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Preface to Second Edition

This book was developed over many years from class notes for a
set theory course at the University of Florida. This course has been
taught to advanced undergraduates as well as lower level graduate
students. The notes have been used more than 30 times as the course
has evolved from seminar-style toward a more traditional lecture.

Axiomatic set theory, along with logic, provides the foundation
for higher mathematics. This book is focused on the axioms and how
they are used to develop the universe of sets, including the integers,
rational and real numbers, and transfinite ordinal and cardinal num-
bers. There is an effort to connect set theory with the mathematics
of the real numbers. There are details on various formulations and
applications of the Axiom of Choice. Several special topics are cov-
ered. The rationals and the reals are studied as dense linear orderings
without end points. The possible types of well-ordered subsets of the
rationals and reals are examined. The possible cardinality of sets of
reals is studied. The Cantor space 2 and Baire space NI are pre-
sented as topological spaces. Ordinal arithmetic is developed in great
detail. The topic of the possible models of fragments of the axioms
is examined. As part of the material on the axioms of set theory, we
consider models of various subsets of the axioms, as an introduction
to consistency and independence. Another interesting topic we cover
is an introduction to Ramsey theory.

It is reasonable to cover most of the material in a one-semester
course, with selective omissions. Chapter 2 is a review of sets and
logic and should be covered as needed in one or two weeks. Chapter 3
introduces the Axioms of Zermelo—Fraenkel, as well as the Axiom of
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Choice, in about two weeks. Chapter 4 develops the Natural Num-
bers, induction and recursion, and introduces cardinality, taking two
or three weeks. Chapter 5 on Ordinal Numbers includes transfinite
induction and recursion, well orderings, and ordinal arithmetic, in
two or three weeks. Chapter 6 covers equivalent versions and appli-
cations of the Axiom of Choice, as well as Cardinality, in about two
or three weeks. The Real Numbers are developed in Chapter 7, with
discussion of dense and complete orders, countable and uncountable
sets of reals, and a brief introduction to topological spaces such as
the Baire space and Cantor space, again in two or three weeks. If all
goes well, this leaves about one week each for the final two chapters:
models of set theory and an introduction to Ramsey theory.

This book contains more than 300 exercises which test the stu-
dents understanding and also enhance the material.

The authors have enjoyed teaching from these notes and are very
pleased to share them with a broader audience. We would like to
thank the readers of the first edition for many helpful suggestions.
A special thanks to James Dudziak for a detailed list of comments.

Douglas Cenzer,

Chris Porter,

Jindra Zapletal

Gainesville, Florida, May 2024
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Chapter 1

Introduction

Set theory and mathematical logic compose the foundation of pure
mathematics. Using the axioms of set theory, we can construct our
universe of discourse, beginning with the natural numbers, moving on
with sets and functions over the natural numbers, integers, rationals,
and real numbers, and eventually developing the transfinite ordinal
and cardinal numbers. Mathematical logic provides the language of
higher mathematics which allows one to frame the definitions, lem-
mas, theorems, and conjectures which form the every day work of
mathematicians. The axioms and rules of deduction set up the system
in which we can prove our conjectures, thus turning them into theo-
rems. Mathematical logic and set theory are also flourishing areas of
current mathematical research, such as Ramsey theory. We hope the
readers of this book will be inspired to further study in this field.

Chapter 2 begins with elementary naive set theory, including
the algebra of sets under union, intersection, and complement and
their connection with elementary logic. This chapter introduces the
notions of relations, functions, equivalence relations, orderings, and
trees. The fundamental notion is membership, that is, one set x being
a member or element of a second set y; this is written as z € y. Then
one set x is a subset of another set y, written as x C y, if every
element of x is also an element of y.

Chapter 3 introduces the axioms of Zermelo and Fraenkel. A set
should be determined by its elements. Thus, the Axiom of Extension-
ality states that two sets are equal if and only if they contain exactly
the same elements. Some basic axioms provide the existence of sim-
ple sets. For example, the Empty Set Axiom asserts the existence of
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the set () with no elements. The Axiom of Pairing provides for any
two sets x and y a set {x,y} with exactly the two members z and y.
The Union Axiom provides the union x Uy of any two given sets,
as well as the more general union |J A of a family A of sets. With
these we can create sets with three or more elements, for example,
{a,b,c} = {a,b} U{b, c}. The Power Set Axiom collects together into
one set P(A) all subsets of a given set A. The Axiom of Infinity
postulates the existence of an infinite set and thus provides for the
existence of the set N of natural numbers. The Axiom of Comprehen-
sion provides the existence of the definable subset {x € A: P(x)} of
elements of a given set A which satisfy a property P. For example,
given the set N of natural numbers, we can define the set of even
numbers as {x : (Jy)z = y+y}. The Axiom of Replacement provides
the existence of the image F[A] of a given set A under a definable
function. The somewhat controversial Axiom of Choice states that for
any family {4; : i € I} of non-empty sets, there is a function F' with
domain I such that F'(i) € A; for all i € I. This might seems to be an
obvious fact, but it has very strong consequences. In particular, the
Axiom of Choice implies the Well-Ordering Principle that every set
can be well ordered. A well-ordering < of a set A is an ordering with
no descending sequences aj > as > .... So, the integers can be well
ordered by 011 <1—1<12<.... However, any attempt to well order
the set of real numbers will reveal that this is not so obvious after
all. Finally, the Axiom of Regularity states that every set A contains
a €-minimal element, that is, a set x € A such that, for all y € A,
y ¢ x. In particular, this implies that no set can belong to itself,
and therefore there can be no universal set of all sets. The Axiom of
Regularity implies that there is no chain of sets Ag, A1, ... such that
Apt+1 € A, for all n. This principle is needed to prove theorems by
induction on sets, in the same way that the standard well-ordering
on the natural numbers leads to the principle of induction.

Chapter 4 introduces the notion of cardinality, including finite
versus infinite, and countable versus uncountable sets. We define the
von Neumann natural numbers N = {0, 1,2, ... } in the context of set
theory. The Induction Principle for natural numbers is established.
The methods of recursive and inductive definability over the natural
numbers are used to define operations including addition and mul-
tiplication on the natural numbers. These methods are also used to
define the transitive closure of a set A as the closure of A under the



Introduction 3

union operator and to define the hereditarily finite sets as the closure
of 0 under the powerset operator. The Schroder—Bernstein theorem
is presented, as well as Cantor’s theorem, which shows that the set of
subsets of natural numbers is uncountable, and thus the set of reals
is also uncountable.

Chapter 5 covers ordinal numbers and their connection with well-
orderings. The notions of recursive definitions and the principle of
induction on the ordinals are developed. The hierarchy V,, of sets is
developed and the notion of rank is defined. The standard operations
of addition, multiplication, and exponentiation of ordinal arithmetic
are defined by transfinite recursion. Various properties of ordinal
arithmetic, such as the commutative, associative, and distributive
laws, are proved using transfinite induction. This culminates in the
Cantor Normal Form Theorem. Well-ordered subsets of the stan-
dard real ordering are studied. It is shown that every countable
well-ordering is isomorphic to a subset of the rationals and that any
well-ordered set of reals is countable.

Chapter 6 is focused on cardinal numbers and the Axiom of
Choice. Zorn’s lemma and the well-ordering principle are shown to be
equivalent to the Axiom of Choice. Zorn’s lemma is used to prove the
prime ideal theorem and to show that every vector space has a basis.
Cardinal numbers are defined and it is shown that, under the Axiom
of Choice, every set has a unique cardinality. Hartog’s lemma, that
every cardinal number has a successor, is proved, thus establishing
the existence of uncountable cardinals. The operations of cardinal
arithmetic are defined. The Continuum Hypothesis, that the reals
have cardinality N;, is formulated. It is shown that the reals cannot
have cardinality N,. The notion of cofinality and regular cardinals
are defined, as well as weakly and strongly inaccessible.

Chapter 7 makes the connection between set theory and the stan-
dard mathematical topics of algebra, analysis, and topology. The
integers, rationals, and real numbers are constructed inside of the
universe of sets, starting from the natural numbers. The rationals
are characterized, up to isomorphism, as the unique countable dense
linear order without end points. The reals are characterized, up to
isomorphism, as the unique complete dense order without end points
containing a countable dense subset. The notions of accumulation
point and point of condensation are discussed. There is a careful
proof of the Cantor-Bendixson theorem, that every closed set of reals
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can be expressed as a disjoint union of a countable set and a perfect
closed set. There is a brief introduction to topological spaces. The
Cantor space 2V and Baire space NV are studied. It is shown that a
subset of 2V is closed if and only if it can be represented as the set
of infinite paths through a tree.

Chapter 8 introduces the notion of a model of set theory. Condi-
tions are given under which a given set A can satisfy certain of the
axioms, such as the union axiom, the Power Set axiom, and so on. It
is shown that the hereditarily finite sets satisfy all axioms except for
the Axiom of Infinity. The topic of the possible models of fragments
of the axioms is examined. In particular, we consider the axioms
that are satisfied by V,, when « is, for example, a limit cardinal or an
inaccessible cardinal. The hereditarily finite and hereditarily count-
able, and more generally hereditarily < x sets are also studied in
this regard. The hereditarily countable sets are shown to satisfy all
axioms except Regularity. This culminates in the proof that Vj is a
model of ZF if and only if x is a strongly inaccessible cardinal.

Chapter 9 is a brief introduction to Ramsey theory, which studies
partitions. This begins with some finite versions of Ramsey’s theo-
rem and related results. There is a proof of Ramsey’s theorem for
the natural numbers as well as the Erdos—Rado theorems, for pairs.
Uncountable partitions are also studied.

This additional material gives the instructor options for creat-
ing a course which provides the basic elements of set theory and
logic, as well as making a solid connection with many other areas of
mathematics.



Chapter 2

Review of Sets and Logic

In this chapter, we review some of the basic notions of set theory
and logic needed for the rest of this book. There is a very close
connection between the Boolean algebra of sets and the formulas of
predicate logic. We present some aspects of so-called naive set theory
and indicate the methods of proof used there as a foundation for more
advanced notions and theorems. Topics here include functions and
relations, in particular, orderings and equivalence relations, presented
at an informal level. We return to these topics in a more formal
way once we begin to study the axiomatic foundation of set theory.
Students who have had a transition course to higher mathematics,
such as a course in sets and logic, should be able to go right to the
following chapter.

2.1 The Algebra of Sets

In naive set theory, there is a universe U of all elements. For example,
this may be the set R of real numbers or the set N = {0,1,2,...}
of natural numbers, or perhaps some finite set. The fundamental
relation of set theory is that of membership. For a subset A of U
and an element a of A, we write ¢ € A to mean that a belongs to
A or is an element of A. The family P(U) of subsets of U has the
natural Boolean operations of union, intersection, and complement,
as follows.
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Definition 2.1.1. For any element a of U and any subsets A and B
of U,

l.ae AUuBifandonlyifae A V a € B;
2.ae ANnBifandonlyifae A A a € B;
3. aeAEifandonlyif—'aeA.

Here we use the symbols V, A, and — to denote the logical connec-
tives or, and, and not. We frequently write x ¢ A as an abbreviation
for = x € A.

The convention is that two sets A and B are equal if they contain
the same elements. That is,

A=B < (Vz)[r€e A < z € B].

This is codified in the Axiom of Extensionality, one of the axioms
of Zermelo Fraenkel set theory which is presented in detail in
Chapter 3. The family of subsets of U compose a Boolean algebra,
that is, they satisfy certain properties, such as the associative, com-
mutative, and distributive laws. We consider some of these now and
leave others to the exercises. We put in all of the details at first and
later on leave some of them to the reader.

Proposition 2.1.2 (Commutative Laws). For any sets A and B,

1. AUB=BUA;
2. AnNB=BnA.

Proof. (1) Let « be an arbitrary element of U. We want to show
that, for any x € U, x € AUB <= z € BU A. By propositional
logic, this means we need to show that t € AUB — x € BU A and
that x € BUA — x € AU B. To prove the first implication, we need
to suppose that x € AU B and then deduce that x € BU A. We
now proceed as follows. Suppose that x € AU B. Then by Definition
2.1.1, x € A or x € B. It follows by propositional logic that = €
BV x € A. Hence, by Definition 2.1.1, x € B U A. Thus, we have
shown z € AUB — z € BU A. A similar argument shows that
r€BUA—>z€ AUB. Then,z € AUB < x € BU A. Since
x was arbitrary, we have (Vz)[x € AUB <= z € BUA]. It then
follows by Extensionality that AU B = B U A.

Part (2) is left to the exercises. O
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The notion of subset, or inclusion, is fundamental.

Definition 2.1.3. For any sets A and B,

1. ACB < (Va)[x € A— z € B]. We say that A is included in
Bif AC B.
2. ACB < ACB NA#B.

Proposition 2.1.4 (Associative Laws).

1. An(BNnC)=(AnB)NC,
2. AU(BUC)=(AUB)UC.

Proof. (1) AN(BNC) = (ANB)NC. Let z be an arbitrary element
of U and suppose that z € AN(BNC). Then, by Definition 2.1.1, we
have x € A and z € BN C and therefore x € B and = € C. It follows
by propositional logic that x € AAz € B, and thus x € AN B. Then,
by propositional logic, (x € ANB)Az € C. Thus, by Definition 2.1.1,
z € (ANB)NC. Thus, z € AN(BNC) =z € (ANB)NC. A similar
argument shows that x € (ANB)NC — x € (AN (BNC). Since x
was arbitrary, we have (Vz)[z € AN(BNC) —wz € (ANB)NC]. It
now follows by Extensionality that AN (BNC)=(ANB)NC.
Part (2) is left to the exercises. O

The following proposition can help simplify a proof that two sets
are equal.

Proposition 2.1.5. For any sets A and B, A = B <— A C
B AN BCA.

Proof. Suppose first that A = B. This means that (Vx)[z €
A < z € B]. Now, let € U be arbitrary. Then, x € A <= z €
B. It follows from propositional logic that + € A — = € B and also
x € B — x € A. Since x was arbitrary, we have (Vz)[ z € A —» z €
B] and (Vz)[z € B — x € A]. Then, by Definition 2.1.3, it follows
that A C B and B C A.

Next, suppose that A C B and B C A. The steps above can be
reversed to deduce that A = B. O

The empty set () is defined by the following property:

(V) = ¢ 0.
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It is easy to see that () = UC and that (0° = U. This is left as an
exercise.

Proposition 2.1.6 (DeMorgan’s Laws). For any sets A and B,

1. (AUB)t = At n BE,
2. (AnB)t = AL u B

Proof. (1) We prove this by a sequence of equivalent statements.
Let 2 € U be arbitrary. Then, z € (AU B)C if and only if z ¢ AU B
if and only if -(z € AV x € B) ifand only if x ¢ A A x ¢ B if and
only if 1 € AL A 2 e BYifand only if x e AN BL.

Part (2) is left to the exercises. O

The universal set U and the empty set are the identities of
the Boolean algebra P(U). This is spelled out in the following
proposition.

Proposition 2.1.7 (Identity Laws). For any set A,

1. AuAb =,
2. An AL =9¢.

Proof. (1) One inclusion follows from the fact that B C U for all
sets B. For the other inclusion, let € U be arbitrary. It follows
from propositional logic (the so-called law of excluded middle) that
x € AV —x € A. Then, by Definition 2.1.1, z € A V x € AL and
then 2 € AU AL, Thus, U C AU AC.

(2) This follows from (1) using DeMorgan’s laws. Given part (1)
that AU A® = U, we obtain () = U® = (AU AL = AP (ADYE =
AlnA=AnAC O

The inclusion relation may be seen to be a partial ordering. We
have just seen above that it is antisymmetric, that is, A C B and
B C A imply A = B. Certainly, this relation is reflexive, that is,
A C A. Transitivity is left to the exercises.

Inclusion may be defined from the Boolean operations in several
ways.

Proposition 2.1.8. The following are equivalent:

1. AC B;
2. AnNB=A4;
3. AUB=B.
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Proof. We show that (1) and (2) are equivalent and leave the other
equivalence to the exercises:

(1) = (2): Assume that A C B. Let x be arbitrary. Then, = €
A — x € B. Now, suppose that z € A. Then, x € B and hence
€A N x € Bsothat x € AN B. Thus, A C AN B. Next, suppose
that x € AN B. Then, x € A N x € B, so certainly z € A. Thus,
AN B C A. It follows that AN B = A, as desired.

(2) = (1): Suppose that AN B = A. Let x be arbitrary and
suppose that x € A. Since AN B = A, it follows that z € AN B.
That is, z € A A = € B so that x € B. Hence, A C B. O

We sometimes write A\ B for AN BC. The proof of the following
is left as an exercise.

Proposition 2.1.9. The following are equivalent:

1. AC B;
2. BCQAE;
3. A\B=0.

There are some interactions between the inclusion relation and
the Boolean operations, in the same way that inequality for numbers
interacts with the addition and multiplication operations.

Proposition 2.1.10. For any sets A, B, and C,

1. if BC Aand C C A, then BUC C A;
2. if AC B and ACC, then AC BNC.

Proof. (1) Assume that B C A and C C A. Let = be arbitrary and
suppose that x € B U C. This means that xt € B V a € C. There
are two cases. Suppose first that x € B. Since B C A, it follows that
x € A. Suppose next that z € C. Since C C A, it follows again that
x € A. Hence, x € BUC — x € A. Since x was arbitrary, we have
BUC C A, as desired.

The proof of Part (2) is left to the exercises. O

Exercises for Section 2.1

Exercise 2.1.1. Prove the Commutative Law for intersection, that
is, for any sets A and B, AN B = BN A.

Exercise 2.1.2. Prove the Associative Law for union, that is, for
any sets A, B, and C, AU(BUC)=(AUB)UC.
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Exercise 2.1.3. Prove the Distributive Laws, that is, for any sets
A, Byand C, AU(BNC)=(AUB)N(AUC) and AN(BUC) =
(ANB)U(ANC).

Exercise 2.1.4. Show that for any set A, ) C A and A C U.
Exercise 2.1.5. Show that for any set A, (AE)E = A.

Exercise 2.1.6. Show that for any set A, AU} = A and ANU = A.
Exercise 2.1.7. Show that for any set A, AN =0 and AUU =U.

Exercise 2.1.8. Complete the argument that the relation C is a
partial ordering by showing that it is transitive, that is, if A C B
and B C C, then A C C.

Exercise 2.1.9. Show that for any sets A and B, A C B if and only
if AUB = B.

Exercise 2.1.10. Show that the following are equivalent:

1. AC B;
2. BEQAE;
3. A\ B=0.

Exercise 2.1.11. Show that or any sets A, B, and C, A C B &
A C C implies that A C BN C.

2.2 Relations

Relations play a fundamental role in mathematics. Of particular
interest are orderings, equivalence relations, and graphs. The notion
of a graph is quite general. That is, a graph G = (V, E) is simply a
set V' of vertices and a binary relation F on V. In a directed graph,
a pair (u,v) € FE is said to be an edge from u to v. A graph (V, E) is
said to be undirected if (u,v) € E implies (v,u) € E for all u,v € V.

A key notion here is that of an ordered pair. Given two elements
ay,a from our universe U, the ordered pair (a;,aq) is defined so
that for any two pairs of elements (ay,b1) and (b1,be), (ar,a2) =
(b1,b2) <= a1 = by and ag = by. This is defined carefully in the
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following chapter, along with the notion of an n-tuple (ay,...,ay) of
elements.

Definition 2.2.1. Let Aq,..., A, be sets:

1. The product A; x Ag x --- x A, = {(a1,...,ay) : each a; € A;}.
2. A" ={(a1,...,a,): each a; € A}.

Definition 2.2.2. Let A and B be sets:
1. The product of A and B is defined to be

Ax B={(a,b):a€ A N be B}.

2. A subset R of A x B is called a relation, specifically a binary
relation. We sometimes write aRb for (a,b) € R.
3. A subset R of A; x Ay x --- x A, is said to be an n-ary relation.

Proposition 2.2.3. For any sets A, B, and C,

1. Ax(BUC) = (AxB)U(AXC) and (BUC)x A = (BxA)U(C'x A);
2. Ax(BNC) = (AxB)N(AxC) and (BNC)x A = (BxA)N(CxA);
3. Ax(B\C) = (AxB)\(AxC) and (A\B)xC = (AxC)\(Bx(C).

Proof. (1) (z,y) € Ax(BUC)ifandonlyifzr € A N ye BUC,
ifandonlyifxr € A AN (ye BvyeC),ifandonlyif (zr € A A y €
B)V (zxe ANyeC), ifandonly if (z,y) € AxB V (z,y) € AxC,
if and only if (z,y) € (A x B) U (A x C). The proof of the second
statement in (1) is similar.

The proofs of Parts (2) and (3) are left to the exercises. O

Here are some important examples of binary relations that we
return to frequently in what follows.

Example 2.2.4. The standard ordering x < y (as well as the strict
order <) on the real numbers is a binary relation, which also applies
to the rational numbers, integers, and natural numbers.

Example 2.2.5. The subset, or inclusion, relation A C B on sets,
read “Ais a subset of B”, or “A is included in B”, is a binary relation.

Example 2.2.6. Let the graph G have vertices (i, j) for integers i, j;
this is the lattice of integer points in the plane. Let there be horizontal
and vertical edges between adjacent vertices. That is, each (7, ) has
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four edges, going to (i—1,5), (i+1,7), (i,j — 1), and (i, j +1) which
means that, for example, (1,2)E(1,3).

Example 2.2.7. The fundamental relation of axiomatic set theory
is membership, that is, the relation = € y, for sets  and y. Note
that when we study higher set theory, we do not distinguish between
points and sets.

Example 2.2.8. For any set A, let I4 = {(a,a) € Ax A:a € A}
be the identity relation on A.

Example 2.2.9. The divisibility relation on the set Z of integers is
defined by z |y <= (32)y = z=.

Here are some useful concepts associated with relations.

Definition 2.2.10. For any sets A and B, and any relation R C
A X B:

1. The inverse R~! of R is R™! = {(u,v) : vRu}.

2. The domain of R is Dmn(R) = {z : (Jy) xRy} and for any set
D C B, the inverse image of D is R7![D] = {x € A: (3y € D)
zRy}.

3. The range of R is Rng(R) = {y : (3z) xRy}, and for any C C A,
the image R[C] = {y € B : (3z € C) zRy}.

For example, if xRy is the ordering < y, then xR 'y is the
ordering x > y. The inverse of the identity relation is again the
identity. On the natural numbers, the domain of strict inequality is N
but the range is just N*. For the strict ordering on the real numbers,
let A = {a} be the set with a single element a. Then, R[A] = (a, c0)
and R7![A] = (—o0,a). If R is the subset relation C on U and A is
any subset of U, then R™![A] = P(A).

Proposition 2.2.11. For any relations R and S,

1. (RUS)t=R1tusY
2. (RNS)t=R1ns L

Proof. (1) (z,y) € (RUS)~!ifand only if (y,r) € RUS if and only
if (y,2) € R V (y,z) € S if and only if (z,y) € 7! V (z,y) € S~1
if and only if (z,y) € R~1US™L.

Part (2) is left to the exercise. O
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Proposition 2.2.12. For any relations R and S,

1. Dmn(RNS) < Dmn(R) N Dmn(S);
2. Rng(RNS) C Rng(R) N Rng(S).

Proof. (1) Suppose z € Dmn(R N S). Then, for some y, (x,y) €
RN S. Choose some b so that (x,b) € RN S. Then, (z,b) € R and
(xz,b) € S. It follows that (Jy)(z,y) € R and (Jy)(z,y) € S. Thus,
x € Dmn(R) A x € Dmn(S), and therefore x € Dmn(R) N Dmn(S).
The above steps can be reversed to obtain the other inclusion. The
proof of (2) is left to the reader. O

Definition 2.2.13. If R C BxC and S C A x B are relations, then
the composition R o S is defined by Ro S = {(u,v) : (Jw)(uSw A
wRv)}.

Example 2.2.14. Here are some illustrations from the examples
above:

1. From Example 2.2.4, let R be the strict ordering x < y on the
integers. Then, (z,y) € Ro R if and only if y —z > 2.

2. From Example 2.2.6, the graph G of the lattice of integer points
in the plane, two points are related in E o E if there is a path of
length two connecting them.

3. From Example 2.2.8, the identity relation I4 acts like an identity
for o in that /4o R = R = Rol4. The proof is left as an exercise.

Example 2.2.15. For any set A, the set of permutations of A forms
a group under composition. This is demonstrated by some of the
properties of the following composition.

Here are some important properties of composition.

Proposition 2.2.16. If R C B x C and S C A X B are relations,
then

1. Dmn(Ro S) C Dmn(S) and
2. Rng(RoS) C Rng(R).

Proof. (1) Suppose that x € Dmn(RoS). Then, for some y, (z,y) €
R o S. This means that there is some v such that (z,v) € S and
(v,y) € R. By the first part, we have z € Dom/(S).

Part (2) is left as an exercise. O
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Proposition 2.2.17. For any relations R, S, and T,

1. (RNS)oT C(RoT)N(SoT);
2. Ro(SNT)C (RoS)N(RoT).

Proof. (1) Suppose that (z,y) € (RN S)oT. Then, for some z,

(x,z) € T and (z,y) € RNS. Then, (z,y) € R and (z,y) € S so that

(v,y) € RoT A (z,y) € SoT. Thus, (x,y) € (RoT)N(SoT).
Part (2) is left as an exercise. O

The following example shows that inequality does not always hold
in (1) above.

Example 2.2.18. Define relations R, S, and T on the natural num-
bers as follows: T' = {(z,2z), (z,3x) : x € N}, R = {(2z,z) : € N},
and S = {3z,z) : © € N}. Then, RoT = SoT = {(z,z) : x € N}
so that (RoT)N(SoT) = {(xz,z) : z € N}. On the other hand,
RN S = {(0,0} so that (RN S)oT = {(0,0}. This also provides an
example that equality does not hold in Proposition 2.2.12. That is,
Dmn(R N S) = {0}, whereas Dmn(R) N Dmn(S) = {0,2,4....} N
{0,3,6,...} = {0,6,12,...}. Moreover, Rng(R N S) = {0}, but
Rng(R) N Rng(S) =NNN=N.

The next proposition says that composition is associative.

Proposition 2.2.19. f RC Cx D, SCBxC,andT C Ax B
are relations, then Ro (SoT)=(RoS)oT.

Proof. (C): Suppose that (z,y) € Ro (S oT). Then for some
z € C, (r,z) € SoT and (z,y) € R. The first statement implies
that for some v € B, (z,v) € T and (v, z) € S. Since (v,z) € S and
(z,y) € R, it follows that (v,y) € Ro S. Since (z,v) € T, it follows
that (z,y) € (RoS)oT.

The steps above can be reversed to obtain the other inclusion. O

Proposition 2.2.20. I[f R C B x C and S C A X B are relations,
then (RoS)~! =S-1oR™L

Proof. (C): Suppose (7,y) € (RoS)~L. Then, (y,z) € RoS. This
means that for some z € B, (y,z) € S and (z,2) € R. It follows that
(2,y) € S71 and (x,2) € R~L. This implies that (z,y) € S~1o R7L.

(2): Suppose that (z,y) € S™' o R™!. Then for some 2z € B,
(z,y) € S7! and (z,2) € R~ Thus, (y,2) € S and (z,2) € R. It
follows that (y,z) € R o S. This implies that (z,y) € (RoS)~!. O
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For our discussion of equivalence relations and orderings, we need
the following basic concepts about relations.

Definition 2.2.21. For any binary relation R on a set A,

1. R is reflexive if for any = € A, xRz,

2. R is irreflexive if for any x € A, ~x Rz,

3. R is transitive if for any x,y,z € A, if both zRy and yRz, then
TRz,

4. R is symmetric if for any xz,y € A, xRy if and only if y Rz,

5. R is antisymmetric if for any x,y € A, if both z Ry and y Rz, then
T =1y.

Example 2.2.22. Returning to the examples above, we have the
following:

1. From Example 2.2.4, the standard ordering x < y on the real num-
bers is reflexive, transitive, and antisymmetric. The strict order
< is irreflexive, transitive, and antisymmetric (in fact, it is never
true that x < y and y < x).

2. From Example 2.2.5, the subset relation A C B is reflexive, transi-
tive, and antisymmetric. The last is the property of extensionality.
That is, if A C B and B C A, then A and B contain the same
elements and are therefore equal.

3. From Example 2.2.6, the graph G representing the lattice of inte-
ger points in the plane is irreflexive, not transitive, but it is
symmetric.

4. From Example 2.2.7, the membership relation z € y is irreflexive,
not transitive, and antisymmetric, that is, we can never have x € y
and y € x. This is explained carefully in the following chapter.

5. From Example 2.2.8, the identity relation 14 on a set A is reflexive,
transitive, and symmetric. The last two properties follows from
the fact that (z,y) € I4 implies z = y.

6. From Example 2.2.9, the divisibility relation on Z is reflexive and
transitive. On the natural numbers, it is also antisymmetric.

Exercises for Section 2.2

Exercise 2.2.1. Show that for any set A, Ax () =0x A=10.
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Exercise 2.2.2. Show that for any non-empty sets A and B, A x B
is non-empty.

Exercise 2.2.3. Show that (A x B)™! = B x A.

Exercise 2.2.4. Show that for any relations R and S, (RN S)~! =
R'nsS—t

Exercise 2.2.5. Show that for any relation R, (R~')~! = R.

Exercise 2.2.6. Show that for any sets A, B, and C', Ax (BNC) =
(AxB)N(Ax(C)and (BNC)x A= (BxA)N(CxA).

Exercise 2.2.7. Prove the following: For any sets A, B, and C,

(a) Ax(B\C)=(AxB)\(AxC)and
(b) (A\B)xC=(AxC)\(BxC).

Exercise 2.2.8. Let a < b be real numbers. Find the image and
inverse image of [a,b] and (a,b) under < and under <.

Exercise 2.2.9. For any relation R, show that Dmn(R™!) =
Rng(R) and Rng(R™') = Dmn(R).

Exercise 2.2.10. For any relations R and S, show that Dmn(R U
S) = Dmn(R) U Dmn(S) and Rng(RUS) = Rng(R) U Rng(S5).

Exercise 2.2.11. Let R and S be relations. Rng(RNS) C Rng(R)N
Rng(S).

Exercise 2.2.12. For any relations R and S, show that

(a) Dmn(R)\ Dmn(S) C Dmn(R\ S) and
(b) Rng(R)\ Rng(S) € Rng(R\ S).

Exercise 2.2.13. Prove the following:

(a) f BNC =1, then (C x D)o (A x B) =0.
(b) If BNC # 0, then (C x D)o (Ax B)=Ax D.

Exercise 2.2.14. Show that if R C Ax A, then [yoR = Rol4 = R.

Exercise 2.2.15. Show that for any relations R and S, Rng(RoS) C
Rng(R).
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Exercise 2.2.16. For any relations R, S, and T, Ro (SNT) C
(RoS)N(RoT).

Exercise 2.2.17. For any relation R C A x A, if Dmn(R) = A =
Rng(R), then Iy C RoRYand I4 C R~'oR.

Exercise 2.2.18. For any relations R, S, and T,
(RUS)oT =(RoT)U(SoT)
and Ro (SUT)=(RoS)U(RoT).

Exercise 2.2.19. Prove that for any relations, R, S, and T,
(Ro S)NT is empty if and only if (R~ oT)N S is empty.

Exercise 2.2.20. Let R be a relation and let A, B be arbitrary sub-
sets Dmn(R):

(a) Show that R[A U B] = R[A] U R[B].
(b) Show that R[AN B] C R[A]N R[B].
(c) Show that equality does not always hold in part (b).

Exercise 2.2.21. Show that for any relations R and S and any
A C Dmn(S), (Ro S)[A] = R[S[A]].

Exercise 2.2.22. Let R and S be relations:

(a) Show that Dmn(R o S) = S~[Dmn(R)].
(b) Show that Rng(RoS)= R[Rng(S)].

Exercise 2.2.23. Suppose R is a relation on U. Prove the following;:

a) R is reflexive if and only if Iy C R.

) R is irreflexive if and only if Iy N R = .
) R is transitive if and only if Ro R C R.
) R is symmetric if and only if R = R~
)
)

(
(b
(c
(d
R is antisymmetric if and only if RN R~ C Ipy.
If R is transitive and reflexive, then Ro R = R.

(e
(f
2.3 Functions

Functions are of fundamental importance in mathematics. The

integers come equipped with binary addition and multiplication
functions. In college algebra and trigonometry, we learn about the
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exponential function and the sine, cosine, and tangent functions on
real numbers. Just as relations may be viewed as sets, functions may
be viewed as relations and hence also as sets.

Definition 2.3.1. A relation F on A x B is a function if, for every
x € Dmn(F), there is a unique y € Rng(F) such that xFy. We
write y = F(x) for Fy. If Dmn(F) = A and Rng(F) C B, we say
that F maps A into B, written as F' : A — B. F' is one-to-one, or
injective, if F~1 is also function. F maps A onto B, or is surjective,
if Rng(F') = B. F is bijective, or is a set isomorphism from A to B,
if I is injective and surjective.

Definition 2.3.2. For any sets A and B, B* is the set of functions
mapping A into B.

A function F is said to be binary, or in general n-ary, if Dmn(F') C
A x A (in general A™) for some set A. Most commonly studied func-
tions are either l-ary (unary) or binary.

In the calculus, we studied how to determine whether functions
were one-to-one and how to find their domain and range. For exam-
ple, the function f(x) = 22 is both injective and surjective. The
exponential function f(x) = e* is injective but not surjective. The
function f(x) = 2% — x is surjective, but it is not injective, since
7(0) = £(1) = 0.

In any group G, the function mapping x to its inverse x~
isomorphism.

Equality of functions may be characterized as follows.

Lis a set

Proposition 2.3.3. Let F and G be two functions mapping set A
to set B. Then F' = G if and only if F(x) = G(x) for all x € A.

Proof. Suppose first that F' = G and let x € A. Since F and G are
functions, there are unique elements b and ¢ of B such that F(z) = a
and G(z) = c. Then (z,a) € F and (z,c) € G. Since F' = G, it
follows that both (x,a) and (z,c¢) are in F. Since F' is a function, it
follows that b = ¢ so that F(x) = G(z).

Suppose next that F(x) = G(x) for all z € A. Then, for any a € A
and b € B, we have (a,b) € F if and only if F'(a) = b, if and only if
G(a) = b, if and only if (a,b) € G. Thus, F = G. O

All of the results about relations also apply to functions, but
there are some additional nice properties of functions. Note that for
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a function F': A — B and C C B, the inverse image of C' under F,
F~YC], is defined by taking the inverse of F' as a relation, i.e.,

FUCl={x € A: F(z) € C}.

Proposition 2.3.4. For any function F' : C — D and any subsets
A, B of D,

1. F-YANnB] = F~An F1(B];
2. F~'A\ B] = F'[A]\ F~![B].

Proof. Let x € C. Then, x € F~'[AN B] if and only if F(z) €
AN B, if and only if F(z) € A A F(z) € B, if and only if = €
F~YA] A x € F7YB], if and only if z € F~'[A] N F~1[B].

Part (2) is left to the reader. O

It is not hard to see that F' o G is a function if F' and G are
functions (see the exercises.) Here are some interesting results about
the composition of functions.

Proposition 2.3.5. Let F': A — B be a function:

1. F: A— B is one-to-one if and only if, for all C and all G : C' —
Aand H:C — A, FoG = F o H implies G = H.

2. F: A — B is onto if and only if, for all C and all G : B — C
and H: B — C,GoF =HoF implies G=H.

Proof. (1) Let F': A — B. Suppose that F' is one-to-one and let
G:C — Aand H : C — A. Suppose also that FFo G = F o H.
Then for any x € C, F(G(z)) = F(H(z)). Since F is one-to-one, this
implies that G(x) = H(x). Thus, G = H.

Next, suppose that F' : A — B is not one-to-one and choose
a1 # ap € A and b € B such that F(a;) = F(a2) = b. Let C = {¢}
and define G(c¢) = a; and H(c) = ag so that FoG(c) =b= FoH(c)
and hence F o G = F o H. However, G # H.

Part (2) is left as an exercise. O

Next, we consider indexed families of sets. This is an important
topic later in connection with the Axiom of Choice. An indexed fam-
ily {A; : i € I} of sets may be viewed as a function from I to [ J;c; A;.
Definition 2.3.6. Suppose A = {A; : i € I} is an indexed family of
sets:
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1. The union of this family is (J;c; Ai := {u: (Fi € [)u € A;}.

The intersection of this family is ();c; A; == {u: (Vi € I)u € A;}.

3. The Cartesian product of this family is [[,c; 4 = {f : I —
User A+ (Y0)[£) € A}

4. For each i € I, the i-th projection function, p; : [[;c; Ai — A, is
defined by p;(f) = f(i) for all f & [[;c; As.

Example 2.3.7.

o

1. Let I be the set of prime numbers and let A, = {n € N:p | n}.
Then, U,c; 4p ={n € N:n # 1} and (¢, 4, = {0}.

2. Let I = Nt = {1,2,...} and let A, = (—1/n,1/n). Then,
Uner An = (~1,1) and (),.¢; An = {0}

3. Let I = N and let A; = R for all i € N. Then, J];. 4; is the set of
infinite sequences of real numbers, which plays a very important
role in the study of calculus.

4. The Cantor space is defined to be [[;c{0,1}, the set of infinite
sequences of 0’s and 1’s. This is one of the fundamental spaces of
topology.

Now, we can examine unions and intersections of infinitely many
sets. The following is a generalization of the associative laws.

Proposition 2.3.8. Let (A;)icr and (B;)ier be indexed families of
sets:

L. UieI(Ai UB;) = (Uie[ Ai) U (Uie[ B;);
2. mieI(Ai N Bz’) = (ﬂie[ Ai) N (ﬂie[ Bi)-
Proof. (1) (€): Suppose that = € |J;c;(A; U B;). Then, (Ji)z €
A; U B;. Choose some k such that x € A, U By.. Now, either x € A,
or x € Byj. Without loss of generality suppose that © € Aj. Then,
(Fi) x € A;, and therefore x € | J; A;. It follows that x € (UJ;c; Ai) U
(Uie[ By).

Note: When we say here “without loss of generality”, we mean
that a similar argument will work in the other case that z € By.

(2): Suppose now that = € (U;c; Ai) U (U;e; Bi)- Then, either
r € (U;er Ai) or © € U(U;c; Bi). Without loss of generality suppose
that 2 € U(U,c; Bi)- Then, (3i)x € B;. Choose some k such that
x € By. Then, z € Ay U By. Hence, (3i)x € A; U B;. It follows that
z € Uie (Ai U By).

Part (2) is left to the exercises. O
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Here are some versions of the distributive law.

Proposition 2.3.9. Let (A;)icr and (B;)ier be indexed families of
sets:

L ANUer Bi = Uie (AN By);
2. AU ﬂie[ B; = ﬂiEI(A U Bz)

Proof. (1) (€): Let x € ANJ;c; Bi. Then, v € Aand x € ;¢ Bi.
Now, (Ji)x € B;, so we can choose j such that € Bj. It follows
that z € A A z € Bj, so that x € AN B;. Thus, (i) € AN B;.
Hence, z € J;c; AN B;.

(2): Let x € U;c; AN B;. Then, (3i)x € J;c; AN By, so we can
choose j such that x € AN B;. Then, z € A A z € Bj;. Now,
(Fi)z € B; so that € | J;c; Bi. Thus, x € A A x € |J;c; B; so that
reAN Uie[ B;.

Part (2) is left to the exercises. O

Proposition 2.3.10. Let (4;)ics and (B;)icr be indexed families of
sets:

L Uier(Ai 0 Bi) € (Uier Ai NUjes Bi);

Proof. Part (1) is left to the exercises. Here is a proof of Part (2).
Let x € (;c; Ai U;es Bi- Then either x € (,c; A; or x € [, Bi.
Without loss of generality, suppose that x € (),c; A;. This means
that (Vi € I)x € A;. Now, let i € I be arbitrary. Then, z € 4; so
that x € A; V x € B; and hence © € A; U B;. Since ¢ was arbitrary,
it follows that (Vi € I)x € A; Uz € B;. Thus, x € (),c;(A; U B;). O

Here is an example to show that equality does not always hold for
the second inclusion. Let I = 7Z, let A; be the interval (—o0, ), and let
B; = [’L,OO) Then ﬂie[ A =0= ﬂz B, so that ﬂie[ A; U ﬂie[ B, =
0. But A; U B; = (—00,00) for every i, so that (;c;(4; U B;) =
(—00,00).

Finally, here is a version of DeMorgan’s laws for indexed families.

