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Preface 

This short book has originated from lectures I gave at various universities that have 
helped me identify the concepts in statistics that most scientists struggle with. Most 
of them have an intuitive understanding of what, for example, mean and median are, 
but fe w can tell when to use which, for example, or can explain how to interpret the
coefficient R2

.. This book is a summary of those concepts, described in a short and 
concise w ay, enriched with tips and rigorous explanations.

It is important to understand that the goal of this book is not to provide a complete 
course in statistics. There are many books that do this already. My goal is to give 
researchers and practitioners a short text that is easy to read to help them understand 
the most important concepts in statistics and especially how to use them properly. 
Readers are encouraged to continue the study of statistics, an incredibly interesting
branch of mathematics that helps us understand the world around us.

This book contains enough material for a short introductory course for students at 
an undergraduate level. You will find some sections of this book marked with a star
�. at the beginning of the title. That means that the section is more mathematically 
challenging and can be safely skipped by those with less mathematical know-how or
interest.

This book is structured to provide an accessible overview of statistics and data 
analysis for scientific research. It begins with basic concepts, including an explanation 
of random variables, outcome spaces, and the difference between descriptive and 
inferential statistics. It continues with data types, measures of central tendency, of 
dispersion, and of positions. The discussion continues with a discussion of outliers 
and various methods to define them. Then the book introduces more complex topics 
like distributions, hypothesis testing, and regression analysis. Each chapter builds on 
the previous one, introducing more complex statistical techniques in a step-by-step 
manner, making it suitable for readers ranging from beginners to those needing a 
quick refresher. The choice of topics, as often, is somewhat subjective. But I selected 
the concepts that all those interested in using statistics should know about. Some
topics (such as hypothesis testing) are not discussed at length, since a complete
treatment of the topics would require not only more space but also the student having
some more background in statistics and mathematics (e.g., in calculus). The goal
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of these chapters is to give the student enough understanding of the main i dea and
inspire them to study the concepts deeper.

In the book you will find four types of boxes: definitions, tips, warnings, and 
examples. The meaning should be clear. In definitions boxes, you will find definitions 
of concepts, so it is easier to find them. In tips you will find, as the name suggests, 
tips and suggestions that I hope will make specific concepts or applications clearer. 
In warnings I try to highlight tricky cases in the application or interpretation of
methods or concepts. And finally, in examples I try to give some examples to make
concepts clearer.

Two books have significantly influenced my journey in learning statistics. One is 
the book Probability and Statistical Inference by Hogg, Tanis, and Zimmerman now
in its 10th edition [1]. In my opinion, it is the perfect book for (almost) beginners. 
A more advanced book, but beautiful in its rigor and choice of topics, is the one
by Casella and Berger Statistical Inference [2]. A masterpiece that every scientist 
should have on his or her bookshelf. If you are looking to delve deeper into statistics 
after reading this short introduction, you cannot go wrong with those two books. If 
you are a beginner, after this book, I suggest you continue with the book by Hogg
et al.

Dübendorf, Switzerland Umberto Mic helucci 
February 2025 
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Chapter 1 
Introduction to Statistics 

To call in the statistician after the experiment is done may be no 
more than asking him to perform a post-mortem examination: he 
may be able to say what t he experiment died of.

– Sir R.A. Fisher (1938)

1.1 Household Budget Survey

To understand the main goal of statistics, consider this example: Since 1990, the 
Swiss federal statistical office has tried to estimate the typical household budget 
(HB) in Switzerland every year. Although the most accurate method would be to ask 
every household about their budget (income and expenses), this approach is clearly 
impractical. The sheer number of households makes it difficult to contact all of them, 
and many would likely be unwilling to share their financial information. Therefore, a 
different approach is necessary. The statistics office conducts the Household Budget 
Survey (HBS), in which approximately 3000 households across Switzerland are 
surveyed. Statistical methods come into play by allowing the office to extrapolate the 
information from these 3000 households to make estimates about all households in 
Switzerland. Not only that, statistics also helps in the survey design, by providing 
methods to keep into account differences between, for example, rural and cities 
(it is to be expected that people in cities earn more than people in rural areas) or 
between different job types (e.g. bankers and farmers). Furthermore, statistics helps 
in choosing the most appropriate sampling method, to ensure that the sample is 
representative of the entire population. After data collection, statistics allows for
correction for any over-represented or under-represented groups in the sample. For
example, if larger households are less likely to respond to the survey (or are generally
less than small households), statistical methods can adjust the results to better reflect
the true distribution of household sizes in the population. If some households do
not respond to certain questions or the entire survey, statistical techniques such
as imputation1 can be used to estimate the missing data based on the available 
information. Statistics can be used to test hypotheses, such as whether there is a 
significant difference in household budgets between different regions or income 
g roups. This helps confirm whether the observed differences in the sample are likely
to be true for the entire population.

1 Imputation is a statistical technique used to estimate a nd replace missing data within a dataset.
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In conclusion, statistics provides the tools necessary to make reliable estimates 
about a population based on a sample (more on those terms later), ensuring that the 
data collected are representative and adjusted for any biases. It allows analysis of 
patterns, testing o f hypotheses, and correction of missing or incomplete information.
Through these methods, statistics enables informed decisions and accurate insights
into larger populations from limited data.

1.2 A Brief Introduction to St atistics

The primary goal of statistics is to infer characteristics of a larger population based on 
experimental observations from a subset (called a sample) of that population. Here, 
the term population refers to the complete s et of data points relevant to a specific
problem (more on that in Chap. 3), while a sample is a representativ e segment of
that population.

Definition 1.2.1: Population 

In statistics, a population refers to the entire set of individuals or objects of 
interest that share at least one common characteristic (typically multiple). It 
is the complete group that researchers are interested in studying and from 
which they often draw samples for analysis. The population can be finite 
(e.g. all students in a particular school) or infinite (e.g. all possible outcomes
of rolling a die infinite times).
Two examples of population are all patients with type 2 diabetes in a partic-
ular country or all doctors in a city.

Access to an entire population is typically not possible. For instance, it is unrealistic 
to expect access to every individual worldwide who has a specific heart disease. 
Therefore, we rely on a sample, hoping to get enough information about the entire
population from it.

Definition 1.2.2: Sample 

In statistics, a sample is a subset of individuals or objects selected from a 
larger population. The sample is used to make inferences or generalisations 
about the population from which it was drawn. For example, to study the 
dietary habits of adults in a city, a sample of 1,000 adults from the city’s
population may be used, since attempting to survey every adult in the city is
impossible.
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Example 1.2.1: Main Goal of Statistics 

Imagine you are working in a school with 1000 students (the population). 
You want to assess the quality of teaching and devise a test for students. 
Since you cannot ask 1000 students to perform the test, you choose 50 of 
them randomly (the sample). Your assumption is that the results that you 
obtain from 50 will be representative of the 1000. Statistics helps you b y
giving you the means to do that (for example, it studies how to choose the 50
students from the 1000 to avoid hidden bias, how to describe data properly,
and much more) and to assess your results in relation to the entire population
(the 1000 students).

Statistics is also crucial for comparing groups and determining whether there are
significant2 differences between them. For example, questions like whether women 
are generally shorter than men or whether students from one school perform better 
than those from another can be answered using statistical methods. But it is important 
to frame these questions precisely since, while general trends may exist, there will 
always be exceptions, such as some w omen being taller than some men. Accurate
hypothesis formulation, precise language, and proper result communication and
visualisation are fundamental to statistical analysis, as we will discuss at length in
this book.

Example 1.2.2: Bad Statistics 

Christopher Engledowl and Travis Weiland discussed misleading data visu-
alisations in their article “Data (Mis)representation and COVID-19: Lever-
aging Misleading Data Visualisations For Developing Statistical Literacy 
Across Grades 6–16” [3]. They highlighted a specific case involving a chart 
by the US Georgia Department of Public Health. This chart, published in 
May 2020, intended to show the top five counties with the highest COVID-
19 cases over the past 15 days, as well as the progression of the cases over
time. The chart they published is reproduced in the top panel in Fig.
Upon examining the chart, where a clear downward trend is visible, several 
significant issues were noted that contributed to its misleading nature. 
Firstly, the x-axis lacked labels, which was critical since it was supposed to 
track the number of cases over time. Moreover, the sequence of dates under 
the bars was not chronological. The dates of April and May dates were
mixed, seemingly suggesting a decrease in cases. Furthermore, the order of
the counties varied, each being presented in descending order of cases to
further imply that the situation was improving.

1.1. 

2 Significant in this context means due to other reasons other than luck.
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Fig. 1.1: Figure reproduced from [4]. The plot at the top shows the highly 
misleading plot published by the Georgia Department of Public Health and 
the one at the bottom shows the corrected one. Quite a difference, clearly

This graph stirred considerable controversy, particularly on social media 
platforms such as Twitter, where users criticised the Georgia Health De-
partment for using misleading statistics during the pandemic. In response, 
Candice Broce, the communications director for Georgia’s Governor Brian 
Kemp, admitted that the arrangement of the x-axis was intended to highlight 
descending values to more clearly show peak values and the affected counties 
on those dates. She acknowledged that the graph did not meet its intended
purpose and apologised for the confusion caused. The graph was subse-
quently corrected to display the dates and counties in their proper order. To
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see the corrected version, check the bottom diagram in Fig. reproduced 
from [4]. The difference with the misleading one is quite striking. 
Other examples of bad statistics are related to bias in data sampling, ten-
dentious communication, and many more. Note that statistics is not guilty,
scientists and bad science and practices are.

1.1 

I do not agree with what Churchill said, namely “I only believe in statistics that 
I doctored myself”. If a study is well documented, the hypotheses well stated, and 
all the information available, one can and should trust the statistical results of the 
study itself. But, alas, sometime statistics has a bad name. Its negative reputation 
often comes from a lack of understanding about how it operates (from researchers 
and the public), coupled with the tendency to publish results without providing all 
necessary information to assess the validity of those results. If y ou read about a
study, you should always check if the researchers gave all the necessary information
about the analysis (hypothesis, data collection strategy, experimental design, etc.).
If this information is not available, it is impossible to judge the validity of the study,
and its conclusions should be challenged or even ignored if necessary.

Warning 1.2.1: Why Statistics Is Sometimes Poorly Regarded 

There are several reasons for which statistics sometimes gets a bad name. 
But probably the most important ones are the following. 
Misleading presentation: This is a big one. Statistics can be presented in 
ways that lead audiences to incorrect conclusions. This includes using graphs 
with distorted scales (to highlight or underline relative sizes, for example), 
displaying only certain portions of the data (you only show the data that 
support your message) or presenting data without context. When statistics 
are visualised misleadingly, they can exaggerate trends or mask important 
details. 
Cherry picking data: This involves selectively presenting data that support 
a specific conclusion while ignoring data that contradict it (you can ignore 
outliers or, with mischievous intentions, ignore good data). Cherry picking 
can give a skewed view of reality and is often used to persuade or mislead 
rather than inform. When presenting your study and your data you must 
always present all your data, including outliers or results that may seem
strange or not in line with your hypothesis.
Correlation mistaken for causation: A common mistake in the inter-
pretation of statistics is the assumption that the correlation between two
variables implies that one causes the other. This mistake can lead to
wrong beliefs about relationships between factors and outcomes, often
oversimplifying complex interactions (or simply getting them wrong).
If you want to have fun, check the website by Tyler Vigen at [5]
(https://www.tylervigen.com/spurious-correlations), where he collects spu-

https://www.tylervigen.com/spurious-correlations
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rious correlations. For example, check Fig. I think we all agree that there 
is no causality or correlation between the Kerosene used in South Korea and 
Google searches for “report UFO sighting”. This is a very good example of
a spurious correlation.

1.2.

Fig. 1.2: Figure reproduced from [5]. I think we all agree that there is 
no causality or correlation between the kerosene used in South Korea and 
Google searches for “report UFO sighting”. This is a very good example of
spurious correlation

You must be very careful when assuming that cor relation (more on this in
Sect. ) is the same as causation. 
Lack of reproducibility: Bad statistics may arise from studies or analyses 
that cannot be replicated by others. This may be due to inadequate method-
ology or missing documentation on the study itself (you will find numerous 
papers with studies that are not documented and thus not reproducible). 
Statistics that cannot be reproduced are not credible and can contribute to a 
lack of trust in their statistical conclusions. 
Biased data collection: When data are collected with bias or the sample is 
not representative of the population, the resulting statistics will inherently
reflect that bias. This can mislead decision-making processes and policy
formulations, leading to ineffective or harmful outcomes based on incorrect
data interpretations. Consider the example of exit polling. In this method,
volunteers approach individuals leaving a polling station to enquire about
their voting choices. However, this approach automatically excludes absentee

13.1
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voters and may suffer from bias in data collection. Research indicates that 
volunteers, often younger, college educated, and predominantly white, may 
subconsciously choose to interact with people who resemble themselves, 
such as fellow students, over potentially different demographics such as a 
middle-aged parent managing se veral children. As a result, not everyone has
the same likelihood of being selected for an exit poll, leading to potential
biases in the data gathered.

Tip 1.2.1: You Want to Publish on Nature? 

We all know that Nature is one of the most important scientific journals. If 
you think that concepts such as those in this book are not truly necessary, 
you should think twice. When you submit a paper to Nature, you must fill 
out a forma with questions (some examples are reported below) asking you
to confirm if you provided the following in your paper.

• A description of any assumptions or corrections, such as tests of normality 
and adjustment for multiple comparisons 

• A full description of the statistical parameters including central tendency 
(e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty 
(e.g. confidence intervals) 

• For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence 
intervals, effect sizes, degrees of freedom, and P value noted

• The statistical test(s) used AND whether they are one- or two-sided. Only
common tests should be described solely.

If the questions are unclear to you, it is likely that your study is not well 
designed or executed. Note that the questions are not strange or an exag-
geration, but they are the minimum of information that any statistical study 
should give. At this point in the book, you probably do not understand the
questions, but at the end of the book you should be able to see why they are
important and what they mean.

a The form is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution, and reproduction in any medium or 
format, as long as you give appropriate credit to the original author(s).
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1.3 Random Experiments, Random Variables, Outcome Space 
and Ev ents

As Wittgenstein said in his Tractatus logigo-philosphicus, the limit of my language 
means the limit of my world, so we need to clarify some terminology before proceed-
ing to fence off misunderstandings. Generally speaking, in statistics we deal with 
experiments for which the outcome cannot be predicted with certainty, such as the 
tossing of a coin or a dice or measuring the height of a person randomly chosen. 
These are called random experiments. The term random indicates that the outcome 
cannot be predicted with certainty. Furthermore, we speak of an outcome space S,
that is, the collection of all possible outcomes of a random experiment. For example,
for the tossing of a six-face dice, the space S is the set S = {1, 2, 3, 4, 5, 6} .. Of course, 
some measurements can be of continuous variables, like the height of a person. If 
we consider that adult human heights generally range from about 120 to 250 cm, the 
outcome space S for a random experiment measuring the height of adults can be
defined as the interval [120 cm, 250 cm].. 

An event is a subset of the outcome space S. An event can be, in the example of 
the dice, the number 5 ( you toss the dice and get a 5). The number 5 is a subset of
S = {1, 2, 3, 4, 5, 6} .. In more intuitive terms, an event is nothing else than something 
that can arise from a random experiment.

Definition 1.3.1: Random Experiments, Outcome Space, and 
Events 
Here are the definitions of the concepts we just discussed.

Definition 1.1 (Random Experiment) Experiments for which the outcome 
cannot be predicted with certainty are called random experiments.

Examples are tossing a coin or a dice or measuring t he height of a person
randomly chosen.

Definition 1.2 (Outcome Space S) The collection of all possible outcomes 
of a random experiment is called the outcome space and is typically indicated
by S.

Imagine that you have a standard deck of 52 playing cards, which includes
13 cards each of four suits (clubs ♣., diamonds ♦., hear ts ♥., and spades ♠.). 
Each suit contains cards numbered from 2 to 10, plus a Jack, Queen, King, 
and Ace. When you draw a single card from the deck, the outcome space S 
is the set of all possible cards you could draw. Thus, the outcome space for
the random experiments of picking up one single card includes 52 elements,
each representing a unique card.a

a Remember that an outcome space is only defined for a given random experiment.
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Definition 1.3 (Event A) An event A is a subsetb of the outcome s pace S.

To be a bit clearer, let us consider an example. Suppose you have a six-face 
fair dice. The random experiment we consider will be the throwing of the 
dice together with the observation of the number that is on the top face when 
the dice come to rest on the surface you have thrown the dice on. Now, since
the dice will not disappear mid-air, one of the six numbers must appear, so
the outcome space will be S = {1, 2, 3, 4, 5, 6} .. For example, the event of 
getting a 6 would be A = {6} ., or the event of getting 2 will be A = {2} .. 
Note that all the events described are subsets of S. An event cannot contain 
something that is not in the outcome space. In our example, {7} . is not an 
event as will never happen since the dice has only six faces. An event can also 
contain multiple elements, depending on the random experiment. Consider, 
for example, the experiment of throwing two dice at the same time. The
outcome space will now be larger

.S = {(1, 1), (1, 2), . . . , (1, 6), (2, 1), . . . , (6, 6)} (1.1) 

and will contain 36 elements. The event of getting the same number on both
dices will be a set of six elements.

.S = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)} (1.2) 

It is important to note that the events and outcome spaces depend on the 
random experiment you are performing.

b A subset is a portion of a given set of elements. For example, if you have the set of
integers from 1 to 10 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} ., examples of subsets of it could b e the
even {2, 4, 6, 8, 10} . or the odd integers {1, 3, 5, 7, 9} .. 

One fundamental concept in statistics is that of a random variable, that is, a 
function that associates with each event a number. There are two types of random 
variables: discrete and continuous.  A  discrete random variable is one that can 
assume a countable number of distinct values. “ Countable” here means that the
values can be listed, like rolling a die (with outcomes 1, 2, 3, 4, 5, and 6) or counting
the number of cars passing through an intersection in a day.

Tip 1.3.1: �. Countable Random Variable 

A random variable X is said to be countable if its range, denoted R(X)., 
is a countable set. R(X). is countable, if there exists a bijective function
f : R(X) → N., where N. denotes the set of natural numbers. Intuitively, this 
means that to each of the elements of the range of X you can uniquely assign
a natural number.
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The key characteristic of a discrete random variable is that there are gaps between 
the possible values it can take; it does not cover a continuous span of values (like 
the height of a person, for example). A continuous random variable, on the other 
hand, can take on an infinite number of possible values within a given range. These 
values are uncountable and can include every possible value between two numbers. 
For example, the height of a person can be considered as a continuous random
variable because it can take any value within a range, such as, for example, from 150
to 190 cm, and this can include measurements like 176.52467 cm, which can be as
precise as you wish them to be (at least within measurement errors of course).

Definition 1.3.2: Random Variable 

A random variable is a function that associates a number with each event 
in a random experiment. There are two types of random variables: discrete
and continuous.

In our example of tossing two dice, a random variable could be the sum of 
the numbers coming out for each roll. Or, if you consider tossing just one dice, a 
random variable could be the sum of the results of 50 tosses. Usually, a random 
variable is indicated with an uppercase letter such as X or Y . A random variable is 
called “variable” because it represents a value that can v ary due to chance. The term
“variable” emphasises that, unlike a constant, the value it takes is not fixed but can
change depending on the outcome of the random process with which it is associated.

This interpretation of the name is something not everyone agrees on. The sentence 
a random variable is neither random nor a variable is attributed (but a s pecific
reference has eluded me) to Giancarlo Rota3 and highlights how the interpretation 
of the name is not appreciated by everyone. The important thing to remember is that 
a random variable is a function that associates a number with an event.

Example 1.3.1: Random Variable 

Discrete Random Variable: Let X . be a discrete random variable that rep-
resents the number of heads when flipping three coins. The possible values
of X . are 

. X ∈ {0, 1, 2, 3}

Continuous Random Variables:  L  et Y . be a continuous random variable 
representing the time it takes, in hours, for a chemical reaction to complete.
Y . can take any value in the interval:

. Y ∈ [0,∞)

Of course, ∞. is an exaggeration, and probably a value of several hundreds
of hours would suffice.

3 This attribution can be found in [6]. 
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1.4 Descriptive and Inferential Sta tistics

If your project involves data,4 you should always start by understanding it. The 
distribution (more in Chap. 8) of your data (data distribution refers to the way in 
which values in a dataset are spread or dispersed, showing how often each value 
or range of values occurs) may be quite complex, but generally you want to have 
a rough idea about it. Understanding your data is what is addressed by descriptive
statistics. This definition is somewhat intuitive and is better discussed in Sect. 1.5. 

Definition 1.4.1: Realisation of a Random Variable X 

The realisation of a random variable X is the value that is actually observed in 
an experiment. The realisation of X is often called observation or observed 
va lue.

Suppose that you have a random variable X , and measure i t N times (we will
indicate with xi, i = 1, . . . , N . the N realisations (see Definition 1.4.1)  of  X). The 
questions you should try to answer a re, at least, the following:

• What is the typical value of X? For example, if you assess the grades of students 
in a school, the first thing that is important to know is what the typical grade of 
students i n all disciplines is. What typical means is somewhat subjective, and we
will discuss it later when we discuss measures of central tendency (see Chap. 4), 
which are used to answer exactly this question. 

• How are the data spread around its typical value? If we continue to consider the 
examples of students, it is interesting to know if the grades go, say, on a scale 
from 0 to 100, from 10 to 100 or from 70 to 90. In fact, the f ormer case may
indicate problems with students or teaching; the latter does not point to problems
(at least not to problems easy to detect). For this question, you use measures of
dispersions (see Chap. 5). 

• How are the data spread over its range? Suppose that you really find that your 
student grades go from 10 to 100. Is this really a problem? If only one student 
has 10 and all other students have grades that start at 70, then the school has 
no problem. If 50% of the student grades are less than 15, the school probably 
has problems of some form. So how the data are spread over their range (in this
example, the range [0,100]) is quite important, and let us better understand the
data. To study this, you use measures of position (see Chap. 6). 

After understanding your data, you may want to predict something about your pop-
ulation from your data (the sample). In our example of students, maybe you do not 
have the grades of all the students, but only of 10% of them, since it was impractical 
to get the grades for everyone. To study the sample (the 10% of st udent grades) and
infer properties of the population, techniques that go under the name of inferential
statistics, discussed in detail in Sect. 1.6, should be used. Here are some examples

4 And if you are doing statistics, your project will always involve data.
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of questions you may be interested in, which fall under the umbrella of inferential
statistics.

• To determine if a new teaching method is effective, you compare the average 
grades of students taught with the ne w method to those taught with the traditional
method. Hypothesis testing (see Chap. 12) may support the hypothesis that stu-
dents who use the new method have significantly higher grades, suggesting that 
the method is effective. 

• To estimate the average grade of all students in the school, you calculate a confi-
dence interval (see Chap. 11) based on the grades of a random sample of students. 
This interval provides a range in which the true average grade is likely to fall, 
giving an estimate of overall academic performance with confidence of this es ti-
mate.

• To understand the factors that influence student grades, you use regression analysis
(see Sect. 13.2) to examine the relationship between grades and, for example, 
variables such as study hours, attendance, and parental involvement. The analysis 
may reveal, for example, that study hours and attendance are strong predictors of
higher grades.

1.5 Descriptive St atistics

Descriptive Statistics goals are summarising and organising data so that it can be 
understood and presented in a meaningful way. It typically provides summaries of
the characteristics about a given data sample.

Typically descriptive statistics is divided into three groups.

• Measures of central tendency (mean, median, and mode) which descr ibe the
centre of the data (see Chap. 4), or in other words the “typical” characteristics of 
data 

• Measures of variability (variance, standard deviation, and rang e) which de-
scribe the variability or dispersion within the data (see Chap. 5) 

• Measures of position (percentiles and quartiles) which provide insights into 
the distribution of data across different intervals (see Chap. 6) 

Example 1.5.1: Descriptive Statistics 

Here are some examples of cases where descriptive statistics is used. Note 
that the concepts outlined intuitively here will be explained in detail in
Chaps. , , and . 
Customer satisfaction survey analysis: A company sends out a survey to its 
customers to rate their satisfaction on a scale of 1 to 5, with 5 being the highest 
level of satisfaction. The company collects the responses and calculates 
the average (mean) score, the most frequently selected score (mode), and 
the spread of scores (standard deviation) to understand overall customer
satisfaction and areas of improvement.

654



1.6 Inferential Statistics 13

Annual income report for a region: The government collects data on the 
annual incomes of individuals within a specific region and reports the average 
income (mean), the income level that divides the population into two equal 
halves (median), and the income range (from the lowest to the highest). This 
information helps to understand the economic status of the region. 
High school test scores: A high school gives a standardised test to its stu-
dents. After grading the tests, the school calculates and reports the averag e
score (mean), the score in the middle of the dataset (median), and the differ-
ence between the highest and lowest scores (range). These data help to assess
the overall performance of the students and identify areas where students may
need additional help or resources.

1.6 Inferential St atistics

Inferential Statistics objective is to make inferences or predictions about a pop-
ulation from which a sample was drawn. It is used to make judgements about the 
probability that, for example, an observed difference between groups is real or that 
it might have happened b y chance. Thus, inferential statistics allow us to infer the
properties of a population based on a sample. This includes hypothesis testing,
confidence intervals, and regression analysis.

Example 1.6.1: Inferential Statistics 

Here are some examples of cases where inferential statistics is used. The 
concepts described intuitively here can be found in Chaps. , , and 
Predicting Election Outcomes: A political analyst uses data from pre-
election polls to predict the outcome of an upcoming election. By applying 
inferential statistics, the analyst can estimate the proportion of the population 
that supports each candidate, along with a confidence interval for these 
proportions, to make an educated guess about the winner. 
Drug Efficacy in Clinical Trials: In a clinical trial, a pharmaceutical com-
pany wants to determine whether a new drug is more effective than existing 
treatments. Using inferential statistics, researchers compare the health out-
comes of patients who use the new drug with those using a placebo or 
the current standard treatment. Statistical tests help determine whether any
observed differences are statistically significant.
Market Research for Product Launch: Before launching a new product, a
company conducts market research to understand the preferences of potential
customers and willingness to buy. By collecting data from a sample of the
target market and applying inferential statistics, the company can make gen-

13. 1211
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eralisations about the entire target market’s preferences and likely purchase 
behaviour, helping to tailor marketing strategies and predict sales.

1.7 Data Analysis vs. St atistics

Data analysis and statistics share many similarities, and their applications often 
overlap. However, they differ in their scope and specific functions. Data analysis 
encompasses a wider range of activities that are aimed at processing data and ex-
tracting useful information. In contrast, statis tics is more narrowly focused on the
collection, analysis, and interpretation of data, often emphasising inference and the
quantification of uncertainty.

Generally (and somewhat superficially) statistics is a branch of mathematics that 
deals with collecting, analysing, interpreting, presenting, and organising data. As we 
mentioned the primary goal is to make inferences from a sample to a larger popu-
lation. It focuses on the formulation of statistical models to understand underlying 
patterns and relationships. Traditionally, statistics has been used to draw conclusions
about hypotheses and to estimate the reliability of hypotheses.

Data analysis involves processing and manipulating data with the goal of discov-
ering useful information (somewhat similar to statistics). But its scope is generally 
broader, encompassing a variety of techniques to analyse data, which may or may 
not involve statistical methods. Data analysis can include data cleaning, transforma-
tion, and visualisation for example. It not only uses both descriptive and inferential 
statistical methods but also incorporates other techniques from data mining, machine 
learning, and big data analytics. The scope of data analysis is not limited to statisti-
cal studies. It also involves preparing data for analysis, cleaning it, and developing
data-intensive products.

Example 1.7.1: Data Analysis 

Consider a company that collects vast amounts of data about its customers, 
including their purchasing behaviours, preferences, demographics, and inter-
actions with marketing campaigns. Rather than using traditional statistics to 
make inferences or test hypotheses about the data, the company applies ma-
chine learning algorithms to automatically group customers into segments 
based on similarities in their behaviours and characteristics. 
This approach is distinct from traditional statistics as it focusses on leveraging 
algorithms to discover patterns and make predictions, rather than testing a 
pre-existing hypothesis about the data. The use of machine learning allows for
handling more complex datasets and drawing actionable insights, something
which may not be straightforward or easy in statistical hypothesis testing.



Chapter 2 
Types of Data 

No data is clean, but most is useful. 
– Dean Abbott, Co-founder a t SmarterHQ

2.1 Qualitative (Categorical) Data

Qualitative or categorical data represent characteristics or attributes that cannot be 
measured on a numerical scale. Instead, they are categorised based on traits and 
descriptions. Qualitative data can be divided into two types: nominal data, which
simply names or labels attributes without any order, and ordinal data, which involve
some order or ranking of attributes.

Example 2.1.1: Qualitative (Categorical) Data 

Qualitative or categorical data refer to data that can be divided into categories 
but that do not inherently have a numerical value. It is used to describe 
attr ibutes or qualities of entities. Below are three examples.

1. Eye Colour: Categories could include blue, brown, green, etc. This type 
of data describes an attribute that does not have a natural numerical scale. 

2. Type of Cuisine: This describes the kind of food served by restaurants, 
with categories such as Italian, Chinese, Mexican, Indian, etc. 

3. Marital Status: This includes categories such as single, married, di-
vorced, and widowed, which describe the legal relationship status of
individuals.

Definition 2.1.1: Qualitative (Categorical) Data 

Categorical data are observations that represent categories or labels. These 
data cannot be measured on a numerical scale but instead represent qualities 
or characteristics. Qualitative data can be further categorised into nominal
and ordinal data types.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 
U. Mich elucci, Statistics for Scientists,
https://doi.org/10.1007/978-3-031-78147-6_2 
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• Nominal Data: Nominal data are categorical data where the categories 
are unordered and do not have a natural or logical sequence. Examples 
of nominal data include gender (male, female), eye colour (blue, brown, 
and green), and types of vehicles (car, truck, and motorcycle). 

• Ordinal Data: Ordinal data are categorical data where the categories 
have a natural order or ranking. However, the differences between cate-
gories are not necessarily uniform or measurable. Examples of ordinal 
data include ratings (e.g. Likert scale [7] ratings such as strongly agree,
agree, neutral, disagree, and strongly disagree), educational levels (e.g.
elementary school, middle school, high school, and college), and socio-
economic status (e.g. low income, middle income, and high income).

2.2 Quantitative (Numerical) Dat a

Quantitative or numerical data represent amounts or quantities that can be measured 
on a numeric scale. This type of data can be further classified into two categories: 
discrete data, which consist of countable values or distinct whole numbers, and 
continuous data, whic h can take on any value within a given range and can be
measured to any degree of precision.

Example 2.2.1: Quantitative (Numerical) Data 

Quantitative or numerical data refer to data that can be measured and ex-
pressed numerically, allowing for arithmetic operations and statistical anal-
ysis. This type of data can be further classified into discrete data, whic h
consist of countable values, and continuous data, which can take any value
within a range. Below are some examples.

1. Number of students in a class: This is an example of discrete data, as 
you can count the exact number of students, such as 25 students. 

2. Height of individuals: Heights are continuous data since they can be 
assumed any value, such as 1.75 m.

3. Annual income: This represents continuous data as well, though it is
often rounded to the nearest unit of currency, like USD 50,000 per year.
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Definition 2.2.1: Quantitative (Numerical) Data 

Quantitative data, also known as numerical data, refers to information that 
can be measured and written down with numbers. These data are collected 
in the form of numbers or counts, with a numerical value that represents a
measurement or a quantity. Quantitative data can be further classified into
two main types

1. Discrete Data: This type of data represents items that can be counted 
and are listed as exact numbers. Discrete data are usually collected by 
counting, and they take on possible values that can be listed out. An 
example of discrete data is the number of students in a class. 

