 0.9 .

If we are dealing with a continuous set of possible states (which
is usually the case), the probability of finding our objects with
positions within the region Rp and momenta within the range
Rm at a specific moment in time t is2424 As usual, x is our shorthand

notation for all phase space loca-
tion coordinates x1, x2, . . . and p
represents all momentum coordi-
nates p1, p2, . . .. In particular, this
means that dx = dx1dx2 . . . and
dp = dp1dp2 . . ..

P(Rm, Rp, t) =
�

Rp
dx

�

Rm
dp ρ(x, p, t) . (11.28)

Usually, we will use a shorthand notation for this kind of in-
tegral and simply talk about a region R in phase space and a
phase space volume dV = dqdp:

P(R, t) =
�

R
ρ(x, p, t)dV . (11.29)

Now, what we are really interested in is, given an initial prob-
ability density describing our system at t = 0, what does the
system look like after some time (i.e., at t �= 0)? In other words,
our main goal is, as usual, to calculate the time evolution of
some given initial data.

But first, we need to talk about an important general property of
phase space in classical mechanics.
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11.2.2 Conservation of Phase Space Paths

In the example we discussed above, we started with three pos-
sible initial phase space points (Eq. 11.27). Each of them corre-
sponds to a specific state our system can be in and the proba-
bility density tells us how likely they are. Moreover, given any
specific phase space point, we can use Hamilton’s equations to
calculate how it evolves in time.

The key observation is that this implies that if we start with
three possible initial states, we will always end up with exactly
three possible final states. Formulated in more general terms:25 25 This is one key difference between

classical and quantum mechanics.
In quantum mechanics one initial
state can lead to many different
final states because the fundamental
equation of motion (Schrödinger’s
equation) is intrinsically probabilis-
tic.

The number of final points is always equal

to the number of initial points.

Each initial point follows a specific path in phase space as spec-
ified by Hamilton’s equations. And for each initial point there
is always exactly one phase space path. So a different way of
putting our observation is that:

The number of phase space paths we have

to consider is constant in time.

To understand this a bit better, recall that we can imagine that
we trace out the phase space flow by putting down a pencil on
each point and then drawing the trajectories in phase space for
each point as a line. The statement here is that you never sud-
denly need more pencils than at the beginning since the trajec-
tories you are drawing are completely specified by Hamilton’s
equations.26 26 It is conventional to reformulate

this observation by saying that in
classical mechanics the phase space
flow is incompressible.
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Let’s try to understand what this implies in mathematical
terms.2727 We will see that by putting the

simple observation discussed above
in mathematical terms, we can
derive one of the most important
statistical mechanics equations,
which is known as the Liouville
equation.

Let’s assume for simplicity that, in total, N different states of
our system are possible and we think each of them occurs with
the same probability. This kind of situation is very common in
statistical mechanics. For example, when we try to describe a
gas there is no way we can determine the locations and mo-
menta of all gas molecules at the same time. The best we can do
is to determine macroscopic properties like the temperature and
pressure of the gas and then collect all microstates of the system
which are compatible with these macroscopic properties.28

28 A microstate corresponds to a
specific choice of locations and
momenta for all individual gas
molecules. In contrast, a macrostate
is defined by macroscopic observ-
ables like temperature and pressure.
In general, there are lots of mi-
crostates which correspond to the
same macrostate.

Since we want to think about the behavior of individual phase
space points, it is helpful to introduce a new density ρ̃(q, p, t)
which tells us how many viable phase space points are within
some given region.29 So when we integrate ρ̃ over all phase

29 We will clarify how this density is
related to the probability density we
discussed above.

space, we get the total number of microstates which are compat-
ible with our specific macrostate at a particular moment in time
t:

N(t) =
�

all
ρ̃(q, p, t) dV . (11.30)

And in general, if we integrate ρ̃ over some phase space region
R, we find out how many viable phase space points there are
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within this region:

NR(t) =
�

R
ρ̃(q, p, t) dV . (11.31)

Since we assume that each microstate occurs with equal proba-
bility, the corresponding probability to find our system in a state
described by a point in the phase space region R is30 30 Take note that the probability

to find our system in any state
described by a phase space point is

P(all, t) =
N(t)
N(t)

= 1 = 100% .

P(R, t) =
NR(t)
N(t)

. (11.32)

This allows us to relate the original probability density ρ(q, p, t)
to our new number density ρ̃(q, p, t):

ρ(q, p, t) =
ρ̃(q, p, t)

N(t)
. (11.33)

But using this definition we find the correct probability for any
region R by integrating over ρ(q, p, t):
�

R
ρ(q, p, t)dV

(11.33)
=

�

R

ρ̃(q, p, t)
N(t)

dV

�

N(t) does not depend on q and p

=

�
R ρ̃(q, p, t)dV

N(t)
(11.31)
=

NR(t)
N(t)

(11.32)
= P(R, t) � . (11.34)

Equipped with these new tools, we can finally discuss what it
really means to say that each possible initial phase space point
evolves into exactly one final phase space point.

First of all, we can conclude that the total number of viable
microstates N(t) will always be the same because each initial
state evolves into exactly one final state:

N(t) = const. ≡ N . (11.35)

But what about the number of microstates within an arbitrary
given phase space region R?

We need to be very careful when we answer this question be-
cause there are multiple aspects which we can easily miss. For
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concreteness, let’s say that at some specific moment in time
t = t0, we have NR(t0) microstates within the region R

NR(t0) =
�

R
ρ̃(q, p, t0) dV . (11.36)

Now, we can immediately conclude that after some short time
interval t0 → t0 + �, the number of viable points within the
region R is

NR(t0 + �) =
�

R
ρ̃(q, p, t0 + �) dV . (11.37)

In general, this number will not be equal to NR(t0) because
phase space points move around as time passes:

NR(t0) �= NR(t0 + �) . (11.38)

But for our purposes this is not a particularly useful insight.3131 Recall that our goal is to encode
the observation that each initial
point evolves into exactly one final
point in mathematical terms. And
we discovered that the number of
viable points within a fixed region
R changes over time. So this is
certainly not the kind of statement
we are looking for.

However, we can modify the situation a little bit and derive one
of the most important equations in statistical mechanics.

We can see in the image above that while the number of points
did not change in principle, the number of points within the
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region R got smaller because some of the points crossed the
boundary of the region.32 This observation hints at how we can 32 No point representing a viable

microstate was created or de-
stroyed since each phase space
point evolves according to Hamil-
ton’s equations.

remedy this situation.

First of all, we need to recall that the phase space of a specific
system is not simply a static set of points (q, p). Instead, these
points are equipped with a concrete Hamiltonian which tells us
how each phase space point moves around.

Therefore, we can imagine that all phase space points are con-
stantly moving around as described by Hamilton’s equations.
This implies that our region R is moved around, too:33 33 A region is a set of points and

since each point is moving around
as described by Hamilton’s equa-
tions, the whole region is moving
around.

R → R̃ . (11.39)

If we take this into account, we can calculate the number of
viable phase space points within the moved region R̃

NR̃(t0 + �) =
�

R̃
ρ̃(q, p, t0 + �) dV . (11.40)

A key observation here is that

NR(t0) = NR̃(t0 + �) . (11.41)
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This follows because the evolution of each point within the
region R is uniquely fixed by Hamilton’s equations and the
viable phase space points we are interested in are simply phase
space points in the region R too.

As time passes, all these points get "dragged" around by the
Hamiltonian. Analogously, all points outside the region R get
dragged around. But no new point will ever enter our moving
region.

This is necessarily the case because:

The paths of different phase space points never

intersect each other.

Otherwise we would have a situation in which the time-evolution
of at least one specific state of the system (corresponding to the
phase space point where the paths intersect) wouldn’t be fixed.
Instead, there would be two possible trajectories that our state
could take as time evolves. Each possibility would be described
by one of the paths.

In other words, if paths in phase space could intersect, the time
evolution of at least one initial state wouldn’t be unique.

But we can put any phase space point (q, p) into Hamilton’s
equations and get a specific phase space path as a result. There-
fore, we never run into such a situation in which the further
time evolution is not uniquely fixed. Translated into phase
space language this means that paths cannot intersect each
other.

Therefore, the paths of all phase space points at the boundary
of our region are like a shield that prevents new phase space
points from entering our moving region.
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A key observation is now that Eq. 11.41 encodes exactly the
kind of statement made at the beginning of this section.34 To 34 Each initial state evolves uniquely

into one final state.turn this equation into a more useful form, there are two things
that we need to take into account. First of all, the region R only
changes because our phase space points q and p evolve in time.
So instead of using a transformed R, we can simply modify the
arguments in

ρ̃(q, p, t0 + �) → ρ̃(Q, P, t0 + �) , (11.42)

where (Eq. 10.35)

Q = q + �{q, H}
P = p + �{p, H} . (11.43)

But then, there is one additional thing that we need to take into
account: the infinitesimal volume elements dV we are integrat-
ing over can be different because dV = dqdp and q and p change
in time:35 35 We will discuss this in much more

detail in the following section.dV = dqdp → dṼ = JdQdP , (11.44)

where J is a possible scale factor that describes how the old and
new infinitesimal volume elements differ.

Therefore, what we end up with is

NR̃(t0 + �) =
�

R̃
ρ̃(q, p, t0 + �) dV

�

Eq. 11.42 and Eq. 11.44

=
�

R
ρ̃(Q, P, t0 + �) dṼ . (11.45)
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Using this formula, we can rewrite our key observation from
above (Eq. 11.41) as follows:

NR(t0) = NR̃(t0 + �) �
Eq. 11.31 and Eq. 11.45�

R
ρ̃(q, p, t0) dV =

�

R
ρ̃(Q, P, t0 + �) dṼ . (11.46)

Now, you are probably wondering why this is useful at all. So
to avoid you getting too bored, let’s discuss the punchline first
and the details afterwards.

11.2.3 Liouville’s Equation

In the previous section, we’ve simply put the statement that
the number of viable initial and final states is always equal
into a mathematical form. In the following section, we will
derive that dV = dṼ. This is known as Liouville’s theorem and
tells us that the infinitesimal phase space volume elements we
are integrating over remain unaffected by the time-evolution.
This result allows us to rewrite the main result of the previous
section (Eq. 11.46) as:
�

R
ρ̃(q, p, t0) dV =

�

R
ρ̃(Q, P, t0 + �) dṼ

�

dV = dṼ, see next section�

R
ρ̃(q, p, t0) dV =

�

R
ρ̃(Q, P, t0 + �) dV . (11.47)

By comparing the left-hand and right-hand side we can con-
clude:

ρ̃(q, p, t0) = ρ̃(Q, P, t0 + �) . (11.48)

Now this is really interesting because ρ̃(Q, P, t0 + �) is our num-
ber density ρ̃ at an infinitesimally later point in time since Q
and P are the phase space coordinates at an infinitesimally later
point in time.36 But when our phase space density does not

36 Eq. 10.35:

Q = q + �{q, H}
P = p + �{p, H} .

change during an infinitesimal interval, it never does. After all,
we made no assumptions about the initial moment in time t0

and therefore the equality holds in general. So what we learn
here is that the total derivative of ρ̃ vanishes:37

37 Take note that the partial deriva-
tive ∂ρ̃

∂t would vanish if instead of
Eq. 11.48, we would have

ρ̃(q, p, t0) = ρ̃(q, p, t0 + �) ,

which, in general, is not the case
as we’ve seen above (Eq. 11.38).
The difference between the partial
and total derivative is discussed
in Appendix A.3. Moreover, we
will discuss this from a different
perspective in Section 11.2.5.

dρ̃(q, p, t)
dt

= 0 . (11.49)
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Moreover, we can use the relationship between the number
density ρ̃ and the probability density ρ (Eq. 11.33) to conclude:38 38 For your convenience Eq. 11.33

reads:

ρ(q, p, t) =
ρ̃(q, p, t)

N

where N is constant because the
total number of viable states does
not change since each initial state
evolves into exactly one final state.
Therefore:

dρ̃(q, p, t)
dt

= 0

∴
d
�

Nρ(q, p, t)
�

dt
= 0

∴ N
dρ(q, p, t)

dt
= 0

∴ dρ(q, p, t)
dt

= 0 . (11.50)

dρ(q, p, t)
dt

= 0 . (11.51)

Next, by recalling that Hamilton’s general equation (Eq. 5.42)
holds for any phase space function, we can rewrite Eq. 11.51 as
follows:

dρ

dt
= 0

�

Eq. 5.42

{ρ, H}+ ∂ρ

∂t
= 0 . (11.52)

By rearranging the terms, we find:

∂ρ

∂t
= −{ρ, H} (11.53)

This is the famous Liouville equation which describes how the
probability density ρ evolves in time.

In the following section we will discuss why infinitesimal phase
space volume elements remain unaffected as we move forward
in time.

11.2.4 Liouville’s Theorem

We now consider one of the smallest possible regions in phase
space: an infinitesimal rectangle spanning from39 39 We are simply giving convenient

names to the coordinates of the
various points.A ≡ (Aq, Ap) ≡ (q, p) (11.54)

via
B ≡ (Bq, Bp) ≡ (q + dq, p) (11.55)

to
C ≡ (Cq, Cp) ≡ (q, p + dp) (11.56)
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and

D ≡ (Dq, Dp) ≡ (q + dq, p + dp) . (11.57)

Take note that the area of this region is a = dqdp.4040 This will be important in a mo-
ment.

As time passes, our region moves through phase space. What
does our region look like after an infinitesimal time interval dt,
i.e., at t + dt?

To understand this, we need to calculate explicitly how each of
the individual points moves. We can do this by using Hamil-
ton’s equations, but there are subtleties that we need to take
into account.

First of all, Hamilton’s equations give us the velocity q̇ ≡ dq
dt

in the q-direction and the velocity ṗ ≡ dp
dt in the p-direction.

Therefore, when we want to know how a specific phase space
point A = (q, p) moves, we need to take into account that, in
general, its q coordinate and its p coordinate will change.4141 We will use Hamilton’s equations

below, but first we express every-
thing in terms of the general rates
of change. Therefore, after the infinitesimal time interval dt, the q coordi-

nate of our point A will have moved to

A�
q = Aq + q̇(q, p, t)dt

(11.54)
= q + q̇(q, p, t)dt (11.58)

and the p coordinate will have moved to

A�
p = Ap + ṗ(q, p, t)dt

(11.54)
= p + ṗ(q, p, t)dt . (11.59)
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This means that our point A is now located at

A� = (A�
q, A�

p) =
�

q + q̇dt, p + ṗdt
�

. (11.60)

For the remaining points, we need to talk about a second sub-
tlety. As before, we need to take the rates of change in the q
direction and the p direction into account. But we need to be
careful because these rates are, in general, different for different
phase space points.42 For example, the rate of change of the 42 Recall that different phase space

points correspond to distinct states
of the system. Therefore, there is
no general reason why the way
these different points evolve in time
should be equal.

point B in the q direction is q̇(q + dq, p, t) and its rate of change
in the p direction is ṗ(q + dq, p, t).

Therefore, we will find that the q coordinate of the phase space
point B is now

B�
q = Bq + q̇(q + dq, p, t)dt �

Taylor expansion

= Bq +

�
q̇(q, p, t) +

∂q̇(q, p, t)
∂q

dq
�

dt , (11.61)

and its p coordinate reads

B�
p = Bp + ṗ(q + dq, p, t)dt �

Taylor expansion

= Bp +

�
ṗ(q, p, t) +

∂ ṗ(q, p, t)
∂q

dq
�

dt , (11.62)

where we used, as usual, that for infinitesimal intervals, we can
neglect higher order terms in the Taylor expansion. So our point
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B will therefore be located at

B� = (B�
q, B�

p) =

�
Bq +

�
q̇ +

∂q̇
∂q

dq
�

dt, Bp +

�
ṗ +

∂ ṗ
∂q

dq
�

dt

�

(11.55)
=

�
q + dq +

�
q̇ +

∂q̇
∂q

dq
�

dt, p +

�
ṗ +

∂ ṗ
∂q

dq
�

dt

�
.

(11.63)

Analogously, we can calculate the new coordinates of C:

C�
q = Cq + q̇(q, p + dp, t)dt �

Taylor expansion

= Cq +

�
q̇(q, p, t) +

∂q̇(q, p, t)
∂p

dp
�

dt

C�
p = Cp + ṗ(q, p + dp, t)dt �

Taylor expansion

= Cp +

�
ṗ(q, p, t) +

∂ ṗ(q, p, t)
∂p

dp
�

dt . (11.64)

Therefore4343 Completely analogously, we can
calculate the coordinates of D�. We
will skip this step since we don’t
need it for the following discussion. C� = (C�

q, C�
p) =

�
Cq +

�
q̇ +

∂q̇
∂p

dp
�

dt, Cp +

�
ṗ +

∂ ṗ
∂p

dp
�

dt

�

(11.56)
=

�
q +

�
q̇ +

∂q̇
∂p

dp
�

dt, p + dp +

�
ṗ +

∂ ṗ
∂p

dp
�

dt

�
.

(11.65)

Now, a first important observation is that our region is no
longer a rectangle because each point moves with a different
velocity.
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But what about the area of the region?44 44 What we will discover in the fol-
lowing is one of the most important
insights in all of physics. So while
the following calculation is quite
cumbersome, the final result is
worth the hassle.

In general, the area of the parallelogram spanned by two 2-
dimensional vectors �v = (v1, v2)

T and �w = (w1, w2)
T is given

by45

45 We can understand this by noting
that a parallelogram is basically a
rectangle minus some extra stuff.

A more abstract way to under-
stand this is by noting that the
area of the parallelogram spanned
by two 2-dimensional vectors
�v = (v1, v2)

T and �w = (w1, w2)
T

is exactly the determinant of the

matrix
�

v1 w1
v2 w2

�
.

area(v × w) = v1w2 − v2w1 . (11.66)

The vectors spanning our region at t are

�AB = �B − �A =

�
q + dq

p

�
−
�

q
p

�
=

�
dq
0

�

�AC = �C − �A =

�
q

p + dp

�
−
�

q
p

�
=

�
0

dp

�
. (11.67)

Therefore the original area of the region, as already mentioned
above, is

area( �AB × �AC)
(11.66)
= ( �AB)1( �AC)2 − ( �AB)2( �AC)1

(11.67)
= dqdp − 0 = dqdp . (11.68)

The vectors spanning our region at t + dt are

�A�B� = �B� − �A�

�

Eq. 11.60 and Eq. 11.63

=


q + dq +

�
q̇ + ∂q̇

∂q dq
�

dt

p +
�

ṗ + ∂ ṗ
∂q dq

�
dt


−

�
q + q̇dt
p + ṗdt

�

=

�
dq + ∂q̇

∂q dqdt
∂ ṗ
∂q dqdt

�

�A�C� = �C� − �A�

�

Eq. 11.60 and Eq. 11.65

=


 q +

�
q̇ + ∂q̇

∂p dp
�

dt

p + dp +
�

ṗ + ∂ ṗ
∂p dp

�
dt


−

�
q + q̇dt
p + ṗdt

�

=

� ∂q̇
∂p dpdt

dp + ∂ ṗ
∂p dpdt

�
. (11.69)

Therefore, the area of our region at t + dt reads
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area( �A�B� × �A�C�)
(11.66)
= ( �A�B�)1(

�A�C�)2 − ( �A�B�)2(
�A�C�)1

(11.69)
=

�
dq +

∂q̇
∂q

dqdt
��

dp +
∂ ṗ
∂p

dpdt
�
−
� ∂ ṗ

∂q
dqdt

�� ∂q̇
∂p

dpdt
�

�

dt2 = 0 (infinitesimal)

= dqdp + dq
∂ ṗ
∂p

dpdt + dp
∂q̇
∂q

dqdt

�

Hamilton’s equations, Eq. 5.15

= dqdp + dq
∂

∂p

�
− ∂H

∂q

�
dpdt + dp

∂

∂q

�
∂H
∂p

�
dqdt

� ∂

∂q
∂

∂p
=

∂

∂p
∂

∂q

= dqdp − dq
∂

∂q
∂H
∂p

dpdt + dp
∂

∂q
∂H
∂p

dqdt

�

✘✘✘✘✘
dq

∂

∂q
∂H
∂p

dpdt

= dqdp . (11.70)

This is exactly equal to the area of the region at t (Eq. 11.68)!46

46 If you’re unfamiliar with the
transformation rules of an integral
under coordinate changes, ignore
this sidenote. Otherwise, take note
that from a more technical perspec-
tive, we can understand what is
going on here by noting that time
translation t → t + � is a canonical
transformation generated by the
Hamiltonian H. (We discovered
this in Section 10.3.) But a canonical
transformation is, in some sense,
simply a change in coordinates.
Thus, what we do here is switch to
new coordinates which correspond
to the old ones at a later point in
time. From this perspective, we can
use the usual transformation rules
for an integral under a coordinate
transformation. In particular, we
need to keep in mind that after the
coordinate transformation the Jaco-
bian determinant appears under the
integral. So what Liouville’s the-
orem really says is that the Jacobi
determinant is 1 for the transforma-
tion corresponding to time transla-
tions. For a short proof, see page 90
here: http://www.damtp.cam.ac.
uk/user/tong/dynamics/clas.pdf

What we’ve therefore discovered is that while the shape of
our phase space region has changed wildly, its area remains
unchanged. Since any phase space region consists of such in-
finitesimal regions and any finite time interval consists of many
infinitesimal ones, we can conclude that this result holds in gen-
eral. Moreover, since phase space is usually not 2-dimensional
but higher-dimensional, we are dealing with volumes instead of
surfaces. Therefore, we can conclude:

Phase space volume remains constant in time.

