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Preface 

We are pleased to present the proceedings of the 6th International Conference on 
Frontiers in Industrial and Applied Mathematics (FIAM-2023), held at the Depart-
ment of General Science, Birla Institute of Technology and Science, Pilani-Dubai 
Campus, UAE, from 21 to 22 December 2023. The FIAM-2023 is the 6th sequel 
of the FIAM conference series, which was started in 2018 by a group of faculty 
members working in different institutes in India. The focus of this conference is on 
the applications and applied research in various fields of mathematics. 

The scientific and technical program of the two-day international conference 
has invited talks and contributed oral presentations in the areas of computational 
and theoretical fluid dynamics, server queues, Lie group theory, fixed point theory, 
bio-mathematics, fuzzy, nonlinear dynamics, fractional calculus and approximation 
theory. These areas have numerous applications in the emerging technological and 
knowledge-based industries. A sound understanding of the same shall lead to the 
emergence of new ideas that can help to build trained professionals who can serve 
in the knowledge-based industries. 

The papers presented at FIAM-2023 reflect the diversity and depth of current 
research in computational and applied mathematics. The selected papers after peer 
review are published in this proceedings. Most of the papers deal with mathemat-
ical theory and its applications to the various disciplines of engineering and sciences. 
Among the many high-quality papers, some key contributions stood out for their inno-
vative approach and practical impact. For example, the study on chaotic Hamiltonian 
systems, by Alexandre R. Nieto, Jesus M. Seoane and Miguel A. F. Sanjuan, explored 
new methodologies in nonlinear dynamics. Another significant paper, authored by 
Deepika Parmar, B. V. Rathish Kumar, S. V. S. S. N. V. G. Krishna Murthy and 
Sumant Kumar, focused on the time-fractional derivative models applied to nanofluid 
dynamics in porous cavities. Additionally, a paper by C. Deniz Canal and A. C. 
Benim analyzed co-firing in swirl burners, providing vital insights into optimizing 
industrial combustion processes. In an another standout paper, Lucas Wangwe and 
Santosh Kumar explored a common fixed-point theorem for multivalued mappings 
in weak-partial b-metric space with a specific application that enhances the under-
standing of fixed-point theory and its mathematical implications. A paper by Vrushali

v



vi Preface

Khaladkar and Manish Kumar introduced a triple secure encryption scheme for three-
channel images based on the Hankel transform, geometric transforms and hyper-
chaotic maps, contributing significantly to secure data transmission. Additionally, 
noteworthy contributions include the work of Vora Hardagna Vatsal, Brajesh Kumar 
Jha and Tajinder Pal Singh, who presented a significant study on the effects of ER and 
Orai flux on fractional calcium diffusion in neuronal disorders, offering a mathemat-
ical perspective on complex biological processes. Sanjalee Maheshwari and Rajesh 
Sharma have contributed a numerical study on the thermo-convective instability 
of Au-Fe3O4 hybrid bi-viscous Bingham nanofluid. These papers, among others, 
reflect the breadth of research presented at the conference, showcasing the versatility 
of applied mathematics in addressing diverse challenges across industries. 

This book illustrates the mathematical simulation of scientific problems and 
cutting-edge development in multiple branches of mathematics, including various 
computational and modeling techniques with case studies and concrete examples. 
It can be used also as a reference book which is especially suitable for graduate 
students and scholars who are interested in the real applications of mathematics, and 
professionals working in the interdisciplinary domains of mathematics and engi-
neering. The target readers for this book include academicians, researchers, graduate 
students and industry experts interested in the latest advancements in mathematical 
techniques and their industrial applications. 

We would like to take this opportunity to offer our thanks to all the contributors 
for their excellent work, and to reviewers who took time and effort to provide their 
valuable comments in time and help to improve the quality of the papers. Our high 
appreciation is to all invited speakers and all participants for their enthusiastic partic-
ipation in this conference. We also thank Birla Institute of Technology and Science, 
Pilani-Dubai Campus, for hosting the event and providing a stimulating environ-
ment for fruitful discussions and collaborations. Our sincere and special thanks to 
the Springer Nature team for all the support offered during the journey to publish 
this book. 

Ahmedabad, India 
Düsseldorf, Germany 
Dubai, UAE 
Tomsk, Russia 

Rajesh Sharma 
Ali Cemal Benim 

Maneesh 
Mikhail A. Sheremet
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Exploring Noisy Chaotic Hamiltonian 
Systems 

Alexandre R. Nieto, Jesús M. Seoane, and Miguel A. F. Sanjuán 

Abstract In this work, we investigate the impact of noise on two-degree-of-freedom 
Hamiltonian systems where chaotic scattering takes place. We show that noise influ-
ences the system differently based on whether the isopotential curves are open or 
closed. Within the open regime, noise induces a phenomenon of noise-enhanced 
trapping, leading to an increase in the average escape time for particular noise inten-
sities. On the other hand, in the closed regime noise can generate escapes that are 
not possible in the conservative system. 

Keywords Hamiltonian systems · Chaotic scattering · Noise 

1 Introduction 

Chaotic scattering in open Hamiltonian systems holds significant importance in non-
linear science, finding applications in classical [ 1, 2] and quantum physics [ 3, 4]. 
This phenomenon extends its relevance to diverse fields such as chemistry [ 5, 6] 
and biology [ 7, 8]. While much of the research in chaotic scattering has focused on 
purely conservative systems [ 9– 12], many real-world situations are subject to envi-
ronmental influences or internal irregularities. Consequently, recent studies have 
incorporated perturbations into conservative systems, aiming to model the system’s 
interaction with its surroundings. Specifically, the impacts of dissipation [ 13, 14], 
periodic forcing [ 15, 16], and noise [ 17– 20] have been explored. 

Concerning the influence of noise, recent research has predominantly concen-
trated on area-preserving maps. In this context, noise has been identified as a factor 
capable of disrupting small scales of Kolmogorov-Arnold-Moser (KAM) islands, 

A. R. Nieto · J. M. Seoane · M. A. F. Sanjuán (B) 
Nonlinear Dynamics, Chaos and Complex Systems Group, Departamento de Física, Universidad 
Rey Juan Carlos, Móstoles, Madrid, Spain 
e-mail: miguel.sanjuan@urjc.es 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
R. K. Sharma et al. (eds.), Mathematical Theory and Simulation of Scientific Problems, 
Springer Proceedings in Mathematics & Statistics 487, 
https://doi.org/10.1007/978-981-96-2579-6_1 

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-2579-6_1&domain=pdf
mailto:miguel.sanjuan@urjc.es
https://doi.org/10.1007/978-981-96-2579-6_1
https://doi.org/10.1007/978-981-96-2579-6_1
https://doi.org/10.1007/978-981-96-2579-6_1
https://doi.org/10.1007/978-981-96-2579-6_1
https://doi.org/10.1007/978-981-96-2579-6_1
https://doi.org/10.1007/978-981-96-2579-6_1
https://doi.org/10.1007/978-981-96-2579-6_1
https://doi.org/10.1007/978-981-96-2579-6_1
https://doi.org/10.1007/978-981-96-2579-6_1
https://doi.org/10.1007/978-981-96-2579-6_1
https://doi.org/10.1007/978-981-96-2579-6_1


2 A. R. Nieto et al.

leading to escapes prohibited in deterministic systems [ 17, 18, 21]. However, it’s 
worth noting that noise can also induce trajectories outside KAM islands to enter 
inside them and exhibit transient regular motion [ 17, 19]. Furthermore, another inter-
esting phenomenon known as noise-enhanced trapping has been reported [ 19]. When 
this phenomenon takes place, small noise intensities play a constructive role by reduc-
ing the escape rate of the particles. This phenomenon manifests in fully chaotic and 
in mixed-phase-space systems, albeit with distinct underlying mechanisms. In fully 
chaotic systems, the escape rate reduction results from the blurring of the measure 
of the exits. On the other hand, in mixed-phase-space systems trapping is enhanced 
as certain trajectories within the chaotic sea can enter regions which are defined by 
KAM islands in the absence of noise. 

In this work, following the results reported in [ 22, 23], we explore the effects of 
noise in open an closed two-degree-of-freedom Hamiltonian systems, which in this 
context have received relatively less attention. We focus our analysis on the different 
response of the system depending on the existence of natural exits. 

Within the open regime, we demonstrate the existence of an additional mechanism 
that explains the noise-enhanced trapping phenomenon in open Hamiltonian systems. 
As chaotic maps are often derived as Poincaré surfaces of section from continuous 
systems, the results might be expected to be similar to the ones reported in area-
preserving maps. However, in open Hamiltonian systems, the introduction of noise 
in the velocity or in the spatial coordinates indirectly influences the energy. This 
crucial distinction gives rise to a novel and supplementary mechanism. 

On the other hand, within the closed regime noise enhanced-trapping does not play 
a relevant role on the escape dynamics. Conversely, in this situation the introduction 
of noise transforms bounded Hamiltonian dynamics into a chaotic scattering scenario. 
We observed that the relationship between the average escape time and the intensity 
of noise adheres to distinct algebraic scaling laws for low and high noise intensities. 
This discrepancy arises due to the disruption of the stickiness [ 24, 25] associated 
with the KAM islands. 

The organization of this manuscript is as follows. In Sect. 2, we describe our 
model, which is the Hénon-Heiles system incorporating additive uncorrelated Gaus-
sian noise. Section 3 provides robust numerical evidence of noise-enhanced trapping 
within the open regime of the system. The noise-activated escape phenomenon in 
the closed regime is explored in Sect. 4. Finally, in Sect. 5, we present the main 
conclusions. 

2 Model Description 

To conduct research on the impact of noise in Hamiltonian systems, we used the 
widely studied Hénon-Heiles Hamiltonian [ 26] as our model. This system has gar-
nered extensive attention in the nonlinear dynamics community due to its diverse 
dynamical behaviors [ 27– 30]. The system features a nonlinear potential exhibiting 
triangular symmetry, defining a Hamiltonian of the form
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Fig. 1 Isopotential curves 
depicting various values of 
the potential of the 
Hénon-Heiles system. The 
energy value.E = Ee is 
represented by the red lines. 
As can be seen, energies 
.E ≤ Ee generate bounded 
motion, while trajectories 
can escape trough three 
symmetrical exists when 
. E > Ee

H = 
1 

2 
( ̇x2 + ẏ2 ) + 

1 

2 
(x2 + y2 ) + x2 y − 

1 

3 
y3 , (1) 

where. x and. y represent spatial coordinates, and. ẋ and. ẏ denote the two components 
of the velocity. 

The system experiences significant changes in its dynamical behavior at the energy 
threshold.Ee = 1/6, known as escape energy. This threshold separates the open and 
closed regimes: for energies less than or equal to .Ee, the isopotential curves are 
closed, and trajectories are bounded, while energies greater than.Ee allow trajectories 
to escape. Fig. 1 illustrates isopotential curves for different energy values, providing 
a visual representation of the system’s distinct regimes. 

To consider the effect of noise, we have included a random force that we have 
modeled as uncorrelated additive Gaussian noise with zero mean. In this situation 
the equations of motion are 

ẍ = −x − 2xy  + √
2ξηx (t), 

ÿ = −y − x2 + y2 + √
2ξηy(t), 

(2) 

where.ηx (t) and.ηy(t) represent Gaussian white noise processes.Xt ∼ N (0, 2ξ)with 
intensity . ξ and autocorrelation function .〈η(t ′)η(t)〉 = √

2ξδ(t ′ − t). 

3 Noise-Enhanced Trapping 

We have characterized the dynamical behavior of the system by examining the aver-
age escape time of trajectories, denoted as. T̄ . Over a broad range of noise intensities, 
we have computed average escape times for particles at energies .E = 0.18 (in the 
mixed-phase space regime) and .E = 0.25 (in the fully chaotic regime). The results,
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Fig. 2 The evolution of the average escape time as the noise intensity increases is depicted for 
a E.= 0.18 and b E.= 0.25. The vertical red dashed lines indicate the noise intensity, denoted as 
. ξt , that induces noise-enhanced trapping 

illustrated in Fig. 2, reveal either a relative or an absolute maximum in the average 
escape time, indicating that trapping is enhanced for specific noise values,. ξt . Notably, 
strong noise intensities lead to a sharp decrease in the escape time, while weak noises 
generate different behaviors depending on the regime. In the fully chaotic regime (see 
Fig. 2b), the average escape time remains unchanged, converging to the value of the 
conservative system. Conversely, within the mixed-phase-space regime (see Fig. 2a), 
an initial decrease in. T̄ is observed. This decrease directly correlates with the reduc-
tion in stickiness of islands due to the effects of noise. While KAM islands technically 
do not exist in a noisy system, their remnants manifest through stickiness, retaining 
particles during extended transients. As noise intensity increases, stickiness dimin-
ishes, elevating the probability of escaping from a KAM region within a specific time. 

The reduction in stickiness with increasing noise does not imply that KAM islands 
cease to influence the escape dynamics in noise-enhanced trapping. On the contrary, 
as demonstrated in prior research [ 19], particles following escaping orbits in the 
deterministic system may, due to noise effects, transition into KAM islands during 
long transients. Therefore, the initial decrease in average escape time is attributed 
to stickiness reduction, while noise-enhanced trapping is closely linked to KAM 
structures. As a matter of fact, noise induces fluctuations in energy, enabling particles 
to enter the structure of existing KAM islands for different energy values. However, 
this occurs only for specific noise intensities that align with the fine structure of the 
islands. 

The noise-enhanced trapping phenomenon is generated by a small amount of 
“unusual” trajectories that reduce their energy due to the stochastic fluctuations and 
remain in the scattering region during astonishingly long transients. As an example, 
in Fig. 3 we show the evolution of the energy of one of these unusual trajectories. 
The escape time of the trajectory in the conservative system is .T = 12, while in the 
presence of a noise intensity. ξt the escape time increases until.T ≈ 1400. These kind 
of trajectories have a great effect on the average escape time.
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Fig. 3 Evolution of the 
energy of an unusual particle. 
The upper red line indicates 
the initial energy.E = 0.23, 
while the lower refers to the 
escape energy.Ee = 1/6. As  
can be observed, the 
trajectory moves during a 
long transient with very low 
energy.E < 1/6. The  curve  
concludes when the 
trajectory makes its escape 

4 Noise-Activated Escape 

As mentioned in Sect. 2, when .E ≤ 1/6 trajectories remain confined within the 
potential well. Despite this, the dynamical behavior is intricate, as both quasiperiodic 
and chaotic orbits coexist. Depending on the initial conditions, a trajectory may 
evolve differently, either following a regular orbit within a KAM torus or engaging 
in chaotic motion. The dynamics undergo a significant shift when we introduce the 
influence of noise on the system. In this scenario, the previously described conditions 
change dramatically. As noise impacts the particles’ velocities, energy conservation 
is no longer upheld. The system experiences tremors due to fluctuations in energy, 
and a sequence of positive energy fluctuations propels the particle toward escape, 
even in the presence of very low noise intensity. 

To visualize the noise-activated escape, we show in Fig. 4 two trajectories starting 
at an initial condition that belongs to a KAM torus of the noiseless system. As can be 
seen in Fig. 4a, in the absence of noise the particle describes a quasiperiodic orbit, 
while it escapes when noise is included (see Fig. 4b). 

Upon examining Fig. 4, a counterintuitive outcome becomes apparent, since in 
panel (a) the isopotential curves are closed, whereas in panel (b) they are open. At 
first glance, one might assume that the simulations were conducted with different 
energy values, such as.E = 1/6 in panel (a) and.E > 1/6 in panel (b). However, the 
opening of the potential well is a consequence of the presence of noise. Despite the 
noise intensity having a zero mean, the energy undergoes changes, enabling particles 
to evolve with higher or lower energies than at .t = 0. Therefore, if we represent the 
isopotential curves at the moment of escape, they will appear open. 

We have provided a qualitative explanation of the noise-activated escape phe-
nomenon. To quantitatively demonstrate the impact of noise on escape dynamics, 
we now calculate the average escape time .T̄ as a function of noise intensity. For 
numerical simulations, we have varied the noise intensity within a broad range. 
For each noise intensity, the escape time was computed for .3 × 105 random initial 
conditions to determine the average escape time. The results of this simulation are
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Fig. 4 Trajectories starting within a KAM torus are depicted in a the noiseless system and b in 
the presence of a noise intensity .ξ = 10−6. In both cases the initial energy is .E0 = 1/6. Even if  
the noiseless system is closed, the particle escapes after a finite time when noise is considered. 
The isopotential curves in panel (b) correspond to the energy of the system at the moment that the 
particle escapes (.E = 0.184) 

Fig. 5 Log-log plot of the 
evolution of the average 
escape time with increasing 
noise intensity. The solid 
dark lines correspond to two 
linear fits for low (. log T̄l =
−0.25 log ξ + 5.16) and  
high (. log T̄h =
−0.66 log ξ − 1.15) noise 
intensities 

presented in Fig. 5, revealing two distinct regimes characterized by different alge-
braic laws. For low noise intensities, the average escape time follows an algebraic 
law . T̄l , while high noise intensities are governed by another algebraic law . T̄h . To  
illustrate the algebraic relationship between the variables, the results are depicted in 
a log-log plot accompanied by two linear fits. By examining the slope and the .ln T̄ -
intercept obtained through the least squares method, we can deduce the parameters 
of the underlying algebraic law 

T̄ = αξ −β , (3) 

where . α and . β are positive constants. 
The reduction in the average escape time generated by the increase of the noise 

intensity can be evaluated by means of the derivative of Eq. (3). Giving the values 
of . α and . β, for low noise intensities we obtain



Exploring Noisy Chaotic Hamiltonian Systems 7

∣∣∣∣
d T̄l 
dξ

∣∣∣∣ <

∣∣∣∣
d T̄h 
dξ

∣∣∣∣ . (4) 

This equation suggests that the algebraic law .T̄h fails to accurately predict the 
impact of noise on average escape time at low noise intensities, as it tends to overes-
timate the effect of noise on the escape time. Hence, it is evident that for low noise 
intensities there is a factor mitigating the decrease of . T̄ . This factor is the stickiness 
of the KAM islands, which influences escape dynamics at low noise intensities, but 
becomes negligible at high ones [ 23]. 

5 Conclusions and Discussion 

In summary, our investigation unveils distinct qualitative effects of noise in open 
and closed Hamiltonian systems. In open systems, a phenomenon known as noise-
enhanced trapping emerges. Our findings indicate that this trapping is driven by 
a mechanism distinct from those reported in area-preserving maps. Specifically, it 
stems from the presence of unusual particles that undergo energy reduction due to 
stochastic fluctuations, resulting in prolonged transients. 

In closed systems, noise primarily induces random energy fluctuations, enabling 
particles to surpass the threshold.Ee and escape. The evolution of the average escape 
time displays a transition region that delineates two distinct regimes, each character-
ized by different algebraic scaling laws. Under the influence of noise, both open and 
closed Hamiltonian systems exhibit chaotic scattering. This suggests the possibility 
of modeling certain physical problems using noisy closed instead of open Hamilto-
nian systems. Given the different escape dynamics in each case, the choice of model 
depends on the system’s behavior. 

While our numerical evidence is based on the Hénon-Heiles Hamiltonian, we 
anticipate that similar phenomena may manifest in various Hamiltonian systems. The 
Barbanis potential [ 31], known for its applications in astrophysics [ 32, 33] and quan-
tum dynamics [ 34], along with other Hamiltonians employed in modeling galactic 
movements [ 32, 35, 36], are plausible candidates to exhibit these phenomena. 

References 

1. Lai, Y.-C., Tél, T.: Transient Chaos: Complex Dynamics on Finite-Time Scales. Springer, New 
York (2010) 

2. Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, 
London (2007) 

3. Lu, W.T., Sridhar, S., Zworski, M.: Fractal Weyl laws for chaotic open systems. Phys. Rev. 
Lett. 91, 154101 (2003). https://doi.org/10.1103/PhysRevLett.91.154101 

4. Stöckmann, H.-J.: Quantum Chaos: An Introduction. Cambridge University Press, Cambridge 
(1999)

https://doi.org/10.1103/PhysRevLett.91.154101
https://doi.org/10.1103/PhysRevLett.91.154101
https://doi.org/10.1103/PhysRevLett.91.154101
https://doi.org/10.1103/PhysRevLett.91.154101
https://doi.org/10.1103/PhysRevLett.91.154101
https://doi.org/10.1103/PhysRevLett.91.154101
https://doi.org/10.1103/PhysRevLett.91.154101
https://doi.org/10.1103/PhysRevLett.91.154101


8 A. R. Nieto et al.

5. Ezra, G.S., Waalkens, H., Wiggins, S.: Microcanonical rates, gap times, and phase space 
dividing surfaces. J. Chem. Phys. 130, 164118 (2009). https://doi.org/10.1063/1.3119365 

6. Kawai, S., Bandrauk, A.D., Jaffé, C., Bartsch, T., Palacián, J., Uzer, T.: Transition state the-
ory for laser-driven reactions. J. Chem. Phys. 126, 164306 (2007). https://doi.org/10.1063/1. 
2720841 

7. Tél, T.: Chaotic advection, diffusion, and reactions in open flows. Chaos 10, 89–98 (2000). 
https://doi.org/10.1063/1.166478 

8. Schelin, A.B., Károlyi, G., de Moura, A.P.S., Booth, N.A., Grebogi C.: Fractal structures in 
stenoses and aneurysms in blood vessels. Phil. Trans. R. Soc. A 368, 5605–5617 (2010). https:// 
doi.org/10.1098/rsta.2010.0268 

9. Bleher, S., Grebogi, C., Ott, E.: Bifurcation to chaotic scattering. Phys. D 46, 87–121 (1990). 
https://doi.org/10.1016/0167-2789(90)90114-5 

10. Contopoulos, G., Kandrup, H.E., Kaufmann, D.: Fractal properties of escape from a 
two-dimensional potential. Phys. D 64, 310–321 (1993). https://doi.org/10.1016/0167-
2789(93)90262-Y 

11. Kandrup, H.E., Siopis, C., Contopoulos, G., Dvorak, R.: Diffusion and scaling in escapes from 
two-degrees-of-freedom Hamiltonian systems. Chaos 9, 381–392 (1999). https://doi.org/10. 
1063/1.166415 

12. Aguirre, J., Vallejo, J.C., Sanjuán, M.A.F.: Wada basins and chaotic invariant sets in the Hénon-
Heiles system. Phys. Rev. E 64, 066208 (2001). https://doi.org/10.1103/PhysRevE.64.066208 

13. Motter, A.E., Lai, Y-C.: Dissipative chaotic scattering. Phys. Rev. E 65, 015205(R) (2001). 
https://doi.org/10.1103/PhysRevE.65.015205 

14. Burton, L.G., Dullin, H.R., Altmann, E.G.: Probabilistic description of dissipative chaotic 
scattering. Phys. Rev. E 108, 054223 (2023). https://doi.org/10.1103/PhysRevE.108.054223 

15. Blesa, F., Seoane, J.M., Barrio, R., Sanjuán, M.A.F.: Effects of periodic forcing in chaotic 
scattering. Phys. Rev. E 89, 042909 (2014). https://doi.org/10.1103/PhysRevE.89.042909 

16. Nieto, A.R., Seoane, J.M., Alvarellos, J.E., Sanjuán, M.A.F.: Resonant behavior and unpre-
dictability in forced chaotic scattering. Phys. Rev. E 98, 062206 (2018). https://doi.org/10. 
1103/PhysRevE.98.062206 

17. Rodrigues, C.S., Moura, A.P.S., Grebogi, C.: Random fluctuation leads to forbidden escape of 
particles. Phys. Rev. E 82, 026211 (2010). https://doi.org/10.1103/PhysRevE.82.026211 

18. da Silva, R.M., Manchein, C., Beims, M.W.: Exploring conservative islands using correlated 
and uncorrelated noise. Phys. Rev. E 97, 022219 (2018). https://doi.org/10.1103/PhysRevE. 
97.022219 

19. Altmann, E.G., Endler, A.: Noise-enhanced trapping in chaotic scattering. Phys. Rev. Lett. 105, 
244102 (2010). https://doi.org/10.1103/PhysRevLett.105.244102 

20. Nieto, A.R. Seoane, J.M., Sanjuán, M.A.F.: Final state sensitivity in noisy chaotic scattering. 
Chaos Solitons Fractals 150, 111181 (2021). https://doi.org/10.1016/j.chaos.2021.111181 

21. Mills, P.: The influence of noise on a classical chaotic scatterer. Commun. Nonlinear Sci. 
Numer. Simulat. 11, 899–906 (2006). https://doi.org/10.1016/j.cnsns.2005.02.003 

22. Nieto, A.R. Seoane, J.M., Sanjuán, M.A.F.: Trapping enhanced by noise in nonhyperbolic and 
hyperbolic chaotic scattering. Commun. Nonlinear Sci. Numer. Simulat. 102, 105905 (2021). 
https://doi.org/10.1016/j.cnsns.2021.105905 

23. Nieto, A.R. Seoane, J.M., Sanjuán, M.A.F.: Noise activates escapes in closed Hamiltonian 
systems. Commun. Nonlinear Sci. Numer. Simulat. 105, 106074 (2022). https://doi.org/10. 
1016/j.cnsns.2021.106074 

24. Altmann, E.G., Motter, A.E., Kantz, H.: Stickiness in Hamiltonian systems: from sharply 
divided to hierarchical phase space. Phys. Rev. E 73, 026207 (2006). https://doi.org/10.1103/ 
PhysRevE.73.026207 

25. Bunimovich, L.A., Vela-Arevalo, L.V.: Many faces of stickiness in Hamiltonian systems. Chaos 
22, 026103 (2012). https://doi.org/10.1063/1.3692974 

26. Hénon, M., Heiles, C.: The applicability of the third integral of motion: some numerical 
experiments. Astron. J. 69, 73–79 (1964). https://doi.org/10.1086/109234

https://doi.org/10.1063/1.3119365
https://doi.org/10.1063/1.3119365
https://doi.org/10.1063/1.3119365
https://doi.org/10.1063/1.3119365
https://doi.org/10.1063/1.3119365
https://doi.org/10.1063/1.3119365
https://doi.org/10.1063/1.3119365
https://doi.org/10.1063/1.2720841
https://doi.org/10.1063/1.2720841
https://doi.org/10.1063/1.2720841
https://doi.org/10.1063/1.2720841
https://doi.org/10.1063/1.2720841
https://doi.org/10.1063/1.2720841
https://doi.org/10.1063/1.2720841
https://doi.org/10.1063/1.166478
https://doi.org/10.1063/1.166478
https://doi.org/10.1063/1.166478
https://doi.org/10.1063/1.166478
https://doi.org/10.1063/1.166478
https://doi.org/10.1063/1.166478
https://doi.org/10.1063/1.166478
https://doi.org/10.1098/rsta.2010.0268
https://doi.org/10.1098/rsta.2010.0268
https://doi.org/10.1098/rsta.2010.0268
https://doi.org/10.1098/rsta.2010.0268
https://doi.org/10.1098/rsta.2010.0268
https://doi.org/10.1098/rsta.2010.0268
https://doi.org/10.1098/rsta.2010.0268
https://doi.org/10.1098/rsta.2010.0268
https://doi.org/10.1016/0167-2789(90)90114-5
https://doi.org/10.1016/0167-2789(90)90114-5
https://doi.org/10.1016/0167-2789(90)90114-5
https://doi.org/10.1016/0167-2789(90)90114-5
https://doi.org/10.1016/0167-2789(90)90114-5
https://doi.org/10.1016/0167-2789(90)90114-5
https://doi.org/10.1016/0167-2789(90)90114-5
https://doi.org/10.1016/0167-2789(90)90114-5
https://doi.org/10.1016/0167-2789(93)90262-Y
https://doi.org/10.1016/0167-2789(93)90262-Y
https://doi.org/10.1016/0167-2789(93)90262-Y
https://doi.org/10.1016/0167-2789(93)90262-Y
https://doi.org/10.1016/0167-2789(93)90262-Y
https://doi.org/10.1016/0167-2789(93)90262-Y
https://doi.org/10.1016/0167-2789(93)90262-Y
https://doi.org/10.1016/0167-2789(93)90262-Y
https://doi.org/10.1063/1.166415
https://doi.org/10.1063/1.166415
https://doi.org/10.1063/1.166415
https://doi.org/10.1063/1.166415
https://doi.org/10.1063/1.166415
https://doi.org/10.1063/1.166415
https://doi.org/10.1063/1.166415
https://doi.org/10.1103/PhysRevE.64.066208
https://doi.org/10.1103/PhysRevE.64.066208
https://doi.org/10.1103/PhysRevE.64.066208
https://doi.org/10.1103/PhysRevE.64.066208
https://doi.org/10.1103/PhysRevE.64.066208
https://doi.org/10.1103/PhysRevE.64.066208
https://doi.org/10.1103/PhysRevE.64.066208
https://doi.org/10.1103/PhysRevE.64.066208
https://doi.org/10.1103/PhysRevE.65.015205
https://doi.org/10.1103/PhysRevE.65.015205
https://doi.org/10.1103/PhysRevE.65.015205
https://doi.org/10.1103/PhysRevE.65.015205
https://doi.org/10.1103/PhysRevE.65.015205
https://doi.org/10.1103/PhysRevE.65.015205
https://doi.org/10.1103/PhysRevE.65.015205
https://doi.org/10.1103/PhysRevE.65.015205
https://doi.org/10.1103/PhysRevE.108.054223
https://doi.org/10.1103/PhysRevE.108.054223
https://doi.org/10.1103/PhysRevE.108.054223
https://doi.org/10.1103/PhysRevE.108.054223
https://doi.org/10.1103/PhysRevE.108.054223
https://doi.org/10.1103/PhysRevE.108.054223
https://doi.org/10.1103/PhysRevE.108.054223
https://doi.org/10.1103/PhysRevE.108.054223
https://doi.org/10.1103/PhysRevE.89.042909
https://doi.org/10.1103/PhysRevE.89.042909
https://doi.org/10.1103/PhysRevE.89.042909
https://doi.org/10.1103/PhysRevE.89.042909
https://doi.org/10.1103/PhysRevE.89.042909
https://doi.org/10.1103/PhysRevE.89.042909
https://doi.org/10.1103/PhysRevE.89.042909
https://doi.org/10.1103/PhysRevE.89.042909
https://doi.org/10.1103/PhysRevE.98.062206
https://doi.org/10.1103/PhysRevE.98.062206
https://doi.org/10.1103/PhysRevE.98.062206
https://doi.org/10.1103/PhysRevE.98.062206
https://doi.org/10.1103/PhysRevE.98.062206
https://doi.org/10.1103/PhysRevE.98.062206
https://doi.org/10.1103/PhysRevE.98.062206
https://doi.org/10.1103/PhysRevE.98.062206
https://doi.org/10.1103/PhysRevE.82.026211
https://doi.org/10.1103/PhysRevE.82.026211
https://doi.org/10.1103/PhysRevE.82.026211
https://doi.org/10.1103/PhysRevE.82.026211
https://doi.org/10.1103/PhysRevE.82.026211
https://doi.org/10.1103/PhysRevE.82.026211
https://doi.org/10.1103/PhysRevE.82.026211
https://doi.org/10.1103/PhysRevE.82.026211
https://doi.org/10.1103/PhysRevE.97.022219
https://doi.org/10.1103/PhysRevE.97.022219
https://doi.org/10.1103/PhysRevE.97.022219
https://doi.org/10.1103/PhysRevE.97.022219
https://doi.org/10.1103/PhysRevE.97.022219
https://doi.org/10.1103/PhysRevE.97.022219
https://doi.org/10.1103/PhysRevE.97.022219
https://doi.org/10.1103/PhysRevE.97.022219
https://doi.org/10.1103/PhysRevLett.105.244102
https://doi.org/10.1103/PhysRevLett.105.244102
https://doi.org/10.1103/PhysRevLett.105.244102
https://doi.org/10.1103/PhysRevLett.105.244102
https://doi.org/10.1103/PhysRevLett.105.244102
https://doi.org/10.1103/PhysRevLett.105.244102
https://doi.org/10.1103/PhysRevLett.105.244102
https://doi.org/10.1103/PhysRevLett.105.244102
https://doi.org/10.1016/j.chaos.2021.111181
https://doi.org/10.1016/j.chaos.2021.111181
https://doi.org/10.1016/j.chaos.2021.111181
https://doi.org/10.1016/j.chaos.2021.111181
https://doi.org/10.1016/j.chaos.2021.111181
https://doi.org/10.1016/j.chaos.2021.111181
https://doi.org/10.1016/j.chaos.2021.111181
https://doi.org/10.1016/j.chaos.2021.111181
https://doi.org/10.1016/j.chaos.2021.111181
https://doi.org/10.1016/j.cnsns.2005.02.003
https://doi.org/10.1016/j.cnsns.2005.02.003
https://doi.org/10.1016/j.cnsns.2005.02.003
https://doi.org/10.1016/j.cnsns.2005.02.003
https://doi.org/10.1016/j.cnsns.2005.02.003
https://doi.org/10.1016/j.cnsns.2005.02.003
https://doi.org/10.1016/j.cnsns.2005.02.003
https://doi.org/10.1016/j.cnsns.2005.02.003
https://doi.org/10.1016/j.cnsns.2005.02.003
https://doi.org/10.1016/j.cnsns.2005.02.003
https://doi.org/10.1016/j.cnsns.2021.105905
https://doi.org/10.1016/j.cnsns.2021.105905
https://doi.org/10.1016/j.cnsns.2021.105905
https://doi.org/10.1016/j.cnsns.2021.105905
https://doi.org/10.1016/j.cnsns.2021.105905
https://doi.org/10.1016/j.cnsns.2021.105905
https://doi.org/10.1016/j.cnsns.2021.105905
https://doi.org/10.1016/j.cnsns.2021.105905
https://doi.org/10.1016/j.cnsns.2021.105905
https://doi.org/10.1016/j.cnsns.2021.106074
https://doi.org/10.1016/j.cnsns.2021.106074
https://doi.org/10.1016/j.cnsns.2021.106074
https://doi.org/10.1016/j.cnsns.2021.106074
https://doi.org/10.1016/j.cnsns.2021.106074
https://doi.org/10.1016/j.cnsns.2021.106074
https://doi.org/10.1016/j.cnsns.2021.106074
https://doi.org/10.1016/j.cnsns.2021.106074
https://doi.org/10.1016/j.cnsns.2021.106074
https://doi.org/10.1103/PhysRevE.73.026207
https://doi.org/10.1103/PhysRevE.73.026207
https://doi.org/10.1103/PhysRevE.73.026207
https://doi.org/10.1103/PhysRevE.73.026207
https://doi.org/10.1103/PhysRevE.73.026207
https://doi.org/10.1103/PhysRevE.73.026207
https://doi.org/10.1103/PhysRevE.73.026207
https://doi.org/10.1103/PhysRevE.73.026207
https://doi.org/10.1063/1.3692974
https://doi.org/10.1063/1.3692974
https://doi.org/10.1063/1.3692974
https://doi.org/10.1063/1.3692974
https://doi.org/10.1063/1.3692974
https://doi.org/10.1063/1.3692974
https://doi.org/10.1063/1.3692974
https://doi.org/10.1086/109234
https://doi.org/10.1086/109234
https://doi.org/10.1086/109234
https://doi.org/10.1086/109234
https://doi.org/10.1086/109234
https://doi.org/10.1086/109234


Exploring Noisy Chaotic Hamiltonian Systems 9

27. Barrio, R., Blesa, F., Serrano, S.: Fractal structures in the Hénon-Heiles Hamiltonian. EPL 82, 
10003 (2008). https://doi.org/10.1209/0295-5075/82/10003 

28. Barrio, R., Wilczak, D.: Distribution of stable islands within chaotic areas in the non-hyperbolic 
and hyperbolic regimes in the Hénon-Heiles system. Nonlinear Dyn. 102, 403–416 (2020). 
https://doi.org/10.1007/s11071-020-05930-x 

29. Zotos, E.E.: Classifying orbits in the classical Hénon-Heiles Hamiltonian system. Nonlinear 
Dyn. 79, 1665–1677 (2015). https://doi.org/10.1007/s11071-014-1766-6 

30. Nieto, A.R., Seoane, J.M., Sanjuán, M.A.F.: Period-doubling bifurcations and islets of stability 
in two-degree-of-freedom Hamiltonian systems. Phys. Rev. E 107, 054215 (2023). https://doi. 
org/10.1103/PhysRevE.107.054215 

31. Barrio, R., Blesa, F., Serrano, S.: Bifurcations and safe regions in open Hamiltonians. New J. 
Phys. 11, 053004 (2009). https://doi.org/10.1088/1367-2630/11/5/053004 

32. Contopoulos, G.: Order and Chaos in Dynamical Astronomy. Springer, Berlin (2002) 
33. Navarro, J.F.: On the escape from potentials with two exit channels. Sci. Rep. 9, 13174 (2019). 

https://doi.org/10.1038/s41598-019-49765-y 
34. Babyuk, D., Wyatt, R.E., Frederick, J.H.: Hydrodynamic analysis of dynamical tunneling. J. 

Chem. Phys. 119, 6482–6482 (2003). https://doi.org/10.1063/1.1605385 
35. Kandrup, H.E., Novotny, S.J.: Phase mixing in unperturbed and perturbed Hamiltonian systems. 

Celest. Mech. Dyn. Astron. 88, 1–35 (2004). https://doi.org/10.1023/B:CELE.0000009380. 
17257.98 

36. de Assis, S.C., Terra, M.O.: Escape dynamics and fractal basin boundaries in the planar Earth-
Moon system. Celest. Mech. Dyn. Astr. 120, 105–130 (2014). https://doi.org/10.1007/s10569-
014-9567-2

https://doi.org/10.1209/0295-5075/82/10003
https://doi.org/10.1209/0295-5075/82/10003
https://doi.org/10.1209/0295-5075/82/10003
https://doi.org/10.1209/0295-5075/82/10003
https://doi.org/10.1209/0295-5075/82/10003
https://doi.org/10.1209/0295-5075/82/10003
https://doi.org/10.1209/0295-5075/82/10003
https://doi.org/10.1209/0295-5075/82/10003
https://doi.org/10.1209/0295-5075/82/10003
https://doi.org/10.1007/s11071-020-05930-x
https://doi.org/10.1007/s11071-020-05930-x
https://doi.org/10.1007/s11071-020-05930-x
https://doi.org/10.1007/s11071-020-05930-x
https://doi.org/10.1007/s11071-020-05930-x
https://doi.org/10.1007/s11071-020-05930-x
https://doi.org/10.1007/s11071-020-05930-x
https://doi.org/10.1007/s11071-020-05930-x
https://doi.org/10.1007/s11071-020-05930-x
https://doi.org/10.1007/s11071-014-1766-6
https://doi.org/10.1007/s11071-014-1766-6
https://doi.org/10.1007/s11071-014-1766-6
https://doi.org/10.1007/s11071-014-1766-6
https://doi.org/10.1007/s11071-014-1766-6
https://doi.org/10.1007/s11071-014-1766-6
https://doi.org/10.1007/s11071-014-1766-6
https://doi.org/10.1007/s11071-014-1766-6
https://doi.org/10.1007/s11071-014-1766-6
https://doi.org/10.1103/PhysRevE.107.054215
https://doi.org/10.1103/PhysRevE.107.054215
https://doi.org/10.1103/PhysRevE.107.054215
https://doi.org/10.1103/PhysRevE.107.054215
https://doi.org/10.1103/PhysRevE.107.054215
https://doi.org/10.1103/PhysRevE.107.054215
https://doi.org/10.1103/PhysRevE.107.054215
https://doi.org/10.1103/PhysRevE.107.054215
https://doi.org/10.1088/1367-2630/11/5/053004
https://doi.org/10.1088/1367-2630/11/5/053004
https://doi.org/10.1088/1367-2630/11/5/053004
https://doi.org/10.1088/1367-2630/11/5/053004
https://doi.org/10.1088/1367-2630/11/5/053004
https://doi.org/10.1088/1367-2630/11/5/053004
https://doi.org/10.1088/1367-2630/11/5/053004
https://doi.org/10.1088/1367-2630/11/5/053004
https://doi.org/10.1088/1367-2630/11/5/053004
https://doi.org/10.1088/1367-2630/11/5/053004
https://doi.org/10.1038/s41598-019-49765-y
https://doi.org/10.1038/s41598-019-49765-y
https://doi.org/10.1038/s41598-019-49765-y
https://doi.org/10.1038/s41598-019-49765-y
https://doi.org/10.1038/s41598-019-49765-y
https://doi.org/10.1038/s41598-019-49765-y
https://doi.org/10.1038/s41598-019-49765-y
https://doi.org/10.1038/s41598-019-49765-y
https://doi.org/10.1038/s41598-019-49765-y
https://doi.org/10.1063/1.1605385
https://doi.org/10.1063/1.1605385
https://doi.org/10.1063/1.1605385
https://doi.org/10.1063/1.1605385
https://doi.org/10.1063/1.1605385
https://doi.org/10.1063/1.1605385
https://doi.org/10.1063/1.1605385
https://doi.org/10.1023/B:CELE.0000009380.17257.98
https://doi.org/10.1023/B:CELE.0000009380.17257.98
https://doi.org/10.1023/B:CELE.0000009380.17257.98
https://doi.org/10.1023/B:CELE.0000009380.17257.98
https://doi.org/10.1023/B:CELE.0000009380.17257.98
https://doi.org/10.1023/B:CELE.0000009380.17257.98
https://doi.org/10.1023/B:CELE.0000009380.17257.98
https://doi.org/10.1023/B:CELE.0000009380.17257.98
https://doi.org/10.1023/B:CELE.0000009380.17257.98
https://doi.org/10.1023/B:CELE.0000009380.17257.98
https://doi.org/10.1007/s10569-014-9567-2
https://doi.org/10.1007/s10569-014-9567-2
https://doi.org/10.1007/s10569-014-9567-2
https://doi.org/10.1007/s10569-014-9567-2
https://doi.org/10.1007/s10569-014-9567-2
https://doi.org/10.1007/s10569-014-9567-2
https://doi.org/10.1007/s10569-014-9567-2
https://doi.org/10.1007/s10569-014-9567-2
https://doi.org/10.1007/s10569-014-9567-2


Numerical Study of Time-Fractional 
Double Diffusive Convective Flow in a 
Wavy Porous Cavity 
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and S. V. S. S. N. V. G. Krishna Murthy 

Abstract The current numerical investigation illustrates how the fractional order 
parameter influences the dynamics of double-diffusive convective processes within 
a square porous enclosure featuring wavy walls. Specifically, the enclosure’s left 
(hot) and right (cold) wavy walls are kept at constant temperatures and solute con-
centrations, while the remaining two walls are thermally insulated and impermeable 
to solute. To analyze the transient behavior of fluid flow, the Caputo time-fractional 
derivative is applied to the energy and mass transfer equations, and momentum trans-
port equation is modeled using the Darcy approach. In addition, the .L1-scheme is 
employed to estimate the fractional time-derivative term, and the entire mathemat-
ical model is subsequently solved using the Galerkin finite element method. The 
investigation encompasses various parameters such as the Rayleigh number .(Ra), 
buoyancy ratio.(N ), Lewis number.(Le), and fractional-order parameter .(α). More-
over, simulations are carried out by varying the fractional-order parameter within 
the range .(0 < α ≤ 1). The findings are presented through contour plots illustrat-
ing variations in isotherms, streamlines, and isoconcentrations, alongside numerical 
variations of the mean Nusselt number.(Num) and mean Sherwood number.(Shm). It  
is evident from the results that the fractional parameter. α significantly influences heat 
and solute transport phenomena, as well as the initial evolution states of streamlines, 
isotherms, and isoconcentrations. 

Keywords Caputo fractional derivative · Porous media · Double diffusion ·
Nanofluids · Penalty finite element method 
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Nomenculture 

. x , .y Cartesian co-ordinates; 
. X , .Y Dimensionless co-ordinates; 
. u, .v Dimensional velocity components in . x and . y directions respectively; 

. U , .V Dimensionless velocity components in. X and. Y directions respectively; 
.t Dimensional time; 

.T Dimensional temperature; 
.P Dimensional pressure; 
.k Thermal conductivity; 
.L Characteristic length; 
.r Amplitude of wavy wall; 

.K Permeability; 
.C ′ Solute concentration; 
.C Solute concentration, dimensionless; 

Non-dimensional Parameters 

.Ra Rayleigh number; 
.Le Lewis number; 

.Num Mean Nusselt number; 
.Shm Mean Sherwood number; 

.N Buoyancy ratio; 

Greek Symbols 

.α Order of fractional derivative; 
.αn f , .αb f Thermal diffusivity of nanofluid and base fluid respectively; 

.βT Volumetric expansion coefficient with temperature; 
.βC ′ Volumetric expansion coefficient with concentration; 

.ρ Density; 
.μ Dynamic viscosity; 
.Ψ Dimensionless stream function; 
.θ Dimensionless temperature; 
.τ Dimensionless time;
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Subscripts 

.n f Nanofluid; 

.b f Base fluid; 
.s Solid matrix; 
.c Cold; 
.h Hot. 

1 Introduction 

Double diffusion phenomena primarily arise when convection induces density fluc-
tuations due to the transport of heat and solutes. This phenomenon is prevalent across 
various fields of science and engineering, including seawater flow, chemical reac-
tions, nuclear waste movement, pollutant dispersion, and the metal manufacturing 
process [ 1– 3]. Recent research has been focused on enhancing heat and mass transfer 
processes by employing porous media saturated with nanofluids and hybrid nanoflu-
ids [ 4]. Additionally, the use of different types of enclosures is crucial for improving 
heat and mass transport efficiency [ 5– 7]. Furthermore, numerical simulations have 
been conducted for both Darcy [ 8] and non-Darcy [ 9] models to analyze double-
diffusion phenomena. 

Fractional-order models are increasingly used in modern science and engineer-
ing due to their ability to capture memory effects and non-local behavior, which 
are not present in traditional models. Fractional differential equations (FDEs) have 
proven to be effective tools for studying heat transfer and fluid flow processes in 
porous. Utilizing FDEs enables a more precise representation of heat transfer and 
fluid flow phenomena, effectively capturing the atypical behaviors observed in porous 
media systems that are often missed by traditional mathematical models [ 10, 11]. 
Karani et al. [ 12] investigated the initiation of thermal convection utilizing frac-
tional order derivatives, demonstrating that fractional order models offer signifi-
cantly higher accuracy in predicting the onset of thermal convection compared to 
classical models. Ahmed [ 13] employed the Caputo fractional derivative to inves-
tigate convective flow in an inclined wavy vented cavity filled with porous media. 
Consequently, considering the potential of fractional order models, this research 
aims to examine the impact of the Caputo fractional derivative on double diffusive 
phenomena. 

2 Problem Description 

Figure 1 depicts the schematic of working domain which is essentially a square with 
wavy vertical walls. The enclosure’s left wall is set to higher temperature .(Th) and 
solute concentration .(C

′
h). The right wall is set to comparatively lower temperature 

.(Tc) and solute concentration. .(C
′
c). The top and bottom walls are insulated and
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Fig. 1 Physical domain 

non-diffusive..Cu-water nanofluid saturates the porous enclosure. The working fluid 
undergoes laminar flow and is assumed to be Newtonian and incompressible. The 
solid matrix and working fluid maintain local thermal equilibrium conditions. 