2. Continuous Data: Continuous data represent measurements and there-
fore, unlike discrete data, can take on any value within a finite or infinite
interval. This type of data is measured, not counted. An example of con-
tinuous data is the height of students in a class.

2.3 Level of Measure ments

The levels of measurement refer to different ways in which variables or data can 
be categorised quantitatively and qualitatively. There are four primary l evels of
measurement: nominal, ordinal, interval, and ratio.

Definition 2.3.1: Nominal Level of Measurement 

Nominal level of measurement refers to data that can be divided into cate-
gories that do not have a natural order or ranking.

For nominal level of measurement data can be classified into distinct categories, but 
there is no inherent order to these categories. Examples are gender (Male, Female, 
Other) or Blood Type (A, B, AB, O). Nominal data can be summarised for example
using frequencies and percentages. You can use them for descriptive statistics like
counts and mode.

Definition 2.3.2: Ordinal Level of Measurement 

Ordinal level of measurement deals with data that can be placed in a natural 
order or sequence, but the intervals between the data points are not known
or do not have a precise meaning.
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Examples are educational level (Elementary, High School, College) or Satisfaction 
rating (Unsatisfied, Neutral, Satisfied). Ordinal data can be summarised for example 
using median and percentiles. You can use them in general for descriptive statistics.

Definition 2.3.3: Interval Level of Measurement 

Interval level of measurement involves data that can be ordered, and the 
exact differences between the values are meaningful. However, there is no
true zero point.

An example is calendar years. Interval data can be summarised for example u sing
mean, standard deviation, and range.

Definition 2.3.4: Ratio Level of Measurement  

Ratio level of measurement allows for the identification of the order, the 
exact value of the differences between the data points, and an absolute zero
point.

Examples are weight, height, age, or income. Ratio data can be summarised for 
example using mean, standard deviation, and range. You can use them for parametric 
statistical tests and more advanced analyses, such as regression.

2.4 Cohort 

The term cohort does not refer to a type of data but is often used in connection 
with datasets; it is important to know its exact meaning and how statisticians use 
it. In statistics, a cohort refers to a group of individuals (or objects) who share a 
common characteristic or experience within a defined period. Cohorts are often used 
in longitudinal studies (see below), in which researchers observe the same individuals 
over time to assess how specific factors affect them differently or to track changes
and developments throughout their lives. A typical application is in the study of the
effect of drugs, where researchers want to understand how a specific drug affects
similar individuals.

Definition 2.4.1: Cohort 

A cohort refers to a group of individuals who share a common characteristic 
or experience within a defined period.



2.5 Longitudinal Data 19

The term “cohort” is particularly useful because it allows for the analysis of 
data that are similar between members at the beginning of the study, thus pro viding
information on how particular conditions or experiences impact subjects over time.

Example 2.4.1: Cohort 

A cohort could include all people born in a particular year and in a particular 
neighbourhood who are then studied over their lifetimes to investigate the 
influences of early life conditions on later health outcomes. Similarly, a 
school cohort m ight consist of all students who enter a university in the same
academic year.

2.5 Longitudinal Dat a

Longitudinal data are collected over a longer period on the same subjects, allowing 
researchers to analyse and study chang es over time.

Definition 2.5.1: Longitudinal Data 

Longitudinal data are collected over a longer period on the same subjects, 
allowing researchers to analyse and study changes over time.

Example 2.5.1: Longitudinal Data 

Consider this fictitious example: a study tracking the academic performance 
of a cohort of students throughout their educational life, from elementary 
school to high school. A group of researchers initiates a study to understand 
the impact of various teaching methods on student success over time. Starting 
in 2020, the researchers collect data annually on a specific group of students 
who begin the study as third graders. They gather information on each 
student’s grades, test scores, participation in special programmes (such as 
tutoring or enrichment classes), and family history. The goal is to analyse 
how these factors contribute to student academic outcomes over the years. 
This study is longitudinal because it involves repeated observations of the
same variables (e.g. academic performance) for the same subjects (the cohort
of students) over an extended period. This allows the researchers to see how
the students progress over time.
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2.6 Cross-Sectional Dat a

Cross-sectional data are collected at a single point in time or over a very short 
period and provide a snapshot of a specific moment.

Definition 2.6.1: Cross-Sectional Data 

Cross-sectional data are collected at a single point in time or over a very 
short period and provide a snapshot of a specific moment.

Example 2.6.1: Cross-Sectional Data 

Consider a survey to assess the prevalence of obesity among adults in a 
city at a specific point in time. The survey is conducted, say, in December 
2023. Data are collected from a large sample of adult residents in various 
neighbourhoods of the city. Each participant is asked, for example, about 
his or her height, weight, dietary habits, and exercise routines. The primary 
goal is to estimate the percentage of adults who are considered obese based 
on their Body Mass Index (BMI) and to identify any correlations between
obesity rates and factors such as diet and physical activity. These data are
collected at a single point in time (December 2023), rather than tracking
the same individuals’ health changes over multiple years. The data provide
a snapshot of the health status of the community in December 2023.

2.7 Binary and Dichotomous Dat a

I would like to conclude this chapter with two data types that you might find in y our
statistical research: binary and dichotomous.

Definition 2.7.1: Binary Data 

Binary data are data that have only two possible values (e.g. yes/no and
on/off).

Definition 2.7.2: Dichotomous Data 

Dichotomous data are a special case of binary data where the two values are 
mutually exclusive (e.g. male/female).
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Example 2.7.1: Non-dichotomous vs. Binary Data 

Suppose a survey asks respondents whether they enjoy a specific type of 
music, with the options being “Yes” or “No”. Here, the data are binary, 
since there are only two response options. 
However, this set-up could be non-dichotomous if the question does not 
cover all possibilities or its outcomes are not complete opposites. For ex-
ample, if the survey question is about a preference (“Do you like classical 
music?”), and the possible answers are “Yes” and “No”, there are inherent 
limitations. The “No” answer could imply different things, maybe the person 
answering dislikes classical music, is indifferent to it, or is unfamiliar with 
it. The binary response does not capture these subtle differences. There is
a possibility that someone may like more than one type of music, which is
not exclusively captured by a simple yes/no to one genre. In this case, the
binary data are not dichotomous because “No” does not strictly mean the
opposite of “Yes” (i.e. dislike as opposed to merely lacking a preference or
being unfamiliar).

You need to ensure that the data adequately represent the phenomena being studied 
and that any conclusions drawn are valid given the potential ambiguities in the way 
responses are categorised (or the questions are asked). Thus, while binary data always 
involve two categories, it is the nature of these categories and their relationship to
each other that determine whether the data are truly dichotomous.



Chapter 3 
Data Collection Methods 
(Sampling Theory) 

3.1 Introduction

Think of sampling theory as a set of techniques that help you choose the best pie 
slices that give you a real taste of the whole thing. This helps you to make solid
guesses and to build or test statistical hypotheses that actually make sense according
to what you need to find out.

Often, when performing statistics, you will find yourself using datasets that have 
been previously prepared and curated by others. However, when starting a new 
research project, you may be faced with the task of creating a completely new 
dataset that will be used to answer a specific research question. Acquiring data are 
trickier than you can imagine, and knowing the fundamentals of sampling will help 
you assess bias, representativeness, and much more about your data. It will crucially 
help you in deciding what kind, how much, and how many types of samples to
acquire for a given research question. Let us consider a couple of examples on how
acquiring data may not be as easy as you may think.

• Conducting surveys to collect data on homeless populations poses significant 
challenges due to the often hidden nature of this group. The difficulties arise in 
various stages of the data collection process. Obtaining a representative sample 
is difficult. Surveys conducted in shelters or food distribution centres may not 
capture those who avoid these services. Furthermore, the timing and location of 
data collection can significantly affect who is included in the sample. The response
rates among homeless populations are also generally low due to mistrust, mental
health issues, or lack of interest.

• A longitudinal study (see Sect. 2.5) aims to collect data over extended periods 
to observe the development and progression of chronic diseases such as diabetes 
or heart disease. This type of study design faces several challenges. Recruiting 
a large and diverse sample that is willing to participate over many years can be 
difficult. High attrition rates are common, as participants may lose interest, move 
away, or die during the study period. Maintaining consistency in data collection
methods over time is crucial, but challenging, especially with changes in technol-
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ogy and staff turnover. Ensuring that participants follow the same protocols for 
self-reported data, such as diet or physical activity, requires on-going education 
and support. Self-reported data might also be unreliable. Regular medical exams 
and tests must be standardised to ensure comparability of data over time (some-
thing that may be overly difficult over multiple years). In addition, long-term data 
collection raises concerns about data privacy and ethical handling of sensitive
health information. Obtaining and renewing informed consent over many years
adds complexity to the study.

These two simple examples should give you at least an intuitive idea of how many 
different challenges you must face when defining what new data to acquire and 
collect for a statistical project. In this chapter, we review t he fundamental concepts
of sampling that will help you design a proper data acquisition strategy for your
projects.

3.2 Research Questions and Hypotheses

We now discuss two important concepts that drive the creation of datasets: research 
questions (RQ) and hypotheses. Research projects often start with a dataset. Someone 
finds or is given a dataset and is asked to analyse something. Sounds familiar? Maybe 
the professor you are working with got a dataset from some other research group 
and would like y ou to try something with statistics or machine learning or ask you
directly to do something specific.

This is how most of these projects begin. If you find yourself in this situation, 
take a step back and think about the problem you are trying to solve. What questions 
are you trying to answer? What hypotheses do you have? It is important to clarify 
some terminology and explain what a research question or hypothesis is, why you 
need one, and how designing a good hypothesis to verify (or disprove ) is mandatory
for good dataset creation. Before we get to hypotheses, let us start by defining what
a research question is.

3.2.1 Research Q uestions

A good research project starts always with one (or multiple) research question 
(RQ). We can loosely define it as a concise, focused inquiry formulated to address 
a specific concern or knowledge gap within a broader topic area (this is a very
convoluted definition, right?). You will find some examples below that should help
you get an intuitive idea of what a RQ is.
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Definition 3.2.1: Research Question 

A research question is a concise and focused inquiry formulated to address 
a specific concern or knowledge gap within a broader topic area.

Since this definition is quite generic (and a bit pompous), let us give t hree examples
to help you understand the concept.

• How does the introduction of non-native plant species affect biodiversity in urban 
green spaces? 

• Can we predict the onset of diabetes from the medical history of patients? 
• What impact does the integration of t echnology in the classroom have on student

engagement and learning outcomes?

By looking at the examples, you will realise that the questions are general in nature 
and cannot really be answered with some precise number (take the last question, what 
does impact mean, and how can it be measured?). They guide the research process, 
determine the direction of the study, and can give some hints on how to decide what 
types of data or methods need to be collected and used. In any research project, 
you should start with a research question (or multiple ones, if relevant). This is the 
typical approach that you use if you are working on your thesis (Bachelor, Master, or 
even Ph.D.) by the way. A good RQ gives the context of the researc h project, hints
at its impact, and highlights its importance. It should be understood by non-experts
and inspire. In addition, it typically allows for a wide range of outcomes.

As its name implies, it is good practice to formulate it as a question. Avoid
statements that are not formulated as questions.

3.2.2 Hypothesis

Once you formulate your RQ, you will need hypotheses. Whether you can disprove
or verify.1 Hypotheses can be loosely defined as a prediction of the relationship 
between two or more variables. It can be described as an educated guess about 
what happens in an experiment. Researchers tend to use hypotheses when significant 
knowledge on the subject is already available. After the hypothesis is developed,
the researcher can develop or gather data, analyse them, and use them to support or
negate the hypothesis.

1 Karl Popper, the famous philosopher, would disagree on the verification of a scientific hypothesis, 
but we will skip this discussion here.
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Definition 3.2.2: Hypothesis 

A hypothesis is a prediction of the relationship between two or more vari-
ables. It can be described as an educated guess about what happens in an 
e xperiment. Researchers tend to use hypotheses when significant knowledge
on the subject is already available.

Some examples are as fo llows.

• Global warming has increased sea level by 1 cm in the past 10 years on average 
worldwide. 

• The number of cars on the road each da y on average in Zürich has decreased by
5% after the COVID year.

You should immediately see the difference between a hypothesis and a research 
question. While an RQ is written as a question (hence the name), a hypothesis is 
always written as a statement that can be verified or disproved. A hypothesis is 
the fundamental building block that allows you to design experiments to test the 
hypothesis itself. In other words, it means that g etting the right data is a consequence
of a well-thought hypothesis.

To summarise what we discussed when starting a new research project, you should
proceed according to the following steps:

1. Formulate one (or multiple, but not more than 2–3) research question. 
2. Formulate a series of hypotheses that will help you answer your research questions. 
3. Design experiments to verify or disprove the hypotheses formulated.

During the work of points 2 and 3 you will find that you have enough information to 
be able to design your data collection strategy .

3.3 Survey Sampling

Generally speaking, statistics is the science of drawing statements and conclusions 
about a population by using a sample of it (as we discussed earlier). Let us summarise 
some terminology here again so that you do not have to jump back and forth between
sections.

The term population normally refers to a set of objects (patients, molecules, 
galaxies, etc.) that are infinite (at least in theory) in nature and, due to this, cannot be 
known or described exactly. For example, the population of all results of tossing a 
coin is an infinite set of two possible results: head and tail. We do not have access to 
the infinite set, and thus we try, with statistics, to study and draw conclusions about 
it from a finite set of results. In reality there are no sets of objects that are infinite 
(e.g. all persons below 18 years of age who have lived so far on Earth) but are large
enough that it is impossible to know or describe. So, when defining populations, you
can substitute the word infinite with the words very large.
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We can now give an intuitive definition of survey sampling (or simply sampling) 
now. Survey sampling (or simply sampling) deals with the problem of selecting a
finite set of elements from a potential infinite population.

Definition 3.3.1: Survey Sampling 

Survey sampling (or simply sampling) encompasses a set of techniques that 
deal with the problem of selecting a finite set of elements from a potential
infinite population.

The term survey refers to t he act of collecting data.

Tip 3.3.1: Meaning of Survey 

The word survey, according to the Britannica dictionary, refers to an activity 
in which many people are asked a question or a series of questions to gather 
information about what most people do or think about something.  But  the  
dictionary also gives the definition of an act of studying something in order 
to make a judgement about it. This second definition is much more apt and 
will serve the reader w ell. Practically, all data used in the scientific field are
not coming from surveys but from measurements and experiments, and thus,
I much prefer the second definition.

In our initial discussion, you may have got the impression that populations are 
given and simply exist. But even defining if an object is part of a population is not 
trivial. For example, suppose that you want to include in y our population all smokers.
How do you define if someone is a smoker? For example, a possible definition is [8] 
“an adult who has smoked more than 100 cigarettes in his/her lifetime and currently 
smokes at least once a week”. Assessing whether a person is a smoker may not be 
as easy as it sounds. In sampling theory, you should always define what are called 
eligibility criteria that will define which object is part of the population and which 
not. This step is fundamental, but its relevance is particularly evident in medicine
when selecting which patients should be in the population and which are not depend
strongly on the specific RQs in the medical context.

After designing your RQs and hypotheses, the next step is to define your pop-
ulation. In other words, you must design eligibility criteria that would define your 
hypothetical population. I have used the term hypothetical, meaning that you do not 
yet have data on all individual units in the population. Having the criteria allow s you
to decide whether, when presented with an object, you can decide if this belongs to
your population or not.

Now we need to discuss two important concepts to create a sample from a
population: probability and non-probability sampling.
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3.3.1 Non-probability Sampling

Non-probability sampling simply means selecting elements from the survey popu-
lation according to fixed rules and not by chance. Sometimes, a specific sampling 
strategy is chosen due to specific limitations (such as time or budget constraints).

Definition 3.3.2: Non-probability Sampling 

Non-probability sampling simply means selecting elements from the survey 
population according to fixed ru les and not by chance.

Here are some examples o f non-probability sampling.

• Restricted sampling: Sampling is simply done keeping only parts of the popu-
lation that are easily accessible. Maybe you are working in a hospital, and thus 
your sample includes only patients from your hospital. 

• Judgement sampling: Sampling is obtained based on what the sampler believes 
to be representative. Maybe you are studying brain tumours, and how they appear 
in MRI images. You may decide to study only specific types of tumour, as your 
experience has shown that, in general, they appear in MRI images similarly to 
most tumours. 

• Convenience sampling: Sampling is performed simply by keeping what is easily 
reachable. This type refers more to classical surveys, in which people had to reach 
people to ask questions. 

• Quota sampling: The sample is gathered by several interviewers (e.g. when 
talking about surveys), each tasked with collecting a specific quantity of units that 
possess particular types or characteristics. The selection of these units is entirely 
up to the discretion of the interviewers. If you are not dealing with interviews, you
may have a certain number of people, each tasked with getting a certain number
of objects you want to study (e.g. you may have a certain number of chemists,
each tasked with getting a certain number of chemicals for your study).

These methods are used when sampling by chance (see the next section) is not feasible 
or simply too time-consuming or expensive. Statistical validity of the results with 
such samples relies strongly on assumptions. For example, in judgement sampling, 
the analysis relies on the assumption that the sample is representative, something 
not everyone may agree on. Typically, these methods are chosen because they are 
faster or less expensive. Non-probability sampling is a widely used method for 
gathering essential data on human populations, extensively employed by researchers 
in social and behavioural sciences, as well as those in medical and health fields.
The volume of data required can be vast, encompassing tens or even hundreds
of measurements per participant (blood samples, urine analysis, medical imaging,
psychological assessments, etc.). For such studies, non-probability sampling might
represent the only practical method.
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The process works according to the f ollowing steps.

1. Define the population: Determine who or what you want to study. Unlike prob-
ability sampling (more on that later), you do not need to have a complete list 
of the population (in other words, you do not need, e.g. a list of names of all 
possible participants in your study). You just need criteria on how to define your 
population. 

2. Choose a non-probability sampling method: Select the most appropriate non-
probability sampling technique based on your RQs and hypotheses and the nature 
of your population. Common methods we mentioned include convenience sam-
pling, judgement sampling, etc. 

3. Determine sample size: Decide on the number of participants or objects you 
need. This decision may be influenced by factors such as the depth of analysis 
required, the time, and the available resources (it may very well be a budget 
issue). Non-probability sampling does not rely on statistical formulas for sample 
size determination and is typically determined by practical reasoning (like how 
much money you have, how much time, etc.). 

4. Recruit participants: Based on the chosen method, begin recruiting participants
or getting your objects. For example, in convenience sampling, you collect data
from individuals who are readily available. If you are studying chemical com-
pounds, you would need to go and buy them for your study. You may decide to
buy only compounds that are safe to use, or inexpensive to buy, for example.

5. Collect data: Once your sample is selected, collect the data necessary for your
study. This could involve surveys, interviews, observations, etc.

Remember, while non-probability sampling can be more practical or the only 
option available for certain studies, it may introduce bias and limit the generalisability
of the results.

3.3.2 Probability Sampling

Probability sampling simply means that a sample is obtained by selecting elements 
of the population in a random fashion (more precisely according to some probability 
measure). Each element is given a probability of being selected (an easy approach 
is to give all elements of the population the same probability of being selected) to 
remove bias associated with subjective decisions (e.g. if using judgement sampling).
If you have a large population at your disposal, you can use this approach to randomly
select a sample.
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Definition 3.3.3: Probability Sampling 

Probability sampling means that a sample is obtained by selecting elements 
of the population in a random fashion (more precisely according to some
probability measure).

The process works according to the f ollowing steps.

1. Define the population: Determine the entire group of individuals you want to 
study. This could be all students in a school, all employees in a company, etc. This 
comes from your RQ and hypotheses, as we discussed. 

2. Create a list: Compile a complete list of all members of the population. Each 
member is assigned a unique identifier, such as a number or string. 

3. Random selection: Use a random method, such as a random number generator, 
to select a specific number of individuals/objects from the list you created in the 
previous step. The number of individuals selected depends on the desired/possible 
sample size. Note that depending on your RQ or hypotheses, not all elements of 
the population must have the same probability of being chosen.

4. Conduct the survey: Gather data from individuals or objects chosen by random
selection. The sample size determined in the previous step is directly influenced
by the data requirements. For example, if acquiring the information is costly, you
might opt for a smaller sample size.

The random method you use in step 3 can be more complicated than using an equal 
probability for each individual/object in your population. That will depend on your 
RQ and the hypothesis you are studying. Note that in this case, you need to have a 
list of all individuals (or objects) belonging to the population. So it is not enough to
have eligibility criteria. This might make data collection a more challenging task.

3.4 Stratification and Clustering

A population is stratified if it is divided into q ∈ N. non-overlapping groups (called 
strat a).

Definition 3.4.1: Stratified Population 

A population is stratified if it is divided into q non-overlapping groups (called 
strat a).

For example, patients can be divided into subgroups each having a different disease, 
into different age groups, etc. A population is said to be clustered if it can be divided 
into subgroups (called clusters).
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Definition 3.4.2: Clustered Population 

A population is said to be clustered if it can be divided into subgroups (called 
clusters).

The two definitions may seem exactly equivalent, but the difference lies in the way 
in which clusters and strata are used. When dealing with a stratified population, 
sampling involves selecting elements from all strata. When dealing with a clustered 
population, only a portion of the clusters will appear in the final sample. For example, 
if we stratify patients in different age groups, then when creating our sample we will 
select patients from every age group in the population. On the contrary, if we cluster
people geographically, our final sample may contain only a subset of regions that we
have at our disposal.

3.5 Random Sampling Without Re placement

In this method, once an individual or object is selected from the population for 
inclusion in the sample you are creating, it cannot be chosen again. This approach 
ensures that each member of the population can be selected, but no individual or 
object can be included in the sample more than once. It is typically used when the 
goal is to avoid duplicating members in t he sample, since your RQ or hypotheses
require it. For example, if you are drawing cards from a deck, once a card is drawn,
it is set aside and not put back into the deck for subsequent draws.

Warning 3.5.1: Random Sampling Without Replacement 

Here is an overview of the advantages and disadvantages.

• Advantages: The method ensures each member of the population can be 
selected only once, preventing duplicates in the sample. This can lead 
to a more diverse and representative sample. Additionally, the maximum 
sample size is limited to the population size, making it easier to manage. 

• Disadvantages: The method requires a comprehensive list of the popula-
tion beforehand, which can be difficult or impractical to obtain for large or
dynamic populations. In addition, managing and tracking selections from
a very large population can be more complex and resource intensive.
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Definition 3.5.1: Random Sampling Without Replacement 

This is a sampling technique where once an individual or object is selected 
from the population for inclusion in the sample you are creating, it cannot 
be chosen again. This approach ensures that each member of the population
can be selected, but no individual or object can be included in the sample
more than once.

3.6 Random Sampling with R eplacement

In this method, after an individual or object is selected from the population and 
included in the sample, it is re-inserted into the population, making it eligible for 
selection again in the next iteration. This method allows for the possibility of the 
same individual being put multiple times in the sample. It is particularly useful in 
simulations and bootstrap methods (we will only briefly discuss bootstrap, as it goes 
beyond the scope of the book), where the objective is to create multiple independent 
samples from a single dataset to estimate the distribution of a parameter. An example 
of this would be to draw a card from a deck, noting its value and then putting it back 
in the deck before drawing again. Note that with this approach, you can create a
sample that is larger than the population from which you are sampling, since you
can select an element multiple times. You should be very careful to do so to avoid
introducing bias in your sample that could skew your statistical results.

Warning 3.6.1: Random Sampling with Replacement 

Here is an overview of the advantages and disadvantages.
• Advantages: Each selection is independent of the others, making the 

process simpler and often more suitable for theoretical or computational 
studies, like bootstrapping. Furthermore, the method allows for a sample 
size that can exceed the population size, providing flexibility in experi-
mental design and analysis. It can be particularly useful when the popula-
tion size is small, as it allows a larger sample size without the constraint 
of exhausting the population. 

• Disadvantages: When using this method there is the possibility of se-
lecting the same individual or object multiple times, which can lead 
to duplicates in the sample, affecting diversity and potentially skewing
results. Furthermore, the presence of duplicates might result in biased
estimates of population parameters if not properly accounted for in the
analysis. Finally, while it allows for greater sample sizes, it may result
in a sample that is less representative of the population, especially if the
population is large and diverse.
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Definition 3.6.1: Random Sampling with Replacement 

This is a sampling technique where after selecting an individual or object 
from the population and including it in the sample, it is placed bac k into the
population, making it eligible for selection again in the next iteration.

3.7 Random Stratified Samp ling

If you have a stratified population, you should pay attention to having all strata in 
your sample. You can obtain this by using the following process, assuming that you 
have your population, but you h ave not yet stratified it. The following steps will help
you obtain a stratified population and sample.

1. Identify the stratifying variable: Choose the features you will use to divide the 
population into different strata and decide how to split your population in strata. 
This should be a characteristic that is believed to influence the outcome of the 
research, such as age, sex, income level, etc. In addition to deciding, for example, 
that age should be used for stratification, you must also decide in which age groups 
you want to stratify your population. This is a two-step process: Decide on the 
features and the ranges of features that will define your strata. 

2. Divide the population into strata: Based on the stratification strategy from 
the previous point, divide the population into distinct strata. Each unit in the 
population should belong to one and only one stratum. 

3. Determine sample size: Decide on the total sample size for your study. 
4. Define the sample size for each stratum: Determine how many individuals/ob-

jects to sample from each stratum. This can be done proportionally (proportional 
allocation) based on the size of the strata in the population or equally among the 
strata regardless of their size in the population or based on other considerations
relevant to your RQs or hypotheses.

5. Select samples from each stratum: Within each stratum, use random sampling
to select individuals. This ensures that every member of the stratum has an equal
chance of being included in the sample. You will select as many samples from
each stratum as defined in the previous step.

6. Collect data: Proceed to collect data from selected individuals in all strata.

By following these steps, stratified random sampling allows you to obtain a 
sample that is more representative of the population (meaning that the statistical 
results obtained from the sample should reflect the characteristics of the population), 
especially when there are significant differences between strata that could affect the 
study’s outcomes. Consider an example to make this process and reasoning more
concrete. Imagine a scenario in which you are trying to assess the impact of a
new teaching method on student performance in mathematics across a region. This
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region includes a diverse array of schools, such as public and private, as well as urban 
and rural, each with varying levels of resources and socio-economic backgrounds 
among their students. The socio-economic status of students is a significant factor 
that can influence academic performance, with schools in rich areas typically having 
more resources and, consequently, potentially better student outcomes compared to 
schools in less wealthy areas. 

To directly compare average scores across the entire region without accounting 
for these socio-economic differences could obscure the true effectiveness of the 
teaching method. This is because the method could perform differently in different 
environments: being more effective in some and less effective in others. Stratified 
sampling addresses this issue by ensuring that schools from each socio-economic 
category are represented in the sample. This allows for a more precise analysis of 
the teaching method’s effectiveness across diverse socio-economic backgrounds. 

In this context, you would need to first categorise the schools into different 
strata based on their socio-economic status (e.g. high, medium, and low). Then you 
would need to decide on the sample size for each stratum to ensure proportional 
representation based on the number of schools or the student population within each
socio-economic category. After this, schools and, subsequently, students within those
schools are randomly selected from each stratum to participate in the study. The data
on student performance in mathematics are then collected and analysed, with the
analysis making comparisons both within and across the different socio-economic
strata to assess the overall impact of the teaching method. Stratified sampling as
described enables you to draw more accurate and generalisable conclusions regarding
the effectiveness of the teaching method.

3.8 Bootstrap

I would like to mention a last important statistical resampling method that is widely 
used: bootstrap. It was developed originally by Efron in 1979 [9] and has been 
extensively studied by many statisticians. I will not go into many details, as there 
are many books that do that already. If the reader is interested, the book by Michael 
R. Chernik Bootst rap Methods A Guide for Practitioners and Researcher is a very
complete introduction to the subject [10]. Its 200 pages of references (no, is not a 
typo) gives a good idea about the amount of research done in this area. Another self-
contained graduate text that can be consulted is the one by Davidson and Hinkley
from 1997 [11]). 

In statistics, bootstrap refers to a resampling technique used to estimate the dis-
tribution of a statistic (like the mean, median, or variance, for example) by sampling 
with replacement from the original data. It is particularly useful when it is difficult 
to make assumptions about the population or when the sample size is small. This 
method allows statisticians to make inferences about the population from which the 
sample is drawn without relying on traditional parametric assumptions. The method
in its most basic form is quite easy to understand. It works in the following way:
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1. Original Sample: You start with an original dataset of size n. 
2. Perform Resampling: Generate m new datasets (called bootstrap samples) by 

randomly selecting n observations with replacement from the original dataset. 
Each bootstrap sample will be the same size as the original data but may contain 
duplicate observations. 

3. Evaluation of statistic estimator of interest: For each bootstrap sample, com-
pute the statistic of interest (e.g. mean, median, variance, etc.). With m large 
enough, you will have a distribution of the st atistic based on these resamples.
This distribution is called the bootstrap distribution.

4. Evaluate confidence intervals and distribution characteristics: Use the boot-
strap distribution to estimate confidence intervals, standard errors, or p-values for
the statistic of interest.

Bootstrap is often used when it is not possible to evaluate things like confidence 
intervals by theoretical means. Its statistical underpinnings and its justification go 
well beyond this book but it is a very versatile technique that can be very useful 
in dealing with complex and difficult to evaluate statistical estimators. There are 
of course downsides to using bootstrap, the major one being its computationally 
intensive nature. You will have to calculate your statistics m times, and if m is large 
enough, that may be very computationally intensive. Also care must be taken when
applying it to very small samples as this may turn out to be tricky in the interpretation.

Let us show a toy example to make this discussion more comprehensible. Let us
consider the array a = {2, 8, 5, 9, 12, 7, 6, 11, 4, 10} .. Suppose that you are interested 
in estimating the mean of the population of which a is a sample. If you calculate the
mean of a (indicated here with ā.), you will g et

.ā = 7.4 (3.1) 

but suppose instead of the 10 values, you have only 9. Suppose that y ou consider
a subset of a, such as b = {2, 8, 5, 9, 12, 7, 6, 4, 10} .. In this case the average of b
(indicated with b̄.)  is b̄ = 6.3.. So how sure can you be that your initial estimate is 
correct? Using bootstrap as described in this section, you can easily calculate the
confidence intervals of ā. by using bootstrap samples. Your bootstrap s amples may
look like {2, 8, 8, 9, 12, 7, 4, 4, 10} .or {2, 2, 5, 9, 12, 7, 4, 4, 10} . for example. Remember 
a bootstrap sample of a is obtained by sampling ten v alues from a with repetitions.

In Fig. 3.1 you can see the distribution of values of ā. and the 2.5th and 97.5th 
percentiles (do not worry now about what percentiles are, as I will explain them in
Chap. 5) obtained with 105

. bootstrap samples. 
As any method, bootstrap has limitations. Let us discuss some of them. To start 

with, care must be taken when considering small samples. If your original sample 
size (in our example a) is very small, bootstrap resampling may not provide reliable 
estimates. With small datasets, there may not be enough variability in the resamples, 
leading to biased or overly optimistic estimates of confidence intervals or other 
statistics. We have not discussed this, but bootstrap assumes that the data points are
independent of each other. If the data are correlated (e.g. time series data, spatial data,
or repeated measures from the same subject), standard bootstrap resampling may
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Fig. 3.1: The distribution of the values of the mean of the a rray a = 
{2, 8, 5, 9, 12, 7, 6, 11, 4, 10} . obtained with 105

. bootstrap samples. The blue line indi-
cates the average and the red dashed lines the 2.5th and 97.5th percentiles

lead to incorrect estimates of variability. For dependent data, specialised techniques 
like the block bootstrap should be considered (for a treatment of the s ubject, you
may want to check Chapter 5 in Chernick’s book [10]). 

