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Preface

This book provides a self-contained introduction to the foundations of math-
ematics, where self-contained means that we assume as little prerequisites as
possible. One such assumption is the notion of finiteness, which cannot be
defined in mathematics.

The firm foundation of mathematics we provide is based on logic and mod-
els. In particular, it is based on Hilbert’s axiomatisation of formal logic (in-
cluding the notion of formal proofs), and on the notion of models of mathe-
matical theories. On this basis, we first prove Gödel’s Completeness Theorem
and Gödel’s Incompleteness Theorems, and then we introduce Zermelo’s Ax-
ioms of Set Theory. On the one hand, Gödel’s Theorems set the framework
within which mathematics takes place. On the other hand, using the example
of Analysis, we shall see how mathematics can be developed in a model of
Set Theory. So, Gödel’s Theorems and Zermelo’s Axioms are indeed a firm
foundation of mathematics.

The book consists of four parts. The first part is an introduction to First-
Order Logic from scratch. Starting with a set of symbols, the basic concepts
of formal proofs and models are developed, where special care is given to the
notion of finiteness.

The second part is concerned with Gödel’s Completeness Theorem.
Our proof follows Henkin’s construction [23]. However, we modified Henkin’s
construction in order to work just with potentially infinite sets and to avoid
the use of actually infinite sets. Even though Henkin’s construction works also
for uncountable signatures, we prove the general Completeness Theorem
with an ultraproduct construction, using  Loš’s Theorem.

After a preliminary chapter on countable models of Peano Arithmetic, the
third part is mainly concerned with Gödel’s Incompleteness Theorems,
which will be proved from scratch (i.e., purely from the axioms of Peano
Arithmetic) without any use of Recursion Theory. In Chapter 10 and 12 some
weaker theories of arithmetic are investigated. In particular, in Chapter 10 it
is shown that Gödel’s First Incompleteness Theorem also applies for
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Robinson Arithmetic and in Chapter 12 it is shown that Presburger Arith-
metic is complete.

In the last part we present first Zermelo’s axioms of Set Theory, includ-
ing the Axiom of Choice. Then we discuss the consistency of this axiomatic
system and provide standard and non-standard models of Set Theory (in-
cluding Gödel’s model L). After introducing the construction of models with
ultraproducts, we prove the Completeness Theorem for uncountable sig-
natures as well the the Löwenheim-Skolem Theorems. In the last two
chapters, we construct several standard and non-standard models of Peano
Arithmetic and of the real numbers, and give a brief introduction to Non-
Standard Analysis.

Zürich and Koblenz, 28 April 2020 L. Halbeisen and R. Krapf

To the second edition.

Besides many corrections and additions, this second edition now contains
detailed solutions to all exercises.

Zürich and Bonn, 27 July 2024 L. Halbeisen and R. Krapf
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Chapter 0

A Framework for Metamathematics

In the late 19th and early 20th century, several unsuccessful attempts were
made to develop the natural numbers from logic. The most promising ap-
proaches were the ones due to Frege and Russell, but also their approaches
failed at the end. Even though it seems impossible to develop the natural
numbers just from logic, it is still necessary to formalise them.

In fact, the problem with the natural numbers is, that we need the notion
of finiteness in order to define them. This presupposes the existence of a kind
of infinite list of objects, and it is not clear whether these objects are — in
some sense — not already the natural numbers which we would like to define.

However, in our opinion there is a subtle distinction between the infinite
set of natural numbers and an arbitrarily long list of objects, since the set
of natural numbers is an actually infinite set, whereas an arbitrarily long list
is just potentially infinite. The difference between these two types of infin-
ity is, that the actual infinity is something which is completed and definite
and consists of infinitely many elements. On the other hand, the potential
infinity — introduced by Aristotle — is something that is always finite, even
though more and more elements can be added to make it arbitrarily large. For
example, the set of prime numbers can be considered as an actually infinite
set (as Cantor did), or just as a potentially infinite list of numbers without
last element which is never completed (as Euclid did).
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2 0 A Framework for Metamathematics

As mentioned above, it seems that there is no way to define the natural
numbers just from logic. Hence, if we would like to define them, we have to
make some assumptions which cannot be formalised within logic or mathe-
matics in general. In other words, in order to define the natural numbers we
have to presuppose some metamathematical notions like, for example, the no-
tion of f i n i t e n e s s. To emphasise this fact, we shall use a wider letter
spacing for the metamathematical notions we suppose.

The combination of all metamathematical assumptions we take, forms the
so-called metatheory, that is then implicitly used to carry out logical argu-
ments. Metatheories form an essential part of logic, because describing the
machinery behind any syntactic rule necessarily requires semantic explana-
tion. While there are many canonical ways of choosing a certain metatheory
to work with, there are two properties which all of them have in common:

1. A metatheory has to be informal by design — otherwise, if we decide to
formalise a syntactic metatheory, we will in turn require a “metametathe-
ory” to achieve that, which in term has to be formalised, requiring this
process to be repeated ad infinitum. To prevent this from happening, for-
mal logic always has to rely on some inherently non-formal foundation.

2. A metatheory has to capture some inherently physical properties about
the world we exist in. Indeed, the standard procedure for creating math-
ematical proofs requires that we can physically write them down in finite
time. While this approach seems very natural, it forces us to define f i -
n i t e objects as those that satisfy a certain material property inside
this universe. This way f i n i t e n e s s becomes something inherently
physical and needs to be included inside the metatheory per se, without
a formal mathematical definition.

We remark that the ideal metatheory ought to be inherently uncontro-
versial, i.e., it should only contain the bare necessities needed to carry out
logical arguments, with the remaining load being offset to formal axiomatic
systems. This way we do not have to question the “validity” of mathematical
results, since those become nothing more than logical consequences derived
from axiomatic systems.

So, let us assume that we all have a notion of f i n i t e n e s s. Let us fur-
ther assume that we have two characters, say 0 and s. With these characters,
we build now the following f i n i t e strings:

0 s0 s s0 s s s0 s s s s0 s s s s s0 . . .

The three dots on the right of the above expression mean that we always
build the next string by appending on the left the character s to the string
we just built. Proceeding this way, we get in fact a potentially infinite “list”
N of different strings which is never completed.
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More formally, we build this potentially infinite list step by step as follows:
We start with the empty list, denoted [ ]. Then we append the list [0], which
contains just the string 0, to the list [ ], denoted [ ] + [0], and obtain the
list [0]. Similarly, we append the list [s0] to the list [0], denoted [0] + [s0],
and obtain the list [0, s0]. In this way we obtain arbitrary long f i n i t e
lists of f i n i t e strings of symbols. This never-ending process leads to the
potentially infinite list of so-called natural numbers, i.e.,

N = [0, s0 , s s0 , s s s0 , s s s s0 , s s s s s0 , . . .

For the sake of simplicity, we consider N as a list, i.e.,

N = [0, s0 , s s0 , s s s0 , s s s s0 , s s s s s0 , . . .]

even though N itself, without assuming actual infinity, is not a proper list.
For each natural number n in the list N we have:

either n ≡ 0 or n ≡ σ0 ,

where the symbol ≡ means “identical to” and σ is a non-empty f i n i t e
string of the form s · · · s and hence σ0 has the form

s · · · s︸ ︷︷ ︸
non-empty
finite string

0 .

If σ and π are both (possibly empty) f i n i t e strings of the form s · · · s,
then we write σπ for the concatenation of σ and π, i.e., for the string obtained
by writing first the sequence σ followed by the sequence π.

Remark. For any (possibly empty) strings σ, π, ϱ of the form s · · · s we get

σπ0 ≡ πσ0 , sσπ0 ≡ sπσ0 , sσπ0 ≡ σsπ0 ,

and further we get:

σ0 ≡ π0 Î===Ï sσ0 ≡ sπ0

σ0 ≡ π0 Î===Ï σϱ0 ≡ πϱ0

If we order f i n i t e strings of the form

s · · · s︸ ︷︷ ︸
possibly empty
finite string

0

by their length, we obtain that two strings are identical if and only if they
have the same length. From this rather geometric point of view, the facts
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above can be deduced from Euclid’s Elements, where he writes the following
statements (see [9, p. 155]):

1. Things which are equal to the same thing are also equal to one another.

2. If equals be added to equals, the wholes are equal.

3. If equals be subtracted from equals, the remainders are equal.

4. Things which coincide with one another are equal to one another.

It is convenient to use Hindu-Arabic numerals to denote explicitly given
natural numbers (e.g., we write the symbol 1 for s0 ) and Latin letters like
n,m, . . . for non-specified natural numbers. If n and m denote different nat-
ural numbers, where n appears earlier than m in the list N, then we write
n < m and the expression n, . . . ,m means the natural numbers which belong
to the sublist [n, . . . ,m] of N; if n appears later than m in N, then we write
n > m and the expression n, . . . ,m denotes the empty set.

We shall use natural numbers frequently as subscripts for f i n i t e lists of
objects like t1, . . . , tn. In this context we mean that for each natural number
k in the list [1, . . . , n], there is an object tk, where in the case when n = 0,
the set of objects is empty.

If n is a natural number, then n + 1 denotes the natural number sn (i.e.,
the number which appears immediately after n in the list N); and if n ̸= 0,
then n− 1 denotes the natural number which appears immediately before n
in the list N. Furthermore, for σ0, π0 in the list N, we define

σ0 + 0 :≡ σ0 and 0 + π0 :≡ π0 ,

and in general, we define:
σ0 + π0 :≡ σπ0

Finally, by our construction of natural numbers we get the following fact:

If a statement A holds for 0 and if whenever A holds for
a natural number n in N then it also holds for n+ 1, then
the statement A holds for all natural numbers n in N.

This fact is known as I n d u c t i o n P r i c i p l e, which is an important
tool in proving statements about natural numbers.

A second principle, which also uses that each natural number is either 0
or the successor of some natural number n in N, is the R e c u r s i o n
P r i n c i p l e:

If we define X0, and if whenever Xn is defined then we
can define Xn+1, then Xn can be defined for all natural
numbers n in N.
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All together, F i n i t e n e s s, N a t u r a l N u m b e r s, the I n -
d u c t i o n P r i n c i p l e and the R e c u r s i o n P r i n c i p l e
define the classical metatheory that we will almost exclusive use to derive
metamathematical results. There will be only a handful of exceptions where
we strengthen our metatheory by adding the L a w o f E x c l u d e d
M i d d l e and some elements from N a i v e S e t T h e o r y, primarily
to argue about models and their construction. In this case we are using a
strong metatheory, as summarised in the drawing below.

Recursion Principle

Induction Principle

Natural Numbers

Finiteness

Law of Excluded Middle

Naive Set Theory

classical metatheory

strong metatheory



Part I

Introduction to First-Order Logic

First-Order Logic is the system of Symbolic Logic con-
cerned not only to represent the logical relations between
sentences or propositions as wholes (like Propositional
Logic), but also to consider their internal structure in
terms of subject and predicate. First-Order Logic can
be considered as a kind of language which is distin-
guished from higher-order languages in that it does not
allow quantification over sets of elements of the domain
or other objects of higher type (like statements of infi-
nite length or statements about formulas). Nevertheless,
First-Order Logic is strong enough to formalise all of Set
Theory and thereby virtually all of Mathematics.
The goal of this brief introduction to First-Order Logic
is to introduce the basic concepts of formal proofs and
models, which will be investigated further in Part II and
Part III.



Chapter 1

Syntax: The Grammar of Symbols

The goal of this chapter is to develop the formal language of First-Order
Logic from scratch. At the same time, we introduce some terminology of
the so-called metalanguage, which is the language we use when we speak
about the formal language (e.g., when we want to express that two strings
of symbols are equal). In the metalanguage, we shall use some notions of
N a i v e S e t T h e o r y like sets (which will always be f i n i t e), the
membership relation ∈, the empty set ∅, or the subset relation ⊆. We would
like to emphasise that these notions are not part of the language of formal
logic and that they are just used in an informal way.

Alphabet

Like any other written language, First-Order Logic is based on an alphabet,
which consists of the following symbols:

(a) Variables such as x, y, v0, v1, . . . , which are place holders for objects of
the domain under consideration (which can, e.g., be the elements of a
group, natural numbers, or sets). We mainly use lower case Latin letters
(with or without subscripts) for variables.

(b) Logical operators which are ¬ (not), ∧ (and), ∨ (or), and→ (implies).

(c) Logical quantifiers which are the existential quantifier ∃ (there is or
there exists) and the universal quantifier ∀ ( for all or for each), where
quantification is restricted to objects only and not to formulae or sets of
objects (but the objects themselves may be sets).

(d) Equality symbol = which is a special binary relation symbol (see be-
low).

(e) Constant symbols like the number 0 in Peano Arithmetic, or the neu-
tral element e in Group Theory. Constant symbols stand for fixed indi-
vidual objects in the domain.
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10 1 Syntax: The Grammar of Symbols

(f) Function symbols such as ◦ (the operation in Group Theory), or +, · , s
(the operations in Peano Arithmetic). Function symbols stand for fixed
functions taking objects as arguments and returning objects as values.
With each function symbol we associate a positive natural number, its
co-called arity (e.g., ◦ is a 2-ary or binary function, and the successor
operation s is a 1-ary or unary function). More formally, to each function
symbol F we adjoin a fixed f i n i t e string of place holders x · · · x and
write F x · · · x .

(g) Relation symbols or predicate constants (such as ∈ in Set Theory)
stand for fixed relations between (or properties of) objects in the domain.
Again, we associate an arity with each relation symbol (e.g., ∈ is a binary
relation). More formally, to each relation symbol R we adjoin a fixed
f i n i t e string of place holders x · · · x and write R x · · · x .

The symbols in (a)–(d) form the core of the alphabet and are called logi-
cal symbols. The symbols in (e)–(g) depend on the specific topic we are
investigating and are called non-logical symbols. The set of non-logical
symbols which are used in order to formalise a certain mathematical theory
is called the signature (or language) of this theory, and formulae which are
formulated in a language L are usually called L -formulae. For example, if
we investigate groups, then the only non-logical symbols we use are e and ◦ ,
thus L = {e, ◦} is the language of Group Theory.

Terms & Formulae

With the symbols of our alphabet, we can now start to compose names. In
the language of First-Order Logic, these names are called terms. Suppose
that L is a signature.

Terms. A string of symbols is an L -term, if it results from applying
f i n i t e l y many times the following rules:

(T0) Each variable is an L -term.
(T1) Each constant symbol in L is an L -term.
(T2) If τ1, . . . , τn are any L -terms which we have already built and F x · · · x is

an n-ary function symbol in L , then Fτ1 · · · τn is an L -term (each place
holder x is replaced by an L -term).

When we write general statements which are independent of the signature L ,
we omit the prefix L and simply write term rather than L -term. Terms of
the form (T0) or (T1) are the most basic terms we have, and since every term
is built up from such terms, they are called atomic terms. In order to define
the rule (T2) we had to use variables for terms, but since the variables of
our alphabet stand just for objects of the domain and not for terms or other
objects of the formal language, we had to introduce new symbols. For these
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new symbols, which do not belong to the alphabet of the formal language,
we have chosen Greek letters. In fact, we shall mainly use Greek letters for
variables which stand for objects of the formal language, also to emphasise
the distinction between the formal language and the metalanguage. However,
we shall use the Latin letters F and R as variables for function and relation
symbols, respectively.

Note that this recursive definition of terms allows us to use the following
principle: If we want to prove that all terms satisfy some property Φ, then
one has to prove that

• all variables satisfy Φ;
• each constant symbol satisfies Φ;
• if some terms τ1, . . . , τn satisfy Φ, then so does Fτ1, · · · , τn for every
n-ary function symbol F .

We call this principle induction on term construction.
In order to make terms, relations, and other expressions in the formal

language easier to read, it is convenient to introduce some more symbols,
like brackets and commas, to our alphabet. For example, we usually write
F (τ1, . . . , τn) rather than Fτ1 · · · τn.

To some extent, terms correspond to names, since they denote objects of
the domain under consideration. Like real names, they are not statements
and cannot express or describe possible relations between objects. So, the
next step is to build sentences, or more precisely formulae, with these terms.

Formulae. A string of symbols is called an L -formula, if it results from
applying f i n i t e l y many times the following rules:

(F0) If τ1 and τ2 are L -terms, then = τ1τ2 is an L -formula.
(F1) If τ1, . . . , τn are any L -terms and R x · · · x is any non-logical n-ary relation

symbol in L , then Rτ1 · · · τn is an L -formula.
(F2) If φ is any L -formula which we have already built, then ¬φ is an L -

formula.
(F3) If φ and ψ are L -formulae which we have already built, then ∧φψ, ∨φψ,

and → φψ are L -formulae.
(F4) If φ is an L -formula which we have already built, and ν is an arbitrary

variable, then ∃νφ and ∀νφ are L -formulae.

As in the case of terms, we usually write simply formula rather than
L -formula unless the statement in question refers to a specific language.
Formulae of the form (F0) or (F1) are the most basic formulae we have,
and since every formula is a logical connection or a quantification of these
formulae, they are called atomic formulae.

In order to make formulae easier to read, we usually use infix notation
instead of Polish notation, and use brackets if necessary. For example, we
usually write φ∧ψ instead of ∧φψ, φ→ (ψ → φ) instead of→ φ→ ψφ, and
(φ→ ψ)→ φ instead of →→ φψφ.



12 1 Syntax: The Grammar of Symbols

In the same way as for terms, a property Φ is satisfied by all formulae if
we check the following:

• All atomic formulae satisfy Φ.
• If φ and ψ satisfy Φ and ν is a variable, then so do ¬φ,φ ∧ ψ, φ ∨ ψ,
φ→ ψ, ∃νφ and ∀νφ.

In accordance with the corresponding principle for terms, we denote this as
induction on formula construction.

For binary relation symbols R x x and binary function symbols F x x, it is
convenient to write xRy and xFy instead of R(x, y) and F (x, y), respectively.
For example, we usually write x = y instead of = xy.

If a formula φ is of the form ∃νψ or ∀νψ (for some variable ν and some
formula ψ) and the variable ν occurs in ψ, but not immediately after a quan-
tifier, then we say that ν is in the range of a logical quantifier. Every occur-
rence of a variable ν in a formula φ, where ν occurs not immediately after a
quantifier, is said to be bound by the innermost quantifier in whose range
it is. If an occurrence of the variable ν at a particular place — not after a
quantifier — is not in the range of a quantifier, it is said to be free at that
particular place. Notice that it is possible that a variable occurs in a given
formula at a certain place at bound and at another place at free. For example,
in the formula ∃z(x = z) ∧ ∀x(x = y), the variable x occurs bound and free,
whereas z occurs just bound and y occurs just free. However, one can always
rename the bound variables occurring in a given formula φ such that each
variable in φ is either bound or free — the rules for this procedure are given
later. For a formula φ, the set of variables occurring free in φ is denoted by
free(φ). A formula φ is a sentence (or a closed formula) if it contains no
free variables (i.e., free(φ) = ∅). For example, ∀x(x = x) is a sentence but
x = x is just a formula.

In analogy to this definition, we say that a term is a closed term if it
contains no variables. Obviously, the only terms which are closed are the
constant symbols and the function symbols followed by closed terms.

Sometimes it is useful to indicate explicitly which variables occur free in a
given formula φ, and for this we usually write φ(x1, . . . , xn) to indicate that
{x1, . . . , xn} ⊆ free(φ).

If τ and τ0 are terms and ν is a variable, then τ(ν/τ0) is the term that we
obtain from τ after replacing all instances of ν bei τ0. In the case of a formula,
this is more complicated since variables are either free or bound. Hence, if φ
is a formula, ν a variable, and τ a term, then φ(ν/τ) is the formula we get
after replacing all free instances of the variable ν by τ . The process by which
we obtain the formula φ(ν/τ) is called substitution. Now, a substitution is
admissible if and only if no free occurrence of ν in φ is in the range of a
quantifier that binds any variable which appears in τ (i.e., for each variable
ν̃ appearing in τ , no place where ν occurs free in φ is in the range of ∃ν̃ or
∀ν̃). For example, if x /∈ free(φ), then φ(x/τ) is admissible for any term τ .
In this case, the formulae φ and φ(x/τ) are identical, which we express by



Axioms 13

φ ≡ φ(x/τ). In general, we use the symbol ≡ in the metalanguage to denote
an equality of strings of symbols of the formal language. Furthermore, if φ is
a formula and the substitution φ(x/τ) is admissible, then we write just φ(τ)
instead of φ(x/τ). In order to express this, we write φ(τ) :≡ φ(x/τ), where
we use the symbol :≡ in the metalanguage to define symbols (or strings of
symbols) of the formal language.

So far, we have letters, and we can build names and sentences. However,
these sentences are just strings of symbols without any inherent meaning.
At a later stage, we shall interpret formulae in the intuitively natural way
by giving the symbols their intended meaning (e.g., ∧ meaning “and”, ∀x
meaning “for all x”, et cetera). But before we shall do so, let us stay a
little bit longer on the syntactical side — nevertheless, one should consider
the formulae from a semantical point of view as well.

Axioms

In what follows, we shall label certain formulae or types of formulae as ax-
ioms, which are used in connection with inference rules in order to derive
further formulae. From a semantical point of view we can think of axioms
as “true” statements from which we deduce or prove further results. We dis-
tinguish two types of axiom, namely logical axioms and non-logical axioms
(which will be discussed later). A logical axiom is a sentence or formula φ
which is universally valid (i.e., φ is true in any possible universe, no matter
how the variables, constants, et cetera, occurring in φ are interpreted). Usu-
ally, one takes as logical axioms some minimal set of formulae that is sufficient
for deriving all universally valid formulae — such a set is given below.

If a symbol, involved in an axiom, stands for an arbitrary relation, function,
or even for a first-order formula, then we usually consider the statement as
an axiom schema rather than a single axiom, since each instance of the
symbol represents a single axiom. The following list of axiom schemata is a
system of logical axioms.

Let φ, φ1, φ2, φ3, and ψ, be arbitrary formulae:

L0: φ ∨ ¬φ
L1: φ→ (ψ → φ)
L2: (ψ → (φ1 → φ2))→ ((ψ → φ1)→ (ψ → φ2))
L3: (φ ∧ ψ)→ φ
L4: (φ ∧ ψ)→ ψ
L5: φ→ (ψ → (ψ ∧ φ))
L6: φ→ (φ ∨ ψ)
L7: ψ → (φ ∨ ψ)
L8: (φ1 → φ3)→ ((φ2 → φ3)→ ((φ1 ∨ φ2)→ φ3))
L9: ¬φ→ (φ→ ψ)
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Let τ be a term, ν a variable, and assume that the substitution which leads
to φ(ν/τ) is admissible:

L10: ∀νφ(ν)→ φ(τ)
L11: φ(τ)→ ∃νφ(ν)

Let ψ be a formula and let ν a variable such that ν /∈ free(ψ):

L12: ∀ν(ψ → φ(ν))→ (ψ → ∀νφ(ν))
L13: ∀ν(φ(ν)→ ψ)→ (∃νφ(ν)→ ψ)

What is not yet covered is the symbol =, so let us now have a closer look at
the binary equality relation. The defining properties of equality can already
be found in Book VII, Chapter 1 of Aristotle’s Topics [2], where one of the
rules to decide whether two things are the same is as follows: . . . you should
look at every possible predicate of each of the two terms and at the things of
which they are predicated and see whether there is any discrepancy anywhere.
For anything which is predicated of the one ought also to be predicated of the
other, and of anything of which the one is a predicate the other also ought to
be a predicate.

In our formal system, the binary equality relation is defined by the following
three axioms. Let τ, τ1, . . . , τn, τ

′
1, . . . , τ

′
n be arbitrary terms, let R be an n-ary

relation symbol (e.g., the binary relation symbol =), and let F be an n-ary
function symbol:

L14: τ = τ
L15:

(
τ1 = τ ′1 ∧ · · · ∧ τn = τ ′n

)
→
(
R(τ1, . . . , τn)→ R(τ ′1, . . . , τ

′
n)
)

L16:
(
τ1 = τ ′1 ∧ · · · ∧ τn = τ ′n

)
→
(
F (τ1, . . . , τn) = F (τ ′1, . . . , τ

′
n)
)

where the ambiguous formula
(
τ1 = τ ′1 ∧ · · · ∧ τn = τ ′n

)
written in Polish

notation reads as:

∧= τ1τ
′
1 ∧= τ2τ

′
2 ∧= τ3τ

′
3 ∧ · · · ∧= τn−1τ

′
n−1 = τnτ

′
n

Finally, we define the logical operator ↔, the quantifier ∃! and the binary
relation symbol ̸= by stipulating:

φ↔ ψ :⇐⇒ (φ→ ψ) ∧ (ψ → φ) ,

∃!νφ :⇐⇒ ∃ν(φ(ν) ∧ ∀µ(φ(µ)→ µ = ν))

τ ̸= τ ′ :⇐⇒ ¬(τ = τ ′) ,

where we use the symbol :⇐⇒ in the metalanguage to define relations between
symbols (or strings of symbols) of the formal language (i.e., ↔, ∃!νφ and ̸=
are just abbreviations).

This completes the list of our logical axioms. In addition to these axioms,
we are allowed to state arbitrarily many formulae. In logic, such a (possibly
empty) set of formulae is also called a theory, or, when the signature L
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is specified, an L -theory. The formulae of a theory are the axioms of the
theory, which are called non-logical axioms. So, a non-logical axiom is in
fact just a formula which is not a logical axiom. Furthermore, the axioms
of mathematical theories are always sentences, i.e., formulae without free
variables. However, in order to develop the notion of formal proofs, we will
also consider theories consisting of arbitrary sets of formulae — such theories
are relevant only in logic.

Examples of mathematical theories (i.e., of sets of non-logical axioms)
which will be discussed in this book are the axioms of Set Theory (see
Part IV), the axioms of Peano Arithmetic PA (also known as Number The-
ory), and the axioms of Group Theory GT, which we discuss first.

GT: The language of Group Theory is LGT = {e, ◦}, where e is a constant
symbol and ◦ is a binary function symbol.

GT0: ∀x∀y∀z(x◦(y ◦z) = (x◦y)◦z) (i.e., ◦ is associative)

GT1: ∀x(e◦x = x) (i.e., e is a left-neutral element)

GT2: ∀x∃y(y ◦x = e) (i.e., every element has a left-inverse)

PA: The language of Peano Arithmetic is LPA = {0, s,+, · }, where 0 is a
constant symbol, s is a unary function symbol, and +, · are binary function
symbols.

PA0: ¬∃x(sx = 0)

PA1: ∀x∀y(sx = sy → x = y)

PA2: ∀x(x+ 0 = x)

PA3: ∀x∀y(x+ sy = s(x+ y))

PA4: ∀x(x · 0 = 0)

PA5: ∀x∀y(x · sy = (x · y) + x)

Let φ be an arbitrary LPA-formula with free(φ) = {x}:

PA6:
(
φ(0) ∧ ∀x(φ(x)→ φ(sx))

)
→ ∀xφ(x)

Notice that PA6 is an axiom schema, known as the Induction Schema, and not
just a single axiom like PA0–PA5.

It is often convenient to add certain defined symbols to a given language so
that the expressions get shorter or are at least easier to read. For example, in
Peano Arithmetic — which is an axiomatic system for the natural numbers —
we usually replace the expression s0 with 1 and ss0 with 2. More formally,
we define:

1 :≡ s0 and 2 :≡ ss0

where we use the symbol :≡ in the metalanguage to define new constant
symbols or certain formulae. Obviously, all that can be expressed in the
language LPA ∪ {1, 2} can also be expressed in LPA.
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Formal Proofs

So far, in a certain language we have a set of logical axioms and can assume
some non-logical axioms. Furthermore, we can define, if we wish, as many
new constants, functions, and relations as we like. However, we are still not
able to deduce anything from the given axioms, since until now, we do not
have inference rules which allow us, for example, to infer a certain sentence
from a given set of axioms.

Surprisingly, just two inference rules are sufficient, namely:

Modus Ponens (MP):
φ→ ψ, φ

ψ
and Generalisation (∀): φ

∀νφ

In the former case we say that the formula ψ is obtained from φ → ψ and
φ by Modus Ponens, abbreviated (MP), and in the latter case we say that
∀νφ (where ν can be any variable) is obtained from φ by Generalisation,
abbreviated (∀).

Using these two inference rules, we are now able to define the notion of a
formal proof: Let L be a signature (i.e., a possibly empty set of non-logical
symbols) and let Φ be a possibly empty set of L -formulae (e.g., a set of non-
logical axioms). An L -formula ψ is provable from Φ (or provable in Φ),
denoted Φ ⊢ ψ, if there is a f i n i t e sequence φ0, . . . , φn of L -formulae
such that φn ≡ ψ (i.e., the formulae φn and ψ are identical), and for all i
with i ≤ n we are in at least one of the following cases:

• φi is a logical axiom, or

• φi ∈ Φ, or

• there are j, k < i such that φj ≡ φk → φi, or

• there is a j < i such that φi ≡ ∀ν φj , where ν is a variable which does
not occur free in any formula of Φ.

The sequence φ0, . . . , φn is then called a formal proof of ψ.

In the case when Φ is the empty set, we simply write ⊢ ψ. If a formula ψ
is not provable from Φ, i.e., if there is no formal proof for ψ which uses just
formulae from Φ, then we write Φ ⊬ ψ.

Formal proofs, even of very simple statements, can get quite long and tricky.
Nevertheless, we shall give a few examples:

Example 1.0. To warm up, let us formally prove that the equality relation
is reflexive, which is expressed by the sentence ∀x(x = x):

φ0: x = x instance of L14
φ1: ∀x(x = x) from φ0 by (∀)
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Now, let us give a formal proof of ∃x(x = x):

φ0: x = x instance of L14
φ1: x = x→ ∃x(x = x) instance of L11 (notice that for φ ≡ x = x, the

substitution φ(x/x) is admissible)
φ2: ∃x(x = x) from φ1 and φ0 by (MP)

Example 1.1. For every formula φ we have:

⊢ φ→ φ

A formal proof of φ→ φ is given by:

φ0: (φ→ ((φ→ φ) → φ)) → ((φ→ (φ→ φ)) → (φ→ φ)) instance of L2
φ1: φ→ ((φ→ φ) → φ) instance of L1
φ2: (φ→ (φ→ φ)) → (φ→ φ) from φ0 and φ1 by (MP)
φ3: φ→ (φ→ φ) instance of L1
φ4: φ→ φ from φ2 and φ3 by (MP)

Example 1.2. We give a formal proof of PA ⊢ 1+1 = 2. Recall that we have
defined 1 :≡ s0 and 2 :≡ ss0, so we need to prove PA ⊢ s0 + s0 = ss0.

φ0: ∀x∀y(x+ sy = s(x+ y)) PA3

φ1: ∀x∀y(x+ sy = s(x+ y)) → ∀y(s0 + sy = s(s0 + y)) instance of L10
φ2: ∀y(s0 + sy = s(s0 + y)) from φ1 and φ0 by (MP)
φ3: ∀y(s0 + sy = s(s0 + y)) → s0 + s0 = s(s0 + 0) instance of L10
φ4: s0 + s0 = s(s0 + 0) from φ3 and φ2 by (MP)
φ5: ∀x(x+ 0 = x) PA2

φ6: ∀x(x+ 0 = x) → s0 + 0 = s0 instance of L10
φ7: s0 + 0 = s0 from φ6 and φ5 by (MP)
φ8: s0 + 0 = s0 → s(s0 + 0) = ss0 instance of L16
φ9: s(s0 + 0) = ss0 from φ8 and φ7 by (MP)
φ10: s0 + s0 = s0 + s0 instance of L14
φ11: φ9 → (φ10 → (φ10 ∧ φ9)) instance of L5
φ12: φ10 → (φ10 ∧ φ9) from φ11 and φ9 by (MP)
φ13: φ10 ∧ φ9 from φ12 and φ10 by (MP)
φ14: (φ10 ∧ φ9) → (s0 + s0 = s(s0 + 0) → s0 + s0 = ss0) instance of L15
φ15: s0 + s0 = s(s0 + 0) → s0 + s0 = ss0 from φ14 and φ13 by (MP)
φ16: s0 + s0 = ss0 from φ15 and φ4 by (MP)

In Chapter 2, we will introduce some techniques which allow us to simplify
formal proofs such as the one presented above.
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Tautologies & Logical Equivalence

We say that two formulae φ and ψ are logically equivalent (or just equiv-
alent), denoted φ⇔ ψ, if ⊢ φ↔ ψ. More formally:

φ⇔ ψ :Î===Ï ⊢ φ↔ ψ

In other words, if φ⇔ ψ, then — from a logical point of view —φ and ψ state
exactly the same, and therefore we could call φ↔ ψ a tautology, which means
saying the same thing twice. Indeed, in logic, a formula φ is a tautology if
⊢ φ. Thus, the formulae φ and ψ are equivalent if and only if φ ↔ ψ is a
tautology. More generally, if Φ is a set of formulae, we write φ ⇔Φ ψ to
denote Φ ⊢ φ↔ ψ.

Example 1.3. For every formula φ we have:

φ⇔ φ

This follows directly from Example 1.1, since φ↔ φ is simply an abbreviation
for (φ→ φ) ∧ (φ→ φ):

φ0: φ→ φ Example 1.1

φ1: (φ→ φ) → ((φ→ φ) → (φ↔ φ)) instance of L5
φ2: (φ→ φ) → (φ↔ φ) from φ0 and φ1 by (MP)
φ3: φ↔ φ from φ0 and φ2 by (MP)

Example 1.4. For every formula φ we have:

φ⇔ ¬¬φ

which corresponds to Tautology (F) given at the end of the book. By
applying L5 as in Example 1.3, one can easily check that it suffices to prove
separately that the formulae φ → ¬¬φ and ¬¬φ → φ are tautologies. We
only prove the former statement, the latter one is proved in Example 2.2.

φ0: (¬φ→ (φ→ ¬¬φ)) → ((¬¬φ→ (φ→ ¬¬φ)) →
((¬φ ∨ ¬¬φ) → (φ→ ¬¬φ))) instance of L8

φ1: ¬φ→ (φ→ ¬¬φ) instance of L9
φ2: (¬¬φ→ (φ→ ¬¬φ)) → ((¬φ ∨ ¬¬φ) → (φ→ ¬¬φ)) from φ0 and φ1 by (MP)
φ3: ¬¬φ→ (φ→ ¬¬φ) instance of L1
φ4: (¬φ ∨ ¬¬φ) → (φ→ ¬¬φ) from φ2 and φ2 by (MP)
φ5: ¬φ ∨ ¬¬φ instance of L0
φ6: φ→ ¬¬φ from φ4 and φ5 by (MP)
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Example 1.5. Commutativity and associativity of ∧ and ∨ are tautological,
i.e., for all formulae φ,ψ and χ we have φ ∧ ψ ⇔ ψ ∧ φ and φ ∧ (ψ ∧ χ) ⇔
(φ∧ψ)∧χ; and similarly for ∨. Again, we omit the proof since it will be trivial
once we have proved the Deduction Theorem 2.0 (see also Exercises 1.1
and 1.2). This result legitimises the notations φ0 ∧ . . .∧φn and φ0 ∨ . . .∨φn,
respectively, for φ0 ∧ (φ1 ∧ (. . . ∧ φn) . . .) and φ0 ∨ (φ1 ∨ (. . . ∨ φn) . . .),
respectively.

At the end of the book, there is a list of tautologies which will be frequently
used in formal proofs. Note that it follows from Exercise 2.1 that⇔ defines
an equivalence relation on all L -formulae for some given signature L . More-
over, it even defines a congruence relation (i.e., equivalence is closed under
all logical operations). More precisely, if φ⇔ φ′ and ψ ⇔ ψ′, then:

¬φ⇔ ¬φ′

φ ◦ ψ ⇔ φ′ ◦ ψ′

νφ⇔ νφ′

where ◦ stands for either ∧,∨, or →, and stands for either ∃ or ∀.
A proof of these statements will be easier once we have proved the the
Deduction Theorem 2.0.

The above observation enables us to replace subformulae (i.e., proper for-
mulae which are part of the formula φ) of a given formula φ by equivalent
formulae so that the resulting formula is equivalent to φ.

Theorem 1.6 (Substitution Theorem). Let φ be a formula and let α be
a subformula of φ. Let ψ be the formula obtained from φ by replacing one
or multiple occurrences of α by some formula β. Then we have:

α⇔ β ===Ï φ⇔ ψ

Proof. We prove the theorem by induction on the recursive construction of
the formula φ. If φ is an atomic formula or if α is φ, then the statement is
trivial. If φ is a composite formula, then we use the observation that ⇔ is
a congruence relation: For example, if the formula φ is of the form ¬φ′, and
ψ′ is the formula obtained from φ′ by replacing one or multiple occurrences
of α by β, then by induction we may assume that φ′ ⇔ ψ′. Consequently,
we have ¬φ′ ⇔ ¬ψ′ as desired. The other cases can be checked in a similar
way. ⊣

Theorem 1.7 (Three-Symbols). For every formula φ there is an equivalent
formula ψ which contains only the symbols ¬ and ∧ as logical operators and
∃ as quantifier.
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Proof. By Theorem 1.6, it suffices to prove the following equivalences:

φ ∨ ψ ⇔ ¬(¬φ ∧ ¬ψ)

φ→ ψ ⇔ ¬φ ∨ ψ
∀νφ ⇔ ¬∃ν¬φ

The proof of these equivalences is left as an exercise (see Exercise 2.5). Note
that the methods of proof introduced in Chapter 2 will simplify such proofs
to a great extent. ⊣

As a consequence of Theorem 1.7, one could simplify both the alphabet
and the logical axioms. Nevertheless, we do not wish to do so, since this would
also decrease the readability of formulae.

Notes

The logical axioms are essentially those given by Hilbert (see, e.g., [27]). However, Hilbert
also introduced the axiom schemata

(
(φ → ψ) ∧ (¬φ → ψ)

)
→ ψ and ¬¬φ → φ. On the

other hand, he did not introduce the Law of Excluded Middle L0, because it is not
needed any more in this setting (see also Exercises 2.9 and 2.10.(c)).

Exercises

1.0 (a) {φ,ψ} ⊢ φ ∧ ψ
(b) {φ ∧ ψ} ⊢ ψ ∧ φ

1.1 (a) ⊢ φ ∨ ψ → ψ ∨ φ
(b) ⊢ φ ∧ ψ → ψ ∧ φ

1.2 (a) {ψ1 ∧ (ψ2 ∧ ψ3)} ⊢ (ψ1 ∧ ψ2) ∧ ψ3

(b) {(ψ1 ∧ ψ2) ∧ ψ3} ⊢ ψ1 ∧ (ψ2 ∧ ψ3)

1.3 {φ→ ψ} ⊢ ¬ψ → ¬φ

1.4 (a) {ψ0 → ψ1, ψ1 → ψ2} ⊢ ψ0 → ψ2

(b) {ψ0 → φ,ψ1 → φ} ⊢ (ψ0 ∨ ψ1) → φ

(c) {φ→ ψ0, φ→ ψ1} ⊢ φ→ (ψ0 ∧ ψ1)

1.5 ⊢
(
(ψ1 ∧ ψ2) ∨ ψ3

)
→

(
(ψ1 ∨ ψ3) ∧ (ψ2 ∨ ψ3)

)
1.6 ⊢ ∀x∀y(x = y → y = x)



Chapter 2

The Art of Proof

In Example 1.2 we gave a proof of 1+1 = 2 in seventeen proof steps. At that
point you may have asked yourself: If it takes that much effort to prove such
a simple statement, how can one ever prove any non-trivial mathematical
result using formal proofs? This objection is of course justified; however, we
will show in this chapter how one can simplify formal proofs using some
methods of proof such as proofs by cases or by contradiction. It is crucial
to note that the following results are not theorems of a formal theory, but
theorems about formal proofs. In particular, they show how — under certain
conditions — a formal proof can be transformed into another.

The Deduction Theorem

In common mathematics, one usually proves implications of the form

I f Φ t h e n Ψ

by simply assuming the truth of Φ and deriving from this the truth of Ψ.
When writing formal proofs, the so-called Deduction Theorem enables us
to use a similar trick: Rather than proving Φ ⊢ φ → ψ we simply add φ to
our set of formulae Φ and prove Φ ∪ {φ} ⊢ ψ.

If Φ is a set of formulae and Φ′ is another set of formulae in the same
language as Φ, then we write Φ+Φ′ for Φ∪Φ′. In the case when the set Φ′

consists of a single formula φ, we write Φ + φ instead of Φ ∪ {φ}.

Theorem 2.0 (Deduction Theorem). If Φ is a set of formulae and
Φ + ψ ⊢ φ, then Φ ⊢ ψ → φ; and vice versa, if Φ ⊢ ψ → φ, then Φ+ψ ⊢ φ,
i.e., we have:

Φ + ψ ⊢ φ Î===Ï Φ ⊢ ψ → φ (DT)
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Proof. It is clear that Φ ⊢ ψ → φ implies Φ + ψ ⊢ φ. Conversely, suppose
that Φ + ψ ⊢ φ holds and let the sequence φ0, . . . , φn with φn ≡ φ be a
formal proof for φ from Φ + ψ. For each i ≤ n we will replace the formula
φi by a sequence of formulae which ends with ψ → φi. Let i ≤ n and assume
Φ ⊢ ψ → φj for every j < i.

• If φi is a logical axiom or φi ∈ Φ, we have

φi,0: φi φi ∈ Φ or φi is a logical axiom

φi,1: φi → (ψ → φi) instance of L1
φi,2: ψ → φi from φi,1 and φi,0 by (MP)

• The case φi ≡ ψ follows directly from Example 1.1.

• If φi is obtained from φj and φk ≡ (φj → φi) by Modus Ponens, where
j, k < i, we have:

φi,0: ψ → φj since j < i
φi,1: ψ → (φj → φi) since k < i

φi,2: φi,1 → ((ψ → φj) → (ψ → φi)) instance of L2
φi,3: (ψ → φj) → (ψ → φi) from φi,2 and φi,1 by (MP)
φi,4: ψ → φi from φi,3 and φi,0 by (MP)

• If φi is obtained from φj by Generalisation, where j < i, i.e., φi ≡ ∀νφj
for some variable ν, then, by the rules of Generalisation, the variable ν
does not occur free in ψ. In particular, ν /∈ free(ψ), and the claim follows
from:

φi,0: ψ → φj since j < i

φi,1: ∀ν(ψ → φj) from φi,0 by (∀)
φi,2: ∀ν(ψ → φj) → (ψ → φi) instance of L12
φi,3: ψ → φi from φi,2 and φi,1 by (MP)

Hence, we have Φ ⊢ ψ → φ. ⊣

Notice that the Deduction Theorem allows us under certain conditions
to transform a formal proof into another. So, the Deduction Theorem is a
theorem about formal proofs (i.e., about sequences of formulae) and not a the-
orem of a theory. Notice also that in order to prove the Deduction Theorem
restricted to Propositional Logic (i.e., quantifier-free formulae), we need only
the logical axioms L1 and L2.

Note that ⊢ φ→ φ is a trivial consequence of the Deduction Theorem,
whereas its formal proof in Example 1.1 has five steps. Let us now consider
a few application of the Deduction Theorem.
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Example 2.1. As a first application, we show that the equality relation is
symmetric and transitive, i.e., we show

⊢ ∀x ∀y (x = y → y = x) and ⊢ ∀x ∀y ∀z
(
(x = y ∧ y = z)→ y = x

)
.

In order to show that the equality relation is symmetric, we first show that
{x = y} ⊢ y = x, i.e., we assume the non-logical axiom x = y and show that
from this axiom we can prove y = x:

φ0: (x = y ∧ x = x) → (x = x→ y = x) instance of L15
φ1: x = x instance of L14
φ2: x = y x = y belongs to {x = y}
φ3: x = x→ (x = y → (x = y ∧ x = x)) instance of L5
φ4: x = y → (x = y ∧ x = x) from φ3 and φ1 by (MP)
φ5: x = y ∧ x = x from φ4 and φ2 by (MP)
φ6: x = x→ y = x from φ0 and φ5 by (MP)
φ7: y = x from φ6 and φ1 by (MP)

Thus, we have {x = y} ⊢ y = x, and by the Deduction Theorem we
obtain ⊢ x = y → y = x, i.e., from the empty set of non-logical axioms we
can prove x = y → y = x, and by applying twice Generalisation we finally get

⊢ ∀x∀y(x = y → y = x) .

For a proof that does not use the Deduction Theorem see the Solution
to Exercise 1.6.

To show that the equality relation is transitive, we set Φ = {x = y∧y = z}
and first show that Φ ⊢ x = z, where in the formal proof we make use of the
fact that ⊢ x = y → y = x has already been proven:

φ0: x = y → y = x already proven

φ1: x = y ∧ y = z x = y ∧ y = z belongs to Φ
φ2: (x = y ∧ y = z) → x = y instance of L3
φ3: x = y from φ2 and φ1 by (MP)
φ4: y = x from φ0 and φ3 by (MP)
φ5: (x = y ∧ y = z) → y = z instance of L4
φ6: y = z from φ5 and φ1 by (MP)
φ7: y = z →

(
y = x→ (y = x ∧ y = z)

)
instance of L5

φ8: y = x→ (y = x ∧ y = z) from φ7 and φ6 by (MP)
φ9: y = x ∧ y = z from φ8 and φ4 by (MP)
φ10: (y = x ∧ y = z) → (y = y → x = z) instance of L15
φ11: y = y → x = z from φ10 and φ9 by (MP)
φ12: y = y instance of L14
φ13: x = z from φ11 and φ12 by (MP)

Thus, we have {x = y∧y = z} ⊢ x = z, and by the Deduction Theorem
we obtain ⊢ (x = y ∧ y = z) → x = z, and after applying three times
Generalisation we finally get

⊢ ∀x ∀y ∀z
(
(x = y ∧ y = z)→ y = x

)
.
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Example 2.2. As a second application, we prove ¬¬φ → φ, which is one
direction of Tautology (F) given at the end of the book. For the other
direction see Example 1.4 and for the relationship between ¬¬φ → φ and
the axioms of Propositional Logic, see the Solutions to Exercises 2.9.(b)
and 2.10. By the Deduction Theorem it suffices to prove {¬¬φ} ⊢ φ:

φ0: ¬¬φ→ (¬φ→ φ) instance of L9
φ1: ¬¬φ ¬¬φ ∈ {¬¬φ}
φ2: ¬φ→ φ from φ0 and φ1 by (MP)
φ3: (φ→ φ) → ((¬φ→ φ) → ((φ ∨ ¬φ) → φ)) instance of L8
φ4: φ→ φ by Example 1.1
φ5: (¬φ→ φ) → ((φ ∨ ¬φ) → φ) from φ3 and φ4 by (MP)
φ6: (φ ∨ ¬φ) → φ from φ5 and φ2 by (MP)
φ7: φ ∨ ¬φ instance of L0
φ8: φ from φ6 and φ7 by (MP)

Example 2.3. As a third application, we prove Tautology (K), which is
the statement (φ→ ψ)↔ (¬φ ∨ ψ). We first show ⊢ (¬φ ∨ ψ)→ (φ→ ψ):

φ0: (¬φ→ (φ→ ψ)) →
((ψ → (φ→ ψ)) → ((¬φ ∨ ψ) → (φ→ ψ))) instance of L8

φ1: (¬φ→ (φ→ ψ) instance of L9
φ2: (ψ → (φ→ ψ)) → ((¬φ ∨ ψ) → (φ→ ψ)) from φ0 and φ1 by (MP)
φ3: ψ → (φ→ ψ) instance of L1
φ4: (¬φ ∨ ψ) → (φ→ ψ) from φ2 and φ3 by (MP)

Now, we show {φ→ ψ} ⊢ (¬φ ∨ ψ):

φ0: ψ → (¬φ ∨ ψ) instance of L7
φ1: (ψ → (¬φ ∨ ψ)) → (φ→ (ψ → (¬φ ∨ ψ))) instance of L1
φ2: (φ→ (ψ → (¬φ ∨ ψ)) from φ1 and φ0 by (MP)
φ3: (φ→ (ψ → (¬φ ∨ ψ))) →

((φ→ ψ) → (φ→ (¬φ ∨ ψ))) instance of L2
φ4: (φ→ ψ) → (φ→ (¬φ ∨ ψ)) from φ3 and φ2 by (MP)
φ5: φ→ ψ assumption

φ6: φ→ (¬φ ∨ ψ) from φ4 and φ5 by (MP)
φ7: (φ→ (¬φ ∨ ψ)) →

((¬φ→ (¬φ ∨ ψ)) → ((φ ∨ ¬φ) → (¬φ ∨ ψ))) instance of L8
φ8: (¬φ→ (¬φ ∨ ψ)) → ((φ ∨ ¬φ) → (¬φ ∨ ψ)) from φ7 and φ6 by (MP)
φ9: ¬φ→ (¬φ ∨ ψ) instance of L6
φ10: (φ ∨ ¬φ) → (¬φ ∨ ψ) from φ8 and φ9 by (MP)
φ11: φ ∨ ¬φ instance of L0
φ12: ¬φ ∨ ψ from φ10 and φ11 by (MP)

By applying (DT) we find ⊢ (φ → ψ) → (¬φ ∨ ψ), and after combin-
ing this statement with the previous statement using L5, we finally obtain
Tautology (K).

Remark. The tautologies listed at the end of the book can all be proven from
the logical axioms (for some examples see the Solution to Exercise 2.4).
So, we can consider tautologies as if they were additional logical axioms.
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Natural Deduction

We have introduced predicate logic so that there are many logical axioms and
only two inference rules. However, it is also possible to introduce calculi with
an opposite approach: few axioms and many inference rules. In the calculus
of natural deduction there are, in fact, no axioms at all. Its inference rules
essentially state how to transform a given formal proof to another one. We
write Φ φ to state that there is a formal proof of φ in the calculus of natural
deduction with the non-logical axioms given by Φ.

Let Φ be a set of formulae and let φ,ψ, χ be any formulae. The first rule
states how formal proofs can be initialized.

Initial Rule (IR):
Φ φ

for φ ∈ Φ.

In the calculus of natural deduction there are so-called introduction rules
and elimination rules for each logical symbol.

(I∧): Φ φ, Φ ψ

Φ φ ∧ ψ
(E∧): Φ φ ∧ ψ

Φ φ

Φ φ ∧ ψ
Φ ψ

(I∨): Φ φ

Φ φ ∨ ψ
Φ ψ

Φ φ ∨ ψ
(E∨): Φ φ ∨ ψ, Φ + φ χ, Φ + ψ χ

Φ χ

(I→):
Φ + φ ψ

Φ φ→ ψ
(E→):

Φ φ→ ψ, Φ φ

Φ ψ

(I¬): Φ + φ ψ ∧ ¬ψ
Φ ¬φ

(E¬): Φ ¬¬φ
Φ φ

Let τ be a term and ν be a variable such that the substitution φ(ν/τ) is
admissible and ν /∈ free(χ) for any formula χ ∈ Φ and — in the case of
(E∃)— ν /∈ free(ψ). Now we can state the corresponding introduction and
elimination rules for quantifiers:

(I∃): Φ φ(τ)

Φ ∃νφ(ν)
(E∃): Φ ∃νφ(ν), Φ + φ(ν) ψ

Φ ψ

(I∀): Φ φ(ν)

Φ ∀νφ(ν)
(E∀): Φ ∀νφ(ν)

Φ φ(τ)

Finally, we need to deal with equality and atomic formulae. Let τ, τ1 and τ2 be
terms and φ an atomic formula. The following introduction and elimination
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rules for equality are closely related to the logical axioms L14–L16:

(I=):
τ = τ

(E=):
Φ τ1 = τ2, Φ φ(ν/τ1)

Φ φ(ν/τ2)

Formal proofs in the calculus of natural deduction are defined in a similar
way as in our usual calculus: There is a formal proof of a formula φ from a
set of formulae Φ, denoted by Φ φ, if there is a f i n i t e sequence of of
pairs (Φ0, φ0), . . . , (Φn, φn) such that Φn ≡ Φ, φn ≡ φ and for each i ≤ n,
Φi φi is obtained by the application of an inference rule

Φj0 φj0 , . . . , Φjk φjk
Φi φi

with k ≤ 3 and j0, . . . , jk < i. Note that the the case k = 0 is permitted,
which corresponds to an application of the Initial Rule. In the case when
Φ is the empty set, we simply write φ.

We have now described two ways of introducing formal proofs. It is therefore
natural to ask whether the two systems prove the same theorems. Fortunately,
this question turns out to have a positive answer.

Theorem 2.4. Let Φ be a set of formulae and let φ be a formula. Then we
have

Φ ⊢ φ Î===Ï Φ φ.

Proof. We need to verify that every formal proof in the usual sense can be
turned into a formal proof in the calculus of natural deduction and vice versa.
In order to prove that Φ φ implies Φ ⊢ φ for every formula φ, we need to
derive all introduction and elimination rules from our logical axioms and
(MP) and (∀). We focus only on some of the rules and leave the others as an
exercise.

Formal proofs of the form Φ φ with φ ∈ Φ using only (IR) obviously
correspond to trivial formal proofs of the form Φ ⊢ φ. We consider the more
interesting elimination rule (E∨). Suppose that Φ ⊢ φ ∨ ψ,Φ + φ ⊢ χ and
Φ + ψ ⊢ χ. We verify that Φ ⊢ χ.

φ0: φ→ χ from Φ + φ ⊢ χ by (DT)
φ1: ψ → χ from Φ + ψ ⊢ χ by (DT)
φ2: (φ→ χ) → ((ψ → χ) → ((φ ∨ ψ) → χ)) instance of L8
φ3: (ψ → χ) → ((φ ∨ ψ) → χ) from φ2 and φ0 by (MP)
φ4: (φ ∨ ψ) → χ from φ3 and φ1 by (MP)
φ5: φ ∨ ψ by assumption

φ6: χ from φ4 and φ5 by (MP)

The corresponding introduction rule (I∨) follows directly from L6 and L7
using (DT). Note that (I→) follows directly from (DT) and (E→) from (MP).
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We further prove the rules for negation. For (I¬) suppose that Φ + φ ⊢
ψ∧¬ψ. It follows from (E∧) that Φ+φ ⊢ ψ and Φ+φ ⊢ ¬ψ. We prove that
Φ + φ ⊢ ¬φ, since then Φ ⊢ ¬φ by (E∨) and L0. We have:

φ0: ¬ψ → (ψ → ¬φ) instance of L9
φ1: ¬ψ by assumption
φ2: ψ → ¬φ from φ0 and φ1 by (MP)
φ3: ψ by assumption
φ4: ¬φ from φ2 and φ3 by (MP)

The corresponding elimination rule (E¬) follows from Example 2.2. Finally,
we prove (I∃) and (E∃). Note that (I∃) follows directly from L11 using (DT)
and (MP). For (E∃), let ν be a variable such that ν /∈ free(χ) for any χ ∈ Φ
and suppose that Φ ⊢ ∃νφ(ν) and Φ + φ(ν) ⊢ ψ. An application of (DT)
then yields Φ ⊢ φ(ν) → ψ. Then we obtain Φ ⊢ ψ by the following formal
proof:

φ0: ∀ν(φ(ν) → ψ) → (∃νφ(ν) → ψ) instance of L13
φ1: φ(ν) → ψ by assumption
φ2: ∀ν(φ(ν) → ψ) from φ1 by (∀)

φ3: ∃νφ(ν) → ψ from φ0 and φ2 by (MP)
φ4: ∃νφ(ν) by assumption
φ5: ψ from φ3 and φ4 by (MP)

This completes the proof of (E∃). The verification of the other rules of the
calculus of natural deduction are left to the reader (see Exercise 2.2).

Conversely, we need to check that the calculus of natural deduction proves
the logical axioms L0–L16 as well as the inference rules (MP) and (∀). Observe
that (MP) corresponds to (E→) and (∀) corresponds to (I∀). As before, we
only present the proof for some axioms and leave the others to the reader.
We consider first L9. We need to check that ¬φ→ (φ→ ψ).

{¬φ,φ,¬ψ} φ by (IR)
{¬φ,φ,¬ψ} ¬φ by (IR)
{¬φ,φ,¬ψ} φ ∧ ¬φ by (I∧)

{¬φ,φ} ¬¬ψ by (I¬)
{¬φ,φ} ψ by (E¬)

{¬φ} φ→ ψ by (I→)
¬φ→ (φ→ ψ) by (I→)

Secondly, we derive Axiom L13 using the calculus of natural deduction, i.e.,
we show ∀ν(φ(ν)→ ψ)→ (∃νφ(ν)→ ψ):

{∀ν(φ(ν) → ψ), ∃νφ(ν), φ(ν)} φ(ν) by (IR)
{∀ν(φ(ν) → ψ), ∃νφ(ν), φ(ν)} ∃νφ(ν) by (IR)
{∀ν(φ(ν) → ψ), ∃νφ(ν), φ(ν)} ∀ν(φ(ν) → ψ) by (IR)
{∀ν(φ(ν) → ψ), ∃νφ(ν), φ(ν)} φ(ν) → ψ by (E∀)
{∀ν(φ(ν) → ψ), ∃νφ(ν), φ(ν)} ψ by (E→)

{∀ν(φ(ν) → ψ), ∃νφ(ν)} ψ by (E∃)
{∀ν(φ(ν) → ψ) ∃νφ(ν) → ψ by (I→)

∀ν(φ(ν) → ψ) → (∃νφ(ν) → ψ) by (I→).

The other axioms can be verified in a similar way. ⊣
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Methods of Proof

The inference rules of the calculus of natural deduction are very useful be-
cause they resemble methods of proof which are commonly used in mathe-
matics. For example, the elimination rule (E∨) mimicks proofs by case dis-
tinction: Under the assumption that Φ ⊢ φ ∨ ψ, one can prove a formula χ
by separately proving Φ + φ ⊢ χ and Φ + ψ ⊢ χ.

In the following, we list several methods of proof such as proofs by contra-
diction, contraposition and case distinction.

Proposition 2.5 (Proof by Cases). Let Φ be a set of formulae and let
φ, ψ, χ be some formulae. Then the following two statements hold:

Φ ⊢ φ ∨ ψ and Φ + φ ⊢ χ and Φ + ψ ⊢ χ ===Ï Φ ⊢ χ (∨0)

Φ + φ ⊢ χ and Φ + ¬φ ⊢ χ ===Ï Φ ⊢ χ (∨1)

Proof. Note that (∨0) is exactly the statement of (E∨) and (∨1) is a special
case of (∨0), since Φ ⊢ φ ∨ ¬φ by L0. ⊣

Corollary 2.6 (Generalised Proof by Cases). Let Φ be a set of for-
mulae and let ψ0, . . . , ψn, φ be some formulae. Then we have:

Φ ⊢ ψ0 ∨ · · · ∨ ψn and Φ + ψi ⊢ φ for all i ≤ n ===Ï Φ ⊢ φ

Since Corollary 2.6 is just a generalization of (∨0), we will denote all
instances of this form by (∨0) as well.

Proof of Corollary 2.6. We proceed by induction on n ≥ 1. For n = 1 the
statement is exactly (∨0). Now assume that Φ ⊢ ψ0 ∨ . . . ∨ ψn ∨ ψn+1 and
Φ + ψi ⊢ φ for all i ≤ n + 1. Let Φ′ :≡ Φ + ψ0 ∨ . . . ∨ ψn and observe that
Φ′ ⊢ ψ0 ∨ . . . ∨ ψn and Φ′ + ψi ⊢ φ, so by induction hypothesis Φ′ ⊢ φ. By
the Deduction Theorem this implies Φ ⊢ ψ0 ∨ . . . ∨ ψn → φ. Moreover,
by another application of (DT) we also have Φ ⊢ ψn+1 → φ. Using L8 and
twice (DT), we obtain Φ ⊢ ψ0 ∨ . . . ∨ ψn ∨ ψn+1 → φ, hence (DT) yields the
claim. ⊣

Proposition 2.7 (Ex Falso Quodlibet). Let Φ be a set of formulae and
let φ an arbitrary formula. Then for every L -formula ψ we have:

Φ ⊢ φ ∧ ¬φ ===Ï Φ ⊢ ψ (�)

Proof. Let ψ be any formula and assume that Φ ⊢ φ ∧ ¬φ for some formula
φ. By (E∧) we have Φ ⊢ φ and Φ ⊢ ¬φ. Now the instance ¬φ→ (φ→ ψ) of
the logical axiom L9 and two applications of Modus Ponens imply Φ ⊢ ψ. ⊣
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Notice that Proposition 2.7 implies that if we can derive a contradiction
from Φ, we can derive every formula we like, even the impossible, denoted
by the symbol

� .

This is closely related to proofs by contradiction:

Corollary 2.8 (Proof by Contradiction). Let Φ be a set of formulae,
and φ be an arbitrary formula. Then the following statements hold:

Φ + ¬φ ⊢ � ===Ï Φ ⊢ φ,

Φ + φ ⊢ � ===Ï Φ ⊢ ¬φ

Proof. Note that the second statement is exactly the introduction rule (I¬).
For the first statment, note that by (∨1) it is enough to check Φ + φ ⊢ φ
and Φ + ¬φ ⊢ φ. The first condition is clearly satisfied and the second one
follows directly from (I∧) and (�). ⊣

Proposition 2.9 (Proof by Contraposition). Let Φ be a set of formulae
and φ and ψ two arbitrary formulae. Then we have:

Φ + φ ⊢ ψ Î===Ï Φ + ¬ψ ⊢ ¬φ (CP)

Proof. Suppose first that Φ+φ ⊢ ψ. Then by (I∧), Φ∪{¬ψ,φ} ⊢ ψ∧¬ψ and
hence by (I¬) we obtain Φ+¬ψ ⊢ ¬φ. Conversely, assume that Φ+¬ψ ⊢ ¬φ.
A similar argument as above yields Φ + φ ⊢ ¬¬ψ. An application of (E¬)
completes the proof. ⊣

Note that Proposition 2.9 proves the logical equivalence

φ→ ψ ⇔ ¬ψ → ¬φ.

Theorem 2.10 (Generalised Deduction Theorem). If Φ is an arbi-
trary set of formulae and Φ∪{ψ1, . . . , ψn} ⊢ φ, then Φ ⊢ (ψ1∧· · ·∧ψn)→ φ;
and vice versa:

Φ ∪ {ψ1, . . . , ψn} ⊢ φ Î===Ï Φ ⊢ (ψ1 ∧ · · · ∧ ψn)→ φ (GDT)

Proof. This follows immediately from the Deduction Theorem and the
DeMorgan’s Laws (see Exercise 2.6). ⊣

The Normal Forms NNF&DNF

In many proofs it is convenient to convert a formula into an equivalent formula
in some normal form. The simplest normal form is the following: A formula
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is said to be in Negation Normal Form, denoted by NNF, if it does not
contain the implication symbol → and if the negation symbol ¬ only occurs
directly in front of atomic subformulae.

Theorem 2.11 (Negation Normal Form Theorem). Every formula is
equivalent to some formula in NNF.

Proof. We successively apply the following transformations to every non-
atomic negated subformula ψ of φ, starting with the outermost negation
symbols.

• Using Tautology (K), we may replace subformulae of the form ψ1 → ψ2

by ¬ψ1 ∨ ψ2.
• If ψ ≡ ¬¬ψ′ for some formula ψ′, we replace ψ with ψ′ using Tautol-

ogy (F).
• By the DeMorgan’s Laws (see Exercise 2.6), we replace subformulae

of the form ¬(ψ1 ∧ψ2) and ¬(ψ1 ∨ψ2), respectively, with ¬ψ1 ∨¬ψ2 and
¬ψ1 ∧ ¬ψ2, respectively.

• If ψ ≡ ¬∃νψ′ then it follows from Tautology (Q.0) that ψ ⇔ ∀ν¬ψ′,
and hence we replace ψ with ∀ν¬ψ′. Similarly, using Tautology (Q.1),
we replace subformulae of the form ¬∀νψ′ with the equivalent formula
∃ν¬ψ′.

⊣

A quantifier-free formula φ is said to be in Disjunctive Normal Form,
denoted DNF, if it is a disjunction of conjunctions of atomic formulae or
negated atomic formulae, i.e., it is of the form

(φ1,1 ∧ . . . ∧ φ1,k1) ∨ · · · ∨ (φm,1 ∧ · · · ∧ φm,km)

for some quantifier-free formulae φi,j which are either atomic or the negation
of an atomic formula. In particular, each formula in DNF is also in NNF.

Theorem 2.12 (Disjunctive Normal Form Theorem). Every quantifier-
free formula φ is equivalent to some formula in DNF.

Proof. By the Negation Normal Form Theorem we may assume that φ
is in NNF. Starting with the outermost conjunction symbol, we successively
apply the distributive laws

ψ ∧ (φ1 ∨ φ2)⇔ (ψ ∧ φ1) ∨ (ψ ∧ φ2) and

(φ1 ∨ φ2) ∧ ψ ⇔ (φ1 ∧ ψ) ∨ (φ2 ∧ ψ)

until all conjunction symbols occur between atomic or negated atomic formu-
lae. This process ends after f i n i t e l y many steps, since there are only
f i n i t e l y many conjunction symbols. ⊣
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A similar result holds for the so-called Conjunctive Normal Form, denoted
CNF (see Exercise 2.8).

Substitution of Variables and the Prenex Normal Form

In Part II & III, we shall encode formulae by strings of certain symbols and
by natural numbers, respectively. In order to do so, we have to make sure
that the variables are among a well-defined set of symbols, namely among
v0, v1, . . ., where the index n of vn is a natural number (i.e., a member of N).

Theorem 2.13 (Variable Substitution Theorem). For every sentence
σ there is an equivalent sentence σ̃ which contains just variables among
v0, v1, . . ., where for any m,n ∈ N with m < n, if vn appears in σ̃, then
also vm appears in σ̃.

Proof. Let σ be an arbitrary sentence and let m be such that no variable vk
with k ≥ m appears in σ. Assume that ∃νφ(ν) is a sub-sentence of σ. Then
∃νφ(ν) ⇔ ∃vkφ(ν/vk) for any k ≥ m. To see this, first notice that since vk
does not appear in σ, the substitution φ(ν/vk) is admissible. Furthermore,
we have:

φ0: φ(vk) → ∃νφ(ν) instance of L11

φ1: ∀vk
(
φ(vk) → ∃νφ(ν)

)
from φ0 by (∀)

φ2: ∀vk
(
φ(vk) → ∃νφ(ν)

)
→

(
∃vkφ(vk) → ∃νφ(ν)

)
instance of L13

φ3: ∃vkφ(vk) → ∃νφ(ν) from φ2 and φ1 by (MP)

Similarly, we obtain ∃νφ(ν) → ∃vkφ(vk), which shows that ∃νφ(ν) ⇔
∃vkφ(vk).

Assume now that ∀νφ(ν) is a sub-sentence of σ. Then ∀νφ(ν)⇔ ∀vkφ(ν/vk).
Since the substitution φ(ν/vk) is admissible, we have:

φ0: ∀νφ(ν) → φ(vk) instance of L10

φ1: ∀vk
(
∀νφ(ν) → φ(vk)

)
from φ0 by (∀)

φ2: ∀vk
(
∀νφ(ν) → φ(vk)

)
→

(
∀νφ(ν) → ∀vkφ(vk)

)
instance of L12

φ3: ∀νφ(ν) → ∀vkφ(vk) from φ2 and φ1 by (MP)

Similarly we obtain ∀vkφ(vk) → ∀νφ(ν), which shows that ∀νφ(ν) ⇔
∀vkφ(vk).

Therefore, we can replace all the variables ν0, ν1, . . . appearing in σ step by
step with variables vm, vm+1, . . . and obtain a sentence σ′ which is equivalent
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to σ. In a last step, we replace the variables vm, vm+1, . . . with v0, v1, . . . and
finally obtain σ̃. ⊣

In Chapter 5, we will use the fact that every sentence can be transformed
into a semantically equivalent sentence in the so-called special Prenex Normal
Form:

A sentence σ is said to be in Prenex Normal Form, denoted by PNF, if
it is of the form

0ν0 . . . nνnσ̃,

where the variables ν0, . . . , νn are pairwise distinct, each m (for 0 ≤ m ≤ n)
stands for either ∃ or for ∀, and σ̃ is a quantifier-free formula. Furthermore,
a sentence σ is in special Prenex Normal form, denoted by sPNF, if σ is
in PNF and

σ ≡ 0v0 1v1 . . . nvnσ̃ ,

where each m (for 0 ≤ m ≤ n) stands for either ∃ or ∀, σ̃ is quantifier-free,
and in addition, each variable v0, . . . , vn appears free in σ̃.

Theorem 2.14 (Prenex Normal Form Theorem). For every sentence σ
there is an equivalent sentence σ̃ in sPNF.

Sketch of the Proof. Using the Negation Normal Form Theorem we
may suppose that φ is in NNF. Moreover, by Tautologies (O.1) and (O.2)
(see in the proof of the Variable Substitution Theorem) we may addi-
tionally suppose that no variable is quantified more than once. The crucial
part is now to show that for all formulae φ and ψ, where ν /∈ free(ψ), the
following formulae are tautologies:

∃νφ ◦ ψ ⇔ ∃ν
(
φ ◦ ψ

)
,

∀νφ ◦ ψ ⇔ ∀ν
(
φ ◦ ψ

)
,

where ◦ stands for either ∨ or ∧. We just prove that the formula

∃νφ ∨ ψ → ∃ν
(
φ ∨ ψ

)
, where ν /∈ free(ψ),

is a tautology; all other cases are proved similarly.
By L8, we obtain

⊢
(
∃νφ→ ∃ν(φ ∨ ψ)

)
→((
ψ → ∃ν(φ ∨ ψ)

)
→
(
(∃νφ ∨ ψ)→ ∃ν(φ ∨ ψ)

))
.

Therefore, it is enough to show:
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⊢ ∃νφ→ ∃ν(φ ∨ ψ) and ⊢ ψ → ∃ν(φ ∨ ψ)

We first prove ⊢ ∃νφ→ ∃ν(φ ∨ ψ):

φ0: φ→ φ ∨ ψ instance of L6

φ1: φ ∨ ψ → ∃ν(φ ∨ ψ) instance of L11

φ2: φ→ ∃ν(φ ∨ ψ) by Tautology (D.0)

φ3: ∀ν
(
φ→ ∃ν(φ ∨ ψ)

)
from φ2 by (∀)

φ4: ∀ν
(
φ→ ∃ν(φ ∨ ψ)

)
→

(
∃νφ→ ∃ν(φ ∨ ψ)

)
instance of L13

φ5: ∃νφ→ ∃ν(φ ∨ ψ) from φ4 and φ3 by (MP)

Now we show ⊢ ψ → ∃ν(φ ∨ ψ):

φ0: ψ → φ ∨ ψ instance of L7

φ1: φ ∨ ψ → ∃ν(φ ∨ ψ) instance of L11

φ2: ψ → ∃ν(φ ∨ ψ) by Tautology (D.0)

After f i n i t e l y many applications of the above tautologies, we ob-
tain a sentence in PNF. Moreover, the Variable Substitution Theorem
yields a formula in sPNF, i.e., a formula in which the quantified variables are
v0, . . . , vn and in the quantifier part of the formula, the variables appear in
the order v0, . . . , vn.

⊣

Semi-formal Proofs

Previously, we have shown that formal proofs can be simplified by apply-
ing methods of proof such as case distinctions, proofs by contradiction or
contraposition. However, in order to make proofs even more natural, it is
useful to use natural language for describing a proof step as in an “informal”
mathematical proof.

Example 2.15. We want to prove the tautology ⊢ φ → ¬¬φ. Instead of
writing out the whole formal proof, which is quite tedious, we can apply the
methods of proof which we introduced above.

The first modification we make is to use (DT) to obtain the new goal

{φ} ⊢ ¬¬φ.

The easiest way to proceed is to make a proof by contradiction; hence it
remains to show
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{φ,¬φ} ⊢ �

which by (I∧) is again a consequence of the trivial goals

{φ,¬φ} ⊢ φ and {φ,¬φ} ⊢ ¬φ.

To sum up, this procedure can actually be transformed back into a formal
proof, so it suffices as a proof of ⊢ φ→ ¬¬φ. Now this is still not completely
satisfactory, since we would like to write the proof in natural language. A
possible translation could thus be the following:

Semi-formal Proof. We want to prove that φ implies ¬¬φ. We assume φ, and
for a contradiction we assume also ¬φ. Then we have φ and ¬φ, which is a
contradiction. Hence, we must have ¬¬φ, i.e., φ→ ¬¬φ. ⊣

We will now show in a systematic way how formal proofs can — in prin-
ciple — be replaced by semi-formal proofs, which make use of a controlled
natural language, i.e., a limited vocabulary consisting of natural language
phrases such as “assume that” which are often used in mathematical proof
texts. This language is controlled in the sense that its allowed vocabulary is
only a subset of the entire English vocabulary and that every word and every
phrase, respectively, has a unique precisely defined interpretation. However,
for the sake of a nice proof style, we will not always stick to this limited
vocabulary. Moreover, this section should be considered as a hint of how for-
mal proofs can be formulated using a controlled natural language as well as
a justification for working with natural language proofs rather than formal
ones.

Every statement which we would like to prove formally is of the form Φ ⊢ φ,
where Φ is a set of formulae and φ is a formula. Note that as in Example 2.15,
in order to prove Φ ⊢ φ— which is actually a meta-proof — we perform
operations both on the set of formulae Φ and on the formula to be formally
proved. We call a statement of the form Φ ⊢ φ a goal, the set Φ is called
premises, and the formula φ to be verified as target. Now instead of listing
a formal proof, we can step by step reduce our current goal to a simpler
one using the methods of proof from the previous section, until the target is
tautological as in the case of Example 2.15.

In that sense, methods of proof are in that sense simply operations on
the premises and the targets. For example, the proof by contraposition for
example adds the negation of the target to the premises and replaces the
original target by the negation of the premise from which it shall be derived:

If we want to show
Φ + ψ ⊢ φ

we can prove Φ + ¬φ ⊢ ¬ψ instead A slightly different example is the proof
of a conjunction Φ ⊢ φ∧ψ, which is usually split into the two goals given by

Φ ⊢ φ and Φ ⊢ ψ.
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Thus we have to revise our first attempt and interpret methods of proof as
operations on f i n i t e lists of goals consisting of premises and targets.

We distinguish between two types of operations on goals: Backward rea-
soning means performing operations on targets, whereas forward reason-
ing denotes operations on the premises. We give some examples of both back-
ward and forward reasoning and indicate how such proofs can be phrased in
a semi-formal way.

Backward reasoning

• Targets are often of the universal conditional form ∀ν(φ(ν) → ψ(ν)). In
particular, this pattern includes the purely universal formulae ∀νψ(ν) by
taking φ to be a tautology as well as simple conditionals of the form
φ → ψ. Now the usual procedure is to reduce Φ ⊢ ∀ν(φ(ν) → ψ(ν)) to
Φ + φ(ν) ⊢ ψ(ν) using (∀) and (DT). This can be rephrased as

Assume φ(ν). Then . . . This shows ψ(ν).

• As already mentioned above, if the target is a conjunction φ ∧ ψ, then
one can show the conjuncts separately using (I∧). This step is usually
executed without mentioning it explicitly.

• If the target is a negation ¬φ, one often uses a proof by contradiction or
by contraposition: In the first case, we transform Φ ⊢ ¬φ to Φ + φ ⊢ �

and use the natural language notation

Suppose for a contradiction that φ. Then . . . Contradiction.

In the latter case, we want to go from Φ + ¬ψ ⊢ ¬φ to Φ + φ ⊢ ψ or,
in its positive version, from Φ + ψ ⊢ ¬φ to Φ + φ ⊢ ¬ψ, respectively. In
both cases, we can mark this with the keyword contraposition, e.g., as

We proceed by contraposition . . . This shows ¬φ.

Forwards reasoning

• By (E∧), conjunctive premises φ∧ψ can be split into two premises φ,ψ;
i.e., Φ + φ ∧ ψ ⊢ χ can be reduced to Φ ∪ {φ,ψ} ⊢ χ. This is usually
performed automatically.

• Disjunctive premises are used for proofs by case distinction: If a goal of
the form Φ + φ ∨ ψ ⊢ χ is given, we can reduce it to the new goals
Φ + φ ⊢ χ and Φ + ψ ⊢ χ. We can write this in a semi-formal way as

Case 1: Assume φ . . . This proves χ.
Case 2: Assume ψ . . . This proves χ.
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• Intermediate proof steps: Often we first want to prove some intermediate
statement which shall then be applied in order to resolve the target.
Formally, this means that we want to show Φ ⊢ φ by first showing Φ ⊢ ψ
and then adding ψ to the list of premises and checking Φ+ψ ⊢ φ. Clearly,
if we have Φ ⊢ ψ and Φ + ψ ⊢ φ, using (DT) and (MP) we obtain that
Φ ⊢ φ. In a semi-formal proof, this can be described by

We first show ψ . . . This proves φ.

Note that it is important to mark where the proof of the intermediate
statement ψ ends, since from this point on, ψ can be used as a new
premise.

Observe that in any case, once a goal Φ ⊢ φ is reduced to a tautology, it
can be removed from the list of goals. This should be marked by a phrase
like

This shows/proves φ.

so that it is clear that we move on to the next goal. The proof is complete as
soon as no unresolved goals remain.

What is the use of such a formalised natural proof language? First of all, it
increases readability. Secondly, by giving a precise formal definition to some
of the common natural language phrases which appear in the proof texts, we
show how — in principle — one could write formal proofs with a controlled
natural language input. This input could then be parsed into a formal proof
and subsequently be verified by a proof checking system.

We would like to emphasize that this section should only be considered as
a motivation rather than a precise description of how formal proofs can be
translated into semi-formal ones and vice versa. Nevertheless, it suffices to
understand how this can theoretically be achieved. Therefore, in subsequent
chapters, especially in Chapters 8 and 9, we will often present semi-formal
proofs rather than formal ones.

Consistency & Compactness

We say that be a set of formulae Φ is consistent, denoted Con(Φ), if Φ ⊬ �,
i.e., if there is no formula φ such that Φ ⊢ (φ ∧ ¬φ), otherwise Φ is called
inconsistent, denoted ¬Con(Φ).

Fact 2.16. Let Φ be a set of formulae.

(a) If ¬Con(Φ), then for all formulae ψ we have Φ ⊢ ψ.
(b) If Con(Φ) and Φ ⊢ φ for some formula φ, then Φ ⊬ ¬φ.
(c) If ¬Con(Φ + φ), for some formula φ, then Φ ⊢ ¬φ.
(d) If Φ ⊢ ¬φ, for some formula φ, then ¬Con(Φ + φ).
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Proof. Condition (a) is just Proposition 2.7. For (b), notice that if Φ ⊢ φ
and Φ ⊢ ¬φ, then by (I∧) we get Φ ⊢ � and thus also ¬Con(Φ). Moreover,
(c) coincides with the second statement of Corollary 2.8. Finally, for (d)
note that if Φ ⊢ ¬φ, then Φ+φ ⊢ φ∧¬φ and hence Φ+φ is inconsistent. ⊣

If we choose a set of formulae Φ as the basis of a theory (e.g., a set of
axioms), we have to make sure that Φ is consistent. However, as we shall see
later, in many cases this task is impossible.

We conclude this chapter with the Compactness Theorem, which is a
powerful tool in order to construct non-standard models of Peano Arithmetic
or of Set Theory. On the one hand, it is just a consequence of the fact that
formal proofs are f i n i t e sequences of formulae. On the other hand,
the Compactness Theorem is the main tool to prove that a given set of
sentences is consistent with some given set of formulae Φ.

Theorem 2.17 (Compactness Theorem). Let Φ be an arbitrary set of
formulae. Then Φ is consistent if and only if every finite subset Φ′ of Φ is
consistent.

Proof. Obviously, if Φ is consistent, then every finite subset Φ′ of Φ must be
consistent. On the other hand, if Φ is inconsistent, then there is a formula φ
such that Φ ⊢ φ∧¬φ. In other words, there is a proof of φ∧¬φ from Φ. Now,
since every proof is finite, there are only finitely many formulae of Φ involved
in this proof, and if Φ′ is this finite set of formulae, then Φ′ ⊢ φ∧¬φ, which
shows that Φ′, a finite subset of Φ, is inconsistent. ⊣

Notes

Natural deduction in its modern form was developed by the German mathematician

Gentzen in 1934 (see [11, 12]).

Exercises

2.0 (a) Show that quantifier-free formulae can be written with the only logical operator

∧̃, where
φ ∧̃ψ :⇐⇒ ¬(φ ∧ ψ) .

(b) Show that quantifier-free formulae can be written with the only logical operator

∨̃, where

φ ∨̃ψ :⇐⇒ ¬(φ ∨ ψ) .

2.1 Show that logical equivalence ⇔ defines an equivalence relation on the set of formulae.

2.2 Complete the proof of Theorem 2.4.

2.3 Formalise the method of proof by counterexample and prove that it works.

2.4 Show that the Tautologies (L.0) and (R) are provable from the logical axioms.
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2.5 Prove the equivalences in the proof of Theorem 1.7.

2.6 Let φ0, . . . , φn be formulae. Prove the DeMorgan’s Laws:

(a) ¬(φ0 ∧ · · · ∧ φn) ⇔ (¬φ1 ∨ · · · ∨ ¬φn)

(b) ¬(φ0 ∨ · · · ∨ φn) ⇔ (¬φ1 ∧ · · · ∧ ¬φn)

(c) φ0 →
(
φ1 → (· · · → φn) · · ·

)
⇔ (¬φ0 ∨ · · · ∨ ¬φn−1) ∨ φn

2.7 Prove the following generalisation of L15 to an arbitrary formula φ:

⊢ (τ1 = τ ′1 ∧ · · · ∧ τn = τ ′n) →
(
φ(τ1, . . . , τn) → φ(τ ′1, . . . , τ

′
n)
)
,

where τ, τ1, . . . , τn, τ ′1, . . . , τ
′
n are terms and φ is a formula with n free variables.

2.8 A quantifier-free formula φ is said to be in Conjunctive Normal Form, denoted

CNF, if it is a conjunction of disjunctions of atomic formulae or negated atomic for-
mulae, i.e., it is of the form

(φ1,1 ∨ · · · ∨ φ1,k1
) ∧ · · · ∧ (φm,1 ∨ · · · ∨ φm,km )

for some quantifier-free formulae φi,j which are either atomic or the negation of an
atomic formula.

Show that every quantifier-free formula φ is equivalent to some formula in CNF.

2.9 Let L93/4 be the axiom schema (φ→ ψ) →
(
(φ→ ¬ψ) → ¬φ

)
.

(a) Show that {L0, L1, L2, L8, L9} ⊢ L93/4, where ⊢ here means that we can only use

Modus Ponens and the five logical axioms L0, L1, L2, L8, and L9 — this applies
analogously for the following exercises.

(b) Show that {L1, L2, L93/4} ⊢ φ→ ¬¬φ.

(c) Show that {L1–L9} ⊬ L93/4.

Hint: Define a mapping |·|, which assigns to each formula φ a value |φ| ∈ {−1, 0, 1}
such that the following conditions are satisfied: |φ∨ψ| = max{|φ|, |ψ|}, |φ∧ψ| =

min{|φ|, |ψ|}, |¬φ| = −|φ|, and the value of |φ → ψ| is given by the following
table:

|φ|
|ψ| −1 0 1

−1 1 1 1

0 1 1 1

1 −1 0 1

|φ→ ψ|

Show that for every formula θ with {L1–L9} ⊢ θ we have |θ| = 1. On the other
hand, for certain values of |φ| and |ψ| we have |L93/4| ̸= 1.

2.10 Let L91/4 be the axiom schema ¬¬φ→ φ.

(a) Show that {L0, L1, L2, L8, L9} ⊢ L91/4.

(b) Show that {L1, L2, L6, L7, L93/4} ⊢ ¬¬(φ ∨ ¬φ).

(c) Show that {L1, L2, L6, L7, L93/4, L91/4} ⊢ L0.

(d) Show that {L1–L9, L93/4} ⊬ L91/4 (compare with Exercise 2.9.(b)).
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(e) Show that {L1–L9, L93/4} ⊬ L0 (compare with Exercise 2.10.(c)).

Hint for parts (d)& (e): As in Exercise 2.9.(c), define a mapping |·|, which assigns

to each formula φ a value |φ| ∈ {−1, 0, 1} such that the following conditions are
satisfied: |φ ∨ ψ| = max{|φ|, |ψ|}, |φ ∧ ψ| = min{|φ|, |ψ|}, and the values of |¬φ|
and |φ→ ψ| are given by the following tables:

|φ| −1 0 1

|¬φ| 1 −1 −1

|φ|
|ψ| −1 0 1

−1 1 1 1

0 −1 1 1

1 −1 0 1

|φ→ ψ|

Show that for every formula θ with {L1–L9, L93/4} ⊢ θ we have |θ| = 1. On the

other hand, for certain values of |φ| we have |L0| ̸= 1 and |L91/4| ̸= 1, respectively.

2.11 Prove Glivenko’s Theorem, which states that for every formula φ of Propositional
Logic, i.e., for every formula φ which is quantifier-free, we have:

{L0–L9} ⊢ φ if and only if {L1–L9, L93/4} ⊢ ¬¬φ



Chapter 3

Semantics:Making Sense of the Symbols

There are two different views on a given set of formulae Φ, namely the syn-
tactical view and the semantical view.

From the syntactical point of view (presented in the previous chapters), we
consider the set Φ just as a set of well-formed formulae — regardless of their
intended sense or meaning — from which we can prove some formulae. So,
from a formal point of view there is no need to assign real objects (whatever
this means) to our strings of symbols.

In contrast to this very formal syntactical view, there is also the semantical
point of view according to which we consider the intended meaning of the for-
mulae in Φ and then seek for a model in which all formulae of Φ become true.
For this, we have to explain some basic notions of Model Theory like struc-
ture and interpretation, which we will do in a natural, informal language. In
this language, we will use words like “or”, “and”, or phrases like “if. . .then”.
These words and phrases have the usual meaning. Furthermore, we assume
that in our normal world, which we describe with our informal language, the
basic rules of common logic apply. For example, a statement A is true or
false, and if A is true, then the negation of A, denoted not-A, is false; and
vice versa. Hence, the statement “A or not-A” is always true, which means
that we tacitly assume the L a w O f E x c l u d e d M i d d l e, also
known as T e r t i u m N o n D a t u r, which corresponds to the logical
axiom L0. Furthermore, we assume D e M o r g a n ’ s L a w s and apply
M o d u s P o n e n s as an inference rule.

Structures & Interpretations

In order to define structures and interpretations, we have to assume some
notions of N a i v e S e t T h e o r y like subset, cartesian product, or
relation, which shall be properly defined in Part IV. On this occasion, we
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also make use of the set theoretical symbol ∈, which stands for the binary
membership relation.

Let L be an arbitrary but fixed language. An L -structure M consists
of a non-empty set A, called the domain of M, together with a mapping
which assigns to each constant symbol c ∈ L an element cM ∈ A, to each
n-ary relation symbol R ∈ L a set of n-tuples RM of elements of A, and to
each n-ary function symbol F ∈ L a function FM from n-tuples of A to A.
In other words, the constant symbols denote elements of A, n-ary relation
symbols denote subsets of An (i.e., subsets of the n-fold cartesian product of
A), and n-ary functions symbols denote n-ary functions from An to A.

The interpretation of variables is given by a so-called assignment: An as-
signment in an L -structure M is a mapping j which assigns to each variable
an element of the domain A.

Finally, an L -interpretation I is a pair (M, j) consisting of an L -
structure M and an assignment j in M. For a variable ν, an element a ∈ A,
and an assignment j in M, we define the assignment j aν by stipulating

j aν (ν′) =

{
a if ν′ ≡ ν,

j(ν′) otherwise.

Furthermore, for elements a, a′ ∈ A and variables ν, ν′, we shall write j aν
a′

ν′

instead of
(
j aν
)
a′

ν′ .

For an interpretation I = (M, j) and an element a ∈ A, we define:

Iaν := (M, j aν )

We associate with every interpretation I = (M, j) and every L -term τ an
element I(τ) ∈ A as follows:

• For a variable ν, let I(ν) := j(ν).
• For a constant symbol c ∈ L , let I(c) := cM.
• For an n-ary function symbol F ∈ L and terms τ1, . . . , τn, let

I
(
F (τ1, . . . , τn)

)
:= FM

(
I(τ1), . . . , I(τn)

)
.

Now, we are able to define precisely when a formula φ becomes true under
an interpretation I = (M, j); in which case we write I ⊨ φ and say that φ
is true in I (or that φ holds in I). The definition is by induction on the
complexity of the formula φ, where the truth value of expressions involving
“not”, “and”, “if . . . then”, et cetera, is explained later. By the rules (F0)–
(F4), φ must be of the form τ1 = τ2, R(τ1, . . . , τn), ¬ψ, ψ1 ∧ ψ2, ψ1 ∨ ψ2,
ψ1 → ψ2, ∃νψ, or ∀νψ:

I ⊨ τ1 = τ2 :Î===Ï I(τ1) is the same object as I(τ2)

I ⊨ R(τ1, . . . , τn) :Î===Ï
〈
I(τ1), . . . , I(τn)

〉
belongs to RM
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I ⊨ ¬ψ :Î===Ï not I ⊨ ψ

I ⊨ ψ1 ∧ ψ2 :Î===Ï I ⊨ ψ1 and I ⊨ ψ2

I ⊨ ψ1 ∨ ψ2 :Î===Ï I ⊨ ψ1 or I ⊨ ψ2

I ⊨ ψ1 → ψ2 :Î===Ï if I ⊨ ψ1 then I ⊨ ψ2

I ⊨ ∃νψ :Î===Ï there exists a in A : Iaν ⊨ ψ

I ⊨ ∀νψ :Î===Ï for all a in A : Iaν ⊨ ψ

Notice that by the logical rules in our informal language, for every L -formula
φ we have either I ⊨ φ or I ⊨ ¬φ. So, every L -formula is either true or false
in I. On the syntactical level, however, we do not necessarily have Φ ⊢ φ or
Φ ⊢ ¬φ for each set Φ of L -formulae and each L -formula φ.

The following fact summarises a few immediate consequences of the above
definitions:

Fact 3.0. (a) If φ is a formula and ν /∈ free(φ), then:

Iaν ⊨ φ if and only if I ⊨ φ

(b) If φ(ν) is a formula and the substitution φ(ν/τ) is admissible, then:

I I(τ)ν ⊨ φ(ν) if and only if I ⊨ φ(τ)

Basic Notions of Model Theory

Let Φ be an arbitrary set of L -formulae. Then an L -structure M is a model
of Φ if for every assignment j and for each L -formula φ ∈ Φ we have
(M, j) ⊨ φ, i.e., φ is true in the L -interpretation I = (M, j). Instead of
saying “M is a model of Φ ” we just write M ⊨ Φ. If φ fails in M, then
we write M ⊭ φ. Notice that in the case when φ is a sentence, M ⊭ φ is
equivalent to M ⊨ ¬φ, since for any L -sentence φ we have either M ⊨ φ
or M ⊨ ¬φ.

