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Halıcıoğlu Data Science Institute at the University of California, San Diego, where he
specializes in theoretical statistics and machine learning. His education includes a
bachelor’s degree in mathematics and a master’s degree in artificial intelligence, both
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“With the rapid development of data-driven decision making, statistical methods have
become indispensable in countless domains of science, engineering, and management
science, to name a few. Ery Arias-Castro’s excellent text gives a self-contained
and remarkably broad exposition of the current diversity of concepts and methods
developed to tackle the challenges of data science. Simply put, everyone serious about
understanding the theory behind data science should be exposed to the topics covered
in this book.”

—Philippe Rigollet, Professor
Department of Mathematics, Massachusetts Institute of Technology

“A course on statistical modeling and inference has been a staple of many first-year
graduate engineering programs. While there are many excellent textbooks on this
subject, much of the material is inspired by models of physical systems, and as such
these books deal extensively with parametric inference. The emerging data revolution,
on the other hand, requires an engineering student to develop an understanding of
statistical inference rooted in problems inspired by data-driven applications, and this
book fills that need. Arias-Castro weaves together diverse concepts such as data
collection, sampling, and inference in a unified manner. He lucidly presents the
mathematical foundations of statistical data analysis, and covers advanced topics on
data analysis. With over 700 problems and computer exercises, this book will serve the
needs of beginner and advanced engineering students alike.”

—Venkatesh Saligrama, Professor
Data Science Faculty Fellow, Department of Electrical and Computer Engineering,

Department of Computer Science (by courtesy), Boston University

“In this book, aimed at senior undergraduates or beginning graduate students with
a reasonable mathematical background, the author proposes a self-contained and
yet concise introduction to statistical analysis. By putting a strong emphasis on the
randomization principle, he provides a coherent and elegant perspective on modern
statistical practice. Some of the later chapters also form a good basis for a reading
group. I will be recommending this excellent book to my collaborators.”

—Nicolas Verzelen, Associate Professor
Mathematics, Computer Science, Physics, and Systems Department,

University of Montpellier

“This text is highly recommended for undergraduate students wanting to grasp the key
ideas of modern data analysis. Arias-Castro achieves something that is rare in the art
of teaching statistical science – he uses mathematical language in an intelligible and
highly helpful way, without surrendering key intuitions of statistics to formalism and
proof. In this way, the reader can get through an impressive amount of material without,
however, ever getting into muddy waters.”

—Richard Nickl, Professor
Statistical Laboratory, Cambridge University
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In controlled experimentation it has been found not difficult to introduce
explicit and objective randomization in such a way that the tests of
significance are demonstrably correct. In other cases we must still act
in the faith that Nature has done the randomization for us. [...] We now
recognize randomization as a postulate necessary to the validity of our
conclusions, and the modern experimenter is careful to make sure that this
postulate is justified.

Ronald A. Fisher
International Statistical Conferences, 1947
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Preface

This book is intended for the mathematically literate reader who wants to
understand how to analyze data in a principled fashion. The language of
mathematics allows for a more concise, and arguably clearer exposition
that can go quite deep, quite quickly, and naturally accommodates an
axiomatic and inductive approach to data analysis, which is the raison d’être
of the book. To elaborate, the book starts with a preliminary foundation
in probability theory, continues with an intermezzo of sampling and
data collection, and finally moves to statistical inference – the core of
the book which includes, in addition to standard topics, more advanced
ones such as multiple testing, meta-analysis, and causal inference. The
book thus provides a self-contained exposition of fundamental principles
and methods of statistical analysis, covering topics which are typically
displaced from introductory, general accounts. Emphasis is on inference,
and more exploratory approaches to data analysis such as clustering and
dimensionality reduction are not covered.

The compact treatment is grounded in mathematical theory and concepts,
and is fairly rigorous, even though measure theoretic matters are kept in
the background, and most proofs are left as problems. In fact, much of
the learning is accomplished through embedded problems – around 700
of them! Some problems call for mathematical derivations, and assume a
certain comfort with calculus, or even real analysis. Other problems require
basic programming on a computer.

Structure

The book is divided into three parts. The introduction to probability, in
Part I, stands as the mathematical foundation for statistical inference.
Indeed, without a solid foundation in probability and, in particular, a
good understanding of how experiments are modeled, there is no clear
distinction between descriptive and inferential analyses. The exposition
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Preface xv

there is quite standard. It starts by introducing Kolmogorov’s axioms, which
are instantiated in the context of discrete sample spaces. The narrative then
transitions to a comprehensive discussion of distributions on the real line,
both discrete and continuous, and also multivariate. This is followed by an
introduction of the basic concentration inequalities and limit theorems. (A
construction of the Lebesgue integral is not included, and measure-theoretic
matters are mostly avoided.) Part I ends with a brief discussion of Markov
chains and related stochastic processes.

Some utilitarian, but absolutely critical, aspects of probability and
statistics are discussed in Part II. These include probability sampling and
pseudo-random number generation – the practical side of randomness; as
well as survey sampling and experimental design – the practical side of data
collection.

Part III is the core of the book. It attempts to build a theory of statistical
inference from first principles. The foundation is randomization, either
controlled by design or assumed to be natural. In either case, randomization
provides the essential randomness needed to justify probabilistic modeling.
It naturally leads to conditional inference, and allows for causal inference.
In this framework, permutation tests play a special, almost canonical
role. Monte Carlo sampling, performed on a computer, is presented as
an alternative to complex mathematical derivations, and the bootstrap is
then introduced as an accommodation when the sampling distribution is not
directly available and has to be estimated.

What is not here

I do not find normal models to be particularly compelling: unless there is a
central limit theorem at play, there is no real reason to believe numerical
data are normally distributed. Normal models are thus mentioned only in
passing. More generally, parametric models are not emphasized – except
for those that arise naturally in some experiments.

The usual emphasis on parametric inference is, I find, misplaced and
misleading, as it can be (and often is) introduced independently of how
the data were gathered, thus creating a chasm that separates the design of
experiments and the analysis of the resulting data. Bayesian modeling is,
consequently, not covered beyond basic definitions in the context of average
risk optimality. Linear models and time series are not discussed in any
detail. As is typically the case for an introductory book, especially of this
length and at this level, there is only a hint of abstract decision theory, and
multivariate analysis is omitted entirely.
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xvi Preface

How to use this Book

The idea for this book arose from a dissatisfaction with how statistical
analysis is typically taught at the undergraduate and master’s levels, coupled
with an inspiration for weaving a narrative, which I find more compelling.

This narrative was formed over years of teaching statistics at the
University of California, San Diego, in particular an undergraduate-level
course on computational statistics focusing on resampling methods of
inference. As it stands, however, the book is perhaps best used for
independent study.

The reader is invited to progress through the book in the order in which
the material is presented, working on the problems as they come, and saving
those that seem harder for later. If an experienced instructor or tutor is
available as an occasional guide, it is worthwhile to tackle even the harder
problems when they are encountered.

Although the text emphasizes a conceptual understanding of data analysis,
it is also grounded in practice. A large number of articles in the applied
sciences are cited with the intention of providing the reader with a sense of
how statistics is used in real life. In addition, a companion R notebook is
provided to facilitate the transition from theory to practice. It is available
from the author’s webpage [https://math.ucsd.edu/˜eariasca].

Intention

The book introduces, what I believe, are essential concepts that I would
want a student graduating with a bachelor’s or master’s degree in statistics
to have been exposed to, even if only in passing.

My main hope in writing this book is that it seduces mathematically
minded people into learning more about statistical analysis, at least for
their personal enrichment, particularly in this age of artificial intelligence,
machine learning, and data science more broadly.
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Elements of Probability Theory
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1

Axioms of Probability Theory

Probability theory is the branch of mathematics that models and studies
random phenomena. Although randomness has been the object of much
interest over many centuries, the theory only reached maturity with
Kolmogorov’s axioms1 in the 1930s [195].

As a mathematical theory founded on Kolmogorov’s axioms, Probability
Theory is essentially uncontroversial at this point. However, the notion of
probability (i.e., chance) remains somewhat controversial. We will adopt
here the frequentist notion of probability [193], which defines the chance
that a particular experiment results in a given outcome as the limiting
frequency of this event as the experiment is repeated an increasing number
of times. The problem of giving probability a proper definition as it concerns
real phenomena is discussed in [67] (with a good dose of humor).

1.1 Elements of Set Theory

Kolmogorov’s formalization of probability relies on some basic notions of
Set Theory.

A set is simply an abstract collection of ‘objects’, sometimes called
elements or items. Let Ω denote such a set. A subset of Ω is a set made of
elements that belong to Ω. In what follows, a set will be a subset of Ω.

We write ω ∈ A when the element ω belongs to the set A. And we write
A ⊂ B when set A is a subset of set B. This means that ω ∈ A ⇒ ω ∈ B. A
set with only one element ω is denoted {ω} and is called a singleton. Note
that ω ∈ A ⇔ {ω} ⊂ A. The empty set is defined as a set with no elements
and is denoted ∅. By convention, it is included in any other set.

Problem 1.1 Prove that ⊂ is transitive, meaning that if A ⊂ B and B ⊂ C,
then A ⊂ C.

1 Named after Andrey Kolmogorov (1903–1987).

3
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4 Axioms of Probability Theory

The following are some basic set operations.

• Intersection and disjointness The intersection of two sets A and B is
the set with all the elements belonging to both A and B, and is denoted
A∩B. A and B are said to be disjoint if A∩B = ∅.

• Union The union of two setsA andB is the set with elements belonging
to A or B, and is denoted A∪B.

• Set difference and complement The set difference of B minus A is the
set with elements those in B that are not in A, and is denoted B ∖A. It is
sometimes called the complement of A in B. The complement of A in
the whole set Ω is often denoted Ac.

• Symmetric set difference The symmetric set difference of A and B is
defined as the set with elements either in A or in B, but not in both, and
is denoted A△B.

Sets and set operations can be visualized using a Venn diagram. See
Figure 1.1 for an example.

Figure 1.1 A Venn diagram helping visualize the sets A = {1, 2, 4, 5, 6, 7, 8, 9},
B = {2, 3, 4, 5, 7, 9}, and C = {3, 4, 5, 9}. The numbers shown in the figure represent
the size of each subset. For example, the intersection of these three sets contains 3
elements, since A∩B ∩ C = {4, 5, 9}.

Problem 1.2 Prove that A ∩∅ = ∅, A ∪∅ = A, and A ∖∅ = A. What is
A△∅?

Problem 1.3 Prove that the complement is an involution, i.e., (Ac)c = A.
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1.2 Outcomes and Events 5

Problem 1.4 Show that the set difference operation is not symmetric in the
sense that B ∖A ≠ A ∖ B in general. In fact, prove that B ∖A = A ∖ B if
and only if A = B = ∅.

Proposition 1.5. The following are true:

(i) The intersection operation is commutative, meaning A∩B = B ∩A,
and associative, meaning (A ∩ B) ∩ C = A ∩ (B ∩ C). The same is
true for the union operation.

(ii) The intersection operation is distributive over the union operation,
meaning (A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C).

(iii) It holds that (A ∩ B)c = Ac ∪ Bc. More generally, C ∖ (A ∩ B) =
(C ∖A) ∪ (C ∖ B).

We thus may write A∩B ∩C and A∪B ∪C, that is, without parentheses,
as there is no ambiguity. More generally, for a collection of sets {Ai ∶ i ∈ I},
where I is some index set, we can therefore refer to their intersection and
union, denoted

(intersection) ⋂
i∈I
Ai, (union) ⋃

i∈I
Ai .

Remark 1.6 For the reader seeing these operations for the first time, it
can be useful to think of ∩ and ∪ in analogy with the product × and sum +
operations on the integers. In that analogy, ∅ plays the role of 0.

Problem 1.7 Prove Proposition 1.5. In fact, prove the following identities:

(⋃
i∈I
Ai) ∩ B = ⋃

i∈I
(Ai ∩ B),

and

(⋃
i∈I
Ai)c = ⋂

i∈I
Ac

i , as well as (⋂
i∈I
Ai)c = ⋃

i∈I
Ac

i ,

for any collection of sets {Ai ∶ i ∈ I} and any set B.

1.2 Outcomes and Events

Having introduced some elements of Set Theory, we use some of these
concepts to define a probability experiment and its possible outcomes.
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6 Axioms of Probability Theory

1.2.1 Outcomes and the Sample Space

In the context of an experiment, all the possible outcomes are gathered in
a sample space, denoted Ω henceforth. In mathematical terms, the sample
space is a set and the outcomes are elements of that set.

Example 1.8 (Flipping a coin) Suppose that we flip a coin three times in
sequence. Assuming the coin can only land heads (h) or tails (t), the sample
space Ω consists of all possible ordered sequences of length 3, which in
lexicographic order can be written as

Ω = {hhh,hht,hth,htt, thh, tht, tth, ttt}.

Example 1.9 (Drawing from an urn) Suppose that we draw two balls from
an urn in sequence. Assume the urn contains red (r), green (g), and (b) blue
balls. If the urn contains at least two balls of each color, or if at each trial
the ball is returned to the urn, the sample space Ω consists of all possible
ordered sequences of length 2, which in the RGB order can be written as

Ω = {rr,rg,rb, gr, gg, gb, br, bg, bb}. (1.1)

If the urn (only) contains one red ball, one green ball, and two or more blue
balls, and a ball drawn from the urn is not returned to the urn, the number
of possible outcomes is reduced and the resulting sample space is now

Ω = {rg,rb, gr, gb, br, bg, bb}.

Problem 1.10 What is the sample space when we flip a coin five times?
More generally, can you describe the sample space, in words and/or
mathematical language, corresponding to an experiment where the coin
is flipped n times? What is the size of that sample space?

Problem 1.11 Consider an experiment that consists in drawing two balls
from an urn that contains red, green, blue, and yellow balls. However, yellow
balls are ignored, in the sense that if such a ball is drawn then it is discarded.
How does that change the sample space compared to Example 1.9?

While in the previous examples the sample space is finite, the following
is an example where it is (countably) infinite.

Example 1.12 (Flipping a coin until the first heads) Consider an experiment
where we flip a coin repeatedly until it lands heads. The sample space in
this case is

Ω = {h, th, tth, ttth, . . .}.
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1.2 Outcomes and Events 7

Problem 1.13 Describe the sample space when the experiment consists in
drawing repeatedly without replacement from an urn with red, green, and
blue balls, three of each color, until a blue ball is drawn.

Remark 1.14 A sample space is in fact only required to contain all possible
outcomes. For instance, in Example 1.9 we may always take the sample
space to be (1.1) even though in the second situation that space contains
outcomes that will never arise.

1.2.2 Events

Events are subsets of Ω that are of particular interest. We say that an event
happens when the experiment results in an outcome that belongs to the
event.

Example 1.15 In the context of Example 1.8, consider the event that the
second toss results in heads. As a subset of the sample space, this event is
defined as

E = {hhh,hht, thh, tht}.

Example 1.16 In the context of Example 1.9, consider the event that the
two balls drawn from the urn are of the same color. This event corresponds
to the set

E = {rr, gg, bb}.

Example 1.17 In the context of Example 1.12, the event that the number of
total tosses is even corresponds to the set

E = {th, ttth, ttttth, . . .}.

Problem 1.18 In the context of Example 1.8, consider the event that at least
two tosses result in heads. Describe this event as a set of outcomes.

1.2.3 Collection of Events

Recall that we are interested in particular subsets of the sample space Ω and
that we call these ‘events’. Let Σ denote the collection of events. We assume
throughout that Σ satisfies the following conditions:

• The entire sample space is an event, meaning

Ω ∈ Σ. (1.2)
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8 Axioms of Probability Theory

• The complement of an event is an event, meaning

A ∈ Σ ⇒ Ac ∈ Σ. (1.3)

• A countable union of events is an event, meaning

A1,A2, ⋅ ⋅ ⋅ ∈ Σ ⇒ ⋃
i≥1
Ai ∈ Σ. (1.4)

A collection of subsets that satisfies these conditions is called a σ-algebra.2

Problem 1.19 Suppose that Σ is a σ-algebra. Show that ∅ ∈ Σ and that a
countable intersection of subsets of Σ is also in Σ.

From now on, Σwill denote aσ-algebra overΩ unless otherwise specified.
(Note that such a σ-algebra always exists: an example is {∅,Ω}.) The pair
(Ω,Σ) is then called a measurable space.

Remark 1.20 (The power set) The power set of Ω, often denoted 2Ω, is the
collection of all its subsets. (Problem 1.49 provides a motivation for this
name and notation.) The power set is trivially a σ-algebra. In the context
of an experiment with a discrete sample space, it is customary to work
with the power set as σ-algebra, because this can always be done without
loss of generality (Chapter 2). When the sample space is not discrete, the
situation is more complex and the σ-algebra needs to be chosen with more
care (Section 3.2).

1.3 Probability Axioms

Before observing the result of an experiment, we speak of the probability
that an event will happen. The Kolmogorov axioms formalize this assign-
ment of probabilities to events. This has to be done carefully so that the
resulting theory is both coherent and useful for modeling randomness.

A probability distribution (aka probability measure) on (Ω,Σ) is any
real-valued function P defined on Σ satisfying the following properties or
axioms:3

• Non-negativity

P(A) ≥ 0, ∀A ∈ Σ.

• Unit measure

P(Ω) = 1.
2 This refers to the algebra of sets presented in Section 1.1.
3 Throughout, we will often use ‘distribution’ or ‘measure’ as shorthand for ‘probability

distribution’.
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1.3 Probability Axioms 9

• Additivity on disjoint events For any discrete collection of disjoint
events {Ai ∶ i ∈ I},

P(⋃
i∈I
Ai) = ∑

i∈I
P(Ai). (1.5)

A triplet (Ω,Σ,P) with Ω a sample space (a set), Σ a σ-algebra over Ω,
and P a distribution on Σ, is called a probability space. We consider such a
triplet in what follows.

Problem 1.21 Show that P(∅) = 0 and that

0 ≤ P(A) ≤ 1, A ∈ Σ.

Thus, although nominally a probability distribution takes values in R+, in
fact it takes values in [0,1].

Proposition 1.22 (Law of Total Probability). For any two events A and B,

P(A) = P(A ∩ B) + P(A ∩ Bc). (1.6)

Problem 1.23 Prove Proposition 1.22 using the 3rd axiom.

The 3rd axiom applies to events that are disjoint. The following is a
corollary that applies more generally. (In turn, this result implies the 3rd
axiom.)

Proposition 1.24 (Law of Addition). For any two events A and B, not
necessarily disjoint,

P(A ∪ B) = P(A) + P(B) − P(A ∩ B). (1.7)

In particular,

P(Ac) = 1 − P(A), (1.8)

and,

A ⊂ B ⇒ P(B ∖A) = P(B) − P(A). (1.9)

Proof We first observe that we can get (1.9) from the fact that B is the
disjoint union of A and B ∖A and an application of the 3rd axiom.

We now use this to prove (1.7). We start from the disjoint union

A∪B = (A ∖ B) ∪ (B ∖A) ∪ (A ∩ B).

Applying the 3rd axiom yields

P(A ∪ B) = P(A ∖ B) + P(B ∖A) + P(A ∩ B).
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10 Axioms of Probability Theory

Then A∖B = A ∖ (A ∩ B), and applying (1.9), we get

P(A ∖ B) = P(A) − P(A ∩ B),

and exchanging the roles of A and B,

P(B ∖A) = P(B) − P(A ∩ B).

After some cancellations, we obtain (1.7), which then immediately implies
(1.8). �

Problem 1.25 (Uniform distribution) Suppose that Ω is finite. For A ⊂ Ω,
define U(A) = ∣A∣/∣Ω∣, where ∣A∣ denotes the number of elements in A.
Show that U is a probability distribution on Ω (equipped with its power set,
as usual).

1.4 Inclusion-Exclusion Formula

The inclusion-exclusion formula is an expression for the probability of a
discrete union of events. We start with some basic inequalities that are
directly related to the inclusion-exclusion formula and useful on their own.

Boole’s Inequality
Also know as the union bound, this inequality4 is arguably one of the
simplest, yet also one of the most useful, inequalities of Probability Theory.

Problem 1.26 (Boole’s inequality) Prove that for any countable collection
of events {Ai ∶ i ∈ I},

P(⋃
i∈I
Ai) ≤ ∑

i∈I
P(Ai). (1.10)

Note that the right-hand side can be larger than 1 or even infinite. [One
possibility is to use a recursion on the number of events, together with
Proposition 1.24, to prove the result for any finite number of events. Then
pass to the limit to obtain the result as stated.]

Bonferroni’s Inequalities
These inequalities5 comprise Boole’s inequality. For two events, we saw
the Law of Addition (Proposition 1.24), which is an exact expression for
the probability of their union. Consider now three events A,B,C. Boole’s

4 Named after George Boole (1815–1864).
5 Named after Carlo Emilio Bonferroni (1892–1960).

https://doi.org/10.1017/9781108779197.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108779197.004


1.4 Inclusion-Exclusion Formula 11

inequality (1.10) gives

P(A ∪ B ∪ C) ≤ P(A) + P(B) + P(C).

The following provides an inequality in the other direction.

Problem 1.27 Show that

P(A ∪ B ∪ C) ≥ P(A) + P(B) + P(C)
− P(A ∩ B) − P(B ∩ C) − P(C ∩A).

[Drawing a Venn diagram will prove useful.]

In the proof, one typically proves first the identity

P(A ∪ B ∪ C) = P(A) + P(B) + P(C)
− P(A ∩ B) − P(B ∩ C) − P(C ∩A)
+ P(A ∩ B ∩ C),

which generalizes the Law of Addition to three events.

Proposition 1.28 (Bonferroni’s inequalities). Consider any collection of
events A1, . . . ,An, and define

S k ∶= ∑
1≤i1<⋯<ik≤n

P(Ai1 ∩⋯∩Aik).

Then

P(A1 ∪⋯∪An) ≤
k

∑
j=1
(−1) j−1S j, k odd;

P(A1 ∪⋯∪An) ≥
k

∑
j=1
(−1) j−1S j, k even.

Problem 1.29 Write down all of Bonferroni’s inequalities for the case of
four events A1,A2,A3,A4.

Inclusion-Exclusion Formula
The last Bonferroni inequality (at k = n) is in fact an equality, the so-called
inclusion-exclusion formula,

P(A1 ∪⋯∪An) =
n

∑
j=1
(−1) j−1S j. (1.11)

(In particular, the last inequality in Problem 1.29 is an equality.)
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1.5 Conditional Probability and Independence

1.5.1 Conditional Probability

Conditioning on an event B restricts the sample space to B. In other words,
although the experiment might yield other outcomes, conditioning on B
focuses the attention on the outcomes that made B happen. In what follows
we assume that P(B) > 0.

Problem 1.30 Show that Q, defined for A ∈ Σ as Q(A) = P(A ∩ B), is a
probability distribution if and only if P(B) = 1.

To define a bona fide probability distribution we renormalize Q to have
total mass equal to 1 (required by the 2nd axiom) as follows:

P(A ∣B) = P(A ∩ B)
P(B) , for A ∈ Σ.

We call P(A ∣B) the conditional probability of A given B.

Problem 1.31 Show that P(⋅ ∣ B) is indeed a probability distribution on Ω.

Problem 1.32 In the context of Example 1.8, assume that any outcome is
equally likely. Then what is the probability that the last toss lands heads if
the previous tosses landed heads? Answer that same question when the coin
is tossed n ≥ 2 times, with n arbitrary and possibly large. [Regardless of n,
the answer is 1/2.]

The conclusions of Problem 1.32 may surprise some readers. And indeed,
conditional probabilities can be rather unintuitive. We will come back to
Problem 1.32, which is an example of the Gambler’s Fallacy. Here is another
famous example.

Example 1.33 (Monty Hall Problem) This problem is based on a television
show in the US called Let’s Make a Deal and named after its longtime
presenter, Monty Hall. The following description is taken from a New York
Times article [189]:

Suppose you’re on a game show, and you’re given the choice of three
doors: Behind one door is a car; behind the others, goats. You pick a door,
say No. 1, and the host, who knows what’s behind the other doors, opens
another door, say No. 3, which has a goat. He then says to you, “Do you
want to pick door No. 2?” Is it to your advantage to take the switch?

Not many problems in probability are discussed in the New York Times, to
say the least. This problem is so simple to state and the answer so counter-
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intuitive that it generated quite a controversy (read the article). The problem
can mislead anyone, including professional mathematicians, let alone the
layperson appearing on television!

There is an entire book on the Monty Hall Problem [154]. The
textbook [84] discusses this problem among other paradoxes arising when
dealing with conditional probabilities.

1.5.2 Independence

Two events A and B are said to be independent if knowing that B happens
does not change the chances (i.e., the probability) that A happens. This is
formalized by saying that the probability of A conditional on B is equal to
its (unconditional) probability, or in formula,

P(A ∣B) = P(A). (1.12)

The wording in English would imply a symmetric relationship, and it is
indeed the case that (1.12) is equivalent to P(B ∣A) = P(B). The following
equivalent definition of independence makes the symmetry transparent.

Proposition 1.34. Two events A and B are independent if and only if

P(A ∩ B) = P(A)P(B). (1.13)

The identity (1.13) is often taken as a definition of independence.

Problem 1.35 Show that any event that never happens (i.e., having zero
probability) is independent of any other event. In particular,∅ is independent
of any event.

Problem 1.36 Show that any event that always happens (i.e., having
probability one) is independent of any other event. In particular, Ω is
independent of any event.

The identity (1.13) only applies to independent events. However, it can be
generalized as follows. (Note the parallel with the Law of Addition (1.7).)

Problem 1.37 (Law of Multiplication) Prove that, for any events A and B,

P(A ∩ B) = P(A ∣B)P(B). (1.14)

Problem 1.38 (Independence and disjointness) The notions of indepen-
dence and disjointness are often confused by the novice, even though
they are very different. For example, show that two disjoint events are
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14 Axioms of Probability Theory

independent only when at least one of them either never happens or always
happens.

Problem 1.39 Combine the Law of Total Probability (1.6) and the Law of
Multiplication (1.14) to get

P(A) = P(A ∣B)P(B) + P(A ∣Bc)P(Bc) (1.15)

Problem 1.40 Suppose we draw without replacement from an urn with r
red balls and b blue balls. At each stage, every ball remaining in the urn is
equally likely to be picked. Use (1.15) to derive the probability of drawing
a blue ball on the 3rd trial.

1.5.3 Mutual Independence

One may be interested in several events at once. Some events, Ai, i ∈ I, are
said to be mutually independent (or jointly independent) if

P(Ai1 ∩⋯∩Aik) = P(Ai1) ×⋯ × P(Aik),
for any k-tuple 1 ≤ i1 < ⋯ < ik ≤ r.

They are said to be pairwise independent if

P(Ai ∩A j) = P(Ai)P(A j), for all i ≠ j.

Obviously, mutual independence implies pairwise independence. The
reverse implication is false, as the following counter-example shows.

Problem 1.41 Consider the uniform distribution on

{(0,0,0), (0,1,1), (1,0,1), (1,1,0)}.

Let Ai be the event that the ith coordinate is 1. Show that these events are
pairwise independent but not mutually independent.

The following generalizes the Law of Multiplication (1.14). It is
sometimes referred to as the Chain Rule.

Proposition 1.42 (General Law of Multiplication). For any collection of
events, A1, . . . ,Ar,

P(A1 ∩⋯∩Ar) =
r

∏
k=1
P(Ak ∣A1 ∩⋯∩Ak−1). (1.16)

For example, for any events A,B,C,

P(A ∩ B ∩ C) = P(C ∣A ∩ B)P(B ∣A)P(A).
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1.5 Conditional Probability and Independence 15

Problem 1.43 In the same setting as Problem 1.32, show that the result of
the tosses are mutually independent. That is, define Ai as the event that the
ith toss results in heads and show that A1, . . . ,An are mutually independent.
In fact, show that the distribution is the uniform distribution (Problem 1.25)
if and only if the tosses are fair and mutually independent.

1.5.4 Bayes Formula

The Bayes formula6 can be used to “turn around” a conditional probability.

Proposition 1.44 (Bayes formula). For any two events A and B,

P(A ∣B) = P(B ∣A)P(A)
P(B) . (1.17)

Proof By (1.14),

P(A ∩ B) = P(A ∣B)P(B),

and also

P(A ∩ B) = P(B ∣A)P(A),

which yield the result when combined. �

The denominator in (1.17) is sometimes expanded using (1.15) to get

P(A ∣B) = P(B ∣A)P(A)
P(B ∣A)P(A) + P(B ∣Ac)P(Ac) . (1.18)

This form is particularly useful when P(B) is not directly available.

Problem 1.45 Suppose we draw without replacement from an urn with r
red balls and b blue balls. What is the probability of drawing a blue ball on
the 1st trial when drawing a blue ball on the 2nd trial?

Base Rate Fallacy
Consider a medical test for the detection of a rare disease. There are two
types of mistakes that the test can make:

• False positive when the test is positive even though the subject does
not have the disease;

• False negative when the test is negative even though the subject has the
disease.

6 Named after Thomas Bayes (1701–1761).
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16 Axioms of Probability Theory

Let α denote the probability of a false positive; 1 − α is sometimes called
the sensitivity. Let β denote the probability of a false negative; 1 − β is
sometimes called the specificity. For example, the study reported in [143]
evaluates the sensitivity and specificity of several HIV tests.

Suppose that the incidence of a certain disease is π, meaning that the
disease affects a proportion π of the population of interest. A person is
chosen at random from the population and given the test, which turns out to
be positive. What are the chances that this person actually has the disease?
Ignoring the base rate (i.e., the disease’s prevalence) would lead one to
believe these chances to be 1 − β. This is an example of the Base Rate
Fallacy.

Indeed, define the events

A = ‘the person has the disease’,

B = ‘the test is positive’.

Thus, our goal is to compute P(A ∣B). Because the person was chosen at
random from the population, we know that P(A) = π. We know the test’s
sensitivity, P(Bc ∣Ac) = 1−α, and its specificity, P(B ∣A) = 1−β. Plugging
this into (1.18), we get

P(A ∣B) = (1 − β)π
(1 − β)π + α(1 − π) . (1.19)

Mathematically, the Base Rate Fallacy arises from confusing P(A ∣B)
(which is what we want) with P(B ∣A). We saw that the former depends on
the latter and on the base rate P(A).
Problem 1.46 Show that P(A ∣B) = P(B ∣A) if and only if P(A) = P(B).
Example 1.47 (Finding terrorists) In a totally different setting, Sage-
man [160] makes the point that a system for identifying terrorists, even
if 99% accurate, cannot be ethically deployed on an entire population.

Fallacies in the Courtroom
Suppose that in a trial for murder in the US, some blood of type O- was
found on the crime scene, matching the defendant’s blood type. That blood
type has a prevalence of about 1% in the US.7 This leads the prosecutor to
conclude that the suspect is guilty with 99% chance. But this is an example
of the Prosecutor’s Fallacy.

7 https://redcrossblood.org/learn-about-blood/blood-types.html
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1.6 Additional Problems 17

In terms of mathematics, the error is the same as in the Base Rate Fallacy.
In practice, the situation is even worse here because it is not even clear how
to define the base rate. (Certainly, the base rate cannot be the unconditional
probability that the defendant is guilty.)

In the same hypothetical setting, the defense could argue that, assuming
the crime took place in a city with a population of about half a million,
the defendant is only one among five thousand people in the region with
the same blood type and that therefore the chances that he is guilty are
1/5000 = 0.02%. The argument is actually correct if there is no other
evidence and it can be argued that the suspect was chosen more or less
uniformly at random from the population. Otherwise, in particular if the
latter is doubtful, this is is an example of the Defendant’s Fallacy.

Example 1.48 People v. Collins is a robbery case8 that took place in Los
Angeles, California in 1968. A witness had seen a Black male with a beard
and mustache together with White female with a blonde ponytail fleeing in
a yellow car. The Collins (a married couple) exhibited all these attributes.
The prosecutor argued that the chances of another couple matching the
description were 1 in 12000000. This lead to a conviction. However, the
California Supreme Court overturned the decision. This was based on the
questionable computations of the base rate as well as the fact that the
chances of another couple in the Los Angeles area (with a population in the
millions) matching the description were much higher.

For more on the use of statistics in the courtroom, see [187].

1.6 Additional Problems

Problem 1.49 Show that if ∣Ω∣ = N, then the collection of all subsets of Ω
(including the empty set) has cardinality 2N . This motivates the notation 2Ω

for this collection and also its name, as it is often called the power set of Ω.

Problem 1.50 Let {Σi, i ∈ I} denote a family of σ-algebras over a set Ω.
Prove that ⋂i∈I Σi is also a σ-algebra over Ω.

Problem 1.51 Let {Ai, i ∈ I} denote a family of subsets of a set Ω. Show
that there is a unique smallest (in terms of inclusion) σ-algebra over Ω that
contains each of these subsets. This σ-algebra is said to be generated by the
family {Ai, i ∈ I}.

8 https://courtlistener.com/opinion/1207456/people-v-collins/
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18 Axioms of Probability Theory

Problem 1.52 (General Base Rate Fallacy) Assume that the same diagnostic
test is performed on m individuals to detect the presence of a certain
pathogen. Due to variation in characteristics, the test performed on
Individual i has sensitivity 1 − αi and specificity 1 − βi. Assume that a
proportion π of these individuals have the pathogen. Show that (1.19)
remains valid as the probability that an individual chosen uniformly at
random has the pathogen given that the test is positive, with 1−α defined as
the average sensitivity and 1 − β defined as the average specificity, meaning
α = 1

m ∑
m
i=1 αi and β = 1

m ∑
m
i=1 βi.
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Discrete Probability Spaces

We consider in this chapter the case of a probability space (Ω,Σ,P) with
discrete sample space Ω. As we noted in Remark 1.20, it is customary to let
Σ be the power set of Ω. We do so anytime we are dealing with a discrete
probability space, as this can be done without loss of generality.

2.1 Probability Mass Functions

Given a probability distribution P, define its mass function as

f (ω) ∶= P({ω}), ω ∈ Ω. (2.1)

In general, we say that f is a mass function on Ω if it is a real-valued
function on Ω satisfying the following conditions:

• Non-negativity

f (ω) ≥ 0, for any ω ∈ Ω.

• Unit measure

∑
ω∈Ω

f (ω) = 1.

Necessarily, such an f takes values in [0,1].
Problem 2.1 Show that (2.1) defines a probability mass function on
Ω. Conversely, show that a probability mass function f on Ω defines a
probability distribution on Ω as follows:

P(A) ∶= ∑
ω∈A

f (ω), for A ⊂ Ω. (2.2)

Problem 2.2 Show that, if P has mass function f , and B is an event with
P(B) > 0, then the conditional distribution given B, meaning P(⋅ ∣ B), has

19
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20 Discrete Probability Spaces

mass function

f (ω ∣ B) ∶= f (ω)
P(B) {ω ∈ B}, for ω ∈ Ω,

where {ω ∈ B} = 1 if ω ∈ B and = 0 otherwise.

2.2 Uniform Distributions

Assume the sample space Ω is finite. For a set A, denote its cardinality
(meaning the number of elements it contains) by ∣A∣. The uniform
distribution on Ω is defined as

P(A) = ∣A∣∣Ω∣ , for A ⊂ Ω. (2.3)

In Problem 1.25, we saw that this is indeed a probability distribution on Ω
(equipped with its power set).

Equivalently, the uniform distribution on Ω is the distribution with
constant mass function. Because of the requirements a mass function
satisfies by definition, this necessarily means that the mass function is
equal to 1/∣Ω∣ everywhere, meaning

f (ω) ∶= 1
∣Ω∣ , for ω ∈ Ω.

The resulting probability space models an experiment where all outcomes
are equally likely.

Example 2.3 (Rolling a die) Consider an experiment where a die, with
six faces numbered 1 through 6, is rolled once and the result is recorded.
The sample space is Ω = {1,2,3,4,5,6}. The usual assumption that the die
is fair is modeled by taking the distribution to be the uniform distribution,
which puts mass 1/6 on each outcome.

Remark 2.4 (Combinatorics) The uniform distribution is intimately related
to Combinatorics, which is the branch of Mathematics dedicated to counting.
This is because of its definition in (2.3), which implies that computing the
probability of an event A reduces to computing its cardinality ∣A∣, meaning
counting the number of outcomes in A.

https://doi.org/10.1017/9781108779197.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108779197.005
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2.3 Bernoulli Trials

Consider an experiment where a coin is tossed repeatedly. We speak of
Bernoulli trials9 when the probability of heads remains the same at each
toss regardless of the previous tosses. We consider a biased coin with
probability of landing heads equal to p ∈ [0,1]. We will call this a p-coin.

Problem 2.5 (The roulette) An American roulette has 38 slots: 18 are
colored black (b), 18 are colored red (r), and 2 slots colored green (g). A
ball is rolled, and eventually lands in one of the slots. One way a player
can gamble is to bet on a color, red or black. If the ball lands in a slot
with that color, the player doubles his bet. Otherwise, the player loses his
bet. Assuming the wheel is fair, show that the probability of winning in a
given trial is p = 18/38 regardless of the color the player bets on. (Note that
p < 1/2, and 1/2 − p = 1/38 is the casino’s margin.)

Remark 2.6 (Beating the roulette) In the game of roulette, the odds are,
of course, against the player. We will see later (in Section 9.2.1) that this
guarantees any gambler will lose his fortune if he keeps on playing. This is
so if the mathematics underlying this statement are an accurate description
of how the game is played in real life. But this is not necessarily the case.
For one thing, the equipment can be less than perfect. This was famously
exploited in the late 1940s by Hibbs and Walford, and led to casinos using
higher-quality roulettes. Still, Thorp and Shannon took on the challenge
of beating the roulette in the late 1950s and early 1960s. For that purpose,
they built one of the first wearable computers to help them predict where
the ball would end based on an appraisal of the ball’s position and speed at
a certain time. Their system afforded them advantageous odds against the
casino [86].

2.3.1 Probability of a Sequence of Given Length

Assume we toss a p-coin n times (or simply focus on the first n tosses if
the coin is tossed an infinite number of times). In this case, in contrast with
the situation in Problem 1.43, the distribution over the space of n-tuples of
heads and tails is not the uniform distribution, that is, unless p = 1/2. We
derive the distribution in closed form for an arbitrary p. We do this for the
sequence hthht (so that n = 5) to illustrate the main arguments. Let Ai be
the event that the ith trial results in heads. Then, applying the Chain Rule

9 Named after Jacob Bernoulli (1655–1705).
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22 Discrete Probability Spaces

(1.16), we have

P(hthht) = P(Ac
5 ∣ A1 ∩Ac

2 ∩A3 ∩A4)
× P(A4 ∣ A1 ∩Ac

2 ∩A3)
× P(A3 ∣ A1 ∩Ac

2) × P(Ac
2 ∣ A1) × P(A1). (2.4)

By assumption, a toss results in heads with probability p regardless of the
previous tosses, so that

P(Ac
5 ∣ A1 ∩Ac

2 ∩A3 ∩A4) = P(Ac
5) = 1 − p,

P(A4 ∣ A1 ∩Ac
2 ∩A3) = P(A4) = p,

P(A3 ∣ A1 ∩Ac
2) = P(A3) = p,

P(Ac
2 ∣ A1) = P(Ac

2) = 1 − p,

P(A1) = p.

Plugging this into (2.4), we obtain

P(hthht) = p(1 − p)pp(1 − p) = p3(1 − p)2,

after rearranging factors.

Problem 2.7 In the same example, show that the assumption that a toss
results in heads with the same probability regardless of the previous tosses
implies that the events Ai are mutually independent.

Beyond this special case, the following holds.

Proposition 2.8. Consider n independent tosses of a p-coin. Regardless of
the order, if k denotes the number of heads in a given sequence of n trials,
the probability of that sequence is

pk(1 − p)n−k. (2.5)

Problem 2.9 Prove Proposition 2.8 by induction on n.

Remark 2.10 Although n Bernoulli trials do not necessarily result in a
uniform distribution, Proposition 2.8 implies that, conditional on the number
of heads being k, the distribution is uniform over the subset of sequences
with exactly k heads.

Remark 2.11 (Gambler’s Fallacy) Consider a casino roulette (Problem 2.5).
Assume that you have just observed five spins that all resulted in red (i.e.,
rrrrr). What color would you bet on? Many a gambler would bet on b in
this situation, believing that “it is time for the ball to land black”. In fact,
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2.3 Bernoulli Trials 23

unless you have reasons to suspect otherwise, the natural assumption is that
each spin of the wheel is fair and independent of the previous ones, and with
this assumption the probability of b remains the same as the probability of
r (that is, 18/38).

Example 2.12 The paper [27] studies how the sequence in which unrelated
cases are handled affects the decisions that are made in “refugee asylum
court decisions, loan application reviews, and Major League Baseball
umpire pitch calls”, and finds evidence of the Gambler’s Fallacy at play.

2.3.2 Number of Heads in a Sequence of Given Length

Suppose again that we toss a p-coin n times independently. In Proposi-
tion 2.8, we saw that the number of heads in the sequence dictates the
probability of observing that sequence. Thus, it is of interest to study that
quantity. In particular, we want to compute the probability of observing
exactly k heads, where k ∈ {0, . . . ,n} is given.

Factorials
For a positive integer n, define its factorial to be

n! ∶=
n

∏
i=1

i = n × (n − 1) ×⋯ × 1.

For example, 5! = 5 × 4 × 3 × 2 × 1 = 120. By convention, 0! = 1.

Proposition 2.13. n! is the number of orderings of n distinct items.

This can be generalized as follows. For two non-negative integers k ≤ n,
define the falling factorial

(n)k ∶= n(n − 1)⋯(n − k + 1). (2.6)

For example, (5)3 = 5 × 4 × 3 = 60. By convention, (n)0 = 1. In particular,
(n)n = n!.

Proposition 2.14. Given positive integers k ≤ n, (n)k is the number of
ordered subsets of size k of a set with n distinct elements.

Proof There are n choices for the 1st position, then n−1 remaining choices
for the 2nd position, etc., and n − (k − 1) = n − k + 1 remaining choices
for the kth position. These numbers of choices multiply to give the answer.
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24 Discrete Probability Spaces

(Why they multiply and not add is crucial, and is explained at length, for
example, in [84].) �

Binomial Coefficients
For two non-negative integers k ≤ n, define the binomial coefficient

(n
k
) ∶= n!

k!(n − k)! =
(n)k

k!
. (2.7)

The binomial coefficient (2.7) is often read “n choose k”, as it corresponds
to the number of ways of choosing k distinct items out of a total of n,
disregarding the order in which they are chosen.

Proposition 2.15. Given positive integers k ≤ n, (n
k) is the number of

(unordered) subsets of size k of a set with n distinct elements.

Proof Fix k and n, and let N denote the number of (unordered) subsets of
size k of a set with n distinct elements. Each such subset can be ordered in k!
ways by Proposition 2.13, so that there are N × k! ordered subsets of size k.
Hence, Nk! = (n)k by Proposition 2.14, resulting in N = (n)k/k! = (n

k). �

Problem 2.16 (Pascal’s triangle) Adopt the convention that (n
k) = 0 when

k < 0 or when k > n. Then prove that, for any integers k and n,

(n
k
) = (n − 1

k
) + (n − 1

k − 1
).

Do you see how this formula can be used to compute binomial coefficients
recursively?

Exactly k Heads out of n Trials
Fix an integer k ∈ {0, . . . ,n}. By (2.2) and Proposition 2.8,

P(‘exactly k heads’) = N pk(1 − p)n−k,

where N is the number of sequences of length n with exactly k heads.
The trials are numbered 1 through n, and such a sequence is identified by
the k trials among these where the coin landed heads. Thus, N is equal
to the number of (unordered) subsets of size k of {1, . . . ,n}, which by
Proposition 2.15 corresponds to the binomial coefficient (n

k). Thus,

P(‘exactly k heads’) = (n
k
)pk(1 − p)n−k. (2.8)
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2.4 Urn Models 25

2.4 Urn Models

We have already discussed an experiment involving an urn in Example 1.9.
We consider the more general case of an urn that contains balls of only
two colors, say, red and blue. Let r denote the number of red balls and b
the number of blue balls. We will call this an (r,b)-urn. The experiment
consists in drawing n balls from such an urn. In Example 1.9, we saw
that this is enough information to define the sample space. However, the
sampling process is not specific enough to define the sampling distribution.
We discuss here the two most basic variants: sampling with replacement
and sampling without replacement. We make the crucial assumption that at
every stage each ball in the urn is equally likely to be drawn.

2.4.1 Sampling with Replacement

As the name indicates, this sampling scheme consists in repeatedly drawing
a ball from the urn, every time returning the ball to the urn. Thus, the urn
is the same before each draw. Because of our assumptions, this means that
the probability of drawing a red ball remains constant, equal to r/(r + b).
Thus, we conclude that sampling with replacement from an urn with r red
balls and b blue balls is analogous to flipping a p-coin with p = r/(r + b).
In particular, based on (2.5), the probability of any sequence of n draws
containing exactly k red balls is

( r
r + b

)
k
( b

r + b
)

n−k
.

Remark 2.17 (From urn to coin) Unlike a general p-coin as described
in Section 2.3, where p can be any number in [0,1], the parameter p that
results from sampling with replacement from a finite urn is necessarily a
rational number. However, because the rationals are dense in [0,1], it is
possible to use an urn to approximate a p-coin. For that, it simply suffices
to choose (integers) r and b be such that r/(r + b) approaches p.

2.4.2 Sampling without Replacement

This sampling scheme consists in repeatedly drawing a ball from the urn,
without ever returning the ball to the urn. Thus, the urn changes with each
draw. For example, consider an urn with r = 2 red balls and b = 3 blue balls,
and assume we draw a total of n = 2 balls from the urn without replacement.
On the first draw, the probability of a red ball is 2/(2 + 3) = 2/5, while the
probability of drawing a blue ball is 3/5.
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26 Discrete Probability Spaces

• After first drawing a red ball, the urn contains 1 red ball and 3 blue balls,
so the probability of a red ball on the 2nd draw is 1/4.

• After first drawing a blue ball, the urn contains 2 red balls and 2 blue
balls, so the probability of a red ball on the 2nd draw is 2/4.

Although the resulting distribution is different than when the draws are
executed with replacement, it is still true that all sequences with the same
number of red balls have the same probability.

Proposition 2.18. Assume that n ≤ r+b, for otherwise the sampling scheme
is not feasible. For any 0 ≤ k ≤ r, the probability of any sequence of n draws
containing exactly k red balls is

r(r − 1)⋯(r − k + 1)b(b − 1)⋯(b − n + k + 1)
(r + b)(r + b − 1)⋯(r + b − n + 1) . (2.9)

Remark 2.19 The convention when writing a product like r(r − 1)⋯(r −
k + 1) is that it is equal to 1 when k = 0, equal to r when k = 1, equal to
r(r − 1) when k = 2, etc. A more formal way to write such products is using
factorials (Section 2.3.2).

We do not provide a formal proof of this result, but examine an example
with n = 5, k = 3, and r and b arbitrary. We consider the outcome ω = rbrrb.
Let Ai be the event that the ith draw is red and note that ω corresponds to
A1 ∩Ac

2 ∩A3 ∩A4 ∩Ac
5. Then, applying the Chain Rule (Proposition 1.42),

we have

P(rbrrb) = P(Ac
5 ∣ A1 ∩Ac

2 ∩A3 ∩A4)
× P(A4 ∣ A1 ∩Ac

2 ∩A3)
× P(A3 ∣ A1 ∩Ac

2) × P(Ac
2 ∣ A1) × P(A1).

Then, for example, P(A3 ∣ A1 ∩Ac
2) is the probability of drawing a red after

having drawn a red and then a blue. At that point there are r−1 reds and b−1
blues in the urn, so that probability is (r−1)/(r−1+b−1) = (r−1)/(r+b−2).
Reasoning in the same way with the other factors, we obtain

P(rbrrb) = b − 1
r + b − 4

× r − 2
r + b − 3

× r − 1
r + b − 2

× b
r + b − 1

× r
r + b

.

Rearranging factors, we recover (2.9) specialized to the present case.

Problem 2.20 Repeat the above with any other sequence of 5 draws with
exactly 3 reds. Verify that all these sequences have the same probability of
occurring.
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Problem 2.21 (Sampling without replacement from a large urn) We already
noted that sampling with replacement from an (r,b)-urn amounts to tossing
a p-coin with p = r/(r + b). Assume now that we are sampling without
replacement, but that the urn is very large. This can be considered in an
asymptotic setting where r and b diverge to infinity in such a way that
r/(r + b) → p. Show that, in the limit, sampling without replacement from
the urn also amounts to tossing a p-coin. Do so by proving that, for any n
and k fixed, (2.9) converges to (2.5).

2.4.3 Number of Heads in a Sequence of Given Length

As in Section 2.3.2, we derive the probability of observing exactly k red
balls in n draws without replacement. We show that

P(‘exactly k heads’) = (r
k
)( b

n − k
)/(r + b

n
). (2.10)

Indeed, since we assume that each ball is equally likely to be drawn at
each stage, it follows that any subset of balls of size n is equally likely. We
are thus in the uniform case (Section 2.2), and therefore the probability is
given by the number of outcomes in the event, divided by the total number
of outcomes.

The denominator in (2.10) is the number of possible outcomes, namely,
subsets of balls of size n taken from the urn.10

The numerator in (2.10) is the number of outcomes with exactly k red
balls. Indeed, any such outcome can be uniquely obtained by first choosing k
red balls out of r in total – there are (r

k) ways to do that – and then choosing
n − k blue balls out of b in total – there are ( b

n−k) ways to do that.

2.4.4 Other Urn Models

There are many urn models as, despite their apparent simplicity, their
theoretical study is surprisingly rich. We already presented the two most
fundamental sampling schemes above. We present a few more below. In
each case, we consider an urn with a finite number of balls of different
colors.

10 Although the balls could be indistinguishable except for their colors, we use a standard
trick in Combinatorics which consists in making the balls identifiable. This is only needed as
a thought experiment. One could imagine, for example, numbering the balls 1 through r + b.
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28 Discrete Probability Spaces

Pólya Urn Model
In this sampling scheme,11 after each draw not only is the ball returned to
the urn but together with an additional ball of the same color.

Problem 2.22 Consider an urn with r red balls and b blue balls. Show by
example, as in Section 2.4.2, that the probability of any outcome sequence
of length n with exactly k red balls is

r(r + 1)⋯(r + k − 1)b(b + 1)⋯(b + n − k − 1)
(r + b)(r + b + 1)⋯(r + b + n − 1) .

(Recall Remark 2.19.) Thus, once again, the central quantity is the number
of red balls.

Moran Urn Model
In this sampling scheme,12 at each stage two balls are drawn: the first ball is
returned to the urn together with an additional ball of the same color, while
the second ball is not returned to the urn.

Note that if at some stage all the balls in the urn are of the same color,
then the urn remains constant forever after. This can be shown to happen
eventually and a question of interest is to compute the probability that the
urn becomes all red.

Problem 2.23 Argue that if r = b, then that probability is 1/2. In fact, argue
that, if τ(r,b) denotes the probability that the process starting with r red
and b blue balls ends up with only red balls, then τ(r,b) = 1 − τ(b, r).
Problem 2.24 Derive the probabilities τ(1,2), τ(2,3), and τ(3,4).

Wright–Fisher Urn Model
Assume that the urn contains N balls in total. In this sampling scheme,13 at
each step the entire urn is reconstituted by sampling N balls uniformly at
random with replacement from the urn.

Problem 2.25 Start with an urn with r red balls and b blue balls. Give the
distribution of the number of red balls that the urn contains after one step.

Remark 2.26 The Wright–Fisher and the Moran urn models were proposed
as models of genetic drift, which is the change in the frequency of gene

11 Named after George Pólya (1887–1985).
12 Named after Patrick Moran (1917–1988).
13 Named after Sewall Wright (1889–1988) and Ronald Aylmer Fisher (1890–1962).
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2.5 Further Topics 29

variants (i.e., alleles) in a given population. In both models, the size of the
population remains constant.

2.5 Further Topics

2.5.1 Stirling’s Formula

The factorial, as a function on the integers, increases very rapidly.

Problem 2.27 Prove that the factorial sequence (n!) increases faster to
infinity than any power sequence, meaning that an/n! → 0 for any real
number a > 0. Moreover, show that n! ≤ nn for n ≥ 1.

In fact, the size of n! is known very precisely. The following describes
the first-order asymptotics. More refined results exist.

Theorem 2.28 (Stirling’s formula14). Letting e denote the Euler number,

n! ∼
√

2πn (n/e)n, as n→∞. (2.11)

In fact,

1 ≤ n!√
2πn (n/e)n

≤ e1/(12n), for all n ≥ 1. (2.12)

2.5.2 More on Binomial Coefficients

Binomial coefficients appear in many important combinatorial identities.
Here are a few examples.

Problem 2.29 Show that there are (n+1
k ) binary sequences with exactly k

ones and n zeros such that no two 1’s are adjacent.

Problem 2.30 (The binomial identity) Prove that

(a + b)n =
n

∑
k=0
(n

k
)akbn−k, for a,b ∈ R.

[One way to do so uses the fact that the binomial distribution needs to satisfy
the 2nd axiom.]

Problem 2.31 Show that

2n =
n

∑
k=0
(n

k
).

14 Named after James Stirling (1692–1770).
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30 Discrete Probability Spaces

This can be done by interpreting this identity in terms of the number of
subsets of {1, . . . ,n}.

Partitions of an Integer
Consider the number of ways of decomposing a non-negative integer m
into a sum of s ≥ 1 non-negative integers. Importantly, we count different
permutations of the same numbers as distinct possibilities. For example,
here are the possible decompositions of m = 4 into s = 3 non-negative
integers

4 + 0 + 0 3 + 1 + 0 3 + 0 + 1 2 + 2 + 0 2 + 1 + 1

2 + 0 + 2 1 + 3 + 0 1 + 2 + 1 1 + 1 + 2 1 + 0 + 3

0 + 4 + 0 0 + 3 + 1 0 + 2 + 2 0 + 1 + 3 0 + 0 + 4

Problem 2.32 Show that this number is equal to (m+s−1
s−1 ). How does this

change when the integers in the partition are required to be positive?

Catalan Numbers
Closely related to the binomial coefficients are the Catalan numbers15. The
nth Catalan number is defined as

Cn ∶=
1

n + 1
(2n

n
).

These numbers have many different interpretations of their own. One of
them is that Cn is the number of balanced bracket expressions of length 2n.
Here are all such expressions of length 6 (n = 3):

()()() ((())) ()(()) (())() (()())

Problem 2.33 Prove that

Cn = (
2n
n
) − ( 2n

n + 1
).

Problem 2.34 Prove the recursive formula

C0 = 1, Cn+1 =
n

∑
i=0

Ci Cn−i, n ≥ 0.

2.5.3 Two Envelopes Problem

Two envelopes containing money are placed in front of you. You are told
that one envelope contains double the amount of the other. You are allowed

15 Named after Eugène Catalan (1814–1894).
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to choose an envelope and look inside, and based on what you see you
have to decide whether to keep the envelope that you just opened or switch
for the other envelope. See [136] for an article-length discussion including
different perspectives.

A flawed reasoning goes as follows:

If you see x in the envelope, then the amount in the other envelope is either
x/2 or 2x, each with probability 1/2. The average gain if you switch is
therefore (1/2)(x/2) + (1/2)(2x) = (5/4)x, so you should switch.

The issue is that there are no grounds for the “with probability 1/2” claim
since the distribution that generated x was not specified.

This illustrates the maxim (echoed in [84, Exa 4.28]).

Computing probabilities requires a well-defined probability model.

See Problem 7.105 and Problem 7.106 for two different probability
models for this situation that lead to different conclusions.

2.6 Additional Problems

Problem 2.35 A rule of thumb in Epidemiology is that, in the context of
examining the safety of a given drug, if one hopes to identify a (severe) side
effect affecting 1 out of every 1000 people taking the drug, then a trial needs
to include at least 3000 individuals. In that case, what is the probability that
in such a trial at least one person will experience the side effect?

Problem 2.36 (With or without replacement) Suppose that we are sampling
n balls with replacement from an urn containing N balls numbered 1, . . . ,N.
Compute the probability that all balls drawn are distinct. Now consider
an asymptotic setting where n = nN and N → ∞, and let qN denote that
probability. Show that

lim
N→∞

qN =
⎧⎪⎪⎨⎪⎪⎩

0 if n/
√

N →∞,
1 if n/

√
N → 0.

Problem 2.37 (A stylized Birthday Problem) Compute the minimum
number of people, taken at random from those born in a given 365-day
year, needed so that at least two share their birthday with probability at least
1/2. Model the situation using Bernoulli trials and assume that the a person
is equally likely to be born any given day.
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Problem 2.38 Continuing with Problem 2.37, perform simulations in R to
confirm your answer.

Problem 2.39 (More on the Birthday Problem) The use of Bernoulli trials
to model the situation in Problem 2.37 amounts to assuming that (1) each
person is equally likely to be born any day of the year and (2) that the
population is very large. Both are approximations. Keeping (2) in place,
show that (1) only makes the number of required people larger.

Problem 2.40 Consider two independent draws with replacement from an
urn containing N distinct items. Let pi denote the probability of drawing
item i. What is the probability that the same item is drawn twice? Show
that this is minimized when the pi are all equal, meaning, when drawing
uniformly at random. [Use the method of Lagrange multipliers.]

Problem 2.41 Suppose that you have access to a computer routine that
takes as input (n,N) and generates n independent draws with replacement
from an urn with balls numbered {1, . . . ,N}.
(i) Explain how you would use that routine to generate n draws from an

urn with r red balls and b blue balls with replacement.
(ii) Explain how you would use that routine to generate n draws from an

urn with r red balls and b blue balls without replacement.

First answer these questions in writing. Then answer them by writing a
program in R for each situation, using the R function runid as the routine.
(This is only meant for pedagogical purposes since the function sample can
be directly used to fulfill the purpose in both cases.)

Problem 2.42 (Simpson’s reversal) Provide a simple example of a finite
probability space (Ω,P) and events A,B,C such that

P(A ∣ B) < P(A ∣ Bc),

while

P(A ∣ B ∩ C) ≥ P(A ∣ Bc ∩ C)

and

P(A ∣ B ∩ Cc) ≥ P(A ∣ Bc ∩ Cc).

Show that this is not possible when B and C are independent of each other.

Problem 2.43 (The Two Children) This is a classic problem that appeared
in [75]. You are on the airplane and start a conversation with the person
next to you. In the course of the conversation, you learn that (1) the person
has two children; (2) one of them is a daughter; (3) and she is the oldest.
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After (1), what is the probability that the person has two daughters? How
does that change after (2)? How does that change after (3)? [Make some
necessary simplifying assumptions.]

Problem 2.44 Write an R function polya that takes in a sequence length
n, and the composition of the initial urn in terms of numbers of red and
blue balls, r and b, and generates a sequence of that length from the Pólya
process starting from that urn. Call the function on (n, r,b) = (200,5,3) a
large number of times, say M = 103, each time compute the number of red
balls in the resulting sequence, and tabulate the fraction of times that this
number is equal to k, for all k ∈ {0, . . . ,200}. Plot the corresponding bar
chart.

Problem 2.45 Write an R function moran that takes in the composition
of the urn in terms of numbers of red and blue balls, r and b, and runs the
Moran urn process until the urn is of one color and returns that color and
the number of stages that it took to get there. (You may want to bound the
number of stages and then stop the process after that, returning a symbol
indicating non-convergence.) Use that function to confirm your answers to
Problem 2.24 following the guidelines of Problem 2.44.
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Distributions on the Real Line

Measurements are often numerical in nature, which naturally leads to
distributions on the real line. We start our discussion of such distributions
in this chapter, and in the process introduce the concept of random variable,
which is really a device to facilitate the definition of events (i.e., the writing
of probability statements) and the computation of their probabilities.

Our foundation is a probability space, (Ω,Σ,P), modeling a certain
experiment.

3.1 Random Variables

Consider a measurement on the outcome of the experiment, which we
assume to be numerical and thus represented by a real-valued function on
the measurable space (Ω,Σ). At the very minimum, we want to compute the
probability that the measurement does not exceed a certain amount. Thus,
we say that a real-valued function X∶Ω→ R – representing a measurement
out of the experiment – is a random variable on (Ω,Σ) if

{X ≤ x} ∈ Σ, for all x ∈ R. (3.1)

This makes it possible to evaluate P(X ≤ x).
Remark 3.1 {X ≤ x} in (3.1) is shorthand for {ω ∈ Ω ∶ X(ω) ≤ x}.

3.2 Borel σ-Algebra

A random variable, representing a measurement on the outcome of the
underlying experiment, in a sense transfers the randomness from the
underlying probability space, (Ω,Σ,P), to the real line, R. But, to speak of
a distribution on the real line, we need to equip it with a σ-algebra. At the
very minimum, because of (3.1), we require the σ-algebra to include all sets

34
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of the form

(−∞, x], for x ∈ R.

(This is because X ≤ x ⇔ X ∈ (−∞, x].) The Borel σ-algebra16 on
R, denoted B henceforth, is the σ-algebra generated by these intervals,
meaning, the smallest σ-algebra over R that contains all such intervals
(Problem 1.51).

Remark 3.2 Although the issue is rather technical, we mention that
equipping the real line with its power set would effectively exclude most
continuous distributions (see Chapter 5) commonly used in practice to
model real-valued observations.

Proposition 3.3. The Borel σ-algebra B contains all intervals, as well as
all open sets and all closed sets.

Proof We only show that B contains all intervals. For example, take a < b.
Since B contains (−∞,a] and (−∞,b], it must contain (−∞,a]c by (1.2)
and also

(−∞,a]c ∩ (−∞,b],

by (1.3). But this is (a,b]. Therefore, B contains all intervals of the form
(a,b], where a = −∞ and b = ∞ are allowed.

Take an interval of the form (−∞, x). Note that it is open on the right.
Define Un = (−∞, x − 1/n]. By assumption, Un ∈ B for all n. Because of
(1.4), B must also contain their union, and we conclude with the fact that

⋃
n≥1
Un = (−∞, x).

Now that we know that B contains all intervals of the form (−∞, x), we
can reason as before and show that it must contain all intervals of the form
[a,b), where a = −∞ and b = ∞ are allowed.

Finally, for any −∞ ≤ a < b ≤ ∞,

[a,b] = [a,d) ∪ (c,b], and (a,b) = (a, c] ∪ [c,b),

for any c,d such that a < c < d < b, so that B must also include intervals of
the form [a,b] and (a,b). �

Problem 3.4 Using Proposition 3.3, show that the Borel σ-algebra is the
one generated by the open (resp. closed) sets of R. (This makes it possible

16 Named after Émile Borel (1871–1956).
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36 Distributions on the Real Line

to define the Borel σ-algebra on any topological space, in particular, on any
Euclidean space. See Section 6.1.)

We will say that a function g∶R→ R is measurable if

g−1(V) ∈B, for all V ∈B.

3.3 Distributions on the Real Line

When considering a probability distribution on the real line, we will always
assume that it is defined on the Borel σ-algebra.

The support of a distribution P on (R,B) is the smallest closed set A
such that P(A) = 1.

A random variable X on a probability space (Ω,Σ,P) defines a distribu-
tion on (R,B),

PX(U) ∶= P(X ∈ U), for U ∈B.

({X ∈ U} is sometimes denoted by X−1(U).)
For a random variable X and a distribution P, we write X ∼ P when X

has distribution P, meaning that PX = P.

Problem 3.5 The range of a random variable X on (Ω,Σ) is defined as

X(Ω) ∶= {X(ω) ∶ ω ∈ Ω}.

Show that the support of PX is included in the range of X. When is the
inclusion strict?

3.4 Distribution Function

The distribution function (aka cumulative distribution function) of a
distribution P on (R,B) is defined as

F(x) ∶= P((−∞, x]). (3.2)

See Figure 3.1 for an example.

Proposition 3.6. A distribution is characterized by its distribution function
in the sense that two distributions with identical distribution functions must
coincide.

This result relies on rather technical arguments, but for intuition, it comes
from the fact that two distributions with identical distribution functions
coincide on all intervals of the form (−∞, x], x ∈ R, and these intervals
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Figure 3.1 A plot of the distribution function of the binomial distribution with
parameters n = 10 and p = 0.3.

generate the Borel σ-algebra – the algebra on which the distributions are
defined. The situation is not unlike two continuous functions on the real line
that coincide on the rationals: they must be the same.

Problem 3.7 Let F be the distribution function of a distribution P on
(R,B).
(i) Prove that

F is non-decreasing, lim
x→−∞

F(x) = 0, lim
x→+∞

F(x) = 1. (3.3)

(ii) Prove that F is continuous from the right, meaning

lim
t↘x

F(t) = F(x), for all x ∈ R. (3.4)

[Use the 3rd probability axiom (1.5).]
(iii) Prove that F is upper semi-continuous, meaning

lim sup
t→x

F(t) ≤ F(x), for all x ∈ R. (3.5)

It so happens that these properties above define a distribution function,
in the sense that any function satisfying these properties is the distribution
function of some distribution on the real line.
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38 Distributions on the Real Line

Theorem 3.8. Let F∶R → [0,1] satisfy (3.3)–(3.4). Then F defines a
distribution17 P on B via (3.2). In particular,

P((a,b]) = F(b) − F(a), for −∞ ≤ a < b ≤ ∞.

Problem 3.9 In the context of the last theorem, for x ∈ R, define the left
limit of F at x as

F(x−) ∶= lim
t↗x

F(t). (3.6)

Show that this limit is well-defined. Then prove that

F(x) − F(x−) = P({x}), for all x ∈ R. (3.7)

Problem 3.10 Show that a distribution on the real line is discrete if and
only if its distribution function is piecewise constant (i.e., staircase) with
the set of discontinuities (i.e., jumps) corresponding to the support of the
distribution.

Problem 3.11 Show that the set of points where a monotone function
F∶R→ R is discontinuous is countable.

The distribution function of a random variable X is simply the distribution
function of its distribution PX . It can be expressed as

FX(x) ∶= P(X ≤ x).

3.5 Survival Function

Consider a distribution P on (R,B) with distribution function F. The
survival function of P is defined as

F̄(x) ∶= P((x,∞)). (3.8)

Problem 3.12 Show that F̄ = 1 − F.

Problem 3.13 Show that a survival function F̄ is non-increasing, continuous
from the right, and lower semi-continuous, meaning that

lim inf
t→x

F̄(t) ≥ F̄(x), for all x ∈ R.

The survival function of a random variable X is simply the survival
function of its distribution PX . It can be expressed as

F̄X(x) ∶= P(X > x).

17 The distribution P is known as the Lebesgue–Stieltjes distribution generated by F.
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3.6 Quantile Function 39

3.6 Quantile Function

Consider a distribution P on (R,B) with distribution function F. In
Problem 3.10, we saw that F is not necessarily strictly increasing or
continuous, in which case it does not admit an inverse in the usual sense.
However, as a non-decreasing function, F admits the following form of
pseudo-inverse

F−(u) ∶= min{x ∶ F(x) ≥ u}, (3.9)

sometimes called the quantile function of P. (That it is a minimum instead
of an infimum is because of (3.5).) See Figure 3.2 for an example.
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Figure 3.2 A plot of the quantile function of the binomial distribution with
parameters n = 10 and p = 0.3.

Note that F− is defined on (0,1), and if we allow it to return −∞ and∞
values, it can always be defined on [0,1].
Problem 3.14 Show that F− is non-decreasing, continuous from the right,
and

F(x) ≥ u ⇔ x ≥ F−(u).

In addition, show that F(F−(u)) ≥ u. When is the inequality an equality?

Problem 3.15 Define the following variant of the survival function

F̃(x) = P([x,∞)). (3.10)

Compare with (3.8), and note that the two definitions coincide when F is
continuous. Show that

F−(u) = inf{x ∶ F̃(x) ≤ 1 − u},

https://doi.org/10.1017/9781108779197.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108779197.006


40 Distributions on the Real Line

and deduce that F̃(F−(u)) ≥ 1 − u, which in turn implies that

F̃(x) < 1 − u ⇒ x > F−(u).

(Unlike (3.9), the infimum above is not necessarily a minimum.)

Quantiles
We say that x is a u-quantile of P if

F(x) ≥ u and F̃(x) ≥ 1 − u, (3.11)

or equivalently, if X denotes a random variable with distribution P,

P(X ≤ x) ≥ u and P(X ≥ x) ≥ 1 − u.

With this definition, x ∈ R is a u-quantile for any

1 − F̃(x) ≤ u ≤ F(x).

Remark 3.16 (Median and other quartiles) A 1/4-quantile is called a 1st
quartile, a 1/2-quantile is called 2nd quartile or more commonly a median,
and a 3/4-quantile is called a 3rd quartile. The quartiles, together with other
features, can be visualized using a boxplot.

Problem 3.17 Show that for any u ∈ (0, 1), the set of u-quantiles is either a
singleton or an interval of the form [a,b) for some a < b that admit a simple
characterization, where by convention [a,a) = {a}.
Problem 3.18 The previous problem implies that there always exists a
u-quantile when u ∈ (0,1). What happens when u = 0 or u = 1?

Problem 3.19 Show that F−(u) is a u-quantile of F. Thus, (reassuringly)
the quantile function returns bona fide quantiles.

Remark 3.20 Other definitions of pseudo-inverse are possible, each leading
to a possibly different notion of quantile. For example,

F⊟(x) ∶= sup{x ∶ F(x) ≤ u},

and

F⊖(u) ∶= 1
2
(F−(u) + F⊟(u)). (3.12)

Problem 3.21 Compare F−, F⊟, and F⊖. In particular, find examples of
distributions where they are different, and also derive conditions under
which they coincide.
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Discrete Distributions

In this chapter, we consider distributions on the real line that have a discrete
support. We will call these discrete distributions. It is indeed common
to count certain occurrences in the outcome of an experiment, and the
corresponding counts are invariably integer-valued. In fact, all the major
distributions of this type are supported on the (non-negative) integers. We
introduce the main ones in this chapter. And, unless otherwise noted, a
discrete distribution will be assumed to be supported on the integers.

We consider, as usual, a probability space, (Ω,Σ,P), modeling a certain
experiment. This is again our foundation, and all the probability statements
that follow are about the outcome of this experiment.

In Chapter 3, we saw that a random variable on that space defines a
distribution on the real line equipped with its Borel σ-algebra. A random
variable with a discrete distribution is said to be discrete.

Problem 4.1 Show that any random variable on a discrete probability space
is automatically discrete.

If X is such a random variable, then its distribution PX is characterized,
for example, by its distribution function, FX(x) = P(X ≤ x), but being a
discrete distribution, PX is also characterized by its mass function, given by

fX(x) ∶= P(X = x), for x ∈ R.

Problem 4.2 Argue that, when dealing with discrete distributions on the
real line, equipping R with its power set is equivalent to equipping it with
its Borel σ-algebra.

4.1 Binomial Distributions

Consider the setting of Bernoulli trials, as in Section 2.3, where a p-coin
is tossed repeatedly n times. Unless otherwise stated, we assume that the

41
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42 Discrete Distributions

tosses are independent. Letting ω = (ω1, . . . , ωn) denote an element of
Ω ∶= {h, t}n, for each i ∈ {1, . . . ,n}, define

Xi(ω) =
⎧⎪⎪⎨⎪⎪⎩

1 if ωi = h,
0 if ωi = t.

(4.1)

(Note that Xi is the indicator of the event Ai defined in Section 2.3.) In
particular, the distribution of Xi is given by

P(Xi = 1) = p, P(Xi = 0) = 1 − p.

Xi has the so-called Bernoulli distribution with parameter p. We will denote
this distribution by Ber(p).

The Xi are independent (discrete) random variables in the sense that

P(X1 = x1, . . . ,Xr = xr) = P(X1 = x1) ×⋯ × P(Xr = xr),
∀x1, . . . , xr ∈ {0,1},∀r ≥ 2.

We will discuss independent random variables in more detail in Section 6.4.
Let Y denote the number of heads in the sequence of n tosses, so that

Y =
n

∑
i=1

Xi. (4.2)

We note that Y is a random variable on the same sample space Ω. Y has the
so-called binomial distribution with parameters (n, p). We will denote this
distribution by Bin(n, p).

We already saw in Proposition 2.8 that Y plays a central role in this
experiment. And in (2.8), we derived its distribution.

Proposition 4.3 (Binomial distribution). The binomial distribution with
parameters (n, p) has mass function

f (k) = (n
k
)pk(1 − p)n−k, k ∈ {0, . . . ,n}. (4.3)

Discrete mass functions are often drawn as bar plots. See Figure 4.1
for an illustration, where we plot not only the mass function but also the
distribution function of a binomial distribution.

4.2 Hypergeometric Distributions

Consider an urn model as in Section 2.4. Suppose, as before, that the urn
has r red balls and b blue balls. We sample from the urn n times and, as
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Figure 4.1 A plot of the mass function (top) and distribution function (bottom) of
the binomial distribution with parameters n = 10 and p = 0.3.

before, let Xi = 1 if the ith draw is red, and Xi = 0 otherwise. (Note that Xi

is the indicator of the event Ai defined in Section 2.4.) If we sample with
replacement, we know that the experiment corresponds to Bernoulli trials
with parameter p ∶= r/(r + b). We assume therefore that we are sampling
without replacement. To be able to sample n times without replacement, we
need to assume that n ≤ r + b.

Let Y denote the number of heads in a sequence of n draws, exactly as in
(4.2). The difference is that here the draws (the Xi) are not independent. The
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44 Discrete Distributions

distribution of Y is called the hypergeometric distribution18 with parameters
(n, r,b). We will denote this distribution by Hyper(n, r,b).

We already computed its mass function in (2.10).

Proposition 4.4 (Hypergeometric distribution). The hypergeometric distri-
bution with parameters (n, r,b) has mass function

f (k) = (r
k
)( b

n − k
)/(r + b

n
), k ∈ {0, . . . ,min(n, r)}.

4.3 Geometric Distributions

Consider Bernoulli trials as in Section 4.1 but now assume that we toss the
p-coin until it lands heads. This experiment was described in Example 1.12.
Define the Xi as before, and let Y denote the number of tails until the first
heads. For example, Y(ω) = 3 when ω = ttth. Note that Y is a random
variable on Ω.

It is particularly straightforward to derive the distribution of Y . Indeed,
for any integer k ≥ 0,

P(Y = k) = P(X1 = 0, . . . ,Xk = 0,Xk+1 = 1)
= P(X1 = 0) ×⋯ × P(Xk = 0) × P(Xk+1 = 1)
= (1 − p) ×⋯ × (1 − p)
12222222222222222222222222222222222222222222222222222222222223222222222222222222222222222222222222222222222222222222222224

k times

×p = (1 − p)k p,

using the independence of the Xi in the second line.
The distribution of Y is called the geometric distribution19 with parameter

p. We will denote this distribution by Geom(p). It is supported on
{0,1,2, . . .}. See Figure 4.2 for an illustration.

Problem 4.5 Because of the Law of Total Probability,
∞
∑
k=0
(1 − p)k p = 1, for all p ∈ (0,1). (4.4)

Prove this directly.

18 There does not seem to be a broad agreement on how to parameterize this family of
distributions. In the notation used here, the outcome is the number of red balls drawn, and
for the parameters, the first parameter is the total number of balls drawn, the second is the
number of red balls in the urn, while the third is the number of blue balls in the urn.

19 This distribution is sometimes defined a bit differently, as the number of trials, including
the last one, until the first heads. This is the case, for example, in [84].
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Figure 4.2 A plot of the mass function (top) and distribution function (bottom) of
the geometric distribution with parameter p = 0.3.

Problem 4.6 Show that P(Y > k) = (1 − p)k+1 for k ≥ 0 integer. This is the
survival function of Geom(p).
Remark 4.7 (Law of truly large numbers) In [46], Diaconis and Mosteller
introduced this principle as one possible source for coincidences. In their
own words, the ‘law’ says that:

When enormous numbers of events and people and their interactions
cumulate over time, almost any outrageous event is bound to occur.

Related concepts include Murphy’s Law, Littlewood’s Law, and the Infinite
Monkey Theorem. Mathematically, the principle can be formalized as
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46 Discrete Distributions

the following theorem: If a p-coin, with p > 0, is tossed repeatedly
independently, it will land heads eventually. This theorem is an immediate
consequence of (4.4).

Problem 4.8 (Memoryless property) Prove that a geometric random
variable Y satisfies

P(Y ≥ k + t ∣ Y ≥ k) = P(Y ≥ t),
for all t ≥ 0 and all k ≥ 0.

4.4 Other Discrete Distributions

We already saw the families of Bernoulli, binomial, hypergeometric, and
geometric distributions. We introduce a few more.

4.4.1 Discrete Uniform Distributions

A discrete uniform distribution (on the real line) is a uniform distribution
on a finite set of points in R. Thus, the family is parameterized by finite sets
of points: such a set, say X ⊂ R, defines the distribution with mass function

f (x) = {x ∈ X}
∣X ∣ , x ∈ R.

The subfamily corresponding to sets of the form X = {1, . . . ,N} plays
a special role. This subfamily is obviously much smaller and can be
parameterized by the positive integers.

4.4.2 Negative Binomial Distributions

Consider an experiment where we toss a p-coin repeatedly until the mth
heads, where m ≥ 1 is given. Let Y denote the number of tails until we
stop. For example, if m = 3, then Y(ω) = 4 when ω = hthttth. Y is
clearly a random variable on the same sample space, and has the so-called
negative binomial distribution20 with parameters (m, p). We will denote this
distribution by NegBin(m, p). It is supported on k ∈ {0,1,2, . . .}. Clearly,
NegBin(1, p) = Geom(p), so the negative binomial family includes the
geometric family.

20 This distribution is sometimes defined a bit differently, as the number of trials, including
the last one, until the mth heads. This is the case, for example, in [84].
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Proposition 4.9. The negative binomial distribution with parameters (m, p)
has mass function

f (k) = (m + k − 1
m − 1

)(1 − p)k pm, k = 0,1,2, . . . .

Problem 4.10 Prove Proposition 4.9. The arguments are very similar to
those leading to Proposition 4.3.

Proposition 4.11. The sum of m independent random variables, each
having the geometric distribution with parameter p, has the negative
binomial distribution with parameters (m, p).

Problem 4.12 Prove Proposition 4.11.

4.4.3 Negative Hypergeometric Distributions

As the name indicates, this distribution arises when, instead of flipping a
coin, we draw without replacement from an urn. Assume the urn contains
r red balls and b blue balls. Let Y denote the number of blue balls drawn
before drawing the mth red ball, where m ≤ r. Y is a random variable
on the same sample space, and has the so-called negative hypergeometric
distribution with parameters (m, r,b).
Problem 4.13 Derive the mass function of the negative hypergeometric
distribution with parameters (m, r,b) = (3,4,5).

4.4.4 Poisson Distributions

The Poisson distribution21 with parameter λ ≥ 0 is given by the following
mass function

f (k) ∶= e−λ
λk

k!
, k = 0,1,2, . . . .

By convention, 00 = 1, so that when λ = 0, the right-hand side is 1 at k = 0
and 0 otherwise.

Problem 4.14 Show that this is indeed a mass function on the non-negative
integers. [Recall that ex = ∑ j≥0 x j/ j!.]

Proposition 4.15 (Stability of the Poisson family). The sum of a finite
number of independent Poisson random variables is Poisson.

21 Named after Siméon Poisson (1781–1840).
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48 Discrete Distributions

The Poisson distribution arises when counting rare events. This is partly
justified by Theorem 4.16.