2.1 Governing Equations 

The governing equations in dimensional form are given as [ 14] 

Continuity Equation 

∂u 

∂x 
+ 

∂v 
∂ y 

= 0 (1) 

Momentum Equation 

∂u 

∂ y 
− 

∂v 
∂x 

= −gK  
ρn f  

μn f

[
(βT )n f  

∂T 

∂x 
+ (βC ′)n f  

∂C
′

∂x

]
(2) 

Energy Equation 

σ (tc)(a−1) ∂
αT 

∂tα +
(
u 

∂T 

∂x 
+ v 

∂T 

∂ y

)
= αn f

(
∂2T 

∂x2 
+ 

∂2T 

∂ y2

)
(3) 

Mass Transfer Equation

ε (tc)
(a−1) ∂

αC ′

∂tα +
(
u 

∂C ′

∂x 
+ v 

∂C ′

∂ y

)
= Dm

(
∂2C ′

∂x2 
+ 

∂2C ′

∂ y2

)
(4)
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where . x and . y denote dimensional coordinates, and . u and . v are the dimensional 
velocity components in. x and. y directions, respectively.. K ,. T ,. C ′, and. t represent the 
permeability, dimensional temperature, solute concentration, and time, respectively. 

2.2 Non-dimensional Governing Equations 

The governing equations in non-dimensional form are presented for two-dimensional 
geometry 

Momentum Equation 

∂2Ψ 
∂ X2 

+ 
∂2Ψ 
∂Y 2 

= −  
μb f  

μn f  

(ρβT )n f  

(ρβT )b f  
Ra

[
∂θ 
∂ X 

+ N 
∂C 

∂ X

]
(5) 

Energy Equation 

σ (τc)(α−1) ∂
α θ 

∂τ α +
(

∂Ψ 
∂Y 

∂θ 
∂ X 

− 
∂Ψ 
∂ X 

∂θ 
∂Y

)
= 

αn f  

αb f

(
∂2θ 
∂ X2 

+ 
∂2θ 
∂Y 2

)
(6) 

Mass Transfer Equation

ε (τc)
(α−1) ∂

αC 

∂τ α +
(

∂Ψ 
∂Y 

∂C 

∂ X 
− 

∂Ψ 
∂ X 

∂C 

∂Y

)
= 

1 

Le

(
∂2C 

∂ X2 
+ 

∂2C 

∂Y 2

)
(7) 

Here,. X and. Y represent the non-dimensional coordinate components, while. Ψ ,. θ,. C , 
and . τ correspond to the dimensionless streamlines, temperature, concentration, and 
time, respectively. Additionally, . ρ, . μ, . ε, and . σ stand for density, dynamic viscosity, 
porosity, and ratio of heat capacities. The subscript .n f is used to indicate nanofluid, 
and .b f refers to the base fluid. The terms .Ra and .Le correspond to the Rayleigh 
and Lewis numbers. The following non-dimensional variables are used to present 
the non-dimensional governing equations. 

X = x/L , Y = y/L , U = 
uL  

αb f  
= 

∂Ψ 
∂Y 

, V = 
v L 
αb f  

= −  
∂Ψ 
∂ X 

, τ = 
tαb f  

L2 

θ = 
T − Tc 
Th − Tc 

, Ra = 
gK  ρb f  (βT )b f  L(Th − Tc) 

μb f  αb f  
, C = 

C ′ − C ′
c 

C ′
h − C ′

c 

Le  = 
αb f  

Dm 
, N = 

(βC ′)n f  

(βT )n f  

(C ′
h − C ′

c) 
(Th − Tc) 

(8)
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The associated boundary conditions 

Ψ = 0, 
∂θ 
∂n 

= 0, 
∂C 

∂n 
= 0, on top and bottom walls, 

Ψ = 0, θ = 1, C = 1, on left wall, 
Ψ = 0, θ = 0, C = 0, on right wall. 

(9) 

3 Solution Methodology, Grid Independence, and Model 
Validation 

The governing equations (1)–(3) are solved utilizing the Galerkin finite element 
method [ 15] and the Caputo derivative term is discretized employing the L1-
scheme [ 16]. A grid independence test is shown in Table 1 and conducted, employing 
various grid types denoted as .G1 through .G8, with total element counts of .13240, 
.13790,.14100,.14640,.14978,.15628,.15880, and.17490 respectively. The mean Nus-
selt number, mean Sherwood number, and relative percentage error values are calcu-
lated. Notably, it is observed that grid.G6 yields optimal results for our computations. 
Moreover, the model’s validation is conducted against previously published findings 
[ 14] in the literature for .Ra = 100, .N = 0, and .Le = 10, as illustrated in Fig. 2. 

Table 1 Grid Independence test is performed at.α = 1,.Ra = 102,.Le = 10,.ε = 0.4, and. N = 0

Grid type No. of elements .Num Relative.% error .Shm Relative.% error 

G1 13240 0.871997 0.927048 

G2 13790 0.875510 0.40.% 0.929471 0.26. %

G3 14100 0.873635 0.21.% 0.928299 0.12. %

G4 14640 0.875739 0.24.% 0.929614 0.14. %

G5 14978 0.874369 0.15.% 0.928662 0.10. %

G6 15628 0.873744 0.07.% 0.928295 0.03. %

G7 15880 0.873105 0.07.% 0.928904 0.06. %

G8 17490 0.873276 0.02.% 0.929088 0.02. %

Fig. 2 Comparison of present results with the existing results in the literature [ 14]
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4 Results and Discussions 

The extensive findings of this study are depicted through the contour variations in 
streamlines, isotherms, and isoconcentration, along with plots illustrating the numer-
ical changes in the mean Nusselt number and mean Sherwood number within specific 
parameter ranges. Throughout the study, values of parameters.σ = 1 and.ε = 0.4 are 
fixed. 

The evolution period of streamlines, isotherms, and isoconcentration for. α = 0.95
at.Ra = 100,.Le = 10, and.N = 1 are illustrated in Fig. 3. Initially, when.τ = 0.01, 
it is noted that the streamline circulations densely cluster around the hot wall, forming 
a vertical elliptical zone close to the left wall. Since the fluid and solute movement 
is primarily concentrated near the left wall, the thermal and concentration layers 
are confined to a small region close to the hot wall. Further, as time incenses the 
streamline circulations, thermal and solute layers moving toward right wall due to 
the fluid and solute transport. By.τ = 1.5, fully developed flow is achieved, with no 
further changes occurring thereafter. 

Figure 4 illustrates the variations in the .Num and .Shm for different values of . α, 
including.α = 1,.0.95,.0.85,.0.75, and.0.65, at.τ = 0.01,.0.05,.0.1,.0.5,. 1,.1.5, and. 2. It  
is observed that the.Num and.Shm values are initially very high for each. α value. How-
ever, as time progresses, these values tend to decrease, with smaller. α values exhibit-
ing faster convergence to the steady-state condition compared to larger . α values. 

5 Conclusion 

The main goal of this study is to demonstrate the influence of the time-fractional 
derivative on the dynamics of heat and solute transport processes. To achieve this goal, 
a square porous enclosure with a wavy vertical wall is utilized as the experimental 
setup. The analysis incorporates the Darcy model, while the Caputo time derivative is 
applied to the energy and mass transfer equations. A key finding of this investigation 
is the substantial variation in the evolution patterns of streamlines, isotherms, and 
isoconcentrations across different. α values. Furthermore, it is observed that the time 
needed to reach steady-state conditions is considerably extended for smaller. α values, 
while it is relatively shorter for larger . α values.
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Fig. 3 Evolution state of streamlines, isotherms, and concentrations contours for .α = 0.95 at 
.Ra = 102,.Le = 10,.ε = 0.4, and.N = 1
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Fig. 4 .Num and.Shm plots 
for various. α values at 
different time stages 
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Numerical Study of Co-Firing in Swirl 
Burner Using Coal-Biomass Blends 

C. Deniz Canal and A. C. Benim 

Abstract The co-firing of biomass with coal presents an appealing approach for 
reducing CO2 emissions and leveraging renewable energy sources. Oxy-fuel combus-
tion, employing pure oxygen instead of air, stands out as a noteworthy technology 
for efficient CO2 capture. This study focuses on the numerical investigation of the 
flame resulting from the co-combustion of pulverized coal and biomass. Utilizing 
the Fluent commercial CFD code, 2D numerical co-combustion calculations are 
conducted in a 100 kW vertical down-fired boiler equipped with a swirl burner. The 
accuracy of the pulverized coal combustion model is verified against experimental 
data before extending the model to incorporate biomass co-combustion. RANS turbu-
lence models are employed to simulate the swirl burner, determining the most suitable 
model for co-combustion. The study explores three different blending ratios, such as 
25%Biomass-75%Coal, 50%Biomass-50%Coal and 75%Biomass-25%Coal under 
an oxy-fuel atmosphere. Additionally, the investigation delves into the impact of 
turbulent particle dispersion on co-combustion flame. 

Keywords Biomass combustion · Co-firing · Pulverized fuel combustion 

1 Introduction 

In recent decades, the climate has undergone changes attributed to the rise in green-
house gases. Notably, CO2 is a significant contributor to the greenhouse gas effect. 
Simultaneously, the demand for energy is on a constant upswing, even as traditional 
energy sources become more limited. Globally, combustion processes have served as 
a pivotal means to fulfil escalating energy requirements. Coal, as a fossil fuel, remains 
a prevalent choice for fuel in these processes. However, recognizing environmental
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concerns, there has been a growing shift toward renewable energy sources to address 
energy needs. Combustion, therefore, continues to play a crucial role, particularly in 
the context of renewable energies. Biomass, as a renewable energy source, relies on 
combustion processes for its conversion into usable energy [1–4]. 

Blending biomass with coal presents an attractive prospect for reducing CO2 emis-
sions and promoting the utilization of renewable energy sources. An additional benefit 
of this approach is its cost-effectiveness when implemented in existing coal-fired 
power plants. Moreover, co-firing stands out as a straightforward method for incor-
porating biomass into energy production, providing a simpler alternative to using 
fossil fuels. The properties of the fuel are crucial factors influencing the combustion 
process, and the ratio of fuel blends significantly impacts the outcomes of co-firing. 
Notably, coal exhibits a higher sulphur content compared to biomass, introducing 
variations in the emission gases content following the co-firing process [5–7]. 

Three co-combustion methods are distinguished: direct co-firing, indirect co-
firing, and parallel co-firing. Direct co-firing is advantageous in terms of cost and 
remains the most widely employed method for co-combustion. The second method 
involves the gasification of biomass before co-combustion. However, the need to 
cool down the gases post-gasification results in elevated operational costs. Parallel 
co-firing, the third option, entails the separate combustion of coal and biomass. This 
approach is commonly utilized, particularly in the context of paper industries [6]. 

The combustion of a solid fuel particle involves four distinct stages: evapora-
tion, devolatilization, volatile combustion, and char combustion. Initially, the particle 
undergoes evaporation, during which water is released. In the devolatilization stage, 
volatile matter and tar are emitted from the fuel particle. The volatile gases undergo 
combustion with oxygen in the volatile combustion step. Finally, in the char combus-
tion stage, char reacts with oxygen, producing CO and CO2. These stages may 
occur simultaneously or progressively, depending on factors such as particle size 
and heating rate. The composition of char, gas, and tar is influenced by various 
parameters, including elemental analysis, particle size, and boiler temperature [7]. 

This research delves into the numerical investigation of coal and biomass co-
firing in a 100-kW pulverized boiler. The modelling is conducted using the Fluent 
commercial CFD code. The accuracy of the pulverized coal combustion model is 
established through validation against experimental data. Subsequently, the validated 
model is applied to model the co-combustion flame. Three distinct blending ratios are 
explored, such as 75–25% biomass-coal, 50–50% biomass-coal, 25–75% biomass-
coal within an oxy-fuel atmosphere. Additionally, the study examines the impact 
of turbulent particle dispersion on the co-combustion flame. The outcomes of the 
combustion model are presented, highlighting the influence of turbulence on a lab-
scale burner, temperature distribution, and gaseous emissions across various biomass 
ratios.
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2 Numerical Modelling 

Although alternative numerical procedures such as the finite element method [8] are  
also used, the most commonly applied discretization procedure in computational fluid 
dynamics has been the finite volume method [9], which is also applied in the present 
study. The computational fluid dynamics (CFD) code employed in this study is 
Ansys Fluent 18.0 [10], utilizing a finite volume method for discretization. A coupled 
solver is applied, and the convection terms are discretized using a second-order 
upwind scheme. Gradient calculations are performed using the least squares cell-
based method [11–13]. For this case, the Eulerian–Lagrangian approach is adopted 
[14, 15]. The gas phase is treated as a continuum, with the Navier–Stokes (N-S) 
equations being solved [16, 17]. Simultaneously, the particle phase is addressed by 
tracking the movement of particles through the calculated flow field, modelling the 
turbulent dispersion by the so-called discrete random walk model [18]. Every 30th 
iteration involves the injection of particles into the boiler. The particles are assumed 
to possess a spherical shape. Coal and biomass particle size distribution are modelled 
using the Rosin–Rammler distribution [19, 20]. 

The RANS (Reynolds-Averaged Navier–Stokes) method [21, 22] is employed 
to model gas turbulence. It is known that the computational modelling of turbulent 
swirling flows can be very demanding [23, 24]. In a prior study [3], an examination 
of a pulverized coal flame in the same laboratory-scale boiler, albeit with a different 
burner, was conducted. Various RANS models, such as S-KE, R-KE, RNG-KE, SST, 
and RSM, were employed to simulate turbulent flow. The RSM model [25, 26] yielded 
the most accurate results when compared to experimental data. Additionally, for the 
100-kW power burner, RSM exhibited superior performance in comparison to other 
RANS models. The standard wall function is applied to address near-wall turbulence. 
The P1 radiation model is employed to simulate the radiative heat transfer mechanism 
[27], and the Weighted Sum of Gray Gases Model [28] is utilized for calculating 
the absorption coefficient. Assumptions are made for particle emissivity (0.9) and 
wall emissivity (0.7). Upon entering a high-temperature environment, fuel particles 
undergo evaporation and pyrolysis. The volatile matter undergoes homogeneous 
combustion in the gas phase, while the residual char combusts through heterogeneous 
reactions. 

The devolatilization model predicts the yield of volatile matter and employs a 
two competing rates model for biomass devolatilization. A kinetics/diffusion-limited 
model is adopted for char combustion, with the surface reaction rate being determined 
by either kinetics or diffusion rate [29, 30]. For biomass fuel, devolatilization and char 
combustion kinetic rates are sourced from Li et al. [31], based on similar ultimate and 
proximate analysis data. For coal, the kinetic rates are derived from Toporov et al. 
[32]. Gas-phase combustion is modelled using a global reaction scheme involving two 
irreversible reactions. Initially, volatile matter decomposes to CO and H2O, followed 
by the oxidation of CO to CO2 [33]. Finite rate/Eddy Dissipation is employed to 
simulate gas reactions in this study [34].
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3 Experimental Setup and Fuel Properties 

The experimental procedures were conducted using a test furnace at RWTH Aachen 
University [32]. Figure 1 illustrates the sectional view of swirl burner (100-kW) with 
all dimensional details. 

The pulverized fuel is injected by using primary inlet (L2). A swirling flame is 
sent through secondary inlet (L4). The geometric swirl number is 0.96. There are 
also tertiary (L7) and staging air (L9) inlets. The experiments carried out under oxy-
fuel environment. The measurement data of 100 kW coal combustion flame were 
provided from the experimental study [32]. The test facility is a vertical cylindrical 
furnace having 0.4 m diameter and 2.1 m length. The swirl burner is moveable up to 
down axially. The data are taken from four ports having a gate valve system located 
2.1 m below from the top of boiler. The Rhenish lignite and torrefied biomass are 
used for the experimental study. The operating conditions are listed in Table 1. 

Coal is introduced to the system at a rate of 6.5 kg/h. For an equivalent thermal 
power output, fuel blends should be supplied at calculated rates shown in Table 2.

Fig. 1 The sectional view of swirl burner 

Table 1 Operation conditions 

MRF (kg/h) O2 vol CO2 vol T (K)  

Coal 6.5 – – – 

Primary inlet 17.6 0.19 0.81 313 

Secondary inlet 26.6 0.21 0.79 333 

Tertiary inlet 1.5 0.21 0.79 333 

Staging inlet 54.9 0.21 0.79 1173 
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Table 2 Mass flow rate for 
selected three blending ratios 25B–75C 50B– 50C 75B–25C 

Mass Flow Rate (kg/h) 1.7–5.2 3.7–3.7 5.9–1.9 

For blending ratio 25B–75C, 1.7 kg/h biomass and 5.2 kg/h coal should be supplied 
for co-combustion for similar power output while using 100% coal. 

Table 3 presents the proximate and ultimate analysis of the fuel as received and 
dry-ash free. The lower and upper heating values are also shown. 

Additionally, particle size distribution details can be found in Table 4. The  
measured particle size distribution, depicted in Fig. 2, is fitted with a Rosin–Rammler 
distribution. Q represents the mass fraction smaller than d. 

It is evident that the alignment of Rosin–Rammler fits (CFD inputs) with experi-
mental data is quite satisfactory. Nevertheless, there are some minor deviations, the 
impact of which may be disregarded in the results. 

The devolatilization process for biomass is characterized by a two-competing 
rates model, as proposed by Kobayashi et al. [35], whereas a single rate model is 
employed for coal. For both fuels, a kinetics/diffusion-limited model is utilized to 
describe char combustion. Detailed kinetic data are provided in Table 5.

The problem is defined in a 2D-axisymmetric domain. The solution domain and 
boundary types are depicted in Fig. 3. Mass flow rate boundaries are designated 
for the primary, secondary, tertiary, and staging inlets. Inlets are assigned constant

Table 3 The details of fuel composition 

Coal Biomass 

AR DAF AR DAF 

Moisture [w–%] 8.4 – 2.26 – 

Ash [w–%] 4.1 – 2.14 – 

VM [w–%] 46.6 53.3 68.7 71.8 

Char [w–%] 40.9 46.7 26.9 28.2 

C [w–%] 67.4 77.0 55.2 57.7 

H [w–%] 4.24 4.85 5.52 5.77 

O [w–%] 14.7 16.8 34.6 36.2 

N [w–%] 0.86 0.98 0.25 0.26 

S [w–%] 0.30 0.34 0.03 0.03 

LHV/HHV [MJ/kg] 25.1/26.3 19.1/20.4 

Table 4 The particle size 
distribution of coal and 
biomass 

Coal Biomass 

Dv(10) 6 µm 5 µm 

Dv(50) 25 µm 18 µm 

Dv(90) 75 µm 45 µm
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Fig. 2 The comparison of experimental input and CFD input of particles (C_EXP: Coal particle 
distribution in experimental study, C_CFD: Coal particle distribution input for CFD, B_EXP: 
Biomass particle distribution in experimental study, B_CFD: Biomass particle distribution input 
for CFD) [10]

Table 5 The kinetic data for 
coal and biomass Devolatilization kinetics 

Coal* (Rhenish lignite) Biomass** (torrefied) 

A [s−1] 2 × 105 5.48 × 103 
E [kJ/mol] 49 59.8 

A [s−1] – 2.15 × 107 
E [kJ/mol] – 147 

Char reaction kinetics 

Coal (Rhenish lignite) Biomass (torrefied) 

A [s−1] 2 × 10−5 56.3 

Ea [kJ/mol] 79.4 78

temperatures based on experimental data. A pressure outlet boundary condition is 
applied at the exit, and the remaining boundaries are treated as walls.

A mesh independence study was conducted in a prior investigation on the same 
furnace [3]. The results of this study, illustrating a generated grid consisting of 35,000 
cells, are also presented in Fig. 2. Measurement data is collected at four different 
stations within the furnace, located at x = 0.025 m, 0.05 m, 0.2 m, and 0.3 m.
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Fig. 3 The solution domain, BC types (P: Primary inlet, S: Secondary inlet, T: Tertiary inlet, St: 
Staging air) and generated grid

4 Results 

Five different turbulence models have been employed to determine the model that best 
fits the flow measurements. In Fig. 4, the experimental data from x = 0.05 m, 0.2 m 
and 0.3 m are presented as a function of r. A detailed study was previously conducted 
[3], revealing that RSM exhibited superior performance in predicting turbulence 
compared to other TV models. It is evident that RSM captures the measured velocity 
values of the flame more accurately than other models. RSM is recognized for deliv-
ering reliable results in swirling flows in the literature [23–26]. It is seen that the RSM 
model exhibits the minimum error between experimental and calculated temperature 
data. The trends in temperature increase align well with the experimental data at the 
axial distance 0.05 m and 0.3 m.

Different co-firing ratios are being examined to identify the optimal blend for 
seamless integration into existing coal-fired boilers. Both coal and biomass are intro-
duced through the same inlet for this investigation. Torrefied biomass is selected for its 
composition, which closely resembles coal in comparison to other types of biomass. 
The blending feeding rates are set at 25% Biomass + 75% Coal, 50% Biomass + 
50% Coal, 75% Biomass + 25% Coal. The temperature fields for each blending 
ratio are illustrated in Fig. 5. Boiler geometry is taken until the axial distance of 
0.5m which is the last measurement level in the experimental analysis.

It is evident from Fig. 5 that an increase in the percentage of torrefied biomass in 
the blend results in a reduction of peak flame temperatures. The specific values for 
peak flame temperature are 1557K for 25B–75%C, 1547K for 50B–50%C, 1522K 
for 75B–25%C. With the increased proportion of biomass in the blend, the flame
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Fig. 4 Experimental and numerical comparison on tangential velocity profile at the axial distance 
of 0.02 m and temperature distribution at the axial distance of 0.05 m and 0.3 m

structure occurs later. As anticipated, the SO2 (a) and CO2 (b) mole fraction decreases 
with an increasing biomass content, as depicted in Fig. 6.

The discrete random walk model is employed for simulating turbulent particle 
dispersion, requiring a sufficient number of trials (M) to yield meaningful results. 
The computational cost is directly influenced by the number of trials, necessitating 
the identification of an optimal value to achieve reasonable results with minimal
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25%B-75%C 

50%B-50%C 

75%B-25%C 

Fig. 5 Temperature profile (K) of three blending ratios (B: Biomass, C: Coal)

computational expense. In this study, different trial numbers (M) are tested to inves-
tigate their impact on the outcomes for co-firing combustion, with M values chosen 
as 1, 3, 5, 10, and 20. Temperature profiles along the axis are presented in Fig. 7.

It is evident from the results that M equal to 5 yields optimal outcomes when 
compared to other values. The temperature profile for M equals 20 is quite similar 
to M = 10. The number of particle sizes for coal and biomass is defined as 28 and 9, 
respectively.
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Fig. 6 SO2 a and CO2 b emissions

Fig. 7 Temperature profiles 
along the axis according to 
M number
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5 Conclusions 

Numerical investigations were carried out on the pulverized coal and biomass 
flame using the Eulerian–Lagrangian model to simulate two-phase flow. Turbulence 
modelling was approached with five different RANS models: S-KE, RNG-KE, R-
KE, SST, and RSM. The calculated axial velocity and static temperature values 
were then compared with experimental data. Results indicated that, overall, the RSM 
model exhibited better agreement with the experimental data. Additionally, the study 
delves into various co-firing ratios, revealing that an increase in the biomass ratio led 
to a reduction in the peak temperature of the flame, aligning with expectations for 
achieving lower emissions. To optimize computational cost while obtaining accept-
able results, the number of trials in the random walk model of turbulent dispersion 
was set at M = 5. 
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Heat Transfer in Tangent Hyperbolic 
Nanofluid Flow Over a Stretching Sheet 
with Convective Boundary 

Ankita Bisht and Rajesh Sharma 

Abstract In this study, boundary layer flow of a Tangent hyperbolic nanofluid 
(THNF) over a stretching sheet in presence of magnetic field is numerically inves-
tigated. The fluid is considered incompressible, with thermophoresis and Brownian 
diffusion effects included. Dimensional governing equations for fluid are transformed 
into dimensionless ordinary differential equations using appropriate similarity trans-
formations. These equations are then solved using the finite difference method via 
MATLAB’s bvp4c routine. The study examines the impact of various flow parame-
ters on velocity, temperature, nanoparticle concentration, illustrated through graphs. 
Furthermore, local skin friction and Nusselt number are computed and analysed 
graphically. It is found that both the Weissenberg (We∗) and Hartmann (M ) number 
reduce fluid motion. Moreover, increase in the heat transfer rate results from an 
increase in the convective Biot number value whereas an opposite relation is observed 
with Hartmann number (M) and Weissenberg number (We∗). 

Keywords Tangent hyperbolic fluid · Magnetohydrodynamic · Convective 
boundary condition · Finite difference method 

1 Introduction 

The study of non-Newtonian fluids has gained significant attention over the past two 
decades, becoming a crucial area of research. This heightened interest stems from the 
need to understand the thermo-physical characteristics of these fluids, driven by their
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wide-ranging industrial and technological applications. As a result, there is an exten-
sive body of literature on analytical and numerical solutions related to non-Newtonian 
fluids. However, investigating non-Newtonian fluids presents several serious chal-
lenges. The governing equations for non-Newtonian fluids are complex and nonlinear, 
with no universal constitutive equation to describe their varied behavior. To address 
this, multiple models have been developed, among which the tangent hyperbolic fluid 
(THF) model is particularly important. Laboratory experiments have shown that this 
model accurately predicts the shear-thinning behavior, a common characteristic of 
many non-Newtonian fluids, making it particularly useful for practical applications. 

Unlike Newtonian fluids, whose viscosity remains constant regardless of the 
applied shear rate, the viscosity of THFs decreases with increasing shear rate. This 
model is particularly useful for accurately predicting the flow behavior of fluids in 
industrial applications where precise control over viscosity is essential. As a result, 
many researchers have employed the constitutive equations of the tangent hyperbolic 
model to tackle a range of physical problems. In their study, Akbar et al. [1] investi-
gated the MHD boundary layer flow of a THF over a Stretching Sheet and found that 
Weissenberg number enhances the thickness of the fluid. Malik et al. [2] investigated 
the MHD flow of a THF around a stretched cylinder using the Keller box method. 
Akbar et al. [3] analysed the steady blood flow through a tapered artery with a radially 
symmetric, axially nonsymmetric mild stenosis, considering the effects of heat and 
mass transfer and treating blood as a THF. Waqas et al. [4] studied the behavior of 
THF on a nonlinear stretched sheet with variable thickness using non-Fourier flux 
theory for energy expression. They found that velocity decreases with larger material 
power law indices and Weissenberg numbers. 

Tangent hyperbolic nanofluid (THNF) refers to a blend of nanosized particles 
with a non-Newtonian THF. Adding nanoparticles enhances thermal conductivity, 
leading to improved thermal processes. This emerging topic has attracted significant 
attention from researchers due to its wide-ranging applications and potential benefits. 
The THNF is widely used in the cooling of electronic components, which generate 
significant heat during operation. Its enhanced thermal conductivity allows for more 
efficient heat dissipation, thereby reducing the risk of overheating and potential 
component failure. Choi and Eastman [5] were the pioneers in proposing that the 
addition of nanoparticles (1–100 nm) to conventional base fluids can significantly 
enhance their thermal conductivity. Amer et al. [6] examined the flow characteristics 
and properties of THNF over a stretching sheet embedded in a porous medium. 
Khan et al. [7] explored the 2D flow of an MHD THF containing nanoparticles over 
a stretching surface. 

Flow over a stretching sheet refers to a fluid dynamics scenario where a fluid flows 
over a surface that is being stretched in one or more directions. This type of flow is 
commonly studied in the context of boundary layer theory, where the stretching of 
the sheet can induce complex flow behavior in the fluid, especially when combined 
with factors like heat transfer, magnetic fields, or non-Newtonian fluid properties. 
Understanding this flow is crucial in many industrial and engineering applications, 
such as in the manufacturing of materials, cooling of electronic devices, and the 
processing of polymer sheets. Sakiadis [8] was the pioneer in this field, investigating
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boundary layer flow with uniform speed over a continuous solid surface. Crane 
[9] expanded on this concept by describing viscous fluid flow resulting from the 
linear stretching of a smooth sheet, notably achieving a similar solution. Cortell [10] 
explored the flow of non-Newtonian fluids over stretching surfaces and obtained 
numerical solutions to the governing equations using the shooting method. Recently, 
the study of stretched flows of tangent hyperbolic fluids (THFs) has gained attention 
from many researchers [11–14]. 

A review of THF flow literature highlights that boundary layer flow of THNF under 
a magnetic field over a linearly stretching sheet with convective boundary conditions 
remains underexplored. This gap prompted the author to investigate magnetohydro-
dynamic THF with nanoparticles on such a sheet. The study employs MATLAB’s 
bvp-4c tool to solve the governing flow equations across various parameters. Key 
physical quantities are computed, analyzed, and presented in both graphical and 
tabular forms under different conditions. 

2 Mathematical Modelling 

We discuss a 2D, steady, viscous and incompressible flow of THNF over a stretching 

sheet at y = 0 with velocity 
∼ 
Us(x) = ∼ 

a x  and convective boundary condition. The 
flow is confined in y > 0 and B0 strength magnetic field is used in a direction 
perpendicular to the flow. The schematic representation of the present fluid flow 
problem is given via Fig. 1. Based on the foregoing assumptions, the governing 
equations are as follows (see Refs. [1, 7]). 
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The relevant boundary conditions are: 

ũ = Ũs(x) = ãx, κ̃ ∂ T̃ 
∂y = −h̃w

(

T̃w − T̃
)

, C̃ = C̃wat y = 0 
ũ → 0, T̃ → T̃∞, C̃ = C̃∞ as y → ∞

}

(5)
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Fig. 1 Physical representation of the flow problem

The aforementioned equations include the following: 
∼ 
C is nanoparticle concen-

tration; 
∼ 
Tw is surface temperature and 

∼ 
Cw stands for surface concentration; ρ is the 

base fluid density; 
∼ 
T∞ signifies ambient temperature and 

∼ 
C∞ ambient concentration; 

γ is the power law index; α is thermal diffusivity, λ is time constant. Additionally, DB 

is Brownian diffusion coefficient, while DT is the thermophoresis constant; ν repre-
sent kinematic viscosity; 

∼ 
hw denotes heat transfer coefficient; and κ is the thermal 

conductivity. 
Similarity transformations: 

ξ =
√

ã 

v 
y, ψ  = √

(ãvx)F(ξ ), ũ = ãx,
(ξ  )  = 
T̃ − T̃∞ 

T̃w − T̃∞ 
,�(ξ  )  = 

C̃ − C̃∞ 

C̃w − C̃∞ 
(6) 

On applying the similarity transformations to Eqs. (1–5), they are transformed 
into the following form:

(

(1 − γ ) + γ We∗F ′′)F ′′′ − F ′2 − M ∗
2 
F ′ = 0 (7)


′′ + 
∗ 
Pr(Nb∗
′�′ + F
′ + Nt∗

(


′)2 = 0 (8)
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With 

F ′(0) = 1, F(0) = 0, 
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(10) 

Here, the symbols We∗, M∗, 
∗ 
Pr, Nt∗, Nb∗, Le∗ stands for Weissenberg number, 

Hartman number, Prandtl number, Thermophoresis, Brownian diffusion, and Lewis 
number, respectively and their definition are: 
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(11) 

The quantities of physical importance i.e. local Nusselt number (LNN) and Local 
Skin friction coefficient (LSFC) at the surface in non-dimensional form is given as: 

Nu/ 
√

Rex = −
′(0) (12) 

√
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(

(1 − γ )F ′′+γ 
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WeF ′′2

)
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where Rex = 
∼ 
Usx 
ν . 

3 Result and Discussion 

The numerical solutions for Eqs. (7–9), in conjunction with Eq. (10), were obtained 
using the bvp-4c solver in MATLAB. The bvp-4c tool, known for its robustness in 
solving boundary value problems, was employed with a step size of �ξ = 0.05, 
ensuring precise approximation of the solution across the domain. To account for the 
behavior of the system at infinity, the boundary condition ξ → ∞  was approximated 
with a maximum value of ξmax = 10, which provided a sufficient range for accurate 
analysis. An error tolerance of 10−6 was meticulously maintained for all simulations, 
ensuring the reliability and accuracy of the numerical results. 

To facilitate a deeper understanding of the underlying physical phenomena, the 
outcomes of the numerical simulation are comprehensively illustrated through a 
series of graphs. These graphical representations offer clear insights into the behavior
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of the tangent hyperbolic nanofluid (THNF) under various conditions, enabling a 
thorough examination of the effects of key parameters on velocity, temperature, and 
concentration profiles. 

Figures 2, 3, and 4 show how the Weissenberg number (We∗) affects the velocity, 
concentration, and temperature profiles of THNF. An increase in We∗ leads to a 
decrease in the velocity profile, consistent with the increased relaxation time and 
higher resistance to flow. Conversely, both the temperature and concentration profiles 
increase with rising We∗, as the enhanced relaxation time allows for greater heat reten-
tion and nanoparticle accumulation. These graphs effectively illustrate the influence 
of We∗, on the fluid’s flow and thermal behaviour. 

Figures 5, 6, and 7 show the effect of the power law index (γ) on the velocity, 
temperature, and concentration profiles of the tangent hyperbolic nanofluid (THNF).

Fig.2 Velocity profile with We* 

Fig. 3 Concentration profile with We∗
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Fig. 4 Temperature profile with We*

As γ increases, both the velocity and the boundary layer thickness decrease. 
This happens because a higher γ indicates a shift from shear-thinning to shear-
thickening behavior, which increases fluid resistance. Consequently, the temperature 
and concentration profiles increase as γ rises, due to reduced heat and nanoparticle 
dispersion in the more resistant fluid. 

Figure 8 demonstrates the effect of the Biot number (β) on the temperature profile. 
The Biot number represents the ratio of convective heat transfer at the surface to 
conductive heat transfer within the surface of a body. As β increases, indicating 
stronger convective heat transfer relative to conduction, the temperature profiles also 
rise. This suggests that enhanced convection improves heat dissipation, leading to 
higher temperatures in the fluid near the surface.

Figures 9 and 10 illustrate the behavior of the local skin friction coefficient (LSFC) 
for varying values of the Weissenberg number (We∗) and the power law index (γ).

Fig. 5 Velocity profile with γ
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Fig. 6 Concentration profile with ϒ 

Fig. 7 Temperature profile with ϒ

Fig. 8 Temperature profile with β
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Fig. 9 Skin friction with M 
and We∗ 

Fig. 10 Skin friction with M 
and ϒ 

The data reveals that as the We∗ and γ values increase, the absolute values of LSFC 
decrease. This indicates that higher We∗ and γ reduce the fluid’s resistance to shear, 
thereby lowering the skin friction at the surface. Additionally, the LSFC shows 
contrasting behavior with respect to the Hartmann number (M); as M increases, 
the LSFC behaves differently compared to its response to changes in We∗ and γ. 

Figures 11 and 12 depict the variation of the LNN with different values of 
the M and We∗, and the convective Biot number (β). The results indicate that 
an increase in the convective Biot number (β) leads to a rise in LNN, reflecting 
improved heat transfer efficiency with stronger convection. Conversely, LNN shows 
a decreasing trend with increasing Hartmann number (M) and Weissenberg number 
(We∗), suggesting that higher magnetic fields and fluid relaxation effects hinder 
heat transfer efficiency. These figures provide a comprehensive view of how these 
parameters affect the heat transfer characteristics of the THNF.
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Fig. 11 Nusselt number 
with M and β 

Fig. 12 Nusselt number 
with M and We∗ 

4 Conclusion 

This study has presented a comprehensive analysis of the MHD boundary layer flow 
of a tangent hyperbolic nanofluid (THNF) over a stretching sheet with convective 
boundary conditions, incorporating the significant effects of thermophoresis and 
Brownian diffusion. The findings of this research contribute to a deeper understanding 
of how various parameters influence the behavior of THNFs in the presence of a 
magnetic field. 

Key conclusions drawn from this investigation include: 

1. Velocity Profile: The velocity of the THNF is found to decrease with increasing 
values of the Weissenberg number (We∗) and the power law index (γ). This 
indicates that higher elastic effects and non-Newtonian fluid characteristics tend 
to resist fluid motion. In contrast, the temperature and concentration profiles 
increase under the same conditions, suggesting that the fluid retains more thermal 
energy and nanoparticles, possibly due to reduced convective cooling. 

2. Temperature Distribution: An increase in the convective parameter (β) leads to 
a significant rise in the temperature of the THNF. This behavior highlights the role 
of convective heat transfer at the boundary, where higher β values enhance the



Heat Transfer in Tangent Hyperbolic Nanofluid Flow Over a Stretching … 43

thermal boundary layer, resulting in a more pronounced temperature distribution 
within the fluid. 

3. Skin Friction Coefficient: The local skin friction coefficient (LSFC) shows an 
increasing trend with the Hartmann number (M), reflecting the influence of a 
stronger magnetic field in suppressing fluid motion and enhancing friction at the 
boundary. Conversely, the LSFC decreases with higher We∗ and γ, emphasizing 
the damping effects of these parameters on frictional forces. 

4. Nusselt Number: The local Nusselt number (LNN), a measure of the heat transfer 
rate, decreases with increasing values of M and We∗, indicating that stronger 
thermal stratification and elastic effects reduce the overall heat transfer efficiency. 
However, an increase in the convective parameter (β) leads to a rise in the Nusselt 
number, suggesting that convective heat transfer at the boundary is more effective 
under these conditions. 

These findings not only deepen the understanding of THNF behaviors under the 
influence of magnetic fields but also provide a foundation for optimizing industrial 
processes involving nanofluids. The results have practical implications for applica-
tions where precise control of heat transfer and fluid flow is critical, such as in cooling 
systems, material processing, and energy devices. Future research could build on this 
work by exploring more complex geometries, time-dependent flows, or the inclusion 
of additional physical effects such as radiation or chemical reactions. 
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Results of Asymptotic Analysis of an 
Elliptic Equation 

Attou A. Miloua 

Abstract Suppose .� ⊂ R2 a region, and consider the general elliptic equation 

. �w = g (w) , 

where . g is a positive continuous function satisfying 

. lim 
w→0+ 

g (w) = ∞. 

In the context of thin film equations, a solution w is classified as a point rupture 
solution, if there exists a point.p ∈ �, such that.w (p) = 0 and.w ( p) > 0 in.�\ {p}. 
We aim to analyze the asymptotic behavior of radial solutions. Specifically, our 
primary objective is to investigate how the limiting profile of radial solutions w and 
their corresponding energies vary as a function of the prescribed volume. 

Keywords Thin film · Point rupture solution · Radial solution · Singular elliptic 
equation · Quasi-linear elliptic equation · Asymptotic analysis 

1 Foundation 

This article focuses on radial solutions of a general elliptic equation 

.�w = g (w) (1) 

within an open connected set .� ⊂ R2 subject to Neumann boundary conditions 
. 
∂w 
∂n = 0 on .∂�. The controlling function . g is assumed to be continuous non-negative 
on .(0, ∞) with the property 
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. lim 
w→0+ 

g (w) = ∞. (2) 

Motivated by the dynamics of thin film equations, we define a point rupture 
solution of (1) as a solution .w, where .w ( p) = 0 for some .p ∈ �, and . w (x) > 0 
for any .x ∈ �\ {p}. Our primary objective is to perform an asymptotic analysis of 
these radial rupture solutions and their associated energies. In the context of fluid 
dynamics, particularly for lubrication models of thin films,. w represents the thickness 
of a thin fluid layer over a planar region. The evolution of such films can often be 
described by the fourth-order partial differential equation: 

.wt = −∇  ∗  (wm∇w) − ∇  ∗  (wn∇�w). (3) 

This class of equations has been extensively studied, with different parameter choices 
corresponding to various physical phenomena. For instance: 

When n .= m .= 1, the equation models a thin jet in a Hele-Shaw 
cell [ 1, 4, 6, 7, 14]. 

When n .= m.= 3, it describes fluid droplets suspended from a ceiling [ 8]. 
When n.= 0 and m.= 1, it represents a modified Kuramoto–Sivashinsky equation 

relevant to the solidification of hypercooled melts [ 2, 3]. 
When n .= 3 and m.= −1, it captures the effects of van der Waals forces in thin 

films [ 5, 9, 15]. 
Rewriting Eq. (3) in terms of pressure . p we obtain 

.wt = ∇  ∗  (wn∇ p), (4) 

where . p represents the pressure of fluid given by 

. p = − 1 

m − n + 1 
wm−n+1 − �w, 

provided . n − m �= 1. 
Suppose .� ⊂ R2 represents the bottom surface of a cylindrical container filled 

with the thin film fluid. Assuming no flux across the boundary yields the condition 

. 
∂p 

∂ν 
= 0 on ∂�. (5) 

Additionally, neglecting wetting effects, we assume the fluid surface meets the 
container boundary perpendicularly, leading to 

. 
∂h 

∂ν 
= 0 on ∂�. (6) 

Whenever .m − n �= −1 or − 2, this system can be associated with an energy 
functional 
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. E(w) =
∫

�

(
1 

2 
|∇w|2

)

and, formally using the governing equation and boundary conditions, the rate of 
change of energy satisfies 

. 
d 

dt  
E(w) = −

∫
�

wn |∇ p|2 . 

Thus, for a thin film fluid at rest, the pressure. p must be constant, and. w satisfies the 
elliptic equation. This framework sets the stage for exploring the asymptotic behavior 
of point rupture solutions, particularly in the radial setting, and their consequences 
for the dynamics of thin film fluids. 

. − �w − 1 

m − n + 1 
wm−n+1 = p in �, 

For the case of Van der Waals, .m − n + 1 < −1, the equation can be rewritten as 

.�w = −  
1 

α 
wα − p in �, (7) 

. p being an unknown constant yet to be determined and 

. α = m − n + 1 > 1. 

Recalling that .α = 3 in the case of van der Waals force driven thin film. 
Therefore, (1) relate to the stationary thin film equation with van der Waals force. 
Assume the elliptic equation for thin films involves the function . f expressed 

as . f (h) = − 1 
α h

α − p with .α ≥ 0. Therefore we are dealing with a second-order 
differential equation. 

.h′′ + 
1 

r 
h′ + 

1 

α 
hα + p = 0. (8) 

Considering re-scaling assume .h p,η to be the unique solution to (8) satisfying 
.h(0) = η �= (αp)− 1 

α . This was completely solved in [ 12, 13] and some smooth radial 
solutions are shown below (Fig. 1). 

In the case when.η = 0, h p,0,k will be the unique rupture solution to (8). See the 
following plots for the rupture solutions for .k = 1, 2, 3, 4, 5, and 6 (Fig. 2). 

In a fascinating study of critical points and re-scaling in partial differential equa-
tions, we explore a sequence of functions and their intriguing behavior under Neu-
mann boundary conditions. Consider the sequence for .p, η  , .k = 1, 2, · · ·  , define 
.(r p,η 

k ), which represents an ascending arrangement of the critical points for the 
function. 

In a fascinating study of critical points and re-scaling in partial differential 
equations, we explore a sequence of functions and their intriguing behavior under 
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Fig. 1 Smooth radial solutions, eta positive 

Fig. 2 Rupture solutions, Eta. = 0 

Neumann boundary conditions. Consider the sequence 

.h p,η,k (x) = (r p,η 
k )− 2 

1+α h p,η (|x |) 
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we arrive at a formulation that satisfies a Neumann boundary value problem: 

.

{
�h = 1 

α · h−α − pp,η,k in B1(0), 
∂h 
∂ν = 0 on ∂ B1(0), 

(9) 

where the constant is intricately defined as .pp,η,k is defined as 

. pp,η,k = p((r p,η 
k )− 2 

1+α ). 

To better understand the role of these re-scaled functions, we define the average 
volume of .h̄(p, η,  k) by 

. h̄(p, η,  k) = 1 

|B1(0)|
∫
B1(0) 

h p,η,k (x)dx  = 
(r p,η 

k )− 1 
2 

|B1(0)|
∫
Brk (0) 

h p,η (x)dx . 

Interestingly, this average can also be expressed in terms of the original function 
.h p,η,k (r ). 

What makes this analysis particularly remarkable is that .h p,η,k (r ), the radial rep-
resentation of the solution not only solves the Newman problem but does so with a 
fascinating symmetry: the domain. � is effectively transformed into the unit ball, and 
the average volume . h̄ takes on a constant value: 

. h̄ = h̄( p, η,  k). 

Delving deeper into the connection between . η and . p for the solution .h p,η, we  
discover a remarkable scaling relationship: 

. h p,η (x) = (αp)− 1 
α h 

1 
α ,(αp) 

1 
α η

(
(αp) 

1+α 
2α x

)
. 

This leads to analogous relationships for the critical points and constants: 

. r p,η 
k = (αp)−

1+α 
2α r 

1 
α ,(αp) 

1 
α η 

k , h p,η,k = h 
1 
α ,(αp) 

1 
α η ,k , and pp,η,k = p 

1 
α ,(αp) 

1 
α η ,k 

and furthermore the average volume is computed as follows: 

. h̄(p, η,  k) = h̄
(
1 

α 
, (αp) 

1 
α η , k

)
. 

The mechanism of producing radial and rupture solutions for the above elliptic 
partial differential equation was derived in [ 10, 11]. We also conjecture that the 
ruptures are discrete for finite energy solutions, and expect that the radial point 
rupture solutions will serve as the blow up profile of the solution near any point 
rupture. 
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A key focus is on the limiting behavior of .h̄ (η, k), for fixed . k as .η → 0, . η → 1 
and .η → ∞. Additionally, as 

The work takes an intriguing turn when we consider the ordinary differential 
equation: 

.

{
u′′ + 1 x u

′ = 1 3 u
−3 − 1 3 , 

u (0) = η, and u′ (0) = 0. (10) 

We will define the function . z by re-scaling as .ηz(β x) = u(x) and then get the 
following regular perturbation problem that we would like to study as .ε tends to 
zero from above: 

.

{
z′′ + 1 

ξ z
′ = ε3 

z3 − 1. 
z (0) = 1, and z′ (0) = 0, 

(11) 

where we define .ε = 1 
η

and the re-scaled space variable .ξ = βx with 

. β = 1√
3η . 

2 Main Results 

In this section, we state and prove results of the asymptotic solution. 

Theorem 1 For every .ε >  0, let .z(x, ε)  be the solution of the initial value problem. 

.

{
z′′ + 1 x z

′ = ε3 

z3 − 1. 
z (0) = 1, and z′ (0) = 0. 

(1) 

Then as. ε tends to zero positively.z(x, ε)  converges uniformly to.z∗(x), the solution 
of the limiting IVP: 

. 

⎧⎨ 

⎩ 

z′′∗ + 1 x z
′∗ = −1, z∗ > 0 in

⋃∞ 
j=0(a j , a j+1). 

z∗ (0) = 1, and z′∗ (0) = 0, 
z∗

(
a j

) = 0, z′∗
(
a j−

) = 
√
E( j ), z′∗

(
a j+

) = −√
E( j ) 

, (2) 

where .a0 = 0 , .a1 < a2 < · · ·  are inductively computed by solving the IVP (2). 

Proof For any .δ >  0 there exists an .ε >  0 such that .xm ≥ a(ε) ≥ 2 − δ, see  
Appendix 4 for the proof this claim. 

So consider .x ∈ [0, δ] the solution . z will satisfy the IVP: 

.

{
z′′ + 1 x z

′ = ε3 

z3 − 1. 
z (0) = 1, and z′ (0) = 0, 

(3) 
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and the asymptotic solution will satisfy the limiting IVP 

.

{
z′′∗ + 1 x z

′∗ = −1, .  
z∗ (0) = 1, and z′∗ (0) = 0, (4) 

recall that both the solutions .z∗ and . z must satisfy 

. z∗(x) ≥ 1 − 
x2 

4 
and since x ∈ [0, δ], z∗(x) ≥ 1 − 

(2 − δ)2 

4 
. 