Example 3.1. Let L = {c, f}, where c is a constant symbol and f is a
unitary function symbol. Furthermore, let Φ consist of the following two
L -sentences

∀x
(
x = c ∨ x = f(c)

)︸ ︷︷ ︸
φ1

and ∃x(x ̸= c)︸ ︷︷ ︸
φ2

.
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We construct two models M1 and M2 with the same domain A, such that
M1 ⊨ Φ and M2 ⊭ Φ: For this, let A := {0, 1}, and let

cM1 := 0, fM1(0) := 1, fM1(1) := 0,

cM2 := 0, fM2(0) := 0, fM2(1) := 1.

We leave it as an exercise to the reader to show that φ2 holds in both models,
whereas φ1 holds just in the model M1. In fact, we have M1 ⊨ φ1 ∧ φ2 and
M2 ⊨ ¬φ1 ∧ φ2.

As an immediate consequence of the definition of models, we get:

Fact 3.2. If φ is an L -formula, ν a variable, and M a model, then M ⊨ φ
if and only if M ⊨ ∀νφ.

This leads to the following definition: Let ⟨ν1, . . . , νn⟩ be the sequence of
variables which appear free in the L -formula φ, where the variables appear
in the sequence in the same order as they appear for the first time in φ if one
reads φ from left to right. Then the universal closure of φ, denoted φ, is
defined by stipulating

φ :≡ ∀ν1 · · · ∀νn φ .

As a generalisation of Fact 3.2, we get:

Fact 3.3. If φ is an L -formula and M a model, then

M ⊨ φ Î===Ï M ⊨ φ

The following notation will be used later on to simplify the arguments when
we investigate the truth-value of sentences in some model M: Suppose that
M is a model with domain A. Let φ(ν1, . . . , νn) be an L -formula whose free
variables are ν1, . . . , νn and let a1, . . . , an ∈ A. Then we write

M ⊨ φ(a1, . . . , an)

to denote that for every assignment j in M we have:

(M, j a1ν1 · · ·
an
νn

) ⊨ φ(ν1, . . . , νn)

Let us now have a closer look at models: For this, we fix a signature L (i.e.,
we fix a possibly empty set of constant symbols c, n-ary function symbols F ,
and n-ary relation symbols R). Two L -structures M and N with domains
A and B are isomorphic, denoted M ∼= N, if there is a bijection f : A→ B
such that for all constant symbols c ∈ L we have

f
(
cM
)

= cN ,
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and for all natural numbers n, all n-ary function symbols F ∈ L , all n-ary
relation symbols R ∈ L , and any a1, . . . , an ∈ A we have:

f
(
FM(a1, . . . , an)

)
= FN

(
f(a1), . . . , f(an)

)
⟨a1, . . . , an⟩ ∈ RM ⇔

〈
f(a1), . . . , f(an)

〉
∈ RN

Since models are just L -structures, we can extend the notion of an iso-
morphism to models and obtain the following:

Fact 3.4. If M and N are isomorphic models of some given set of L -
formulae and φ is an L -formula, then:

M ⊨ φ Î===Ï N ⊨ φ

It may happen that although two L -structures M and N are not isomor-
phic there is no L -sentence that can distinguish between them. In this case,
we say that M and N are elementarily equivalent. More formally, we say
that M is elementarily equivalent to N, denoted by M ≡e N, if each
L -sentence σ which is true in M is also true in N. The following lemma
shows that ≡e is symmetric:

Lemma 3.5. If M and N are L -structures and M ≡e N, then for each
L -sentence σ we have:

M ⊨ σ Î===Ï N ⊨ σ

Proof. One direction follows immediately from the definition. For the other
direction, assume that σ is not true in M, i.e., M ⊭ σ. Then M ⊨ ¬σ, which
implies N ⊨ ¬σ, and hence, σ is not true in N. ⊣

As a consequence of Fact 3.3, we get:

Fact 3.6. If M and N are elementarily equivalent models of some given set
of L -formulae and φ is an L -formula, then we have:

M ⊨ φ Î===Ï N ⊨ φ

In what follows, we investigate the relationship between syntax and seman-
tic. In particular, we investigate the relationship between a formal proof of a
formula φ from a set of formulae Φ and the truth-value of φ in a model of
Φ. In this context, two questions arise naturally:

• Is each formula φ which is provable from some set of formulae Φ valid in
every model M of Φ?

• Is every formula φ which is valid in each model M of Φ provable from Φ?
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Soundness Theorem

In this section, we give an answer to the former question in the previous
paragraph; the answer to the latter question is postponed to Part II.

A logical calculus is called sound if all that we can prove is valid (i.e., true),
which implies that we cannot derive a contradiction. The following theorem
shows that First-Order Logic is sound.

Theorem 3.7 (Soundness Theorem). Let Φ be a set of L -formulae and
M a model of Φ. Then for every L -formula φ we have:

Φ ⊢ φ ===Ï M ⊨ φ

Somewhat shorter, we could say

φ : Φ ⊢ φ ===Ï M
(
M ⊨ Φ ===Ï M ⊨ φ

)
,

where the symbol stands for “ for all”.

Proof. First we show that all logical axioms are valid in M. For this, we have
to define truth-values of composite statements in the metalanguage. In the
previous chapter, e.g., we defined:

M ⊨ φ ∧ ψ︸ ︷︷ ︸ Î===Ï M ⊨ φ︸ ︷︷ ︸ and M ⊨ ψ︸ ︷︷ ︸
Θ Î===Ï Φ and Ψ

Thus, in the metalanguage the statement Θ is true if and only if the statement
“Φ and Ψ” is true. So, the truth-value of Θ depends on the truth-values of
Φ and Ψ. In order to determine truth-values of composite statement like
“Φ and Ψ” or “if Φ then Ψ”, where the latter statement will get the
same truth-value as “not Φ or Ψ”, we introduce so called truth-tables, in
which 1 stands for true and 0 stands for false:

Φ Ψ not Φ Φ and Ψ Φ or Ψ if Φ then Ψ

0 0 1 0 0 1

0 1 1 0 1 1

1 0 0 0 1 0

1 1 0 1 1 1

With these truth-tables, one can show that all logical axioms are valid in
M. As an example, we show that every instance of L1 is valid in M. For this,
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let φ1 be an instance of L1, i.e., φ1 ≡ φ → (ψ → φ) for some L -formulae
φ and ψ. Then M ⊨ φ1 if and only if M ⊨ φ→ (ψ → φ):

M ⊨ φ→ (ψ → φ)︸ ︷︷ ︸ Î===Ï if M ⊨ φ︸ ︷︷ ︸ then M ⊨ ψ → φ︸ ︷︷ ︸
Θ Î===Ï if Φ then ( if M ⊨ ψ︸ ︷︷ ︸

Ψ

then M ⊨ φ︸ ︷︷ ︸ )

Φ

This shows that

Θ Î===Ï if Φ then ( if Ψ then Φ ) .

Writing the truth-table of Θ, we see that the statement Θ is always true
(i.e., φ1 is valid in M):

Φ Ψ if Ψ then Φ if Φ then ( if Ψ then Φ )

0 0 1 1

0 1 0 1

1 0 1 1

1 1 1 1

Therefore, M ⊨ φ1, and since φ1 was an arbitrary instance of L1, every
instance of L1 is valid in M.

In order to show that the logical axioms L10–L16 are also valid in M, we
need somewhat more than just truth-tables. For this purpose, let A be the
domain of M, let j be an arbitrary assignment, and let I = (M, j) be the cor-
responding L -interpretation. Now we show that every instance of L10 is valid
in M. For this, let φ10 be an instance of L10, i.e., φ10 ≡ ∀νφ(ν)→ φ(τ) for
some L -formula φ, where ν is a variable, τ an L -term, and the substitution
φ(ν/τ) is admissible. We work with I and show that I ⊨ φ10.

By definition, we have

I ⊨ ∀νφ(ν)→ φ(τ) Î===Ï if I ⊨ ∀νφ(ν) then I ⊨ φ(τ) ,

and again by definition, we have

I ⊨ ∀νφ(ν) Î===Ï for all a in A : Iaν ⊨ φ(ν) .

In particular, we obtain

I ⊨ ∀νφ(ν) ===Ï I I(τ)ν ⊨ φ(ν) .
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Furthermore, by Fact 3.0.(b) we get

I ⊨ φ(τ) Î===Ï I I(τ)ν ⊨ φ(ν) .

Hence, we have
if I ⊨ ∀νφ(ν) then I ⊨ φ(τ)

which shows that
(M, j) ⊨ ∀νφ(ν)→ φ(τ) .

Since the assignment j was arbitrary, we finally have:

M ⊨ ∀νφ(ν)→ φ(τ)

Therefore, M ⊨ φ10, and since φ10 was an arbitrary instance of L10, every
instance of L10 is valid in M.

With similar arguments, one can show that every instance of L11, L12, or L13
is also valid in M (see Exercise 3.5.(a)). Furthermore, one can show that L14,
L15, and L16 are also valid in M (see Exercise 3.5.(b)).

Let Φ be a set of formulae, let M be a model of Φ, and assume that Φ ⊢ φ0

for some L -formula φ0. We shall show that M ⊨ φ0. For this, we first notice
the following facts:

• As we have seen above, each instance of a logical axiom is valid in M.
• Since M ⊨ Φ, each formula of Φ is valid in M.
• By the truth-tables, we get

if (M ⊨ φ→ ψ and M ⊨ φ ) then M ⊨ ψ

and therefore, every application of Modus Ponens in the proof of φ0 from
Φ yields a valid formula (if the premises are valid).

• Since, by Fact 3.2,

M ⊨ φ Î===Ï M ⊨ ∀νφ(ν)

every application of the Generalisation in the proof of φ0 from Φ yields a
valid formula.

From these facts, it follows immediately that each formula in the proof of φ0

from Φ is valid in M. In particular, we get

M ⊨ φ0

which completes the proof. ⊣

The following fact summarises a few consequences of the Soundness The-
orem 3.7.
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Fact 3.8.

(a) Every tautology is valid in each model:

φ : ⊢ φ ===Ï M : M ⊨ φ

(b) If a set of formulae Φ has a model, then Φ is consistent:

M : M ⊨ Φ ===Ï Con(Φ)

Here, the symbol stands for “ it exists”.

(c) The logical axioms are consistent:

Con(L0-L16)

(d) If a sentence σ is not valid in M, where M is a model of Φ, then σ is
not provable from Φ:

if (M ⊭ σ and M ⊨ Φ ) then Φ ⊬ σ

Completion of Theories

A set of L -sentences is called an L -theory, denoted by T. An L -theory T is
called complete, if for every L -sentence σ we have either T ⊢ σ or T ⊢ ¬σ.
Notice that, by definition, an inconsistent theory is always incomplete (i.e.,
not complete). Furthermore, for an L -theory T let Th(T) be the set of all
L -sentences σ, such that T ⊢ σ. By these definitions, we get that a consistent
L -theory T is complete if and only if for every L -sentence σ we have either
σ ∈ Th(T) or ¬σ ∈ Th(T).

Proposition 3.9. If T is an L -theory which has a model, then there exists a
complete L -theory T̄ which contains T. In particular, every L -theory which
has a model can be completed (i.e., can be extended to a complete theory).

Proof. Let M be a model of some L -theory T and let T̄ be the set of L -
sentences σ such that M ⊨ σ. Since for each L -sentence σ0 we have either
M ⊨ σ0 or M ⊨ ¬σ0, we get either σ0 ∈ T̄ or ¬σ0 ∈ T̄, which shows that T̄
is complete, and since M ⊨ T, we get that T̄ contains T. ⊣

Let M be a model of some L -theory T and let T̄ be the set of L -sentences
σ such that M ⊨ σ. Then T̄ is called the theory of M, denoted by Th(M).
By definition, the theory Th(M) is always complete.

It is natural to ask whether the converse of Proposition 3.9 also holds,
i.e., whether every L -theory which can be completed has a model. Notice
that if an L -theory T can be completed, then T must be consistent. So, one
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may ask whether every consistent theory has a model. An affirmative answer
to this question together with Fact 3.8.(b) would imply that an L -theory
T is consistent if and only if T has a model — which is indeed the case, as we
shall see below.

Notes

The history of Model Theory can be traced back to the 19th century, when semantics
began to play a role in Logic. However, one of the earliest results in modern Model Theory

is Gödel’s Completeness Theorem (see Chapter 5). In the 1950’s and 1960’s, Model

Theory was further developed, e.g., by Jerry  Loś (see Chapter 15) and Abraham Robinson
(see Chapter 17).

Exercises

3.0 Show that the domain of a model is never empty.

Hint: Use Example 1.0.

3.1 Let R be a binary relation symbol and let the three sentences φ1, φ2, φ3 be defined as
follows:

φ1 :≡ ∀x(xRx) , φ2 :≡ ∀x∀y(xRy → yRx) , φ3 :≡ ∀x∀y∀z
(
(xRy ∧ yRz) → xRz

)
Find three models M1,M2,M3 with domains as small as possible, such that

M1 ⊨ ¬φ1 ∧ φ2 ∧ φ3 , M2 ⊨ φ1 ∧ ¬φ2 ∧ φ3 , M3 ⊨ φ1 ∧ φ2 ∧ ¬φ3 .

3.2 Let T be a set of L ′-sentences (for some signature L ′) and let M′ be an L ′-structure

such that M′ ⊨ T. Furthermore, let L be an extension of L ′ (i.e., L is a signature
which contains L ′). Then there is an L -structure M with the same domain as M′,
such that M ⊨ T.

3.3 If two structures M and N are isomorphic, then they are elementarily equivalent.

3.4 Let DLO be the theory of dense linearly ordered sets without endpoints. More precisely,

the signature LDLO contains just the binary relation symbol <, and the non-logical
axioms of DLO are the following sentences:

DLO0 ∀x¬(x < x)
DLO1 ∀x∀y∀z

(
(x < y ∧ y < z) → x < z

)
DLO2 ∀x∀y

(
x < y ∨ x = y ∨ y < x

)
DLO3 ∀x∀y∃z

(
x < y → (x < z ∧ z < y)

)
DLO4 ∀x∃y∃z

(
y < x ∧ x < z

)
Show that every countable model of DLO is isomorphic to (Q, <).

Hint: Enumerate both Q and some model M of DLO, and construct an isomorphism

by recursion in such a way that in the n-th step the n-th element of M is mapped to
an element of Q with the order being preserved.

3.5 Let L be an arbitrary signature and let M be an arbitrary L -structure.

(a) Show that L11-L13 are valid in M.

(b) Show that L14-L16 are valid in M.
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3.6 We say that two L -formulae φ and ψ are semantically equivalent if for all L -
structures M and every assignment j we have

(M, j) ⊨ φ Î===Ï (M, j) ⊨ ψ

(a) Show that for every sentence σ there is a semantically equivalent sentence σ̃ which

contains just variables among v0, v1, . . ., where for any m,n ∈ N with m < n, if
vn appears in σ̃, then also vm appears in σ̃ (compare with Theorem 2.13).

(b) Show that for every L -sentence σ there is a semantically equivalent L -sentence

in sPNF (compare with Theorem 2.14).

3.7 (a) Show that Group Theory GT is incomplete.

(b) Let ψ ≡ ∀x∀y (x◦y = y ◦x). Show that GT + ψ is incomplete.



Part II

Gödel’s Completeness Theorem

In this part of the book, we shall prove Gödel’s Com-
pleteness Theorem and show several consequences of
it. Roughly speaking, Gödel’s Completeness The-
orem states that every consistent L -theory T has a
model M ⊨ T. With respect to the model M, every L -
sentence σ is either true or false (i.e., either σ or ¬σ
is true in M). Hence, the set of L -sentences which are
true in M is with this respect complete. Therefore, as
a consequence of Gödel’s Completeness Theorem
we obtain that every consistent theory is contained in
a complete theory. However, this result should not be
confused with Gödel’s First Incompleteness The-
orem (presented in Part III), which states that the the-
ory of Peano Arithmetic PA is incomplete.
Gödel proved his famous theorem in his doctoral dis-
sertation Über die Vollständigkeit des Logikkalküls [14]
which he completed in 1929. In 1930, he published the
same material as in the doctoral dissertation in a rewrit-
ten and shortened form in [15]. However, instead of
presenting Gödel’s original proof we decided to follow
Henkin’s construction, which can be found in [23] (see
also [25]), since it fits better in the logical framework as
developed in Part I. Even though Henkin’s construction
also works for uncountable signatures, we shall prove in
Chapter 15 the general Completeness Theorem with
an ultraproduct construction, using  Loš’s Theorem.
We would like to mention that in our proof of Gödel’s
Completeness Theorem — in contrast to Henkin’s
proof — we only have to assume the existence of poten-
tially infinite sets, but no instance of an actually infinite
set is required (see also Chapter 0).



Chapter 4

Maximally Consistent Extensions

Throughout this chapter, we require that all formulae are written in Polish
notation and that the variables are among v0, v1, v2, . . . Notice that the former
requirement is just another notation which does not involve brackets, and that
by the Variable Substitution Theorem 2.13, the latter requirement gives
us semantically equivalent formulae.

Maximally Consistent Theories

Let L be an arbitrary signature and let T be an L -theory (i.e., a set of
L -sentences). We say that T is maximally consistent if T is consistent
and for every L -sentence σ we have either σ ∈ T or ¬Con(T + σ). In other
words, a consistent theory T is maximally consistent if no proper extension
of T is consistent. The following fact is just a reformulation of this definition.

Fact 4.0. Let L be a signature and let T be a consistent L -theory. Then T
is maximally consistent if and only if for every L -sentence σ, either σ ∈ T
or T ⊢ ¬σ.

Proof. By Fact 2.16(c) & (d) we have:

¬Con(T + σ) Î===Ï T ⊢ ¬σ

Hence, an L -theory is maximally consistent if and only if for every L -
sentence σ, either σ ∈ T or T ⊢ ¬σ. ⊣

As a consequence of Fact 4.0, we get

Lemma 4.1. Let L be a signature and let T be a consistent L -theory. Then
T is maximally consistent if and only if for every L -sentence σ, either σ ∈ T
or ¬σ ∈ T.
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Proof. We have to show that the following equivalence holds:

σ
(
σ ∈ T or T ⊢ ¬σ

)
Î===Ï σ

(
σ ∈ T or ¬σ ∈ T

)
(⇒) Assume that for every L -sentence σ we have σ ∈ T or T ⊢ ¬σ. If

σ ∈ T, then the implication obviously holds. If σ /∈ T, then T ⊢ ¬σ, and since
T is consistent, this implies T ⊬ σ. Now, by Tautology (F), this implies
T ⊬ ¬¬σ and by our assumption we finally get ¬σ ∈ T.

(⇐) Assume that for every L -sentence σ we have σ ∈ T or ¬σ ∈ T. If
σ ∈ T, then the implication obviously holds. Now, if σ /∈ T, then by our
assumption we have ¬σ ∈ T, which obviously implies T ⊢ ¬σ. ⊣

Maximally consistent theories have similar features as complete theories:
Recall that an L -theory T is complete if for every L -sentence σ we have
either T ⊢ σ or T ⊢ ¬σ.

As an immediate consequence of the definitions, we get

Fact 4.2. Let L be a signature, let T be a consistent L -theory, and let
Th(T) be the set of all L -sentences which are provable from T.

(a) If T is complete, then Th(T) is maximally consistent.

(b) If T is maximally consistent, then Th(T) is the same as T.

The next result gives a condition under which a theory can be extended to
a maximally consistent theory. In fact, it is just a reformulation of Propo-
sition 3.9.

Fact 4.3. If an L -theory T has a model, then T has a maximally consistent
extension.

Proof. Let M be a model of the L -theory T and let Th(M) be the set of
L -sentences σ such that M ⊨ σ. Then Th(M) is obviously a maximally
consistent theory which contains T. ⊣

Later we shall see that every consistent theory has a model. For this, we
first show how a consistent theory can be extended to a maximally consistent
theory.

Universal List of Sentences

Let L be an arbitrary but fixed countable signature, where by “countable”
we mean that the symbols in L can be listed in a f i n i t e or p o t e n -
t i a l l y i n f i n i t e list LL .



Universal List of Sentences 57

First, we encode the symbols of L corresponding to the order in which
they appear in the list LL : The first symbol is encoded with “2”, the second
with “22”, the third with “222”, and so on. For every symbol ζ ∈ LL , let # ζ
denote the code of ζ. Therefore, the code of a symbol of L is just a sequence
of 2’s.

Furthermore, we encode the logical symbols as follows:

Symbol ζ Code # ζ

= 11

¬ 1111

∧ 111111

∨ 11111111

→ 1111111111

∃ 111111111111

∀ 11111111111111

v0 1

v1 111
...

...

vn 1111 . . . 11111︸ ︷︷ ︸
(2n+ 1) 1’s

In the next step, we encode strings of symbols: Let ζ̄ ≡ ζ0ζ1ζ2 . . . ζn be a
finite string of symbols, then

# ζ̄ := # ζ00# ζ10# ζ2 . . . 0# ζn

For a string # ζ (i.e., a string of 0’s, 1’s, and 2’s), let |# ζ| be the length of
# ζ (i.e., the number of 0’s, 1’s, and 2’s which appear in # ζ).

Now, we order the codes of strings of symbols by their length and strings
of the same length lexicographically, where 0 < 1 < 2. If, with respect to this
ordering, # ζ is less than # ζ ′, then we write # ζ ≺ # ζ ′.

Finally, let
ΛL := [σ1, σ2, . . .]

be the potentially infinite list of all L -sentences written in Polish notation
(notice that we did not encode brackets), where we require

#σi ≺ #σj ⇐⇒ i < j .

We call ΛL the universal list of L -sentences.
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Lindenbaum’s Lemma

In this section, we show that every consistent set of L -sentences T can be
extended to a maximally consistent set of L -sentences T. Since the universal
list of L -sentences contains all possible L -sentences, every set T of L -
sentences can be listed in a finite or potentially infinite list.

Theorem 4.4 (Lindenbaum’s Lemma). Let L be a countable signature
and let T be a consistent set of L -sentences. Furthermore, let σ0 be an L -
sentence which cannot be proved from T, i.e., T ⊬ σ0. Then there exists a
maximally consistent set T of L -sentences which contains ¬σ0 as well as all
the sentences of T.

Proof. Let ΛL = [σ1, σ2, . . .] be the universal list of all L -sentences. First
we extend ΛL with the L -sentence ¬σ0; let Λ0

L = [¬σ0, σ1, σ2, . . .].
Now, we go through the list Λ0

L and define step by step a list T of L -
sentences. For this, we define T0 as the list which contains just ¬σ0, i.e.,
T0 := [¬σ0]. If Tn is already defined, then

Tn+1 :=

{
Tn + [σn+1] if Con(T + Tn + σn+1),

Tn otherwise.

Let T = [¬σ0, σi1 , . . .] be the resulting list, i.e., T is the potentially infinite
list which contains each finite list Tn as an initial segment. Notice that this
construction only works if we assume the metamathematical l a w o f e x -
c l u d e d m i d d l e or a similar principle like the w e a k k ö n i g ’ s
l e m m a (see Exercise 4.1): Even in the case when we cannot decide
whether T + Tn + σn is consistent or not, we assume, from a metamathe-
matical point of view, that either T + Tn + σn is consistent or T + Tn + σn
is inconsistent (and neither both, nor none).

The following claim states that we cannot derive a contradiction from
finitely many L -sentences in T and that we cannot add any new L -sentence
to T without destroying this property. However, in order to simplify our ter-
minology, we shall consider the potentially infinite list T as an actual infinite
set — notice that this is just a “façon-de-parler” since we do not have to
assume the existence of actual infinite sets.

Claim. T is a maximally consistent set of L -sentences which contains ¬σ0
as well as all the sentences of T.

Proof of Claim. First we show that T contains T+¬σ0, then we show that T
is consistent, and finally we show that for every L -sentence σ we have either
σ ∈ T or ¬Con(T + σ).

T contains all sentences of T + ¬σ0: By definition, T0 = [¬σ0], and since
T0 is an initial segment of the list T, ¬σ0 belongs to T. For every σ ∈ T,
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there is n ∈ N with n ≥ 1 such that σ ≡ σn. By induction, we show that if
σn ∈ T then σn ∈ T. For this, suppose that the claim holds for all m ≤ n and
that σn+1 ∈ T. Let m be the largest number m ≤ n such that σm ∈ T. Then
we have Tn = Tm. If ¬Con(T + Tn + σn+1), then since σn+1 ∈ T, we have
¬Con(T + Tm), contradicting σm ∈ T. Hence we have Con(T + Tn + σn+1)
and therefore σn+1 ∈ Tn+1.

T is consistent : By the Compactness Theorem 2.17 it is enough to show
that every finite subset of T is consistent. Since every finite subset of T is
contained in Tn for some n, it suffices to prove by induction that Tn is
consistent for every n ∈ N. Since T ⊬ σ0, T0 = [¬σ0] is consistent. Now
suppose Con(Tm) for all m ≤ n. If ¬Con(T+Tn+σn+1), then Tn+1 = Tn is
consistent by our induction hypothesis. Otherwise, Con(T + Tn + σn+1) and
therefore Tn+1 is consistent, too.

For every σ, either σ ∈ T or ¬Con(T+ σ): For every L -sentence σ, there
is a n ∈ N with n ≥ 1 such that σ ≡ σn. By the l a w o f e x c l u d e d
m i d d l e, we have either Con(T+Tn−1 +σn) or ¬Con(T+Tn−1 +σn). In
the former case we obtain σn ∈ Tn, which implies σ ∈ T. In the latter case
we obtain ¬Con(T + σn), which is the same as ¬Con(T + σ). ⊣Claim

Thus, the list T has all the required properties, which completes the proof. ⊣

The following fact summarises the main properties of T.

Fact 4.5. Let T, T, and σ0 be as above, and let σ and σ′ be any L -
sentences.

(a) ¬σ0 ∈ T.

(b) Either σ ∈ T or ¬σ ∈ T.

(c) If T ⊢ σ, then σ ∈ T.

(d) T ⊢ σ if and only if σ ∈ T.

(e) If σ ⇔ σ′, then σ ∈ T if and only if σ′ ∈ T.

Proof. (a) follows by construction of T.

Since T is maximally consistent, (b) follows by Lemma 4.1.

For (c), notice that T ⊢ σ implies ¬Con(T+¬σ), hence ¬σ /∈ T and by (b)
we get σ ∈ T.

For (d), let us first assume T ⊢ σ, where σ ≡ σn. This implies Con(T + σ),
hence Con(T + Tn + σn), and by construction of T we get σn ∈ T. On the
other hand, if σ ∈ T, then we obviously have T ⊢ σ.

For (e), recall that σ ⇔ σ′ is just an abbreviation for ⊢ σ ↔ σ′. Thus, (e)
follows immediately from (d). ⊣

Fact 4.5 shows that the L -sentences in T “behave” like valid sentences in
a model, which is indeed the case—as the following proposition shows.
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Proposition 4.6. Let T be as above, and let σ, σ1, σ2 be any L -sentences
in Polish notation.

(a) ¬σ ∈ T Î===Ï not σ ∈ T

(b) ∧σ1σ2 ∈ T Î===Ï σ1 ∈ T and σ2 ∈ T

(c) ∨σ1σ2 ∈ T Î===Ï σ1 ∈ T or σ2 ∈ T

(d) → σ1σ2 ∈ T Î===Ï if σ1 ∈ T then σ2 ∈ T

Proof. (a) Follows immediately from Fact 4.5.(b).
(b) First notice that by Fact 4.5.(d), ∧σ1σ2 ∈ T if and only if T ⊢ ∧σ1σ2.

Thus, by L3 and L4 and (MP) we get T ⊢ σ1 and T ⊢ σ2. Therefore, by
Fact 4.5.(d), we get σ1 ∈ T and σ2 ∈ T. On the other hand, if σ1 ∈ T
and σ2 ∈ T, then, by Fact 4.5.(d), we get T ⊢ σ1 and T ⊢ σ2. Now, by
Tautology (B), this implies T ⊢ ∧σ1σ2, and by Fact 4.5.(d) we finally get
∧σ1σ2 ∈ T.

(c) and (d) follow from Fact 4.5.(e) and from the 3-Symbols Theo-
rem 1.7 which states that for each formula σ there is an equivalent formula
σ′ which contains neither ∨ nor →. ⊣

Exercises

4.0 Show that all the logical axioms of propositional logic (i.e., L0–L9) were used in the

proofs of Fact 4.0, Lemma 4.1, Fact 4.5, and Proposition 4.6. Notice that in the
proof of Fact 4.0, we used Fact 2.16.(c) & (d).

4.1 The Weak König’s Lemma is a very weak choice principle: A tree T is a 0-1-tree if it

is a sub-tree of a binary tree in which the two successors of a node are always labelled
with 0 and 1, respectively. Now, the Weak König’s Lemma states that

every infinite 0-1-tree contains an infinite branch.

Show that in the proof of Lindenbaum’s Lemma 4.4, the l a w o f e x c l u d e d
m i d d l e can be replaced be the metamathematical w e a k k ö n i g ’ s l e m m a.

Hint: First, let Λ be the set of all finite lists λ = [¬σ0, ϱ1, . . . , ϱn] of L -sentences, where
for each 1 ≤ i ≤ n, either ϱi ≡ σi or ϱi ≡ ¬σi. Now, encode formal proofs, which
are finite sequences of L -formulae, with natural numbers. Finally, construct the tree
T consisting of all lists λ ∈ Λ, such that there is no formal proof of an inconsistency
from T + λ with a code-number less than the length of λ. Then T corresponds to an
infinite 0-1-tree with the property that each infinite branch through T corresponds to

a maximally consistent set of L -sentences.

4.2 Show that in the case when the theory T + ¬σ0 already has a model M, then we

can just set T = Th(M). Therefore, we do not need the l a w o f e x c l u d e d

m i d d l e in this case.
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The Completeness Theorem

As in the previous chapter, we require that all formulae are written in Polish
notation and that the variables are among v0, v1, v2, . . . Let L be a countable
signature, where by “countable” we mean that the symbols in L can be listed
in a f i n i t e or p o t e n t i a l l y i n f i n i t e list. Furthermore, let T
be a consistent L -theory and let σ0 be an L -sentence which is not provable
from T. Finally, let T be the maximally consistent extension of T + ¬σ0
obtained with Lindenbaum’s Lemma 4.4.

We shall construct a model of T as follows: In a first step, we extend the
signature L to a signature Lc by adding countably many new constant
symbols, so-called special constants. In a second the step, we extend the
L -theory T to an Lc-theory Tc by adding so-called witnesses to existential
sentences in T. In particular, for each sentence ∃νσ(ν) ∈ T we add an Lc-
sentence σ(c), where c is some special constant. In a third step, we extend
the Lc-theory Tc to a maximally consistent Lc-theory T̃, and in a last step,
we build the domain of the model of T̃ as a list of lists of closed Lc-terms.

Extending the Language

A string of symbols is called a term-constant, if it results from applying
f i n i t e l y many times the following rules:

(C0) Each closed (i.e., variable-free) L -term is a term-constant.
(C1) If τ0, . . . , τn−1 are any term-constants which we have already built and

F is an n-ary function symbol, then Fτ0 · · · τn−1 is a term-constant.
(C2) For any natural numbers i, n, if τ0, . . . , τn−1 are any term-constants which

we have already built, then (i, τ0, . . . , τn−1, n) is a term-constant.

The strings (i, τ0, . . . , τn−1, n) which are built with rule (C2) are called
special constants. Notice that for n = 0, (i, τ0, . . . , τn−1, n) becomes (i, 0).
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Let Lc be the signature L extended by the countably many special con-
stants. In order to write the special constants in a list, we first encode them
and then define an ordering on the set of codes.

First we encode closed L -terms with strings of 0’s, 1’s, and 2’s as in Chap-
ter 4. Now, let c ≡ (i, τ0, . . . , τn−1, n) be a special constant, where the codes
# τ0, . . . ,# τn−1 of τ0, . . . , τn−1 are already defined. Then we encode c as fol-
lows:

c ≡ ( i , τ0 , . . . , τn−1 , n )

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

# c ≡ 6 1 . . . 1︸ ︷︷ ︸
i-times 1

8 # τ0 8 . . . 8 # τn−1 8 1 . . . 1︸ ︷︷ ︸
n-times 1

9

The codes of special constants are ordered by their length and lexicograph-
ically, where 0 < 1 < 2 < 6 < 8 < 9.

Finally, let Λτ = [τ0, τ1, . . .] be the potentially infinite list of all term-
constants, and let Λc = [c0, c1, . . .] be the potentially infinite list of all special
constants, both ordered with respect to the ordering of their codes.

Extending the Theory

In this section, we shall add witnesses for certain existential Lc-sentences
σi in the list T = [¬σ0, σ1, . . . , σi, . . .], where an Lc-sentence is existential
if it is of the form ∃νφ. We choose the witnesses from the list Λc of special
constants. In order to make sure that we have a witness for each existential
Lc-sentence (and not just for L -sentences), and also to make sure that the
choice of witnesses does not lead to a contradiction, we have to choose the
witnesses carefully.

Let σi ∈ T and let cj ≡ (i, t0, . . . , tn−1, n) be a special constant. Then we
say that cj witnesses σi, or that cj is a witness for σi, if

• i ≥ 1 and σi is in special Prenex Normal Form sPNF (see Chapter 2),

• the string of symbols ∃vn appears in σi,

• for all m < n: if ∃vm appears in σi, then tm ≡ (i, t0, . . . , tm−1,m).

On the one hand, we have only witnesses cj for L -sentences σi with i ≥ 1.
On the other hand, notice that since ¬σ0 is not necessarily in sPNF, by
construction of T there exists an i ≥ 1 such that σi and ¬σ0 are semantically
equivalent, which will be sufficient for our purposes.

If an L -sentence σi ∈ T is in sPNF and either ∃vn or ∀vn appears in σi,
then

σi ≡ 0v0 1v1 · · · nvnσi,n(v0, . . . , vn) ,
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where σi,n(v0, . . . , vn) is an L -formula in which each variable among v0, . . . , vn
appears free. In particular, if cj ≡ (i, t0, . . . , tn−1, n) witnesses σi, then

σi ≡ 0v0 1v1 · · · n − 1vn−1∃vnσi,n(v0, . . . , vn) ,

i.e., ∃vn appears in σi. Furthermore, if σi ∈ T is in sPNF, cj ≡ (i, t0, . . . , tn−1, n)
is a special constant, and cj witnesses σi, then let

σi,n[cj ] :≡ σi,n(v0/t0, . . . , vn−1/tn−1, vn/cj) .

Now, we go through the list Λc = [c0, c1, . . .] of special constants and extend
step by step the list T = [σ0, σ1, . . .]. For this, we first stipulate T0 := T.
Now assume that Tj is already defined and that cj ≡ (i, t0, . . . , tn−1, n) for
some natural numbers i, n and term-constants t0, . . . , tn−1. Then we have the
following two cases:

Case 1. The special constant cj does not witness the L -sentence σi ∈ T.
In this case, we set Tj+1 := Tj .

Case 2. The special constant cj witnesses σi ∈ T. In this case, we insert the
Lc-sentence σi,n[cj ] into the list Tj at the place which corresponds to the
code #σi,n[cj ]. The extended list is then Tj+1.

Finally, let Tc be the resulting list, i.e., Tc is the union of all the Tj ’s.

Lemma 5.0. Tc is consistent.

Proof. By construction of T we have Con(T) with respect to the signature
L . We first show that T is also consistent with respect to the signature Lc:
Assume towards a contradiction that T ⊢ � with respect to the signature
Lc. In that proof, we replace each special constant c by a variable νc which
does not occur in any of the finitely many formulae of the proof, such that νc
and νc′ are distinct variables whenever c and c′ are distinct special constants.
Notice that every logical axiom becomes a logical axiom of the same type.
Moreover, notice that all L -sentences of T remain unchanged since they do
not contain special constants. Furthermore, each application of Modus Ponens
or Generalisation becomes a new application of the same inference rule. To
see this, notice that we do not apply Generalisation to any of the νc’s, since
otherwise, we would have applied Generalisation to a special constant c, but
c is a term-constant and not a variable. Since the obtained proof does not
contain any special constants, we get T ⊢ � (with respect to L ), which
contradicts the fact that T is consistent (with respect to L ). Therefore we
have Con(T) with respect to Lc.

Now, assume towards a contradiction that Tc is inconsistent, i.e., ¬Con(Tc).
Then, by the Compactness Theorem 2.17, we find finitely many pairwise
distinct Lc-sentences σi,n[cj ] in Tc such that

¬Con
(
T +

{
σi1,n1

[cj1 ], . . . , σik,nk
[cjk ]

})
.
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Notice that since the Lc-sentences σi1,n1 [cj1 ], . . . , σik,nk
[cjk ] are pairwise

distinct, so are the special constants cj1 , . . . , cjk . Without loss of general-
ity we may assume that σi1,n1

[cj1 ], . . . , σik,nk
[cjk ] are such that the sum

n1 + . . .+ nk + k is minimal.
For term-constants τ we define the height h(τ) as follows: If τ is a closed

L -term, then h(τ) := 0; if τ0, . . . , τn−1 are term-constants and F ∈ L is an
n-ary function symbol, then

h(Fτ0 · · · τn−1) := max
{
h(τ0), . . . , h(τn−1)

}
;

and finally, if τ ≡ (i, τ0, . . . , τn−1, n) is a special constant, then

h(τ) := 1 + max
{
h(τ0), . . . , h(τn−1)

}
,

where max ∅ := 0. Without loss of generality we may assume that

h(cjk) = max
{
h(cj1), . . . , h(cjk)

}
,

i.e., for each special constant cj occurring in cj1 , . . . , cjk we have h(cj) <
h(cjk). In particular, it follows that cjk does not occur in any such special
constant cj .

Let us now consider the formula σik,nk
[cjk ]. In order to simplify the nota-

tion, we write i, n, j instead of ik, nk, jk respectively; in particular, σik,nk
[cjk ]

becomes σi,n[cj ]. Furthermore, let

Σ :=
{
σi1,n1

[cj1 ], . . . , σik−1,nk−1
[cjk−1

]
}
,

and let cj ≡ (i, t0, . . . , tn−1, n), i.e.,

σi,n[cj ] ≡ σi,n(v0/t0, . . . , vn−1/tn−1, vn/cj) .

Since cj witnesses σi, ∃vn appears in σi, i.e.,

σi,n−1(v0, . . . , vn−1) ≡ ∃vnσi,n(v0, . . . , vn−1, vn) .

In order to simplify the notation again, we set

σ̃(vn) :≡ σi,n(v0/t0, . . . , vn−1/tn−1, vn) .

Notice that vn is the only variable which appears free in σ̃.

Claim. ¬Con
(
T + Σ + σi,n[cj ]

)
===Ï ¬Con

(
T + Σ + ∃vnσ̃(vn)

)
Proof of Claim. If T + Σ + σi,n[cj ] is inconsistent, then

T + Σ + σi,n[cj ] ⊢ � , (⊢1)

and with the Deduction Theorem we get
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T + Σ ⊢ σi,n[cj ]→ � . (⊢2)

In the latter proof (⊢2) we replace the special constant cj throughout the
proof by a variable ν which does not occur in σi,n and which does not occur
in any of the finitely many formulae of the former proof (⊢1). Notice that
every logical axiom becomes a logical axiom of the same type. Moreover,
notice that L -sentences of T are not affected (since they do not contain spe-
cial constants). Furthermore, Lc-sentences of Σ are not affected either, since
they do not contain the special constant cj (recall that the special constants
cj1 , . . . , cjk are pairwise distinct). Finally, each application of Modus Ponens
or Generalisation becomes a new application of the same inference rule (no-
tice that we do not apply Generalisation to ν, since otherwise we would have
applied Generalisation to cj , but cj is a term-constant). Now, we construct a
proof of ∃vnσ̃(vn)→ � from T + Σ as follows:

T + Σ ⊢ σ̃(ν)→ � by assumption

T + Σ ⊢ ∀ν
(
σ̃(ν)→ �

)
by Generalisation

T + Σ ⊢ ∀ν
(
σ̃(ν)→ �

)
→
(
∃νσ̃(ν)→ �

)
L13

T + Σ ⊢ ∃νσ̃(ν)→ � by Modus Ponens

T + Σ ⊢ ∃vnσ̃(vn)→ � Tautology (Q.1)

Therefore, we finally have ¬Con
(
T + Σ + ∃vnσ̃(vn)

)
. ⊣Claim

Let us now consider σi. Let m ≤ n be the largest natural number such that
for each l with 1 ≤ l ≤ m we have that ∀vn−l appears in σi. For example, if
m = 0, then n − 1 is the quantifier ∃, and if m = n, then for no n′ < n, n′

is the quantifier ∃. In general, σi is of the form

σi ≡ 0v0 · · ·︸ ︷︷ ︸
∃ or ∀

∃vn−m−1∀vn−m · · · ∀vn−1︸ ︷︷ ︸
only ∀

∃vn σi,n(v0, . . . , vn) .

Consider now the formula

σ̃m :≡ σi,n−m−1(v0/t0, . . . , vn−m−1/tn−m−1) .

Then either σ̃m ∈ T (in case m = n), or ∃vn−m−1 appears in σi (in case
m < n), and therefore, we are in one of following two cases:

Case 1. σ̃m ∈ T: First notice that in this case,

σ̃m ≡ ∀v0 · · · ∀vn−1∃vnσi,n(v0, . . . , vn) .

Since σ̃m ∈ T and t0, . . . , tn−1 are closed terms, by L10 we get T ⊢ ∃vnσ̃(vn).
Hence, by the Claim, ¬Con(T + Σ). This shows that we do not need
σik,nk

[cjk ] to derive a contradiction from
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T +
{
σi1,n1 [cj1 ], . . . , σik,nk

[cjk ]
}
,

which is a contradiction to the minimality of the sum n1 + . . . nk + k.

Case 2. ∃vn−m−1 appears in σi: Note that since cj ≡ (i, t0, . . . , tn−1, n)
witnesses σi,

tn−m−1 ≡ (i, t0, . . . , tn−m−2, n−m− 1)

witnesses σi, too. Similar as above, by L10 we get

T + σi,n−m−1[tn−m−1] ⊢ ∃vnσ̃(vn) ,

and with the Deduction Theorem we obtain

T ⊢ σi,n−m−1[tn−m−1]→ ∃vnσ̃(vn) .

This shows that if we derive a contradiction from

T + Σ + ∃vnσ̃(vn) ,

then we also derive a contradiction from

T + Σ + σi,n−m−1[tn−m−1] ,

which is again a contradiction to the minimality of the sum n1 + . . . nk + k.

Therefore, T +
{
σi1,n1 [cj1 ], . . . , σik,nk

[cjk ]
}

is consistent, and since the
finitely many Lc-sentences σi1,n1

[cj1 ], . . . , σik,nk
[cjk ] were arbitrary, we ob-

tain that Tc is consistent, which completes the proof. ⊣

The Completeness Theorem for Countable Signatures

In this section, we shall construct a model of the Lc-theory Tc, which is of
course also a model of the L -theory T + ¬σ0. However, since we extended
the signature L , we first have to extend the binary relation =, as well as
relation symbols in L , to the new closed Lc-terms.

Lemma 5.1. The list Tc can be extended to a consistent list T̃ of Lc-
sentences, such that the additional Lc-sentences are variable-free (i.e., they
contain neither quantifiers nor free variables) and for each variable-free Lc-
sentence σ we have

either σ ∈ T̃ or ¬σ ∈ T̃ .

Proof. Like in the proof of Lindenbaum’s Lemma 4.4, we go through the
list of all variable-free Lc-sentences and successively extend the list Tc to a
consistent list T̃. ⊣
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Notice that by the construction of Tc, if the Lc-sentence

∀vk · · · ∀vn−1︸ ︷︷ ︸
only ∀-quantifiers

∃vn σi,n(v0/t0, . . . , vk−1/tk−1, vk, . . . , vn)

belongs to Tc, where n− 1 ≥ k, then for all tk, . . . , tn−1 ∈ Λτ and

cj ≡ (i, t0, . . . , tk−1, tk, . . . , tn−1, n)

the sentence

σi,n(v0/t0, . . . , vk−1/tk−1, vk/tk, . . . , vn−1/tn−1, vn/cj)

belongs to Tc, and hence, this sentence belongs to T̃. The reason is because
in the witness cj , tk, . . . , tn−1 can be any term-constants in Λτ .

Furthermore, as a consequence of the construction of T̃ we obtain the fol-
lowing result.

Fact 5.2. If the Lc-sentence

σ ≡ ∀vk · · · ∀vn︸ ︷︷ ︸
only ∀-quantifiers

σi,n(v0/t0, . . . , vk−1/tk−1, vk, . . . , vn)

belongs to Tc, where σi,n does not contain quantifiers, then for all tk, . . . , tn ∈
Λτ the sentence

σ′ ≡ σi,n(v0/t0, . . . , vk−1/tk−1, vk/tk, . . . , vn/tn)

belongs to T̃.

Proof. If σ ∈ Tc, then by L10 we have Tc ⊢ σ′. Thus, by construction of T̃ we
get σ′ ∈ T̃. ⊣

Now we are ready to construct the domain of a model of T̃, which shall be
a list of lists. For this, let

Λτ = [t0, t1, . . . , tn, . . .]

be the list of all term-constants (ordered with respect to their codes). We
go through the list Λτ and construct step by step a list of lists: First, we
set A0 := [ ]. Now, assume that An is already defined and consider the Lc-
sentences

tn = t0, tn = t1, . . . tn = tn−1 .

If, for some m with 0 ≤ m < n, the sentence tn = tm belongs to T̃, then we
append tn to that list in An which contains tm; the resulting list is An+1.
If none of the sentences tn = tm (for 0 ≤ m < n) belongs to T̃ (e.g., if
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n = 0), then An+1 := An +
[
[tn]
]
. Finally, let A =

[
[tn0 , . . .], [tn1 , . . .] . . .

]
be

the resulting list. Then, A is a finite or potentially infinite list of potentially
infinite lists.

The lists in the list A are the objects of the domain of our model M ⊨ T̃.
In order to simplify the notation, for term-constants τ let τ̃ be the unique
list of A which contains τ .

In order to get an Lc-structure M with domain A, we have to define a
mapping which assigns to each constant symbol c ∈ Lc an element cM ∈ A,
to each n-ary function symbol F ∈ L a function FM : An → A, and to each
n-ary relation symbol R ∈ L a set RM ⊆ An:

• If c ∈ Lc is a constant symbol of L or a special constant, then let

cM := c̃ .

• If F ∈ L is an n-ary function symbol and t̃1, . . . , t̃n are elements of A,
then let

FMt̃1 · · · t̃n := ˜Ft1 · · · tn .

• If R ∈ L is an n-ary relation symbol and t̃1, . . . , t̃n are elements of A,
then we define

⟨t̃1, . . . , t̃n⟩ ∈ RM :Î===Ï Rt1 · · · tn ∈ T̃ .

Fact 5.3. The definitions above, which rely on representatives of the lists in
A, are well-defined.

Proof. This follows easily by L14, L15, and L16, and the construction of T̃; the
details are left as an exercise to the reader. ⊣

Theorem 5.4. The Lc-structure M is a model of T̃, and therefore also of
the L -theory T + ¬σ0.

Proof. We have to show that for each Lc-sentence σ we have

σ ∈ T̃ ===Ï M ⊨ σ , or equivalently M ⊭ σ ===Ï σ /∈ T̃ .

First, we consider the case when σ is variable-free: The proof is by induction
on the number of logical operators. By Lemma 5.1 we know that for each
variable-free Lc-sentence σ we have either σ ∈ T̃ or ¬σ ∈ T̃. Hence, we must
show that for each variable-free Lc-sentences σ we have σ ∈ T̃ if and only if
M ⊨ σ.

If σ is variable-free and does not contain logical operators, then σ is atomic.
In this case, we have either σ ≡ t1 = t2 (for some term-constants t1 and t1)
or σ ≡ Rt1 · · · tn (for an n-ary relation symbol R ∈ L and term-constants
t1, . . . , tn), and by construction of M, we get σ ∈ T̃ if and only if M ⊨ σ in
both cases.
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Before we consider the case when σ is variable-free and contains logical
operators, recall that for any Lc-sentence σ̃ with σ ⇔ σ̃, by the Soundness
Theorem 3.7 we get M ⊨ σ if and only if M ⊨ σ̃. Therefore, by the Three-
Symbols Theorem 1.7, we may assume that σ is either of the form ¬σ′ or
of the form ∧σ1σ2. Now, let σ be a non-atomic, variable-free Lc-sentence,
and assume that for each variable-free Lc-sentence σ′ which contains fewer
logical operators than σ, we have σ′ ∈ T̃ if and only if M ⊨ σ′. By our former
assumption, we just have to consider the following two cases:

Case 1. σ ≡ ¬σ′: Since σ′ has fewer logical operators than σ, we have σ′ ∈ T̃
if and only if M ⊨ σ′. This shows that

¬σ′ /∈ T̃ Î===Ï M ⊭ ¬σ′ , or equivalently σ ∈ T̃ Î===Ï M ⊨ σ .

Case 2. σ ≡ ∧σ1σ2: Since each if σ1 and σ2 has fewer logical operators than
σ̃, we have σ1 ∈ T̃ if and only if M ⊨ σ1, and σ2 ∈ T̃ if and only if M ⊨ σ2.
Hence, we obtain

∧σ1σ2 ∈ T̃ Î===Ï σ1 ∈ T̃ and σ2 ∈ T̃ Î===Ï

M ⊨ σ1 and M ⊨ σ2 Î===Ï M ⊨ ∧σ1σ2
which shows that σ ∈ T̃ Î===Ï M ⊨ σ.

We now consider the case when the Lc-sentence σ ∈ T̃ contains variables:
The proof is by induction on the number of different variables which appear
in σ. If σ ∈ T̃ is an Lc-sentence which contains variables, then, by construc-
tion of Tc, there is a σ̃ ∈ Tc in sPNF, say

σ̃ ≡ 0v0 · · · nvnσi,n(v0, . . . , vn) , where σi,n is quantifier free,

such that for some natural numbers i, k, n with k ≤ n and some term-
constants t0, . . . , tk−1 we have

σ ≡ kvk · · · nvnσi,n(v0/t0, . . . , vk−1/tk−1, vk, . . . , vn) .

Now, let σ be an Lc-sentence of the above form and assume that for each
Lc-sentence σ′ which contains fewer variables than σ we have

σ′ ∈ T̃ ===Ï M ⊨ σ′ , or equivalently M ⊭ σ′ ===Ï σ′ /∈ T̃ .

We are in exactly one of the following two cases:

Case 1. k is the quantifier ∃: Suppose that σ ∈ T̃. Then we have σ ∈ Tc
and for the special constant

tk ≡ (i, t0, . . . , tk−1, k)

and the Lc-sentence

σ′ ≡ k + 1vk+1 · · · nvnσi,n(v0/t0, . . . , vk/tk, vk+1, . . .) ,
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we have σ′ ∈ Tc, and consequently σ′ ∈ T̃. Now, since σ′ has fewer variables
than σ, by our assumption we conclude that M ⊨ σ′, and therefore, by L11
and the Soundness Theorem 3.7, we obtain M ⊨ σ. Hence,

σ ∈ T̃ ===Ï M ⊨ σ .

Case 2. k is the quantifier ∀: Suppose that σ ∈ T̃, where

σ ≡ ∀vk · · · ∀vk+s︸ ︷︷ ︸
only ∀-quantifiers

∃vk+s+1 σi,k+s+1(v0/t0, . . . , vk−1/tk−1, vk, . . . , vk+s+1)

or
σ ≡ ∀vk · · · ∀vk+s︸ ︷︷ ︸

only ∀-quantifiers

σi,k+s(v0/t0, . . . , vk−1/tk−1, vk, . . . , vk+s)

where σi,k+s does not contain quantifiers. Then, by Fact 5.2 and the con-

struction of T̃, for all tk, . . . , tk+s ∈ Λτ and

cj ≡ (i, t0, . . . , tk−1, tk, . . . , tk+s, k + s+ 1) ,

in the former case we have

σi,k+s+1(v0/t0, . . . , vk+s/tk+s, vk+s+1/cj)︸ ︷︷ ︸
σ′

∈ T̃ ,

and in the latter case we have

σi,k+s(v0/t0, . . . , vk+s/tk+s)︸ ︷︷ ︸
σ′

∈ T̃ .

In both cases, σ′ has fewer variables than σ and by our assumption we have
M ⊨ σ′. Thus, by Fact 3.0.(b), for all t̃k, . . . , t̃k+s ∈ A we have(

M, j t̃kvk · · ·
t̃k+s

vk+s

)
⊨ ∃vk+s+1σi,k+s+1(v0/t0, . . . , vk+s/tk+s, vk+s+1)

or (
M, j t̃kvk · · ·

t̃k+s

vk+s

)
⊨ σi,k+s(v0/t0, . . . , vk+s/tk+s) ,

and in both cases we have M ⊨ σ.

So, for each Lc-sentence σ we have that σ ∈ T̃ implies M ⊨ σ. This shows
that M ⊨ T̃, in particular, M ⊨ T + ¬σ0. ⊣

The following theorem just summarises what we have achieved so far:

Theorem 5.5 (Gödel’s Completeness Theorem). If L is a countable
signature and T is a consistent set of L -sentences, then T has a model.
Moreover, if T ⊬ σ0 (for some L -sentence σ0), then T + ¬σ0 has a model.
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In our construction, it was essential that the signature L was countable,
so that the symbols in L could be encoded by finite strings. However, in the
more formal setting of axiomatic Set Theory, we can also prove the Com-
pleteness Theorem for arbitrarily large signatures (see Chapter 15).

Some Consequences and Equivalents

We conclude this chapter by discussing some consequences and equivalent
formulations of Gödel’s Completeness Theorem 5.5 which follow directly
or in combination with the Compactness Theorem 2.17.

Let L be a countable signature, T a set of L -sentences, and σ0 an L -
sentence.

• If T ⊬ σ0, then there is an L -structure M such that M ⊨ T + ¬σ0:

T ⊬ σ0 ===Ï M
(
M ⊨ T + ¬σ0

)
This is just a reformulation of Gödel’s Completeness Theorem 5.5.

• If T is consistent, then T has a model:

Con(T) ===Ï M
(
M ⊨ T

)
This follows from the fact that Con(T) is equivalent to the existence of
an L -sentence σ0 such that T ⊬ σ0.

• If each model of T is also a model of σ0, then T ⊢ σ0:

M
(
M ⊨ T ===Ï M ⊨ σ0

)
===Ï T ⊢ σ0

This follows by contraposition: If T ⊬ σ0, then, by Gödel’s Complete-
ness Theorem 5.5, there is a model M ⊨ T + ¬σ0.

• In combination with the Compactness Theorem 2.17, we obtain the
following implication:

If every finite subset T′ of T has a model, then T has a model.

If every finite subset T′ of T has a model, then every finite subset T′ of T
is consistent, and therefore, by the Compactness Theorem 2.17, T is
consistent. Thus, T has a model.

The most important consequence of Gödel’s Completeness Theo-
rem 5.5 and the Soundness Theorem 3.7 is the following equivalence:

M
(
M ⊨ T ===Ï M ⊨ σ0

)︸ ︷︷ ︸
denoted by T ⊨ σ0

Î===Ï T ⊢ σ0
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This equivalence allows us to replace formal proofs by mathematical proofs.
For example, instead of proving formally the uniqueness of the neutral ele-
ment in groups from the axioms of Group Theory GT, we just show that in
every model of GT (i.e., in every group), the neutral element is unique. So,
instead of GT ⊢ σ0, we just show GT ⊨ σ0.

As a last consequence, we would like to mention the so-called Skolem’s
Paradox, which is in fact just the countable version of the Downward
Löwenheim–Skolem Theorem 15.8.

Theorem 5.6 (Skolem’s Paradox). If L is a countable signature and T
is a consistent set of L -sentences, then T has a countable model.

Proof. In the previous chapter, when we have constructed the universal list
of L -sentences, we began with a countable signature L and a consistent set
of L -sentences T, and at the end, we obtained a model of T whose domain
was a finite or potentially infinite list of lists. So, the model of T which we
constructed is countable. ⊣

What is paradoxical about this statement? For example, the signature of
the axioms of Zermelo-Fraenkel Set Theory ZFC only consists of the mem-
bership relation ∈. Hence, if ZFC is consistent, it has a countable model.
However, it is easy to prove from the axiom system ZFC that there exist
uncountable sets. Nevertheless, this is no contradiction, since countability in
the formal theory and on the metalevel simply do not coincide.

Notes

The Completeness Theorem for countable signatures was first proved by Gödel [14, 15].

Later, a modified proof was given by Henkin [23] (see also [25]). The proof given here is

essentially Henkin’s proof, but in contrast to Henkin’s proof, our construction does not
rely on the assumption that an actually infinite set exists (in Halbeisen [21] a framework

for metamathematics is provided which is sufficient to build models of first-order theories).

Exercises

5.0 Let L be a countable signature and let T be a consistent L -theory. Show that if T
has up to isomorphisms a unique model, then T is complete.

5.1 Let L be a countable signature, let Σ be the collection of all L -structures M, and
for each L -sentence φ, let Xφ be the collection of all M ∈ Σ such that M ⊨ φ.

(a) Show that the set {Xφ : φ is an L -sentence} is a basis for a topology on Σ.

(b) Show that Xφ is closed for each L -sentence φ.

(c) Show that the topological space Σ is compact, i.e., show that each open covering

of Σ contains a finite sub-covering.
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5.2 Let DLO be the — assumingly consistent — theory of dense linearly ordered sets with-
out endpoints (see Exercise 3.4).

(a) Show that the theory DLO is complete, i.e., for all LDLO-sentences σ we have

either DLO ⊢ σ or DLO ⊢ ¬σ.

(b) Show that the converse of Exercise 3.3 does not hold.

Hint: Consider (Q, <) and (R, <) where Q is the set of rational numbers, R the

set of real numbers and < is the natural ordering on Q and R, respectively.

5.3 Let L be a countable signature and let T be a consistent set of L -sentences such that
T has arbitrarily large finite models. Show that T has an infinite model.

Hint: Use the Compactness Theorem 2.17.

5.4 Let L be the language that consists of two constant symbols 0 and 1, two binary

function symbols + and · , and a binary relation symbol <. Let M = (Q, 0, 1,+, ·, <)

be the usual L -interpretation and let T = Th(M).

Prove that there is a model of T which contains an infinitesimal number, i.e., a number
x > 0 such that n · x < 1 for all natural numbers n.

Hint: Note that n is not included in the language L . Hence, you need to find a way

to formalise n within the language.



Chapter 6

Language Extensions by Definitions

Sometimes it is convenient to extend a given signature L by adding new
non-logical symbols which have to be properly defined within the language
L or with respect to a given L -theory T. Let the extended signature be
L ∗ and let the corresponding extended L ∗-theory be T∗. Since T is an L -
theory, we can only prove L -sentences from T but no L ∗-sentences which
contain symbols from L ∗ \ L . However, this does not imply that we can
prove substantially more from T∗ than from T: It might be that for each
L ∗-sentence σ∗ which is provable from T∗ there is an L -sentence σ̃ such
that T∗ ⊢ σ∗ ↔ σ̃ and T ⊢ σ̃ which is indeed the case as we shall see below.

Defining new Relation Symbols

Let us first consider an example from Peano Arithmetic: Extend the signature
LPA of Peano Arithmetic by adding the binary relation symbol < and denote
the extended signature by L ∗

PA := LPA ∪ {<}. In order to define the binary
relation <, we give an LPA-formula ψ< with two free variables (e.g., x and
y) and say that the relation x < y holds if and only if ψ<(x, y) holds. In our
case, ψ<(x, y) ≡ ∃z(x + sz = y). Therefore, we would define the symbol <
by stipulating:

x < y :⇐⇒ ∃z(x+ sz = y)

The problem is now to find for each L ∗
PA-sentence σ∗ an LPA-sentence σ̃ and

an extension PA∗ of PA, such that PA∗ ⊢ σ∗ ↔ σ̃ and PA ⊢ σ̃ whenever
PA∗ ⊢ σ∗.

The following result provides an algorithm which transforms sentences σ∗ in
the extended language into equivalent sentences σ̃ in the original language.
In order to prove that the algorithm works, we will make use of Gödel’s
Completeness Theorem 5.5.
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Theorem 6.0. Let L be a countable signature, let R be an n-ary relation
symbol which does not belong to L , and let L ∗ := L ∪ {R}. Furthermore,
let ψR(v1, . . . , vn) be an L -formula with free(ψR) = {v1, . . . , vn} and let

ϑR ≡ ∀v1 · · · ∀vn
(
Rv1 · · · vn ↔ ψR(v1, . . . , vn)

)
.

Finally, let T be a consistent L -theory and let T∗ := T + ϑR. Then there
exists an effective algorithm which transforms each L ∗-formula φ∗ into an
L -formula φ̃ such that:

(a) If R does not appear in φ∗, then φ̃ ≡ φ∗.

(b) ¬̃φ ≡ ¬φ̃ (for φ∗ ≡ ¬φ)

(c) φ̃1 ∧ φ2 ≡ φ̃1 ∧ φ̃2 (for φ∗ ≡ φ1 ∧ φ2)

(d) ∃̃νφ ≡ ∃νφ̃ (for φ∗ ≡ ∃νφ)

(e) T∗ ⊢ φ∗ ↔ φ̃

(f) If T∗ ⊢ φ∗, then T ⊢ φ̃.

Proof. Let φ∗ be an arbitrary L ∗-formula. In φ∗, we replace each occurrence
of R(v1/τ1, . . . , vn/τn) (where τ1, . . . , τn are L -terms) by a particular L ∗-
formula ψ′

R(v1/τ1, . . . , vn/τn) such that

ψ′
R(v1, . . . , vn)⇔T ψR(v1, . . . , vn)

and none of the bound variables in ψ′
R is among v1, . . . , vn or appears in

one of the L -terms τ1, . . . , τn. In fact, in order to obtain ψ′
R we just have

to rename the bound variables in ψR using the Variable Substitution
Theorem. For the resulting L -formula φ̃, (a)–(d) are obviously satisfied.

We prove (e) and (f) on the semantic level: For this, we first show how we
can extend a model M ⊨ T to a model M∗ ⊨ T∗. Let M be an L -structure
with domain A such that for each assignment j we have (M, j) ⊨ T (i.e.,
M ⊨ T). We extend M to an L ∗-structure M∗ with the same domain A by
stipulating M∗|L := M, and for any a1, . . . , an ∈ A:

RM∗
(a1, . . . , an) :⇐⇒

(
M, j a1v1 · · ·

an
vn

)
⊨ ψR(v1, . . . , vn) .

Then M∗ is an L ∗-structure and for every assignment j we have

(M∗, j) ⊨ T and (M∗, j) ⊨ ϑR.

Therefore, we obtain
M∗ ⊨ T∗ .

In order to prove (e), by Gödel’s Completeness Theorem 5.5 it is
enough to show that φ∗ ↔ φ̃ holds in every model M∗ of T∗. So, let M∗ be
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an arbitrary model of T∗. In particular, M∗ ⊨ ϑR. If φ∗ does not contain R,
then we are done. Otherwise, if φ∗ is atomic, then φ∗ ≡ Rt1 · · · tn for some
L -terms t1, . . . , tn. Since M∗ ⊨ ϑR, we get:

M∗ ⊨ Rt1 · · · tn ↔ ψ′
R(t1, . . . , tn)

This shows M∗ ⊨ φ∗ ↔ φ̃ for atomic formulae, and by (b)–(d) we get the
result for arbitrary formulae.

For (f), we first extend an arbitrary model M ⊨ T to a model M∗ ⊨ T∗.
By (e), for each L ∗-formula φ∗ we have:

M∗ ⊨ φ∗ Î===Ï M∗ ⊨ φ̃

Now, if T∗ ⊢ φ∗, then M∗ ⊨ φ∗, which implies that M∗ ⊨ φ̃. Since φ̃ is an
L -formula, we get M ⊨ φ̃, and since the model M of T was arbitrary, by
Gödel’s Completeness Theorem 5.5 we get T ⊢ φ̃. ⊣

Defining new Function Symbols

If we define new functions, the situation is slightly more subtle. However,
there is also an algorithm which transforms sentences σ∗ in the extended
language into equivalent sentences σ̃ in the original language:

Theorem 6.1. Let L be a countable signature, let f be an n-ary function
symbol which does not belong to L , let L ∗ := L ∪ {f} and let T be
a consistent L -theory. Furthermore, let ψf (v1, . . . , vn, y) be an L -formula
with free(ψf ) = {v1, . . . , vn, y} such that

T ⊢ ∀v1 · · · ∀vn∃!y ψf (v1, . . . , vn, y) .

Finally, let

ϑf ≡ ∀v1 · · · ∀vn∀y
(
fv1 · · · vn = y ↔ ψf (v1, . . . , vn, y)

)
and let T∗ := T + ϑf . Then there exists an effective algorithm which trans-
forms each L ∗-formula φ∗ into an L -formula φ̃ such that:

(a) If f does not appear in φ∗, then φ̃ ≡ φ∗.

(b) ¬̃φ ≡ ¬φ̃ (for φ∗ ≡ ¬φ)

(c) φ̃1 ∧ φ2 ≡ φ̃1 ∧ φ̃2 (for φ∗ ≡ φ1 ∧ φ2)

(d) ∃̃νφ ≡ ∃νφ̃ (for φ∗ ≡ ∃νφ)

(e) T∗ ⊢ φ∗ ↔ φ̃

(f) If T∗ ⊢ φ∗, then T ⊢ φ̃.
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Proof. By an elementary f -term we mean an L ∗-term of the form ft1 · · · tn,
where t1, . . . , tn are L ∗-terms which do not contain the symbol f . We first
prove the theorem for atomic L ∗-formulae φ∗ (i.e., for formulae which are free
of quantifiers and logical operators). Let φ∗(f w) be the result of replacing
the leftmost occurence of an elementary f -term in φ∗ by a new symbol w,
which stands for a new variable. Then, the formula

∃w
(
ψf (t1, . . . , tn, w) ∧ φ∗(f w)

)
is called the f -transform of φ∗. If φ∗ does not contain f , then let φ∗ be its
own f -transform. Before we procceed, let us prove the following

Claim. T∗ ⊢ ∃w
(
ψf (t1, . . . , tn, w) ∧ φ∗(f w)

)
↔ φ∗

Proof of Claim. Let M∗ be a model of T∗ with domain A, let j be an arbitrary
assignment which assigns an element of A to w, and let M∗

j := (M∗, j) be
the corresponding L ∗-interpretation. Assume that

M∗
j ⊨ ∃w

(
ψf (t1, . . . , tn, w) ∧ φ∗(f w)

)
.

Then, since T∗ ⊢ ∀v1 · · · ∀vn∃!y ψf (v1, . . . , vn, y), there exists a unique b ∈ A
such that

M∗
j b
w
⊨ ψf (t1, . . . , tn, w) ∧ φ∗(f w) ,

which is the same as saying that

M∗
j ⊨ ψf (t1, . . . , tn, b) ∧ φ∗(f b) .

Now, since M∗
j ⊨ ϑf , b is the same object as f

M∗
j t

M∗
j

1 · · · tM
∗
j

n . This implies

M∗
j ⊨ ft1 · · · tn = b ,

which shows that
M∗

j ⊨ φ
∗ .

For the reverse implication, assume that M∗
j ⊨ φ∗ and let b be the same

object as f
M∗

j t
M∗

j

1 · · · tM
∗
j

n . Then M∗
j ⊨ φ

∗(f b) and, since M∗
j ⊨ ϑf ,

M∗
j ⊨ ψf (t1, . . . , tn, w)↔ ft1 · · · tn = w .

In particular, we get

M∗
j b
w
⊨ ψf (t1, . . . , tn, b)↔ ft1 · · · tn = b ,

and because f
M∗

j t
M∗

j

1 · · · tM
∗
j

n is the same object as b, we get M∗
j ⊨ ψf (t1, . . . , tn, b).

Since we already know M∗
j ⊨ φ

∗(f b), we have:
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M∗
j ⊨ ψf (t1, . . . , tn, b) ∧ φ∗(f b)

So, there exists a b in A such that

M∗
j b
w
⊨ ψf (t1, . . . , tn, w) ∧ φ∗(f w) ,

which is the same as saying that

M∗
j ⊨ ∃w

(
ψf (t1, . . . , tn, w) ∧ φ∗(f w)

)
.

Since the model M∗ of T∗ was arbitrary, by Gödel’s Completeness The-
orem 5.5 we get T∗ ⊢ ∃w

(
ψf (t1, . . . , tn, w) ∧ φ∗(f w)

)
↔ φ∗. ⊣Claim

Since the f -transform ∃w
(
ψf (t1, . . . , tn, w) ∧ φ∗(f w)

)
of φ∗ contains one

f less than φ∗, if we take successive f -transforms (always introducing new
variables), we obtain eventually an atomic L -formula φ̃ (i.e., a formula which
does not contain f) such that T∗ ⊢ φ∗ ↔ φ̃. We call φ̃ the f -less transform
of φ∗.

In order to get f -less transforms of non-atomic L ∗-formulae φ∗, we just

extend the definition by letting ¬̃φ be ¬φ̃, ∧̃φ1φ2 be ∧φ̃1φ̃2, and ∃̃νφ be
∃νφ̃; properties (a)–(e) are then obvious.

It remains to prove property (f). For this, let M be an abitrary model of
T with domain A. Then, since T ⊢ ∀v1 · · · ∀vn∃!y ψf (v1, . . . , vn, y), for all
a1, . . . , an in A there exists a unique b in A such that

M ⊨ ψf (a1, . . . , an, b),

and we define the n-ary function f∗ on A by stipulating:

f∗(a1, . . . , an) := b

With this definition, we can extend the L -structure M to an L ∗-structure
M∗, where we still have M∗ ⊨ T. With the definition of f∗, we additionally
get M∗ ⊨ ϑf , which implies M∗ ⊨ T∗. If we have T∗ ⊢ φ∗ for some L ∗-
formula φ∗, then there exists an L -formula φ̃ such that T∗ ⊢ φ∗ ↔ φ̃, i.e.,
T∗ ⊢ φ̃. Since T∗ ⊢ φ̃ implies M∗ ⊨ φ̃, and because φ̃ is an L -formula,
we have M ⊨ φ̃. Now, since the model M of T was arbitrary, by Gödel’s
Completeness Theorem 5.5 we get T ⊢ φ̃. ⊣

Defining new Constant Symbols

Constant symbols can be handled like 0-ary function symbols:

Fact 6.2. Let L be a countable signature, let c be a constant symbol which
does not belong to L , let L ∗ := L ∪{c} and let T be a consistent L -theory.
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Furthermore, let ψc(y) be an L -formula with free(ψc) = {y} such that
T ⊢ ∃!y ψc(y). Finally, let

ϑc ≡ ∀y
(
c = y ↔ ψc(y)

)
and let T∗ := T + ϑc. Then there exists an effective algorithm which trans-
forms each L ∗-formula φ∗ into an L -formula φ̃ such that:

(a) If f does not appear in φ∗, then φ̃ ≡ φ∗.

(b) ¬̃φ ≡ ¬φ̃ (for φ∗ ≡ ¬φ)

(c) φ̃1 ∧ φ2 ≡ φ̃1 ∧ φ̃2 (for φ∗ ≡ φ1 ∧ φ2)

(d) ∃̃νφ ≡ ∃νφ̃ (for φ∗ ≡ ∃νφ)

(e) T∗ ⊢ φ∗ ↔ φ̃

(f) If T∗ ⊢ φ∗, then T ⊢ φ̃.

Proof. The algorithm is constructed in exactly the same way as in the proof
of Theorem 6.1. ⊣

Notes

In the proof of Theorem 6.1, we essentially followed the proof of Proposition 2.28 of
Mendelson [35].

Exercises

6.0 (a) Write the axioms of Group Theory in the language LGT∗ = {◦}, where ◦ is a

binary function symbol.

(b) Extend the language LGT∗ with the constant symbol e for the neutral element.

(c) Extend the language LGT∗ ∪ {e} with the unary function symbol inv( · ), where
inv(x) is the inverse of x with respect to “◦”.

6.1 Show that in a signature L , constant symbols and function symbols are dispensable

(i.e., we only need relation symbols as non-logical symbols).

Hint: Notice that n-ary function symbols can be replaced by (n + 1)-ary relation
symbols, and that constant symbols can be replaced by unary relation symbols.

6.2 (a) Write the axioms of Group Theory in the language L = {R}, where R is a ternary

relation symbol.

(b) Extend the language L with the unary relation symbol Re for the neutral element.

(c) Extend the language L ∪ {Re} with the binary relation symbol Rinv, where

Rinv(x, y) holds if and only if y is the inverse of x.

Hint: Use Exercises 6.1 and 6.0.

6.3 Let L = {+, 0} and L ∗ = L ∪ {<}. Let T∗ = Th(Z,+, 0, <). Show that there is no

L -formula ψ< such that and T∗ ⊢ ∀x∀y(x < y ↔ ψ< (x, y)).



Part III

Gödel’s Incompleteness Theorems

On the syntactical level, an L -theory T is complete if
for every L -sentence σ, either T ⊢ σ or T ⊢ ¬σ. On the
semantical level, a consistent L -theory is T complete if
any two models of T are elementary equivalent.
In this part of the book we shall first provide a few
models of Peano Arithmetic PA, where we assume that
PA is consistent. Then, we shall prove Gödel’s First
Incompleteness Theorem, which states that Peano
Arithmetic PA is not complete, i.e., there is a LPA-
sentence σ, such that neither PA ⊢ σ nor PA ⊢ ¬σ. In
a second step we shall prove Gödel’s Second Incom-
pleteness Theorem, In a second step we shall prove
Gödel’s Second Incompleteness Theorem, which
states that no theory which is at least as strong as Peano
Arithmetic can prove its own consistency.



Chapter 7

Countable Models of Peano Arithmetic

By Gödel’s Completeness Theorem 5.5 we know that every consistent
theory T has a model. Later we will see that if T has an infinite model, then
it also has arbitrarily large models.

In this chapter, we provide different countable models of PA and investigate
their structure. First, we construct the so-called standard model, and then we
extend this model to countable non-standard models, where by “countable”
we mean that the elements of the domain of the model can be listed in a
p o t e n t i a l l y i n f i n i t e list.

The Standard Model

For the sake of completeness, let us first recall the language and the seven
axioms of Peano Arithmetic PA. The language of PA is LPA = {0, s,+, · },
where 0 is a constant symbol, s is a unary function symbol, and + and · are
binary function symbols.

PA0: ¬∃x(sx = 0)

PA1: ∀x∀y(sx = sy → x = y)

PA2: ∀x(x+ 0 = x)

PA3: ∀x∀y(x+ sy = s(x+ y))

PA4: ∀x(x · 0 = 0)

PA5: ∀x∀y(x · sy = (x · y) + x)

If φ is any LPA-formula with x ∈ free(φ), then:

PA6:
(
φ(0) ∧ ∀x(φ(x)→ φ(s(x)))

)
→ ∀xφ(x)

The domain N of our standard model consists of the elements in the list of
natural numbers as introduced in Chapter 0. So, each natural number in the
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set N is either 0 or of the form s · · · s0 for some f i n i t e string s · · · s.
Notice the difference between s (which is an unary function symbol) and s
(which is a symbol which we use to build the elements of the set N, i.e.,
the objects in the domain of our standard model of Peano Arithmetic). In
order to write this more formally, we extend the signature LPA by the unary
relation symbol N and add the following statement as a kind of meta-axiom
to PA:

Φ ≡ ∀x
({

N(0), ∀z
(
N(z)→ N(sz)

)}
⊢ N(x)

)
Notice that this statement is not a statement in first-order logic since it
involves the symbol ⊢, which implicitly incorporates the metamathematical
notion of f i n i t e n e s s. However, the statement Φ makes sure that every
model of PA + Φ is isomorphic to the standard model.

Now, we are going to define the standard model of PA with domain N. For
this, we first have to define first an LPA-structure N. If σ and τ are both
(possibly empty) finite strings of the form s · · · s, then we can interpret the
non-logical symbols in LPA as follows:

0N := 0

sN : N → N

σ0 7→ sσ0

+N : N×N → N

⟨σ0, τ0⟩ 7→ στ0

·N : N×N → N

⟨σ0, τ0⟩ 7→ σσ · · · σ0
↑↑ · · · ↑
s s · · · s︸ ︷︷ ︸
τ

Note that if either σ or τ is the empty string, then σ0 ·N τ0 is 0. The main
feature of the LPA-structure N is that every element of N corresponds to a
certain LPA-term. In order to prove this, we introduce the following notion:
To each f i n i t e string σ ≡ s · · · s we assign a f i n i t e string σ ≡ s · · · s
such that σ is obtained from σ by replacing each occurrence of s by s. As a
consequence of this definition, we get the following

Fact 7.0. For all f i n i t e strings σ and τ of the form s · · · s, we have:

(a) If σ is not the empty string, then PA ⊢ σ0 ̸= 0.
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(b) PA ⊢ σ0 = τ0 Î===Ï σ0 ≡ τ0.

Proof. (a) follows from PA0, and (b) follows from PA1 and L14. ⊣

Lemma 7.1. Every element of N corresponds to a unique f i n i t e appli-
cation of the function s to 0, or in other words, every element of N is equal
to a unique f i n i t e application of the function sN to 0N. More formally,
for every element σ0 of N there is a unique LPA-term σ0 such that

(σ0)N is the same object as σ0 ,

or equivalently,
(σ0)N ≡ σ0 .

Proof. By definition of sN, for every f i n i t e string τ ≡ s · · · s we get
that sN(τ0) is the same element of N as sτ0, and after applying this fact
f i n i t e l y many times we get:

(σ0)N︷ ︸︸ ︷
sN sN · · · sN 0N

↕ ↕ · · · ↕ ↕
s s · · · s 0︸ ︷︷ ︸

σ0

The uniqueness of σ0 follows from Fact 7.0. ⊣

Now, we are ready to prove that the LPA-structure N, which is called the
standard model of Peano Arithmetic, is indeed a model of PA.

Theorem 7.2. N ⊨ PA.

Proof. By definition of sN we get N ⊨ PA0 and by Fact 7.0 we also have
N ⊨ PA1. Further, by definition of +N and ·N we get N ⊨ PA2 and N ⊨ PA4

respectively. For PA3, let σ and τ be (possibly empty) finite strings of the
form s · · · s. Then

σ0 +N sNτ0 ≡ σsτ0 ≡ sστ0 ≡ sN(σ0 +N τ0).

Similarly, we can show N ⊨ PA5 (see Exercise 7.0). In order to show that
N ⊨ PA6, let φ(x) be an LPA-formula and let us assume that

N ⊨ φ(0) ∧ ∀x
(
φ(x)→ φ(sx)

)
. (∗)

We have to show that N ⊨ ∀xφ(x). By definition of models we get that φ(0)
holds in N and for all n ∈ N: If φ(n) holds in N, then also φ(sNn) holds
in N. Let σ0 be an arbitrary element of N. Since σ is a f i n i t e string,
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by (∗), the logical axiom L10, and by applying f i n i t e l y many times
Modus Ponens, we get N ⊨ φ(σ0). Hence, since σ0 was arbitrary, φ(n) holds
in N for every string n ∈ N, and therefore, N ⊨ ∀xφ(x). ⊣

As a matter of fact, we would like to mention that from a metamathematical
point of view, every model of PA must contain an isomorphic copy of the
standard model N. Therefore, it would also make sense to call N the minimal
model of Peano Arithmetic.

One might be tempted to think that N is essentially the only model of PA,
but this is not the case, as we shall now see.

Countable Non-Standard Models

The previous section shows that every natural number in the standard model
N corresponds to a unique LPA-term; more precisely, every element σ0 of N
is the same object as the term σ0. In order to simplify notations, we will from
now on use variables such as n,m, . . . to denote elements of N and n,m, . . .
their counterpart in the formal language LPA, i.e., if n stands for σ0, then n
denotes σ0.

Since every model M of PA contains nM, the standard natural numbers,
for every n ∈ N, it is clear that M contains a copy of the standard model.
However, M can also have non-standard natural numbers, i.e., elements
which are not interpretations of terms of the form n. In the following, we
present the simplest way to construct such non-standard models.

Let LPA+ be the language LPA augmented by an additional constant symbol
c, which is different from 0. Note that by setting

x < y :⇐⇒ ∃r(x+ sr = y)

one can introduce an ordering in PA, which in the standard model corresponds
to the usual ordering of natural numbers (for further details see Chapters 8
and 9). Let PA+ be the theory whose axioms are PA0–PA6 together with the
axioms

c > 0

c > s0

c > ss0

c > sss0

...

Hence, PA+ is PA ∪ {c > n : n ∈ N}.

Lemma 7.3. Con(PA+), i.e., the theory PA+ is consistent.
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Proof. By the Compactness Theorem it suffices to prove that every f i -
n i t e subset of PA+ is consistent. Let T be a f i n i t e subset of PA+.
Now let n ∈ N be maximal such that the formula c > n belongs to T. Notice
that such n exists, since T is f i n i t e. Then we can define a model M
of T with domain N by interpreting the constant and function symbols by
0M ≡ 0, sM ≡ s, +M ≡ +N, ·M ≡ ·N and cM ≡ sn. Since N ⊨ PA, we get
that M ⊨ PA and by construction M ⊨ c > m for every m ≤ n, and hence
M ⊨ T. ⊣

Now, since LPA+ is a countable signature, by Theorem 5.6 it follows that
PA+ has a countable model M which is also a non-standard model of PA,
i.e., a model which is not isomorphic to the standard model N. What does
the order structure of M look like?

Note that c has a successor sc = c + 1, and c + 1 in turn has a successor,
and so on. Furthermore, since

PA ⊢ ∀x
(
x = 0 ∨ ∃y(x = sy)

)
(see Lemma 8.3), c also has a predecessor, i.e., there exists c − 1 with the
property that s(c− 1) = c, and the same argument yields that c in fact has
infinitely many predecessors, which are all non-standard. Hence, the order
structure of c and its predecessors and successors corresponds to (Z, <), so
there are infinitely many such Z-chains. Moreover, each multiple of c yields
a further copy of a Z-chain. Now, one can easily prove in PA that every
number is either even or odd (see Exercise 8.1), and hence there is d such
that 2d = c or 2d = c + 1. We denote d by c

2 . This shows that between the
copy of the standard model and the Z-chain given by c, there is a further
Z-chain given by c

2 and its predecessors and successors. In fact, the Z-chains
are ordered like (Q, <) (see Exercise 7.6).

. . . . . . . . .

0 1 2 3 c
2
−1 c

2
c
2

+1 c−1 c c+1 2c−1 2c 2c+1. . . . . . . . . . . . . . .

N copies of Z ordered like (Q, <)

↑

. . . . . .3c
4
−1 3c

4
3c
4
+1

Note that the proof of Lemma 7.3 implies that there are non-standard
models of PA which are elementarily equivalent to N. To see this, let Th(N)
denote the theory of all LPA-sentences which are true in N. Then one could
simply replace PA by Th(N) in Lemma 7.3 and thus obtain a model of Th(N)
augmented by all formulae of the form c > n for n ∈ N. By construction,
this model is elementarily equivalent to N. For a more general result see
Exercise 7.3.

Countable Non-Standard Models
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Notes

An early attempt at formalising arithmetic was given by Grassmann [20] in 1861, who
defined addition and multiplication and proved elementary results such as the associative
and commutative laws using induction. Dedekind [6] also identified induction as a key prin-
ciple in 1888, as well as the first two axioms of Peano Arithmetic; however, he introduced
them as a definition rather than as axioms. Peano [42] presented his five axioms in 1889,
where he only introduced zero and the successor function axiomatically, and the induction
axiom is given in second-order logic in the following form: Every set of natural numbers
which contains 0 and is closed under the successor function is the set of all natural num-
bers. The version of Peano’s Axioms formalised in first-order logic — where the induction

axiom is replaced by an axiom schema, and the axioms defining addition and multipliation
are included — goes back to the advent of first-order logic in the 1920’s. The first explicit
construction of a non-standard model of arithmetic was given by Skolem in [52]. For further

reading on non-standard models consult [29].

Exercises

7.0 Verify that N ⊨ PA5.

7.1 Prove that PA0 and PA1 are independent of the other axioms of PA.

7.2 Show that there is a non-standard model M of PA with domain M , such that there is
a non-zero a ∈M divisible by every standard prime number.

Hint: Notice that divisibility can be formalised in PA by x | y :⇐⇒ ∃r(rx = y).

7.3 Show that there are uncountably many countable models of PA which are all elemen-

tarily equivalent (with respect to the signature LPA) and pairwise non-isomorphic.

Hint: Let P ⊆ N be the set of prime numbers and let c be a constant symbol which
is different from 0. For any distinct prime numbers p and q, let φp,q be the formula

p | c ∧ q ∤ c .

For every subset S ⊆ P, let ΦS be the collection of all formulae φp,q such that p ∈ S

and q /∈ S. For each set S ⊆ P construct a model for PA + ΦS and use that, by
Cantor’s Theorem 13.8, the power-set of P is uncountable.

7.4 Prove the following so-called Overspill Principle: If M is a non-standard model of PA
with domain M and φ is a formula with one free variable then

M ⊨ φ(n) for all n ∈ N

implies that there is a non-standard element a ∈M such that

M ⊨ ∀x(x < a→ φ(x)).

7.5 Show that it is not possible to introduce a relation standard(x) by a language extension

of LPA such that for every model M of PA with domain M and for every a ∈ M we
have M ⊨ standard(a) if and only if a = nM for some n ∈ N.

7.6 Let M be a countable non-standard model of PA with domain M . For every non-
standard element c of M , let

Zc :≡
{
d ∈M : there exists n ∈ N such that d+ n = c or c+ n = d

}
,
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and let Zc ≺ Zd if and only if c+ n < d for all n ∈ N, where < is the linear ordering
in the model M.

Show that the set {Zc : c ∈M is non-standard} together with the binary relation ≺ is
a dense linearly ordered set and use Exercise 3.4 to conclude that the order structure
of M corresponds to the disjoint union of N and Q×Z.



Chapter 8

Arithmetic in Peano Arithmetic

In this chapter, we take a closer look at Peano Arithmetic (PA) which we
have defined in Chapter 1. In particular, we prove within PA some basic
arithmetical results, starting with the commutativity and associativity of
addition and multiplication, culminating in some results about coprimality.
This paves the way for the coding of finite sequences of numbers, which will
be covered in the next chapter. Furthermore, we introduce some alternative
formulations of the Induction Schema PA6.

Addition & Multiplication

In this section, we verify the basic computation rules of PA involving addition
and multiplication. Since the complete proofs are very long and tedious, we
will only show the commutativity of + in an elaborate way. Subsequently, we
will use semi-formal proofs as described in Chapter 1 which include enough
details to allow the reader to reconstruct a corresponding formal proof.

Lemma 8.0. PA ⊢ ∀x ∀y(x+ y = y + x)

Proof. We proceed by induction on x. Thus, we have to show

(a) PA ⊢ ∀y(0 + y = y + 0), and

(b) PA ⊢ ∀y(x+ y = y + x)→ ∀y(sx+ y = y + sx).

For (a), we first prove

PA ⊢ ∀y(0 + y = y)

by induction on y. The base case 0+ 0 = 0 is clearly an instance of PA2, and
for the induction step, we assume 0+y = y for some y. Then 0+sy = s(0+y)
by PA3 and s(0+y) = sy by assumption. In order to keep the notation short,
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we just write 0+sy = s(0+y) = sy instead of 0+sy = s(0+y)∧s(0+y) = sy.
So, by PA6 we obtain ∀y(0+y = y), and since by PA2 we have ∀y(y+0 = y),
by symmetry and transitivity of = we have ∀y(0 + y = y + 0).

As a prerequisite for (b) we need

PA ⊢ ∀y
(
sx+ y = s(x+ y)

)
which is again verified by induction on y: If y = 0, note that by PA2 we have
sx + 0 = sx = s(x + 0). For the induction step, assume sx + y = s(x + y).
Then, by PA3, we have sx+ sy = s(sx+ y) = s(s(x+ y)) = s(x+ sy).

Now, we are ready to prove (b): Assume that x+ y = y+x for some x and
for all y. Then sx + y = s(x + y) = s(y + x) = y + sx by our computation
above and PA3, which, by PA6, shows (b). ⊣

In a similar manner, we can derive other basic calculation rules whose
proofs are left as an exercise for the reader.

Lemma 8.1.

(a) PA ⊢ ∀x∀y∀z
(
(x+ y) + z = x+ (y + z)

)
(b) PA ⊢ ∀x∀y∀z

(
(x · y) · z = x · (y · z)

)
(c) PA ⊢ ∀x∀y(x · y = y · x)

(d) PA ⊢ ∀x∀y∀z
(
x · (y + z) = (x · y) + (x · z)

)
From now on, we will make use of these rules without explicitly mentioning

them anymore. The next lemma shows injectivity of left — and by commuta-
tivity also right — addition.

Lemma 8.2. PA ⊢ ∀x∀y∀z(x+ y = x+ z → y = z)

Proof. The proof is by induction on x. The base case follows from the proof
of Lemma 8.0. For the induction step, assume

∀y∀z(x+ y = x+ z → y = z)

and let sx+ y = sx+ z. Then s(x+ y) = sx+ y = sx+ z = s(x+ z), where
the first and the third equality again follow from Lemma 8.0 and PA3. Then
by PA2 we obtain x+ y = x+ z and in particular y = z. ⊣

The next result is crucial, because — as we will see in Chapter 10 — it is
the only application of PA6 which is indispensable for the proof of the First
Incompleteness Theorem 10.5.

Lemma 8.3. PA ⊢ ∀x
(
x = 0 ∨ ∃y(x = sy)

)
Proof. We proceed by induction on x. The base case is trivial and the induc-
tion step follows from the fact that x witnesses ∃y(sx = sy). ⊣
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From now on, we will use the convention that · binds stronger than +
and omit the multiplication sign, e.g., the term xy + z stands for (x · y) + z.
Furthermore, by associativity of + and · we may omit parentheses whenever
we have pure products of pure sums of terms.

In order to keep the notation short, for LPA-formulae φ we define

∀x ̸= 0
(
φ(x)

)
:⇐⇒ ∀x

(
x ̸= 0→ φ(x)

)
.

