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Nikolai Khots dedicates this book to his parents, Elena and
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Foreword 1

This book introduces a new approach to geometry, offering
fresh interpretations of fundamental concepts such as points,
lines, planes, and space. The central idea replaces the notion of
infinity with a perspective based on “observers,” forming the
foundation of what the authors call the Mathematics with

Observers theory.

Traditional mathematics—including arithmetic, linear algebra,
calculus, geometry, differential geometry, algebra, and
functional analysis—relies heavily on the concept of infinity.
The authors propose incorporating observers into arithmetic,
rendering it dependent on these observers. Consequently, other
branches of mathematics built upon arithmetic also become
observer-dependent. The term Mathematics with Observers

encompasses both this modified arithmetic and the broader
mathematical framework derived from it.

This book specifically examines geometry within the context of
Mathematics with Observers.



The authors build on David Hilbert’s classification of geometric
properties, which include:

Connection
Order
Parallels (Euclidean, Gauss–Bolyai–Lobachevsky, Riemann)
Congruence
Continuity

These properties are reevaluated through the lens of
Mathematics with Observers.

Why is this approach crucial for contemporary mathematics

and physics?

When we talk about lines, planes, and geometric bodies, we
often describe them with precise definitions and characteristics.
However, where exactly do these idealized entities exist? How
do they manifest in the real world?

For example, polishing a metal plate will never produce a
perfect plane because neither the tools nor the operations used
are ideal. Due to the atomic structure of matter, achieving—or
even approximating—an ideal plane is fundamentally
impossible.



Similarly, what is a line? We might suggest that light travels in
perfect straight lines, but light consists of discrete quanta and
does not follow a continuous path. Thus classical geometry
cannot claim to have unlimited applicability to real-world
phenomena.

This limitation implies that physical space, as understood today,
must conform to the frameworks of classical geometry—
whether Euclidean or non-Euclidean. Similarly, calculations
involving large systems or measurements of vast distances rely
on the existing structure of the real number line.

Mathematics with Observers challenges these traditional
foundations, rejecting the concept of infinity and redefining
arithmetic and mathematics as a nested system of observable
constructs.

This new framework allows for a reexamination of geometry
and provides solutions to classical problems in both
mathematics and physics.

Readers are encouraged to explore previously published works
on Mathematics with Observers to gain a comprehensive
understanding of this innovative perspective.

Dmitriy Khots, PhD



President, iMath Consulting LLC, Omaha, Nebraska

E-mail: →dkhots@imathco.com

Foreword 2

For many people, geometry is a challenging school subject. They
learn, memorize some things, reason, and solve problems.
Moving from the plane to three-dimensional space, they
encounter the difficult term “stereometry” and the more
straightforward “trigonometry.” Some formulas become etched
in their memory for a lifetime. However, for most, their
acquaintance with geometry ends there.

The purpose of this article is to discuss geometry as a science
that plays a fundamental role in the system of knowledge. First
and foremost, it’s essential to note that ancient mathematics
was primarily geometry. As mathematics evolved, so did
geometry. Its applications expanded, and new methods and
techniques emerged.

Let’s list the names of outstanding geometers:

Euclid
Legendre

mailto:dkhots@imathco.com


Cauchy
Gauss
Lobachevsky
Riemann
Beltrami
Bianchi
Poincaré
Grassmann
Hilbert
Cartan
Alexandrov
Efimov
Pogorelov
Pontryagin
Chern

This list could continue indefinitely. Each of these individuals
made remarkable contributions. If we were to delve into each
one, it would fill an entire book. Their names are associated
with scientific progress, which ultimately benefits all of
humanity.

We shouldn’t forget other names like Descartes, Fermat, Pascal,
and more. Each of these geometers interacted with other
scholars, mathematicians, and specialists in related fields.



Geometry doesn’t exist in isolation; it closely interacts with
other mathematical disciplines.

In the 20th century, topology became closely connected to
geometry, leading to the specialization known as ‘geometry and
topology.’ Among the names mentioned earlier, only Euclid and
Legendre have direct ties to school geometry. School geometry
textbooks are based on Euclid’s “Elements,” adapted for French
students by Legendre. It’s worth noting that A. V. Pogorelov also
authored a geometry textbook for schools, but the scientific
contributions of other geometers to secondary education
remain less known.

One distinctive feature of geometry is its abstraction. Let’s
compare the subjects of study in geometry, physics, and biology.
Physics primarily investigates the inanimate, while biology
focuses on living organisms. Many objects studied in physics
and biology are tangible and observable.

Geometric concepts, however, are quite abstract. Initially, it
seems straightforward—points, lines, triangles, rectangles,
parallelograms, and circles. But then reasoning becomes more
complex. Abstract thinking develops. Measurements of
segments and angles emerge, followed by connections between



these concepts and formulas. Thus, geometry explores metric
relationships in geometric objects.

Despite this apparent detachment from nature, geometry is, in
fact, the science closest to it. Metric relationships characterize
many natural properties. Moreover, human scientific thinking is
closely tied to geometric reasoning.

In ancient times, geometry was initially built empirically,
accumulating facts. Eventually, it was observed that a finite
number of fundamental assumptions led to all known
geometric facts. The axiomatic method emerged, first for plane
figures and later for three-dimensional space. This method
allowed for the creation of theories of multidimensional spaces,
including Hilbert’s infinite-dimensional spaces and Banach
spaces studied in functional analysis.

It is difficult to imagine that a system of axioms like this would
arise in physics or biology. However, facts are accumulating in
both fields. Scientists in physics and biology operate with
specific concepts that allow them to convey meaningful
information to each other. For instance, in physics, concepts like
mass, energy, temperature, density, pressure, entropy, and time
are used. These concepts evolve over time, and some physical
ideas are formulated using geometric concepts.



Geometry has a significant impact on physics and mechanics.
Analyzing a vast number of astronomical observations, Kepler
determined that planets move around the Sun in ellipses. This
insight allowed Newton to brilliantly confirm his law of
gravitation. In other words, geometry helped establish the
physical law of attraction between two bodies.

Another example related to gravity involves the work of famous
geometers: Lobachevsky, Gauss, Riemann, Christoffel, and
others. They developed a powerful geometric framework
describing multidimensional spaces. Einstein used this
framework to construct the general theory of relativity. Einstein
proposed a system of gravitational equations expressed using
the Riemann tensor. These equations are usually called
Einstein’s equations, which he proposed without a
mathematical derivation. It was similar to how Newton
proposed the law of universal gravitation, also without proof.

Einstein gave a lecture at Hilbert’s, and under his influence,
Hilbert derived these equations using the variational method by
varying the integral of the scalar curvature over the entire
space through changes in the space’s metric.

Friedman discovered a solution to this system that describes the
evolution of the entire universe. This triumph of geometric



thinking was beyond imagination.

Suddenly, it became clear that the fundamental property of
physical bodies—attraction to one another—could be elegantly
described using geometric concepts such as curvature and
curved space. Interestingly, even the concept of time, which
ancient geometers avoided, became geometrically treated. It
was envisioned as one of the coordinates, similar to spatial
coordinates. In four-dimensional spacetime with three spatial
coordinates ( x, y, z) and one temporal coordinate (t), a metric
was introduced. This metric allows us to measure the distance
between two points ( x1, y1, z1) and ( x2, y2, z2) by integrating
along the connecting curve. This approach is remarkably
beautiful—a true triumph of geometry.

Further exploration into matter involved introducing additional
coordinates. For example, Calabi-Yau spaces were constructed.
In 2012, authors Shing-Tung Yau and Steve Nadis published the
book “The Theory of Strings and Hidden Dimensions of the
Universe.” Yau, a renowned geometer and student of Chern,
provides insights from the heart of mathematical ideas and
numerous contacts. The book features stories and photographs
of famous geometers, primarily American ones like Chern,
Calabi, Witten, Uhlenbeck, Yang, Mills, Donaldson, Nirenberg,



and others. Russian mathematicians Pogorelov, Sobolev, and
Perelman are also mentioned.

The second chapter of the book is titled ‘The Place of Geometry
in the Cosmos,’ while the fourteenth chapter raises the
question: ‘The End of Geometry?’ What leads the authors to
consider the possible end of geometry? They point to hidden
problems that may bring future challenges. Heisenberg’s
uncertainty principle is a stumbling block. A new term
emerges: ‘quantum geometry.’ Objects at the Planck scale don’t
remain static; they constantly fluctuate, altering their
parameters, including size and curvature. The authors express
concerns about the fundamental incompatibility between
quantum mechanics and general relativity, suggesting that
geometry itself may be more derivative than fundamental. This
implies that microscopic descriptions are more fundamental,
while macroscopic properties are derived from them.

Geometry has evolved over millennia. The authors draw an
interesting comparison: ‘If the great Euclid were present at a
geometry seminar today, he would be bewildered by our
discussions. In his time, geometry focused solely on three-
dimensional space, and the concept of coordinates didn’t exist.
Euclid would undoubtedly ask, ‘What is the physical meaning of
these multidimensional spaces? How can we visualize them?’



He’d be surprised to learn that multidimensional spaces also
contain regular polyhedra, akin to those he described in his
work ‘Elements.’ While there are five regular polyhedra in
three-dimensional space, there are six in four-dimensional
space, including regular 120-cell and 600-cell polytopes. Euclid
would likely inquire, ‘Who discovered this?’ The answer:
Ludwig Schläfli, a Swiss scientist.

For higher dimensions (5D, 6D, etc.), only three regular
polyhedra exist—analogous to the tetrahedron, cube, and
octahedron. Euclid would conclude that 3D and 4D spaces are
exceptional.

Regrettably, Euclid’s book ‘Elements’ was lost during historical
upheavals, but fortunately, Arab scholars preserved it, and its
contents are now studied worldwide—a triumph for the great
mathematician.

Physicist D. Polchinski from Santa Barbara aptly paraphrases
Mark Twain: ‘Reports of geometry’s demise are greatly
exaggerated.’ He believes that geometry plays a vital role in
discoveries and is part of something greater, not something
ultimately discarded.



Albert Einstein constructed the general theory of relativity
using Riemannian geometry and linked it to gravity. His
equations describe the motion of the entire universe. Notably,
solutions like the Friedman solution are remarkable
achievements.

Einstein continued by seeking a unified field theory, believing it
should harmonize the world. He famously said, ‘God is subtle,
but not malicious,’ expressing hope that geometric relationships
underlie the universe.

In the quest for unification, parameters emerge—some yielding
theories of gravity, electromagnetism, weak interactions, or
strong interactions. The unification of diverse theories may take
different forms, but it remains a fruitful pursuit.

In this book, the authors explore geometry through the lens of
Mathematics with Observers, a framework they introduced in
their earlier work. This entirely novel perspective yields
unexpected results that are not only essential for the evolution
of geometry but also for advancing our understanding of the
physical world, which relies heavily on geometric principles,
particularly in physics.



Building on their previous publications, the authors expand the
concepts of Mathematics with Observers to include geometric
contexts. A key idea introduced is the concept of a sequence of
Observers, each possessing its own arithmetic and capable of
using only a finite set of numbers. Observers with larger
numbers can utilize a broader range of numbers than those
with smaller numbers.

This approach marks a significant departure from classical
mathematics, aligning more closely with real-world limitations.
For example, the memory capacity of computers, no matter
how vast, is inherently finite. Consequently, this perspective
eliminates the concept of continuous functions. In this
framework, the classical theorem that guarantees a zero point
for a continuous function on the interval [ a, b], when the
function’s values at the endpoints have opposite signs, no
longer holds.

It is worth noting that even physicists, such as Lev Landau,
have cautioned students studying mathematics to disregard
existence theorems, famously stating, “Do not pay attention to

existence theorems. Mathematicians love to prove existence

theorems.”



The innovative ideas and results presented in this book are
poised to revolutionize modern geometry and lay the
groundwork for transformative applications in various fields.

Yuri Aminov

Professor, PhD, B. Verkin Institute for Low Temperature Physics
and Engineering of the National Academy of Sciences of
Ukraine

E-mail: →uaminov0917@gmail.com

mailto:uaminov0917@gmail.com


1  Introduction

When we study a geometry in the ninth grade at school, we
meet the beautiful set of understandable objects – points, lines,
planes, spaces, plane and space figures and solids, with natural
connections between them with natural logic of definitions and
theorems. We understand and think that this beautiful set is
real. However, when we become adults, we can ask ourselves –
where and how does this set exist? Because we know the atomic
structure of real nature and quantum nature of light, and we do
not have uniformity and continuity.

It is possible to think that geometry is a mirror of our nature
but simplified and approximate. However, this is a very naive
statement as we can not think that something is a simplified
representation of some matter if we even do not know this
matter.

To better approach the reality, in this book, we consider
geometry from Mathematics with Observers point of view.
Mathematics with Observers was introduced by the authors
based on the denial of “infinity” idea, going away from the
existing images of natural and real numbers, replacing them to
Observers-dependent sequences of finite sets and introducing



1.

2.

Observers-dependent arithmetic and logic. We consider in this
book the basis of classic geometry from Mathematics with
Observers point of view. As a basis for the analysis of our
intuition of space, classic Mathematics considers four systems
of things, called points, straight lines, planes, and spaces,
connecting these elements in their mutual relations (see [→2]).

Here we consider the properties of connection, order, parallels
(Euclid, Gauss–Bolyai–Lobachevsky, Riemann), congruence,
continuity from Mathematics with Observers point of view.

We show that almost all classic geometry theorems are satisfied
in Mathematics with Observers geometry with probabilities less
than 1. For example, we proved the following theorem:

“In plane E2Wn, there are a point A and a straight line b such
that A ∉ b, and we may have three different possible
situations:

There is only one straight line a that contains
point A and is parallel to line b (Euclidean geometry case);

There is more than one straight line a that
contains point A and is parallel to line b (Gauss–Bolyai–
Lobachevsky geometry case);



3. There is no straight line a that contains point A
and is parallel to line b (Riemann geometry case).

This means that on the same plane, there are couples (point and
straight line not containing this point) where Euclidean
geometry works, other couples where Gauss–Bolyai–
Lobachevsky geometry works, and other couples where
Riemann geometry works.”

This means that classical geometry is not a limiting case of the
Observers geometry, but only a particular case of it.

As a result, we prove that Mathematics with Observers gives a
birth of a new geometry, and classical geometries become
particular cases of this new geometry.

The authors would like to thank Lauren Schultz and Wayne
Yuhasz for their friendly support. Also, the authors wish to
express their thanks to Dmitriy Khots for his valuable advices
in each step of writing this book and to Ilya Markevich for
helping us with some LaTeX complications. Also, the authors
would like to thank Ranis Ibragimov of De Gruyter for his joint
work with authors over the proposal, his very useful tips on this
process, and his presentation of this book project. The authors
would like to thank Melanie Gotz of De Gruyter for her work



with this book content editing and for her support in transfer of
authors’ LaTeX to De Gruyter standard on the stage of
typesetting. Finally, many thanks to De Gruyter cover designers.
Also the authors would like to thank Vilma Vaičeliūnienė of De
Gruyter and VTeX for her help with this book production.



2  Several definitions and statements of Mathematics
with Observers

For references, see [→3] and [→1].

We call W2  the set of all decimal fractions such that there are at most 2 digits in the integer part
and 2 digits in the decimal part of the fraction. Visually, an element in W2  looks like

where b1, b0, a1, a2 ∈ [0, 1, 2, … , 9].

We call W3  the set of all decimal fractions such that there are at most 3 digits in the integer part
and 3 digits in the decimal part of the fraction. Visually, an element in W3  looks like

where b2, b1, b0, a1, a2, a3 ∈ [0, 1, 2, … , 9].

We call Wn  the set of all decimal fractions such that there are at most n digits in the integer part
and n digits in the decimal part of the fraction. Visually, an element in Wn  looks like
±

n

.

n

.

We get Wk ⊂ Wn  if k < n.

We call a Wn -observer some system working within Wn . The set of Wn -observers is a finite
well-ordered system ordered by n, and a Wn -observer sees what and how any Wk -observer
with k < n is doing in Wk . However, a Wk -observer is unaware of the existence of Wn -
observers with n > k.

Note, for example, that a W2 -observer cannot see a full set W2 , whereas a W3 -observer sees
what and how a W2 -observer is doing in W2 , but a W3 -observer cannot see a full set W2 . Only
a Wm -observer ( m ≥ 5) can see a full set W2 .

Now we introduce arithmetic operations over numbers, elements of W2 . For c = ±c0. c1c2 ,
d = ±d0. d1d2 ∈ W2 , we endow W2  with the arithmetic (+2, −2, ×2, ÷2) from the W2 -
observer point of view.

±b1b0. a1a2,

±b2b1b0. a1a2a3,

_ … _ _ … _



Definition 2.1.

Addition and subtraction

if

and c ±2 d is not defined if

where c ± d is the classic arithmetic addition and subtraction.

Examples of addition and subtraction made by a W2 -observer in W2 :

Definition 2.2.

Multiplication

where the sign ± is defined as usual in classic arithmetic, ∙ means multiplication in classic
arithmetic, and + means addition in classic arithmetic.

Examples of multiplication made by a W2 -observer in W2 :

c ±2 d = c ± d

c ± d ∈ W2,

c ± d ∉ W2,

0.08 +2 1.9= 1.98,

(−0.08) +2 1.9= 1.82,

80 +2 44= not defined,

20.36 −2 0.87= 19.49,

1.36 −2 27.95= −26.59,

2.36 −2 (−99.95)= not defined.

c ×2 d = ±(c0 ∙ d0. d1d2 + 0. c1 ∙ d0. d1 + 0.0c2 ∙ d0),

10 ×2 9= 90,

(−3) ×2 16= −48,

15 ×2 11= not defined,

3.41 ×2 2.64= 8.98,

3.41 ×2 (−2.64)= −8.98,

5.41 ×2 22.64= not defined,

98.41 ×2 1.64= not defined,

0.99 ×2 0.09= 0.



Definition 2.3.

Division

Examples of division in W2  made by a W2 -observer in W2 :

so that we get 10 different r,

since no r exists because

Now we introduce arithmetic operations over numbers, elements of W3 . For c = ±c0. c1c2c3 ,
d = ±d0. d1d2d3 ∈ W3 , we endow W3  with the arithmetic (+3, −3, ×3, ÷3) from the W3 -
observer point of view.

Definition 2.4.

Addition and subtraction

if

and c ±3 d is not defined if

where c ± d is the classic arithmetic addition and subtraction.

Examples of addition and subtraction in W3  made by a W3 -observer in W3 :

c ÷2 d = {
r if ∃ r ∈ W2 r ×2 d = c,

not defined if no such r exists.

80 ÷2 4 = 20,

2 ÷2 0.5 = {4, 4.01, 4.02, 4.03, 4.04, 4.05, 4.06, 4.07, 4.08, 4.09},

2 ÷n 3 = not defined,

3 ×2 0.66= 1.98,

3 ×2 0.67= 2.01.

c ±3 d = c ± d

c ± d ∈ W3,

c ± d ∉ W3,

0.008 +3 1.09= 1.098,

(−0.008) +3 1.09= 1.082,

800 +3 440= not defined,

20.036 −3 0.087= 19.949,

1.036 −3 27.095= −26.59,

2.736 −3 (−999.195)= not defined.



Definition 2.5.

Multiplication

where sign ± is defined as usual in classic arithmetic, ∙ means multiplication in classic
arithmetic, and + means addition in classic arithmetic.

Examples of multiplication in W3  made by a W3 -observer in W3 :

Definition 2.6.

Division

Examples of division in W3  made by a W3 -observer in W3 :

so that we get 10 different r,

since no r exists because

Generally, we now introduce arithmetic operations over numbers, elements of Wn . For
c = c0. c1 … cn, d = d0. d1 … dn ∈ Wn , we endow Wn  with the arithmetic (+n, −n, ×n, ÷n)

from the Wn -observer point of view.

c ×3 d = ±(c0 ∙ d0. d1d2d3 + 0. c1 ∙ d0. d1d2 + 0.0c2 ∙ d0. d1 + 0.00c3 ∙ d0),

100 ×3 9 = 900,

(−30) ×3 14= −420,

150 ×3 10= not defined,

3.415 ×3 2.648= 9.036,

3.415 ×3 (−2.648)= −9.036,

15.412 ×3 221.645= not defined,

998.418 ×3 1.645= not defined,

0.999 ×3 0.009= 0.

c ÷3 d = {
r if ∃ r ∈ W3 r ×3 d = c,

not defined if no such r exists.

600 ÷3 4 = 150,

2 ÷3 0.5 = {4, 4.001, 4.002, 4.003, 4.004, 4.005, 4.006, 4.007, 4.008, 4.009},

2 ÷n 3 = not defined,

3 ×3 0.666= 1.998,

3 ×3 0.667= 2.001.



Definition 2.7.

Addition and subtraction

where c ± d is the standard addition and subtraction, and we write

for f1, … , fN  iff the contents of any parenthesis are in Wn , f1, … , fN ∈ Wn .

Definition 2.8.

Multiplication

where

is the standard product, and k = m = 0 means that

and

If either c < 0 or d < 0, then we compute

and define

where the sign ± is defined as usual. Note that if the content of at least one parenthesis (in the
previous formula) is not in Wn , then c ×n d is not defined.

c ±n d = {
c ± d if c ± d ∈ Wn,

not defined if c ± d ∉ Wn,

((… (f1 +n f2) …) +n fN) =
N

∑
i=1

nfi

c ×n d =
n

∑
k=0

n
n−k

∑
m=0

n0. 0 … 0

k−1

ck ⋅ 0. 0 … 0

m−1

dm,

c, d ≥ 0,

c0 ⋅ d0 ∈ Wn,

0. 0 … 0

k−1

ck ⋅ 0. 0 … 0

m−1

dm

0. 0 … 0

k−1

ck = c0

0. 0 … 0

m−1

dm = d0.

|c| ×n |d|

c ×n d = ±|c| ×n |d|



1.

2.

3.

Definition 2.9.

Division

Observers and arithmetic generate randomness and probability in Mathematics with Observers.
Note that the probability of some event in Wn  depends on the Wm -observer ( m ≥ n).

We have not classic arithmetic situations in Mathematics with Observers:

Additive associativity may fail.

For example, let 20, 90, −30 ∈ W2 . Then 20 +2 90 ∉ W2 , and hence

and

However, for 10, 20, 30 ∈ W2 , we have

Multiplicative associativity may fail.

For example, let 50.12, 0.85, 0.61 ∈ W2 . Then

whereas

However, for 10, 2, 3 ∈ W2 , we have

Distributivity may fail.

For example, let 1.81, 0.74, 0.53 ∈ W2 . Then

so that

However, for 10, 2, 3 ∈ W2 , we have

c ÷n d = {
r if ∃ r ∈ Wn r ×n d = c,

not defined if no such r exists.

(20 +2 90) +2 (−30) ∉ W2

20 +2 (90 −2 30) = 80 ∈ W2.

10 +2 (20 +2 30) = (10 +2 20) +2 30 = 60 ∈ W2.

50.12 ×2 0.85 = 42.58; (50.12 ×2 0.85) ×2 0.61 = 25.92,

0.85 ×2 0.61 = 0.48; 50.12 ×2 0.48 = 24.04.

10 ×2 2= 20; (10 ×2 2) ×2 3 = 60.00,

2 ×2 3= 6; 10 ×2 (2 ×2 3) = 60.00.

0.74 +2 0.53 = 1.27; 1.81 ×2 1.27 = 2.24; 1.81 ×2 0.74 = 1.3; 1.81 ×2 0.53 = 0.93,

1.81 ×2 0.74 +2 1.81 ×2 0.53 = 2.23 ≠ 2.24.



We define the space EmWn  as follows. Consider the Cartesian product of m copies of Wn :

We call a “vector” any element from

If

then we define

if a1 +n b1, a2 +n b2, … , am +n bm ∈ Wn  and

if α,α ×n a1, … ,α ×n am ∈ Wn .

We will use the following notations: a, b, c mean vectors, and α, β mean scalars.

Addition associativity in EmWn  does not exist.

There is no associativity of scalar multiplication.

There is no distributivity of scalar multiplication.

There is no distributivity of scalar multiplication for vector sums.

We define the scalar product of vectors

as the following sum:

The scalar product in EmWn  is not distributive.

Scalar multiplication on scalar product in EmWn  is not associative.

10 ×2 (2 +2 3) = 10 ×2 2 +2 10 ×2 3 = 50.00.

EmWn = Wn × ⋯ × Wn

m

.

EmWn : a = (a1, … , am),

a1, … , am ∈ Wn.

a, b∈ EmWn,

a= (a1, … , am),

b= (b1, … , bm),α ∈ Wn,

a +n b = (a1 +n b1, a2 +n b2, … , am +n bm)

α ×n a = (α ×n a1, … ,α ×n am)

a = (a1, … , am), b = (b1, … , bm) ∈ EmWn

(a, b) = (… ((a1 ×n b1 +n a2 ×n b2) +n a3 ×n b3) +n ⋯ +n am ×n bm).



The squared length of a vector a is

but the length itself is calculated as

and does not always exists.

The space E3Wn  contains three standard vectors:

We have

i. e., i, j, k is an orthonormal basis in E3Wn .

We define the vector product of vectors

as the vector

Note that:

The vector product in E3Wn  is not distributive;

Scalar multiplication on the vector product in E3Wn  is not associative;

The equality

is incorrect in E3Wn ;

The equality

|a|2 = (a, a),

√|a|2 ∈ Wn

i= (1, 0, 0),

j= (0, 1, 0),

k= (0, 0, 1).

(i, i)= (j, j) = (k, k) = 1,

|i|= |j| = |k| = 1,

(i, j)= (i, k) = (k, j) = 0,

a = (a1, a2, a3), b = (b1, b2, b3) ∈ E3Wn

a × b= (a2 ×n b3 −n a3 ×n b2) ×n i −n

−n(a1 ×n b3 −n a3 ×n b1) ×n j +n

+n(a1 ×n b2 −n a2 ×n b1) ×n k.

a × (b × c) = (a, c) ×n b −n (a, b) ×n c

(a, b × c) = (a × b, c)



is incorrect in E3Wn .



3  Observability and geometry: points, straight lines,
planes, and spaces

Let us consider two Cartesian products of Wn:

We call “point A” any element

of E2Wn or any element

of E3Wn.

We call (x, y) and (x, y, z) the coordinates of point A ∈ E2Wn and ∈ E3Wn, respectively, and
write

For E3Wn, we have the standard basis:

For any vector A = (x, y, z) ∈ E3Wn, we have

So the coordinates of “point A” in E3Wn coincide with coordinates of the corresponding vector
A, and for any two points A(x1, y1, z1) and B(x2, y2, z2), we have the vector

For E2Wn, we have the standard basis

and for any vector A = (x, y) ∈ E2Wn, we have

E2Wn= Wn × Wn,

E3Wn= Wn × Wn × Wn.

(x, y),x, y ∈ Wn,

(x, y, z),x, y, z ∈ Wn,

A(x, y)∈ E2Wn,

A(x, y, z)∈ E3Wn.

e1= i = (1, 0, 0),

e2= j = (0, 1, 0),

e3= k = (0, 0, 1).

A = x ×n i +n y ×n j +n z ×n k.

AB = (x2 −n x1, y2 −n y1, z2 −n z1).

e1= i = (1, 0),

e2= j = (0, 1),

A = x ×n i +n y ×n j.



So the coordinates of “point A” in E2Wn coincide with coordinates of the corresponding vector
A, and for any two points A(x1, y1) and B(x2, y2) we have the vector

We call the “straight line a ∈ E2Wn” the set of all points A(x, y) ∈ E2Wn satisfying the
equation

for all

such that (a1, a2) ≠ (0, 0). Two equations

and

define the same straight line if and only if the set of all points A(x, y) ∈ E2Wn satisfying the
first equation and the set of all points A(x, y) ∈ E2Wn satisfying the second one coincide.

We call the “plane α ∈ E3Wn” the set of all points A(x, y, z) ∈ E3Wn satisfying the equation

for all

such that (a1, a2, a3) ≠ (0, 0, 0). Two equations

and

define the same plane if and only if the set of all points A(x, y, z) ∈ E3Wn satisfying the first
equation and the set of all points A(x, y, z) ∈ E3Wn satisfying the second one coincide.

We call the “straight line a ∈ E3Wn” the set of all points A(x, y, z) ∈ E3Wn satisfying the
system of equations

for all a1, a2, a3, a4, b1, b2, b3, b4 ∈ Wn such that (a1, a2, a3) ≠ (0, 0, 0) and
(b1, b2, b3) ≠ (0, 0, 0), and satisfying the remaining plane conditions, provided that these two

AB = (x2 −n x1, y2 −n y1).

a1 ×n x +n a2 ×n y +n a3 = 0

a1, a2, a3, a1 ×n x, a2 ×n y, a1 ×n x +n a2 ×n y ∈ Wn

a1 ×n x +n a2 ×n y +n a3 = 0

b1 ×n x +n b2 ×n y +n b3 = 0

a1 ×n x +n a2 ×n y +n a3 ×n z +n a4 = 0

a1, a2, a3, a4, a1 ×n x, a2 ×n y, a3 ×n z, a1 ×n x +n a2 ×n y, a1 ×n x +n a2 ×n y +n a3 ×n z ∈

a1 ×n x +n a2 ×n y +n a3 ×n z +n a4 = 0

b1 ×n x +n b2 ×n y +n b3 ×n z +n b4 = 0

{
a1 ×n x +n a2 ×n y +n a3 ×n z +n a4 = 0,

b1 ×n x +n b2 ×n y +n b3 ×n z +n b4 = 0
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planes do not coincide. Two systems of equations

and

define the same straight line if and only if the set of all points A(x, y, z) ∈ E3Wn satisfying the
first system of equations and the set of all points A(x, y, z) ∈ E3Wn satisfying the second one
coincide.

Note that multiplication and addition in straight line and plane formulas are going up by
corresponding pairs from left to right. We also assume that all these elements belong to Wn.

Theorem 3.1.

A straight line a ∈ E2Wn is a straight line a ∈ E3Wn.

Proof.

The set of all points A(x, y) ∈ E2Wn satisfying the equation

coincides with the set of all points A(x, y, z) ∈ E3Wn satisfying the system of equations

We have to make several notes.

Let us consider two straight lines in E2Wn:

In classical geometry, these two straight lines coincide, but in Mathematics with Observers,
they do not. For example, if n = 2, then

but

Let us consider

a:

{
a1 ×n x +n a2 ×n y +n a3 ×n z +n a4 = 0,

b1 ×n x +n b2 ×n y +n b3 ×n z +n b4 = 0

{
c1 ×n x +n c2 ×n y +n c3 ×n z +n c4 = 0,

d1 ×n x +n d2 ×n y +n d3 ×n z +n d4 = 0

a1 ×n x +n a2 ×n y +n a3 = 0

{
a1 ×n x +n a2 ×n y +n a3 = 0,

z = 0.

a : x −n y +n 1 = 0,

b : 2 ×n x −n 2 ×n y +n 2 = 0.

A(50, 51) ∈ a,

A(50, 51) ∉ b.
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b:

In classical geometry, these two straight lines coincide, but in Mathematics with Observers,
they do not. For example, if n = 2, then

but

Let us consider two planes in E3Wn:

α:

and

β:

In classical geometry, these two planes coincide, but in Mathematics with Observers, they do
not. For example, if n = 2, then

but

Let us consider ten different equations of straight lines in E2W2:

{
x −n y +n 1 = 0,

z = 0;

{
2 ×n x −n 2 ×n y +n 2 = 0,

z = 0.

A(50, 51, 0) ∈ a,

A(50, 51, 0) ∉ b.

x +n y +n z −n 3 = 0

2 ×n x +n 2 ×n y +n 2 ×n z −n 6 = 0.

A(50, −50, 3) ∈ α,

A(50, −50, 3) ∉ β.
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All these equations describe the same straight line having the set of points A(0.02, y) with
any y ∈ W2.

Let s consider ten different equations of planes in E3W2:

All these equations describe the same plane having the set of points A(0.02, y, z) with any
y, z ∈ W2.

Let us consider three straight lines in E2W2:

We get

because

a1 : 99.99 ×2 x= 1.98,

a2 : 99.98 ×2 x= 1.98,

a3 : 99.97 ×2 x= 1.98,

a4 : 99.96 ×2 x= 1.98,

a5 : 99.95 ×2 x= 1.98,

a6 : 99.94 ×2 x= 1.98,

a7 : 99.93 ×2 x= 1.98

a8 : 99.92 ×2 x= 1.98,

a9 : 99.91 ×2 x= 1.98,

a10 : 99.90 ×2 x= 1.98.

α1 : 99.99 ×2 x= 1.98,

α2 : 99.98 ×2 x= 1.98,

α3 : 99.97 ×2 x= 1.98,

α4 : 99.96 ×2 x= 1.98,

α5 : 99.95 ×2 x= 1.98,

α6 : 99.94 ×2 x= 1.98,

α7 : 99.93 ×2 x= 1.98,

α8 : 99.92 ×2 x= 1.98,

α9 : 99.91 ×2 x= 1.98,

α10 : 99.90 ×2 x= 1.98.

a : y = x,

b : 2 ×2 y = 2 ×2 x,

c : 0.1 ×2 y = 0.1 ×2 x.

b ⊂ a ⊂ c
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Note that in classical geometry, these three straight lines coincide, but in Mathematics with
Observers, they do not.

Let us consider two straight lines in E2Wn:

The functions f and g are single-valued functions. The superposition of these functions is:

whereas in classical geometry,

where

and ∙, + mean classic multiplication and addition, respectively.

This means that in classical geometry the superposition of functions representing straight
lines is again a function representing a straight line.

Let us consider this situation in Mathematics with Observers.

Let n = 2 and consider two straight lines in E2W2:

We get the sets a and b as subsets of E2W2:

Of course, all these sets can see any Wm-observer with m ≥ 5.

The functions f and g are single-valued functions. The superposition of these functions is

a= ∪(x,x), x ∈ W2,

b= ∪(x,x), x ∈ [−49.99, −49.98, … , −0.01, 0, 0.01, … , 49.98, 49.99] ⊂ W2,

c= ∪(x, y), x = x0.x1x2 ∈ W2, y ∈ [x0.x10,x0.x11,x0.x12, … ,x0.x19] ∈ W2.

a : y= k1 ×n x +n l1 = f(x),

b : y= k2 ×n x +n l2 = g(x).

f(g(x)) = k1 ×n (k2 ×n x +n l2) +n l1,

y = f(g(x)) = (k1 ∙ k2) ∙ x + (k1 ∙ l2 + l1) = k ∙ x + l,

k= k1 ∙ k2,

l= k1 ∙ l2 + l1,

a : y= 2 ×2 x = f(x),

b : y= 3 ×2 x = g(x).

a= [(−49.99, −99.98), (−49.98, −99.96), … , (−0.01, −0.02), (0, 0), (0.01, 0.02), …

… , (49.99, 99.98)],

b= [(−33.33, −99.99), (−33.32, −99.96), … , (−0.01, −0.03), (0, 0), (0.01, 0.03), …

… , (33.33, 99.99)].

f(g(x)) = 2 ×2 (3 ×2 x) = (2 ×2 3) ×2 x = 6 ×2 x,
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because for any x ∈ W2 and r ∈ Z  such that r ×2 x ∈ W2, the result of multiplication
coincides with classic arithmetic multiplication.

We also get the set f(g(x)) as a subset of E2W2:

This means that in this case the superposition of functions representing straight lines a and b
is again a function representing a straight line c:

Let again n = 2 and consider other two straight lines in E2W2:

The functions f and g are single-valued functions. The superposition of these functions is

As we know,

is a random variable in Wn, and δ3 = 0 with probability P < 1. This means that in this case
the superposition of functions representing straight lines a and b is not a function
representing a straight line.

Let again n = 2 and consider the straight line in E2W2:

We get the set a as a subset of E2W2:

for all x ∈ Wn.

Of course, this set can see any Wm-observer with m ≥ 7.

The function f is a multivalued function.

Let us consider the transformation of the parallel shift along the y-axis in E2W2, for example,

The superposition of the functions f and g is

f(g(x)) = [(−16.66, −99.96), … , (−0.01, −0.06), (0, 0), (0.01, 0.06), … , (16.66, 99.96)].

c : y = 6 ×2 x.

a : y= 1.96 ×2 x = f(x),

b : y= 2.87 ×2 x = g(x).

f(g(x)) = 1.96 ×2 (2.87 ×2 x).

δ3 = α ×n (β ×n γ) −n (α ×n β) ×n γ, (α,β, γ ∈ Wn)

a : 0.01 ×2 y = 0 = f(x).

a = [(x, −0.99), (x, −0.98), … , (x, −0.01), (x, 0), (x, 0.01), … , (x, 0.99)]

y⟶ y −2 1 = g(y).

f(g(y)) = 0.01 ×2 (y −2 1) = 0,



and we get  So we have  So does the set f(g(y))

represent a straight line or not? Since

an answer to this question is positive only if the solution of the equation

coincides with solution of the equation

considered above.

However, the equation

has the solutions  This means the set f(g(y)) does not represent a straight line,

that is, the straight line transformation of parallel shift along the y-axis in E2W2 may not

0.01 ×2 (y −2 1) = 0,

0.01 ×2 y = 0.01

0.01 ×2 (y −2 1) = 0

0.01 ×2 y = 0.01



represent a straight line.  □
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4  Observability and analysis of connections of points,
straight lines, and planes

4.1  First property of connections

Let us consider two distinct points ∈ E2Wn :

Questions: Is there a straight line AB = BA = a ∈ E2Wn  containing these points? Is this line
uniquely defined?

Let us consider several examples.

1) Let us take n = 2 and A(0, 2), B(1, 2) ∈ E2W2 . We are looking for a straight line a as a set
of points (x, y) satisfying the equation

We have

We get

that is, the equation of a straight line a is

This means the following:

For each a2  such that

we get a straight line as the set of points (x, 2) with all x ∈ W2 .

For each a2  such that

we get a straight line as the set of points

A(x1, y1), B(x2, y2).

a1 ×2 x +2 a2 ×2 y +2 a3 = 0.

{
a1 ×2 0 +2 a2 ×2 2 +2 a3 = 0,

a1 ×2 1 +2 a2 ×2 2 +2 a3 = 0.

{
a1 = 0,

a3 = −2 ×2 a2,

a2 ×2 y = 2 ×2 a2.

1 ≤ |a2| ≤ 49.99,

0.1 ≤ |a2| ≤ 0.99,

[(x, 2); (x, 2.01); (x, 2.02); … ; (x, 2.09)]
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with all x ∈ W2 .

Note that here and everywhere further, by

we denote the set of elements u, v, …  .
For each a2  such that

we get a straight line as the set of points

with all x ∈ W2 .

So the points A(0, 2) and B(1, 2) determine three different straight lines. This means that two
distinct points ∈ E2Wn  may not uniquely determine a straight line containing these points.

1’) Let us take E3W2  and the points A(0, 2, 0) and B(1, 2, 0).