4.5 Law of Small Numbers

Suppose that we are counting the occurrence of a rare phenomenon. For a
historical example, Gosset22 was counting the number of yeast cells using an
hemocytometer [181]. This is a microscope slide subdivided into a grid of
identical units that can hold a solution. In his experiments, Gosset prepared
solutions containing the cells. Each solution was well mixed and spread
on the hemocytometer. He then counted the number of cells in each unit.
He wanted to understand the distribution of these counts. He performed a
number of experiments. One of them is shown in Table 4.1.

Table 4.1 The following is Table 2 in [181]. There were 103
units with 0 cells, 143 units with 1 cell, etc. See Problem 12.28
for a comparison with what is expected under a Poisson model.

Number of cells 0 1 2 3 4 5 6

Number of units 103 143 98 42 8 4 2

Mathematically, Gosset reasoned as follows. Let N denote the number
of units and n the number of cells. When the solution is well-mixed and
evenly spread out over the units, each cell can be assumed to fall in any
unit with equal probability 1/N. Under this model, the number of cells
found in a given unit has the binomial distribution with parameters (n, 1/N).
Gosset considered the limit where n and N are both large and proved that
this distribution is ‘close’ to the Poisson distribution with parameter n/N
when that number is not too large.

This approximation of a binomial distribution with a Poisson distribution
is sometimes referred to as the Law of Small Numbers, and is formalized
in Theorem 4.16. See Figure 4.3 for an illustration indicating that the
approximation is already very good for moderate values of n.

Theorem 4.16 (Poisson approximation to the binomial distribution).
Consider a sequence (pn) with pn ∈ [0,1] and npn → λ as n→∞. Then if

22 William Sealy Gosset (1876–1937) was working at the Guinness brewery, which
required that he publish his work anonymously so as not to disclose the fact that he was
working for Guinness and that his work could be used in the beer brewing business. Famously,
he chose the pseudonym ‘Student’.

https://doi.org/10.1017/9781108779197.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108779197.007


4.6 Coupon Collector Problem 49

0 1 2 3 4 5 6 7 8 9 10

Binomial
Poisson

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Figure 4.3 A plot of the mass functions of the binomial distribution with parameters
n = 20 and p = 1/20 (dark grey) and of the Poisson distribution with mean λ = 1
(light grey).

Yn has distribution Bin(n, pn) and k ≥ 0 is an integer,

P(Yn = k) → e−λ
λk

k!
, as n→∞.

Problem 4.17 Prove Theorem 4.16 using Stirling’s formula (2.11).

Bateman arrived at the same conclusion in the context of experiments
conducted by Rutherford and Geiger in the early 1900s to better understand
the decay of radioactive particles. See Table 4.2 for an example of such an
experiment.

4.6 Coupon Collector Problem

This problem arises from considering an individual collecting coupons of
a certain type, say of players in a certain sports league in a certain sports
season. The collector progressively completes his collection by buying
envelopes, each containing an undisclosed coupon. With every purchase,
the collector hopes the enclosed coupon will be new to his collection. (We
assume here that the collector does not trade with others.) If there are
N players in the league that season (and therefore that many coupons to
collect), how many envelopes would the collector need to purchase in order
to complete his collection?
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Table 4.2 The following is part of the table on page 701 of [159].
The counting of particles was done over 2608 time intervals of
7.5 seconds each. See Problem 12.29 for a comparison with
what is expected under a Poisson model.

Number of particles Number of intervals

0 57
1 203
2 383
3 525
4 532
5 408
6 273
7 139
8 45
9 27

10 10
11 4
12 0
13 1
14 1

15+ 0

In the simplest setting, an envelope is equally likely to contain any one
of the N distinct coupons. In that case, the situation can be modeled as a
probability experiment where balls are drawn repeatedly with replacement
from an urn containing N balls, all distinct, until all the balls in the urn have
been drawn at least once. For example, if N = 10, the sequence of draws
might look like this:

3 6 9 9 9 5 7 9 5 8 3 2 1 2 5 2 7 10 3 3 10 1 8 7 9 1 6 4

Let T denote the length of the resulting sequence (T = 28 in this particular
realization of the experiment).

Problem 4.18 Write a function in R taking in N and returning a realization
of the experiment. [Use the function sample and a repeat statement.] Run
your function on N = 10 a few times to get a sense of how typical outcomes
look like.

Problem 4.19 Let T0 = 0, and for i ∈ {1, . . . ,N}, let Ti denote the number
of balls needed to secure i distinct balls, so that T = TN . Define Wi = Ti−Ti−1.
Show that W1, . . . ,WN are independent. Then derive the distribution of Wi.

https://doi.org/10.1017/9781108779197.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108779197.007


4.7 Additional Problems 51

Problem 4.20 Write a function in R taking in N and returning a realization
of the experiment, but this time based on Problem 4.19. Compare this
function and that of Problem 4.18 in terms of computational speed. [The
function proc.time will prove useful.]

Problem 4.21 For i ∈ {1, . . . ,N}, let Xi denote the number of trials it takes
to draw ball i. Note that T = max{Xi ∶ 1 ≤ i ≤ N}.
(i) Show that

T ≤ t ⇔ Xi ≤ t, ∀i = 1, . . . ,N.

(ii) What is the distribution of Xi?
(iii) For n ≥ 1, and for k ∈ {1, . . . ,N} and any 1 ≤ i1 < ⋯ < ik ≤ N,

compute

P(Xi1 ≥ n, . . . ,Xik ≥ n).

(iv) Use this and the inclusion-exclusion formula (1.11) to derive the mass
function of T in closed form.

4.7 Additional Problems

Problem 4.22 Show that for any n ≥ 1 integer and any p ∈ [0,1],

Bin(n,1 − p) coincides with n −Bin(n, p). (4.5)

Problem 4.23 Let Y be binomial with parameters (n,1/2). Using the
symmetry (4.5), show that

P(Y > n/2) = P(Y < n/2). (4.6)

This means that, when the coin is fair, the probability of getting strictly
more heads than tails is the same as the probability of getting strictly more
tails than heads. When n is odd, show that (4.6) implies that

P(Y > n/2) = P(Y < n/2) = 1
2
.

When n is even, show that (4.6) implies that

P(Y > n/2) = 1
2
+ 1

2
P(Y = n/2).

Then using Stirling’s formula (2.11), show that

P(Y = n/2) ∼
√

2
πn
, as n→∞.
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This approximation is in fact very good. Verify this numerically in R.

Problem 4.24 Let Fn,θ denote the distribution function of the binomial
distribution with parameters (n, θ). Fix an integer 0 ≤ y < n and show that
θ ↦ Fn,θ(y) is strictly decreasing, continuous, and one-to-one as a map of
[0,1] to itself. What happens when y = n?

Problem 4.25 Continuing with the setting of Problem 4.24, show that for
any y ≥ 0 integer and any θ ∈ [0,1], n ↦ Fn,θ(y) is non-increasing. In fact,
if 0 < θ < 1, this function is decreasing over n ∈ [y,∞).
Problem 4.26 Let F−n,θ denote the quantile function of the binomial
distribution with parameters (n, θ). Fix 0 < u < 1 and show that θ ↦ F−n,θ(u)
is piecewise constant, non-decreasing, and continuous from the left.

Problem 4.27 Suppose that you have access to a computer routine that
takes as input a vector of any length k of numbers in [0, 1], say (q1, . . . ,qk),
and generates (B1, . . . , Bk) independent Bernoulli with these parameters
(i.e., Bi ∼ Ber(qi)). The question is how to use this routine to generate a
random variable from a given mass function f (with finite support). Assume
that f is supported on x1, . . . , xN and that f (x j) = pj.

(i) Quickly argue that the case N = 2 is trivial.
(ii) Consider the case N = 3. Show that the following works. Assume

without loss of generality that p1 ≤ p2 ≤ p3. Apply the routine to
q1 = p1 and q2 = p2/(1 − p1) obtaining (B1,B2). If B1 = 1, return x1;
if B1 = 0 and B2 = 1, return x2; otherwise, return x3.

(iii) Extend this procedure to the general case.

Problem 4.28 Show that the sum of independent binomial random variables
with same probability parameter p is also binomial with probability
parameter p.

Problem 4.29 Prove Proposition 4.15.

Problem 4.30 Suppose that X and Y are two independent Poisson random
variables. Show that the distribution of X conditional on X+Y = t is binomial
and specify the parameters.

Problem 4.31 For any p ∈ (0,1), show that there is cp > 0 such that the
following is a mass function on the positive integers

f (k) = cp
pk

k
, k ≥ 1 integer.
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Derive cp in closed form. [Recall that log(1 − x) = −∑k≥1 xk/k for all
x ∈ (0,1).]
Problem 4.32 For what values of α can one normalize g(k) = k−α into a
mass function on the positive integers? Similarly, for what values of α and
β can one normalize g(k) = k−α(log(k + 1))−β into a mass function on the
positive integers?

Problem 4.33 (The binomial approximation to the hypergeometric distribu-
tion) Problem 2.21 asks you to prove that sampling without replacement
from an (r,b)-urn amounts, in the limit where r/(r + b) → p, to tossing a p-
coin. Argue that, therefore, the hypergeometric distribution with parameters
(n, r,b) must approach the binomial distribution with parameters (n, p)
when n is fixed and r/(r + b) → p. [Argue in terms of mass functions.]

Problem 4.34 (Game of Googol) Martin Gardner posed the following
puzzle in his column in a 1960 edition of Scientific American:

Ask someone to take as many slips of paper as he pleases, and on each
slip write a different positive number. The numbers may range from small
fractions of 1 to a number the size of a googol or even larger. [A googol is
defined as 10100.] These slips are turned face down and shuffled over the
top of a table. One at a time you turn the slips face up. The aim is to stop
turning when you come to the number that you guess to be the largest of
the series. You cannot go back and pick a previously turned slip. If you
turn over all the slips, then of course you must pick the last one turned.

Let n be the total number of slips. A possible strategy is, for a given r ∈
{1, . . . ,n}, to turn r slips, and then keep turning slips until either reaching
the last one or stop when the slip shows a number that is at least as large as
the largest number among the first r slips.

(i) Compute the probability that this strategy is correct in terms of (n, r).
(ii) Let rn denote the optimal choice of r as a function of n. (If there are

several optimal choices, it is the smallest.) Compute rn using R.
(iii) Formally derive rn to first order when n→∞.

(This problem has a long history [62].)
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5

Continuous Distributions

In some areas of mathematics, physics, and elsewhere, continuous objects
and structures are often motivated, or even defined, as limits of discrete
objects. For example, in mathematics, the real numbers are defined as the
limit of sequences of rationals, and in physics, the laws of thermodynamics
arise as the number of particles in a system tends to infinity – the so-called
thermodynamic or macroscopic limit.

In Chapter 4, we introduced and discussed discrete distributions on the
real line. Taking these discrete distributions to their continuous limits –
which is done by letting their support size increase to infinity in a controlled
manner – gives rise to continuous distributions on the real line. In fact,
all continuous distributions can be obtained as such limits of discrete
distributions.

In what follows, when we make probability statements, we assume that
we have in the background a probability space, which by default will be
denoted by (Ω,Σ,P). As in Chapter 3, we always equip R with its Borel
σ-algebra, which we denoted by B in Section 3.2. (Unlike in Chapter 4,
where we could as well have equipped R with its power set, here we need
to equip R with its Borel σ-algebra.)

5.1 From the Discrete to the Continuous

Some of the discrete distributions introduced in Chapter 4 have ‘natural’
continuous limits when we let the size of their support sets increase. We
formalize this passage to the continuum by working with distribution
functions. (Recall that a distribution on the real line is characterized by
its distribution function.)

54
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5.1 From the Discrete to the Continuous 55

5.1.1 From Uniform to Uniform

For a positive integer N, let PN denote the (discrete) uniform distribution
on {1, . . . ,N}, and let FN denote its distribution function.

Problem 5.1 Show that, for any x ∈ R,

lim
N→∞

FN(Nx) = F(x) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if x ≤ 0,
x if 0 < x < 1,
1 if x ≥ 1.

The limit function F above is continuous and satisfies the conditions
of Theorem 3.8 and so defines a distribution, referred to as the uniform
distribution on [0,1]; see Section 5.6 for more details.

Remark 5.2 Note that FN(x) → 0 for all x ∈ R, so that scaling x by N is
crucial to obtain the limit above.

Remark 5.3 The family of discrete uniform distributions on the real line
is much larger. It turns out that it is so large that it is in some sense dense
among the class of all distributions on (R,B). You are asked to prove this
in Problem 5.43.

5.1.2 From Binomial to Normal

The following limiting behavior of binomial distributions is one of the
pillars of Probability Theory.

Theorem 5.4 (De Moivre–Laplace Theorem23). Fix p ∈ (0,1) and let Fn

denote the distribution function of the binomial distribution with parameters
(n, p). Then, for any x ∈ R,

lim
n→∞

Fn(np + x
√

np(1 − p)) = Φ(x),

where

Φ(x) ∶= ∫
x

−∞

e−t2/2
√

2π
dt. (5.1)

23 Named after Abraham de Moivre (1667–1754) and Pierre-Simon, Marquis de Laplace
(1749–1827).
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56 Continuous Distributions

Proposition 5.5. The function Φ in (5.1) satisfies the conditions of
Theorem 3.8, in particular because

∫
∞

−∞
e−t2/2dt =

√
2π.

Thus, the function Φ defined in (5.1) defines a distribution, referred to as
the standard normal distribution; see Section 5.7 for more details.

The theorem above is sometimes referred to as the normal approximation
to the binomial distribution. See Figure 5.1 for an illustration.
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Figure 5.1 An illustration of the normal approximation to the binomial distribution
with parameters n ∈ {10, 30, 100} (from left to right) and p = 0.1.
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As the proof of Theorem 5.4 can be relatively long, we only provide
some guidance. Let σ =

√
p(1 − p).

Problem 5.6 Let Gn(x) = Fn(np + xσ
√

n). Show that it suffices to prove
that Gn(b) −Gn(a) → Φ(b) −Φ(a) for all −∞ < a < b < ∞.

Problem 5.7 Using (4.3), show that

Gn(b) −Gn(a) = σ
√

n∫
b

a
( n
κn(t)

) pκn(t)(1 − p)n−κn(t)dt +O(1/
√

n),

where κn(t) ∶= ⌊np + tσ
√

n⌋.
Problem 5.8 Show that

σ
√

n( n
κn(t)

) pκn(t)(1 − p)n−κn(t) → e−t2/2
√

2π
, as n→∞,

uniformly in t ∈ [a,b]. The rather long, but elementary calculations are
based on Stirling’s formula in the form of (2.12).

5.1.3 From Geometric to Exponential

Let FN denote the distribution function of the geometric distribution with
parameter (λ/N) ∧ 1, where λ > 0 is fixed.

Problem 5.9 Show that, for any x ∈ R,

lim
N→∞

FN(Nx) = F(x) ∶= (1 − e−λx) {x > 0}.

The limit function F above satisfies the conditions of Theorem 3.8 and so
defines a distribution, referred to as the exponential distribution with rate λ;
see Section 5.8 for more details.

5.2 Continuous Distributions

A distribution P on (R,B), with distribution function F, is a continuous
distribution if F is a continuous function.

Problem 5.10 Show that P is continuous if and only if P({x}) = 0 for all
x ∈ R.

Problem 5.11 Show that F∶R → R is the distribution function of a
continuous distribution if and only if it is continuous, non-decreasing, and
satisfies

lim
x→−∞

F(x) = 0, lim
x→∞

F(x) = 1.
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We say that a distribution P is a mixture of distributions P0 and P1 if
there is b ∈ [0,1] such that

P = (1 − b)P0 + bP1. (5.2)

Theorem 5.12. Every distribution on the real line is the mixture of a discrete
distribution and a continuous distribution.

Proof Let P be a distribution on the real line, with distribution function
denoted F. Assume that P is neither discrete nor continuous, for otherwise
there is nothing to prove.

Let D denote the set of points where F is discontinuous. By Problem 3.11
and the fact that F is non-decreasing (see (3.3)), D is countable, and since
we have assumed that P is not continuous, b ∶= P(D) > 0. Define

F1(x) =
1
b
∑

t≤x, t∈D
P({t}).

It is easy to see that F1 defines a discrete distribution supported on D,
which is denoted P1 henceforth. Note that P1({x}) = 0 if x ∉ D and
P1({x}) = 1

b P({x}) if x ∈ D.
Define

F0 =
1

1 − b
(F − bF1).

It is easy to see that F0 is a distribution function, which therefore defines a
distribution, denoted P0.

By construction, (5.2) holds, and so it remains to prove that F0 is a
continuous. Since F0 is continuous from the right (see (3.4)), it suffices
to show that it is continuous from the left as well, or equivalently, that
F0(x) − F0(x−) = 0 for all x ∈ R. (Recall the definition (3.6).) For x ∈ R, by
(3.7), it suffices to establish that P0({x}) = 0. We have

P0({x}) = 1
1 − b

(P({x}) − bP1({x})).

If x ∉ D, then P({x}) = 0 and P1({x}) = 0, while if x ∈ D, bP1({x}) =
P({x}), so in any case P0({x}) = 0. �

5.3 Absolutely Continuous Distributions

A distribution P on (R,B), with distribution function F, is absolutely
continuous if F is an absolutely continuous function, meaning that there is
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an integrable function f such that

F(x) = ∫
x

−∞
f (t)dt, for all x ∈ R. (5.3)

In that case, we say that f is a density of P.

Remark 5.13 (Integrable functions) There are a number of notions of
integral. The most natural one in the context of Probability Theory is the
Lebesgue integral. However, the Riemann integral has a somewhat more
elementary definition. We will only consider functions for which the two
notions coincide and will call these functions integrable. This includes
piecewise continuous functions.24

Remark 5.14 (Non-uniqueness of a density) The function f in (5.3) is not
uniquely determined by F. For example, if g coincides with f except on a
finite number of points, then g also satisfies (5.3). Even then, it is customary
to speak of ‘the’ density of a distribution, and we will do the same on
occasion. This is particularly warranted when there is a continuous function
f satisfying (5.3). In that case, it is the only one with that property and the
most natural choice. More generally, f is chosen as ‘simple’ possible.

Problem 5.15 Suppose that f and g are such that ∫
x
−∞ f (t)dt = ∫

x
−∞ g(t)dt,

for all x ∈ R. Show that if they are both continuous they must coincide.

Problem 5.16 Show that a function f satisfying (5.3), where F is a
distribution function, must be non-negative at all of its continuity points.

Problem 5.17 Show that if f satisfies (5.3), where F is a distribution
function, then so do max( f ,0) and ∣ f ∣. Therefore, any absolutely contin-
uous distribution always admits a density function that is non-negative
everywhere, and henceforth, we always choose to work with such a density.

Proposition 5.18. An integrable function f ∶R → [0,∞) is a density of a
distribution if and only if

∫
∞

−∞
f (x)dx = 1.

In that case, it defines an absolutely continuous distribution via (5.3).

Remark 5.19 Density functions are to absolutely continuous distributions
what mass functions are to discrete distributions.

24 A function f is piecewise continuous if its discontinuity points are nowhere dense, or
equivalently, if there is a strictly increasing sequence (ak ∶ k ∈ Z) with limk→−∞ ak = −∞

and limk→−∞ ak = ∞ such that f is continuous on (ak, ak+1).
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5.4 Continuous Random Variables

We say that X is a (resp. absolutely) continuous random variable on a
sample space if it is a random variable on that space, as defined in Chapter 3,
and its distribution PX is (resp. absolutely) continuous, meaning that FX is
(resp. absolutely) continuous as a function. We let fX denote a density of
PX when one exists.

Problem 5.20 For a continuous random variable X, verify that, for all a < b,

P(X ∈ (a,b]) = P(X ∈ [a,b))
= P(X ∈ [a,b]) = P(X ∈ (a,b)),

and, assuming X is absolutely continuous,

P(X ∈ (a,b]) = PX((a,b])
= FX(b) − FX(a)

= ∫
b

a
fX(x)dx.

Problem 5.21 Show that X is a continuous random variable if and only if

P(X = x) = 0, for all x ∈ R.

(This is a bit perplexing at first.) In particular, the mass function of X is
utterly useless when X is continuous.

Problem 5.22 Assume that X has a density fX . Show that, for any x where
fX is continuous,

P(X ∈ [x − h, x + h]) ∼ 2h fX(x), as h→ 0.

5.5 Location/Scale Families of Distributions

Let X be a random variable. Then the family of distributions defined by the
random variables {X + b ∶ b ∈ R}, is the location family of distributions
generated by X. Similarly, the family of distributions defined by the random
variables {aX ∶ a > 0}, is the scale family of distributions generated by X,
and the family of distributions defined by the random variables {aX + b ∶
a > 0,b ∈ R}, is the location-scale family of distributions generated by X.

Problem 5.23 Show that aX+b has distribution function FX((⋅−b)/a) and
density 1

a fX((⋅ − b)/a).
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5.6 Uniform Distributions

The uniform distribution on an interval [a,b] is given by the density

f (x) = 1
b − a

{x ∈ [a,b]}.

We will denote this distribution by Unif(a,b). See Figure 5.2 for an
illustration.
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Figure 5.2 A plot of the density function (top) and distribution function (bottom)
of the uniform distribution on [0, 1].

In Section 5.1.1, we saw how this sort of distribution arises as a limit of
discrete uniform distributions; see also Problem 5.43.

Problem 5.24 Compute the distribution function of Unif(a,b).
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Problem 5.25 (Location-scale family) Show that the family of uniform of
distributions, meaning

{Unif(a,b) ∶ a < b},

is a location-scale family by verifying that

Unif(a,b) ≡ (b − a)Unif(0,1) + a.

Proposition 5.26. Let U be uniform in [0,1] and let F be any distribution
function with quantile function F−. Then F−(U) has distribution F.

Problem 5.27 Prove Proposition 5.26, at least in the case where F is
continuous and strictly increasing (in which case F− is a true inverse).

5.7 Normal Distributions

The normal distribution (aka Gaussian distribution25) with parameters μ
and σ2 is given by the density

f (x) = 1√
2πσ2

exp( − (x − μ)
2

2σ2
).

(That this is a density is due to Proposition 5.5.) We will denote this
distribution by N(μ,σ2). See Figure 5.3 for an illustration.

In Theorem 5.4, we saw that a normal distribution arises as the limit
of binomial distributions, but in fact this limiting behavior is much more
general, in particular because of Theorem 8.23, which partly explains why
this family is so important.

Problem 5.28 (Location-scale family) Show that the family of normal
distributions, meaning

{N(μ,σ2) ∶ μ ∈ R, σ2 > 0},

is a location-scale family by verifying that

N(μ,σ2) ≡ σN(0,1) + μ.

The distribution N(0,1) is often called the standard normal distribution.

Proposition 5.29 (Stability of the normal family). The sum of a finite
number of independent normal random variables is normal.

25 Named after Carl Gauss (1777–1855).
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Figure 5.3 A plot of the standard normal density function (top) and distribution
function (bottom).

5.8 Exponential Distributions

The exponential distribution with rate λ is given by the density

f (x) = λ exp(−λx) {x ≥ 0}.

We will denote this distribution by Exp(λ). See Figure 5.4 for an illustration.
In Section 5.1.3, we saw how this distribution arises as a continuous limit

of geometric distributions; see also Problem 8.48.

Problem 5.30 (Scale family) Show that the family of exponential distribu-
tions, meaning

{Exp(λ) ∶ λ > 0},

is a scale family by verifying that

Exp(λ) ≡ 1
λ

Exp(1).
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Figure 5.4 A plot of the density function (top) and distribution function (bottom)
of the exponential distribution with rate λ = 1.

Problem 5.31 Compute the distribution function of Exp(λ).
Problem 5.32 (Memoryless property) Show that any exponential distribu-
tion has the memoryless property of Problem 4.8.

5.9 Other Continuous Distributions

There are many other continuous distributions and families of such
distributions. We introduce a few more below.
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5.9.1 Gamma Distributions

The gamma distribution with rate λ and shape parameter κ is given by the
density

f (x) = λ
κ

Γ(κ) xκ−1 exp(−λx) {x ≥ 0},

where Γ is the so-called gamma function. We will denote this distribution
by Gamma(λ, κ).
Problem 5.33 Show that f above has finite integral if and only if λ > 0 and
κ > 0.

Problem 5.34 Express the gamma function as an integral. [Use the fact that
f above is a density.]

Problem 5.35 (Scale family) Show that the family of gamma distributions
with same shape parameter κ, meaning

{Gamma(λ, κ) ∶ λ > 0},

is a scale family.

It can be shown that a gamma distribution can arise as the continuous
limit of negative binomial distributions; see Problem 5.45. The following is
the analogue of Proposition 4.11.

Proposition 5.36. Consider m independent random variables having the
exponential distribution with rate λ. Then their sum has the gamma
distribution with parameters (λ,m).

5.9.2 Beta Distributions

The beta distribution with parameters (a,b) is given by the density

f (x) = 1
B(α, β) xα−1(1 − x)β−1{x ∈ [0,1]},

where B is the beta function. It can be shown that

B(α, β) = Γ(α)Γ(β)
Γ(α + β) .

Note that the family includes the uniform distribution on [0,1].
Problem 5.37 Show that f above has finite integral if and only if α > 0 and
β > 0.
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Problem 5.38 Express the beta function as an integral.

Problem 5.39 Prove that this is not a location and/or scale family of
distributions.

5.9.3 Families Related to the Normal Family

A number of families are closely related to the normal family. The following
are the main ones.

Chi-Squared Distributions
The chi-squared distribution with parameter m ∈ N is the distribution of
Z2

1 + ⋯ + Z2
m when Z1, . . . ,Zm are independent standard normal random

variables. This happens to be a subfamily of the gamma family.

Proposition 5.40. The chi-squared distribution with parameter m coincides
with the gamma distribution with shape κ = m/2 and rate λ = 1/2.

Student Distributions
The Student distribution26 (aka t-distribution) with parameter m ∈ N is the
distribution of Z/

√
W/m when Z and W are independent, with Z being

standard normal and W being chi-squared with parameter m.

Remark 5.41 The Student distribution with parameter m = 1 coincides
with the Cauchy distribution,27 defined by its density function

f (x) ∶= 1
π(1 + x2) . (5.4)

Fisher Distributions
The Fisher distribution 13 (aka F-distribution) with parameters (m1,m2) is
the distribution of (W1/m1)/(W2/m2) when W1 and W2 are independent,
with Wj being chi-squared with parameter mj.

Problem 5.42 Relate the Fisher distribution with parameters (1,m) and the
Student distribution with parameter m.

5.10 Additional Problems

Problem 5.43 Let F denote a continuous distribution function, with quantile
function denoted F−. For 1 ≤ k ≤ N, define xk∶N = F−(k/(N +1)), and let PN

26 Named after ‘Student’, the pen name of Gosset 22.
27 Named after Augustin-Louis Cauchy (1789–1857).
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denote the (discrete) uniform distribution on {x1∶N , . . . , xN∶N}. If FN denotes
the corresponding distribution function, show that FN(x) → F(x) as N →∞
for all x ∈ R.

Problem 5.44 (Bernoulli trials and the uniform distribution) Let (Xi ∶ i ≥ 1)
be independent with same distribution Ber(1/2). Show that Y ∶= ∑i≥1 2−iXi

is uniform in [0, 1]. Conversely, let Y be uniform in [0, 1], and let∑i≥1 2−iXi

be its binary expansion. Show that (Xi ∶ i ≥ 1) are independent with same
distribution Ber(1/2).
Problem 5.45 We saw how a sequence of geometric distributions can have
as limit an exponential distribution. Show by extension how a sequence
of negative binomial distributions can have as limit a gamma distribution.
[There is a simple argument based on the fact that a negative binomial
(resp. gamma) random variable can be expressed as a sum of independent
geometric (resp. exponential) random variables. An analytic proof will
resemble that of Theorem 5.4.]

Problem 5.46 Verify Theorem 5.4 by simulation in R. For each n ∈
{10,102,103} and each p ∈ {0.05,0.2,0.5}, generate M = 500 realizations
from Bin(n, p) using the function rbinom and plot the corresponding
histogram (with 50 bins) using the function hist. Overlay the graph of
the standard normal density.
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Multivariate Distributions

Some experiments lead to considering not one, but several measurements.
As before, each measurement is represented by a random variable, and
these are ‘stacked’ into a random vector. For example, in the context of an
experiment that consists in flipping a coin n times, we defined n random
variables, X1, . . . ,Xn, according to (4.1). These are then concatenated to
form the following random vector, (X1, . . . ,Xn).

In what follows, all the random variables that we consider are defined on
the same probability space, denoted (Ω,Σ,P).

6.1 Random Vectors

Let X1, . . . ,Xr be r random variables on (Ω,Σ), meaning that each Xi

satisfies (3.1). Then X ∶= (X1, . . . ,Xr) is a random vector on (Ω,Σ), which
is thus a function on Ω with values in Rr,

ω ∈ Ω G→ X(ω) = (X1(ω), . . . ,Xr(ω)) ∈ Rr.

Problem 6.1 Show that,

{X ∈ V} ∈ Σ,

for any set V of the form

(−∞, x1] × ⋯ × (−∞, xr], (6.1)

where x1, . . . , xr ∈ R.

We define the Borel σ-algebra of Rr, denoted Br, as the σ-algebra
generated by all hyper-rectangles of the form (6.1). We will always equip
Rr with its Borel σ-algebra. The following generalizes Proposition 3.3.

Proposition 6.2. The Borel σ-algebra of Rr contains all hyper-rectangles,
as well as all open sets and all closed sets.

68
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The support of a distribution P on (Rr,Br) is the smallest closed set
A such that P(A) = 1. The distribution function of a distribution P on
(Rr,Br) is defined as

F(x1, . . . , xr) ∶= P((−∞, x1] × ⋯ × (−∞, xr]).

The distribution of X, also referred to as the joint distribution of
X1, . . . ,Xr, is defined on the Borel sets

PX(V) ∶= P(X ∈ V), for V ∈Br.

Note that for product sets, meaning when V = V1 ×⋯× Vr,

P(X ∈ V) = P(X1 ∈ V1) ×⋯ × P(Xr ∈ Vr).

The distribution function of X is (of course) the distribution function of PX,
and can be expressed as

FX(x1, . . . , xr) ∶= P(X1 ≤ x1, . . . ,Xr ≤ xr). (6.2)

The following generalizes Proposition 3.6.

Proposition 6.3. A distribution is characterized by its distribution function.

The distribution of Xi, seen as the ith component of a random vector
X = (X1, . . . ,Xr), is often called the marginal distribution of Xi, which is
nothing else but its distribution disregarding the other variables.

6.2 Discrete Distributions

We say that a distribution P on Rr is discrete if it has a countable support set.
For such a distribution, it is useful to consider its mass function, defined as

f (x) ∶= P({x}),

or, equivalently,

f (x1, . . . , xr) = P({(x1, . . . , xr)}).

Problem 6.4 Show that a discrete distribution is characterized by it mass
function.

Problem 6.5 Show that when all r variables are discrete, so is the random
vector they form.
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The mass function of a random vector X is the mass function of its
distribution. It can be expressed as

fX(x) ∶= P(X = x),

or, equivalently,

fX(x1, . . . , xr) = P(X1 = x1, . . . ,Xr = xr).

Proposition 6.6. Let X = (X1, . . . ,Xr) be a discrete random vector with
support on Zr. Then the (marginal) mass function of Xi can be computed as
follows:

fXi(xi) = ∑
j≠i
∑
x j∈Z

fX(x1, . . . , xr), for xi ∈ Z.

For example, with two random variables, denoted X and Y , both supported
on Z,

P(X = x) = ∑
y∈Z
P(X = x,Y = y), for x ∈ Z. (6.3)

Problem 6.7 Prove (6.3).

6.2.1 Binary Random Vectors

An r-dimensional binary random vector is a random vector with values
in {0,1}r (sometimes {−1,1}r). Such random vectors are particularly
important as they are often used to represent outcomes that are categorical
in nature (as opposed to numerical). For example, consider an experiment
where we roll a die with six faces. Assume without loss of generality that
the faces are numbered 1, . . . ,6. The fact that the face labels are numbers
is typically not relevant, and representing the result of rolling the die with
a random variable (with support {1, . . . ,6}) could be misleading. We may
instead use a binary vector representation for that purpose, as follows:

1 → (1,0,0,0,0,0)
2 → (0,1,0,0,0,0)
3 → (0,0,1,0,0,0)
4 → (0,0,0,1,0,0)
5 → (0,0,0,0,1,0)
6 → (0,0,0,0,0,1)

This allows for the use of vector algebra, and other numerical manipulations
that may otherwise make little sense if done directly on the face labels.
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6.2.2 Multinomial Distributions

In general, consider a die with m ≥ 2 faces, thus generalizing a coin. Just
like a binomial distribution arises when a coin is tossed a predetermined
number of times, the multinomial distribution arises when a die is rolled
a predetermined number of times, say n. We assume that the die has faces
with distinct labels, say, 1, . . . ,m, and for s ∈ {1, . . . ,m}, we let ps denote
the probability that in a given trial the die shows s. The outcome of the
experiment is of the form ω = (ω1, . . . , ωn), where ωi = s if the ith roll
resulted in face s. We assume that the rolls are independent.

Let Y1, . . . ,Ym denote the counts

Ys(ω) ∶= #{i ∶ ωi = s}. (6.4)

Note that Ys ∼ Bin(n, ps). Under the stated circumstances, the random
vector of counts (Y1, . . . ,Ym) is said to have the multinomial distribution
with parameters (n, p1, . . . , pm).
Remark 6.8 There is some redundancy in the vector of counts, since
Y1 + ⋯ + Ym = n, and also in the parameterization, since p1 + ⋯ + pm = 1.
Except for that redundancy, the multinomial distribution with parameters
(n, p1, p2) (where necessarily p2 = 1 − p1) corresponds to the binomial
distribution with parameters (n, p1).

Proposition 6.9. The multinomial distribution with parameters (n, p),
where p ∶= (p1, . . . , pm), has probability mass function

fp(y1, . . . , ym) ∶=
n!

y1!⋯ ym!
py1

1 ⋯ pym
m , (6.5)

supported on the m-tuples of integers y1, . . . , ym ≥ 0 satisfying y1+⋯+ym = n.

Problem 6.10 Suppose that there are n balls, with ys balls of color s, and
that except for their color the balls are indistinguishable. The balls are to be
placed in bins numbered 1, . . . ,n. Show that there are

(y1 +⋯+ ym)!
y1!⋯ ym!

different ways of doing so. Then use this combinatorial result to prove
Proposition 6.9.
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6.2.3 Multivariate Hypergeometric Distributions

Instead of rolling a die, suppose instead that we sample without replacement
from an urn containing vs balls of color s ∈ {1, . . . ,m}. This is done n times
and, for this to be possible, we assume that n ≤ v ∶= v1 +⋯+ vm. Let ωi = s
if the ith draw resulted in a ball with color s, and let (Y1, . . . ,Ym) be the
counts, as before. We say that this vector of counts has the multivariate
hypergeometric distribution with parameters (n, v1, . . . , vm).
Problem 6.11 Argue as simply as you can that Ys has (marginally) the
hypergeometric distribution with parameters (n, vs, v − vs).

Proposition 6.12. The multivariate hypergeometric distribution with
parameters (n, v1, . . . , vm) has probability mass function

f (y1, . . . , ym) ∶= (
v1

y1
) ×⋯ × (vm

ym
)/(v

n
),

supported on m-tuples of integers y1, . . . , ym ≥ 0 such that y1 +⋯+ ym = n.

Problem 6.13 Prove Proposition 6.12.

6.3 Continuous Distributions

We say that a distribution P on Rr is continuous if its distribution function F
is continuous as a function on Rr. We say that P is absolutely continuous if
there is f ∶Rr → R integrable such that

P(V) = ∫
V

f (x)dx, for all V ∈Br.

In that case, we say that f is a density of P. Clearly, a distribution is
characterized by any one of its density functions.

Remark 6.14 Just as for distributions on the real line, a density is not
unique and can always be taken to be non-negative.

We say that the random vector X is (resp. absolutely) continuous if its
distribution is (resp. absolutely) continuous, and will denote a density (when
applicable) by fX, which in particular satisfies

P(X ∈ V) = ∫
V

fX(x)dx, for all V ∈Br.

See Figure 6.1 for an illustration.
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Figure 6.1 A plot of the density function the standard normal distribution in
dimension 2, defined as the joint distribution of two independent standard normal
random variables.

Proposition 6.15. Let X = (X1, . . . ,Xr) be a random vector with density f .
Then Xi has a density fi given by

fi(xi) ∶= ∫
∞

−∞
⋯∫

∞

−∞
f (x1, . . . , xr)∏

j≠i
dx j,

for xi ∈ R.

For example, with two random variables, denoted X and Y for conve-
nience, with joint density fX,Y ,

fX(x) = ∫
∞

−∞
fX,Y(x, y)dy, for x ∈ R.

Remark 6.16 Even when all the random variables are continuous with
a density, the random vector they define may not have a density in the
anticipated sense. This happens, for example, when one variable is a function
of the others or, more generally, when the variables are tied by an equation.

Example 6.17 Let T be uniform in [0,2π] and define X = cos(T) and
Y = sin(T). Then X2 + Y2 = 1 by construction. In fact, (X,Y) is uniformly
distributed on the unit circle.
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6.4 Independence

Two random variables, X and Y , are said to be independent if

P(X ∈ U ,Y ∈ V) = P(X ∈ U)P(Y ∈ V),
for all U ,V ∈B.

This is sometimes denoted by X ⊥⊥ Y .

Proposition 6.18. X and Y are independent if and only if, for all x, y ∈ R,

P(X ≤ x,Y ≤ y) = P(X ≤ x)P(Y ≤ y),

or, equivalently, for all x, y ∈ R,

FX,Y(x, y) = FX(x)FY(y).

Problem 6.19 Show that, if they are both discrete, X and Y are independent
if and only if their joint mass function factorizes as the product of their
marginal mass functions, or in formula,

fX,Y(x, y) = fX(x) fY(y), for all x, y ∈ R.

Problem 6.20 Show that, if (X,Y) has a density, then X and Y are
independent if and only if the product of a density for X and a density
for Y is a density for (X,Y).

The random variables X1, . . . ,Xr are said to be mutually independent if,
for any V1, . . . ,Vr ∈B,

P(X1 ∈ V1, . . . ,Xr ∈ Vr) = P(X1 ∈ V1) ×⋯ × P(Xr ∈ Vr).

Proposition 6.21. X1, . . . ,Xr are mutually independent if and only if, for
all x1, . . . , xr ∈ R,

P(X1 ≤ x1, . . . ,Xr ≤ xr) = P(X1 ≤ x1) ×⋯ × P(Xr ≤ xr).

Problem 6.22 State and solve the analogue to Problem 6.19.

Problem 6.23 State and solve the analogue to Problem 6.20.

When some variables are said to be ‘independent’, what is meant by
default is that they are mutually independent.

Problem 6.24 Let X1, . . . ,Xr be independent random variables. Show that
g1(X1), . . . ,gr(Xr) are independent random variables for any measurable
functions g1, . . . ,gr.
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6.5 Conditional Distribution

Conditional distributions arise when holding some variables fixed and
observing how the remaining ones vary. Note that this is different from
how the marginal distributions are defined.

6.5.1 Discrete Case

Given two discrete random variables, X and Y , the conditional distribution
of X given Y = y is defined as the distribution of X conditional on the event
{Y = y} following the definition given in Section 1.5.1, namely,

P(X ∈ U ∣ Y = y) = P(X ∈ U ,Y = y)
P(Y = y) . (6.6)

For any y ∈ R such that P(Y = y) > 0, this defines a discrete distribution,
with corresponding mass function

fX ∣Y(x ∣ y) ∶= P(X = x ∣ Y = y) = fX,Y(x, y)
fY(y)

.

Problem 6.25 (Law of Total Probability revisited) Show the following form
of the Law of Total Probability. For two discrete random variables, X and Y ,
both supported on Z,

fX(x) = ∑
y∈Z

fX ∣Y(x ∣ y) fY(y), for all x ∈ Z.

Problem 6.26 (Conditional distribution and independence) Show that two
discrete random variables, X and Y , are independent if and only if the
conditional distribution of X given Y = y is the same for all y in the support
of Y . (And vice versa, as the roles of X and Y can be interchanged.)

6.5.2 Continuous Case

When Y is discrete, the distribution of X given Y = y as defined in (6.6) still
makes sense, even when X is continuous. This is no longer the case when Y
is continuous, for in that case P(Y = y) = 0 for all y ∈ R. It is nevertheless
possible to make sense of the distribution of X given Y = y. We consider the
special case where (X,Y) has a density. In that case, the distribution of X
given Y = y is defined as the distribution with density

fX∣Y(x ∣ y) ∶=
fX,Y(x, y)

fY(y)
,
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with the convention that 0/0 = 0.

Problem 6.27 Show that fX∣Y(⋅ ∣ y) is indeed a density function for any
continuity point y of fY such that fY(y) > 0.

Problem 6.28 Show that, for any x ∈ R,

P(X ≤ x ∣ Y ∈ [y − h, y + h]) I→
h→0

∫
x

−∞
fX∣Y(t ∣ y)dt.

[For simplicity, assume that fX,Y , fX , fY are all continuous and that fY > 0
everywhere.]

6.6 Additional Problems

Problem 6.29 Consider an experiment where two fair dice are rolled.
Let Xi denote the result of the ith die, i ∈ {1,2}. Assume the variables
are independent. Let X = X1 + X2. Show that X is a bona fide random
variable with support {0,1, . . . ,12}, and compute its mass function and
its distribution function. (You can use R for the computations. Present the
solution in a table.)

Problem 6.30 For Y = (Y1, . . . ,Ym), a multinomial random vector with
parameters (n, p1, . . . , pm), compute Cov(Ys,Yt) for s ≠ t.

Problem 6.31 (Generating a multinomial) Say we want to generate an obser-
vation from the multinomial distribution with parameters (n, p1, . . . , pm).
Complete the following process and show that it does the job: first, generate
an observation from Bin(n, p1), say y1; then, independently, generate from
Bin(n − y1, p2/(1 − p1)), obtaining y2; etc.

Problem 6.32 (Uniform distributions) For V ∈Br, its volume is defined as

∣V∣ ∶= ∫ {x ∈ V}dx = ∫
V

dx.

When 0 < ∣V∣ < ∞, we can define the uniform distribution on V as the
distribution with density

fV(x) ∶=
1
∣V∣{x ∈ V}.

Let X = (X1, . . . ,Xr) be uniform in V .

(i) Show that X1, . . . ,Xr are independent if and only if V if of the form
V1 ×⋯× Vr for some V j ∈ B.
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(ii) Suppose that r = 2 and that V is the unit disc. Compute the marginal
distribution of X1, and then compute the distribution of X1 given
X2 = x2 for some given x2.

Problem 6.33 (Convolution) Suppose that X and Y have densities and are
independent. Show that Z ∶= X + Y has density

fZ(z) ∶= ∫
∞

−∞
fX(z − y) fY(y)dy. (6.7)

This is called the convolution of fX and fY , and often denoted by fX ∗ fY .
State and prove a similar result when X and Y are both supported on Z.

Problem 6.34 Assume that X and Y are independent random variables,
with X having a continuous distribution. Show that P(X ≠ Y) = 1.

Problem 6.35 Consider an m-by-m matrix with elements being independent
continuous random variables. Show that this random matrix is invertible
with probability 1.
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Expectation and Concentration

An expectation is simply a (weighted) mean, and means are at the core of
Probability Theory and Statistics. While it may not have been clear why
random variables were introduced in previous chapters, we will see that they
are quite useful when computing expectations. Otherwise, everything we do
here can be done directly with distributions instead of random variables.

As usual, our foundation is a probability space (Ω,Σ,P) modeling an
experiment of interest. All the events that follow are elements of Σ, and all
random variables are measurements on the outcome of this experiment.

7.1 Expectation

The definition and computation of an expectation are based on sums when
the underlying distribution is discrete, and on integrals when the underlying
distribution is absolutely continuous. We will assume the reader is familiar
with the concepts of absolute summability and absolute integrability, and
with the Fubini–Tonelli Theorem. (If not, the reader can assume – without
much loss of generality in practice – that the distributions or random
variables under consideration have bounded support.)

7.1.1 Discrete Expectation

Let X be a discrete random variable with mass function fX . Its expectation
or mean is defined as

E(X) ∶= ∑
x∈Z

x fX(x), (7.1)

so long as the sum converges absolutely.

Example 7.1 When X has a uniform distribution, its expectation is simply
the average of the elements belonging to its support. To be more specific,

78
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assume that X has the uniform distribution on {x1, . . . , xN}. Then

E(X) = x1 +⋯+ xN

N
.

Example 7.2 We say that X is constant (as a random variable) if there is
x0 ∈ R such that P(X = x0) = 1. In that case, X has an expectation, given by
E(X) = x0.

Proposition 7.3 (Change of variables). Let X be a discrete random variable
and g∶Z→ R. Then, as long as the sum converges absolutely,

E(g(X)) = ∑
x∈Z

g(x)P(X = x).

Problem 7.4 Prove Proposition 7.3.

Problem 7.5 (Summation by parts) Let X be a random variable supported
on the integers and with an expectation. Show that

E(X) = ∑
x≥0
P(X > x) −∑

x<0
P(X ≤ x).

7.1.2 Continuous Expectation

Let X be an absolutely continuous random variable with density fX . Its
expectation or mean is defined as

E(X) ∶= ∫
∞

−∞
x fX(x)dx,

as long as the integrand is absolutely integrable.

Problem 7.6 Show that a random variable with the uniform distribution on
[a,b] has mean (a + b)/2, the midpoint of the support interval.

Proposition 7.7 (Change of variables). Let X be a random variable with
density fX and g a measurable function on R. Then, as long as the integrand
is absolutely integrable,

E(g(X)) = ∫
∞

−∞
g(x) fX(x)dx.

Problem 7.8 Prove Proposition 7.7.
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Problem 7.9 (Integration by parts) Let X be a random variable with a
well-defined expectation. Show that

E(X) = ∫
∞

0
P(X > x)dx − ∫

0

−∞
P(X ≤ x)dx. (7.2)

7.1.3 Properties

Problem 7.10 Show that if X is non-negative and such that E(X) = 0, then
X is equal to 0 with probability 1, meaning P(X = 0) = 1.

Problem 7.11 (Linearity of the expectation) Prove that, for a random
variable X with well-defined expectation, and a ∈ R,

E(aX) = aE(X), and E(X + a) = E(X) + a. (7.3)

Problem 7.12 (Monotonicity of the expectation) Show that the expectation
is monotone in the sense that, if X and Y are random variables such that
P(X ≤ Y) = 1, then E(X) ≤ E(Y).

Recall that a convex function g on an interval I is a function that satisfies

g(ax + (1 − a)y) ≤ ag(x) + (1 − a)g(y), (7.4)

for all x, y ∈ I and all a ∈ [0,1].

The function g is strictly convex if the inequality is strict whenever x ≠ y
and 0 < a < 1.

Theorem 7.13 (Jensen’s inequality28). Let X be a continuous random
variable and g a convex function on an interval containing the support
of X such that both X and g(X) have expectations. Then

g(E(X)) ≤ E(g(X)).

If g is strictly convex, the inequality is strict unless X is constant.

For example, for a random variable X with an expectation,

∣E(X)∣ ≤ E(∣X∣). (7.5)

Proof sketch We sketch a proof for the case where the variable has finite
support. Let the support be {x1, . . . , xN} and let pj = fX(x j). Then

g(E(X)) = g(
N

∑
j=1

pjx j),

28 Named after Johan Jensen (1859–1925).

https://doi.org/10.1017/9781108779197.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781108779197.010


7.1 Expectation 81

and

E(g(X)) =
N

∑
j=1

pjg(x j).

Thus, we need to prove that

g(
N

∑
j=1

pjx j) ≤
N

∑
j=1

pjg(x j).

When N = 2, this is a direct consequence of (7.4): simply take x = x1, y = x2,
and a = p1, so that 1− a = p2. The general case is proved by induction on N
(and is a well-known property on convex functions). �

Proposition 7.14. For two random variables, X and Y, both having
expectations, X + Y has an expectation, which given by

E(X + Y) = E(X) + E(Y).

Proof sketch We prove the result when the variables are discrete. Let
g(x, y) = x+y. Then X+Y = g(X,Y). Using a the analogue of Proposition 7.3
for random vectors, we have

E(g(X,Y)) = ∑
x∈Z
∑
y∈Z

g(x, y)P(X = x,Y = y). (7.6)

Thus, using that as a starting point, and then interchanging sums as needed
(which is possible because of absolute summability), we derive

E(X + Y)
= ∑

x∈Z
∑
y∈Z
(x + y)P(X = x,Y = y)

= ∑
x∈Z

x∑
y∈Z
P(X = x,Y = y) +∑

y∈Z
y∑

x∈Z
P(X = x,Y = y)

= ∑
x∈Z

xP(X = x) +∑
y∈Z

yP(Y = y)

= E(X) + E(Y).

Equation (6.3) justifies the 3rd equality. �

Problem 7.15 Prove by recursion that if X1, . . . ,Xr are random variables
with expectations, then X1 +⋯+ Xr has an expectation, which is given by

E(X1 +⋯+ Xr) = E(X1) +⋯ + E(Xr). (7.7)

Problem 7.16 (Binomial mean) Show that the binomial distribution with
parameters (n, p) has mean np. An easy way to do so uses the definition of
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Bin(n, p) as the sum of n independent random variables with distribution
Ber(p), as in (4.2), and then using (7.7). A harder way uses the expression
for its mass function (4.3) and the definition of expectation (7.1), which
leads one to prove the following identity

n

∑
k=0

k(n
k
)pk(1 − p)n−k = np.

Problem 7.17 (Hypergeometric mean) Show that the hypergeometric
distribution with parameter (n, r,b) has mean np where p ∶= r/(r + b). The
easier way, analogous to that described in Problem 7.16, is recommended.

Proposition 7.18. For two independent random variables X and Y with
expectations, XY has an expectation, which is given by

E(XY) = E(X)E(Y).

Compare with Proposition 7.14, which does not require independence.

Proof sketch We prove the result when the variables are discrete. Let
g(x, y) = xy. Then XY = g(X,Y). Using the analogue of Proposition 7.3 for
random vectors, as before, we have (7.6). Using that as a starting point, and
then the fact that multiplication distributes over summation,

E(XY) = ∑
x∈Z
∑
y∈Z

xyP(X = x,Y = y)

= ∑
x∈Z
∑
y∈Z

xyP(X = x)P(Y = y)

= ∑
x∈Z

xP(X = x)∑
y∈Z

yP(Y = y)

= E(X)E(Y).

We used the independence of X and Y in the 2nd line and absolute
convergence in the 3rd line. �

7.2 Moments

For a random variable X and a non-negative integer k, define the kth moment
of X as the expectation of Xk, if Xk has an expectation. The 1st moment of a
random variable is simply its mean.

Problem 7.19 (Binomial moments) Compute the first four moments of the
binomial distribution with parameters (n, p).
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Problem 7.20 (Geometric moments) Compute the first four moments of
the geometric distribution with parameter p. [Start by proving that, for any
x ∈ (0,1), ∑ j≥0 x j = (1 − x)−1. Then differentiate up to four times to derive
useful identities.]

Problem 7.21 (Uniform moments) Compute the kth moment of the uniform
distribution on [0,1]. [Use a recursion on k and integration by parts.]

Problem 7.22 (Normal moments) Compute the first four moments of the
standard normal distribution. Verify that they are respectively equal to
0,1,0,3. Deduce the first four moments of the normal distribution with
parameters (μ,σ2), which in particular has mean μ.

Problem 7.23 Show that if X has a kth moment for some k ≥ 1, then it has
a lth moment for any l ≤ k. [Use Jensen’s inequality.]

Problem 7.24 (Symmetric distributions) Suppose that X and −X have the
same distribution. Show that if that distribution has a kth moment and k is
odd, then that moment is 0.

The following is one of the most celebrated inequalities in Probability
Theory.

Theorem 7.25 (Cauchy–Schwarz inequality29). For two independent
random variables X and Y with 2nd moments,

∣E(XY)∣ ≤
√
E(X2)

√
E(Y2).

Moreover the inequality is strict unless there is a ∈ R such that P(X = aY) =
1 or P(Y = aX) = 1.

Proof By Jensen’s inequality, in particular (7.5),

∣E(XY)∣ ≤ E(∣XY ∣) = E(∣X∣ ∣Y ∣),

so that it suffices to prove the result when X and Y are non-negative. The
assumptions imply that for any real t, X + tY has a 2nd moment, and we
have

g(t) ∶= E ((X + tY)2)
= E(X2) + 2tE(XY) + t2

E(Y2),

so that g is a polynomial of degree at most 2. Since it is non-negative
everywhere it must be non-negative at its minimum. The minimum is at

29 Named after Cauchy 27 and Hermann Schwarz (1843–1921).
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t = −E(XY)/E(Y2), so we must have

E(X2) − 2(E(XY)/E(Y2))E(XY) + (E(XY)/E(Y2))2
E(Y2) ≥ 0,

which leads to the stated inequality after simplification.
That the inequality is strict unless X and Y are proportional is left as an

exercise. �

Problem 7.26 In the proof, we implicitly assumed that E(Y2) > 0. Show
that the result holds (trivially) when E(Y2) = 0.

7.3 Variance and Standard Deviation

Assume that X has a 2nd moment. We can then define its variance as

Var(X) ∶= E [(X − E(X))2].

The standard deviation of a random variable X is the square-root of its
variance.

Remark 7.27 (Central moments) Transforming X into X − E(X) is
sometimes referred to as “centering X”. Then, if k is a non-negative integer,
the kth central moment of X is the kth moment of X − E(X), assuming it
is well-defined. In particular, the variance corresponds to the 2nd central
moment. (Note that the 1st central moment is 0.)

Proposition 7.28. For a random variable X with a 2nd moment,

Var(X) = E(X2) − E(X)2.

Proof For the sake of clarity, set μ ∶= E(X). Then

(X − E(X))2 = (X − μ)2 = X2 − 2μX + μ2.

Hence,

Var(X) = E(X2 − 2μX + μ2)
= E(X2) + E(−2μX) + E(μ2)
= E(X2) − 2μE(X) + μ2

= E(X2) − μ2.

We used Proposition 7.14, then (7.3), and the fact that the expectation of
a constant is itself, and finally the definition of μ and some simplifying
algebra. �
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Problem 7.29 Let X be random variable with a 2nd moment. Show that
Var(X) = 0 if and only if X is constant.

Problem 7.30 Prove that for a random variable X with a 2nd moment, and
a ∈ R,

Var(aX) = a2 Var(X), Var(X + a) = Var(X).

Problem 7.31 (Normal variance) Show that the normal distribution with
parameters (μ,σ2) has variance σ2.

Proposition 7.32. For two independent random variables X and Y with
2nd moments,

Var(X + Y) = Var(X) +Var(Y).

Compare with Proposition 7.14, which does not require independence.

Problem 7.33 Prove Proposition 7.32 using Proposition 7.14.

Problem 7.34 Extend Proposition 7.32 to more than two independent
random variables. [There is a simple argument by induction.]

Problem 7.35 (Binomial variance) Show that the binomial distribution with
parameters (n, p) has variance np(1 − p).

7.4 Covariance and Correlation

In this section, all the random variables that we consider are assumed to
have a 2nd moment.

Covariance
To generalize Proposition 7.32 to non-independent random variables
requires the definition of the covariance of two random variables, given by

Cov(X,Y) ∶= E ((X − E(X))(Y − E(Y))).

Note that

Cov(X,X) = Var(X).

Problem 7.36 Prove that

Cov(X,Y) = E(XY) − E(X)E(Y).

Problem 7.37 Prove that

X ⊥⊥ Y ⇒ Cov(X,Y) = 0.
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Problem 7.38 For random variables X,Y,Z, and reals a,b, show that

Cov(aX,bY) = ab Cov(X,Y),

and

Cov(X + Y,Z) = Cov(X,Z) +Cov(Y,Z).

We are now ready to generalize Proposition 7.32.

Proposition 7.39. For random variables X and Y with 2nd moment,

Var(X + Y) = Var(X) +Var(Y) + 2 Cov(X,Y).

Problem 7.40 More generally, prove (by induction) that for random
variables X1, . . . ,Xr,

Var (
r

∑
i=1

Xi) =
r

∑
i=1

r

∑
j=1

Cov(Xi,Xj)

=
r

∑
i=1

Var(Xi) + 2∑∑
1≤i< j≤r

Cov(Xi,Xj).

Problem 7.41 (Hypergeometric variance) Show that the hypergeometric
distribution with parameters (n, r,b) has variance np(1 − p) r+b−n

r+b−1 where
p ∶= r/(r + b). The easy way described in Problem 7.16 is recommended.

Correlation
The correlation of X and Y is defined as

Corr(X,Y) ∶= Cov(X,Y)√
Var(X)Var(Y)

. (7.8)

Problem 7.42 Show that the correlation has no unit in the (usual) sense
that it is invariant with respect to affine transformations, or in formula, that

Corr(aX + b, cY + d) = Corr(X,Y),
for all a, c > 0 and all b,d ∈ R.

Problem 7.43 Show that

Corr(X,Y) ∈ [−1,1],

and equal to ±1 if and only if there are a,b ∈ R such that P(X = aY + b) = 1
or P(Y = aX + b) = 1.
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7.5 Conditional Expectation

Consider two random variables X and Y , with X having an expectation.
Then conditionally on Y = y, X also has an expectation.

Problem 7.44 Prove this when both variables are discrete.

When the variables are both discrete, the conditional expectation of X
given Y = y can be expressed as follows:

E(X ∣Y = y) = ∑
x∈Z

x fX ∣Y(x ∣ y).

When (X,Y) has a density, it can be expressed as

E(X ∣Y = y) = ∫
∞

−∞
x fX ∣Y(x ∣ y)dx.

Note that E(X ∣Y) is a random variable. In fact, E(X ∣Y) = g(Y) with
g(y) ∶= E(X ∣Y = y), which happens to be measurable.

Problem 7.45 (Law of Total Expectation) Show that

E(E(X ∣Y)) = E(X).

Conditional Variance
If X has a 2nd moment, then this is also the case of X ∣Y = y, which therefore
has a variance, called the conditional variance of X given Y = y and denoted
by Var(X ∣Y = y). Note that Var(X ∣Y) is a random variable.

Problem 7.46 (Law of Total Variance) Show that

Var(X) = E(Var(X ∣Y)) +Var(E(X ∣Y)).

7.6 Moment Generating Function

The moment generating function of a random variable X is defined as

ζX(t) ∶= E(exp(tX)), for t ∈ R. (7.9)

As a function taking values in [0,∞], it is indeed well-defined everywhere.

Problem 7.47 Show that {t ∶ ζX(t) < ∞} is an interval (possibly a
singleton). [Use Jensen’s inequality.]

In the special case where X is supported on the non-negative integers,

ζX(t) = ∑
k≥0

fX(k) exp(tk).
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The moment generating function derives its name from the following.

Proposition 7.48. Assume that ζX is finite in an open interval containing 0.
Then ζX is infinitely differentiable (in fact, analytic) in that interval and

ζ
(k)
X (0) = E(Xk), for all k ≥ 0.

Theorem 7.49. Two distributions whose moment generating functions are
finite and coincide on an open interval containing zero must be equal.

Remark 7.50 (Laplace transform) When X has a density, its moment
generating function may be expressed as

ζX(t) = ∫
∞

−∞
fX(x) exp(tx)dx.

This coincides with the Laplace transform of fX evaluated at −t, and a
standard proof of Theorem 7.49 relies on the fact that the Laplace transform
is invertible under the stated conditions.

7.7 Probability Generating Function

The probability generating function of a non-negative random variable X is
defined as

γX(z) ∶= E(zX), for z ∈ [−1,1].

Note that

ζX(t) = γX(et), for all t ≤ 0.

In the special case where X is supported on the non-negative integers,

γX(z) = ∑
k≥0

fX(k)zk.

The probability generating function derives its name from the following.

Proposition 7.51. Assume X is non-negative. Then γX is well-defined and
finite on [−1,1], and infinitely differentiable (in fact, analytic) in (−1,1).
Moreover, if X is supported on the non-negative integers,

γ
(k)
X (0) = k! fX(k), for all k ≥ 0.

Problem 7.52 Show that any distribution that is supported on the non-
negative integers is characterized by its probability generating function.
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7.8 Characteristic Function

The characteristic function of a random variable X is defined as

ϕX(t) ∶= E(exp(ıtX)), for t ∈ R,

where ı2 = −1. Compare with the definition of the moment generating
function in (7.9). While the moment generating function may be infinite at
any t ≠ 0, the characteristic function is always well-defined for all t ∈ R as a
complex-valued function.

Problem 7.53 Show that if X and Y are independent random variables then

ϕX+Y(t) = ϕX(t)ϕY(t), for all t ∈ R. (7.10)

The converse is not true, meaning that there are situations where (7.10)
holds even though X and Y are not independent. Find an example of that.

The characteristic function owes its name to the following.

Theorem 7.54. A distribution is characterized by it characteristic function.
Furthermore, if X is supported on the non-negative integers, then

fX(x) =
1

2π ∫
2π

0
exp(−ıtx)ϕX(t)dt. (7.11)

If instead X is absolutely continuous, and its characteristic function is
absolutely integrable, then

fX(x) =
1

2π ∫
∞

−∞
exp(−ıtx)ϕX(t)dt. (7.12)

Problem 7.55 Prove (7.11).

Remark 7.56 (Fourier transform) When X has a density,

ϕX(t) = ∫
∞

−∞
exp(ıtx) fX(x)dx.

This coincides with the Fourier transform of fX evaluated at −t/2π and a
standard proof of Theorem 7.54 relies on the fact that the Fourier transform
is invertible.

Remark 7.57 It is possible to define the characteristic function of a random
vector X. If X is r-dimensional, it is defined as

ϕX(t) ∶= E(exp(ı⟨t,X⟩)), for t ∈ Rr,

where ⟨u, v⟩ denotes the inner product of u, v ∈ Rr. We note that an analogue
of Theorem 7.54 holds for random vectors.
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7.9 Concentration Inequalities

An important question when examining a random variable is to know how
far it strays away from its mean (which we assume is well-defined whenever
needed). This is a probability statement, and we present some inequalities
that bound the corresponding probability.

Proposition 7.58 (Markov’s inequality30). For a non-negative random
variable X with expectation μ,

P(X ≥ tμ) ≤ 1/t, for all t > 0.

For example, if X is non-negative with mean μ, then X ≥ 2μ with at most
50% chance, while X ≥ 10μ with at most 10% chance.

Proof We have

{X ≥ t} = {X/t ≥ 1} ≤ X/t.

and we conclude by taking the expectation and using its monotonicity
property (Problem 7.12). �

Proposition 7.59 (Chebyshev’s inequality31). For a random variable X
with expectation μ and standard deviation σ,

P(∣X − μ∣ ≥ tσ) ≤ 1/t2, for all t > 0. (7.13)

Moreover,

P(X ≥ μ + tσ) ≤ 1/(1 + t2), for all t ≥ 0, (7.14)

and

P(X ≤ μ − tσ) ≤ 1/(1 + t2), for all t ≥ 0.

Problem 7.60 Prove these inequalities by applying Markov’s inequality to
carefully chosen random variables.

For example, if X has mean μ and standard deviation σ, then ∣X −μ∣ ≥ 2σ
with at most 25% chance and ∣X − μ∣ ≥ 5σ with at most 4% chance.

Markov’s and Chebyshev’s inequalities are examples of concentration
inequalities. These are inequalities that bound the probability that a random
variable is away from its mean (or sometimes median) by a certain amount.

30 Named after Andrey Markov (1856–1922).
31 Named after Pafnuty Chebyshev (1821–1894).
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Markov’s inequality gives a concentration bound with a linear decay,
while Chebyshev’s inequality gives a concentration bound with a quadratic
decay. Even stronger concentration is possible.

Problem 7.61 Consider a random variable Y with mean μ and such that
αs ∶= E(∣Y − μ∣s) < ∞ for some s > 0 (not necessarily integer). Show that

P(∣Y − μ∣ ≥ y) ≤ αsy−s, for all y > 0.

Proposition 7.62 (Chernoff’s bound32). Consider a random variable Y
such that as ζ(λ) ∶= E(exp(λY)) < ∞ for some λ > 0. Then

P(Y ≥ y) ≤ ζ(λ) exp(−λy), for all y > 0.

Proof For any y > 0,

Y ≥ y ⇒ λY − λy ≥ 0 ⇒ exp(λY − λy) ≥ 1.

Thus,

P(Y ≥ y) ≤ P(exp(λY − λy) ≥ 1)
≤ E(exp(λY − λy))
= exp(−λy)ζ(λ)
= exp(−λy + log ζ(λ)),

using Markov’s inequality along the way. �

Binomial Distribution
Let Y = X1 +⋯ + Xn, where the Xi are independent, each being Bernoulli
with parameter p, so that Y is binomial with parameters (n, p).
Problem 7.63 Show that Y has moment generating function given by

ζ(λ) = (1 − p + peλ)n, for all λ ∈ R.

By Chernoff’s bound, for any λ ≥ 0,

logP(Y ≥ y) ≤ −λy + log ζ(λ).

Since the left-hand side does not depend on λ, to sharpen the bound we
minimize the right-hand side with respect to λ ≥ 0, yielding

logP(Y ≥ y) ≤ inf
λ≥0
[ − λy + log ζ(λ)] = − sup

λ≥0
[λy − log ζ(λ)].

32 Named after Herman Chernoff (1923–), who attributes the result to a colleague of his,
Herman Rubin.
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We turn to maximizing g(λ) ∶= λy − log ζ(λ) over λ ≥ 0. Let b = y/n, so
that b ∈ [0,1]; however, since we are interested in deviations away from,
and above the mean np, and because the case b = 1 requires a special (but
trivial) treatment, we assume that p < b < 1.

Problem 7.64 Verify that g is infinitely differentiable and that it has a
unique maximizer at

λ∗ = log((1 − p)b
p(1 − b)),

and that g(λ∗) = nHp(b), where

Hp(b) ∶= b log( b
p
) + (1 − b) log( 1 − b

1 − p
).

We thus arrived at the following.

Proposition 7.65 (Chernoff’s bound for the binomial distribution). For
Y ∼ Bin(n, p), with 0 < p < 1,

P(Y ≥ nb) ≤ exp ( − nHp(b)), for all b ∈ [p,1]. (7.15)

Problem 7.66 Verify that the bound indeed applies to the cases that we left
off, namely, when b = p and when b = 1.

Remark 7.67 An upper bound for P(Y ≤ nb) when b ∈ [0, p] can be
derived in a similar fashion, or using Property (4.5).

We end this section with a general exponential concentration inequality
whose roots are also in Chernoff’s inequality.

Theorem 7.68 (Bernstein’s inequality). Suppose that X1, . . . ,Xn are inde-
pendent with zero mean and such that maxi ∣Xi∣ ≤ c. Define σ2

i = Var(Xi) =
E(X2

i ). Then, for all y ≥ 0,

P(
n

∑
i=1

Xi ≥ y) ≤ exp( − y2/2
∑n

i=1σ
2
i + 1

3 cy
).

Problem 7.69 Apply Bernstein’s inequality to get a concentration inequality
for the binomial distribution. Compare the resulting bound with the one
obtained from Chernoff’s inequality in (7.15).
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7.10 Further Topics

7.10.1 Random Sums of Random Variables

Suppose that {Xi ∶ i ≥ 1} are independent with the same distribution, and
independent of a random variable N supported on the non-negative integers.
Together, these define the following compound sum

Y =
N

∑
i=1

Xi.

Put differently, the distribution of Y given N = n is that of ∑n
i=1 Xi. By

convention, the sum is zero if N = 0.

Problem 7.70 Assume that the Xi have a 2nd moment. Derive the mean
and variance of Y (showing in the process that Y has a 2nd moment).

Problem 7.71 Assume that the Xi are non-negative. Compute the probabil-
ity generating function of Y .

When N has a Poisson distribution, the resulting distribution is called a
compound Poisson distribution.

The negative binomial distribution is known to have a compound Poisson
representation. In detail, first define the logarithmic distribution via its mass
function

fp(k) ∶=
1

log( 1
1−p)

pk

k
, k ≥ 1.

Problem 7.72 Show that, for p ∈ (0,1), this defines a probability
distribution on the positive integers.

Proposition 7.73. Let (Xi ∶ i ≥ 1) be independent with the logarithmic
distribution with parameter p, and let N be Poisson with parameter
m log( 1

1−p). Then ∑N
i=1 Xi is negative binomial with parameters (m, p).

Problem 7.74 Prove Proposition 7.73 using Problem 7.71 in combination
with Theorem 7.49.

7.10.2 Estimation from Finite Samples

Consider an urn containing coins. Without additional information, to
compute the average value of these coins, one would have to go through all
coins and sum their values. But what if an approximation is sufficient – is
it possible to do that without looking at all the coins? It turns out that the
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answer is yes, at least under some sampling schemes, and this is so because
of concentration.

Let the coin values be c1, . . . , cN ∈ R. The goal is to approximate their
average, μ ∶= 1

N (c1 + ⋯ + cN). We assume we have the ability to sample
uniformly at random with replacement from the urn n times. We do so and
let X1, . . . ,Xn denote the resulting a sample, with corresponding average
X̄n = 1

n(X1 +⋯+ Xn).
Problem 7.75 Based on Chebyshev’s inequality, show that, for any t > 0,

∣X̄n − μ∣ ≤ tσ/
√

n (7.16)

with probability at least 1 − 1/t2, where σ2 ∶= 1
N (c

2
1 +⋯+ c2

N) − μ2.

The surprising fact in the approximation bound (7.16) is that it depends
on the ticket values only through μ and σ, so that N could be infinite in
principle.

The fact that we can ‘learn’ about the contents of a possibly infinite urn
based a finite sample from it is at the core of Statistics. It also explains
why a carefully designed and conducted poll of a few thousand individuals
can yield reliable information on a population of hundreds of millions
(Section 11.1).

Problem 7.76 Obtain an approximation bound based Chernoff’s bound
instead. Compare this bound with that obtained in (7.16) via Chebyshev’s
inequality.

Remark 7.77 (Estimation) This sort of approximation based on a sample
is often referred to as estimation, and will be developed in Part III.

7.10.3 Saint Petersburg Paradox

Suppose a casino offers a gambler the opportunity to play the following
fictitious game, attributed to Nicolas Bernoulli (1687–1759). The game
starts with $2 on the table. At each round a fair coin is flipped: if it lands
heads, the amount is doubled and the game continues; if it lands tails, the
game ends and the player pockets whatever is on the table. The question is:
how much should the gambler be willing to pay to play the game?

A paradox arises when the gambler aims at optimizing his expected
return, defined as X − c, where X is the gain (the amount on the table at the
end of the game) and c is the entry cost (the amount the gambler pays the
casino to enter the game).
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Problem 7.78 Show that the expected return is infinite regardless of the
cost.

Thus, in principle, a rational gambler would be willing to pay any amount
to enter the game. However, a gambler with common sense would only
be willing to pay very little to enter the game, hence, the paradox. Indeed,
although the expected return is infinite, the probability of a positive return
can be quite small.

Problem 7.79 Suppose the gambler pays c dollars to enter the game.
Compute his chances of ending with a positive return in terms of c.

This, and other similar considerations, have led some commentators to
argue that the expected return is not what the gambler should be optimizing.
Daniel Bernoulli (1700–1782) proposed as a solution in [11] (translated
from Latin to English in [12]) to optimize the expected log return, i.e.,
E(log(X/c)). This, he argued, was more natural.

Problem 7.80 Find in closed form or numerically (in R) the amount the
gambler should be willing to pay to enter the game if his goal is to optimize
the expected log return.

Another possibility is to optimize the median instead of the mean.

Problem 7.81 Find in closed form or numerically (in R) the amount the
gambler should be willing to pay to enter the game if his goal is to optimize
the median return.

Remark 7.82 (Pascal’s wager) The essential component of the Saint
Petersburg Paradox arises from the extremely unlikely possibility of an
enormous gain. This was considered by the philosopher Pascal in questions
of faith in the existence of God (in the context of his Catholic faith). As he
saw it, a person had to decide whether to believe in God or not. From his
book Pensées (here translated by F. Trotter):

Let us weigh the gain and the loss in wagering that God is. Let us estimate
these two chances. If you gain, you gain all; if you lose, you lose nothing.

7.11 Additional Problems

Problem 7.83 In the context of Problem 6.29, compute the expectation of
X. First, do so directly using the definition of expectation (7.1) based on the
distribution of X found in that problem. (You may use R for that purpose.)
Then do this using Proposition 7.14.
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Problem 7.84 Using R, compute the first 10 moments of the random
variable X defined in Problem 6.29. [Do this efficiently using vector/matrix
manipulations.]

Problem 7.85 Consider a location-scale family as in Section 5.5, therefore,
of the form

Fa,b ∶= F((x − b)/a), for a > 0, b ∈ R,

where F is some given distribution function. Assume that F has finite 2nd
moment and is not constant. Show that there is exactly one distribution in
this family with mean 0 and variance 1. Assuming F itself is that distribution,
compute the mean and variance of Fa,b in terms of (a,b).
Problem 7.86 Recall the setting of Section 4.6. Compute the mean and
variance of T .

Problem 7.87 Let X be a random variable with a 2nd moment. Show that
a↦ E((X − a)2) is uniquely minimized at the mean of X.

Problem 7.88 Let X be a random variable with a 1st moment. Show that
a↦ E(∣X − a∣) is minimized at any median of X and that any minimizer is
a median of X.

Problem 7.89 Compute the mean and variance of the distribution of
Problem 4.31.

Problem 7.90 For X1, . . . ,Xn iid from a distribution on (0,∞), show that

E(∑
k
i=1 Xi

∑n
i=1 Xi

) = k
n
, for all 1 ≤ k ≤ n.

Problem 7.91 Compute the characteristic function of:

(i) the uniform distribution on {1, . . . ,N};
(ii) the Poisson distribution with mean λ;
(iii) the geometric distribution with parameter p.

Repeat with the moment generating function, specifying where it is finite.

Problem 7.92 Compute the characteristic function of:

(i) the binomial distribution with parameters n and p;
(ii) the negative binomial distribution with parameters m and p.

Repeat with the moment generating function, specifying where it is finite.

Problem 7.93 Compute the characteristic function of:

(i) the uniform distribution on [a,b];
(ii) the exponential distribution with rate λ;
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(iii) the normal distribution parameters (μ,σ2).
Repeat with the moment generating function, specifying where it is finite.

Problem 7.94 Compute the characteristic function of the Poisson distribu-
tion with mean λ. Then combine Problem 7.53 and Theorem 7.54 to prove
Proposition 4.15.

Problem 7.95 Compute the characteristic function of the normal distri-
bution with mean μ and variance σ2. Then combine Problem 7.53 and
Theorem 7.54 to prove Proposition 5.29.

Problem 7.96 (Hoeffding’s covariance formula) Let X and Y be two random
variables with finite second moments. Show that

Cov(X,Y) = ∫
∞

−∞
∫
∞

−∞
(FX,Y(x, y) − FX(x)FY(y))dxdy.

(In a sense, this is an analogue for two variables of (7.2).)

Problem 7.97 Suppose that X is supported on the non-negative integers.
Show that

FX(x) =
1

2π ∫
2π

0

sin(t(x + 1)/2)
sin(t/2) e−ıtx/2ϕX(t)dt.

Problem 7.98 (Paley–Zygmund inequality) For a non-negative random
variable X with finite 2nd moment, and t ∈ [0,1], show that

P(X ≥ tE(X)) ≥ (1 − t)2E(X)2

E(X2) .

Problem 7.99 (Markov vs Chebyshev) Evaluate the accuracy of these two
inequalities for the exponential distribution with rate λ = 1. One way to
do so is to draw the survival function, the bound given by the Markov
inequality, and the bound given by the Chebyshev inequality (7.14). Do so
in R, and start at x = 1 (which is the mean in this case). Put all the graphs in
the same plot, in different colors identified by a legend.

Problem 7.100 (Entropy)

(i) Let f be a mass function on some arbitrary set. Show that

H( f ) ∶= −∑ f (x) log f (x) ≥ 0,

with equality if and only if f is supported on a single element. (This
quantity is called the entropy of f .)
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(ii) Let f be a density on some Euclidean space. Provide conditions under
which

H( f ) ∶= −∫ f (x) log f (x)dx

is well-defined. Provide an example of a density on the real line for
which this quantity is not well-defined. Is it always non-negative?
(This quantity, when it is well-defined, is called the differential entropy
of f .)

Problem 7.101 (Kullback–Leibler divergence)

(i) Let f and g be two mass functions with exactly the same support set,
denoted X and assumed to be finite. Show that

∑
x∈X

f (x) log( f (x)/g(x)) ≥ 0,

with equality if and only if f = g.
(ii) Let f and g be two densities on a compact interval I, where there are

bounded away from 0 and∞. Show that

∫
I

f (x) log( f (x)/g(x))dx ≥ 0,

with equality if and only if f = g.

(In both cases, the quantity is the Kullback–Leibler divergence, aka relative
entropy, from g to f , and can be shown to be well-defined, and with the
same properties, much more broadly, if it is allowed to take the value∞.)

Problem 7.102 Write an R function that generates k independent numbers
from the compound Poisson distribution obtained when N is Poisson with
parameter λ and the Xi are Bernoulli with parameter p. Perform some
simulations to better understand this distribution for various choices of
parameter values.

Problem 7.103 (Passphrases) The article [109] advocates choosing a strong
password by selecting seven words at random from a list of 7776 English
words. It claims that an adversary able to try one trillion guesses per second
would have to keep trying for about 27 million years before discovering
the correct passphrase. (This is so even if the adversary knows how the
passphrase was generated.) Perform some calculations to corroborate this
claim.

Problem 7.104 (Two envelopes: randomized strategy) In the Two
Envelopes Problem (Section 2.5.3), it turns out that it is possible to
do better than random guessing. This is possible with even less information,
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in a setting were we are not told anything about the amounts inside the
envelopes. Cover [32] offered the following strategy, which relies on the
ability to draw a random number. Having chosen a distribution with support
the positive real line, we draw a number from this distribution and, if the
amount in the envelope we opened is less than that number, we switch,
otherwise we keep the opened envelope. Show that this strategy beats pure
random guessing.

Problem 7.105 (Two envelopes: model 1) A possible model for the Two
Envelopes Problem is the following. Suppose X is supported on the positive
integers. Given X = x, put x in Envelope A and either x/2 or 2x in Envelope
B, each with probability 1/2. We are shown the contents of Envelope A and
we need to decide whether to keep the amount found there or switch for
the (unknown) amount in Envelope B. Consider three strategies: (i) always
keep A; (ii) always switch to B; (iii) random switch (50% chance of keeping
A, regardless of the amount it contains). For each strategy, compute the
expected gain. Then describe an optimal strategy assuming the distribution
of X is known. [Consider the discrete case first, and then the absolutely
continuous case.]

Problem 7.106 (Two envelopes: model 2) Another model for the Two
Envelopes Problem is the following. Here, given X = x, let the contents
of the envelopes (A, B) be (x,2x), (2x, x), (x, x/2), (x/2, x), each with
probability 1/4. We are shown the contents of Envelope A (although it does
not matter in this model). For each strategy described in Problem 7.105,
compute the expected gain. Then derive an optimal strategy.
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8

Convergence of Random Variables

The convergence of random variables plays an important role in Probability
Theory. This is particularly true of the Law of Large Numbers, which
underpins the frequentist notion of probability. Another famous convergence
result is a refinement known as the Central Limit Theorem, which underpins
much of large-sample statistical theory.