The next result shows a property of multiplication which is similar to the
one given in Lemma 8.2 for addition.

Lemma 8.4.

(a) PA ⊢ ∀x∀y
(
xy = 0↔ (x = 0 ∨ y = 0)

)
(b) PA ⊢ ∀x ̸= 0 ∀y∀z(xy = xz → y = z)

Proof. For (a), let xy = 0 and suppose towards a contradiction that x, y ̸= 0.
Then by Lemma 8.3 there are x′, y′ such that x = sx′ and y = sy′. By PA5

and PA3, we obtain

0 = xy = sx′ · sy′ = sx′ · y′ + sx′ = s(sx′ · y′ + x′) ,

which contradicts PA0.

For (b), suppose that x ̸= 0. We proceed by induction on y. If y = 0,
then xy = 0. So, xy = xz implies xz = 0 and by (a) we obtain z = 0 and
consequently y = z. Now assume that

∀z(xy = xz → y = z).

Let z be arbitrary such that x·sy = xz. By (a), we can rule out the possibility
that z = 0. Hence, by Lemma 8.3, there is a z′ such that z = sz′. Therefore,
by PA5,

xy + x = x · sy = xz = x · sz′ = xz′ + x .

Using Lemmata 8.0 and 8.2 we obtain that xy = xz′ and thus the induction
hypothesis implies y = z′. Therefore, we finally get sy = sz′ = z as desired. ⊣

The Natural Ordering on Natural Numbers

In Chapter 6, we have seen how to extend languages by incorporating new
symbols for relations, functions or constants. In this sense, we can now intro-
duce the binary relations ≤ and < in PA by stipulating

x ≤ y :⇐⇒ ∃r(x+ r = y) ,

x < y :⇐⇒ ∃r(x+ sr = y) .
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An alternative definition of x < y is given by

x < y :⇐⇒ ∃r ̸= 0 (x+ r = y) .

Furthermore, we define

x ≥ y :⇐⇒ y ≤ x
x > y :⇐⇒ y < x.

Now, we define bounded quantification by stipulating

∃x ◁ y φ(x) :⇐⇒ ∃x
(
x ◁ y ∧ φ(x)

)
,

∀x ◁ y φ(x) :⇐⇒ ∀x
(
x ◁ y → φ(x)

)
,

where ◁ stands either for < or for ≤. The next result shows some properties
of < and ≤.

Lemma 8.5.

(a) PA ⊢ ∀x∀y(x < sy ↔ x ≤ y)

(b) PA ⊢ ∀x∀y(x < y ↔ sx ≤ y)

Proof. We only consider (a) and leave (b) as an excercise. Fix x and y. Firstly,
assume that x < sy and take r ̸= 0 such that x+ r = sy. By Lemma 8.3 we
find an r′ such that r = sr′. Then s(x+ r′) = x+ sr′ = x+ r = sy by PA3,
and by PA2 we obtain x+ r′ = y, which shows that x ≤ y.

Conversely, let x ≤ y and take r such that x + r = y. Then x + sr =
s(x+ r) = sy, which shows that x < sy. ⊣

The next result implies that ≤ defines a total ordering on the natural
numbers.

Lemma 8.6.

(a) PA ⊢ ∀x(x ≤ x)

(b) PA ⊢ ∀x∀y(x ≤ y ∧ y ≤ x→ x = y)

(c) PA ⊢ ∀x∀y∀z(x ≤ y ∧ y ≤ z → x ≤ z)

(d) PA ⊢ ∀x∀y(x < y ∨ x = y ∨ x > y)

Proof. Condition (a) is a trivial consequence of PA2.

For (b), assume that x ≤ y and y ≤ x. Then there are r, s such that
x+ r = y and y + s = x. We obtain that

y + (s+ r) = (y + s) + r = x+ r = y = y + 0.
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By Lemma 8.2, this implies s + r = 0 and hence, by PA0, s = 0 = r, which
shows that x = y.

For (c), let x ≤ y and y ≤ z and take witnesses r, s satisfying x + r = y
and y + s = z, respectively. Then x+ (r + s) = (x+ r) + s = y + s = z and
thus x ≤ z.

We show (d) by induction on x. If x = 0, we can make a case distinction
according to Lemma 8.3: If y = 0 then x = y and otherwise x < y. For the
induction step, fix y and assume that x < y∨x = y∨x > y. Now, we make a
case distinction, where in the case of x < y, Lemma 8.5 implies that sx ≤ y
and thus either sx < y or sx = y. Secondly, if x = y then

sx = sy = s(y + 0) = y + s0,

which shows that sx > y. The case of x > y is similar. ⊣

Finally, one can show that addition and multiplication with non-zero num-
bers preserve the natural odering (the proof is left as an excercise to the
reader):

Lemma 8.7.

(a) PA ⊢ ∀x∀y∀z
(
x ≤ y ↔ (x+ z ≤ y + z)

)
(b) PA ⊢ ∀x∀y∀z ̸= 0

(
x ≤ y ↔ (x · z ≤ y · z)

)
Subtraction & Divisibility

With the help of the ordering that we have introduced in the previous section,
we are ready to define a version of subtraction which rounds up to 0 in order
to preserve non-negativity. For this, we first show the following

Lemma 8.8. PA ⊢ ∀x∀y
(
x ≤ y → ∃!r(x+ r = y)

)
Proof. Assume that x ≤ y. The existence of r follows directly from the defi-
nition of ≤, and the uniqueness of r is a consequence of Lemma 8.2. ⊣

Therefore, we can define within PA the binary function −, called bounded
subtraction, by stipulating

x− y = z :⇐⇒ (y ≤ x ∧ y + z = x) ∨ (x < y ∧ z = 0) .

Observe that PA ⊢ ∀x∀y ≤ x((x − y) + y = x), from which we can easily
derive computation rules for bounded subtraction such as

PA ⊢∀x∀y∀z
(
x(y − z) = xy − xz

)
, or

PA ⊢∀x∀y∀z
(
x ≤ y → (x− z ≤ y − z)

)
.
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Let us now turn to divisibility, which can easily be formalised by stipulating

x | y :⇐⇒ ∃r(rx = y).

If the binary divisibility relation | holds for the ordered pair (x, y), then we
say that x divides y. Without much effort, one can verify that the divisibility
relation is reflexive, antisymmetric, and transitive. For this reason, we will
omit the proof of the next result.

Lemma 8.9.

(a) PA ⊢ ∀x(x |x)

(b) PA ⊢ ∀x∀y(x | y ∧ y |x→ x = y)

(c) PA ⊢ ∀x∀y∀z(x | y ∧ y | z → x | z)

Also without much effort, we can prove the following

Lemma 8.10.

(a) PA ⊢ ∀x∀y∀z(x | y ∧ x | z → x | y ± z), where the symbol ± stands for
either + or −.

(b) PA ⊢ ∀x∀y∀z(x | y → x | yz)

Proof. For (a), assume that x divides y and z. Then there are r, s such that
y = rx and z = sx. Then y ± z = rx ± sx = (r ± s)x, thus x divides y ± z.
Condition (b) is obvious. ⊣

In most textbooks, one defines two numbers to be coprime (or relatively
prime), if they have no common divisor greater than 1. Nevertheless, for our
purpose it is more convenient to use the following equivalent definition:

coprime(x, y) :⇐⇒ x ̸= 0 ∧ y ̸= 0 ∧ ∀z
(
x | yz → x | z

)
Since we will be working with this somewhat unusual definition of relative
primality, we first check that it is a symmetric relation.

Lemma 8.11. PA ⊢ ∀x∀y
(
coprime(x, y)↔ coprime(y, x)

)
Proof. Assume coprime(x, y). We have to show that for every z we have that
y |xz implies y | z. So, let z be such that y |xz. Since y |xz, there is an r
with yr = xz. Furthermore, since x |xz and xz = yr, we get x | yr, and by
coprime(x, y) we have x | r. Thus, there is an s such that xs = r, and hence,
xsy = ry = yr = xz. Now, by Lemma 8.4 we obtain sy = z, and therefore
y | z as desired. ⊣

If the binary relation coprime holds for x and y, then we say that x and y
are coprime.
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Lemma 8.12. PA ⊢ ∀x∀y∀k
(
k |x ∧ coprime(x, y)→ coprime(k, y)

)
.

Proof. Assume that x and y are coprime. Let k be a divisor of x and let
r be such that rk = x. Assume y | kz for some arbitrary z. We have to
show that y | z. First, notice that by Lemma 8.10.(b) we have y | rkz, and
since rkz = xz, we have y |xz. Now, since coprime(x, y), we obtain y | z as
desired. ⊣

The following result is crucial for the construction of Gödel’s β-function
(see Theorem 9.9), which will be the key to the First Incompleteness
Theorem 10.5.

Lemma 8.13. PA ⊢ ∀k ∀x ̸= 0 ∀j
(
k |x→ coprime

(
1 + (j + k)x, 1 + jx

))
Proof. We first show PA ⊢ ∀x ̸= 0 ∀j

(
coprime(x, 1 + jx)

)
, i.e., we show that

for all z,
x | (1 + jx)z → x | z .

For this, suppose x | (1+jx)z for some arbitrary z. Since (1+jx)z = z+jxz,
by Lemma 8.10.(b) we have x | jxz, and as a consequence of Lemma 8.10.(a)
we obtain x | z.

Now, let k and x ̸= 0 be such that k |x. Notice that since x ̸= 0, this implies
that k ̸= 0. Furthermore, let j be arbitrary but fixed. We have to show

coprime
(
1 + jx, 1 + (j + k)x

)
,

i.e., we have to show that for all z,

(1 + jx) |
(
1 + (j + k)x

)
z → (1 + jx) | z .

First, notice that(
1 + (j + k)x

)
z = (1 + jx+ kx)z = (1 + jx)z + kxz .

Assume now that for some z,

(1 + jx) | (1 + jx)z + kxz .

By Lemma 8.10.(b) we have (1+ jx) | (1+ jx)z, and by Lemma 8.10.(a) this
implies (1+ jx) | kxz. Now, since coprime(x, 1+ jx), as shown above, we get

(1 + jx) |x(kz)→ (1 + jx) | kz .

Finally, since by assumption k |x, by Lemma 8.12 and coprime(x, 1+ jx) we
get coprime(k, 1 + jx). Hence, we obtain (1 + jx) | z as desired. ⊣
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Alternative Induction Schemata

A fundamental principle in elementary number theory states that if there is
a natural number fulfilling some property Ψ, then there must be a least nat-
ural number satisfying Ψ. This principle can be shown in PA; actually, every
instance of this principle (i.e., by considering Ψ to be some LPA-formula)
is equivalent to the corresponding instance of the Induction Schema PA6. In
order to prove this, we need another induction principle which will turn out
to be quite useful for further proofs in this book.

Proposition 8.14 (Strong Induction Principle). Let φ(x) be an LPA-
formula. Then in PA, φ satisfies the following principle of strong induc-
tion:

PA ⊢ ∀x
(
∀y < xφ(y)→ φ(x)

)
→ ∀xφ(x)

Proof. Suppose ∀x
(
∀y < xφ(y) → φ(x)

)
. Using PA6, we first show ∀xψ(x)

for
ψ :≡ ∀y < xφ(y).

Notice that ψ(0) vacuously holds, since there is no y < 0 with ¬φ(y). Now,
if ψ(x) holds, then by our assumption we have φ(x). So, we have ψ(x) and
φ(x), which is the same as ψ(sx). Therefore, by PA6 we obtain ∀xψ(x). Now,
because for every x, ψ(sx) implies φ(x), we finally obtain ∀xφ(x). ⊣

Proposition 8.15 (Least Number Principle). Let φ(x) be an LPA-
formula. Then

PA ⊢ ∃xφ(x)→ ∃x
(
φ(x) ∧ ∀y < x ¬φ(y)

)
.

Informally, the Least Number Principle states that if there is a witness
to an arithmetic statement, then there is always a least witness. This principle
is often used in the following equivalent form: If a universally quantified
formula does not hold, then there is a least counterexample.

Proof of Proposition 8.15. By Tautology (K) and the 3-Symbols Theo-
rem 1.7, we have

∃xφ(x)→ ∃x
(
φ(x) ∧ ∀y < x ¬φ(y)

)
⇔

∀x¬φ(x) ∨ ∃x
(
φ(x) ∧ ∀y < x ¬φ(y)

)
,

where the latter statement is equivalent to the implication

∀x
(
¬φ(x) ∨ ¬∀y < x ¬φ(y)

)
→ ∀x¬φ(x).

Now, by Tautology (K) this implication is equivalent to

∀x
(
∀y < x ¬φ(y)→ ¬φ(x)

)
→ ∀x¬φ(x),
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which is the Strong Induction Principle 8.14 applied to the formula
¬φ(x). Consequently, we have PA ⊢ ∃xφ(x)→ ∃x

(
φ(x) ∧ ∀y < x ¬φ(y)

)
. ⊣

Relative Primality Revisited

We conclude this chapter by providing an alternative definition of relative
primality, which shall be useful in the next chapter. First, we introduce the
Principle of Division with Remainder :

Proposition 8.16 (Principle of Division with Remainder).

PA ⊢ ∀x ∀y > 0 ∃q ∃r
(
x = qy + r ∧ r < y

)
.

Proof. Let φ(x) ≡ ∀y > 0 ∃q ∃r
(
x = qy+r∧r < y

)
. The proof is by induction

on x. Obviously, we have φ(0). Now, assume that we have φ(x) for some x,
i.e., for each y > 0 there are q, r such that

x = qy + r ∧ r < y .

If we replace x by sx, then for each y > 0 there are q, r such that

sx = qy + sr ∧ sr ≤ y .

If sr < y, let r′ := sr and q′ := q, and if sr = y, let r′ := 0 and q′ := sq.
Now, in both cases we obtain

sx = q′y + r′ ∧ r′ < y ,

which shows φ(sx). ⊣

The following result gives a connection between the Principle of Divi-
sion with Remainder and the relatively prime numbers:

Lemma 8.17. For any x, y > 0 with x = qy + r and r < y we have

PA ⊢ coprime(y, x)↔ coprime(y, r) .

Proof. By definition we have coprime(y, x) ↔ ∀z(y | xz → y | z), and since
x = qy + r, we obtain

coprime(y, x)↔ ∀z(y | yqz + rz → y | z) .

Now, by Lemma 8.10 we have (y | yqz + rz) ↔ (y | rz), and therefore we
obtain

coprime(y, x) ↔ ∀z(y | rz → y | z) ↔ coprime(y, r) .
⊣
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Now we are ready to give the promised alternative definition of relative
primality.

Proposition 8.18.

PA ⊢ ∀x∀y
(

coprime(x, y) ↔ x ̸= 0 ∧ y ̸= 0 ∧ ∀z
(
(z | x ∧ z | y)→ z = 1

))
.

Proof. The statement is obvious for x = y, or if at least one of x and y is
equal to 1. Therefore, without loss of generality, let us assume that x > y > 1.

(→) The proof is by contraposition. Assume that there is a z such that
z | x, z | y, and z > 1. Then, there is a u < x such that uz = x. Now,
since z | y, we obtain x | yu, and since u < x, we have x ∤ u, which implies
¬ coprime(x, y).

(←) Assume towards a contradiction that there is a pair of numbers (x, y)
with x > y > 0 such that for all z we have

(z | x ∧ z | y)→ z = 1 ,

but ¬ coprime(x, y). By the Least Number Principle, let (x0, y0) be such a
pair of numbers where x0 is minimal. Let q and r be such that x0 = qy0 + r.
Since ¬ coprime(x0, y0), by Lemma 8.17 we have ¬ coprime(y0, r). On the
other hand, if there is a z0 > 1 with z0 | y0 and z0 | r, then this would imply
that

z0 | qy0 + r,

i.e., z0 | x0. But since z0 > 1, this contradicts the fact that (z0 | x0 ∧ z0 |
y0)→ z0 = 1. Therefore, for the pair (y0, r) we have ¬ coprime(y0, r), for all
z we have

(z | y0 ∧ z | r)→ z = 1 ,

and in addition we have y0 < x0, which contradicts the minimality of x0. ⊣

As an immediate consequence of Proposition 8.18, we get the following

Corollary 8.19. For all x and y, the following statement is provable in PA:

coprime(x, y) ↔ x ̸= 0 ∧ y ̸= 0 ∧ ∀z < (x+ y)
(
(z | x ∧ z | y)→ z = 1

)

Exercises

8.0 Prove that addition is associtative, i.e., PA ⊢ ∀x∀y∀z(x+ (y + z) = (x+ y) + z).

8.1 Introduce the unary relations even(x) and odd(x) formalising evenness and oddness,

and show the statements

PA ⊢ ∀x
(
even(x) ∨ odd(x)

)
and PA ⊢ ∀x

(
odd(x) → even(sx)

)
.
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8.2 Show that Bézout’s Lemma is provable in PA, i.e., show that

PA ⊢ ∀x∀y
(

coprime(x, y) ↔
(
x ̸= 0 ∧ y ̸= 0 ∧ ∃a ≤ y ∃b ≤ x (ax+ 1 = by)

))
.

8.3 (a) Prove PA6 from PA0–PA5, Lemma 8.3 and the Least Number Principle.

(b) Construct a model M for PA0–PA5 and the Least Number Principle, in which

PA6 does not hold.

8.4 Prove the following alternative induction principle:

PA ⊢
(
φ(1) ∧ ∀x(φ(x) → φ(2x) ∧ φ(x− 1))

)
→ ∀xφ(x)



Chapter 9

Gödelisation of Peano Arithmetic

The key ingredient for Gödel’s Incompleteness Theorems is the so-called
Gödelisation process which allows us to code terms, formulae and even proofs
within PA. In order to achieve this, we introduce Gödel’s β-function, with the
help of which one can encode any f i n i t e sequence of natural numbers
by a single natural number.

Natural Numbers in Peano Arithmetic

As we have already seen in Chapter 7, every standard natural number corre-
sponds to a unique LPA-term. More precisely, every element σ0 of N corre-
sponds to a term σ0. In order to simplify notations, from now on we will use
variables such as n,m, . . . to denote elements of N and n,m, . . . their coun-
terpart in the formal language LPA, i.e., if n stands for σ0, then n denotes
σ0. Then Fact 7.0 yields

n ≡ m Î===Ï PA ⊢ n = m.

Moreover, by definition of n for n ∈ N we have:

0 ≡ 0

sn ≡ sn

Furthermore, we define

n−1∨
k=0

x = k :≡ x = 0 ∨ x = s0 ∨ · · · ∨ x = n− 1 .
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104 9 Gödelisation of Peano Arithmetic

Proposition 9.0. Any two natural numbers n,m ∈ N satisfy the following
properties:

N0: PA ⊢ sn = sn

N1: PA ⊢ m+ n = m+N n

N2: PA ⊢ m · n = m ·N n
N3: If m ≡ n then PA ⊢ m = n, and if m ̸≡ n then PA ⊢ m ̸= n.

N4: If m < n then PA ⊢ m < n, and if m ≮ n then PA ⊢ m ≮ n.

N5: PA ⊢ ∀x
(
x < n↔

∨n−1
k=0 x = k

)
Before we give a proof of Proposition 9.0, let us recall the I n d u c -

t i o n P r i n c i p l e that we have introduced in Chapter 0: If a statement
A holds for 0 and if whenever A holds for a natural number n in N then it
also holds for n + 1, then the statement A holds for all natural numbers n
in N. Note that this I n d u c t i o n P r i n c i p l e is more general than
what we obtain from the induction axiom PA6 in the standard model N. The
reason is that PA6 is restricted to properties which can be described by an
LPA-formula, whereas the I n d u c t i o n P r i n c i p l e applies to any
statement about standard natural numbers. In order to distinguish between
the I n d u c t i o n P r i n c i p l e for standard natural numbers and
induction within PA using PA6, we shall call the former metainduction.

Proof of Proposition 9.0. N0 follows directly from the definition of n for nat-
ural numbers n ∈ N.

We prove N1 by metainduction on n. The case n ≡ 0 is obviously true,
since 0 is 0. For the induction step, let us assume PA ⊢ m + n = m+N n.
Using N0 and PA3 both within PA and in N we obtain

PA ⊢ m+ sn = m+ sn = s(m+ n) = s(m+N n) = s(m+N n) = m+N sn.

The proof of N2 is similar and is left as an exercise to the reader.

The first part of N3 follows from Fact 7.0, and the second part is a conse-
quence of N4, since whenever m ̸≡ n, then either m < n or n < m.

Let us now turn to N4. If m < n, then there is k ∈ N such that m+N k ≡ n
and k ̸≡ 0. By N3 and N1 we get PA ⊢ m + k = m+N k = n. It remains to
show that PA ⊢ k ̸= 0. Since k ̸≡ 0, it is of the form sk′ for some k′ ∈ N.
Thus by N0 and PA0, PA ⊢ k = sk′ = sk′ ̸= 0. The second statement of N4

follows from the first one and N3 by observing that if m ≮ n, then either
m ≡ n or n < m.

In order to prove N5, we proceed by metainduction on n. The case n ≡ 0 is
trivially satisfied. Now, assume that N5 holds for some n and let x < sn = sn.
Then, by Lemma 8.5 we get x ≤ n, i.e., either x < n or x = n. Since the
first case is equivalent to

∨n−1
k=0 x = k by assumption, we obtain

∨n
k=0 x = k

as desired. The converse is a consequence of N4. ⊣
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On the one hand, by the Soundness Theorem 3.7 we know that every
statement which is provable within PA holds in every model of PA, in partic-
ular in the standard model N. On the other hand, not every statement which
is true in N must be provable within PA. In this respect, Proposition 9.0
gives us a few statements which are true in the standard model N and which
are provable within PA. In order to obtain more such statements, we shall
introduce the notion of N-conformity ; but before doing so, we have to give a
few preliminary notions.

We call an LPA-formula φ a strict ∃-formula if it is built up from atomic
formulae and negated atomic formulae using ∧, ∨, existential quantification
∃ν and bounded universal quantification, i.e., “∀ν < τ” for some term τ .
Furthermore, φ is said to be an ∃-formula if there is a strict ∃-formula
ψ such that φ ⇔PA ψ. By exchanging the role of universal and existential
quantification in the above definition, we can analogously define (strict)
∀-formulae. Furthermore, if a formula is both an ∃- and a ∀-formula, then
we call it a ∆-formula. In particular, every formula which contains only
bounded quantifiers is a ∆-formula.

Example 9.1. The formulae “x ≤ y” and “x | y” are ∆-formulae:

x ≤ y ⇔PA ∃r < sy (x+ r = y) and x | y ⇔PA ∃r < sy (rx = y)

Proposition 9.2. Let φ(x1, . . . , xn) be a formula whose free variables are
among x1, . . . , xn, and let a1, . . . , an ∈ N.

(a) If φ is an ∃-formula and N ⊨ φ(a1, . . . , an), then PA ⊢ φ(a1, . . . , an).

(b) If φ is a ∀-formula and N ⊨ ¬φ(a1, . . . , an), then PA ⊢ ¬φ(a1, . . . , an).

Proof. Observe first that (b) follows from (a), since the negation of a
∀-formula is an ∃-formula. Furthermore, note that it is enough to prove (a)
for strict ∃-formulae. We proceed by induction on the construction of φ.

• If φ is an atomic formula, then it is of the form τ0(x1, . . . , xn) =
τ1(x1, . . . , xn) for some terms τ0, τ1 whose variables are among x1, . . . , xn.
We show by induction on the construction of terms that for every term
τ(x1, . . . , xn) and for all standard natural numbers a1, . . . , an ∈ N, we
have

PA ⊢ τN(a1, . . . , an) = τ(a1, . . . , an). (∗)

The statement is clear for terms τ of the form τ ≡ ν (for a variable ν)
or τ ≡ 0. If τ is of the form sτ ′ for some term τ ′, by the induction hy-
pothesis we have PA ⊢ a = τ ′(a1, . . . , an), where a = τ ′N(a1, . . . , an) ∈ N.
Therefore, τN(a1, . . . , an) is sa. Then by N0 we have

PA ⊢ sa = sa ∧ sa = sτ ′(a1, . . . , an) ∧ sτ ′(a1, . . . , an) = τ(a1, . . . , an)
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as desired. The proofs for terms of the form τ0 + τ1 or τ0 · τ1 are similar
using N1 and N2, respectively. This shows (∗).
Now assume N ⊨ τ0(a1, . . . , an) = τ1(a1, . . . , an) and put a ≡ τ0(a1, . . . , an)
and b ≡ τ1(a1, . . . , an). Then by (∗) and N3 we get

PA ⊢ τ0(a1, . . . , an) = a ∧ a = b ∧ b = τ1(a1, . . . , an).

• If φ is a negated atomic formula, then it is of the form τ0 ̸= τ1 for some
terms τ0 and τ1, and since

τ0 ̸= τ1 ⇔PA ∃y
(
τ0 + sy = τ1 ∨ τ0 = τ1 + sy

)
,

this case follows from the cases below.

• Suppose that φ(x1, . . . , xn) ≡ φ0(x1, . . . , xn) ∧ φ1(x1, . . . , xn) and N ⊨
φ(a1, . . . , an). Then N ⊨ φ0(a1, . . . , an) and N ⊨ φ1(a1, . . . , an). By in-
duction hypothesis, PA ⊢ φ0(a1, . . . an) and PA ⊢ φ1(a1, . . . , an). Using
(I∧) this shows that PA ⊢ φ(a1, . . . , an). The disjunctive case is similar.

• Let now φ(x1, . . . , xn) ≡ ∀y < τ(x1, . . . , xn)ψ(x1, . . . , xn, y) and suppose
that N ⊨ φ(a1, . . . , an). Let a ≡ τN(a1, . . . , an). Then for every b < a
we have N ⊨ ψ(a1, . . . , an, b). Hence, by induction hypothesis, for every
b < a we have PA ⊢ ψ(a1, . . . , an, b), and by (∗), PA ⊢ a = τ(a1, . . . , an).
Now using N5 we obtain

PA ⊢ φ(a1, . . . , an)↔ ∀y
(a−1∨
b=0

y = b→ ψ(a1, . . . , an, y)
)
.

The right-hand side can clearly be derived in PA.

• Finally, let φ(x1, . . . , xn) ≡ ∃yψ(x1, . . . , xn, y). Then N ⊨ φ(a1, . . . , an)
implies that there exists b ∈ N such that N ⊨ ψ(a1, . . . , an, b). Inductively,
we get N ⊨ ψ(a1, . . . , an, b), which completes the proof.

⊣

Note that any constants, relations, and functions that one can define in PA
in the sense of Chapter 6 can be interpreted in the standard model N.

A relation R(x1, . . . , xn) defined by

R(x1, . . . , xn) :⇐⇒ ψR(x1, . . . , xn)

is said to be N-conform if for all a1, . . . , an ∈ N the following two properties
are satisfied:

(a) If N ⊨ ψR(a1, . . . , an), then PA ⊢ ψR(a1, . . . , an).

(b) If N ⊨ ¬ψR(a1, . . . , an), then PA ⊢ ¬ψR(a1, . . . , an).

For the sake of simplicity, the formula ψR is also called N-conform.
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Now, let f be a function symbol whose defining formula is ψf (x1, · · · , xn, y),
i.e., PA ⊢ ∀x1 . . . ∀xn∃!y ψf (x1, . . . , xn, y) and

fx0 · · ·xn = y :⇐⇒ ψf (x1, . . . , xn, y).

Then we say that f is N-conform if its defining formula ψf is N-conform.
Let fN be the interpretation of f in N. If f is N-conform, then for all
a1, . . . , an ∈ N

PA ⊢ ψf (a1, . . . , an, f
N(a1, . . . , an)) ,

and hence
PA ⊢ f(a1, . . . , an) = fN(a1, . . . , an) .

To see this, suppose that f is N-conform. For the sake of simplicity, suppose
that n ≡ 1 and let a ∈ N. Then N ⊨ ψf (a, fN(a)), hence by N-conformity
we get PA ⊢ ψf (a, fN(a)). On the other hand, we have PA ⊢ ψf (a, f(a)) and

hence by functionality of ψf we get PA ⊢ f(a) = fN(a).

Corollary 9.3.

(a) Every relation which is defined by a ∆-formula is N-conform.

(b) Every function which is defined by an ∃-formula is N-conform.

Proof. Condition (a) follows directly from Proposition 9.2. For (b), it suf-
fices to prove that every function whose defining formula is an ∃-formula is
already a ∆-formula. Suppose that f is defined by the ∃-formula ψf , i.e.,

f(x1, . . . , xn) = y :⇐⇒ ψf (x1, . . . , xn, y).

Now note that by functionality of ψf we have

ψf (x1, . . . , xn, y)⇔PA ∀z(ψf (x1, . . . , xn, z)→ z = y).

Moreover, Tautology (K) yields

∀z(ψf (x1, . . . , xn, z)→ z = y)⇔ ∀z(¬ψf (x1, . . . , xn, z) ∨ z = y) ,

which is a ∀-formula. ⊣

Example 9.4. The binary coprimality relation “coprime” is N-conform. To
see this, first notice that by the previous example, the defining formula of
the divisibility relation is a ∆-formula, and therefore, by Corollary 9.3,
the symbol | is N-conform. Furthermore, by Corollary 8.19 the defining
formula of “coprime” is equivalent to a ∆-formula, and therefore, by Corol-
lary 9.3 the binary relation “coprime” is N-conform.
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Gödel’s β-Function

The main goal of this section is to define a binary function (the so-called
β-function introduced by Kurt Gödel) which encodes a f i n i t e sequence
of natural numbers c0, · · · , cn−1 in the standard model by a single number c
such that for all i < n,

PA ⊢ β(c, i) = ci.

In fact, one can even do better than that and introduce a function β such
that for every unary function f definable in Peano Arithmetic,

PA ⊢ ∀k∃c∀i < k
(
β(c, i) = f(i)

)
.

The first step is to encode ordered pairs of numbers by introducing a binary
pairing function op. We define

op(x, y) = z :⇐⇒ (x+ y) · (x+ y) + x+ 1 = z .

Furthermore, we define the unary relation not an ordered pair “nop” and
the two binary functions first element “fst” and second element “snd” by
stipulating

nop(c) :⇐⇒ ¬∃x∃y
(
op(x, y) = c

)
,

fst(c) = x :⇐⇒ ∃y
(
op(x, y) = c

)
∨
(
nop(c) ∧ x = 0

)
,

snd(c) = y :⇐⇒ ∃x
(
op(x, y) = c

)
∨
(
nop(c) ∧ y = 0

)
.

In particular, whenever op(x, y) = c, then

c = op
(
fst(c), snd(c)

)
.

Until now, we did not show that the above definitions are well-defined.
This, however, follows from the following

Lemma 9.5. PA ⊢ op(x, y) = op(x′, y′)→ x = x′ ∧ y = y′.

Proof. Assume that op(x, y) = op(x′, y′). We first show that this implies
x+ y = x′ + y′: Suppose towards a contradiction that x+ y < x′ + y′. Then,
by PA3 and Lemma 8.5, we obtain s(x+ y) = x+ sy ≤ x′ + y′. Therefore,

op(x′, y′) = op(x, y) = (x+ y) · (x+ y) + x+ 1

≤ (x+ sy) · (x+ y) + (x+ sy)

= (x+ sy) · (x+ sy)

= s(x+ y) · s(x+ y)

≤ (x′ + y′) · (x′ + y′)

< op(x′, y′),
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which is obviously a contradiction. By symmetry, the relation x′ + y′ < x+ y
can also be ruled out, and therefore we have that op(x, y) = op(x′, y′) implies
x+y = x′+y′. Now, if x+y = x′+y′, then (x+y)·(x+y) = (x′+y′)·(x′+y′),
and since op(x, y) = op(x′, y′), by Lemma 8.2 we obtain x+1 = x′+1, which
implies x = x′ and also y = y′. ⊣

Now we are ready to define the β-function. Let

γ(a, i, y, x) :≡
(
1 + (op(a, i) + 1) · y

)
| x

and define

β(c, i) = a :⇐⇒
(
nop(c) ∧ a = 0

)
∨

∃x∃y
(
c = op(x, y) ∧

((
∀b < x (¬γ(b, i, y, x)) ∧ a = 0

)
∨(

γ(a, i, y, x) ∧ ∀b < a (¬γ(b, i, y, x))
)))

.

Slightly less formal, we can define β(c, i) by stipulating

β(c, i) =


0 if nop(c),

0 if ∃x∃y
(
c = op(x, y) ∧ ¬∃b < x (γ(b, i, y, x))

)
,

a if ∃x∃y
(
c = op(x, y) ∧ a = min

{
b : γ(b, i, y, x)

})
.

Observe that as a consequence of the Least Number Principle, β is a
binary function.

Before we can encode finite sequences with the β-function, we have to prove
a few auxiliary results. The first one states that for every m there exists a y
which is a multiple of lcm(1, . . . ,m).

Lemma 9.6. PA ⊢ ∀m∃y∀k
(
(k ̸= 0 ∧ k ≤ m)→ k | y

)
.

Proof. We proceed by induction on m. The case when m = 0 is clear. Assume
that there is a y such that for every k with 0 < k ≤ m we have k | y. Let
y′ = y · sm. Then, by Lemma 8.10, every k with 0 < k ≤ sm divides y′. ⊣

As described in Chapter 6, for any LPA-formula φ which is functional, i.e.,
PA ⊢ ∀x∃!yφ(x, y), we can introduce a function symbol Fφ by stipulating

Fφ(x) = y :⇐⇒ φ(x, y) .

If F is defined by some functional LPA-formula, then we say that F is de-
finable in PA.

The next result shows that for every function F which is definable in PA
and for every k > 0, we can define max

{
F (0), . . . , F (k − 1)

}
.



110 9 Gödelisation of Peano Arithmetic

Lemma 9.7. Let F be a function which is definable in PA. Then

PA ⊢ ∀k > 0 ∃!x
(
∃i < k(F (i) = x

)
∧ ∀i < k

(
F (i) ≤ x)

)
.

Proof. We prove the statement by induction on k starting with 1. For k = 1,
one can clearly take x = F (0). Assume that there is a unique x and there is
i0 < k such that F (i0) = x and for all i < k, F (i) ≤ x. Now if F (k) ≤ x,
then set x′ = x; otherwise let x′ = F (k). Then for every i < sk, we have
F (i) ≤ x and the first condition is also satisfied since x′ is either F (i0) or
F (k); uniqueness is trivial. ⊣

This leads to the following definition:

maxi<k F (i) = x :⇐⇒ ∃i < k
(
F (i) = x

)
∧ ∀i < k

(
F (i) ≤ x

)
The next result plays an important role in the coding of finite sequences.

Lemma 9.8. Let G be a unary, strictly increasing function with G(0) > 1
which is definable in PA and let φ(ν) be an LPA-formula. Then

PA ⊢ ∀m
(
∀j < m ∀j′ < m

(
j ̸= j′ → coprime(G(j), G(j′))

)
→ ∃x ∀j < m

(
G(j) | x↔ φ(j)

))
.

Proof. We proceed by induction on m starting with m = 1. If φ(0) holds, let
x := G(0), otherwise let x := 1. For the induction step, assume that for all
distinct j, j′ ≤ sm, G(j) and G(j′) are coprime and that there is an x such
that for all j < m, G(j) | x ↔ φ(j). By the Least Number Principle,
let x0 be the least such x. Now we consider the following two cases: If φ(m)
holds, let x1 := G(m) · x0, otherwise, let x1 := x0. It remains to show that
for all j ≤ m we have G(j) | x1 ↔ φ(j).

If φ(m) fails (i.e., x1 = x0), then, by induction hypothesis, for all j < m
we have G(j) | x0 ↔ φ(j) and coprime(G(j), G(m)), where the latter implies
by the choice of x0 that G(m) ∤ x0. To see this, assume that G(m) | x0. Then
there is an r such that G(m) ·r = x0, and since m ≥ 1, G is strictly increasing
and G(0) ̸= 0 by coprime(G(0), G(1)), we get that G(m) > 1 and conse-
quently r < x0. Moreover, since for all j < m we have coprime(G(j), G(m)),
this implies

∀j < m
(
G(j) | G(m) · r︸ ︷︷ ︸

= x0

↔ G(j) | r
)
,

which contradicts the minimality of x0.
If φ(m) holds (i.e., x1 = G(m) · x0), then, since coprime(G(j), G(m)) for

all j < m we have

G(j) | G(m) · x0︸ ︷︷ ︸
= x1

↔ G(j) | x0 .
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Furthermore, we obviously have G(m) | x1, which completes the proof. ⊣

The following theorem states how the β-function can be used to code finite
sequences.

Theorem 9.9. Let F be a function which is definable in PA. Then

PA ⊢ ∀k ∃c ∀i < k
(
β(c, i) = F (i)

)
.

Proof. Fix an arbitrary number k. Let F ′(i) := op
(
F (i), i

)
+ 1 and let

m := maxi<k F
′(i) .

By Lemma 9.6 there is a y such that every j ≤ m divides y. Furthermore, by
Lemma 8.13 we have for all u with u | y (i.e., 1 ≤ u ≤ m) and for all w

coprime
(
1 + wy, 1 + (w + u)y

)
.

In particular, if i < j < m, then for w := i+ 1 and u := j − i, we obtain

coprime
(
1 + (i+ 1)y, 1 + (j + 1)y

)
.

Finally, define the unary function G by

G(j) = z :⇐⇒ z = 1 + (j + 1)y ,

and let
φ0(z) :≡ ∃i < k

(
z = op(F (i), i)

)
.

Then G is a strictly increasing function and we can apply Lemma 9.8 in order
to find a number x such that for all j < m, where m ≥ op

(
F (i), i

)
(for all

i < k), we have
G(j) | x ↔ φ0(j) ,

in other words,

∀j < m
(
1 + (j + 1)y | x ↔ ∃i < k

(
j = op(F (i), i)

))
.

It remains to show that for c = op(x, y) we have β(c, i) = F (i) for all i < k. By
our assumption on x, we have 1 + (op(F (i), i) + 1)y | x, i.e., γ

(
F (i), i, y, x

)
.

Therefore, it is enough to check that F (i) is minimal with this property.
Assume towards a contradiction that there is an a < F (i) with γ(a, i, y, x),
i.e.,

1 + (op(a, i) + 1)y | x .

Then, by the formula φ0, there is a j with j = op(a, i) = op(F (i′), i′) for
some i′ < k. Thus, by Lemma 9.5, we have i = i′ and a = F (i′) = F (i),
which is a contradiction to the assumption a < F (i). ⊣
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Note that all functions — in particular the β-function — which we have in-
troduced in this section can be defined by an ∃-formula and are therefore
N-conform.

Encoding Finite Sequences

This section aims at showing how the β-function can be used to encode
a finite sequence of numbers; but what is meant by the words “finite” and
“number”? In the standard model, this coincides with f i n i t e n e s s and
the usual natural numbers. In general, however, this means that the sequence
has a limited length k for some k, i.e., in non-standard models its length can
actually be a non-standard number.

In a naive way, sequences of natural numbers can be viewed as functions
from some {0, · · · , n} to the natural numbers, where {0, · · · , n} is the domain
of the function. In PA, however, we cannot specify the domain of a definable
function, which is why we will use β( · , 0) to encode the length of a sequence.
Concretely, we will encode ⟨F (i) | i < n⟩ using some c (whose existence is
guaranteed by Theorem 9.9) such that

β(c, 0) = n

∀i < n(β(c, i+ 1) = F (i)).

This motivates us to introduce the functions

lh(c) :≡ β(c, 0)

ci :≡ β(c, i+ 1).

We will also call lh(c) the length of c. Furthermore, we define s to be a
sequence, (denoted seq(s)), if s is the smallest code for ⟨si | i < lh(s)⟩:

seq(s) :⇐⇒ ∀t < s
(
lh(t) = lh(s)→ ∃i < lh(s)(ti ̸= si)

)
.

Note that the definition of seq assures that codes for finite sequences are
unique, i.e.,

PA ⊢
(
seq(s) ∧ seq(s′) ∧ lh(s) = lh(s′) ∧ ∀i < lh(s)(si = s′i)

)
→ s = s′.

Example 9.10. The simplest example is the empty sequence ⟨ ⟩ which is
defined by ⟨ ⟩ = s :⇐⇒ seq(s) ∧ lh(s) = 0. By taking a closer look at the
definition of the β-function, one can easily see that ⟨ ⟩ is actually 0, since it
is the smallest code s with β(s, 0) = 0.

Secondly, we consider one-element sequences: The sequence just consisting
of x is given by

⟨x⟩ = s :⇐⇒ seq(s) ∧ lh(s) = 1 ∧ s0 = x.
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In the same way, one can define two-element sequences as

⟨x, y⟩ = s :⇐⇒ seq(s) ∧ lh(s) = 2 ∧ s0 = x ∧ s1 = y.

More generally, if F is definable in PA, then one can define

⟨F (i) | i < k⟩ = s :⇐⇒ seq(s) ∧ lh(s) = k ∧ ∀i < k
(
si = F (i)

)
.

Theorem 9.9 assures that such a number s always exists and since it is the
least code it is unique.

The functions c, i 7→ ci, lh and ⟨ · ⟩ are all defined by ∃-formulae and are
thus N-conform as a consequence of Corollary 9.3. We will use the same
notation for the corresponding function in N, for example we write ⟨n,m⟩ for
⟨n,m⟩N.

Next, we show how finite sequences can be concatenated.

Proposition 9.11.

PA ⊢ ∀s∀s′∃t
(

seq(t) ∧ lh(t) = lh(s) + lh(s′) ∧

∀i < lh(s)(ti = si) ∧ ∀i < lh(s′)(tlh(s)+i = s′i)
)

Proof. Put F (0) = lh(s) + lh(t), F (i) = β(s, i) for 0 < i < lh(s) + 1, and
F (i) = β(t, i− lh(s)) for i ≥ lh(s) + 1. This clearly defines a function, so we
can apply Theorem 9.9 and obtain a code t such that

for all i < lh(s) + lh(t) + 1 we have β(t, i) = F (i) .

In particular, this means that lh(t) = lh(s) + lh(s′), (t)i = β(t, i + 1) =
β(s, i + 1) = si for i < lh(s). Similarly, we get tlh(s)+i = s′i for i < lh(s′).
The Least Number Principle then enables us to choose t minimal with
the properties from above, i.e., such that seq(t). ⊣

With Proposition 9.11, we can define

s⌢s′ = t :⇐⇒ seq(t) ∧ lh(t) = lh(s) + lh(s′) ∧

∀i < lh(s)(ti = si) ∧ ∀i < lh(s′)(tlh(s)+i = s′i) .

Note that by Proposition 9.11, s⌢s′ is functional. Moreover, it is easy to
check that concatenation is associative, i.e.,

PA ⊢ (s⌢s′)⌢s′′ = s⌢(s′⌢s′′).

Therefore, we can omit the brackets and write s⌢s′⌢s′′ instead of s⌢(s′⌢s′′).
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Encoding Power Functions

In the previous paragraphs, we have seen how the β-function allows us to
encode finite sequences. Now we will use these insights to show how recursive
functions can be defined in PA. We will not do this in general, since the only
crucial function we need is the power function. Further examples of recursive
functions can be found in the exercises.

The definability of the power function is remarkable, since it means that
we can define exponentiation from addition and multiplication; however, as
we will see in Chapter 12, multiplication cannot be defined from addition.
The idea is to interpret the power xk as the sequence ⟨1, x, · · · , xk−1, xk⟩ of
length k + 1.

We introduce the function xk by stipulating

xk = y :⇐⇒ ∃t
(
seq(t) ∧ lh(t) = sk ∧ t0 = 1 ∧ ∀i < k(tsi = x · ti) ∧ tk = y

)
.

Why is xk functional? Clearly, the function xk has (if defined) a unique value.
In order to see that it is always defined, we can use induction: For k = 0 it is
clear. Now assume that there is a sequence s of length k+1 such that s0 = 1

and for all i < k we have ssi = x · si. Consider t = s⌢⟨x · sk⟩. Then t is a
sequence of length k + 2 which satisfies the desired properties.

Note that the power function is defined by an ∃-formula and therefore N-
conform by Corollary 9.3. Furthermore, observe that the power function
fulfils the usual recursive definition, i.e.,

PA ⊢ ∀x(x0 = 1)

PA ⊢ ∀x∀k(xsk = x · xk).

Our next aim is to encode terms, formulae and proofs by making use of
unique prime decomposition. This can be shown in PA. However, for us it
suffices to show that the function mapping x, y, z to 2x · 3y · 5z is injective.
The general result is left as an exercise to the interested reader. We define
primality by

prime(x) :⇐⇒ x > 1 ∧ ∀z
(
z | x→ (z = x ∨ z = 1)

)
.

If prime(x), we say that x is prime. Note that prime can be defined by an
∃-formula, since ∀z can be replaced by ∀z ≤ x. By using the fact that 2, 3 and
5 are prime in the standard model N and by Proposition 9.2, we obtain

PA ⊢ prime(2) ∧ prime(3) ∧ prime(5).
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Moreover, prime decomposition up to 5 is easily seen to be unique: One
just has to show that

PA ⊢ 2x · 3y · 5z = 2x
′
· 3y

′
· 5z

′
→ x = x′ ∧ y = y′ ∧ z = z′.

This is usually proved by induction on x + y + z. Note that the simplest
way to achieve this is to use the following characterisation of primality (see
Exercise 9.1):

PA ⊢ prime(x)↔ ∀y∀z(x | yz → x | y ∨ x | z)

Encoding Terms and Formulae

In a first step, every logical and every non-logical symbol ζ of Peano Arith-
metic is assigned a natural number # ζ in N, called Gödel number of ζ.
Since from now on, we will often switch between the meta-level and the formal
level, we will always explicitly mention whenever we are reasoning formally,
i.e., within PA. Otherwise the proofs will be on the meta-level.

Symbol ζ Gödel number # ζ

0 0
s 2
+ 4
· 6
= 8
¬ 10
∧ 12
∨ 14
→ 16
∃ 18
∀ 20

v0 1
v1 3
...

...
vn 2 · n+ 1

In the previous section, we introduced power functions in PA. Since N ⊨ PA,
such functions also exist in N, and we will use the same notation nk as in
PA. By N-conformity we have PA ⊢ nk = nk for all n, k ∈ N. Note that by
Theorem 1.7 it would already suffice to just gödelize the logical operators
¬,∧ and ∃. Next we encode terms and formulae.
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Term τ Gödel number # τ

0 0

vn 2 · n+ 1

st 2# s · 3# t

t0 + t1 2#+ · 3# t0 · 5# t1

t0 · t1 2# · · 3# t0 · 5# t1

Formula φ Gödel number #φ

τ0 = τ1 2#= · 3# τ0 · 5# τ1

¬ψ 2#¬ · 3#ψ

ψ0 ∧ ψ1 2#∧ · 3#ψ0 · 5#ψ1

ψ0 ∨ ψ1 2#∨ · 3#ψ0 · 5#ψ1

ψ0 → ψ1 2#→ · 3#ψ0 · 5#ψ1

∃xψ 2# ∃ · 3# x · 5#ψ

∀xψ 2# ∀ · 3# x · 5#ψ

Observe that by the uniqueness of the prime decomposition up to 5, every
natural number encodes at most one variable, term or formula. So far, we
have only assigned a natural number in the standard model to each symbol,
term, and formula. However, we want to do this within Peano Arithmetic.
This can be achieved by stipulating

⌜ζ⌝ :≡ # ζ

for an arbitrary symbol, term or formula ζ. This allows us to express in PA
that some number is the code of a variable, term or formula. However, we
can easily formalize this so-called Gödelisation process, where 2 :≡ ss0,
3 :≡ sss0, and 5 :≡ sssss0.

succ(n) :≡ 2⌜s⌝ · 3n add(n,m) :≡ 2⌜+⌝ · 3n · 5m

mult(n,m) :≡ 2⌜·⌝ · 3n · 5m eq(t, t′) :≡ 2⌜=⌝ · 3t · 5t′

not(f) :≡ 2⌜¬⌝ · 3f and(f, f ′) :≡ 2⌜∧⌝ · 3f · 5f ′

or(f, f ′) :≡ 2⌜∨⌝ · 3f · 5f ′
imp(f, f ′) :≡ 2⌜→⌝ · 3f · 5f ′

ex(v, f) :≡ 2⌜∃⌝ · 3v · 5f all(v, f) :≡ 2⌜∀⌝ · 3v · 5f

In order to simplify the notation, for terms τ, τ0, . . . , τn, we define

τ ∈ {τ0, . . . , τn} :≡
n∨
i=0

τ = τi .

Now we are ready to provide a formalised version of construction of terms
and formulae:

var(v) :⇐⇒ ∃n(v = 2 · n+ 1)

c term(c, t) :⇐⇒ seq(c) ∧ clh(c)−1 = t ∧

∀k < lh(c)
(

var(ck) ∨ ck = 0 ∨

∃i < k ∃j < k
(
ck ∈

{
succ(ci), add(ci, cj),mult(ci, cj)

}))
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term(t) :⇐⇒ ∃c
(
c term(c, t)

)
c fml(c, f) :⇐⇒ seq(c) ∧ clh(c)−1 = f ∧

∀k < lh(c)
(
∃t ∃t′

(
term(t) ∧ term(t′) ∧ ck = eq(t, t′)

)
∨

∃i, j < k
(
ck ∈

{
not(ci), and(ci, cj), or(ci, cj), imp(ci, cj)

})
∨

∃i < k ∃v
(
var(v) ∧ ck ∈

{
ex(v, ci), all(v, ci)

}))
fml(f) :⇐⇒ ∃c

(
c fml(c, f)

)
Note that all the above relations are defined by ∃-formulae.

Example 9.12. Let us consider the term τ ≡ svn + 0. In the standard
model N, the sequence c ≡ ⟨# vn,#svn,#0,#svn + 0⟩ encodes τ , i.e.,
N ⊨ c term(c,# τ). By Proposition 9.2 this implies PA ⊢ c term(c, ⌜τ⌝).

Lemma 9.13. For n ∈ N we have

(a) N ⊨ var(n) if and only if n ≡ # ν for some variable ν.

(b) N ⊨ term(n) if and only if n ≡ # τ for some LPA-term τ .

(c) N ⊨ fml(n) if and only if n ≡ #φ for some LPA-formula φ.

Proof. Condition (a) is obvious. For (b), we first prove that N ⊨ term(# τ)
for every term τ . We proceed by induction on the term construction of τ . If
τ ≡ 0 or τ is a variable, then clearly N ⊨ c term(⟨# τ⟩,# τ) and hence the
claim follows. Now, if τ ≡ sτ ′ for some term τ ′ with N ⊨ term(# τ ′), and
c ∈ N is a code with N ⊨ c term(c,# τ ′), then N ⊨ succ(# τ ′), and hence,
N ⊨ c term(c⌢⟨# τ⟩,# τ). The other cases are similar. For the converse, we
use the principle of strong induction in N. Suppose that the claim holds
for all m < n in N and let N ⊨ term(n). If n ≡ 0 then n ≡ #0, and if
n ≡ 2m+ 1 for some m, then n ≡ # vm. Let N ⊨ c term(c, n) for some c ∈ N

with lh(c) > 1. Now in N we have either n ≡ succN(ci) for some i < lh(c),
n ≡ addN(ci, cj) or n ≡ multN(ci, cj) for i, j < lh(c). In the first case, note
that N ⊨ c term(⟨ck | k < si⟩, ci). By our induction hypothesis, we can take
a term τ such that ci ≡ # τ , and by But then, by N-conformity we have
n ≡ succN(ci) ≡ (2⌜s⌝ · 3ci)N ≡ 2# s · 3ci ≡ #sτ , and hence, n encodes sτ .
The other cases are similar.

The corresponding statement for formulae is proved in the same way and
is therefore left as an exercise. ⊣

Note that the relations var, term and formula are ∃-formulae. Therefore, by
combining Lemma 9.13 and Proposition 9.2 we obtain: If ν is a variable, τ
is a term and φ is a formula, then

PA ⊢ var(⌜ν⌝), PA ⊢ term(⌜τ⌝), and PA ⊢ formula(⌜φ⌝).
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Before we proceed to gödelise logical axioms, the axioms of Peano Arith-
metic and formal proofs, we have to deal with substitution: First, we intro-
duce new relations which check wether a code for a variable appears in the
code of a term or formula, respectively.

var in term(v, t) :⇐⇒ var(v) ∧ ∃c
(

c term(c, t) ∧

∀c′ < c¬ c term(c′, t) ∧ ∃i < lh(c)(ci = v)
)

Note that the minimality of c is necessary since otherwise, any code for a
variable could appear in the sequence of codes of the term construction. The
same holds for the following relation var in fml:

var in fml(v, f) :⇐⇒ ∃c
(

c fml(c, f) ∧ ∀c′ < c¬ c fml(c′, f) ∧

∃i < lh(c) ∃t0 ∃t1
(
term(t0) ∧ term(t1) ∧ ci = eq(t0, t1) ∧(

var in term(v, t0) ∨ var in term(v, t1)
)))

free(v, f) :⇐⇒ ∃c
(

c fml(c, f) ∧ var in fml(v, f) ∧

∀i < lh(c) ∀j < i
(
ci ̸= ex(v, cj) ∧ ci ̸= all(v, cj)

))
For the sake of simplicity, we permit the substitution φ(x/τ) only if it is

admissible and x as well as all variables in τ appear only free in φ. This
does not impose a restriction, since by renaming of variables, every formula
is equivalent to one in which no variable occurs both bound and free. We can
thus define

sb adm(v, t, f) :⇐⇒ var in fml(v, f) ∧ free(v, f) ∧
∀v′ < t

(
var in term(v′, t)→ free(v′, f)

)
.

Note that the relations var in term, var in fml, free, and sb adm are all ∃-
formulae: The only unbounded universal quantifier appears in the relation
sb adm, where var in term occurs as negated — recall that var in term(v′, t)→
free(v′, f) is equivalent to ¬ var in term(v′, t) ∨ free(v′, f). However, the ex-
istential quantifier in the definition of var in term(v′, t) can be replaced by a
bounded one, since the code of t has to be smaller than the code of f .

The next relation expresses that c′ encodes the construction of the term
obtained from the term with code t by replacing every occurrence of the code
v of a variable by the code t0.

c sb term(c, c′, c′′, v, t0, t, t
′) :⇐⇒ var(v) ∧ c term(c, t) ∧ c term(c′, t′) ∧

c term(c′′, t0) ∧ lh(c′) = lh(c′′) + lh(c) ,
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and for all k < lh(c) we have

(var(ck) ∧ ck ̸= v → c′lh(c′′)+k = ck) ∧ (ck = 0→ c′lh(c′′)+k = 0)

∧ (ck = v → c′lh(c′′)+k = t0)

and

∀i < k ∀j < k
(
ck = succ(ci) → c′lh(c′′)+k = succ(c′lh(c′′)+i) ∧
ck = add(ci, cj) → clh(c′′)+k = add(c′lh(c′′)+i, c

′
lh(c′′)+j) ∧

ck = mult(ci, cj) → clh(c′′)+k = mult(c′lh(c′′)+i, c
′
lh(c′′)+j)

)
.

By omitting the codes c, c′, c′′ we can describe term substitution by

sb term(v, t0, t, t
′) :⇐⇒ ∃c ∃c′ ∃c′′

(
c sb term(c, c′, c′′, v, t0, t, t

′)
)
.

Informally, if t encodes the term τ , v the variable ν, t0 the term τ0, and t′

encodes τ(ν/τ0), then the relation sb term(v, t0, t, t
′) holds.

For formulae, we proceed similarly, except that we first have to make sure
that the substitution is admissible.

c sb fml(c, c′, v, t0, f, f ′) :⇐⇒
c fml(c, f)∧c fml(c′, f ′)∧sb adm(v, t0, f)∧lh(c′) = lh(c), and
for all k < lh(c) we have:

∀t ∀t′ ∀s ∀s′
((
ck = eq(t, t′) ∧ sb term(v, t0, t, s)∧

sb term(v, t0, t
′, s′)

)
→ c′k = eq(s, s′)

)
and

∀i < k ∀j < k
(
ck = not(ci) → c′k = not(c′i) ∧
ck = or(ci, cj) → c′k = or(c′i, c

′
j) ∧

ck = and(ci, cj) → c′k = and(c′i, c
′
j) ∧

ck = imp(ci, cj) → c′k = imp(c′i, c
′
j)

)
and

∀i < k ∀v
(
ck = all(v, ci) → c′k = ex(v, c′i) ∧
ck = ex(v, ci) → c′k = ex(v, c′i)

)
Again, by leaving out the sequence codes, we define

sb fml(v, t0, f, f
′) :⇐⇒ ∃c∃c′

(
c sb fml(c, c′, v, t0, f, f

′)
)
.

Informally, if f encodes the formula φ, v the variable ν, t0 the term τ , and if
the substitution φ(ν/τ) is admissible and f ′ encodes φ(τ), then the relation
sb fml(v, t0, f, f

′) holds.
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Lemma 9.14. Let τ and τ0 be two terms, φ a formula and ν a variable such
that the substitution φ(ν/τ0) is admissible. Then we have:

(a) PA ⊢ sb term(⌜ν⌝, ⌜τ0⌝, ⌜τ⌝, t)↔ t = ⌜τ(ν/τ0)⌝

(b) PA ⊢ sb fml(⌜ν⌝, ⌜τ0⌝, ⌜φ⌝, f)↔ f = ⌜φ(ν/τ0)⌝

Proof. This follows from the definition of the relations sb term and sb fml
using induction on the term construction of τ and the formula construction
of φ. ⊣

Example 9.15. Let τ ≡ sx+y and τ0 ≡ 0. Then the sequence ⟨⌜x⌝, ⌜sx⌝, ⌜y⌝,
⌜sx+ y⌝⟩ encodes ⌜τ⌝ and ⟨⌜0⌝⟩ encodes τ0. Now, when coding τ(x/τ0), we
first take the code of τ0 and then replace every occurrence of x in the code
of τ by τ0. This gives

⟨⌜0⌝, ⌜s0⌝, ⌜y⌝, ⌜s0 + y⌝⟩

which encodes τ(x/τ0).

Encoding Formal Proofs

Finally, we can use the machinery as developed in the previous section to
encode axioms and formal proofs. We first show how to achieve this in N.
For this, recall that a formal proof of some LPA-formula φ is a f i n i t e
sequence φ0, . . . , φn with φn ≡ φ such that each φi is an instance of a logical
axiom, an axiom of PA or is obtained from preceding elements of the sequence
by using Modus Ponens or Generalisation. Hence we can code a formal proof
of φ by ⟨#φ0, . . . ,#φn⟩. Conversely, from such a code we can recover the
sequence φ0, . . . , φn and hence reconstruct a formal proof of φ.

As for terms and formulae, we proceed to code formal proofs in PA. The
goal is to define a relation prv with the property that N ⊨ prv(⌜φ⌝) for some
formula φ if and only if there is a formal proof of φ, i.e., PA ⊢ φ. The following
examples illustrate how axioms can be formalised in PA:

ax L1(f) :⇐⇒ ∃f ′∃f ′′
(
fml(f ′) ∧ fml(f ′′) ∧ f = imp(f ′, imp(f ′′, f ′))

)
ax L10(f) :⇐⇒ ∃f ′∃f ′′∃v∃t

(
sb fml(v, t, f ′, f ′′) ∧ f = imp(all(v, f ′), f ′′)

)
ax L14(f) :⇐⇒ ∃t

(
term(t) ∧ f = eq(t, t)

)
PA0 and the Induction Schema are gödelised as follows:

ax PA0(f) :⇐⇒f = ⌜∀v0¬(sv0 = 0)⌝
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ax PA6(f) :⇐⇒∃f ′∃f ′′∃f ′′′∃v∃g
(
free(v, f ′) ∧ sb fml(v, ⌜0⌝, f ′, f ′′)

∧ sb fml(v, succ(v), f ′, f ′′′) ∧ g = all(v, imp(f ′, f ′′′))

∧ f = imp(and(f ′′, g), all(v, f ′))
)

We leave it to the reader to formalise the other axioms. Similarly, we define
axioms:

log ax(f) :⇐⇒ ax L0(f) ∨ · · · ∨ ax L16(f)

peano ax(f) :⇐⇒ ax PA0(f) ∨ · · · ∨ ax PA6(f)

ax(f) :⇐⇒ log ax(f) ∨ peano ax(f)

Next, we formalise the inference rules Modus Ponens and Generalisation:

mp(f ′, f ′′, f) :⇐⇒ fml(f ′) ∧ fml(f) ∧ f ′′ = imp(f ′, f)

gen(v, f ′, f) :⇐⇒ var(v) ∧ fml(f ′) ∧ f = all(v, f ′)

Finally, we encode formal proofs as sequences of codes of formulae which are
either axioms or produced by one of the inference rules. Therefore, we define
the predicates c prv(c, f) in order to specify that c encodes a proof of the
formula coded by f and prv to express provability.

c prv(c, f) :⇐⇒ seq(c) ∧ clh(c)−1 = f ∧ ∀k < lh(c)
(
ax(ck)∨

∃i < k∃j < k
(
mp(ci, cj , ck) ∨ ∃v(gen(v, ci, ck))

))
prv(f) :⇐⇒∃c(c prv(c, f)).

Note that in the standard model N we have N ⊨ c prv(c,#φ) if and only if c
encodes a sequence ⟨#φ0, . . . ,#φn⟩, where φ0, . . . , φn is a formal proof of φ.

Lemma 9.16. Let n, c ∈ N be natural numbers. Then N ⊨ c prv(c, n) if and
only if c encodes a formal proof of some LPA-formula φ with #φ = n. In
particular, N ⊨ prv(#φ) if and only if PA ⊢ φ.

Proof. Note first that N ⊨ ax(m) for some m ∈ N if and only if m = #ψ
encodes an instance of a logical axiom or an axiom of PA. The proof is the
same as the proof of Lemma 9.13, where in the forward direction, one pro-
ceeds by induction on lh(c), and for the converse by induction on the length
of the formal proof of φ.

For the second part, suppose that N ⊨ prv(#φ). Then there is c ∈ N which
encodes a formal proof of φ, and hence, PA ⊢ φ. ⊣

Note that Lemma 9.16 does not hold if we replace N by a non-standard
model M of PA: If M ⊨ c prv(c, ⌜φ⌝) and cM is a non-standard number,
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then the “proof” encoded by cM is of non-standard length and therefore, we
cannot conclude that PA ⊢ φ.

Corollary 9.17. Let φ be an LPA-formula. If PA ⊢ φ then there is n ∈ N

such that PA ⊢ c prv(n, ⌜φ⌝). In particular, if PA ⊢ φ then PA ⊢ prv(⌜φ⌝).

Proof. Suppose that PA ⊢ φ. Then by Lemma 9.16 we have N ⊨ c prv(c,#φ)
for some c ∈ N. Observe that the relations c prv and prv are defined by an
∃-formula. Hence, it follows from Proposition 9.2 that PA ⊢ c prv(c, ⌜φ⌝),
and in particular, PA ⊢ prv(⌜φ⌝). ⊣

Notes

In his proof of the incompleteness theorems [16], Gödel used the β-function and unique
prime decomposition in order to encode finite sequences by a single number. There are,

however, other ways to achieve this (e.g., the coding provided by Smullyan in [53]). In our
presentation, we mainly followed Shoenfield [48].

Exercises

9.0 Prove the statement N2.

9.1 (a) Show that PA ⊢ ∀x ≥ 2 ∃y
(
prime(y)∧ y | x

)
, i.e., every x ≥ 2 has a prime divisor.

(b) Show that PA ⊢ ∀x ≥ 2
(
prime(x) ↔ ∀y∀z(x | yz → x | y ∨ x | z)

)
.

Hint: Use Bézout’s Lemma (see Exercise 8.2).

9.2 Introduce a factorial function “!” such that n! = 1·. . .·n, and show that it is N-conform.

9.3 Introduce a function lcmi<k F (i) for a function F definable in PA such that lcmi<k F (i)

is the least common multiple of F (0), . . . , F (k − 1) and show that it is N-conform.

9.4 Let M be an arbitrary non-standard model of PA. Prove the following statements:

(a) M contains a non-standard prime number.

(b) M contains a number that is divisible by every standard prime number.

Hint: Use Exercise 7.4.

9.5 State and prove in PA that every number has a unique prime decomposition, i.e.,

prove that every number is a product of primes, and show that this is unique up to
permutations of the factors.

9.6 (a) Show that the encoding of terms and formulae by Gödel numbers is one-to-one,

i.e., show that there are no two valid terms or formulae with the same Gödel
number.

Remark: The Gödel number 4 might stand for + as well as for s0, but + is neither
a valid term nor a valid formula.

(b) Give the sequence encoding the construction of the formula ∀v0 ¬= 0 v0, which
corresponds to ∀v0(0 ̸= v0) in “infix notation”.
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9.7 An alternative way to utilise the uniqueness of the prime number decomposition for
Gödel coding is to use the existence and uniqueness of base b notation for any b ≥ 2.

(a) Show that it suffices to gödelise only b symbols for some b ∈ N.

(b) Prove that for every number n there are numbers n0, . . . , nk with 0 ≤ ni < b for
all 0 ≤ i ≤ k such that

n = nkb
k + . . .+ n1b+ n0 ≡: (nk, . . . , n0)b.

(c) Show that there is a function ∗ definable in PA such that

(nk, . . . , n0)b ∗ (ml, . . . ,m0)b = (nk, . . . , n0,ml, . . . ,m0)b .

(d) Use (a) and (b) to give an alternative of Gödel coding using base b notation rather

than the unique prime decomposition.

9.8 Show that there is a function which truncates sequences, i.e., introduce a binary
function ↾ such that

PA ⊢
(
seq(s) ∧ k < lh(s)

)
→

(
seq(s ↾ k) ∧ lh(s ↾ k) = k ∧ ∀i < k((s ↾ k)i = si)

)
.

9.9 Complete the proof of Lemma 9.14.



Chapter 10

The First Incompleteness Theorem

In 1931, Gödel proved his First Incompleteness Theorem which states
that if PA is consistent, then it is incomplete, i.e., there is a LPA-sentence
σ such that PA ⊬ σ and PA ⊬ ¬σ. In this chapter, we prove the First
Incompleteness Theorem not only for PA but also for weaker and stronger
theories.

The Provability Predicate

In this section, we state some properties of the provability predicate that we
introduced in Chapter 9.

Lemma 10.0.

(a) PA ⊢ prv(x) ∧ prv
(
imp(x, y)

)
→ prv(y)

(b) PA ⊢ prv(x) ∧ prv(y)→ prv
(
and(x, y)

)
.

Proof. For (a), note that prv(x) and prv(imp(x, y)) imply mp(x, imp(x, y), y).
Now, if c, c′ satisfy c prv(c, x) and c prv(c′, imp(x, y)), respectively, then the
concatenation of the codes yields c prv(c⌢c′⌢⟨y⟩, y) and hence prv(y) as de-
sired.

For (b), assume prv(x) and prv(y). In particular, this implies fml(x) and
fml(y). Note that using the formalised version of the axiom L5, we obtain

PA ⊢ prv
(

imp
(
y, imp

(
x, and(x, y)

)))
.

Using prv(y) and (a), we get prv
(
imp

(
x, and(x, y)

))
, and a further applica-

tion of (a) yields prv(and(x, y)). ⊣
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As an immediate consequence of Lemma 10.0, we obtain the following

Corollary 10.1. Let φ and ψ be LPA-formulae. Then we have

(a) PA ⊢ prv(⌜φ→ ψ⌝)→ (prv(⌜φ⌝)→ prv(⌜ψ⌝)),

(b) PA ⊢ prv(⌜φ⌝) ∧ prv(⌜ψ⌝)→ prv(⌜φ ∧ ψ⌝).

Note that (a) corresponds to a formalised version of the inference rule (MP).

Corollary 10.2. Let φ and ψ be LPA-formulae. Then the following state-
ments hold:

(a) If φ⇔PA ψ, then prv(⌜φ⌝)⇔PA prv(⌜ψ⌝).

(b) prv(⌜φ⌝) ∧ prv(⌜ψ⌝)⇔PA prv(⌜φ ∧ ψ⌝).

Proof. For (a), assume that φ⇔PA ψ. By symmetry, it suffices to verify that
PA ⊢ prv(⌜φ⌝) → prv(⌜ψ⌝). Since PA ⊢ φ → ψ, Corollary 9.17 yields
PA ⊢ prv(⌜φ→ ψ⌝). The assertion then follows from Corollary 10.1 using
Modus Ponens.

For (b), note that by Corollary 10.1.(b), it suffices to prove PA ⊢
prv(⌜φ ∧ ψ⌝) → prv(⌜φ⌝) ∧ prv(⌜ψ⌝). But this is a direct consequence of
Corollary 10.1.(a) using L3 and L4. ⊣

The Diagonalisation Lemma

We already know that every standard natural number is either 0 or the
successor of a standard natural number. Hence, we can introduce a binary
relation which states that x is the code of a standard natural number:

c nat(c, n, x) :⇐⇒ seq(c) ∧ lh(c) = sn ∧ c0 = ⌜0⌝ ∧
∀i < n

(
csi = succ(ci) ∧ cn = x

)
nat(n, x) :⇐⇒∃c

(
c nat(c, n, x)

)
Clearly, it follows from the definition that

PA ⊢ c nat(c, n, x)→ c nat
(
c⌢⟨succ(x)⟩, sn, succ(x)

)
.

Lemma 10.3. For any natural number n ∈ N we have PA ⊢ nat(n, ⌜n⌝). In
particular, if φ is an LPA-formula, then PA ⊢ nat(⌜φ⌝, ⌜⌜φ⌝⌝).

Proof. We proceed by metainduction on n. For n ≡ 0, the term 0 is the
same as 0, and clearly, the code c of the singleton sequence ⟨⌜0⌝⟩ wit-
nesses c nat(c, 0, ⌜0⌝). Now, suppose that for some c and n ∈ N we have
c nat(c, n, ⌜n⌝). Let c′′ be the code for ⟨⌜sn⌝⟩ and let c′ := c⌢c′′. Notice
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that since lh(c) = sn, we have lh(c′) = ssn, and by definition of c′ we have
(c′)sn = ⌜sn⌝ = succ(⌜n⌝). Using the induction hypothesis and the above
observation, we obtain c nat(c′, sn, ⌜sn⌝) as desired. ⊣

Finally, we define the Gödel number of a number by stipulating

gn(n) = x :⇐⇒ nat(n, x) ∨
(
¬∃y(nat(n, y)) ∧ x = 0

)
.

This indeed defines a function, since using the definition of the predicate seq,
one can easily show that

PA ⊢ nat(n, x) ∧ nat(n, y)→ x = y .

In particular, by Lemma 10.3 we have

PA ⊢ gn(⌜φ⌝) = ⌜⌜φ⌝⌝ . (∗)

We have now assembled all the ingredients to prove the Diagonalisation
Lemma, which will be crucial in the proof of the First Incompleteness
Theorem.

Theorem 10.4 (Diagonalisation Lemma). Let φ(ν) be an LPA-formula
with one free variable ν which does not occur bound in φ. Then there exists
an LPA-sentence σφ such that

PA ⊢ σφ ↔ φ(ν/⌜σφ⌝) , i.e., σφ ⇔PA φ(⌜σφ⌝).

Proof. We define

ψ(v0) :≡ ∀v1
(

sb fml
(
⌜v0⌝, gn(v0), v0, v1

)
→ φ(ν/v1)

)
and

σφ :≡ ψ(v0/⌜ψ⌝).

In other words, σφ ≡ ψ(⌜ψ⌝) and ⌜σφ⌝ = ⌜ψ(⌜ψ⌝)⌝. Since ⌜v0⌝ = s0, we
have

σφ ≡ ∀v1
(
sb fml(s0, gn(⌜ψ⌝), ⌜ψ(v0)⌝, v1)→ φ(ν/v1)

)
⇔PA ∀v1

(
sb fml(s0, ⌜⌜ψ⌝⌝, ⌜ψ(v0)⌝, v1)→ φ(v1)

)
⇔PA ∀v1

(
v1 = ⌜ψ(v0/⌜ψ⌝)⌝→ φ(v1)

)
⇔PA φ(⌜ψ(v0/⌜ψ⌝)⌝)

≡ φ(⌜ψ(⌜ψ⌝)⌝)

≡ φ(⌜σφ⌝),

where the first equivalence follows from (∗), the second equivalence follows
from Lemma 9.14, and the third equivalence follows from L10 and L14. ⊣
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The Diagonalisation Lemma is often called Fixpoint Lemma, since the
sentence σφ can be conceived as a fixed point of φ. It is a powerful tool, since
it allows us to make self-referential statements, i.e., for a formula φ with one
free variable it provides a sentence σφ which states “I have the property φ”.

The First Incompleteness Theorem

Now we are ready to prove the First Incompleteness Theorem:

Theorem 10.5 (First Incompleteness Theorem for PA). PA is incom-
plete.

Proof. By the Diagonalisation Lemma there is an LPA-sentence σ such
that

σ ⇔PA ¬ prv(⌜σ⌝).

To see this, let φ(v0) :≡ ¬ prv(v0). Then σφ ⇔PA φ(⌜σφ⌝) and

φ(⌜σφ⌝) ≡ φ(v0/⌜σφ⌝) ≡ ¬ prv(v0/⌜σφ⌝) ≡ ¬ prv(⌜σφ⌝) .

Assume towards a contradiction that PA is complete. We have to consider
the following two cases:

Case 1 : PA ⊢ σ. On the one hand, by Corollary 9.17 we have that
PA ⊢ prv(⌜σ⌝). On the other hand, since σ ⇔PA ¬ prv(⌜σ⌝), we have
PA ⊢ ¬ prv(⌜σ⌝). Therefore, PA ⊢ �, i.e., PA is inconsistent.

Case 2 : PA ⊢ ¬σ. From

¬σ ⇔PA ¬¬ prv(⌜σ⌝)⇔PA prv(⌜σ⌝)

we obtain PA ⊢ prv(⌜σ⌝). In particular, N ⊨ prv(#σ), so there exists an
n ∈ N with N ⊨ c prv(n,#σ). Thus, by Lemma 9.16, n encodes a formal
proof of σ, which implies PA ⊢ σ. Therefore, by our assumption, we have
PA ⊢ �, i.e., PA is inconsistent.

Summing up, we have

PA ⊢ σ or PA ⊢ ¬σ Î===Ï ¬Con(PA),

which shows that PA is incomplete. ⊣

Remarks

• In the above proof of Theorem 10.5 we proved that a sentence σ with
the property σ ⇔PA ¬ prv(⌜σ⌝) witnesses the incompleteness of PA. In N,
however, σ is true: Note that if N ⊨ ¬σ, then N ⊨ prv(#σ). On the
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other hand, Lemma 9.16 implies PA ⊢ σ, and hence, N ⊨ σ, which is
a contradiction. Observe that in N the sentence σ expresses “I am not
provable” — where the expression “provable” is meant with respect to
prv — which is, of course, true.

• With respect to the model N, we have

N ⊨ prv(⌜σ⌝) Î===Ï PA ⊢ σ

for every LPA-sentence σ. However, by the First Incompleteness The-
orem we know that this is generally not the case for arbitrary models
M ⊨ PA.

• The existence of a sentence σ such that PA ⊬ σ as well as PA ⊬ ¬σ
implies that both theories PA + ¬σ and PA + σ are consistent. Hence,
by Gödel’s Completeness Theorem 5.5, there are models M¬σ and
Mσ for PA + ¬σ and PA + σ, respectively. Notice that the models M¬σ
and Mσ are not elementarily equivalent, and therefore, they are also not
isomorphic.

• Let σ0 be such that neither PA ⊢ σ0 nor PA ⊢ ¬σ0. Since PA ⊬ σ0,
we find that the LPA-theory PA + ¬σ0 is consistent. Now, by adding
the sentence σ0 as a new axiom to PA, in the same way as above we
can construct an LPA-sentence σ1 such that neither PA + ¬σ0 ⊢ σ1 nor
PA+¬σ0 ⊢ ¬σ1 (see below). Proceeding this way, we see that we cannot
complete PA by just adding finitely many axioms (for a stronger result
see Theorem 10.10 & 10.11).

Completeness and Incompleteness of Arithmetics

A first attempt to deal with the incompleteness phenomenon might be to
replace PA with T ≡ PA+ σ, since N ⊨ T. Moreover, the gödelisation process
could be done in the same way, where one would just need to code an addi-
tional axiom, namely σ. This, however, would lead to a modified provability
predicate prvT which additionally allows formal proofs to be initialised by
σ. One could then prove a version of the Diagonalisation Lemma which
allows us to define a version σT of σ with the property

T ⊢ σT ↔ ¬ prvT(⌜σT⌝) ,

and, since T ⊬ σT and T ⊬ ¬σT, we obtain a version of the First Incom-
pleteness Theorem. This suggests that Theorem 10.5 can be generalised.
Such a generalisation is the very goal of this section, whereby we consider
both theories which are weaker and stronger than PA. We investigate how
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much of PA is really needed for the proof of the First Incompleteness
Theorem. As we have seen, exponentiation can be expressed using addition
and multiplication. Therefore, one idea might be to leave out multiplication
and thus delete PA4 and PA5. However, the resulting theory, called Pres-
burger Arithmetic, will turn out to be complete (see Chapter 12).

Robinson Arithmetic

The most critical axiom is certainly the Induction Schema PA6, so we might
consider the theory with PA6 deleted. This is still not strong enough, but we
will see that one instance of PA6 actually suffices: Robinson Arithmetic
RA is the axiom system consisting of PA0-PA5 and the additional axiom

∀x
(
x = 0 ∨ ∃y(x = sy)

)
.

The language of RA is also LPA, so we can express the same statements as
in PA, which implies that RA must be incomplete. On the other hand, we
can prove much less in RA than in PA. For example, RA is so weak that we
cannot even prove ∀x(0 + x = x).

Example 10.6. We show that RA ⊬ ∀x(0 + x = x), which implies that we
cannot prove within RA that addition is commutative. In order to achieve this,
we provide a model M of RA in which ∀x(0+ x = x) is false. The domain of
the model is M = N ∪ {a, b}, where a and b are two distinct objects which
do not belong to N. Furthermore, let ā ≡ b and b̄ ≡ a. Then we can interpret
0M by 0 and define the functions sM, +M, and ·M as follows:

sM(x) ≡

{
sN(x) x ∈ N

x x ∈ {a, b}

x+M y ≡


x+N y x, y ∈ N

x y ∈ N and x /∈ N

ȳ y /∈ N

x ·M y ≡


x ·N y x, y ∈ N

y y ∈ {0, a, b}
x̄ y ̸≡ 0 and x ∈ {a, b}

It is easy to check that M is a model of RA, and that 0+Mb ≡ a ̸≡ b ≡ b+M0.

Note that N0–N5 in Proposition 9.0 are also provable in RA, since the proof
uses metainduction rather than induction in PA and the only non-trivial
argument uses Lemma 8.5, which can easily be seen to hold in RA.
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N-Conformity Revisited

In what follows, we prove that all relations and functions that were intro-
duced in Chapters 8 and 9 are N-conform — even with respect to RA. For
this purpose, we prove that each such relation and function can be defined
both by an ∃-formula and a ∀-formula. The representations with an ∃-formula
are already given, and by the proof of Corollary 9.3.(b), functions defined
by an ∃-formula always have an equivalent definition by a ∀-formula. The only
relations whose representation by a ∀-formula is non-trivial, are term, fml, as
well as all relations used to formalise substitution and formal proofs. Note
that if we are able to show that the existential quantifiers in term and fml
can be replaced by bounded existential quantifiers, then the same can be
achieved for all subsequent relations.

Lemma 10.7. If ψ is a formula of the form ψ ≡ ∃c(seq(c) ∧ φ(c)) for some
∆-formula φ, and if there is a term τ whose variables are among free(ψ) such
that

PA ⊢ seq(c) ∧ φ(c)→
(
lh(c) < τ ∧ ∀i < lh(c)(ci < τ)

)
,

then ψ is a ∆-formula as well.

Proof. We go once more through the proof of Theorem 9.9 and show that
the quantifier ∃c can be replaced by a bounded quantifier. For this purpose,
suppose that F (i) is a function defined by a ∆-formula. Let F ′(i) = op(τ, i)+1

and m = maxi<τ F
′(i). Moreover, note that by Exercise 9.2 we can define

factorials in PA; so, let y := m!. Furthermore, put G(j) = 1 + (j + 1)y. By
Lemma 8.13, we have that G(i) and G(j) are coprime for all i, j < m. Now,
Lemma 9.8 allows us to pick x with χ(x), where

χ(x) ≡ ∀j < m
(
G(j) | x↔ ∃i < τ

(
j = op(τ, i)

))
.

We check that if F (i) < τ for every i < τ then we can find an upper bound
τ ′ whose variables coincide with the variables of τ such that there is c < τ ′

with β(c, i) = F (i) for all i < τ . If this can be accomplished, then we have

ψ ⇔PA ∃c < τ ′(seq(c) ∧ φ(c)).

To see this, suppose that seq(c)∧φ(c) with c ≥ τ ′. Now take F (i) := β(c, i) <
τ . By our assumption, there is c′ < τ ′ ≤ c with β(c′, i) = F (i) = β(c, i)
for all i < τ . Moreover, note that lh(c′) = β(c′, 0) = β(c, 0) = lh(c) and
lh(c′) = F (0) < τ , and hence c′i = ci for all i < lh(c), contradicting seq(c).

It remains to find τ ′. Note that we clearly have m ≤ τ1 with τ1 ≡ op(τ, τ)+1

and hence y ≤ τ1!. Furthermore, we have G(j) < 1+(τ1 +1)! for each j < m.
Therefore, since G(i) and G(j) are coprime for all i, j < m, we can find x
which satisfies χ(x) such that x < τ2 with τ2 ≡ (1+(τ1+1)!)τ1 . In particular,
there is c = op(x, y) with seq(c) ∧ φ(c) and c < op(τ1, τ2). ⊣
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Lemma 10.8. The relations term and fml are N-conform.

Proof. We want to apply Lemma 10.7 to the defining formulae of term and
formula, respectively. Since both cases are similar, we only consider term. We
prove that ∃c

(
c term(c, t)

)
is equivalent to the formula

φ(t) ≡ ∃c(c term(c, t) ∧ ∀i < lh(c)∀j < i(cj < ci)).

Then Lemma 10.7 for τ ≡ t + 1 concludes the proof. We proceed by strong
induction on lh(c). If lh(c) = 1, then there is nothing to prove. Suppose now
that term(t) → φ(t) holds for all t′ < t and assume c term(c, t). If t = 0

or var(t), then c term(⟨t⟩, t) and hence φ(t) holds. Therefore, we have either
t = succ(ci) or t = add(ci, cj) or t = mult(ci, cj) for i, j < lh(c). We only
focus on the first case, since the others can be handled in the same way.
Note that by Exercise 9.8 we can restrict c to ⟨cj | j ≤ i⟩, which we denote
by c ↾ sci. Clearly, ci < c and c term(c ↾ si, ci). Hence, by our induction
hypothesis, there is d with c term(d, ci) and dk < dj for all j < lh(d) and
k < j. But then, d⌢⟨t⟩ witnesses φ(t). ⊣

Let us now turn back to RA: Lemma 10.8 implies that if n ∈ N is a natural
number which is not the Gödel number of a term or formula, then

RA ⊢ ¬ term(n) and RA ⊢ ¬ fml(n) .

Moreover, since the relation c prv is also a ∆-formula, we have

RA ⊢ ¬ c prv(n, ⌜σ⌝)

whenever n does not encode a formal proof of σ. However, the existential
quantifier in the definition of the provability relation prv cannot be bounded,
since otherwise, RA ⊬ σ would imply RA ⊢ ¬ prv(⌜σ⌝), which contradicts the
incompleteness of RA.

Generalising the First Incompleteness Theorem

There are two ways to generalise the First Incompleteness Theorem:
Firstly, one can modify the underlying language, and secondly, one can use
a different axiom system. If the language satisfies L ⊇ LPA and we have
N-conformity for all relevant relations, then, as we shall see, the proof can
easily be transferred to the new setting. However, there are two issues at
stake, namely the gödelisation of the language and the gödelisation of the
axioms. The coding of terms, formulae and proofs can then be realised in the
same way as in Chapter 9.

A language L ⊇ LPA is said to be gödelisable if it is countable. Note
that if L is gödelisable, then its constant symbols, relation and function
symbols admit a Gödel coding as described in Chapter 9. A theory T in some
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gödelisable language L ⊇ LPA is gödelisable, if there is a ∆-formula axT

in the language LPA with the property that

N ⊨ axT(#φ) if and only if φ ∈ T ,

where #φ is the Gödel code of φ. As in the case of PA, we introduce Gödel
codes on the formal level by stipulating ⌜φ⌝ :≡ #φ. Note that if T is
gödelisable and satisfies N0–N5, then by Corollary 9.3, every ∆-formula
φ in the language LPA is N-conform. In particular, by Lemma 10.8 it is pos-
sible to define ∆-formulae termT and fmlT such that

N ⊨ termT(n) Î===Ï n ≡ # τ for some L -term τ ,

N ⊨ fmlT(n) Î===Ï n ≡ #φ for some L -formula φ .

Moreover, by the gödelisability of T, the axioms can be coded by some ∆-
formula axT. One can then proceed to define a ∆-formula c prvT and an
∃-formula prvT such that

N ⊨ c prvT(n,#φ) Î===Ï n codes a formal proof of φ ,

N ⊨ prvT(#φ) Î===Ï T ⊢ φ

for every n ∈ N and L -formula φ. Notice that it is crucial that c prvT and
prvT are LPA-formulae, since otherwise we would have to specify how to
interpret them in the standard model N. Moreover, using Corollary 9.3,
we obtain

P0: N ⊨ c prvT(n,#φ) ===Ï T ⊢ c prvT(n, ⌜φ⌝) ,

P1: N ⊨ ¬ c prvT(n,#φ) ===Ï T ⊢ ¬ c prvT(n, ⌜φ⌝) .

In the following, we present two proofs of the First Incompleteness
Theorem for gödelisable theories T ⊇ RA. The restriction to extensions of
RA ensures that N0–N5, and hence also Corollary 9.3, hold.

Gödel’s original proof uses the assumption of a slightly stronger property
than just consistency: An LPA-theory T is said to be ω-consistent if when-
ever T ⊢ ∃xφ(x) for some LPA-formula φ(x), then there exists n ∈ N such
that T ⊬ ¬φ(n).

Fact 10.9. If T is an LPA-theory with N ⊨ T, then T is ω-consistent. In
particular, PA and RA are ω-consistent.

Proof. If T ⊢ ∃xφ(x), then N ⊨ ∃xφ(x). Hence, there is an n ∈ N with
N ⊨ φ(n), which shows that T + φ(n) is consistent and implies T ⊬ ¬φ(n). ⊣

Theorem 10.10 (First Incompleteness Theorem, Gödel’s version).
Let T ⊇ RA be a gödelisable LPA-theory. If T is ω-consistent, then T is
incomplete.
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Proof. Observe that the proof of the Diagonalisation Lemma still works
if we replace PA by T. Take a sentence σ such that

σ ⇔PA ¬ prvT(⌜σ⌝).

Assume towards a contradiction that T is complete. Then we have that either
T ⊢ σ or T ⊢ ¬σ.

Case 1 : T ⊢ σ. In this case, the argument is the same as in Theorem 10.5.

Case 2 : T ⊢ ¬σ. Since we can encode the proof of ¬σ within T, we have

T ⊢ prvT(⌜¬σ⌝) .

On the other hand, we have ¬σ ⇔T ¬¬ prvT(⌜σ⌝)⇔T prvT(⌜σ⌝), and there-
fore we also have

T ⊢ prvT(⌜σ⌝) .

So, by Corollary 10.1, we have T ⊢ prvT(⌜σ ∧ ¬σ⌝), and by the ω-
consistency of T, there is an n ∈ N such that

T ⊬ ¬ c prvT(n, ⌜σ ∧ ¬σ⌝) .

However, since T is consistent, we have T ⊬ σ ∧ ¬σ, which implies

N ⊨ ¬ c prvT(n,# (σ ∧ ¬σ)) ,

and by P1 we obtain

T ⊢ ¬ c prvT(n, ⌜σ ∧ ¬σ⌝) ,

which is obviously a contradiction. ⊣

In [47], Rosser showed how to get rid of this dependency on ω-consistency
by slightly modifying the provability predicate:

c prvR
T (c, x) :⇐⇒ c prvT(c, x) ∧ ¬∃c′ < c(c prvT(c′, not(x)))

prvR
T (x) :⇐⇒ ∃c(c prvR

T (c, x))

Theorem 10.11 (First Incompleteness Theorem, using Rosser’s Trick).
Let L ⊇ LPA be a gödelisable language and let T be a gödelisable L -theory.
If T is consistent, then it is incomplete.

Proof. As before, we apply the Diagonalisation Lemma, this time to the
formula ¬ prvR

T (x). Thus we obtain an L -sentence σ with

σ ⇔PA ¬ prvR
T (⌜σ⌝).

Again, we prove that neither σ nor ¬σ is provable from T. Observe first that
our assumption on σ implies
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σ ⇔PA ∀c(c prv(c, ⌜σ⌝)→ ∃c′ < c (c prv(c′, ⌜¬σ⌝)))

since not(⌜σ⌝) ≡ ⌜¬σ⌝. Assume towards a contradiction that T is complete.
As before, we have two cases:

Case 1 : T ⊢ σ. By P0, there is an n ∈ N such that

T ⊢ c prvT(n, ⌜σ⌝) ,

and by our above observation we have

T ⊢ ∃c′ < n(c prvT(c′, ⌜¬σ⌝)) .

Since T satisfies N5, this means that there exists k < n in N such that

T ⊢ c prvT(k, ⌜¬σ⌝) ,

and therefore, there is an m ∈ N with

T ⊢ c prvT(m, ⌜σ ∧ ¬σ⌝) .

Hence, by N-conformity of c prvT, we have

N ⊨ c prvT(m,#(σ ∧ ¬σ)) ,

which implies
T ⊢ σ ∧ ¬σ.

This contradicts our assumption that T is consistent.

Case 2 : T ⊢ ¬σ. In this case, there is a c′ ∈ N such that

T ⊢ c prvT(c′, ⌜¬σ⌝) .

On the other hand, we have T ⊢ prvR
T (⌜σ⌝), and hence, there is a c ∈ N with

T ⊢ c prvR
T (c, ⌜σ⌝) .