Let’s define the function .w(x) = z(x) − z∗(x), we observe that .w(x) ≥ 0 for . x 
and hence .z ≥ z∗, the function .w satisfies the IVP: 

.

{
w′′ + 1 x w

′ = ε3 

z3 . 
w (0) = 0, and w′ (0) = 0. 

(5) 

Therefore, 

. w′′ + 
1 

x 
w′ ≤ ε3 

1 − (2−δ)2 

4 

or w′′ + 
1 

x 
w′ ≤ 4ε3 

δ(2 − δ) 
. 

Hence, 

. (xw′)′ ≤ 4xε3 

δ(2 − δ) 
⇒ w(x) ≤ 

x2xε3 

δ(2 − δ) 
≤ ε3(2 − δ) 

δ 

we also have 

. w′(x) ≤ 
2ε3 

δ 
and w′′(x) ≤ 

2ε3(4 − δ) 
δ(2 − δ) 

. 

Therefore we have uniform convergence of the solution. z and its first and second 
derivatives on the interval .[0, 2 − δ]. 

Let us now look at the inductive construction of the asymptotic solution. 

. In [0, a1], (xz′
∗)

′ = −x so, xz′
∗ = −  

x2 

2 
thus z′

∗ = −  
x 

2 
therefore, z∗ = 1 − 

x2 

4 

. a1 = 2 and E(1) = |z′
∗(a1)|2 = 1. 

. In [a1, a2], (xz′
∗)

′ = −x, z′
∗(2+) = 1 so,  xz′

∗ = 4 − 
x2 

2 
thus z′

∗ = 
4 

x 
− 

x 

2 

. therefore, z∗(x) = 4 ln
( x 
2

)
+ 

4 − x2 

4 
. 
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Note that .z′′∗ = −  4 x2 − 1 2 < 0 which make sense since it must be concave, and 

clearly there exists a unique .a2 > 2
√
2 such that .z∗(a2) = 0 in fact . a2 = 3.74853 

and . E(2) = |z′∗(a2)| =  a2 2 − 4 a2 = 0.807177 

. In [a j , a j+1], (xz′
∗)

′ = −x, z′
∗(a j+) = √

E( j ) = 
c2 j 
2a j 

− 
a j 
2 

so, 

. z∗(x) = 
c2 j 
2 

ln

(
x 

a j

)
− 

x2 − a2 j 
4 

the value of .a j+1 is computed by solving the equation: 

. (a2 j + 2a j
√
E( j )) ln

(
x 

a j

)
+ 

a2 j − x2 

2
= 0, and x > |c j | > a j . 

Now the energy at .a j+1 will be computed as 

. 

√
E( j + 1) = −z′

∗(a j+1) = −  
c2 j 

2a j+1 
+ 

a j+1 

2 
= 

a j+1 

2 
− c2 j 

2a j+1 

therefore we have 

. c2 j+1 = 2a2 j+1 − c2 j . 

The following is a plot for the solution with eta.= 100 as an approximation to the 
asymptotic solution (Fig. 3). 

2.1 Rupture Solution as a Limit of Smooth Solutions . η → 0 

As .η → 0+, .hη converges uniformly to the rupture solution .h0 on .[0, ∞). Hence, 
.h̄ (η, k) is continuous at .η = 0. See the following plots for illustration (Fig. 4). 

Inspired by the numerical suggestions, we would like to intend to prove that for 
fixed . η the average volume .h̄η,k tends to zero as .k → ∞  in a decreasing manner. 
We will prove that indeed .h̄η,k → 0 as .k → ∞, however we are unable to prove 
monotonicity here. 

Proposition 1 For any fixed .η ≥ 0 then .h̄η,k → 0 as .k → ∞. 

Proof We know that as .k → ∞  the critical point .rη 
k → ∞. We also know that as 

.r → ∞  the radial solution .h(r ) tends to 1. Therefore for any .R > 0 there exists 

.N > 0 such that for .k > N then.rη 
k > R and for some.R > 0 the function.h(r) <  2. 

Thus since we can write 
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Fig. 3 Plot for asymptotic solution eta. = 100 

Fig. 4 Rupture solution as limit of radial smooth solutions 

. h̄η,k = 2(rη 
k )

− 2 
1+α −2

(∫ R 

0 
rhη (r )dr +

∫ rη 
k 

R 
rhη (r )dr

)
, 

then the result follows. 
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2.2 Linearization when . η → 1 

.h̄ (η, k) is not defined when.η = 1. To understand the behavior of.h̄ (η, k) as.η → 1, 
we need to understand the behavior of .hη as .η → 1. It was  shown in [  11] that for 
any .η >  0: 

. 

⎧⎨ 

⎩ 

hrr  + 1 r hr = 1 
α h

−α − 1 
α , 

h (0) = η, 
h′ (0) = 0 

(6) 

has a unique positive solution.hη defined on.[0, ∞) /5with.hη (0) = η and. (hη )′ (0) = 
0. We define 

. ε = η − 1, 

and 

. wη (r ) = 
hη (r ) − 1 

ε 
. 

Then .wη is a solution to the differential equation 

.wrr  + 
1 

r 
wr = 

1 

ε

[
1 

α 
(1 + εw)−α − 

1 

α

]
(7) 

with initial condition 
. w (0) = 1, w′ (0) = 0. 

As.η → 1, .ε → 0, formally, (7) converges to the Bessel’s differential equation with 
order . 0: 

. wrr  + 
1 

r 
wr + w = 0 

with the initial date 
. w (0) = 1, w′ (0) = 0. 

Such limiting initial value problem has a unique solution which is Bessel’s function 
of the first kind with order . 0 and is given by 

. J0(x) = 
∞∑
n=0 

(−1)n 

(n!)2
( x 
2

)2n 
. 

We remark here that.J0 (x) is oscillating around. 0. See plot of Bessel function of the 
first kind of order zero in the next page. 

We can show that as.η → 1,.wη converges uniformly to. J0. Since both.wη and. J0 
are oscillating around . 0, .rη 

k → r∗ 
k as .η → 1 where . r∗ 

k , .k = 1, 2, · · ·  is an increasing 
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sequence of the critical radius of Bessel’s function .J0(x). Since .hη → 1 uniformly 
as .η → 1, we have  

. h̄η,k = 
(rη 

k )
− 2 

1+α 

|Brη 
k 
(0)|

∫
Br 

η 
k 
(0) 

hη (r )dr → (r∗ 
k )

− 2 
1+α 

as .η → 1 and 

. Eη,k = (rη 
k )

− 4 
1+α

∫
Br 

η 
k 
(0)

(
1 

2 
|∇hη|2 − 1 

α (α − 1) 
(hη )1−α

)

→ − 1 

α (α − 1) 
(r∗ 

k )
− 4 

1+α

∣∣Br∗
k 
(0)

∣∣ = − π 
α (α − 1) 

(r∗ 
k )

2− 4 
1+α 

as .η → 1. 
Hence, we can define.h̄η,k and.Eη,k so that they are both continuous functions on 

.[0, ∞). 

2.3 Limiting Profile when . η → ∞  

In this section, we want to understand the behavior of .h̄η,k and .Eη,k as .η → ∞. 

Let .η >  1 and .hη be the solution to (6). We define the blow down solution . z by 

. z (x) = 
1 

η 
h(r ) 

with .r = √αηx . Then we have 

. zx = 
√

α√
η 
hr (r ), 

zxx  = αhrr  (r ) 

and hence 

. z′′ + 
1 

x 
z′ = α

(
hrr  + 

1 

r 
hr

)
= h−α − 1 

= 
η−α 

zα − 1. 

Denoting.ε = 1 
η , we have.ε → 0 as.η → ∞. The blow down function. z is a solution 

to the initial value problem: 
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.

{
z′′ + 1 x z

′ = εα 

zα − 1, 
z (0) = 1, and z′ (0) = 0. (8) 

The following plot illustrates the blow down function . z for .ε = 10. 
Formally, as .ε → 0, (8) converges to the limiting equation: 

.

{
z′′ + 1 x z

′ = −1, 
z (0) = 1, and z′ (0) = 0, (9) 

which has a unique global solution 

. z (x) = 1 − 
1 

4 
x2 . 

However, we can’t expect 

. lim 
ε→0 

zε (x) = 1 − 
1 

4 
x2 

since the function .1 − 1 4 x
2 becomes negative when .x > 2. 

The following theorem follows: 

Theorem 2 For every .ε >  0, let  .zε (x) be the unique solution of the initial value 
problem (8). 

Then as . ε tends to zero positively, .zε (x) converges uniformly on .[0, ∞) to .z∗(x), 
the solution of the limiting initial value problem: 

. 

⎧⎨ 

⎩ 

z′′∗ + 1 x z
′∗ = −1, z∗ > 0 in

⋃∞ 
j=0(a j , a j+1). 

z∗ (0) = 1, and z′∗ (0) = 0, 
z∗

(
a j

) = 0, z′∗
(
a j+

) = −z′∗
(
a j−

) , (10) 

where .a0 = 0, .2 = a1 < a2 < · · ·  are inductively computed by solving the IVP (10). 
Hence, in particular, we have .zε (x) converges uniformly to .1 − 1 4 x

2 on . [0, 2] 
as .ε → 0 and . r

η 
1√
αη converges to . 2 as .η → ∞. More generally, we have for . k = 

1, 2, 3, · · ·  , 

. lim 
η→∞ 

rη 
2k−1√
αη 

= ak 

and 

. lim 
η→∞ 

rη 
2k√
αη 

= bk, 

where .bk is the maximum point of .z∗ in .(ak, ak+1). 
Given a positive integer . k and given .η >  1, we have  

.h̄η,k = 2(rη 
k )

− 2 
1+α −2

∫ rη 
k 

0 
rhη (r )dr 
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= 2(rη 
k )

− 2 
1+α −2 η

∫ rη 
k 

0 
r z

(
r√
αη

)
dr 

= 2(rη 
k )

− 2 
1+α −2 αη2

∫ r 
η 
k√
αη 

0 
sz  (s) ds  

= 2α− 1 
1+α η 

α 
1+α

(
rη 
k√
αη

)− 2 
1+α −2 ∫ r 

η 
k√
αη 

0 
sz  (s) ds. 

Hence, we have for .k = 1, 2, 3, · · ·  , 

. lim 
η→∞ 

h̄η,2k−1 

η 
α 

1+α 
= 2α− 1 

1+α a
− 2 

1+α −2 
k

∫ ak 

0 
sz∗ (s) ds  

and 

. lim 
η→∞ 

h̄η,2k 

η 
α 

1+α 
= 2α− 1 

1+α b
− 2 

1+α −2 
k

∫ bk 

0 
sz∗ (s) ds. 

We remark here that for each positive integer . k, .h̄η,k → ∞  as .η → ∞. 
The following plots illustrate how the average volume. h̄ of the fluid changes as . η 

changes from 0 to 25 and k .= 1, 2, 3 (Fig. 5). 
Next we investigate the energy of radial solutions as .η → ∞. Since 

. z (x) = 
1 

η 
h(r ), 

Fig. 5 Eta in [0, 25], k.= 1, 2, 3 
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. 
dhη 

dr 
= ηz′ (x) 

dx  

dr 
= 

√
η√
α 
z′ (x) . 

Hence 

. Eη,k = 2π(rη 
k )

− 4 
1+α

∫ rη 
k 

0

(
1 

2

(
dhη 

dr

)2 
− 1 

α (α − 1)
(
hη

)1−α

)
rdr  

= 2π( 
rη 
k√
αη 

)
− 4 

1+α (αη)
1− 2 

1+α

∫ r 
η 
k√
αη 

0

(
1 

2 

η 
α

(
z′ (x)

)2 − 1 

α (α − 1) 
(ηz (x))1−α

)
xdx  

= πα
− 2 

1+α ( 
rη 
k√
αη 

)
− 4 

1+α η
2− 2 

1+α

∫ r 
η 
k√
αη 

0 
x

∣∣z′∣∣2 dx  + O
(

η
2−α− 2 

1+α

)
. 

Hence, we have for .k = 1, 2, 3, · · ·  , 

. lim 
η→∞ 

Eη,2k−1 

η2− 2 
1+α 

= πα− 2 
1+α a

− 4 
1+α 

k

∫ ak 

0 
s
∣∣∣(z∗)′∣∣∣2 ds  

and 

. lim 
η→∞ 

Eη,2k 

η2− 2 
1+α 

= πα− 2 
1+α b

− 4 
1+α 

k

∫ bk 

0 
s
∣∣∣(z∗)′∣∣∣2 ds. 

3 Conclusion 

The exploration of the radial solution . ū, in terms of .η and .k unveils an elegant 
narrative shaped by the principles of ordinary differential equations and the rigor of 
asymptotic analysis. At its heart, .ū emerges as a continuous function, gracefully 
transitioning across the domains .η ∈ [0, 1] and .η ∈ [1, ∞). Even at the critical 
point .η = 1 where the solution simplifies to the constant solution .u ≡ 1, the 
critical point .r1 loses definition, continuity persists—a delicate result confirmed 
through meticulous analysis. Thus . ū is still continuous at 1. As . η approaches zero, 
a transformation occurs since the radial solution .uη(r ) converges to the rupture 
solution .u0(r) satisfying .u0(0) = 0 and .u′

0(0) = ∞  . This ensures that for 
every fixed . k , .ū(η, k) remains smooth and continuous on the entire range .[0, ∞). 
Venturing into the realm of large values of . η numerical experiments and asymptotic 
investigations reveal the limiting behavior of .ū(η, k) at infinity. Similarly, this 
behavior of the solution is mirrored by the energy of the radial solution . uk η(r) denoted 
by .E(η, k) which also exhibits continuity over .[0, ∞) and aligns with a well-
defined profile near infinity. The harmony between theory and computation provides 
a profound insight into the interplay between .ū(η, k) and .E(η, k) and their limiting 
profiles. This convergence of numerical computation and analytical depth paints 
a vivid picture of how radial solutions and their energies gracefully evolve as . η 
changes, offering a richer understanding of their intricate relationships. 



Results of Asymptotic Analysis of an Elliptic Equation 59 

4 Appendix 

Lemma 1 For any .δ >  0 there is an .ε >  0 such that . a(ε) ≥ 2 − δ. 

Proof We have 

. z′′ + 
1 

x 
z′ = ε3 

z3 
− 1 thus z′′ + 

1 

x 
z′ ≥ −1 therefore xz′′ + z′ ≥ −x 

. (xz′)′ ≥ −x integrating we get,
∫ x 

0 
(yz′(y))′dy  ≥

∫ x 

0 
−ydy that is, xz′(x) ≥ − x2 

2 

dividing both sides by . x and integrating a second time, we obtain 

. 

∫ x 

0 
z′dy  ≥

∫ x 

0 

−y 

2 
dy  that is, z(x) − 1 ≥ −  

x2 

4 

this holds for any . x ; in particular, when .x = a(ε) we get 

. ε − 1 ≥ −  
a2(ε) 
4 

thus a2 (ε) ≥ 4(1 − ε) therefore a(ε) ≥ 2
√
1 − ε. 

So given any .δ >  0 we will need an .ε >  0 such that .2
√
1 − ε ≥ 2 − δ and this 

will occur when.0 ≤ ε ≤ 1 − (2−δ)2 

4 and for such. ε we will have. xm ≥ a(ε) ≥ 2 − δ 
as required. 
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Uniform Approximation of Function 
.g ∈ L[0,∞)-Space Using .Eq.T -Means of 
its Fourier–Laguerre Series 

Shailesh Kumar Srivastava, Sachin Devaiya, and Lakshmi Narayan Mishra 

Abstract This study determines the error of approximation of function. g belonging 
to the.L [0,∞)-class by the.Eq .T -means of its Fourier–Laguerre series for any.y > 0, 
and further discusses certain special cases of .Eq .T -means. 

Keywords Error of approximation · .Eq .T -mean · Fourier–Laguerre series 

1 Introduction 

Let . g be a Lebesgue integrable function on .L[0,∞)-space, i.e.: .g ∈ L[0,∞). The  
Fourier–Laguerre expansion of function .g ∈ L[0,∞) is given by 

g(y) ∼ 
∞∑

m=0 

am L(α) 
m (y), (1) 

where .mth Laguerre polynomial, .L(α)
m (y), of order .0 < α + 1, is defined by the 

generating function:
∞∑

m=0 

L(α) 
m (y) ωm = e( 

ω y 
ω−1 ) 

(1 − ω)1+α , 
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and 

am =
∫ ∞ 

0 

m! α! g(y) yα L(α) 
m (y) 

(m + α)! Γ (1 + α) ey 
dy. (2) 

It is assumed that the above integral exists. 
The .(m + 1)th partial sum of the Fourier–Laguerre series (1) is defined by 

sm(g; y) = 
m∑

b=0 

ab L(α) 
b (y), m ∈ N ∪ {0}. (3) 

It is also known as Fourier–Laguerre polynomial of error (or order) .≤ (m + 1). 
Let.T ≡ (am,b) be an infinite lower triangular matrix with real or complex entries 

such that .Am,b = ∑m
r=b am,r . Then the sequence-to-sequence transformation 

[t]m(g; y) = 
m∑

b=0 

am,b sb(g; y), m ∈ N ∪ {0} 

defines the matrix transform of the sequence .{sm(g; y)}∞m=0 generated by the ele-
ments.am,d of the matrix. T , and we call it the matrix means of the Fourier–Laguerre 
series (1). The Fourier–Laguerre series is called .T -summable to the sum . s, if  
.[t]m(g; y) → s as .m → ∞. 

If.am,b =
{

(q + 1)−m
(m
b

)
qm−b, 0 ≤ b ≤ m,

0 , b > m,
then the matrix. T reduces to Euler 

summability and denoted by .Eq . The Fourier–Laguerre series is said to be .Eq -
summable .(q > 0) to the sum. s, if .[Eq ]m(g; y) → s as .m → ∞. 

.Eq .T -summable is the product of .T -summability and .Eq -summability. 
.[Eq .T ]m(g; y) denotes the.Eq .T -summability of sequence.{sm(g; y)}, and defined by 

[Eq .T ]m(g; y) = (q + 1)−m 
m∑

c=0

(
m 

c

)
qm−c 

c∑

b=0 

ac,bsb(g; y). (4) 

The Fourier–Laguerre series is called .Eq .T -summable to the sum . s, if  
.[Eq .T ]m(g; y) → s as .m → ∞. If . T and .Eq are regular then .Eq .T is also regular. 

The essential and particular cases of the .Eq .T method are listed below: 

1. If .ac,b = pc−b qb
Rc

where .Rc = ∑c
b=0 pb qc−b, then .Eq .T reduces to 

.(E, q)(N , p, q) or .Eq .Npq . 
2. If .ac,b = c! η!

(c+η)!
(c+η−b−1

η−1

)
, then .Eq .T reduces to .(E, q)(C, η) or .Eq .Cη. 

3. If .ac,b = pc−b

Pc
where .Pc = ∑c

b=0 pb 	= 0, then .Eq .T reduces to . (E, q)(N , pc)
or .Eq .Np. 

4. If .ac,b = pb
Pc
, then .Eq .T reduces to .(E, q)(N , pc) or .Eq .N p. 

5. If .ac,b = 1
log(c+1) (c−b+1) , then .Eq .T reduces to .(E, q)(H, 1

c+1 ) or .E
q .H . 

If we take .q = 1 in the above cases, then we get
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6. If .ac,b = pc−b qb
Rc

where .Rc = ∑c
b=0 pb qc−b, then .E1.T reduces to 

.(E, 1)(N , p, q) or .E1.Npq . 
7. If .ac,b = c! η!

(c+η)!
(c+η−b−1

η−1

)
, then .E1.T reduces to .E1.Cη or .(E, 1)(C, η). 

8. If .ac,b = pc−b

Pc
where .Pc = ∑c

b=0 pb 	= 0, then .E1.T reduces to .E1.Np or 
.(E, 1)(N , pc). 

9. If .ac,b = pb
Pc
, then .E1.T reduces to .E1.N p or .(E, 1)(N , pc). 

10. If .ac,b = 1
log(c+1) (c−b+1) , then .E1.T reduces to .E1.H or .(E, 1)(H, 1

c+1 ). 

Here.pc and.qc are monotonic, non-increasing, and non-negative sequence of real 
constants. 

A function. g belonging to.L[0,∞)-space is approximated by a Fourier–Laguerre 
polynomials.Tm(y)of error.≤ (m + 1) (which are either partial sums or some summa-
bility means of the Fourier–Laguerre series of . g), and the error of approximation 
.Em(g), in terms of . m, is given by 

Em(g) = min 
Tm (y) 

ess sup 
y∈[0,∞) 

|Tm(y) − g(y)|. 

The kernel polynomial, denoted as .J α
b (y, z), is given as 

J α 
b (y, z) = 

b∑

m=0 

L(α) 
m (y) L(α) 

m (z) 
Γ (1 + α)

(m+α 
m

) , (5) 

which can also be written as 

J α 
b (y, z) =

b + 1 
Γ (1 + α)

(
α+b 
α

)
L(α) 
b (y) L(α) 

b+1(z) − L(α) 
b+1(y) L(α) 

b (z) 
y − z 

. (6) 

In more appropriate form, we can write 

J α 
b (y, z) =

b + 1 
Γ (1 + α)

(
α+b 
α

)
L(α) 
b+1(y) L(α−1) 

b+1 (z) − L(α−1) 
b+1 (y) L(α) 

b+1(z) 
y − z 

, (7) 

and 

J α 
b (y, z) =

b + 1 
Γ (1 + α)

(
α+b 
α

)
(
L(α) 
b+1(y)

L(α−1) 
b+1 (z) − L(α−1) 

b+1 (y) 
y − z 

−L(α−1) 
b+1 (y)

L(α) 
b+1(z) − L(α) 

b+1(y) 
y − z

)
. (8) 

More detailed information is available in [ 11, pp. 101, 266].
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Remark 1 We consider the series .1 − 4046
∞∑

m=1

(−4045)m−1. The  .mth partial sum 

of the series is given by .sm = (−4045)m . 

Here,we takematrix.T ≡ (am,b), where. am,b =
{

1
2023m

(m
b

)
(2022)m−b, 0 ≤ b ≤ m,

0 , b > m,

then from the definition of .T -summability and .Eq -summability, we can say that the 
series is neither .T -summable nor .Eq -summable, but it is .Eq .T -summable. As a 
result, it is obvious that product summability are better than the single summability. 

Numerous investigators [ 1– 7, 10] have approximated the function .g ∈ L[0,∞)-
class using various summability methods of its Fourier–Laguerre series at a point. y =
0. The authors like Singh [ 8], and Singh and Saini [ 9] have approximated function 
.g ∈ L[0,∞) by Ces. àro means of the Fourier–Laguerre series of . g for any .y > 0. 

Throughout this paper, we use following notations: 
.ψ(y, u) = g(y ± u) − g(y) and .φ(y, z) = g(z) − g(y). 

2 Lemmas  

Here, we are giving some lemmas which are useful for proving our theorems: 

Lemma 1 ([ 11, pp. 177, Theorem 7.6.4]) Let .ε > 0 and .α ∈ R. Then 

L(α) 
m (y) =

{
O(mα ) , 0 ≤ y ≤ 1/m, 
O(y−(21+α)/4 m(2α−1)/4), 1/m ≤ y ≤ ε, as m → ∞. 

When .α + 1/2 ≥ 0, the bounds are satisfied in both intervals. 

Lemma 2 ([ 11, pp. 241, Theorem 8.91.7]) Let.α ∈ R, ρ ∈ R, η ∈ (0, 4) and.0 < ω. 
Then 

max 
yρ |L(α) 

m (y)| 
ey/2

= O(mQ ), 

where 

Q =
{
max

(
α 
2 − 1 4 , ρ  − 1 2

)
, ω  ≤ y ≤ (4 − η)m, 

max
(

α 
2 − 1 4 , ρ  − 1 3

)
, y > m. 

Lemma 3 ([ 11, pp. 198, Theorem 8.22.1]) Let .ε > 0, ω > 0 and .α ∈ R, then 

L(α) 
m (y) = 

ey/2 cos(2
√
my − (1 + α/2)π/2)√

π m1/4−α/2 yα/2+1/4
+ O(mα/2−3/4 ), for y ∈ [ε, ω]. 

Lemma 4 ([ 11, pp. 237]) If .y ∈ [1/m, ω] and .z ∈ [1/m, ω], then 

L(α) 
m (z) − L(α) 

m (y)√
z − √y

= 
ez/2 cos(2

√
mz + γ )  − cos(2√my + γ )  

m1/4−α/2 zα/2+1/4(
√
z − √y)

+
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O(m(2α−1)/4) 
y(2α+3)/4 

+ 
O(m(2α−1)/4) 
z(2α+3)/4 

, 

where .γ = −(1 + α/2)π/2. 

Lemma 5 ([ 9, Lemma 5]) If.�(t) = ∫ ε

t
|φ(y,z)|
z1/4−α/2 dz = o

(
ξ

(
1
t

))
, for.t → 0 holds, then

∫ t 

0 
zα |φ(y, z)| dz  = o

(
tα/2+1/4 ξ

(
1 

t

))
. 

Lemma 6 ([ 9, Lemma 6]) If .
∫ ∞
m

e−z/2 |φ(y,z)|
z13/12−α/2 dz = o

(
ξ(m)

m1/2

)
, m → ∞, holds, then

∫ m 

ω 

z(2α−3)/4|φ(y, z)| 
ez/2 

dz  = o(ξ(m)), 

where .m → ∞ and . ω is a fixed positive number. 

3 Main Results 

Numerous efforts have been made in approximating function .g ∈ L[0,∞)-space 
through various summability methods of its Fourier–Laguerre series at the point 
.y = 0. However, there needs to be more exploration in the context of.y > 0. Remark 1 
shows that product summability method is powerful than the single summabil-
ity method. Considering the above-mentioned specific cases of .Eq .T -means and 
Remark 1, we approximate the function . g belonging to the .L[0,∞)-space by . Eq .T
for their Fourier–Laguerre series for any .y > 0. 

Theorem 1 Let .T ≡ (am,b) be a lower triangular regular matrix which satisfy the 
following conditions: 

1. .am,b ≥ 0, and .am,b ≤ am,b+1, for . 0 ≤ b ≤ m,

2. .am,−1 = 0, and .Am,0 = 1,m ∈ N ∪ {0}, 
3. .

m∑

c=t

Ac,c−t = O(m + 1), m ∈ N ∪ {0}. 

Thus, for any .y > 0, the error of approximation of function . g belonging to .L[0,∞)-
class by .Eq .T -means of its Fourier–Laguerre series is given by

∣∣[Eq .T ]m(g; y) − g(y)
∣∣ = o(ξ(m)), (9) 

where .ξ(t) denotes a positive, increasing function with the property .ξ(t) → ∞ as 
.t → ∞, and it satisfies the conditions below:

�(t) =
∫ ε

t 

|φ(y, z)| 
z1/4−α/2 

dz  = o
(

ξ

(
1 

t

))
, t → 0, (10)
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∫ δ 

t 

|ψ(y, u)| 
u 

du  = o
(

ξ

(
1 

t

))
, t → 0, (11)

∫ ∞ 

m 

e−z/2 |φ(y, z)| 
z13/12−α/2 

dz  = o
(

ξ(m) 
m1/2

)
, m → ∞, (12) 

where .α + 1/2 ≥ 0 and . δ is a fixed positive constant. This remains true uniformly 
for every fixed positive interval .0 < ε ≤ y ≤ ω < ∞. 

Proof We have 

sm(g; y) = 
m∑

b=0 

ab L(α) 
b (y) 

= 
m∑

b=0

∫ ∞ 
0 zα e−z g(z) L(α) 

b (z) L(α) 
b (y) dz

(
α+b 
α

)
Γ (α  + 1) 

= 1 

Γ (α  + 1)

∫ ∞ 

0 
zα e−z g(z) 

m∑

b=0 

L(α) 
b (y) L(α) 

b (z)
(
α+b 
α

) dz  

=
∫ ∞ 

0 
zα e−z g(z) J α 

m (y, z) dz. (13) 

On Eq. (13), by applying .T -summability, we obtain the following expression: 

[T ]m(g; y) = 
m∑

b=0 

am,b sb(y) 

= 
m∑

b=0 

am,b

∫ ∞ 

0 
zα e−z g(z) J α 

b (y, z) dz. (14) 

On Eq. (14), by applying .(E, q)-summability, we obtain the following expression: 

[Eq .T ]m(g; y) = 
(1 + q)−m 

Γ (1 + α) 

m∑

c=0

(
m 

c

)
qm−c 

c∑

b=0 

ac,c−b ×
∫ ∞ 

0 
zα e−z g(z) J α 

b (y, z) dz, (15) 

we have 

. [Eq .T ]m(g; y) − g(y)

= (q + 1)−m 
m∑

c=0

(
m 

c

)
qm−c 

c∑

b=0 

ac,c−b

∫ ∞ 

0 
e−z zα φ(y, z) J α 

b (y, z) dz
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= (q + 1)−m 
m∑

c=0

(
m 

c

)
qm−c 

c∑

b=0 

ac,c−b

[∫ 1/m 

0 
+

∫ ε

1/m 
+

∫ y−δ

ε

+
∫ y+δ 

y−δ 
+

∫ ω 

y+δ 
+

∫ m 

ω 
+

∫ ∞ 

m

]
zα e−z φ(y, z) J α 

b (y, z) dz  

= 
7∑

j=1 

M j . (16) 

Considering . y as a specific positive constant, and based on the second part of 
Lemma 1, we obtain 

|L(α) 
b+1(y)| =  O(b(2α−1)/4 y(−2α+1)/4 ) 

= O(b(2α−1)/4 ). (17) 

By applying Lemma 1 to Eq. (7) for .z ∈ [0, 1/m), we obtain 

|J α 
b (y, z)| =  O(b1−α[bα−1 bα/2−1/4 + bα bα/2−3/4]). (18) 

Using Lemma 5 and Eqs. (17), (18), we have 

|M1| ≤  (q + 1)−m 
m∑

c=0

(
m 

c

)
qm−c 

c∑

b=0 

ac,c−b

∫ 1/m 

0 
zα |φ(y, z)| |J α 

b (y, z)| dz  

= (q + 1)−m 
m∑

c=0

(
m 

c

)
qm−c 

c∑

b=0 

ac,c−b O

(
b1−α

∫ 1/m 

0 
zα |φ(y, z)|

[
bα/2−3/4 bα + bα/2−1/4 bα−1

]
dz

)

= (q + 1)−m 
m∑

c=0

(
m 

c

)
qm−c 

c∑

b=0 

ac,c−b O

(
bα/2+1/4

∫ 1/m 

0 
zα |φ(y, z)|dz

)

= (q + 1)−m 
m∑

c=0

(
m 

c

)
qm−c 

c∑

b=0 

ac,c−b o(ξ(m)) 

= o

(
ξ(m) (q + 1)−m 

m∑

c=0

(
m 

c

)
qm−c

)

= o(ξ(m)). (19) 

Now, applying Lemma 1 within Eq. (7) for the interval .1/m ≤ z < ε, we derive 
the following:
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|J α 
b (y, z)| =  O(b1−α[bα/2−1/4 z−α/2+1/4 bα/2−3/4 + bα/2−3/4 z−α/2−1/4 bα/2−1/4]). 

(20) 
Using condition (10) and Eq. (20), we have 

|M2| ≤  (q + 1)−m 
m∑

c=0

(
m 

c

)
qm−c 

c∑

b=0 

ac,c−b

∫ ε

1/m 
zα |φ(y, z)| |J α 

b (y, z)| dz  

= (q + 1)−m 
m∑

c=0

(
m 

c

)
qm−c 

c∑

b=0 

ac,c−b O

(
b1−α

∫ ε

1/m 
zα |φ(y, z)|

[
bα/2−1/4 z−α/2+1/4 bα/2−3/4 + bα/2−3/4 z−α/2−1/4 bα/2−1/4

]
dz

)

= (q + 1)−m 
m∑

c=0

(
m 

c

)
qm−c 

c∑

b=0 

ac,c−b O

(∫ ε

1/m 
zα/2−1/4 |φ(y, z)|dz

)

= o

(
ξ(m) (q + 1)−m 

m∑

c=0

(
m 

c

)
qm−c

)

= o(ξ(m)). (21) 

By applying Lemma 3 in the interval .ε ≤ z ≤ y − δ, we derive the following: 

|L(α−1) 
b+1 (z)| =  O

(
ez/2 cos(2

√
bz − (α − 1/2)π/2)√

π zα/2−1/4 b3/4−α/2
+ bα/2−5/4

)
. (22) 

Using formula (7), we obtain 

M3 = (q + 1)−m 
m∑

c=0

(
m 

c

)
qm−c 

c∑

b=0 

ac,c−b

∫ y−δ

ε

zα e−z 

φ(y, z)J α 
b (y, z)dz  

= (q + 1)−m 
m∑

c=0

(
m 

c

)
qm−c 

c∑

b=0 

ac,c−b O(b1−α )

∫ y−δ

ε

zα e−z φ(y, z) 

L(α) 
b+1(y) L(α−1) 

b+1 (z) − L(α−1) 
b+1 (y) L(α) 

b+1(z) 
y − z 

dz  

= M31 + M32. (23) 

Using Eq. (22) and Lemma 3, we have  

M31 = (q + 1)−m 
m∑

c=0

(
m 

c

)
qm−c 

c∑

b=0 

ac,c−b O(b1−α )

∫ y−δ

ε

zα e−z |φ(y, z)| 
y − z 

O(bα/2−1/4 )

[
bα/2−3/4 ez/2 √

π zα/2−1/4
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cos(
√
4bz − (2α − 1)π/4) + O(b(2α−5)/4 )

]
dz  

= (q + 1)−m 
m∑

c=0

(
m 

c

)
qm−c 

c∑

b=0 

ac,c−b

[
O(1)

∫ y−δ

ε

|φ(y, z)| z(2α+1)/4 

(y − z) ez/2 
cos(2

√
bz − (2α − 1)π/4)dz  + 

O(b−1/2 )

∫ y−δ

ε

e−z zα|φ(y, z)| 
y − z 

dz  + o(1)
]

(24) 

. = (q + 1)−m
m∑

c=0

(
m

c

)
qm−c

c∑

b=0

ac,c−b o(1)

= o

(
(q + 1)−m

m∑

c=0

(
m

c

)
qm−c

)

= o(1), (25) 

in Eq. (24), the Riemann–Lebesgue theorem ensures that the first integral goes to 0, 
and the second integral approaches 0 as . b becomes infinitely large. 

Similarly, we can find 
|M32| =  o(1). (26) 

Combining Eqs. (23), (25), and (26), we have 

|M3| =  o(1). (27) 

Similarly, we can find 
|M5| =  o(1). (28) 

Using Lemmas 3 and 4 in formula (8), we have 

J α 
b (y, z) = b1−α bα/2−1/4 bα/2−3/4 y

−α/2−1/4 ey/2z−α/2−1/4 ez/2 

π(
√
y + 

√
z)

[
√
z cos(2

√
by + γ )  

sin(2
√
bz + γ )  − sin(2

√
by + γ )√

z − √y
− 

√
y 

sin(2
√
by + γ )  

cos(2
√
bz + γ )  − cos(2

√
by + γ )√

z − √y
+ O(1)

]
.(29) 

For the estimation of .M4, Lemmas 3 and 4 are utilized in formula (8). Given that 
the variables are limited to a fixed positive interval, the remainder terms in these 
lemmas are dependent only on . m. Consequently, the following conclusion is drawn 
(see [ 11, pp. 267]):
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J α 
b (y, z) = 

1 

2

√
y 

z 

sin(2
√
bz − 2

√
by) 

(
√
z − √y)

(
ey/2 y−α/2−1/4 

√
π

)2 

+ O(1). 

From Eq., we have 

M4 = (q + 1)−m 
m∑

c=0

(
m 

c

)
qm−c 

c∑

b=0 

ac,c−b

∫ y+δ 

y−δ 
e−z zα φ(y, z)J α 

b (y, z)dz  

= (q + 1)−m 
m∑

c=0

(
m 

c

)
qm−c 

c∑

b=0 

ac,c−b

[
1 

2 
√
y

(
ey/2 √

π yα/2+1/4

)2

∫ y+δ 

y−δ 
e−z zα−1/2 φ(y, z) 

sin(2
√
b(

√
z − √y))√

z − √y 
dz  + O(1)

]

= (q + 1)−m 
m∑

c=0

(
m 

c

)
qm−c 

c∑

b=0 

ac,c−b O

([∫ y−1/m 

y−δ 
+

∫ y+1/m 

y−1/m 
+

∫ y+δ 

y+1/m

]
e−z z(2α−1)/2 φ(y, z) 

sin(2
√
b(

√
z − √y))√

z − √y 
dz

)
+ O(1) 

= M41 + M42 + M43 + O(1). (30) 

Applying condition (11), we have 

|M41| =  (q + 1)−m 
m∑

c=0

(
m 

c

)
qm−c 

c∑

b=0 

ac,c−b O

(∫ y−1/m 

y−δ 

(
√
y + 

√
z) |φ(y, z)| 

|y − z| dz

)

= (q + 1)−m 
m∑

c=0

(
m 

c

)
qm−c 

c∑

b=0 

ac,c−b O

(∫ δ 

1/m 

ψ(y, u) 
u 

du

)

= o

(
ξ(m) (q + 1)−m 

m∑

c=0

(
m 

c

)
qm−c

)

= o(ξ(m)). (31) 

Following the above proof, we have 

|M43| =  o(ξ(m)). (32)
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Applying condition (11), we have 

|M42| =  (q + 1)−m 
m∑

c=0

(
m 

c

)
qm−c 

c∑

b=0 

ac,c−b O

(∫ y+1/m 

y−1/m 
|φ(y, z)|

∣∣∣∣∣
sin(2

√
bz − 2

√
by)√

z − √y

∣∣∣∣∣ dz
)

= (q + 1)−m 
m∑

c=0

(
m 

c

)
qm−c 

c∑

b=0 

ac,c−b O

(√
b

∫ 1/m 

0 
|ψ(y, u)|du

)

= (q + 1)−m 
m∑

c=0

(
m 

c

)
qm−c 

c∑

b=0 

ac,c−b o

(√
b ξ(m) 
m

)

= o

(
ξ(m) (q + 1)−m 

m∑

c=0

(
m 

c

)
qm−c

)

= o(ξ(m)). (33) 

Combining Eqs. (30)–(33), we have 

|M4| =  o(ξ(m)). (34) 

Using first part of Lemma 2 (for .η = 3), we have 

|M6| ≤  (q + 1)−m 
m∑

c=0

(
m 

c

)
qm−c 

c∑

b=0 

ac,c−b

[
O(b1−α )

∫ m 

ω 
e−z zα−1 

|φ(y, z)||L(α) 
b+1(y)||L(α−1) 

b+1 (z)|dz  + O(b1−α )

∫ m 

ω 
e−z zα−1|φ(y, z)| 

|L(α−1) 
b+1 (y)||L(α) 

b+1(z)|dz
]

= M61 + M62. (35) 

Applying Lemma 6, we have  

|M61| =  (q + 1)−m 
m∑

c=0

(
m 

c

)
qm−c 

c∑

b=0 

ac,c−b O

(
b−α/2+3/4

∫ m 

ω 
e−z/2 

zα/2−3/4|φ(y, z)|e−z/2 zα/2−1/4|L(α−1) 
b+1 (z)|dz

)

= (q + 1)−m 
m∑

c=0

(
m 

c

)
qm−c 

c∑

b=0 

ac,c−b(b
−α/2+3/4 bα/2−3/4 )

∫ m 

ω 
e−z/2 zα/2−3/4 |φ(y, z)|dz
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= (q + 1)−m 
m∑

c=0

(
m 

c

)
qm−c 

c∑

b=0 

ac,c−b (b
−α/2+3/4 bα/2−3/4 ) o(ξ(m)) 

= o

(
ξ(m) (q + 1)−m 

m∑

c=0

(
m 

c

)
qm−c

)

= o(ξ(m)). (36) 

Similarly, we can calculate 

|M62| =  o(ξ(m)). (37) 

Combining Eqs. (35)–(37), we have 

|M6| =  o(ξ(m)). (38) 

By applying the second part of Lemma 2 for .m ≤ y < ∞, we have  

e−y/2 yα/2+1/12 |L(α) 
m (y)| =  O(mα/2−1/4 ). (39) 

Applying formula (6), we have 

|M7| =  (q + 1)−m 
m∑

c=0

(
m 

c

)
qm−c 

c∑

b=0 

ac,c−b O(b1−α )

∫ ∞ 

m 

zα e−z |φ(y, z)| 
y − z

{L(α) 
b (y) L(α) 

b+1(z) − L(α) 
b+1(y) L

(α) 
b (z)}dz  

= M71 + M72. (40) 

Using Eqs. (12) and (39), we get 

M71 = (q + 1)−m 
m∑

c=0

(
m 

c

)
qm−c 

c∑

b=0 

ac,c−b O(b1−α )

∫ ∞ 

m 

zα e−z |φ(y, z)| 
z − y 

O(bα/2−1/4)ez/2z−α/2−1/12bα/2−1/4dz  

= (q + 1)−m 
m∑

c=0

(
m 

c

)
qm−c 

c∑

b=0 

ac,c−b O(b1/2)
∫ ∞ 

m 
e−z/2 

zα/2−13/12|φ(y, z)|dz  

= (q + 1)−m 
m∑

c=0

(
m 

c

)
qm−c 

c∑

b=0 

ac,c−b o(ξ(m)) 

= o

(
ξ(m) (q + 1)−m 

m∑

c=0

(
m 

c

)
qm−c

)

= o(ξ(m)). (41)
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Similarly, we can calculate 

|M72| =  o(ξ(m)). (42) 

Combining Eqs. (40)–(42), we have 

|M7| =  o(ξ(m)). (43) 

Collecting Eqs. (16), (19), (21), (27), (28), (34), (38), and (43), we have

∣∣[Eq .T ]m(g; y) − g(y)
∣∣ = o(ξ(m)). 

4 Corollaries 

From Theorem 1, we derive the following corollaries. 

Corollary 1 If we consider .ac,b = pc−b qb
Rc

in (4), then .Eq .T reduces to 
.(E, q)(N , p, q) or .Eq .Npq , then for .g ∈ L[0,∞)

∣∣[Eq .Npq ]m(g; y) − g(y)
∣∣ = o(ξ(m)). 

Corollary 2 If we consider .ac,b = c! η!
(c+η)!

(c+η−b−1
η−1

)
in (4), then .Eq .T reduces to 

.(E, q)(C, η) or .Eq .Cη, then for .g ∈ L[0,∞)

∣∣[Eq .Cη]m(g; y) − g(y)
∣∣ = o(ξ(m)). 

Corollary 3 If we consider .ac,b = pb
Pc
in (4), then .Eq .T reduces to .(E, q)(N , pc) or 

.Eq .N p, then for .g ∈ L[0,∞)

∣∣[Eq .N p]m(g; y) − g(y)
∣∣ = o(ξ(m)). 

Corollary 4 If we consider .ac,b = 1
log(c+1) (c−b+1) in (4), then .Eq .T reduces to 

.(E, q)(H, 1
c+1 ) or .E

q .H, then for .g ∈ L[0,∞)

∣∣[Eq .H ]m(g; y) − g(y)
∣∣ = o(ξ(m)). 

Corollary 5 If we consider.ac,b = pc−b

Pc
, where.Pc = ∑c

b=0 pb 	= 0 in (4), then. Eq .T
reduces to .(E, q)(N , pc) or .Eq .Np, then for .g ∈ L[0,∞)

∣∣[Eq .Np]m(g; y) − g(y)
∣∣ = o(ξ(m)).
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Remark 2 If we consider .q = 1 in .(E, q), then from above corollaries 
.(E, q)(N , p, q), .(E, q)(C, η), .(E, q)(N , pc), .(E, q)(H, 1

c+1 ), and . (E, q)(N , pc)

are reduced to .(E, 1)(N , p, q), .(E, 1)(C, η), .(E, 1)(N , pc), .(E, 1)(H, 1
c+1 ), and 

.(E, 1)(N , pc). These are also special cases of Theorem 1. 
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The Lie Group Analysis of the 2D 
Time-Independent Isotropic Harmonic 
Oscillator 

Sach Mulchan, Sreedhara Rao Gunakala, B. Rushi Kumar, 
Vikash Ramcharitar, and Victor M. Job 

Abstract The Lie group analysis of the two-dimensional, time-independent, 
isotropic quantum harmonic oscillator is performed. Firstly, a simplified version of 
the equation called the base case equation is considered and its symmetry Lie algebra 
was found to be isomorphic to the Euclidean Lie algebra. Thus the symmetries that 
the base case equation possessed were rotations about the origin and translations in 
the.x- and.y-directions. Secondly, a new basis for the Lie algebra of the 2D harmonic 
oscillator was found and the equation was shown to possess rotational symmetries 
about the origin. Next, the base case equation was written in complex variables and 
its symmetries were used to obtain two group invariant solutions which were in turn 
used to form a general solution. Lastly, the two-dimensional harmonic oscillator 
was converted to complex form and its rotational symmetry was used to construct a 
general solution. 

Keywords Euclidean Lie algebra · Isotropic harmonic oscillator · Time 
independent · Lie group · Rotational symmetry 

1 Introduction 

The relationship between group theory and the theory of differential equations was 
first established by Norwegian mathematician Sophus Lie during the years 1872– 
1899. Just as Galois generalized the theory of algebraic equations using group theory, 
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Lie showed that a similar relationship existed between groups and differential equa-
tions. The major difference was that the groups associated with differential equations 
(Lie groups) are uncountably infinite. Lie groups are particularly important to the 
study of quantum mechanics. For example, three of the four fundamental forces of 
the universe can be described using Lie groups. The fourth force, gravity, is described 
using concepts from differential geometry which are closely related to concepts in 
Lie groups. Since 1899 many mathematicians and physicists have contributed to the 
development of this theory. The Lie algebras for both equations were determined 
along with bases for each algebra. The process was similar to that used in Boyer 
et al. [ 2]. The commutation relations of the basis vectors were determined. 

The fundamental algebraic and analytical systems used in the formulation of the 
theory of Lie group methods for the solution of differential equations are Lie groups, 
matrix groups, Lie algebras, and manifolds. The general linear group and conver-
gence of a sequence of matrices and matrix Lie group is as used in Hall [ 4]. Since 
a Lie group is also a manifold, the theory of Lie group methods for differential 
equations is based significantly on results from both differential geometry and group 
theory. The dimensionality of a Lie algebra is the dimensionality of the associated 
vector space. For example, it can easily be verified that the space of all.n × nmatrices 
with complex entries, .Mn(C), forms a Lie algebra over .C where the usual matrix 
and scalar multiplication hold as given in Bluman and Anco [ 1]. Since a Lie alge-
bra homomorphism preserves the commutation relations of the elements of a Lie 
algebra, we expect that there exists a relationship between two isomorphic Lie alge-
bras and their structural constants [ 7]. There is a fundamental relationship between 
Lie algebras and matrix Lie groups. To highlight this relationship, we analyze the 
symmetries of the 2D Helmholtz equation (base case) and the 2D simple harmonic 
oscillator equation. 