In the entire chapter, the framework is that of a probability space (Ω,Σ,P).
In particular, all events are elements of the σ-algebra Σ, and all the random
variables are defined on the measurable space (Ω,Σ).

8.1 Zero-One Laws

We start with the Borel–Cantelli lemmas33. These lemmas have to do with
an infinite sequence of events and whether infinitely many events among
these will happen or not.

To formalize our discussion, consider a sequence of events, (An ∶ n ≥ 1).
The event that infinitely many among these events happen is the so-called
limit supremum of these events, defined as

Ā ∶=
∞
⋂
m≥1

∞
⋃
n≥m
An.

Problem 8.1 (1st Borel–Cantelli lemma) Prove that

∑
n≥1
P(An) < ∞ ⇒ P(Ā) = 0.

The following converse requires independence.

33 Named after Émile Borel (1871–1956) and Francesco Paolo Cantelli (1875–1966).
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Problem 8.2 (2nd Borel–Cantelli lemma) Assuming in addition that the
events are independent, prove that

∑
n≥1
P(An) = ∞ ⇒ P(Ā) = 1.

Combining these two lemmas, we arrive at the following.

Proposition 8.3 (Borel–Cantelli’s zero-one law). In the present context,
and assuming in addition that the events are independent, we have P(Ā) = 0
or 1 according the whether ∑n≥1 P(An) < ∞ or = ∞.

Thus, in the context of this proposition, the situation is black or white:
the limit supremum event has probability equal to 0 or 1. This is an example
of a zero-one law. Another famous example is the following.

Theorem 8.4 (Kolmogorov’s zero-one law). Consider an infinite sequence
of independent random variables. Any event determined by this sequence,
but independent of any finite subsequence, has probability zero or one.

Problem 8.5 Show that the assumption of independence is crucial for the
result to hold in this generality, by providing a simple counter-example.

Problem 8.6 Use Kolmogorov’s zero-one law to prove that, for any
sequence of independent random variables, (Xn ∶ n ≥ 1), lim supn Xn is
constant.

8.2 Convergence of Random Variables

Random variables being functions on the sample space, defining notions of
convergence for random variables relies on similar notions for sequences of
functions. We present the two main notions here.

8.2.1 Convergence in Probability

We say that a sequence of random variables (Xn ∶ n ≥ 1) converges in
probability towards a random variable X if, for any fixed ε > 0,

P(∣Xn − X∣ ≥ ε) I→ 0, as n→∞.

We will denote this convergence by Xn →P X.

Example 8.7 For a simple example, let Y be a random variable, and let
g∶R2 → R be continuous in the second variable, and define Xn = g(Y,1/n).
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Then

Xn
PI→ X ∶= g(Y,0).

This example encompasses instances like Xn = anY + bn, where (an) and
(bn) are convergent deterministic sequences.

Problem 8.8 Show that

Xn
PI→ X ⇔ Xn − X

PI→ 0.

Problem 8.9 Show that if Xn ≥ 0 for all n and E(Xn) → 0, then Xn →P 0.

Problem 8.10 Show that if E(Xn) = 0 for all n and Var(Xn) → 0, then
Xn →P 0.

Proposition 8.11 (Dominated convergence). Suppose that Xn →P X and
that ∣Xn∣ ≤ Y for all n, where Y has finite expectation. Then Xn, for all n, and
X have an expectation, and E(Xn) → E(X) as n→∞.

Problem 8.12 Prove Proposition 8.11, at least when Y is constant.

8.2.2 Convergence in Distribution

We say that a sequence of distribution functions (Fn ∶ n ≥ 1) converges
weakly to a distribution function F if, for any point x ∈ R where F is
continuous,

Fn(x) I→ F(x), as n→∞.

We will denote this by Fn →L F. Now, a sequence of random variables
(Xn ∶ n ≥ 1) converges in distribution to a random variable X if FXn →L FX .
We will denote this by Xn →L X.

Remark 8.13 The consideration of continuity points is important. As an
illustration, take the simple example of constant variables, Xn ≡ 1/n. We
anticipate that (Xn) converges weakly to X ≡ 0. Indeed, the distribution
function of Xn is Fn(x) ∶= {x ≤ 1/n}, while that of X is F(x) ∶= {x ≤ 0}.
Clearly, Fn(x) → F(x) for all x ≠ 0, but not at 0 since Fn(0) = 0 and F(0) =
1. Fortunately, weak convergence only requires a pointwise convergence at
the continuity points of F, which is the case here.

Problem 8.14 Show that convergence in distribution to a constant implies
convergence in probability to that constant.
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8.3 Law of Large Numbers 103

Problem 8.15 Prove that convergence in probability implies convergence
in distribution, meaning that if Xn →P X then Xn →L X. Then prove that the
converse is not true in general by providing a counter-example.

Even though convergence in distribution does not imply convergence in
probability, these two notions of convergence are nonetheless intimately
related.

Theorem 8.16 (Skorokhod’s representation theorem34). Suppose that (Fn)
converges weakly to F. Then there exist (Yn) and Y, random variables
defined on the same probability space, with Yn having distribution Fn and Y
having distribution F, and such that Yn →P Y.

8.3 Law of Large Numbers

Consider Bernoulli trials where a fair coin (i.e., a p-coin with p = 1/2) is
tossed repeatedly. Common sense would lead one to anticipate that, after
a large number of tosses, the proportion of heads would be close to 1/2.
Thankfully, this is also the case within the theoretical framework built on
Kolmogorov’s axioms.

Remark 8.17 (iid sequences) Random variables that are independent
and have the same marginal distribution are said to be independent and
identically distributed (iid).

Theorem 8.18 (Law of Large Numbers). Let (Xn) be a sequence of iid
random variables with expectation μ. Then

1
n

n

∑
i=1

Xi
PI→ μ, as n→∞.

See Figure 8.1 for an illustration.
If the variables have a 2nd moment, then the result is easy to prove using

Chebyshev’s inequality.

Problem 8.19 Let X1, . . . ,Xn be random variables with the same mean μ
and variances all bounded by σ2, and assume their pairwise covariances are
non-positive. Let Yn = ∑n

i=1 Xi. Show that

P(∣Yn/n − μ∣ ≥ ε) ≤
σ2

nε2
, for all ε > 0. (8.1)

34 Named after Anatoliy Skorokhod (1930–2011).
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Figure 8.1 An illustration of the Law of Large Number in the context of Bernoulli
trials. The horizontal axis represents the sample size n. The vertical segment
corresponding to a sample size n is defined by the 0.005 and 0.995 quantiles of the
distribution of the mean of n Bernoulli trials with parameter p = 1/2.

Problem 8.20 Apply Problem 8.19 to the number of heads in a sequence of
n tosses of a p-coin. In particular, find ε such that the probability bound is
5%. Turn this into a statement about the “typical” number of heads in 100
tosses of a fair coin.

Problem 8.21 Repeat with the number of red balls drawn without
replacement n times from an urn with r red balls and b blue balls. [The
pairwise covariances were computed as part of Problem 7.41.] Make the
statement about the “typical” number of red balls in 100 draws from an urn
with 100 red and 100 blue balls. How does your statement change when
there are 1000 red and 1000 blue balls instead?

Remark 8.22 Theorem 8.18 is in fact known as the Weak Law of Large
Numbers. There is indeed a Strong Law of Large Numbers, and it says that,
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under the same conditions, with probability one,

1
n

n

∑
i=1

Xi I→ μ, as n→∞.

8.4 Central Limit Theorems

The bound (8.1) can be rewritten as

P(∣Yn − nμ∣
σ
√

n
≥ t) ≤ 1

t2
,

for all t > 0 and all n ≥ 1 integer. In fact, under some additional conditions,
it is possible to obtain the exact limit of the left-hand side as n→∞.

8.4.1 Classical Central Limit Theorem

Theorem 8.23 (Central Limit Theorem). Let (Xn) be a sequence of iid
random variables with mean μ and variance σ2. Let Yn = ∑n

i=1 Xi. Then
(Yn−nμ)/σ

√
n converges in distribution to the standard normal distribution,

or equivalently, for all t ∈ R,

P(Yn − nμ
σ
√

n
≤ t) I→ Φ(t), as n→∞,

where Φ is the distribution function of the standard normal distribution,
given in (5.1).

Importantly, nμ is the mean of Yn and σ
√

n is its standard deviation. So
the Central Limit Theorem says that the standardized sum of iid random
variables (with 2nd moment) converges to the standard normal distribution.

Problem 8.24 Show that the Central Limit Theorem encompasses the De
Moivre–Laplace Theorem (Theorem 5.4) as a special case. In particular, if
(Xi ∶ i ≥ 1) is a sequence of iid Bernoulli random variables with parameter
p ∈ (0,1), then

∑n
i=1 Xi − np√
np(1 − p)

LI→ N(0,1), as n→∞.

A standard proof of Theorem 8.23 relies on the Fourier transform, and for
that reason is rather sophisticated. So we only provide some pointers. We
assume that μ = 0 and σ = 1, which can be done without loss of generality.
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We focus on the case where the Xi have density f and characteristic
function ϕ that is integrable. In that case, we have the Fourier inversion
formula (7.12).

Let fn denote the density of Yn. Based on (6.7), we know that fn exists
and furthermore that it is the nth convolution power of f . Let Zn = Yn/

√
n,

which has density gn(z) ∶=
√

n fn(
√

nz). We want to show, or at least argue,
that gn converges to the standard normal density, denoted

φ(z) ∶= exp(−z2/2)√
2π

, for z ∈ R.

Because of (7.10), Yn has characteristic function ϕn.

Problem 8.25 Show that, for any positive integer n ≥ 1, ϕn is integrable
when ϕ is integrable.

We may therefore apply (7.12) to derive

gn(z) =
√

n
2π ∫

∞

−∞
e−ıt

√
nzϕ(t)ndt

= 1
2π ∫

∞

−∞
e−ıszϕ(s/

√
n)nds,

using a simple change of variables in the 2nd line.

Problem 8.26 Recall that we assumed that f has zero mean and unit
variance. Based on that, show that ϕ is twice continuously differentiable,
with ϕ(0) = 1, ϕ′(0) = 0, and ϕ′′(0) = 1. Deduce that

ϕ(s/
√

n)n = (1 − s2/2n + o(1/n))n → e−s2/2, as n→∞.

Thus, if passing to the limit under the integral is justified (�), we obtain

gn(z) I→
1

2π ∫
∞

−∞
e−ısze−s2/2ds, as n→∞.

Problem 8.27 Prove that the limit is φ(z), either directly, or using a
combination of (7.12) and the fact that the standard normal characteristic
function is e−s2/2 (Problem 7.93).

This completes the proof that gn → φ pointwise, modulo (�) above. Even
then, this does not prove Theorem 8.23, which is a result on the distribution
functions rather than the densities.
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8.4.2 Other Central Limit Theorems

While Theorem 8.23 is the most classical version, there are other central
limit theorems. Lindeberg’s is a particularly useful version as it does not
require the variables to be identically distributed. Lyapunov’s is a simplified
version of Lindeberg’s.

Theorem 8.28 (Lindeberg’s central limit theorem35). Let (Xi ∶ i ≥ 1) be
independent random variables, with Xi having mean μi and variance σ2

i .
Define s2

n = ∑n
i=1σ

2
i and assume that, for any fixed ε > 0,

lim
n→∞

1
s2

n

n

∑
i=1
E ((Xi − μi)2 {∣Xi − μi∣ > εsn}) = 0. (8.2)

Then s−1
n ∑n

i=1(Xi − μi) converges in distribution to the standard normal
distribution.

Problem 8.29 Verify that Theorem 8.28 implies Theorem 8.23.

Problem 8.30 Consider independent Bernoulli variables, Xi ∼ Ber(pi).
Assume that pi ≤ 1/2 for all i. Show that (8.2) holds if and only if∑n

i=1 pi →
∞ as n→∞.

Problem 8.31 (Lyapunov’s central limit theorem36) Show that (8.2) holds
when there is δ > 0 such that

lim
n→∞

1
s2+δ

n

n

∑
i=1
E (∣Xi − μi∣2+δ) = 0.

[Use Jensen’s inequality.]

8.5 Extreme Value Theory

Extreme Value Theory is the branch of Probability that studies such things
as the extrema of iid random variables. Its main results are ‘universal’
convergence results, the most famous of which is the following.

Theorem 8.32 (Extreme Value Theorem). Let (Xn) be iid random variables.
Let Yn = maxi≤n Xi. Suppose that there are deterministic sequences (an) and
(bn) such that anYn + bn →L Z where Z is not constant. Then Z has either a
Weibull, a Gumbel, or a Fréchet distribution.

35 Named after Jarl Lindeberg (1876–1932).
36 Named after Aleksandr Lyapunov (1857–1918).
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The Weibull family37 with shape parameter κ > 0 is the location-scale
family generated by

Gκ(z) ∶= 1 − exp(−zκ), z > 0. (8.3)

(Thus, the entire Weibull family has three parameters.)
The Gumbel family38 is the location-scale family generated by

G(z) ∶= 1 − exp(− exp(−z)), z ∈ R. (8.4)

(Thus, the entire Gumbel family has two parameters.)
The Fréchet family39 with shape parameter κ > 0 is the location-scale

family generated by

Gκ(z) ∶= exp(−z−κ), z > 0. (8.5)

(Thus, the entire Fréchet family has three parameters.)

Problem 8.33 Verify that (8.3), (8.4), and (8.5) are bona fide distribution
functions.

Problem 8.34 (Distributions with finite support) Suppose that the distribu-
tion generating the iid sequence has finite support, say, {c1, . . . , cN} with
c1 < ⋯ < cN . Show that

P(Yn = cN) I→ 1, as n→∞.

Deduce that the Extreme Value Theorem does not apply to this case. [Note
that N is fixed in this problem.]

Rather than proving the theorem, we provide some examples, one for
each case. We place ourselves in the context of the theorem.

Problem 8.35 Let F denote the distribution function of the Xi. Show that
the distribution function of Yn is Fn.

Problem 8.36 (Maximum of a uniform sample) Let X1, . . . ,Xn be iid
uniform in [0,1]. Show that, for any z > 0,

P(n(1 − Yn) ≤ z) I→ 1 − exp(−z), as n→∞.

Thus, the limiting distribution is in the Weibull family.

37 Named after Waloddi Weibull (1887–1979).
38 Named after Emil Julius Gumbel (1891–1966).
39 Named after Maurice René Fréchet (1878–1973).
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Problem 8.37 (Maximum of a normal sample) Let X1, . . . ,Xn be iid
standard normal. Show that, for any z ∈ R,

P(anYn + bn ≤ z) I→ exp(− exp(−z)), as n→∞,

where

an ∶=
√

2 log n, bn = −2 log n + 1
2

log log n + 1
2

log(4π).

Thus, the limiting distribution is in the Gumbel family. [To prove the result,
use the fact that, Φ denoting the standard normal distribution function,

1 −Φ(x) ∼ 1√
2πx

exp(−x2/2), as x→∞,

which can be obtained via integration by parts.]

Problem 8.38 (Maximum of a Cauchy sample) Let X1, . . . ,Xn be iid from
the Cauchy distribution. We saw the density in (5.4), and the corresponding
distribution function is given by

F(x) ∶= 1
π

tan−1(x) + 1
2
.

Show that, for any z > 0,

P((π/n)Yn ≤ z) I→ 1 − exp(−1/z), as n→∞.

Thus, the limiting distribution is in the Fréchet family. [To prove the result,
use the fact that 1 − F(x) ∼ 1/πx as x→∞.]

8.6 Further Topics

8.6.1 Continuous Mapping Theorem and the Delta Method

The following result says that applying a continuous function to a convergent
sequence of random variables results in a convergent sequence of random
variables, where the type of convergence remains the same. (The theorem
applies to random vectors as well.)

Problem 8.39 (Continuous Mapping Theorem) Let (Xn) be a sequence
of random variables and let g∶R → R be continuous. Prove that, if (Xn)
converges in probability (resp. in distribution) to X, then (g(Xn)) converges
in probability (resp. in distribution) to g(X).

The following is a simple corollary.
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110 Convergence of Random Variables

Problem 8.40 (Slutky’s theorem) Show that, if Xn →L X while An →P a
and Bn →P b, where a and b are constants, then AnXn + Bn →L aX + b.

The following is a refinement of the Continuous Mapping Theorem.

Problem 8.41 (Delta Method) Let (Yn) be a sequence of random variables
and (an) a sequence of real numbers such that an → ∞ and anYn →L Z,
where Z is some random variable. Let g∶R → R be differentiable at 0 and
such that g(0) = 0. Prove that ang(Yn) →L g′(0)Z.

8.6.2 Exchangeable Random Variables

The random variables X1, . . . ,Xn are said to be exchangeable if their joint
distribution is invariant with respect to permutations. This means that for
any permutation (π1, . . . , πn) of (1, . . . ,n), the random vectors (X1, . . . ,Xn)
and (Xπ1 , . . . ,Xπn) have the same distribution.

Problem 8.42 Show that X1, . . . ,Xn are exchangeable if and only if their
joint distribution function is invariant with respect to permutations. Show
that the same is true of the mass function (if discrete) or density (if absolutely
continuous).

Problem 8.43 Show that if X1, . . . ,Xn are exchangeable then they necessar-
ily have the same marginal distribution.

Problem 8.44 Show that independent and identically distributed random
variables are exchangeable. Show that the converse is not true.

Problem 8.45 Let X1, . . . ,Xn and Y be random variables such that,
conditionally on Y the Xi are independent and identically distributed. Show
that X1, . . . ,Xn are exchangeable.

Remark 8.46 The relation between exchangeability and conditional
independence was perhaps first explored by Bruno de Finetti (1906–1985).
For a more quantitative examination, see [44].

8.7 Additional Problems

Problem 8.47 (From discrete to continuous uniform) Let XN be uniform
on { 1

N+1 ,
2

N+1 , . . . ,
N

N+1}. Show that (XN) converges in distribution to the
uniform distribution on [0,1].
Problem 8.48 (From geometric to exponential) Let XN be geometric with
parameter pN , where N pN → λ > 0. Show that (XN/N) converges in
distribution to the exponential distribution with rate λ.
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8.7 Additional Problems 111

Problem 8.49 Consider a sequence of distribution functions (Fn) that
converges weakly to some distribution function F. Recall the definition
of pseudo-inverse defined in (3.9) and show that F−n (u) → F−(u) at any u
where F is continuous and strictly increasing.

Problem 8.50 Recall the setting of Section 4.6. Show that the Xi are
exchangeable but not independent.

Problem 8.51 Continuing with the setting of Section 4.6, we denote T by
TN and let N →∞. It is known since [58] that, for any a ∈ R,

P(TN ≤ N log N + aN) → exp(− exp(−a)), N →∞.

Re-express this statement as a convergence in distribution. Note that
the limiting distribution is in the Gumbel family. Using the function
implemented in Problem 4.20, perform some simulations to confirm this
mathematical result.

Problem 8.52 Continuing with the setting of the previous problem, for
q ∈ [0,1], T⌈qN⌉ is the number of trials needed to sample a fraction of at
least q of the entire collection of N coupons. Show that, when q ∈ (0,1)
is fixed while N → ∞, the limiting distribution of T⌈qN⌉ is in the normal
family. [First, express T⌈qN⌉ as the sum of certain Wi as in Problem 4.19.
Then apply Lyapunov’s central limit theorem (Problem 8.31).]

Problem 8.53 Suppose that X1, . . . ,Xn are exchangeable and define Y =
#{i ∶ Xi ≥ X1}. First, assume that X1 has a continuous distribution and show
that Y has the uniform distribution on {1,2, . . . ,n}. In any case, show that

P(Y ≤ y) ≤ y/n, for all y ≥ 1.

Problem 8.54 Suppose the distribution of the random vector (X1, . . . ,Xn)
is invariant with respect to some set of permutations S , and that S is such
that, for every pair of distinct i, j ∈ {1, . . . ,n}, there is σ = (σ1, . . . , σn) ∈ S
such that σi = j. Show that the conclusions of Problem 8.53 apply to this
more general situation.

Problem 8.55 Consider drawing from an urn with red and blue balls. Let
Xi = 1 if the ith draw is red and Xi = 0 if it is blue. Show that, whether the
sampling is without or with replacement (Section 2.4), or follows Pólya’s
scheme (Section 2.4.4), X1, . . . ,Xn are exchangeable.
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112 Convergence of Random Variables

Problem 8.56 Let X1, . . . ,Xn be exchangeable non-negative random vari-
ables. For any k ≤ n, compute

E(∑
k
i=1 Xi

∑n
i=1 Xi

).

Problem 8.57 Suppose that a box contains m balls. The goal is to estimate
m given the ability to sample uniformly at random with replacement from
the urn. We consider a protocol which consists in repeatedly sampling from
the urn and marking the resulting ball with a unique symbol. (This can be
seen as a form of capture-recapture sampling scheme used in Ecology, for
example.) The process stops when the ball we draw has been previously
marked. Let K denote the total number of draws in this process. Show that
K/
√

m→
√
π/2 in probability as m→∞.

Problem 8.58 (Tracy–Widom distribution) Let Λm,n denote the square of
the largest singular value of an m-by-n matrix with iid standard normal
coefficients. Then there are deterministic sequences, am,n and bm,n such
that, as m/n → γ ∈ [0,∞], (Λm,n − am,n)/bm,n converges in distribution
to the so-called Tracy–Widom distribution of order 1. In R, perform some
numerical simulations to probe into this phenomenon. [Note that the amount
of computation might be substantial.]
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Stochastic Processes

Stochastic processes model experiments whose outcomes are collections of
variables organized in some fashion. We focus here on Markov processes,
which include random walks and branching processes. As this material is
rather advanced, we only cover some fundamentals.

As usual, our foundation is a probability space (Ω,Σ,P).

9.1 Markov Chains

Some situations are poorly modeled by sequences of independent random
variables. Think, for example, of the daily closing price of a stock, or the
maximum daily temperature on successive days. Markov chains offer a
simple way to model dependencies and may be more relevant models for
such phenomena. We provide a very brief introduction, focusing on the case
where the observations are in a discrete space. The topic is more extensively
treated, for example, in the textbook [84].

9.1.1 Definition

Let X be a discrete space and let f (⋅ ∣ ⋅) denote a conditional mass function
on X ×X , namely, for each x0 ∈ X , x↦ f (x ∣ x0) is a mass function on X .
The corresponding chain, starting at x0 ∈ X , proceeds as follows:

(i) X1 is drawn from f (⋅ ∣ x0) resulting in x1;
(ii) for t ≥ 1, given Xt = xt, Xt+1 is drawn from f (⋅ ∣ xt) resulting in xt+1.

The outcome of this experiment is (x1, x2, . . . ), or (X1,X2, . . . ) when left
unspecified as a sequence of random variables.

Remark 9.1 If in actuality f (x ∣ x0) does not depend on x0, in which case
we write it as f (x), the process generates an iid sequence from f . Hence,
an iid sequence is a Markov chain.

113
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114 Stochastic Processes

If the chain is at state x ∈ X , that state is referred to as the present state.
The next state, generated using f (⋅ ∣ x), is the state one (time) step into the
future. That future state is generated without any reference to previous states
except for the present state. In that sense, a Markov chain only ‘remembers’
the present state. See Section 9.1.6 for an extension.

9.1.2 Two-State Markov Chains

Let us consider the simple setting of a state space X with two elements, say,
X = {1, 2}. Because f (⋅ ∣ ⋅) is a conditional mass function it needs to satisfy

a ∶= f (1 ∣1) = 1 − f (2 ∣1),
b ∶= f (2 ∣2) = 1 − f (1 ∣2).

The parameters a,b ∈ [0,1] are free and define the Markov chain. The
conditional probabilities above may be organized in a so-called transition
matrix, which here takes the form

present state{ ( a 1 − a
1 − b b

)

next state
W2222222222222222222222222Y222222222222222222222222Z

(9.1)

Chains are sometimes depicted as an automaton. See Figure 9.1 for an
illustration of the chain with transition matrix (9.1).

1 2a

1− a

b

1− b

Figure 9.1 A representation of the chain given by (9.1) as an automaton. (Thanks
to Phong Alain Chau for this figure.)

Problem 9.2 Starting at x0 = 1, compute the probability of observing
(x1, x2, x3) = (1,2,1) as a function of (a,b).
Problem 9.3 In R, write a function taking as input the parameters of the
chain (a,b), the starting state x0 ∈ {1,2}, and the number of steps t, and
returning a realization, (x1, . . . , xt), from the corresponding process.
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9.1 Markov Chains 115

9.1.3 General Markov Chains

Since we assume the state space X to be discrete, we may take it to be the
positive integers, X = {1, 2, . . .}, without loss of generality. For i, j ∈ X , let
θi j = f ( j ∣ i), which is the probability of transitioning from i to j. These are
organized into a transition matrix

present state

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

θ11 θ12 θ13 ⋯
θ21 θ22 θ33 ⋯
θ31 θ32 θ33 ⋯
⋮ ⋮ ⋮ ⋮

⎞
⎟⎟⎟
⎠

next state
W222222222222222222222222222222222222222222222Y222222222222222222222222222222222222222222222Z

Note that the matrix can be infinite in principle. This general case includes
the case where the state space is finite. Denote the transition matrix by

Θ ∶= (θi j ∶ i, j ≥ 1).

The transition matrix defines the chain, and together with the initial state,
defines the distribution of the random process.

Problem 9.4 Show that, for any t ≥ 1,

P(Xt = j ∣ X0 = i) = θ(t)i j ,

if we denote the coefficients of the tth power of Θ by Θt = (θ(t)i j ∶ i, j ≥ 1).

9.1.4 Long-Term Behavior

In the study of a Markov chain, quantities of interest include the long-term
behavior of the chain, the average time (number of steps) it takes to visit a
given state (or set of states) starting from a given state (or set of states), the
average number of such visits, and more. We focus on the limiting marginal
distribution.

We say that a mass function on X , q ∶= (q1,q2, . . . ), is a stationary
distribution of the chain with transition matrix Θ ∶= (θi j ∶ i, j ≥ 1) if X0 ∼ q
and X ∣ X0 ∼ f (⋅ ∣ X0) yields X ∼ q.

Problem 9.5 Show that q is a stationary distribution of Θ if and only if
qΘ = q, when interpreting q as a row vector. (Note that the multiplication is
on the left.)
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116 Stochastic Processes

The chain Θ is said to be irreducible if for any i, j ≥ 1 there is some
t ≥ 1 such that θ(t)i j > 0. This means that, starting at any state, the chain can
eventually reach any other state with positive probability.

The state i is said to be aperiodic if

gcd(t ≥ 1 ∶ θ(t)ii > 0) = 1,

where gcd is short for ‘greatest common divisor’. To understand this,
suppose that state i is such that

gcd(t ≥ 1 ∶ θ(t)ii > 0) = 2.

Then this would imply that the chain starting at i cannot be at i after an odd
number of steps.

A chain is aperiodic if all its states are aperiodic.

Proposition 9.6. Suppose that the chain is irreducible. If one state is
aperiodic then all states are aperiodic.

State i is positive recurrent if, starting at i, the expected time it takes the
chain to return to i is finite. A chain is positive recurrent if all its states are
positive recurrent.

Proposition 9.7. A finite irreducible chain is positive recurrent.

(A finite chain is a chain over a finite state space.)

Theorem 9.8. An irreducible, aperiodic, and positively recurrent chain has
a unique stationary distribution. Moreover, the chain converges weakly to
the stationary distribution regardless of the initial state, meaning that, if Xt

denotes the state the chain is at time t, and if q = (q1,q2, . . . ) denotes the
stationary distribution, then

lim
t→∞
P(Xt = j ∣ X0 = i) = qj, for any states i and j.

Problem 9.9 Verify that a finite chain whose transition probabilities are all
positive satisfies the requirements of the theorem.

Problem 9.10 Provide necessary and sufficient conditions for a two-state
Markov chain to satisfy the requirements of the theorem. When these are
satisfied, derive the limiting distribution.
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9.1 Markov Chains 117

9.1.5 Reversible Markov Chains

Running a Chain Backward
Consider a chain with transition probabilities (θi j) with unique stationary
distribution q = (qi). Assuming the state is i at time t = 0, a step forward is
taken according to

P(X1 = j ∣ X0 = i) = θi j, for all i, j.

In contrast, a step backward is taken according to

P(X−1 = j ∣ X0 = i) = θ jiq j

qi
, for all i, j. (9.2)

Problem 9.11 To support (9.2), show that P(X0 = j ∣ X1 = i) = θ jiq j/qi, for
all i, j.

Reversible Chains
In essence, a chain is reversible if running it forward is equivalent (in
terms of distribution) to running it backward. More generally, a chain with
transition probabilities (θi j) is said to be reversible if there is a probability
mass function q = (qi) such that

qiθi j = qjθ ji, for all i, j. (9.3)

This means that, if we draw a state from q and then run the chain for one
step, the probability of obtaining (i, j) is the same as that of obtaining ( j, i).
Problem 9.12 Show that a distribution q satisfying (9.3) is stationary for
the chain.

Problem 9.13 Show that if X0 is sampled according to q and we run the
chain for t steps resulting in X1, . . . ,Xt, the distribution of (X0, . . . ,Xt)
is the same as that of (Xt, . . . ,X0). [Note that this does not imply that
these variables are exchangeable, only that we can reverse the order. See
Problem 9.32.]

Example 9.14 (Simple random walk on a graph) A graph is a set of nodes
and edges between some pairs of nodes. Two nodes connected by an edge
are said to be neighbors. Assume that each node has a finite number of
neighbors. Consider the following process: starting at some node, at each
step choose a neighbor uniformly at random among those of the current
node. Then the resulting chain is reversible.
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9.1.6 Extensions

We have discussed the simplest variant of Markov chain: it is called a
discrete time, discrete space, time homogeneous Markov process. The
definition of a continuous time Markov process requires technicalities that
we will avoid. But we can elaborate on the other aspects.

General State Space
The state space X does not need to be discrete. Indeed, suppose the state
space is equipped with a σ-algebra Γ. What are needed are transition
probabilities, {P(⋅ ∣ x) ∶ x ∈ X}, on Γ. Then, given a present state x ∈ X , the
next state is drawn from P(⋅ ∣ x).
Problem 9.15 Suppose that (Wt ∶ t ≥ 1) are iid with distribution P on
(R,B). Starting at X0 = x0 ∈ R, successively define Xt = Xt−1 + Wt.
(Equivalently, Xt = x0 +W1 +⋯ +Wt.) What are the transition probabilities
in this case?

More Memory
A Markov chain only remembers the present. However, with little effort, it
is possible to have it remember some of its past as well.

The number of states it remembers is the order of the chain. A Markov
chain of order m is such that

P(Xt = it ∣ Xt−m = it−m, . . . ,Xt−1 = it−1)
= θ(it−m, . . . , it), for all it−m, . . . , it,

where the (m + 1)-dimensional array

(θ(i0, i1, . . . , im) ∶ i0, i1, . . . , im ≥ 1)

now defines the chain.
In fact, a finite-order chain can be seen as an order 1 chain in an enlarged

state space. Indeed, consider a chain of order m on X , and let Xt denote its
state at time t. Based on this, define

Yt ∶= (Xt−m+1, . . . ,Xt−1,Xt).

Then (Ym,Ym+1, . . . ) forms a Markov chain of order 1 onX m, with transition
probabilities

P(Yt = (it−m+1, . . . , it) ∣ Yt−1 = (it−m, . . . , it−1))
= θ(it−m, . . . , it), for all it−m, . . . , it,

and all other possible transitions given the probability 0.
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9.2 Simple Random Walks 119

Time-Varying Transitions
The transition probabilities may depend on time, meaning

P(Xt+1 = j ∣ Xt = i) = θi j(t), for all i, j,

where a sequence of transition matrices, Θ(t) ∶= (θi j(t)), defines the chain.

9.2 Simple Random Walks

Let (Xi ∶ i ≥ 1) be iid with

P(Xi = 1) = p, P(Xi = −1) = 1 − p,

and define S n = ∑n
i=1 Xi. Note that (Xi + 1)/2 ∼ Ber(p). Then (S n ∶ n ≥ 0),

with S 0 = 0 by default, is a simple random walk40. See Figure 9.2.

0 10 20 30 40 50 60 70 80 90 100

−8
−6

−4
−2

0
2

4

Figure 9.2 A realization of a symmetric (p = 1/2) simple random walk, specifically,
a plot of a linear interpolation of a realization of {(n, S n) ∶ n = 0, . . . , 100}.

This is a special case of Example 9.14, where the graph is the one-
dimensional lattice: if the process is at k ∈ Z, it moves to k+1 with probability
p, or k − 1 with probability 1 − p. When p = 1/2, the walk is symmetric.

Problem 9.16 Show that a simple random walk is a Markov chain with state
space Z. Display the transition matrix. Show that the chain is irreducible
and periodic. (What is the period?)

Proposition 9.17. The simple random walk is positive recurrent if and only
if it is symmetric.

40 The simple random walk is one of the most well-studied stochastic processes. We refer
the reader to Feller’s classic textbook [61] for a thorough yet accessible exposition.
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9.2.1 Gambler’s Ruin

Consider a gambler than bets one dollar at every trial and doubles or looses
that dollar, each with probability 1/2 independently of the other trials.
Suppose the gambler starts with s dollars and that he stops gambling if that
amount reaches 0 (loss) or some prescribed amount w > s (win).

Problem 9.18 Leaving w implicit, let γs denote the probability that the
gambler loses. Show that

γs = pγs+1 + (1 − p)γs−1, for all s ∈ {1, . . . ,w − 1}.

Deduce that

γs = 1 − s/w, if p = 1/2,

while

γs =
1 − ( p

1−p)
w−s

1 − ( p
1−p)w

, if p ≠ 1/2.

The result applies to w = ∞, meaning to the setting where the gambler
keeps on playing as long as he has money. In that case, we see that the
gambler loses with probability 1 if p ≤ 1/2 and with probability (1/p − 1)s

if p > 1/2. In particular, if p > 1/2, with probability 1 − (1/p − 1)s, the
gambler’s fortune increases without bound.

9.2.2 Fluctuations

A realization of a simple random walk can be surprising. Indeed, if asked
to have a guess at a realization, most (untrained) people would have the
tendency to make the walk fluctuate much more than it typically does.

Problem 9.19 In R, write a function which plots {(k,S k) ∶ k = 0, . . . ,n},
where S 0,S 1, . . . ,S n is a realization of a simple random walk with parameter
p initialized at the origin. Try your function on several choices for (n, p).

We say that a sign change occurs at step n if S n−1S n+1 < 0. Note that this
implies that S n = 0.

Proposition 9.20 (Sign changes). The number of sign changes in the first
2n + 1 steps of a symmetric simple random walk equals k with probability
2−2n(2n+1

2k+1).
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9.2.3 Maximum

There is a beautifully simple argument, called the reflection principle, which
leads to the following clear description of how the maximum of the random
walk up to step n behaves

Proposition 9.21. For a symmetric simple random walk, for all n ≥ 1 and
all r ≥ 0,

P(max
k≤n

S k = r) = P(S n = r) + P(S n = r + 1).

Assume the walk is symmetric. Since S n has mean 0 and standard
deviation

√
n, it is natural to study the normalized random walk given

by (S n/
√

n ∶ n ≥ 1).

Theorem 9.22 (Erdös and Rényi [37]). Suppose that (Xi ∶ i ≥ 1) are iid with
mean 0 and variance 1. Define S n = ∑i≤n Xi, as well as an =

√
2 log log n

and bn = 1
2 log log log n. Then for any t ∈ R,

lim
n→∞
P(max

k≤n

S k√
k
≤ an +

bn

an
+ t

an
) = exp ( − e−t/2

√
π).

Thus, the maximum of a simple random walk, properly normalized,
converges to a Gumbel distribution.

Problem 9.23 In the context of this theorem, show that
√

2 log log n ≤ max
k≤n

S k√
k
≤
√

2 log log n + 1,

with probability tending to 1 as n increases.

9.3 Galton–Watson Processes

Francis Galton (1822–1911) and Henry William Watson (1827–1903) were
interested in the extinction of family names. Their model assumes that the
family name is passed from father to son and that each male has a number of
male descendants, with the number of male descendants being independent
and identically distributed across siblings and generations.

More formally, suppose that we start with one male with a certain family
name. Let X0 = 1. The male has ξ0,1 male descendants. If ξ0,1 = 0, the family
name dies. Otherwise, the first male descendant has ξ1,1 male descendants,
the second has ξ1,2 male descendants, etc. In general, let ξn, j be the number
of male descendants of the jth male in the nth generation. The order within

https://doi.org/10.1017/9781108779197.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781108779197.012
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each generation is arbitrary and only used for identification purposes. The
central assumption is that the ξn, j are iid. Let f denote their common mass
function. See Figure 9.3 for an illustration.

●

●

● ● ●

● ● ● ●

● ● ●

● ● ● ● ●

● ● ●

● ● ● ●

● ● ●

Figure 9.3 A realization of a Galton–Watson branching process with progeny
distribution the Poisson distribution with mean 1 (thus at criticality). In this particular
realization, the family name died with the 8th generation (meaning that none of the
individuals at the 8th generation had any descendants).

The number of male individuals in the nth generation is thus

Xn =
Xn−1

∑
j=1
ξn−1, j.

(This is an example of a compound sum as seen in Section 7.10.1.)

Problem 9.24 Show that (X1,X2, . . . ) forms a Markov chain and give the
transition probabilities in terms of f .

Problem 9.25 Provide sufficient conditions on f under which, as a Markov
chain, the process is irreducible and aperiodic.

Note that if Xn = 0, then the family name dies and, in particular, Xm = 0
for all m ≥ n. Of interest, therefore, is

dn ∶= P(Xn = 0).
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9.3 Galton–Watson Processes 123

Clearly, (dn) is increasing, and being in [0,1], converges to a limit d∞,
which is the probability that the male line dies out eventually. A basic
problem is to determine d∞.

Remark 9.26 In Markov chain parlance, the state 0 is absorbing in the
sense that, once reached, the chain stays there forever after.

Problem 9.27 Show that d∞ > 0 if and only if f (0) > 0.

Problem 9.28 Show that an irreducible chain with an absorbing state cannot
be (positive) recurrent. [You can start with a two-state chain, with one state
being absorbing, and then generalize from there.]

Problem 9.29 (Trivial setting) The setting is trivial when f has support in
{0,1}. Compute dn in that case and show that d∞ = 1 when f (0) > 0.

We assume henceforth that we are not in the trivial setting, meaning that
f (0) + f (1) < 1.

Problem 9.30 In that case the state space cannot be taken to be finite.

First-Step Analysis
A first-step analysis consists in conditioning on the value of X1. Suppose
that X1 = k, thus out of the first generation are born k lines. The whole
line dies by the nth generation if and only if all these k lines die by the
nth generation. But the nth generation in the whole line corresponds to the
(n − 1)th generation for these lines because they started at generation 1
instead of generation 0. By the Markov property, each of these lines has
the same distribution as the whole line, and therefore dies by its (n − 1)th
generation with probability dn−1. Thus, by independence, they all die by
their (n − 1)th generation with probability dk

n−1, establishing that

P(Xn = 0 ∣ X1 = k) = dk
n−1.

By the Law of Total Probability, this yields

dn = P(Xn = 0 ∣ X0 = 1)
= ∑

k≥0
P(Xn = 0 ∣ X1 = k)P(X1 = k ∣ X0 = 1)

= ∑
k≥0

dk
n−1 f (k).

Thus, letting γ denote the probability generating function of f as defined in
Section 7.7, we have that

dn = γ(dn−1), for all n ≥ 1.
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Note that d0 = 0 since X0 = 1. Thus, by the continuity of γ on [0,1], d∞ is
necessarily a fixed point of γ, meaning that γ(d∞) = d∞. There are some
standard ways of dealing with this situation and we refer the reader to the
textbook [84] for details.

Let μ be the (possibly infinite) mean of f . This is the mean number
of male descendants of a given male. The mean plays a special role, in
particular because γ′(1) = μ.

Theorem 9.31 (Probability of extinction). The line becomes extinct with
probability one (meaning d∞ = 1) if and only if μ ≤ 1. If μ > 1, d∞ is the
unique fixed point of γ in (0,1).

Many more things are known about this process, such as the average
growth of the population and features of the population tree.

9.4 Additional Problems

Problem 9.32 Consider a Markov chain and a distribution q on the state
space such that, if the chain is started at X0 ∼ q, then (X0,X1,X2, . . . ) are
exchangeable, meaning that X0, . . . ,Xt are exchangeable for any t ≥ 0. Show
that, necessarily, the sequence is iid with distribution q.

Problem 9.33 (Three-state Markov chains) Repeat Problem 9.10 with a
three-state Markov chain.

Problem 9.34 Consider a Markov chain with a symmetric transition matrix.
Show that the chain is reversible and that the uniform distribution is
stationary.

Problem 9.35 (Random walks) A sequence of iid random variables, (Xi),
defines a random walk by taking the partial sums, S n ∶= X1 + ⋯ + Xn for
n ≥ 1. The Xi are called the increments. It turns out that random walks
with increments having zero mean and finite 2nd moment behave similarly.
Perform some numerical experiments to ascertain this claim.
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10

Sampling and Simulation

In this chapter, we introduce some tools for sampling from a distribution. We
also explain how to use computer simulations to approximate probabilities
and, more generally, expectations, which can allow one to circumvent
complicated mathematical derivations.

10.1 Monte Carlo Simulation

Suppose, in the context of a probability space (Ω,Σ,P), we want to compute
the probability P(A) of a given event A ∈ Σ. We start by contrasting two
very different avenues for doing that.

Analytic Calculations
In some situations, it might be possible to compute this probability (or at
least approximate it) directly by calculations ‘with pen and paper’ (or via the
use of a computer to perform symbolic calculations), and possibly a simple
calculator to numerically evaluate the final expression. In the pre-computer
age, researchers with sophisticated mathematical skills spent a lot of effort
on such problems and, almost universally, had to rely on some form of
approximation to arrive at a useful result.

Numerical Simulations
In some situations, it might be possible to generate independent realizations
from P. By the Law of Large Numbers (Theorem 8.18), if ω1, ω2, . . . are
sampled iid from P, then

Qm ∶=
1
m

m

∑
i=1
{ωi ∈ A}

PI→ P(A), as m→∞.

This leads to the idea of choosing a large integer m, generate ω1, . . . , ωm

iid from P, and then output Qm as an approximation to P(A). The larger

127
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128 Sampling and Simulation

m, the better the approximation, and a priori the only reason to settle for
a particular m are the available computational resources. This approach is
often called Monte Carlo simulation.41

Applying Chebyshev’s inequality (7.13), we derive

∣Qm − P(A)∣ ≤
t

2
√

m
, (10.1)

with probability at least 1 − 1/t2. For example, choosing t = 10 we have
that ∣Qm − P(A)∣ ≤ 5/

√
m with probability at least 99%. Therefore, an

approximation based on m Monte Carlo draws is accurate to within order
1/
√

m.

Problem 10.1 Verify the assertions made here.

Problem 10.2 Apply Chernoff’s bound for the binomial distribution (7.15)
to obtain a sharper bound on the probability of (10.1).

Problem 10.3 Consider the following problem.42 A gardener plants three
maple trees, four oaks, and five birch trees in a row; they are planted in
random order, each arrangement being equally likely. What is the probability
that no two birch trees are next to one another? Compute this probability
analytically. Then, using R, approximate this probability by Monte Carlo
simulation.

Problem 10.4 (Monty Hall by simulation) In [192], Andrew Vazsonyi
tells us that even Paul Erdös, a prominent figure in Probability Theory and
Combinatorics, was challenged by the Monty Hall problem (Example 1.33).
Vazsonyi performed some computer simulations to demonstrate to Erdös
that the solution was indeed 1/3 (no switch) and 2/3 (switch). Do the same
in R. First, simulate the process when there is no switch. Do that many
times (say m = 106) and record the fraction of successes. Repeat, this time
when there is a switch.

10.2 Monte Carlo Integration

Monte Carlo integration applies the principle underlying Monte Carlo
simulation to the computation of expectations.

Suppose we want to integrate a function h on [0,1]d. Typical numerical
integration methods work by evaluating h on a grid of points and

41 See [56] for an account of early developments at Los Alamos National Laboratory in
the context of research in nuclear fission.

42 It appeared in the American Invitational Mathematics Examination (1984 ed.).

https://doi.org/10.1017/9781108779197.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108779197.014


10.2 Monte Carlo Integration 129

approximating the integral with a linear combination of these values. The
simplest scheme of this sort is based on the definition of the Riemann
integral. For example, in dimension d = 1,

∫
1

0
h(x)dx ≈ 1

m

m

∑
i=1

h(xi),

where xi ∶= i/m. This is based on a piecewise constant approximation to
h. If h is smoother, a higher-order approximation would yield a better
approximation for the same value of m.

R corner The function integrate in R uses a quadratic approximation on
an adaptive grid.

Such methods work well in any dimension, but only in theory. Indeed,
in practice, a grid in dimension d, even for moderately large d, is too large,
even for modern computers. For instance, suppose that we want to sample
the function every 1/10 along each coordinate. In dimension d, this requires
a grid of size 10d. If d ≥ 10, this number is quite large already, and if
d ≥ 100, it is beyond hope for any computer.

Monte Carlo integration provides a way to approximate the integral of h
at a rate of order 1/

√
m regardless of the dimension d. The simplest scheme

uses randomness and is motivated as before by the Law of Large Numbers.
Indeed, let X1, . . . ,Xm be iid uniform in [0, 1]d. Then h(X1), . . . ,h(Xm) are
iid with mean

Ih ∶= ∫
[0,1]d

h(x)dx,

which is the quantity of interest.

Problem 10.5 Show that h(X1), . . . ,h(Xm) have finite 2nd moment if and
only if h is square-integrable (meaning that h2 is integrable) over [0,1]d.
Then compute their variance (denoted σ2

h in what follows).

Applying Chebyshev’s inequality to

Im ∶=
1
m

m

∑
i=1

h(Xi),

we derive

∣Im − Ih∣ ≤
tσh√

m
,

with probability at least 1 − 1/t2.
Although computing σh is likely as hard, or harder, than computing Ih

itself, it can be easily bounded when an upper bound on h is known. Indeed,
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130 Sampling and Simulation

if it is known that ∣h∣ ≤ b over [0,1]d, then σh ≤ b. (Note that numerically
verifying that ∣h∣ ≤ b over [0,1]d can be a challenge in high dimensions.)

Problem 10.6 Verify these assertions.

Problem 10.7 Compute ∫
1

0

√
1 − x2 dx in three ways:

(i) Analytically.
(ii) Numerically, using the function integrate in R.
(iii) By Monte Carlo integration, also in R.

10.3 Rejection Sampling

Suppose we want to sample from the uniform distribution with support A, a
compact set in Rd. Translating and scaling A as needed, we may assume
without loss of generality that A ⊂ [0,1]d. Then consider the following
procedure: repeatedly sample a point from Unif([0,1]d) until the point
belongs to A, and return that last point. It turns out that the resulting point
has the uniform distribution on A.

Problem 10.8 Let A ⊂ B, where both A and B are compact subsets of Rd.
Let X ∼ Unif(B). Show that, conditional on X ∈ A, X is uniform in A.

Problem 10.9 In R, implement this procedure for sampling from the
lozenge in the plane with vertices (1,0), (0,1), (−1,0), (0,−1).

This is arguably the most basic example of rejection sampling. The name
comes from the fact that draws are rejected unless a prescribed condition is
met.

Problem 10.10 In R, implement a rejection sampling algorithm for
‘estimating’ the number π based on the fact that the unit disc (centered at the
origin and of radius one) has surface area equal to π. How many samples
should be generated to estimate π with this method to within precision ε
with probability at least 1 − δ? Here ε > 0 and δ > 0 are given. In particular,
how many samples would be needed to confirm that the 2nd decimal of π is
4 to within 99% confidence?

In general, suppose that we want to sample from a distribution with
density f on Rd. Let f0 be another density on Rd such that

f (x) ≤ c f0(x), for all x in the support of f , (10.2)

for some known constant c ≥ 1. The density f0 plays the role of proposal
distribution. Besides (10.2), the other requirement is that we need to be able
to sample from f0. Assuming this is the case, consider Algorithm 10.1.
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Algorithm 10.1 Basic rejection sampling

Input: target density f , proposal density f0, constant c satisfying (10.2).
Output: one realization from f

Repeat: generate y from f0 and u from Unif([0,1]), independently
Until u ≤ f (y)/c f0(y)
Return the last y

To see that Algorithm 10.1 outputs a realization from f , let Y ∼ f0 and U ∼
Unif(0,1) be independent, and define the event V ∶= {U ≤ f (Y)/c f0(Y)}.
If X denotes the output of Algorithm 10.1, then X has the distribution of
Y ∣ V . Thus, for any Borel set A,

P(X ∈ A) = P(Y ∈ A ∣ V)

= P(Y ∈ A and V)
P(V) ,

with

P(Y ∈ A and V) = ∫
A
P(V ∣ Y = y) f0(y)dy

= ∫
A

f (y)
c f0(y)

f0(y)dy

= 1
c ∫A f (y)dy,

where in the 2nd line we used the fact that

P(V ∣ Y = y) = P(U ≤ f (y)/c f0(y) ∣ Y = y)
= P(U ≤ f (y)/c f0(y))
= f (y)/c f0(y),

since U is independent of Y and uniform in [0,1], and (10.2) holds. By
taking A = Rd, this gives

P(V) = P(Y ∈ Rd and V) = 1
c ∫R f (y)dy = 1

c
.

Hence,

P(X ∈ A) = ∫
A

f (y)dy,

and this being valid for any Borel set A, we have established that X has
density f , as desired.
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132 Sampling and Simulation

Problem 10.11 Let S be the number of samples generated by Algo-
rithm 10.1. Show that E(S ) = c. What is the distribution of S ?

Problem 10.12 From the previous problem, we see that the algorithm is
more efficient the smaller c is. Show that c ≥ 1 with equality if and only if f
and f0 are densities for the same distribution.

The ratio of uniforms is another rejection sampling method proposed by
Kinderman and Monahan [107]. It is based on the following.

Problem 10.13 Suppose that g is non-negative and integrable over the real
line with integral b, and define A ∶= {(u, v) ∶ 0 < v <

√
g(u/v)}. Assuming

that A has finite area, show that if (U,V) is uniform in A, then X ∶= U/V
has distribution f ∶= g/b.

Problem 10.14 Implement the method in R for the special case where g is
supported on [0,1].

10.4 Markov Chain Monte Carlo (MCMC)

Markov chains can be used to sample from a distribution when doing so
‘directly’ is not available. In discrete settings, this may be the case because
the space is too large and there is no simple way of enumerating the elements
in the space. We consider such a setting in what follows, in particular since
we only discussed Markov chains over discrete state spaces. Let q = (qi) be
a mass function on a discrete space from which we want to sample. The idea
is to construct a chain, meaning devise a transition matrix Θ = (θi j), such
that the reversibility condition (9.3) holds. If, in addition, the chain satisfies
the requirements of Theorem 9.8, then the chain converges in distribution to
q. Thus, a possible method for generating an observation from q, at least
approximately, is as in Algorithm 10.2.

Algorithm 10.2 Basic MCMC sampling

Input: chain Θ, initial distribution q0, total number of steps t
Output: one state

Initialize: draw a state according to q0

Run the chain Θ for t steps
Return the last state

Remark 10.15 Obviously, we need to be able to sample from the
distribution q0. In the present context, choosing q0 equal to q is, therefore,

https://doi.org/10.1017/9781108779197.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108779197.014
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not an option. However, if q0 were taken equal to q, the method would then
be exact since q is stationary for the chain. More generally, the closer q0 is
to q, the more accurate the method is (for a given number of steps t).

10.4.1 Binary Matrices with Given Row and Column Sums

We are tasked with sampling uniformly at random from the set of m × n
matrices with entries in {0,1} with given row sums, r1, . . . , rm, and given
column sums, c1, . . . , cn. Let that set be denoted by M(r, c), where
r ∶= (r1, . . . , rm) and c ∶= (c1, . . . , cn). Importantly, we assume that we
already have in our possession one such matrix, which has the added benefit
of guaranteeing that this set is non-empty. This setting is motivated by
applications in Psychometry and Ecology (Section 22.1).

The space M(r, c) is often gigantic and there is no known way to
enumerate it to enable drawing from the uniform distribution directly. (In
fact, merely computing the cardinality ofM(r, c) is difficult enough [45].)
However, an MCMC approach is viable. The following is based on the work
of Besag and Clifford [14].

The chain is defined as follows. At each step, choose two rows and two
columns uniformly at random. If the resulting submatrix is of the form

(1 0
0 1

) or (0 1
1 0

)

then switch one for the other. If the resulting submatrix is not of this form,
then stay put.

Problem 10.16 Show that this chain is indeed a chain onM(r, c), and a
reversible one, and that the uniform distribution is stationary. To complete
the picture, show that the chain satisfies the requirements of Theorem 9.8.
[The only real difficulty is proving irreducibility.]

Problem 10.17 Staying put may seem, at first, unnecessary, and it may be
tempting Show that this necessary, however, in that without doing this,
the uniform distribution may not be stationary anymore. For example,
examine the case of 3-by-3 binary matrices with row and column sums
equal to (2, 1, 1). [The space of such matrices is very manageable.] Perform
simulations in R to compare the two chains: the one that stays put and the
one that keeps sampling until a witch is made.
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10.4.2 Generating a Sample

Most typically, there is a need to generate not one but several independent
samples from a given distribution q. Doing so (approximately) using MCMC
is possible if we already have a Markov chain with q as limiting distribution.
An obvious procedure is to repeat the process, say Algorithm 10.2, the
desired number of times n to obtain an iid sample of size n from a
distribution that approximates the target distribution q.

This process is deemed wasteful in situations where the chain converges
slowly to its stationary distribution. Indeed, in such circumstances, the
number of steps t in Algorithm 10.2 to generate a single draw can be
quite large, and if (x0, . . . , xt) represents a realization of the chain, then
x0, . . . , xt−1 are discarded and only xt is returned by the algorithm. This
would be repeated n times, thus generating n(t + 1) states to only keep n of
them.

Various methods and heuristics exist to attempt to make better use of
the states computed along the way. The main issue is that states generated
in sequence by a single run of the chain are dependent. Nevertheless, the
following generalization of the Law of Large Numbers is true43.

Theorem 10.18 (Ergodic Theorem). Consider a Markov chain on a discrete
state space X . Assume the chain is irreducible and positive recurrent,
and with stationary distribution q. Let X0 have any distribution on X and
start the chain at that state, resulting in X1,X2, . . . . Then, for any bounded
function h,

1
t

t

∑
s=1

h(Xs)
PI→ ∑

x∈X
q(x)h(x), as t →∞.

10.5 Metropolis–Hastings Algorithm

This algorithm offers a method for constructing a reversible Markov chain
for MCMC sampling. It is closely related to rejection sampling, as we shall
see. We consider the discrete case, although the same procedure applies
more generally almost verbatim.

Suppose we want to sample from a distribution with mass function q.
The algorithm seeks to express the transition probability p(⋅ ∣ ⋅) as follows:

p(x ∣ x0) = p0(x ∣ x0)a(x ∣ x0), (10.3)

43 A central limit theorem also holds under some additional conditions.
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where p0(⋅ ∣ ⋅) is the ‘proposal’ conditional mass function and a(⋅ ∣ ⋅) is
the ‘acceptance’ probability function. The transition probability p(⋅ ∣ ⋅) is
reversible with stationary distribution q if

p(x ∣ x0)q(x0) = p(x0 ∣ x)q(x), for all x, x0.

When p is as in (10.3), this condition is equivalent to

a(x ∣ x0)
a(x0 ∣ x)

= p0(x0 ∣ x)q(x)
p0(x ∣ x0)q(x0)

, for all x, x0.

Problem 10.19 Prove that

a(x ∣ x0) ∶= 1 ∧ p0(x0 ∣ x)q(x)
p0(x ∣ x0)q(x0)

(10.4)

satisfies this condition.

The Metropolis–Hastings Algorithm44 is an MCMC algorithm with
Markov chain of the form (10.3), with p0 chosen by the user and a as
in (10.4). A detailed description is given in Algorithm 10.3.

Algorithm 10.3 Metropolis–Hastings sampling

Input: target q, proposal p0, initial distribution q0, number of steps t
Output: one state

Initialize: draw x0 from q0

For s = 1, . . . , t
draw x from p0(⋅ ∣ xs−1)
draw u from Unif(0,1)
set xs = x if u ≤ a(x ∣ xt−1) and xs = xs−1 otherwise

Return the last state xt

Remark 10.20 We only need to be able to compute q(x)/q(x0) for two
states x0, x. This makes the method applicable in settings where q = c q̃
with c being a normalizing constant that is hard to compute and q̃ being a
function that is relatively easy to evaluate.

Example 10.21 (Ising model45) The Ising model is a model of ferromag-
netism where the (iron) atoms are organized in a regular lattice and each
atom has a spin which is either − or +. We consider such a model in
dimension two. Let xi j ∈ {−1,+1} denote the spin of the atom at position

44 Named after Nicholas Metropolis (1915–1999) and Wilfred K. Hastings (1930–2016).
45 Named after Ernst Ising (1900–1998).
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(i, j) in the m-by-n rectangular lattice {1, . . . ,m}×{1, . . . ,n}. In its simplest
form, the Ising model presumes that the set of random variables X = (Xi j)
has a distribution of the form

P(X = x) = C(u, v) exp(uξ(x) + vζ(x)),

where u, v ∈ R are parameters, x = (xi j) with xi j ∈ {−1,+1}, and

ξ(x) ∶= ∑
(i, j)

xi j,

and

ζ(x) ∶= 1
2
∑∑
(i, j)↔(k,l)

xi jxkl,

with (i, j) ↔ (k, l) if and only if i = k and ∣ j − l∣ = 1 or ∣i − k∣ = 1 and j = l.
The normalization constant C(u,v) may be difficult to compute in general,

as in principle it involves summing over the whole state space, which is of
size 2mn. However, the functions ξ and ζ are rather easy to evaluate, which
makes a Metropolis–Hastings approach particularly attractive.

We present a simple variant. We say that x and x′ are neighbors, denoted
x↔ x′, if they differ in exactly one entry. We choose as p0(⋅ ∣ x′) the uniform
distribution over the neighbors of x′. Then the acceptance probability takes
the following simple form

a(x ∣ x′) = 1 ∧ q(x)
q(x′)

= 1 ∧ exp [u(ξ(x) − ξ(x′)) + v(ζ(x) − ζ(x′))].

Note that, if x and x′ differ at (i, j), meaning xi j ≠ x′i j, then

ξ(x) − ξ(x′) = xi j − x′i j,

while

ζ(x) − ζ(x′) = ∑
(k,l)↔(i, j)

(xi jxkl − x′i j x
′
kl),

where the last sum is only over the neighbors of (i, j) (and there are, at
most, four of them).

Problem 10.22 In R, simulate realizations of such an Ising model using
the Metropolis–Hastings algorithm just described. Do so for m = 100 and
n = 200, and various choices of parameters a and b, chosen carefully to
exhibit different regimes. [The realizations can be visualized using the
function image.]
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10.6 Pseudo-Random Numbers 137

10.6 Pseudo-Random Numbers

We have assumed in several places that we have the ability to generate
random numbers, at least from simple distributions, such as the uniform
distribution on [0,1]. Doing so, in fact, presents quite a conundrum since
the computer is a deterministic machine. The conundrum is solved by the
use of a pseudo-random number generator, which is a program that outputs
a sequence of numbers that are not random but designed to behave as if they
were random.

Linear Congruential Generators
These generators produce sequences (xn) of the form

xn = (axn−1 + c) mod m,

where a, c,m are given integers chosen appropriately. The starting value x0

needs to be provided and is called the seed.
The sequence (xn) is in {0, . . . ,m− 1} and designed to behave like an iid

sequence from the uniform distribution on that set.

R corner By default, the pseudo-random number generator in R is the
Mersenne–Twister algorithm [126]. We refer the reader to [54] for more
details, as well as a comprehensive discussion of pseudo-random number
generators in R.
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Data Collection

Statistics is the science of data collection and data analysis. In this chapter,
we provide a brief introduction to principles and techniques for data
collection, traditionally divided into Survey Sampling and Experimental
Design – each the subject of a rich literature.

While most of the concepts and methods presented in this book are
grounded in mathematical theory, the collection of data is, by nature, much
more practical and almost always requires domain-specific knowledge.

Example 11.1 (Collection of data in ESP experiments) In [149], magician
and paranormal investigator James ‘The Amazing’ Randi relates the story
of how scientists at the Stanford Research Institute (SRI) were investigating
a person claiming to have psychic abilities. The scientists were apparently
fooled by relatively standard magic tricks into believing that this person was
indeed psychic. This has led Randi, and others such as Persi Diaconis [43],
to strongly recommend that a person competent in magic or deception be
present during an ESP experiment or be consulted during the planning phase
of the experiment.

Even though we will spend much more time on data analysis (Part III),
careful data collection is of paramount importance.

Data that were improperly collected can be completely useless and
unsalvageable by any technique of analysis.

And it is worth keeping in mind that the collection phase is typically
much more expensive that the analysis phase that ensues (e.g., clinical trials,
car crash tests, etc.). Thus, the collection of data should be carefully planned
according to well-established protocols, and preferably with expert advice.

138
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11.1 Survey Sampling

Survey Sampling is the field that focuses on developing methods for
sampling a population to determine characteristics of that population. The
type of surveys that we will consider are those that involve sampling only a
(usually very small) fraction of the population.

Remark 11.2 (Census) A census aims for an exhaustive survey of the
population. Any statistical analysis of census data is necessarily descriptive
since (at least in principle) the entire population is revealed. Some
adjustments, based on complex statistical modeling, may be performed
to attempt to palliate some deficiencies having to do with the undercounting
of some subpopulations. See [71] for a relatively nontechnical introduction
to the census as conducted by the US Census Bureau and a critique of such
adjustments.

We present in this section some essentials and refer the reader to
Chapter 19 in [66] or Chapter 4 in [191] for more comprehensive, yet
gentle introductions.

11.1.1 Survey Sampling as an Urn Model

Consider polling a given population. Suppose the poll consists of one
multiple-choice question with s possible choices. Let’s say that n people
are polled and asked to answer the question (with a single choice). Then the
survey can be modeled as sampling from an urn (the population) made of
balls with s possible colors.

Note that the possible choices usually include one or several options like
“I do not know”, “I am not aware of the issue”, etc., for individuals that
do not have an opinion on the topic, or are unaware of the issue, or are
undecided in other ways. See Table 11.1 for an example. Special care may
be warranted to deal with nonrespondents and people that did not properly
fill the questionnaire.

Table 11.1 New York Times – CBS News poll of 1022 adults
in the US (March 11–15, 2016). “Do you think re-establishing
relations between the US and Cuba will be mostly good for the
US or mostly bad for the US?”

Mostly good Mostly bad Unsure/No answer

62% 24% 15%
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11.1.2 Simple Random Sampling

When sampling uniformly at random from the population is possible, the
experiment can be simply modeled as sampling from an urn where at each
stage each ball has the same probability of being drawn. We studied the
resulting probability model in Section 2.4.2. (The sampling is, indeed,
typically done without replacement. This is the case in standard polls, where
a person is only interviewed once.)

It turns out that sampling uniformly at random from a population of
interest is rather difficult to do in practice. Modern sampling of human
populations is often done by phone based on a method for sampling phone
numbers that has been designed with great care.

11.1.3 Bias in Survey Sampling

When simple random sampling is desired but the actual survey results in a
different sampling distribution, it is said that the sampling is biased.

There are a number of factors that could lead to a biased sample, including
the following:

• Self-selection bias This may occur when people can volunteer to take
the poll.

• Non-response bias This occurs when the nonrespondents differ in
opinion on the question of interest from the respondents.

• Response bias This may occur, for example, when the way the question
is presented has an unintended (and often unanticipated) influence on the
response.

Self-selection bias and non-response bias are closely related. See Sec-
tion 11.1.4 for an example where they may have played out. The following
provides an example where response bias might have influence the outcome
of a US presidential election.

Example 11.3 (2000 US presidential election) In 2000, George W. Bush
won the US presidential election by an extremely small margin against his
main opponent, Al Gore. Indeed, Bush won the deciding state, Florida, by
a mere 537 votes.46 It has been argued that this very slim advantage might
have been reversed if not for some difficulties with some ballot designs used
in the state, in particular, the “butterfly ballot” used in the county of Palm

46 This margin was in fact so small that it required a recount (by state law). However,
in a controversial (and 5:4 split) decision, the US Supreme Court halted the recount, in the
process overruling the Florida Supreme Court.
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Beach, which may have led some voters to vote for another candidate, Pat
Buchanan, instead of Gore [1, 199, 172].

The following types of sampling are generally known to generate biased
samples:

• Quota sampling In this scheme, each interviewer is required to
interview a certain number of people with certain characteristics
(e.g., socioeconomic). Within these quotas, the interviewer is left to
decide which persons to interview. The natural inclination (typically
unconscious) is to reach out to people that are more accessible and seem
more likely to agree to be interviewed. This generates a bias.

• Sampling volunteers This is when individuals are given the opportunity
to volunteer to take the poll. A prototypical example is a television poll
where viewers are asked a question and are given the opportunity to
answer that question by calling or texting a given phone number. This
sampling scheme leads, almost by definition, to self-selection bias.

• Convenience sampling The last two schemes above are examples of
convenience sampling. A prototypical example is an individual asking
his friends who they will vote for in an upcoming election. Almost
by construction, there is no hope that this will result in a sample that
is representative of the population of interest (presumably, all eligible
voters).

Remark 11.4 (Coverage error) Bias typically leads to some members
of the population being sampled with a higher probability than other
members of the population. This is problematic if the intent is to sample
the population uniformly at random. On the other hand, this is fine if the
resulting sampling distribution is known, as there are ways to deal with
non-uniform distributions. See Remark 11.6.

11.1.4 A Large Biased Sample is Still Biased

A typical sample is much smaller than the entire population it is drawn from.
Even then, as long as the sampling was done appropriately, a sample of
moderate size can be representative of the population. By contrast, a biased
sample is, by definition, not representative of the population, and this is so
even if the sample is very large in size. We can thus state the following:

Large samples offer no protection against bias.
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Literary Digest Poll
An emblematic example of this is the Literary Digest poll on the occasion
of the 1936 US presidential election. The main contenders that year
were Franklin Roosevelt (D) and Alf Landon (R). The Literary Digest
(a US magazine at the time) mailed 10 million questionnaires resulting
in 2.3 million returned. The poll predicted an overwhelming victory for
Landon, with about 57% of the respondents in his favor. On election day,
however, Roosevelt won by a landslide with 62% of the vote.47

Problem 11.5 That year, about 44.5 million people voted. Suppose, for a
moment, that the sample collected by the Literary Digest was unbiased. If
so, as in Problem 8.21, derive a typical range for the proportion favoring
Roosevelt in such a poll.

What happened? For one thing, the response rate (about 23%) was rather
small, so that any non-response bias could be substantial. Also, and perhaps
more importantly, the sampling favored more affluent people. Indeed, the
list of recipients was compiled from a variety of sources, including car and
telephone owners, club memberships, and the magazine’s readers, and, in
the 1930s, a person on that list would likely be more affluent (and therefore
more supportive of the Republican candidate) than the typical voter.

By comparison, George Gallup – who went on to found the renown
Gallup polling company – accurately predicted the result of the election
with a sample of size 50000. In fact, modern polls are typically even smaller,
based on samples of size in the few thousands.

The moral of this story is that a smaller, but less biased sample may be
preferable to a larger, but more biased sample. (This statement assumes that
there is no possibility of correcting for the bias.) The story itself is worth
reading in more detail, for example, in [66, 191, 176].

11.1.5 Examples of Sampling Plans

The following sampling designs are typically used for reasons of efficiency,
cost, or (limited) resources.

• Systematic sampling An example of such a sampling plan would be,
in the context of an election poll conducted in a residential suburb,
to interview every tenth household. Here one relies implicitly on the
assumption that the residents are distributed – within the suburb – in a
way that is independent of the question of interest.

47 The numbers are taken from [66]. They are a little bit different in [176].
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• Cluster sampling An example of such a sampling plan would be, in the
same context, to interview every household on several blocks chosen in
some random fashion among all blocks in the suburb. For a two-stage
variant, households could be sampled at random within each selected
block. (This is an example of multi-stage sampling.)

• Network sampling An example of that would be, in the context of
surveying a population of drug addicts, to ask a person all the addicts
he knows, which are then interviewed in turn, or otherwise observed
or counted. This type of sampling is indeed popular when surveying
hard-to-reach populations. There are many variants, known under various
names such as chain-referral sampling, respondent-driven sampling, or
snowball sampling. These are related to web crawls performed in the
World Wide Web. Some of these designs may be considered to be of
convenience, particularly when they do not involve randomization.

The following sampling design is meant to improve on simple random
sampling.

• Stratified sampling An example would be, in the context of estimating
the average household income in a city, to divide the city into socio-
economic neighborhoods (which play the role of strata here and would
have to be known in advance) and then sample at random housing units
in each neighborhood. In general, stratified sampling improves on simple
random sampling when the strata are more homogeneous in terms of the
quantity or characteristic of interest.

Remark 11.6 (Post-stratification) A stratification is sometimes done after
collecting the sample. This can be used, in some circumstances, to correct a
possible bias in the sample.

Example 11.7 (Polling gamers) For an example of post-stratification,
consider the polling scheme described in [200]. Quoting from the text, this
was “an opt-in poll which was available continuously on the Xbox gaming
platform during the 45 days preceding the 2012 US presidential election.
Each day, three to five questions were posted, one of which gauged voter
intention. [...] The respondents were allowed to answer at most once per day.
The first time they participated in an Xbox poll, respondents were also asked
to provide basic demographic information about themselves, including their
sex, race, age, education, state [of residence], party [affiliation], political
ideology, and who they voted for in the 2008 presidential election”.

The survey resulted in a very large sample. However, as the authors warn,
“the pool of Xbox respondents is far from being representative of the voting
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population”. An (apparently successful) attempt to correct for this bias was
made using post-stratification based on the side information collected on
each respondent. In the authors’ own words, “the central idea is to partition
the data into thousands of demographic cells, estimate voter intent at the
cell level [...], and finally aggregate the cell-level estimates in accordance
with the target population’s demographic composition”.

11.2 Experimental Design

To consult the statistician after an experiment is finished is often merely to
ask him to conduct a post mortem examination. He can perhaps say what
the experiment died of.

Ronald A. Fisher

An experiment is designed with a particular purpose in mind. An example
is that of comparing treatments for a certain medical condition. Another
example is that of comparing NPK fertilizer mixtures to optimize the yield
of a certain crop.

In this section, we present some essential elements of Experimental
Design and describe some classical designs. For a book-length exposition,
we recommend the book by Oehlert [139].

A good design follows some fundamental principles proven to lead
to correct analyses (avoiding systematic bias) with good power (due to
increased precision). Some of these principles include

• Randomization To avoid systematic bias.
• Replication To increase power.
• Blocking To better control variation.

Importantly, the design needs to be chosen with care before the collection
of data starts.

11.2.1 Setting

The setting of an experiment consists of experimental units, a set of
treatments assigned to the experimental units, and the response(s) measured
on the experimental units. For example, in a medical experiment comparing
two or more treatments for a certain disease, the experimental units are
the human subjects and the response is a measure of the severity of the
symptoms associated with the disease. (Such an experiment is often referred
to as a clinical trial.) In an agricultural experiment where several fertilizer
mixtures are compared in terms of yield for a certain crop, the experimental
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units may be the plots of land, the treatments are the fertilizer mixtures, and
the response is the yield. (The plants may be referred to as measurement
units.)

The way the experimental units are chosen, the way the treatments are
assigned to the experimental units, and the way the response is measured,
are all part of the design.

There may be several (real-valued) response measurements that are
collected in a single experiment. Even then, there is typically one primary
response, the other responses being secondary, and the primary response
needs to be specified at the design stage, before the collection of data starts,
to steer the subsequent analysis clear of a Texas Sharpshooter Fallacy. We
will focus on the primary response (henceforth simply called ‘response’).

Although it is not part of the design itself, the method of analysis should
also be decided beforehand, as failure to do so may result in a biased
analysis [169, 76].

11.2.2 Enrollment/Sampling

The inference drawn from the experiment (e.g., ‘treatment A shows a
statistically significant improvement over treatment B’) applies, strictly
speaking, to the experimental units themselves. For the inference to apply
more broadly – which is typically desired – additional conditions on the
design need to be fulfilled in addition to randomization (Section 11.2.4).

For example, in biomedical research, a clinical trial is typically set up
to compare the efficacy of two or more treatments for a particular disease
or set of symptoms. Human subjects are enrolled in the trial and their
response to one (or several) of the treatment(s) is recorded. Based on
this limited information, the goal is often to draw conclusions on the
relative effectiveness of the treatments when given to members of a certain
population. (This is invariably true of clinical trials for drug development.)
For this to be possible, as we saw in Section 11.1, the sample of subjects in
the trial needs to be representative of the population.

Example 11.8 (Psychology experiments on campuses) Psychology exper-
iments carried out on academic campuses have been criticized on that
basis, due to the fact that the experiments are often conducted on volunteer,
and often paid, students while the conclusions are, at least implicitly,
supposed to generalize to a much larger population under different
circumstances [164, 93]. Undeniably, such samples are used for convenience,
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and generalization to a larger population, although potentially valid, is far
from automatic.

11.2.3 Power Calculations

In addition to a protocol for enrolling subjects that will (hopefully) yield
a sample that is representative of the population of interest, the sample
size needs to be large enough that the experiment, properly conducted and
analyzed, would detect an effect (typically the difference in efficacy between
treatments) of a certain prescribed size if such an effect is present. The target
effect size is typically chosen based on scientific, societal, or commercial
importance. For instance, for an experiment comparing two treatments, the
investigators might want to calculate a minimum sample size n that would
enable them to detect a potential 10% difference in response between the
two treatments.

Such power calculations are important. Indeed, simply put, if the sample
size is too small to detect what would be considered an interesting or
important effect, then what is the point of conducting the experiment? The
issue is exacerbated by the fact that conducting an experiment typically
requires substantial resources. Not only could an underpowered study lead
to waste [26], it could effectively be unethical if it involves human or
animal subjects [87]. In addition, the multiplicity of small, and thus typically
underpowered studies can lead to misinformation [17, 127].

11.2.4 Randomization

Randomization consists in assigning treatments to experimental units
following a pre-specified random mechanism. This process is typically
performed on a computer. We have seen the central role that randomness
plays in survey sampling. The same is true in experimental design, where
randomization helps avoid systematic bias.

Confounding
Systematic bias may be due to confounding, which happens when the effect
of a factor (i.e., a characteristic of the experimental units) is related both to
the received treatment and to the measured response. This is particularly
problematic when the confounding factor is not measured as part of the data
being collected.
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Example 11.9 (Prostate cancer) It is routine for surgical patients with
prostate cancer to have their lymph nodes dissected for inspection. (This is
often called surgical staging.) If the nodes are found to be cancerous, it is
accepted that the disease has spread over the body and a prostatectomy (the
removal of the prostate) is not performed. Such staging is not part of other
approaches to prostate cancer such as radiotherapy and, as argued in [119],
can lead to a comparison that unfairly favors surgery. In such comparisons,
the survival time is often the response, and in the context of comparing the
effectiveness of surgery with, say, radiotherapy in prostate cancer, the grade
(i.e., severity) of the cancer is a likely confounder.

Randomization offers some protection against confounding, and for this
reason, an experiment where randomization is employed may enable causal
inference (Section 22.2).

Blinding
Just as in survey sampling where little or no freedom of decision is given
to the surveyor, randomization is done using a computer to prevent an
experimenter (a human administering the treatments) from introducing
bias. However, experimenters have been known to bias the results in other,
sometimes quite subtle ways. To minimize bias of any kind, the experimenter
is often blinded to the treatments.

In addition to that, in particular in experiments involving human subjects,
the subjects are blinded to the treatment they are receiving. This is done, for
example, to minimize non-compliance.

A clinical trial where both the experimenter and the subjects are blind
to the administered treatment is said to be double-blind. This is the gold
standard and has motivated the routine use of a placebo when no other
control is available.48 See [39] for a historical perspective.

Example 11.10 (Placebo effect) As a treatment is often costly and may
induce undesirable side effects, it is important that it perform better than a
placebo. As defined in [105], “placebo effects are improvements in patients’
symptoms that are attributable to their participation in the therapeutic

48 In fact, placebos are often the only control, even when a competing treatment is
available. Indeed, according to [177]: “The FDA requires developers of new treatments to
demonstrate that they are safe and effective in order to receive approval for market entry,
but the agency demands proof of superiority to existing products only when it is patently
unethical to withhold treatment from study patients, as in the cases of therapies for AIDS and
cancer. Many new drugs are approved on the basis of demonstrated superiority to placebo.
Even less is required for many new medical devices.”
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encounter, with its rituals, symbols, and interactions”. These effects can be
substantial. For example, as argued in [198], “for psychological disorders,
particularly depression, it has been shown that pill placebos are nearly as
effective as active medications”.

Example 11.11 (Sham surgery) A double-blind design is not always
possible. This is particularly true in surgery as, almost invariably, the
operating surgeon knows whether he is performing a real or a sham
procedure. For example, in [167], arthroscopic partial meniscectomy
(which amounts to trimming the meniscus) is compared with sham surgery
(which serves as placebo) to relieve symptoms attributed to meniscal tear.
(Incidentally, this is another example where the placebo is shown to be as
effective as the active procedure.)

To further avoid bias, this time at the level of the analysis, it is sometimes
recommended that the analyst also be blinded to the detailed results of the
experiments, for example, by anonymizing the treatments. This blinding is,
in principle, unnecessary if the analysis is decided before the experiment
starts.

Remark 11.12 (Keeping a trial blind) Humans are inquisitive creatures,
and in a long clinical trial – some lasting a decade or more – it can become
very tempting to guess what treatment is given to whom and which treatment
is most effective. It turns out that keeping a clinical trial blind is a nontrivial
aspect of its design [73, Ch 7].

11.2.5 Some Classical Designs

Completely Randomized Designs
A completely randomized design simply assigns the treatments at random
with the only constraint being on the treatment group sizes, which are
chosen beforehand. In detail, assume there are n experimental units and g
treatments. Suppose we decide that Treatment j is to be assigned to a total
of nj units, where n1 +⋯ + ng = n. Then n1 units are chosen uniformly at
random and given Treatment 1; n2 units are chosen uniformly at random
and given Treatment 2; etc. (The sampling is without replacement.)

Example 11.13 (Back pain) In [2], the efficacy of a device for managing
back pain is examined. In this randomized, double-blind trial, the treatment
consisted of six sessions of transcutaneous electrical nerve stimulation
(TENS) combined with mechanical pressure, while the placebo excluded
the electrical stimulation.
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Remark 11.14 (Balanced designs) To optimize the power of the subsequent
analysis, it is usually preferable that the design be balanced as much as
possible, meaning that the treatment group sizes be as close to equal as
possible. In a perfectly balanced design, r ∶= n/g is an integer representing
the number of units per treatment group.