By definition of c prvR
T , we must have c ≤ c′. Now, we can use N5 to reach

the same contradiction as in the first case. ⊣

Tarski’s Theorem

The Diagonalisation Lemma allows us to make self-referential statements
such as the Gödel sentence which formalises to some extent the sentence
“This sentence is not provable”. Recall that we call an LPA-sentence φ true
in N, if N ⊨ φ. Is it possible to express truth in the standard model N by a
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formula, i.e., is there a formula truth(x) with one free variable x such that
for every LPA-sentence φ,

N ⊨ truth(#φ) Î===Ï N ⊨ φ ?

Or equivalently, is there a formula truth(x) such that for every LPA-sentence φ,

N ⊨ truth(#φ)↔ φ ?

Using the Diagonalisation Lemma, we provide a negative answer to this
question.

Theorem 10.12 (Tarski’s Theorem). There is no LPA-formula truth(x)
with one free variable x such that N ⊨ truth(#φ)↔ φ.

Proof. Assume towards a contradiction that such a formula truth exists. By
the Diagonalisation Lemma there exists an LPA-sentence σ such that

PA ⊢ σ ↔ ¬ truth(⌜σ⌝) .

But then

N ⊨ truth(#σ) Î===Ï N ⊨ σ

Î===Ï N ⊨ ¬ truth(#σ),

which is impossible. ⊣

Note that we have just solved the so-called Liar Paradox concerned with
the sentence

“This sentence is false.”,

which is true in some model if and only if it is false in that model. If we
work in the model N, then the above sentence corresponds to the sentence σ
in the proof of Tarski’s Theorem. Hence, in order to express it in PA, one
would need to be able to define truth in N, which is impossible by Tarski’s
Theorem.

Notes

The First Incompleteness Theorem was first proven by Gödel [16] in 1931. Rather
than using Peano Arithmetic in first-order logic, as we did, he based his proof on Type

Theory in the system of Principia Mathematica [58] introduced by Russell and White-
head. Gödel’s original proof makes use of the stronger assumption of ω-consistency, which

Rosser [47] showed to be negligible. The observation that all proof steps of the First In-

completeness Theorem can in fact be carried out in Robinson Arithmetic was made by
Robinson [46] in 1950. Although Tarski’s Theorem is usually attributed to Tarski and

was first published by him in [55], Gödel already mentioned this result in 1931 in a letter
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to Bernays; previously he had been trying to come up with a definition of a truth predicate
(see [37]). Usually, gödelisable theories are called recursive, which means that there exists
an algorithm terminating after finitely many steps that can decide whether φ ∈ T or φ /∈ T.
More generally, a property P (n) of natural numbers is said to be recursive, if there is an

algorithm which decides in finitely many steps whether a given number n has the property
P (i.e., whether or not P (n) holds). With the so-called Recursion Theory, one can analyse
the strength of various theories of Arithmetic very precisely.

Exercises

10.0 Let φ and ψ be LPA-formulae.

(a) Show that PA ⊢
(
prv(⌜φ⌝) ∨ prv(⌜ψ⌝)

)
→ prv(⌜φ ∨ ψ⌝).

(b) Does the converse also hold?

10.1 A theory T with signature LPA is said to be ω-incomplete if there is an LPA-formula

φ such that T ⊢ φ(n) for every n ∈ N but T ⊬ ∀xφ(x).

Show that PA is ω-incomplete.

10.2 Let φ1(x, y) and φ2(x, y) be LPA-formulae with at most two free variables. Show that
there are LPA-sentences σ1 and σ2 such that

σ1 ⇔PA φ1(⌜σ1⌝, ⌜σ2⌝) and σ2 ⇔PA φ2(⌜σ1⌝, ⌜σ2⌝).

Note that this is a generalisation of the Diagonalisation Lemma.

10.3 Goldbach’s Conjecture (GC) states that every positive even integer can be written
as the sum of two primes.

Show that if GC is independent of PA, i.e., PA ⊬ GC and PA ⊬ ¬GC, then it is true in
the model N, i.e., N ⊨ GC.

10.4 Show that there is a consistent extension of PA which is not ω-consistent.



Chapter 11

The Second Incompleteness Theorem

It follows from Gödel’s Completeness Theorem that a theory is consistent
if and only if it has a model. In particular, the consistency of Peano Arithmetic
follows from N ⊨ PA. With the help of the provability relation prv, we are
even able to express consistency of an arithmetical theory on the formal level,
i.e., we can introduce a sentence conPA which expresses in N the consistency
of PA. The Second Incompleteness Theorem which we shall prove in this
chapter states that PA ⊬ conPA, i.e., PA cannot prove its own consistency.

Outline of the Proof

Recall that a theory is consistent, if it cannot prove contradictions. In the
case of PA, a simple contradiction is the sentence 0 = 1. Thus, we have

Con(PA) Î===Ï PA ⊬ 0 = 1 .

As a formalised version of this statement, we define the LPA-sentence conPA

by stipulating

conPA :⇐⇒ ¬ prv(⌜0 = 1⌝).

Since N ⊨ prv(⌜φ⌝) if and only if PA ⊢ φ, the consistency of PA implies
that N ⊨ conPA. In particular, this shows that PA ⊬ ¬ conPA. The Second
Incompleteness Theorem states that conPA is independent of the axioms
of PA.
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Theorem 11.0 (Second Incompleteness Theorem). PA ⊬ conPA.

As a matter of fact, we would like to mention that by the Completeness
Theorem, PA ⊬ conPA implies that there exists a model M ⊨ PA in which
conPA fails (i.e., M ⊨ ¬ conPA), which shows that with respect to M, the
sentence conPA is not equivalent to the statement Con(PA).

The proof of the Second Incompleteness Theorem hinges on the fol-
lowing properties of the provability predicate, also called the Hilbert-Bernays-
Löb derivability conditions, which state that for every LPA-formula φ the
following conditions hold:

D0: If PA ⊢ φ then PA ⊢ prv(⌜φ⌝),

D1: PA ⊢ prv(⌜φ→ ψ⌝)→ (prv(⌜φ⌝)→ prv(⌜ψ⌝)),

D2: PA ⊢ prv(⌜φ⌝)→ prv(⌜prv(⌜φ⌝)⌝).

Note that D0 follows from Corollary 9.17 and D1 is exactly the state-
ment of Corollary 10.1.(a). Assuming D0–D2, the proof of the Second In-
completeness Theorem becomes quite simple:

Proof of Theorem 11.0. Assume towards a contradiction that PA ⊢ conPA, in
other words, assume that PA ⊢ ¬ prv(⌜0 = 1⌝). Using the Diagonalisation
Lemma we can find an LPA-sentence σ such that

σ ⇔PA ¬ prv(⌜σ⌝).

Now, observe that by Corollary 10.2 we have

prv(⌜0 = 1⌝) ⇔PA prv(⌜σ ∧ ¬σ⌝) ⇔PA prv(⌜σ⌝) ∧ prv(⌜¬σ⌝).

Another application of Corollary 10.2 yields

prv(⌜¬σ⌝)⇔PA prv(⌜prv(⌜σ⌝)⌝) ,

and therefore we have

prv(⌜0 = 1⌝)⇔PA prv(⌜σ⌝) ∧ prv(⌜prv(⌜σ⌝)⌝).

Furthermore, by D2 we have PA ⊢ prv(⌜φ⌝) → prv(⌜prv(⌜φ⌝)⌝), and hence,
by Tautology (D.2) we obtain

PA ⊢ prv(⌜σ⌝)→
(
prv(⌜σ⌝) ∧ prv(⌜prv(⌜σ⌝)⌝)

)
,

and by L3, this implies

prv(⌜σ⌝) ∧ prv(⌜prv(⌜σ⌝)⌝)⇔PA prv(⌜σ⌝) .

Therefore, we obtain
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prv(⌜0 = 1⌝)⇔PA prv(⌜σ⌝) ,

and consequently, we have

conPA ⇔PA ¬ prv(⌜σ⌝)⇔PA σ,

which is a contradiction to Theorem 10.5 which states that PA ⊬ σ. ⊣

Proving the Derivability Condition D2

In order to complete our proof of Gödel’s Second Incompleteness The-
orem, it remains to prove D2. At a first glance, it looks very similar to
the statement D0. There is, however, a subtle difference between the two
statements: While the implication in D0 is just a meta-implication, i.e., an
implication in the meta-logic, the implication in D2 is a formal one. Note that
it follows from D0 that

if PA ⊢ prv(⌜φ⌝) then PA ⊢ prv(⌜prv(⌜φ⌝)⌝) ,

which, however, is weaker than D2. A first attempt would be to try to prove

PA ⊢ α→ prv(⌜α⌝)

for every LPA-formula α. However, this is false in general, as the following
example shows:

Example 11.1. Let σ denote the formula from the proof of the First In-
completeness Theorem, i.e., σ satisfies

σ ⇔PA ¬ prv(⌜σ⌝).

As a consequence of the proof of First Incompleteness Theorem, we
have N ⊨ σ but PA ⊬ σ. Now, if PA ⊢ σ → prv(⌜σ⌝), then N ⊨ σ → prv(⌜σ⌝)
and hence N ⊨ prv(⌜σ⌝). By construction of the provability predicate, this
would imply PA ⊢ σ, which is not the case, as we have seen.

This means that we have to slightly modify our approach. For this purpose,
recall that we proved in Proposition 9.2.(a) that every ∃-sentence which is
true in the standard model N has a formal proof in PA. If we can transfer
this result to PA, this would mean that we have

D3: PA ⊢ α→ prv(⌜α⌝) for every ∃-sentence α .

Clearly, once we have established D3 we obtain D2 by taking α to be the
∃-sentence prv(⌜φ⌝) for some LPA-formula φ. The most natural way to prove
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D3 is by induction on the construction of the ∃-sentence α. This, however,
turns out to be problematic, since in the formula construction of α there are
also subformulae which are not sentences:

Example 11.2. Assume that we can prove PA ⊢ α → prv(⌜α⌝) for some
LPA-formula α ≡ (v0 = v1), i.e.,

PA ⊢ v0 = v1 → prv(⌜v0 = v1⌝) .

Observe that prv(⌜v0 = v1⌝) does not contain any free variables. Now, since
v0 and v1 are free variables in α, we obtain by substitution PA ⊢ 0 = 0 →
prv(⌜v0 = v1⌝). Therefore, using Modus Ponens, we get PA ⊢ prv(⌜v0 = v1⌝),
which is clearly false in the standard model N, since there is no formal proof
of v0 = v1.

This problem can be solved by slightly modifying our provability predicate
in such a way that free variables are permitted. Thus, we first want to adjust
our Gödel coding such that (some) free variables can be preserved. The way
to do this is by defining for some set V of variables

⌈ν⌉V :≡

{
ν if ν ∈ V ,

⌜ν⌝ otherwise.

Roughly speaking, variables ν ∈ V remain variables and all other variables
become natural numbers, namely ⌜ν⌝. Now, as in the case of gödelisation, we
can inductively extend this definition to terms by stipulating:

⌈0⌉V :≡ ⌜0⌝

⌈sτ⌉V :≡ succ(⌈τ⌉V )

⌈τ1 + τ2⌉V :≡ add(⌈τ1⌉V , ⌈τ2⌉V )

⌈τ1 · τ2⌉V :≡ mult(⌈τ1⌉V , ⌈τ2⌉V )

For formulae, one proceeds similarly. The only noteworthy cases are those of
quantification:

⌈∃νφ⌉V :≡ ex(⌜ν⌝, ⌈φ⌉V \{ν}),

⌈∀νφ⌉V :≡ all(⌜ν⌝, ⌈φ⌉V \{ν}).

Thus, the set V contains all variables which remain free in ⌈φ⌉V . In particular,
if V ∩free(φ) is the empty-set, then ⌈φ⌉V is the same as ⌜φ⌝. The other special
case is when V contains all free variables in φ. In that case, we write ⌈φ⌉ for
⌈φ⌉V and say that ⌈φ⌉ is the pseudo-code of φ.

Pseudo-coding is intended to mimic the usual process of Gödel coding.
Hence, we will often substitute the free variables ν of ⌈φ⌉ by the term gn(ν)
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with free variable ν. For terms τ and formulae φ whose free variables are
among {x1, . . . , xn}, we will henceforth use the notation

⌈τ⌉gnV :≡ ⌈τ⌉V
(
x1/ gn(x1), . . . , xn/ gn(xn)

)
,

⌈φ⌉gnV :≡ ⌈φ⌉V
(
x1/ gn(x1), . . . , xn/ gn(xn)

)
.

Note that ⌈φ⌉gnV has the same free variables as ⌈φ⌉V . Again, if V contains
all free variables of φ then we simply write ⌈φ⌉gn for ⌈φ⌉gnV . Recall that
for natural numbers n ∈ N, Lemma 10.3 implies PA ⊢ ⌜n⌝ = gn(n). In
particular, if we substitute each variable xi by some natural number mi,
then ⌜φ⌝ and ⌈φ⌉gn coincide, i.e.,

⌜φ(x1/m1, . . . , xn/mn)⌝ is equal to ⌈φ⌉gn(x1/m1, . . . , xn/mn) .

To see this, notice that on the left hand side, the variable xi is first replaced
by mi, and when computing ⌜φ⌝, mi is replaced by ⌜mi⌝. On the right hand
side, when computing ⌈φ⌉gn, the variable xi is replaced by gn(xi), and then
xi — which is a free variable in gn(xi) — is replaced by mi. Thus, on the left
hand side, xi is replaced by ⌜mi⌝, and on the right hand side, xi is replaced by
gn(mi), and as mentioned above, ⌜mi⌝ is equal to gn(mi). A slightly stronger
result is given by the following

Fact 11.3. For terms τ and formulae φ whose free variables are among
{x1, . . . , xn}, we have

PA ⊢ ⌜τ(x1/m1, . . . , xn/mn)⌝ = ⌈τ⌉gn(x1/m1, . . . , xn/mn) ,

PA ⊢ ⌜φ(x1/m1, . . . , xn/mn)⌝ = ⌈φ⌉gn(x1/m1, . . . , xn/mn) .

For a proof see the Solution to Exercise 11.1.

Our next goal is to prove the following

Theorem 11.4. If φ is an ∃-formula, then

PA ⊢ φ→ prv(⌈φ⌉gn). (∗)

Notice that for ∃-sentences φ, Theorem 11.4 implies D3. In order to prove
Theorem 11.4, we first need some auxiliary results whose proofs turn out
to be quite technical. The following lemma essentially states that removing a
variable x from V amounts to substituting in ⌈φ⌉gnV \{x} each occurrence of ⌜x⌝

by the term gn(x), thus obtaining ⌈φ⌉gnV . While this seems to be completely
obvious, its proof is highly non-trivial, since it requires us to unravel all the
details of the formalised substitution function. Before we prove the lemma,
we first prove the following

Fact 11.5. PA ⊢ ∀x term(gn(x)).
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Proof. The proof is by induction. Notice first that gn(0) = 0 and observe
that PA ⊢ term(0) by taking the sequence c0 = 0 with lh(c) = 1. Now, by the
definition of gn we may assume that nat(x, y) for some x and y. Thus, there
exists c such that c nat(c, x, y), i.e., seq(c), c0 = ⌜0⌝, cx = y and csi = succ(ci)
for every i < x. With this sequence, c term(c, y) holds, and hence we have
term(y). On the other hand, nat(x, y) implies gn(x) = y, and therefore we
have term(gn(x)), and applying (∀) yields PA ⊢ ∀x

(
term(gn(x))

)
. ⊣

Lemma 11.6. Let V be a finite set of variables, let x ∈ V , and suppose that
τ is an LPA-term and that φ is an LPA-formula with x ∈ free(φ). Then we
have:

(a) PA ⊢ sb term(⌜x⌝, gn(x), ⌈τ⌉gnV \{x}, ⌈τ⌉
gn
V )

(b) PA ⊢ sb fml(⌜x⌝, gn(x), ⌈φ⌉gnV \{x}, ⌈φ⌉
gn
V )

Proof. We give a detailed proof of (a). Note that (b) is very similar, and since
the proof is quite lengthy, we omit the proof of (b). A complete proof of both
statements, in a slightly different context, is given in [54, Lem. 7.4–Lem. 7.6].

In order to prove (a), we proceed by induction on the construction of τ .
The case when τ ≡ 0 is trivial, since in that case, τ does not have any free
variables. The other atomic case is when τ ≡ y is a variable. In that case, we
need to distinguish between three possibilities: either y ≡ x or, if y ̸≡ x, then
either y ∈ V or y /∈ V .

Case 1. If y ≡ x, then ⌈y⌉V \{x} = ⌈y⌉V \{y} = ⌜y⌝, and, since x ∈ V ,
⌈y⌉V = y, which implies ⌈y⌉gnV = gn(y). Then the claim follows, since by
Fact 11.5 we have PA ⊢ sb term(⌜y⌝, gn(y), ⌜y⌝, gn(y)).

Case 2. If y ̸≡ x and y ∈ V , then ⌈y⌉V \{x} = ⌈y⌉V = y and therefore
⌈y⌉gnV \{x} = ⌈y⌉gnV = gn(y). Since the variable x does not appear in τ ≡ y,

there is nothing to substitute. More precisely, we have

PA ⊢ sb term(⌜x⌝, gn(x), gn(y), gn(y))

as desired.

Case 3. Suppose that y ̸≡ x and y /∈ V . Then ⌈y⌉V \{x} = ⌈y⌉V = ⌜y⌝,
and therefore ⌈y⌉gnV \{x} = ⌈y⌉gnV = ⌜y⌝, and since ⌜y⌝ does not have any free

variables, the claim trivially holds.

Let us now consider the cases when τ is not atomic. Suppose that τ ≡ sτ ′ for
some term τ ′. Clearly, all variables in τ ′ are also among V . By our inductive
assumption, we have

PA ⊢ sb term(⌜x⌝, gn(x), ⌈τ ′⌉gnV \{x}, ⌈τ
′⌉gnV ).

Note that by definition of sb term we have in general

PA ⊢ sb term(v, t0, t, t
′)→ sb term(v, t0, succ(t), succ(t′)).
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In our case, this means that if we set

v :≡ ⌜x⌝ , t0 :≡ gn(x) , t :≡ ⌈τ ′⌉gnV \{x} , t′ :≡ ⌈τ ′⌉gnV

in the above formula, then we have ⌈τ⌉gnV \{x} ≡ succ(t) and ⌈τ⌉gnV ≡ succ(t′),
and therefore, τ satisfies (a).

The cases when τ ≡ τ1 + τ2 or τ ≡ τ1 · τ2 are shown similarly. ⊣

Theorem 11.7. For every LPA-formula φ, we have:

PA ⊢ prv(⌜φ⌝)→ prv(⌈φ⌉gn)

Note that for sentences φ, Theorem 11.7 becomes trivial. On the other
hand, if φ has free variables, then the statement still seems obvious, since it
should not matter whether the free variables are gödelized at the same time
as φ— as in the case of ⌜φ⌝— or whether one gödelizes the formula such
that the variables remain free, and afterwards substitutes the Gödel code of
the variables — as in the case of ⌈φ⌉gn. However, the proof is trickier than it
might be expected, since one needs to use the properties of the formalised
substitution function, which is, unfortunately, a very complicated function.

Proof of Theorem 11.7. Recall that by Fact 11.5 we have PA ⊢ ∀x term(gn(x)).
Moreover, by induction on x we can also show

PA ⊢ ∀v∀x¬ var in term(v, gn(x)) ,

which proves that the formalised substitution v/ gn(x) is always admissible.
Note that if we have PA ⊢ φ(ν) for some variable ν, then we have PA ⊢

φ(ν/τ) whenever τ is a term such that the substitution ν/τ is admissible:

φ0: φ(ν) by assumption

φ1: ∀νφ(ν) from φ0 using (∀)
φ2: ∀νφ(ν) → φ(ν/τ) instance of L10
φ3: φ(τ) from φ2 and φ1 using (MP)

Now, if we transfer this proof to the formalised level, by using Lemma 9.16,
for the standard model N and some c ∈ N we have:

If N ⊨ c prv(c, ⌜φ⌝) ∧ sb fml(⌜ν⌝, ⌜τ⌝, ⌜φ⌝, ⌜φ(τ)⌝)

then N ⊨ c prv(c′, ⌜φ(τ)⌝)

where

c′ :≡ c⌢
〈

all(⌜ν⌝, ⌜φ⌝), imp
(
all(⌜ν⌝, ⌜φ⌝), ⌜φ(τ)⌝

)
,

mp
(

all(⌜ν⌝, ⌜φ⌝), imp
(
all(⌜ν⌝, ⌜φ⌝), ⌜φ(τ)⌝

))〉
.
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By rewriting this implication syntactically, we obtain

N ⊨ c prv(c, ⌜φ⌝)→ c prv(c′, ⌜φ(τ)⌝) ,

and therefore, by Corollary 9.3 we have

PA ⊢ prv(⌜φ⌝)→ prv(⌜φ(τ)⌝) .

Now, let φ be an arbitrary LPA-formula. We may assume that all free vari-
ables of φ are among v0, . . . , vn for some n ∈ N. Using the above observation
together with Lemma 11.6, we obtain that PA ⊢ prv(⌜φ⌝) → prv(⌈φ⌉gn{v0}),

and for each k ∈ {1, . . . , n},

PA ⊢ prv(⌈φ⌉gn{v0,...,vk−1})→ prv(⌈φ⌉gn{v0,...,vk}).

After f i n i t e l y many applications of Tautology (D.0), we obtain

PA ⊢ prv(⌜φ⌝)→ prv
(
⌈φ⌉gn{v0,...,vn}

)
,

and since ⌈φ⌉gn{v0,...,vn} ≡ ⌈φ⌉
gn, this completes the proof. ⊣

The following results are easy consequences of Theorem 11.7.

Corollary 11.8. Let φ be an LPA-formula. If PA ⊢ φ then PA ⊢ prv(⌈φ⌉gn).

Proof. Note that from PA ⊢ φ and D0 we obtain PA ⊢ prv(⌜φ⌝), and by
Theorem 11.7 we have PA ⊢ prv(⌈φ⌉gn). ⊣

Corollary 11.9. Let φ and ψ be arbitrary LPA-formulae. Then PA ⊢ φ→
ψ implies PA ⊢ prv(⌈φ⌉gn) → prv(⌈ψ⌉gn). In particular, if φ ⇔PA ψ then
prv(⌈φ⌉gn)⇔PA prv(⌈ψ⌉gn).

Proof. Suppose that PA ⊢ φ→ ψ. An application of Corollary 11.8 yields

PA ⊢ prv(⌈φ→ ψ⌉gn).

Recall that ⌈φ → ψ⌉ equals imp(⌈φ⌉, ⌈ψ⌉), and therefore, ⌈φ → ψ⌉gn equals
imp(⌈φ⌉gn, ⌈ψ⌉gn). Moreover, by definition of formalised Modus Ponens we
have

PA ⊢ mp
(
⌈φ⌉gn, ⌈φ→ ψ⌉gn, ⌈ψ⌉gn

)
.

Hence, by Lemma 10.0.(a) we obtain

PA ⊢
(
prv(⌈φ⌉gn) ∧ prv(⌈φ→ ψ⌉gn)

)
→ prv(⌈ψ⌉gn) ,

which completes the proof. ⊣
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Now we have assembled all ingredients for the proof of Theorem 11.4:

Proof of Theorem 11.4. We have to show that for every ∃-formula φ0,

PA ⊢ φ0 → prv(⌈φ0⌉gn). (∗)

Notice that by Corollary 11.9 it suffices to check (∗) for strict ∃-formulae
φ0, i.e., for formulae built up from atomic formulae and negated atomic for-
mulae using ∧, ∨, existential quantification ∃ν and bounded universal quan-
tification ∀ν < τ (for some term τ). We proceed by induction on the con-
struction of formulae φ0.

We start with atomic formulae. Since LPA does not contain relation sym-
bols, we only have to consider atomic formulae of the form τi = τj for some
LPA-terms τi and τj . Moreover, by substitution it suffices to show that each
atomic formula of the form vi = vj , where vi and vj are variables, satis-
fies (∗). For example, if φ0 ≡ s0 + v0 = s0 · s0, then, for φ ≡ v1 = v2, we
have φ0 ≡ φ

(
v1/s0 + v0, v2/s0 · s0

)
. Therefore, let us consider the formula

vi = vj . First, note that we obviously have PA ⊢ vi = vi, and hence, by
Corollary 11.8 we have

PA ⊢ prv(⌈vi = vi⌉gn) .

Furthermore, since vi and vj are free variables in prv(⌈vi = vj⌉gn), we can
use Exercise 2.7 to obtain

PA ⊢
(
vi = vi ∧ vi = vj

)
→
(
prv(⌈vi = vi⌉gn)→ prv(⌈vi = vj⌉gn)

)
.

Putting these facts together and using logical axioms, tautologies and twice
Modus Ponens, we obtain the following formal proof:

PA + vi = vj ⊢ vi = vi

⊢ vi = vj

⊢ vi = vi ∧ vi = vj

⊢
(
vi = vi ∧ vi = vj

)
→
(
prv(⌈vi = vi⌉gn)→ prv(⌈vi = vj⌉gn)

)
⊢ prv(⌈vi = vi⌉gn)→ prv(⌈vi = vj⌉gn)

⊢ prv(⌈vi = vi⌉gn)

⊢ prv(⌈vi = vj⌉gn)

Therefore, by the Deduction Theorem we obtain

PA ⊢ vi = vj → prv(⌈vi = vj⌉gn)

as desired.

For negated atomic formulae, we only have to show that each formula of
the form vi ̸= vj satisfies (∗). Now, we obviously have
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vi ̸= vj ⇔PA (vi < vj) ∨ (vj < vi) ,

where

(vi < vj) ∨ (vj < vi) ⇔PA ∃vk
(
(vk < vj ∧ vk = vi) ∨ (vk < vi ∧ vk = vj)

)
.

Hence, the case of negated atomic formulae follows from the fact that formu-
lae of the form ∃viφ satisfy (∗), which will be shown below.

Suppose now that φ satisfies (∗). We have to verify that φ(vi/τ) (where the
substitution vi/τ is admissible), and that ∃viφ and ∀vi < vj φ satisfy (∗).

• Suppose that vi ∈ free(φ) and that τ is an LPA-term such that the
substitution vi/τ is admissible. We have to show that φ(vi/τ) satisfies (∗).
For the sake of simplicity, we assume that vi is the only free variable of φ.
By assumption we have PA ⊢ φ→ prv(⌈φ⌉gn). Now, using Generalisation
we obtain

PA ⊢ ∀vi
(
φ→ prv(⌈φ⌉gn)

)
,

and hence, by L10 and Modus Ponens we get

PA ⊢ φ(τ)→ prv(⌈φ⌉gn)(vi/τ).

Thus, it is enough to verify that PA ⊢ ⌈φ⌉gn(vi/τ) = ⌈φ(τ)⌉gn. For this,
we first prove that PA ⊢ gn(τ) = ⌈τ⌉gn by induction on the construction
of the term τ : If τ ≡ 0 then PA ⊢ ⌈0⌉gn = ⌈0⌉ = ⌜0⌝ = 0 = gn(0). The
case when τ is a variable is similar. We now verify our claim for τ ≡ sτ ′

and leave the other cases as an exercise to the reader. By induction, we
may assume that PA ⊢ gn(τ ′) = ⌈τ ′⌉gn. Then

PA ⊢ ⌈sτ ′⌉gn = succ(⌈τ ′⌉gn)

⊢ succ(⌈τ ′⌉gn) = succ(gn(τ ′))

⊢ succ(gn(τ ′)) = gn(sτ ′) ,

and by transitivity of the relation = we have PA ⊢ ⌈sτ ′⌉gn = gn(sτ ′) as
desired.

As a consequence of PA ⊢ gn(τ) = ⌈τ⌉gn, we obtain

PA ⊢ ⌈φ⌉gn(vi/τ) = ⌈φ⌉(vi/ gn(vi))(vi/τ)

⊢ ⌈φ⌉(vi/ gn(vi))(vi/τ) = ⌈φ⌉(vi/ gn(τ))

⊢ ⌈φ⌉(vi/ gn(τ)) = ⌈φ⌉(vi/⌈τ⌉gn)

⊢ ⌈φ⌉(vi/⌈τ⌉gn) = ⌈φ(τ)⌉gn ,

and by transitivity of = we obtain PA ⊢ ⌈φ⌉gn(vi/τ) = ⌈φ(τ)⌉gn as
desired.
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• Under the assumption

PA ⊢ φ→ prv(⌈φ⌉gn)

we show that ∀vi < vj φ (where i ̸≡ j) satisfies (∗). Let v′j be a variable
which does not occur in φ. Since

∀vi < vj φ ⇔PA ∃v′j
(
v′j = vj ∧ ∀vi < v′j φ

)
,

we may assume without loss of generality that vj does not occur in φ.
Furthermore, let ψ(vj) denote the formula

∀vi < vj φ→ prv(⌈∀vi < vj φ⌉gn) .

It suffices to show that PA ⊢ ∀vj ψ(vj). So, by PA6 it is enough to show
that PA ⊢ ψ(0), and for all vj , PA ⊢ ψ(vj)→ ψ(svj).
Notice that, since ∀vi < 0φ is a tautology, by Corollary 11.8 we have
PA ⊢ ψ(0). For the induction step, assume that PA ⊢ ψ(vj). Recall that
by Lemma 8.5 we have

vi < svj ⇔PA vi < vj ∨ vi = vj ,

and hence,
∀vi < svj φ ⇔PA ∀vi < vj φ ∧ φ(vi/vj) ,

where the substitution vi/vj is admissible because vj does not occur in φ.
Since PA ⊢ ψ(vj), by Lemma 10.0.(b) it suffices to show that

PA ⊢ φ(vi/vj)→ prv
(
⌈φ(vi/vj)⌉gn

)
,

which follows from the previous case, using our assumption that φ satis-
fies (∗).

• Now, we show that ∃viφ satisfies (∗). Since by L11, PA ⊢ φ → ∃viφ, we
can apply Corollary 11.9 and obtain

PA ⊢ prv(⌈φ⌉gn)→ prv(⌈∃viφ⌉gn) .

Therefore, by Tautology (D.0) we have

PA ⊢ φ→ prv(⌈∃viφ⌉gn) ,

and by Generalisation we obtain

PA ⊢ ∀vi
(
φ→ prv(⌈∃viφ⌉gn)

)
.

Now, since vi does not occur as a free variable in prv(⌈∃viφ⌉gn), by L13
and Modus Ponens we finally obtain
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PA ⊢ ∃viφ→ prv(⌈∃viφ⌉gn)

as desired.

Finally, suppose that φ and ψ both satisfy (∗). We have to show that φ∧ψ
and φ ∨ ψ also satisfy (∗).

• In order to see that φ ∧ ψ satisfies (∗), notice first that

and
(
⌈φ⌉gn, ⌈ψ⌉gn

)
= ⌈φ ∧ ψ⌉gn .

Therefore, by Lemma 10.0 we have

PA ⊢ prv
(
⌈φ⌉gn) ∧ prv(⌈ψ⌉gn

)
→ prv

(
⌈φ ∧ ψ⌉gn

)
.

Using our assumption that φ and ψ both satisfy (∗), it follows that φ∧ψ
also satisfies (∗).

• The case φ ∨ ψ is similar and thus left as an exercise to the reader.
⊣

Concluding Remarks

To summarise, we have shown that PA ⊬ conPA, where

conPA ≡ ¬ prv(⌜0 = 1⌝) .

In other words, we have shown that

PA ⊬ ¬ prv(⌜0 = 1⌝) .

Now, by the Completeness Theorem we know that there exists a model
M ⊨ PA such that

M ⊨ prv(⌜0 = 1⌝) .

Since PA ⊢ ¬(0 = 1), we have M ⊨ ¬(0 = 1), which shows that

M ⊨ ¬(0 = 1) ∧ prv(⌜0 = 1⌝) .

A slightly more general result can be obtained from Löb’s Theorem.

Löb’s Theorem

Recall that by Lemma 9.16 we have, for every LPA-formula φ, N ⊨ prv(#φ)
if and only if PA ⊢ φ. In particular, this implies that N ⊨ prv(#φ) → φ. In
other words, in the standard model N, each “provable” formula is true, where
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“provable” in N is meant with respect to the provability predicate prv. This
applies because in N one can retrieve the proof of φ from its code. Another
consequence of N ⊨ prv(#φ)→ φ is that for every LPA-formula φ,

N ⊭ ¬φ ∧ prv(#φ) .

This leads to the natural question whether this is true in any model of PA.
Löb’s Theorem gives a negative answer to this question.

Theorem 11.10 (Löb’s Theorem). Suppose that φ is an LPA-sentence.
Then PA ⊢ prv(⌜φ⌝)→ φ implies PA ⊢ φ.

Proof. Assume that PA ⊢ prv(⌜φ⌝) → φ and let σ be an LPA-sentence such
that

σ ⇔PA prv(⌜σ⌝)→ φ .

In order to see that such a sentence σ exists, let ψ(v0) :≡ prv(v0)→ φ. Then
by the Diagonalisation Lemma, there exists an LPA-sentence σ such that
σ ⇔PA ψ(⌜σ⌝).

Claim. PA ⊢ σ, or equivalently, PA ⊢ prv(⌜σ⌝)→ φ.

Proof of Claim. By our assumption we have PA ⊢ prv(⌜φ⌝)→ φ. Therefore,
it suffices to check that PA ⊢ prv(⌜σ⌝) → prv(⌜φ⌝). Note that by Corol-
lary 10.2.(a) we have prv(⌜σ⌝) ⇔PA prv(⌜prv(⌜σ⌝) → φ⌝). Moreover, D1

implies

PA ⊢ prv
(
⌜prv(⌜σ⌝)→ φ⌝

)
→
(

prv
(
⌜prv(⌜σ⌝)⌝

)
→ prv(⌜φ⌝)

)
.

Now, if we assume prv(⌜σ⌝), then by D2 we obtain prv(⌜prv(⌜σ⌝)⌝), and by
the preceding observations, Modus Ponens, and the Deduction Theorem,
we finally obtain prv(⌜φ⌝). ⊣Claim

Using the above claim, we have PA ⊢ σ and therefore, we get PA ⊢ prv(⌜σ⌝)
by D0. So, by PA ⊢ prv(⌜σ⌝) → φ and Modus Ponens we get PA ⊢ φ as
desired. ⊣

Löb’s Theorem has some remarkable consequences. For example, if we
use the Diagonalisation Lemma to obtain a sentence σ such that σ ⇔PA

prv(⌜σ⌝), then it follows that PA ⊢ σ. Hence, if we replace the sentence
stating “I am unprovable” by “I am provable” — the so-called truth-teller
sentence — then this does not yield an undecidable statement.

Löb’s Theorem also implies that if PA ⊬ φ for some LPA-formula φ, then
PA ⊬ prv(⌜φ⌝) → φ, i.e., PA ⊬ φ ∨ ¬ prv(⌜φ⌝). This illustrates the differ-
ence between truth and provability in non-standard models of PA: For every
formula φ with PA ⊬ φ, there are models M such that M ⊨ ¬φ ∧ prv(⌜φ⌝).
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In M, the code of the “proof” of φ is of non-standard length and does hence-
forth not code an actual proof of φ. In this sense, Gödel’s First Incom-
pleteness Theorem can be viewed as a special case of Löb’s Theorem,
by taking φ to be the formula σ with σ ⇔PA ¬ prv(⌜σ⌝).

Notes

The question of whether arithmetic can be shown to be consistent was the second of

Hilbert’s famous list [26] of 23 open problems of mathematics. While Gödel’s Second

Incompleteness Theorem published in [16] in 1931 gives a negative answer to Hilbert’s
second problem, Gentzen [13] provided in 1936 a consistency proof of PA in primitive

recursive arithmetic with the additional principle of quantifier-free transfinite induction
up to the ordinal number ε0. The proof of the Second Incompleteness Theorem using
pseudo-coding which we presented here follows Świerczkowski [54]. However, Świerczkowski

worked in the theory of hereditarily finite sets, which is equivalent to PA. His proof was
actually formalised and proof-checked using the interactive theorem prover Isabelle by
Paulson [41] in 2013. The derivability conditions D0–D2, although already used by Gödel,
were first introduced by Hilbert and Bernays [28] and re-formulated in its current form by
Löb [32]. In the same paper, Löb also proved his theorem as an answer to a question posed

by Henkin [24] in 1952.

Let us also say a few words about the impact of the Second Incompleteness Theorem
on the so-called Hilbert’s programme. In the early 1920s, Hilbert presented a new approach
to the foundations of classical mathematics, which became known as Hilbert’s programme.
The aim of this programme was to find a formalisation of all mathematics in an axiomatic

form and to prove that this axiomatisation of mathematics is consistent. The proof of
consistency itself should only be carried out with what Hilbert called finitary methods.
Even though the the work on this programme made considerable progress in the 1920s with

contributions from numerous logicians, Gödel’s Second Incompleteness Theorem shows

that Hilbert’s programme must fail. The crucial point is that we cannot formally define the
notion of f i n i t e n e s s, and in particular of finitary methods, and as a consequence we
get that we cannot even show the consistency of PA within PA— unless PA is inconsistent.

However, despite the failure of Hilbert’s programme, the framework of Hilbert’s programme
with notions such as actual mathematics, formal mathematics, and metamathematics, was

very fruitfull and still influences the philosophy of mathematics (see Halbeisen [21]).

Exercises

11.0 Give an alternative proof of the Second Incompleteness Theorem by using Löb’s

Theorem.

11.1 Prove Fact 11.3.

Hint: Use induction on term and formula construction, respectively.

11.2 Prove that all formulae of the form vi + vj = vk and vi · vj = vk satisfy (∗) in

Theorem 11.4.

11.3 Prove that if φ and ψ satisfy (∗) in Theorem 11.4, then so does the disjunction φ∨ψ.
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11.4 Let φ be an LPA-formula.

(a) Show that the formalisation of Löb’s Theorem is provable within PA, i.e., show
that

PA ⊢ prv(⌜prv(⌜φ⌝) → φ⌝) → prv(⌜φ⌝) .

Hint: Set ψ :≡ prv(⌜prv(⌜φ⌝) → φ⌝) → prv(⌜φ⌝) and prove PA ⊢ prv(⌜ψ⌝) → ψ.

(b) Prove PA ⊢ ¬ prv(⌜φ⌝) → ¬ prv(⌜¬ prv(⌜φ⌝)⌝).

(c) Conclude that the Second Incompleteness Theorem is provable within PA.

11.5 Use Exercise 11.4 to prove the following generalisation of Löb’s Theorem: For all

LPA-formulae φ and ψ,

PA ⊢ prv(⌜φ⌝) ∧
(
prv(⌜ψ⌝) → ψ

)
===Ï PA ⊢ prv(⌜φ⌝) → ψ.

11.6 Prove that for every LPA-formula φ,

PA ⊢ prv(⌜φ↔ conPA⌝) →
(
prv(⌜φ⌝) ↔ ¬ conPA

)
,

and interpret this result in the standard model.

11.7 Let conR
PA denote the formula ¬ prvR(⌜0 = 1⌝), i.e., the formula obtained from conPA

by replacing the provability predicate prv by prvR.

Show that PA ⊢ conR
PA. Note that this implies that prvR satisfies neither D1 nor D2.



Chapter 12

Completeness of Presburger Arithmetic

In Chapter 10, we have seen that Peano Arithmetic PA is incomplete. More-
over, if we omit the Induction Schema and replace it by the axiom ∀x(x =
0 ∨ ∃y(x = sy)), stating that every number is either 0 or has a predecessor,
then the resulting theory, called Robinson Arithmetic, is also incomplete.
There are, however, other natural ways to weaken the axioms of PA: One
could, for example, drop one of the function symbols + or · as well as the
corresponding axioms. In the former case, this leads to Skolem Arithmetic,
and in the latter case to Presburger Arithmetic. In this chapter, we will
only consider Presburger Arithmetic, denoted by PrA.

In the proof of the First Incompleteness Theorem, we introduced the
β-function which allows to express exponentiation in terms of addition and
multiplication. A natural question that arises in this context is whether mul-
tiplication might already be expressible in terms of the successor function
and addition. If this is the case, then we can carry out the proof of the
First Incompleteness Theorem in PrA, and obtain that PrA is incom-
plete. However, we will prove below that PrA is complete, which implies that
we cannot express multiplication in terms of addition and successors.
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Basic Arithmetic in Presburger Arithmetic

As already mentioned above, the language of Presburger Arithmetic PrA is
given by LPrA = {0, s,+}, where, as in LPA, 0 is a constant symbol, s is a
unary function symbol, and + is a binary function symbol. The axioms of PrA
are simply given by the axioms of PA except PA4 and PA5. More precisely,
the axioms of PrA are

PA0: ¬∃x(sx = 0)
PA1: ∀x∀y(sx = sy → x = y)
PA2: ∀x(x+ 0 = x)
PA3: ∀x∀y(x+ sy = s(x+ y))

together with the Induction Schema, i.e., if φ is an LPrA-formula such that
x ∈ free(φ), then

PA6:
(
φ(0) ∧ ∀x(φ(x)→ φ(s(x)))

)
→ ∀xφ(x).

Presburger, who first investigated PrA and proved its completeness, orig-
inally axiomatised the theory in a distinct manner: For example, he did
not use the Induction Schema, but also postulated the existence of nega-
tive numbers and hence subtraction. In particular, he included the axiom
∀x∀y∃z(x+ z = y).

Clearly, in PrA one can prove all standard results of arithmetic which do
not involve multiplication. In particular, we can define the relations < and ≤
in the same way as in PA. Furthermore, as in Peano Arithmetic, we are able to
define the terms n for all n ∈ N, where the terms n are called natural numbers.
Moreover, we can prove the properties N0-N5 stated in Proposition 9.0.

In the subsequent sections, it will become clear that it is impossible to
define multiplication using addition and the successor function. However, it
is possible to define the multiplication with a natural number of the form n for
n ∈ N. Using the R e c u r s i o n P r i n c i p l e defined in Chapter 0,
we define

0 · x :≡ 0, and

n+ 1 · x :≡ n · x+ x.

Note that for the sake of simplicity, we usually write nx rather than n · x.

Lemma 12.0. Let n,m ∈ N. Multiplication with natural numbers satisfies
the associativity and distributivity laws:

PrA ⊢ ∀x∀y(n(x+ y) = nx+ ny)

PrA ⊢ ∀x(m+ nx = mx+ nx)

PrA ⊢ ∀x(mnx = m · (nx))
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Furthermore, multiplication with natural numbers respects the two binary
relations = and <:

PrA ⊢ ∀x∀y(nx = ny ↔ x = y)

PrA ⊢ ∀x∀y(nx < ny ↔ x < y)

Proof. The proof is similar to the proof of Proposition 9.0 and uses metain-
duction in N. We only prove the first statement, since all proofs are similar.
For n = 0, we obviously have 0(x+ y) = 0 = 0 · x+ 0 · y. Suppose now that
the claim holds for some n ∈ N. Then

n+ 1(x+ y) = n(x+ y) + (x+ y) = (nx+ ny) + (x+ y)

= (nx+ x) + (ny + y) = n+ 1 · x+ n+ 1 · y,

where the second equality follows from our induction hypothesis. ⊣

For n ∈ N with n ≥ 2, we define

x ≡n y :⇐⇒ ∃z
(
nz + x = y ∨ nz + y = x

)
.

Furthermore, we abbreviate ¬(x ≡n y) by x ̸≡n y. Formulae of the form x ≡n
y are called congruences. It is straightforward to check that congruences
are — on the formal level — equivalence relations, i.e.,

PrA ⊢ ∀x(x ≡n x) ,

PrA ⊢ ∀x∀y(x ≡n y ↔ y ≡n x) ,

PrA ⊢ ∀x∀y∀x
(
x ≡n y ∧ y ≡n z → x ≡n z

)
.

In fact, as the name already suggests, they define congruence relations with
respect to + :

PrA ⊢ ∀x∀y∀z
(
x ≡n y ↔ x+ z ≡n y + z

)
.

The following result is a version of division with remainder, where the
divisor is in N.

Lemma 12.1. For every natural number n ≥ 2, we have

PrA ⊢ ∀x∃y
(n−1∨
k=0

ny + k = x
)
.

In particular,

PrA ⊢ ∀x
(n−1∨
k=0

x ≡n k
)
.
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Proof. We proceed by induction on x. For x = 0, the statement is trivial.
Suppose that x = ny+k for some k < n and some y. Then sx = s(ny+k) =
ny + k + 1. Now, if k + 1 < n, we are done. Otherwise, k + 1 = n and hence
x = ny + n = n(y + 1). ⊣

Quantifier Elimination

The idea for proving that PrA is complete, consists of proving, in a language
extension of LPrA, that every sentence is logically equivalent to a quantifier-
free one. Such sentences can easily be shown to be N-conform, and hence, they
can be either proven or disproven, depending on whether they are satisfied
in N. In this section, we will prove a more general result, which we will
then apply to PrA. We say that a theory Φ in some language L admits
quantifier elimination, if for every L -formula φ there is a quantifier-free
formula ψ such that

Φ ⊢ φ↔ ψ .

The key point is to note that in order to prove that a theory admits quantifier
elimination, it suffices to check that a single existential quantifier can be
eliminated.

Theorem 12.2 (Quantifier Elimination Theorem). Let Φ be a theory
in some language L such that the following holds:

(a) If φ is an atomic L -formula, then ¬φ is logically equivalent to a dis-
junction of conjunctions of atomic L -formulae.

(b) For every L -formula φ of the form φ ≡ ∃ν(φ1 ∧ . . . ∧ φn), where each
φi is an atomic L -formula, there is a quantifier-free L -formula ψ with
free(ψ) = free(φ1 ∧ . . . ∧ φn) \ {ν} such that Φ ⊢ φ↔ ψ.

Then Φ admits quantifier elimination.

Proof. The following steps show how to transform any L -formula into an
equivalent quantifier-free one using the above statements (a) and (b).

Step 1. Using Theorem 2.14, we can transform any L -sentence into an
L -sentence in PNF.

Step 2. Using Tautology (Q.0), we can eliminate all universal quantifiers,
i.e., every L -formula in PNF is equivalent to an L -formula of the form

(¬)∃ν1 . . . (¬)∃νnφ,

where ν1, . . . , νn are variables and φ is quantifier-free.



Completeness of Presburger Arithmetic 159

Step 3. Given an L -sentence of the form (¬)∃ν1 . . . (¬)∃νnφ as above, one
can transform the quantifier-free part φ into DNF by the Disjunctive Nor-
mal Form Theorem, i.e., all of the conjuncts are atomic or negated atomic
formulae. Moreover, using (a) we can replace each negated atomic formula
by a disjunction of conjunctions of atomic formulae and can thus transform
the quantifier-free part into DNF in such a way that all conjuncts are atomic.

Step 4. From Step 3 we obtain an L -formula of the form

(¬)∃ν1 . . . (¬)∃νn
((
φ1,1 ∧ . . . ∧ φ1,k1

)
∨ · · · ∨

(
φm,1 ∧ · · · ∧ φm,km

))
,

where each φi,j is an atomic or negated atomic L -formula. Using Tau-
tology (U.2) this is equivalent to

(¬)∃ν1 . . . (¬)∃νn−1(¬)
(
∃νn(φ1,1∧ . . .∧φ1,k1)∨· · ·∨∃νn(φm,1∧· · ·∧φm,km)

)
.

Now using (a) and (b), each of the formulae ∃νn(φi,1∧· · ·∧φi,ki) is equivalent
to a corresponding quantifier-free L -formula ψi.

Step 5. In the case that there is a negation symbol ¬ in front of the exis-
tential quantifier ∃νn, we use (a) to eliminate the negation, and then return
to Step 3 in order to restore the DNF.

Steps 3–5 have to be repeated f i n i t e l y many times until no more
quantifiers are left. Thus, the above described algorithm yields a quantifier-
free disjunction of conjunctions of almost atomic formulae, as desired. ⊣

Note that one could simplify Theorem 12.2 by omitting (a) and requiring
instead in (b) that each φi is either atomic or the negation of an atomic
formula.

Completeness of Presburger Arithmetic

We will now show that PrA is complete. Using the previous result, one might
be tempted to first show that PrA admits quantifier elimination and then
show that quantifier-free LPrA-sentences can be either proven or disproven.
While the second step will be verified in Lemma 12.7, the first one is not
possible: An example is the LPrA-formula

∃y(x = 2y),

stating that x ≡2 0 is not equivalent to a quantifier-free formula; another ex-
ample for an LPA-formula which is not equivalent to a quantifier-free formula
is the formula ∃z(x+ z = y), stating that x ≤ y (see Exercise 12.0).

However, this problem can be overcome by extending the language LPrA

to admit the binary relations < and ≡m for m ∈ N: Let LPrA∗ denote the
language LPrA ∪ {<} ∪ {≡m| m ∈ N}. By Theorem 6.0 we get that the
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completeness of PrA with respect to LPrA is equivalent to the completeness
of PrA with respect to the extended language LPrA∗ .

In the following paragraphs, we will show that PrA admits quantifier elim-
ination with respect to LPrA∗ . The first step is to introduce a normal form
for equations and congruences with respect to a fixed variable:

Lemma 12.3. Let ν be a variable. Then, for n,m ∈ N, every atomic LPrA∗ -
formula is logically equivalent to a formula of the form

nν + τ = τ ′, nν + τ ≡m τ ′, nν + τ < τ ′, τ ′ < nν + τ,

where ν does not occur in τ, τ ′.

Proof. Since all cases are similar, we may assume that φ is an equation. We
prove by induction on the term construction that for every LPrA∗ -term τ
there exist n ∈ N and an LPrA∗ -term τ ′ such that PrA ⊢ τ = nν + τ ′.

• Suppose first that τ is atomic. If τ ≡ 0, then obviously PrA ⊢ τ = 0ν+0.
If τ ≡ ν, then PrA ⊢ τ = 1ν + 0, and if τ ≡ w for some variable w ̸≡ ν,
then we can set n ≡ 0 and τ ′ ≡ w.

• Assume now that τ ≡ sτ ′. By induction, we may assume that PrA ⊢ τ ′ =
nν + τ ′′ for some n ∈ N and some LPrA∗ -term τ ′′ such that ν does not
occur in τ ′′. Then PrA ⊢ τ = sτ ′ = s(nν + τ ′′) = nν + sτ ′′ by PA3.

• Finally, let τ ≡ τ1+τ2, where PrA ⊢ τ1 = nν+τ ′1 and PrA ⊢ τ2 = mν+τ ′2,
where n,m ∈ N and τ ′1, τ

′
2 are terms such that ν does not occur in τ ′1 and

τ ′2. Then PrA ⊢ τ = τ1 + τ2 = (nν+ τ ′1) + (mν+ τ ′2) = n+mν+ τ ′, where
τ ′ ≡ τ ′1 + τ ′2.

It follows that every equation is equivalent to an equation of the form nν+τ =
mν + τ ′. Without loss of generality, we may assume that n ≥ m, and hence
PrA ⊢ n ≥ m. Therefore, by Lemma 12.0, we have

PrA ⊢ nν + τ = mν + τ ′ ↔ n−mν + τ = τ ′,

which completes the proof. ⊣

We say that an atomic LPrA∗ -formula φ is in ν-normal form, if it is of
the form

nν + τ = τ ′, nν + τ ≡m τ ′, nν + τ < τ ′, τ ′ < nν + τ ,

where n,m ∈ N and ν does not occur in τ, τ ′. In that case, we call the number
n ∈ N the ν-coefficient of φ.

Lemma 12.4. Let φ1, . . . , φn be atomic LPrA∗ -formulae in ν-normal form.
Then φ1 ∧ . . . ∧ φn is logically equivalent to a conjunction of atomic LPrA∗ -
formulae in ν-normal form, each of whose ν-coefficient is either 0 or 1.
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Proof. Without loss of generality, we may assume that each φi has a ν-
coefficient ki ∈ N with ki > 0. Note that it is easy to check that xR y ⇔PrA

kxRky, where R is either =, <, or >, and k ∈ N with k ̸≡ 0; a similar
property also holds for congruences (see Exercise 12.1). In particular, by
replacing ki by k ≡ lcmN(k1, . . . , kn) (see Exercise 9.3), we may assume
that each formula φi has the same ν-coefficient k. Now if φi ≡ kν + τiRi τ

′
i ,

then we can replace kν by w and obtain

φ1 ∧ . . . ∧ φm ⇔PrA ψ1 ∧ . . . ∧ ψn ∧ w ≡k 0,

where φi is the formula w + τi ≡i τ ′i . ⊣

Lemma 12.5. Let ν be a variable. If φ1, . . . , φn are atomic LPrA∗ -formulae
such that either φ1 is an equation or each φi is a congruence, then there are
atomic LPrA∗ -formulae ψ1, . . . , ψn such that ψi is of the same type as φi, ν
does not occur in ψ2, . . . , ψn, and φ1 ∧ . . . ∧ φn ⇔PrA ψ1 ∧ . . . ∧ ψn.

Proof. By induction, we may assume that n = 2. By Lemma 12.4, we may
further suppose that each φi is in ν-normal form with ν-coefficient 1. There
are two cases:

Case 1. φ1 ≡ ν + τ1 = τ ′1 and φ2 ≡ ν + τ2Rτ
′
2 for some terms τ1, τ

′
1, τ2, τ

′
2

in which ν does not occur and R is either =, <, > or ≡m for some m ∈ N.
In this case, one can show that

φ1 ∧ φ2 ⇔PrA ψ1 ∧ ψ2,

where ψ1 ≡ φ1 and ψ2 ≡ (τ ′1 + τ2)R (τ1 + τ ′2). Indeed, suppose that φ1 ∧ φ2

holds. Then we have

τ ′1 + τ2 = (ν + τ1) + τ2 = τ1 + (ν + τ2) and
(
τ1 + (ν + τ2)

)
R
(
τ1 + τ ′2

)
.

Hence, we have ψ1 ∧ ψ2 as desired. The converse is similar.

Case 2. φ1 is the formula ν + τ1 ≡m1
τ ′1 and φ2 is ν + τ2 ≡m2

τ ′2. Then by
Exercise 12.1 and by applying Lemma 12.4 to scale the ν-coefficients, we
may suppose that m1 ≡ m2. The rest of the proof is the same as for the first
case. ⊣

Theorem 12.6. The theory PrA admits quantifier elimination with respect
to the language LPrA∗ .

Proof. We will check that PrA satisfies the assumptions of Theorem 12.2
with respect to the extended language LPrA∗ .

For the first condition, note that

¬(τ = τ ′) ⇔PrA τ < τ ′ ∨ τ ′ < τ ,
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¬(τ < τ ′) ⇔PrA τ = τ ′ ∨ τ ′ < τ ,

¬(τ ≡m τ ′) ⇔PrA

m−1∨
k=1

(
τ + k ≡m τ ′

)
for every m ∈ N,

where the last equivalence follows from Lemma 12.1.
We now turn to the second assumption. Let φ1, . . . , φn be atomic LPrA∗ -

formulae. We have to show that φ ≡ ∃ν(φ1 ∧ . . .∧φn) is logically equivalent
to a quantifier-free LPrA∗ -formula ψ such that free(ψ) ≡ free(φ) \ {ν}. Due
to Tautology (T.2) and Lemma 12.5, we may suppose that each φi is in
ν-normal form with ν-coefficient 1. We distinguish between the following four
cases:

Case 1. There is an equation φi among φ1, . . . , φn. By f i n i t e l y
many applications of Lemma 12.5 in combination with Tautology (T.2),
it is sufficient to check that ∃νφi is logically equivalent to a quantifier-free
LPrA∗ -formula, which is the case since ∃ν(ν + τ = τ ′)⇔PrA τ = τ ′ ∨ τ < τ ′.

Case 2. Each of the formulae φ1, . . . , φn is a congruence. Then, by Tau-
tology (T.2) and Lemma 12.5, it suffices to check that the quantifier in
∃ν(ν + τ ≡n τ ′) can be eliminated. This is obviously possible, since by
Lemma 12.1, there are k, l ∈ N such that τ ≡n k and τ ′ ≡ l, and there-
fore, we can choose ν = l + n− k in order to obtain a true formula.

Case 3. All formulae among φ1, . . . , φn are inequalities. Since < is a linear
relation, we may order the lower and upper bounds in the following sense: For
example, if ν+τi < τ ′i and ν+τj < τ ′j are two inequalities, then one can view
them as upper bounds for ν, since if there is such a ν, then ν < τ ′i − τi and
ν < τ ′j − τj , where subtraction is defined as in Lemma 8.8. Now, by linearity
of <, we have either τ ′i − τi ≤ τ ′j − τj or τ ′j − τj < τ ′i − τi. In other words,
φi ∧ φj is equivalent to

(τ ′i + τj ≤ τi + τ ′j ∧ ν + τi < τ ′i) ∨ (τi + τ ′j < τ ′i + τj ∧ ν + τj < τ ′j),

where φi is the stronger bound in the first disjunct, and φj is the stronger
bound in the second one. In a similar way, we can order the upper bounds.
Using the distributive laws as well as Tautology (U.2), we may thus sup-
pose that there is at most one lower and one upper bound. Moreover, note
that

∃ν(ν + τ < τ ′)⇔PrA τ < τ ′,

∃ν(τ ′ < ν + τ)⇔PrA 0 = 0 .

On the other hand,

∃ν(ν + τ1 < τ ′1 ∧ τ ′2 < ν + τ2)⇔PrA τ1 + τ ′2 + 1 < τ ′1 + τ2.

Therefore, the existential quantifier can be eliminated in both cases.
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Case 4. There is at least one congruence and no equation among φ1, . . . , φn.
As in the second case, without loss of generality we may assume that there
is exactly one congruence and at most one inequality of each type. Without
loss of generality, we only handle the case that there is exactly one lower
and one upper bound, i.e., φ ≡ φ1 ∧ φ2 ∧ φ3, where φ2 ≡ τ ′2 < ν + τ2 and
φ3 ≡ ν + τ3 < τ ′3. Then ∃νφ is logically equivalent to the formula ψ with

ψ ≡
m∨
k=1

(
τ3 + τ ′2 + k < τ ′3 + τ2 ∧ τ1 + τ ′2 + k ≡m τ ′1 + τ2

)
.

Note that if there is a ν such that φ holds, then it is of the form ν = τ ′2−τ2+x
for some x > 0 such that ν < τ ′3 − τ3, with the additional requirement that
the congruence φ1 be satisfied; one can then take x to be the smallest such
solution, i.e., x is among 1, . . . ,m. Clearly, ν /∈ free(ψ), and hence, ψ is as
desired. ⊣

Lemma 12.7. For every quantifier-free LPrA∗ -sentence φ, we have

either PrA ⊢ φ or PrA ⊢ ¬φ .

Proof. We will first check the claim for atomic LPrA∗ -sentences by proving
that for every LPrA∗ -term τ which does not contain any variables, there is an
n ∈ N such that PrA ⊢ τ = n. We proceed by induction on term construction:

• If τ ≡ 0, then there is nothing to check.

• If τ ≡ sτ ′ and PrA ⊢ τ ′ = n, then PrA ⊢ τ = sτ ′ = sn = sn by N0.

• If we have τ ≡ τ1+τ2, PrA ⊢ τ1 = n1, and PrA ⊢ τ2 = n2, then N1 implies
PrA ⊢ τ = τ1 + τ2 = n1 + n2 = n1 + n2.

Therefore, every atomic LPrA∗ -sentence is equivalent to a formula of the form
m = n,m < n or m ≡k n for some k ≥ 2, and is therefore N-conform. Since
N-conformity is preserved under negation, conjunctions and disjunctions, the
claim follows. ⊣

Corollary 12.8. The theory PrA is complete.

Proof. This follows immediately from Theorem 12.6 and Lemma 12.7. ⊣

Note that the proof of the completeness of PrA actually provides a decision
procedure for LPrA-sentences. In fact, there is an algorithm which computes,
with respect to a given LPrA-sentence φ, a quantifier-free LPrA-sentence ψ
such that φ ⇔PrA ψ, which, by Lemma 12.7, can easily be decided in the
sense that either PrA ⊢ ψ or PrA ⊢ ¬ψ. In order to illustrate the algorithm,
we provide an explicit example:

Example 12.9. We illustrate the quantifier elimination process using the
example
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∀x∃y∃z(x < 2z ∧ 3z < x+ y ∧ z ≡2 0).

In a first step, we have to eliminate the quantifier ∃z. In order to achieve this,
we first have to uniformise the z-coefficient using Lemma 12.4, obtaining the
equivalent formula

∀x∃y∃z
(
3x < 6z ∧ 6z < 2x+ 2y ∧ 6z ≡12 0

)
.

Now, we can replace 6z by w, which yields

∀x∃y∃w
(
3x < w ∧ w < 2x+ 2y ∧ w ≡12 0 ∧ w ≡12 0

)
.

Clearly, the first congruence is a consequence of the second one and can thus
be removed. Using the second case in the proof of Theorem 12.6, we can
eliminate the variable w, and by further transformations we obtain

∀x∃y
( 12∨
k=1

(
3x+ k < 2x+ 2y ∧ 3x+ k ≡6 0

))
⇔PrA ∀x

( 6∨
k=1

(
3x+ k ≡6 0 ∧ ∃y(x+ k < 2y)

))
⇔PrA ∀x

( 6∨
k=1

3x+ k ≡6 0
)
,

which is provable by PrA due to Lemma 12.1. For the second equivalence, note
that ∃y(x+ k < 2y) holds, which can be seen by taking y = x+ k. Following
the algorithm, one would now have to replace the universal quantifier by a
negated existential quantifier and negate the disjunction, and then restore
the disjunctive normal form. Since this is very laborious, we will not pursue
this further.

Let N∗ be the LPrA-structure
(
N, s,+, 0

)
, i.e., N∗ is the same as N, except

that we do not have the binary function · N in N∗. Since N is a model of PA,
we find that N∗ is a model of PrA. Now, since PrA is complete, we obtain
that Th(N∗) coincides with Th(PrA), i.e., for every LPrA-sentence σ we have

N∗ ⊨ σ Î===Ï PrA ⊢ σ .

The reader might now wonder why one does not take Presburger Arithmetic
rather than Peano Arithmetic as the standard axiomatisation of arithmetic.
Even though PrA is weaker than PA, it has the advantage that it is complete.
However, the disadvantage of PrA is, that it is much too weak to serve as a
proper axiomatisation of arithmetic. In fact, not even multiplication can be
defined within PrA. This is a consequence of the following result, which states
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that every set of natural numbers defined by some LPrA-formula is eventually
periodic.

Lemma 12.10. Let φ(x) be an LPrA-formula with one free variable x. Then

N∗ ⊨ ∃p > 0 ∃n0 ∀n ≥ n0
(
φ(n)↔ φ(n+ p)

)
.

Proof. By Theorem 12.6, it suffices to check the claim for quantifier-free
LPrA∗ -formulae φ. We proceed by induction on the construction of the for-
mula φ.

• If φ is an atomic formula, then, for some m,n, p, k ∈ N, φ is logically
equivalent to one of the following formulae:

mv + n = l ,

mv + n < l ,

mv + n > l ,

mv + n ≡k l .

This follows immediately from Lemmata 12.3 and 12.7. The first three
cases are trivial, since one can choose n0 ≡ l and p ≡ 1— in the first two
cases we have ¬φ(n1) for all n1 ≥ n0, and in the third case φ(n) holds.
Finally, suppose that φ is mv + n ≡k l. Without loss of generality, we
may assume that n ≡ 0. If l does not divide gcd(k,m), then φ is never
satisfied and hence the claim is trivial. Otherwise, by Exercise 12.2, we
may assume that m ≡ 1 and choose p ≡ k and n0 ≡ 0.

• If the claim holds for φ, then by Tautology (H.0) it also holds for ¬φ
with the same witnesses p, n0 ∈ N as for φ.

• Suppose that the claim holds for φ and ψ with witnesses n0, p0 and n1, p1,
respectively, i.e.,

N∗ ⊨ ∀n ≥ n0
(
φ(n)↔ φ(n+ p0)

)
and N∗ ⊨ ∀n ≥ n1

(
ψ(n)↔ ψ(n+ p1)

)
.

Now, let n2 :≡ max(n0, n1) and p2 :≡ lcm(p0, p1). Then, in N∗ we have
φ(n) ↔ φ(n + p2) and ψ(n) ↔ ψ(n + p2) for all n ≥ n2, and hence,
the claim follows for φ ∨ ψ and φ ∧ ψ by Tautology (H.2) and (H.3),
respectively.

⊣

Theorem 12.11. Multiplication is not definable in PrA, i.e., in PrA we cannot
define a binary function mult( · , · ) which satisfies the axioms PA4 and PA5.

Proof. Assume toward a contradiction that there exists an LPrA-formula
φ(x, y, z) such that PrA ⊢ ∀x ∀y ∃!z φ(x, y, z) and

mult(x, y) = z :⇐⇒ φ(x, y, z) .
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If there was such a formula φ, then ψ(z) :≡ ∃xφ(x, x, z) would be a formula
defining z to be the square of some x. By Lemma 12.10, there are p, n0 ∈ N

with p > 0 such that

N∗ ⊨ ∀n ≥ n0
(
ψ(n)↔ ψ(n+ p)

)
.

This, however, is impossible, since ψ is not eventually periodic: To see this,
take, for example, m := max(n0, p). Then N∗ ⊨ ψ(m2), but N∗ ⊭ ψ(m2 + p),
since m ≥ p implies

m2 < (m2 + p) < (m+ 1)2,

and there are no squares between m2 and (m+ 1)2. ⊣

The previous theorem is the reason why Presburger Arithmetic is not con-
sidered as the standard axiomatisation of arithmetic. While multiplication
cannot be expressed using the successor function and addition, exponenti-
ation can be introduced using the successor function, addition and multi-
plication, as we have seen in Chapter 9. The main difference between PrA
and PA lies in the fact that in PA allows recursive definitions using Gödel’s
β-function.

Non-standard models of PrA

In what follows, we recapitulate which axioms of PrA are actually necessary in
order to prove its completeness. In fact, the proof only uses some particular
instances of the Induction Schema; namely those which are concerned with
equations and congruences. In order to axiomatise PrA, we surely need the
axioms PA0–PA3. Moreover, in order to prove all required statements about
equations, inequalities and congruences, we add the following axioms:

PrA4: ∀x∀y(x+ y = y + x)

PrA5: ∀x∀y∀z(x+ (y + z) = (x+ y) + z)

PrA6: ∀x
(
x = 0 ∨ ∃y(x = sy)

)
PrA7: ∀x∀y(x < y ∨ x = y ∨ y < x)

PrA8: ∀x
(∨n−1

k=0 x ≡n k
)

for every n ∈ N

Note hat PrA8 is actually an axiom scheme, just like the Induction Schema.
However, it is considerably simpler than the Induction Schema in the sense
that it is indexed by standard natural numbers instead of formulae. Each of
these axioms is used in the proof of the completeness of PrA. For example,
the commutative and associative laws of addition, i.e., PrA4 and PrA5, are
used in the proof of Lemma 12.0. Moreover, by analysing all steps in the
proof, it becomes clear that the axioms PA0–PA3 and PrA4–PrA8 suffice. By
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completeness, we thus obtain that the theory given by these axioms coincides
with PrA.

Now that we are in possession of a simplified system of axioms, we can
describe non-standard models of PrA. Note that since PA extends PrA, every
non-standard model of PA is also a non-standard model of PrA. However,
there are also non-standard models of PrA which have a simpler structure
than non-standard models of PA. The simplest non-standard model of PrA
is surely the LPrA-structure M with domain M consisting of all rational
polynomials in the indeterminate X of degree at most 1, such that either the
leading coefficient is positive and the constant coefficient is an integer, or the
leading coefficient equals 0 and the constant coefficient is a natural number.
More formally, M consists of all polynomials of the form

qX + a ∈ Q[X] ,

where q ∈ Q, q ≥ 0, and a ∈ Z or a ∈ N, depending on whether q > 0 or
q = 0. The interpretations of 0, s, and + are the obvious ones. Note that for
the ordering < we then obtain

M ⊨ pX + a < qX + b Î===Ï p <Q q ∨
(
p = q ∧ a <Z b

)
,

which is essentially the lexicographic ordering. Since this is a linear order,
it follows that M ⊨ PrA7. The other axioms, except for PrA8, are obviously
satisfied. In order to see that PrA8 also holds in M, note that

M ⊨ qX + a = n ·
( q
n
X
)

+ a ≡n a,

and hence, by taking k ∈ {0, . . . , n − 1} to be the modulus of a, we obtain
that M ⊨ qX + a ≡n k.

Another model of PrA is obtained by admitting all rational polynomials

n∑
k=0

ak = anX
n + . . .+ a1X + a0 ∈ Q[X]

with positive leading coefficient an > 0 and integer constant coefficient a0 ∈
Z, where a0 ∈ N in the case when n = 0. Notice that both models are
not models of PA: In PA, one can define exponentiation, and hence, there
exists, e.g., the number (1X)1X , which obviously does not have a polynomial
representation.

Notes

The method of quantifier elimination was already used by Skolem in 1919 to prove the

completeness of the first-order theory of a class of boolean algebrae. Presburger Arithmetic

is named after the Polish mathematician Mojżesz Presburger, who proved its consistency,
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completeness and decidability in 1929 (see [43]). However, his original proof is given for
the integers rather than the natural numbers. The proof which is presented here follows
the one presented in [8]. Skolem independently discovered Presburger’s result in 1930 (see
[51]) and further showed the same to be true for Skolem Arithmetic, i.e., the theory of
natural numbers with multiplication but without addition.

Exercises

12.0 Show that there is no quantifier-free LPrA-formula which is logically equivalent to
the formula ∃y(x = 2y), and conclude that Presburger Arithmetic does not admit
quantifier elimination.

12.1 Prove that τ ≡n τ ′ ⇔PrA mτ ≡mn mτ ′ for all LPrA-terms τ and τ ′ and every m ∈ N.

12.2 Use Bézout’s Lemma (see Exercise 8.2) in the standard model N to prove that in
every formula of the form mv + n ≡k l for m,n, k ∈ N such that gcd(m, k) = 1 is
logically equivalent to a formula of the form v ≡k l

′ for some l′ ∈ N. Note that this

essentially consists of proving that m has an inverse element modulo k.

12.3 Let L be the set of constant symbols {cn : n ∈ N} and let T be the set of sentences{
¬(cn = cm) : n,m ∈ N , n ̸≡ m

}
.

Show that T admits quantifier elimination.

12.4 Show that the theory Th(N, <, s, 0) admits quantifier elimination and conclude that

addition “+” is not definable in Th(N, <, s, 0).

12.5 Let L consist of the binary relation symbol ∼ and the set of constant symbols
{cn : n ∈ N}, and for every n ∈ N let Mn be an infinite subset of N such that N

is the disjoint union of the Mn’s. Let T be the theory of one equivalence relation with

infinitely many infinite equivalence classes, i.e., consisting of the following axioms:

• ∀x(x ∼ x)

• ∀x, y(x ∼ y → y ∼ x)
• ∀x, y, z(x ∼ y ∧ y ∼ z → x ∼ z)
• ∀x∃x1 . . . ∃xn

(
x ∼ x1 ∧ . . . ∧ x ∼ xn ∧

∧
i ̸=j ¬(xi = xj)

)
for each n ∈ N

• ∀x∃x1 . . . ∃xn(
∧n

i=1 ¬(x ∼ xi) ∧
∧

i ̸=j ¬(xi ∼ xj)) for each n ∈ N

Show that T admits quantifier elimination.

12.6 Prove that the divisibility relation is not definable in PrA.



Part IV

The Axiom System ZFC

In this part, we first present the axioms of Set The-
ory, including the Axiom of Choice. Then we discuss
the consistency of this axiomatic system and provide
standard as well as non-standard models of Set The-
ory. In the last three chapters, we use Set Theory to
prove the Löwenheim-Skolem Theorems, to con-
struct models of PA, and to construct different models
of the real numbers.



Chapter 13

The Axioms of Set Theory (ZFC)

In this chapter, we shall present and discuss the axioms of Zermelo-Fraenkel
Set Theory including the Axiom of Choice, denoted ZFC. It will turn out that
within this axiom system, we can develop all of first-order mathematics, and
therefore, the axiom system ZFC serves as a foundation of mathematics. We
will start with Zermelo’s first axiomatisation of Set Theory and will show
how basic mathematics can be developed within this system. Then we will
introduce Zermelo’s Axiom of Choice, Fraenkel’s Axiom Schema of Replace-
ment, and the Axiom of Foundation. Finally, we will discuss the notions of
ordinal and cardinal numbers.

Before we begin presenting the axioms of Set Theory, let us say a few words
about Set Theory in general: The signature of Set Theory LST contains only
one non-logical symbol, namely the binary membership relation denoted
by ∈, i.e., LST = {∈}. Furthermore, there exists just one type of objects,
namely sets. However, to make life easier, instead of ∈(a, b) we write a ∈ b
(or also b ∋ a on rare occasions) and say that “a is an element of b”, or
that “a belongs to b”. Furthermore, we write a /∈ b as an abbreviation of
¬(a ∈ b). Later we will extend the signature of Set Theory LST by defining
some constants (like ∅ and ω), relations (like ⊆), and operations (like the
power set operation P), but as we know from Chapter 6, all that can be
expressed in Set Theory using defined constants, functions, and relations,
can also be expressed by formulae containing the non-logical binary relation
symbol ∈ only.

171© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 

L. Halbeisen, R. Krapf, Gödel’s Theorems and Zermelo’s Axioms,  

https://doi.org/10.1007/978-3-031-85106-3_14

https://doi.org/10.1007/978-3-031-85106-3_14
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-85106-3_14&domain=pdf


172 13 The Axioms of Set Theory (ZFC)

Zermelo’s Axiom System (Z)

In 1905, Zermelo began to axiomatise Set Theory. In 1908, he published his
first axiomatic system consisting of the following seven axioms:

1. Axiom der Bestimmtheit
which corresponds to the Axiom of Extensionality

2. Axiom der Elementarmengen
which includes the Axiom of Empty Set as well as the Axiom of Pairing

3. Axiom der Aussonderung
which corresponds to the Axiom Schema of Separation

4. Axiom der Potenzmenge
which corresponds to the Axiom of Power Set

5. Axiom der Vereinigung
which corresponds to the Axiom of Union

6. Axiom der Auswahl
which corresponds to the Axiom of Choice

7. Axiom des Unendlichen
which corresponds to the Axiom of Infinity

The axioms 1–5 and axiom 7 (i.e., all axioms except the Axiom of Choice)
form the so-called Zermelo’s axiom system, denoted by Z, which will be dis-
cussed below.

Let us start with the axiom which states the existence of a set, namely the
so-called empty set.

0. The Axiom of Empty Set

∃x∀z(z /∈ x).

This axiom postulates the existence of a set without any elements, i.e., an
empty set.

1. The Axiom of Extensionality

∀x∀y
(
∀z(z ∈ x↔ z ∈ y)→ x = y

)
.

This axiom says that any sets x and y having the same elements are equal.
Notice that the converse — which is: x = y implies that x and y have the
same elements — is just a consequence of the logical axiom L15.

The Axiom of Extensionality also shows that the empty set, postulated by
the Axiom of Empty Set, is unique: If x0 and x1 are empty sets, then we have
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∀z(z /∈ x0 ∧ z /∈ x1), which implies ∀z(z ∈ x0 ↔ z ∈ x1), and therefore,
x0 = x1. Thus, with the Axiom of Empty Set and the Axiom of Extensionality
we can prove ∃!x ∀z(z /∈ x), and therefore, we can denote the unique empty
set by the constant symbol ∅.

Similarly, we define the binary relation symbol ⊆, called subset, by stipu-
lating

x ⊆ y :⇐⇒ ∀z(z ∈ x→ z ∈ y).

Notice that for every x we have ∅ ⊆ x. Furthermore, we define the binary
relation symbol ⊊, called proper subset, by stipulating

x ⊊ y :⇐⇒ x ⊆ y ∧ x ̸= y.

So far, we have at least one set, namely the empty set ∅, for which we
have ∅ ⊆ ∅.

2. The Axiom of Pairing

∀x∀y∃u∀z
(
z ∈ u↔ (z = x ∨ z = y)

)
Notice that by the Axiom of Extensionality, the set u is uniquely defined by

the sets x and y. Therefore, we can define the binary function symbol { · , · }
by stipulating

{x, y} = u :⇐⇒ ∀z
(
z ∈ u↔ (z = x ∨ z = y)

)
.

Notice that by the Axiom of Extensionality we have {x, x} = {x}, where
{x} denotes the set which contains the single element x. Thus, by the Ax-
iom of Pairing, if x is a set, then also {x} is a set. Now, starting with ∅,
an iterated application of the Axiom of Pairing yields for example the sets
∅, {∅}, {{∅}}, {{{∅}}}, . . . , as well as {∅, {∅}}, {{∅}, {∅, {∅}}}, . . . .

Notice also that by the Axiom of Extensionality we have {x, y} = {y, x}.
Therefore, it does not matter in which order the elements of a 2-element set
are written down. However, with the Axiom of Pairing we can easily define
ordered pairs, denoted by ⟨x, y⟩, as follows:

⟨x, y⟩ :=
{
{x}, {x, y}

}
It is not hard to show that ⟨x, y⟩ = ⟨x′, y′⟩ if and only if x = x′ and y = y′.
Thus, we can define the binary function symbol ⟨ · , · ⟩ by stipulating

⟨x, y⟩ = u :⇐⇒ ∀z
(
z ∈ u↔

(
z = {x} ∨ z = {x, y}

))
.

Similarly, one could also define ordered triples, ordered quadruples, et cetera,
but the notation becomes quite hard to read. However, once we have more
axioms at hand, we can easily define arbitrarily large tuples.
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3. The Axiom of Union

∀x∃u∀z
(
z ∈ u↔ ∃w ∈ x(z ∈ w)

)
With this axiom we can define the unary function symbol

⋃
, called union,

by stipulating ⋃
x = u :⇐⇒ ∀z

(
z ∈ u↔ ∃w ∈ x(z ∈ w)

)
.

Informally, for all sets x there exists the union of x which consists of all
sets which belong to at least one element of x. For example, x =

⋃
{x}.

Similarly, we define the binary function symbol ∪ by stipulating

x ∪ y = u :⇐⇒ u =
⋃
{x, y}.

The set x ∪ y is called the union of x and y.

Now, with the Axiom of Union and the Axiom of Pairing, and by stipulating
x+ 1 := x ∪ {x}, we can build, for example, the following sets:

0 := ∅
1 := 0 + 1 = 0 ∪ {0} = {0}
2 := 1 + 1 = 1 ∪ {1} = {0, 1}
3 := 2 + 1 = 2 ∪ {2} = {0, 1, 2},

and so on. This construction leads to the following definition: A set x such
that ∀y(y ∈ x→ (y∪{y}) ∈ x) is called inductive. More formally, we define
the unary relation symbol ind by stipulating

ind(x) :⇐⇒ ∀y
(
y ∈ x→

(
y ∪ {y}

)
∈ x
)
.

Obviously, the empty set ∅ is inductive, i.e., ind(∅); but of course, this def-
inition only makes sense if also some other inductive sets exist. However, in
order to make sure that non-empty inductive sets exist as well, we need the
following axiom.

4. The Axiom of Infinity

∃I
(
∅ ∈ I ∧ ind(I)

)
Informally, the Axiom of Infinity postulates the existence of a non-empty in-
ductive set containing ∅. All the sets 0, 1, 2, . . . constructed above — which
we recognise as natural numbers — must belong to every inductive set. Thus,
if there was a set which contains just the natural numbers, it would be the
“smallest” inductive set containing the empty set. In order to construct this
set, we need some more axioms.

13 The Axioms of Set Theory (ZFC)
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5. The Axiom Schema of Separation

For each formula φ(z, p⃗) with free(φ) ⊆ {z, p⃗}, the following formula is an
axiom:

∀x∀p⃗∃y∀z
(
z ∈ y ↔

(
z ∈ x ∧ φ(z, p⃗)

))
,

where p⃗ is an abbreviation for p1, . . . , pn, and correspondingly ∀p⃗ stands for
∀p1 . . . ∀pn. One can think of the sets p1, . . . , pn as parameters of φ, which
are usually some fixed sets. Informally, for each set x and every LST-formula
φ(z), {

z ∈ x : φ(z)
}

is a set. Notice that the Axiom Schema of Separation just allows us to separate
sets with a given property from a given set, but not to build collections of
sets with a given property. For example, for a set x and φ(z) ≡ z /∈ z,
{z ∈ x : φ(z)} is a set, but the collection {z : φ(z)} is not a set.

As a first application of the Axiom Schema of Separation, we define the
intersection of two sets x0 and x1: We use x0 as a parameter and define
φ(z, x0) ≡ z ∈ x0. Then, by the Axiom Schema of Separation, there exists a
set y = {z ∈ x1 : φ(z, x0)}, i.e.,

z ∈ y ↔ (z ∈ x1 ∧ z ∈ x0) .

In other words, for any sets x0 and x1, the collection of all sets which belong
to both x0 and x1 is a set. This set is called the intersection of x0 and
x1 and is denoted by x0 ∩ x1. More formally, we define the binary function
symbol ∩ by stipulating

x0 ∩ x1 = y :⇐⇒ ∀z
(
z ∈ y ↔ z ∈ x1 ∧ z ∈ x0

)
.

In general, for non-empty sets x we define the unary function symbol
⋂

by
stipulating ⋂

x = y :⇐⇒ y =
{
u ∈

⋃
x : ∀z ∈ x (u ∈ z)

}
,

which is the intersection of all sets which belong to x. In order to see that
⋂
x

is a set which is uniquely determined by x, let φ(z, x) ≡ ∀y ∈ x (z ∈ y) and
apply the Axiom Schema of Separation to

⋃
x. Notice that x ∩ y =

⋂
{x, y}.

Another example is φ(z, y) ≡ z /∈ y, where y is a parameter. In this case,
{z ∈ x : z /∈ y} is a set, denoted by x \ y, which is called the set-theoretic
difference of x and y. More formally, we define the binary function symbol \
by stipulating

x \ y = u :⇐⇒ ∀z
(
z ∈ u↔ z ∈ x ∧ z /∈ y

)
.

The next axiom gives us for any set x the set of all subsets of x.
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6. The Axiom of Power Set

∀x∃y∀z(z ∈ y ↔ z ⊆ x)

Informally, the Axiom of Power Set states that for each set x there is a set
P(x), called the power set of x, which consists of all subsets of x. More
formally, we define the unary function symbol P by stipulating

P(x) = y :⇐⇒ ∀z(z ∈ y ↔ z ⊆ x).

The Set ω

As an application of the axioms which we have so far, we define the small-
est non-empty inductive set containing ∅, denoted by ω, which will be the
smallest set containing the natural numbers (see Chapter 16): By the Axiom
of Infinity, there exists an non-empty inductive set I0. Now, with the Axiom
of Power Set and the Axiom Schema of Separation, we can define the set

ω :=
⋂{

X ∈P(I0) : ∅ ∈ X ∧ ind(X)
}
.

We have to show that the set ω is the smallest set which is inductive and
contains ∅: By definition, ω is inductive and contains ∅. Now, let I be an
inductive set with ∅ ∈ I, and let X0 := ω∩I. On the one hand, X0 is inductive
and ∅ ∈ X0. On the other hand, since X0 ⊆ ω, we have X0 ∈ P(I0), which
implies that ω ⊆ X0. Therefore, ω is the unique inductive set containing ∅,
which is contained in every inductive set containing ∅.

Later in Chapter 16, we shall see that ω is the domain of the standard
model of Peano Arithmetic PA.

Functions, Relations, and Models

With the axioms which we have so far (i.e., with Zermelo’s axiom system Z),
we can define notions like functions and relations.

Cartesian Products and Functions

Let us first define Cartesian products: For arbitrary sets A and B we define
the binary function symbol × by stipulating

A×B :=
{
⟨x, y⟩ : x ∈ A ∧ y ∈ B

}
,
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where ⟨x, y⟩ = {{x}, {x, y}}. The set A × B is called Cartesian product
of A and B. Thus, the Cartesian product of two sets A and B is a subset of
P(P(A ∪B)).

Now, we define functions f : A→ B which map the elements of a set A to
elements of a set B as certain subsets of A×B. The set of all such functions
is denoted by AB, where we define

AB :=
{
f ⊆ A×B : ∀x ∈ A ∃!y ∈ B

(
⟨x, y⟩ ∈ f

)}
.

For f ∈ AB (i.e., f : A→ B), we usually write f(x) = y instead of ⟨x, y⟩ ∈ f
and say that y is the image of x under f . Moreover, the set A is called the
domain of f , denoted by dom f . If S ⊆ A, then the image of S under f is
denoted by f [S] = {f(x) : x ∈ S} , and f |S = {⟨x, y⟩ ∈ f : x ∈ S} is the
restriction of f to S. Furthermore, for a function f : A → B, f [A] is called
the range of f , denoted by ran(f).

Here are some special functions:

• A function f : A→ B is surjective, or onto, if

∀y ∈ B ∃x ∈ A
(
f(x) = y

)
.

In order to emphasise the fact that the function f is surjective, one can
write f : A↠ B.

• A function f : A→ B is injective, or one-to-one, if we have

∀x1 ∈ A ∀x2 ∈ A
(
f(x1) = f(x2)→ x1 = x2

)
.

In order to emphasise the fact that f is injective, one can write f : A ↪→ B.

• A function f : A → B is bijective if it is injective and surjective. If
f : A→ B is bijective, then

∀y ∈ B ∃!x ∈ A
(
⟨x, y⟩ ∈ f

)
,

which implies that

f−1 :=
{
⟨y, x⟩ : ⟨x, y⟩ ∈ f

}
∈ BA

is a function which is even bijective. Therefore, if a bijective function
exists from A to B, then there is also one from B to A and we sometimes
just say that there is a bijection between A and B. Notice that if f :
A ↪→ B is injective, then f is a bijection between A and f [A].

• If f is a function from A to B and g is a function from B to C, then the
composition g ◦f is a function from A to C, where
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g ◦f :=
{
⟨x, z⟩ ∈ A× C : ∃y ∈ B

(
⟨x, y⟩ ∈ f ∧ ⟨y, z⟩ ∈ g

)}
.

• If f is a function with domain α, for some ordinal number α, then we call
f a sequence of length α. If f(β) =: xβ for β < α, then we may write
f = ⟨xβ : β < α⟩.

Cartesian Products and Relations

Let us now turn back to Cartesian products: For a set A and a natural number
n ∈ ω, we define the n-fold Cartesian product, denoted An, by stipulating

A× . . .×A︸ ︷︷ ︸
n-times

:= ⟨· · · ⟨⟨A×A⟩ ×A⟩ × · · · × A⟩ .

In order to simplify the notation, we identify the elements ⟨a0, . . . , an−1⟩ ∈ An
with functions f ∈ nA by stipulating:

An ←→ nA

⟨a0, . . . , an−1⟩ 7−→
{
⟨k, ak⟩ : k ∈ n

}
⟨f(0), . . . , f(n− 1)⟩ ←−p f

With this identification, we can define Cartesian products AI for arbitrary
sets I by identifying the elements of the Cartesian product with functions
f ∈ IA.

Notice that we are not yet able to define Cartesian products of arbitrary
sets, but we are able to define relations as subsets of finite Cartesian products.

• For any set A and any n ∈ ω, a set R ⊆ An is called an n-ary relation
on A.

• If n = 2, then R ⊆ A × A is also called a binary relation. For binary
relations R we usually write xRy instead of ⟨x, y⟩ ∈ R.

• A binary relation R on A is a linear ordering on A, if for any elements
x, y ∈ A we have xRy or x = y or yRx, where these three cases are
mutually exclusive.

• A linear ordering R on A is a well-ordering on A, if every non-empty
subset S ⊆ A has an R-minimal element, i.e., there exists a x0 ∈ S such
that for each y ∈ S we have x0Ry. Notice that, since R is a linear ordering,
the R-minimal element x0 is unique. If there is a well-ordering R on A,
then we say that A is well-orderable. The question whether each set is
well-orderable has to be postponed until we have the Axiom of Choice.

13 The Axioms of Set Theory (ZFC)
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Other important binary relations are the so-called equivalence relations: Let
S be an arbitrary non-empty set. A binary relation ∼ on S is an equivalence
relation if it is

• reflexive (i.e., for all x ∈ S: x ∼ x),
• symmetric (i.e., for all x, y ∈ S: x ∼ y ↔ y ∼ x), and
• transitive (i.e., for all x, y, z ∈ S: x ∼ y ∧ y ∼ z → x ∼ z).

The equivalence class of an element x ∈ S, denoted by [x] ,̃ is the set
{y ∈ S : x ∼ y}. If it is clear from the context which relation ∼ is meant,
we simply write [x] for [x] .̃ We would like to recall the fact that for any
x, y ∈ S we have either [x]˜ = [y]˜ or [x]˜∩ [y]˜ = ∅. A set A ⊆ S is a
set of representatives if A has exactly one element in common with each
equivalence class [x] .̃ We would like to mention that the existence of a set of
representatives generally relies on the Axiom of Choice.

Zermelo-Fraenkel Set Theory with Choice (ZFC)

In 1922, Fraenkel and Skolem independently improved and extended Zer-
melo’s original axiomatic system, and the final version was again presented
by Zermelo in 1930. The two axioms which we have to add to Zermelo’s system
from 1908 are the Axiom Schema of Replacement and the Axiom of Founda-
tion. In this section, we will present the remaining axioms of the so-called
Zermelo–Fraenkel Set Theory with the Axiom of Choice, denoted by ZFC,
which consists of Zermelo’s axiom system Z together with the Axiom Schema
of Replacement, the Axiom of Foundation, and the Axiom of Choice.

7. The Axiom Schema of Replacement

In the first form in which we present the Axiom Schema of Replacement, it
states that for every first-order formula φ(x, y, p̄) with free(φ) = {x, y, p̄},
where p̄ denotes a finite sequence of parameters, the following formula is
an axiom:

∀A ∀p̄
(
∀x ∈ A ∃!y φ(x, y, p̄)→ ∃B ∀x ∈ A ∃y ∈ B φ(x, y, p̄)

)
In order to reformulate the Axiom Schema of Replacement, we introduce the
notion of a class function: Let φ(x, y, p̄) be a formula with free(φ) = {x, y, p̄}
such that

∀p̄∀x ∃!y φ(x, y, p̄) .

Then, for each parameter set p̄, the unary function symbol F , defined by
stipulating

F (x) = y :⇐⇒ φ(x, y, p̄),

is called a class function. Now, the Axiom Schema of Replacement states
that for every set A and for each class function F , F [A] := {F (x) : x ∈ A}
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is contained in a set. With the Axiom Schema of Separation, we get slightly
more.

Fact 13.0. If F is a class function and A is a set, then F [A] is a set.