This is famously known as Liouville’s theorem. And, as shown
in the previous section, it is essential in the derivation of the
Liouville equation (Eq. 11.53) which governs the behavior of the
probability density in classical mechanics.

11.2.5 Summary and Comments

In the previous section, we’ve started talking about how we
can describe situations in which we don’t know all details with
100% accuracy.

We learned that we can still make predictions by describing sys-
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tems in terms of probability densities. In general, if we integrate
a probability density over a phase space region R, we get the
probability of finding our system in a state described by a phase
space point within the region (Eq. 11.29):

P(R, t) =
�

R
ρ(x, p, t)dV . (11.71)

We then used the key observations that each possible initial
state evolves into exactly one final state, that phase space paths
never intersect each other, and that phase space volumes are
constant in time (Liouville’s theorem) to derive the Liouville
equation (Eq. 11.53)47 47 We discussed Liouville’s theorem

in Section 11.2.4.

∂ρ

∂t
= −{ρ, H} . (11.72)

Of course, we’ve barely scratched the surface. Statistical me-
chanics is a vast and beautiful branch of physics. But for the
modest goals of this book we have everything that we need to
move forward.

Nevertheless, there is one additional perspective on Liouville’s
equation that I would like to talk about because so far it may
appear a bit nebulous. In particular, you might find it puzzling
that we first discovered that, in general, the total time derivative
of the probability density vanishes (Eq. 11.51)

dρ

dt
= 0 (11.73)

but then, using Hamilton’s general equation of motion (Eq. 5.36),
we derived that the corresponding partial time derivative ∂ρ

∂t
does not vanish in general (Eq. 11.53).

The observation which allows us to understand this is that the
key fact encoded in the Liouville equation is that in classical



282 no-nonsense classical mechanics

mechanics there is nothing which really influences and modifies
probabilities.

In particular, this implies that if we start with an initial state
A = (qA, pA) which occurs with a probability of 70% at t = t0,
at some later point in time t = t1 the corresponding final state
Ã = (QA, PA) will occur with a probability of 70% too.4848 Or, to come full circle, imagine

that we are 100% certain that a
particular initial state describes our
system. In classical mechanics we
can then simply use Hamilton’s
equations to calculate the corre-
sponding final state at a later point
in time. And most importantly,
since there is no intrinsically proba-
bilistic aspect in classical mechanics,
this final state will occur with 100%
certainty too. So there is just one
phase space path and the probabil-
ity of 100% stays attached to each
point along the way. (The situa-
tion is very different in quantum
mechanics where one fixed initial
state can lead to many different
final states which each occur with a
certain probability.)

In mathematical terms, when we
are 100% certain that (q = 0, p = 0)
is the correct initial point, we use
the probability density

ρ(q, p, t = 0) = δ(q, p),

where δ(x) denotes the delta distri-
bution. (Don’t worry if you don’t
know yet what the delta distribu-
tion is. Speaking colloquially, it’s
simply a mathematical tool which
we invent to describe situations
in which something is localized
exactly at one point.) The Liouville
equation then tells us that as time
passes, our probability density is
described by

ρ(q, p, t) = δ(q − q(t), p − p(t)) ,

where q(t) and p(t) describe the
correct phase space path as given
by Hamilton’s equations. In words,
this means that our 100% proba-
bility simply is dragged along the
path defined by q(t) and p(t). And
in particular, we don’t get a 50%
probability of finding the final state
X and a 50% probability of finding
the final state Y.

So if we start with a fixed set of possible initial states and spe-
cific probabilities for each of them, the corresponding final
states will each occur with exactly the same probabilities.

Mathematically we can imagine that we start with

P(A, t0) = 70%

P(B, t0) = 10%

P(C, t0) = 5%

... . (11.74)

And at a later point in time we find

P(Ã, t1) = 70%

P(B̃, t1) = 10%

P(C̃, t1) = 5%

... , (11.75)

where Ã, B̃, C̃ are the phase space points that we get by evolving
our initial points A, B, C using Hamilton’s equations.

In contrast, we have

P(A, t1) �= 70%

P(B, t1) �= 10%

P(C, t1) �= 5%

... (11.76)

because, in general, our phase space points move around.
Therefore, the probability that the original phase space point
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A still describes the state of the system at a later point in time is
not necessarily equal to the probability at the initial moment in
time.

This is exactly what dρ
dt = 0 but ∂ρ

∂t �= 0 means in the context of
probability densities.

In terms of the phase space probability density, the statements
above read:49 49 Recall the definition of the partial

derivative:

∂ρ

∂t
=

lim
Δt→0

�
ρ(t + Δt, x(t), p(t))

Δt

− ρ(t, x(t), p(t))
Δt

�
.

(See Appendix A.3.)

Eq. 11.74 �= Eq. 11.76 ↔ ρ(q, p, t0) �= ρ(q, p, t1) (11.77)

because, for example, state A = (qA, pA) will have moved to a
new location Ã = (QA, PA). In terms of derivatives, this means
that ∂ρ

∂t �= 0.

But in contrast, we have50

50 Recall that here

Q = q + �{q, H}
P = p + �{p, H} .

In words this means that Q and
P are our old coordinates at an
infinitesimally later point in time.

Eq. 11.74 = Eq. 11.75 ↔ ρ(q, p, t0) = ρ(Q, P, t1) (11.78)

because the probabilities remain attached to their points as they
move through phase space.

The state described by A = (qA, pA) has now evolved into the
state described by Ã = (QA, PA). Therefore, the probability of
observing this state at t1 is exactly the same as the probability
of observing the state corresponding to A at t0. And in terms of
derivatives, this means that dρ

dt = 0.51

51 Recall the definition of the total
derivative:

dρ

dt
=

lim
Δt→0

�
ρ(t + Δt, x(t + Δt), p(t + Δt))

Δt

− ρ(t, x(t), p(t))
Δt

�
.

(See Appendix A.3.)
To summarize: the pattern of probabilities is frozen ( dρ

dt = 0)
since each probability simply remains attached to its corre-
sponding phase space point as it moves around. The Liouville
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equation allows us to keep track of how the fixed probabilities
are dragged around as time passes.5252 The pattern of probabilities is

fixed by the initial probabilities.

On the other hand, this also implies that the probabilities at a
fixed phase space point change all the time (i.e., ∂ρ

∂t �= 0) because
all points drag their probabilities with them as time moves on.53

53 Take note that the zero probabil-
ities which are now found at the
original locations, moved there from
some other location. To understand
this, take note that there is really a
probability assigned to all points.
But for most points, the probability
is zero. Nevertheless, as time moves
on, all these probabilities (zero or
not) move around as described by
Hamilton’s equations.

Maybe it helps to imagine that we place a little boat at each
phase space point which has a real chance to describe the sys-
tem in question accurately. Inside each such boat we put the
probability that the corresponding phase space point describes
our system. All points without a boat have zero probability of
describing our system.

Then, as time passes, our little boats get dragged around phase
space as a result of the Hamiltonian flow.5454 In this analogy, the time evolution

as given by Hamilton’s equations
yields a flow which drags our boats
in certain directions. So when we wait some time and then check the original loca-

tions of the boats, we will most likely not find any boats there.
And if we don’t find any boat at a given phase space point at a
specific moment in time, the probability that this point describes
our system is zero. Usually, our boats have moved on and there-
fore the probabilities are now found elsewhere. This is what
ρ(q, p, t0) �= ρ(q, p, t1) means.

But on the other hand, we know exactly where we can find
our boats since their movement is determined completely by
Hamilton’s equations. We will find the boat which was located
at the specific phase space point (q, p) after an infinitesimal time
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interval at

Q = q + �{q, H}
P = p + �{p, H} .

This is what we mean by ρ(q, p, t0) = ρ(Q, P, t1).

The key observation here is that the probabilities that we put in-
side the boats at t = 0 do not change at all and will be the same
at any later point in time. It’s just that we then find these boats
at different locations. The probabilities inside them remain un-
changed.55 55 Once more, this is only the case

in classical mechanics. In quantum
mechanics, there are multiple
possible outcomes for a specific
initial state and therefore one boat
splits up into many even smaller
boats which each carry a fraction of
the original probability.As a final comment, take note that what we discussed above

does not imply that the uncertainties are constant. To understand
this imagine that we’ve measured the location and momentum
of a single object quite accurately. In phase space this means
that we describe our initial configuration using a small phase
space region.

Now, as time passes, the various individual points inside the
region start moving around. However, it is by no means guar-
anteed that they stay close to each other. Instead, our region can
split up, since even small differences in the initial condition can
lead to wildly different final states.
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This is known as phase space filamentation.

Just think about a billiard ball. A small difference in its initial
location and momentum can lead to a completely different final
location.

However, as we’ve learned above, the probabilities remain at-
tached to the viable phase space points as they move around.
Therefore, we find a much larger range of possible locations
and momenta for our object in the final state. And this implies
that we can end up with huge uncertainties in the final state
although we started with a fairly well known initial state.

To quote Roger Penrose5656 Roger Penrose. The Emperor’s New
Mind : Concerning Computers, Minds
and the Laws of Physics. Oxford
University Press, Oxford, 2016.
ISBN 9780198784920

For a somewhat analogous situation, think of a small drop of ink
placed in a large container of water. Whereas the actual volume of
material in the ink remains unchanged, it eventually becomes thinly
spread over the entire contents of the container. [...] We may ask, in
view of this spreading throughout phase space, how is it possible at
all to make predictions in classical mechanics? That is, indeed, a good
question. What this spreading tells us is that, no matter how accu-
rately we know the initial state of a system (within some reasonable
limits), the uncertainties will tend to grow in time and our initial in-
formation may become almost useless. Classical mechanics is, in this
kind of sense, essentially unpredictable.

But, of course, we can often make quite good predictions in
classical mechanics because our uncertainties are so small com-
pared to the size of the objects that we want to describe so that
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a moderate growth in the uncertainties doesn’t make a huge
difference.

Now, let’s move on to a final formulation of classical mechanics
which is as close to quantum mechanics as it gets.

11.3 Koopman-von Neumann Mechanics

At the beginning of this chapter, I’ve already mentioned that
Koopman-von Neumann mechanics, in some sense, is the logi-
cal next step after the Newtonian, Lagrangian and Hamiltonian
formulations of classical mechanics. We climbed this ladder by
successively increasing the number of dimensions of the math-
ematical arena that we use. In Newtonian mechanics, we have
physical space with just 3 dimensions. In configuration space
we add 3 dimensions for each object moving around freely. And
in phase space, we add 6 dimensions for each object because
we not only introduce new axes to keep track of the location of
each individual object, but also new axes for the momenta of
the various objects.

So how can we construct a space that is even larger than phase
space?

11.3.1 Hilbert Space

Well, we can add one axis for each possible state a given object
can be in. This certainly yields a huge space, but why would
anyone want to do that? And what does an "axis for each possi-
ble state" mean?

To answer these questions, we need to talk again about uncer-
tainty. Let’s imagine that for some reason, we don’t know the
position and momentum of a particular object with 100% cer-
tainty.57 In such a scenario it’s not too stupid to introduce an

57 Possible reasons for such an
uncertainty are that there is always
a limit to how precisely we can
measure the location of objects,
and when it comes to elementary
particles, there is a fundamental
uncertainty we seemingly can’t get
rid of. This, in fact, is the defining
feature of quantum mechanics and
we will talk more about it in the
next chapter.
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individual axis for each possible state. We can then describe
how likely a given state is by using a particular point on the
corresponding axis.5858 We will discuss how this works

below.

For simplicity, let’s assume that our object can only be in four
different states (q1, p1), (q2, p2), (q3, p3), and (q4, p4).59 Math-59 In general, an object can be in

infinitely many states. ematically, we describe these four possible states using four
different basis vectors ê1, ê2, ê3, ê4 because we now introduce an
individual axis for each possible state.

If we are 100% certain to find our object in the first state, we
would describe this situation by the vector

Ψ = ê1 . (11.79)

Analogously, if we are 100% certain to find it in the second
state, we would use

Ψ = ê2 . (11.80)

But this kind of framework is only useful when we are dealing
with uncertainties. So let’s assume that each of the four states is
equally likely. We can then describe the situation by the vector

Ψ =
1
2

ê1 +
1
2

ê2 +
1
2

ê3 +
1
2

ê4 . (11.81)

Analogously, if we think there is a 50% chance that our object is
in the first state and a 50% that we find it in the second state, we
use the vector

Ψ =
1√
2

ê1 +
1√
2

ê2 . (11.82)

So the numbers in front of the basis vectors encode the corre-
sponding probabilities. And in this sense, the projection of a
state onto a specific axis tells us how likely the corresponding
state is.

But how exactly are the numbers in front of the basis vectors
related to probabilities?
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The basic rule is that the absolute value squared of the number
in front of a basis vector yields the corresponding probabil-
ity.60 So for our vector in Eq. 11.81, the probability of each of 60 We will see later how this comes

about.
the four states is

�
1
2

�2
= 1

4 = 0.25 = 25%. And for the vector

in Eq. 11.82, we have a
�

1√
2

�2
= 1

2 = 0.5 = 50% probabil-
ity for each of the two states and a probability of zero for the
remaining two states because we can rewrite our vector as

Ψ =
1√
2

ê1 +
1√
2

ê2 + 0ê3 + 0ê4 . (11.83)

So in general, if there are N possible states, we describe a spe-
cific state of the system using the vector

Ψ =
N

∑
i=1

ci êi = c1 ê1 + c2 ê2 + c3 ê3 + . . . , (11.84)

where ci are the coefficients in front of the basis vectors êi which
encode the corresponding probabilities.

Usually, there are infinitely many possible states and we then
have to replace our sum with an integral

Ψ(x, p, t) =
�

c(x, p, t)êx,p dxdp , (11.85)

where our coefficients depend on the time: c = c(x, p, t), be-
cause the probability to find an object in a specific state changes
over time.

In general, we call the space spanned by the basis vectors êx,p,
which we introduce for each possible state, a Hilbert space.
Moreover, we call the vectors which describe a specific physical
situation Ψ a state vector.

A key feature of basis vectors is that they are orthogonal and
normalized. So, for example,

ê1 · ê2 = 0

ê1 · ê1 = 1 (11.86)
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and we have, in general,

êi · êj = 0 for i �= j

êi · êj = 1 for i = j . (11.87)

This allows us to extract the concrete probability that a specific
state, say state 3, is the right one by multiplying the correspond-
ing state vector by the corresponding basis vector:

P(3) = |ê3 · Ψ|2

(11.84)
=

�����ê3 ·
�

N

∑
i=1

ci êi

� �����

2

= |
N

∑
i=1

ci ê3 · êi|2

�

ê3 · êi = 0 unless i = 3, Eq. 11.87

= |c3|2 . (11.88)

As mentioned above, |c3|2 is exactly the probability that we find
our system in the state 3.

So far, we’ve simply constructed a new mathematical arena
which you can find useful or awkward depending on your per-
sonal preferences.61 In any case, the crucial next step is to find61 Take note that Hilbert space is an

essential tool to describe things in
quantum mechanics.

a way to describe classical mechanics in this new mathematical
arena.

11.3.2 Koopman-von Neumann Equation

There are two key ideas which allow us to describe classical
mechanics in Hilbert space:

1. The probability density ρ(x, p, t) is related to the state vectors
Ψ by6262 We discussed probability densities

in Section 11.2.1. ρ(x, p, t) = |Ψ(x, p, t)|2 . (11.89)

This follows directly if we recall what we’ve learned in the
previous section. By evaluating Eq. 11.89 explicitly using the
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general form of our state vector (Eq. 11.85) and that our basis
vectors are orthogonal, we find:63 63 Reminder: Eq. 11.85 reads

Ψ(x, p, t) =
�

c(x, p, t)êx,p dxdp .

The integral vanishes because basis
vectors are orthogonal. This is
analogous to what we discussed in
Eq. 11.88.

ρ(x, p, t) = |Ψ(x, p, t)|2 = |c(x, p, t)|2 . (11.90)

Moreover, as mentioned in the previous section, the absolute
value squared of the coefficients c(x, p, t) yields exactly the
probability to measure a specific state (x, p).

Therefore if we integrate c(x, p, t) over a specific phase space
region R, we get the probability to find our system in a state
described by a phase space point within this region at a spe-
cific moment in time t. This is exactly how we defined the
probability density in the first place (Eq. 11.29).64 64 Reminder: Eq. 11.29 reads

P(R, t) =
�

R
ρ(x, p, t)dV .

2. The time-evolution of our state vectors is described by the
equation

i
∂

∂t
Ψ(x, p, t) = L̂Ψ(x, p, t) , (11.91)

where L̂ is the so-called Liouville operator:65

65 An operator is a mathematical
object which eats a particular kind
of object and spits out another
object of the same kind. A simple
example is a differential operator
like ∂̂x ≡ ∂

∂x which eats a function
f (x) and spits out a new function

∂̂x f (x) =
∂ f (x)

∂x
,

, i.e., its derivative. Another exam-
ple would be a matrix M, which
acts on vectors �v and yields a new
vector

�v� = M�v.

Moreover, take note that we intro-
duce an additional factor i because
it makes our operator Hermitian.
This is a requirement on all physical
operators in Hilbert space because it
guarantees that the corresponding
eigenvalues are real. You’ll un-
derstand this once you learn more
about quantum mechanics.

L̂ ≡ i
�
−∂H

∂p
∂

∂x
+

∂H
∂x

∂

∂p

�
. (11.92)

We call Eq. 11.91 the Koopman-von Neumann equation.

We can understand why the Koopman-von Neumann equation
is the right choice by noting that if it holds, the corresponding
probability density ρ(x, p, t) = |Ψ(x, p, t)|2 automatically fulfills
the Liouville equation (Eq. 11.53). Let’s check this explicitly.

We need two puzzle pieces here. The first one is that we rewrite
the Koopman-von Neumann equation a little bit and then multi-
ply it by Ψ�:66

66 This is clever because want an
equation for |Ψ|2 = Ψ�Ψ.
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i
∂

∂t
Ψ = L̂Ψ �

Eq. 11.92

i
∂

∂t
Ψ = i

�
−∂H

∂p
∂Ψ
∂x

+
∂H
∂x

∂Ψ
∂p

�

�
cancel i

∂

∂t
Ψ = −∂H

∂p
∂Ψ
∂x

+
∂H
∂x

∂Ψ
∂p �

multiplying by Ψ�

Ψ� ∂

∂t
Ψ = −Ψ� ∂H

∂p
∂Ψ
∂x

+ Ψ� ∂H
∂x

∂Ψ
∂p

. (11.93)

The second puzzle piece is that we take the complex conjugate
of the Koopman-von Neumann equation and multiply it by Ψ:

∂

∂t
Ψ = −∂H

∂p
∂Ψ
∂x

+
∂H
∂x

∂Ψ
∂p �

complex conjguate�
∂

∂t
Ψ
��

=

�
−∂H

∂p
∂Ψ
∂x

+
∂H
∂x

∂Ψ
∂p

��

�

only Ψ is complex
∂

∂t
Ψ� = −∂H

∂p
∂Ψ�

∂x
+

∂H
∂x

∂Ψ�

∂p �

multiplying by Ψ

Ψ
∂

∂t
Ψ� = −Ψ

∂H
∂p

∂Ψ�

∂x
+ Ψ

∂H
∂x

∂Ψ�

∂p
. (11.94)

If we calculate the sum of Eq. 11.93 and Eq. 11.94, we find

Ψ� ∂

∂t
Ψ + Ψ

∂

∂t
Ψ� = −Ψ� ∂H

∂p
∂Ψ
∂x

+ Ψ� ∂H
∂x

∂Ψ
∂p

− Ψ
∂H
∂p

∂Ψ�

∂x
+ Ψ

∂H
∂x

∂Ψ�

∂p �

product rule

∂

∂t

�
Ψ�Ψ

�
= − ∂H

∂p

∂
�

Ψ�Ψ
�

∂x
+

∂H
∂x

∂
�

Ψ�Ψ
�

∂p �

ρ ≡ |Ψ|2 = Ψ�Ψ, Eq. 11.89

∂

∂t

�
ρ
�
= − ∂H

∂p

∂
�

ρ
�

∂x
+

∂H
∂x

∂
�

ρ
�

∂p �

definition of {, }, Eq. 5.33
∂

∂t
ρ = {H, ρ}

�

antisymmetry: {A, B} = −{B, A}, Eq. 10.21
∂

∂t
ρ = −{ρ, H} . (11.95)

This is exactly the Liouville equation (Eq. 11.53)! Therefore,
we can conclude that the Koopman-von Neumann equation is
indeed the correct choice because the corresponding probability
density will fulfill the correct equation of motion.
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Now unfortunately, I have to tell you that our journey into the
wonderful world of Koopman-von Neumann mechanics will
already end here before it really started.