Remark 11.15 (Sequential designs) Sequential designs are employed in
clinical trials where subjects enter the trial over time. A simple variant
consists in assigning Treatment j with probability pj to a subject entering the
trial, where p1, . . . , pg are chosen beforehand. (A/B testing is the term most
often used in the tech industry: think of the administrator of some website
that wants to try different layout configurations to maximize revenue.)

Complete Block Designs
Blocking is used to reduce the variance. Blocks are defined with the goal of
forming more homogeneous groups of units. In its simplest variant, called
a randomized complete block design, each block is randomized as in a
completely randomized design, and the randomization is independent from
block to block. When there is at least one unit for each treatment within
each block, the design is complete.

In a balanced design, if there is exactly one unit within each block
assigned to each treatment, we have n = gb, where b denotes the number
of blocks. Further replication can be realized when, for example, each
experimental unit contains several measurement units.

Blocking is often done based on one or several characteristics (aka factors)
of the units. In clinical trials, common blocking variables include gender
and age group.

Example 11.16 (Carbon sequestration) A randomized complete block
design is used in [122] to study the effects of different cultural practices on
carbon sequestration in soil planted with switchgrass.

Incomplete Block Designs
These are designs that involve blocking but in which the blocks have fewer
units than treatments. The simplest variant is the balanced incomplete
block design. Suppose, as before, that there are g treatments and that n
experimental units are available for the experiments, and let b denote the
number of blocks. Such a design is structured so that each block has the
same number of units (say k) and each treatment is assigned to the same
number of units (say r). This is referred to as first-order balance and requires
n = kb = gr, while second-order balance refers to each pair of treatments
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appearing together in the same number of blocks (say λ) and requires that
λ ∶= r(k − 1)/(g − 1). See Table 11.2 for an illustration.

Table 11.2 Example of a balanced incomplete block design with
g = 5 treatments (labeled A, B, C, D, E), b = 5 blocks each with
k = 4 units, r = 4 replicates per treatment, resulting in each pair
of treatments appearing together in λ = 3 blocks.

Block 1 C A D B
Block 2 A E B C
Block 3 B D E C
Block 4 E C A D
Block 5 B D E A

Split Plots
As the name indicates, this design comes from agricultural experiments
and is useful in situations where a factor is ‘hard to vary’. To paraphrase
an example given in [139], suppose that some land is available for an
experiment meant to compare the productivity of several varieties of rice. We
want to control the effect of irrigation and consider 2 levels of irrigation, say
‘high’ and ‘low’. Irrigation may be hard and/or costly to control spatially. An
option is to consider plots (called whole plots) that are sufficiently separated
so that their irrigation can be done independently of one another. These
plots are then subdivided into subplots (called split plots), each planted with
one of the varieties of rice under consideration. In such a design, irrigation
is randomized at the whole plot level, while seed variety is randomized at
the split plot level within each whole plot.

Group Testing
Robert Dorfman [51] proposed an experimental design during World War II
to minimize the number of blood tests required to test for syphilis in soldiers.
His idea was to test blood samples from a number of soldiers simultaneously,
repeating the process a few times. Group testing has been used in many
other settings including quality control in product manufacturing and cDNA
library screening.

More generally, consider a setting where we are testing n individuals for
a disease based on blood samples. We consider the case where the design
is set beforehand, as opposed to sequential. In that case, the design can be
represented by an n-by-t binary matrix X = (xi, j) where xi, j = 1 if blood
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from the ith individual is in the jth testing pool, and xi, j = 0 otherwise. In
particular, t denotes the total number of testing pools. The result of each test
is either positive ⊕ or negative ⊖. We assume for simplicity that the test is
perfectly accurate in that it comes up positive when applied to a testing pool
if and only if the pool includes the blood sample of at least one affected
individual.

The design is d-disjunct if the sum of any of its d rows does not contain
any other row [53], where in the present context we say that a row vector
u = (uj) contains a row vector v = (v j) if uj ≥ v j for all j.

Problem 11.17 If the design is d-disjunct, and there are at most d diseased
individuals in total, then each non-diseased individual will appear in at least
one pool with no diseased individual. Deduce from this property a simple
procedure for identifying the diseased individuals.

Thus, a design that is d-disjunct allows the experimenter to identify
the diseased individuals as long as there are at most d of them. Note that
this property is sufficient for that, but not necessary, although it offers the
advantage of a particularly simple identification procedure.

A number of ways have been proposed for constructing disjunct designs,
the goal being to achieve a d-disjunct design with a minimum number of
testing pools t for a given number of subjects n. (There is a parallel with
the construction of codes in the area of Information Theory.) We content
ourselves with constructions that rely on randomness. In the simplest such
construction, the elements of the design matrix, meaning the xi, j, are the
realization of iid Ber(p) random variables.

Proposition 11.18. The probability that a Bernoulli n-by-t design with
parameter p is d-disjunct is at least

1 − (d + 1)( n
d + 1

)[1 − p(1 − p)d]t
.

The proof is elementary and relies on the union bound [53, Thm 8.1.3].

Problem 11.19 For which value of p is the design most likely to be d-
disjunct? For that value of p, deduce that there is a numeric constant C0

such that this random group design is d-disjunct with probability at least
1 − δ when

t ≥ C0[d2 log(n/d) + d log(d/δ)].
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Repeated Measures
This is a type of design that is commonly used in longitudinal studies. For
example, some human subjects are ‘followed’ over time to better understand
how a certain condition evolves depending on a number of factors.

Example 11.20 (Neck pain) In [21], 191 patients with chronic neck pain
were randomized to one of 3 treatments: (A) spinal manipulation combined
with rehabilitative neck exercise, (B) MedX rehabilitative neck exercise, or
(C) spinal manipulation alone. After 20 sessions, the patients were assessed
3, 6, and 12 months afterward for self-rated neck pain, neck disability,
functional health status, global improvement, satisfaction with care, and
medication use, as well as range of motion, muscle strength, and muscle
endurance.

Such a design looks like a split plot design, with subjects as whole plots
and the successive evaluations as split plots. The main difference is that
there is no randomization at the split plot level.

Crossover Design
In a clinical trial with a crossover design, each subject is given each one of
the treatments that are being compared. There is generally a washout period
between treatments in an attempt to isolate the effect of each treatment or,
said differently, to minimize the residual effect (aka carryover effect) of the
preceding treatment. In addition, the order in which a subject receives the
treatments needs to be randomized to avoid any systematic bias. First-order
balance further imposes that the number of subjects that receive treatment
X as their jth treatment not depend on X or j. When this is the case, the
design is called a Latin square design. See Table 11.3 for an illustration.
Second-order balance further imposes that each treatment follows every
other treatment an equal number of times.

Table 11.3 Example of a crossover design with 4 subjects, each
receiving 4 treatments in sequence based on a Latin square
design, with each treatment order appearing only once.

Subject 1 A B C D
Subject 2 C D A B
Subject 3 B D E C
Subject 4 D C B A
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Problem 11.21 Determine whether the design in Table 11.3 is second-order
balanced. If not, find such a design.

Example 11.22 (Medical cannabis) The study [57] evaluates the potential
of cannabis for pain management in 34 HIV patients suffering from
neuropathic pain in a crossover trial where the treatments being compared
are placebo (without THC) and active (with THC) cannabis cigarettes.

Example 11.23 (Gluten intolerance) The study [42] is on gluten intolerance.
It involves 61 adult subjects without celiac disease or any other (formally
diagnosed) wheat allergy, who nevertheless believe that ingesting gluten
causes them some digestive problems. The design is a crossover design
comparing rice starch (which serves as placebo) and actual gluten.

Matched-Pairs Design
In a study that adopts this design to compare 2 treatments, subjects that are
similar in key attributes (i.e., possible confounders) are matched and the
randomization to treatment happens within each pair. (Thus, this is a special
case of a complete block design where each pair forms a block.)

Example 11.24 (Cognitive therapy for PTSD) In the study [123], which
took place in Dresden, Germany, 42 motor vehicle accident survivors with
post-traumatic syndrome were recruited to be enrolled in a study designed
to examine the efficacy of cognitive behavioral treatment (CBT) protocols
and methods. Subjects were matched after an initial assessment and then
randomized to either CBT or control (which consisted of no treatment).

11.3 Observational Studies

Let us start with an example.

Example 11.25 (Role of anxiety in postoperative pain) In [104], 53 women
who underwent an hysterectomy where assessed for anxiety, coping style,
and perceived stress 2 weeks prior to the intervention. This was repeated
several times during the recovery period. Analgesic consumption and level
of perceived pain were also measured.

This study shares some of the attributes of a repeated measures design
or a crossover design, yet there was no randomization involved. Broadly
speaking, the ability to implement randomization is what distinguishes a
controlled experiment from an observational study.
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11.3.1 Why Observational Studies?

There is wide agreement that randomization should be a central part
of a study whenever possible, because it offers some protection against
confounding. As discussed in [171, 206, 145], there are quite a few examples
of observational studies that were later refuted by randomized trials.

However, there are situations where researchers resort to an observational
study. We follow Nick Black [16], who argues that experiments and
observational studies are complementary. Although conceding that clinical
trials are the gold standard, he says that “observational methods are needed
[when] experimentation [is] unnecessary, inappropriate, impossible, or
inadequate”.

• Experimentation may be unnecessary when the effect size is very large.
(Black cites, as an example, the effectiveness of penicillin for treating
bacterial infections.)

• Experimentation may be inappropriate in situations where the sample
size needed to detect a rare side effect of a drug, for example, far exceeds
the size of a feasible clinical trial. Another example is the detection of
long-term adverse effects, as this would require a study that exceeds in
length that of most typical clinical trials.

• Experimentation may be impossible for a number of reasons. One reason
could be ethics. For example, randomizing pregnant women to smoking
and non-smoking groups is not ethical in large part because we know
that smoking carries substantial negative effects for both the mother and
the fetus/baby. Another reason could be lack of control. For example,
randomizing US cities to a minimum wage of, say, $15 per hour versus
no minimum wage is difficult;49 similarly, increasing the levels of carbon
dioxide in the atmosphere to better understand the resulting effects on
climate is not an option.

• Experimentation may be inadequate when it comes to generalizing the
findings to a broader population and to how medicine is practiced in that
population on a day-to-day basis. While observational studies, almost by
definition, take stock of how medicine is practiced in real life, clinical
trials occur in more controlled settings, often take place in university
hospitals or clinics, and may attract particular types of subjects.

49 An example of large-scale experimentation with policy includes Finland’s Design for
Government project, and an experiment with the universal income in Canada [22]. In fact, the
2019 Nobel Prize in Economics was awarded jointly to Abhijit Banerjee, Esther Duflo, and
Michael Kremer, “for their experimental approach to alleviating global poverty”.
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Example 11.26 (Effects of smoking) In the study of how smoking affects
lung cancer and other ailments, for ethical reasons, researchers have had
to rely on observational studies and experiments on animals. These have
provided very strong circumstantial evidence that tobacco consumption
is associated with the onset and development of various pulmonary
and cardiovascular diseases. In the meantime, the Tobacco Industry has
insisted that these are only associations and that no causation has been
established [129]. (The story might be repeating itself with the consumption
of sugar [121].)

Example 11.27 (Human role in climate change) There is a parallel in the
question of climate change, which is another area where experimentation is
hardly possible. To determine the role of human activity in climate change,
scientists have had to rely on indirect evidence such as the known warming
effects of carbon dioxide, methane, and other ‘greenhouse’ gases, combined
with the fact that the increased presence of these gases in the atmosphere
is due to human activity. Scientists have also been able to rely computer
models. Here too, the sum total evidence is overwhelming, and scientific
consensus is essentially unanimous, yet the Fossil Fuel Industry still claims
that all this does not prove that human activity is a substantial contributor to
climate change [140].

11.3.2 Types of Observational Studies

Problem 11.28 In the examples given below, identify as many obstacles to
randomization as you can among the ones listed above, and possibly others.

Cohort Study
A cohort in this context is a group of individuals sharing one or several
characteristics of interest. For example, a birth cohort is made of subjects
that were born at about the same time.

Example 11.29 (Obesity in children) In the context of a large longitudinal
study, the Avon Longitudinal Study of Parents and Children, the goal of
researchers in [151] was to “identify risk factors in early life (up to 3 years
of age) for obesity in children (by age 7) in the United Kingdom”.

Another example would be people that smoke, that are then followed to
understand the implications of smoking, in which case another cohort of non-
smokers may be used to serve as control. In general, such a study follows
subjects with a certain condition with the goal of drawing associations with
particular outcomes.
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Example 11.30 (Head injuries) The study [188] followed almost 3000
individuals that were admitted to one of a number of hospitals in the Glasgow
area, Scotland, after a head injury. The stated goal was to “determine the
frequency of disability in young people and adults admitted to hospital with
a head injury and to estimate the annual incidence in the community”.

A matched-pairs cohort study50 is a variant where subjects are matched
and then followed as a cohort.

Example 11.31 (Helmet use in motorcycle crashes) The study [138] is
based on the “Fatality Analysis Reporting System data, from 1980 through
1998, for motorcycles that crashed with two riders and either the driver or
the passenger, or both, died”. Matching was by motorcycle. To quote the
authors of the study, “by estimating effects among naturally matched-pairs
on the same motorcycle, one can account for potential confounding by
motorcycle characteristics, crash characteristics, and other factors that may
influence the outcome”.

Case-Control Study
In a case-control study, subjects with a certain condition (typically a disease)
of interest are identified and included in the study to serve as cases. At the
same time, subjects not experiencing that condition (without the disease
or with the disease but of lower severity) are identified and included in the
study to serve as controls.

Example 11.32 (Lipoprotein(a) and coronary heart disease) [153] reports
on a study that involves a sample of men aged 50 at the start of the
study (therefore, a birth cohort) from Gothenburg, Sweden. At baseline,
a blood sample was taken from each subject and frozen. After six years,
the concentration of lipoprotein(a) was measured in men having suffered a
myocardial infarction or died of coronary heart disease. For each of these
men – which represent the cases in this study – four men were sampled
at random among the remaining ones to serve as controls and their blood
concentration of lipoprotein(a) was measured. The goal was to “examine the
association between the serum lipoprotein(a) concentration and subsequent
coronary heart disease”.

Example 11.33 (Venous thromboembolism and hormone replacement
therapy) Based on the General Practice Research Database (United
Kingdom), in [85], “a cohort of 347253 women aged 50 to 79 without
major risk factors for venous thromboembolism was identified. The cases

50 Compare with the randomized matched-pairs design.
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were the 292 women admitted to hospital for a first episode of pulmonary
embolism or deep venous thrombosis. The controls were 10000 women
randomly selected from the source cohort.” (The cohort here is a birth cohort
and not based on a particular risk factor.) The goal was to “evaluate the
association between use of hormone replacement therapy and the risk of
idiopathic venous thromboembolism”.

Remark 11.34 (Cohort vs case-control) A cohort study starts with a
possible risk factor (e.g., smoking) and aims at discovering the diseases it
is associated with. A case-control study, on the other hand, starts with the
disease and aims at discovering risk factors associated with it.51

Problem 11.35 (Rare diseases) A case-control study is often more suitable
when studying a rare disease, which would otherwise require following a
very large cohort. Consider a disease affecting 1 out of 100000 people in a
certain large population (many millions). How large would a sample need
to be in order to include 10 cases with probability at least 99%?

Cross-Sectional Study
While a cohort study and a xcase-control study both follow a certain
sample of subjects over time, a cross-sectional study examines a sample
of individuals at a specific point in time. In particular, associations are
comparatively harder to interpret in cross-sectional studies. The main
advantage is simply cost, as such studies can be based on data collected for
other purposes.

Example 11.36 (Green tea and heart disease) In [99], “1371 men aged over
40 years residing in Yoshimi [were] surveyed on their living habits including
daily consumption of green tea. Their peripheral blood samples were
subjected to several biochemical assays.” The goal was to “investigate the
association between consumption of green tea and various serum markers in
a Japanese population, with special reference to preventive effects of green
tea against cardiovascular disease and disorders of the liver.”

11.3.3 Matching

While in an observational study randomization cannot be purposely
implemented, a number of techniques have been proposed to at least
minimize the influence of other factors [30].

51 For an illustration, compare Figures 3.5 and 3.6 in [18].
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Matching is an umbrella name for a variety of techniques that aim at
matching cases with controls in order to have a treatment group and a control
group that look alike in important aspects. These important attributes are
typically chosen for their potential to affect the response under consideration,
that is, they are believed to be risk factors.

Example 11.37 (Effects of coaching on SAT) The study [144] attempted to
measure the effect of attending an SAT coaching program on the resulting
test score. (The paper focused on SAT I: Reasoning Test Scores.) These
programs are offered by commercial test preparation companies that claim
a certain level of success. The data were based on a survey of about
4000 SAT takers in 1995–96, where about 12% had attended a coaching
program. Besides the response (the SAT score itself), some 27 variables
were measured on each test taker, including coaching status (the main factor
of interest), racial and socioeconomic indicators (e.g., father’s education),
various measures of academic preparation (e.g., math grade), etc. The
intention, of course, was to isolate the effect of coaching from these other
factors, some of which are undoubtedly important. The authors applied a
number of techniques including a variant of matching. Other variants are
applied to the same data in [88].

The intention behind matching is to control for confounding by balancing
possible confounding factors with the intention of canceling out their
confounding effect. We formalize this in Section 22.2.3, where we show that
matching works under some conditions, the most important one being that
there are no unmeasured variables that confound the effect. The beauty (and
usefulness) of randomization is that it achieves this balancing automatically
(although only on average) without a priori knowledge of any confounding
variable. This is shown formally in Section 22.2.2.

11.3.4 Natural Experiments

As we mentioned above, and as will be detailed in Section 22.2, a proper use
of randomization allows for causal inference. However, randomization is
only possible in controlled experiments. In observational studies, matching
can allow for causal inference, but only if one can guarantee that there are
no confounders.

In general, the issue of drawing causal inferences from observational
studies is complex, and in fact remains controversial, so we will keep the
discussion simple and focused on the widely accepted view that causal
inference is possible in the context of a natural experiment [33, 112].
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In an observational study, treatment assignment is, by definition, out of the
control of the experimenter; yet, if it can be argued that it was nonetheless
done (by ‘Nature’) independently of the response to treatment, then the
conditions resemble those of a controlled experiment. Recognizing such a
natural experiment requires domain-specific expertise. (David Freedman
speaks of a ‘shoe leather’ approach to data analysis [68].)

Example 11.38 (Snow’s discovery of cholera) A classic example of a
natural experiment is the one uncovered and leveraged by John Snow
in nineteenth-century London to identify the source of a cholera epi-
demic [173]. (In the process, Snow discovered that cholera could be
transmitted by the consumption of contaminated water – a fact that may have
been unknown at the time.) The account is worth reading in more detail, but
in a nutshell, Snow suspected that the consumption of water had something
to do with the spread of cholera, and to confirm his hypothesis, he examined
the houses in London served by one of two water companies, Southwark &
Vauxhall and Lambeth, and found that the death rate in the houses served
by the former was several times higher. He then explained this by the fact
that, although both companies sourced their water from the River Thames,
Lambeth was taping the river upstream of the main sewage discharge points,
while Southwark & Vauxhall was getting its water downstream. Although
this is an observational study, a case for ‘natural’ randomization can be
argued, as Snow did: “Each company supplies both rich and poor, both large
houses and small; there is no difference either in the condition or occupation
of the persons receiving the water of the different Companies.”

Example 11.39 (The Oregon Experiment on Medicaid52) In 2008, the state
of Oregon in the US decided to expand a joint federal and state health
insurance program for people with low-income known as Medicaid. As
described in [20]: “Correctly anticipating excess demand for the available
new enrollment slots, the state conducted a lottery, randomly selecting
individuals from a list of those who signed up in early 2008. Lottery
winners and members of their households were able to apply for Medicaid.
Applicants who met the eligibility requirements were then enrolled in [the]
Oregon Health Plan Standard.” In the end, 29834 individuals won the lottery
out of 74922 individuals who participated. The participants, both winners
and losers of this lottery, have nevertheless been followed and compared on
various metrics (e.g., health care utilization).

52 https://www.nber.org/oregon/
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Natural experiments are relatively rare, but some situations have been
identified where they arise routinely. For example, in Genetics, pairs of twins
are sought after and examined to better understand how much a particular
behavior is due to ‘nature’ versus ‘nurture’.

Regression Discontinuity Design
This is an area of statistics specializing in situations where an intervention
is applied or not based on some sort of score being above or below some
threshold. If the threshold is arbitrary to some degree, it may be justifiable to
compare, in terms of outcome, cases with a score right above the threshold
with cases with a score right below the threshold.

Example 11.40 (Medicare) In the US, most people become eligible at age
65 to enroll in a federal health insurance program called Medicare. This has
led researchers, as in [24], to examine the effects of access to this program
on various health outcomes.

Example 11.41 (Elite secondary schools in Kenya) Students from elite
schools tend to perform better, but is this due to elite schools being truly
superior to other schools, or simply a result of attracting the best and
brightest students? This question is examined in [120] in the context of
secondary schools in Kenya, employing a regression discontinuity design
approach that takes advantage of “the random variation generated by the
centralized school admissions process”.

Remark 11.42 In a highly cited paper [95], Bradford Hill proposes nine
aspects to pay attention to when attempting to draw causal inferences from
observational studies. One of the main aspects is specificity, which is akin to
identifying a natural experiment. Another important aspect, when present, is
that of experimental evidence, which is akin to identifying a discontinuity.
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12

Models, Estimators, and Tests

A prototypical (although somewhat idealized) workflow in any scientific
investigation starts with the design of the experiment to probe a question or
hypothesis of interest. The experiment is modeled using several plausible
mechanisms. The experiment is conducted and the data are collected. These
data are finally analyzed to identify the most adequate mechanism – the one
among those considered that best ‘explains’ the data.

Although an experiment is supposed to be repeatable, this is not always
possible, particularly if the system under study is chaotic or random in
nature. When this is the case, the mechanisms above are expressed as
probability distributions. We then talk about probabilistic modeling, albeit
here there are several probability distributions under consideration. It is as if
we contemplate several probability experiments (in the sense of Chapter 1),
and the goal of statistical inference is to decide on the most plausible in
view of the collected data.

To illustrate the various concepts introduced in this chapter, we use
Bernoulli trials as our running example of an experiment. This includes, as
special case, an experiment where we sample with replacement from an
urn (Remark 2.17). Although basic, this model is relevant in a number of
important real-life situations (e.g., election polls, clinical trials, etc.). We
will study Bernoulli trials in more detail in Section 14.1.

12.1 Statistical Models

A statistical model for a given experiment is of the form (Ω,Σ,P), where
Ω is the sample space containing all possible outcomes, Σ is the class of
events of interest, and P is a family of distributions on Σ.53 Modeling the

53 Compare with a probability space, which only includes one distribution. A statistical
model includes several distributions to model situations where the mechanism driving the
experimental results is not perfectly known.
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experiment with (Ω,Σ,P) postulates that the outcome of the experiment
ω ∈ Ωwas generated from a distribution inP . The goal, then, is to determine
which distribution in P is most congruent with the observed data.

We follow the tradition of parameterizing the family P . This is natural
in some contexts and can always be done without loss of generality (since
any set can be parameterized by itself). By default, the parameter will be
denoted by θ and the parameter space (where θ belongs) by Θ, so that

P = {Pθ ∶ θ ∈ Θ}. (12.1)

Remark 12.1 (Identifiability) Unless otherwise specified, we will assume
that the model (12.1) is identifiable, meaning that the parameterization is
one-to-one, or in formula, Pθ ≠ Pθ′ when θ ≠ θ′.
Example 12.2 (Binomial experiment) Suppose we model an experiment
as a sequence of Bernoulli trials with probability parameter θ and
predetermined length n. This assumes that each trial results in one of two
possible values. Labeling these values as h and t, which we can always do
at least formally, the sample space is the set of all sequences of length n
with values in {h, t}, or in formula

Ω = {h, t}n.

(We already saw this in Example 1.8.) The statistical model also assumes that
the observed sequence was generated by one of the Bernoulli distributions,
namely

Pθ({ω}) = θY(ω)(1 − θ)n−Y(ω), (12.2)

where Y(ω) is the number of heads in ω. (We already saw that in (2.5).)
Therefore, the family of distributions under consideration is

P = {Pθ ∶ θ ∈ Θ}, where Θ ∶= [0,1].

Note that the dependency in n is left implicit as n is given and not a parameter
of the family. We call this a binomial experiment because of the central
role that Y plays and we know that Y has the binomial distribution with
parameters (n, θ).
Remark 12.3 (Correctness of the model) As is the custom, we will proceed
assuming that the model is correct, that indeed one of the distributions in
the family P generated the data. This depends, in large part, on how the
data were generated or collected (Chapter 11). For example, a (binary) poll
that successfully implements simple random sampling from a very large
population can be accurately modeled as a binomial experiment. When the
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model is correct, we will sometimes use θ∗ to denote the true value of the
parameter. In practice, a model is rarely strictly correct. When the model is
only approximate, the resulting inference will necessarily be approximate
also.

12.2 Statistics and Estimators

A statistic is a random variable on the sample space Ω. It is meant to
summarize the data in a way that is useful for the purpose of drawing
inferences from the data.

Let ϕ be a function defined on the parameter space Θ representing a
feature of interest (e.g., the mean). Note that ϕ is often used to denote ϕ(θ)
(a clear abuse of notation) when confusion is unlikely. We will adopt this
common practice. It is often the case that θ itself is the feature of interest, in
which case ϕ(θ) = θ.

An estimator for ϕ(θ) is a statistic, say S , chosen for the purpose of
approximating it. Note that while ϕ is defined on the parameter space (i.e.,
Θ), S is defined on the sample space (i.e., Ω).

Remark 12.4 The problem of estimating ϕ(θ) is well-defined if Pθ =
Pθ′ implies that ϕ(θ) = ϕ(θ′), which is always the case if the model is
identifiable.

Remark 12.5 (Estimators and estimates) By definition, an estimator is a
statistic. The value that an estimator takes in a given experiment is often
called an estimate. For example, if S is an estimator, and ω denotes the data,
then S (ω) is an estimate.

Desiderata A good estimator is one which returns an estimate that is ‘close’
to the quantity of interest.

12.2.1 Measures of Performance

Quantifying closeness is not completely trivial as we are talking about
estimators, whose output is random by definition. (An estimator is a function
of the data and the data are modeled as random.) We detail the situation
where we want to estimate a real-valued parameter ϕ(θ) in the context of a
parametric model {Pθ ∶ θ ∈ Θ}.
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Mean Squared Error
A popular measure of performance for an estimator S is the mean squared
error (MSE), defined as

mseθ(S ) ∶= Eθ [(S − ϕ(θ))2],

where Eθ denotes the expectation with respect to Pθ.
The MSE of S is closely related to its bias, defined as

Eθ(S ) − ϕ(θ), (12.3)

and its variance, Varθ(S ).
Problem 12.6 (Bias-variance decomposition) Show that

mseθ(S ) = (Eθ(S ) − ϕ(θ))2

12222222222222222222222222222222222222222223222222222222222222222222222222222222222224
squared bias

+Varθ(S )
1222222222223222222222224

variance

. (12.4)

Mean Absolute Error
Another popular measure of performance for an estimator S is the mean
absolute error (MAE), defined as

maeθ(S ) ∶= Eθ [∣S − ϕ(θ)∣].

Other Loss Functions
In general, let L(s, θ) be a function measuring the discrepancy between s
and ϕ(θ). This is called a loss function as it is meant to quantify the loss
incurred when the true parameter is ϕ(θ) and our estimate is s. A popular
choice is

L(s, θ) = ∣s − ϕ(θ)∣γ,

for some pre-specified γ > 0. This includes the MSE and the MAE as special
cases.

Risk
Having chosen a loss function we define the risk of an estimator as its
expected loss, which for a loss function L and an estimator S may be
expressed as

Rθ(S ) ∶= Eθ [L(S , θ)]. (12.5)

Remark 12.7 (Frequentist interpretation) Let θ denote the true value of the
parameter and let S denote an estimator. Suppose the experiment is repeated
independently m times and let ω j denote the outcome of the jth experiment.
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Compute the average loss over these m experiments, meaning

Lm ∶=
1
m

m

∑
j=1

L(S (ω j), θ).

By the Law of Large Numbers (which, as we saw, is at the core of the
frequentist interpretation of probability),

Lm
PI→ Rθ(S ), as m→∞.

12.2.2 Maximum Likelihood Estimator

As the name indicates, this estimator returns a distribution that maximizes,
among those in the family, the chances that the experiment would result in
the observed data. Assume that the statistical model is discrete in the sense
that the sample space is discrete. See Section 12.5.1 for other situations.

Denoting the data by ω ∈ Ω as before, the likelihood function is defined
as

lik(θ) = Pθ({ω}).

(Note that this function also depends on the data, but this dependency is
traditionally left implicit.) Assuming that, for all possible outcomes, this
function has a unique maximizer, the maximum likelihood estimator (MLE)
is defined as that maximizer. If the resulting estimate for θ is denoted θ̂, then
the corresponding estimate for ϕ(θ) is simply ϕ̂ ∶= ϕ(θ̂).
Remark 12.8 When the likelihood admits several maximizers, one of them
can be chosen according to some criterion.

Example 12.9 (Binomial experiment) In the setting of Example 12.2, the
MLE is found by maximizing the likelihood (12.2) with respect to θ ∈ [0, 1].
To simplify the expression a little bit, let y = Y(ω), which is the number
of heads in the sequence ω. We then have the following expression for the
likelihood

lik(θ) ∶= θy(1 − θ)n−y.

This is a polynomial in θ and therefore differentiable. To maximize the
likelihood we thus look for critical points. First assume that 1 ≤ y ≤ n − 1.
In that case, setting the derivative to 0, we obtain the equation

θy(1 − θ)n−y(y(1 − θ) − (n − y)θ) = 0.

The solutions are θ = 0, θ = 1, and θ = y/n. Since the likelihood is zero
at θ = 0 or θ = 1, and strictly positive at θ = y/n, we conclude that the
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maximizer is unique and equal to y/n. If y = 0, the likelihood is easily seen
to have a unique maximizer at θ = 0. If y = n, the likelihood is easily seen
to have a unique maximizer at θ = 1. Thus, in any case, the maximizer is
unique and given by y/n. We conclude that the MLE is well-defined and
equal to Y/n, that is, the proportion of heads in the data.

12.3 Confidence Intervals/Regions

An estimator, as presented above, provides a way to obtain an informed
guess (the estimate) for the true value of the parameter. In addition to that,
it is often quite useful to know how far we can expect the estimate to be
from the true value of the parameter.

When the parameter is real-valued, this is typically done via an interval
whose bounds are random variables. We say that such an interval, denoted
I(ω), is a (1 − α)-level confidence interval for ϕ(θ) if

Pθ(ϕ(θ) ∈ I) ≥ 1 − α, for all θ ∈ Θ. (12.6)

For example, α = 0.10 gives a 90% confidence interval. See Figure 12.1.
In some cases, in particular when the parameter of interest is multivariate,

the use of an interval may be too constraining or even inappropriate. In that
case, we talk of a confidence region. In particular, a (1−α)-level confidence
region for θ is a set-valued (measurable) function R such that

Pθ(θ ∈ R) ≥ 1 − α, for all θ ∈ Θ.

Although one can often directly construct a confidence interval (or region)
for ϕ(θ), it can also be derived from a confidence region for θ. Indeed,
suppose that R is a (1 − α)-level confidence region for θ. Then I ∶= ϕ(R)
(1 − α)-level confidence region for ϕ(θ).
Desiderata A good confidence interval is one that has the prescribed level
of confidence and is relatively short compared to other confidence intervals
having the same level of confidence.

Example 12.10 (Binomial experiment) Confidence intervals are often
constructed based on an estimator. We illustrate this in the context of
Example 12.2, where we construct a confidence interval for θ based on
the MLE, or equivalently, on the number of heads, controlling its deviations
using Chebyshev’s inequality (7.13). Indeed, because S has mean θ and
variance θ(1 − θ)/n under θ, the inequality gives

Pθ(∣S − θ∣ < c
√
θ(1 − θ)/n) ≥ 1 − 1/c2,
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Figure 12.1 An illustration of the concept of confidence interval. We consider a
binomial experiment with parameters n = 10 and θ = 0.3. We repeat the experiment
100 times, each time computing the Clopper–Pearson two-sided 90% confidence
interval for θ specified in (14.4). The vertical line is at the true value of θ.

for any c > 0 and any θ ∈ Θ. We will see in Problem 14.5 that the set of θ
such that ∣S − θ∣ < c

√
θ(1 − θ)/n is an interval for any given value of S (in

[0, 1]) and any c > 0x. And if we choose c = 1/
√
α, so that 1− 1/c2 = 1−α,

this (random) interval is a (1 − α)-level confidence interval for θ. Trading
accuracy for simplicity – so as to provide a more concrete construction –
we use the fact that θ(1 − θ) ≤ 1/4 for all θ ∈ [0,1] to derive the inequality

Pθ(∣S − θ∣ < c/(2
√

n)) ≥ 1 − 1/c2,

from which we conclude that

[S − 1
2
√
αn
,S + 1

2
√
αn
] (12.7)

is a (1 − α)-level confidence interval for θ.
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170 Models, Estimators, and Tests

12.4 Testing Statistical Hypotheses

Suppose we do not need to estimate a function of the parameter, but rather
only need to know whether the parameter value satisfies a given property.
In what follows, we take the default hypothesis, called the null hypothesis
and often denoted H0, to be that the parameter value satisfies the property.
Deciding whether the data are congruent with this hypothesis is called
testing the hypothesis.

Let Θ0 ⊂ Θ denote the subset of parameter values that satisfy the property.
We will call Θ0 the null set. The null hypothesis can be expressed as

H0 ∶ θ∗ ∈ Θ0.

(Recall that θ∗ denotes the true value of the parameter, assuming the
statistical model is correct.) The complement of Θ0 in Θ,

Θ1 ∶= Θ ∖Θ0, (12.8)

is often called the alternative set, and

H1 ∶ θ∗ ∈ Θ1

is often called the alternative hypothesis.

Remark 12.11 A null hypothesis of the form ϕ∗ ∶= ϕ(θ∗) ∈ Φ0 can be
equivalently written as θ∗ ∈ Θ0, where Θ0 ∶= {θ ∶ ϕ(θ) ∈ Φ0} — although
the former null hypothesis can often be tackled directly without such a
reformulation.

Example (Binomial experiment) In the setting of Example 12.2, we may
want to know whether the parameter value does not exceed some given θ0.
This corresponds to testing the null hypothesis

H0 ∶ θ∗ ≤ θ0, (12.9)

which corresponds to the following null set

Θ0 = {θ ∈ [0,1] ∶ θ ≤ θ0} = [0, θ0].

12.4.1 Test Statistics

A test statistic is used to decide whether the null hypothesis is reasonable. If,
based on a chosen test statistic, the hypothesis is found to be ‘substantially
incompatible’ with the data, it is rejected.

Although the goal may not be that of estimation, good estimators typically
make good test statistics. Indeed, given an estimator S for θ, one could think
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of rejecting H0 when S (ω) ∉ Θ0. Tempting as it is, this is typically too
harsh, as it does not properly account for the randomness in the estimator.
Instead, it is generally better to reject H0 if S (ω) is ‘far enough’ from Θ0.

Desiderata A good test statistic is one that behaves differently according
to whether the null hypothesis is true or not.

Example (Binomial experiment) Consider the problem of testing the
hypothesis H0 of (12.9). As a test statistic, let us use the maximum
likelihood estimator, S ∶= Y/n. In that case, it is tempting to reject H0

when S > θ0. However, doing so would lead us to reject by mistake quite
often if θ∗ is in the null set yet close to the alternative set: in the most
extreme case where θ∗ = θ0, the probability of rejection approaches 1/2 as
the sample size n increases.

Problem 12.12 Prove the last claim using the Central Limit Theorem. Then
examine the situation where θ∗ < θ0.

Remark 12.13 (Equivalent test statistics) We say that two test statistics,
S and T , are equivalent if there is a strictly monotone function g such
that T = g(S ). Clearly, equivalent statistics provide the same amount of
evidence against the null hypothesis, since we can recover one from the
other.

12.4.2 Likelihood Ratio

The likelihood ratio (LR) is to hypothesis testing what the MLE is to
parameter estimation. It presents a general procedure for deriving a test
statistic. In the setting of Section 12.2.2, having observed ω, the LR is
defined as54

maxθ∈Θ1 lik(θ)
maxθ∈Θ0 lik(θ) .

By construction, a large value of that statistic provides evidence against the
null hypothesis.

Remark 12.14 (Variants) The LR is sometimes defined differently, for
example,

maxθ∈Θ lik(θ)
maxθ∈Θ0 lik(θ) . (12.10)

54 The same statistic is sometimes referred to as the generalized likelihood ratio (GLR).
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172 Models, Estimators, and Tests

or its inverse (in which case small values of the statistic weigh against
the null hypothesis). However, all these variants are strictly monotonic
functions of each other and are therefore equivalent for testing purposes
(Remark 12.13).

Example (Binomial experiment) Consider the problem of testing the
hypothesis H0 of (12.9). Recall the MLE is S ∶= Y/n. With y = Y(ω)
and θ̂ ∶= y/n (which is the estimate), we compute

max
θ≤θ0

lik(θ) = max
θ≤θ0
θy(1 − θ)n−y

= min(θ̂, θ0)y(1 −min(θ̂, θ0))n−y,

and

max
θ∈[0,1]

lik(θ) = max
θ∈[0,1]

θy(1 − θ)n−y

= θ̂y(1 − θ̂)n−y.

Hence, the variant (12.10) of the LR is equal to 1 (the minimum possible
value) if θ̂ ≤ θ0, and

( θ̂
θ0
)

y

( 1 − θ̂
1 − θ0

)
n−y

,

otherwise. Taking the logarithm and multiplying by 1/n yields an equivalent
statistic equal to 0 if θ̂ ≤ θ0, and

θ̂ log( θ̂
θ0
) + (1 − θ̂) log( 1 − θ̂

1 − θ0
),

otherwise. Thus, the LR is a function of the MLE. However, this function
is monotone, but not strictly monotone, and therefore the MLE and the LR
are not equivalent test statistics. That said, they yield the same inference in
most cases of interest (Problem 12.17).

12.4.3 P-Values

Given a test statistic, we need to decide what values of the statistic provide
evidence against the null hypothesis. In other words, we need to decide
what values of the statistic are ‘unusual’ or ‘extreme’ under the null, in the
sense of being unlikely if the null (hypothesis) were true.

Suppose we decide that large values of a test statistic S are evidence that
the null is not true. Let ω denote the observed data and let s = S (ω) denote
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the observed value of the statistic. In this context, we define the p-value as

pvS (s) ∶= sup
θ∈Θ0

Pθ(S ≥ s). (12.11)

To be sure, Pθ(S ≥ s) is shorthand for Pθ({ω′ ∶ S (ω′) ≥ S (ω)}).
In words, the right-hand side in (12.11) is the supremum probability under

any null distribution of observing a value of the test statistic as extreme
as the observed value. Thus a a small p-value is evidence that the null
hypothesis is false.

Note that a p-value is associated with a particular test statistic: different
test statistics lead to different p-values, in general.

Remark 12.15 (Replication interpretation of the p-value) The definition
itself leads us to believe that replications are needed to compute the p-value.
Such replications may be out of the question, however. In many cases,
the experiment has been performed and the data have been collected, and
inference needs to be performed based on these data alone. This is where
assuming a model is crucial. Indeed, if we are able to derive (or approximate)
the distribution of the test statistic under any null distribution, then we can
compute (or approximate) the p-value, at least in principle, without having
to repeat the experiment.

Proposition 12.16 (Monotone transformation). Consider a test statistic S
such that large values of S provide evidence against the null hypothesis. Let
g be strictly increasing (resp. decreasing). Then large (resp. small) values of
g(S ) provide evidence against the null hypothesis and the resulting p-value
is equal to that based on S .

Proof Suppose, for instance, that g is strictly increasing and let T = g(S ).
Suppose that the experiment resulted in ω. Then S is observed to be s ∶=
S (ω) and T is observed to be t ∶= T(ω). Noting that t = g(s), for any
possible outcome ω′, we have

T(ω′) ≥ t ⇔ g(S (ω′)) ≥ g(s) ⇔ S (ω′) ≥ s.

From this we obtain pvT(t) = pvS (s), which proves the result. �

Example (Binomial experiment) Consider testing the hypothesis H0 of
(12.9). As a test statistic, we use the MLE, or equivalently, Y , with large
values of Y weighing against H0. If the data are ω, y ∶= Y(ω) is the observed
value of the test statistic, and the resulting p-value is supθ≤θ0 Pθ(Y ≥ y). By
Problem 4.24, this supremum is equal to Pθ0(Y ≥ y), which can be computed
by reference to Bin(n, θ0).
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174 Models, Estimators, and Tests

Problem 12.17 (Near equivalence of the MLE and LR) In Example 12.4.2,
we saw that the MLE and the LR were not, strictly speaking, equivalent.
Although they may yield different p-values, show that these coincide when
they are smaller than Pθ0(S ≥ θ0) (which is close to 0.5).

The p-value associated with a test statistic S is itself a statistic when seen
as the random variable ω↦ pvS (S (ω)). As such, it satisfies the following
important property.

Proposition 12.18. P ∶= pvS (S ) takes values in [0,1] and satisfies

sup
θ∈Θ0

Pθ(P ≤ α) ≤ α, for all α ∈ [0,1]. (12.12)

Proof Assume that α < 1, for otherwise there is nothing to prove, and
consider u ∈ (α,1). Let Fθ and F−θ denote the distribution function and
quantile function of S under θ, and let F̃θ be defined as in Problem 3.15.
Note that P = supθ∈Θ0

F̃θ(S ). Fix any θ in Θ0. Starting with the fact that
P ≥ F̃θ(S ), we have

Pθ(P ≤ α) ≤ Pθ(P < u) ≤ Pθ(F̃θ(S ) < u)
≤ Pθ(S > F−θ (1 − u))
= 1 − Fθ(F−θ (1 − u))
≤ 1 − (1 − u) = u.

In the second line we used the conclusions of Problem 3.15, and in the
fourth we used the conclusions of Problem 3.14. Since u > α and θ ∈ Θ0 are
arbitrary, the proof is complete. �

In general, we say that a random variable P is a valid p-value if
Proposition 12.18 applies.

12.4.4 Tests

A test statistic yields a p-value that is used to quantify the amount of
evidence in the data against the postulated null hypothesis. Sometimes,
though, the end goal is actual decision: ‘reject or not reject’ is the question.
Tests formalize such decisions.

Formally, a test is a statistic with values in {0,1}, returning 1 if the null
hypothesis is to be rejected and 0 otherwise. If large values of a test statistic
S provide evidence against the null, then a test based on S will be of the
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form

φ(ω) = {S (ω) > c}.

The event {S > c} is called the rejection region of the test. The threshold c
is typically referred to as the critical value.

Test Errors
When applying a test to data, two types of error are possible:

• A Type I error, or false positive, happens when the test rejects even
though the null hypothesis is true.

• A Type II error, or false negative, happens when the test does not reject
even though the null hypothesis is false.

Table 12.1 illustrates the situation.

Table 12.1 Types of error that a test can make.

Null is true Null is false

Rejection type I correct
No rejection correct type II

For a test that rejects for large values of a statistic, the choice of critical
value drives the probabilities of Type I and Type II errors. Qualitatively
speaking, increasing the critical value makes the test reject less often, which
decreases the probability of Type I error and increases the probability of
Type II error. Of course, decreasing the critical value has the opposite effect.

12.4.5 Level

The size of a test φ is the maximum probability of Type I error,

size(φ) ∶= sup
θ∈Θ0

Pθ(φ = 1).

Let α ∈ [0,1] denote the desired control on the probability of Type I error,
called the significance level. A test φ is said to have level α if its size is
bounded by α,

size(φ) ≤ α.
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176 Models, Estimators, and Tests

Given a test statistic S whose large values weigh against the null
hypothesis, the corresponding test has level α if the critical value c satisfies

sup
θ∈Θ0

Pθ(S > c) ≤ α.

In order to minimize the probability of Type II error, we want to choose the
smallest c that satisfies this requirement. This smallest c exist due to the
fact that, for any θ, c↦ Pθ(S > c) is lower semi-continuous (Problem 3.13)
and the supremum of lower semi-continuous functions is itself lower semi-
continuous. Let cα denote that value, so that the resulting test has rejection
region {S > cα}. This rejection region may be equivalently expressed
directly in terms of the associated p-value.

Problem 12.19 Show that {S > cα} = {pvS (S ) ≤ α}.
In any case, if P is a valid p-value, then in view of Proposition 12.18, the

test with rejection region {P ≤ α} has level α.

Example (Binomial experiment) Continuing with the same setting, and
recalling that we use as test statistic the number of heads, Y , and that we
reject for large values of that statistic, the critical value at level α is given by

cα = min{c ∶ supθ≤θ0 Pθ(Y > c) ≤ α}
= min{c ∶ infθ≤θ0 Pθ(Y ≤ c) ≥ 1 − α}
= min{c ∶ Pθ0(Y ≤ c) ≥ 1 − α},

using the conclusions of Problem 4.24 at the end. Therefore, in view of
(3.9), cα is the (1 − α)-quantile of Bin(n, θ0).

Controlling the level is equivalent to controlling the number of false
alarms, which is crucial in applications.

Example 12.20 (Security at Y-12) We learn in [162] that, in 2012, three
activists (including an 82-year-old nun) broke into the Y-12 National
Security Complex in Oak Ridge, Tennessee. “Y-12 is the only industrial
complex in the United States devoted to the fabrication and storage of
weapons-grade uranium. Every nuclear warhead and bomb in the American
arsenal contains uranium from Y-12.” This is a highly guarded complex and
the activists did set up an alarm, but there were several hundred false alarms
per month. ([207] claims there were upward of 2000 alarms per day.) This
reminds one of the allegory of The Boy Who Cried Wolf.
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12.4.6 Power

The power of a test φ at θ ∈ Θ is

pwrφ(θ) ∶= Pθ(φ = 1).

If the test is of the form φ = {S > c}, then

pwrφ(θ) = Pθ(S > c).

Remark 12.21 The test φ has level α if and only if

pwrφ(θ) ≤ α, for all θ ∈ Θ0.

Problem 12.22 (Binomial experiment) Consider the problem of testing the
hypothesis H0 of (12.9) and continue to use the test derived from Y . Set the
level at α = 0.01 and, in R, plot the power as a function of θ ∈ [0,1]. Do
this for n ∈ {10,20,50,100,200,500,1000}. Repeat, now setting the level
at α = 0.10 instead.

Desiderata A good test has large power against alternatives of interest
when compared to other tests at the same significance level.

12.4.7 From Confidence Regions to Tests and Back

There is an important equivalence between confidence regions and tests of
hypotheses. We focus our attention on the parameter θ itself.

A Confidence Region gives a Test
Suppose that I is a (1−α)-confidence region for θ. Define φ = {Θ0 ∩ I = ∅},
which is clearly a test. Moreover, it has level α. To see this, take θ ∈ Θ0 and
derive

φ = 1 ⇔ Θ0 ∩ I = ∅ ⇒ θ ∉ I,

so that

Pθ(φ = 1) ≤ Pθ(θ ∉ I) ≤ α,

where the last inequality is due to the fact that I is a (1 − α)-confidence
region for θ.

A Family of Confidence Regions gives a P-Value
Consider a family of confidence regions for θ, which are denoted {Iγ ∶ γ ∈
[0,1]}, such that Iγ has confidence level γ and Iγ ⊂ Iγ′ when γ ≤ γ′. Then
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define

P ∶= sup{α ∶ Θ0 ∩ I1−α ≠ ∅}.

Note that this is a random variable with values in [0,1].

Proposition 12.23. This quantity is a valid p-value in the sense that it
satisfies (12.12).

Proof Take any θ ∈ Θ0 and any α ∈ [0,1]. We need to prove that

Pθ(P ≤ α) ≤ α. (12.13)

By definition of P, we have Θ0 ∩ I1−u = ∅ for any u > P. In particular, for
any u > α,

Pθ(P ≤ α) ≤ Pθ(Θ0 ∩ I1−u = ∅)
≤ Pθ(θ ∉ I1−u)
≤ 1 − (1 − u) = u,

using at the very end the fact that I1−u is a (1 − u)-confidence region for θ.
The above being true for all u > α, we obtain (12.13). �

A Family of Tests gives a Confidence Region
For each θ ∈ Θ, suppose we have available a level-α test denoted φθ, for the
null hypothesis that θ∗ = θ. Thus, φθ is testing the null hypothesis that the
true value of the parameter is θ. Define

I(ω) = {θ ∶ φθ(ω) = 0}, (12.14)

which is the set of θ whose associated test does not reject. Then I is a
(1−α)-confidence region for θ, meaning it satisfies (12.6). To see that, take
any θ ∈ Θ. By definition of I and the fact that each φθ has level α, we get

Pθ(θ ∉ I) = Pθ(φθ = 1) ≤ α.

Example (Binomial experiment) We continue to use Y as the test statistic.
In line with how we tested (12.9), let φθ denote the level-α test based on
Y for testing the null hypothesis that θ∗ ≤ θ. Note that φθ is also level
α for testing θ∗ = θ. Let Fθ and F−θ denote the distribution and quantile
functions of Bin(n, θ). We saw that φθ = {Y > F−θ (1 − α)}, which implies
that I = {θ ∶ Y ≤ F−θ (1 − α)}. Define

S ∶= inf{θ ∶ Y ≤ F−θ (1 − α)}.
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Note that S is a random variable through Y . Using the conclusions of
Problem 4.26, we conclude that

I = (S ,1]. (12.15)

Problem 12.24 (Binomial one-sided confidence interval) Write an R
function that computes this interval based on y and α as inputs. A simple grid
search works: at each θ in a grid of values, one checks whether y ≤ F−θ (1−α).
However, taking advantage of the monotonicity established in Problem 4.26,
a bisection search is applicable, which is much more efficient.

12.5 Further Topics

12.5.1 Likelihood Methods when the Model is Continuous

In our exposition of likelihood methods – ML estimation and likelihood
ratio testing – we have assumed that the statistical model was discrete in the
sense that the sample space Ω was discrete.

Consider the common situation where the experiment results in a d-
dimensional random vector X(ω) and that our inference is based on that
random vector. Assume that X has an absolute continuous distribution and
let fθ denote its density under Pθ.

The likelihood methods are defined as before with the density replacing
the mass function. This is (at least morally) justified by the fact that, in
a continuous setting, a density plays the role of a mass function. In more
detail, letting x = X(ω), the likelihood function is now defined as

lik(θ) ∶= fθ(x).

Based on this new definition of the likelihood, the MLE and the LR are
defined as they were before.

12.5.2 Two-Sided P-Value

It is sometimes the case that large and small values of a test statistic
provide evidence against the null hypothesis. For example, in the binomial
experiment of Example 12.2, consider testing

H0 ∶ θ∗ = θ0.

Problem 12.25 Show that the LR is an increasing function of

θ̂ log( θ̂
θ0
) + (1 − θ̂) log( 1 − θ̂

1 − θ0
),
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where θ̂ denotes the maximum likelihood estimate as in Example 12.4.2.

Thus, the application of the LR procedure is as straightforward as it was
in the one-sided situation considered earlier. In particular, the corresponding
test rejects for large values of the LR and the associated p-value is computed
based on the distribution of the LR under Pθ0 .

However, let’s look directly at the MLE. A situation in which θ̂ is quite
large, or if it is quite small, compared to θ0, provides evidence against the
null hypothesis. In such a situation, the p-value can be defined in a number
of ways. A choice is twice the minimum of the two one-sided p-values,
namely

2 min{Pθ0(Y ≥ y),Pθ0(Y ≤ y)},

where Y is the total number of heads in the sequence and y = Y(ω) is the
observed value of Y , as before.

Problem 12.26 Compare this p-value with the p-value resulting from using
the LR. [They are distinct, in general.]

12.6 Additional Problems

Problem 12.27 (German Tank Problem) Suppose we have an iid sample
from the uniform distribution on {1, . . . , θ}, where θ ∈ N is unknown. Derive
the MLE for θ. [The name of the problem comes from World War II, where
the Western Allies wanted to estimate the total number of German tanks
in operation (θ here) based on the serial numbers of captured or destroyed
German tanks. In such a setting, is the assumption of iid-ness reasonable?]

Problem 12.28 (Gosset’s experiment) Fit a Poisson model to the data of
Table 4.1 by maximum likelihood. Add a row to the table to display the
corresponding expected counts so as to easily compare them with the actual
counts. In R, do this visually by drawing side-by-side bar plots with different
colors and a legend.

Problem 12.29 (Rutherford’s experiment) Same as in Problem 12.28, but
with the data of Table 4.2.
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13

Properties of Estimators and Tests

In this chapter, we introduce and briefly discuss some properties of
estimators and tests. This includes different notions of optimality, meaning,
different ways comparing methods addressing the same statistical problem.

13.1 Sufficiency

We have referred to the setting of Example 12.2 as a binomial experiment.
The main reason is that the binomial distribution is at the very center of the
resulting statistical inference. This was a consequence of us relying on the
number of heads, Y , which has the binomial distribution with parameters
(n, θ). Surely, we could have based our inference on a different statistic.
However, there is a fundamental reason that inference should be based on Y:
because Y contains all the information about θ that we can extract from the
experiment. This is rather intuitive because, in going from the sequence of
tosses ω to the number of heads Y(ω), all that is lost is the position of the
heads in the sequence, that is, the order. But, because the tosses are assumed
iid, the order cannot provide any information on the parameter θ.

More formally, assume a statistical model {Pθ ∶ θ ∈ Θ}. We say that a
k-dimensional vector-valued statistic Y is sufficient for this family if

For any event A and any y ∈ Rk,
Pθ(A ∣ Y = y) does not depend on θ.

If Y = (Y1, . . . ,Yk), we say that the statistics Y1, . . . ,Yk are jointly sufficient.
Thus, intuitively, a statistic Y is sufficient if the randomness left after

conditioning on Y does not depend on the value of θ, so that this leftover
randomness cannot be used to improve the inference.

The following result provides what is arguably the most direct way to
establish that a statistic is sufficient.

181
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Theorem 13.1 (Factorization criterion). Consider a family of either mass
functions or densities, { fθ ∶ θ ∈ Θ}, over a sample space Ω. Then a statistic
Y is sufficient for this model if and only if there are functions {gθ ∶ θ ∈ Θ}
and h such that, for all θ ∈ Θ,

fθ(ω) = gθ(Y(ω))h(ω), for all ω ∈ Ω.

Problem 13.2 In the binomial experiment (Example 12.2), show that the
number of heads is sufficient.

Problem 13.3 In the German tank problem (Problem 12.27), show that the
maximum of the observed (serial) numbers is sufficient.

Problem 13.4 More generally, in the context of this theorem, show that the
maximum likelihood estimator for θ, assuming it exists, is a function of Y.

13.2 Consistency

The notion of consistency is best understood in an asymptotic model
where the sample size becomes large. This can be confusing, as in a given
experiment we only have access to a finite sample, which is fixed. We adopt
here a rather formal stance for the sake of clarity.

Consider an experiment which consists of multiple, otherwise identical
trials. If (Ωo,Σo,Po) models the result of a single trial, Po = {Po,θ ∶ θ ∈ Θ},
then an experiment consisting of n independent such trials is modeled by
(Ωn,Σn,Pn), whereΩn = Ωn

o, where Σn is the algebra generated by sets of the
form A1 ×⋯×An with Ai ∈ Σo, and where Pn is the family of distributions
of the form Pn,θ ∶= P⊗n

o,θ , which is the product distribution uniquely defined
by

P
⊗n
o,θ(A1 ×⋯×An) = Po,θ(A1) ×⋯ × Po,θ(An), for all Ai ∈ Σ.

Such an experiment results in an outcome of the form (ω1, . . . , ωn) with
ωi ∈ Ωo, that is, a sample of size n drawn iid from some Po,θ. A prototypical
example of this is the binomial experiment of Example 12.2.

A statistical procedure is a sequence of statistics, therefore of the form
S = (S n) with S n being a statistic defined on Ωn. An example of procedure
in the context of estimation is the maximum likelihood method. An example
of procedure in the context of testing is the likelihood ratio method.
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13.2.1 Consistent Estimators

We say that an procedure S = (S n) is consistent for estimating ϕ(θ) if, for
any ε > 0,

Pn,θ(∣S n − ϕ(θ)∣ ≥ ε) → 0, as n→∞.

Problem 13.5 (Binomial experiment) In Example 12.2, consider the task
of estimating the parameter ϕ(θ) = θ. Show that the maximum likelihood
method yields an estimation procedure that is consistent. [This is a simple
consequence of the Law of Large Numbers.]

In fact, the maximum likelihood estimator (MLE) is consistent under
fairly broad assumptions. Note that if the MLE for θ is well-defined and
consistent, the same must be true for the MLE for ϕ(θ) if ϕ is continuous.

Problem 13.6 Consider a multiple trial experiment where a single trial is
modeled by an identifiable family of mass functions { fθ ∶ θ ∈ Θ} on a finite
sample space Ω. Assume that Θ is a compact subset of some Euclidean
space; that fθ(ω) > 0 and that θ ↦ fθ(ω) is continuous, for all ω ∈ Ω. Prove
that the MLE for θ is well-defined and consistent.

Problem 13.7 (Population genetics) Consider a diploid population under
Hardy–Weinberg equilibrium. Thus, at any given locus with two possible
alleles denoted A and a with respective frequencies p and q, under random
mating the frequencies of the possible allele pairs AA, aa, and Aa are p2,
q2, and pq, respectively. Suppose that n individuals are sampled uniformly
at random from the population. For each one of these individuals the pair
of alleles at a given locus of interest is determined. Derive the MLE for the
proportions of AA, aa, and Aa in the population. [Take the population to be
infinite.]

Problem 13.8 (Beyond iid) We have focused on the iid setting, but
the question of consistency can be formalized in other settings. For an
example that resembles a binomial experiment but where the trials are not
independent, consider a two-state Markov chain as in Section 9.1.2. The
experiment consists in running such a chain for n steps starting at State 1.
Derive the MLE for the parameters defining the chain, and show that it is
consistent.

https://doi.org/10.1017/9781108779197.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781108779197.018


184 Properties of Estimators and Tests

13.2.2 Consistent Tests

We say that a procedure S = (S n) is consistent for testing H0 ∶ θ ∈ Θ0 if
there is a sequence of critical values (cn) such that

lim
n→∞
Pn,θ(S n ≥ cn) = 0, for all θ ∈ Θ0,

lim
n→∞
Pn,θ(S n ≥ cn) = 1, for all θ ∉ Θ0.

(We have implicitly assumed that large values of S n weigh against the null
hypothesis. This can be done without loss of generality.)

Problem 13.9 (Binomial experiment) In Example 12.2, consider the task
of testing H0 ∶ θ∗ ≤ θ0. Show that the likelihood ratio (LR) method yields a
procedure that is consistent for H0.

The likelihood ratio test (LRT) is also consistent under fairly broad
assumptions.

Problem 13.10 State and prove a consistency result for the LRT under
conditions similar to those in Problem 13.6.

Problem 13.11 In the context of Problem 13.8, derive the LRT for testing
the null hypothesis that the sequence of trials is iid, and show that the test is
consistent.

13.3 Notions of Optimality for Estimators

Given a loss function L, the risk of an estimator S for θ is defined in
(12.5). Obviously, the smaller the risk the better the estimator. However,
this presents a difficulty since the risk is a function of θ rather than just a
number.

13.3.1 Maximum Risk and Average Risk

We present two ways of reducing the risk function to a number.

Maximum Risk
The first avenue is to consider the maximum risk, namely the maximum of
the risk function,

Rmax(S ) ∶= sup
θ∈Θ

Rθ(S ).

An estimator that minimizes the maximum risk, if one exists, is said to be
minimax, and its risk is called the minimax risk, denoted R∗max.
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Average Risk
The second avenue is to consider the average risk. To do so, we need
to choose a distribution on the parameter space. (A distribution on the
parameter space is often called a prior.) Assuming that Θ is a subset of
some Euclidean space, let λ be a density supported on Θ. We can then
consider the average risk with respect to λ,

Rλ(S ) ∶= ∫
Θ

Rθ(S )λ(θ)dθ.

An estimator that minimizes this average risk is called a Bayes estimator
(with respect to λ) and its risk is called the Bayes risk, denoted R∗λ .

A Bayes estimator is often derived as follows. For simplicity, assume a
family of densities { fθ ∶ θ ∈ Θ} on some Euclidean sample space Ω and that
we are estimating θ itself. Applying the Fubini–Tonelli Theorem, we have

Rλ(S ) = ∫
Θ
∫
Ω

L(S (ω), θ) fθ(ω)dωλ(θ)dθ

= ∫
Ω
∫
Θ

L(S (ω), θ) fθ(ω)λ(θ)dθdω.

Thus, if the following is well-defined,

S λ(ω) ∶= arg min
s

∫
Θ

L(s, θ) fθ(ω)λ(θ)dθ,

it is readily seen to minimize the λ-average risk.

Problem 13.12 (Binomial experiment) Consider a binomial experiment as
in Example 12.9 and the estimation of θ under squared error loss.

(i) Compute the maximum risk of the MLE.
(ii) Compute the average risk of the MLE with respect to the uniform

distribution on [0,1] (which is the parameter space).

Maximum risk optimality and average risk optimality are intricately
connected. For example, for any prior λ,

Rλ(S ) ≤ Rmax(S ), for all S ,

and this immediately implies that

R∗λ ≤ R∗max.

Problem 13.13 Show that an estimator S is minimax when there is a
sequence of priors (λk) such that lim infk→∞R∗λk

≥ Rmax(S ).
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Problem 13.14 Use the previous problem to show that a Bayes estimator
with constant risk function is necessarily minimax.

Problem 13.15 In a binomial experiment, derive a minimax estimator. To
do so, find a prior in the beta family such that the resulting Bayes estimator
has constant risk function. Using R, produce a graph comparing the risk
functions of this estimator and that of the MLE for various values of n.

13.3.2 Admissibility

We say that an estimator S is inadmissible if there is an estimator T such
that

Rθ(T) ≤ Rθ(S ), for all θ ∈ Θ,

and the inequality is strict for at least one θ ∈ Θ. Otherwise, if no such
estimator T exists, we say that the estimator S is admissible.

At least in theory, if an estimator is inadmissible, it can be replaced by
another estimator that is uniformly better in terms of risk. However, even
then, there might be other reasons for using an inadmissible estimator, such
as simplicity or ease of computation.

Admissibility is interrelated with maximum risk and average risk
optimality.

Problem 13.16 Show that an estimator that is unique Bayes for some prior
is necessarily admissible.

Problem 13.17 Show that an estimator that is unique minimax is necessarily
admissible.

13.3.3 Risk Unbiasedness

We say here that an estimator S is risk unbiased if

Eθ[L(S , θ)] ≤ Eθ[L(S , θ′)].

In words, this means that S is on average as close (as measured by the loss
function) to the true value of the parameter as any other value.

Mean Unbiased Estimators
Suppose that L is the squared error loss, meaning L(s, θ) = (s − ϕ(θ))2.

Problem 13.18 Show that S is risk unbiased if and only if

Eθ(S ) = ϕ(θ), for all θ ∈ Θ.
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Such estimators are said to be mean-unbiased, or more commonly, simply
unbiased.

From the bias-variance decomposition (12.4), an estimator with small
mean squared error (MSE) has necessarily small bias (and also small
variance). Therefore, a small bias is desirable. However, strict unbiasedness
is not necessarily desirable, for a small MSE does not imply unbiasedness.
In fact, unbiased estimators may not even exist.

Problem 13.19 Consider a binomial experiment as in Example 12.9. Show
that there is an unbiased estimator of ϕ(θ) if and only if ϕ is a polynomial
of degree at most n.

Median Unbiased Estimators
Suppose that L is the absolute loss, meaning L(s, θ) = ∣s − ϕ(θ)∣.
Problem 13.20 Show that S is risk unbiased if and only if, for all θ ∈ Θ,
ϕ(θ) is a median of S under Pθ.

Such estimators are said to be median-unbiased.

Problem 13.21 Show that if S is median-unbiased for ϕ(θ), then for any
strictly monotone function g∶R→ R, g(S ) is median-unbiased for g(ϕ(θ)).
Show by exhibiting a counter-example that this is no longer true if ‘median’
is replaced with ‘mean’.

Problem 13.22 Consider a binomial experiment as before and the esti-
mation of θ. Is the MLE median-unbiased? Explore this question both
analytically and via numerical simulations on a computer.

13.4 Notions of Optimality for Tests

Our discussion of optimality for estimators has parallels for tests. Indeed,
once the level is under control, the larger the power (i.e., the more the test
rejects) the better. However, this is quantified by a power function and not a
simple number.

We consider a statistical model as in (12.1) and consider testing H0 ∶
θ ∈ Θ0. Unless otherwise specified, Θ1 is the complement of Θ0 in Θ, as in
(12.8).

Remark 13.23 (Level requirement) We assume that all tests that appear
below have level α. It is crucial that the tests being compared satisfy this
requirement, for otherwise the comparison may not be accurate or even fair.
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13.4.1 Minimum Power and Average Power

There are various ways of reducing the power function to a single number.

Minimum Power
A first avenue is to consider the minimum power,

inf
θ∈Θ1
Pθ(φ = 1).

In a number of classical models, Θ is a domain of a Euclidean space and
the power function of any test is continuous over Θ. In such a setting, if
there is no ‘separation’ between Θ0 and Θ1, then any test has minimum
power bounded from above by its size, which is not very interesting. The
consideration of minimum power is thus only relevant when there is a
‘separation’ between the null and alternative sets.(More formally, we say
that there is no separation between two sets of a Euclidean space if their
closures intersect. For example, there is no separation between the intervals
[0,1) and (1,2].)

Average Power
A second avenue is to consider the average power. Let λ be a density on Θ1.
We can then average the power with respect to λ,

∫
Θ1

Pθ(φ = 1)λ(θ)dθ.

Problem 13.24 (Binomial experiment) Consider a binomial experiment
as in Example 12.4.2 and the testing of Θ0 ∶= [0, θ0] versus Θ1 ∶= (θ1,1],
where θ0 ≤ θ1 are given. For the level-α test based on rejecting for large
values of Y:

(i) Compute the minimum power when θ1 > θ0 (so there is a separation).
(ii) Compute the average power for the uniform distribution on Θ1.

Answer these questions analytically and also numerically, using R.

13.4.2 Admissibility

We say that a test φ is inadmissible if there is a test ψ such that

Pθ(φ = 1) ≤ Pθ(ψ = 1), for all θ ∈ Θ1,

and the inequality is strict for at least one θ ∈ Θ1.
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At least in theory, if a test is inadmissible, it can be replaced by another
test that is uniformly better in terms of power. However, even then, there
might be other reasons for using an inadmissible test, such as simplicity or
ease of computation.

13.4.3 Uniformly Most Powerful Tests

Consider testing θ ∈ Θ0. A test φ is said to be uniformly most powerful
(UMP) among level-α tests if φ itself has level α and is at least as powerful
as any other level-α test, meaning that for any other test ψ with level α,

Pθ(φ = 1) ≥ Pθ(ψ = 1), for all θ ∈ Θ1.

This is clearly the best one can hope for. However, a UMP test seldom
exists.

Simple vs Simple
A very particular case where a UMP test exists is when both the null set
and alternative set are singletons. We say that a hypothesis is simple if the
corresponding parameter subset is a singleton; it is said to be composite
otherwise. Suppose, therefore, that Θ0 = {θ0} and Θ1 = {θ1}, and let Q j be
short for Pθ j .

The following is a consequence of the Neyman–Pearson Lemma55 – one
of the most celebrated results in the theory of tests. Recall that a likelihood
ratio test is any test that rejects for large values of the likelihood ratio.

Theorem 13.25. In the present context, any LRT is UMP at level α equal
to its size.

To understand where the result comes from, suppose we want to test at a
prescribed level α in a situation where the sample space is discrete. In that
case, we want to solve the following optimization problem

maximize ∑
ω∈R
Q1(ω)

subject to ∑
ω∈R
Q0(ω) ≤ α.

The optimization is over subsetsR ⊂ Ω, which represent candidate rejection
regions. In that case, it makes sense to rank ω ∈ Ω according to its likelihood
ratio value L(ω) ∶= Q1(ω)/Q0(ω). If we denote by ω1, ω2, . . . the elements

55 Named after Jerzy Neyman (1894–1981) and Egon Pearson (1895–1980).
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of Ω in decreasing order, meaning that L(ω1) ≥ L(ω2) ≥ ⋯, and define the
regionsRk = {ω1, . . . , ωk}, then it makes intuitive sense to choose

kα ∶= max{k ∶ Q0(ω1) +⋯ +Q0(ωk) ≤ α}.

This is correct when the level can be exactly achieved in this fashion.
Otherwise, the optimization is more complex, leading to a linear program.

In a different setting where the sample space is a subset of some Euclidean
space, suppose that Q1 has density f1 and that Q0 has density f0. In that case,
the likelihood ratio is defined as L ∶= f1/ f0. If L has continuous distribution
under Q0, by choosing the critical value c appropriately, any prescribed level
α can be attained. As a consequence, if c is chosen such that Q0(L > c) = α,
then the test with rejection region {L > c} is UMP at level α. However, the
same cannot always be done if L does not have a continuous distribution
under the null hypothesis.

Monotone Likelihood Ratio Property
As in Section 12.2.2, assume a discrete model for concreteness, although
what follows applies more broadly. We consider a situation where Θ is an
interval of R.

The family of distributions {Pθ ∶ θ ∈ Θ} is said to have the monotone
likelihood ratio (MLR) property in T if the model is identifiable and, for
any θ < θ′, Pθ′/Pθ is monotone increasing in T , meaning there is a non-
decreasing function gθ,θ′ ∶R→ R satisfying

Pθ′(ω)
Pθ(ω)

= gθ,θ′(T(ω)), for all ω ∈ Ω.

Theorem 13.26. Assume that the family {Pθ ∶ θ ∈ Θ} has the MLR property
in T and that the null hypothesis is of the form Θ0 = {θ ∈ Θ ∶ θ ≤ θ0}. Then
any test of the form {T > t} has size Pθ0(T > t), and is UMP at level α
equal to its size.

Problem 13.27 Show that in the context of Theorem 13.26, the LR is a
non-decreasing function of T and that, therefore, an LRT is UMP at level α
equal to its size.

Problem 13.28 (Binomial experiment) Show that the MLR property holds
in a binomial experiment, and that in particular, for testing H0 ∶ θ∗ ≤ θ0, a
LRT is UMP at its size. Show that the same is true of a test based on the
maximum likelihood estimator.
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13.4.4 Unbiased Tests

As we said above, a UMP test rarely exists. In particular, it does not exist
in the most of the important two-sided situations, including if the MLR
property holds.

Consider a setting where Θ is an interval of the real line and the null
hypothesis to be tested is H0 ∶ θ∗ = θ0 for some given θ0 in the interior of
Θ. (If θ0 is one of the boundary points, the situation is one-sided.) In such a
situation, a UMP test would have to be at least as good as a UMP test for
the one-sided null H≤

0 ∶ θ∗ ≤ θ0 and at least as good as a UMP test for the
one-sided null H≥

0 ∶ θ∗ ≥ θ0. In most cases, this proves to be impossible.
In some sense this competition is unfair, because a test for the one-sided

null such as H≤
0 is ill-suited for the two-sided null H0. Indeed, if a test for

H≤
0 has level α, then the probability that it rejects when θ∗ ≤ θ0 is bounded

from above by α.
To prevent one-sided tests from competing in two-sided testing problems,

one may restrict attention to so-called unbiased tests. A test is said to be
unbiased at level α if it has level α, and the probability of rejecting at any
θ ∈ Θ1 is bounded from below by α.

While the number of situations where a UMP test exists is rather limited,
there are many more situations where there exists a test that is UMP among
unbiased tests. Such a test is said to be uniformly most powerful unbiased
(UMPU).

An important class of situations where this occurs includes the case of
general exponential families, where we work with a family of densities
{ fθ ∶ θ ∈ Θ} of the form

fθ(ω) = A(θ) exp(a(θ)T(ω))h(ω),

where, in addition, a ∶ Θ→ R is strictly increasing. Suppose in this setting
that the null set Θ0 is a closed subinterval of Θ, possibly a singleton.

Theorem 13.29. In the present setting, any test with rejection region of the
form {T < t1} ∪ {T > t2}, with t1 < t2, is UMPU at its size.

Problem 13.30 Show that a binomial experiment leads to a general
exponential family.

Remark 13.31 In a binomial experiment, an equal-tailed two-sided LRT
is approximately UMPU for θ∗ = θ0 as long as θ0 is not too close to 0 or 1.
(The larger the number of trials n, the closer θ0 can be to these extremes.)
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One Proportion

Estimating a proportion is one of the most basic problems in statistics.
Although basic, it arises in a number of important real-life situations:

• Election polls are conducted to estimate the proportion of people that
will vote for a particular candidate.
• In quality control, the proportion of defective items manufactured at a

particular plant or assembly line needs to be monitored, and one may
resort to statistical inference to avoid having to check every single item.

• Clinical trials are conducted in part to estimate the proportion of people
that would benefit (or suffer serious side effects) from receiving a
particular treatment.

The situation is commonly modeled as sampling from an urn. The
resulting distribution, as we know, depends on the contents of the urn
and on how the sampling is done. The subsequent statistical analysis flows
from the sampling model.

14.1 Binomial Experiments

We start with the binomial experiment of Example 12.2, which has served
as our running example in the last two chapters. Remember that this is an
experiment where a θ-coin is tossed a predetermined number of times n, and
the goal is to infer the value of θ based on the outcome of the experiment
(the data).

To summarize what we have learned about this model so far, in
Chapter 12, we derived the maximum likelihood estimator (MLE), which is
the sample proportion of heads, that is, S = Y/n. We then focused on testing
null hypotheses of the form θ∗ ≤ θ0 for a given θ0. We considered tests
which reject for large values of the MLE, meaning with rejection regions of
the form {S > c}. Using the correspondence between tests and confidence
intervals, we derived the (one-sided) confidence interval (12.15).

192
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Problem 14.1 Adapt the arguments to testing null hypotheses of the form
θ∗ ≥ θ0 for a given θ0 and derive the corresponding confidence interval at
level 1 − α. The interval will be of the form

I = [0, S̄ ). (14.1)

14.1.1 Two-Sided Tests and Confidence Intervals

We now consider the two-sided situation. In brief, we study the problem of
testing null hypotheses of the form H0 ∶ θ∗ = θ0 for a given θ0 ∈ (0,1) and
then derive a confidence interval as in Section 12.4.7. (If θ0 = 0 or = 1, the
problem is one-sided.) We still use the MLE as test statistic.

Tests
For the null θ∗ = θ0, both large and small values of Y (the number of heads)
are evidence against the null hypothesis. This leads us to consider tests of
the form

φ = {Y < a or Y > b}. (14.2)

The critical values, a and b, are chosen to control the level at some prescribed
α, meaning

Pθ0(φ = 1) ≤ α.

Equivalently,

Pθ0(Y < a) + Pθ0(Y > b) ≤ α. (14.3)

Note that a number of choices are possible. Two natural ones are

• Equal tail This choice corresponds to choosing

a = max{a′ ∶ Pθ0(Y < a′) ≤ α/2},
b = min{b′ ∶ Pθ0(Y > b′) ≤ α/2},

where the maximization and minimization are over integers.
• Minimum length This choice corresponds to minimizing b − a subject

to the constraint (14.3).

Problem 14.2 Derive the likelihood ratio test (LRT) in the present context.
You will find it is of the form (14.2) for particular critical values a and b (to
be derived explicitly). How does the LRT compare with the equal-tail and
minimum-length tests above?
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Confidence Intervals
Let φθ be a test for θ∗ = θ as constructed above, meaning with rejection
region of the form {Y < aθ} ∪ {Y > bθ}, where

Pθ(Y < aθ) + Pθ(Y > bθ) ≤ α.

As in Section 12.4.7, based on this family of tests we can obtain a (1 − α)-
confidence interval of the form

I = (S , S̄ ). (14.4)

For building a confidence interval, the minimum-length choice for aθ and
bθ is particularly appealing.

Problem 14.3 Derive this confidence interval.

The one-sided intervals (12.15) and (14.1), and the two-sided interval
(14.4) with the equal-tail construction, are due to Clopper and Pearson [29].
The construction yields an exact interval in the sense that the desired
confidence level is achieved.

R corner The Clopper–Pearson interval (one-sided or two-sided), and the
related test, can be computed in R using the function binom.test.

We describe below other traditional ways of constructing confidence
intervals. Compared to the Clopper–Pearson construction, they are less
labor intensive although they are not as precise. They were particularly
useful in the pre-computer age, and some of them are still in use.

Remark 14.4 We focus here on confidence intervals, from which we know
tests can be derived as in Section 12.4.7.

14.1.2 Confidence Interval based on Chebyshev’s Inequality

As we saw in Example 12.10, Chebyshev’s inequality provides a simple,
although crude way to derive a confidence interval. Indeed, to recapitulate,
Chebyshev’s inequality tells us that

∣S − θ∣√
θ(1 − θ)/n

< z, (14.5)

with probability at least 1 − 1/z2 under Pθ.
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Problem 14.5 Prove that (14.5) is equivalent to

θ ∈ Iz ∶= (S z ± z
σz√

n
), (14.6)

where

S z ∶=
S + z2/2n
1 + z2/n , σ

2
z ∶=

S (1 − S ) + z2/4
(1 + z2/n)2

.

In particular, Iz defined in (14.6) is a (1 − 1/z2)-confidence interval for θ.

14.1.3 Confidence Intervals based on the Normal Approximation

The Chebyshev’s confidence interval is commonly believed to be too con-
servative, and practitioners have instead relied on the normal approximation
to the binomial distribution instead of Chebyshev’s inequality, which is
deemed too crude. Let Φ denote the distribution function of the standard
normal distribution (which we saw in (5.1)). Then, using the Central Limit
Theorem, for any z > 0,

Pθ(
∣S − θ∣√
θ(1 − θ)/n

< z) ≈ 2Φ(z) − 1, (14.7)

as long as the sample size n is large enough. (More formally, the left-hand
side converges to the right-hand side as n→∞.)

Wilson’s Normal Interval
The construction of this interval, proposed by Wilson [205], is based on
the large-sample approximation (14.7) and the derivations of Problem 14.5,
which together imply that the interval defined in (14.6) has approximate
confidence level 2Φ(z) − 1.

R corner Wilson’s interval (one-sided or two-sided) and the related test,
can be computed in R using the function prop.test.

The simpler variants that follow are also based on the approximation
(14.7). However, they offer no advantage compared to Wilson’s interval,
except for simplicity if calculations must be done by hand. These
constructions start by noticing that (14.7) implies

Pθ(θ ∈ Jθ) ≈ 1 − α, (14.8)

where

Jθ ∶= (S ± z1−α/2
σθ√

n
), (14.9)
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where zu ∶= Φ−1(u) and σ2
θ ∶= θ(1 − θ). At this point, Jθ is not a confidence

interval as its computation depends on θ, which is unknown.

Conservative Normal Interval
In our derivation of the interval (12.7), we used the fact that θ ∈ [0,1] ↦
θ(1 − θ) is maximized at θ = 1/2. Therefore,

Jθ ⊂ J1/2 = (S ±
z1−α/2

2
√

n
).