Proposition 2.3.11. Let (4;)ier be an indexed family of sets:

L (User A% = Nier A%
2. (ﬂiez Ai)E - UiEI AE-
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Proof. (1) z € (U;je; Ai)° if and only if = ¢ ., A, which holds
if and only if =(3i) z € A;. It follows from predicate logic that this is
true if and only if (Vi) =z € A;, which holds if and only if (Vi) z € AL,
which is true if and only if z € (;; AL,

Part (2) is left to the exercises. O

One can also define a doubly indexed family {B; j:i € I,j € J}.
For example, let A;; be the open interval (i — j,i + j) of reals for
1 € Z and j € N. Then we have

NU4s-NE-~
i€Z jeN i€z
whereas
jENcZ jEN
On the other hand, we do have the following.

Proposition 2.3.12. For any doubly indexed family {A;; : i € I,
7€ It Ujes Nier Aig € NierUjes Aiy-

Proof. Supposex € (J;c;(;cs 4ij andlet ¢ € I be arbitrary. Then
(3j € J)x € (;ep Aij- Fix k € J such that € [;c; A; . This means
that (Vi € I)z € A; ;. Now, let i € I be arbitrary. Then we have
immediately « € A; . Hence, (3j)z € A;; so that x € e, Aij
Since i was arbitrary, it follows that (Vi € I)z € [J;c; A . This
means that = € (;c; ;e  Aij, as desired. O
Exercises for Section 2.3

Exercise 2.3.1. Show that for any function F' : C — D and any
subsets A, B of D, F~'[A\ B] = F~'[A]\ F~![B].

Exercise 2.3.2. Show that for any two functions F' : B — C and
G:A— B, Fo( is a function.

Exercise 2.3.3. Show that for any functions F and G,
Dmn(F o G) = G~ Dmn(F)] € Dmn(G).

Exercise 2.3.4. Show that for any two functions F' and G,
Rng(F o G) = F[Rng(G)] C Rng(F).



Review of Sets and Logic 23

Exercise 2.3.5. Show that for any function F' : A — B, F is sur-
jective if and only if, for all C' and all G: B — C and H : B — C,
GoF = Ho F implies G = H.

Exercise 2.3.6. For a function F': A — B, show the following:

1. F is injective if and only if there exists G : B — A such that
GoF =14.

2. F' is bijective if and only if there exists G : B — A such that
FoG=1Igand Go F = I4.

Exercise 2.3.7. Let A, B, and C be sets:
(a) Show that (AN B)Y = A° N BC.

(b) Show that A U B C (AU B)°.
(c) Show that equality does not always hold in (b).

Exercise 2.3.8. Let A C B:

(a) Show that A C BC.
(b) Define a map from CB onto C4.

Exercise 2.3.9. Let A, ={k/n:keZ} ={0,1/n,—1/n,2/n,.. }
for each n € NT. Determine the resulting sets | J,,c; An and [, c; A
Exercise 2.3.10. Show that for any indexed families {A; : i € }
and {Bl 11 € I}, ﬂieI(Ai M Bz) = (ﬂiel A; N ﬂie[ Bl)

Exercise 2.3.11. Show that for any set A and any indexed family
{Bz 11 € I}, AU ﬂieIBi = ﬂzel(AUBl)

Exercise 2.3.12.

(a) Show that for any indexed families {A4; : i € I'} and {B; :i € I},
Uier(4i N Bi) © (Uier Ai N Uies Bi)-

(b) Give an example to show that equality does not always hold in
part (a).

Exercise 2.3.13. Let {A; : ¢ € I} and {B; : j € J} be indexed
families of sets and suppose that AZ- C BjforallieclandalljeJ.

Show that ;c; Ai C ;e Bj
Exercise 2.3.14. Show that for any indexed family {A; : ¢ € I} of

sets, (ﬂie] Ai)c = Uzel AE
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Exercise 2.3.15. Let {A; : i € I} be an indexed family of sets:

(a) Show that F[J;c; Ail = U;er FlA:]
(b) Show that F[(;c; Ai] C ;cs F[A]-
(c) Show that equality does not always hold in (b).

Exercise 2.3.16. Let {B; : i € I} be an indexed family of sets:

(a) Show that Ffl[Uiel Bi] = User F~YB;).
(b) Show that Ffl[ﬂid Bi] = Nier FYB;).

Exercise 2.3.17. Suppose A = {A; : i € I} is an indexed family,
and A; # () for all « € I. Show that the Rng(p;) = A;, where p; is the
i-th projection function on [[;.; A;.

Exercise 2.3.18. Let I = {0, 1}. Define a bijection between [],.; A;
and Ay x A;. More generally, define a bijection between [[;" ;| A; and
A x Ay x --- X A,

2.4 Equivalence Relations

Definition 2.4.1. A relation R on a set A is an equivalence rela-
tion if it is reflexive, symmetric, and transitive. For any a € A, the
equivalence class of a is [a]g := {x € A : aRx}, or sometimes written
a/R.

A family {P; : i € I} of subsets of A is a partition of A when
the sets P; are non-empty, pairwise disjoint, and | J;c; P; = A. The
last two conditions may be rephrased to say that each element of A
belongs to exactly one of the sets P;.

Here are some well-known examples.

Example 2.4.2. For any positive integer m and any integers x,y,
let = = y(mod m) if and only if m divides x — y. For example, if
m = 3, then there are three equivalence classes, [0] = {0,3,6,... },
1] = {1,4,7,...}, and [2] = {2,5,8,...}. The equivalence classes
form the group Z(3) with addition take modulo 3.

Example 2.4.3. Let FF = G (modulo finite) for functions F,G :
N — N if and only if {x : F(x) # G(x)} is finite. For subsets A, B
of N, let A = B (modulo finite) if and only if x4 = xp. Another
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way to phrase this is that A = B (modulo finite) if and only if the
symmetric difference (A\ B) U (B '\ A) is finite.

The following proposition gives some key properties of equivalence
classes.

Proposition 2.4.4. Let R be an equivalence relation on A and let
[a] denote [a|r. Then the following are equivalent:

1. aRb;

2. [a] = B

3. a€lb];

4. [a] N [b] # 0.

Proof. (1) = (2): Suppose aRb and let ¢ € A be arbitrary. If
¢ € [a], then cRa. By transitivity, this implies ¢cRb and hence ¢ € [b].
Similarly, ¢ € [b] implies ¢ € [a]. This demonstrates that [a] = [b].

(2) = (3): Suppose that [a] = [b]. Since a € [a], this implies that
a € [b].

(3) = (4): Suppose that a € [b]. Since a € [a], this implies that
[a] N [b] # 0.

(4) = (1): Suppose that [a] N [b] # 0 and let ¢ € [a] N [b]. Then
¢ € [a] so that aRc and ¢ € [b] so that cRb. It follows from transitivity
that aRbD. O

Proposition 2.4.5. Let R be an equivalence relation on A, and
A #(. Then the family of equivalence classes of AJR is partition
of A.

Proof. Let [a] denote [a]g. Certainly, each [a] is a non-empty sub-
set of A. [J,cala] = A since each a € [a]. Given two classes [a] # [b],
it follows from Proposition 2.4.4 that [a] N [b] = 0. O

Proposition 2.4.6. For any partition P = {A; : i € I} of a set
A, there is an equivalence relation R on A such that P is the set of
equivalence classes of R.

Proof. Define aRb if and only if a and b belong to the same set A;
of the partition. This is clearly reflexive and symmetric. Suppose now
that aRb and bRc. Then for some 7,5 € I, a,b € A; and b,c € A;.
Then b € A;NA; and therefore A; = A; by the definition of partition.
Thus, aRc. O
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Here is one general way to obtain an equivalence relation. The
proof is left as an exercise.

Proposition 2.4.7. Let F' : A — B and define a relation R such that
for all z,y € A, xRy <= F(x) = F(y). Then R is an equivalence
relation on A and there is a function G : A/R — B such that F(a) =
G(la]r) for all a € A.

For example, let F' : P(N) — N U {w} be defined by F(A) =
card(A), where card(A) is the cardinality of the set A. Here we write
w for the cardinality of N. Then the resulting equivalence relation will
have A = B if and only if A and B have the same cardinality. For
instance, the equivalence class of A = {3} is [A] = {{0},{1},...},
that is, the family of sets having exactly one element. The function
G thus satisfies G([A]) = card(A).

Exercises for Section 2.4

Exercise 2.4.1. Suppose we extend the equivalence relation of
equality modulo k to the real numbers, meaning that = = y (mod k)
if x — y is an integer multiple of k. Prove that this is still an equiv-
alence relation. Find the members of the equivalence class of the
real number m, when k£ = 2. What can you say about the group
R (mod k)?

Exercise 2.4.2. What is the equivalence class of () under equivalence
modulo finite?

Exercise 2.4.3. Let F': A — B and define a relation R so that for
all z,y € A, Ry <= F(x) = F(y). Show that R is an equivalence
relation on A and that there is a function G : A/R — B such that
F(a) = G(a/R) for all a.

Exercise 2.4.4.

(a) Let R and S be equivalence relations on a non-empty set A, and
suppose R C S. Show that S induces an equivalence relation T
on A/R given by [a|rT[blr <= aSbh.

(b) Let R be an equivalence relation on A and let 7" be an equivalence
relation on A/R. Show that 7" induces an equivalence relation S
on A such that R C S given by aSb <= [a]gT[b|r.
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Exercise 2.4.5. Let R be an equivalence relation on A and let
B C A:

(a) Show that RN (B x B) is an equivalence relation on B.
(b) Let F': B — A. Show that F' induces an equivalence relation S
on B, given by aSb <= F(a)RF(b).

Exercise 2.4.6. Show that if {R; : ¢ € I} is a family of equivalence
relations on a set A and then (),.; R; is also an equivalence relation
on A.

el

Exercise 2.4.7. Let R and S be two equivalence relations on a set
A. Show that R C S if and only if every equivalence class K of R is
included in some equivalence class M of S.

2.5 Orderings

In this section, we introduce the various types of partial and total
orderings.

Definition 2.5.1. A relation R on A is a preorder or quasiorder if
it is reflexive and transitive. A preorder is a partial ordering if it
is antisymmetric. If A is a set equipped with a partial ordering, we
refer to A as a partially ordered set, or p.o. set for short. A par-
tial ordering R is a linear ordering if it is total, that is, for any
a,b € A, either aRb or bRa. An ordering R is a well-ordering if it
is linear and well-founded, that is, any subset B of A has a least
element. A totally ordered subset of a partially ordered set is called
a chain.

Note that a preorder which is symmetric is just an equivalence
relation. The relation aRb if and only if card(a) < card(b) for sets a
and b is an example of a preorder.

Given a set A partially ordered by < and a subset B of A, we write
a < bfora<b& az#b. The relation < is irreflexive antisymmetric
and transitive. More generally, R is a strict partial ordering if it is
irreflexive, antisymmetric, and transitive. Another way to say that a
partial order is total, or linear, is by the following.

Definition 2.5.2. The partial order < on a set A has the Tri-
chotomy Property if, for any z,y € A, exactly one of the
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following holds:

1.z <uy;
2.y < a;
3. x=1y.

The standard ordering < of the real numbers is a linear ordering,
and the corresponding strict order is given by <.

The notions of minimal and maximal elements in a partially
ordered set, as well as lower and upper bounds for ordered sets, are
very important.

Definition 2.5.3. Let < be a partial ordering on a set A and let
B C A:

1. a is a minimal element of B if a € B and there is no b € B with
b < a.

2. a is a mazimal element of B if ¢ € B and there is no b € B with
b > a.

3. a is the minimum element of B if a € B and for every b € B,
a <b.

4. a is the mazimum element of B if a € B and for every b € B,
a <b.

5. ais a lower bound for B if a < b for every b € B. Here a does not
have to belong to B.

6. a is an upper bound for B if b < a for every b € B. Again a does
not have to belong to B.

7. ais the greatest lower bound or infimum of B if a is a lower bound
and ¢ < a for every lower bound ¢ of B.

8. a is the least upper bound or supremum of B if a is an upper
bound and a < ¢ for every upper bound ¢ of B.

We consider some examples of partial orderings and related con-
cepts involving divisibility for natural numbers, inequality for real
numbers, and inclusion for sets.

Example 2.5.4.

1. Consider the divisibility relation on the positive integers. This
relation is reflexive, since z = x -1, so = | z for any x. To see that
it is transitive, suppose a | b and b | ¢. Then b = ax and ¢ = by
for some positive integers x,y. It follows that xy is also a positive
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integer and ¢ = axy. To see that it is antisymmetric, suppose that
alb and bla. Then b = ax and a = by for some positive integers
x,y. Then xy is a positive integer and a = azy. It follows that
xy = 1 and therefore = y = 1 and a = b. Note that we have
a | —a and —a | a, so the divisibility relation is not antisymmetric
on the integers.

2. For two positive integers a,b, the maximum and the minimum
under divisibility exist if one of the two divides the other and
then these are just the usual max{a,b} and min{a,b} under the
standard ordering <. The least upper bound of {a, b} is the least
common multiple and the greatest lower bound of {a,b} is the
greatest common denominator.

3. Let < be the standard ordering on the real numbers. A finite
closed interval [a, b] has minimal element a and maximal element
b. A finite open interval (a,b) has infimum @ and supremum b
but has no minimal or maximal elements. The half-open interval
[0,00) has no supremum. The set {1/n : n € N*} has infimum 0
but has no minimum.

4. For the inclusion relation on P(N), let B be the family of non-
empty sets. Then for any n € N, the singleton {n} is a minimal
element of B, but B has no minimum element.

Exercises for Section 2.5

Exercise 2.5.1. Show that if < is a partial ordering with strict order
<, then it is linear if and only if it satisfies the Trichotomy Property.

Exercise 2.5.2. Show that if R is a preordering, then R™! is a
preordering.

Exercise 2.5.3. Show that if R is a preordering, then RN R~! is an
equivalence relation.

Exercise 2.5.4.

(a) Show that if a is the minimum element in a subset B of a p.o.
set A, then a is the unique minimal element of B.

(b) Give an example of a p.o. set with a unique minimal element but
no minimum element.
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Exercise 2.5.5.

(a) Show that a maximum element of a subset B of a p.o. set is
always the supremum of B.

(b) Show that the supremum a of B is the maximum of B if and
only if a € B.

Exercise 2.5.6. Show that any well-founded partial ordering is a
well-ordering. That is, show that such an ordering must be totally
ordered.

Exercise 2.5.7. Prove that for any p.o. set A, there is an injection
F:A— P(A) such that a < b <= F(A) C F'(B).

Exercise 2.5.8. Let (B, <) be a set with a partial ordering. Let
F : A — B and define a relation R on Dmn(F) by xRy <=
F(z) < F(y). Show that R is a preorder.

Exercise 2.5.9. Let F' : (A,<4) — (B,<p) map one linearly
ordered set onto another so that a; < ag implies F(a1) < F(a2).
Show that F' is an order isomorphism, that is, F' is one-to-one and
a1 < ay = F(al) < F(ag).

Exercise 2.5.10. Given a preorder R on a set A, prove that there
is an equivalence relation S on A and a partial ordering < on A/S
such that [a]s < [b]s <= aRb.

2.6 Trees

Trees play a very important role in many areas of mathemat-
ics, set theory, and logic in particular. There are many ways to
present the notion of a tree. In graph theory, a tree is a connected,
acyclic directed graph; that is, there is no cycle of directed edges
(v, v1), (V1,02), .+« (Un—1,0p), (Un,vp).

We are interested in rooted trees, where there is a special node
called the root and a directed path from the root to every node,
where a directed path from node vy to node v, is a sequence
(vo,v1), (v1,v2), ..., (Up—1,vy,) of directed edges. (Note that the
empty sequence may be viewed as a path from v to itself.)

When there is a directed edge from u to v, we say that v is a
successor of u and v is the (unique) predecessor of v. There is a



Review of Sets and Logic 31

natural partial ordering on a tree, defined so that v < v if and only
if there is a path from u to v.

Example 2.6.1. For example, let 7' = N and let mEn if and only
if n = m + 1. Then 0 is the root and each number m has unique
successor m + 1. The partial ordering given by this tree is simply the
standard < ordering on N.

We want to consider trees with strings as vertices. Let ¥ be
a set of symbols (an alphabet), usually an initial segment of N.
Then for a natural number n, 3" denotes the set of strings o =
(¢(0),0(1),...,0(n — 1)) of n letters from ¥; the length n of o is
denoted by |o|. The empty string has length 0 and will be denoted
by €. ¥* (or sometimes Y<%) denotes the set |J, X" and 3¢, or
YN, denotes the set of infinite sequences.

A constant string o of length n consisting of the symbol k is
denoted k™. For m < |o|, o [ m is the string (¢(0),...,0(m —1)); o
is an initial segment of T (written o C 7) if 0 = 7 | m for some m.
Initial segments are also referred to as prefizes. Similarly, 7 is said to
be a suffiz of o if |7] < |o| and, for all i < |7|, o(|o| — |7| + 1) = 7(3).
The concatenation o7 (or sometimes o * 7 or just o7) is defined
by 071 = (0(0),0(1),...,0(m —1),7(0),7(1),...,7(n — 1)), where
|o| = m and |7| = n; in particular, we write 0" a for 07 (a) and a" o
for (a)” 0. Thus, we may also say that o is a prefix of 7 if and only if
7 = o0~ p for some p and that 7 is a suffix of ¢ if and only if 0 = p™7
for some p.

For any 2z € ¥V and any finite n, the initial segment x | n of x is
(z(0),...,z(n —1)). We write 0 C z if 0 = z [ n for some n. For
any 0 € ¥" and any x € N we have 0"z = (0(0),...,0(n — 1),

z(0),z(1),...).

Proposition 2.6.2. The relation C is a partial ordering.

neN

Proof. The reflexive property is immediate from the definition.

For antisymmetry, suppose that c C 7 and 7 £ 0. Then 7 = 0" p
and o = 77 v for some strings p and v. But this means 7 = o " v
so that ;1 = € = v and therefore o = 7.

For transitivity, suppose ¢ C 7 and 7 E p. Then 7 = ¢" p and
p = 7 v for some strings p and v.

Therefore, p = o~ v so that o C p. O



32 Set Theory and Foundations of Mathematics (Second Edition) — Volume I

Definition 2.6.3. The lexicographic or dictionary ordering on X* is
defined so that ¢ < 7if 0 C 7 or if o(n) < 7(n), where n is the least
such that o(n) # 7(n).

When o < 7 but 0 # 7, we write 0 < T.

Proposition 2.6.4. The relation < is a linear ordering.

Proof. Reflexive: o C o so that 0 < 0.

Antisymmetric: Suppose that ¢ < 7 and 7 < ¢. Observe that if|
for some n, 0 [ n =7 [ n and o(n) < 7(n), then it not true that
7 = 0. It follows that ¢ C 7 and, similarly, 7 C ¢ so that 0 = 7.

Transitive: Suppose that ¢ <7 and 7 < p. There are two cases:

Case 1: 0 C 7. Now, there are two subcases.
In the first subcase, 7 C p, then ¢ C p by Proposition 2.6.2 and
therefore o < p.

In the second subcase, 7 [ n = p | n and 7(n) < p(n) for some n.
There are still two further possibilities:

(i) If |o| < n, then o C p and therefore o < p.

(ii) If |o| > n, theno [n=7[n=p[nand o(n) =7(n) < p(n)
so that again o < p.

Case 2: There is some n such that o [ n =7 [ n and o(n) < 7(n).
This is left as an exercise.

Total: Given two strings o and 7, suppose without loss of gener-
ality that |o| < |7|. There are two cases:

Case 1: 0 =7 | n so that ¢ C 7 and therefore ¢ < 7.

Case 2: For some i < n, o(i) # 7(i). Let m be the least such i and
assume without loss of generality that o(m) < 7(m). Then o < 7.0

Finite strings in {0,1}* can be viewed as representing dyadic
rational numbers between 0 and 1.

Definition 2.6.5. For o € {0,1}*, let ¢, = >_ 27 1o (4).

i<|o|

For example, 1101 represents qi191 = % + % + % = %. Note here
that the number 13 in base two is just 1101, that is, 13 =8 +4 + 1.
Note that 110100 also represents %. For a dyadic rational g € (0,1),
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the standard representation o, is the one that ends with a 1, and the
standard representation of 0 is 0.

A similar definition can be given for numbers in base k when the
alphabet ¥ ={0,1,...,k — 1}.

Proposition 2.6.6.

1. For any o and 7 in {0,1}*, if 0 < 7, then ¢, < q,.
2. For any dyadic rationals p and q in [0,1), 0, < o4 if and only if
p < q in the usual ordering of the rationals.

Proof. The proof of part (1) is left as an exercise.

(2) Let p and ¢ be rationals in [0,1] and let 0 = o), and 7 = g so
that p = ¢, and ¢ = q,.

Suppose first that o, < 4. Then by part (1), we obtain p = ¢, <
dr = (.

Suppose next that p < ¢ and, by way of contradiction, suppose
that it is not true that o < 7. It follows from Proposition 2.6.4 that
7 =< 0. Then by the first case above, ¢ < p. Thus, p = ¢q and therefore
op = 0g. 0

A tree T over ¥ is a set of finite strings from X* which is closed
under initial segments. Then 7 € T is an immediate successor of a
string 0 € T'if 7 = 67 a for some a € X.

We will generally assume that 17" C N*. That is, the nodes of T
are finite sequences of natural numbers. Such a tree defines a subset
[T] of the so-called Baire space NV, where [T is the set of infinite
paths through the tree T'. That is,

xell] — (Wn)z|neT.

Example 2.6.7. The full binary tree is {0,1}*. Here every node
o has exactly two successors: 00 and ol. The set of infinite paths
through the full tree is the so-called Cantor space {0, 1}

A tree T is said to be a shift if it is also closed under suffixes.

Example 2.6.8. Define ' C {0,1}* so that o € T if and only if
o does not have 3 consecutive 0’s, that is, if ¢ has no consecutive
substring of the form (000). Clearly, if o does not have 3 consecutive
0’s, then no initial segment of ¢ can have 3 consecutive 0’s either.
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Furthermore, if o has no consecutive substring (000), then no suffix
of o can have a consecutive substring (000). Thus, T is a shift.

We say that a tree T is finite-branching if for every o € T, there
are only finitely many immediate successors of o in T'. Certainly, any
tree T over a finite alphabet is finite-branching.

Example 2.6.9. Define the tree T' C w™ so that for any string o € T
and any i < |o|, 0(i) < i. Then for any o € T of length n, o has at
most n + 1 successors.

Exercises for Section 2.6
Exercise 2.6.1. For any o and 7 in {0,1}*, if o < 7, then ¢, < ¢.

Exercise 2.6.2. Show that the lexicographic ordering on {0,1}* is
not well-founded.

Hint: The ordering on the dyadic rational numbers is not well-
founded.

Exercise 2.6.3. Complete the proof that the lexicographic ordering
on {0,1}* is a linear ordering.

Exercise 2.6.4. Show that there is no cycle in the full tree w*.

Exercise 2.6.5. For any abstract tree T' = (V| E), and any node u
of T, let T'(u) be the set of nodes v such that there is a path from
u to v. Show that T'(u) is also a tree, that is, T'(u) does not contain
any cycle.



Chapter 3

Zermelo—Fraenkel Set Theory

3.1 Historical Context

In the 19th century, mathematicians produced a great number of
sophisticated theorems and proofs. With the increasing sophistica-
tion of their techniques, an important question appeared now and
again: Which theorems require a proof and which facts are self-
evident to a degree that no sensible mathematical proof of them
is possible? What are the proper boundaries of mathematical dis-
course? The contents of these questions is best illustrated by several
contemporary examples.

Example 3.1.1. The parallel postulate of Euclidean geometry was
a subject of study for centuries. The study of geometries that fail to
satisfy this postulate was considered a non-mathematical folly prior
to the early 19th century, and Gauss withheld his findings in this
direction for fear of public reaction. The hyperbolic geometry was
discovered only in 1830 by Lobachevsky and Bolyai. Non-FEuclidean
geometries proved to be an indispensable tool in the general theory
of relativity.

Example 3.1.2. The Jordan curve theorem asserts that every non-
self-intersecting closed curve divides the Euclidean plane into two
regions, one bounded and the other unbounded, and any path from
the bounded to the unbounded region must intersect the curve. The
proof was first presented in 1887. The statement sounds self-evident,
but the initial proofs were found to be confusing and unsatisfactory.

35
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The consensus formed that even statements of this kind must be
proved from some more elementary properties of the real line.

Example 3.1.3. Georg Cantor produced an exceptionally simple
proof of the existence of non-algebraic real numbers, i.e. real num-
bers which are not roots of any polynomial with integer coefficients
(1874). Proving that specific real numbers such as 7 or e are not alge-
braic is quite difficult, and the techniques for such proofs were under
development at that time. On the other hand, Cantor only compared
the cardinalities of the sets of algebraic numbers and real numbers,
found that the first has smaller cardinality, and concluded that there
must be real numbers that are not algebraic without ever produc-
ing a single definite example. Cantor’s methodology — comparing
cardinalities of different infinite sets — struck many people as non-
mathematical.

As a result, the mathematical community in the late 19th cen-
tury experienced an almost universally acknowledged need for an
axiomatic development of mathematics modeled after the classical
axiomatic treatment of geometry by Euclid. It was understood that
the primitive concept must be that of a set (as opposed to a real
number, for example) since the treatment of real numbers can be
fairly easily reinterpreted as speaking about sets of a certain specific
kind. The need for a careful choice of axioms was accentuated by sev-
eral paradoxes, of which the simplest and most famous is Russell’s
paradox: Consider the “set”z of all sets z which are not elements of
themselves. Consider the question whether x € x or not. If x € =,
then z does not satisfy the formula used to define z, and so, = ¢ x.
On the other hand, if ¢ x, then = does satisfy the formula used
to define x, and so, x € z. In both cases, a contradiction appears.
Thus, the axiomatization must be formulated in a way that avoids
this paradox.

Several attempts at a suitable axiomatization appeared before
Zermelo produced his collection of axioms in 1908, now known as the
Zermelo set theory with choice (ZC). After a protracted discussion
and two late additions, the axiomatization of set theory stabilized
in the 1920s in the form now known as Zermelo—Fraenkel set theory,
ZF, and ZF with the Axiom of Choice (ZFC). We note that the first
modern textbook on axiomatic set theory was written by Abraham
Fraenkel [4]. This process finally placed mathematics on a strictly
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formal foundation. A mathematical statement is one that can be
faithfully represented as a formula in the language of set theory.
A correct mathematical argument is one that can be rewritten as a
formal proof from the axioms of ZFC. Here (roughly), a formal proof
of a formula ¢ from the axioms is a finite sequence of formulas ending
with ¢ such that each formula on the sequence is either one of the
axioms or follows from the previous formulas on the sequence using
a fixed collection of formal derivation rules.

The existence of such a formal foundation does not mean that
mathematicians actually bother to strictly conform to it. Russell
and Whitehead’s Principia Mathematica [9] was a thorough attempt
to rewrite many mathematical arguments in a formal way, using a
theory different from ZFC. It showed among other things that a
purely formal treatment is excessively tiresome and adds very lit-
tle insight. Long, strictly formal proofs of mathematical theorems of
any importance have been produced only after the advent of com-
puters. Mathematicians still far prefer to verify their argument by
social means, such as by presentations at seminars or conferences or
in publications. The existence of a strictly formal proof is considered
as an afterthought and a mechanical consequence of the existence
of a proof that conforms to the present socially defined standards
of rigor. In this treatment, we will also produce non-formal rigorous
proofs in ZFC with the hope that the reader can accept them and
learn to emulate them.

3.2 The Language of the Theory

Zermelo—Fraenkel set theory with the Axiom of Choice (ZFC) belongs
to the class of theories known as first-order theories. General first-
order theories will be developed in the companion volume [3]. Here,
we only look at the special case of ZFC. The language of set theory
consists of the following symbols:

e an infinite supply of variables;

e a complete supply of logical connectives: implication —, conjunc-
tion A, disjunction V, equivalence <+, and negation —;

e quantifiers: the universal quantifier V (read “for all”) and the exis-
tential quantifier 3 (read “there exists”);

e equality =;
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e the binary relational symbol € (the intended interpretation of
which is membership; read “belongs to”, “is an element of”).

The symbols of the language can be used in prescribed ways to form
expressions which we refer to as formulas. In the case of ZFC, if x
and y are variables, then © = y and x € y are formulas; if ¢, are
formulas, then so are ¢ A ¥, =@, etc.; and if ¢ is a formula and x is
a variable, then Vo ¢ and 3z ¢ are formulas; in these formulas, ¢ is
called the scope of the quantifier Vx or 3z (we will sometimes write
quantifiers as (Vz) or (3x) for the sake of readability). Formulas are
customarily denoted by Greek letters, such as ¢,1, 6. A variable x is
free in a formula ¢ if it appears in ¢ outside of scope of any quantifier.
Often, the free variables of a formula are listed in parentheses: ¢(z),
Y(x,y). A formula with no free variables is called a sentence.

Even quite short formulas in this rudimentary language tend to
become entirely unreadable. To help understanding, mathematicians
use a great number of shorthands, which are definitions of certain
objects or relations among them. Among the most common short-
hands in ZFC are the following;:

e Vz € y ¢ is a shorthand for (Vz)[z € y — ¢], and Iz € y ¢ is a
shorthand for (3z)[z €y A ¢];
Jlz ¢ is short for “there exists exactly one”, in other words for

Go)[e(z) A (Vy)lo(y) =y =]];

x C y (subset) is short for Vz[z € x — z € y|;

() and also 0 are shorthands for the empty set (the unique set with
no elements);

x Uy and z Ny denote the union and intersection of sets z, y;
P(z) denotes the power set of x, the set of all subsets of x.

After the development of functions, arithmetical operations, real
numbers, etc., more shorthands appear, including the familiar R,
+, sinz, [ f(x)dr and so on. Any formal proof in ZFC using
these shorthands can be mechanically rewritten into a form which
does not use them. Since the shorthands really do make proofs
shorter and easier to understand, we will use them whenever
convenient.
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3.3 The Basic Axioms

At the basis of any first-order theory, there is a body of axioms known
as the logical axioms. They record the behavior of the underlying logic
and have nothing to do with the theory per se. The choice of logical
axioms depends on the precise definition of the formal proof system
one wants to use. They are typically statements like the following:
(va) [z = ], (V)(vy)(¥2) [z = yAy = 2] > 2 = 2], 0 & — (10— )
for any formulas ¢, 1. The possible choices for the system of the
logical axioms are discussed in the companion book, Foundations of
Mathematics [3]; we will not explain them here.

Any set may be determined by its elements. This is codified in
the first axiom.

Definition 3.3.1. The Extensionality Aziom states that
Vz)Vy)[(V2)[z €z z€ey] =yl

In other words, two sets with the same elements are equal. We used
this idea in the first chapter when we said that two sets A and B are
equal if each is a subset of the other.

Several of the axioms of ZFC are needed to provide the existence
of basic sets and Boolean operations on sets.

Definition 3.3.2. The Empty Set Aziom asserts the existence of the
empty set, that is, (3z)(Vy)[y ¢ z].

The empty set is unique by the Axiom of Extensionality and we will
denote it by @ or just 0.

Definition 3.3.3. The Pairing Axiom says that for any two sets x
and y, there is a set {x,y}, that is,

(Vz)(Vy)(3F2)(Vu)[u € z <> [u =2V u=1y]].

Writing the set {z,y} is our first use of the set builder notation. Note
that if x = y, we get a singleton set {x}. Here, this notation means
that =z € {a} <= =z = qa, and in general,

re{a,...,an} <= (z=a1V---Vr=ay).

The pair {z,y} is unordered: Looking at it, we cannot tell whether
x comes first and y second or vice versa. We will also use the
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ordered pair (x,y), which (as a definition of Kuratowski) is the set
{{z},{z,y}}. This can be formed using the pairing axiom several
times. Ordered triples would be defined as (z,y,z) = ((z,y),2),
similar to ordered n-tuples for every natural number n.

Proposition 3.3.4. For any sets a,b,c,d, {a,b} = {c,d} <= (a =
cANb=d)V (a=d N b=c).

Proof. (<=) Suppose that a = ¢ and b = d. Then
re{a,b} <= (r=aVzr=0b) < (r=cVr=d) < x € {cd}

The case when a = d and b = c is similar.

(=) Suppose that {a,b} = {c,d}. Since a € {a, b}, it follows that
a € {c,d}. Thus, either a = ¢ or a = d. Without loss of generality,
let a = ¢. By a similar argument, either b = ¢ or b = d. In the first
case, a = ¢ = b, and therefore, also a = b = d, since d € {a,b}.
In either case, we have b = d, so that a = c and b = d. O

Definition 3.3.5. The Union Aziom asserts the existence of the
union |Jx of any set of sets, that is,

(Vz)(Fy)(V2)[z € y <> Fu)[u e x A z € ull.

Note that the union of x is uniquely given by this description due
to the Axiom of Extensionality. This is a generalization of the union
of an indexed family discussed in Chapter 2. If A = {A; : i € I} is
an indexed family of sets, then JA = (J;c; Ai- Given an arbitrary
set A, let I = A and let A; = {i}. Then [JA = ;¢ Ai-

The union and pairing axioms make it possible to formulate sev-
eral operations on sets. If x,y are sets, then there is a unique set
(denoted by = Uy) containing exactly elements of x and elements of
y: zUy = |J{z,y}. Given a finite list x, 21, x2, ..., =, of sets, we can
form the set {zg,x1,z9,...x,}, which is the unique set containing
exactly the sets on our list.

We can now introduce the von Neumann natural numbers. These
begin with 0 = () and are then recursively defined by n+1 = nU{n}.
Thus, 1 = 0U {0} = {0}, 2 = 1U{1} = {0} U{1} = {0,1}, 3 =
{0,1,2}, and so on.

We note here that beginning with just the empty set and clos-
ing under the operations of pairing and union, we produce the
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family HF of hereditarily finite sets. This includes sets, such as
{1,{2,4}, {{7}}}.

Definition 3.3.6. The Power Set Axiom asserts that
(Vz)(Jy)(Vz)[2 €y > z Cy].

In other words, for every set x, there is a set consisting exactly of
all subsets of x. This set is called the power set of x and commonly
denoted by P(x). Note that the power set of x is uniquely given by
this description by the Axiom of Extensionality.

For example, since 2 = {0,1}, P(2) = {0,{0},{1},{0,1}} =
{0,1,{1},2}. It can be seen that the power set of any hereditarily
finite set is also hereditarily finite.

Exercises for Section 3.3

Exercise 3.3.1. Does 0 = {0} hold? Why or why not?

Exercise 3.3.2. Evaluate (J{0,{0},{0,{0}}} in the set builder
notation.

Exercise 3.3.3. Show that (a,b) is a set for any sets a and b.

Exercise 3.3.4. Show that (a,b) = (¢,d) if and only if a = ¢ and
b = d for any sets a and b.

Exercise 3.3.5. Show that, for any sets x and y,if zr € A <— y €
A for all sets A, then x = y.

Exercise 3.3.6. Prove by induction on n that for any natural num-
ber n and any n sets a,...,a,, there exists a set containing exactly
those n elements. Use only the Pairing and Union axioms.

Exercise 3.3.7. Prove by induction on n that n = {0,1,...,n — 1}
for all natural numbers n.

Exercise 3.3.8. Write a formula ¢(z,y, z) of set theory which says
the following: “z is an ordered pair whose first element is  and the
second element is y”.

Exercise 3.3.9. Evaluate P(3) in the set builder notation.
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Exercise 3.3.10. Show that for any sets A and B,

(a) if A C B, then P(A) C P(B);

(b) P(ANB)="P(A)NP(B).

Exercise 3.3.11.

(a) Show that for any sets A and B,
P(A)UP(B) CP(AUB).

(b) Give an example to show that equality does not always hold
in (a).

Exercise 3.3.12. Show that for any sets A and B,
(a) if AC B, then |JA C | B;

(b) UAUB)=JAuUlB.

Exercise 3.3.13.

(a) Show that for any sets A and B,
UAnNB)CUANUB.

(b) Give an example to show that equality does not always hold
in (a).

Exercise 3.3.14. Show that | JP(A) = A for any set A.

Exercise 3.3.15. Show that A C P(|JA) for any set A. Find an
example to show that equality does not always hold.

3.4 Axiom of Infinity

To move beyond the hereditarily finite sets, we need to assert the exis-
tence of an infinite set. The set we have in mind is N = {0,1,2,... },
typically denoted in set theory as w. Recall that in set theory, we
have defined the natural numbers by 0 = () and n +1 =nU {n} for
each n.

Definition 3.4.1. The Axziom of Infinity is the statement
(Fx)[0 ez A (Vy € 2)[yU{y} € x]].

A brief discussion reveals that the set x in question must be in
some naive sense infinite: Its elements are 0, {0}, {0,{0}} and so on.
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The intended infinite set is simply the set w = {0, 1,2, ...} of natural
numbers, also denoted by N. This will be discussed in the following
chapter. One must keep in mind that the distinction between finite
and infinite sets must be defined formally. This is done in Section 4.2
and indeed, every set z satisfying the condition 0 € z A [(Vy € z)y U
{y} € z] must be in this formal sense infinite. A natural question
occurs: Why is the axiom of infinity stated in precisely this way? Of
course, there are many formulations which turn out to be equivalent.
The existing formulation makes the development of natural numbers
in Chapter 4 particularly smooth.

Historical debate: As there are no collections in sensory experience
that are infinite, there was a considerable discussion, mostly predat-
ing the axiomatic development of set theory, regarding the use of
infinite sets in mathematics.

Aristotle discerned between two kinds of infinity: the potential
infinity and the actual infinity. A potentially infinite sequence is a
sequence with a rule of extending it for an arbitrary number of steps
(such as counting the natural numbers 0,1,2...). An actual infinity
then grasps the whole result of repeating all these steps and views
it as a completed object (the set of natural numbers). Zeno’s para-
doxes (5th century BC) have long been regarded as a proof that
the actual infinity is an inherently contradictory concept. Bernard
Bolzano, a Catholic philosopher, produced an argument that there
are infinitely many distinct truths which must be all present in omni-
scient God’s mind, and therefore, God’s mind must be infinite (1851).
This was intended as a defense of the use of infinite sets in math-
ematics. Poincaré and Hermann Weyl can be listed as important
opponents of the use of infinite sets among 19th and 20th century
mathematicians. Finitism, the rejection of the Axiom of Infinity, still
has a small minority following among modern mathematicians. On a
practical level, while a great deal of mathematics can be developed
without the Axiom of Infinity, the formulations and proofs without
the axiom become cumbersome and long.

The Axiom of Infinity states only that there is a set which
contains every natural number and thus includes the desired set
w = {0,1,2,...} of natural numbers. In the following chapter, we
will show how to obtain w using the Axiom of Infinity together with
the Axiom of Comprehension.
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3.5 Axiom Schema of Comprehension

This axiom is also known as separation or collection. It is in fact an
infinite collection of axioms, with one instance for each formula ¢ of
set theory.

Definition 3.5.1. Let ¢ be a formula of set theory with n + 1
free variables for some natural number n. The instance of the
Axiom Schema of Comprehension associated with ¢ is the follow-
ing statement:

(V) (Vug)(Vur) ... (VYup—1)3y)(V2)[z € y

—lzex N oz uo, .. up—1)]]-

We use this axiom schema tacitly whenever we define sets using the
set builder notation:

y={z€x: ¢(x,up,ut,...un)},

where x is called the ambient set. Comprehension makes it possible
to form a great number of new sets. Given sets x, ¥y, we can form the
intersection z Ny = {z € z: z € y}, the set difference z \ y = {2z €
x: z ¢ y} as well as the symmetric difference Ay = (z\ y) U (y \ ).
Given a nonempty set x of sets, we can form the intersection of all
setsinz: e ={zeJz: (Vyex)z ey}

We will use a similar process to form what we call classes.

Definition 3.5.2. A class is a collection C of sets such that there
is a formula ¢ of n + 1 variables, and sets wug,...u,—_1, such that
z € C < ¢(z,up,u1,...,un—1). A proper class is a class that is not
a set.

The set builder notation: C' = {z: ¢(z, up,u1, ... up—1)} is often used
to denote classes. A class may not be a set since the axiom schema
of comprehension cannot be a priori applied due to the lack of the
ambient set . On some intuitive level, classes may fail to be sets on
the account of being “too large”.
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Proposition 3.5.3. For any nonempty class C, (C is a set.

Proof. Let C = {z: ¢(z,up,u1,...up—1)}. Since C' is nonempty,
we may choose some set A € C. Now, any element of [ C must also
be an element of A. Thus,

ﬂC:{xeA:(Vz)gb(z,uo,ul,...un_l)—>m€y}. O

This will enable us to prove the existence of the set w of natural
numbers in the following chapter.