Proof. By the Axiom Schema of Replacement, there exists a set B such
that F [A] ⊆ B, and by the Axiom Schema of Separation we obtain that{
y ∈ B : ∃x ∈ A (F (x) = y)

}
is a set which obviously corresponds to F [A]. ⊣

We can therefore replace the Axiom Schema of Replacement with the fol-
lowing, somewhat stronger statement:

∀A ∀p̄
(
∀x ∈ A ∃!y φ(x, y, p̄)→ ∃B ∀y

(
y ∈ B ↔ ∃x ∈ Aφ(x, y, p̄)

))
In other words, images of sets under class functions are sets. In this context,
we would like to mention that we can derive the Axiom Schema of Separation
from this stronger form. To see this, let ψ(z) be a first-order formula with
free(ψ) = {z}, let x be a set, and define the class function Fψ by stipulating

Fψ(z) :=

{
{z} if ψ(z),

∅ otherwise.

Then, by the stronger version of the Axiom Schema of Replacement, Fψ[x] is
a set, and by the Axiom of Union,

⋃
Fψ[x] = {z ∈ x : ψ(z)} is also a set.

We would also like to mention that with this stronger version of the Ax-
iom Schema of Replacement, the Axiom of Empty Set is also redundant (see
Exercise 13.0).

With the Axiom Schema of Replacement, we can now define arbitrary Carte-
sian products: Let F be a class function and let I be an arbitrary set. Fur-
thermore, for every ι ∈ I let Aι := F (ι) and let A :=

⋃
F [I]. Then the

set ×
ι∈I

Aι :=
{
f ∈ IA : ∀ι ∈ I

(
f(ι) ∈ Aι

)}
is called the Cartesian product of the sets Aι (ι ∈ I). As a matter of fact, we
would like to mention that with the axioms we have so far, we cannot prove
that Cartesian products ×

ι∈I
Aι of non-empty sets Aι are non-empty.

8. The Axiom of Foundation

∀x
(
x ̸= ∅ → ∃y(y ∈ x ∧ (y ∩ x = ∅))

)
As a consequence of the Axiom of Foundation, we see that there is no
infinite descending sequence x0 ∋ x1 ∋ x2 ∋ · · · , since otherwise, the
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set {x0, x1, x2, . . .} would contradict the Axiom of Foundation. In particu-
lar, there is no set x such that x ∈ x and there are also no cycles like
x0 ∈ x1 ∈ · · · ∈ xn ∈ x0. As a matter of fact, we would like to mention
that if one assumes the Axiom of Choice, then the non-existence of such in-
finite descending sequences can be proved to be equivalent to the Axiom of
Foundation.

The axiom system containing the axioms 0–8 is called Zermelo–Fraenkel
Set Theory and is denoted by ZF.

9. The Axiom of Choice (AC)

∀F ∃f
(
f is a function from F to

⋃
F ∧

(
∅ /∈ F → ∀x ∈ F (f(x) ∈ x)

))
,

or equivalently,

∀F
(
∅ /∈ F → ∃f

(
f ∈ F⋃F ∧ ∀x ∈ F

(
f(x) ∈ x

)))
.

Informally, every family of non-empty sets has a choice function.
One can show that AC is equivalent to the statement that Cartesian prod-

ucts of non-empty sets are non-empty. More formally, let F = {Aι : ι ∈ I} be
a family of non-empty sets (i.e., for each ι ∈ I, Aι ̸= ∅). Then the Cartesian
product

×
ι∈I

Aι

is non-empty. In order to see this, let f be a choice function of F . Then{〈
ι, f(Aι)

〉
: ι ∈ I

}
∈×

ι∈I
Aι ,

and hence, ×
ι∈I

Aι is non-empty.

ZF together with the Axiom of Choice AC is denoted by ZFC. Later on, we
shall see that the axiom system ZFC is a foundation of first-order mathemat-
ics.

Well-Ordered Sets and Ordinal Numbers

In 1904, Zermelo [59] published his first proof of the so-called Well-Ordering
Principle, which states that every set can be well-ordered (see Theorem 13.3),
and in 1908 he published a second proof (see [60]). In the proof presented be-
low, we essentially follow Zermelo’s first proof, but first we have to introduce
the notion of ordinal numbers.
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Ordinal Numbers

One of the most important concepts in Set Theory is the notion of ordinal
number, which can be seen as a transfinite extension of the natural numbers.
In order to define the concept of ordinal numbers, we must first give some
definitions: Let z ∈ x. Then z is called an ∈-minimal element of x, denoted
by min∈(z, x), if ∀y(y /∈ z ∨ y /∈ x), or equivalently, for any y in z we have
y /∈ x, or more formally,

min∈(z, x) :⇐⇒ z ∈ x ∧ ∀y(y ∈ z → y /∈ x).

A set x is ordered by ∈ if for any sets y1, y2 ∈ x we have y1 ∈ y2 or y1 = y2
or y1 ∋ y2, where the three cases do not have to be mutually exclusive. More
formally,

ord∈(x) :⇐⇒ ∀y1, y2 ∈ x
(
y1 ∈ y2 ∨ y1 = y2 ∨ y1 ∋ y2

)
.

Now, a set x is called well-ordered by ∈ if it is ordered by ∈ and if every
non-empty subset of x has an ∈-minimal element. More formally,

wo∈(x) :⇐⇒ ord∈(x) ∧ ∀y ∈P(x)
(
y ̸= ∅ → ∃z ∈ y min∈(z, y)

)
.

Furthermore, a set x is called transitive if each element of x is a subset of
x, i.e.,

trans(x) :⇐⇒ ∀y(y ∈ x→ y ⊆ x).

Notice that if x is transitive and z ∈ y ∈ x, then this implies z ∈ x. A set
is called an ordinal number, or just an ordinal, if it is transitive and
well-ordered by ∈, i.e.,

ordinal(x) :⇐⇒ trans(x) ∧ wo∈(x) .

Ordinal numbers are usually denoted by Greek letters like α, β, γ, λ, et cetera,
and the collection of all ordinal numbers is denoted by Ω. We will see later
that Ω is not a set. However, we can consider “α ∈ Ω” as an abbreviation of
ordinal(x), which is just a property of α, and thus, there is no harm in using
the symbol Ω in this way, even though Ω is not an object of the set-theoretic
universe.

Now, we are ready to prove the following result.

Theorem 13.1.

(a) If α ∈ Ω, then either α = ∅ or ∅ ∈ α.
(b) If α ∈ Ω, then α /∈ α.
(c) If α, β ∈ Ω, then α ∈ β or α = β or α ∋ β, where these three cases are

mutually exclusive.

(d) If α ∈ β ∈ Ω, then α ∈ Ω.
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(e) If α ∈ Ω, then also α ∪ {α} ∈ Ω.

(f) Ω is transitive and is well-ordered by ∈. More precisely, Ω is transitive and
ordered by ∈, and every non-empty collection C ⊆ Ω has an ∈-minimal
element.

Proof. (a) Since α ∈ Ω, α is well-ordered by ∈. Thus, either α = ∅, or, since
α ⊆ α, α contains an ∈-minimal element, say x0 ∈ α. If x0 ̸= ∅, then we find
a z ∈ x0, and by transitivity of α, we get z ∈ α, which implies that x0 is
not an ∈-minimal element of α. Hence, we must have x0 = ∅, which shows
that ∅ ∈ α.

(b) Assume towards a contradiction that α ∈ α. Then {α} is a non-empty
subset of α and therefore contains an ∈-minimal element. Now, since {α}
just contains the element α, the ∈-minimal element of {α} must be α, but
on the other hand, α ∈ α implies that α is not ∈-minimal, a contradiction.

(c) First, notice that by (b), the three cases α ∈ β, α = β, α ∋ β are
mutually exclusive.

Let α, β ∈ Ω be given. If α = β, then we are done. So, let us assume that
α ̸= β. Without loss of generality, we may assume that α \ β ̸= ∅.

We first show that α∩ β is the ∈-minimal element of α \ β: Let γ be an ∈-
minimal element of α\β. Since α is transitive and γ ∈ α, ∀u(u ∈ γ → u ∈ α),
and since γ is an ∈-minimal element of α \ β, ∀u(u ∈ γ → u ∈ β), which
implies γ ⊆ α∩β. On the other hand, if there is a w ∈ (α∩β)\γ, then, since
α is ordered by ∈ and γ ̸= w (γ /∈ β ∋ w), we must have γ ∈ w, and since β
is transitive and w ∈ β, this implies that γ ∈ β, which contradicts the fact
that γ ∈ (α \ β). Hence, γ = α∩ β is the ∈-minimal element of α \ β. Now, if
also β \ α ̸= ∅, then we would find that α ∩ β is also the ∈-minimal element
of β \ α, which is obviously a contradiction.

Thus, α \ β ̸= ∅ implies that β \ α = ∅, or in other words, β ⊆ α, which is
the same as saying β = α ∩ β. Consequently, we see that β is the ∈-minimal
element of α \ β, and, in particular, we have β ∈ α.

(d) Let α ∈ β ∈ Ω. Since β is transitive, α is ordered by ∈. So, it remains
to show that α is transitive and well-ordered by ∈.

well-ordered by ∈: Because β is transitive, every subset of α is also a subset
of β and consequently contains an ∈-minimal element.

transitive: Let δ ∈ γ ∈ α. We have to show that δ ∈ α. Since β is transitive,
δ ∈ β, and since β is ordered by ∈, we have either δ ∈ α or δ = α or α ∈ δ. If
δ ∈ α, we are done, and if δ = α or α ∈ δ, then the set {α, γ, δ} ⊆ β does not
have an ∈-minimal element, which contradicts the fact that β is well-ordered
by ∈.

(e) We have to show that α ∪ {α} is transitive and well-ordered by ∈.
transitive: If β ∈ (α∪ {α}), then either β ∈ α or β = α, and in both cases

we have β ⊆ (α ∪ {α}).
well-ordered by ∈: Since α is an ordinal, α ∪ {α} is ordered by ∈. Let

now x ⊆ (α ∪ {α}) be a non-empty set. If x = {α}, then α is obviously an
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∈-minimal element of x. Otherwise, x∩α ̸= ∅, and since α ∈ Ω, x∩α has an
∈-minimal element, say γ. Since α is transitive, we have x∩γ = ∅ (otherwise,
γ would not be ∈-minimal in x∩α), which implies that γ is ∈-minimal in x.

(f) Ω is transitive and ordered by ∈: This is a consequence of part (d) and
part (c), respectively.

Ω is well-ordered by ∈: Let C ⊆ Ω be a non-empty collection of or-
dinals. If C = {α} for some α ∈ Ω, then α is the ∈-minimal element
of C. Otherwise, C contains an ordinal δ0 such that δ0 ∩ C ̸= ∅ and
let x := δ0 ∩ C. Then x is a non-empty set of ordinals. Now, let α ∈
x and let γ be an ∈-minimal element of x ∩ (α ∪ {α}). By definition,
γ ∈ (α ∪ {α}), and since (α ∪ {α}) ∈ Ω, γ ⊆ (α ∪ {α}). Thus, every ordi-
nal γ′ ∈ γ belongs to α∪{α}, but by the definition of γ, γ′ cannot belong to
x∩ (α∪ {α}), which implies that γ is also ∈-minimal in x, and consequently
in C. ⊣

Notice that if Ω is a set, then by (f), Ω is an ordinal number, and therefore
Ω ∈ Ω, which contradicts (b). Thus, the collection of all ordinals Ω is not a
set, but a so-called class. In general, a collection of sets, satisfying for example
a certain formula, which is not necessarily a set is called a class. For example,
Ω is a class which is not a set (it consists of all transitive sets which are well-
ordered by ∈). Even though proper classes (i.e., classes which are not sets)
do not belong to the set-theoretic universe, it is sometimes convenient to
handle them like sets, e.g., taking intersections or extracting certain subsets
or subclasses from them.

Since ∈ constitutes a linear ordering by (c), we use the following notation:

α < β :⇐⇒ α ∈ β
α ≤ β :⇐⇒ α < β ∨ α = β

By Theorem 13.1.(e) we know that if α ∈ Ω, then also (α∪{α}) ∈ Ω. Now,
for ordinals α ∈ Ω, let α + 1 := α ∪ {α}. Part (b) of the following result —
which is just a consequence of Theorem 13.1 — motivates this notation.

Corollary 13.2.

(a) If A ⊆ Ω is a set of ordinals, then
⋃
A is an ordinal.

(b) If α, β ∈ Ω and α ∈ β, then α+ 1 ⊆ β. In other words, α+ 1 is the least
ordinal which contains α.

(c) For every ordinal α ∈ Ω we have either α =
⋃
α or there exists a β ∈ Ω

such that α = β + 1.

Proof. (a) For every β ∈
⋃
A there is an ordinal γ ∈ A such that β ∈ γ.

Thus, by Theorem 13.1.(d), β is an ordinal which implies that
⋃
A ⊆ Ω is

a set of ordinals, and by Theorem 13.1.(f) we get that
⋃
A is well-ordered

by ∈. Furthermore, if α ∈ β ∈ γ ∈
⋃
A, then, since γ is transitive, we have

α ∈ γ, which implies α ∈
⋃
A, i.e.,

⋃
A is transitive.
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(b) Assume α ∈ β, then {α} ⊆ β, and since β is transitive, we also have
α ⊆ β; thus, α+ 1 = α ∪ {α} ⊆ β.

(c) Since α is transitive,
⋃
α ⊆ α. Thus, if α ̸=

⋃
α, then α \

⋃
α ̸= ∅.

Let β be ∈-minimal in α \
⋃
α. Then β ∈ α and β + 1 ∈ Ω, and by part (b)

we have β + 1 ⊆ α. On the one hand, α ∈ β + 1 would imply that α ∈ α,
a contradiction to Theorem 13.1.(b). On the other hand, β + 1 ∈ α would
imply that β ∈

⋃
α, which contradicts the choice of β. Thus, we must have

β + 1 = α. ⊣

This leads to the following definitions: An ordinal α is called a successor
ordinal if there exists an ordinal β such that α = β+1; otherwise, it is called
a limit ordinal. In particular, ∅ is a limit ordinal. Notice that α ∈ Ω is a
limit ordinal if and only if

⋃
α = α.

With these definitions one can show that ω, defined above as the least non-
empty inductive set, is in fact the least non-empty limit ordinal. In particular,
we have

⋃
ω = ω.

Now we are ready to prove the following

Theorem 13.3. The Well-Ordering Principle is equivalent to the Axiom of
Choice.

Proof. (⇒) Let F be any family of non-empty sets and let < be any well-
ordering on

⋃
F . Define f : F →

⋃
F by stipulating f(x) to be the <-

minimal element of x.

(⇐) Let M be a set. If M = ∅, then M is well-ordered and we are done.
Therefore, assume that M ̸= ∅ and let P∗(M) := P(M)\{∅}. Furthermore,
let

f : P∗(M)→M

be an arbitrary but fixed choice function for the family P∗(M), which exists
by the Axiom of Choice.

Now, an injective function

wα : α ↪→M

from some ordinal α ∈ Ω into M is called an f-set if for all γ ∈ α we have

wα(γ) = f
(
M \

{
wα(δ) : δ ∈ γ

})
.

For example, w1 =
{〈

0, f(M)
〉}

is an f -set – in fact, w1 is the unique f -set
with domain {0}. In general, for every α ∈ Ω there is at most one f -set wα
with domain α. In order to see this, assume that wα and w′

α are two distinct
f -sets with domain α. Because wα and w′

α are distinct and α ∈ Ω, there
exists an ∈-minimal γ ∈ α such that wα(γ) ̸= w′

α(γ), but since for all δ ∈ γ
we have wα(δ) = w′

α(δ), which contradicts the fact that
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wα(γ) = f
(
M \

{
wα(δ) : δ ∈ γ

})
= f

(
M \

{
w′
α(δ) : δ ∈ γ

})
= w′

α(γ).

Thus, if there exists an f -set wα for some α ∈ Ω, then this f -set wα is the
unique f -set with dom(wα) = α. Moreover, if wβ and wα are f -sets and
β ∈ α, then wα|β = wβ (i.e., the restriction of wα to β is equal to wβ).

Because every f -set wα induces a well-ordering on ran(wα) ⊆ M , by the
Axiom Schema of Separation, the collection of all f -sets is a set, say S. Now,
we define the class function F by stipulating

F (w) :=

{
α if w is an f -set with dom(w) = α,

∅ otherwise.

Notice that by the Axiom Schema of Replacement, F [S] is a set of ordinals,
and therefore, by Corollary 13.2.(a),

⋃
F [S] is an ordianl, say α0.

On S we define the ordering ≺ as follows: For two distinct f -sets wα and
wβ , let

wα ≺ wβ ⇐⇒ α ∈ β.

Since Ω is well-ordered by ∈, S is well-ordered by ≺ and for wα0
:=
⋃
S we

have dom(wα0
) = α0. Let now

M ′ :=
{
x ∈M : ∃γ ∈ α0

(
wα0

(γ) = x
)}
.

Then M ′ = M and wα0 ∈ S, since otherwise, wα0 can be extended to the
f -set

wα0
∪
{〈
α0, f(M \M ′)

〉}
,

which is a contradiction to the definition of S. Therefore, the injective func-
tion wα0

: α0 ↪→ M is surjective. In other words, wα0
is a bijection between

α0 and M . Finally, define the binary relation < on M by stipulating

x < y :⇐⇒ w−1
α0

(x) ∈ w−1
α0

(y) .

Then, since α0 is well-ordered by ∈, M is well-ordered by <. ⊣

As an immediate consequence of Theorem 13.3 we get the following

Corollary 13.4. For each well-ordering < of a set A there exists a unique
ordinal α and a unique bijective function wα : α → A such that for all
β, γ ∈ α,

β ∈ γ ⇐⇒ wα(β) < wα(γ) .

Proof. Let < be a well-ordering of a set A. Define f : P∗(A) := P(A) \ {∅}
by stipulating f(x) to be the <-minimal element of x. Then the second part
of the proof of Theorem 13.3 gives us a bijection wα : α → A with desired
property. ⊣
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We conclude this chapter with the development of ordinal and cardinal
arithmetic. Since this topic is not essential outside of set theory, some results
are given without proof (for proofs we refer the reader to Halbeisen [22]).

Ordinal Arithmetic

The next result is the Transfinite Recursion Theorem, a very powerful
tool which is used, for example, to define ordinal arithmetic (see below) or
to build the cumulative hierarchy of sets (see Chapter 14).

Theorem 13.5 (Transfinite Recursion Theorem). Let F be a class
function which is defined for all sets. Then there is a unique class function G
defined on Ω such that for each α ∈ Ω we have

G(α) = F (G|α), where G|α =
{〈
β,G(β)

〉
: β ∈ α

}
.

By transfinite recursion we are able to define addition, multiplication, and
exponentiation of arbitrary ordinal numbers (see Exercise 13.1):

Ordinal Addition : For arbitrary ordinals α ∈ Ω, we define

(a) α+ 0 := α,

(b) α+ 1 := α ∪ {α},
(c) α+ (β + 1) := (α+ β) + 1 for all β ∈ Ω,

(d) and if β ∈ Ω is non-empty and a limit ordinal, then α+β :=
⋃
δ∈β(α+δ).

Notice that, for example, 1 + ω = ω ̸= ω + 1, which shows that addition of
ordinals is in general not commutative.

Ordinal Multiplication : For arbitrary ordinals α ∈ Ω, we define

(a) α · 0 := 0,

(b) α · (β + 1) := (α · β) + α for all β ∈ Ω,

(c) and if β ∈ Ω is a limit ordinal, then α · β :=
⋃
δ∈β(α · δ).

Notice that, for example, 2 · ω = ω ̸= ω + ω = ω · 2, which shows that
multiplication of ordinals is in general not commutative.

Ordinal Exponentiation : For arbitrary ordinals α ∈ Ω, we define

(a) α0 := 1,

(b) αβ+1 := αβ · α for all β ∈ Ω,

(c) and if β ∈ Ω is non-empty and a limit ordinal, then αβ :=
⋃
δ∈β(αδ).
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By definition, we obtain that addition, multiplication, and exponentiation
of ordinals are binary operations on Ω. Moreover, one can prove that ad-
dition and multiplication of ordinals are also associative and that the left
distributive law holds (but not the right distributive law). In order to prove
a property for all ordinals, the following generalisation of the induction prin-
ciple for natural numbers is a very powerful tool.

Theorem 13.6 (Transfinite Induction Principle). Suppose that φ(x)
is an LST-formula and suppose that the following conditions hold:

(a) φ(0)

(b) ∀α ∈ Ω
(
φ(α)→ φ(α+ 1)

)
(c)

(
∀β < α φ(β)

)
→ φ(α) if α ∈ Ω is a limit ordinal.

Then φ(α) holds for all ordinals α ∈ Ω.

Example 13.7. We prove the left distributive law of ordinal arithmetic,
where we assume that the associativity of addition has already been shown.
Let α, β ∈ Ω be fixed ordinals.

(a) By definition, we have α · (β + 0) = α · β = (α · β) + (α · 0).

(b) Assume that α · (β + γ) holds. Then we obtain

α ·
(
β + (γ + 1)

)
= α ·

(
(β + γ) + 1

)
= α · (β + γ) + α

=
(
(α · β) + (α · γ)

)
+ α

= (α · β) +
(
(α · γ) + α

)
= (α · β) +

(
α · (γ + 1)

)
.

(c) Suppose that γ is a limit ordinal and that α · (β + δ) = (α · β) + (α · δ)
for all δ < γ. Then we have

α · (β + γ) = α ·
⋃
δ<γ

(β + δ) =
⋃
δ<γ

α · (β + δ) =
⋃
δ<γ

(
(α · β) + (α · δ)

)
= (α · β) +

⋃
δ<γ

α · δ = (α · β) + (α · γ).

Hence, by the Transfinite Induction Principle, the left distributive law
holds for all ordinals.

Let us consider the set ω again. The ordinals belonging to ω are called
natural numbers. Since ω is the smallest non-empty limit ordinal, all nat-
ural numbers, except 0, are successor ordinals. Thus, for each n ∈ ω we have
either n = 0 or there is an m ∈ ω such that n = m+ 1. Since by definition,
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k < n ⇐⇒ k ∈ n

for each n ∈ ω we have n = {k ∈ ω : k < n}, i.e., n = {0, 1, . . . , n − 1}. In
particular, for every n ∈ ω, n is a set containing exactly n elements.

With ordinal addition, multiplication, and exponentiation we can define
sums, products, and powers of natural numbers within ZF. In fact, we can
define these operations in Z already (see Exercise 13.5).

Cardinal Numbers and Cardinal Arithmetic

By Corollary 13.4 we know that for each well-ordering < of a set A there
exists a unique ordinal α and a unique bijective function wα : α → A such
that for all β, γ ∈ α, we have β ∈ γ ⇐⇒ wα(β) < wα(γ). The unique ordinal
α which corresponds to a well-ordering < of A is called the order type of
the well-ordering <.

In the presence of AC, we are now able to define cardinal numbers as or-
dinals: For any set A we define the cardinality of A, denoted by |A|, by
stipulating

|A| := min
{
α ∈ Ω : α is the order type of a well-ordering of A

}
.

By definition we have

|A| = min
{
α ∈ Ω : there is a bijection between α and A

}
.

In order to see that this definition makes sense, notice that by AC, every
set A is well-orderable, and that by the above remark, every well-ordering on
A corresponds to exactly one ordinal. Therefore, for each set A, the set of all
order types of well-orderings of A is a non-empty set of ordinals. Let C ⊆ Ω
be this set of ordinals. Then, by Theorem 13.1.(f), C has an ∈-minimal
element minC, which shows that |A| is indeed an ordinal.

For example, we have |n| = n for every n ∈ ω, and |ω| = ω; but in general,
for α ∈ Ω, we do not have |α| = α. For example, |ω + 1| ̸= ω + 1, since
|ω + 1| = ω and ω ̸= ω + 1. However, there are also other ordinals α besides
n ∈ ω and ω itself for which we have |α| = α. This leads to the following
definition:

An ordinal number κ ∈ Ω such that |κ| = κ is called a cardinal number,
or just a cardinal. Cardinal numbers are usually denoted by Greek letters
like κ, λ, µ, et cetera, or by ℵ’s. For example, the cardinal number ω is
denoted by ℵ0, which is the cardinality of countably infinite sets.

A cardinal κ is infinite if κ /∈ ω, otherwise, it is finite. In other words, a
cardinal is finite if and only if it is a natural number.
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Since cardinal numbers are just a special kind of ordinal, they are well-
ordered by ∈. However, for cardinal numbers κ and λ we usually write κ < λ
instead of κ ∈ λ, i.e.,

κ < λ ⇐⇒ κ ∈ λ.

Notice that for any cardinals κ and λ, if κ ≤ λ and λ ≤ κ then κ = λ.
Thus, for any sets A and B, in order to show that |A| = |B|, it is enough to
find injections from A ↪→ B and B ↪→ A, since this implies |A| ≤ |B| and
|B| ≤ |A|, and hence, |A| = |B|.

The next result implies that there are arbitrarily large cardinal numbers.

Theorem 13.8 (Cantor’s Theorem). For every set A, |A| < |P(A)|.

Proof. Let A be an arbitrary set. Obviously, we have |A| ≤ |P(A)|. If we
had |A| = |P(A)|, then there would be a bijection between A and P(A).
In particular, there would be a surjection A ↠ P(A). Therefore, in order
to prove |A| < |P(A)|, it is enough to show that there is no surjection
f : A↠ P(A).

If A = ∅, then P(A) = {∅} and f = ∅; hence, f is not a surjection.
If A ̸= ∅, consider the set

Γ :=
{
x ∈ A : x /∈ f(x)

}
.

On the one hand, since Γ ⊆ A, Γ ∈ P(A). On the other hand, for each
x ∈ A we have

x ∈ Γ ⇐⇒ x /∈ f(x),

and therefore, there is no x ∈ A such that f(x) = Γ , which shows that f is
not surjective. ⊣

A set A is called countable if |A| ≤ ω, and it is called uncountable
if |A| > ω. For example, one can show that the set Q of rational numbers
is countable and that the set R of real numbers is uncountable (see Exer-
cise 13.8).

Let κ be a cardinal. The smallest cardinal number which is greater than κ
is denoted by κ+, i.e.,

κ+ = min
{
α ∈ Ω : κ < |α|

}
.

Notice that by Theorem 13.8, κ < 2κ for every cardinal κ. In particular, for
every cardinal κ, {α ∈ Ω : κ < |α|} is non-empty and therefore κ+ exists.

A cardinal µ is called a successor cardinal if there exists a cardinal κ
such that µ = κ+; otherwise, it is called a limit cardinal. In particular,
every positive integer n ∈ ω is a successor cardinal and ω is the smallest
non-zero limit cardinal. By induction on α ∈ Ω we define ℵα+1 := ℵ+α , where
ℵ0 := ω, and ℵα :=

⋃
δ∈α ℵδ for limit ordinals α; notice that

⋃
δ∈α ℵδ is
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a cardinal (see Solution to Exercise 13.2.(a)). In particular, ℵω is the
smallest uncountable limit cardinal and ℵ1 = ℵ+0 is the smallest uncountable
cardinal. The collection {ℵα : α ∈ Ω} is the class of all infinite cardinals, i.e.,
for every infinite cardinal κ there is an α ∈ Ω such that κ = ℵα. Notice that
the collection of cardinals is — like the collection of ordinals — a proper class
and not a set. Now, we define addition, multiplication, and exponentiation of
cardinals as follows:

Cardinal Addition : For cardinals κ and µ, let

κ+ µ := |(κ× {0})∪ (µ× {1})|.

Cardinal Multiplication : For cardinals κ and µ, let

κ · µ := |κ× µ|.

Cardinal Exponentiation : For cardinals κ and µ, let

κµ := |µκ|.

As a consequence of these definitions we get the following result (for a proof
see Solution to Exercise 13.3).

Fact 13.9. Addition and multiplication of cardinals are associative and com-
mutative, and we have the distributive law for multiplication over addition,
and for all cardinals κ, λ, µ, we have

κλ+µ = κλ · κµ, κµ·λ = (κλ)µ, (κ · λ)µ = κµ · λµ.

Notice that there is a bijection f : P(κ)→ κ2 given by

f(X)(λ) :=

{
1, λ ∈ X
0, λ /∈ X

for λ < κ. Hence 2κ = |P(κ)|, and therefore, Theorem 13.8 states that for
every cardinal κ we have κ < 2κ. Now, the Continuum Hypothesis (CH) states
that 2ℵ0 = ℵ1, and the Generalised Continuum Hypothesis (GCH) states that
2ℵα = ℵα+1 for all α ∈ Ω. It is worth mentioning that CH— and consequently
also GCH— is not provable within ZFC (see Halbeisen [22, Ch. 15]).

One of the main features of the arithmetic of infinite cardinals is given by
the following result.

Proposition 13.10. For any ordinal numbers α, β ∈ Ω, we have

ℵα + ℵβ = ℵα · ℵβ = ℵα∪β = max{ℵα,ℵβ}.

In particular, for every infinite cardinal κ and for every n ∈ ω, κn = κ.
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Proof. It is enough to show that for all α ∈ Ω we have ℵα · ℵα = ℵα. For
α = 0 we have ℵ0 = ω, and by the bijection f : ω × ω → ω defined by

f(⟨n,m⟩) := n+
(n+m)(n+m+ 1)

2
,

we have |ω × ω| = ω, which shows that ℵ0 · ℵ0 = ℵ0. Assume towards a
contradiction that there exists an α ∈ Ω such that ℵα · ℵα > ℵα. Then there
exists a least ordinal α0 with this property, i.e.,

α0 =
⋂
{α ∈ Ω : ℵα · ℵα > ℵα}.

On ℵα0 × ℵα0 we define an ordering < by stipulating

⟨γ1, δ1⟩ < ⟨γ2, δ2⟩ ⇐⇒


(γ1 ∪ δ1) ∈ (γ2 ∪ δ2), or

(γ1 ∪ δ1) = (γ2 ∪ δ2) ∧ γ1 ∈ γ2, or

(γ1 ∪ δ1) = (γ2 ∪ δ2) ∧ γ1 = γ2 ∧ δ1 ∈ δ2.

With respect to the ordering <, the first few elements of ℵα0 × ℵα0 are

⟨0, 0⟩ < ⟨0, 1⟩ < ⟨1, 0⟩ < ⟨1, 1⟩
< ⟨0, 2⟩ < ⟨1, 2⟩ < ⟨2, 0⟩ < ⟨2, 1⟩ < ⟨2, 2⟩ < ⟨0, 3⟩ < · · ·

and in general, for α ∈ β ∈ ℵα0
we have ⟨α, β⟩ < ⟨β, α⟩. It is easily verified

that < is a linear ordering on ℵα0
×ℵα0

, and we leave it as an exercise to the
reader to show that < is even a well-ordering.

Now, let η ∈ Ω be the order type of the well-ordering < on ℵα0 × ℵα0 and
let Γ : η → ℵα0 ×ℵα0 be the unique order preserving bijection between η and
ℵα0
× ℵα0

. In particular, for any α, α′ ∈ η we get

α ∈ α′ if and only if Γ (α) < Γ (α′) .

Because ℵα0 < |ℵα0 × ℵα0 | we have ℵα0 < |η|. Let now ⟨γ0, δ0⟩ := Γ (ℵα0).
Then, since γ0, δ0 ∈ ℵα0 , for ν = max{γ0, δ0} we have

|ν| < ℵα0 and ℵα0 ≤ |ν × ν| .

Thus, for ℵβ = |ν| we get ℵβ < ℵα0
and ℵβ ·ℵβ > ℵβ , which is a contradiction

to the choice of α0. ⊣

For a cardinal κ, let fin(κ) denote the set of all finite subsets of κ, and let
seq(κ) denote the set of all finite sequences which we can build with elements
of κ. For a proof of the following fact see the Solution to Exercise 13.4.

Fact 13.11. For every infinite cardinal κ, we have κ = | fin(κ)| = | seq(κ)|.

13 The Axioms of Set Theory (ZFC)
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Notes

In 1905, Zermelo began to axiomatise Set Theory, and in 1908 he published his first
axiomatic system consisting of the seven above-mentioned axioms. In 1930, he presented
in [62] his second axiomatic system, which he called the ZF-system, where he incorporated

ideas of Fraenkel [10], Skolem [50], and von Neumann [38, 39, 40]. In fact, he added the
Axiom Schema of Replacement (which was already used implicitly by Cantor in 1899) and
the Axiom of Foundation to his former system, cancelled the Axiom of Infinity and did not

explicitly mention the Axiom of Choice. More details can be found, for example, in the

notes of Halbeisen [22, Ch. 3].

Exercises

13.0 Show that the Axiom of Empty Set follows from the Axiom Schema of Separation.

13.1 (a) Define by transfinite recursion addition of ordinals.

Hint: For each α ∈ Ω define a class function Fα by stipulating Fα(x) := ∅ if x is

not a function; if x is a function, then let

Fα(x) =


α if x = ∅,

x(β) ∪ {x(β)} if dom(x) = β + 1 and β ∈ Ω,⋃
δ∈β x(δ) if dom(x) = β and β ∈ Ω \ {∅} is a limit ordinal,

∅ otherwise.

(b) Define by transfinite recursion multiplication of ordinals.

(c) Define by transfinite recursion exponentiation of ordinals.

13.2 (a) Show that for limit ordinals α ∈ Ω,
⋃

δ∈α ℵδ is a cardinal.

(b) Show that any infinite cardinal κ is of the form ℵβ for some ordinal β.

13.3 Prove Fact 13.9.

13.4 (a) If κ is an infinite cardinal, then κ = | seq(κ)|.

Hint: Notice that | seq(κ)| =
∣∣∣⋃n∈ω κ

n
∣∣∣ = ℵ0 · κ.

(b) If κ is an infinite cardinal, then κ = | fin(κ)|.

13.5 Show that we can construct a model of PA within the axiom system Z. In particular,

addition and multiplication of ordinals in ω can be defined without the Axiom Schema
of Replacement (i.e., without the help of the Transfinite Recursion Theorem).

13.6 Let the unary relation symbol trans∗ be defined as follows:

trans∗(x) :⇐⇒ trans(x) ∧ ∀y ∈ x
(
trans(y)

)
Show that for all sets x we have:

trans∗(x) → ∀y1, y2 ∈ x
(
y1 ⊆ y2 → (y1 = y2 ∨ y1 ∈ y2)

)
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13.7 Prove that the following statements are equivalent for all sets x:

(a) ordinal(x)

(b) trans∗(x)

(c) ord∈(x) ∧ trans(x)

13.8 Show that R is uncountable. In particular, show that |R| = |(0, 1)| = |P(ω)|, where

(0, 1) is the set {r ∈ R : 0 < r < 1}.

Remark: A construction of R is given in Chapter 17. In this exercise, you may use

any well-known properties of R.

13 The Axioms of Set Theory (ZFC)
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Models of Set Theory

Zermelo writes in [61, p. 262] that he was not able to show that the seven
axioms for Set Theory given in that article are consistent. Even though it
is essential whether a theory is consistent or not, we know that whenever a
theory is strong enough to prove the axioms of PA, then there is no way to
prove its consistency within this theory (see Chapter 11). Therefore, since we
can prove within ZF that PA is consistent, we cannot prove the consistency
of ZF within ZF. On the the other hand, we know that every consistent theory
has a model. In particular, if ZF is consistent, then it has a model.

In what follows, we first show what models of ZF look like, then we briefly
discuss non-standard models of ZF, and finally we give a construction of
Gödel’s model of ZFC, which shows that AC is relatively consistent with ZF.
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The Cumulative Hierarchy of Sets

Let us assume that ZF is consistent. Then, by Gödel’s Completeness
Theorem 5.5 we know that there must be a model M = (M,∈M) of ZF.
Surprisingly, the domain M of the model M always has the structure of a
cumulative hierarchy of sets. For this, we first construct within ZF a certain
class V which has the structure of a cumulative hierarchy, and then we show
that every set in M corresponds to an element in V, which is — in abuse of
notation — denoted M = VM. To construct V, we first define the sets

V0 := ∅ ,

Vα :=
⋃
β∈α

Vβ if α is a limit ordinal ,

Vα+1 := P(Vα) ,

and then we define the class V by stipulating

V :=
⋃
α∈Ω

Vα.

The class V we defined is called the cumulative hierarchy of sets. To
carry out the construction of V in the framework of ZF, we define the class
function F by stipulating F (x) := ∅ if x is not a function; and if x is a
function, then let

F (x) =



∅ if x = ∅,

P
(
x(β)

)
if dom(x) = β + 1 and β ∈ Ω,⋃

δ∈β x(δ) if dom(x) = β and β ∈ Ω \ {∅} is a limit ordinal,

∅ otherwise.

By the Transfinite Recursion Theorem 13.5, there is a unique class
function G defined on Ω such that for each α ∈ Ω we have G(α) = F (G|α).
In particular, for each α ∈ Ω we have G(α) = Vα.

Notice that by the Axiom Schema of Replacement, for each α ∈ Ω, Vα is a
set. Moreover, we can easily prove the following

Fact 14.0. For any α, β ∈ Ω we have:

(a) Vα is transitive.

(b) The class V is transitive.

(c) If α ∈ β, then Vα ⊊ Vβ .

(d) α ⊆ Vα and α ∈ Vα+1.
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The cumulative hierarchy of sets is visualised by the following figure:

Before we can prove that the interpretation VM of V in the model M
contains all sets of M, we have to introduce the notion of transitive closure:
Let S be an arbitrary set. By induction on n ∈ ω, we define

S0 = S, Sn+1 =
⋃
Sn,

and finally

TC(S) =
⋃
n∈ω

Sn,

where
⋃
n∈ω Sn :=

⋃
{Sn : n ∈ ω}. For example, x1 ∈ S1 if and only if there

is an x0 ∈ S0, such that x0 ∋ x1, and in general, xn+1 ∈ Sn+1 if and only if

∃x0 ∈ S0 · · · ∃xn ∈ Sn(x0 ∋ x1 ∋ · · · ∋ xn+1) .

Notice that by the Axiom of Foundation, every descending sequence of the
form x0 ∋ x1 ∋ · · · must be finite. More precisely, every descending sequence
x0 ∋ x1 ∋ · · · is of the form x0 ∋ x1 ∋ · · · ∋ xn for some n ∈ ω.

By construction, TC(S) is transitive, i.e., x ∈ TC(S) implies x ⊆ TC(S),
and we further have S ⊆ TC(S). Moreover, since every transitive set T must
satisfy

⋃
T ⊆ T , it follows that the set TC(S) is the smallest transitive set

which contains S. Thus,

TC(S) =
⋂
{T : T ⊇ S and T is transitive}.

Consequently, the set TC(S) is called the transitive closure of S.

Now we are ready to show that M = VM.

Theorem 14.1. For every set x in M there is an ordinal α such that x ∈ VM
α .

In particular, the domain of any model M of ZF has the structure of a
cumulative hierarchy of sets.
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Proof. Let M be an arbitrary model of ZF with domain M, where we write
just “∈” instead of “∈M”. Assume towards a contradiction that there exists
a set x in M which does not belong to VM. Let x̄ := TC({x}) (i.e., x̄ is the
transitive closure of {x}), and let w := {z ∈ x̄ : z /∈ VM}, i.e., w = x̄ \ {z′ ∈
x̄ : ∃α ∈ Ω(z′ ∈ VM

α )}. Notice that w ∈M. Since x ∈ w we have w ̸= ∅, and
by the Axiom of Foundation there is a z0 ∈ w such that (z0 ∩ w) = ∅. Since
z0 ∈ w we have z0 /∈ VM, which implies that z0 ̸= ∅, but for all u ∈ z0 there is
a least ordinal αu such that u ∈ VM

αu
. By the Axiom Schema of Replacement,

{αu : u ∈ z0} is a set, and moreover, α =
⋃
{αu : u ∈ z0} ∈ Ω. This implies

that z0 ⊆ VM
α and consequently we get z0 ∈ VM

α+1, which contradicts the
fact that z0 /∈ VM. Thus, we have verified that in the model M we have
M = VM. ⊣

Since the class V is defined as a union of iterated powers of ∅, i.e.,
V =

⋃
α∈Ω Pα(∅), VM depends on the interpretation PM in M of the unary

power-set function symbol P in the extended language of set theory. It is
therefore natural to ask whether we can interpret P in M also in a differ-
ent way, say P̂M, such that the corresponding cumulative hierarchy V̂M is a
sub-class of VM, but M̂ = (V̂M,∈) is still a model of ZF, or even of ZFC. By

Theorem 14.1, we obtain that if M̂ ⊨ ZF, then VM̂ = V̂M. This is because

PM̂, which is the interpretation of P in M̂, is the same function as P̂M. In

particular, if V̂M is a proper sub-class of VM, then M̂ = (VM̂,∈) is a proper
sub-model of M = (VM,∈).

Now, since every model M of ZF is of the form M = (VM,∈), where V is
the formally defined cumulative hierarchy of sets, in abuse of terminology we
will identify the model M with the class V. In particular, we will consider
V as the set-theoretic universe which contains all sets. Even though V is
formally defined within ZF, this does not mean that ZF has a unique model,
as we will see in the next section.

Non-Standard Models of ZF

On the one hand, in Chapter 7 we have constructed the standard model of PA
with domain N, on which we later defined the linear ordering <. On the other
hand, in Chapter 13 we have constructed from ZF the set ω with the linear
ordering given by the membership relation ∈. Now, if, in a model V of ZF,
the structure (ω,∈) is isomorphic to the structure (N, <), then we call V
a standard model of ZF; otherwise, V is called a non-standard model
of ZF. Recall that in ZF, a set x is called finite if and only if there exists
a bijection between x and some element of ω. This leads to an alternative
definition of standard models of ZF: A model V of ZF is a standard model
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if and only if each set x which is finite in V is also finite with respect to the
metamathematical notion of f i n i t e n e s s.

Before we show the existence of non-standard models of ZF, we would like
to mention that we do not have a criteria to decide whether a model V
of ZF is standard. In particular, when we assumed earlier that M ⊨ ZF, it
might have been that M was a non-standard model, and therefore we find
that the non-standard models of ZF also have the structure of the cumulative
hierarchy.

Now, we will show that if ZF is consistent, then there exists a non-standard
model of ZF. For this purpose, we first extend the signature LST = {∈}
by adding countably many new constant symbols c0, c1, c2, . . ., i.e., the new
signature is {∈, c0, c1, c2, . . .}. Then, we extend the axioms ZF by adding the
formulae

c1 ∈ c0︸ ︷︷ ︸
φ0

, c2 ∈ c1︸ ︷︷ ︸
φ1

, c3 ∈ c2︸ ︷︷ ︸
φ2

, . . . ,

and let Ψ be the collection of these formulae. Now, if ZF has a model V
and Φ is any finite subset of Ψ, then, by interpreting the finitely many ci’s
c0, . . . , cn appearing in Ψ in a suitable way, e.g., by stipulating

ci := n− i,

V is also a model of ZF ∪ Φ, which implies that ZF ∪ Φ is consistent. Thus,
by the Compactness Theorem, ZF∪Ψ is also consistent and therefore has
a model, say V∗. Since V∗ ⊨ ZF ∪ Ψ, we get that the Axiom of Foundation
holds in V∗. In particular, there must be a set z ∈ TC

(
cV

∗

0

)
such that

V∗ ⊨ z ∩ TC
(
cV

∗

0

)
= ∅ ,

which implies that z must be different from all the sets cV
∗

n . On the other
hand, by the Axiom of Foundation, the length of a decreasing sequence of the
form

cV
∗

0 ∋ cV
∗

1 ∋ cV
∗

2 ∋ · · · ∋ z

must be finite in the sense of V∗. In other words, the length of such a de-
creasing sequence must be an element of ω in the model V∗, denoted by ωV∗

,
which shows that ωV∗

contains sets which are not finite with respect to the
metamathematical notion of f i n i t e n e s s. In particular, the structures
(ωV∗

,∈) and (N, <) are not isomorphic, and hence, V∗ is a non-standard
model of ZF.

As a matter of fact, we would like to mention that from the consistency
of ZF we obtain the existence of non-standard models of ZF, but without
using the metamathematical notion of f i n i t e n e s s, we do not obtain
the existence of standard models of ZF.
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Gödel’s Incompleteness Theorems for Set Theory

In this section, we indicate how Gödel’s Incompleteness Theorems can be
transferred to ZF and ZFC, respectively. In Chapter 16, we shall see that
within ZF we can construct a model of PA with domain ω. In particular, we
obtain

Con(ZF) ===Ï Con(PA) .

Therefore, with respect to ω, we can define within ZF the non-logical symbols
of LPA and can extend the language LST to the language L := LST ∪LPA ∪
{ω}. Furthermore, we can extend the theory ZF to the theory T := ZF ∪ PA.
Now, since L ⊇ LPA is a gödelisable language and T is a gödelisable L -
theory, we can apply Theorem 10.11 and obtain that if ZF is consistent,
then it is incomplete — the same applies to ZFC.

Moreover, within ZF we can define the LST-sentence

conZF :⇐⇒ ¬ prvZF(⌜∅ = {∅}⌝)

and show that if ZF is consistent, then ZF ⊬ conZF — where the same applies
to ZFC.

Summing up, we obtain the following

Theorem 14.2 (Gödel’s Incompleteness Theorems for Set Theory).

(a) If ZF is consistent, then it is incomplete.

(b) If ZF is consistent, then ZF ⊬ conZF.

Correspondingly, the same holds for ZFC.

As a matter of fact, we would like to mention that for T as above, on the
one hand we have

Con(T) ===Ï Con(PA) ,

but on the other hand, for conPA :⇐⇒ ¬ prvPA(⌜0 = 1⌝) we have

Con(T) ===Ï T ⊬ conPA .

Absoluteness

In order to investigate sub-models of V of fragments of ZFC, where we identify
the class V with the model (V,∈), the notion of absoluteness will be crucial.
If M is the domain of a sub-model M of V, then M is a collection of sets
of V. However, M itself is not necessarily a set in V, but as a collection of
sets of V, M is a class in V. For a class M in V, we can relativise a formula
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φ(ν1, . . . , νn) to the model M = (M,∈) such that for all x1, . . . , xn ∈M, the
relativised formula φM(ν1, . . . , νn) has the following property:

φM(x1, . . . , xn) ⇐⇒ M ⊨ φ(x1, . . . , xn)

To do this, by Theorem 1.7, we may assume that φ only contains ¬ and ∧
as logical operators and ∃ as quantifier. We define φM recursively as follows:

(xi ∈ xj)M :⇐⇒ V ⊨ xi ∈ xj
(xi = xj)

M :⇐⇒ V ⊨ xi = xj

(¬φ)M :⇐⇒ V ⊨ ¬φM

(φ ∧ ψ)M :⇐⇒ V ⊨ φM ∧ ψM

(∃ν φ)M :⇐⇒ ∃x ∈M : V ⊨ φM(x)

If M1 and M2 are two classes in V such that M1 ⊆ M2, then an LST-
formula φ(ν1, . . . , νn) is called absolute between the models M1 = (M1,∈)
and M2 = (M2,∈), if for all x1, . . . , xn ∈M1,

φM1(x1, . . . , xn) ⇐⇒ φM2(x1, . . . , xn) .

In the case when M2 = (V,∈), then we say that φ is absolute for M1.

As for LPA-formulae, we say that an LST-formula φ is a ∆-formula if it
is built up from atomic formulae using ¬, ∧, ∨, and bounded quantification,
i.e., ∀ν ∈ τ and ∃ν ∈ τ for some term τ .

Example 14.3. The formula x ⊆ y can be expressed by a ∆-formula, since

x ⊆ y ⇐⇒ ∀z ∈ x(z ∈ y).

Moreover, the formula stating that x is an ordinal is equivalent to a ∆-
formula, since trans(x) is a ∆-formula and by Exercises 13.6 and 13.7.(b)
we have

ordinal(x) ⇐⇒ trans(x) ∧ ∀y ∈ x
(
trans(y)

)
.

A proof of the following result can be found in Kunen [31]).

Fact 14.4. Let M be a class and let M = (M,∈). Then every LST-formula
which is logically equivalent to a ∆-formula is absolute for M.

The following result is useful because it provides simple criteria for the ax-
ioms of ZF being valid in transitive classes (a proof can be found in Kunen [31]).
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Lemma 14.5. Let M be a transitive class (i.e., M is a class and for all x, y
we have x ∈ y ∈M→ x ∈M), and let M = (M,∈). Then we have:

(a) M ⊨ Axiom of Extensionality

(b) M ⊨ Axiom of Foundation

(c) M ⊨ Axiom of Pairing ⇐⇒ ∀x, y ∈M
(
{x, y} ∈M

)
(d) M ⊨ Axiom of Union ⇐⇒ ∀x ∈M

(⋃
x ∈M

)
(e) M ⊨ Axiom of Infinity ⇐⇒ ω ∈M

(f) M ⊨ Axiom of Power Set ⇐⇒ ∀x ∈M
(
P(x) ∩M ∈M

)

Gödel’s Constructible Model L

In this section, we present Gödel’s constructible universe L, which essentially
consists of all sets which can be “described” and is therefore the smallest
model of Set Theory. More precisely, in each step of the construction of L
within some ground model V ⊨ ZF, we only add sets which are definable
from already constructed sets M by taking sets of the form

x =
{
y ∈M : (M,∈) ⊨ φ(y, p1, . . . , pn)

}
,

for some formulae φ and parameters p1, . . . , pn ∈ M . The problem that we
encounter at this point is that we do not know whether the satisfaction re-
lation (M,∈) ⊨ φ(y, p1, . . . , pn) can be defined by an LST-formula, which is
crucial in order to apply the Axiom Schema of Separation to obtain the ex-
istence of the set x. To achieve this, we first gödelise LST-formulae within
ZF in a similar way as we gödelised LPA-formulae within PA in Chapter 9.
However, in Set Theory the gödelisation is much simpler. We first gödelise
atomic LST-formulae as follows:

⌜vi ∈ vj⌝ := ⟨0, i, j⟩
⌜vi = vj⌝ := ⟨1, i, j⟩

Suppose that φ and ψ have already been gödelised. Then we define:

⌜¬φ⌝ := ⟨2, ⌜φ⌝⟩

⌜φ ∧ ψ⌝ := ⟨3, ⌜φ⌝, ⌜ψ⌝⟩

⌜φ ∨ ψ⌝ := ⟨4, ⌜φ⌝, ⌜ψ⌝⟩

⌜φ→ ψ⌝ := ⟨5, ⌜φ⌝, ⌜ψ⌝⟩

⌜∃viφ⌝ := ⟨6, i, ⌜φ⌝⟩

⌜∀vjφ⌝ := ⟨7, j, ⌜φ⌝⟩
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We can then define the set of all codes of formalised LST-formulae by stipu-
lating:

f ∈ Fml :⇐⇒ ∃n ∈ ω and c : n+ 1→ Vω such that f = c(n) and

∀m ≤ n ∃i, j ∈ ω ∃k, l < m
(
c(m) = ⟨0, i, j⟩ ∨ c(m) = ⟨1, i, j⟩

∨ c(m) = ⟨2, c(k)⟩ ∨ c(m) = ⟨3, c(k), c(l)⟩

∨ c(m) = ⟨4, c(k), c(l)⟩ ∨ c(m) = ⟨5, c(k), c(l)⟩

∨ c(m) = ⟨6, i, c(k)⟩ ∨ c(m) = ⟨7, i, c(k)⟩
)
.

Notice that Fml is a set which belongs to V. Furthermore, by induction on
the construction of φ, one can show that for every LST-formula φ we have
⌜φ⌝ ∈ Fml.

Let M be a set or a class. As usual, we shall identify the LST-structure
(M,∈) with M . Furthermore, let x⃗ = ⟨x0, . . . , xn⟩ ∈ Mn+1, i.e., x⃗ is a func-
tion with dom x⃗ = n+1 and x⃗(i) = xi for all 0 ≤ i ≤ n. Now, we formalise the
satisfaction relation for LST-formulae with free variables among {v0, . . . , vn}
as follows:

M⌜⊨⌝⟨0, i, j⟩[x⃗] :⇐⇒ xi ∈ xj
M⌜⊨⌝⟨1, i, j⟩[x⃗] :⇐⇒ xi = xj

M⌜⊨⌝⟨2, f⟩[x⃗] :⇐⇒ ¬M⌜⊨⌝f [x⃗]

M⌜⊨⌝⟨3, f, g⟩[x⃗] :⇐⇒M⌜⊨⌝f [x⃗] ∧M⌜⊨⌝g[x⃗]

M⌜⊨⌝⟨6, i, f⟩[x⃗] :⇐⇒ ∃a ∈M(M⌜⊨⌝f [x⃗ ia ]),

where for 0 ≤ k ≤ n,

(x⃗ ia )k =

{
xk k ̸= i,

a k = i.

Fact 14.6. Let M be a class in V and let φ(ν0, . . . , νn) be an LST-formula.
Then for any x0, . . . , xn ∈M and x⃗ = ⟨x0, . . . , xn⟩ we have

M ⊨ φ(x0, . . . , xn) ⇐⇒ M ⌜⊨⌝ ⌜φ⌝ [x⃗] .

Let now M be a set in V. We say that a set x is definable over M , if there
exist an LST-formula φ(ν0, . . . , νn) and p1, . . . , pn ∈M such that

x =
{
y ∈M : M ⊨ φ(y, p1, . . . , pn)

}
=
{
y ∈M : φM (y, p1, . . . , pn)

}
.

Furthermore, we define

Def(M) :=
{
x ∈P(M) : x is definable over M

}
.
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Notice that since M ∈ V, Def(M) belongs to V as well. Moreover, by defi-
nition we have Def(M) ⊆P(M).

In order to achieve that the set Def(M) itself is definable within V, we
have to use the formalised satisfaction relation. The reason is that we can-
not quantify over LST-formulae, but need to quantify over elements of Fml
instead. By the above definitions we obtain

x ∈ Def(M) :⇐⇒
∃f ∈ Fml ∃n ∈ ω ∃p⃗ ∈Mn ∀y ∈M

(
y ∈ x↔M⌜⊨⌝f [⟨y, p⃗⟩]

)
,

which shows that we can indeed define the set Def(M) within V. Thus, by
transfinite recursion we can define within V the constructible hierarchy
as follows:

L0 = ∅

Lα =
⋃
β∈α

Lβ if α is a limit ordinal

Lα+1 = Def(Lα)

The constructible universe is then defined as

L =
⋃
α∈Ω

Lα.

By transfinite recursion one can show that the class L is definable within V.
The goal is now to show that L is a model of ZFC. In order to simplify the
notation, we will not distinguish between the sets Lα and the correspond-
ing LST-structures (Lα,∈); the same applies to the class L and the LST-
structure (L,∈).

The following result shows that the structure of L is the same as the struc-
ture of V. In particular, we obtain that L contains the same ordinals as V.

Proposition 14.7.

(a) If α ∈ β ∈ Ω, then Lα ⊊ Lβ .

(b) For every β ∈ Ω, Lβ is transitive.

(c) For every β ∈ Ω, Lβ ⊆ Vβ .

(d) For every β ∈ Ω, Lβ ∩ Ω = β.

Proof. The proof is by induction on β ∈ Ω. For β = 0 we have Lβ = ∅ and
therefore, the claim is trivial. The limit case follows immediately from the
definition of Lβ at the limit stage. Hence we may assume that β = γ + 1 is a
successor ordinal. For (a) it suffices to check that Lγ ⊆ Lβ and Lγ ∈ Lβ . For
the first claim, let x ∈ Lγ . By transitivity of Lγ we have x ⊆ Lγ and hence
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x = {y ∈ Lγ : (Lγ ,∈) ⊨ y ∈ x} ∈ Def(Lγ) = Lβ .

For the second claim, note that

Lγ = {x ∈ Lγ : (Lγ ,∈) ⊨ x = x} ∈ Lβ .

For (b) let x ∈ Lβ . Then (a) and the transitivity of Lγ imply x ⊆ Lγ ⊆ Lβ . By
our induction hypothesis we have Lγ ⊆ Vγ and thus P(Lγ) ⊆P(Vγ) = Vβ .
Since Vβ = Def(Lγ) ⊆P(Lγ), (c) holds. For (d), observe first that Lβ ∩Ω ⊆
Vβ ∩Ω = β. For the reverse inclusion, by induction we have Lγ ∩Ω = γ and
therefore, by absoluteness of the formula ordinal(x)’, we finally have

γ =
{
δ ∈ Lγ : ordinal(δ)

}
=
{
δ ∈ Lγ : (Lγ ,∈) ⊨ ordinal(δ)

}
∈ Def(Lγ) = Lβ .

⊣

Theorem 14.8 (Lévy’s Reflection Theorem). Let φ be an LST-formula
and α ∈ Ω. Then there is a β ∈ Ω with β ≥ α such that φ is absolute between
Lβ and L.

Proof. By Theorem 1.7, we may assume that φ only contains ¬ and ∧ as
logical operators and ∃ as quantifier. Suppose that φ0, . . . , φm is a list of all
subformulae of φ with the property that all proper subformulae of φi occur
among φ0, . . . , φi−1, i.e., φ is the formula φm. Furthermore, assume that all
free variables of φ0, . . . , φm are among {v0, . . . , vn}. For the sake of simplicity,
for x⃗ = ⟨x0, . . . , xn⟩ ∈ Ln+1 we define

φ(x⃗) :≡ φ(x0, . . . , xn) .

For every i ≤ m, we define a class function Fi : Ln+1 → Ω by stipulating

Fi(x⃗) =


min∈

{
β ∈ Ω : ∃b ∈ Lβ ψ

L( νb , x⃗)
}

if φi(x⃗) ≡ ∃ν ψ(ν, x⃗)

and ∃a ∈ LψL( νa , x⃗),

0 otherwise.

Notice that the class function Fi guarantees that if φi is of the form ∃ν ψ(ν)
and there is a witness in L for ψ(ν), then there is already a witness for ψ(ν)
in Lβ .

Now, we recursively define a sequence of ordinals ⟨βk : k ∈ ω⟩ as follows:
Let β0 := α. Suppose that βk is given. Then let

βk+1 :=
⋃{

Fi(x⃗) : i ≤ m ∧ {x0, . . . , xn} ⊆ Lβk

}
.

Finally, set β :=
⋃
k∈ω βk. We show by induction that for every i ≤ m, the

formula φi is absolute between Lβ and L. Suppose that {x0, . . . , xn} ⊆ Lβ .

Case 1. φi is atomic. Then φi is obviously absolute between Lβ and L.
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Case 2. φi is ¬φj for some j < i and φj is absolute between Lβ and L. By

assumption, we have φ
Lβ

j (x⃗) ⇐⇒ φL
j (x⃗) and hence

φ
Lβ

i (x⃗) ⇐⇒ ¬φLβ

j (x⃗) ⇐⇒ ¬φL
j (x⃗) ⇐⇒ φL

i (x⃗) .

Case 3. φi is φj ∧φk for j, k < i and φj , φk are absolute between Lβ and L.
Then we have

φ
Lβ

i (x⃗) ⇐⇒ φ
Lβ

j (x⃗) ∧ φLβ

k (x⃗) ⇐⇒ φL
j (x⃗) ∧ φL

k (x⃗) ⇐⇒ φL
i (x⃗) .

Case 4. φi is ∃νφj for some j < i such that φj is absolute between Lβ
and L. Then on the one hand, since L and Lβ ⊆ L, we have

φ
Lβ

i (x⃗) =⇒ ∃ν ∈ Lβ φ
Lβ

j (x⃗) =⇒ ∃ν ∈ LφL
j (x⃗) =⇒ φL

i (x⃗) ,

and on the other hand, by construction of β and since {x0, . . . , xn} ⊆ Lβ , we
have

φL
i (x⃗) =⇒ ∃ν ∈ LφL

j (x⃗) =⇒ ∃ν ∈ Lβ φ
Lβ

j (x⃗) =⇒ φ
Lβ

i (x⃗) .

Hence, φi is absolute between Lβ and L. ⊣

L ⊨ ZF

Now we are ready to show the following

Theorem 14.9. The constructible universe is a model of ZF, i.e.,

L ⊨ ZF .

Proof. First notice that since ∅ ∈ L, the Axiom of Empty Set holds in L, and
since L is a transitive class, by Lemma 14.5 also the Axiom of Extensionality
and the Axiom of Foundation hold in L.

By applying Lemma 14.5, we now show that the following five axioms of
ZF hold in L:

Axiom of Pairing. Let a, b ∈ L and let α ∈ Ω be such that a, b ∈ Lα. Then

{a, b} =
{
x ∈ Lα : x = a ∨ x = b

}
∈ Lα+1 ⊆ L.

Axiom of Union. Let a ∈ L and let α ∈ Ω such that a ∈ Lα. Since Lα is
transitive, we have

⋃
a ⊆ Lα, and thus,⋃

a =
{
x ∈ Lα : ∃y(x ∈ y ∧ y ∈ a)

}
=
{
x ∈ Lα : Lα ⊨ ∃y ∈ a(x ∈ y)

}
∈ Lα+1.

Axiom of Infinity. By Proposition 14.7 we have ω ∈ Lω+1 ⊆ L.
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Axiom of Power Set. Let a ∈ L. By the Axiom of Power Set in V we obtain
that P(a)∩L is a set, and thus, there is an α ∈ Ω such that P(a)∩L ⊆ Lα.
Therefore, we have

P(a) ∩ L =
{
x ∈ Lα : x ⊆ a

}
=
{
x ∈ Lα : Lα ⊨ x ⊆ a

}
∈ Lα+1 ,

since the subset relation is absolute.

It remains to show that the two axiom schema of ZF hold in L as well:

Axiom Schema of Separation. Let φ(ν0, . . . , νn) be an LST-formula such
that free(φ) ⊆ {ν0, . . . , νn}, let {x, p1, . . . , pn} ⊆ L and let p⃗ = ⟨p1, . . . , pn⟩.
It suffices to prove that {

y ∈ x : L ⊨ φ(y, p⃗)
}
∈ L.

Let α ∈ Ω be such that {x, p1, . . . , pn} ⊆ Lα. By Lévy’s Reflection The-
orem, there is a β ∈ Ω with β ≥ α such that φ is absolute between Lβ and L.
Then by transitivity of Lβ we have{

y ∈ x : L ⊨ φ(y, p⃗)
}

=
{
y ∈ x : Lβ ⊨ φ(y, p⃗)

}
=
{
y ∈ Lβ : Lβ ⊨ ψ(y, p⃗, x)

}
∈ Lβ+1,

where ψ(v0, . . . , vn+1) is the formula v0 ∈ vn+1 ∧ φ(v0, . . . , vn).

Axiom Schema of Replacement. Let φ be an LST-formula with n + 2 free
variables and let {p1, . . . , pn, A} ∈ L. Suppose that φ defines a class function
in L, i.e.,

∀x ∈ L ∃!y ∈ Lφ(x, y, p⃗).

Consider the function F on A given by

F (x) = min∈
{
β ∈ Ω : ∃y ∈ Lβ φ

L(x, y, p⃗)
}
.

Since A ∈ L, by the Axiom Schema of Replacement applied in V we have
X := F [A] ∈ V. Now, X is a set of ordinals, and therefore, α :=

⋃
X ∈ Ω.

Consider
B :=

{
y ∈ L : ∃x ∈ AφL(x, y, p⃗)

}
.

Since φ is functional and using the Axiom Schema of Replacement in V, we
obtain that B is a set satisfying B ⊆ Lα. Now, by Lévy’s Reflection
Theorem there is an ordinal β ≥ α such that A ∈ Lβ and φ is absolute
between Lβ and L. Hence,

B =
{
y ∈ L : ∃x ∈ AφL(x, y, p⃗)

}
=
{
y ∈ Lβ : ∃x ∈ AφLβ (x, y, p⃗)

}
∈ Lβ+1 .

Therefore, we have shown that L satisfies all axioms of ZF, i.e., L ⊨ ZF. ⊣
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L ⊨ ZFC

In this section, we will show that it is possible to define a class-sized well-
ordering of Gödel’s model L, from which it follows that L is in fact a model
of the Axiom of Choice. Since our ground model V, in which we carried out
the construction of L, was just a model of ZF, it may come as a surprise that
L ⊨ ZFC. In particular, we obtain that in every model V of ZF there exists
a sub-model of ZFC, no matter whether or not AC holds in V.

The idea of the proof is to show that each level Lα of the constructible
hierarchy can be well-ordered, which can be used to construct a well-ordering
of L.

Suppose that for some α ∈ Ω, a well-ordering ≺α of Lα is given such that
for any β ∈ Ω with α < β, ≺β is an end-extension of ≺α, i.e., ≺β satisfies
the following two properties:

• For any x, y ∈ Lα, if x ≺α y then x ≺β y.

• If x ∈ Lα and y ∈ Lβ \ Lα, then x ≺β y.

Assuming the existence of such a well-ordering ≺α for every α ∈ Ω, we obtain
a class-sized well-ordering of L by stipulating

x ≺L y :⇐⇒ ∃α ∈ Ω(x ≺α y).

We will define ≺α by transfinite recursion. Note that the only non-trivial case
will be the successor case. Recall that we have defined Lα+1 to be Def(Lα),
and each element of Def(Lα) is of the form x = D(α, f, p⃗), where f ∈ Fml,
p⃗ ∈ seq(Lα) and

D(α, f, p⃗) :=
{
y ∈ Lα : Lα⌜⊨⌝f [⟨y, p⃗⟩]

}
.

Therefore, the task of defining a well-ordering on Lα+1 essentially reduces to
ordering triples (α, f, p⃗), whereby one has to take into account that different
triples can generate the same set. Thus, we will also define recursively a
well-ordering ≺̃α on triples of the form (β, f, p⃗) for β < α, f ∈ Fml, and
p⃗ ∈ seq(Lα). Now, since the sequence of parameters p⃗ is in Lα, one needs to
refer to ≺α in order to define ≺̃α+1. Hence, we define both well-orderings by
a simultaneous recursion.

Moreover, observe that ordering such triples further requires ordering Fml.
By construction, we have Fml ⊆ Vω, and thus, Fml is countable. Hence, there
is a well-ordering ≺Fml of Fml. We proceed as follows:

• Let ≺0 be the empty ordering, i.e., ≺0:= ∅.

• Suppose that for some α ∈ Ω, ≺α has already been defined. We first
tackle ≺̃α+1. Let β, γ < α, f, g ∈ Fml, and let p⃗, q⃗ ∈ seq(Lα) of length lp⃗
and lq⃗, respectively. Then we define:
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⟨β, f, p⃗⟩ ≺̃α+1 ⟨γ, g, q⃗⟩ :⇐⇒ β < γ ∨ (β = γ ∧ f ≺Fml g)

∨
(
β = γ ∧ f = g ∧ lp⃗ < lq⃗

)
∨
(
β = γ ∧ f = g ∧ lp⃗ = lq⃗ ∧

∃n ∈ ω
(
n = min

{
m < lp⃗, lq⃗ : p⃗(m) ̸= q⃗(m)

}
∧ p⃗(n) ≺α q⃗(n)

))
Now, we are ready to define ≺α+1. For x, y ∈ Lα+1, we set

x ≺α+1 y :⇐⇒⟨β, f, p⟩≺̃α+1⟨γ, g, q⟩,

where ⟨β, f, p⃗⟩ and ⟨γ, g, q⃗⟩ are ≺̃α+1-minimal triples such that x =
D(β, f, p⃗) and y = D(γ, g, q⃗).

• If α is a limit ordinal, then we set

≺α:=
⋃
β<α

≺β .

By construction, ≺β is an end-extension of ≺α for all α, β ∈ Ω with α < β.
Therefore, the ordering ≺L as defined above is a well-ordering of the entire
constructible universe L. Note that the existence of a well-ordering of the
whole model, a so-called global well-ordering, yields a strengthening of
the Axiom of Choice, namely a class-sized choice function which chooses an
element from every non-empty set.

As a consequence of the existence of a global well-ordering of L, we obtain
the following

Theorem 14.10. The constructible universe is a model of the Axiom of
Choice, i.e.,

L ⊨ ZFC .

Proof. For every family F ∈ L such that ∅ /∈ F , there is a choice function

f : F →
⋃

F ,

where f(x) is the ≺L-minimal element of x ∈ F . ⊣

In particular, as a consequence of Theorem 14.10 we obtain that the con-
sistency of ZF implies the consistency of ZFC, i.e.,

Con(ZF) ===Ï Con(ZFC).
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Notes

The constructible universe L was introduced by Gödel in his 1938 paper [17], in which

he proved both that if ZFC is consistent, then L is a model of the Axiom of Choice and
the Continuum Hypothesis. The construction of L presented here is mainly taken from
Koepke [30] (see also Kunen [31]). According to Bernays, Gödel originally used the old
German script to denote the constructible universe, where is a capital C and not —
as one could think — a capital L. In 1963, Cohen developed in [4] and [5] the method of

forcing (see, for example, Halbeisen [22] for an introduction) to prove that both the Axiom
of Choice and the Continuum Hypothesis are in fact independent of the axioms of ZF.

Exercises

14.0 Prove Fact 14.0.

14.1 Let V ⊨ ZFC. For cardinals κ ∈ V, we define the class

Hκ :=
{
x ∈ V : |TC({x})| < κ

}
.

(a) Prove Hκ ⊆ Vκ and conclude that Hκ is a set.

Hint: Set rk(x) = α for the minimal α ∈ Ω such that x ∈ Vα and prove that
{rk(y) : y ∈ TC(x)} = rk(x). We call rk(x) the rank of x.

(b) Find cardinals κ1 and κ2 such that Hκ1 = Vκ2 and Hκ2 ̸= Vκ2 .

14.2 Examine which of the axioms of ZFC hold in the structure (Hκ,∈) for κ ∈ {ℵ0,ℵ1}.

Remark: Hℵ0
is called the set of hereditarily finite sets and Hℵ1

is called the set of

hereditarily countable sets.

14.3 Show that Zermelo’s axiom system Z does not imply the Axiom Schema of Replacement.

Hint: Show that Vω+ω is a model of Z but the Axiom Schema of Replacement fails
in Vω+ω .

14.4 Show that the axiom system of ZF is not equivalent to a f i n i t e set of axioms.

Hint: Notice that Lévy’s Reflection Theorem also holds if we replace Lα by Vα.

Use this fact and the Axiom of Foundation to show that the assumption that ZF is
equivalent to a f i n i t e axiom system leads to a contradiction.

14.5 A cardinal κ is called inaccessible if it has the following properties:

(0) κ is uncountable.
(1) For all cardinals λ < κ we have 2λ < κ.
(2) For all sets A ⊆ κ with |A| < κ we have

⋃
A ∈ κ.

Recall that by Corollary 13.2.(a),
⋃
A is an ordinal, and notice that ℵ0 has prop-

erties (1) and (2).

(a) Show that if κ is inaccessible, then Vκ ⊨ ZFC.

Hint: Show first that for all ordinals α ∈ κ, |Vα| < κ.

(b) Show that if ZFC is consistent, then the existence of an inaccessible cardinal cannot
be proved within ZFC.



Chapter 15

Models and Ultraproducts

The goal of this chapter is to show that every consistent L -theory has a
model, no matter whether the signature L is countable or uncountable. In
addition, we will show that if a consistent L -theory T has an infinite model,
then, on the one hand, T has arbitrarily large models, and on the other hand,
T has a model of size at most max

{
ℵ0, |L |

}
.

In order to prove these results, we shall work within a model of ZFC, in
particular, we shall make use of the Axiom of Choice. Therefore, in contrast
to the proofs of the corresponding results in Part II, the following proofs are
not constructive in general. As a matter of fact, we would like to mention
that even though the proofs are carried out in a model of ZFC, in general,
they cannot be carried out in ZFC. In fact, we do not work with ZFC as a
formal system, but we just take a model of ZFC and use it as a framework in
which we carry out the proofs.

Filters and Ultrafilters

Let S be an arbitrary non-empty set and let P(S) be the power-set of S,
i.e., the set of all subsets of S. A set F ⊆ P(S) is called a filter over S, if
F has the following properties:

• S ∈ F and ∅ /∈ F
• (x ∈ F ∧ y ∈ F )→ (x ∩ y) ∈ F
• (x ∈ F ∨ y ∈ F )→ (x ∪ y) ∈ F

In particular, if x ∈ F and x ⊆ y, then y ∈ F . Thus, a filter over S is a
set of subsets of S which does not contain the empty set and which is closed
under finite intersections and supersets. For example, the set {S} is a filter
over S.
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A more interesting example of a filter over S is the set

F :=
{
x ⊆ S : S \ x is finite

}
,

which is the so-called Fréchet-filter. Now, a set U ⊆ P(S) is called an
ultrafilter over S, if U is a filter over S and for each x ∈ P(S), either
x ∈ U or (S \ x) ∈ U . In other words, a filter U is an ultrafilter if U is not
properly contained in any filter. For example, for each a ∈ S, the set

Ua :=
{
x ⊆ S : a ∈ x

}
is an ultrafilter over S, called trivial ultrafilter. In particular, every ultrafilter
over a finite set is trivial. It is natural to ask whether there exist also non-
trivial ultrafiters, for example, ultrafilters which contain the Fréchet-filter. Or
in general, we can ask whether every filter can be extended to an ultrafiter.
This is what the Ultrafilter Theorem states:

Ultrafilter Theorem: If F is a filter over a set S, then F can be ex-
tended to an ultrafilter.

Surprisingly, we cannot prove the Ultrafilter Theorem without assuming
some form of the Axiom of Choice. However, proving the Ultrafilter Theorem
within ZFC is not so hard (see Solution to Exercise 15.1).

Ultraproducts and Ultrapowers

Let L be an arbitrary but fixed signature, let I be a non-empty set, and
for each ι ∈ I, let Mι be an L -structure with domain Aι. Furthermore,
let A := ×ι∈I Aι be the Cartesian product of the sets Aι. Below, we shall
identify the elements of A with functions f : I →

⋃
ι∈I Aι, where for each

ι ∈ I, f(ι) ∈ Aι. Finally, let U ⊆P(I) be an ultrafilter over I. With respect
to U , we define a binary relation ∼ on A by stipulating

f ∼ g :⇐⇒
{
ι ∈ I : f(ι) = g(ι)

}
∈ U .

Fact 15.0. The relation ∼ is an equivalence relation.

Proof. We have to show that ∼ is reflexive, symmetric, and transitive.

• For all f ∈ A, we obviously have f ∼ f .

• For all f, g ∈ A, we obviously have f ∼ g ↔ g ∼ f .

• Let f, g, h ∈ A and assume that f ∼ g and g ∼ h. Furthermore, let
x :=

{
ι ∈ I : f(ι) = g(ι)

}
and y :=

{
ι ∈ I : g(ι) = h(ι)

}
. Then x, y ∈ U ,

and since U is a filter, x ∩ y as well as every superset of x ∩ y belongs
to U . Thus, we have
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x ∩ y ⊆
{
ι ∈ I : f(ι) = h(ι)

}
∈ U ,

which shows that f ∼ h.
⊣

Now, for each f ∈ A, let

[f ] := {g ∈ A : g ∼ f}

and let
A∗ :=

{
[f ] : f ∈ A

}
.

We now construct the L -structure M∗ with domain A∗ as follows:

• For every constant symbol c ∈ L , let fc ∈ A be defined by stipulating

fc(ι) := cMι for all ι ∈ I,

and let
cM

∗
:= [fc].

• For every n-ary function symbol F ∈ L , let FM∗
: (A∗)n → A∗ be such

that

FM∗(
[f0], . . . , [fn−1]

)
= [f ] ⇐⇒{
ι ∈ I : FMι

(
f0(ι), . . . , fn−1(ι)

)
= f(ι)

}
∈ U .

• For every n-ary relation symbol R ∈ L , let RM∗ ⊆ (A∗)n be such that〈
[f0], . . . , [fn−1]

〉
∈ RM∗

⇐⇒{
ι ∈ I :

〈
f0(ι), . . . , fn−1(ι)

〉
∈ RMι

}
∈ U .

Fact 15.1. The constants cM
∗
, the functions FM∗

, and the relations RM∗

are well-defined.

Proof. We just show that the functions FM∗
: (A∗)n → A are well-defined

and leave the proofs for cM
∗

and RM∗
as an exercise (see Exercise 15.2). Let

F ∈ L be an n-ary function symbol and let ⟨f0, . . . , fn−1⟩ and ⟨g0, . . . , gn−1⟩
be elements in An such that for each 0 ≤ i < n we have

fi ∼ gi or equivalently [fi] = [gi] .

For 0 ≤ i < n let



214 15 Models and Ultraproducts

xi :=
{
ι ∈ I : fi(ι) = gi(ι)

}
.

Then xi ∈ U for each 0 ≤ i < n, and since U is a filter, we get that also
x0 ∩ · · · ∩ xn−1 ∈ U . Furthermore, we define f, g ∈ A by stipulating

f(ι) := FMι
(
f0(ι), . . . , fn−1(ι)

)
and g(ι) := FMι

(
g0(ι), . . . , gn−1(ι)

)
.

Then we have

x0 ∩ · · · ∩ xn−1 ⊆
{
ι ∈ I : f0(ι) = g0(ι) ∧ · · · ∧ fn−1(ι) = gn−1(ι)

}
∈ U ,

and consequently, we obtain{
ι ∈ I : FMι

(
f0(ι), . . . , fn−1(ι)

)
= FMι

(
g0(ι), . . . , gn−1(ι)

)}
∈ U .

Hence,
{
ι ∈ I : f(ι) = g(ι)

}
∈ U , which shows that [f ] = [g] and implies

that
FM∗(

[f0], . . . , [fn−1]
)

= FM∗(
[g0], . . . , [gn−1]

)
.

Therefore, the value of the function FM∗
does not depend on the particular

representatives that we choose from the equivalence classes [fi]. ⊣

The L -structure M∗ with domain A∗ is called the ultraproduct of the
L -structures Mι (ι ∈ I) with respect to the ultrafilter U over I. If for all
ι ∈ I we have Mι = M for some L -structure M, then M∗ is called the
ultrapower of M with respect to U .

In the next section, we show that if each L -structure Mι is a model of
some L -theory T, then also the ultraproduct M∗ is a model of T.

 Loś’s Theorem

As above, let L be an arbitrary signature, let I be a non-empty set, and
for each ι ∈ I, let Mι be an L -structure with domain Aι. Finally, let U be
an ultrafilter over I and let M∗ be the ultraproduct of the L -structures Mι

(ι ∈ I) with respect to U . The following result allows us to decide whether
a given L -sentence is valid in M∗.

Theorem 15.2 ( Loś’s Theorem). For each L -sentence σ, we have

M∗ ⊨ σ Î===Ï
{
ι ∈ I : Mι ⊨ σ

}
∈ U .

Proof. By Theorem 1.7, for every L -sentence σ there is an equivalent L -
sentence σ′ which contains only ¬ and ∧ as logical operators and ∃ as quanti-
fier. Therefore, it is enough to prove  Loś’s Theorem for the L -sentence σ′.



 Loś’s Theorem 215

The proof is by induction on the number of the symbols ¬, ∧, and ∃ which
appear in the L -sentence σ′.

By construction of M∗,  Loś’s Theorem holds for atomic L -sentences σ′,
i.e., for sentences σ′ which are build with the rules (F0) and (F1).

Assume that σ′ ≡ ¬σ0 and that  Loś’s Theorem holds for σ0. Then we
have:

M∗ ⊨ ¬σ0 Î===Ï M∗ ⊭ σ0
Î===Ï

{
ι ∈ I : Mι ⊨ σ0

}
/∈ U

Î===Ï I \
{
ι ∈ I : Mι ⊨ σ0

}
∈ U

Î===Ï
{
ι ∈ I : Mι ⊭ σ0

}
∈ U

Î===Ï
{
ι ∈ I : Mι ⊨ ¬σ0

}
∈ U

Now, assume that σ′ ≡ σ1 ∧σ2 and that  Loś’s Theorem holds for σ1 and
σ2. Then we have:

M∗ ⊨ σ1 ∧ σ2 Î===Ï M∗ ⊨ σ1 and M∗ ⊨ σ2
Î===Ï

{
ι ∈ I : Mι ⊨ σ1

}︸ ︷︷ ︸
=:x1

∈ U and
{
ι ∈ I : Mι ⊨ σ2

}︸ ︷︷ ︸
=:x2

∈ U

Î===Ï x1 ∩ x2 ∈ U

Î===Ï
{
ι ∈ I : Mι ⊨ σ1 ∧ σ2

}
∈ U

Finally, assume that σ′ ≡ ∃νσ0 (for some variable ν) and that for some
[g] ∈ A∗ we have

M∗ [g]
ν ⊨ σ0(ν) Î===Ï

{
ι ∈ I : Mι

g(ι)
ν ⊨ σ0(ν)

}
∈ U .

Then we have:

M∗ ⊨ ∃νσ0 Î===Ï it exists [g0] in A∗ : M∗ [g0]
ν ⊨ σ0(ν)

Î===Ï it exists [g0] in A∗ :
{
ι ∈ I : Mι

g0(ι)
ν ⊨ σ0(ν)

}︸ ︷︷ ︸
=:x

∈ U

Because x ⊆
{
ι ∈ I : Mι ⊨ ∃νσ0

}
, it follows that

{
ι ∈ I : Mι ⊨ ∃νσ0

}
∈ U ,

which shows that

M∗ ⊨ ∃νσ0 ===Ï
{
ι ∈ I : Mι ⊨ ∃νσ0

}
∈ U .

In order to show the converse implication, we have to make use of the
Axiom of Choice. If, for ι ∈ I, Mι ⊨ ∃νσ0, then let aι ∈ Aι be such that
Mι

aι
ν ⊨ σ0(ν), otherwise, let aι be an arbitrary element of Aι. Now, for the

function
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g0 : I →
⋃
ι∈I Aι

ι 7→ aι

we have
{
ι ∈ I : Mι ⊨ ∃νσ0

}
=
{
ι ∈ I : Mι

g0(ι)
ν ⊨ σ0(ν)

}
. In particular, if{

ι ∈ I : Mι ⊨ ∃νσ0
}
∈ U , then also{

ι ∈ I : Mι
g0(ι)
ν ⊨ σ0(ν)

}
∈ U ,

which shows that{
ι ∈ I : Mι ⊨ ∃νσ0

}
∈ U ===Ï M∗ ⊨ ∃νσ0 .

Thus, we obtain

M∗ ⊨ ∃νσ0 Î===Ï
{
ι ∈ I : Mι ⊨ ∃νσ0

}
∈ U ,

which completes the proof. ⊣

The Completeness Theorem for Uncountable Signatures

In Chapter 5, we have proven Gödel’s Completeness Theorem 5.5 (i.e.,
the Completeness Theorem for countable signatures). The proof given
there was based on potentially infinite lists, and the metamathematical as-
sumptions we made were very mild. In fact, our proof for Gödel’s Com-
pleteness Theorem 5.5 can be carried out effectively in a kind of algo-
rithmic way. In contrast to the proof for countable signatures, the proof of
the Completeness Theorem for uncountable signatures — which will fol-
low from the semantic form of the Compactness Theorem 2.17 — is much
more formal. In particular, it makes use of  Loś’s Theorem 15.2, which is
based on the existence of ultrafilters and choice functions, and is carried out
in a model of ZFC— but not in ZFC itself.

Theorem 15.3 (Semantic Form of the Compactness Theorem). Let
T be an L -theory such that for every finite subset Φ ⊆ T there is an L -
structure MΦ such that MΦ ⊨ Φ. Then T has a model.

Proof. Let I be the set of all finite subsets of T, i.e.,

I :=
{

Φ ⊆ T : Φ is finite
}
.

For each Φ ∈ I, let MΦ be an L -structure with domain AΦ such that MΦ ⊨
Φ. Furthermore, for every Φ ∈ I let

∆(Φ) :=
{

Φ′ ∈ I : Φ ⊆ Φ′}.
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In other words, ∆(Φ) is the set of all finite supersets Φ′ ⊇ Φ. In particular,
for every Φ ∈ I we have Φ ∈ ∆(Φ) and ∆(Φ) ⊆ I. Now, for all Φ1,Φ2 ∈ I we
have ∆(Φ1) ∩∆(Φ2) = ∆(Φ1 ∪ Φ2), where Φ1 ∪ Φ2 ∈ I. Therefore, the set

F :=
{

Ψ ⊆ I : ∃Φ ∈ I
(
∆(Φ) ⊆ Ψ

)}
is a filter over I, which, by the Ultrafilter Theorem, can be extended to an
ultrafilter U .

Let M∗ with domain A∗ be the ultraproduct of the L -structures MΦ

(Φ ∈ I) with respect to the ultrafilter U over I, and let σ0 ∈ T be an
arbitrary L -sentence. Then {σ0} ∈ I and M{σ0} ⊨ σ0. Moreover, for every

Φ ∈ ∆
(
{σ0}

)
we have MΦ ⊨ σ0. Therefore, we have

∆
(
{σ0}

)
=
{

Φ ∈ I : σ0 ∈ Φ
}
⊆
{

Φ ∈ I : MΦ ⊨ σ0
}
.

Now, since ∆
(
{σ0}

)
∈ F ⊆ U , by  Loś’s Theorem 15.2 we obtain

M∗ ⊨ σ0,

and since σ0 ∈ T was arbitrary, this shows that M∗ ⊨ T. Hence, T has a
model. ⊣

As a consequence of Theorem 15.3 and Gödel’s Completeness Theo-
rem 5.5, we obtain the Completeness Theorem for arbitrarily large sig-
natures.

Theorem 15.4 (Completeness Theorem). If L is an arbitrary signature
and T is a consistent set of L -sentences, then T has a model.

Proof. Firstly, if T is consistent, then, by the Compactness Theorem 2.17,
every finite subset Φ ⊆ T is consistent. Secondly, as in the proof of Gödel’s
Completeness Theorem 5.5, for every finite subset of Φ ⊆ T we can
construct an L ′-structure M′

Φ with domain AΦ, such that M′
Φ ⊨ Φ, where

L ′ is the finite subset of L consisting of all non-logical symbols which appear
in sentences of Φ. Now, we extend each L ′-structure M′

Φ to an L -structure
MΦ with the same domain AΦ such that MΦ ⊨ Φ (see Exercise 3.2). Hence,
for every finite subset of Φ ⊆ T there is an L -structure MΦ such that
MΦ ⊨ Φ, and therefore, we can apply Theorem 15.3 in order to construct a
model M∗ ⊨ T. ⊣

As an immediate consequence of the Completeness Theorem 15.4 and
the Soundness Theorem 3.7, we obtain the following

Corollary 15.5. For any signature L , a set T of L -sentences has a model
if and only if T is consistent.
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The Upward Löwenheim-Skolem Theorem

Next, we will show that every L -theory which has an infinite model has
arbitrarily large models.

Theorem 15.6 (Upward Löwenheim-Skolem Theorem). Let T be an
L -theory which has an infinite model, and let κ be an arbitrarily large car-
dinal. Then there exists a model M∗ ⊨ T with domain A∗ such that |A∗| ≥ κ
(i.e., the cardinality of A∗ is at least κ).

Proof. For each γ ∈ κ, we define a constant symbol cγ which does not belong
to L . Let L ∗ := L ∪ {cγ : γ ∈ κ}. Furthermore, let T∗ be the L ∗-theory
consisting of the sentences in T together with the sentences cγ ̸= cγ′ (for any
distinct γ, γ′ ∈ κ). As in the proof of Theorem 15.3, let I be the set of all
finite subsets of T∗. Now, let M ⊨ T be a model with infinite domain A. For
any Φ ∈ I, we can extend the L -structure M to an L ∗-structure MΦ such
that

MΦ ⊨ T + Φ.

In order to see this, notice that the domain A of M is infinite and that there
are just finitely many constant symbols cγ which appear in Φ. Therefore, we
can apply Theorem 15.3 in order to construct an L ∗-structure M∗ with
domain A∗ such that M∗ ⊨ T∗. Finally, by definition of T∗, the elements cM

∗

γ

in A∗ (for γ ∈ κ) are pairwise distinct, which shows that |A∗| ≥ κ. ⊣

As an immediate consequence of the Upward Löwenheim–Skolem The-
orem 15.6, we get the following

Corollary 15.7. If an L -theory T has a countably infinite model, then T
also has an uncountable model. In particular, PA has an uncountable model.

As a matter of fact, we would like to mention that the proof of the Up-
ward Löwenheim–Skolem Theorem 15.6 can be carried out neither in
the formal language of ZFC (since we use an infinite set of constant symbols),
nor in the language of metamathematics (since we use Theorem 15.3, which
is based on  Loś’s Theorem 15.2 and therefore on ultrafilters).

The Downward Löwenheim-Skolem Theorem

The last result of this chapter provides an upper bound for the minimum size
of a model of a given theory.

Theorem 15.8 (Downward Löwenheim-Skolem Theorem). If a consis-
tent L -theory T has an infinite model, then T has a model of size at most
max

{
ℵ0, |L |

}
.
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Proof. If the signature L is countable, then, by Gödel’s Completeness
Theorem 5.5, T has a model, which is — by construction — a countable
model. Now, assume that |L | (i.e., the cardinality of L ) is uncountable.
First notice that with the signature L we can build at most |L | terms. In
order to see this, recall that a term is just a special finite string of logical and
non-logical symbols, and by Fact 13.11, the cardinality of the set of such
strings is max

{
ℵ0, |L |

}
. Now, in order to build a model M ⊨ T of cardinal-

ity at most max
{
ℵ0, |L |

}
, we can essentially follow the proof of Gödel’s

Completeness Theorem 5.5. However, instead of potentially infinite lists
we have to work with actual infinite sequences of length at most |L |. At the
end of the construction, the domain of M will be a sequence of length at
most |L | of sequences of length at most |L |. ⊣

As an immediate consequence of the Downward Löwenheim–Skolem
Theorem 15.8, we get the following

Corollary 15.9. If T is a consistent L -theory and the signature L is
countable, then T has a countable model.

As a matter of fact, we would like to mention that the proof of the Down-
ward Löwenheim–Skolem Theorem 15.8 cannot be carried out in the
formal language of ZFC either. Otherwise, since the signature of ZFC just
contains the single symbol ∈ and is therefore countable, we would be able to
construct a countable model of ZFC within a model of ZFC. In particular, we
would be able to prove within ZFC that ZFC is consistent, which obviously
contradicts the Second Incompleteness Theorem.

Notes

Most of the material of this chapter is taken from Bell and Slomson [3, Ch. 5], where one
can find some more historical background.  Loś’s Theorem, also called the Fundamental

Theorem of Ultraproducts, is due to the Polish mathematician  Loś (see, e.g., [33]).

A first version of the Löwenheim-Skolem Theorems was proved by Löwenheim in 1915
(see [34]). Some years later, Skolem generalised Löwenheim’s result in [49].