J1/2 can be computed without knowledge of θ and, because of (14.8), it
achieves a confidence level of at least 1 − α in the large-sample limit.
Unless the true value of θ happens to be equal to 1/2, this interval will be
conservative in large samples.

Plug-in Normal Interval
It is very tempting to replace θ in (14.9) with S . After all, S is a consistent
estimator of θ. The resulting interval is

JS = (S ± z1−α/2
σS√

n
).

JS is a bona fide confidence interval. Moreover, (14.8), coupled with
Slutsky’s theorem (Problem 8.40), implies that JS achieves a confidence
level of 1 − α in the large-sample limit. Note that this construction relies on
two approximations.

Problem 14.6 Verify the claims made here.

This is a popular interval, and its half-width (traditionally at α = 0.95) is
often reported in polls and referred to as the margin of error.

14.2 Hypergeometric Experiments

Consider an experiment where balls are repeatedly drawn from an urn
containing r red balls and b blue balls a predetermined number of times n.
The total number of balls in the urn, v ∶= r + b, is assumed known. The goal
is to infer the proportion of red balls in the urn, namely, r/v. If the draws are
with replacement, this is a binomial experiment with probability parameter
θ = r/v, a case that was treated in Section 14.1. We assume here that the
draws are without replacement.

Let Y denote the number of red balls that are drawn. Assume that n < v,
for otherwise the situation is descriptive as the experiment reveals the
contents of the urn and there is no inference left to do. We call the resulting
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14.2 Hypergeometric Experiments 197

experiment a hypergeometric experiment because Y is hypergeometric and
sufficient for this experiment.

Problem 14.7 Prove that Y is indeed sufficient in this model.

14.2.1 Maximum Likelihood Estimator (MLE)

Let y denote the realization of Y , meaning y = Y(ω) with ω denoting the
observed outcome of the experiment. Recalling the definition of falling
factorials (2.6), the likelihood is given by (see (2.9))

lik(r) = (r)y (v − r)n−y

(v)n
,

where we used the fact that b = v − r. (As we saw before, although the
likelihood is a function of y also, this dependency is left implicit to focus
on the parameter r.)

Although it may look intimidating, this is a tame function. It suffices to
consider r in the range y ≤ r ≤ v − n + y, for otherwise the likelihood is zero.
(This is congruent with the fact that, having drawn y red balls and n− y blue
balls, we know that there were that many red and blue balls in the urn to
start with.) For r < v − n + y, we have

lik(r + 1)
lik(r) = (r + 1)(v − r − n + y)

(r − y + 1)(v − r) ,

so that

lik(r + 1) ≤ lik(r) ⇔ r ≥ yv − n + y
n

.

Similarly, for r > y, we have

lik(r − 1) ≤ lik(r) ⇔ r ≤ yv + y
n
.

We conclude that any r that maximizes the likelihood satisfies

−n − y
nv

≤ r
v
− y

n
≤ y

nv
. (14.10)

More than necessary, this is also sufficient for r to maximize the likelihood.

Problem 14.8 Verify that r (integer) satisfies this condition if and only if
r/v is closest to y/n. Show that there is only one such r, except when y/n =
k/(v + 1) for some integer k, in which case there are two such r. Conclude
that, in any case, any r satisfying (14.10) maximizes the likelihood.
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Note that r/v is the proportion of red balls in the urn, and thus the MLE is
in essence the same as in a binomial experiment with θ = r/v as parameter,
except that the proportion of reds is here an integer multiple of 1/v.

14.2.2 Confidence Intervals

The various constructions of a confidence interval that we presented in the
context of a binomial experiment apply almost verbatim in the context of a
hypergeometric experiment. This is because the same normal approximation
that applies to the binomial distribution with parameters (n, θ) also applies
to the hypergeometric distribution with parameters (n, r, v − r), with r/v in
place of θ, if

v→∞, r →∞, n→∞,
with r/v→ θ ∈ (0,1), n/r → 0.

Problem 14.9 Prove this under the more stringent condition that n/
√

r → 0.
[Use Problem 2.36 and the normal approximation to the binomial.]

Problem 14.10 Derive the exact (Clopper–Pearson) one-sided and then
two-sided confidence intervals for a hypergeometric experiment. Then
implement this as a function in R.

14.2.3 Comparison with a Binomial Experiment

We already argued that a hypergeometric experiment with parameters
(n, r, v − r) is very similar to a binomial experiment with parameters (n, θ)
with θ = r/v. In finer detail, however, it would seem that a hypergeometric
experiment, where sampling is without replacement, allows for more precise
inference compared to the corresponding binomial experiment, where
sampling is with replacement and therefore seemingly wasteful to a certain
degree. Indeed, if the balls are numbered (which we can always assume, at
least as a thought experiment) and we have already drawn ball number i,
then drawing it again does not provide any additional information on the
contents of the urn.

Sampling without replacement is indeed preferable, because the resulting
confidence intervals are narrower.

Problem 14.11 Verify numerically that the Clopper–Pearson two-sided
interval is narrower in a hypergeometric experiment compared to the
corresponding binomial experiment.
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14.3 Negative Binomial/Hypergeometric Experiments

Negative Binomial Experiments
Consider an experiment that consists in tossing a θ-coin until a predeter-
mined number of heads, m, has been observed. Thus, the number of trials
is not set in advance, in contrast with a binomial experiment. The goal, as
before, is to infer the value of θ based on the result of such an experiment.
In practice, such a design might be appropriate in situations where θ is
believed to be small.

Let N denote the number of tails until m heads are observed. We call the
resulting experiment a negative binomial experiment because N is negative
binomial with parameters (m, θ) and sufficient for this experiment.

Problem 14.12 Prove that N is indeed sufficient.

Problem 14.13 Prove that the MLE for θ is m/(m + N). Note that this is
still the observed proportion of heads in the sequence, just as in a binomial
experiment.

Problem 14.14 Derive the exact (Clopper–Pearson) one-sided and then
two-sided confidence intervals for a negative binomial experiment. (These
intervals have a simple closed form expression when m = 1, that is, in a
geometric experiment.) Then implement this as a function in R.

Negative Hypergeometric Experiments
When the experiment consists in repeatedly sampling without replacement
from an urn, with r red and b blue balls, until m red balls are collected, we
talk of a negative hypergeometric experiment, in particular because the key
distribution in this case is the negative hypergeometric distribution.

Problem 14.15 Consider and solve the previous three problems in the
present context.

14.4 Sequential Experiments

We present here another classical experimental design where the number
of trials is not set in advance of conducting the experiment, that may be
appropriate in surveillance applications (e.g., epidemiological monitoring,
quality control, etc.). The setting is again that of a θ-coin being repeatedly
tossed. As before, we let Yn and S n = Yn/n denote the number of heads and
the proportion of heads in the first n tosses, respectively.
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14.4.1 Sequential Probability Ratio Test

Suppose we want to decide between two hypotheses

H≤
0 ∶ θ∗ ≤ θ0, versus H≥

1 ∶ θ∗ ≥ θ1, (14.11)

where 0 ≤ θ0 < θ1 ≤ 1 are given.

Example 14.16 (Multistage testing) Such designs are used in mastery tests
where a human subject’s knowledge and command of some material or topic
is tested on a computer. In such a context, each question is a trial and it is
answered correctly (‘heads’) or incorrectly (‘tails’), and θ1 and θ0 are the
thresholds for Pass/Fail, respectively. (Note that, in such a real-life situation,
it is not at all obvious that the trials are iid.)

The sequential probability ratio test (SPRT) (aka sequential likelihood
ratio test) was proposed by Abraham Wald (1902–1950) for this situa-
tion [196], except that he originally considered testing

H=
0 ∶ θ∗ = θ0, versus H=

1 ∶ θ∗ = θ1,

However, the same test can be applied verbatim to (14.11), which is more
general. The procedure is based on the sequence of likelihood ratio (LR)
test statistics (as the number of trials increases). The method is general and
is here specialized to the case of Bernoulli trials.

The likelihood ratio statistic for H=
0 versus H=

1 is

Ln ∶= (
θ1

θ0
)

Yn

(1 − θ1
1 − θ0

)
n−Yn

.

The test makes a decision in favor of H=
0 if Ln < cn,0, and makes a decision

in favor of H=
1 if Ln > cn,1, where the thresholds cn,0 < cn,1 are predetermined

based on the desired level and power. This testing procedure amounts to
stopping the trials when there is enough evidence against either H=

0 or H=
1 .

More specifically, given α0, α1 ∈ (0,1), cn,0 and cn,1 are chosen so that

Pθ0(Ln > cn,1) ≤ α0,

Pθ1(Ln < cn,0) ≤ α1.
(14.12)

These thresholds can be determined numerically in an efficient manner using
a bisection search.

Problem 14.17 In R, write a function taking as input (n, θ0, θ1, α0, α1)
and returning (approximate) values for cn,0 and cn,1. Try your function on
simulated data.
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Proposition 14.18. With cn,0 = α1/(1 − α0) and cn,1 = (1 − α1)/α0, it holds
that the probability of an error is controlled by α0 + α1, meaning,

Pθ0(Ln > cn,1) + Pθ1(Ln < cn,0) ≤ α0 + α1.

Problem 14.19 Show that, although the procedure is designed for testing
H=

0 versus H=
1 , it applies to testing H≤

0 versus H≥
1 above, meaning that if

(14.12) holds, then it also holds that

Pθ(Ln > cn,1) ≤ α0, for all θ ≤ θ0,
Pθ(Ln < cn,0) ≤ α1, for all θ ≥ θ1.

14.4.2 Experiments with Optional Stopping

In [148], Randi debunks a number of experiments claimed to exhibit
paranormal effects. He recounts experiments where a self-proclaimed
psychic tries to influence the outcome of a computer-generated sequence of
coin tosses. Randi questions the validity of these experiments because the
subject had the option of stopping or continuing the experiment at will.

Much more disturbing is the fact that such strategies are commonly
employed by scientists, most notably, in clinical trials [8, 132]. And indeed,
if optional stopping is allowed in the experiment but not taken into account
in the analysis, the resulting conclusions can be grossly incorrect.

Problem 14.20 Consider an experiment where a fair coin is flipped in front
of a self-proclaimed psychic who claims to be able to influence the coin so
it comes up heads more often than tails. If you were that individual, propose
a stopping rule that would (artificially) bend the outcome of the experiment
in your favor if, not knowing any better, the experimenter analyzes the
outcome as if the sample size had been predetermined. Perform some
numerical experiments to evaluate your strategy.

14.5 Additional Problems

Problem 14.21 (Proportion test) In the context of the binomial experiment
of Example 12.2, a proportion test can be defined based on the fact that the
sample proportion is approximately normal (Theorem 5.4). Based on this,
obtain a p-value for testing θ∗ ≤ θ0. Note that the p-value will only be valid
in the large-sample limit. (In R, this test is implemented in the prop.test
function.)

https://doi.org/10.1017/9781108779197.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108779197.019


202 One Proportion

Problem 14.22 (A comparison of confidence intervals) A numerical
comparison of various confidence intervals for a proportion is presented
in [137]. Perform simulations to reproduce Table I, rows 1, 3, and 5, in the
article. [Of course, due to randomness, the numbers resulting from your
numerical simulations will be a little different.]

Problem 14.23 Detail the calculations (implicitly) done in the “Feedback
Experiments” section of the paper [43].
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Multiple Proportions

When a die with m faces is rolled, the result of each trial can take one of
m possible values. The same is true in the context of an urn experiment,
when the balls in the urn are of m different colors. Such models are broadly
applicable. Indeed, even ‘yes/no’ polls almost always include at least one
other option like ‘not sure’ or ‘no opinion’. See Table 15.1 for an example.
These data can be plotted, for instance, as a bar chart or a pie chart, as
shown in Figure 15.1.

Table 15.1 Washington Post – ABC News poll of 1003 adults in
the US (March 7–10, 2012). “Do you think a political leader
should or should not rely on his or her religious beliefs in making
policy decisions?”

Should Should not Depends No opinion
31% 63% 3% 3%

Another situation where discrete variables arise is when two or more coins
are compared in terms of their chances of landing heads, or more generally,
when two or more (otherwise identical) dice are compared in terms of their
chances of landing on a particular face. In terms of urn experiments, the
analogue is a situation where balls are drawn from multiple urns. This sort of
experiment can be used to model clinical trials where several treatments are
compared and the outcome is dichotomous. See Table 15.2 for an example.
The corresponding data are plotted as a side-by-side bar chart in Figure 15.2.

When the coins are tossed together, or when the dice are rolled together,
we might want to test for independence. And there are various ways to do
that depending on the study’s design.

203
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Figure 15.1 A bar chart and a pie chart of the data appearing in Table 15.1.

Table 15.2 The study [147] examined the impact of supplement-
ing newborn infants with vitamin A on early infant mortality.
This was a randomized, double-blind trial, performed in two
rural districts of Tamil Nadu, India, where newborn infants
(11619 in total) received either vitamin A or a placebo. The
primary response was mortality at six months.

Death No death

Placebo 188 5645
Vitamin A 146 5640

15.1 One-Sample Goodness-of-Fit Testing

We consider a die with m faces with distinct labels, say 1, . . . ,m, and for
s ∈ {1, . . . ,m}, we let θs denote the probability that in a given trial the die
lands on s. The outcome of the experiment is of the form ω = (ω1, . . . , ωn),
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Figure 15.2 A side-by-side bar chart of the data appearing in Table 15.2.

where ωi = s if the ith roll resulted in face s. We assume that the rolls
are independent. Let Y1, . . . ,Ym denote the counts defined in (6.4). In
Section 6.2.2, we saw that (Y1, . . . ,Ym) has the multinomial distribution
with parameters (n, θ1, . . . , θm). In what follows, we will let ys = Ys(ω),
and θ̂s ∶= ys/n, which are the observed counts and observed proportions,
respectively.

Problem 15.1 Show that (Y1, . . . ,Ym) is sufficient for (θ1, . . . , θm). Note
that, when focusing the counts rather than the trials themselves, all that is
lost is the order of the trials, which at least intuitively is not informative
since the trials are assumed to be iid.

Problem 15.2 Show that (Y1/n, . . . ,Ym/n) is the maximum likelihood
estimator (MLE) for (θ1, . . . , θm).

Various questions may arise regarding the parameter vector θ. These can
be recast in the context of multiple testing (Chapter 20). We present here
a more classical treatment focusing on goodness-of-fit testing, where the
central question is whether the underlying distribution is a given distribution
or, said differently, how well a given distribution fits the data. In detail,
given θ0 = (θ0,1, . . . , θ0,m), we are interested in testing

H0 ∶ θ∗ = θ0,

where, as before, θ∗ = (θ∗1 , . . . , θ∗m) denotes the true value of the parameter.

https://doi.org/10.1017/9781108779197.020 Published online by Cambridge University Press

https://doi.org/10.1017/9781108779197.020


206 Multiple Proportions

We first try a likelihood approach. In the variant (12.10), the likelihood
ratio is here given by

θ̂y1
1 ⋯ θ̂ym

m

θy1
0,1⋯ θ

ym
0,m
,

and taking the logarithm, this becomes

� = L(ω) ∶=
m

∑
s=1

ys log( ys

nθ0,s
) . (15.1)

The likelihood ratio test (LRT) rejects for large values of L.

Remark 15.3 (Observed and expected counts) While y1, . . . , ym are the
observed counts, nθ0,1, . . . ,nθ0,m are often referred to as the expected counts
(under the null hypothesis). This is because Eθ0(Ys) = nθ0,s for all s. In view
of (15.1), the likelihood ratio compares observed with expected counts.

15.1.1 Normal-Approximation P-Value

Recall the chi-squared family of distributions introduced in Section 5.9.3.
We assume, without much loss of generality, that θ0,s > 0 for all s.

Theorem 15.4. Under the null hypothesis, in the large-sample limit were
n → ∞, 2L converges weakly to the chi-squared distribution with m − 1
degrees of freedom.

In view of this theorem, the p-value can be approximated as follows

Pθ0(L ≥ �) ≈ 1 − Hm−1(2�),

where Hm−1 is the distribution function of the chi-squared distribution with
m − 1 degrees of freedom. Modulo some slight correction that improves
the accuracy of this numerical approximation, this is how the p-value was
computed in the pre-computer age.

15.1.2 Monte Carlo P-Value

In the computer age, this p-value can be estimated by Monte Carlo
simulation, as we first saw in Section 10.1. The general procedure is detailed
in Algorithm 15.1. (A variant of the algorithm consists in directly generating
values of the test statistic under its null distribution.)
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Algorithm 15.1 Monte Carlo p-value

Input: data ω, test statistic T , null distribution P0, number of Monte
Carlo samples B
Output: an estimate of the p-value

Compute t = T(ω)
For b = 1, . . . , B

generate ωb from P0

compute tb = T(ωb)
Return

p̂vmc ∶=
#{b ∶ tb ≥ t} + 1

B + 1
. (15.2)

Proposition 15.5. The Monte Carlo p-value (15.2) is itself a valid p-value
in the sense of (12.12).

Problem 15.6 Prove Proposition 15.5. [The conclusions of Problem 8.53
will prove useful.]

Problem 15.7 In R, write a function that takes as input the vector of
observed counts, the null parameter vector, and a number of Monte Carlo
replicates, and returns an estimate of the p-value for the LRT. [Use the
function rmultinom to generate Monte Carlo counts under the null.]

15.1.3 Bootstrap P-Value

In some situations, the null distribution may not be perfectly specified.
For example, in genetics, we may want to know if a particular population
is at equilibrium as in Problem 13.7. Or we may want to know if, in an
experiment yielding counts, a Poisson distribution provides a good fit to
the data as in Problem 12.28 and Problem 12.29. Such problems can be
formulated as testing the null hypothesis that the underlying distribution is in
some given family, which we refer to as the null family of distributions. We
only consider the situation where the null distributions have finite support.
(The situation where the support is infinite, as in the case with the Poisson
family, can be dealt with by truncation or merging.)

We still assume the support to be {1, . . . ,m}, and denote the null family
of distribution by Θ0, which is therefore a set of probability vectors on
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{1, . . . ,m}. Based on a sample of size n, we are interested in testing

H0 ∶ θ∗ ∈ Θ0.

We assume that an MLE exists for θ under the null family Θ0, and
denote it by θ̂0 = (θ̂0,1, . . . , θ̂0,m). In that case, in the variant (12.10), the log
likelihood ratio is given by

� = L(ω) ∶=
m

∑
s=1

ys log( ys

nθ̂0,s
) ,

and the LRT rejects for large values of L.
It is known that, when the null family of distributions is parametrized by

d free parameters and is ‘smooth’ in some way, under the null hypothesis,
2L converges weakly to the chi-squared distribution with m − 1 − d degrees
of freedom. (This assumes that d < m − 1, and the reader is invited to check
that this is condition is not restrictive.) This is essentially how the p-value
was approximated in the old days.

Alternatively, it is also possible to approximate the p-value by simulation
on a computer. The idea is to estimate the p-value by Monte Carlo simulation,
as before, but now using the estimated null distribution, θ̂0 above, to generate
the samples. This process, of performing Monte Carlo simulations based
on an estimated distribution, is generally called a bootstrap. We note that
the resulting bootstrap p-value is not exactly valid in finite samples – even
though, in the present situation, it is exactly valid in the large-sample limit.

Problem 15.8 We apply the methodology just described to assess whether
a Poisson distribution provides a good fit to the yeast data of Table 4.1. Start
by formulating the question as a hypothesis testing problem. Then compute
a bootstrap p-value of the LRT. Repeat with the data of Table 4.2.

15.2 Multi-Sample Goodness-of-Fit Testing

In Section 15.1, we assumed that we were provided with a null distribution
and were tasked with determining how well that distribution fitted the data.
However, in applications, often no such reference distribution is available.
This is the case in clinical trials where the efficacy of a treatment is compared
to an existing treatment or a placebo, such as in the example of Table 15.2.
In other situations, more than two groups are to be compared. A question,
then, is whether these groups of observations were generated by the same
distribution. The difference here with the basic premise of Section 15.1 is
that this hypothesized common distribution is not given.
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An abstract model for this setting is that of an experiment involving g
dice, with the jth die rolled nj times, all rolls being independent. As before,
each die has m faces labeled 1, . . . ,m. Let θ j denote the probability vector
of the jth die. Our goal is to test the following null hypothesis:

H0 ∶ θ1 = ⋯ = θg .

This is sometimes referred to as testing for homogeneity.
Let ωi j = s if the ith roll of the jth die results in s, so that ω = (ωi j) are

the data, and define the (per group) counts

Ys j(ω) ∶= #{i ∶ ωi j = s}.

Problem 15.9 Show that these counts are jointly sufficient.

Problem 15.10 Show that (Ys j/nj) is the MLE for (θs j).
We define the total sample size as n ∶= ∑g

j=1 nj. We also define the
following counts

ys j ∶= Ys j(ω), Ys ∶=
g

∑
j=1

Ys j, ys ∶= Ys(ω) = ∑
j

ys j,

leading to the following proportions

θ̂s j ∶= ys j/nj, θ̂s ∶= ys/n, θ̂ j ∶= (θ̂1 j, . . . , θ̂m j), θ̂ ∶= (θ̂1, . . . , θ̂m).

15.2.1 Likelihood Ratio

Because of independence, the likelihood of all the observations combined
is just the product of the likelihoods, one for each die (see (6.5)).

Problem 15.11

(i) Prove that, without any constraints on the parameters, the likelihood
is maximized at (θ̂1, . . . , θ̂g).

(ii) Prove that, under the constraint that θ1 = ⋯ = θg, this is maximized at
(θ̂, . . . , θ̂).

(iii) Deduce that the likelihood ratio is given by

∏g
j=1∏

m
s=1 θ̂

ys j

s j

∏m
s=1 θ̂

ys
s

=
g

∏
j=1

m

∏
s=1
( θ̂s j

θ̂s
)

ys j

.

Taking the logarithm, this becomes

� = L(ω) ∶=
g

∑
j=1

m

∑
s=1

ys j log( ys j

n jys/n
) . (15.3)
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The LRT rejects for large values of L.

Remark 15.12 (Estimated expected counts) The (ys j) are the observed
counts. The expected counts are not available since the common null
distribution is not given. Nonetheless, they can be estimated. Indeed, under
the null hypothesis where θ denotes the common distribution, the expected
counts are

Eθ(Ys j) = njθs,

and we can estimate this by plugging in θ̂s in place of θs, leading to the
following estimated expected counts (under the null hypothesis)

Eθ(Ys j) ≈ njθ̂s = njys/n.

In view of (15.3), the likelihood ratio statistic compares the observed counts
with the expected counts.

15.2.2 Normal-Approximation P-Value

We assume, without loss of generality, that all values are possible under the
null distribution, meaning that θs > 0 for all s.

Theorem 15.13. Under the null hypothesis, in the large-sample limit were
n j →∞ for all j, 2L converges weakly to the chi-squared distribution with
(g − 1)(m − 1) degrees of freedom.

As before, the theorem allows us to approximate the p-value as follows

P(θ,...,θ)(L ≥ �) ≈ 1 − H(g−1)(m−1)(2�).

15.2.3 Bootstrap P-Value

As in Section 15.1.3, a bootstrap approach is available to approximate the
p-value by simulation on a computer. The idea is the same and consists in
estimating the p-value by Monte Carlo simulation using the estimated null
distribution, θ̂ above, to generate the samples across all groups. We again
note that the resulting bootstrap p-value is not exactly valid in finite samples,
but is exactly valid in the large-sample limit.

Problem 15.14 In R, write a function that takes as input the list of observed
counts as a g-by-m matrix of counts and the number of bootstrap samples to
be drawn, and returns an estimate of the p-value. Apply your function to the
dataset of Table 15.2.
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15.3 Completely Randomized Experiments

The data presented in Table 15.2 can be analyzed using the methodology
for comparing groups presented in Section 15.2, as done in Problem 15.14.
We present a different perspective which leads to a different analysis. It is
reassuring to know that the two analyses will yield similar results as long as
the group sizes are not too small.

The typical null hypothesis in such a situation is that the treatment and
the placebo are equally effective. We describe a model where inference
can only be done for the group of subjects – while a generalization to a
larger population would be contingent on this sample of individuals being
representative of the said population.

Suppose that the group sizes are n1 and n2, for a total sample size of
n = n1 + n2. The result of the experiment can be summarized in a table of
counts, Table 15.3, often called a contingency table.

If z = z1 + z2 denotes the total number of successes, in the present model
it is assumed to be deterministic since we are drawing inferences on the
group of subjects in the study. What is random is the group labeling, and if
treatment and placebo truly have the same effect on these individuals, then
the group labeling is completely arbitrary. Thus, this is the null hypothesis
to be tested.

There is no model for the alternative, so we cannot derive the likelihood
ratio, for example. However, it is fairly clear what kind of test statistic we
should be using. In fact, a good option is the same statistic (15.3), which in
the context of Table 15.3 takes the form

z1 log(nz1

n1z
) + (n1 − z1) log(n(n1 − z1)

n1(n − z) )

+ z2 log(nz2

n2z
) + (n2 − z2) log(n(n2 − z2)

n2(n − z) ) .

Another option is the odds ratio, which after applying a log transformation
takes the form

log( z1

n1 − z1
) − log( z2

n2 − z2
) .

More generally, consider a randomized experiment where the subjects are
assigned to one of g treatment groups and the response can take m possible
values. With the notation of Section 15.2, the jth group is of size nj, for
a total sample size of n ∶= n1 +⋯ + ng. In the null model, the total counts
are here taken to be deterministic (while there are random in Section 15.2),
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Table 15.3 A prototypical contingency table summarizing the
result of a completely randomized experiment with two groups
and two possible outcomes.

Success Failure Total

Group 1 z1 n1 − z1 n1
Group 2 z2 n2 − z2 n2

total z n − z n

while the group labeling is random. The test statistic of choice remains
(15.3).

Problem 15.15 Write down the contingency table (in general form) using
the notation of Section 15.2.

15.3.1 Permutation P-Value

Regardless of the test statistic that is chosen, the corresponding p-value
is obtained under the null model. Since the group sizes are set, the null
model amounts to permuting the labels. This procedure is an example of
re-randomization testing, developed further in Section 22.1.1.

Let Π denote the set of all permutations of the labels. There are

∣Π∣ = n!
n1!⋯ng!

such permutations in the present setting. Importantly, we permute the labels
placed on the rolls, which then yield new counts. (We do not permute
the counts.) Let T be a test statistic whose large values provide evidence
against the null hypothesis. We let t denote the observed value of T and,
for a permutation π ∈ Π, we let tπ denote the value of T applied to the
corresponding permuted data. Then the permutation p-value is defined as

pvperm ∶=
#{π ∶ tπ ≥ t}

∣Π∣ . (15.4)

Proposition 15.16. The permutation p-value (15.4) is a valid p-value in
the sense of (12.12).

Problem 15.17 Prove Proposition 15.16. [The conclusions of Problem 8.53
will prove useful.]
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Monte Carlo Estimation
Unless the group sizes are very small, ∣Π∣ is impractically large, and this
leads one to estimate the p-value by sampling permutations uniformly at
random from Π. This may be called a Monte Carlo permutation p-value.
The general procedure is detailed in Algorithm 15.2.

Algorithm 15.2 Monte Carlo Permutation p-value

Input: data ω, test statistic T , group Π of permutations that leave the null
invariant, number of Monte Carlo samples B
Output: an estimate of the p-value

Compute t = T(ω)
For b = 1, . . . , B

draw πb uniformly at random from Π
permute ω according to πb to get ωb

compute tb = T(ωb)
Return

p̂vperm ∶=
#{b ∶ tb ≥ t} + 1

B + 1
. (15.5)

Proposition 15.18. The Monte Carlo permutation p-value (15.5) is a valid
p-value in the sense of (12.12).

Problem 15.19 Prove this proposition. [The conclusions of Problem 8.53
will prove useful.]

Problem 15.20 In R, write a function that implements Algorithm 15.2.
Apply your function to the data in Table 15.2.

Remark 15.21 (Conditional inference) This proposition holds true also in
the setting of Section 15.2. The use of a permutation p-value there is an
example of conditional inference, which is discussed in Section 22.1.

15.4 Matched-Pairs Experiments

Consider a randomized matched-pairs design where two treatments are
compared (Section 11.2.5). The outcome is binary (‘success’ or ‘failure’).
The sample is of the form (ω11, ω21), . . . , (ωn1, ωn2), where ωi j is the
response from the subject in pair i that received Treatment j, with ωi j = 1
indicating success. If no other information on the subjects is taken into
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account in the analysis, the data can be summarized in a 2-by-2 contingency
table (Table 15.4) displaying the counts

yst ∶= Yst(ω) ∶= #{i ∶ (ωi1, ωi2) = (s, t)}.

IID Assumption
At this point we cannot claim that the counts are jointly sufficient. This
is the case, however, in a situation where the pairs can be assumed to be
sampled uniformly at random from a population. In that case, the pairs can
be taken to be iid and we may define θst as the probability of observing the
pair (s, t). The treatment (one-sided) effect is defined as θ10 − θ01. The null
hypothesis of no treatment effect is θ10 = θ01.

It is rather natural to ignore the pairs where the two subjects responded
in the same way and base the inference on the pairs where the subjects
responded differently, which leads to rejecting for large values of Y10 − Y01

while conditioning on (Y11,Y00). After all, (Y10 − Y01)/n is unbiased for
θ10 − θ01. This is the McNemar test [128] and it is known to be uniformly
most powerful among unbiased tests (UMPU) in this situation.

R corner McNemar’s test is implemented in the function mcnemar.test.

Problem 15.22 Argue that rejecting for large values of Y10 − Y01 given
(Y11,Y00) is equivalent to rejecting for large values of Y10 given (Y11,Y00).
Further, show that given (Y11,Y00) = (y11, y00), Y10 has the binomial
distribution with parameters k ∶= n − y11 − y00 and p ∶= θ10/(θ10 + θ01).
Conclude that the McNemar test reduces to testing p = 1/2 in a binomial
experiment with parameters (k, p).
Problem 15.23 Is the McNemar test the LRT in the present context?

Remark 15.24 (Observational studies) Although we worked in the context
of a randomized experiment, the test may be applied in the context of an
observational study with the caveat that the conclusion is conservatively

Table 15.4 A prototypical contingency table summarizing the
result of a matched-pairs experiment with two possible out-
comes.

Treatment B
Success Failure

Treatment A Success y11 y10
Failure y01 y00
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understood as being in terms of association instead of causality. (Domain-
specific expertise is often needed to determine whether the iid assumption
is reasonable in a particular observational study.)

Beyond the IID Assumption
In some situations it may not be realistic to assume that the pairs constitute a
representative sample from a population. Even then, a permutation approach
remains valid due to the initial randomization. The key observation is that, if
there is no treatment effect, thenωi1 andωi2 are exchangeable by design. The
idea then is to condition on the observed ωi j and permute within each pair.
Then, under the null hypothesis, any such permutation is (conditionally)
equally likely, and this is exploited in the derivation of a p-value. This
procedure is again an example of re-randomization testing (Section 22.1.1).

In more detail, a permutation in the present context transforms the
(observed) data,

(ω11, ω12), . . . , (ωn1, ωn2),

into

(ω1π1(1), ω1π1(2)), . . . , (ωnπn(1), ωnπn(2)),

with (πi(1), πi(2)) = (1,2) or = (2,1) for each i. Let Π denote the class of
π = (π1, . . . , πn) where each πi is a permutation of {1, 2}. Note that ∣Π∣ = 2n.

Suppose we still reject for large values of T ∶= Y10 − Y01, which after all
remains appropriate. The observed value of this statistic is t ∶= y10 − y01.
Let tπ denote the value of this statistic computed on the data permuted by
applying π ∈ Π. Then the permutation p-value is defined as in (15.4).

Proposition 15.25. This is a valid p-value in the sense of (12.12).

Problem 15.26 Prove this proposition. [The conclusions of Problem 8.53
will prove useful.]

Computing this p-value may be challenging, as there are many possible
permutations and one would in principle have to consider every single one
of them. Luckily, this is not necessary.

Problem 15.27 Find an efficient way of computing the p-value.

Problem 15.28 Show that, in fact, this permutation test is equivalent to the
McNemar test.
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15.5 Fisher’s Exact Test

Fisher 13 describes in [63] a now famous experiment meant to illustrate his
concept of null hypothesis. The setting is that of a lady who claims to be
able to distinguish whether milk or tea was added to the cup first. To test
her professed ability, she is given 8 cups of tea, in four of which milk was
added first. With full information on how the experiment is being conducted,
she is asked to choose 4 cups where she believes milk was poured first. The
resulting counts, reproduced from Fisher’s original account, are displayed
in Table 15.5.

Table 15.5 The columns are labeled by the liquid that was
poured first (milk or tea) and the rows are labeled by the lady’s
guesses.

Truth

Lady’s guess Milk Tea

Milk 3 1
Tea 1 3

The null hypothesis is that of no association between the true order of
pouring and the woman’s guess, while the alternative is that of a positive
association.56 In particular, under the null hypothesis, the lady is purely
guessing and so her guesses are independent of the truth. This gives the null
distribution, which leads to a permutation p-value.

Remark 15.29 Thus, a p-value is obtained by permutation, exactly as in
Section 15.3, because here too the total counts are all fixed. However, the
situation is not exactly the same. The difference is subtle: here, all the totals
are fixed by design; there, the totals are fixed because of the focus on the
subjects in the study.

In such a 2 × 2 setting, it is possible to test for a positive association.
Indeed, first note that, since the margin totals are fixed (all equal to 4), the
number in the top-left corner (‘milk’, ‘milk’) determines all the others, so
it suffices to consider this number (which is obviously sufficient). Now,
clearly, a large value of that number indicates a positive association. This
leads us (and Fisher before us) to rejecting for large values of this statistic.

56 If an alternative of no association is preferred, a two-sided test results.
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Consider a general 2 × 2 setting, where there are n cups, with k of them
receiving milk first. The lady is to select k cups that she believes received
the milk first. Then the contingency table would look something like this

Truth

Lady’s guess Milk Tea Total

Milk y11 y12 k
Tea y21 y22 n − k

Total k n − k n

The test statistic is Y11, whose large values weigh against the null
hypothesis, and the resulting test is often referred to as Fisher’s exact
test.

Problem 15.30 Prove that, under the null hypothesis, Y11 is hypergeometric
with parameters (k, k,n − k).

Thus, computing the p-value can be done exactly, without having to
enumerate all possible permutations.

Problem 15.31 Derive the p-value for the original experiment in closed
form, and confirm your answer numerically using R.

R corner Fisher’s exact test is implemented in the function fisher.test.

Remark 15.32 Fisher’s test can be applied in the context of Section 15.3,
and doing so is an example of conditional inference (Section 22.1).

15.6 Association in Observational Studies

Consider the poll summarized in Table 15.6 and depicted as a segmented
bar chart in Figure 15.3. The description of the polling procedure that
appears on the website, and additional practical considerations, lead one to
believe that the interviewees were selected without a priori knowledge of
their political party affiliation. We will assume this is the case.

It is safe to assume that one of the main reasons for collecting these data
is to determine whether there is an association between party affiliation and
views on climate change, and the steps that the US Government should take
to address this issue, if any.57

57 The entire poll questionnaire, not shown here, includes other questions related to
climate change. We refer the reader to the original source: https://www.cbsnews.com/
news/global-warming-and-the-paris-climate-change-conference/
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Table 15.6 New York Times – CBS News poll of 1030 adults in
the US (November 18–22, 2015). “Do you think the US should
or should not join an international treaty requiring America to
reduce emissions in an effort to fight global warming?”

Should Should not Other

Republicans 42% 52% 6%
Democrats 86% 9% 5%
Independents 66% 25% 9%

Republicans Democrats Independents

Other
Should ot
Should

Figure 15.3 A segmented bar chart of the data appearing in Table 15.6.

More formally, a lack of association in such a setting is modeled as
independence. The variables here are A for ‘party membership’, equal to
either ‘Republican’, ‘Democrat’, or ‘Independent’; and B for ‘opinion’,
equal to either ‘should’, ‘should not’, or ‘other’.

Remark 15.33 (Factors) In statistics, a categorical variable is often called
a factor and the values it takes are called levels. Thus, A is a factor with
levels {‘Republican’, ‘Democrat’, ‘Independent’}.

The raw data here is of the form {(ai,bi) ∶ i = 1, . . . ,n}, where n = 1030
is the sample size. Table 15.6 provides the percentages. We are told that
there were 254 republicans, 304 democrats, and 472 independents. With
this information, we can recover the table of counts up to rounding error.
See Table 15.7.

An abstract model for the present setting is that of an experiment where
two dice are rolled together n times. Die A has faces labeled 1, . . . ,ma, while
Die B has faces labeled 1, . . . ,mb. (As before, the labeling by integers is
for convenience, as the faces could be labeled by any other symbols.) The
outcome of the experiment is ω = ((a1,b1), . . . , (an,bn)).
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Table 15.7 The table of counts corresponding to the poll
summarized in Table 15.6.

Should Should not Other

Republicans 107 132 15
Democrats 261 27 15
Independents 312 118 42

Define the cross-counts as

yst ∶= Yst(ω) ∶= #{i ∶ (ai,bi) = (s, t)}.

Assuming the rolls are iid, which we do, these counts are jointly sufficient,
and have the multinomial distribution with parameters n and (θst), where θst

is the probability that a roll results in (s, t). These counts are often displayed
in a contingency table.

If (A,B) denotes the result of a roll, the task is testing for the
independence of A and B. Under (θst), A has (marginally) the multinomial
distribution with parameters n and (θas), while B has (marginally) the
multinomial distribution with parameters n and (θbs), where

θas ∶=
mb

∑
t=1
θst , θ

b
t ∶=

ma

∑
s=1
θst .

The null hypothesis of independence can be formulated as

H0 ∶ θst = θasθbt , for all (s, t) ∈ {1, . . . ,ma} × {1, . . . ,mb}.

Remark 15.34 Contrast the present situation with that of Section 15.3,
where only the null distribution is modeled.

Remark 15.35 (k ≥ 3 variables) We focus on two discrete variables,
but what follows extends without conceptual difficulty to any number of
discrete random variables. When there are k factors with m1, . . . ,mk levels,
respectively, the counts are simply organized in a m1 ×⋯ ×mk array. The
methodology developed below applies with only obvious changes to testing
whether the variables are mutually independent. But when there are k ≥ 3
variables, other questions can be considered, for example, whether the two
variables are independent conditional on the remaining variables.
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15.6.1 Likelihood Ratio

Recall that (yst) denotes the observed counts. Based on these, define the
proportions θ̂st = yst/n, the marginal counts

ya
s =

mb

∑
t=1

yst, yb
t =

ma

∑
s=1

yst,

and the corresponding marginal proportions θ̂as = ya
s/n and θ̂bt = yb

t /n.

Problem 15.36 Show that the likelihood ratio in the variant (12.10) is equal
to

ma

∏
s=1

mb

∏
t=1
( θ̂st

θ̂as θ̂
b
t
)

yst

,

Taking the logarithm, this becomes
ma

∑
s=1

mb

∑
t=1

yst log( yst

ya
syb

t /n
) , (15.6)

and dividing by n, this becomes
ma

∑
s=1

mb

∑
t=1
θ̂st log( θ̂st

θ̂as θ̂
b
t
) .

The LRT rejects for large values of this statistic.

Problem 15.37 (Estimated expected counts) Justify calling ya
sy

b
t /n the

estimated expected count for (s, t).
Remark 15.38 (Deterministic or random group sizes) Compare (15.3) and
(15.6). They are identical as functions of the counts. This is rather surprising,
perhaps shocking, given that the statistic is rather peculiar and the counts
are, at first glance, quite different. Although in both cases the counts are
organized in a table, in Section 15.2 they are indexed by (value, group),
while in the present section they are indexed by (A value, B value). This
can be explained by viewing ‘group’ in the setting of Section 15.2 as a
variable. Indeed, from this perspective the only difference between the two
settings is that, in Section 15.2, the group sizes are predetermined, while
here they are random. The fact that the likelihood ratios coincide can be
explained by the fact that the group sizes are not informative. However,
despite the fact that they are the same, the corresponding p-value is derived
in (slightly) different ways. See below. Even then, the use of the p-value of
Section 15.2 in the present context could be justified based on conditional
inference (Section 22.1).
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15.6.2 Bootstrap P-Value

In Section 15.2.3, we presented a form of bootstrap tailored to the situation
there. The situation is a little different here since the group sizes are not
predetermined and another form of bootstrap is more appropriate. In the
end, however, these two methods will yield similar p-values as long as the
sample sizes are not too small.

The motivation for using a bootstrap approach is the same. Indeed, if
we were given the marginal distributions, (θas) and (θbt ), we would simply
sample their product, as this is the null distribution in the present situation.
However, these distributions are not available to us, but we have estimates,
(θ̂as) and (θ̂bt ), and the bootstrap method consists in estimating the p-value
by Monte Carlo simulation by repeatedly sampling from the corresponding
product distribution, θ̂st ∶= θ̂as θ̂bt , which is our estimate for the distribution
under the null hypothesis.

Problem 15.39 In R, write a function which takes as input the matrix of
observed counts and the number of bootstrap samples to be drawn, and
returns an estimate of the p-value. Apply your function to the dataset of
Table 15.7.

15.6.3 Simpson’s Paradox

In Problem 2.42, we saw that inequalities involving probabilities could be
reversed when conditioning. This has consequences in real life.

Example 15.40 (Berkeley admissions) In 1973, the Graduate Division at
the University of California, Berkeley, received a number of applications.
Ignoring incomplete applications, there were 8442 male applicants of whom
3738 were admitted (44%), compared with 4321 female applicants of whom
1494 were admitted (35%). The difference is not only statistically highly
significant but also substantial with a difference of almost 10% in the
admission rate when comparing men and women. This appeared to be
damning evidence of gender bias. However, a breakdown of admission rates
by department revealed a much more nuanced picture, where in fact few
departments showed any significant difference in admission rates. In the
end, the authors of [15] concluded that there was little evidence for gender
bias, and that the numbers could be transparently explained by the fact that
women tended to apply to departments with lower admission rates.58

58 The authors did not publish the entire dataset for reasons of privacy and university
policy, but the published data are available in R as UCBAdmissions.
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Example 15.41 (Race and death-penalty) Consider the following table,
taken from [146], which examined the issue of race in death penalty
sentences in murder cases in the state of Florida from 1976 through 1987:

defendant death (yes/no)

Caucasian 53/430
African-American 15/176

Thus, in the aggregate, Caucasians were more likely to be sentenced to the
death penalty. However, after stratifying by the race of the victim, the table
becomes:

Victim Defendant Death (yes/no)

Caucasian Caucasian 53/414
Caucasian African-American 11/37
African-American Caucasian 0/16
African-American African-American 4/139

Thus, in the disaggregate, African-Americans were more likely to be
sentenced to the death penalty, particularly in cases where the victim was
Caucasian.

This type of (Simpson) reversal is not uncommon in practice. Hence, the
analyst needs to use extreme caution when deriving causal inferences based
on observational data, or any other situation where randomization was not
properly applied, as this can easily lead to confounding. (In Example 15.40,
a confounder is the department, while in Example 15.41, a confounder is
the victim’s race.)

15.7 Tests of Randomness

Consider an experiment where the outcome is a sequence of symbols of
length n, denoted ω = (ω1, . . . , ωn), with ωi ∈ Ωo.

In Section 15.1, we focused on the situation where this sequence is
the result of drawing repeatedly from an unknown distribution, and that
distribution was then the object of our interest. We now turn to the question
of whether the sequence was generated iid from some distribution. When this
is the case, the sequence is said to be ‘random’, and procedures addressing
this question are called tests of randomness.59

59 This terminology is rather confusing. Indeed, as we saw in Section 9.1 with Markov
chains, a sequence of random variables can be random (i.e., not deterministic) and not be iid.
We only use this terminology because it is well-established.
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The question of interest is whether the distribution that generated ω,
denoted P, is the product of its marginals, and whether these marginals are
all the same. Let P0 denote the class of iid distributions on Ω ∶= Ωn

o, so that
any P ∈ P0 must be of the form P⊗n

o for some distribution Po on Ωo. We want
to test the null hypothesis that P ∈ P0.

Example 15.42 (Binary setting) In a binary setting whereΩo has cardinality
2 and is taken to be {0,1} without loss of generality, P0 is the family of
Bernoulli trials of length n.

IID-ness vs Independence
We are testing iid-ness and not independence. In fact, testing for inde-
pendence is ill-posed without further restricting the model. To see this,
suppose the outcome is ω = (ω1, . . . , ωn). This could have been the result of
sampling from the point mass at ω, for which independence trivially holds,
and the available data, ω, are clearly not enough to discard this possibility.

IID-ness vs Exchangeability
P is exchangeable if it is invariant with respect to permutation, meaning
that, for any permutation π = (π1, . . . , πn) of (1, . . . ,n), P(ω) = P(ωπ),
where ωπ ∶= (ωπ1 , . . . , ωπn). As we know, this property is more general than
iid-ness, but it turns out that the available data, ω, are not sufficient to tell
the two apart. For illustration, we place ourself in the binary setting of
Example 15.42. Within that setting, consider the distribution P where, with
probability 1/2, we generate an iid sequence of length n from Ber(1/4),
while with probability 1/2, we generate an iid sequence of length n from
Ber(3/4). Thus, P here is not an iid distribution. However, the outcome will
be a realization of an iid distribution – either Ber(1/4)⊗n or Ber(3/4)⊗n.

Thus, what we can hope to test is exchangeability. (That said, to adhere
to tradition, we will use ‘randomness’ in place of ‘exchangeability’.) The
tests that follow all take a conditional inference approach by conditioning
on the values of the ωi without regard to their order. This leads to obtaining
their p-values by permutation.

We present, below, a few of randomness that are tailored to the discrete
setting. Such tests are important for evaluating the accuracy of a generator
of pseudo-random numbers. Examples include the DieHard and DieHarder
suites of George Marsaglia and Robert Brown, and some tests developed by
the US National Institute of Standards and Technology (NIST) [158].

R corner In R, some of these tests are available in the RDieHarder package.
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15.7.1 Tests based on Runs

Some tests of randomness are based on runs, where a run is a sequence
of identical symbols. Take the binary setting and consider the following
outcome sequence (of length n = 20 here) where there are 9 runs in total:

1
134

000
134

1
134

0000
134

1111
134

0
134

1
134

00
134

111
134

Number of Runs Test
This test rejects for small values of the total number of runs. Intuitively, a
small number of runs indicates less ‘mixing’. The test dates back to Wald
and Wolfowitz [197], who proposed the test for the purpose of two-sample
goodness-of-fit testing (Section 17.3.4).

Problem 15.43 The conditional null distribution of this statistic is known in
closed form in the binary setting. To derive this distribution, first consider the
number of 0-runs. (There are 4 such runs in the sequence displayed above.)
Derive its null distribution. Then use that to derive the null distribution of
the total number of runs.

Problem 15.44 What kinds of alternatives do you expect this test to be
powerful against? What would be a two-sided version of this test?

Longest Run Test
This test rejects for large values of the length of the longest run (equal to
4 in the sequence displayed above). Intuitively, the presence of a long run
indicates less ‘mixing’. The test is due to Mosteller [134].

Remark 15.45 (Erdős–Rényi Law) The conditional null distribution of this
statistic, denoted Ln, is not known in an amiable form, although it can be
estimated by Monte Carlo permutation in practice. However, the asymptotic
behavior of Ln under the unconditional null is well-understood, at least
in the binary setting. The first-order behavior was derived by Erdös and
Rényi [59], which in the context of Bernoulli trials with parameter θ is given
by

Ln

log n
PI→ 1

log(1/θ) , as n→∞.

(Although Ln does not have a limiting distribution, it has a family of limiting
distributions [6].)

Problem 15.46 What kinds of alternatives do you expect this test to be
powerful against? What would be a two-sided version of this test?
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15.7 Tests of Randomness 225

15.7.2 Tests based on Transitions

The following class of tests are designed with Markov chain alternatives
in mind. The simplest such test is based on counting transitions a → b,
meaning instances where (ωi, ωi+1) = (a,b), where a,b ∈ Ωo. The test
consists in computing a test statistic for independence applied to the pairs

(ω1, ω2), (ω2, ω3), . . . , (ωn−1, ωn),

and then obtaining a p-value by permutation (which is typically estimated
by Monte Carlo, as usual).

Problem 15.47 In R, write a function that takes in the observed sequence
and a number of Monte Carlo replicates, and outputs the p-value just
described. Compare this procedure with the number-of-runs test in the
binary setting.

Problem 15.48 In the binary setting, perform some numerical simulations
to evaluate the power of this procedure against a distribution corresponding
to starting at 0 or 1 with probability 1/2 each (which is the stationary
distribution) and then running the Markov chain with the following transition
matrix n − 1 times

( q 1 − q
1 − q q

)

(i) Show that the resulting distribution is exchangeable if and only if
q = 1/2. (In fact, in that case the distribution is iid.)

(ii) Evaluate the power by applying the procedure of the previous problem
to various settings: try n ∈ {10, 102, 103} and for each n choose a grid
of values for q in [1/2,1] so that a transition from powerless to
powerful as q decreases towards 1 is clearly visible. Repeat each
setting 103 times. Draw a power curve for each n. (Note that, as q
approaches 0, the sequence is more and more mixed.)

Problem 15.49 The test procedures described here are based on first-order
transitions (of the form a→ b). How would test procedures based on second-
order transitions look like? Implement such a procedure in R, and apply it
to the setting of the previous problem.
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226 Multiple Proportions

15.8 Further Topics

15.8.1 Pearson’s Approximation

Before the advent of computers, computing logarithms was not trivial.
Karl Pearson60 (1857–1936) suggested an approximation to the log LRs
appearing in (15.1) and (15.3) that could be computed using simpler
calculations [141].

Take (15.1) for simplicity. Pearson’s approximation is based on two facts:

(i) Under the null hypothesis, θ̂s →P θ0,s as the sample size increases
(due to the Law of Large Numbers), and this is true for all s.

(ii) Based on a Taylor development of the logarithm,

x log(x/x0) = x − x0 +
(x − x0)2

2x0
+O(x − x0)3,

when x→ x0 > 0.

Problem 15.50 Use these facts to show that, under the null hypothesis,
m

∑
s=1

Ys log( Ys

nθ0,s
) = (1/2 + Rn)

m

∑
s=1

(Ys − nθ0,s)2

nθ0,s
,

where Rn is an unspecified term that converges to 0 in probability as n→∞.
The sum of the right-hand side is Pearson’s statistic.

15.9 Additional Problems

Problem 15.51 Another reasonable way to obtain a test statistic in the
context of Section 15.1 is to come up with an estimator θ̂ for θ (for example
the MLE) and use as test statistic L(θ̂, θ0), where L is some predetermined
loss function, e.g., L(θ, θ0) = ∥θ − θ0∥2, where ∥ ⋅ ∥ denotes here the
Euclidean norm. In R, perform some simulations to compare the resulting
test with the Pearson test of Section 15.8.1.

Problem 15.52 (Daily 3 lottery) The Daily 3 is a lottery game run by
the State of California. Each day of the year, three digits are drawn
independently and uniformly at random from {0, . . . ,9}. Note that the
order matters. According the website: “The draws are conducted using an
Automated Draw Machine, which is a state-of-the-art computer used to
draw winning numbers.”

60 This is the father of Egon Pearson 55.
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• Independent digits Suppose we are willing to assume that the digits are
generated independently. The question that remains, then, is whether they
are generated uniformly at random.

• Independent daily draws Suppose we are not willing to assume a
priori that the digits are generated independently, but we are willing
to assume that the daily draws (each consisting of 3 digits) are generated
independently.

In both situations, test for uniformity using the function of Problem 15.7
based on all past winning numbers.61

Problem 15.53 (continued) Although the second test makes fewer assump-
tions, it is not necessarily better than the first test in terms of power. Indeed,
while by construction the first test is insensitive to any dependency between
the digits in a draw, it is more powerful than the second test if there is no
such dependency. Perform some numerical simulations to probe this claim.

Problem 15.54 Consider a goodness-of-fit situation with m possible values
for each trial and assume that n trials are performed. Suppose we want to
test

H0 ∶ the distribution is uniform,

versus

H1 ∶ the distribution has support of size ⌊m/2⌋.

These hypotheses are seemingly quite ‘far apart’, but in fact this really
depends on how large m is compared to n.

(i) Show that, if m,n→∞ with n≪
√

m, then no test has any power in
the limit, meaning that any level α test has limiting power at most α.

(ii) Confirm this with numerical experiments. In R, perform some
simulations to evaluate the power of the LRT. Set the level at α = 0.01.
Try m ∈ {102,103,104} and n = ⌊

√
m⌋.

Problem 15.55 (Group sizes and power) Consider a simple setting where
we want to compare two coins in terms of their chances of landing heads.
Coin j is a θ j-coin and is tossed nj times, for j ∈ {1, 2}. Fix the total sample
size at n = n1 + n2 = 100. Also, fix θ1 at 1/2. For n2 ∈ {10,20,30,40,50},
evaluate the power of the LRT as a function of θ2 carefully chosen on a grid
that changes with n2. A possible way to present the results is to set the level
at α = 0.10 and draw the (estimated) power curve as a function of θ2 for
each n2.

61 https://calottery.com/play/draw-games/daily-3
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228 Multiple Proportions

Problem 15.56 (The number π) The digits defining π in base 10 behave very
much like a sequence of iid random variables from the uniform distribution
on {0, . . . ,9}. Consider the first n = 20000 digits.62

(i) Ignoring the order, could these numbers be construed as a sample
from the uniform distribution?

(ii) Taking the order into account, do these numbers ‘look like’ they were
sampled iid from some distribution?

Problem 15.57 (Gauss–Kuzmin distribution) Let X be uniform in [0,1]
and let (Km) denote the coefficients in the continued fraction expansion of
X, meaning that

X = 1
K1 + 1

K2+...
.

Then (Km) converges weakly to the Gauss-Kuzmin distribution, defined by
its mass function

f (k) ∶= − log2 (1 − 1/(k + 1)2), for k ≥ 1.

(log2 denotes the logarithm in base 2.) Perform some simulations in R to
numerically corroborate this statement.

Problem 15.58 (Racial discrimination in the labor market) The article [13]
describes an experiment where resumés are sent in response to real job
ads in Boston and Chicago with randomly assigned African-American- or
White- sounding names. Look at the data summarized in Table 1 of that
paper. Identify and then apply the most relevant testing procedure introduced
in the present chapter.

Problem 15.59 (Proportions test) The authors of [13] used a procedure not
introduced in the present chapter called the proportions test, which is based
on the fact that the difference of the sample proportions is approximately
normal. In general, consider an experiment as in Table 15.3. Define Z̄ j =
Zj/nj and Z̄ = (Z1 + Z2)/(n1 + n2). Show that, under the null hypothesis,

Z̄1 − Z̄2√
Z̄(1 − Z̄)(1/n1 + 1/n2)

LI→ N(0,1),

in the large-sample limit where n1 and n2 diverge to infinity. Based on this,
obtain a p-value. (Note that the p-value will only be valid in the large-sample
limit.) Apply the resulting testing procedure to the data of Table 1 in [13].
[In R, this test is implemented in the prop.test function.]

62 Available at https://oeis.org/A000796/b000796.txt
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15.9 Additional Problems 229

Problem 15.60 Consider drawing n times without replacement from an
urn with v j balls marked with the number j, where j ∈ {1, . . . ,m}. Let Yj

denote the number of times that a ball numbered j was drawn. Show that
(Y1, . . . ,Ym) is sufficient for (v1, . . . , vm). Assume that the total number of
balls in the urn, v ∶= v1 + ⋯ + vm, is known. Can you derive the MLE for
(v1, . . . , vm)?
Problem 15.61 (Sequential permutation test) Computing a permutation p-
value is typically a very heavy burden, and is often out of reach. In that case,
one resorts to Monte Carlo sampling to estimate the permutation p-value,
but in situations where the rejection level is quite small (as is typically the
case in multiple testing, see Chapter 20), this requires sampling very many
permutations, which can also be costly. Can you see a way of operating
sequentially, as in Section 14.4.1, so that if there is early evidence that the
p-value is small/large the test rejects/accepts before sampling the a priori
required number of permutations? For background, see [117].
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One Numerical Sample

We consider, in this chapter, an experiment that yields real-valued data. We
model such data as a sample of independent and identically distributed (real-
valued) random variables, X1, . . . ,Xn, with common distribution denoted P,
having distribution function F, and density f when absolutely continuous.
We will let x1, . . . , xn denote a realization of X1, . . . ,Xn, and denote X = Xn =
(X1, . . . ,Xn) and x = xn = (x1, . . . , xn), the latter gathering the observed data.
Throughout, we will let X denote a generic random variable with distribution
P. The distribution P is assumed to belong to some class of distributions
on the real line, which will be taken to be all such distributions whenever
that class is not specified. The goal, as usual, is to infer this distribution, or
some of its features, from the observed data.

Example 16.1 (Exoplanets) The Extrasolar Planets Encyclopaedia (acces-
sible online at https://exoplanet.eu/) offers a catalog of confirmed
exoplanets together with some characteristics of these planets (e.g., mass).

Remark 16.2 There is a statistical model in the background, (Ω,Σ,P),
which will be left implicit, except that P ∈ P will be used on occasion to
denote the (true) underlying distribution.

16.1 Order Statistics

Order X1, . . . ,Xn to get the so-called order statistics, typically denoted

X(1) ≤ ⋯ ≤ X(n).

In particular, X(1) = min(X1, . . . ,Xn) and X(n) = max(X1, . . . ,Xn). Each
X(k) is indeed a bona fide statistic since it is a function of X.

Problem 16.3 Derive the distribution of the random vector (X1, . . . ,Xn)
given that (X(1), . . . ,X(n)) = (y1, . . . , yn), where y1 ≤ ⋯ ≤ yn. [Note that this
distribution only depends on (y1, . . . , yn).]

230
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16.2 Empirical Distribution 231

This proves that the order statistics are jointly sufficient, regardless of the
assumed statistical model. That the order statistics are sufficient is intuitively
clear. Indeed, when reducing the sample to the order statistics, all that is
lost is the order, and that order does not carry any information because the
sample is assumed to be iid.

Problem 16.4 Show that, if the underlying distribution P is continuous,
then X1, . . . ,Xn are all distinct with probability 1, implying in particular that,
with probability 1,

X(1) < ⋯ < X(n).

16.2 Empirical Distribution

The empirical distribution is defined as the uniform supported on the sample
itself, {x1, . . . , xn}, meaning

P̂x(A) ∶=
#{i ∶ xi ∈ A}

n
, for A ⊂ R. (16.1)

We remark that a sample of size k can be generated from P̂x by sampling
uniformly at random with replacement k times from {x1, . . . , xn}.
R corner In R, the function sample can be used to sample (with or without
replacement) from a finite set, where a finite set is represented by a vector.

As a function of X1, . . . ,Xn, P̂X is a random distribution on the real line.
(We sometimes drop the subscript in what follows.)

Problem 16.5 (Consistency of the empirical distribution) Using the Law of
Large Numbers, show that, for any Borel set A ∈B,

P̂Xn(A)
PI→ P(A), as n→∞. (16.2)

16.2.1 Empirical Distribution Function

The empirical distribution function is the distribution function of the
empirical distribution defined in (16.1), and is given by

F̂x(x) ∶=
1
n

n

∑
i=1
{xi ≤ x}.

See Figure 16.1 for an illustration.

R corner The function ecdf takes a sample (in the form of a numerical
vector) and returns the empirical distribution function.
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232 One Numerical Sample

Problem 16.6 When the observations are all distinct, show that F̂x is a step
function jumping an amount of 1/n at each xi, and

F̂x(x(i)) =
i
n
, for all i = 1, . . . ,n.

In general, if x(i−1) < x(i) = ⋯ = x(i+k−1) < x(i+k), then F̂x jumps an amount
of k/n at x(i)

Seen as a function of X1, . . . ,Xn, F̂X is a random distribution function.
(We sometimes drop the subscript in what follows.)

Problem 16.7 (Consistency of the empirical distribution function) Using
the Law of Large Numbers, show that, for any x ∈ R,

F̂Xn(x)
PI→ F(x), as n→∞. (16.3)

Thus, the empirical distribution function is a pointwise consistent
estimator of the distribution function. In fact, the convergence is uniform
over the whole real line.

Theorem 16.8 (Glivenko–Cantelli Theorem63). In the present context of
an empirical distribution function based on an iid sample of size n with
distribution function F, denoted Xn,

sup
x∈R
∣F̂Xn(x) − F(x)∣ PI→ 0, as n→∞.
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Figure 16.1 A plot of the empirical distribution function of a sample of size n = 20
drawn from the standard normal distribution.

63 Named after Valery Glivenko (1897–1940) and Cantelli 33.
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16.2 Empirical Distribution 233

In fact, the convergence happens at the
√

n rate.

Theorem 16.9 (Dvoretzky–Kiefer–Wolfowitz [55]). In the context of
Theorem 16.8, assuming that F is continuous, for all t ≥ 0,

P( sup
x∈R
∣F̂Xn(x) − F(x)∣ ≥ t/

√
n) ≤ 2 exp(−2t).

Remark 16.10 (Continuous interpolation) Even if the underlying distri-
bution function is continuous, its empirical counterpart is a step function.
For this reason, it is sometimes preferred to use a continuous variant of the
empirical distribution function. A popular one is the function that linearly
interpolates the points

(x(1),1/n), (x(2),2/n), . . . , (x(n),1).

(This assumes the observations are distinct.) The function can be defined
to take the value 1 at x > x(n), but it is not clear how to define this function
at x < x(1). An option is to define it as 0 there, but in case the resulting
function is discontinuous at x(1). If the underlying distribution is known to
be supported on the positive real line, for example, then the function can be
made to linearly interpolate (0,0) and (x(1),1/n), and take the value 0 at
x < 0.

16.2.2 Empirical Quantile Function

The empirical quantile function is simply the quantile function of the
empirical distribution, or equivalently, the pseudo-inverse defined in (3.9)
of the empirical distribution function. (If one prefers the variant of the
empirical distribution function defined in Remark 16.10, then its pseudo-
inverse should be preferred also.)

Problem 16.11 The function quantile in R computes quantiles in a number
of ways. In fact, the method offers no fewer than 9 ways of doing so.

(i) What type of quantile corresponds to our definition?
(ii) What type of quantile corresponds to the pseudo-inverse (3.12) of the

empirical distribution function?
(iii) What type of quantile corresponds to the pseudo-inverse of the

piecewise linear variant of the empirical distribution function defined
in Remark 16.10?
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234 One Numerical Sample

Remark 16.12 When the observations are distinct, according to the
definition given in (3.11), x(i) is a u-quantile of the empirical distribution
for any (i − 1)/n ≤ u ≤ i/n.

Problem 16.13 (Consistency of the empirical quantile function) Show that,
at any point u where F is continuous and strictly increasing,

F̂−Xn
(u) PI→ F−(u), as n→∞,

[This is based on the consistency of F̂, see (16.3), and arguments similar to
those underlying Problem 8.49.]

16.2.3 Histogram

Assume that P has a density, denoted f . Is there an empirical equivalent
to f ? Obviously, the empirical distribution, being discrete, does not have a
density but rather a mass function.

The idea behind the construction of a histogram is to consider averages
of the mass function over short intervals so that it provides a piecewise
constant approximation to the underlying density. See Figure 16.2 for an
illustration.
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Figure 16.2 A histogram and a plot of the distribution function of the data described
in Example 16.1, meaning of the mass of 1582 exoplanets discovered in or before
2017. The mass is measured in Jupiter mass (MJup), presented here in logarithmic
scale for clarity.

This approximation turns out to be pointwise consistent under some
conditions. See Figure 16.3 for an illustration.
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Figure 16.3 Histograms of a sample of size n = 103 drawn from the standard normal
distribution with different number of bins. (The bins themselves where automatically
chosen by the function hist.)

Consider a strictly increasing sequence (ak ∶ k ∈ Z), which defines a
partition of the real line into the intervals {(ak−1,ak] ∶ k ∈ Z}, which often
called bins in the present context. Define the corresponding counts, also
called frequencies, as

yk ∶= #{i ∶ xi ∈ (ak−1,ak]}, k ∈ Z,

with the corresponding random variables being denoted (Yk ∶ k ∈ Z). We
have that Yk ∼ Bin(n, pk) with

pk ∶= F(ak) − F(ak−1),

which can therefore be estimated by p̂k ∶= yk/n.
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236 One Numerical Sample

We consider the question of consistency in the context where f is
continuous. (The discussion that follows extends without difficulty to the
case where f has a finite number of discontinuities.) In that case, if ak −ak−1

is small, then

pk = F(ak) − F(ak−1) ≈ (ak − ak−1) f (ak). (16.4)

The approximation is in fact exact to first order.
The histogram with bins defined by (ak) is the piecewise constant

function

f̂xn(x) ∶=
yk

n(ak − ak−1)
, when x ∈ (ak−1,ak].

For x ∈ (ak−1,ak],

f̂Xn(x)
PI→ pk

(ak − ak−1)
≈ f (ak), as n→∞,

where the approximation is valid when ak − ak−1 is small, as seen in (16.4).
For f̂Xn to be consistent for f , it is thus necessary that the bins become

smaller and smaller as the sample size increases. Below we let the bins
depend on n and denote (ak,n) the sequence defining the bins.

Problem 16.14 Suppose that

max
k
(ak,n − ak−1,n) → 0, with min

k
(ak,n − ak−1,n) ≫ 1/n. (16.5)

Show that, at any point x ∈ R,

f̂Xn(x)
PI→ f (x), as n→∞.

To better appreciate the crucial role that (16.5) plays, consider the regular
grid ak,n = k/n, so that all bins have size 1/n. Show that, when f (x) > 0,

P( f̂Xn(x) = 0) → 1/e, as n→∞.

Remark 16.15 (Choice of bins) Choosing the bins automatically is in
general a complex task. Often, a regular partition is chosen, for example
ak = kh, and even then, the choice of h > 0 is nontrivial. It is known that, if
the function has a bounded first derivative, a bin size of order h∝ n−1/3 is
best. Although this can provide some guidance, the best choice depends on
the underlying density, resulting in a chicken-and-egg problem.64

64 It is possible to choose the bin size h by cross-validation, as Rudemo proposes
in [157]. We provide some details in the closely related context of kernel density estimation
in Section 16.10.5.
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16.3 Inference about the Median 237

R corner The function hist computes and (by default) plots a histogram
based on the data. The function offers the possibility of manually choosing
the bins as well as three methods for choosing the bins automatically.

16.3 Inference about the Median

Recall the definition of a u-quantile of P or, equivalently, F, given in (3.11).
We called median any 1/2-quantile. In particular, by definition, x is a median
of F if (recall (3.10))

F(x) ≥ 1/2 and F̃(x) ≥ 1/2,

or, equivalently in terms of X ∼ P,

P(X ≤ x) ≥ 1/2 and P(X ≥ x) ≥ 1/2.

Problem 16.16 Show that these inequalities are in fact equalities when F is
continuous at any of its median points.

Problem 16.17 Show that the set of medians is the interval [a,b)where a ∶=
inf{x ∶ F(x) ≥ 1/2} and b ∶= sup{x ∶ F(x) = F(a)}. (Use the convention
[a,a) = {a}.) Conclude that there is a unique median if and only if the
distribution function is strictly increasing at any of its median points.

In what follows, to ease the exposition, we consider the case where there
is a unique median (denoted μ). The reader is invited to examine how what
follows generalizes to the case where the median is not unique.

16.3.1 Sample Median

We already have an estimator of the median, namely, F̂−X(1/2), which is
consistent if F is strictly increasing and continuous at μ (Problem 16.13).
Any such estimator for the median can be called a sample median. Any
reasonable definition leads to a consistent estimator.

R corner In R, the function median computes the median of a sample
based on a different definition of pseudo-inverse, specifically F̂⊖x as defined
in (3.12). Note that, if all the data points are distinct,

F̂⊖x (1/2) =
⎧⎪⎪⎨⎪⎪⎩

x(n+1)/2 if n is odd,
1
2(x(n/2) + x(n/2+1)) if n is even.
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238 One Numerical Sample

16.3.2 Confidence Interval

A (good) confidence interval can be built for the median without really
any assumption on the underlying distribution. The interval is of the form
[X(k),X(l)] for some k ≤ l chosen as functions of the desired level of
confidence.

We start with

P(X(k) ≤ μ ≤ X(l)) = P(X(k) ≤ μ) − P(X(l) < μ).

Let

qk ∶= Prob{Bin(n,1/2) ≥ k}.

We have

P(X(k) ≤ μ) = P(#{i ∶ Xi ≤ μ} ≥ k) ≥ qk,

because #{i ∶ Xi ≤ μ} is binomial with success probability P(X ≤ μ) ≥ 1/2,
and similarly,

P(X(l) < μ) = P(#{i ∶ Xi < μ} ≥ l) ≤ ql,

because P(X < μ) ≤ 1/2. Thus,

P(X(k) ≤ μ ≤ X(l)) ≥ qk − ql.

Hence, [X(k),X(l)] is a confidence interval for μ at level qk − ql. Choosing k
as the largest integer such that qk ≥ 1 − α/2 and l the smallest integer such
that ql ≤ α/2, we obtain a (1 − α)-confidence interval for μ.

Problem 16.18 (One-sided interval) Derive a one-sided (1−α)-confidence
interval for the median following the same reasoning.

Problem 16.19 In R, write a function that takes as input the data points,
the desired confidence level, and the type of interval, and returns the
corresponding confidence interval for the median. Try your function on
a sample of size n ∈ {10,20,30, . . . ,100} from the exponential distribution
with rate 1. Repeat each setting N = 200 times and plot the average length
of the confidence interval as a function of n.

16.3.3 Sign Test

Suppose we want to test H0 ∶ μ = μ0. In Section 12.4.7, we saw how to
derive a p-value from a procedure for constructing confidence intervals.
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Problem 16.20 In R, write a function that takes as input the data points
and μ0, and returns the p-value based on the above procedure for building a
confidence interval for the median.

Depending on what variant of the median is used, and on whether there
are observed values at the median, the resulting test procedure coincides
with, or is very close to, the following test known as the sign test. Let

Y+ = #{i ∶ Xi > μ0}, Y− = #{i ∶ Xi < μ0}, Y0 = #{i ∶ Xi = μ0}.

The test rejects for large values of S ∶= max(Y+,Y−), with the p-value
computed conditional on Y0.

Remark 16.21 The name of the test comes from looking at the sign of
Xi − μ0 and counting how many are positive, negative, or zero.

Problem 16.22 Show that, if the underlying distribution has median μ0,

P(Y+ ≥ k ∣ Y0 = y0) ≤ Prob{Bin(n − y0,1/2) ≥ k},
P(Y− ≥ k ∣ Y0 = y0) ≤ Prob{Bin(n − y0,1/2) ≥ k},

and deduce that

P(S ≥ k ∣ Y0 = y0) ≤ 2 Prob{Bin(n − y0,1/2) ≥ k}.

[This upper bound can be used to obtain a (conservative) p-value.]

Problem 16.23 Derive the sign test and its (conservative) p-value for testing
H0 ∶ μ ≤ μ0.

Problem 16.24 In R, write a function that takes in the data points and μ0,
and the type of alternative, and returns the (conservative) p-value for the
corresponding sign test.

16.3.4 Inference about a Quantile

Whatever was said thus far about estimating or testing about the median can
be extended to any u-quantile with 0 < u < 1.

Problem 16.25 Repeat for the 1st quartile what was done for the median.

Estimating the 0-quantile or the 1-quantile amounts to estimating the
boundary points of the support of the distribution.
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16.4 Possible Difficulties

We consider some emblematic situations where estimating the median is
difficult. We do the same for the mean, as a prelude to studying its inference.
In the process, we provide some insights into why inference about the mean
is much more complicated than inference for the median.

16.4.1 Difficulties with the Median

A difficult situation for inference about the median is when the underlying
distribution is flat at the median. For θ ∈ [0,1], consider the following
density

fθ(x) = (1 − θ) {x ∈ [0,1]} + θ {x ∈ [2,3]},

and let Fθ denote the corresponding distribution function.

Problem 16.26 Show that sampling from fθ amounts to drawing ξ ∼ Ber(θ)
and then drawing X ∼ Unif(0,1) if ξ = 0, and X ∼ Unif(2,3) if ξ = 1.

Problem 16.27 Show that Fθ is flat at its median if and only if θ = 1/2.
When this is the case, show that any point in [1,2] is a median. When this
is not the case, meaning when θ ≠ 1/2, show that the median is unique and
derive it as a function of θ.

Assume we have an iid sample from fθ of size n and that our goal is to
draw some inference about ‘the’ median.

Problem 16.28 Show that, when θ = 1/2 and n is odd, the sample median
belongs to [0,1] with probability 1/2, while it belongs to [2,3] with
probability 1/2.

The difficulty is only in appearance, however. Indeed, the sample median
will converge, as the sample size increases, to a median of the underlying
distribution and, more importantly, the confidence interval of Section 16.3.2
has the desired confidence no matter what, although it can be quite wide.

Problem 16.29 In R, generate a sample from fθ of size n = 101 (so it is odd)
and produce a 95% confidence interval for the median using the function of
Problem 16.19. Do that for

θ ∈ {0.2,0.4,0.45,0.49,0.5,0.51,0.55,0.6,0.8}.

Repeat each setting a few times to get a feel for the randomness.
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Remark 16.30 The situation is qualitatively the same when

fθ(x) = (1 − θ) f0(x) + θ f1(x),

with f0 and f1 being densities with disjoint supports.

16.4.2 Difficulties with the Mean

While estimating the median does not pose particular difficulties despite
some cases where it is ‘unstable’, estimating the mean poses very real
difficulties, to the point that the problem is almost ill-posed.

For a prototypical example, consider the family of densities

fθ(x) = (1 − θ) {x ∈ [0,1]} + θ {[h(θ),h(θ) + 1]},

parameterized by θ ≥ 0, where h∶R+ → R+ is some function.

Problem 16.31 Show that fθ has mean 1/2 + θh(θ).
As before, sampling from fθ amounts to generating ξ ∼ Ber(θ), and then

drawing X ∼ Unif([0,1]) if ξ = 0, and X ∼ Unif([h(θ),h(θ) + 1]) if ξ = 1.

Problem 16.32 In a sample of size n from fθ, show that the number of
points generated from Unif([0,1]) is binomial with parameters (n,1 − θ).

Consider the situation where h is such that θh(θ) → ∞ as θ → 0, and
choose θ = θn such that nθn → 0. In that case, fθn has mean 1/2 + θnh(θn) →
∞ as n→∞, while with probability tending to 1, the entire sample is drawn
from Unif([0,1]), which has mean 1/2.

Remark 16.33 A very similar difficulty is at the core of the Saint Petersburg
Paradox discussed in Section 7.10.3. We saw there that using the median
instead of the mean offers an attractive way out of the apparent paradox.

16.5 Bootstrap World

Inference about the mean may be performed using a bootstrap. The
reasoning is as follows. If we could sample from P at will, we would
be able to estimate any feature of P (including mean, median, quantiles,
etc.) by Monte Carlo simulation, and the accuracy of our inference would
only be limited by the amount of computational resources at our disposal.
Doing this is not possible since P is unknown, but we can estimate it by
the empirical distribution. This is justified by the fact that the empirical
distribution is a consistent estimator, as seen in (16.2).
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The bootstrap world is the fictitious, parallel world we construct for the
purpose of performing inference. In that world, the empirical distribution is
the underlying distribution. The accuracy of the resulting inference depends
on how strong of a parallel we can draw between the bootstrap world and
the real world.

The beauty of such a construction is that, in principle, we know everything
in the bootstrap world, since we have access to the empirical distribution,
and, in particular, we can use Monte Carlo simulations to compute any
feature of interest of that distribution – which then serves to draw some
inference on the corresponding feature of the distribution in the real world.

An asterisk ∗ next of a symbol representing some quantity is often used
to denote the corresponding quantity in the bootstrap world. For example,
if μ denotes the median, then μ∗ will denote the median of the empirical
distribution, which is none other than the empirical median. In particular,
we will use P∗ in place of P̂x in what follows to denote the empirical
distribution.

16.5.1 Bootstrap Sample

Sampling from P∗ is relatively straightforward, since it is the uniform
distribution on {x1, . . . , xn}. A sample (of same size n) drawn from the
empirical distribution is called a bootstrap sample and denoted X∗1 , . . . ,X

∗
n .

As we saw earlier, a bootstrap sample is generated by sampling with
replacement n times from {x1, . . . , xn}.
Remark 16.34 (Ties in the bootstrap sample) Even when all the observa-
tions are distinct, a bootstrap sample may include some ties.

Problem 16.35 Compute the probability that there are no ties in a bootstrap
sample when x1, . . . , xn are all distinct.

16.5.2 Bootstrap Distribution

Let T be a statistic of interest, and let PT denote its distribution (meaning, the
distribution of T(X1, . . . ,Xn)). Having observed x1, . . . , xn, resulting in the
empirical distribution P∗, the bootstrap distribution of T is the distribution
of T(X∗1 , . . . ,X∗n ). We denote this distribution by P∗T . It is used to estimate
the distribution of T .

In practice, only rarely can we obtain P∗T in closed form. Instead, P∗T is
typically estimated by Monte Carlo simulation, which is available to us
since we may sample from P∗ at will.
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Problem 16.36 In R, generate a sample of size n ∈ {5,10,20,50} from the
exponential distribution with rate 1. Let T be the sample mean and estimate
its bootstrap distribution by Monte Carlo using B = 104 replicates. For
each n, draw a histogram of this estimate, overlay the density given by the
normal approximation, and overlay the density of the gamma distribution
with shape parameter n and rate n, which is the (real) distribution of T .

16.5.3 Bootstrap Estimate for the Bias

Suppose a particular statistic T is meant to estimate a feature of the
underlying distribution, denoted ϕ(P). Its bias is thus (recall (12.3))

b ∶= E(T) − ϕ,

where E(T) is shorthand for E(T(X1, . . . ,Xn)) where X1, . . . ,Xn are iid
from P, and ϕ is shorthand for ϕ(P).

It turns out that b can be estimated by bootstrap. Indeed, in the bootstrap
world the corresponding quantity is

b∗ ∶= E∗(T) − ϕ∗,

where E∗(T) is shorthand for E(T(X∗1 , . . . ,X∗n )) where X∗1 , . . . ,X
∗
n are iid

from P∗, and ϕ∗ is shorthand for ϕ(P∗). (We assume here that ϕ applies to
discrete distributions.)

In the bootstrap world, we know P∗, and therefore we know b∗, at least
in principle. In practice, though, b∗ is typically estimated by Monte Carlo
simulation by repeatedly sampling from P∗. This estimate for b∗ serves as
an estimate for b.

16.5.4 Bootstrap Estimate for the Variance

Suppose that we are interested in estimating the variance of a given statistic
T . The bootstrap estimate is simply its variance in the bootstrap world,
namely, its variance under P∗, or in formula

Var∗(T) = E∗(T 2) − (E∗(T))2.

As before, this is estimated by Monte Carlo simulation based on
repeatedly sampling from P∗, and that estimate itself serves as an estimate
for the variance of T in the real world.
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16.6 Inference about the Mean

While the inference about the median can be performed sensibly without
really any assumption on the underlying distribution, the same cannot be
said of the mean. The reason is that the mean is not as well-behaved as the
median, as we saw in Section 16.4. Thus, it might be preferable to focus
on the median rather than the mean whenever possible. However, some
situations call for inference about the mean. We assume in this section that
P has a mean, which we denote by μ.