2 Development of Symmetries 

2.1 The Base Case Equation 

The 2D Helmholtz equation is given by 

∂2ψ 
∂x2 

+ 
∂2ψ 
∂ y2 

+ ω2 ψ = 0. (1) 

We consider only those solutions .ψ of (1) which are defined and analytic in real 
variables . x and . y for some common open connected set .D ⊆ R

2. 
The set of all such solutions forms a complex vector space.V0. Setting.D as fixed, 

.V0 is called the solution space of (1). Let. V be the vector space of all complex-valued, 
real analytic functions defined on .D and let .H be the partial differential operator
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H = 
∂2 

∂x2 
+ 

∂2 

∂ y2 
+ ω2 (2) 

defined on . D. Thus, if .φ ∈ V , then .Hφ ∈ V and equation (1) can be written as 
.Hψ(x, y) = 0. This implies that .V0 is the kernel or null space of the linear operator 
. H, which is a subspace of . V . 

2.2 The 2D Simple Harmonic Oscillator 

Consider the 2D simple harmonic oscillator: 

−h2 

2M

(
∂2ψ 
∂x2 

+ 
∂2ψ 
∂ y2

)
+ 

1 

2 
Mω(x2 + y2 )ψ = Eψ. (3) 

The Hamiltonian for this equation is given by 

H = α
(

∂2 

∂x2 
+ 

∂2 

∂ y2

)
+ β(x2 + y2 ), (4) 

where .α = −h2

2M
and .β = 1

2
Mω2. 

To obtain the symmetries of the equation we consider only those solutions . ψ
which are defined and analytic in real variables . x and . y for some common open, 
connected set .D ⊆ R

2 such that 

α

(
∂2ψ 
∂x2 

+ 
∂2ψ 
∂ y2

)
+ β(x2 + y2 )ψ = 0. (5) 

The set of all such solutions forms a complex vector space.V0. Setting.D as fixed, 
.V0 is called the solution space of (5). Let. V be the vector space of all complex-valued, 
real analytic functions defined on . D. Thus, if .φ ∈ V , then .Hφ ∈ V . Therefore, . V0

is the null space of the linear operator . H. We use the symmetry operator .X and 
explicitly determine the symmetry algebra, for . f ∈ V: 

HX f =
[
α

(
∂2 

∂x2 
+ 

∂2 

∂ y2

)
+ β

(
x2 + y2

)] [
ξ 
∂ f 
∂x 

+ η 
∂ f 
∂ y 

+ τ f
]

= αξ 
∂3 f 

∂x3 
+ 2α 

∂ξ 
∂x 

∂2 f 

∂x2 
+ α 

∂ f 
∂x 

∂2ξ 
∂x2 

+ αη 
∂3 f 

∂x2∂ y 
+ 2α 

∂η 
∂x 

∂2 f 

∂x∂ y 

+ α 
∂ f 
∂ y 

∂2η 
∂x2 

+ ατ 
∂2 f 

∂x2 
+ 2α 

∂τ 
∂x 

∂ f 
∂x 

+ α 
∂2τ 
∂x2 

f 

+ αξ 
∂3 f 

∂x∂ y2 
+ 2α 

∂ξ 
∂ y 

∂2 f 

∂x∂ y 
+ α 

∂2ξ 
∂ y2 

∂ f 
∂x 

+ αη 
∂3 f 

∂ y3
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+ 2α 
∂η 
∂ y 

∂2 f 

∂ y2 
+ α 

∂ f 
∂ y 

∂2η 
∂ y2 

+ ατ 
∂2 f 

∂ y2 
+ 2α 

∂τ 
∂ y 

∂ f 
∂ y 

+ α 
∂2τ 
∂ y2 

f 

+ β
(
x2 + y2

) [
ξ 
∂ f 
∂x 

+ η 
∂ f 
∂ y 

+ τ f
]

= ξ
[
α

(
∂3 f 

∂x3 
+ 

∂3 f 

∂x∂ y2

)
+ β

(
x2 + y2

) ∂ f 
∂x

]

+ η
[
α

(
∂3 f 

∂x2∂ y 
+ 

∂3 f 

∂ y3

)
+ β

(
x2 + y2

) ∂ f 
∂ y

]

+ τ
[
α

(
∂2 f 

∂x2 
+ 

∂2 f 

∂ y2

)
+ β

(
x2 + y2

)
f

]

+ 2α 
∂ξ 
∂x 

∂2 f 

∂x2 
+

(
2α 

∂ξ 
∂ y 

+ 2α 
∂η 
∂x

)
∂2 f 

∂x∂ y 
+ 2α 

∂η 
∂ y 

∂2 f 

∂ y2 

+
(

α 
∂2ξ 
∂x2 

+ α 
∂2ξ 
∂ y2 

+ 2α 
∂τ 
∂x

)
∂ f 
∂x 

+
(

α 
∂2η 
∂x2 

+ α 
∂2η 
∂ y2 

+ 2α 
∂τ 
∂ y

)
∂ f 
∂ y 

+
(

α 
∂2τ 
∂x2 

+ α 
∂2τ 
∂ y2

)
f (6) 

XH f =
(

ξ 
∂ 
∂x 

+ η 
∂ 
∂ y 

+ τ
) [

α

(
∂2 f 

∂x2 
+ 

∂2 f 

∂ y2

)
+ β

(
x2 + y2

)
f

]

= αξ 
∂3 f 

∂x3 
+ αξ 

∂3 f 

∂ y2∂x 
+ βξ

(
x2 

∂ f 
∂x 

+ 2x f  + y2 
∂ f 
∂x

)

+ αη 
∂3 f 

∂x2∂ y 
+ αη 

∂3 f 

∂ y3 
+ βη

(
x2 

∂ f 
∂ y 

+ 2y f  + y2 
∂ f 
∂ y

)

+ τ
(

α 
∂2 f 

∂x2 
+ α 

∂2 f 

∂ y2 
+ βx2 f + β y2 f

)

= ξ
[
α

(
∂3 f 

∂x3 
+ 

∂3 f 

∂ y2∂x

)
+ β

((
x2 + y2

) ∂ f 
∂x 

+ 2x f
)]

+ η
[
α

(
∂3 f 

∂x2∂ y 
+ 

∂3 f 

∂ y3

)
+ β

((
x2 + y2

) ∂ f 
∂ y 

+ 2y f
)]

+ τ
[
α

(
∂2 f 

∂x2 
+ 

∂2 f 

∂ y2

)
+ β

(
x2 + y2

)
f

]
(7) 

− [X, H] f = HX f − XH f 

= −2ξβx f  − 2ηβ y f  + 2α 
∂ξ 
∂x 

∂2 f 

∂x2 
+ 2α 

∂η 
∂ y 

∂2 f 

∂ y2 

+
(
2α 

∂ξ 
∂ y 

+ 2α 
∂η 
∂x

)
∂2 f 

∂x∂ y
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+
(

α 
∂2ξ 
∂x2 

+ α 
∂2ξ 
∂ y2 

+ 2α 
∂τ 
∂x

)
∂ f 
∂x 

+
(

α 
∂2η 
∂x2 

+ α 
∂2η 
∂ y2 

+ 2α 
∂τ 
∂ y

)
∂ f 
∂ y 

+
(

α 
∂2τ 
∂x2 

+ α 
∂2τ 
∂ y2

)
f 

=
[
2α 

∂ξ 
∂x 

∂2 

∂x2 
+

(
2α 

∂ξ 
∂ y 

+ 2α 
∂η 
∂x

)
∂2 

∂x∂ y 
+ 2α 

∂η 
∂ y 

∂2 

∂ y2

]
f 

+
[(

α 
∂2ξ 
∂x2 

+ α 
∂2ξ 
∂ y2 

+ 2α 
∂τ 
∂x

)
∂ 
∂x

]
f 

+
[(

α 
∂2η 
∂x2 

+ α 
∂2η 
∂ y2 

+ 2α 
∂τ 
∂ y

)
∂ 
∂ y

]
f 

+
(

α 
∂2τ 
∂x2 

+ α 
∂2τ 
∂ y2 

− 2ξβx − 2ηβ y
)

f. 

If we take .[X,H] = RH, then 

− [X, H] =
(

−Rα 
∂2 

∂x2 
− Rα 

∂2 

∂ y2 
− Rβx2 − Rβ y2

)
f. 

This is true for any . f ∈ V . Therefore, the coefficients of . ∂2

∂x2 , .
∂2

∂y2 , .
∂2

∂x∂y , .
∂
∂x and 

.
∂
∂y are equal. We thus obtain the system of equations 

2α 
∂ξ 
∂x 

= −Rα = 2α 
∂η 
∂ y 

(8) 

2α 
∂ξ 
∂ y 

+ 2α 
∂η 
∂x 

= 0 (9) 

α 
∂2ξ 
∂x2 

+ α 
∂2ξ 
∂ y2 

+ 2α 
∂τ 
∂x 

= 0 (10) 

α 
∂2η 
∂x2 

+ α 
∂2η 
∂ y2 

+ 2α 
∂τ 
∂ y 

= 0 (11) 

α 
∂2τ 
∂x2 

+ α 
∂2τ 
∂ y2 

− 2ξβx − 2ηβ y = −Rβ
(
x2 + y2

)
. (12) 

From (8) 

∂ξ 
∂x 

= 
∂η 
∂ y
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⇒ 
∂2ξ 
∂x2 

= 
∂2η 

∂ y∂x 
. (13) 

From (9) 

∂ξ 
∂ y 

= −  
∂η 
∂x 

⇒ 
∂2ξ 
∂ y2 

= −  
∂2η 

∂x∂ y 
. (14) 

Adding (13) and (14) we get 

∂2ξ 
∂x2 

+ 
∂2ξ 
∂ y2 

= 
∂2η 

∂ y∂x 
− 

∂2η 
∂x∂ y 

= 0. (15) 

Similarly, from (8) 

∂2ξ 
∂x∂ y 

= 
∂2η 
∂ y2 

. (16) 

Also, from (9), 

∂2ξ 
∂ y∂x 

= −  
∂2η 
∂x2 

. (17) 

Subtracting (17) and (16), 

∂2η 
∂ y2 

+ 
∂2η 
∂x2 

= 0. (18) 

Substituting (15) and (18) into (10) and (11), respectively, we obtain 

∂τ 
∂x 

= 0 = 
∂τ 
∂ y 

, 

which yields the solution .τ = d where . d is a constant. Thus, (12) becomes 

−2β (ξx + ηy) = −Rβ
(
x2 + y2

)

which gives 

R = 
2 (ξx + ηy)(
x2 + y2

) . (19)
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In order to solve the system of nonlinear partial differential equations obtained 
from (9), we substitute (19) into (8) to obtain 

∂ξ 
∂x 

+ 
(ξx + ηy)(
x2 + y2

) = 0 

∂η 
∂ y 

+ 
(ξx + ηy)(
x2 + y2

) = 0 

∂ξ 
∂ y 

+ 
∂η 
∂x 

= 0. 

Using Maple 13 to solve the above system, we get 

ξ (x, y) = −
[
cy3 + (

cx2 − a
)
y + bx 

x2 + y2

]

and 

η (x, y) = 
cx3 + (

a + cy2
)
x + by 

x2 + y2 
, 

where .a, b, c ∈ C. Hence the symmetry operator is 

X = −
[
cy3 + (

cx2 − a
)
y + bx 

x2 + y2

]
∂ 
∂x 

+
[
cx3 + (

a + cy2
)
x + by 

x2 + y2

]
∂ 
∂ y 

+ d 

= ay 

x2 + y2 
∂ 
∂x 

+ ax 

x2 + y2 
∂ 
∂ y 

− bx 

x2 + y2 
∂ 
∂x 

+ 
by 

x2 + y2 
∂ 
∂ y 

− cy3 

x2 + y2 
∂ 
∂x 

− 
cx2 y 

x2 + y2 
∂ 
∂x 

+ cx3 

x2 + y2 
∂ 
∂ y 

− 
cy2x 

x2 + y2 
∂ 
∂ y 

+ d 

= a 

x2 + y2

[
y 

∂ 
∂x 

+ x 
∂ 
∂ y

]
+ b 

x2 + y2

[
y 

∂ 
∂ y 

− x 
∂ 
∂x

]

+ 
cx

(
x2 + y2

)
x2 + y2 

∂ 
∂ y 

− 
cy

(
x2 + y2

)
x2 + y2 

∂ 
∂x 

+ d 

= a 

x2 + y2

[
y 

∂ 
∂x 

+ x 
∂ 
∂ y

]
+ b 

x2 + y2

[
y 

∂ 
∂ y 

− x 
∂ 
∂x

]

+ c
[
x 

∂ 
∂ y 

− y 
∂ 
∂x

]
+ d, 

and the associated symmetry algebra . L is given by 

L =
{

a 

x2 + y2

(
y 

∂ 
∂x 

+ x 
∂ 
∂ y

)
+ b 

x2 + y2

(
y 

∂ 
∂ y 

− x 
∂ 
∂x

)
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+c

(
x 

∂ 
∂ y 

− y 
∂ 
∂x

)
+ d

∣∣∣∣ a, b, c, d ∈ C
}
. 

Let 

A1 = 1 

x2 + y2

(
y 

∂ 
∂x 

+ x 
∂ 
∂ y

)
, A2 = 1 

x2 + y2

(
y 

∂ 
∂ y 

− x 
∂ 
∂x

)
, A3 = x 

∂ 
∂ y 

− y 
∂ 
∂x 

and.B = 1. The  set.P = {A1, A2, A3, B} is a basis for. L . We consider the real three-
dimensional algebra.L∗ with basis.{A1, A2, A3}, since.B = 1 is the trivial symmetry 
operator. The following relations hold: 

[A1, A2] = 0, [A2, A1] = 0, [A2, A3] = −2A1, [A3, A2] = 2A1, [A1, A3] = 2A2, 

[A3, A1] = −2A2, [A1, A1] = 0, [A2, A2] = 0, [A3, A3] = 0. 

We have not been able to match these structural constants with any known classical 
Lie algebra. However, the presence of .A3 indicates that Eq. (3) possesses rotational 
symmetry according to Ibragimov [ 5]. It is noteworthy that Winterniz [ 9] showed that 
the 2D harmonic oscillator exhibits.SU(2) symmetry. Furthermore, Hall [ 4] showed  
that the Lie algebra .SU(2) is isomorphic to the Lie algebra .SO(3) and that the Lie 
group .SU (2) is locally isomorphic to the Lie group .SO (3). 

3 Solving the Base Case Equation 

The base case equation is given by 

∂2ψ 
∂x2 

+ 
∂2ψ 
∂ y2 

+ ω2 ψ = 0. (20) 

Firstly, we reformulate (20) in terms of the complex variables.z = x + iy,. z = x − iy
and .ψ = ψ (z, z). 

We then introduce the differential operators .
∂
∂z = 1

2

(
∂
∂x − i ∂

∂y

)
and . 

∂
∂z =

1
2

(
∂
∂x + i ∂

∂y

)
, and note that . ∂z

∂z = 0 = ∂z
∂z . 

According to Morse [ 6], we can treat . z and . z as independent variables. Now, 

∂2ψ 
∂x2 

+ 
∂2ψ 
∂ y2 

= 4 
∂2ψ 
∂z∂z 

. (21) 

Substituting (21) into (20), 
∂2ψ 
∂z∂z 

+ 
ω2 

4 
ψ = 0. (22)
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Since we have changed coordinate systems, we provide the following arguments 
that the same symmetries hold for the variables . z and . z. Translations in the .z- and 
.z-directions are given by.z∗ = z + aε and.z∗ = z + aε, where.a, a ∈ C and.ε ∈ R is 
a continuous parameter. Since 

∂ψ 
∂z∗ = 

∂ψ 
∂z 

, 

it follows that 

∂2ψ 
∂z∗∂z∗ = 

∂2ψ 
∂z∂z 

. 

In terms of .z∗ and .z∗ Eq. (22) becomes 

∂2ψ
(
z∗, z∗)

∂z∂z
+ 

ω2 

4 
ψ

(
z∗, z∗) = 0, 

where .ψ
(
z∗, z∗) = ψ (z + aε, z + aε). Rotations about the origin with respect to . z

and. z are given by.z′ = eiθz, and.z′ = e−iθz, where.θ ∈ R is a continuous parameter. 
Since .

∂z
∂z′ = 0 and ∂z

∂z′ = eiθ, we have  

∂ψ 
∂z′ = 

∂ψ 
∂z 

eiθ and 
∂2ψ 

∂z′∂z′ = 
∂2ψ 
∂z∂z 

. 

Therefore in terms of . z′ and . z′ Eq. (22) becomes 

∂2ψ
(
z′, z′)

∂z′∂z′ + 
ω2 

4 
ψ

(
z′, z′) = 0. 

If .ψ (z, z) is a solution to (22) then so is .ψ
(
z′, z′) = ψ

(
eiθz, e−iθz

)
. Hence both 

translational and rotational symmetries are preserved after the variable changes 
to . z and . z. According to Ovsiannikov [ 7], both these symmetries guarantee us 
the existence of two separate one-parameter continuous transformation groups. 
We now determine the first group .G1 by making use of the Taylor expansion of 
.ψ (z + aε, z + aε), parametrized by . ε about .ε = 0: 

ψ (z + aε, z + aε) = ψ (z + aε, z + aε)|ε=0 + 
dψ 
dε

∣∣∣∣
ε=0 

+ 
d2ψ 
dε2

∣∣∣∣
ε=0 

. (23) 

Substituting the equations 

dψ 
dε

∣∣∣∣
ε=0 

=
(
a 

∂ψ 
∂z 

+ a 
∂ψ 
∂z

)
(24)
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and 

d2ψ 
dε2

∣∣∣∣
ε=0 

=
(
a 

∂ 
∂z 

+ a 
∂ 
∂z

)2 

ψ (25) 

into (23), 

ψ (z + aε, z + aε) = g (ε) ψ (z, z) , where g (ε) = exp
[
ε

(
a 

∂ 
∂z 

+ a 
∂ 
∂z

)]
. 

The group .G1 obtained from the translational symmetry is given by 

G1 =
{
g (ε)| g (ε) = exp

[
ε

(
a 

∂ 
∂z 

+ a 
∂ 
∂z

)]
, a ∈ C, ε ∈ R

}
. 

Lie groups are obtained by taking the exponential of the basis vectors of the 
corresponding Lie algebras. It can easily be verified that .G1 satisfies the conditions 
for an abelian group: the closure, associativity, and commutativity properties follow 
directly from the laws of exponents. Furthermore, the identity and inverse elements 
are given by .g (0) and .g (−ε), respectively. 

Similarly, we determine the second group .G2 by expanding . ψ
(
eiθz, e−iθz

)
parametrized by . θ about .θ = 0. Now,  

ψ
(
eiθ z, e−iθ z

) = ψ
(
eiθ z, e−iθ z

)∣∣
θ=0 + (θ − 0)

(
dψ 
dθ

∣∣∣∣
θ=0

)

+ 
(θ − 0)2 

2!
(
d2ψ 
dθ2

∣∣∣∣
θ=0

)
+ . . . . (26) 

Since 

∂z′

∂θ 
= −ie−iθz = −i z′ and 

∂z′

∂θ 
= ieiθz = i z′, 

it follows that 

dψ 
dθ

∣∣∣∣
θ=0 

=
(
i z  

∂ψ 
∂z 

− i z 
∂ψ 
∂z

)
. (27) 

Consequently, 

d2ψ 
dθ2

∣∣∣∣
θ=0 

= i
(
z 

∂ 
∂z 

− z 
∂ 
∂z

)2 

ψ (z, z) . (28)
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Substituting Eqs. (27) and (28) into (26) 

ψ
(
eiθ z, e−iθ z

) = h (θ) ψ (z, z) , whereh (θ) = exp
[
iθ

(
z 

∂ 
∂z 

− z 
∂ 
∂z

)]
. 

Hence, the group .G2 obtained from the rotational symmetry is given by 

G2 =
{
h (θ)| h (θ) = exp

[
iθ

(
z 

∂ 
∂z 

− z 
∂ 
∂z

)]
, θ ∈ R

}
. 

We now find a similarity variable.η (z, z)with respect to the translational symmetries: 

z∗ = z + aε (29) 

.z∗ = z + aε (30) 

which, after rearranging, gives 

z∗ 

a 
− 

z∗ 

a 
= 

z 

a 
− 

z 

a 
. 

Hence we define the similarity variable 

η (z, z) = 
z 

a 
− 

z 

a 
. 

According to Stephani [ 8], a similarity variable will remain invariant under the action 
of the group associated with that variable. Therefore,.η (z, z) should remain invariant 
under the action of the group.G1. We now illustrate this using the following argument: 
Since 

η
(
z∗, z∗) = η (z, z) 

then we have 
∂ψ 
∂z 

= 
∂ψ 
∂η 

∂η 
∂z 

= 
−1 

a 

∂ψ 
∂η 

and 

∂2ψ 
∂z∂z 

= 
−1 

|a|2 
∂2ψ 
∂η2 

. 

Since .ψ and . η only, we can write all partial derivatives as total derivatives. Thus, 
Eq. (22) becomes 

d2ψ 
dη2 

−
( |a| ω 

2

)2 

ψ = 0.
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Thus, 
ψ (η) = C1e(

δz−δz) + C2e
−(δz−δz), (31) 

where .δ = ω|a|
2a . 

Now, consider.δz − δz = δz − δz. For any complex number. ω,. ω − ω = 2iIm (ω)
which implies that .δz − δz = i [2Im (δz)]. Thus, equation (31) becomes 

ψ (z, z) = D1 cos (2Im (δz)) + D2 sin (2Im (δz)) , (32) 

where .D1 = C1 + C2 and D2 = i (C1 − C2), Eq.  (32) suggests that . cos (2Im (δz))
and .sin (2Im (δz)) are independent solutions for equation (22). This can be verified 
via substitution into (22) and by using the facts that . δ = ω|a|

2a and ω = 2 |δ| .
Consider now.a = a1 + a2i ∈ C. Then 

δ = ωa1 

2
√
a2 1 + a2 2 

− ωa2i 

2
√
a2 1 + a2 2 

. 

Taking 

k = Re (δ) = ωa1 

2
√
a2 1 + a2 2 

, (33) 

l = Im (δ) = − ωa2 

2
√
a2 1 + a2 2 

, (34) 

then 
δz = ω 

2
√
a2 1 + a2 2 

[(xa1 + a2 y) − i (a1y − a2x)] . 

Hence, 
ψ (x, y) = A cos (2 (ky  + lx)) + B sin (2 (ky  + lx)) (35) 

is a solution for Eq. (20), where .A, B ∈ R, and . l and . k are to be determined using 
any specified boundary conditions for Eq. (20). We now make use of the rotational 
symmetries to find a second similarity variable .γ (z, z). The origin with respect to . z
and . z is given by 

z′ = eiθ z, (36) 

z′ = e−iθ z. (37) 

From equation (36) we get 

z′

z 
= 

ln
(
z′
z

)
i 

, (38)
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and substituting Eq. (38) into (37) yields 

z′ = zz. 

If we let .γ (z, z) = zz, then 

γ
(
z′, z′) = γ (z, z) . 

4 Solving the 2D Harmonic Oscillator 

To obtain general solutions for the 2D harmonic oscillator, recall the associated 
equation: 

−�
2 

2M

(
∂2ψ 
∂x2 

+ 
∂2ψ 
∂ y2

)
+ 

1 

2 
Mω2

(
x2 + y2

)
ψ = Eψ. (39) 

Let .z = x + iy, .z = x − iy, . ∂
∂z = 1

2

(
∂
∂x − i ∂

∂y

)
, and .

∂
∂z = 1

2

(
∂
∂x + i ∂

∂y

)
. 

We see that . z and . z can be treated as independent variables. Furthermore, 

∂2ψ 
∂x2 

+ 
∂2ψ 
∂ y2 

= 4 
∂2ψ 
∂z∂z 

. (40) 

Consider now 

z + z = 
z2 + z2 + 2zz 

4 

and 

z − z = 
− (

z2 + z2 − 2zz
)

4 
. 

After substituting 

x2 + y2 = zz (41) 

and (40) in (39), we obtain 

⇒ 
∂2ψ 
∂z∂z 

− αzzψ + 
k2 

4 
ψ = 0, (42) 

where .α = Mω2

2�
, .k =

√
2ME
�2 , and .ψ = ψ (z, z).
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The origin with respect to . z and . z is given by .z′ = eiθz, and .z′ = e−iθz, where 
.θ ∈ R is a continuous parameter and 

∂2ψ 
∂z′∂z′ = 

∂2ψ 
∂z∂z 

. 

Furthermore, 
z′z′ = (

eiθ z
) (
e−iθ z

) = zz 

and Eq. (42) becomes 

∂2ψ
(
z′,z′)

∂z′∂z′ − αz′z′ψ
(
z′, z′) + 

k2 

4 
ψ

(
z′, z′) = 0. 

Hence if .ψ (z, z) is a solution to (42) then so is .ψ
(
z′,z′) = ψ

(
eiθz, e−iθz

)
. Thus, 

rotational symmetry is preserved even after changing to the complex variables . z
and . z. 

We know that a group .G2 is obtained from the rotation symmetry as given by 

G2 =
{
h (θ)

∣∣h (θ) = exp
[
iθ

(
z 

∂ 
∂z 

− z 
∂ 
∂z

)]
, θ ∈ R

}
, 

and .ξ (z, z) = (zz)m where .m ∈ R is a similarity variable associated with the group 
.G2. Therefore (42) becomes 

m2 ξ 
2m−1 
m 

∂2ψ (ξ) 
∂ξ2 

− αξ 
1 
m ψ (ξ) + 

k2 

4 
ψ (ξ) = 0, 

which has general solution 

ψ (ξ) = A (ξ) N
(
m + 1 
2 

− 
ω2 

8
√

α 
, m + 1, 2

√
αξ 

1 
m

)

+ B (ξ) U
(
4(m + 1)

√
α − ω2 

8
√

α 
, m + 1, 2

√
αξ 

1 
m

)
(43) 

where 

A (ξ) = Cξ 
m−1 
2m

(
2
√

αξ 
1 
m

) m+1 
2 
exp

(
−√

αξ 
1 
m

)
, 

B (ξ) = Dξ 
m−1 
2m

(
2
√

αξ 
1 
m

) 2 
4m+1 

exp
(
−√

αξ 
1 
m

)
, 

.C, D ∈ R, .α = (
Mω
2�

)2
, .ξ = (

x2 + y2
)m
, and .N and .U denote Kummer’s functions 

of the first kind and second kind, respectively.
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5 Conclusion 

The symmetry group of the base case equation (recall that this is the two-dimensional 
Helmholtz equation) was found to be the Euclidean group.E (2) which indicated the 
presence of both rotational and translational symmetries. This result is consistent with 
the results obtained by who showed that the three-dimensional Helmholtz equation 
has symmetry group .E (3). 

The 2D harmonic oscillator was also shown to exhibit rotational symmetry which 
is consistent with results obtained by Boyer et al. [ 2]. Doll [ 3] suggests that rota-
tional invariance implies conservation of angular momentum. This is consistent with 
Noether’s First Theorem which tells us that the presence of any differentiable dynam-
ical symmetry (continuous rotations, translations, etc.) of a physical system is related 
to a conservation law. More importantly, a basis for the Lie algebra of the 2D har-
monic oscillator was found. This basis does not seem to correspond to the basis of 
any known classical Lie algebras. The commutation relations are consistent and sat-
isfy all the conditions of a Lie algebra. We have not yet been able to correspond our 
structural constants with the structural coefficients of any three-dimensional real Lie 
algebra. This suggests the possibility that a new basis for the Lie algebra of the 2D 
harmonic oscillator has been found. Further investigation into this possibility will be 
required. 
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Analysis and Simulation of Fractional 
Nonlinear Convection–Diffusion Model 
with Caputo Derivative 

Lalit Mohan and Amit Prakash 

Abstract In this research, we investigate the fractional nonlinear convection–diffu-
sion model with the Caputo derivative. The homotopy perturbation transform tech-
nique is used to simulate the fractional convection–diffusion model. The error anal-
ysis of the presented method is also provided. Lastly, the efficiency of the presented 
technique is demonstrated by simulating two examples, the results are given in tables 
and graphs. 

Keywords Fractional nonlinear convection–diffusion model (FNCDM) · Caputo 
derivative · Homotopy perturbation transform technique (HPTT) · Laplace 
transform · Error analysis 

1 Introduction 

In recent years, the theory of fractional calculus (FC) has been used to model many 
intricate physical and natural processes as fractional differential equations (FDE’s). 
Fractional models are more suitable for describing the memory and heredity aspects 
that result from the materials employed in phenomena than ordinary calculus. The 
Caputo derivative [1] is among the finest fractional derivatives that we have access 
to. Analysing how different elements and factors affect the physical process is made 
easier with the use of mathematical modelling. Numerous academics investigated 
and analysed a variety of fractional mathematical models, such as the fractional 
advection–diffusion equation [2], the fractional Korteweg-de Vries equation [3], the 
fractional integro-partial differential equations [4], the respiratory syncytial virus 
infection model [5], the problem of heat conduction [6], the fraction BBM-Burger
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equation [7], the problem of oil spill [8], the fractional Burger-Huxley equation [9– 
11], the fractional Burger-Fisher model [12] and brain tumor model with arbitrary 
order [13]. 

The convection–diffusion models are frequently used in the modelling of 
numerous physical processes, including mass and energy movement, generation of 
the global climate, and dispersion of chemicals in reactors. There has been an increase 
in interest in the convection–diffusion model in the field of fractional calculus [14– 
18] since convection–diffusion phenomena can be observed in various natural and 
physical circumstances, such as heat, mass, and other transport processes. To simulate 
anomalous diffusion processes, one can use the FNCDM. 

The development of effective numerical algorithms is one of the main challenges 
with the FNCDM, and computational efficiency is a significant parameter for numer-
ical techniques. Numerous numerical techniques, including the mesh-less techniques 
[19], the spectral technique [20], the finite element technique [21], the finite differ-
ence technique [22], the HPTM [23] and the radial basis function method [24], have 
been proposed for simulating FDE’s. 

In this article, we assume the following FNCDM 

c 
0D

α 
t u(x, t) = �u(x, t) − ∇u(x, t) + �(u) + f (x, t), αε(0, 1] (1) 

with u(x, 0) = h(x), 
where �(u) is non-linear function of u, u(x, t) is the temperature in heat transfer, 

f (x, t) is source term, h(x) is the smooth function of x, and 0 cDα 
t is the Caputo 

operator of order α with 0 < α  ≤ 1. 
This paper’s primary goal is to analyse the FNCDM using the Caputo operator. 

Analysis is done on the suggested technique’s greatest error. The FCDM is solved 
using the HPTT. The Laplace transform and the Homotopy perturbation method are 
flawlessly combined in the HPTT. The main contribution of this article is to give an 
efficient technique for obtaining the solution of the FNCDM. The findings in this 
article could be extremely helpful for research on oil reservoir models, mass and 
energy movement, the formation of the world’s weather, and chemical dispersion in 
reactors. To show the efficiency of the suggested technique, we also simulate two 
test cases. 

2 Preliminaries 

Definition 2.1 [1] The Caputo derivative f (t) is defined as: 

Dα f (t) = Im−α Dm f (t) = 1

�(m − α) 
t ∫
0 
(t − s)m−α−1 f m (s)ds, 

where m − 1 < α  ≤ m.
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Definition 2.2 [1] The Laplace transform (LT) of y(t) is defined as: 

L
[
y(t)

] = y(s) =
∫ ∞ 

0 
e−st y(t)dt. 

Definition 2.3 [1] The LT of the Caputo derivative is given by: 

L
[
Dα 

t y(t)
] = sα y(s) − 

m−1∑

k=0 

s(α−k−1) y(k) (0), m − 1 < α  ≤ m. 

3 Description of Proposed Technique 

Let us consider the FNCDM as given below 

0 
c Dα 

t u(x, t) = �u(x, t) − ∇u(x, t) + �(u) + f (x, t), (2) 

with u(x, 0) = h(x). 
Where 0 cD

α 
t is the Caputo operator, f (x, t) is source term and �(u) is nonlinear 

operator. 
Applying the LT to Eq. (2), we have 

LT
[
0 
c Dα 

t u(x, t)
] = LT

[
�u(x, t) − ∇u(x, t) + �(u) + f (x, t)

]
. (3) 

Using definition (2.3) and initial condition, we get 

sα LT [u(x, t)] − sα−1 u(x, 0) = LT
[
�u(x, t) − ∇u(x, t) + �(u) + f (x, t)

]
, 

LT [u(x, t)] = 
1 

s 
h(x) +

(
1 

s

)α 
LT

[
�u(x, t) − ∇u(x, t) + �(u) + f (x, t)

]
. (4) 

Taking the inverse LT on Eq. (4), we have 

u(x, t) = h(x) + LT −1

{(
1 

s

)α 
LT

[
�u(x, t) − ∇u(x, t) + �(u) + f (x, t)

]}
. (5) 

Now, we decompose the linear term as 

L[u(x, t)] =  
∞∑

l=0 

pl L[ul(x, t)].
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Here L[u(x, t)] = [
�u(x, t) − ∇u(x, t) + f (x, t)

]
. 

The nonlinear term �(u) is decomposed with help of homotopy’s polynomial as

�(u) = 
∞∑

l=0 

pl H l(u), 

and 

Hl(u) = 
1 

l! 
d l 

dpl 

⎡ 

⎣�

⎛ 

⎝ 
l∑

j=0 

pj uj(x, t) 

⎞ 

⎠ 

⎤ 

⎦ 

p=0 

. (6) 

Using all these equations in (5) we have  

∞∑

l=0 

pl ul(x, t) = h(x) + LT −1

{(
1 

s

)α 
LT

[ ∞∑

l=0 

pl L[ul(x, t)] +  
∞∑

l=0 

pl H l(u))

]}

. (7) 

Comparing the coefficient of like power of p, we get 

u0(x, t) = h(x) + LT −1

{(
1 

s

)α 
LT [f (x, t])

}
, 

u1(x, t) = LT −1

{(
1 

s

)α 
LT [L[u0(x, t)] + H0[u]]

}
, 

u2(x, t) = LT −1

{(
1 

s

)α 
LT [L[u1(x, t)] + H1[u]]

}
, 

... 

ul(x, t) = LT −1
{(v 

s

)α 
LT

[
L
[
ul−1(x, t)

] + Hl−1[u]
]}

. 

The HPTT solution of (2) is given  by  

u(x, t) = lim 
k→∞ 

k∑

l=0 

ul(x, t). (8) 

4 Error Analysis of HPTT 

In this section, we approximate the error of the presented method.
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Theorem 4.1 If ∃ a constant 0 < ε  <  1 such that ‖un+1(x, t)‖ ≤  ε‖un(x, t)‖ ∀n and 
if the series

∑r 
n=0 un(x, t) is treated as numerical solution u(x, t), then the absolute 

error is given by.

‖u(x, t) − 
r∑

n=0 

un(x, t)‖ ≤ εr+1 

(1 − ε)
‖u0(x, t)‖

Proof We have.∥∥∥∥u(x, t) − 
r∑

n=0 
un(x, t)

∥∥∥∥ =
∥∥∥∥

∞∑

n=r+1 
un(x, t)

∥∥∥∥, 

≤ 
∞∑

n=r+1
‖un(x, t)‖, 

≤ 
∞∑

n=r+1 
εm‖u0(x, t)‖, 

≤ (ε)r+1
[
1 + (ε)1 + (ε)2 + . . .

]‖u0(x, t)‖, 
≤ εr+1 

(1−ε)
‖u0(x, t)‖

5 Application and Results Discussion 

In this segment, two examples of the FNCDM are solved by using the presented 
method, to illustrate the accuracy of presented method, HPTT. 

Example 5.1 Let us assume the following FNCDM. 

0 
c Dα 

t u(x, t) = �u(x, t) − ∇u(x, t) + u(x, t).uxx(x, t) − u2 (x, t) + u(x, t), (9) 

with u(x, 0) = ex, 0 < α  ≤ 1 and the analytical solution of Eq. (9) at  α = 1 is 
u(x, t) = ex+t . 

Solution. Applying the HPTT to Eq. (9), we obtain 

u0(x, t) = ex , 

u1(x, t) = ex
tα

�(α + 1) 
, 

u2(x, t) = ex
t2α

�(2α + 1) 
, 

u3(x, t) = ex
t3α

�(3α + 1) 
,
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... 

and 

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t) 

Example 5.2 Let us assume the following FNCDM. 

0 
c Dα 

t u(x, t) = �u(x, t) − ∇u(x, t) + f (x, t), (10) 

with f (x, t) = �(4+α)t3 

6 sinπx+π 2t3+αsinπx+π 3t3+αcosπx, u(x, 0) = 0, 0 < α  ≤ 1 
and the analytical solution of equation (10) at  α = 1 is u(x, t) = t3+αsinπ x. 

Solution. Applying the HPTT to equation (5.2), we obtain 

u0(x, t) = �(4 + α)

[
tα+3

�(4 + α) 
sinπx + π 2

t2α+3

�(4 + 2α) 
sinπx + π 

t2α+3

�(4 + 2α) 
cosπx

]
, 

u1(x, t) = �(4 + α)

[
t2α+3

�(4 + 2α)

(−π 2 sinπx − πcosπ x
)+ t3α+3

�(4 + 3α) 
(−π 4 sinπx 

−2π 3 cosπx+π 2 sinπx)
]
, 

u2(x, t) = �(4 + α)

[
t3α+3

�(4 + 3α)

(
π 4 sinπx + π 3 cosπx + π 2 cosπx − π 2 sinπx

)

+(π 6 sinπ x+2π 5 cosπx−π 4 sinπ x+π 5 sinπx − 2π 4 cosπ x − π 2 sinπx) 

× t4α+3

�(4 + 4α)

]
, 

... 

and 

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + . . .  

The absolute errors of HPTT at different values of x, t and α, given in Tables 1 and 
2 for Examples 5.1 and 5.2, correspondingly. The comparison of analytical and HPTT 
solution at α = 1, is represented through graphs in Figs. 1, 2, 3 and 4, for Examples 
5.1 and 5.2 correspondingly, and it is observed that the HPTT and analytical solution 
shows exactly same behaviour. The absolute error of HPTT at different values of x, t 
and α is given in Tables 1 and 2, for Examples 5.1 and 5.2, correspondingly. It can
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be clearly observed that the absolute error is very less, which shows the efficiency 
of the presented method.

Table 1 The absolute error 
of HPTT at α = 1, for  
Example 5.1 

x t Absolute error 

1 1 1.7 e−15 

2 2 0 

3 3 5.6 e−14 

4 4 4.5 e−13 

5 5 0 

6 6 2.9 e−11 

7 7 2.3 e−10 

8 8 7.4 e−09 

9 9 7.4 e−09 

10 10 1.1 e−07 

Table 2 The absolute error 
of the HPTT at different value 
of α, for Example 5.2 

x t Absolute error 

α = 0.95. α = 1. 
1 0.01 2.2 e−10 1.2 e−10 

2 0.02 6.6 e−09 4.0 e−09 

3 0.03 4.8 e−08 3.1 e−08 

4 0.04 2.0 e−07 1.3 e−08 

5 0.05 6.0 e−07 4.0 e−07 

6 0.06 1.4 e−06 1.0 e−06 

7 0.07 3.2 e−06 2.2 e−06 

8 0.08 6.2 e−06 4.3 e−06 

9 0.09 1.1 e−05 7.8 e−06 

10 0.10 1.8 e−05 1.3 e−05
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Fig. 1 Exact solution at α = 1, for Example 5.1 

Fig. 2 HPTT solution at α = 1, for Example 5.1



Analysis and Simulation of Fractional Nonlinear Convection–Diffusion … 99

Fig. 3 Exact solution at α = 1, for Example 5.2 

Fig. 4 HPTT solution at α = 1, for Example 5.2

6 Conclusion 

In this article, we investigate the FNCDM via HPTT with Caputo operator. The error 
analysis of the presented method is also provided. Two examples of the FNCDM are 
solved, and the numerical results and graphs show that the HPTT provides an accurate 
solution that converges to the exact solution with a very small absolute error. As a
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result, we can state that the suggested techniques, HPTT, is very effective, handle 
non-linearity and restrictions smoothly, and can be utilised to solve the nonlinear 
models of real life phenomena. 
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Common Fixed Point Theorem for 
Multivalued Mappings in Weak-Partial 
.b-Metric Space with an Application 

Lucas Wangwe and Santosh Kumar 

Abstract This paper proves a common fixed point theorem for multivalued map-
pings in weak-partial.b-metric spaces. We illustrate the operation of our findings with 
an example. An application of the findings demonstrated here will be the solution of 
a nonlinear fractional differential equation. 

Keywords Common fixed point · Multivalued mapping · Weak-partial .b-metric 
space · Nonlinear fractional differential equation 

1 Introduction 

The length between two sets of a metric space can be found using the Hausdorff met-
ric. Using concepts from Hausdorff metric, Nadler [ 24] extended Banach’s contrac-
tion principle in 1969. Nadler specifically demonstrated that a multivalued mapping 
has a fixed point if it meets a specific contraction requirement. Numerous fields of 
mathematics and science, such as nonlinear analysis, optimization, control theory, 
and dynamical systems, can benefit from this discovery. 

Originally introduced by Bakhtin [ 4] and Czerwik [ 9], the .b-metric spaces pro-
vided a generalized notion of metric spaces. Eventually, the concept of multivalued 
contraction mappings was extended to .b-metric spaces by Czerwik [ 10]. Boriceanu 
et al. [ 7], Chifu et al. [ 8], Kirk and Shahzad [ 19], Kutbi et al. [ 21], Roshan et al. [ 31], 
and their references are a few of the works in this field. 
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Matthews [ 22] provided the first description of non-zero self-distance. It is pri-
marily utilized in programming languages, computer networks, and data structures. 
The idea introduced by Matthews was expanded by Aydi et al. [ 3] from single-valued 
to multivalued mapping in partial metric space. The key ideas about partial metric 
spaces for single- and multivalued mappings are found in the references [ 25– 27, 33]. 

Shukla [ 34] combined the concepts of.b-metric space and partial metric space, and 
utilized these to prove a number of fixed point theorems. Heckmann [ 14] also pro-
vided a weak-partial metric space generalization of partial metric space. An extended 
version of the multivalued mappings on weak-partial metric spaces was introduced 
by Beg and Pathak [ 6]. According to Kanwal et al. [ 17], the phrases weak-partial 
.b-metric space and weak-partial Hausdorff .b-metric space were defined. We direct 
the reader to [ 37, 38] for latest research. 

The concept of compatible mappings was developed by Kaneko and Sessa [ 16] 
after being first put out by Jungck [ 15]. In accordance with Kubiak and Nadler’s 
work, they proved coincidence fixed point theorems for hybrid pairings of compatible 
mappings [ 20, 24]. The notions of weakly compatible Hausdorff mappings in metric 
spaces were introduced by Pathak [ 28]. 

In this work, a shared fixed point theorem for two multivalued mappings in weak-
partial .b-metric space is established. We consider the space to be paracompact and 
generalize the results of Kanawal et al. [ 17], Khojasteh et al. [ 18], Demma and 
Vetro [ 11], and Rhoades [ 29] Aliouche and Hamaizia [ 2] from  .b-metric space to 
weak-partial .b-metric space. 

2 Preliminaries 

This section presents definitions, lemma, proposition, and some preliminary results. 
These elements will be utilized to construct the paper’s primary findings. 

Kanwal et al. [ 17] gave the notions of a weak-partial .b-metric as follows: 

Definition 1 ([ 17]) A distance function .�b : X × X → R+ is known as a weak-
partial .b-metric on .X with .X �= ∅ and .s ≥ 1 if for all .θ, ξ, j ∈ X , conditions below 
hold: 

(WPB1) .�b(θ, θ) = �b(θ, ξ) ⇐⇒ θ = ξ , 
(WPB2) .�b(θ, θ) ≤ �b(θ, ξ), 
(WPB3) .�b(θ, ξ) = �b(ξ, θ), and 
(WPB4) . �b(θ, ξ) ≤ s[�b(θ, j) + �b(j, ξ)].

It follows that the pair .(X , �b) is defined as a weak-partial .b-metric space. 

Example 1 Let .X = { 12 , 1
3 ,

1
4 ,

1
5 }. Define the generalized .�b on .X as 

.�b

(1
2
,
1

4

)
≤ s

4
,
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�b

(1 
3 
, 
1 

5

)
≤ 

2s 

15 
. 

For .d(θ, ξ) = d(ξ, θ), for all .θ, ξ ∈ X and .d(θ, ξ) = |θ − ξ |, we have  

. d
(1
2
,
1

4

)
= 1

4
,

d
(1
3
,
1

5

)
= 2

15
.

This shows that .(X , �b)) is a weak-partial .b-metric space. Since it does not satisfy 
triangular inequality in .X = { 12 , 1

3 ,
1
4 ,

1
5 }. It is wider than usual metric space. 

An example of weak-partial .b-metric space is as follows: 

Example 2 ([ 17]) 

.(1) A distance function .�b : X × X → X with .(X , �b) is defined as 

. �b(θ, ξ) = |θ − ξ |2 + 1,

for all .θ, ξ ∈ X . 
.(2) A distance function .�b : X × X → X with .(X , �b) is defined as 

. �b(θ, ξ) = 1

2
|θ − ξ |2 + max{θ, ξ},

for all .θ, ξ ∈ X . 

Definition 2 ([ 17]) Assume that the weak-partial .b-metric space is .(X , �b). .{θn} is 
a series that converges at .θ ∈ X if and only if 

. �b(θ, θ) = lim
n→∞ �b(θ, θn).

Kanwal et al. [ 17] extended the below definition of convergence. 

Definition 3 ([ 17]) Assume that the weak-partial .b-metric space is .(X , �b). Next  

(i) A Cauchy sequence in .X is also a Cauchy sequence in metric space .(X , �s
b). 

(ii) .(X , �b) is a weak-partial .b-metric space if .(X , �s
b) is a complete metric space. 

(iii) For any weak-partial .b-metric .�b on . X , the function .�s
b : X × X → R+ can be 

expressed as follows: 

. �s
b(θ, ξ) = �b(θ, ξ) − 1

2
[�b(θ, θ) + �b(ξ, ξ)],

which establishes a.b-metric on. X . Moreover, if.{θn} in.(X , �s
b) converges, it will 

eventually end at .θ ∈ X .
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. lim
n,m→∞ �s

b(θn, θm) = lim
n→∞ �b(jn, j) = �b(j, j).

The multivalued partial metric space by Aydi et al. [ 3] was extended to weak-
partial .b-metric space by Kanwal et al. [ 17] in the following ways: 

The class of all non-empty, closed, and bounded subsets of .(X , �b) is .CB�b(X ). 
Assume that the weak-partial .b-metric space is .(X , �b). Define: .W,Z ∈ CB�b(X ), 
for .θ ∈ X . 

. �b(θ,W) = inf {�b(θ, σ ) : σ ∈ W};
δ(W,Z) = sup{�b(σ,Z) : σ ∈ W};
δ(Z,W) = sup{�b(η,W) : η ∈ Z}.

Note that 
.�b(θ,W) = 0 ⇐⇒ �s

b(θ,W) = 0, (1) 

where 
.�s
b(θ,W) = inf{�s

b(θ,W), θ ∈ W}. (2) 

Remark 1 ([ 17]) Assume that .(X , �b) is a weak-partial .b-metric space and .M a 
non-empty subset of . X , then 

.θ ∈ W̄ ⇔ �b(θ,W) = �b(θ, θ). (3) 

Definition 4 ([ 17]) Assume that the weak-partial .b-metric space is .(X , �b). The  
mapping .Z : CB�b × CB�b → [0,∞) for .W,Z ∈ CB�b(X ) is defined by 

.H(W,Z) = 1

2
{δ(W,Z) + δ(W,Z)}, (4) 

is called .H-type Hausdorff metric induced by . �b. 