I don’t think it makes much sense to study Koopman-von Neu-
mann mechanics (= classical mechanics in Hilbert space) be-
fore you study Schrödinger mechanics (= quantum mechanics
in Hilbert space). Hilbert space, in some sense, is really the
natural arena of quantum theories and while we can study a
non-quantum theory like classical mechanics in Hilbert space,
the resulting formalism is quite awkward.67 It’s much easier to

67 Similarly, we can study quantum
mechanics in physical space but
we end up with something quite
awkward. The formulation of
quantum mechanics in physical
space is known as pilot wave
mechanics. Moreover, take note
that we can also formulate quantum
mechanics in configuration space,
which is known as the path integral
formulation, and also in phase
space, which is known as the phase
space formulation of quantum
mechanics.

learn how physics in Hilbert space really works in the context of
quantum mechanics.68 68 In a sense, we automatically end

up with quantum mechanics if we
apply to Hilbert space the lessons
we’ve learned in Section 10.3
regarding the double role certain
objects play as conserved quantities
plus generators of symmetries. This
is discussed, for example, in my
book

Jakob Schwichtenberg. No-
Nonsense Quantum Mechanics. No-
Nonsense Books, Karlsruhe, Ger-
many, 2018c. ISBN 978-1719838719

Nevertheless, I think it’s really important that at this stage you
take note that, in principle, we can formulate classical mechan-
ics in Hilbert space. The resulting formalism is not very pretty
but the main point to take away is that it is possible at all.69

69 As a final side remark, take note
that the Koopman-von Neumann
equation (Eq. 11.91) is strikingly
similar to the Schrödinger equation

ih̄
∂

∂t
Ψ(x, t) = ĤΨ(x, t) , (11.96)

which describes the time-evolution
of state vectors Ψ in quantum me-
chanics. The main difference is
how the Hamiltonian acts on the
state vector. In quantum mechanics
it acts as an ordinary "product"
(ĤΨ(x, t)) while in classical me-
chanics it acts via the Poisson
bracket. (This is what the Liouville
operator describes, c.f. Eq. 11.92.)

Additionally, in quantum mechan-
ics our state vectors only depend
on either the location or momen-
tum but not both. The reason for
these differences is that in quantum
mechanics we can’t determine the
momentum and location of a given
object with arbitrary precision at
the same time. Instead, there is
always a fundamental uncertainty
we seemingly can’t get rid of.

To quote Nobel laureate Frank Wilczek in his "Notes on Koop-
man von Neumann Mechanics, and a Step Beyond":

Classical mechanics, as usually formulated, seems to inhabit a dif-
ferent conceptual universe from quantum mechanics. Koopman and
von Neumann developed a mathematical formulation of classical me-
chanics using concepts usually associated with quantum theory. [...]
It deserves to be better known among physicists, because it gives a
new perspective on the conceptual foundations of quantum theory, and
it may suggest new kinds of approximations and even new kinds of
theories.

So in summary, it makes a lot more sense to study Koopman-
von Neumann mechanics in more detail once you’ve learned
a thing or two about quantum mechanics. Great resources to
learn more about Koopman-von Neumann mechanics are:
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� "Topics in Koopman-von Neumann Theory" by Danilo
Mauro7070 https://arxiv.org/abs/

quant-ph/0301172

� "Notes on Koopman von Neumann Mechanics, and a Step
Beyond" by Frank Wilczek7171 http://frankwilczek.com/2015/

koopmanVonNeumann02.pdf
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The Origins of Classical Me-
chanics

Let me paraphrase a famous quote by the Danish philosopher
Søren Kierkegaard:1 "Physics can only be understood backwards; but 1 The original quote is "Life can only

be understood backwards; but it must
be lived forwards."

it must be discovered forwards."

And in fact, I’m not really sure how anybody could understand
classical mechanics before quantum mechanics, special relativity
and general relativity were discovered. There are just so many
mysteries which we cannot explain within the framework of
classical mechanics. For example:

� Why is the Lagrangian exactly the difference between kinetic
and potential energy (L = T − V)?

� How does an object know which path is the path of least
action? Why does the principle of least action work so re-
markably well?2 2 Recall that the least action prin-

ciple states that a given system
follows the path in configuration
space which minimizes the time
integral of the difference between
the kinetic and potential energies,
i.e., the action.

Luckily, nowadays we can beautifully answer these questions.
This is what this chapter is about.
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But these answers require some knowledge of quantum me-
chanics, special relativity and general relativity.3 And, of course,3 Take note that here we always start

with a more fundamental theory
(quantum mechanics, etc.) and then
derive how classical mechanics
emerges in a specific limit. In con-
trast, in many textbooks you’ll find
attempts to derive, for example,
quantum mechanics by starting
with classical mechanics. But this is
not a very fruitful endeavor because
usually it’s simply impossible to
derive a more fundamental theory
by starting from a less fundamental
one ("zooming in"). In fact, there is
still research going on about how
we can properly "quantize" a given
classical theory. But the reverse pro-
cedure ("zooming out") is usually
possible without problems. This
shouldn’t be too surprising because
if we zoom out we lose information,
e.g., about the quantum behavior of
individual atoms. But if we try to
zoom in purely by using theoretical
(not experimental) tools there is no
unique way how we can recover
this information. If there were a
method that allowed us to system-
atically derive more fundamental
theories, we would use it immedi-
ately to derive the correct theory of
quantum gravity or the theory of
everything. The fact that no one has
successfully done this so far shows
that we can’t zoom in purely by
using theoretical tools.

we can’t discuss these topics properly here. So instead my goal
is to give you a rough overview so that you know what to look
out for as you continue your journey in physics.

We will start by talking about the relationship between classical
mechanics and these more fundamental theories. Then we will
learn how quantum mechanics allows us to understand why
the least action principle works at all. Afterwards, using special
relativity we will discuss why the Lagrangian for a free object
is equal to the kinetic energy.4 And finally, we understand how

4 L = T − V = T for V = 0.

general relativity helps us to understand why the potential
energy V enters the Lagrangian with a relative minus sign.

As usual here’s a diagram which summarizes our plan for this
chapter:

Minimize
�
(T − V)dt

Quantum Mechanics

��

Special Relativity

��

General Relativity

��
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12.1 The Cube of Physics

The place of classical mechanics in the hierarchy of physical
theories can be understood beautifully by considering the so-
called cube of physics.

This cube is a map which helps us to navigate the landscape
of fundamental physics. The main idea is to make sense of
this landscape by talking about the following fundamental
constants:5

5 Take note that the numerical
values of these constants are not
really important because they
depend on which units we use. If
we use inches instead of meters,
we get different numerical values.
It is even possible to choose so-
called natural units in which the
numerical value of these constants
is exactly 1.

� The speed of light c = 2.9979 × 108 m/s, which encodes an
upper speed limit for all physical processes.

� The gravitational constant G = 6.6741 × 10−11 m3

kg·s2 , which
encodes the strength of gravitational interactions.

� The Planck constant h̄ = 1.05457 × 10−34 m2·kg
s , which encodes

the magnitude of quantum effects.6

6 Take note that h̄ is the reduced
Planck constant which is related to
the original Planck constant by

h̄ =
h

2π
.

Since Planck’s constant usually
appears together with a factor 2π, it
is conventional to use the reduced
Planck constant everywhere.

While these are, well, constants, we now imagine what happens
when we vary them. This is motivated by the observation that,
for example, when every object in a given system moves ex-
tremely slowly compared to the speed of light v � c, we can act
as if c → ∞ to simplify our equations.7 Similarly, by considering

7 The speed of light is an upper
speed limit. No object can move
with a velocity faster than c. So
taking c → ∞ corresponds to a
situation in which there is no such
speed limit at all. While there is
always this speed limit in physics,
we can act as if there were none if
we only consider slowly moving
objects. Just imagine there was a
highway with an upper speed limit
of vmax = 100000000 km

h while no
car can drive faster than v ≈ 300 km

h .
So while technically there is a speed
limit it doesn’t matter at all and we
can act as if there was none.

the limit G → 0, we end up with theories in which there is no
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gravity at all.8 And by considering the limit h̄ → 0, we end up8 Again, while there are always
gravitational interactions even
between elementary particles, we
can often ignore them because
gravity is much weaker than all
other kinds of interactions. So by
taking the limit G → 0 we consider
systems which only contain objects
which are so light that gravity plays
no important role.

with a theory in which quantum effects play no role.9

9 While quantum effects are ex-
tremely important for elementary
particles, they have no notable
effects on everyday objects. Such
everyday objects consist of so many
elementary particles that the quan-
tum effects average out and we end
up with no quantum effects at all,
i.e., h̄ → 0.

So the most accurate theory of physics takes the upper speed
limit (c �= ∞), gravitational interactions (G �= 0) and quantum ef-
fects (h̄ �= 0) into account. This would be a theory of everything
and, so far, no one has succeeded in writing it down.

While this is certainly a big problem, it doesn’t stop us from
making astonishingly accurate predictions. Depending on the
system at hand, we can act as if certain effects don’t exist at all.
And this is how we end up with the various theories which live
at the corner points of the cube of physics:10

10 The remaining corner point is
at 1

c → 0 and corresponds to
Non-Relativistic Quantum Gravity
which, so far, is a speculative topic
that we will not discuss here.

� Whenever it is reasonable to ignore gravitational interactions
G → 0 (e.g., for elementary particles), we can use quantum
field theory.

� For systems in which it is reasonable to ignore quantum
effects h̄ → 0 (e.g., planets), we can use general relativity.

� If we can ignore quantum effects and gravitational interac-
tions (h̄ → 0 and G → 0), we can use special relativity.

� Moreover, when it is reasonable to ignore gravitational inter-
actions and that there is an upper speed limit (G → 0 and
1
c → 0), we can use quantum mechanics.

� For systems in which we can ignore quantum effects and that
there is an upper speed limit (h̄ → 0 and 1

c → 0), we can use
classical mechanics with Newton’s laws to describe gravity.
(The resulting model is often called Newtonian gravity.)

� And finally, if we can ignore quantum effects, the upper
speed limit, and gravitational interactions (h̄ → 0, 1

c → 0
and G → 0), we can use non-relativistic classical mechanics
without gravity.

If you still find the cube of physics confusing, here’s an alterna-
tive perspective:11

11 Take note that we can, of course,
take gravitational effects in classical
mechanics into account as long
as these are not too wild (black
holes, etc.) So the distinction
between classical mechanics and
Newtonian mechanics is really
just semantics. Here we define
Newtonian mechanics as classical
mechanics including gravity.
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Theory of Everything

G→0 (no gravity)

��

h̄→0 (no quantum effects)

��
Quantum Field Theory

1
c →0 (no upper speed limit)

��

General Relativity

G→0 (no gravity)

��
Quantum Mechanics

h̄→0 (no quantum effects)

��

Newtonian Mechanics Special Relativity

1
c →0 (no upper speed limit)

��
Classical Mechanics

G �=0 (weak gravity)

��

Take note that although it might seem as if classical mechanics
only plays a niche role, its range of applicability is actually
extremely large.

� Only at the scale of atoms (∼ 10−8 m) and below do quantum
effects become important and classical mechanics fails to
give accurate predictions. In particular, this means that for
any macroscopic object (∼ 1 m), classical mechanics makes
perfectly accurate predictions.

� Only for objects which move at a substantial fraction of the
speed of light (c ≈ 109 km/h) does special relativity become
important. To put this into perspective: the fastest man-made
objects ever produced were the solar probes Helios-A and
Helios-B. But even those only reached a speed of v ≈ 105

km/h which is not really that fast compared to the speed of
light: v/c ≈ 0.0001. So the predictions of classical mechanics
without corrections from special relativity are perfectly fine,
as long as we don’t want extremely fine measurements.

� And finally, only for cosmological objects like a complete so-
lar system does general relativity lead to significant effects.
Near the surface of the Earth, corrections from general rela-
tivity are of order ∼ 10−8 and can therefore be neglected for
most measurements.
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Now after this big picture overview, let’s talk about the origin of
classical mechanics in more detail.

12.2 The Origin of the Least Action Princi-
ple

For a long time, the principle of least action was something
magical. How exactly does nature "know" which path is the
path of least action? Unsurprisingly, many shared the skepti-
cism of people like Cureau de la Chambre who argued:1212 Cureau de la Chambre was a

friend of Fermat and talked about
Fermat’s principle which states that
light always takes the shortest path.
(We discussed Fermat’s principle
at the beginning of Chapter 4.)
But exactly the same philosophical
objection can be and was raised
against the least action principle.

"The principle which you take as the basis for your proof, namely that
Nature always acts by using the simplest and shortest paths, is merely
a moral, and not a physical one. It is not, and cannot be, the cause of
any effect in Nature."

But this changed quickly when in 1948 Richard Feynman devel-
oped the configuration space formulation of quantum mechan-
ics. The key idea is that every path between a fixed initial and
final point in configuration space is possible in principle.

However, the probability amplitude of each path q(t) is a dif-
ferent one:

Ψ = eiS[q(t)]/h̄ , (12.1)

where S[q(t)] is the action associated with the path, and h̄ is
a fundamental constant known as Planck’s constant which
encodes the strength of quantum effects.13

13 As an aside, take note that we can
see here that Planck’s constant h̄ has
the same units as our action S[q(t)].
This is necessarily the case because
the argument of the exponential
function has to be dimensionless.
This follows if we recall that we can
define the exponential function in
terms of a series:

ex =
∞

∑
n=0

xn

n!
.

(This is discussed in Appendix F.)
So if the argument of the exponen-
tial function X wasn’t dimension-
less, we would have a sum over
objects with different dimensions
which doesn’t make sense.
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To calculate the total probability that our system evolves from
a specific initial point A to a specific final point B we sum over
the probability amplitudes for all possible paths:

ψA→B =
N

∑
i=1

eiS[qi(t)]/h̄ (12.2)

and then take the absolute square:14 14 In this sense, the probability
amplitudes are analogous to the
coefficients in front of the basis vec-
tors we discussed in Section 11.3. To
get the corresponding probability,
we need to calculate the absolute
value squared of these coefficients
too.

P(A → B) = |ψA→B|2 . (12.3)

But usually there are infinitely many paths possible, so we need
to replace our sum with an integral:

ψA→B =
�

Dq(t)eiS[q(t)]/h̄ . (12.4)

The expression on the right-hand side is known as the path
integral and

�
Dq(t) indicates that we consider a "sum" over

all possible paths. The total probability is given by the absolute
square of this total probability amplitude.

Let’s try to understand all this a little better.15

15 The following visual interpreta-
tion of the path integral was mainly
popularized by Richard Feynman,
for example, in his excellent book

Richard Feynman. QED : the
Strange Theory of Light and Matter.
Princeton University Press, Prince-
ton, NJ, 2014. ISBN 978-0691164090

First of all, recall that the action is just a number for any given
path. Some paths require a lot of action (i.e., S[q(t)] is large
for these paths between A and B) while others require only a
little action. The action here appears as the argument of the
complex exponential function: eiS[q(t)]. In general, since the
action for a specific path (S[q(t)]) is an ordinary number, eiS[q(t)]

is a complex number with absolute value 1. In the complex
plane, these numbers lie on the unit circle.16

16 We can understand this using
Euler’s formula

z = eiφ

= cos(φ) + i sin(φ)

= Re(z) + iIm(z).



302 no-nonsense classical mechanics

The contribution of each path to the total path integral is there-
fore simply a unit complex number. The total path integral is a
sum over infinitely many unit complex numbers. Therefore, it
is useful to imagine that there is a little stopwatch attached to
the particle as it travels a given path. At the beginning of each
path, the dial points directly to the right.17 which in our com-17 On a real clock it would point to

the 3. plex plane corresponds to z = 1 = ei0. The clocks move as our
configuration space point traces out a specific path. At the end
of each particular path, the dial points to one specific number
on the clock. For example, for one path the situation may look
like this:

While for another path we have:
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To calculate the path integral, we have to add the little arrows
for each path like we would add vectors. The total value of the
path integral is then the resulting arrow.

Since the resulting arrows do not necessarily all point in the
same direction, the resulting arrow can be quite small. Here, we
have three paths, but to get the final result we have to include
all possible paths, not just three. The final result depends on the
starting locations A and B. For some final point B� most of the
arrows cancel each other. The resulting arrow is tiny. In physical
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terms, this means that the probability to find the particle here
is tiny. In addition, we can imagine that for another final point
B��, lots of arrows point in the same direction and the resulting
arrow is large. This means that it is quite probable to find the
particle at B�� at the end of our time interval.

The main point to take away, however, is that each path between
a fixed initial and final point is possible. Each path contributes
exactly one little arrow (one probability amplitude) to the total
path integral.

But why then is the path of least action so important in classical
mechanics?

12.2.1 The Origin of the Classical Path

What we have learned above is that the probability of a given
final position depends crucially on the relative positions of the
final arrows. If the arrows point mostly in the same direction,
we get a long final arrow. In such a situation we say that we
have constructive interference. If the arrows point wildly in dif-
ferent directions, they mostly average out and we end up with a
short total arrow. This is known as destructive interference.

This observation allows us to understand why the path of least
action is so important in classical mechanics.

In our quantum context, the classical path is just one path out
of many. But we can understand why the classical path is so
important in classical mechanics by exploring the contributions
of neighboring paths. For concreteness, let’s consider two neigh-
boring paths q(t) and q�(t) where the second path is a variation
of the first one q�(t) = q(t) + η(t), and where η(t) denotes a
small variation.
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The first path contributes eiS[q(t)]/h̄ while the second path con-
tributes eiS[q�(t)]/h̄. We can expand the action of the second path
around the first one

S[q�] = S[q + η] = S[q] +
�

dt η(t)
δS[q]
δq(t)

+ O(η2).

Now, if q(t) is the path with minimal action qcl(t), the first
order variation vanishes18 18 Reminder: the minimum of the

action functional is characterized by
a vanishing first order variation. We
discussed this in Section 4.2.S[q�] = S[qcl + η] = S[qcl ] +

�
dt η(t)

δS[q]
δq(t)� �� �

=0 for q(t)=qcl(t)

+O(η2)

= S[qcl ] + O(η2) .

The physical implication for our path integral is that paths in
the neighborhood of the path with minimal action qcl(t) yield
arrows that point in approximately the same direction since
S[q�] ≈ S[qcl ]. In other words, paths around the classical path
interfere constructively.

This is why the classical path is important. In contrast, for an
arbitrary path far away from the classical path, the resulting
arrows of neighboring paths vary wildly, and we get destructive
interference.
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This effect becomes even more dominant if we consider systems
in which the action of each path is much larger than Planck’s
constant S[q(t)] � h̄.19 Since the probability amplitude associ-19 This is the case for macroscopic

objects which we describe in classi-
cal mechanics.

ated with each path is

Ψ = eiS[q(t)]/h̄ , (12.5)

we can see that for S[q(t)] � h̄ even tiny differences in the
action of neighboring paths lead to vastly different probabil-
ity amplitudes.20 And paths with vastly different probability20 In some sense, by dividing the

term in the exponent by a, in com-
parison, tiny number h̄ differences
become especially significant. (Di-
viding by a tiny number is equal to
multiplying by a huge number.)

amplitudes interfere destructively.