16.6.1 Sample Mean

A statistic of choice here is the sample mean defined as the average of
x1, . . . , xn, namely x̄ ∶= 1

n ∑
n
i=1 xi. This is also the mean of the empirical

distribution. We will denote the corresponding random variable X̄, or X̄n if
we want to emphasize that it was computed from a sample of size n.

The Law of Large Numbers implies that the sample mean is consistent
for the mean, that is

X̄n
PI→ μ, as n→∞.

16.6.2 Normal Confidence Interval

Assume that P has variance σ2. The Central Limit Theorem implies that

X̄n − μ
σ/
√

n
LI→ N(0,1), as n→∞.

This in turn implies that, if zu denotes the u-quantile of the standard normal
distribution, we have

μ ∈ [X̄n − z1−α/2
σ√

n
, X̄n − zα/2

σ√
n
] (16.6)

with probability converging to 1 − α as n→∞.
Ifσ2 is known, then the interval in (16.6) is a bona fide confidence interval

and its level is 1 − α in the large-sample limit, although the confidence level
at a given sample size n will depend on the underlying distribution.

Problem 16.37 Bound the confidence level from below using Chebyshev’s
inequality.
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If σ2 is unknown, we estimate it using the sample variance, which may
be defined as

S 2 ∶= 1
n

n

∑
i=1
(Xi − X̄)2. (16.7)

This is the variance of the empirical distribution. By Slutsky’s theorem, in
conjunction with the Central Limit Theorem, it holds that

X̄n − μ
S n/

√
n

LI→ N(0,1), as n→∞,

which in turn implies that

μ ∈ [X̄n − z1−α/2
S n√

n
, X̄n − zα/2

S n√
n
] (16.8)

with probability converging to 1 − α as n→∞.

Remark 16.38 (Unbiased sample variance) The following variant is
sometimes used in place of (16.7)

1
n − 1

n

∑
i=1
(Xi − X̄)2. (16.9)

(This is what the R function var computes.) This variant happens to be
unbiased (Problem 16.89). In practice, the two variants are, of course, very
close to each other, unless the sample size is quite small.

Student Confidence Interval
When X1, . . . ,Xn are iid from a normal distribution,

X̄ − μ
S /
√

n − 1

has the Student distribution with parameter n − 1. In particular, if tn
u denotes

the u-quantile of this distribution, then

μ ∈ [X̄n − tn−1
1−α/2

S n√
n − 1

, X̄n − tn−1
α/2

S n√
n − 1

] (16.10)

with probability 1−α when the underlying distribution is normal. In general,
this is only true in the large-sample limit.

Problem 16.39 Show that the Student distribution with n degrees of
freedom converges to the standard normal distribution as n increases.
Deduce that, for any u ∈ (0,1), tn

u → zu as n→∞.
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Remark 16.40 The Student confidence interval (16.10) appears to be more
popular than the normal confidence interval (16.8).

R corner The family of Student distributions is available via the functions
dt (density), pt (distribution function), qt (quantile function), and rt (pseudo-
random number generator). The Student confidence intervals and the
corresponding tests can be computed using the function t.test.

16.6.3 Bootstrap Confidence Interval

When σ is known, the confidence interval in (16.6) relies on the fact that
the distribution of X̄ − μ is approximately normal with mean 0 and variance
σ2/n (that is, if n is large enough).

Remark 16.41 The random variable X̄ − μ is often called a pivot. It is not a
statistic, as it cannot be computed from the data alone (since μ is unknown).

Let us carefully examine the process of deriving this confidence interval.
Let Q denote the distribution of X̄ − μ. Let qu denote a u-quantile of Q. In
view of Problem 3.14 and Problem 3.15,

P(X̄ − μ ≤ q1−α/2) ≥ 1 − α/2, P(X̄ − μ < qα/2) ≤ α/2,

so that

P(qα/2 ≤ X̄ − μ ≤ q1−α/2) ≥ 1 − α,

or, equivalently,

μ ∈ [X̄ − q1−α/2, X̄ − qα/2], (16.11)

with probability at least 1 − α. The issue here, of course, is that this
construction relies on Q, which is unknown, so that this interval is not
a bona fide confidence interval. In (16.6), Q is approximated by a normal
distribution. Here we estimate Q by bootstrap instead.

The bootstrap estimation of Q is done, as usual, by going to the bootstrap
world, where the parallel is rather natural in the present context:

Real world Bootstrap world

X̄ = mean of n-sample from P X̄∗ = mean of n-sample from P∗

μ = mean of P μ∗ = mean P∗
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As we know, μ∗ = x̄, which makes the correspondence above particularly
simple. Let Q∗ denote the distribution function of X̄∗ − μ∗, which is the
bootstrap-world equivalent of Q.

Remark 16.42 In practice, Q∗ is itself estimated by Monte Carlo simulation
from P∗, and that estimate is our estimate for Q. Below, we reason as if we
knew Q∗, or equivalently, as if we had infinite computational power and
we had the luxury of drawing an infinite number of Monte Carlo samples.
Doing so allows us to separate statistical issues from computational issues.

Having computed Q∗, a confidence interval is built as before. Let q∗u
denote the u-quantile of Q∗. The bootstrap (1 − α)-confidence interval for
μ is obtained by plugging q∗ in place of q in (16.11), resulting in

[X̄ − q∗1−α/2, X̄ − q∗α/2]. (16.12)

(Note that it is X̄ and not X̄∗. The latter does not really have a meaning since
it denotes the average of a generic bootstrap sample and the procedure is
based on drawing many such samples.)

Problem 16.43 In R, write a function that takes in the data, the desired
confidence level, and a number of Monte Carlo replicates, and returns the
bootstrap confidence interval (16.12).

16.6.4 Bootstrap Studentized Confidence Interval

Instead of using X̄ − μ as pivot as we did in Section 16.6.3, we now use
(X̄ − μ)/S . The process of deriving a bootstrap confidence interval is then
completely parallel. (We only repeat it for the reader’s convenience, however
the reader is invited to anticipate what follows.)

Redefine Q as the distribution of (X̄ − μ)/S , and qu as the u-quantile of
this Q. Then

μ ∈ [X̄ − S q1−α/2, X̄ − S qα/2], (16.13)

with probability at least 1 − α. In (16.8), Q is approximated by a normal
distribution. Here we estimate Q by bootstrap instead.

Suppose we have observed x1, . . . , xn. In the bootstrap world, the
equivalent of (X̄ − μ)/S is (X̄∗ − μ∗)/S ∗, where S ∗ is the sample standard
deviation of a bootstrap sample of size n. Let Q∗ denote the distribution
function of (X̄∗ − μ∗)/S ∗ and let q∗u denote its u-quantile. The bootstrap
Studentized (1 − α)-confidence interval for μ is obtained by plugging q∗ in
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place of q in (16.13), resulting in

[X̄ − S q∗1−α/2, X̄ − S q∗α/2]. (16.14)

(Note that it is X̄ and S , and not X̄∗ and S ∗.)

Problem 16.44 In R, write a function that takes in the data, the desired
confidence level, and number of Monte Carlo replicates, and returns the
bootstrap confidence interval (16.14).

Remark 16.45 (Comparison) The Studentized version is typically more
accurate. You are asked to numerically probe this in Problem 16.94.

16.6.5 Bootstrap Tests

Suppose we want to test some null hypothesis about the mean such as
H0 ∶ μ = μ0. Here are two natural bootstrap approaches:

• Via a confidence interval In Section 12.4.7, we saw how to derive a p-
value from a confidence interval procedure, which in the present context
could be (16.12) or the Studentized version (16.14).

• Direct Suppose we want to reject for large values of X̄. The idea
is to construct a null version of the bootstrap world and estimate the
distribution of X̄ under the null hypothesis by its distribution in that
bootstrap world. A natural way to build such a bootstrap world is to
translate P∗ by μ0 −μ∗, obtaining P∗0 , which has mean μ0 by construction.
It turns out that this approach is equivalent to testing based on the
confidence interval (16.12). The same procedure applied, instead, to
the test statistic (X̄ − μ0)/S is, analogously, equivalent to the testing
based on the confidence interval (16.14).

16.6.6 Inference about Moments and other Parameters

The bootstrap approach to drawing inference about the mean generalizes
to other moments, and more generally, to any expectation such as μψ ∶=
E(ψ(X)), where ψ is a given function. This is because, if we define Yi =
ψ(Xi), then Y1, . . . ,Yn are iid with mean μψ.

Problem 16.46 Define a bootstrap confidence interval for the 2nd moment,
first without and then with Studentization.
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16.7 Inference about the Variance and other Parameters

A confidence interval for the variance σ2 can be obtained by computing
a confidence interval for the mean and a confidence interval for the 2nd
moment, and combining these to get a confidence interval for the variance,
since

Var(X) = E(X2) − (E(X))2.

However, there is a more direct route, which is typically preferred.
In general, consider a feature of interest ϕ(P). We assume that ϕ applies

to discrete distributions. In that case, a natural estimator is the plug-in
estimator ϕ(P∗). A bootstrap confidence interval can then be derived as we
did for the mean in Section 16.6.3, using ϕ(P∗) − ϕ(P) as pivot.

Indeed, let vu denote the u-quantile of this pivot. Then

ϕ(P) ∈ [ϕ(P∗) − vα/2, ϕ(P∗) − v1−α/2]

with probability at least 1−α. Since vu is not available, we go to the bootstrap
world to fetch a proxy. There, the analogue to the pivot is ϕ(P∗∗) − ϕ(P∗),
where P∗∗ is the empirical distribution function of a sample of size n from
P∗. We then estimate vu by v∗u , the u-quantile of the bootstrap distribution
of ϕ(P∗∗) − ϕ(P∗), resulting in

ϕ(P) ∈ [ϕ(P∗) − v∗α/2, ϕ(P∗) − v∗1−α/2]

with approximate probability 1 − α under suitable circumstances.

Problem 16.47 We consider this general procedure to derive a confidence
interval for the variance. First, describe the procedure on paper. Then,
implement the procedure in R. Perform some simple numerical experiments
to test its accuracy.

Remark 16.48 A bootstrap Studentized confidence interval can also be
constructed based on (ϕ(P∗) − ϕ(P))/D as pivot, where D is an estimate
for the standard deviation of ϕ(P∗). Unless a simpler estimator is available,
we can always use the bootstrap estimate for the standard deviation. If this is
our D, then the construction of the Studentized confidence interval requires
the computation of a bootstrap estimate for the variance within the bootstrap
world. A direct implementation of this requires a loop within a loop, which
may be computationally burdensome.
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16.8 Goodness-of-Fit Testing and Confidence Bands

Suppose we want to test whether the underlying distribution is a given
distribution, often called the null distribution and denoted P0 henceforth,
with distribution function F0 and (when applicable) density f0. Recall that
we considered this problem in the discrete setting in Section 15.1.

If this happens in the context of a family of distributions that admits
a simple parameterization, the hypothesis testing problem will likely be
approachable via a standard test, in particular, the likelihood ratio test
(LRT). This is the case, for example, when we assume that the underlying
distribution is of the form Beta(θ,1) for some θ > 0, and we are testing
whether the distribution is the uniform distribution on [0,1], which is
equivalent in this context to testing whether θ = 1.

We place ourselves in a setting where no simple parameterization is
available. In that case, a plug-in approach points to comparing the empirical
distribution with the null distribution – since the empirical distribution is
always available as an estimate of the underlying distribution. We discuss
two approaches for doing so: one based on comparing distribution functions
and another one based on comparing densities.

Remark 16.49 (Tests for uniformity) Under the null distribution, the
transformed data U1, . . . ,Un, with Ui ∶= F0(Xi), are iid uniform in [0, 1]. In
principle, therefore, testing for a particular null distribution can be reduced
to testing for uniformity, that is, the special case where the null distribution
is P0 = Unif(0, 1). For pedagogical reasons, we chose not to work with this
reduction in what follows. (See Section 16.10.1 for additional details.)

16.8.1 Tests based on the Distribution Function

A goodness-of-fit test based on comparing distribution functions is generally
based on a statistic of the form

Δ(F̂X,F0),

where Δ is a measure of dissimilarity between distribution functions. There
are many such dissimilarities and we present a few classical examples. In
each case, large values of the statistic weigh against the null hypothesis.
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Kolmogorov–Smirnov Test
This test65 uses the supremum norm as a measure of dissimilarity, namely

Δ(F,G) ∶= sup
x∈R
∣F(x) −G(x)∣. (16.15)

Problem 16.50 Show that

Δ(F̂X,F0) = max
i=1,...,n

max{ i
n
− F0(X(i)),F0(X(i)) −

i − 1
n
}.

Calibration is (obviously) by Monte Carlo under F0. This calibration by
Monte Carlo necessitates the use of a computer, yet the method was in use
before the advent of computers. What made this possible is the following.

Proposition 16.51. The distribution of Δ(F̂X,F0) under F0 does not depend
on F0 as long as F0 is continuous.

Proof We prove the result in the special case where F0 is strictly increasing
on the real line. The key point is that, under F0, F0(X) ∼ Unif(0, 1). Let Ui =
F0(Xi) and let Ĝ denote the empirical distribution function of U1, . . . ,Un.
Also, let F̂ be shorthand for F̂X. For x ∈ R, let u = F0(x), and derive

F̂(x) − F0(x) = F̂(F−1
0 (u)) − F0(F−1

0 (u))
= Ĝ(u) − u.

Thus, because F0∶R→ (0,1) is one-to-one, we have

sup
x∈R
∣F̂(x) − F0(x)∣ = sup

u∈(0,1)
∣Ĝ(u) − u∣.

Although the computation of Ĝ surely depends on F0 (since F0 is used to
define the Ui), clearly its distribution under F0 does not. Indeed, it is simply
the empirical distribution function of an iid sample of size n from Unif(0, 1).
Note that the function u ↦ u coincides with the distribution function of
Unif(0,1) on the interval (0,1). �

Remark 16.52 In the pre-computer days, the distribution of Δ(F̂X,F0)
under F0 was obtained in the special case where F0 is the distribution
function of Unif(0,1). There are recursion formulas for the exact compu-
tation of the p-value. The large-sample limiting distribution, known as the
Kolmogorov distribution, was derived by Kolmogorov [108] and tabulated
by Smirnov [170], and was used for larger sample sizes. Further details are
provided in Problem 16.92.

65 Named after Kolmogorov 1 and Nikolai Smirnov (1900–1966).

https://doi.org/10.1017/9781108779197.021 Published online by Cambridge University Press

https://doi.org/10.1017/9781108779197.021


252 One Numerical Sample

R corner In R, the test is implemented in ks.test, which returns a warning if
there are ties in the data. The Kolmogorov distribution function is available
in the package kolmim.

Remark 16.53 The recursion formulas just mentioned are only valid when
there are no ties in the data, a condition which is satisfied (with probability
one) in the context of Proposition 16.51, as F0 is assumed there to be
continuous. Although some strategies are available for handling ties, a
calibration by Monte Carlo simulation is always available and accurate.

Problem 16.54 In R, write a function that mimics ks.test but instead returns
a Monte Carlo p-value based on a specified number of replicates.

Cramér–von Mises Test
This test66 uses the following dissimilarity measure

Δ(F,G)2 ∶= E [(F(X) −G(X))2], X ∼ G. (16.16)

Problem 16.55 Show that

Δ(F̂X,F0)2 = 1
12n2

+ 1
n

n

∑
i=1
[2i − 1

2n
− F0(X(i))]

2
.

As before, calibration is done by Monte Carlo simulation under F0.

Problem 16.56 Show that Proposition 16.51 applies.

Anderson–Darling Tests
These tests67 use dissimilarities of the form

Δ(F,G) ∶= sup
x∈R

w(x)∣F(x) −G(x)∣, (16.17)

or of the form

Δ(F,G)2 ∶= E [w(x)2(F(X) −G(X))2], X ∼ G,

where w is a (non-negative) weight function. In both cases, a common
choice is

w(x) ∶= [G(x)(1 −G(x))]−1/2.

This is motivated by the fact that, under the null hypothesis, for any x ∈ R,
F̂X(x) − F0(x) has mean 0 and variance F0(x)(1 − F0(x)).
Problem 16.57 Prove this assertion.

66 Named after Harald Cramér (1893–1985) and Richard von Mises (1883–1953).
67 Named after Theodore Anderson (1918–2016) and Donald Darling (1915–2014).
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16.8.2 Confidence Bands

Confidence bands are the equivalent of confidence intervals when the object
to be estimated is a function rather than a real number. A confidence band
can be obtained by inverting a test based on a measure of dissimilarity Δ,
for example (16.15), following the process described in Section 12.4.7. In
what follows, we assume that the underlying distribution, F, is continuous
and that Δ is such that Proposition 16.51 applies.

Let δu denote the u-quantile of Δ(F̂X,F), which does not depend on F by
Proposition 16.51. Within the space of continuous distribution functions,
define the following (random) subset

B ∶= {G ∶ Δ(F̂X,G) ≤ δ1−α}.

This is the acceptance region for the level-α test defined by Δ. This is
thus the analogue of (12.14), and following the arguments provided in
Section 12.4.7, we get that, F ∈ B with probability 1 − α under P.

Remark 16.58 The region B is called a ‘confidence band’ because, if all
the distribution functions in B are plotted, it yields a band as a subset of the
plane (at least this is the case for the most popular measures of dissimilarity).

Problem 16.59 In the particular case of the supremum norm (16.15), the
band is particularly easy to compute or draw, because it can be defined
pointwise. Indeed, show that in this case the band (as a subset of R2) is
defined as

{(x, p) ∶ ∣p − F̂(x)∣ ≤ δ1−α},

where δu is the u-quantile of the Kolmogorov distribution. In R, write a
function that takes in the data and the desired confidence level, and plots the
empirical distribution function as a solid black line and the corresponding
band in grey. [The function polygon can be used to draw the band.] Try
your function on simulated data from the standard normal distribution, with
sample sizes n ∈ {10,102,103}. Each time, overlay the real distribution
function plotted as a red line. See Figure 16.4 for an illustration.

16.8.3 Tests based on the Density

A goodness-of-fit test based on comparing densities rejects for large values
of a test statistic of the form

Δ( f̂X, f0),
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Figure 16.4 A 95% confidence band for the distribution function based on a sample
of size n = 103 from the exponential distribution with rate λ = 1. The staircase dark
line in the middle of the band is the empirical distribution function, the smoother line
is the underlying distribution function, and the shaded grey region the confidence
band. The marks on the horizontal axis identify the sample points.

where f̂X is an estimator for a density of the underlying distribution, f0 is a
density of F0, and Δ is a measure of dissimilarity between densities such as
the total variation distance,

Δ( f ,g) ∶= ∫
R
∣ f (x) − g(x)∣dx,

or the Kullback–Leibler divergence (recall Problem 7.101),

Δ( f ,g) ∶= ∫
R

f (x) log( f (x)/g(x))dx.

Remark 16.60 If a histogram is used as a density estimator, the procedure is
similar to binning the data and then using a goodness-of-fit test for discrete
data (Section 15.1). (Note that this approach is possible even if the null
distribution does not have a density.)

Problem 16.61 In R, write a function that implements the procedure of
Remark 16.60. Use the function hist to bin the data and let it choose the
bins automatically. The function returns a Monte Carlo p-value based on a
specified number of replicates.
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16.8.4 Testing against a Family of Distributions

So far in this section, we dealt with a situation where there is a single null
distribution to test against. In Remark 16.49, we even saw that, as long
as the null distribution is continuous, we can assume it to be the uniform
distribution on [0, 1], which is why the problem is sometimes referred to as
‘testing for uniformity’.

We now consider a situation where there is a null family of distributions
to test against. For example, we may want to know whether the sample
comes from a normal distribution, a problem often referred to as testing for
normality.

Suppose, therefore, that we have access to a sample, X = (X1, . . . ,Xn),
assumed iid from a continuous distribution, and our task is to test whether
the underlying distribution is in some given (null) family of distributions,
{Fθ ∶ θ ∈ Θ}, against the alternative that is not in that family.

Assuming we have an estimator for θ, denoted S (X), and working with
distribution functions as in Section 16.8.1, a plug-in approach leads to using
a test statistic of the form

Δ(F̂X,FS (X)). (16.18)

We still reject for large values of this statistic, although the main difference
here is that a p-value is obtained by bootstrap, since the null distribution
needs to be estimated.

Lilliefors Test
This is a test for normality that is derived from using the supremum norm
as a measure of dissimilarity (16.15). The parameters (mean and variance)
are obtained by maximum likelihood or the method of moments.

Although the p-value is in principle obtained by bootstrap as explained
above, here the test statistic has the same distribution under the null
hypothesis regardless of the sample values. This is because the normal
family is a location-scale family, and the supremum norm is invariant with
respect to affine transformations.

Problem 16.62 Prove that the statistic (16.18), with Δ denoting the
supremum norm (16.15), has the same distribution under any normal
distribution.

R corner In R, the test is implemented in the function lillie.test in the
package nortest.
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16.9 Censored Observations

In some settings, the observations are censored. An emblematic example is
that of clinical trials where patient survival is the primary outcome. In such
a setting, patients might be lost in the course of the study for other reasons,
such as the patient moving too far away from any participating center, or
simply by the termination of the study. Other fields where censoring is
common include, for example, quality control where the reliability of some
manufactured item is examined. The study of such settings is called Survival
Analysis.

Example 16.63 (Stop smoking) The article [178] reports on a randomized
clinical trial involving adults who want to stop smoking. According to the
description provided in the article: “Participants were allocated by blocked
randomization to receive either the nicotine patch alone for a standard 10-
week, tapering course [64 subjects, 13 lost] or the combination of nicotine
patch, nicotine oral inhaler, and bupropion ad libitum [63 subjects, 18 lost].
[...] Participants lost to follow-up were classified as smoking from the last
point of contact.” The time from entrance into the study until relapse was
one of the measured outcomes. In the context of a survival analysis, ‘relapse’
is the event here, and the (right) censoring comes from the fact that subjects
were only followed up for six months. (In clinical trials it is very common to
compare multiple groups. In the context of this chapter, each group would
considered separately.)

We consider a model of independent right-censoring. In the context of a
clinical trial, let Ti denote the time to event (say death) for Subject i, with
T1, . . . ,Tn assumed iid from some distribution H. These are not observed
directly as they may be subject to censoring. Let C1, . . . ,Cn denote the
censoring times, assumed to be iid from some distribution G. The actual
observations are (X1, δ1), . . . , (Xn, δn), where

Xi = min(Ti,Ci), δi = {Xi = Ti},

so that δi = 1 indicates that the ith case was observed uncensored. The goal
is to infer the underlying distribution H, or some features of H such as its
median.

Problem 16.64 Recall the definition of the survival function given in (3.8).
Show that X1, . . . ,Xn are iid with survival function F̄(x) ∶= H̄(x)Ḡ(x).
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16.9.1 Kaplan–Meier Estimator

We consider the case where the variables are discrete. We assume they are
supported on the positive integers without loss of generality. In a survival
context, this is the case, for example, when survival time is the number
days to death since the subject entered the study. In that special case, it is
possible to derive the MLE for H. Denote the corresponding survival and
mass functions by S(t) = 1 −H(t) and h(t) = H(t) −H(t − 1), respectively.
Let I = {i ∶ δi = 1}, which indexes the uncensored survival times.

Problem 16.65 Show that the likelihood, as a function of H, takes the
following form

∏
i∈I
(H(Xi) −H(Xi − 1)) ×∏

i∉I
(1 −H(Xi)).

Express the likelihood as a function of S. And then as a function of h.

As usual, we need to maximize this with respect to H. For a positive
integer t, define the hazard rate

λ(t) = P(T = t ∣ T > t − 1)
= 1 − P(T > t ∣ T > t − 1)
= h(t)/S(t − 1).

By the Law of Multiplication (1.16),

S(t) = P(T > t) =
t

∏
k=1
P(T > k ∣ T > k − 1)

=
t

∏
k=1
(1 − λ(k)), (16.19)

so that

h(t) = S(t − 1) − S(t)

= λ(t)
t−1

∏
k=1
(1 − λ(k)).

In particular, λ determines h, and therefore H.

Problem 16.66 Deduce that the likelihood, as a function of λ, is given by

∏
t≥1
λ(t)Dt(1 − λ(t))Yt−Dt ,
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where Dt is the number of events at time t, meaning

Dt ∶= #{i ∶ Xi = t, δi = 1},

and Yt is the number of subjects still alive (said to be at risk) at time t,
meaning

Yt ∶= #{i ∶ Xi ≥ t}.

Then show that the maximizer is λ̂ given by

λ̂(t) ∶= Dt/Yt.

The corresponding estimate for S is obtained by plugging λ̂ in (16.19),
resulting in the MLE for S being given by

Ŝ(t) ∶=
t

∏
k=1
(1 − Dk/Yk). (16.20)

This estimator is known as the Kaplan–Meier estimator, proposed by
Edward Kaplan (1920–2006) and Paul Meier (1924–2011) in the late 1950s.
See Figure 16.5 for an illustration based on Example 16.63.

Remark 16.67 Bootstrap confidence bands for this estimator are discussed
in [3]. The situation is a bit complex and we omit details.
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Figure 16.5 The Kaplan–Meier estimators of the survival functions for the two
groups described in Example 16.63.
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16.10 Further Topics

16.10.1 Reduction to a Uniform Sample

Assume that X1, . . . ,Xn are iid from a continuous distribution F. If we define
Ui ∶= F(Xi), U1, . . . ,Un are iid Unif(0,1). Thus, the study of the order
statistics (X(1), . . . ,X(n)) reduces to the study of the uniform order statistics
(U(1), . . . ,U(n)), which is the object of Empirical Process Theory.

It is known, for example, that U(i) has the beta distribution with
parameters (i,n + 1 − i), which in particular implies that

E(U(i)) =
i

n + 1
, Var(U(i)) =

i(n + 1 − i)
(n + 1)2(n + 2) .

Problem 16.68 Prove that U(i) is concentrated near its mean by showing
that, for all t > 0,

P(∣U(i) − i/(n + 1)∣ ≥ t/
√

n) ≤ 1/4t2.

(See also Problem 16.95.)

It is also known that U(i) is approximately normal when n is large and i/n
is not too close to 0 or 1. In particular, the following is true for the median.

Proposition 16.69 (Asymptotic normality of the sample median). Assume
that (Xi ∶ i ≥ 1) are iid from a distribution with median θ and a distribution
function having a strictly positive derivative at θ, denoted f (θ). Thenx

√
n(Med(X1, . . . ,Xn) − θ)

LI→ N(0, 1
4 f (θ)2

), as n→∞.

Problem 16.70 Show that the median is indeed uniquely defined in the
context of this proposition.

As mentioned in Remark 16.49, when testing for a particular null
distribution F0, we can work with the transformed sample Ui ∶= F0(Xi)
and test for uniformity. The test that Berk and Jones [10] proposed directly
exploits the fact that the distribution of each order statistic is known the null
hypothesis. Specifically, the test rejects for small values of min(S −,S+),
where S + ∶= mini Gi(U(i)) and S − ∶= mini(1 −Gi(U(i))), where Gi is the
distribution function of Beta(i,n+1− i). The asymptotic distribution of this
test statistic under the null hypothesis is derived in [133].
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16.10.2 Other Forms of Bootstrap

There are other forms of bootstrap besides the one that relies on the empirical
distribution (often called the empirical bootstrap ). We briefly describe a
few of them.

Smooth Bootstrap
The empirical distribution is always available as an estimate of the
underlying distribution, but being discrete, it is not ‘smooth’. A smooth
bootstrap is based on a smoother estimate of the underlying distribution, for
example, the piecewise linear empirical distribution function (Remark 16.10)
or a kernel density estimate (Section 16.10.5).

A common way to implement the latter is as follows. Let x1, . . . , xn

denote the observations. Given a distribution with density K, generate
a (smooth) bootstrap sample by first generating an iid sample from K,
denoted W1, . . . ,Wn, and then adding that to the observations, resulting in the
bootstrap sample X∗1 , . . . ,X

∗
n with X∗i ∶= xi+Wi. By (6.7) and Section 16.10.5,

conditional on the observations, X∗1 , . . . ,X
∗
n are iid with density

f ∗(x) ∶= 1
n

n

∑
i=1

K(xi − x),

which is a kernel density estimate for f .

Remark 16.71 When the task is to estimate a parameter of interest, ϕ(F),
with ϕ not defined on discrete distributions, the empirical bootstrap is not
applicable, but a smooth bootstrap might.

Parametric Bootstrap
If we know (or rather, if we are willing to assume) that F is in some
parametric family of distributions, say {Fθ ∶ θ ∈ Θ}, then a possible approach
is to estimate F with Fθ̂, where θ̂ is an estimator for θ, for example, the MLE.
(This is, in fact, what we did in Section 15.1.3 and Section 15.2.3 in the
context of discrete distributions.)

16.10.3 Method of Moments

Suppose an experiment results in an iid sample, denoted X1, . . . ,Xn, having
distribution Pθ on R, where θ ∈ Θ is unknown and needs to be estimated.
This is, for example, the case of the binomial experiment of Example 12.2
if we define Xi = 1 when the ith trial results in heads and Xi = 0 otherwise.
Let P̂X denote the empirical distribution.
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We already saw maximum likelihood estimation. A competing approach
is the method of moments. Having chosen some distributional features of
interest (e.g., various moments), the idea is to find a value of θ such that, in
terms these features, Pθ is close to the empirical distribution.

A feature here is a real-valued function on distributions on R. Based
on k such features, denoted by Λ1, . . . ,Λk, define the method of moments
estimator (MME) to be

S ∶= arg min
θ∈Θ

k

∑
j=1
[Λ j(Pθ) −Λ j(P̂X)]

2
.

(This assumes the minimization problem has a unique solution.)

Remark 16.72 (Classical method of moments) The name of this approach
comes from the fact that the features are traditionally chosen to be moments,
meaning, Λ j(P) = EP(X j), where EP denotes the expectation under X ∼ P.

In some classical settings, it is possible to find θ ∈ Θ such that Λ j(Pθ) =
Λ j(P̂X) for all j = 1, . . . , k.

Problem 16.73 (Binomial experiment) Consider the binomial experiment
of Example 12.2. Define the MME based solely on the 1st moment, meaning
that k = 1 and Λ1(P) = EP(X) = mean(P), and show that the resulting
estimator coincides with the MLE.

Problem 16.74 More generally, assume that Θ ⊂ R and that θ is the mean
of Pθ, which is how the Poisson family is typically parameterized. Show that
the classical MME for θ, with k = 1, is the sample mean. Extend this to the
case where Θ = R ×R+ and θ = (μ,σ2), with μ being the mean and σ2 the
variance of Pθ, which is how the normal family is typically parameterized.

16.10.4 Prediction Intervals

In Section 16.3.2 and Section 16.6, our goal was to construct a confidence
interval for the location parameter of interest, respectively, the median and
the mean. Consider instead the problem of constructing an interval for a
new observation sampled from the same underlying distribution. Such an
interval is called a prediction interval.

In what follows, we let X1, . . . ,Xn,Xn+1 be iid from a distribution P on
the real line, where Xn ∶= (X1, . . . ,Xn) plays the role of the available sample,
while Xn+1 plays the role of a new datum to become available later in the
future.
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Problem 16.75 Suppose that P is the normal distribution with unknown
mean μ and unknown variance σ2. Let X̄n and S n denote the sample mean
and standard deviation based on Xn. Show that

Xn+1 ∈ [X̄n − tn−1
1−α/2S n

√
n−1
n+1 , X̄n − tn−1

α/2 S n

√
n−1
n+1]

with probability 1 − α.

Compared to the confidence interval for the mean given in (16.10), the
prediction interval above is much wider. In fact, its half-width converges (in
probability) to σz1−α/2, and therefore does not converge to zero as n→∞.
(As before, zu denotes the u-quantile of the standard normal distribution.)
This is to be expected. Indeed, even when μ and σ are known, we cannot do
better asymptotically.

Problem 16.76 Show that [μ − z1−α/2σ,μ − zα/2σ] is the shortest interval I
such that P(X ∈ I) ≥ 1 − α, when X is sampled from N(μ,σ2).

When no parametric family is assumed, one can rely on the empirical
distribution to obtain a prediction interval. One way to do so is via the
appropriate sample quantiles.

Problem 16.77 Let F̂−n denote the empirical quantile function based on Xn.
Prove that

Xn+1 ∈ [F̂−n (α/2), F̂−n (1 − α/2)] (16.21)

with probability tending to 1 − α as n →∞. Propose another variant such
that, asymptotically, the interval is shortest (at the same confidence level).

The prediction interval (16.21) has asymptotically the prescribed confi-
dence level. If the level must be guaranteed in finite samples, one can use
the Dvoretzky–Kiefer–Wolfowitz bound.

Problem 16.78 Derive a prediction interval based on Theorem 16.9 that
satisfies the prescribed level of confidence in finite samples. [The shorter
the better.] How does the interval behave in the large-sample limit?

The following may provide a more satisfying option.

Proposition 16.79. With X(1) ≤ ⋯ ≤ X(n) denoting the ordered sample, it
holds that

Xn+1 ∈ [X(⌊nα/2⌋),X(⌈n(1−α/2)⌉)] (16.22)

with probability at least 1 − α.
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Proof For a sample x1, . . . , xn ∈ R, let

I(x1, . . . , xn) = [x(⌊nα/2⌋), x(⌈n(1−α/2)⌉)],

where x(1) ≤ ⋅ ⋅ ⋅ ≤ x(n) denote the ordered sample. For i ∈ {1, . . . ,n + 1}, let

Yi =
⎧⎪⎪⎨⎪⎪⎩

1 if Xi ∈ I(X1, . . . ,Xi−1,Xi+1, . . . ,Xn+1);
0 otherwise.

Because the event (16.22) can be equivalently stated as Yn+1 = 1, it suffices
to prove that P(Yn+1 = 1) ≥ 1 − α. Since Yn+1 takes values in {0,1},
P(Yn+1 = 1) = E(Yn+1). Although Y1, . . . ,Yn+1 are not independent, they
are exchangeable, and, in particular, they have the same expectation, so that

E(Yn+1) = E(
Y1 +⋯+ Yn+1

n + 1
).

We then conclude with the following problem. �

Problem 16.80 For x1, . . . , xn+1 ∈ R, define

yi =
⎧⎪⎪⎨⎪⎪⎩

1, if xi ∈ I(x1, . . . , xi−1, xi+1, . . . , xn),
0, otherwise.

Show that
y1 +⋯+ yn+1

n + 1
≥ 1 − α.

Remark 16.81 (Conformal prediction) The approach underlying the
construction of the prediction interval (16.22) can be seen as an example of
conformal prediction [194, 165], which may be seen as a general approach
based on inverting a permutation test for goodness-of-fit comparing samples
{X1, . . . ,Xn} and {Xn+1} using an approach similar to that of Section 12.4.7
for inverting a test to obtain a confidence interval.

16.10.5 Kernel Density Estimation

Consider a sample, X1, . . . ,Xn, drawn iid from a density f that we want
to estimate. Let K be a function on R, which here plays the role of kernel
function, and for a > 0 define

Ka(x) = a−1K(x/a).

The key is the following result.
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Proposition 16.82. Suppose that f is continuous at x and bounded on R,
and choose K such that ∫R K(x)dx = 1. Then

∫
R

Ka(z − x) f (z)dz→ f (x), as a→ 0.

Since,

∫
R

Ka(z − x) f (z)dz = E f (Ka(X − x)), (16.23)

where E f denotes the expectation with respect to X ∼ f , this suggests
estimating f with

f̂a(x) ∶=
1
n

n

∑
i=1

Ka(xi − x). (16.24)

(Note that, if K is even, as most kernel functions used in practice are, then
(16.23) is the convolution of Ka and f .)

The method has one parameter a > 0, called the bandwidth, that plays the
exact same role as the bin size in the construction of a histogram with bins
of equal size. In fact, when K is the so-called rectangular (aka flat, aka box)
kernel, namely, K(x) = {x ∈ [−1/2,1/2]}, the estimate is quite similar to a
histogram with bin size h.

R corner The function density in R offers a number of choices for the
kernel K. The default is the Gaussian kernel K(x) ∶= 1√

2π
exp(−x2/2).

A kernel density estimate is at least as smooth the kernel used to define it.
In particular, a kernel density estimate with the Gaussian kernel is infinitely
differentiable.

Choice of Bandwidth
The choice of bandwidth a has generated a lot of proposals. It is directly
related to the choice of bin size in the construction of a histogram, and the
same chicken-and-egg situation arises.

For example, here too, the optimal choice for a is of order n−1/3 when f
has bounded slope. To see why, suppose that f is bounded by c0 and has
slope bounded by c1 everywhere, meaning

f (x) ≤ c0, for all x ∈ R,
∣ f (x) − f (z)∣ ≤ c1 ∣x − z∣, for all x, z ∈ R.

Assume that the kernel is non-negative, has support in [−1/2,1/2], and is
bounded by some c2 > 0 in absolute value.
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The mean squared error (MSE) at x ∈ R is

msea(x) ∶= E [( f̂a(x) − f (x))2],

where the expectation is with respect to the sample defining f̂a.

Problem 16.83 Derive the following bias-variance decomposition

msea(x) = (E[ f̂a(x)] − f (x))2 +Var[ f̂a(x)].

For the bias, by (16.24),

E[ f̂a(x)] − f (x) = E[Ka(X − x)] − f (x)

= ∫
R

Ka(z − x) f (z)dz − f (x)

= ∫
R

Ka(z − x)( f (z) − f (x))dz,

using the fact that Ka integrates to 1. Hence, using Jensen’s inequality,

∣E[ f̂a(x)] − f (x)∣ ≤ ∫
R

Ka(z − x)∣ f (z) − f (x)∣dz

≤ ∫
R

Ka(z − x)c1∣z − x∣dz

≤ c1a∫
[−a/2,a/2]

Ka(z)dz

= c1a,

using the bound on the slope of f , and then the fact that the kernel is
non-negative, supported on [−1/2,1/2], and integrates to 1.

For the variance, by (16.24) and independence,

Var[ f̂a(x)] =
1
n

Var[Ka(X − x)],

with

Var[Ka(X − x)] ≤ E[Ka(X − x)2]

= ∫
R

Ka(z − x)2 f (z)dz

≤ c2

a
c0∫

R
Ka(z − x)dz

= c2c0/a,

using the bound on K and the bound on f , and the fact that the kernel
integrates to 1.
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Thus,

msea(x) ≤ (c1a)2 + c2c0

na
,

and the right-hand side is minimized at c3n−1/3 where c3 ∶= (c0c2/2c2
1)1/3.

These calculations are crude and refinements are definitely possible.
However, the order of magnitude of the optimal bandwidth is known to
be ∝ n−1/3, with a multiplicative constant that depends on the (unknown)
density. That constant is important in practice and makes it necessary to
choose the bandwidth based on the data.

Cross-Validation
A popular way to choose the bandwidth is by cross-validation (CV). We
present a particular variant called leave-one-out cross-validation, proposed
by Rudemo in [157]. The idea is to choose a to minimize the following
notion of risk called the mean integrated squared error

R(a) ∶= E [∫ ( f̂a(x) − f (x))2dx],

where the expectation is with respect to the sample that underlies the
estimate f̂a. Based on this risk, Rudemo proposes the following choice
of bandwidth

â ∶= arg min
a>0

Q(a),

Q(a) ∶= ∫ f̂a(x)2dx − 2
n − 1

n

∑
i=1

f̂a(Xi).

Problem 16.84 Relate E[Q(a)] to R(a).
R corner This is very close to how the R function bw.ucv selects the
bandwidth. A more faithful implementation may be found in the function
h.ucv in the kedd package.

16.10.6 Monotonic Density Estimation

Kernel density estimation is, as we saw, founded on the implicit assumption
that the underlying density has a certain degree of smoothness. An
alternative is to assume that the density has a certain shape. We present
the simplest, and most famous example, where the underlying density
is supported on R+ and assumed to be monotone (and therefore non-
increasing).
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It so happens that there is a MLE for this model, proposed by Ulf
Grenander (1923–2016) [83]. The likelihood is here defined as

arg max
f ∈F

n

∏
i=1

f (xi),

where x1, . . . , xn denote the observations and F denotes the class of
monotone densities on R+. It turns out to be maximized by the first derivative
of the least concave majorant of the empirical distribution function, which
is a non-increasing piecewise-constant function.

R corner The grenander function in the fdrtool package computes this
estimator.

16.11 Additional Problems

Problem 16.85 In R, for n ∈ {10,102,103}, generate n points from the
uniform distribution on [0,1]. Draw the empirical distribution function
(solid line) and overlay the actual distribution function (dashed line). Do it
several times for each n to get a feel for the randomness. Repeat with the
standard normal distribution.

Problem 16.86 In R, write a function which behaves as ecdf but returns the
piecewise linear variant of Remark 16.10 instead. In addition, write another
function which behaves as plot.ecdf. To each plot of Problem 16.85, add (in
a different color) a graph of this variant.

Problem 16.87 In R, generate a sample of size n = 10 from the standard
normal distribution. Plot the quantile function, type 1, 4, 5, in red, green, and
blue, respectively. Add the underlying quantile function (given by qnorm).
Make sure to use a fine grid, say, 103 points covering [0,1], for otherwise
visual artifacts will result. Add dotted vertical lines at k/n for k = 0, 1, . . . ,n,
and dotted horizontal lines at the data points. Repeat with n = 100.

Problem 16.88 In R, generate a sample of size n ∈ {102,103} from the
standard normal distribution. Plot the histogram in various ways, each time
overlaying the density. Do it several times in each setting to get a feel for
the randomness. Try different methods for choosing the bins.

Problem 16.89 Show that the variant (16.9) is unbiased. However, ‘unbi-
ased’ does not mean ‘better’, and indeed, show that for the estimation of the
variance in the normal location-scale family, (16.7) has smaller MSE than
(16.9).
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268 One Numerical Sample

Problem 16.90 Suppose that Pθ is the exponential distribution with rate
θ > 0, and that we have an iid sample of size n, X1, . . . ,Xn, sampled from
this distribution. Suppose we want to estimate ϕ ∶= θ1/2.

(i) Show that the MLE for θ is X̄−1, where X̄ is the sample mean, so that
the MLE for ϕ is X̄−1/2.

(ii) Compute its bias by numerical integration. [Note that the family is a
scale family, so that the bias under θ can be obtained from the bias
under θ = 1 by rescaling.]

(iii) In R, for n ∈ {10,20,30,50}, under θ = 1, estimate that quantity by
Monte Carlo, using B = 104 replicates.

(iv) Now estimate that quantity by bootstrap based on B = 104 replicates.
Do this for various choices of n. Repeat a few times to get a feel for
the randomness and compare with the value obtained by numerical
integration.

Problem 16.91 Repeat Problem 16.90 with the variance instead of the bias.

Problem 16.92 (Kolmogorov distribution) In [108], Kolmogorov derived
the null distribution of the test statistic (16.15). He showed that, based on
an iid sample of size n from a continuous distribution F, the empirical
distribution function F̂n as a random function satisfies

lim
n→∞
P( sup

x∈R
∣F̂n(x) − F(x)∣ ≥ t/

√
n) = 2∑

k≥1
(−1)k−1 exp(−2k2t),

for all t ≥ 0. In R, perform simulations to probe the accuracy of this limit
for various choices of sample size n.

Problem 16.93 (A failure of the bootstrap) Consider the situation where
X1, . . . ,Xn are iid normal with mean θ and variance 1. It is desired to provide
a confidence interval for ∣θ∣. A natural estimator is the MLE, which is ∣X̄∣.
The bootstrap confidence interval of Section 16.6.3 is based on estimating
the distribution of ∣X̄∣ − ∣θ∣ by the bootstrap distribution of ∣X̄∗∣ − ∣X̄∣. It
happens to fail when θ = 0. (This can be explained by the fact that the
absolute value function is not smooth at the origin.)

(i) Compute the distribution function of
√

n(∣X̄∣ − ∣θ∣). Specialize to the
case where θ = 0 and draw it.

(ii) In R, generate a sample of size n = 106 and estimate the bootstrap
distribution

√
n(∣X̄∗∣ − ∣X̄∣) using B = 103 Monte Carlo replicates.

Add the resulting empirical distribution function to the plot.
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Problem 16.94 In R, do the following. Generate a sample of size n ∈
{10,20,50,100,200,500,1000} from the standard normal distribution (so
that μ = 0 and σ = 1). Set the confidence level at 0.95.

(i) Compute the Student confidence interval. This is the gold standard if
the sample is known to be normal and the variance is unknown.

(ii) Compute the bootstrap confidence interval using the function imple-
mented in Problem 16.43.

(iii) Compute the bootstrap Studentized confidence interval using the
function implemented in Problem 16.44.

Each time, record whether the true mean is in the interval and measure
the length of the interval. After doing that 200 times, for each of the three
confidence interval constructions, display the fraction of times the interval
contained the true mean and plot a histogram of its length.

Problem 16.95 Derive a bound that is sub-exponential in t for the
probability that appears in Problem 16.68.

Problem 16.96 (Student test) Consider a normal experiment where we
observe a realization of X1, . . . ,Xn, assumed to be an iid sample from
N(μ,σ2). Both parameters are unknown. Our goal is to test μ = μ0 for
some given μ0 ∈ R. The Student test (aka t-test) rejects for large values of
∣T ∣ where T ∶= (X̄ − μ0)/S , with X̄ being the sample mean and S being the
sample standard deviation.

(i) Show that there is a constant cn such that, under the null hypothesis,
cnT has the Student distribution with n − 1 degrees of freedom.

(ii) Show that this test corresponds to the LRT under the present model.

Problem 16.97 Propose and study, analytically or via computer simulations,
a test for goodness-of-fit based on the characteristic function, that is,
based on a test statistic comparing the sample characteristic function
(i.e., the characteristic function of the empirical distribution) and the
null characteristic function (i.e., the characteristic function of the null
distribution).

Problem 16.98 In R, do the following. Generate a sample of size n
from some exponential distribution (say, with rate λ = 1, although this
is inconsequential). Plot a histogram. Compute the MLE for λ and overlay
the corresponding density. Then compute the Grenander’s estimator and
overlay the corresponding density (in a different color). Repeat several times
for several choice of sample size n.
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Problem 16.99 (Log-concave densities) A function f ∶R → R+ is said to
be log-concave if log f is concave. Any normal distribution is log-concave,
for example. Just as for monotonic densities, the class of log-concave
densities admits an MLE, which also turns out to be piecewise linear. This
estimator is available in the package longcondens. In R, do the following.
Generate a sample of size n from some normal distribution (say, standard
normal, although this is inconsequential). Plot a histogram. Compute the
MLE among normal distributions and overlay the corresponding density.
Then compute the MLE among log-concave distributions and overlay the
corresponding density (in a different color). Repeat several times for several
choice of sample size n.

Problem 16.100 Verify as many statements in [38] as you can, in particular
those in dimension one.

Problem 16.101 (A uniform law of large numbers) The Glivenko–Cantelli
Theorem is an example of a uniform law of large numbers. Here is another
example, due to Jennrich [103]. Assume that X is a random variable on
some probability space, and that Θ is a compact parameter space. Consider
a (measurable) function g∶R ×Θ → R such that θ ↦ g(x, θ) is continuous
for all x ∈ R; and ∣g(x, θ)∣ ≤ h(x) for all x and all θ, with E[h(X)] < ∞.
Then, if (Xi) are iid copies of X,

sup
θ∈Θ
∣1
n

n

∑
i=1

g(Xi, θ) − E[g(X, θ)]∣
PI→ 0, as n→∞.

Prove this result.

Problem 16.102 In the setting of Section 16.9, with the same notation,
consider the following estimator for the survival function

S̃(t) ∶= #{i ∶ Xi > t}
#{i ∶ Xi > t} + Dt

. (16.25)

Show that S̃(t) is unbiased for S(t). Add the corresponding estimates to
Figure 16.5 as dash lines. [Thus, while the Kaplan–Meier estimator given in
(16.20) is the MLE, the estimator given in (16.25) can be seen as the MME
for the survival function.]
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Multiple Numerical Samples

In Chapter 16, we considered an experiment resulting in an iid real-
valued sample from an unknown distribution and the task was to infer
this distribution or some of its features. Here, we consider a setting where
either two or more real-valued samples are observed, and the goal is to
compare the underlying distributions that generated the samples or some of
their features.

Randomized clinical trials (Section 11.2.5) are a rich source of examples
of such experiments. Although it is somewhat more complicated, the
methodology parallels that of Chapter 16. As in Chapter 15, permutation
tests play a central role in goodness-of-fit testing.

Example 17.1 (Weight loss maintenance) The paper [183] reports on a
“two-phase trial in which 1032 overweight or obese adults with hypertension,
dyslipidemia, or both, who had lost at least 4 kg during a 6-month weight
loss program (Phase 1) were randomized to a weight-loss maintenance
intervention (Phase 2).” There were three intervention groups: monthly
personal contact, unlimited access to an interactive technology, or self-
directed (which served as control). Subjects were followed for a total of 30
months.

Example 17.2 (Manual v. automated blood pressure measurement) The
paper [135] reports on a clinical trial where the objective was to “compare
the quality and accuracy of manual office blood pressure and automated
office blood pressure”. It was a cluster randomized trial where 67 medical
practices in eastern Canada were randomized to measuring blood pressure
either manually or using a BpTRU device. (The awake ambulatory blood
pressure was used as gold standard.)

We start with two groups to ease the presentation, and then extend the
narrative to multiple groups. We typically leave the dependence on the
sample sizes implicit to keep the notation light.

271
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17.1 Inference about the Difference in Means

We have two samples, X1,1, . . . ,Xn1,1 assumed to be iid from P1 and,
independent of that, X1,2, . . . ,Xn2,2 assumed to be iid from P2. The sample
sizes are therefore n1 and n2, respectively, and we let n ∶= n1 + n2 denote the
total sample size.

Assume that P1 has mean μ1 and that P2 has mean μ2. We are interested
in the difference

δ ∶= μ1 − μ2.

The plug-in estimator is the difference of the sample means, or in formula

D ∶= X̄1 − X̄2,

where

X̄ j ∶=
1
nj

n j

∑
i=1

Xi, j.

In particular, D is unbiased for δ.
In the following, we present various ways of building a confidence

interval based on that estimator.

17.1.1 Normal Confidence Interval

Assume that P1 has variance σ2
1 and that P2 has variance σ2

2. Note that D
has variance

γ2 ∶= σ
2
1

n1
+ σ

2
2

n2
.

Problem 17.3 Prove, using the Central Limit Theorem, that (D − δ)/γ is
asymptotically standard normal as n1,n2 →∞. Is this still true if one of the
sample sizes remains constant?

This normal limit implies that, if zu denotes the u-quantile of the standard
normal distribution,

δ ∈ [D − z1−α/2 γ,D − zα/2 γ],

with probability converging to 1 − α as n1,n2 →∞.
Typically, σ2

1 and σ2
2 are unknown, in which case this interval is not a

confidence interval. We obtain a bona fide confidence interval by plugging
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the sample variances, S 2
1 and S 2

2, in place of the variances, where

S 2
j ∶=

1
nj

n j

∑
i=1
(Xi, j − X̄ j)2,

so that γ is estimated by

G ∶= [S 2
1/n1 + S 2

2/n2]
1/2
.

Then by Slutsky’s theorem, (D− δ)/G is asymptotically standard normal as
the sample sizes diverge to infinity, and this implies that

δ ∈ [D − z1−α/2G,D − zα/2G],

with probability converging to 1 − α as n1,n2 → ∞. (This interval is a
confidence interval since it can be computed from the data.)

Student Confidence Interval
As in the one-sample setting, using quantiles from the Student distribution
is the common practice, despite the fact that even with normal samples
the Student distribution is only an approximation. (In that case, the sample
variance is defined as in (16.9).) The computation of the number of degrees
of freedom identifying the Student distribution is a bit involved. This
derivation is due to Welch [204] and for this reason the test sometimes
bares his name. A simpler but more conservative choice for the number of
degrees of freedom is min(n1,n2) − 1.

R corner The Student–Welch confidence interval, as well as the corre-
sponding test, can be computed using the function t.test.

17.1.2 Bootstrap Studentized Confidence Interval

There are analogue s to the bootstrap confidence intervals presented in
Section 16.6.3 and Section 16.6.4 in the setting of one sample. The
Studentized variant is typically preferred as it tends to me more accurate, so
this is the one we focus on.

Problem 17.4 Before reading further, derive the analogue to the bootstrap
confidence interval of Section 16.6.3 in the present setting of two samples.

The basic idea is the same: go to the bootstrap world to estimate the
distribution of T ∶= (D − δ)/G. Assume that the data, (xi, j), have been
observed. As usual, a star indicates a quantity in the bootstrap world. In
particular, P∗j denotes the empirical distribution for Group j. A bootstrap
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sample is thus (X∗i, j), where

X∗i, j ∼ P∗j , independent. (17.1)

Its sample mean and variance will be denoted by X̄∗j and S ∗j . In the bootstrap
world we can define the analogue of the various quantities that are needed
for the analysis:

μ∗j ∶= x̄ j, δ∗ ∶= μ∗1 − μ∗2 = x̄1 − x̄2,

and

D∗ ∶= X̄∗1 − X̄∗2 , G∗ ∶= [S ∗1
2/n1 + S ∗2

2/n2]
1/2
,

and T∗ ∶= (D∗ − δ∗)/G∗. The bootstrap distribution of T∗ is used as an
estimate of the distribution of T . Let t∗u be the u-quantile of the bootstrap
distribution of T∗. Then

δ ∈ [D − t∗1−α/2G,D − t∗α/2G], (17.2)

with approximate probability 1 − α.
As usual, an analytically derivation of the bootstrap distribution of T∗ is

impractical and one resorts to Monte Carlo simulation to estimate it.

Problem 17.5 In R, write a function that takes in the data, the confidence
level, and number of Monte Carlo replicates, and returns the bootstrap
confidence interval (17.2) estimated by Monte Carlo.

17.2 Inference about a Parameter

In this section, we consider the task of comparing a parameter of interest,
denoted ϕ (e.g., standard deviation). Let ϕ j = ϕ(P j). We are interested in
building a confidence interval for

δ ∶= ϕ1 − ϕ2.

Remark 17.6 One might be interested, instead, in the ratio ϕ1/ϕ2. Almost
invariably, ϕ is a non-negative parameter in this case, and if so, one can
simply take the logarithm and the problem becomes that of estimating the
difference logϕ1 − logϕ2.

Problem 17.7 Suppose that I = [A,B] is a (1 − α)-confidence interval for
logϕ1 − logϕ2. Turn that into a (1 − α)-confidence interval for ϕ1/ϕ2.
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17.2.1 Naive Approach

A naive, yet very reasonable approach consists in building a confidence
interval for each parameter based on the corresponding sample, for example,
using a bootstrap approach as described in Section 16.7, and then combining
these intervals to obtain a confidence interval for the difference.

Problem 17.8 Let I1 = [A1,B1] be a (1 − α/2)-confidence interval for ϕ1

based on the 1st sample, and let I2 = [A2,B2] be a (1 − α/2)-confidence
interval for ϕ2 based on the 2nd sample. Show that [A1 − B2,B1 − A2] is a
(1 − α)-confidence interval for δ.

Although this approach is clearly valid, it can be conservative, in the usual
sense that, although the level of confidence may be satisfied, the resulting
interval is relatively wide.

17.2.2 Bootstrap Confidence Interval

We now present the two-sample analogue of the approach described in
Section 16.6.3. We assume that ϕ can be defined for a discrete distribution
so that we may use the empirical bootstrap. A reasonable estimator for δ is
the plug-in estimator, which may be written as

D ∶= ϕ(P∗1) − ϕ(P∗2).

Beyond mere estimation, the construction of a confidence interval necessi-
tates knowledge of the distribution of D − δ. We estimate this distribution
by bootstrap.

Having observed the data (xi, j), we travel to the bootstrap world. There,
bootstrap samples are generated as in (17.1), and the quantities of interest
are

δ∗ ∶= ϕ(P∗1) − ϕ(P∗2),

and

D∗ ∶= ϕ(P∗∗1 ) − ϕ(P∗∗2 ),

where P∗∗j is the empirical distribution of X∗1, j, . . . ,X
∗
n j, j.

We estimate the distribution of D − δ by the bootstrap distribution of
D∗ − δ∗. As usual, computing this bootstrap distribution in closed form is
impractically and we resorts to Monte Carlo simulation to estimate it.

Remark 17.9 A bootstrap Studentized confidence interval can also be
derived, but the method is in general more complex and computationally
more intensive.
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Problem 17.10 In R, write a function that takes in the two samples as
numerical vectors, the desired confidence level, and a number of Monte
Carlo replicates, and returns an appropriate bootstrap confidence interval
for the difference in medians.

Remark 17.11 In the two-sample setting, there does not seem to be a
distribution-free confidence interval for the difference in medians that would
mimic the one developed in Section 16.3.2 in the one-sample setting. (That
is, unless one is willing to assume that the two underlying distributions are
translates of each other, as in (17.6).)

17.3 Goodness-of-Fit Testing

Consider the problem of goodness-of-fit testing where we test whether the
two samples come from the same distribution,

H0 ∶ P1 = P2. (17.3)

We considered this problem in Section 15.2 in the discrete setting.

Problem 17.12 (Naive approach) A naive, although reasonable approach,
consists in computing a (1−α/2)-confidence band for F j as in Section 16.8.2,
denoted B j, and then rejecting the null if F1 ∈ B2 or F2 ∈ B1. Show that this
yields a test at level α.

17.3.1 Kolmogorov–Smirnov Test

We present a more direct approach based on rejecting for large values
of Δ(F̂1, F̂2), where Δ is a measure of dissimilarity between distribution
functions. We saw some examples in Section 16.8.1. We focus on the
supremum norm (16.15), which is one of the most popular choices

Δ(F̂1, F̂2) = sup
x
∣F̂1(x) − F̂2(x)∣. (17.4)

Proposition 17.13. The distribution of Δ(F̂1, F̂2) when both samples are
drawn from the same distribution, say F0, does not depend on F0 as long as
it is continuous. The distribution does depend on the sample sizes (n1,n2).

Problem 17.14 Prove Proposition 17.13.

There are recursive formulas for computing that distribution, which are
valid when there are no ties in the data.
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R corner Such recursive formulas are implemented in the function ks.test,
although for larger sample sizes, the function relies on the asymptotic
distribution, which is known in closed form.

When there are no ties in the data, the p-value may be obtained by Monte
Carlo simulation, which consists in drawing the two samples independently
from the uniform distribution in [0, 1] (or any other continuous distribution).
Alternatively, this can be done by permutation (Section 17.3.2).

Problem 17.15 (Random walk) There is a close connection with the simple
random walk process of Example 9.14, particularly when the sample sizes
are equal (n1 = n2). In that case, provide an interpretation of Δ(F̂1, F̂2) in
terms of a simple random walk.

17.3.2 Permutation Distribution

Define the concatenated sample

Xi =
⎧⎪⎪⎨⎪⎪⎩

Xi,1 if i ≤ n1;
Xi−n1,2 if i > n1.

Thus, if we denote the two samples by x1 = (xi,1 ∶ i = 1, . . . ,n1) and
x2 = (xi,2 ∶ i = 1, . . . ,n2), the concatenated sample is x = (x1, x2) and is of
length n1 + n2 = n.

Let Π denote the group of permutations of {1, . . . ,n}. For a permutation
π, let xπ denote the corresponding vector, meaning xπ = (xπ1 , . . . , xπn) if
π = (π1, . . . , πn). The permutation distribution of a statistic T conditional
on x is the uniform distribution on (T(xπ) ∶ π ∈ Π). If a test rejects for large
values of T , the corresponding p-value is defined as in (15.4).

Problem 17.16 Assume that the samples come from the same continuous
distribution. Show in that case that the distribution of the Kolmogorov–
Smirnov statistic coincides with its permutation distribution. Show that the
same is true of any test statistic based on a test of randomness (Section 15.7).

Remark 17.17 Nominally, there are n! = (n1 + n2)! permutations. In fact,
some of these are equivalent, as any permutation within a group does
not change the underlying distribution, even under an alternative. (Recall
that each sample is assumed to be iid.) The number of non-equivalent
permutations is

( n
n1
) = ( n

n2
) = n!

n1! n2!
.
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Even then, the number of such permutations is often impractically large, and
the permutation p-value is typically estimated by Monte Carlo simulation.

Remark 17.18 (Re-randomization) In the context of a randomized trial
where, say, individuals are assigned to either of two groups at random
to receive one of two treatments, under the null distribution, all the
permutations are equally likely, and obtaining a p-value by permutation
is an example of re-randomization testing (Section 22.1.1). That said, the
permutation p-value is valid regardless, and can be motivated by conditional
inference (Section 22.1).

17.3.3 Rank Tests

Let ri, j denote the rank of xi, j in increasing order when the two samples
are combined. Ties, if present, can be broken in any number of ways, for
example, at random, or by giving to all the tied observations their average
rank. (In principle, ties do not arise when the underlying distributions are
continuous, but in practice they are common.)

R corner The function rank offers a number of ways for breaking ties,
including these two.

Problem 17.19 Prove that
2

∑
j=1

n j

∑
i=1

ri, j = n(n + 1)/2,

so that the set of ranks for Group 1 determines the set of ranks for Group 2.

A rank statistic is any function of the ranks.

Problem 17.20 Show that the Kolmogorov–Smirnov statistic (17.4) is a
rank statistic.

Problem 17.21 (Rank tests are permutation tests) Show that under the
null hypothesis where both samples come from the same distribution,
if that distribution is continuous or the ranks are broken at random, the
concatenated vector of ranks, (Ri, j), is uniformly distributed over all
permutations of {1, . . . ,n1 + n2}. In particular, the p-value of a rank test
coincides with its permutation p-value.
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17.3 Goodness-of-Fit Testing 279

Wilcoxon Rank-Sum Test
This test is based on the sum of the ranks from Group 1, meaning

r1 ∶=
n1

∑
i=1

ri,1. (17.5)

In the two-sided setting of (17.3), we reject for large and small values of
this test statistic. The test was proposed by Frank Wilcoxon (1892–1965) in
the 1940s, and remains very popular.

Problem 17.22 Show that the null distribution of R1 is symmetric about
its mean, namely, n1(n + 1)/2. Deduce that the two-sided rank-sum test
corresponds to rejecting for large value of (r1 − n1(n + 1)/2)2.

Remark 17.23 The Wilcoxon rank-sum test is sometimes presented as a
test for comparing medians. This is not correct in general, the reason being
that, as any other permutation test (Problem 17.21), the rank-sum test is a
goodness-of-fit test. By this we mean that it results in a valid p-value (in the
sense of (12.12)) when the distributions are the same under the null. When
only the medians are the same under the null, the p-value is not guaranteed
to be valid. That being said, testing for the equality of medians is equivalent
to goodness-of-fit testing when the underlying distributions are assumed to
be translates of each other, meaning

F1 = F2(⋅ − μ) for some μ. (17.6)

In that case, obviously, the distributions are the same if and only if their
medians are the same.

Remark 17.24 There are advantages and disadvantages to using ranks. The
main disadvantage is a loss in sensitivity, which may result in a loss of
power. This loss is typically quite mild. The two main advantages are in
terms of computation and robustness.

• Computation and tabulation Assuming that ties are broken at random,
the null distribution of R1 only depends on (n1,n2), which can therefore
be pre-tabulated. (This can done using recursive formulas for smaller
sample sizes and asymptotic calculations for larger sample sizes.)

• Robustness Using ranks offers some protection against gross outliers.
For example, consider the permutation test based on the difference in
sample means. Assume that one value has been corrupted and is now
larger than the sum of the absolute values of all the other observations.
Then the p-value will be approximately 1/2, whether the null hypothesis
is true or not. If one uses ranks, the effect of this corruption is minimal.
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280 Multiple Numerical Samples

17.3.4 Patterns and Tests of Randomness

A pattern is obtained by ordering the observations in the combined sample
and labeling each observation according to the group it belongs to. For
example, the data

Group 1 ∶ 2.5 0.9 −1.0 −1.6 0.7
Group 2 ∶ −1.2 −0.5 −1.4

results in the following pattern:

1 2 2 1 2 1 1 1

Once the pattern is computed on a particular dataset, tests of randomness
(Section 15.7) can be used for goodness-of-fit testing.

Problem 17.25 Suppose that F1 and F2 are continuous. Show that any
pattern is equally likely if and only if F1 = F2.

Therefore, when ties are broken at random, we can rely on the p-value
returned by the test of randomness applied to the pattern. (In any case, we
can rely on the permutation p-value.)

Remark 17.26 A pattern provides the same information as the ranks
modulo the ordering within each group, but this within-group ordering
is irrelevant for inference because each group is assumed to be iid.

17.4 Multiple Samples

We now consider the more general situation where g groups of observations
are available and need to be compared. The observations from Group j are
denoted (Xi, j ∶ i = 1, . . . ,nj) and assumed to be iid from some distribution
denoted P j. As usual, the samples are assumed to be independent of each
other. We let n ∶= n1 +⋯+ ng denote the total sample size.

Remark 17.27 On a computer, multiple-sample is typically stored an array
with two variables, ‘values’ and ‘group label’. For example, the data

Group 1 ∶ 2.2 0.8 1.0
Group 2 ∶ 1.1 0.3 1.6
Group 3 ∶ 0.3 0.8

may be equivalently written

Values ∶ 2.2 0.8 1.0 1.1 0.3 1.6 0.3 0.8
Group ∶ 1 1 1 2 2 2 3 3
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17.4 Multiple Samples 281

17.4.1 All Pairwise Comparisons

A reasonable approach is to perform all pairwise comparisons using a
method for the comparison of two groups. If we are performing a test, for
example, this leads us to do so for every pair, so that (g

2) tests are performed
in total. Such multiple testing situations are discussed in more detail in
Chapter 20.

R corner The function pairwise.t.test performs all the pairwise Student–
Welch tests, while pairwise.wilcox.test performs all the pairwise Wilcoxon
rank-sum tests. A number of ways to correct for multiple testing are offered.

Remark 17.28 (Many-to-one comparisons) Another approach consists in
performing a many-to-one comparison, where all the ‘treatment’ groups are
compared to a ‘control’ group, the latter serving as benchmark. Treatment
groups are not compared to each other. (For more on this, see the classic
book by Miller [131].)

In the remainder of this section, we focus on various forms of global
testing, by which we mean testing whether there is any difference between
the groups. (We develop this further in Section 20.2.)

17.4.2 Testing for a Difference in Means

Let μ j denote the mean of P j, and consider testing for the equality in means

H0 ∶ μ1 = ⋯ = μg.

This generalizes the testing problem of Section 17.1, where we considered
the case g = 2. The methods presented there have analogue s.

F-test
This test was proposed by Fisher in the 1920s and later modified by
Welch [203] to settings where the groups do not necessarily have the same
variance. This test, which we will call the Fisher–Welch test, generalizes
the Student–Welch test and, in particular, also relies on the Central Limit
Theorem. Its form and derivation are rather complex and will not be given
here.

R corner This test is implemented in the R function oneway.test.

Bootstrap Tests
A bootstrap p-value may be obtained in a way which is analogous to the one
presented in Section 17.1.2. In particular, the resampling is within groups.
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282 Multiple Numerical Samples

As for the choice of a test statistic, one possibility is to choose the
treatment sum-of-squares, defined as

p

∑
j=1

nj(x̄ j − x̄)2, (17.7)

where x̄ j is the average for Group j and x̄ is the overall average. For a
Studentized version, use the Fisher–Welch test statistic instead.

We assume that we reject for large values of a test statistic T . Importantly,
we need to place ourselves under the null distribution before bootstrapping.
We do this by centering each group, which effectively makes the groups
have the same mean (equal to 0). Having observed the data, let P∗0, j denote
the empirical distribution for Group j after centering. A bootstrap sample is
thus X∗ = (X∗i, j), where

X∗i, j ∼ P∗0, j, independent.

Then the bootstrap p-value is the probability that T∗ ∶= T(X∗) ≥ t ∶= T(x),
as usual. This p-value is typically estimated by Monte Carlo simulation.

Problem 17.29 In R, write a function that takes in the values and group
labels, and the number of bootstrap samples to be generated, and returns the
Monte Carlo estimate for the bootstrap p-value of the Fisher–Welch statistic
(Although we did not provide an analytic form for this statistic, it can be
computed using the function oneway.test.)

17.4.3 Goodness-of-Fit Testing

As in Section 17.3, suppose we are interested in comparing the distributions
that generated the groups in the sense of testing

H0 ∶ P1 = ⋯ = Pg.

Permutation Tests
As in Section 17.3.2, a calibration by permutation is particularly appealing,
and can be motivated from re-randomization perspective (Remark 17.18).

Suppose we reject for large values of T . This could be the treatment
sum-of-squares or the Fisher–Welch statistic, or any other. We concatenate
the groups as we did in Section 17.3.2, obtaining x = (x1, . . . , xg), where
x j ∶= (x1, j, . . . , xnj, j) are the observations from Group j. Let Π be the group
of permutations of {1, . . . ,n} and for π ∈ Π, let xπ denote the dataset
permuted according to π. The corresponding p-value is defined as in (15.4),
and it is a valid p-value under the null hypothesis H0 above.
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17.4 Multiple Samples 283

Problem 17.30 In R, write a function that takes in the values and group
labels and the number of permutations to be generated, and returns a Monte
Carlo permutation p-value for the Fisher–Welch test statistic.

Rank Tests
As in Section 17.3.3, using ranks is a viable option. Let ri, j be the rank of
xi, j in increasing order in the combined sample. A direct extension of the
Wilcoxon rank-sum test, in particular in view of Problem 17.22, consists in
rejecting for large values of

g

∑
j=1
(r j − nj(n + 1)/2)2

, (17.8)

where r j ∶= ∑n j

i=1 ri, j is the rank sum for Group j.

Problem 17.31 Show that, indeed, this reduces to the two-sided rank-sum
test when g = 2.

Problem 17.32 In R, write a function that implements the test based on
(17.8). The function takes as input the data and the number of permutations
to be drawn and returns the corresponding estimated p-value.

The most popular rank test in the present setting, however, is a. test due
to William Kruskal (1919–2005) and W. Allen Wallis (1912–1998), which
rejects for large values of the treatment sum-of-squares (17.7) computed on
the ranks, namely

g

∑
j=1

1
nj
(r j − nj(n + 1)/2)2

. (17.9)

Problem 17.33 Show that the Kruskal–Wallis test equivalently rejects for
large value of ∑g

j=1 r2
j/nj. [Use the fact that r1 +⋯+ rg = n(n + 1)/2.]

Remark 17.34 The actual Kruskal–Wallis test statistic is an affine function
of (17.9) that makes the resulting statistic have, under the null hypothesis,
the chi-squared distribution with g−1 degrees of freedom in the large-sample
limit where min j n j →∞.

R corner This test is implemented in the function kruskal.test, which
returns a p-value based on the limiting distribution.

Problem 17.35 In R, write a function that takes in the data and a number
of Monte Carlo replicates, and returns a Monte Carlo estimate of the
permutation p-value for the Kruskal–Wallis statistic.
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284 Multiple Numerical Samples

17.5 Further Topics

17.5.1 Two-Sample Median Test

Despite its name, the median test is for goodness-of-fit, meaning a test for
(17.3). It works as follows. We consider two groups, of sizes n1 and n2, as
before. Let M denote the sample median of all the observations combined.
Let T denote the number of observations from Group 1 that exceed M. The
two-sided variant of the test rejects for large and small values of T .

Problem 17.36 Assume that ties are broken at random.

(i) Assume the n = n1 + n2 is even. Show that, under the null
hypothesis stated in (17.3), T has the hypergeometric distribution
with parameters (n1,n/2,n/2).

(ii) Assume that n is odd. What is the distribution of T under the null?

Problem 17.37 In R, write a function that implements this test.

17.5.2 Consistency

Consider the two-sample setting. We say that a testing procedure is
universally consistent if, when P1 ≠ P2, at any level α > 0 the corresponding
test has power converging to 1 has n1,n2 →∞.

Problem 17.38 Show that the Kolmogorov–Smirnov testing procedure is
universally consistent. [Use the fact that the empirical distribution function
is consistent for the underlying distribution function.]

Proposition 17.39. The Wilcoxon rank-sum test procedure is not universally
consistent.

The Wilcoxon rank-sum test is, however, consistent in a shift model
(17.6). More generally, the rank-sum test is consistent when, under the
alternative, P1 stochastically dominates P2, or vice versa (assuming the
two-sided version of the test). We say that P, with distribution function F,
stochastically dominates Q, with distribution function G, if

F̄(t) ≥ Ḡ(t), for all t ∈ R.

This means that, if X has distribution F and Y has distribution G, then
P(X > t) ≥ P(Y > t) for all t.
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17.6 Additional Problems

Problem 17.40 (Kolmogorow–Smirnov vs Wilcoxon) In R, perform some
simulations to compare the power of the (one-sided) Kolmogorov–Smirnov
test and that of the Wilcoxon test. Consider the case where both samples
are of same size m ∈ {20,50,100}. The first group comes from N(0,1).
In the first situation, the second group comes from N(θ,1). In the second
situation, the second group comes from N(0,1 + θ). In each case θ > 0
is chosen carefully on a grid to make the setting interesting, showing the
power going from the level, set at α = 0.01, to close to 1. Repeat each setting
103 times. For each (situation, m), in the same plot draw the power curve
for each test as a function of θ. Use different colors and add a legend.

Problem 17.41 (Permutation vs rank tests) In R, perform some simulations
to compare the power of the permutation test based on the difference in
sample means and the corresponding rank test, which is none other than
the rank-sum test. Specifically, consider the case where both samples are of
same size m ∈ {20, 50, 100}. The first group comes from N(0, 1), while the
second group comes from N(θ,1). In each case θ > 0 is chosen carefully
to make the setting interesting, showing the power going from α ∶= 0.01
to close to 1. Repeat each setting (situation, m, θ) B = 103 times. For each
(situation, m), in the same plot, draw the power curve for each test as a
function of θ.

Problem 17.42 Strictly speaking, a permutation p-value is only valid for
the null hypothesis that the underlying distributions are the same. How does
it behave when it is used when testing for a parameter? Consider a two
sample setting where we test for a difference in means. We choose as test
statistic the difference in sample means, which we calibrate by permutation.
The first group comes from N(0,1), while the second group comes from
N(0,3). Clearly, we are under the null hypothesis (same means), and the
distributions are different. Assume both groups are of same size m, and
the permutation p-value is based on a number B of Monte Carlo replicates.
By varying m and B, assess the accuracy of the permutation p-value. Offer
some brief comments, and possibly some elements of explanation for that
behavior.

Problem 17.43 The two tests, based on (17.8) and (17.9) respectively,
coincide when the design is balanced in the sense that the group sizes are
identical. How do they compare when the group sizes are not the same?
Perform some simulations to investigate that.
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286 Multiple Numerical Samples

Problem 17.44 (Bootstrap goodness-of-fit tests) In goodness-of-fit testing,
permutation is typically considered the calibration of choice, in large part
because the permutation p-value is valid, regardless of the group sizes.
However, a bootstrap approach is also possible. Explain, when testing
whether two groups come from the same distribution, how you would obtain
a p-value by bootstrap.

Problem 17.45 (Mann–Whitney test) This test is based on the test statistic

U ∶=
2

∑
j=1

n j

∑
i=1
{Xi,1 > Xj,2}.

Show that, at least when there are no ties, U = R1−n1(n1+1)/2, where R1 is
rank-sum for Group 1 (17.5). [Hence, the Mann-Whitney test is equivalent
to the Wilcoxon rank-sum test.]

Problem 17.46 (Student test) Consider a normal experiment where we
observe independent realizations of X1, . . . ,Xm, assumed an iid sample
from N(μ,σ2), and of Y1, . . . ,Yn, assumed an iid sample from N(ξ,σ2).
Importantly, the two normal distributions are assumed to have the same
variance. All three parameters are unknown. Our goal is to test the null
hypothesis that the means are equal, μ = ξ. The Student test rejects for large
values of ∣T ∣ where

T ∶= X̄ − Ȳ
S
, (17.10)

with X̄ and Ȳ being the sample means and S being the pooled sample
standard deviation.

(i) Show that there is a constant cm,n such that cm,nT has the Student
distribution with m + n − 2 degrees of freedom under the null.

(ii) Show that this test corresponds to the LRT under the present model.

Problem 17.47 (Student–Welch test) In the same setting, the Student–Welch
test rejects for large values of ∣T ∣ where

T ∶= X̄ − Ȳ√
S 2

X/m + S 2
Y/n
, (17.11)

with X̄ and Ȳ being the sample means and S X and S Y being the sample
standard deviations. It turns out that T does not have a Student distribution
under the null hypothesis. Does this test correspond to the LRT under the
present model?
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Problem 17.48 (Fisher test) Consider a normal experiment where we
observe independent realizations of (Xi, j ∶ i = 1, . . . ,nj) assumed an
iid sample from N(μ j, σ

2), for j = 1, . . . ,g. Importantly, the normal
distributions are assumed to have the same variance. All parameters are
unknown. Our goal is to test the null hypothesis that μ1 = ⋯ = μg. The F-test
rejects for large values of F where

F ∶=
∑g

j=1 nj(X̄ j − X̄)2

S 2
,

with X̄ j being the sample mean for the group j, X̄ the pooled sample mean,
and S the pooled sample standard deviation. This is the multiple-sample
analogue of (17.10).

(i) Show that there is a constant cm,n such that the distribution of cm,nF
under the null hypothesis is the Fisher distribution with g−1 and n−g
degrees of freedom, where n is the total sample size.

(ii) Show that this test corresponds to the LRT under the present model.

(There is a Welch version of this test which is the multi-sample analogue of
(17.11). The exact form of the test statistic is rather complicated [203].)

Problem 17.49 (Energy statistics) Cramér 66 proposed in [34] the following
dissimilarity for comparing two distribution functions

Δ(F,G)2 ∶= ∫
∞

−∞
(F(x) −G(x))2dx.

(Note the difference with the Cramér–von Mises dissimilarity (16.16).)

(i) Letting X,X′ be iid from F and (independently) Y,Y ′ be iid from G,
show that

Δ(F,G)2 = E[∣X − Y ∣] − 1
2 E[∣X − X′∣] + 1

2 E[∣Y − Y ′∣].

(ii) Use this to provide an explicit expression for the sample equivalent,
meaning when applying the dissimilarity to the empirical distribution
functions of the two samples under consideration.68

(iii) Implement this as a test in R. (Calibration is by permutation based on
a specified number of Monte Carlo replicates.)

(iv) Is the test distribution-free?

68 The resulting statistic is an example of what Székely and collaborators call energy
statistics. See [184] for a survey of the relevant literature which puts this early proposal by
Cramér in context.
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Problem 17.50 The test of Problem 17.49 was expressed there in terms of
distribution functions. However, it turns out it also has a relatively simple
expression in terms of characteristic functions. Indeed, show that

Δ(F,G)2 = 1
2π ∫

∞

−∞

∣ϕF(t) − ϕG(t)∣2
t2

dt,

where ϕF and ϕG are the characteristic functions of F and G, respectively.

Problem 17.51 Censoring is also common with multiple-sample numerical
data. In fact, we already saw an instance of that in Example 16.63, where an
analysis would lead one to compare the group survival functions. Propose a
Kolmogorov–Smirnov-type test based on the Kaplan–Meier estimator given
in (16.20), specifying how you obtain the p-value. In R, write a function
that implements that test and apply it to the data of Example 16.63.