Here is a standard example from algebra. We recall the following
basic definitions.

Definition 3.5.4. A set G with binary operation x*, inverse operation
~1 and identity e is a group if it satisfies the following:

e The operation * is associative, that is, a * (b* ¢) = (a % b) * ¢ for
all a,b,c € G.

eaxe=a=cexaforalacGG.

eaxal=e=alxaforalacd.

Definition 3.5.5. A nonempty subset H of a group G is a subgroup
if for all a,b € H, axb € H and a~! € H (it follows that e € H).

Definition 3.5.6. For any subset A of a group G,
(A) = ﬂ{H :AC H and H is a subgroup of G}.

For example, consider the group Z of integers with the
addition operation and identity element 0. Then ({5}) =
{0,5,—=5,10,—10,... } is the set of multiples of 5.

Since, for any subset A of a group G, G includes A and is a
subgroup of itself, it follows from Proposition 3.5.3 that (A) is a set.
In fact, it is not hard to see that (A) is a subgroup of G. The proof
will be instructive.

Proposition 3.5.7. For any subset A of a group G, (A) is a sub-
group of G.

Proof. Let C be the set of subgroups of G which include A, so that
(A) = N C. Since the identity e belongs to every H € C, it follows
that e € (A), so that (A) is not empty.

Suppose that a,b € (A) and let H € C. Then a,b € H, so that
axb e H and a! € H. Since this is true for all H € C, it follows
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that a * b € (A) and a=! € (A). Thus, (A) is indeed a subgroup
of G. O

Here is an example to show that not every class is a set.
Example 3.5.8. The class {z: z ¢ z} is not a set.

Proof. This is Russell’s paradox. Suppose that there is a set x
such that for every set z, z € x just in case z ¢ z. Ask whether
x € x or not. If z € z, then by the definition of x, z ¢ x, which is a
contradiction. If x ¢ x, then by the definition of x, € = holds and
we have a contradiction again. Both options lead to contradiction,
proving that z does not exist. O

The universal class {z: z = z} is often called V, the set theo-
retical universe. It is certainly not a set: If V' were a set, then all
classes would turn into sets by inserting the ambient set V' into their
definitions. However, we just produced a class which is not a set.

Historical debate: The formulation of the axiom schema of compre-
hension is motivated by the desire to avoid Russell’s paradox. The
use of the ambient set x makes it impossible to form sets such as
{z: z ¢ 2z} since we are missing the ambient set: y ={z € ?: 2 ¢ z}.
This trick circumvents all the known paradoxes, it comes naturally
to all working mathematicians, and it does not present any extra
difficulties in the development of mathematics in set theory.

There were other attempts to circumvent the paradoxes by limit-
ing the syntactical nature of the formula ¢ used in the comprehension
schema as opposed to requiring the existence of the ambient set x.
One representative of these efforts is Quine’s New Foundations (NF)
axiom system [8]. Roughly stated, in NF, the formula ¢ has to be
checked for circular use of € relation between its variables before it
can be used to form a set. This allows the existence of the universal
set {z: z = z}, but it also makes the development of natural numbers
and general practical use extremely cumbersome. This seems like a
very poor trade. As a result, NF is not used in mathematics today.

There was an objection to the possible use of impredicative defini-
tions allowed by the present form of comprehension. Roughly stated,
the objecting parties (including Russell and Poincaré) claimed that a
set must not be defined by a formula which takes into account sets to
which the defined set belongs (a formula ¢ defining a subset of some
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set x should not use the powerset of x as one of its parameters, for
example). Such a definition would form, in their view, a vicious cir-
cle. It is challenging to make this objection precise. Mathematicians
use impredicative definitions quite often and without care, for exam-
ple, the usual proof of completeness of the real numbers contains a
vicious circle in this view. Attempts to build mathematics without
impredicative definitions turned out to be awkward. The school of
thought objecting to impredicative definitions in mathematics mostly
fizzled out before 1950.

The Axiom of Comprehension may be used to show the existence
of various sets connected with relations and functions. Here is an
example.

Definition 3.5.9. The Cartesian product x x y is the set of all
ordered pairs (u,v) such that u € x and v € y.

Proposition 3.5.10. For any sets A and B, A x B is a set.

Proof. First, we observe that the relation = = {a} is definable by
the formula (Vz)[z € = <+ z = a] and the relation y = {a,b} is
definable by the formula (Vz)[z € y <> [z = a V z = b]]. Then
we can show (in the exercises) that the relation x = (a,b) is also
definable.

Now, let a € A and b € B. Then both a and b are in A U B.
Therefore, both {a} and {a,b} are in P(A U B). Hence, (a,b) €
PP(AU B). It follows that

AxB={re€PP(AUB):(3a€c A)(Ibe B) x = (a,b)}.

Thus, A x B is a set by the Axiom of Comprehension. O

More generally, for a finite sequence Ay, ..., A, of sets, the prod-
uct A; X --- x A, is also a set.

Exercises for Section 3.5

Exercise 3.5.1. Show that the intersection of a class and a set is a
set.

Exercise 3.5.2. Show that Dmn(R) and Rng(R) are sets for any
relation R.
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Exercise 3.5.3. Show that for any relation R C A x B, the inverse
relation R~! is also a set.

Exercise 3.5.4. Show that for any sets A and B, the set B4 of
functions mapping A to B is a set.

Exercise 3.5.5. Define a bijection from P(A) to {0,1}4.

Exercise 3.5.6. Show that for three sets A, B, C, the product A x
B x C'is also a set.

3.6 Axiom of Choice

Definition 3.6.1. The Aziom of Choice (AC) is the following
statement:

For every set x consisting of nonempty sets, there is a function f
with Dmn(f) =z and (Vy € z) f(y) € y.

The function f is referred to as a selector.

Historical debate: The Axiom of Choice is the only axiom of set
theory which asserts an existence of a set (the selector) without pro-
viding a formulaic description of that set. The Axiom of Infinity is
presently stated in such a way as well, but (unlike AC) it can be
reformulated to provide a definition of a certain infinite set. Natu-
rally, AC provoked the most heated discussion of all the axioms.

Zermelo used AC in 1908 to show that the set of real numbers can
be well ordered (see Section 5.2). This seemed counterintuitive, as the
well-ordering of the reals is an extremely strong construction tool,
and at the same time, it is entirely unclear how one could construct
such a well-ordering. A number of people (including Lebesgue, Borel,
and Russell) voiced various objections to AC as the main tool in
Zermelo’s theorem. A typical objection (Lebesgue) claimed that a
proof of an existence of an object with a certain property, without a
construction or definition of such an object, is not permissible. In the
end, certain consequences of the axiom proved indispensable to the
development of certain theories, such as Lebesgue’s own theory of
measure. The repeated implicit use of certain consequences of AC in
the work of its very opponents also strengthened the case for adoption
of the axiom.
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One reason for the acceptance of the axiom was the lack of a
constructive alternative. A plausible and useful alternative appeared
in the 1960s in the form of Axiom of Determinacy (AD), assert-
ing the existence of winning strategies in certain infinite two-player
games [7]. At that point, the Axiom of Choice was already part of
the orthodoxy, and so, AD remained on the sidelines.

Desirable consequences: The axiom of choice is helpful in the
development of many mathematical theories. Typically, it allows
proving general theorems about very large objects:

e (Algebra) Every vector space has a basis.

e (Dynamical systems) A continuous action of a compact semigroup
has a fixed point.

e (Topology) The product of any family of compact spaces is
compact.

e (Functional analysis) The Hahn-Banach theorem.

These applications of the Axiom of Choice are usually proved from
certain equivalent formulations such as the Well-Ordering Principle
and Zorn’s Lemma. We will return to this topic later once we have
discussed ordinals and transfinite recursion.

Undesirable consequences: Some weak consequences of AC are
necessary for the development of theory of integration. However, its
full form makes a completely harmonious integration theory impossi-
ble to achieve. It produces many “paradoxical” (a better word would
be “counterintuitive”) examples which force integration to apply to
fairly regular functions and sets only.

e There is a nonintegrable function f : [0,1] — [0, 1].

e (Banach-Tarski Paradox) There is a partition of the unit ball in
R? into several parts which can be reassembled by rigid motions
to form two solid balls of unit radius.

The upshot: The axiom of choice is part of the mathematical ortho-
doxy today, and its suitability is not questioned or doubted by any
significant number of mathematicians. A good mathematician notes
its use though and (mostly) does not use it when an alternative
proof without AC is available. The proof without AC will invariably
yield more information than the AC proof. Almost every mathemat-
ical theorem asserting the existence of an object without (at least
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implicitly) providing its definition is a result of an application of the
axiom of choice.

Definition 3.6.2. If x is a collection of nonempty sets, then ]z,
the product of x, is the collection of all selectors on .

It is not difficult to see that [ ]« is a set. This is left as an exercise.

The Axiom of Choice asserts that the product of a collection of
nonempty sets is nonempty. Recall that we have defined the product
[LicrAi ={f: I = U; Ai: (Vi € I)f(i) € A;} of an indexed family
of sets. An alternative version of the Axiom of Choice is to say that if
{A; : 1 € I} is an indexed family of nonempty sets, then the product
[I;c; Ai is nonempty.

Proposition 3.6.3. The following are equivalent:

1. The Aziom of Choice.

2. For any indexed family {A;: i € I} of nonempty sets, [[,c; Ai # 0.

3. Zermelo’s Principle: For any set A of nonempty, pairwise disjoint
sets, there is a set B such that, for all a € A, B N a contains
exactly one element.

4. The Relational Axiom of Choice: For any relation R, there is a
function F C R with Dmn(F') = Dmn(R).

Proof. Here is a proof that principles (1) and (2) are equivalent.
The others equivalences are left as exercises.

Assume the Axiom of Choice and let {A; : ¢ € I} be an indexed
family of nonempty sets. This means that there is a function f with
domain I with f(i) = A;. Now, let A = {4; : ¢ € I} and let g be
a choice function for A. Then g(A4;) € A; for each i. Putting these
together, we see that g(f(i) € A; for each i € I.

Next, assume the indexed version of choice and let A be any set
of nonempty sets. Let A = I and let A; = i define the indexed family
{4; :i € I'}. By the indexed version of choice, there is some function
h € [l;c; Ai- This means that h(i) € A; for each 7 € I, and so, in
this case h(a) € a. Thus, A has a choice function. O

Exercises for Section 3.6

Exercise 3.6.1. Show that for any set x, [[x is a set.
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Exercise 3.6.2. Prove that Zermelo’s Principle is equivalent to the
Axiom of Choice.

Exercise 3.6.3. Prove that the Relational Axiom of Choice is equiv-
alent to the Axiom of Choice.

3.7 Axiom Schema of Replacement

As was the case with the Axiom Schema of Comprehension, Replace-
ment is not a single axiom but a schema including infinitely many
axioms, one for each formula of set theory defining a class func-
tion. A formula ¢(z,y), possibly with parameters, defines a (par-
tial) class function F' if for every x, there is at most one y such
that ¢(z,y), then F(x) = y if and only if ¢(x,y). To see the use of
parameters, we can fix a set A and let F(x) = 2 U A. Here, we have
d(z,y) <= (V2)zey < (z€2 V z€ A).

Definition 3.7.1. The Axiom Schema of Replacement states the
following. If F'is a class function and A is a set, then F[A] is a set
as well (this is often referred to as the “Axiom of Replacement”).

In standard mathematics, we frequently use a form of the set
builder notation to write {F(x) : € A} to define the image F[A].
For example, the set of squares of natural numbers may be written
as {r? : z € N} rather than {x € N : =z is a square}. This general
usage is justified by the Axiom of Replacement. Replacement was a
late contribution to the axiomatics of ZFC (1922). It is the only part
of the axiomatics invented by Fraenkel. It is used almost exclusively
for the internal needs of set theory; we will see that the development
of ordinal numbers and well-orderings would be awkward without
it. The only “mathematical” theorem for which it is known to be
indispensable is the Borel determinacy theorem of Martin, ascertain-
ing the existence of winning strategies in certain types of two-player
infinite games [6].

The Axiom of Comprehension follows from the Axiom of Replace-
ment, but is kept in our system for convenience.

Theorem 3.7.2. The Axiom of Replacement implies the Axiom of
Comprehension.
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Proof. Assume the Axiom of Replacement. Let A be a set and let
¢ be a formula with parameters, and let B = {x € A : ¢(z)}. Note
that B is a class and we need to prove that it is in fact a set. If
B is empty, then it is a set by the Empty Set Axiom. So, we may
assume that B # (), and let b € B. Now, define the function F so
that F(z) = z, if ¢(z), and F(x) = b, if =¢(x). Then F is a class
function, since we have

y=F@) < (¢(z) Ny==) VvV (=d(x) A y=0).

It is easy to see that F[A] = B, so that B is a set by the Axiom of
Replacement. Since A and ¢ were arbitrary, we see that the Axiom
of Comprehension follows. O

To obtain an infinite ordinal, we needed to introduce the Axiom of
Infinity. However, the Axiom of Replacement will imply the existence
of hierarchy of uncountable ordinals.

Exercises for Section 3.7

Exercise 3.7.1. Show that the Axiom Schema of Replacement is
equivalent to the statement “Each class function with set domain is
a set”.

Exercise 3.7.2. The statement “the range of a set function is a set”
can be proved without replacement. Use Comprehension to prove
that, for any set function F' and any set A, the image F[A] of A
under F'is also a set.

Exercise 3.7.3. Show that there is no class injection from a proper
class into a set.

3.8 Axiom of Regularity

The Axiom of Regularity is also known as Foundation or Well-
foundedness.

Definition 3.8.1. The Axiom of Regularity states that

Vx)[r=0V (Fyez)(Vzex) z¢y.
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Restated, every nonempty set contains an €-minimal element.
This is the only axiom of set theory that explicitly limits the scope
of the set-theoretic universe, ruling out the existence of sets such as
the following.

Theorem 3.8.2. Assuming the Aziom of Choice, the Aziom of Reg-
ularity is equivalent to the statement that there is no function f with
domain w such that f(n+ 1) € f(n) for all n.

Proof. Suppose first that there is a function f such that f(n+1) €
f(n) for all n. Then the range f[w] has no minimal element, which
contradicts Regularity.

For the other direction, suppose that there is a nonempty set
S which has no minimal element. Let f(0) be some element of S.
Since S has no minimal element, it follows that, for any a € S,
Se = {x € S :x € a} is nonempty. Let ® be a choice function so
that ®(a) € S, for each a € S; that is, ®(a) € a. Now, recursively
define f so that f(n+1) = ®(f(n)) for each n. Then f is the desired
function such that f(n+ 1) € f(n) for all n. O

We will discuss in detail the idea of recursive definitions in the fol-
lowing chapter.

The motivation behind the adoption of this axiom lies in the fact
that the development of common mathematical notions within set
theory uses sets that always, and of necessity, satisfy regularity. The
formal development of set theory is smoother with the axiom as
well. The present form of the axiom is due to von Neumann [11].
Mathematical interest in the phenomena arising when the Axiom of
Regularity is denied has been marginal [1].

Exercise for Section 3.8

Exercise 3.8.1. Show that for any sets  and y with « € y, x is an
€-minimal element of y if and only if z Ny = 0.

Exercise 3.8.2. Use the Axiom of Regularity to show that there is
no set x with « € x, and there are no sets z,y such that x € y € x.
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Chapter 4

Natural Numbers and Countable Sets

4.1 Von Neumann’s Natural Numbers

The purpose of this section is to develop the natural numbers in ZFC.

Definition 4.1.1. For a set z, write s(x) = x U {z}. A set y is
inductive if 0 € y and for all z, z € y implies s(z) € y.

The Axiom of Infinity says precisely that there is an inductive
set.

Definition 4.1.2 (von Neumann). The C-smallest inductive set
is denoted by N, or w. A set = is a natural number if * € w. For
natural numbers z, s(z) is the successor of x.

The set w is intended to be the set {0,1,2,...} of natural num-
bers, where we let 1 = s(0), 2 = s(s(0)), and so on. With every
definition of this sort, one has to make sure that it actually makes
sense. This is the contents of the following theorem.

Theorem 4.1.3. There is an C-smallest inductive set.

Proof. Let w be the intersection of all inductive sets. Clearly, if
there is an C-smallest inductive set, then w must be it, so it is enough
to verify that w is inductive.

First, we verify that w is in fact a set. Let C be the class of all
inductive sets. The class C is non-empty by the Axiom of Infinity.
Thus, (C = w is a set by Proposition 3.5.3.

55
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Second, we check that w is itself an inductive set. For that, we
have to verify that 0 € w and for every = € w, s(z) € w holds. As
0 belongs to every inductive set, 0 € w by the definition of w. Now,
suppose that € w; we must show that s(z) € w. For every inductive
set y, € y holds by the definition of w. As y is inductive, s(x) € y
as well. We have just proved that s(z) belongs to every inductive set,
in other words, s(z) € w. This completes the proof. O

The main feature of w is that we can use induction to prove var-
ious statements about natural numbers. This is the content of the
following theorem.

Theorem 4.1.4 (Induction). Suppose that ¢ is a formula, ¢(0)
holds, and (Vz € w)[¢(x) — ¢(s(x))] also holds. Then (Vx € w) P(x)
holds.

Proof. Consider the set y = {z € w: ¢(x)}. We show that y is an
inductive set. Then, since w is the smallest inductive set, it follows
that y = w, in other words, (Vo € w) ¢(x) as desired.

Indeed, 0 € y as ¢(0) holds. If x € y, then s(x) € y as well by the
assumptions on the formula ¢. It follows that y is an inductive set
as desired. O

We use the standard terminology for induction: ¢(0) is the base
step, the implication ¢(z) — ¢(s(x)) is the induction step, and the
formula ¢(z) in the induction step is the induction hypothesis. The
next step is to verify that € on w is a strict linear ordering that
emulates the properties of natural numbers.

Theorem 4.1.5 (Linear Ordering of Natural Numbers).

1. Ifrewandy € x, then y € w.
2. The relation € is a strict linear ordering on w.

Proof. For (1), let ¢(x) be the statement (Vy € x)y € w. We prove
(Vz € w) ¢(x) by induction on x.

Base Step. The statement ¢(0) holds as its first universal quantifier
ranges over the empty set.

Induction Step. Suppose that ¢(x) holds. To prove ¢(s(z)), let y €
s(x). Either y € x, in which case y € w by the induction hypothesis.
Or y = x, in which case y € w since = € w. This proves (1).
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To prove (2), we have to verify the transitivity and linearity of
€ on w. We start with transitivity. Let ¢(x) be the statement (Vy €
z)(Vz € y) z € . We prove (Vo € w) ¢(z) by induction on z € w.

Base Step. The statement ¢(0) holds as its first universal quantifier
ranges over the empty set.

Induction Step. Suppose that ¢(x) holds; we work to verify ¢(s(x)).
Let y € s(x) and z € y. By the definition of s(z), there are two cases
to consider. Fither y € x so that by the induction hypothesis z € x,
and as z C s(z), z € s(z) holds. Or y = = so that z € z and as
x C s(z), z € s(z) holds again. This confirms the induction step and
proves transitivity.

Next, we proceed to linearity. The following two preliminary
claims will be useful:

Claim 4.1.6. For everyy € w, 0 =y or0 € y.

Proof. Let ¢(y) be the statement 0 = y V 0 € y; we prove
(Vy € w)1¥(y) by induction on y € w.

Base Step. 1(0) holds as y = 0 is one of the disjuncts.

Induction Step. Suppose that 1 (y) holds; we verify 1(s(y)). The
induction hypothesis offers two cases. Fither y = 0, in which case
y = 0 € s(y) by the definition of s(y). Or 0 € y so that 0 € s(y),
since y C s(y). In both cases, the induction step has been confirmed.

O

Claim 4.1.7. For every y € w, for every x € y, s(x) € s(y) holds.

Proof. Let ¢(y) be the statement (Vz € y) s(x) € s(y); by induc-
tion on y € w, we prove (Yy € w)¥(y).

Base Step. 1(0) is trivially true as its universal quantifier ranges over
the empty set.

Induction Step. Assume that 1 (y) holds; we work to verify ¢ (s(y)).
Let x € s(y) be any element. By the definition of s(y), there are two
cases to consider. Fither x € y so that by the induction hypothesis
s(x) € s(y), and as s(y) C s(s(y)), s(x) € s(s(y)) holds. Or x =y,
in which case s(z) = s(y) € s(s(y)) by the definition of s(s(y)). In
both cases, the induction step has been confirmed. O
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Now, let ¢(z) be the statement (Vy € w)[zx =y V z €y V y € z].
By induction on z € w, we prove (Vo € w) ¢(x).

Base Step. The statement ¢(0) follows from Claim 4.1.6.

Induction Step. Suppose that ¢(x) holds; we work to verify ¢(s(x)).
Let y € w be arbitrary. The induction hypothesis yields a split into
three cases. Fither y € x, and thus, as z C s(z), y € s(z). Or,y ==z
and then y € s(x) by the definition of s(x). Or, z € y, and then by
Claim 4.1.7, s(x) € s(y) holds, which by the definition of s(y) says
that either s(x) € y or s(z) = y. In all cases, the induction step has
been confirmed.

The linearity of the € ordering on natural numbers has been verified.
0

For natural numbers m and n, let m < n if and only if m € n.
Thus, as a set, every natural number is exactly the set of all natural
numbers smaller than it. Now, a rather routine induction argument
(see the exercises) shows that for every = € w, s(z) is the smallest
natural number larger than x, and for every non-zero natural number
x, there is a largest number y smaller than = such that x = s(y).
We sometimes write n + 1 for s(n), since when addition of natural
numbers is defined in Section 4.3, it is seen that s(n) =n + 1.

It is important to note that our smallest inductive set w is in fact
just the set {0,1,2,...} of natural numbers.

There is a stronger form of induction, known as course-of-values
induction, where the induction step assumes that ¢(y) holds for all
y < .

Example 4.1.8. The theorem that every natural number n > 1 has
a prime factor is proved by course-of-values induction. Suppose that
for all y with 1 < y < z, y has a prime factor and suppose, by way of
contradiction, that = has no prime factor. Then z itself is not prime,
so we must have x = y - z with 1 < y,z < x. But the induction
hypothesis tells us that y (as well as z) has a prime factor p and then
p is also a prime factor of x.

Exercises for Section 4.1

Exercise 4.1.1. Write down the natural number 4 as a set using
the set builder notation and the symbol 0. Count the number of
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symbols. (For example, 3 can be written as {0, {0}, {0,{0}}} having
15 symbols, counting the commas, set brackets, and 0’s). Can you
find a general formula for the number of symbols need to write the
number n?

Exercise 4.1.2. By induction on =z € w, show that if x # 0 is a
natural number then it has a predecessor, i.e., a number y which is
largest among all numbers smaller than x, and such that z = s(y).

Exercise 4.1.3. Show that course-of-values induction is valid. That
is, suppose ¢ is a formula such that ¢(z) is true whenever ¢(y) is
true for all y < z. Then show that {z : ¢(z)} is an inductive set.

Exercise 4.1.4. Without using the Axiom of Regularity, show that
every nonempty subset of w has an €-smallest element.

Exercise 4.1.5. Show that, for two natural numbers m and n, m C
n if and only if m < n.

Exercise 4.1.6. Show that |Js(n) = n for each n € w.

4.2 Finite and Infinite Sets

The purpose of this section is to develop the notion of finiteness for
sets. One reasonable way to proceed is to define a set to be finite if it is
in a bijection with some natural number. We use a different definition
which has the virtues of being more intellectually stimulating, very
efficient in proofs, and independent of the development of w:

Definition 4.2.1 (Tarski). A set x is finite if every non-empty set
a C P(x) has a C-minimal element, i.e., a set y € a such that no
z € a is a proper subset of y. A set is infinite if it is not finite.

Note that the existence of a minimal set here is equivalent to the
existence of a maximal set, since a C-maximal set is a minimal set
in the family of complements of the sets in x.

With a somewhat slick definition of this sort, it is necessary to
verify that it corresponds to the intuitive notion of finiteness. We
first provide a basic example of a finite and infinite set:

Example 4.2.2. 0 is a finite set and w is an infinite set.
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Proof. P(0) = {0} so that, if a C P(0) is a non-empty set, then
a = {0}, so 0 is a C-minimal of a.

To see that w is infinite, for every n € w, let y,, = {m € w: n € m}
and let @ = {y,: n € w}. This is a subset of P(w); let us show that
it has no C-minimal element. Suppose y,, is such a minimal element.
Then y,11 € a is a proper subset of y,, contradicting the minimality
of yy. O

Theorem 4.2.3. The class of finite sets is closed under the following
operations:

taking a subset;

adding a single element to a set;
taking unions;

forming the image under a surjection;
taking the powerset.

U W=

Proof. For (1), suppose that z is finite and y C x; we must argue
that y is finite. Let a C P(y) be a non-empty set; we must show that
a has a C-minimal element. Since y C z, it is the case that a C P(x).
As x is finite, @ must have a C-minimal element as desired.

For (2), suppose that z is finite and 7 is any set; we must verify
that the set y = x U {i} is finite. Let a C P(y) be a non-empty set;
we must produce a C-minimal element of a. Let b ={unNz: u € a}.
This is a non-empty subset of P(z); as z is assumed to be finite,
the set b has a C-minimal element v. There are now two cases to
consider. Either v € a, in which case v is a C-minimal element of a.
Or, v ¢ a, in which case u = v U {i} is a C-minimal element of a.
This completes the proof of (2).

For (3), assume for contradiction that x,y are finite and z Uy is
not. Let a = {z C = : zUy is not finite}. This is a non-empty subset
of x containing at least x as an element. Since x is finite, the set a
has a C-minimal element, say u. The set © must be non-empty since
y U0 =y is a finite set. Let ¢ € u be an arbitrary element, and let
v = u\ {i}. By the minimality of u, yUw is finite. By (2), yJvU{i} is
finite as well. As yUv U {i} =y Uu, this contradicts the assumption
that v € a.

For (4), assume for contradiction that z is a finite set, f: 2 — y
is a surjection, and y is not finite. Let a = {z C x: f[z] is not
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finite}. This is a subset of P(z) which by our contradictory assump-
tion contains x as an element and therefore a is non-empty. Note
that u # 0, since f(0) = 0 is finite by Example 4.2.2. As z is finite, a
contains a C-minimal element u. Let ¢ € u be an arbitrary element,
and let v = u \ {i}. Then v ¢ a by the minimal choice of u, and so
f[v] is finite. However, flu] = f[v] U {f(7)}, which is finite by (2),
contradicting the assumption that u € a.

For (5), assume for contradiction that x is finite and P(x) is not
finite. Let a = {y C z : P(y) is not finite}. This is a non-empty set,
containing at least x as an element. Let u be a C-minimal element
of a. Note that u # 0, since P0) = {0} is finite by part (2). Pick
an element ¢ € u and consider the set v = w \ {i}. Then, P(u) =
Pw)U{zU{i} : z € P(v)}. The first set in the union is finite by
the minimality of u, and the second is a surjective image of the first,
therefore finite as well. By the previous items, P(u) is finite, and this
is a contradiction to the assumption that u € a. O

Here are two corollaries.
Corollary 4.2.4. FEvery natural number is finite.

Proof. This is proven by induction on n.
Base Step. 0 is finite by Example 4.2.2.

Induction Step. Suppose by induction that n is finite. Then n 41 =
n U {n} is finite by part (2) of Theorem 4.2.3. O

Corollary 4.2.5. An injective image of an infinite set is infinite.

Proof. Let z be an infinite set and let f be an injection with
Dmn(f) = x. We have to argue that y = Rng(f) is infinite. Note
first that g = f~! is a surjective function from y to x. So, if y were
finite, then g[y] = x would be finite as well by Theorem 4.2.3(4),
contradicting the assumption that x is infinite. O

Here is a very useful result.
Theorem 4.2.6. A finite union of finite sets is finite.

Proof. Suppose that a set A is finite and each of its elements a is
also finite. Suppose by way of contradiction that | J A is not finite and
consider C' = {x C A : [Jx is not finite}. By assumption, A € C so
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that C' is non-empty. Since A is finite, C' must contain a C-minimal
element B. B # () since |J0 = () is finite. So, let a € B. Since
B is minimal in C, B\ {a} ¢ C, so (B \ {a}) is finite. Then
UB = aUJ(B\ {a}) is finite by part (3) of Theorem 4.2.3. This
contradicts our assumption that B € C. O

The following principle is used throughout mathematics. It is a
contrapositive of Theorem 4.2.6.

Corollary 4.2.7 (Pigeonhole Principle). If an infinite set A is
partitioned into finitely many subsets, then at least one of those sub-
sets is infinite.

The final theorems of this section characterize finiteness in terms
of natural numbers. This allows one to prove theorems about finite
sets by induction on their size. Note that the treatment of finiteness
up to this point has not used natural numbers at all.

Theorem 4.2.8. A set A is finite if and only if there is a bijection
between A and some natural number.

Proof. First, suppose that there is a bijection between A and a
natural number n. If A were infinite, then n would be infinite by
Corollary 4.2.5. But this contradicts Corollary 4.2.4. Hence, A must
be finite.

Next, suppose that A is finite and suppose by way of contradiction
that A is not bijective with any natural number. Let

B = {z C A: z is not bijective with any n € N}.

Then A € B so that B is not empty and hence has a C-minimal
element C. Then C' # (), since ) = 0. Thus, C has a member a.
By assumption, C' \ {a} is bijective with some natural number n.
Let f : n — C\ {a} be a bijection. Now, define g : n+1 — C
by ¢g(i) = f(i) if i < n and g(n) = a. This is clearly a bijection,
contradicting our assumption. O

Theorem 4.2.9. Let A be a set. The following are equivalent for
any set A:
1. A is infinite.

2. A contains an injective image of w.
3. There is a bijection between A and a proper subset B of A.
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The proof uses the Axiom of Choice and, in fact, cannot be proved
without the Axiom of Choice. The proof also uses the ability to define
functions by recursion, which is justified in the following section.

Proof. (1) = (2): Let A be an infinite set; we must produce an
injection from w to A. Use the Axiom of Choice to produce a selector
function H: P(A) \ {0} — A. Now, consider the recursive definition
of a function F': w — A given by F'(n) = H(A\ F[n]). Note that for
every natural number n € w, the set F[n] C A is finite by Theorem
4.2.3. Since A is infinite, the set A\ F[n] is non-empty, so the value
F(n) = H(z \ F|n]) is defined and different from all values of F(m)
for m € n. It is then clear that F' is the desired injection from w to A.

(2) = (3): Let F' : w — A be an injection, let C' = F[w], and let
B = A\{F(0)}. Then we can define a bijection G from B to A by
letting G(F(n+1)) = F(n) for x € C'\ {F(0)} and letting G(x) = =
forx ¢ C.

(3) = (1): Let H be a bijection from A to a proper subset B
of A and let b € A\ B. Since H is one-to-one, it follows that the
elements by = b,by = H(b),bo = H(H(b)),... are distinct; note
that b # H(z) for any x since b ¢ A. Now, this gives us a family
{bo} C {bo,b1} C --- which has no maximal element. Hence, A is
infinite. O

Exercises for Section 4.2

In the following exercises, use Tarski’s definition of finiteness:

Exercise 4.2.1. Let x be a finite non-empty set and < a linear
ordering on z. Prove that = has a largest element in the sense of the
ordering <.

Exercise 4.2.2. Prove that the product of two finite sets is finite.

Exercise 4.2.3. Prove without the Axiom of Choice that if = is a
finite set consisting of non-empty sets, then x has a selector.

Exercise 4.2.4. Without the use of Axiom of Infinity show that
the existence of an infinite set is equivalent to the existence of an
inductive set.
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Exercise 4.2.5. Show that if B is a finite set and B C |,y Ans
then there exists n € N such that B C -, 4;.

4.3 Inductive and Recursive Definability

Now, that we have the set w of natural numbers; we may define
subsets of w and functions on w by a general form of inductive
definability.

Definition 4.3.1. A monotone operator over a set A is a function
I': P(A) — P(A) such that, for any X,Y € P(A4), X C Y implies
INX) CI(Y):

1. A set X € P(A) is said to be a fized point of ' if I'(X) = X.

2. I is said to be finitary if for any set X C A and any a € A, if
a € T'(X), then there is a finite subset S of X such that a € T'(S).

3. A fixed point X of I' is the least fized point of I' if X C Y for all
fixed points Y of I'. The least fixed point of I is the set inductively
defined by I'.

We show in Theorem 4.3.3 that any monotone operator over a
set A has a least fixed point. For example, consider the monotone
operator on w defined by I'(X) = {0}U{s(z) : 2 € X}. If I'(X) = X,
then clearly X contains 0 and is closed under the successor function.
Thus, the fixed points of I' are exactly what were called “inductive”
sets in Section 4.1. The definition of w thus makes it the least fixed
point of I'. This operator is finitary since if n € I'(X), then either
n = 0, so that n € T'(0)), or n = s(x) for some = € X, so that
n € I'({z}). Here is a standard example from logic.

Example 4.3.2. Let A be the set of finite strings over the alphabet
{—,V,p,q,(,)} and let

NX)=XU{p,qtU{-¢:90€c X} U{(pVV):0,¥c X}

Then I' is a finitary monotone operator. The least fixed point of I"
is the set of all propositional sentences in the variables p, ¢ — in the
restricted language with connectives —, V.

We also consider class operators I' where there is a formula ¢
such that, for all sets X and Y, I'(X) = Y if and only if ¢(X,Y).
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The notions of finitary operators and fixed points are similarly
defined for class operators. The class operator | J is monotone and also
finitary. The operator P is monotone but in general is not finitary.

Theorem 4.3.3. For any monotone operator I' on a set A, there
exists a least fixed point M .

Proof. Let C = {X € P(4) : I'(X) C X}. C is non-empty since
A € C. Let M = (NC. Then immediately we have that M C X
for any X € C. By the definition of monotonicity, it follows that
(M) C I'(X) for any X € C. Thus, I'(M) € M, and then by
monotonicity, I'(T'(M)) C T'(M). This means that I'(M) € C, which
implies that M C I'(M). So, M is indeed a fixed point and is a subset
of every other fixed point. O

There is another approach to the fixed point. Here we examine
this only for finitary operators.

Definition 4.3.4. For any monotone operator I' on a set A, let 0 =
0, let It =T(I'), and let T¥ = J, ., ™.

It is easy to see by induction that I'" exists for each n. We see in
the following that the union I'“ is a set, as is the least fixed point
of the operator I'. Here is another way to prove this. The following
lemma is needed.

Proposition 4.3.5. For any monotone operator I' on a set A,
{(n,x) : x € T™} is a set and T is a set.

Proof. Define the monotone operator A on the set w x A by
m+1,2) e AY) <= zeI'{y: (n,y) €Y}).

Note first that (0,z2) ¢ A(Y) for any = and Y. To see that A is
monotone, suppose that Y C Z C w x A and that (n+1,z) € A(Y).
Then {y : (n,y) € Y} C{y : (n,y) € Z}. Since I' is monotone, it
follows that (n + 1,z) € A(Z).

Let B = {(n,z) : € I}, and let C be the least fixed point of
A. We claim that C' = B.

First, observe that A(B) = B. That is, (n + 1,z) € A(B) if and
only if z € '({y : (n,y) € B}), which holds if and only if z € T'(I'"),
which holds if and only if z € I+, It follows that C C B.
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Next, suppose that D is any set with A(D) C D. We show by
induction on n that I'™ C {x : (n,x) € D} so that B C D.

Base Step. For n = 0, this follows since I'0 = .

Induction Step. Suppose that I'" C {z : (n,z) € D} and let y €
[t = T(I'™). Then by monotonicity, y € I'({z : (n,z) € D}) so
that (n + 1,y) € A(D) and by assumption, (n + 1,y) € D. Thus,
ye{x:(n+1,x) € D}.

Finally, we have z € I'¥ <= (3n)(n,z) € C. Thus, I'¥ is a set
since C is a set by Theorem 4.3.3. O

Example 4.3.6. The set of even numbers may be defined by the
operator I'(X) = {0} U {s(s(x)) : x € X}. Here we have I'" = {2i :
i<n}.

In Example 4.3.2, T = {p,q,—p,~q, (p V q)}. Here is a standard
example from group theory.

Example 4.3.7. Given a group G with multiplication *, identity e,
and inverse ~! and a subset A of G, the subgroup (A) generated by
A may be defined as the least fixed point of the finitary monotone
operator I' 4, where

FA(X)=AU{e,z*xy,x t:z,ye X}

That is, z € I'4(X) if and only if at least one of the following is
true:

1. z € A;

2. z=c¢

3. 2 teX;

4. z = x =y for some z,y € X.

For the multiplicative group Z of integers, consider the set A = {2,5}.
Then we have

I't ={1,2,4,5,1,1,10,25},
2 _ 2 5 4 25 1
2 = {11, 2,14, 5,8,10,20,25,40,50, 100, 125,250,625, 2, 5, 2, 2, 1,
10075

and so on. The subgroup (A) generated by A thus consists of all
rationals of the form 2'57, where ¢ and j are integers.
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Theorem 4.3.8. For any finitary monotone operator on a set A, I'
is the least fized point of T'.

Proof. Let M be the least fixed point of I'. First, we show by a
simple induction that each I' C M so that I'¥ C M. Certainly,
I'Y = () € M. Now, suppose that I'* C M. Then by monotonicity,
M+t C (M) = M.

Next, we show that I'¥ is a fixed point of I'. Suppose that a €
['(I'Y). Since I is finitary, there is a finite set S C I'“ such that a €
I'(S). Since S is finite and I'Y = | J,, I'™, it follows from Exercise 4.2.5
that there is some finite m such that S C I'". Since I' is monotone,
a € T(T™) = I'"™*! and therefore a € T'“. O

Functions on a fixed set may also be defined inductively.

Example 4.3.9. The graph of the addition function on w is A =
{(z,y,2) € w3 : x+y = z}. Addition may be defined recursively by
having z + 0 = z for all x and z + (s(y)) = s(z + y) for all x and y.
Then A is the least fixed point of the operator I', where

NX) ={(z,0,2) :x e whU{(z,s(y),s(2)) : (z,y,2) € X}.

Given the recursive definition of addition, we can now derive var-
ious properties of addition.

Proposition 4.3.10. For alln € N, 0+n =n.

Proof. Since the graph of the addition function is the least fixed
point of the operator I' given above, it suffices to show that for any
set S, if T'(S) € S, then (0,n,n) € S for all n. Given such a set
S, let X = {n : (0,n,n) € S}. We know by the definition of T
that (0,0,0) € I'(S) and therefore (0,0,0) € S and 0 € X. Now,
suppose that n € X. Then (0,n,n) € S. Then (0, s(n),s(n)) € I'(5),
so (0,s(n),s(n)) € S and therefore s(n) € X. It follows from the
definition of w as the least inductive set that X = w. That is, 0+n =n
for all n € w. O

Just as induction proofs sometimes require a course-of-values
induction, a recursive definition of the function F' may need more
than one previous value from F(0),..., F(n) to compute F'(n + 1).

Example 4.3.11. The classic Fibonacci sequence is defined by
the function F, where F(0) = 0, F(1) = 1, and F(n +2) =
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F(n) + F(n + 1). Then the graph of the Fibonacci function is the
smallest set F' containing (0,0) and (1,1) such that whenever (n,x)
and (n+ 1,y) are both in F', then (n 4+ 1,2 +y) is in F.

Now, suppose we want to prove that F(n) > 1.5"72 for n > 2.
The base case is n = 2, where F(2) = 1 = 1.5°. For the induction
step, we assume that F'(n) > 1.5""2 and F(n + 1) > 1.5" 1. Then
Fin+2)=Fn)+Fn+1)>15"24+15" 1 =15"2(1 +1.5) >
1.5"721.52 = 1.5", as desired.

We need to consider a general way to use the values
G(0),...,G(n —1) to compute G(n).

Definition 4.3.12. For any set A and any function G (including a
class function), let G | A be the restriction of G to domain A. That
is, we identify G with its graph and let G | A = {(z,y) € G : x € A}.
In particular, if Dmn(G) = w, then G | n denotes the restriction of
Gton={0,1,...,n—1}.

Thus far, these notions of inductive and recursive definability of
functions have required that the domain and range of the function
be at least included in some given set.

Next, we consider the more complicated case when we have a class
function defined on w. Here we are thinking of iterating the Union
operator as well as the Power Set operator. The problem here is that
there is not necessarily any universal set A such that I'(4) C A so
that the least fixed point cannot be defined without further effort.