Proposition 1 ([ 17]) Assume that .(X , �b) is a weak-partial .b-metric space. For 
.W,Z,Q ∈ CB�b(X ), we have 

(WHB1) .H(W,W) ≤ Z(W,Z), 
(WHB2) .H(W,Z) = H(Z,W), and 
(WHB3) . H(W,Z) ≤ s[H(W,Q) + H(Q,Z)].
Lemma 1 ([ 17]) Assume that .(X , �b) is a weak-partial .b-metric space with .s ≥ 1. 
A multivalued mapping is represented by .f : X → CB�b(X ). Given a sequence in . X , 
.{θn}, such that .θn ∈ f θn−1, and 

.�b(θn, θn+1) ≤ k�b(θn−1, θn), (5) 

for each .θ ∈ X , where .k ∈ (0, 1), then .{θn} is Cauchy.
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Definition 5 ([ 17]) Let .(X , �b) be a complete weak-partial .b-metric spaces. Let 
.f : X → CB�b(X ) be a multivalued .H-contraction mapping if 

.(1′) for every .θ, ξ ∈ X , .∃ .k ∈ (0, 1) such that 

. + H(f θ\{θ}, f ξ\{ξ}) ≤ k�b(θ, ξ), (6) 

.(2′) for every .θ ∈ X , ξ ∈ f θ and .ε > 0, .∃ .j ∈ f ξ such that 

.�b(θ, j) ≤ H(f θ, f ξ) + ε. (7) 

Using the concepts of Jungck [ 15] and Sessa [ 32], we introduce the following 
definitions: 

Definition 6 If .f θ = gθ = θ∗, then a point .θ∗ ∈ X on a pair of multivalued map-
pings.(f , g) on a weak-partial.b-metric space.(X , �b) is termed the coincidence point 
of .(f , g). . θ is considered to be a common fixed point if .θ∗ = θ . 

Definition 7 Let.(f , g) be a pair of two multivalued mappings on. X , and let. (X , �b)

be a weak-partial .b-metric space. Then 

(i) .g(f θ) =.f (gθ) is a commuting mapping on .X for any .θ ∈ X . 
(ii) For all .�b(g(f θ), .f (gθ)) .≤ .�b(gθ, f θ) are said to be weakly commuting. 
(iii) When .θ2n is a sequence in . X , we obtain for compatible mapping: 

(a) . lim
n→∞ �b(gf θ2n, f gθ2n) = 0, 

(b) . lim
n→∞ f θ2n = lim

n→∞ gθ2n = θ∗.

(iv) For all .g(f θ) =.gf (gθ) are said to be weakly compatible, for every coincidence 
point .θ ∈ X . 

We extend the following lemma in [13] from.b-metric space notion to weak-partial 
.b-metric space concept. 

Lemma 2 Assume that .s ≥ 1 and that .(X , �b, s) is a weak-partial .b-metric space. 
Assume that.{θn} and.{ξn} are sequences that converge to.�b for. θ and. ξ , respectively. 
Next, 

. 
1

s
�b(θ, ξ) ≤ lim

n→+∞ inf �b(θn, ξn) ≤ lim
n→+∞ sup �b(θn, ξn) ≤ s2�b(θ, ξ).

In case .θ = ξ , we get  

. lim
n→+∞ �b(θn, ξn) = 0.

Moreover for each .θ ∈ X ,
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. 
1

s
�b(θ, ξ) ≤ lim

n→+∞ inf �b(θn, ξ) ≤ lim
n→+∞ sup �b(θn, ξ) ≤ s2�b(θ, ξ).

Remark 2 ([ 12]) A topological space is .T1 if, given two distinct point’s.θ1, θ2 ∈ X , 
both points have a neighborhood that does not contain the other. 

In 1944, Dieudonné [ 12] introduced the concept of paracompact space by showing 
that it is weaker than the concept of compact space. 

Definition 8 ([ 12, 35]) .X is said to be paracompact if it is Hausdorff and for each 
open covering . R of . X , there exists a locally finite open . R that is finer than . R. 

Theorem 1 ([ 23]) If the mapping .f : X → F(N ) is convex-valued lower semi-
continuous (l.s.c.), with . X paracompact space and .N a Banach space, then . f allows 
a (single-valued) continuous selection. 

Let .H be the Hausdorff metric on .Pcl,bd (X ) induced by . d ; that is, 

. H(W,Z) = max{sup
θ∈Z

δ(θ,W), sup
θ∈W

δ(θ,Z)}, for W,Z ∈ Pcl,bd (X ).

Then .δ(θ,W) = {sup δ(θ, ξ) : ξ ∈ W} and .δ(θ,W) = inf d(θ, ξ) : ξ ∈ W where 
.X ∈ Pcl,bd (X ). We denote .pcl(X ) the class of all non-empty, closed, and bounded 
subsets of . X . .CL-closed sets in . X . 

Khojasteh et al. [ 18] proved the theorem given below for multivalued mapping in 
complete metric space. 

Theorem 2 ([ 18]) The following requirements apply if .(X , d) is a complete metric 
space and . f is a multivalued mapping from .X into .CB(X ). 

.H(f θ, f ξ) ≤ D(ξ, f θ) + D(θ, f ξ)

δ(θ, f θ) + δ(ξ, f ξ)
d(θ, ξ), (8) 

for all .θ, ξ ∈ X . Then, . f has a fixed point . j ∈ X .

A generalized version of the preceding theorem for two multivalued mappings in 
complete metric spaces was provided by Rhoades [ 29]. 

Theorem 3 ([ 29]) Let. X be a complete metric spaces,.f , g : X → CL(X ) satisfying, 
for all .θ, ξ ∈ X , 

.H(gθ, f ξ) ≤ N (θ, ξ)m(θ, ξ), (9) 

where 

.N (θ, ξ) := max{d(θ, ξ),D(θ, f θ) + D(ξ, gξ),D(θ, gξ) + D(ξ, f θ)}
δ(θ, f θ) + δ(ξ, gξ) + 1

(10) 

and
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.m(θ, ξ) := max

{
d(θ, ξ),D(θ, f θ) + D(ξ, gξ),

D(θ, gξ) + D(ξ, f θ)

2

}
. (11) 

Then 

.(a) There is at least one common fixed point .p ∈ X between . f and . g. 

.(b) Each.θ ∈ X has a common fixed point that is reached by.{(f g) n
2 θ} and. {g(f g) n

2 θ}
for . n even. 

.(c) .d(p, q) ≥ 1
2 if . p and . q are separate common fixed points of . f and . g. 

Lemma 3 ([ 29]) Given a complete metric space .(X , d) and a sequence .{θn} in . X , 
allow 

. d(θn, θn+1) ≤ βnd(θn−1, θn), n = 1, 2, . . . ,

where 

. βn = d(θn−1, θn) + d(θn, θn+1)

d(θn−1, θn) + d(θn, θn+1) + 1
.

Then .{θn} is a Cauchy sequence. 
Furthermore, by providing a proof of the following theorem, Demma and Vetro 

[ 11] extended Theorem 2 from metric space to .b-metric space. 

Theorem 4 ([ 11]) Let .f : X → CB(X ) be a mapping such that, given a complete 
.b-metric space .(X , d , s), we have 

.sH(f θ, f ξ) ≤ d(θ, f ξ) + d(ξ, f θ)

d(θ, f θ) + d(ξ, f ξ) + 3a
(12) 

for all .θ, ξ ∈ X and .s ≥ 1, where . a is a positive real number. Then, . f has a fixed 
point .j ∈ X . 

The following common fixed point theorem for two multivalued mappings in 
complete .b-metric spaces was recently proved by Aliouche and Hamaizia [ 2]. 

Theorem 5 Let .(X , d) be a full .b-metric space where .f , g : X → Pcl(X ) fulfilling 
and . d continuous. 

.sαH(f θ, gξ) ≤ N (θ, ξ)M (θ, ξ), (13) 

where 

.N (θ, ξ) : ≤ max d(θ, ξ),D(θ, f θ) + D(ξ, gξ),D(θ, gξ) + D(ξ, fv) + τ

δ(θ, f θ) + δ(ξ, gξ) + γ
(14) 

.γ > τ ≥ 0 and
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.M (θ, ξ) : ≤ max
{
d(θ, ξ),D(θ, f θ) + D(ξ, gξ),

D(θ, gξ) + D(ξ, f θ)

2s

}
(15) 

for all .θ, ξ ∈ X , .s ≥ 1. Then 

.(a) There is at least one fixed point .j ∈ X shared by . f and . g. 

.(b) Each.θ ∈ X has a common fixed point that.{(f g) n
2 θ} and.{g(f g) n

2 θ} converge to 
for every . n even. 

.(c) .d(j,w) ≥ γ sα−β

2 if.f j = gj = {j} and. w is another separate common fixed point 
of . f and . g. 

3 Main Results 

Using two multivalued mappings in weak-partial .b-metric space, we present the 
following lemma. 

Lemma 4 Let .(X , �b) be weak-partial .b-metric space with .s ≥ 1 and . f , g : X →
P�b

cl (X ) be a multivalued mapping with .X paracompact space. If .{θn} is a sequence 
in .X such that .θ2n ∈ f θ2n−1 and . θ2n+1 ∈ gθ2n

.�b(θ2n, θzn+1) ≤ �b(f θ2n−1, gθ2n) ≤ k�b(θ2n−1, θ2n), (16) 

for each .θ ∈ X , where .k ∈ (0, 1), then .{θn} is a Cauchy sequence. 
We use two multivalued mapping in weak-partial.b-metric space setup to enhance 

Definition 5 as follows: 

Definition 9 Let.(X , �b) represent a weak-partial complete.b-metric spaces. A mul-
tivalued mapping.f , g : X → P�b

cl (X ) is known as.H-contraction with. X paracompact 
space if 

.(1′) There exists .k ∈ (0, 1) such that, for each .θ, ξ ∈ X , 

.sαH(f θ\{θ}, gξ\{ξ}) ≤ kQ(θ, ξ), (17) 

where 

. k = N (θ, ξ) : =
max

{
�b(θ, ξ), �b(θ, f θ) + �b(ξ, gξ), �b(θ, gξ) + �b(ξ, f ξ) + τ

}

�b(θ, f θ) + �b(ξ, gξ) + γ

(18) 

and 

.Q(θ, ξ) : = max
{
�b(θ, ξ), �b(θ, gθ), �b(ξ, f ξ)

}
(19)
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for all .θ, ξ ∈ X , .s ≥ 1. As a result, every fixed point of . f is a reversal and a 
fixed point of . g. 

.(2′) For every .θ ∈ X , ξ ∈ f θ and .ε > 0, .∃ .j ∈ gξ such that 

.�b(ξ, j) ≤ H(f θ, gξ) + ε. (20) 

.P�b

cl represents the class of all closed non-empty subsets of . X . 

We establish the subsequent theorem. 

Theorem 6 Let .(X , �b) be a complete weak-partial .b-metric space, and let . f , g :
X → P�b

cl (X ) be a pair of multivalued mappings in a paracompact space, that fulfill 
inequalities (17), (18), (19), and (20). Then 

.(a) There is at least one fixed point shared by . f and . g. . j ∈ X ,

.(b) Each .θ ∈ X has a common fixed point that .{(f g) n
2 θ} and .{g(f g) n

2 θ} converge to 
for every . n even. 

.(c) .�b(j, j
∗) ≥ γ s2α−τ

2 is the result if.f j = gj = {j}and.j, j ∗ are distinct strict com-
mon fixed points of . f and . g satisfying a .T1 space in . X . Since . X is a paracompact 
space, . f and . g satisfy a .T1 space in . X . 

Proof Suppose .θ0 is an arbitrary point in . X . According to Definition 8, .X is a para-
compact space. We define a sequence .{θ2n} in .X such that for all .n ∈ N and . 0 <

k < 1, we have  .θ2n+1 ∈ f θ2n = gθ2n+1 and .θ2n+2 ∈ f θ2n+1 = gθ2n+2. This is equiv-
alent to .θ2n+1 ∈ (f g

n
2 )θ and .θ2n+2 ∈ (f g

n
2 )θ , which implies that . H(f θ2n, gθ2n+1) =

H(f θ2n+1, gθ2n+2). When .H(f θ2n, gθ2n+1) = 0 is reached for a given value of . n, 
.θ2n+1 ∈ gθ2n+1, and therefore.θ2n+1 ∈ F(g)..θ2n ∈ F(f ),.θ2n = θ2n+1, and.θ2n is stated 
to be a common fixed point using (20). So, .(a) is confirmed. 

Likewise, if .H(f θ2n+1, gθ2n+2) = 0 is satisfied for some value of . n, then. θ2n+1 ∈
F(f ) ∩ F(g) and .(a) is confirmed once more. 

Therefore, we assume that .H(f θ2n, gθ2n+1) �= 0 and .H(f θ2n+1, gθ2n+2) �= 0 for 
all .n ∈ N. 

Let .θ = θ2n ∈ f θ2n. From (20), choose .ξ = θ2n+1 ∈ gθ2n+1 such that 

.�b(θ2n, θ2n+1) ≤ H(f θ2n−1, gθ2n) + ε. (21) 

Assume that .ε =
(

1√
k

− 1
)
H(f θ2n−1, gθ2n) in (21), we have 

. �b(θ1, θ2) ≤ H(f θ0, gθ1) +
( 1√

k
− 1

)
H+

�b
(f θ0, gθ1),

≤ H(f θ2n, gθ2n+1) + 1√
k
H(f θ2n−1, gθ2n) − H(f θ2n−1, gθ2n),

≤ 1√
k
H(f θ2n−1, gθ2n), for 0 < k < 1. (22)
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In similar manner, there exists .θ2n+1 ∈ f θ2n+1 and .θ2n+2 ∈ gθ2n+2 such that 

.�b(θ2n+1, θ2n+2) ≤ 1√
k
H(f θ2n, gθ2n+1),∀ 0 < k < 1. (23) 

Proceeding this same way through induction, by using (17) in (23), we have 

. �b(θ2n+1, θ2n+2) ≤ 1

sα
1√
k
kQ(θ2n, θ2n+1),

≤
√
k

sα
Q(θ2n, θ2n+1), (24) 

where .k = N (θ2n, θ2n+1) = sβ2n, and .sβ2n is generated by using (18) as follows: 

. N (θ2n, θ2n+1) ≤
max

{
�b(θ2n, θ2n+1), �b(θ2n, f θ2n) + �b(θ2n+1, gθ2n+1),

�b(θ2n, gθ2n+1) + �b(θ2n+1, f θ2n) + τ

}

�b(θ2n, f θ2n) + �b(θ2n+1, gθ2n+1) + γ
,

≤
max

{
�b(θ2n, θ2n+1), �b(θ2n, θ2n+1) + �b(θ2n+1, θ2n+2),

�b(θ2n, θ2n+2) + �b(θ2n+1, θ2n+1) + τ

}

�b(θ2n, θ2n+1) + �b(θ2n+1, θ2n+2) + γ
.

By.(WPB4) in Definition 1 and we get 

. N (θ2n, θ2n+1) ≤
max

{�b(θ2n, θ2n+1), �b(θ2n, θ2n+1) + �b(θ2n+1, θ2n+2),

s[�b(θ2n, θ2n+1) + �b(θ2n+1, θ2n+2)]+
�b(θ2n+1, θ2n+1) + τ

}

�b(θ2n, θ2n+1) + �b(θ2n+1, θ2n+2) + γ
,

≤
max

{
�b(θ2n, θ2n+1), �b(θ2n, θ2n+1) + �b(θ2n+1, θ2n+2),

s[�b(θ2n, θ2n+1) + �b(θ2n+1, θ2n+2)] + τ

}

�b(θ2n, θ2n+1) + �b(θ2n+1, θ2n+2) + γ
,

which gives 

.N (θ2n, θ2n+1) ≤ s[�b(θ2n, θ2n+1) + �b(θ2n+1, θ2n+2)] + τ

�b(θ2n, θ2n+1) + �b(θ2n+1, θ2n+2) + γ
. (25) 

Applying the concept of Lemma 3, .γ > τ ≥ 0 and define .�b2n = �b(θ2n, θ2n+1) we 
obtain 

. N (θ2n, θ2n+1) ≤ s[�b2n + �b2n+1] + τ

�b2n + �b2n+1 + γ
,

= sβ2n+1. (26)
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From (19) 

. Q(θ2n, θ2n+1) ≤ max
{
�b(θ2n, θ2n+1), �b(θ2n, gθ2n), �b(θ2n+1, f θ2n+1)

}
,

≤ max
{
�b(θ2n, θ2n+1), �b(θ2n, θ2n+1), �b(θ2n+1, θ2n+2)

}
,

≤ max
{
�b(θ2n, θ2n+1), �b(θ2n+1, θ2n+2)

}
,∀ n = 0, 1, . . .

If .Q(θ2n, θ2n+1) = �b(θ2n+1, θ2n+2), then 

. �b(θ2n+1, θ2n+2) ≤
√
k

sα
Q(θ2n, θ2n+1),

≤
√
k

sα
�b(θ2n+1, θ2n+2),

which is a contradiction. Hence, we have .Q(θ2n, θ2n+1) = �b(θ2n, θ2n+1). By substi-
tuting (26) in (24) we have  

. �b(θ2n+1, θ2n+2) ≤
√
k

sα
Q(θ2n, θ2n+1),

≤
√
k

sα
�b(θ2n, θ2n+1),

≤
√
sβ2n+1

sα
�b(θ2n, θ2n+1).

Equivalently to Lemma 4 

. �b(θ2n+1, θ2n+2) ≤ k�b(θ2n, θ2n+1),

where .θ =
√
sβ2n+1

sα . 
By Lemma 3, .{θ2n} is a Cauchy sequence and so is .{θn}. 
Using (17) in (23) for .H+

�b
(f θ2n, gθ2n−1) = 0, we have  

. �b(θ2n, θ2n+1) ≤ 1√
k
H(f θ2n, gθ2n−1),

≤ 1

sα
1√
k
kQ(θ2n, θ2n−1),

≤
√
k

sα
Q(θ2n, θ2n−1), (27) 

where .k = N (θ2n, θ2n−1) = sβ2n, and .sβ2n is generated by using (76) as follows:
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. N (θ2n, θ2n−1) ≤
max

{
�b(θ2n, θ2n−1), �b(θ2n, f θ2n−1) + �b(θ2n, gθ2n−1),

�b(θ2n, gθ2n−1) + �b(θ2n−1, f θ2n) + τ

}

�b(θ2n, f θ2n) + �b(θ2n−1, gθ2n−1) + γ
,

≤
max

{
�b(θ2n, θ2n−1), �b(θ2n, θ2n) + �b(θ2n, θ2n),

�b(θ2n, θ2n) + �b(θ2n−1, θ2n) + τ

}

�b(θ2n, θ2n+1) + �b(θ2n−1, θ2n) + γ
. (28) 

Using .(WPB4) in Definition 1 we get 

. N (θ2n, θ2n−1) ≤
max

{
�b(θ2n, θ2n−1), �b(θ2n−1, θ2n+1) + τ

}

�b(θ2n, θ2n+1) + �b(θ2n−1, θ2n) + γ
,

≤
max

{
�b(θ2n, θ2n−1), s[�b(θ2n−1, θ2n) + �b(θ2n, θ2n+1)] + τ

}

�b(θ2n, θ2n+1) + �b(θ2n−1, θ2n) + γ
,

which gives 

.N (θ2n, θ2n−1) ≤ s[�b(θ2n−1, θ2n) + �b(θ2n, θ2n+1)] + τ

�b(θ2n, θ2n+1) + �b(θ2n−1, θ2n) + γ
. (29) 

Applying the concept of Lemma 3 and define .�b2n = �b(θ2n, θ2n+1) we obtain 

. N (θ2n, θ2n−1) ≤ s[�b2n−1 + �b2n] + τ

�b2n + �b2n−1 + γ
,

= sβ2n. (30) 

By Eq. (19), we have 

. Q(θ2n, θ2n−1) ≤ max
{
�b(θ2n, θ2n−1), �b(θ2n, gθ2n), �b(θ2n−1, f θ2n−1)

}
,

≤ max
{
�b(θ2n, θ2n−1), �b(θ2n, θ2n+1), �b(θ2n−1, θ2n)

}
,

≤ max
{
�b(θ2n, θ2n−1), �b(θ2n, θ2n+1)

}
,∀ n = 0, 1, . . .

If .Q(θ2n, θ2n−1) = �b(θ2n, θ2n+1), then 

. �b(θ2n, θ2n+1) ≤
√
k

sα
Q(θ2n, θ2n+1),

≤
√
k

sα
�b(θ2n, θ2n+1),

which is a contradiction. Hence, we have .Q(θ2n, θ2n−1) = �b(θ2n, θ2n−1). By substi-
tuting (30) in (24) we have
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. �b(θ2n, θ2n+1) ≤
√
k

sα
Q(θ2n, θ2n−1),

≤
√
k

sα
�b(θ2n, θ2n−1),

≤
√
sβ2n

sα
�b(θ2n, θ2n−1).

Equivalently to Lemma 4 

. �b(θ2n, θ2n+1) ≤ k�b(θ2n, θ2n−1),

where .k =
√
sβ2n

sα . 
Both .{θ2n} and .{θn} are Cauchy sequences according to Lemma 3. By applying 

.(iii) from Definition 3 and the definition of . �s
b, we derive the following: as . m, n

tends to .+∞, .�b(θn, θm) tends to zero. This suggests that .{θn} is Cauchy in .b-
metric space.(X , �s

b)..(X , �b) is a complete.b-metric space since.(X , �b) is complete. 
Consequently, we have 

. lim
n,m→∞ �s

b(θn, θm) = lim
n→∞ �b(jn, j) = �b(j, j).

Assuming that.{θ2n} is not a Cauchy sequence in. X , there is.ε > 0 and two sequences 
of positive integers, .{mp} and .{np}, such that the following two sequences tend to 
. ε when .p → ∞: .�b(θ2mp , θ2np) and .�b(θ2mp , θ2np+1). It can be demonstrated that the 
two provided sequences are Cauchy sequences in .�b-metric space using Lemma 1. 
Suppose that 

.np > mp, �b(θ2mp , θ2np−1) < ε, �b(p2mp , θ2np) > ε, lim
p→∞ �b(θ2mp , κ2mp) = 0. (31) 

From.(WPB4), we have  

. ε ≤ �b(θ2mp , θ2np) ≤ s[�b(θ2mp , θ2np−1) + �b(θ2np−1 , θ2np)],
≤ s�b(θ2mp , θ2np−1) + s�b(θ2np−1 , θ2np),

≤ sε + s�b(θ2np−1 , θ2np),

ε ≤ �b(θ2mp , θ2np) ≤ sε. (32) 

Taking the lower limit as .p → ∞ in (32), and using (31) we obtain 

.ε ≤ �b(θ2mp , θ2np) ≤ limn→+∞ inf �b(θ2mp , θ2np) ≤ sε. (33)
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Using .(WPB4), Lemma (1) and (33), we have 

. ε ≤ �b(θ2mp , θ2np) ≤ s[�b(θ2mp , θ2np+1) + �b(θ2np+1 , θ2np)],
≤ s�b(θ2mp , θ2np+1) + s�b(θ2np+1 , θ2np),

≤ s�b(θ2mp , θ2np+1),

≤ s3ε, (34) 

and 

. ε ≤ �b(θ2mp , θ2np+1) ≤ s[�b(θ2mp , θ2np) + �b(θ2np , θ2np+1)],
≤ s�b(θ2mp , θ2np) + s�b(θ2np , θ2np+1),

≤ s�b(θ2mp , θ2np),

≤ s2ε. (35) 

It follows from (34), (35), and (33) 

. 
ε

s
≤ �b(θ2mp , θ2np+1) ≤ lim

n→+∞ inf �b(θ2mp , θ2np+1) ≤ s2ε.

Thus .{θn} is a Cauchy sequence in .(X , �b). 
Next, we demonstrate that any fixed point of . f is a fixed point of . g if and only if 

. f and . g satisfy the requirements of Theorem 6. Assume that a fixed point of . f is . j . 
Using .(WPB4), (20), and (17), we have 

. �b(j, gj) ≤ s[�b(j, θ2n+1) + �b(θ2n+1, gj)],
≤ s�b(j, θ2n+1) + sH+

�b
(f θ2n, gj). (36) 

Let .θ = θ2n and .ξ = j in (18) we obtain 

.N (θ2n, j) ≤
max

{
�b(θ2n, j), �b(θ2n, f θ2n) + �b(j, gj),

�b(θ2n, gj) + �b(j, f θ2n) + τ

}

�b(θ2n, f θ2n) + �b(j, gj) + γ
. (37) 

Letting .n → ∞ in (37) one gets 

. N (θ2n, j) ≤
max

{
�b(j, j), �b(j, j) + �b(j, gj), �b(j, gj) + �b(j, j) + τ

}

�b(j, j) + �b(j, gj) + γ
,

≤
max

{
�b(j, gj), �b(j, gj) + τ

}

�b(j, gj) + γ
,

≤ �b(j, gj) + τ

�b(j, gj) + γ
. (38)
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From (19) 

. Q(θ2n, j) ≤ max
{
�b(θ2n, j), �b(j2n, gθ2n), �b(j, f j)

}
,

≤ max
{
�b(j, j), �b(j, gj), �b(j, j)

}
,

= �b(j, gj). (39) 

Using (38), (39) in (36) 

. �b(j, gj) ≤ s�b(j, θ2n+1) + sH+
�b

(f θ2n, gj),

≤ s�b(j, θ2n+1) + s

√
k

sα
Q(θ2n, j),

≤ s�b(j, j) + s

√
k

sα
�b(j, gj),

≤ s1−α
√
k�b(j, gj),

≤ s1−α

√
�b(j, gj) + τ

�b(j, gj) + γ
�b(j, gj).

If .�b(j, gj) = 0, then the inequality above is satisfied. Therefore, . j is a fixed point 
of . g as well. 

In order to demonstrate .(c), let . f and . g have two unique common fixed points, . j
and . j ∗, that fulfill .T1 space in . X , where .X is a paracompact space. Next, we obtain 
by using an inequality (24). 

. sα�b(j, j
∗) ≤ H(f j, gj ∗),

≤
√
k

sα
Q(j, j ∗). (40) 

Since .k = N (j, j ∗), we have  

. N (j, j∗) =
max

{
�b(j, j

∗), �b(j, f j) + �b(j
∗, gj∗), �b(j, gj

∗) + �b(j
∗, f j) + τ

}

�b(j, f j) + �b(j
∗, gj∗) + γ

,

≤
max

{
�b(j, j

∗), �b(j, j) + �b(j
∗, j∗), �b(j, j

∗) + �b(j
∗, j) + τ

}

�b(j, j) + �b(j
∗, j∗) + γ

,

≤
max

{
�b(j, j

∗), �b(j, j
∗) + �b(j

∗, j) + τ
}

γ
,

= 2�b(j, j
∗) + τ

γ
, (41)
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and 

. Q(j, j ∗) ≤ max
{
�b(j, j

∗), �b(j, gj), �b(j
∗, f j ∗)

}
,

≤ max
{
�b(j, j

∗), �b(j, j), �b(j
∗, j ∗)

}
,

= �b(j, j
∗). (42) 

Taking (41), (42) in (43), one gets 

. sα�b(j, j
∗) ≤ √

kQ(j, j ∗),

sα�b(j, j
∗) ≤

√
2�b(j, j ∗) + τ

γ
�b(j, j

∗),

sα ≤
√
2�b(j, j ∗) + τ

γ
,

s2α ≤ 2�b(j, j
∗) + τ

γ
,

γ s2α ≤ 2�b(j, j
∗) + τ,

γ s2α − τ ≤ 2�b(j, j
∗),

γ s2α − τ

2
≤ �b(j, j

∗),

which shows that .�b(j, j
∗) ≥ γ s2α−τ

2 . Hence .(c) is verified. 

The outcomes of Theorem 6 are demonstrated in the example that follows. 

Example 3 Let .X = {0, 1} and .�b : X × X → R+ be defined as follows: for all 
.θ, ξ ∈ X with.s = 2,.�b(θ, ξ) = 1

2 |θ − ξ |2 + 1
2 max{θ, ξ}. Assume that the complete 

weak-partial .b-metric space is .(X , �b). Let  

. f θ =
{ [0, θ

2 ], 0 ≤ θ < 2
3 ,[0,− θ

2 ] + 1, 2
3 ≤ θ ≤ 1,

and 

. gθ =
{ [0, θ

2 ], θ �= 1
2 ,[0, κ + 1

2 ], θ = 1
2 .

Define .f , g : X −→ 2[0,1], .X = f ∪ g = [0, 2
3 ] ∪ [ 23 , 1], and .P�b

cl (X ) = 2[0,1]. 
By Remark 1, we have  

.θ ∈ F̄ ⇔ �b(θ,W ) = �b(θ, θ). (43)
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Since 

. (θ, ξ) ∈
{
(0, 0),

(
0,

1

2

)
,
(
0,

2

3

)
, (0, 1),

(2
3
, 0

)
,
(2
3
,
2

3

)
,

(2
3
, 1

)
, (1, 0),

(
1,

2

3

)
, (1, 1)

}

. ∀ θ, ξ ∈ X .

For 

. θ ∈ {0̄} ⇔ �b(θ, {0}) = �b(θ, θ),

⇔ �b(θ, 0) = 1

2
(θ − 0)2 + 1

2
max{θ, θ} = �b(θ, θ),

⇔ �b(θ, 0) = 1

2
θ2 + 1

2
θ = 1

2
θ, forθ = 0,

⇔ θ ∈ {0}.

For 

. θ ∈
{
0,

1

2

}
⇔ �b

(
θ,

{
0,

1

2

})
= �b(θ, θ),

⇔ min

{
�b

(
θ, 0

)
, �b

(
θ,

1

2

)}
= �b(θ, θ),

. ⇔ min

{
1

2
θ2 + 1

2
θ,

1

2

(
θ − 1

2

)2

+ 1

2
max

(
θ,

1

2

)}
= 1

2
θ,

⇔ 1

2

(
θ − 1

2

)2

+ 1

2
max

(
θ,

1

2

)
= 1

2
θ, forθ = 1

2
,

⇔ θ ∈
{
0,

1

2

}
.

For 

.θ ∈
{
0,

2

3

}
⇔ �b

(
θ,

{
0,

2

3

})
= �b(θ, θ),

⇔ min

{
�b

(
θ, 0

)
, �b

(
θ,

2

3

)}
= �b(θ, θ),

⇔ min

{
1

2
θ2 + 1

2
θ,

1

2

(
θ − 2

3

)2

+ 1

2
max

(
θ,

2

3

)}
= 1

2
θ,
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⇔ 
1 

2

(
θ − 

2 

3

)2 

+ 
1 

2 
max

(
θ,  

2 

3

)
= 

1 

2 
θ,  forθ = 

2 

3 
, 

⇔ θ ∈
{
0, 

2 

3

}
. 

For 

. θ ∈
{
2

3
,
2

3

}
⇔ �b

(
θ,

{
2

3
,
2

3

})
= �b(θ, θ),

⇔ min

{
�b

(
θ,

2

3

)
, �b

(
θ,

2

3

)}
= �b(θ, θ),

⇔ min

{
1

2

(
θ − 2

3

)2

+ 1

2
max

(
θ,

2

3

)
,
1

2

(
θ − 2

3

)2

+
1

2
max

(
θ,

2

3

)}
= 1

2
θ,

⇔ 1

2

(
θ − 2

3

)2

+ 1

2
max

(
θ,

2

3

)
= 1

2
θ, for θ = 2

3
,

⇔ θ ∈
{
2

3
,
2

3

}
.

For 

. θ ∈
{
2

3
, 1

}
⇔ �b

(
θ,

{
2

3
, 1

})
= �b(θ, θ),

⇔ min

{
�b

(
θ,

2

3

)
, �b

(
θ, 1

)}
= �b(θ, θ),

. ⇔ min

{
1

2

(
θ − 2

3

)2

+ 1

2
max

(
θ,

2

3

)
,
1

2

(
θ − 1

)2

+
1

2
max

(
θ, 1

)}
= 1

2
θ,

⇔ 1

2

(
θ − 1

)2

+ 1

2
max

(
θ, 1

)
= 1

2
θ, for θ = 1,

⇔ θ ∈
{
2

3
, 1

}
.
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For 

. θ ∈
{
1, 1

}
⇔ �b

(
θ,

{
1, 1

})
= �b(θ, θ),

⇔ min
{
�b

(
θ, 1

)
, �b

(
θ, 1

)}
= �b(θ, θ),

⇔ min
{1
2

(
θ − 1

)2 + 1

2
max

(
θ, 1

)
,
1

2

(
θ − 1

)2 +
1

2
max

(
θ, 1

)}
= 1

2
θ,

⇔ 1

2

(
θ − 1

)2 + 1

2
max

(
θ, 1

)
= 1

2
θ, for θ = 1,

⇔ θ ∈
{
1, 1

}
.

. θ ∈
{
0, 1

}
⇔ �b

(
θ,

{
0, 1

})
= �b(θ, θ),

⇔ min
{
�b

(
θ, 0

)
, �b

(
θ, 1

)}
= �b(θ, θ),

⇔ min
{1
2

(
θ − 0

)2 + 1

2
max

(
θ, 0

)
,
1

2

(
θ − 1

)2 +
1

2
max

(
θ, 1

)}
= 1

2
θ,

⇔ 1

2

(
θ − 1

)2 + 1

2
max

(
θ, 1

)
= 1

2
θ, for θ = 1,

⇔ θ ∈
{
0, 1

}
,

.∀ θ, ξ ∈ X . Hence, .{0}, {0, 2
3 } and .{0, 1} are closed with respect to weak-partial 

.b-metric space. 
The geometrical representation of .X defined by .�b : X × X → X is given in 

Table 1. 

Table 1 The geometric representation of. d(θ, ξ) ∈ X

.�b : X × X .0 .
1
2 .

2
3 . 1

.0 .(0, 0) .

(
0, 1

2

)
.

(
0, 2

3

)
. (0, 1)

.
1
2 .

(
1
2 , 0

)
.

(
1
2 , 1

2

)
.

(
1
2 , 2

3

)
. 

(
1
2 , 1

)

.
2
3 .

(
2
3 , 0

)
.

(
2
3 , 1

2

)
.

(
2
3 , 2

3

)
. 

(
2
3 , 1

)

.1 .(1, 0) .

(
1, 1

2

)
.

(
1, 2

3

)
.(1, 1)
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We claim that .{0}, { 23 } are not two fixed point of . f and . g. Now we show that for 
all .θ, ξ ∈ X the inequality (17) is satisfied. To see this, consider the following cases. 

Case 1 For .(θ, ξ) ∈ {0, 2
3 } and using Definition 4, we have  

. H(f θ, gξ) = H
([

0,
θ

2

]
,
[
0,

ξ

2

])

= 1

2

{
sup

([
0,

θ

2

]
,
[
0,

ξ

2

])
+ sup

([
0,

ξ

2

]
,
[
0,

θ

2

])}
, (44) 

. sup

([
0,

θ

2

]
,
[
0,

ξ

2

])
= max

{
�b

(
0,

[
0,

ξ

2

])
, �b

(
θ

2
,
[
0,

ξ

2

])}
,

= max
{
0,

θ2 + 2θ

8

}
,

= θ2 + 2θ

8
. (45) 

. sup

([
0,

μ

2

]
,
[
0,

θ

2

])
= max

{
�b

(
0,

[
0,

θ

2

])
, �b

(
ξ

2
,
[
0,

κ

2

])}
,

= max
{
0,

ξ 2 + 2μ

8

}
,

= ξ 2 + 2ξ

8
. (46) 

Using (45) and (46) in (17) we get 

. H(f θ, gξ) = θ2 + ξ 2 + 2θ + 2ξ

16
.

Next we calculate the following distances: 

.�b(θ, ξ) = θ2 + ξ 2 − 2θξ + ξ

2
,

�b(θ, f θ) = �b

(
θ,

[
0,

θ

2

])
= θ2 + 2θ

8
,

�b(ξ, gξ) = �b

(
ξ,

[
0,

ξ

2

])
= 9ξ 2 − 24ξ + 40

72
,

�b(θ, gξ) = �b

(
θ,

[
0,

ξ

2

])
= θ2 + θ

2
,
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�b(ξ, f θ)  = �b

(
y,

[
0, 

θ 
2

])
= 

ξ 2 + ξ 
2 

, 

. �b(θ, gθ) = �b

(
θ,

[
0,

θ

2

])
= θ2 + 4θ

8
,

�b(ξ, f θ) = �b

(
ξ,

[
0,

ξ

2

])
= ξ 2 + 4ξ

8
.

From (18) and (19), applying the above inequalities, it follows that 

.N (θ, ξ) ≤
max

{
θ2+ξ 2−2θξ+ξ

2 , θ2+2θ
8 + 9ξ 2−24μ+40

72 , θ2+θ
2 + ξ 2+ξ

2 + τ
}

θ2+2θ
8 + 9ξ 2−24ξ+40

72 + γ
, (47) 

. ≤
θ2+θ
2 + ξ 2+y

2 + τ

θ2+2θ
8 + 9ξ 2−24ξ+40

72 + γ
, (48) 

.k = N (θ, ξ) : = 36(θ2 + ξ 2 + θ + ξ + 2τ)

9θ2 + 9μ2 + 18θ − 24ξ + 40 + 72γ
(49) 

and 

. Q(θ, ξ) : = max
{θ2 + ξ 2 − 2θξ + ξ

2
,
θ2 + 4θ

8
,
ξ 2 + 4ξ

8

}
,

= θ2 + ξ 2 − 2θξ + ξ

2
. (50) 

Therefore, using (49), (50) in (17) reduces to 

.sα
θ2 + ξ 2 + 2θ + 2ξ

16
≤ 36(θ2 + ξ 2 + θ + ξ + 2τ)

9θ2 + 9ξ 2 + 18θ − 24ξ + 40 + 72γ
× (51) 

( 
θ 2 + ξ 2 − 2θξ  + ξ 

2 
), 

≤ 
36(θ 2 + ξ 2 + θ + ξ + 2τ )(θ 2 + ξ 2 − 2θξ  + ξ)  

2sα(9θ 2 + 9ξ 2 + 18θ − 24ξ + 40 + 72γ )  
. 

Using (17) to determine the proper values of.τ, γ, α, and.s ≥ 1 in. X , we may conclude 
that all of the presumptions of Theorem 6 are met. 

Case 2 For .(θ, ξ) ∈
{
2
3 , 1

}
and using Definition 4, we obtain 

.H(f θ, gξ) = H
([

0,
2 − θ

2

]
,

[
0,

ξ

2

])
,
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= 
1 

2

{
sup

([
0, 

2 − θ 
2

]
,

[
0, 

ξ 
2

])
+ sup

([
0, 

ξ 
2

]
,

[
0, 

2 − θ 
2

])}
. 

(52) 

. sup

([
0,

2 − θ

2

]
,

[
0,

ξ

2

])
= max

{
�b

(
0,

[
0,

ξ

2

])
, �b

(
2 − θ

2
,

[
0,

ξ

2

])}
,

= max

{
0,

θ2 + ξ 2 − 6θ + 4ξ − 2θξ + 8

8

}
,

= θ2 + ξ 2 − 6θ + 4ξ − 2θξ + 8

8
. (53) 

. sup

([
0,

ξ

2

]
,

[
0,

2 − θ

2

])
= max

{
�b

(
0,

[
0,

2 − θ

2

])
,

�b

(
ξ

2
,

[
0,

2 − θ

2

])}
,

= max

{
0,

θ2 + ξ 2 − 6θ − 4ξ + 2θξ + 8

8

}
,

= θ2 + ξ 2 − 6θ − 4ξ + 2θξ + 8

8
. (54) 

Using (53) and (54) in (52) we get 

. H(f θ, gξ) = 1

2

{
θ2 + ξ 2 − 6θ − 4ξ + 2θξ + 8

8
+

θ2 + ξ 2 − 6θ − 4ξ + 2θξ + 8

8

}
,

= θ2 + ξ 2 − 6θ − 4ξ + 2θξ + 8

8
.

The same way, we calculate the following metrics: 

.�b(θ, ξ) = 1

2

(
θ − ξ

)2 + 1

2
max

(
θ, ξ

)
,

= θ2 + ξ 2 + θ − 2θξ

2
,

�b(θ, f θ) = �b

(
θ,

[
0,

2 − θ

2

])
= min

{
�b

(
θ, 0

)
, �b

(
θ,

2 − θ

2

)}
,
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= 
9θ 2 − 8θ + 4 

8 
.

�b(ξ, gξ)  = �b

(
ξ,

[
0, 

ξ 
2

])
= min

{
�b

(
ξ,  0

)
, �b

(
ξ,  

ξ 
2

)}
, 

. = min

{
ξ 2 + 1

2
,
ξ 2 + 4ξ

8

}
= ξ 2 + 4ξ

8
.

�b(θ, gξ) = �b

(
θ,

[
0,

ξ

2

])
= min

{
�b

(
θ, 0

)
, �b

(
θ,

ξ

2

)}
,

= min

{
θ2 + θ

2
,
4θ2 + ξ 2 − 4θξ + 4θ

8

}
,

= 4θ2 + ξ 2 − 4θξ + 4θ

8
.

�b(ξ, f θ) = �b

(
ξ,

[
0,

2 − θ

2

])
= min

{
�b

(
ξ, 0

)
, �b

(
ξ,

2 − θ

2

)}
,

= 4ξ 2 + θ2 − 4θ − 4ξ + 4θξ + 4

8
.

�b(θ, gθ) = �b

(
θ,

[
0,

θ

2

])
= min

{
�b(θ, 0), �b(θ,

θ

2
)

}
,

= θ2 + 4θ

8
.

�b(ξ, f ξ) = �b

(
ξ,

[
0,

2 − ξ

2

])
= min

{
�b

(
ξ, 0

)
�b

(
ξ,

2 − ξ

2

)}
,

= 9ξ 2 − 8ξ + 4

8
.

Using (18) and (19) with the above inequalities, it follows that 

. k = N
(
θ, ξ

)
: =

max
{ θ2+ξ 2+θ−2θμ

2 , 9θ2−8θ+4
8 + ξ 2+4μ

8 ,
4θ2+ξ 2−4θξ+4θ

8 + 42+θ2−4θ−4ξ+4θξ+4
8 + τ

}

9θ2−8θ+4
8 + ξ 2+4ξ

8 + γ
,

. ≤
max

{
θ2+ξ 2+θ−2θξ

2 ,
9θ2+ξ 2−8θ+4ξ+4

8 ,
5θ2+5ξ 2−4ξ+4

8 + τ
}

9θ2+ξ 2−8θ+4ξ+4
8 + ξ 2+4ξ

8 + γ
,

=
5θ2+5ξ 2−4ξ+4

8 + τ

9θ2+ξ 2−8θ+4ξ+4
8 + γ

,
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= 5θ 2 + 5ξ 2 − 4ξ + 4 + 8τ 
9θ 2 + ξ 2 − 8θ + 4ξ + 4 + 8γ 

, (55) 

and 

. Q
(
θ, ξ

)
: = max

{
θ2 + ξ 2 + θ − 2θμ

2
,
θ2 + 4θ

8
,
9ξ 2 − 8ξ + 4

8

}
,

= 9ξ 2 − 8ξ + 4

8
. (56) 

Therefore, using (55), (56) in (17) reduces to 

. 
θ2 + ξ 2 − 6θ − 4ξ + 2θξ + 8

8
≤ 5θ2 + 5ξ 2 − 4ξ + 4 + 8τ

9θ2 + ξ 2 − 8θ + 4ξ + 4 + 8γ
×

9ξ 2 − 8ξ + 4

8
,

≤ (5θ2 + 5ξ 2 − 4ξ + 4 + 8τ)(9ξ 2 − 8ξ + 4)

8sα(9θ2 + ξ 2 − 8θ + 4ξ + 4 + 8γ )
.

Similarly, for case 2, we use (17) to determine the proper values of.τ, γ, α, and. s ≥ 1
in . X . Based on this, we conclude that all of the assumptions of Theorem 6 are met. 

Case 3 For .θ ∈
{
0, 2

3

}
, .ξ ∈

{
2
3 , 1

}
and using Definition 4, we obtain 

. H(f θ, gξ) = H
([

0,
2 − θ

2

]
,

[
0,

2ξ + 1

2

])
,

= 1

2

{
sup

([
0,

2 − θ

2

]
,

[
0,

2ξ + 1

2

])
+

sup

([
0,

2ξ + 1

2

]
,

[
0,

2 − θ

2

])}
. (57) 

. sup

([
0,

2 − θ

2

]
,

[
0,

2ξ + 1

2

])
= max

{
�b

(
0,

[
0,

2ξ + 1

2

])
,

�b

(
2 − θ

2
,

[
0,

2ξ + 1

2

])}
,

= max

{
0,

θ2 − 6θ + 8

8

}
,

= θ2 − 6θ + 8

8
. (58)
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. sup

([
0,

2ξ + 1

2

]
,

[
0,

2 − θ

2

])
= max

{
�b

(
0,

[
0,

2 − θ

2

])
,

�b

(
2ξ + 1

2
,

[
0,

2 − θ

2

])}
,

= max

{
0,

4ξ 2 + θ2 + 4μ − 2θ + 1

8

}
,

= 4ξ 2 + θ2 + 4ξ − 2θ + 1

8
. (59) 

Using (58) and (59) in (57) we get 

. H(f θ, gξ) = 1

2

{
θ2 − 6θ + 8

8
+ 4ξ 2 + θ2 + 4ξ − 2θ + 1

8

}
,

= 2θ2 + 4ξ 2 − 8θ + 4ξ + 9

16
.

Similarly, we generate the following metrics: 

. �b(θ, ξ) = 1

2

(
θ − ξ

)2 + 1

2
max

(
θ, ξ

)
= θ2 + ξ 2 − 2θξ + ξ

2
,

�b(θ, f θ) = �b

(
θ,

[
0,

θ

2

])
= θ2 + 4θ

8
,

�b(ξ, gξ) = �b

(
ξ,

[
0,

ξ

2

])
= ξ 2 + 4ξ

8
,

�b(θ, gξ) = �b

(
θ,

[
0,

ξ

2

])
= 4θ2 + ξ 2 − 4θξ + 4θ

8
,

�b(ξ, f θ) = �b

(
ξ,

[
0,

θ

2

])
= θ2 + ξ 2 + 4ξ − 2θξ

8
,

�b(θ, gθ) = �b

(
θ,

[
0,

2θ + 1

2

])
= θ2 + θ

2
,

�b(ξ, f ξ) = �b

(
ξ,

[
0,

2 − ξ

2

])
= 9θ2 − 8ξ + 4

8
.