Problem 17.52 (The log-rank test) Continuing with censored data, consider
two groups (as in Example 16.63). The goal remains the same, which is,
to compare the underlying distributions. Let Dt, j (resp. Yt, j) denote the
number of events (resp. of subjects at risk) at time t in Group j. Define
Dt = Dt,1 + Dt,2 and Yt = Yt,1 + Yt,2. Argue that, under the null hypothesis
of identical distributions, Dt,1 ∼ Hyper(Dt,Yt,1,Yt,2) when conditioning on
(Dt,Yt,1,Yt,2). Derive the corresponding mean and variance, denoted Et,1

and Vt,1 below. The log-rank test is based on the statistic

∑t(Dt,1 − Et,1)
(∑t Vt,1)1/2 .

In R, implement this test, with a p-value obtained by permutation, and apply
it to Example 16.63. Traditionally, the p-value is derived from the standard
normal distribution based on a normal approximation. Can you justify this
approximation?
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18

Multiple Paired Numerical Samples

In this chapter, we consider experiments where the variables of interest are
paired. Importantly, we assume that these variables are directly comparable.
(This is in contrast with Chapter 19 and Chapter 21, where the variables can
be measurement in different units.)

Crossover trials are important examples of such experiments. Other
examples include the following.

Example 18.1 (Judge panel) In the food industry, in particular, it is common
to ask individuals to rate the taste of different products, typically of the same
type. For example, in [28], 12 experienced wine tasters were asked to rate
78 wines on a variety of characteristics.

Example 18.2 (Father-son heights) Karl Pearson collected data on the
heights of 1078 fathers and their (adult) sons [142]. This dataset is discussed
at length in [66] and, in fact, a scatterplot of the data is on the cover of that
book, and reproduced in Figure 18.1.

18.1 Two Paired Variables

We start with a setting where we observe a bivariate numerical sample
(X1,Y1), . . . , (Xn,Yn). The pairs are assumed iid from some unknown
distribution. We assume that the X and Y variables can be compared directly.

Taking the example of a crossover trial comparing two treatments (one of
them could be a placebo), when there is no difference between treatments it
is assumed that X and Y are exchangeable. When testing for a difference in
treatment, we are thus testing the following null hypothesis

H0,∗ ∶ (X,Y) ∼ (Y,X).

289
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Figure 18.1 A scatterplot of the data described in Example 18.2.

18.1.1 Testing for Symmetry

There is a one-to-one correspondence

(X,Y) ↔ (U,Z) ∶= (X + Y,X − Y),

and the null hypothesis can be equivalently expressed as follows:

H0,∗ ∶ (U,Z) ∼ (U,−Z).

It is tempting to drop U and focus on Z, and doing so69 leads to testing the
following null hypothesis of symmetry

H0 ∶ Z ∼ −Z. (18.1)

The rest of this section is dedicated to testing this hypothesis based on an
iid sample Z1, . . . ,Zn. (Unless restricted further, the underlying distribution
is simply assumed to be in the family of all distributions on the real line.)

69 This can be justified on the basis of invariance considerations [110, Sec 6.8].
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18.1.2 Symmetric Distributions

A random variable Z is said to be symmetric about μ if

P(Z < z) = P(Z > μ − z), for all z ∈ R.

Problem 18.3 Assuming that Z has continuous distribution function F,
show that this is equivalent to

F(z) = 1 − F(μ − z), for all z ∈ R.

In particular, F is symmetric about 0 if

F(z) = 1 − F(−z),

that is, if z↦ F(z) − 1/2 is odd.

Problem 18.4 Suppose that F has a piecewise continuous density f . Show
that F is symmetric about μ if and only if

f (z) = f (μ − z), at any continuity point z.

In particular, if f is continuous, F is symmetric about 0 if and only f is even.
(In any case, f is essentially even.)

Problem 18.5 Show that if F is symmetric about μ, then μ is necessarily a
median of F, and also its mean if it has a mean.

Although symmetry can be about any point on the real line, in what
follows we assume that point to be the origin. This is the most important
case, in part because it is motivated by (18.1), and also because it can be
considered without loss of generality. In particular, in what follows, by
‘symmetric’ we mean ‘symmetric about 0’.

Problem 18.5 justifies the application of tests for the median, such as
the sign test (Section 16.3.3), as well as tests for the mean, for example a
bootstrap test (Section 16.6.5). If such a test rejects, it is evidence against the
(null) hypothesis of symmetry. However, such a test cannot be universally
consistent since a distribution can be asymmetrical and yet have zero median,
or zero mean, or both.

Problem 18.6 Construct a distribution that is asymmetrical and has median
and mean both equal to 0. One avenue is to consider a Gaussian mixture
of the form pN(a,1) + (1 − p)N(b, σ2), where p ∈ [0,1], a,b ∈ R, and
σ2 > 0 are chosen to satisfy the requirements. Another avenue is to consider
a distribution with finite support. In that case, what is the minimum support
size needed to satisfy the requirements?
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292 Multiple Paired Numerical Samples

The procedures presented below are based on the following characteriza-
tions of symmetry.

Problem 18.7 Let Z be a random variable. Show that the following
assertions are equivalent:

(i) Z is symmetric;
(ii) sign(Z) is symmetric and independent of ∣Z∣;
(iii) P(Z > 0) = P(Z < 0) and Z ∣ Z > 0 and −Z ∣ Z < 0 share the same

distribution.

Problem 18.7 can be used to motivate the comparison of the positive
part of the sample, meaning {Zi ∶ Zi > 0}, with the negative part of the
sample, meaning {−Zi ∶ Zi < 0}, as one would for two different groups.
The techniques developed in Section 17.3 for that purpose are particularly
relevant. Following this logic leads to two well-known methods for testing
for symmetry that we present next.

Remark 18.8 (Zero values) Since the values that are exactly 0 do not
carry any information on the asymmetry of the underlying distribution, it is
common to simply drop these values before applying a procedure. (This is
an example of conditional inference.) This is what we do in what follows,
and, although it changes the sample size, we redefine n as the sample size
after removing these observations.

18.1.3 A Test based on Sign Flips

Let z = (z1, . . . , zn) denote the observed sample, and for a sign vector
ε = (ε1, . . . , εn) ∈ {−1,1}n, let zε = (ε1z1, . . . , εnzn). Suppose that we reject
for large values of a test statistic T(z). A popular choice is

T(z) = ∣
n

∑
i=1

zi∣. (18.2)

Having observed Z = z, the p-value is

pvT(z) = #{ε ∶ T(zε) ≥ T(z)}
2n

. (18.3)

The denominator is the cardinality of the set of sign vectors {−1, 1}n. Thus,
this is the proportion of sign vectors that lead to a value of the test statistic
that is at least as extreme as the one observed.
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Proposition 18.9. This quantity is a valid p-value in the sense that it
satisfies (12.12), meaning that

P(pvT(Z) ≤ α) ≤ α, for all α ∈ [0,1],

when the underlying distribution is symmetric.

In practice, computing the p-value (18.3) is quickly intractable. This is
because the number of sign vectors of interest is equal to 2n, which grows
exponentially (> 1030 when n = 100). As usual, one resorts to Monte Carlo
simulation to estimate this p-value, by repeatedly drawing sign vectors
uniformly at random.

Problem 18.10 In R, write a function that takes as input the sample and
a number of Monte Carlo replicates, and returns the p-value estimated by
Monte Carlo for the test statistic (18.2).

Remark 18.11 Although the test is built on a permutation test, it is
not a permutation test per se. Nothing is being permuted. However, its
construction can be motivated by conditional inference (Section 22.1): we
condition on the absolute values, ∣Z1∣, . . . , ∣Zn∣, which a priori do not carry
any information on whether the underlying distribution is symmetric.

Problem 18.12 How is the test above, based on the statistic (18.2) and
returning the p-value (18.3) different from the permutation test, based on
the absolute value of the difference in sample means, applied to compare
the positive and negative samples? [The two tests are almost the same, but
not quite identical.]

18.1.4 Wilcoxon Signed-Rank Test

We now turn to the test that results from comparing the distributions of
Z ∣ Z > 0 and −Z ∣ Z < 0 using the Wilcoxon rank-sum test presented in
Section 17.3.3. This leads one to use the test statistic

n

∑
i=1

ri{zi > 0},

where ri is the rank of ∣zi∣ among ∣z1∣, . . . , ∣zn∣. In the two-sided situation, we
reject for large and small values of this statistic, as we did for the two-sided
rank-sum test.
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Problem 18.13 Verify that this is indeed the resulting test statistic when
using the rank-sum test to compare the distributions of Z ∣ Z > 0 and
−Z ∣ Z < 0.

R corner The function wilcox.test computes the signed-rank test when
provided with a numerical vector, and the rank-sum test when provided with
two numerical vectors.

Problem 18.14 Show that it is equivalent to use the following statistic
n

∑
i=1

ri sign(zi) = ∑
zi>0

ri − ∑
zi<0

ri. (18.4)

(In this form, it is clear that this is the rank variant of the test of
Section 18.1.3.)

Problem 18.15 When the underlying distribution is symmetric, and
assuming in addition that it is continuous or that ties among ranks are
broken at random, show that the signed-rank statistic in the form of (18.4)
has the distribution of ∑n

i=1 i εi with70 ε1, . . . , εn iid uniform in {−1,1}.
Whether the underlying distribution is continuous or not, and whether

ties are broken at random or not, an approach by conditional inference
remains available: it consists in computing a p-value by fixing the ranks
while sampling sign vectors uniformly at random.

Sign Pattern
In Section 17.3.4, we saw that any (reasonable) rank test for the two-sample
setting is based on the pattern defined by the two samples combined. The
situation is analogous here. Indeed, any (reasonable) test for symmetry
based on the ranks and signs is based on the sign pattern given by ordering
the absolute values and then listing the signs in that order. For example, the
following observations

1.3 2.1 2.5 −1.4 1.0 0.4 −3.5 −1.0 0.2

yield the following sign sequence

+ + + − + − − + +

70 The uniform distribution on {−1, 1} is sometimes called the Rademacher distribution.
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18.2 Multiple Paired Variables

We now consider the more general case of p paired variables. The sample is
of size n, and denoted

(X1,1, . . . ,X1,p), . . . , (Xn,1, . . . ,Xn,p).

Let Xi = (Xi,1, . . . ,Xi,p) denote the ith observation, which is a vector
of length p here. We assume these n observations to be iid from some
unknown distribution, and we also assume that all the variables are directly
comparable. This is the case in Example 18.1, where Xi, j is the rating of ith
wine by the jth judge.

These observations are typically gathered in a n-by-p data matrix, (Xi, j).
See Table 18.1.

Table 18.1 Prototypical data matrix in the context of a crossover
clinical trial.

Treatment 1 Treatment 2 ⋯ Treatment p
Subject 1 X1,1 X1,2 ⋯ X1,p
Subject 2 X2,1 X2,2 ⋯ X2,p

⋮ ⋮ ⋮ ⋮

Subject n Xn,1 Xn,2 ⋯ Xn,p

Taking the example of a crossover clinical trial, the goal is to assess
whether the treatments are different. This is again modeled by testing

H0 ∶ X1, . . . ,Xp are exchangeable.

18.2.1 Permutation Tests

A calibration by permutation is particularly attractive in the present context,
since permutations are at the core of the definition of exchangeability. In
fact, in the context of a crossover trial, this corresponds to re-randomization
testing (Section 22.1.1).

Compared to a completely randomized design, the permutation in the
context of a crossover trial or any other repeated measures design is done
differently. Indeed, here the permutation is within subject. In particular,
permuting across subjects (as is done in the context of a completely
randomized design) is not appropriate.
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Let T be a test statistic whose large values are evidence against the
null. Having observed (x1, . . . , xn), a calibration by permutation is done as
follows. Let Π0 be the group of permutations of {1, . . . , p} and let Π ∶= Π×n

0 ,
which also a group in the algebra sense of the term. The permutations in Π
are the valid permutations in the present context.

Problem 18.16 Show that ∣Π∣ = (p!)n.

Let t ∶= T(x1, . . . , xn) denote the observed value of the statistic. For
π = (π1, . . . , πn) ∈ Π, with πi ∶= (πi,1, . . . , πi,p) ∈ Π0, let tπ denote the value
of the statistic when it is applied to the same data except permuted by π,
meaning tπ = T(π1(x1), . . . , πn(xn)) where πi(xi) ∶= (xπi,1 , . . . , xπi,p). The
permutation p-value is then defined as in (15.4). In practice, it is typically
estimated by Monte Carlo simulation based on a number of permutations
that are sampled independently and uniformly at random from Π.

Problem 18.17 Show that the permutation p-value and its Monte Carlo
estimate, seen as random variables, are both valid in the sense of (12.12).
[Use the conclusions of Problem 8.53.]

Problem 18.18 In R, write a function that takes in as input the data
matrix and a number of Monte Carlo replicates, and returns the estimated
permutation p-value for the treatment sum-of-squares defined in (17.7).
[Note that there are p groups here, with sample size nj = n for all j.]

18.2.2 Rank Tests

Using ranks is particularly appealing in settings where the measurements
across subjects are not easy to compare. This is for example the case when
the measurements are subjective evaluations. A prototypical example is that
of a judge panel experiment (Example 18.1) as the judges may be more or
less liberal in the use of the full appraisal scale. Another important example
is that of crossover trials where what is measured is the improvement of
symptoms on a visual analogue scale (VAS). Such subjective evaluations
are notoriously difficult to compare. The use of ranks disregards the scale
implicitly (and often unconsciously) used by a subject, and focuses on the
subject’s ranking instead. Thus, ranks are computed within subjects.

In detail, let ri, j be the rank of xi, j among xi,1, . . . , xi,p and let r j = ∑n
i=1 ri, j

be the rank sum for Treatment j. (Although we are using the same notation,
these ranks are defined differently than in Section 17.4.3.)
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Remark 18.19 Rank tests are special cases of permutation tests, as their
null distribution is the permutation distribution (at least when the ties are
broken at random).

Friedman Test
Like the Kruskal–Wallis test, this test uses as test statistic the treatment
sum-of-squares applied to the ranks defined above. It was proposed by
Milton Friedman (1912–2006) in [74].

Problem 18.20 Show that using the treatment sum-of-squares is equivalent
to using ∑p

j=1 r2
j .

Remark 18.21 The actual Friedman test statistic involves a standardization
that makes the resulting statistic have, under the null hypothesis, the chi-
squared distribution with p − 1 degrees of freedom in the large-sample limit
where n→∞.

R corner The function friedman.test, which implements that test, uses the
limiting distribution to compute the p-value.

18.3 Additional Problems

Problem 18.22 Consider a strictly increasing and continuous distribution
function F. Derive a necessary and sufficient condition on the corresponding
quantile function F−1 (a true inverse in this case) for F to be symmetric
about a given μ ∈ R.

Problem 18.23 (Sign-flip vs signed-rank) Perform some simulations to
compare the power of the sign-flip test of Section 18.1.3 and the Wilcoxon
signed-rank test of Section 18.1.4.

Problem 18.24 (Smirnov test) The Smirnov test for symmetry is based
on comparing the distributions of Z ∣ Z > 0 and −Z ∣ Z < 0 using the
two-sample Kolmogorov–Smirnov test.

(i) Write down a simple expression for the test statistic.
(ii) In R, write a function that takes in the data and a number of Monte

Carlo replicates, and returns the Monte Carlo estimate for the p-value
(18.3).

Problem 18.25 (Hodges–Lehmann estimator) Suppose we have a numeri-
cal sample z1, . . . , zn. For θ ∈ R, let ri(θ) denote the rank of ∣zi − θ∣ among
{∣z j − θ∣ ∶ j = 1, . . . ,n}.
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(i) Show that

∑
i

ri(θ) sign(zi − θ) = ∑
i≤ j

sign ( 1
2(zi + z j) − θ).

From this, argue that the confidence interval which is derived (as
in Section 12.4.7) from the Wilcoxon signed-rank test for the null
hypothesis that θ = θ0 (at some arbitrary level α) is symmetric about

Med( 1
2(zi + z j) ∶ i ≤ j).

This statistic is the Hodges–Lehmann estimator.
(ii) Assume the sample is generated iid from some distribution. Determine

the large-sample limit of this statistic. This limit quantity defines the
(location) parameter of the underlying distribution that the statistic is
consistent for as an estimator. Show that this parameter is the median
when the distribution is symmetric about a unique median.
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Correlation Analysis

We consider an experiment which results in a sample of paired numeri-
cal variables, (X1,Y1), . . . , (Xn,Yn). The paired variables are generically
denoted by (X,Y), and the general goal addressed in this chapter is that of
quantifying the strength of association between X and Y . By association we
mean dependence. Contrary to the setting of Chapter 18, and, in particular,
Section 18.1, here X and Y can be measurements of completely different
kinds.71

Example 19.1 The study described in [106] evaluates the impact of the
time in detention on the mental health of asylum seekers in the United
States in terms of (self-reported) symptoms of anxiety, depression, and
post-traumatic stress disorder. Focusing on just one symptom, say anxiety,
the data are of the form (T1,A1), . . . , (Tn,An), where Ti denotes the time
spent in detention and Ai the level of anxiety for Individual i. (There were
n = 70 individuals interviewed for this study.)

A correlation analysis amounts to quantifying the level of association
between X and Y . A more detailed description of this association is the goal
of regression analysis, which is the topic of Chapter 21.

19.1 Testing for Independence

Suppose we want to test

H0 ∶ X and Y are independent.

This is, in some sense, the most extreme form of non-association between
two variables. Most of this chapter is dedicated to testing for independence.

71 We assume throughout that neither X nor Y are constant, for otherwise a correlation
analysis is not relevant as we effectively only have one numerical sample in that case.
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19.1.1 Tests based on Binning

In Section 15.6, we saw how to test for independence between (paired)
discrete variables. In principle, the tools developed there could be used
when the variables are numerical, but only after binning.

Problem 19.2 (Independence tests based on binning) Based on the
methodology introduced in Section 15.6 for discrete variables, propose
at least one test for independence that is applicable to numerical variables.
The general idea is to first bin the numerical variables, thus obtaining
discrete variables, and then apply an independence test for discrete variables.
Implement that test procedure in R. [Notice the parallel with Problem 16.61.]

19.1.2 Permutation Tests

In the present context, a permutation consists in permuting one coordinate,
say, the Y coordinate (without loss of generality), while leaving the other
variable fixed. Doing this leaves a null distribution unchanged while
breaking any dependence under an alternative.

Suppose we reject for large values of a statistic T . Let t denote the
observed value of the statistic, meaning t = T((x1, y1), . . . , (xn, yn)). Letting
Π be the group of permutations of {1, . . . ,n}, for π = (π1, . . . , πn) ∈ Π, let
tπ denote the value of the statistic when applied to the data permuted by
π, meaning tπ = T((x1, yπ1), . . . , (xn, yπn)). Based on this, the permutation
p-value is defined as in (15.4). Since ∣Π∣ = n! can be quite large, this p-value
is typically estimated by Monte Carlo simulation.

Problem 19.3 Show that the permutation p-value and its Monte Carlo
estimate, seen as random variables, are both valid in the sense of (12.12).
[Use the conclusions of Problem 8.53.]

Problem 19.4 (Bootstrap tests) Although a calibration by permutation is
favored, in large part because the permutation p-value is valid regardless of
the sample size, a calibration by bootstrap is also possible (and reasonable).
Propose a way to do so in the present context.

In the remainder of this chapter, we give several examples of test statistics
that are commonly used for the purpose of testing for independence. The
alternative set is very large, comprising all distributions on R2 that are not
the product of their marginals, and there is no test that is uniformly best.
Instead, each of the following tests is designed for certain alternatives.
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19.2 Affine Association

The variables X and Y are in perfect affine association if they are affine
functions of each other, for example,

Y = aX + b, for some a,b ∈ R.

Such a perfect association is extremely rare in real applications. Even
in settings governed by the laws of physics the relation is not exact, for
example, because of various factors including measurement precision and
error.

Example 19.5 (Boiling temperature in the Himalayas) In [64], James
Forbes reports data collected by Joseph Hooker on the boiling temperature
of water at different elevations in the Himalayas. The variables are boiling
temperature (degrees Fahrenheit) and barometric pressure (inches of
mercury). Although the laws of physics predict an affine relationship, this is
not exactly the case in this dataset, although it is an excellent model.

19.2.1 Pearson Correlation

The correlation, defined in (7.8), was seen to measure affine association
between paired random variables. This motivates the use of the sample
correlation, defined as the correlation of the empirical distribution.

Problem 19.6 Show that the sample correlation is given by

r ∶= ∑n
i=1(xi − x̄)(yi − ȳ)√

∑n
i=1(xi − x̄)2

√
∑n

i=1(yi − ȳ)2
.

This is often called the Pearson sample correlation.

Problem 19.7 Show that r ∈ [−1,1], and ∣r∣ = 1 if and only if there are
a,b ∈ R such that yi = axi + b for all i. (We are assuming that the xi are not
constant.)

Problem 19.8 (Consistency of the sample correlation) Let {(Xi,Yi) ∶ i ≥ 1}
be iid bivariate numerical with correlation ρ. Let Rn denote the sample
correlation of (X1,Y1), . . . , (Xn,Yn). Show that Rn →P ρ as n→∞.

The Pearson correlation test, which in its two-sided variant rejects for
large values of ∣R∣, is not universally consistent, essentially because there are
bivariate distributions with ρ = 0 that are not the product of their marginals.
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Problem 19.9 Suppose that X is uniform in [−1,1] and define Y = X2.
Show that the distribution of (X,Y) has correlation ρ = 0. Generalize this
result as much as you can (within reason).

Proposition 19.10. If X and Y are independent and normal,

T ∶= R
√

n − 2√
1 − R2

has the Student distribution with n − 2 degrees of freedom. In general, if X
and Y are independent and have finite 2nd moments,

T = Tn
LI→ N(0,1), as n→∞.

R corner The function cor computes, by default, the Pearson correlation,
while the function cor.test implements, by default, the Pearson correlation
test, albeit returning a p-value computed based on Proposition 19.10.

Problem 19.11 Detail how Proposition 19.10 is used to produce a p-value.
(Note that the null hypothesis, in this case, can be that the variables are
independent, or more generally, that they have zero Pearson correlation.
In either case, the p-value is approximate, except in the exceedingly rare
situation where the underlying distribution is known to be bivariate normal.)

Problem 19.12 In R, write a function that takes in the dataset and a number
of Monte Carlo replicates, and returns the estimated permutation p-value
for the Pearson correlation.

Remark 19.13 If one obtains a p-value for R, or equivalently, T , by
permutation, then it is much safer to take the null hypothesis to be that
the two variables X and Y are independent. The paper [48] shows that
a calibration by permutation is not appropriate when testing the null
hypothesis that X and Y are uncorrelated.

19.3 Monotonic Association

The variables X and Y are in perfect monotonic association if they are
monotonic functions of each other, for example,

Y = g(X), for some monotone function g.

As before, and for similar reasons, perfect monotonic association is
extremely rare in practice.
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Example 19.14 (Antoine’s equation) For a pure liquid, the vapor pressure
(p) and temperature (t) are related, to first order, by Antoine’s equation

log(p/p0) = t0/t,

where p0 and t0 are constants. Note that p is a monotone function of t in
this model. Actual data does not fit the equation perfectly, but comes very
close to that. (See [98] for more details in the case of mercury, including a
discussion of more refined equations.)

Rank Pattern
The two most popular tests for monotonic association, which we introduce
below, are based on the rank pattern, which is given by ranking the Yi among
themselves, and then listing these ranks according to increasing values of
the Xi. For example, the following data

X ∶ −1.0 −1.3 0.8 1.1 −0.4 −0.3 0.9 −0.8
Y ∶ 0.2 0.0 1.6 0.1 0.6 −0.6 1.0 −0.7

yield the following rank pattern

3 5 1 6 2 8 7 4

Problem 19.15 Suppose that ties, if present, are broken at random. Prove
that the rank pattern is uniformly distributed among the permutations of
(1, . . . ,n) when X and Y are independent.

19.3.1 Spearman Correlation

The Spearman correlation is the rank variant of the Pearson correlation. We
start with the sample version. Let ai denote the rank of xi within x1, . . . , xn

and bi denote the rank of yi within y1, . . . , yn. The Spearman sample
correlation is the Pearson sample correlation of (a1,b1), . . . , (an,bn).
Problem 19.16 Show that this is a rank statistic.

Problem 19.17 Show that the Spearman sample correlation can be written

rs = 1 − 6
n3 − n

n

∑
i=1
(ai − bi)2.

Problem 19.18 Show that rs ∈ [−1,1], and = 1 (resp. = −1) if and only
if there is a non-decreasing (resp. non-increasing) function g such that
yi = g(xi) for all i.
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We first defined the sample version of the Spearman correlation, the
reason being that it is easy to motivate. One may wonder if there is a
corresponding feature of the underlying distribution. Coming from another
angle, is there a result analogous to Problem 19.8 here?

Proposition 19.19. Let {(Xi,Yi) ∶ i ≥ 1} be iid bivariate numerical. Let Rs,n
denote the Spearman correlation of (X1,Y1), . . . , (Xn,Yn). Then Rs,n →P ρs
as n→∞, where

ρs ∶= 3E [ sign ((X1 − X2)(Y1 − Y3))].

(ρs is sometimes called Spearman’s ρ.)

The Spearman correlation test, which in its two-sided variant rejects
for large values of ∣Rs∣, is not universally consistent, essentially because
there are bivariate distributions with ρs = 0 that are not the product of their
marginals (see Problem 19.9).

R corner The function cor can be used to compute the Spearman
correlation, while the function cor.test can be used to perform the Spearman
correlation test. The p-value is computed analytically up to a certain sample
size, and after that the large-sample null distribution is used. (It turns out
that the second part of Proposition 19.10 applies to Rs.)

19.3.2 Kendall Correlation

The Kendall sample correlation is defined as

rk ∶=
2

n(n − 1) ∑∑
1≤i< j≤n

sign ((x j − xi)(y j − yi)).

Problem 19.20 Show that this is a rank statistic.

Problem 19.21 Show that rk ∈ [−1,1], and = 1 (resp. = −1) if and only
if there is a non-decreasing (resp. non-increasing) function g such that
yi = g(xi) for all i.

Here too, this statistic estimates a feature of the underlying distribution.

Proposition 19.22. Let {(Xi,Yi) ∶ i ≥ 1} be iid bivariate numerical. Let Rk,n
denote the Kendall correlation of (X1,Y1), . . . , (Xn,Yn). Then Rk,n →P ρk as
n→∞, where

ρk ∶= E [ sign ((X1 − X2)(Y1 − Y2))].
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(ρk is sometimes denoted by τ and called Kendall’s τ.)

The Kendall correlation test, which in its two-sided variant rejects for
large values of ∣Rk∣, is not universally consistent, essentially because there
are bivariate distributions with ρk = 0 that are not the product of their
marginals (see Problem 19.9).

R corner The function cor can be used to compute the Kendall correlation,
while the function cor.test can be used to perform the Kendall correlation
test. The p-value is computed analytically up to a certain sample size, and
after that the large-sample null distribution is used. (It turns out that Rk is
asymptotically normal.)

Problem 19.23 Show that, under the null hypothesis of independence, Rk
has mean zero and variance given by (4n + 10)/9n(n − 1).

19.4 Universal Tests for Independence

We saw that none of the correlation tests is universally consistent. This is
because they focus on features that are not characteristic of independence.
We present below approaches that can lead to universally consistent tests,
which do so by looking at the entire distribution through its distribution
function, its density, or its characteristic function.

19.4.1 Tests based on the Distribution Function

Recall the definition of the distribution function of a random vector given in
(6.2). For (X,Y) bivariate numerical, it is defined as

FX,Y(x, y) = P(X ≤ x,Y ≤ y).

In Proposition 6.3, we saw that it characterizes the underlying distribution.
In particular, the following is true.

Problem 19.24 X and Y are independent if and only if

FX,Y(x, y) = FX(x)FY(y), for all x, y ∈ R.

Prove this claim.

In view of this, it becomes natural to consider test statistics of the form

Δ(F̂X,Y , F̂X ⊗ F̂Y), (19.1)

where Δ denotes a measure of dissimilarity between distribution functions
as considered in Section 16.8.1, while F̂X, F̂Y , and F̂X,Y denote the empirical
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distribution functions of the X, Y , and (X,Y) samples, respectively. In
particular,

F̂X,Y(x, y) ∶=
1
n

n

∑
i=1
{Xi ≤ x,Yi ≤ y}.

For example, the analogue of the Kolmogorov–Smirnov test rejects for
large values of

sup
x,y∈R

∣F̂X,Y(x, y) − F̂X(x)F̂Y(y)∣.

Problem 19.25 Show that this statistic is a function of the ranks (so that
the resulting test is a rank test).

Problem 19.26 Argue that this test is universally consistent.

Hoeffding [96] proposed, instead, the analogue of the Cramér–von Mises
test, except in reverse, as it rejects for large values of Δ(F̂X⊗ F̂Y , F̂X,Y), with
the Δ defined in (16.16).

Problem 19.27 The statistic (19.1), with the same Δ, appears to be an
equally fine choice. Perform some numerical experiments to compare these
two choices.

19.4.2 Tests based on the Density

Tests for independence based on binning the observations, as studied in
Problem 19.2, can interpreted as tests based on the density function.

Problem 19.28 In parallel with Section 19.4.1, but this time in analogy
with Section 16.8.3, propose a class of tests for independence based on the
density function. Speculate on whether the tests you propose are universally
consistent, or not. Implement your favorite test among these in R, and
perform some simulations to assess its power.

19.4.3 Tests based on the Characteristic Function

As we saw in Remark 7.57, the characteristic function of a random vector,
(X,Y), is defined as

ϕX,Y(s, t) ∶= E[exp(ı(sX + tY))].

We also saw there that a distribution on R2 is characterized by its
characteristic function.
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Problem 19.29 Show that X and Y are independent if and only if

ϕX,Y(s, t) = ϕX(s)ϕY(t), for all s, t ∈ R.

Problem 19.30 Propose a class of tests for independence based on the
characteristic function. Speculate on whether the tests you propose are
universally consistent, or not. Implement your favorite test among these in
R, and perform some simulations to assess its power.

Distance Covariance
In [185], Székely, Rizzo, and Bakirov propose a test for independence
based on pairwise distances, which in fact turns out to be based on the
characteristic function.

Based on data (x1, y1), . . . , (xn, yn), define

ai j = ∣xi − x j∣, ai =
1
n

n

∑
j=1

ai j, a = 1
n2

n

∑
i=1

n

∑
j=1

ai j,

and ui j = ai j − ai − aj + a. Similarly, define

bi j = ∣yi − y j∣, bi =
1
n

n

∑
j=1

bi j, b = 1
n2

n

∑
i=1

n

∑
j=1

bi j,

and vi j = bi j − bi − bj + b. The test rejects for large values of the sample
distance covariance defined as

1
n2

n

∑
i=1

n

∑
j=1

ui jvi j. (19.2)

Being a test for independence, a p-value is typically obtained by permutation
– via Monte Carlo simulation in practice.

To see how the test is based on the characteristic function, let ϕ̂x denote
the empirical characteristic function based on the sample x, meaning the
characteristic function of P̂x, and define ϕ̂y as well as ϕ̂x,y analogously.

Problem 19.31 Show that, when computed on x = (x1, . . . , xn),

ϕ̂x(s) =
1
n

n

∑
j=1

exp(ısx j).

Prove that the sample characteristic function is pointwise consistent for
the characteristic function, meaning that ϕ̂Xn(s) →P ϕX(s) as n → ∞, for
all s ∈ R, where Xn = (X1, . . . ,Xn) are iid copies of a random variable X.
Repeat all this with the joint characteristic function, ϕ̂x,y.
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Proposition 19.32. The statistic (19.2) is equal to

1
π2 ∫

∞

−∞
∫
∞

−∞

∣ϕ̂X,Y(s, t) − ϕ̂X(s)ϕ̂Y(t)∣
2

s2t2
ds dt

In view of this result, it is not too hard to believe that the sample distance
covariance is consistent for the distance covariance of (X,Y), defined as

1
π2 ∫

∞

−∞
∫
∞

−∞

∣ϕX,Y(s, t) − ϕX(s)ϕY(t)∣
2

s2t2
ds dt.

And from this it is not too hard to argue that the distance covariance test is
universally consistent.

Problem 19.33 The distance covariance is intimately related to the energy
statistic of Problem 17.49. Can you see that? [This is analogous to how the
Hoeffding test is related to the Cramér–von Mises test.]

19.5 Further Topics

19.5.1 When One Variable is Categorical

In this chapter, so far, we have focused on the situation where both variables
are numerical. This comes after Section 15.6, where we addressed the
situation where both are categorical. Suppose now that one of the variables,
say X, is categorical while the other variable, Y , is numerical.

To derive tests for independence, we make a connection with goodness-
of-fit testing. Indeed, regardless of the nature of the variables, testing for
the independence of X and Y is equivalent to testing the null hypothesis
that the conditional distribution of Y given X is the same as the (marginal)
distribution of Y . Rephrased, testing for independence in the present context
is thus equivalent to testing

H0 ∶ Y ∣ X = x is distributed as Y, for all x.

This is clearly a goodness-of-fit testing problem where the groups are
given by the different values that X takes. The only difference with the
setting of Section 17.3 and Section 17.4.3 is that here the group sizes are
random. However, conditional on X1, . . . ,Xn, the setting is exactly that of
goodness-of-fit testing, and the methods presented in these sections are
directly applicable.

Remark 19.34 Note that proceeding with goodness-of-fit testing after con-
ditioning on X is another example of conditional inference (Section 22.1).
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Multiple Testing

In a wide range of real-life situations, not one but several, even many
hypotheses are to be tested, and not accounting for multiple inference can
lead to a grossly incorrect analysis. In this chapter, we look closely at
this important issue, describing some pitfalls and presenting remedies that
‘correct’ for this multiplicity. We also discuss related issues having to do
with the publication of scientific papers.

Example 20.1 (Genetics) In genetics an important line of research revolves
around discovering how an individual’s genetic material influences his/her
health. In particular, biologists have developed ways to measure how
‘expressed’ a gene is, and a typical experiment for understanding what
genes are at play in a given disease can be described as follows. A number
of subjects with the disease, and a number of subjects without the disease,
are recruited. For each individual in the study, the expression levels of
certain genes (m of them) are measured. For each gene, a test comparing
the two groups is performed, so that m tests are performed in total [36]. In
practice, for human subjects, m is on the order of 104. Experiments focusing
on single nucleotide polymorphisms (SNP’s) instead of genes result in an
even larger number of tests, on the order of 105.

Example 20.2 (Surveillance) In a surveillance setting, a signal is observed
over time and the task is to detect a change in the signal of particular
relevance. The signal can be almost anything and the change is typically in
terms of features that are deemed important for the task at hand. Practical
examples include the detection of fires from satellite images [113] and the
detection of epidemics (aka syndromic surveillance) based on a variety of
data such as transcripts from hospital emergency visits and pharmacy sales
of over-the-counter drugs [91, 92]. In such settings, a test is applied at every
location/time point.

309
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Example 20.3 (Functional MRI) Functional magnetic resonance imaging
(fMRI) can be used as a non-invasive technique for understanding what
regions of the human brain are active when performing a certain task [118].
In an experiment involving a single subject, a person’s brain is observed
over time while the individual is performing several tasks – one of them
might be ‘no task’ or ‘at rest’ and serve as control. The goal is then to
identify which parts of the brain are most active during a particular task.
The identification is typically done by performing a test for each voxel
comparing its activation level during the different tasks. (A voxel represents
a small unit of space on the order of a few cubic millimeters.) There are on
the order of 106 voxels.

When confronted with the task of testing a number of (null) hypotheses
we talk of multiple testing. For now, consider a simplified situation where m
null hypotheses, denoted H1, . . . ,Hm, need to be tested. (Note that, in the
present setting, H1 is a null hypothesis and not an alternative hypothesis.)
We apply a test to each null hypothesis H j, resulting in a p-value denoted
Pj. Assume for simplicity that the p-values are independent and that each
Pj is uniform in [0,1] under H j, that is,

P1, . . . ,Pm are independent, (20.1)

Pj ∼ Unif(0,1) under H j, for j = 1, . . . ,m. (20.2)

Here are two aspects of the situation that illustrate the underlying difficulties:

• Suppose that we proceed as usual, choosing a level α ∈ (0,1) and
rejecting H j if Pj ≤ α. Then, even if all the hypotheses are true, on
average there are αm rejections (all incorrect). In settings where very
many tests are performed (m is very large), choosing α to be the usual
0.05 or 0.01 leads to an impractically large number of rejections. Take
Example 20.1, where (say) m = 104 tests are performed. Then rejecting
at level α = 0.05 leads to 500 rejections on average, even when all the
hypotheses are true (meaning that no gene is truly differentially expressed
when comparing the two conditions).
• The smallest p-value can be quite small even if all the hypotheses are

true. Indeed, min j P j has expectation 1/(m + 1) in that case.

Problem 20.4 Verify these assertions.
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20.1 Testing Multiple Hypotheses

In what follows, we postulate a statistical model (Ω,Σ,P) as in Chapter 12,
where Ω is the sample space containing all possible outcomes, Σ is the class
of events of interest, and P is a family of distributions on Σ. We assume as
before that P is parameterized as P = {Pθ ∶ θ ∈ Θ}.

Within this framework, we consider a situation where m null hypotheses
need to be tested, with the jth null hypothesis being

H j ∶ θ∗ ∈ Θ j,

for some given Θ j ⊂ Θ. (Recall that θ∗ denotes the true value of the
parameter.) The alternative to H j will simply the negation of H j and
denoted Hc

j in congruence with the fact that Hc
j ∶ θ∗ ∈ Θc

j = Θ ∖Θ j.
Recall that a test is applied to each null hypothesis, resulting in a total

of m p-values, denoted P1, . . . ,Pm. What tests are used obviously depends
on the situation. In Example 20.1, for instance, the rank-sum test could be
applied to each hypothesis. We always assume that each p-value Pj is valid
in the usual sense that it satisfies (12.12), meaning here that

Under H j ∶ P(Pj ≤ α) ≤ α, ∀α ∈ (0,1). (20.3)

Remark 20.5 For the sake of conciseness, we focus on methods for multiple
testing that are based on the p-values. Such methods are all based on the
ordered p-values, denoted p(1) ≤ ⋯ ≤ p(m). We will let H( j) denote the
hypothesis associated with p( j).

Normal Sequence Model
The normal sequence model provides a stylized mathematical framework
within which methods can be studied. Although it is too simple to accurately
model real-life situations, it is nevertheless relevant, in part because common
test statistics used in practice are approximately normal in large samples.

The model is as follows. We observe Y1, . . . ,Ym, independent, with Yj ∼
N(θ j,1). We are interested in testing H1, . . . ,Hm, where

H j ∶ θ j = 0.

The problem can be consider one-sided, in which case Hc
j ∶ θ j > 0; or

two-sided, in which case Hc
j ∶ θ j ≠ 0.

Assuming the one-sided setting, it makes sense to reject H j for large
values of Yj, since doing so is optimal for that particular hypothesis
(Theorem 13.26). The corresponding p-value is Pj ∶= 1 − Φ(Yj), where
Φ denotes the standard normal distribution function.
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20.2 Global Null Hypothesis

The global null hypothesis (aka complete null hypothesis) is defined as

H0 ∶ “the hypotheses H1, . . . ,Hm are all true”,

or, equivalently,

H0 ∶ θ∗ ∈ Θ0 ∶=
m

⋂
j=1
Θ j.

In most situations, a null hypothesis represents “business as usual”. We
will assume this is the case throughout. Then the global null hypothesis
represents “there is nothing at all going on”. Although one is typically
interested in identifying the false hypotheses, testing the global null
hypothesis might be relevant in some applications, for example, in
surveillance settings (Example 20.2).

The global null hypothesis is just a null hypothesis. We present below
some commonly used tests, all based on the available p-values. Such tests
are sometimes called combination tests.

Remark 20.6 Since a small p-value provides evidence against the hypothe-
sis it is associated with, all the tests below are one-sided.

Fisher Test
This test rejects for large values of

T(p1, . . . , pm) ∶= −2
m

∑
j=1

log pj.

The test statistic was designed that way because its null distribution is
stochastically dominated by the chi-squared distribution with 2m degrees of
freedom. (This explains the presence of the factor 2.)

Problem 20.7 Assuming that (20.1)–(20.2) hold, show that, under the
global null, T has the chi-squared distribution with 2m degrees of freedom.

Liptak–Stouffer Test
This test rejects [115] for large values of

T(p1, . . . , pm) ∶=
1√
m

m

∑
j=1
Φ−1(1 − pj). (20.4)

The test statistic was designed that way because its null distribution is
stochastically dominated by the standard normal distribution.
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Problem 20.8 Assuming that (20.1)–(20.2) hold, show that, under the
global null, T has the standard normal distribution.

Problem 20.9 Consider the normal sequence model. First, express the test
statistic as a function of y1, . . . , ym. Then, setting the level to some given
α ∈ (0,1), provide a sufficient condition for the test to have power tending
to 1. [Use Chebyshev’s inequality.]

Tippett–Šidák Test
This test [166] rejects for small values of

T(p1, . . . , pm) ∶= min
j=1,...,m

pj.

Problem 20.10 Assuming that (20.1)–(20.2) hold, derive the distribution
of T under the global null.

Problem 20.11 Repeat Problem 20.9 with this test. [This time, use Boole’s
inequality together with the fact that 1 −Φ(x) ≤ φ(x)/x, where φ denotes
the density of the standard normal distribution.]

Simes Test
This test [168] rejects for small values of

T(p1, . . . , pm) ∶= min
j=1,...,m

m p( j)/ j.

Proposition 20.12. Assuming that (20.1)–(20.2) hold, T has the uniform
distribution in [0,1] under the global null.

Problem 20.13 Prove Proposition 20.12, and perform some simulations in
R to numerically confirm it.

Tukey Test
Better known as the higher criticism test [50], it comes from applying the
one-sided Anderson–Darling procedure (16.17) to test the hypothesis that
the p-values are iid uniform in [0,1] – that is, the global null hypothesis
under (20.1)–(20.2).

Problem 20.14 Show that the test rejects for large values of

T(p1, . . . , pm) ∶= max
j=1,...,m

j/m − p( j)√
p( j)(1 − p( j))

.
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Under the global null, T has a complicated distribution, but asymptot-
ically (m → ∞) it becomes of Gumbel type (after a proper standardiza-
tion) [101].

Problem 20.15 In R, write a function that computes the statistic T . Then,
using that function, write another one hc.test that returns a p-value for the
test based on a specified number of Monte Carlo replicates.

A general recipe for designing a combination test is to apply a test for
uniformity in its proper one-sided version to the p-values (playing the role
of sample).

Problem 20.16 Show that the Berk–Jones test (Section 16.10.1) for the
present setting rejects for small values of

T(p1, . . . , pm) ∶= min
j=1,...,m

Prob(Beta( j,m − j + 1) ≤ p( j)).

Repeat Problem 20.15 with this test (name your function aappropriately).

20.3 Multiple Tests

Testing the global null hypothesis amounts to weighing the evidence that
one or several hypotheses are false. However, even if we reject, we do not
know what hypotheses are doubtful. We now turn to the more ambitious
goal of identifying the false hypotheses (if there are any). We will call a
procedure for this task a multiple test.

While a test is a function of the data with values in {0,1}, with ‘1’
indicating a rejection, a multiple test in the context of Remark 20.5 is a
function of the p-values with values in {0, 1}m, with ‘1’ in the jth component
indicating a rejection of H j. Thus, a multiple test is of the form

[0,1]m I→ {0,1}m

p = (p1, . . . , pm) G→ ϕ(p) = (ϕ1(p), . . . , ϕm(p))

Seen as a function on [0,1]m, ϕ j is a test for H j, but possibly based on all
the p-values instead of just pj.

For θ ∈ Θ, let hj(θ) = {θ ∈ Θ j}, so that hj(θ) = 0 if H j is true, and
= 1 if it is false. Also, let m0(θ) = #{ j ∶ θ ∈ Θ j}, which is the number of
true hypotheses, and m1(θ) = #{ j ∶ θ ∉ Θ j}, which is the number of false
hypotheses, that is, under θ. Note that m0(θ) +m1(θ) = m.
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For a given multiple test ϕ, define the following quantities:72

N0∣0(ϕ, θ) = #{ j ∶ ϕ j = 0 and hj(θ) = 0},
N1∣0(ϕ, θ) = #{ j ∶ ϕ j = 1 and hj(θ) = 0},
N0∣1(ϕ, θ) = #{ j ∶ ϕ j = 0 and hj(θ) = 1},
N1∣1(ϕ, θ) = #{ j ∶ ϕ j = 1 and hj(θ) = 1}.

(These are summarized in Table 20.1.) In particular, N1∣0(ϕ, θ) is the number
of Type I errors and N0∣1(ϕ, θ) the number of Type II errors made by the
multiple test ϕ when the true value of the parameter is θ, and the total
number of errors made by the multiple test is given by

N1∣0(ϕ, θ) + N0∣1(ϕ, θ) = #{ j ∶ ϕ j ≠ hj(θ)},

and the total number of rejections is given by

R(ϕ) = N1∣0(ϕ, θ) + N1∣1(ϕ, θ) = #{ j ∶ ϕ j = 1}.

These counts are all functions of the p-values and, with the exception of
R(ϕ), of the true value of the parameter.

Table 20.1 The counts below summarize the result of applying
a multiple test ϕ when the true value of the parameter is θ.

No rejection Rejection Total

True Null N0∣0(ϕ, θ) N1∣0(ϕ, θ) m0(θ)

False Null N0∣1(ϕ, θ) N1∣1(ϕ, θ) m1(θ)

Total m − R(ϕ) R(ϕ) m

For a single hypothesis, the accepted modus operandi is to control the
level and, within that constraint, design a test that maximizes the power
(as much as possible). We introduce some notion of level and power for
multiple tests below. These apply to a given multiple test ϕ, although this is
left implicit in some places.

72 A different notation is typically used in the literature, stemming from the influential
paper [9], but that choice of notation is not particularly mnemonic. Instead, we follow [77].

https://doi.org/10.1017/9781108779197.025 Published online by Cambridge University Press

https://doi.org/10.1017/9781108779197.025


316 Multiple Testing

20.3.1 Notions of Level for Multiple Tests

Family-Wise Error Rate (FWER)
For a long time, this was the main notion of level for multiple tests. It is
defined as the probability of making at least one Type I error or, using the
notation of Table 20.1,

FWER(ϕ) = sup
θ∈Θ
Pθ(N1∣0(ϕ, θ) ≥ 1).

A multiple test ϕ controls the FWER at α if

FWER(ϕ) ≤ α.

Problem 20.17 Assuming that (20.1)–(20.2) hold, derive the FWER for
the multiple test defined by

ϕ j = {Pj ≤ α},

which is the multiple test that ignores multiple testing.

False Discovery Rate (FDR)
This notion is more recent. It was suggested in the mid 1990s by Benjamini
and Hochberg [9]. It is now the main notion of level used in large-scale
multiple testing problems. It is defined as the expected proportion of
incorrect rejections among all rejections or, using the notation of Table 20.1,

FDR(ϕ) = sup
θ∈Θ
Eθ (

N1∣0(ϕ, θ)
R(ϕ) ∨ 1

).

A multiple test ϕ controls the FDR at α if

FDR(ϕ) ≤ α.

(The name comes from the fact that, in most settings, a rejection indicates a
discovery.)

Problem 20.18 As notions of level for multiple tests, the FDR is always
less severe then the FWER. Indeed, show that in any situation – meaning
any model, any set of null hypotheses, and any value of the parameter within
that model – and for any multiple test ϕ,

FDR(ϕ) ≤ FWER(ϕ).
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20.3.2 Notions of Power for Multiple Tests

Notions of power for multiple tests can be defined by analogy with the
notions of level presented above.

Problem 20.19 Define the power equivalent of FWER. (This quantity does
not seem to have a name in the literature.)

False Non-Discovery Rate (FNR)
To define the power equivalent of FDR, one possibility is

FNR(ϕ) = sup
θ∈Θ
Eθ (

N0∣1(ϕ, θ)
(m − R(ϕ)) ∨ 1

).

This definition [77] leads to a quantity that could look artificially small
when m0/m is close to 1, common in practice, in which case the following
variant might be preferred:

FNR(ϕ) = sup
θ∈Θ

Eθ(N0∣1(ϕ, θ))
m1(θ) ∨ 1

.

20.4 Methods for FWER Control

For a given θ ∈ Θ, define

Tθ = { j ∶ θ ∈ Θ j}, (20.5)

which is the subset of indices corresponding to true null hypotheses.

Tippett Multiple Test
This multiple test rejects H j if pj ≤ cα, where cα is such that

sup
θ∈Θ
Pθ(min

j∈Tθ
Pj ≤ cα) ≤ α. (20.6)

Note that cα is a valid critical value for the Tippett test for the global null.

Proposition 20.20. The Tippett multiple test controls the FWER as desired.

Proof A Type I error occurs if the multiple test rejects some H j with
j ∈ Tθ. This happens with probability

Pθ(∃ j ∈ Tθ ∶ ϕ j = 1) = Pθ(min
j∈Tθ

Pj ≤ cα) ≤ α,

using (20.6) at the end. �
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Problem 20.21 (Šidák multiple test) Assuming that (20.1) holds, show that
the inequality (20.6) is valid with cα = 1 − (1 − α)m.

Problem 20.22 (Bonferroni multiple test) Show that, under all circum-
stances, the inequality (20.6) holds with cα = α/m. The resulting multiple
testing procedure is known as the Bonferroni correction.

Holm Multiple Test
This multiple test [97] rejects H( j) if

p(k) ≤ α/(m − k + 1) for all k ≤ j.

Problem 20.23 Show that a brute force implementation based on this
description requires on the order of O(m2) basic operations. In fact, the
method can be implemented in order O(m) basic operations after ordering
the p-values. Describe such an implementation.

Remark 20.24 (Step down methods) This is a step-down procedure as it
moves from the most significant to the least significant p-value.

Proposition 20.25. The Holm multiple test controls the FWER as desired.

Proof Recall (20.5) and let j0 = arg min j∈Tθ p( j). Note that j0 is a function
of the p-values. Since ∣Tθ∣ = m0(θ), necessarily,

j0 ≤ m −m0(θ) + 1. (20.7)

The procedure makes an incorrect rejection if and only if it rejects H( j0),
which happens exactly when

p( j) ≤ α/(m − j + 1) for all j ≤ j0,

which in particular implies that

p( j0) ≤ α/(m − j0 + 1) ≤ α/m0(θ),

by (20.7). But

Pθ(P( j0) ≤ α/m0(θ)) = Pθ(min
j∈Tθ

Pj ≤ α/m0(θ))

≤ ∑
j∈Tθ
Pθ(Pj ≤ α/m0(θ))

≤ ∑
j∈Tθ
α/m0(θ) = α,

using the union bound and then the fact that the p-values are valid in the
sense of (20.3). �
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Problem 20.26 Prove (20.7).

Problem 20.27 How would you change Holm’s procedure if you knew that
the p-values where independent?

Problem 20.28 (Holm vs Bonferroni) Show that Holm’s procedure is
always preferable to Bonferroni’s, in the (strongest possible) sense that
any hypothesis that Bonferroni’s rejects Holm’s also rejects.

Hochberg Multiple Test
This multiple test rejects H( j) if

p(k) ≤ α/(m − k + 1) for some k ≥ j.

Problem 20.29 Repeat Problem 20.23 but for the Hochberg multiple test.

Remark 20.30 (Step up methods) This is a step-up procedure as it moves
from the least significant to the most significant p-value.

Proposition 20.31. The Hochberg multiple test controls the FWER as
desired when the p-values are independent.

Problem 20.32 (Hochberg vs Holm) Prove that, if the p-values are
independent, Hochberg’s multiple test is more powerful than Holm’s in the
(strongest possible) sense that any hypothesis that Holm’s rejects Hochberg’s
also rejects.

Remark 20.33 (Hommel multiple test) There is another procedure,
Hommel’s, that is more powerful than Hochberg’s. However, it is a bit
complicated to describe, and we do not detail it here.

20.5 Methods for FDR Control

Benjamini–Hochberg Multiple Test
This multiple rejects H( j) if

p(k) ≤ kα/m for some k ≥ j.

It was the first (and still the main) method used to control the FDR at the
desired level, although this only happens under appropriate conditions.

Problem 20.34 Let r denote the number of rejections when this method
is applied to a particular situation. Show that the method rejects H j if and
only if pj ≤ rα/m.
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Proposition 20.35. The Benjamini–Hochberg multiple test above controls
the FDR at αCm, in general, where Cm ∶= 1 + 1/2 +⋯+ 1/m, and at α if the
p-values are independent.

Proof sketch We only prove73 the first part, and only when each p-value
is uniform in [0,1] under its respective null. Let ϕ denote the multiple test
and let R(ϕ) denote the number of rejections when applied to a particular
situation. Define Al = ((l − 1)α/m, lα/m]. We have

{ϕ j = 1}
R(ϕ) ∨ 1

=
m

∑
r=1
{pj ≤ rα/m}{R(ϕ) = r}

r

=
m

∑
r=1

r

∑
l=1
{pj ∈ Al}

{R(ϕ) = r}
r

=
m

∑
l=1
{pj ∈ Al}

{R(ϕ) ≥ l}
R(ϕ)

≤
m

∑
l=1

{pj ∈ Al}
l

.

Thus,

Eθ (
N1∣0(ϕ, θ)
R(ϕ) ∨ 1

) = Eθ (
∑ j∈Tθ {ϕ j = 1}

R(ϕ) ∨ 1
)

≤ ∑
j∈Tθ

m

∑
l=1

1
l
Pθ(Pj ∈ Al)

= ∑
j∈Tθ

m

∑
l=1

1
l
α

m
≤ αCm.

In the last line we used the fact that ∣Tθ∣ = m0(θ) ≤ m. �

Problem 20.36 Show that Cm < log m + 1.

One way to arrive at the Benjamini–Hochberg procedure is as follows.
Consider the multiple test that rejects H j when pj ≤ t. With some abuse of
notation, let N1∣0(t) and R(t) denote the corresponding number of Type I
errors and total number of rejections, and define Ft = N1∣0(t)/(R(t) ∨ 1).
Ideally, we would like to choose t largest such that Ft ≤ α. However, N1∣0(t)
cannot be computed solely based on the p-values as it depends on knowing
which hypotheses are true.

73 We learned of this proof from Emmanuel Candès.
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The idea is to replace it by an estimate. Since we assume the p-values to
be valid (20.3), we have

Eθ(N1∣0(t)) ≤ m0(θ)t ≤ mt.

If we replace N1∣0(t) by mt, we effectively estimate Ft by F̂t ∶= mt/(R(t)∨1).
Problem 20.37 Let t̂ = max{t ∶ F̂t ≤ α}. Show that the multiple test that
rejects H j when pj ≤ t̂ is Benjamini–Hochberg’s.

20.6 Meta-Analysis

Meta-analysis is a branch of Statistics/Epidemiology whose goal is to gather
evidence from multiple studies in order to reach stronger conclusions on
a particular issue (e.g., the effectiveness of a particular class of treatments
for a particular medical condition). For this, a number of tools have been
developed, and we present a few here.

Example 20.38 (Bone density and fractures) The study [125] is a “meta-
analysis of prospective cohort studies published between 1985 and 1994
with a baseline measurement of bone density in women and subsequent
follow up for fractures”. The stated purpose of this analysis was to
“determine the ability of measurements of bone density in women to predict
later fractures”. Combined, the studies comprised “eleven separate study
populations with about 90000 person years of observation time and over
2000 fractures in total”.

Example 20.39 (Alcohol consumption) The paper [179] presents a meta-
analysis of 87 studies on the relationship between alcohol consumption and
all-cause mortality. Some previous studies had concluded that consuming a
small amount of alcohol (1–2 drinks per day) was associated with a slightly
longer lifespan. The authors of [179] argue that this association can be
explained in large part by the classification of former drinkers (who might
have stopped drinking because of health issues) as abstainers.

Remark 20.40 It goes without saying that there are meta-analyses of meta-
analyses [41].

It is often the case that several studies examine the same effect, and it is
rather tempting to use all this information combined to boost the power of
the statistical inference. This is possible under restrictive assumptions. In
particular, the studies have to be comparable.
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The bulk of the effort in a meta-analysis goes, in fact, to deciding which
studies to include. Although there are some guidelines [94, Ch 5], ultimately,
this triaging of studies requires domain-specific knowledge.

Otherwise, in terms of methods for inference, the meta-analysist makes
use of various tests, including combination tests (Section 20.2). Some,
mostly ad hoc, methods have been developed for detecting the presence
of publication bias, defined in [49] as “any tendency on the parts of
investigators or editors to fail to publish study results on the basis of the
direction or strength of the study findings”. Most of these methods, like the
popular funnel plot, are based on the so-called small study effect, which is the
empirically-observed fact that small studies are more prone to publication
bias compared to larger studies, presumably because large studies are better
funded and better executed, and also cannot remain unpublished as easily.

Example 20.41 (FDA-registered anti-depressant studies) The authors
in [190] obtained “reviews from the US Food and Drug Administration
(FDA) for studies of 12 antidepressant agents involving 12564 patients.”
There were 74 FDA-registered studies in total. Among the 38 studies viewed
by the FDA as having positive results, all but one were published. Among
the 36 studies viewed by the FDA as having negative or questionable results,
22 were not published and 11 were published, but presented in a in a way
that conveyed a positive outcome.

Example 20.42 (Minimum wage studies) The article [52] revisits Card and
Krueger’s meta-analysis of the employment effects of minimum wages by
looking at 64 minimum-wage studies (in the US). The article concludes
that “The minimum-wage effects literature is contaminated by publication
selection bias [...]. Once this publication selection is corrected, little
or no evidence of a negative association between minimum wages and
employment remains.” – confirming Card and Krueger’s original findings.

20.6.1 Cochran–Mantel–Haenszel Test

It is not uncommon for studies in the medical field (e.g., clinical trials)
to result in a 2-by-2 table. This happens, for example, with a completely
randomized design on two treatments and a binary outcome of ‘success’
or ‘failure’. The Cochran–Mantel–Haenszel (CMH) test is applied when
examining a number of such studies. The goal is to determine whether there
is a treatment effect or not, and (optionally) to specify the direction of the
effect when it is determined that there is an effect.
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Example 20.43 (Low protein diets in chronic renal insufficiency) In [65],
a meta-analysis is undertaken to better assess the impact that low protein
diets have on chronic renal insufficiency. A total of 46 clinical trials where
examined, from which 6 were selected (5 European and 1 Australian,
between 1982 and 1991). This amounted to a combined sample of size 890
subjects with mild to severe chronic renal failure. Among these, 450 patients
received a low protein diet (treatment) and 440 a control diet. Assignment
was at random in all trials. Each subject was followed for at least one year.
The main outcome was renal death (start of dialysis or death) during the
study. Table 20.2 provides a summary in the form of six contingency tables
(one for each study).

Table 20.2 The following data are taken from Table 3 in [65].

Diet Survived Died

Study 1 Control 95 15
Treatment 110 8

Study 2 Control 2 7
Treatment 5 5

Study 3 Control 194 32
Treatment 209 21

Study 4 Control 8 17
Treatment 14 11

Study 5 Control 25 13
Treatment 30 4

Study 6 Control 21 11
Treatment 21 12

The simplest approach is arguably to collapse of all these 2-by-2 tables
into a single 2-by-2 table, followed by applying one of the tests seen in
Sections 15.2, 15.3, or 15.5. Some meta-analysts, however, are reluctant
to do that because, although the studies are supposed to be comparable,
they are invariably performed on samples from different populations, and
collapsing the tables could dilute the strength of association in some of the
studies. (Remember Simpson’s paradox.)

For notation, assume there are m studies and let the contingency table
resulting from jth study be as follows:
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Success Failure

Treatment aj b j

Control c j d j

The one-sided CMH test is based on rejecting for large values of the total
number of successes in the treatment group, namely ∑m

j=1 aj.

Problem 20.44 In which direction is the test one-sided? How would you
define a two-sided CMH test?

Problem 20.45 (Normal approximation) The classical version of the test
relies on a normal approximation for calibration. Specify this normal
approximation. Can you justify this normal approximation when the results
from the studies are independent?

Problem 20.46 How would you calibrate the test by simulation on a
computer?

Problem 20.47 Compare this with the test that collapses the tables into a
single table. (This test is based on the same statistic. What distinguishes the
tests is in how the p-value is computed.)

It is rather natural to approach this problem from a multiple testing
perspective. After all, we are testing a global null.

Problem 20.48 Can you propose a combination test based on Fisher’s exact
test (Section 15.5) applied to each table? [Recall Remark 15.32.]

20.6.2 File Drawer Problem

Rosenthal [155] refers to publication bias as the file drawer problem.
This was the 1970s, so that manuscripts were written on paper, and an
unpublished paper would remain hidden in a file drawer somewhere.

Rosenthal considers a setting where some published papers address the
same general question (formalized as a null hypothesis) and report on a p-
value obtained from a test of significance performed on independently
collected data. Having access to all these published papers, Rosenthal
asks the question: How many papers addressing the same question (each
performing a test on a separate dataset) would have to be left unpublished,
stored away in a file drawer, to offset the combined significance resulting
from the published papers?

Remark 20.49 Ghostwriting in the sciences pose the opposite problem to
the file drawer problem. See, e.g., [186].
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Example 20.50 (Antipsychotic medication) As reported on in [163],
“Atypical antipsychotic medications are widely used to treat delusions,
aggression, and agitation in people with Alzheimer’s disease and other
dementia; however, concerns have arisen about the increased risk for
cerebrovascular adverse events, rapid cognitive decline, and mortality with
their use.” The announced objective in this article is “To assess the evidence
for increased mortality from atypical antipsychotic drug treatment for
people with dementia.” This is done via a meta-analysis of 15 clinical
trials. Among these, 9 trials were unpublished, and all but 1 were conducted
by a pharmaceutical company. The authors say that the trials were of quality
comparable to those that were published, and speculate that “the likely
reasons for the delays in publication were that most did not show statistically
significant results on their primary efficacy outcomes.”

Assume that we have available m studies testing for the presence of the
same effect (e.g., effectiveness of a particular drug compared to a placebo),
with Study j resulting in a p-value denoted pj. The Liptak–Stouffer (LS)
combination test seen in (20.4) rejects for large values of y ∶= ∑m

j=1 z j,
where z j ∶= Φ−1(1 − pj) is the z-score associated with pj. (Φ denotes the
standard normal distribution function.) The test is significant at level γ if
y/
√

m ≥ Φ−1(1 − γ).

Rosenthal’s Method
Suppose the LS test is significant at level γ. In an effort to answer his own
question, Rosenthal then computes the fail-safe number,74 defined as

n̂ ∶= min{n ∶ y/
√

m + n < Φ−1(1 − γ)}.

To motivate this definition, let zm+1, . . . , zm+n denote the z-scores correspond-
ing to the studies that have remained unpublished. Let y′ = ∑m+n

j=m+1 z j. If we
had access to all studies, published and unpublished, we would base our
inference on ∑m+n

j=1 z j = y + y′. Specifically, we would fail to reject at level γ
when

(y + y′)/
√

m + n < Φ−1(1 − γ).

In light of this, the fail-safe number is based on replacing the unobservable
y′ with 0, which is the mean of the z j when there is no effect and no selection.

74 Rosenthal does not make a connection with the Liptak–Stouffer test in his original
paper. Also, we are working with p-values and transforming them into z-scores. Rosenthal
works directly with z-scores and assumes a two-sided situation. This leads to a different
definition for the fail-safe number.
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In a variant, Iyengar and Greenhouse [100] suggest replacing 0 above
with the expected value of a standard normal random variable conditional
on not exceeding Φ−1(1 − α), where α is the common level of significance
a study is typically required to achieve in order to be published. Note that α
may be different from γ.

Remark 20.51 It has been observed that, among published articles
reporting on empirical findings involving at least one test, there is a
discernible transition at the classical significance level of α = 0.05 [152, 78].

Gleser and Olkin’s Method
Gleser and Olkin [80] take a more principled approach, based on a worst-
case scenario in which, out of a total of m + n studies, each yielding a
p-value as above, we only get to observe the smallest m. The goal remains to
estimate n assuming that there is no effect. Thus, denoting p(1) ≤ ⋯ ≤ p(m+n)
the ordered p-values, we only get to observe p(1), . . . , p(m).

Assuming that (20.1) and (20.2) hold, when there is no effect we have a
completely specified model, with likelihood

(m + n)!
n!

(1 − qm)n {0 ≤ q1 ≤ ⋯ ≤ qm ≤ 1},

where we wrote qj in place of p( j) for clarity. (This plays the role of null
model in the present context.)

Problem 20.52 Show that p(m) is sufficient for n and derive its distribution.

Problem 20.53 Show that the maximum likelihood estimator is

n̂mle ∶= ⌊m(1 − p(m))/p(m)⌋.

In fact, Gleser and Olkin prefer to use an unbiased estimator.

Problem 20.54 Show that the following estimator is unbiased

n̂ ∶=
m(1 − p(m)) − 1

p(m)
.

(As it turns out, this estimator is the only unbiased estimator of n which is a
function of the sufficient statistic p(m).)
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20.7 Further Topics

20.7.1 Adjusted P-Values

An adjusted p-value is such that, when it is below α (the desired FWER
or FDR level) the corresponding null hypothesis is rejected. Take, for
example, Bonferroni’s multiple test meant to control the FWER at α. The
corresponding Bonferroni adjusted p-values are defined as

pBonf
j ∶= (m pj) ∧ 1.

And indeed, the Bonferroni multiple test with parameter α rejects H j if and
only if pBonf

j ≤ α.

Problem 20.55 Show that the Holm adjusted p-value for H j can be defined
as

pHolm
j ∶= max{(m − k + 1)pk ∶ k ≤ j} ∧ 1,

in the sense that the Holm multiple test with parameter α rejects H j if and
only if pHolm

j ≤ α.

Problem 20.56 Derive the Hochberg adjusted p-values.

Problem 20.57 Derive the Benjamini–Hochberg adjusted p-values. (These
are called q-values in [180].)

R corner The multiple tests presented here are implemented in the function
p.adjust, which returns the adjusted p-values. The default multiple test is
Holm’s, which is the safest since it applies regardless of the dependence
structure of the p-values, and it is more powerful than Bonferroni’s
(Problem 20.28).

20.8 Additional Problems

Problem 20.58 (Comparing global tests) Perform some numerical experi-
ments to compare the tests for the global null presented in Section 20.2 in
the normal sequence model.

Problem 20.59 (Comparing multiple tests for FWER control) Perform
some numerical experiments to compare the multiple tests available in
p.adjust for FWER control. Do this in the setting of the normal sequence
model.
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Problem 20.60 (k-FWER) For a multiple test ϕ, and for k ≥ 1 integer, the
k-FWER is defined as

FWERk(ϕ) = sup
θ∈Θ
Pθ(N1∣0(ϕ, θ) ≥ k).

Note that the 1-FWER coincides with the FWER. In general, k stands for
the number of Type I errors that the researcher is willing to tolerate.

(i) (Bonferroni) Show that the multiple test that rejects H j if Pj ≤ αk/m
controls the k-FWER at α.

(ii) (Tippett) More generally, how would you change the definition of cα
given in (20.6) to control the k-FWER at the desired level?

Problem 20.61 (marginal FDR) For a multiple test ϕ, the marginal false
discovery rate (mFDR) is defined as

mFDR(ϕ) = sup
θ∈Θ

Eθ[N1∣0(ϕ, θ)]
Eθ[R(ϕ)]

.

(i) Show that the mFDR is the probability that a null hypothesis, chosen
uniformly at random among those that were rejected, is true. (Thus,
in looser terms, the mFDR is the probability that a claimed discovery
is actually false.)

(ii) Show that, in general, the mFDR cannot be controlled at any level
strictly less than 1.

Problem 20.62 Relate the CMH test of Section 20.6.1 to the log-rank test
of Problem 17.52.

Problem 20.63 Suppose you receive a promotional email from a investment
manager offering his predictions on a particular stock, specifically whether
the price of the stock will increase or decrease by the end of the week. For
ten weeks straight, his predictions are correct. If this were a scam, explain
how it would work. (Adapted from [89].)
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Regression Analysis

Beyond quantifying the amount of association between (necessarily paired)
variables, as was the goal in Chapter 19, regression analysis aims at
describing that association and/or at predicting one of the variables based
on the other ones. Partly because the task is so much more ambitious, the
literature on the topic is vast. Our treatment in this chapter is necessarily
very limited in scope but provides some essentials. For more on regression
analysis, we recommend [90] or the lighter version [102].

We consider an experiment that results in paired observations, assumed
to be iid from an underlying unknown distribution and denoted

D ∶= {(X1,Y1), . . . , (Xn,Yn)}. (21.1)

Throughout

d ∶= {(x1, y1), . . . , (xn, yn)} (21.2)

will denote a realization of D. We also let ∣d∣ denote the size of the sample
d, also denoted by n above and in what follows.

At this stage, the variables x and y can be of any type. Suppose we set as
a general goal that of predicting y as a function of x. In that case, x be will
called the predictor variable and y will called the response variable.

There are two main motives for performing a regression analysis.

• Modeling Here the main purpose is to build a model that describes
how the response variable varies as a function of the predictor variable.
A simple, parsimonious model is often desirable to ease interpretability.
Modeling building is important, most notably, in fundamental sciences
like Physics, Chemistry, or Biology, where gaining a functional under-
standing of how the variables that drive a system are related is a center
of focus. An example of that is described in Example 19.14 where the
vapor pressure of a pure liquid is related to its temperature.

329
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• Prediction Here the main purpose is to predict the value of the response
variable given the predictor variable. Examples of applications where
this is needed abound in engineering and a broad range of industries
(insurance, finance, marketing, etc.). For example, in the insurance
industry, when pricing a policy, the predictor variables encapsulate the
available information about what is being insured, and the response
variable is a measure of risk that the insurance company would take if
underwriting the policy. In this context, a procedure is evaluated based
solely on its performance at predicting that risk, and can otherwise be
very complicated and have no simple interpretation since all relevant
computations are done on a computer. (In fact, very large computer
clusters in modern applications [23].)

We focus here on the goal of prediction because it is simpler, its scope is
broader in terms of applications, and it is easier to formalize mathematically.
Also, the framework of prediction is not limited by the assumption that there
is a ‘true model’ that needs to be uncovered.

Example 21.1 (Real estate prices) A number of real estate websites, besides
listing properties that are currently on the market (for which the asking
price is set by the sellers), also estimate the price of properties that are
not currently for sale, using proprietary regression models that take in
all the available information on these properties (prediction variable) and
returns an estimated value (response variable). For a residential property,
the prediction variable may include square footage, number of bedrooms,
number of bathrooms, location, etc.

Example 21.2 (MNIST dataset) The special case where the response is
categorical is most often called classification instead of regression. The
MNIST dataset is a dataset that researchers have used for many years for
comparing procedures for classification. Each observation is a 28 × 28 grey
level pixel image of a handwritten digit, which is labeled accordingly. The
main goal is to recognize the digits. This can be cast as a classification task
where each observation is of the form (x, y) with x ∈ Rp with p = 28 × 28 =
784 and y ∈ {0,1, . . . , 9}. Importantly, y is categorical here. Indeed, the fact
that y is a digit, and therefore a number, is irrelevant, as the order between
the digits is not pertinent to the classification task.
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21.1 Prediction

Stating a prediction problem amounts to specifying the class of possible
distributions for (X,Y), as well as a functional quantifying the error made
by a procedure.

21.1.1 Loss and Risk

Assume that X takes values in X and Y takes values in Y . Most of the
time, both X and Y are subsets of Euclidean spaces. Choose a function
L ∶ Y ×Y → R+ meant to measure dissimilarity. This function L is referred
to as the loss function. For a function f ∶ X → Y , define its risk (aka expected
loss or prediction error) as

R( f ) = E [L(Y, f (X))]. (21.3)

Thus, R( f ) quantifies the average loss, measured in terms of L, when
predicting Y by f (X). Note that f has to be measurable. Henceforth, we let
M denote the class of measurable functions from X to Y . (As usual, X and
Y are implicitly equipped with σ-algebras.)

Example 21.3 (Numerical response) In the important case where Y = R, L
is very often chosen of the form L(y, y′) = ∣y − y′∣γ for some γ > 0. Popular
choices in that family of losses include

squared error loss L(y, y′) = (y − y′)2,

absolute loss L(y, y′) = ∣y − y′∣.

Example 21.4 (Categorical response) Another important example is where
Y is a discrete set, which arises when the response is categorical, i.e., in a
classification setting. A popular choice of loss function in that case is

0-1 loss L(y, y′) = {y ≠ y′}.

21.1.2 Regression Estimators

A regression estimator is of the form

f̂ ∶D I→ M
d G→ f̂d

whereD ∶= ⋃n≥1(X ×Y)n represents the space where the data (21.2) resides.

https://doi.org/10.1017/9781108779197.026 Published online by Cambridge University Press

https://doi.org/10.1017/9781108779197.026


332 Regression Analysis

The action of applying f̂ to data d to obtain f̂d is referred to as fitting or
training the regression estimator f̂ on the data d, and the resulting estimate,
f̂d, is then referred to as the fitted or trained estimator. The result is a
(measurable) function from X to Y , which is meant to predict Y from future
observations of X.

An estimator being a random function, we use its expected risk, or
generalization error, to quantify its performance, which for an estimator f̂
is defined as

Rn( f̂ ) = E[R( f̂D)], (21.4)

where the expectation is with respect to a dataset D of size n. (Besides n,
this quantity also depends on the distribution of (X,Y), but this dependency
is left implicit.)

21.1.3 Regression Functions

A more ambitious goal than just finding a function with low risk is to
approach a minimizer, meaning an element of

F∗ ∶= arg min
f

R( f ),

when this set is not empty. Any element of F∗ is called a regression function.
In many cases of interest, F∗ is (essentially) a singleton.

It helps to work conditional on X, because of the following.

Problem 21.5 (Conditioning on X) Show that

inf
f
E [L(Y, f (X))] ≥ E( inf

y′∈Y
E [L(Y, y′) ∣ X]).

Deduce that any function f satisfying

f (x) ∈ arg min
y′∈Y

E [L(Y, y′) ∣ X = x], for all x, (21.5)

minimizes the risk (21.3).

Problem 21.6 (Mean regression) Consider a setting where Y = R. Assume
that Y has a 2nd moment and take L to be the squared error loss. Show that
the minimum in (21.5) is uniquely attained at y′ = E[Y ∣X = x], so that the
risk (21.3) is minimized by

f∗(x) ∶= E[Y ∣X = x]. (21.6)

[Use Problem 7.87.]
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Problem 21.7 (Median regression) Consider a setting where Y = R.
Assume that Y has a 1st moment and take L to be the absolute loss. Show
that the minimum in (21.5) is attained at any median of Y ∣X = x, and only
there. In the special case where, for all x, Y ∣X = x has a unique median, the
risk (21.3) is thus minimized by

f∗(x) ∶=Med(Y ∣X = x).

[Use Problem 7.88.]

Problem 21.8 (Classification with 0-1 loss) Consider a classification setting
with 0-1 loss. Show that the minimum in (21.5) is attained at any y′

maximizing y ↦ P(Y = y ∣X = x), so that the risk (21.3) is minimized
by any function f∗ satisfying

f∗(x) ∈ arg max
y∈Y

P(Y = y ∣X = x). (21.7)

Such a function is called a Bayes classifier.

21.2 Local Methods

The methods that follow are said to be local, and this is in the sense that the
value of the estimated function at some point x ∈ X is computed based on
the observations (xi, yi) with xi in a neighborhood of x.

Let δ denote a dissimilarity on X , so that δ(x, x′) is a measure of how
dissimilar x, x′ ∈ X are. ‘Local’ is henceforth understood in the context of
X equipped with the dissimilarity δ.

Example 21.9 (Euclidean metric) When X is a Euclidean space, it is most
common to use the Euclidean metric, meaning that δ(x, x′) = ∥x − x′∥, with
∥ ⋅ ∥ denoting the Euclidean norm.

There are two main types of neighborhood used in practice:

• Ball neighbors The h-ball neighbors of x ∈ X are indexed by

Ih
d(x) ∶= {i ∶ xi ∈ Bh(x)}, where Bh(x) ∶= {x′ ∈ X ∶ δ(x′, x) ≤ h}.

• Nearest neighbors The k-nearest neighbors of x ∈ X are indexed by

Jk
d(x) ∶= {i ∶ δ(xi, x) among k smallest δ(x j, x)}.

We mostly work with an h-ball neighborhood, as it is easier to understand
and to handle – even though nearest neighbors are equally, if not more,
popular in practice.
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We assume throughout that the distribution of X has support X , in the
sense that P(X ∈ Bh(x)) > 0 for every x ∈ X and every h > 0.

Problem 21.10 In that case, show that for every x ∈ X ,

min
i=1,...,n

δ(Xi, x)
PI→ 0, as n→∞. (21.8)

21.2.1 Local Methods for Regression

Consider the setting where Y = R and the loss is the squared error loss, so
that the regression function is the conditional expectation given in (21.6).
The methods that we present below aim directly at estimating f∗.

Local Average
Computing the regression function as given in (21.6) is impossible without
access to the distribution of Y ∣X, which is unknown. A local average
approach attempts to estimate this function by making two approximations:

• Conditioning on a neighborhood While in (21.6) the conditioning is on
X = x, we approximate this by conditioning on a neighborhood. Using a
ball neighborhood, the approximation is

E[Y ∣X ∈ Bh(x)] ≈ E[Y ∣X = x]. (21.9)

when h is small. This approximation is reasonable when the regression
function f∗ is continuous, and can indeed be shown to be valid under
mild assumptions (Problem 21.53).

• Averaging As we often do, we estimate an expectation with an average,
yielding the approximation

1
∣Ih

D(x)∣
∑

i∈Ih
D(x)

Yi ≈ E[Y ∣X ∈ Bh(x)].

By the Law of Large Numbers, the approximation is valid when the
number of data points in the neighborhood, ∣Ih

D(x)∣, is large.

The local average estimator combines these two approximations to take the
form

f̂ h
d (x) ∶= 1

∣Ih
d(x)∣

∑
i∈Ih

d(x)
yi. (21.10)

The tuning parameter h is often called the bandwidth.
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Kernel Regression
Kernel regression is a form of weighted local average, and as such includes
(21.10) as a special case. Choose a non-increasing function Q∶R+ → R+,
and for h > 0, define

Kh(x′, x) = Q(δ(x′, x)/h).

The function Q is sometimes referred to as the kernel function, and most
often chosen compactly supported or fast-decaying.

The Nadaraya–Watson estimate75 is defined as

f̂ h
d (x) ∶=

n

∑
i=1

wi,h(x)yi, (21.11)

where

wi,h(x) ∶=
Kh(xi, x)

∑n
j=1 Kh(x j, x)

.

R corner The Nadaraya–Watson kernel regression estimate can be com-
puted using the function ksmooth. Several choices of kernel function are
offered.

Remark 21.11 Kernel regression is analogous to kernel density estimation
(Section 16.10.5).

Local Linear Regression
While a kernel regression estimate is built by fitting a constant locally
(Problem 21.57), local linear regression is based on fitting an affine function
locally. For this to make sense, we need to assume that X is a Euclidean
space, and we assume that δ is a norm for concreteness.