Theorem 4.3.13. Suppose that F is a class function such that
F(n,x) is defined for every n € w and every set x. Let the set Agy be
given. Then there is a unique class function G such that Dmn(G) =
w, G(0) = Ap, and for everyn € w, G(n+ 1) = F(n,G(n)). There-
fore, the image G[w] is a set.

Proof. The intuitive definition of G as a class function is that
G(n) = y if and only if there is a sequence G(0) = Ay, G(1) =
F(0,G(0)), ..., G(n) = F(n — 1,G(n — 1)). This is formalized as
follows:

We show by induction that for each n,

1. G(n) is a set;
2. G [ nis a set.
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Base Step. For n = 0, we have G(0) = A is a set and we have
GIln=0.

Induction Step. Suppose that G(0),...,G(n) are sets and that G [ n
is a set. Then G(n + 1) = F(n,G(n)) is a set since F is a class
function and G [n+1=G [ n U {(n,G(n))} is a set.

Now, we can define the function G as follows:

Gn)=y <= (n=0 A y=A)
vV [(39)[Dmn(g) =n+1 A g(0)=Ag A g(n) =1y
A (Vi <n)g(i+1) = F(i,g(i)))].

This definition succeeds since, for each n, the desired function ¢
is just G | n, which we have shown to be a set. Finally, the image
Glw] is a set by the Axiom of Replacement. O

Example 4.3.14. Let G(0) = 0 and let G(n +1) = n+ 1+ G(n).
Then G(n) =1+2+---+n =}, 4 It can be shown by induction

. n(n+1)
that this equals —=5—.

Here is a key example for set theory.

Example 4.3.15. The finite part of the hierarchy of sets may be
defined using the power set as follows. Define the function V by
V(0) = 0 = 0 and, for each n, V(n + 1) = P(V(n)). We usually
write V,, for V(n). Thus, we have V; = {0}, Vo = {0,{0}} = {0,1},
V3 ={0,1,{1},{0,1}}, and so on. For the resulting class function V/,
U Rng(V) =U,,V(n), which we denote as V,,. We see later that this
is the same class as the family H F' of hereditarily finite sets discussed
in Chapter 3. We are tempted to say that V,, is the smallest set which
is closed under the Power Set operator. The problem is that no axiom
guarantees the existence of any set which is closed under Powerset.
It is the class of all sets, not a set itself, which is the natural family
closed under powerset. Now, in order to define w as the least set
containing 0 and closed under successor, we had to have the Axiom
of Infinity to say that there some such set. So, do we need another
axiom which says that some set exists which is closed under powerset?
This seems inelegant. Fortunately, the answer is NO. The existence
of w, together with the other axioms of ZF, will produce a bountiful
family of transfinite sets. Here we can just use Theorem 4.3.13 to
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obtain the set V,,. That is, let Ay = () and let F(n,z) = P(z). Then
applying Theorem 4.3.13, we have G(0) = ) = Vj and, for each n,
Gn+1) = F(n,V,) = P(V,,) = Viy1. So, G is a class function
with G(n) = V,, and thus Glw] = {V,, : n € w} is a set and hence
U Glw] =V, is also a set, as desired. In Chapter 5, the hierarchy V,
of sets is extended to the transfinite.

We may now revisit the notion of a monotone class operator.
This result extends Proposition 4.3.5 and Theorem 4.3.8 from set
operators to class operators.

Theorem 4.3.16.

1. For any monotone class operator ', {(n,x) : © € I} is a set and
I'Y s a set.

2. If T is a finitary monotone class operator, then I'“ is the least
fized point of .

Proof. To prove (1), let G(0) = 0 and let G(n + 1) = I'(G(n)) for
each n. Then G is a class function with domain w by Theorem 4.3.13
and G(n) = I'™. Moreover, I'Y = | J Rng(G). For (2), the proof that
I' is the least fixed point is the same as in Theorem 4.3.8. O

It is frequently useful to have other variables as part of a recursive
definition. Some examples are given as follows:

Theorem 4.3.17. Suppose that F' and H are class functions such
that H(x) is defined for all sets x and such that F(n,x,y) is defined
for all n € w and for all sets x and y. Then there is a unique class
function G such that G(n,x) is defined for all n € w and all sets
x, such that, for every n € w and every set z, G(0,x) = H(x), and
G(n+1,z) = F(n,z,G(n,x)).

Proof. The proof is a small modification of the argument in Theo-
rem 4.3.13 which treats x as a parameter. We show that, for each n,
G(n,x) is a set and that the restriction G, | n = {(i,G(i,z)) : i,n}
is a set. Then we have the following definition of G:
)=y < (n=0 A y=H(z))
v (o) {Dmntg) = m+ 1 A 9(0) = H(@) A gm) =
(Vi <n)g(i+1) = F(i,z,g(2))].

Details are left to the exercises. O
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Example 4.3.18. Let G(0,2) =0 and let G(n+1,2) = 2+ G(n, x)
for all n,z € w. Then G(n,z) = n-x. Now, we can define the factorial
function by letting F'(0) =1 and F(n+1) = (n+1) - F(n).

Example 4.3.19. Let G(0,z) =1 and let G(n+ 1,z) =z - G(n, x).
Then G(n,z) = ™.

Another key example in set theory is the definition of the transi-
tive closure. We first need to define the notion of a transitive set.

Definition 4.3.20. A set z is transitive if for every y € x and every
z €y, z € x holds.

For example, w is transitive, and every natural number is transi-
tive by Theorem 4.1.5. An example of a non-transitive set is {{0}}.
We show in Chapter 5 that every set belongs to a transitive set.

Definition 4.3.21. Let S be a set. The transitive closure of a,
trcl(a), is the inclusion-smallest transitive set containing a as an
element. That is, trcl(a) is the least fixed point of the finitary mono-
tone operator I',, where I'((X) = {a} U|J X.

Note here that there is at this point no universal transitive set
U such that a € U, which would enable us to ensure that this least
fixed point exists. For this, we use the general result about finitary
monotone operators.

Lemma 4.3.22. T', is a finitary monotone operator for any set a.
Proof. This is left to the exercises. O
Theorem 4.3.23. For any set a, trcl(a) is a set.

Proof. This is immediate from Theorem 4.3.16 and Lemma 4.3.22.
O

Finally, we can show that trcl is a class function.

Theorem 4.3.24. There is a class function F such that F(a) =
trcl(a) for all sets a.

Proof. Define the class function G such that G(0,a) = a for all
sets @ and G(n + 1,a) = I'4(G(n,a)) = {a} U|JG(n,a). Then G
is a class function by Theorem 4.3.17, and it is easy to see that
G(n,a) = I'?! for all n. Then by Lemma 4.3.22, F(a) = trcl(a) =
I'Y = | {G(n,a) : n € w}. O
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Corollary 4.3.25 (Axiom of Regularity for classes). Let C be
a non-empty class. There is an element x € C' such that no element
of x belongs to C'.

Proof. Let y be any element of C'. Consider the non-empty set
C Ntrcl(y). The fact that this is indeed a set and not just a class
follows from Exercise 3.5.1. Use the Axiom of Regularity to find an
€-minimal element = of C' N trcl(y). All elements of x belong to
trcl(y), and so by the minimal choice of x, none of them can belong
to C'. Thus, the set x works as required. O

Let us return to the hierarchy V,, of sets defined in Example 4.3.15.

Proposition 4.3.26.

1. For eachn € w, V, CV,q1.
2. For each n € w, V,, s transitive.
3. V,, s transitive.

Proof. The proof of part 1 is by induction on n.
Base Step. n = 0. Then Vy =) C V;.

Successor Step. Suppose by induction that V,, C V1. Let z € V1.
Then by definition of V,, 1, x C V,,. Thus, by the induction hypothe-
sis, x C V41, and therefore x € V,,41. This shows that V,, 11 C V,10.

For the proof of part 2, suppose that x € y € V,,. Then by defini-
tion, y C V,,_1 and hence =z € V,,_1. It now follows from part 1 that
eV,

For the proof of part 3, suppose that x € y € V,,, then x € y € V,
for some n. Thus, by part 2, x € V,, and therefore x € V. O

Finally, we return to course-of-values recursive definitions. These
are very important for transfinite recursive definitions in the coming
Chapter 5.

Theorem 4.3.27 (Course-of-Values Recursive Definitions).

1. Suppose that F is a class function such that F(x) is defined for
every set x. Then there is a unique class function G such that
Dmn(G) = w and for every n € w, G(n) = F(G | n). Therefore,
the image G|w] is a set.
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2. Suppose that F is a class function such that F(x,y) is defined for
all sets x and y. Then there is a unique class function G such
that for all m € w and all sets x, G(n,x) = F(z,G5 | n), where
Gz [n={(i,G(@i,x)) : i < n}.

Proof. Here is the proof of part (1). Let the class function F' be
given so that F'(x) is defined for every set x and consider the proposed
function G such that G(n) = F(G | n). Now, consider the recursive
definition of the function G such that G(n) = G | n. We see that

1. (:}(0) =0; A A
2. G(n+1) = G(n) U{(n,G(n)} = G(n) U {(n, F(C(n))}.

It now follows from Theorem 4.3.13 that ( is a class function with

domain w and G(n) = G(n + 1)(n) for all n € w.
For part (2), consider the function G such that G(n,z) = G, [ n
for n € w and proceed as in part (1). O

Exercises for Section 4.3

Exercise 4.3.1. Show that if A is transitive for every set A € S,
then [J S is transitive.

Exercise 4.3.2. Show that the union operator is monotone and
finitary.

Exercise 4.3.3. Show that for any monotone operator I on a set A
and any m <n, I' C I,

Exercise 4.3.4. Show that a set z is transitive if and only if (Jz C z.

Exercise 4.3.5. Show that for any sets A and B, if A € B or if
A C B, then trcl(A) C trcl(B).

Exercise 4.3.6. Prove that if A is a transitive set, then P(A) is
transitive.

Exercise 4.3.7. Show that if every element of a set A is transitive,
then [J A is transitive.

Exercise 4.3.8. Show that {A}U(J,c 4 trcl(a) is transitive for any
set A.
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Exercise 4.3.9. Use inductive definability to show that {x € N :
x =3 (mod 7)} is a set.

Exercise 4.3.10. Prove that the powerset operator is monotone,

that is, A C B = P(A) C P(B).

Exercise 4.3.11. Prove that for all m,n € N, m +n =n+ m.
Hint: Use double induction and let ¢(m) be (Vn) m +n = n+ m.
Then for each m > 0, prove ¢(m) by induction on n.

Exercise 4.3.12. Prove by induction on z that for all z,y,z € N:
(T+y)+z=2+(y+2)

Exercise 4.3.13. Use inductive definability to show that {(x,y, z) €
N:xz-y==z}isaset. Hint: x-0=0and - Sy = z-y+x for all x,y.

Exercise 4.3.14. Prove that for all n, 1 -n = n.

Exercise 4.3.15. Prove by induction on z that for all z,y,z € N,
(x4y)-z=z-2+y-z.

Exercise 4.3.16. Let I'(X) = X U {3, 7} U{z +y: xz,y € X} for
X € P(N). Compute I'!, T2, T3 and determine the least fixed point
M of T'. Prove that 2 ¢ M and that every number n > 15 is in M.
Hint: Consider n modulo 3.

Exercise 4.3.17. Fill in the details in the proof of Theorem 4.3.17.

Exercise 4.3.18. Show that the class V,, is equal to the smallest set
containing 0 and closed under pairing and pairwise union.

4.4 Cardinality
In this section, we develop the basic features of the set-theoretic
notion of size, referred to as cardinality.

Definition 4.4.1. Let x,y be sets. Say that x,y have the same car-
dinality, in symbols |z| = |y|, if there is a bijection f : x — y. Say
that |z| < |y| if there is an injection from z to y.

Theorem 4.4.2. Having the same cardinality is an equivalence rela-
tion and < is a quasiorder, that is, reflexive and transitive.

The proofs are left as exercises.
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Theorem 4.4.3 (Schréder—Bernstein). If|A| <|B|and|B|<|A|,
then A, B have the same cardinality.

Proof. Let A,B besets and f: A — B and ¢g: B — A be injec-
tions. We construct a bijection h : A — B. We observe that the
functions f and g create orbits for the elements of AU B. An orbit is
a sequence (...,a;,b;,a;11,bi4+1,...) such that, for each i, b; = f(a;)
and a;11 = g(b;). There are three possible types of orbits. For any
a ¢ g[B], there is an orbit (ag,bg, a1, ...) of type w beginning with
ag = a. Similarly, for any b ¢ f[A], there is an orbit of type w begin-
ning with by = b. Finally, there are orbits (...,a_1,b_1, ag, b, a1, ...)
of type Z where each a; € ¢[B] and each b; € f[A]. The orbits
partition A U B, so we may define h on each orbit, as follows.
For the orbits (bg,a1,...) beginning with by, we define h(a;+1) =
bi = g '(a;11). For the other two types of orbits, we define
h(a;) = b; = f(a;). It is easy to check that this is a bijection from
A onto B. O

Theorem  4.4.4. Distinct natural numbers have  distinct
cardinalities.

Proof. It will be enough to show that if x,y are finite sets and
y C x and y # z, then y,x have distinct cardinalities. Suppose for
contradiction that this fails for some z,y. Let a = {z C z : |z| = |z|}.
The set a C P(x) is certainly non-empty, containing at the very least
the set x itself. Let z € a be a C-minimal element. Note that z # z
since y € a and y is a proper subset of x. Let h : x — z be a bijection,
and let u = hl[z], the image of z under h. Then u C z and |u| = |z|,
since h [ z : z — w is a bijection. Moreover, u # z: if 7 is any element
of the non-empty set = \ z, then h(i) belongs to z \ u. Thus, u is a
proper subset of z which has the same cardinality of z and so the
same cardinality as x. This contradicts the C-minimal choice of the
set z. O

This theorem completely determines the possible cardinalities of
finite sets. Every finite set has the same cardinality as some natural
number by Theorem 4.2.8, and distinct natural numbers have distinct
cardinalities. Thus, the cardinalities of finite sets are linearly ordered.
One can ask if this feature persists even for infinite cardinalities.
The answer depends on the Axiom of Choice. Assuming the Axiom
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of Choice, we show that even the infinite cardinalities are linearly
ordered.

If |[A] = |n| for some n € w, then we write |A| = n and say that
A has cardinality n.

Let A® B ={(0,a):a€ A} U{(1,b) : b € B}, this is the disjoint
union of A and B.

Proposition 4.4.5. Suppose that A and B are two sets such that
|A| =m and |B| =n for some m,n € w. Then

1. [A® Bl=m+n;
2. |[Ax Bl=m-mn;
3. [24] = 2m.

Proof. (1) Let f: A —- m ={0,1,....m—1}and g : B - n
be bijections and define h : A@® B — m + n by h(0,z) = z and
h(l,z) =m+ .

(2) is left as an exercise.

(3) Since |A| = m, it suffices to show that [2{01-m=1}| = 2™ Given
x € 2™, recall that z is a function from {0,1...,m—1} to {0,1}. Let
flx) =3, x(i)2m~*. This will be a bijection from 2{%1-m=1} o
om = {0,1,...,2™ —1}. 0

If (A,<4) and (B, <p) are partial orderings (possibly linear or
well-orderings), then there are natural orderings on A ® B, A x B,
and 24. For A ® B, let (0,a1) < (0,a2) <= a1 <4 a9, let (1,b1) <
(1,by) <= by <p by, and let (0,a) < (1,b) for all a € A and
b € B. If A is isomorphic to (m, <) and B is isomorphic to (n, <),
then A @ B will be order isomorphic to (m + n, <), using the map
given above in Proposition 4.4.5.

For A x B, we use the lexicographic ordering so that (aj,b1) <
(ag,be) <= a1 <a a2 V (a1 =ay A by <p by). Then the natural
mapping of A x B to m -n will be an order isomorphism.

For 24, we again use the lexicographic order so that z < y if and
only if z(i) < y(i), where i is the least such that z(i) # y(i).

Even when A and/or B are infinite sets, if A and B are linearly
ordered, or well ordered, then A @ B will be linearly (well ordered),
and similarly for A x B. However, if A is infinite, then 2 will not
be well ordered. (See the exercises.)
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We can generalize some of the rules of addition, multiplication,
and exponentiation, as follows:

Proposition 4.4.6. For any sets A, B, and C,

1. [A®@ B|=|B® A| and |A x B| = |B x Al;
2. [Ae(BaCO)|=[(A@B)&C| and |[Ax (BxC)| = |(Ax B) x C|;
3. [Ax (BaC)|=|(AxB)® (AxC).

Proof. For the multiplicative parts of (1) and (2), we have natu-
ral isomorphisms mapping (a,b) to (b,a) and mapping ((a, (b,c)) to
((a,b),c). The other parts are left as exercises. O

Proposition 4.4.7. For any sets A, B, and C,

1. |[AB®C| = |AB x AC),
2. |AC x BO| = |(A x B)C;
3. [(AP)C| = |ABxC].

Proof. (1) Let (F,G) € ABxA®. Then F: B — Aand G : C — A.
Then we can map (F,G) to the function H : B® C — A defined
by H(0,b) = F(b) and H(1,c) = G(c). To check that this is one-to-
one, suppose that (Fi,G1) and (Fz, G2) map to the same function
H. Then for any b € B, Fy(b) = H(0,b) = F5(b) and for any ¢ € C,
Gi(c) = H(1,¢) = Ga(c), so that F} = F, and G; = G. To check
that this is surjective, let H : B @& C' — A be given. Then we may
define F': B— Aby F(b) =a <= H(0,b) =aand G:C — A by
G(c)=a <= H(l,¢c)=c.

Parts (2) and (3) are left as exercises. O

We conclude this section by proving that there are many distinct
infinite cardinalities.

Theorem 4.4.8 (Cantor). For every set x, |x| < |P(z)| and |x| #
P (z)].

Proof. Clearly, |z| < |P(z)| since the function f : y — {y} is an
injection from x to P(x).

To show that |z| # |P(z)| suppose for contradiction that z is a
set and f : x — P(z) is any function. It will be enough to show
that Rng(f) # P(x), ruling out the possibility that f is a bijection.
Consider the set y = {z € x : 2 ¢ f(2)}; we show that y ¢ Rng(f).
For contradiction, assume that y € Rng(f) and fix z € = such that
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y = f(z). Consider the question whether z € y. If z € y, then z ¢ f(2)
by the definition of y, and then z ¢ y = f(z). If, on the other hand,
z ¢ y, then z € f(z) by the definition of y, and so z € y = f(z). In
both cases, we have arrived at a contradiction. O

Thus, P(w) has strictly greater cardinality than w, PP(w) has
strictly greater cardinality than P(w), and so on. We have produced
infinitely many infinite sets with pairwise distinct cardinalities.

Exercises for Section 4.4

Exercise 4.4.1. Suppose that A and B are two sets such that |A| =
m and |B| = n for some m,n € w. Show that |[A x B| =m - n.

Exercise 4.4.2. Suppose that A and B are two sets such that |A| =
m and |B| = n for some m,n € w. Show that |B4| = n™. Hint: Use
the representation of a natural number in base n.

Exercise 4.4.3. Prove that for any sets A and B, if A and B are
linearly ordered (well ordered), then A @ B will be linearly (well
ordered) under the ordering given above.

Exercise 4.4.4. Prove that for any sets A and B, if A and B are
linearly ordered (well ordered), then A x B will be linearly (well
ordered) under the ordering given above.

Exercise 4.4.5. Show that for any sets A and B, |A® B| = |B® A|.

Exercise 4.4.6. Show that for any sets A, B, and C, |A®(B®C)| =
(A® B)& C|.

Exercise 4.4.7. Show that for any sets A, B, and C, |Ax (B®C)| =
(Ax B)& (AxC).

Exercise 4.4.8. Show that for any sets A, B, and C, |AY x B®| =
(A x B)Y.

Exercise 4.4.9. Show that for any sets A, B, and C, |(AP)%)| =
’(A(BXC) ‘

Exercise 4.4.10. Show that for disjoint sets B,C, |AP x AY| =
|A(BUC)|.
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Exercise 4.4.11. Show that the lexicographic order on 2% is a linear
ordering but is not well founded.

Exercise 4.4.12. Prove that if || < |y|, then [P(z)| < [P(y)|.
Exercise 4.4.13. Prove that for every set z, |P(z)| = |2%|.

Exercise 4.4.14. Prove that having the same cardinality is an
equivalence relation.

Exercise 4.4.15. Show that the relation “|z| < |y|” is a quasiorder,
that is, it is transitive and reflexive.

Exercise 4.4.16. Use the Axiom of Choice to prove that if y is a
surjective image of x then |y| < |z|.

Exercise 4.4.17. Prove that whenever x is a set, then there is a set
y such that |z| < |y| for every z € z.

4.5 Countable and Uncountable Sets

The most important cardinality-related concept in mathematics is
countability. We use it in this section to provide the scandalously
easy proof of the existence of transcendental real numbers discovered
by Cantor.

Definition 4.5.1. A set x is countable if |z| < |w|. A set which is
not countable is uncountable.

As a matter of terminology, some authors require countable sets to
be infinite. By the following theorem, this restricts the definition to
the collection of sets which have the same cardinality as w.

Theorem 4.5.2.

1. If x is countable, then either x is finite or |x| = |w|.

2. A non-empty set is countable if and only if it is a surjective image

of w.

A surjective image of a countable set is countable.

4. (With the Aziom of Choice) The union of a countable collection
of countable sets is again countable.

5. The product of two countable sets is countable.

w
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Proof. For (1), we first argue that for every set # C w, either x
is finite or |z| = |w|. This is easy to see though: If the set * C w
is infinite, then its enumeration in increasing order is a bijection
between w and z.

Now, suppose that = is an arbitrary countable set, and choose
an injection f : z — w. Let y = Rng(f), so f : © — y is a bijec-
tion. From the first paragraph, the set y is either finite or has the
same cardinality as w, and so the same has to be true about x. This
completes the proof of (1).

For (2), if f : w — x is a surjection of w onto any set z, then
the function g : © — w defined by ¢g(z) = min{n € w: f(n) = z} is
an injection of x to w, confirming that z is countable. On the other
hand, if = is countable, then either z is infinite and then z is in fact
a bijective image of w by (1), or z is finite and then it is a bijective
image of some natural number n. Any extension of this bijection to
a function from w to x will be a surjection.

For (3), let « be a countable non-empty set and f : x — y be a
surjection. By (2), there is a surjection g : w — = and then f o g will
be a surjection of w onto y, confirming the countability of x.

For (4), we first show (without AC) a special case: The set w xw is
countable. Indeed, one bijection between w X w and w is the Cantor
pairing function defined by f(m,n) = (n +m)(n +m + 1) + m;
we denote f(m,n) as [m,n]. Now, suppose that b = {a; : i € w}
is a countable set, all of whose elements are again countable. To
show that (Jb is countable, we produce a surjection from w X w
to |Jb, which in view of the special case and (3) show that [Jb is
countable.

For every i € w, let ¢; be the set of all surjections from w to a;.
Since each a; is assumed to be countable, each set ¢; is non-empty.
Use the Axiom of Choice to find a selector h: a map with domain w
such that for every i € w, h(i) € ¢;. Let f:w X w — [Jb be the map
defined by f(i,7) = h(i)(j). This is the desired surjection.

The proof of part (5) is left as an exercise. O

Item (4) in its generality cannot be proved without the Axiom of
Choice. Lebesgue, an opponent of AC, used item (4) unwittingly to
develop his theory of integration; any such a theory has to use some
form of (4).
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Theorem 4.5.3. The following sets are countable:

—_

the set of integers;

the set A<% of all finite sequences of elements of any countable
set A;

the set of rational numbers;

the set of all open intervals with rational endpoints;

the set of all polynomials with integer coefficients;

the set of all algebraic numbers.

o

SISl

Proof. We discuss part (2) and leave the others as exercises. First,
we see by induction that A™ is countable for each n. That is, A = A
is countable. Assuming that A" is countable, then A" = A x A"
is countable as a product of countable sets. Finally, A< =[],y A" is
countable as a countable union of countable sets. O

Theorem 4.5.4. |R| = [P(w)].

While we have not developed the real numbers R formally, any usual
concept of real numbers will be sufficient to prove this theorem.

Proof. By the Schroder-Bernstein theorem, it is enough to provide
an injection from R to P(w) as well as an injection from P(w) to R.

To construct an injection from R to P(w), we construct an injec-
tion f from R to P(Q) and finish the argument by Theorem 4.5.2(1).
For any real r, let f(r) = {¢g € Q : ¢ < r}; this set is part of the
Dedekind cut corresponding to r. To see that this is an injection, let
r < s be two distinct real numbers. Then, by the density of the ratio-
nals in R, there is a rational ¢ such that r < g < s. Thus, q € f(s),
but g ¢ f(r) and hence f(r) # f(s).

To construct an injection from P(w) to R, consider the function
g : P(w) — R defined by the following formula: g(y) is the unique
element of the closed interval [0, 1] whose ternary expansion consists
of 0’s and 2’s only, and n+ 1-st digit of the ternary expansion of g(y)
is 2 if n € y, and the n + 1-st digit is 0 if n ¢ y. It is easy to check
that this is an injection.The image of ¢ is often referred to as the
Cantor set. O

Corollary 4.5.5 (Cantor). There is a real number which is not the
root of a mon-zero polynomial with integer coefficients.
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Proof. The set P(w) is uncountable by Theorem 4.4.8, and so is
R. On the other hand, the set of algebraic real numbers is countable
by Theorem 4.5.3(6). Thus, there must be a real number which is
not algebraic. O

The presented proof is incomparably easier than any proof that a
specific real number (say 7 or e) is not algebraic. Also, it does not
use almost any knowledge about real numbers.

Exercises for Section 4.5

Exercise 4.5.1. Let  be a countable set. Show that any set con-
sisting of pairwise disjoint subsets of x is countable.

Exercise 4.5.2. Show, without appealing to the Axiom of Choice,
that for any non-empty sets A and B, if there is an injection from A
into B, then there is a surjection from B onto A.

Exercise 4.5.3. Show that if A is countable, then any subset of A
is countable.

Exercise 4.5.4. Show that the product A x B of two countable sets
is countable. Hint: Use the pairing function [m,n] = 3(n + m)(n +
m+ 1) + m.

Exercise 4.5.5. Prove directly that N<“ is countable, without
appealing to the Axiom of Choice.

Exercise 4.5.6. Show that if A is countable, then for any b, AU{b}
is countable.

Exercise 4.5.7. Show that the family of finite subsets of w is
countable.

Exercise 4.5.8. Show that the set C(R) of continuous real func-
tions has the same cardinality as R. Hint: A continuous function is
determined by its values on the rational numbers.

Exercise 4.5.9. Show that [2¢ x 2¢| = |2¢| and therefore
IR x R|=|R].

Exercise 4.5.10. Show that |R¥| = |R|.



Chapter 5

Ordinal Numbers and the Transfinite

In this chapter, we show that the processes of induction and recursion
can be extended far beyond w. It is exactly the use of this extended,
transfinite induction, and recursion that sets set theory apart from
other field of mathematics. While the idea may sound far-fetched at
first, it is very powerful and has found many uses in mathematics: the
equivalence of Zorn’s lemma and the Axiom of Choice, the Cantor—
Bendixson analysis of closed sets of reals, or the stratification of
Borel sets of reals into a hierarchy can serve as good examples. We
demonstrate the existence of uncountable ordinals, using the Axiom
of Replacement.

5.1 Ordinals

We first define the von Neumann ordinal numbers. This is a natural
extension of the notion of von Neumann natural numbers. That is,
the set w of natural numbers is the first transfinite ordinal, followed
by w+ 1 = wU{w}, w+ 2, and so on. Each new larger ordinal is
simply the set of all of the smaller ordinals. Ordinals are typically
denoted by lower case Greek letters such as a, 3,7, ... The collection
of ordinals is itself naturally linearly ordered: Given two ordinals
«, 3, then either « is an initial segment of S or vice versa, § is an
initial segment of a. Note that while w and N both refer to the set
of natural numbers, we use the notation w when we are discussing
ordinals.

83
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Definition 5.1.1. A set z is an ordinal number, or ordinal for short,
if it is transitive and linearly ordered by €.

In particular, every natural number as well as w is an ordinal. There
are other ordinals as well, e.g. w U {w}. If we want to develop the
theory of ordinals without the Axiom of Regularity, the definition
needs to be amended: A set x is an ordinal if it is transitive, linearly
ordered by €, and every subset of x has an €-minimal element (the
last clause is automatic if the Axiom of Regularity is present). Every
ordinal with the membership relation is a linear ordering as per the
definition, and we always view ordinals as linear orderings.
We first record the most useful technical properties of ordinals.

Theorem 5.1.2. Let o be an ordinal:

1. Every element of a is an ordinal.
2. Bvery €-initial segment is either an element of o or equal to «.

Proof. For (1), let 8 € a. We have to verify that f§ is linearly
ordered by € and transitive. To show linearity, observe that 5 C «
by the transitivity of o, and as « is linearly ordered by €, so is 8. To
show transitivity, suppose that v € 8 and § € ~; we must conclude
that § € 8. By the transitivity of «, all 5,v,d are in «. Since € is a
linear ordering on v and 6 € v € 3, § € ( follows as required.

For (2), let x C « be an €-initial segment of o and = # «; we
must argue that = € a. Let 8 € a be the €-minimal element of the
non-empty set « \ x obtained by the Axiom of Regularity. We show
that 8 = x and that completes the proof as S8 € a.

For the inclusion S C =z, choose v € [ and argue that v must
be an element of x. If this failed, v would be an element of «a \ x
c-smaller than g, contradicting the minimal choice of . For the
inclusion & C 3, choose v € x and argue that v must be an element
of B. If this failed, then by the linearity of € on the ordinal «, it
would have to be the case that 8 = v or § € ~. The former case is
impossible as § ¢ z and v € . In the latter case, note that x is an
€-initial segment of o and so € v and v € x implies g € z, again
contradicting the assumption that 8 ¢ x. The proof is complete. O

Now, it is time to prove the more salient features of ordinal numbers.

Theorem 5.1.3 (Linear Ordering). The class of ordinals is tran-
sitive and is linearly ordered by €.
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Proof. It is easy to see that € is a transitive relation on ordinals. If
v € B € « are ordinals, then, as « is a transitive set, v € o must hold,
and the transitivity of € has been proved. Let Ord be the class of
ordinals. It is immediate from Theorem 5.1.2 that Ord is transitive.
That is, if & € 8 € Ord, then o € Ord as well.

For the linearity, let «, 8 be ordinals; we have to argue that either
«a € for € aora=pholds. To this end, consider the set v = aNg.
As an intersection of two transitive sets, it is transitive and therefore
an €-initial segment of both o and 3.

Note that it must be the case that either v = « or v = S holds. If
both of these equalities failed, then both v € a and « € 8 must hold
by Theorem 5.1.2. But then v € aN 3, so v € v by the definition of
v, and this contradicts the Axiom of Regularity.

Thus, ~ is equal to one of the ordinals «, 8; say that v = . If v =
B then we conclude that o = 3. If v # (3, then by Theorem 5.1.2(2),
v €  and we conclude that a € 5. In both cases, the linearity of €
is confirmed. O

Corollary 5.1.4. The class of ordinals is not a set.

Proof. Assume for contradiction that the class of ordinals is a set
x. It follows from Theorem 5.1.3 that the set z is transitive and
linearly ordered by €. Therefore, x is an ordinal, and so = € =,
contradicting the Axiom of Regularity. O

Theorem 5.1.5 (Rigidity). Whenever o, are ordinals and i :
a — (B is an isomorphism of linear orders, then a = 8 and i = id.

Proof. Assume that «, 5 are ordinals and ¢ : « — 3 is an isomor-
phism. Suppose for contradiction that ¢ is not the identity. Then,
there must be an ordinal v € « such that i(y) # . Use the Axiom
of Regularity to choose the €-least ordinal 7y € « such that i(~y) # 7.
Since i(y) € f, i(7) is an ordinal by Theorem 5.1.2(1). By linearity
(Theorem 5.1.3), there are three possible cases: either i(vy) = =, or
i(y) € v, or v € i(y). We reach a contradiction in each case.

First, i(y) = v is impossible as v was chosen precisely so that
i(y) # . Second, assume that i(y) € . By the minimal choice of ~,
the equality i(i(y)) = i(y) must hold. This means that the distinct
ordinals v and i(y) are sent by the isomorphism 7 to the same value
i(y), which is a contradiction. Third, assume that v € i(7). In this
case, since [ is a transitive set and it contains i(7y), it must contain
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also its element . Let § € o be an element such that i(d) = . Since
i is an isomorphism of linear orders and i(d) = v € i(y), it must be
the case that 6 € . By the minimality choice of v, i(d) = § # 7,
a final contradiction. O

Here is an alternative definition of an ordinal.

Definition 5.1.6. The set z is said to be hereditarily transitive if x
is transitive and every element of z is also transitive.

Theorem 5.1.7. « is an ordinal if and only if it is hereditarily
transitive.

Proof. Suppose that a is hereditarily transitive but not an ordinal.
Then « is not totally ordered by €. Let x | y denote that x and y are
incomparable. Let z be minimal in {z € a: (Jy < ) z | y}. Now, let
y be minimal among the elements of a which are not comparable to z.
We obtain the contradiction y = z. Given u € y, the minimality of y
implies that u is comparable to z. If u = z, we have the contradiction
z € y. If z € u, then the transitivity of y again gives us z € y. Thus,
we must have u € z. Since u was arbitrary, it follows that y C z. Next,
let u € z. The minimality of z now implies that u is comparable to
y, and as above, it follows that in fact u € z. So, z C y, and thus by
Extensionality, y = z. O

What kind of ordinals are there? One infinite ordinal is w. If « is
an ordinal, one can form its successor, the ordinal s(a) = o U {a}.
Putting together w with all the ordinals obtained from w by iterating
the successor operation infinitely many times, we obtain the first
limit ordinal, w+w, larger than w. The process can then be repeated,
yielding larger and larger ordinals. In general, we define the following:

Definition 5.1.8. An ordinal « is a successor ordinal if there is a
largest ordinal g strictly smaller than «. In this case, write « = S+1.
If «v is not a successor ordinal or zero, then it is a limit ordinal.

Exercises for Section 5.1

Exercise 5.1.1. Show that for any two ordinals a # 3, a € S if and
only if a C .

Exercise 5.1.2. Prove that if « is an ordinal, then s(«) is an ordinal.
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Exercise 5.1.3. Show that s(«) is an ordinal and is the the least
ordinal greater than a.

Exercise 5.1.4. Show that « is a successor ordinal if and only if
a = s(p) for some ordinal 3.

Exercise 5.1.5. Show that an ordinal a # 0 is a limit ordinal if and
only if, for any ordinal 8 < «, s(8) < a.

Exercise 5.1.6. Verify that every natural number as well as w is an
ordinal.

Exercise 5.1.7. Show that for any two ordinals a # 3, a € § if and
only if a C .

Exercise 5.1.8. Show that for any two ordinals « and 5, o € 3 if
and only if s(a) € 8 or s(a) = .

Exercise 5.1.9. Show that for any non-empty class A of ordinals,
() A is an ordinal.

Exercise 5.1.10. Show that for any ordinal «, either « = (Ja or
a=s(Ja).

Exercise 5.1.11. Prove that for any set A of ordinals, [J A is an
ordinal.

Exercise 5.1.12. Prove that for every ordinal «, there is a limit
ordinal £ such that o < .

Exercise 5.1.13. Prove Corollary 5.1.4 without the use of the
Axiom of Regularity. Hint. Apply a Russell’s paradox type of rea-
soning to the “set”of all ordinals.

5.2 Transfinite Induction and Recursion

The ordinal numbers allow proofs by transfinite induction and defini-
tions by transfinite recursion much like natural numbers allow proofs
by induction and definitions by recursion.

Theorem 5.2.1 (Transfinite Induction). Suppose that ¢ is a for-
mula of set theory with parameters. Suppose that ¢(0) holds, and for
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every ordinal o, [(VB € a) ¢(B)] — ¢(a) holds. Then, for every ordi-
nal a, ¢(a) holds.

Proof. Suppose for contradiction that there is an ordinal, call it -,
such that ¢() fails. Consider the set x = {a € v+ 1 : =¢(«)}. This
is a non-empty set of ordinals, containing at least v itself. By the
Axiom of Regularity, the set x has an €-minimal element «. Then
VB € a ¢(B) holds and ¢(«) fails, contradicting the assumptions. [

As in the case of induction on natural numbers, we refer to the impli-
cation [(V3 € a) ¢(B)] — ¢(«) as the induction step. In most transfi-
nite induction arguments, the proof of induction step is divided into
the successor case and the limit case according to whether « is a suc-
cessor or a limit ordinal. This is actually a special case of the more
general induction on sets.

Theorem 5.2.2 (Set Induction). Suppose that ¢ is a formula of
set theory with parameters. Suppose that, for every set x, [(Vy €
x) d(y)] = ¢(x). Then ¢(x) holds for every set x.

Proof. Suppose for a contradiction that —¢(A) for some set A. Let
S ={z € trcl(A) : ~¢(x)}. S is non-empty since A € S and there-
fore contains a minimal element x by Regularity. For any element
y € x, y € trcl(A) since y € = € A, and therefore ¢(y). It follows
from the hypothesis that ¢(x), which contradicts = € S. O

Theorem 5.2.3 (Transfinite Recursive Definitions). Suppose
that F is a class function such that F(x,y) is defined for all sets
x and y. Then there is a unique class function G such that for all
ordinals o and all sets x, G(z,a) = F(x,G, | «), where G, | a =

{(8,G(x,8)) : B < a}.

Proof. Let a given set z be fixed. We prove that for every ordinal
B, there is a unique set function G, g such that

(¥*) Dmn(Gy3) = B and for every ordinal o € f, Gypla) =
F(x,Gyp | @).

The proof is by induction on 8. Suppose the statement is true for all
v < . There are three cases to consider:

Base Step. f = 0. Then G, 3 = 0.
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Successor Step. [ is a successor ordinal, 5 = y+1. Then by induction,
Gy~ is a set function with domain v and, for every ordinal o € 7,
Gor(e) = F(z,Gyqy | @).

Then we have G, 3 = G5 ~U{(7,G¢,)} as the unique set function
satisfying ().

Limit Step. B is a limit ordinal. Then by induction, for any v < £,
there is a unique set function G , with domain v such that

(Va <y)[Gapy(a) = F(2,Grpy [ )],

Then we may define the unique function G, g with domain 3 as
follows:

Gop(7) =2 = (F9)l(Va <)[g(a) = F(z,g [ )] A g(7) = z].
For a given v < 3, the desired function g is G y41.

Finally, the desired class function G may be defined as in the limit
step above by

G(r,7y) =2 <= (Qg)[(Va<y)g(a) =F(z,ga A g(7) =z

The desired function g is the function G, 41 which we have shown
exists for all ordinals ~. O

Note that a function G of one ordinal variable may be defined by
transfinite recursion using G(«) = F(G | «), simply by introducing
an inert variable z. That is, let F'(z,y) = F(y) for all z, defining
G'(z,a) = G(a).

Next, we apply this result to monotone class operators. If I" is
not finitary, then I'Y need not be a fixed point, so we can continue to
define I'® for all ordinals by letting I'**! = I'(I'®) and T = |J,,_, T'.

Proposition 5.2.4. For any monotone class operator I' and any
ordinal o < 3,

1. T C 1—‘04-1-1;
2. I'* C I'P,

— 1
3. o=, "

Proof. We prove parts (1) and (2) and leave (3) as an exercise.
The proofs are by induction. Here is the proof of part (1).
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Base Step. T° = (), so T° C T'L.

Successor Step. « is a successor ordinal, and a = v + 1 for some
ordinal 7. Then by induction, I C I'"*!. Since I' is monotone,
M+ = (1) € r(I*) = 17*2. Since a = v + 1, this proves
that T C T+,

Limit Step. o is a limit ordinal. By induction, we may assume that, for
any v < o, I' C I'"*1. Furthermore, I'* = U, <o I'7. Now, suppose
that x € I'“. Then x € I'? for some v < a. By the assumption, x €
'L, Since I is monotone and I' C I'®, it follows that V! C T'o+1,
Thus, z € I'*T!. Since « was arbitrary, this shows that I'* C T'*+1,
as desired.

The proof of part (2) is by induction on «.
Base Step. Since I'Y = (), we have I'° C T'? for all .

Successor Step. Assume the statement holds for a and let s(a) < .
There are two subcases to consider, depending on whether f is itself
a limit or a successor.