Outliers must also be treated with care when using bootstrap. Since resampling 
is done with replacement, outliers may be over-represented in some resamples, 
distorting estimates such as mean or confidence intervals. As such, bootstrap can 
magnify the impact of outliers, leading to biased results. The choice of statistic is 
also important. Bootstrap works best for some statistics (e.g. means and medians) 
but may not be appropriate for all statistics. For example, estimating very rare events 
or extreme percentiles (e.g. the 99th percentile) may not perform well because 
the original sample may not capture enough instances of those rare events. You 
should also be aware that estimation of statistical estimators with bootstrap does 
not automatically correct for bias. If your original estimator is biased or misleading 
(e.g. the sample mean of a skewed distribution), the bootstrap resamples will also 
reflect that. More fundamentally than any other limitation, bootstrap assumes that the
original sample is representative of the population. If the original sample is biased or
not representative of the population, the bootstrap can amplify those issues, leading
to incorrect inferences. It is crucial to consider the quality of your original data
before applying the bootstrap (that is anyway a good idea generally speaking, if your
data are bad, your statistical analysis will also be bad).
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As a last warning, bootstrap confidence intervals should be interpreted with 
care. Different methods for calculating these inter vals (e.g. percentile method, bias-
corrected and accelerated (BCa) method, described in [10]  as  accelerated constant 
in case you want to look it up) may yield different results. 

This small section has only the goal of making the reader aware of bootstrap, its 
complexity, and limitations and has no presumption whatsoever of giving a proper 
treatment of the subject. The study of bootstrap is somewhat more advanced in nature
and does not fit this short book. Nonetheless the reader is advised to study it and
master it, as this is a widely used technique in statistics.



Chapter 4 
Measures of Central Tendency 

4.1 Introduction

Measures of central tendency are statistical tools used to summarise a set of data 
by identifying the central point around which all other data points cluster. The main
measures are mean, median, mode, and mid-range. To define them, consider a set
of measurements xi .of a random variable X (to review what a random variable is, see 
Chap. 1), where i indicates the index of your measurements. Suppose also that we 
have N measurements in total. In t he next sections, we will discuss mean, median,
and mid-range in detail.

4.2 Mean 

The mean of a dataset composed by elements denoted by xi . is defined b y

.mean of X =
1
N

N∑

i=1
xi (4.1) 

where the symbol
∑

. indicates summing all elements xi . for i varying from 1 to N . 
In other words

.mean of X =
1
N

N∑

i=1
xi = x1 + x2 + . . . + xN (4.2) 

The mean is often indicated with < X > . or X̄ .. Often, in statistics, we talk about the 
expected value of a random variable X .
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Definition 4.2.1: Mean (Average )

.mean of X ≡ X̄ =
1
N

N∑

i=1
xi (4.3) 

where the symbol 
∑

. indicates summing all elements xi . for i varying from 1 
to N .

This is indicated by the symbol
.E(X) (4.4) 

and for all practical purposes it can be thought as the mean of the random variable 
X . A more nuanced discussion can be found in the next info box.

Tip 4.2.1: Expected Value 

The term expected value in statistics is rooted in the concept of predicting 
the average outcome of a random variable over a long series of experiments. 
It is called “expected” not because it is what will definitely happen in a single 
event or a few events, but because it represents the average or “expected” 
outcome over a vast number of trials. 
Here is an intuitive way to understand it: Imagine you are flipping a fair coin. 
The expected value of the number of heads in one flip is 0.5. This does not 
mean that you expect to see half a head when you flip a coin once. Instead, it 
means that if you were to flip the coin many, many times, the average number 
of heads per flip you would expect to see is 0.5. In other words, about half of 
the flips would be heads, and the other half would be tails, over a long series 
of flips. 
In a more formal mathematical sense (and in the language of outcome spaces 
and events), the expected value is calculated by multiplying each possible 
event by its probability of occurrence and then summing all those products. 
It is a fundamental concept, especially in probability theory and statistics, 
because it provides a single summary number, an “expectation”, of what you 
predict the average outcome to be if you w ere to repeat a random experiment
an infinite number of times.
So, the expected value is a kind of long-term average that might never be
actually observed in any single experiment but is what you would expect to
happen on average if the conditions were repeated over and over again.

You should not use the mean as a measure of central tendency in the following 
situations. When the data distribution is ske wed, in other words, asymmetric (dis-
cussion of skewness can be found in Sect. 9.2), the mean can be significantly affected 
by the extreme values (outliers, discussed in Chap. 7), leading to a misleading rep-
resentation of the central location of the data. In such cases, the median is often a
better measure because it is not influenced by outliers and more accurately reflects
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the centre of a skewed distribution (more about the median in Sect. 4.3). Note that 
outliers can strongly influence the mean, pulling it towards the extreme values and 
away from the typical value of the majority of the data points. If your data include
outliers that you cannot remove or adjust for, using the median (see Sect. 4.3)  is  
generally more appropriate. Categorical data represent categories with a meaningful 
order, but they are not continuous measures of some characteristics (blue eye is not 
necessarily larger or smaller than brown eyes). Since the m ean involves arithmetic
operations, it is not applicable to categorical data. The mode discussed in Sect. 4.4, 
being a positional measure, should b e used instead.

There is another case that you should be aware of. For discrete variables that 
assume only a limited number of integer values (consider throwing a dice), the mean 
might result in a value that is not a possible outcome of the data. For example, the 
average number of children per family in a survey might be 2.4, but families cannot 
have 0.4 of a child. In such cases, the median or mode might provide a more useful 
measure of the central tendency, depending on its planned use. While the mean is 
a widely used measure o f central tendency because of its mathematical properties
and relevance in various statistical analyses, it is crucial to assess the nature of your
data and the impact of outliers, the data distribution, and the scale of measurement
before deciding whether the mean is the most appropriate measure to use.

Example 4.2.1: Mean of an Array of Numbers 

Let us calculate the mean age of a group of individuals that have the following 
ages (measured in years): 23, 29, 31, 35, 22, 27, 30, 26.. This can be done easily 
by following the ne xt steps:

1. Sum all the ages in the dataset: 23+29+31+35+22+27+30+26 = 223.. 
2. Count the number of individuals: 8. 
3. Divide the total sum of ag es by the number of individuals to find the

mean:
. Mean =

223
8
= 27.875

Now imagine we add to the group 2 people who are 99 years old (those would 
be classified as outliers in this case). Suddenly, the mean jumps to 42.1 years. 
This is clearly not representative of the majority of the ages (which goes from 
23 to 35). So care must be taken in using the mean, depending on the number 
and impor tance of the outliers.

Outliers are an important aspect in statistics and will be discussed and defined
later in this book in Chap. 7 since to define them an understanding of the measures
of dispersion is necessary.
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4.3 Median 

The median of a dataset is the value that separates the upper half from the lower half 
of the data. To calculate the median, you follow this algorithm.

1. Sort the data in non-decreasing order so that now x1 ≤ x2 ≤ x3 ≤ . . . ≤ xN .. 
2. Determine t he middle position(s):

• If the number of data points, N , i s odd, the middle position is

. 
N + 1

2

•  If  N is even, the t wo middle positions are

. 
N
2

and 
. 
N
2
+ 1

3. Calculate t he median:

•  If  N is odd, the median is the value at the middle position x(N+1)/2 .. 
•  If  N is even, the median is the average of the values at the t wo middle positions

. median =
xN/2 + xN/2+1

2

Definition 4.3.1: Median 

The median of a dataset is the value that separates the upper half from the
lower half of the data.

Although the median is a robust measure of central tendency that is less affected by 
extreme values (outliers) compared to the mean, there are certain situations where
using the median is not the best choice. The following are some of those cases.

1. Data with a uniform distribution: For data that are uniformly distributed, where 
all values occur with the same frequency, the median does not provide more 
information than the mean, and using the mean might give a more intuitive sense 
of “average”. 

2. Highly skewed data with large outliers: In cases where outliers represent im-
portant and meaningful information (e.g. income distribution with extremely high
incomes), focussing solely on the median will ignore significant aspects of the
data distribution.
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3. Nominal data: The median requires that the data can be ordered. For nominal 
data, which consist of names or categories without an inherent order, the median 
is not applicable, and mode is used instead. 

4. When detailed distribution information is needed: The median pro vides a
midpoint of the data but does not offer insights into the distribution’s shape or
spread as the mean might when combined with measures like standard deviation.

Example 4.3.1: Median of an Array of Numbers 

The median is a measure of central tendency that identifies the middle value 
in a dataset when it is ordered from smallest to largest. Consider the following 
set of numbers: 2, 3, 5, 7, 11.. To find the median we need to do the following. 

1. First, we arrange the numbers in ascending order. In this case, our set is
already ordered: 2, 3, 5, 7, 11.. 

2. Since there are five numbers, an odd quantity, the median is the middle 
number. This makes our calculation straightfor ward.

3. The median is the third number in the ordered set, which is 5.. 

Now, consider a set with an even number of observations: 2, 3, 5, 7..  In  this  
case the median can be calculated with the following steps:

1. The set is already in ascending order: 2, 3, 5, 7.. 
2. With four numbers, we take the average of the two middle numbers, 3 and 

5. 
3. The median is (3 + 5)/2 = 4.. 

The median provides a valuable measure of the centre of a dataset, especially 
useful for skewed distributions or when outliers are present.

4.4 Mode 

The mode of a dataset is the value or values that appear most frequently. It is a 
measure of central tendency that is particularly useful for categorical data. Unlike 
the mean and the median, the mode can be applied to data of any type: numerical, 
categorical, or ordinal. A dataset may have one mode (then we speak of the dataset
to be unimodal), more than one mode (bimodal or multimodal), or no mode at all if
no value repeats itself.

Finding the mode involves identifying the value or values that occur most fre-
quently in the dataset. The f ollowing steps outline a basic algorithm for finding the
mode:

1. Count how many times each value appears in the dataset. 
2. Identify the value or values with the highest count (thus finding the mode).
3. If no value appears more than once, the dataset does not have a mode.
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The mode is particularly useful in the following scenarios. For data that cannot 
be quantitatively measured but can be categorised, the mode identifies the most 
common category, thus giving information on the element in the dataset appearing 
more often. Furthermore, in distributions with multiple peaks (or multiple elements
appearing often), the mode can help identify different groups within the data that
might be masked by measures like the mean or median.

Definition 4.4.1: Mode 

The mode of a dataset is the value or values (in this case we talk about 
modes) that appear most frequently. A dataset may have one mode (that we 
speak of the dataset to be unimodal), more than one mode (bimodal or
multimodal), or no mode at all if no value repeats itself.

The mode should not be used (or used carefully) in the following scenarios. 
In datasets with more than one mode (multimodal), the mode can become less 
informative, as multiple values are equally common. For datasets where values are 
evenly distributed or occur infrequently, the mode might not exist or may not provide 
meaningful information (what about a dataset where each element appears only 
twice?). Furthermore, the detection of the mode is highly sensitive to sample size. 
Small changes in data can lead to different modes, m aking it potentially unstable
in small datasets or those with a lot of unique values. Finally, unlike the mean or
median, the mode lacks many mathematical properties, making it less useful in
further statistical analysis or inferential statistics.

Example 4.4.1: Mode of an Array of Numbers 

Consider the following set of numbers: 2, 3, 3, 5, 7, 7, 7, 9, 11.. To find the 
mode, count the frequency of each number:

• The number 2 appears once. 
• The number 3 appears twice. 
• The number 5 appears once. 
• The number 7 appears three times.
• The number 9 appears once.
• The number 11 appears once.

Since the number 7 appears more frequently than any other number in the 
dataset, the mode of this set of numbers is 7.

4.5 Mid-Rang e

In statistics, the mid-range (sometime called mid-extreme), often indicated with M , 
is a measure of central tendency of a sample defined as the arithmetic mean of the
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maximum and minimum values of the data (indicated here as usual with x).

.M =
max x +min x

2
(4.5) 

The mid-range is a concept closely related to the range (which is defined as the 
difference between the maximum and minimum values in a dataset, indicating the
spread of the data and defined in Sect. 5.3). These two measures work hand in hand, 
as knowing both the mid-range and the range allows one to deduce the highest and
lowest values in the sample.

Definition 4.5.1: Mid-Range 

The mid-range is defined as the arithmetic mean of the maximum and
minimum values of the data

.M =
max x +min x

2
(4.6) 

The mid-range is rarely utilised in practical statistical analyses. This is due to 
its limitations, since it disregards all values between the extremes and is highly
sensitive to outliers.1 For a broad range of distributions, it is considered one of the 
least effective and least resilient statistics. Nevertheless, the mid-range has its uses: 
It is, for e xample, the most efficient estimator for identifying the centre of a uniform
distribution.

Example 4.5.1: Mid-Range of an Array of Numbers 

Consider the dataset: 4, 8, 15, 16, 23, 42.. To evaluate the mid-range we need 
to follo w the next steps:
1. Identify the minimum value: 4. 
2. Identify the maximum value: 42.
3. Calculate the mid-range: (4 + 42)/2 = 23.. 
The mid-range of this dataset is 23. Recall that while the mid-range is easy to 
calculate, it has several limitations. The mid-range only considers the extreme 
values of the dataset, making it highly sensitive to outliers. For example, if the 
dataset were 4, 8, 15, 16, 23, 100., the mid-range would increase significantly 
to 52, although most data points are much lower. Furthermore, the mid-range 
does not account for the distribution of the rest of the data. Whether the other 
numbers are clustered near the minimum or the maximum or spread out 
evenly, the mid-range remains the same. To add another limitation, recall
that for skewed distributions or datasets with outliers, the mid-range can

1 To be precise the mid-range is evaluated only with outliers if t hey are present, the maximum and
the minimum.
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be a misleading measure of central tendency, not accurately reflecting the
dataset’s typical values.

4.6 When to Use Mean, Median or Mode

The choice of which measure to use is summarised i n the next info box.

Tip 4.6.1: When to Use Mean, Median, or Mode 

Mean, median, and mode are measures of central tendency that summarise 
key aspects of a dataset. Choosing the appropriate measure depends on the
nature of the data and the specific insight you are seeking to gain.

• Mean: The mean, or average, is best used with numerical data where the 
values are evenly distributed without extreme outliers. It provides a useful 
overall measure of the central tendency when the data are symmetric. 
However, it can be misleading if the data contain outliers, as these can 
skew the mean. 

• Median:  The  median is the middle value of a dataset when it is ordered 
from lowest to highest and is less affected by outliers and skewed data. It 
is particularly useful when dealing with skewed distributions or ordinal 
data, where the mean may not accurately represent the central tendency. 
The median gives a better indication of the typical value in such cases. 

• Mode:  T  he mode is the most frequently occurring value in a dataset. It
is the only measure of central tendency that can be used with categorical
data. The mode is especially useful for categorical data to determine
the most common category. It can also be helpful to understand the
distribution of data in addition to the mean or median.

Choosing between mean, median, and mode depends on the data’s distri-
bution and the presence of outliers. For symmetric distributions without 
outliers, the mean is often preferred. For skewed distributions or when out-
liers are present, the median provides a more accurate reflection of the central 
tendency of the dataset. The mode is most useful for categorical data and for 
identifying the most common value in a dataset. 
A good example is the assessment of a typical salary in Switzerland. Since 
there are many people in Switzerland who have a very high salary (the CEO
of IKEA, for example), using the mean would give a much skewed impression
on what is a typical salary in Switzerland. So, the median is used instead,
since it is less sensible to few outliers.
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Measures of Dispersion 

5.1 V ariance

When analysing data, one important aspect is understanding how spread they are 
around the mean or median. For example, consider the case of grades in a school. 
Imagine that the grades go from 0 to 100 and that the average (mean) is 78. There 
is a huge difference if the grades in the school go from 10 to 100 or if they go from
70 to 90. The latter case indicates that students perform generally well in the school,
while the former case points to problems with students or teaching.

There are several ways of measuring how spread values are. The most important 
is the variance that is defined by the following formula:

.Var(x) = σ2(x) = 1
N

N∑

i=1
(xi − μ)2 (5.1) 

where σ2
. indicates the variance, xi . represents each data point in the dataset, μ. is the 

mean of the dataset, and N is the number of data points in the dataset. The variance 
measures how far each number in the set is from the mean. A high variance indicates 
that the data points are spread out widely around the mean, while a low variance
indicates that the data points are clustered closely around the mean.

Definition 5.1.1: Variance 

The variance is defined by

.Var(x) = σ2(x) = 1
N

N∑

i=1
(xi − μ)2 (5.2) 
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where σ2
. is used to indicate the variance, xi . represents each data point in

the dataset, μ. is the mean of the dataset, and N is the number of data points
in the dataset.

It is important to differentiate between the var iance of the population (indicated
with σ2

.) and the variance of the sample (indicated with S2
. or s2

.). The formula given 
above calculates the population variance, where N is the size of the population. When 
calculating the sample variance (which we indicate here with S2

.), the denominator 
should be N − 1. instead of N , to correct for the bias in estimating a population 
parameter from a sample (this is not completely correct but provides a good intuitive 
understanding, and a more precise explanation is given in the info box below).

.S2 =
1

N − 1

N∑

i=1
(xi − μ)2 (5.3) 

Tip 5.1.1: �. N or N − 1. in the Variance Formula? 

To answer this question, consider the random sample x1, x2, . . . , xN . from a 
population with mean μ. and variance σ2 < ∞.. Then let us calculate the 
expectation value of the variance given in Eq. (remember the expected 
value is the value you would expect on average if you would sample infinitely 
many times the N values

(5.3) 

xi .). 

. 

E(S2) = E
(

1
N − 1

[
N∑

i=1
(xi − x̄)2

])

= E

(
1

N − 1

[
N∑

i=1
(x2

i + x̄2 − 2xi x̄)
])

= E

(
1

N − 1

[
N∑

i=1
x2
i − N x̄2

])

= {Note that E(x2
i ) does not depend on i}

=
1

N − 1
(NE(x2

1) − NE(x̄2))

=
1

N − 1

(
N(σ2 + μ2) − N

(
σ2

N
+ μ2

))

= {Using Eq. (5.2 )}
= σ2

(5.4) 

where we have used the results (which w e will not prove here)

.E(x̄) = μ (5.5)
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and 
.Var(x̄) = σ

2

N
(5.6) 

In fact note that

. 

E(x̄2) = Var(x̄) + E(x̄)2

= {Using Eqs. (5.5) and (5.6)} 

= σ
2 

N 
+ μ2

(5.7) 

and 

.

E(xi2) = Var(xi) + E(xi)2

= σ2 + μ2 (5.8) 

So, from this calculation, it is clear that E(S2). will give you the variance of 
the population. This is what is called an unbiased estimator of population
variance. If you consider Eq. and evaluate its value over many mea-
surements and calculate the expected value, you would end up with a value 
that will not estimate the correct variance (the one from the population), but
that would be slightly off. This is the real reason why

(5.2) 

N − 1. is needed in 
Eq. In other words you w ould have(5.3). 

.E

(
1
N

N∑

i=1
(xi − μ)2

)
=

N − 1
N
σ2 (5.9) 

which is not the var iance of the population.

5.2 Standard De viation

If you understand the variance, you will understand the standard deviation (typically 
indicated with σ .). In fact we ha ve the relationship

.σ(X) =
√

Var(X) (5.10) 

or in other words
.σ(X)2 = Var(X) (5.11) 

It is important to underline that the standard deviation is measured in the same units 
as the data and thus is easier to interpret. It indicates, on average, how far each data
point is from the mean.
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Definition 5.2.1: Standard Deviation 

The standard deviation σ . is defined b y

.σ(X)2 = Var(X) (5.12) 

The standard deviation is measured in the same units as the data.

It also has a special meaning in the case of a normal distribution ( more on that in
Sect. 8.3). 

Example 5.2.1: Variance and Standard Deviation 

Consider the dataset: 3, 7, 7, 19.. First, we need to calculate the mean (μ.)  of  
the dataset:

. μ =
3 + 7 + 7 + 19

4
= 9

Next, we calculate the variance (σ2
.) using the f ormula

. σ2 =
1
N

N∑

i=1
(xi − μ)2

For our dataset we have

. σ2 =
(3 − 9)2 + (7 − 9)2 + (7 − 9)2 + (19 − 9)2

4
=

36 + 4 + 4 + 100
4

= 36

Finally, calculate the standard deviation ( σ .) as the square root of the variance 

. σ =
√
σ2 =

√
36 = 6

For the given dataset 3, 7, 7, 19., the variance is 36, and the standard deviation 
is 6. 
If we calculate the sample variance S2

., we would get

. S2 =
(3 − 9)2 + (7 − 9)2 + (7 − 9)2 + (19 − 9)2

3
=

36 + 4 + 4 + 100
3

= 48

which, as you may notice, is much higher than 36 but that is known to be 
an unbiased estimate of the population variance (which is not 36, as this too
has been estimated from the population data) that is unknown.
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Tip 5.2.1: Sample Variance S2
. 

To make the story short, when you want to estimate the variance of a popu-
lation from a sample, always use the S2

. formula given b y

. S2 =
1

N − 1

N∑

i=1
(xi − μ)2

5.3 Rang e

The range in statistics is a measure of dispersion or variability that indicates the 
difference between the highest and lo west values in a dataset. It is calculated simply
as

. range = Maximum value − Minimum value

The range gives a quick sense of the spread of a dataset and can be used to understand 
the extent of variability among observed values. Although it is straightforward to 
calculate and easy to understand, the range is highly sensitive to extreme v alues
(outliers) because it only considers the two extreme values in the dataset (maximum
and minimum).

Definition 5.3.1: Range 

The range in statistics measures the difference between the highest and 
lowest v alues in a dataset. It is defined simply as

. range = Maximum value − Minimum value

Despite its simplicity, the range has several limitations. First, it does not provide 
information about the distribution of values between the two extremes. Second, as 
mentioned already, it is sensitive to extreme values (outliers), which can significantly 
skew the range, making it less representative of the dataset as a whole. Furthermore, 
it does not account for the size of the dataset, making comparisons between datasets
of different sizes potentially misleading.

The range is often used in preliminary data analysis to get a basic understanding of 
the spread of the data. It can be particularly useful in contexts where the maximum 
and minimum values are of specific interest, such as quality control processes. 
However, for a more detailed analysis of the dispersion of data, other measures such 
as the interquartile range, variance, or standard deviation are typically preferred due
to their ability to provide more information about the overall distribution of the data.
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5.4 Dangers of Relying on Single St atistics

We have looked at measures of central tendencies and dispersions (e.g. mean and 
variance). It is tempting to simply give those two numbers and think that they describe 
your data sufficiently well. This is quite dang erous. To convince you, I would like
you to check Fig. 5.1. Each panel shows a different dataset of tuples (xi, yi)., and 
at the top the mean of x and y (indicated with μx . and μy ., respectively) and the 
standard deviation of x and y (indicated with σx . and σy ., respectively) are reported. 
You should notice that the statistical properties are the same for all the datasets in
the different panels, even when visually they are dramatically different.

The dataset (called Datasaurus, and I am sure you can guess why) is described
in [12] and was created by Justin Matejka and George Fitzmaurice1 to show how 
wildly different (at least visually) datasets may have the same (specific) statistical 
properties. In their paper, they presented a technique for creating visually dissimilar
datasets.

Warning 5.4.1: Dangers of Relying on Single Statistics 

It is dangerous to use single statistics assuming that they are enough to 
describe the data. This is why it is important to study the dis tribution of data,
visualise it, and understand the measures of position (see Chap. ). 
For example, data can be bimodal (having tw o peaks) (we discuss modality
in Sect. , skewed (we discuss skewness in Sect ), or even uniformly 
distributed yet still have the same mean and variance. Without considering 
the shape of the distribution, decisions made on the basis of single statistics 
can be fundamentally flawed. 
Single statistics are fundamentals, but they should be regarded as part of a
broader data analysis process that includes a visual and statistical examination
of the entire data distribution and its characteristics.

. 9.29.4)

6

1 See https://www.openintro.org/data/index.php?data=datasaurus for the dataset.

https://www.openintro.org/data/index.php?data=datasaurus
https://www.openintro.org/data/index.php?data=datasaurus
https://www.openintro.org/data/index.php?data=datasaurus
https://www.openintro.org/data/index.php?data=datasaurus
https://www.openintro.org/data/index.php?data=datasaurus
https://www.openintro.org/data/index.php?data=datasaurus
https://www.openintro.org/data/index.php?data=datasaurus
https://www.openintro.org/data/index.php?data=datasaurus
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Fig. 5.1: Each panel shows a different dataset of tuples (xi, yi )., and at the top the mean 
of x and y (indicated with μx . and μy ., respectively) and the standard deviation o f x 
and y (indicated with σx . and σy ., respectively) are reported. The data i s described 
in [12] and were created by Justin Matejka and George Fitzmaurice to show how 
wildly different datasets ma y have the same (specific) statistical properties



Chapter 6 
Measures of Position 

6.1 Introduction

Measures of position (sometimes known as location measures) are used to describe 
the position or rank of individual values within a dataset relative to the entire 
distribution. These measures provide insight into the structure of the dataset, helping 
to identify where specific data points lie in the distribution.

Measures of position are important in statistics because they provide insight into 
the distribution and structure of a dataset. By evaluating where specific data points lie 
relative to the entire distribution, they help in understand how data are spread around 
its values. For instance, percentiles, quartiles, and deciles divide the dataset into 
parts, allowing us to see where a particular value is located. This is especially useful 
for identifying outliers, trends, or shifts in the data. Another key reason for using 
measures of position is to facilitate comparison between datasets or observations 
within a dataset. For example, when compar ing test scores, knowing that a score is
in the 90th percentile indicates that it is higher than 90% of the other scores. This
provides a lot more information about performance than simply looking at the single
score.

Furthermore, measures of position offer a way to summarise data without being 
overly influenced by extreme values. Unlik e the mean, which can be skewed by
outliers (see Chap. 4), measures like the median or interquartile range (IQR) are 
more robust. This makes them useful for analysing skewed data or distributions with 
outliers, where central tendency measures alone might be misleading. In general 
measure o f position offers a deeper and more nuanced view of data beyond simple
averages.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 
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6.2 Per centiles

Percentiles are numerical values that divide a dataset into 100 equal parts, with 
each part representing 1% of t he distribution. The qth percentile is the value below
which q%. of the data falls. More precisely the qth percentile is a value below which 
a given percentage q of values falls (exclusive definition) or a value at or below 
which a q percentage falls (inclusive definition). Note that using an exclusive or 
inclusive definition will give you different results. Note also that percentiles are 
usually expressed in the same units of the data, not in percent. For example, if you
have a dataset of lengths of certain mechanical parts measured in centimetres, the
10th percentile could be, say, 23 cm.

There are many algorithms to calculate percentiles, and different software tools 
(like Microsoft Excel, Python NumPy, or R) do it in different ways. Hyndman and 
Fan identified nine different ways in which common software packages calculate
percentiles [13]. You should always check in the documentation how a specific soft-
ware tool calculates percentiles and declare the method in your own work. Generally 
speaking, algorithms either return the value of an element that is in the dataset
(nearest-rank method described in Sect. 6.2.1) or interpolate between existing values 
of elements in the dataset. Furthermore, methods are either exclusive or inclusive 
(as b riefly discussed at the beginning of the section).

To summarise the discussion, when you calculate the qth percentile, two things 
can happen (depending also on the definition you use, exclusive or inclusive and on 
the algorithm you use). Your value may lie between two existing data points (panel
(a) in Fig. 6.1) or match exactly one data point (panel (b) in Fig. 6.1). If the qth 
percentile does not match any precise value of the array v, then some interpolation 
method is necessary since no value in the dataset matches the position of the qth
percentile.

xx1 x2 x3 x4 ... ...... xN

q-th percentile
(A)

xx1 x2 x3 x4
... ...... xN

q-th percentile(B)

Fig. 6.1: When you calculate the qth percentile, two things can happen. Your value 
lies between two existing data points (case (A)) or be exactly one data point (case
(B))
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6.2.1 Nearest-Rank M ethod

Probably the simplest way to calculate percentiles is to use the nearest-rank method. 
To get the kth percentile in a dataset with N data points, yo u follow the steps below:

1. Calculate the ordinal rank r

.r =
⌈ k
100

N
⌉

(6.1) 

where the symbol �x� . is the ceiling of x, that is the smallest integer that is not 
smaller than x. 

2. Choose the value in the dataset at the rth position (xr .). This is your kth percentile.

Example 6.2.1: Percentiles with the Nearest-Rank Method 

Let us make an example. Consider the following array (N = 13.): 

. v = {1, 3, 4, 7, 10, 12, 15, 20, 22, 25, 30, 32, 37}

Suppose that we want to know the 10th percentile by using the exclusive
definition (k = 10.). Following the algorithm described in the te xt, we have

.r =
⌈ 10
100

13
⌉
=
⌈
1.3

⌉
= 2 (6.2) 

thus our 10th percentile is v2 = 3.. The symbol �x� . is the ceiling of x, that is 
the smallest integer that is not smaller than x.

6.2.2 Linear Interpolation B etween Ranks

This explanation is slightly more convoluted, so take your time reading this section. 
In the end, I will try to summari se it in more intuitive terms. Consider having a
sorted array

.v = {v1, v2, . . . , vN } (6.3) 

with vi+1 ≥ vi ∀i = 1, . . . , N − 1.. We want a linear interpolation function

.v(x) = v �x� + (x mod 1)(v �x�+1 − v �x� ) (6.4) 

where x ∈ [1, N]., and �x� . is the integer part of x and (x mod 1). the fractional part 
of x. For example �2.3� = 2., and (2.3 mod 1) = 0.3.. Furthermore, note that for
x = i ∈ N.,  we  have v(i) = vi ..  So  in  a  sense  x is the continuous version of the index
i. Sometime x is called the virtual index.



58 6 Measures of Position

x 

1 [1, N ] N 

p 

[0, 100]0 100 

Fig. 6.2: A visual representation of the mapping between the virtual index x and p

Tip 6.2.1: Virtual Index Notation 

The virtual index x is sometimes indicated with i + g . where 

.i = �x� (6.5) 

and 
.g = (x mod 1) (6.6) 

In other words, i is the integer part of x and g the fractional part. For exa mple
if x = 2.3., we would have i = 2. and g = 0.3.. 

Now suppose that we are looking at the kth percentile (e.g. the 10th percentile).
We can define p = k/100.. Then we need to map the virtual inde x x to the range
[0, 100].. We can do that with a linear transformation (see for an intuitive visualisation 
Fig . 6.2). This can be done with a linear relationship

.x = (N + c1)p + c2 (6.7) 

Imposing that the midpoint of the x range [1, N]. that is located at the index (N +1)/2. 

occurs at p = 0.5., we obtain

.
N + 1

2
=

N + c1
2
+ c2 (6.8) 

and thus 2c2 + c1 = 1.. So we have just one constant that we can choose. In other
words we can write

.x = (N + 1 − 2c2)p + c2 (6.9) 

Now the different software packages use different values for c2 ..
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Warning 6.2.1: Percentiles in numpy 

In Python you have the numpy.percentile() function that will evaluate 
the percentiles. To use it, you need to specify the method for interpolating 
between elements of the input array or in other words how to calculate the vir-
tual index x. There are many methods available as linear, inverted_cdf, 
hazen, and weibull between others. 
The different methods e valuate the virtual index in different ways. In the
function numpy.percentile() the virtual index x is dependent on two
parameters, α . and β., and is given by t he formula

.x = i + g =
q

100
(N − α − β + 1) + α (6.10) 

where q is the percent rank (e.g. if we a re looking at the 10th percentile,
then q = 10.). You can specify different methods when using the Python 
function, and each uses different values for α . and β.. Note that for many it is 
not true that the midpoint of the range [1, N]. lies at p = 50., so be warned. 
The methods are those described in the paper by Hyndman and Fan [14]. 
For example choosing weibull as parameter, the value chosen for both α . 
and β. is zero, thus giving the relationship

.x = i + g =
q

100
(N + 1) (6.11) 

while choosing linear as method, the value chosen for α . and β. is 1, thus 
giving the relationship

.x = i + g =
q

100
(N − 1) + 1 (6.12) 

You must be aware of the method you are using to calculate percentiles. Per-
centiles are not uniquely defined, and care must be taken in their evaluation. 
Keep in mind that while using any statistical function from a software package 
(or programming language) is always important to check the documentation, 
and check how percentiles are evaluated.