Assuming the regression function f∗ is differentiable, we have the Taylor
expansion

f∗(x′) ≈ f∗(x) + ∇ f∗(x)⊺(x′ − x),

the approximation being accurate to first order when δ(x′, x) is small.
Having noticed that x′ ↦ f∗(x) + ∇ f∗(x)⊺(x′ − x) is an affine function, its
coefficients are estimated in a neighborhood of x (since the approximation
is only valid near x).

75 Named after Èlizbar Nadaraya (1936–) and Geoffrey Watson (1921–1998).
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In more detail, having chosen a kernel function Q and a bandwidth h > 0,
for x ∈ X , define (ah

d(x),bh
d(x)) to be the solution to

min
(a,b)

n

∑
i=1

Kh(xi, x)(yi − a − b⊺(xi − x))2
.

The intercept, ah
d(x), is meant to estimate f∗(x), while the slope, bh

d(x), is
meant to estimate ∇ f∗(x). The local linear regression estimate is simply
the intercept, namely

f̂ h
d (x) = ah

d(x), as computed above.

Figure 21.1 illustrates an application of local linear regression to
synthetically generated data.

R corner The function loess implements local linear regression.

Remark 21.12 Loader [116] proposes a local linear density estimation
method based on a Taylor expansion of the logarithm of the density.
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Figure 21.1 An example of application of local linear regression. The model that
was generated is the following: Yi = f∗(Xi) + Zi, with X1, . . . ,Xn iid uniform in
[0, 1], f∗(x) = (1+10x−5x2) sin(10x), and (independently) Z1, . . . ,Zn iid standard
normal. Local linear regression was applied with two different values of h, resulting
in a rough curve and a smooth curve, with the latter coming very close to the function
f∗ (and virtually indistinguishable from it in the current plot).
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21.2.2 Local Methods for Classification

Consider the setting where Y is discrete and the loss is the 0-1 loss, so that
the regression function is the Bayes classifier given in (21.7). The methods
that we present below aim directly at estimating f∗.

Local Majority Vote
The arguments that lead to the local average of (21.10) can be adapted to
the present setting, starting from (21.7) instead of (21.6). The end result is
the following classifier

f̂ h
d (x) ∈ arg max

y∈Y
∑

i∈Ih
d(x)
{yi = y}. (21.12)

In words, the classifier, at a given x, returns the most common category in
the neighborhood of x.

Problem 21.13 Detail the arguments leading to (21.12) following those
that lead to (21.10).

Nearest-Neighbor Classifier
The expected risk of a classifier f̂ at a point x ∈ X , when f̂ is fitted to data
D, is

P(Y ≠ f̂D(x) ∣ X = x),

where the expectation with respect to Y ∣X = x and the data D. Here, (X,Y)
represents a ‘future’ observation not available in D – and in fact independent
of D. In Problem 21.8, we saw that this is bounded from below by the risk
of the Bayes classifier (21.7), which at x is equal to

1 −max
y∈Y
P(Y = y ∣ X = x).

Local majority vote based on nearest neighbors has some universality
property, in the sense that its risk comes close to that of the Bayes classifier
under mild assumptions.

Proposition 21.14 (Nearest neighbor classifier). In the present setting,
assume that for all y ∈ Y , the function x ↦ g(y ∣ x) ∶= P(Y = y ∣X = x) is
continuous on X . Then, as the sample size increases, the limiting expected
risk of the nearest neighbor classifier is, pointwise, at most twice the risk of
the Bayes classifier.

Proof sketch Fix x ∈ X , and with some abuse of notation let f̂n denote
the nearest neighbor classifier based on a sample of size n. Specifically,
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f̂n(x) = Yin(x), where in(x) ∈ {1, . . . ,n} indexes one the data points closest
to x (with ties, if any, broken in a systematic way). Then (21.8) implies that

δ(Xin(x), x)
PI→ 0, as n→∞. (21.13)

The expected risk of f̂n at x is

P(Y ≠ Yin(x) ∣ X = x)
= 1 − P(Y = Yin(x) ∣ X = x)
= 1 − ∑

y∈Y
P(Y = y,Yin(x) = y ∣ X = x)

= 1 − ∑
y∈Y

g(y ∣ x)P(Yin(x) = y),

using the independence of the generic observation (X,Y) and the data (and
the fact that Yin(x) is a function of the data). We also have

P(Yin(x) = y) = E [P(Yin(x) = y ∣ Xin(x))]
= E [g(y ∣Xin(x))]
→ g(y ∣ x), as n→∞, (21.14)

by (21.13) combined with the continuity of x ↦ g(y ∣ x) and dominated
convergence (Proposition 8.11). Hence,

P(Y ≠ f̂n(x) ∣ X = x) → 1 − ∑
y∈Y

g(y ∣ x)2, as n→∞.

We then conclude with Problem 21.16. �

Problem 21.15 Prove the convergence (21.14).

Problem 21.16 For any probability vector (pj), show that

1 −∑
j

p2
j ≤ 2(1 −max

j
p j).

Remark 21.17 This performance result may be impressive given the
simplicity of the 1-nearest neighbor classifier, but the result is very much
asymptotic in nature.

21.2.3 Curse of Dimensionality

We assume in this section that X is Euclidean and that the dissimilarity δ
derives from a norm on X . In this context, the local methods presented in
Section 21.2 are better suited for when X has small dimension. (In fact, a
dimension as low as dim(X) = 5 is already a stretch in practice.) This is
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because the space is mostly empty of data points unless the sample size is
exponential in the dimension. This phenomenon, in regression, is called the
curse of dimensionality.

For a concrete example, take X = [0,1]p, which is a ‘nice’ compact
domain of Rp. Assume furthermore that X has the uniform distribution on
X . Fix h ∈ (0,1/2). Then, in the setting where the data are as in (21.1), the
chances that a Euclidean ball centered at x ∈ X of radius h is empty of data
points are given by

P(∀i ∶ Xi ∉ Bh(x)) = P(X1 ∉ Bh(x))
n

= [1 − P(X1 ∈ Bh(x))]
n

≥ (1 − (2h)p)n

→ 1, when n(2h)p → 0.

(Note that the inequality is very conservative.) Taking h to be fixed, the
condition on n and p holds, for example, when p≫ log n.

We conclude that, when the dimension is a little more than logarithmic
in the sample size, the ball neighborhood of any given point is likely empty
of data points, which is, of course, problematic for any local method.

Problem 21.18 In the same setting, compute as precisely as you can the
minimum sample size n such that the probability that a Euclidean ball of
radius h is empty of data points is at most 1/2. Do this for p = 1, . . . ,10.

21.3 Empirical Risk Minimization

The empirical risk is the risk computed on the empirical distribution. It
can be used to produce an estimator by minimization over an appropriately
chosen function class. Although such an estimator is typically less ‘local’, it
may nevertheless suffer from the curse of dimensionality (Problem 21.59).
This is not the case for estimators based on linear models, an important
family of function classes.

21.3.1 Empirical Risk

Given data (21.1), the empirical risk of a function f is defined as

R̂D( f ) ∶= 1
n

n

∑
i=1

L(Yi, f (Xi)). (21.15)
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Problem 21.19 Show that the empirical risk is an unbiased and consistent
estimate for the risk, in the sense that, for any function f ∈ M, E[R̂D( f )] =
R( f ), and

R̂D( f ) PI→ R( f ), as ∣D∣ → ∞. (21.16)

21.3.2 Empirical Risk Minimization

With the empirical risk estimating the risk, it is rather natural to aim at
minimizing the empirical risk. This is done over a carefully chosen subclass
F ⊂M.

Assuming a minimizer over F exists, and that some other measurability
issues are taken care of, empirical risk minimization (ERM) over the class
F amounts to returning a minimizer of the empirical risk over F , namely

f̂FD ∈ arg min
f ∈F

R̂D( f ).

Thus, a function class F ⊂M defines an estimator via ERM minimization.
We say that ERM is consistent76 for the class F when

R( f̂FD )
PI→ inf

f ∈F
R( f ), as ∣D∣ → ∞. (21.17)

Importantly, this consistency is not implied by (21.16). Instead, what is
needed is a uniform consistency over F .

Problem 21.20 Show that (21.17) holds when

sup
f ∈F
∣R̂D( f ) −R( f )∣ PI→ 0, as ∣D∣ → ∞.

21.3.3 Interpolation and Inconsistency

Consider the case where X = R and Y = R. For simplicity, assume that X
has a continuous distribution, so that the Xi are distinct with probability one.
We work with squared error loss, meaning L(y, y′) = (y − y′)2.

Having observed the data, for a function f , the empirical risk (21.15)
takes the form

R̂d( f ) = 1
n

n

∑
i=1
(yi − f (xi))2.

76 This notion of consistency is with respect to the underlying distribution. If it holds
regardless of the underlying distribution, then ERM is said to be universally consistent.
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Clearly, this risk is non-negative and equal to 0 if and only if yi = f (xi)
for all i = 1, . . . ,n, meaning that the function f interpolates the data
points. Consequently, if for any sample size n there is a function in F
that interpolates the data points, then R̂d( f̂Fd ) = 0. If, at the same time,
inf f ∈F R( f ) > 0, then ERM cannot be consistent.

Problem 21.21 Suppose, without loss of generality, that Y as support Y .
Take a loss L such that L(y, y′) = 0 if and only if y = y′. Show that
inf f ∈F R( f ) = 0 if and only if

P(Y = f (X)) = 1, for some f ∈ F .

Overfitting
We find it desirable to choose a function class for which ERM is consistent,
for otherwise it is difficult to know what ERM does. When ERM is not
consistent, we say that it overfits, and from our discussion above, we know
that this happens, for example, when the function class is so ‘expressive’
that interpolation is possible.

Problem 21.22 In R, generate data according to the model of Figure 21.1.
In an effort to perform ERM on the class of all polynomials, interpolate the
data points by Lagrange interpolation, which is available via the package
polynom. Produce a scatterplot with the fitted polynomial overlaid (as done
in that same figure for local linear regression). Repeat for increasing values
of n to get a sense of how (wildly) the estimated function behaves.

21.3.4 Linear Models

Linear function classes, that is, classes of functions which have the structure
of a linear space, have been popular for decades. This is because of their
simplicity, their expressive power, and the fact that ERM is relatively easy to
compute. Throughout, we assume that the linear class has finite dimension.

Linear Regression
Assume that the response is numerical, meaning that Y = R. Given a set
of functions, f1, . . . , fm∶ X → R, we may consider linear combinations,
meaning functions of the form

f (x) = a1 f1(x) +⋯ + am fm(x),

for arbitrary reals a1, . . . ,am.
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Example 21.23 (Polynomial regression) Polynomials of degree at most k
form such a class. In dimension one, meaning when X = R, we can choose
f j(x) = x j−1 for j = 1, . . . , k + 1.

Proposition 21.24. Assume that the loss is as in Example 21.3, and that
each f j has finite risk. Then ERM is consistent for the linear class defined
by f1, . . . , fm.

Problem 21.25 Prove Proposition 21.24, possibly under some additional
assumptions, based on Problem 16.101.

Problem 21.26 (Least squares) ERM with the squared error loss is
implemented via the method of least squares, defined by the following
optimization problem

minimize
n

∑
i=1
(yi − a1 f1(xi) −⋯ − am fm(xi))

2

over a1, . . . ,am ∈ R.

Show that this optimization problem can be reduced to solving an m ×m
linear system.

Linear Classification
Assume that the response is binary, so that we may take Y to be {−1,1}
without loss of generality. Given a set of functions, g1, . . . ,gm∶ X → R, we
may consider the class of functions of the form

f (x) = sign(a1g1(x) +⋯ + amgm(x)),

for arbitrary reals a1, . . . ,am.

Proposition 21.27. Working with the 0-1 loss, ERM is consistent for any
such class.

It turns out that implementing ERM with the 0-1 loss is in general quite
difficult due to the fact that the sign function is not smooth. For this reason,
a surrogate loss is sometimes chosen. Such a loss is defined not just on Y ,
but on R. Let S∶R × R → R+ be such a loss function. In general, a class
G of functions g∶ X → R defines a class F of functions f ∶ X → {−1,1} of
the form f (x) = sign(g(x)), for some g ∈ G. ERM for such a class F with
the surrogate loss Sproceeds by first minimizing the empirical risk over G,
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yielding

ĝd ∈ arg min
g∈G

n

∑
i=1

S(yi,g(xi)), (21.18)

and then returning f̂d = sign(ĝd).
Examples of surrogate losses used in practice include

exponential loss S(y, z) = exp(−yz),
logistic loss S(y, z) = log(1 + exp(−yz)),

hinge loss S(y, z) = (1 − yz) ∨ 0.

Remark 21.28 The surrogate losses above are all convex, which is desirable
in the context of a linear class G since in that case (21.18) is a convex
optimization problem. With G being a linear class, ERM with the logistic
loss is also called logistic regression, and ERM with the hinge loss
corresponds to support vector machines.

Under some conditions, it turns out that ERM with one of these surrogates
losses leads to consistency with respect to the 0-1 loss. This is the case,
for example, when the class is linear and, importantly, when the minimum
risk is achieved over that class (i.e., when the linear class contains a Bayes
classifier) [19, Sec 4.2].

21.4 Selection

The local methods presented in Section 21.2 depend on a choice of
bandwidth, while empirical risk minimization depends on a choice of
function class. In general, when having to choose among various regression
estimators, one would want to compare their expected risk (21.4). However,
this is not an option, as the expected risk is based on the underlying
distribution, which is known. Instead, we substitute the expected risk with
an estimate.

Remark 21.29 (Beyond the empirical risk) Even when consistent for
the risk (21.17), the empirical risk is typically not useful for comparing
various regression estimators. This is because the empirical risk favors
expressiveness or richness, and as a consequence leads to choosing an
estimate that interpolates the data points when this is possible.
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21.4.1 Data Splitting

The main motive for splitting the data is to separate the two operations of
fitting and risk assessment, by having them use disjoint parts of the data.

Recall that d denotes the data as in (21.2). Let t ⊂ d and v ⊂ d denote
the training set and validation set, respectively. These are chosen disjoint,
namely t ∩ v = ∅. Let C denote a set of estimators to be compared. For each
estimator in that set, f̂ ∈ C, we do the following:

• Fitting Fit the estimator on the training set, obtaining f̂t .
• Assessment Compute the average loss of the fitted estimator on the

validation set, obtaining R̂v( f̂t).
Having done this, we choose the estimator among those in C that has the

smallest estimated prediction error, obtaining

f̂ C ∶= arg min
f̂ ∈C

R̂v( f̂t). (21.19)

We call this estimator the selected estimator. (The selection process was
based on t and v, but we leave this implicit.)

Remark 21.30 The selected estimator is typically fitted on the entire dataset,
resulting in f̂ C

d , which is in turn used for prediction.

Problem 21.31 Show that, for a given estimator f̂ , we have

E[R̂V( f̂T)] = Rm( f̂ ),

if the training set is of size m. How does Rm( f̂ ) compare with Rn( f̂ )
(which is arguably what we would like to estimate)?

Test Set
The use of a set separate from the training and validation sets becomes
necessary if it is of interest to estimate the prediction error of the selected
estimator, namely f̂ C of (21.19). This set is called the test set. The reason
the training and validation sets cannot be used for that purpose is because
they were used to arrive at f̂ C.

Let s ⊂ d denote the test set. It is disjoint from the training and validation
sets, meaning that s∩(t∪v) = ∅. The risk estimate for the selected estimator
is obtained by fitting the selected estimator on the training and validation
sets, and then computing the average loss on the test set, obtaining R̂s( f̂ C

t∪v).
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21.4.2 Cross-Validation

Data splitting is often seen as being wasteful in the sense that the dataset
is subdivided into even smaller subsets (training and validation sets) with
each subset playing only one role. The methods we present next mimic data
splitting while attempting to make better use of the available data. These are
all variants of cross-validation (CV), arguably the most popular approach
for comparing estimators in the context of regression.

For a comprehensive review of cross-validation (both for regression and
density estimation), we refer the reader to the survey [5].

k-Fold Cross-Validation
Let k ∈ {2, . . . ,n} and partition the dataset d into k subsets of (roughly)
equal size, denoted d1, . . . , dk. In a nutshell, in the jth round, the jth subset
plays the role of validation set while the others together play the role of
training set, resulting in a risk estimate. The final risk estimate is the average
of these k estimates. See Table 21.1 for an illustration.

In more detail, take one of the estimators, f̂ ∈ C. We first fit the estimator
on tl ∶= d∖dl, obtaining f̂tl . Then we compute the average loss on dl. Finally,
we average these k risk estimates, obtaining

1
k

k

∑
l=1

R̂dl( f̂tl). (21.20)

Remark 21.32 The choices k = 5 and k = 10 appear to be among the most
popular in practice.

Problem 21.33 Compute the expectation of the risk estimate (21.20).

Table 21.1 5-fold cross-validation for a given estimator f̂ . The
j-th row illustrates the j-th round where the j-th data block
(highlighted) plays the role of validation set. Each round results
in a risk estimate and the average of all these risk estimates (5
of them here) is the cross-validation risk estimate for f̂ .

Subset 1 Subset 2 Subset 3 Subset 4 Subset 5
Round 1 Validate Train Train Train Train
Round 2 Train Validate Train Train Train
Round 3 Train Train Validate Train Train
Round 4 Train Train Train Validate Train
Round 5 Train Train Train Train Validate
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Leave-q-Out Cross-Validation
Pushing the rationale behind CV to its extreme leads to having each subset
of observations of size q play the role of validation set in turn.

Problem 21.34 Write down the leave-q-out CV risk estimate directly in
formula, taking care of defining any mathematical symbols that you use.

Because there are (n
q) subsets of size q out of n observations total, this

procedure is computationally prohibitive for almost all choices of q – even
with q = 2 or q = 3 the procedure may be too costly.

Although leave-q-out CV is typically not computationally tractable,
Monte Carlo simulation is possible. Indeed, each subset of size q yields a
risk estimate and the leave-q-out CV risk estimate is the average of all these
risk estimates. The Monte Carlo approach consists in drawing a certain
number of subsets of size q at random, computing their associated risk
estimates, and returning their average.

The special choice q = 1, leave-one-out cross-validation, is computation-
ally more feasible, although it still requires fitting the estimator n times, at
least in principle. Note that leave-one-out CV is equivalent to n-fold CV,
and the corresponding risk estimate is also known as prediction residual
error sum-of-squares (PRESS).

Remark 21.35 Analytical expressions for leave-q-out CV are available
in some situations [5], and their use can completely bypass the need for
burdensome computations.

21.5 Further Topics

21.5.1 Signal and Image Denoising

Denoising is an important ‘low-level’ task in the context of signal and
image processing. (Object recognition is an example of a ‘high-level’ task.)
It is important in a wide array of contexts including astrophysics, satellite
imagery, various forms of microscopy, as well as various types of medical
imaging.

Signal or image denoising can be seen as a special case of regression
analysis, the main specificity being that X is typically not random; rather, the
signal or image is sampled on a regular grid. For example, in dimension 1,
this could be xi = i/n for a signal supported on [0,1]. In particular, in the
signal and image denoising literature, kernel regression is known as linear
filtering. (Many other parallels exist with the regression literature.)
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R corner In the context of signal or image processing, the function kernel
provides access to a number of well-known kernel functions. Having chosen
such a kernel, the function kernapply computes the corresponding kernel
regression estimate. (Numerically, this involves computing a convolution
between two numerical vectors, and this can be done by an application of
the discrete Fast Fourier Transform.)

21.5.2 Additive Models

Additive models are an alternative to linear models. Although nonparametric,
they do not suffer from the curse of dimensionality.

We assume throughout that X = Rp. We say that f ∶Rp → R is an additive
function if it is of the form

f (x) =
p

∑
j=1

f j(x j), for x = (x1, . . . , xp). (21.21)

Additive Models for Regression
Let Fo be any model class of univariate functions. The corresponding model
class of additive functions of p variables is

F ∶= { f as in (21.21) with f j ∈ Fo}.

Such models do not tend to suffer from the curse of dimensionality because,
in essence, all happens on the axes.

ERM over an additive class F can be done via backfitting, described in
Algorithm 21.1, which is based on being able to perform ERM over the
class of univariate functions Fo defining F .

Algorithm 21.1 Backfitting Algorithm

Input: data d = {(xi, yi)} with xi = (xi1, . . . , xip), univariate model Fo

Output: fitted additive model

Initialize: f̂ j ≡ 0 for all j
Repeat until convergence:

For j = 1, . . . , p

(i) Compute the residuals ri ← yi −∑k≠ j f̂k(xik)
(ii) Compute the ERM estimator for Fo on {(xi j, ri)} and update f̂ j

Problem 21.36 Define a backfitting procedure based on kernel regression.
In R, write a function taking in the data and a bandwidth, and fitting an
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additive model based on kernel regression with the corresponding bandwidth
and the Gaussian kernel.

Additive Models for Classification
With an additive function class, we can obtain a class of classifiers as
described in Section 21.3.4. In particular, when using the logistic loss, this
is sometimes called additive logistic regression.

21.5.3 Isotonic Regression

Assume that X = R and that Y = R. Define

F = { f ∶R→ R non-decreasing}. (21.22)

ERM based on this class is called isotonic regression.77

Proposition 21.37. ERM is consistent for the class (21.22).

The pooled adjacent violators algorithm (PAVA) computes the isotonic
regression estimate. The paper [40] describes PAVA (and also presents an
alternative convex optimization formulation).

R corner Isotonic regression is available from the package isotone.

Remark 21.38 Notice the parallel with density estimation based on an
assumption of monotonicity (Section 16.10.6).

21.5.4 Prediction Intervals

In Section 16.10.4, we saw how to produce a prediction interval for a new
observation based on an iid sample. The construction of this prediction
interval relies on the exchangeability of the sample together with the new
observation, an idea which is at the core of conformal prediction [194, 165].

The same idea can be applied in the context of regression in situations
where the (Xi,Yi) are iid from an underlying distribution – unlike in a
typical signal or image processing setting in which the predictor variable
is fixed by design (Section 21.5.1). We assume that the predictor and the
response are both numerical, with values in Rp and R, respectively. The
exposition here follows that in [111].

77 One can as easily work with the class of non-increasing functions, and ERM based on
this class is called antitonic regression.
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We have available to us data as in (21.1). Anticipating a new response at
Xn+1, denoted Yn+1 (and not yet available), we want to build an interval, or
more generally a set, based on the available observations, meaning based
on D and Xn+1, denoted I(Xn+1; D), such that

P(Yn+1 ∈ I(Xn+1; D)) ≥ 1 − α, (21.23)

where α is chosen beforehand, as usual. Such a construction will be based
on a regression estimator. Relying on the (strong) assumption that the
observations are iid, it is possible to build an accurate prediction interval
without really any additional assumptions.

Let f̂ be any regression estimator. For y ∈ R, form the augmented dataset
d(y) ∶= d ∪ (xn+1, y), and consider the residuals when fitting f̂ on d(y),
meaning

ri(y) ∶= ∣yi − f̂d(y)(xi)∣, for i ≤ n; rn+1(y) ∶= ∣y − f̂d(y)(xn+1)∣.

Then define

pv(y) ∶= 1
n + 1

n+1

∑
i=1
{ri(y) ≤ rn+1(y)}.

As already discussed in Remark 16.81, this can be seen as a permutation
p-value for testing the null hypothesis that (xn+1, y) comes from the same
distribution as the available data d, and inverting the underlying test yields
the following set

I(xn+1; d) ∶= {y ∶ pv(y) ≤ ⌈(1−α)(n+1)⌉
n+1 }. (21.24)

Proposition 21.39. Suppose that

{(Xi,Yi) ∶ i = 1, . . . ,n + 1} are iid on Rp ×R. (21.25)

Then (21.23) holds for the set defined in (21.24).

Problem 21.40 Prove Proposition 21.39.

The procedure above is computationally intensive as it needs to be
repeated for a grid of values for the response (meaning different values
of y in the notation used above). However, there is another variant based on
sample splitting which is computationally lighter. It goes like this:

(i) split the sample into t (train) and v (validation), with ∣v∣ ≥ (1 − α)/α;
(ii) fit the regression estimator f̂ on t;
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(iii) evaluate the regression estimate f̂t on v by computing the residuals

∣y − f̂t(x)∣, for (x, y) ∈ v;

(iv) set δ to be the value of the ⌈(1 − α)(∣v∣ + 1)⌉-th smallest residual;
(v) define the interval

I(x; d) ∶= [ f̂t(x) − δ, f̂t(x) + δ]. (21.26)

Proposition 21.41. Under the same basic assumption (21.25), the require-
ment (21.23) holds for the interval defined in (21.26).

Problem 21.42 Prove Proposition 21.41.

21.5.5 Classification Based on Density Estimation

A less direct way of approximating the Bayes classifier (21.7) is via the
estimation of the class proportions, πy ∶= P(Y = y), and the class densities,
φy. Note that π defines the marginal of Y and φy is the conditional density
of X ∣Y = y. The Bayes classifier can be expressed as

f∗(x) ∈ arg max
y∈Y

πyφy(x).

Problem 21.43 Show this using the Bayes formula.

Thus, if we have estimates, π̂y and φ̂y for all y ∈ Y , we can estimate the
Bayes classifier by plugging them in, to obtain

f̂ (x) ∈ arg max
y∈Y

π̂yφ̂y(x).

The class proportions are typically estimated by the sample class
proportions, namely

π̂y =
#{i ∶ yi = y}

n
.

The class densities can be estimated by applying any procedure for
density estimation to each sample class.

Problem 21.44 Derive the classifier that results from applying a kernel
density estimation procedure (Section 16.10.5) to each sample class.
Compare with a local majority vote (with same bandwidth).
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Discriminant Analysis
When the class distributions are modeled as normal and fitted by maximum
likelihood, the resulting procedure is called quadratic discriminant analysis
(QDA).

Problem 21.45 Show that for QDA the classification boundaries, meaning
the sets separating the classes, are quadratic surfaces.

If in addition to being modeled as normal, the class distributions are
assumed to share the same covariance matrix, then procedure is called
linear discriminant analysis (LDA).

Problem 21.46 Show that for LDA the classification boundaries are affine
surfaces.

Naive Bayes
Density estimation by local methods (e.g., kernel density estimation), also
suffers from a curse of dimensionality. For this reason, some structural
assumptions are sometimes made.

A naive Bayes approach is analogous additive modeling (Section 21.5.2).
The corresponding assumption here is that each class density φy is the
product of its marginals, in the sense that

φy(x) =
p

∏
j=1
φ j,y(x j),

for x = (x1, . . . , xp), where if X = (X1, . . . ,Xp), then φ j,y is the density of
Xj ∣Y = y. This leads to estimating, for each class, the marginal densities
separately and then taking the product to obtain an estimate for the class
density.

21.5.6 Density Estimation as a Regression Problem

Regression and density estimation seem quite distinct tasks: most promi-
nently, in regression there is a response, while in density estimation there is
no response. And the response is what allows the use of a loss function.

Despite appearances, however, the two problems are very closely related.
In fact, we already know of the strong resemblance between kernel density
estimation (Section 16.10.5) and kernel regression (Section 21.2.1), and the
possibility available in both situations to use CV to choose the bandwidth.
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We draw a more systematic parallel below. We consider a standard density
estimation problem: we have a sample X ∶= {X1, . . . ,Xn} assumed iid from
some density f that needs to be estimated.

Manufacturing a Response
Even though there is no response, it is in fact possible to ‘manufacture’ one.
One way to do that is via kernel density estimation (Section 16.10.5). For
some bandwidth h chosen in some way later (e.g., by cross-validation, as
it is a tuning parameter of the resulting method), let f̂ h

X−i
denote the kernel

density estimator with bandwidth h and kernel K computed on the sample
X−i ∶= X∖{Xi}. Then compute Yi,h = f̂ h

X−i
(Xi), which is the kernel estimator

based on all observations except Xi evaluated at Xi. A regression method
can then be applied to (X1,Y1,h), . . . , (Xn,Yn,h).
Problem 21.47 Argue that these paired variables are identically distributed
but not independent.

Note that we have

E[Yi,h ∣ Xi] = fh(Xi), fh(x) ∶= Kh ∗ f ,

as in (16.23), so that the regression method in the second stage is implicitly
estimating fh and not f itself – but the two are close (Proposition 16.82).

Empirical Risk Minimization
With a response, it is possible to define a loss as we did in the present
chapter for the regression problem. This is essentially what the previous
approach does. It is in fact possible to define a risk directly, together with
an empirical risk meant to estimate that risk. We saw how to do that in our
discussion of kernel density estimation in Section 16.10.5, as this is what
makes the implementation of cross-validation possible.

For a procedure f̂ , consider its mean integrated squared error, defined as

R( f̂ ) ∶= E [∫ ( f̂X(x) − f (x))2dx] . (21.27)

Developing the square in the integral, and using the linearity of the integral,
and the Fubini–Tonelli Theorem, we have

R( f̂ ) = ∫ E[ f̂X(x)2]dx − 2∫ E[ f̂X(x)] f (x)dx + ∫ f (x)2dx. (21.28)

When it comes to estimating the risk, for the first integral, we can estimate
it by ∫ f̂X(x)2dx, guided by the fact that f̂X(x) should have low variance
if it is a ‘reasonable’ estimator and the sample size is suitably large. For
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the second integral, we can follow the same guideline, which results in
approximating the integral by ∫ f̂X(x) f (x)dx. In turn, this integral needs to
be estimated because it still involves f , which is, of course, unknown. We
use 1

n ∑i f̂X(Xi) for that purpose.

Problem 21.48 Relate 1
n ∑i f̂X(Xi) to ∫ f̂X(x) f (x)dx.

However, it is not clear how to estimate the third integral in (21.28).
Thankfully, its estimation is not needed for empirical risk minimization.
Indeed, all that is needed is to be able to compare two different estimators,
and this can be based on an estimate of

R0( f̂ ) ∶= ∫ E[ f̂X(x)2]dx − 2∫ E[ f̂X(x)] f (x)dx.

We use the following for that purpose

R̂0( f̂ ) ∶= ∫ f̂X(x)2dx − 2
n

n

∑
i=1

f̂X(Xi).

Remark 21.49 For the purpose of performing cross-validation, the follow-
ing estimator is proposed in [25]

R̃0( f̂ ) ∶= 1
n

n

∑
i=1
∫ f̂X−i(x)2dx − 2

n

n

∑
i=1

f̂X−i(Xi),

where, as before, X−i = {X1, . . . ,Xi−1,Xi+1, . . . ,Xn}.
Problem 21.50 The reasoning above is quite specific to our choice of risk
in (21.27), which was based on the mean integrated squared error. The
same reasoning, however, applies to the relative entropy (Problem 7.101).
Detail this reasoning and relate the resulting ERM procedure to maximum
likelihood estimation.

21.6 Additional Problems

Problem 21.51 Show that, when X and Y are independent, under some mild
assumption on the loss, a constant function minimizes the risk. Conversely,
suppose that a constant function minimizes the risk. Is it true that X and Y
must be independent in that case?

Problem 21.52 Let g be a bounded and continuous function on Rp. Let
Bh(x0) denote the ball centered at x0 of radius h > 0 in Rp with respect to
some norm. Show that

1
∣Bh(x0)∣ ∫Bh(x0)

g(x)dx→ g(x0), as h→ 0.
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354 Regression Analysis

Problem 21.53 Assume that X has a density φ on Rp and that (X,Y) have
a joint density ψ on Rp ×R. Show that

E[Y ∣X ∈ Bh(x0)] =
∫Bh(x0) ∫R yψ(x, y)dydx

∫Bh(x0) φ(x)dx
.

Using Problem 21.52 and assuming continuity as needed, show that

E[Y ∣X ∈ Bh(x0)] → E[Y ∣X = x0], as h→ 0,

thus justifying the approximation (21.9).

Problem 21.54 Bound the mean-squared error of the local average (21.10),
adapting the arguments given in Section 16.10.5. Do the same for the
Nadaraya–Watson method (21.11) if you can. The analysis should provide
some insights on how to choose the bandwidth h (at least in theory).

Problem 21.55 Adapt the discussion of local methods for regression under
squared error loss (Section 21.2.1) to the setting where the loss is the
absolute loss instead.

Problem 21.56 (Local polynomial regression) Placing ourselves in the
context of Section 21.2.1, if we assume that the regression function is m
times differentiable, it becomes reasonable to locally estimate its Taylor
expansion of order m. This results in the so-called local polynomial
regression estimator of order m. Define this estimator in analogy with
the local linear regression estimator.

Problem 21.57 Local polynomial regression of order m = 0 amounts to
fitting a constant locally. Compare that with kernel regression (with the
same kernel function and the same bandwidth).

Problem 21.58 Provide an analysis of local polynomial regression of
order m when X is uniform on some interval, say the unit interval, and
the regression function is m + 1 times continuously differentiable on that
interval.

Problem 21.59 (ERM over Lipschitz classes) Consider the case where
X = [0,1]p and Y = R. Assume that X has a continuous distribution. For
f ∶ [0,1]p → R, let

∣ f ∣∞ ∶= sup
x
∣ f (x)∣, L( f ) ∶= sup

x≠x′

∣ f (x) − f (x′)∣
∥x − x′∥ .

For c0, c1 > 0, define

Fc0,c1 ∶= { f ∶ ∣ f ∣∞ ≤ c0, L( f ) ≤ c1}.
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It is known that ERM is consistent for Fc0,c1 .

(i) Show that, unless Y is a deterministic function of X, this is not the
case when c1 is unspecified, meaning that ERM is inconsistent for the
class

Fc0,∗ ∶= { f ∶ ∣ f ∣∞ ≤ c0, L( f ) < ∞}.

(ii) Argue that, even when c0, c1 are given, ERM over the class Fc0,c1

suffers from the curse of dimensionality.

Problem 21.60 Define an additive model where each component is
monotonic (i.e., either non-decreasing or non-increasing). Propose a way to
fit such a model, and implement that method in R.
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22

Foundational Issues

Randomization was presented in Chapter 11 as an essential ingredient in
the collection of data, both in survey sampling and in experimental design.
We argue here that randomization is the essential foundation of statistical
inference: It leads to conditional inference in an almost canonical way, and
allows for causal inference.

22.1 Conditional Inference

We already saw in previous chapters a number of situations where inference
is performed conditional on some statistics. Invariably, these statistics are
not informative. This includes testing for independence as discussed in
Chapters 15 and 19, as well as all other situations where permutation tests
are applicable.

22.1.1 Re-Randomization Tests

Consider an experiment that was designed to compare a number of
treatments, and in which randomization (Section 11.2.4) was used to assign
treatments to experimental units (or said differently, to assign units to
treatment groups). The design could be one of the classical designs presented
in Section 11.2.5, or any other design that utilizes randomization. Suppose
we are interested in testing the null hypothesis that the treatments are equally
effective. As we saw in Chapter 17, this can be formalized as a goodness-of-
fit testing problem: the null hypothesis is that the joint distribution of the
response variables is exchangeable with respect to re-randomization of the
treatment group labels.

More formally, suppose there are g treatments and n experimental units
(i.e., human subjects in clinical trials), and let Π denote the possible
treatment assignments under the randomization scheme employed in

356
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22.1 Conditional Inference 357

the experiment. (Note that Π often depends on characteristics of the
experimental units, such as gender or age in clinical trials involving humans.)
Let π0 = (π0

1, . . . , π
0
n) ∈ Π denote the assignment used in the experiment,

where π0
i ∈ {1, . . . ,g} denotes the treatment assigned to unit i ∈ {1, . . . ,n}.

The experiment results in response yi for unit i. We know that we can
organize the data as (y1, π

0
1), . . . , (yn, π

0
n), written henceforth as (y,π0) and

seen as a two-column array. For example, in a completely randomized
design, Π is the set of all permutations of {1, . . . ,n}. In general, though, Π
can be quite complicated.

Let T be a test statistic, with large values weighing against the null
hypothesis. For example, T could be the treatment sum-of-squares. In the
present context, the randomization p-value is defined as

#{π ∈ Π ∶ T(y,π) ≥ T(y,π0)}
∣Π∣ . (22.1)

This is an example of conditional inference, where the conditioning is on
the responses.

In most experimental designs, if not all of them, any π ∈ Π is a
permutation of π0. If seen as a subset of permutations Π forms a subgroup,
in the sense that it is stable by composition, the quantity defined in
(22.1) is a valid p-value in the sense of (12.12). This is a consequence
of Proposition 22.3 below.

As usual, this p-value may be difficult to compute as the number of
possible treatment assignments (which varies according to the design) tends
to be large. In such situations, one typically resorts to estimating the p-
value by Monte Carlo simulation, which only requires the ability to sample
uniformly at random from Π – an ability the experiment must have in order
to produce the initial randomization.

Problem 22.1 Verify that the re-randomization p-value corresponds to the
permutation p-value in the settings previously encountered.

Remark 22.2 Re-randomization is quite natural, as the randomness is
present by design and exploiting that randomness is a rather safe approach to
inference. This strategy is quite old and already mentioned in the pioneering
works of Ronald Fisher and Edwin Pitman in the 1930s. However, at the
time, the Monte Carlo approach outlined above was impractical as there
were no computers and a normal approximation was used instead. Over the
years, this normal approximation became canon and is, to this day, better
known than the re-randomization approach.
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22.1.2 Randomization P-Value

Consider a general statistical model (Ω,Σ,P), where P = {Pθ ∶ θ ∈ Θ}.
When needed, we will let θ∗ ∈ Θ denote the true value of the parameter. Our
goal is to test a null hypothesis H0 ∶ θ∗ ∈ Θ0, for some given Θ0 ⊂ Θ.

Let Π denote a finite set of one-to-one78 transformations π∶Ω→ Ω such
that

Pθ(π−1(A)) = Pθ(A), for all A ∈ Σ, for all θ ∈ Θ.

Crucially, we work under the assumption that Π forms a group, meaning
that id ∈ Π; that if π ∈ Π then also π−1 ∈ Π; and that if π1, π2 ∈ Π then
π1 ○ π2 ∈ Π. (id is the identity transformation id∶ω↦ ω.)

Under these circumstances, Π can be used to obtain a p-value for a given
test statistic T . Assuming that large values of T are evidence against the
null, the following is the randomization p-value for T with respect to the
action of Π:

pv(ω) ∶=
#{π ∈ Π ∶ T(π(ω)) ≥ T(ω)}

∣Π∣ , (22.2)

where ω represents the observed data. This is another instance of conditional
inference where the conditioning is on {π(ω) ∶ π ∈ Π} (called the orbit of
ω under the action of Π).

Proposition 22.3. In the present context, the quantity defined in (22.2) is a
valid p-value in the sense of (12.12).

This proposition implies that (22.1) is a valid p-value whenΠ corresponds
to a subgroup of permutations. In particular, this applies to the permutation
goodness-of-fit tests, as well as the permutation tests for independence and
the tests for symmetry seen in previous chapters.

In order to prove Proposition 22.3, we use the following result, which
implies that any finite group is isomorphic to a group of permutations.

Theorem 22.4 (Cayley). Suppose that Π is a finite group with distinct
elements denoted π1, . . . , πN. Then, for each j, {π1 ○ π j, . . . , πN ○ π j} is a
reordering of {π1, . . . , πN}. Let σ j denote the corresponding permutation
of {1, . . . ,N}, so that πσ j(i) = πi ○ π j. Then S ∶= {σ1, . . . , σN} is a group of
permutations. Moreover, the transformation from Π to S that sends π j to σ j

is an isomorphism.

78 We also require that any π ∈ Π be bi-measurable, meaning that both π and π−1 are
measurable functions.
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Proof of Proposition 22.3 We use the notation of Theorem 22.4. Assume
without loss of generality that π1 = id. Define T j = T ○ π j and T =
(T1, . . . ,TN). Note that (22.2) can be written #{ j ∶ T j ≥ T1}/N. We are
looking at applying the conclusions of Problem 8.54.

Consider a null distribution, Pθ for some θ ∈ Θ0. For any i and j, Tσ j(i) =
T ○ πσ j(i) = T ○ πi ○ π j = Ti ○ π j, so that (Tσ j(1), . . . ,Tσ j(l)) = T ○ π j, and
this has same distribution as T since Pθ is invariant with respect to π j, by
assumption. Hence, the distribution of T is invariant with respect to any
permutation σ j in the subgroup S. Moreover, for any j and k distinct, let
m be such that πm = π−1

j ○ πk. Then σm( j) = k. Therefore, the conditions of
Problem 8.54 are satisfied and an application of the conclusions of the same
problem allow us to conclude here. �

Remark 22.5 (Balanced permutations) The group structure is needed
besides being used in the proof above. To illustrate that, consider the case of
two treatments being compared in a completely randomized design. Assume
the group sizes are the same, so that the design is balanced. Suppose we want
to calibrate a test statistic by permutation. Based on power considerations,
it is rather tempting to consider permutations that move half of each group
over to the other group. These are called balanced permutations in [174].
However, one should resist the temptation because, although power is indeed
improved, the level is not guaranteed to be controlled, as shown in [174].

Problem 22.6 Show that the set of balanced permutations of {1, . . . , 2k} is
not a group unless k = 1.

Monte Carlo Estimation
In many instances, the randomization p-value (22.2) cannot be computed
exactly because the group of transformations Π is too large. In that case,
one can resort to an estimation by Monte Carlo simulation, which as usual
requires the ability to sample from the uniform distribution over Π. In detail,
in the same setting as before, we sample π1, . . . , πB iid from the uniform
distribution on Π and return

p̂v(ω) ∶= #{b ∶ T(πb(ω)) ≥ T(ω)} + 1
B + 1

.

Proposition 22.7. In the context of Proposition 22.3, this Monte Carlo
p-value is a valid p-value in the sense of (12.12).

Problem 22.8 Prove this by adapting the proof of Proposition 22.3.
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22.1.3 Goodness-of-Fit Testing

Besides re-randomization testing, conditional inference may also be used
in a situation where a sufficient statistic is available. A general approach,
in that case, consists in conditioning on the sufficient statistic and then
examining the remaining randomness.

In detail, consider a general statistical model (Ω,Σ,P), where P is left
unspecified and often taken to be the class of all distributions on Σ. Suppose
that we have data ω ∈ Ω and want to test whether ω was generated from a
distribution in a given family of distribution P0 ⊂ P . For clarity, we work
with a parameterization of this family, P0 = {Pθ ∶ θ ∈ Θ0}. Based on the
particular alternatives we have in mind, we decide to reject for large values
of some statistic S . But how can we obtain a p-value for S ?

Suppose that T is sufficient statistic for P0. Let t = T(ω) denote the
observed value of that statistic. If the null hypothesis is true, meaning if
ω was generated from a distribution belonging to P0, then the conditional
distribution of S given T = t is independent of θ ∈ Θ0, and is therefore
known (at least in principle). Letting s = S (ω) denote the observed value of
the test statistic, we may thus define a conditional p-value for S as follows:

pv(s ∣ t) ∶= Pθ0(S ≥ s ∣ T = t),

where θ0 is a fixed but arbitrary element of Θ0.
For example, a p-value for a test of randomness (Section 15.7) is, in the

discrete setting, obtained by conditioning on the counts, and the resulting
distribution is simply the permutation distribution.

Problem 22.9 Consider an experiment yielding a numerical sample of size
n denoted X1, . . . ,Xn. We want to test whether the sample was generated
iid from the uniform distribution on [0, θ] for some (unknown) θ > 0. We
choose to reject for large values of S , defined as the largest spacing

S = max
i
(X(i+1) − X(i)),

where X(1) ≤ ⋯ ≤ X(n) are the order statistics. Describe how you would
obtain, via Monte Carlo simulations, a p-value for this statistic based on the
approach described above. (A more direct approach, not based on computer
simulations, is proposed in [202].)

We provide further examples below. The last three are quite similar, even
though they are motivated by completely different applications.
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22.1.4 Genetic Selection

Consider n individuals taken from a population where a particular gene is
undergoing neutral selection. Let the number of alleles (variants of that gene)
that appear j times be denoted Mj. Under some simplifying assumptions,
and assuming a mutation rate θ > 0, Ewens in [60] derived

Pθ(M1 = m1, . . . ,Mn = mn) =
n!

θ(θ + 1)⋯(θ + n − 1)
n

∏
j=1

θm j

jmj mj!
,

under the constraint that m1, . . . ,mn are non-negative integers such that
∑n

j=1 jmj = n. (For more on the Ewens formula, see [35].)

Problem 22.10 Show that, when θ = 0, all alleles represented in the sample
are the same with probability one. Show that, when θ → ∞, they are all
distinct with probability tending to 1.

Problem 22.11 Show that the number of distinct alleles represented in the
sample, namely K ∶= M1 +⋯+Mn, is sufficient for this model.

Watterson [201] suggests to test for neutral selection based on

S (m1, . . . ,mn) ∶= m2
1 +⋯+m2

n.

A test based on S can be one-sided or two-sided.

Problem 22.12 Show that S is maximum when all alleles represented in
the sample are distinct, and minimum when they are all the same.

If k denotes the observed number of distinct alleles in the sample, a
p-value is then obtained based on the distribution of S given K = k.

22.1.5 Rasch Model

Consider an exam which consists of multiple questions, taken by a number
of individuals. If Individual i answers Question j correctly, set xi j = 1,
otherwise set xi j = 0. Assuming there are m individuals and n questions,
the data are organized in the m-by-n data matrix x ∶= (xi j). The Rasch
model [150] presumes that, as random variables, the Xi j are independent
with

P(Xi j = 1) = exp(ai − bj)
1 + exp(ai − bj)

,

where ai is the ability of Individual i and bj is the difficulty of Question j.
These are the parameters of the model. Let X = (Xi j) denote the (random)
data matrix.
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Problem 22.13 Show that this model is not identifiable. Then show that
fixing the average subject ability 1

m ∑
m
i=1 ai or the average problem difficulty

1
n ∑

n
j=1 bj makes the model identifiable. (Identifiability is not of concern in

what follows.)

Let Ri = ∑n
j=1 Xi j denote the row sum for Individual i (which corresponds

to the number of questions that individual answered correctly) and let
C j = ∑m

i=1 Xi j denote the column sum for Question j (which corresponds
to the number of individuals that answered that question correctly). Set
R = (R1, . . . ,Rm) and C = (C1, . . . ,Cn).

Proposition 22.14. The row and column sums are jointly sufficient for the
individual ability and question difficulty parameters and, conditioning on
these, the data matrix is uniformly distributed in the set of binary matrices
with these row and column sums.

Problem 22.15 Prove Proposition 22.14.

Suppose that we simply want to know whether the data are compatible
with such a model, which we formalize as testing the null hypothesis that
the data matrix was generated from an (unspecified) Rasch model. Based
on the class of alternatives we have in mind, we choose to work with a test
statistic, denoted T , whose large values provide evidence against the null
hypothesis and in favor of the alternative hypothesis. Having observed the
data matrix, x, we are left with the problem of obtaining a p-value for T(x).

Inspired by Proposition 22.14, we fix the margins. Let r = (r1, . . . , rm) and
c = (c1, . . . , cn) denote the vectors of observed row and column sums. If the
null hypothesis is true, then conditional on R = r and C = c, the data matrix
X is uniformly distributed in the set, denoted X(r, c), of binary matrices
with row and column sums given by r and c. The p-value conditional on the
row and column sums is consequently obtained as follows:

pv(x) ∶= #{x′ ∈ X(r, c) ∶ T(x′) ≥ T(x)}
∣X (r, c)∣ . (22.3)

Problem 22.16 Show that (22.3) is a valid p-value in the sense of (12.12).

The p-value (22.3) is hard to compute in general due to the fact that the
set X(r, c) can be very large and even difficult to enumerate. In fact, the
mere computation of the cardinality of X(r, c) is challenging [45].
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22.1.6 Species Co-Occurrence

In Ecology, co-occurrence analysis refers to the study of how different
species populate some geographical sites.79 Various species are observed,
or not, in some geographical sites. These findings are stored in a so-
called presence-absence matrix where rows represent species and columns
represent sites, and the (i, j) entry is 1 or 0 according to whether Species i
is found in Site j or not. For an example, see Table 22.1.

We adopt the notation of Section 22.1.5. This time xi j = 1 if Species i is
present in Site j, and xi j = 0 otherwise, and the row sum ri corresponds to
the total number of sites where Species i was observed, while the column
sum c j corresponds to the total number of species observed at Site j.

A longstanding controversy and source of conflict in the Ecology
community has surrounded the analysis and interpretation of such data.
In the 1970s, Diamond [47] collected presence-absence data for various
species of birds in the Bismarck Archipelago (where each island was
considered a site). Based on these data, he formulated a number of ‘assembly
rules’ having to do with competition for resources (e.g., food, shelter,
breeding grounds, etc.) and implying that some pairs of species would
not inhabit the same site. However, Connor and Simberloff [31] questioned
the basis upon which these rules where formulated. They claimed that the
presence-absence patterns that Diamond attributed to his assembly rules
could, in fact, be attributed to ‘chance’.80 An important part of the resulting
(ongoing?) controversy has to do with how to interpret ‘chance’, meaning,
what probability model to use for statistical inference.

A simple version of the original null model of Connor and Simberloff [31]
amounts to the uniform distribution after conditioning on the margins. This
is exactly the model we discussed in Section 22.1.5, and a test statistic
of interest (perhaps chosen to test the validity of some assembly rule) is
calibrated based on this model. Other null models are possible and, in fact,
the relevance of the model just described is controversial and has been
fiercely debated.

79 Related concepts of co-occurrence exist in other areas such as in Linguistics and the
analysis of textures in Image Processing.

80 Part of their criticism involved questions of how the data were handled and analyzed.
In essence, they claimed that Diamond had simply selected some pairs of species to support
his theory. We will not elaborate on these rules or the controversy surrounding them as these
are domain specific. We refer the curious reader to [82, Ch 7] for further details.
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Table 22.1 Darwin’s finch data, collected by Charles Darwin
when he visited the Galápagos [182, 161]. Each row corre-
sponds to a species of finch, while each column corresponds to
an island in the archipelago.
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Large Ground 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
Medium Ground 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0

Small Ground 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0
Sharp-Beaked Ground 0 0 1 1 1 0 0 1 0 1 0 1 1 0 1 1 1

Cactus Ground 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 0 0
Large Cactus Ground 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0

Large Tree 0 0 1 1 1 1 1 1 1 0 0 1 0 1 1 0 0
Medium Tree 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Small Tree 0 0 1 1 1 1 1 1 1 1 0 1 0 0 1 0 0
Vegetarian 0 0 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0

Woodpecker 0 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0
Mangrove 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Warbler 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

22.1.7 Ising Model

Recall the Ising model described in Example 10.21.

Problem 22.17 Show that ξ(X) and ζ(X) are jointly sufficient and, further,
that conditional on ξ(X) = s and ζ(X) = t, X is uniformly distributed
among m-by-n spin matrices satisfying these constraints.

As before, suppose that we simply want to test the null hypothesis that
the data matrix was generated from an (unspecified) Ising model, and that
we choose a test statistic T whose large values provide evidence against this
hypothesis.

Problem 22.18 Based on Problem 22.17 and Section 22.1.5, propose a way
to obtain a p-value for T . As before, implementing the method will involve
serious computational challenges – describe these challenges.
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22.1.8 MCMC P-Value

Besag and Clifford [14] propose a Markov chain Monte Carlo (MCMC)
approach to generate samples from the null distribution in the context of
testing for the Rasch model – which we saw coincides with the null model
of Connor and Simberloff used in the species co-occurrence problem – and
in the context of testing for the Ising model. They then build on that to
propose a way to obtain a valid p-value for a given test statistic.

Rasch Model
Recall that we want to sample from the uniform distribution on the set of m-
by-n binary matrices with row sums r1, . . . , rm and column sums c1, . . . , cn.
This model was already considered in Section 10.4.1, and we saw there
how to design an Markov chain (on the set of such matrices) with stationary
distribution the uniform distribution.

Remark 22.19 The Ecology community struggled for years to design a
method for sampling from Connor and Simberloff’s null model. The original
algorithm of Connor and Simberloff [31] was quite ad hoc and inaccurate.
Manly [124] used the work of Besag and Clifford [14] but mistakenly
forced the chain to move at every step (Problem 10.17), a flaw that was
left unnoticed for some years and upon which others built [81]. The error
was apparently only discovered almost 10 years later [130]. Some other
efforts to sample from this null model are reviewed in [208], which goes
on to propose a weighted average approach based on the ergodic theorem
(Theorem 10.18).

Ising Model
Recall that we want to sample from the uniform distribution on the set
of spin matrices with given values for ξ and ζ. To do so, we also use an
MCMC approach, this time based on the following Markov chain: Given
such a matrix, choose a pair of distinct sites (i1, j1) and (i2, j2) uniformly
at random and switch their spins if it preserves ζ; otherwise, stay put. Such
a switch always preserves ξ, so that the chain remains in the set of matrices
of interest.

Problem 22.20 Show that this chain has stationary distribution the uniform
distribution on the set of spin matrices with given values for ξ and ζ. [See
Problem 10.16.]
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Obtaining a P-Value
Suppose the data are denoted X as above, which under the null hypothesis of
interest is uniformly distributed on a finite set denoted X . Having observed
X = x, the p-value corresponding to a test statistic T is defined as

pv(x) ∶= #{x′ ∈ X ∶ T(x′) ≥ T(x)}
∣X ∣ . (22.4)

Assume that a Markov chain onX is available with stationary distribution
the uniform distribution. In view of the ergodic theorem, we can run the
chain from state, obtaining x1, x2, . . . , xB, and then estimate the p-value by

#{b = 1, . . . , B ∶ T(xb) ≥ T(x)}
B

. (22.5)

Problem 22.21 Show that this is indeed a consistent estimator of (22.4) for
any choice of x1 ∈ X , where consistency is as B→∞.

Alternatively, we can obtain a valid p-value as follows. Let K be
uniformly distributed in {1, . . . , B} and independent of the data. Assuming
K = k, do the following:81

• if k = 1, let x1 = x and run the chain B − 1 steps (forward) from x1,
obtaining x2, . . . , xB;

• if k = B, let xB = x and run the chain B − 1 steps (backward) from xB,
obtaining xB−1, . . . , x1;

• if 1 < k < B, let xk = x, run the chain B − k steps (forward) from xk,
obtaining xk+1, . . . , xB, and run the chain k − 1 steps (backward) from xk,
obtaining xk−1, . . . , x1.

Having done this, estimate the p-value as in (22.5).

Proposition 22.22. The resulting p-value is valid in the sense of (12.12).

Problem 22.23 Prove Proposition 22.22 as follows. Show that, under the
null hypothesis (where X has the uniform distribution on X ), the resulting
random variables X1, . . . ,XB are distributed as if the first state were drawn
from the uniform distribution and the chain were run B − 1 steps from there.

Problem 22.24 The method for obtaining a valid p-value described here
is the ‘serial method’ introduced in [14]. Read enough of this paper to
understand the other method, called the ‘parallel method’, and prove the
analogue of Proposition 22.22 for that method.

81 The two chains described in this section are reversible in which case the process is the
same for running the chain backward or forward.

https://doi.org/10.1017/9781108779197.027 Published online by Cambridge University Press

https://doi.org/10.1017/9781108779197.027


22.2 Causal Inference 367

22.2 Causal Inference

I have no wish, nor the skill, to embark upon philosophical discussion of
the meaning of ‘causation’.

Sir A. Bradford Hill [95]

The concept of causality has been, and continues to be, a contentious area
in Philosophy. Yet, at a very practical level, establishing cause-and-effect
relationships is central to, and in many cases the ultimate goal of, most
sciences. For example, in the context of Epidemiology, according to [79],
“causal inference is implicitly and sometimes explicitly embedded in public
health practice and policy formulation”.

22.2.1 Association vs Causation

It is widely accepted that properly designed experiments (that invariably use
some form of randomization) can allow for causal inference. We elaborate
on that in Section 22.2.2. In contrast, drawing some causal inference
from observational studies is not possible in general, unless one is able
to convincingly argue that there are no unmeasured confounders. We study
this situation in Section 22.2.3, where we examine how matching attempts
to mimic what randomization does automatically. (Even if there are no
unmeasured confounders, the validity of the causal inference may also rest
on the validity of the assumed model, which is often difficult to ascertain.)

In general, though, observational studies can only lead to inference about
association. Indeed, take Example 15.40 on graduate admissions at UC
Berkeley in the 1970s. Surely, there is a clear association between gender
and overall admission rate. (The statistical significance is overwhelming.)
However, inferring causation (which would imply some gender bias) would
appear to be misleading [15].

In conclusion, we warn the reader that drawing causal inferences from
observational studies is fraught with pitfalls and remains controversial [72,
7, 69, 4]. We adopt this prudent stance in our discussion, which can be
encapsulated in the following.

Association is not causation.
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22.2.2 Randomization
It may be said that the simple precaution of randomisation will suffice to
guarantee the validity of the test of significance, by which the result of the
experiment is to be judged.

Ronald A. Fisher [63]

We describe a simple model for causal inference called the counterfactual
model, attributed to Neyman82 [175] and Rubin [156]. Within this model,
randomization allows for causal inference.

We describe a simple setting where two treatments are compared based
on n subjects sampled uniformly at random from a large population. Each
subject receives only one of the treatments. Let Ri j denote the response
of Subject i to Treatment j. The sampling justifies our working with the
assumption that the Ri1 are iid (with distribution that of R1) and, similarly,
that the Ri2 are iid (with distribution that of R2). The rub is that the
experiment results in observing a realization of either Ri1 or Ri2, but not
both since Subject i receives only one of the two treatments.

Comparing the Means
We discuss this model in the context of comparing the mean response to the
two treatments, called the average causal effect and defined as

θ ∶= E[R2] − E[R1].

We interpret θ ≠ 0 as a causal effect: the change in treatment causes a change
in average response in the entire population. Our immediate interest is to
learn about θ from the experiment.

Let Xi = j if Subject i receives Treatment j and let Yi denote the response
observed on Subject i, so that Yi = Ri j if Xi = j. We observe a realization of
(X1,Y1), . . . , (Xn,Yn). The association between treatment and response is
defined as

λ ∶= E[Y ∣X = 2] − E[Y ∣X = 1]. (22.6)

There is a natural estimator for λ, namely the difference in sample means

D ∶= Ȳ2 − Ȳ1,

where Ȳ j is the average of {Yi ∶ Xi = j}.
Problem 22.25 Assume that the Xi are iid with distribution X satisfying
P(X = 1) > 0 and P(X = 2) > 0. Show that D is a consistent estimator for λ
in that case.

82 Neyman’s original paper dates back to 1923 and was written in Polish.
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In causal inference, however, our target is θ and not λ. But the two
coincide when treatment assignment (namely X) is independent of the
response to treatment (namely R1 and R2). This comes from writing

λ = E[R2 ∣X = 2] − E[R1 ∣X = 1],

and corresponds to an ideal situation where there is no confounding between
assignment to treatment and response to treatment.

Problem 22.26 Prove that a completely randomized block design fulfills
this condition and thus allows for causal inference. In this case, show that
D is unbiased for θ and compute its variance.

Problem 22.27 Show that, in general, one cannot infer causation from
association, by providing an example where D is a terrible estimate for θ.

22.2.3 Matching

Continuing with the same notation, assume now that another variable is
available, denoted Z, and may be a confounder.

Problem 22.28 Argue that randomization allows us to effectively ignore Z.

Here we want to examine whether we can do away with randomization,
and, in particular, if matching allows us to do that. We use matching on Z
with the intent of removing any confounding it might induce. To simplify the
discussion, we interpret matching as simply conditioning on Z in addition
to conditioning on X. See Remark 22.32.

The punchline is that matching works as intended if the dependency
of Y on (X,Z) is properly modeled and there are no other (unmeasured)
confounding variables at play. (Both conditions are highly nontrivial and
difficult to verify in practice.) To avoid modeling issues, we assume that Z
has a finite support, denoted Z below.

Our access to Z allows us to consider a refinement of λ above, namely

λ(z) ∶= E[Y ∣X = 2,Z = z] − E[Y ∣X = 1,Z = z].

Note that λ in (22.6) is the expectation of λ(Z).
Problem 22.29 Provide a consistent estimator for λ(z) when the (Xi,Zi)
are iid and such that P(X = j,Z = z) > 0 for any j ∈ {1,2} and any z ∈ Z .

In order to be able to estimate θ, we require that, conditional on Z, R1

and R2 be independent of X.
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Problem 22.30 Under this assumption, show that

θ = ∑
z∈Z
λ(z)P(Z = z).

Problem 22.31 For any z ∈ Z , propose a consistent estimator for P(Z = z).
Remark 22.32 When Z has small cardinality, λ(z)may be estimated based
on {(Xi,Zi) ∶ Zi = z}. WhenZ is large, or even infinite, this simple approach
may not be feasible. In such situations, one can simply stratify Z, which
amounts to binning the Zi into a few bins, in essence reducing the situation
to the case where Z is of small cardinality. Another approach consists in
modeling Y as a function of (X,Z). The validity of the causal inference in
that case depends on whether the assumed model is accurate, which may be
hard to verify in practice [70, 114].
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[37] D. A. Darling and P. Erdős. A limit theorem for the maximum of normalized sums
of independent random variables. Duke Mathematical Journal, 23(1):143–155,
1956. (Cited on page 121.)

[38] A. Dasgupta. Right or wrong, our confidence intervals. IMS Bulletin, Dec. 2012.
(Cited on page 270.)

[39] A. J. De Craen, T. J. Kaptchuk, J. G. Tijssen, and J. Kleijnen. Placebos and
placebo effects in medicine: Historical overview. Journal of the Royal Society of
Medicine, 92(10):511–515, 1999. (Cited on page 147.)

[40] J. de Leeuw, K. Hornik, and P. Mair. Isotone optimization in R: Pool-adjacent-
violators algorithm (pava) and active set methods. Journal of Statistical Software,
32(5):1–24, 2009. (Cited on page 348.)

[41] A. Dechartres, L. Trinquart, I. Boutron, and P. Ravaud. Influence of trial sample
size on treatment effect estimates: meta-epidemiological study. British Medical
Journal, 346:f2304, 2013. (Cited on page 321.)

[42] A. Di Sabatino, U. Volta, C. Salvatore, P. Biancheri, G. Caio, R. De Giorgio,
M. Di Stefano, and G. R. Corazza. Small amounts of gluten in subjects with
suspected nonceliac gluten sensitivity: a randomized, double-blind, placebo-
controlled, cross-over trial. Clinical Gastroenterology and Hepatology,
13(9):1604–1612, 2015. (Cited on page 153.)

[43] P. Diaconis. Statistical problems in ESP research. Science, 201(4351):131–136,
1978. (Cited on pages 138 and 202.)

[44] P. Diaconis and D. Freedman. Finite exchangeable sequences. The Annals of
Probability, 8(4):745–764, 1980. (Cited on page 110.)

[45] P. Diaconis and A. Gangolli. Rectangular arrays with fixed margins. IMA Volumes
in Mathematics and its Applications, 72:15–15, 1995. (Cited on pages 133
and 362.)

[46] P. Diaconis and F. Mosteller. Methods for studying coincidences. Journal of the
American Statistical Association, 84(408):853–861, 1989. (Cited on page 45.)

https://doi.org/10.1017/9781108779197.028 Published online by Cambridge University Press

https://doi.org/10.1017/9781108779197.028


374 References

[47] J. Diamond. Assembly of species communities. In M. Cody and J. Diamond,
editors, Ecology and Evolution of Communities, pages 342–444. Harvard
University Press, 1975. (Cited on page 363.)

[48] C. J. DiCiccio and J. P. Romano. Robust permutation tests for correlation
and regression coefficients. Journal of the American Statistical Association,
112(519):1211–1220, 2017. (Cited on page 302.)

[49] K. Dickersin and Y.-I. MIN. Publication bias: The problem that won’t go away.
Annals of the New York Academy of Sciences, 703(1):135–148, 1993. (Cited on
page 322.)

[50] D. Donoho and J. Jin. Higher criticism for large-scale inference, especially for
rare and weak effects. Statistical Science, 30(1):1–25, 2015. (Cited on page 313.)

[51] R. Dorfman. The detection of defective members of large populations. The
Annals of Mathematical Statistics, 14(4):436–440, 1943. (Cited on page 150.)

[52] H. Doucouliagos and T. D. Stanley. Publication selection bias in minimum-wage
research? British Journal of Industrial Relations, 47(2):406–428, 2009. (Cited
on page 322.)

[53] D. Du, F. K. Hwang, and F. Hwang. Combinatorial Group Testing and its
Applications. World Scientific, 2000. (Cited on page 151.)

[54] C. Dutang and D. Wuertz. A note on random number generation, 2009. Vignette
for the randtoolbox package. (Cited on page 137.)

[55] A. Dvoretzky, J. Kiefer, and J. Wolfowitz. Asymptotic minimax character of
the sample distribution function and of the classical multinomial estimator. The
Annals of Mathematical Statistics, 27(3):642–669, 1956. (Cited on page 233.)

[56] R. Eckhardt. Stan Ulam, John von Neumann, and the Monte Carlo method. Los
Alamos Science, Special Issue, 15:131–137, 1987. (Cited on page 128.)

[57] R. J. Ellis, W. Toperoff, F. Vaida, G. Van Den Brande, J. Gonzales, B. Gouaux,
H. Bentley, and J. H. Atkinson. Smoked medicinal cannabis for neuropathic
pain in HIV: a randomized, crossover clinical trial. Neuropsychopharmacology,
34(3):672–680, 2009. (Cited on page 153.)
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A/B testing, see sequential design
additive models, 347
admissibility, 188
σ-algebra, 8

Borel, 35
alternative

hypothesis, 170
set, 170

Anderson–Darling tests, 252
antitonic regression, see isotonic

regression
association

affine, 301
in causal inference, 366, 367
in observational studies, 217
monotonic, 302

average causal effect, 367
average power, 188
average risk, 185
backfitting algorithm, 347
balanced design, 148
balanced incomplete block design, 149
bandwidth, 264, 334, 336

choice, 264, 266, 343
bar chart, 203

segmented, 217
side-by-side, 203

base rate, 16
Base Rate Fallacy, 15, see also base rate
Bayes classifier, 333
Bayes estimator, 185
Bayes formula, 15
Bayes risk, 185, see average risk
Benjamini–Hochberg multiple test, 319
Bernoulli distribution, 42, see also

binomial distribution
Bernoulli trials, 21, 105, 164, 199, 224,

see also Bernoulli distribution

beta distribution, 65
bias, 166

blinding to control, 147
bootstrap estimate, 243
in survey sampling, 140

bias-variance decomposition, 166, 265
binning, 235
binomial coefficient, 24
binomial distribution, 24, 41, 42

experiment, 164, 192
normal approximation, 55
Poisson approximation, 48

Bonferroni correction, 318
Bonferroni’s inequalities, 10
Boole’s inequality, 10
bootstrap, 208

empirical, 242, 260
parametric, 260
smooth, 260

bootstrap confidence interval, 246, 275
Studentized, 247, 273

bootstrap distribution, 242
bootstrap p-value, 207, 210, 220, 255,

282, 286, 300
bootstrap world, 241
Borel–Cantelli lemmas, 100
boxplot, 40
case-control study, 156
Catalan numbers, 30
categorical variable, 70
Cauchy distribution, 66
causal inference, 366

natural experiment, 158
randomization, 147

Central Limit Theorem, 105
Lindeberg, 107
Lyapunov, 107

Chain Rule, 14
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characteristic function, 89, 106
goodness-of-fit tests, 269, 287, 306

Chebyshev’s inequality, 90
confidence interval, 194

Chernoff’s inequality, 91
chi-squared distribution, 66
classification, 330, 331

additive, 347
linear, 342
local, 336

classification boundary, 350
clinical trial, 144
cluster sampling, 143
Cochran–Mantel–Haenszel test, 322
cohort study, 155, 321
combination tests, 312
Combinatorics, 20
completely randomized design, 148
compound Poisson distribution, 93
compound sum, 93
concentration inequalities, 90–92
conditional

distribution, 75
expectation, 87
probability, 12
variance, 87

confidence band, 253
confidence interval, 168
confidence region, 168
conformal prediction, see prediction

interval
confounding, 146
consistency, 182

estimator, 183
test, 184

contingency table, 211, 219, 323
continuous distribution, 57, 72

absolutely, 58, 72
random variable, 60
random vector, 72

Continuous Mapping Theorem, 109
convenience sampling, 141
convergence

distribution, 102
probability, 101

convolution, 77
correlation, 86

Kendall, 304
Pearson, 301
Spearman, 303

correlation analysis, 299

counterfactual model, 367
counts, 48, 71, 209, 235, see also

contingency table
estimated expected, 210
expected, 206
observed, 206

covariance, 85
Cramér–von Mises test, 252
critical value, 175
cross-sectional study, 157
cross-validation, 266, 344
crossover design, 152
cumulative distribution function, see

distribution function
curse of dimensionality, 338
data splitting, 343
de Moivre–Laplace Theorem, 55, see also

Central Limit Theorem
deconvolution, see measurement error
Defendant’s Fallacy, 17
density function, 59, 72

conditional, 75
convolution, 77
estimation, 263, 266, 336, 350
goodness-of-fit tests, 253
independence testing, 306
likelihood, 179

differential entropy, 98
discovery, see rejection
discrete distribution, 69

random variable, 41
discrete distributions, 41
discriminant analysis, 350

linear, 350
disjunct design, 151
distance covariance, 307, 308, see also

energy statistics
distribution function, 36, 69
double-blind experiment, 147
Dvoretzky–Kiefer–Wolfowitz Theorem,

233
empirical bootstrap, 260
empirical distribution, 231, see also

Glivenko–Cantelli Theorem,
Dvoretzky–Kiefer–Wolfowitz
Theorem, empirical bootstrap

distribution function, 231, 250, 253,
276, 305

quantile function, 233, see also order
statistics

Empirical Process Theory, 259
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empirical risk, 339
minimization, 340

energy statistics, 287
entropy, 97
estimate, 165, see also estimator
estimation, 94
estimator, 165
events, 7
exchangeability, 110, 223, 295
expectation, 78
expected loss, see risk
expected risk, 332
experiment, 6
experimental design, elements of, 144
experimental design, examples of,

148–153
exponential distribution, 57, 63
F-distribution, see Fisher distribution
F-test, 281, 287
factor, see categorical variable
factorial, 23
factorization criterion, 181
fail-safe number, 325
false discovery rate (FDR), 316

marginal (mFDR), 328
procedures, 319–321

false negative, see Type II error
false non-discovery rate, 317
false positive, see Type I error
family-wise error rate

procedures, 317
family-wise error rate (FWER), 316

procedures, 319
file drawer problem, 324
Fisher distribution, 66
Fisher’s Exact Test, 215
Fisher’s exact test, 217
fitting, 332
Fourier transform, 89
Fréchet distribution, 108
frequencies, see binning, counts
Friedman test, 297
funnel plot, 322
Galton–Watson process, 121
Gambler’s Fallacy, 12, 22
Gambler’s Ruin, 120, see also random

walk
gamma distribution, 65
Gaussian distribution, see normal

distribution
general exponential family, 191

General Law of Multiplication, 14
generalization error, see expected risk
generalized likelihood ratio, see

likelihood ratio
geometric distribution, 44

experiment, 199
Glivenko–Cantelli Theorem, 232
global null hypothesis, 312
global testing, 281, see also global null

hypothesis
goodness-of-fit, testing for, 204, 208, 250,

276, 308, 359
graph, 117
Grenander estimator, 267
group testing, 150
Gumbel distribution, 108
hazard rate, 257
higher criticism, 313, see also

Anderson–Darling tests
histogram, see also kernel density

estimation, 234
Hochberg multiple test, 319
Hodges–Lehmann estimator, 298
Hoeffding test, 306
Holm multiple test, 318
Hommel multiple test, 319
homogeneity, testing for, 208
hypergeometric distribution, 44

experiment, 197
hypothesis testing, 170, see also test,

multiple hypothesis testing
identifiability, see also factorization

criterion, 164
inclusion-exclusion formula, 11
independence, 13

events, 13
mutual, 14
pairwise, 14
random variables, 42, 74
testing for, 217, 299

independent and identically distributed
(iid), 103

interpolation, 340
Ising model, 135, 363
isotonic regression, 348
joint distribution, 69
joint independence, see mutual

independence
Kaplan–Meier estimator, 258
Kendall correlation, 304
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Kendall’s τ, see Kendall correlation
kernel density estimation, 263
kernel function, 263
kernel regression, 335
Kolmogorov distribution, 251
Kolmogorov–Smirnov test, 251
Kruskal–Wallis test, 283
Kullback–Leibler divergence, 98, 254
Laplace transform, 88
Law of Addition, 9
Law of Large Numbers, 103
Law of Multiplication, 13
Law of Small Numbers, 48
Law of Total Probability, 9
leave-q-out cross-validation, 345
leave-one-out cross-validation, 266, 346
Lebesgue integral, 59
level of a test, see significance level
likelihood function, 167, 179
likelihood ratio, 171
linear classification, 342
linear models, 341, see also linear

regression
linear regression, 341

least squares, 342
polynomial regression, 341

Literary Digest Poll, 142
local average, 334, see also kernel

regression
local linear regression, 335
local methods for regression, 334
location family of distributions, 60
location-scale family of distributions, 60
LOESS, see local linear regression
log-concave density, 269
log-rank test, 288
logarithmic distribution, 93
logistic regression, 343
longest run test, 224
loss, 166, 331

surrogate, 342
many-to-one comparison, 281
margin of error, 196
marginal distribution, 69
Markov chain, 113

ergodic theorem, 134
irreducible, 116
positive recurrent, 116
reversible, 117
stationary distribution, 115
transition matrix, 114

Markov chain Monte Carlo (MCMC), 132
Markov’s inequality, 90
mass function, 19, 69, see also density

function
matched-pairs design, 153, 213
matching, 157
maximum likelihood estimator, 167
maximum risk, 184
mean, 78, see also expectation
mean absolute error, 166, see also risk
mean integrated squared error, 266, 352
mean squared error, 166, see also risk
measurable function, 36
measurable space, 8
median, 40, see also quartile, quantile

inference, 237
median test, 284, see also sign test
Meta-analysis, 321
method of least squares, 342
method of moments, 260, 261
Metropolis–Hastings Algorithm, 135
minimax estimator, 184
minimax risk, 184, see also maximum risk
minimum power, 188
moment, 82

central, 84
moment generating function, 87
monotone likelihood ratio, 190
Monte Carlo integration, 128
Monte Carlo simulation, 127, 128
Monty Hall Problem, 12
Moran urn model, 28
multinomial distribution, 71
multiple test, 314
multiple testing, 310
multivariate hypergeometric distribution,

72
mutual independence, 14, see also

independence
events, 14
random variables, 74

Nadaraya–Watson estimator, see kernel
regression

naive Bayes, 351
natural experiment, 158
nearest neighbor classifier, 337
negative binomial distribution, 46

experiment, 199
negative hypergeometric distribution, 47

experiment, 199
neighborhood
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ball neighbors, 333
nearest neighbors, 333

network sampling, 143
Neyman–Pearson Lemma, 189
non-response bias, 140
normal approximation to the binomial

distribution, see de Moivre–Laplace
Theorem

normal distribution, 62
standard, 56, 62
testing for, 255

normal sequence model, 311
null distribution, 250
null hypothesis, 170
null set, 170
number of runs test, 224
observational study, 153
optional stopping, 201
order statistics, 230
outcomes, 6
overfitting, 341
p-value, 173

adjusted, 327
permutation, 212, 215, 296, 300

Monte Carlo, 213
randomization, 356, 357
valid, 174

Pólya urn model, 27
pairwise independence, 14
Paley–Zygmund inequality, 97
parameter space, 164
parametric bootstrap, 260
pattern, 280

rank, 303
sign, 294

Pearson correlation, 301
permutation distribution, 277

rank tests, 296
pie chart, 203
pivot, 246
placebo, 147
Poisson approximation to the binomial,

see Law of Small Numbers
Poisson distribution, 47
pooled adjacent violators algorithm, 348
power calculations, 146
power of a test, see also Type II error,

average power, 177
power set, 8
prediction, 331
prediction error, see risk

prediction interval, 261
regression, 348

prediction residual error sum-of-squares,
346, see also leave-one-out
cross-validation

predictor variable, 329
prior, 185
probabilistic modeling, 163
probability axioms, 8
probability distribution, 8
probability generating function, 88
probability space, 9
proportion test

one-sample, 201
two-sample, 228

proposal distribution, 130
Prosecutor’s Fallacy, 16
pseudo-random number generator, 137
publication bias, 322
quantile, 40

function, 39
quartile, see also quantile
Rademacher distribution, 294
random matrix, 77
random variable, 34
random vector, 68
random walk, 124

simple, 119
randomization, 146

p-value, 357
randomized complete block design, 149
randomness, testing for, 222
range, 36
rank

pattern, 303
statistic, 278
test, 278

Rasch model, 360
ratio of uniforms, 132
re-randomization, 355

p-value, 356
test, 355

regression analysis, 329
regression discontinuity design, 160
regression estimator, 331
regression function, 332
rejection, 170

region, 175
rejection sampling, 130
relative entropy, see Kullback–Leibler

divergence
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repeated measures design, 151
response bias, 140
response variable, 329
Riemann integral, 59
risk, 166, 331, see also average risk,

expected risk
risk unbiased estimator, 186
run, 223
Saint Petersburg Paradox, 94
sample mean, 244
sample median, 237
sample space, 6
sample variance, 245
sampling

cluster, 143
network, 143
stratified, 143
systematic, 142
with replacement, 25
without replacement, 25

scale family of distributions, 60
self-selection bias, 140
sensitivity, 16, see also Type I error
sequential design, 149
sequential probability ratio test, 200
Set Theory, 3
shape constraint, 266, 348
sign test, 239
significance level, see also Type II error,

175
simple random sampling, 140
Simpson’s paradox, 221
Simpson’s reversal, 32
size of a test, see also significance level,

175, see also level
Slutky’s theorem, 110
small study effect, 322
Smirnov test for symmetry, 297
smooth bootstrap, 260
spacing, 359
Spearman correlation, 303
Spearman’s ρ, see Spearman correlation
species co-occurrence, 362
specificity, 16, see also Type II error
split plot design, 150
standard deviation, 84
statistic, 165, see also estimator, test
statistical inference, 163
statistical model, 163
statistical procedure, 182
Stirling’s formula, 29

stochastic dominance, 284
stratification, 143
stratified sampling, 143
Student distribution, 66
Student test, 269, 286
sufficiency, 181
support, 36, 69
support vector machines, 343
surrogate loss, 342
Survey Sampling, 139
Survival Analysis, 256
survival function, 38, see also distribution

function
symmetric distribution, 291
syndromic surveillance, 309
systematic sampling, 142
t-distribution, see Student distribution
t-test, see Student test
test, 174, see also multiple test
test set, 344
Tippett–Šidák multiple test, 317
total variation distance, 254
Tracy–Widom distribution, 112
training, see fitting
training set, 343
Two Envelopes Problem, 30
Type I error, 175
Type II error, 175
unbiased estimator, 187, see risk unbiased

estimator
unbiased test, 191
uniform distribution, 55, 61

discrete, 10, 20, 46
testing for, 250

uniformly most powerful, 189
unbiased, 191

union bound, see Boole’s inequality
urn model, 6, 24, 27–29
validation set, 343
variance, 84

bootstrap estimate, 243
Venn diagram, 4
weak convergence, see convergence in

distribution
Weibull distribution, 108
Wilcoxon rank-sum test, 279
Wilcoxon signed-rank test, 293
Wright–Fisher urn model, 28
zero-one laws, 100
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