Using (18) and (19) with the above metrics yields to 

.k = N
(
θ, ξ

)
: =

max
{ θ2+ξ 2−2θξ+ξ

2 , θ2+4θ
8 + ξ 2+4ξ

8 ,
4θ2+y2−4θξ+4θ

8 + θ2+ξ 2−2θξ+4ξ
8 + τ

}

θ2+4θ
8 + ξ 2+4ξ

8 + γ
,
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≤ 
max

{
θ 2+ξ 2−2θξ+ξ 

2 , θ 2+ξ 2+4θ +4ξ 
8 , 5θ 2+2ξ 2+4θ +4ξ−6θξ  

8 + τ
}

θ 2+ξ 2+4θ +4ξ 
8 + γ 

, 

. ≤ 5θ2 + 2ξ 2 + 4θ + 4ξ − 6θξ + 8τ

θ2 + μ2 + 4θ + 4ξ + 8γ
.

and 

. Q
(
θ, ξ

)
: = max

{
θ2 + ξ 2 − 2θξ + ξ

2
,
θ2 + θ

2
,
9ξ 2 − 8ξ + 4

8

}
,

= θ2 + θ

2
. (60) 

Therefore, using (60), (61) in (17) reduces to 

. 
2θ2 + 4ξ 2 − 8θ + 4ξ + 9

16
≤ (5θ2 + 2ξ 2 + 4θ + 4ξ − 6θξ + 8τ)(θ2 + θ)

sα(2θ2 + 2ξ 2 + 8θ + 8ξ + 16γ )
.

Using (17) to determine the proper values of.τ, γ, α, and.s ≥ 1 in. X , we may conclude 
that all of the presumptions of Theorem 6 are met. It is noted that there are multiple 
fixed points in .X for a multivalued mapping .f , g. As a result, .f , g at least share a 
fixed point. As a result, .f , g has two fixed points: . 0 and . 23 . To support this, have a 
look at the inequality 

. �b(j, j
∗) ≥ γ s2α − τ

2

�b

(
0,

2

3

)
≥ γ s2α − τ

2

�b

(
0,

2

3

)
= 1

2

(
0 − 2

3

)2

+ 1

2
max

(
0,

2

3

)
≥ γ s2α − τ

2

5

9
≥ γ s2α − τ

2
, (61) 

if we choose .α = 1
4 , τ, γ = 1 and .s = 2, the above inequality reduces to 

.
5

9
≥ 2

1
2 − 1

2
,

5

9
. ≥

√
2 − 1

2
,
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which contradicts itself. This demonstrates that every condition stated in Theorem 6 
is met. Thus, two fixed points of . f and . g are .{0} and .{ 23 }. 

The following corollary is motivated from [ 11] [Theorem 16]. We prove the results 
in multivalued weak-partial .b-metric space. 

Corollary 1 Given a complete weak-partial .b-metric space .(X , �b), let  .X be a 
paracompact space of . X . Consider a multivalued mapping .g : X → P�b

cl (X ), such  
that .gθ �= 0 for each .θ, ξ ∈ X , .q, r ≥ 2, and .H (gθ, gξ) ≥ 0, we have 

(i) There exists .k ∈ (0, 1) such that, for each .θ, ξ ∈ X , 

.sαsH (gθ, gξ) ≤ kM(θ, ξ) (62) 

where 

.k = N (θ, ξ) : = �b(θ, gξ) + �b(ξ, gθ) + τ

�b(θ, gθ) + �b(ξ, gξ) + γ
, (63) 

and 

. M(θ, ξ) = max
{
�b(θ, ξ),

�b(θ, gθ) + �b(ξ, gξ)

q
�b(θ, gξ) + �b(ξ, gθ)

sr

}
,

for all .θ, ξ ∈ X , .s ≥ 1. 
(ii) .∃ .j ∈ gξ such that, for any .θ ∈ X , ξ ∈ gθ , and . ε > 0

.�b(ξ, j) ≤ H(gθ, gξ) + ε. (64) 

Additionally, presumptively the following holds true: 

.(a) At least one fixed point .j ∈ X exists for . g. 

.(b) For every .θ ∈ X , .{g n
2 θ} converges to a fixed point for . n. 

.(c) .�b(j, j
∗) ≥ γ s2α−τ

2 is the result if.gj = {j} and.j, j ∗ are distinct tight fixed points 
of . g satisfying a .g1 space in . X . .X is a paracompact space. 

Proof Suppose that . g has no fixed points then .�b(θ0, gθ0) > 0 for all .θ ∈ X . We  
start by constructing a sequence .{θn}, respectively, in the following way. 

Let .θn be an arbitrary point in . X , and.X is a paracompact space as in Definition 8 
and .θ0 ∈ gθ0 such that .�b(θ0, θ1) ≤ �b(θ0, gθ0). If  .θ0 = θ1 or .θ1 = gθ1 we deduce 
that. g has at least one fixed point.θ1 in. X . Thus , the proof is completed. On contrary to 
that, let.θ0 �= θ1 ,.θ1 �= gθ1, and.�b(θ1, gθ1) > 0, which implies that.H(gθ0, gθ1) > 0. 

From Eq. (20), we choose .θ2 ∈ gθ1 such that
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.�b(θ1, θ2) ≤ H(gθ0, gθ1) + ε. (65) 

Suppose that .ε =
(

1√
k

− 1
)
H(gθ0, gθ1) in (66), we get 

. �b(θ1, θ0) ≤ H(gθ0, gθ1) +
( 1√

k
− 1

)
H(gθ0, gθ1),

≤ H(gθ0, gθ1) + 1√
k
H(gθ0, gθ1) − H(gθ0, gθ1),

≤ 1√
k
H(gθ0, gθ1),∀ 0 < k < 1. (66) 

For .θ2 ∈ gθ1 there exists .θ3 ∈ gθ2 such that 

. �b(θ2, θ3) ≤ 1√
k
H(gθ1, gθ2),∀ 0 < k < 1.

Continuing this process, we obtain a sequence .{θn} in .X such that 

. �b(θn, θn+1) ≤ 1√
k
H(gθn−1, gθn),∀ 0 < k < 1.

≤ 1

sα
1√
k
kM(θn−1, θn),

≤
√
k

sα
M(θn−1, θn). (67) 

From (68), using (62), (63), and (64) by mathematical induction, we obtain 

.�b(θn, θn+1) ≤ (
√
sβn)

n

sα
�b(θn−1, θn), (68) 

where .βn = (�b(θn−1,θn)+�b(θn,θn+1))+τ

�b(θn−1,θn)+�b(θn,θn+1))+γ
. Let .σ = (

√
sβn)

n

sα , by Lemmas 3 and 4, we have  

.�b(θn, θn+1) ≤ σ�b(θn−1, θn), (69) 

which shows that .{θn} is a Cauchy sequence. The remaining stages adhere to the 
comparable demonstration of Theorem 6. This concludes the proof. 

4 An Application to NFDE 

In order to obtain a common solution for a three-point boundary value nonlinear 
fractional differential equation (NFDE), this section applies Theorem 6. In this way,
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we can utilize Rhoades [ 30] multivalued-type mappings in weak-partial .b-metric 
spaces. In order to do this, we use the Caputo fractional differential equation, which 
has numerous mathematical applications, including probability theory, acoustics, 
digital data processing, image processing, electrical signals, and physics (see [ 36]). 

We investigate the Caputo derivative of the nonlinear fractional differential 
equation with the fractional order. 

A continuous function .f : [0,∞) → R has the following form for its fractional 
derivative: 

. (CDβ
t )f (t) = 1

�(n − β)

∫ t

a
(t − γ )n−β−1Kn(γ )dγ, (n − 1 < β, n = [β] + 1),

(70) 
where the integer component of the real number .β is indicated by .[β] (see [ 5]). 
Furthermore, the order . α fractional integral of Riemann–Liouville is given by 

.(Iβ
γ )f (t) = 1

�(β) − 1

∫ t

0
(t − γ )βK(γ )dγ (β > 0). (71) 

Inspired by Ahmad and Nieto [ 1], we have the following nonlinear three-point 
boundary valued problem of sequential fractional differential equation. 

.

{
CDβ(D + ζ )θ(t) = K(t, θ(t)), t ∈ (0, 1), 1 < α ≤ 2,
θ(0) = 0, θ ′(0) = 0, θ(1) = τθ(δ), 0 < δ < 1,

(72) 

where .K : [0, 1] × R → R is a continuous function, . θ is a positive real integer, and 
. β is a real number such that . θ is the Caputo fractional derivative of order . α. . D is the 
ordinary derivative. 

. τ �= ζ + e−ζ − 1

ζ δ + e−ζ δ − 1
.

Let.X = C(I)(I = [0, 1]) represent the space containing the continuous function 
given on . I . Define a Banach space .(X , ‖.‖) with .I := [0,T ],T > 0. Let  . C(I ,X )

be the Banach space for every continuous function from . I into .X with the norm 
.‖θ‖ := sup |θ(t)| = ψ, t ∈ I for .θ ∈ C(I ,X ). Examine a collection of continuous 
real-valued functions that are defined in the function space .C(X ,R) and on . X . A  
weak-partial .b-metric norm.‖.‖ on .X can be defined as follows: 

.�b(θ, ξ) = sup
t∈I

|θ(t) − ξ(t)|p + α, (73) 

.∀θ, ξ ∈ C(I ,X ), p > 1 and .α > 0. This space is a weak-partial .b-metric in its  
entirety. Subject to the boundary constraints, the nonlinear fractional equation (72) 
can be solved as 

.θ(t) =
∫ t

0
e−δ(t−γ )

(
1

�(β)

∫ γ

0
(t − γ )β−1f (r, θ(r))dr

)
ds +
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A(t)

[
τ

∫ δ 

0 
e−ζ(δ−γ )

(
1

�(β)

∫ γ 

0 
(γ − r)β−1 K(r, θ  (r))dr

)
dγ −

∫ 1 

0 
e−ζ(t−γ )

(
1

�(β)

∫ γ 

0 
(γ − r)β−1 K(r, θ  (r))dr

)
d γ

]
, (74) 

where .A(t) = 1
∇

(
ζ t + e−ζ t − 1

)
and .∇ = ζ + e−ζ − 1 − τ

(
ζ δ + e−ζ δ − 1

)
. 

A fractional differential integral equation (74) can be solved by a function . θ ∈
C(I ,X ) if and only if the nonlinear fractional differential equation (72) has a solution 
at . θ . 

Inspired by the conversation above, we establish the theorem below. 

Theorem 7 Assume the following scenario is true: 

(i) .K ∈ C(I × X ,P�b

cl (X )) is sequential continuous; 
(iii) there exists a continuous function .K : [0, 1] × R → R+, such that 

.|K(t, θ(γ )) − K(t, ξ(γ ))| ≤ s−αψ(t)‖θ(γ ) − ξ(γ )‖, (75) 

for all .t ∈ [0, 1] and for all .θ, ξ ∈ X , where.0 < ψ(t) < t for .t > 0, such that 

. sαH(f θ\{θ}, gξ\{ξ}) ≤ �b(f θ, gξ) ≤ kQ(θ, ξ),

where 

. k = N (θ, ξ) : =
max

{
�b(θ, ξ), �b(θ, f θ) + �b(ξ, gξ), �b(θ, gξ) + �b(ξ, f θ) + τ

}

�b(θ, f θ) + �b(ξ, gξ) + γ
,

and 

. Q(θ, ξ) : = max
{
�b(θ, ξ), �b(θ, gθ), �b(ξ, f ξ)

}
.

Also .ψ(t) ≤ 1, that is, 

. ψ(t) =
(
tp−1

)(
t−βp

β(1 + θp)�(β)
+ |A(t)|p

[
τ pηβp − e−θp(t−1)

β(1 + θp)�(β)

])
,

where .A(t) = 1
∇

(
ζ t + e−ζ t − 1

)
and . ∇ = ζ + e−ζ − 1 − τ

(
ζη + e−ζ δ −

1

)
. 

Consequently, there is at least one common solution .θ ∈ C(I ,X ) for the 
fractional differential equation (72). 

Proof : Let us define .f g : C(I) → C(I) by
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. f gθ(t) =
∫ t

0
e−ζ(t−γ )

(
1

�(β)

∫ s

0
(γ − r)β−1K(r, θ(r))dr

)
dγ +

A(t)

[
β

∫ δ

0
e−ζ(δ−γ )

(
1

�(β)

∫ γ

0
(γ − r)β−1K(r, θ(r))dr

)
dγ −

∫ 1

0
e−ζ(t−γ )

(
1

�(β)

∫ γ

0
(γ − r)β−1K(r, θ(r))dr

)
dγ

]
, (76) 

for .t, γ ∈ [0, 1], then .f g is sequential continuous. Assume that 

.gθ(t) = 1

�(β)

∫ γ

0
(γ − r)β−1K(r, θ(r))dr. (77) 

We assert that .f g is sequential continuous and contraction in order to demonstrate 
the existence of at least one common fixed point. Given any .θ, ξ ∈ [0,T ], we may  
demonstrate that .f g is sequential continuous and contraction by letting .f gθ �= f gξ . 
Given .(ii), we obtain 

. |f gθ − f gξ | =
∣∣∣∣
[∫ t

0
e−ζ(t−γ )

(
1

�(β)

∫ γ

0
(t − γ )β−1K(r, θ(r))dr

)
dγ +

A(t)

[
β

∫ δ

0
e−ζ(δ−γ )

(
1

�(β)

∫ γ

0
(γ − r)β−1K(r, θ(r))dr

)
dγ −

∫ 1

0
e−ζ(t−γ )

(
1

�(β)

∫ γ

0
(γ − r)β−1K(r, θ(r))dr

)
dγ

]]
−

[ ∫ t

0
e−ζ(t−γ )

(
1

�(β)

∫ γ

0
(γ − r)β−1K(r, ξ(r))dr

)
dγ +

A(t)

[
τ

∫ δ

0
e−ζ(δ−γ )

(
1

�(β)

∫ γ

0
(γ − r)β−1K(r, ξ(r))dr

)
dγ −

∫ 1

0
e−ζ(t−γ )

(
1

�(β)

∫ γ

0
(γ − r)α−1K(r, ξ(r))dr

)
dγ

]]∣∣∣∣
p

+ β

. ≤
∣∣∣∣
∫ t

0
e−σ(t−s)

(
1

�(α)

∫ s

0
(s − u)α−1|K(u, θ(u)) − K(u, ξ(u))|du

)
ds +

A(t)

[
β

∫ δ

0
e−ζ(δ−γ )

(
1

�(β)

∫ γ

0
(γ − r)β−1|K(r, θ(r)) − f (r, ξ(r))|dr

)
dγ

−
∫ 1

0
e−ζ(t−γ )

(
1

�(β)

∫ γ

0
(γ − r)β−1|K(r, θ(r)) − K(r, ξ(r))|dr

)
dγ

]∣∣∣∣
p

+ β

≤ s−α

[ ∫ t

0

(
dγ

) 1
q
(∫ t

0
e−ζp(t−γ )

(
γ βp

β�(β)
|θ − ξ |p

)
dγ
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+|A(t)|p
[
τ p

∫ δ 

0 
e−ζ p(δ−γ )

(
γ βp 

β�(β) 
|θ(γ  )  − ξ(γ )|p

)
d γ 

−
∫ 1 

0 
e−ζ p(t−γ )

(
γ βp 

β�(β) 
|θ(γ  )  − ξ(γ )|p

)
d γ

]) 1 
p
]p 

+ β, 

. ≤ s−α

∫ t

0

(
dγ

) p
q
(∫ t

0
e−ζp(t−γ )

(
γ βp

β�(β)
|θ(γ ) − ξ(γ )|p

)
dγ

+|A(t)|p
[
τp

∫ δ

0
e−ζp(δ−γ )

(
γ βp

β�(β)
|θ(γ ) − ξ(γ )|p

)
ds

−
∫ 1

0
e−ζp(t−γ )

(
sβp

β�(β)
|θ(γ ) − ξ(γ )|p

)
dγ

])
+ β,

≤ s−α
(
t
)p−1

(
t−βp

β(1 + ζp)�(α)
+ |A(t)|p

[
τp

δβp

β(1 + ζp)�(β)

− e−ζp(t−1)

β(1 + θp)�(β)

])
|θ(γ ) − ξ(γ )|p + α,

≤ γ −β
(
tp−1

)(
t−βp

β(1 + ζp)�(β)
+ |A(t)|p

[
τpδβp − e−ζp(t−1)

β(1 + ζp)�(β)

])
|θ(γ ) − ξ(γ )|p + β,

≤ s−αψ(t)|θ(γ ) − ξ(γ )|p + β.

This implies that 

. |f gθ − f gξ | ≤ s−αψ(t)|θ(γ ) − ξ(γ )|p + β.

Since.ψ(t) < 1. Thus for each.θ, ξ ∈ X , where. X is a paracompact Hausdorff space, 
we have 

.H(f θ, gξ) ≤ s−αkQ(θ, ξ). (78) 

Hence, in contradiction to what we have claimed, there exists .θ ∈ C(I), a shared 
fixed point of . f and . g. In other words, . θ is a solution to the fractional nonlinear 
differential equation (72). As a result, . f and . g share at least one fixed point with . X . 
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Deep Learning Based Parametric 
Estimation in Double-Diffusive 
Convective Flow 

Sumant Kumar, S. V. S. S. N. V. G. Krishna Murthy, and B. V. Rathish Kumar 

Abstract The present research work employs the artificial neural network (ANN) 
based deep learning (DL) approach to analyze the parametric estimation in double-
diffusive convective flow in an inverted T-shaped porous enclosure. The study devel-
ops and numerically simulates a Darcy-extended Brinkmann-Forchheimer mathe-
matical model using the penalty finite element method. Minimal training data are 
gathered across various flow parameters for DL model training. The DL-based tech-
nique efficiently approximates convective heat and mass transport across unknown 
flow parameter sets, significantly reducing computational costs. Analysis reveals 
that higher Rayleigh numbers prominently trigger convective phenomena, offering 
insights into realistic impacts of other flow parameters within porous media. 

Keywords ANN · Double-diffusion · Deep learning · FEM · Porous media 

1 Introduction 

Double-diffusive convection, driven by interacting thermal and solute gradients, 
is a ubiquitous phenomenon with far-reaching implications across scientific and 
industrial domains [ 1]. By modeling the complex interplay within porous structures, 
researchers gain invaluable insights into fluid flow dynamics, temperature distribu-
tions, and concentration patterns. This process underpins critical applications such 
as groundwater management, contaminant remediation, and enhanced oil recov-
ery. Additionally, double-diffusion principles find utility in diverse fields, including 
biomedical engineering and solar energy systems [ 2– 8]. 
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Artificial neural networks (ANNs) have rapidly gained prominence across diverse 
scientific and industrial fields due to their exceptional capabilities. From autonomous 
vehicles to medical image analysis, ANNs have demonstrated remarkable suc-
cess [ 9, 10]. Notably, their ability to approximate complex mathematical functions 
and estimate parameters has positioned them as powerful tools for modeling intricate 
systems. For instance, Mandal et al. [ 11] used ANNs to predict thermal behavior in a 
porous cavity, while Prince et al. [ 12, 13] employed them to estimate nanofluid for-
mation even with limited data. Similarly, Filali et al. [ 14] leveraged ANNs for thermal 
behavior prediction in mixed convection. Kumar et al. [ 15] have employed the ANN 
for parametric estimation during the entropy generation study in a complex porous 
enclosure. These studies, alongside others [ 16– 18], demonstrate the effectiveness 
of ANNs in predicting flow parameters within complex geometries. Trained ANNs 
can rapidly and accurately estimate unknown parameters using processed numerical 
data. This effectively translates to predicting heat and fluid flow behavior by feeding 
post-processed data from physics-informed simulations into the ANN model. The 
high level of agreement with established methods like the finite element method 
(FEM) highlights the potential of ANNs for approximating parameter influences in 
complex mathematical models. 

The research work reported till on double-diffusive natural convection has primar-
ily focused on conventional geometries. To address this gap, this study delves into 
the intricate dynamics of an inverted T-shaped porous enclosure, incorporating the 
complexities of chemical reactions, thermal radiation, and Soret/Dufour effects. A 
comprehensive mathematical model was developed to simulate these multi-physics 
interactions. Numerical simulations were conducted across a wide range of flow 
parameters. To enhance efficiency, an ANN-based deep learning model was trained 
to predict heat and mass transfer rates, significantly outperforming traditional numer-
ical methods. This integrated approach provides valuable insights into the intricate 
behavior of double-diffusive convection within the inverted T-shaped enclosure, with 
potential applications in solar energy systems and thermal engineering. 

2 Development of a Mathematical Model 

Figure 1 presents an inverted T-shaped porous cavity filled with a hybrid nanofluid 
consisting of multi-walled carbon nanotubes (MWCNTs) and ferric oxide (Fe3O4) 
nanoparticles suspended in water at a fixed volume fraction of 0.003 [ 19]. The L-
shaped sections (CDE and FGH) are maintained at lower temperature and concen-
tration (.θ = 0,C = 0), while the bottom surface (AB) is subjected to constant high 
temperature and concentration boundary conditions (.θ = 1,C = 1). The remain-
ing walls are adiabatic and impermeable to mass transfer (. ∂θ

∂n = 0, ∂C
∂n = 0). No-slip 

conditions are applied to all boundary surfaces (.U = V = 0). 
The mathematical model follows a uniform distribution of MWCNT and Fe3O4 

nanoparticles in water, which is considered Newtonian, incompressible, and exhibits 
steady, laminar flow. All thermophysical properties are constant except for density,
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Fig. 1 Graphical 
representation of the 
physical domain with 
boundary conditions 

which varies according to the Boussinesq approximation. The model presumes local 
thermal equilibrium between the fluid, matrix, and nanoparticles. Thermal radiation 
is considered significant only in the y-direction. Additionally, the model shows an 
influence of uniform magnetic field and a first-order homogeneous chemical reac-
tion. 

A 2D mathematical model is formulated based on the Darcy-Forchheimer-
Brinkman equations, coupled with energy and concentration equations. This frame-
work enables a comprehensive analysis of fluid flow, heat, and mass transfer within 
the system. The governing equations in the non-dimensional form are presented as 
follows. 

The following non-dimensional parameters are employed to obtain the dimen-
sionless governing equation [ 8, 20, 21]: 

X = 
x 

L 
, Y = 

y 

L 
, U = 

uL  

α f 
, V = 

vL 

α f 
, θ  = 

T − Tc 
Th − Tc 

, 

P = 
(pL2) 
ρ f α2 

L 

, C = 
C

′ − C ′
l 

C
′
h − C ′

l 

, Pr = 
ν f 
α f 

, Le  = 
α f 
Dm 

, 

Ra = 
gL3ρ f β f (Th − T f ) 

μ f α f 
, Da = 

K 

L2 
, Du = 

Dm Kt∇C
′

CsCpα f ∇T 
, 

Sr = 
Dm Kt∇T 

Tmα f ∇C ′ , N = 
βcn f  

βTn f 

(C
′
h − C ′

l ) 
(Th − Tc) 

(1) 

The following non-dimensional form of governing equation represents the complete 
set of mathematical model containing continuity, momentum, energy, and solute 
transfer equation [ 8, 20, 21]:
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∂U 

∂ X 
+ 

∂V 

∂Y 
= 0, (2) 

1

ε2

(
U 

∂U 

∂ X 
+ V 

∂U 

∂Y

)
= −  

ρ f 
ρn f  

∂p 

∂ X 
− 

ρ f 
ρn f  

μn f  

μ f 
Pr  

Da 
U 

+ 
ρ f 
ρn f  

μn f  

μ f 
Pr

ε

(
∂2U 

∂ X2 + 
∂2U 

∂Y 2

)
− 

1.75√
150

√
U2 + V 2 √

Da 

U√
ε3 

, 
(3) 

1

ε2

(
U 

∂V 

∂ X 
+ V 

∂V 

∂Y

)
= −  

ρ f 
ρn f  

∂p 

∂Y 
− 

ρ f 
ρn f  

μn f  

μ f 
Pr  

Da 
V 

+ 
ρ f 
ρn f  

μn f  

μ f 
Pr

ε

(
∂2V 

∂ X2 + 
∂2V 

∂Y 2

)
− 

1.75√
150

√
U2 + V 2 √

Da 

V√
ε3 

+ Ra Pr 
(ρβ)n f  

ρn f  β f 
(θ + NC) − Ha2 Pr

(
ρ f 
ρn f

) (
σn f  

σ f

)
V, 

(4) 

U 
∂θ 
∂ X 

+ V 
∂θ 
∂Y 

= 
αn f  

α f

(
∂2θ 
∂ X2 + 

∂2θ 
∂Y 2

)
+ Du

(
∂2C 

∂ X2 + 
∂2C 

∂Y 2

)
+

(
4 

3 

αn f  

α f 
k f 
kn f

)
Rd 

∂2θ 
∂Y 2 

, 

(5) 

U 
∂C 

∂ X 
+ V 

∂C 

∂Y 
= 

1 

Le

(
∂2C 

∂ X2 + 
∂2C 

∂Y 2

)
+ Sr

(
∂2θ 
∂ X2 + 

∂2θ 
∂Y 2

)
+ Cr · Pr · C. (6) 

The equations use dimensionless variables like. X and. Y for horizontal and vertical 
positions, .U and .V for velocities in those directions, .C for concentration, theta for 
temperature, and P for pressure. Additional parameters include.Le (Lewis number), 
.N (buoyancy ratio),.Ra (Rayleigh number),.Du (Dufour number),.Pr (Prandtl num-
ber),.Sr (Soret number),.Da (Darcy number), and.Cr (chemical reaction parameter). 

3 Numerical Solution Methodology 

The continuity equation ensures mass conservation and acts as a constraint for deter-
mining pressure distribution within the momentum equations. To handle the pres-
sure terms arising from the momentum balance equations, a penalty FEM tech-
nique is used. This method introduces a penalty parameter (.γ = 107) to enforce 
the incompressibility constraint, allowing for an approximation of the pressure term 
.P = −γ

(
∂U
∂X + ∂V

∂Y

)
. Moreover, a higher value of .γ = 107 effectively satisfies the 

continuity Eq. (2) for numerical simulation process. 
The momentum Eqs. (3) and (4) further become the following equation after uti-

lizing the pressure term:
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1
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)(
σn f  

σ f

)
V 

(8) 

The system of governing equations (Eqs. (5), (6), (7), and (8)) with boundary 
conditions of the model is numerically simulated using the Galerkin FEM. The bi-
linear basis functions were used to represent the control parameters, and the Newton-
Raphson iteration algorithm was employed to handle the non-linear residual terms. 
Convergence of numerical approach has achieved when the relative errors for each 
flow variable satisfied .

|τ i+1−τ i |
|τ i | < η, where iteration number is given by . i , . τ denotes 

the flow variables, and. η is the error tolerance (.η = 10−6). Additional computational 
approach can be found in the research paper [ 22]. 

The total mean Nusselt number (.Num) and total Sherwood number (.Shm) mon-
itor the convective heat and mass transfer phenomena, which are expressed by the 
following equation: 

Num =
∫

∂ S 
Nul ∂ S, Shm =

∫
∂ S 

Shl ∂ S 

where .Nul = hL
k f

+ NuRd = −
(
kn f
k f

∂θ
∂n + 4

3 Rd
∂θ
∂n

)
and .Shl = − ∂C

∂n refer the local 

Nusselt and Sherwood number, respectively. 

3.1 Thermophysical Properties of Hybrid Nanofluid 

The thermophysical properties of the hybrid nanofluid were obtained from experi-
mental data at a constant nanoparticle volume fraction of 0.003 [ 19]. Density varia-
tion, heat capacity, thermal expansion coefficient, electrical conductivity, and thermal 
diffusivity were calculated using correlations reported in research papers [ 23, 24]:



142 S. Kumar et al.

The significant disparity in electrical conductivity between MWCNTs of. O(10−7)

and Fe3O4 of .O(104) shows a simple average unsuitable for reflecting the hybrid 
nanofluid’s conductivity. Consequently, the value of .σ(Fe3O4) is adopted for 
.σn f [ 23, 28]. 

4 ANN Modeling in Parameter Estimation 

4.1 Mathematical Modeling of ANN 

The computational ability of ANN has propelled deep learning (DL) into a promi-
nent subfield of artificial intelligence [ 29]. DL’s influence permeates diverse sectors, 
including object detection, image processing, autonomous systems, speech recogni-
tion, healthcare, and finance [ 10, 30]. ANNs excel at uncovering intricate patterns 
within data, making them indispensable tools for scientific machine learning, classi-
fication, regression, and feature extraction. Among the various ANN architectures, 
feedforward neural networks (FNNs) process information sequentially, establishing 
complex nonlinear mappings between inputs and outputs [ 31]. 

This study utilizes a fully connected neural network (FNN) to model complex 
relationships and predict values for .Num , .Beθ,tot , and .Stot based on input data for 
flow parameters (.Ra, .Da, . ε, .Rd, and .Ha). The basic architecture of the FNN is 
represented in Fig. 3a, consisting of neurons arranged in three different layers (input, 
hidden, and output layers). In the diagram, the colored nodes illustrate the neurons 
of FNN, having adjacent layers initialized with connection weights. For instance, 
weights .wl

jk refer to the connections weight from node (neural) . kth in hidden layer 
.l − 1th to node. j in hidden layer . l. Additionally, each node in the layers (except the 
input layer) has an associated bias, denoted by .blj for the . j th neuron in hidden layer 
. l in Fig. 3a. Notably, there are no connections between nodes within the same layer. 
The input nodes (.x1, · · · , xn) process the training data multiplied with the weighted 
values into the hidden layer, ultimately predicting the outputs (.y1, · · · , ym) through 
the output layer. This interconnected structure enables the FNN to map complex 
relationships from.Rn to .Rm in real space. 

The weighted inputs during forward-propagation move forward through the hid-
den layer. l, derived from the previous hidden layer.l − 1, is represented by following 
expression: 

al j =
∑
k 

wl 
jk  y

l−1 
k + bi j (9) 

Here, the weighted input .aij received by the . j
th node . lth hidden layer, with . yl−1

k
representing the output value of neuron . k in the preceding layer .l − 1. To introduce 
non-linearity into the neural network, activation functions (e.g., Tanh, ReLU, Sig-
moid) are applied to the output of each neuron. Denoting the activation function as 
. σ , the output of the . j th neuron in the . lth hidden layer can be expressed as
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yl j = σ(al j ) = σ

(∑
k 

wl 
jk  y

l−1 
k + bl j

)

Model parameters, including weights and biases, are optimized through backpropa-
gation coupled with an appropriate optimization algorithm. For a detailed expla-
nation of the backpropagation process, readers are directed to relevant research 
papers [ 31, 32]. 

4.2 Parametric Influence Modeling and Prediction Using 
ANN 

This study leverages the computational power of an ANN to approximate the values 
of .Num and .Shm based on the input flow parameters: .Ra, . ε, .Da, .Le, .Ha, .Rd, . N , 
.Sr , .Cr , and .Du. The structure of the fully connected neural network (FNN), shown 
in Fig. 3a, consists of 10 neurons in the input layer and 3 neurons in the output layer, 
with the number of neurons in the hidden layers adjustable to achieve the desired 
solution accuracy. All neurons, except those in the output layer, use the hyperbolic 
tangent (Tanh) function as an activation function, while the output layer neurons 
employ a linear activation function. The model’s weights and biases are optimized 
using the ADAM algorithm during backpropagation, with a fixed learning rate of 
0.006. The objective is to minimize the mean squared error (MSE) loss function. 
The numerical output of MSE is obtained from the averaged square of the desired 
target values (. Ti ) and the predicted output of ANN (.Oi ), which is expressed as 
follows: 

MSE  =
∑K 

i=1 (Oi − Ti )2 

K 

The index .K represents the individual data samples. The train-
ing process involves iterative minimization of the loss function 
across the entire training dataset to optimize the ANN’s weights and 
biases. 

5 Grid Independence and Model Validation Study 

A grid independence study was conducted to determine the optimal grid size for the 
simulations. Table 1 presents the variation of Nusselt and Sherwood numbers with 
increasing grid refinement (G1–G7). Minimal changes in these parameters were 
observed for grid sizes G5 and above, leading to the selection of grid G6 for subse-
quent simulations.
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Table 1 Variation of .Num and .Shm with various grid-types . Sr = 0.5, Da = 10−3, Le =
0.1, Ra = 106, ε = 0.4, Rd = 1,Cr = 0.1, Ha = 25, Du = 0.5.

Grid-type Grid size .Num . Shm

G1 2754 11.4500 2.59545 

G2 3986 11.4692 2.60087 

G3 6322 11.4733 2.60244 

G4 8906 11.4680 2.60165 

G5 9948 11.4849 2.60532 

G6 11166 11.4843 2.60541 

G7 17280 11.4823 2.60512 

Table 2 Mean Nusselt number (.Num ) comparison with published research papers of Cho [ 25], 
Nithiarasu et al. [ 26], and Singh et al. [ 27] at different set of flow parameters 

.Ra Present study Cho [ 25] .Da = 10−4, . ε = 0.4

Nithiarasu et al. [ 26] Singh et al. [ 27] 

.103 1.007 1.077 1.01 1.01 

.104 1.408 1.360 1.408 1.361 

.105 3.166 2.994 2.983 3.067 

.5 × 105 5.238 4.995 4.99 5.065 

Fig. 2 Streamlines (. 
) and isotherms (. θ ) results validation with the results of published research 
papers [ 26] for (a).Da = 10−6, Ra = 108, ε = 0.8 and (b). Da = 10−2, Ra = 104, ε = 0.6

Model validation was achieved through comparisons with published data [ 25– 27]. 
Table 2 presents a quantitative comparison of mean Nusselt number for a fixed Prandtl 
number (Pr .= 1) with the aforementioned studies. Additionally, qualitative compar-
isons of streamlines and isotherms (Fig. 2) with the works of Nithiarasu et al. [ 26] and 
Basak et al. [ 33] were performed. Excellent agreement between the present results 
and published data across various flow parameters confirms the accuracy of the 
developed code.
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6 Results and Discussion 

A thorough numerical study was conducted to explore double-diffusive natural con-
vection in a porous enclosure (inverted T-shaped). The simulation covered an exten-
sive range of parameters, including Rayleigh number (.Ra = 103 to.106), Darcy num-
ber (.Da = 10−5 to .10−2), porosity (.ε = 0.1 to .0.9), radiation parameter (. Rd = 1
to . 5), Hartmann number (.Ha = 0 to .100), Lewis number (.Le = 0.1 to .0.6), buoy-
ancy ratio (.N = −2 to. 2), chemical reaction rate (.Cr = 0.1 to.0.9), Soret coefficient 
(.Sr = 0.1 to .0.9), and Dufour coefficient (.Du = 0.1 to .0.9). 

A dataset of 155 samples, comprising both input and output parameters from 
numerical simulations, was utilized for training. This dataset was partitioned into 
training (80%), testing (10%), and validation (10%) sets. To normalize the data, 
Standard scaling (mean removal and unit variance scaling) was applied. Python 
libraries, including Scikit-learn and PyTorch, were employed for data preprocess-
ing and model training. Figure 3b outlines the training process of the ANN-model 
explicitly. 

The ANN model employed in this study consists of three hidden layers, each with 
100 neurons. The ANN model’s performance, as measured by mean squared error 
(MSE), converged after 400 epochs, achieving an accuracy of 98.87%. Figure 4a 
illustrates the MSE for training, testing, and validation datasets. Correlation analy-
sis between predicted and experimental data, presented in Fig. 4b, reveals a strong 
correlation coefficient of approximately 1 for all datasets, indicating excellent agree-
ment between the model and experimental observations. To ensure the reliability 
of the ANN model, its outputs have been compared with those of FEM simulations. 
Figures 5 and 6 present the comparison of.Num and.Shm , respectively, obtained from 
both ANN predictions and FEM results, across various.Ra values and a range of flow 
parameters (.Rd, .Da, . ε, . N , .Ha, .Le, .Sr , .Cr , & .Du). 

Fig. 3 Schematic representation of a Feedforward neural network (FNN) architecture and b FNN 
training process flow



146 S. Kumar et al.

Fig. 4 Graphical representation of a MSE loss variation during ANN model training for training, 
testing, and validation datasets, and b comparison of ANN predicted values with experimental data 

These results show a strong correlation between the predictions of ANN and FEM 
outcomes within the investigated parameter range, highlighting the ANN’s ability 
to efficiently predict results with limited experimental data. Additionally, the ANN 
accurately approximates parametric outcomes with minimal computational expense, 
emphasizing the effectiveness and precision of deep learning techniques in predicting 
.Num and .Shm , which supports their broader adoption. 

FEM simulations required approximately 26 h on a standard desktop computer, 
while ANN training with the provided datasets was completed in only 5 min. The 
trained ANN accurately replicated results for a wide range of flow parameters in frac-
tions of a second, compared to approximately 10 minutes for FEM simulations. This 
demonstrates the significant computational efficiency of the deep learning approach 
over traditional numerical methods. Furthermore, it highlights the potential of ANNs 
for rapid and accurate predictions in complex mathematical models. 

The results shown in Figs. 5 and 6 provide valuable insights into how various flow 
parameters influence convective heat and mass transfer characteristics. The analy-
sis indicates that increasing the Rayleigh number, Darcy number, porosity values, 
thermal radiation, and buoyancy ratio significantly enhances convective heat transfer 
rates. On the other hand, higher magnetic forces (Hartmann number) have a negative 
impact on both heat and mass transfer rates. Additionally, heat transport is largely 
unaffected by changes in the Lewis number, chemical reaction, Soret, and Dufour 
parameters. However, convective mass transfer rates show substantial growth with 
an increasing Lewis number, while adverse effects are observed with changes in 
chemical reaction, Soret, and Dufour parameters.
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7 Concluding Remarks 

This study employs FNN-based DL approach to explore the impact of thermal radi-
ation, chemical reactions, magnetic fields, Soret, and Dufour effects on double-
diffusive natural convection within an inverted T-shaped porous cavity. The nonlin-
ear mathematical model coupled with ANN is employed to predict the parametric 
influences. Key findings are presented below. 

This study validates the efficacy of an ANN-based deep learning approach in 
accurately predicting heat and mass transfer rates across a wide range of flow param-
eters. It is noticed that the trained ANN model significantly reduces computational 
costs while effectively capturing parametric influences with limited training data. 
This DL-based methodology simplifies the analysis of complex, nonlinear models 
governing convective heat and mass transfer. Parametric analysis reveals that increas-
ing Rayleigh and Darcy numbers enhance heat and mass transfer through intensified 
convective flow and increased porous media permeability, respectively. Conversely, 
stronger magnetic fields suppress convective motion, leading to reduced heat and 
mass transfer rates. While porosity positively impacts convective transport, the influ-
ence of Lewis number, chemical reaction, Soret, and Dufour parameters on heat and 
mass transfer is less pronounced. These findings underscore the intricate interplay of 
parameters in shaping convective processes within porous media, providing valuable 
insights for engineering and scientific applications. 
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On a M[X]/G/1 Queue with Two Types 
of Random Failures, Delay in Starting 
the Major Repairs and Reneging During 
the Down Time 

Kailash C. Madan 

Abstract We study a single server queue with general service time distribution and 
two types of random system failures categorized as major or minor failures. We 
assume that customers arrive at the system in batches of variable size in accordance 
with a compound Poisson process and they are provided one by one service on a 
first-come, first-served basis. As soon as there is a major failure, the repairs do not 
start immediately resulting in delay. The delay time in starting repairs of this type of 
failures follows a general distribution. However, if the system fails due to a minor 
failure, it instantly enters a repair process with a deterministic repair time. We further 
assume that customers may become impatient during the breakdown periods of the 
system and may renege from the system. We obtain steady-state results in terms of 
the probability generating functions of the number of customers in the queue. Some 
special cases of interest are discussed, and some known results have been derived. 

Keywords Batch arrivals · Random breakdowns · Repair times · Reneging ·
Steady state 

1 Introduction 

Numerous authors have studied queueing systems with service interruptions due to 
random failures or server vacations. We mention Levy and Yechialli [12], Takine 
and Sengupta [17], Madan [13], Madan et al. [14], Maraghi et al. [15], Fadhil et al. 
[8], among many others. In this paper, we assume that the system is subject to two 
types of failures categorized as major and minor failures. We assume that there is a 
delay in starting major repairs but no delay in starting the minor repairs. It is further 
assumed that during the down time of the system, customers may become impatient 
and may renege from the system. In the literature on queues, one finds many papers
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on impatient customers. Customers may arrive at the system but may leave without 
joining the system (balking) or customers may join the queue for some time but 
may leave the system without getting service (reneging). For a few earlier papers on 
queues dealing with reneging, the reader is referred to Barrer [3], Haight [9], Ancker 
and Gafarian [2], and De Kok and Tijms [7]. One can find more recent papers on 
queues with reneging by Choi et al. [6], Zhang et al. [18], Altman and Yechiali [1], 
Iravani and Balcioglu [10], Boxma et al. [4], Kursk et al. [11], Choudhury and Medhi 
[5], and Tadj and Choudhury [16]. 

It may be mentioned that most of the papers on breakdown, the authors assume 
that the system may fail only while the system is working. However, following [14], 
we assume time-homogeneous random failures which means that the system may 
fail not only while providing service but it may also fail when it is in the idle state. 

2 The Mathematical Model 

The following assumptions describe the mathematical model: 

• Customers arrive at the system in batches of variable size in a compound Poisson 
process. Let λcidt (i = 1, 2, 3, …) be the first-order probability that a batch of i 
customers arrives at the system during a short interval of time (t, t + dt], where 
0 ≤ ci ≤ 1 and

∑∞ 
i=1 ci = 1, λ > 0 is the mean arrival rate of batches. 

• There is a single server that provides one-by-one service to customers on a “first 
come, first served” basis and the service time follows a general (arbitrary) distri-
bution with distribution function G(s) and density function g(s). Let μ(x)dx be the 
conditional probability density of service completion during the interval (x, x + 
dx], given that the elapsed time is x, so that 

μ(x) = g(x) 
1 − G(x) 

(1) 

Consequently, 

g(s) = μ(s)e
− 

s∫

0 
μ(x)dx 

(2)

• The system experiences two types of random time-homogeneous failures, i.e., it 
may fail at random any time, even when it is in idle state, and we categorize the 
two types of failures as major and minor failures. We assume that α1dt > 0 and 
α2dt > 0 are the respective probabilities that a major or a minor failure will occur 
during the short interval of time (t, dt]. Further, we assume that once the system 
fails, the customer whose service is interrupted, immediately comes back to the 
head of the queue.
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• As soon as the system fails due to a major failure, the repair process does not 
start immediately. We assume that there is delay in starting the major repairs. We 
assume that the delay time “D” in starting the major repairs follows a general 
distribution. Let D(x) and d(x), respectively, be the distribution function and the 
density function of the delay time “D”. Let δ(x)dx be the conditional probability 
of completion of delay time during the short interval of time (t, t + dt], given that 
the elapsed time is x, therefore, 

δ(x) = d (x) 
1 − D(x) 

(3) 

Consequently, 

d(s) = δ(s)e−∫ s 
0δ(x)dx (4) 

• The repair time of a major breakdown follows a general (arbitrary) distribution 
with distribution function Φ(r) and density function φ(r). Let β(x)dx be the condi-
tional probability of a repair completion during the interval (x, x + dx] given that 
the elapsed repair time is x, so that 

β(x) = φ(x) 
1 − �(x) 

(5) 

Consequently, 

φ(r) = β(r)e−∫ r 
0β(x)dx (6) 

• The repair time of a minor breakdown is assumed to be deterministic with constant 
mean repair time d > 0. 

• We further assume that due to the service interruptions caused by breakdowns, 
customers may become impatient during breakdown periods and may renege from 
the system. Reneging is assumed to occur according to a Poisson stream with mean 
reneging rate η > 0. 

• Various stochastic processes involved in the system are independent of each other. 

3 Definitions and Notations 

We define. 
Pn(x, t): Probability that at time t, the server is active providing service and there 

are n (n ≥ 0) customers in the queue excluding the one being served and the elapsed 
service time of this customer is x. Consequently, Pn(t) =

∫ ∞ 
0 Pn(x, t)dx denotes the
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probability that at time t there are n customers in the queue excluding the one in 
service irrespective of the value of x. 

Dn(x, t): Probability that at time t, there are n ≥ 0 customers waiting in the queue 
and the server is in the state of a major failure and is waiting for the repairs to start 
with elapsed time x. Accordingly, Dn(t) =

∫ ∞ 
0 Dn(x, t)dx denotes the probability 

that there are n ≥ 0 customers waiting in the queue and the server is in the state of a 
major failure and is waiting for the repairs to start irrespective of the value of x. 

Q(1) 
n (x, t) : Probability that at time t, there are n ≥ 0 customers in the queue and 

the server is under repairs of a major failure with elapsed repair time x. Consequently, 
Q(1) 

n (t) = ∫ ∞ 
0 Q

(1) 
n (x, t)dx denotes the probability that at time t there are n customers 

in the queue and the system is under repair irrespective of the value of x. 
Q(2) 

n (t): Probability that at time t, the system is under deterministic repairs of a 
minor failure and there are n(n ≥ 0) customers in the queue waiting for service. 

Y(t): Probability that at time t, there are no customers in the system and the server 
is idle but available in the system. 