Therefore, for systems for which S[q(t)] � h̄ the only paths
which interfere constructively are those surrounding the clas-
sical paths of least action. The limit S[q(t)] � h̄ is known as
the classical limit because for macroscopic objects, the energies
involved are much higher than for elementary particles and
therefore lead to much larger values for the action functional
S[q(t)].

There is an interesting alternative perspective which allows
us to understand why classical mechanics works the way it
does. While the main idea is quite similar to what we discussed
above, there are a few additional things that we can understand
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this way. In particular, we can understand why the Hamilton-
Jacobi equation (Eq. 11.6) plays an important role in classical
mechanics.
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12.2.2 The Origin of the Hamilton-Jacobi Equation

The fundamental equation of motion in quantum mechanics is
the Schrödinger equation21

21 The Schrödinger equation was
already mentioned in Section 11.3
where we noted its similarity to the
Koopman-von Neumann equation
(Eq. 11.91):

i
∂

∂t
Ψ = L̂Ψ .

ih̄
∂

∂t
Ψ(q, t) = ĤΨ(q, t) , (12.6)

where Ψ is a complex function which we interpret as a probabil-
ity amplitude and

Ĥ ≡ − h̄2

2m
∂2

∂q2 + V(q) (12.7)

is the Hamiltonian operator.22 Like in classical mechanics, the22 Take note that in this context Ψ is
usually called the wave function. Hamiltonian represents the total energy. We get the operator

form by using the classical Hamiltonian

H =
p2

2m
+ V(q) = T + V

and then replacing the momentum p with the momentum oper-
ator p̂ = ih̄ ∂

∂q . This identification can be motivated by consider-
ing Noether’s theorem in Hilbert space. The generator of trans-
lations in Hilbert space is i ∂

∂q , and in Chapter 10, we learned
that the generator of translations is the momentum.23 Moreover,

23 This is discussed in more detail
in my book No-Nonsense Quantum
Mechanics.

as mentioned above, h̄ is a fundamental constant which encodes
the magnitude of quantum effects.

In general, we can write a complex function in the polar form24

24 It is conventional in the context
of quantum mechanics to factor out
1/h̄. It would be equally possible to
absorb it into the definition of the
function in the exponent

W̃ ≡ W/h̄.

The polar form follows if we use
Euler’s formula:

eiφ = cos(φ) + i sin(φ).
Ψ(x, t) = R(x, t)eiW(x,t)/h̄ , (12.8)

where R and W are real functions. In physical terms, R2 is the
probability density and W is known as the phase.2525 We have

|Ψ|2 = Ψ�Ψ

=
�

ReiW/h̄
�� �

ReiW/h̄
�

= Re−iW/h̄ReiW/h̄

= R2 .

To get to the last line, we used that

e−iW/h̄eiW/h̄ = e−iW/h̄+iW/h̄ = e0 = 1 .

If we now put the polar form of the probability amplitude
(Eq. 12.8) into the Schrödinger equation (Eq. 12.6), we discover
something remarkable:
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ih̄
∂

∂t
Ψ = ĤΨ

�

Eq. 12.7

ih̄
∂

∂t
Ψ = − h̄2

2m
∂2Ψ
∂q2 + V(q)Ψ

�

Eq. 12.8

ih̄
∂

∂t

�
ReiW/h̄

�
= − h̄2

2m

∂2
�

ReiW/h̄
�

∂q2 + V(q)
�

ReiW/h̄
�

�

product rule

ih̄
� ∂

∂t
R
�

eiW/h̄ + ih̄R
� ∂

∂t
eiW/h̄

�
= − h̄2

2m

�
eiW/h̄ ∂2R

∂q2 + 2
∂R
∂q

∂eiW/h̄

∂q
+ R

∂2eiW/h̄

∂q2

�
+ V(q)ReiW/h̄

�

chain rule

ih̄eiW/h̄ ∂

∂t
R + ih̄eiW/h̄R

∂(iW/h̄)
∂t

= − h̄2

2m


eiW/h̄ ∂2R

∂q2 + 2eiW/h̄ ∂R
∂q

∂(iW/h̄)
∂q

+ R
∂
�

∂(iW/h̄)
∂q eiW/h̄

�

∂q




+ V(q)ReiW/h̄

�

product rule

ih̄eiW/h̄ ∂

∂t
R + ih̄eiW/h̄R

∂(iW/h̄)
∂t

= − h̄2

2m

�
eiW/h̄ ∂2R

∂q2 + 2eiW/h̄ ∂R
∂q

∂(iW/h̄)
∂q

+ ReiW/h̄
� ∂(iW/h̄)

∂q

�2

+ ReiW/h̄ ∂2(iW/h̄)
∂q2

�
+ V(q)ReiW/h̄

�

rearranging

ih̄eiW/h̄ ∂R
∂t

− eiW/h̄R
∂W
∂t

= − h̄2

2m
eiW/h̄ ∂2R

∂q2 − i
h̄
m

eiW/h̄ ∂R
∂q

∂W
∂q

+
1

2m
ReiW/h̄

� ∂W
∂q

�2

− i
h̄

2m
ReiW/h̄ ∂2W

∂q2 + V(q)ReiW/h̄

�

✟✟✟eiW/h̄

ih̄
∂R
∂t

− R
∂W
∂t

= − h̄2

2m
∂2R
∂q2 − i

h̄
m

∂R
∂q

∂W
∂q

+
1

2m
R
� ∂W

∂q

�2
− i

h̄
2m

R
∂2W
∂q2 + V(q)R

(12.9)

Since W and R are both real functions, we actually have two
equations here.26 One equation is given by the real part (i.e., all 26 Since R and W are real, there is

no way the real and imaginary parts
of the equation can influence each
other. Hence, the imaginary part
and the real part of the equation
must be fulfilled independently.

terms without an i):

−R
∂W
∂t

= − h̄2

2m
∂2R
∂q2 +

1
2m

R
�∂W

∂q

�2
+ V(q)R

�

× 1
R

−∂W
∂t

= − h̄2

2mR
∂2R
∂q2 +

1
2m

�∂W
∂q

�2
+ V(q) . (12.10)

The second equation is given by the imaginary part (i.e., all



310 no-nonsense classical mechanics

terms with an i)
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∂q

�
R2 ∂W

∂q

�

�

✄
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R2 ∂W
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�
. (12.11)

This is really interesting because h̄ is a constant which encodes
the magnitude of quantum effects. Therefore, if we assume that
we can ignore quantum effects for a moment (h̄ → 0), our first
equation (Eq. 12.10) becomes2727 The second equation (Eq. 12.11)

is the continuity equation for
the probability density ρ = R2.
Unfortunately, a proper discussion
of how this interpretation comes
about is far beyond the scope of this
book.

−∂W
∂t

=
1

2m

�∂W
∂q

�2
+ V(q) . (12.12)

But this is exactly the Hamilton-Jacobi equation (Eq. 11.8).28

28 For your convenience: Eq. 11.8
reads

0 =
1

2m

�
∂W
∂q

�2

+ V(q) +
∂W
∂t

.

Therefore, we can conclude that in the classical limit h̄ → 0, the
phase W of the probability amplitude Ψ obeys the Hamilton-
Jacobi equation. If we want to include quantum effects, we only
need to modify the Hamilton-Jacobi equation a little bit:

−∂W
∂t

(12.10)
=

1
2m

�∂W
∂q

�2
+ V(q) + Vq(q) (12.13)

where

Vq(q) = − h̄2

2mR
∂2R
∂q2 (12.14)

is the quantum potential.29

29 Like for any other potential, we
can calculate the force resulting
from this quantum potential.
The "quantum force" we find
this way allows us to include
quantum effects in the physical
space formulation of quantum
mechanics. Formulated differently,
the idea to take the force which
results from this quantum potential
seriously is the starting point for
the pilot wave formulation of
quantum mechanics. (The pilot
wave formulation of quantum
mechanics is quantum mechanics in
physical space.)

What we’ve therefore derived is once more how classical me-
chanics emerges from quantum mechanics in the limit where we
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can ignore quantum effects. But it also allows us to see Hamil-
ton’s principal function W in a completely new light.

In Section 11.1.1, we discovered that Hamilton’s principal func-
tion W tells us the amount of action required by the correct

path
�

q(t), p(t)
�

between arbitrary initial and final times. Here
we learned that W is equal to the phase of the wave function
Ψ = ReiW/h̄. Therefore, as in the previous section, we reach the
conclusion that the action is really the phase of the probability
amplitude Ψ of quantum mechanics.30 30 In the previous section we dis-

cussed this in the context of the
path integral formulation of quan-
tum mechanics. Each possible
path contributes the probability
amplitude Ψ = eiS[q(t)]/h̄ (Eq. 12.1).12.3 The Origin of the Classical Lagrangian

In the previous section, we discussed why the least action prin-
ciple works at all. In general, the action is defined as the time
integral over the Lagrangian L:

S =
�

Ldt . (12.15)

Moreover, in classical mechanics we end up with the correct
equations of motion if we use the Lagrangian

L = T − V , (12.16)

where T denotes the kinetic and V the potential energy.

But why is the Lagrangian given by such a strange formula?

To understand this, we need to discuss one crucial observa-
tion:31 31 Speaking colloquially, an inertial

observer is a non-accelerating
observer. Inertial observers are
moving with constant velocity
relative to each other.

Physics is the same for all inertial observers.

This is the principle of relativity. In words it means that the
equations of motion must be the same for all physicists no mat-
ter where they are located at (e.g., Tokyo or New York), when a
given experiment is performed (e.g., 10 years ago or tomorrow)
or from which perspective they look at it.
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Moreover, the laws of physics remain unchanged even for
physicists who move with a constant velocity relative to other
physicists. For example, imagine that you’re sitting in a boat
and are unable to look outside. In such a situation it’s impos-
sible for you to find out if the boat is moving with a constant
velocity or is stationary.32 In contrast, you notice immediately if32 This thought experiment is

known as Galileo’s boat and we dis-
cussed it already in Section 10.1.1.

the boat accelerates because a non-zero acceleration means that
a force acts on the boat and thus you can measure this force.

In more technical terms, we can reformulate the same observa-
tion by saying that physics is fundamentally rotational, transla-
tional and boost symmetric.3333 A boost is a transformation into a

state which moves with a different
constant velocity.

This key fact is essential when we try to write down the correct
Lagrangian for a given system:

� We use the Lagrangian to derive the equations of motion.

� We know that the equations of motion are unchanged by
symmetry transformations.

� Therefore, we can conclude that our Lagrangian must be
constructed in such a way that we get equations of motion
which respect the symmetries at hand.

This is a powerful observation because it severely restricts
which terms we can use in the Lagrangian.

In general, whenever we want to write down the correct La-
grangian for a given system, our first task is to identify the
symmetries of the system. Then we try to construct terms which
remain unchanged by these symmetry transformations. These
terms are candidates to appear in our Lagrangian. And if then,
additionally, we restrict ourselves to the simplest possible, non-
trivial terms, we end up with the correct Lagrangian.3434 Of course, there are many sub-

tleties and technical details missing
here. You can find a more complete
discussion in

Jakob Schwichtenberg. Physics
from Symmetry. Springer, Cham,
Switzerland, 2018b. ISBN 978-
3319666303

This is one of the puzzle pieces that we need to understand why
the classical Lagrangian reads L = T − V.



the origins of classical mechanics 313

12.3.1 Special Relativity

The second puzzle piece that we now need is a curious fact of
nature which was discovered by the famous Michelson-Morley
experiment:

The velocity of light has the same value c

for all inertial observers.

This is a puzzling statement because, usually, the speed of an
object depends on how we move relative to it, i.e., the frame of
reference we are using. For example, imagine that an observer
standing at a train station measures that a train moves at 50 km

h .

A second observer who runs at 15 km
h parallel to the same train,

measures that the train moves at 35 km
h .

Curiously, this does not happen for electromagnetic waves.
Electromagnetic waves always travel with c = 1/

√
�0µ0 =

2.9979 × 108 m/s, no matter how you move.35 35 This is only true in free space and
not if our wave moves in a medium.
The speed of electromagnetic waves
in a medium is lower.
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The curious fact of nature that the speed of electromagnetic
waves has always exactly the same value leads to all kinds of
strange consequences. Taking it seriously leads to Einstein’s the-
ory of special relativity. While there is no way we can discuss
special relativity in detail here, we should at least talk about the
most famous phenomenon.

12.3.2 Time Dilation

Let’s imagine that a person sends a light pulse straight up
where it is reflected by a mirror and finally reaches the point
from where it was sent.
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We record three important events:

� A : the light pulse leaves the starting point

� B : the light pulse is reflected by the mirror

� C : the light pulse returns to the starting point.

The time-interval between the two events A and C is36 36 Reminder: for a constant speed
v we have v = Δs

Δt , where Δs is the
distance and Δt the time interval.
Therefore, we have Δt = Δs

v .Δt = tC − tA =
2L
c

, (12.17)

where L denotes the distance between the person and the mir-
ror.

So far, nothing interesting has happened. But this changes
quickly as soon as we consider how a second person observes
exactly the same situation.

We imagine that this second person moves with some constant
speed u relative to the first person. For simplicity, we assume
that the origins of the two coordinate systems coincide when
the light pulse is sent off (tA). Moreover, we assume that each
person stands at the origin of his coordinate system.

A first crucial observation is now that for this second observer,
the starting and end points of the light pulse have different
coordinates:
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Mathematically, we have

x�A = 0 �= x�C = uΔt� → Δx� = uΔt�, (12.18)

where we use primed coordinates for the coordinate system
associated with the second person. In words, this means that for
this second person the light has apparently also moved in the
x-direction. In contrast, for the first person

xA = xC → Δx = 0. (12.19)

Now, what’s the time interval which the second person mea-
sures between the event A and the event C?3737 It will become clear in a moment,

why this is an interesting question.

As usual, the time interval Δt� = t�C − t�A can be calculated as the
distance l divided by the speed of the light pulse c.

Δt� =
l
c

(12.20)

The distance l is for this second observer no longer simply L,
but we can calculate it using the Pythagorean theorem3838 See the triangle in the figure

above.

l = 2

��
1
2

uΔt�
�2

+ L2. (12.21)

The time interval measured by this second person is therefore

Δt�
(12.20)
=

l
c �

Eq. 12.21

=
2

��
1
2 uΔt�

�2
+ L2

c �

L =
cΔt
2

, Eq. 12.17

=
2

��
1
2 uΔt�

�2
+
�

cΔt
2

�2

c �

✁2

=

√
u2Δt�2 + c2Δt2

c
. (12.22)
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We can solve this equation for Δt� by squaring it:

∴ Δt�2 =
u2Δt�2 + c2Δt2

c2 �

rearranging terms

∴ Δt�2c2 − u2Δt�2 = c2Δt2

�

factoring Δt�2

∴ Δt�2(c2 − u2) = c2Δt2

�

dividing by (c2 − u2)

∴ Δt�2 =
c2Δt2

c2 − u2 � √

∴ Δt� =

�
1

1 − u2

c2

Δt . (12.23)

So for u �= 0 this new time interval Δt� is different from the
time interval measured by the first observer: Δt� �= Δt.39 In 39 Reminder: Δt = 2L

c , Eq. 12.17.

words, this means that two observers moving relative to each
other do not agree on the time interval between the two events
A and C! This phenomenon is usually called time dilation.
Clocks tick differently for different observers and they count a
different number of ticks between two events. However, take
note that this effect is usually unnoticeable because the size
of the effect depends crucially on u2

c2 . This implies that for all
velocities u which are significantly below the speed of light c,
we have u2

c2 ≈ 0 and therefore, Δt� ≈ Δt.

Analogously, it’s possible to derive that different observers do
not necessarily agree on the length of objects. This is known as
length contraction and is another famous consequence of a con-
stant speed of light. A third incredibly important consequence
is that the speed of light c is an upper speed limit for everything
physical. Unfortunately, discussing all these consequences in
detail requires at least another book.

Now we are almost ready to understand the classical La-
grangian. But first, we need to talk about the Lagrangian that
we use in special relativity.
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12.3.3 The Lagrangian of Special Relativity

For simplicity, let’s focus on a single free object. Above we
discussed that our action must respect the symmetries of the
system at hand. Therefore, our task is now to find an action
functional which respects the symmetries of special relativity.4040 Take note that the constancy of

the speed of light is a symmetry
requirement too. As discussed
in Chapter 10, a symmetry is a
transformation which leaves a given
object unchanged.

In general, the action is defined as the time integral over the
Lagrangian. Therefore, in some sense, we can understand the
total action as a time interval multiplied by some constants.41

41 In particular recall that we dis-
cussed in Section 4 that light always
follows the "least time" path.

But in the previous section, we’ve learned that clocks tick dif-
ferently for different observers. So how can we write down an
action or time interval that all observers agree on?

Well, there is exactly one such time interval:4242 For the moment, we only need
to know that it’s possible to find
such an interval. You can find a
complete derivation for why all
observers agree on this particular
time interval in

Jakob Schwichtenberg. Physics
from Symmetry. Springer, Cham,
Switzerland, 2018b. ISBN 978-
3319666303

τ =
� �

1 − q̇2

c2 dt , (12.24)

where c denotes the (constant) speed of light and q̇ is the speed
of the object that we want to describe as it follows some trajec-
tory q(t). This time interval τ is known as the proper time. The
proper time is the time measured by a clock which is attached
to the object which we want to describe. And all observers agree
on the time interval such a clock measures.

Therefore, a reasonable guess for the action functional in special
relativity is

S[q(t)] = Cτ = C
� �

1 − q̇2

c2 dt , (12.25)
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where C is a proportionality constant.

Let’s try to guess what this constant is. In general, the action
has units "Joule-seconds":43 43 We can understand this by re-

calling that the classical action for
a free particle is simply the time
integral over the kinetic energy.
The kinetic energy is measured
in Joules. Therefore the time inte-
gral over the kinetic energy yields
something with units Joules times
seconds. Moreover, we discussed in
Section 12.2 that the action appears
together with Plank’s constant in
the exponential function. Since
the argument of the exponential
function has to be dimensionless,
the action has necessarily the same
units as Planck’s constant which
happen to be [h̄] = J · s.

[S] = J · s (12.26)

In terms of base units, a Joule can be written as

J =
kg · m2

s2

and therefore we have

[S] =
kg · m2

s
. (12.27)

The integral in Eq. 12.25 yields something with units seconds
�� �

1 − q̇2

c2 dt

�
= s (12.28)

since the proper time τ =
� �

1 − q̇2

c2 dt is a time interval.

If we combine these observations, we end up with the conclu-
sion that our constant C in Eq. 12.25 must have units:

[C] =
kg · m2

s2 (12.29)

because
�

C
�

τ dt
�
= [C]

��
τ dt

�

�

Eq. 12.28 and Eq. 12.29

=
kg · m2

s2 s

�

=
kg · m2

s
= [S] � . (12.30)

Next, we need to recall that we want to describe a single free
object. The only property which comes naturally with every
free object is its mass m. That’s where the kilograms come from
in the constant C. The only other ingredient we have is the
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fundamental constant c which describes the speed of light.
Since c is a velocity it has units

[c] =
m
s

. (12.31)

Therefore, we can construct a constant C with the correct units
as follows:

C = mc2 (12.32)

because

[mc2] =
kg · m2

s2
(12.29)
= [C] � . (12.33)

And indeed

S[q(t)]
(12.25)
= C

� �
1 − q̇2

c2 dt

�

Eq. 12.32

= mc2
� �

1 − q̇2

c2 dt (12.34)

is (almost) the correct action functional for special relativity. The
only thing missing is a conventional minus sign:4444 We will see why below. Moreover,

recall that we discovered in Sec-
tion 7.2.3 that a numerical rescaling
of the Lagrangian

L → sL,

where s is an arbitrary number,
makes no difference.

S[q(t)] = −mc2
� �

1 − q̇2

c2 dt . (12.35)

So the main point to take away is that in special relativity, ob-
jects follow the minimum proper time path.45

45 Take note of the similarity to
Fermat’s principle, which we
discussed at the beginning of
Chapter 4. Now, how is this Lagrangian related to the classical Lagrangian?

12.3.4 The Free Classical Lagrangian

We can understand classical mechanics as the theory which
emerges in the limit where all objects move slowly compared
to the speed of light.46 Mathematically, this implies that for46 We discussed this in Section 12.1.