We are looking for a straight line a as the set of points (x, y, z) satisfying the system of equations

We have

We get

that is, the equation of a straight line a is

which means the following:

For each a2  such that

[u, v, …]

0 < |a2| ≤ 0.09,

[(x, 2); (x, 2.01); (x, 2.02); … ; (x, 2.09); (x, 2.1); … ; (x, 2.19); (x, 2.2); … ; (x, 2.99)]

{
a1 ×2 x +2 a2 ×2 y +2 a3 = 0,

z = 0.

a1 ×2 0 +2 a2 ×2 2 +2 a3 = 0,

a1 ×2 1 +2 a2 ×2 2 +2 a3 = 0,

z = 0.

a1 = 0,

a3 = −2 ×2 a2,

z = 0,

{
a2 ×2 y = 2 ×2 a2,

z = 0,

1 ≤ |a2| ≤ 49.99,
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we get a straight line as the set of points (x, 2, 0) with all x ∈ W2 .
For each a2  such that

we get a straight line as the set of points

with all x ∈ W2 .

For each a2  such that

we get a straight line as the set of points

with all x ∈ W2 .

So the points A(0, 2, 0) and B(1, 2, 0) determine three different straight lines. This means that
two distinct points ∈ E3Wn  may not uniquely determine a straight line containing these points.

2) Let us continue to consider the same question in E2W2  and take other two points

Again, we are looking for a straight line a as the set of points (x, y) satisfying the equation

We have

We must have

which means that

All possible positive a1  form the set

and we get

All possible positive a2  form the set

0.1 ≤ |a2| ≤ 0.99,

[(x, 2, 0); (x, 2.01, 0); (x, 2.02, 0); … ; (x, 2.09, 0)]

0 < |a2| ≤ 0.09,

[(x, 2, 0); (x, 2.01, 0); (x, 2.02, 0); … ; (x, 2.09, 0); (x, 2.1, 0); … ; (x, 2.19, 0); … ; (x, 2.99, 0

A(99.99, 0), B(0, 98.88).

a1 ×2 x +2 a2 ×2 y +2 a3 = 0.

{
a1 ×2 (99.99) +2 a2 ×2 (0) +2 a3 = 0,

a1 ×2 (0) +2 a2 ×2 (98.88) +2 a3 = 0.

|a1| ≤ 1, |a2| ≤ 1.01,

a1 ×2 (99.99) = a2 ×2 (98.88).

Φ = [0.01, 0.02, … , 0.99, 1.00],

99.99 ×2 Φ = [0.99, 1.98, … , 98.82, 99.99].



and we get

Direct calculations show that

where Λ here and further is the empty set.

So a straight line a containing the points A(99.99, 0) and B(0, 98.88) does not exist, that is, two
distinct points ∈ E2Wn  may not determine a straight line containing these points.

2’) Let us continue to consider same question in E3W2  and take other two points

Again, we are looking for a straight line a as the set of points (x, y, z) satisfying the system of
equations

We have

We must have

which means that

All possible positive a1  form the set

and we get

All possible positive a2  form the set

and we get

Ψ = [0.01, 0.02, … , 0.99, 1.00, 1.01],

98.88 ×2 Ψ = [0.98, 1.96, … , 97.74, 98.88, 99.86].

99.99 ×2 Φ ∩ 98.88 ×2 Ψ = Λ,

A(99.99, 0, 0), B(0, 98.88, 0).

{
a1 ×2 x +2 a2 ×2 y +2 a3 = 0,

z = 0.

a1 ×2 (99.99) +2 a2 ×2 (0) +2 a3 = 0,

a1 ×2 (0) +2 a2 ×2 (98.88) +2 a3 = 0,

z = 0.

|a1| ≤ 1, |a2| ≤ 1.01,

a1 ×2 (99.99) = a2 ×2 (98.88).

Φ = [0.01, 0.02, … , 0.99, 1.00],

99.99 ×2 Φ = [0.99, 1.98, … , 98.82, 99.99].

Ψ = [0.01, 0.02, … , 0.99, 1.00, 1.01],

98.88 ×2 Ψ = [0.98, 1.96, … , 97.74, 98.88, 99.86].



Direct calculations show that

So a straight line a containing the points A(99.99, 0, 0) and B(0, 98.88, 0) does not exist, that
is, two distinct points ∈ E3Wn  may not determine a straight line containing these points.

3) Let us continue to consider same question in E2W2  and take other two points

Again, we are looking for a straight line a as the set of points (x, y) satisfying the equation

We have

We must have

which means that

Again, all possible positive a1  form the set

and we get

Again, all possible positive a2  form the set

and we get

Direct calculations show that

and we get only one point in intersection of these two sets, that is,

So there is only one straight line a containing the points A(99.99, 0) and B(0, 98.37), that is,
two distinct points ∈ E2Wn  uniquely determine a straight line containing these points.

99.99 ×2 Φ ∩ 98.88 ×2 Ψ = Λ.

A(99.99, 0), B(0, 98.37).

a1 ×2 x +2 a2 ×2 y +2 a3 = 0.

{
a1 ×2 (99.99) +2 a2 ×2 (0) +2 a3 = 0,

a1 ×2 (0) +2 a2 ×2 (98.37) +2 a3 = 0.

|a1| ≤ 1, |a2| ≤ 1.01,

a1 ×2 (99.99) = a2 ×2 (98.37).

Φ = [0.01, 0.02, … , 0.99, 1.00],

99.99 ×2 Φ = [0.99, 1.98, … , 98.82, 99.99].

Ψ = [0.01, 0.02, … , 0.99, 1.00, 1.01],

98.37 ×2 Ψ = [0.98, 1.96, … , 97.29, 98.37, 99.35].

99.99 ×2 Φ ∩ 98.37 ×2 Ψ = 61.92,

a1 = 0.62; a2 = 0.63; a3 = −61.92.



3’) Let us continue to consider the same question in E3W2  and take other two points

Again, we are looking for a straight line a as the set of points (x, y, z) satisfying the system of
equations

We have

We must have

which means that

Again, all possible positive a1  form the set

and we get

Again, all possible positive a2  form the set

and we get

Direct calculations show that

and we get only one point in intersection of these two sets, that is,

So there is only one straight line a containing the points A(99.99, 0, 0) and (0,98.37,0), that is,
two distinct points ∈ E2Wn  uniquely determine a straight line containing these points.

4) Let us take again n = 2 and A(0, 0), B(1, 1) ∈ E2W2 . We are looking for a straight line a as
the set of points (x, y) ∈ E2W2  satisfying the equation

A(99.99, 0, 0), B(0, 98.37, 0).

{
a1 ×2 x +2 a2 ×2 y +2 a3 = 0,

z = 0.

a1 ×2 (99.99) +2 a2 ×2 (0) +2 a3 = 0,

a1 ×2 (0) +2 a2 ×2 (98.37) +2 a3 = 0,

z = 0.

|a1| ≤ 1, |a2| ≤ 1.01,

a1 ×2 (99.99) = a2 ×2 (98.37).

Φ = [0.01, 0.02, … , 0.99, 1.00],

99.99 ×2 Φ = [0.99, 1.98, … , 98.82, 99.99].

Ψ = [0.01, 0.02, … , 0.99, 1.00, 1.01],

98.37 ×2 Ψ = [0.98, 1.96, … , 97.29, 98.37, 99.35].

99.99 ×2 Φ ∩ 98.37 ×2 Ψ = 61.92,

a1 = 0.62; a2 = 0.63; a3 = −61.92.
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We have

that is,

that is,

that is,

Note that for any positive a1 , line a contains points A and B, but for two different values of a1 ,
the corresponding lines a = aa1  may be different too. Moreover, if

then

Conclusion: Mathematics with Observers geometry in E2Wn  and in E3Wn  does not satisfy the
first property of connection of classical geometry:

“Two distinct points A and B always uniquely determine a straight line a: AB = a or BA = a

”.

The probability of correctness of this statement in Mathematics with Observers geometry is less
than 1.

We get three different possibilities in Mathematics with Observers geometry in E2Wn  and
E3Wn :

Such a straight line exists and uniquely determined.

Such a straight line exists but is not uniquely determined.

Such a straight line does not exist.

So we proved the following:

a1 ×2 x +2 a2 ×2 y +2 a3 = 0.

{
a1 ×2 0 +2 a2 ×2 0 +2 a3 = 0,

a1 ×2 1 +2 a2 ×2 1 +2 a3 = 0,

{
a3 = 0,

a1 ×2 1 +2 a2 ×2 1 = 0,

{
a3 = 0,

a1 = −a2,

a : a1 ×2 x −2 a1 ×2 y = 0.

a1
1 > a2

1 > 0,

aa1
1

⊂ aa2
1
.



Theorem 4.1.

In Mathematics with Observers geometry in plane E2Wn , there are two distinct points A and B such

that the straight line a containing these points does not exist.

Theorem 4.2.

In Mathematics with Observers geometry in plane E2Wn , there are two distinct points A and B such

that the straight line a containing these points exists and is uniquely determined.

Theorem 4.3.

In Mathematics with Observers geometry in plane E2Wn , there are two distinct points A and B such

that the straight line a containing these points exists and is not uniquely determined.

Theorem 4.4.

In Mathematics with Observers geometry in space E3Wn , there are two distinct points A and B such

that the straight line a containing these points does not exist.

Theorem 4.5.

In Mathematics with Observers geometry in space E3Wn , there are two distinct points A and B such

that the straight line a containing these points exists and is uniquely determined.

Theorem 4.6.

In Mathematics with Observers geometry in space E3Wn , there are two distinct points A and B such

that the straight line a containing these points exists and is not uniquely determined.

4.2  Second property of connections

Let us consider three distinct points ∈ E2Wn :

Let a straight line a be given by the equation

and contain points A and B, so that

Let the same straight line a contain points A and C, so that

Question: Does the straight line BC  coincide with line a?

1) Let us continue to consider the same set E2W2  and take three points

There is unique straight line a containing points A and B, that is, AB = a, BA = a, and a is the
set of all points (x, y) ∈ E2W2  satisfying the equation

A(x1, y1), B(x2, y2), C(x3, y3).

a1 ×n x +n a2 ×n y +n a3 = 0

{
a1 ×n x1 +n a2 ×n y1 +n a3 = 0,

a1 ×n x2 +n a2 ×n y2 +n a3 = 0.

{
a1 ×n x1 +n a2 ×n y1 +n a3 = 0,

a1 ×n x3 +n a2 ×n y3 +n a3 = 0.

A(0, 98.37), B(99.99, 0), C(99.91, 0).



1.

2.

3.

Direct calculations show that also point C ∈ a, AC = a and CA = a.

Let us consider the straight line BC :

We have

and one of solutions of this system of equations is line a:

However, we also have another set defined by the equation

The solution of this equation is

For a1 = 0, we get

which means the following:

For each a2  such that

we get a straight line as the set of points (x, 0) with all x ∈ W2 .

For each a2  such that

we get a straight line as the set of points

with all x ∈ W2 .

For each a2  such that

we get a straight line as the set of points

0.62 ×2 x +2 0.63 ×2 y −2 61.92 = 0.

a1 ×n x +n a2 ×n y +n a3 = 0.

{
a1 ×2 (99.99) +2 a2 ×2 (0) +2 a3 = 0,

a1 ×2 (99.91) +2 a2 ×2 (0) +2 a3 = 0,

a1 = 0.62; a2 = 0.63; a3 = −61.92.

a1 ×2 (99.99) = a1 ×2 (99.91).

a1 ∈ [0, ±0.01, ±0.02, … , ±0.98, ±0.99].

a1 = 0,

a3 = 0,

a2 ×n y = 0,

1 ≤ |a2| ≤ 99.99,

0.1 ≤ |a2| ≤ 0.99,

[(x, 0); (x, ±0.01); (x, ±0.02); … ; (x, ±0.09)]

0 < |a2| ≤ 0.09,



with all x ∈ W2 .

So the points B(99.99, 0) and C(99.91, 0) determine more than one different straight lines.
This means that the straight line BC  does not coincide with line a, but line a is only one of
several other lines BC .

1’) Let us consider set E3W2  and take three points

There is a unique straight line a containing points A and B, that is, AB = a, BA = a, and a is
the set of all points (x, y, z) ∈ E3W2  satisfying the system of equations

Direct calculations show that point C ∈ a, AC = a, and CA = a.

Let us consider a straight line BC :

We have

and one of solutions of this system of equations is line a:

However, we also have other sets defined by the equation

A solution of this equation is

For a1 = 0, we get

which means the following:

[(x, 0); (x, ±0.01); (x, ±0.02); … ; (x, ±0.09); (x, ±0.1); … ; (x, ±0.19); … ; (x, ±0.99)]

A(0, 98.37, 0), B(99.99, 0, 0), C(99.91, 0, 0).

{
0.62 ×2 x +2 0.63 ×2 y −2 61.92 = 0,

z = 0.

{
a1 ×n x +n a2 ×n y +n a3 = 0,

z = 0.

a1 ×2 (99.99) +2 a2 ×2 (0) +2 a3 = 0,

a1 ×2 (99.91) +2 a2 ×2 (0) +2 a3 = 0,

z = 0,

a1 = 0.62; a2 = 0.63; a3 = −61.92.

a1 ×2 (99.99) = a1 ×2 (99.91).

a1 ∈ [0, ±0.01, ±0.02, … , ±0.98, ±0.99].

a1 = 0,

a3 = 0,

a2 ×n y = 0,

z = 0,



1.

2.

3.

For each a2  such that

we get a straight line as the set of points (x, 0, 0) with all x ∈ W2 .

For each a2  such that

we get a straight line as the set of points

with all x ∈ W2 .

For each a2  such that

we get a straight line as the set of points

with all x ∈ W2 .

So the points B(99.99, 0, 0) and C(99.91, 0, 0) determine more than one different straight line.
This means that the straight line BC  does not coincide with line a, but line a is only one of
several other lines BC .

2) Let us continue to consider the same set E2W2  and take three points

There is a unique straight line a containing points A and B, that is, AB = a, BA = a, and a is
the set of all points (x, y) ∈ E2W2  satisfying the equation

Direct calculations show that also point C ∈ a. Let us define the line AC  and check whether
AC = a or not. We have

One of the solutions is line a:

Let us try to find other solutions if they exist. We get

1 ≤ |a2| ≤ 99.99,

0.1 ≤ |a2| ≤ 0.99,

[(x, 0, 0); (x, ±0.01, 0); (x, ±0.02, 0); … ; (x, ±0.09, 0)]

0 < |a2| ≤ 0.09,

[(x, 0, 0); (x, ±0.01, 0); … ; (x, ±0.09, 0); (x, ±0.1, 0); … ; (x, ±0.99, 0)]

A(99.99, 0), B(0, 98.37), C(51.02, 48.16).

0.62 ×2 x +2 0.63 ×2 y −2 61.92 = 0.

{
a1 ×2 (99.99) +2 a2 ×2 (0) +2 a3 = 0,

a1 ×2 (51.02) +2 a2 ×2 (48.16) +2 a3 = 0.

a1 = 0.62; a2 = 0.63; a3 = −61.92.



1.

2.

that is,

We must have

Direct calculations show the following:

If

then

and

For example, let us consider the straight line b:

Direct calculations show that the point (30, 69) ∈ b but

This means that a and b are different lines.

If

then for positive a1 ,

and for negative a1 ,

a1 ×2 (99.99) = a1 ×2 (51.02) +2 a2 ×2 (48.16),

a1 ×2 (99.99) −n a1 ×2 (51.02) = a2 ×2 (48.16).

|a1|∈ [0, 0.01, 0.02, … , 0.98, 0.99, 1],

|a2|∈ [0, 0.01, 0.02, … , 0.98, 0.99, 1, 1.01, … , 1.99, 2, 2.01, … , 2.07].

a1 ∈ [±0.01, … , ±0.09],

a1 = a2,

…

a1 = ±0.01,

a2 = ±0.01,

a3 = ∓0.99,

a1 = ±0.09,

a2 = ±0.09,

a3 = ∓8.91.

0.01 ×n x +n 0.01 ×n y −n 0.99 = 0.

0.62 ×2 30 +2 0.63 ×2 69 −2 61.92 ≠ 0.

a1 ∈ [±0.61, … , ±0.69],

a2 = a1 −n 0.01,

a2 = a1 +n 0.01,



and

For negative a1 ,

and we have

For example, let us consider the straight line c:

Direct calculations show that the point (50.01, 49.99) ∈ c but

This means that a and c are different lines.

2’) Let us consider the set E3W2  and take three points

There is a unique straight line a containing points A and B, i. e., AB = a, BA = a, and a is the
set of all points (x, y, z) ∈ E3W2  satisfying the system of equations

Direct calculations show that also point C ∈ a.

Let us define the line AC  and check whether AC = a or not. We have

…

a1 = 0.61,

a2 = 0.60,

a3 = −60.93,

a1 = 0.69,

a2 = 0.68,

a3 = −68.85.

a2 = a1 +n 0.01,

…

a1 = −0.61,

a2 = −0.60,

a3 = 60.93,

a1 = −0.69,

a2 = −0.68,

a3 = 68.85.

0.61 ×n x +n 0.60 ×n y −n 60.93 = 0.

0.62 ×2 50.01 +2 0.63 ×2 49.99 −2 61.92 ≠ 0.

A(99.99, 0, 0), B(0, 98.37, 0), C(51.02, 48.16, 0).

{
0.62 ×2 x +2 0.63 ×2 y −2 61.92 = 0,

z = 0.



1.

One of the solutions is line a:

Let us try to find other solutions if they exist. We get

that is,

We must have

Direct calculations show the following:

If

then

and

For example, let us consider the straight line b:

Direct calculations show that the point (30, 69, 0) ∈ b but

This means that a and b are different lines.

a1 ×2 (99.99) +2 a2 ×2 (0) +2 a3 = 0,

a1 ×2 (51.02) +2 a2 ×2 (48.16) +2 a3 = 0,

z = 0.

a1 = 0.62; a2 = 0.63; a3 = −61.92.

a1 ×2 (99.99) = a1 ×2 (51.02) +2 a2 ×2 (48.16),

a1 ×2 (99.99) −n a1 ×2 (51.02) = a2 ×2 (48.16).

|a1|∈ [0, 0.01, 0.02, … , 0.98, 0.99, 1],

|a2|∈ [0, 0.01, 0.02, … , 0.98, 0.99, 1, 1.01, … , 1.99, 2, 2.01, … , 2.07].

a1 ∈ [±0.01, … , ±0.09],

a1 = a2,

…

a1 = ±0.01,

a2 = ±0.01,

a3 = ∓0.99,

a1 = ±0.09,

a2 = ±0.09,

a3 = ∓8.91.

{
0.01 ×n x +n 0.01 ×n y −n 0.99 = 0,

z = 0.

0.62 ×2 30 +2 0.63 ×2 69 −2 61.92 ≠ 0.



2. If

then for positive a1 ,

and

For negative a1 ,

and we have

For example, let us consider the straight line c:

Direct calculations show that the point (50.01, 49.99, 0) ∈ c but

This means that a and c are different lines.

3) Let us take again E2W2  and A(0, 2), B(1, 2), C(2, 2). There are three straight lines
containing points A(0, 2) and B(1, 2):

The equation of line AB is

a1 ∈ [±0.61, … , ±0.69],

a2 = a1 −n 0.01,

…

a1 = 0.61,

a2 = 0.60,

a3 = −60.93,

a1 = 0.69,

a2 = 0.68,

a3 = −68.85.

a2 = a1 +n 0.01,

…

a1 = −0.61,

a2 = −0.60,

a3 = 60.93,

a1 = −0.69,

a2 = −0.68,

a3 = 68.85.

{
0.61 ×n x +n 0.60 ×n y −n 60.93 = 0,

z = 0.

0.62 ×2 50.01 +2 0.63 ×2 49.99 −2 61.92 ≠ 0.



1.

2.

3.

and we get the following:

For each a2  such that

we get a straight line as the set of points (x, 2) with all x ∈ W2 .

For each a2  such that

we get straight line as the set of points

with all x ∈ W2 .

For each a2  such that

we get a straight line as the set of points

with all x ∈ W2 .

When we consider the straight lines containing points A(0, 2) and C(2, 2), we get

and

that is, a straight line equation is

This means that points A and C define the same three straight lines as points A and B.

When we consider the straight lines containing points B(1, 2) and C(2, 2), we get

and

a2 ×2 y = 2 ×2 a2,

1 ≤ |a2| ≤ 49.99,

0.1 ≤ |a2| ≤ 0.99,

[(x, 2); (x, 2.01); (x, 2.02); … ; (x, 2.09)]

0 < |a2| ≤ 0.09,

[(x, 2); (x, 2.01); (x, 2.02); … ; (x, 2.09); (x, 2.1); … ; (x, 2.19); (x, 2.2); … ; (x, 2.99)]

{
a1 ×2 0 +2 a2 ×2 2 +2 a3 = 0,

a1 ×2 2 +2 a2 ×2 2 +2 a3 = 0,

{
a1 = 0,

a3 = −2 ×2 a2,

a2 ×2 y = 2 ×2 a2.

{
a1 ×2 1 +2 a2 ×2 2 +2 a3 = 0,

a1 ×2 2 +2 a2 ×2 2 +2 a3 = 0,



1.

2.

3.

that is, a straight line equation is

So, in this case, we have the situation where three distinct points ∈ E2Wn ,

define the same set of three different straight lines in any pair combination.

3’) Let us take E3W2  and A(0, 2, 0), B(1, 2, 0), C(2, 2, 0). There are three straight lines
containing the points A(0, 2, 0) and B(1, 2, 0):

The equation of line AB is

and we get the following:

For each a2  such that

we get a straight line as the set of points (x, 2, 0) with all x ∈ W2 .

For each a2  such that

we get a straight line as the set of points

with all x ∈ W2 .

For each a2  such that

we get a straight line as the set of points

with all x ∈ W2 .

When we consider the straight lines containing the points A(0, 2, 0) and C(2, 2, 0), we get

{
a1 = 0,

a3 = −2 ×2 a2,

a2 ×2 y = 2 ×2 a2

A(0, 2), B(1, 2), C(2, 2),

{
a2 ×2 y = 2 ×2 a2,

z = 0,

1 ≤ |a2| ≤ 49.99,

0.1 ≤ |a2| ≤ 0.99,

[(x, 2, 0); (x, 2.01, 0); (x, 2.02, 0); … ; (x, 2.09, 0)]

0 < |a2| ≤ 0.09,

[(x, 2, 0); (x, 2.01, 0); … ; (x, 2.09, 0); (x, 2.1, 0); … ; (x, 2.19, 0); (x, 2.2, 0); … ; (x, 2.99, 0



and

that is, a straight line equation is

which means that points A and C define the same three straight lines as points A and B.

When we consider the straight lines containing the points B(1, 2, 0) and C(2, 2, 0), we get

and

that is, a straight line equation is

So, in this case, we have the situation where three distinct points ∈ E3Wn ,

define same set of three different straight lines in any pair combination.

So we have proved the following:

Theorem 4.7.

In Mathematics with Observers geometry in plane E2Wn , there are three distinct points A, B, C such

that the straight line a = AB containing these points exists and is uniquely determined, but there is

more than one line b = AC , that is, AB ≠ AC .

Theorem 4.8.

In Mathematics with Observers geometry in plane E2Wn , there are three distinct points A, B, C such

that the straight line a = AB = AC  containing these points exists and is uniquely determined, but

there is more than one line b = BC , i. e., AB ≠ BC .

Theorem 4.9.

a1 ×2 0 +2 a2 ×2 2 +2 a3 = 0,

a1 ×2 2 +2 a2 ×2 2 +2 a3 = 0,

z = 0,

{
a1 = 0,

a3 = −2 ×2 a2,

{
a2 ×2 y = 2 ×2 a2,

z = 0,

a1 ×2 1 +2 a2 ×2 2 +2 a3 = 0,

a1 ×2 2 +2 a2 ×2 2 +2 a3 = 0,

z = 0,

{
a1 = 0,

a3 = −2 ×2 a2,

{
a2 ×2 y = 2 ×2 a2,

z = 0.

A(0, 2, 0), B(1, 2, 0), C(2, 2, 0),



In Mathematics with Observers geometry in plane E2Wn , there are three distinct points A, B, C such

that there are more than one straight line AB containing these points, more than one straight line

AC , and more than one straight line BC , but these three sets of straight lines coincide.

Theorem 4.10.

In Mathematics with Observers geometry in space E3Wn , there are three distinct points A, B, C such

that the straight line a = AB containing these points exists and is uniquely determined, but there is

more than one line b = AC , that is, AB ≠ AC .

Theorem 4.11.

In Mathematics with Observers geometry in space E3Wn , there are three distinct points A, B, C such

that the straight line a = AB = AC  containing these points exists and is uniquely determined, but

there is more than one line b = BC , that is, AB ≠ BC .

Theorem 4.12.

In Mathematics with Observers geometry in space E3Wn , there are three distinct points A, B, C such

that there are more than one straight line AB containing these points, more than one straight line

AC , and more than one straight line BC , but these three sets of straight lines coincide.

4.3  Third property of connections

Let us consider three distinct points ∈ E3Wn :

such that the vectors

are not parallel.

Questions: Is there a plane ABC = α ∈ E3Wn  containing these points? Is this plane uniquely
defined?

We are looking for the “plane ABC = α ∈ E3Wn” as the set of all points A(x, y, z) ∈ E3Wn

satisfying the equation

for all a1, a2, a3, a4 ∈ Wn  such that (a1, a2, a3) ≠ (0, 0, 0).

1) Let us first consider three distinct points ∈ E3W2 :

In this case, the vectors

are not parallel. We get the system

A(x1, y1, z1), B(x2, y2, z2), C(x3, y3, z3)

AB = (x2 −n x1, y2 −n y1, z2 −n z1), AC = (x3 −n x1, y3 −n y1, z3 −n z1)

a1 ×n x +n a2 ×n y +n a3 ×n z +n a4 = 0

A(1, 0, 0), B(0, 1, 0), C(0, 0, 1).

AB = (−1, 1, 0), AC = (−1, 0, 1)



and so

So the equation of plane α in this case is

For a1 = 1, we get plane α1  with equation

For a1 = 0.01, we get plane α2  with equation

Let us take the point D(0.2, 0.2, 0.6) ∈ E3W2 . We get

So

but

and thus

This means that three points

not completely (not uniquely) determine the plane ABC = α. Note that plane α2  contains not
only points A, B, C, but also other points, for example, the point L(1, −1, 1).

1A) Let us again consider three distinct points ∈ E3W2 :

We again get the system

a1 ×2 1 +2 a2 ×2 0 +2 a3 ×2 0 +2 a4 = 0,

a1 ×2 0 +2 a2 ×2 1 +2 a3 ×2 0 +2 a4 = 0,

a1 ×2 0 +2 a2 ×2 0 +2 a3 ×2 1 +2 a4 = 0,

a1 = a2,

a1 = a3,

a4 = −a1.

a1 ×2 x +2 a1 ×2 y +2 a1 ×2 z −2 a1 = 0.

x +2 y +2 z −2 1 = 0.

0.01 ×2 x +2 0.01 ×2 y +2 0.01 ×2 z −2 0.01 = 0.

0.2 +2 0.2 +2 0.6 −2 1 = 0.

D ∈ α1,

0.01 ×2 0.2 +2 0.01 ×2 0.02 +2 0.01 ×2 0.06 −2 0.01 ≠ 0,

α1 ≠ α2.

A(1, 0, 0), B(0, 1, 0), C(0, 0, 1) ∈ E3W2

A(1, 0, 0), B(0, 1, 0), C(0, 0, 1).



and so

So the equation of plane α in this case is

Note that for any positive a1 , plane α contains points A, B, and C, but for two different values of
a1 , the corresponding planes α = αa1  may be different too. Moreover, if

then

If we consider all situations

then we get solutions for each case.

2) Let us continue to consider the same question in E3W2  and take other three distinct points

In this case, the vectors

are not parallel.

Again, we are looking for the “plane ABC = α ∈ E3W2” as the set of all points
A(x, y, z) ∈ E3W2  satisfying the equation

for all a1, a2, a3, a4 ∈ W2  such that (a1, a2, a3) ≠ (0, 0, 0). We get the system

or

a1 ×2 1 +2 a2 ×2 0 +2 a3 ×2 0 +2 a4 = 0,

a1 ×2 0 +2 a2 ×2 1 +2 a3 ×2 0 +2 a4 = 0,

a1 ×2 0 +2 a2 ×2 0 +2 a3 ×2 1 +2 a4 = 0,

a1 = a2,

a1 = a3,

a4 = −a1.

a1 ×2 x +2 a1 ×2 y +2 a1 ×2 z −2 a1 = 0.

a1
1 > a2

1 > 0,

αa1
1

⊂ αa2
1
.

a1 ∈ [0.01, 0.09], [0.10, 0.19], … , [0.90, 0.99]. [1.00, 98.99], [99.00, 99.09], … , [99.90, 99.99],

A(99.99, 0, 0), B(0, 98.88, 0), C(0, 0, 1).

AB = (−99.99, 98.88, 0), AC = (−99.99, 0, 1)

a1 ×2 x +2 a2 ×2 y +2 a3 ×2 z +2 a4 = 0

a1 ×2 99.99 +2 a2 ×2 0 +2 a3 ×2 0 +2 a4 = 0,

a1 ×2 0 +2 a2 ×2 98.88 +2 a3 ×2 0 +2 a4 = 0,

a1 ×2 0 +2 a2 ×2 0 +2 a3 ×2 1 +2 a4 = 0,



We must have

and we have

All possible positive a1  form the set

and we get

All possible positive a2  form the set

and we get

Direct calculations show that

This means that for three distinct points

which form not parallel vectors

the plane ABC ∈ E3W2  does not exist.

3) Let us continue to consider the same question in E3W2  and take other three distinct points

In this case the vectors

are not parallel.

Again, we are looking for the “plane ABC = α ∈ E3W2” as the set of all points
A(x, y, z) ∈ E3W2  satisfying the equation

a1 ×2 99.99 +2 a4 = 0,

a2 ×2 98.88 +2 a4 = 0,

a3 ×2 1 +2 a4 = 0.

|a1| ≤ 1, |a2| ≤ 1.01,

a1 ×2 (99.99) = a2 ×2 (98.88).

Φ = [0.01, 0.02, … , 0.99, 1.00],

99.99 ×2 Φ = [0.99, 1.98, … , 98.82, 99.99].

Ψ = [0.01, 0.02, … , 0.99, 1.00, 1.01],

98.88 ×2 Ψ = [0.98, 1.96, … , 97.74, 98.88, 99.86].

99.99 ×2 Φ ∩ 98.88 ×2 Ψ = Λ.

A(99.99, 0, 0), B(0, 98.88, 0), C(0, 0, 1) ∈ E3W2,

AB = (−99.99, 98.88, 0), AC = (−99.99, 0, 1),

A(99.99, 0, 0), B(0, 98.37, 0), C(0, 0, 1).

AB = (−99.99, 98.37, 0), AC = (−99.99, 0, 1)



for all a1, a2, a3, a4 ∈ W2  such that (a1, a2, a3) ≠ (0, 0, 0). We get the system

or

We must have

and thus

We get the following:

All possible positive a1  form the set

and we get

All possible positive a2  form the set

and we get

Direct calculations show that

and we get only one point in intersection of these two sets, that is,

So there is only one plane α containing the points A(99.99, 0, 0), B(0, 98.37, 0), C(0, 0, 1), that
is, three distinct points ∈ E3W2  with not parallel vectors AB and AC uniquely determine a
plane containing these points.

So we have proved the following:

a1 ×2 x +2 a2 ×2 y +2 a3 ×2 z +2 a4 = 0

a1 ×2 99.99 +2 a2 ×2 0 +2 a3 ×2 0 +2 a4 = 0,

a1 ×2 0 +2 a2 ×2 98.37 +2 a3 ×2 0 +2 a4 = 0,

a1 ×2 0 +2 a2 ×2 0 +2 a3 ×2 1 +2 a4 = 0,

a1 ×2 99.99 +2 a4 = 0,

a2 ×2 98.37 +2 a4 = 0,

a3 +2 a4 = 0.

|a1| ≤ 1, |a2| ≤ 1.01,

a1 ×2 (99.99) = a2 ×2 (98.37).

Φ = [0.01, 0.02, … , 0.99, 1.00],

99.99 ×2 Φ = [0.99, 1.98, … , 98.82, 99.99].

Ψ = [0.01, 0.02, … , 0.99, 1.00, 1.01],

98.37 ×2 Ψ = [0.98, 1.96, … , 97.29, 98.37, 99.35].

99.99 ×2 Φ ∩ 98.37 ×2 Ψ = 61.92,

a1 = 0.62; a2 = 0.63; a3 = 61.92; a4 = −61.92.



Theorem 4.13.

In Mathematics with Observers geometry in space E3Wn , there are three distinct points A, B, C with

not parallel vectors AB and AC such that there is no plane containing these points.

Theorem 4.14.

In Mathematics with Observers geometry in space E3Wn , there are three distinct points A, B, C with

not parallel vectors AB and AC such that there is a unique plane containing these points.

Theorem 4.15.

In Mathematics with Observers geometry in space E3Wn , there are three distinct points A, B, C with

not parallel vectors AB and AC such that there is more than one plane containing these points.

4.4  Fourth property of connections

Let us consider any plane α ∈ E3Wn  and take any three distinct points in this plane:

such that the vectors

are not parallel.

Question: Do these three points A, B, C of a plane α completely determine that plane?

1) Let us consider this question in E3W2  and take the plane α:

As we have shown in Section →4.3, for three distinct points

the vectors

are not parallel. We also proved there that there is only one plane α containing the points
A(99.99, 0, 0), B(0, 98.37, 0), C(0, 0, 1), that is, three distinct points ∈ E3W2  with not
parallel vectors AB and AC uniquely determine a plane containing these points.

2) Let us continue to consider this question in E3W2  and take a plane α:

As we have shown, three distinct points

define the nonparallel vectors

A(x1, y1, z1), B(x2, y2, z2), C(x3, y3, z3)

AB = (x2 −n x1, y2 −n y1, z2 −n z1), AC = (x3 −n x1, y3 −n y1, z3 −n z1)

0.62 ×2 x +2 0.63 ×2 y +2 61.92 ×2 z −2 61.92 = 0.

A(99.99, 0, 0), B(0, 98.37, 0), C(0, 0, 1) ∈ α,

AB = (−99.99, 98.37, 0), AC = (−99.99, 0, 1)

x +2 y +2 z −2 1 = 0.

A(1, 0, 0), B(0, 1, 0), C(0, 0, 1) ∈ α



We also proved there that these three points not completely (not uniquely) determine a plane α.

For example, plane β:

also contains the same three points A, B, C, but α ≠ β.

So we have proved the following:

Theorem 4.16.

In Mathematics with Observers geometry in space E3Wn , there are a plane α and three distinct points

A, B, C ∈ α with nonparallel vectors AB and AC such that only a unique plane α contains these

points.

Theorem 4.17.

In Mathematics with Observers geometry in space E3Wn , there are a plane α and three distinct points

A, B, C ∈ α with nonparallel vectors AB and AC such that there is more than one plane

containing these points.

4.5  Fifth property of connections

Let us consider two planes α ∈ E3Wn  and β ∈ E3Wn , where α is the set of points (x, y, z)

satisfying the equation

and β is the set of points (x, y, z) satisfying the equation

for given a1, a2, a3, a4, b1, b2, b3, b4 ∈ Wn  such that (a1, a2, a3) ≠ (0, 0, 0) and
(b1, b2, b3) ≠ (0, 0, 0).

Let the straight line a ∈ E3Wn  be the set of all points A(x, y, z) ∈ E3Wn  satisfying the system
of equations

Question: If two points A, B of a straight line a lie in a plane γ, then does every point of a lie in γ?

1) Let the plane α ∈ E3W2  be the set of points (x, y, z) satisfying the equation

and let the plane β ∈ E3W2  be the set of points (x, y, z) satisfying the equation

AB = (−1, 1, 0), AC = (−1, 0, 1).

0.01 ×2 x +2 0.01 ×2 y +2 0.01 ×2 z −2 0.01 = 0

a1 ×n x +n a2 ×n y +n a3 ×n z +n a4 = 0,

b1 ×n x +n b2 ×n y +n b3 ×n z +n b4 = 0

{
a1 ×n x +n a2 ×n y +n a3 ×n z +n a4 = 0,

b1 ×n x +n b2 ×n y +n b3 ×n z +n b4 = 0.

y −2 1 = 0,



So the straight line a ∈ E3W2  is the set of all points A ∈ E3W2  with coordinates (x, 1, 1),
where x is any element ∈ W2 .

Let the plane γ ∈ E3W2  be the set of points (x, y, z) satisfying the equation

Let us take two points A, B of a straight line a:

For both points, we have

So

Now let s take the third point C of a straight line a:

Then we have

This means that point C does not belong to plane γ. So, in this case, we get the negative answer
for the question above.

2) It is clear that if we take any of two planes α ∈ E3Wn  or β ∈ E3Wn  determining a straight
line a as a plane γ (i. e., α = γ  or β = γ) and take two points A, B of this straight line a, then
every point C of a lies in α or β.

So, in this case, we get positive answer for the question above. Thus we have proved the
following:

Theorem 4.18.

In Mathematics with Observers geometry in space E3Wn , there are a plane γ and a straight line a with

two distinct points A, B ∈ a ∩ γ  such that any point C ∈ a belongs to plane γ, that is, a ∈ γ .

Theorem 4.19.

In Mathematics with Observers geometry in space E3Wn , there are a plane γ and a straight line a with

two distinct points A, B ∈ a ∩ γ  such that there is a point C ∈ a that does not belong plane to γ, that

is, a ∉ γ .

z −2 1 = 0

0.01 ×2 x +2 y −2 z −2 0.99 = 0.

A(99.99, 1, 1), B(99.31, 1, 1).

0.99 +2 1 −2 1 = 0.99.

A ∈ γ, B ∈ γ.

C(48.61, 1, 1).

0.48 +2 1 −2 1 = 0.48 ≠ 0.99.



4.6  Sixth property of connections

Let us consider two planes α ∈ E3Wn  and β ∈ E3Wn , where α is the set of points (x, y, z)

satisfying the equation

and β is the set of points (x, y, z) satisfying the equation

for given a1, a2, a3, a4, b1, b2, b3, b4 ∈ Wn  such that (a1, a2, a3) ≠ (0, 0, 0) and
(b1, b2, b3) ≠ (0, 0, 0).

Suppose these two planes have a common point A(x1, y1, z1), that is, point A satisfies the
system of equations

that is,

Question: Does this system always have at least a second solution, point B(x2, y2, z2)?

1) Let us consider two planes α ∈ E3W2  and β ∈ E3W2 , where α is the set of points (x, y, z)

satisfying the equation

and β is the set of points (x, y, z) satisfying the equation

These two planes have a common point A(0, 0, 0). Let us see whether there a second common
point B(x2, y2, z2).

Point B has to satisfy the system of equations

and we have

We must have

a1 ×n x +n a2 ×n y +n a3 ×n z +n a4 = 0,

b1 ×n x +n b2 ×n y +n b3 ×n z +n b4 = 0

{
a1 ×n x +n a2 ×n y +n a3 ×n z +n a4 = 0,

b1 ×n x +n b2 ×n y +n b3 ×n z +n b4 = 0,

{
a1 ×n x1 +n a2 ×n y1 +n a3 ×n z1 +n a4 = 0,

b1 ×n x1 +n b2 ×n y1 +n b3 ×n z1 +n b4 = 0.