Subcase 1. 8 is a successor so that 5 = « 4 1. Then by induction,
I'* C I' and it follows by monotonicity that T®*! C [7+! = T8,

Subcase 2. 3 is a limit. Then o« < aw+ 1 < B. Then by definition,
o+l C U’y<5 T =I5,

Limit Step. « is a limit. By induction, the statement holds for all
v < a. Let a < B. Then clearly v < 8 for all v < «a. Thus, by
induction, I'Y C T'? for all v < . Thus, I'* = Uw<a I C T, O

Theorem 5.2.5. If1" is a monotone class operator, then the function
G(a) =T is a class function.

Proof. Let G(a) = I'*. By Lemma 5.2.4, G(a) = Uz, T'(G(B))
for any a. Thus, the function G can be defined by the transfinite
recursion G(a) = F(G [ a), where F(9) = Uge pimn(q) I'(9(B))- O

We can now extend the hierarchy of V,, defined previously for
n < w to the transfinite by using the operator I'(X) = P(X) as
before. It follows that V41 = P (V) for all ordinals « and that and
Vi =Upey Vp if Ais a limit.
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Corollary 5.2.6. For any ordinals o < 3, Vo, C V3.
Theorem 5.2.7. For any ordinal «, V,, is transitive.

Proof. This is proved by induction on «. For a < w, this is already
known from Proposition 4.3.26.

Successor Step. Suppose that V, is transitive and that x € y € V1.
Then y € P(V,) so that y C V,, and therefore x € V,,. It now follows
from Corollary 5.2.6 that « € V1. Thus, V1 is transitive.

Limit Step. For the case of a limit ordinal A\, suppose that x € y € Vj.
Then x € y € V,, for some o < A. By induction, V,, is transitive so
that z € V,, and hence x € V). Thus, V) is transitive. O

Theorem 5.2.8. For every set x, there is an ordinal o such that
T €V,.

Proof. The proof uses the Axiom of Regularity. Let V' = J, Va-
Suppose that the complement of V is a non-empty class. By the
Axiom of Regularity for classes (Corollary 4.3.25) applied to the
complement of V, there is a set x ¢ V such that all its elements
are in V. For every y € x, let rk(y) be the least ordinal « such that
y € Vaqr; this exists as y € V by the minimal choice of . Now,
let F(y) = rk(y) + 1 for y € x so that y € Vp(,). By the Axiom of
Replacement, F[z] C Ord is a set. By Exercise 5.1.11, |J Flz] = «
is an ordinal, and it follows from Corollary 5.2.6 that © C V. Thus,
x € Voy1 by the definition of V1. This contradicts the assumption
that z ¢ V. O

The theorem makes it possible to define, for every set x, the ordi-
nal rk(z) to be the smallest a such that x € Vy4q. The rank can
serve as a rough measure of complexity of mathematical consider-
ations. The theory of finite sets (such as most of finite combina-~
torics or finite group theory) takes place inside the structure (V,,, €).
Most mathematical analysis can be interpreted as statements about
V+1- On the other hand, classical set theory often studies phenom-
ena occurring high in the cumulative hierarchy. The high and low
stages of the hierarchy are tied together more closely than one might
expect.
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Exercises for Section 5.2

Exercise 5.2.1. Show that, for any set =, rk(z) is the least ordinal
« such that z C V.

Exercise 5.2.2. Show that for any sets z and y and any ordinal «,

1. if z,y are both in V,,, then {z,y} € Voy1;
2. rk({z,y}) = max{rk(z),rk(y)} + 1.

Exercise 5.2.3. Show that for any sets z and y and any ordinal «,

1. if z,y are both in V,,, then z Uy € Vj;
2. rk(zx Uy) = max{rk(z), rk(y)}.

Exercise 5.2.4. Show that for any set  and any ordinal «,

1. if 2 € V,, then P(x) € Viyqi1;
2. rk(P(z)) = rk(z) + 1.

Exercise 5.2.5. Prove that for each ordinal «, rk(a) = .

5.3 Ordinal Arithmetic

In this section, we define ordinal addition, multiplication, and expo-
nentiation by transfinite recursion, analogous to those operations
on natural numbers. We derive several properties of these ordinal
operations.

Our notion of transfinite recursive definitions in Theorem 5.2.3
is a course-of-values definition. For ordinal arithmetic, we want to
define a function G in cases so that G(z,0) = H(x), G(z,a + 1) =
J(z,G(z,a)), and G(z,\) = F(z,G; | A) for limit ordinals X\. We
need to verify that this fits under Theorem 5.2.3.

Theorem 5.3.1. Suppose that F', H, and J are three class functions
which are defined for all sets. Then there is a class function G such
that, for all z, all ordinals o, and all limit ordinals \, G(z,0) = H(z),
Gx,a+ 1) = J(z,G(z,a)), and G(z,\) = F(z,G, [ A\), where
Gz(a) = Gz, ).

Proof. Define the class function F' so that G(z,a) = F(z,G, | @)
for all x and all «, by cases as follows, where « is the least ordinal
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not in the domain of g:

H(x), if a =0,
F(.%',g): J(:Cag(ﬁ))’ fa=p+1,
F(z,g), if o is a limit ordinal.

The existence of the class function G now follows from Theorem
5.2.3. 0

Here is the definition of ordinal addition.

Definition 5.3.2. For all ordinals o and 8 and for all limit ordi-
nals A,

1. a+0=q;
2. a+s(B) =s(a+p);

This seems like a straightforward generalization of addition for
natural numbers, and there are many similarities. However, there
are also a number of surprising differences.

For example, 2 +w = {J,,¢,, 2 + 7 = w, since each 2+ n € w. But
w € $(s(w)) = w+ 2. Thus, 2+ w # w + 2. Thus, ordinal addition is
not in general commutative.

Lemma 5.3.3.

1. For all o, B and v, B <~ implies o+ < a + 7.
2. For all o, B and ~, B <~ implies B+ a < v+ a.

Proof. (1) The proof is by induction on .
Base Step. For v = 0, this is vacuous.

Successor Step. For the successor case, suppose that v = s(d) for
some ordinal . Then either 3 < d or 8 =46. If B =4, then a + 5 =
a+d<sla+d) =a+s(d) =a+~. If <4, then by induction,
a+ B < a+dsothat again a+ < a+s(d) =a+ 7.

Limit Step. The limit case does not actually require induction. If ~
is a limit and 8 < v so that s(8) < v, then a + f < a + s(5) and
a+s(8) C a+ysince a+7v = s, o+ by definition.

(2) is left as an exercise. O
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Lemma 5.3.4 (Subtraction Lemma). For all ordinals o < f3,
there exists a unique & such that 8 = o+ 6.

Proof. Let d be the least such that o« + d > . This exists since
a+ >0+ = p. It suffices to show that o + 6 < . Suppose by
way of contradiction that a+ 0 > 3. There are two cases: If § = s(v)
for some v and a+ ¢ > 3, then v < 9§, but o+~ > 3, which violates
the choice of § as the least. If § is a limit and o+ § > 3, then there
must exist v < d such that a + v > 3, again violating the choice of
0 as the least.

For uniqueness, suppose that there is ¢’ such that a+¢ = a+0 =
B. If &' < 6, then this contradicts the choice of § as the least ordinal
satisfying a + 6 > . If, however, 6 < ¢, then by Lemma 5.3.3,
a+ 6 < a+ ¢, which is impossible. Thus, § = ¢'. O

Every infinite countable ordinal « is bijective with w, and this
bijection induces a well-ordering of w which is isomorphic to («, €).
For example, define an ordering R of w such that 0R1, and, for all
x,y > 1, we have zR0, zR1, and zRy <= x < y. Then (w, R) is
isomorphic to w + 2.

Recall that for two ordered sets (A, <4) and (B, <p), we defined
an order < on the disjoint union A & B which put a copy of B after
a copy of A.

Proposition 5.3.5. For any ordinals o and S, (o, €) & (5, €) is
isomorphic to (o + B3, €).

Proof. Define the mapping f : a® 5 to a+ [ by letting f(0,z) = =
and f(1,z) = a+x. f is order-preserving by Lemma 5.3.3. f is onto
by the Subtraction Lemma (Lemma 5.3.4). O

Next, we consider ordinal multiplication.

Definition 5.3.6. For all ordinals o and 8 and for all limit ordi-
nals A,

1. a-0=0;
2. a-s(f)=(a-B)+ o
3. Oé-)\ — UB<>\(O£-,8).
Again this seems like a straightforward generalization of multipli-

cation for natural numbers, and there are many similarities. However,
there are also a number of differences.
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For example, 2-w = {J,,¢,, 2n = w, since each 2n € w. But w-2 =
w + w > w. In addition, the example

(w+l) 2=wt+l+wt+l=wt+w+l#wtw+2=w-2+1-2

shows that the distributive law fails on one side. It is an exercise to
show that it does hold on the other side.

Lemma 5.3.7.

1. For all a, B and v, B <y implies a- B < - .
2. For all o, B and ~y, B <~ implies 5-a <y -a.

The proofs are left to the exercises.

Lemma 5.3.8 (Division Lemma). For all ordinals o and 3, there
exist unique ordinals p < o and § such that f =« -0 + p.

Proof. Let § be the least ordinal such that « - s(§) > S. It follows
that o0 < 8. This can be seen by considering two cases: If § = s(v)
and a-d > 3, then v < § and this violates the choice of § as the
least. If ¢ is a limit and a - § > 3, then there must exist v < § such
that « - s(y) > B, again violating the choice of § as the least.

Now, let p be given by the Subtraction Lemma so that § = a-d+p.
The uniqueness of p follows from the Subtraction Lemma. We leave
the proof of the uniqueness of § as an exercise. O

If A= (A,<4) and B = (B, <p) are two linear orderings, we may
define the product A ® B of these orderings to have universe A x B
and ordering defined, for all a;,as € A and all by,bs € B, by

<a1,b1> < <a2,b2> — a1 <gqa9 V (a1 =as N by <p bg).

Proposition 5.3.9. For any ordinals o and 3, (B,€) x (o, €) is
isomorphic to (o - B3, €).

Proof. Define the mapping f: S ® a to « - 3 by letting f(y,z) =
o -y + x. We show the function f is order-preserving using Lemma
5.3.7. Suppose that (y1,21) < (y2,x2) in the ordering defined above
on S®a. There are two cases to consider. First, we may have y; < yo.
Then since 1 < a,

fy,z)=a-y1+m <a-y +a

=a-s(y1) <a-yr < a-y2+x2 = f(y2,72).
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Second, we may have y; = y» and 1 < x2. Then

fly,m) =a -y +x1=a-yo+ a1 < a-yo+ a2 = f(y2,22).
Lastly, the function f is onto by the Division Lemma. That is, given
any ordinal v, there exist * < « and y such that v = o« -y + «.
Given v < «- 3, it follows that the above y from the Division Lemma
satisfies y < B and then we have f(y,z) = 7. O

Finally, we consider ordinal exponentiation.

Definition 5.3.10. For all ordinals o > 0 and g and for all limit
ordinals A,

1. a¥ =1;
2. a*B) =af . o

This is a natural generalization of multiplication for natural num-
bers, and there are many similarities. Once again, there are also a
number of differences.

For example, 2 = J, ., 2" = w, since each 2" € w. So, the
cardinality of 2¢ as obtained by ordinal exponentiation is not the
same as the cardinality of the set {0,1}* of functions mapping w
into {0, 1}.

It is easy to see that 17 = 1 for all ordinals # and that o’ is a
limit ordinal for any « > 2 and any limit ordinal A. These are left as
exercises.

Lemma 5.3.11.

1. For allaa>2, all B and v, B <~ implies o < .
2. For all v, all >0 and ~y, 5 <~ implies f* < <.

The proof of Lemma 5.3.11 is left to the exercises. Two impor-
tant identities from the exponentiation of real numbers carry over to
ordinal exponentiation. We first prove a general lemma to simplify
the argument.

Lemma 5.3.12. Suppose that \ a limit ordinal and f: 8 — X is an
ordinal function such that A =J,_g (7). Then for any ordinal o,

1'O‘+)‘:U—y<5a+f(7)§
3. Oé)\ = U’Y<B af(’Y)
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Proof. Let A = a + A. By definition, A = (Js., o + 0. Let B =
U, <ga+ f(7). We show that these are equal.

Suppose first that x € A. Then z € a + ¢ for some § < A. Since
A= Uw<6 f(7), there is some v < 8 such that 6 < f(vy) and hence
a+d <a+ f(y) so that x € B.

Suppose next that x € B. Then x € a + f(v) for some v < (.
Then 6 = f(v) < A, and this shows that x € A.

The proofs for multiplication and exponentiation are similar. 0

This result can be used to demonstrate the associative law for
ordinal addition and multiplication. The following lemma is needed.

Lemma 5.3.13. For any ordinal 8 and any limit ordinal X\, 8+ A
s a limit ordinal.

Proof. Let § € 8+ A. Then by definition, § € 8 + v for some
v < A. Then s(6) € S+ s(y) by Lemma 5.3.3, since for ordinals
r €y <= x < y.Since A is a limit, s(7) < A and therefore
s(0) € B+ X as well. O

Lemma 5.3.14. For all o, 3, and 7,

L (a+B)+y=a+(B+7);
2. (@ B)-y=a-(B-7).

Proof. (1) The proof is by induction on ~.
Base Step. For v =0, (a+8)+0=a+=a+ (8+0).

Successor Step. For the successor case, suppose that v = s(d) for
some ordinal ¢. Then by induction, (a«+ ) +d = a+ (8 +6). Thus,
we have

(a+ B) +s(0) = s((a+ B) +9)
=s(a+(B+0) =a+s(B+0) =a+ (8+s(0)).

Limit Step. Suppose that A is a limit ordinal and that (a+ ) ++v =
a+ (B +7) for all v < A. Since B+ A = J,., B+, it follows from
Lemma 5.3.12 (with f(v) = 8 + ) that

at(B+N=Ja+B+y=J@+8)+7=(a+p)+A

y<A F<A

The proof of part (2) is left as an exercise. O
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Proposition 5.3.15. For all « # 0, o™ = - a7,
Proof. The proof is by induction on ~.
Base Step. For v = 0, we have o0 = of = a? . a0,

Successor Step. Given v = § + 1 for some §, we have o#T0 = o . of.
Then

Pt = ofT300) — 3(B+0) — B+ . o = (aﬂ . aé) a

=’ (@ a)=a’ -’ =0l .

Limit Step. If ~y is a limit, suppose that a®19 = af - af for all § < 7.
Then

ot = U Pt = U b al.
o<y o<y

But this equals o - by (2) of Lemma 5.3.12, since o is a limit
ordinal and o = ;. o, a

Proposition 5.3.16. For all o # 0, o7 = (o).

The proof is left as an exercise.
Similar to the Subtraction Lemma and the Division Lemma, we
have the following.

Lemma 5.3.17 (Logarithm Lemma). For all ordinals o > 0 and
B > 1, there exist unique ordinals v, p, and 6 such that « = 7 -0+ p
and vy <a,0<d< B, and p < p7.

Proof. Let 7 be the least ordinal such that 35" > a. It follows
that 87 < a. This can be seen by considering two cases. If v = s(7)
is a successor and 8*(7) > «, then 7 < ~ violates the choice of v as
the least such ordinal. If v is a limit and 87 > «, then there must
exist 7 < v such that 3%(7) > @, again violating the choice of ~ as
the least such ordinal.

Now, let § and p be given by the Division Lemma so that a =
B7 -0+ pand p < B7. It follows by preservation of order that § < 3,
since otherwise a = 37 -6 + p > $*(). The uniqueness of p and §
are guaranteed by the Division Lemma. We leave the proof of the
uniqueness of v as an exercise. O
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Recall the expression of a natural number in base 2 or in a more
general base b from Proposition 4.4.5 and Exercise 4.4.2. For example,
in base 3, the number 23 is given as 212, indicating that 23 = 32 -
2 +31.143%.2. We can use the Division Lemma to give a similar
representation for countable ordinals using base w.

Theorem 5.3.18 (Cantor Normal Form). For any ordinal o> 0,
there exist unique finite sequences vo < vy1 < -+ < Ym—1 < « and
NOy -« vy N1 < W, with n,,—1 > 0, such that

a=wmt.n, 14+ +w- ng.

Proof. The proof is by induction on «. If « is finite, then m = 1,
Y0 = 0 and ng = a.

Now, suppose that the theorem holds for all ordinals less than «
and « > w. Then by the Logarithm Lemma, we have a« = w? -n+p
for some n < w and some p < w”. By induction, we have v < v <

cor < Yme1 < pand ng,...,Npm—1 <w such that p=w’™-1 - n, 1 +
<-4+ w0 - ng, where y,,—1 < 7y since w1 < p < w7. It follows that
a:wv.n+w’7mfl.nm71+...+w’70.n0' D

Proof of the uniqueness of the sequences of ordinals and natural
numbers is left to the exercises.
The following notions are of interest.

Definition 5.3.19. Let o be a limit ordinal and let C' C a.

1. C is bounded in « if there exists f < « such that C' C . (Other-
wise C' is unbounded.)

2. Cis closed in a if | JA € C whenever A is a non-empty bounded
subset of C.

Example 5.3.20. The set {w-n : n € w} is closed and unbounded
in w-w. The set (w+w)\ {w} is unbounded in w+w but is not closed
since Jw = w.

Definition 5.3.21. Let I': Ord — Ord be a class functional.

1. Fis strictly increasing if, for any ordinals o and 3, a <  implies
that F(a) < F(S).

2. F is continuous if, for any limit ordinal «, F(a) = |U{F(B) :
B <al.

3. Fis normal if F is both strictly increasing and continuous.
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Example 5.3.22. Fix an ordinal « and let F(z) = o + x for any
ordinal z. It follows from Definition 5.3.2 that F' is continuous and
it follows from Lemma 5.3.3 that F' is strictly increasing. Thus, F' is
normal.

Lemma 5.3.23. Suppose that « is a limit ordinal and F : o — « is
normal. Then for any non-empty bounded subset C of o, |JF[C] =

Proof. Let v = |JC. There are two cases. First, suppose that
is a successor ordinal. Then ~ is the greatest element of C' so that
F(v) is the greatest element of F[C], since F' is strictly increasing.
It follows that | F[C] = 7.

Second, suppose that v is a limit ordinal. Then F(v) = |J F[C],
since F' is continuous. O

Theorem 5.3.24. Let C' be a closed subset of a limit ordinal o, and
let F': o — « be a normal function. Then F[C] is closed.

Proof. Assume that C is a closed subset of the limit ordinal «
and F' : @ — «a is normal. Let B C F[C] be bounded in «. Since
F is strictly increasing, it is one-to-one, and furthermore z < F(x)
for all z € a. (See the exercises.) It follows that B = F[A], where
A = F~YB]. A must be bounded in « since B is bounded and
x < F(x) for all z € a. Thus, [JA € C. Since F is continuous,
UF[A] = F(UA) € F[C], and therefore | J B € F[C]. O

We conclude the section with a brief discussion of fixed points,
which are important for the study of cardinal numbers.

Definition 5.3.25. For any function f and any element x of the
domain of f, we say that x is a fized point of f if f(x) = x.

Recall that 2 + w = 2 - w = 2“ in ordinal arithmetic. We can
interpret this to mean that w is a fixed point of the function f(z) =
2 + x, as well as the functions 2 - x and 2%. In fact, w is the least
fized point of 2+ x and of 2%. 2-0 =0, so 0 is a fixed point of 2 - z.
We may define larger ordinals as least fixed points of certain natural
functions.

Proposition 5.3.26.

1. w? is the least fized point of the function f(x) =
2. w¥ is the least fized point of the function f(x) =

+x.
- x.
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Proof. We give the proof of the first part and leave the second
part as an exercise. To see that w? is a fixed point of f, note that
wr=J,w-nsothat w+w? =, wt+w-n=,w-(n+1)=w?

We see that w? is the least fixed point as follows. Let < w?.

Then by the Division Lemma, we can write x = w - m + n for
some m,n € w. It follows that w + 2 = w - (m + 1) + n so that
z < f(z). O

This notion may be used to define certain countable ordinals. For
example, we let €y be the least fixed point of the function f(z) = w”.
To see that €g exists, just recursively define a function £’ with domain
w by letting F(0) = w and F(n 4 1) = w¥™ for each n. Then F
exists by Theorem 4.3.27 and we let ¢ = |J,, F'(n). Clearly, € is a
limit, since F(n) < F(n + 1) for each n. Now, w® = wUn () =
U, @™ =, F(n + 1) = €. The ordinal ¢ has been of great
interest in computability and logic.

A similar argument shows that any normal function has a fixed
point. This is left as an exercise.

Exercises for Section 5.3

Exercise 5.3.1. Show that for all 8, 0+ 5 = 5.

Exercise 5.3.2. Show that for all a;, 8, and 7, 8 < v implies f+a <
v+ o

Exercise 5.3.3. Prove that for all ordinals a and 3, a < S if and
only if there exists v > 0 such that § = a + 7.

Exercise 5.3.4. Prove that for all limit ordinals A and all o < A,
a+w <\

Exercise 5.3.5. Show that for all o and all limit ordinals A\, o + A
is a limit ordinal.

Exercise 5.3.6. Define an ordering on w which is isomorphic to
w-3+5.

Exercise 5.3.7. Prove that ordinal multiplication is associative.
Exercise 5.3.8. Show that for all 5,0-=0and 1-8 = /.

Exercise 5.3.9. Show that for all « > 0, 3, and v, 8 < v implies
a-f<a-.
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Exercise 5.3.10. Show that for all «, 8, and ~, 8 < ~ implies
fra<y- o

Exercise 5.3.11. Finish the proof of the Division Lemma by show-
ing the uniqueness of the ordinal ¢ in the statement of the result.

Exercise 5.3.12. Prove that for all a, 8,7, a- (B+7) = a-B+a-7.

Exercise 5.3.13. Define an ordering on w which is isomorphic to
W=ww-w.

Exercise 5.3.14. Show that for all o and all limit ordinals A, a - A
is a limit ordinal.

Exercise 5.3.15. Show that for all limit ordinals A, there exists «
such that A = w - a.

Exercise 5.3.16. Show that for all limit ordinals A, 2- A = A.
Exercise 5.3.17. Prove that 17 = 1 for all ordinals £.

Exercise 5.3.18. Prove that o is a limit ordinal for any o > 2 and
any limit ordinal A. Hint: Use the previous exercise.

Exercise 5.3.19. Show that for all « > 2, all § and ~, 5 < y implies
af < al.

Exercise 5.3.20. Show that for all «, all 8 > 0 and ~, 8 < 7 implies
pE <.
Exercise 5.3.21. Show that for all a # 0, a®7 = (a”)7.

Exercise 5.3.22. Finish the proof of the Logarithm Lemma by
showing the uniqueness of the ordinal v in the statement of the result.

Exercise 5.3.23. Prove that the Cantor Normal Form is unique.

Exercise 5.3.24. Show that the set {w" : n € w} is closed and
unbounded in w*.

Exercise 5.3.25. Define the class function F' by letting F(z) = w-x
for any ordinal z. Show that F' is normal.

Exercise 5.3.26. Define the class function G by letting G(z) =
2 + w - x for any ordinal x. Show that F' is strictly increasing but is
not continuous.
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Exercise 5.3.27. Show that if a function F': Ord — Ord is strictly
increasing, then F' is one-to-one and z < F(z) for all ordinals z.
Show that this also holds for F': & — «, where « is a limit ordinal.

Exercise 5.3.28. Suppose that F': Ord — Ord and G : Ord — Ord
are normal. Show that the composition F' o G is also normal.

Exercise 5.3.29. Show that w® is the least fixed point of the func-
tion f(z) =w - .

Exercise 5.3.30. For any normal class function F': Ord — Ord and
any ordinal «, there exist an ordinal 8 > « such that F(3) = S.

5.4 Ordinals and Well-Orderings

Recall that a well-ordering is a linear ordering < on a set x which in
addition satisfies the condition that every non-empty subset a C x
has a <-least element, i.e. an element u such that the conjunction
v € a and v < u implies v = u.

It is clear that every ordinal is a well-ordering: Every subset of an
ordinal has an €-minimal element by the Axiom of Regularity, and
by the linearity of €, this is in fact an €-smallest element. The next
theorem shows that up to isomorphism, the ordinals are the only
well-orderings.

Theorem 5.4.1. Fvery well-ordering s isomorphic to a unique
ordinal.

Proof. The uniqueness part follows from the rigidity of ordinals,
i.e. Theorem 5.1.5. For the existence part, let < be a well-ordering
on a set x. By transfinite recursion define a class function G on the
class of all ordinals by letting G(«) be the <-least element of the
set z\ Rng(G | «) if the latter set is non-empty, and G(«) = trash
otherwise. We show that there is an ordinal « such that G(a) =
trash, and for the least such ordinal «, the function G [ o : o — x
is an isomorphism of linear orders.

Suppose for contradiction that there is no ordinal « such that
G(a) = trash. Then G is an injection from the proper class
of all ordinals to the set x. Such an injection does not exist by
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Exercise 3.7.3. This contradiction proves the existence of an ordi-
nal a such that G(«) = trash.

Now, let a be the smallest ordinal such that G(«) = trash, and
consider the function G | «. Its domain is equal to «. Its range must
be equal to x as this is the only way that G(a) = trash can occur.
To conclude the proof, it will be enough to show that G | « preserves
the ordering given by €.

Suppose for contradiction that G | o does not preserve this order-
ing. Then there must be ordinals v € 8 € a such that G(8) < G(v).
But then, G(8) ¢ Rng(G | 8) 2 Rng(G | ). Therefore, by the
recursive definition of G at v, the element G(3) € z or something
even smaller than it should have been picked as the value of G(7).
This is a contradiction. O

Note the use of the Axiom Schema of Replacement, via Exercise 3.7.3,
in the above proof. The theorem cannot be proved without it. The
development of ordinals is one of the reasons why Replacement was
incorporated into ZFC.

We define the order type of a well-ordering to be the unique ordi-
nal given by Theorem 5.4.1.

Here is a property of ordinals that is needed in Chapter 6.

Proposition 5.4.2. For any ordinal v and any subset A of v, the
order type of (A, €) is < 7.

Proof. Let the ordinal v and A C v be given. Let « be the order
type of (A, €) and let f: @ — A be the canonical isomorphism as in
Theorem 5.4.1. We claim that, for all 8 < a, 5 < f(B).

Base Step. For =0, clearly 8 =0 < f(5).

Successor Step. Suppose that 5 < f(f). Since f is an order iso-
morphism and f < f + 1, it follows that f(8) < f(8 + 1). Thus,
B < f(B+1),and hence B+ 1< f(B+1).

Limit Step. Let A be a limit and suppose by induction that 8 < f(5)
for all B < A. Since f is an order isomorphism, this implies that
B < f(A) for all B < A, and hence A < f(A).

Since f : @« =& A and A C ~, it follows that, for all § < «,
B < f(8) < 7. Thus, @ < 7. O
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We can generalize the addition of two well-orderings to an infinite
sum. First, given an infinite sequence «q, aq, ... of ordinals, we can
define the sum ), o; as |J;., @0 + a1 + - -+ + ;. This will be an
ordinal and, if each «; is countable, the sum will also be countable.

We can also define the infinite disjoint union of a sequence
(Ao, Ro), (A1, Ry),... of orderings, written as €,__ (A;, R;) to have
universe | J; {7} x A; and be ordered so that

i<w(

1. for i < j, (i,a) < (4,b) for all @ € A; and all b € A; and
2. for each i and each a,b € A, (i,a) < (i,b) if and only if aR;b.

Proposition 5.4.3. Suppose that (Ao, Ry), (A1, R1),... is an infi-
nite sequence of well-ordered sets and each (A;, R;) is isomorphic to
an ordinal ;. Then @,(A;, R;) is isomorphic to ) . ;.

The proof is left as an exercise.

Lemma 5.4.4. For any countable limit ordinal X, there is an infinite
sequence By < 1 < ... such that X\ = J; B; and there is an infinite
sequence o, a1, ... such that A=), ;.

Proof. Since A is countable, there is a bijection f : w — A. It
follows that A\ = |J; f(i). For each 4, let §; = U,.; f(n) so that
A = |; Bi as desired. Now, use the subtraction lemma to get «;
such that g = Py and, for all ¢, ;41 = B; + ajr1. It follows that
A= Zz ;. ]

Theorem 5.4.5. For any countable ordinal c, there is a subset P of
Q such that a is isomorphic to (P, <) under the standard ordering
of the rationals.

Proof. We begin with two observations. First, (Q, <) is order iso-
morphic to Q N (—1,1) via the mapping f(x) = %m Second, it
is sufficient to show that there is an embedding from « into (Q, <)
since then o would be isomorphic to the image of this embedding.

We proceed by transfinite induction.
Base Step. For a =0, let P = {).

Successor Step. Let o be isomorphic to (P, <), where P C QN(—1,1).
Then « + 1 is isomorphic to P U {1}.
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Limit Step. Let A be a countable limit ordinal and assume by induc-
tion that for each o < A, there is an embedding of « into Q.
By Lemma 5.4.4, we have a sequence aqg,ag,... with each a; < A
such that A = >, ;. By induction, there are subsets P; of Q iso-
morphic to «; for each i. We may assume without loss of generality
that P; C (i,i + 2) N Q for each 4. It follows that A is isomorphic
to @;P; which is in fact isomorphic to |J, P; since the sets P; are
pairwise disjoint and already ordered with P; preceding P; for each
1<]. O
Example 5.4.6. Let Py = {n+1—-27% : nk € w} =
{0, %, %, o1 %, %, ...,2,...}. This has order type w?. Observe that
this is a closed subset of the real numbers. Consider the following
two subsets of Py. P, = {z € Py : x > 1} is closed and has order
type w?. Py = {2n+ 1 —27% : n,k € w} also has order type w? but
is not closed, since it contains every 1 — 2% but does not contain 1.

It is natural to consider a connection between well-ordered closed
sets of real numbers and closed sets of ordinals.

Proposition 5.4.7. Let S be a well-ordered subset of R and let ®
map S to its order type . Then P is a closed subset of S if and only
if ®[P] is a closed subset of c.

Proof. Let P be a subset of the well-ordered set S of real numbers
and let ® : S — o map S to its order type «. Suppose first that P is
closed and let /31, B2, ... be an increasing sequence of ordinals in ®[P]
which converges to an ordinal 8 < «. Let x; be chosen, for i € w,
so that ®(x;) = 3;, and let ®(y) = . Then (z;)ic, is an increasing
sequence and it follows that y = lim; .~ x;. Since P is closed, y € P
and therefore § = ®(y) € ®[P).

For the converse, suppose that ®[P] is closed and let x1,xo,...
be an increasing sequence of elements of P, bounded by some z € P.
Then lim;e, x; = y for some y < z. Let 5; = ®(x;) for each i € w.
Then f; is an increasing sequence and must have a limit § < ®(z).
Since ®[P] is closed, g € ®[P]. It follows that § = ®[y] and therefore
y e P. O

Theorem 5.4.8. Any well-ordered subset of R is countable.

Proof. Let P be a subset of R well-ordered under the standard
ordering; without loss of generality, we may assume that P C (0, 1)
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and that P has no maximal element. Assume by way of contradiction
that P is uncountable. For each x € P, let 2’ be the successor of x
in P, that is, the least element of {y € P : x < y}. Then for each
x € P, 2’ —x > 0 and hence 2/ — z > % for some positive integer
n. Let P, = {x € P: a2’ —x > 1} Then P = J, P,. Since P
is uncountable, it follows that, for some n, P, is infinite. Now, let
xo be the least element of P, and, for each i, let x;11 be the least
element of P, which is greater than z;. Then, for each i, z;1; > 2}
and it follows that z;4+; —x; > % But this implies that z,, —zg > 1,
contradicting our assumption that P C (0, 1). O

Exercise for Section 5.4

Exercise 5.4.1. Suppose that (A, Ry), (A1, R1),... is an infinite

sequence of well-ordered sets and each (A;, R;) is isomorphic to an

ordinal ;. Then @, (A;, R;) is isomorphic to ), ;.

Exercise 5.4.2. Find a well-ordered set of rationals with order type
2

W+ w.

Exercise 5.4.3. Find a well-ordered set of rationals with order
type w3,
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Chapter 6

Cardinality and the Axiom of Choice

In this chapter, we present several principles which are equivalent
to the Axiom of Choice, as well as applications of these principles.
In particular, the Axiom of Choice implies that every set is isomor-
phic to a cardinal number and this makes working with cardinality
much smoother. We define cofinality and regularity, limit and suc-
cessor cardinals. Then we introduce inaccessible cardinals, which are
the beginning of a vast array of large cardinals, which play a very
important role in set theory. There is also an introduction to cardinal
arithmetic.

6.1 Equivalent Versions of the Axiom of Choice

In this section, we look at several equivalent versions of the Axiom of
Choice. To prove that these are equivalent, we appeal to transfinite
recursion. The first version is the famous Well-Ordering Principle of
Zermelo [12].

Definition 6.1.1. The Well-Ordering Principle is the statement
“every set can be well-ordered”.

Theorem 6.1.2 (Zermelo). The following are equivalent on the
basis of ZF axioms:

1. the Aziom of Choice;
2. the Well-Ordering Principle.

109
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Proof. (1) implies (2) is the more difficult implication. Assume
the Axiom of Choice. Let & be an arbitrary set. It is enough to
show that there is a bijection between x and an ordinal. Let h be
a selector function on P(z) \ {0} as guaranteed by the Axiom of
Choice. By transfinite recursion define a class function G on ordinals
by G(a) = h(z \ rng(G | «)) if the set x \ rng(G [ «) is non-empty,
and G(«) = trash otherwise.

There must be an ordinal 8 such that G(5) = trash, otherwise G
would be an injection from the proper class of all ordinals to the set
x. Such injections do not exist though by the result of Exercise 3.7.3.
Let 8 be the smallest ordinal such that G | 5 = trash. We will show
that G [ 5 is a bijection between x and . This will prove (2).

First of all, G [ B is a function with domain 8 by its definition.
Its range must be equal to x, since there is no other way that G(5) =
trash could occur. Finally, G | 8 is an injection. If this failed, there
would have to be ordinals 6 € v € 8 such that G(0) = G(vy) € z;
however, this contradicts the recursive definition of the value G(v)
which cannot belong to rng(G | v), and therefore cannot be equal to
G(9).

To prove that (2) implies (1), assume that the Well-Ordering Prin-
ciple holds. To verify the Axiom of Choice, let x be a collection of
nonempty sets. To produce a selector on x, just use the Well-Ordering
Principle to find a well-ordering on |Jz, and let f be the function
such that Dmn(f) =  and f(y) is the <-least element of y, whenever
y € x. This proves (1). a

Now, we come to another equivalent of the Axiom of Choice, the
very important Zorn’s Lemma. It is the most commonly used form of
the Axiom of Choice in mathematics, since its use does not require
technical tools such as transfinite recursion.

Recall that an element p of a partially ordered set (P, <) is max-
imal if there is no element ¢ € P strictly larger than p. An element
p of P is an upper bound for a subset A of P if ¢ < p for every
q e A.

Definition 6.1.3. Zorn’s Lemma is the following statement. When-
ever (P, <) is a non-empty partially ordered set such that every lin-
early ordered subset of P has an upper bound, then P has a maximal
element.
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Theorem 6.1.4 (Kuratowski [5]). The following are equivalent
on the basis of axioms of ZF set theory:

1. the Axiom of Choice;
2. Zorn’s Lemma.

Proof. We start with the implication (1) — (2). Let P be a par-
tially ordered set. Let trash be a set which is not an element of P.
Use the Axiom of Choice to find a selector h on the set P(P) \ {0}.
By transfinite recursion define a class function GG on ordinals by the
equation G(«) = h(ay), where aq, = {p € P: (V5 € a) G(B) < p} if
the set a, C P is non-empty, and G(«) = trash otherwise.

As in the previous proofs, there must be an ordinal 3 such that
G(f) = trash; otherwise, the function G would be an injection from
the proper class of all ordinals to the set P, an impossibility by
Exercise 3.7.3. Let 5 be the €-smallest ordinal such that G(3) =
trash. We prove that 3 is a successor ordinal, § = v+ 1 for some ~,
and G(7v) is a maximal element of P.

To this end, observe that the recursion formula implies that the
map G | B is a strictly increasing function from g to P; every value of
G is larger than all the previous values. As a result, the set G[5] C P
is linearly ordered, and by the assumption on the partial ordering P,
it has an upper bound p. Note that necessarily p € G[3] must hold
because otherwise the set ag is nonempty, containing at least p, and
then G() would not be equal to trash. The only way that p € G[f]
can occur is that there is a largest ordinal v € 5, and G(v) = p.

To show that p is maximal in P, suppose for contradiction that
it is not and that there is a strictly larger element r € P. Then, the
set ag is non-empty, containing at least r, and so G() would not be
equal to trash. This contradiction completes the proof of that (1)
implies (2).

For the implication (2)—(1), assume that Zorn’s Lemma holds.
Let x be a set of non-empty sets. To confirm the Axiom of Choice,
we must produce a selector for x. Consider the partially ordered set
P of all functions f such that Dmn(f) C z, and for all y € Dmn(f),
f(y) € y. The ordering on P is inclusion: f < g if f C g. Every
linearly ordered subset of P has an upper bound: If a« C P is a
collection linearly ordered by inclusion, then |Ja € P is the upper
bound. By an application of Zorn’s lemma, the partially ordered set
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P must have a maximal element, call it h. We show that h is a selector
on .

Indeed, suppose for contradiction that A is not a selector on x.
The only way that can happen is that Dmn(h) # z. Let y € = be
some set not in the domain of h. Let z € y be an arbitrary element.
Consider the set f = hU {(y,2)}. It is clear that f is an element of
the partially ordered set P, h C f, and h # f. This contradicts the
maximal choice of A and completes the proof of the theorem. O

There are two variations of Zorn’s Lemma which turn out to be
equivalent to the Axiom of Choice.

Definition 6.1.5. Hausdorff’s Maximal Principle states that any
chain in a partially ordered set may be extended to a maximal chain.

Definition 6.1.6. Kuratowski’s Principle is the following statement:
Let Z be a family of sets, such that for every linearly ordered family
C CZ,|JC € Z. Then Z contains a maximal set, under inclusion.

Kuratowski’s principle follows from Zorn’s Lemma as a special
case when the partial order is given by set inclusion.

Exercises for Section 6.1

Exercise 6.1.1. Show that Kuratowski’s Principle is equivalent to
Zorn’s Lemma. Hint: Examine the proof of Theorem 6.1.4.

Exercise 6.1.2. Show that Hausdorfl’s Maximal Principle is equiv-
alent to Zorn’s Lemma. Hint: Consider the family of chains partially
ordered by set inclusion.

Exercise 6.1.3. Let A be a p.o. set such that every chain in A has a
maximal element and let F': A — A be a function such that f(a) > a
for all @ € A. Prove that F' has a fized point ¢ such that f(c) = c.

6.2 Applications of the Axiom of Choice

Since Zorn’s Lemma is such a common presence in many mathemati-
cal arguments, at least one application of it is called for. Note the typ-
ical form of the argument: A complicated object is to be constructed.
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The partially ordered set to which Zorn’s Lemma is applied consists
of approximations to such an object, and a maximal approximation
(granted by Zorn’s Lemma) is the object that we want. We provide
some typical examples of this procedure.

Recall that a basis for a vector space V over a field F' may be
characterized as a maximal independent set. Here we say that a set
B of vectors is independent if there is no non-trivial finite linear
combination c¢iv1 + -+ + ¢,v, of vectors from B, with coefficients
from F', which equals the zero vector. We say that a set B of vectors
from V is a spanning set if any v € V may be represented as a linear
combination ¢jvy + - - - + ¢, v, of vectors from B. The usual definition
of a basis is a set which is both independent and spanning. It is easy
to see that a maximal independent set must also be a spanning set
and hence a basis.

Theorem 6.2.1. (AC) Every vector space V' has a basis.

Proof. Let (P, C) be the partially ordered set of independent sets
of vectors from V', ordered by inclusion. Let us verify that the union
of a chain of independent sets is independent. Suppose that C' is a
chain of independent sets of vectors and let vy,...,v, € (JC. For
each i, there are A; € C' with v; € A;. Since C' is a chain, there must
be some k such that each A; C Ay, and hence each v; € Aj. Since Ay,
is independent, there can be no non-trivial linear combination cjv; +
<+« 4 ¢, = 0. Thus, [JC is independent. Now, by Zorn’s Lemma,
P has a maximal element, that is, a maximal independent set. [

Definition 6.2.2. Let x be a set. A filter on x is a set F' C P(x)
which is closed under supersets, that is,

(Vy e F)(Vz C )|y Cz— z € F],
and closed under intersections, that is,
(Vy € F)(Vz € F)lynz € FJ,

and does not contain the empty set. An ideal on z is a set I C P(x)
which is closed under subsets and unions and does not contain x.