Exercises

15.0 Let S be a non-empty set.

(a) Show that a set F ⊆ P(S) can be extended to a filter F over S, if and only

if no finite intersection of elements of F is empty, i.e., for every finite subset
{x0, . . . , xn} ⊆ F of elements of F we have

⋂n
i=0 xi ̸= ∅.

(b) Show that a set U ⊆ P(S) is an ultrafilter if and only if every intersection of
finitely many elements of U is non-empty and for all x ⊆ S we have either x ∈ U
or S \ x ∈ U .
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15.1 Find a proof of the Ultrafilter Theorem within ZFC.

Hint: First take a well-ordering of P(S), and then extend the filter F over S to an

ultrafilter by transfinite induction.

15.2 Complete the proof of Fact 15.1, i.e., show that the constants cM
∗

and the relations
RM∗

, defined in the construction of the L -structure M∗, are well-defined.

15.3 Prove  Loś’s Theorem 15.2 for L -sentences σ′ which contain only ¬ and ∨ as logical

operators and ∀ as quantifier.

15.4 Prove that there exists an ultraproduct of finite sets which is infinite.



Chapter 16

Models of Peano Arithmetic

The Standard Model of Peano Arithmetic in ZF

In this section, we will show that ZF is sufficiently strong to prove that PA is
consistent. In fact, within a model V of ZF we can construct a model Nω of
PA with domain ω. The model Nω which we obtain in V is the standard model
of PA with respect to V. In the case when the model V is a standard model
of ZF, the model Nω is isomorphic to the standard model N of PA which we
constructed in Chapter 7. However, if the model V is a non-standard model
of ZF, then Nω is a non-standard model of PA (i.e., Nω is a model of PA
which is not isomorphic to N), and there is no way to obtain the standard
model of PA within V. In general, people living in V, no matter whether V
is a standard or a non-standard model of ZF, believe that Nω is the standard
model N.

Now, let V be a model of ZF. Within V, we construct an LPA-structure
Nω with domain ω, and show that Nω is a model of PA. Recall that LPA =
{0, s,+, · }. The LPA-structure is defined by the following assignments which
are based on ordinal arithmetic (see Exercise 13.5):

0Nω := ∅

sNω : ω → ω

n 7→ n+ 1

+Nω : ω × ω → ω

⟨n,m⟩ 7→ n+m

·Nω : ω × ω → ω

⟨n,m⟩ 7→ n ·m
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Before we show that the LPA-structure Nω is a model of Peano Arithmetic,
we first recall the axioms of PA:

PA0: ¬∃x(sx = 0)

PA1: ∀x∀y(sx = sy → x = y)

PA2: ∀x(x+ 0 = x)

PA3: ∀x∀y(x+ sy = s(x+ y))

PA4: ∀x(x · 0 = 0)

PA5: ∀x∀y(x · sy = (x · y) + x)

If φ is any LPA-formula with x ∈ free(φ), then:

PA6:
(
φ(0) ∧ ∀x(φ(x)→ φ(s(x)))

)
→ ∀xφ(x)

Let us now show that Nω ⊨ PA:

• PA0: Since n+ 1 = n ∪ {n} and n ∈ {n} (i.e., n ∪ {n} ≠ ∅), there is no
n ∈ ω such that n+ 1 = ∅.

• PA1: If n,m ∈ ω and n ̸= m, then, by Theorem 13.1.(c), we have either
n ∈ m or m ∈ n, and in both cases we get n+ 1 ̸= m+ 1.

• PA2 and PA3: Follow immediately from (a) and (b) of ordinal addition.

• PA4 and PA5: Follow immediately from (a) and (b) of ordinal multipli-
cation.

• PA6: Let φ be an LPA-formula with x ∈ free(φ) and assume that

φ(∅) ∧ ∀n ∈ ω
(
φ(n)→ φ(n+ 1)

)
.

Furthermore, let E := {n ∈ ω : ¬φ(n)}. Obviously, E is a subset of ω.
If E = ∅, then ∀n ∈ ω

(
φ(n)

)
and we are done. Otherwise, if E ̸= ∅, let

m be the ∈-minimal element of E. Now, m can neither be ∅, since we
assumed φ(∅), nor a successor ordinal (i.e., of the form n+ 1), since we
assumed φ(n) → φ(n + 1) which is equivalent to ¬φ(n + 1) → ¬φ(n).
Thus, there is no ∈-minimal element of E, which is only possible when
E = ∅.

Thus, Nω is a model of PA with domain ω.

In Chapter 7, we saw that there are non-standard models of PA. However,
the existence of these models was obtained by the Compactness Theo-
rem 2.17, and the proof cannot be carried out in ZFC. In the next section,
we will now give a construction of non-standard models of PA which can be
carried out in ZFC. Since the construction uses ultrapowers, it cannot be
carried out without the aid of the Axiom of Choice.
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A Non-Standard Model of Peano Arithmetic in ZFC

The non-standard model of PA which we now construct is the ultrapower of
the standard model Nω with respect to some arbitrary but fixed non-trivial
ultrafilter U over ω. First, let ωω be the set of all functions f : ω → ω. With
respect to U , we define the binary relation ∼ on ωω by stipulating

f ∼ g :⇐⇒
{
n ∈ ω : f(n) = g(n)

}
∈ U .

Then the relation ∼ is an equivalence relation (see Chapter 15). For each
f ∈ ωω, let

[f ] := {g ∈ ωω : g ∼ f},

and let
ω∗ :=

{
[f ] : f ∈ ωω

}
.

We now construct the LPA-structure N∗
ω with domain ω∗ as follows:

• For the constant symbol 0 ∈ LPA, let f0 ∈ ωω be defined by stipulating

f0(n) := 0 for all n ∈ ω,

and let
0N

∗
ω := [f0].

• For the unary function symbol s in LPA, we define s(f) by stipulating

s(f)(n) := f(n) + 1 for n ∈ ω,

and let
sN

∗
ω
(
[f ]
)

:= [s(f)].

• For the binary function symbols + and · in LPA, we define f + g and
f · g (for f, g ∈ ωω) by stipulating for all n ∈ ω

(f + g)(n) := f(n) +Nω g(n) ,

(f · g)(n) := f(n) ·Nω g(n) ,

and let
[f ] +N∗

ω [g] := [f + g] and [f ] ·N
∗
ω [g] := [f · g].

By  Loś’s Theorem 15.2, the LPA-structure N∗
ω is a model of PA. In order

to see that N∗
ω is a non-standard model of PA, first notice that Nω can be

embedded — in a unique way — into N∗
ω by the embedding

ω → ω∗

k 7→ [fk] ,

where fk(n) := k for all n ∈ ω. This shows that Nω is a substructure of N∗
ω.
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In order to show that the models Nω and N∗
ω are not isomorphic, let g ∈ ωω

be such that for all n ∈ ω,
g(n) := n .

Then for all k ∈ ω, [fk] < [g], which shows that the models Nω and N∗
ω

are not isomorphic, even though they are elementarily equivalent (see Exer-
cise 16.1).

Exercises

16.0 Describe the model N∗
ω that one obtains by choosing a principal ultrafilter rather than

a non-principal one.

16.1 Show that the LPA-structures Nω and N∗
ω are elementarily equivalent.

Hint: Use  Loś’s Theorem 15.2.

16.2 Show that the domain ω∗ of N∗
ω is uncountable. In particular, show that N∗

ω is an
uncountable model of PA.

16.3 Show that for any [g], [g′] ∈ ω∗ with [g] < [g′], the cardinality of the set{
[f ] ∈ ω∗ : [g] ≤ [f ] ≤ [g′]

}
is either finite or uncountable.



Chapter 17

Models of the Real Numbers

In this chapter, we will first construct a model of the real numbers using
Cauchy sequences of rational numbers. We also present a second model of the
real numbers according to A’Campo [1]. This construction has the advantage
that it only relies on the integers and not on the rational numbers, and
that the definition of the multiplication is much simpler and natural than
the classical definition based on equivalence classes of Cauchy sequences.
Afterwards, we will show that both constructions yield isomorphic models.
The constructions of the real numbers will be quite general, such that —
depending on whether we start with the standard or a non-standard model
of the natural numbers — we obtain the standard or a non-standard model
of the real numbers.

We shall conclude this chapter by giving a brief introduction to the so-called
Non-Standard Analysis, which is essentially just Analysis in a non-standard
model of the reals.

Let us first introduce the axioms R of the real numbers. The language of R
is LR = {0, 1,+, · , < }, where 0 and 1 are constant symbols, + and · ” are
binary function symbols and < is a binary relation symbol.
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The first group of axioms are simply the field axioms:

R0: ∀x∀y∀z
(
x+ (y + z) = (x+ y) + z

)
R1: ∀x(x+ 0 = x)

R2: ∀x∃y(x+ y = 0)

R3: ∀x∀y(x+ y = y + x)

R4: ∀x∀y∀z
(
x · (y · z) = (x · y) · z

)
R5: ∀x(x · 1 = x)

R6: ∀x
(
x ̸= 0→ ∃y(x · y = 1)

)
R7: ∀x∀y(x · y = y · x)

R8: ∀x∀y∀z
(
x · (y + z) = (x · y) + (x · z)

)
R9: 0 ̸= 1

The second group of axioms are the so-called order axioms:

R10: ∀x¬(x < x)
R11: ∀x∀y∀z(x < y ∧ y < z → x < z)
R12: ∀x∀y(x < y ∨ x = y ∨ y < x)
R13: ∀x∀y∀z(x < y → x+ z < y + z)
R14: ∀x∀y∀z(x < y ∧ 0 < z → x · z < y · z)

The last two axioms form the Completeness Axiom which is — in contrast
to the other axioms — a so-called second-order axiom (i.e., a statement, not
about the real numbers, but about sets of real numbers). The set N denotes
either the standard or a non-standard model of the natural numbers.

R15: Every Cauchy sequence of reals converges.
R16: If x > 0 and y > 0 there exists n ∈ N such that nx > y.

Axiom R16 is also called the Archimedian Axiom.

Classical Construction of the Real Numbers

Let N be either ω or ω∗, where ω∗ is the ultrapower of ω with respect to some
non-trivial ultrafilter U ⊆P(ω). In other words, N is either the domain of
the model Nω or of N∗

ω. Recall that the former model is the standard model
of PA within some model of ZF, whereas the latter model is a non-standard
model of PA, constructed in a model of ZFC, which is elementarily equiv-
alent to the corresponding model Nω. Furthermore, let N be the structure
(N , 0,+, · ), i.e., N is either Nω or N∗

ω.
From N, we first construct a model ZN of the integers, then we construct a

model QN of the rationals, and finally we construct a model RC
N of the reals

using Cauchy sequences.



Classical Construction of the Real Numbers 227

A Model of the Integers

On N , we first define the binary function .− by stipulating

x .− y = z :⇐⇒ ∃u
(
y + u = x ∧ z = u

)
∨
(
¬∃u(y + u = x) ∧ z = 0

)
.

Now, we define the set of integers ZN as a subset of N ×N by stipulating

ZN :=
{
⟨x, 0⟩ : x ∈ N

}
∪
{
⟨0, y⟩ : y ∈ N

}
.

We identify the elements x ∈ N with integers of the form ⟨0, y⟩.
On ZN , we define the two binary functions + and · as well as the unary
function − as follows:

⟨x0, y0⟩+ ⟨x1, y1⟩ = z :⇐⇒ z =
〈
(x0+x1) .− (y0+y1), (y0+y1) .− (x0+x1)

〉
⟨x0, y0⟩ · ⟨x1, y1⟩ = z :⇐⇒ z =

〈
(x0 · y1) + (y0 · x1), (x0 · x1) + (y0 · y1)

〉
−⟨x, y⟩ = z :⇐⇒ z = ⟨y, x⟩

In order to simplify the notation, we usually write ⟨x0, y0⟩−⟨x1, y1⟩ instead
of ⟨x0, y0⟩+

(
−⟨x1, y1⟩

)
. Notice that ⟨x, y⟩ − ⟨x, y⟩ = ⟨0, 0⟩.

We leave it as an exercise to the reader to check that the structure

ZN :=
(
ZN , ⟨0, 0⟩, ⟨0, 1⟩,+, ·

)
is a model of the ring of integers satisfying the axioms R0–R9 except R6,
where ⟨0, 0⟩ and ⟨0, 1⟩ are the neutral elements with respect to the binary
operations + and · , respectively. Notice that in the case when N is equal to
ω∗, then ZN is a non-standard model of the integers.

On ZN , we define the binary relation < and the unary function symbol | · |
as follows:

⟨x0, y0⟩ < ⟨x1, y1⟩ :⇐⇒ y0 + x1 < y1 + x0

∣∣⟨x, y⟩∣∣ = z :⇐⇒

{
z = ⟨x, y⟩ if ⟨x, y⟩ > ⟨0, 0⟩

z = ⟨y, x⟩ otherwise

A Model of the Rational Numbers

Let N+ := N \ {0}. On pairs ⟨x0, y0⟩, ⟨x1, y1⟩ ∈ ZN × N+ we define an
equivalence relation ∼ by stipulating

⟨x0, y0⟩ ∼ ⟨x1, y1⟩ :⇐⇒ x0 · y1 = x1 · y0.
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Now, we denote the equivalence classes by

x
y :=

[
⟨x, y⟩

]
=
{
⟨x′, y′⟩ ∈ ZN ×N+ : ⟨x′, y′⟩ ∼ ⟨x, y⟩

}
and call xy a rational number. Let QN denote the set of all rational numbers,
i.e.,

QN :=
{
x
y : x ∈ ZN , y ∈ N+

}
.

We can now introduce the two binary functions + and · by

x0

y0
+ x1

y1
:= x0y1+y0x1

y0y1
,

x0

y0
· x1

y1
:= x0·x1

y0·y1 .

We leave it as an exercise for the reader to check that these functions are
well-defined and that the structure QN = (QN , 01 ,

1
1 ,+, · ) satisfies the field

axioms R0–R9. As in the case of the integers, if N is ω∗, then QN is a non-
standard model of the rational numbers.

On QN , we define the binary relation < and the unary function symbol | · |
as follows:

x0

y0
< x1

y1
:⇐⇒ x0 · y1 < x1 · y0

|xy | = z :⇐⇒

{
z = x

y if x ≥ 0

z = −x
y otherwise

Again, it is easy to check that the order < and the absolute value function
are well-defined and satisfy the usual properties.

A Model of the Real Numbers using Cauchy Sequences

Let Q+
N denote the positive rational numbers, i.e., those p ∈ QN that satisfy

p > 0. We define a sequence (an) of rational numbers to be a Cauchy se-
quence, if for every ε ∈ Q+

N there is an N ∈ N such that for all m,n ∈ N
with m,n ≥ N , |an − am| < ε. We denote the set of all Cauchy sequences of
rationals by C . Two Cauchy sequences (an), (bn) ∈ C are said to be equiva-
lent, denoted (an) ≈ (bn), if for each positive rational number ε ∈ Q+

N there
is an N ∈ N such that for all n ∈ N with n ≥ N , |an − bn| < ε. In order to
simplify the notation, we shall write limn→∞(an − bn) = 0. Notice that the
meaning of limn→∞ depends on whether N = ω or N = ω∗.

It is obvious that the relation ≈ is reflexive and symmetric. Moreover, it
is also transitive. To see this, let (an), (bn), (cn) be Cauchy sequences with
(an) ≈ (bn) and (bn) ≈ (cn). Then for each positive ε ∈ Q+

N there are
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N1, N2 ∈ N such that for all n1, n2 ∈ N with n1 ≥ N1 and n2 ≥ N2 we have

|an1
− bn1

| < ε
2 and |bn2

− cn2
| < ε

2 .

Consequently, for all n ≥ max{N1, N2} we have

|an − cn| ≤ |an − bn|+ |bn − cn| < ε
2 + ε

2 = ε ,

which shows that (an) ≈ (cn). Thus, ≈ is an equivalence relation on C and
the equivalence classes with respect to ≈ are given by

[(an)] :=
{

(bn) ∈ C : (bn) ≈ (an)
}
.

Let RC
N denote the set of all equivalence classes of rational Cauchy se-

quences, i.e.,
RC

N := {[(an)] : (an) ∈ C }.

The elements of RC
N are called real numbers.

In order to obtain a model of the real numbers, we need to define the func-
tions addition + and multiplication · on RC

N , including the neutral elements
0[C ] and 1[C ], respectively; then we have to define a linear ordering < on RC

N ,

and finally, we check that the structure RC
N = (RC

N , 0[C ], 1[C ],+, · , <) thus
obtained satisfies all axioms of the real numbers.

Addition and multiplication : For r, s ∈ RC
N , represented by (an), (bn) ∈ C

we define:

r + s := [(an + bn)]

r · s := [(an · bn)]

Lemma 17.0. Addition and multiplication of reals are well-defined, i.e., if
r, s ∈ RC

N such that r is represented by (an), (a′n) and s is represented by
(bn), (b′n), then (an + bn) and (anbn) are again Cauchy sequences such that
(an + bn) ≈ (a′n + b′n) and (anbn) ≈ (a′nb

′
n).

Proof. In order to verify that (an + bn) is a Cauchy sequence, let ε ∈ Q+
N .

By assumption, there are N1, N2 ∈ N such that for all n,m ≥ N :=
max{N1, N2} we have |am − an| < ε

2 and |bm − bn| < ε
2 . Then it follows

|(an + bn)− (am + bm)| ≤ |an − am|+ |bn − bm| < ε
2 + ε

2 = ε

for all n,m ≥ N .
Next, we prove that (anbn) is a Cauchy sequence. Since Cauchy sequences

are bounded, there is a C ∈ N such that |an|, |bn| ≤ C for all n ∈ N . Now
we can choose M1,M2 ∈ N such that for all n,m ≥M := max{M1,M2} we
have |an − am| < ε

2C and |bn − bm| < ε
2C for all n,m ≥M . Consequently, we

obtain:
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|anbn − ambm| = |an(bn − bm) + bm(an − am)|
≤ |an| · |bn − bm|+ |bm| · |an − am|
≤ C · ε

2C + C · ε
2C

= ε

Hence, (anbn) is a Cauchy sequence. The second part uses similar argu-
ments. ⊣

Furthermore, we define the neutral elements 0[C ] and 1[C ] in the following
way:

0[C ] := [(0n)] where 0n = 0 for all n ∈ N
1[C ] := [(1n)] where 1n = 1 for all n ∈ N

Linear ordering : Let r, s ∈ RC
N such that r = [(an)] and s = [(bn)]. Then

we define:

r < s :⇐⇒ ∃ε ∈ Q+
N ∃N ∈ N ∀n ≥ N(bn − an > ε)

Again, we have to verify that this definition is well-defined.

Theorem 17.1. The structure RC
N = (RC

N , 0[C ], 1[C ],+, · , <) is a model of
the axioms of the real numbers.

Proof. The only non-trivial axioms are the existence of a multiplicative in-
verse and the completeness axiom. Suppose that r ̸= 0[C ] is a real number
represented by (an). Then we define r−1 = [(ãn)], where

ãn :=

{
1
an

if an ̸= 0,

1 otherwise.

Since (an) is a Cauchy sequence such that [(an)] ̸= 0[C ], only for finitely many
n ∈ N we have an = 0. Thus, limn→∞(anãn−1) = 0 and hence r ·r−1 = 1[C ].

In order to prove that RC
N is complete, we first verify R15. Suppose that

(rn) is a Cauchy sequence of real numbers and let rn be represented by (ank ),
where (ank ) is a Cauchy sequence of rational numbers. Since (ank ) is a Cauchy
sequence, for every n ∈ N there is Nn ∈ N such that

∀k, l ≥ Nn
(
|ank − anl | < 1

n

)
.

Now we consider the diagonal sequence (dn) with dn := anNn
for every n ∈ N .

Claim. (dn) is a Cauchy sequence of rationals which represents a real number
r = [(dn)] such that limn→∞ rn = r.
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Proof of Claim. First we show that (dn) is a Cauchy sequence, and then we
prove that it represents a limit of the sequence (rn) of reals.

(dn) is a Cauchy sequence: Suppose that ε ∈ Q+
N . Note that since (rn) is a

Cauchy sequence of reals, there exists N ∈ N with N ≥ 3
ε such that

∀m,n ≥ N
(
|rm − rn| < ε

3

)
.

In particular, this implies that for all m,n ∈ N with m,n ≥ N , there is Nm,n
such that

∀k ≥ Nm,n
(
|amk − ank | < ε

3

)
.

Now let m,n ∈ N such that n,m ≥ N . We have to verify that |dm− dn| < ε.
Choose k ∈ N with k ≥ Nm,n. We have

|dm − dn| = |amNm
− anNn

|
≤ |amNm

− amk |︸ ︷︷ ︸
<

1
m≤ 1

N <
ε
3

+ |amk − ank |︸ ︷︷ ︸
<
ε
3

+ |ank − anNn
|︸ ︷︷ ︸

<
1
n≤ 1

N <
ε
3

.

Hence we have |dn − dn| < ε, which proves that (dn) is a Cauchy sequence.

(rn) converges to r = [(dn)]: Suppose that e ∈ RC
N is a positive real number,

i.e. e > 0[C ]. We need to find N ∈ N and ε ∈ Q+
N such that |rn − r| < e

for all n ≥ N . Choose a rational Cauchy sequence (bn) representing e. Since
e > 0[C ] the definition of our linear ordering yields δ ∈ Q+

N and N0 ∈ N
such that for all n ≥ N0 we have bn > δ. Moreover, since (dn) is a Cauchy
sequence, there is N1 ∈ N such that for all m,n ≥ N1 we have |dm−dn| < δ

3 .
Now let N ∈ N be defined by N := max{N0, N1, ⌈ 3δ ⌉}, where ⌈ 3δ ⌉ is the least
integer bigger than or equal to 3

δ , and let n ≥ N . We prove that |rn− r| < e,

i.e. we show that there is ε ∈ Q+
N and N ′ ∈ N such that

∀k ≥ N ′ (bk − |ank − dk| > ε
)
.

Let ε := δ
3 and N ′ = max{N,Nn}. Then for each k ≥ N ′ we have

|ank − dk| ≤ |ank − dn|+ |dn − dk|
= |ank − anNn

|︸ ︷︷ ︸
<

1
n≤ 1

N ≤ δ
3

+ |dn − dk|︸ ︷︷ ︸
<
δ
3

,

and hence |ank − dk| < 2δ
3 . Since bk > δ we further obtain

bk − |ank − dk| > δ − 2δ
3 = ε.

Therefore, we have limn→∞ rn = r. ⊣Claim

Moreover, the Archimedian Axiom R16 holds as a consequence of the fact that
Cauchy sequences are always bounded: If r, s ∈ RC

N such that 0[C ] < r < s,
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then s
r is again a real number represented by some Cauchy sequence (an).

Since (an) is bounded (as a sequence of rational numbers), there is a natural
number N ∈ N such that |an| < N for all n ∈ N . Hence, s

r < N + 1 and
r(N + 1) > s. ⊣

A Natural Construction of the Real Numbers

In this section, we construct a model of the real numbers in which the real
numbers are equivalence classes of certain functions, so-called slopes, from
ZN to ZN , i.e., from ZN we will directly construct a model RS

N of the real
numbers without first constructing a model of the rational numbers. It will
turn out that the models RS

N and RC
N are isomorphic, no matter whether

N = ω or N = ω∗.

A slope is a function
λ : ZN → ZN

for which there exists an Mλ ∈ N , such that for all n,m ∈ ZN we have∣∣λ(n+m)−
(
λ(n) + λ(m)

)∣∣ ≤ Mλ .

Roughly speaking, a slope is an almost linear function from ZN to ZN . Let S
denote the set of all slopes. We say that two slopes λ, λ′ ∈ S are equivalent,
denoted by λ ∼ λ′, if there exists an M ∈ N such that for all n ∈ ZN we
have ∣∣λ(n)− λ′(n)

∣∣ ≤ M .

Obviously, the relation ∼ is reflexive and symmetric, and if for all n ∈ ZN ,∣∣λ(n)− λ′(n)
∣∣ ≤ Mλ,λ′

and ∣∣λ′(n)− λ′′(n)
∣∣ ≤ Mλ′,λ′′ ,

then ∣∣λ(n)− λ′′(n)
∣∣ ≤ (Mλ,λ′ +Mλ′,λ′′),

which shows that ∼ is also transitive. Therefore, ∼ is an equivalence relation
on S . For a slope λ ∈ S , let

[λ] :=
{
λ′ ∈ S : λ′ ∼ λ

}
.

Let RS
N denote the set of equivalence classes of slopes, i.e.,

RS
N =

{
[λ] : λ ∈ S

}
.
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The elements of RS
N are denoted by letters like r, s, t, . . . and are called real

numbers.
In what follows, we shall first define two binary functions addition + and

multiplication · on RS
N , including the neutral elements 0[S ] and 1[S ], respec-

tively; then we introduce the binary relation <; and finally, we shall define
an isomorphism between the structures RC

N =
(
RC

N , 0[C ], 1[C ],+, · , <) and

RS
N =

(
RS

N , 0[S ], 1[S ],+, · , <), which implies that RS
N is a model of the

reals.

Addition: Let r, s ∈ RS
N be two reals. Then there are slopes λ, λ′ ∈ S , such

that r = [λ] and s = [λ′]. We define r + s by stipulating

r + s := [λ+ λ′] ,

where
λ+ λ′ : ZN → ZN

n 7→ λ(n) + λ′(n) .

It is easy to see that λ + λ′ is a slope and that r + s is independent of the
choice of the representatives λ and λ′. Furthermore, we define

0[S ] := [λ0] where λ0(n) := 0 for all n ∈ ZN .

We obviously have that 0[S ] is a neutral element with respect to addition.
For a real r = [λ], let

−r := [−λ] where for all n ∈ ZN , (−λ)(n) := −λ(n) .

For all reals r, we obviously have r + (−r) = 0[S ], where r + (−r) is usually
written as r − r.
Multiplication: Let r, s ∈ RS

N be two reals, and let λ, λ′ ∈ S be the corre-
sponding slopes. We define r · s by stipulating

r · s := [λ◦λ′] ,

where
λ◦λ′ : ZN → ZN

n 7→ λ
(
λ′(n)

)
.

Furthermore, we define

1[S ] := [λ1] where for all n ∈ ZN , λ1(n) = n .

We obviously have that 1[S ] is a neutral element with respect to multiplica-
tion. However, we have to show that the composition λ◦λ′ of two slopes is
again a slope, and that r ·s is independent of the choice of the representatives
λ and λ′.
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In order to simplify the notation, for a slope λ ∈ S and any n,m ∈ ZN ,
we say that λ(n + m) and λ(n) + λ(m) are similar (with respect to λ),
denoted by

λ(n+m) ≈
λ
λ(n) + λ(m) .

In fact, λ(n+m) ≈
λ
λ(n)+λ(m) just means that the absolute value of the dif-

ference of λ(n+m) and λ(n)+λ(m) is uniformly bounded (i.e., independently
of n,m ∈ ZN ). Notice that by definition, for each u ∈ ZN we have

λ(n+m+ u) ≈
λ
λ(n) + λ(m) . (∗)

Lemma 17.2. Let the slopes λ, λ′ represent r ∈ RS
N , and let the slopes µ, µ′

represent s ∈ RS
N . Then the compositions λ◦µ and λ′ ◦µ′ are equivalent

slopes.

Proof. We first show that λ◦µ is a slope, i.e., there exists an Mλ◦µ such that
for all n,m ∈ ZN ,∣∣λ◦µ(n+m)−

(
λ◦µ(n) + λ◦µ(m)

)∣∣ ≤ Mλ◦µ .

Since µ and λ are both slopes, we have the following two relations:

µ(n+m) ≈
µ
µ(n) + µ(m)

λ
(
µ(n)︸︷︷︸
n′

+ µ(m)︸ ︷︷ ︸
m′

)
≈
λ
λ◦µ(n)︸︷︷︸

n′

+ λ◦µ(m)︸ ︷︷ ︸
m′

By the former relation, for all n,m ∈ ZN there exists a un,m with

|un,m| ≤Mµ ,

such that
λ
(
µ(n+m)

)
= λ

(
µ(n) + µ(m) + un,m

)
,

and therefore, by (∗) we obtain

λ
(
µ(n+m)

)
≈
λ
λ
(
µ(n) + µ(m)

)
.

Thus, by the latter relation we obtain

λ◦µ(n+m) ≈
λ
λ◦µ(n) + λ◦µ(m) ,

which shows that λ◦µ (as well as λ′ ◦µ′) is a slope.
In order to see that λ◦µ and λ′ ◦µ′ are equivalent slopes, first notice that

λ◦µ(n+m) ≈
λ
λ
(
µ(n) + µ(m)

)
≈
λ
λ
(
µ′(n) + µ′(m)

)
.
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Similarly, we have λ′ ◦µ(n+m) ≈
λ′
λ′
(
µ′(n) + µ′(m)

)
, and since λ ∼ λ′, there

is an Mλ,λ′ ∈ N such that for all n ∈ ZN ,∣∣λ◦µ(n)− λ′ ◦µ′(n)
∣∣ ≤Mλ,λ′ ,

which shows that the slopes λ◦µ and λ′ ◦µ′ are equivalent. ⊣

Linear ordering : In order to define the binary relation <, we first define
the unary relation pos(·) on S by stipulating

pos(λ) :⇐⇒ ∀N ∈ N ∃m ∈ N
(
λ(m) > N

)
.

Now, for any slopes λ, µ ∈ S , we define

λ < µ :⇐⇒ pos(µ− λ) .

Notice that the relation < on S is transitive and that pos(λ) is equivalent
to 0[S ] < λ. Finally, we define the relation < on RS

N by stipulating

[λ] < [µ] :⇐⇒ λ < µ .

By the Solution to Exercise 17.0, the relation < is well-defined.

In order to show that the structures RC
N and RS

N are isomorphic, which
implies that RS

N is a model of the reals, we first prove the following

Fact 17.3. Let λ ∈ S and Mλ ∈ N be such that for all n,m ∈ ZN we have∣∣λ(n+m)− λ(n)− λ(m)
∣∣ ≤ Mλ .

Then for all n,m ∈ ZN we have∣∣λ(n) ·m− λ(n ·m)
∣∣ ≤ (m+ 1) ·Mλ .

Proof. Notice that for each n ∈ ZN we have |λ(0)| ≤Mλ, since

Mλ ≥
∣∣λ(n+ 0)− λ(n)− λ(0)

∣∣ = | − λ(0)| = |λ(0)| .

The proof is now by induction on m. If m = 0, then for all n ∈ ZN we have∣∣λ(n) · 0− λ(n · 0)
∣∣ = | − λ(0)| = |λ(0)| ≤Mλ.

Assume that for some m ≥ 0 and for all n ∈ ZN , we have∣∣λ(n) ·m− λ(n ·m)
∣∣ ≤ (m+ 1) ·Mλ .

Then, for all n ∈ ZN we have:
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∣∣λ(n) · (m+ 1)− λ(n · (m+ 1))
∣∣ =

∣∣λ(n) ·m+ λ(n)− λ(n ·m+ n)
∣∣

≤
∣∣λ(n) ·m+ λ(n)− λ(n ·m)− λ(n)

∣∣+Mλ

=
∣∣λ(n) ·m− λ(n ·m)

∣∣+Mλ

≤ (m+ 1) ·Mλ +Mλ

= (m+ 2) ·Mλ

This obviously completes the proof. ⊣

Now, we are ready to prove that RS
N is a model of the reals.

Proposition 17.4. The two structures

RC
N = (RC

N , 0[C ], 1[C ],+, · , <) and RS
N = (RS

N , 0[S ], 1[S ],+, · , <)

are isomorphic.

Proof. First, we define a mapping γ : S → C which maps each slope
λ ∈ S to a Cauchy sequence γ(λ). Then we show that λ ∼ λ′ if and only
if γ(λ) ≈ γ(λ′). With γ, we then define a bijection Γ : RS

N → RC
N which

induces an isomorphism between RS
N and RC

N .
Let γ : S → C be defined by stipulating γ(λ) := (aλn), where

aλn :=

{
0 if n = 0,

λ(n)
n otherwise.

We have to show that γ is well-defined, i.e., (aλn) is a Cauchy sequence. For

this, let λ ∈ S and consider λ(n)
n − λ(m)

m for some n,m ∈ N+. Notice that

λ(n)

n
− λ(m)

m
=
λ(n) ·m− λ(m) · n

n ·m
,

and that by Fact 17.3 we have∣∣λ(n)·m−λ(n·m)
∣∣ ≤ (m+1)·Mλ and

∣∣λ(m)·n−λ(m·n)
∣∣ ≤ (n+1)·Mλ .

Hence, ∣∣∣∣∣λ(n) ·m− λ(m) · n
n ·m

∣∣∣∣∣ ≤ n+m+ 2

n ·m
·Mλ ,

and since Mλ is fixed, for every ε ∈ Q+
N we find an N ∈ N such that for all

n,m ∈ N with m,n ≥ N ,∣∣∣∣∣λ(n)

n
− λ(m)

m

∣∣∣∣∣ ≤ n+m+ 2

n ·m
·Mλ ≤ ε ,

which shows that (aλn) is a Cauchy sequence.
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Now we show that for any slopes λ, λ′ ∈ S , if λ ∼ λ′ then (aλn) ≈ (aλ
′

n ).
For this purpose, recall that λ ∼ λ′ if and only if there exists an M ∈ N
such that for all n ∈ ZN we have |λ(n) − λ′(n)| ≤ M . With respect to the
corresponding Cauchy sequences (aλn) and (aλ

′

n ), this gives us

∣∣(aλn)− (aλ
′

n )
∣∣ =

∣∣∣∣∣λ(n)

n
− λ′(n)

n

∣∣∣∣∣ =

∣∣∣∣∣λ(n)− λ′(n)

n

∣∣∣∣∣ ≤ M

n
,

which shows that (aλn) ≈ (aλ
′

n ).
Let us define the function Γ : RS

N → RC
N by stipulating

Γ
(
[λ]
)

:=
[
γ(λ)

]
.

By the above result, the function Γ is well-defined. In order to show that the
structures RS

N and RC
N are isomorphic, we have to show that Γ is a bijection.

For this, we show that Γ is surjective and injective.

Γ is surjective: Let (an) ∈ C be a Cauchy sequence. With respect to (an),
let k1 < k2 < . . . be a strictly increasing sequence in N such that for every
n ∈ N+ we have

∀m1,m2 ≥ kn
(∣∣⌊n · am1

⌋ − ⌊n · am2
⌋
∣∣ ≤ 1

)
,

where for a rational p
q , ⌊pq ⌋ := max{z ∈ ZN : z ≤ p

q }. In order to see that

such a sequence k1 < k2 < . . . exists, notice that since (an) ∈ C , for every
n ∈ N+ we find a kn ∈ N such that

∀m1,m2 ≥ kn
(∣∣am1

− am2

∣∣ < 1

n2

)
.

Hence, for n ∈ N+ and all m1,m2 ≥ kn we obtain∣∣n · am1
− n · am2

∣∣ < 1

n

and therefore ∣∣⌊n · am1
⌋ − ⌊n · am2

⌋
∣∣ ≤ 1 .

Now, we define λ : ZN → ZN with respect to (an) by stipulating

λ(n) =


⌊n · akn⌋ for n ∈ N+,

0 for n = 0,

−⌊−n · ak−n
⌋ otherwise.

Notice that for all n ∈ ZN , we have λ(−n) = −λ(n). Therefore, in order to
show that λ ∈ S is a slope, it is enough to show that un,m := |λ(n + m) −
λ(n)− λ(m)| is bounded for n,m ∈ N . Now, for all n,m ∈ N we have:
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un,m = |λ(n+m)− λ(n)− λ(m)|
=
∣∣⌊(n+m) · akn+m

⌋ − ⌊n · akn⌋ − ⌊m · akm⌋
∣∣

≤
∣∣⌊n · akn+m

⌋+ ⌊m · akn+m
⌋ − ⌊n · akn⌋ − ⌊m · akm⌋

∣∣+ 1

=
∣∣⌊n · akn+m

⌋ − ⌊n · akn⌋+ ⌊m · akn+m
⌋ − ⌊m · akm⌋

∣∣+ 1

≤
∣∣⌊n · akn+m

⌋ − ⌊n · akn⌋
∣∣+
∣∣⌊m · akn+m

⌋ − ⌊m · akm⌋
∣∣+ 1

≤ 1 + 1 + 1

= 3

This shows that λ is a slope. Moreover, for k0 := 0 and a0 := 0, we obtain
γ(λ) ≈ (akn) ≈ (an), and since (an) ∈ C was arbitrary, this implies that Γ is
surjective.

Γ is injective: We have to show that for any slopes λ, λ′ ∈ S , if λ ≁ λ′

then γ(λ) ̸≈ γ(λ′). Let (an) = γ(λ) and (bn) = γ(λ′). Then a0 = b0 = 0

and for all n ∈ N+, an = λ(n)
n and bn = λ′(n)

n . Since λ, λ′ ∈ S , there are
Mλ,Mλ′ ∈ N such that for all n,m ∈ N ,

|λ(2n)− 2λ(n)| ≤Mλ and |λ′(2n)− 2λ′(n)| ≤Mλ′ .

Assume that λ ≁ λ′. Then for each M ∈ N , there is an n ∈ N such that
|λ(n)− λ′(n)| > M . Let

M0 := Mλ +Mλ′ + 1

and let n0 ∈ N+ be such that

|λ(n0)− λ′(n0)| > M0 .

Now, since∣∣(λ(2n0)− 2λ(n0)
)
−
(
λ′(2n0)− 2λ′(n0)

)∣∣ ≤Mλ +Mλ′ ,

we obtain∣∣λ(2n0)− λ′(2n0)
∣∣ > 2M0 − (Mλ +Mλ′) = Mλ +Mλ′ + 2 .

Similarly, we obtain∣∣λ(4n0)− λ′(4n0)
∣∣ > 2(Mλ +Mλ′ + 2)− (Mλ +Mλ′) = Mλ +Mλ′ + 4 ,

and in general, we have∣∣λ(2kn0)− λ′(2kn0)
∣∣ > Mλ +Mλ′ + 2k .

For the corresponding Cauchy sequences (an) and (bn), we therefore have
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|a2kn0
− b2kn0

| =

∣∣∣∣∣λ(2kn0)

2kn0
− λ′(2kn0)

2kn0

∣∣∣∣∣ > Mλ +Mλ′ + 2k

2kn0
≥ 1

n0
,

which shows that (an) ̸≈ (bn) and completes the proof that Γ : RS
N → RC

N
is a bijection.

It remains to show that the structures RS
N and RC

N are isomorphic, which
is done in the Solution to Exercise 17.1. ⊣

Non-Standard Models of the Reals

In the previous section, starting with either N = ω or N = ω∗, we have
constructed four models of the real numbers, namely RC

ω , RC
ω∗ , RS

ω , RS
ω∗ , and

we have shown in Proposition 17.4 that RC
ω
∼= RS

ω and RC
ω∗ ∼= RS

ω∗ .
The models RC

ω and RS
ω correspond to the standard model R (with respect

to some model of ZF), whereas RC
ω∗ and RS

ω∗ are isomorphic non-standard
models of the reals (constructed in some model of ZFC), denoted by Rω∗ .

Other non-standard models of the reals are obtained by an ultrapower of the
standard model R with respect to some non-trivial ultrafilters U ⊆ P(ω).
The models which we obtain with this construction are denoted by R∗. By
 Loś’s Theorem 15.2 we know that all these models R∗ are elementarily
equivalent to R, independent of the choice of the ultrafilter U . Therefore,
beside the non-standard models Rω∗ as constructed above, we also have the
non-standard models R∗. It is natural to ask whether the models Rω∗ are
also elementarily equivalent to the standard model R. This is indeed the
case. Moreover, if we use the same ultrafilter to construct ω∗ (from ω) and
R∗ (from R), then the models Rω∗ and R∗ are isomorphic (see the Solution
to Exercise 17.2 for a bijection between R∗

ω and Rω∗).

A Brief Introduction to Non-Standard Analysis

The idea of Non-Standard Analysis is that we work simultaneously with two
models of the real numbers. One model, let us call it the ground model, takes
the role of the standard model R, and the other model, which is an ultrapower
of R with respect to an ultrafilter U over ω, denoted by R∗, is in the view
of a non-standard model which is elementarily equivalent to R. Now, we take
the standpoint that proper Analysis takes place in the model R∗, but — as
people living in R— we can only “see” the standard part of the reals in R∗.
Even though we have quite a restricted view to proper Analysis from the
model R, by the fact that the models R and R∗ are elementarily equivalent,
we cannot detect any difference between the two models on the formal level.
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In fact, each sentence which is valid in one model is also valid in the other
model. For example, in order to solve a problem in R, we can carry out our
calculations in R∗, where we can use reals in R∗ which do not exist in R, and
at the end we simply “project” the result to R again.

Let us now have a closer look at the models R and R∗, and let us fix some
notation: The domain of R is denoted by R with the natural numbers N,
and the domain of R∗ is denoted by R∗ with the natural numbers N∗. The
elements of R∗ are equivalence classes [f ] of functions f : ω → R. For such
equivalence classes we usually just write r∗. With the embedding

R → R∗

r 7→ [cr] where cr : ω → {r}

we obtain that R is a subset of R∗, and that N is a subset of N∗. Furthermore,
we see that the equivalence class [d], where d(n) := n for all n ∈ N, is an
element of N∗ which is bigger than all elements of N. Thus, N := [d] is an
element in N∗ which does not belong to N. On the other hand, the equivalence
class δ0 := [d−1], where d−1(n) := 1

n for all n ∈ N \ {0} and d−1(0) := 0,
is an element in R̄, for which we have 0 < δ0 <

1
n (for all n ∈ N). From

the viewpoint of R∗, δ0 is just a positive real, in fact a positive rational.
However, from the viewpoint of R, δ0 does not exist, since it would be an
infinitely small real number, a so-called infinitesimal (i.e., a non-zero real
number whose absolute value is smaller than 1

n for any n ∈ N \ {0}).
We say that r∗, s∗ ∈ R∗ are infinitely close, denoted by r∗ ≈ s∗, if r∗−s∗

is infinitesimal. Note that ≈ defines an equivalence relation on R∗. Further-
more, let R̄ be the set of all reals r∗ ∈ R∗, such that for some s1, s2 ∈ R we
have s1 ≤ r∗ ≤ s2. Obviously, we have R ⊆ R̄ ⊆ R∗.

The following result states that for each real r∗ ∈ R̄ there is a unique real
r ∈ R which is infinitely close to r∗. This fact allows us to “project” the reals
in R̄ to R.

Proposition 17.5. For each real r∗ ∈ R̄, there is a unique real r ∈ R such
that r∗ ≈ r.

Proof. Uniqueness is obvious, since if there are r1, r2 ∈ R such that r∗ ≈ r1
and r∗ ≈ r2, then by transitivity we have r1 ≈ r2. Since r1, r2 ∈ R, it follows
that r1 − r2 = 0 and thus r1 = r2.

For the existence, we proceed as follows: Let r∗ = [f ] for some f : ω → R

and let s, t ∈ R be such that [cs] ≤ [f ] ≤ [ct], which implies{
n ∈ ω : s ≤ f(n) ≤ t

}
∈ U .

We construct sequences (sn) and (tn) in R as follows. Let s0 := s and t0 := t.
Assume that sn and tn are already defined and that we have

xn :=
{
n ∈ ω : sn ≤ f(n) ≤ tn

}
∈ U .
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Let
yn :=

{
n ∈ ω : sn ≤ f(n) ≤ sn+tn

2

}
.

Since U is an ultrafilter, we have either yn ∈ U or (ω \ yn) ∈ U . In the
former case, let sn+1 = sn and tn+1 = sn+tn

2 , and in the latter case, let
sn+1 = sn+tn

2 and tn+1 = tn. Notice that since in the former case we have
xn ∩ yn ∈ U , and in the latter case we have xn ∩ (ω \ yn) ∈ U , in both cases
we have

xn+1 :=
{
n ∈ ω : sn+1 ≤ f(n) ≤ tn+1

}
∈ U .

By construction, (sn) and (tn) are monotone sequences, where for all n ∈
N we have [csn ] ≤ [f ] ≤ [ctn ]. Furthermore, since limn→∞(tn − sn) = 0,
the supremum r ∈ R of (sn) is equal to the infimum of (tn), which shows
that r∗ ≈ r. ⊣

For r∗ ∈ R̄, the unique r ∈ R such that r ≈ r∗ is called the standard part
of r∗, denoted by st(r∗). As mentioned above, we can consider the standard
part of a real r∗ ∈ R̄ as a projection of r∗ to R, similar to the real part of
a complex number. Moreover, Proposition 17.5 shows that every r∗ ∈ R̄ is
of the form r∗ = [cr] + [fδ], where r = st(r∗) and fδ : ω → R is such that
limn→∞ fδ(n) = 0, i.e., fδ is a zero sequence. For the sake of simplicity, we
just write r + δ instead of r∗ = [cr] + [fδ].

The following figure, in which δ0 is an arbitrary infinitesimal, visualises the
ordering of R̄, how R is embedded in R̄, and shows some simple calculations.

1 2 3 4 5−1−2 0
R

R̄

b δ0

b 4δ0

b
√
δ0

b δ0
2

b δ0
100

b δ20

b −δ0

b 2 + δ0

b 2 + δ20

b 2 − δ0

b (2 + δ0)
2

b
(2 + δ0)

2 − δ20
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For example, let N ∈ N∗ \N and let δ0 := 1
N . Then the standard part of

δ0 is 0, i.e., for people living in R, δ0 ≈ 0. Similarly, 2 + δ0 ≈ 2, or more
formally, st(2 + δ0) = 2. For example, 2 + δ0 belongs to R̄, but N does not
belong to R̄, since there is no s ∈ R such that N ≤ s. The set R̄, as a subset
of R∗, is linearly ordered by <∗

R. Notice that <∗
R restricted to R is just the

usual linear ordering on R (which follows from the fact that R is a submodel
of R∗ and that R and R∗ are elementarily equivalent).

The next result shows that in Non-Standard Analysis, one can compute,
for example, definite integrals without using limits.

Proposition 17.6. (a) Let a ∈ R, let f be a real-valued function which is
continuous at a, and let a∗ ∈ R∗ be such that a∗ ≈ a. Then we have:

f(a∗) ≈ f(a)

(For a proof see Robert [44, Ch. 4].)

(b) Let a ∈ R and let f be a real-valued function. If there exists an r ∈ R

such that

st

(
f(a+ δ)− f(a)

δ

)
= r for all δ ≈ 0 with δ ̸= 0,

then f is differentiable at a and we have f ′(a) = r.

(For a proof see Robert [44, Ch. 5].)

(c) Let b ∈ R, let f be a real-valued function which is continuous on the
interval [0, b], and let N ∈ N∗ \N. Then in R we have:

b∫
0

f(x) dx = st
( b
N

N−1∑
k=0

f
(
kb
N

))
(For a proof see Robert [44, Ch. 6].)

Other applications of Non-Standard Analysis are given by the following
two examples.

Example 17.7. As a first example, we prove L’Hospital’s Rule: Let f
and g be two real-valued functions which are derivable at x0 ∈ R, where
f(x0) = g(x0) = 0. Furthermore, let ε be an infinitesimal. Then, by Propo-
sition 17.6.(a), we have

lim
x→x0

f(x)

g(x)
= st

(f(x0 + ε)

g(x0 + ε)

)
.
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Since f(x0) = 0, for f we have

st
(
f(x0 + ε)

)
= st

(
f(x0 + ε)− f(x0)

)
,

and similarly for g. Thus, we get:

st
(f(x0 + ε)

g(x0 + ε)

)
= st

(f(x0 + ε)− f(x0)

g(x0 + ε)− g(x0)

)
= st

(f(x0 + ε)− f(x0)

g(x0 + ε)− g(x0)
· ε
ε

)
= st

(f(x0 + ε)− f(x0)

ε
· ε

g(x0 + ε)− g(x0)

)
= st

(f(x0 + ε)− f(x0)

ε

)
· st
( ε

g(x0 + ε)− g(x0)

)
Therefore, by Proposition 17.6.(b), we finally have

lim
x→x0

f(x)

g(x)
=
f ′(x0)

g′(x0)
.

Example 17.8. Let us now consider the Dirac Delta Function: For this,
let g be a real-valued function which is continuous at 0, and let δ be a positive
infinitesimal. With respect to δ, we define the function

fδ(x) =


− x
δ2

+ 1
δ for −δ < x ≤ 0,

− x
δ2

+ 1
δ for 0 < x < δ,

−0 otherwise.

−δ δ0

1
δ

g

Then we obtain

∫
R

g(x) · fδ(x) dx =

δ∫
−δ

g(x) · fδ(x) dx .

Since g is continuous at 0, by Proposition 17.6.(a), there is an infinitesimal
ε > 0, such that for all x∗ ∈ [−δ, δ], g(0)−ε < g(x∗) < g(0)+ε, which implies

(
g(0)− ε

)
·
δ∫

−δ

fδ(x) dx <

δ∫
−δ

g(x) · fδ(x) dx <
(
g(0) + ε

)
·
δ∫

−δ

fδ(x) dx .
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Now, since
δ∫

−δ
fδ(x) dx = 1 and st

(
g(0)± ε

)
= g(0), this shows that

st

( δ∫
−δ

g(x) · fδ(x) dx

)
= g(0) .

Computing the Fourier coefficients of fδ, we obtain a0 := 1
π , and for all

positive n ∈ N∗ we have bn = 0 and

an :=
2

πn2δ2
(
1− cos(nδ)

)
.

Notice that for all n ∈ N we have st(an) = 1
π .

Notes

The natural construction of a model of the real numbers is due to A’Campo [1], who
proved all results directly from the properties of slopes — without using Cauchy sequences.

The structure of non-standard models of A’Campo’s construction of the reals was first
studied by Mizrahi [36].

Non-Standard Analysis was developed in the early 1960s by Robinson. Even though the

idea of working with infinitesimals can be traced back to Leibniz and L’Hospital, it was
Robinson who laid the logical foundations for infinitesimals and infinite numbers (see, for
example, [45]).

Exercises

17.0 Let λ, µ ∈ S , and let λ′, µ′ ∈ S be such that λ′ ∼ λ and µ′ ∼ µ.

Show that [λ] < [µ] if and only if [λ′] < [µ′].

17.1 (a) Show that for any slopes λ, µ ∈ S we have Γ
(
[λ] + [µ]

)
= Γ

(
[λ]

)
+ Γ

(
[µ]

)
.

(b) Show that Γ (0[S ]) = 0[C ].

(c) Show that for any slopes λ, µ ∈ S we have Γ
(
[λ] · [µ]

)
= Γ

(
[λ]

)
· Γ

(
[µ]

)
.

(d) Show that Γ (1[S ]) = 1[C ].

17.2 Find a bijection between the sets R∗
ω and Rω∗ , where these sets are constructed over

the same non-trivial ultrafilter. More precisely, construct a bijection between the sets

(RC
ω )∗ and RC

ω∗ .

17.3 Show that for a2 ̸= 1,

π∫
x=0

log
(
1 − 2a cos(x) + a2

)
dx =

{
0 if |a| < 1,

π · log a2 if |a| > 1.

This exercise is taken from Robert [44], where one can find many more applications
of Non-Standard Analysis.



Tautologies

In this section we give a list of some of the most important tautologies. Many
of them have been used explicitly and implicitly in several formal proofs.

(A.0) ⊢ φ→ φ
(A.1) ⊢ φ↔ φ

(B) {ψ,φ} ⊢ φ ∧ ψ

(C) ⊢ (ψ → φ)→ (ψ → ∀νφ) [for ν /∈ free(ψ)]

(D.0) {φ1 → φ2, φ2 → φ3} ⊢ φ1 → φ3

(D.1) {φ1 → ψ,φ2 → ψ} ⊢ (φ1 ∨ φ2)→ ψ
(D.2) {ψ → φ1, ψ → φ2} ⊢ ψ → (φ1 ∧ φ2)

(E) ⊢ φ→
(
ψ → (φ ∧ ψ)

)
(F) ⊢ φ↔ ¬¬φ

(G) ⊢ (φ→ ψ)↔ (¬ψ → ¬φ)

(H.0) {φ↔ ψ} ⊢ ¬φ↔ ¬ψ
(H.1) {φ↔ φ′, ψ ↔ ψ′} ⊢ (φ→ ψ)↔ (φ′ → ψ′)
(H.2) {φ↔ φ′, ψ ↔ ψ′} ⊢ (φ ∨ ψ)↔ (φ′ ∨ ψ′)
(H.3) {φ↔ φ′, ψ ↔ ψ′} ⊢ (φ ∧ ψ)↔ (φ′ ∧ ψ′)

(I.1) ⊢ (φ1 ∧ φ2)↔ (φ2 ∧ φ1)
(I.2) ⊢

(
(φ1 ∧ φ2) ∧ φ3

)
↔
(
φ1 ∧ (φ2 ∧ φ3)

)
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(J.0) ⊢ (φ1 ∨ φ2)↔ (φ2 ∨ φ1)
(J.1) ⊢

(
(φ1 ∨ φ2) ∨ φ3

)
↔
(
φ1 ∨ (φ2 ∨ φ3)

)
(K) ⊢ (φ→ ψ)↔ (¬φ ∨ ψ)

(L.0) ⊢ ¬(φ ∧ ψ)↔ (¬φ ∨ ¬ψ)
(L.1) ⊢ ¬(φ ∨ ψ)↔ (¬φ ∧ ¬ψ)

(M.0) ⊢ (φ1 ∧ φ2) ∨ φ3 ↔ (φ1 ∨ φ3) ∧ (φ2 ∨ φ3)
(M.1) ⊢ (φ1 ∨ φ2) ∧ φ3 ↔ (φ1 ∧ φ3) ∨ (φ2 ∧ φ3)

(N.0) ⊢ ν = ν′ ↔ ν′ = ν
(N.1) ⊢ (ν = ν′ ∧ ν′ = ν′′)→ ν = ν′′

(O.0) ⊢ φ(ν)↔ φ(ν′) [if ν′ does not appear in φ(ν)]
(O.1) ⊢ ∃νφ(ν)↔ ∃ν′φ(ν′) [if ν′ does not appear in φ(ν)]
(O.2) ⊢ ∀νφ(ν)↔ ∀ν′φ(ν′) [if ν′ does not appear in φ(ν)]

(P.0) {φ↔ ψ} ⊢ ∀νφ↔ ∀νψ
(P.1) {φ↔ ψ} ⊢ ∃νφ↔ ∃νψ

(Q.0) ⊢ ¬∃νφ↔ ∀ν¬φ
(Q.1) ⊢ ¬∀νφ↔ ∃ν¬φ

(R) ⊢ ∀νφ↔ ¬∃ν¬φ

(S.0) ⊢ ∃ν∃ν′φ↔ ∃ν′∃νφ
(S.1) ⊢ ∀ν∀ν′φ↔ ∀ν′∀νφ
(S.2) ⊢ ν∃νφ↔ ∃νφ
(S.3) ⊢ ν∀νφ↔ ∀νφ

(T.0) ⊢ ∃νφ ∧ ∃ν′ψ ↔ ∃ν∃ν′(φ ∧ ψ) [for ν /∈ free(ψ), ν′ /∈ free(φ)]
(T.1) ⊢ ∀νφ ∧ ∀ν′ψ ↔ ∀ν∀ν′(φ ∧ ψ) [for ν /∈ free(ψ), ν′ /∈ free(φ)]
(T.2) ⊢ ∃νφ ∧ ψ ↔ ∃ν(φ ∧ ψ) [for ν /∈ free(ψ)]
(T.3) ⊢ ∀νφ ∧ ψ ↔ ∀ν(φ ∧ ψ) [for ν /∈ free(ψ)]

(U.0) ⊢ ∃νφ ∨ ∃ν′ψ ↔ ∃ν∃ν′(φ ∨ ψ) [for ν /∈ free(ψ), ν′ /∈ free(φ)]
(U.1) ⊢ ∀νφ ∨ ∀ν′ψ ↔ ∀ν∀ν′(φ ∨ ψ) [for ν /∈ free(ψ), ν′ /∈ free(φ)]
(U.2) ⊢ ∃νφ ∨ ψ ↔ ∃ν(φ ∨ ψ) [for ν /∈ free(ψ)]
(U.3) ⊢ ∀νφ ∨ ψ ↔ ∀ν(φ ∨ ψ) [for ν /∈ free(ψ)]



Solutions

Chapter 1

1.0 (a) A formal proof of φ ∧ ψ from Φ = {φ,ψ} is given by:

φ0: φ φ ∈ Φ

φ1: ψ ψ ∈ Φ
φ2: ψ → (φ→ (φ ∧ ψ)) instance of L5
φ3: φ→ (φ ∧ ψ) from φ2 and φ1 by (MP)
φ4: φ ∧ ψ from φ3 and φ0 by (MP)

(b) A formal proof of ψ ∧ φ from Φ = {φ ∧ ψ} is given by:

φ0: φ ∧ ψ φ ∧ ψ ∈ Φ

φ1: (φ ∧ ψ) → φ instance of L3
φ2: (φ ∧ ψ) → ψ instance of L4
φ3: ψ from φ2 and φ0 by (MP)
φ4: φ from φ1 and φ0 by (MP)

φ5: ψ ∧ φ by 1.0.(a) with Φ̃ = {φ3, φ4}
which means that φ5 follows by the formal proof of Exercise 1.0.(a) with respect

to Φ̃ = {φ3, φ4}, in more detail:

φ5a: φ→ (ψ → (ψ ∧ φ)) instance of L5
φ5b: ψ → (ψ ∧ φ) from φ5a and φ4 by (MP)
φ5c: ψ ∧ φ from φ5b and φ3 by (MP)

1.1 (a) A formal proof of (φ ∨ ψ) → (ψ ∨ φ), where we set ϑ :≡ ψ ∨ φ, is
given by:

φ0: ψ → ϑ instance of L6
φ1: φ→ ϑ instance of L7
φ2: (φ→ ϑ) → ((ψ → ϑ) → ((φ ∨ ψ) → ϑ)) instance of L8
φ3: (ψ → ϑ) → ((φ ∨ ψ) → ϑ) from φ2 and φ1 by (MP)
φ4: (φ ∨ ψ) → ϑ from φ3 and φ0 by (MP)
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(b) A formal proof of (φ ∧ ψ) → (ψ ∧ φ), where we set ϑ :≡ φ ∧ ψ, is
given by:

φ0: ϑ→ φ instance of L3
φ1: ϑ→ ψ instance of L4
φ2: φ→ (ψ → (ψ ∧ φ)) instance of L5
φ3: φ2 → (ϑ→ φ2) instance of L1
φ4: ϑ→ φ2 from φ3 and φ2 by (MP)
φ5: ϑ→ (φ→ (ψ → (ψ ∧ φ))︸ ︷︷ ︸

≡φ2

) → ((ϑ→ φ) → (ϑ→
(ψ → (ψ ∧ φ)))) instance of L2

φ6: (ϑ→ φ) → (ϑ→ (ψ → (ψ ∧ φ))) from φ5 and φ4 by (MP)
φ7: ϑ→ (ψ → (ψ ∧ φ)) from φ6 and φ0 by (MP)
φ8: (ϑ→ (ψ → (ψ ∧ φ))) → ((ϑ→ ψ) →

(ϑ→ (ψ ∧ φ))) instance of L2
φ9: (ϑ→ ψ) → (ϑ→ (ψ ∧ φ)) from φ8 and φ7 by (MP)
φ10: ϑ→ (ψ ∧ φ) from φ9 and φ1 by (MP)

1.2 (a) A formal proof of (ψ1∧ψ2)∧ψ3 from Φ = {ψ1∧(ψ2∧ψ3)} is given by:

φ0: ψ1 ∧ (ψ2 ∧ ψ3) ψ1 ∧ (ψ2 ∧ ψ3) ∈ Φ

φ1: (ψ1 ∧ (ψ2 ∧ ψ3)) → ψ1 instance of L3
φ2: (ψ1 ∧ (ψ2 ∧ ψ3)) → (ψ2 ∧ ψ3) instance of L4
φ3: ψ1 from φ1 and φ0 by (MP)
φ4: ψ2 ∧ ψ3 from φ2 and φ0 by (MP)
φ5: (ψ2 ∧ ψ3) → ψ2 instance of L3
φ6: (ψ2 ∧ ψ3) → ψ3 instance of L4
φ7: ψ2 from φ5 and φ4 by (MP)
φ8: ψ3 from φ6 and φ4 by (MP)
φ9: ψ2 → (ψ1 → (ψ1 ∧ ψ2)) instance of L5
φ10: ψ1 → (ψ1 ∧ ψ2) from φ9 and φ7 by (MP)
φ11: ψ1 ∧ ψ2 from φ10 and φ3 by (MP)
φ12: ψ3 → ((ψ1 ∧ ψ2) → ((ψ1 ∧ ψ2) ∧ ψ3)) instance of L5
φ13: (ψ1 ∧ ψ2) → ((ψ1 ∧ ψ2) ∧ ψ3) from φ12 and φ8 by (MP)
φ14: (ψ1 ∧ ψ2) ∧ ψ3 from φ13 and φ11 by (MP)

(b) A formal proof of ψ1∧(ψ2∧ψ3) from Φ = {(ψ1∧ψ2)∧ψ3} is given by:

φ0: (ψ1 ∧ ψ2) ∧ ψ3 (ψ1 ∧ ψ2) ∧ ψ3 ∈ Φ

φ1: ((ψ1 ∧ ψ2) ∧ ψ3) → (ψ1 ∧ ψ2) instance of L3
φ2: ((ψ1 ∧ ψ2) ∧ ψ3) → ψ3 instance of L4
φ3: ψ1 ∧ ψ2 from φ1 and φ0 by (MP)
φ4: ψ3 from φ2 and φ0 by (MP)
φ5: (ψ1 ∧ ψ2) → ψ1 instance of L3
φ6: (ψ1 ∧ ψ2) → ψ2 instance of L4
φ7: ψ1 from φ5 and φ3 by (MP)
φ8: ψ2 from φ6 and φ3 by (MP)
φ9: ψ3 → (ψ2 → (ψ2 ∧ ψ3)) instance of L5
φ10: ψ2 → (ψ2 ∧ ψ3) from φ9 and φ4 by (MP)
φ11: ψ2 ∧ ψ3 from φ10 and φ8 by (MP)
φ12: (ψ2 ∧ ψ3) → (ψ1 → (ψ1 ∧ (ψ2 ∧ ψ3))) instance of L5
φ13: ψ1 → (ψ1 ∧ (ψ2 ∧ ψ3)) from φ12 and φ11 by (MP)
φ14: ψ1 ∧ (ψ2 ∧ ψ3) from φ13 and φ7 by (MP)
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1.3 A formal proof of ¬ψ → ¬φ from Φ = {φ→ ψ} is given by:

φ0: φ→ ψ φ→ ψ ∈ Φ

φ1: φ0 → (¬ψ → φ0) instance of L1
φ2: ¬ψ → φ0 from φ1 and φ0 by (MP)
φ3: (φ→ ψ) → ((φ→ ¬ψ) → ¬φ︸ ︷︷ ︸

≡:ϑ

) instance of L9

φ4: φ3 → (¬ψ → φ3) instance of L1
φ5: ¬ψ → φ3 from φ4 and φ3 by (MP)
φ6: (¬ψ → (φ0 → ϑ︸ ︷︷ ︸

≡φ3

)) → ((¬ψ → φ0) → (¬ψ → ϑ)) instance of L2

φ7: (¬ψ → φ0) → (¬ψ → ϑ) from φ6 and φ5 by (MP)
φ8: ¬ψ → ϑ from φ7 and φ2 by (MP)
φ9: (¬ψ → ((φ→ ¬ψ) → ¬φ︸ ︷︷ ︸

≡ϑ

)) → ((¬ψ → (φ→ ¬ψ))

→ (¬ψ → ¬φ)) instance of L2

φ10: (¬ψ → (φ→ ¬ψ)) → (¬ψ → ¬φ) from φ9 and φ8 by (MP)
φ11: ¬ψ → (φ→ ¬ψ) instance of L1
φ12: ¬ψ → ¬φ from φ10 and φ11 by (MP)

1.4 (a) A formal proof of ψ0 → ψ2 from Φ = {ψ0 → ψ1, ψ1 → ψ2} is
given by:

φ0: (ψ1 → ψ2) → (ψ0 → (ψ1 → ψ2)) instance of L1
φ1: ψ1 → ψ2 ψ1 → ψ2 ∈ Φ

φ2: ψ0 → (ψ1 → ψ2) from φ0 and φ1 by (MP)
φ3: (ψ0 → (ψ1 → ψ2)) → ((ψ0 → ψ1) → (ψ0 → ψ2)) instance of L2
φ4: (ψ0 → ψ1) → (ψ0 → ψ2) from φ3 and φ2 by (MP)
φ5: ψ0 → ψ1 ψ0 → ψ1 ∈ Φ
φ6: ψ0 → ψ2 from φ4 and φ5 by (MP)

(b) A formal proof of (ψ0 ∨ ψ1) → φ from Φ = {ψ0 → φ,ψ1 → φ} is
given by:

φ0: (ψ0 → φ) → ((ψ1 → φ) → ((ψ0 ∨ ψ1) → φ)) instance of L8
φ1: ψ0 → φ ψ0 → φ ∈ Φ
φ2: (ψ1 → φ) → ((ψ0 ∨ ψ1) → φ) from φ0 and φ1 by (MP)
φ3: ψ1 → φ ψ1 → φ ∈ Φ

φ4: (ψ0 ∨ ψ1) → φ from φ2 and φ3 by (MP)

(c) A formal proof of φ → (ψ0 ∧ ψ1) from Φ = {φ → ψ0, φ → ψ1} is
given by:

φ0: φ→ ψ0 φ→ ψ0 ∈ Φ
φ1: φ→ ψ1 φ→ ψ1 ∈ Φ

φ2: (φ→ ψ0) → (φ→ (φ→ ψ0)) instance of L1
φ3: (φ→ ψ1) → (φ→ (φ→ ψ1)) instance of L1
φ4: φ→ (φ→ ψ0) from φ2 and φ0 by (MP)
φ5: φ→ (φ→ ψ1) from φ3 and φ1 by (MP)
φ6: ψ1 → (ψ0 → (ψ0 ∧ ψ1)︸ ︷︷ ︸

≡:ϑ

) instance of L5

φ7: φ6 → (φ→ φ6) instance of L1
φ8: φ→ φ6 from φ7 and φ6 by (MP)
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φ9: (φ→ (ψ1 → ϑ︸ ︷︷ ︸
≡φ6

)) → ((φ→ ψ1) → (φ→ ϑ)) instance of L2

φ10: (φ→ ψ1) → (φ→ ϑ) from φ9 and φ8 by (MP)
φ11: φ→ (ψ0 → (ψ0 ∧ ψ1)) from φ10 and φ1 by (MP)
φ12: (φ→ (ψ0 → (ψ0 ∧ ψ1))) →

((φ→ ψ0) → (φ→ (ψ0 ∧ ψ1))) instance of L2
φ13: (φ→ ψ0) → (φ→ (ψ0 ∧ ψ1)) from φ12 and φ11 by (MP)
φ14: φ→ (ψ0 ∧ ψ1) from φ13 and φ0 by (MP)

1.5 A formal proof of ((ψ1 ∧ψ2)∨ψ3)→ ((ψ1 ∨ψ3)∧ (ψ2 ∨ψ3)) is given by:

φ0: (ψ1 ∧ ψ2) → ψ1 instance of L3
φ1: ψ1 → (ψ1 ∨ ψ3) instance of L6
φ2: (ψ1 ∧ ψ2) → (ψ1 ∨ ψ3) by 1.4.(a) with Φ̃ = {φ0, φ1}
φ3: (ψ1 ∧ ψ2) → ψ2 instance of L4
φ4: ψ2 → (ψ2 ∨ ψ3) instance of L6
φ5: (ψ1 ∧ ψ2) → (ψ2 ∨ ψ3) by 1.4.(a) with Φ̃ = {φ3, φ4}
φ6: (ψ1 ∧ ψ2) → ((ψ1 ∨ ψ3) ∧ (ψ2 ∨ ψ3)) by 1.4.(c) with Φ̃ = {φ2, φ5}
φ7: ψ3 → (ψ1 ∨ ψ3) instance of L7
φ8: ψ3 → (ψ2 ∨ ψ3) instance of L7
φ9: ψ3 → ((ψ1 ∨ ψ3) ∧ (ψ2 ∨ ψ3)) by 1.4.(c) with Φ̃ = {φ7, φ8}
φ10: ((ψ1 ∧ ψ2) ∨ ψ3) → ((ψ1 ∨ ψ3) ∧ (ψ2 ∨ ψ3)) by 1.4.(b) with Φ̃ = {φ5, φ9}

1.6 A formal proof of ∀x ∀y (x = y → y = x) is given by:
φ0: ((x = y ∧ x = x) → (x = x→ y = x)) instance of L15
φ1: ((x = y ∧ x = x) → (x = x→ y = x)) →

(((x = y ∧ x = x) → x = x) →
((x = y ∧ x = x) → y = x)) instance of L2

φ2: ((x = y ∧ x = x) → x = x) →
((x = y ∧ x = x) → y = x) from φ1 and φ0 by (MP)

φ3: (x = y ∧ x = x) → x = x instance of L4
φ4: (x = y ∧ x = x) → y = x from φ2 and φ3 by (MP)
φ5: ((x = y ∧ x = x) → y = x) →

(x = y → ((x = y ∧ x = x) → y = x)) instance of L1
φ6: x = y → ((x = y ∧ x = x) → y = x) from φ5 and φ4 by (MP)
φ7: (x = y → ((x = y ∧ x = x) → y = x)) →

((x = y → (x = y ∧ x = x)) →
(x = y → y = x)) instance of L2

φ8: (x = y → (x = y ∧ x = x)) → (x = y → y = x) from φ7 and φ6 by (MP)
φ9: x = x instance of L14
φ10: x = x→ (x = y → (x = y ∧ x = x)) instance of L5
φ11: x = y → (x = y ∧ x = x) from φ10 and φ9 by (MP)
φ12: x = y → y = x from φ8 and φ11 by (MP)
φ13: ∀y (x = y → y = x) from φ12 by (∀)

φ14: ∀x ∀y (x = y → y = x) from φ13 by (∀)
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Chapter 2

2.0 (a) Using Theorem 1.7, we can reduce the problem to the following
claim: For every formula containing only ¬ and ∧ as logical operators,
there is an equivalent formula using only ∧̃. To show this claim, we
use Theorem 1.6 with the following equivalences:

(i) ¬φ⇔ φ ∧̃φ
(ii) φ ∧ ψ ⇔ (φ ∧̃ψ) ∧̃ (φ ∧̃ψ)

For (i), notice that with (DT), (MP), L3 and L5 we can easily obtain
φ⇔ φ ∧ φ. Now, with Theorem 1.6 we then find

¬φ⇔ ¬(φ ∧ φ)⇔ φ ∧̃φ.

For (ii) we again use Theorem 1.6 which gives us the following chain
of equivalences:

φ ∧ ψ ⇔ ¬¬(φ ∧ ψ)⇔ (¬(φ ∧ ψ)) ∧̃ (¬(φ ∧ ψ))

⇔ (φ ∧̃ψ) ∧̃ (φ ∧̃ψ).

where we used Tautology (F) and (i).

(b) Just as above we only have to show:

(iii) ¬φ⇔ φ ∨̃φ
(iv) φ ∧ ψ ⇔ (φ ∨̃φ) ∨̃ (ψ ∨̃ψ)

The first equivalence is immediate from φ ⇔ φ ∨ φ which requires
L6, L8, and Tautology (A.1).
For (iv) we again use Theorem 1.6 which gives us the following chain
of equivalences:

φ ∧ ψ ⇔ ¬¬(φ ∧ ψ)⇔ ¬(¬φ ∨ ¬ψ)

⇔ ¬((φ ∨̃φ) ∨ (ψ ∨̃ψ))⇔ (φ ∨̃φ) ∨̃ (ψ ∨̃ψ).

where we used Tautology (F) and (L.0).

2.1 By Tautology (A.1) we have reflexivity. For symmetry, consider two
formulae φ, ψ with φ ⇔ ψ. We want to prove {φ ↔ ψ} ⊢ ψ ↔ φ. Now,
since φ↔ ψ is just an abbreviation for (φ→ ψ) ∧ (ψ → φ), this follows
directly from Tautology (I.1).
In order to show transitivity, suppose φ1 ⇔ φ2, φ2 ⇔ φ3. As we can
obtain φ1 ↔ φ3 from φ1 ↔ φ2 by replacing an occurrence of φ2 by φ3,
we apply Theorem 1.6 to find:

φ2 ⇔ φ3 ===Ï φ1 ↔ φ2 ⇔ φ1 ↔ φ3
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Alternatively, one can also prove {φ1 ↔ φ2, φ2 ↔ φ3} ⊢ φ1 ↔ φ3 directly
with L1, L2, and L5.

2.2 For the direction that Φ ⊢ φ implies Φ φ for every formula φ, there are
six rules left to check. Namely (I∧), (E∧), (I∀), (E∀), (I=) and (E=).

For (I∧), suppose that Φ ⊢ φ and Φ ⊢ ψ. We verify that Φ ⊢ φ ∧ ψ:

φ0: ψ → (φ→ (φ ∧ ψ)) instance of L5
φ1: ψ by assumption

φ2: φ→ (φ ∧ ψ) from φ0 and φ1 by (MP)
φ3: φ by assumption
φ4: φ ∧ ψ from φ2 and φ3 by (MP)

For (E∧), suppose that Φ ⊢ φ∧ψ. We verify that Φ ⊢ φ as well as Φ ⊢ ψ.

φ0: φ ∧ ψ by assumption

φ1: (φ ∧ ψ) → φ instance of L3
φ2: (φ ∧ ψ) → ψ instance of L4
φ3: φ from φ1 and φ0 by (MP)
φ4: ψ from φ2 and φ0 by (MP)

For (I∀), let ν be a variable such that ν /∈ free(χ) for any χ ∈ Φ and
suppose that Φ ⊢ φ(ν). Then by (∀) it follows that Φ ⊢ ∀νφ(ν).

For (E∀), let ν be a variable and τ a term such that ν /∈ free(χ) for
any χ ∈ Φ and the substitution φ(ν/τ) is admissible. Suppose that Φ ⊢
∀νφ(ν). We verify that Φ ⊢ φ(τ):

φ0: ∀νφ(ν) → φ(τ) instance of L10
φ1: ∀νφ(ν) by assumption
φ2: φ(τ) from φ0 and φ1 by (MP)

The rule (I=) follows directly from L14.

In order to check (E=), we first prove

{τ1 = τ2} ⊢ σ(ν/τ1) = σ(ν/τ2)

by induction on term construction. If σ is a variable or a constant symbol
this is obvious. Suppose that σ is the term Fσ1, · · · , σn. Since we may
assume that {τ1 = τ2} ⊢ σi(ν/τ1) = σi(ν/τ2) by induction, we obtain
{τ1 = τ2} ⊢ σ(ν/τ1) = σ(ν/τ2) by L16.
Now note that an atomic formula φ is either of the form σ1 = σ2 or
Rσ1, · · ·σn for terms σ1, . . . , σn and a relation symbol R. We consider
only the case that φ is Rσ1, · · · , σn. If we assume τ1 = τ2 then by the
observation above we have σi(ν/τ1) = σi(ν/τ2) for all i. Since φ(ν/τi)
is simply the formula Rσ(ν/τi), · · · , σ(ν/τi), (E=) follows from L15. This
completes the first part of the proof, namely that Φ ⊢ φ implies Φ φ
for every formula φ.
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Conversely, we still have to check that every logical axiom from L0-L16
can be deduced by the calculus of natural deduction.

Let us start with L0, namely checking that φ ∨ ¬φ:

{φ,¬(φ ∨ ¬φ)} φ by (IR)
{φ,¬(φ ∨ ¬φ)} φ ∨ ¬φ by (I∨)
{φ,¬(φ ∨ ¬φ)} ¬(φ ∨ ¬φ) by (IR)
{φ,¬(φ ∨ ¬φ)} (φ ∨ ¬φ) ∧ ¬(φ ∨ ¬φ) by (I∧)

{¬(φ ∨ ¬φ)} ¬φ by (I¬)
{¬φ,¬(φ ∨ ¬φ)} ¬φ by (IR)
{¬φ,¬(φ ∨ ¬φ)} φ ∨ ¬φ by (I∨)
{¬φ,¬(φ ∨ ¬φ)} ¬(φ ∨ ¬φ) by (IR)
{¬φ,¬(φ ∨ ¬φ)} (φ ∨ ¬φ) ∧ ¬(φ ∨ ¬φ) by (I∧)

{¬(φ ∨ ¬φ)} ¬¬φ by (I¬)
{¬(φ ∨ ¬φ)} ¬φ ∧ ¬¬φ by (I∧)

¬¬(φ ∨ ¬φ) by (I¬)
φ ∨ ¬φ by (E¬)

For L1, we need to show φ→ (ψ → φ).

{φ,ψ} φ by (IR)
{φ} ψ → φ by (I→)

φ→ (ψ → φ) by (I→)

For L2, we need to show

(ψ → (φ1 → φ2))→ ((ψ → φ1)→ (ψ → φ2)) .

{ψ → (φ1 → φ2), ψ → φ1, ψ} ψ by (IR)
{ψ → (φ1 → φ2), ψ → φ1, ψ} ψ → φ1 by (IR)
{ψ → (φ1 → φ2), ψ → φ1, ψ} φ1 by (E→)
{ψ → (φ1 → φ2), ψ → φ1, ψ} ψ → (φ1 → φ2) by (IR)
{ψ → (φ1 → φ2), ψ → φ1, ψ} φ1 → φ2 by (E→)
{ψ → (φ1 → φ2), ψ → φ1, ψ} φ2 by (E→)

{ψ → (φ1 → φ2), ψ → φ1} ψ → φ2 by (I→)
{ψ → (φ1 → φ2)} (ψ → φ1) → (ψ → φ2) by (I→)

(ψ → (φ1 → φ2)) →
((ψ → φ1) → (ψ → φ2)) by (I→)

For L3, we need to show (φ ∧ ψ)→ φ.

{φ ∧ ψ} φ ∧ ψ by (IR)
{φ ∧ ψ} φ by (E∧)

(φ ∧ ψ) → φ by (I→)

For L4, we need to show (φ ∧ ψ)→ ψ.

{φ ∧ ψ} φ ∧ ψ by (IR)
{φ ∧ ψ} ψ by (E∧)

(φ ∧ ψ) → ψ by (I→)

For L5, we need to show φ→ (ψ → (ψ ∧ φ)).
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{φ,ψ} φ by (IR)
{φ,ψ} ψ by (IR)
{φ,ψ} ψ ∧ φ by (I∧)

{φ} ψ → (ψ ∧ φ) by (I→)
φ→ (ψ → (ψ ∧ φ)) by (I→)

For L6, we need to show φ→ (φ ∨ ψ).

{φ} φ by (IR)
{φ} φ ∨ ψ by (I∨)

φ→ (φ ∨ ψ) by (I→)

For L7, we need to show ψ → (φ ∨ ψ).

{ψ} φ by (IR)
{ψ} φ ∨ ψ by (I∨)

ψ → (φ ∨ ψ) by (I→)

For L8, we need to show

(φ1 → φ3)→ ((φ2 → φ3)→ ((φ1 ∨ φ2)→ φ3)) .

{φ1 → φ3, φ2 → φ3, φ1 ∨ φ2} φ1 ∨ φ2 by (IR)
{φ1 → φ3, φ2 → φ3, φ1 ∨ φ2, φ1} φ1 by (IR)
{φ1 → φ3, φ2 → φ3, φ1 ∨ φ2, φ1} φ1 → φ3 by (IR)
{φ1 → φ3, φ2 → φ3, φ1 ∨ φ2, φ1} φ3 by (E→)
{φ1 → φ3, φ2 → φ3, φ1 ∨ φ2, φ2} φ2 by (IR)
{φ1 → φ3, φ2 → φ3, φ1 ∨ φ2, φ2} φ2 → φ3 by (IR)
{φ1 → φ3, φ2 → φ3, φ1 ∨ φ2, φ2} φ3 by (E→)

{φ1 → φ3, φ2 → φ3, φ1 ∨ φ2} φ3 by (E∨)
{φ1 → φ3, φ2 → φ3} (φ1 ∨ φ2) → φ3 by (I→)

{φ1 → φ3} (φ2 → φ3) → ((φ1 ∨ φ2) → φ3) by (I→)
(φ1 → φ3) →

((φ2 → φ3) → ((φ1 ∨ φ2) → φ3)) by (I→)

Note that L9 and L13 are already verified. Furthermore, (E∀) implies L10
and (I∃) implies L11.

For L12, we need to verify

∀ν(ψ → φ(ν))→ (ψ → ∀νφ(ν))

for any variable ν /∈ free(ψ).

{∀ν(ψ → φ(ν)), ψ} ∀ν(ψ → φ(ν)) by (IR)
{∀ν(ψ → φ(ν)), ψ} ψ → φ(ν) by (E∀)
{∀ν(ψ → φ(ν)), ψ} ψ by (IR)
{∀ν(ψ → φ(ν)), ψ} φ(ν) by (E→)
{∀ν(ψ → φ(ν)), ψ} ∀νφ(ν) by (I∀)

{∀ν(ψ → φ(ν))} ψ → ∀νφ(ν) by (I→)
∀ν(ψ → φ(ν)) → (ψ → ∀νφ(ν)) by (I→)

L14 is immediate from (I=).
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For L15, we need to check that

(τ1 = τ ′1 ∧ · · · ∧ τn = τ ′n)→ (R(τ1, . . . , τn)→ R(τ ′1, . . . , τ
′
n)) .

{τ1 = τ ′1 ∧ · · · ∧ τn = τ ′n, R(τ1, . . . , τn)} τi = τ ′i (for each i) by (IR) and (E∧)
{τ1 = τ ′1 ∧ · · · ∧ τn = τ ′n, R(τ1, . . . , τn)} R(τ1, . . . , τn) by (IR)
{τ1 = τ ′1 ∧ · · · ∧ τn = τ ′n, R(τ1, . . . , τn)} R(τ ′1, . . . , τ

′
n) by (E=)

Note that in the last step we have applied (E=) multiple times. Applying
(I→) twice yields the desired result. N

For L16, we need to check that

(τ1 = τ ′1 ∧ · · · ∧ τn = τ ′n)→ (F (τ1, . . . , τn) = F (τ ′1, . . . , τ
′
n)) .

{τ1 = τ ′1 ∧ · · · ∧ τn = τ ′n} τi = τ ′i (for each i) by (IR) and (E∧)
{τ1 = τ ′1 ∧ · · · ∧ τn = τ ′n} F (τ1, . . . , τn) = F (τ1, . . . , τn) by (I=)
{τ1 = τ ′1 ∧ · · · ∧ τn = τ ′n} F (τ1, . . . , τn) = F (τ ′1, . . . , τ

′
n) by (E=)

As in the case of L15 we have to apply (E=) multiple times. The result
follows by (I→).

2.3 Let Φ be a set of formulae, φ a formula, τ a term and ν a variable. We
will prove that the following two statements hold:

Φ ⊢ ¬φ(τ) ===Ï Φ ⊢ ¬∀νφ(ν)

Φ ⊢ φ(τ) ===Ï Φ ⊢ ¬∀ν¬φ(ν)

For the first statement, assume ¬φ(τ). Then, by (I∃), we get ∃ν¬φ(ν),
which is equivalent to ¬∀νφ(ν) by Tautology (Q.1).
For the second statement, assume φ(τ). Then, again by (I∃), we get
∃νφ(ν), which is equivalent to ¬¬∃νφ(ν) by Tautology (F). Thus, ap-
plying Tautology (Q.0) and (G), we obtain ¬∀ν¬φ(ν).

2.4 For the first direction ⊢ ¬(φ ∧ ψ)→ (¬φ ∨ ¬ψ) of Tautology (L.0) we
first show {¬(φ ∧ ψ), φ, ψ} ⊢ �:

φ0: φ assumption
φ1: ψ assumption

φ2: ψ → (φ→ (φ ∧ ψ)) instance of L5
φ3: φ→ (φ ∧ ψ) from φ2 and φ1 by (MP)
φ4: φ ∧ ψ from φ3 and φ0 by (MP)

The contradiction then follows with L5. Using Corollary 2.8 we obtain
{¬(φ ∧ ψ), φ} ⊢ ¬ψ and a simple application of L7 gives {¬(φ ∧ ψ), φ} ⊢
¬φ ∨ ¬ψ.

With L6 we can show {¬(φ ∧ ψ),¬φ} ⊢ ¬φ ∨ ¬ψ. Finally with (∨1) we
obtain {¬(φ ∧ ψ)} ⊢ ¬φ ∨ ¬ψ, and we can thus conclude using (DT).
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Towards ⊢ (¬φ ∨ ¬ψ)→ ¬(φ ∧ ψ) we first show {φ ∧ ψ,¬φ ∨ ¬ψ} ⊢ �:

φ0: φ ∧ ψ assumption

φ1: (φ ∧ ψ) → φ instance of L3
φ2: φ from φ0 and φ1 by (MP)
φ3: (φ ∧ ψ) → ψ instance of L4
φ4: ψ from φ0 and φ3 by (MP)
φ5: ¬φ ∨ ¬ψ assumption

φ6: (¬φ ∨ ¬ψ) → (φ→ ¬ψ) instance of Tautology (K)
φ7: φ→ ¬ψ from φ5 and φ6 by (MP)
φ8: ¬ψ from φ2 and φ7 by (MP)

The contradiction follows again with L5. From Corollary 2.8 we obtain
{φ∧ψ} ⊢ ¬(¬φ∨¬ψ), by Proposition 2.9 we get {¬φ∨¬ψ} ⊢ ¬(φ∧ψ)
and finally we conclude with (DT).

The proof of Tautology (R) requires (G). Notice that with Theo-
rem 1.6 and Tautology (K) and (F), we obtain

φ→ ψ ⇔ ¬φ ∨ ψ ¬ψ → ¬φ⇔ ψ ∨ ¬φ

and therefore, Tautology (G) follows directly from commutativity of ∨
which in turn is proved easily with L6, L7 and L8.
We begin with ⊢ ¬¬∀νφ→ ¬∃ν¬φ:

φ0: ∀νφ→ φ instance of L10
φ1: (∀νφ→ φ) → (¬φ→ ¬∀νφ) instance of (G)

φ2: ¬φ→ ¬∀νφ from φ0 and φ1 by (MP)
φ3: ∀ν(¬φ→ ¬∀νφ) from φ2 by (∀)
φ4: ∀ν(¬φ→ ¬∀νφ) → (∃ν¬φ→ ¬∀νφ) instance of L13
φ5: ∃ν¬φ→ ¬∀νφ from φ3 and φ4 by (MP)
φ6: (∃ν¬φ→ ¬∀νφ) → (¬¬∀νφ→ ¬∃ν¬φ) instance of (G)
φ7: ¬¬∀νφ→ ¬∃ν¬φ from φ5 and φ6 by (MP)

From here we obtain ⊢ ∀νφ → ¬∃ν¬φ again with Tautology (F) and
Theorem 1.6.

For the other direction note that by Theorem 1.6 we have

¬(¬∃ν¬φ→ ∀νφ)⇔ ¬(¬¬∃ν¬φ ∨ ∀νφ)⇔ ¬(¬¬∃ν¬φ ∨ ¬¬∀νφ)

⇔ ¬¬(¬∃ν¬φ ∧ ¬∀νφ)⇔ (¬∃ν¬φ ∧ ¬∀νφ)

where we used Tautology (K), (F) and (L.0). Thus if (¬∃ν¬φ∧¬∀νφ) ⊢
� then ¬(¬∃ν¬φ→ ∀νφ) ⊢ � as well and therefore by Corollary 2.8
we obtain ⊢ ¬∃ν¬φ→ ∀νφ.

We can now show (¬∃ν¬φ ∧ ¬∀νφ) ⊢ �:

φ0: (¬∃ν¬φ ∧ ¬∀νφ) assumption

φ1: (¬∃ν¬φ ∧ ¬∀νφ) → (¬∃ν¬φ) instance of L3
φ2: ¬∃ν¬φ from φ0 and φ1 by (MP)
φ3: ¬φ→ ∃ν¬φ instance of L11
φ4: (¬φ→ ∃ν¬φ) → (¬∃ν¬φ→ ¬¬φ) instance of (G)

φ5: ¬∃ν¬φ→ ¬¬φ from φ3 and φ4 by (MP)
φ6: ¬¬φ from φ3 and φ5 by (MP)
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φ7: ¬¬φ→ φ instance of (F)
φ8: φ from φ6 and φ7 by (MP)
φ9: ∀νφ from φ8 by (∀)

φ10: (¬∃ν¬φ ∧ ¬∀νφ) → (¬∀νφ) instance of L4
φ11: ¬∀νφ from φ0 and φ10 by (MP)

from which a contradiction is reached as above.

2.5 To complete the proof of Theorem 1.7, it now only remains to prove the
equivalence

φ ∨ ψ ⇔ ¬(¬φ ∧ ¬ψ) .

However, by Theorem 1.6, this follows immediately from Tautol-
ogy (F) and (L.0).

2.6 For part (a), let us first consider the case n = 1. We prove each implication
seperately and start with ⊢ (¬φ ∨ ¬ψ)→ ¬(φ ∧ ψ).

φ0: (¬φ→ ¬(φ ∧ ψ)) → ((¬ψ → ¬(φ ∧ ψ))

→ ((¬φ ∨ ¬ψ) → ¬(φ ∧ ψ))) instance of L8
φ1: (φ ∧ ψ) → φ instance of L3
φ2: ¬φ→ ¬(φ ∧ ψ) by Proposition 2.9 and (DT)
φ3: (¬ψ → ¬(φ ∧ ψ)) → ((¬φ ∨ ¬ψ) → ¬(φ ∧ ψ)) from φ0 and φ2 by (MP)
φ4: φ ∧ ψ → ψ instance of L4
φ5: ¬ψ → ¬(φ ∧ ψ) by Proposition 2.9 and (DT)
φ6: (¬φ ∨ ¬ψ) → ¬(φ ∧ ψ) from φ3 and φ5 by (MP)

For the other direction, namely ⊢ ¬(φ ∧ ψ) → (¬φ ∨ ¬ψ), we will show
φ ⊢ ¬(φ ∧ ψ)→ (¬φ ∨ ¬ψ) and ¬φ ⊢ ¬(φ ∧ ψ)→ (¬φ ∨ ¬ψ) separately,
which leads to the desired conclusion by case distinction (∨1). We start
with the latter, assuming ¬φ.