99.99 ×2 x −2 98.88 ×2 y +2 z = 0,

z = 0.

{
99.99 ×2 x −2 98.88 ×2 y +2 z = 0,

z = 0,

99.99 ×2 x −2 98.88 ×2 y = 0.



All possible positive x form the set

and we get

All possible positive y form the set

and we get

Direct calculations show that

So point B does not exist, that is, in this case, planes α and β have only one common point.

2) Let us take two planes α ∈ E3W2  and β ∈ E3W2 , where α is the set of points (x, y, z)

satisfying the equation

and β is the set of points (x, y, z) satisfying the equation

These two planes have a common point A(0, 0, 0), and the set of common points of planes α and
β is [B(0, y, 0)], where y is any element of Wn , that is, there is more than one in common point
B.

So we have proved the following:

Theorem 4.20.

In Mathematics with Observers geometry in space E3Wn , there are two planes α and β having only a

unique common point.

Theorem 4.21.

In Mathematics with Observers geometry in space E3Wn , there are two planes α and β having more

than one common point.

4.7  Seventh property of connections

Questions: a) Does every straight line ∈ E2Wn  contain at least two points?

|x| ≤ 1, |y| ≤ 1.01.

Φ = [0.01, 0.02, … , 0.99, 1.00],

99.99 ×2 Φ = [0.99, 1.98, … , 98.82, 99.99].

Ψ = [0.01, 0.02, … , 0.99, 1.00, 1.01],

98.88 ×2 Ψ = [0.98, 1.96, … , 97.74, 98.88, 99.86].

99.99 ×2 Φ ∩ 98.88 ×2 Ψ = Λ.

x = 0,

z = 0.



b) Does every straight line ∈ E3Wn  contain at least two points?

c) Does every plane ∈ E3Wn  contain at least three points not lying in the same straight line?

d) Does the space E3Wn  contain at least four points not lying in any plane?

1) Let us consider the straight line a ∈ E2W2  with equation

The point A(0, 0) ∈ a. We must have

All possible positive x form the set

and we get

All possible positive y form the set

and we get

Direct calculations show that

So the straight line a contains only one point, that is, the answer to question a) in this case is
negative.

1’) Let us consider the straight line a ∈ E2W2  with equation

The point A(0, 0) ∈ a, and also any point B(x, 0) ∈ a with x ∈ W2 . So the straight line a
contains more than one point, that is, the answer to question a) in this case is positive.

So, we have proved the following:

Theorem 4.22.

In Mathematics with Observers geometry in plane E2Wn , there is a straight line a having only one

unique point.

Theorem 4.23.

99.99 ×2 x −2 98.88 ×2 y = 0.

|x| ≤ 1, |y| ≤ 1.01.

Φ = [0.01, 0.02, … , 0.99, 1.00],

99.99 ×2 Φ = [0.99, 1.98, … , 98.82, 99.99].

Ψ = [0.01, 0.02, … , 0.99, 1.00, 1.01],

98.88 ×2 Ψ = [0.98, 1.96, … , 97.74, 98.88, 99.86].

99.99 ×2 Φ ∩ 98.88 ×2 Ψ = Λ.

y = 0.



In Mathematics with Observers geometry in plane E2Wn  there is a straight line a having more than

one point.

2) Let us consider two planes α ∈ E3W2  and β ∈ E3W2 , where α is the set of points (x, y, z)

satisfying the equation

and β is the set of points (x, y, z) satisfying the equation

The straight line a ∈ E3W2  is defined by the system of equations

and we have

So we have only one point A(0, 0, 0) as a solution of this system, that is, the straight line a
contains only one point, so the answer to question b) is negative.

2’) Let us consider two planes α ∈ E3W2  and β ∈ E3W2 , where α is the set of points (x, y, z)

satisfying the equation

and β is the set of points (x, y, z) satisfying the equation

The straight line a ∈ E3W2  is defined by the system of equations

and we have

for all x ∈ W2 . So we have more than two points A as solutions of this system, that is, the
answer to question b) is positive.

So we have proved the following:

Theorem 4.24.

In Mathematics with Observers geometry in space E3Wn , there is a straight line a having only one

unique point.

Theorem 4.25.

99.99 ×2 x −2 98.88 ×2 y +2 z = 0,

z = 0.

{
99.99 ×2 x −2 98.88 ×2 y +2 z = 0,

z = 0,

99.99 ×2 x −2 98.88 ×2 y = 0.

y = 0,

z = 0.

{
y = 0,

z = 0,

a : [A(x, 0, 0)]



In Mathematics with Observers geometry in space E3Wn , there is a straight line a having more than

one point.

3) Let us consider the plane α ∈ E3W2  as the set of points (x, y, z) satisfying the equation

The set of points satisfying this equation is

where z is any element ∈ W2 . So the set of all points ∈ α is the straight line a ∈ E3W2  defined
by the system of equations

that is, in this case the answer to question c) is negative.

3’) Let us consider the plane α ∈ E3W2  as the set of points (x, y, z) satisfying the equation

Let us take three points satisfying this equation:

Let us prove that these three points do not lie in the same straight line. Let A, B, C ∈ a, where
line a is defined as the solution of the system of equations

We get

We have

and line a is defined as the solution of the system of equations

99.99 ×2 x −2 98.88 ×2 y = 0.

[A(0, 0, z)],

{
x = 0,

y = 0,

x +2 y +2 z −2 1 = 0.

A(1, 0, 0), B(0, 1, 0), C(0, 0, 1).

{
x +2 y +2 z −2 1 = 0,

b1 ×2 x +2 b2 ×2 y +2 b3 ×2 z +2 b4 = 0.

x +2 y +2 z −2 1 = 0,

b1 ×2 1 +2 b2 ×2 0 +2 b3 ×2 0 +2 b4 = 0,

b1 ×2 0 +2 b2 ×2 1 +2 b3 ×2 0 +2 b4 = 0,

b1 ×2 0 +2 b2 ×2 0 +2 b3 ×2 1 +2 b4 = 0.

x +2 y +2 z −2 1 = 0,

b1 = b2,

b1 = b3,

b1 = −b4,

{
x +2 y +2 z −2 1 = 0,

b1 ×2 x +2 b1 ×2 y +2 b1 ×2 z −2 b1 = 0.



If we call

plane β, then we get

or

depends on the coefficient b1  (clearly, b1 ≠ 0). This means that points A, B, C do not lie in the
same straight line. So in this case the answer to question c) is positive.

So we have proved the following:

Theorem 4.26.

In Mathematics with Observers geometry in space E3Wn , there is a plane α such that any three

distinct points A, B, C ∈ α lie in the same straight line.

Theorem 4.27.

In Mathematics with Observers geometry in space E3Wn , there are a plane α and three distinct points

A, B, C ∈ α not lying in a straight line.

4) Any plane α ∈ E3Wn  has the equation

Let us take four points satisfying this equation:

that is, we have

This means that

So plane α containing all points A, B, C, D must have the equation

but by definition we must have the condition

b1 ×2 x +2 b1 ×2 y +2 b1 ×2 z −2 b1 = 0

α ∩ β = α,

α ∩ β = β

a1 ×n x +n a2 ×n y +n a3 ×n z +n a4 = 0.

A(0, 0, 0), B(1, 0, 0), C(0, 1, 0), D(0, 0, 1),

a1 ×n 0 +n a2 ×n 0 +n a3 ×n 0 +n a4 = 0,

a1 ×n 1 +n a2 ×n 0 +n a3 ×n 0 +n a4 = 0,

a1 ×n 0 +n a2 ×n 1 +n a3 ×n 0 +n a4 = 0.

a1 ×n 0 +n a2 ×n 0 +n a3 ×n 1 +n a4 = 0.

a1 = 0,

a2 = 0,

a3 = 0,

a4 = 0.

0 ×n x +n 0 ×n y +n 0 ×n z +n 0 = 0,



a)

b)

c)

This means that the answer to question d) is positive.

So we have proved the following:

Theorem 4.28.

In Mathematics with Observers geometry the space E3Wn  contains at least four points A, B, C, D not

lying in any plane α.

4.8  Point and line theorem

We have the following classical geometry theorem:

“Two straight lines of a plane have either one point or no common point; two planes have no
common point or a common straight line; a plane and a straight line not lying in it have no
point or one common point.”

We get the following questions:

Do two straight lines of a plane have either one point or no common point?

Do two planes have no common point or a common straight line?

Do a plane and a straight line not lying in it have no point or one common point?

Let us start with question a).

1) Let us take two straight lines a, b ∈ E2W2 , where a satisfies the equation

and b satisfies the equation

Because the number 3 does not have an inverse number in W2 , we get

that is, the straight lines a and b have no common points. Note that these two lines are not
parallel in the classical sense.

1’) Let us take two straight lines a, b ∈ E3W2 , where a has the system of equations

(a1, a2, a3) ≠ (0, 0, 0).

3 ×2 x −2 y = 0,

y −2 1 = 0.

a ∩ b = Λ



and b has the system of equations

We get

that is, the straight lines a and b have no common points.

2) Let us take two straight lines a, b ∈ E2W2 , where a has the equation

and b has the equation

On the interval 1 ≤ x ≤ 5, line a contains only the set Ω of points A(x, y) ∈ E2W2 :

We get again

that is, the straight lines a and b have no common points. Again, note that these two lines are not
parallel in the classical sense.

2’) Let us take two straight lines a, b ∈ E3W2 , where a has the system of equations

and b has the system of equations

We get again

that is, the straight lines a and b have no common points.

3) Let us take two straight lines a, b ∈ E2W2 , where a has the equation

{
3 ×2 x −2 y = 0,

z = 0,

{
y −2 1 = 0,

z = 0.

a ∩ b = Λ,

0.08 ×2 x +2 0.03 ×2 y −2 0.11 = 0,

x −2 3.00 = 0.

Ω = [A(x, y)]= [x ∈ [1.00, 1.01, … , 1.99], y ∈ [1.00, 1.01, … , 1.99]] ∪

∪[x ∈ [4.00, 4.01, … , 4.99], y ∈ [−7.00, −7.01, … , −7.99]].

a ∩ b = Λ,

{
0.08 ×2 x +2 0.03 ×2 y −2 0.11 = 0,

z = 0,

{
x −2 3.00 = 0,

z = 0.

a ∩ b = Λ,

3 ×2 x −2 y = 0,



and b has the equation

We get

that is, the straight lines a and b have one common point A.

3’) Let us take two straight lines a, b ∈ E3W2 , where a has the system of equations

and b has the system of equations

We get

that is, the straight lines a and b have one common point A.

4) Let us take two straight lines a, b ∈ E2W2 , where a has the equation

and b has the equation

We get

that is, the straight lines a and b have one common point A.

4’) Let us take two straight lines a, b ∈ E3W2 , where a has the system of equations

and b has the system of equations

We get

y = 0.

a ∩ b = A(0, 0),

{
3 ×2 x −2 y = 0,

z = 0,

{
y = 0,

z = 0.

a ∩ b = A(0, 0, 0),

x = 0,

y = 0.

a ∩ b = A(0.00, 0.00),

{
x = 0,

z = 0,

{
y = 0,

z = 0.

a ∩ b = A(0, 0, 0),



that is, the straight lines a and b have one point A.

5) Let us take two straight lines a, b ∈ E2W2 , where a has the equation

and b has the equation

We get

that is, the straight lines a and b have two hundred common points (from the point of view of
Wm -observer, m ≥ 3).

5’) Let us take two straight lines a, b ∈ E3W2 , where a has the system of equations

and b has the system of equations

We get

that is, the straight lines a and b have two hundred common points (from the point of view of
Wm -observer, m ≥ 3).

So question a) has the negative answer: two distinct straight lines of a plane may have no point,
one common point, or more than one common point.

So we have proved the following:

Theorem 4.29.

In Mathematics with Observers geometry in plane E2Wn , there are two distinct straight lines a and b

such that a ∩ b = Λ.

Theorem 4.30.

In Mathematics with Observers geometry in plane E2Wn , there are two distinct straight lines a and b

such that a ∩ b contains only one point.

Theorem 4.31.

In Mathematics with Observers geometry in plane E2Wn , there are two distinct straight lines a and b

such that a ∩ b contains more than one point.

Theorem 4.32.

0.01 ×2 x +2 0.01 ×2 y = 0,

y = 0.

a ∩ b = [(0, 0), (±0.01, 0), (±0.02, 0), … , (±0.99, 0)],

{
0.01 ×2 x +2 0.01 ×2 y = 0,

z = 0,

{
y = 0,

z = 0.

a ∩ b = [(0, 0, 0), (±0.01, 0, 0), (±0.02, 0, 0), … , (±0.99, 0, 0)],



In Mathematics with Observers geometry in space E3Wn , there are two distinct straight lines a and b

such that a ∩ b = Λ.

Theorem 4.33.

In Mathematics with Observers geometry in space E3Wn , there are two distinct straight lines a and b

such that a ∩ b contains only one point.

Theorem 4.34.

In Mathematics with Observers geometry in space E3Wn , there are two distinct straight lines a and b

such that a ∩ b contains more than one point.

Let us go to question b). Let us consider two planes α ∈ E3Wn  and β ∈ E3Wn , where α is the
set of points (x, y, z) satisfying the equation

and β is the set of points (x, y, z) satisfying the equation

for given a1, a2, a3, a4, b1, b2, b3, b4 ∈ Wn  such that (a1, a2, a3) ≠ (0, 0, 0) and
(b1, b2, b3) ≠ (0, 0, 0).

1) Let us take two planes α ∈ E3W2  and β ∈ E3W2 , where α is the set of points (x, y, z)

satisfying the equation

and β is the set of points (x, y, z) satisfying the equation

We get

that is, the planes α and β have no common points.

2) Let us take two planes α ∈ E3W2  and β ∈ E3W2 , where α is the set of points (x, y, z)

satisfying the equation

and β is the set of points (x, y, z) satisfying the equation

These two planes have a common point A(0, 0, 0), and the set of common points of planes α and
β is [B(0, y, 0)], where y is any element of Wn , that is, there is a straight line a ∈ E3W2 :

a1 ×n x +n a2 ×n y +n a3 ×n z +n a4 = 0,

b1 ×n x +n b2 ×n y +n b3 ×n z +n b4 = 0

x −2 1 = 0,

x = 0.

α ∩ β = Λ,

x = 0,

z = 0.

{
x = 0,

z = 0.



This means that two planes α ∈ E3W2  and β ∈ E3W2  have a common straight line a.

3) Let us consider two planes α ∈ E3W2  and β ∈ E3W2 , where α is the set of points (x, y, z)

satisfying the equation

and β is the set of points (x, y, z) satisfying the equation

These two planes have a point A(0, 0, 0) in common. Let us see whether there is a second
common point B(x2, y2, z2).

Point B has to satisfy the system of equations

and we have

We must have

All possible positive x form the set

and we get

All possible positive y form the set

and we get

Direct calculations show that

So point B does not exist, that is, in this case the planes α and β have only one common point.

4) Let us consider two planes α ∈ E3W2  and β ∈ E3W2 , where α is the set of points (x, y, z)

satisfying the equation

99.99 ×2 x −2 98.88 ×2 y +2 z = 0,

z = 0.

{
99.99 ×2 x −2 98.88 ×2 y +2 z = 0,

z = 0,

99.99 ×2 x −2 98.88 ×2 y = 0.

|x| ≤ 1, |y| ≤ 1.01.

Φ = [0.01, 0.02, … , 0.99, 1.00],

99.99 ×2 Φ = [0.99, 1.98, … , 98.82, 99.99].

Ψ = [0.01, 0.02, … , 0.99, 1.00, 1.01],

98.88 ×2 Ψ = [0.98, 1.96, … , 97.74, 98.88, 99.86].

99.99 ×2 Φ ∩ 98.88 ×2 Ψ = Λ.

99.99 ×2 x −2 98.37 ×2 y +2 z = 0,



and β is the set of points (x, y, z) satisfying the equation

These two planes have a in common point A(0, 0, 0). Let us see whether there are other
common points (x, y, z). These points have to satisfy the system of equations

and we have

We must have

All possible nonzero x form the set

and we get

All possible nonzero y form the set

and we get

Direct calculations show that

So in addition to point A, we have two points B(0.62, 0.63, 0) and C(−0.62, −0.63, 0) such
that

that is, these two planes have three common points.

So question b) has the negative answer: two planes may have no point, one point, or more than
one common point or a straight line.

So we have proved the following:

Theorem 4.35.

In Mathematics with Observers geometry in space E3Wn , there are two distinct planes α and β such

that α ∩ β = Λ.

z = 0.

{
99.99 ×2 x −2 98.37 ×2 y +2 z = 0,

z = 0,

99.99 ×2 x −2 98.37 ×2 y = 0.

|x| ≤ 1, |y| ≤ 1.01.

Φ = [±0.01, ±0.02, … , ±0.99, ±1.00],

99.99 ×2 Φ = [±0.99, ±1.98, … , ±98.82, ±99.99].

Ψ = [±0.01, ±0.02, … , ±0.99, ±1.00, ±1.01],

98.88 ×2 Ψ = [±0.98, ±1.96, … , ±97.29, ±98.37, ±99.35].

99.99 ×2 Φ ∩ 98.37 ×2 Ψ = [(0.62, 0.63), (−0.62, −0.63)].

α ∩ β = [A, B, C],



Theorem 4.36.

In Mathematics with Observers geometry in space E3Wn , there are two distinct planes α and β such

that α ∩ β contains only one point.

Theorem 4.37.

In Mathematics with Observers geometry in space E3Wn , there are two distinct planes α and β such

that α ∩ β contains more than one point.

Theorem 4.38.

In Mathematics with Observers geometry in space E3Wn , there are two distinct planes α and β such

that α ∩ β contains a straight line.

Let us go to question c).

1) Let us consider the plane α ∈ E3W2  with equation

and the straight line a ∈ E3W2  with system of equations

We get

that is, the straight line a does not lie in the plane α, and α and a have no common point.

2) Let us consider the plane α ∈ E3W2  with equation

and the straight line a ∈ E3W2  with system of equations

We get

that is, the straight line a does not lie in the plane α, and α and a have one common point A.

3) Let the plane α ∈ E3W2  be the set of points (x, y, z) satisfying the equation

and let β ∈ E3W2  be the set of points (x, y, z) satisfying the equation

Let the straight line a ∈ E3W2  be the set of all points A ∈ E3W2  defined by the system of
equations

x = 0

{
x −2 1 = 0,

z = 0.

α ∩ a = Λ,

x = 0

{
y −2 1 = 0,

z −2 1 = 0.

α ∩ a = A(0, 1, 1),

y −2 1 = 0,

z −2 1 = 0.



It is the set of points in E3W2  with coordinates (x, 1, 1), where x is any element of W2 .

Let the plane γ ∈ E3W2  be the set of points (x, y, z) satisfying the equation

Let us take two points A, B of a straight line a:

For both points, we have

So

Now let us take a third point C of a straight line a:

We have

This means that point C does not belong to plane γ, that is, the straight line a does not lie in plane
γ, and γ and a have at least two common points A and B.

So question c) has the negative answer: a plane and a straight line not lying in it may have no
point, one point, or two or more common points.

So we have proved the following:

Theorem 4.39.

In Mathematics with Observers geometry in space E3Wn , there are a plane α and a straight line a not

lying in this plane such that α ∩ a = Λ.

Theorem 4.40.

In Mathematics with Observers geometry in space E3Wn , there are a plane α and a straight line a not

lying in this plane such that α ∩ a contains only one point.

Theorem 4.41.

In Mathematics with Observers geometry in space E3Wn , there are a plane α and a straight line a not

lying in this plane such that α ∩ a contains more than one point.

So the “point and line theorem” of classical geometry is incorrect in Mathematics with Observers
geometry.

{
y −2 1 = 0,

z −2 1 = 0.

0.01 ×2 x +2 y −2 z −2 0.99 = 0.

A(99.99, 1, 1), B(99.31, 1, 1).

0.99 +2 1 −2 1 = 0.99.

A ∈ γ, B ∈ γ.

C(48.61, 1, 1).

0.48 +2 1 −2 1 = 0.48 ≠ 0.99.



a)

b)

4.9  Line and plane theorem

Classical geometry contains the following theorem:

“Through a straight line and a point not lying in it, or through two distinct straight lines
having a common point, one and only one plane may be made to pass.”

We have the following questions:

Is it correct that through a straight line and a point not lying in it, one and only
one plane may be made to pass?

Is it correct that through two distinct straight lines having a common point, one
and only one plane may be made to pass?

Let us go to question a).

1) Let us take the straight line a ∈ E3W2  defined by the system of equations

and the point

We are looking for the plane α ∈ E3W2  as the set of points (x, y, z) satisfying the equation

where a1, a2, a3, a4 ∈ W2  such that (a1, a2, a3) ≠ (0, 0, 0), and the conditions

Line a is the set of points with coordinates (x, 0, 0) ∈ E3W2 , where x is any element ∈ W2 . We
must have

This means that

So we can rewrite the equation of plane α as

Since A ∈ α, we have

{
y = 0,

z = 0,

A(0, 99.99, −98.88) ∈ E3W2.

a1 ×2 x +2 a2 ×2 y +2 a3 ×2 z +2 a4 = 0,

a ∈ α, A ∈ α.

a1 ×2 x +2 a4 = 0.

{
a1 = 0,

a4 = 0.

a2 ×2 y +2 a3 ×2 z = 0.



We must have

All possible positive a2  form the set

and we get

All possible positive a3  form the set

and we get

As above, direct calculations show that

So plane α does not exist.

2) Let us take three distinct points in E3W2 :

Let a straight line a contain points A and B. Because the vectors

are not parallel, point C does not belong to line a. Another way to prove this is as follows.

Line a has the system of equations

that is,

that is,

a2 ×2 99.99 −2 a3 ×2 98.88 = 0.

|a2| ≤ 1, |a3| ≤ 1.01.

Φ = [0.01, 0.02, … , 0.99, 1.00],

99.99 ×2 Φ = [0.99, 1.98, … , 98.82, 99.99].

Ψ = [0.01, 0.02, … , 0.99, 1.00, 1.01],

98.88 ×2 Ψ = [0.98, 1.96, … , 97.74, 98.88, 99.86].

99.99 ×2 Φ ∩ 98.88 ×2 Ψ = Λ.

A(1, 0, 0), B(0, 1, 0), C(0, 0, 1).

AB = (−1, 1, 0), AC = (−1, 0, 1)

{
b1 ×2 x +2 b2 ×2 y +2 b3 = 0,

z = 0,

b1 ×2 1 +2 b2 ×2 0 +2 b3 = 0,

b1 ×2 0 +2 b2 ×2 1 +2 b3 = 0,

z = 0,

b1 = b2,

b1 = −b3,

z = 0,



that is, line a has the system of equations

and C ∉ a.

Now we are looking for plane α containing line a and point C as the set of points
(x, y, z) ∈ E3W2  satisfying the equation

We get the system

and so

So the equation of plane α in this case is

For a1 = 1, we get plane α1  with equation

For a1 = 0.01, we get plane α2  with equation

Let us take the point D(0.2, 0.2, 0.6) ∈ E3W2 . We get

So

but

Thus

{
b1 ×2 x +2 b1 ×2 y −2 b1 = 0,

z = 0,

a1 ×2 x +2 a2 ×2 y +2 a3 ×2 z +2 a4 = 0.

a1 ×2 1 +2 a2 ×2 0 +2 a3 ×2 0 +2 a4 = 0,

a1 ×2 0 +2 a2 ×2 1 +2 a3 ×2 0 +2 a4 = 0,

a1 ×2 0 +2 a2 ×2 0 +2 a3 ×2 1 +2 a4 = 0,

a1 = a2,

a1 = a3,

a4 = −a1.

a1 ×2 x +2 a1 ×2 y +2 a1 ×2 z −2 a1 = 0.

x +2 y +2 z −2 1 = 0.

0.01 ×2 x +2 0.01 ×2 y +2 0.01 ×2 z −2 0.01 = 0.

0.2 +2 0.2 +2 0.6 −2 1 = 0.

D ∈ α1,

0.01 ×2 0.2 +2 0.01 ×2 0.02 +2 0.01 ×2 0.06 −2 0.01 ≠ 0.

α1 ≠ α2.



This means that a straight line and a point not lying in it not completely (not uniquely)
determine a plane α that may be made to pass.

3) Let us take the straight line a ∈ E3W2  with system of equations

and the point

We are looking for the plane α ∈ E3W2  as the set of points (x, y, z) satisfying the equation

with a1, a2, a3, a4 ∈ W2  such that (a1, a2, a3) ≠ (0, 0, 0) and conditions

Line a is the set of points with coordinates (x, 0, 0) ∈ E3W2 , where x is any element ∈ W2 . We
must have

This means that

So we can rewrite the equation of plane α as

Since A ∈ α, we have

We must have

All possible positive a2  form the set

and we get

All possible positive a3  form the set

and we get

{
y = 0,

z = 0,

A(0, 99.99, −98.37) ∈ E3W2.

a1 ×2 x +2 a2 ×2 y +2 a3 ×2 z +2 a4 = 0

a ∈ α, A ∈ α.

a1 ×2 x +2 a4 = 0.

{
a1 = 0,

a4 = 0.

a2 ×2 y +2 a3 ×2 z = 0.

a2 ×2 99.99 = a3 ×2 98.37.

|a2| ≤ 1, |a3| ≤ 1.01.

Φ = [0.01, 0.02, … , 0.99, 1.00],

99.99 ×2 Φ = [0.99, 1.98, … , 98.82, 99.99].

Ψ = [0.01, 0.02, … , 0.99, 1.00, 1.01],



Direct calculations show that

and we get only one point in intersection of these two sets, that is,

So in this case, there is only one plane α containing line a and point A. Thus question a) has the
negative answer: Through a straight line and a point not lying in it, no plane, one plane, or more
than one plane may be made to pass.

So we have proved the following:

Theorem 4.42.

In Mathematics with Observers geometry in space E3Wn , there are a straight line a and a point A not

lying in this line such that there is no plane α containing this line and point.

Theorem 4.43.

In Mathematics with Observers geometry in space E3Wn  there are a straight line a and a point A not

lying in this line such that there is only one plane α containing this line and point.

Theorem 4.44.

In Mathematics with Observers geometry in space E3Wn , there are a straight line a and a point A not

lying in this line such that there is more than one plane α containing this line and point.

Let us go to question b).

1) Let us take three distinct points ∈ E3W2 :

Let the straight line a contain points A and B, that is, a = AB, and let the system of equations of
this line be

Since A, B ∈ a, we have

that is,

So we can rewrite the system of equations of line a as

98.37 ×2 Ψ = [0.98, 1.96, … , 97.29, 98.37, 99.35].

99.99 ×2 Φ ∩ 98.37 ×2 Ψ = [61.92],

a1 = 0; a2 = 0.62; a3 = 0.63 a4 = 0.

A(1, 0, 0), B(0, 99.99, 0), C(0, 0, 98.88).

{
a1 ×2 x +2 a2 ×2 y +2 a3 ×2 z +2 a4 = 0,

z = 0.

{
a1 +2 a4 = 0,

a2 ×2 99.99 +2 a4 = 0,

{
a1 = a2 ×2 99.99.

a1 = −a4.



We see that the point C(0, 0, 98.88) does not belong to line a because its coordinate z ≠ 0. We
can make the same statement also because the vectors

are not parallel. Let the straight line b contain points A and C, that is, b = AC , and let the system
of equations of this line be

Since A, C ∈ b, we have

that is,

So we can rewrite the system of equations of line b as

These two distinct straight lines a and b have a common point A. We are looking for the plane α
containing lines a and b as the set of points (x, y, z) ∈ E3W2  satisfying the equation

We get the system

and thus

We must have

and

{
(a2 ×2 99.99) ×2 x +2 a2 ×2 y −2 a2 ×2 99.99 = 0,

z = 0.

AB = (−1, 99.99, 0), AC = (−1, 0, 98.88)

{
b1 ×2 x +2 b2 ×2 y +2 b3 ×2 z +2 b4 = 0,

y = 0.

{
b1 +2 b4 = 0,

b3 ×2 98.88 +2 b4 = 0,

{
b1 = b3 ×2 98.88,

b1 = −b4.

{
(b3 ×2 98.88) ×2 x +2 b3 ×2 z −2 (b3 ×2 98.88) = 0,

y = 0.

c1 ×2 x +2 c2 ×2 y +2 c3 ×2 z +2 c4 = 0.

c1 ×2 1 +2 c2 ×2 0 +2 c3 ×2 0 +2 c4 = 0,

c1 ×2 0 +2 c2 ×2 99.99 +2 c3 ×2 0 +2 c4 = 0,

c1 ×2 0 +2 c2 ×2 0 +2 c3 ×2 98.88 +2 c4 = 0,

c1 = c2 ×2 99.99,

c1 = c3 ×2 98.88,

c4 = −c1.

c2 ×2 99.99 = c3 ×2 98.88



All possible positive c2  form the set

and we get

All possible positive c3  form the set

and we get

Direct calculations show that

So plane α does not exist.

2) Let us take three distinct points ∈ E3W2 :

Let the straight line a contain points A and B, that is, a = AB, and let the system of equations of
this line be

Since A, B ∈ a, we have

that is,

So we can rewrite the system of equations of line a as

and we see that the point C(0, 0, 98.37) does not belong to line a because its coordinate z ≠ 0.
We can make same statement also because the vectors

|c2| ≤ 1, |c3| ≤ 1.01.

Φ = [0.01, 0.02, … , 0.99, 1.00],

99.99 ×2 Φ = [0.99, 1.98, … , 98.82, 99.99].

Ψ = [0.01, 0.02, … , 0.99, 1.00, 1.01],

98.88 ×2 Ψ = [0.98, 1.96, … , 97.74, 98.88, 99.86].

99.99 ×2 Φ ∩ 98.88 ×2 Ψ = Λ.

A(1, 0, 0), B(0, 99.99, 0), C(0, 0, 98.37).

{
a1 ×2 x +2 a2 ×2 y +2 a3 ×2 z +2 a4 = 0,

z = 0.

{
a1 +2 a4 = 0,

a2 ×2 99.99 +2 a4 = 0,

{
a1 = a2 ×2 99.99,

a1 = −a4.

{
(a2 ×2 99.99) ×2 x +2 a2 ×2 y −2 a2 ×2 99.99 = 0,

z = 0,

AB = (−1, 99.99, 0), AC = (−1, 0, 98.37)



are not parallel.

Let the straight line b contain points A and C, that is, b = AC , and let the system of equations of
this line be

Since A, C ∈ b, we have

that is,

So we can rewrite the system of equations of line b as

These two distinct straight lines a and b have a common point A.

We are looking for the plane α containing lines a and b as the set of points (x, y, z) ∈ E3W2

satisfying the equation

We get the system

and thus

We must have

and

All possible positive c2  form the set

{
b1 ×2 x +2 b2 ×2 y +2 b3 ×2 z +2 b4 = 0,

y = 0.

{
b1 +2 b4 = 0,

b3 ×2 98.37 +2 b4 = 0,

{
b1 = b3 ×2 98.37,

b1 = −b4.

{
(b3 ×2 98.37) ×2 x +2 b3 ×2 z −2 (b3 ×2 98.37) = 0,

y = 0.

c1 ×2 x +2 c2 ×2 y +2 c3 ×2 z +2 c4 = 0.

c1 ×2 1 +2 c2 ×2 0 +2 c3 ×2 0 +2 c4 = 0,

c1 ×2 0 +2 c2 ×2 99.99 +2 c3 ×2 0 +2 c4 = 0,

c1 ×2 0 +2 c2 ×2 0 +2 c3 ×2 98.37 +2 c4 = 0,

c1 = c2 ×2 99.99,

c1 = c3 ×2 98.37,

c4 = −c1.

c2 ×2 99.99 = c3 ×2 98.37

|c2| ≤ 1, |c3| ≤ 1.01.



and we get

All possible positive c3  form the set

and we get

Direct calculations show that

and we get only one point in intersection of these two sets, that is,

This means in that this case, through two distinct straight lines having one common point, only
one plane may be made to pass.

3) Let us take the straight lines a, b ∈ E3W2 , where a has the system of equations

and b has the system of equations

These two distinct straight lines have one common point O(0, 0, 0). Let us consider the plane

where a3 ≠ 0. We have

For |a3| ≥ 1

where x and y are any elements ∈ W2 . For |a3| ∈ [0.1, 0.11, … , 0.99],

Φ = [0.01, 0.02, … , 0.99, 1.00],

99.99 ×2 Φ = [0.99, 1.98, … , 98.82, 99.99].

Ψ = [0.01, 0.02, … , 0.99, 1.00, 1.01],

98.37 ×2 Ψ = [0.98, 1.96, … , 97.29, 98.37, 99.35].

99.99 ×2 Φ ∩ 98.88 ×2 Ψ = 61.92,

c1 = 61.92,

c2 = 0.62,

c3 = 0.63,

c4 = −61.92.

{
x = 0,

z = 0,

{
y = 0,

z = 0.

α : a3 ×2 z = 0,

a ⊂ α, b ⊂ α

α1 = [(x, y, 0)],

α2 = [(x, y, 0), (x, y, ±0.01), … , (x, y, ±0.09)],



where x and y are any elements ∈ W2 . For |a3| ∈ [0.01, 0.02, … , 0.09],

where x and y are any elements ∈ W2 . This means that in this case, through two distinct straight
lines having a common point, more than one plane may be made to pass.

So question b) has the negative answer: Through two straight lines having only one common
point, no plane, one plane, or more than one plane may be made to pass.

So we have proved the following:

Theorem 4.45.

In Mathematics with Observers geometry in space E3Wn , there are two distinct straight lines a and b

having only one common point A such that there is no plane α containing these lines.

Theorem 4.46.

In Mathematics with Observers geometry in space E3Wn , there are two distinct straight lines a and b

having only one common point A such that there is only one plane α containing these lines.

Theorem 4.47.

In Mathematics with Observers geometry in space E3Wn , there are two distinct straight lines a and b

having only one common point A such that there is more than one plane α containing these lines.

So the “line and plane theorem” of classical geometry is incorrect in Mathematics with
Observers geometry.

α3 = [(x, y, 0), (x, y, ±0.01), … , (x, y, ±0.99)],



5  Observability and properties of points order
analysis

We have to define what does the relation “between points of a straight line” mean in
Mathematics with Observers geometry.

In the case of the so-called “simple” straight lines, for example, lines a, b, c:

we can define the relation “between points of straight line” in the following standard way.
Take points

Then we say that the points

lie between A and B. We can also say that the points

lie between A and B. These two definitions are equal in this case, and we can call say that a
point C ′′(x, y) ∈ a lies between A and B if at least one of the following conditions is satisfied:

or

Take points

Then we say that the points

lie between D and E.

Take points

a∈ E2Wn : x −n y = 0,

b∈ E2Wn : y = 0,

c∈ E2Wn : x = 0,

A,B ∈ a : A(1, 1),B(2, 2).

C(x, y) ∈ a : 1 < x < 2

C ′(x, y) ∈ a : 1 < y < 2

1 < x < 2

1 < y < 2.

D,E ∈ b : D(1, 0),E(2, 0).

F(x, y) ∈ b : 1 < x < 2

I, J ∈ c : I(0, 1), J(0, 2).



Then we say that the points

lie between I and J.

In case we have a “not simple” straight line, for example, line

we can define the relation “between points of straight line” in the following “not simple” way.
Take the points

Then we can say that a point N(x, y) ∈ d lies between L and M if

Take the points

Then we can say that a point Q(x, y) ∈ d lies between O and P if

Take the points

Then we can say that a point Q′(x, y) ∈ d lies between O′  and P ′  if

Take the points

Then we can say that a point Q′′(x, y) ∈ d lies between O′′  and P ′′  if

Take the points

Then we can say that a point Q′′′(x, y) ∈ d lies between O′′′  and P ′′′  if

K(x, y) ∈ c : 1 < y < 2

d ∈ E2W2 : 0.01 ×2 x −2 0.01 ×2 y = 0,

L,M ∈ d : L(1, 1),M(2, 2).

{
1 < x < 2,

1 < y < 2.

O,P ∈ d : O(1.06, 1.89),P(2.11, 2.03).

{
1.06 < x < 2.11,

1.89 < y < 2.03.

O′,P ′ ∈ d : O′(2.06, 2.74),P ′(2.11, 2.03).

{
2.06 < x < 2.11,

2.03 < y < 2.74.

O′′,P ′′ ∈ d : O′′(2.06, 2.74),P ′′(2.11, 2.74).

{
2.06 < x < 2.11,

y = 2.74.

O′′′,P ′′′ ∈ d : O′′′(2.06, 2.74),P ′′′(2.06, 2.03).



Take the points

Then we can say that a point T (x, y) lying between R and S does not exist.

Take the points

Then we can say that a point W(x, y) lying between U and V does not exist.

To get one more possible logical situation, let us consider the line

On the interval 1 ≤ x ≤ 5, this line contains only the set Ω of points A(x, y) ∈ E2W2 :

Take the points

Then we can say that a point Z(x, y) lying between X and Y does not exist.

Or take the points

Then we can say that a point Z ′(x, y) lying between X ′  and Y ′  does not exist.

Now we give a general definition of the relation “between points of straight line”.

First of all, we define the “closed interval” [u, v];u, v ∈ Wn , as the set of all elements
w ∈ Wn  satisfying the inequalities u ≤ w ≤ v if u ≤ v or v ≤ w ≤ u if v ≤ u.

If from [u, v] we remove the end points u, v, then we get the so-called “open interval” (u, v).

Definition 5.1.

Suppose we have a straight line a ∈ E2Wn  and three distinct points

{
x = 2.06,

2.03 < y < 2.74.

R,S ∈ d : R(1, 1.99),S(1.01, 1.03).

U ,V ∈ d : U(1.34, 1.88),V (1.76, 1.89).

e ∈ E2W2 : 0.08 ×2 x +2 0.03 ×2 y −2 0.11 = 0.

Ω = [A(x, y)]= [x ∈ [1.00, 1.01, … , 1.99], y ∈ [1.00, 1.01, … , 1.99]] ∪

∪[x ∈ [4.00, 4.01, … , 4.99], y ∈ [−7.00, −7.01, … , −7.99]].

X,Y ∈ e : X(1.99, 1.88),Y (4.00, −7.25).

X ′,Y ′ ∈ e : X ′(1.35, 1.99),Y ′(4.23, −7.00).

A(x1, y1),B(x2, y2),C(x3, y3) ∈ a.



We say that a point C lies between points A, B if one of the following conditions is satisfied:

1)

2)

3)

Definition 5.2.

Suppose we have a straight line a ∈ E3Wn  and three distinct points

We say that a point C lies between points A, B if one of the following conditions is satisfied:

1)

2)

3)

4)

{
x3 ∈ (x1,x2),

y3 ∈ (y1, y2);

{
x1 = x2 = x3,

y3 ∈ (y1, y2);

{
x3 ∈ (x1,x2),

y1 = y2 = y3.