It should be clear that the notions of filter and ideal are in a sense
dual: If F' is a filter on a set x, then I = {z\y: y € F'} is an ideal on
x, and moreover, if I is an ideal on a set z, then F = {z \ y: y € I}
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is a filter on x. A filter typically serves as a measure of largeness of
a subset of x, while an ideal serves as a notion of smallness.

Example 6.2.3. The Fréchet ideal on an infinite set x is the collec-
tion of all finite subsets of x.

Example 6.2.4. The density zero ideal on w is the set of all sets
. . . N .
a C w whose upper asymptotic density limsup,, IQT”‘ is equal to

Z€ro.

In many circumstances, one would like to use a filter on a set x
which for every set y C x decides whether y is large or small, as in
the following definition:

Definition 6.2.5. A filter F' on a set x is an ultrafilter if for every
set y Cx,y € Fora\y € F. The ideal dual to an ultrafilter is a
mazximal ideal. An ideal is said to be prime if whenever a Vb € I,
then either a € I or b € I.

Note that an ideal I on a set x is prime if and only if it is maximal.
This is Exercise 6.2.4. The catch is, how do we find an ultrafilter?
There is a rather obvious and useless type of ultrafilter: the principal
kind. An ultrafilter F'is principal if there is an element ¢ € x such that
y € F if and only if ¢ € y. Are there any non-principal ultrafilters?
This is equivalent to the existence of a maximal ideal. The Axiom of
Choice yields a positive answer:

Theorem 6.2.6 (Prime Ideal Theorem). (AC) There is a non-
principal ultrafilter on every infinite set.

Proof. Let z be an infinite set. Let P be the poset of all filters on x
which do not contain any finite sets. The ordering on P is inclusion.
We use Zorn’s Lemma to produce a maximal element in P. Then, we
show that this maximal element is a non-principal ultrafilter.

First, observe that P is a non-empty poset. For this, consider
F = {y C x: z\ y is finite}. It is easy to check that F' is a filter.
Since z is infinite, 0 ¢ F'. Since the union of finite sets is finite, F' is
closed under intersections. As a subset of a finite set is finite again,
F' is closed under supersets. Lastly, since x is infinite, F' contains no
finite sets.
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Second, observe that every linearly ordered set a C P has an
upper bound. This upper bound is |Ja. To verify that | Ja is indeed
an element of P, observe the following:

e Ja contains no finite sets as no filters in a contain any finite sets.

e To check the closure of a under supersets, let y C x be an element
of [ Ja and y C z be a subset of x. Choose F' € a such that y € F.
Since F is a filter, z € F and so z € Ja.

e To check the closure of | Ja under intersections, we finally use
linearity of a. Suppose that y, 2z € [Ja and F,G € a are such that
y € F and z € G. By linearity of a, either F' C G or G C F holds.
For definiteness, suppose F' C G. Then y € G, and since G is a
filter closed under intersections, y Nz € G and so yNz € (Ja as
required.

Now, Zorn’s Lemma shows that the poset P has a maximal element
F. Let z = yU z be a partition; we show that either y € F or z € F.

Claim 6.2.7. Fither Yu € F uNy is infinite or Vu € F u Nz is
infinite.

Proof. If both of the disjuncts failed, then there would be sets
Uy, u, € F such that u, Ny is finite and w, N z is finite. Consider the
set u = uy Nu,. Since F' is closed under intersections, u € F'. Since
x =y U z, it must be the case that u C (uy Ny) U (u, N 2z). This is
a union of two finite sets and therefore finite. This contradicts the
assumption that elements of P contain no finite sets. O

Now, one of the disjuncts in the claim must hold; for defi-
niteness, assume that, for all v € F, u Ny is infinite. Consider
G={vCux: (Jue F)uny Cv}. This is a filter containing no finite
sets, containing F' as a subset, and y as an element. By the maxi-
mality assumption, it must be the case that F' = G. Thus, y € F as
required. O

Exercises for Section 6.2

Exercise 6.2.1. Let (A4, <) be a well-ordering on a set A. Let B C A
be any set. Prove that B equipped by the ordering inherited from A
is again a well-ordering.



116 Set Theory and Foundations of Mathematics (Second Edition) — Volume I

Exercise 6.2.2. Let < be a linear ordering. Show that the following
are equivalent:

1. <is a well-ordering.
2. There is no infinite strictly descending sequence xg > z1 > xo >
- in the ordering given by <.

Exercise 6.2.3. Show that if an ultrafilter contains a finite set, then
it is in fact principal.

Exercise 6.2.4.

1. Show that a filter [ is an ultrafilter if and only if, for any two sets
A and B, if AUB € F, then either A€ For Be F.

2. Show the dual result, that an ideal I is maximal if and only if for
any two sets A and B, if AN B € I, then either A€ [ or B € [.

Exercise 6.2.5. For any non-empty subset C' of A, Fo = {B €
P(A) : C C B} is a filter.

Exercise 6.2.6. Show that for a finite set A, every filter on I’ has
the form F¢ for some C.

Exercise 6.2.7. Show that every proper filter on a set x can be
extended to an ultrafilter.

Exercise 6.2.8. Let (P, <) be a partial ordering. Show that there is
a set A C P such that any two elements of A are incomparable in <
and for every p € P there is ¢ € A such that p, ¢ are comparable.

Exercise 6.2.9. Show that any partial ordering on a set A may be
extended to a linear ordering of A.

Exercise 6.2.10. Show that any ideal [ in a ring R with unity may
be extended to a maximal ideal, that is, an ideal M such that there
is no ideal J with M C J C R except for M and R.

6.3 Cardinal Numbers

The purpose of this section is to further develop the theory of car-
dinalities under the Axiom of Choice. In particular, we identify a
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canonical representative for each cardinality and show that cardinal-
ities are linearly ordered.

Definition 6.3.1. A cardinal number, or cardinal for short, is an
ordinal number which is not in a bijective correspondence with any
ordinal number smaller than it.

In particular, every natural number as well as w is a cardinal num-
ber. In set-theoretic literature, cardinals are typically denoted by
lowercase Greek letters such as k, A\, u, . . . .

Example 6.3.2. No infinite successor ordinal can be a cardinal. To
see this, let & > w be an ordinal. Then we may define a bijection
from a onto aw+ 1 = a U {a} by mapping 0 to «, mapping n + 1 to
n for n € w, and mapping S to § for w < § < a.

Recall that in Definition 4.4.1 of Section 4.4, the notion of cardi-
nality was defined as an equivalence relation. We defined

|z| =|y| <= there is an bijection from z to y.

Thus, we may view |z| as the equivalence class of = under the
cardinality equivalence relation. The following theorem shows that,
assuming the Axiom of Choice, every set is equivalent to a cardinal
number under this equivalence relation.

Theorem 6.3.3. (AC) Every set is a bijective image of a unique
cardinal number.

Proof. Let x be any set. Let a be the class of all ordinal numbers
which are bijective images of x. Observe that a is non-empty: By
Zermelo’s Well-Ordering Principle,  can be well-ordered and the
well-ordering on it is isomorphic to some ordinal. The isomorphism
is then a bijective function between x and the ordinal.

Now, the class a must have an €-least element. By the definition
of a, this minimum of « is a cardinal number. This shows that x is
in bijective correspondence with some cardinal number. The unique-
ness of this cardinal number follows easily: If x, A are cardinals such
that |k| = |z| = |A|, then k and A are in a bijective correspondence.
This excludes both K € A and A € k by the definition of a cardi-
nal number, and by the linearity of ordering of the ordinal numbers
(Theorem 5.1.3), K = A is the only option left. O
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We define the cardinality of a set x to be the unique cardinal
given by Theorem 6.3.3.

Lemma 6.3.4.

1. For any cardinals k and X, || < || <= Kk <A
2. For any sets x,y and any cardinals k,\ such that |z| = k and
lyl = A, [z < |y| if and only if K < A.

Proof. Let sets x,y and cardinals x and A be given.

For part (1), suppose first that || < |A|. Then there is an injec-
tion h : k — A. Let A = hlk] C X and let a be the order type of
(A, €). Now, k is set isomorphic to A via the map h and hence is set
isomorphic to «. Since k is a cardinal, it follows that x < «. Now,
a < X by Proposition 5.4.2, and therefore k < A.

Suppose next that £ < A. Then the identity is an injection from
k into A and hence |x| < |A].

For part (2), let f: kK — x and g : y — X be set isomorphisms. For
the first direction, suppose that || < |y|. Then there is an injection
1 :x — y. It follows that goio f : Kk — A is an injection, and therefore
|k| < |A|l. Then by part (1), k < A

For the other direction, suppose that £ < A. Then g~ to f~1: 2 —
y is an injection so that |z| < |y|. O

Recall the Trichotomy Property of a linear order < with corre-
sponding strict order < states that, for any x,y, exactly one of the
following holds: x < y, y < z, or x = y. For the relation |z| < |y| on
the cardinality classes, the relation |z| < |y| is given by |z| < |y| but
not |y| < |z|, that is, there is an injection from x into y but no injec-
tion from y into x. Here is the Trichotomy Property for cardinality.

Corollary 6.3.5. (AC) Whenever z,y are sets, then exactly one of
the following holds:

L fz] < yl;
2. |yl < |zl;
3. x| = |yl

Proof. Let sets z,y be given. Let k, A be cardinals such that |k| =
|z| and |A| = |y|. Since the ordinal numbers are linearly ordered,
by Theorem 5.1.3, it follows that exactly one of the following holds:
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Kk < A, A< K,or A = k. Now, by Lemma 6.3.4, we have |z| < |y| <
K< |yl <lz| <= A<k,and |z|=ly| < k= A\ 0

Thus, under the Axiom of Choice, cardinalities are linearly
ordered (even well-ordered), and the cardinal numbers are canoni-
cal representatives of cardinalities.

We now pause to consider the converse of Corollary 6.3.5. Here
are two more statements equivalent to the Axiom of Choice:

e The Injection Principle: For any sets A and B, there is either an
injection from A into B or there is an injection from B into A.

e The Mapping Principle: For any sets A and B, there is either a
surjection from A into B or there is a surjection from B onto A.

It is easy to see that whenever there is an injection from A into
B, then there is a surjection from B onto A. This is Exercise 6.3.2.
It follows that the Injection Principle implies the Mapping Principle.
The following lemmas are connected with showing that the Map-

ping Principle and the Injection Principle are equivalent to the Axiom
of Choice.

Lemma 6.3.6. For any set x, let T'(x) be the set of ordinals « such
that |a| < x}. Then I'(z) is a set and is in fact the least ordinal
which does not map 1-to-1 into x.

Proof. By definition, || < x if and only if there is an injection
from a to x, which will induce a well-ordering on a subset of x.
Thus, the set of well-orderings on subsets of x maps onto I'(z), mak-
ing it a set by Replacement. The second conclusion is left as an
exercise. O

We observe that I'(w) will be the first uncountable cardinal N;. A
more general result is given in 6.3.10.

Lemma 6.3.7. If there is a mapping from A onto B, then there is
an injection from P(B) to P(A).

Proof. Suppose g maps A onto B. Definite the mapping f :
P(B) — P(A) by

J(H) =g (1) ={a € A: g(a) € 1}.
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To see that this is an injection, suppose that s # t. Without loss of
generality, there is some b € s\ t; let g(a) = b. Then a € f(s), but

a ¢ f(t). So, f(s) # f(1). -

Proposition 6.3.8. The following are equivalent:

1. The Axiom of Choice;
2. The Injection Principle;
3. The Mapping Principle.

Proof. We have (1) implies (2) by Corollary 6.3.5 and we have (2)
implies (3) by Exercise 6.3.2. It remains to show that (3) implies (1).
Assume the Mapping Principle and let A be an arbitrary set. We
show that A can be well ordered. This implies the Axiom of Choice,
by Theorem 6.1.2. It follows from the Mapping Principle that, for
any ordinal «, there is a surjection g, either from « onto A or from
A onto «. Suppose first that there is some « such that g, maps «
onto A. Then define an injection from A into « by letting f(x) be
the least S < « such that g() = x. This induces a well-ordering of
A, where a < b < f(a) < f(b).

Next, suppose that, for every ordinal «, g, maps A onto «. For
each «, let A, = {g;'(B) : B < a} be well ordered by having
g1 (B) < g5t (y) <= B < ~. Each A, is a subset of P(A) and
has order type «, so for each a, there is a well-ordering of a subset
of P(A) of order type a.. Now, let W4 be the set of well-orderings of
subsets of P(A). Then the mapping taking each R € W4 to its order
type maps the set W4 onto the class of ordinals, violating the Axiom
of Replacement. O

In order to justify the existence of the first infinite ordinal, w, as
a set, it was necessary to introduce the Axiom of Infinity. We have
now obtained some understanding of the countable ordinals, such as
w, w- 3, w, and so on. Thus, we can imagine the first uncountable
cardinal w; (also known as W) as the class of all countable ordinals.
The question now is whether another axiom is needed to justify that
w1 exists as a set. It turns out that the Axiom of Replacement is suf-
ficient to prove this. There is in fact an enormous supply of cardinal
numbers, as described in the following theorem.

Lemma 6.3.9. For any cardinal number k and any ordinal X\, A has
cardinality k if and only if there is a well-ordering of k which has
order type .
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Proof. Suppose first that R is a well-ordering of « of order type A.
Then the function G : A — k described in Theorem 5.4.1 is an
isomorphism, showing that x and A have the same cardinality .
Suppose next that A has cardinality . Then there must be an
isomorphism G : K — A. This will induce a well-ordering R on k of
type A\, where aRf <= G(a) < G(f). O

Theorem 6.3.10 (Hartog’s Lemma). For any cardinal number
K, there exists a cardinal k™ which is the immediate successor of k,
as a cardinal. That is, kK < kT and there is no cardinal X\ with
k< A<KT.

Proof. If x is finite, then k™ = k + 1. Let the cardinal number
k > w be given and let A be the set of well-orderings R of x. Since
k is a limit ordinal, each pair in R belongs to V, so that R C V,
and hence R € V,.41. So, A € V.49 is indeed a set by Comprehen-
sion. Now, consider the function G mapping each well-ordering R
in A to its order type. The image G[A] must be the set of all ordi-
nals having cardinality x. We claim that v = |J G[A] is the desired
cardinal ™. Certainly, x < 7 since the standard ordering on x has
order type k. If K < A < ~, then by definition of 7, there must
be a well-ordering of s of type A, and hence \ has cardinality x by
Lemma 6.3.9. O

It follows from Theorem 6.3.10 that the cardinal w; equals w™
and hence is a set.

There is an alternative proof of the existence of uncountable cardi-
nals using the Axiom of Choice. Fix a cardinal A. By Theorem 4.4.8,
|P(N\)] > A. By the Axiom of Choice, there is a cardinal number &
such that || = [P(A\)| = 2* and therefore A < k.

We may now use Theorem 5.3.1 to define an enumeration of the
cardinals as follows:

Definition 6.3.11. The class function mapping ordinals to cardinals
is given by the following:

1. NO = W.
2. For each ordinal o, 8,41 = N7,

3. For each limit ordinal A, Xy = [J,, Ra-

It follows by induction on ordinals that every infinite cardinal
equals Ng for some ordinal 3.
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An alternative sequence of cardinals may be defined using 2" in
place of kT, as follows:

Definition 6.3.12. The class function 3, mapping ordinals to car-
dinals is given by the following:

1. :0 = W.
2. For each ordinal o, Jpqq = 27,
3. For each limit ordinal A, 3y = {J .y Sa-

Definition 6.3.13. Let A be an infinite cardinal.

1. \is successor cardinal if A\ = kT for some cardinal .
2. \is a limit cardinal if for all cardinals k < A\, kT < \.
3. Ais a strong limit cardinal if, for all cardinals kK < A, 2% < A.

Example 6.3.14. For each n, X, 11 = NI is a successor cardinal. The
cardinal 8, = |J,, N, is a limit cardinal. The cardinal 3, = J,, 3, is
a strong limit cardinal.

Next, we briefly consider some cardinal arithmetic.

Definition 6.3.15. For two cardinals x and A, the cardinal sum
k+ A = |k @ Al and the the cardinal product s - A = |k x A|. The
cardinal exponent x* is the cardinality of the set x* of functions
mapping from A into k.

As we saw in Propositions 5.3.5 and 5.3.9, this means that the
cardinal sum and product of two cardinals are equal to the cardinality
of the ordinal sum and product. However, the ordinal exponent 2“ =
w, whereas the cardinal exponent 2“ is uncountable.

Proposition 6.3.16. For any infinite cardinal k, the cardinal sum
K+ K=K.

Proof. For the first equality, let £ be any limit ordinal and define
the bijection f:k® Kk — k by f(0,2) =2 -z and f(1,2) =2 -2+ 1.
We leave it as an exercise to show that this is one-to-one and onto.

]

Proposition 6.3.17. For any infinite cardinal , the cardinal prod-
uct K- K = K.
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Proof. The proof is by transfinite induction. For k = Xy = w, we
have an injection from w X w into w given by f(z,y) = 2* - 3Y.

For k > Ng, suppose by induction that A - A = A for all cardinals
A < k. Define a well-ordering on x x k by setting (a1, 1) < (a2, f2)
if and only if

(1) max{a, B} < max{as, B2}, or
(2) max{aq, /1} = max{ag, f2} and a1 < ag, or
(3) max{aq, /1} = max{ag, B2} and a1 = as and f; < fPo.

Note that when max{aq, 81} = max{as, B2}, the other two cases
just say that (aq, 1) precedes (ag, B2) in the lexicographic order.

We claim that the order type of this well-ordering is exactly
so that the natural mapping from x X k to the ordinals defined by
this well-ordering is an injection from x X k into k. This shows that
K+ Kk = K, as desired.

To check this claim, note that for each fixed pair («, ), there are
at most | max{a, 3} + 1)|? predecessors of («, 3), and | max{a, 8} +
1)]? < k by induction. Thus, each initial segment of the well-order
has order type < k. O

In Exercise 6.3.12, we consider an alternative proof of Proposition
6.3.17 using ordinal arithmetic.
More generally, we have the following;:

Proposition 6.3.18. For any infinite cardinals k and A\, Kk + X\ =
K- A = max{k, \}.

We can now generalize the result from Theorem 4.5.2 that (assum-
ing AC) a countable union of countable sets is countable.

Theorem 6.3.19. (AC) For any cardinals k and X\ and any sets
{Aq s a < A} such that |Ay| < k for all a < X, |Uper | S 5 A

Proof. Let s, A\, and {4, : @ < A} be given as above and let
A = Jyer Aa. For each a < A, let F,, be an injection from A, into
k. For each a € A, let a(a) be the least a < X such that a € A,
and let G(a) = (a(a), Fiy(4)(a)). Then G is an injection from A into
A x k. It follows that |A| < X\ - k. O

In particular, when k = A, we see that the union of x sets, each
of cardinality < k, has cardinality < k.
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We can also define infinite sums and products of cardinal numbers,
as we did for ordinal numbers.

Definition 6.3.20. For any indexed family {k; : i € I} of cardinals,
the sum ) o, ki = [D;c; mi| and [ ;e ki = [ Lies 5l

Example 6.3.21. ), ®; = R,,. To see this, we need to establish
the inequality in both directions. Certainly, X; < »°._ ®; for each
J < w and it follows that 8, < >, N;. For the other direction, we
can define an embedding of @, . N; into R, by mapping (i, ) to
N; + a.

Example 6.3.22. 1-2-3----=][,_ i+1= 2% For one inequal-
ity, define an embedding from {f : w — {0,1}} into [[, %+ 1 by
mapping f to the function g, where g(0) = 0, and g(i + 1) = (7).
Thus, [[,.,i+1> 2% The other inequality is left as an exercise.

Theorem 6.3.23. For any indexed families {k; : i € I} and {\; :
i € I} of cardinals, if k; < N; for alli € I, then Y, r ki < [Licr Ni-

Proof. This is essentially a diagonal argument. Let ' : @, k; —
Hie ;1 A\i be a possible isomorphism. For each ¢ and a < &, let F;
denote F'(i, ). Consider the mapping which takes o < k; to F; (i) €
Ai. Since k; < \;, Fj, cannot be onto, so for each i, there is some
Bi < A; such that Fj (i) # f3; for any o < k. Now, define f € [[;c; A
by f(i) = p;. We claim that f is not in the range of F. Suppose by
way of contradiction that f = Fj, for some ¢ and o < x;. Then we
would have F; (i) = f3;, contradicting the choice of f;. O

Finally, we come to the formulation of the question which was one
of the driving forces behind the development of modern set theory
from its beginnings. The original Continuum Hypothesis conjectured
that N; = 2¢, that is, J; = N;. The Generalized Continuum Hypoth-
esis conjectured that 3, = RN, for all o, which is equivalent to saying
that 2% = kT for all infinite cardinals k.

Question 6.3.24.

(i) The continuum problem: Determine the ordinal o such that
[P(w)] = Ra-

(ii) The generalized continuum problem: For every ordinal «, deter-
mine the ordinal 5 such that [P(R,)| = Ng.
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It turns out that the continuum problem cannot be resolved in ZFC.
There is a good amount of speculation, some primitive and some
highly sophisticated, as to what the “right” answer to the continuum
problem “should” be. We can rule out one possibility.

Corollary 6.3.25. 8, # 2%,

Proof. Suppose that X, < 2% for all n < w. Then by Theorem
6.3.23,

ZN" < H 2o,

n<w n<w

By Example 6.3.21, the left-hand side equals X,,. The right-hand side
equals (2%0)Xo = 2RoRo — 9Ro, O

Before we leave the subject of cardinal numbers, we develop the
notion of cofinality.

Definition 6.3.26. Let a and § be limit ordinals.

1. A subset z of 5 is cofinal in B if |Jx = (3, that is, for every a < f3,
there exists y € x such that o < y.

2. The cofinality cof(3) is the least cardinal « such that there is a
function f: o — p with Rng(f) cofinal in §.

3. The ordinal § is regular if cof(83) = .

4. B is singular if cof(B) < B, that is, if § is not regular.

It is fairly immediate to observe that cofinality of any limit ordinal
must be regular, and every regular ordinal is a cardinal. Certainly,
Ny is a regular cardinal.

Example 6.3.27. If a limit ordinal 3 is not a cardinal, then it is
bijective with a smaller ordinal and hence is singular. It is easy to
see that N, has cofinality w and hence is not regular.

Here is an important property of regular cardinals which is a
stronger version of Theorem 6.3.19.

Theorem 6.3.28. (AC) For any regular cardinal k, any A < K,
and any set {Ay @ a < A} such that |Ay| < K for all a < A,

’ Ua<)\ Anl < K.
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Proof. Let x and {A, : @ < A} be given as above and let A =
Ua<r Aa- Define F' : X — k by F(a) = |A,l|. Since £ is regular,
Rng(F') cannot be cofinal in x. Hence, there is some cardinal p < &
such that |A,| < p for all @ < A. It follows from Theorem 6.3.19 that
| Uaer Aol < p- A= max{p, A\} < k. O

Many cardinals are regular, as becomes obvious from the following
theorem.

Theorem 6.3.29. Fvery successor cardinal is reqular.

Proof. This theorem requires the Axiom of Choice for its proof;
without the Axiom of Choice, it may even happen that every limit

ordinal has cofinality equal to w. We just show that w; is regular.
Suppose for contradiction that w; is singular. Then, its cofinality
must be equal to w = wy and there has to be a function f:w — wy
whose range is cofinal in w;. Then, wy = J,, f(n) is a countable union
of countable sets. Such unions are countable by Theorem 4.5.2(4),
contradicting the definition of wq as the first uncountable cardinal.
0

The theorem immediately suggests the following question:
Question 6.3.30. Is there an uncountable reqular limit cardinal?

The question was considered by Hausdorff in 1908 and later greatly
expanded by Tarski. The question cannot be resolved in ZFC.

Definition 6.3.31. Let x be an infinite cardinal.

1. Kk is weakly inaccessible if it is regular and is a limit cardinal.
2. k is strongly inaccessible if it is regular and is a strong limit
cardinal.

Inaccessible cardinals are the beginning of a hierarchy of large
cardinals which is one of the main tools of modern set theory. The
notion of a strongly inaccessible cardinal is important in Chapter 8.
In particular, we need the following result.

Theorem 6.3.32. Ifk is a strongly inaccessible cardinal, then |V, | <
Kk for all a < K.

Proof. The proof is by induction on a < k.

Base Step. For a« =0, Vj = 0 and [Vp| =0 < k.
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Successor Step. Suppose that |V,,| < k. Now, V,11 = P(V,) so that
[Var1| = 2/Vel. Since & is a strong limit, it follows that 2/Vel < k.

Limit Step. Suppose that A is a limit ordinal and that |V, | < k for
all @ < A. Now, V) = U,y Va- Since & is regular, it follows from
Theorem 6.3.28 that |Vy| < k. O

Exercises for Section 6.3

Exercise 6.3.1. Show that, under the equivalence relation |z| = |y,
each equivalence class |z| is a class, but, if x # (), then |z| not a set.

Exercise 6.3.2. Show that if there is an injection from a set A into
a set B, then there is a surjection from B to A.

Exercise 6.3.3. Show that for any set C of cardinals, |JC is a
cardinal.

Exercise 6.3.4. Finish the proof of Lemma 6.3.6 by showing that
['(x) is in fact the least ordinal which does not map 1-1 into z.

Exercise 6.3.5. Verify that v = |JG[A] defined in the proof of
Theorem 6.3.10 is an ordinal number and also a cardinal number.

Exercise 6.3.6. Show that for any ordinals o and §, if o < Ngy,
then |a| < Ng.

Exercise 6.3.7. Show that every cardinal equals Ng for some
ordinal 5.

Exercise 6.3.8. Show that for any ordinal a, « < N,,.
Exercise 6.3.9. Construct a cardinal x so that N, = k.

Exercise 6.3.10. Prove that the X function mapping any ordinal «
to N, is normal, that is, strictly increasing and continuous.

Exercise 6.3.11. Complete the proof that for any infinite cardinal
K, K+ K =K.

Exercise 6.3.12. Here is an alternative proof of Proposition 6.3.17
using ordinal arithmetic. For z,y < &, let F(z,y) = (z + y)? + 2.
Show that F'is an injection from x X x into k.
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To see this, suppose that (z1,y1) # (z2,y2) and show that (z1 +
y1)? + 21 # (12 +y2)? + 2. Note that there are two cases, depending
on whether z1 + y1 = x9 + ¥yo.

Exercise 6.3.13. Show that for any infinite cardinals k and A, kK +
A=k A =max{k,A}.

Exercise 6.3.14. Show that [],_ i+ 1 < 2%.

<w

Exercise 6.3.15. Show that the cardinals Ngo and 2% are equal.
More generally, show that for any cardinals x and X, if 2 < k < 2%,
then 2* = k.

Exercise 6.3.16. Show that for any limit ordinal «, cof(X, =
cof(a).
Exercise 6.3.17. Show that for any limit cardinal k, kK < cof(2").

Exercise 6.3.18. Show that a cardinal k is regular if and only if,
for any cardinal A < k, and any set {A, : @ < A} such that |A,| <k
for all @ < A, [U oy Aal < K.

a<\

Exercise 6.3.19. Show that X is a regular cardinal.
Exercise 6.3.20. Prove that every successor cardinal is regular.

Exercise 6.3.21. Verify that v = (JG[A] defined in the proof of
Theorem 6.3.10 is an ordinal number and also a cardinal number.



Chapter 7

Real Numbers

In this chapter, we describe the construction of the integers, the
rational numbers, and the real numbers using only the tools of set
theory.

7.1 Integers and Rational Numbers

In this section, we obtain representations of the integers and the
rational numbers within set theory, using equivalence relations.

The set of natural numbers has the drawback that it is not closed
under additive inverses and, in general, not closed under subtraction.
To remedy this, let the pair (m,n) of natural numbers represent the
integer m — n. Then —2 is represented by (0,2) and also by (1,3).
With this in mind, define the equivalence relation £z on N x N by
setting

(ml,nl)EZ(mg,ng) <= ni-+mo =mi+no.

Then (mq,n1)Ez(me,ne) if and only if ny —m; = ng — mo. It is left
to the exercises to show that this is an equivalence relation.

Definition 7.1.1. The set Z of integers is the family of equivalence
classes of pairs of natural numbers under the relation £.

The natural number n is represented in Z by the class [(n,0)].

Addition of integers may be defined by setting [(mi,n1)] +
[(m2,n2)] = [(m1 + ma,n1 + nz)]. The definition of multiplication
is left the exercises.

129
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Having obtained the integers through subtraction of natural num-
bers, we may now use division to define rational numbers. Here we
restrict to pairs (4, j) of integers such that j # 0 and let

(i1,51)Eqlia, j2) <= 11-j2 = j1-l2.

Then the pair (4, j) is meant to represent the rational number ¢/j.

To define the standard linear ordering on Z and Q, we first define
the positive integers and rationals. An integer ¢ = [(m,n)] is positive
if m > n. Then for integers ¢ and j, we define i < jif j =i+ p
for some positive integer p. A rational ¢ = [(7,7)] is positive if either
i,7 > 0 or both i, j < 0. Again p < q for rationals p,q if ¢ = p+r for
some positive r.

We note that these orderings are not well-founded, since there
is no least integer or rational number. The ordering on the rational
numbers is studied more closely in the following section.

Exercises for Section 7.1

Exercise 7.1.1. Show that for every integers m and n, there is a
natural number p such that (m,n) is equivalent to either (0,p) or to

(p,0).

Exercise 7.1.2. Show that the relation E; defined above is an
equivalence relation, that is, reflexive, symmetric, and transitive.

Exercise 7.1.3. Show that the addition defined above on Z is well
defined.

Exercise 7.1.4. Give a definition of multiplication for two integers,
that is, define the operation [(my,n1)] - [(m2,n2)].

Exercise 7.1.5. The set N = w of natural numbers has rank w, that
is, it lies in V,41. Find the rank of Z and of Q as defined above.
7.2 Dense Linear Orders

The basic step in the construction of the real line is the construc-
tion of the rational numbers. We show that the ordering of rational
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numbers is characterized up to isomorphism by two of its elementary
properties: the density and the lack of endpoints.

Definition 7.2.1. A linear order (K, <) is dense if for any elements
ko < k1 in K there is ko € K such that kg < ko < k.

Theorem 7.2.2. Any two countable dense linear orders without end-
points are isomorphic.

In other words, if (K,<g) and (L,<p) are countable dense linear
orders without endpoints, then there is a bijective map ¢: K — L
which is order-preserving: for any points ko, k1 € K, kg <g ki if and
only if (b(k)o) <5 (b(kl) holds.

Proof. This is a so-called “back-and-forth argument” which
appears in many other situations in mathematics. Use the count-
ability assumption to fix enumerations K = {k,: n € w} and
L = {l,,: n € w}. By recursion on n, build finite sets a,, C K and
b, C L and order-preserving bijective maps ¢, : a, — b, such that
an € anyt, by C b1, & € Gpy1, by € apg1, and [, € byyq. Once
this is done, consider the map ¢ = J,, ¢n: K — L. Since every ele-
ment of K (and L, respectively) was placed in the domain (and range,
respectively) of the map ¢ in its turn, it follows that Dmn(¢) = K
and Rng(¢) = L. Since each of the finite fragments ¢,, of the map ¢
was order-preserving, so is ¢. This will confirm the statement of the
theorem.

To perform the construction, start with ag = by = ¢g = 0. Sup-
pose now that ay,b,, and ¢, have been constructed. We break the
n+ 1 step into two similar smaller steps: First, we construct an order
preserving bijection ¢2, ,: a% ; — b2, extending ¢, such that k,, €
Dmn(¢? +1)- Then, an order-preserving bijection ¢p41: @pq1 — byt
extending ¢? 41 is constructed so that I, € Rng(¢,4+1). This com-
pletes the construction at step n+ 1. The two smaller steps are sym-
metric, and we concentrate only on the first one.

The construction of qb% 41 is performed depending on where
the element k, € K finds itself vis-a-vis a,. There are several
possibilities:

e if k, € a,, then let qb%H = Op;
e if the first item fails and k&, is <g-smaller than all elements of a,,,
then use the assumption that L has no smallest element to find
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some [ € L which is <p-smaller than all elements of b,,, and let
Gp41 = ap U {kn}v bpi1 = by U {l}7 and ¢9L+1 = ¢n U {(knv l)}a

e if the first item fails and k,, is <g-larger than all elements of a,,
then act similarly as in the previous item;

e if all three previous items fail, then find a largest element k € a,
which is still <g-smaller than k,, and a smallest element &’ € a,,
which is still <g-larger than k,, use the density assumption to
find an element [ € L such that ¢,(k) <p | < ¢,(k'), and let

ant1 = an U{ky}, bpy1 = b, U{l}, and qb%H = ¢p U {(kn,1)}.

Since there are no other options, this successfully completes the
induction step and the proof. O

Theorem 7.2.2 makes it possible to characterize the rationals (Q, <)
with their linear ordering as the unique (up to isomorphism) count-
able dense linear order without endpoints.

Exercises for Section 7.2

Exercise 7.2.1. Show that the density requirement in Theo-
rem 7.2.2 is necessary. That is, find two countable infinite linear
orders without endpoints which are not isomorphic.

Exercise 7.2.2. Call a graph (V, E) a random graph if for every pair
a, b of disjoint finite subsets of V' there is a vertex v € V which is
connected to all elements of a and to no elements of b. Use a back-
and-forth argument to show that any two countably infinite random
graphs are isomorphic.

7.3 Complete Orders

The real line is constructed as a completion of the linear ordering
of rational numbers. This allows us to speak about concrete objects
such as v/2 which cannot be rational numbers. It also enables the
abstract definitions of differentiation and integration. We show that
there is a general operation of completion of dense linear orders which
is defined up to isomorphism. To formulate the concept precisely, we
need a couple of definitions. The reader is referred to Chapter 2 for
basic concepts about linear orders.
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Definition 7.3.1. Let (L, <) be a linear ordering.

1. An open interval of L is a set of the form {k € L: Iy < k < [;} for
some elements lp < {1 of L. The sets of the form {k € L: k < [}
and {k € L: [ < k} are also considered to be open intervals of L
and so is L itself.

2. A subset K C L is dense in L if K has nonempty intersection
with every nonempty open interval of L.

3. The ordering L is complete if every non-empty bounded set K C L
has a supremum.

Definition 7.3.2. Let (K, <k) be a dense linear order without end-
points. A completion of K is a complete dense linear order (L, <)
without endpoints together with an order preserving map ¢: K — L
such that Rng(¢) C L is dense in L.

The following definition is also needed.
Definition 7.3.3. Let (L, <) be a linear order and let A C L.

1. A is downwards closed if kg < k1 and ki € A implies kg € A;
2. A is upwards closed if kg >k ki1 and k1 € A implies kg € A.

Theorem 7.3.4. Let (K,<g) be a dense linear order without end-
points. Then (K, <k) has a completion which is in addition unique
up to isomorphism.

The last sentence needs clarification; the precise statement is the fol-
lowing. Suppose that Ky, K; are dense linear orders without end-
points and ¢: Koy — K; is an order isomorphism. Suppose that
¢o: Ko — Lo and ¢1: K1 — Ly are completions of Ky, K respec-
tively. Then there is an order isomorphism y: Ly — L; such that

¢1 01 = X0 ¢o.

Proof. We present a classical construction due to Dedekind, a Ger-
man mathematician who was active in the second half of 19th cen-
tury. A pair (A, B) is called a Dedekind cut if A, B are non-empty
disjoint subsets of K such that AU B = K, A is downwards closed
(ko <k k1 and k1 € A implies kg € A), and A has no maximal
element (for every kg € A there is k; € A such that kg <g ki). If
K is the set of rational numbers, then, for example, we might have
A={r:2<0V 2?2<2land B={x:2>0 A 22> 2}
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This Dedekind cut would represent the real number V2. Let L be
the set of all Dedekind cuts, ordered by inclusion in the first coor-
dinate: (Ao, Bo) <r (A1, B;) if A9 C A;. We show that this is the
completion of the linear order K in a series of claims.

Claim 7.3.5. The ordering on L is linear.

Proof. Let (Ag,By) and (A, B;) be Dedekind cuts. Suppose
towards contradiction that neither A9 € A; nor A; C Ag holds.
Then, there must be elements ky € A\ A1 and ky € A; \ Ag. By the
linearity of the ordering <p, either kg <g ki or k1 <g ko must occur,
and both cases lead to contradiction: If kg <g ki, then ky € A; by
the downward closure of A1, and this contradicts the choice of k. If,
on the other hand, k1 <k kg, then k1 € Ay by the downward closure
of Ag, and this contradicts the choice of k7. O

Claim 7.3.6. The ordering on L is complete.

Proof. Let J C L be a nonempty bounded set; we must produce
its supremum. Let C' = |J{A C K: for some B C K, (A,B) € J}
and let D = K \ C. We show that the pair (C, D) is a Dedekind cut
and a supremum of the set J.

First, of all, the set C' C K is downward closed and has no maxi-
mal element because it is a union of downward closed sets without a
maximal element. Also, the set D is non-empty since the set J C L
is bounded: If (C’,D’) is an upper bound of J in L, then C C '
must hold, and so D’ C D must hold. Thus, the pair (C, D) is a
Dedekind cut. To show that (C, D) is the supremum of .J, suppose
that (C’,D’) is an upper bound of J and use the definition of the
ordering on L to observe once again that C' C C’. This means exactly
that (C,D) < (C', D’) as required. O

For each point kg € K, let ¢(ko) = (A, B), where A = {k; €
K: Kk <Kk30} andB:{k‘l e K: kg SKkl}-

Claim 7.3.7. The map ¢: K — L is an order-preserving injection.
Moreover, Rng(¢) C L is dense.

Proof. The first sentence is immediate. For the density of Rng(¢)
in L, assume that (A, By) and (A;, By) are two Dedekind cuts, Ag C
Ay, and Ay # Ay; we must produce k € K such that ¢(k) is strictly
between the two cuts. Let k1 € A1\ Ag be an arbitrary element. Since
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A has no maximum, there is an element kg € A strictly larger than
k1; we claim that ky works. To this end, we must prove that the set
C ={k € K: k <k ko} is strictly between Ay and A;. Certainly,
C C Ay since kg € Ay and A; is closed downwards; also, C' # A;
since kg € A1 \ C. To see that Ay C C, note that all elements of A
must be below kg since ko ¢ Ap and Ay is downward closed. Finally,
Ag # C since ]{?1€C\A0. ]

The final point is the uniqueness of the completion. Suppose
that Ko, K are densely linearly ordered sets without endpoints and
1. Ky — K7 is an order isomorphism. Let L be the completion of
K7 via Dedekind cuts, and let Ly be an arbitrary completion of K.
For every element [ € Lo, let A; = {¢(k): k € Ky and k <[} C K;,
and let B = Kj \ A;. It is not difficult to verify that (A;, B;) is a
Dedekind cut in K7y, and the map x: [ — (A;, B;) is the required
order isomorphism of Ly and L. O

The work done so far allows the characterization of the real line as
the unique (up to isomorphism) complete dense linear order without
endpoints and containing a countable dense subset. Note that the
countable dense subset has to be densely ordered and does not have
any endpoints and therefore must be order-isomorphic to the ratio-
nals by Theorem 7.2.2. The ordering (R, <) is then order-isomorphic
to the completion of the rationals in the sense of Theorem 7.3.4.

The description of the real line in these terms leads to a deep
question in pure set theory. The question (known as Souslin’s prob-
lem) [10] suggests an alternative characterization of the real line; it
was first published in 1920. Mikhail Souslin was a graduate student
of mathematics in Moscow who died young in the chaos of Russian
Civil War.

Question 7.3.8 (Souslin). Let (L, <) be a complete dense linear
order without endpoints. Are the following equivalent?

1. (L, <) is isomorphic to the real line.
2. Every collection of pairwise disjoint non-empty intervals of L is
countable.

Note that if L contains a countable dense set K C L (as is the
case with the real line), then indeed every collection A of pairwise
disjoint non-empty intervals of L is countable. To see this, consider
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a function which assigns each interval in A one of its elements in the
dense set K. Such a function must be an injection, since the intervals
in A are assumed to be pairwise disjoint. It follows that A can be
injected into the countable set K and therefore is itself countable.
This proves the implication (1)—(2) in the above question. But why
should the opposite implication hold? The question was shown to be
irresolvable within the framework of ZFC set theory in 1971.
We conclude this section with a basic cardinality computation.

Theorem 7.3.9. The real line has the same cardinality as {0, 1}*.

Proof. By the Schroder—Bernstein theorem, we need to produce an
injection from R to the powerset of a countable set, and an injection
from P(w) to R. For the former task, let f: R — P(Q) be the map
assigning each real number r the set {¢ € Q: ¢ < r}. Since the
rational numbers are dense in the real line, this is indeed an injection.