Moreover, take note that this is
analogous to how we can under-
stand classical mechanics as the
correct theory in the limit where
we can neglect quantum effects, i.e.,
in which our action is much larger
than h̄.

q̇ � c we should be able to recover the Lagrangian of classical
mechanics.
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By looking at the special relativity Lagrangian (Eq. 12.35), we
can see that in the limit q̇ � c, the fraction which appears

under the square root ( q̇2

c2 ) is a tiny number. Therefore, we can
approximate the square root by using the Taylor expansion47 47 The Taylor expansion is discussed

in Appendix F.
√

1 − x = 1 − x
2
− . . . , (12.36)

where we can neglect all higher order terms for x � 1.

This means that as long as our object moves slowly compared to
the speed of light (q̇ � c), we can rewrite the action functional
as follows:

S[q(t)]
(12.35)
= −mc2

� �
1 − q̇2

c2 dt
�

Eq. 12.36 with x =
q̇2

c2

≈ −mc2
� �

1 − 1
2

q̇2

c2

�
dt

�

rearranging terms

= −
�

mc2 dt +
�

m
1
2

q̇2 dt . (12.37)

If we recall that adding a constant to the Lagrangian has no
influence on the equations of motion48, we can conclude that for 48 We discussed this in detail in

Section 7.2.3.slowly moving objects, we can use the action functional:49

49 As an aside: the term mc2 de-
scribes a third type of energy
known as the rest energy:

Erest = mc2 . (12.38)

But it yields no significant contribu-
tion to the action functional in the
limit of slowly moving objects.

S[q(t)] ≈
� 1

2
mq̇2 dt . (12.39)

This is exactly the action functional that we introduced in Chap-
ter 4 for a free object since 1

2 mq̇2 is the kinetic energy of the
object.50

50 Recall that previously we always
used

S =
�
(T − V) dt

which for a free object (V = 0) reads

S =
�

T dt

and T denotes the kinetic energy.

We’ve therefore discovered that in the limit q̇ � c, the spe-
cial relativity Lagrangian reduces to the classical mechanics
Lagrangian. Thus we now understand that objects follow the
minimum proper time paths, but for slowly moving objects, the
corresponding integral looks like the integral over the kinetic
energy.

But so far, we’ve only derived the correct Lagrangian for a free
object. What if there is a non-zero potential V?
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12.3.5 Understanding the Minus Sign

One way to understand why we need to add −V to the free
Lagrangian Lfree = T is by noting that only then do we get,
using Noether’s theorem, the correct total energy E = T + V as
a conserved quantity.51

51 We derived this in Chapter 10.

From a slightly different perspective, we can say that the minus
sign in front of mc2 in Eq. 12.40 is already a hint that different
forms of energy appear with a minus sign in the Lagrangian. To
understand why, recall that the full free Lagrangian, which we
derived in the previous section, reads

L
(12.37)
= −mc2 +

1
2

mq̇2 , (12.40)

where T ≡ 1
2 mq̇2 denotes the usual kinetic energy and

Erest ≡ mc2 another form of energy known as rest energy.52 Us-

52 In a non-relativistic context,
we can neglect this additional
form of energy because it only
contributes a constant shift to the
action functional, and we showed
in Section 7.2.3 that such shifts have
no influence on the equations of
motion. In some sense, this rest
energy encodes the intrinsic amount
of energy a given object carries
in the absence of any movement
and external potential. For high-
energetic elementary particles this
additional form of energy becomes
important because these can scatter
to produce new particles or decay.
In each such process, the total
energy needs to be conserved and
thus we need to take the rest energy
of the original particles and the rest
energy of the final particles into
account.

ing Noether’s theorem, we can derive that there is a conserved
quantity which follows from the invariance under temporal
shifts t → t + � (Eq. 10.75):

Q = pq̇ − L �

Eq. 12.40 and p =
∂L
∂q̇

=




∂
�
− mc2 + 1

2 mq̇2
�

∂q̇


 q̇ −

�
−mc2 +

1
2

mq̇2
�

�

= mq̇2 + mc2 − 1
2

mq̇2

�

=
1
2

mq̇2 + mc2

�

= T + Erest . (12.41)

We can see here that a relative minus sign between the kinetic
energy and other forms of energy in the Lagrangian leads to the
correct total energy.
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But there is also another way in which we can understand the
relative minus sign between the kinetic and potential energy
in the classical Lagrangian which has to do with the fact that
clocks tick differently if there is a non-zero gravitational field.
To understand this, we need to talk about general relativity.

12.3.6 General Relativity

We already discussed at the beginning of Section 12.3 that it’s
impossible to find out from the inside whether a (soundproof)
boat (with no windows) is at rest or moves with a constant
velocity.

General relativity is based on a similar but more subtle idea.

While no one doubts that there is no difference between frames
of reference that move with constant speed relative to each
other, accelerating frames are special.

In a soundproof, perfectly smoothly moving train without win-
dows, there is no way to tell if the train moves at all. For exam-
ple, a glass of water is indistinguishable in a perfectly smoothly
moving train from a glass of water in a standing train. However,
we notice immediately when the train accelerates. For example,
if the train accelerates rapidly, the water in a glass spills over.

But the key insight at the heart of general relativity is that it’s
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impossible to find out whether such an effect is due to an accel-
eration of the train or due to gravity.

To understand why, imagine a spaceship somewhere in the
universe far away from anything. Usually, the astronauts in a
spaceship float around if the spaceship isn’t accelerating. There
is no way to call one of the walls the floor and another one the
ceiling.

But what happens if another spaceship starts pulling the origi-
nal spaceship?

Immediately there is an "up" and a "down". The passengers of
the spaceship get pushed toward one of the walls. This wall
suddenly becomes the floor of the spaceship. If one of the pas-
sengers drops an apple, it falls to the floor.

For an outside observer, this isn’t surprising. Through the
pulling of the second spaceship, the floor is moving toward
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the floating apple. This leads to the illusion for the passengers
inside the original spaceship that the apple falls to the floor.

The key idea is now that if there is no window in the original
spaceship, there is no way for the astronauts to tell if they are
stationary on some planet or if they are accelerating. If their
spaceship sits on a planet, the apple and the passengers them-
selves would equally be pulled to the floor. But in this second
case this happens because of gravity.53

53 Take note that even if we try to
exploit some special property of
gravity, there is no way to distin-
guish these situations. For example,
a bowling ball and an apple that
are released from the same height
would hit the floor at the same
moment. This is what Galileo
demonstrated for gravity by throw-
ing things down from the Leaning
Tower of Pisa. For an observer
outside of the original spaceship,
this fact would be by no means
mysterious. The floor simply moves
constantly toward the floating bowl-
ing ball and apple. Hence, the floor
touches the apple and the bowling
ball at exactly the same moment.

An outside observer would call the force that pushes things
to the floor in the accelerating spaceship, a fictitious force. It
is merely a result of the floor moving toward the floating ob-
jects. However, for the passengers inside the spaceship, the force
would be very real. They experience a real floor and a real ceil-
ing and things really fall down if you let them drop. Without
getting an outside view, it would be impossible for them to dis-
tinguish this fictitious force caused by the acceleration of their
spaceship, from the force we call gravity. They can’t distinguish
between acceleration and being at rest in an appropriate gravita-
tional field.54 54 Of course, the situation is only

indistinguishable if the acceleration
has a precise value that mimics
the effect of the gravitational field.
If you want to mimic the Earth’s
gravitational field, you need to
accelerate quicker than if you want
to mimic the weaker gravitational
field of the moon.

To summarize:

Accelerating frames are indistinguishable from

resting frames immersed in a gravitational field.

This idea is at the heart of Einstein’s theory of general relativity
and is commonly known as the principle of equivalence.55 55 To clarify the different degrees

of relativity: Galilean relativity
refers to the observation that
physics is the same for all inertial
observers (e.g., in a moving boat
with constant velocity vs. a boat
at rest). Special relativity means
Galilean relativity plus that the
speed of light c has the same
value for all observers. General
relativity is special relativity plus
the observation that it’s impossible
to find any difference between a
force due to acceleration of the
whole system and gravity.

To understand the principle of equivalence a little better, let’s
imagine another situation. Instead of a spaceship somewhere in
the middle of nowhere, let’s consider a spaceship floating 100
kilometers above the Earth. The spaceship is pulled down by
the Earth’s gravitational field, and for the moment let’s imagine
the spaceship is stationary. In this situation, the astronauts in
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the spaceship are able to distinguish "up" and "down" without
problems. An apple falls down, thanks to the Earth’s gravita-
tional field.

Then suddenly the spaceship is released from whatever holds
it still 100 kilometers above the Earth. What happens now? Of
course, the spaceship starts falling down, i.e., moves toward
the Earth. At the same time the notions of "up" and "down"
start losing their meaning for the astronauts inside the space-
ship. Everything inside the spaceship falls down toward the
Earth with exactly the same speed. This property of gravity was
demonstrated by Galileo through his famous experiments at the
Leaning Tower of Pisa. Thus, everything inside the spaceship
starts floating. They experience zero gravity. For them, with-
out the ability to look outside of their spaceship, there is no
gravitational field and nothing is falling down.

Therefore, gravity is not absolute. While for some observers
there is a gravitational field, for the free-falling observers inside
the spaceship, there is none. If we want, we can therefore al-
ways consider some frame where there is no gravity at all! The
gravitational force vanishes completely inside the free-falling
spaceship. In contrast, an observer standing on Earth would
describe the spaceship by taking the Earth’s gravitational field
into account. To such an observer everything falls down because
of this gravitational field. However, for the astronauts inside the
spaceship, nothing is falling.
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This situation is exactly the reversed situation compared to our
first scenario. In this first scenario, we considered a spaceship
somewhere in the middle of nowhere. Then the spaceship was
pulled by another spaceship, and suddenly the situation in-
side the original spaceship was as if they were immersed in a
gravitational field. In our second scenario, we started with a
spaceship immersed in a gravitational field. However, all ef-
fects of this gravitational field vanish immediately when the
spaceship starts falling freely toward the Earth. Gravity has no
absolute meaning. For some frames of reference there is gravity,
for others, there isn’t.

Now, what does all this have to do with the relative minus sign
in front of the potential energy in the classical Lagrangian?

To understand this, we need to talk about a different kind of
acceleration.

So far, we only considered linear acceleration. But we are not
only dealing with acceleration when the absolute value of the
velocity is non-constant ( d|�v|

dt �= 0) but also when the direction of
the velocity vector changes in time.56 56 In general, we are dealing with

a non-zero acceleration when the
velocity vector �v changes in any
way since�a ≡ d

dt�v.In this sense, when we are standing, for example, on a rotating
disk, we are constantly accelerating too. Formulated differently,
since the velocity of each point on the disk undergoes a change
in direction at every instant, each such point is accelerating all
the time.

Now for simplicity, let’s assume that the disk rotates with a
constant angular velocity Ω, which implies that each point on it
moves with a constant absolute velocity

v ≡ Ωr , (12.42)

where r is the distance from the center of the disk.
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We know from special relativity that clocks tick differently for
different observers.57 Moreover, we know that the time interval57 We discussed this in Sec-

tion 12.3.2. a particular clock records depends on its velocity. Therefore, if
we put a clock at the center of the disk (r = 0 and thus v = 0),
it will record something different from a clock located elsewhere
on the disk (r �= 0 and therefore v �= 0).5858 Take note that the time intervals

recorded by these kinds of clocks
are proper time intervals because
they move with the points on the
disk.

We can calculate

Δt(r)
(12.23)
= Δt(0)

�
1 − v2(r)

c2 �

Eq. 12.42

= Δt(0)

�
1 − Ω2r2

c2 . (12.43)

If we now imagine that an observer sits in a closed cabin on a
particular location r on the rotating disk, we can conclude that
he will notice a centrifugal acceleration a = Ω2r. However, ac-
cording to the equivalence principle discussed above, it’s impos-
sible for such an observer to find out whether this acceleration
is due to an acceleration of his cabin or due to a gravitational
potential φ.

Specifically, if such a potential causes the force5959 For the first equality we use
the usual relationship between a
potential and the resulting force, c.f.
Eq. 2.15. F

(2.15)
= −m

∂φ

∂r
= mΩ2r , (12.44)

the effect inside the cabin would be exactly the same. We can
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see this because Newton’s second law (Eq. 3.1) tells us

F = ma �

Eq. 12.44

∴ mΩ2r = ma �

✚m
Ω2r = a , (12.45)

which is exactly the centrifugal acceleration due to the spinning
of the disk.

By separating the variables in Eq. 12.44 and then integrating, we
can determine the appropriate gravitational potential explicitly:

−m
∂φ

∂r
= mΩ2r �

✚m

∴ ∂φ

∂r
= −Ω2r �

×∂r
∴ ∂φ = −Ω2r∂r � �

∴ φ = −Ω2r2

2
. (12.46)

Next, using the principle of equivalence, we can substitute this
into Eq. 12.43

Δt(φ)
(12.43)
= Δt(0)

�
1 − Ω2r2

c2 �

Eq. 12.46

= Δt(0)

�
1 − (−2φ)

c2 �

= Δt(0)

�
1 +

2φ

c2 . (12.47)

In words, this means that not only does a non-zero velocity
change the flow of time, a gravitational potential φ does too.60

60 Analogously, we can derive one of
the most surprising consequences
of the equivalence principle. By
following the same steps as before,
we can derive that a gravitational
potential leads to length contraction
and this, in turn, implies that
gravity can be understood as
curvature of spacetime.
To understand why, take note
that each point on our spinning
disk moves round and round, but
not inward or outward. Thus,
according to special relativity, there
is length contraction along the
circumference, but none along the
radius. Thus, when we measure
the circumference of a spinning
disk, we measure a different value
than an observer who sits on the
spinning disk. For the observer
sitting on the spinning disk, the
disk is at rest, and hence no length
contraction happens. But we agree
with this observer on the diameter
of the disk, since even for us there
is no radial movement of the
points on the disk. Now comes the
punchline.
The formula we all learned in
school for the relationship between
the radius r and circumference C
of a circle is C = 2πr. Therefore
for an observer sitting on the disk
for whom the disk appears at rest,
we have C/r = 2π. However, if we
look at the disk from the outside,
the disk spins, and therefore there
is length contraction along the
circumference. Therefore, what we
measure is not the same: C/r �= 2π!
We can understand this by noting
that the formula C = 2πr only
holds in a flat space but not if
the space in question is curved.
Moreover, using the equivalence
principle we can conclude that the
same phenomena should hold for a
disk at rest if there is a gravitational
potential. Einstein connected these
ideas and concluded that gravity =
curvature of spacetime. This is the
key idea at the heart of Einstein’s
theory of general relativity.

Therefore, we need to modify our time dilation formula (Eq. 12.23)
a little bit to take this into account:

Δt
(12.23)
= Δt(0)

�
1 − v2

c2 �

Eq. 12.47

→ Δt = Δt(0)

�
1 − v2

c2 +
2φ

c2 . (12.48)
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This formula describes that, in general, the flow of time can
be modified by a non-zero velocity v and additionally by a
gravitational potential.6161 Imagine that our disk not only

rotates but also moves with a
constant velocity in a specific
direction. Our discovery here implies that we also need to modify our

proper time formula (Eq. 12.24)

τ =
� �

1 − q̇2

c2 dt

�

Eq. 12.48

→ τ =
� �

1 − q̇2

c2 +
2φ

c2 dt . (12.49)

And therefore, we also need to modify our action functional
(Eq. 12.35)

S[q(t)] = −mc2
� �

1 − q̇2

c2 dt

�

Eq. 12.49

→ S[q(t)] = −mc2
� �

1 − q̇2

c2 +
2φ

c2 dt . (12.50)

If we now follow exactly the same steps that in Section 12.3.4
allowed us to derive the classical Lagrangian for a free object,
we find62

62 The steps here are analogous to
what we did in Eq. 12.37. Moreover,
take note what we do here only
works if the gravitational potential
φ is sufficiently weak 2φ

c2 � 1.

S[q(t)]
(12.50)
= −mc2

� �
1 −

�
q̇2

c2 − 2φ

c2

�
dt

�

Eq. 12.36 with x =
q̇2

c2 − 2φ

c2

≈ −mc2
� �

1 − 1
2

�
q̇2

c2 − 2φ

c2

��
dt

�

rearranging terms

= −
�

mc2 dt +
� �

m
1
2

q̇2 − mφ

�
dt . (12.51)

So if we ignore once more the constant term
�

mc2 dt, we find
that (as long as all objects move slowly v � c and the gravi-
tational potential is sufficiently weak 2φ

c2 � 1) we can use the
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action functional

S[q(t)] =
� �

m
1
2

q̇2 − mφ

�
dt ≡

�
L dt , (12.52)

where
L = m

1
2

q̇2 − mφ ≡ T − V (12.53)

is the Lagrangian.

We have therefore derived that the potential energy (here
V = mφ) indeed enters the Lagrangian with a relative minus
sign.

Let’s finish this chapter with a short comment on how La-
grangians are used generally in modern physics.
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12.4 Lagrangians in Modern Physics

In Section 12.3, we’ve learned that we can derive the Lagrangian
of special relativity by using that a Lagrangian must always
respect the symmetries of the theory in question. And in fact,
this trick seems to be working quite generally.

This means that we can start by identifying the symmetries of
the theory, then we write down a Lagrangian which only in-
cludes terms which respect these symmetries, and if we finally
restrict ourselves to the simplest, non-trivial of these terms, we
end up with the correct Lagrangian.

As we’ve already seen above, not every Lagrangian is given
by the difference between the kinetic and potential energy.6363 For example, in Section 12.3.1,

we learned that the Lagrangian in
special relativity is given by the
proper time (Eq. 12.35)

L = −mc2

�
1 − q̇2

c2 .

But the general algorithm outlined above works if we broaden
our definition of what a Lagrangian is.64 More generally, a

64 You can find a complete dis-
cussion in my book "Physics from
Symmetry".

Lagrangian is a function which allows us to calculate the action,
and which is constructed such that nature chooses the trajectory
for which the corresponding action is minimized.65

65 As discussed in Section 12.2, we
find the correct classical equations
of motion by minimizing the
action. In a quantum context, the
action allows us to calculate the
probability amplitude for each
possible path.

Our best model of elementary particles, known as the Standard
Model, is defined in terms of a Lagrangian. And general rela-
tivity can be formulated using a Lagrangian too. Moreover, new
models of fundamental physics are usually proposed using a
Lagrangian.

So quite appropriately, Arthur Wightman once summarized the
goal of most theoretical physicist as "the hunt for the Green Lion,
the ultimate Lagrangian of the world". 6666 A. S. Wightman. The usefulness

of a general theory of quantized
fields. In Conceptual foundations
of quantum field theory. Proceedings,
Symposium and Workshop, Boston,
USA, March 1-3, 1996, pages 41–46,
1996

Now you properly wonder why all this works so well.

We already understand why the least action principle works.
The economical behavior of nature turned out to be an illusion
because really all paths are possible and it’s just that the min-
imal action path is the most probable path.67 But still, nature67 We discussed this in detail in

Section 12.2. seems to prefer simple and beautiful Lagrangians because we
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only include the simplest non-trivial terms.

This is quite likely an illusion too.

Nowadays, most theoretical physicists are convinced that at
higher energy scales (= smaller length scales) the correct La-
grangian contains lots of additional terms.68 However, these 68 When two particles collide at

higher energies, they sometimes
create heavier particles. In this
sense, colliders are essentially
large microscopes which allow
us to look deeper. The higher the
energy of the colliding particles, the
deeper we can look. Moreover, take
note that this is analogous to how
nature really takes all possible paths
into account, and the Lagrangian
contains all possible terms if we
look closely enough.

higher-order terms become less and less important as we zoom
out.69 Therefore, no matter how complicated and ugly the La-

69 Technically, this zooming out
process is accomplished using a
mathematical tool known as the
renormalization group.

grangian is at high energy scales, at the low energy scales that
we can probe using present-day technology, we are left with a
simple Lagrangian.

So the reason that simple and beautiful Lagrangians work so
well is not that nature prefers simplicity for some magical rea-
son, but instead, that if we look at something from a distance it
usually appears simpler.
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Further Reading Recommen-
dations

Let’s finish this book with a few comments on books you
should consult if you want to read a second opinion on a spe-
cific topic or simply want to dive deeper.

Great books to learn more about the basic ideas of classical
mechanics are

� Analytical Mechanics by Louis N. Hand and Janet D. Finch1. 1 Louis Hand and Janet Finch.
Analytical Mechanics. Cambridge
University Press, Cambridge New
York, 1998. ISBN 9780521573276

� Introduction to Classical Mechanics by David Morin2.