A(x1, y1, z1),B(x2, y2, z2),C(x3, y3, z3) ∈ a.

x3 ∈ (x1,x2),

y3 ∈ (y1, y2).

z3 ∈ (z1, z2);

x1 = x2 = x3,

y3 ∈ (y1, y2),

z3 ∈ (z1, z2);

x3 ∈ (x1,x2),

y1 = y2 = y3,

z3 ∈ (z1, z2);

x1 = x2 = x3,

y1 = y2 = y3,

z3 ∈ (z1, z2);



5)

6)

7)

5.1  First property of points order

Let A, B, C be points of a straight line with B lying between A and C.

Question: Is B also lying between C and A?

In Mathematics with Observers geometry, we have the positive answer to this question
because the definition of “between” is symmetric with respect to points A and C.

This means that we have the following:

Theorem 5.3.

In Mathematics with Observers geometry in plane E2Wn , in any straight line a having at least

three distinct points A, B, C such that B lies between A and C, point B also lies between C and A.

Theorem 5.4.

In Mathematics with Observers geometry in space E3Wn , in any straight line a having at least

three distinct points A, B, C such that B lies between A and C, point B also lies between C and A.

5.2  Second property of points order

Let us consider two distinct points in E2Wn  or E3Wn  lying in the same straight line:

or

x3 ∈ (x1,x2),

y3 ∈ (y1, y2),

z1 = z2 = z3;

x1 = x2 = x3,

y3 ∈ (y1, y2),

z1 = z2 = z3;

x3 ∈ (x1,x2),

y1 = y2 = y3,

z1 = z2 = z3.

A(x1, y1),C(x2, y2) ∈ a ∈ E2Wn

A(x1, y1, z1),C(x2, y2, z2) ∈ b ∈ E3Wn.



Question: Does there exist at least one point B ∈ a or B ∈ b lying between A and C and at
least one point D such that C lies between A and D?

1) Let us take the straight line a ∈ E2W2  with equation

and two points A,C ∈ a with coordinates A(0.99, 9.9), C(1, 10). In this case, no point
B ∈ a lying between A and C exists. So in this case the answer to the question is negative.

1’) Let us take the straight line b ∈ E3W2  with system of equations

and two points A,C ∈ b with coordinates A(0.99, 9.9, 0), C(1, 10, 0). In this case, no point
B ∈ b lying between A and C exists. So in this case the answer to the question is negative.

2) Let us take the straight line a ∈ E2W2  with equation

and two points A,C ∈ a with coordinates A(0, 0), C(1, 99.99). In this case, no point D ∈ a

such that C lies between A and D exists. So in this case the answer to the question is negative.

2’) Let us take the straight line b ∈ E3W2  with system of equations

and two points A,C ∈ b with coordinates A(0, 0, 0), C(1, 99.99, 0). In this case, no point
D ∈ b such that C lies between A and D exists. So in this case the answer to the question is
negative.

3) Let us take the straight line a ∈ E2W2  with equation

and two points A,C ∈ a with coordinates A(0, 0), C(1, 1). If we take two points B,D ∈ a

with coordinates B(0.5, 0.5), D(1.5, 1.5), then we get point B ∈ a lying between A and C
and point D such that C lies between A and D. So in this case the answer to the question is
positive.

3’) Let us take the straight line b ∈ E3W2  with system of equations

10 ×2 x −2 y = 0

{
10 ×2 x −2 y = 0,

z = 0,

99.99 ×2 x −2 y = 0

{
99.99 ×2 x −2 y = 0,

z = 0,

x −2 y = 0



and two points A,C ∈ b with coordinates A(0, 0, 0), C(1, 1, 0). If we take two points
B,D ∈ b with coordinates B(0.5, 0.5, 0), D(1.5, 1.5, 0), then we get point B ∈ b lying
between A and C and point D ∈ b such that C lies between A and D. So in this case the answer
to the question is positive.

So we have proved the following:

Theorem 5.5.

In Mathematics with Observers geometry in plane E2Wn , there are a straight line a and two

distinct points A,C ∈ a such that there is no point B ∈ a lying between A and C.

Theorem 5.6.

In Mathematics with Observers geometry in plane E2Wn , there are a straight line a and two

distinct points A,C ∈ a such that there is at least one point B ∈ a lying between A and C.

Theorem 5.7.

In Mathematics with Observers geometry in plane E2Wn  there are a straight line a and two distinct

points A,C ∈ a such that there is no point D ∈ a such that C lies between A and D.

Theorem 5.8.

In Mathematics with Observers geometry in plane E2Wn , there are a straight line a and two

distinct points A,C ∈ a such that there is at least one point D ∈ a such that C lies between A and

D

Theorem 5.9.

In Mathematics with Observers geometry in space E3Wn , there are a straight line a and two

distinct points A,C ∈ a such that there is no point B ∈ a lying between A and C.

Theorem 5.10.

In Mathematics with Observers geometry in space E3Wn , there are a straight line a and two

distinct points A,C ∈ a such that there is at least one point B ∈ a lying between A and C.

Theorem 5.11.

In Mathematics with Observers geometry in space E3Wn , there are a straight line a and two

distinct points A,C ∈ a such that there is no point D ∈ a such that C lies between A and D.

Theorem 5.12.

In Mathematics with Observers geometry in space E3Wn , there are a straight line a and two

distinct points A,C ∈ a such that there is at least one point D ∈ a such that C lies between A and

D

5.3  Third property of points order

Let us consider three distinct points ∈ E2Wn  or ∈ E3Wn  lying in the same straight line:

{
x −2 y = 0,

z = 0,

A(x1, y1),B(x2, y2),C(x3, y3) ∈ a ∈ E2Wn



or

Question: Is there one and only one of these points that lies between the other two?

1) Let us take the straight line a ∈ E2W2  with equation

and three distinct points A,B,C ∈ a with coordinates A(0.96, 0.96), B(0.96, 0.97),
C(0.97, 0.97). In this case, none of these points lies between the other two.

So in this case the answer to the question is negative.

1’) Let us take the straight line b ∈ E3W2  with system of equations

and three distinct points A,B,C ∈ b with coordinates A(0.96, 0.96, 0), B(0.96, 0.97, 0),
C(0.97, 0.97, 0). In this case, none of these points lies between the other two.

So in this case the answer to this question is negative.

2) Let us take the straight line a ∈ E2W2  with equation

and three distinct points A,B,C ∈ a with coordinates A(1.99, 1.88), B(1.99, 1.56),
C(4.00, −7.25). Direct calculations show that on the interval 1 ≤ x ≤ 5, this line contains
only the set Ω of points A(x, y) ∈ E2W2 :

Then we can say that none of these points lies between the other two.

2’) Let us take the straight line b ∈ E3W2  with system of equations

and three distinct points A,B,C ∈ b with coordinates A(1.99, 1.88, 0), B(1.99, 1.56, 0),
C(4.00, −7.25, 0). Then we can say that none of these points lies between the other two.

A(x1, y1, z1),B(x2, y2, z2),C(x3, y3, z3) ∈ b ∈ E3Wn.

a ∈ E2W2 : 0.01 ×2 x −n 0.01 ×2 y = 0

{
0.01 ×2 x −n 0.01 ×2 y = 0,

z = 0,

0.08 ×2 x +2 0.03 ×2 y −2 0.11 = 0

Ω = [A(x, y)]= [x ∈ [1.00, 1.01, … , 1.99], y ∈ [1.00, 1.01, … , 1.99]] ∪

∪[x ∈ [4.00, 4.01, … , 4.99], y ∈ [−7.00, −7.01, … , −7.99]].

{
0.08 ×2 x +2 0.03 ×2 y −2 0.11 = 0,

z = 0,



3) Let us take the straight line a ∈ E2W2  with equation

and three points A,B,C ∈ a with coordinates A(0, 0), B(0.5, 0.5), C(1, 1). We get that
point B ∈ a lies between A and C, and B is only one of these points that lies between the
other two. So in this case the answer to the question is positive.

3’) Let us take the straight line b ∈ E2W2  with system of equations

and three points A,B,C ∈ b with coordinates A(0, 0, 0), B(0.5, 0.5, 0), C(1, 1, 0). We get
that point B ∈ b lies between A and C, and B is only one of these points that lies between the
other two. So in this case the answer to the question is positive.

So we have proved the following:

Theorem 5.13.

In Mathematics with Observers geometry in plane E2Wn , there are a straight line a and three

distinct points A,B,C ∈ a such that none of these points lies between the other two.

Theorem 5.14.

In Mathematics with Observers geometry in plane E2Wn , there are a straight line a and three

distinct points A,B,C ∈ a such that is one and only one of these points that lies between the other

two.

Theorem 5.15.

In Mathematics with Observers geometry in space E3Wn , there are a straight line a and three

distinct points A,B,C ∈ a such that none of these points lies between the other two.

Theorem 5.16.

In Mathematics with Observers geometry in space E3Wn , there are a straight line a and three

distinct points A,B,C ∈ a such that there is one and only one of these points that lies between the

other two.

5.4  Fourth property of points order

Let us consider four distinct points in E2Wn  or E3Wn  lying in the same straight line:

or

x −2 y = 0

{
x −2 y = 0,

z = 0,

A(x1, y1),B(x2, y2),C(x3, y3),D(x4, y4) ∈ a ∈ E2Wn

A(x1, y1, z1),B(x2, y2, z2),C(x3, y3, z3),D(x4, y4, z4) ∈ b ∈ E3Wn.



Question: Is it always possible to arrange these four points so that B will lie between A and C
and also between A and D and, moreover, so that C will lie between A and D and also between
B and D?

1) Let us take the straight line a ∈ E2W2  with equation

and four distinct points A,B,C,D ∈ a with coordinates A(0.96, 0.96), B(0.96, 0.97),
C(0.97, 0.97), D(0.97, 0.98).

In this case, it is not possible to arrange these four points so that B will lie between A and C
and also between A and D and, moreover, so that C will lie between A and D and also between
B and D. So in this case the answer to the question is negative.

1’) Let us take the straight line b ∈ E3W2  with system of equations

and four distinct points A,B,C,D ∈ b with coordinates A(0.96, 0.96, 0), B(0.96, 0.97, 0),
C(0.97, 0.97, 0), D(0.97, 0.98, 0).

In this case, it is not possible to arrange these four points so that B will lie between A and C
and also between A and D and, moreover, so that C will lie between A and D and also between
B and D. So in this case the answer to the question is negative.

2) Let us take the straight line a ∈ E2W2  with equation

and four points A,B,C,D ∈ a with coordinates A(0, 0), B(0.5, 0.5), C(1, 1), D(1.5, 1.5).
These four points are already arranged so that B lies between A and C and also between A and
D and, moreover, so that C lies between A and D and also between B and D. So in this case the
answer to the question is positive.

2’) Let us take the straight line b ∈ E3W2  with system of equations

and four points A,B,C,D ∈ b with coordinates A(0, 0, 0), B(0.5, 0.5, 0), C(1, 1, 0),
D(1.5, 1.5, 0). These four points are already arranged so that B lies between A and C and also

a ∈ E2W2 : 0.01 ×2 x −n 0.01 ×2 y = 0

{
0.01 ×2 x −n 0.01 ×2 y = 0,

z = 0,

x −2 y = 0

{
x −2 y = 0,

z = 0,



between A and D and, moreover, so that C lies between A and D and also between B and D. So
in this case the answer to the question is positive.

So we have proved the following:

Theorem 5.17.

In Mathematics with Observers geometry in plane E2Wn , there are a straight line a and four

distinct points A,B,C,D ∈ a such that it is impossible to arrange these four points so that B will

lie between A and C and also between A and D and, moreover, so that C will lie between A and D and

also between B and D.

Theorem 5.18.

In Mathematics with Observers geometry in plane E2Wn , there are a straight line a and four

distinct points A,B,C,D ∈ a such that it is possible to arrange these four points so that B will lie

between A and C and also between A and D and, moreover, so that C will lie between A and D and

also between B and D.

Theorem 5.19.

In Mathematics with Observers geometry in space E3Wn , there are a straight line a and four

distinct points A,B,C,D ∈ a such that it is impossible to arrange these four points so that B will

lie between A and C and also between A and D and, moreover, so that C will lie between A and D and

also between B and D.

Theorem 5.20.

In Mathematics with Observers geometry in space E3Wn , there are a straight line a and four

distinct points A,B,C,D ∈ a such that it is possible to arrange these four points so that B will lie

between A and C and also between A and D and, moreover, so that C will lie between A and D and

also between B and D.

5.5  Fifth property of points order

Let us consider three distinct points ∈ E2Wn  not lying in the same straight line:

Let a ∈ E2Wn  be a straight line not passing through any of the points A, B, C.

Question: Is the following statement correct or not in Mathematics with Observers geometry:
If line a passes through a point of the segment AB, then it also passes through either a point
of the segment BC  or a point of the segment AC?

1) Let us consider three distinct points ∈ E2Wn :

These points do not lie in the same straight line: Points A, B lie in the straight line

A(x1, y1),B(x2, y2),C(x3, y3).

A(0, 0),B(0, 3),C(1, 3).



points A, C lie in the straight line

and points B, C lie in the straight line

Let us take the straight line a with equation

It passes through a point D(0, 1) of the segment AB, has no common points with the
segment BC , and has no common points with the segment AC . So in this case the answer to
the question is negative.

2) Let’s consider three distinct points ∈ E2Wn :

These points do not lie in the same straight line: Points A, B lie in the straight line

points A, C lie in the straight line

and points B, C lie in the straight line

Let us take the straight line a with equation

It passes through a point D(0, 3) of the segment AB, has no common points with the
segment BC , and passes through a point F(1, 3) of the segment AC . So in this case the
answer to the question is positive.

So we have proved the following:

Theorem 5.21.

In Mathematics with Observers geometry in plane E2Wn , there are three distinct points A, B, C not

lying in the same straight line and a straight line a not passing through any of these points such

that line a passes through a point of the segment AB and does not pass through either a point of

the segment BC  or a point of the segment AC .

Theorem 5.22.

x = 0,

3 ×n x −n y = 0,

y −n 3 = 0.

y −n 1 = 0.

A(0, 0),B(0, 6),C(2, 6).

x = 0,

3 ×n x −n y = 0,

y −n 6 = 0.

y −n 3 = 0.



In Mathematics with Observers geometry in plane E2Wn , there are three distinct points A, B, C not

lying in the same straight line and a straight line a not passing through any of these points such

that line a passes through a point of the segment AB and passes through either a point of the

segment BC  or a point of the segment AC .

5.6  Number of points theorem

Classical geometry states that

“Between any two points of a straight line, there always exists an unlimited number of
points.”

Question: Is the following statement correct or not in Mathematics with Observers geometry:
Between any two points of a straight line, there always exists an unlimited number of points?

1) Let us take the straight line a ∈ E2W2  with equation

and two points A,C ∈ a with coordinates A(0.62, 61.92), C(0.63, 62.91). In this case,
there is no point B ∈ a such that B lies between A and C. So in this case the answer to the
question is negative.

1’) Let us take the straight line a ∈ E3W2  with equation

and two points A,C ∈ a with coordinates A(0.62, 61.92, 0), C(0.63, 62.91, 0). In this case,
there is no point B ∈ a such that B lies between A and C. So in this case the answer to the
question is negative.

2) Let us take any straight lines a ∈ E2W2  and b ∈ E3W2 . From the point of view of W9 -
observer, the space E2W2  contains no more than 4 ×9 108  points, and from the point of
view of W13 -observer, the space E3W2  contains no more than 8 ×13 1012  points. So in this
case the answer to the question is negative.

3) The set Wn  has exactly 2 ×m 102×mn −m 1 elements from the Wm -observer point of view,
m ≥ 2 ×n n +n 1.

99.99 ×2 x −2 y = 0

{
99.99 ×2 x −2 y = 0,

z = 0,



The set E2Wn  has exactly 4 ×m 104×mn −m 1 points from the Wm -observer point of view,
m ≥ 2 ×n 2 ×n n +n 1.

The set E3Wn  has exactly 8 ×m 106×mn −m 1 points from the Wm -observer point of view,
m ≥ 2 ×n 3 ×n n +n 1.

So we have proved the following:

Theorem 5.23.

In Mathematics with Observers geometry in plane E2Wn , there are a straight line a and two

distinct points A,B ∈ a such that there are no points between A and B.

Theorem 5.24.

In Mathematics with Observers geometry in space E3Wn , there are a straight line a and two

distinct points A,B ∈ a such that there are no points between A and B.

Theorem 5.25.

In Mathematics with Observers geometry the plane E2Wn  (and so on any straight line in this plane)

contains no more than 4 ×m 104×mn −m 1 points from the Wm -observer point of view,

m ≥ 2 ×n 2 ×n n +n 1.

Theorem 5.26.

In Mathematics with Observers geometry the space E3Wn  (and so on any straight line in this

space) contains no more than 4 ×m 104×mn −m 1 points from the Wm -observer point of view,

m ≥ 2 ×n 2 ×n n +n 1.

5.7  Line and regions theorem

Classical geometry states the following:

“Every straight line a that lies in a plane α divides the remaining points of this plane into
two regions having the following properties: Every point A of the one region determines
for each point B of the other region a segment AB containing a point of the straight line a.
On the other hand, any two points A, A′  of the same region determine a segment AA′

containing no point of a.”

Let us first consider the statement

“Every straight line a that lies in a plane α divides the remaining points of this plane into
two regions.”

Question: Is this statement correct in Mathematics with Observers?



Let us take the straight line a ∈ E2Wn :

for all a1, a2, a3, a1 ×n x, a2 ×n y, a1 ×n x +n a2 ×n y ∈ Wn  such that (a1, a2) ≠ (0, 0)

and define the following regions Ra
1,Ra

2 ⊂ E2Wn :

Ra
1 :

Ra
2 :

Consider the set Ra ⊂ E2Wn :

Question: Ra = E2Wn  or Ra
3 = E2Wn ∖ Ra ≠ Λ?

Here sign “∖” means the operation “minus” for sets (for sets A and B, A ∖ B is the set of all
elements of A not belonging to B), and Λ means the empty set.

Let’s consider several examples.

Example 1.

Let

Then

This means that we have the positive answer in this case.

Example 2.

Let

a : a1 ×n x +2 a2 ×n y +2 a3 = 0

{
a1 ×n x +n a2 ×n y +n a3 ∈ Wn,

a1 ×n x +n a2 ×n y +n a3 > 0;

{
a1 ×n x +n a2 ×n y +n a3 ∈ Wn,

a1 ×n x +n a2 ×n y +n a3 < 0.

Ra = Ra
1 ∪ a ∪ Ra

2.

a : y = 0.

Ra
1 : y > 0,

Ra
2 : y < 0,

Ra
3 = Λ.

a : 3 ×n x = 0.



Then

This means that we have the negative answer in this case.
Example 3.

Let

We get that

if and only if the points (x, y) ∈ a satisfy the system

Q:

The set Q ⊂ E2Wn  is the square with center (0,0) and side 2. Then

Ra
1 :

and

Ra
2 :

Note that

but

because, for example,

Ra
1 : 3 ×n x > 0,

Ra
2 : 3 ×n x < 0,

Ra
3 = (x, y),x ∈ [−99 … 9.99 … 9, −33 … 3.33 … 34] ∪

∪[33 … 3.33 … 34, 99 … 9.99 … 9], y ∈ Wn.

a : 99 … 9.99 … 9 ×n x +n 99 … 9.99 … 9 ×n y = 0.

99 … 9.99 … 9 ×n x, 99 … 9.99 … 9 ×n y ∈ Wn

{
−1 ≤ x ≤ 1,

−1 ≤ y ≤ 1.

{
99 … 9.99 … 9 ×n x +n 99 … 9.99 … 9 ×n y ∈ Wn,

99 … 9.99 … 9 ×n x +n 99 … 9.99 … 9 ×n y > 0,

{
99 … 9.99 … 9 ×n x +n 99 … 9.99 … 9 ×n y ∈ Wn,

99 … 9.99 … 9 ×n x +n 99 … 9.99 … 9 ×n y < 0.

Ra = Ra
1 ∪ a ∪ Ra

2 ⊂ Q,

Q ∖ Ra ≠ Λ,



This means that

So we have the negative answer in this case.
Example 4.

Let

Then

So

This means that we have the negative answer in this case.

So we have proved the following:

Theorem 5.27.

In Observer’s geometry in the plane E2Wn , there is a straight line a transforming the remaining

points of this plane into the region Ra
1  or Ra

2 , where

Ra
1 :

Ra
2 :

Theorem 5.28.

In Observer’s geometry in the plane E2Wn , there is a straight line a dividing the remaining points

of this plane into two regions Ra
1  and Ra

2 , where

Ra
1 :

Ra
2 :

(x, y) = (0.99 … 9, 0.99 … 9) ⊄ Ra.

Ra
3 = E2Wn ∖ Ra = (E2Wn ∖ Q) ∪ (Q ∖ Ra).

a : y −n 99 … 9.99 … 9 = 0.

Ra
1 : y −n 99 … 9.99 … 9 > 0.

Ra
1= Λ,

Ra
2= E2Wn ∖ a,

Ra
3= Λ.

a : a1 ×n x +2 a2 ×n y +2 a3 = 0;

{
a1 ×n x +n a2 ×n y +n a3 ∈ Wn,

a1 ×n x +n a2 ×n y +n a3 > 0;

{
a1 ×n x +n a2 ×n y +n a3 ∈ Wn,

a1 ×n x +n a2 ×n y +n a3 < 0.

a : a1 ×n x +2 a2 ×n y +2 a3 = 0;

{
a1 ×n x +n a2 ×n y +n a3 ∈ Wn,

a1 ×n x +n a2 ×n y +n a3 > 0;



a)

b)

Theorem 5.29.

In Observer’s geometry in the plane E2Wn , there is a straight line a dividing the remaining points

of this plane into three regions Ra
1 , Ra

2 , and Ra
3 , where

Ra
1 :

Ra
2 :

Questions:

Is the following statement correct in Mathematics with Observers geometry:
For Ra

3 = Λ, every point A of the one region determines with each point B of the other
region a segment AB containing a point of the straight line a?

Is the following statement correct in Mathematics with Observers geometry:
For Ra

3 = Λ, any two points A, A′  of the same region determine a segment AA′  containing
no point of a?

Let us start with question a).

1) Let a plane α ∈ E3W2  have the equation

So we are in E2W2 . Let the straight line a have the equation

and let Ra
1 , Ra

2  be two regions of plane α:

where x is any element ∈ W2 . So

Let us take two points

{
a1 ×n x +n a2 ×n y +n a3 ∈ Wn,

a1 ×n x +n a2 ×n y +n a3 < 0.

a : a1 ×n x +2 a2 ×n y +2 a3 = 0;

{
a1 ×n x +n a2 ×n y +n a3 ∈ Wn,

a1 ×n x +n a2 ×n y +n a3 > 0;

{

Ra
3 = E2Wn ∖ (Ra

1 ∪ a ∪ Ra
2).

a1 ×n x +n a2 ×n y +n a3 ∈ Wn,

a1 ×n x +n a2 ×n y +n a3 < 0;

z = 0.

y = −1,

Ra
1= [(x, y)], (x, y) ∈ E2W2, y > −1,

Ra
2= [(x, y)], (x, y) ∈ E2W2, y < −1,

α = Ra
1 ∪ a ∪ Ra

2.



We looking for a straight line b as the set of points (x, y) satisfying the equation

and containing points A, B. We have

We must have

This means that

All possible positive a1  form the set

and we get

All possible negative a2  form the set

and we get

Direct calculations show that

So the straight line b containing the points A(99.99, 0), B(0, −98.88) does not exist, that is,
a segment AB does not exist. So in this case the answer to the question is negative.

2) Let us again take the plane α ∈ E3W2  with equation

So we are again in E2W2 . Let again the equation of straight line a be

and let the regions Ra
1  and Ra

2  of plane α be

A(99.99, 0) ∈ Ra
1, B(0, −98.88) ∈ Ra

2.

a1 ×2 x +2 a2 ×2 y +2 a3 = 0

{
a1 ×2 (99.99) +2 a2 ×2 (0) +2 a3 = 0,

a1 ×2 (0) −2 a2 ×2 (98.88) +2 a3 = 0.

|a1| ≤ 1, |a2| ≤ 1.01.

a1 ×2 (99.99) = −a2 ×2 (98.88).

Φ = [0.01, 0.02, … , 0.99, 1.00],

99.99 ×2 Φ = [0.99, 1.98, … , 98.82, 99.99].

Ψ = [−0.01, −0.02, … , −0.99, −1.00, −1.01],

−98.88 ×2 Ψ = [0.98, 1.96, … , 97.74, 98.88, 99.86]

99.99 ×2 Φ ∩ −98.88 ×2 Ψ = Λ.

z = 0.

y = −1,



where x is any element ∈ W2 . So

Let us take other two points

Again, we look for a straight line b as the set of points (x, y) satisfying the equation

and containing points A, B. We have

We must have

This means that

Again, all possible positive a1  form the set

and we get

All possible negative a2  form the set

and we get

Direct calculations show that

and we get only one point in intersection of these two sets, that is,

So there is only one straight line b containing points A(99.99, 0) and B(0, −98.37), that is, a
segment AB exists. Let us now see whether line a intersects the segment AB or not? We get

Ra
1= [(x, y)], (x, y) ∈ E2W2, y > −1,

Ra
2= [(x, y)], (x, y) ∈ E2W2, y < −1,

α = Ra
1 ∪ a ∪ Ra

2.

A(99.99, 0),B(0, −98.37).

a1 ×2 x +2 a2 ×2 y +2 a3 = 0

{
a1 ×2 (99.99) +2 a2 ×2 (0) +2 a3 = 0,

a1 ×2 (0) −2 a2 ×2 (98.37) +2 a3 = 0.

|a1| ≤ 1, |a2| ≤ 1.01.

a1 ×2 (99.99) = −a2 ×2 (98.37).

Φ = [0.01, 0.02, … , 0.99, 1.00],

99.99 ×2 Φ = [0.99, 1.98, … , 98.82, 99.99].

Ψ = [0.01, 0.02, … , 0.99, 1.00, 1.01],

−98.37 ×2 Ψ = [0.98, 1.96, … , 97.29, 98.37, 99.35].

99.99 ×2 Φ ∩ −98.37 ×2 Ψ = 61.92,

a1 = 0.62; a2 = −0.63; a3 = −61.92.



the system of equations

We have

but direct calculation shows that

and

This means that

that is, the segment AB does not contain a point of the straight line a. So in this case the
answer to the question is negative.

3) Let us again take the plane α ∈ E3W2  with equation

So we are again in E2W2 . Let now the straight line a equation be

and let two regions Ra
1 , Ra

2  of plane α be

where x is any element of W2 . So

Let us take two points

Again, we look for a straight line b as the set of points (x, y) satisfying the equation

and containing points A, B. We have

{
0.62 ×2 x −2 0.63 ×2 y −2 61.92 = 0,

y +2 1 = 0.

0.62 ×2 x = 61.29,

0.62 ×2 98.89 = 61.24

0.62 ×2 98.90 = 61.30.

a ∩ b = Λ,

z = 0.

y = −0.33,

Ra
1= [(x, y)], (x, y) ∈ E2W2, y > −0.33,

Ra
2= [(x, y)], (x, y) ∈ E2W2, y < −0.33,

α = Ra
1 ∪ a ∪ Ra

2.

A(99.99, 0),B(0, −98.37).

a1 ×2 x +2 a2 ×2 y +2 a3 = 0



We must have

This means that

Again, all possible positive a1  form the set

and we get

All possible negative a2  form the set

and we get

Direct calculations show that

and we get only one point in intersection of these two sets, that is,

So there is only one straight line b containing points A(99.99, 0), B(0, −98.37), that is, a
segment AB exists. Let us now see whether line a intersects the segment AB or not. We get
the system of equations

We have

and direct calculations show

{
a1 ×2 (99.99) +2 a2 ×2 (0) +2 a3 = 0,

a1 ×2 (0) −2 a2 ×2 (98.37) +2 a3 = 0.

|a1| ≤ 1, |a2| ≤ 1.01.

a1 ×2 (99.99) = −a2 ×2 (98.37).

Φ = [0.01, 0.02, … , 0.99, 1.00],

99.99 ×2 Φ = [0.99, 1.98, … , 98.82, 99.99].

Ψ = [−0.01, −0.02, … , −0.99, −1.00, −1.01],

−98.37 ×2 Ψ = [0.98, 1.96, … , 97.29, 98.37, 99.35].

99.99 ×2 Φ ∩ −98.37 ×2 Ψ = 61.92,

a1 = 0.62; a2 = −0.63; a3 = −61.92.

{
0.62 ×2 x −2 0.63 ×2 y −2 61.92 = 0,

y +2 0.33 = 0.

0.62 ×2 x = 61.74,



This means that

that is, the segment AB contains ten points of the straight line a. So in this case the answer to
the question is positive.

4) Let us again take the plane α ∈ E3W2  with equation

So we are again in E2W2 . Let again the straight line a equation be

and let two regions Ra
1 , Ra

2  of plane α be

where x is any element of W2 . So

Let us take other two points

Again, we look for a straight line b as the set of points (x, y) satisfying the equation

and containing points A, B. We have

that is,

0.62 ×2 99.60= 61.74,

0.62 ×2 99.61= 61.74,

0.62 ×2 99.62= 61.74,

0.62 ×2 99.63= 61.74,

0.62 ×2 99.64= 61.74,

0.62 ×2 99.65= 61.74,

0.62 ×2 99.66= 61.74,

0.62 ×2 99.67= 61.74,

0.62 ×2 99.68= 61.74,

0.62 ×2 99.69= 61.74.

a ∩ b = [(99.60, −0.33), (99.61, −0.33), … , (99.69, −0.33)],

z = 0.

y = −1,

Ra
1= [(x, y)], (x, y) ∈ E2W2, y > −1,

Ra
2= [(x, y)], (x, y) ∈ E2W2, y < −1,

α = Ra
1 ∪ a ∪ Ra

2.

A(0, 1),B(0, −2).

a1 ×2 x +2 a2 ×2 y +2 a3 = 0

{
a1 ×2 (0) +2 a2 ×2 (1) +2 a3 = 0,

a1 ×2 (0) −2 a2 ×2 (2) +2 a3 = 0,



1.

2.

3.

that is,

and line b has the equation

So we have three distinct straight lines:

For each a1  such that

we get a straight line c as the set of points (0, y) with any y ∈ W2 .

For each a1  such that

we get a straight line d with the set of points

with all y ∈ W2 .

For each a1  such that

we get a straight line e as the set of points

with all y ∈ W2 , and we have

If we take

then we get

and line b has the equation

{
a2 +2 a3 = 0,

−a2 ×2 2 +2 a3 = 0,

{
a2 = 0,

a3 = 0,

a1 ×2 x = 0.

1 ≤ |a1| ≤ 99.99,

0.1 ≤ |a1| ≤ 0.99,

[(0, y); (±0.01, y); (±0.02, y); … ; (±0.09, y)]

0 < |a1| ≤ 0.09,

[(0, y); (±0.01, y); (±0.02, y); … ; (±0.09, y); … ; (±0.99, y)]

c ⊂ d ⊂ e.

a1 = 1,

b = c,

x = 0.



In this case,

that is, the segment AB exists and contains one point of the straight line a. So in this case
the answer to the question is positive.

So we have proved the following:

Theorem 5.30.

In Observer’s geometry in the plane E2Wn , there are a straight line a with Ra
3 = Λ and point A of

the region Ra
1  and point B of the region Ra

2  such that the segment AB contains no point of the

straight line a.

Theorem 5.31.

In Observer’s geometry in the plane E2Wn , there are a straight line a with Ra
3 = Λ and point A of

the region Ra
1  and point B of the region Ra

2  such that the segment AB contains exactly one point

of the straight line a.

Theorem 5.32.

In Observer’s geometry in the plane E2Wn , there are a straight line a with Ra
3 = Λ and point A of

the region Ra
1  and point B of the region Ra

2  such that the segment AB contains more than one

point of the straight line a.

Now let us go to question b).

1) Let the plane α ∈ E3W2  have the equation

So we are in E2W2 . Let the equation of a straight line a ∈ E2W2  be

and two regions Ra
1 , Ra

2  of plane α be

where x is any element ∈ W2 . So

Let us take two points A,A′ ∈ R1 :

We get a straight line b as the set of points (x, y) satisfying the equation

a ∩ b = (0, −1),

z = 0.

y = 0,

Ra
1= [(x, y)], (x, y) ∈ E2W2, y > 0,

Ra
2= [(x, y)], (x, y) ∈ E2W2, y < 0,

α = Ra
1 ∪ a ∪ Ra

2.

A(0.09, 0.19),A′(0.21, 0.43) ∈ R1.

2 ×2 x −2 y +2 0.01 = 0



and containing points A, A′ . The segment AA′  contains the points

but contains no point of a and region Ra
2 . So in this case the answer to the question is

positive.

We have another straight line c as the set of points (x, y) satisfying the equation

and containing points A, A′ . The segment AA′  contains the points

and contains many points of line a and regions R1 , R2 . So in this case the answer to the
question is negative.

2) Let the plane α ∈ E3W2  have the equation

So we are in E2W2 . Let the equation of a straight line a be

and let two regions Ra
1 , Ra

2  of plane α be

where x is any element ∈ W2 . So

Let’s take two points

We look for a straight line b as the set of points (x, y) satisfying the equation

and containing points A, B. We have

We must have

[(0.09, 0.19), (0.10, 0.21), … , (0.20, 0.41), (0.21, 0.43)]

0.01 ×2 x +2 0.01 ×2 y = 0

[(0.09, 0), (0.09, ±0.01), … , (0.09, ±0.99), (0.10, 0), (0.10, ±0.01), … , (0.10, ±0.99), …

… , (0.21, 0), (0.21, ±0.01), … , (0.21, ±0.99)]

z = 0.

y = 1,

Ra
1= [(x, y)], (x, y) ∈ E2W2, y > 1,

Ra
2= [(x, y)], (x, y) ∈ E2W2, y < 1,

α = Ra
1 ∪ a ∪ Ra

2

A(99.99, 0),B(0, −98.88) ∈ R2.

a1 ×2 x +2 a2 ×2 y +2 a3 = 0

{
a1 ×2 (99.99) +2 a2 ×2 (0) +2 a3 = 0,

a1 ×2 (0) −2 a2 ×2 (98.88) +2 a3 = 0.



This means that

All possible positive a1  form the set

and we get

All possible negative a2  form the set

and we get

Direct calculations show that

So a straight line b containing the points A(99.99, 0), B(0, −98.88) does not exist, that is,
the segment AB does not exist. So in this case the answer to the question is negative.

So we have proved the following:

Theorem 5.33.

In Observer’s geometry in the plane E2Wn , there are a straight line a with Ra
3 = Λ and points A,

A′
 of the region Ra

1  such that the segment AA′
 contains no point of the straight line a.

Theorem 5.34.

In Observer’s geometry in the plane E2Wn , there are a straight line a with Ra
3 = Λ and points A,

A′
 of the region Ra

1  such that the segment AA′
 contains exactly one point of the straight line a.

Theorem 5.35.

In Observer’s geometry in the plane E2Wn , there are a straight line a with Ra
3 = Λ and points A,

A′
 of the region Ra

1  such that the segment AA′
 contains more than one point of the straight line

a.

5.8  Polygon and regions theorem

Classical geometry calls a system of segments AB,BC,CD, … ,KL without self-
intersections (except points A,B, … ,L) a broken line joining A with L or shortly a broken
line ABCDE …KL. If the point A coincides with L, then the broken line is called a polygon.
The segments AB,BC,CD, … ,KA are called the sides of the polygon, and the points

|a1| ≤ 1, |a2| ≤ 1.01.

a1 ×2 (99.99) = −a2 ×2 (98.88).

Φ = [0.01, 0.02, … , 0.99, 1.00],

99.99 ×2 Φ = [0.99, 1.98, … , 98.82, 99.99].

Ψ = [−0.01, −0.02, … , −0.99, −1.00, −1.01],

−98.88 ×2 Ψ = [0.98, 1.96, … , 97.74, 98.88, 99.86].

99.99 ×2 Φ ∩ −98.88 ×2 Ψ = Λ.



a)

b)

c)

A,B,C,D, … ,K  are called the vertices. Polygons having 3, 4, 5, … ,n vertices are called,
respectively, triangles, quadrangles, pentagons, …, n-gons.

Classical geometry states:

“Every polygon whose vertices all lie in a plane α divides the points of this plane not
belonging to the broken line into two regions, an interior and an exterior, having the
following properties:

If A is a point of the interior region (interior point) and B is a point of the
exterior region (exterior point), then any broken line joining A and B must have at least
one common point with the polygon.

If, on the other hand, A, A′  are two points of the interior and B, B′  are two
points of the exterior region, then there are always a broken line joining A with A′  and a
broken line joining B with B′  without a common point with the polygon.

There exist in the plane α that lie entirely outside the given polygon, but
there are no straight lines that lie entirely within it”.

Question: Are statements a), b), and c) correct in Mathematics with Observers geometry?

First, let us consider the statement “Every polygon whose vertices all lie in a plane α divides
the points of this plane not belonging to the broken line into two regions, an interior and an
exterior” and check it.

1) Let’s consider the polygon in E2Wn  with four vertices

and four sides, segments

lying on the corresponding straight lines a, b, c, d with equations

The interior region Rinter  of this polygon is the set of points (x, y) ∈ E2Wn  satisfying the
system

A(2, 1),B(−2, 1),C(−2, −1),D(2, −1)

AB,BC,CD,DA

a : y −n 1 = 0,

b : x +n 2 = 0,

c : y +n 1 = 0,

d : x −n 2 = 0.



The exterior region Rexter  of this polygon is the set of points

and we see that in this case,

2) Let us consider the polygon in E2W2  with four vertices

and four sides, the segments

lying on the corresponding straight lines a, b, c, d with equations

The interior region Rinter  of this polygon is the set of points (x, y) ∈ E2W2  satisfying the
system

The exterior region Rexter  of this polygon is the set of points

and we see that

that is,

y −n 1 < 0,

x +n 2 > 0,

y +n 1 > 0,

x −n 2 < 0.

(x, y) ∈ E2Wn ∖ (Rinter ∪ AB ∪ BC ∪ CD ∪ DA),

Rinter≠ Λ,

Rexter≠ Λ.

A(99.99, 99.99),B(−99.99, 99.99),C(−99.99, −99.99),D(99.99, −99.99)

AB,BC,CD,DA

a : y −2 99.99 = 0,

b : x +2 99.99 = 0,

c : y +2 99.99 = 0,

d : x −2 99.99 = 0.

y −2 99.99 < 0,

x +2 99.99 > 0,

y +2 99.99 > 0,

x −2 99.99 < 0.

(x, y) ∈ E2W2 ∖ (Rinter ∪ AB ∪ BC ∪ CD ∪ DA),

E2W2 = (Rinter ∪ AB ∪ BC ∪ CD ∪ DA),

Rexter = Λ.



This means that this polygon with vertices in a plane α does not divide the points of this plane
not belonging to the broken line into two regions, an interior and an exterior, that is, in this
case, we have only one region, the interior region.