For the latter task, we define an injection from {0,1}* into
the real interval [0,1] by g(z) = > o2 ;2x(n)3~""!. For example,
9(1,0,1,0,...) =2/3+2/27+--- =232 372" = 3/4. To see that
this is an injection, suppose that x # y € {0, 1}* and let n be the least
such that z(n) # y(n); without loss of generality say that z(n) = 0
and y(n) = 1. Then > 1 ;2y(i)37"t =237~ L 4 30 | 2(i)37 L.
Now, > .12-37"1 =37""1 50 that

g(z) <3714 " 20()37 T < 2y()37 ! < g(y).
=0 i=0
0

The range of the function f is commonly known as the Cantor
middle third set.

Exercises for Section 7.3

Exercise 7.3.1. Show that if (A, B) is a Dedekind cut in a linear
order (L, <), then B is upwards closed.

Exercise 7.3.2. Show that if C' is the union of a family of downwards
closed sets, then C'is downwards closed.

Exercise 7.3.3. Show that if C is the union of a family of sets, each
of which has no maximal element, then C' has no maximal element.
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Exercise 7.3.4. Let K be a dense linear order without endpoints.
Show that the completion of K has cardinality at most that of P(K).
Is it possible that the completion of K has the same cardinality as K?

Exercise 7.3.5. Let (K,<) be a complete linear order, and let
(In: n € w) be a nested sequence of bounded closed intervals in
K; that is, I,41 C I, holds for each n € w. Show that (), I, # 0.

Exercise 7.3.6. Let (K, <) be a complete linear order. Show that
every set A C L bounded from below has an infinimum; that is, there
is an element k such that for all [ € A, k <[, and k is the largest
such element.

Exercise 7.3.7. Show that there is no order-preserving injection
from w;y to R.

Exercise 7.3.8. Let (K, <) be a dense linear order without end-
points and ¢: (K,<k) — (L,<p) be its completion. Show that
for any order-preserving map ¢: (K,<g) — (M, <ps) such that
Rng(1)) € M is dense in M there is an order-preserving map
x: (M, <p) = (L,<p) such that ¢ = y o). Thus, the completion of
K is in a sense the largest linear order in which K is dense.

7.4 Countable and Uncountable Sets of Reals

In this section, we examine the structure of infinite sets of real num-
bers. The question of the cardinality of infinite sets of reals led to the
so-called Continuum Hypothesis, which was one of the major themes
of 20th century mathematics and, along with the Generalized Con-
tinuum Hypothesis, continues to be of great interest. The Continuum
Hypothesis states that every set of reals is either countable or has
the cardinality of the real numbers (the continuum). We see that the
hypothesis holds for closed sets.

Our analysis depends on the Cantor-Bendixson theorem, given in
the following, which is a typical application of transfinite recursion to
mathematical analysis. We need some background first. Recall that
a basic open set of reals is an interval (p,r) with rational endpoints,
not including the endpoints. It is important to note that there are
countably many such intervals, so they can be enumerated as {I,, :
n < w}. An open set of reals is one which is obtained as a union
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of some collection of basic open sets, and a closed set is one whose
complement is open. A set U is said to be a neighborhood of a point
x € U if U is open. A point v € A C R is isolated in the set A if
there is an open interval which contains z and no other points of the
set A. A subset P of R is bounded if there is some b such that |z| < b
for all x € P; P is said to be compact if it is closed and bounded.

A point p is said to be a point of condensation of a set P if every
neighborhood of p contains uncountably many points of P; p is said
to be a point of accumulation of P if every neighborhood of p contains
at least one point of P different from p; it is an exercise to show that
this is equivalent to each neighborhood of p having infinitely many
points of P. Note that an element of P which is not an accumulation
point is isolated in P. A closed set without isolated points is said to
be perfect.

Proposition 7.4.1. Any infinite subset of [0,1] (or any compact
interval) must have a point of accumulation.

Proof. Here is a sketch: Let P be an infinite subset of [0,1].
Observe that either P N[0, 4] or P N [3,1] must be infinite and let
I = [a1,b1] be one of the intervals such that P N Iy is infinite. Now,
divide I; in half and let I, C I be an interval [ag, bo] of diameter %
such that P N I is infinite. Note that a1 < as < by < b1. Continuing
in this way, we obtain a decreasing chain [0,1] D Iy D I3 D --- of
intervals I,, = [ay,, by] with a,, < a1 < bpy1 < by and by, —a,, =277
such that P N [, is infinite for each n. Then there is a real p such
that (), I, = {p} and this p is an accumulation point of P. To see
that p exists, consider the non-decreasing sequence a1 < ag < ---
which is bounded above by 1. Then lim, a,, = p must exists by the
completeness of R. Since b, —a,, = 27", it follows that p = lim,, b,, as
well. To confirm that p is an accumulation point, let I = (p—¢€,p+¢)
be any neighborhood of p and let n be large enough so 27" < e. Since
p € I, and I, has diameter 27", it follows that I, C I and therefore
P N1 is infinite. O

We leave as an exercise that any uncountable set of reals must
have a point of condensation.

The Cantor-Bendixson derivative D(X) of a closed set X is
defined to be X \ {isolated points of X}. For example, if X =
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{0} U {27 : n € w}, then D(X) = {0}. The derivative can be
iterated through the ordinals as follows:

Definition 7.4.2. For any closed set X, any ordinal o and any limit
ordinal A, let

1. D*1(X) = D(D*(X)):

2. DMN(X) = 5, DP(X):

3. the Cantor-Bendixson rank of X 1is the least « such that
DO‘“(X) = D*(X).

Example 7.4.3. Let C' = {0} U{2 : n € w}. Then D(C) = {0} and
D*C) =0 = D3(C). Let K = CU{L + L= : m,n € w}. Then

D(K) = C so that D*(K) = {0} and DY(K) = ) = D*(). Thus, C
has Cantor—Bendixson rank 2 and K has Cantor-Bendixson rank 3.

Recall from Example 5.4.6 the closed, well-ordered set Py =
fn+1-2"":nkew=1{032..1371....2. .} Then
D(Py) = {1,2,...} and D?(Py) = D(P). Let ® : P — w? + 1 map
each element of P to its position in the order type. We observe that
®[D(P)] = {w,w - 2,...}, that is, the set of limit ordinals in ®[P].
Then ®(D?(P)] = 0, that is, the (empty) set of ordinals in w? which
are limits of limit ordinals.

It is easy to see that for any closed set X, D(X) is also closed.
That is, if ¢ D(X), then z is in some interval I such that X N T C
{z} so that D(X)N T =0.

Lemma 7.4.4. Show that for any closed set C', C\D(C') is countable.
The proof is left as an exercise.

Lemma 7.4.5. For any closed set C' of reals and any ordinals f < a,
D*(C) is closed and D*(C) C D?(C).

Proof. We proceed by transfinite induction on «. At limit stage
«, the construction takes an intersection of a collection of closed
sets, which then must be closed and smaller than all sets in the
intersection. At the successor stage, D1(C) C D*(C) certainly
holds. To prove that D"1(C) is closed, for every point x € D%(C)\
D**L(C) pick an open neighborhood O, containing only x and no
other elements of D%(C). Then D*"Y(C) = D*(C) \ U, Oz, and
as a difference of a closed set and an open set, the set D¥(C) is
closed. O
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The following result will be useful.

Proposition 7.4.6. Any properly decreasing chain of closed sets
must be countable.

Proof. Let {C, : @ < B} be a sequence of closed sets such that
Co € Cy whenever v < a. Let o be given so that o+ 1 < 3. Since
the chain is properly decreasing, we must have some x € Cy \ Cy41.
Since = ¢ Cy41, which is a closed set, there is some rational interval
I,, such that I, N Cpy1 = (. On the other hand, z € C, so that
I,NC, # 0. Now, define a function f from 3 — w by letting f(«) be
the least n such that I, N Cpyr1 =0 but I, NCp # 0. If v < a < 3,
then C, C C,y1 so that Iy,) N Cy = 0, but Iyq) N Cy # 0 so that
f(v) # f(a). Thus, f is an injection from [ into w and it follows
that § is a countable ordinal. O

Theorem 7.4.7 (Cantor—Bendixson [2]). Every closed set of
reals can be written as a disjoint union of a countable set and a
perfect closed set.

In fact, the decomposition is unique, as we show later.

Proof. Let C C R be a closed set of reals and define as above
the sequence D®(C) for all ordinals «. It follows from Proposition
7.4.6 that there exists a countable ordinal S such that the iteration
of the Cantor-Bendixson derivative on C' stabilizes in the sense that
DB+1(C) = DB(C). Let 8 be the smallest such ordinal, and let K =
C'\ DP(C). D?(C) is sometimes called the perfect kernel of C. We
show that C' = D?(C) U K is the desired decomposition of C into a
perfect closed set and a countable set.

First of all, it is clear that the set D?(C) has no isolated points
as DPTY(C) = DB(C) \ {isolated points of D?(C)} by the recursive
definition, and D*+1(C) = DP?(C).

For each ordinal o, D*(C) \ D**1(C) is countable by Lemma
7.4.4. Then by Theorem 4.5.2 (which uses the Axiom of Choice), we
can see that C'\ D?(C) = U,.3 D*(C) \ D*"(C) is countable. O

To obtain the uniqueness of the decomposition given by the
Cantor—Bendixson theorem, we need to consider some further results.
We want to show that any countable set of reals must have an iso-
lated point so that a non-empty perfect set is uncountable. In fact,
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we next see that a non-empty perfect set must have cardinality of
the continuum.

Theorem 7.4.8. If P C R is a non-empty perfect closed set, then
[P = [R].

Proof. It suffices to find an injection from R into P. We do this
as follows. Since P is non-empty, it contains a point pg; since P is
perfect, it must contain infinitely many other points. So, it contains
at least a second point p;. Now, choose open intervals Jy and Ji,
having disjoint closures, with pg € Jy and p; € Ji. It is easy to see
that PN Jp and PN .J; have no isolated points. (See Exercise 7.4.11.)
Repeat this process to find elements poo, po1, P10, p11 and intervals
Jij € J; with p;; € PN J;; so that P N J;; has no isolated points.
Continuing recursively, we obtain, for every n € w, a set of points
{ps : 0 € {0,1}"} and a family {J, : o € {0,1}"} of open intervals
intervals such that, for all o € {0,1}",

1. the closures of the intervals are disjoint,
2. po € PNy,

3. for k=0,1, Joi C Jy,

4. J, has diameter < 27",

Now, define an injection from {0,1}* into P by letting F(X) =
lim,, oo pxpn- This limit exists since the intervals are shrinking to
zero in size and F'(X) belongs to P since P is closed. It follows that
N, Ixm = {F(X)}. If X #Y, then for some n, X [n#Y [ n so
that FI(X) # F(Y). a

Corollary 7.4.9. If P is a countably infinite closed set, then P has
an isolated point.

Proof. We prove the contrapositive. Suppose that P has no iso-
lated point. Then by definition P is perfect. Thus, P is uncountable
by Theorem 7.4.8. O

Corollary 7.4.10. If P is a perfect closed set, then every element
of P is a point of condensation of P.

Proof. Let p € P and let J be any interval containing P. Then
PN J is also perfect, by Exercise 7.4.11. Thus, PN J is uncountable
by Theorem 7.4.8. O
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Corollary 7.4.11. For any closed set C, the Cantor—Bendizson
decomposition of C' into a union K U P of a countable set K and
a perfect set P is unique.

Proof. Suppose that C' = K1UP; = KoUP,, where K1 and K» are
countable and P; and P, are perfect closed sets, and K; N P; = () for
i = 1,2. Suppose by way of contradiction that K; N Py # () and let
p € K1 N P. Let J be any interval containing p. Since p € P, p is a
point of condensation of P, so there are uncountably many elements
of P» in J. Since K is countable, there must be uncountably many
elements of P in J. Thus, every interval J containing p has at least
one element of P;. Since P is closed, it follows that p € P, violating
the assumption that K3 N Py = (). A similar argument shows that
K2OP1 :@, and it follows that K1 :K2 and P1 :PQ. O

Theorem 7.4.12. For every closed set C' C R, either C is countable
or it has the cardinality of continuum.

Proof. Express C' as a union C = DU FE of a countable set D and
a perfect set F. If the set E is empty, then the set C' is equal to
D and therefore countable. If, on the other hand, the set F is non-
empty, then it has cardinality continuum by Theorem 7.4.8. Thus,
C' is sandwiched between two sets £ and R of cardinality continuum
and it must have that same cardinality itself. O

Exercises for Section 7.4

Exercise 7.4.1. Provide an example of a closed set C' C R which
has Cantor-Bendixson rank w.

Exercise 7.4.2. For any set X C R, define I'(X) = R\ D(R\ X).
Show that I" is a monotone operator.

Exercise 7.4.3. Show that if P and @ are closed, then D(PNQ) C
D(P)ND(Q). Give an example to show that equality does not always
hold.

Exercise 7.4.4. Show that if P and @ are closed, then D(PUQ) =
D(P)U D(Q).

Exercise 7.4.5. Show that x is an accumulation point of P if and
only if there is an infinite sequence {y, : n € w} of points y,, such
that lim,, y,, = x with y,, # x and y,, € P for each n.
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Exercise 7.4.6. Show that p is a point of accumulation of P if and
only if every neighborhood of p contains infinitely many points of P.

Exercise 7.4.7. Show that if P is a compact, well-ordered set of
real numbers, then P has a maximal element.

Exercise 7.4.8. Let P = {1}U{1-2""4+27""}(1-27%) :n.m € w}
and let ® be the order isomorphism taking P to its order type w?4 1.
Find D(P) and D?(P). Show that ®[D(P)] is the set of limit ordinals
in w? 4+ 1 and that ®(D?(P)] is the set of ordinals which are limits
of limits.

Exercise 7.4.9. Show that for any closed, well-ordered set P of
reals, x € D(P) if and only if ®(x) is a limit ordinal, where ® : P — «
is the canonical isomorphism from P to its order type a.

Exercise 7.4.10. Show that if P is a compact subset of R and
D(P) =0, then P is finite.

Exercise 7.4.11. Show that if P is a set with no isolated points
(not necessarily closed) and I is an open interval, then P N I has no
isolated points.

Exercise 7.4.12. Show that for any closed set C', C'\ D(C) is count-
able. Hint: Define a mapping from C'\ D(C) into w using the count-
able basis Iy, I1,. ...

Exercise 7.4.13. Show that if P C R is uncountable, then it has
a point of condensation. Hint: Prove by contrapositive and use the
countable basis of R.

Exercise 7.4.14. Modify the proof of Lemma 7.4.5 to show that
the set K = C\ D?(C) is countable in the proof of the Cantor—
Bendixson theorem. That is, construct an injection F from K to w
so that if z € D*(C) \ D*™(C), then I, contains only z and no
other elements of D*(C'). This argument avoids the Axiom of Choice.

Exercise 7.4.15. Let (K, <) be a linear ordering. Show that K =
Lo U Ly, where Lg is well-ordering and L; does not have a smallest
element.
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7.5 Topological Spaces

Many objects in mathematics are equipped with a structure that
makes it possible to speak about continuous functions from one
object to another — a topology.

Definition 7.5.1. A topological space is a pair (X,T), where X is
a non-empty set and 7' C P(X) is a collection of subsets of X con-
taining () and X and closed under finite intersections and arbitrary
unions. The collection T is a topology and its elements are referred
to as open sets.

Definition 7.5.2. Suppose that (X,7T) and (Y,U) are two topolog-
ical spaces. A map f : X — Y is continuous if the f-preimages of
open subsets of Y are open in X; that is, f~1[O] is open in X for
every open O C Y. The map f is a homeomorphism if it is a bijection
and both f and f~! are continuous maps. A family B of subsets of
X is said to be a basis for T if, for every point x € X and every open
set U such that x € U, there is a set B € B such that x € B and
B CU. A family S of subsets of X is said to be a subbasis for T if
the family of all finite intersections of sets from S is a basis.

Before we turn to examples, it is useful to note that most topologies
are generated from subbases in the following way:

Definition 7.5.3. Let X be a set and S C P(X) be a subbasis. The
topology generated by S is the set T = {0 C X : O = |J B for some
set B consisting of finite intersections of elements of S} U {0, X }.

Proposition 7.5.4. Whenever X is a set and S C P(X), the col-
lection T above is in fact a topology on X.

Proof. Clearly, (), X € T by the definition of 7. We have to prove
that 7" is closed under arbitrary unions and finite intersections.

The closure under arbitrary unions is immediate. If U C T' is any
set, we must show that | JU € T'. Let

B:{PQX:(EIOl,...OnGS)P:ﬂOZ- A (EIOEU)PQO}.
=1

It is not difficult to check that |JB = [JU and so (JU € T as
required.
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Now, we must show that 7" is closed under finite intersections. If
U C T is a finite set, we must show that U € T. Let

B:{PQX: (301,...07168)]3:“02- A PgﬂU}.
i=1

We show that |J B = (| U; this proves that (U € T as required. For
the |JB C (U inclusion, note that B by definition consists of sets
which are subsets of (| U. For the (U C |J B inclusion, let x € U
be an arbitrary point. Since U C T, for every set O € U, there is a
set Po C O which is an intersection of finitely many elements of S
and contains the point . Since U is finite, the set (o Po is an
intersection of finitely many elements of S, it is in B, and it contains
the point x. Therefore, z € | J B. O

Example 7.5.5. The discrete topology on a set X is T'= P(X). In
other words, every set is open in the discrete topology.

Example 7.5.6. If (L, <) is a linear ordering, the order topology is
generated by the basis consisting of all sets of the form (p, q), where
p < q are elements of L and (p, q) is the open interval {r : p <r < g}.

Example 7.5.7. The Cantor space is the set 2 = {0,1}, and
the set of infinite binary sequences is equipped with the topology
generated by the subbasis consisting of all sets of the form {f €
2N f(n) = b}, where n € w and b € {0, 1}. For any finite sequence
g = (io, ce ,Z'nfl), let

[o] = {a € {0, 1}": (¥j < n)z(j) = is};
these are a basis for the topology and are called intervals.

Example 7.5.8. The Baire space is the set NV, and the set of
infinite sequences of natural numbers is equipped with the topol-
ogy generated by the subbasis consisting of all sets of the form
{f € NN : f(n) = m}, where n,m € w. Again, the intervals [o]
are a basis for the topology, where the definition of [o] is suitably
modified for NV,

The problem of finding a member of a closed set in the Baire space
or Cantor space is very important in effective mathematics and in
proof theory. Recall that a tree 1" in w* is a set which is closed under
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initial segments. Also, * € w® is an infinite path through 7' if and
only if z [ n € T for all n and that [T] is the set of infinite paths
through T'.

In the Cantor space, every infinite tree has an infinite path. This
follows from the following Konig’s Lemma. But this is not true in
the Baire space.

Example 7.5.9. Let T = {n0" : i < n} as a subset of w* (see
Section 2.6). Then T is an infinite tree and also has arbitrarily long
finite paths. But it has no infinite path.

Lemma 7.5.10 (Ko6nig’s Lemma). If T C w* is infinite and
finite-branching, then T has an infinite path.

Proof. Let T C w* be an infinite, finite-branching tree. Now, let
S C T be the set of nodes ¢ € T such that T contains infinitely
many extensions of . The empty node ¢ € S since T is infinite. It
follows from the Pigeonhole Principle (Corollary 4.2.7) that if o € S,
then at least one successor of o belongs to S. That is, since T is
finite-branching, the infinite set of extensions of ¢ is partitioned into
finitely many sets which are the extensions of the successors of o.
We now define an element z of [T] as follows. Let x(0) be the least
i such that [i] € S. For any n, let z(n) be the least i such that
(2(0),2(1),...,z(n—1),i) € T. O

In set theory and logic, we often refer to elements of the Cantor
space, or the Baire space, as reals. What justifies this convention? For
the Cantor space, consider the function mapping x € {0,1}* into the
real interval [0, 1], defined by F(z) = > x(n)/2""!; x is said to be
the dyadic expansion of the real F'(z). This is a continuous map from
{0,1}* onto [0, 1], but it is not quite one-to-one. That is, each dyadic
rational has two representations. For example, 3/4 = 1/2 4 1/4 has
representation (1,1,0,0,...) but also we have 3/4 = 1/2 +1/8/ +
1/16 + ... and thus has representation (1,0,1,1,...). However, the
set of dyadic rationals is countable, so for many situations it will be
all right to imagine that elements of {0, 1}* are real numbers.

For the Baire space, we have the very interesting continued frac-
tion representation, that is,
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It can be seen that this is a continuous isomorphism of w* onto
the space of irrational numbers in the interval [0, 1]. Since there are
only countably many rational numbers, this makes w* a reasonable
version of the real numbers.

On the other hand, there is a big difference between the topologies
on 2 and w*, on the one hand, and [0, 1] and R, on the other. The
real line is connected, meaning that there are no sets, other than R
and ), which are both open and closed (clopen). But in the Cantor
space, every basic open set is also a closed set. Thus, the Cantor
space is said to be totally disconnected, that is, for any point z # y,
there is a clopen set which contains = but does not contain y. This is
also true in the Baire space. In the space of irrationals, notice that
the open interval (1/2,3/4) equals the closed interval [1/2,3/4], since
1/2 and 3/4 are not in the space.

Closed sets have an interesting and useful characterization in the
Cantor space (as well as the Baire space) in terms of trees.

Proposition 7.5.11. A subset K of NN is closed if and only if there
is a tree T such that [T] = K.

Proof. Suppose first that K is closed and let T = {0 € w* :
K N [o] # 0}. It is left to the reader to check that T' is a tree. We
claim that K = [T]. If x € K, then for any n, z € K N[z | n] so
that = [ n € T. It follows that x € [T]. For the converse, suppose
that = ¢ K. Since K is closed, there must be some basic interval [o]
containing x such that K N o] = 0. Since x € [o], this means that
o =z | n for some n. Then = [ n ¢ T and hence = ¢ [T]. It is left to
the reader to check that [T] is a closed set for any tree T'. O

The Kleene-Brouwer order <yxp on w* is defined by ¢ <gp 7
if either 7 C o or if o(n) < 7(n), where n is the least such that
o(n) # 7(n). Then the initial segments of any » € NV form an
infinite descending chain so that this ordering is not well founded.
We can now make a general connection between finding an element
of a closed set K = [T] and finding a descending chain in the tree 7.

Theorem 7.5.12. For any tree T C w* and closed set K = [T], K
is empty if and only if the tree T is well founded.

Proof. If K is non-empty, then the initial segments of any element
of K form an infinite descending chain in 7', hence 7' is not well
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founded. Suppose now that 7' is not well founded and let o¢ > o1 >
o9 > -+ be an infinite descending sequence. Then we can define an
infinite path = € [T as follows: First, observe that for each n, we must
have 0,,41(0) < 0,,(0), otherwise by definition o,, < ¢,,+1. This means
that the values 0((0),01(0),... must converge to a limit kg, which is
going to be z(0), and there must be some ng such that o,(0) = kg
for all n < ngy. Now, for n > ng, it follows that o,,41(1) < 0,,(1), and
thus there will be k; and n; such that o, (1) = ki for all n < ny.
In this fashion, we can recursively define the sequences ng,ni,ns,. ..
and ko, k1,... and let x = (2(0),2(1),...). For each n < nj, we have
(ko,k1,...,kn) C 0y, and o, € T, so that x [ n € T. It follows that
x € [T] = K, as desired. O

Example 7.5.13. The Stone-Cech compactification of w is the fol-
lowing space denoted by pw: its underlying set is the set of all ultra-
filters on w, and the topology is generated by the subbasis consisting
of all sets of the form {u : a € u}, where a C w is an arbitrary set.

Other examples of topological spaces are obtained by applying
certain operations to preexisting spaces.

Example 7.5.14. Suppose that (X,7T) is a topological space and
Y C X. The inherited topology T | Y is the collection {ANY :
AeTh.

In this way, we consider for example intervals [0, 1] or (0,1) C R with
the inherited topology as topological spaces. Another example is the
space of irrationals as a subspace of [0, 1] or of the whole line.

Example 7.5.15. Suppose that (Xg,7p) and (X1,77) are topologi-
cal spaces. The product space is (Xo x X1,U) where U is the topology
on Xy x X7 generated by the subbasis consisting of all sets of the
form O x P where O € Ty and P € T7. We refer to U as the product
topology on Xy x Xj.

In this way, we consider for example the Euclidean spaces R? =
R x R, R? = R? x R, and in general R™ for any natural number
n € w with the product topology. These spaces are pairwise non-
homeomorphic — the proof of this statement was the beginning of
the field of dimension theory.
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Example 7.5.16. Suppose that I is a set and (X;,T;) for i € I are
topological spaces. The product space is the pair ([[; X;,U), where
[LXi={f:Dmn(f)=1 AN (Viel)f(i) € X;} and U is generated
by the subbasis consisting of all sets of the form {f € [[, X;: f(j) €
O}, where j € I is an index and O € T is an open subset of X;.

The most notorious space obtained in this way is the Hilbert cube
[0,1]“, the product of countably many copies of the interval [0, 1].
The Cantor space and the Baire space may both be viewed as product
spaces where the sets {0, 1} or w are given the discrete topology.

The following notions are ubiquitous in the treatment of topolog-
ical spaces:

Definition 7.5.17. Let (X,T') be a topological space. A set D C X
is dense in the space if every non-empty open set O € T' contains an
element of D.

Definition 7.5.18. A topological space (X, T) is separable if it con-
tains a countable dense set.

The space R of real numbers has the rationals as a countable dense
set. The Cantor space {0, 1}* has a countable dense set D consisting
of those sequences z such that {n : z(n) = 1} is finite. A similar
definition provides a countable dense set for the Baire space.

A very common way of defining a topology on a space X is by
way of a metric.

Definition 7.5.19. A metric on a set X is a function d : X2 — R
such that

1. for every z,y € X, d(z,y) > 0 and d(z,y) =0 <> = = y;

2. for every x,y € X, d(x,y) = d(y,x);

3. (the triangle inequality) for every x,y,z € X, d(x,z) < d(z,y) +
d(y, ).

A pair (X, d) where d is a metric on X is called a metric space.

Example 7.5.20. The discrete metric on any set X, assigning dis-
tance 1 between any two distinct points, is a metric. The Fuclidean
metric on R™ is a metric for every n. The Manhattan metric is a dif-
ferent metric on R", defined by d(z,y) = > .. |x(i) —y(7)|. The unit

1EN
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sphere S? in R? can be equipped with at least two natural metrics:
the metric inherited from the Euclidean metric on R?, or the Rie-
mann surface metric defined by d(x,y) = the length of the shorter
portion of the great circle (i.e. a circle on the surface of S? of maximal
circumference) connecting = and y.

Example 7.5.21. For the Cantor space, we let d(z,y) = 27771,
where n is the least such that z(n) # y(n).

Definition 7.5.22. If (X,d) is a metric space, x € X is a point
and ¢ > 0 is a real number, the open ball B(z,¢c) is the set {y €
X :d(x,y) < e}, and a closed ball B(x,e) is the set {y € X :
d(xz,y) < e}. Then the topology generated by d on the set X is the
topology generated by the open balls B(x,e) for x € X and real
e > 0. A topology on the set X is metrizable if there is a metric
which generates it.

Exercises for Section 7.5

Exercise 7.5.1. Show that {oc € w* : K N [o] # 0 defined in the
proof of Proposition 7.5.11 is a tree.

Exercise 7.5.2. Show that [T] is a closed set for any tree T, as
claimed in Proposition 7.5.11.

Exercise 7.5.3. Show that the intervals in the Cantor space form a
basis. Show that the complement of any interval is also an open set.

Exercise 7.5.4. Let (X,T) be a topological space and let B C X
be a set. Prove that there is the inclusion-smallest closed set C' C X
which contains B as a subset. C is referred to as the closure of the
set B, often denoted by B.

Exercise 7.5.5. Let (X,S) and (Y,T) be topological spaces. Con-
sider the space X x Y with the product topology. Prove that the pro-
jection function f: X xY — X given by f(x,y) = = is continuous.

Exercise 7.5.6. Let (X,T) be a topological space. Consider the
space X x X with the product topology. Show that the function
f:X — X x X given by f(z) = (z,z) is continuous.
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Exercise 7.5.7. Let Xg, X1, Yp, Y1 be topological spaces with their
topologies and let fy : Xg — Yp and f; : X7 — Y7 be continuous
functions. Conclude that the function g : Xo x X7 — Yy x Y7 given

by g(xo,z1) = (fo(zo), f1(x1)) is continuous.

Exercise 7.5.8. Let (X,S) and (Y,T) be topological spaces, and
f X — Y be a continuous function. Show that f, viewed as a
subset of X x Y, is a closed subset of X x Y.

Exercise 7.5.9. Let X,Y, Z be topological spaces, and f, g be con-
tinuous functions from X,Y respectively to Z. Show that the set
C={(z,y) € X xY : f(x) = g(y)} is closed. Similarly, show that
if X, for n € w are topological spaces and f, : X, — Z are con-
tinuous functions then the set C' = {u € [[,, X, : Vn,m f,(u(n)) =
Jm(u(m))} is closed in [[,, X,.

Exercise 7.5.10. Verify that the metric defined in Example 7.5.21
for the Cantor space is in fact a metric.
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Chapter 8

Models of Set Theory

Advanced set theory is concerned, in great part, with independence
results — theorems saying that certain statements cannot be proved
from the ZFC axioms. As a famous example, neither the Continuum
Hypothesis nor its negation can be proved in ZFC. The main method
for proving such independence results is the construction of models
of set theory.

In this section, we provide a humble introduction to the construc-
tion of models of set theory. We show that certain axioms of ZFC
cannot be derived from others.

In Section 8.1, we examine the finite levels V,, of the hierarchy of
sets as well as the first infinite level V,,. We give a characterization
of V,, as the set of hereditarily finite sets. We explain what it means
for one of the axioms to hold in a set, as opposed to being true in the
universe of all sets. We determine which of the axioms of ZFC are
true in V,, and in V,,. In particular, we show that V,, satisfies every
axiom except for the Axiom of Infinity. This demonstrates that the
Axiom of Infinity is independent of the other axioms.

In the second section, we generalize to the transfinite levels V,, of
the hierarchy of sets. We also generalize from the hereditarily finite
sets to the hereditarily countable sets and beyond.

8.1 The Hereditarily Finite Sets

Recall the finite levels V,, of the hierarchy of sets defined in Example
4.3.15, where Vo = 0, Vj,41 = P(V,,) for each n € w, and V,, = |J,, Vi-
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The set V,, may be viewed as a reasonable universe for doing finite
mathematics. We show that it satisfies all of the axioms except for
the Axiom of Infinity. One might think that, for a very large n, even
V,, might suffice. However, the finite levels V,, do not satisfy many of
the axioms.

We now present the characterization of V,, as the hereditarily finite
sets. Intuitively, a set A is hereditarily finite if A is finite, all of its
elements are finite, all of the elements of the elements of A are finite,
and so on.

Definition 8.1.1. A set A is hereditarily finite if its transitive clo-
sure trcl(A) is finite.

The following lemma is left as an exercise:

Lemma 8.1.2. If B is hereditarily finite, then for all A € B, A is
hereditarily finite.

Proposition 8.1.3. For any set A, A is hereditarily finite if and
only if A €V,.

Proof. First, we recall that for any n € w, V,, is transitive. Now,
suppose that A € V,,. Then A € V1 for some n so that A C V,.
But this means that trcl(A) C trcl(V,) = V,. Since V,, is finite, it
follows that trcl(A) is finite, and therefore A is hereditarily finite.

Next, suppose that A is hereditarily finite, that is, trcl(A) is
finite. Suppose by way of contradiction that A ¢ V,,. Then {z €
trcl(A) : x ¢ V,} is non-empty and thus has an €-minimal element
B. B is finite, since trcl(B) C trcl(A). By minimality, every ele-
ment of B is in V,. Let n be the least such that each element of
B is in V,; this exists since V; C V;11 for all i. Then B € V1,
contradicting the assumption that B ¢ V. O

Next, we return to consideration of the axioms of ZF. The under-
standing is that these axioms are true in the universe V of all sets.
There is one exception that we do not consider the Axiom of Choice
to necessarily be true in the universe. So, we have to state when we
are using this axiom.

We now examine what it means for one or more of the axioms
to be true in a set M. For the most part, we want to consider only
transitive sets M. For instance, for the Pairing Axiom, this should
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mean that for any two sets z,y € M, the set {x,y} belongs to M.
Thus, if 0 € M and M satisfies the Pairing Axiom, then {0} € M,
{{0}} € M, and so on. This implies that M must be infinite.

To see why transitivity is important, consider the example M =
{1,2,3}. This is not transitive since 0 € 1 € M but 0 ¢ M. For
the two elements 1 and 2, we see that (Vo € M)z € 3 <— (x =
1 VvV x = 2). Thus, 3 acts as the pair of 1 and 2. On the other
hand, there is no set which acts as {3} in M since no element of M
contains 3. Even if a set A is not transitive, the argument above still
shows that A must be infinite in order for it to satisfy the Pairing
Axiom. Similar complications arise in non-transitive sets A for the
Union and Power Set Axioms, in that a set can act in A as the
union or power set of another set, without being the actual union or
power set.

Definition 8.1.4. Let ¢ be a formula of set theory and M a transi-
tive set. Then ¢™ denotes the formula obtained from ¢ by restricting
all its quantifiers to the set M. We say that the structure (M, ¢) sat-
isfies ¢, in symbols M = ¢, if M holds.

It is important to observe that ¢ and ¢ are in principle different
statements and that one of them may fail while the other may hold.
In an important class of formulas though, the truth values of ¢ and
&M coincide.

The notion of a bounded formula will be useful here.

Definition 8.1.5. A formula ¢ is bounded if all of its quantifiers are
bounded, i.e. of the form Vz € y or dx € y.

Example 8.1.6. The following can be defined by bounded formulas:
x Cy, x=yUz, xis a binary relation on y, x is a function, and x
is an inductive set.

Lemma 8.1.7. Suppose that ¢ is a bounded formula and M is a
transitive set. Then for any elements A of M, ¢(@) holds if and only

if M 6(a).

Proof. When we check whether (3x € y) ¢(x,y,...) fory € M, we
just observe that whenever x € y € M, we have x € M as well. O

Now, we come to the heart of the matter. With an appropriate
formalization of the proof system for first-order logic, one can show
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that if a sentence ¢ can be derived from a set I' of other sentences in
the language of set theory, then for every transitive set M, if M = 1
for every sentence ¢ € T', then M = ¢. This feature is referred to as
the soundness of first-order logic. Thus, to show that a sentence ¢,
one of the axioms of set theory, cannot be derived from the others, it
is enough to produce a transitive set M which satisfies all axioms of
ZFC with the exception of ¢. We see in the following that V,, satisfies
all of the axioms except for the Axiom of Infinity, and this shows that
the Axiom of Infinity cannot be derived from the other axioms.

Now, we examine whether the axioms are true for the finite models
M =V, and for the model V.

It is easy to see that the empty set Vj itself satisfies all axioms
except for the Null Set Axiom and the Axiom of Infinity. For example,
() satisfies the Pair Axiom vacuously, since there are no elements to
make into pairs.

In this section, we begin by looking at the finite levels V,, and the
first infinite level V,, of the hierarchy of sets:

(1) Empty Set: For any n > 0, 0 € V,, so that each for each n > 0,
V,, satisfies the Empty Set Axiom, and V,, also satisfies the Empty
Set Axiom.

The following lemmas are needed for discussion of extensionality:

Lemma 8.1.8. For any sets A, B, and C, if C' is transitive and
A, Be(C,then A=B < ANC =BNC, that is, A = B if and
only if, forallz € C,x € A < x € B.

Proof. Suppose that C is transitive and A, B € C. If A = B, then
certainly r € A <= =z € B for any x € C. Suppose now that
ANC =BNC and let z € A. Since C is transitive, it follows that
x € C. Thus, by assumption x € B. Similarly, x € B implies = € A.
Then by the Axiom of Extensionality, A = B. O

Lemma 8.1.9. Any transitive set M satisfies the Axiom of
Extensionality.

Proof. Suppose that A, B € M and that M satisfies A = B, that
is, (Vx € M)z € A <= z € B. It follows from the Lemma 8.1.8
that A = B. O
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(2) Extensionality: Since each V,, is transitive, and V,, is transitive,
by Proposition 4.3.26, it follows from Lemma 8.1.8 that these sets
satisfy the Axiom of Extensionality.

(3) Pairing: For each n, V,1 does not satisfy the Pairing Axiom,
since n € V41, but {n} ¢ V,,11. However, V,, does satisfy the Pairing
Axiom.

(4) Powerset: V1 does not satisfy the Power Set Axiom for any n.
This is left as an exercise. V,, does satisfy this axiom. That is, given
A e V,, we have A € V41 for some n € w. Thus, A C V,, and hence
any subset of A is also a subset of V,, and therefore an element of
Vi1 It follows that P(A) C V,41 and therefore P(A) € V42 so
that P(A) € V.

(5) Union: V,, satisfies the Union Axiom for every n € w. To see
this, first note that |JV;, C V,, since V,, is transitive. Vj = @, which
vacuously satisfies Union. V; = {0} and [JO = 0, so V; also satisfies
Union. Proceeding by induction, suppose that A € V,40. If x € y €
A, then y € V;,11 and x € V,,. Hence, | JA C V,, and thus |JA € V11
and then |JA € V12 as well. It is left as an exercise to show that
V., satisfies the Union Axiom.

(6) Infinity: If M is transitive and A € M is inductive, then it must
contain 0,1,2,... for all n and therefore A must be infinite. So, no
V,, can satisfy the Axiom of Infinity and also V,, does not satisfy the
axiom since all of its elements are finite.

(7) Comprehension: V,, satisfies Comprehension for all n € w, as
does V,,. The proof is left as an exercise.

(8) Replacement: The Axiom of Replacement fails in each Vj,41.
To see this, observe that n —1 and n belong to V,,;1, as does the set
{n — 1}. The successor function F(z) = z U {z} is a class function.
However, the image F[{n — 1}] = {n} does not belong to V,,41.

V., does satisfy Replacement. To see this, suppose that A € V,,
and that F' is a class function such that, for all z € A, F(x) € V.
Let F be defined by formula ¢(z,y) so that F(z) =y < ¢(z,y).
The key here is that A is a finite set. For each © € A, we have
F(z) € V,, so that F(x) € V,,41 for some n. Let g(x) be the least n
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such that F(x) € V,,41. Then ¢[A] is a finite subset of w and hence
has a maximum element m so that for all z € A, F(z) € Vj;,41. Then
F[A] is a subset of V,,+1 and therefore is an element of V42 and
hence an element of V,.

(9) Axiom of Choice: Let us consider a function-free formulation
of Choice, as follows:

Proposition 8.1.10. For any finite set A of disjoint sets, there is a
set C' containing exactly one element from each set in A.

Proof. Let A = {z1,...,2;} be a disjoint family of non-empty
sets. Since each xj is non-empty, it follows without using the Axiom
of Choice that there exist y; € x; for i = 1,2,... k. It can be
seen by induction on n that {yi,...,y,} is a set for each n < k.
This uses the Pairing Axiom and the Union Axiom. For n = 2,
this is immediate. Given the set {y1,...,y,}, we can create the set

{{y1, -, yn}t, {yn+1}}. Then the union of this set is {y1,...,Yn+1}-
Since each y; € x; € A, we have C C [J A. O

Proof of the following two propositions are left to the exercises:

Proposition 8.1.11. For each n, V,, satisfies the above function-free
Azxiom of Choice.

Proposition 8.1.12. V,, satisfies the standard Axiom of Choice.

(10) Regularity: Given that Regularity holds in the universe of
sets, let M be any set and A € M be a non-empty set. Suppose
first that AN M = (. Then A is a minimal element of M by Exer-
cise 3.8.1. Next, suppose that A N M is not empty and let y be
€-minimal in AN M. We claim that y acts as a €&-minimal element
of A in M. That is, suppose that z € y, where z € A and also
z € M. Then z € AN M, contradicting the assumption that ¥ is
€-minimal in AN M. It follows any set M will satisfy the Axiom of
Regularity.
Putting these together, we have the following:

Theorem 8.1.13. V,, satisfies every axiom of ZFC except for the
Azxiom of Infinity.
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This demonstrates that the Axiom of Infinity is independent of
the other axioms. We have also shown the following:

Proposition 8.1.14. For each n € w, V,, 41 satisfies every azxiom
except Pairing, Power Set, Infinity, and Replacement.

We consider transfinite models of ZFC in the following section.