φ0: ¬φ→ (¬φ ∨ ¬ψ) instance of L6
φ1: ¬φ by assumption

φ2: ¬φ ∨ ¬ψ from φ0 and φ1 by (MP)
φ3: (¬φ ∨ ¬ψ) → (¬(φ ∧ ψ) → (¬φ ∨ ¬ψ)) instance of L1
φ4: ¬(φ ∧ ψ) → (¬φ ∨ ¬ψ) from φ3 and φ2 by (MP)

To show {φ,¬(φ ∧ ψ)} ⊢ (¬φ ∨ ¬ψ), we argue by contradiction. Assume
φ, ¬(φ ∧ ψ) and ψ.

φ0: ψ → (φ→ (φ ∧ ψ)) instance of L5
φ1: ψ by assumption
φ2: φ→ (φ ∧ ψ) from φ0 and φ1 by (MP)
φ3: φ by assumption

φ4: φ ∧ ψ from φ2 and φ3 by (MP)
φ5: ¬(φ ∧ ψ) → ((φ ∧ ψ) → ((φ ∧ ψ) ∧ ¬(φ ∧ ψ))) instance of L5
φ6: ¬(φ ∧ ψ) by assumption

φ7: (φ ∧ ψ) → ((φ ∧ ψ) ∧ ¬(φ ∧ ψ)) from φ5 and φ6 by (MP)
φ8: (φ ∧ ψ) ∧ ¬(φ ∧ ψ) from φ7 and φ4 by (MP)

Which is a contradiction, hence, by Corollary 2.8 {φ,¬(φ ∧ ψ)} ⊢ ¬ψ
and thus, using L7, {φ,¬(φ∧ψ)} ⊢ ¬φ∨¬ψ. So, as mentioned above, we
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conclude ⊢ ¬(φ∧ψ)→ (¬φ∨¬ψ) by case distinction (∨1). This finishes
the case n = 1.

The general case follows inductively by the following observation:

(¬φ0 ∨ ¬φ1) ∨ ¬φ2

⇔ ¬(φ0 ∧ φ1) ∨ ¬φ2 by case n = 1 applied to φ0 and φ1

⇔ ¬((φ0 ∧ φ1) ∧ φ2) by case n = 1 applied to (φ0 ∧ φ1) and φ2

For part (b), we argue as follows:

¬(¬φ0 ∧ · · · ∧ ¬φn)
⇔ ¬¬φ0 ∨ · · · ∨ ¬¬φn by part (a) applied to ¬φi

⇔ φ0 ∨ · · · ∨ φn by Tautology (F) and (H.2)

Which leads to the conclusion, using Proposition 2.9.

For part (c), note that by Tautology (K) we have φ → ψ ⇔ ¬φ ∨ ψ
for any formulae φ and ψ. Similar to the argument concerning part (a)
we iteratively apply the following:

φ0 → (φ1 → φ2)
⇔ ¬φ0 ∨ (φ1 → φ2) by Tautology (K) applied to φ0 and φ1 → φ2

⇔ ¬φ0 ∨ (¬φ1 ∨ φ2) by Tautology (K) applied to φ1 and φ2

2.7 The proof is by induction on the construction of φ. First, note that by the
proof of Theorem 1.7, we may assume that φ only contains the symbols
¬ and ∧ as logical operators and ∀ as quantifier.
If φ is an atomic formula, L15 gives the assertion. So, suppose φ ≡ ¬ψ for
some formula ψ, (τ1 = τ ′1∧· · ·∧ τn = τ ′n), and that the statement already
holds for ψ. We verify that ¬ψ(τ1, . . . , τn)→ ¬ψ(τ ′1, . . . , τ

′
n), which proves

by (DT) that φ satisfies the assertion. Because of Tautology (G), it is
equivalent to check ψ(τ ′1, . . . , τ

′
n)→ ψ(τ1, . . . , τn).

By Tautology (N.0), we have (τ ′1 = τ1∧· · ·∧τ ′n = τn) from our assump-
tion. Thus, by applying the assertion to ψ and using (DT), we obtain the
desired implication ψ(τ ′1, . . . , τ

′
n)→ ψ(τ1, . . . , τn).

Now, suppose φ ≡ φ1∧φ2 for some formulae φ1 and φ2 which satisfy the
assertion. Further, assume the following formulae:

(τ1 = τ ′1 ∧ · · · ∧ τn = τ ′n)

φ1(τ1, . . . , τn)→ φ1(τ ′1, . . . , τ
′
n)

φ2(τ1, . . . , τn)→ φ2(τ ′1, . . . , τ
′
n)

φ1(τ1, . . . , τn) ∧ φ2(τ1, . . . , τn)

We verify that φ1(τ ′1, . . . , τ
′
n) ∧ φ2(τ ′1, . . . , τ

′
n). By applying L3 and L4

we obtain φ1(τ1, . . . , τn) and φ2(τ1, . . . , τn). Since φ1 and φ2 satisfy the
assertion we obtain φ1(τ ′1, . . . , τ

′
n) and φ2(τ ′1, . . . , τ

′
n) by (MP). Then, L5

and (MP) lead to φ1(τ ′1, . . . , τ
′
n) ∧ φ2(τ ′1, . . . , τ

′
n).

It remains to check the statement for φ ≡ ∀νψ where ν is some vari-
able and ψ is a formula. So, suppose τ2 = τ ′2 ∧ · · · ∧ τn = τ ′n and
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∀ν ψ(ν, τ2, . . . , τn). By L10, we get ψ(ν, τ2, . . . , τn). By our assumptions,
this leads to ψ(ν, τ ′2, . . . , τ

′
n), and applying (∀) gives the assertion.

2.8 The proof is by induction on the construction of φ. If φ is atomic, there
is nothing to prove. So, let φ ≡ ¬ψ for some formula ψ in CNF. Using
the equivalence ¬(ξ1 ∧ ξ2) ⇔ (¬ξ1 ∨ ¬ξ2) (cf. Tautology (L.0)), ψ is
equivalent to some formula of the form

(ψ1,1 ∧ · · · ∧ ψ1,k1) ∨ · · · ∨ (ψm,1 ∧ · · · ∧ ψm,km)

for some quantifier-free formulae ψi,j which are either atomic or nega-
tions of atomic formulae. The assertion follows by iteratively applying
Tautology (M.0).

Similarly, if φ ≡ φ1 ∨ φ2 for some formulae φ1 and φ2 in CNF Tautol-
ogy (M.0) does the job.

If now φ ≡ φ1 ∧ φ2 for some formulae φ1 and φ2 in CNF, then φ is
in CNF by construction. So, it only remains to check the case where
φ ≡ ψ → ψ′ for some formulae ψ and ψ′ in CNF. Using Tautology (K),
φ is equivalent to some formula of the form

¬
(
(ψ1,1 ∨ · · · ∨ ψ1,k1) ∧ · · · ∧ (ψm,1 ∨ · · · ∨ ψm,km)

)
∨
(
(ψ′

1,1 ∨ · · · ∨ ψ′
1,k1) ∧ · · · ∧ (ψ′

m,1 ∨ · · · ∨ ψ′
m,km)

)
for quantifier-free formulae ψi,j and ψ′

i,j , which are either atomic or nega-
tions of atomic formulae, and this is equivalent to some formula in CNF
by the above discussion.

2.9 (a) Define χ :≡ (φ → ψ) → ((φ → ¬ψ) → ¬φ). If we assume that
⊢ φ→ χ and ⊢ ¬φ→ χ we can conclude with:

φ0: φ→ χ assumption

φ1: ¬φ→ χ assumption

φ2: (φ→ χ) → ((¬φ→ χ) → ((φ ∨ ¬φ) → χ)) instance of L8
φ3: (¬φ→ χ) → (φ ∨ ¬φ) → χ) from φ2 and φ0 by (MP)
φ4: (φ ∨ ¬φ) → χ from φ3 and φ1 by (MP)
φ5: φ ∨ ¬φ instance of L0
φ6: χ from φ4 and φ5 by (MP)

It thus remains to prove the two assumptions above. We first show
{φ→ ψ,φ→ ¬ψ,φ} ⊢ ¬φ:

φ0: φ assumption

φ1: φ→ ψ assumption
φ2: ψ from φ1 and φ0 by (MP)
φ3: φ→ ¬ψ assumption
φ4: ¬ψ from φ3 and φ0 by (MP)
φ5: ¬ψ → (ψ → ¬φ) instance of L9
φ6: ψ → ¬φ from φ5 and φ4 by (MP)
φ7: ¬φ from φ6 and φ2 by (MP)
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Trivially, we have {φ → ψ,φ → ¬ψ,¬φ} ⊢ ¬φ and with (DT) we
then obtain ⊢ φ→ χ and ⊢ ¬φ→ χ.

Note that while we have only used L0, L8, and L9, the axiom
schemes L1 and L2 are required in the proof of (DT).

(b) We can again apply (DT) and show {L1, L2, L93/4, φ} ⊢ ¬¬φ:

φ0: φ assumption

φ1: φ→ (¬φ→ φ) instance of L1
φ2: ¬φ→ φ from φ1 and φ0 by (MP)
φ3: ¬φ→ (φ→ ¬φ) instance of L1
φ4: (¬φ→ (φ→ ¬φ)) →

((¬φ→ φ) → (¬φ→ ¬φ)) instance of L2
φ5: (¬φ→ φ) → (¬φ→ ¬φ) from φ4 and φ3 by (MP)
φ6: ¬φ→ ¬φ from φ5 and φ2 by (MP)
φ7: (¬φ→ φ) → ((¬φ→ ¬φ) → ¬¬φ) instance of L93/4
φ8: (¬φ→ ¬φ) → ¬¬φ from φ7 and φ2 by (MP)
φ9: ¬¬φ from φ8 and φ6 by (MP)

(c) We define | · | as in the hint and first show that every instance of
axioms L1–L9 has value 1:

L1: Assume |L1| ̸= 1. Then |φ| = 1 and |ψ → φ| ̸= 1, and therefore
|ψ| = 1 and |φ| ̸= 1, which is a contradiction.

L2: Assume |L2| ̸= 1. Then |ψ → (φ1 → φ2)| = 1 and |(ψ → φ1) →
(ψ → φ2)| ̸= 1. Thus |ψ → φ1| = 1 and |ψ → φ2| ̸= 1, which
implies |ψ| = 1, |φ2| ̸= 1 and |φ1| = 1. Hence, |φ1 → φ2| ̸= 1 and
|ψ → (φ1 → φ2)| ̸= 1, which is a contradiction.

L3: Notice that if we have |χ1| ≤ |χ2| for any formulae χ1, χ2, then
necessarily |χ1 → χ2| = 1. As |φ ∧ ψ| ≤ |φ|, we clearly have
|L1| = 1.

L4: Same argument as for L3.

L5: Assume |L5| ̸= 1. Then |φ| = 1 and |ψ → (ψ → φ)| ̸= 1. From
here we conclude again that |ψ → φ| ̸= 1 and |φ| ̸= 1, which is a
contradiction.

L6: As |φ ∨ ψ| ≥ |φ|, we get |L6| = 1.

L7: Same argument as for L6.

L8: Assume |L8| ̸= 1. Then |φ1 → φ3| = 1, |(φ2 → φ3) → ((φ1 ∨
φ2) → φ3)| ̸= 1, |(φ2 → φ3)| = 1, |(φ1 ∨ φ2) → φ3| ̸= 1, and
therefore |φ3| ̸= 1 and |(φ1∨φ2)| = 1. We then obtain |φ1| = 1 or
|φ2| = 1, which in turn implies |φ1 → φ3| ̸= 1 or |φ2 → φ3| ̸= 1.

L9: Assume |L9| ̸= 1. Then |¬φ| = 1, |φ → ψ| ̸= 1, |φ| = 1 and
|ψ| ̸= 1, and since 1 = |¬φ| = −|φ| = −1, we get a contradiction.
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Notice that because from |φ| = 1 and |φ → ψ| = 1 it follows that
|ψ| = 1, any application of (MP) to formulas with value 1 gives us
another formula with value 1. In that sense, (MP) is compatible with
| · | and any formula that can be proven using only instances of L1–L9
and (MP) must have value 1. However, this is not always the case for
an instance of L93/4: If |φ| = 0, then |φ→ ψ| = 1, |φ→ ¬ψ| = 1 and
|(φ→ ¬ψ)→ ¬φ| = 0. Thus, we obtain |L93/4| = 0, which shows that
L93/4 cannot be proven from the axioms L1–L9, i.e., {L1–L9} ⊬ L93/4.

2.10 For part (a), assume ¬¬φ and argue as follows:

φ0: ¬¬φ→ (¬φ→ φ) instance of L9
φ1: ¬¬φ by assumption
φ2: ¬φ→ φ from φ0 and φ1 by (MP)
φ3: φ ∨ ¬φ instance of L0
φ4: φ→ φ by Example 1.1
φ5: (φ→ φ) → ((¬φ→ φ) → ((φ ∨ ¬φ) → φ)) instance of L8
φ6: (¬φ→ φ) → ((φ ∨ ¬φ) → φ) from φ5 and φ4 by (MP)
φ7: (φ ∨ ¬φ) → φ from φ6 and φ2 by (MP)
φ8: φ from φ7 and φ3 by (MP)

For part (b), we first verify that

{L1, L2, L93/4} ⊢ (φ→ ψ)→ (¬ψ → ¬φ) (∗)

for any formulae φ and ψ. So, let us assume φ → ψ and ¬ψ. We verify
that ¬φ holds, then (∗) follows by (DT).

φ0: ¬ψ → (φ→ ¬ψ) instance of L1
φ1: ¬ψ by assumption

φ2: φ→ ¬ψ from φ0 and φ1 by (MP)
φ3: (φ→ ψ) → ((φ→ ¬ψ) → ¬φ) instance of L93/4
φ4: φ→ ψ by assumption

φ5: (φ→ ¬ψ) → ¬φ from φ3 and φ4 by (MP)
φ6: ¬φ from φ5 and φ2 by (MP)

Now, let us prove {L1, L2, L6, L7, L93/4} ⊢ ¬¬(φ ∨ ¬φ).

φ0: φ→ (φ ∨ ¬φ) instance of L6
φ1: ¬(φ ∨ ¬φ) → ¬φ from φ0 by (∗)

φ2: ¬φ→ (φ ∨ ¬φ) instance of L7
φ3: ¬(φ ∨ ¬φ) → ¬¬φ from φ2 by (∗)

φ4: (¬(φ ∨ ¬φ) → ¬φ) →
((¬(φ ∨ ¬φ) → ¬¬φ) → ¬¬(φ ∨ ¬φ)) instance of L93/4

φ5: (¬(φ ∨ ¬φ) → ¬¬φ) → ¬¬(φ ∨ ¬φ) from φ4 and φ1 by (MP)
φ6: ¬¬(φ ∨ ¬φ) from φ5 and φ3 by (MP)

Since the axioms of part (b) are also given in part (c), we may use the
formula ¬¬(φ ∨ ¬φ) to prove the latter.

φ0: ¬¬(φ ∨ ¬φ) → φ ∨ ¬φ instance of L91/4
φ1: ¬¬(φ ∨ ¬φ) by part (b)
φ2: φ ∨ ¬φ from φ0 and φ1 by (MP)
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For parts (d) and (e) we define a mapping | · | as suggested in the hint by
assigning every formula a value in {−1, 0, 1}. For atomic formulae we may
choose any value. For every other formula the value is fixed by induction
on formula construction, as illustrated in the following table:

|φ| |ψ| |¬φ| |φ→ ψ| |φ ∧ ψ| |φ ∨ ψ|

−1 −1 1 1 −1 −1
−1 0 1 1 −1 0
−1 1 1 1 −1 1

0 −1 −1 −1 −1 0
0 0 −1 1 0 0
0 1 −1 1 0 1

1 −1 −1 −1 −1 1
1 0 −1 0 0 1
1 1 −1 1 1 1

One can now check with the above table that every instance of any axiom
from L1–L9 and L93/4 has value 1 under | · |. Furthermore, with respect to
(MP) we have that if |φ| = 1 and |φ → ψ| = 1, then also |ψ| = 1. Thus,
for every formula θ with {L1–L9, L93/4} ⊢ θ we have |θ| = 1.

Now, if φ is any formula with |φ| = 0, then |¬φ| = −1, |¬¬φ| = 1, and
|¬¬φ → φ| = 0, and since ¬¬φ → φ is an instance of L91/4, this implies
that {L1–L9, L93/4} ⊬ L91/4.

Similarly, φ∨¬φ is an instance of L0 with |φ∨¬φ| = 0 for |φ| = 0. Hence,
{L1–L9, L93/4} ⊬ L0.

2.11 Let Φ0 := {L0–L9} and Φ1 := {L1–L9, L93/4}, for simplified notation. We
prove each direction separately. First, we verify that every proof of ¬¬φ
from Φ1 can be transformed in a proof for Φ0 ⊢ ¬¬φ. First, note that
it follows from Exercise 2.9.(a) that Φ0 ⊢ L93/4. Now, since Φ0 ⊢ L91/4

(see Exercise 2.10.(a)), Φ0 ⊢ ¬¬φ then implies Φ0 ⊢ φ.

For the other direction, suppose Φ0 ⊢ φ. Since φ is quantifier-free, we
may assume that its proof from Φ0 does not involve (∀). We will now
check that Φ1 ⊢ ¬¬ψ for every instance ψ of any axiom scheme in Φ0.

First let us prove Φ1 + ψ ⊢ ¬¬ψ:

φ0: ψ by assumption

φ1: (¬ψ → ψ) → ((¬ψ → ¬ψ) → ¬¬ψ) instance of L93/4
φ2: ψ → (¬ψ → ψ) instance of L1
φ3: ¬ψ → ψ from φ2 and φ0 by (MP)
φ4: (¬ψ → ¬ψ) → ¬¬ψ from φ1 and φ3 by (MP)
φ5: ¬ψ → ¬ψ by Example 1.1
φ6: ¬¬ψ from φ4 and φ5 by (MP)
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Together with Exercise 2.10.(b), we thus have Φ1 ⊢ ¬¬ψ for every
instance ψ of any axiom scheme in Φ0. It remains to check that a rule
similar to (MP) holds. For this we claim that

Φ1 + ¬¬(ψ → χ) ⊢ ¬¬ψ → ¬¬χ . (∗∗)

In order to show this, we prove that Φ1 + ¬(ψ ∧ χ) ⊢ ψ → ¬χ.

φ0: ¬(ψ ∧ χ) by assumption

φ1: (ψ → (¬(ψ ∧ χ) → ¬χ)) → ((ψ → ¬(ψ ∧ χ))
→ (ψ → ¬χ)) instance of L2

φ2: χ→ (ψ → (ψ ∧ χ)) instance of L5
φ3: ψ → (χ→ (ψ ∧ χ)) from φ2 by (DT)
φ4: ψ → (¬(ψ ∧ χ) → ¬χ) from φ3 by (∗) and (DT)
φ5: (ψ → ¬(ψ ∧ χ)) → (ψ → ¬χ) from φ1 and φ4 by (MP)
φ6: ¬(ψ ∧ χ) → (ψ → ¬(ψ ∧ χ)) instance of L1
φ7: ψ → ¬(ψ ∧ χ) from φ6 and φ0 by (MP)
φ8: ψ → ¬χ from φ5 and φ7 by (MP)

Note that in order to obtain φ3 from φ2 we have to apply (DT) multiple
times.

Hence, we have Φ1+¬(¬¬ψ∧¬χ) ⊢ ¬¬ψ → ¬¬χ. In order to obtain (∗∗),
it suffices to show Φ1 ⊢ (¬¬ψ∧¬χ)→ ¬(ψ → χ), since then (∗∗) follows
from (∗) and (MP). Using (DT) we show instead

Φ1 + ¬¬ψ ∧ ¬χ ⊢ ¬(ψ → χ) .

φ0: ¬¬ψ ∧ ¬χ by assumption

φ1: (¬¬ψ ∧ ¬χ) → ¬¬ψ instance of L3
φ2: ¬¬ψ from φ1 and φ0 by (MP)
φ3: (¬¬ψ ∧ ¬χ) → ¬χ instance of L4
φ4: ¬χ from φ3 and φ0 by (MP)
φ5: ((¬χ→ ¬ψ) → ¬ψ) → (((¬χ→ ¬ψ) → ¬¬ψ)

→ ¬(¬χ→ ¬ψ) instance of L93/4
φ6: (¬χ→ ¬ψ) → ¬ψ from φ4 by (DT) and (MP)
φ7: ((¬χ→ ¬ψ) → ¬¬ψ) → ¬(¬χ→ ¬ψ) from φ5 and φ6 by (MP)
φ8: ¬¬ψ → ((¬χ→ ¬ψ) → ¬¬ψ) instance of L1
φ9: (¬χ→ ¬ψ) → ¬¬ψ from φ8 ad φ2 by (MP)
φ10: ¬(¬χ→ ¬ψ) from φ7 and φ9 by (MP)
φ11: ((ψ → χ) → (¬χ→ ¬ψ)) → (((ψ → χ)

→ ¬(¬χ→ ¬ψ)) → ¬(ψ → χ)) instance of L93/4
φ12: (ψ → χ) → (¬χ→ ¬ψ) instance of (∗)

φ13: ((ψ → χ) → ¬(¬χ→ ¬ψ)) → ¬(ψ → χ) from φ11 and φ12 by (MP)
φ14: ¬(¬χ→ ¬ψ) → ((ψ → χ) → ¬(¬χ→ ¬ψ)) instance of L1
φ15: (ψ → χ) → ¬(¬χ→ ¬ψ) from φ14 and φ10 by (MP)
φ16: ¬(ψ → χ) from φ13 and φ15 by (MP)

Hence, we have Φ1 + ¬¬(ψ → χ) ⊢ ¬¬ψ → ¬¬χ. So, if χ follows from ψ
and ψ → χ by (MP) in a proof of Φ0 ⊢ φ and we have Φ1 ⊢ ¬¬ψ, as well
as Φ1 ⊢ ¬¬(ψ → χ), we can prove ¬¬ψ → ¬¬χ from Φ1 as above and
obtain a proof for ¬¬χ by (MP). Hence, every proof of φ from Φ0 leads
to a proof of ¬¬φ from Φ1.
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Chapter 3

3.0 By Example 1.0 we know ⊢ ∃x(x = x). From the Soundness Theo-
rem, in particular Fact 3.8, for any model M we have M ⊨ ∃x(x = x).
Therefore, by the definition of “⊨” there must exist some element in the
domain of M, which shows that the domain of M is non-empty. Thus,
it is not necessary to require that the domain of an L -structure to be
non-empty.

3.1 We define three domains

A1 := {a}, A2 := {a, b}, A3 := {a, b, c}

and the relations

RM1 = ∅, RM2 = {
〈
a, a
〉
,
〈
b, b
〉
,
〈
a, b
〉
}, RM3 = A2

3 \ {
〈
a, c
〉
,
〈
c, a
〉
}.

It can be checked that the corresponding models M1, M2 and M3 satisfy
the requirements.
It remains to show that the chosen domains are minimal: By the previous
exercise it is clear that no domain can have fewer elements than A1, and
any model with just one element will always satisfy φ2 and φ3. Finally,
it can be checked that any model M with domain A2 such that M ⊨ ¬φ3

cannot be a model of φ1. Therefore, all three domains are minimal.

3.2 Let a0 be an arbitrary but fixed element of the domain A of M′. We
construct a model M as follows: For each constant symbol c ∈ L which
does not belong to L ′, let cM := a0. Similarly, for each n-ary function
symbol F ∈ L which does not belong to L ′, let FM : An → A be such
that FM maps each element of An to a0, and for each n-ary relation
symbol R ∈ L which does not belong to L ′, let RM := An. Finally,
interpret the symbols in L ′ in the L -structure M as they are interpreted
in the L ′-structure M′.
We now show that M ⊨ T by induction on the construction of the L ′-
sentences σ ∈ T: Let φ be an L ′-formula which appears in the construc-
tion of some σ ∈ T. If φ is an atomic formula, then, since all symbols
contained in φ are interpreted in M as in M′, we obtain M ⊨ φ. If
φ ≡ ¬ψ, then M′ ⊨ φ gives M′ ⊭ ψ and by induction we find M ⊭ ψ and
therefore M ⊨ ¬φ. The other cases follow similarly.

3.3 The solution to this exercise follows directly from Fact 3.4 which in turn
can be proven by induction on the construction of formula just as in the
solution to Exercise 3.2.
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3.4 Let M ⊨ DLO be a countable model of DLO with domain {dj : j ∈ N},
and let {qi : i ∈ N} be an enumeration of Q. Furthermore, define the
function g : N → N as follows: Let g(0) := 0 and for each i ∈ N, let
g(i + 1) be the least integer j ∈ N which is different from g(0), . . . , g(i),
such that for all k ≤ i we have

qk < qi+1 ↔ dg(k) < dj .

Now, let ḡ map the rationals to the domain of M by stipulating ḡ(qi) =
dg(i). To show that M is isomorphic to (Q, <), it is enough to show that
ḡ is an order-preserving bijection. Since by definition of g, for all i, j ∈ N

we have qi < qj ↔ dg(i) < dg(j), the function ḡ is an order-preserving
injection. So, it remains to show that ḡ is surjective which in turn can
be shown by proving that g is surjective: Let j0 be a positive integer and
assume that for all j < j0 there is a kj ∈ N such that g(kj) = j. Now, let
i0 ∈ N be the least integer such for all j < j0 we have

qkj < qi0 ↔ dj < dj0 .

Then, g(i0) = j0, which implies that g is surjective.

3.5 (a) Let φ11, φ12 and φ13 be instances of L11-L13, let j be an arbitrary
assignment and let I = (M, j) be an interpretation with domain A.

We first consider L11: By definition we have

I ⊨ φ11 Î===Ï if I ⊨ φ(τ) then I ⊨ ∃νφ(ν) ,

I ⊨ ∃νφ(ν) Î===Ï there exists a in A : Iaν ⊨ φ(ν) ,

and by Fact 3.0.(b) we have I I(τ)ν ⊨ φ(ν) if and only if I ⊨ φ(τ).
Thus, for a = I(τ), this shows that L11 is valid in M.

For L12, notice that by definition, I ⊨ φ12 can be stated as

I ⊨ φ12 Î===Ï if for all a in A : Iaν ⊨ (ψ → φ(ν))

then I ⊨ (ψ → ∀νφ(ν))

Î===Ï if (for all a in A : if Iaν ⊨ ψ then Iaν ⊨ φ(ν)︸ ︷︷ ︸
(∗)

)

then (if I ⊨ ψ then for all a in A : Iaν ⊨ φ(ν))

By using Fact 3.0 (a) we see that Iaν ⊨ ψ holds if and only if I ⊨ ψ.
Assume that (∗) holds and that I ⊨ ψ. Then for all a ∈ A we obtain
Iaν ⊨ φ(ν), which shows that L12 is valid in M.
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For L13, notice that I ⊨ φ13 can be stated as

I ⊨ φ13 Î===Ï if for all a in A : Iaν ⊨ (φ(ν)→ ψ)

then I ⊨ (∃νφ(ν)→ ψ)

Î===Ï if
(
for all a in A : Iaν ⊨ φ(ν) then Iaν ⊨ ψ

)
then

(
if there exists a in A : Iaν ⊨ φ(ν)

then I ⊨ ψ
)

By similar arguments as above we obtain that L13 is valid in M.

(b) Let I and A be as above and let φ14, φ15 and φ16 be instances of the
logical axioms L14-L16.

By definition we have

I ⊨ φ14 Î===Ï I(τ) is the same object as I(τ)

which is obviously true and therefore L14 is valid in M.

For L15, by definition I ⊨ φ15 can be stated as:

I ⊨ φ15 Î===Ï if I ⊨ (τ1 = τ ′1 ∧ . . . ∧ τn = τ ′n)

then I ⊨ R(τ1, . . . , τn)→ R(τ ′1, . . . , τ
′
n)

Î===Ï if
(
I ⊨ τ1 = τ ′1 and . . . and I ⊨ τn = τ ′n

)
then

(
if I ⊨ R(τ1, . . . , τn) then I ⊨ R(τ ′1, . . . , τ

′
n)
)

Now, if ⟨I(τ1), . . . , I(τn)⟩ belongs to RM and if for all i such that
1 ≤ i ≤ n we have that I(τi) is the same object as I(τ ′i), then also
⟨I(τ ′1), . . . , I(τ ′n)⟩ belongs to RM, which shows that L15 is valid in M.

Finally, for L16 we have:

I ⊨ φ16 Î===Ï if I ⊨ (τ1 = τ ′1 ∧ . . . ∧ τn = τ ′n)

then I ⊨ F (τ1, . . . , τn) = F (τ ′1, . . . , τ
′
n)

Î===Ï if
(
I ⊨ τ1 = τ ′1 and . . . and I ⊨ τn = τ ′n

)
then I(F (τ1, . . . , τn)) is the

same object as I(F (τ ′1, . . . , τ
′
n))

By definition we have that I(F (τ1, . . . , τn)) is the same object as
FM(I(τ1), . . . , I(τn)). Now, if we assume that for all i such that
1 ≤ i ≤ n, I(τi) is the same object as I(τ ′i), then FM(I(τ1), . . . , I(τn))
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is the same object as FM(I(τ ′1), . . . , I(τ ′n)), which implies that

I ⊨ F (τ1, . . . , τn) = F (τ ′1, . . . , τ
′
n)

and shows that L16 is valid in M.

3.6 (a) Let σ be an L -sentence. With Theorem 2.13 we find an equivalent
sentence σ̃ satisfying the condition on its variables. Let M be an
arbitrary L -structure and j any assignment. As σ and σ̃ are equiv-
alent we have ⊢ σ ↔ σ̃ and by the Soundness Theorem we then
obtain (M, j) ⊨ σ ↔ σ̃ which is enough to conclude that they are
semantically equivalent.

(b) By applying Theorem 2.14, we can argue as above.

3.7 For part (a), consider the sentence σ :≡ ∀x∀y(x = y). We construct two
models G1 and G2 of GT such that G1 ⊨ σ and G2 ⊨ ¬σ. Then, GT ⊬ σ
and GT ⊬ ¬σ, which implies that GT is incomplete.
For G1 take the domain A1 := {0}, let eG1 := 0 and ◦G1(0, 0) := 0.
Then, G1 ⊨ GT and G1 ⊨ σ.
For G2 take the domain A2 := {−1, 1} and let eG2 := 1. Define ◦G2 like
multiplication in Z. Then, G2 ⊨ GT and, since −1 ̸= 1, G2 ⊨ ¬σ. This
proves part (a).

For part (b), we may use the same sentence σ and the same models G1

and G2. One only needs to verify that G1 ⊨ ψ and G2 ⊨ ψ, which follows
from the commutativity of multiplication in Z.
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Chapter 4

4.0 The proof of Fact 4.0 makes use of Fact 2.16.(d), which uses L5. For
Lemma 4.1 we used Tautology (F), whose proof uses the axioms L0,
L1, L8, L9. In addition, we used L2 in the proof of ⊢ φ → φ, which was
also used for the proof of Tautology (F).
The given proof for Proposition 4.6 makes use of L3, L4 and Tautol-
ogy (K), by using Theorem 1.7, where the proof of Tautology (K)
uses L6 and L7.

4.1 Following the hint, let Λ be the set of all finite lists λ = [¬σ0, ϱ1, . . . , ϱn]
of L -sentences, where for each 1 ≤ i ≤ n, either ϱi ≡ σi or ϱi ≡ ¬σi.
Encode now finite sequences of formulae s = [φ0, . . . , φn] by stipulating

# s := 3#φn3#φn−1 · · · 3#φ0 ,

where each formula is encoded as a string of 0’s, 1’s, and 2’s as it was
done for the universal list ΛL of L -sentences. With this encoding of finite
sequence of formulae, and with a bijection between these codes and the
natural numbers, we can encode each formal proof by a natural number.
Finally, let T be the set of all lists λ ∈ Λ, such that there is no formal
proof of an inconsistency from T + λ with a code-number less than the
length of λ. In order to obtain an infinite 0-1-tree, to each sequence λ ∈ T
we assign a 0-1-sequence by stipulating

[¬σ0, ϱ1, . . . , ϱn] 7→ ⟨1, t1, . . . , tn⟩ ,

where for 1 ≤ i ≤ n,

ti :=

{
0 if ϱi ≡ σi,
1 if ϱi ≡ ¬σi.

Then the set of 0-1-sequence we obtain as images of sequences λ ∈ T is
an infinite 0-1-tree with the property that each infinite branch through
T corresponds to a maximally consistent set of L -sentences.

4.2 Let T = Th(M). Note that T is maximally consistent if for every sentence
σ we have σ ∈ T or ¬Con(T + σ). So, let σ be a sentence with σ /∈ T.
We verify that ¬Con(T+σ). By construction, M ⊭ σ and thus, M ⊨ ¬σ,
which implies ¬σ ∈ T. Now, observe that T + σ ⊢ σ and T + σ ⊢ ¬σ,
since ¬σ ∈ T. Hence, by L5, T+ σ ⊢ σ ∧¬σ, which implies ¬Con(T+ σ).
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Chapter 5

5.0 By contraposition assume that T is not complete. Then there is a sen-
tence σ such that T ⊬ σ and T ⊬ ¬σ. In particular, both theories T + σ
and T + ¬σ are consistent. Thus, by Theorem 5.5 we find models M1

and M2 such that M1 ⊨ T+σ and M2 ⊨ T+¬σ. Now, since both models
are models of T and since M1 ≇M2, this shows that T has at least two
non-isomorphic models.

Remark: By Theorem 15.4, the statement also holds for arbitrary sig-
natures L .

5.1 (a) We have to show

(i)
⋃
φXφ = Σ, and

(ii) for any L -sentences φ1 and φ2, and for every L -structure
M ∈ Xφ1

∩Xφ2
, there is an L -sentence ψ such that

M ∈ Xψ ⊆ Xφ1
∩Xφ2

.

For (i), notice that for any L -sentence φ we have Σ = Xφ ∪ X¬φ.
For (ii), let M ∈ Xφ1

∩ Xφ2
. Then M ⊨ φ1 ∧ φ2, and therefore,

M ∈ Xφ1∧φ2
.

(b) Let φ be an L -sentence. Because Σ = Xφ∪X¬φ and Xφ∩X¬φ = ∅,
we obtain that Xφ = Σ \X¬φ is closed. In fact, the basic open sets
Xφ are also closed.

(c) Fix any open covering
⋃
i∈I Ai of Σ and assume there is no finite

subcovering, i.e., for every finite subset J ⊆ I we have:⋃
j∈J

Aj ̸= Σ

Let Φ be the collection of all L -sentences φ, such that the basic
open set Xφ is contained in an open set Ai (for some i ∈ I). By our
assumption we have that ⋃

φ∈Φ

Xφ = Σ

and for every finite subset Ψ ⊆ Φ we have
⋃
φ∈ΨXφ ̸= Σ. In other

words, for every finite subset Ψ ⊆ Φ there is an L -structure MΨ̄,
such that

MΨ̄ ∈ Σ \
⋃
φ∈Ψ

Xφ =
⋂
φ∈Ψ

X¬φ ,

which implies that for each φ ∈ Ψ, MΨ̄ ⊨ ¬φ. In particular, for
every finite subset {φ0, . . . , φn} ⊆ Φ we have that {¬φ0, . . . ,¬φn}
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is consistent. Thus, by the Compactness Theorem 2.17, the set
{¬φ : φ ∈ Φ} is consistent and by Theorem 5.5 has a model MΦ̄.
Hence, we have

MΦ̄ ∈
⋂
φ∈Φ

X¬φ = Σ \
⋃
φ∈Φ

Xφ ,

which is a contradiction to the fact that Σ =
⋃
φ∈ΦXφ.

5.2 (a) Assume towards a contradiction that there exists an LDLO-sentence σ,
such that DLO ⊬ ¬σ and DLO ⊬ σ. Then DLO+σ and DLO+¬σ are
both consistent, and therefore, by Skolem’s Paradox 5.6, there
are countable models M and N such that M ⊨ DLO + σ and
N ⊨ DLO + ¬σ. However, this contradicts the fact that any two
countable models of DLO are isomorphic (see Exercise 3.4).

(b) Notice that (Q, <) and (R, <) are both models of DLO and are non-
isomorphic because of their different cardinality. We claim that they
are elementary equivalent: Let σ be an arbitrary L -sentence. By (a)
we have either DLO ⊢ σ or DLO ⊢ ¬σ, and therefore, by the Sound-
ness Theorem we have either Q ⊨ σ and R ⊨ σ, or Q ⊨ ¬σ and
R ⊨ ¬σ.

5.3 For each n ∈ N define a constant symbol cn and let

L ′ := L ∪ {cn : n ∈ N} .

For n,m ∈ N with n < m define the L -sentence φn,m :≡ cn ̸= cm and
let

T′ := T ∪
{
φn,m : n,m ∈ N and n < m

}
.

Since T has arbitrarily large finite models, for each k ∈ N there is a
model Mk ⊨ T such that its domain has at least k elements. Now, by
assigning k constants cn to pairwise different objects in the domain of M,
we find a model M′

k ⊨ T which is also a model for
(
k
2

)
sentences φn,m.

In particular, this shows that any finite subset of T′ is consistent. We
therefore obtain by Compactness Theorem 2.17 and by Theorem 5.5
that T′ is consistent and has a model M. By definition of φn,m, M must
have an infinite domain, and since L ⊂ L ′ and T ⊂ T′, we have M ⊨ T.

5.4 Let
n ≡ 1 + . . .+ 1︸ ︷︷ ︸

n times

,

where we omit the brackets since by construction + is associative. Now,
let L ′ be the language L ∪ {c} for some constant symbol c, let φn be
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the formula
0 < c ∧ n · c < 1 ,

and let
T′ := T ∪

{
φn : n ∈ N

}
.

Now, every finite subset Φ of T′ is consistent, since if n is the biggest
natural number such that φn ∈ Φ, then we can assign c to 1

n+1 and

hence obtain that (Q, 0, 1, 1
n+1 ,+, ·, <) is a model of Φ. We therefore

obtain by the Compactness Theorem 2.17 and by Theorem 5.5 that
T′ is consistent and has a model M, and cM is the desired infinitesimal
number.
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Chapter 6

6.0 A possible axiomatisation for (a) is

GT∗
0: ∀x∀y∀z

(
x ◦ (y ◦ z) = (x ◦ y) ◦ z

)
GT∗

1: ∃x∀y∃z
(
(x ◦ y = y) ∧ (z ◦ y = x)

)
For part (b), let ψe(x) :≡ ∀y∃z

(
x ◦ y = y∧(z ◦ y = x)

)
. We need to check

that GT∗ ⊢ ∃!xψe(x). We will give a semantic proof of this result.
Let M be an arbitrary model of GT∗ and let e1, e2 be two witnesses for
∃xψe(x) with respect to axiom GT∗

1. Then, for i ∈ {1, 2}, we have

M ⊨ ∀y(ei ◦ y = y) (1)

and M ⊨ ∀y ∃z(z ◦ y = ei) . (2)

So, M is a model for:

e1 = e2 ◦ e1 from (1) with i = 2 and y = e1
= (z ◦ e1) ◦ e1 from (2) with i = 2 and y = e1
= z ◦ (e1 ◦ e1) by GT∗

0

= z ◦ e1 from (1) with i = 1 and y = e1
= e2 from (2) with i = 2 and y = e1

Hence, in M we have for some z in the domain of M: M ⊨ GT∗ we have
M ⊨ ∃!x∀y ψe(x), which implies, by Gödel’s Completeness Theo-
rem 5.5, GT∗ ⊢ ∃!xψe(x).

For part (c), let ψinv(x, y) :≡ y ◦ x = e. We need to verify that

GT∗ ⊢ ∀x∃!y ψinv(x, y) .

Similar to the argument above, let M ⊨ GT∗ and e = eM ∈ M as in
part (b). We will first prove the following two results:

GT∗ ⊢ ∀x(x ◦ x = x→ x = e) (3)

GT∗ ⊢ ∀x∀y(y ◦ x = e→ x ◦ y = e) (4)

For (3), let a be an arbirary element of the domain of M for which we
have M ⊨ a ◦ a = a. Then M is a model for:

a = e◦ a by GT∗
1

= (b ◦ a) ◦ a by GT∗
1, for some b with b ◦ a = e

= b ◦ (a ◦ a) by GT∗
0

= b ◦ a by assumption
= e by GT∗

1

Thus, since a was arbitrary, M ⊨ ∀x(x ◦ x = x→ x = e).

For (4), let b and a be arbitrary elements of the domain of M for which
we have M ⊨ b ◦ a = e. Then M is a model for:
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(a ◦ b) ◦ (a ◦ b) = a ◦ ((b ◦ a) ◦ b) by GT∗
0

= a ◦ (e◦ b) by assumption
= a ◦ b by GT∗

1

Thus, by (3), M ⊨ a ◦ b = e, which proves (4). Now, let a, b, c in the
domain of M such that

M ⊨ b ◦ a = e (5)

and M ⊨ c ◦ a = e . (6)

Then M is a model for:

b = e◦ b by GT∗
1

= (c ◦ a) ◦ b from (6)
= c ◦ (a ◦ b) by GT∗

0

= c ◦ e from (5) and (4)
= c ◦ (a ◦ c) from (6) and (4)
= (c ◦ a) ◦ c by GT∗

0

= e◦ c from (6)
= c by GT∗

1

Thus, since M was arbitrary, this proves GT∗ ⊢ ∀x∃!y ψinv(x, y).

6.1 Let L be a signature, let c ∈ L be a constant symbol, and let T be an L -
theory. In a first step, we replace the constant symbol c ∈ L by a unary
relation symbol Rc and denote the corresponding signature by L ∗. In a
second step, for each L -formula φ we choose a variable ν not occurring
in φ and replace φ by the formula

ψφ :≡

{
∃ν
(
φ(c/ν) ∧Rc(ν)

)
or

φ,

depending on whether c occurs in φ or not, where φ(c/ν) is the formula
obtained from φ by replacing every instance of c by ν. This way, the
theory T transforms to an L ∗-theory (i.e., to a theory which does not
involve the constant symbol c). To this theory we add the sentence

∃!x
(
Rc(x)

)
and denote the resulting theory by T∗.
Let M be a an L -structure with domain A, such that M ⊨ T. Now, we
extend M to an L ∗-structure M∗ with the same domain by stipulating

RM∗

c := {cM}

where cM
∗

is undefined in M∗. Then M∗ ⊨ T∗ and for each L -formula
φ we have M ⊨ φ if and only if M∗ ⊨ ψφ. Thus, since the constant
symbol c was arbitrary, we may replace each constant symbol c ∈ L
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by its corresponding relation Rc, which shows that constant symbols are
dispensable.

Let L be a signature, let f ∈ L be an n-ary function symbol, and let T
be an L -theory. As above, we first replace the function symbol f ∈ L by
an (n+1)-ary relation symbol Rf and denote the corresponding signature
by L ∗. Then, for each L -formula φ we choose a variable ν not occurring
in φ and, for terms τ1, . . . , τn, replace φ by the formula

ψφ :≡

{
∃ν
(
φ(f(τ1, . . . , τn)/ν) ∧Rf (τ1, . . . , τn, ν)

)
or

φ,

depending on whether f(τ1, . . . , τn) occurs in φ or not. This way, the
theory T transforms to an L ∗-theory. To this theory we add the sentence

∀ν1 · · · ∀νn ∃!y
(
Rf (ν1, . . . , νn, y)

)
and denote the resulting theory by T∗.
Let M be a an L -structure with domain A, such that M ⊨ T. Now, by
induction on the complexity of terms, we extend M to an L ∗-structure
M∗ with the same domain by stipulating(

τM
∗

1 , . . . , τM
∗

n , τM
∗

0

)
∈ RM∗

f :⇐⇒ fM
(
τM

∗

1 , . . . , τM
∗

n

)
= τM

∗

0

where fM
∗

is undefined in M∗. By construction, M∗ ⊨ T∗ and for each
L -formula φ we have M ⊨ φ if and only if M∗ ⊨ ψφ. Thus, since the func-
tion symbol f was arbitrary, we may replace each function symbol f ∈ L
by its corresponding relation Rf , which shows that function symbols are
dispensable.

6.2 For part (a) we use the axiomatization obtained in the solution of Ex-
ercise 6.0.(a), together with what we have found in Exercise 6.1. This
leads to the following:

GTR−1 : ∀x∀y∃!zR(x, y, z)

GTR0 : ∀x∀y∀z∃v0∃v1∃v2∃v3
(
R(x, y, v0) ∧

R(y, z, v1) ∧R(x, v1, v2) ∧R(v0, z, v3) ∧ v2 = v3
)

GTR1 : ∃x∀y∃z
(
R(x, y, y) ∧R(z, y, x)

)
For part (b), we define the relation

Re(x) :⇐⇒ ∀y∃z
(
R(x, y, y) ∧R(z, y, x)

)
.
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By Exercise 6.1, the axiomatization above is equivalent to the one given
in Exercise 6.0.(a). Thus, the same argument as in Exercise 6.0.(b)
shows GTR ⊢ ∃!xRe(x).

Similarly, for part (c) we define

Rinv(x, y) :⇐⇒ ∃v0
(
Re(v0) ∧R(y, x, v0)

)
and obtain GTR ⊢ ∀x∃!y Rinv(x, y) by Exercises 6.1 and 6.0.(c).

6.3 Let M = (Z,+, 0). Note that a 7→ −a is an automorphism of M and
hence, M ⊨ φ(a) if and only if M ⊨ φ(−a) for any integer a. This
holdsbecause due to (−a)+(−b) = −(a+b) any statement about addition
does not change the truth value if we replace a by −a. Now, assume
towards a contradiction that there is an L -formula ψ

<
such that T∗ ⊢ φ,

where
φ ≡ ∀x∀y(x < y ↔ ψ

<
(x, y)) .

Consider M∗ = (Z,+, 0, <). Then M∗ ⊨ 0 < 1 and hence, M∗ ⊨ ψ
<

(0, 1).
Since ψ

<
is an L -Formula, we get that also M ⊨ ψ

<
(0, 1), and by our

observation above we obtain M ⊨ ψ
<

(0,−1), which is obviously a con-
tradiction.
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Chapter 7

7.0 We proceed as in the proof of Theorem 7.2: Let σ and τ be f i n i t e
strings of the form s · · · s, then

σ0 ·N sNτ0 ≡ σ · · ·σ0 ≡ σ · · ·σσ0 ≡ σ · · ·σ0 +N σ0 ≡ (σ0 ·N τ0) +N σ0.
↑ · · · ↑ ↑ · · · ↑ ↑ · · · ↑
s · · · s︸ ︷︷ ︸

sτ

s · · · s︸ ︷︷ ︸
τ

s · · · s︸ ︷︷ ︸
τ

7.1 We first show that {PA1–PA6} ⊬ PA0 by constructing a model for
PA1–PA6 in which PA0 does not hold: Consider the structure M with
domain {0} and with sM,+M, ·M (necessarily) defined as the zero-maps.
Then clearly, M ⊨ PA1–PA6 and M ⊭ PA0.

Similarly, towards a model for PA0 and PA2–PA6 let N be a structure
with domain {0, 1} and define 0N := 0, n ·N m := n · m, n +N m :=
min

{
n + m, 1

}
, and sNn := 1 for n,m ∈ {0, 1}, where + and · are the

standard operations in N. Then N ⊨ PA0 and N ⊨ PA2–PA6, but N ⊭ PA1

since sN0 = sN1 = 1 but 1 ̸= 0.

7.2 Let P be the set of all standard prime numbers and for p ∈ P define
φp(x) :≡ p | x, L := LPA ∪ {c} and T := PA + {φp(c) : p ∈ P}. Note
that divisibility can be defined in PA as will be discussed in Chapter 8.
By suitably assigning c to an element of N, we see that N is a model
of any finite subset of T. Hence, by Theorem 2.17 and Theorem 5.5,
T is consistent and therefore has a model N, and by construction, every
standard prime number divides cN.

7.3 Following the hint, let c be a constant different from 0, let P ⊆ N be the
set of all prime numbers and for p ̸= q ∈ P define φp,q :≡ p | c ∧ q ∤ c.
For each S ⊆ P, let ΦS be the collection of all formulae φp,q such that
p ∈ S and q /∈ S.

Then, for each S ⊆ P we can choose a cN in the domain of N such that N
is a model of any finite subset of PA+ΦS . With Theorem 2.17 we obtain
that PA+ΦS is consistent and by Theorem 5.6 it has a countable model
NS . Now, note that for every S0 ⊆ P there are at most countably many
S ⊆ P such that NS and NS0 are isomorphic: Otherwise, by construction,
that model would have to contain for every such S a minimal element
aS ∈ NS0

such that
{p ∈ P : p | aS} = S.

This implies that for any distinct S1, S2 ⊆ P we have aS1 ̸= aS2 , and
since the power-set of P is uncountable by Cantor’s Theorem 13.8,
NS0

would be uncountable. Hence, each model NS0
is isomorphic to

at most countably many models of the form NS . Moreover, since the
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countable union of countable sets is countable by Proposition 13.10,
there are uncountably many pairwise non-isomorphic countable models
NS of PA.

7.4 Let M,M and φ be as in the statement. Assume towards a contradiction
that for every non-standard a ∈ M there is an ã < a in M such that
M ⊭ φ(ã).

Define σ(z) :≡ ∀x(x < z → φ(x)). Notice that if y ∈ N, then any x < y
is also an element of N. Obviously, M ⊨ σ(0).

In order to apply PA6, we claim that if M ⊨ σ(a0) for some a0 ∈ M ,
then also M ⊨ σ(sa0). For this, it is enough to prove that under the
assumption M ⊨ σ(a0) we have M ⊨ φ(a0): If this is not the case, then,
since M ⊨ φ(n) for all n ∈ N, a0 is non-standard and we can use the
initial assumption to find ã < a0 such that M ⊭ φ(ã). However, this is
not possible as M ⊨ ∀x(x < a0 → φ(x)) and ã < a0. Thus we have shown
M ⊨ φ(a0), which proves the claim.

Now, by PA6 and the Soundness Theorem we obtain M ⊨ ∀z(σ(z)).
In particular, we have M ⊨ σ(a) where a ∈ M is an arbitrary non-
standard element (which exists as M is non-standard). This contradicts
our assumption and completes the proof.

7.5 Assume that such a relation standard(x), or st(x) for short, exists,
introduced by a language extension of LPA. Define a new language
L ∗ := LPA ∪ {st, c}, where c is a new constant symbol. Now, for ev-
ery n ∈ N let

φn(x) :≡ x > n and ψn :≡ st(c) ∧ φn(c)

and let T∗ := PA ∪ {ψn : n ∈ N}. By suitably assigning the constant
symbol c, we see that N is a model for every finite subset of T∗. Thus, by
Theorem 2.17 and Theorem 5.5, the L ∗-theory T∗ is consistent and
has a model M.

Since M ⊨ st(c), by definition of st we have that cM = n for some n ∈ N,
but because M ⊨ φn(c), we obtain a contradiction.

7.6 We first show that the set {Zc : c ∈ M is non-standard} together with
the binary relation “≺” satisfies the axioms DLO0 − −DLO4 of dense
linearly ordered sets without endpoints:

DLO0: This is clear since Zc = Zd implies Zc ⊀ Zd

DLO1: By definition, we have that Zc ≺ Zd implies c < d. Hence, for all
non-standard b, c, d ∈M we have that Zb ≺ Zc∧Zc ≺ Zd implies
b < c < d. In particular we have b < d (since “<” is transitive),
and since Zb ̸= Zd, we obtain Zb ≺ Zd.
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DLO2: Notice that for any non-standard c, d ∈M , Zc ̸= Zd implies either
c < d or d < c, but not both. In the former case we have Zc ≺ Zd,
and in the latter case we have Zd ≺ Zc.

DLO3: Let Zc ≺ Zd, we claim that then Zc ≺ Z c+d
2
≺ Zd where c+d

2

denotes a number e ∈ M with 2e = c + d or 2e = c + d + 1,
which exists by Exercise 8.1: As c < c+d

2 < d, we cannot have
Z c+d

2
≺ Zc or Zd ≺ Z c+d

2
. Now, if Zc = Z c+d

2
, then there is an

n ∈ N such that c + n = c+d
2 , but this implies that c + 2n ≥ d,

which contradicts the fact that Zc ≺ Zd. With DLO2, we therefore
have Zc ≺ Z c+d

2
. Similarly, we can show that Z c+d

2
≺ Zd.

DLO4: We claim that Z c
2
≺ Zc ≺ Z2c using the same notation for frac-

tions as above. Since c
2 < c < 2c, by DLO2 it is enough to prove

that Z c
2
̸= Zc ̸= Z2c: If, for example, Zc = Z2c, then we find

n ∈ N with c + n = 2c, which implies c = n and contradicts the
fact that c is non-standard (i.e., c /∈ N). Thus, we have Zc ≺ Z2c

and similarly we show that Z c
2
≺ Zc.

For the second part of the exercise recall that the model M is countable
and apply Exercise 3.4 to see that the set {Zc : c ∈M is non-standard}
with the binary relation “≺” is isomorphic to (Q, <). Now, since for every
non-standard c ∈ M , Zc is isomorphic to Z, we get that the ordering
structure of M corresponds to the disjoint union of N and Q × Z (see
also the figure at the end of Chapter 7).
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Chapter 8

8.0 We argue by induction on x, i.e., we prove the following two statements:

PA ⊢ ∀y∀z(0 + (y + z) = (0 + y) + z) (1)

PA ⊢ ∀y∀z
(
(x+ (y + z) = (x+ y) + z)→

(sx+ (y + z) = (sx+ y) + z)
)

(2)

Then, by PA6, the assertion follows.

For (1) we argue as follows:

φ0: ∀y(y + 0 = y) instance of PA2

φ1: y + 0 = y from φ0 by L10 and (MP)
φ2: y + 0 = 0 + y by Lemma 8.0, L10 and (MP)
φ3: 0 + y = y from φ1 and φ2 by L15 and (MP)
φ4: (0 + y = y) →

(
((0 + y) + z) = y + z

)
by L16 and L14

φ5: (0 + y) + z = y + z from φ4 and φ3 by (MP)
φ6: (y + z) + 0 = 0 + (y + z) by Lemma 8.0, L10 and (MP)
φ7: (y + z) + 0 = y + z by PA2, L10 and (MP)
φ8: 0 + (y + z) = y + z from φ6 and φ7 by L15 and (MP)
φ9: 0 + (y + z) = (0 + y) + z from φ5 and φ8 by L15 and (MP)
φ10: ∀y∀z

(
0 + (y + z) = (0 + y) + z

)
from φ9 by (∀)

For (2) we first show that

PA + {x+ (y + z) = (x+ y) + z} ⊢ sx+ (y + z) = (sx+ y) + z .

φ0: sx+ (y + z) = (y + z) + sx by Lemma 8.0, L10 and (MP)
φ1: (y + z) + sx = s((y + z) + x) by PA3, L10 and (MP)
φ2: s((y + z) + x) = s(x+ (y + z)) by Lemma 8.0, L10, L16 and (MP)
φ3: x+ (y + z) = (x+ y) + z by assumption

φ4: s(x+ (y + z)) = s((x+ y) + z) from φ3 by L16 and (MP)
φ5: s((x+ y) + z) = s(z + (x+ y)) by Lemma 8.0, L10, L16 and (MP)
φ6: sx+ (y + z) = s(z + (x+ y)) from φ0, φ1, φ2, φ4, φ5 by Taut. (N.1)

φ7: s(z + (x+ y)) = z + s(x+ y) by PA3, L10 and (MP)
φ8: z + s(x+ y) = s(x+ y) + z by Lemma 8.0, L10 and (MP)
φ9: x+ y = y + x by Lemma 8.0, L10 and (MP)
φ10: s(y + x) = y + sx by PA3

φ11: s(x+ y) + z = (y + sx) + z from φ9 and φ10 by L15, L16 and (MP)
φ12: (y + sx) + z = (sx+ y) + z by Lemma 8.0, L10, L16 and (MP)
φ13: sx+ (y + z) = (sx+ y) + z from φ6, φ7, φ8, φ11, φ12 by Taut. (N.1)

Now, by (DT) we have

PA ⊢ (x+ (y + z) = (x+ y) + z)→ (sx+ (y + z) = (sx+ y) + z)

and hence, (2) follows by applying (∀) twice.

Remark. Alternatively, the induction step can be simplified by proving
first PA ⊢ ∀x∀y(s(x+ y) = sx+ y).
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8.1 We define

even(x) :⇐⇒ ∃y(y + y = x)

odd(x) :⇐⇒ even(sx) ,

which obviously proves the second statement.

For the first statement, the proof is by induction on x. Clearly, since
0 + 0 = 0, we have even(0). By case distinction, we may first assume
even(x). Then, by taking sy instead of y, we obtain even(x)→ even(ssx),
and since even(ssx) ↔ odd(sx), we are done. On the other hand, if we
assume odd(x), then we get even(sx) by definition, and therefore we have

PA ⊢ ∀x
(
even(x) ∨ odd(x)→ even(sx) ∨ odd(sx)

)
.

Hence, by PA6, the assertion follows.

8.2 First, we prove

PA ⊢
(
x ̸= 0 ∧ y ̸= 0 ∧ ∃a ≤ y ∃b ≤ x (ax+ 1 = by)

)
→ coprime(x, y) .

In other words, we need to check ∀z(x | yz → x | z). For this, sup-
pose x | yz. Then, x | byz and thus, x | axz + z. Since x |x, by applying
Lemma 8.10(b) twice we get x | axz and thus by Lemma 8.10(a) we ob-
tain x | z. The result then follows by (DT) and (∀).
It remains to show that

PA ⊢ coprime(x, y)→ (x ̸= 0 ∧ y ̸= 0 ∧ ∃a ≤ y ∃b ≤ x (ax+ 1 = by)) .

The proof is by strong induction on x + y. So, suppose the implication
holds for any pair (x′, y′) with x′ + y′ < x+ y and assume coprime(x, y).
Without loss of generality, let y ≤ x. By the Principle of Division
with Remainder we find r < y and q such that x = qy + r and
coprime(y, r) (by Lemma 8.17). By Lemma 8.11 we have coprime(r, y).
Since r + y < x + y, by our induction hypothesis there are a′ ≤ y and
b′ ≤ r such that a′r + 1 = b′y. Hence, for a = a′ and b = a′q + b′ we get

ax+ 1 = a′(qy + r) + 1 = a′qy + (a′r + 1) = a′qy + b′y = by.

It remains to check that a ≤ y and b ≤ x. By assumption, a = a′ ≤ y,
and b = a′q + b′ = qa′ + b′ ≤ qy + r = x. This completes the proof.

8.3 For part (a), let φ be an LPA-formula with free(φ) = {x} and suppose, by
contraposition, that ∃x¬φ(x). Let ψ(x) :≡ ¬φ(x). Then, by the Least
Number Principle, ∃x

(
ψ(x) ∧ ∀y < x (¬ψ(y))

)
, which means that

∃x
(
¬φ(x) ∧ ∀y < x (φ(y))

)
. If 0 is a witness for x in this formula, then
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¬φ(0) holds and we are done. Otherwise, by Lemma 8.3, we find y such
that sy = x. Since φ(y) holds, we have ¬(φ(y) → φ(sy)), which proves
PA6 by contraposition.

For part (b), we construct a model M with domain A := N ∪ N =
{0, 1, 2, . . .}∪{0, 1, 2, . . .} consisting of two copies of the standard natural
numbers N which are disjoint, except for one common element 0 = 0. Let
0M := 0, define s in M as in the standard model and define sn := sn
for every n ∈ N. Similarly, take the standard addition on N and use the
following rules if summands in N are involved:

n+m := n+m

n+m := n+m

n+m := n+m

The resulting partial order < in M then has the property that n < m is
equivalent both to n < m and n < m.
Regarding multiplication in M we proceed similarly, by taking standard
multiplication on N together with the following rules:

n ·m := n ·m
n ·m := n ·m
n ·m := n ·m

One can check that this gives a model M satisfying PA0–PA5. It remains
to prove that the Least Number Principle holds in M and that PA6

fails in M. For the former statement, suppose a ∈ A satisfies M ⊨ φ(a) for
some formula φ. If there is such an a which is a standard natural number
we may use the Least Number Principle in the standard model and
find an appropriate n ∈ N. Since M ⊨ ¬(m < n) for every m ∈ N, the
Least Number Principle holds in this case. Otherwise, M ⊨ ¬φ(m)
for every m ∈ N. Similar to the first case, we find an n ∈ N with φ(n)
and ¬φ(m) for every m < n. Thus, ¬φ(x) holds for every x < n, which
proves the Least Number Principle also in this case.

To show that M ⊭ PA6, by part (a) it suffices to prove that M ⊭ ∀x(x =
0 ∨ ∃y(x = sy)) (i.e., Lemma 8.3 does not hold in M). But 1 clearly is
neither 0 nor has a predecessor, so the claim follows.

8.4 Assume φ(1)∧∀x
(
φ(x)→ φ(2x)∧φ(x−1)

)
. This implies φ(1)→ φ(1−1)

and hence, φ(0). We now argue by strong induction on x: Let x > 1 and
assume φ(y) holds for every y < x. By Exercise 8.1, we may distinguish
the cases even(x) and odd(x). So, suppose first even(x), i.e., ∃z(2z = x).
Since x > 1, we have z < x and the assertion follows from our assumption
φ(z)→ φ(2z).
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For the other case, assuming odd(x), we know that sx is even and sx > 3.
Thus, there is a z with 2z = sx, and φ(sx) follows as described in the
previous case. Hence, with φ(x′) → φ(x′ − 1) for all x′ < x we obtain
φ(x), and by the Strong Induction Principle 8.14 we obtain ∀xφ(x).
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Chapter 9

9.0 We use metainduction on n. The case when n ≡ 0 follows from PA4.
Assume PA ⊢ m ·n = m ·N n. Then, using N0, PA5, N1 and Theorem 7.2,
the following equations are provable in PA:

m · sn = m · sn = m · n+m = m ·N n+m = m ·N n+N m = m ·N sn

9.1 (a) We first claim that

PA ⊢ ∀x ≥ 2
(
prime(x) ∨ ∃y ≥ 2 ∃z ≥ 2

(
yz = x

))
.

Let x ≥ 1 be such that ¬ prime(x). Thus, we find a y such that y | x,
y ̸= x, and y ̸= 1. Then there is a z with yz = x and z > 1 because
y ̸= x, which proves the claim.

Assume now that there is an x ≥ 2 which does not satisfy the state-
ment. By Least Number Principle we assume further that x is
minimal with this property, i.e., ∀y

(
¬ prime(y) ∨ y ∤ x

)
. As x | x

we see that ¬ prime(x) must be true. We apply the initial claim and
write x = yz with some 1 < y < x. By minimality of x, there is y′

such that prime(y′) and y′ | y. By Lemma 8.9 we obtain that y′ | x0,
a contradiction.

(b) Let x ≥ 2 be such that prime(x) and let y, z be arbitrary with x | yz
and assume x ∤ z. We will show that this implies x | y. We first
prove that x and z are coprime using Proposition 8.18. Let u be
such thatu | x and u | z. Since x is prime, we have either u = x
or u = 1. The first case contradicts the assumption x ∤ z. Hence,
we obtain u = 1 and therefore coprime(u, z). By Bézout’s Lemma
(see Exercise 8.2) there are a and b such that ax + 1 = bz. Hence
axy + y = byz, and, since x | axy and by assumption x | byz, we get
x | y by Lemma 8.10. This shows the first direction.

Conversely, let x ≥ 2 be such that ¬ prime(x). Then we find y, z such
that 1 ≤ y, z < x and yz = x, and we obviously have neither x | y
nor x | z.

9.2 We define

n! = y :⇐⇒ ∃t
(
seq(t) ∧ lh(t) = sn ∧ t0 = 1∧

∀i < n
(
tsi = si · ti

)
∧ tn = y

)
.

We have to show that for each n there exists a value for n! and that this
value is unique. By definition, such a value is clearly unique if it exists.
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For the existence we use induction on n: In the base case n = 0, the
sequence ⟨1⟩ with one element suffices. Assume there is a sequence s of
length sn encoding n!. Then the sequence s⌢⟨n! ·(n+1)⟩ encodes (n+1)!.

Finally, notice that by Corollary 9.3.(b) the function is N-conform.

9.3 We start by proving that the least common multiple of two values x and
y exists.

Claim. PA ⊢ ∀x ∀y ∃!m
(
x | m ∧ y | m ∧ ∀z < m

(
x ∤ z ∨ y ∤ z

))
Proof of Claim. As x | xy and y | xy holds, we know that a common
multiple must exist. By the Least Number Principle we can choose
the smallest non-zero multiple m— which is unique by minimality. ⊣Claim

Therefore, we can define lcm(x, y) for any two values x and y. Further-
more, any common multiple of x and y is divisible by lcm(x, y). To see
this, let z be a common multiple of x and y. Now, with the Principle
of Division with Remainder we can write z = qm+r with 0 ≤ r < m
and q ̸= 0 as m ≤ z. Then, as r = z − qm, by Lemma 8.10 we have x | r
and y | r which contradicts the minimality of m, unless r = 0 and m | z.

Let F be a function which is definable in PA. We define now

lcmi<k F (i) = m :⇐⇒ ∀i < k
(
F (i) | m

)
∧ ∀y < m ∃i < k

(
F (i) ∤ y

)
and claim that this definition is functional:

PA ⊢ ∀k > 0 ∃!m
(
∀i < k

(
F (i) | m

)
∧ ∀y < m ∃i < k

(
F (i) ∤ y

))
Using induction on k, we show the above claim and the statement that
every common multiple of F (i) for i < k is also a multiple of m. For k = 1

we can simply take m = F (0) and for k = 2 we use lcm
(
F (0), F (1)

)
defined as above. If the statement holds for k ≥ 2, we use our induction
hypothesis to find m′ := lcmi<k F (i) and then apply the Claim again
to obtain m := lcm

(
m′, F (k)

)
. We claim that this m satisfies the desired

properties. Indeed, since for all i < k we have F (i) | m′ and m′ | m,
by Lemma 8.9 we obtain F (i) | m. Hence, F (i) | m for all i ≤ k. Now
suppose towards a contradiction that y < m such that F (i) | y for all
i ≤ k. Then, by construction of m, we either have m′ ∤ y or F (k) ∤ y.
Since the latter case is clearly contradictory, we may assume that m′ ∤ y.
But since y is a common multiple of F (i) for all i < k, by our induction
hypothesis we get m′ | y, a contradiction. That every common multiple
of F (i) for i ≤ k is a multiple of m can be derived as in the case k = 2.
This proves that such an m exists. It there was another n with the same
properties, then both would be common multiples of all F (i) for i ≤ k.
But then m | n and n | m which implies m = n.
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As the defining formula only uses bounded universal quantification, it is
an ∃-formula and thus it is N-conform.

9.4 (a) By Euclid’s theorem on the infinitude of primes, we have

N ⊨ ∀n∃p(prime(p) ∧ p > n).

Hence for φ(x) :≡ ∃p(prime(p) ∧ p > x) we have N ⊨ φ(n) for ev-
ery natural number n. By Corollary 9.3, φ is N-conform, since
prime(x) is equivalent to a ∆-formula. Now, by N-conformity we
obtain PA ⊢ φ(n) for all n ∈ N. By Exercise 7.4 there is a non-
standard number a ∈ M , where M is the domain of M, such that
M ⊨ ∀x(x < a→ φ(x)). Now let b ∈M such that b = sMa. Then we
have M ⊨ φ(b), hence there is p > b such that prime(p). Then p is a
non-standard prime number.

(b) The second part can be shown in the same way by considering

φ(x) :≡ ∃y∀p < x(prime(p)→ p | y).

Note that N ⊨ φ(n) for every n ∈ N, since we can set y = n!.

9.5 Firstly, we define finite products as follows:

prod(s, x) :⇐⇒ seq(s) ∧ lh(s) > 0 ∧ ∃t
(

seq(t) ∧ lh(t) = lh(s) ∧ s0 = t0 ∧

∀k < lh(s)
(
tsk = tk · ssk

)
∧ tlh(s) = x

)
The idea is that x = s0 · . . . · slh(s)−1 and t codes the construction process
of the product. That this is functional in case seq(s) follows from simi-
lar arguments as in Exercise 9.2. One can further prove inductively by
making use of Exercise 9.1 that

PA ⊢ ∀x∀s∀p
(
prod(s, x) ∧ prime(p) ∧ p | x→ ∃k < lh(s)(p | sk)

)
.

Now, we can use this to easily encode prime decompositions:

p seq(s, x) :⇐⇒ prod(s, x)∀k < lh(s)
(
prime(sk)

)
We need to prove that every number x ≥ 2 has such a prime decomposi-
tion and that it is unique. For the existence we prove

PA ⊢ ∀x
(
x ≤ 1 ∨ ∃s

(
p seq(s, x)

))
.

Towards a contradiction suppose by the Least Number Principle that
x > 1 is a minimal counterexample. If prime(x), then the sequence ⟨x⟩
contradicts this assumption. Hence, there are y, z such that 1 < y, z < x,
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and x = yz. By assumption, there are sequences s and s′ encoding the
prime decompositions of y and z, i.e., p seq(s, y) and p seq(s′, z). Then
we have p seq(s⌢s′, x).

It remains to check that the prime decomposition is unique up to the or-
der of the factors. Note that the sequence encoding the prime decomposi-
tion is not necessarily ordered (this significantly simplified the existence
proof). Hence we introduce the following definition:

p seq ord(s, x) :⇐⇒ p seq(s, x) ∧ ∀k < lh(s)∀j < k(sj ≤ sk)

By induction, one can prove the following:

PA ⊢ ∀s∀x
(
p seq(s, x)→ ∃!s′(p seq ord(s′, x))

)
In the induction step one removes the last number in the sequence, orders
inductively the rest of the sequence and then places the removed number
in the right place to obtain again an ordered sequence. We leave the
details to the reader.

For uniqueness we prove

PA ⊢ ∀x
(
∀s, s′

(
(p seq ord(s, x) ∧ p seq ord(s′, x))→ s = s′

))
.

Suppose again that x is a minimal counterexample with s, s′ encoding dif-
ferent ordered prime decompositions and let lh(s) = sn and lh(s′) = sn′

(they cannot be 0 since x > 1). As s0 | x and prime(sn) and prod(s′, x)
there is k < n′ such that sn | s′k. Now, since s′k is also prime, this im-
plies s0 = s′k. Since s is ordered, sn must be the maximal prime divisor
of x: If p > sn was a prime divisor of x, then p would divide si for some
i < lh(s) and hence p = si ≤ sn, a contradiction. With similar arguments
one can show that k = m, i.e., sn = s′m. Now, we construct t and t′

such that s = t⌢⟨sn⟩ and s′ = t′⌢⟨s′m⟩ in the obvious way. Let x′ be
such that prod(t, x). Then by construction we also have prod(t′, x) and
further p seq ord(t′, x)∧ p seq ord(t′, x′). By induction, we can conclude
that t = t′ and hence s = s′.

9.6 (a) Notice first that no valid formula or term has a Gödel number in
whose prime factorisation 2 has an odd power. Furthermore, the only
such number without 2 as a factor represents 0 or a variable. Thus,
any Gödel number x is

(i) odd, in which case it represents a variable,

(ii) in {2k | 0 ≤ k ≤ 10}, or

(iii) of the form 22a·3b·5c, where a ≥ 1 and 2a, b, c are Gödel numbers.

We use induction to show that any Gödel number x encodes at most
one term or formula.
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We first carry out the induction step and assume that the above is
true if x ≤ 20. The statement is clear if x is odd, so assume we are
in the case (iii). Since 2a, b, c are smaller than x, we can conclude
that b and c and hence also x encode a unique term or formula by
induction.

To show the base case when x ≤ 20, we look at each case separately.
By the previous remark on the power of the factor 2, we only have
to consider factorisations of even numbers up to 20, where 2 has a
non-zero even power:

Gödel number possible symbols

4 = 22 · 30 · 50 +, s0

12 = 22 · 31 · 50 ∧, sv0
16 = 24 · 30 · 50 →, 0 + 0

20 = 22 · 30 · 51 ∀

As +, ∧, and → are not valid terms or formulae on their own, there
is no ambiguity with these Gödel numbers.

(b) Let φ ≡ ∀v0 ¬= 0 v0. Using the Gödel numbers 28 · 30 · 51 = 1280
for “= 0v0” and 210 · 31280 for “¬ = 0v0”, we find the Gödel number

220 · 31 · 52
10

· 31280

for the formula φ, and a sequence encoding the formula φ is then
given by 〈

1280, 210 · 31280, 220 · 31 · 52
10

· 31280
〉
.

Remark: The code for this sequence, which would be a Gödel code
encoding φ, is much too large to be written down explicitly.

9.7 (a) Instead of encoding an infinite number of variables, we only encode
the 13 logical symbols (including brackets) and reserve two numbers
for the variables, i.e., we set b = 15. All logical symbols ζ with Gödel

number # ζ get the alternative Gödel number #alt ζ := # ζ
2 . In addi-

tion, we use the numbers 11 and 12 for brackets as well as 13 and 14
to encode the variables.
Now, any formula represented by a string of symbols can be trans-
lated to a sequence of numbers in {0, . . . , b} by replacing each logical
symbol ζ by its alternative Gödel number #alt ζ and each variable
vk by k + 1 repetitions of 13 followed by 14. This translation into
sequences of numbers is injective.
For example, the formula ∀v0∃v1

(
v0 + 0 = v1

)
, which corresponds to

∀v0∃v1 = + v0 0 v1 in Polish notation, translates to the sequence

⟨10, 13, 14, 9, 13, 13, 14, 4, 2, 13, 14, 0, 13, 13, 14⟩.
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(b) As in the case of finite products (see Exercise 9.5) we can define in
PA a relation sum(s, x) which states that s encodes the construction
process of the finite sum x.
Let b ≥ 2. Now, we formalise the statement that

x = n = nkb
k + . . .+ n1b+ n0 ≡: (n)b ≡: (nk, . . . , n0)b,

where seq(n) and k + 1 = lh(n).

(n)b = x :⇐⇒ seq(n) ∧ ∃s
(
sum(s, x) ∧ lh(s) = lh(n)

∧ ∀i < lh(n)(si = ni · bi)
)

We need to check the following:

PA ⊢ ∀b∀x
(
b ≥ 2 ∧ x ≥ 2→ ∃n : x = (n)b

)
We use induction on x. The base case is easy. For the induction
step, using Principle of Division with Remainder we can write
x = mb+ n0. By induction, we have m = (nk, . . . , n1)b und hence

x = (nkb
k−1 + . . .+ n1)b+ n0 = nkb

k + . . . n1b+ n0 = (nk, . . . , n0)b.

(c) We define (nk, . . . , n0)b ∗ (ml, . . . ,m0)b = y by stipulating

y = (nk, . . . , n0,ml, . . . ,m0)b

= nkb
l+k+1 + . . .+ n0b

l+1 +mlb
l + . . .+m0 .

The defining formula is functional and thus the function ∗ is definable.

(d) We can translate the above encoding of all symbols as sequences
⟨n0, . . . , nk⟩ to numbers (n0, . . . , nk)b in base b notation. The oper-
ation ∗ then allows us to recursively encode all formulas as for the
standard Gödel encoding. For example, if v = (13, . . . , 13, 14)b is the
code for some variable vk and f = (nl . . . n0)b encodes any term or
formula, then

all(v, f) :≡ (10)b ∗ v ∗ f.

In order for this to work instead of Gödel coding, we also need to
check that the base b notation is unique, which can easily be achieved
by induction.

9.8 Define

s ↾ k = t :⇐⇒ seq(s) ∧ seq(t) ∧
(
k ≥ lh(s)→ s = t

)
∧
(
k < lh(s)→

(
lh(t) = k ∧ ∀i < k

(
ti = si

)))
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It is clear that such a t must exist for any code s of a sequence and any
number k. As a sequence is entirely defined by all its elements, we also
have uniqueness. Therefore, the defining formula is functional and ↾ is
well-defined.

9.9 Let τ , τ0, φ, ν be as in Lemma 9.14.

(a) We show PA ⊢ sb term(⌜ν⌝, ⌜τ0⌝, ⌜τ⌝, t) ↔ t = ⌜τ(ν/τ0)⌝ using in-
duction on term construction of τ . By definition we have

PA ⊢ sb term(⌜ν⌝, ⌜τ0⌝, ⌜τ⌝, t) ↔

∃c∃c′∃c′′
(
c sb term(c, c′, c′′, v, t0, t, t

′)
)
.

First assume τ is a constant or a variable different from ν. If c encodes
the term τ and c′′ the term τ0 then c′′⌢c satisfies

c sb term(c, c′′⌢c, c′′, ⌜ν⌝, ⌜τ0⌝, ⌜τ⌝, ⌜τ⌝) ,

which gives the equivalence since τ(ν/t0) = τ and because the re-
quired t is uniquely defined in c sb term. Now, if τ is equal to ν,
then τ(ν/τ0) = τ0, and therefore, if c encodes the sequence ⟨⌜ν⌝⟩
then

c sb term(c, c′′⌢c′′, c′′, ⌜ν⌝, ⌜τ0⌝, ⌜τ⌝, ⌜τ0⌝)

and the equivalence follows as above. It remains to show the equiv-
alence in the case when τ ≡ sτ1 or when τ ≡ Fτ1τ2 for F ∈ {+, · }
and terms τ1 and τ2. We know by induction that for i ∈ {1, 2}:

PA ⊢ sb term(⌜ν⌝, ⌜τ0⌝, ⌜τi⌝, ti)↔ ti = ⌜τi(ν/τ0)⌝

If τ ≡ Fτ1τ2, then from the definition of c sb term we obtain

⌜τ(ν/τ0)⌝ = ⌜Fτ1(ν/τ0)τ2(ν/τ0)⌝ = 2⌜F⌝ · 3t1 · 5t2

⇔PA

2∧
i=1

ti = ⌜τi(ν/t0)⌝

⇔PA

2∧
i=1

sb term(⌜ν⌝, ⌜τ0⌝, ⌜τi⌝, ti)

⇔PA

2∧
i=1

∃ci∃c′i∃c′′
(
c sb term(ci, c

′
i, c

′′, ⌜ν⌝, ⌜τ0⌝, ⌜τi⌝, ti)
)

⇔PA ∃c∃c′∃c′′
(
c sb term(c, c′, c′′, ⌜ν⌝, ⌜τ0⌝, ⌜τ⌝, t)

)
⇔PA sb term(⌜ν⌝, ⌜τ0⌝, ⌜τ⌝, t)



290 Solutions

where the penultimate equivalence uses that we can go from c1 and
c2 to c by appending ⌜Fτ1τ2⌝ to the sequence c1

⌢c2. Similarly, for
c′ by appending 2⌜F⌝ · 3t1 · 5t2 to c′1

⌢c̃′2, where c̃′2 is the sequence
c′2 without the initial subsequence c′′. Therefore, c′ encodes a term
construction of the term 2⌜F⌝ · 3t1 · 5t2 = t and hence, proving the
desired equivalence.

The case when τ ≡ sτ0 can be handled similarly.

(b) We show PA ⊢ sb fml(⌜ν⌝, ⌜τ0⌝, ⌜φ⌝, f) ↔ f = ⌜φ(ν/τ0)⌝ using
induction on formula construction of φ. In the case when φ ≡ τ1 = τ2
is atomic note that

⌜φ(ν/τ0)⌝ = ⌜τ1(ν/τ0) = τ2(ν/τ0)⌝ = 28 · 3f1 · 5f2

⇔PA

2∧
i=1

fi = ⌜τi(ν/t0)⌝

⇔PA

2∧
i=1

sb term(⌜ν⌝, ⌜τ0⌝, ⌜τi⌝, fi)

⇔PA

2∧
i=1

∃ci∃c′i∃c′′
(
c sb term(ci, c

′
i, c

′′, ⌜ν⌝, ⌜τ0⌝, ⌜τi⌝, fi)
)

⇔PA ∃c∃c′
(
c sb fml(c, c′, ⌜ν⌝, ⌜τ0⌝, ⌜φ⌝, f)

)
⇔PA sb fml(⌜ν⌝, ⌜τ0⌝, ⌜φ⌝, f)

where we used (a) for the second equivalence and the penultimate
step can be seen by picking c a code for ⟨⌜τ1⌝, ⌜τ2⌝, eq(⌜τ1⌝, ⌜τ2⌝)⟩
and c′ a code for ⟨f1, f2, eq(f1, f2)⟩ and f = 28 · 3f1 · 5f2 .

If φ is of the form ¬ψ, ψ1 ∧ ψ2, ψ1 ∨ ψ2, ψ1 → ψ2, ∀xψ, or ∃xψ we
proceed similarly. We will only show ψ1 → ψ2:

⌜φ(ν/τ0)⌝ = ⌜ψ1(ν/τ0)→ ψ2(ν/τ0)⌝ = 216 · 3f1 · 5f2

⇔PA

2∧
i=1

fi = ⌜ψi(ν/t0)⌝

⇔PA

2∧
i=1

sb fml(⌜ν⌝, ⌜τ0⌝, ⌜ψi⌝, fi)

⇔PA

2∧
i=1

∃ci∃c′i
(
c sb fml(ci, c

′
i, ⌜ν⌝, ⌜τ0⌝, ⌜ψi⌝, fi)

)



Chapter 9 291

⇔PA ∃c∃c′
(
c sb fml(c, c′, ⌜ν⌝, ⌜τ0⌝, ⌜φ⌝, f)

)
⇔PA sb fml(⌜ν⌝, ⌜τ0⌝, ⌜φ⌝, f)

where the second equivalence uses induction and for the penultimate
one note that c can be chosen as the code of the sequence encoded by
c1

⌢c2 with imp(⌜ψ1⌝, ⌜ψ2⌝) appended to it and similarly for c′ but
with imp(f1, f2) = f .
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Chapter 10

10.0 For part (a), we argue with a proof by cases. Suppose prv(⌜φ⌝) and let
c be a code such that c prv(c, ⌜φ⌝) holds. We construct a new code c′

by setting c′i := ci for every i < lh(c), c′lh(c) := imp(⌜φ⌝, or(⌜φ⌝, ⌜ψ⌝))

(instance of L6), and c′s lh(c) := ⌜φ ∨ ψ⌝. Since or(⌜φ⌝, ⌜ψ⌝) = ⌜φ ∨ ψ⌝,

the sequence c′ with lh(c′) = ss lh(c) satisfies mp(c′lh(c), c
′
lh(c)−1, c

′
s lh(c)),

and hence, c prv(c′, ⌜φ ∨ ψ⌝), which shows that prv(⌜φ ∨ ψ⌝).
The other case is very similar. Starting with the assumption prv(⌜ψ⌝),
we find a code for c prv and can add an instance of L7 instead of L6 to
obtain the same conclusion as above.

Regarding part (b), with the help of the First Incompleteness The-
orem we will show that the converse does not hold. If prv(⌜φ ∨ ψ⌝) →(
prv(⌜φ⌝)∨prv(⌜ψ⌝)

)
was provable in PA, then, by the Soundness The-

orem 3.7, we have

N ⊨ prv(# (φ ∨ ψ))→
(
prv(#φ) ∨ prv(#ψ)

)
(∗)

for every LPA-formulae φ and ψ. Now, let σ be an LPA-sentence with
PA ⊬ σ and PA ⊬ ¬σ. By Lemma 9.16, we obtain N ⊭ prv(#σ) and
N ⊭ prv(# (¬σ)). Furthermore, as an instance of L0, we have PA ⊢ σ∨¬σ,
which gives N ⊨ prv(# (σ ∨ ¬σ)) by the same lemma. Thus, we have

N ⊨ prv(# (σ ∨ ¬σ)) ∧ ¬
(
prv(#σ) ∨ prv(#¬σ)

)
which is a contradiction to (∗).

10.1 Pick an LPA-sentence σ satisfying σ ⇔PA ¬ prv(⌜σ⌝), as in the proof of
the First Incompleteness Theorem 10.5, and let

φ(x) :≡
(
¬ c prv(x, ⌜σ⌝)

)
.

Then, since N ⊨ σ, for each n ∈ N we have N ⊨
(
¬ c prv(n,#σ)

)
, and

therefore we have PA ⊢ φ(n) for each n ∈ N (cf. Proposition 9.2). On
the other hand, since PA + ¬σ is consistent, there exists a model M of
PA+¬σ, in particular, M ⊨ ∃y(c prv(y, ⌜σ⌝)). Let a be a witness for y in
the domain of M. Then, M ⊭ φ(a), and thus, M ⊭ ∀xφ(x), which shows
that PA ⊬ ∀xφ(x).

10.2 For i = 1 or i = 2, let

ξi(v0, v1) :≡ ∀v2∀v3∀v4∀v5
(
(sb fml(⌜v0⌝, gn(v0), v0, v2)

∧ sb fml(⌜v1⌝, gn(v1), v2, v3) ∧ sb fml(⌜v0⌝, gn(v0), v1, v4)

∧ sb fml(⌜v1⌝, gn(v1), v4, v5))→ φi(v3, v5)
)
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and define σi :≡ ξi(⌜ξ1⌝, ⌜ξ2⌝). Then we have:

σi ≡ ∀v2∀v3∀v4∀v5
(
(sb fml(1, gn(⌜ξ1⌝), ⌜ξ(v0, v1)⌝, v2)

∧ sb fml(3, gn(⌜ξ2⌝), v2, v3) ∧ sb fml(1, gn(⌜ξ1⌝), ⌜ξ2(v0, v1)⌝, v4)

∧ sb fml(3, gn(⌜ξ2⌝), v4, v5))→ φi(v3, v5)
)

⇔PA ∀v2∀v3∀v4∀v5
(
(sb fml(1, ⌜⌜ξ1⌝⌝, ⌜ξ1(v0, v1)⌝, v2)

∧ sb fml(3, ⌜⌜ξ2⌝⌝, v2, v3) ∧ sb fml(1, ⌜⌜ξ1⌝⌝, ⌜ξ2(v0, v1)⌝, v4)

∧ sb fml(3, ⌜⌜ξ2⌝⌝, v4, v5))→ φi(v3, v5)
)

⇔PA ∀v2∀v3∀v4∀v5
(
(v2 = ⌜ξ1(⌜ξ1⌝, v1)⌝ ∧ sb fml(3, ⌜⌜ξ2⌝⌝, v2, v3)

∧ v4 = ⌜ξ2(⌜ξ1⌝, v1)⌝ ∧ sb fml(3, ⌜⌜ξ2⌝⌝, v4, v5))→ φi(v3, v5)
)

⇔PA ∀v3∀v5
(
(v3 = ⌜ξ1(⌜ξ1⌝, ⌜ξ2⌝)⌝ ∧ v5 = ⌜ξ2(⌜ξ1⌝, ⌜ξ2⌝⌝)

→ φi(v3, v5)
)

⇔PA φ(⌜ξ1(⌜ξ1⌝, ⌜ξ2⌝)⌝, ⌜ξ2(⌜ξ1⌝, ⌜ξ2⌝)⌝)

≡ φi(⌜σ1⌝, ⌜σ2⌝)

10.3 If there is a positive even integer n0 ∈ N which cannot be written as a
sum of two primes, then, since n0 is finite, this integer n0 exists in every
model of PA, which implies that PA ⊢ ¬GC. Hence, PA ⊬ ¬GC implies
that every positive even integer n ∈ N can be written as a sum of two
primes, and therefore, N ⊨ GC.

10.4 Let T = PA + ¬σ, where σ is the LPA-sentence such that PA ⊬ σ and
PA ⊬ ¬σ considered in the proof of First Incompleteness Theorem.
By construction, T is consistent. It remains to check that T is not ω-
consistent. Consider the formula

φ(x) :≡ c prv(x, ⌜σ⌝).

Since PA ⊢ σ ↔ ¬ prv(⌜σ⌝) and T ⊢ ¬σ, we have T ⊢ prv(⌜σ⌝), hence
T ⊢ ∃xφ(x). In order to check that T is not ω-consistent, we need to prove
that for n ∈ N we have T ⊢ ¬φ(n). Assume towards a contradiction that
this is not the case. Hence, there is n ∈ N such that T ⊬ ¬φ(n). Then
there is a model M of T+φ(n), i.e., M ⊨ c prv(n, ⌜σ⌝). But since c prv is
equivalent to a formula which contains only bounded quantifiers, n codes
a standard proof of σ and thus M ⊨ σ, a contradiction.
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Chapter 11

11.0 We show that PA ⊬ conPA, i.e., we show that PA ⊬ ¬ prv(⌜0 = 1⌝):
Assume towards a contradiction that PA ⊢ ¬ prv(⌜0 = 1⌝). With L9 and
(MP) we deduce:

PA ⊢ ¬ prv(⌜0 = 1⌝)

PA ⊢ ¬ prv(⌜0 = 1⌝)→
(
prv(⌜0 = 1⌝)→ 0 = 1

)
PA ⊢ prv(⌜0 = 1⌝)→ 0 = 1

Thus, by Löb’s Theorem we obtain PA ⊢ 0 = 1, which contradicts PA0.

11.1 We will first prove the following more general statements for V ⊆
{x1, . . . , xn}:

PA ⊢ ⌜τ(x1/m1, . . . , xn/mn)⌝ = ⌈τ⌉gnV (x1/m1, . . . , xn/mn) (1)

PA ⊢ ⌜φ(x1/m1, . . . , xn/mn)⌝ = ⌈φ⌉gnV (x1/m1, . . . , xn/mn) (2)

Under the assumption that (1) and (2) hold, the claim follows for
V = free(φ) ⊆ {x1, . . . , xn}. For the sake of simplicity, we will write
(xi/mi) instead of (x1/m1, . . . , xn/mn) and (xi/ gn(xi)) instead of
(x1/ gn(x1), . . . , xn/ gn(xn)). We show (1) by induction on term construc-
tion:

• If τ ≡ 0 then there are no free variables, so we can ignore the substi-
tution. Moreover, we have ⌈τ⌉gnV = ⌈τ⌉ = ⌜0⌝ = ⌜τ⌝.