3) Let us consider the polygon ∈ E2W2  with four vertices

and four sides, the segments

lying on the corresponding straight lines a, b, c, d with equations

The interior region Rinter  of this polygon is the set of points (x, y) ∈ E2W2  satisfying the
system

The exterior region Rexter  of this polygon is the set of points

and we see that

This means that this polygon with vertices in a plane α does not divide the points of this plane
not belonging to the broken line into two regions, an interior and an exterior, that is, in this
case, we have only one region, the exterior region.

So we have proved the following:

Theorem 5.36.

In Mathematics with Observers geometry in the plane E2Wn , there is a polygon with all vertices in

a plane α that divides the points of this plane not belonging to the broken line into two regions, an

interior and an exterior.

A(0.00, 0.00),B(0.00, 9.00),C(0.01, 9.00),D(0.01, 0.00)

AB,BC,CD,DA

a : x = 0,

b : y −2 9.00 = 0,

c : x −2 0.01 = 0,

d : y = 0.

x > 0,

y −2 9.00 < 0,

x −2 0.01 < 0,

y > 0.

(x, y) ∈ E2W2 ∖ (Rinter ∪ AB ∪ BC ∪ CD ∪ DA),

Rinter= Λ,

E2W2= Rexter ∪ AB ∪ BC ∪ CD ∪ DA.



Theorem 5.37.

In Mathematics with Observers geometry in the plane E2Wn , there is a polygon with all vertices in

a plane α that pushes the points of this plane not belonging to the broken line into one region, an

interior.

Theorem 5.38.

In Mathematics with Observers geometry in the plane E2Wn , there is a polygon with all vertices in

a plane α that pushes the points of this plane not belonging to the broken line into one region, an

exterior.

Let us go now to the general case of two regions and questions: Are statements a), b), and c)
correct in Mathematics with Observers geometry?

Let us start with question a).

1) Let us consider the polygon ∈ E2Wn  with four vertices

and four sides, the segments

lying on the corresponding straight lines a, b, c, d with equations

The interior region Rinter  of this polygon is the set of points (x, y) ∈ E2Wn  satisfying the
system

The exterior region Rexter  of this polygon is the set of points

Let us take the points E(0, 0) of the interior region (interior point) and F(3, 9) of the
exterior region (exterior point), and take the straight line e with equation

and on this line, we have the segment EF  with

A(2, 1),B(−2, 1),C(−2, −1),D(2, −1)

AB,BC,CD,DA

a : y −n 1 = 0,

b : x +n 2 = 0,

c : y +n 1 = 0,

d : x −n 2 = 0.

y −n 1 < 0,

x +n 2 > 0,

y +n 1 > 0,

x −n 2 < 0.

(x, y) ∈ E2Wn ∖ (Rinter ∪ AB ∪ BC ∪ CD ∪ DA).

e : 3 ×n x −n y = 0,



and

that is, line e has no common points with the polygon, that is, the segment EF  has no
common points with the polygon. So in this case the answer to the question is negative.

2) Let us again consider the polygon ∈ E2Wn  with four vertices

and four sides, the segments

lying on the corresponding straight lines a, b, c, d with equations

Let us take the points E(0, 0) of the interior region (interior point) and F(3, 6) of the
exterior region (exterior point) and take the straight line e with equation

We have

and

and so

that is, the segment EF  has one common point with the polygon. So in this case the answer
to the question is positive.

E,F ∈ e

e ∩ AB= Λ,

e ∩ BC= Λ,

e ∩ CD= Λ,

e ∩ DA= Λ,

A(2, 1),B(−2, 1),C(−2, −1),D(2, −1)

AB,BC,CD,DA

a : y −n 1 = 0,

b : x +n 2 = 0,

c : y +n 1 = 0,

d : x −n 2 = 0.

e : 2 ×n x −n y = 0.

E,F ∈ e

e ∩ AB= (0.5, 1),

e ∩ BC= Λ,

e ∩ CD= (−0.5, −1),

e ∩ DA= Λ,

EF ∩ AB = (0.5, 1),



So we have proved the following:

Theorem 5.39.

In Mathematics with Observers geometry in the plane E2Wn , there are a polygon, a point A of the

interior region (interior point), a point B of the exterior region (exterior point), and a broken line

joining A and B such that these line and polygon have no common point.

Theorem 5.40.

In Mathematics with Observers geometry in the plane E2Wn , there are a polygon, a point A of the

interior region (interior point), a point B of the exterior region (exterior point), and a broken line

joining A and B such that these line and polygon have at least one common point.

Let us go to question b).

1) Let us consider the polygon ∈ E2Wn  with four vertices

and four sides, the segments

lying on the corresponding straight lines a, b, c, d with equations

Let us take two points (for example, we take n = 2)

of the exterior region (exterior points). We get a straight line e as the set of points (x, y)

satisfying the equation

containing points E, E ′ . The segment EE ′  contains the points

and points of the exterior region, but contains no points of polygon and interior region. So in
this case the answer to the question is positive.

2) Let us consider the polygon ∈ E2Wn  with four vertices

and four sides, the segments

A(2, −1),B(−2, −1),C(−2, 0),D(2, 0)

AB,BC,CD,DA

a : y +n 1 = 0,

b : x +n 2 = 0,

c : y = 0,

d : x −n 2 = 0.

E(0.09, 0.19),E ′(0.21, 0.43)

2 ×2 x −2 y +2 0.01 = 0

[(0.09, 0.19), (0.10, 0.21), … , (0.20, 0.41), (0.21, 0.43)]

A(2, −1),B(−2, −1),C(−2, 0),D(2, 0)



lying on the corresponding straight lines a, b, c, d with equations

Let us take two points (for example, we take n = 2)

of the interior region (interior points). We get a straight line f as the set of points (x, y)

satisfying the equation

containing points F, F ′ . The segment FF ′  contains the points

and points of the interior region, but contains no point of the polygon and exterior region. So
in this case answer for question is positive.

3) Let us take, for example, n = 2. Let us consider the polygon ∈ E2W2  with four vertices

and four sides, the segments

lying on the corresponding straight lines a, b, c, d with equations

Let us take two points

of the exterior region (exterior points). We get a straight line g as the set of points (x, y)

satisfying the equation

containing points G, G′ . The segment GG′  contains the points

AB,BC,CD,DA

a : y +n 1 = 0,

b : x +n 2 = 0,

c : y = 0,

d : x −n 2 = 0.

F(−1, −0.5),F ′(1, −0.5)

y +2 0.5 = 0

[(−1, −0.5), (−0.99, −0.5), … , (0.99, −0.5), (1, −0.5)]

A(−99.99, −98.99),B(−99.99, 98.99),C(99.99, 98.99),D(99.99, −98.99)

AB,BC,CD,DA

a : x +2 99.99 = 0,

b : y −2 98.99 = 0,

c : x −2 99.99 = 0,

d : y +2 98.99 = 0.

G(0, 99.00),G′(0, −99.00)

x = 0



points of the exterior region, and points of the polygon and interior region. We have the same
situation not only for line g, but also for any broken line connecting points G and G′ . So in
this case the answer to this question is negative.

4) Let us again take, for example, n = 2. Let us consider the polygon ∈ E2W2  with twelve
vertices

and twelve sides, the segments

lying on the corresponding straight lines

with equations

Let us take two points

of the exterior region (exterior points). We get a straight line h as the set of points (x, y)

satisfying the equation

containing points H, H ′ . The segment HH ′  contains the segment A3A4  of the polygon.

[(0, 99.00), (0, 98.99), (0, 98.98), … , (0, −98.98), (0, −98.99), (0, −99.00)]

A1(−1.00, −9.00),A2(−1.00, 0.00),A3(0.00, 0.00),A4(0.00, 5.00),

A5(−1.00, 5.00),A6(−1.00, 9.00),A7(1.00, 9.00),A8(1.00, 5.00),

A9(0.01, 5.00),A10(0.01, 0.00),A11(1.00, 0.00),A12(1.00, −9.00)

A1A2,A2A3,A3A4,A4A5,A5A6,A6A7,A7A8,A8A9,A9A10,A10A11,A11A12,A12A1

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12

a1 : x +2 1.00 = 0,

a2 : y = 0,

a3 : x = 0,

a4 : y −2 5.00 = 0,

a5 : x +2 1.00 = 0,

a6 : y −2 9.00 = 0,

a7 : x −2 1.00 = 0,

a8 : y −2 5.00 = 0,

a9 : x −2 0.01 = 0,

a10 : y = 0,

a11 : x −2 1.00 = 0,

a12 : y +2 9.00 = 0.

H(0.00, −2.00),H ′(0.00, 6.00)

x = 0



We have the same situation not only for line h, but also for any broken line connecting points
H and H ′ . So in this case the answer to the question is negative.

So we have proved the following:

Theorem 5.41.

In Mathematics with Observers geometry in the plane E2Wn , there are a polygon, two points B, B′

of the exterior region (exterior points), and a broken line joining B and B′
 such that these line,

polygon, and interior region have no common point.

Theorem 5.42.

In Mathematics with Observers geometry in the plane E2Wn  there is a polygon such that if A, A′

are two points of the interior region and B, B′
 are two points of the exterior region, then there are a

broken line joining A with A′
 and a broken line joining B with B′

 without a common point with the

polygon.

Theorem 5.43.

In Mathematics with Observers geometry in the plane E2Wn , there are a polygon and two points A,

A′
 of the interior such that a broken line joining A with A′

 without a common point with the

polygon does not exist.

Theorem 5.44.

In Mathematics with Observers geometry in the plane E2Wn , there are a polygon and two points B,

B′
 of the exterior such that a broken line joining B with B′

 without a common point with the

polygon does not exist.

Let us go to question c).

1) Let us consider the polygon ∈ E2W2  with four vertices

and four sides, the segments

lying on the corresponding straight lines a, b, c, d with equations

The interior region Rinter  of this polygon is the set of points (x, y) ∈ E2Wn  satisfying the
system

A(99.99, 99.99),B(−99.99, 99.99),C(−99.99, −99.99),D(99.99, −99.99)

AB,BC,CD,DA

a : y −n 99.99 = 0,

b : x +n 99.99 = 0,

c : y +n 99.99 = 0,

d : x −n 99.99 = 0.



The exterior region Rexter  of this polygon is the set of points

We see that there are no straight lines in E2W2  that lie entirely outside this polygon, but
there are many straight lines that lie entirely within it. For example, taking line e with
equation

we get

because for any point (x, y) ∈ e,

and

So in this case the answer to this question is negative.

2) Let us consider the polygon in E2Wn  with four vertices

and four sides, the segments

lying on the corresponding straight lines a, b, c, d with equations

Let us take the straight line e with equation

y −n 99.99 < 0,

x +n 99.99 > 0,

y +n 99.99 > 0,

x −n 99.99 < 0.

(x, y) ∈ E2Wn ∖ (Rinter ∪ AB ∪ BC ∪ CD ∪ DA).

e : 2 ×2 x −2 y = 0,

e ∩ a= Λ,

e ∩ b= Λ,

e ∩ c= Λ,

e ∩ d= Λ,

x ∈ [−49.99, −49.98, … , 49.99]

y ∈ [−99.98, −99.97, … , 99.98].

A(2, 1),B(−2, 1),C(−2, −1),D(2, −1)

AB,BC,CD,DA

a : y −n 1 = 0,

b : x +n 2 = 0,

c : y +n 1 = 0,

d : x −n 2 = 0.



This line lies entirely outside the given polygon. So in this case the answer to this question is
positive.

3) Let us consider the polygon ∈ E2W2  with four vertices

and four sides, the segments

lying on the corresponding straight lines a, b, c, d with equations

Let us take the straight line e with equation

and we get

because for all points (x, y) ∈ e, we have

So this line lies entirely inside the given polygon. So in this case the answer to this question is
negative.

So we have proved the following:

Theorem 5.45.

In Mathematics with Observers geometry in the plane E2Wn , there are a polygon and a straight

line such that this line lies entirely outside this polygon, that is, belongs to the exterior region of this

polygon.

Theorem 5.46.

In Mathematics with Observers geometry in the plane E2Wn , there is a polygon such that there is

no straight line lying entirely outside this polygon.

Theorem 5.47.

e : y = 3.

A(2, 2),B(−2, 2),C(−2, −2),D(2, −2)

AB,BC,CD,DA

a : y −n 2 = 0,

b : x +n 2 = 0,

c : y +n 2 = 0,

d : x −n 2 = 0.

e : 99.99 ×2 x +2 99.99 ×2 y = 0,

e ∩ a= Λ,

e ∩ b= Λ,

e ∩ c= Λ,

e ∩ d= Λ,

x, y ∈ [−1, −0.99, … , 0.99, 1].



a)

b)

In Mathematics with Observers geometry in the plane E2Wn , there is a polygon such that there is a

straight line that lies entirely inside this polygon, that is, belongs to the interior region of this

polygon.

5.9  Plane and regions theorem

Classical geometry states:

“Every plane α divides the remaining points of the space into two regions having the
following properties:

Every point A of the region determines with each point B of the other
region, the segment AB, within which lies a point of α.

On the other hand, any two points A, A′  lying within the same region
determine the segment AA′  containing no point of α.”

Let us first consider the statement:

“Every plane α divides the remaining points of E3Wn  into two regions.”

Let us take the plane α ∈ E3Wn :

for any

such that (a1, a2, a3) ≠ (0, 0, 0) and define the regions Rα
1 ,Rα

2 ⊂ E3Wn :

Rα
1 :

and

Rα
2 :

and consider the set Rα ⊂ E3Wn :

α : a1 ×n x +n a2 ×n y +n a3 ×n z +n a4 = 0

a1, a2, a3, a4, a1 ×n x, a2 ×n y, a3 ×n z, a1 ×n x +n a2 ×n y +n a3 ×n z ∈ Wn

{
a1 ×n x +n a2 ×n y +n a3 ×n z +n a4 ∈ Wn,

a1 ×n x +n a2 ×n y +n a3 ×n z +n a4 > 0,

{
a1 ×n x +n a2 ×n y +n a3 ×n z +n a4 ∈ Wn,

a1 ×n x +n a2 ×n y +n a3 ×n z +n a4 < 0,

Rα = Rα
1 ∪ α ∪ Rα

2



Question: Do we have Rα = E3Wn  or Ra
3 = E3Wn ∖ Rα ≠ Λ?

Let us consider several examples.

Example 1.

Let

Then

which means the positive answer in this case.

Example 2.

Let

Then

This means the negative answer in this case.

Example 3.

Let

We get that

if and only if the points (x, y, z) ∈ α satisfy the system

Q:

α : y = 0.

Rα
1 : y > 0,

Rα
2 : y < 0,

Rα
3 = Λ,

α : 3 ×n x = 0.

Rα
1 : 3 ×n x > 0,

Rα
2 : 3 ×n x < 0,

Rα
3 = (x, y, z),x ∈ [−99 … 9.99 … 9, −33 … 3.33 … 34] ∪

∪[33 … 3.33 … 34, 99 … 9.99 … 9], y, z ∈ Wn.

α : 99 … 9.99 … 9 ×n x +n 99 … 9.99 … 9 ×n y = 0.

99 … 9.99 … 9 ×n x, 99 … 9.99 … 9 ×n y, z ∈ Wn



with arbitrary z. The set Q ⊂ E3Wn  is the square on the (x, y)-plane with center (0,0) and
side 2. Then

Rα
1 :

and

Rα
2 :

Note that

but

because, for example,

This means that

and thus the answer is negative in this case.
Example 4.

Let

We get that

if and only if the points (x, y, z) ∈ α satisfy the system

P:

{
−1 ≤ x ≤ 1,

−1 ≤ y ≤ 1,

{
99 … 9.99 … 9 ×n x +n 99 … 9.99 … 9 ×n y ∈ Wn,

99 … 9.99 … 9 ×n x +n 99 … 9.99 … 9 ×n y > 0,

{
99 … 9.99 … 9 ×n x +n 99 … 9.99 … 9 ×n y ∈ Wn,

99 … 9.99 … 9 ×n x +n 99 … 9.99 … 9 ×n y < 0.

Rα = Rα
1 ∪ α ∪ Rα

2 ⊂ Q,

Q ∖ Rα ≠ Λ,

(x, y, z) = (0.99 … 9, 0.99 … 9, z) ⊄ Rα.

Rα
3 = E3Wn ∖ Rα = (E3Wn ∖ Q) ∪ (Q ∖ Rα),

α : 99 … 9.99 … 9 ×n x +n 99 … 9.99 … 9 ×n y +n 99 … 9.99 … 9 ×n z = 0.

99 … 9.99 … 9 ×n x, 99 … 9.99 … 9 ×n y, 99 … 9.99 … 9 ×n z ∈ Wn



The set P ⊂ E3Wn  is the cube with center (0,0,0) and side =2. Then

Rα
1 :

and

Rα
2 :

Note that

but

because, for example,

This means that

and thus the answer is negative in this case.
Question: For Rα

3 = Λ, are statements a) and b) correct in Mathematics with Observers
geometry?

Let us start with question a).

1) Let a plane α ∈ E3W2  have the equation

and let Rα
1 , Rα

2  be two regions of the space E3W2 :

and so

−1 ≤ x ≤ 1,

−1 ≤ y ≤ 1,

−1 ≤ z ≤ 1.

{
99 … 9.99 … 9 ×n x +n 99 … 9.99 … 9 ×n y +n 99 … 9.99 … 9 ×n z ∈ Wn,

99 … 9.99 … 9 ×n x +n 99 … 9.99 … 9 ×n y +n 99 … 9.99 … 9 ×n z > 0,

{
99 … 9.99 … 9 ×n x +n 99 … 9.99 … 9 ×n y +n 99 … 9.99 … 9 ×n z ∈ Wn,

99 … 9.99 … 9 ×n x +n 99 … 9.99 … 9 ×n y +n 99 … 9.99 … 9 ×n z < 0.

Rα = Rα
1 ∪ α ∪ Rα

2 ⊂ P ,

P ∖ Rα ≠ Λ,

(x, y, z) = (0.99 … 9, 0.99 … 9, 0.99 … 9) ⊄ R.

Rα
3 = E3Wn ∖ Rα = (E3Wn ∖ P) ∪ (P ∖ Rα),

y = −1,

Rα
1 = [(x, y, z)], (x, y, z) ∈ E3W2, y > −1,

Rα
2 = [(x, y, z)], (x, y, z) ∈ E3W2, y < −1,



Let us take two points

We looking for a straight line a as the set of points (x, y, z) satisfying the system of equations

and containing points A, B. We have

We must have

This means that

All possible positive a1  form the set

and we get

All possible negative a2  form the set

and we get

Direct calculations show that

So a straight line a containing the points A(99.99, 0, 0), B(0, −98.88, 0) does not exist, that
is, a segment AB does not exist. So in this case the answer to this question is negative.

2) Let us again take the plane α ∈ E3W2  with equation

and two regions Rα
1 , Rα

2  of the space E3W2 :

E3W2 = Rα
1 ∪ α ∪ Rα

2

A(99.99, 0, 0) ∈ Rα
1 , B(0, −98.88, 0) ∈ Rα

2 .

{
a1 ×2 x +2 a2 ×2 y +2 a3 = 0,

z = 0,

{
a1 ×2 (99.99) +2 a2 ×2 (0) +2 a3 = 0,

a1 ×2 (0) −2 a2 ×2 (98.88) +2 a3 = 0.

|a1| ≤ 1, |a2| ≤ 1.01.

a1 ×2 (99.99) = −a2 ×2 (98.88).

Φ = [0.01, 0.02, … , 0.99, 1.00],

99.99 ×2 Φ = [0.99, 1.98, … , 98.82, 99.99].

Ψ = [−0.01, −0.02, … , −0.99, −1.00, −1.01],

−98.88 ×2 Ψ = [0.98, 1.96, … , 97.74, 98.88, 99.86].

99.99 ×2 Φ ∩ −98.88 ×2 Ψ = Λ.

y = −1



So

Let us take other two points

Again, we look for a straight line a as th set of points (x, y, z) satisfying the system of
equations

and containing points A, B. We have

We must have

This means that

Again, all possible positive a1  form the set

and we get

All possible negative a2  form the set

and we get

Direct calculations show that

and we get only one point in intersection of these two sets, that is,

Rα
1 = [(x, y, z)], (x, y, z) ∈ E3W2, y > −1,

Rα
2 = [(x, y, z)], (x, y, z) ∈ E3W2, y < −1.

E3W2 = Rα
1 ∪ α ∪ Rα

2 .

A(99.99, 0, 0) ∈ R1, B(0, −98.37, 0) ∈ R2.

{
a1 ×2 x +2 a2 ×2 y +2 a3 = 0,

z = 0,

{
a1 ×2 (99.99) +2 a2 ×2 (0) +2 a3 = 0,

a1 ×2 (0) −2 a2 ×2 (98.37) +2 a3 = 0.

|a1| ≤ 1, |a2| ≤ 1.01.

a1 ×2 (99.99) = −a2 ×2 (98.37).

Φ = [0.01, 0.02, … , 0.99, 1.00],

99.99 ×2 Φ = [0.99, 1.98, … , 98.82, 99.99].

Ψ = [0.01, 0.02, … , 0.99, 1.00, 1.01],

−98.37 ×2 Ψ = [0.98, 1.96, … , 97.29, 98.37, 99.35].

99.99 ×2 Φ ∩ −98.37 ×2 Ψ = 61.92,

a1 = 0.62; a2 = −0.63; a3 = −61.92.



So there is only one straight line a containing points A(99.99, 0), B(0, −98.37), that is, a
segment AB exists.

Let us now see if the plane α intersects the segment AB. We get the system of equations

We have

but direct calculation shows that

and

This means that

that is, the segment AB does not contain a point of the plane α. So in this case the answer to
the question is negative.

3) Let us again take a plane α ∈ E3W2  with equation

and two regions Rα
1 , Rα

2  of the space E3W2 :

So

Let us take the same two points

Again, we look for a straight line a as the set of points (x, y, z) satisfying the system of
equations

0.62 ×2 x −2 0.63 ×2 y −2 61.92 = 0,

z = 0,

y +2 1 = 0.

0.62 ×2 x = 61.29,

0.62 ×2 98.89 = 61.24

0.62 ×2 98.90 = 61.30.

α ∩ a = Λ,

y +2 0.33 = 0

Rα
1 = [(x, y, z)], (x, y, z) ∈ E3W2, y > −0.33,

Rα
2 = [(x, y, z)], (x, y, z) ∈ E3W2, y < −0.33.

E3W2 = Rα
1 ∪ α ∪ Rα

2 .

A(99.99, 0, 0) ∈ Rα
1 , B(0, −98.37, 0) ∈ Rα

2 .

{
a1 ×2 x +2 a2 ×2 y +2 a3 = 0,

z = 0,



and containing points A, B. We have

We must have

This means that

Again, all possible positive a1  form the set

and we get

All possible negative a2  form the set

and we get

Direct calculations show that

and we get only one point in intersection of these two sets, that is,

So there is only one straight line a containing points A(99.99, 0, 0), B(0, −98.37, 0), that is,
a segment AB exists. Let us now see if the plane α intersects the segment AB. We get the
system of equations

We have

and a direct calculation shows that

{
a1 ×2 (99.99) +2 a2 ×2 (0) +2 a3 = 0,

a1 ×2 (0) −2 a2 ×2 (98.37) +2 a3 = 0.

|a1| ≤ 1, |a2| ≤ 1.01.

a1 ×2 (99.99) = −a2 ×2 (98.37).

Φ = [0.01, 0.02, … , 0.99, 1.00],

99.99 ×2 Φ = [0.99, 1.98, … , 98.82, 99.99].

Ψ = [−0.01, −0.02, … , −0.99, −1.00, −1.01],

−98.37 ×2 Ψ = [0.98, 1.96, … , 97.29, 98.37, 99.35].

99.99 ×2 Φ ∩ −98.37 ×2 Ψ = 61.92,

a1 = 0.62; a2 = −0.63; a3 = −61.92.

0.62 ×2 x −2 0.63 ×2 y −2 61.92 = 0,

z = 0,

y +2 0.33 = 0.

0.62 ×2 x = 61.74,



This means that

that is, the segment AB contains ten points of the plane α. So in this case the answer to this
question is positive.

So we have proved the following:

Theorem 5.48.

In Mathematics with Observers geometry in the space E3Wn , there are a plane α that divides the

remaining points of the space into two regions Rα
1 , Rα

2  (so Rα
3 = Λ) and two points A ∈ Rα

1 ,

B ∈ Rα
2  such that the segment AB contains no point of α.

Theorem 5.49.

In Mathematics with Observers geometry in the space E3Wn , there are a plane α that divides the

remaining points of space into two regions Rα
1 , Rα

2  (so Rα
3 = Λ) and two points A ∈ Rα

1 ,

B ∈ Rα
2  such that a segment AB contains exactly one point of α.

Theorem 5.50.

In Mathematics with Observers geometry in the space E3Wn , there are a plane α that divides the

remaining points of space into two regions Rα
1 , Rα

2  (so Rα
3 = Λ) and two points A ∈ Rα

1 ,

B ∈ Rα
2  such that the segment AB contains more than one point of α.

Now let us go to question b).

1) Let us take the plane α ∈ E3W2  with equation

and two regions Rα
1 , Rα

2  of the space E3W2 :

So

0.62 ×2 99.60= 61.74,

0.62 ×2 99.61= 61.74,

0.62 ×2 99.62= 61.74,

0.62 ×2 99.63= 61.74,

0.62 ×2 99.64= 61.74,

0.62 ×2 99.65= 61.74,

0.62 ×2 99.66= 61.74,

0.62 ×2 99.67= 61.74,

0.62 ×2 99.68= 61.74,

0.62 ×2 99.69= 61.74.

α ∩ a = [(99.60, −0.33, 0), (99.61, −0.33, 0), … , (99.69, −0.33, 0)],

y = 0

Rα
1 = [(x, y, z)], (x, y, z) ∈ E3W2, y > 0,

Rα
2 = [(x, y, z)], (x, y, z) ∈ E3W2, y < 0.



Let us take two points A,A′ ∈ Rα
1 :

We get a straight line a as the set of points (x, y, z) satisfying the system of equations

containing points A, A′ . The segment AA′  contains the points

and contains no point of α and region Rα
2 . So in this case the answer to the question is

positive.

2) We have another straight line b as the set of points (x, y, z) satisfying the system of
equations

and containing points A, A′ . The segment AA′  contains the points

and many points of the plane α and regions Rα
1 , Rα

2 . So in this case the answer to the
question is negative.

3) Let us take the plane α ∈ E3W2  with equation

and two regions Rα
1 , Rα

2  of the space E3W2 :

So

Let us take two points

E3W2 = Rα
1 ∪ α ∪ Rα

2 .

A(0.09, 0.19, 0),A′(0.21, 0.43, 0) ∈ Rα
1 .

{
a1 ×2 x +2 a2 ×2 y +2 a3 = 0,

z = 0,

[(0.09, 0.19, 0), (0.10, 0.21, 0), … , (0.20, 0.41, 0), (0.21, 0.43, 0)]

{
0.01 ×2 x +2 0.01 ×2 y = 0,

z = 0,

[(0.09, 0, 0), (0.09, ±0.01, 0), … , (0.09, ±0.99, 0), (0.10, 0, 0), (0.10, ±0.01, 0), …

… , (0.10, ±0.99, 0), …

… , (0.21, 0, 0), (0.21, ±0.01, 0), … , (0.21, ±0.99, 0)]

y = 1

Rα
1 = [(x, y, z)], (x, y, z) ∈ E3W2, y > 1,

Rα
2 = [(x, y, z)], (x, y, z) ∈ E3W2, y < 1.

E3W2 = Rα
1 ∪ α ∪ Rα

2 .

A(99.99, 0, 0),A′(0, −98.88, 0) ∈ R2.



We look for a straight line a as the set of points (x, y, z) satisfying the system of equations

and containing points A, A′ . We have

We must have

This means that

All possible positive a1  form the set

and we get

All possible negative a2  form the set

and we get

Direct calculations show that

So the straight line a containing points A(99.99, 0, 0) and A′(0, −98.88, 0) does not exist,
that is, a segment AA′  does not exist. So in this case the answer to the question is negative.

So we have proved the following:

Theorem 5.51.

In Mathematics with Observers geometry in the space E3Wn , there are a plane α that divides the

remaining points of the space into two regions Rα
1 , Rα

2  (so Rα
3 = Λ) and two points A,A′ ∈ Rα

1

such that the segment AA′
 contains points of Rα

1  and no point of α ∪ Rα
2 .

Theorem 5.52.

In Mathematics with Observers geometry in the space E3Wn , there are a plane α that divides the

remaining points of space into two regions Rα
1 , Rα

2  (so Rα
3 = Λ) and two points A,A′ ∈ Rα

1

such that the segment AA′
 contains points of Rα

1 , points of α, and points of Rα
2 .

{
a1 ×2 x +2 a2 ×2 y +2 a3 = 0,

z = 0,

{
a1 ×2 (99.99) +2 a2 ×2 (0) +2 a3 = 0,

a1 ×2 (0) −2 a2 ×2 (98.88) +2 a3 = 0.

|a1| ≤ 1, |a2| ≤ 1.01.

a1 ×2 (99.99) = −a2 ×2 (98.88).

Φ = [0.01, 0.02, … , 0.99, 1.00],

99.99 ×2 Φ = [0.99, 1.98, … , 98.82, 99.99].

Ψ = [−0.01, −0.02, … , −0.99, −1.00, −1.01],

−98.88 ×2 Ψ = [0.98, 1.96, … , 97.74, 98.88, 99.86].

99.99 ×2 Φ ∩ −98.88 ×2 Ψ = Λ.



Theorem 5.53.

In Mathematics with Observers geometry in the space E3Wn , there are a plane α that divides the

remaining points of space into two regions Rα
1 , Rα

2  (so Rα
3 = Λ) and two points A,A′ ∈ Rα

1

such that the segment AA′
 does not exist, that is, the points A, A′

 do not lie together on any

straight line.



1.

6  Observability and properties of parallel straight lines

In classical geometry, two lines a, b lying in a plane α are called parallel if

In Mathematics with Observers geometry we have to strengthen this definition in the
following way: A straight line a that lies in a plane α divides the remaining points of this
plane into three regions, Ra

1 , Ra
2 , and Ra

3 . Also, a straight line b that lies in a plane α divides
the remaining points of this plane into three regions, Rb

1 , Rb
2 , and Rb

3 .

We call straight lines a, b ⊂ α parallel and write a ∥ b if

or

and

We call straight lines b, a ⊂ α parallel and write b ∥ a if

or

and

So we define the parallelism of straight lines not symmetrically: a ∥ b and b ∥ a. Here we put
additional conditions because, for example, we get the following situations:

Let n = 2 and consider two straight lines a, b in E2W2 :

a ∩ b = Λ.

{
b ⊂ (Ra

1 ∪ Ra
3),

b ∩ Ra
1 ≠ Λ,

{
b ⊂ (Ra

2 ∪ Ra
3),

b ∩ Ra
2 ≠ Λ,

a ∩ b = Λ.

{
a ⊂ (Rb

1 ∪ Rb
3),

a ∩ Rb
1 ≠ Λ,

{
a ⊂ (Rb

2 ∪ Rb
3),

a ∩ Rb
2 ≠ Λ,

b ∩ a = Λ.

a : 99.99 ×2 x −2 99.99 ×2 y = 0,

b : y = 2.



2.

3.

Note that

We have

that is, b ∥ a. However,

that is,

we get b ∦ a. This means that in this case, the relations a ∥ b and b ∥ a are not symmetric
in Observer’s geometry.

Let n = 2 and consider two straight lines a, b in E2W2 :

We have

that is, b ∥ a. Also,

so we get a ∥ b. This means that in this case, the relations a ∥ b and b ∥ a are symmetric
in Observer’s geometry.

Let us first consider first three straight lines a, b, c ∈ E2W2 :

We have

a ⊂ [(x, y),x ∈ [−1, 1], y ∈ [−1, 1]].

Rb
2 = [(x, y),x ∈ W2, y ∈ W2, y < 2],

a ⊂ Rb
2,

b ∩ a = Λ,

(Ra
1 ∪ a ∪ Ra

2) ∩ b = Λ,

a ∩ b = Λ,

a : y = 0,

b : y = 2.

Rb
2 = [(x, y),x ∈ W2, y ∈ W2, y < 2],

a ⊂ Rb
2,

b ∩ a = Λ,

Ra
1 = [(x, y),x ∈ W2, y ∈ W2, y > 0],

b ⊂ Ra
1,

a ∩ b = Λ,

a : y = 2,

b : x = 2,

c : 99.99 ×2 x −2 99.99 ×2 y = 0.



4.

that is, a ∥ c. Also,

that is, b ∥ c. However,

that is, a ∦ b. So in this case the relations a ∥ c and b ∥ c ( a ≠ b) do not mean the relation
a ∥ b, that is we do not have parallelism transitivity.

Note that we have the same situation in classical Gauss–Bolyai–Lobachevsky geometry.
Let us consider three straight lines a, b, c ∈ E2W2 :

We have

that is, a ∥ c. Also,

that is, b ∥ c, and

that is, a ∥ b.

So in this case the relations a ∥ c and b ∥ c ( a ≠ b) mean the relation a ∥ b, that is, we
have parallelism transitivity.

Ra
2 = [(x, y),x ∈ W2, y ∈ W2, y < 2],

c ⊂ Ra
2,

a ∩ c = Λ,

Rb
2 = [(x, y),x ∈ W2, y ∈ W2,x < 2],

c ⊂ Rb
2,

b ∩ c = Λ,

a ∩ b = (2, 2) ≠ Λ,

a : y = 2,

b : y = 1,

c : y = 0.

Ra
2 = [(x, y),x ∈ W2, y ∈ W2, y < 2],

c ⊂ Ra
2,

a ∩ c = Λ,

Rb
2 = [(x, y),x ∈ W2, y ∈ W2, y < 1],

c ⊂ Rb
2,

b ∩ c = Λ,

b⊂ Ra
2,

a∩b = Λ,



5.

6.

Note that we have the same situation in classical Euclidean geometry.
Let us take two straight lines a, b ∈ E2W2 , a with equation

and b with equation

Because the number 3 does not have an inverse number in W2 , we get

that is, the straight lines a and b have no common points but are not parallel in common
and Mathematics with Observers geometry senses. To see this, let us consider

and

We get

that is, a ∦ b.

Let us take two straight lines a, b ∈ E2W2 , a with equation

and b with equation

The straight line a divides the remaining points of E2W2  into two regions Ra
1  and Ra

2  with

So

Also, the straight line b divides the remaining points of E2W2  into two regions Rb
1  and Rb

2

with

3 ×2 x −2 y = 0,

y −2 1 = 0.

a ∩ b = Λ,

Rb
1= [(x, y), (x, y) ∈ E2W2, y > 1],

Rb
2= [(x, y), (x, y) ∈ E2W2, y < 1],

Rb
3 = Λ.

{
a ∩ Rb

1 ≠ Λ,

a ∩ Rb
2 ≠ Λ,

y = 0,

y −2 1 = 0.

Ra
1= [(x, y), (x, y) ∈ E2W2, y > 0],

Ra
2= [(x, y), (x, y) ∈ E2W2, y < 0].

E2W2 = Ra
1 ∪ a ∪ Ra

2.



So

Lines b ⊂ Ra
1  and a ⊂ Rb

2 , and

that is, the straight lines a and b are parallel in common and Mathematics with Observers
geometry senses.

6.1  Parallel lines theorem

Classical Euclidean geometry states:

“If two straight lines a, b of a plane do not meet a third straight line c of the same plane,
then they do not meet each other.”

Question: Is this statement correct in Observer’s geometry?

1) Three straight lines in E2W2

and

do not meet the fourth straight line

but

So the answer to the question is negative.

2) Two straight lines in E2W2

and

Rb
1= [(x, y), (x, y) ∈ E2W2, y > 1],

Rb
2= [(x, y), (x, y) ∈ E2W2, y < 1].

E2W2 = Rb
1 ∪ a ∪ Rb

2.

a ∩ b = Λ,

b : −0.01 ×2 x +2 y −2 1 = 0,

c : 0.01 ×2 x +2 y −2 1 = 0,

d : y −2 1 = 0

a : y = 0,

b ∩ c ∩ d = (0, 1) ∈ E2W2.

a : 3 ×2 x −2 y = 0

b : 7 ×2 x −2 y = 0



do not meet the third straight line

but

So the answer to this question in this case also is negative.

3) Two straight lines in E2W2

and

do not meet the third straight line

and a and b are parallel. Note that in this case, a ∦ c and b ∦ c. So in this case the answer to
the question is positive.

So we have proved the following:

Theorem 6.1.

In Mathematics with Observers geometry in the plane E2Wn , there are three straight lines a, b, c

such that a ∩ c = Λ, b ∩ c = Λ, and a ∩ b = Λ.

Theorem 6.2.

In Mathematics with Observers geometry in the plane E2Wn , there are three straight lines a, b, c

such that a ∩ c = Λ, b ∩ c = Λ, and a ∩ b ≠ Λ.

6.2  Euclid’s axiom

Question. Is the following statement correct in Mathematics with Observers geometry: In a
plane α, through any point A lying outside of a straight line a, there can be drawn a unique
straight line parallel to line a?

1) Let plane α ∈ E3W2  have the equation

So we are in E2W2 . Let straight line a have the equation

c : y −2 1 = 0,

a ∩ b = (0, 0) ∈ E2W2

a : 3 ×2 x −2 y = 0

b : 3 ×2 x −2 y −2 3 = 0

c : y −2 1 = 0,

z = 0.

y = 0,



and let two regions Ra
1  and Ra

2  of plane α be

where x is any element of W2 . So

Let us take two points

We look for a straight line b as the set of points (x, y) satisfying the equation

and containing points A, B. We have

that is,

For

we get

and the equation of line b is

We have

and

We have

and

Ra
1= [(x, y)], (x, y) ∈ E2W2, y > 0,

Ra
2= [(x, y)], (x, y) ∈ E2W2, y < 0,

E2W2 = Ra
1 ∪ a ∪ Ra

2.

A(−99.99, 0.01),B(0, 1) ∈ R1.

a1 ×2 x +2 a2 ×2 y +2 a3 = 0

{
−a1 ×2 (99.99) +2 a2 ×2 (0.01) +2 a3 = 0,

a1 ×2 (0) +2 a2 ×2 (1) +2 a3 = 0,

{
−a1 ×2 (99.99) +2 a2 ×2 (0.01) −2 a2 = 0,

a3 = −a2.

a2 = 1,

a1 = −0.01,

b : −0.01 ×2 x +2 y −2 1 = 0.

b ⊂ Ra
1

b ∩ a = Λ.

Rb
1= [(x, y)], (x, y) ∈ E2W2, −0.01 ×2 x +2 y −2 1 > 0,

Rb
2= [(x, y)], (x, y) ∈ E2W2, −0.01 ×2 x +2 y −2 1 < 0,



So lines a, b are parallel, a ∥ b. Also, line c with equation

is parallel to line a and contains the points B and A′(99.99, 0.01). Consider straight line d
with equation

We see that lines a, d are parallel and line d contains point B. This means that in the plane

through point B lying outside straight line a, we can draw at least three distinct straight lines
b, c, d parallel to line a. So in this case the answer to the question is negative.