2 David Morin. Introduction to
Classical Mechanics : With Problems
and Solutions. Cambridge University
Press, Cambridge, UK New York,
2008. ISBN 9780511808951

� Lagrangian and Hamiltonian Mechanics by Melvin G.
Calkin3.

3 M. G. Calkin. Lagrangian and
Hamiltonian mechanics. World
Scientific, Singapore River Edge, NJ,
1996. ISBN 9810226721

If you want to dive deeper, try

� Classical Mechanics by Herbert Goldstein4.

4 Herbert Goldstein. Classical
Mechanics. Pearson, Essex, England,
2014. ISBN 9781292026558
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� Classical Mechanics by Alexei Deriglazov5.5 Alexei Deriglazov. Classical Me-
chanics : Hamiltonian and Lagrangian
Formalism. Springer, Switzerland,
2016. ISBN 9783319441467 However, be warned that these books aren’t as student-friendly

as the books mentioned above.

To learn more about mathematical aspects related to classical
mechanics consult

� Mathematical Methods of Classical Mechanics by Vladimir
Arnold6.6 V. I. Arnold. Mathematical Methods

of Classical Mechanics. Springer New
York, New York, NY, 1989. ISBN
978-1-4757-2063-1 � Introduction to Mechanics and Symmetry by Jerrold E.

Marsden and Tudor S. Ratiu7.7 Jerrold Marsden. Introduction to
Mechanics and Symmetry : a Basic
Exposition of Classical Mechanical
Systems. Springer, New York, 1999.
ISBN 978-0-387-21792-5

� Classical Dynamics by Jorge V. José and Eugene J. Saletan8.

8 Jorge José and Eugene Saletan.
Classical Dynamics: A Contemporary
Approach. Cambridge University
Press Textbooks, 1998. ISBN
9781299859579

And if you want to learn more about the history and philoso-
phy of classical mechanics, a good starting place is

� The Lazy Universe by Jennifer Coopersmith9.
9 Jennifer Coopersmith. The Lazy
Universe : An Introduction to the
Principle of Least Action. Oxford
University Press, Oxford New York,
NY, 2017. ISBN 9780198743040

Moreover, the two topics students usually study after classical
mechanics are electrodynamics and quantum mechanics. So if
you want to move on and learn more them, you might enjoy my
books

� No-Nonsense Electrodynamics10,10 Jakob Schwichtenberg. No-
Nonsense Electrodynamics. No-
Nonsense Books, Karlsruhe, Ger-
many, 2018a. ISBN 978-1790842117 � No-Nonsense Quantum Mechanics11.

11 Jakob Schwichtenberg. No-
Nonsense Quantum Mechanics. No-
Nonsense Books, Karlsruhe, Ger-
many, 2018c. ISBN 978-1719838719

In addition, you might want to learn more about special rela-
tivity and general relativity. Good books on special relativity
are
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� Special Relativity by Anthony French12, 12 A. P. French. Special relativity.
Norton, New York, 1968. ISBN
9780393097931

� Special Relativity for Beginners by Jürgen Freund13,
13 Juergen Freund. Special rela-
tivity for beginners : a textbook for
undergraduates. World Scientific, Sin-
gapore, 2008. ISBN 9789812771599

� Spacetime Physics by Edwin F. Taylor and John A. Wheeler14.

14 Edwin Taylor. Spacetime Physics
: Introduction to Special Relativity.
W.H. Freeman, New York, 1992.
ISBN 9780716723271

And if you want to understand Einstein’s theory of general
relativity try

� Relativity, Gravitation and Cosmology by Ta-Pei Cheng15. 15 Ta-Pei Cheng. Relativity, Gravita-
tion and Cosmology: A Basic Introduc-
tion. Oxford University Press, 2nd
edition, 1 2010. ISBN 9780199573646� Einstein Gravity in a Nutshell Anthony Zee16.

16 Anthony Zee. Einstein Gravity
in a Nutshell. Princeton University
Press, 1st edition, 5 2013. ISBN
9780691145587





One Last Thing

It’s impossible to overstate how important reviews are for an
author. Most book sales, at least for books without a marketing
budget, come from people who find books through the recom-
mendations on Amazon. Your review helps Amazon figure out
what types of people would like my book and makes sure it’s
shown in the recommended products.

I’d never ask anyone to rate my book higher than they think it
deserves, but if you like my book, please take the time to write
a short review and rate it on Amazon. This is the biggest thing
you can do to support me as a writer.

Each review has an impact on how many people will read my
book and, of course, I’m always happy to learn about what
people think about my writing.

PS: If you write a review, I would appreciate a short email with
a link to it or a screenshot to JakobSchwich@gmail.com. This
helps me to take note of new reviews. And, of course, feel free
to add any comments or feedback that you don’t want to share
publicly.





Part IV
Appendices





A

Calculus

Of course, we can’t discuss calculus in detail here. We will focus on
a few key aspects which we need throughout the book. If you want
to learn calculus, I highly recommend "Calculus Made Easy" by
Silvanus P. Thompson which is available for free at
http://calculusmadeeasy.org/.

In physics, we are mostly interested in how things change. So
let’s talk about derivatives.

In general, the derivative of a function f (x) is defined by the
difference quotient:

d f (x)
dx

= lim
h→0

f (x + h)− f (x)
h

(A.1)

Intuitively, the derivative of a function tells us how it changes as
we move along the x-axis.
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Imagine that we know the value of a function f (x) at a specific
location x0. If we then want to know the value of the function
as we move a little bit to the right on the x-axis x0 → x0 + �, we
can calculate it by using the derivative11 Take note that technically this

formula is only correct if � is
infinitesimal. Infinitesimal means
as small as possible but still not
zero. This implies that �2 = 0,
�3 = 0 because for any positive
number a smaller than 1, we have
a2 < a, e.g., 0.12 = 0.01 < 0.1. But
if, by assumption, � is already as
small as possible (but non-zero),
the only way �2 and �3 can be
even smaller is if they are exactly
zero. If we want to find the value
of f at a point which is not only
infinitesimally away, the correct
formula is given by the Taylor series
which is discussed in Appendix F.

f (x0 + �) = f (x0) + �
d

dx
f (x) . (A.2)

This formula is correct because d f (x)
dx describes the rate of

change of f , and therefore by multiplying it by the distance �

we are moving along the x axis, we get the total change in f .

One of the most important rules when it comes to derivatives is
the product rule.

A.1 Product Rule

The product rule

d
�

f (x)g(x)
�

dx
=
�d f (x)

dx

�
g(x) + f (x)

�dg(x)
dx

�
≡ f �g + f g�

(A.3)
follows directly from the definition of the derivative
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d
dx

[ f (x)g(x)] = lim
h→0

f (x + h)g(x + h)− f (x)g(x)
h

= lim
h→0

[ f (x + h)g(x + h)− f (x + h)g(x)] + [ f (x + h)g(x)− f (x)g(x)]
h

= lim
h→0

f (x + h)
g(x + h)− g(x)

h
+ g(x)

f (x + h)− f (x)
h

= f (x)g�(x) + g(x) f �(x) .

A.2 Integration by Parts

Using the product rule, we can derive immediately one of the
most important tricks that we can use to simplify integrals. By
integrating the product rule (Eq. A.3)2 2 For the first term, we use the

fundamental theorem of calculus,
i.e.,

� b
a dx h�(x) = h(b)− h(a).� b

a
dx

d
�

f (x)g(x)
�

dx� �� �
= f (x)g(x)

��b

a

=
� b

a
dx
�d f (x)

dx

�
g(x) +

� b

a
dx f (x)

�dg(x)
dx

�

(A.4)
and then rearranging the terms, we find
� b

a
dx
�d f (x)

dx

�
g(x) = f (x)g(x)

���
b

a
−
� b

a
dx f (x)

�dg(x)
dx

�
. (A.5)

In classical mechanics, we often encounter functions (like the
Lagrangian or Hamiltonian) which depend on multiple vari-
ables, e.g., f = f (x, y, t). For such functions, there are different
kinds of derivatives and this is what we will talk about next.

A.3 Total and Partial Derivatives

To understand the different kinds of derivatives, let’s say we

have a function ρ
�

t, x(t), p(t)
�

which, in general, depends on
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the location x(t) and momentum p(t) plus the time t.3 A key3 The symbol ρ is typically used
in physics to denote densities. We
discuss the probability density
ρ(t, x(t), p(t)) in a physical context
in Section 11.2.

observation is that the location x(t) and momentum p(t) are
functions of t too. Therefore, we need to be extremely careful
what we mean when we calculate the derivative with respect to
the time t.

In such a situation, we use the symbol dρ
dt to denote the total

derivative which is defined in terms of a difference quotient:

dρ

dt
= lim

Δt→0

ρ
�

t + Δt, x(t + Δt), p(t + Δt)
�
− ρ

�
t, x(t), p(t)

�

Δt
(A.6)

The result is the total rate of change of ρ.

But it’s also possible to consider to partial derivative, which is
denoted by ∂ρ

∂t and defined as follows:

∂ρ

∂t
= lim

Δt→0

ρ
�

t + Δt, x(t), p(t)
�
− ρ

�
t, x(t), p(t)

�

Δt
(A.7)

The key difference is that we only vary t if it appears explicitly
in ρ but not if it only appears implicitly because x(t) and p(t)
also depend on t. Formulated differently, when we calculate
partial derivatives we hold all other variables fixed. In contrast,
if we calculate the total derivative we let changes in variables
affect each other.

The total derivative of a function ρ
�

t, x(t), p(t)
�

can be calcu-

lated by using the formula44 We will derive this formula below.

dρ

dt
=

∂ρ

∂x
dx
dt

+
∂ρ

∂p
dp
dt

+
∂ρ

∂t
. (A.8)

By using this formula we take the change of ρ in all "directions"
(here x,p and t) into account.

We can see this more explicitly by multiplying our formula,
formally, by dt:55 The symbol d means "a little bit

of". For example, dx means a little
bit of x and dy means a little bit of
y.

dρ =
∂ρ

∂x
dx +

∂ρ

∂p
dp +

∂ρ

∂t
dt. (A.9)

Now each term on the right-hand side is of the form "rate of
change times distance" and therefore yields the total change
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of ρ in the corresponding direction. So the total change in ρ

is the sum over the changes due to changes in position x, in
momentum p, or in time t itself. We have here a sum, because
the whole point of the total derivative is that when we move
in the t direction, we automatically also move in the x and p
direction because x = x(t) and p = p(t).

To understand what this means in intuitive terms, recall that
one possible arena we can use to describe physics is phase
space.6 Our phase space coordinates are x and p. If we calculate 6 Phase space is discussed in Sec-

tion 2.3.the partial derivative ∂ρ
∂t , we act as if phase space is a static back-

ground structure. This means that we hold x and p fixed and

then only consider how our function ρ
�

t, x(t), p(t)
�

changes in

time.7 7 You might wonder why we want
to do that. One important reason is
that this partial change is part of the
total change which we find when
we calculate the total derivative.
We can see in Eq. A.8 that the
partial derivative is part of the total
derivative. Moreover, take note
that many important equations
in physics like the Schrödinger
equation or the Liouville equation
contain solely a partial derivative
with respect to time.

But if we calculate the total derivative dρ
dt , we take into account

that each point in phase space actually moves around as de-
scribed by Hamilton’s equations of motion (Eq. 5.15).8

8 This is discussed in more detail in
Section 11.2.5.

In general, the total derivative of a function f (x(t), y(t), z(t), t)
reads

d f
dt

=
∂ f
∂x

dx
dt

+
∂ f
∂y

dy
dt

+
∂ f
∂z

dz
dt

+
∂ f
∂t

. (A.10)

Let’s consider as a concrete example the function

ρs

�
t, x(t), p(t)

�
= x2 + ct , (A.11)

where x(t) = at2 and c and a are constants. The partial deriva-
tive of this function with respect to t reads

∂ρs

∂t
=

∂(x2 + ct)
∂t �

=
∂x2

∂t
+

∂(ct)
∂t � ∂x

∂t
= 0 and

∂t
∂t

= 1

= c . (A.12)
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In contrast, the total derivative reads

dρs

dt
(A.8)
=

∂ρs

∂x
dx
dt

+
∂ρs

∂p
dp
dt

+
∂ρs

∂t �

Eq. A.11

=
∂(x2 + ct)

∂x
dx
dt

+
∂(x2 + ct)

∂p
dp
dt

+
∂(x2 + ct)

∂t �

Eq. A.12

=
�

2x
�dx

dt
+
�

0
�dp

dt
+
�

c
�

�

x(t) = at2

= 2(at2)
d
�

at2
�

dt
+ c

� d
�

at2
�

dt
= 2at

= 4a2t3 + c . (A.13)

Now, why is the general formula (Eq. A.8) for the total deriva-
tive correct?

To understand this, we first need to talk about the chain rule.

A.4 Chain Rule

The chain rule

d f
�

g(x)
�

dx
=

∂ f
∂g

∂g
∂x

(A.14)
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follows directly from the definition of the derivative

d
dx

f
�

g(x)
�

= lim
h→0

f
�

g(x + h)
�
− f

�
g(x)

�

h

= lim
h→0

f
�

g(x + h)
�
− f

�
g(x)

�

h
g(x + h)− g(x)
g(x + h)− g(x)

= lim
h→0

f
�

g(x + h)
�
− f

�
g(x)

�

g(x + h)− g(x)
g(x + h)− g(x)

h

=
∂ f
∂g

∂g
∂x

.

Completely analogously, we can derive that for a function f

which depends on multiple functions f = f
�

g(x), h(x)
�

, we
have

d f
�

g(x), d(x)
�

dx
=

∂ f
∂g

∂g
∂x

+
∂ f
∂d

∂d
∂x

. (A.15)

To see this explicitly, we use once more the definition of the
derivative

d
dx

f
�

g(x), d(x)
�
= lim

h→0

f
�

g(x + h), d(x + h)
�
− f

�
g(x), d(x)

�

h

= lim
h→0

�
f
�

g(x + h), d(x + h)
�
− f

�
g(x), d(x)

�

h

+
f
�

g(x + h), d(x)
�
− f

�
g(x + h), d(x)

�

h

�

= lim
h→0

f
�

g(x + h), d(x + h)
�
− f

�
g(x + h), d(x)

�

h

+ lim
h→0

f
�

g(x + h), d(x)
�
− f

�
g(x), d(x)

�

h

=
∂ f
∂d

∂d
∂x

+
∂ f
∂g

∂g
∂x

,

where in the last step, we used that the two terms are analo-
gous to what we considered in the derivation of the chain rule
above.

If instead, we consider a function which depends explicitly on x
itself, i.e., f = f (g(x), x), we have

d f
�

g(x), x
�

dx
=

∂ f
∂g

∂g
∂x

+
∂ f
∂x

, (A.16)
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which follows directly from Eq. A.15 if we substitute d(x) for x:

d f
�

g(x), x
�

dx
=

∂ f
∂g

∂g
∂x

+
∂ f
∂x

∂x
∂x

.
� ∂x

∂x
= 1

=
∂ f
∂g

∂g
∂x

+
∂ f
∂x

(A.17)

If we combine these puzzle pieces, we end up with the full
formula for the total derivative of a general function f =

f (x(t), y(t), z(t), t):

d f
dt

=
∂ f
∂x

dx
dt

+
∂ f
∂y

dy
dt

+
∂ f
∂z

dz
dt

+
∂ f
∂t

. (A.18)
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The Legendre Transform

In general, a mathematical transformation is a method which al-
lows us to express the information contained in a given function
more conveniently.1 The simplest kind of mathematical transfor- 1 For example, the Fourier transform

and Laplace transform F(k) of a
function f (x) allow us to express
the information contained in a
function in terms of how much
each basic building block (eikx)
contributes. (k labels our basic
building blocks.)

mation is when we replace a given (invertible) function y = f (x)
with its inverse x ≡ f−1(y). Both functions contain exactly the
same information but sometimes thinking about a problem in
terms of the inverse helps us to move forward.2

2 To understand why f (x) and its
inverse contain the same informa-
tion, recall that the graph of the
inverse is the mirror image (mir-
rored at the line y = x) of the graph
of f (x). And we don’t destroy any
information by mirroring a graph.

The Legendre transform is just another method to express the
information encoded in a given function a bit differently.

In classical mechanics, we use it to describe systems using the
Legendre transform of the Lagrangian function. But the Leg-
endre transform is also commonly used in thermodynamics to
switch between descriptions in terms of internal energy, free
energy, enthalpy and free enthalpy.

One reason why we might want to use it is that sometimes the
differential equation for a given function becomes easier to
solve once we rewrite it in terms of the corresponding Legendre
transformed function. For example, in classical mechanics the
behavior of the Lagrangian is governed by the Euler-Lagrange
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equation (Eq. 7.28) while the behavior of its Legendre transform
(called the Hamiltonian) is governed by Hamilton’s equations
(Eq. 5.15). For some specific applications, Hamilton’s equations
are more convenient than the Euler-Lagrange equation.33 The Legendre transform some-

times helps but certainly not al-
ways.

To understand how the Legendre transform works, let’s say we
start with a concrete function L(v).4 We can then calculate the4 In general, the function we want to

Legendre transform can depend on
multiple variables, e.g., L(q, v, . . . ).
But this makes no difference for
what we consider here, and every-
thing works analogously. Moreover,
a bit more context: L is the symbol
that we typically use for the La-
grangian function (see Chapter 4).
The Lagrangian is, in general, a
function of the location q, velocities
q̇ ≡ v and can additionally depend
on t: L = L(q, q̇, t). In this context
the slope function p ≡ ∂L(v)

∂v is
known as the conjugate momentum.
We use the symbol v ≡ q̇ for the
velocity because the connection to q
is not important.

corresponding slope function

p(v) =
∂L(v)

∂v
. (B.1)

An overly complicated way to write our original function L(v)
is therefore5

5 While this may seem awkward,
we will see in a moment that
it’s actually helpful to write the
function like this.

L(v) =
� v

0
p(v�)dv� (B.2)

because integrating and differentiating are inverse procedures:

∂L
∂v

B.2
=

∂

∂v

� v

0
p(v�)dv� = p � (B.3)

We can understand this in geometrical terms by plotting the
slope function p(v) as a function of v:

Eq. B.2 tells us that our function L(v) is the area below the p(v)
curve.

So far nothing interesting has happened. But now let’s switch
perspectives.
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First of all, take note that we can equally talk about v as a func-
tion of p (i.e., v(p)), instead of about p as a function of v (i.e.,
p(v)). To understand this a bit better, we can simply rotate our
graph:

Now comes the first key idea. Analogous to how we defined
our original function L(v) as the area below the p(v) curve
(Eq. B.2), we can now introduce a new function H(p) which
describes the area below the v(p) curve:

Mathematically, this means that

H(p) ≡
� p

0
v(p�)dp�. (B.4)

We call H(p) the Legendre transform of L(v). This may seem
like just another mathematical function. Of course, we can de-
fine it. But why should we care about it and how exactly is it
related to our original function L(v)?
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To understand this, we need a second key idea: if we combine
the two areas described by L(v) (Eq. B.2) and H(p) (Eq. B.4), we
get a rectangle:66 Take note that in the figure here,

the v and p axis are again back in
their original positions. This means,
the function H(p) now describes
the area above the curve.

In mathematical terms this means that

L(v) + H(p) = pv . (B.5)

By rearranging the terms, we find

H(p) = pv − L(v) . (B.6)

This is how our original function L(v) is related to its Legendre
transform H(p). And the key observation is that L(v) and H(p)
contain the same information but offer different perspectives.77 Technically, this is only true if

our original function is convex. A
function f (x) is convex if its sec-

ond derivative d2 f (x)
dx2 is positive

everywhere. Geometrically, this
means that if we pick two points
on the function, the straight line
connecting them never goes below
the function. Formulated differ-
ently, the first derivative d f (x)

dx (the
slope) is strictly monotonic. This
condition is necessary because oth-
erwise the Legendre transform does
not contain the same information
as the original function. This as-
sumption is fulfilled for all physical
Lagrangians but, of course, not for
any function we can write down.

The point of all this mathematical yoga is that we’ve switched
from a function L(v) which depends on v to a new function
H(p) which depends no longer on v but on the value of the
slope function p at each location. And sometimes, our equations
simplify if we write them in terms of H(p) instead of L(v).