Typical choices for c2 . are 1/2 (used in Matlab), 1 (equivalent to the weibull 
method to calculate percentiles in the Python numpy library) or 0, which is the value 
recommended by the National Institute of Standards and Technology, NIST (see
https://www.itl.nist.gov/div898/handbook/prc/section2/prc262.htm for more infor -
mation).

To summarise, the simplest approach to evaluate the percentile is composed of 
two steps: (i) evaluate the virtual index x and (ii) evaluate the percentile itself. As an 
example let us consider the virtual index given by the formula (the one for c2 = 0.) 

.i + g =
(N + 1)q

100
(6.13)

https://www.itl.nist.gov/div898/handbook/prc/section2/prc262.htm
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where N is the total number of elements of the array v . Consider the array v =

(1, 2, 3, 4, 5)..  We  h  ave
.i + g =

6 × 25
100

= 1.5 (6.14) 

so i = 1. and g = 0.5.. The virtual index lies between the first (v1 = 1. in our example) 
and second (v2 = 2. in our example) elements of the array v. Since we do not have 
any information about how data are distributed between 1 and 2, we need to make
some assumptions. We can do a linear interpolation, and thus we would find (see
again Eq. (6.4)) 

.25th percentile = v1 + g(v2 − v1) = 1 + 0.5(2 − 1) = 1.5 (6.15) 

So the 25th percentile of v = (1, 2, 3, 4, 5). is 1.5. Or said in other words, 25% of 
the data lies below 1.5. As you have seen in the example above, the qth percentile 
often falls between elements of your array. In this case, you need to make some
assumptions on how the data behave between your elements (e.g. by choosing c2 .). 
There are many variations on how to do that, and a nice overv iew, as mentioned
already, can be found in [14]. A linear interpolation may be fine if the data points 
are close to each other, but what about if we have v = (1, 100, 101, 102, 103, 104).? 
We still have i + g = 1.5., but can we really be sure that between 1 and 100 is data 
well approximated by a linear interpolation? Much can happen in such a wide range. 
There is never always a clear receipt to decide on how to interpolate, and some
information on the data itself and some educated guess are necessary to choose the
right method.

Example 6.2.2: Percentiles 

Given a dataset
. {22, 25, 28, 31, 34, 37, 40, 43}

we want to calculate the 25th, 50th (median), and 75th percentiles. The 
dataset is already sorted in ascending order. The f ormula to find the virtual
index for the kth percentile (Pn .)  i  s

. 
(N + 1) × k

100
where N is the total number of data points, and k is the percentile number. 
Consider now the task of calculating the 25th percentile. The virtual index
is now

.
(8 + 1) × 25

100
= 2.25
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That means that the 25th percentile lies between the s econd and third ele-
ments of the dataset. Since P25 . is not an integer, we must interpolate between 
the second and third data points (25 and 28). Using Eq. (6.4) we hav e

. 25th percentile = 25 + 0.25 × (28 − 25) = 25.75

To clarify the concept again, let us calculate the 50th percentile (nothing else 
than the media). For the 50th percentile the virtual index x is given by

. 
(8 + 1) × 50

100
= 4.5

Interpolating between the fourth and fifth data points (31 and 34):

. 50th percentile = 31 + 0.5 × (34 − 31) = 32.5

If you remember how to calculate the median, you will notice that you will 
get the same result. In fact, this dataset has eight numbers, so we find the
median by averaging the fourth and fifth numbers (see Sect . The fourth 
number is 31, and the fifth number is 34. To calculate the median, we average 
these two numbers

. 4.3)

.Median =
31 + 34

2
= 32.5 (6.16) 

which is exactly the same result for the 50th percentile. 
Finally, let us calculate the 75th percentile. The virtual index x is now

. 
(8 + 1) × 75

100
= 6.75

interpolating between the sixth and seventh data points (37 and 40)

. 75th percentile = 37 + 0.75 × (40 − 37) = 39.25

For our dataset, the 25th percentile is 25.75 years, the 50th percentile (me-
dian) is 32.5 years, and the 75th percentile is 39.25 years. These calculations 
indicate that 25% of the data lies below than 25.75, 50% lies below than
32.5, and 75% lies below than 39.25.

Percentiles are useful for understanding the distribution of data across various 
levels. For example, the 50th percentile, also known as the median, divides the 
dataset into two equal halves. Percentiles are commonly used in standardised testing
to compare an individual’s performance against a broader population.
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Definition 6.2.1: Percentiles 

Percentiles are numerical values that divide a dataset into 100 equal parts, 
with each part representing 1% of the distribution. 
The kth percentile is a value below which a given percentage k of scores
falls (exclusive definition) or a score at or below which a k percentage falls
(inclusive definition).

6.3 Quartiles 

Let us now turn our attention to quartiles. Quartiles are statistical measures that 
divide a dataset into four equal parts, each representing a quarter of the distributed 
sampled data. They are used to describe the spread and centre of the data, much like 
the median divides the data into two halves. The quartiles a re denoted by Q1 (the
first quartile), Q2 (the second quartile, also the median), and Q3 (the third quartile).

Definition 6.3.1: Quartiles 

Quartiles are statistical measures that divide a dataset into four equal parts, 
each representing a quarter of the distributed sampled data. The quartiles are 
denoted by Q1 (the first quartile), Q2 (the second quartile, also the median),
and Q3 (the third quartile).

The easiest way of determining quartiles is the following.

1. Arrange the data in ascending order. 
2. Find the median (Q2): This is the middle value of the dataset. If there is an even 

number of observations, Q2 is the average o f the two middle numbers (check
again Sect. 4.3 for more information). This divides the dataset into two halves. 
This is also the 50th percentile. 

3. Find the first quartile (Q1): This is the median of the lower half of the dataset 
(excluding Q2 if the number of observations is odd). Q1 represents the value 
below which 25% of the data falls. This is also the 25th percentile. 

4. Find the third quartile (Q3): This is the median of the upper half of the dataset
(excluding Q2 if the number of observations is odd). Q3 represents the value
below which 75% of the data falls. This is also the 75th percentile.

Example 6.3.1: Quartiles 

Consider the dataset: 2, 4, 4, 5, 7, 9, 11, 12, 14, 15, 17, 19.. The data are already 
arranged in ascending order. We need to first find the median (Q2). Since
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there are 12 numbers, the median is the average of the sixth and seventh
numbers: (9 + 11)/2 = 10.. Then we can find the first quartile (Q1). The 
first quartile is the median of the lower half of the dataset. T he lower half
(excluding the median for even-numbered datasets) is 2, 4, 4, 5, 7, 9.. Thus,Q1 
is the average of the third and fourth numbers: (4 + 5)/2 = 4.5.. Then we 
need to find the third quartile (Q3). This is the median of the upper half of
the dataset. The upper half is 11, 12, 14, 15, 17, 19.. Thus, Q3 is the average 
of the third and fourth numbers: (14 + 15)/2 = 14.5.. 
For the given dataset, the quartiles are as follows:

• First quartile (Q1): 4.5. 

• Second quartile (Q2) or median: 10 
• Third quartile (Q3): 14.5. 

These quartiles help in understanding the distribution of the data, indicating 
that 25% of the data is below 4.5., 50% is below 10, and 75% is below 14.5.. 

Quartiles are fundamental in descriptive statistics for understanding the distri-
bution of data. They help in identifying the spread of the data by highlighting the 
range o f the middle 50% of the values (between Q1 and Q3), known as the IQR
(see Sect. 6.4). Furthermore, quartiles are used in the construction of boxplots, a 
type of graph that displays the distribution of data based on a five-number summary 
(minimum, Q1, median, Q3, and maximum) (more on that in Chap. 10). Finally, 
they provide insights into the symmetry and skewness1 of the data distribution. For 
example, if Q2  is  closer  to Q1 than to Q3, the distribution is ske wed to the right (we
discuss skewness in Sect. 9.2). 

Warning 6.3.1: Calculations of Quartiles 

Note that the method described in this section is the simplest to calculate 
the quartiles. In theory, you can use percentiles to calculate quartiles. In 
any case, remember to specify in your studies and publications how you
calculated measures of positions as quartiles.

6.4 Interquartile Rang e

Now we can turn our attention to the concept of the IQR, namely a measure of 
statistical dispersion, or variability, which indicates the spread of the middle 50% 
of data points in a dataset. Unlike range, which considers the difference between
the maximum and minimum values, the IQR focuses on the central portion of the

1 Skewness is a measure of how asymmetric a dis tribution of values is.
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dataset, thereby providing a better sense of the overall variability of the data while
being less sensitive to outliers.

IQR is calculated by subtracting the first quartile (Q1) from the third quartile
(Q3):

. IQR = Q3 −Q1

Recall that Q1 is the value below which 25% of the data falls, and Q3 is the value  
below which 75% of the data falls. The steps to calculate the IQR are as follows:

1. Arrange the data in ascending order. 
2. Calculate Q1. 
3. Calculate Q3. 
4. Subtract Q1 from Q3 to find the IQR.

IQR is a robust measure of variability that is especially useful for identifying and 
summarising the spread of the middle half of a dataset. By focusing on the central 
50% of the data, the IQR is less affected by extreme outliers or non-symmetric 
dist ributions of the data, making it a preferred choice over the range in many
situations.

Definition 6.4.1: Interquartile Range 

The IQR is calculated by subtracting the first quartile (Q 1) from the third
quartile (Q3).

. IQR = Q3 −Q1

It is a measure of statistical dispersion, or variability, that indicates the spread 
of the middle 50% of data points in a dataset.

Moreover, IQR is commonly used in the construction of boxplots, where it visually 
represents the spread of the central data points and helps in the identification of 
outliers, which are typically defined as any data point that falls more than 1.5× IQR. 

above Q3 or below Q1 (we discuss boxplots in Chap. 10). 

6.5 Deciles

Sometimes you will encounter deciles, which are similar to percentiles, but they 
divide the dataset into ten equal parts, with each part representing 10% of the
distribution. The nth decile is the point below which n × 10%. of the data lies.

Deciles offer a more detailed view of the distribution than quartiles but are less
granular than percentiles.
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Definition 6.5.1: Deciles 

Deciles divide the dataset into ten equal parts, with each part representing 
10% of the distribution. The nth decile is the point below which n × 10%. of 
the data lies.

6.6 Quantiles 

Quantiles are numerical values that divide a dataset into parts, each having equal 
probabilities. In other words, a q-quantile is a value x at or below which a fraction q
of the data lies and a fraction 1−q . above x lies. You may wonder what the difference 
is between percentiles and quantiles. Percentiles are typically measured in the same 
unit of t he data, while quantiles are given as a percentage.

In general, quartiles, percentiles, and deciles are all types of quantiles. Quartiles 
divide the distribution into four equal sections, percentiles into 100 equal sections,
and deciles into ten equal sections.



Chapter 7 
Outliers 

7.1 Introduction

If you use statistics in your projects (and since you are reading this, you probably 
will), you will have to deal with outliers. But what are outliers? There are many 
definitions, but intuitively, outliers are observations in a dataset that are significantly 
different from the rest. What does “significantly” really mean? Here are a few possible 
definitions that you will find in the literature and in textbooks. Ultimately, how you
define outliers depends on the problem you are trying to solve, on your data, and on
your analysis.

7.2 Interquartile Range (IQR) Met hod

As usual, we will imagine to have a dataset composed of N values {xi}Ni=1 .. The IQR 
method defines an outlier as a value xi .belowQ1−1.5×IQR.or aboveQ3+1.5×IQR., 
where Q1, Q3, and IQR are the first and third quartiles and the interquartile range, 
respectively. This method is often used because it is less influenced by extreme 
values. This is also the method that is typically used to mark points as outliers in
boxplots. In fact, in a boxplot, typically (but not always) data points outside the
whiskers (see Chap. 10), which typically extend to 1.5× IQR. from the first and third 
quartiles, are considered outliers.
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Definition 7.2.1: Outliers Defined with the IQR 

The IQR method defines an outlier as an y data point with a value below
Q1 − 1.5 × IQR. or above Q3 + 1.5 × IQR., where Q1, Q3, and IQR are the 
first and third quartiles and the interquartile range, respectively. 
The isolated points you see often in boxplots are typically defined with this
approach (see Chap. 10). 

7.3 Domain-Specific Criteria

Some fields define outliers according to specific knowledge or criteria relevant to 
the subject matter, recognising that what constitutes an outlier can vary by context.

Example 7.3.1: Domain-Specific Criteria for Outliers 

Here are some examples of domain-specific criteria to define outliers. 
Industry Standards: Outliers could be defined as companies whose annual 
revenue deviates significantly (here it needs to be decided what significantly 
means) from the average revenue for start-ups in the same industry and of 
similar size. 
Funding Rounds: Outliers could be identified based on the amount of fund-
ing they have raised compared to other start-ups in the same stage of devel-
opment. For example, a start-up that has raised ten times more funding than 
its peers might be considered an outlier. For example, consider what is called 
a unicorn between start-ups (a unicorn refers to a start-up with a valuation 
exceeding 1 billion USD), which is a very good example of how outliers are
defined according to some domain-specific criteria.
Geographical Considerations: Outliers could also be defined based on ge-
ographical factors such as location-specific market conditions or regulatory
environments. A start-up operating in a region with vastly different economic
conditions or consumer behaviours might be treated as an outlier.

7.4 z-Score Me thod

A data point with a z-score (a measure of how many standard deviations an element 
is from the mean) beyond a certain threshold, such as 3 or −.3, can be considered an 
outlier. This method quantifies the distance from the mean in standard deviations.
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Definition 7.4.1: Outliers Defined with the z-Score 

A data point with a z-score (a measure of how many standard deviations an 
element is from the mean) beyond a certain threshold, such as 3 or −.3  (the  
choice of this value is somewhat subjective and depends on the problem) is
considered an outlier.

Here, we will give you a short definition of what the z-score is. The z-score,  also  
known as a standard score, quantifies the number of standard deviations a data point 
is from the mean of a dataset. It is a measure of how unusual or typical a data point 
is compared to the average of the dataset. Imagine that we have a dataset and a data
point from it x. The formula to calculate a z-score is the following:

. z =
(x − μ)
σ

where x is the value of the data point, μ. is the mean of the dataset, and σ . is the 
standard deviation of the dataset. The z-score is a critical tool in statistics for several 
reasons. First, it allows for comparison between data points from different datasets by 
normalising the data. Second, a z-score of 0 indicates that the value of the data point 
is identical to the mean value. Third, positive z-scores indicate values greater than 
the mean, while negative z-scores indicate values less than the mean. Furthermore,
z-scores can identify outliers in a dataset. Often, data points with a z-score greater
than +3 or less than −.3 are considered outliers by man y statisticians.

Example 7.4.1: z-Score 

Suppose we have a dataset representing the test scores of a class: 82, 90, 
76, 94, and 88. We want to calculate the z-score for a test score of 88. First,
calculate the mean (μ.) of t he dataset:

. μ =
82 + 90 + 76 + 94 + 88

5
= 86

Next, calculate the standard deviation (σ .). The standard deviation f ormula
is

. σ =

√∑
(X − μ)2
N

where N = 5.. For simplicity, we give onl y the result here:

. σ ≈ 6.633

Finally, we can calculate the z-score u sing the formula:

.z =
(X − μ)
σ
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Substituting the v alues

. z =
(88 − 86)

6.633
≈ 0.302

The z-score for a test score of 88 is approximately 0.302. This means the 
score is 0.302 standard deviations above the mean score of the class. A z-
score close to 0 indicates that the data point is close to the mean, reflecting
that a score of 88 is relatively average in this dataset and is higher than μ.. 

Warning 7.4.1: z-Score for Not Normally Distributed Data 

Note that if the data are not normally distributed, the use of the z-score 
should be used with care. Skewed or multimodal distributions (see Chap
will make the interpretation of the score less obvious. If you are dealing with 
data that are asymmetric and skewed, be careful in interpreting the z-score.

. 8) 

7.5 Causes, Impact, and Tr eatment

Outliers can occur due to various reasons, such as data entry errors, measurement 
errors, natural variation, or the presence of anomalous observations in the population 
being studied. Human errors during data entry, such as typos or transcription errors, 
can lead to outliers. For example, entering a decimal point in the wrong place can 
result in a vastly different value. Furthermore, errors in measurement instruments 
or techniques can produce outliers. Variability in measurement devices, calibration 
issues, or environmental factors can contribute to measurements that are significantly 
different from the rest of the data. Particularly important is when outliers can arise 
due to sample variability, especially in smaller sample sizes. If the sample is not 
representative of the population or if there are unusual characteristics in the sampled 
individuals, outliers may find their w ay in your dataset. Sometimes, outliers represent
genuine extreme values in the data (remember the COVID pandemic, for example?)
These could be the result of rare events, unusual circumstances, or outliers that are
truly indicative of important phenomena being studied. While less common, genuine
extreme values can still influence statistical analyses and interpretations.

Always look at your data for outliers, as they can have a significant impact on 
statistical analyses, especially those that are sensitive to extreme values such as the 
mean and standard deviation. They can distort the measures of central tendency and 
dispersion, leading to biased (or unclear) results. Depending on the nature of the 
data and the research question, outliers can be dealt with in different ways. In some
cases, outliers may be removed from the dataset if they are deemed to be due to
errors or if they significantly affect the results (maybe if you are studying the income
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in Switzerland you can leave the IKEA CEO out of your study, he is probably not 
so representative of the average worker in Switzerland). Transforming the data using 
techniques such as logarithmic transformation can sometimes mitigate the effects of 
outliers but is a tricky thing to do and keep under control. A good approach is using 
robust statistical methods that are less affected by outliers, such as the median instead 
of the mean or non-parametric tests, which can be appropriate in certain situations.
Regardless of the treatment chosen, it is important to transparently report any
outliers and the rationale behind their treatment in research findings.



Chapter 8
Introduction to Distributions

8.1 A Small Warning

Distributions are at the core of statistics, but their understanding and study require
more mathematics. To follow this and the following chapters you will need to have
a good grasp of calculus (especially integration and derivation). I tried to always
give also intuitive descriptions of concepts, but I cannot deny that this chapter is
more mathematically heavy. Take your time to study it, since it is something every
statistician should know.

8.2 Introduction to Probability Distributions

Imagine you are conducting an experiment, tossing a fair coin multiple times and
recording the number of times it lands heads-up. Each time you toss the coin, the
outcome (heads or tails) is random, but over many tosses, you start to notice patterns
in the results. Some outcomes, like getting exactly half heads and half tails over a
large number of tosses, are more common than others (like getting a long series of
heads or tails one after the other). A probability distribution captures these patterns
by describing the likelihood of each possible outcome of a random experiment. It tells
you how probable it is to observe each outcome, given the rules of the experiment
and any underlying randomness.

Definition 8.2.1: Probability Distribution (Intuitive Defini-
tion)

A probability distribution describes the likelihood of each possible out-
come of a random experiment. It tells you how probable it is to observe each
outcome, given the rules of the experiment and any underlying randomness.
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In some experiments, the outcomes are distinct and countable, like rolling a
six-sided die or counting the number of heads in a series of coin tosses. For these
experiments, we use discrete probability distributions (see Sect. 8.2.1). Imagine
you are rolling a fair six-sided die. The probability distribution for this experiment
assigns a probability to each possible outcome: rolling a 1, rolling a 2, and so on up
to rolling a 6. Each outcome has a probability of 1/6. because there are six equally
likely outcomes (assuming a fair dice).

Other experiments involve outcomes that can take on any value within a range,
like measuring the height of people or the time it takes for a chemical reaction to
occur. For these experiments, we use continuous probability distributions (see
Sect. 8.2.2). Imagine you are measuring the height of people in a population. The
probability distribution for this experiment describes the likelihood of observing
different heights. Some heights, like the average height, are more common, while
extreme heights are less likely (few individuals reach a height of 2 m, whereas the
majority fall within the 1.6–1.8 m range). The probability density function (PDF) (see
Sect. 8.2.2) in this case describes this distribution by specifying how the probability
is distributed over the range of possible values. For example, the PDF might show
that heights around the average are more probable, while very tall or very short
heights are less probable.

Probability distributions provide a way to understand and quantify uncertainty
in random experiments. They allow us to make predictions about the likelihood of
different outcomes.

8.2.1 Discrete Probability Distribution

A discrete probability distribution is applicable when the random variable can only
take on a finite or countably1 infinite number of distinct values. The probability
mass function (PMF) is used to describe the probability distribution of a discrete
random variable. For a discrete random variable X , the PMF is denoted by p(x).,
where p(x). represents the probability that X takes on the value x.

Definition 8.2.2: Probability Mass Function

The PMF is used to describe the probability distribution of a discrete random
variable. For a discrete random variable X , the PMF is denoted by p(x)., where
p(x). represents the probability that X takes on the value x.

1 A set of objects is countable if either it is finite or it is in one-to-one correspondence with N.. A
wonderful explanation of this concept can be found in the book by Abbott Understanding Analysis
[15].
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Example 8.2.1: Probability Mass Function: Rolling a Six-
Face Dice
When rolling a fair six-sided dice, the possible outcomes are the numbers 1
through 6. Each outcome has an equal probability of 1/6., assuming the die
is fair. The PMF for this experiment assigns a probability to each possible
outcome. Let X be the random variable that represents the outcome of the
die roll. The PMF of X is then given by

.p(x) =
{

1/6, if x = 1, 2, 3, 4, 5, or 6
0, otherwise

This PMF indicates that each outcome x has a probability of 1/6., as there
are six equally likely outcomes when rolling a fair six-sided dice.

8.2.2 Continuous Probability Distribution

A continuous probability distribution is applicable when the random variable can
take on any value within a specified range. The probability density function (PDF)
is used to describe the probability distribution of a continuous random variable. For
a continuous random variable X , the PDF is denoted by f (x)., where f (x). represents
the probability density at the point x. The probability of X lying within a given
interval is obtained by integrating the PDF over that interval.

Definition 8.2.3: Probability Density Function

The PDF is used to describe the probability distribution of a continuous
random variable. For a continuous random variable X , the PDF is denoted
by f (x)., where f (x). represents the probability density at the point x.
The probability of X lying within a given interval is obtained by integrating
the PDF over that interval.

Warning 8.2.1: PDF and the Probability of a Specific Value

The PDF and the PMF seem very similar concepts. You may ask yourself
why the difference (one indicates directly the probability of a certain event,
and the other must be integrated). Do they not tell the same exact thing? Do
they not give the probability of a random variable to assume a specific value?
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Although it is somewhat true, in the case of PDF things are more complicated
than they seem. In fact, remember that the PDF is used in the case of
a continuous variable. While in general f (x). has a formula and can be
calculated, it is meaningless to ask what the probability of a specific x is.
Let me explain with an example.
Say you are looking for the probability of getting exactly π . in a uniform
[0,10) random variable X . To do this you will select randomly the digit at
each decimal position. You start from the first decimal place. You are looking
at 1 in 10 possibilities (you need the 3). The probability of getting two
digits (3.1) right is now 1/100 (you multiply the probabilities), and 3 correct
decimals have a probability of 1/1000. For n decimal places the probability
of getting exactly n digits of π . is 10−n .. Now, let n go to infinity (you want
to get exactly π . remember), and as you would expect, the probability of
getting exactly π . tends to 0. This is the reason why, in the case of continuous
random variables, one speaks of probability density function and not simple
of probability function. For continuous distribution one uses the concept
of cumulative distribution function (CDF, see Sect. that gives the
probability of a random variable to be smaller than a certain value (and not
exactly that value).

8.2.3)

Example 8.2.2: PDF and Why Integration Is Needed

To intuitively understand why the PDF for continuous distributions needs to
be integrated, let us consider an example. Imagine you are measuring the
exact height of a person. Height is a continuous variable because it can take
any value within a range (e.g. between 150 and 200 cm). Now, if you wanted to
find the probability that someone is exactly 175.000000000 cm tall, it would
be almost impossible to do because, in a continuous distribution, the chance
of any one specific value (like exactly 175.000000000 cm) is infinitesimally
small, essentially zero. Instead of focusing on a specific value, you calculate
the probability over a range of values (information that is more meaningful
and more useful), like the probability that a person’s height is between 170
and 180 cm. To do this, we use the PDF to describe how likely different
heights are, and then we integrate the PDF over the range of interest (in this
example between 170 and 180 cm). The area under the curve of the PDF
between 170 and 180 cm gives us the total probability for that range.
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8.2.3 Cumulative Distribution Function

The CDF of a random variable X , denoted by F(x)., is a function that gives the
probability that X will take on a value less than x. Mathematically, the CDF is
defined as

.F(x) = P(X ≤ x)

where P(x). indicates the probability of the random variable to assume a specific
value x or ranges of values (X ≤ x .). The CDF provides a complete description of
the probability distribution of a random variable and can be used to calculate the
probabilities associated with different events that involve the random variable. In the
case of continuous variables, F(x). is given by

.F(x) =
∫ x

−∞
f (x)dx (8.1)

Definition 8.2.4: Cumulative Distribution Function

CDF of a random variable X , denoted by F(x)., is a function that gives the
probability that X will take on a value less than x. Mathematically, the CDF
is defined as follows:

.F(x) = P(X ≤ x)

where P(x). indicates the probability of the random variable to assume a
specific value x or ranges of values (X ≤ x .).

8.2.4 Expected Value and Variance

For completeness, I will also give you the definition of the expected value and
variance in terms of distributions. Mathematically, the expectation of a random
variable X is defined as follows for a continuous and for a discrete random variable.

.E(X) =
∫
R

x f (x)dx for a continuous variable (8.2)

and
.E(X) =

∑
x

xp(x)dx for a discrete variable (8.3)

where the sum is intended over all the possible values of X . For the variance we can
write the formula

.Var(X) = E[(X − μ)2] (8.4)



78 8 Introduction to Distributions

and calculate it with Eq. (8.2) or (8.3). You will see an example of using Eq. (8.2) or
(8.3) in Sect. 8.3.

8.3 The Normal Distribution

We have looked at many general properties and definitions, and to make all this more
concrete it is useful to observe how they apply to a real distribution. The best choice
is, naturally, the normal distribution, possibly the best known, and most widely used
of all.2 It is used because of its unique properties and the natural phenomena it
describes. Its importance comes from several key aspects.

1. Ubiquity in natural phenomena: Many natural and social phenomena follow a
normal distribution making it a powerful tool for modelling and understanding a
wide range of real-world data.

2. Central limit theorem: The central limit theorem (discussion of this theorem
goes beyond the scope of this book) states that, under certain conditions, the sum
of a large number of random variables, regardless of their distribution, will be
approximately normally distributed. This makes most of the hypothesis testing
methods usable (for more information on the central limit theorem see [2, 16]).

3. Simplicity and mathematical convenience: The normal distribution is mathe-
matically tractable, making it easy to calculate probabilities and conduct statistical
tests.

4. Basis for other distributions: Many other important distributions are related to
the normal distribution, such as the chi-squared, t, and F distributions. These
relationships extend the utility of the normal distribution in statistical modelling
and hypothesis testing.

5. Parameter estimation: In statistics and machine learning, the normal distribution
is often assumed for the underlying data. This assumption simplifies the estimation
of model parameters and enables the use of techniques like maximum likelihood
estimation.

6. Error modelling: In many statistical models, especially linear regression, errors
are assumed to follow a normal distribution. This assumption facilitates the in-
terpretation of model results and the construction of confidence intervals and
hypothesis tests.

7. Benchmark for comparison: The normal distribution serves as a reference point
for assessing the distribution of empirical data. Deviations from normality can
indicate the presence of skewness, outliers, or other important features in the data.

2 One distribution to rule them all.
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Example 8.3.1: Normal Distribution

Normal distribution (also known as Gaussian) can be found in a very large
number of phenomena. Here are three examples.
Height of adult humans: The height distribution in a population of adult
humans follows a Gaussian distribution. Although there may be slight vari-
ations due to factors like gender and ethnicity, the overall distribution tends
to be approximately bell-shaped, with most individuals clustered around the
mean height and fewer individuals at the extreme ends of the height spectrum.
Scores on standardised tests: Scores on standardised tests, such as IQ tests
or college entrance exams such as SAT or ACT, exhibit a Gaussian distri-
bution. This means that most test-takers score around the average (mean)
score, with fewer individuals scoring at the lower and higher ends of the
score range. The distribution of scores is typically symmetric around the
mean.
Measurement errors: In many scientific experiments and measurements,
the errors associated with the measurements often follow a Gaussian distri-
bution. This is known as the Gaussian error or normal error. These errors
can arise due to various factors such as instrument precision, environmental
fluctuations, or human factors. The Gaussian distribution provides a mathe-
matical framework for modelling and understanding the distribution of these
errors.

The PDF of the normal distribution is given by

. f (x) = 1
σ
√

2π
e−

(x−μ)2

2σ2 (8.5)

where:

• x indicates the data.
• μ. is the mean of the distribution (for a justification of this check Sect. 8.4).
• σ . is the standard deviation of the distribution (for a justification of this check

Sect. 8.4).

You can see an example of its shape in Fig. 8.1 for μ = 0. and σ = 1.. The normal
distribution is symmetric around its mean, and its shape is characterised by its
mean and standard deviation. The mean determines the location of the centre of
the distribution, while the standard deviation determines the spread or width of the
distribution. The CDF of the normal distribution, denoted by Φ(x)., represents the
probability that a random variable X is less than or equal to a given value x. It is
given by

.Φ(x) =
∫ x

−∞
f (t) dt
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where f (t). is the probability density function of the normal distribution (see
Eq. (8.5)). Note that there is no exact formula for Φ(x). and numerical methods
for integration must be used when numerical values are needed.

Definition 8.3.1: Normal Distribution

The normal distribution is described by a PDF given by

. f (x |μ, σ) = 1
σ
√

2π
e−

(x−μ)2

2σ2 (8.6)

where:

• x indicates the data.
• μ. is the mean of the distribution.
• σ . is the standard deviation of the distribution.

8.4 �. Mathematical Description of the Normal Distribution

In this section I will provide a more detailed mathematical analysis of the normal
distribution. Let us start with some notation. The normal distribution is indicated with
the symbol N . and is characterised by two parameters: μ. and σ .. In this section, we
will justify their meaning (spoiler alert, they are the mean and standard deviation, as
we have mentioned without justification in the previous section). A random variable
X that follows a normal distribution is indicated with

.X ∼ N(μ, σ2) (8.7)

Note that the small wiggly symbol ( ∼.) indicates that the random variable X follows
the distribution N(μ, σ2).. We will see why the parameter σ . is squared very soon.
For the moment ignore this fact. The normal distribution density function, often
indicated with f (x |μ, σ)., is given by

. f (x |μ, σ) = 1
σ
√

2π
e−

1
2 ( x−μ

σ )2
(8.8)

From Eq. (8.8) it should be immediately clear that it is symmetric in x− μ.or in other
words is centred at x = μ.. It goes to zero for x → ±∞. and has a bell shape. You
can see it for μ = 0. and σ = 1. in Fig. 8.1. Note that N(0, 1). is called the standard
normal distribution. The parameters μ. and σ . have the following meaning:

• μ.: the mean of the data
• σ .: the standard deviation of the data

The proof of this is given in Sect. 8.4.1, which is slightly more mathematically
advanced and can be skipped if the reader is not so mathematically inclined.
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Fig. 8.1: The normal distribution density function for μ = 0. and σ = 1.. The normal
distribution with those parameters is called a standard normal distribution

8.4.1 �. Significance of μ . and σ .