Exercises for Section 8.1

Exercise 8.1.1. Determine which of the following sets satisfies the
Axiom of Extensionality. Recall that 0 =, 1 = {0}, and so on:

1. {1,2}.
2. {1,{1,2},{1,2,3}}.
3. {0,1,2,{2}}.

Exercise 8.1.2. Which Axioms of ZF are satisfied by the set
{0,{0},{{0}},... }7

Exercise 8.1.3. Show that if B is hereditarily finite, then for all
A € B, A is hereditarily finite.

Exercise 8.1.4. Prove that for each n, V,, is finite.
Exercise 8.1.5. Prove each of the following:

1. For each n € w, V,, is transitive.
2. V,, is transitive.

Exercise 8.1.6. Show that Vj does not satisfy the Axiom of Choice,
that is, find in V; a set A of non-empty sets such that no function in
V3 satisfies f(a) € A for each a € A.

Exercise 8.1.7. Show that for each n, V,, satisfies the function-free
Axiom of Choice as in Proposition 8.1.10.

Exercise 8.1.8. Show that V, satisfies the Axiom of Choice. Hint:
Prove by induction on n that for any set A = {z1,...,2} € V,, of
non-empty sets, there is a function f = {(z1,41),.-., (@n,yn)} € Vi,
with each y; € z;.

Exercise 8.1.9. Show that no non-empty finite set can satisfy the
Power Set Axiom.
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Exercise 8.1.10. Give an example of a transitive set A such that
(A, €) does not satisfy the Union Axiom.

Exercise 8.1.11. Show that the Empty Set Axiom follows from the
Axiom of Infinity and the Axiom of Separation.

Exercise 8.1.12. Show that V[, satisfies the Pairing Axiom.
Exercise 8.1.13. Show that V, satisfies the Union Axiom.

Exercise 8.1.14. Show that V), satisfies the Axiom of Comprehen-
sion for every n € w and thus that V,, satisfies it as well.

8.2 Transfinite Models

In this section, we examine the transfinite levels V,, of the hierarchy of
sets, as well as the hereditarily countable sets and more generally the
hereditarily < k sets for any cardinal . This reveals that the Axiom
of Replacement and the Powerset Axiom are each independent of the
other axioms.

The conclusions of the previous section for the finite levels of the
hierarchy of sets may be applied to the transfinite successor levels
except that w belongs to any transfinite level V41 so that V4
satisfies the Axiom of Infinity.

Proposition 8.2.1. For each infinite successor ordinal o, V,, satis-
fies every axiom except Pairing, Power Set, and Replacement.

The limit levels V), for A > w, share most of the properties of
V., with two notable exceptions. Certainly, each such V) satisfies the
Axiom of Infinity.

Thus, we have the following:

Theorem 8.2.2. For any limit ordinal A\ > w, V) satisfies every
axiom of ZF except possibly Replacement.

A situation in which V) does not satisfy Replacement is set forth
in the following result.

Theorem 8.2.3. For any ordinal \ such that the cofinality cof (\) <
A, Vi does not satisfy the Replacement Axiom.



Models of Set Theory 161

Proof. Let k = cof(A\) < X and let F' : kK — X be cofinal, that is,
U F[k] = A. While F' does not belong to V), it is nevertheless a class
function mapping a set k € V) to V). If V), satisfied the Replacement
Axiom, then F[x] would belong to V), and then the Union Axiom
would imply that A € V), a contradiction. O

Note that in particular, if A is not a cardinal, then cof (\) < A,
and hence V) does not satisfy Replacement.

Theorem 8.2.4. The axiom of Replacement is not provable from the
other axioms of ZFC.

Proof. We have shown that V., satisfies all axioms of ZFC except
for certain instances of the axiom schema of Replacement. O

We must observe that being a regular cardinal is not enough for
Replacement. For example, Vi, does not satisfy Replacement. This
follows from our following result. Recall that a cardinal x is strongly
inaccessible if it is regular and if, for any A\ < k, 2% < A.

Theorem 8.2.5. If k is a cardinal and V, satisfies the Azxiom of
Replacement, then k is strongly inaccessible.

Proof. We know that x must be regular by Theorem 8.2.3. Now,
suppose that A < x but x < 2. This means that there is a function
F mapping P(A) onto k. Since A < k, P(A) € Vj, so the Replace-
ment Axiom would imply that F[P(\)] = k is an element of Vi, a
contradiction. O

The converse of Theorem 8.2.5 is shown in the following, using
the following lemma, which is an immediate consequence of Theorem
6.3.32. The proof is left as Exercise 8.2.8.

Lemma 8.2.6. If k is strongly inaccessible and A € Vj, then
|A| < k.

Theorem 8.2.7. (ZFC) V, satisfies the Aziom of Replacement if
and only if Kk is strongly inaccessible.

Proof. It remains to show that V, satisfies Replacement if k is
strongly inaccessible. Let A € V,, and let F' : A — V,, be a class
function. By Lemma 8.2.6 from Chapter 6, |[A] = A < &, so there
is a map G from A onto A and then F' o G maps A to V, so that
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F[A] = (F o G)[\]. For each a < A, let H(«) be the least ordinal S
such that (F o G)(a) € Vg41. Then H is a class function mapping A
into k. Since k is inaccessible, it follows that H[\] is not cofinal in
k. Thus, there is some cardinal © < k such that H(«) < p for all
a < A. This means that F[A] C V,, and hence F[A] € V,. O

Thus, we have shown the following;:

Theorem 8.2.8. If k is strongly inaccessible, then V,; satisfies every
axiom of ZFC.

This explains why it is not possible to construct a strongly inac-
cessible cardinal within ZFC. The explanation goes beyond the scope
is this book, but here is a brief explanation. Suppose there were a
proof in ZFC that a strongly inaccessible cardinal  exists. Then as
we have seen, V,; would be a model of ZFC. But this would imply that
ZFC is consistent. However, Godel’s classic Incompleteness Theorem
implies that no reasonably strong theory, such as ZFC, can prove its
own consistency.

Since V,, was identified with the family of hereditarily finite sets,
there is another possible generalization of V,, which is a good candi-
date for a model of set theory.

Definition 8.2.9. For any infinite cardinal number «, let H(k) be
the family of sets A such that [trcl(A)| < k. Thus, the hereditarily
finite sets are the sets in H(w). The sets in H(X;) are known as the
hereditarily countable sets; let us denote this class by HC.

HC is a set, since it can be shown that HC C Vg, (see the
exercises).
Lemma 8.2.10. HC is a transitive set.
Proof. Letx € HC and y € x. Then trcl(y) C trcl(x), and since

the set trcl(x) is countable, so is trcl(y). This means that y € HC
and so the set HC' is transitive as desired. O

It is left as an exercise to show that H (k) is transitive for every k.
It is clear that HC' does not satisfy the Powerset Axiom. However,
all other axioms are satisfied.

Lemma 8.2.11. If the set A is countable, and every element of A
s hereditarily countable, then A is hereditarily countable.



Models of Set Theory 163

Proof. We claim that trcl1(A) = {A} UlJ,c4 trcl(a). Since A is
countable, and trcl(a) is countable for each a € A, it follows that
trcl(A) is countable, and hence A € HC. To prove the claim, it
suffice to show that {A} UJ,c 4 trcl(a) is transitive. This is left as
an exercise. O

Proposition 8.2.12. HC satisfies the Axiom of Replacement.

Proof. Let F': HC — HC be a class function and let A € HC.
Then F(a) € HC for every a € A and F[A] C HC exists by the
Axiom of Replacement. We need to show that F[A] is hereditarily
countable. Now, F'[A] is countable since A is countable, and it follows
by Lemma 8.2.11 that F[A] € HC. O

It is left as an exercise to show that every H (k) satisfies the Axiom
of Replacement.

Theorem 8.2.13. HC satisfies every axiom of ZFC except the Pow-
erset Aziom.

Other axioms are considered in the following exercises. Again it
turns out that H (k) will satisfy the missing axiom, in this case, the
Power Set Axiom (and thus all of the axioms) if and only if x is a
strongly inaccessible cardinal.

Thus, we have the following independence result:

Theorem 8.2.14. The Powerset Axiom cannot be derived from the
other axioms of ZFC.

Properties of the structure H(x) depend on whether k is regular
or is a limit cardinal.

Theorem 8.2.15. (AC) H(k) satisfies the Powerset Aziom if and
only if Kk is a strong limit cardinal.

Proof. Suppose that k is a strong limit cardinal and let A € H (k).
Then |A| = A for some cardinal A < k. Since k is a strong limit
cardinal, it follows that |P(A)| = 2* < k. For any B € P(A), we
have B C A so that |B| < |A| < k. Thus, P(A) € H(k).

The converse direction is left as an exercise. O

The Union Axiom also comes into play for the sets H (k). For
example, let kK = N,. Then the set A = {X,, : n € w} belongs to
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H(k), but A = XN, does not. Hence, H(X,,) does not satisfy the
Union Axiom. Similarly, H(3,) does not satisfy the Union Axiom.

Theorem 8.2.16. The Union Aziom cannot be derived from the
other azioms of ZFC.

Proof. The model H(3,) does not satisfy the Union Axiom. It
satisfies the Powerset axiom since 3, is a strong limit cardinal, and
it satisfies the other axioms since every H (k) satisfies them (for x >
Np). O

Here is the general result for the Union Axiom.

Theorem 8.2.17. (AC) H(k) satisfies the Union Aziom if and only
if k is a reqular cardinal.

Proof. Suppose that x is regular and let A € H(k). For any B €
A, B € H(k) as well so that |JA C H(k), and each B € A has
cardinality < k. It now follows from Theorem 6.3.28 that | |J 4| < k.
Thus, |JA € H(k) as desired. The converse direction is left as an
exercise. O

Putting this all together, we have the following:

Theorem 8.2.18. If k is a strongly inaccessible cardinal, then H (k)
satisfies every axiom of ZFC.

One might speculate that H (k) equals Vj; for any strongly inac-
cessible cardinal k. Showing this is left as an exercise.

Exercises for Section 8.2

Exercise 8.2.1. Show that for any limit ordinal A\, V) satisfies the
Pairing Axiom.

Exercise 8.2.2. Show that V,, satisfies the Axiom of Comprehension
for all ordinals «.

Exercise 8.2.3. Show that V1 does not satisfy the Power Set
Axiom for any a.

Exercise 8.2.4. Show that for each n, V,, satisfies the function-free
Axiom of Choice as in Proposition 8.1.10.
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Exercise 8.2.5. Show that V, satisfies the Axiom of Choice. Hint:
Prove by induction on n that for any set A = {z1,...,2} € V,, of
non-empty sets, there is a function f = {(z1,v1),..., (@n,yn)} € Vi,
with each y; € z;.

Exercise 8.2.6. Show that for any countable ordinal o > w, V,, does
not satisfy the Axiom of Replacement. Hint: Use the fact that there
is a bijection between a and w.

Exercise 8.2.7. Show that if  is a successor cardinal, then V,, can-
not satisfy Replacement.

Exercise 8.2.8. Show that if  is strongly inaccessible and A € V,
then |A| < k.

Exercise 8.2.9. Show that HC C Vy,. Hint: Use set induction.
Exercise 8.2.10. Show that HC satisfies the Pairing Axiom.
Exercise 8.2.11. Show that HC satisfies the Union Axiom.
Exercise 8.2.12. Show that for any cardinal x, H(k) is transitive.

Exercise 8.2.13. Show that for any cardinal x, H (k) satisfies the
Axiom of Replacement.

Exercise 8.2.14. Show that if H (k) satisfies the Powerset Axiom,
then x is a strong limit cardinal.

Exercise 8.2.15. Show that if H (k) satisfies the Union Axiom, then
K is a regular cardinal.

Exercise 8.2.16. Show that {A} UJ,c, trcl(a) is transitive.

Exercise 8.2.17. Show that no nonempty finite set can satisfy the
Pairing Axiom.

Exercise 8.2.18. Show that for any limit ordinal A, V) satisfies the
Power Set Axiom.

Exercise 8.2.19. Show that H (k) equals V for any strongly inac-
cessible cardinal k.
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Chapter 9

Ramsey Theory

In this chapter, we present the basics of Ramsey theory, an area with
many applications throughout mathematics. It exploits a simple, yet
profound, idea: In every large enough random structure, traces of
order can be found.

9.1 Finite Patterns

We start the exposition of finite Ramsey theorems with the simplest
case of them all.

Example 9.1.1. In any party of six people, there are three who
know each other, or there are three who do not know each other.

Proof. Let P denote the set of people in the party. Pick a person
p € P at random. One of the sets a = {¢ € P: p and ¢ know each
other} or b = {¢ € P: p and ¢ do not know each other} has size
at least three; for definiteness, assume it is the former. If there are
people ¢, € a who know each other, then {p,q,r} is the required
set of people who know each other; otherwise, the set a is a set of at
least three people who do not know each other. O

It turns out that a similar pattern persists for arbitrarily large finite
numbers.

Theorem 9.1.2. For any numbers m,n > 2 there is a number p € w
such that in any party of p many people, there are either m many
who know each other, or n many who do not know each other.

167
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Proof. Let R(m,n) be the smallest number which works, if it
exists. It is clear that R(2,k) = R(k,2) = k: In any party of k
many people, either two of them know each other or none of them
know each other. For other choices of m,n, we have the following
recursive formula:

Claim 9.1.3. Suppose that m,n > 3. Then R(m,n) < R(m,n—1)+
R(m —1,n).

Proof. Consider a party of at least R(m,n — 1) + R(m — 1,n)
many people. We must find either m many who know each other or
n many who do not know each other. Pick one person in the party
at random, say Sara. The rest of the people in the party divide into
two groups: those who know Sara and those who do not. By the
assumption on the size of the party, either the former group has at
least R(m — 1,n) many elements or the latter group has at least
R(m,n — 1) many elements. Suppose that the former case occurs;
The latter is symmetric. In the group of people who know Sara,
there must now be either n many elements who do not know each
other — in which case we are done, or m — 1 many elements who
do know each other — and together with Sara this is a group of m
people who know each other and we are done again. O

It is now easy to argue by induction on m + n that the number
R(m,n) exists using the claim at each stage of induction. O

The numbers R(m,n) (the Ramsey numbers) defined in the course
of the proof of the previous theorem are quite difficult to evalu-
ate already for low values of m,n. The case R(4,3) is relegated to
the exercises; however, the exact values of R(5,5) or R(6,6) were
unknown in 2018 even though very many people tried their luck with
them. Since the proof of Theorem 9.1.2 provides an obvious upper
bound on the value of R(m,n), the difficulty resides only in the fact
that a brute force consideration of all possible constellations takes
too many computational resources.

Ramsey theory is the branch of mathematics dealing with far-
reaching generalizations of Theorem 9.1.2 for finite and even infinite
sets. It will be useful to establish parlance and notation to facilitate
the rather long expressions.
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Definition 9.1.4.

1. Let a be a set and n € w be a number. [a]™ denotes the set of all
subsets of a of cardinality n.

2. Let a be a set and n,m € w be numbers. A function f: [a]" — m
is called a coloring of [a]™ by m colors.

3. Let f: [a]™ — m be a coloring. A set b C a is called homogeneous
for f if f is constant on [b]". The constant value is called the
homogeneous color.

We observe that a coloring f: [a|” — m may be viewed as a partition
of [a]™ into m sets.

The motivating question of Ramsey theory is as follows: Given a
large set a and a coloring, can one find a (smaller, but still large) set
b C a that is homogeneous for the coloring? To formulate the answer
succinctly, we use the arrow notation. While initially confusing, it was
introduced in 1956 by Paul Erdds, one of the greatest mathematicians
of the 20th century, and it has persisted since.

Definition 9.1.5. Let s, A\,n,m be cardinal numbers. The notation
Kk — (A) denotes the following statement: For every set a of cardi-
nality at least x and every coloring f: [a]™ — m, there is a homoge-
neous set b C a of cardinality at least .

In particular, the initial example shows that 6 — (3)3 holds. In gen-
eral, the cardinals k, A\,n,m may be finite or infinite. Already the
finite case is quite interesting. The following theorem is proved in
the following section.

Theorem 9.1.6. For all natural numbers n,m,r € w, there is a
natural number s € w such that s — (7).

Many applications of the finite Ramsey-type theorems deal with con-
figurations of points in the plane or higher-dimensional Euclidean
spaces; the following is the first result of this form.

Corollary 9.1.7 (Erd8s—Szekeres). For every number r € w,
there is a number s € w such that among any s many points in the
plane, no three of which are colinear, there are vertices of a convex
r-gon.
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Proof. We start with an elementary observation.

Claim 9.1.8. Among any five points in the plane, no three of which
are colinear, there are vertices of a convex 4-gon.

Proof. The argument proceeds essentially by considering all pos-
sible configurations. Let {z;: i € 5} be the points in the plane. Con-
sider the smallest convex polygon containing all of them. If it is a
4-gon or even a 5-gon, then its vertices are as required in the claim.
Consider the case that this polygon is just a triangle; without loss, its
vertices are xg,xr; and xo. Both x3, x4 lie inside the triangle zgxixs.
The lines xpx3, x1x3, and xoxs divide the triangle into six smaller
triangular pieces, and the vertex x4 must belong to one of them.
If this piece is bounded by the lines x;x3 and x;x3, then the points
x;, 25,3, x4 form a convex 4-gon. O

The following is also needed and may be proved by induction on 7.

Claim 9.1.9. Let r > 4 and let b be any set of  points in the plane,
no three of which are colinear. If any 4 of these points are the vertices
of a convex 4-gon, then the points are the vertices of a convex r-gon.

To conclude the proof of the theorem, without loss assume that r» > 5.
By the finitary Ramsey theorem (Theorem 9.1.6), there is a number s
such that s — (r)3; we claim that s must work. Indeed, if {z;: i € s}
are pairwise distinct points in the plane no three of which are colinear,
let f: [s]* — 2 be the coloring defined by f(c) = 0 if the points x; for
i € ¢ form a convex 4-gon, and let f(c) = 1 otherwise. The choice of
the number s guarantees an existence of a homogeneous set b C s of
size r. The first claim shows that the homogeneous color cannot be
1, so it must be 0 and then the second claim shows that the points
{z;: i € b} are vertices of a convex r-gon. O

The question of the existence of homogeneous sets becomes much
more difficult if one requires the homogeneous set to carry additional
structure. This is a demanding area of research. We state several
interesting theorems without proofs.

Fact 9.1.10 (Schur’s Theorem). For every number m € w there
is a number s € w such that for every coloring f: s — m there are
numbers z,y, z € s such that x +y = z and f(x) = f(y) = f(2).
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Recall that an arithmetic progression on natural numbers of
length n is a sequence of the form a,a+b,a+2b,...,a+ (n—1)b for
some a,b € w.

Fact 9.1.11 (van der Waerden’s Theorem). For numbers
n,m € w there is a number s € w such that for every coloring
f: s — m there is a homogeneous arithmetic progression of length n
contained in s.

Fact 9.1.12 (Szemerédi’s Theorem). For each number n € w
and positive real number € > 0 there is a number s € w such that
every set a C s such that |a| > €-s contains an arithmetic progression
of length n.

In all cases, the numbers s whose existence is claimed grow very
fast depending on the input, and finding the smallest s possible is
very demanding. Szemerédi’s theorem belongs to the most elaborated
mathematical results of the second half of 20th century.

Exercises for Section 9.1

Exercise 9.1.1. Show that R(4,3) = 9. Hint: To show that
R(4,3) > 8, consider the party of people enumerated by numbers
0,1,...,7 in which numbers k, [ know each other if k —[ =2 or 3 or
5 or 6 modulo 8.

Exercise 9.1.2. Calculate the Schur number for two and three
colors.

Exercise 9.1.3. Calculate the van der Waerden number for an arith-
metic sequence of length three and two colors.

Exercise 9.1.4. Let m,n € w be numbers. Show that if the points
on the circle are colored by m many colors, there is a real number
e > 0 and a homogeneous sequence of points on the circle of length
n in which any two successive points have distance e.

Exercise 9.1.5. Prove that for n,m € w, there is a number s such
that every increasing sequence {a;: i € n} of natural numbers start-
ing with 0 and such that a;+1 —a; < m for all ¢ contains an arithmetic
progression of length 5.
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Exercise 9.1.6. Prove that there is a number s such that if s =
ag U ay then either ag contains five consecutive natural numbers or
a1 contains an arithmetic progression of length 5.

9.2 Countably Infinite Patterns

The original Ramsey theorem was proved for the case of countably
infinite homogeneous sets. Frank Ramsey was a British mathemati-
cian, philosopher, and economist and proved the theorem in 1928.

Theorem 9.2.1 (Ramsey). Ifn,m are natural numbers, then w —
(W)t holds.

Proof. We proceed by induction on n. In the induction process,
the following simple notion is used: If f: [w]"*! — m is a coloring,
a set b C w is called end-homogeneous for f if the value f(c) for a
subset ¢ C b of size n + 1 does not depend on the largest element
of c.

Claim 9.2.2. For everyn,m € w and every coloring f: [w]"*1 — m,
there is an infinite end-homogeneous set for f.

Proof. By induction on j € w, we find natural numbers i; € w and
infinite sets b; C w so that

e g€l EigE... and by Db D...;

® iy € bpy;

e whenever ¢ C {ix: k € j} is a set of size n, the value f(cU {t}) is
the same for all ¢ € b;.

To begin, let i9p = 0 and by = w. For the induction step, suppose
that the numbers i, for £ < j and the set b; have been found. Write
d = {i.: k < j}. For each number t € bj, let g;: [d]" — m be the
coloring defined by g:(c) = f(cU {t}). Since there are only finitely
many colorings from [d]™ to m available, one of them has to repeat
infinitely many times: There must be a coloring ¢: [d|" — m and an
infinite set bj;1 C b; such that g; = g for all ¢ € bj 1. Let ;41 be the
minimal element of b;;1 larger than ¢;. This concludes the induction
step and the proof. O

Now, back to the proof of the theorem. The statement is obvi-
ously true for n = l-every partition of w into finitely many pieces
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must have an infinite piece. For the induction step, suppose that
the statement has been verified for some n € w; we must check it
for n + 1. To this end, let f: [w]"*! — m be a coloring and work
to find an infinite homogeneous set for it. Let b C w be an infinite
end-homogeneous set guaranteed by the claim. Let g: [b]" — m be
the function defined by g(c) = the unique value of f(cU {j}) where
J € ais a number larger than max(c). The function g is well-defined
since the set b is end-homogeneous. By the induction hypothesis, the
coloring g has an infinite homogeneous set. This set is easily seen to
be homogeneous for f as well. This completes the induction step and
the proof. O

The Ramsey theorems in the infinite realm almost always have
“miniaturizations”: purely finite little brothers (sisters?). They can
be proved in different ways; we choose an argument which makes use
of a non-principal ultrafilter on natural numbers.

Theorem 9.2.3. For all natural numbers n,m,r € w, there is a

natural number s € w such that s — (7).

Proof. Suppose toward contradiction that the conclusion fails for
some n, m,r, and for each number s € w choose a coloring f,: [s]" —
m which has no homogeneous set of size r. Let U be a non-principal
ultrafilter on w. Consider the U-average of the colorings fs for s € w.
This is a partition f: [w]™ — m defined by f(c) = i if the set {s €
w: fs(c) =i} belongs to U.

Claim 9.2.4. The partition f is well defined.

Proof. For each set ¢ € [w]", the natural numbers divide into m+1
many sets: The set b = {s € w: s < max(c)} and the sets b; = {s €
w: s > max(c) and fs(c) = i} for i € m. Since U is an ultrafilter,
exactly one of these pieces must belong to U. Since U is non-principal,
it cannot be the case that b € U since b is finite. If b; € U for some
i € m, then f(c) = 1. O

Now, we use the infinitary Ramsey theorem to find an infinite
homogeneous set b C w for f with homogeneous color i € m. Let
d C b be any subset of size . For each set ¢ € [d]", the set e, = {s €
w: fs(c) = i} belongs to the ultrafilter U. Thus, the set ({e.: ¢ €
[d]"} is nonempty, containing some number s € w. But then, d is
a homogeneous set for the partition fs in color 7, contradicting the
choice of the coloring fs. O
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An interesting variation on Ramsey theorems are canonical Ramsey
theorems. Instead of colorings, they homogenize equivalence relations
on n-tuples. We provide the simplest case with a proof.

Definition 9.2.5. E;, is the equivalence relation on [w]? connect-
ing two pairs of natural numbers if they have the same minimum.
Similarly, Epay is the equivalence relation on [w]? connecting two
pairs of natural numbers if they have the same maximum.

Theorem 9.2.6 (Erdés—Rado). Let E be an equivalence relation
on [w]%. There is an infinite set a C w such that either any two pairs
in [a)? are E-related, or no two distinct pairs in [a)® are E-related,
or E | [a]? = Enn | [a)?, or E | [a]? = Enax | [a]%.

Proof. The argument consists of two successive applications of the
Ramsey theorem. In the first, we analyze the behavior of the equiv-
alence relation E on disjoint pairs. For a quadruple n <m < p < r,
put g(n,m,p,r) equal to

0 if {n,m} is E-related to {p,r};

1 if the first item fails and {n,r} is E-related to {m,p};

2 if the first two items fail and {n,p} is E-related to {m,r};
3 if the first three items fail.

The Ramsey theorem yields an infinite set a C w homogeneous for g.
There is now a discussion of the different possibilities for the homoge-
neous color. If the homogeneous color is 0, then any two pairs in [a]?
are E-related because they are (by the homogeneity of a) E-related
to all pairs in [a]? with a sufficiently large minimum and E is a transi-
tive relation. If the homogeneous color is 1, then let b = a\ {min(a)}
and argue that any two pairs in [b]2 must be E-related since they are
E-related to a pair {min(a),n} for every large enough number n € a,
and F is a transitive relation. The homogeneous color 2 is impossi-
ble: Looking at the first six numbers n < m < p < r < s < t of
a, the assumption of homogeneity would tell us that the pair {m, s}
is E-related to both {n,p} and {r,t}; by the transitivity of E, it
should be the case that {n,p} E {r,t} and so g(n,m,r,t) = 0, con-
tradicting the assumed homogeneity of the set a in color 2. Finally,
if the homogeneous color is 3, then no two disjoint pairs in [a]? are
FE-related.
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In the first two cases, we have proved the theorem, since the first
disjunct of its conclusion has been confirmed. We thus consider the
last case and analyze the behavior of the equivalence E on pairs
which are not disjoint. Color triples n < m < p of natural numbers
according to the shape of the equivalence relation F on the triple.
Put f(n,m,p) equal to

0 if no two distinct pairs from {m,n,p} are E-related,;
1if {n,m} and {m,p} are E-related,;

2 if only {n,m} and {n,p} are E-related;

3 if only {n,p} and {m,p} are E-related.

One can verify that there are no other options for the shape of F
on the triple n < m < p. Theorem 9.2.1 gives an infinite homo-
geneous set ¢ C a. The proof is concluded by the discussion of all
possible cases for the homogeneous color. If the homogeneous color
is 0, then no two distinct pairs in [¢]? are E-related. Homogeneous
color 1 is impossible since then if n < m < p < r are the first four
numbers in ¢, then {n,m} E {m,p} E {p,r} and, by the transi-
tivity of E, {n,m} E {p,r}. This contradicts the assumption that
the set a is homogeneous for ¢ in color 3. If the homogeneous color
is 2, then any two pairs in ¢ are equivalent just in case they have
the same minimum. If the homogeneous color is 3, then any two
pairs in ¢ are equivalent just in case they have the same maximum.
In all cases, we verified one of the conjuncts of the conclusion of the
theorem. O

Exercises for Section 9.2

Exercise 9.2.1. Show that every infinite sequence of pairwise dis-
tinct real numbers contains an infinite increasing subsequence or an
infinite decreasing subsequence.

Exercise 9.2.2. Show that every infinite sequence of pairwise dis-
tinct ordinals contains an infinite increasing subsequence.

Exercise 9.2.3. Prove that if a is an infinite set of points in R?,
then it contains in infinite subset b C a such that no two distinct
pairs in b have the same distance between their points.
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9.3 Uncountable Patterns

It is much more difficult to get uncountable homogeneous sets for
arbitrary partitions. In this section, we include two classical negative
results with proofs.

Theorem 9.3.1 (Sierpinski). Let k be the cardinality of the con-
tinuum. Then k / (N1)3.

Proof. Let (ro: a € k) be an enumeration of all real numbers by
ordinals in . Define a coloring f: []?> — 2 by f(a, 8) =0ifa € B
ro < rg as real numbers. That is, the coloring considers the ordinal
ordering on x and the ordering induced by the real numbers and
compares them. We claim that there is no uncountable homogeneous
set for the coloring f. Suppose that A C k is such a homogeneous
set; we will find an injection of A into the rational numbers, proving
that A is countable. Depending on the homogeneous color, the reals
(ro: a € A) form an increasing sequence, or a decreasing sequence. In
either case, for each ordinal o € A (except possibly the largest one, if
it exists), find the smallest ordinal 5 € A larger than e and find some
rational number g(a) which is strictly between the real numbers 7,
and rg. The function g: A — Q is an injection as desired. O

Increasing the value of x much higher than the continuum, it is
possible to get the statement x — (R;)3. The following question con-
cerns a natural generalization of the Ramsey theorem to the uncount-
able realm:

Question 9.3.2 (Tarski). Is there a cardinal x > w such that
K — (k)37

Cardinals with this partition property are called weakly compact and
must stand very high in the cardinality hierarchy. The question is
unresolvable in ZFC.

The second result of this section shows that if the exponent is
infinite, then no increase in the size of the set serving as the basis of
the coloring will help get a large homogeneous set.

Theorem 9.3.3 (Erdés). For every cardinal k, k # (w)y°.

Proof. Fix the cardinal x. Let E be an equivalence relation on
P(k) connecting sets b, ¢ if the symmetric difference b A ¢ is finite.
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Use the Axiom of Choice to find a transversal A C P(k) for the
equivalence relation E (i.e. a set consisting of one element from each
FE-equivalence class). Let f: [k]Y° — 2 be the coloring defined by
f(b) = 0 just in case the cardinality of a Ab is even, where a is the
unique element of A which is F-equivalent to b. We show that no
infinite set can be homogeneous for the coloring f.

Suppose that B C k is such a homogeneous infinite set, and
pick two sets b,c C B which are infinite, countable, and such that
|lbAc| =1. Then b,c are E-related; let a € A be the unique point
in the transversal which is E-related to both. Then |a Ab| is even
just in case |a A ¢| is odd, since the two symmetric differences differ
exactly in the one point which makes distinction between b and c. It
follows that f(b) # f(c) and the set B is not homogeneous. O



This page intentionally left blank



Bibliography

P. Aczel. Non-well-founded sets. CSLI Lecture Notes 14. Stanford
University, Stanford, 1988.

G. Cantor. Ueber unendliche, lineare punktmannichfaltigkeiten.
Math. Ann., 21:545-591, 1883.

D. Cengzer, J. Larson, C. Porter and J. Zapletal. Foundations of Math-
ematics. World Scientific, 2019.

A. Fraenkel. Abstract Set Theory. Studies in Logic and the Founda-
tions of Mathematics. North-Holland, 1953.

C. Kuratowski. Une méthode d’élimination des nombres transfinis
des raisonnements mathématiques. Fund. Math., 3:76-108, 1922.

D. Anthony Martin. A purely inductive proof of Borel determinacy.
In A. Nerode and R. A. Shore, editors, Recursion Theory, Proceedings
of Symposia in Pure Mathematics, No. 42, pp. 303-308. American
Mathematical Society, Providence, 1985.

J. Mycielski and H. Steinhaus. A mathematical axiom contradict-
ing the axiom of choice. Bull. Acad. Polonaise Sci. Ser. Sci. Math.,
Astron. Phys., 10:1-3, 1962.

W. V. Quine. New Foundations for Mathematical Logic, pp. 80-101.
Harvard University Press, 1980.

B. Russel and A. Whitehead. Principia Mathematica. Cambridge
University Press, Cambridge, 1910.

M. Souslin. Probleme 3. Fund. Math., 1:223, 1920.

J. von Neumann. iiber die definition durch transfinite induktion
und verwandte fragen der allgemeinen mengenlehre. Math. Ann., 99:
373-391, 1928.

E. Zermelo. Beweis, dass jede menge wohlgeordnet werden kann.
Math. Ann., 59:514-516, 1904.

179



This page intentionally left blank



A® B, 76
B#, 18
F:A— B, 18
G 1A, 68
R 12

Va, 69, 91, 153
V., 153

[a]™, 169

', 65

N, 5

Q, 130

R, 5, 135

Z, 129

Ny, 119-120
Rq, 121

T, 122

C.®D 9

— O P o wn
o
Pt

a

[=}
[
\]

@@\LU‘

(A

Nai?

ms 169

<>

)
3
5
<

)

Rng, 12
-, 6

s(z), 55
trel, 71

Index

A

accumulation point, 137
addition, 67, 129
associative, 6, 14, 20, 45, 97
axiom
choice, 48, 53, 63, 76, 79, 109-110,
121, 158
comprehension, 44, 51, 157
empty set, 39, 156
extensionality, 6, 39, 156
infinity, 42, 55, 153, 157
pairing, 39, 157
power set, 41, 157, 163
regularity, 52, 72, 84, 88, 158
replacement, 51, 69, 91, 104, 120,
157, 163
union, 40, 157, 163

B

back-and-forth argument, 131
Baire space, 145

Boolean algebra, 5

bounded, 99

C

Cantor, 3, 77, 79-81
Cantor normal form theorem, 99
Cantor set, 81, 136

181



182 Set Theory and Foundations of Mathematics (Second Edition) — Volume I

Cantor space, 20, 33, 145,
149-150
Cantor, Georg, 36
Cantor—Bendixson derivative, 139
Cantor—Bendixson theorem, 140
cardinal, 117
addition, 76, 122
exponent, 122
inaccessible, 126, 161, 163
limit, 122
multiplication, 76, 122
regular, 125-126
singular, 125
strong limit, 122, 163
successor, 122
uncountable, 119-121
cardinality, 74, 118
class, 44, 55, 85
equivalence, 117
function, 51-52, 68, 70, 88, 93,
103
operator, 65
proper, 44
closed, 99
closed set, 137-142, 144, 146-148
perfect, 138
cofinality, 125, 160
commutative, 6, 93
complement, 5
composition, 13
concatenation, 31
condensation, 138, 142
condensation point, 137
continuous, 127, 144
continuum hypothesis, 124
countable, 79, 106, 131, 135, 137, 149,
160, 162

D

Dedekind cut, 81, 133
DeMorgan’s Law, 8, 21
dense, 131
in topological space, 149
order, 131, 135
distributive, 6, 21, 95

divisibility, 15, 28
division lemma, 95
domain, 12, 47

E

equivalence class, 24

Erdés, 4, 169, 176
FErdés—Szekeres theorem, 169
Erdés-Rado theorem, 174

F

Fibonacci sequence, 68
filter, 114
finite, 59

fixed point, 64-65, 67, 100, 112

least fixed point, 100
formula, 38

bounded, 155
Fraenkel, Abraham, 1, 36, 51
function, 17

bijective, 18, 23

binary, 18

class, 68, 70

injective, 18, 23

n-ary, 18

one-to-one, 18

onto, 18

projection, 20

restriction, 68

surjective, 18, 79

G

graph, 10
coloring, 169
directed, 10
edge, 10
random, 132
greatest lower bound, 28
group, 13, 18, 24, 45, 66
subgroup, 45

H
Hartog’s lemma, 121

Hausdorff’s maximal principle, 112



hereditarily countable, 160,
162

hereditarily finite sets, 41, 69,
153-154

homeomorphism, 144

homogeneous, 169

1

ideal, 114
maximal, 114
identity, 8
identity law, 8
relation, 15
inclusion, 7-8
independence, 153
indexed family, 19, 50, 124
intersection, 20
product, 20, 50
union, 20, 40
induction
course-of-values, 72
natural numbers, 56
set, 88
transfinite, 87
inductive definition, 64, 67
inductive set, 55
infinite, 59
integer, 129
intersection, 5
inverse, 48
isolated point, 137
isomorphism, 18

K

Konig’s lemma, 146
Kuratowski, 40, 111
Kuratowski’s principle, 112

L

least fixed point, 64
least upper bound, 28
logic, 5

predicate, 5
lower bound, 28

Index

M

mapping principle,
119
maximal, 28
maximum, 28
metric, 149
metrizable, 150
minimal, 28
minimum, 28
multiplication, 129

N

natural number, 55
normal, 103, 127

o

open ball, 150
open set, 137, 144
operator, 64, 70
class, 90
finitary, 64, 67, 70
monotone, 64, 67, 70, 90
order, 5, 10, 27
complete, 133
completion, 133
dense, 131
lexicographic, 32
linear, 27, 56, 84
partial, 8, 27
preorder, 27
quasiorder, 74
strict, 27
type, 104
well-founded, 27
well-order, 27, 103
ordered pair, 10
ordinal, 84, 103
addition, 76, 93, 105
countable, 94, 101, 105
exponentiation, 96
limit, 86
multiplication, 76, 94
successor, 86
von Neumann, 83

183



184 Set Theory and Foundations of Mathematics (Second Edition) — Volume I

P

partition, 24-25, 169

pattern, 167

pigeonhole principle, 62

power set, 5, 74

prefix, 31

prime ideal theorem, 114

product, 11, 50
Cartesian, 47

R

Ramsey, 4, 167

Ramsey’s theorem, 172

range, 12, 47

rank, 91

rational number, 106, 130

real number, 106, 135

recursive definition, 63-64, 70,
88
course-of-values, 67, 72
transfinite, 88

relation, 10-11
antisymmetric, 15
binary, 11
divisibility, 12
equivalence, 5, 10, 24, 74
identity, 12-13
inclusion, 8
inverse, 12
irreflexive, 15
membership, 5
n-ary, 11
reflexive, 15
symmetric, 15
transitive, 15

Russell, 37, 48

Russell’s Paradox, 46

S

Schréder—Bernstein theorem, 75
Schur’s theorem, 170

sentence, 38

separable, 149

set builder notation, 39, 44, 51
Souslin, 135

string, 31

subset, 7

subtraction lemma, 94
successor, 30, 55, 86
suffix, 31

Szemerédi’s theorem, 171

T

Tarski, 49, 59, 176

topological space, 144

topology, 144

transitive, 71, 84
closure, 71, 154, 162
hereditarily, 86
model, 155
set, 71

tree, 30, 146
finite-branching, 34
rooted, 30

trichotomy property, 27, 119

U

ultrafilter, 114

uncountable, 52, 79, 119-121,
137

union, 5
disjoint, 76, 94

universe, 5

upper bound, 28

A%

van der Waerden’s theorem, 171
vector space, 113
von Neumann, 2, 53, 55, 83

)%
well-ordering principle, 109

Z

Zermelo, 1, 36, 48, 109
Zermelo’s principle, 50
ZF, 36

ZFC, 36

Zorn’s lemma, 110, 113



	Preface to Second Edition
	About the Authors
	1. Introduction
	2. Review of Sets and Logic
	2.1 The Algebra of Sets
	2.2 Relations
	2.3 Functions
	2.4 Equivalence Relations
	2.5 Orderings
	2.6 Trees

	3. Zermelo–Fraenkel Set Theory
	3.1 Historical Context
	3.2 The Language of the Theory
	3.3 The Basic Axioms
	3.4 Axiom of Infinity
	3.5 Axiom Schema of Comprehension
	3.6 Axiom of Choice
	3.7 Axiom Schema of Replacement
	3.8 Axiom of Regularity

	4. Natural Numbers and Countable Sets
	4.1 Von Neumann’s Natural Number
	4.2 Finite and Infinite Sets
	4.3 Inductive and Recursive Definability
	4.4 Cardinality
	4.5 Countable and Uncountable Sets

	5. Ordinal Numbers and the Transfinite
	5.1 Ordinals
	5.2 Transfinite Induction and Recursion
	5.3 Ordinal Arithmetic
	5.4 Ordinals and Well-Orderings

	6. Cardinality and the Axiom of Choice
	6.1 Equivalent Versions of the Axiom of Choice
	6.2 Applications of the Axiom of Choice
	6.3 Cardinal Numbers

	7. Real Numbers
	7.1 Integers and Rational Numbers
	7.2 Dense Linear Orders
	7.3 Complete Orders
	7.4 Countable and Uncountable Sets of Reals
	7.5 Topological Spaces

	8. Models of Set Theory
	8.1 The Hereditarily Finite Sets
	8.2 Transfinite Models

	9. Ramsey Theory
	9.1 Finite Patterns
	9.2 Countably Infinite Patterns
	9.3 Uncountable Patterns

	Bibliography
	Index
	Contents