Take note that the Legendre transform is really completely
symmetric. If we calculate the derivative of L(v) with respect to
v we find the slope p (Eq. B.1), and if we calculate the derivative
of H(p) with respect to p, we find the original variable v:8

8 This follows immediately when we
use the definition of H(p) as given
in Eq. B.4. The steps are analogous
to what we did in Eq. B.3.

∂L
∂v

= p

∂H
∂p

= v (B.7)
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To summarize: when we want to calculate the Legendre trans-
form of a function L(q, q̇, t), we start by calculating the corre-
sponding slope function

p ≡ ∂L
∂q̇

. (B.8)

Then, we calculate the Legendre transform of L(q, q̇, t) using the
formula (Eq. B.6)

H(q, p, t) = pq̇(p)− L(q, q̇(p), t), (B.9)

where we use the explicit relationship between q̇ and p to get a
function H(q, p, t) which only depends on p but not on q̇.

Take note that if we are dealing with a function that depends on
multiple variables (like L = L(q, q̇, t)), we can, in principle, per-
form a Legendre transformation with respect to each variable.
In classical mechanics, we usually only consider the Legendre
transform with respect to q̇. But we can equally consider a Leg-
endre transform with respect to q.

This means that we can consider the slope function9 9 We will talk about the physical
meaning of this alternative slope
function below.

f ≡ ∂L
∂q

(B.10)

instead of p ≡ ∂L
∂q̇ (Eq. B.8). The corresponding Legendre trans-

form of the Lagrangian L = L(q, q̇, t) then reads

G( f , q̇, t) ≡ f q − L(q( f ), q̇, t) . (B.11)

Therefore, we end up with a new function which no longer
depends on q but on the new variable f .

In addition, we can even Legendre transform the Lagrangian
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twice such that we end up with a function:

K( f , p, t) ≡ pq̇ −
�

f q − L(q( f ), q̇, t)
�

B.11
= pq̇ − G( f , q̇, t) .

Alternatively, we can calculate K( f , p, t) by using H(q, p, t):10

10 The additional minus signs here
are just conventions that make sure
that we end up with the correct
functions if we derive K( f , p, t)
by using G( f , q̇, t) or by using
H(q, p, t). They have no deeper
significance.

K( f , p, t) ≡ pq̇ −
�

f q − L(q( f ), q̇, t)
�

= (− f )q −
�
(−pq̇)− L(q( f ), q̇, t)

�

B.9
= (− f )q − H(q,−p, t)

To summarize:11

11 The names "Kamiltonian" and
"Gamiltonian" are jokes and, as
mentioned below, no one uses
them. Moreover, take note that
f = ∂L

∂q = − ∂H
∂q . We will discuss this

in more detail below.

Lagrangian L(q, q̇, t)

q̇→p≡ ∂L
∂q̇

��

q→ f≡ ∂L
∂q

��
Gamiltonian G( f , q̇, t)

q̇→p≡ ∂G
∂q̇

��

f→q≡ ∂G
∂ f

��

Hamiltonian H(q, p, t)

q→ f≡− ∂H
∂q

��

p→q̇≡ ∂H
∂p

��

Kamiltonian K( f , p, t)

p→q̇≡ ∂K
∂p

��

f→q≡− ∂K
∂ f

��

However, the only Legendre transform of the Lagrangian which
is actually useful is the Hamiltonian H(q, p, t), while the "Gamil-
tonian" G( f , q̇, t) and the "Kamiltonian" K( f , p, t) are rarely
considered. To understand why, we need to understand what
our new variable f represents.1212 Reminder: the slope function

p ≡ ∂L
∂q̇ (Eq. B.8) we use to calculate

the Hamiltonian represents the
canonical momentum. The Euler-Lagrange equation (Eq. 4.25) reads

d
dt

�
∂L
∂q̇

�
=

∂L
∂q

. (B.12)

And we discovered in Section 4.3.1, that, if we use p ≡ ∂L
∂q̇ and

the definition of a force F ≡ − ∂V
∂q , we can rewrite it as (Eq. 4.30):

d
dt

p = F. (B.13)
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This suggests that our new slope function f ≡ ∂L
∂q describes the

(generalized) force acting on the object in question.

We can also understand this by invoking Hamilton’s equation
(Eq. 5.15)

dp
dt

= −∂H
∂q

(B.14)

and then recalling that in Section 5.1.1, we discovered that this
equation essentially also states (Eq. 5.28)

d
dt

p = F. (B.15)

Therefore, we can again conclude that our slope function f ≡
− ∂H

∂q describes the (generalized) force.

This allows us to understand why the "Gamiltonian" G( f , q̇, t)
and "Kamiltonian" K( f , p, t) are almost never considered, while
the Hamiltonian H(q, p, t) can, in principle, always be used. The
key observation here is that there is always a proper (bijective)
relation between the velocity q̇ and the momentum p.13 But for 13 Bijective means one-to-one and

onto. This means that each value of
the velocity function q̇ is mapped
to exactly one unique momentum
value p. In contrast, a formula for
a force of the form f (x) = bx2 is
not bijective since f (−x) = f (x),
and therefore pairs of x values are
mapped to the same value of f .

most systems, there is no such relation between the location
q and the force f . Mathematically, this implies that while the
Hamiltonian is always well-defined, the Legendre transforms
G( f , q̇, t) and K( f , p, t) are ill-defined for most systems.14

14 An exception is an object attached
to a spring (harmonic oscillator), for
which f = kx (Hooke’s law). We
discuss the harmonic oscillator in
Chapter 8.





C

Lagrange Multipliers

The Lagrangian multiplier method is an extremely powerful
tool which allows us to find the maxima or minima of functions
which are subject to constraints.1 In Chapter 4, we discuss that 1 A typical example would be: find

the path of minimum action under
the condition that our path does
not leave a fixed surface. But also:
find a way to minimize the material
costs to enclose a fixed volume.

we can find the correct path in configuration space by mini-
mizing the action. But for many applications, we are not just
looking for any path that minimizes the action but for very spe-
cific ones. Quite often there are constraints which define which
kind of paths are allowed. For example, the mass at the end of a
pendulum cannot move around freely but needs to stay fixed to
the string. This is a constraint.2 And therefore, we need the La- 2 We discuss this application of

Lagrange multipliers in more detail
in Section 7.2.1. In particular we
learn in this section that the La-
grangian multiplier method allows
us to reduce a variational problem
with constraints to a free varia-
tional problem without constraints.
Moreover, we discuss the pendulum
in detail in Chapter 9. In this ap-
pendix, we focus on the method as
a general mathematical tool.

grangian multiplier method all the time in classical mechanics.

Let’s start with a concrete example.

Suppose we have a marble which, for some unspecified reason,
always remains attached to an inclined plane and moves on this
plane only along a circle. What’s the highest point the marble
can reach?
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Let’s say the plane is defined by

z(x, y) = −2x + y (C.1)

and the circle is defined by33 All values of x and y which fulfill
the condition

x2 + y2 = 1

lie on a circle with radius 1 in the
xy-plane.

x2 + y2 − 1 = 0 . (C.2)

Here Eq. C.1 tells us the height z(x, y) at each point (x, y). In
other words, Eq. C.1 defines a height function and our task is to
find which point on the circle defined in Eq. C.2 is the highest.

Usually, we can find the maximum (or minimum) of a function
by calculating the derivative and then determining the zeroes of
the derivative. But here, this is not possible because addition-
ally, we have to take the constraint in Eq. C.2 into account. One
possibility is to solve the constraint equation (Eq. C.2) for one of
the variables44 When we calculate the square

root to get to Eq. C.3, we really find
x = ±

�
1 − y2. But by looking

at our height function Eq. C.1, we
can see that our maximum will
correspond to a negative value of
x. The minimum can be calculated
using x = +

�
1 − y2.

x = −
�

1 − y2 (C.3)

and use this to eliminate it from the original equation:

z(y)
(C.1)
= −2x(y) + y �

Eq. C.3

= −2
�
−
�

1 − y2
�
+ y . (C.4)

Then afterwards, we can determine the maximum, as usual, by
searching for the zeroes of the derivative with respect to the
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remaining variable:

0 !
=

dz(y)
dy �

Eq. C.4

0 !
=

d
dy

�
− 2(−

�
1 − y2) + y

�

�

chain rule

0 !
= −2

y�
1 − y2

+ 1

�

rearranging
1
2

!
=

y�
1 − y2

�

rearranging�
1 − y2

2
!
= y

�

squaring
1 − y2

4
!
= y2

�

1
4

!
=

5
4

y2

�

1
5

!
= y2

� √
1√
5

!
= y . (C.5)

This tells us that the maximum is located at ym = 1√
5
.5 We can 5 The subscript m denotes the

coordinates of our maximum.
Moreover, again, when we calculate
the square root in Eq. C.5, we really

get ± 1√
5

!
= y since minima are

characterized by a vanishing first
derivative too. The maximum is
at y = + 1√

5
and the minimum at

y = − 1√
5

.

then use Eq. C.3 to determine the x-coordinate of the maximum
and minimum:

xm
(C.3)
= −

�
1 − y2

m �

Eq. C.5

= −
�

1 −
�

1√
5

�2

�

= −
�

4
5

. (C.6)

Using these coordinates, we can calculate the maximum height
by plugging them into the height function (Eq. C.1)

zm(xm, ym) = −2xm + ym �

Eq. C.5 and Eq. C.6

= −2

�
−
�

4
5

�
+

1√
5 �

=
√

5 . (C.7)
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While here this is possible without major problems, this ap-
proach quickly becomes cumbersome when we are dealing with
a large set of variables. Eliminating all but one variable is often
a lot of work.

The Lagrange multiplier method approaches this problem the
other way around. Instead of eliminating variables, we intro-
duce new ones.66 Although this may sound stupid,

we will see in a minute that this is
actually a smart thing to do.

We replace the function that we want to maximize with a new
function Λ which combines the original function and the con-
straint into a single function:

Λ(x, y, λ) = z(x, y) + λ(x2 + y2 − 1) �

Eq. C.1

= −2x + y + λ(x2 + y2 − 1) (C.8)

where we introduced a new variable λ. In general, λ is known
as a Lagrange multiplier.

Now, let’s see what happens when we try to find the maximum
of this new function by determining its zeroes:

0 !
=

d
dx

Λ(x, y, λ) �

Eq. C.8

0 !
=

d
dx

�
−2x + y + λ(x2 + y2 − 1)

�

� dy
dx

= 0,
dλ

dx
= 0

0 !
= −2 + 2λx �

rearranging
1
λ

!
= x . (C.9)
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Analogously, we can calculate the y-coordinate of the maximum

0 !
=

d
dy

Λ(x, y, λ)

�

Eq. C.8

0 !
=

d
dy

�
−2x + y + λ(x2 + y2 − 1)

�

� dx
dy

= 0,
dλ

dy
= 0

0 !
= 1 + 2λy �

rearranging

− 1
2λ

!
= y . (C.10)

And for λ we find:

0 !
=

d
dλ

Λ(x, y, λ) �

Eq. C.8

0 !
=

d
dλ

�
−2x + y + λ(x2 + y2 − 1)

�

� dx
dλ

= 0,
dy
dλ

= 0

0 !
= x2 + y2 − 1 �

rearranging

(C.11)

The last line is exactly our constraint equation (Eq. C.2). This
means that adding the new term λ(x2 + y2 − 1) to our height
function (as we did in Eq. C.8) allows us to describe the height
and the constraint at the same time using a single function
Λ(x, y, λ).

The key observation is that the coordinates of the maximum
(xm, ym) of our new function Λ depend on λ. This gives us the
freedom to choose λ cleverly such that the constraint is fulfilled.
And this particular value for λ allows us to find the correct
maximum of our original function z(x, y).

We solve the constraint equation for one of the variables (e.g.,
for x as we did in Eq. C.3) to solve Eq. C.9 for λ:7 7 As before, the subscript m denotes

the coordinates of our maximum.
For your convenience: Eq. C.3 reads

x = −
�

1 − y2.
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xm
(C.9)
=

1
λ �

Eq. C.3

−
�

1 − y2
m =

1
λ �

rearranging

λ = − 1�
1 − y2

m
(C.12)

And this, in turn, allows us to calculate the y-coordinate of our
maximum:

ym
(C.9)
= − 1

2λ �

Eq. C.12

ym =

�
1 − y2

m
2 �

squaring

y2
m =

1 − y2
m

4 �

rearranging

y2
m =

1
5 � √

ym =

�
1
5

. (C.13)

This is exactly the same result that we found previously (Eq. C.5).
Moreover, we can again determine the x-coordinate of the max-
imum by using Eq. C.3.8 Therefore, we find once more that the8 We calculated this explicitly in

Eq. C.6. maximum height our marble can reach is zm =
√

5.9

9 We calculated this in Eq. C.7.

Let’s summarize: We start with a function f (x, y, . . .), whose
maximum (or minimum) we want to determine, and a con-
straint g(x, y, . . .) = 0. We combine them into a single function

Λ(x, y, . . . , λ) = f (x, y, . . .) + λg(x, y, . . .) , (C.14)

where λ is a new variable we call the Lagrange multiplier. If
we now determine the maximum (or minimum) of this new
function, we automatically take the constraint into account and,
therefore, find the correct result.
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So far, you might not be particularly impressed by the Lagrange
multiplier method. But here’s what makes it so useful. If there
are multiple constraints g1(x, y, . . .) = 0, g2(x, y, . . .) = 0, . . ., we
simply have to use

Λ(x, y, . . . , λ1, λ2, . . .) = f (x, y, . . .)+λ1g(x, y, . . .)+λ2g(x, y, . . .)+ . . . .

In words, this means that we introduce a new term and a La-
grange multiplier λi for each constraint. The rest of the method
works completely analogously.10 10 PS: If you want to understand in

geometric terms why the Lagrange
multiplier method works, have a
look at this illuminating video by
Grant Sanderson: https://www.
youtube.com/watch?v=yuqB-d5MjZA

.





D

Invariance, Covariance and
Functional Form

First of all, it’s essential to understand that when we switch
coordinates q → q�, in general, the functional form of a function
which depends on q will be changed.

For example, the transformed Lagrangian is defined as

L̃(q�, q̇�) ≡ L
�

q(q�), q̇(q�, q̇�)
�

. (D.1)

In words, this means that L̃ is the Lagrangian that we get when
we replace in the old Lagrangian all coordinates with our new
ones using the explicit transformation rules.

But in general, we have

L̃(q�, q̇�) �= L(q�, q̇�) �

Eq. D.1

L
�

q(q�), q̇(q�, q̇�)
�
�= L(q�, q̇�) . (D.2)

To understand this, let’s assume our original Lagrangian reads

L(x, y) = x2 − y2 , (D.3)
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and we switch to polar coordinates

x = r cos(φ), y = r sin(φ). (D.4)

Our Lagrangian becomes

L̃(r, φ) = (r cos(φ))2 − (r sin(φ))2 . (D.5)

So the functional dependence on r, φ is clearly a different one.
In other words, the tilde is necessary because, in general, the
Lagrangian will look quite different in terms of the new coordi-
nates.

We wouldn’t need a tilde if

L̃(q�, q̇�) = L(q�, q̇�) , (D.6)

which in words means that we can replace q → q� and q̇ → q̇�

and get the correct Lagrangian. For our example

L(r, φ) = r2 − φ2 (D.7)

is wrong and therefore we need a tilde.

The special kind of transformations for which

L̃(q�, q̇�) = L(q�, q̇�) (D.8)

holds are called invariance transformations and describe sym-
metries of the system.11 Symmetries are discussed in detail

in Section 10.

For example, let’s consider the Lagrangian

L(x) =
�

dx
dt

�2
(D.9)

and that we want to switch to a coordinate system which is
shifted related to the old one

x� = x + d , (D.10)

where d is the distance that we shift the new coordinate system
relative to the old one.
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Since d is a constant, we have

dx�

dt
=

d(x + d)
dt

=
dx
dt

(D.11)

and therefore the Lagrangian after the transformation in Eq. D.10
reads

L̃(x�) =
�

dx(x�)
dt

�2

�

Eq. D.11

=

�
dx�

dt

�2

. (D.12)

We can therefore conclude that our Lagrangian in Eq. D.9 is
unchanged by such shifts. Mathematically, this means

L̃(x�, ẋ�) = L(x�, ẋ�) . (D.13)

Not only can we talk about how functions change under coordi-
nate transformations, but also about how equations change.

In Section 7.2.2, we check explicitly that no matter which co-
ordinates we choose, the Euler-Lagrange equation (Eq. 4.25)

∂L
∂q

=
d
dt

�
∂L
∂q̇

�
(D.14)

always keeps its form. This means that if we switch coordinates,
q → q� such that L → L̃, we can still calculate the correct
equation of motion using

∂L̃
∂q�

=
d
dt

�
∂L̃
∂q̇�

�
. (D.15)

Whenever an equation has this property, we say it is covariant.

However, take note that while the Euler-Lagrange equation is
covariant, the equations of motion usually aren’t.

To understand this, let’s consider the Lagrangian

L(x, ẋ) = ẋ2 + x2 . (D.16)
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We can calculate the corresponding equation of motion by using
the Euler-Lagrange equation (Eq. 4.25):

∂L
∂x

=
d
dt

�
∂L
∂ẋ

�
�

Eq. D.16

∂
�

ẋ2 + x2
�

∂x
=

d
dt




∂
�

ẋ2 + x2
�

∂ẋ




�

2x = 2
d
dt

ẋ . (D.17)

If we switch to a shifted coordinate system

x� = x − d (D.18)

the Lagrangian becomes

L̃(x�, ẋ�)
(D.1)
= L

�
x(x�), ẋ(x�, ẋ�)

�

�

Eq. D.16

=
�

ẋ(x�, ẋ�)
�2

+
�

x(x�)
�2

�

Eq. D.18 using ẋ� = ẋ, c.f. Eq. D.11

= ẋ�2 + (x� + d)2

�

= ẋ�2 + x�2 + 2x�d + d2 . (D.19)

We can then calculate what the equation of motion looks like
in terms of our new coordinate x� by using again the Euler-
Lagrange equation, but this time for the new Lagrangian L̃:

∂L̃
∂x�

=
d
dt

�
∂L̃
∂ẋ�

�

�

Eq. D.19

∂
�

ẋ�2 + x�2 + 2x�d + d2
�

∂x�
=

d
dt




∂
�

ẋ�2 + x�2 + 2x�d + d2
�

∂ẋ�




�

2x� + 2d = 2
d
dt

ẋ� . (D.20)
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The form of this equation is clearly different from the form of
the original equation of motion (Eq. D.17). Therefore, while the
Euler-Lagrange is indeed always covariant, this is not true for
the equations of motion.

To understand this even better, let’s write the original equation
of motion (Eq. D.17) in the following form

f (x, ẋ) = 0 , (D.21)

where
f (x, ẋ) ≡ 2x − 2

d
dt

ẋ . (D.22)

The equation of motion would only be covariant if after the
transformation it reads

f (x�, ẋ�) = 0 . (D.23)

But we can calculate immediately

f (x�, ẋ�) = 0 �

Eq. D.22

2x� − 2
d
dt

ẋ� = 0 (D.24)

which is not the correct transformed equation of motion (Eq. D.20).

In contrast, if we start with the Lagrangian

L(x, ẋ) = ẋ2 (D.25)

instead, we get equations of motion which are indeed covariant
under shifts of the coordinate system. This follows because
the Lagrangian is unchanged by such shifts (Eq. D.13) and,
therefore, the equation of motion remains unaffected too.





E

Active vs. Passive Transfor-
mations and Symmetries vs.
Redundancies

In Chapter 10, we only considered active transformations. For
example, we discussed what happens when we rotate the ship.
This is a real physical transformation.

However, there is also a different kind of transformation, called
passive transformation. A passive transformation is a change in
how we describe a given system.
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For example, the physicist inside the boat can describe the ex-
periment using curvilinear coordinates, a rotated or a shifted
coordinate system. Such a change in how we describe a system
has, of course, never any physical effect.

Passive transformations relate different descriptions of the same
physical situation, while active transformations relate different
physical situations.

A key observation is that with enough mathematical shrewd-
ness, we can make our description of a given experiment in-
variant under arbitrary coordinate transformations. But this
does not mean that any experiment possesses all possible sym-
metries. Otherwise we wouldn’t talk about symmetries at all
because if all systems would possess a maximum amount of
symmetry, symmetries wouldn’t be useful to characterize indi-
vidual systems.

A lot of confusion surrounding symmetries can be traced back
to confusion about these two kinds of transformations.11 Maybe it would be helpful to

use "real transformation" and a
"coordinate transformation" instead
of "active transformation" and
"passive transformation".