Now, let us explore the significance of the parameters μ. and σ .. Let us start by calcu-
lating the expected value of a random variable that follows the normal distribution.
We need to calculate

.

E(X) =
∫
R

x f (x |μ, σ2) =
∫
R

x
1
σ
√

2π
e−

1
2 ( x−μ

σ )2
dx =

=
1
σ
√

2π

∫
R

xe−
1
2 ( x−μ

σ )2
dx =

{
s =

x − μ
σ

⇒ σds = dx
}
=

=
1

√
2π

∫
R

(σs + μ)e−
1
2 s

2
ds =

σ
√

2π

∫
R

se−
1
2 s

2
ds

︸����������������︷︷����������������︸
A

+

+
μ

√
2π

∫
R

e−
1
2 s

2

︸�����������︷︷�����������︸
B

ds

(8.9)

Now note that the integral indicated with A is zero, given the symmetry of the
function under the integral sign. Also note that we can use the known result.

.

∫
R

e−
1
2 s

2
=
√

2π (8.10)

to get the final result
.E(X) = μ (8.11)
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Tip 8.4.1:�. Expected Value of a Symmetric Distribution

There is a very easy way to prove that for every random variable X that has a
symmetric distribution around a value μ., it is true that E(X) = μ. regardless
of the exact PDF. To prove it note that if X has a symmetric PDF around μ.,
then it must be true that E((X − μ)) = E(−(X − μ)).; therefore, thanks to the
linearity of the expectation operator, we have

.

E((X − μ)) = E(−(X − μ))
E(X) − μ = −E(X) + μ

(8.12)

and therefore by simply rearranging the terms, we have

.E(X) = μ (8.13)

That concludes the proof. That means that any random variable that has a
symmetric PDF with respect to a value μ. will have an expectation value
(the average) equal to that value μ.. This, of course, is true for the normal
distribution, since it is symmetric around μ..

The parameter μ. is the expected value of a random variable that follows a normal
distribution.

Tip 8.4.2:�. Proof of Eq.

Let us define

(8.10)

.A =
∫
R

e−
1
2 s

2
(8.14)

The trick to get the result in Eq. is to calculate(8.10) A2
. and not A. In fact

we can write

. A2 =

∫
R

dx
∫
R

dye−
1
2 x

2
e−

1
2 y

2
=

∫
R

dx
∫
R

dye−
1
2 (x

2+y2) (8.15)

Now we move to polar coordinates with the change of variables

.

{
x = r cos(θ)
y = r sin(θ)

(8.16)

with r going from 0 to ∞. and θ . going from 0 to 2π .. Since we are making
a change of variables (more than one), we need to calculate the Jacobian J.
The reader should know that the following formula is valid:

.dxdy = |J |drdθ (8.17)
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where |J | . indicates the determinant of the Jacobian. In this case it is easy to
see that

.J =
����


∂x
∂r
∂x
∂θ

∂y

∂r
∂y

∂θ

�����
=

(cos(θ) −r sin(θ)

sin(θ) r cos(θ)

)
(8.18)

therefore
.|J | = r cos2(θ) + r sin2(θ) = r (8.19)

With this result we can rewrite A2
. as

.A2 =

∫ ∞

0
dr

∫ 2π

0
dθre−

1
2 r

2
= 2π

∫ ∞

0
re−

1
2 r

2
dr (8.20)

which with the change of variable s = r2/2 → ds = rdr . can be easily
calculated

.A2 = 2π
∫ ∞

0
e−sds = 2π ⇒ A =

√
2π (8.21)

The reader should be able to do the integral in Eq. easily. This con-
cludes the proof.

(8.21)

To understand the parameter σ . we need to calculate the variance of a random
variable following a normal distribution. The integral to calculate is

.Var(X) =
∫
R

(x − μ)2 f (x |μ, σ2) =
∫
R

(x − μ)2 1
σ
√

2π
e−

1
2 ( x−μ

σ )2
dx (8.22)

since we now know that E(X) = μ.. Let us evaluate the integral with the same change
of variable we have done before, namely s = (x − μ)/σ ..

.

Var(X) =
∫
R

s2σ2 1
σ
√

2π
e−

1
2 s

2
σds = σ2 1

√
2π

∫
R

s2e−
1
2 s

2
ds

︸������������������︷︷������������������︸
A

(8.23)

We can show that A = 1.. This tells us that the parameter σ2
. is nothing else than the

variance of a random variable that follows a normal distribution:

.Var(X) = σ2 (8.24)
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Tip 8.4.3:�. Proof that A = 1. in Eq.

We want to prove that the following equation is valid:

(8.23)

.A =
1

√
2π

∫
R

x2e−
1
2 x

2
dx = 1 (8.25)

To do this we can use a neat trick. Let us start with the integral

.I(α) =
∫
R

e−αx
2
dx (8.26)

and note that, similar to what we have done in the Proof of Eq. it is
easy to show that

(8.10),

.I(α) =
∫
R

e−αx
2
dx =

√
π

α
(8.27)

Now we can take the derivativea of I(α).

.

dI(α)
dα

=
d
dα

∫
R

e−αx
2
dx =

∫
R

d
dα

e−αx
2
dx =

= −
∫
R

x2e−αx
2
dx

(8.28)

But from Eq. we know that(8.27)

.
dI(α)
dα

= −
√
π

2
α−3/2 (8.29)

by equating Eqs. and ) we get(8.29(8.28)

.

∫
R

x2e−αx
2
dx =

√
π

2
α−3/2 (8.30)

and by choosing α = 1/2. we get the final result

.

∫
R

x2e−x
2/2dx =

√
2π (8.31)

This concludes the proof.

a We will not discuss here the applicability of exchanging the derivation and the integral
sign. This kind of discussion goes beyond the scope of the book.
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Fig. 8.2: Φ(x). is the value of the area greyed out. Note that Φ(x). is the symbol for
the CDF for a standard normal distribution not for a generic normal distribution

Now let us calculate the CDF of a normal distribution. Let us start with the CDF of
a standard normal distribution (remember that is a normal distribution with μ = 0.

and σ = 1.). This is usually indicated with Φ(x). and is defined by

.Φ(x) =
∫ x

−∞
f (x |0, 1) = 1

√
2π

∫ x

−∞
e−t

2/2dt (8.32)

Note that we cannot express this integral in closed form. So in case you need to
evaluate it, you need to do it numerically. Φ(x). is simply the area under f (x |0, 1).
from − ∞. to x, which you can see in Fig. 8.2 greyed out. The CDF of a general
normal distribution can be expressed with Φ(x). as

Table 8.1: Relevant formulas related to the normal distribution

Function Formula

f (x |0, 1). 1
√

2π
e−

1
2 x

2
.

f (x |μ, σ). 1
σ
√

2π
e−

1
2 ( x−μ

σ )2
.

Φ(x). (CDF Standard Normal Dis-
tribution)

Φ(x) = 1
√

2π

∫ x

−∞
e−t

2/2dt .

F(x). (CDF Normal Distribution) F(x) = 1
σ
√

2π

∫ x

−∞
e−(

t−μ
σ )2/2dt = Φ

( x − μ
σ

)
.
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.

F(x) = 1
σ
√

2π

∫ x

−∞
e−(

t−μ
σ )2/2dt =

{
s =

t − μ
σ

⇒ σds = dt
}

=
1

√
2π

∫ x−μ
σ

−∞
e−s

2/2ds = Φ
( x − μ
σ

) (8.33)

In Table 8.1 there is a summary of the results so far. The same results can be obtained
for various other distributions.

8.5 Bernoulli Distribution

Let us start to define what a Bernoulli experiment is. A Bernoulli experiment is a
type of random experiment where the only possible outcomes are two mutually ex-
clusive results, typically classified as success or failure (e.g. flipping a coin resulting
in heads or tails). When such an experiment is repeated multiple times indepen-
dently, with the probability of success p remaining constant in each trial, it forms a
sequence of Bernoulli trials. In this context, the probability of success is denoted
by p., while q = 1 − p. represents the probability of failure.

Example 8.5.1: Bernoulli Trials

Consider this example adapted from [1]. Suppose that the probability of
germination of a plant seed is 0.8, and the germination of a seed is called a
success. If we plant ten seeds (we will assume that the germination of one
seed is independent of another seed), this would correspond to ten Bernoulli
trials with p = 0.8.

We can write the PMF for this type of random experiment. In fact, first of all, we
know that the probability of x = 1. (success) is p. On the other hand, the probability
of x = 0. (failure) is q = 1 − p.. This can be conveniently written as one formula.

.p(x) = px(1 − p)1−x = pxq1−x with x = 0, 1 (8.34)

In fact it is easy to verify that p(0) = q . and p(1) = p.. Such a random variable X is
said to have a Bernoulli distribution. The expected value (the mean) is given by

.μ = E(X) =
1∑

x=0
xpx(1 − p)1−x = (0)(1 − p) + (1)p = p (8.35)
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and its variance is given by

.σ2 = Var(X) =
1∑

x=0
(x − p)2px(1 − p)1−x (8.36)

which turns out to be

.σ2 = Var(X) = (0 − p)2(1 − p) + (1 − p)2p = p(1 − p) = pq (8.37)

In a series of n.Bernoulli trials, we use Xi . to represent the Bernoulli random variable
corresponding to the i .-th trial. Thus, an observed sequence from n. Bernoulli trials
can be described as an n.-tuple (a set of n values) consisting of zeros and ones, often
called a random sample of size n. from a Bernoulli distribution.

Example 8.5.2: Bernoulli Distribution

Here are three examples of random experiments that are described by a
Bernoulli distribution.
Coin toss: The outcome of a single coin flip can be modelled as a Bernoulli
random variable. You can, for example, define success as getting heads. Let
the random variable X . represent the outcome. We have

.X =

{
1 if heads (success)
0 if tails (failure)

with probability P(X = 1) = p. and P(X = 0) = 1 − p. with p = 0.5..
Pass/Fail test: Consider a student taking a pass/fail exam. You can define
success as passing the exam. Let the random variable Y . represent the out-
come. We have

.Y =

{
1 if pass (success)
0 if fail (failure)

with probability P(Y = 1) = p. and P(Y = 0) = 1 − p., where p is the
probability for a student to pass the test.
Defective item detection: In a quality control process, checking whether
a randomly selected item from a production line is defective or not can
be modelled as a Bernoulli random variable. Define success as finding a
defective item. Let the random variable Z . represent the outcome. We have

.Z =

{
1 if defective (success)
0 if non-defective (failure)

with probability P(Z = 1) = p. and P(Z = 0) = 1 − p., where p is the
probability that an item is defective.
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8.6 Binomial Distribution

The binomial distribution is the probability distribution of the random variable
that measures the number of successes in a fixed number of independent Bernoulli
trials. If you perform n independent Bernoulli trials, each with the same success
probability p, and count the number of successes X , then X follows a so-called
binomial distribution.

To keep this section short, we will not give the derivations of the following
functions. The PMF of a binomial distribution, where X is the total number of
successes in n trials, is given by

.P(X = k) =
(
n
k

)
pk(1 − p)n−k (8.38)

where:

• k represents the number of successes.

•
(
n
k

)
=

n!
k!(n − k)! . is the binomial coefficient, representing the number of ways to

choose k successes from n trials.
• p is the probability of success on a single trial.
• n − k . is the number of failures.

A binomial distribution describes the cumulative outcome based on repeated, inde-
pendent trials, each trial being a simple 0/1, or success/failure situation represented
by a Bernoulli random variable. It describes the outcomes of experiments involving
multiple attempts with two possible outcomes per attempt, where each attempt is
independent of the others. Its mean is np and its variance npq.

Example 8.6.1: Bernoulli and Binomial Distribution

This example illustrates the use of the Bernoulli distribution in a practical
scenario: email spam detection. We consider each email as a trial with two
possible outcomes: spam or not spam. Define a Bernoulli random variable
X where:

• x = 1. indicates that an email is spam.
• x = 0. indicates that an email is not spam.

Suppose the probability of an email being spam is 0.2. Thus, we have p = 0.2.

and q = 1− p = 0.8.. The email classification can be modelled by a Bernoulli
distribution:

.P(X = 1) = 0.2 (probability the email is spam)

.P(X = 0) = 0.8 (probability the email is not spam)
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If the company receives 100 emails per day, the number of spam emails
is modelled by the binomial distribution with parameters n = 100. and
p = 0.2.:

• Expected number of spam emails per day: E[X] = n · p = 100 · 0.2 = 20..
• Variance of spam emails per day: Var(X) = n · p · q = 100 · 0.2 · 0.8 = 16..

8.7 The Poisson Distribution

The Poisson distribution models the number of events occurring within a fixed
interval of time or space, assuming that these events occur with a constant mean
rate and independently of the time since the last event. As examples consider traffic
accidents (counting the number of traffic accidents that occur on a specific highway
section each day), website hits (the number of hits on a website or views of a particular
page within a given hour), or meteor shower observation (counting the number of
meteors observed in a particular region of the sky during a meteor shower).

We can define a Poisson process as follows. Suppose we count the number of
occurrences of some event in a given interval. This can be defined as an approximate
Poisson process with parameter λ > 0. if the following conditions are satisfied:

1. The numbers of occurrences in non-overlapping intervals are independent.
2. The probability of one occurrence in a sufficiently short interval of length h is

approximately λh..
3. The probability of two or more occurrences in a sufficiently short interval is zero.

Definition 8.7.1: (Approximate) Poisson Process

Suppose we count the number of occurrences of some event in a given inter-
val. This can be defined as an approximate Poisson process with parameter
λ > 0. if the following conditions are satisfied:

1. The numbers of occurrences in non-overlapping subintervals are inde-
pendent.

2. The probability of one occurrence in a sufficiently short interval of length
h is approximately λh..

3. The probability of two or more occurrences in a sufficiently short interval
is basically zero.

Note that we use approximate to define the Poisson process since we use
approximately in (2) and basically in (3) to avoid the “little o” notation (see
Appendix for a short introduction to the Big-O and little-o notation).B
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Note that we use approximate to define the Poisson process since we use approxi-
mately in (2) and basically in (3) to avoid the “little o” notation (see Appendix B for
a short introduction to the Big-O and the little-o notation). This definition has been
adapted from the wonderful discussion that can be found in Hogg et al. in [1].

We will skip the derivation of the formula here, as it would go beyond the scope
of this short book, and we will redirect the reader to all derivations described in [1].
The PMF of a random variable X that counts the number of occurrences of events
as we define above is given by

. f (x) = λ
xe−λ

x!
(8.39)

and we say that the random variable X has a Poisson distribution. Note that x
indicates an integer here and not a continuous variable, since it indicates the number
of occurrences. In addition, the mean and standard deviation of a random variable
following a Poisson distribution are μ = λ . and σ2 = λ ., respectively.

Example 8.7.1: Poisson Distribution

A tech support centre receives an average of 30 calls per hour. We want to find
the probability of the centre receiving 25 calls in 1 hour. The probability of
observing k events in an interval of time is given by the Poisson distribution
formula:

.P(X = k) = e−λ
λk

k!
(8.40)

where:

• λ . is the average number of events per interval (30 calls/hour).
• k is the number of events of interest (25 calls).

Putting in the values, we calculate the probability of receiving exactly 25
calls in 1 hour

.P(X = 25) = e−30 3025

25!
≈ 0.0511 (8.41)

8.8 Probability Distributions: An Overview

The number of probability distributions existing and studied is really large, and this
book is not the right place to describe them all. But for the sake of giving the reader
an overview of the most famous, in Table 8.2 you can find an overview of the most
famous distributions with a short description.
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Distribution Description
Bernoulli distribution The Bernoulli distribution is a discrete probability distribution that

represents the outcome of a single trial, where there are only two
possible outcomes: success or failure. It is characterised by a single
parameter p, which is the probability of success. The distribution
is the foundation for binary events, such as flipping a coin (heads
or tails) or passing a test (pass or fail). See Sect. 8.5

Beta Distribution The Beta distribution is a continuous probability distribution de-
fined on the interval [0, 1]., with two shape parameters, α. and β .,
that control the shape of the distribution. Depending on the values
of these parameters, the Beta distribution can take on a variety of
shapes, from uniform to U-shaped to bell-curved, making it highly
versatile for modelling random variables that represent proportions
or probabilities. It is especially useful in Bayesian statistics, where
it often serves as a prior distribution for binomial data, such as
the probability of success in Bernoulli trials. The flexibility of the
Beta distribution allows it to reflect different levels of belief or
uncertainty about a probability

Binomial Distribution The Binomial distribution is a discrete probability distribution that
models the number of successes in a fixed number of independent
trials, where each trial has only two possible outcomes: success or
failure. It is defined by two parameters: n, the number of trials,
and p, the probability of success in each trial. Each trial follows
a Bernoulli process, and the binomial distribution calculates the
likelihood of obtaining a specific number of successes across all
trials. The distribution is particularly useful for situations where
the outcome of each trial is binary, and all trials are independent
and identically distributed. See Sect. 8.6

Cauchy Distribution The Cauchy distribution is a continuous probability distribution
characterised by its heavy tails and undefined mean and variance.
Unlike many distributions, it does not have finite moments of any
order, making it unique in terms of its statistical properties. The
Cauchy distribution is parameterized by a location parameter x0 .,
which defines the peak of the distribution, and a scale parameter
γ ., which determines the spread. It has a characteristic “bell shape”
similar to the normal distribution, but with much heavier tails,
meaning that extreme values are more likely to occur. The Cauchy
distribution is often used to model data with significant outliers or
when assumptions of finite variance do not hold

Chi-Square Distribution The Chi-Square distribution is a continuous probability distribu-
tion that arises from the sum of the squares of k independent
standard normal random variables. It is defined by a single param-
eter, k, which represents the degrees of freedom. The Chi-Square
distribution is positively skewed (see Sect. 9.2), with the skew-
ness decreasing as the degrees of freedom increase. It is commonly
used in statistical inference, particularly in hypothesis testing (see
Chap. 12) and constructing confidence intervals (see Chap. 11),
especially in tests of goodness of fit. The distribution is also im-
portant in the analysis of variance (ANOVA) and for estimating
population variances
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Distribution Description
Exponential Distribution The Exponential distribution is a continuous probability distribu-

tion that models the time between events in a Poisson process,
where events occur continuously and independently at a constant
average rate. It is defined by a single parameter λ., which represents
the average rate of occurrences. The Exponential distribution is
memory-less, meaning that the probability of an event occurring
in the future is independent of how much time has already passed.
It is often used to model waiting times, such as the time between
arrivals at a service point or the time until failure of mechanical
systems

Gamma Distribution The Gamma distribution is a continuous probability distribution
that generalises the Exponential distribution and is defined by two
parameters: a shape parameter α. (often called k) and a rate param-
eter β . (sometimes expressed as θ = 1/β ., the scale parameter). The
distribution is used to model the time required for α. independent
events to occur in a Poisson process, making it a natural exten-
sion of the Exponential distribution when more than one event is
involved. The Gamma distribution is versatile and used in vari-
ous fields, particularly in queuing models, reliability analysis, and
Bayesian statistics

Geometric Distribution The Geometric distribution is a discrete probability distribution
that models the number of trials needed to get the first success in a
sequence of independent and identically distributed Bernoulli trials,
where each trial has two possible outcomes: success or failure.
It is characterised by a single parameter p, which represents the
probability of success on each trial. The distribution is memory-
less, meaning that the probability of success in future trials is
independent of the number of failures that have occurred. The
Geometric distribution is commonly used to model waiting times
for the first occurrence of an event in repeated trials

Log-Normal Distribution The Log-Normal distribution is a continuous probability distribu-
tion of a random variable whose logarithm is normally distributed.
If a variable X is log-normally distributed, then log(X). follows a
normal distribution. The Log-Normal distribution is defined by two
parameters: the mean and standard deviation of the underlying nor-
mal distribution. It is commonly used to model non-negative data
with a right-skewed distribution, such as income, stock prices, and
certain biological measurements. The distribution is particularly
useful when the data span several orders of magnitude

Negative Binomial Distri-
bution

The Negative Binomial distribution is a discrete probability distri-
bution that models the number of trials required to achieve a fixed
number of successes in a sequence of independent and identically
distributed Bernoulli trials. It is characterised by two parameters: r ,
the number of successes, and p, the probability of success in each
trial. Unlike the Binomial distribution, which counts the number of
successes in a fixed number of trials, the Negative Binomial distri-
bution counts the number of trials needed to achieve the specified
number of successes. It is often used to model count data, where
the variance exceeds the mean
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Distribution Description
Normal Distribution (Gaus-
sian)

The Normal (Gaussian) distribution is a continuous probability
distribution characterised by its symmetric, bell-shaped curve. It
is defined by two parameters: the mean μ ., which determines the
location of the peak, and the standard deviation σ ., which controls
the spread of the distribution. The Normal distribution is widely
used due to the central limit theorem, which states that the sum of
a large number of independent random variables tends to follow
a normal distribution, regardless of the original distribution. It is
frequently applied in fields such as statistics, natural sciences, and
finance to model data that clusters around a central value. See
Sects. 8.3 and 8.4

Pareto Distribution The Pareto distribution is a continuous probability distribution that
models phenomena where large values are rare, but small values
are common, following a power-law relationship. It is characterised
by two parameters: the scale parameter xm ., which is the minimum
possible value, and the shape parameter α., which governs the heav-
iness of the distribution’s tail. The Pareto distribution is often used
to describe the distribution of wealth, income, city sizes, and other
systems where a small number of occurrences account for a large
portion of the total effect

Poisson Distribution The Poisson distribution is a discrete probability distribution that
models the number of events occurring within a fixed interval of
time or space, assuming the events occur independently and at a
constant average rate. It is characterised by a single parameter λ.,
which represents the average number of events in the interval. The
Poisson distribution is used to model rare events and is commonly
applied in fields such as telecommunications, traffic flow, and bi-
ology to describe occurrences like the number of emails received
in an hour or the number of mutations in a strand of DNA See
Sect. 8.7.

Uniform Distribution The Uniform distribution is a continuous or discrete probability
distribution where all outcomes are equally likely within a speci-
fied range. For the continuous case, it is defined by two parameters,
a and b, which represent the lower and upper bounds of the dis-
tribution, respectively. The probability density function is constant
between a and b, meaning the probability of any outcome within
this range is the same. The Uniform distribution is often used in
simulations and random sampling where each outcome within a
certain interval needs to be equally likely

Weibull Distribution The Weibull distribution is a continuous probability distribution
commonly used in reliability analysis and survival studies. It is
characterised by two parameters: the shape parameter k and the
scale parameter λ.. The shape parameter controls the distribution’s
form, which can model various types of failure rates, including
increasing, constant, or decreasing over time. The Weibull distri-
bution is versatile and is widely applied in modelling lifetimes of
products, systems, and materials, making it particularly useful in
engineering and reliability testing

Table 8.2: An overview of the most famous probability distributions with a short
description



Chapter 9 
Skewness, Kurtosis, and Modality 

9.1 Characteristics o f a Distribution

It is always beneficial, when possible, to know the exact distribution that your 
data follow, as this allows you to infer many important properties of both the data 
and the phenomena being studied. However, in many cases, identifying the precise 
distribution is challenging or impossible. F or instance, it is not immediately clear
what distribution governs variables like maximum blood pressure, stock prices,
cyberattacks, or solar flares.

When exact details are unavailable, a practical alternative for gaining insights 
into the phenomena is to examine the symmetry of the data distribution, the number 
of peaks it contains, and how quickly it decays at the extremes. We have previously 
covered concepts like quantiles, deciles, and percentiles, which help t o capture
asymmetries around the mean and median. While useful, there are more advanced
tools for this purpose, which are the focus of this chapter.

Our goal is to have concise and easy-to-digest metrics that will give us information 
about the characteristics of a distribution. For the purposes for which we are interested 
in this chapter (asymmetry, number of peaks, and tail characteristics), we will discuss 
the concepts of skewness, kurtosis, and modality. Symmetry is measured by the
skewness (see Sect. 9.2), number of peaks by the modality (see Sect. 9.4), and the 
characteristics of the tails are assessed using kurtosis (see Sect. 9.3, where a nuanced 
discussion will be car ried out).

Definition 9.1.1: Tails of a Distribution 

The tails of a distribution are the portions of the distribution that can be 
found f ar left and far right of the mean or median.
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Tip 9.1.1: Heavy and Light Tails (Intuitive Explanation) 

The tails of a distribution are the portions of the distribution that can be 
found to the far left and far right of the central peak (imagine here a unimodal 
distribution). They are typically characterised by how quickly or slowly the 
probabilities decay as you move away from the mean or the mode of the data. 
The tails indicate the probability of finding extreme values in the data, either 
very high or very low, compared to the typical or average values represented 
near the peak(s) of the distribution. 
Tails are characterised into two types: heavy and light. Intuitively, a distri-
bution is light tailed if large values are not so probable or heavy tailed if
large values are more probable.

Definition 9.1.2: �. Heavy Tail Distribution 

A random variable X is said to have a heavy (r ight) tail distribution if

. lim
x→∞

P(X > x)
e−λx

= ∞ (9.1) 

for every real λ > 0.. In other words, it means that the p robability of finding
the value of X > x . goes to zero slower than an exponential (e−λx .). 

Let us start with a discussion about how to measure the asymmetry of a distribution. 

9.2 Skew ness

Skewness is a measure of the asymmetry of the probability distribution of a real-
valued random variable about its mean. The skewness (often indicated with γ1 .)  is  
defined as f ollows.

.Skewness = γ1 = E

[(
X − μ
σ

)3
]

(9.2) 

where X is a random variable, μ. is its mean, and σ . is its standard deviation (assuming 
they exist of course).
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Definition 9.2.1: Skewness 

Skewness is a measure of the asymmetry of the probability distribution of a 
real-valued random v ariable about its mean. The skewness (often indicated
with γ1 .) can be defined as f ollows:

.Skewness = γ1 = E

[(
X − μ
σ

)3
]

(9.3) 

where X is a random variable, μ. is its mean, and σ . is its standard deviation. 

Let us discuss what it means when γ1 .has different signs. The sign and magnitude 
of the skewness indicate the direction and e xtent of the asymmetry.

• γ1 < 0.: The distribution has a longer left tail, which means it is concentrated 
towards the right. This condition is often referred to as left-skewed, left-tailed, or 
negatively skewed (see Fig. 9.1 for an example). Although the curve might appear 
to tilt to the right, “left-skewed” refers to the extended left tail and, typically, the 
mean being to the left of the median. Vi sually, such a distribution tends to lean
towards the right.

• γ1 > 0.: The distribution has a longer right tail, where the bulk of the data are 
towards the left, which is known as right-skewed, r ight-tailed, or positively skewed
(see Fig. 9.1 for an example). Even though the curve may seem to lean left, “right-
skewed” indicates that the right tail is prolonged and the mean is generally to the 
right of median. Typically, t his type of distribution appears to lean to the left.

• γ1 = 0.: This happens when the distribution is symmetric around the average (see
Fig. 9.1 for an example ).

Tip 9.2.1: �. γ1 = 0. for a Symmetric Distribution 

It is easy to see that if the distribution is symmetric, γ1 = 0.. In fact let us 
consider a random variable with finite mean μ. and finite standard d eviation
σ .. Define a new random variable Y = X − μ.. We can write

.γ1 = E

[(
X − μ
σ

)3
]
=

1
σ3E

[
(X − μ)3

]
=

1
σ3E

[
Y3] (9.4) 

Note that if the distribution ofY is symmetric around 0 (when X is symmetric 
around μ.), then the distribution ofY and −Y . is the same. Thus we must have 

.E
[
Y3] = E [−Y3] = −E

[
Y3] (9.5) 

and this is only possible if E
[
Y3] = 0.; thus γ1 = 0..
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Fig. 9.1: Examples of distributions that are symmetric (left panel), positively (or 
right) (middle panel), and negatively (or left) (right panel) skewed, respectively. It is 
easy to see which is which: just look at the tail. If the longer tail is on the right, then 
is a right (positively) skewed distribution, and if the longer tail is on the left, then is 
a left (negativ ely) skewed distribution. The distribution in the left panel is perfectly 
symmetric, in fact it is a normal distribution, and thus the skewness is zero

You can see an example of distributions that are symmetric, positively (or right), 
and negatively ( or left) skewed, respectively, in Fig. 9.1. It is easy to see which is 
which: just look at the tail. If the longer tail is on the right, then is a right (positively) 
skewed distribution, and if the longer tail is on the left, then is a left (negatively)
skewed distribution.

Example 9.2.1: Right (Positively) Skewed Distributions 

Right-skewed distributions are probably the most common. You can find 
them in data where there is a lower limit, and most of the data are close to
this lower limit. Here are some examples.

• Time to failure of a mechanical system or of a light bulb (for example) 
cannot be less than zero, but there is no upper bound. 

• The size of sales (say in USD) values is positive only, but the majority 
will be close to smaller values, w ith some exceptionally large sales.

• Income is another good example. It is always positive, with the majority
of values around the lower limit.

Now normally (careful: not always) in a right skewed distribution the mean is 
greater than the median and in a left-sk ewed is the opposite (again see an example
in Fig. 9.1). 

Example 9.2.2: Left (Negatively) Skewed Distributions 

Left-skewed distributions are less common. Typically, you find them when 
the data have an upper limit, and most of the data values are close to the
maximum.

• Purity of substances cannot exceed 100%, and normally values are around 
this value.
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• Maximum test scores have a maximum, and typically students’ test results 
are in the higher quartile. 

• Ages at death is a perfect example. It has a c learly negatively skewed
distribution.

Warning 9.2.1: Relationship Between Mean and Median 

The relationship between skewness and the positions of the mean and median 
is not straightforward: A distribution with negative skew could have a mean 
that is greater than or less than the median, and the same applies to distri-
butions with positive skew [17]. The assumption (and something you find in 
many textbooks) that mean, median, and mode are always in a given order 
in a skewed distribution is w rong, and it can fail, for example, in multimodal
distributions or in distributions where one tail is long but the other is heavy.

Consider now another concrete example with the following PDF:

. f (x, μ, σ) = A

xσ
√

2π2
· exp

(
− (log x − μ)2

2σ2

)
(9.6) 

In Fig. 9.2 you can see the distribution of 5000 points sampled from this PDF, where 
the factor A ∈ R. is there to guarantee that the f (x, μ, σ). is normalised. In green 
you see the distribution for μ = 0, σ = 0.25.,  in  blue for μ = 0, σ = 0.5., and in red 
for μ = 0, σ = 1.. You can see how the distributions (the PDFs, to be precise) are 
all asymmetric, with the red one being the most a symmetric and the green one the
more symmetric. We can calculate the skewness γ1 . for the three cases (the values 
are coloured in Fig. 9.2), and we will get γ1 = 0.73., γ1 = 1.72., and γ1 = 2.16..  You  
can see how the more asymmetric the distribution is (the red one), the largest the
value of γ1 . is. The closer γ1 . is to zero, the more symmetric the distr ibution is.