2) Let us continue to consider case 1) without situation with

So we have line e with equation

with conditions

We must have

All possible positive a1  form the set

and we get

If

then we get

and possible situations are

a ⊂ Rb
2.

0.01 ×2 x +2 y −2 1 = 0

y = 1.

α : z = 0,

a2 = 1.

a1 ×2 x +2 a2 ×2 y +2 a3 = 0

{
−a1 ×2 (99.99) +2 a2 ×2 (0.01) −2 a2 = 0,

a3 = −a2.

|a1| ≤ 1.

Φ = [0.01, 0.02, … , 0.99, 1.00],

99.99 ×2 Φ = [0.99, 1.98, … , 98.82, 99.99].

|a2| < 1,

{
−a1 ×2 (99.99) −2 a2 = 0,

a3 = −a2,



or

These two solutions define the same line, that is, the equation of line e is

We have

but

that is, line e contains the points

and

So lines a, e are not parallel. Thus we cannot assume that

3) Let us consider the last case where

We look for a straight line f with equation

and containing points A, B. If we take negative a1  such that

and so

⎧⎪⎨⎪⎩a1 = −0.01,

a2 = 0.99,

a3 = −0.99,

⎧⎪⎨⎪⎩a1 = 0.01,

a2 = −0.99,

a3 = 0.99.

−0.01 ×2 x +2 0.99 ×2 y −2 0.99 = 0.

A,B ∈ e,

{
x = −99.99,

0.99 ×2 y = 0,

[(−99.99, 0), (−99.99, ±0.01), … , (−99.99, ±0.09)],

e∩a ≠ Λ,

e∩Ra
1 ≠ Λ,

e∩Ra
2 ≠ Λ.

|a2| < 1.

|a2| > 1.

f : a1 ×2 x +2 a2 ×2 y +2 a3 = 0

|a1| ∈ Φ ∖ [0.01, 1] = [0.02, … , 0.99]

99.99 ×2 [0.02, … , 0.99] = [1.98, … , 98.82],



that is,

then from the system

we get the following equation for a2 :

Solution a2  of this equation exists not for all a1 . For example, for

we get

and

We have

line f ⊂ Ra
1  contains points A, B, line a ⊂ R

f
2 , which means that lines a, f are parallel, a ∥ f .

As in 1) of this section, we have the lines

and

containing point B and parallel to line a. For all cases where line f exists, we have that line
f ⊂ Ra

1  contains points A, B and that line a ⊂ R
f
2 , which means that lines a and f are

parallel, a ∥ f .

4) Let plane α ∈ E3W2  have the equation

So we are in E2W2 . Let the equation of straight line a be

a1 ×2 (99.99) ∈ [−1.98, … , −98.82],

{
−a1 ×2 (99.99) +2 a2 ×2 (0.01) −2 a2 = 0,

a3 = −a2,

a2 ×2 (0.01) −2 a2 = a1 ×2 (99.99).

a1 = −0.02,

a2 = 1.99

f : −0.02 ×2 x +2 1.99 ×2 y −2 1.99 = 0.

R
f
1= [(x, y)], (x, y) ∈ E2W2, −0.02 ×2 x +2 1.99 ×2 y −2 1.99 > 0,

R
f
2= [(x, y)], (x, y) ∈ E2W2, −0.02 ×2 x +2 1.99 ×2 y −2 1.99 < 0,

g : 0.02 ×2 x +2 1.99 ×2 y −2 1.99 = 0

h : y −2 1 = 0

z = 0.

y = 0,



and let two regions Ra
1 , Ra

2  of plane α be

where x is any element ∈ W2 . So

Let us take two points

where

We look for a straight line b as the set of points (x, y) satisfying the equation

and containing points A, B′ . We have

that is,

As above, for negative a1 ,

We must have

If

then

and

If

Ra
1= [(x, y)], (x, y) ∈ E2W2, y > 0,

Ra
2= [(x, y)], (x, y) ∈ E2W2, y < 0,

E2W2 = Ra
1 ∪ a ∪ Ra

2.

A(−99.99, 0.01),B′(0,u) ∈ Ra
1,

0 < u < 1.

a1 ×2 x +2 a2 ×2 y +2 a3 = 0

{
−a1 ×2 (99.99) +2 a2 ×2 (0.01) +2 a3 = 0,

a1 ×2 (0) +2 a2 ×2 (u) +2 a3 = 0,

{
−a1 ×2 (99.99) +2 a2 ×2 (0.01) −2 a2 ×2 (u) = 0,

a3 = −a2 ×2 (u).

−a1 ×2 (99.99) ∈ [0.99, 1.98, … , 98.82, 99.99].

a2 > 0.

a2 < 1,

a2 ×2 0.01 = 0

a2 ×2 u < 0.99.



then

and

5) Let us now consider the case

We have

For

a2  does not exist, and thus line b does not exist. This means that there is only one line

containing point B′  and parallel to line a.

6) Let us continue with the case

For

we get

and line b contains points A, B′  and has the equation

We get

a2 = 1,

a2 ×2 0.01= 0.01,

a2 ×2 u= u,

0.99 +2 0.01 −2 u ≠ 0.

a2 > 1.

{
−a1 ×2 (99.99) +2 a2 ×2 (0.01) −2 a2 ×2 (u) = 0,

a3 = −a2 ×2 (u).

u = 0.01,

y −2 0.01 = 0

a2 > 1.

u = 0.02,

⎧⎪⎨⎪⎩a1 = −0.01,

a2 = 99.99,

a3 = −1.98,

−0.01 ×2 x +2 99.99 ×2 y −2 1.98 = 0.

Rb
1= [(x, y)], (x, y) ∈ E2W2, −0.01 ×2 x +2 99.99 ×2 y −2 1.98 > 0,

Rb
2= [(x, y)], (x, y) ∈ E2W2, −0.01 ×2 x +2 99.99 ×2 y −2 1.98 < 0,



and

b ⊂ Ra
1 , a ⊂ Rb

2 , a ∩ b = Λ, and a ∥ b.

For

we get

and line b with equation

contains points A, B′  and is parallel to line a.

7) Let us take two points

where

We look for a straight line b as the set of points (x, y) satisfying the equation

and containing points A, B′ . We have

that is,

As above, for negative a1 ,

We must have

For example, if

u = 0.1,

⎧⎪⎨⎪⎩a1 = −0.09,

a2 = 99.00,

a3 = −9.90,

−0.09 ×2 x +2 99.00 ×2 y −2 9.90 = 0

A(−99.99, 0.01),B′(0,u) ∈ Ra
1,

u > 1.

a1 ×2 x +2 a2 ×2 y +2 a3 = 0

{
−a1 ×2 (99.99) +2 a2 ×2 (0.01) +2 a3 = 0,

a1 ×2 (0) +2 a2 ×2 (u) +2 a3 = 0,

{
−a1 ×2 (99.99) +2 a2 ×2 (0.01) −2 a2 ×2 (u) = 0,

a3 = −a2 ×2 (u).

−a1 ×2 (99.99) ∈ [0.99, 1.98, … , 98.82, 99.99].

a2 > 0.



then we get

and line b with equation

contains points A, B′  and is parallel to line a. Also, lines

and

contain point B′  and are parallel to line a.

8) For point B′(0,u) with arbitrary

there is straight line b with equation

containing point B′  and parallel to line a.

So we have proved the following:

Theorem 6.3.

In Mathematics with Observers geometry in the plane E2Wn , there are a straight line a that divides

the remaining points of plane into two regions Ra
1  and Ra

2  (so Ra
3 = Λ) and two points

A,B ∈ Ra
1  such that there is no straight line b containing points A, B and parallel to a.

Theorem 6.4.

In Mathematics with Observers geometry in the plane E2Wn , there are a straight line a that divides

the remaining points of plane into two regions Ra
1  and Ra

2  (so Ra
3 = Λ) and two points

A,B ∈ Ra
1  such that there is unique straight line b containing points A, B and parallel to a.

Theorem 6.5.

In Mathematics with Observers geometry in the plane E2Wn , there are a straight line a that divides

the remaining points of plane into two regions Ra
1  and Ra

2  (so Ra
3 = Λ) and two points

A,B ∈ Ra
1  such that there is more than one straight line b containing points A, B and parallel to a.

u = 1.25,

a1 = −0.12, a2 = 9.69, a3 = −12.06,

−0.12 ×2 x +2 9.69 ×2 y −2 12.06 = 0

c : 0.12 ×2 x +2 9.69 ×2 y −2 12.06 = 0

d : y −2 1.25 = 0

u > 0,

b : y −2 u = 0



6.3  Gauss–Bolyai–Lobachevsky axiom

Question. Is the following statement correct in Mathematics with Observers geometry: In a
plane α, through any point A lying outside a straight line a, there can be drawn more than one
straight line parallel to line a?

1) Let plane α ∈ E3W2  have the equation

So we are in E2W2 .

Let straight line a have the equation

and let two regions Ra
1 , Ra

2  of plane α be

and

where x is any element ∈ W2 . So

Let us take two points

We look for a straight line b as the set of points (x, y) satisfying the equation

and containing points A, B. We have

that is,

For

we get

z = 0.

y = 0,

Ra
1 = [(x, y), (x, y) ∈ E2W2, y > 0]

Ra
2 = [(x, y), (x, y) ∈ E2W2, y < 0],

E2W2 = Ra
1 ∪ a ∪ Ra

2.

A(−99.99, 0.01),B(0, 1) ∈ Ra
1.

a1 ×2 x +2 a2 ×2 y +2 a3 = 0

{
−a1 ×2 (99.99) +2 a2 ×2 (0.01) +2 a3 = 0,

a1 ×2 (0) +2 a2 ×2 (1) +2 a3 = 0,

{
−a1 ×2 (99.99) +2 a2 ×2 (0.01) +2 a3 = 0,

a3 = −a2.

a2 = 1,



and the equation of line b is

We have

and

We have

and

So line a is parallel to line b, and line b is parallel to line a, that is, a ∥ b and b ∥ a.

Note that we can write

We get

where

Also, line c with equation

a1 = −0.01,

b : −0.01 ×2 x +2 y −2 1 = 0.

b ⊂ Ra
1

b ∩ a = Λ.

Rb
1= [(x, y)], (x, y) ∈ E2W2, −0.01 ×2 x +2 y −2 1 > 0,

Rb
2= [(x, y)], (x, y) ∈ E2W2, −0.01 ×2 x +2 y −2 1 < 0,

a ⊂ Rb
2.

b : y = 0.01 ×2 x +2 1.

b = S−99 ∪ S−98 ∪ ⋯ ∪ S0 ∪ S0.99 ∪ S1.99 ∪ ⋯ ∪ S98.99 ∪ S99.99,

S−99= [(x, 0.01), −99.99 ≤ x ≤ 99.00],

S−98= [(x, 0.02), −98.99 ≤ x ≤ 98.00],

…

S0= [(x, 1.00), −0.99 ≤ x ≤ 0.00],

S0.99= [(x, 1.00), 0.00 ≤ x ≤ 0.99],

S1.99= [(x, 1.01), 1.00 ≤ x ≤ 1.99]

…

S98.99= [(x, 1.98), 98.00 ≤ x ≤ 98.99],

S99.99= [(x, 1.99), 99.00 ≤ x ≤ 99.99].

0.01 ×2 x +2 y −2 1 = 0



is parallel to line a and contains points B and A′(99.99, 0.01).

Note that we can write

We get

where

So line a is parallel to line c, and line c is parallel to line a, that is, a ∥ c and c ∥ a. Moreover,

and

that is, b ∦ c.

Consider straight line d with equation

We see that lines a and d are parallel and that line d contains point B. This means that in the
plane

through point B lying outside straight line a, we can draw at least three distinct straight lines
b, c, d parallel to line a.

1’) Let again plane α ∈ E3W2  have the equation

c : y = −0.01 ×2 x +2 1.

b = T−99 ∪ T−98 ∪ ⋯ ∪ T0 ∪ T0.99 ∪ T1.99 ∪ ⋯ ∪ T98.99 ∪ T99.99,

T−99= [(x, 1.99), −99.99 ≤ x ≤ 99.00],

T−98= [(x, 1.98), −98.99 ≤ x ≤ 98.00],

…

T0= [(x, 1.00), −0.99 ≤ x ≤ 0.00],

T0.99= [(x, 1.00), 0.00 ≤ x ≤ 0.99],

T1.99= [(x, 0.99), 1.00 ≤ x ≤ 1.99],

…

T98.99= [(x, 0.02), 98.00 ≤ x ≤ 98.99],

T99.99= [(x, 0.01), 99.00 ≤ x ≤ 99.99].

b ∩ c = [(x, 1)], −0.99 ≤ x ≤ 0.99

B ∈ (b ∩ c),

y = 1.

α : z = 0,



So we are in E2W2 . Let the equation of straight line a be

and let two regions Ra
1  and Ra

2  of plane α be

and

where x is any element ∈ W2 . So

Let us take two points

We look for a straight line b as the set of points (x, y) satisfying the equation

and containing points A, B. We have

that is,

For

we get

and

and the equation of line b is

We have

z = 0.

y = −1,

Ra
1 = [(x, y), (x, y) ∈ E2W2, y > −1]

Ra
2 = [(x, y), (x, y) ∈ E2W2, y < −1],

E2W2 = Ra
1 ∪ a ∪ Ra

2.

A(−99.99, 0.00),B(0, 99.99) ∈ Ra
1.

a1 ×2 x +2 a2 ×2 y +2 a3 = 0

{
−a1 ×2 (99.99) +2 a2 ×2 (0.00) +2 a3 = 0,

a1 ×2 (0) +2 a2 ×2 (99.99) +2 a3 = 0,

{
−a1 ×2 (99.99) +2 a3 = 0,

a2 ×2 (99.99) +2 a3 = 0.

a2 = 1,

a1 = −1

a3 = −99.99,

b : y = x +2 99.99 = 0.

b ⊂ Ra
1



and

Also, we have

and

where x is any element such that −99.99 ≤ x ≤ 0, and

So line a is parallel to line b, and line b is parallel to line a, that is, a ∥ b and b ∥ a. Also, line c
with equation

is parallel to line a and contains points B and A′(99.99, 0.00). So line a is parallel to line c,
and line c is parallel to line a, that is, a ∥ c and c ∥ a. Moreover,

that is, b ∦ c.

If we consider straight line d with equation

we see that lines a and d are parallel and that line d contains point B. This means that in the
plane

through point B lying outside straight line a, we can draw at least three distinct straight lines
b, c, d parallel to line a.

So we have proved the following:

Theorem 6.6.

In Mathematics with Observers geometry in plane E2Wn , there are a straight line a that divides the

remaining points of the plane into two regions Ra
1  and Ra

2  (so Ra
3 = Λ) and a point A ∈ Ra

1  such

that there are is than one straight line b containing point A and parallel to a.

2) Let us take two straight lines a, c ∈ E2W2 :

b ∩ a = Λ.

Rb
1 = [(x, y), (x, y) ∈ E2W2, y = x +2 99.99 > 0]

Rb
2 = [(x, y), (x, y) ∈ E2W2, y = x +2 99.99 < 0],

a∩Rb
1 = Λ,

a∩Rb
2 ≠ Λ.

c : y = −x +2 99.99 = 0

b ∩ c = (0, 99.99) = B,

y = 99.99,

α : z = 0,



Line a is the set of points (x,x) ∈ E2W2  with x ∈ [−1, −0.99, −0.98, … , 0.99, 1] and
divides E2W2  into three regions Ra

1 , Ra
2 , Ra

3 :

and

where

Line c divides E2W2  into two regions Rc
1 , Rc

2 :

where x is any element ∈ W2 , and

We get

but

So c ∥ a, but a ∦ c.

3) Let us take three straight lines a, b, c ∈ E2W2 :

Line a is the set of points (x,x) ∈ E2W2  with x ∈ [−1, −0.99, −0.98, … , 0.99, 1], line b is
the set of points (x, −x) ∈ E2W2  with x ∈ [−1, −0.99, −0.98, … , 0.99, 1], and

Line c divides E2W2  into two regions Rc
1 , Rc

2 :

a : 99.99 ×2 x −2 99.99 ×2 y = 0,

c : y +2 2 = 0.

Ra
1= [(x, y), (x, y) ∈ E2W2, 99.99 ×2 x −2 99.99 ×2 y > 0],

Ra
2= [(x, y), (x, y) ∈ E2W2, 99.99 ×2 x −2 99.99 ×2 y < 0],

Ra
1 ∪ a ∪ Ra

2 ⊂ Q,

Q= [(x, y), −1 ≤ x ≤ 1, 1 ≤ y ≤ 1],

Ra
3= E2W2 ∖ (Ra

1 ∪ a ∪ Ra
2)

Rc
1= [(x, y), (x, y) ∈ E2W2, y +2 2 > 0],

Rc
2= [(x, y), (x, y) ∈ E2W2, y +2 2 < 0],

E2W2 = Rc
1 ∪ c ∪ Rc

2.

a ⊂ Rc
1,

c ⊂ Ra
3.

a : 99.99 ×2 x −2 99.99 ×2 y = 0,

b : 99.99 ×2 x +2 99.99 ×2 y = 0,

c : y +2 2 = 0.

a ∩ b = [A(0, 0)].



where x is any element ∈ W2 , and

We get

but line a is the set of points (x,x) ∈ E2W2  with x ∈ [−1, −0.99, −0.98, … , 0.99, 1].

Line a divides E2W2  into three regions Ra
1 , Ra

2 , Ra
3 :

and line b is the set of points (x, −x) ∈ E2W2  with x ∈ [−1, −0.99, −0.98, … , 0.99, 1].

Line b divides E2W2  into three regions Rb
1 , Rb

2 , Rb
3 :

and

where

We get

but

So c ∥ a and c ∥ b, but a ∦ c and b ∦ c.

Rc
1= [(x, y), (x, y) ∈ E2W2, y +2 2 > 0],

Rc
2= [(x, y), (x, y) ∈ E2W2, y +2 2 < 0],

E2W2 = Rc
1 ∪ c ∪ Rc

2.

a⊂ Rc
1,

b⊂ Rc
1,

Ra
1= [(x, y), (x, y) ∈ E2W2, 99.99 ×2 x −2 99.99 ×2 y > 0],

Ra
2= [(x, y), (x, y) ∈ E2W2, 99.99 ×2 x −2 99.99 ×2 y < 0],

Ra
3= E2W2 ∖ (Ra

1 ∪ a ∪ Ra
2),

Rb
1= [(x, y), (x, y) ∈ E2W2, 99.99 ×2 x +2 99.99 ×2 y > 0],

Rb
2= [(x, y), (x, y) ∈ E2W2, 99.99 ×2 x +2 99.99 ×2 y < 0],

Rb
3= E2W2 ∖ (Rb

1 ∪ b ∪ Rb
2),

Ra
1 ∪ a ∪ Ra

2 ∪ Rb
1 ∪ b ∪ Rb

2 ⊂ Q,

Q = [(x, y), −1 ≤ x ≤ 1, −1 ≤ y ≤ 1].

a⊂ Rc
1,

b⊂ Rc
1,

c⊂ Ra
3,

c⊂ Rb
3.



So we have proved the following:

Theorem 6.7.

In Mathematics with Observers geometry in a plane α, through any point A lying outside a straight

line c, there can be drawn more than one straight line that has no common points with c, belongs to

one region Rc
1 , and is not parallel to c.

Note that if we take points B(0.5, 0.5) ∈ a and D(0.5, −0.5) ∈ b and consider the vectors

then we get

So we have proved the following:

Theorem 6.8.

In Mathematics with Observers geometry in a plane α, there are a straight line c and a point A lying

outside c such that through this point A, there can be drawn at least two straight lines a and b that

are perpendicular to each other, have no common points with c, belong to one region Rc
1 , and are

not parallel to c.

4) Let us take six straight lines a, b, c, d, e, f ∈ E2W2 :

Line a is the set of points (x,x) ∈ E2W2  with x ∈ [−1, −0.99, −0.98, … , 0.99, 1], line b is
the set of points (x, −x) ∈ E2W2  with x ∈ [−1, −0.99, −0.98, … , 0.99, 1], and

Line c divides E2W2  into two regions Rc
1 , Rc

2 :

where x is any element ∈ W2 , and

Line d divides E2W2  into two regions Rd
1 , Rd

2 :

AB= (0.5, 0.5) ∈ E2W2,

AD= (0.5, −0.5) ∈ E2W2,

(AB, AD) = 0.

a : 99.99 ×2 x −2 99.99 ×2 y = 0,

b : 99.99 ×2 x +2 99.99 ×2 y = 0,

c : y +2 2 = 0,

d : x +2 2 = 0,

e : y −2 2 = 0,

f : x −2 2 = 0.

a ∩ b = [A(0, 0)].

Rc
1= [(x, y)], (x, y) ∈ E2W2, y +2 2 > 0,

Rc
2= [(x, y)], (x, y) ∈ E2W2, y +2 2 < 0,

E2W2 = Rc
1 ∪ c ∪ Rc

2.



where y is any element ∈ W2 , and

Line e divides E2W2  into two regions Re
1 , Re

2 :

where x is any element ∈ W2 , and

Line f divides E2W2  into two regions Rf
1 , Rf

2 :

where y is any element ∈ W2 , and

We get

and

where

We have

c ⊂ Ra
3 , d ⊂ Ra

3 , e ⊂ Ra
3 , f ⊂ Ra

3 , and c ⊂ Rb
3 , d ⊂ Rb

3 , e ⊂ Rb
3 , f ⊂ Rb

3 .

So we have proved the following:

Theorem 6.9.

In Mathematics with Observers geometry in a plane α, there are straight lines c, d, e, f such that

Rd
1= [(x, y)], (x, y) ∈ E2W2,x +2 2 > 0,

Rd
2= [(x, y)], (x, y) ∈ E2W2,x +2 2 < 0,

E2W2 = Rd
1 ∪ d ∪ Rd

2.

Re
1= [(x, y)], (x, y) ∈ E2W2, y −2 2 > 0,

Re
2= [(x, y)], (x, y) ∈ E2W2, y −2 2 < 0,

E2W2 = Re
1 ∪ e ∪ Re

2.

R
f
1= [(x, y)], (x, y) ∈ E2W2,x −2 2 > 0,

R
f
2= [(x, y)], (x, y) ∈ E2W2,x −2 2 < 0,

E2W2 = R
f

1 ∪ f ∪ R
f

2 .

c ⊥ d, c ⊥ f, e ⊥ d, e ⊥ f, c ∥ e, d ∥ f, e ∥ c, f ∥ d,

Ra
1 ∪ a ∪ Ra

2 ∪ Rb
1 ∪ b ∪ Rb

2 ⊂ Q,

Q = [(x, y), −1 ≤ x ≤ 1, −1 ≤ y ≤ 1].

a⊂ Rc
1, a ⊂ Rd

1, a ⊂ Re
2, a ⊂ R

f
2 ,

b⊂ Rc
1, b ⊂ Rd

1, b ⊂ Re
2, b ⊂ R

f
2 ,

c ⊥ d, c ⊥ f, d ⊥ e, f ⊥ e



and a point A lying outside these straight lines such that through this point A, there can be drawn at

least two straight lines a and b that perpendicular to each other, have no common points with c, d,

e, f, and, moreover,

c ⊂ Ra
3 , d ⊂ Ra

3 , e ⊂ Ra
3 , f ⊂ Ra

3 , c ⊂ Rb
3 , d ⊂ Rb

3 , e ⊂ Rb
3 , f ⊂ Rb

3 , and a ∦ c, a ∦ d,

a ∦ e, a ∦ f , b ∦ c, b ∦ d, b ∦ e, b ∦ f , but c ∥ a, d ∥ a, e ∥ a, f ∥ a, c ∥ b, d ∥ b, e ∥ b, f ∥ b.

5) As we saw above, we have the following: In a plane α, there are a straight line b and a
point A lying outside of this straight line such that through this point A, there can be drawn at
least two straight lines a and c that parallel to line b, and we have a ∥ b, b ∥ a, c ∥ b, b ∥ c.

So we have the following:

Theorem 6.10.

In Mathematics with Observers geometry in a plane α, there are a straight line b and a point A lying

outside this straight line such that through this point A, there can be drawn at least two straight

lines a and c that are parallel to line b.

6.4  Riemann axiom

Question. Is the following statement correct in Mathematics with Observers geometry: In a
plane α, through any point A lying outside a straight line a, there can be drawn no straight
line parallel to line a?

Let us consider a classical Riemannian geometry model for E3W2 : a straight line a ∈ E3W2

is an intersection of plane α ∈ E3W2  with the unit sphere, where plane α contains the
origin, the point (0,0,0). In Euclid’s three-dimensional space, such two distinct straight lines
intersect in two points.

1) Let us take two planes

and

and the unit sphere with equation

We get

a⊂ Rc
1, a ⊂ Rd

1, a ⊂ Re
2, a ⊂ R

f
2 ,

b⊂ Rc
1, b ⊂ Rd

1, b ⊂ Re
2, b ⊂ R

f
2 ,

α : x +2 y −2 4 ×2 z = 0

β : y −2 4 ×2 z = 0

Sph : x ×2 x +2 y ×2 y +2 z ×2 z = 1.



because we have

and

does not exist because

So, unlike in the classical case, two lines do not intersect.

2) Let us take two planes

and

and the unit sphere with equation

We get

So, as in the classical case, two lines intersect in two points.

3) Let us take two planes

and

and the unit sphere with equation

We get

α ∩ β ∩ Sph = Λ,

⎧⎪⎨⎪⎩x = 0,

y −2 4 ×2 z = 0,

17 ×2 (z ×2 z) = 1,

17−1

17 ×2 0.05= 0.85,

17 ×2 0.06= 1.02.

α : x = 0

β : y = 0

Sph : x ×2 x +2 y ×2 y +2 z ×2 z = 1.

α ∩ β ∩ Sph = [(0, 0, −1), (0, 0, 1)].

α : 0.01 ×2 x −2 0.02 ×2 y −2 0.22 ×2 z = 0

β : z = 0

Sph : x ×2 x +2 y ×2 y +2 z ×2 z = 1.



that is, the total number of common points here is 800 (from the point of view of Wm -
observer with m ≥ 13). So, unlike in the classical case, we have 800 points in the intersection
of two lines (from the point of view of Wm -observer with m ≥ 13).

So we have proved the following:

Theorem 6.11.

In Mathematics with Observers geometry in the interpretation of classical Riemann model for the

space E3Wn  (i. e., straight line a ∈ E3W2  is the intersection of a plane α ∈ E3W2  with the unit

sphere, where plane α contains the origin, point (0,0,0)), there are two straight lines a and b such

that a ∩ b = Λ.

Theorem 6.12.

In Mathematics with Observers geometry in the interpretation of classical Riemann model for the

space E3Wn , there are two straight lines a and b such that a ∩ b ≠ Λ contains exactly two points.

Theorem 6.13.

In Mathematics with Observers geometry in the interpretation of classical Riemann model for the

space E3Wn , there are two straight lines a and b such that a ∩ b ≠ Λ contains more than two

points.

6.5  Observability and geometry: the main parallel lines
theorem

Let us first prove the following theorem.

Theorem 6.14.

In the plane E2Wn , there are a point A and a straight line b not containing this point such that any

straight line a containing point A and line b are not parallel: a ∦ b and b ∦ a.

Let us first consider the case n = 2, that is, we are in E2W2 . Let us consider the class of
straight lines with equations

or

α ∩ β ∩ Sph= [(±0.60, ±0.80, 0), …

… (±0.69, ±0.80, 0), (±0.60, ±0.81, 0), … , (±0.69, ±0.81, 0), …

… , (±0.60, ±0.89, 0), … , (±0.69, ±0.89, 0), (±0.80, ±0.60, 0), …

… , (±0.89, ±0.60, 0), (±0.80, ±0.61, 0), … , (±0.89, ±0.61, 0), …

… , (±0.80, ±0.69, 0), … , (±0.89, ±0.69, 0)],

y = k ×2 x +2 c

0 = x +2 c,



where all elements are in W2 . Let A(−99.99, 99.99) ∈ E2W2  and consider the straight line
b:

Then

We look for a straight line a containing point A. We have

or

for all

Let us consider the first case. We must have

We get

and thus

So line a has the equation

If

then we get

and

that is, a ∦ b and b ∦ a.

If

b : x −2 y = 0.

A ∉ b.

a : y = k ×2 x +2 c

a : 0 = x +2 c

k, c,x, y, k ×2 x, k ×2 x +2 c ∈ W2.

99.99 = k ×2 (−99.99) +2 c.

{
|k| ≤ 1,

c = 99.99 +2 k ×2 99.99,

−1 ≤ k ≤ 0.

a : y = k ×2 x +2 (99.99 +2 k ×2 99.99).

k = −1,

a : y = −x

a ∩ b = (0, 0),



then we get

and

that is, a ∦ b and b ∦ a.

If

then we get

and

For x = 99.99 and k = −0.99, on line a, we get

For x = 99.99 and k = −0.01, on line a, we get

For x = 99.99 and −1 < k < 0, on line a, we get

that is,

This means that

and

Also, we have

and

k = 0,

a : y = 99.99

a ∩ b = (99.99, 99.99),

−1 < k < 0,

a : y = k ×2 x +2 (99.99 +2 k ×2 99.99)

A(−99.99, 99.99) ∈ a.

y = −0.99 ×2 99.99 +2 (99.99 −2 0.99 ×2 99.99) = −97.65.

y = −0.01 ×2 99.99 +2 (99.99 −2 0.01 ×2 99.99) = 98.01.

y ∈ [−97.65, 98.01],

y < 99.99.

a ∩ Rb
1 ≠ Λ

a ∩ Rb
2 ≠ Λ.

b ∩ Ra
1 ≠ Λ

b ∩ Ra
2 ≠ Λ.



This means that straight lines a and b are not parallel, a ∦ b, and straight lines b and a are
not parallel, b ∦ a.

Let us now consider the second case:

Clearly, x, c ∈ W2 .

We look for a straight line a containing point A. We have

or

that is,

So

This means that a ∦ b and b ∦ a.

So we have proved the theorem for n = 2 and the class of straight lines with equations

or

The theorem is still correct for this class of straight lines for all n, and the proof is practically
the same.

Now let us consider the general case of any straight lines. First, let us take n = 2. Let again
consider the point A(−99.99, 99.99) ∈ E2W2 . We look for a straight line a containing this
point. We have

for all

such that (a1, a2) ≠ (0, 0) and

a : 0 = x +2 c.

0 = −99.99 +2 c

c = 99.99,

a : x = −99.99.

a ∩ b = B(−99.99, −99.99).

y = k ×2 x +2 c

0 = x +2 c.

a : a1 ×2 x +2 a2 ×2 y +2 a3 = 0

a1, a2, a3,x, y, a1 ×2 x, a2 ×2 y, a1 ×2 x +2 a2 ×2 y ∈ W2



We get

Also, if

then

However, if

or

then line a does not exist, because in this case,

So the equation of line a is

for any

such that (a1, a2) ≠ (0, 0) and

Note that for line a, we have that or any x, y, a1 , a2 ,

and

Moreover, inequalities become equalities only in the cases

or

a1 ×2 (−99.99) +2 a2 ×2 99.99 +2 a3 = 0.

{
|a1| ≤ 1,

|a2| ≤ 1.

a1 = a2,

a3 = 0.

a1 = −a2 = 1

a1 = −a2 = −1,

a1 ×2 99.99 −2 a2 ×2 99.99 ∉ W2.

a : a1 ×2 x +2 a2 ×2 y +2 (a1 ×2 99.99 −2 a2 ×2 99.99) = 0

a1, a2, a3,x, y, a1 ×2 x, a2 ×2 y, a1 ×2 x +2 a2 ×2 y, a1 ×2 99.99 −2 a2 ×2 99.99 ∈ W2

{
|a1| ≤ 1,

|a2| ≤ 1.

|a1| ×2 |x| ≤ |a1| ×2 99.99

|a2| ×2 |y| ≤ |a2| ×2 99.99.

{
|a1| = 1,

x = ±99.99,



or

where ⋆ is any digit 0,1,…,9.

The same situation takes place for a2 :

or

or

Now rewrite the equation of line a as

and let us assume that a1  and a2  have opposite signs, for example,

Line a exists in this case only if

or

{
0.10 ≤ |a1| ≤ 0.99,

x = ±99.9⋆,

{
0.01 ≤ |a1| ≤ 0.09,

x = ±99. ⋆⋆,

{
|a2| = 1,

y = ±99.99,

{
0.10 ≤ |a2| ≤ 0.99,

y = ±99.9⋆,

{
0.01 ≤ |a2| ≤ 0.09,

y = ±99. ⋆⋆.

a : a1 ×2 x +2 a2 ×2 y +2 a1 ×2 99.99 −2 a2 ×2 99.99 = 0

{
−1 < a1 < 0,

0 < a2 < 1.

⎧⎪⎨⎪⎩−0.99 ≤ a1 ≤ −0.10,

0.01 ≤ a2 ≤ 0.09

−a1 ×2 99.99 +2 a2 ×2 99.99 ∈ W2,

x = −99.9⋆,

y = 99. ⋆⋆,



or

or

We get the same result when the coefficients a1  and a2  of line a have opposite signs:

Let us now consider straight line b:

Question: Is there straight line a parallel to line b?

Note that A ∈ Rb
3 , where Rb

3 ⊂ E2W2 , Rb
3 = E2W2 ∖ (Rb

1 ∪ b ∪ Rb
2),

Rb
1 :

Rb
2 :

As we proved above, in the case where the coefficients a1  and a2  of line a have opposite
signs,

⎧⎪⎨⎪⎩−0.99 ≤ a1 ≤ −0.10,

0.10 ≤ a2 ≤ 0.99,

−a1 ×2 99.99 +2 a2 ×2 99.99 ∈ W2,

x = −99.9⋆,

y = 99.9⋆,

⎧⎪⎨⎪⎩−0.09 ≤ a1 ≤ −0.01,

0.01 ≤ a2 ≤ 0.09,

−a1 ×2 99.99 +2 a2 ×2 99.99 ∈ W2,

x = −99. ⋆⋆,

y = 99. ⋆⋆,

⎧⎪⎨⎪⎩−0.09 ≤ a1 ≤ −0.01,

0.10 ≤ a2 ≤ 0.99,

−a1 ×2 99.99 +2 a2 ×2 99.99 ∈ W2,

x = −99. ⋆⋆,

y = 99.9⋆.

{
−1 < a2 < 0,

0 < a1 < 1.

b : x −2 y = 0.

{
x −2 y ∈ Wn,

x −2 y > 0,

{
x −2 y ∈ Wn,

x −2 y < 0.



or

we get

and so a ∦ b.

Let us now consider two extreme cases.

Case 1. a1 = 0, and hence

With any a2  such that

we get

Case 2. a2 = 0, and hence

With any a1  such that

we get

This means that in both extreme cases, a ∦ b.

Let us now consider the “central” case for line a:

{
−1 < a1 < 0,

0 < a2 < 1,

{
−1 < a2 < 0,

0 < a1 < 1,

a ⊂ Rb
3,

a : a2 ×2 y −2 a2 ×2 99.99 = 0.

{
|a2| ≤ 1,

a2 ≠ 0,

(99.99, 99.99) ∈ a ∩ b.

a : a1 ×2 x +2 a1 ×2 99.99 = 0.

{
|a1| ≤ 1,

a1 ≠ 0,

(−99.99, −99.99) ∈ a ∩ b.



This means that O(0, 0) ∈ a, that is, O(0, 0) ∈ a ∩ b, that is, a ∦ b.

So in the general case, line a satisfies the system

Let us now consider several cases with specific values of a1  and a2 .

S1.

We get the equation of line a in this case:

that is,

We look for the intersection a ∩ b, that is, the situation with x = y. For x = −33.36, we get

Such y does not exist because

and

for any digit ⋆∈(0,1,…,9).

For x = −33.39, we get

⎧⎪⎨⎪⎩a1, a2 ∈ Wn,

0 < |a1| < 1,

0 < |a2| < 1,

a1 = a2,

a1 ×2 x +2 a1 ×2 y = 0.

⎧⎪⎨⎪⎩a1, a2, a1 ×2 x, a2 ×2 y, a1 ×2 x +2 a2 ×2 y, a1 ×2 99.99 −2 a2 ×2 99.99 ∈ W2,

0 < |a1| ≤ 1,

0 < |a2| ≤ 1,

a1 ×2 a1 +2 a2 ×2 a2 < 2,

a1 ×2 x +2 a2 ×2 y +2 a1 ×2 99.99 −2 a2 ×2 99.99 = 0.

{
a1 = 1,

a2 = 0.50.

a : x +2 0.50 ×2 y +2 99.99 −2 0.50 ×2 99.99 = 0,

a : x +2 0.50 ×2 y +2 50.04 = 0.

0.50 ×2 y = −16.68.

−0.50 ×2 33.3⋆ = −16.65

−0.50 ×2 33.4⋆ = −16.70

0.50 ×2 y = −16.65



and

for any digit ⋆∈(0,1,…,9).

This means that

that is, in this specific case, a ∦ b.

S2.

We get the equation of line a in this case:

that is,

Direct calculation shows that C(−17.65, −26.75) ∈ a because

Also, we get

Now we look for the intersection a ∩ b, that is, the situation with x = y, if this intersection
exists. For x = y = −21.1⋆, we get

and for x = y = −21.2⋆, we get

that is,

Now we look for another point D ∈ a that belongs to Rb
2 . Direct calculation shows that

D(−34.7⋆, −0.4⋆) ∈ a because

and we get

−0.50 ×2 33.3⋆ = −16.65

B(−33.39, −33.39) ∈ a ∩ b,

{
a1 = 0.83,

a2 = 0.54.

a : 0.83 ×2 x +2 0.54 ×2 y +2 0.83 ×2 99.99 −2 0.54 ×2 99.99 = 0,

a : 0.83 ×2 x +2 0.54 ×2 y +2 28.98 = 0.

0.83 ×2 (−17.65) +2 0.54 ×2 (−26.75) +2 28.98 = −14.59 −2 14.39 +2 28.98 = 0.

C ∈ Rb
1.

0.83 ×2 (−21.1⋆) +2 0.54 ×2 (−21.1⋆) +2 28.98 = −17.51 −2 11.39 +2 28.98 = 0.08,

0.83 ×2 (−21.2⋆) +2 0.54 ×2 (−21.2⋆) +2 28.98 = −17.59 −2 11.44 +2 28.98 = −0.05,

a ∩ b = Λ.

0.83 ×2 (−34.7⋆) +2 0.54 ×2 (−0.4⋆) +2 28.98 = −28.78 −2 0.20 +2 28.98 = 0,



This means that a ∦ b.

Let us now consider a common situation with line a satisfying the system

Let us take the limiting values of a1  and a2 . If a1 = 0.99 and a2 = 0.01, we get

that is, we have points on line a:

If a1 = 0.01 and a2 = 0.99, then we get

that is, we have the same points on line a:

If

then

and if

then

Now we look for possible coefficients a1  and a2  of the equation of line a in the case

This means that

that is,

D ∈ Rb
2.