Since it is important to distinguish between passive and active
transformations, we also need to distinguish between invari-
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ance under active transformations and invariance under pas-
sive transformations. In particular, we call invariance under
passive transformations a redundancy and invariance under
active transformations a symmetry. This distinction is essential
because a symmetry is a real feature of a system while a redun-
dancy is only a feature of our description. It’s a simple matter
of consistency that we can make our description as redundant
as we want. But we can’t make a given system more symmetric
by adding new mathematical symbols.2 2 You can find a much more detailed

discussion of this issue in

Jakob Schwichtenberg. Demystify-
ing Gauge Symmetry. 2019a





F

Taylor Expansion

The Taylor expansion is one of the most useful mathematical
tools, and we need it in physics all the time to simplify compli-
cated systems and equations.

We can understand the basic idea as follows:

Imagine you sit in your car and wonder what your exact loca-
tion l(t) will be in 10 minutes: l(t0 + 10 minutes) =?

� A first guess is that your location will be exactly your current
location

l(t0 + 10 minutes) ≈ l(t0) .

Given how large the universe is and thus how many possible
locations there are, this is certainly not too bad.

� If you want to do a bit better than that, you can also include
your current velocity l̇(t0) ≡ ∂tl(t)

��
t0

.1 The total distance

1 Here ∂t is a shorthand notation
for ∂

∂t , and ∂t l(t) yields the velocity
(rate of change). After taking
the derivative, we evaluate the
velocity function l̇(t) ≡ ∂t l(t) at t0:
l̇(t0) = ∂t l(t)

��
t0

.

you will travel in 10 minutes if you continue to move at your
current velocity is this velocity times 10 minutes: l̇(t0) ×
10 minutes. Therefore, your second estimate is your current
location plus the velocity you are traveling times 10 minutes

l(t0 + 10 minutes) ≈ l(t0) + l̇(t0)× 10 minutes . (F.1)
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� If you want to get an even better estimate you need to take
into account that your velocity can possibly change. The rate
of change of the velocity l̈(t0) = ∂2

t l(t)
��
t0

is what we call
acceleration. So in this third step you additionally take your
current acceleration into account22 The factor 1

2 and that we need to
square the 10 minutes follows since,
to get from an acceleration to a
location, we have to integrate twice:

�
dt

�
dtẍ(t0) =

�
dtẍ(t0)t =

1
2

ẍ(t0)t2

where ẍ(t0) is the value of the
acceleration at t = t0 (= a constant).

l(t0 + 10 minutes) ≈ l(t0) + l̇(t0)× 10 minutes

+
1
2

l̈(t0)× (10 minutes)2 .

� Our estimate will still not yield the perfect final location
since, additionally, we need to take into account that our
acceleration could change during the 10 minutes. We could
therefore additionally take the current rate of change of our
acceleration into account.

This game never ends and the only limiting factor is how pre-
cisely we want to estimate our future location. For many real-
world purposes, our first order approximation (Eq. F.1) would
already be perfectly sufficient.

The procedure described above is exactly the motivation behind
the Taylor expansion. In general, we want to estimate the value
of some function f (x) at some value of x by using our knowl-
edge of the function’s value at some fixed point a. The Taylor
series then reads33 Here the superscript n denotes

the n-th derivative. For example
f (0) = f and f (1) is ∂x f . f (x) =

∞

∑
n=0

f (n)(a)(x − a)n

n!

=
f (0)(a)(x − a)0

0!
+

f (1)(a)(x − a)1

1!
+

f (2)(a)(x − a)2

2!

+
f (3)(a)(x − a)3

3!
+ . . . , (F.2)

where f (a) is the value of the function at the point a we are
expanding around. Moreover, x − a is analogous to the 10-
minute timespan we considered above. If we want to know the
location at x = 5:10 pm by using our knowledge at a = 5:00 pm,
we get x − a = 5:10 pm − 5:00 pm = 10 minutes. Therefore, this
equation is completely analogous to our estimate of the future
location we considered previously.
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To understand the Taylor expansion a bit better, it is helpful to
look at concrete examples.

We start with one of the simplest but most important examples:
the exponential function. Putting f (x) = ex into Eq. F.2 yields

ex =
∞

∑
n=0

(e0)(n)(x − 0)n

n!
.

The crucial puzzle pieces that we need are therefore (ex)� = ex

and e0 = 1. Putting this into the general formula (Eq. F.2) yields

ex =
∞

∑
n=0

e0(x − 0)n

n!
=

∞

∑
n=0

xn

n!
. (F.3)

This result can be used as a definition of ex.

Next, let’s assume that the function we want to approximate
is sin(x) and we want to expand it around x = 0. Putting
f (x) = sin(x) into Eq. F.2 yields

sin(x) =
∞

∑
n=0

sin(n)(0)(x − 0)n

n!
.

The crucial information we therefore need is (sin(x))� = cos(x),
(cos(x))� = − sin(x), cos(0) = 1 and sin(0) = 0. Because
sin(0) = 0, every term with even n vanishes, which we can use
if we split the sum. Observe that

∞

∑
n=0

n =
∞

∑
n=0

(2n + 1) +
∞

∑
n=0

(2n)

1 + 2 + 3 + 4 + 5 + 6 . . . = 1 + 3 + 5 + . . . + 2 + 4 + 6 + . . . .
(F.4)

Therefore, splitting the sum into even and odd terms yields

sin(x) =
∞

∑
n=0

sin(2n+1)(0)(x − 0)2n+1

(2n + 1)!

+
∞

∑
n=0

sin(2n)(0)(x − 0)2n

(2n)!
� �� �

=0

=
∞

∑
n=0

sin(2n+1)(0)(x − 0)2n+1

(2n + 1)!
. (F.5)
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Moreover, every even derivative of sin(x) (i.e., sin(2n)) is again
sin(x) or − sin(x). Therefore the second term vanishes since
sin(0) = 0. The remaining terms are odd derivatives of sin(x),
which are all proportional to cos(x). We now use

sin(x)(1) = cos(x)

sin(x)(2) = cos�(x) = − sin(x)

sin(x)(3) = − sin�(x) = − cos(x)

sin(x)(4) = − cos�(x) = sin(x)

sin(x)(5) = sin�(x) = cos(x) .

The general pattern is sin(2n+1)(x) = (−1)n cos(x), as you can
check by putting some integer values for n into the formula4.4 sin(1)(x) = sin(2·0+1)(x) =

(−1)·0 cos(x) = cos(x), sin(3)(x) =
sin(2·1+1)(x) = (−1)1 cos(x) =
− cos(x) Thus, we can rewrite Eq. F.5 as

sin(x) =
∞

∑
n=0

sin(2n+1)(0)(x − 0)2n+1

(2n + 1)!

=
∞

∑
n=0

(−1)n cos(0)(x − 0)2n+1

(2n + 1)!

=����
cos(0)=1

∞

∑
n=0

(−1)n(x)2n+1

(2n + 1)!
. (F.6)

This is the Taylor expansion of sin(x), which we can also use as
a definition of the sine function.



G

Vector Calculus

G.1 The Dot Product

The dot product allows us to combine two vectors �v, �w in such a
way that the result is a number1

1 If we combine two vector func-
tions, we get a scalar function.

�v · �w =




v1

v2

v3


 ·




w1

w2

w3


 = v1w1 + v2w2 + v3w3 . (G.1)

In words, we can summarize the idea behind it as follows:

The scalar product of two vectors �v · �w yields the projection of

the first vector �v onto the axis defined by the second vector �w

times the length of the second vector.

How does this interpretation fit together with the formula given
in Eq. G.1?

To understand this, we need to talk about the projection of some
vector �v onto the axis defined by a second vector �w.2

2 The easiest way to understand
projections in general is to consider
projections onto the coordinate axis
�ex ,�ey,�ez. The projection of some
vector �v onto a coordinate axis like
�ex is simply what we usually call
the first component v1. In words,
the meaning of this component is
how much our vector �v spreads out
in the x-direction. Analogously, the
projection of �v onto �ey is what we
call the second component v2 and it
tells us how much �v spreads out in
the y-direction.

This allows us to write any vector in
terms of basis vectors as follows:

�v = v1�ex + v2�ey + v3�ez . (G.2)
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By looking at the figure above, we can see that the correct for-
mula for the projection of �v onto �w is

projection of |�v| onto the axis defined by �w = |�v| cos θ , (G.3)

where θ denotes the angle between the two vectors. The state-
ment from above in mathematical form therefore reads

�v · �w = |�v| cos θ|�w| . (G.4)

Therefore, the question we now need to answer is: How is this
formula related to the usual formula in Eq. G.1?

To answer this question, we write our two general vectors in
terms of our basis vectors:

�v = vx�ex + vy�ey + vz�ez

�w = wx�ex + wy�ey + wz�ez
.

We can then rewrite our dot product in terms of dot products of
the basis vectors:

�v · �w = |�v||�w| cos(θ)

=
�
vx�ex + vy�ey + vz�ez

�
·
�
wx�ex + wy�ey + wz�ez

�

= vxwx(�ex ·�ex) + vxwy(�ex ·�ey) + vxwz(�ex ·�ez)

+ vywx(�ey ·�ex) + vywy(�ey ·�ey) + vywz(�ey ·�ez)

+ vzwx(�ez ·�ex) + vzwy(�ez ·�ey) + vzwz(�ez ·�ez) .

Next we use that our basis vectors are normalized (�ex ·�ex = 1)
and orthogonal (�ex ·�ey = 0):

�v · �w = vxwx(1) + vxwy(0) + vxwz(0)

+ vywx(0) + vywy(1) + vywz(0)

+ vzwx(0) + vzwy(0) + vzwz(1)

= vxwx + vywy + vzwz � .
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We can visualize this calculation as follows:

This tells us that we really can understand the result of the dot
product as the projection of �v onto �w times the length of �w.

An important example is the dot product of a vector with itself
�v ·�v. In words, the result is the projection of �v onto itself times
the length of �v. Since the projection of �v onto itself yields the
full vector length, we get the length of the vector squared

�v ·�v = |�v| cos 0|�v| = |�v|2 . (G.5)

Example: dot product of two vectors

The dot product of

�v =




1
4
9


 and �w =




2
2
1


 (G.6)

is given by

�v · �w =




1
4
9


 ·




2
2
1


 = 2 + 8 + 9 = 19 . (G.7)
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G.2 The Cross Product

The cross product allows us to combine two vectors �A, �B in
such a way that the result is a vector

�A × �B =




A1

A2

A3


×




B1

B2

B3


 =




A2B3 − A3B2

A3B1 − A1B3

A1B2 − A2B1


 . (G.8)

In words, we can summarize the idea behind it as follows:33 The direction in which the result-
ing vector points can be determined
by the right-hand rule.

The cross product of two vectors �A × �B yields a vector

perpendicular to �A and �B whose magnitude is the area

of the parallelogram spanned by �A and �B.

Now, how does this interpretation fit together with the formula
in Eq. G.8?

To understand this, we first need to recall that the formula
for the area of a parallelogram is base times height. Here, our
base is given by the length of the vector �A and the height by
sin(θ)|�B|, where θ is the angle between �A and �B.
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The area of the parallelogram spanned by �A and �B is therefore

area = �A sin(θ)|�B| . (G.9)

Therefore, the question we now need to answer is: How is this
formula related to the usual formula in Eq. G.8?

To answer this question, we write our two general vectors in
terms of our basis vectors:

�v = vx�ex + vy�ey + vz�ez

�w = wx�ex + wy�ey + wz�ez
.

We can then rewrite our cross product in terms of cross prod-
ucts of the basis vectors:

|�v × �w| =
���vx�ex + vy�ey + vz�ez

�
×
�
wx�ex + wy�ey + wz�ez

���

=
��vxwx(�ex ×�ex) + vxwy(�ex ×�ey) + vxwz(�ex ×�ez)

��

+ vywx(�ey ×�ex) + vywy(�ey ×�ey) + vywz(�ey ×�ez)

+ vzwx(�ez ×�ex) + vzwy(�ez ×�ey) + vzwz(�ez ×�ez)| .

Next we use that the cross product of a vector with itself yields
zero (�ex ×�ex = 0) and that the cross product of two basis vectors
yields the third basis vector (�ex ×�ey = �ez):4 4 This is necessarily the case since

the resulting vector if we take the
cross product of two vectors is
orthogonal to them.

|�v × �w| = |vxwx(0) + vxwy(�ez) + vxwz(−�ey)

+ vywx(−�ez) + vywy(0) + vywz(�ex)

vzwx(�ey) + vzwy(−�ex) + vzwz(0)|
= |

�
vywz − vzwy

�
�ex + (vzwx − vxwz)�ey +

�
vxwy − vywx

�
�ez| .
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Therefore, we can conclude that the cross product really yields a
vector whose length is the area of the parallelogram spanned by
�A and �B.

Example: cross product of two vectors

The cross product of

�A =




1
4
9


 and �B =




2
2
1


 (G.10)

is given by

�A × �B =




1
4
9


×




2
2
1


 =




4 − 18
18 − 1
2 − 8


 =



−14
17
−6


 . (G.11)



Bibliography

V. I. Arnold. Mathematical Methods of Classical Mechanics.
Springer New York, New York, NY, 1989. ISBN 978-1-4757-
2063-1.

M. G. Calkin. Lagrangian and Hamiltonian mechanics. World
Scientific, Singapore River Edge, NJ, 1996. ISBN 9810226721.

Ta-Pei Cheng. Relativity, Gravitation and Cosmology: A Basic
Introduction. Oxford University Press, 2nd edition, 1 2010.
ISBN 9780199573646.

Jennifer Coopersmith. The Lazy Universe : An Introduction to the
Principle of Least Action. Oxford University Press, Oxford New
York, NY, 2017. ISBN 9780198743040.

Alexei Deriglazov. Classical Mechanics : Hamiltonian and La-
grangian Formalism. Springer, Switzerland, 2016. ISBN
9783319441467.

Richard Feynman. QED : the Strange Theory of Light and Matter.
Princeton University Press, Princeton, NJ, 2014. ISBN 978-
0691164090.

A. P. French. Special relativity. Norton, New York, 1968. ISBN
9780393097931.

Juergen Freund. Special relativity for beginners : a textbook
for undergraduates. World Scientific, Singapore, 2008. ISBN
9789812771599.



388 no-nonsense classical mechanics

Herbert Goldstein. Classical Mechanics. Pearson, Essex, Eng-
land, 2014. ISBN 9781292026558.

Louis Hand and Janet Finch. Analytical Mechanics. Cam-
bridge University Press, Cambridge New York, 1998. ISBN
9780521573276.

Jorge José and Eugene Saletan. Classical Dynamics: A Contem-
porary Approach. Cambridge University Press Textbooks, 1998.
ISBN 9781299859579.

Jerrold Marsden. Introduction to Mechanics and Symmetry : a
Basic Exposition of Classical Mechanical Systems. Springer, New
York, 1999. ISBN 978-0-387-21792-5.

David Morin. Introduction to Classical Mechanics : With Problems
and Solutions. Cambridge University Press, Cambridge, UK
New York, 2008. ISBN 9780511808951.

Roger Penrose. The Emperor’s New Mind : Concerning Comput-
ers, Minds and the Laws of Physics. Oxford University Press,
Oxford, 2016. ISBN 9780198784920.

Jakob Schwichtenberg. No-Nonsense Electrodynamics. No-
Nonsense Books, Karlsruhe, Germany, 2018a. ISBN 978-
1790842117.

Jakob Schwichtenberg. Physics from Symmetry. Springer, Cham,
Switzerland, 2018b. ISBN 978-3319666303.

Jakob Schwichtenberg. No-Nonsense Quantum Mechanics.
No-Nonsense Books, Karlsruhe, Germany, 2018c. ISBN 978-
1719838719.

Jakob Schwichtenberg. Demystifying Gauge Symmetry. 2019a.

Jakob Schwichtenberg. Physics from Finance. No-Nonsense
Books, Karlsruhe, Germany, 2019b. ISBN 978-1795882415.

Z. K. Silagadze. Gauge transformations are canonical transfor-
mations, redux, 2014.

Edwin Taylor. Spacetime Physics : Introduction to Special Relativ-
ity. W.H. Freeman, New York, 1992. ISBN 9780716723271.



bibliography 389

Steven Weinberg. What is quantum field theory, and what
did we think it is? In Conceptual Foundations of Quantum Field
Theory. Proceedings, Symposium and Workshop, Boston, USA,
March 1-3, 1996, pages 241–251, 1996.

A. S. Wightman. The usefulness of a general theory of quan-
tized fields. In Conceptual foundations of quantum field theory.
Proceedings, Symposium and Workshop, Boston, USA, March 1-3,
1996, pages 41–46, 1996.

Anthony Zee. Einstein Gravity in a Nutshell. Princeton Univer-
sity Press, 1st edition, 5 2013. ISBN 9780691145587.





Index

acceleration, 28
action, 73
action functional, 86
angular momentum, 30, 31

canonical coordinates, 153
canonical momentum, 91
canonical Poisson bracket relation,

156
canonical transformation, 122, 134,

153
infinitesimal, 169

classical limit, 304, 306, 310
classical mechanics, 298
classical path, 304
commutator bracket, 110
configuration space, 18, 50, 52
conjugate momentum, 91
conservative forces, 34
constraint, 130
constructive interference, 305
contact transformation, 153
coordinate transformation, 122
covariant, 135, 369
cross product, 384
cube of physics, 297

destructive interference, 305
difference quotient, 343
dot product, 381

energy, 38

equation of motion, 41
Euler-Lagrange equation, 20, 89,

114
meaning, 91

formulation, 18
functional, 78

Galilean relativity, 325
gauge transformation, 124, 141,

142
canonical transformation, 160

general relativity, 298
generalized coordinates, 135
generalized force, 92
generalized momentum, 91
generating function, 172
generator, 170

Hamilton’s equation, 95
meaning, 105

Hamilton’s equations, 20, 99, 108,
115

Hamilton’s general equation, 107
Hamilton’s principal function, 253
Hamilton-Jacobi equation, 254
Hamilton-Jacobi Mechanics, 252
Hamiltonian, 20, 98

meaning, 105
Hamiltonian formalism, 115

algorithm, 148
Hamiltonian formulation, 18, 57
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Hamiltonian description, 188
Lagrangian description, 187
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Heisenberg equation, 110
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holonomic constraint, 131
Hooke’s law, 184

inertial observer, 63
infinitesimal, 344
initial conditions, 44
invariance transformations, 242,
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Koopman-von Neumann equa-

tion, 291
Koopman-von Neumann formula-

tion, 18, 252

Lagrange multiplier, 131, 362
Lagrangian, 19
Lagrangian formalism

algorithm, 127
Lagrangian formulation, 18, 57,
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Legendre transform, 20, 353
length contraction, 317
Liouville equation, 275
Liouville operator, 291
Liouville’s theorem, 280

mass, 28
mathematical arenas, 49
momentum, 30

Newton’s second law, 60
Newtonian formalism

algorithm, 125
Newtonian formulation, 18, 57,

113
Newtonian mechanics, 59
Noether charge, 244

bare, 246

full, 246
Noether theorem

converse, 242
extended, 241
generalized, 245
intuitively, 228
Lagrangian, 244

Noether’s theorem
Hamiltonian, 235

non-holonomic constraint, 131

partial derivative, 346
path integral, 301
pendulum, 201

Hamiltonian description, 211
Lagrangian description, 207
Newtonian description, 203

phase space, 18, 55
filamentation, 286
flow, 263

physical space, 18, 49
Planck constant, 297, 300

reduced, 297
point transformation, 122, 134

point transformation, 160
Poisson bracket, 108
position, 26
potential energy, 38
principle of equivalence, 325
principle of relativity, 311
probability amplitude, 300
probability distribution, 264
product space, 51
proper time, 318

quantum field theory, 298
quantum mechanics, 298

phase space, 293
pilot wave formulation, 293, 310

quantum potential, 310
quasi-symmetries, 240

redundancy, 375
renormalization group, 333
rest energy, 321
rheonomic, 131
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Schwarz’s theorem, 145
scleronomic, 131
separation of variables, 44
special relativity, 298, 314
state vector, 289
subsystem, 225
symmetry, 224, 375

Taylor expansion, 377
Taylor series, 378
theory of everything, 298

time dilation, 317
total derivative, 346
total energy, 33
trajectory, 45

variation, 84
variational calculus, 81
velocity, 27

wave function, 308
work, 34
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