In Fig. 9.2 you can also see how the mean for the red PDFs is to the right of
the median (for μ = 0, σ = 1.), which is highly asymmetric (positively skewed 
distribution). 

9.2.1 Pearson’s Skewness Coefficients

I would also like to discuss other ways of measuring skewness proposed by Pearson 
(known for the Pearson correlation coefficient). It is important to know them, since 
these may fail in some cases and thus must be used with the utmost care. Two
coefficients are sometimes used: the mode coefficient and the median one. The
Pearson mode skewness coefficient is defined by

.
mean − mode

standard deviation
(9.7)
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Fig. 9.2: Distribution of 5000 points sampled from the PDF in Eq. (9.6). In green 
you see the distribution for μ = 0,  σ = 0.25.,  in  blue for μ = 0,  σ = 0.5., and in red 
for μ = 0,  σ = 1.. You can see how the distributions (the PDFs, to be precise) are all 
asymmetric, with the red one being the most asymmetr ic and the green one the more 
symmetric. The skewness γ1 . for the three cases is printed in colour in the figure. The 
green one, the most symmetric, has (as expected) the lowest γ1 . value 

Sometimes you find a slightly different definition of it, that is, the one above multi-
plied by 3. First of all, note that this is only usable when the distribution is unimodal. 
If you have multiple modes, you cannot use it, as it is not clear which mode you
should use in the formula.

The Pearson median skewness coefficient is defined by

.
3(mean − median)
standard deviation

(9.8) 

Definition 9.2.2: Pearson Mode and Median Skewness Coef-
ficients 
The Pearson mode skewness coefficient is defined by

.
mean − mode

standard deviation
(9.9) 

and the Pearson median skewness coefficient is defined by

.
3(mean − median)
standard deviation

(9.10)
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From the example in Fig. 9.1 they seem a perfectly fine way of measuring how 
asymmetric a distribution is. The farther, for example, mean and median are (the 
more asymmetry there is), the larger the Pearson median skewness is. Unfortunately, 
this works in most of cases, but as we discussed it can happen that even in a 
negatively skewed distribution, you can ha ve mean greater than median. Thus, the
Pearson median skewness would suggest a wrong skewness. It is something to know
and be aware of.

Warning 9.2.2: Pearson Skewness Coefficients 

The Pearson skewness coefficients work in most of the cases, but it can 
happen that, even in a negatively skewed distribution, you can have the mean 
greater than the median for example. Thus, Pearson median skewness would 
suggest the wrong sk ewness sign. It is something to know and be aware of.

9.2.2 Quantile-Based Skewness Measures

There is an additional way to measure asymmetry that uses the q uartiles that we
discuss in Chap. 6. There are many possible variations, and we will only discuss one 
here. It is called Bowley’s measure of skewness [18] or Yule’s coefficient [19] and 
is given by the following definition:

.
Q3 +Q1 − 2Q2

Q3 −Q1
(9.11) 

This can also be re written as

.
(Q3 −Q2) − (Q2 −Q1)

Q3 −Q1
(9.12) 

It is the difference of the range between the third quartile and the median and the range 
between the median and the first quartile divided by the IQR. If (Q3−Q2) > (Q2−Q1). 
(positively skewed), you have a positive coefficient. If (Q3 − Q2) < (Q2 − Q1). 
(negatively skewed), you get a negative coefficient.

9.2.3 Further Ways of Measur ing Skewness

It is important to note that while there are many methods to measure skewness, the 
ones we have highlighted are the most well-known and widely used in statistics. 
These approaches should adequately meet any requirements and are suitable for
almost all situations involving the analysis of distributions.
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9.3 �. Kurtosis 

Kurtosis is another quantity that you may find in your statistical adventures. Its 
inter pretation is not unambiguous and tends to be complex.

In general Kurtosis refers to the “tailedness” of a distribution. In general it is 
defined by the following formula:

.Kurtosis = E

[(
X − μ
σ

)4
]
=
E[(X − μ)4]
(E[(x − μ)2])2

(9.13) 

One of the most used symbols for kurtosis is κ ., although there is no definite symbol 
that everyone uses. Often excess kurtosis is used instead, defined as

.Excess Kurtosis = E

[(
X − μ
σ

)4
]
− 3 =

E[(X − μ)4]
(E[(x − μ)2])2

− 3 (9.14) 

and the reason for the 3 comes from the normal distribution. In fact it can be shown
that for a normal distribution

. Kurtosis(Normal Distribution) = E
[(

X − μ
σ

)4
]
=
E[(X − μ)4]
σ4 =

3σ4

σ4 = 3

(9.15) 

Thus, excess kurtosis intuitively measures the kurtosis beyond that of a normal 
distribution (for whic h excess kurtosis is equal to zero).

Tip 9.3.1: �.Proof Sketch thatE[(X−μ)4] = 3σ4
. for a Normal 

Distribution 
This is a rough sketch on how one can show that for a normal distribution the 
kurtosis is equal to 3. Let X ∼ N(μ, σ2)., meaning X is a normally distributed 
random variable with mean μ. and variance σ2

.. We start by standardising the 
random variable X . Define the random v ariable Z .

. Z =
X − μ
σ

Since X is normally distributed, Z ∼ N(0, 1)., meaning Z is a standard 
normal random variable with mean 0 and vari ance 1. Now, we want to
compute E[(X − μ)4].. Using the standardised variable Z , we have

.E[(X − μ)4] = E[σ4Z4] = σ4
E[Z4]
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Thus, we need to compute E[Z4]., the fourth moment of the standard normal 
distribution. For a standard normal variable Z ∼ N(0, 1)., the moments are 
kno wn, and specifically

. E[Z4] = 3

This result can be derived from the moment generating function of the 
standard normal distribution or using integration techniques. The exact cal-
culation goes beyond the scope of this book (as it involves a complicated
integration including the Gamma function) and thus will not be reported
here. Substituting this into our expression, we get

. E[(X − μ)4] = σ4 · 3 = 3σ4

Therefore, we have show n that

.E[(X − μ)4] = 3σ4

��

As mentioned a normal distribution has an excess kurtosis of 0. When excess 
kurtosis is negative, the distribution is called platykurtic. This means that the 
distribution has fewer or less extreme outliers compared to a normal distribution. 
For example, the uniform distribution is platykurtic. In contrast, positive excess 
kurtosis indicates a leptokurtic distribution, where the tails decay more slowly than 
in a normal distribution, leading to more outliers. In general kurtosis (or excess 
kurtosis) assess the behaviour of the tails or in other words of values far from the 
mean. In fact the kurtosis measures the average (or expected va lue) of standardised
data (value minus the average divided by the standard deviation) raised to the fourth
power. That means that large values raised to the fourth power will have much more
weight that values around the average. In fact values of |X−μ|/σ < 1. (values distinct 
from the average less than one standard deviation) raised to the fourth power will 
become smaller. A number less than one raised to the four th power will be much
smaller than the original number, for example, 0.14 = 0.0001.. Analogously, v alues
of |X − μ|/σ > 1. (values farther than one standard deviation from the average) will 
become increasingly larger.

High values of excess kurtosis indicate that the distribution has heavy tails, 
meaning the probability of observing values far from the mean is greater compared
to distributions with lower excess kurtosis.

9.4 Modality 

Modality is used to describe the shape of a distribution based on the number of 
modes (peaks) it contains. There are four main types of modalities.
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• Unimodal: a distribution with a single peak (e.g. the normal distribution). This 
is the most common distribution pattern, indicating a single most frequent value 
or range of values around a central point (note that the central point need not be
the mean, as we have discussed in Sect. 9.2 on skewness). 

• Bimodal: a distribution with two distinct peaks. This sometimes suggests the 
presence of two different processes or groups within the dataset. 

• Multimodal: a distribution with more than two peaks. Multimodal distributions 
can indicate complex interactions within the data, with multiple groups or factors 
influencing the shape of the d istribution.

• Uniform: a distribution where all values occur with roughly the same frequency,
effectively showing no peaks.

Example 9.4.1: A Bimodal Distribution 

A real-life example of a bimodal distribution can be found in the analysis 
of income distribution within an area where there are two dominant job 
sectors that differ significantly in average salaries. Consider a hypothetical 
city where there are high-paying jobs in a technology sector and low-paying 
jobs in the tourism sector. The technology sector offers high salaries, say 
ranging from 80,000 USD to 120,000 USD annually. In contrast, jobs in 
the tourism sector are lower paid, with typical salaries ranging from 20,000 
USD to 40,000 USD. When analysing the overall income data for this area, 
you might see two peaks in the income distribution histogram: one peak 
around USD 30,000, representing the most probable salary in the tourism
sector, and another peak around USD 100,000, representing typical earnings
in the technology sector. This creates a bimodal distribution of income, with
two distinct “modes” or peaks in the histogram. Each mode represents a
cluster around a common value within the dataset, indicating that there are
two typical income levels in the region, each associated with one of the two
dominant sectors.

To analyse modality, one can look at histograms of the data to visualise the distri-
butions and identify the number of peaks. Each mode often corresponds to a distinct 
subgroup within the dataset, making modality analysis valuable for segmenting 
data or identifying heterogeneous groups within the population. Understanding the 
modality of a dataset helps in understanding its underlying distribution and structure.

9.5 �. Moments of a Distribution 

You might be curious about how the definition of a concept such as skewness has that 
particular form. Where does it originate from? To answer this, we need to explore the 
concept of moments of a distribution. It is important to note that this topic is vast, 
and we will only scratch the surface here. This brief overview aims to illustrate how
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measures such as variance or skewness are mathematically connected and emerge 
naturally within the appropriate mathematical framework.

Tip 9.5.1: Moments of a Distribution 

Moments of a distribution are fundamental statistical measures that provide 
insights into the shape and characteristics of a distribution. These moments, 
which include mean, variance, skewness, and kurtosis, each describe differ-
ent aspects of the overall profile of the dist ribution.
Their name comes from the fact that they can all be derived by deriving one
particular function, called moment generating function given by

.MX (t) = E(etX ) (9.16) 

The first moment is linked to the mean, the second moment to the variance, 
and the third and fourth moments to skewness and kurtosis, respectively. 
The beauty of moments lies in their ability to summarise complex datasets 
with simple, interpretable numbers that capture both central tendencies and 
variabilities. Thus, understanding moments is not just about dealing with
abstract mathematical concepts; it is about gaining a more nuanced under-
standing of the data.

Consider X a random variable with CDF FX .and pdf fX .. The moment generating 
function (mgf) of X is denoted by MX (t). and is given by

.MX (t) = E(etX ) (9.17) 

if the expectation exists for t around 0. For a continuous X we have

.MX (t) =
∫
R

etx fXdx (9.18) 

and for a discrete X
.MX (t) =

∑
x

etxp(x) (9.19) 

where p(x). is the MDF of the discrete variable X , and the sum is intended over all 
v alues of X . We can also define the additional quantity

.M (n)
X (t) = dn

dtn
MX (t) (9.20) 

and this is called the n-th moment of the distr ibution. We can prove that

.E(Xn) = M (n)
X (0) (9.21)
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Tip 9.5.2: �. Proof that E(Xn) = M (n)
X (0). 

To prove E q. we can simply follow the next steps.(9.21) 

. 

M (n)
X (t) = dn

dtn
E(etX ) = {by using the Taylor expansion of the exponential}

=
dn

dtn
E

( ∞∑
m= 0

tmXm

m!

)

=
dn

dtn

∞∑
m= 0
E

(
tmXm

m!

)
=

=

∞∑
m= 0

dn

dtn

(
tm

m!

)
E(Xm) =

=

∞∑
m= n

m!tm−n

m! (m − n)!E(X
m)

=
tn−n

(n − n)!E(X
m) +

∞∑
m= n+1

tm−n

(m − n)!E(X
m)

= E(Xm) +
∞∑

m= n+1

tm−n

(m − n)!E(X
m)

(9.22) 

By setting t = 0. we obtain the result.

From Eq. (9.21) is clear that the mean of X is the first moment, in fact

.E(X) = M (1)
X (0) (9.23) 

Now it is easy to show that the v ariance can be written as

.σ2 = E(X2) − E(X)2 (9.24) 

so you can see how the variance is linked to two moments of the distributions, 
and in particular to the second moment. Of course, skewness, being linked to the
expectation value of the third power of X , is naturally linked to the third moment of
the distribution.
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Definition 9.5.1: Moment Generating Function (mgf) 

The moment generating function (mgf) of a random va riable X with CDF
FX . is denoted by MX (t). and is given as

.MX (t) = E(etX ) (9.25) 

if the expectation exists f or t around 0.

It is enough to rescale the random variable X , and suddenly mean, variance, 
skewness, and kurtosis will be exactly the first, second, third and fourth moments,
respectively. Let us see how to do that.

9.6 �. Central Moments 

To make the relationship between moments and useful quantities (as the Variance) 
more direct, it is useful to define the central moments. Analogously as what we have 
done in the previous section, we can define a moment generating function

.CX (t) = E(et(X−μ)) = e−tμMX (t) (9.26) 

where μ = E(X)..  The  nth central m oment is defined by

.C(n)
X (0) = dn

dtn
CX (t)

����
t=0

(9.27) 

Now consider the first moment C(1)
X (0).. 

.C(1)
X (0) = d

dt
CX (t)

����
t=0
=
(
−μe−tμMX (t) + e−tμM (1)

X (t)
)����
t=0
= 0 (9.28) 

In f act1 
. − μe−tμMX (t)

����
t=0
= −μ (9.29) 

and 
.e−tμM (1)

X (t)
����
t=0
= M (1)

X (0) = μ (9.30) 

so we obtain Eq. (9.28). This makes sense since the random variable X is now centred 
on zero, and its mean (associated to the first moment) is now zero.

1 Recall that MX (0) = 1.. 
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Things get interesting when calculating the second moment. In fact you have (you 
can start from the first moment that we calculated in Eq. (9.28)) 

.C(2)
X (t) = d

dt

(
−μe−tμMX (t) + e−tμM (1)

X (t)
)

(9.31) 

and with the previous calculation w e can see that

.C(2)
X (t) = −μC(1)

X (t)︸�����︷︷�����︸
A

+
d
dt

(
e−tμM (1)

X (t)
)

(9.32) 

Now the term A in Eq. (9.32), when we set t = 0., will vanish, as we have proven 
above, so we can neglect it in our fur ther calculations (recall that we are interested
in calculating C(2)

X (0).). Proceeding we g et

.
d
dt

(
e−tμM (1)

X (t)
)
= −μe−tμM (1)

X (t) + e−tμM (2)
X (t) (9.33) 

Now if you check the previous equation, yo u may recall that

.M (1)
X (0) = μ (9.34) 

and that 
.M (2)

X (0) = E(X2) = σ2 + μ2 (9.35) 

putting all together and setting t = 0., we finally g et

.C(2)
X (0) = −μ2 + σ2 + μ2 = σ2 (9.36) 

and you can see how the second central moment is now exactly the variance of the
random variable.

If you also consider the so-called standardised moments (meaning you do not 
only centralise X by subtracting the mean but also divide by the standard deviation), 
you will find out that the third standardised moment will turn out to be the skewness. 
Things are getting complicated and are out of scope for this book, so I will stop here.

My main goal with this advanced section is to show you how quantities used 
frequently in statistics that give you much information about a distribution (such 
as mean, variance, skewness, etc.) appear naturally as moments (raw, central, or 
standardised) of a distribution. Moments and the mgf are used in theoretical statistics
to prove many results. For example, one of the simplest proofs of the central limit
theorem2 can be given with the mgf. This is a more advanced topic that we will not 
explore in more detail in this book. If you are interes ted, I suggest you read the book
by Casella [2].

2 The Central Limit Theorem intuitively states that if you take a large number of samples from 
any distribution and average them, the distribution of these averages tends to become a normal
distribution, regardless of the shape of the original distribution.



Chapter 10 
Data Visualisation 

10.1 Histograms

A histogram is a type of bar graph that represents the distribution of numerical 
data by showing the frequency of data points within a certain range of values (called 
bins). To build a histogram you need to follow the steps below. Suppose you have a
dataset {xi}ni=1 .. 

1. Determine the Number of Bins: Choose the number of bins k. Several ap-
proaches exist (we will discuss them later), but for the moment let us suppose that 
we choose k manually without any rule. For example, we could choose k = 10.. 

2. Calculate the range of data: Compute the range (see Sect. 5.3 for a discussion 
on the concept of range) of your dataset by subtracting the minimum value from
the maximum value:

.range = max(xi) − min(xi) (10.1) 

3. Determine the bin width: Divide the range by the number of bins k to find the
bin width:

.Bin width =
range
k

(10.2) 

4. Create bin intervals: Starting from the minimum data value, create bin intervals 
up to the maximum value, each with the calculated bin width. Your i-th interval
Δi . will be defined by

.Δi =
[
min(xi) +

range
k

(i − 1),min(xi) +
range
k

i
)

(10.3) 

5. Count the number of data points in each interval Δi . (bin): Count how many 
fall into each bin based on the established intervals.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 
U. Mich elucci, Statistics for Scientists,
https://doi.org/10.1007/978-3-031-78147-6_10 

109

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78147-6protect T1	extunderscore 10&domain=pdf
https://doi.org/10.1007/978-3-031-78147-6_10
https://doi.org/10.1007/978-3-031-78147-6_10
https://doi.org/10.1007/978-3-031-78147-6_10
https://doi.org/10.1007/978-3-031-78147-6_10
https://doi.org/10.1007/978-3-031-78147-6_10
https://doi.org/10.1007/978-3-031-78147-6_10
https://doi.org/10.1007/978-3-031-78147-6_10


110 10 Data Visualisation

6. Draw the histogram: Draw the histogram with bins on the horizontal axis and 
the counts of data points on the ve rtical axis. The height of each bin corresponds
to the number of data points it contains.

Example 10.1.1: Histogram of Test Scores 

Suppose we have a dataset representing test scores from a class of 20 s tudents:

. {55, 90, 68, 72, 83, 65, 88, 92, 78, 74, 69, 84, 77, 70, 90, 85, 89, 73, 67, 91}

First, find the minimum and maximum values in your dataset. For the given 
data, the minimum score is 55, and the maximum score is 92. Decide how 
many bins (intervals) you want in your histogram. The choice may depend 
on the level of detail you wish to see. For simplicity, let us choose fi ve bins.
Subtract the smallest value from the largest value to find the range of your
data. Then, divide this range by the number of bins to find the width of each
bin.

. Bin Width =
Maximum − Minimum

Number of Bins
=

92 − 55
5

= 7.4

Round this up to a convenient number, such as 8. Starting at the minimum 
value, add the bin width to create each bin interval (normally the interval
includes the left limit but not the right one):

•  55  to  63  
•  63  to  71  
•  7  1 to 79
• 79 to 86
• 86 to 94

Count how many scores fall into eac h interval:

• 55 to 63: 1 scores 
• 63 to 71: 5 scores 
• 71 to 79: 5 scores 
• 79 to 86: 3 scores
• 86 to 94: 6 scores

Using graph paper or any drawing tool:

• Draw a horizontal line (x-axis) and label it with the bin intervals. 
• Draw a vertical line (y-axis) and label it with the freq uency of scores.
• For each bin, draw a bar that reaches the appropriate values.

This histogram provides a visual representation of the distribution of scores, 
showing how they are spread across different intervals and helps to un-
derstand the overall performance trends in the class. See the resulting plot
below.
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One decision you have to take is how many bins to use. This is an important 
decision since it can influence the h istogram’s effectiveness. Here are some rules
that you can use to decide.

• Sturges’ Rule: Number of bins = log2 n + 1., where n is the number of data 
points. Note that it may not provide enough bins for large datasets, leading to 
overly simplistic histograms that might miss important details in the data. 

• Squar e-Root Choice: Use the square root of the number of data points.
• Freedman-Diaconis Rule: Bin width = 2 × IQR × n−1/3

.. It is more complex to 
calculate because of the need to calculate the interquartile range (IQR). It can also 
result in too many bins for large datasets, which can complicate the interpretation 
of the histogram. 

• Adjust the bins manually to match the data distr ibution appropriately. In other
words, you choose the width.

Tip 10.1.1: Practical Tips for Building a Histogram 

When building a histogram, it is important to start by determining the pur-
pose of the histogram, which will guide your choices throughout the process. 
Selecting the number of bins is the first step. You should begin with common 
rules like Sturges’ or the square-root rule but always adjust based on the 
data to best reveal the distribution’s shape (in other words, check the his-
togram visually). Consistency in bin width is fundamental, especially when 
comparing multiple histograms, as it ensures meaningful comparisons. Be 
careful of how outliers might affect the histogram’s appearance, and con-
sider adjusting the bin width. As a general rule, after generating the initial
histogram, review it visually to ensure that it accurately represents the data.
Finally, it is important to document (and publish together with your plots)
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your choices, including the method used to determine bin width and any 
adjustments made, to ensure reproducibility and clarity for others reviewing
your work.

When creating histograms for different groups of your data, it is essential to maintain 
consistent bin widths across all histograms. Typically, Python packages or R will 
automatically determine the number of bins and their respective widths. However, 
this automatic selection can result in different bin counts for different data groups, 
which complicates direct compar ison between histograms. Always set the same bin
width for all histograms you are analysing groups side by side.

Tip 10.1.2: Determination of the Number of Bins in His-
tograms 

After using a theoretical approach to determine the number of bins, visually 
inspect the histogram. Adjust the number of bins manually to see if a slight 
increase or decrease provides a more interpretable and insightful visualisa-
tion. The goal is to find a balance in which the shape of the data distribution
is clear.

10.2 Boxplo ts

A boxplot, also known as a box-and-whisker plot, is a graphical representation of 
statistical data. In general, it serves the purpose of giving a condensed view of the 
distribution of the data by using graphically five numbers extracted from the data: 
(1) minimum (excluding outliers), (2) first quartile (Q1), (3) median (Q2), (4) third 
q uartile (Q3), and (5) maximum (excluding outliers). The elements of a boxplot and
a short discussion are reported below. You can see an example with all its elements in
Fig. 10.1 where a boxplot is represented horizontally. Often those plots are vertical, 
but the elements are the same. We will consider Fig. 10.1 while discussing each part 
of a b oxplot.

• Box: The main element of a boxplot is the central box that spans from Q1 to Q3 
and represents how wide the central 50% of the data are, providing insights into
the distribution’s dispersion and skewness thanks to the median line (see later and
additionally Sect. 9.2). For example, in Fig. 10.1 you can see how the 50% of the 
data goes from slightly above 9 to around 19. 

• Whiskers: Whiskers are typically represented as horizontal lines (or vertical, 
depending on the orientation of the boxplot) t hat extend from the left and right
(or bottom and top) of the box until the single points (the green points in Fig. 10.1). 
For example, the left whisker in Fig. 10.1 arrives at around 3, while the right one 
arrives slightly below 22.
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Fig. 10.1: The structure of a boxplot. The main elements that you will find in a 
boxplot are outliers, whiskers, the quartiles Q1 ., Q2 . and Q3 ., the IQR, and the median. 
The axis indicates the values of the data (indicated with x ), and its values are only
indicatives

• Minimum: The smallest data point excluding any outliers is represented by the 
end of the left whisker (when v ertically orientated as the lower) or in Fig. 10.1 
the small vertical lines that end the whisker lines and are at roughly around 3. 

• First Quartile (Q1): It represents the 25th percentile of the data. It is the median 
of the lower half of the dataset. It is identified in the boxplot by the left border 
of the box (or the bottom if the plot is orientated vertically) between 8 and 9 in
Fig. 10.1. 

• Median (Q2): This is the middle value of the dataset, representing the 50th 
percentile. It is identified in the boxplot b y a line across the box (not necessarily
in the middle). In Fig. 10.1 we can see how the median is at around 15. From the 
box we can also see how the 25% of the data between the median and Q3 is more 
concentrated than the 235% of the data between the median and Q1. 

• Third Quartile (Q3): It represents the 75th percentile, marking the median of 
the upper half of the dataset. It is marked in t he boxplot by the right border of the
box (or the upper border if the plot is orientated vertically). In Fig. 10.1 Q3 is at 
around 19. 

• Maximum: The largest data point excluding outliers is represented by the end 
of the right whisker (or the top one if orientated vertically). In Fig. 10.1 it can be 
found at around 22. 

• Interquartile Range (IQR): It is defined as Q3 minus Q1. This range covers the 
middle 50% of the data and is a measure of statistical dispersion. It is the width 
(or height) of the box. 

• Whiskers: Lines that extend from Q1 to the minimum and from Q3 to the
maximum (excluding outliers). They represent the spread of most of the data.
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There are mainly two ways of deciding how long whiskers should be: T ukey’s
and the standard deviation method.

– Tukey’s method: Whiskers extend to the last data point within 1.5 times the 
IQR from the quartiles. 

– Standard deviation method : Whiskers extend to a specified number of stan-
dard deviations from the mean.

Not all boxplots are the same. Remember to always specify how you define the 
length of whiskers and therefore how you define outliers.

Tip 10.2.1: Outliers in Boxplots 

Note that is good practice to always specify how you define the outliers 
in your boxplots. You can do that in the caption of the figure and in the
text when you describe the figure. Not doing so will make unclear how
you define outliers. Remember that.

• Outliers: Points that fall outside the range defined by the whiskers. They are
plotted as individual points.

Warning 10.2.1: Limitations of Boxplots 

The simplicity of boxplots also introduces certain limitations regarding the 
granularity of data they can display. Specifically, boxplots do not capture the 
finer details of a distribution’s shape, such as its modality (see Sect.
Additionally, while boxplots show medians (see Sect and spread (see 
Chap. they do not show the mode or mean explicitly (unless added 
additionally). They also do not depict the detailed distribution shape as
histograms do.

5), 
. 4.3 )

9.4). 

You may remember our discussion about outliers in Chap. 7; now you see how such 
definitions are of practical use.

Tip 10.2.2: When to Use Boxplots 

Boxplots are utilised to visualise the distribution of numerical data values and 
are particularly effective when comparing these distributions across various 
groups. They are designed to quickly convey high-level insights, providing 
an overview of a dataset’s symmetry, skewness, variance, and outliers. They
enable an easy assessment of the core concentration of data and facilitate
comparisons between different groups.
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10.3 Q-Q Plo ts

Suppose that you have a random variable X and have a hypothesis that it follows 
some distribution, for example, the normal one. How can you check if this is the 
case? And how can you visualise if the differences are in the tails or in the central 
parts? Q-Q plots address exactly this need. Q-Q stands for Quantiles-Quantiles. The 
basic idea is to compare experimental quantiles (coming from data) to theoretical 
ones (coming from the expected distribution) and plot one versus the other. If the
data are distributed according to the expected distribution, all points will be on the
diagonal line in the plot; otherwise they will be far from the diagonal.

Tip 10.3.1: Creating Q-Q Plots in Python 

If you are interested in creating Q-Q plots in Python and in particular with 
matplotlib package, check the Python package probscale at https:// 
matplotlib.org/mpl-probscale/. 

Let us consider the tips dataset [20] that contains a column with tip amounts 
and the total amount of the bill for several people in restaurants. Let us consider 
the total_bill column, which, as the name suggests, contains the total amount 
paid. Let us first p lot a histogram of the total_bill column to get an idea of the
distribution of values. You can see it in Fig. 10.2. The distribution is asymmetrical 
and positively skewed (see Sect. 9.2). But we can ask ourselves how much it deviates 
from a normal distribution. To answer this question we can draw a Q-Q plot with 
the data quantiles versus the theoretical quantiles from the normal distribution. You
can see the result in Fig. 10.3. Since the points (experimental quantiles) lie not on 
the line, we can say that the data are not distributed perfectly according to a normal 
distribution. But it is close, and you can see how the differences are not only in the
tails (regions below 10 and above 40) but also, albeit in less amount, in the central
part.

Fig. 10.2: Distribution of the column total_bill in the tips dataset

https://matplotlib.org/mpl-probscale/
https://matplotlib.org/mpl-probscale/
https://matplotlib.org/mpl-probscale/
https://matplotlib.org/mpl-probscale/
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Fig. 10.3: The Q-Q plot for the total_bill information (total a mount of bill) from the 
tips dataset [20] compared with a normal distribution. As you can see the data are 
not distributed normally, as the points deviate from the t heoretical quantiles obtained 
from the normal d istribution

How to find the best distribution that describes the data goes beyond the scope 
of this book, but by doing so you would discover t hat the data are best described
by the Burr distribution (check [21] for more information). Check the Q-Q plot that 
compares the experimental quantiles with the theoretical ones coming from the Burr 
distribution in Fig. 10.4. You can see that the match is quite good, except for larger 
values, where apparently the data deviate from the Burr distribution.

Fig. 10.4: The Q-Q plot for the total_bill information (total a mount of bill) from the 
tips dataset [20] compared with a Burr distribution. As you can see the data follow 
the Burr distribution quite well, except for larger values



10.4 Pair Plots 117

Tip 10.3.2: Finding the Best Fitting Distribution in Python 

If you are interested in looking for the best distribution that fits y our data,
check the Python package fitter at https://fitter.readthedocs.io/en/latest/. 

Q-Q plots are a nice visualisation tool to check visually how good a random 
v ariable follows a certain distribution.

10.4 Pair Plo ts

A pair plot displays all the pairwise relationships between variables in a dataset, 
along with the distribution of each variable. This is typically done in a grid where 
each row and each column represent one variable. Each cell in the grid contains a 
scatter plot of the corresponding pair of variables, while the diagonal cells often
contain the univariate distribution of the variables, such as histograms or kernel
density plots. For example, consider the Iris dataset.

Tip 10.4.1: The Iris Dataset 

The dataset consists of 50 samples from three species of Iris: Iris setosa, 
Iris virginica, and Iris versicolor. For each s pecies four characteristics were
measured: length and width of the sepals and petals. In Fig. you can see 
what petals and sepals are.

10.5

Fig. 10.5: Petals and sepals in a flower (Photo Eric Guinther CC BY-SA 3.0)

https://fitter.readthedocs.io/en/latest/
https://fitter.readthedocs.io/en/latest/
https://fitter.readthedocs.io/en/latest/
https://fitter.readthedocs.io/en/latest/
https://fitter.readthedocs.io/en/latest/
https://fitter.readthedocs.io/en/latest/
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The dataset comprises three categories, each with 50 samples, representing 
different types of iris plants. One category can be linearly distinguished from 
the other two, but the other two categories are not linearly distinguishable 
from one another. A nice article on the dataset that contains a lot of infor-
mation is that by Unwin and Leinmann [22]. I suggest you read it, it is quite
interesting.

In Fi g. 10.6 you can see how such a plot looks like. Diagonal cells show the 
distribution of each variable. For instance, histograms or density plots can help you
understand the spread and central tendency of each variable. Off-diagonal cells show

Fig. 10.6: A pair plot for the Iris dataset. For example, it is clear how petal_length 
and petal_width (search for the plot that is in the last column and second-to-last 
position from the top) are clearly correlated, as the points lie nicely along the diagonal 
of the plot. On the contrary, sepal_length and petal_width do not seem to be 
that correlated, as the points do not show any clear relationship (search for the plot
that is in the first row, second position). You will get this pair plot by simply using
the seaborn function pairplot()
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scatter plots for each pair of variables. For instance, a cell plotting sepal_length 
against sepal_width will show how these two measurements vary together. By 
looking at these cells, you can get an idea about possible correlations between 
variables. By using colour coding you can see how different categories (like species
in the iris dataset) are distributed across the variable pairs in one shot. For example,
by looking at Fig. 10.6, it is clear how petal_length and petal_width (search 
for the plot that is in the last column and second-to-last position from the top) are 
clearly correlated, as the points lie nicely along the diagonal of the plot. On the 
contrary, sepal_length and petal_width do not seem to be that correlated, as 
the points do not show any clear relationship (search for the plot that is in the first
row, second position). For those of you interested, such a plot can be easily generated
automatically in Python by using the seaborn library.