4 Steady-State Equations Governing the System 

Assuming that the steady state exists, we denote the steady-state probabilities 
corresponding to the probabilities defined above as follows: 

lim 
t→∞Pn(x, t) = Pn(x) lim 

t→∞Pn(t) = lim 
t→∞

∫ ∞ 

0 
Pn(x, t)dx = Pn 

lim 
t→∞Dn(x, t) = Dn(x), lim 

t→∞Dn(t) = lim 
t→∞

∫ ∞ 

0 
Dn(x, t)dx = Dn 

limQ(1) 
n (x, t) = Q(1) 

n n(x), 
t→∞ 

lim 
t→∞Q(1) 

n (t) = lim 
t→∞

∫ ∞ 

0 
Q(1) 

n (x, t)dx = Q(1) 
n 

lim 
t→∞Q(2) 

n (t) = Q(2) 
n and lim t→∞Y (t) = Y (7) 

Further, we assume that kr is the probability of r arrivals during the repair time 
“d” of a type 2 failure. Therefore, 

kr = 
exp(λd )(λd )r 

r! , r = 0, 1, 2, 3, . (8) 

Then, connecting states of the system at time t + dt with those at time t and 
then taking limit as t → ∞, we obtain the following set of steady-state equations 
governing the system:
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d 

dx 
Pn(x) + (λ + μ(x) + α1 + α2)Pn = λ

∑n−1 

i=1 
ciPn−i(x), n ≥ 1 (9)  

d 

dx 
P0(x) + (λ + μ(x) + α1 + α2)P0(x) = 0 (10)  

d 

dx 
Dn(x) + (λ + δ(x)+)Dn = λ

∑n−1 

i=1 
ciDn−i(x) + Dn+1(x), n ≥ 1 (11) 

d 

dx 
D0(x) + (λ + δ(x))D0(x) = D1(x) (12) 

d 

dx 
Q(1) 

n ((x) + (λ + β(x) + η)Q(1) 
n (x) = λ

∑n−1 

i=1 
ciQ

(1) 
n−i + ηQ(1) 

n+1(x), n ≥ 1 (13) 

d 

dx 
Q(1) 

0 ((x) + (λ + β(x))Q(1) 
0 (x) = ηQ(1) 

1 (x) (14) 

Q(2) 
n = (α2 + η)Pn−1, n ≥ 1 (15) 

Q(2) 
0 = α2Y (16) 

(λ + α1 + α2)Y =
∫ ∞ 

0 
P0(x)μ(x)dx +

∫ ∞ 

0 
Q(1) 

0 (x)β(x)dx (17) 

The above equations are to be solved subject to the following boundary conditions: 

Pn(0) =
∫ ∞ 

0 
Pn+1(x)μ(x)dx +

∫ ∞ 

0 
Q(1) 

n+1(x)β(x)dx + λcn+1Y , 

+
(
Q(2) 

n k1 + Q(2) 
n−1k2 + Q(2) 

n−2k3 + ... + Q(2) 
1 kn

)
, n ≥ 1 (18) 

P0(0) =
∫ ∞ 

0 
P1(x)μ(x)dx +

∫ ∞ 

0 
Q(1) 

1 (x)β(x)dx + λc1Y , 

+
(
Q(2) 

0 k1 + Q(2) 
1 k0

)
(19) 

Dn(0) = α1

∫ ∞ 

0 
Pn−1(x)dx = α1Pn−1, n ≥ 1 (20)  

D0(0) = α1Y (21) 

Q(1) 
n (0) =

∫ ∞ 

0 
Dn−1(x)δ(x)dxn ≥ 0 (22)



158 K. C. Madan

5 Steady-State Queue Size Distribution at a Random Epoch 

We define the following steady-state probability generating functions (PGFs): 

P(x, z) =
∑∞ 

n=0 
zn Pn(x); P(z) =

∑∞ 

n=0 
zn Pn (23) 

D(x, z) =
∑∞ 

n=0 
zn D(x); D(z) =

∑∞ 

n=0 
zn Dn (24) 

Q(1) (x, z) =
∑∞ 

n=0 
zn Q(1) 

n (x); Q(1) (z) =
∑∞ 

n=0 
zn Q(1) 

n (25) 

Q(2) (z) =
∑∞ 

n=0 
zn Q(2) 

n (26) 

C(z) = 
∞∑

i=1 

zi ci, |z| ≤ 1 (27) 

Multiplying Eq. (9) by zn, sum over n from 1 to ∞, adding the result to (10), and 
using the generating functions defined in (22), we obtain 

d 

dx 
P(x, z) + (λ − λC(z) + μ(x) + α1 + α2)P(x, z) = 0 (28) 

Performing similar operations, Eqs. (11) and (12), on using (24) yield 

d 

dx 
D(x, z) +

(
λ − λC(z) + δ(x) + −  

z

)
D(x, z) = 0 (29) 

Next, we use similar operations on Eqs. (13) and (14), and use (25). Thus, we get 

d 

dx 
Q(1) (x, z) +

(
λ − λC(z) + β(x) + −

z

)
Q(1) (x, z) = 0 (30)  

Similarly, Eqs. (15) and (16) yield 

Q(2) (z) = (α2+)zP(z) (31) 

Now, we multiply Eq. (18) by zn  + 1, sum over n from1 to ∞, add the result to 
(19), and using the generating functions defined in (23), we obtain 

zP(0, z) = ∫ ∞ 
0 P(x, z)μ(x)dx + ∫ ∞ 

0 Q
(1) (x, z)β(x)dx+Q(2) (z)K(z) 

+[λC(z) − (λ + α1 + α2)]Y (32) 

Next, from (20) and (21), we get
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D(0, z) = α1[Y + P(z)] (33) 

Finally, (22) yields 

Q(1) (0, z) =
∫ ∞ 

0 
D(x, z)δ(x)dx (34) 

We integrate (28), (29), and (30) between 0 and x and get 

P(x, z) = P(0, z)e−(λ−λC(z)+μ(x)+α1+α2)x−
∫ x 
0μ(t)dt (35) 

D(x, z) = D(0, z)e−(λ−λC(z)+δ(x)+η− η 
z )x−

∫ x 
0δ(t)dt (36) 

Q(1) (x, z) = Q(1) (0, z)e−(λ−λC(z)+β(x)+η− η 
z )x−

∫ x 
0β(t)dt (37) 

where P(0, z), D (0, z), and Q(1) (0, z) are given by (32), (33), and (34), respectively. 
We again integrate Eqs. (35), (36), and (37) with respect to x by parts. Thus, we 

obtain 

P(z) = P(0, z)

[
1 − G[λ − λC(z) + α1 + α2] 

(λ − λC(z) + α1 + α2)

]

(38) 

D(z) = D(0, z)

[
1 − D

[
λ − λC(z) + η − η 

z

]

(
λ − λC(z) + η − η 

z

)

]

(39) 

Q(1) (z) = Q(1) (0, z)

[
1 − ϕ

[
λ − λC(z) + η − η 

z

]

(
λ − λC(z) + η − η 

z

)

]

(40) 

where G[λ − λC(z) + ξ ] = 
∞ ∫
0 
e−(λ−λC(z)+ξ )x · dG(x) is the Laplace–Stieltjes trans-

form of the service time G(x), D
[
λ − λC(z) + η − η 

z

] = ∫ ∞ 
0 e

−(λ−λC(z)++η− η 
z )x · 

dD(x) is the Laplace–Stieltjes transform of the delay time D(x) and

�
[
λ − λC(z) + η − η 

z

] = 
∞ ∫
0 
e−(λ−λC(z)+η− η 

z )x · d�(x) is the Laplace–Stieltjes 

transform of the repair time of a major failure �(x). 
Next, multiplying both sides of Eqs. (35), (36), and (37) by  μ(x), δ(x), and β(x), 

respectively, and integrating over x we get 

∞ ∫
0 
P(x, z)μ(x)dx = P(0, z)G[λ − λC(z) + α1 + α2] (41) 

∞ ∫
0 
D(x, z)δ(x)dx = D(0, z) 

− 
D

[
λ − λC(z) + η − 

η 
z

]
(42)
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∞ ∫
0 
Q(1) (x, z)β(x)dx = Q(1) (0, z)�

[
λ − λC(z) + η − 

η 
z

]
(43) 

Now, utilizing (41) and (43) into (32) and simplifying, we get

{
z − G[λ − λC(z) + α1 + +α2]

}
P(0, z) = Q(1) (0, z)�

[
λ − λC(z) + η − 

η 
z

]

+Q(2) (z)K(z) + [λC(z) − (λ + α1 + α2)]Y (44) 

Next, we use (42) in to (34) and get 

Q(1) (0, z) = D(0, z)D
[
λ − λC(z) + η − 

η 
z

]
(45) 

Utilizing (33) into (43), we obtain 

Q(1) (0, z) = α1[Y + P(z)] 
− 
D

[
λ − λC(z) + η − 

η 
z

]
(46) 

Using (46) into (44) and simplifying, we get 

P(0, z) = 

α1[Y + P(z)] 
− 
D

[
λ − λC(z) + η − η 

z

]
�

[
λ − λC(z) + η − η 

z

]

+Q(2) (z)K(z) + [λC(z) − (λ + α1 + α2)]Y
{
z − G[λ − λC(z) + α1 + +α2]

} (47) 

Next, using (47) into (38), we obtain 

P(z) = 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

α1[Y + P(z)] − 
D

[
λ − λC(z) + η − η 

z

]
�

[
λ − λC(z) + η − η 

z

]

+Q(2) (z)K(z) + [λC(z) − (λ + α1 + α2)]Y
{
z − G[λ − λC(z) + α1 + +α2]

}

⎤ 

⎥ 
⎥ 
⎥ 
⎦

[
1 − G[λ − λC(z) + α1 + α2] 

(λ − λC(z) + α1 + α2)

]

(48) 

which further simplifies to
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P(z) = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

α1Y 
− 
D̄

[
λ − λC(z) + η − η 

2

]
�̄

[
λ − λC(z) + η − η 

2

]

+Q(2) (z)K(z) + [λC(z) − (λ + α1 + α2)]Y 
{z−Ḡ[λ−λC(z)+α1++α2]} 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦

[
1−Ḡ[λ−λC(z)+α1+α2] 

(λ−λC(z)+α1+α2)

]

1 − α1

[ − 
D̄[λ−λC(z)+η− η 

z ]�̄[λ−λC(z)+η− η 
z ] {z−Ḡ[λ−λC(z)+α1++α2]}

]

[
1−Ḡ[λ−λC(z)+α1+α2] 

(λ−λC(z)+α1+α2)

]

(49) 

Utilizing the value of P(z) from (49) into Eq. (33), we obtain 

D(0, z) = α1 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

Y + 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

α1Y 
− 
D̄

[
λ − λC(z) + η − η 

z

]
�̄

[
λ − λC(z) + η − η 

z

]

+Q(2) (z)K(z) + [λC(z) − (λ + α1 + α2)]Y 
{z−Ḡ[λ−λC(z)+α1++α2]} 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦

[
1−Ḡ[λ−λC(z)+α1+α2] 

(λ−λC(z)+α1+α2)

]

1 − α1

[ − 
D̄[λ−λC(z)+η− η 

z ]�̄[λ−λC(z)+η− η 
z ] {z−Ḡ[λ−λC(z)+α1++α2]}

]

[
1−Ḡ[λ−λC(z)+α1+α2] 

(λ−λC(z)+α1+α2)

]

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

(50) 

And then (39) yields
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D(z) = 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

α1[Y + 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

α1Y 
− 
D̄

[
λ − λC(z) + η − η 

z

]
�̄

[
λ − λC(z) + η − η 

z

]

+Q(2) (z)K(z) + [λC(z) − (λ + α1 + α2)] Y 
{z−Ḡ[λ−λC(z)+α1++α2]} 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦

[
1−Ḡ[λ−λC(z)+α1+α2] 

(λ−λC(z)+α1+α2)

]

1 − α1

[ − 
D̄[λ−λC(z)+η− η 

z ]�̄[λ−λC(z)+η− η 
z ] {z−Ḡ[λ−λC(z)+α1++α2]}

]

[
1−Ḡ[λ−λC(z)+α1+α2] 

(λ−λC(z)+α1+α2)

]

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

[
1 − D̄

[
λ − λC(z) + η − η 

z

]

(
λ − λC(z) + η − η 

z

)

]

(51) 

Next, we use (50) in (45) and obtain 

Q(1) (0, z) = α1 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

Y + 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

α1Y 
− 
D̄

[
λ − λC(z) + η − η 

z

]
�̄

[
λ − λC(z) + η − η 

z

]

+Q(2) (z)K(z) + [λC(z) − (λ + α1 + α2)] Y 
{z−Ḡ[λ−λC(z)+α1++α2]} 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦

[
1−Ḡ[λ−λC(z)+α1+α2] 

(λ−λC(z)+α1+α2)

]

1 − α1

[ − 
D̄[λ−λC(z)+η− η 

z ]�̄[λ−λC(z)+η− η 
z ] {z−Ḡ[λ−λC(z)+α1++α2]}

]

[
1−Ḡ[λ−λC(z)+α1+α2] 

(λ−λC(z)+α1+α2)

]

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 

− 
D̄

[
λ − λC(z) + η − 

η 
z

]
(52) 

Then (40) gives
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Q(1) (z) = α1 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

Y + 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

α1Y 
− 
D̄

[
λ − λC(z) + η − η 

z

]
�̄

[
λ − λC(z) + η − η 

z

]

+Q(2) (z)K(z) + [λC(z) − (λ + α1 + α2)] Y 
{z−Ḡ[λ−λC(z)+α1++α2]} 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦

[
1−Ḡ[λ−λC(z)+α1+α2] 

(λ−λC(z)+α1+α2)

]

1 − α1

[ − 
D̄[λ−λC(z)+η− η 

z ]�̄[λ−λC(z)+η− η 
z ] {z−Ḡ[λ−λC(z)+α1++α2]}

]

[
1−Ḡ[λ−λC(z)+α1+α2] 

(λ−λC(z)+α1+α2)

]

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 
− 
D̄

[
λ − λC(z) + η − η 

z

][ 1−ϕ̄[λ−λC(z)+η− η 
z ] 

(λ−λC(z)+η− η 
z )

]

(53) 

Finally, from (31), we obtain 

Q(2) (z) = (α2 + n)z 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

α1Y 
− 
D̄

[
λ − λC(z) + η − η 

z

]
�̄

[
λ − λC(z) + η − η 

z

]

+Q(2) (z)K(z) + [λC(z) − (λ + α1 + α2)] Y 
{z−Ḡ[λ−λC(z)+α1++α2]} 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦

[
1−Ḡ[λ−λC(z)+α1+α2] 

(λ−λC(z)+α1+α2)

]

1 − α1

[ − 
D̄[λ−λC(z)+η− η 

z ]�̄[λ−λC(z)+η− η 
z ] {z−Ḡ[λ−λC(z)+α1++α2]}

]

[
1−Ḡ[λ−λC(z)+α1+α2] 

(λ−λC(z)+α1+α2)

]

⎫ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 

(54) 

Thus, the above results in (49), (51), (53), and (54) we have determined all the 
PGFs, P(z), D(z), Q(1) (z), and Q(2) (z), respectively, in terms of the only unknown 
constant Y. Note that Y can be determined by the following normalizing condition: 

P(1) + D(1) + Q(1) (1) + Q(2) (1) + Y = 1 (55)
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6 Some Special Cases 

6.1 Case 1: Two Types of Failures with No Delay in Starting Major Repairs and 
Reneging During Downtime 

In this case, putting Dn(x, t) = 0, D(x, z) = 0, and D(z) = 0 in the main 
results will give the results corresponding to this case. 

6.2 Case 2: Only Major Failures with Delay in Starting Repairs and Reneging 
During Downtime 

In this case, putting α2 = 0, Q(2) 
n = 0, and Q(2) (z) = 0 in the main results 

will give the results corresponding to this case. 
6.3 Case 3: Only Minor Failures with Deterministic Repair Times and Reneging 

During Downtime 
In this case, putting α1 = 0, Q(1) 

n (x, t) = 0, Q(1) (x, z) = 0, and Q(1) (z) = 0 
Dn(x, t) = 0, D(x, z) = 0, and D(z) = 0 in the main results will give the results 
corresponding to this case. 

6.4 Case 4: Two Types of Failures with Delay in Starting Major Repairs and No 
Reneging During Downtime 

In this case, putting η = 0 in the main results will give the results 
corresponding to this case. 

6.5 Case 5: No Failures, No Delay, and No Reneging 
In this case, we put α1 = 0, α2 = 0, and η = 0 in the main results and obtain 

D(Z) = 0, Q(1) (z) = 0, Q(2) (z) = 0 

and 

P(z) = [λC(z) − λ]Y 
z − G[λ − λC(z)] 

(56) 

Then the normalizing condition 

P(1) + Y = 1 (57) 

yields 

Y = 1 − λE(S) (58) 

where E(S) is the mean service time. 
Using this value of Y from (58), Eq. (56) gives  

P(z) = 
[λC(z) − λ]1 − λE(S) 
z − G[λ − λC(z)] 

(59) 

The results (58) and (59) are known results of the Mx/G/1 queue.
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7 Conclusions 

We have studied a new queueing model in which the service system is subject to two 
types of random failures—a major failure and a minor failure. We assume that there 
is delay in starting repairs for a major failure, whereas the minor failure is attended 
to instantly. A most significant assumption added to the system is that during the 
duration of a failure, customers possibly get impatient and some of them might 
renege without getting served. The system equations have been solved in the steady 
state in terms of the generating functions. The results for some interesting special 
cases have been derived from the main results. The paper obtains new significant 
results which add value to the theory of queues. 
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Triple Secure Encryption Scheme 
Three-Channel Image Based on Hankel 
Transform, Geometric Transforms and 
Hyper-Chaotic Maps 
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Abstract Daily usage of cyberspace and many telecommunication technologies like 
the Internet of Things (IoT), data transmission through clouds and wireless networks 
have proliferated. Substantial amounts of data are getting transmitted every day and 
the number is astronomically huge. The data contains textual data, images, videos 
and audio. Securing this data which is transmitted through channels of cyberspace 
is essential. The presented work discusses securing data of the type videos and 
images. The inspiration behind this research is to furnish a proficiently assembled 
three-channel image encryption scheme. The proposed work presents a dynamic 
encryption method for three-channel images built on key generation using the Hankel 
transform matrix, geometric transformation matrix and hyper-chaotic map to achieve 
triple security. Computer-simulated results show satisfactory output towards statis-
tical tests. The sustainability of the work proposed in this research, against diverse 
attacks like differential, injection of noise attacks and cutting channel attacks, is 
tested and the proposed encryption scheme proves it promisingly. The robustness 
and effectiveness of the proposed scheme are decently compared with other exist-
ing schemes and it demonstrates the practical usability of the proposed encryption 
scheme. 
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1 Introduction 

In the world of data-driven applications and information technology, the daily 
exchange of various types of information is in millions of bytes. Securing this data 
from various attacks, from non-authenticate users, is of utmost priority. The well-
known technique to secure digital images is to convert images into ambiguous form 
using secret keys and retrieval of the plain three-channel image using the same keys. 
Most of the image encryption algorithms are rooted in number theoretic algorithms 
like the RSA algorithm, ElGamal encryption scheme, and confusion and diffusion 
using chaotic maps and permutation ciphers. The proposed encryption scheme for 
three-channel images is based on two steps: cryptographic confusion using the Han-
kel transform and geometric transform along with a hyper-chaotic dynamical system 
of dimension . 6 and cryptographic diffusion using .2 × 2 Fibonacci .Q-matrix. Var-
ious tests are performed on the proposed encryption scheme to test its sturdiness 
against various attacks. Carrying out of the proposed encryption scheme is com-
pared with several prevailing research works using statistical tests comprising infor-
mation entropy analysis, Pearson correlation coefficient, histograms, scatter plots, 
etc. The consequences of these tests confirm the excellent security and outstanding 
performance of the proposed work. 

2 Literature Review 

Daily routine process includes transmission and storage of a huge image dataset. 
Usually, users choose to secure their image data on social networks. Security of 
patient data like medical images is necessary under healthcare networks because 
attacks like data cut attacks or noise attacks may lead to wrong medical diagnoses. 
Geographic information imaging and military images require security algorithms 
with high strength to prevent information from getting leaked. Generally, propri-
etors of digital/high-tech images prefer not to allow others to ingress their images 
like company logos without their consent. To reduce unauthorized access to image 
data from various realms, the security of images has become an utmost priority. 
There are mainly three ways to secure image datasets, viz. data hiding, image water-
marking and encryption of images. Numerous researchers have proposed several 
algorithms to secure image data using number theoretic algorithms like RSA, ElGa-
mal encryption and discrete logarithm problem while plenty of researchers pre-
fer to use cryptography-based cryptographic confusion and cryptographic diffusion 
based on dynamical systems that show chaotic nature because of their sensitivity 
towards initial conditions [ 1, 2] and transposition ciphers for encryption of image 
data. DNA encryption is also one of the rapidly used techniques for images using 
biological DNA sequencing and scrambling it. The researchers succeed in their 
research of encryption algorithms which stands on the use of fractals and three-
dimensional Lorenz chaotic systems [ 3, 4]. Author [ 5] presents the work that uses
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discrete chaotic maps along with continuous chaotic maps for confusion and dif-
fusion processes in encryption. Multimedia security I presented in the research 
work by the author [ 6] using dynamical systems with chaotic nature. The tech-
niques based on digital watermarking, steganography and data hiding have been 
used by many novelists [ 7– 9] in their research for information security. Numer-
ous innovations are carried out in chaotic dynamical systems to obtain hybrid 
chaotic systems for designing encryption algorithms [ 1, 10– 15]. The key genera-
tion based on improved Rossler’s system along with multidimensional chaotic maps 
and encryption based on DNA sequences is showcased in the research [ 16]. A pro-
ductive encryption scheme based on two-dimensional cellular automata is proposed 
in the work [ 17]. The author [ 18] proposed how chaotic neural networks work 
better in image encryption along with event-induced impulsive control, impulsive 
control and delayed event-induced delayed impulsive control for the construction 
of fractals. A novel encryption technique based on the generation of seed using 
fractional ordered chaotic systems is designed in the work [ 19] which resolves the 
issues related to multi-faceted operations involved in low-dimensional chaotic sys-
tems and simple but multidimensional systems. The work [ 20] shows how hiding 
image by image is a successful dual algorithm for protecting visually meaningful 
carrier image (CAI) using a secret image (SI). Six-dimensional hyper-chaotic dynam-
ical system with Fibonacci .Q-Matrix is used for key generation and cryptographic 
confusion and diffusion for protecting colour image data is recommended by the 
researchers [ 21]. 

The proposed encryption scheme uses three levels: key generation using Hankel 
matrix transform and geometric transform, first-level encryption using this key and 
second-level encryption using six-dimensional hyper-chaotic maps with Fibonacci 
.Q-Matrix. The strength and effectiveness of the proposed .3-channel image encryp-
tion are examined for multiple images of varied sizes and the tabulated results in the 
analysis section show the impact of the proposed scheme against differential attacks, 
noise injection attacks, cutting channel attacks, etc. 

3 Framework for Proposed Three-Channel Image 
Encryption Scheme 

3.1 6-D Hyper-Chaotic System 

Analysis of various dynamic systems at specific seed values shows a chaotic nature 
and hence responses of such systems are unpredictable. The behaviour of hyper-
chaotic systems of higher dimension is more complicated and unpredictable in nature 
than the low-dimensional systems with chaotic nature. A dynamical system with a 
minimum of four dimensions and a minimum of two positive Lyapunov exponents 
is referred to as a hyper-chaotic dynamical system. Authors [ 21] defined.6-D hyper-
chaotic system in (1):
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⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

ż1 = α(z2 − z1) + z4 − z5 − z6 
ż2 = γ z1 − z2 − z1z3 
ż3 = −βz3 + z1z2 
ż4 = δz4 − z2z3 
ż5 = ηz6 + z3z2 
ż6 = ρz1. 

(1) 

In Eq. (1), parameters . α, . β, . γ , . δ, . η and. ρ are constants while . z1, . z2, . z3, . z4, .z5 and. z6
are variables representing state of the .6-D hyper-chaotic system. 

3.2 .2× 2 Fibonacci .Q-Matrix 

The Fibonacci sequence .Fm , outlined as (2) 

Fm = Fm−1 + Fm−2, for m > 2, (2) 

where .F1 = F2 = 1. Fibonacci .Q-Matrix of power .m is given by 

Qm =
[
Fm+1 Fm 

Fm Fm−1

]

. 

Here, .Fm is .mth Fibonacci number. Important property of the Fibonacci .Q-Matrix 
is given as follows: 

Determinant (Qm ) = Determinant

[
Fm+1 Fm 

Fm Fm−1

]

. 

Hence, .Determinant (Qm) = Fm+1Fm−1 − Fm
2 = .(−1)m . Also, inverse of 

Fibonacci .Q-Matrix is obtained as follows: 

inv(Q)m =
[
Fm−1 −Fm 

−Fm Fm+1

]

. 

3.3 Hankel Matrix Transform 

A finite ordered or infinite ordered square matrix is said to be a Hankel matrix if it 
has constants on each diagonal that are orthogonal to the main diagonal and whose 
entries are defined as follows (3):
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Hp,q =
{
0, p + q − 1 > n 
p + q − 1, other wise. 

(3) 

There are several different ways to define Hankel transform, one of the special 

cases is a Hilbert matrix, whose .(p, q)th entry is .
1

p + q − 1
, .p = 1, 2, 3, . . . and 

.q = 1, 2, 3, . . . . Various special cases of Hankel matrix transform lead to different 
applications. In this proposed work, the Hankel transform defined is used to generate 
an initial key for encryption of the three-channel image. 

4 Schema of Encryption and Decryption 

This section discusses the proposed three-channel image encryption and decryption 
scheme along with key generation. 

4.1 Initial Key Generation Scheme 

In the current section, key generation for the first level of encryption using Hankel 
transform is proposed. The final key is generated using the Hankel transform of 
individual channels of the plain three-channel image along with rotation transform 
by .180o. This key acts as an initial key for the first level of encryption given in the 
flow diagram shown in Fig. 1. 

5 Level-Wise Encryption 

This section discusses the proposed three-channel image encryption and decryption 
scheme along with key generation. The first level of three-channel image encryption 
is implemented using XOR operation on separate channels of three-channel image 
with a key generated using the proposed key generation scheme. The diagrammatic 
representation is shown in Fig. 2. 

5.1 First Level of Encryption 

See Fig. 2.
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Fig. 1 Initial key generation
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Fig. 2 First level of encryption 

5.2 Second Level of Encryption 

To achieve a second level of encryption, the following steps are used: 

Step a An image array is transformed to a vector . V . 
Step b Seed value of six-dimensional hyper-chaotic dynamical system is calculated 

as (4) 

x1 =
∑MN  

n=1 V (i ) + M × N 
246 + (M × M) 

, (4) 

while .xi for .i = 2, 3, ..., 6 are successively calculated using Eq. (5): 

xi = mod(xi−1 × 106 , 1). (5) 

Step c With these seed values the six-dimensional hyper-chaotic dynamical system 
is recursively calculated .

0.9865×M×N
3 times to procure a sequence .S1 of size 

.M × N . 
Step d A new vector.S2 is obtained by classifying sequence.S1 in increasing order 

and returning their locations in .S2.
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Step e The image vector .V is used to generate new shuffled sequence .S3 given by 
Eq. (6): 

S3(i ) = V (S2(i)), i = 1, 2, ..., M × N . (6) 

Step f Sequence.S3(i) is converted into a matrix.M , and subdivided into sub-blocks 
of .2 × 2 size. 

Step g Final encrypted image is obtained using multiplication of each .2 × 2 size 
sub-block by Fibonacci .Q matrix of power . 25. 

Step h Perform five rounds of these steps to obtain the final second level of encryp-
tion. 

5.3 Flow Chart of Second-Level Encryption 

Flow chart of second-level encryption of the proposed three-channel image encryp-
tion scheme is shown in Fig. 3. 

5.4 Three-Channel Decryption Scheme 

Encryption using a symmetric key, public–private key and hash functions are the 
major three types of any data encryption scheme based on mathematical cryptog-
raphy. The proposed three-channel encryption scheme is based on symmetric key 
generation. To retrieve the original three-channel image, the reverse encryption 
scheme with suitable ordering is applied. The reverse chaotic map and inverse of 
Fibonacci .Q matrix are used in this reverse approach for recovering the original 
three-channel image. For simulation results, the Fibonacci .Q matrix is used which 
is given by 

Q15 =
[
987 610 
610 377

]

, 

while for simulation results of proposed three-channel decryption scheme, inverse 
.(Q15)−1 is used, where 

(Q15 )−1 =
(
987 610 
610 377

)

.
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Fig. 3 Flow chart of 
second-level encryption of 
the proposed encryption 
scheme 

6 Encryption Results 

Mathematical simulation of the proposed encryption scheme is executed on MATLAB 
2023a version and results are figured out in the following figure. MATLAB simulation 
is performed on three-channel images with various sizes and intensities (Fig. 4).



176 P. Khaladkar and M. Kumar

Fig. 4 Simulations for encryption and decryption: a Baboon (plain), b Lena (plain), c City (plain), 
d Black(plain) e Baboon (first-level encryption) f Lena (first-level encryption), g City (first-level 
encryption), h Black (first-level encryption), i Baboon (second-level encryption), j Lena (second-
level encryption), k City (second-level encryption), l Black (second-level encryption) 

7 Performance of Encryption Scheme Through Statistical 
Experiments 

Evaluation of the efficiency and productivity of the proposed encryption scheme is 
verified by carrying out numerous experiments and decently collating these exper-
imental results with existing competitive algorithms and proposed three-channel 
encryption schemes. These experiments involve different statistical tests like analy-
sis through histograms, Shannon entropy test, mean square error, correlation analysis, 
scatter plots, etc. Also, the proposed scheme is tested for various attacks like differ-
ential attacks, trimming channel attacks, contamination attacks, blurring attacks, etc. 
The decryption steps of the proposed scheme show successful execution and retrieve 
the plain image from the cipher image.
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7.1 Assessment Through Histograms 

The uniform distribution of intensities after encryption proves the strength of the ran-
domness of intensity samples of cipher space. The histogram of any.3-channel elec-
tronic image with a dynamic range from 0 to 255 is a discrete function defined as (7) 

Histogram(r th intensity value) = number of pixels comprising intensity level(r). (7) 

Tabulated images show the histograms of .3-channel images for separated channels 
pre- and post-application of the proposed encryption scheme. The histogram analysis 
of Baboon and Lena images is shown in Fig. 5. 

7.2 Assessment Through Shannon Information Entropy 

The arbitrariness of any cryptographic scheme is evaluated through information 
entropy analysis. Information leakage is also measured using entropy analysis. 
Shannon entropy analysis is carried out on various .512 × 512 and .256 × 256 size 
images of various intensities and the results of the simulation show the highest entropy 
value. For any grayscale .8-bit image, the desirable value of Shannon information 

Fig. 5 Assessment through channel-wise histograms: a Baboon (red-plain), b Baboon (red-
encrypted), c Lena (red-plain), d Lena (red-encrypted), e Baboon (green-plain), f Baboon (green-
encrypted), g Lena (green-plain), h Lena (green-encrypted), i Baboon (blue-plain), j Baboon (blue-
encrypted), k Lena (blue-plain), l Lena (blue-encrypted)
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entropy is . 8, the results tabulated below guarantee that the leakage of informa-
tion during the encryption process is much less in the outlined three-channel image 
encryption scheme. Hence, the robustness of the proposed .3-channel encryption 
system against the entropy attack is verified agreeably. Mathematically, Shannon 
information entropy is given by (8) 

IEntropy = 
2L−1∑

r=0 

P(mr )log2 
1 

P(mr ) 
, (8) 

where . r = intensity values from [0, .2L − 1], .mr = an event such that the intensity 
value at specific location is. r ,. L = number of bits used to represent the image,. P(mr )

= probability of occurrence of.mr . For any purely random.L-bit image, the probabil-
ity values .P(mr ) are almost equal and hence show Shannon’s information entropy 
approximately to . L . Post-encryption, the cipher image shows high randomness in 
intensities. The tabulated values (Tables 1 and 2) showcase the Shannon informa-
tion entropy for the research work proposed along with decent comparison with 
reference values for various .3-channel images of size .512 × 512 and .256 × 256. 

7.3 Analysis of Proposed Encryption Scheme Through Mean 
Squared Error 

The statistical method to measure the error present in the images pre- and post-
encryption is referred to as the mean-squared error (M.S.E.) method. The error present 
in the image after encryption and cipher image with reference to the plain image can 
be measured using mean-squared error (M.S.E.). The mathematical representation for 
M.S.E. between the intensities of the plain three-channel image pixels and the cipher-
three-channel image pixels of size .M × N is given by the mathematical Eq. (9): 

Table 1 Shannon information entropy of values of research presented for three-channel encryption 
scheme and reference values for the various images of size. 512 × 512

Image title Proposed scheme [ 4] [ 6] [ 7] [ 22] [ 8] 

Baboon 7.9998 7.9972 7.9912 7.9989 7.9969 7.9974 

Lena 7.9999 7.9972 7.9909 7.9972 7.9970 7.9971 

Peppers 7.9995 7.9972 7.9909 7.9972 7.9970 7.9971 

Table 2 Shannon information entropy of research presented for three-channel encryption scheme 
and reference values for the various images of size. 256 × 256

Image title Proposed scheme [ 4] [ 6] [ 7] [ 22] [ 8] 

Baboon 7.9992 7.9972 7.9912 7.9989 7.9969 7.9974 

Lena 7.9990 7.9972 7.9909 7.9972 7.9970 7.9971 

Peppers 7.9993 7.9972 7.9909 7.9972 7.9970 7.9971
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IM.S.E . = 1 

M × N 

N∑

y=1 

M∑

x=1 

[Ienc(x, y) − Iori (x, y)]2 , (9) 

where.M = image row count in a plain or cipher image,.N = image column count in 
a plain or cipher image,.Ienc(x, y) = intensity values of the pixel at the.(x, y)th loca-
tion of the cipher image,.Iori (x, y) = intensity values of the pixel at.(x, y)th location 
of the plain image. The mean-squared error for image size .512 × 512 between the 
plain three-channel image and cipher image is given in Table 3. 

7.4 Assessment Through Correlation Coefficient 

For any plain image, generally, the pixels located in a row, column or diagonal 
are strongly correlated. That is, pixels positioned in vertical(.IV ), horizontal(.IH ) or  
diagonal(.ID) direction show high correlation. The exact opposite happens for the 
encrypted image. In this analysis, neighbouring 10,000 pixels are chosen randomly 
and the Pearson correlation coefficients are computed for the vertical, horizontal and 
diagonal orientations. The following tabulated values (Table 4) show the correla-

Table 3 .IM.S.E . between the three-channel plain image and image post-encryption of size . 512 ×
512

Image title Proposed values 

Lena 9092 

Baboon 8472 

Peppers 11181 

Table 4 Assessment through Pearson correlation coefficient by plotting scatter diagrams of neigh-
bouring pixels of cipher Baboon and Lena image of various sizes 

Images R-channel Baboon R-channel Lena 

.IH .IV .ID .IH .IV . ID

Size.256 × 256 0.0010 .−0.016 0.04 0.0200 .−0.059 0.0050 

Size.128 × 128 0.0012 .−0.0018 .−0.0090 .−0.025 .−0.0091 0.0126 

Size.64 × 64 0.001 .−0035 0.008 .−0.0086 .−0.0062 0.0123 

Images G-channel-Baboon G-channel-Lena 

Size.256 × 256 .−0.0116 0.0199 0.0150 0.0080 0.0150 0.0114 

Size.128 × 128 .−0.0001 .−0.0310 .−0.0159 .−0.0056 0.0178 . −0.0147

Size.64 × 64 .−0.0041 0.0005 0.0242 .−0.0187 0.0011 0.0123 

Images B-channel-Baboon B-channel-Lena 

Size.256 × 256 .−0.0241 .−0.0389 0.0289 0.0083 0.0150 0.0111 

Size.128 × 128 .−0.0070 0.0230 0.0066 .−0.0056 0.0178 . −0.0187

Size.64 × 64 .−0.0184 .−0.0059 0.0084 .−0.0187 0.0001 0.016
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tion coefficient along these three directions for images of dimension.512 × 512 and 
.256 × 256. Along this analysis, the following tabulated diagrammatic representation 
(Figs. 6, 7 and 8) of scatter plots shows channel-wise correlation between cipher and 
plain three-channel images. 

Fig. 6 Horizontal correlation analysis (Baboon) channel-wise a R-channel-(plain), b G-Channel-
(plain), c B-channel-(plain), d R-channel-(cipher), e G-channel-(cipher), f B-channel-(cipher) 

Fig. 7 Vertical correlation analysis (Baboon) channel-wise a R-channel-(plain), b G-Channel-
(plain), c B-channel-(plain), d R-channel-(cipher), e G-channel-(cipher), f B-channel-(cipher)
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Fig. 8 Diagonal correlation analysis (Baboon) channel-wise a R-channel-(plain), b G-Channel-
(plain), c B-channel-(plain), d R-channel-(cipher), e G-channel-(cipher), f B-channel-(cipher) 

8 Resistance Against Differential Attack 

Differential attacks in cryptographic algorithms are one type of cryptanalysis which 
are used to understand the effectiveness of encryption schemes against the attacks on 
block ciphers. The following steps show how differential attack analysis is carried 
over: 

1. .Iori1 = plain image, .Iori2 = image obtained from.Iori1 by minute alteration in one 
or more pixel positions or intensities. 

2. .Ienc1 = cipher image of .Iori1 obtained using proposed scheme of three-channel 
encryption and .Ienc2 = cipher image of .Iori2 obtained using proposed scheme of 
three-channel encryption. 

3. .δ Ienc =.Ienc1 ⊕ Ienc2 , where .⊕ is XOR operation. 
4. The analysis of .δ Ienc for understanding differences in encrypted images after 

alteration and before alteration is referred to as differential attacks. 
5. This study involves two major techniques, viz. NPCR/NBCR(number of pix-

els/bits change rate) and UACI (unified averaged changed intensity). 

Tables 5, 6, 7 and 8 show results of NPCR/NPBR and UACI. 

Table 5 NPCR/NBPR and 
UACI analysis results for 
Baboon, Lena and City images 
of size. 512 × 512

Image title NPCR/NPBR UACI 

Lena 99.60930 33.46350 

Baboon 99.60900 33.46350 

City 99.61901 33.46540
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Table 6 Decent comparison of results of analysis of NPCR/NPBR for Lena image of size. 512 × 512
with reference values 

Images Channel separated Lena image 

R-channel G-channel B-channel 

Proposed result 99.5990 99.6202 99.6000 

Roy et al. [ 17] 99.5900 99.5500 99.5800 

Table 7 Analysis of results of UACI for three-channel images (Baboon and Peppers) of size 
. 512 × 512

Baboon Peppers 

R-channel G-channel B-channel R-channel G-channel B-channel 

Results 33.4635 33.4635 33.4635 33.4335 33.4335 33.4335 

Li et al. [ 10] 33.4100 33.4100 33.4100 33.4100 33.4100 33.4100 

Niyat et al. [ 12] 33.4729 33.4729 33.4729 33.4562 33.4562 33.4562 

Jolfaei et al. [ 9] 33.4913 33.3786 33.4692 

Table 8 Result analysis of UACI values for three-channel images (Baboon and Lena) of size 
.64 × 64, and.128 × 128 and. 256 × 256

Image titles Size.64 × 64 Size.128 × 128 Size. 256 × 256

Baboon 33.3340 34.3300 33.4000 

Lena 33.4440 33.4430 33.3301 

9 Resistance Against Cutting Channel Attack 

To check the strength of any encryption scheme against downfall of information 
attack, cutting channel analysis is used. If any one channel of a three-channel image 
is cut 25%, 50% or 75% from the encrypted three-channel image, then the analysis 
tests how is the recovery of the plain image. Cutting channel attack analysis shows 
how the encryption scheme withstands against loss of information attack. A piece of 
Red-channel from the encrypted image is cut .25% from left-top, .25% from bottom-
left and.25% from right-top, a total.50%, as well as.75% and retrieved with the help of 
proposed decryption scheme. The recovery of the cipher images which are cropped 
in specific percentages is given in Fig. 9. 

10 Resistance Against Noise Injection Attacks 

The injection of digital distortion in the cipher image alters the original information. 
In the proposed work, cipher images are distorted by injecting 20% impulse noise and 
20% Gaussian noise in cipher images. These distorted images are retrieved using the
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Fig. 9 Lena cropping attack analysis: a Encrypted, b 25% channel cut attack, c Recovered, d 
Encrypted, e 50% channel cut attack, f Recovered, g Encrypted, h 75% channel cut attack, i 
Recovered 

three-channel encryption scheme proposed in this work. The resultants are tabulated 
in Fig. 10 which claims a good amount of recovery of original data, hence proving 
the efficiency against this attack. 

10.1 Analysis Through BRISQUE, NIQE, PIQE 

Blind/reference less image spatial quality evaluator computes the no-reference image 
quality ratings for the original image, encrypted image, noisy or cropped image and 
image after retrieval using the proposed decryption scheme. If the score is less then
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Fig. 10 Lena noise attack analysis: a Encrypted, b 20% added impulse noise, c Recovered, d 
Encrypted, e 20% added Gaussian noise, f Recovered 

Table 9 BRISQUE, NIQE, PIQE scores for Lena image of size. 256 × 256

Scores Original (i) (ii) (iii) (iv) (v) (vi) 

BRISQUE 21.4166 29.9263 43.7812 42.9900 43.4042 43.9967 43.9990 

NIQE 2.3798 5.9370 10.7486 10.2487 10.3308 11.9104 11.9270 

PIQE 32.1841 37.7289 58.1812 63.3148 65.9411 67.8949 67.9023 

perpetual quality is better. Also, the naturalness image quality evaluator (NIQE) score 
evaluates no-reference-quality score for the original image, encrypted image, noisy 
or cropped image and image after retrieval using the proposed decryption scheme. 
The lower the score the better the quality. Similarly, to evaluate perception-based 
image quality, the PIQE score is used. The smaller the score the better the quality. 
Table 9 shows BRISQUE, NIQE and PIQE scores for the above-mentioned images. 
Where, 
(i) = Original Lena image. 
(ii) = .25% cropped and retrieved using decryption scheme. 
(iii) = .50% cropped and retrieved using decryption scheme. 
(iv) = .75% cropped and retrieved using decryption scheme. 
(v) = .20% impulse noise is injected and retrieved using decryption scheme. 
(vi) = .20% Gaussian noise is injected and retrieved using a decryption scheme.
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Table 10 Statistical analysis using NIST arbitrariness tests for encrypted Baboon image of size 
. 512 × 512

NIST randomness tests P-value Conclusion 

Serial test 0.4747 Fulfilled 

Block frequency test 0.9838 Fulfilled 

Longest run of ones in a block 0.5660 Fulfilled 

Binary matrix rank 0.3816 Fulfilled 

Frequency test 0.9664 Fulfilled 

Approximate entropy 0.2987 Fulfilled 

Cumulative sums test 0.8881 Fulfilled 

Runs test 0.4894 Fulfilled 

Discrete Fourier transform 0.3233 Fulfilled 

Non-overlapping template matching 0.2233 Fulfilled 

Overlapping template matching 0.2729 Fulfilled 

Linear complexity 0.6130 Fulfilled 

11 Analysis Through NIST Randomness Tests 

The National Institute of Standards and Technology (NIST) tests for checking ran-
domness in samples are a suite of statistical tests used to analyse the arbitrariness 
of a binary sequence. These tests are designed to assess the quality of randomness 
in a sequence, which is essential in various fields like simulation, mathematical and 
statistical modelling along with cryptography and encryption schemes. Verifying 
the uncertainty in encrypted three-channel images plays a vital role. The most sys-
tematized and utilized suite for verification of the existence of the randomness of 
information post-encryption is the NIST suite. These tests are authentic and very 
rapid, though they test big multimedia data. The table shows the results of NIST ran-
domness tests for the Baboon cipher image of size .512 × 512 given in Table 10 and 
verifies that the results are not biased, strengthening the generation of randomness 
using the proposed chaotic map. 

12 Conclusion 

The proposed three-channel image encryption scheme is secure, robust and fast for 
colour images of varied sizes and varied intensities based on a three-level security 
mechanism. The scheme uses Hankel transform with geometric transform, Fibonacci 
.Q-Matrix and six-dimensional hyper-chaotic maps as its key features. This scheme 
incorporates two basic principles of image encryption, viz. confusion and diffusion. 
The MATLAB 2023a simulations verify that the encryption scheme is fast in terms of 
computation time required for the execution of the end-to-end scheme. The proposed
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scheme is tested on multiple attacks like differential attacks, cutting channel attacks 
and noise attacks, and tabulated results confirm security along with resilience of the 
proposed three-channel image encryption scheme. 
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Investigation of Boiler Efficiency 
Improvements via Enthalpy Wheel 
with Application to a Biomass Boiler 

C. Deniz Canal , M. Diederich, O. Karacay, A. C. Benim , A. Hamberger, 
M. Heese, and K. H. Schräder 

Abstract Based on a mathematical model, the efficiency of a boiler for different 
utilizations of the exhaust gas energy is systematically investigated. The analysis is 
carried out for a biomass boiler, which is a novel aspect of the study. It is shown 
that condensing conditions using a condensing boiler leads to higher efficiencies. 
Beyond this, it is additionally shown that further efficiency increases can be achieved 
by the incorporation of a so-called enthalpy wheel, which is a rotary heat and mass 
exchanging device, even without using the condensation energy. The enthalpy wheel 
can be operated as a regenerative heat exchanger to preheat the combustion air, 
which enhances the boiler efficiency. Further, it can additionally serve to moisture 
recovery, by transferring moisture from the exhaust gas into the combustion air, 
when its surfaces are covered by a desiccant material. It is shown that the highest 
efficiencies are obtained when an enthalpy wheel is operated for simultaneous heat 
and moisture recovery. It is also shown that the exit temperature of the condensing 
heat exchanger is an important parameter, not only for the case without an enthalpy 
wheel but also for the enthalpy wheel case, having a substantial influence on the 
boiler efficiency. 
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Abbreviations 

Nomenclature 

cp Molar heat capacity 
ṅ Molar flow rate 
h Molar enthalpy 
Q̇ Heat flow rate 
T Temperature 
w Molar water vapor load 
wR Kmol water vapor produced per kmol fuel
�Hvap Molar enthalpy of evaporation 
λ Air factor 
η Boiler efficiency 
ηH Enthalpy efficiency of enthalpy wheel 
ηT Temperature efficiency of enthalpy wheel 

Subscripts 

a Air 
B Boiler 
EW Enthalpy wheel 
f Fuel 
g Exhaust gas 
S Saturated state 
w Water 

Superscripts 

i Inlet 
d Dry 
daf Dry and ash-free 
o Outlet 
v Vapor 

Abbreviations 

HHV Higher heating value 
LHV Lower heating value
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1 Introduction 

As the world’s population continues to grow and economies develop, the demand for 
energy is also increasing. Industrialization, urbanization, and the spread of energy-
intensive technologies have all contributed to an increasing demand for energy. The 
global energy crisis is a complex and multifaceted problem that poses major chal-
lenges for the economy, society, and environment [1]. The efficient use of energy and 
the use of renewable and clean energy sources are two very important pillars for the 
energy transition to overcome current and future challenges [2]. The present paper 
presents addresses the two pillars, namely the efficient energy utilization and renew-
able energies, where condensation technologies are applied to increase the efficiency 
of a biomass boiler. 

Boilers convert, by combustion, the chemically bound energy of the fuel into 
internal energy of the exhaust gas, which is then transferred to the water as heat, 
by cooling down the exhaust gas by water in heat exchangers [3]. Obviously, the 
useful energy, i.e., the extracted heat from the exhaust gas increases with decreasing 
exhaust gas exit temperature. The exhaust gas can contain considerable amounts of 
water vapor due to the combustion of the hydrogen content of the fuel, as well as 
the humidity of the fuel air streams. The vapor contained in the exhaust gas starts to 
condensate, when the exhaust gas temperature reaches the dew point temperature [4] 
as it gets cooled down. Since condensation can cause problems such as corrosion, it 
is avoided in conventional systems. For this, the exhaust gas exit temperature is to be 
kept above the dew point temperature. Since the latter lies normally quite above the 
ambient temperature, a considerable amount of energy potential remains unused. 

A remedy to this problem is provided by the condensing heat exchangers that 
can allow condensation due to their special designs and materials, and thus, recover 
and utilize the latent heat of condensable matter (water) from exhaust gases [5]. A 
decrease of the temperature of the cooling medium is beneficial for the operation of 
the condensing heat exchanger [6, 7]. The condensation process in the heat exchanger 
can further be supported by increasing the dew point of the hot exhaust gas. A 
corresponding concept was proposed in the patent of the French Gas Corporation, 
Gaz de France in 1979 (French patents No. 7900901 and 8,112,770). The inventor 
R. Guillet named the corresponding device “pompe à vapeur d’eau” that may be 
translated as “water vapor pump” [8–10]. A thermodynamic analysis of such a system 
was presented by Kuck [11], who realized the vapor pump with the aid of a spray 
tower. Further investigations of boilers equipped with different vapor pump systems 
were provided by Wang et al. [12]. 

A special type of heat exchanger working with the regenerative principle, i.e., 
in a transient operation mode is the so-called Ljungström air preheater [13], which 
is mainly used in thermal power plants to preheat the combustion air, i.e., for heat 
recovery. Here, the hot gas and cold air flow alternately through the tightly packed 
numerous narrow channels of the device as the drum rotates. The sensible thermal 
energy stored in the material of the channel walls during the passage of the hot gas
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is transferred to the cold air as the cold air flows through the channels, transferring 
the heat from the exhaust gas to the air. 

The so-called enthalpy wheel works with the same regenerative principle with 
the difference that the channel walls are now coated (or even made out of) desiccant 
material [14]. By the action of the desiccant material, i.e., adsorption, mass transfer 
is accomplished between the two streams. This is driven primarily by the difference 
in the water vapor partial pressures of the streams. Through this mechanism, not 
only the sensible heat but also the latent heat and moisture is transferred between 
the streams. The usual area of application of enthalpy wheel, so far, has been the 
air-to-air HVAC systems [15]. 