• If τ is a variable ν which is not in V , then ν is not a free variable of
⌈τ⌉gnV and hence we obtain:

⌈τ⌉gnV (xi/mi) = ⌜ν⌝(xi/ gn(xi))(xi/mi) = ⌜ν⌝ = ⌜ν(xi/mi)⌝

• If τ is any variable which occurs in V (without loss of generality we
may assume τ ≡ x1), then by Lemma 10.3:

⌈τ⌉gnV (xi/mi) = ⌈τ⌉V (xi/ gn(xi))(xi/mi) = x1(xi/ gn(xi))(xi/mi)

= gn(x1)(xi/mi) = gn(m1) = ⌜m1⌝ = ⌜τ(xi/mi)⌝

• Assume now that τ ≡ sσ where the statement holds for σ, then we
obtain:

⌈τ⌉gnV (x1/m1, . . . , xn/mn) = ⌈sσ⌉V (xi/ gn(xi))(xi/mi)

= succ(⌈σ⌉V )(xi/ gn(xi))(xi/mi)
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= succ(⌈σ⌉gnV (xi/mi))

= succ(⌜σ(xi/mi)⌝)

= ⌜sσ(xi/mi)⌝ = ⌜τ(xi/mi)⌝

• In the case when τ ≡ σ1 + σ2 where the statement holds for σ1 and
σ2, then we obtain:

⌈τ⌉gnV (xi/mi) = ⌈σ1 + σ2⌉V (xi/ gn(xi))(xi/mi)

= add(⌈σ1⌉V , ⌈σ2⌉V )(xi/ gn(xi))(xi/mi)

= add(⌈σ1⌉gnV (xi/mi), ⌈σ2⌉gnV (xi/mi))

= add(⌜σ1(xi/mi)⌝, ⌜σ2(xi/mi)⌝)

= ⌜(σ1 + σ2)(xi/mi)⌝

• The case when τ = σ1 · σ2 follows analogously.

We now prove (2) by induction on formula construction:

• If φ ≡ τ1 = τ2, then with the previous result we obtain:

⌈φ⌉gnV (xi/mi) = ⌈τ1 = τ2⌉(xi/ gn(xi))(xi/mi)

= eq(⌈τ1⌉V , ⌈τ2⌉V )(xi/ gn(xi))(xi/mi)

= eq(⌈τ1⌉gnV (xi/mi), ⌈τ2⌉gnV (xi/mi))

= eq(⌜τ1(xi/mi)⌝, ⌜τ2(xi/mi)⌝)

= ⌜(τ1 = τ2)(xi/mi)⌝

• If φ ≡ φ1 ∧ φ2, then by induction we obtain:

⌈φ⌉gnV (xi/mi) = ⌈φ1 ∧ φ2⌉V (xi/ gn(xi))(xi/mi)

= and(⌈φ1⌉V , ⌈φ2⌉V )(xi/ gn(xi))(xi/mi)

= and(⌈φ1⌉gnV (xi/mi), ⌈φ2⌉gnV (xi/mi))

= and(⌜φ1(xi/mi)⌝, ⌜φ2(xi/mi)⌝)

= ⌜(φ1 ∧ φ2)(xi/mi)⌝

• If ¬φ,φ1 ∨ φ2, φ1 → φ2 we proceed similarly.

• If φ ≡ ∃νψ where ν ̸∈ V , then V \ {ν} = V and we have:

⌈φ⌉gnV (xi/mi) = ⌈∃νψ⌉V (xi/ gn(xi))(xi/mi)

= ex(⌜ν⌝, ⌈ψ⌉V )(xi/ gn(xi))(xi/mi)

= ex(⌜ν⌝, ⌈ψ⌉gnV (xi/mi))

= ex(⌜ν⌝, ⌜ψ(xi/mi)⌝)

= ⌜∃νψ(xi/mi)⌝
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• If φ ≡ ∃νψ such that ν ∈ V (without loss of generality we may
assume ν ≡ x1) and V ′ = V \ {x1}, then we have:

⌈φ⌉gnV (xi/mi) = ⌈∃x1ψ⌉V (xi/ gn(xi))(xi/mi)

= ex(⌜x1⌝, ⌈ψ⌉V ′)(xi/ gn(xi))(xi/mi)

= ex(⌜x1⌝, ⌈ψ⌉gnV ′(x2/m2, . . . , xn/mn)

= ex(⌜x1⌝, ⌜ψ(x2/m2, . . . , xn/mn)⌝)

= ⌜∃x1ψ(x2/m2, . . . , xn/mn)⌝

= ⌜φ(xi/mi)⌝

In the third and last we have used that x1 is neither a free variable
of ⌈ψ⌉V ′ nor of φ.

• The last case, when φ ≡ ∀νψ, is treated similarly.

11.2 From the proof of Theorem 11.4 we know that (∗) holds for formulas of
the form vl = vk. Thus, we obtain

PA ⊢vl = vk → prv(⌈vl = vk⌉gn)

PA ⊢∀vl
(
vl = vk → prv(⌈vl = vk⌉gn)

)
PA ⊢∀vl

(
vl = vk → prv(⌈vl = vk⌉gn)

)
→
(
vi + vj = vk → prv(⌈vi + vj = vk⌉gn)

)
PA ⊢vi + vj = vk → prv(⌈vi + vj = vk⌉gn)

where we used L10 with the admissible substitution (vl = vk)(vl/(vi+vj)).

With similar arguments, we can show that (∗) holds also for formulae of
the form vi · vj = vk.

11.3 We have to show that PA ⊢ φ∨ψ → prv(⌈φ∨ψ⌉gn): By Corollary 11.9,
L6 and L7 we obtain

PA ⊢ prv(⌈φ⌉gn)→ prv(⌈φ ∨ ψ⌉gn)

as well as
PA ⊢ prv(⌈ψ⌉gn)→ prv(⌈φ ∨ ψ⌉gn) ,

Hence, with L8 and (MP) we deduce

PA ⊢
(
prv(⌈φ⌉gn) ∨ prv(⌈ψ⌉gn)

)
→ prv(⌈φ ∨ ψ⌉gn) .

From PA ⊢ φ → prv(⌈φ⌉gn) and PA ⊢ prv(⌈φ⌉gn) → prv(⌈φ ∨ ψ⌉gn) we
obtain PA ⊢ φ → prv(⌈φ ∨ ψ⌉gn) with Tautology (D.0), and similarly
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for ψ. We can thus conclude with the following instance of L8 by applying
twice (MP):

PA ⊢
(
φ→ prv(⌈φ ∨ ψ⌉gn)

)
→
((
ψ → prv(⌈φ ∨ ψ⌉gn)

)
→(

φ ∨ ψ → prv(⌈φ ∨ ψ⌉gn)
))
.

11.4 (a) We define ψ :≡ prv(⌜prv(⌜φ⌝) → φ⌝) → prv(⌜φ⌝) and show that
PA ⊢ prv(⌜ψ⌝) → ψ. By Löb’s Theorem, this allows us to con-
clude that PA ⊢ ψ— notice that ψ is an LPA-sentence and not just a
formula: By (DT) it is enough to show that

PA +
{

prv(⌜ψ⌝), prv(⌜prv(⌜φ⌝)→ φ⌝)︸ ︷︷ ︸
≡:ϑ

}
⊢ prv(⌜φ⌝) .

From prv(⌜ψ⌝), (MP), and D1 applied to ψ we obtain:

prv(⌜ϑ⌝)→ prv(⌜prv(⌜φ⌝)⌝)

With ϑ ≡ prv(⌜prv(⌜φ⌝) → φ⌝), D2 applied to prv(⌜φ⌝) → φ, and
(MP), we obtain prv(⌜ϑ⌝), and therefore also prv(⌜prv(⌜φ⌝)⌝). Fi-
nally, D1 applied to prv(⌜φ⌝)→ φ gives us

ϑ→ (prv(⌜prv(⌜φ⌝)⌝)→ prv(⌜φ⌝))

from which we obtain the desired result using (MP).

(b) Set ψ :≡ prv(⌜¬ prv(⌜φ⌝)⌝)→ prv(⌜φ⌝). Then, by Tautology (G),
we have to show that PA ⊢ ψ, and by Löb’s Theorem, it is enough
to show that PA ⊢ prv(⌜ψ⌝) → ψ, and by applying (DT) twice, it is
enough to show that

PA +
{

prv(⌜ψ⌝), prv(⌜¬ prv(⌜φ⌝)⌝)
}
⊢ prv(⌜φ⌝) .

From prv(⌜ψ⌝), D1 and (MP) we deduce

prv(⌜prv(⌜¬ prv(⌜φ⌝)⌝)⌝)→ prv(⌜prv(⌜φ⌝)⌝) .

With prv(⌜¬ prv(⌜φ⌝)⌝), D2 and (MP) we obtain

prv(⌜prv(⌜¬ prv(⌜φ⌝)⌝)⌝)

and therefore also prv(⌜prv(⌜φ⌝)⌝). Now, by L9 we have

PA ⊢ ¬ prv(⌜φ⌝)→
(
prv(⌜φ⌝)→ φ

)
,

hence, by D0, we also have

PA ⊢ prv(⌜¬ prv(⌜φ⌝)→
(
prv(⌜φ⌝)→ φ

)
⌝) .
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Applying D1 and (MP), we obtain

prv(⌜¬ prv(⌜φ⌝)⌝)→ prv(⌜prv(⌜φ⌝)→ φ⌝)

and by (MP) we have prv(⌜prv(⌜φ⌝) → φ⌝). Now, we can deduce
prv(⌜prv(⌜φ⌝)⌝)→ prv(⌜φ⌝) using D1 and finally get prv(φ).

(c) If PA ⊢ ¬ prv(⌜¬ prv(⌜0 = 1⌝)⌝), then by L1 we have

PA ⊢ prv(⌜0 = 1⌝)→ ¬ prv(⌜¬ prv(⌜0 = 1⌝)⌝) ,

or equivalently, by Tautology (G):

PA ⊢ prv(⌜¬ prv(⌜0 = 1⌝)⌝)→ ¬ prv(⌜0 = 1⌝)

Now, by Löb’s Theorem we then obtain PA ⊢ ¬ prv(⌜0 = 1⌝) which
contradicts the Second Incompleteness Theorem 11.0. There-
fore, PA ⊬ ¬ prv(⌜¬ prv(⌜0 = 1⌝)⌝), i.e., the Second Incomplete-
ness Theorem is not provable within PA.

11.5 We assume that PA ⊢ prv(⌜φ⌝) ∧
(
prv(⌜ψ⌝) → ψ

)
. Notice that if ψ is

an LPA-sentence, then we can use L4 and Löb’s Theorem to obtain
PA ⊢ ψ. We can then conclude with L1 and (MP).
In general this does not work if ψ is an arbitrary LPA-formula. In this
case, we first use D0 to find PA ⊢ prv(⌜prv(⌜ψ⌝)→ ψ⌝) and then obtain
PA ⊢ prv(⌜ψ⌝) with Exercise 11.4.(a). This implies again PA ⊢ ψ and
hence we can conclude as above.

11.6 We first prove PA+
{

prv(⌜φ↔ conPA⌝), prv(⌜φ⌝)
}
⊢ ¬ conPA. Note that

by definition of ↔ and by Corollary 10.2 we have

prv(⌜φ↔ conPA⌝)⇔PA prv(⌜φ→ conPA⌝) ∧ prv(⌜conPA → φ⌝) .

With L3, D1 and (MP) we obtain prv(⌜φ⌝)→ prv(⌜conPA⌝) and thus also
prv(⌜conPA⌝). From Exercise 11.4.(b) we get

PA ⊢ ¬ prv(⌜0 = 1⌝)→ ¬ prv(⌜¬ prv(⌜0 = 1⌝)⌝)

or equivalently, PA ⊢ prv(⌜conPA⌝) → ¬ conPA. Now, with (MP) and by
(DT) we obtain

PA +
{

prv(⌜φ↔ conPA⌝)
}
⊢ prv(⌜φ⌝)→ ¬ conPA .

Next we show that

T := PA +
{

prv(⌜φ↔ conPA⌝),¬ prv(⌜φ⌝),¬ conPA

}
⊢ � .
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Just as above we can obtain prv(⌜conPA⌝) → prv(⌜φ⌝). Towards a con-
tradiction we will show that T ⊢ prv(⌜conPA⌝), this will in turn im-
ply T ⊢ prv(⌜φ⌝) and therefore T ⊢ �. Since PA ⊢ ¬(0 = 1), it
follows from D0 that PA ⊢ prv(⌜¬(0 = 1)⌝) and therefore the same
is provable in T. We now apply D1 to an instance of L9 to obtain
prv(⌜¬(0 = 1) →

(
0 = 1 → conPA

)
⌝). Together with multiple appli-

cations of D1 and (MP), we first deduce T ⊢ prv(⌜0 = 1 → conPA⌝)
and then T ⊢ prv(⌜conPA⌝), using that ¬ conPA ∈ T. Thus, with Corol-
lary 2.8 and (DT) we finally obtain

PA +
{

prv(⌜φ↔ conPA⌝)
}
⊢ ¬ conPA → prv(⌜φ⌝)

and together with the first part, this gives us the desired result.

In the standard model this result says that if N ⊨ prv(#φ↔ conPA)
then we have N ⊨ prv(#φ) if and only if N ⊨ ¬ conPA. Notice that by
Lemma 9.16 N ⊭ ¬ conPA because PA ⊬ 0 = 1. Therefore, if some LPA-
formula φ is provably equivalent to the consistency of PA, then we have
N ⊭ prv(#φ). Intuitively this makes sense, because otherwise we have
PA ⊢ φ and therefore PA ⊢ conPA.

11.7 First note:

conRPA ⇔PA¬ prvR(⌜0 = 1⌝)⇔PA ¬∃c
(
c prvR(c, ⌜0 = 1⌝)

)
⇔PA¬∃c

(
c prv(c, ⌜0 = 1⌝) ∧ ¬∃c′ < c

(
c prv(c′, ⌜0 ̸= 1⌝)

))
⇔PA∀c

((
¬ c prv(c, ⌜0 = 1⌝)

)
∨ ∃c′ < c

(
c prv(c′, ⌜0 ̸= 1⌝)

))
where we used Tautologies (Q.0), (L.0) and (F). We will show that
PA ⊢ ∀x

(
ψ(x)

)
where

ψ(x) :≡
(
¬ c prv(x, ⌜0 = 1⌝)

)
∨ ∃c′ < x

(
c prv(c′, ⌜0 ̸= 1⌝)

)
.

It is clear that PA ⊢ prv(⌜0 ̸= 1⌝). In particular, we find c̃ such that
PA ⊢ c prv(c̃, ⌜0 ̸= 1⌝) and clearly also

PA ⊢ ∀x
(
x > c̃→ ∃c′ < x

(
c prv(c′, ⌜0 ̸= 1⌝)

))
.

Therefore, we obtain PA ⊢ ∀x > c̃
(
ψ(x)

)
. Since c prv is a ∆-formula (see

Chapter 10), so is ψ and also ∀x ≤ c̃
(
ψ(x)

)
. Furthermore, we know that

N ⊨ ∀x ≤ c̃
(
ψ(x)

)
(because PA ⊬ 0 = 1), and thus, N ⊭ prv(# (0 = 1)).

Hence, by N-conformity we get PA ⊢ ∀x ≤ c̃
(
ψ(x)

)
, and with the above

we finally obtain PA ⊢ ∀x
(
ψ(x)

)
.
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Chapter 12

12.0 We claim that if φ(x) is a quantifier-free formula with free(φ) = {x} such
that infinitely many x satisfy φ(x) (we will show later how to formalise
this statement), then ¬φ(x) cannot be satisfied by any x. Now, if there
is a quantifier-free formula with free(φ) = {x} such that PrA ⊢ φ(x) ↔
∃y(x = 2y), then there are infinitely many witnesses for φ(x) as well as
for ¬φ(x), which contradicts our claim.

In order to prove the claim, suppose φ(x) is a quantifier-free formula
with free(φ) = {x} such that infinitely many x satisfy φ(x), i.e., for
every n ∈ N we have PrA ⊢ ∃v0 · · · ∃vn

∧
i ̸=j(vi ̸= vj ∧φ(vi)). Then, every

atomic term in φ is either 0 or x and every term in φ can be written in
the form n+mx for some n,m ∈ N. Consequently, every atomic formula
in φ is equivalent to an atomic formula of the form n+mx = k + lx for
some n,m, k, l ∈ N. If q := (n − k)/(l −m) is a rational number which
belongs to N, then

n+mx = k + lx⇔PrA x = q .

If n = k and l = m, then

n+mx = k + lx⇔PrA 0 = 0 .

If none of the above conditions are satisfied, then

n+mx = k + lx⇔PrA 0 = 1 .

Since φ(x) is satisfied by infinitely many x, we may replace any occurrence
of an atomic formula equivalent to x = q by the formula 0 = 1 and get
a formula φ′(x) with the same properties. Now, every atomic formula ψ
in φ′ satisfies PrA ⊢ ψ or PrA ⊢ ¬ψ. Since PrA ⊢ ∃xφ′(x), it follows
PrA ⊢ φ′ and thus, PrA ⊢ ∀xφ′(x). So, ¬φ′ cannot be satisfied by any x,
which proves the claim.

12.1 To show PrA ⊢ τ ≡n τ ′ → mτ ≡mn mτ ′, we first assume

∃z(nz + τ = τ ′) .

By multiplying the equation with m, we obtain

∃z(m · nz +mτ = mτ ′) .

Since m · n = mn and multiplication is associative, this implies

mτ ≡mn mτ ′ .
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Notice that this argument also works if we assume ∃z(nz+τ ′ = τ) instead
of ∃z(nz + τ = τ ′).

For the converse, suppose ∃z(mnz + mτ = mτ ′). By Lemma 12.0, this
leads to ∃z(m(nz+τ) = mτ ′) and ∃z(nz+τ = τ ′), which implies τ ≡n τ ′.
As above, the same argument works for ∃z(mnz +mτ ′ = mτ).

12.2 Let us first assume there is some z such that

mv + n+ kz = l ,

for some m,n, k, l ∈ N with gcd(m, k) = 1. By Bézout’s Lemma there
are a and b in N such that am = bk + 1. Since a ̸= 0, our assumption is
equivalent to

al = amv + an+ akz

= (bk + 1)v + an+ akz

= k(bv) + k(az) + v + an

= k(bv + az) + v + an .

Equivalently, we obtain

v ≡k a(l − n) +Nk

for a sufficiently large number N ∈ N so that al +Nk ≥ an.

If, on the other hand, we start with an equation of the form

mv + n = l + kz ,

we can argue similarly to obtain

al + akz = amv + an .

Depending whether bv ≤ az or not, we can rewrite the above equation
equivalently to

v + an = al + (az − bv)k or (bv − az)k + v + an = al .

In both cases this is equivalent to

v ≡k a(l − n) +Nk

for a sufficiently large number N ∈ N so that al +Nk ≥ an.

12.3 Let us first introduce the relation symbol ̸= by stipulating

x ̸= y :⇐⇒ ¬(x = y) .
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We will first check that T over the signature L ′ := L ∪ {̸=} admits
quantifier elimination, using Theorem 12.2.
Observe that part (a) of the theorem is satisfied, since

¬(τ = τ ′)⇔ τ ̸= τ ′ and ¬(τ ̸= τ ′)⇔ τ = τ ′ .

For part (b), let φ ≡ ∃ν(φ1 ∧ · · · ∧ φn), for some atomic formulae φi.
Without loss of generality, we may assume that ν is free in every φi.

If there exists some φi of the form ν = τ or τ = ν for some term τ ̸≡ ν,
then

φ⇔T φ1(ν/τ) ∧ · · · ∧ φn(ν/τ) ,

where φ is quantifier-free and has the same free variables as φ1 ∧ · · · ∧φn
except ν.

If there is some φi of the form ν ̸= ν, then we may replace φi by c0 = c1
and afterwards substitute every occurrence of ν by c0 and obtain a desired
formula equivalent to φ.

Otherwise, all φi’s are of the form ν = ν, ν ̸= τ , or τ ̸= ν for some
term τ ̸≡ ν. So, we may replace ν = ν by c0 = c0, ν ̸= τ by τ = τ and
τ ̸= ν by τ = τ and obtain an equivalent formula ψ with the desired
properties — in fact, we even have T ⊢ ψ.

Thus, Theorem 12.2 is applicable and yields quantifier elimination for
T over L ′. Finally, since every quantifier-free L ′-formula is equivalent
to a quantifier-free L -formula by replacing every occurrence of τ ̸= τ ′ by
¬(τ = τ ′), we conclude that T admits quantifier elimination.

12.4 In order to simplify the notation we write just T instead of Th(N, <, s, 0)
and set L := {<, s, 0}. The proof is based on the Quantifier Elimi-
nation Theorem 12.2: Let φ be an atomic formula. Then φ is either of
the form τ = τ ′ or of the form τ < τ ′ for some terms τ and τ ′. Since N
is totally ordered under <, we have

¬(τ = τ ′)⇔T τ < τ ′ ∨ τ ′ < τ and ¬(τ < τ ′)⇔T τ = τ ′ ∨ τ ′ < τ .

This takes care of part (a) in Theorem 12.2. Now, assume φ ≡ ∃ν(φ1 ∧
· · · ∧ φk) for some variable ν and atomic formulae φi. Without loss of
generality, ν occurs free in every φi and by replacing

s · · · s︸ ︷︷ ︸
n-times

τ with τ + n

we may also assume that every term in φ is of the form n or µ + n for
some n ∈ N and some variable µ.

We claim that φ is equivalent to formula to a formula ∃ν(φ′
1 ∧ · · · ∧ φ′

l),
where each φ′

i in one of the following forms, where µ ̸≡ ν are variables
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and n,m ∈ N:

ν < µ+ n (1)

µ+ n < ν (2)

µ < ν + n (3)

ν + n < µ (4)

Pick any φi. If φi is of the form

ν + n = ν +m,

we may replace it equivalently by n = m. Similarly, if φi is of the form

ν + n < ν +m,

we may replace it by n < m. If φi is of the form

ν + n = µ+m,

for some variable µ ̸≡ ν and n ≤ m, we have

φ ⇔T φ1(ν/µ+m− n) ∧ · · · ∧ φk(ν/µ+m− n) .

If, on the other hand, m < n, then

ν + n = µ+m ⇔T (ν + n−m− 1 < µ) ∧ (µ < ν + n−m+ 1) .

If φi is of the form ν + n = m and n ≤ m, we can replace every instance
of ν in every φj by m− n and we are done. Otherwise, if m < n, φi can
never be satisfied and we can replace it, for example, by 0 < 0.

If φi is of the form ν + n < m and n ≤ m, we have

φ ⇔T

m−n−1∨
l=0

(
φ1(ν/l) ∧ · · · ∧ φk(ν/l)

)
.

If instead m < n, φi can never be satisfied and we can replace it by 0 < 0.

If φi is of the form m < ν + n and n ≤ m, we can replace every instance
of ν by ν +m− n+ 1 and replace φi by 0 = 0.

If, on the other hand, m < n, then T ⊢ φi. So, we can replace it by 0 = 0.
This completes the proof of the claim.

For the remaining four types of atomic formulae, let us first assume that φ
is a conjunction of formulae of type (1) and (2). Without loss of generality,
φ is of the form
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(ν < µ1+ n1) ∧ · · · ∧ (ν < µi+ ni) ∧ (λ1+m1 < ν) ∧ · · · ∧ (λj+mj < ν)

for np,mq ∈ N and variables µp ̸≡ ν and λq ̸≡ ν. Then, we have

φ ⇔T

∧
p,q

(λq +mq + 1 < µp + np) . (∗)

To complete the proof, we also have to allow formulas of type (3) and (4).
This works out similarly, we just have to put the terms mq and np on the

other side of the inequality for the respective formulas in (∗). Hence, T
admits quantifier elimination.

We still need to prove that addition + is not definable in T. So, let us
assume addition is definable in T, i.e., let φ+ be a formula such that

T ⊢ ∀x∀y∃!z φ+(x, y, z) and N ⊨ φ+(m,n,m+ n) .

for all m,n ∈ N. Let ψ(x) ≡ ∃y(x = y + y) ≡ ∃yφ+(y, y, x). On the
one hand, since T admits quantifier elimination, there is a quantifier-free
L -formula ψ′(x) such that ψ ⇔T ψ

′. Furthermore, < is definable in PrA,
PrA is complete, and N ⊨ PrA. Thus, ψ′(x) ⇔PrA ψ(x). On the other
hand, a very similar argument to that given for Exercise 12.0 shows
that one cannot find a quantifier-free formula equivalent to ∃y(x = y+y)
in PrA over the signature {<, s, 0,+}. This is a contradiction and thus,
addition + is not definable in T.

12.5 Let φ be an arbitrary L -formula. We have to show that there exists
a quantifier-free L -formula ψ, such that φ ⇔T ψ. By Theorem 2.14,
we may assume φ is in PNF. Since we can replace every occurrence of
∀vi by ¬∃vi¬, it suffices to prove the case when φ ≡ ∃νφ′ for some
quantifier-free formula φ′. Furthermore, by the Disjunctive Normal
Form Theorem 2.12 we may assume

φ ≡ ∃ν
(
(φ1,1 ∧ · · · ∧ φ1,n1

) ∨ · · · ∨ (φk,1 ∧ · · · ∧ φk,nk
)
)

⇔
(
∃ν(φ1,1 ∧ · · · ∧ φ1,n1

)
)
∨ · · · ∨

(
∃ν(φk,1 ∧ · · · ∧ φk,nk

)
)

for some formulae φi,j which are atomic or negations of atomic formulae.
Thus, without loss of generality we may assume that k = 1 and that
ν ∈ free(φ1,i) for every i. Since ∼ is reflexive, i.e., ∀x(x ∼ x), by L14 we
may replace any occurrence of ν ∼ ν and ν = ν by c0 = c0 to obtain an
equivalent formula.

Now, if there is a formula φ1,i of the form ν = τ or τ = ν for some term
τ ̸≡ ν, we may replace any instance of ν by τ . Since τ ̸≡ ν, we are done.
Otherwise, note that any φ1,i of the form ¬(ν = τ) or ¬(τ = ν) for some
term τ ̸≡ ν can be replaced by c0 = c0, because of the fourth axiom in T.
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Thus, we may assume that every φ1,i is of one of the following forms
(where µ ̸≡ ν are variables and n ∈ N):

ν ∼ µ (1)

ν ∼ cn (2)

¬(ν ∼ µ) (3)

¬(ν ∼ cn) (4)

If there are no formulae of the form (1) or (2), then φ⇔T c0 = c0, by the
last axiom of T. Otherwise, we construct a formula ψ ⇔T φ by taking
the conjunction over the following formulae:

µ1 ∼ µ2 for every µ1 and µ2 in (1)
cn ∼ cm for every cn and cm in (2)
µ ∼ cn for every µ in (1) and cn in (2)

¬(µ1 ∼ µ2) for every µ1 in (1) and µ2 in (3)
¬(cn ∼ µ) for every cn in (2) and µ in (3)
¬(µ ∼ cm) for every µ in (1) and cm in (4)
¬(cn ∼ cm) for every cn in (2) and cm in (4)

This shows that T admits quantifier elimination.

12.6 Suppose we have a relation ψdiv(x, y) in PrA, which coincides with the
relation x | y in the standard model N. Let

φ(x) :≡ ∀y
(
ψdiv(y, x)→ (y = 1 ∨ y = x)

)
,

i.e., φ(x) holds if and only if x = 1 or x is a prime. By Lemma 12.10 we
find natural numbers p > 0 and n0 such that:

N∗ ⊨ ∀n ≥ n0
(
φ(n)↔ φ(n+ p)

)
(∗)

If we now chose a prime q ≥ n0, then we have N∗ ⊨ φ(q) and by succes-
sively applying (∗) we obtain N∗ ⊨ φ(q+p), . . . ,N∗ ⊨ φ(q+qp), but since
q + qp = q(1 + p) is neither a prime nor 1, we have a contradiction.
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Chapter 13

13.0 By Example 1.0 we know that there exists a set x and that ∀z(z = z).
We now apply the Axiom Schema of Separation with respect to the set x
and the formula φ(z) :≡ z ̸= z, and obtain the set y := {z ∈ x : z ̸= z},
which obviously satisfies ¬∃z(z ∈ x), or equivalently, ∀z(z ̸∈ x).

13.1 (a) We define Fα as in the hint. It is clear that Fα is a class function.
By the Transfinite Recursion Theorem there is a unique class
function Gα on Ω such that for all β ∈ Ω:

Gα(β) = Fα(G|β) = Fα(
{〈
δ,G(δ)

〉
: δ ∈ β

}
).

In particular we have:

• If β = 0 = ∅, then Gα(0) = Fα(∅) = α.

• If β = γ + 1, then

Gα(γ + 1) = Fα(
{〈
δ,G(δ)

〉
: δ ∈ γ + 1

}
) =

Gα(β) ∪ {Gα(β)} = Gα(β) + 1 .

• If β ∈ Ω \ {∅} is a limit ordinal, then

Gα(β) = Fα(
{〈
δ,G(δ)

〉
: δ ∈ β

}
) =

⋃
δ∈β

Gα(δ) .

Thus, addition of ordinals defined by stipulating α+β := Gα(β) has
the required properties.

(b) We proceed as above but define Fα as follows:

Fα(x) =


∅ if x = ∅
x(β) + α if dom(x) = β + 1 and β ∈ Ω⋃
δ∈β x(δ) if dom(x) = β and β ∈ Ω \ {∅} is a limit ordinal

∅ otherwise

(c) We proceed as above but define Fα as follows:

Fα(x) =


{∅} if x = ∅
x(β) · α if dom(x) = β + 1 and β ∈ Ω⋃
δ∈β x(δ) if dom(x) = β and β ∈ Ω \ {∅} is a limit ordinal

∅ otherwise
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13.2 For part (a), assume towards a contradiction that for some limit ordinal
α ∈ Ω, λ =

⋃
δ∈α ℵδ is such that |λ| < λ (i.e., λ is not a cardinal). Then,

since cardinals are ordinals, |λ| ∈ λ, this implies that there exists a δ ∈ β
such that |λ| ≤ ℵδ < ℵδ+1 ∈ λ which is obviously a contradiction. Notice
that λ is the smallest cardinal which is bigger than ℵδ for each δ ∈ α.

For part (b), assume towards a contradiction that there exists a cardinal
κ such that for all ordinals α ∈ Ω we have ℵα ̸= κ. Let

I := {α ∈ Ω : ℵα < κ} .

Then I is a set of ordinals, and therefore, the class Ω \ I is non-empty
and has a least element, say β0. If β0 = α+1, then ℵα < κ, which implies
that ℵ+α ≤ κ, and since ℵ+α = ℵα+1 = ℵβ0

and β0 /∈ I, we have κ = ℵβ0
.

If β0 is a limit ordinal, then ℵδ < κ for all δ ∈ β0, and by the remark
above we have κ =

⋃
δ∈β0
ℵδ, i.e., κ = ℵβ0

.

13.3 Firstly, observe that if |A| = |A′| and |B| = |B′|, then we have |A∪B| =
|A′ ∪B′|, |A×B| = |A′ ×B′|, and |BA| = |B′

A′|, where in the first case
we additionally assume that A and B as well as A′ and B′ are disjoint.

We first show that addition is commutative and associative: For this, let
A := κ×{0} and B := λ×{1}, and notice that κ+λ = |A ∪̇B|, where ∪̇
is the disjoint union. Therefore, we have

κ+ λ = |A ∪̇B| = |B ∪̇A| = λ+ κ ,

which shows that addition is commutative, and for C := µ×{2} we have

κ+ (λ+ µ) = |A ∪̇ (B ∪̇C)| = |(A ∪̇B) ∪̇C| = (κ+ λ) + µ ,

which shows that addition is associative. Note that we have used our
observation above, e.g. in order to derive µ = |C|.
Similarly, we can show that multiplication is commutative and associa-
tive: We have

κ · λ = |κ× λ| = |λ× κ| = κ · λ ,

which shows that multiplication is commutative, and

κ · (λ · µ) = |κ× (λ× µ)| = |(κ× λ)× µ| = (κ · λ) · µ ,

which shows that multiplication is associative.

For distributivity, let again A := κ×{0}, B := λ×{1}, and C := µ×{2}.
Then we have

κ · (λ+ µ) = |A× (B ∪̇C)| = |(A×B) ∪̇ (A× C)| = κ · λ+ κ · µ .
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For the remaining equalities let again B := λ × {1} and C := µ × {2}.
Then we have:

κλ+µ = |λ+µκ| = |B ∪̇Cκ| = |Bκ× Cκ| = |Bκ| · |Cκ| = κλ · κµ

κλ·µ = |λ·µκ| = |λ×µκ| = |µ(λκ)| = |µ(κλ)| = (κλ)µ

(κ · λ)µ = |µ(κ× λ)| = |µκ× µλ| = |κµ × λµ| = κµ · λµ

Note that we have |B ∪̇Cκ| = |Bκ × Cκ| because we can bijectively map
a pair ⟨f, g⟩ ∈ Bκ× Cκ to h ∈ B ∪̇Cκ by stipulating

h(x) =

{
f(x), x ∈ B
g(x), x ∈ C

With similar bijections one can also show |λ×µκ| = |µ(λκ)| and |µκ×µλ| =
|κµ × λµ|.

13.4 Let κ be an infinite cardinal, i.e., κ ≥ ℵ0.

(a) By definition, seq(κ) is the set of all finite sequences which can be
built with elements of κ. Note that we have |κn| = |κ| for all n ∈ ω
and hence there is a bijection fn : κn → κ. This implies

| seq(κ)| =
∣∣{s ∈ nκ : n ∈ ω

}∣∣ =
∣∣∣ ⋃
n∈ω

nκ
∣∣∣ =

∣∣∣ ⋃
n∈ω

κn
∣∣∣ = ℵ0 · κ = κ,

where for the penultimate equality we used the bijection

s 7→ ⟨n, fn(s)⟩

and for the last equality we used that there are injections

κ ↪→ (ℵ0 × κ) ↪→ (κ× κ) ,

which implies
|κ| ≤ |ℵ0 × κ| ≤ |κ2| = |κ| = κ.

(b) On the one hand, we obviously have κ ≤ | fin(κ)|. On the other hand,
every finite subset s = {s0, . . . , sn−1} ⊆ κ can be ordered such that
s0 < · · · < sn−1, and therefore, s corresponds to a unique finite
sequence ⟨s0, . . . , sn−1⟩. This gives us an injection fin(κ) ↪→ seq(κ)
and by (a) we have

κ ≤ | fin(κ)| ≤ | seq(κ)| = κ ,

which shows that | fin(κ)| = κ.
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13.5 The domain of the model N ⊨ PA we construct within Z is the set ω.
Notice that for the construction of ω we need neither the Axiom Schema of
Replacement nor the Axiom of Foundation. Recall that LPA = {0, s,+, · }.
First, we define 0N, sN, +N, and ·N as follows:

0N := ∅

sN :=
{
⟨n,m⟩ ∈ ω × ω : m = n ∪ {n}

}

+N :=
⋂{

f ∈P
(
(ω × ω)× ω

)
: ∀x ∈ ω

(〈
⟨x, ∅⟩, x

〉
∈ f
)
∧

∀x∀y∀z∀z′
(〈
⟨x, y⟩, z

〉
∈ f ∧

〈
⟨x, y⟩, z′

〉
∈ f → z = z′

)
∧

∀x∀y∀z
(〈
⟨x, y⟩, z

〉
∈ f →

〈
⟨x, sN(y)⟩, sN(z)

〉
∈ f
)}

·N :=
⋂{

g ∈P
(
(ω × ω)× ω

)
: ∀x ∈ ω

(〈
⟨x, ∅⟩, ∅

〉
∈ g
)
∧

∀x∀y∀z∀z′
(〈
⟨x, y⟩, z

〉
∈ g ∧

〈
⟨x, y⟩, z′

〉
∈ g → z = z′

)
∧

∀x∀y∀z
(〈
⟨x, y⟩, z

〉
∈ g →

〈
⟨x, sN(y)⟩, z +N x

〉
∈ g
)}

We have to check that sN, +N, and ·N are functions and that the structure
N =

(
ω, 0N, sN,+N, ·N

)
is a model of PA.

sN is a unary function with domain ω: By definition of sN, for every n ∈ ω
there is a unique m ∈ ω such that ⟨n,m⟩ ∈ sN.

+N is a binary function with domain ω×ω: First notice that by definition
of the set +N, for all x, y ∈ ω there exists at most one z ∈ ω such
that

〈
⟨x, y⟩, z

〉
∈ +N. Thus, if +N ̸= ∅, then +N is a function. Now, we

show that for all ⟨x, y⟩ ∈ ω × ω there exists a unique z ∈ ω such that〈
⟨x, y⟩, z

〉
∈ +N. For this, let

φ(y) :≡ ∀x ∈ ω ∃!z ∈ ω
(〈
⟨x, y⟩, z

〉
∈ +N) .

By definition of +N, we have φ(∅) and for each y ∈ ω we have φ(y) →
φ(sN(y)), where sN(y) = y ∪ {y}. If there exists a y ∈ ω such that ¬φ(y),
then, since ω is well-ordered, there exists a y0 ∈ ω such that ¬φ(y0) and
∀y < y0 φ(y). Since y0 ̸= ∅, we have y0 = y1∪{y1} for some y1 ∈ ω. Now,
since y1 < y0, we have φ(y1) and by φ(y1)→ φ(y0) we get φ(y0), which
is a contradiction to the choice of y0. Thus, we have ∀y ∈ ω

(
φ(y)

)
, which

shows that
∀x ∈ ω ∀y ∈ ω ∃!z ∈ ω

(〈
⟨x, y⟩, z

〉
∈ +N) ,

and therefore, +N is a function.
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·N is a binary function with domain ω × ω: The proof is essentially the
same as the proof for +N.

N ⊨ PA0: Since for all x ∈ ω we have sN(x) = x ∪ {x} and x ∪ {x} ≠ ∅,
there is no x ∈ ω with sN(x) = ∅.
N ⊨ PA1: If sN(x) = sN(y), then x ∪ {x} = y ∪ {y}, which implies that
either x = y or x ∈ y ∈ x. In the former case, we are done, and in
the latter case, we obtain that x ∈ x and therefore {x} ⊆ x (since x is
transitive), which contradicts the fact that x is well-ordered by ∈ (since
{x} ⊆ x does not have an ∈-minimal element).
N ⊨ PA2: By definition we have

∀x ∈ ω
(
x+N ∅ = x

)
.

N ⊨ PA3: Notice that if x +N y = z, then sN(x +N y) = sNz. Now, since
+N is a function and

x+N y = z → x+N sN(y) = sNz ,

we obtain ∀x ∈ ω∀y ∈ ω
(
sN(x+N y) = x+N sN(y)

)
.

N ⊨ PA4: By definition we have

∀x ∈ ω
(
x ·N ∅ = ∅

)
.

N ⊨ PA5: This is similar to N ⊨ PA3.

N ⊨ PA6: Let φ be an LPA-formula with free(φ) = {x} and assume

φ(∅) ∧ ∀x ∈ ω
(
φ(x)→ φ(sN(x))

)
.

If the set A :=
{
x ∈ ω : ¬φ(x)

}
⊆ ω is non-empty, then, since ω is well-

ordered, it contains a least element, say x0. Now, since φ(∅) and ¬φ(x0),
we have x0 ̸= ∅, and therefore x0 = sN(x1) for some x1 ∈ ω with φ(x1),
which contradicts the assumption φ(x1) → φ(sN(x1)). Hence, the set A
is empty, i.e., ∀x ∈ ω

(
φ(x)

)
, which shows that N ⊨ PA6.

13.6 The proof is taken from Weiss [57, Ch. 4]. Assume towards a contradiction
that there is a set x0 with trans∗(x0) such that the set

S :=
{
y2 ∈ x0 : ∃y1 ∈ x0 (y1 ⊆ y2 ∧ y1 ̸= y2 ∧ y1 ̸∈ y2)

}
is non-empty.

Using the Axiom of Foundation we can find y2 ∈ x0 be such that y2 ∈ S
and y2 ∩ S = ∅. Now, let y1 ∈ x0 be such that y1 ⊆ y2, y1 ̸= y2, and y1 /∈
y2. By the Axiom of Foundation there is a z ∈ y2 \y1 with z∩(y2 \y1) = ∅.
Thus, by trans(y2) we have z ⊆ y2, and since z ∩ (y2 \ y1) = ∅ we obtain
z ⊆ y1. Furthermore, since z ∈ y2 and y1 /∈ y2, we have z ̸= y1, and from
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z ⊆ y1 we obtain y1 \ z ̸= ∅. Applying the Axiom of Foundation again, we
find u ∈ y1 \ z with u∩ (y1 \ z) = ∅. Since trans(y1), we have u ⊆ y1 and
with u ∩ (y1 \ z) = ∅ we obtain u ⊆ z. Now, since z ∈ y2 and y2 ∩ S = ∅,
we have z /∈ S, and since z ∈ x0 by trans(x0) and u ⊆ z, we therefore
have u = z or u ∈ z. However, u = z contradicts z ∈ y2 \ y1 (i.e., u /∈ y1)
and u ∈ y1 \ z (i.e., u ∈ y1), and u ∈ z contradicts u ∈ y1 \ z.

Thus, the set S is empty which shows that for all sets x with trans∗(x)
we have:

∀y1, y2 ∈ x
(
y1 ⊆ y2 → (y1 = y2 ∨ y1 ∈ y2)

)
13.7 We first prove (a) ⇒ (b): If ordinal(x), then by definition we have

trans(x). Let y ∈ x, and let z1 ∈ z2 ∈ y. We have to show that z1 ∈ y.
Since trans(x), we have that z2 ∈ x and therefore also z1 ∈ x. Now, since
ordinal(x), we have ord∈(x), which implies that either z1 ∈ y, or z1 = y,
or z1 ∋ y. If z1 ∈ y, we are done, and if z1 = y or y ∈ z1, then the set
{y, z2, z1} ⊆ x does not have an ∈-minimal element, which contradicts
the fact that x is well-ordered by ∈.

For (b) ⇒ (c), assume trans∗(x) and let y1, y2 ∈ x. Notice that since
trans(x) we have y1 ⊊ x and y2 ⊊ x. We have to show that either y1 ∈ y2,
or y1 = y2, or y1 ∋ y2. We consider the following two cases:

y1 ⊆ y2: By Exercise 13.6 we have either y1 = y2 or y1 ∈ y2.

y1 ⊈ y2: With Axiom of Foundation we can find z ∈ y1 \ y2 such that
z∩ (y1 \y2) = ∅. Since trans∗(x) and z ∈ y1 ∈ x, we have z ⊆ x.
Furthermore, since trans(y1) and z ∈ y1, we have z ⊆ y1, and
since z ∩ (y1 \ y2) = ∅, we have z ⊆ y2. Thus, we have z, y2 ∈ x
and z ⊆ y2, and by Exercise 13.6 we obtain either z = y2
or z ∈ y2. Now, z ∈ y2 is not possible since z ∈ y1 \ y2, and
therefore we have z = y2, i.e., y2 ∈ y1.

Thus, in both cases we have either y1 ∈ y2, or y1 = y2, or y1 ∋ y2.

For (c)⇒ (a) we suppose towards a contradiction

∃y ⊆ x
(
y ̸= ∅ ∧ ¬∃zmin∈(z, y)

)
.

We thus pick such a non-empty set y ⊆ x. Note that by the choice of y
we have ∀z ∈ y ∃z′

(
z′ ∈ z ∧ z′ ∈ y

)
, or equivalently,

∀z ∈ y ∃z′
(
z′ ∈ (z ∩ y)

)
.

Since y is non-empty, we find z0 ∈ y, and by the choice of y, we then
find z1 ∈ z0 ∩ y. By the Axiom of Choice, we can then repeat this process
indefinitely by finding for each i ∈ ω a zi+1 ∈ zi ∩ y. This gives an
infinite decreasing sequence z0 ∋ z1 ∋ . . . which contradicts the Axiom of
Foundation.
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13.8 First we show |R| = |(0, 1)|, where (0, 1) = {r ∈ R : 0 < r < 1}: For this,
consider the function

f : R −→ (0, 1)

x 7−→ 1
2x+1

which is obviously a bijection between R and the interval (0, 1).

Now, we show |P(ω)| ≤ |(0, 1)|: For this, consider the function

g : P(ω) −→ (0, 1)

x 7−→
∑
n∈x

3−(n+1)

where g(∅) := 3
4 , which is obviously an injection from P(ω) into the

interval (0, 1).

Finally, we show |(0, 1)| ≤ |P(ω)|: For this, we use the fact that every
positive real number r ∈ R has a unique representation as a finite or
infinite continued fraction, i.e.,

r = a0 +
1

a1 +
1

a2 +
1

a3 +
1

a4 +
1

a5 + · · ·

where an ∈ ω and an > 0 for all n ≥ 1. For simplicity, we write
r = [a0, a1, a2, . . .]. Notice that every r ∈ (0, 1) has a continued frac-
tion which starts with a0 = 0. Now, for each r ∈ (0, 1) with finite or
infinite continued fraction [0, a1, a2, . . .], we assign a finite or infinite set
xr ⊆ ω by stipulating

xr :=
{

0, a1, a1 + a2, a1 + a2 + a3, . . . , a1 + a2 + . . .+ an, . . .
}
.

Then, by the uniqueness of the representation of real numbers by contin-
ued fraction, the mapping which maps real numbers r ∈ (0, 1) to subsets
xr ⊆ ω is injective.

Now, combining these results we have |R| = |(0, 1)| = |P(ω)|, and by
Cantor’s Theorem 13.8 we get that R is uncountable.
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Chapter 14

14.0 (a) First, notice that V0 is transitive. Now, if α is a non-empty limit
ordinal and for each β ∈ α, Vβ is transitive, then

⋃
β∈α Vβ is obvi-

ously transitive, too. Finally, if α = β + 1 and Vβ is transitive, then
Vα = P(Vβ), and for all sets x and y, such that y ∈ x ∈ Vα we
have y ∈ x ⊆ Vβ . Hence, y ∈ Vβ , and since Vβ is transitive, we get
y ⊆ Vβ which shows that y ∈ Vα. Therefore, by transfinite induction
we get that for each α ∈ Ω, Vα is transitive.

(b) Since arbitrary unions of transitive sets are transitive, this follows
immediately from (a).

(c) If β = α+1, then, since Vβ is transitive, Vα ⊆ Vβ , and since Vα ∈ Vβ

but Vα /∈ Vα, we get Vα ⊊ Vβ . Now, if β is a limit ordinal and α ∈ β,
then Vα ⊊ Vα+1 ⊊ Vβ .

(d) If α = 0, then we obviously have α ⊆ Vα and α ∈ Vα+1. Now, let
α0 be an ordinal and assume that for all β ∈ α0 we have β ⊆ Vβ

and β ∈ Vβ+1. If α0 is a limit ordinal, then the assumption implies
α0 ⊆ Vα0

, and consequently we get α0 ∈ Vα0+1. Finally, if α0 =
β+ 1, then, by the assumption, β ∈ Vα0

, and since Vα0
is transitive,

α0 ⊆ Vα0 , and consequently α0 ∈ Vα0+1. Therefore, by transfinite
induction we get that for each α ∈ Ω, α ⊆ Vα and α ∈ Vα+1.

14.1 For (a) assume that x ∈ Hκ and let α = rk(x), where rk(x) is defined as
in the hint. Now, consider the set

A := {rk(y) : y ∈ TC(x)}.

We will show that A = α. Then |TC(x)| < κ implies |α| = |A| < κ and
hence α < κ, which proves the claim.

Obviously, we have A ⊆ α. Hence, it remains to check α ⊆ A. Suppose
towards a contradiction that there is a β < α such that β /∈ A. Then the
set

B := {y ∈ TC({x}) : rk(y) > β ∧ ¬∃z ∈ y(rk(z) = β)}

is non-empty (since α ∈ B). By the Axiom of Foundation, there is a y ∈ B
such that y ∩ B = ∅. Since rk(y) > β, there is a z ∈ y with rk(z) ≥ β.
Now there are two cases:

rk(z) = β: This clearly contradicts our assumption that y ∈ B.

rk(z) > β: Then z /∈ B, so there is w ∈ z such that rk(w) = β. Since
TC({x}) is transitive, we have w ̸= x, we have w ∈ TC(x)
and therefore β = rk(w) ∈ A, a contradiction.
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Now, we turn to (b). We set κ1 = ℵ0 = ω and κ2 = ℵ1. Firstly, we
have Hω ⊆ Vω by (a). For the other direction, one can easily prove by
induction that Vn ⊆ Hω for each n ∈ ω, which shows Vω ⊆ Hω.

For the other statement, observe that Vω+1 ∈ Vℵ1
by Fact 14.0. How-

ever, since Vω is countably infinite, by Cantor’s Theorem we have
|Vω+1| = |P(Vω)| ≥ ℵ1, and hence, Vω+1 /∈ Hℵ1

, which implies that
Hℵ1

̸= Vℵ1
.

14.2 Since Hω = Hℵ0
is a transitive subset of V and subsets, finite unions and

power sets of hereditarily finite sets are hereditarily finite sets, all the
axioms of ZFC, except the Axiom of Infinity, hold in the structure (Hω,∈).

On the other hand, (Hℵ1 ,∈) satisfies the Axiom of Infinity because ω ∈
Hℵ1 . However, the Axiom of Power Set is not fulfilled because ω ∈ Hℵ1

but P(ω) /∈ Hℵ1
by Cantor’s Theorem. The other axioms hold due

to similar arguments as for (Hω,∈).

14.3 Since Vω+ω is transitive and ∅ and ω belong to Vω+ω, the set Vω+ω is
obviously a model for the Axiom of Extensionality, the Axiom of Empty
Set, the Axiom of Pairing, the Axiom Schema of Separation, the Axiom of
Union, the Axiom of Choice, and the Axiom of Infinity. To see that Vω+ω

is also a model for the Axiom of Power Set, notice that for each x ∈ Vω+ω

there is an α ∈ ω + ω such that x ∈ Vα. Now, since Vα is transitive,
for all y ∈ x we have y ∈ Vα, and since Vα+1 = P(Vα), we obtain
P(x) ⊆ Vα+1, and therefore P(x) ∈ Vα+2, and since Vα+2 ⊆ Vω+ω, we
have P(x) ∈ Vω+ω.

Assume towards a contradiction that the Axiom Schema of Replacement
holds in Vω+ω. Let F be the class function defined by stipulating

F (n) :=

{
Vω+n if n ∈ ω,

∅ otherwise.

Since ω ∈ Vω+ω, by the Axiom Schema of Replacement we get that the
set A :=

{
F (n) : n ∈ ω

}
is a set in Vω+ω. Now, since the Axiom of

Union holds in Vω+ω, we get that also
⋃
A = Vω+ω is in Vω+ω, which is

obviously a contradiction.

14.4 Notice first that if ZF is equivalent to a f i n i t e set of axioms, then
ZF is equivalent to one single axiom, say σZF. By replacing Lα by Vα in
Lévy’s Reflection Theorem 14.8, we obtain that there is a α0 ∈ Ω
such that σZF is absolute between Vα0 and V. In particular, we have
Vα0 ⊨ σZF, or equivalently,

Vα0 ⊨ ZF .
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Since Vα0 ⊨ ZF, by Lévy’s Reflection Theorem 14.8, there is an
ordinal α1 ∈ Vα0 (i.e., α1 ∈ α0), such that σZF is absolute between Vα1

and Vα1
. Thus, we have Vα1

⊨ ZF, where α0 ∋ α1. Proceeding this way,
we obtain an infinite decreasing sequence α0 ∋ α1 ∋ . . . ∋ αn ∋ . . . of
ordinals, which is a contradiction to the Axiom of Foundation.

14.5 (a) We first show by transfinite induction that for all ordinals α ∈ κ,
|Vα| < κ: If α = 0, then |V0| = 0 < κ. Now, let α ∈ κ and assume
that |Vα| = λ for some λ < κ. Then |Vα+1| = |P(Vα)| = 2λ and by (1)
we have 2λ < κ, thus |Vα+1| < κ. Finally, assume that δ ∈ κ is a limit
ordinal and for all α ∈ δ we have |Vα| = λα < κ, then, since δ ∈ κ, for
the set

A :=
{
λα : α ∈ δ

}
⊆ κ

we have |A| ≤ |δ| < κ. Thus, by (2) we have λδ :=
⋃
A ∈ κ. In particular,

by the Solution to Exercise 13.2, λδ is a cardinal with λδ < κ, and
by the definition of λδ we obtain∣∣∣ ⋃

α∈δ
Vα

∣∣∣ ≤ |δ| · λδ < κ .

We are now ready to show that Vκ is a model for the Axiom Schema of
Replacement, the other axioms can be shown similarly to the Solution
to Exercise 14.3. Let F : Vκ → Vκ be a function and let X ∈ Vκ be
a set. Then there is an ordinal α ∈ κ such that X ∈ Vα and for each
y ∈ X there is a β ∈ κ such that F (y) ∈ Vβ . Let G : X → κ be defined
by stipulating

G(y) := min
{
β ∈ κ : F (y) ∈ Vβ

}
and let A :=

{
G(y) : y ∈ X

}
.

Recall that by Theorem 13.1.(f), the class of ordinals is well-ordered
by ∈, which shows that the function G is well-defined. Now, since X ∈ Vα,
|Vα| < κ and |A| ≤ |Vα|, we have |A| < κ, and since κ is inaccessible and
A ⊆ κ, by (2) we obtain |

⋃
A| < κ. Thus, for the ordinal λ :=

⋃
A we

have λ ∈ κ and F [X] ∈ Vλ, which shows that F [X] is a set in Vκ.

(b) If ZFC is consistent, then there is a model V ⊨ ZFC. Assume towards
a contradiction that

ZFC ⊢ there exists an inaccessible cardinal .

Then there exists an inaccessible cardinal κ0 ∈ V and by (a) we have
Vκ0 ⊨ ZFC. Hence, by our assumption we find an inaccessible cardinal
κ1 ∈ Vκ0 , and by (a) we have Vκ1 ⊨ ZFC. Proceeding this way, as in the
Solution to Exercise 14.4 we obtain an infinite decreasing sequence
κ0 > κ1 > . . . of cardinals, which is a contradiction to the Axiom of
Foundation.
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Chapter 15

15.0 (a) If F is a filter over S which contains F , then, since ∅ /∈ F , no
finite intersection of elements of F is empty, in particular, no finite
intersection of elements of F is empty.

For the other direction assume that no finite intersection of elements
of F is empty and define

F :=
{
y ⊆ S :

n⋂
i=0

xi ⊆ y for some {x0, . . . , xn} ⊆ F
}
,

i.e., F consists of all supersets of finite intersections of elements
of F . By the properties of F , F does not contain the empty set and
is closed under finite intersections and supersets. Thus, F is a filter
over S.

(b) If U is an ultrafilter over S, then, since U is a filter, every intersec-
tion of finitely many elements of U is non-empty, and by definition
of ultrafilter, for all x ⊆ S we have either x ∈ U or S \ x ∈ U .

For the other direction assume towards a contradiction that for some
x, y ∈ U we have x ∩ y /∈ U . Then z := S \ (x ∩ y) ∈ U and
x ∩ y ∩ z = ∅, which contradicts the fact that finite intersections of
elements of U are non-empty. Furthermore, let x ∈ U and let y ⊇ x.
Then we have y ∈ U , since otherwise, S \ y ∈ U and x∩ (S \ y) = ∅.
Thus, U is a filter, and since for all x ⊆ S we have either x ∈ U or
S \ x ∈ U , U is an ultrafilter.

15.1 Let F be a filter over a non-empty set S. We want to extend F to an
ultrafilter over S. By the proof of Theorem 13.3, there exists an ordinal
α ∈ Ω and a bijection f : α → P(S). For the sake of simplicity, for
every β ∈ α let xβ := f(β). First, we construct by transfinite induction
for every β ∈ α + 1 a filter Fβ such that for all γ ∈ β ∈ α we have
F ⊆ Fγ ⊆ Fβ ⊆ Fα, and then we show that Fα is an ultrafilter.

Let F0 := F , for non-empty limit ordinals α let

Fα :=
⋃
β∈α

Fβ ,

and for successor ordinals let

Fβ+1 :=

{
Fβ ∪ {xβ} if xβ ∩

⋂
X ̸= ∅ for every finite set X ⊆ Fβ ,

Fβ otherwise.

Notice that by Exercise 15.0.(a), for every β ∈ α + 1, Fβ can be ex-
tended to a filter.
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Now we show that Fα is an ultrafilter. By Exercise 15.0.(b), we have
to show that every intersection of finitely many elements of Fα is non-
empty and for all x ⊆ S we have either x ∈ Fα or S\x ∈ Fα. The former
is an immediate consequence of the construction. For the latter, assume
towards a contradiction that there is an x ⊆ S such that neither x nor
S \ x belongs to Fα. Let γ, β ∈ α be such that x = xγ and xβ = S \ x.
Without loss of generality, we may assume that γ ∈ β. Since xγ , xβ /∈ Fα,
there are finite sets Xγ ⊆ Fγ and Xβ ⊆ Fβ such that

xγ ∩
⋂
Xγ = ∅ and xβ ∩

⋂
Xβ = ∅ .

Now, since Xγ ∪Xβ is a finite subset of Fβ , by the definition of xγ and
xβ we get that ⋂

(Xγ ∪Xβ) = ∅ ,

which contradicts the fact that Fβ can be extended to a filter.

15.2 Since definition of cM
∗

does not depend on a choice of representatives, it
is well-defined.

Let R ∈ L be an n-ary relation symbol and let fi and gi as in the proof
for FM∗

. We have to show that{
ι ∈ I :

〈
f0(ι), . . . , fn−1(ι)

〉
∈ RMι

}
∈ U ⇐⇒{

ι ∈ I :
〈
g0(ι), . . . , gn−1(ι)

〉
∈ RMι

}
∈ U .

For 0 ≤ i < n let
xi :=

{
ι ∈ I : fi(ι) = gi(ι)

}
,

and let X := x0 ∩ · · · ∩ xn−1. Then, since xi ∈ U for each 0 ≤ i < n and
since U is a filter, we have X ∈ U . Thus, we have:{

ι ∈ I : ⟨f0(ι), . . . , fn−1(ι)⟩ ∈ RMι

}
∈ U

⇐⇒
{
ι ∈ I : ⟨f0(ι), . . . , fn−1(ι)⟩ ∈ RMι

}
∩X ∈ U

⇐⇒
{
ι ∈ I : ⟨g0(ι), . . . , gn−1(ι)⟩ ∈ RMι

}
∩X ∈ U

⇐⇒
{
ι ∈ I : ⟨g0(ι), . . . , gn−1(ι)⟩ ∈ RMι

}
∈ U

15.3 As in the proof of  Loś’s Theorem 15.2 we proceed by induction on the
number of symbols ¬, ∨ and ∀ which appear in σ′, where the argument
for atomic sentences and for σ′ ≡ ¬σ0 remains unchanged.
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The case when σ′ ≡ σ1 ∨ σ2 is justified by

M∗ ⊨ σ1 ∨ σ2 Î===Ï M∗ ⊨ σ1 or M∗ ⊨ σ2
Î===Ï

{
ι ∈ I : Mι ⊨ σ1

}︸ ︷︷ ︸
=:x1

∈ U or
{
ι ∈ I : Mι ⊨ σ2

}︸ ︷︷ ︸
=:x2

∈ U

Î===Ï x1 ∪ x2 ∈ U

Î===Ï
{
ι ∈ I : Mι ⊨ σ1 ∨ σ2

}
∈ U ,

where the penultimate equivalence uses the fact that if x1 /∈ U and
x2 /∈ U , then I \(x1∪x2) = (I \x1)∩(I \x2) ∈ U and hence x1∪x2 /∈ U .

Finally, suppose σ′ ≡ ∀νσ0 and that for any [g] ∈ A∗ we have

M∗ [g]
ν ⊨ σ0(ν) Î===Ï

{
ι ∈ I : Mι

g(ι)
ν ⊨ σ0(ν)

}
∈ U .

Just as for ∃ we then find:

M∗ ⊨ ∀νσ0 Î===Ï for all [g] in A∗ : M∗ [g]
ν ⊨ σ0(ν)

Î===Ï for all [g] in A∗ :
{
ι ∈ I : Mι

g(ι)
ν ⊨ σ0(ν)

}︸ ︷︷ ︸
=:x

∈ U

Now, since
{
ι ∈ I : Mι ⊨ ∀νσ0

}
⊆ x, we obtain{

ι ∈ I : Mι ⊨ ∀νσ0
}
∈ U ===Ï M∗ ⊨ ∀νσ0 .

For the converse implication, notice that
{
ι ∈ I : Mι ⊨ ∀νσ0

}
∈ U if

and only if I \
{
ι ∈ I : Mι ⊨ ∀νσ0

}
̸∈ U , where

I \
{
ι ∈ I : Mι ⊨ ∀νσ0

}
=
{
ι ∈ I : Mι ⊨ ∃ν¬σ0

}
.

With the help of the Axiom of Choice, we define a function

g0 : I →
⋃
ι∈I Aι

ι 7→ aι

by stipulating that aι is a witness for Mι ⊨ ∃ν¬σ0 if such a witness exists,
or in the case when Mι ⊨ ∀νσ0, aι is an arbitrary element of Aι. Then
we have {

ι ∈ I : Mι ⊨ ∃ν¬σ0
}

=
{
ι ∈ I : Mι

g0(ι)
ν ⊨ ¬σ0(ν)

}
.

Let us assume M∗ ⊨ ∀νσ0. Then by the implication

M∗ ⊨ ∀νσ0 ===Ï for all [g] in A∗ :
{
ι ∈ I : Mι

g(ι)
ν ⊨ σ0(ν)

}
∈ U
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we have {
ι ∈ I : Mι

g0(ι)
ν ⊨ ¬σ0(ν)

}
/∈ U ,

and we conclude as follows:{
ι ∈ I : Mι

g0(ι)
ν ⊨ ¬σ0(ν)

}
/∈ U

⇐⇒
{
ι ∈ I : Mι ⊨ ∃ν¬σ0

}
/∈ U

⇐⇒ I \
{
ι ∈ I : Mι ⊨ ∀νσ0

}
/∈ U

⇐⇒
{
ι ∈ I : Mι ⊨ ∀νσ0

}
∈ U

Thus, we have

M∗ ⊨ ∀νσ0 ===Ï
{
ι ∈ I : Mι ⊨ ∀νσ0

}
∈ U .

15.4 Let L = ∅ (i.e., L is the empty language), and let I = N and for
each i ∈ I let Mi be an L -structure with domain Aι = {0, . . . , ι} for
ι ∈ N. Hence, each Aι is a finite L -structure. Now let U be a non-trivial
ultrafilter on N. Let M∗ be the corresponding ultraproduct. Note that
in all but finitely many structures the sentence

σn ≡ ∃x1 . . . ∃xn
(∧
i ̸=j

xi ̸= xj

)
is fulfilled in all but finitely many Mi, hence,

{ι ∈ N : Mι ⊨ σn} ∈ U

for each n ∈ N, which implies that the domain of M is infinite.
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Chapter 16

16.0 Let U = {x ⊆ ω : n0 ∈ x} be a principal ultrafilter, where n0 ∈ ω. Then
we have:

f ∼ g ⇐⇒ {n ∈ ω : f(n) = g(n)} ∈ U

⇐⇒ f(n0) = g(n0)

The second equivalence can be verified as follows: If f(n0) = g(n0) then
the set x = {n ∈ ω : f(n) = g(n)} contains {n0}, which implies that
x ∈ U . Define the function h : N∗

ω → Nω by stipulating h(f) := fn0.
Then h is an isomorphism between N∗

ω and Nω, i.e., N∗
ω is isomorphic to

the model Nω.

16.1 Let U be the ultrafilter with which we have constructed the ultrapower
N∗
ω, and let σ be an LPA-sentence. We have to show that

N∗
ω ⊨ σ Î===Ï Nω ⊨ σ .

By  Loś’s Theorem we have

N∗
ω ⊨ σ Î===Ï {ι ∈ ω : (Nω)ι ⊨ σ} ∈ U ,

and since (Nω)ι = Nω for all ι ∈ ω, we have

N∗
ω ⊨ σ Î===Ï Nω ⊨ σ .

16.2 Let G :=
{

[gk] : k ∈ ω
}

be a countable set of elements of ω∗. We use a
diagonal argument to construct a function f : ω → ω, such that [f ] /∈ G.
The function f is defined as follows:

f(0) := g0(0) + 1

f(1) := max
{
g0(1), g1(1)

}
+ 1

...
...

f(n) := max
{
g0(n), g1(n), . . . , gn(n)

}
+ 1

...
...

By construction, for all n ≥ k we have that f(n) > gk(n), and since U is
a non-trivial ultrafilter (i.e., U does not contain finite sets), for all k ∈ ω
we have {

n ∈ ω : f(n) > gk(n)
}
∈ U .

Hence, for every k ∈ ω we have N∗
ω ⊨ [f ] > [gk], and therefore [f ] /∈ G.
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16.3 Let [g] < [g′] and let h : ω → ω be such that [g] + [h] = [g′]. Since
N∗
ω ⊨ PA, such a function h exists and [h] is unique. Furthermore, for

each k ∈ ω let ck : ω → ω be such that for all n ∈ ω, ck(n) = k. We
consider the following two cases.

Case 1 : ∃M ∈ ω ∃x ∈ U ∀i ∈ x
(
h(i) ≤M

)
.

We claim that in this case, there exists a k ∈ ω with 0 ≤ k ≤ M such
that [h] = [ck], i.e., there is a y ∈ U such that for all i ∈ y, h(i) = k. In
order to prove the claim, for each 0 ≤ l ≤M let

yl :=
{
i ∈ x : h(i) = l

}
.

Then x = y0 ∪̇ · · · ∪̇ yM (i.e., x is the disjoint union of the sets y0, . . . yM ),
and since x ∈ U and U is an ultrafilter, either y0 ∈ U or y1 ∪̇ · · · ∪̇ yM ∈
U . If y0 ∈ U , then for all i ∈ y0 we have h(i) = 0, which implies
[h] = [c0]. Otherwise, either y1 ∈ U or y2 ∪̇ · · · ∪̇ yM ∈ U , and we can
proceed as before. So, we finally find a y ∈ U and a k with 0 ≤ k ≤ M
such that [h] = [ck].

Thus, we have [g] + [ck] = [g′], and since N∗
ω ⊨ PA, this shows that{

[f ] ∈ ω∗ : [g] ≤ [f ] ≤ [g′]
}

=
{

[g] + [cl] ∈ ω∗ : 0 ≤ l ≤ k
}
,

which is a finite set.

Case 2 : ∀M ∈ ω ∀x ∈ U ∃i ∈ x
(
h(i) > M

)
.

For each r ∈ R with 0 ≤ r ≤ 1 let hr : ω → ω be defined by stipulating
hr(n) := ⌈r · h(n)⌉, where

⌈r · h(n)⌉ := min
{
k ∈ ω : k ≥ r · h(n)

}
.

Recall that by the Solution to Exercise 13.8, the set of reals r ∈ R

with 0 ≤ r ≤ 1 is uncountable. Thus, it is enough to show that for all
r, s ∈ R with 0 ≤ r < s ≤ 1 we have [hr] < [hs]. Since we obviously have
[hr] ≤ [hs], we just have to show that [hr] ̸= [hs], i.e., there is no x ∈ U
such that for all i ∈ x, hr(i) = hs(i). Since r < s we find an M0 ∈ ω such
that

r +
1

M0
< s .

Then r ·M0 + 1 < s ·M0 and for every i ∈ ω with h(i) > M0 we have:

hs(i)− hr(i) = ⌈s · h(i)⌉ − ⌈r · h(i)⌉

= ⌈s ·M0︸ ︷︷ ︸
>r·M0+1

+ s · (h(i)−M0)︸ ︷︷ ︸
>r·(h(i)−M0)

⌉ − ⌈r ·M0 + r · (h(i)−M0)⌉

≥ 1
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In particular, we have hs(i) ̸= hr(i) for all i ∈ ω with h(i) > M0. Now,
assume towards a contradiction that there is an x0 ∈ U such that for
all i ∈ x0, hr(i) = hs(i). Then by our assumption, for M0 and x0 there
exists an i ∈ x0 such that h(i) > M0, which is a contradiction to the
choice of x0.

Thus, for each r ∈ R with 0 ≤ r ≤ 1 we have [g] ≤ [g] + [hr] ≤ [g′], which
shows that{

[f ] ∈ ω∗ : [g] ≤ [f ] ≤ [g′]
}
⊇
{

[g] + [hr] ∈ ω∗ : 0 ≤ r ≤ 1
}

is an uncountable set.
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Chapter 17

17.0 Assume that [λ] < [µ] and take λ′, µ′ with λ′ ∼ λ and µ′ ∼ µ. Further-
more, let Mλ,Mµ ∈ N be such that for all n ∈ ZN we have

|λ(n)− λ′(n)| ≤Mλ and |µ(n)− µ′(n)| ≤Mµ .

Since λ < µ, we have pos(µ− λ), i.e.,

∀N0 ∈ N ∃n0 ∈ N
(
µ(n0)− λ(n0) > N0

)
.

Let N1 := N0 + (Mλ +Mµ), and let n1 be such that

µ(n1)− λ(n1) > N1 .

Then we have

µ′(n1)− λ′(n1) ≥ µ(n0)− λ(n0)︸ ︷︷ ︸
>N1

− (Mλ +Mµ)

︸ ︷︷ ︸
>N0

which shows that for every N0 ∈ N we find an n1 ∈ N such that
µ′(n1)− λ′(n1) > N0, hence, λ′ < µ′.

17.1 (a) By the definition of addition in RS
N , we have

Γ ([λ] + [µ]) = Γ ([λ+ µ]) = [(aλ+µn )]

where

aλ+µn =

{
0 if n = 0

(λ+µ)(n)
n otherwise.

Now, since

(λ+ µ)(n)

n
=
λ(n) + µ(n)

n
=
λ(n)

n
+
µ(n)

n
= aλn + aµn ,

we obtain Γ ([λ] + [µ]) = [(aλ+µn )] = [(aλn)] + [(aµn)] = Γ
(
[λ]
)

+Γ
(
[µ]
)
.

(b) We have
Γ (0[S ]) = Γ ([λ0]) = [(aλ0

n )] ,

where

aλ0
n =

{
0 if n = 0,

λ0(n)
n = 0

n = 0 otherwise.

Hence, (aλ0
n ) = (0n), which shows that Γ (0[S ]) = 0[C ].
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(c) By the definition of multiplication in RS
N , we have

Γ ([λ] · [µ]) = Γ ([λ◦µ]) = [(aλ◦µ
n )] ,

where

aλ◦µ
n =

{
0 if n = 0,

(λ◦µ)(n)
n = λ(µ(n))

n otherwise.

Assume first that µ ≈ λ0. Then

Γ ([λ] · [µ]) = Γ ([λ] · [λ0]) = Γ ([λ◦λ0]) = [(aλ◦λ0
n )] ,

where

aλ◦λ0
n =

{
0 if n = 0,

λ(λ0(n))
n = λ(0)

n otherwise.

Let M0 := λ(0). Since for every ε ∈ Q+
N and for every n ≥ |M0

ε | we

have |aλ◦λ0
n − 0| = |M0

n | ≤ ε, we get that (aλ◦λ0
n ) ≈ (0n). Therefore,

Γ ([λ] · [λ0]) = 0[C ]. On the other hand,

Γ ([λ]) · Γ ([λ0]) = [(aλn)] · [(0n)] = [(aλn · 0n)] = [(0n)] = 0[C ] .

Hence, Γ ([λ] · [λ0]) = Γ ([λ]) · Γ ([λ0]).

Now, assume that µ ̸≈ λ0, and without loss of generality assume that
pos(µ) and that µ(n) > 0 for all n ∈ N with n > 0. Since pos(µ),
for every M ∈ N we find an m ∈ N such that µ(m) > N +Mµ. Let
M = N+Mµ, where N ∈ N . We claim that for every n ≥ m we have
µ(n) > N . To see this, assume towards a contradiction that there is
some n0 ≥ m such that µ(n0) < N . Then, by the properties of µ, we
get ∣∣µ(n0)︸ ︷︷ ︸

<N

−
(
µ(m)︸ ︷︷ ︸
≥N+Mµ

+ µ(n0 −m)
)︸ ︷︷ ︸

>0

∣∣ > Mµ ,

which is a contradiction to the definition of Mµ.

Let the sequence (aλ̃n) be defined by stipulating

aλ̃n :=
λ(µ(n))

µ(n)
.

Then, since (aλn) is a Cauchy sequence, also (aλ̃n) is a Cauchy sequence

for which we have (aλ̃n) ≈ (aλn).
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Finally, by definition, for n ̸= 0 we have:

(λ◦µ)(n)

n
=
λ(µ(n))

n
=
λ(µ(n))

µ(n)
· µ(n)

n

Thus, we obtain

Γ ([λ]·[µ]) = [(aλ̃n)·(aµn)] = [(aλn)·(aµn)] = [(aλn)]·[(aµn)] = Γ ([λ])·Γ ([µ]) .

(d) We have
Γ (1[S ]) = Γ ([λ1]) = [(aλ1

n )] ,

where

aλ1
n =

{
0 if n = 0,

λ1(n)
n = n

n = 1 otherwise.

Hence, (aλ1
n ) ≈ (1n), which shows that Γ (1[S ]) = 1[C ].

17.2 First we consider the elements of RC
ω , (RC

ω )∗ and RC
ω∗ , respectively.

The elements of set RC
ω are equivalence classes of Cauchy sequences

⟨an : n ∈ ω⟩ in Qω, i.e., the elements of RC
ω are of the form [(an)], where

(an) is a Cauchy sequence in Qω.
By definition, (RC

ω )∗ is the ultrapower of RC
ω with respect to some non-

trivial ultrafilter U ⊆P(ω). Thus, the elements of (RC
ω )∗ are equivalence

classes of functions f : ω → RC
ω , where each function f is of the form

⟨[(an,i)i] : i ∈ ω⟩ for some Cauchy sequences ⟨an,i : n ∈ ω⟩ in Qω. For the
sake of simplicity we define

(an,i)i :=
〈
⟨an,i : n ∈ ω⟩ : i ∈ ω

〉
.

Now, the elements of RC
ω∗ are equivalence classes of Cauchy sequences in

Qω∗ , where we can consider Qω∗ as the ultrapower of Qω with respect to
the same ultrafilter as above. Thus, the elements of RC

ω∗ are equivalence
classes of Cauchy sequences of the form

(an,i)n :=
〈
⟨an,i : i ∈ ω⟩ : n ∈ ω

〉
,

where for all n, i ∈ ω we have an,i ∈ Qω and{
i ∈ ω : ⟨an,i : n ∈ ω⟩ is a Cauchy sequence in Qω

}
∈ U .

Notice that in the former case, each element of RC
ω is an equivalence

class of Cauchy sequences, i.e., for each i ∈ ω we have that (an,i)i is a
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Cauchy sequence in Qω, whereas in the latter case it is enough that the
set {i ∈ ω : (an,i)i is a Cauchy sequence in Qω} is in U .

Define the function F : (RC
ω )∗ → RC

ω∗ by stipulating

F
(
[(an,i)i]

)
:= [(an,i)n] .

It remains to show that the function F is well-defined and bijective.

F is well-defined : Recall that by  Loś’s Theorem 15.2, (an,i)i ∼ (bn,i)i
if and only if there exists an x ∈ U such that for each i0 ∈ x, (an,i0)i0 ≈
(bn,i0)i0 . In particular, for each i0 ∈ x we have that (an,i0)i0 and (bn,i0)i0
are Cauchy sequence in Qω, which shows that [(an,i)n] and [(bn,i)n] are
elements of RC

ω∗ and that (an,i)n ≈ (bn,i)n — the latter follows again by
 Loś’s Theorem 15.2.

F is injective: Since (an,i)i ̸≈ (bn,i)i if and only if there exists an x ∈ U
such that for each i0 ∈ x, (an,i0)i0 ̸≈ (bn,i0)i0 , by similar arguments as
above we obtain (an,i)n ̸≈ (bn,i)n.

F is surjective: Let [(an,i)n] be an arbitrary element in RC
ω∗ and let

x0 :=
{
i ∈ ω : ⟨an,i : n ∈ ω⟩ is a Cauchy sequence in Qω

}
∈ U .

Now, for each i ∈ ω \ x0 we choose a Cauchy sequence ⟨bn,i : n ∈ ω⟩ in
Qω and define the Cauchy sequence (cn,i)n in Qω∗ by stipulating

cn,i :=

{
an,i if i ∈ x0,
bn,i otherwise.

Then, by construction we have (cn,i)n ≈ (an,i)n, i.e., [(cn,i)n] = [(an,i)n],
[(cn,i)i] ∈ (RC

ω )∗, and F
(
[(cn,i)i]

)
= [(cn,i)n].

17.3 First notice that by Proposition 17.6.(c), for a2 ̸= 1 we have

π∫
0

log
(
1− 2a cos(x) + a2

)
dx = st

( π
N

n−1∑
k=0

log
(
1− 2a cos

(
kπ
N

)
+ a2

))

= st
( π
N

log

N−1∏
k=0

(1− a(eikπ/N + e−ikπ/N ) + a2)︸ ︷︷ ︸
(a−eikπ/N )(a−e−ikπ/N )

)
,

where we used the fact that cos(x) = eix+e−ix

2 .

The following figure shows the complex numbers a− e±kiπ/N in the Ar-
gand diagram for 0 ≤ k ≤ N .
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a

a− e−(N−1)iπ/N (k = N − 1)

a− e−(N−2)iπ/N (k = N − 2)a− e−2iπ/N (k = 2)

a− e−iπ/N (k = 1)

a − 1 (k = 0) a + 1 (k = N)

a− eiπ/N (k = 1)

a− e2iπ/N (k = 2) a− e(N−2)iπ/N (k = N − 2)

a− e(N−1)iπ/N (k = N − 1)

0

Notice that for any k with 0 ≤ k ≤ N we have ekiπ/N = −e−(N−k)iπ/N .
Thus, taking together products of opposite terms, i.e., products of the
form

(a−ekiπ/N )(a−e−(N−k)iπ/N ) = (a−ekiπ/N )(a+ekiπ/N ) = (a2−e2kiπ/N ) ,

we obtain

N−1∏
k=1

(
a− ekiπ/N

)(
a− e−kiπ/N

)
=

N−1∏
k=1

(
a− ekiπ/N )(a− e−(N−k)iπ/N)

)
=

N−1∏
k=1

(
a2 − e2kiπ/N

)
.

Now, since in the original product
∏N−1
k=0

(
a − ekiπ/N

)(
a − e−kiπ/N

)
, we

do not have the factor a+ 1 but for k = 0 we get the factor a− 1 twice,
we finally obtain

N−1∏
k=0

(
a− ekiπ/N

)(
a− e−kiπ/N

)
=
a− 1

a+ 1
·
N−1∏
k=0

(
a2 − e2kiπ/N

)
.

Furthermore, if we replace a2 by the variable z, then the N pairwise
distinct values {e2kiπ/N : 0 ≤ k < N} are the N roots of the polynomial
zN − 1, which shows that

N−1∏
k=0

(a2 − e2ikπ/N ) = a2N − 1 .

Thus, we finally have:

I = st
( π
N

log
(a− 1

a+ 1
· (a2N − 1)

))
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If |a| < 1, then, since a2N − 1 ≈ −1, we have 0 < a−1
a+1 · (a

2N − 1) and
obtain:

I = st
( π
N

log
(a− 1

a+ 1
· (a2N − 1)

)
︸ ︷︷ ︸

bounded by log
(
2−a
1+a

)
)

= 0

If |a| > 1, then st
(
π
N log a−1

a+1

)
= 0 and we obtain:

I = st
( π
N

log(a2N − 1)︸ ︷︷ ︸
log a2N+log(1− 1

a2N )

)
= st

(
π log a2 +

π

N
log(1− 1

a2N
)︸ ︷︷ ︸

bounded

)
= π · log a2

Thus, we have∫ π

0

log
(
1− 2a cos(x) + a2

)
dx =

{
0 if |a| < 1,

π · log a2 if |a| > 1.
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Monatshefte für Mathematik und Physik, vol. 37 (1930), 349–360
(see [56, 18] for a translation into English).
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définissables d’algèbres , Mathematical interpretation of formal systems,
North-Holland Publishing Co., Amsterdam, 1955, pp. 98–113.
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Symbols

Logic
∃ (exists), 9
∀ (for all), 9
¬ (not), 9
→ (implies), 9
∨ (or), 9
∧ (and), 9
≡, 13
free(φ), 12
φ(ν/τ), 12
φ(τ), 13
φ⇔ ψ, 18
(∀), 16
(MP), 16
(DT), 21
�, 29
Φ ψ, 25
Φ ⊬ ψ, 16
Φ ⊢ ψ, 16
CNF, 38
DNF, 30
NNF, 30
PNF, 32
sPNF, 32
Con(Φ), 36
¬Con(Φ), 36
≡e, 45
Th(T), 49
Th(M), 56
φ, 44

Iaν , 42
I ⊨ φ, 42–43
M ⊨ φ, 43
M ⊭ φ, 43
j aν , 42

Peano Arithmetic
β(c, i), 109
# ζ, 115
⌜ζ⌝, 116
conPA, 139
fml(f), 117
gn(n), 127
lh(c), 112
⌈ζ⌉gnV , 143
⌈ζ⌉, 142
prv(f), 121
sb fml(v, t0, f, f

′), 119
sb term(v, t0, t, t

′), 119
seq(s), 112
nat(n, x), 126
term(t), 117
n, 103
var(v), 117
ci, 112

Axioms
DLO, 50
GT, 15
PA, 15, 83
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336 Symbols

PrA, 155
RA, 130
ZF, 181
ZFC, 181
Z, 172

Models
L, 204
V, 196
RS

N , 233
N, 85
Nω, 221
ZN , 227
QN , 228
RC

N , 229

Domains of models
N, 83
ZN , 227
QN , 228
RC

N , 229
RS

N , 232

Set theory
0, 174
A×B, 177
Def(M), 203

Ω, 182
ℵα, 191⋂
x, 175⋃
x, 174

∅, 173
[x] ,̃ 179
AB, 177
κ+, 190
⟨x, y⟩, 173
Lα, 204
Vα, 196
ω, 176
φM, 201
P(x), 176
ran(f), 177
st(r∗), 241
TC(S), 197
|A|, 189
{x, y}, 173
f [S], 177
f |S , 177
x ∩ y, 175
x ∪ y, 174
x ∈ y, 171
x ⊊ y, 173
x \ y, 175
x ⊆ y, 173



Persons

A’Campo, Norbert, 225, 244
Arangath, Joseph Federico, vi
Aristotle, 14

Baburin, Ivan, vi
Bell, John L., 219
Bernays, Paul, 137, 152, 210
Birnick, Johann, vi

Cantor, Georg, 193
Cohen, Paul J., 210

Dedekind, Richard, 88

Feusi, Jeremy, vi
Fraenkel, Adolf Abraham, 179,

193
Furter, Marius, vi

Gödel, Kurt, 53, 72, 122, 136,
152, 210

Gentzen, Gerhard, 152
Ghebressilasie, Adony, vi
Gillessen, Joscha, vi
Grassmann, Hermann, 88

Halbeisen, Lorenz, 72, 152, 193,
210

Henkin, Leon, v, 53, 72, 152
Hilbert, David, 20, 152
Hungerbühler, Norbert, vi

Keller, Lukas, vi
Kochert, Janik, vi
Koepke, Peter, 210
Kunen, Kenneth, 201, 210

L’Hospital, Guillaume François
Antoine de, 244

Leibniz, Gottfried Wilhelm, 244
Lischka, Marc, vi
Löb, Martin Hugo, 152
 Loś, Jerzy, 219

Mendelson, Elliott, 80
Mizrahi, Leila, 244

Neumann, John von, 193

Paulson, Lawrence, 152
Paunovic, Daniel, vi
Peano, Giuseppe, 88
Presburger, Mojżesz, 167
Provenzano, Philipp, vi

Reding, Quirin, vi
Reho, Michele, vi
Robinson, Abraham, 244
Robinson, Raphael M., 136
Roshardt, Matthias, vi
Rosser, John B., 136
Russell, Bertrand, 136

Schmitz, Joel, vi
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Schweizer, Robert, vi

Shoenfield, Joseph R., 122

Skolem, Thoralf, 88, 168, 179,
193, 219

Slomson, Alan, 219

Smullyan, Raymond, 122

Świerczkowski, Stanis law S., 152

Tarski, Alfred, 136

Whitehead, Alfred North, 136

Yan, Michael, vi

Zaytsev, Mikhail, vi
Zermelo, Ernst, 195



Subjects

Assignment, 42
Axiom, 13

Archimedian, 226
Completeness, 226
logical, 13–14
non-logical, 15
of Choice, 181
of Empty Set, 172
of Extensionality, 172
of Foundation, 180–181
of Infinity, 174
of Pairing, 173
of Power Set, 176
of Union, 174
schema, 13
Schema of Replacement,

179–180
Schema of Separation, 175
Systems

Group Theory, 15
Peano Arithmetic, 15, 83, 222
Presburger Arithmetic, 155
Real Numbers, 225
Robinson Arithmetic, 130
Skolem Arithmetic, 155
Zermelo–Fraenkel, 172–181

Bézout’s Lemma, 101
Bijection, 177

Cantor’s Theorem, 190
Cardinal, 189

countable, 190
finite, 189
inaccessible, 210
infinite, 189
limit, 190
successor, 190
uncountable, 190

Cartesian product, 177
Cauchy sequence, 228

equivalent, 228
Class, 184
Coefficient
ν-coefficient, 160

Compactness Theorem, 37
Semantic Form, 216–217

Completeness Theorem, 217
Congruence, 157
Conjunctive Normal Form, 38
Consistency

of ZF, 195
Consistent, 36
ω-consistent, 133
maximally, 55

Constructible hierarchy, 204
Constructible universe, 204
Controlled natural language, 34
Coprime, 96
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340 Subjects

Countable Gödel-Henkin
Completeness Theorem, 70

Cumulative hierarchy, 196

Deduction Theorem, 21
Definable

in PA, 109
Definition, 15
DeMorgan’s Laws, 38
Derivability conditions, 140
Diagonalisation Lemma, 127
Difference

set-theoretic, 175
Disjunctive Normal Form, 30

Theorem, 30
Domain of M, 42
Downward Löwenheim-Skolem

Theorem, 218

Element
∈-minimal, 182

Elimination rule, 25
Equivalence class, 179
Equivalent

logically, 18
semantically, 51

Ex falso quodlibet, 28

Filter, 211
Fréchet, 212

First Incompleteness Theorem
for PA, 128
Gödel’s Version, 133
using Rosser’s Trick, 134

Formal proof, 16
Formula, 10, 11
∆-formula, 105, 201
∃-formula, 105

strict, 105
∀-formula, 105

strict, 105
absolute, 201
atomic, 11
closed, 12
infix notation, 11

Polish notation, 11
relativised, 200

Fréchet-filter, 212
Function, 177
β-function, 108, 109
bijective, 177
class function, 179
Dirac delta, 243
domain, 177
image, 177
injective, 177
one-to-one, 177
onto, 177
range, 177
surjective, 177

Gödel’s Completeness Theorem,
53, 70

Gödel’s Incompleteness Theorems
for Set Theory, 200

Generalised Deduction Theorem,
29

Goal, 34
Gödel number, 115, 127
Gödelisation, 116
Group Theory, 15

Inconsistent, 36
Induction

on formula construction, 12
on term construction, 11
schema, 15

Inference rule, 16
Generalisation, 16
Modus Ponens, 16

Infinitely close, 240
Infinitesimal, 240
infinity

actual, 1
potential, 1

Initial rule, 25
Interpretation, 42
Intersection, 175
Introduction rule, 25

Language, 10



Subjects 341

gödelisable, 132
Least Number Principle, 98
Lévy’s Reflection Theorem, 205
L’Hospital’s Rule, 242
Liar Paradox, 136
Lindenbaum’s Lemma, 58–59
list, 1

potentially infinite, 3
Löb’s Theorem, 151
Logic

first-order, 7
higher-order, 7

 Loś’s Theorem, 214

Minimal model of PA, 86
Model, 43

countable, 83

N-conform, 106, 107
Natural deduction, 25
Negation Normal Form, 30
Negation Normal Form Theorem,

30
Non-standard model

of PA, 87
of PrA, 166
of ZF, 198

Non-standard models
of R, 239

Normal form
ν-normal form, 160

Number
integer, 227
natural, 188

non-standard, 86
standard, 86

ordinal, 182
rational, 228
real, 229, 233

Operation
associative, 15

Operator
logical, 9

Order type, 189

Ordered
by ∈, 182
pair, 173

Ordering
linear, 178
well-ordering, 178

global, 209
Ordinal, 182

addition, 187
limit, 185
multiplication, 187
successor, 185

Peano Arithmetic, 15, 83
Power set, 176
Premise, 34
Prenex Normal Form, 32

special, 32
Prenex Normal Form Theorem ,

32
Presburger Arithmetic, 155
Prime, 114
Principle of Division with

Remainder, 99
Proof

by cases, 28
by contradiction, 29
by contraposition, 29

Provable, 16
Pseudo-code, 142

Quantification
bounded, 94

Quantifier
logical, 9
elimination, 158
Elimination Theorem, 158

Reasoning
backward, 35
forward, 35

Relation
n-ary, 178
binary, 178
equivalence relation, 179



342 Subjects

membership, 171
reflexive, 179
symmetric, 179
transitive, 179

Relatively prime, 96
Representatives, 179
Robinson Arithmetic, 130

Second Incompleteness Theorem,
140

Sentence, 12
Sequence, 178
Set

definable, 203
inductive, 174
transitive, 182

Signature, 10
countable, 56, 61

Skolem Arithmetic, 155
Skolem’s Paradox, 72
Slope, 232

equivalent, 232
similar, 234

Sound, 46
Soundness Theorem, 46–48
Standard Model of PA, 85, 198,

221
Standard part, 241
Strong Induction Principle, 98
Structure, 42

elementarily equivalent, 45
isomorphic, 44

Subset, 173
proper, 173

Substitution, 12
admissible, 12

Substitution Theorem, 19
Subtraction

bounded, 95
Symbol

constant, 9
equality, 9
function, 10
logical, 10

non-logical, 10
relation, 10

Target, 34
Tarski’s Theorem, 136
Tautology, 18
Term, 10

atomic, 10
closed, 12

Term-constant, 61
special, 61
witness, 62

Theory, 14, 49
complete, 49
incomplete, 49
of M, 49

Three-Symbols Theorem, 19
Transfinite Induction Principle,

188
Transfinite Recursion Theorem,

187
Transitive closure, 197
True, 42

Ultrafilter, 212
trivial, 212

Ultrafilter Theorem, 212
Ultrapower, 214
Ultraproduct, 214
Union, 174
Universal closure, 44
Universal List of Sentences, 57
Upward Löwenheim-Skolem

Theorem, 218

Variable, 9
bound, 12
free, 12

Variable Substitution Theorem,
31–32

Weak König’s Lemma, 60
Well-ordered

by ∈, 182
Well-Ordering Principle, 181
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