Tip 10.4.2: How to Read a Pair Plot and Why to Use It 

Generally speaking, if you see a straight line (or almost a straight line) in 
a scatter plot, it indicates a linear relationship (correlation) between the 
variables. The slope of the line indicates the direction of the correlation 
(positive and negative). Different clusters in the scatter plots can indicate 
different groups or categories within the data. For instance, different species 
of flowers might form distinct clusters. Finally, points that are far away from 
others might be outliers and can be easily spotted in pair plots. 
Pair plots are typically used for Exploratory Data Analysis (EDA). They are 
extremely useful for getting a quick overview of the relationships between
multiple variables in your dataset. They help in identifying linear or non-
linear correlations between variables and patterns, for example, clusters,
outliers, and trends in the data.
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Confidence Intervals 

11.1 Introduction

Consider a random sample X1, X2, . . . , Xn . drawn from a population that follows a 
normal distribution N(μ, σ2)., where μ. is the unknown population mean and σ2

. is 
the population variance. Our primary goal in statistics is to es timate the unknown
population parameters (such as μ.) based on the sample we have. Since it is usually 
impractical or impossible to measure the entire population, we rely on the sample 
to mak e educated guesses about the population’s characteristics. Let us focus on
estimating the population mean μ.. A natural estimator for μ. is the sample av erage

. X̄ =
1
n

n∑

i=1
Xi

which summarises the central tendency of the data in our sample (see Chap. 4). 
However, an important question remains: How close is the sample mean X̄ . to the 
true population mean μ.. Since we are working with a finite sample, there will always 
be some degree of uncertainty or error in this estimate. This leads us to consider
the variability of X̄ . as a random variable, which depends on both the sample size
n. and the inherent variability in the population (as captured by σ2

.). Our goal is to 
quantify this uncertainty by constructing an interval that is likely to contain the true 
population mean with a certain level of confidence. This is the fundamental idea
behind confidence intervals for the mean.

Example 11.1.1: Sample and Population Averages 

Consider a standard normal distribution N(0, 1).. If you sample ten values 
from this distribution, you will get something similar to (your numbers 
may b e different, due to the random number seed and library you are
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using) {1.39669393, 0.32622233,−0.90867756, 1.20833914, 1.71912777,
2.52668955, 0.53764895,−0.45544861,−0.61459241,−1.66651912} .. 
We know that the population average is μ = 0., but if we calculate the average 
of our ten values, we will get X̄ ≈ 0.41., far from zero. If we sample 10000 
values and we calculate the average, we will get 0.001, a value much closer 
to zero. Thus, it is an important question of how close or far the sample
average from μ = 0. is. 

11.2 Confidence Intervals for the Mean

Let us consider the average of a random variable X that follows a normal distribution. 
We can calculate the interval of X in which a certain percentage 1−α . of values falls. 
α . is called the confidence value. In other words, we want to find out a specific xα . 

such that 

.P
(
−xα/2 ≤ X̄ ≤ xα/2

)
= 1 − α (11.1) 

In this case, we do not have an analytical formula for P(x)., and thus it is typically not 
possible to calculate the value of xα/2 .directly, since it would require the inversion of 
the function P(x)..1 It is useful to write Eq. (11.1) in terms of z = (X̄ − μ)/(σ/

√
n).. 

We do this because a generic normal distribution with mean μ. and variance σ2
. is 

transformed in a standard normal distribution with this change of variables. Let us 
continue with our calculation. We want to find the value zα/2 . such that 

.P

(
−zα/2 ≤ X̄ − μ

σ/
√
n
≤ zα/2

)
= 1 − α (11.2) 

with this notation we h ave

. − zα/2 ≤ X̄ − μ
σ/

√
n
≤ zα/2

−zα/2
(
σ
√
n

)
≤ X̄ − μ ≤ −−̄zα/2

(
σ
√
n

)

−X̄ − zα/2

(
σ
√
n

)
≤ −μ ≤ −X̄ + zα/2

(
σ
√
n

)

X̄ + zα/2

(
σ
√
n

)
≥ μ ≥ X̄ − zα/2

(
σ
√
n

)

1 Remember that the CDF for the normal distribution cannot be written in a closed analytical form, 
see S ect. 8.3. 
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which means we can rewrite Eq. (11.2)  a  s

.P

(
X̄ + zα/2

(
σ
√
n

)
≥ μ ≥ X̄ − zα/2

(
σ
√
n

))
= 1 − α (11.3) 

and we can interpret the equation by saying that the probability t hat the interval

.

[
X̄ − zα/2

(
σ
√
n

)
, X̄ + zα/2

(
σ
√
n

)]
(11.4) 

contains the probability mean μ. is 1 − α .. In other words once we have a sample and
we calculate X̄ ., we call the computed interval

.X̄ ± zα/2

(
σ
√
n

)
(11.5) 

a 100(1 − α).% confidence interval for the unknown population mean μ.. 
Intuitively speaking, a confidence interval provides a range of values which is 

likely to contain the true value of an unknown population parameter. The interval 
has an associated confidence le vel that quantifies the level of confidence that the
parameter lies within the interval (the 1 − α .). 

Tip 11.2.1: Meaning of Confidence Interval 

It is important to give a precise interpretation of a confidence interval. For 
example, a 95% confidence level means that if you were to take N (with 
large N) different samples and calculate a confidence interv al from each one,
approximately 95% of those intervals would contain the true (population)
average.

Example 11.2.1: Confidence Interval 

Imagine you are trying to find the average height of all students in a large 
school. Instead of measuring every student, you randomly select a sample 
of students and calculate their average height. However, you know that the 
sample average may not be exactly the same as the true average height of 
all students in the school. To account for this, you can compute a confidence 
interval. In general if you take multiple samples from the same population, 
each sample will likely have a different average height due to random vari-
ability. A confidence level (e.g. 95%) indicates how certain you are that
the true population parameter (e.g. the true average height) lies within the
interval. For example, a 95% confidence level means that if you were to take
100 different samples and calculate a confidence interval from each one,
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approximately 95% of those intervals would contain the true average height. 
The confidence interval is constructed around the sample mean and extends 
a certain number of standard errors (which measure the spread of the sample 
means) in both directions. If you calculate a 95% confidence interval for the 
average height to be between 160 and 170 cm, it means that you are 95% 
confident that the true average height of all students in the school is between 
160 and 170 cm. Or, more correctly, a 95% confidence level means that if
you were to take 100 different samples of students and calculate a confidence
interval from each, approximately 95% of those intervals would contain the
true average height.

Note that even with the well-known normal distribution, the evaluation of zα . 

requires numerical approaches. To evaluate zα ., which is the value corresponding 
to the desired confidence level for a standard normal distribution, you must rely on 
pre-calculated z-tables (you can find such tables in the book by Hogg, Tanis, and
Zimmermann [1], for example, Table Va in Appendix B is for the standard normal 
distribution) or you have to invert (numerically) the cumulative distribution function 
(CDF) of the standard normal distribution. F or example, For a 95% confidence
interval, we have α = 0.05. and z0.025 ≈ 1.96.. For a 99% confidence interval, we
have α = 0.01. and z0.005 ≈ 2.576.. 

If the assumption that the random variable follows the normal distribution is not 
true, we can still get an approximate confidence interval for the mean μ.. To assess 
how close (or far) a sample average from μ. (the population mean) is, we can use the 
central limit theorem that tells us that

.X̄ ∼ N
(
μ,
σ2

n

)
(11.6) 

Tip 11.2.2: Central Limit Theorem 

The central limit theorem (CLT) is one of the most important results in prob-
ability theory and statistics. It provides a powerful way to make inferences 
about population parameters based on sample data. Intuitively, the CLT states 
that the distribution of the sample mean of a sufficiently large number of in-
dependent and identically distributed (i.i.d.) random variables approaches a 
normal distribution, regardless of the shape of the original distribution. 
Consider a population with an unknown distribution and a random variable
X measuring this population. Suppose that we take multiple samples of size
n from this population. For each sample, we calculate the sample mean X̄ .. 
We will assume that the samples are independent, which means that the 
selection of one sample does not influence the selection of another. They 
must also be identically distributed, meaning each sample is drawn from the
same population distribution (another assumption we make). As the sample
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size n increases, the distribution of the sample mean X̄ . approaches a normal 
distribution (this is the basic result given in the central limit theorem). This  
is true regardless of the shape of the original population distribution, as long 
as the original distribution has a finite mean μ. and finite variance σ2

..  The  
mean of the sample mean X̄ . will be equal to the population mean μ., and the 
standard deviation of the sample mean (often called the standard error) will 
be equal to the population standard d eviation divided by the square root of
the sample size n:

. μX̄ = μ, σX̄ =
σ
√
n

Imagine you have a large bag of jelly beans with different colours. You 
want to know the average number of red jelly beans in small handfuls taken 
from the bag. Each handful you take is a sample. If you keep taking more 
samples (handfuls) and calculate the average number of red jelly beans in 
each sample, the distribution o f these sample averages will start to form a
normal distribution (bell curve), even if the distribution of red jelly beans in
the bag is not normal.

By the central limit theorem for large n the ratio (X̄ − μ)/(σ/
√
n). follows an 

approximate (the larger n, the better the approximation) standard normal distribution, 
and thus we can apply the reasoning we described in this section.

Pre-calculated tables exist nonetheless for other distributions, most notably for the 
t-distribution, χ2

.-distribution, and F-distribution, just to mention the most important 
ones. Nevertheless, if you are evaluating other statistical estimators (e.g. the median 
or other parameters in some statistical models), we cannot rely on the CLT or pre-
calculated tables. In s uch a case, one method to evaluate confidence intervals is with
the bootstrap approach (see Sect. 11.3). 

Tip 11.2.3: Confidence Intervals for Difference of Mean, Pro-
portions and More 

There are ways of calculating confidence intervals for various estimators. For 
example, suppose you are studying, if two means are equal or different, in this 
case you would need confidence intervals for the different of the means (for 
more information check Hogg, Tanis, and Zimmermann’s book in Section 7.2 
[1]). You can even estimate confidence intervals for proportions, in cases 
where you are studying, for example, successes and failures proportion (for 
more information check Hogg, Tanis, and Zimmermann’s book in Section 7.3 
[1]). Many more cases have been studied, and depending on what you are 
doing is a good idea to take a good statistics book and check what is available.
As you might have guessed by the references in this section, the book by
Hogg et al. is a very good place to start.
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11.3 Bootstrap Confidence Interv als

In general, as we have seen in the previous example, we need to know the distributions 
of the random variable Xi . and the distribution of the statistical estimator (e.g. the 
mean) that we want to compute. If we do not have this information, we do not have at 
our disposal clear methods to estimate confidence intervals (e.g. in general we do not 
have pre-computed tables). To do this, we need to use a numerical approach that can 
be generally applied to many cases regardless of the underlying distributions. The
most used and known is based on bootstrap resampling (first described by Efron
in [9]). 

Tip 11.3.1: Bootstrap in a Nutshell 

Bootstrap is a resampling approach that allows you to create multiple samples 
from your data. It is, in its most basic f orm, quite simple. Starting from a
sample D = {xi}Ni=1 . of size N , a bootstrap sample consists in selecting N 
elements from D with r epetitions (we discuss this resampling approach in
Sect That means that some of the data points will appear multiple times 
in the bootstrap sample, but this method will allow you to generate multiple 
samples that you can use to study the statistical properties of an estimator.

. 3.6).

Unlike traditional parametric methods that rely on specific distributional assump-
tions (such as normality), the bootstrap uses the sample data itself to approximate 
the sampling distribution. The basic steps to calculate confidence intervals using the
bootstrap method are the following:
1. Resampling: From the original sample of size n, generate B bootstrap samples 

by randomly sampling, with replacement, n observations from the original data. 
Each bootstrap sample will have the same size n, but with some data points 
repeated and others omitted. 

2. Estimate the Statistic: For each of the B bootstrap samples, compute the desired 
statistic (e.g. sample mean, median, etc.). 

3. Construct the Distribution: The collection of B statistics forms the so-called
bootstrap distribution, which approximates the sampling distribution of the statis-
tic.

4. Determine the Confidence Interval: From the bootstrap distribution, calculate
the desired confidence interval. This can be done numerically from the distribution
obtained.

Example 11.3.1: Bootstrap for Confidence Interval Evalua-
tion 
Suppose we have a dataset of n = 100. observations, and we want to estimate 
a 95% confidence interval for the sample mean using the bootstrap. We
follow these steps:
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• Generate B = 1000. bootstrap samples from the original data (with repe-
titions). 

• Calculate the sample mean for each of the 1000 bootstrap samples. 
• Sort the means and select the 2.5th and 97.5th percentiles from the boot-

strap distribution to form the 95% confidence interval.

The bootstrap method is especially useful when the distribution is unknown. 
It provides a flexible and robust way to estimate confidence intervals without 
relying on strict parametric assumptions. However, it can be computationally 
intensive, especially with large datasets or complex statistics, as it requires 
generating man y resamples and recalculating the statistic of interest.

The goal of this section was only to give you an idea about how bootstrap works, 
without the presumption of giving a proper treatment of the subject. For that I refer
the reader to the book by Chernik [10] that offers a very good discussion of the
method, its limitations, and applications.



Chapter 12 
Hypothesis Testing 

12.1 Disclaimer

Hypothesis testing is a slightly more advanced topic in statistics and requires the 
knowledge of more topics than what we have discussed in this short book. My goal 
is to explain, with a few examples, the main idea behind hypothesis testing. I will 
not go into all the different tests and how to use them, as there are many books that
do that in a complete and clear way (see, e.g. [1]). My hope is that at the end of this 
chapter you will have a basic understanding of how hypothesis testing works and
understand its basic principles. Let us start.

12.2 Hypothesis Testing: The Basic Idea

Consider the following example. Suppose that you are a trainer and you want to 
check if a new training regime will make your athletes faster. Let us indicate b y X
the time that an athlete can run 100 m. With the old training plan, you find, say,
X̄ = 12. s, with X̄ . indicating the mean of X . After training with the new plan for
a while, you find that X̄ = 11.5. s. How can we test whether the 0.5 s decrease in 
running time in the average is real or if it is only due to luck (ma ybe the wind was
favourable) or, in other words, if it is not a real effect?

Such a test starts with a careful statement of the claims being compared. These 
claims are called in statistical terms hypotheses. T he claim tested is called the
null hypothesis and is often indicated by H0 .. The test must be designed to assess 
the strength of evidence against the null hypothesis. The null hypothesis is tes ted
against a competing claim, called the alternative hypothesis (and indicated with H1 . 
or Ha .). Note that it is much easier to demonstrate that a statement is false. This is 
because proving something false requires only one counterexample, while proving 
something is true requires proving it in all possible s ituations. This is why we use
a null hypothesis. The term null is used since this hypothesis claims that there is
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no difference between two statistical measures (in our example, it would mean that 
the mean of the time needed to run 100 m is the same with the two training plans). 
T ypically, the alternative hypothesis is the claim you are trying to prove true. Proving
that Ha . is true means proving that H0 . is false. Consider our example. As an example, 
our hypotheses could be:

• Null Hypothesis H0 .: mean 100 m running time with athletes trained with the
second plan μ = 12. s 

• Alternative Hypothesis H1 .: mean 100 m running time with athletes trained with 
the second plan μ < 12. s 

The concept revolves around obtaining a numerical value (we will be more specific 
later) to assess the comparison between the two means and determine the probability 
(referred to as the p-value) of the truth or falsehood of H0 .. Subsequently, by estab-
lishing a threshold for this probability that aligns with our acceptance criteria, we 
can determine the validity of each hypothesis.

12.3 An Example

Let us try to apply the method described intuitively to some real numbers. Consider 
a group of athletes again. Let us now imagine that the running times of athletes on a
team that have trained in the past years are normally distributed, and X ∼ N(12, 2.5). 
(μ = 12. is measured in seconds and σ2 = 2.5. in sec 2 .). We want to test a group of 
new athletes and check if they are slower on average or not. Suppose that the new
group, say of eight athletes, has an average of X̄ = 13.. We will assume that the 
standard deviation of athletes is known and is 2.5 s. That means that we will not use 
the values coming from the athlete samples, but the one we know to be true (maybe 
from scientific studies on athletes). This is an important point, as using the standard
deviation estimated from the samples will make our testing more complicated. We
will discuss this later in this chapter.

Now to check if the new athletes are slower, we need to ask the question of what
is the probability of obtaining X̄ = 13. or greater when μ = 12.. This is called the 
p-value associated with X̄ = 13.. 

.p-Value = P
(
X̄ > 13

)
= P

(
X̄ − 12

√
2.52/82

≤ 13 − 12
√

2.52/82
; μ = 12

)

(12.1) 

that is 
.p-value = 1 − Φ(3.2) = 1 − 0.999 = 0.000687 (12.2) 

If this value is small (as it is in this exa mple), we tend to reject the hypothesis that
μ = 12. for this new group of athletes. So, indeed, they are slower than the rest. In 
this example, we can write our hypotheses explicitly (with μ. the average running 
time of 100 m of the new group).
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• Null Hypothesis H0 .: average 100 m running time of the new group of athletes
μ = 12. s 

• Alternative Hypothesis H1 .: average 100 m running time of the new group of
athletes μ > 12. s 

For example, we could decide to reject H0 . if the p-value is below 0.05 (as it is said, 
with a confidence of 5%). Or, if we want to be really sure, if the p-value is below
0.01. This p-value is also indicated with α . and can be interpreted as the probability
of rejecting H0 . when H0 . is true (type I errors). Let us suppose that our alternative
hypothesis is:

• Alternative Hypothesis H1 .: average 100 m running time of the new group of
athletes μ � 12. s 

Then we would need to calculate

.p-value = P
(
X̄ > 13 and X̄ ≤ 13

)
= (12.3) 

which would result in two times the value we found abo ve. Thus we would have

.p-value = 0.001374 (12.4) 

Also in this case we would reject the hypothesis that the average of the new group is
μ = 12., or in other words we would accept H1 .. 

Tip 12.3.1: Calculation of p-Value 

To understand Eq. ( one needs to know that if12.1) X1, X2, . . . , Xn . are obser-
vations of a random variable that distributed accordingly to N(μ, σ2)., then 
the mean

.X̄ =
1
n

n∑

i=1
Xi (12.5) 

is distributed accordingly to N(μ, σ2/n).. For a proof, you can check Corol-
lary 5.5-1 in [1]. So when w e want to calculate, for a random variable
X ∼ N(μ, σ2)., say, the f ollowing probability

.P(X̄ < c) (12.6) 

we can wr ite
.P(X̄ < c) = P

(
X̄ − μ
σ2/n

<
c − μ
σ2/n

)

(12.7) 

since we can scale both sides of the inequality. Now it is important to note
that the random variable

.
X̄ − μ
σ2/n

∼ N(0, 1) (12.8)
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and thus is easy to calculate

.P

(
X̄ − μ
σ2/n

<
c − μ
σ2/n

)

(12.9) 

since we can even look it up in tables for the standard normal distributions. 
Note that this probability is the CDF of the standard normal distribution
Φ(x). given b y

.Φ(z) =
∫ z

−∞

1
√

2π
e−

x2
2 dx (12.10) 

12.4 Test of One Mean: Variance Know n

In this case H0 . is typically of the form H0 : μ = μ0 .. There are three possibilities:
(i) μ. has increased, H1 : μ > μ0 ., ( ii) μ. has decreased, H1 : μ < μ0 ., and (iii) μ. has 
changed, but we do not know in which direction, H1 : μ � μ0 .. 

To test this, you would get a random sample of n observation and measure the
mean X̄ .. You will then assess the closeness, in terms of standard deviation of X̄ ., 
σ2/n.. To measure this we will use t he random variable

.Z =
X̄ − μ0
√
σ2/n

=
X̄ − μ0

σ/
√
n

(12.11) 

which is distributed according to the standard normal distribution. To test, for exam-
ple, the hypothesis μ > μ0 ., you would need to calculate

.P(Z > Z0) = p-value = P
(
X̄ > 13

)
= P

(
Z̄ − μ0
√
σ2/n2

>
X̄ − μ0
√
σ2/n2

)

(12.12) 

and then reject or not H0 . according to the probability value. For a longer discussion, 
check Chapter 8 in [1]. 

12.5 Test of One Mean: Variance Unkno wn

We will need a random variable (like Z) that we can use to perform the same kind 
of analysis we have done in the previous section, but this time with the variances 
estimated from the samples. A natural choice is the variable (the one reason that we
cannot explore here is that T is used to evaluate confidence intervals for means)

.T =
X̄ − μ
S/
√
n

(12.13)
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where S2
. is the unbiased variance of the sample. The process works exactly in the 

same way as before, but to calculate the probabilities, we cannot use the normal 
distribution. In fact, it must be noted that the random variable T is not distributed 
normally, but accordingly to the so-called t-distribution. This is symmetrical and 
similar to the Gaussian (normal) distribution, but with heavier tails. Defining and
discussing the t-distribution will go well beyond the scope of this short book. If you
are interested in better understanding it, I suggest that you study Chapter 8 from [1]. 
Calculating the p-values in this case is as easy as before, thanks to many numer ical
software packages such as Python, SPSS, R, etc.

Warning 12.5.1: Hypothesis Testing: More Complex Cases 

The types of test get more and more complicated the more assumptions you 
relax. For example, maybe you do not know the standard deviations, and in 
addition they are different in the two groups. The most important assumption 
in hypothesis testing is that the random variables are normally distributed. If 
this is not the case you have to use complex tests that do not use the normal
distribution assumption. For example, here is a couple of tests that do not
rely on the normality assumption to give you an idea.

•  The Wilcoxon Rank-Sum Test, also known as the Mann–WhitneyU Test, 
compares the medians of two independent samples to determine if they 
are drawn from the same population or if one tends to have larger values 
than the other. The test does not assume normality of the data but requires 
that the two samples have similar shapes of distributions. 

•  The  Kruskal–Wallis Test is a non-parametric alternative to the one-
way ANOVA test and is used to determine whether there are statistically 
significant differences between the medians of three or more independent 
groups. Like the Wilcoxon Rank-Sum Test, the Kruskal–Wallis Test does
not require the assumption of normality but assumes that the shapes of
the distributions of the groups are similar.

Tip 12.5.1: Hypothesis Testing in Practice 

To summarise things a bit, let us sketch the process for doing hypothesis 
testing. Here is a short overview of the steps needed, described in an intuitive 
and somewhat super ficial way, which I hope will help you understand the
process.

1. State the hypo theses:

• H0 .: null hypothesis—the statement we w ant to test
• Ha .: alternative hypothesis—the opposite of the null hypothesis (what

we want to test)
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2. Choose the significance level (α .): 

• Typically set to 0.05. (5%) or 0.01. (1%). 

3. Collect dat a:

• Gather relevant data through observation or experimentation.

4. Calculate test sta tistic:

• Depending on the hypothesis being tested and the type of data col-
lected, use the appropriate statistical formulae to compute the test 
statistic (e.g. Z or T). Some common test statistics include (but the list
is far from exhaustive):
– For comparing means: Independent Samples t-test, Paired Samples 

t-test, One-Way Analysis of Variance (ANOVA), or Wilcoxon Rank-
Sum test 

– For comparing proportions: z-test for proportions or Fisher’s Exact 
Test 

– For correlation: Pearson correlation coefficient or Spearman rank 
correlation coefficient for non-parametric data 

– For comparing variances: F-test or Levene’s Test

5. Determine critical value or p -value:

• Depending on the test statistic and the hypothesis being tested, find 
the critical value from t he appropriate statistical table or calculate the
p-value.

6. Make a decision:

• If the test statistic falls in the critical region (reject region) or if the
p-value is less than α ., reject the null hypothesis. 

• If the test statistic falls outside the cr itical region or if the p-value is
greater than α ., fail to reject the null hypothesis.

12.6 p-Values: An Intuitive D efinition

When hypothesis testing is performed, the p-value is, intuitively speaking, the proba-
bility of obtaining a result that is the one that was actually observed i f H0 . is true. You 
will then reject the null hypothesis if the p-value is less than a predetermined value, 
often 0.05 (or 5%) or 0.01. Statistical software will give you p-values automatically, 
without needing to know how to calculate them, but it is important to be able to
interpret the results correctly.
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12.7 Type I and Type II Errors in Hypothesis T esting

It is useful to summarise some terminology on errors that are often used in statis-
tical testing. A Type I error occurs when the null hypothesis (H0 .) is true, but we 
incor rectly reject it.

Definition 12.7.1: Type I Error 

A Type I error occurs when the null hypothesis (H0 .) is true, but we incor -
rectly reject it.

This is also known as a “false positive” finding. The probability of committing 
a Type I error is often denoted by α ., which is the level of significance used in the 
test. For example, if α = 0.05., it means that there is a 5% risk of rejecting the null 
hypothesis even if it is true. A Type II error occurs when the null hypothesis (H0 .) 
is false, but we incorrectly f ail to reject it.

Definition 12.7.2: Type II Error 

A Type II error occurs when the null hypothesis (H0 .) is false, but we 
incorrectly f ail to reject it.

This is known as a “false negative” finding. The probability of committing a Type 
II error is denoted by β.. Type II errors are inversely related to the test po wer, which
is defined as 1 − β. (the probability of correctly rejecting a false H0 .).
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Correlation and Linear Regression 

13.1 Corr elation

Correlation is a statistical measure that expresses the extent to which two variables 
are (linearly) related. It is a common tool used in statistics to analyse how one 
variable changes in relation to another. The most familiar measure of dependence 
between two quantities is t he so-called Pearson correlation coefficient, denoted as
r , which is a measure of the linear correlation between two variables X and Y . It
has a value between +1 and −.1, where 1 indicates total positive linear correlation 
(if one variable grows, the other does that too), 0 is no linear correlation ( the two
variables are not related in any form), and −.1 is total negative linear correlation (if 
one variable grows, the other decreases). The formula for the Pearson correlation 
coefficient r between two variables x and y is given by

.r =

∑n
i=1(xi − x)(yi − y)

√
∑n

i=1(xi − x)2
√
∑n

i=1(yi − y)2
(13.1) 

where n is the number of pairs of values, and xi . and yi . are the individual sample 
points indexed with i. x . is the mean of the x values, and y . is the mean of the y va lues.

Definition 13.1.1: Pearson Coefficient r 

Pearson correlation coefficient r between two variables x and y is defined by

.r =

∑n
i=1(xi − x)(yi − y)

√
∑n

i=1(xi − x)2
√
∑n

i=1(yi − y)2
(13.2) 
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where n is the number of pairs of values, and xi . and yi . are the individual 
sample points indexed with i. x . is the mean of the x values, and y . is the mean 
of the y values.

A positive correlation indicates that as one variable increases, the other variable 
tends to also increase. A negative correlation indicates that as one variable increases, 
the other variable tends to decrease. Given Eq. (13.1) you may see how r can be ex-
pressed in terms of the standard deviations of the two quantities. Indeed r can be
written as

.r =
cov(x, y)
σxσy

(13.3) 

where cov(x, y). is called covariance between x and y and is a measure of how two 
random variables vary together. It is defined as the expected value of the product of 
the deviations of two variables from their respective means. For two random variables
x and y, with means x . and y ., respectively, the covariance is given by the formula:

.cov(X,Y ) = E[(x − x)(y − y)] (13.4) 

where E. denotes the expected value operator (if you do not remember what the
expectation value is, check Sect. 4.2), or in another f orm

.cov(X,Y ) = 1
n

n∑

i=1
(xi − x)(yi − y) (13.5) 

Definition 13.1.2: Covariance 

The covariance between two random v ariables is defined by

.cov(X,Y ) = E[(x − x)(y − y)] (13.6) 

with means x . and y . of the random variables X and Y , respectively.

If the covariance is positive, it indicates that the two variables tend to increase or 
decrease together. In contrast, if it is negative, one variable tends to increase when 
the other decreases. A covariance of zero indicates that there is no linear relationship 
between the variables. Note, however, that zero covariance does not imply that the 
variables are independent unless they are jointly normally distributed (if you do not
understand this point, do not worry about it).
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Warning 13.1.1: The Pearson Coefficient and Non-linear Re-
lationships 

The Pearson correlation coefficient measures the linear relationship between 
two variables. It is crucial to emphasise that it only captures the degree 
to which a linear relationship exists between the variables. If the relation-
ship is non-linear, the Pearson coefficient may not accurately represent the 
strength of the association. In cases of non-linear relationships, other types
of correlation coefficients, such as Spearman’s rank correlation coefficient
or Kendall’s τ ., might be more appropriate as they can capture monotonic 
relationships, whether linear or not. 
That being said, it is still possible to compute the Pearson coefficient for 
any two variables, but one should be cautious in interpreting its value if the 
underlying relationship is known or observed t o be non-linear. The coeffi-
cient might be low even if there is a strong non-linear relationship because
Pearson’s method is only looking for linearity.

To see why one must be careful, let us see an example. Suppose we generate
points by adding some noise to the formula y = x2

..  In  F  ig. 13.1 you can see the data 
with the red line that indicates the from which the data have been generated (y = x2

.). 
The black and the red functions are clearly strongly correlated, but if you calculate 

the Pearson coefficient, you will ge t−.0.008. This would let you think that the data are 
not correlated, while the contrary is true. If you use, instead of the square function,
y = x ., the Pearson coefficient r will be 0.96 this time, indicating a strong correlation. 
So, to summarise, be careful when using statistical formulas without understanding 
them. 

Fig. 13.1: The black points have been generated by adding random uniform noise
with a magnitude of ±3. to the red line (function y = x2

.). If you evaluate r (the 
Pearson coefficient) between the black points and the red line, you will get −.0.008 
indicating no correlation, something that is clearly not true
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There are many other ways of assessing correlation. Some of the most known are 
probably Spearman’s Rank Correlation Coefficient (originally described in 1904 by
Spearman in [23]) and Kendall’s Tau (proposed in 1938 by Kendall in [24]) between 
others. If you need to assess correlation, be careful in which way it is done, and be
aware of the limitations of the different methods.

13.2 Regression Analys is

Regression analysis is a statistical method used to model the relationship between 
a dependent variable (generally continuous) and one or more independent variables 
(called features). The main idea behind regression is to understand how changes 
in the independent variables influence the dependent variable, enabling us to make 
predictions, identify trends, and quantify the strength of relationships between vari-
ables. At its core, regression helps answer questions like: If I change one variable, 
how does it affect ano ther? For instance, how does the number of hours studied
affect exam scores? Or, in economics, how does the price of a product influence
its demand? By fitting a mathematical model to the data, regression allows us to
estimate the effects of one or more variables on the outcome.

The simplest form of regression is linear regression, where the relationship be-
tween the variables is modelled as a straight line. If we have only one independent 
variable, we call it simple linear regression (while when we have multiple inde-
pendent variables, we call it multiple linear regression), and the model takes the
following form:

. y = α1x + α0 + ε

where y is the dependent variable (what we are trying to predict, the outcome), x is 
the independent variable (the feature, or the input variable), α0 . is the intercept (the 
value of y when x = 0.), α1 . is the slope of the line, and ε . represents the random error 
or noise in the data.

Tip 13.2.1: Regression Beyond Linear Cases 

Regression can be applied also in cases when the relationship between the 
independent and the dependent variables is not linear. This is called non-
linear regression and is widely used in many cases. 
For example, non-linear regression is often used in biology to model pop-
ulation growth. Unlike linear relationships, biological systems frequently 
exhibit growth patterns that start slow, increase rapidly, and then level off 
as resources become limited. Another example is if we want to model the
relationship between drug dosage and the concentration of the drug in the
bloodstream over time. The absorption, distribution, metabolism, and ex-
cretion of drugs often follow non-linear patterns due to the complexities of
biological systems.