A novel application of the enthalpy wheel in boilers as vapor pump, for increasing 
the boiler efficiency by increasing the dew point temperature of the exhaust gas, was 
first presented by Men et al. [16] for a natural gas boiler. The current work follows the 
same principle for biomass boilers. For the thermodynamic analysis of the system, 
the approach proposed by Kuck [11] is currently adopted. Thus, the present paper 
has similarities to the previous publications of Kuck [11] and Men et al. [16]. 

A difference to the publication of Kuck [11] is given by the fact that in [11] a  
spray tower was considered as the vapor pump, whereas, in the current study, an 
enthalpy wheel is considered. A further novelty of the present paper in comparison 
to the previous publications [11, 16] is given by the fact that a biomass boiler is 
presently considered, whereas natural gas boilers were considered in the previous 
studies [11, 16]. In the present paper, the thermodynamic analysis of a condensing 
biomass boiler utilizing enthalpy wheel as vapor pump is presented. 

2 Configuration of Considered Systems 

The ingredients of the investigated systems are a boiler, a condensing heat exchanger, 
and an enthalpy wheel. Although a condensing boiler is envisaged, depending on the 
cooling efficiency in the heat exchanger, i.e., by the realizability of low-temperature 
sink, a condensation may or may not take place in the heat exchanger. 

In the current analysis, three different configurations are considered, which are 
defined as follows: 

Case A: The boiler is operated in combination with the condensing heat exchanger, 
but without using the enthalpy wheel. 

Case B: The boiler is operated in combination with the condensing heat exchanger 
and the enthalpy wheel. However, the enthalpy wheel is used only for the transfer of 
sensible heat (Ljungstrom air preheater), without mass transfer. 

Case C: The boiler is operated in combination with the condensing heat exchanger 
and the enthalpy wheel. In difference to Case B, the full potential of the enthalpy 
wheel is unfolded, which means that the enthalpy wheel is now equipped with desic-
cant material. By this means, not only the sensible thermal energy but also the latent 
energy and moisture are transferred from the exhaust gas to air. The considered 
systems are sketched in Fig. 1, where the water cycle is not displayed for simplicity.
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Fig. 1 System configuration 

3 Mathematical Modeling 

In this section, the mathematical model employed to express the energy balances of 
the considered systems is presented, which is based on a series of assumptions. In the 
main line of the mathematical modeling, the approaches suggested by Kuck [11] are  
adopted. In the mathematical model, a steady-state flow process is assumed, where the 
changes in the kinetic and potential energies are neglected. Each system component, 
modeled as lumped, is characterized by the unique inlet and outlet values of the 
corresponding variables (indicated in Fig. 1). For simplicity, in the energy balance 
equations, the reference state is not indicated explicitly. 

As fuels normally have rather low temperatures, the sensible enthalpy of the fuel 
is neglected in the energy balances. Below, the energy balance equations for Case A 
and Cases B and C are presented separately. The system boundaries as well as the 
corresponding temperatures are illustrated in Fig. 1. 

For Case A and Case B, the energy balances without and with condensation are 
presented in Eqs. (1a) and (1b), respectively: 

ṅf × HHV + ṅa × ho EW ,a = Q̇ + ṅg × hi EW ,g (1a) 

ṅf × HHV + ṅa × ho EW ,a = Q̇ + ṅg ×
{
hi EW ,g +

[
wo 
B,g − wi 

EW ,g

]
× cp,w × T i EW ,g

}

(1b) 

Similarly, for Case C, the energy balance equations without (Eq. 2a) and with 
condensation (Eq. 2b) are given below: 

ṅf × HHV + ṅa × hi EW ,a = Q̇ + ṅg × ho EW ,g (2a)
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ṅf × HHV + ṅa × hi EW ,a = Q̇ + ṅg ×
{
ho EW ,g +

[
wo 
B,g − wo 

EW ,g

]
× cp,w × T o EW ,g

}

(2b) 

It is assumed that in case of condensation, the gas at the exits of the condensing 
heat exchanger (Eq. 3a) and the enthalpy wheel (Eq. 3b) are in saturated state, which 
means 

wi 
EW ,g = ws

(
T i EW ,g

)
(3a) 

wo 
EW ,g = ws

(
T o EW ,g

)
(3b) 

The saturated molar water vapor load ws at given gas temperature can be calculated 
from the available relationships in the literature [17]. 

The molar water vapor load at the boiler outlet wo 
B,g can be obtained from the 

following humidity balance: 

ṅg × wo 
B,g = ṅg × wR + ṅa × wi 

EW ,a (4) 

where wR denotes the water vapor produced by combustion per unit fuel (as kmol 
H2O/kmol Exhaust Gas), which depends on the fuel composition. Note that, in Case 
A and Case B, there is no humidity transfer between the exhaust gas and air (in Case 
B, the wheel operates purely a as a regenerative heat exchanger), whereas Case C 
differs from Case B by the transfer of humidity from exhaust gas to air. For different 
cases, the following expressions are obtained for wo 

B,g (for the definition of A in the 
below equation, please see Eq. (15a). 

Case A: 

wo 
B,g = wR + A × wo 

EW ,a (5) 

Case B: 

wo 
B,g = wR + A × wi 

EW ,a (6) 

Case C: 

wo 
B,g = wR + A × wo 

EW ,a (7a) 

where 

wo 
EW ,a = wi 

EW ,a +
{
ws

(
T i EW ,g

)
− ws

(
T o EW ,g

)}
/A (7b) 

Further, the variables ho EW ,g , h
i 
EW ,a and h

i 
EW ,g h

o 
EW ,a in the above expressions can 

be calculated from
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ho EW ,g = cd p,g × T o EW ,g + wo 
EW ,g × (�Hvap + cv p,w × T o EW ,g) (8) 

hi EW ,g = cd p,g × T i EW ,g + wi 
EW ,g × (�Hvap + cv p,w × T i EW ,g) (9) 

ho EW ,a= cd p,a × T o EW ,a + wo 
EW ,a × (�Hvap + cv p,w × T o EW ,a) (10) 

hi EW ,a = cd p,a × T i EW ,a + wi 
EW ,a × (�Hvap + cv p,w × T i EW ,a) (11) 

The boiler efficiency can be defined as 

η = Q̇ 

ṅf × HHV (12) 

Utilizing the above equations, (Eqns. (1, 2, 12)) expressions for the boiler effi-
ciency can be derived. For Case A and Case B, without (Eq. 13a) and with (Eq. 13b) 
condensation the following expressions are obtained: 

η = 1 − E 

HHV 
[hi EW ,g − A × ho EW ,a] (13a) 

η = 1 − E 

HHV 
[hi EW ,g + [wo 

B,g − ws

(
T i EW ,g

)
] ×  cp,w × T i EW ,g − A × ho EW ,a] (13b) 

Similarly, the following equations can be written for Case C, without (Eq. 14a) 
and with (Eq. 14b) condensation: 

η = 1 − E 

HHV 
[ho EW ,g − A × hi EW ,a] (14a) 

η = 1 − E 

HHV 
[ho EW ,g + [wo 

B,g − ws

(
T o EW ,g

)
] ×  cp,w × T o EW ,g − A × hi EW ,a] (14b) 

In the above equations, the variables A and E are defined as 

A = ṅa 
ṅg 

(15a) 

E = ṅg 
ṅf 

(15b) 

The temperature dependence of the mean molar isobaric heat capacity of air is 
considered by assuming a third-order polynomial dependence on temperature. The 
exhaust gas mean isobaric molar heat capacity is calculated based on the exhaust gas 
composition, calculating the resultant heat capacity for the exhaust gas by a molar 
weighted sum of the contributions from its components. The heat capacities of the
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Table 1 Fuel properties (daf) 

HHV 
MJ/kg 

LLV 
MJ/kg 

C 
% mass  

H 
% mass  

O 
% mass  

N 
% mass  

19.91 18.76 47.5 6.6 43.1 2.8 

exhaust gas components are, again, calculated assuming a third-order polynomial 
dependence on temperature [18, 19]. 

4 Fuel and Air Properties, Boiler Operation Conditions 

In the current analysis, the poplar wood is exemplarily considered as the biomass 
fuel. At the present stage, it is assumed that the sulfur and ash contents of the fuel are 
negligible. Currently, a mass-based fuel humidity of 25% is assumed. The assumed 
approximate elementary analysis of the poplar wood as well as the heating values 
are provided in Table 1 [20, 21]. 

At the inlet, the relative humidity of air is assumed to be 100% while assuming 
a temperature of 0 °C. It is assumed that the combustion is complete. The air factor 
λ is the ratio of the total used amount of air to the theoretical/stoichiometric one. 
Different values of the air factor between 1 and 2 are considered. 

5 Results 

5.1 Case A 

The calculated boiler efficiencies (Eq. 13b) for three different values of the air factor 
are displayed in Fig. 2, as functions of the exhaust gas temperature downstream the 
heat exchanger. This temperature is a parameter that is assumed to be controllable 
by the corresponding design of the heat exchanger. One can easily recognize that the 
curves exhibit a kink. This corresponds to the dew point. The dew point temperature 
is observed to shift to lower values with increasing air factor.

The curve sections for temperatures lower than the dew temperature (curved 
shapes) display the results with condensation in the heat exchanger (Eq. 13b), 
whereas, for temperatures larger than the dew point (straight lines) no condensation 
takes place in the heat exchanger (Eq. 13a). 

One can see in Fig. 2 that always higher boiler efficiencies are achieved by 
decreasing heat exchanger temperatures, i.e., with increased amount of condensa-
tion. One can also see that the achievable efficiencies decrease with increasing air 
factor. However, the differences become smaller with decreasing heat exchanger exit 
temperatures.
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Fig. 2 Efficiency as function of exhaust gas temperature downstream heat exchanger, Case A

5.2 Case B 

The efficiencies calculated for Case B are displayed in Fig. 3, in a similar manner 
to Case A (Fig. 2), where the effect of the temperature efficiency of the enthalpy 
wheel (defined below) is additionally considered. In this case, the enthalpy wheel 
operates solely as a regenerative heat exchanger (without moisture transfer) having 
the function of an air preheater. Here, it is important how well the heat transfer is 
accomplished, i.e., what the temperature efficiency of the heat exchanger is. The 
temperature efficiency of the enthalpy wheel can be defined as

ηT = T 
o 
EW ,a − T i EW ,a 

T i EW ,g − T i EW ,a 

(16) 

The efficiency complements the equation system (Eq. 1a) in such a way that the 
temperature (enthalpy) at the air outlet of the enthalpy wheel T o EW ,a is related to the 
air and exhaust gas inlet and temperatures of the enthalpy wheel. 

At this stage, we don’t attempt to calculate/estimate any temperature efficiency 
for the heat exchanger, but obtain results for different values of this parameter. The 
realizability of any value is the subject of the design of the particular device, which 
is not yet attempted at this point. 

The curves shown in Fig. 3 for zero temperature efficiency correspond to the curves 
that were already obtained without enthalpy wheel, i.e., for Case A (Fig. 1). With air 
preheat the dew point temperature does not change, but the efficiency increases. One
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Fig. 3 Efficiency as function of exhaust gas temperature downstream heat exchanger, Case B

can see that with a well-designed regenerative heat exchanger (enthalpy wheel), oper-
ating with high temperature efficiency, considerable increases in the boiler efficiency 
can be achieved. 

5.3 Case C 

For the calculation of the efficiency of Case C, Eq. (14) is used. Here, in difference 
to Case B, not only heat but also moisture transferred from exhaust gas to the air, by 
virtue of the desiccant layers applied to the enthalpy wheel channel surfaces. Here, 
the performance of the enthalpy wheel, cannot fully be described by the temperature 
efficiency. Instead, an enthalpy efficiency is defined as follows: 

ηH = h
i 
EW ,g − ho EW ,g 

hi EW ,g − hi EW ,a 

(17) 

which also accounts for the moisture transport. 
The calculated boiler efficiencies for different values of the enthalpy efficiency 

are displayed in Fig. 4 as function of T i EW ,g , for an air factor of 2. Comparing to 
the previous cases (Case A, Fig. 2, Case B, Fig.  3), one can see that much higher 
efficiencies can be achieved, depending on the enthalpy efficiency of the wheel 
(Fig. 4).
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Fig. 4 Efficiency as function of exhaust gas temperature downstream heat exchanger, Case C 

6 Conclusions 

Applying a mathematical model for the energy balances of a wood burning biomass 
boiler, are investigated under certain assumptions. According to the model, it is 
observed that condensing conditions using a condensing boiler enhance the boiler 
efficiency. Moreover, it is also observed that a further increase can be achieved by 
the incorporation of a so-called enthalpy wheel, which is a rotary heat and mass 
exchanging device, even without using the condensation energy, which can also be 
operated as a regenerative heat exchanger to preheat the combustion air enhances 
the boiler efficiency. The effect of moisture transfer from the exhaust gas to the 
combustion air via the dessicant material is further enhanced when the surfaces are 
coated with a dessicant. 

It is shown that the highest efficiencies are obtained when an enthalpy wheel is 
operated for simultaneous heat and moisture recovery. 
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To Study the Effect of ER Flux and Orai 
Flux on Fractional Calcium Diffusion 
in Neuron Cell 

Vora Hardagna Vatsal , Brajesh Kumar Jha , and Tajinder Pal Singh 

Abstract In the nervous system, there are many mechanisms to respond to cogni-
tive functions. Neurons are basic cells to perform this cognitive response. Cellular 
homeostasis of the free calcium ions is governed by the membrane channels and 
receptors. For performing this approach, we have modeled the neuronal calcium 
homeostasis for the Caputo fractional time diffusion with the buffer reaction with 
endoplasmic reticulum flux. Various neuronal organelles like endoplasmic reticulum 
(ER), Sarcoendoplasmic Reticulum Calcium ATPase (SERCA), inositol triphosphate 
(IP3) receptor (IP3R) and ryanodine receptor (RYR), and perform their vital role for 
cellular processes in a calcium dependent manner. The fractional reaction–diffusion 
model is solved by the Laplace and Fourier integral transform approach. For the 
closed form Mittag Leffler type solution followed by Green’s function. Our obtained 
solution is in an analytical approach with closed form in Mainardi’s function and 
Wright’s function. This simulation shows the significant impacts of different param-
eters on temporal and spatial diffusion. Different buffer concentrations and different 
temporal fractional order better with real life physiological properties to mimic the 
neuronal impact. Our results enrich the significant study of the buffers and calcium 
relation. 

Keywords Calcium distribution · ER fluxes · Buffer · Laplace transforms ·
Fractional derivative
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1 Introduction 

Calcium acts as the second messenger in the process of cellular transmission. This 
transmission is responsible for the cellular function of people in many cell lines. 
Theoretical development involves mimicking calcium oscillations for neural study. 
This analysis enhances the comprehension of the underlying factors that may affect 
the calcium flux, such as buffer, diffusion coefficient, various channel mechanisms, 
and so on. 

The concentration of calcium has a crucial role in facilitating the connec-
tion between neuroglia cells, promoting neuron growth, moderating apoptosis, and 
accomplishing other essential actions that are vital for neurons and have a significant 
impact on governing the human body. Disrupted calcium activity may impair neural 
processes critical for the efficient operation of human cognitive abilities. 

An excessive amount of calcium could potentially cause the neural circuit to 
explode. Neurodegeneration arises from the dysfunction of organelles caused by 
an imbalance in calcium levels. The deregulation of neurons may be the cause of 
Alzheimer’s and other neurodegenerative disorders. The symptoms of this condition 
initially manifest as cognitive impairments, such as memory loss, illusions, and 
difficulties in forming new memories. 

The process of calcium diffusion encompasses numerous intricate mechanisms 
that are essential for cellular functioning. The essence of the problem can be under-
stood via the lens of the generalized reaction–diffusion equation. The anomalous 
process is examined using fractional differential analysis, which provides the most 
accurate fit to real-life events. 

In recent years, experts have approached the examination of the calcium hypoth-
esis from many approaches. GD Smith initiated this calcium trail to investigate 
the effects of calcium buffering [1]. Parotid cells exhibit calcium waves, which are 
studied using a mathematical technique [2]. Smith GD et al. conducted an analysis 
of the calcium diffusion process, specifically examining the influence of buffer and 
source on a prolonged time scale [3]. Astrocytes and neurons, which are distinct types 
of brain cells, are also simulated to study the effects of calcium distribution. Tewari 
and Majumdar conducted a simulation of astrocyte cell and synaptic plasticity to 
study the activity of glutamate receptors [4]. Manhas et al. conducted a study on the 
intricate calcium waves in pancreatic cells [5]. The study conducted by Jha A et al. 
utilized a finite element approach to investigate the sodium calcium exchange mech-
anism in neurons [6]. Dave and Jha combined calcium diffusion with the study of 
neurodegenerative illness [7]. Dave and Jha have documented the effects of voltage-
gated calcium channels on neuronal cells [8]. The study utilized the triangular finite 
element method to analyze the calcium distribution in multipolar neuronal cells [9]. 
Mainardi and Pagnini [10] investigated the generalized diffusion technique. Joshi H. 
et al. have depicted the fractional impact of calcium concentration on nerve cells [11]. 
The study conducted by Joshi and Jha [12] explored the integration of Parkinson’s 
disease with a fractional calcium reaction diffusion method. Joshi and Jha conducted
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a two-dimensional analysis of mitochondrial flow [13]. The study investigated a frac-
tional temporal technique to analyze the calcium advection diffusion in astrocytes 
[14]. The mechanism of Stim Orai is investigated using the fractional time diffusion 
equation [15]. Jethanandani et al. have studied the neuron and astrocyte dynamics 
[16]. Joshi and Jha analyzed Parkinson’s disease by studying calcium dynamics [17]. 
Jha et al. have studied excess buffer and calcium dynamics in astrocytes with finite 
element method in two dimensions [18]. Jethanandani et al. have studied the bifurca-
tion dynamics in neuron with calcium homeostasis [19]. Vora et al. studied the Orai 
flux dynamics on neurons for calcium distribution [20–22]. Pawar and Pardasani 
studied the neuronal calcium dynamics using fractional approach [23]. Further they 
have also studied the nonlinear dynamics of nitric oxide impact on cells [24]. 

Based on the findings of this literature analysis, we can now present our model. 
Our model incorporates the time fractional reaction–diffusion technique, taking into 
account a leak, SERCA channel, and Orai channel flow at the cell boundary. This 
particular combination of components has not been previously examined. 

2 Model Formulation 

Calcium follows the reaction diffusion law of mass action and Fick’s law. From the 
natural cellular environment, we have developed the mathematical model with buffer 
and the written [25],

[
Ca+2

] + [B] k+ ⇐⇒
k− 

[CaB] (1) 

By using this fundamental law, we have 

∂
[
Ca+2

]

∂t
= DCa∇2

[
Ca+2

] − k+[B]
[
Ca+2

] + k−[CaB] − JSERCA + JIPR + JRYR 

And boundary condition is [26], 

dCa+2(±∞, t) 
dx

= JORAI (2) 

where is DCa > 0, −∞ < x < ∞, 0 ≤ t < ∞ 
Where k+ is the association rate and k− is the disassociation rate, B is buffer 

concentration which makes bond to calcium-free ions. DCa is the calcium diffusion 
coefficient. JSERCA is the calcium extraction mechanism of the endoplasmic reticulum, 
and JLeak is leak of calcium ion from endoplasmic reticulum to the cytosol, Jchan is 
channel flux of calcium to the soma, which formulation given below as [16],
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JSERCA = VSERCA 
C2 

K2 
SERCA + C2 

(3) 

RyR and IPR and Orai is formulated by, 

JRyR = kRyRPRyR
([
Ca2+

]
ER −

[
Ca2+

])
(4) 

JIPR = kIPROIPR
([
Ca2+

]
ER −

[
Ca2+

])
(5) 

JORAI = φ 
IORAI 

AO ∗ z ∗ F 
(6) 

where, VSERCA is Pump conductance, KSERCA Dissociation pump rate, kIPR Association 
rate of IPR, OIPR is the opening probability of the IPR channel is between 0 to 1, 
AO is area of channel, z is valency of calcium ion, Fis faraday constant,

[
Ca2+

]
is 

cytosolic calcium concentration. Transforming the integer order of time differential 
term to non-integer term where 0 < u ≤ 1, [27] 

0 
C Du 

t C = D 
∂2C 

∂x2 
− aC + b (7) 

Initial calcium concentration is taken as, 

C(x, 0) = g(x). 

3 Solution  

To solve this problem, we will use integral transform method and Green’s function. 
Applying the Fourier cosine transform on pace variable and Laplace transform 

on time for given physiological parameters with initial and boundary condition [28]. 

∼ 

C
∧

(k, s) = su−1g
∧

(k) 
su − Dk2 + a 

+ (b + jo) 
s(su − Dk2 + a) 

δ(k) (8) 

where k is Fourier variable and s is Laplace variable and applying the inverse 
transform to above equation using inverse transformation equation [28]. 

Eu
(
ptu

) ← L → 
su−1 

su − p 
&
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tγ −1 Eμ,γ (±ptμ ) ← L → 
sμ−1 

sμ ∓ p 
(9) 

C(x, t) = 
1 

2π

∫ ∞ 

0 
coskxEu

[{
Dk2 − a

}
tu

]
g
∧

(k)dk + (b + jo)tu 

1 

2π

∫ ∞ 

0 
coskxδ(k)Eu,u+1

[{
Dk2 − a

}
tu

]
dk (10) 

From this using the greens function for fundamental solution of the fractional 
reaction diffusion problem, 

G(x, t) = 
√
2 √
π

∫ ∞ 
0 coskxEu

[{
Dk2 − a

}
tu

]
dk 

+(b + jo)tu
√
2 √
π

∫ ∞ 

0 
coskxEu,u+1

[{
Dk2 − a

}
tu

]
dk (11) 

To solve Green’s function, 
we have applied the Laplace transform and Fourier cosine transform [29, 30], 
L
{
φ
(−μ, 1;−pt−μ

)} = s−1e−psμ 
,−1 < μ <  0, p > 0 

L
{
t−μMμ

( p 
tμ

)} = sμ−1e−psμ 
, 0 < μ <  1, p > 0 

Then we get, 

G(x, t) =
√

π √
2Dtu

∫ ∞ 

0 
e− x2 4tuk −aktu k− 1 

2 Mu(k)dk 

+ 
(b + jo)tu

√
π √

2Dtu

∫ ∞ 

0 
e− x2 4tuk −aktu k− 1 

2 �(−u, 1;−k)dk (12) 

where Mu(k) is the Mainardi’s function and φ(u, v; k) is wright function [31]. 

4 Result and Discussion 

The results are simulated using MATLAB for graphical analysis. The simulation 
approach is employed to visually represent the spatial and temporal pattern of calcium 
oscillation. The values of the necessary parameters are provided in Table 1. We can 
replicate the conditions of the neuron for both a healthy neuron and one damaged by 
Alzheimer’s disease.

The temporal distribution of the calcium profile is depicted in Fig. 1. The calcium 
profile exhibits an early surge, reaching a maximum of 1.1 μM. Following a rapid 
movement, it scatters within the cytosolic environment and attaches to a particular 
substance before being taken in by organelles such as the endoplasmic reticulum. 
However, the non-integer order transformation demonstrates a raise in calcium ion 
levels from 0.8 to 1. Furthermore, over a period of time, all lines converge.
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Table 1 Physiological values for computation 

Notation Parameter Value Unit 

DCa Diffusion coefficient 150–250 μm2/s 

C1 Cell ratio 0.185 

k− Association rate of EGTA 1.5 μM −1s−1 

k− Association rate of calbindin and calmodulin 75–120 μM −1s−1

[
Ca+2

]
∞ Background Calcium concentration 0.1 μM 

VSERCA SERCA pump conductance 120 s−1(μM )−2 

KIPR IPR association rate 0.52 s−1 

Ao Area of Orai channel 0.25 nm2 

[B] Buffer concentration 50–100 μM 

Io Current of Orai channel 2.1 fA

Fig. 1 Calcium concentration against the time with different temporal order 

The spatial distribution of calcium concentration is uniformly distributed from 
the boundary source into the neuron soma, as shown in Fig. 2. The behavior of 
the cytosolic calcium concentration aligns with the previously observed findings for 
fractional order u = 0.9, 0.8, and integer order u = 1 [28]. The cellular membrane 
and organelles exhibit calcium effluxes with a peak concentration of approximately 
1 μM. Varying the sequence of time differentiation had a notable effect on calcium 
concentration, however the curvature of calcium distribution remained consistent.
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Fig. 2 Calcium concentration against the space with different fractional order 

By referring to Fig. 3, we can observe the impact of various buffers on the calcium 
concentration in neurons. Calmodulin and calbindin play a crucial role as buffers in 
neurodegenerative diseases [32]. These functions are particular to various neurons. 
Their role is neuroprotective, which is observable. These two buffers are regulating 
the calcium content. This implication can result in cellular malfunction and an exces-
sive disruption of calcium homeostasis, ultimately leading to the demise of neuron 
cells.

Figure 4 displays the spatial distribution of cytosolic calcium ion concentration 
[Ca2+] under normal and Alzheimer’s conditions. The buffer concentration is set at 
B = 50 μM and B = 100 μM, with an association rate of k+ = 1.5μM −1s−1. An 
observable correlation is seen between the concentration of buffer and the profile 
of cytosolic calcium. A higher calcium concentration at B = 50 μM or below may 
indicate the advancement of a neural disease.

The spatial distribution of cytosolic calcium ion concentration [Ca2+] is depicted 
in Fig. 5, with varying values of the diffusion coefficient. Specifically, the diffusion 
coefficients of 250μm2s−1 and 100μm2s−1 are considered, which have implications 
for the calcium concentration level. Reducing the transport of calcium ions results 
in the accumulation of calcium near the membrane, which in turn affects cellular 
activities. By examining the graphical depiction, we may identify many parameters 
that can be incorporated to demonstrate a major influence. Here we can witness the 
influence of buffer on the SERCA channel, as well as the leak and boundary flux 
of Orai. Based on the simulation results, these findings are consistent with earlier 
results.
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Fig. 3 Calcium concentration against the space with different buffer Calbindin and Calmodulin

Fig. 4 Calcium concentration against the space with different buffer value
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Fig. 5 Calcium concentration against the space with D = 100 (red line), and 250 (blue line) 

5 Conclusion 

We have constructed the ER model incorporating store-operated calcium entry with 
boundary flux from the Orai channel. The closed form solutions of several types 
of Mittag–Leffler family functions, Mainardi’s function, and Wright function were 
derived through the use of Green’s function. 

The method incorporates the Laplace and Fourier cosine transform. Visualizing 
the closed form solution showed the significant impact of ER and Orai flux and impli-
cation on neuron. Spatio-temporal calcium distribution shows the nature of calcium 
concentration with different non-integer order transformation. Then changing the 
diffusion coefficient also elevated the calcium concentration and accumulation 
showed around the nerve cell membrane. 

Alzheimer impacted neuron observed with low buffer and this simulation shows 
this impact on calcium concentration. Buffer decreased and calcium overload to cell 
death. This cell loss led to dementia. Using fractional memory approach enhance 
the behavior and controlling strategy. Which develops other medicine combination 
to consider for biologist.
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Numerical Study of Thermo-Convective 
Instability of Au–Fe. 3O. 4 Hybrid 
Bi-Viscous Bingham Nanofluid 

Sanjalee Maheshwari and Rajesh Sharma 

Abstract In the present work, the thermal convective instability of hybrid bi-viscous 
Bingham nanofluid is numerically investigated using the Chebyshev spectral method. 
Considering the importance of gold and iron oxide nanoparticles in medical fields 
for optimized and targeted drug delivery, blood suspended with gold and iron oxide 
nanoparticles is taken as the working fluid. Flow dynamics are modeled using the 
modified Brinkman model for hybrid fluid and bi-viscous Bingham fluid model under 
the effect of Brownian, thermophoretic diffusion, and internal heat generation. The 
eigenvalue problem is derived from the linear stability analysis and normal mode 
technique. Further, the resulting eigenvalue problem is solved using the Chebyshev 
spectral method. The effect of pertinent flow governing parameters on the threshold 
of onset of convection is graphically presented and discussed in detail. It is observed 
that bi-viscous Bingham fluid suspended with only iron oxide nanoparticles is highly 
stable in the absence of an internal heat source. 

Keywords Bi-viscous Bingham fluid · Heat source · Hybrid nanofluid · Spectral 
method 

1 Introduction 

Choi [ 1] coined the term “nanoliquid” to describe a conventional fluid containing 
nanometer-sized metallic and non-metallic particles. Nanoliquids are widely uti-
lized in various industries such as automotive, electronics, and medicine due to their 
improved heat transfer properties. Despite their broad application, there is a growing 
interest in developing more efficient liquids than nanoliquids. The concept of “hybrid 
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nanoliquid” has emerged, which involves suspending different nanoparticles in a spe-
cific base liquid. Hybrid nanoliquids exhibit higher thermal conductivity compared to 
regular liquids and nanoliquids, making them valuable for biomedical and industrial 
applications including electronic cooling, atomic reactors, and drug delivery. 

The superior heat conductivity of hybrid nanoliquids has attracted significant 
attention from researchers aiming to address real-world challenges. For instance, 
Devi and Devi [ 2] conducted a numerical study on the hydromagnetic flow of Cu– 
Al. 2O. 3 water-based hybrid nanoliquid past a permeable stretching plane. Hayat and 
Nadeem [ 3] examined the effects of the chemical reaction and heat generation on 
radiating hybrid nanoliquid flowing past a stretching surface, while Hayat et al. [ 4] 
explored the same problem with partial slip boundary conditions. Ashorynejad and 
Shahriari [ 5] numerically analyzed the natural convection of Al. 2O. 3–Cu/water hybrid 
nanoliquid in a wavy wall cavity, revealing that a stronger magnetic field slows down 
the heat transfer rate. Additionally, Waini et al. [ 6] obtained dual solutions for the 
steady flow of hybrid nanoliquid past a stretching plane, conducting temporal stabil-
ity analysis to determine the stability of the solutions. Nadeem et al. [ 7] evaluated 
the heat transfer rate of Cu–Al. 2O. 3 hybrid nanoliquid in an exponentially stretch-
ing channel, while Wakif et al. [ 8] utilized a generalized Buongiorno’s model to 
investigate thermo-magneto convective instability in hybrid nanoliquid. 

The category of non-Newtonian fluids known as bi-viscous Bingham fluids holds 
significant importance. This classification encompasses liquids like blood, sauce, 
chocolate, and honey, which exhibit zero viscosity at infinite shear rates and vice 
versa. Chaturani and Samy [ 9] utilized the bi-viscous Bingham model to character-
ize blood rheology. Sarojamma and Vendabai [ 10] conducted an analytical study on 
the uniformly heated boundary layer flow of bi-viscous Bingham nanoliquid around 
a cylinder stretching radially. Several notable contributions to this field have been 
documented by [ 11– 13]. Aman et al. [ 14] conducted numerical investigations on the 
flow of hybrid bi-viscous Bingham nanoliquid through a vertical channel, incorpo-
rating Caputo time-fractional derivatives. 

In recent years, the utilization of nanoliquids has seen a significant rise in the treat-
ment of various medical conditions. Specifically, gold nanoparticles are extensively 
employed in cancer therapy due to their large size and high absorption capacity, 
while iron oxide nanoparticles are commonly used for magnetic resonance imag-
ing, magnetic hyperthermia, and drug delivery owing to their superparamagnetism 
and size [ 15]. The transfer of heat between the heart and the surrounding surface is 
notably influenced by nanoliquids through convective processes within the blood. 
Therefore, investigating the convective instability of blood in the presence of bi-
viscous Bingham liquid containing gold and iron oxide nanoparticles, along with an 
internal heat source, holds paramount importance in the medical field for enhancing 
healthcare practices. 

Based on the literature reviewed above, it is noteworthy that there has been no 
prior investigation into the convective instability of the Au–Fe. 3O. 4 hybrid bi-viscous 
Bingham nanofluid. Therefore, this article aims to examine the initiation of con-
vective currents in bi-viscous Bingham fluid (blood) containing gold and iron oxide
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Fig. 1 Geometry and 
Physical representation of 
the problem 

nanoparticles. The modeling of flow constitutive equations considers the presence 
of a non-uniform internal heat source. 

2 Mathematical Formulation 

Figure 1 depicts a horizontal enclosure with a finite thickness . d and infinite length, 
initially containing a bi-viscous Bingham hybrid nanofluid. An internal heat source 
.Q∗

o, varying across the system, is applied. The nanofluidic system experiences ther-
mal disturbance by heating the bottom layer while maintaining the upper layer at a 
constant temperature . Tc. To adhere to a realistic physical approach, a zero nanopar-
ticle mass flux constraint is enforced at the boundaries. Flow constitutive equations 
for present stability problem [ 14, 16, 17] are  

.∇∗V ∗ = 0, (1) 

. ρhn f

(
∂

∂t∗ + (V ∗ · ∇∗)
)
V ∗ = −∇∗ p∗ + μhn f

(
1 + 1

γ

)
∇∗2V ∗ −

ρhn f [1 − βT (T ∗ − Tc) + βC(φ∗ − φh)]gêz, (2) 

. (ρCp)hn f

(
∂

∂t∗ + (V ∗ · ∇∗)
)
T ∗ = khn f ∇∗2T ∗ + ∇∗T ∗

+Qo
∗(T ∗ − Tc) + (ρCp)np

(
DB∇∗φ∗ + DT

Tc
(∇∗T ∗)

)
, (3) 

.

(
∂

∂t∗
+ (V ∗ · ∇∗)

)
φ∗ = DB∇∗2φ∗ + DT

Tc
∇∗2T ∗. (4) 

Based on the above assumption, the problem under consideration has the following 
periphery conditions:
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. w∗ = 0, ∂w∗
∂z∗ = 0, T ∗ = Th, DB

∂φ∗
∂z∗ + DT

Tc
∂T ∗
∂z∗ = 0

at z∗ = 0 (the lower wall). (5) 

. w∗ = 0, ∂w∗
∂z∗ = 0, T ∗ = Tc, DB

∂φ∗
∂z∗ + DT

Tc
∂T ∗
∂z∗ = 0

at z∗ = d (the upper wall). (6) 

Here coefficients .DB and .DT are Brownian and thermophoretic diffusion coeffi-
cients that characterize the arbitrary motion of nanoparticles in a hybrid nanofluid. 
.Th is temperature at the lower wall, . γ is bi-viscous Bingham fluid parameter, . βT

is thermal expansion coefficient, and .βC is mass expansion coefficient. Through-
out the manuscript subscript .hn f is used for hybrid nanofluid, .p1 for iron oxide 
nanoparticles, .p2 for gold nanoparticles, and . f for base fluid blood. 

The thermophysical characteristics such as viscosity (. μ), density (. ρ), thermal 
conductivity (. k), and thermal expansion coefficient (.βC ) of hybrid nanofluid are 
calculated using the expression given in the study [ 18] using the thermophysical 
properties of base fluid blood, gold, and iron oxide nanoparticles given in the same 
study. The following dimensionless variables are incorporated to make the constitu-
tive PDEs non-dimensional: 

. (x, y, z) = x∗,y∗,z∗
d , t = t∗αhn f

d2 , T = T−Tc
Th−Tc

, φ = φ∗−φh

φh
, (u, v, w) = (u∗,v∗,w∗)d

αhn f
,

p = p∗d2

μhn f αhn f
, αhn f = khn f

(ρCp)hn f
, τ = (ρCp)np

(ρCp)hn f
. (7) 

The transformed dimensionless Eqs. 1–4 are given as follows: 

.∇ · V = 0, (8) 

.
1
Pr

(
∂
∂t + (V · ∇)

)
V = −∇ p +

(
1 + 1

γ

)
∇2V + RaT êz − Rnφêz, (9) 

.

(
∂

∂t
+ (V · ∇)

)
T = ∇2T + Nb

Le
∇φ∇T + HsT + NaNb

Le
(∇T )2, (10) 

.

(
∂

∂t
+ (V · ∇)

)
φ = 1

Le
∇2φ + Na

Le
∇2T . (11) 

And, the dimensionless form of boundary condition is given as follows: 

. w = 0, ∂w
∂z = 0, T = 1, ∂φ

∂z + Na ∂T
∂z = 0

at z = 0 (the lower wall). (12) 

. w = 0, ∂w
∂z = 0, T = 0, ∂φ

∂z + Na ∂T
∂z = 0

at z = 1 (the upper wall). (13)
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The expressions for dimensionless physical parameters appearing in Eqs. 8–11 are 

. Ra = g(ρβ)hn f (Th−Tc)d3

μhn f αhn f
, Le = αhn f

DB
, Hs = Qo

∗d2

khn f
, Nb = τφh,

Na = DT (Th−Tc)
DBφhTc

, Rn = (ρnp−ρ f )gφhd3

μhn f αhn f
. (14) 

Here .Ra is the thermal Rayleigh number, .Le is the Lewis number, .Hs is the non-
dimensional heat source parameter, .Nb is particle density increment, .Na is the 
modified diffusivity ratio, and.Rn is the nanoparticle concentration Rayleigh number. 

3 Primary Flow and Linear Stability Analysis 

Initially, the hybrid nanofluidic system is considered to be in a quiescent state, and 
physical properties such as pressure, temperature, and nanoparticle volume fraction 
are considered to be the only function of . z, expressed as follows: 

.V = (0, 0, 0), p = p̃(z), T = T̃ (z), φ = φ̃(z). (15) 

After incorporating Eq. 15, in Eqs.8–11 and using the boundary conditions, the 
following solutions for primary flow are obtained: 

.T̃ (z) = Sin(1 − z)
√
Hs

Sin
√
Hs

, (16) 

.
dφ̃

dz
= −Na

dT̃

dz
. (17) 

To test the stability of the primary flow, small disturbances are superimposed on the 
primary state, in the following way: 

.V = V
′
, p = p̃ + p

′
, T = T̃ + T

′
, φ = φ̃ + φ

′
. (18) 

After imposing the condition given by Eq. 18 into Eqs. 8–11 and taking only lin-
ear terms into account, the following equations involving perturbed quantities are 
obtained: 

.∇ · V ′ = 0, (19) 

.
1

Pr

∂V
′

∂t
= −∇ p

′ +
(
1 + 1

γ

)
∇2V

′ + RaT
′
êz − Rnφ

′
êz, (20) 

.
∂T

′

∂t
+ w

′ dT̃

dz
= (∇2 + Hs)T

′ + Nb

Le

∂ T̃

∂z
∇T

′ + Nb

Le

∂ T̃

∂z
∇φ

′
, (21) 

.
∂φ

′

∂t
− Na

dT̃

dz
w

′ = 1

Le
∇2φ

′ + Na

Le
∇2T

′
. (22)
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Boundary conditions subjected to the above-perturbed equations are 

. w
′ = 0, ∂w

′

∂z = 0, T
′ = 0, ∂φ

′

∂z + Na ∂T
′

∂z = 0,

at z = 0 & 1. (23) 

Now applying the operator.curl twice on both sides of Eq. 20, and using the identity 
.curl curl = grad div − grad2. .z-component perturbed equations are given as 

.
1

Pr

∂

∂t
(∇2w

′
) =

(
1 + 1

γ

)
∇4w

′ + Ra∇2
h T

′ − Rn∇2
hφ

′
, (24) 

here .∇2
h =

(
∂2

∂x2 + ∂2

∂y2

)
. 

4 Normal Mode Analysis 

Due to the translation invariance of constitutive equations in .x- and .y-direction, 
perturbed quantities. w

′
,. T

′
, and.φ

′
are considered as two-dimensional periodic time-

dependent waves and can be written as follows: 

.

⎡
⎣w

′
(x, y, z, t)

T
′
(x, y, z, t)

φ
′
(x, y, z, t)

⎤
⎦ =

⎡
⎣W (z)

Θ(z)

(z)

⎤
⎦ ei(ax+ay)+λt . (25) 

In the present stability problem, the oscillatory mode of convection has been com-
pletely ruled out due to the absence of two contrary buoyancy forces that are respon-
sible for oscillatory convection. Therefore only stationary convection mode (.λ = 0) 
is possible. After, incorporating Eq. 25 in Eqs. 21 and 22, we get the following 
non-dimensional stability equations: 

.

(
1 + 1

γ

)
(D2 − a2)2W − Raa2θ + Rna2
 = 0, (26) 

.(DT̃ )W −
(
D2 − a2 + Hs + NaNb

Le
DT̃ D

)
θ − Nb

Le
DT̃ D
 = 0, (27) 

.Na(DT̃ )W + Na

Le
(D2 − a2)θ + 1

Le
(D2 − a2)
 = 0. (28) 

Here, .ax and.ay are the wave numbers in .x- and.y-directions, respectively, such that 
.a2x + a2y = a2 and . ddz ≡ D. The above equations are solved by using the following 
boundary conditions: 

. W = 0, DW = 0, θ = 0, D
 + NaDθ = 0,

at z = 0 & 1. (29)
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Now, to convert the Neumann boundary condition into the Dirichlet one, we introduce 
the following transformation proposed by [ 19]: 

. Γ = −D
 − NaDΘ.

After applying the transformation and putting the value of primary flow quantities, 
the transformed form of Eqs. 26–28 is given as 

.

((
1 + 1

γ

)
(D2 − a2)2 + RnNaLeDT̃

)
W − Raa2θ − RnNaa2θ − RnDΓ = 0, (30) 

.DT̃W − (D2 − a2 + Hs)θ + Nb

Le
DT̃ Γ = 0, (31) 

.Na(DT̃ D + D2T̃ )W − 1

Le
(D2 − a2)Γ = 0. (32) 

The above simplified differential equations will be solved together with the following 
boundary conditions: 

.W = 0, DW = 0, θ = 0, Γ = 0, at z = 0 & 1. (33) 

5 Solution Methodology 

To study the stability of the present problem, the Chebyshev–Gauss–Lobatto spec-
tral method (CGLSM) is employed. The system of Eqs. 30–32 constitutes an eigen-
value problem along with the boundary condition given by Eq. 33. The CGLSM is 
employed as described in the study [ 20]. The method has been validated by com-
paring the results obtained for the regular fluid with the earlier published works and 
found to be in good agreement as presented in Table 1. 

Table 1 Comparison of the present results with the results of [ 21, 22], for regular fluid 

Yadav et al. Shivkumar and Suma Present results 

.Hs .Rac .ac .Rac .ac .Rac . ac

1 1704.5239 3.119 1704.5264 3.1189 1704.5264 3.119 

2 1694.9479 3.127 1694.9501 3.3.1265 1694.9501 3.126 

10 1462.8682 3.304 1462.8609 3.3036 1462.8609 3.304 

20 1118.4591 3.529 1118.4301 3.5291 1118.4301 3.529
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6 Results and Discussion 

In this section, the influence of various non-dimensional flow-characterizing parame-
ters on the threshold of convection in the hybrid nanofluid layer confined between two 
rigid channel walls has been graphically discussed. To understand the thermal sta-
bility of the fluidic system, neutral stability curves are sketched between the thermal 
Rayleigh number and wavenumber by taking the thermal Rayleigh number as a 
function of the wavenumber and various flow-characterizing parameters. The region 
between the curve and horizontal axis (representing the wavenumber) is considered 
a stable region. Hence, the vertical upward shift of the curve signifies the delay in 
the onset of convection. Further, the value of the wavenumber (critical wavenumber) 
corresponding to which the minimum value of the thermal Rayleigh number (criti-
cal thermal Rayleigh number) occurs helps to calculate the size of convection cells. 
Since convection cell size is calculated by the expression.

2π
ac
, the left horizontal shift 

of the minimum value of thermal Rayleigh number refers to the increase in the size 
of convection cells. 

Figure 2 is delineated to study the influence of the bi-viscous Bingham fluid param-
eter on the threshold of onset of convection. The infinite value of the parameter refers 
to the Newtonian fluid and from the figure it can be observed that with the increase 
in the bi-viscous Bingham fluid parameter, the critical value of the thermal Rayleigh 
number decreases. This observation is physically valid due to the fact of direct cor-
respondence between fluid parameters and fluid viscosity. Further, it can also be 
concluded that the use of non-Newtonian bi-viscous Bingham base fluid more stabi-

Fig. 2 Plots between.Ra and. a for various values of bi-viscous Bingham fluid parameter



Numerical Study of Thermo-Convective Instability … 221

Fig. 3 Plots between.Ra and. a for various values of heat source parameter 

lizes the system than that of the regular Newtonian base fluid. This outcome signifies 
the importance of considering the non-Newtonian behavior blood during the targeted 
drug administration. Since the critical value of the thermal Rayleigh number occurs 
at lower values of critical wavenumber with increasing value of bi-viscous Bingham 
fluid parameter, the size of the convection cell increases. 

In Fig. 3, the effect of the heat source parameter on the threshold of onset of 
convection is shown. Advancement in the onset of convection with the strength-
ening of heat source parameters is observed. This outcome is anticipated since the 
advancement of the heat source parameter corresponds to the more heat supply in the 
system, which causes more thermal disturbances and hence results in the prior onset 
of convection. The effect of nanoparticle volume fraction on the onset of convection 
is shown in Fig. 4. From the plots, the system is found to be more stable when only 

Table 2 Numerical values of 
critical thermal Rayleigh num-
ber for various values of con-
centration Rayleigh number 
and Lewis number 

.Rn .Le .Rac . ac

1 2 9002.9 4.40 

2 2 9007.9 4.40 

5 2 9022.8 4.40 

8 2 9037.8 4.40 

2 1 9000.9 4.40 

2 3 9014.8 4.40 

2 5 9028.8 4.40
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Fig. 4 Plots between.Ra and. a for various values of nanoparticle concentration 

iron oxide nanoparticles are present (.φp1 = 0 and .φp2 = 0.5) in the system due to 
the relatively lighter iron oxide nanoparticles than the gold nanoparticles. 

Fig. 5 Plots between.Ra and. a for various values of modified diffusivity parameter
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The modified diffusivity ratio is directly proportional to the ratio thermophoretic 
to Brownian diffusion and temperature difference between the channel walls. An 
increase in the modified diffusivity ratio signifies more diffusion through the temper-
ature difference than due to the Brownian motion. Therefore, with the increase in the 
modified diffusivity ratio thermal stability of the system decreases but the size of the 
convection cell increases as shown in Fig. 5. The influence of concentration Rayleigh 
number and Lewis number of the critical value of thermal Rayleigh number is numer-
ically computed and presented in Table 2. It is observed that with the increase in the 
concentration of Rayleigh number for fixed values of Lewis number, critical thermal 
Rayleigh number increases. A similar effect is observed for increasing the value of the 
Lewis number. Hence increase in both the concentration Rayleigh number and Lewis 
number stabilizes the system and delays the onset of convection in the fluid layer. 

7 Conclusion 

Thermal stability of the internally heated hybrid non-Newtonian nanofluid has been 
numerically discussed using the linear stability theory, normal mode technique, and 
Chebyshev–Gauss–Lobatto spectral method. Base fluid suspended with gold and 
iron oxide nanoparticles is considered as the working fluid. The accuracy of the used 
method is proved by comparing the outcomes of the limiting cases of the study with 
the previously published works. The key findings of the study are abridged as follows: 

• Bi-viscous Bingham non-Newtonian base fluid stabilizes the system and delays 
the starting of convective current in the fluidic system. 

• Heat supply thermally distraughts the system and advances the onset of convection. 
• The presence of heavier gold nanoparticles sets the convection earlier and hence 
destabilizes the system. 

• The nanofluidic system will be most stable when suspended with iron oxide 
nanoparticles and the system is kept in the absence of an internal heat source. 
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