⎧⎪⎨⎪⎩a1, a2,x, y, a1 ×2 x, a2 ×2 y, a1 ×2 x +2 a2 ×2 y, a1 ×2 99.99 −2 a2 ×2 99.99 ∈ W2,

0 < a1 < 1,

0 < a2 < 1,

a1 ×2 x +2 a2 ×2 y +2 a1 ×2 99.99 −2 a2 ×2 99.99 = 0.

a : 0.99 ×2 x +2 0.01 ×2 y +2 0.99 ×2 99.99 −2 0.01 ×2 99.99 = 0,

(−99.9⋆, 99. ⋆⋆) ∈ a.

a : 0.01 ×2 x +2 0.99 ×2 y +2 0.01 ×2 99.99 −2 0.99 ×2 99.99 = 0,

(−99.9⋆, 99. ⋆⋆) ∈ a.

(99.9⋆, 99.9⋆) ∈ a,

a1 = a2,

(99. ⋆⋆, 99. ⋆⋆) ∈ a,

a1 = a2 ∈ [0.01, 0.02, … , 0.09].

(0, −99.99) ∈ a.

a1 ×2 0 −2 a2 ×2 99.99 +2 a1 ×2 99.99 −2 a2 ×2 99.99 = 0,



We get by direct calculation the following pairs a1 , a2 :
a1 ×2 99.99 −2 a2 ×2 99.99 −2 a2 ×2 99.99 = 0.

{

{

{

{

{

{

{

{

a1 = 0.02,

a2 = 0.01,

a1 = 0.04,

a2 = 0.02,

a1 = 0.06,

a2 = 0.03,

a1 = 0.08,

a2 = 0.04,

a1 = 0.2,

a2 = 0.1,

a1 = 0.22,

a2 = 0.11,

a1 = 0.24,

a2 = 0.12,

a1 = 0.26,

a2 = 0.13,



Let us consider the first case

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

a1 = 0.28,

a2 = 0.14,

a1 = 0.4,

a2 = 0.2,

a1 = 0.42,

a2 = 0.21,

a1 = 0.44,

a2 = 0.22,

a1 = 0.46,

a2 = 0.23,

a1 = 0.48,

a2 = 0.24,

a1 = 0.6,

a2 = 0.3,

a1 = 0.62,

a2 = 0.31,

a1 = 0.64,

a2 = 0.32,

a1 = 0.66,

a2 = 0.33,

a1 = 0.68,

a2 = 0.34,

a1 = 0.8,

a2 = 0.4,

a1 = 0.82,

a2 = 0.41,

a1 = 0.84,

a2 = 0.42,

a1 = 0.86,

a2 = 0.43,

a1 = 0.88,

a2 = 0.44.

{
a1 = 0.02,

a2 = 0.01.



The equation of line a is

that is,

Note that (−33.00, −33.00) ∈ (a1 ∩ b). This means that a1 ∦ b. Note that
(−33. ⋆⋆, −33. ⋆⋆) ∈ a1 .

Let us consider the next case

The equation of line a is

that is,

Note that (−33.00, −33.00) ∈ (a2 ∩ b). This means that a2 ∦ b. Note that
(−33. ⋆⋆, −33. ⋆⋆) ∈ a2 .

Let us consider the next case

The equation of line a is

that is,

Note that (−33.00, −33.00) ∈ (a3 ∩ b). This means that a3 ∦ b. Note that
(−33. ⋆⋆, −33. ⋆⋆) ∈ a3 .

Let us consider the next case

The equation of line a is

0.02 ×2 x +2 0.01 ×2 y +2 0.02 ×2 99.99 −2 0.01 ×2 99.99 = 0,

a1 : 0.02 ×2 x +2 0.01 ×2 y +2 0.99 = 0.

{
a1 = 0.04,

a2 = 0.02.

0.04 ×2 x +2 0.02 ×2 y +2 0.04 ×2 99.99 −2 0.02 ×2 99.99 = 0,

a2 : 0.04 ×2 x +2 0.02 ×2 y +2 1.98 = 0.

{
a1 = 0.06,

a2 = 0.03.

0.06 ×2 x +2 0.03 ×2 y +2 0.06 ×2 99.99 −2 0.03 ×2 99.99 = 0,

a3 : 0.06 ×2 x +2 0.03 ×2 y +2 2.97 = 0.

{
a1 = 0.08,

a2 = 0.04.



that is,

Note that (−33.00, −33.00) ∈ (a4 ∩ b). This means that a4 ∦ b. Note that
(−33. ⋆⋆, −33. ⋆⋆) ∈ a4 . Also, note that lines a1 , a2 , a3 , a4  coincide:

Let us consider the next case

The equation of line a is

that is,

Note that (−33.30, −33.30) ∈ (a5 ∩ b). This means that a5 ∦ b. Note that
(−33.3⋆, −33.3⋆) ∈ a5 . Also, note that a5 ⊂ a(1)  and a5 ≠ a(1)  because
(−33.00, −33.00) ∉ a5 .

Let us consider the next case

The equation of line a is

that is,

Note that (−33.30, −33.30) ∈ (a6 ∩ b). This means that a6 ∦ b. Note that
(−33.3⋆, −33.3⋆) ∈ a6 . Also, note that a6 ⊂ a(1)  and a6 ≠ a(1)  because
(−33.00, −33.00) ∉ a6 .

Let us consider the next case

0.08 ×2 x +2 0.04 ×2 y +2 0.08 ×2 99.99 −2 0.04 ×2 99.99 = 0,

a4 : 0.08 ×2 x +2 0.04 ×2 y +2 3.96 = 0

a1 = a2 = a3 = a4 = a(1).

{
a1 = 0.2,

a2 = 0.1.

0.2 ×2 x +2 0.1 ×2 y +2 0.2 ×2 99.99 −2 0.1 ×2 99.99 = 0,

a5 : 0.2 ×2 x +2 0.1 ×2 y +2 9.99 = 0.

{
a1 = 0.22,

a2 = 0.11.

0.22 ×2 x +2 0.11 ×2 y +2 0.22 ×2 99.99 −2 0.11 ×2 99.99 = 0,

a6 : 0.22 ×2 x +2 0.11 ×2 y +2 10.98 = 0.

{
a1 = 0.24,

a2 = 0.12.



The equation of line a is

that is,

Note that (−33.30, −33.30) ∈ (a7 ∩ b). This means that a7 ∦ b. Note that
(−33.3⋆, −33.3⋆) ∈ a7 . Also, note that a7 ⊂ a(1)  and a7 ≠ a(1)  because
(−33.00, −33.00) ∉ a7 .

Let us consider the next case

The equation of line a is

that is,

Note that (−33.30, −33.30) ∈ (a8 ∩ b). This means that a8 ∦ b. Note that
(−33.3⋆, −33.3⋆) ∈ a8 . Also, note that a8 ⊂ a(1)  and a8 ≠ a(1)  because
(−33.00, −33.00) ∉ a8 .

Let us consider the next case

The equation of line a is

that is,

Note that (−33.30, −33.30) ∈ (a9 ∩ b). This means that a9 ∦ b. Note that
(−33.3⋆, −33.3⋆) ∈ a9 . Also, note that a9 ⊂ a(1)  and a9 ≠ a(1)  because
(−33.00, −33.00) ∉ a9 .

Let us consider the next case

0.24 ×2 x +2 0.12 ×2 y +2 0.24 ×2 99.99 −2 0.12 ×2 99.99 = 0,

a7 : 0.24 ×2 x +2 0.12 ×2 y +2 11.97 = 0.

{
a1 = 0.26,

a2 = 0.13.

0.26 ×2 x +2 0.13 ×2 y +2 0.26 ×2 99.99 −2 0.13 ×2 99.99 = 0,

a8 : 0.26 ×2 x +2 0.13 ×2 y +2 12.96 = 0.

{
a1 = 0.28,

a2 = 0.14.

0.28 ×2 x +2 0.14 ×2 y +2 0.28 ×2 99.99 −2 0.14 ×2 99.99 = 0,

a9 : 0.28 ×2 x +2 0.14 ×2 y +2 13.95 = 0.



The equation of line a is

that is,

Note that (−33.30, −33.30) ∈ (a10 ∩ b). This means that a10 ∦ b. Note that
(−33.3⋆, −33.3⋆) ∈ a10 . Also, note that a10 ⊂ a(1)  and a10 ≠ a(1)  because
(−33.00, −33.00) ∉ a10 .

Let us consider the next case

The equation of line a is

that is,

Note that (−33.30, −33.30) ∈ (a11 ∩ b). This means that a11 ∦ b. Note that
(−33.3⋆, −33.3⋆) ∈ a11 . Also, note that a11 ⊂ a(1)  and a11 ≠ a(1)  because
(−33.00, −33.00) ∉ a11 .

Let us consider the next case

The equation of line a is

that is,

Note that (−33.30, −33.30) ∈ (a12 ∩ b). This means that a12 ∦ b. Note that
(−33.3⋆, −33.3⋆) ∈ a12 . Also, note that a12 ⊂ a(1)  and a12 ≠ a(1)  because
(−33.00, −33.00) ∉ a12 .

{
a1 = 0.4,

a2 = 0.2.

0.4 ×2 x +2 0.2 ×2 y +2 0.4 ×2 99.99 −2 0.2 ×2 99.99 = 0,

a10 : 0.4 ×2 x +2 0.2 ×2 y +2 19.98 = 0.

{
a1 = 0.42,

a2 = 0.21.

0.42 ×2 x +2 0.21 ×2 y +2 0.42 ×2 99.99 −2 0.21 ×2 99.99 = 0,

a11 : 0.42 ×2 x +2 0.21 ×2 y +2 20.97 = 0.

{
a1 = 0.44,

a2 = 0.22.

0.44 ×2 x +2 0.22 ×2 y +2 0.44 ×2 99.99 −2 0.22 ×2 99.99 = 0,

a12 : 0.44 ×2 x +2 0.22 ×2 y +2 21.96 = 0.



Let us consider the next case

The equation of line a is

that is,

Note that (−33.30, −33.30) ∈ (a13 ∩ b). This means that a13 ∦ b. Note that
(−33.3⋆, −33.3⋆) ∈ a13 . Also, note that a13 ⊂ a(1)  and a13 ≠ a(1)  because
(−33.00, −33.00) ∉ a13 .

Let us consider the next case

The equation of line a is

that is,

Note that (−33.30, −33.30) ∈ (a14 ∩ b). This means that a14 ∦ b. Note that
(−33.3⋆, −33.3⋆) ∈ a14 . Also, note that a14 ⊂ a(1)  and a14 ≠ a(1)  because
(−33.00, −33.00) ∉ a14 .

Let us consider the next case

The equation of line a is

that is,

Note that (−33.30, −33.30) ∈ (a15 ∩ b). This means a15 ∦ b. Note that
(−33.3⋆, −33.3⋆) ∈ a15 . Also, note that a15 ⊂ a(1)  and a15 ≠ a(1)  because

{
a1 = 0.46,

a2 = 0.23.

0.46 ×2 x +2 0.23 ×2 y +2 0.46 ×2 99.99 −2 0.23 ×2 99.99 = 0,

a13 : 0.46 ×2 x +2 0.23 ×2 y +2 22.95 = 0.

{
a1 = 0.48,

a2 = 0.24.

0.48 ×2 x +2 0.24 ×2 y +2 0.48 ×2 99.99 −2 0.24 ×2 99.99 = 0,

a14 : 0.48 ×2 x +2 0.24 ×2 y +2 23.94 = 0.

{
a1 = 0.6,

a2 = 0.3.

0.6 ×2 x +2 0.3 ×2 y +2 0.6 ×2 99.99 −2 0.3 ×2 99.99 = 0,

a15 : 0.6 ×2 x +2 0.3 ×2 y +2 29.97 = 0.



(−33.00, −33.00) ∉ a15 .

Let us consider the next case

The equation of line a is

that is,

Note that (−33.30, −33.30) ∈ (a16 ∩ b). This means that a16 ∦ b. Note that
(−33.3⋆, −33.3⋆) ∈ a16 . Also, note that a16 ⊂ a(1)  and a16 ≠ a(1)  because
(−33.00, −33.00) ∉ a16 .

Let us consider the next case

The equation of line a is

that is,

Note that (−33.30, −33.30) ∈ (a17 ∩ b). This means that a17 ∦ b. Note that
(−33.3⋆, −33.3⋆) ∈ a17 . Also, note that a17 ⊂ a(1)  and a17 ≠ a(1)  because
(−33.00, −33.00) ∉ a17 .

Let us consider the next case

The equation of line a is

that is,

{
a1 = 0.62,

a2 = 0.31.

0.62 ×2 x +2 0.31 ×2 y +2 0.62 ×2 99.99 −2 0.31 ×2 99.99 = 0,

a16 : 0.62 ×2 x +2 0.31 ×2 y +2 30.96 = 0.

{
a1 = 0.64,

a2 = 0.32.

0.64 ×2 x +2 0.32 ×2 y +2 0.64 ×2 99.99 −2 0.32 ×2 99.99 = 0,

a17 : 0.64 ×2 x +2 0.32 ×2 y +2 31.95 = 0.

{
a1 = 0.66,

a2 = 0.33.

0.66 ×2 x +2 0.33 ×2 y +2 0.66 ×2 99.99 −2 0.33 ×2 99.99 = 0,

a18 : 0.66 ×2 x +2 0.33 ×2 y +2 32.94 = 0.



Note that (−33.30, −33.30) ∈ (a18 ∩ b). This means that a18 ∦ b. Note that
(−33.3⋆, −33.3⋆) ∈ a18 . Also, note that a18 ⊂ a(1)  and a18 ≠ a(1)  because
(−33.00, −33.00) ∉ a18 .

Let us consider the next case

The equation of line a is

that is,

Note that (−33.30, −33.30) ∈ (a19 ∩ b). This means that a19 ∦ b. Note that
(−33.3⋆, −33.3⋆) ∈ a19 . Also, note that a19 ⊂ a(1)  and a19 ≠ a(1)  because
(−33.00, −33.00) ∉ a19 .

Let us consider the next case

The equation of line a is

that is,

Note that (−33.30, −33.30) ∈ (a20 ∩ b). This means that a20 ∦ b. Note that
(−33.3⋆, −33.3⋆) ∈ a20 . Also, note that a20 ⊂ a(1)  and a20 ≠ a(1)  because
(−33.00, −33.00) ∉ a20 .

Let us consider the next case

The equation of line a is

that is,

{
a1 = 0.68,

a2 = 0.34.

0.68 ×2 x +2 0.34 ×2 y +2 0.68 ×2 99.99 −2 0.34 ×2 99.99 = 0,

a19 : 0.68 ×2 x +2 0.34 ×2 y +2 33.93 = 0.

{
a1 = 0.8,

a2 = 0.4.

0.8 ×2 x +2 0.4 ×2 y +2 0.8 ×2 99.99 −2 0.4 ×2 99.99 = 0,

a20 : 0.8 ×2 x +2 0.4 ×2 y +2 39.96 = 0.

{
a1 = 0.82,

a2 = 0.41.

0.82 ×2 x +2 0.41 ×2 y +2 0.82 ×2 99.99 −2 0.41 ×2 99.99 = 0,



Note that (−33.30, −33.30) ∈ (a21 ∩ b). This means that a21 ∦ b. Note that
(−33.3⋆, −33.3⋆) ∈ a21 . Also, note that a21 ⊂ a(1)  and a21 ≠ a(1)  because
(−33.00, −33.00) ∉ a21 .

Let us consider the next case

The equation of line a is

that is,

Note that (−33.30, −33.30) ∈ (a22 ∩ b). This means that a22 ∦ b. Note that
(−33.3⋆, −33.3⋆) ∈ a22 . Also, note we have a22 ⊂ a(1)  and a22 ≠ a(1)  because
(−33.00, −33.00) ∉ a22 .

Let us consider the next case

The equation of line a is

that is,

Note that (−33.30, −33.30) ∈ (a23 ∩ b). This means that a23 ∦ b. Note that
(−33.3⋆, −33.3⋆) ∈ a23 . Also, note that a23 ⊂ a(1)  and a23 ≠ a(1)  because
(−33.00, −33.00) ∉ a23 .

Let us consider the next case

The equation of line a is

a21 : 0.82 ×2 x +2 0.41 ×2 y +2 40.95 = 0

{
a1 = 0.84,

a2 = 0.42.

0.84 ×2 x +2 0.42 ×2 y +2 0.84 ×2 99.99 −2 0.42 ×2 99.99 = 0,

a22 : 0.84 ×2 x +2 0.42 ×2 y +2 41.94 = 0.

{
a1 = 0.86,

a2 = 0.43.

0.86 ×2 x +2 0.43 ×2 y +2 0.86 ×2 99.99 −2 0.43 ×2 99.99 = 0,

a23 : 0.86 ×2 x +2 0.43 ×2 y +2 42.93 = 0.

{
a1 = 0.88,

a2 = 0.44.

0.88 ×2 x +2 0.44 ×2 y +2 0.88 ×2 99.99 −2 0.44 ×2 99.99 = 0,



that is,

Note that (−33.30, −33.30) ∈ (a24 ∩ b). This means that a24 ∦ b. Note that
(−33.3⋆, −33.3⋆) ∈ a24 . Also, note that a24 ⊂ a(1)  and a24 ≠ a(1)  because
(−33.00, −33.00) ∉ a24 .

Note that lines

coincide,

and

Now we look for possible coefficients a1 , a2  in the equation of line a in the case

This means

that is,

By direct calculation we get the following pairs a1 , a2 :

a24 : 0.88 ×2 x +2 0.44 ×2 y +2 43.92 = 0.

a5, a6, a7, a8, a9, a10, … , a20, a21, a22, a23, a24

a5 = a6 = a7 = a8 = a9 = a10 = ⋯ = a20 = a21 = a22 = a23 = a24 = a(2),

a(2) ⊂ a(1), a(2) ≠ a(1).

(99.99, 0) ∈ a.

a1 ×2 99.99 +2 a2 ×2 0 +2 a1 ×2 99.99 −2 a2 ×2 99.99 = 0,

a1 ×2 99.99 +2 a1 ×2 99.99 −2 a2 ×2 99.99 = 0.

{

{

{

{

{

{

a2 = 0.02,

a1 = 0.01,

a2 = 0.04,

a1 = 0.02,

a2 = 0.06,

a1 = 0.03,

a2 = 0.08,

a1 = 0.04,

a2 = 0.2,

a1 = 0.1,

a2 = 0.22,

a1 = 0.11,



{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

a2 = 0.24,

a1 = 0.12,

a2 = 0.26,

a1 = 0.13,

a2 = 0.28,

a1 = 0.14,

a2 = 0.4,

a1 = 0.2,

a2 = 0.42,

a1 = 0.21,

a2 = 0.44,

a1 = 0.22,

a2 = 0.46,

a1 = 0.23,

a2 = 0.48,

a1 = 0.24,

a2 = 0.6,

a1 = 0.3,

a2 = 0.62,

a1 = 0.31,

a2 = 0.64,

a1 = 0.32,

a2 = 0.66,

a1 = 0.33,

a2 = 0.68,

a1 = 0.34,

a2 = 0.8,

a1 = 0.4,

a2 = 0.82,

a1 = 0.41,

a2 = 0.84,

a1 = 0.42,

{

{

a2 = 0.86,

a1 = 0.43,

a2 = 0.88,

a1 = 0.44.



The first four cases give us the same straight line a with equation

that is,

Note that (33.00, 33.00) ∈ (a(3) ∩ b). This means that a(3) ∦ b. Note that
(33. ⋆⋆, 33. ⋆⋆) ∈ a(3) .

The remaining twenty cases give us the same straight line a (which differ from the first four
cases) with equation

that is,

Note that (33.30, 33.30) ∈ (a(4) ∩ b). This means that a(4) ∦ b. Note that
(33.3⋆, 33.3⋆) ∈ a(4)  and a(4) ⊂ a(3) , a(4) ≠ a(3)  because (33.00, 33.00) ∉ a(4) .

Let us get back to the common situation with line a satisfying the system

Case 1. a1, a2 ∈ [0.01, 0.02, … , 0.09]. Then

and

For any x ∈ W2 ,

and for any y ∈ W2 ,

a(3) : 0.01 ×2 x +2 0.02 ×2 y +2 0.01 ×2 99.99 −2 0.02 ×2 99.99 = 0,

a(3) : 0.01 ×2 x +2 0.02 ×2 y −2 0.99 = 0.

a(4) : 0.1 ×2 x +2 0.2 ×2 y +2 0.1 ×2 99.99 −2 0.2 ×2 99.99 = 0,

a(4) : 0.1 ×2 x +2 0.2 ×2 y −2 9.99 = 0.

⎧⎪⎨⎪⎩a1, a2,x, y, a1 ×2 x, a2 ×2 y, a1 ×2 x +2 a2 ×2 y, a1 ×2 99.99 −2 a2 ×2 99.99 ∈ W2,

0 < a1 < 1,

0 < a2 < 1,

a1 ≠ a2,

(a1 ×2 x +2 a2 ×2 y) +2 (a1 ×2 99.99 −2 a2 ×2 99.99) = 0.

a1 ×2 99.99∈ [0.99, 1.98, 2.97, 3.96, 4.95, 5.94, 6.93, 7.92, 8.91],

a2 ×2 99.99∈ [0.99, 1.98, 2.97, 3.96, 4.95, 5.94, 6.93, 7.92, 8.91],

a1 ×2 99.99 −2 a2 ×2 99.99 ∈ [±0.99, ±1.98, ±2.97, ±3.96, ±4.95, ±5.94, ±6.93, ±7.92].

a1 ×2 x∈ [0.00, ±0.01, ±0.02, … , ±0.99] ∪ [0.00, ±0.02, ±0.04, … , ±1.98] ∪

∪[0.00, ±0.03, ±0.06, … , ±2.97] ∪ ⋯ ∪ [0.00, ±0.09, ±0.18, … , ±8.91]



Now let us prove that the lines

and

are not parallel for a1, a2 ∈ [0.01, 0.02, … , 0.09].

First, let us choose a1 = 0.05 and a2 = 0.02. In this case,

and we get two sets of points B(−59. ⋆⋆, −2. ⋆⋆) ⊂ a and C(−39. ⋆⋆, −51. ⋆⋆) ⊂ a. We
also have B ⊂ Rb

2 , C ⊂ Rb
1 , that is, a ∦ b.

Let us make another choice: a1 = 0.09, a2 = 0.04. In this case,

and we get two sets of points D(−11. ⋆⋆, −99. ⋆⋆) ⊂ a and E(−51. ⋆⋆, −9. ⋆⋆) ⊂ a. We
also have D ⊂ Rb

1  and E ⊂ Rb
2 , that is, a ∦ b.

The general case can be proved in the same way.

Case 2. Let a1 ∈ [0.01, 0.02, … , 0.09] and a2 ∈ [0.10, 0.11, … , 0.19]. Then

and

For any x ∈ W2 ,

Also, for any y ∈ W2 ,

Now let us prove that the lines

a2 ×2 y∈ [0.00, ±0.01, ±0.02, … , ±0.99] ∪ [0.00, ±0.02, ±0.04, … , ±1.98] ∪

∪[0.00, ±0.03, ±0.06, … , ±2.97] ∪ ⋯ ∪ [0.00, ±0.09, ±0.18, … , ±8.91].

a : (a1 ×2 x +2 a2 ×2 y) +2 (a1 ×2 99.99 −2 a2 ×2 99.99) = 0

b : x −2 y = 0

a : (0.05 ×2 x +2 0.02 ×2 y) +2 2.97 = 0,

a : (0.09 ×2 x +2 0.04 ×2 y) +2 4.95 = 0,

a1 ×2 99.99 ∈ [0.99, 1.98, 2.97, 3.96, 4.95, 5.94, 6.93, 7.92, 8.91]

a2 ×2 99.99 ∈ [9.99, 10.98, 11.97, 12.96, 13.95, 14.94, 15.93, 16.92, 17.91, 18.90].

a1 ×2 x∈ [0.00, ±0.01, ±0.02, … , ±0.99] ∪ [0.00, ±0.02, ±0.04, … , ±1.98] ∪

∪[0.00, ±0.03, ±0.06, … , ±2.97] ∪ ⋯ ∪ [0.00, ±0.09, ±0.18, … , ±8.91]

a2 ×2 y∈ [0.00, ±0.01, ±0.02, … , ±0.09] ∪ [±0.10, ±0.11, … , ±0.19] ∪ …

∪[±9.90, ±9.91, … , ±9.99] ∪ … .

a : (a1 ×2 x +2 a2 ×2 y) +2 (a1 ×2 99.99 −2 a2 ×2 99.99) = 0



and

are not parallel for a1 ∈ [0.01, 0.02, … , 0.09] and a2 ∈ [0.10, 0.11, … , 0.19].

First, let us choose a1 = 0.05 and a2 = 0.19. In this case,

and we get two sets of points F(47. ⋆⋆, 61.1⋆) ⊂ a and G(94. ⋆⋆, 51.1⋆) ⊂ a. We also have
F ⊂ Rb

2  and G ⊂ Rb
1 , that is, a ∦ b.

The general case can be proved in the same way.

Case 3. Let a1, a2 ∈ [0.10, 0.11, … , 0.19]. Then

and

For any x ∈ W2 ,

Also, for any y ∈ W2 ,

Now let us prove that lines a, b are not parallel for a1, a2 ∈ [0.10, 0.11, … , 0.19]. First, let
us choose a1 = 0.12 and a2 = 0.19. In this case,

and we get two sets of points H(50.8⋆, 4.9⋆) ⊂ a and I(10.2⋆, 30.1⋆) ⊂ a. We also have
H ⊂ Rb

1  and I ⊂ Rb
2 , that is, a ∦ b.

The general case can be proved in the same way.

Case 4. Let a1 ∈ [0.01, 0.02, … , 0.09] and a2 ∈ [0.20, 0.21, … , 0.99]. Then

and

b : x −2 y = 0

a : (0.05 ×2 x +2 0.19 ×2 y) −2 13.95 = 0,

a1 ×2 99.99 ∈ [9.99, 10.98, 11.97, 12.96, 13.95, 14.94, 15.93, 16.92, 17.91, 18.90]

a2 ×2 99.99 ∈ [9.99, 10.98, 11.97, 12.96, 13.95, 14.94, 15.93, 16.92, 17.91, 18.90].

a1 ×2 x∈ [0.00, ±0.01, ±0.02, … , ±0.09] ∪ [±0.10, ±0.11, … , ±0.19] ∪ …

∪[±9.90, ±9.91, … , ±9.99] … .

a2 ×2 y∈ [0.00, ±0.01, ±0.02, … , ±0.09] ∪ [±0.10, ±0.11, … , ±0.19] ∪ …

∪[±9.90, ±9.91, … , ±9.99] … .

a : (0.12 ×2 x +2 0.19 ×2 y) −2 6.93 = 0,

a1 ×2 99.99 ∈ [0.99, 1.98, 2.97, 3.96, 4.95, 5.94, 6.93, 7.92, 8.91]



For any x ∈ W2 ,

Also, for any y ∈ W2 ,

Now let us prove that lines a, b are not parallel for a1 ∈ [0.01, 0.02, … , 0.09] and
a2 ∈ [0.20, 0.21, … , 0.99].

First, let us choose a1 = 0.07 and a2 = 0.91. In this case,

and we get two sets of points J(18. ⋆⋆, 90.9⋆) ⊂ a and K(96. ⋆⋆, 84.9⋆) ⊂ a. We also have
J ⊂ Rb

2  and K ⊂ Rb
1 , that is, a ∦ b.

The general case can be proved in the same way.

Case 5. Let a1, a2 ∈ [0.20, 0.21, … , 0.99]. Then

For any x ∈ W2 ,

Now let us prove that lines a, b are not parallel for a1, a2 ∈ [0.20, 0.21, … , 0.99]. First, let
us choose a1 = 0.27 and a2 = 0.91. In this case,

and we get two sets of points L(51.4⋆, 55.1⋆) ⊂ a and M(61.1⋆, 52.2⋆) ⊂ a. We also we
have L ⊂ Rb

2  and M ⊂ Rb
1 , that is, a ∦ b.

The general case can be proved in the same way, as well as the general statement of the
theorem for any n.

Let us now prove now the following:

Theorem 6.15.

a2 ×2 99.99 ∈ [19.98, 20.97, 21.96, … , 97.83, 98.82].

a1 ×2 x∈ [0.00, ±0.01, ±0.02, … , ±0.99] ∪ [0.00, ±0.02, ±0.04, … , ±1.98] ∪

∪[0.00, ±0.03, ±0.06, … , ±2.97] ∪ ⋯ ∪ [0.00, ±0.09, ±0.18, … , ±8.91].

a2 ×2 y∈ [0.00, ±0.01, ±0.02, … , ±0.09] ∪ [±0.10, ±0.11, … , ±0.19] ∪ …

∪[±9.90, ±9.91, … , ±9.99] ∪ … .

a : (0.07 ×2 x +2 0.91 ×2 y) −2 83.97 = 0,

a1, a2 ×2 99.99 ∈ [19.98, 20.97, 21.96, … , 97.83, 98.82].

a1 ×2 x∈ [0.00, ±0.01, ±0.02, … , ±0.09] ∪ [±0.10, ±0.11, … , ±0.19] ∪ …

∪[±9.90, ±9.91, … , ±9.99] ∪ … .

a : (0.27 ×2 x +2 0.91 ×2 y) −2 63.99 = 0,



In the plane E2Wn , there are a point A and a straight line b not containing this point such that

there is only one straight line a containing point A and parallel to line b: a ∥ b.

Let us consider the situation with n = 2, that is, we are in E2W2 . Let A(0, 0.01) ∈ E2W2 .
Let straight line b have the equation

So we get

We looking for a straight line a containing point A and parallel to straight line b. Because
A ∈ Rb

1  and we must have a ∥ b, we get a ⊂ Rb
1 , that is, any point (x, y) ∈ a must have

y > 0. This means that y ≥ 0.01. So we have such straight line a:

Let us consider another straight line a in E2W2 :

We get the set a as a subset of E2W2 :

for any x ∈ Wn . Clearly, fully this set may be seen by any Wm -observer with m ≥ 7. The
function f is multivalued.

We get

but

because

Let us consider the transformation of parallel shift along the y-axis in E2W2 :

The superposition of the functions f and g is

b : y = 0.

Rb
1 : [(x, y) ∈ E2W2 : y > 0],

Rb
2 : [(x, y) ∈ E2W2 : y < 0],

Rb
3 = Λ.

a : y= 0.01,

A∈ a, a ∥ b.

a : 0.01 ×2 y = 0 = f(x).

a = [(x, −0.99), (x, −0.98), … , (x, −0.01), (x, 0), (x, 0.01), … , (x, 0.99)]

A ∈ a,

a ∦ b

a ⊃ b, a ≠ b.

y⟶ y −2 1 = g(y).



and we get

So we have

f(g(y)) = 0.01 ×2 (y −2 1) = 0,



So we have to find out whether the set f(g(y)) represents the straight line

The answer is positive only if the solution of the equation

coincides with that of the equation

which is considered above. However, the solution of the former is

This means that the set f(g(y)) does not represent a straight line, that is, the straight line
transformation of parallel shift along the y-axis in E2W2  may not represent a straight line.

So we continue the search of straight line a such that

and

Let us continue to consider the situation with n = 2, that is, we are in E2W2 . Let us first take
A(0, 0.10) ∈ E2W2 . We look for a straight line a containing this point. We have

for any a1, a2, a3,x, y, a1 ×2 x, a2 ×2 y, a1 ×2 x +2 a2 ×2 y ∈ W2  such that
(a1, a2) ≠ (0, 0) and

This means that

0.01 ×2 (y −2 1) = 0.

0.01 ×2 y = 0.01

0.01 ×2 (y −2 1) = 0,

A ∈ a

a ∥ b.

a : a1 ×2 x +2 a2 ×2 y +2 a3 = 0

a1 ×2 0 +2 a2 ×2 0.10 +2 a3 = 0.

a3 = −a2 ×2 0.10,



and the equation of line a is

Because generally two straight lines c and d with equations

and

coincide, without loss of generality, we may assume that a2 > 0 in the equation of line a.
Moreover, we must have 0.10 ≤ a2 , because if 0 < a2 < 0.10, then

and the equation of line a becomes

that is, O(0, 0) ∈ a, and a ∦ b.

In the case a2 = 1 the equation of line a becomes

For a1 = 0, we get

and in this case, a ∥ b because

and b ⊂ Ra
2 .

Let us rename this straight line a as straight line c. In the case a2 = 0.10 the equation of line
a becomes

For a1 = 0, we get

and in this case, a ∥ b because

a : a1 ×2 x +2 a2 ×2 y −2 a2 ×2 0.10 = 0.

c : c1 ×2 x +2 c2 ×2 y +2 c3 = 0

d : −c1 ×2 x −2 c2 ×2 y −2 c3 = 0

a2 ×2 0.10 = 0,

a : a1 ×2 x +2 a2 ×2 y = 0,

a : a1 ×2 x +2 y −2 0.10 = 0.

a : y −2 0.10 = 0,

Ra
1 : [(x, y) ∈ E2W2 : y −2 0.10 > 0],

Ra
2 : [(x, y) ∈ E2W2 : y −2 0.10 < 0],

Ra
3 = Λ,

a : a1 ×2 x +2 0.10 ×2 y −2 0.01 = 0.

a : 0.10 ×2 y −2 0.01 = 0,



and b ⊂ Ra
2 . This means that

where straight lines a1 , a2 , a3 , a4 , a5 , a6 , a7 , a8 , a9 , a10  have the equations

Let us rename straight line a as straight line d. We get

and

This means that for the chosen point A and straight line b, there are at least two distinct
straight lines a containing point A that are parallel to line b.

Let us now get take A(0, 0.01) ∈ E2W2 . We look for a straight line a containing this point.
We have

for any a1, a2, a3,x, y, a1 ×2 x, a2 ×2 y, a1 ×2 x +2 a2 ×2 y ∈ W2  such that
(a1, a2) ≠ (0, 0) and

This means that

Ra
1 : [(x, y) ∈ E2W2 : 0.10 ×2 y −2 0.01 > 0],

Ra
2 : [(x, y) ∈ E2W2 : 0.10 ×2 y −2 0.01 < 0],

Ra
3 = Λ,

a = a1 ∪ a2 ∪ a3 ∪ a4 ∪ a5 ∪ a6 ∪ a7 ∪ a8 ∪ a9 ∪ a10,

a1 : y= 0.10,

a2 : y= 0.11,

a3 : y= 0.12,

a4 : y= 0.13,

a5 : y= 0.14,

a6 : y= 0.15,

a7 : y= 0.16,

a8 : y= 0.17,

a9 : y= 0.18,

a10 : y= 0.19.

c ⊂ d

c ≠ d.

a : a1 ×2 x +2 a2 ×2 y +2 a3 = 0

a1 ×2 0 +2 a2 ×2 0.01 +2 a3 = 0.

a3 = −a2 ×2 0.01,



and thus the equation of line a is

Let line b have the equation

So we get

Because A ∈ Rb
1  and we must to have a ∥ b, we get a ⊂ Rb

1 , that is, y > 0 for any point
(x, y) ∈ a. This means that y ≥ 0.01.

Because generally two straight lines c and d with equations

and

coincide, without loss of generality, we may assume that a2 > 0 in the equation of line a.
Moreover, we must have 1 ≤ a2 , because if 0 < a2 < 1, then

and the equation of line a becomes

that is, O(0, 0) ∈ a, and a ∦ b.

In the case a2 = 1 the equation of line a becomes

For a1 = 0, we get

and a ∥ b in this case, because

a : a1 ×2 x +2 a2 ×2 y −2 a2 ×2 0.01 = 0.

b : y = 0.

Rb
1 : [(x, y) ∈ E2W2 : y > 0],

Rb
2 : [(x, y) ∈ E2W2 : y < 0],

Rb
3 = Λ.

c : c1 ×2 x +2 c2 ×2 y +2 c3 = 0

d : −c1 ×2 x −2 c2 ×2 y −2 c3 = 0

a2 ×2 0.01 = 0,

a : a1 ×2 x +2 a2 ×2 y = 0,

a : a1 ×2 x +2 y −2 0.01 = 0.

a : y −2 0.01 = 0,

Ra
1 : [(x, y) ∈ E2W2 : y −2 0.01 > 0],

Ra
2 : [(x, y) ∈ E2W2 : y −2 0.01 < 0],

Ra
3 = Λ,



and b ⊂ Ra
2 .

Assuming that a1 ≠ 0, we consider four limiting cases: a1 = 0.01, a1 = −0.01, a1 = 99.99,
a1 = −99.99.

For a1 = 0.01, we get

For x = 99.99, on this line, we get y = −0.98, that is, in this case, a ∦ b.

For a1 = −0.01, we get

For x = −99.99, on this line, we get y = −0.98, that is, in this case, a ∦ b.

For a1 = 99.99, we get

For x = 0.01, on this line, we get y = −0.98, that is, in this case, a ∦ b.

For a1 = −99.99, we get

For x = −0.01, on this line, we get y = −0.98, that is, in this case, a ∦ b.

So we must have a1 = 0, that is,

and in this case, a ∥ b.

In the other limiting case a2 = 99.99 the equation of line a becomes

For a1 = 0, we get

This line coincides with line

and in this case, a ∥ b.

a : 0.01 ×2 x +2 y −2 0.01 = 0.

a : −0.01 ×2 x +2 y −2 0.01 = 0.

a : 99.99 ×2 x +2 y −2 0.01 = 0.

a : −99.99 ×2 x +2 y −2 0.01 = 0.

a : y −2 0.01 = 0,

a : a1 ×2 x +2 99.99 ×2 y −2 0.99 = 0.

a : 99.99 ×2 y −2 0.99 = 0.

a : y −2 0.01 = 0,



Assuming that a1 ≠ 0, we consider four limiting cases: a1 = 0.01, a1 = −0.01, a1 = 99.99,
a1 = −99.99.

For a1 = 0.01, we get

For x = 99.99, on this line, we get y = 0, that is, in this case, a ∦ b.

For a1 = −0.01, we get

For x = −99.99, on this line, we get y = 0, that is, in this case, a ∦ b.

For a1 = 99.99, we get

For x = 0.01, on this line, we get y = 0, that is, in this case, a ∦ b.

For a1 = −99.99, we get

For x = −0.01, on this line, we get y = 0, that is, in this case, a ∦ b.

So we must have a1 = 0, that is,

This line coincides with line

and in this case, a ∥ b.

Note this is the same line as that in the first limiting case a1 = 1. So the theorem is proved
for n = 2. The general statement of the theorem for any n may be proved in the same way.

Let us make a very important note. Let us consider the equation

Its solution is the set

that is,

a : 0.01 ×2 x +2 99.99 ×2 y −2 0.99 = 0.

a : −0.01 ×2 x +2 99.99 ×2 y −2 0.99 = 0.

a : 99.99 ×2 x +2 99.99 ×2 y −2 0.99 = 0.

a : −99.99 ×2 x +2 99.99 ×2 y −2 0.99 = 0.

a : 99.99 ×2 y −2 0.99 = 0.

a : y −2 0.01 = 0,

0.1 ×2 (y −2 0.1) = 0.

y −2 0.1 = [0.00, ±0.01, ±0.02, … , ±0.09],



The solution of this equation is the following set of straight lines:

So if

is the equation of a straight line, then we would have had at least two different lines
containing point A and parallel to line b. However,

is not an equation of a straight line.