13.2 Regression Analysis 141

At an intuitive level, regression provides us with a way not only to describe and 
explain relationships in the data but also to make predictions about future outcomes
based on the patterns we discover.

13.2.1 Linear Re gression

Very often, you will find yourself trying to understand trends. A trend (in the context 
of statistics) refers to the overall direction in which something tends to move over 
a period of time. It represents a pattern or general tendency of the data to increase,
decrease, or remain stable.

Definition 13.2.1: Trend 

A trend (in the context of statistics) refers to the overall direction in which 
something tends to move over a period of time. It represents a pattern or a
general tendency of the data to increase, decrease, or remain stable.

For example, you may hear in the news that the trend for buying new smartphones 
is flattening out. This means that people buy fewer smartphones than before. This 
gives general and high-level information on how a certain phenomenon (in this 
example buying a new smartphone) changes o ver time and what to expect in the
future. Generally, a trend is evaluated with linear regression.1 Suppose you have 
some data (e.g. the number of smartphones that people buy every month in a specific 
country) that we will indicate with yi . (the i may indicate in our example the month). 
In our example, you would like to explore the relationship of yi . with time (the 
month). The yi . are called dependent, outcome,  or  response variable. The time 
in our example, which we can indicate with xi ., is often called the independent, 
predictor,  or  explanatory variable (often the xi . are called features in a machine 
learning language). In linear regression you assume that there is a linear relationship 
between the variables. I n a more mathematical form

.ŷi = α1xi + α0 (13.7) 

Tip 13.2.2: Regression 

Regression is a method in statistical modelling that allows for the quantifica-
tion of the relationship between a dependent variable (referred often as the 
outcome, target, or label) and one or more independent variables (known as 
predictors, features, or input features). This method is widely used to predict
results, even when complex relationships exist.

1 A trend can be assessed with other methods, but linear regression is the m ost widely used by far.
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In general you may have more independent variables, which we can indicate with 
x[j]i . with j = 1, . . . , n.. In this case the linear relationship w ill assume the form

.ŷi = α1x
[1]
i + α2x

[2]
i + . . . + αnx

[n]
i + α0 =

n∑

j=1
αj x

[j]
i + α0 (13.8) 

Our task is to find the αi ., known as coefficients, based on some criterion. Since 
we have some data (the yi .), we want to be able to find the coefficients αi . that will 
make the right side of Eq. (13.8) as close as possible to the expected values (the yi .). 
Closeness is measured in this case with the so-called Mean Squared Error ( MSE)
given by the formula

.MSE =
1
N

n∑

i=1
(yi − ŷi)2 (13.9) 

where we have indicated with ŷi . 

.ŷi = α1x
[1]
i + α2x

[2]
i + . . . + αnx

[n]
i + α0 (13.10) 

When you use statistical software (like Python or R), the coefficients that you w ill
get are the ones that minimise the MSE.

Basically you want to find the coefficients αj . that minimise the MSE. This is what 
software packages and libraries do behind the scenes. Note that for linear regression 
we can solve the problem analytically. Meaning that we can write exact formulas for 
the coefficients that minimise the MSE, but that goes beyond the scope of this book. 
If you are interested in learning more about this, you can check Section 4.3.5 in my
book Fundamental Mathematical Concepts for Machine Learning in Science [16], 
but to understand it you will need a s olid foundation in linear algebra.

13.2.2 Coefficient of Determination

In the previous section, we have discussed how the determination of the parameters
αi . works (albeit in a rather superficial and intuitive way). But it is important to 
have some way of assessing how “good” or “bad” a fit is. You can calculate such 
parameters for all kinds of data, even if they are not linear at all, so care is required
in applying blindly linear regression.

To assess the “goodness” of the regression (sometimes also called fit)  is  by  us  ing
the coefficient of determination that is typically denoted by R2

. or r2
.. In what follows 

I will use the R2
. notation. Intuitively , R2

. is the proportion of the variation in the
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dependent variable that is predictable from the independent variable(s). To calculate 
it we need two quantities: SSres . and SS tot .. 

.

SSres =

N∑

i=1
(yi − ŷi)2

SStot =

N∑

i=1
(yi − ȳ)2

(13.11) 

where 

.ȳ =
1
N

N∑

i=1
yi (13.12) 

is the average of the yi .. Then R2
. is given b y

.R2 = 1 − SSres
SStot

(13.13) 

and this can rewr itten as
.R2 = 1 − SSres

SStot
=

SSreg

SStot
(13.14) 

where we have w ritten
.SSreg = SStot − SSres (13.15) 

Equation (13.14) can be interpreted as the ratio of the var iance that the regression
explains (SSreg .) to the total variance of the data (SStot .). The formal mathematical 
proof goes beyond the level of this book, and thus I will not report i t here in this
section. An intuitive understanding of the meaning of R2

. will serve you well. If you 
are interested in knowing how to prove it, you can check Appendix A. 

Tip 13.2.3: R2
. Use Tips 

R2
. represents the proportion of the variance in the dependent variable (re-

sponse) that is explained by the independent variable(s) in the model. Values
range from 0 to 1. When R2 = 0., the model explains none of the v ariability
in the data. When R2 = 1., the model explains all of the variability in the 
data. For example, if R2 = 0.8., it means 80% of the variation in the depen-
dent variable is explained by the model, while 20% remains unexplained. In
general a high value for R2

. indicates that a linear fit works well, but that does 
not necessarily mean that a linear regression is the right model! Keep that in 
mind.
R2

. assumes a linear relationship between the variables. If your R2
. is low, 

it might indicate that the relationship is non-linear. In such cases, consider
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applying transformations to your variables or using non-linear models to 
model the relationship more accurately.
Finally, R2

. gives a sense of how well the model explains the data, but it does 
not provide information on prediction accuracy. For predictive performance, 
use metrics like Mean Squared Error (MSE), Root Mean Squared Error 
(RMSE), or Mean Absolute Er ror (MAE). Additionally it is very important
to combine R2

. with visual checks (e.g. residual plots) to diagnose model 
per formance more precisely.

13.3 Further Re adings

Generally speaking, regression is a way of modelling the dependence of a continuous 
variable from some independent features (one or often many) (not only in the linear 
case). The most known method is linear regression, but it is possible to model any 
kind of relationships with v arious methods. If you are interested in learning more
about regression, the famous book by Hastie et al. [25] (the version cited is the one 
with examples in Python, but in case you are interested you can find the second 
edition of it with code in R) is a great place to start. A lesser-known but highly
comprehensive book is Elements of Statistical Learning by Hastie et al. [26], which 
provides an in-depth exploration of regression problems. Chapter 12 in Casella and 
Berger’s book Statistical Inference [2] is also worth checking.



Chapter 14 
Ethics and Best Practices 

14.1 Steps of a Statistical P roject

The following list contains seven steps that are needed in almost all statistical projects. 
In it, I tried to give some tips and hints to help beginners identify the most important 
aspects and challenges to pa y attention to.

1. Write one or multiple research questions 

What to do: Start by brainstorming about what you want to know or understand 
better within your field of interest. Consider what questions have not been fully 
answered or what areas need fur ther exploration. To do this do a literature research
(a very good tool to do that is Google Scholar at https://scholar.google.com/)  on  
the topic you are interested in, study the papers, and try to identify relevant 
questions. This is not easy, especially if you are at the beginning of your scientific 
career, and help from a more senior profile (postdoc or professor) will probably
be necessary. See Chap. 3 for more details. 
Hints: Keep your research questions focused and specific. Avoid overly broad 
questions that are difficult to address within a single study. At the beginning it is 
very useful to reproduce some of the main results existing in literature if possible 
or at least try to get your hands on existing datasets and verify some of the results. 
This will give you a better understanding of the data you might need and the 
analysis you will need to do. 

2. Design multiple hypotheses 

What to do: Begin by reviewing the existing literature related to your research
questions. This can help you identify potential hypotheses based on previous
findings or theories. Formulate hypotheses (see Chap. 3) that can be disproved 
with experiments. Make them as concrete as possible. Remember a hypothesis is 
an educated guess of a possible outcome of an experiment. 
Hints: Make sure that your hypotheses are testable and have clear predictions
about the relationship between variables. Consider both null and alternative hy-
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potheses to cover different possibilities. Avoid vague terms, and be precise about 
the variables and the expected relationship between them. Remember that your 
hypotheses must be disprovable with experiments, so clearly define the indepen-
dent variable (the factor you manipulate or observe) and the dependent variable 
(the outcome you measure). Finally a good hypothesis should be able to be 
proven false. It should be possible to collect data that could potentially refute 
the hypothesis. 

3. Data Collection 

What to do: Define your target population carefully , considering who or what
you want your research findings to generalise to. Plan your data collection strategy
in advance, including how you will collect data (e.g. surveys, experiments, and
observations) and any tools or instruments you will use.
Hints: Choose a sampling approach (see Chap. 3) that best suits your research 
objectives and resources. Random sampling is often preferred for its ability to 
produce representative samples, but other methods may be appropriate depending 
on the study design. 

4. Design the experiments 

What to do: Clearly identify the variables you will manipulate (independent vari-
ables) and measure (dependent variables) in your experiment according to your 
hypotheses. Pilot test your experimental design before conducting the main study 
to identify and address any potential issues or limitations. If you are collecting 
data from people with surveys, try them with friends or some test subject. You 
will discover what does not work and how to fix it before wasting lots of time and
money.
Hints: Consider potential confounding variables that could affect your results and
plan ways to control for them during the experiment.

Warning 14.1.1: Cofounding Variables 

Confounding variables are variables (sometime not even measured) that 
can influence both the dependent variable and independent variable at the 
same time, potentially leading to a spurious association or masking a real 
association between the variables being studied. 
Consider a study investigating the relationship between physical activity 
(independent variable) and heart disease (dependent variable). Socio-
economic status (SES) could be a confounding variable if SES is associ-
ated with the level of physical activity (e.g. people with higher SES may 
have more access to gyms and time for exercise). SES also influences the 
risk of heart disease (e.g. people with higher SES may have better access
to healthcare and healthier lifestyles). In this case, failing to account for
SES could lead to incorrect conclusions about the relationship between
physical activity and heart disease.
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5. Collect Data 

What to do: Follow your data collection plan closely to ensure consistency and 
reliability in your data. Consider the ethical implications of your data collection 
methods, especially when working with human subjects, and ensure that you 
obtain informed consent when necessary (in written form if necessary). Note 
that this may take months and will make your study more challenging but is a 
necessary step when dealing with human subjects. 
Hints: Keep detailed records of your data collection process, including any un-
expected observations or deviations from the plan. R emember we mentioned the
notebook? Always keep every information in your notebook, positive, negative,
and wrong. And do not forget to put a date on your notes.

6. Analysis
What to do: Do the analysis you planned. Describe first the data with mea-
sures of central tendency (see Chap. 4), dispersion (see Chap. 5), and position 
(see Chap. 6). Use visualisation to show your data and to better understand its 
distribution. 

7. If applicable, do hypothesis testing (inferential statistics) 

What to do: Choose appropriate statistical tests based on the nature of your 
hypotheses and the type of data you have collected. Interpret the results of your 
hypothesis tests carefully, considering both statistical significance and practical 
significance in the context of your researc h questions.
Hints: Familiarise yourself with the assumptions underlying the statistical tests
you plan to use and check whether they are met by your data (see Chap. 12 for a 
discussion).

In T able 14.1 you will find a short summary and overview of the steps that you 
can follow in any project with a statistical focus. Of course this list is not applicable 
to all projects, but it is a good start t hat will help you in structuring your work.

14.2 Reproducibility, Replicability, Transparent Reporting, and
Documentation

Transparent reporting and documentation are critical components of scientific re-
search that ensure that the findings are credible, reproducible, and verifiable. One 
of the main goals of any scientific study is to make sure that it is reproducible. 
Any researcher interested in doing so should find in your report or paper enough
information to reproduce your study. This is why transparency in reporting a study is
paramount. Let us first discuss what reproducibility means in the context of statistics.
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Table 14.1: This table outlines the essential steps involved in any statistical project, 
where the primary objective is to analyse a sample of objects and infer key properties
from collected data

Step Description Remarks 

1 Write one or multiple research ques-
tions

A good research project starts always with one (or 
multiple) research question (RQ). We can loosely 
define it as a concise, focused inquiry formulated 
to address a specific concern or knowledge gap
within a broader topic area

2 Design multiple hypotheses Once you formulate your RQ, you will need hy-
potheses. Something you can disprove or verify. 
Hypotheses can be loosely defined as a prediction 
about the relationship between two or more vari-
ables. It can be described as an educated guess
about what happens in an experiment

3 From hypotheses design population 
eligibility criteria, sampling ap-
proach (random, non-random, etc.), 
and data collection strategy (define
budget, sample size, etc.)

This step is fundamental to be able to get the right 
data samples for your study. Remember that pop-
ulations must be defined to be useful in answering 
your RQs and to support (or disprove) your hy-
potheses

4 Design the experiments An experiment is a methodical procedure carried 
out with the objective of verifying or falsifying 
one or multiple hypotheses. Experiments invol ve
manipulating one or more variables to determine
their effect on a certain outcome

5 Collect data Your main task is to get the data you need from 
your sample. This ma y involve surveys, measure-
ments, etc.

6 Do the analysis Do the analysis you planned. Describe first the 
data with measures of central tendency (see
Chap. 4), dispersion (see Chap. 5), and position 
(see Chap. 6). Use visualisation to show your data 
and to better understand its distribution

7 If applicable do hypothesis testing 
(e.g. is group A different in some wa y
than group B?).

Hypothesis testing in statistics is a method used to 
evaluate the validity of a claim about a population 
parameter by anal ysing sample data

14.2.1 Repr oducibility

Reproducibility refers to the ability to duplicate the results of a study or experiment 
using the same data and statistical methods. It is a cornerstone of scientific research 
that ensures that the findings are reliable, credible, and verifiable. Reproducibility 
is achieved when independent researchers can obtain the same results following the
methodology of the original study, using the same data, performing the same data
processing and analysis.
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Warning 14.2.1: Reproducibility and Replicability 

In research, we talk about reproducibility and replicability. They have dif-
ferent meanings, and both are important in research. 
Reproducibility refers to the ability to duplicate the results of a study using 
the same data and methods as the original study. It means that independent 
researchers can take the original dataset and the exact analysis pipeline (in-
cluding code, software, and statistical methods) to obtain the same results. It 
ensures that the data processing and analysis steps are transparently reported 
and can be followed by others, confirming the reliability of the computational 
aspects of the research. 
Replicability refers to the ability to duplicate the results of a study by con-
ducting a new study under the same experimental conditions. This involves 
collecting new data but following the s ame experimental protocol as the
original study. The focus here is on verifying the findings by generating
new data. It ensures that the scientific findings are robust and can be ob-
served under the same conditions but with different samples, confirming the
generalisability of the results.

There are several aspects that are needed to make a study reproducible.

• Data availability: The original data used in the study must be accessible to other 
researchers. This includes raw data, cleaned data, and any intermediate datasets 
generated during the analysis process. In Sect. 14.2.2 I list a few of the most 
known websites that allow you to share data. 

• Methodological transparency: The methods and procedures used in the s tudy
must be thoroughly documented. This includes the design of experiments, sam-
pling techniques (see Chap. 3), data processing steps, and statistical analyses. 

• Code and software: Any code or software scripts used for data analysis should 
be available. This ensures that others can execute the same analysis steps, using
the same parameters and algorithms. In Sect. 14.2.2 I list a few of the most known 
websites that allow you to share code. 

• Documentation: Detailed documentation is crucial. This includes descriptions 
of the data and of the data collection strategy, explanations of the analysis steps, 
justifications for methodological choices, and notes on any assumptions made 
during the analysis. 

• Results verification: The ability to replicate t he results strengthens the validity
of the original findings. Researchers should aim to provide all the necessary
information so that others can independently verify the results.

Reproducibility is fundamental for various reasons. The main one is scientific in-
tegrity. Reproducibility allows for the verification of results and ensures that sci-
entific conclusions are based on reliable evidence. Forcing researchers to make a 
study reproducible helps reduce fraud and dishonest practices. When results are
reproducible, they inspire greater confidence among researchers, policymakers, and
the public. This is essential for the application of scientific findings. Furthermore,
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reproducible research contributes to the cumulative nature of scientific knowledge. 
This allows new studies to build on previous work, advance the field, and foster inno-
vation. Finally, reproducibility helps identify errors or inconsistencies in research. If 
results cannot be replicated, they may indicate issues with the original data, methods, 
or analyses. 

Note that it is not always easy to ensure reproducibility for various reasons. 
For example, data privacy and confidentiality can make data sharing impossible. 
This, of course, can hinder reproducibility efforts, but there is not much one can 
do about it. This happens often when dealing with medical data, where privacy is a 
fundamental aspect of the ethics of medical studies. Sometimes infrastructure may 
play a role in reproducing a study. Maybe laboratory equipment is very expensive 
or more specialised training is required to operate some measurement instruments. 
Unfortunately, that is the price to pay when doing cutting-edge research on very 
complex topics. However, and maybe exactly for these reasons, i t is paramount
that you document every single small detail of your study, to make reproducibility
possible, even when not easy.

You should always share the data and code of your study. Today, it is very easy
to do so and will enable other researchers to validate and reproduce your results and
as a by-product will force you to write better code.

14.2.2 Data and Code Sharing

Let me say this again: Your research should always be reproducible. To guarantee 
this, it is mandatory to share the data and code with everyone when publishing your 
results. In this way, your results can be verified and will gain credibility. Several web 
platfo rms exist to share data and code. Here are some of the most known at the time
of writing.

• Data sharing: Figshare (https://figshare.com/), Zenodo (https://zenodo.org/), 
Dryad (https://datadryad.org/stash), and Mendeley Data (https://data.mendeley. 
com/). 

• Code sharing: GitHub (https://www.github.com) or Bitbucket (https://bitbucket. 
org/). GitHub is a good choice, since it allows one creating a beautifully structured 
code repository with long and detailed readme files with inst ructions, links,
references, and much more.

All of them are widely recognised by almost all scientific journals and are known 
by researchers. You cannot go wrong with any of those. When sharing the data,
typically you get a Digital Object Identifier (DOI)1 that you can use to share the
dataset directly with other colleagues.

1 A DOI, or Digital Object Identifier, is a unique alphanumeric string assigned to a digital object, 
such as a journal article, research paper, dataset, or any other piece of intellectual property that 
exists in a digital form. The DOI provides a permanent Internet link to the digital object, ensuring
that it can always be found and accessed, even if the location of the object changes over time.
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https://figshare.com/
https://figshare.com/
https://zenodo.org/
https://zenodo.org/
https://zenodo.org/
https://datadryad.org/stash
https://datadryad.org/stash
https://datadryad.org/stash
https://datadryad.org/stash
https://data.mendeley.com/
https://data.mendeley.com/
https://data.mendeley.com/
https://data.mendeley.com/
https://www.github.com
https://www.github.com
https://www.github.com
https://www.github.com
https://bitbucket.org/
https://bitbucket.org/
https://bitbucket.org/


14.2 Reproducibility, Replicability, Transparent Reporting, and Documentation 151

14.2.3 Transparent R eporting

To ensure reproducibility, you need to report everything about your study and give 
clear instructions about what you have done. This will allow others to verify your 
results and hopefully build on your work to further push research in interesting 
directions. Furthermore, detailed and transparent documentation holds researchers 
accountable for their methodologies and conclusions. It ensures that all steps of the 
research process are visible and open to scrutiny. This will make fraudulent and 
unethical studies difficult and increase trust in science and statistics. Finally, clear
documentation facilitates dissemination of knowledge. It may allow researchers in
different fields to grasp the significance of the study and potential applications. Here
are some tips to make your reporting transparent.

• Methodological details :

– Study design: Describe the study design in detail, including experimental or 
observational approaches, controls, and randomisation methods. 

– Data collection: Document how data were collected, including instruments 
used, measurement procedures, and any calibration details. If the data were 
collected by a team, explain how the team was chosen, how they approached
the subjects (if relevant), etc. Describe how you have defined your population
(eligibility criteria, see Chap. 3), and give exact information on it (means, 
ranges of values, etc.). 

– Sample size and selection: Explain how the sample size was determined and 
the criteria for including or e xcluding subjects from a study.

– Outliers: Describe how you defined outliers (see Chap. 7) and whether you 
have removed them or not. If you remove data points, you should always 
explain why and present the same results with and without outliers, to make
clear what is their effect on your conclusions.

• Statistical Analysis :

– Software and tools: Specify the software and tools used for data analysis, 
including versions and any custom scripts or code. Again share your code. 
Generally, try to avoid tools that hide details of method implementations. Your 
study should explain what method you used, not which button you pressed 
in a tool. Your study must be reproducible with any statistical software pack-
age. If your tool does not give you information on how a specific method is 
implemented, change the tool. 

– Data processing: Describe the steps taken to process and clean the data,
including any transformations or normalisation procedures.

– Analysis techniques: Provide a comprehensive account of the statistical tech-
niques employed, including any assumptions made and how they were tested.
Everything we discuss in this book should be documented, explained, and
justified when used.
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• Result presentation :

– Descriptive statistics: Report basic descriptive statistics, such as means, me-
dians (see Chap. 4), variances, and standard deviations (see Chap. 5), along 
with appropriate visualisations (see Chap. 10). 

– Inferential statistics: Clearly present the results of hypothesis tests (see
Chap. 12), hypotheses, confidence intervals (see Chap. 11), effect sizes, and 
any other inferential statistics used. 

– Graphs and tables: Ensure that all graphs and tables are well labelled and 
accompanied by explanatory captions that make the results easy to interpret. 
Recall that, whenever possible, it should be possible to understand the content 
of a figure from its caption (at least the main idea of it). Choose the right plot
type to present your data (see Chap. 10). 

• Data sharing :

– Raw data: Where possible, share raw data or provide access to datasets through 
repositories or supplementary materials (see Sect. 14.2.2). 

– Code and algorithms: Share the code and algorithms used for data analy-
sis to facilitate reproducibility and allow others to verify the findings (see
Sect. 14.2.2). Avoid over engineering your code to make it understandable. 
That means avoid creating nestled functions, and make it as simple as it can
possibly be.

• Ethical considerations :

– Ethical approval: Report any ethical approvals obtained and describe how 
ethical guidelines were adhered to during the study. This is a key aspect in 
medical studies that goes beyond the scope of this book. If you work with 
medical data, you are probably in contact with a hospital. They surely have an 
ethical committee that you can contact for help.

– Conflicts of interest: Disclose any potential conflicts of interest that could
have influenced the research outcomes. Most journals ask authors to declare if
and what conflict of interest they might have.

14.2.4 Best Practices f or Documentation

It is important to also briefly discuss how to keep a good documentation. You will 
not remember what you did 2 weeks ago, let alone a few months ago. Professional 
record keeping is paramount for any scientific endeavour. Maintain thorough records 
of all research activities, including decisions made during the study, changes in 
methodology, and justifications for those changes. A notebook is a fundamental tool 
for any researchers. When I was studying physics, the rule was you had a bounded
notebook with numbered pages. No page could be removed, and the numbers would
prove if that would be the case. Negative results, errors, and strange findings need
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to be documented in your notebook. You never know where your ne xt discovery is
coming from!

Use version control systems to manage changes to documents, data, and code. 
This practice ensures that all modifications are tracked and that previous versions 
can be retrieved if necessary. GitHub, for example, is a great tool for this. Versioning 
data may be more difficult, especially if datasets are large. For example, at the 
moment of writing, GitHub has a file size limit of 100 Mb, making storing data 
often not possible. Publish research findings in open-access journals, and make 
data and materials freely available to the research community. Always write clearly
and concisely, avoiding jargon and ensuring that the documentation is accessible to
both specialists and, at least in some measure, to non-specialists.



Glossary 

The following are terms that you are likely to encounter with a short description.

Alternative Hypothesis The hypothesis that there is a significant difference be-
tween groups or the expected relationship in a study

ANOVA (Analysis of Variance) A collection of statistical models used to analyze 
the differences among group means and their associated procedures

Average (Mean) The sum of a collection of numbers divided b y the count of
numbers in the collection

Bias The systematic error introduced into sampling or testing by selecting or en-
couraging one outcome or answer over others

Confidence Interval A range of values, derived from sample statistics, that is likely 
to contain the value of an unknown population parameter

Correlation A measure of the relationship between two var iables and their depen-
dence on one another

Hypothesis Testing A method of statistical inference to determine the probability 
that a hypothesis concerning a population parameter is true

Interquartile Range (IQR) The difference between the third quartile and the first 
q uartile, representing the middle 50% of the data

Median The middle value in a dataset, which divides the set into two equal halves

Mode The most frequently occurring va lue in a dataset

Null Hypothesis A hypothesis that assumes no statistical significance exists in a set 
of given obser vations

Outlier An observation that lies an abnormal distance from other values in a random 
sample from a population
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p-Value The probability of observing test results at least as extreme as the results 
actually obser ved, under the assumption that the null hypothesis is correct

Percentile A measure indicating the value below which a given percentage of 
observations in a group of observations fall

Probability A measure of the likelihood that an event will occur

Quartile A type of percentile that divides the data into four defined intervals

Regression A statistical method for estimating the relationships among variables

Sample Size The number of observations or replicates included in a statistical
sample

Statistical Significance The likelihood that a result or relationship is caused by
something other than mere chance

Variance The average of the squared differences from the Mean, showing how
spread out the data points are

z-Score The number of standard deviations a data point is from the mean



Appendix A 
�. Partitioning of the Ordinary Least Square 
Variance 

All is well that ends well 

This section outlines the proof that R2
. can be understood as the ratio between the 

variance that the fitted model can explain and the total variance of the data. Note 
that intermediate linear algebra knowledge is required to understand this section. We 
will work in matrix notation and will write the linear regression formula as

. y

︸︷︷︸

Shape: n×1

= X
︸︷︷︸

n×k

β

︸︷︷︸

k×1

+ ε

︸︷︷︸

n×1

(A.1) 

where y is a vector with all the measurements of the dependent variable. X is a 
matrix where each column of the matrix X is an observation or measurement (made 
of the independent variables) and with the peculiarity that the first column is made
of all ones (to keep into account the constant factor in the linear formula), and β. is 
a vector containing the coefficients (which in our previous example h ave denoted by
αi .). ε . is a vector that contains the remaining errors (the part that linear regression
cannot explain). ε . is also called the residual between the prediction (Xβ.) and the 
true v alue y.

It is known that the optimal coefficients of linear regression β̂ . can be written in 
closed form as [16] 

.β̂ = (XT X)−1XT y (A.2) 

We can now write the total variance considering that the residual ε̂ . is given by (see 
Eq. (A.1) in the case of the optimal parameters β̂.) y−X β̂.. Furthermore, we can write 
the residual sum of squares (RSS) of the residuals, which is given by ε̂T ε̂ . and from 
the pre vious equations

.RSS = yT y − yT (XT X)−1XT y (A.3) 
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Denote b y ȳ . a vector of dimension n × 1. with elements equal to the average ya . of 
the elements of y. In other words

.ȳ =

�

�

�

�

�

�

ya
ya
...
ya

	













�

(A.4) 

The total sum of squares (TSS) is given by

.TSS = (y − ȳ)T (y − ȳ) = yT y − 2yT ȳ + ȳT ȳ (A.5) 

The explained sum of squares (ESS), defined as the sum of squared deviations of the 
predicted values from the observed mean of y , is given by

.ESS = (ŷ − ȳ)T (ŷ − ȳ) = ŷT ŷ − 2ŷT ȳ + ȳT ȳ (A.6) 

Now using ŷ = Xβ. and simplifying, it can be sho wn that

.TSS = ESS + RSS (A.7) 

if and only if yT ȳ = ŷT ȳ .. Since ȳ = (ya, ya, . . . , ya). (where ya . is the scalar average 
of the values contained in y ), this condition is simply

.ya

n
∑

i=1
yi = ya

n
∑

i=1
ŷi (A.8) 

and simplifying by dividing by ya . 

.

n
∑

i=1
yi =

n
∑

i=1
ŷi (A.9) 

in words TSS = ESS + RSS. is true if and only if the sum of the predictions is equal 
to the sum of the expected values (or that the sum of residuals is zero). That this is
true can be shown as follows. Consider XT ε̂ .. It can be shown that XT ε̂ = 0.. In f act

.

XT ε̂ =XT
[

I − X(XT X)−1XT
]

y

=(XT − XT X(XT X)−1XT )y = 0
(A.10) 

since clearly XT X(XT X)−1 = I . with I the identity matrix. At the same time

.XT ε̂ =
�

�

�

�

�

1 1 . . . 1
X [1]

1 X [2]
1 . . . X [n]

1
. . . . . . . . . . . .

X [1]
k

X [2]
k
. . . X [n]

k

	













�

�

�

�

�

�

ε̂1
ε̂2
. . .
ε̂n

	










�

(A.11)
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Now we do not need to perform the entire multiplication. It is enough to note that the 
first row of XT ε̂ . from the last equation equals the sum of the ε̂i ., but we know from
Eq. (A.10) that this XT ε̂ = 0.; thus also the first row (the sum of the residuals) must be 
equal to zero. This proves our statement, and we can conclude that TSS = ESS+RSS.. 
Note that this is only true in this case of linear regression and is not valid in general. 
So be very careful in using R2

. in a case where you do not know what kind of 
relationship you have. Its interpretation is tricky, and the fact that TSS = ESS+RSS. 

is technically only valid in the case of pure linear regression.



Appendix B 
Big-O and Little-o Notation 

B.1 Big-O No tation

Big-O notation is a mathematical concept used to describe how fast a function grows 
when its argument goes to a certain value or infinity. In computer science often it is 
used to measure the efficiency of an algorithm, particularly in terms of its time or 
space complexity as the input size grows. In this case, it provides an upper bound 
on the growth rate of an algorithm’s runtime or memory usage (and, in general, of a
function), helping to understand the worst-case scenario of its performance.

Imagine you have a task, like sorting a list of numbers. As the list gets longer, the 
time it takes to sort the list usually increases. Big-O notation helps us to understand 
how fast the sorting time increases as the lis t length grows. In more formal terms,
consider a function f (x). and g(x). a positive function for large values of x.  T  he
formula

. f (x) = O(g(x)) (B.1) 

is read as follows: f (x). is big-O of g(x). if there is an M > 0. and a real number x0 . 
such that 

.| f (x)| ≤ Mg(x) ∀x > x0 (B.2) 

Imagine now that we are evaluating the time needed by an algorithm to finish 
as a function of the length n of the input. The Big-O notation allows us to classify
algorithms by their efficiency. Here are some Big-O examples.

• O(1): Constant time. The algorithm’s runtime does not change with the input size. 
• O(log n): Logarithmic time. The runtime grows logarithmically as the input size 

increases. Or better phrased, the runtime does not grow faster as a log n. function. 
• O(n): Linear time. The runtime grows linear ly with the input size.
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B.2 Little-o Notati on

Intuitively, the statement f (x). is o(g(x)). (read as f (x). is little-o of g(x).) means that
g(x). grows much faster than f (x).. In more formal terms, consider a function f (x). 
and g(x). a positive function for large values of x. The formula

. f (x) = o(g(x)) (B.3) 

means for every ε > 0. and a real number x0 . it is tr ue that

.| f (x)| ≤ Mg(x) ∀x > x0 (B.4) 

Note that this must be valid for all ε . values. In the Big-O notation case, Eq. (B.2) 
should only be valid for at least one M .
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