Let us now prove the following:

Theorem 6.16.

In the plane E2Wn , there are a point A and a straight line b such that A ∉ b and there is more

than one straight line that contains the point A and is parallel to line b: a ∥ b.

Let us first consider the case n = 2, that is, we are in α = E2W2 .

1) Let the equation of straight line a be

and let two regions Ra
1 , Ra

2  of plane α be

and

where x is any element ∈ W2 . So

Let us take two points

y = [0.10, 0.10 ± 0.01, 0.10 ± 0.02, … , 0.10 ± 0.09].

y= 0.19,

y= 0.18,

…

y= 0.10,

y= 0.09,

…

y= 0.01.

0.1 ×2 (y −2 0.1) = 0

0.1 ×2 (y −2 0.1) = 0

y = −0.01,

Ra
1 = [(x, y), (x, y) ∈ E2W2, y > −0.01]

Ra
2 = [(x, y), (x, y) ∈ E2W2, y < −0.01],

E2W2 = Ra
1 ∪ a ∪ Ra

2.

A(−99.99, 0.00),B(0, 99.99) ∈ Ra
1.



We look for a straight line b as the set of points (x, y) satisfying the equation

and containing points A, B. We have

that is,

For

we get

and

and the equation of line b is

We have

so

and

We have

with any −99.99 ≤ x ≤ 0, and

So line a is parallel to line b, and line b is parallel to line a, that is, a ∥ b and b ∥ a.

a1 ×2 x +2 a2 ×2 y +2 a3 = 0

{
−a1 ×2 (99.99) +2 a2 ×2 (0.00) +2 a3 = 0,

a1 ×2 (0) +2 a2 ×2 (99.99) +2 a3 = 0,

{
−a1 ×2 (99.99) +2 a3 = 0,

a2 ×2 (99.99) +2 a3 = 0.

a2 = 1,

a1 = −1

a3 = −99.99,

b : y = x +2 99.99 = 0.

b ⊂ Ra
1,

b ∩ Ra
2 = Λ,

b ∩ a = Λ

Rb
1= [(x, y), (x, y) ∈ E2W2, y = x +2 99.99 > 0],

Rb
2= [(x, y), (x, y) ∈ E2W2, y = x +2 99.99 < 0],

a∩Rb
1 = Λ,

a∩Rb
2 ≠ Λ.



Also, line c with equation

is parallel to line a and contains points B and A′(99.99, 0.00). So line a is parallel to line c,
line c is parallel to line a, that is, a ∥ c and c ∥ a. Moreover, b ∩ c = (0, 99.99) = B, that is,
b ∦ c. This means that in a plane α = E2W2 , through point B lying outside of a straight line
a, there can be drawn at least two distinct straight lines b and c that are parallel to line a.

1’) Let A(0, 1) ∈ E2W2 , and let b be a straight line with equation

Then

and A ∉ b.

Let us consider two straight lines

and

We can see that A ∈ a1 , A ∈ a2 , and a1 ⊂ Rb
1 , a2 ⊂ Rb

1 . Also, we have

and

c : y = −x +2 99.99 = 0

b : y = 0.

Rb
1 : [(x, y) ∈ E2W2 : y > 0],

Rb
2 : [(x, y) ∈ E2W2 : y < 0],

Rb
3 = Λ,

a1 : 0.01 ×2 x −2 y +2 1 = 0

a2 : y −2 1 = 0.

Ra1

1 : [(x, y) ∈ E2W2 : 0.01 ×2 x −2 y +2 1 > 0],

Ra1

2 : [(x, y) ∈ E2W2 : 0.01 ×2 x −2 y +2 1 < 0],

Ra1

3 = Λ,

Ra2

1 : [(x, y) ∈ E2W2 : y > 1]

Ra2

2 : [(x, y) ∈ E2W2 : y < 1],

Ra2

3 = Λ,



1.

2.

3.

This means that a1 ∥ b, a2 ∥ b, b ∥ a1 , and b ∥ a2 , and we have proved the theorem for
n = 2.

The general statement of this theorem for any n can be proved in the same way.

So we have proved the following main theorem on parallel lines in Mathematics with
Observers geometry.

Theorem 6.17.

In the plane E2Wn , there are a point A and a straight line b such that A ∉ b and we have possible

three different situations:

There is only one straight line a that contains point A and is parallel to line b

(Euclidean geometry case).

There is more than one straight line a that contains point A and is parallel to line b

(Gauss–Bolyai–Lobachevsky geometry case).

Any straight line a containing point A is not parallel to line b (Riemann geometry

case).

This means that the same plane has couples (a point and a straight line not containing this
point) where Euclidean geometry works, couples where Gauss–Bolyai–Lobachevsky
geometry works, and couples where Riemann geometry works.

b⊂ Ra1

1 ,

b⊂ Ra2

2 ,

b∩a1 = Λ,

b∩a2 = Λ.



7  Observability and properties of congruence analysis

Let us now consider the definition of segments congruence in Mathematics with Observers
geometry. For E2Wn , let us first consider four points

Points A, B or A′ , B′  do not necessarily lie on existing straight lines. For these points, we have
the corresponding vectors

Let us consider two vectors in E2Wn :

and the scalar products

if

In Mathematics with Observers geometry, we say that segment AB is congruent to segment
A′B′ , denoted AB ≡ A′B′ , if

Now let us go to the situation where points A, B and points A′ , B′  are points of existing straight
lines.

For E2Wn , let straight line a have the equation

A(x1, y1),B(x2, y2),A′(x3, y3),B′(x4, y4) ∈ E2Wn.

a = (x1, y1), b = (x2, y2), a
′ = (x3, y3), b

′ = (x4, y4) ∈ E2Wn.

AB= b −n a = (x2 −n x1, y2 −n y1),

A
′
B

′= b
′ −n a

′ = (x4 −n x3, y4 −n y3)

(AB, AB)= (x2 −n x1) ×n (x2 −n x1) +n (y2 −n y1) ×n (y2 −n y1),

(A
′
B

′, A
′
B

′)= (x4 −n x3) ×n (x4 −n x3) +n (y4 −n y3) ×n (y4 −n y3)

x2 −n x1 ∈ Wn,

y2 −n y1 ∈ Wn,

x4 −n x3 ∈ Wn,

y4 −n y3 ∈ Wn,

(x2 −n x1) ×n (x2 −n x1) ∈ Wn,

(x4 −n x3) ×n (x4 −n x3) ∈ Wn,

(y2 −n y1) ×n (y2 −n y1) ∈ Wn,

(y4 −n y3) ×n (y4 −n y3) ∈ Wn,

(x2 −n x1) ×n (x2 −n x1) +n (y2 −n y1) ×n (y2 −n y1) ∈ Wn,

(x4 −n x3) ×n (x4 −n x3) +n (y4 −n y3) ×n (y4 −n y3) ∈ Wn.

(AB, AB) = (A
′
B

′, A
′
B

′) > 0.

a1 ×n x +n a2 ×n y +n a3 = 0



and points

Let the equation of straight line a′  be

and let

Let us consider two vectors in E2Wn ,

and

and scalar products

and

if

In Mathematics with Observers geometry, we say that segment AB of straight line a is
congruent to segment A′B′  of straight line a′ , denoted AB ≡ A′B′ , if

For E3Wn , first, let us consider four points

A(x1, y1),B(x2, y2) ∈ a.

b1 ×n x +n b2 ×n y +n b3 = 0,

A′(x3, y3),B′(x4, y4) ∈ a′.

AB = (x2 −n x1, y2 −n y1)

A
′
B

′ = (x4 −n x3, y4 −n y3)

(AB, AB) = (x2 −n x1) ×n (x2 −n x1) +n (y2 −n y1) ×n (y2 −n y1)

(A
′
B

′, A
′
B

′) = (x4 −n x3) ×n (x4 −n x3) +n (y4 −n y3) ×n (y4 −n y3)

x2 −n x1 ∈ Wn,

y2 −n y1 ∈ Wn,

x4 −n x3 ∈ Wn

y4 −n y3 ∈ Wn,

(x2 −n x1) ×n (x2 −n x1) ∈ Wn,

(x4 −n x3) ×n (x4 −n x3) ∈ Wn,

(y2 −n y1) ×n (y2 −n y1) ∈ Wn,

(y4 −n y3) ×n (y4 −n y3) ∈ Wn,

(x2 −n x1) ×n (x2 −n x1) +n (y2 −n y1) ×n (y2 −n y1) ∈ Wn,

(x4 −n x3) ×n (x4 −n x3) +n (y4 −n y3) ×n (y4 −n y3) ∈ Wn.

(AB, AB) = (A
′
B

′, A
′
B

′) > 0.

A(x1, y1, z1),B(x2, y2, z2),A′(x3, y3, z3),B′(x4, y4, z4) ∈ E3Wn.



Points A, B or points A′ , B′  are not necessarily points of existing straight lines. For these points,
we have the corresponding vectors

Let us consider two vectors ∈ E3Wn ,

and

and scalar products

and

if

In Mathematics with Observers geometry, we say that segment AB is congruent to segment
A′B′ , denoted AB ≡ A′B′ , if

Now let us go to the situation where points A, B and points A′ , B′  are points of existing straight
lines. For E3Wn , let straight line a have the system of equations

a = (x1, y1, z1), b = (x2, y2, z2), a
′ = (x3, y3, z3), b

′ = (x4, y4, z4) ∈ E3Wn.

AB = b −n a = (x2 −n x1, y2 −n y1, z2 −n z1)

A
′
B

′ = b
′ −n a

′ = (x4 −n x3, y4 −n y3, z4 −n z3)

(AB, AB) = (x2 −n x1) ×n (x2 −n x1) +n (y2 −n y1) ×n (y2 −n y1) +n (z2 −n z1) ×n (z2 −

(A
′
B

′, A
′
B

′) = (x4 −n x3) ×n (x4 −n x3) +n (y4 −n y3) ×n (y4 −n y3) +n (z4 −n z3) ×n (z

x2 −n x1 ∈ Wn,

y2 −n y1 ∈ Wn,

z2 −n z1 ∈ Wn,

x4 −n x3 ∈ Wn,

y4 −n y3 ∈ Wn,

z4 −n z3 ∈ Wn,

(x2 −n x1) ×n (x2 −n x1) ∈ Wn,

(x4 −n x3) ×n (x4 −n x3) ∈ Wn,

(y2 −n y1) ×n (y2 −n y1) ∈ Wn,

(y4 −n y3) ×n (y4 −n y3) ∈ Wn,

(z2 −n z1) ×n (z2 −n z1) ∈ Wn,

(z4 −n z3) ×n (z4 −n z3) ∈ Wn,

(x2 −n x1) ×n (x2 −n x1) +n (y2 −n y1) ×n (y2 −n y1) +n (z2 −n z1) ×n (z2 −n z1) ∈ Wn,

(x4 −n x3) ×n (x4 −n x3) +n (y4 −n y3) ×n (y4 −n y3) +n (z4 −n z3) ×n (z4 −n z3) ∈ Wn.

(AB, AB) = (A
′
B

′, A
′
B

′) > 0.



and let

Let straight line a′  have the equation

and let

Let us consider two vectors in E3Wn ,

and

and scalar products

and

if

{
a1 ×n x +n a2 ×n y +n a3 ×n z +n a4 = 0,

b1 ×n x +n b2 ×n y +n b3 ×n z +n b4 = 0,

A(x1, y1, z1),B(x2, y2, z2) ∈ a.

{
c1 ×n x +n c2 ×n y +n c3 ×n z +n c4 = 0,

d1 ×n x +n d2 ×n y +n d3 ×n z +n d4 = 0,

A′(x3, y3, z3),B′(x4, y4, z4) ∈ a′.

AB = (x2 −n x1, y2 −n y1, z2 −n z1)

A
′
B

′ = (x4 −n x3, y4 −n y3, z4 −n z3)

(AB, AB) = (x2 −n x1) ×n (x2 −n x1) +n (y2 −n y1) ×n (y2 −n y1) +n (z2 −n z1) ×n (z2 −

(A
′
B

′, A
′
B

′) = (x4 −n x3) ×n (x4 −n x3) +n (y4 −n y3) ×n (y4 −n y3) +n (z4 −n z3) ×n (z

x2 −n x1 ∈ Wn,

y2 −n y1 ∈ Wn,

z2 −n z1 ∈ Wn,

x4 −n x3 ∈ Wn,

y4 −n y3 ∈ Wn,

z4 −n z3 ∈ Wn,

(x2 −n x1) ×n (x2 −n x1) ∈ Wn,

(x4 −n x3) ×n (x4 −n x3) ∈ Wn,

(y2 −n y1) ×n (y2 −n y1) ∈ Wn,

(y4 −n y3) ×n (y4 −n y3) ∈ Wn,

(z2 −n z1) ×n (z2 −n z1) ∈ Wn,

(z4 −n z3) ×n (z4 −n z3) ∈ Wn,

(x2 −n x1) ×n (x2 −n x1) +n (y2 −n y1) ×n (y2 −n y1) +n (z2 −n z1) ×n (z2 −n z1) ∈ Wn,

(x4 −n x3) ×n (x4 −n x3) +n (y4 −n y3) ×n (y4 −n y3) +n (z4 −n z3) ×n (z4 −n z3) ∈ Wn.



In Mathematics with Observers geometry, we say that segment AB of straight line a is
congruent to segment A′B′  of straight line a′ , denoted AB ≡ A′B′  if

Let now consider the definition of congruence of angles in Mathematics with Observers
geometry. Let us first define the angle formed by three points A, B, C in E2Wn  or E3Wn .

For E2Wn , let us first consider three points

Points A, B, points A, C, or points B, C are not necessarily points of existing straight lines. For these
points, we have the corresponding vectors

Let us consider three vectors in E2Wn ,

The system formed by two vectors AB, AC we call an angle ∠BAC . The system formed by
two vectors BA, BC we call an angle ∠ABC . The system formed by two vectors CA, CB we
call an angle ∠ACB.

Let us consider the scalar products

We now assume that

(AB, AB) = (A
′
B

′, A
′
B

′) > 0.

A(x1, y1),B(x2, y2),C(x3, y3) ∈ E2Wn.

a = (x1, y1), b = (x2, y2), c = (x3, y3) ∈ E2Wn.

AB= b −n a = (x2 −n x1, y2 −n y1),

BA= −AB,

AC= c −n a = (x3 −n x1, y3 −n y1),

CA= −AC,

BC= c −n b = (x3 −n x2, y3 −n y2),

CB= −BC.

(AB, AB)= (x2 −n x1) ×n (x2 −n x1) +n (y2 −n y1) ×n (y2 −n y1),

(AC, AC)= (x3 −n x1) ×n (x3 −n x1) +n (y3 −n y1) ×n (y3 −n y1),

(AB, AC)= (x2 −n x1) ×n (x3 −n x1) +n (y2 −n y1) ×n (y3 −n y1).



Let us consider three other points

For these points, we have the corresponding vectors

Let us consider three vectors in E2Wn ,

The system formed by two vectors A′
B

′ , A′
C

′  is called the angle ∠B′A′C ′ . The system
formed by two vectors B′

A
′ , B′

C
′  is called the angle ∠A′B′C ′ . The system formed by two

vectors C′
A

′ , C′
B

′  is called the angle ∠A′C ′B′ .

Let us consider the scalar products

We assume that

x2 −n x1 ∈ Wn,

y2 −n y1 ∈ Wn,

x3 −n x1 ∈ Wn,

y3 −n y1 ∈ Wn,

x3 −n x2 ∈ Wn,

y3 −n y2 ∈ Wn,

(x2 −n x1) ×n (x2 −n x1) ∈ Wn,

(y2 −n y1) ×n (y2 −n y1) ∈ Wn,

(x3 −n x1) ×n (x3 −n x1) ∈ Wn,

(y3 −n y1) ×n (y3 −n y1) ∈ Wn,

(x2 −n x1) ×n (x2 −n x1) +n (y2 −n y1) ×n (y2 −n y1) ∈ Wn,

(x3 −n x1) ×n (x3 −n x1) +n (y3 −n y1) ×n (y3 −n y1) ∈ Wn,

(x2 −n x1) ×n (x3 −n x1) +n (y2 −n y1) ×n (y3 −n y1) ∈ Wn.

A′(x′
1, y′

1),B′(x′
2, y′

2),C ′(x′
3, y′

3) ∈ E2Wn.

a
′ = (x′

1, y′
1), b

′ = (x′
2, y′

2), c
′ = (x′

3, y′
3) ∈ E2Wn

A
′
B

′= b
′ −n a

′ = (x′
2 −n x

′
1, y′

2 −n y
′
1),

B
′
A

′= −A
′
B

′,

A
′
C

′= c
′ −n a

′ = (x′
3 −n x

′
1, y′

3 −n y
′
1),

C
′
A

′= −A
′
C

′,

B
′
C

′= c
′ −n b

′ = (x′
3 −n x

′
2, y′

3 −n y
′
2),

C
′
B

′= −B
′
C

′.

(A
′
B

′, A
′
B

′)= (x′
2 −n x

′
1) ×n (x′

2 −n x
′
1) +n (y′

2 −n y
′
1) ×n (y′

2 −n y
′
1),

(A
′
C

′, A
′
C

′)= (x′
3 −n x

′
1) ×n (x′

3 −n x
′
1) +n (y′

3 −n y
′
1) ×n (y′

3 −n y
′
1),

(A
′
B

′, A
′
C

′)= (x′
2 −n x

′
1) ×n (x′

3 −n x
′
1) +n (y′

2 −n y
′
1) ×n (y′

3 −n y
′
1).



In this case, we say that ∠BAC  is congruent to ∠B′A′C ′  and write

if the following conditions are satisfied:

Let us now go to E3Wn  and consider three points

Points A, B, points A, C, or points B, C are not necessarily points of the existing straight lines. For
all these points, we have the corresponding vectors

Let us consider three vectors ∈ E3Wn ,

x′
2 −n x

′
1 ∈ Wn,

y′
2 −n y

′
1 ∈ Wn,

x′
3 −n x

′
1 ∈ Wn,

y′
3 −n y

′
1 ∈ Wn,

x′
3 −n x

′
2 ∈ Wn,

y′
3 −n y

′
2 ∈ Wn,

(x′
2 −n x

′
1) ×n (x′

2 −n x
′
1) ∈ Wn,

(x′
3 −n x

′
1) ×n (x′

3 −n x
′
1) ∈ Wn,

(y′
2 −n y

′
1) ×n (y′

2 −n y
′
1) ∈ Wn,

(y′
3 −n y

′
1) ×n (y′

3 −n y
′
1) ∈ Wn,

(x′
2 −n x

′
1) ×n (x′

2 −n x
′
1) +n (y′

2 −n y
′
1) ×n (y′

2 −n y
′
1) ∈ Wn,

(x′
3 −n x

′
1) ×n (x′

3 −n x
′
1) +n (y′

3 −n y
′
1) ×n (y′

3 −n y
′
1) ∈ Wn,

(x′
2 −n x

′
1) ×n (x′

3 −n x
′
1) +n (y′

2 −n y
′
1) ×n (y′

3 −n y
′
1) ∈ Wn.

∠BAC ≡ ∠B′A′C ′

(AB, AB)> 0,

(A
′
B

′, A
′
B

′)> 0,

(AC, AC)> 0,

(A
′
C

′, A
′
C

′)> 0,

(AB, AB)= (A
′
B

′, A
′
B

′),

(AC, AC)= (A
′
C

′, A
′
C

′),

(AB, AC)= (A
′
B

′, A
′
C

′).

A(x1, y1, z1),B(x2, y2, z2),C(x3, y3, z3) ∈ E3Wn.

a = (x1, y1, z1), b = (x2, y2, z2), c = (x3, y3, z3) ∈ E2Wn.



The system formed by two vectors AB, AC is called the angle ∠BAC . The system formed by
two vectors BA, BC is called the angle ∠ABC . The system formed by two vectors CA, CB is
called the angle ∠ACB.

Let us consider the scalar products

We now assume now that

Let us consider three other points

For these points, we have the corresponding vectors

AB= b −n a = (x2 −n x1, y2 −n y1, z2 −n z1),

BA= −AB,

AC= c −n a = (x3 −n x1, y3 −n y1, z3 −n z1),

CA= −AC,

BC= c −n b = (x3 −n x2, y3 −n y2, z3 −n z2),

CB= −BC.

(AB, AB)= (x2 −n x1) ×n (x2 −n x1) +n (y2 −n y1) ×n (y2 −n y1) +n (z2 −n z1) ×n (z2 −

(AC, AC)= (x3 −n x1) ×n (x3 −n x1) +n (y3 −n y1) ×n (y3 −n y1) +n (z3 −n z1) ×n (z3 −

(AB, AC)= (x2 −n x1) ×n (x3 −n x1) +n (y2 −n y1) ×n (y3 −n y1) +n (z2 −n z1) ×n (z3 −

x2 −n x1 ∈ Wn,

y2 −n y1 ∈ Wn,

z2 −n z1 ∈ Wn,

x3 −n x1 ∈ Wn,

y3 −n y1 ∈ Wn,

z3 −n z1 ∈ Wn,

x3 −n x2 ∈ Wn,

y3 −n y2 ∈ Wn,

z3 −n z2 ∈ Wn,

(x2 −n x1) ×n (x2 −n x1) ∈ Wn,

(y2 −n y1) ×n (y2 −n y1) ∈ Wn,

(z2 −n z1) ×n (z2 −n z1) ∈ Wn,

(x3 −n x1) ×n (x3 −n x1) ∈ Wn,

(y3 −n y1) ×n (y3 −n y1) ∈ Wn,

(z3 −n z1) ×n (z3 −n z1) ∈ Wn,

(x2 −n x1) ×n (x2 −n x1) +n (y2 −n y1) ×n (y2 −n y1) +n (z2 −n z1) ×n (z2 −n z1) ∈ Wn,

(x3 −n x1) ×n (x3 −n x1) +n (y3 −n y1) ×n (y3 −n y1) +n (z3 −n z1) ×n (z3 −n z1) ∈ Wn,

(x2 −n x1) ×n (x3 −n x1) +n (y2 −n y1) ×n (y3 −n y1) +n (z2 −n z1) ×n (z3 −n z1) ∈ Wn.

A′(x′
1, y′

1, z′
1),B′(x′

2, y′
2, z′

2),C ′(x′
3, y′

3, z′
3) ∈ E3Wn.



Let us consider three vectors in E3Wn :

The system formed by two vectors A′
B

′ , A′
C

′  is called the angle ∠B′A′C ′ . The system
formed by two vectors B′

A
′ , B′

C
′  is called the angle ∠A′B′C ′ . The system formed by two

vectors C′
A

′ , C′
B

′  is called the angle ∠A′C ′B′ .

Let us consider the scalar products

We assume that

a
′ = (x′

1, y′
1, z′

1), b
′ = (x′

2, y′
2, z′

2), c
′ = (x′

3, y′
3, z′

3) ∈ E3Wn.

A
′
B

′= b
′ −n a

′ = (x′
2 −n x

′
1, y′

2 −n y
′
1, z′

2 −n z
′
1),

B
′
A

′= −A
′
B

′,

A
′
C

′= c
′ −n a

′ = (x′
3 −n x

′
1, y′

3 −n y
′
1, z′

3 −n z
′
1),

C
′
A

′= −A
′
C

′,

B
′
C

′= c
′ −n b

′ = (x′
3 −n x

′
2, y′

3 −n y
′
2, z′

3 −n z
′
2),

C
′
B

′= −B
′
C

′.

(A
′
B

′, A
′
B

′) = (x′
2 −n x′

1) ×n (x′
2 −n x′

1) +n (y′
2 −n y′

1) ×n (y′
2 −n y′

1) +n (z′
2 −n z′

1)

(A
′
C

′, A
′
C

′) = (x′
3 −n x′

1) ×n (x′
3 −n x′

1) +n (y′
3 −n y′

1) ×n (y′
3 −n y′

1) +n (z′
3 −n z′

1)

(A
′
B

′, A
′
C

′) = (x′
2 −n x′

1) ×n (x′
3 −n x′

1) +n (y′
2 −n y′

1) ×n (y′
3 −n y′

1) +n (z′
2 −n z′

1)



In this case, we say that ∠BAC  is congruent to ∠B′A′C ′ , denoted ∠BAC ≡ ∠B′A′C ′ , if the
following conditions are satisfied:

Now we have to define the angle between two straight lines. By classical geometry definition we
have the following definition:

If A, A′ , O, B are four points of a straight line a in E2Wn  or E3Wn , where O lies between A and B
but not between A and A′ , then this means the following: The points A, A′  are situated on the
line a upon one and the same side of the point O, and the points A, B are situated on the straight

x′
2 −n x

′
1 ∈ Wn,

y′
2 −n y

′
1 ∈ Wn,

z′
2 −n z

′
1 ∈ Wn,

x′
3 −n x

′
1 ∈ Wn,

y′
3 −n y

′
1 ∈ Wn,

z′
3 −n z

′
1 ∈ Wn,

x′
3 −n x

′
2 ∈ Wn,

y′
3 −n y

′
2 ∈ Wn,

z′
3 −n z

′
2 ∈ Wn,

(x′
2 −n x

′
1) ×n (x′

2 −n x
′
1) ∈ Wn,

(x′
3 −n x

′
1) ×n (x′

3 −n x
′
1) ∈ Wn,

(y′
2 −n y

′
1) ×n (y′

2 −n y
′
1) ∈ Wn,

(y′
3 −n y

′
1) ×n (y′

3 −n y
′
1) ∈ Wn,

(z′
2 −n z

′
1) ×n (z′

2 −n z
′
1) ∈ Wn,

(z′
3 −n z

′
1) ×n (z′

3 −n z
′
1) ∈ Wn,

(x′
2 −n x

′
1) ×n (x′

2 −n x
′
1) +n (y′

2 −n y
′
1) ×n (y′

2 −n y
′
1) +n (z′

2 −n z
′
1) ×n (z′

2 −n z
′
1) ∈ Wn

(x′
3 −n x

′
1) ×n (x′

3 −n x
′
1) +n (y′

3 −n y
′
1) ×n (y′

3 −n y
′
1) +n (z′

3 −n z
′
1) ×n (z′

3 −n z
′
1) ∈ Wn

(x′
2 −n x

′
1) ×n (x′

3 −n x
′
1) +n (y′

2 −n y
′
1) ×n (y′

3 −n y
′
1) +n (z′

2 −n z
′
1) ×n (z′

3 −n z
′
1) ∈ Wn

(AB, AB)> 0,

(A
′
B

′, A
′
B

′)> 0,

(AC, AC)> 0,

(A
′
C

′, A
′
C

′)> 0,

(AB, AB)= (A
′
B

′, A
′
B

′),

(AC, AC)= (A
′
C

′, A
′
C

′),

(AB, AC)= (A
′
B

′, A
′
C

′).



line a upon different sides of the point O. All the points of a that lie upon the same side of O,
when taken together, are called the half-ray emanating from O.

Let us now consider two distinct straight lines a, b in E2Wn  or E3Wn  having at least one point
O in their intersection: O ∈ a ∩ b. Note that generally there may be more than one such point.
By classical geometry definition we have the following: Let h, k be any two distinct half-rays
h ⊂ a and k ⊂ b emanating from the point O. The system formed by these two half-rays h, k is
called an angle and denoted by ∠(h, k) or ∠(k,h).

The half-rays h and k are called the sides of the angle, and the point O is called the vertex of the
angle. Now we can go to the definition of congruence of angles in Mathematics with Observers
geometry. Let us start with E2Wn .

Let a, b ∈ E2Wn  be two straight lines

and

having common point O(x0, y0). Let h, k be two distinct half-rays h ⊂ a and k ⊂ b emanating
from the point O. So we get ∠(h, k).

Suppose we also have two straight lines in E2Wn ,

and

having common point O′(x′
0, y′

0). Let h′ , k′  be any two distinct half-rays h′ ⊂ a′  and k′ ⊂ b′

emanating from the point O′ . So we get ∠(h′, k′). Let

and suppose we have four points

and the corresponding vectors

a : a1 ×n x +n a2 ×n y +n a3 = 0

b : b1 ×n x +n b2 ×n y +n b3 = 0

a′ : a′
1 ×n x +n a

′
2 ×n y +n a

′
3 = 0

b′ : b′
1 ×n x +n b

′
2 ×n y +n b

′
3 = 0

O(x0, y0),O′(x′
0, y′

0)

A(x1, y1)∈ h,

B(x2, y2)∈ k,

A′(x′
1, y′

1)∈ h′,

B′(x′
2, y′

2)∈ k′



such that

and

Let us take the scalar products

If

then we say that

is congruent to

and write

We assume here that all elements participating in the previous equalities belong to Wn . This
means that in Mathematics with Observers geometry, we do not define the congruence of angles
∠(h, k) and ∠(h′, k′). We can define it only in the case where for any points A, B, A′ , B′

satisfying the above conditions, we have

Then

Let us now go to E3Wn . Let u, v be two straight lines lying in plane α,

OA= (x1 −n x0, y1 −n y0),

OB= (x2 −n x0, y2 −n y0),

O
′
A

′= (x′
1 −n x

′
0, y′

1 −n y
′
0),

O
′
B

′= (x′
2 −n x

′
0, y′

2 −n y
′
0),

(OA, OA)> 0,

(OB, OB)> 0,

(O
′
A

′, O
′
A

′)> 0,

(O
′
B

′, O
′
B

′)> 0,

(OA, OA)= (O
′
A

′, O
′
A

′),

(OB, OB)= (O
′
B

′, O
′
B

′).

(OA, OB)= (x1 −n x0) ×n (x2 −n x0) +n (y1 −n y0) ×n (y2 −n y0),

(O
′
A

′, O
′
B

′)= (x′
1 −n x

′
0) ×n (x′

2 −n x
′
0) +n (y′

1 −n y
′
0) ×n (y′

2 −n y
′
0).

(OA, OB) = (O
′
A

′, O
′
B

′),

∠AOB = ∠(Ah,Bk)

∠A′O′B′ = ∠(A′h′,B′k′)

∠(Ah,Bk) ≡ ∠(A′h′,B′k′).

∠(Ah,Bk) ≡ ∠(A′h′,B′k′).

∠(h, k) ≡ ∠(h′, k′).



and

having common point O(x0, y0, z0).

Let h, k be two distinct half-rays h ⊂ u and k ⊂ v emanating from the point O. So we get
∠(h, k). Suppose we also have two straight lines u′ , v′  lying in plane α′ ,

and

having common point O′(x′
0, y′

0, z′
0).

Let h′ , k′  are any two distinct half-rays h′ ⊂ a′  and k′ ⊂ b′  emanating from the point O′ . So we
get ∠(h′, k′). Suppose we also have four points

and the corresponding vectors

such that

u :

{
a1 ×n x +n a2 ×n y +n a3 ×n z +n a4 = 0,

b1 ×n x +n b2 ×n y +n b3 ×n z +n b4 = 0,

v :

{
c1 ×n x +n c2 ×n y +n c3 ×n z +n c4 = 0,

d1 ×n x +n d2 ×n y +n d3 ×n z +n d4 = 0,

u′ :

{
a′

1 ×n x +n a
′
2 ×n y +n a

′
3 ×n z +n a

′
4 = 0,

b′
1 ×n x +n b

′
2 ×n y +n b

′
3 ×n z +n b

′
4 = 0,

v′ :

{
c′

1 ×n x +n c
′
2 ×n y +n c

′
3 ×n z +n c

′
4 = 0,

d′
1 ×n x +n d

′
2 ×n y +n d

′
3 ×n z +n d

′
4 = 0,

A(x1, y1, z1)∈ h,

B(x2, y2, z2)∈ k,

A′(x′
1, y′

1, z′
1)∈ h′,

B′(x′
2, y′

2, z′
2)∈ k′

OA= (x1 −n x0, y1 −n y0, z1 −n z0),

OB= (x2 −n x0, y2 −n y0, z2 −n z0),

O
′
A

′= (x′
1 −n x

′
0, y′

1 −n y
′
0, z′

1 −n z
′
0),

O
′
B

′= (x′
2 −n x

′
0, y′

2 −n y
′
0, z′

2 −n z
′
0)



and

Let us take the scalar products

If we have

then we say that

is congruent to

and write

We assume here that all elements participating in the previous equalities belong to Wn . This
means that in Mathematics with Observers geometry, we do not define the congruence of angles
∠(h, k) and ∠(h′, k′). We can define it only in the case where for any points A, B, A′ , B′

satisfying the above conditions, we have

Then

7.1  First property of congruence

In classical Euclidean geometry, we have the following statement:

If A, B are two points on a straight line a and if A′  is a point upon the same or another straight
line a′ , then, upon a given side of A′  on the straight line a′ , there always exists a unique one
point B′  such that the segment AB (or BA) is congruent to the segment A′B′ .

(OA, OA)> 0,

(OB, OB)> 0,

(O
′
A

′, O
′
A

′)> 0,

(O
′
B

′, O
′
B

′)> 0,

(OA, OA)= (O
′
A

′, O
′
A

′),

(OB, OB)= (O
′
B

′, O
′
B

′).

(OA, OB) = (x1 −n x0) ×n (x2 −n x0) +n (y1 −n y0) ×n (y2 −n y0) +n (z1 −n z

(O
′
A

′, O
′
B

′) = (x′
1 −n x′

0) ×n (x′
2 −n x′

0) +n (y′
1 −n y′

0) ×n (y′
2 −n y′

0) +n (z′
1 −n

(OA, OB) = (O
′
A

′, O
′
B

′),

∠AOB = ∠(Ah,Bk)

∠A′O′B′ = ∠(A′h′,B′k′)

∠(Ah,Bk) ≡ ∠(A′h′,B′k′).

∠(Ah,Bk) ≡ ∠(A′h′,B′k′).

∠(h, k) ≡ ∠(h′, k′).



Question: Is this statement correct in Mathematics with Observers geometry?

1) Let us take in E2W2  straight line a with equation

and points

Let straight line a′  have the equation

and point

Any point B′ ∈ a′  has the coordinates B′(x,x). We have

and

We get

This means that point B′ ∈ a′  such that

does not exist, that is, the answer to the question in this case is negative.

2) Let us take in E2W2  straight line a with equation

and points

Let straight line a′  have the equation

and point

Let us take the point

x = 0

A(0, 0),B(0, 1) ∈ a

x −2 y = 0

A′(0, 0) ∈ a′.

(AB, AB) = 1

(A
′
B

′, A
′
B

′) = 2 ×2 (x ×2 x).

2 ×2 (0.79 ×2 0.79)= 0.98,

2 ×2 (0.80 ×2 0.80)= 1.28.

(AB, AB) = (A
′
B

′, A
′
B

′)

x = 0

A(0, 0),B(0, 1) ∈ a

y = 0

A′(0, 0) ∈ a′



We have

and

that is, the answer to the question in this case is positive.

3) Let us take in E2W2  straight line a with equation

and points

Let straight line a′  have the equation

and the point

Let us take two points

We have

and

This means that a point B′ ∈ a′  such that

exists but is not unique, and

that is, the answer to the question in this case is negative.

So we have proved the following:

Theorem 7.1.

B′(1, 0) ∈ a′.

(AB, AB) = (A
′
B

′, A
′
B

′) = 1

AB ≡ A′B′,

x = 0

A(0, 0),B(0, 1) ∈ a.

1.4 ×2 x −2 y = 0

A′(0, 0) ∈ a′.

B′(0.60, 0.84),B′′(0.61, 0.85) ∈ a′.

(AB, AB)= 1,

(A
′
B

′, A
′
B

′)= 0.60 ×2 0.60 +2 0.84 ×2 0.84 = 1

(A
′
B

′′, A
′
B

′′) = 0.61 ×2 0.61 +2 0.85 ×2 0.85 = 1.

(AB, AB) = (A
′
B

′, A
′
B

′)

AB≡ A′B′,

AB≡ A′B′′,



In Mathematics with Observers geometry in the plane E2Wn , there are two points A, B on a straight

line a and a point A′
 upon the same or another straight line a′

 such that upon a given side of A′
 on

the straight line a′ , there is no point B′
 such that the segment AB (or BA) is congruent to the

segment A′B′ .

Theorem 7.2.

In Mathematics with Observers geometry in the plane E2Wn , there are two points A, B on a straight

line a and a point A′
 upon the same or another straight line a′

 such that upon a given side of A′
 on

the straight line a′ , there is only one point B′
 such that the segment AB (or BA) is congruent to the

segment A′B′ .

Theorem 7.3.

In Mathematics with Observers geometry in the plane E2Wn , there are two points A, B on a straight

line a and a point A′
 upon the same or another straight line a′

 such that upon a given side of A′
 on

the straight line a′ , there is more than one point B′
 such that the segment AB (or BA) is congruent

to the segment A′B′ .

7.2  Second property of congruence

In classical Euclidean geometry, we have the following statement:

If a segment AB is congruent to the segment A′B′  and also to the segment A′′B′′ , then the
segment A′B′  is congruent to the segment A′′B′′ .

Question: Is this statement correct in Observer’s Mathematics geometry?

We must have

So

This means that the answer to the question is positive.

So we have proved the following:

Theorem 7.4.

In Mathematics with Observers geometry, if a segment AB is congruent to the segment A′B′
 and also

to the segment A′′B′′ , then the segment A′B′
 is congruent to the segment A′′B′′ .

7.3  Third property of congruence

In classical Euclidean geometry we have the following statement:

(AB, AB)= (A
′
B

′, A
′
B

′),

(AB, AB)= (A
′′
B

′′, A
′′
B

′′).

(A
′
B

′, A
′
B

′) = (A
′′
B

′′, A
′′
B

′′).



Let AB and BC  be two segments of a straight line a that have no common points aside from
the point B, and, furthermore, let A′B′  and B′C ′  be two segments of the same or another
straight line a′  having, likewise, no common point other than B′ . If

and

then

Question: Is this statement correct in Mathematics with Observers geometry?

1) Let us take in E2W2  straight line a with equation

and points

Let straight line a′  have the equation

and points

We have

So

and also

So

that is, the answer to the question in this case is positive.

2) Let us take in E2W2  straight line a with equation

AB ≡ A′B′

BC ≡ B′C ′,

AC ≡ A′C ′.

x = 0

A(0, 0),B(0, 1),C(0, 2) ∈ a.

y = 0

A′(0, 0),B′(1, 0),C ′(2, 0) ∈ a′.

(AB, AB)= (A
′
B

′, A
′
B

′) = 1,

(BC, BC)= (B
′
C

′, B
′
C

′) = 1.

AB≡ A′B′,

BC≡ B′C ′,

(AC, AC) = (A
′
C

′, A
′
C

′) = 4.

AC ≡ A′C ′

x = 0



and points

Let s straight line a′  have the equation

and points

We have

and

We get

but

This means that

and

that is, the answer to the question in this case is negative.

3) Let us take in E2W2  straight line a with equation

and points

Let straight line a′  have the equation

and points

A(0, 0),B(0, 1),C(0, 2) ∈ a.

1.4 ×2 x −2 y = 0

A′(0, 0),B′(0.60, 0.84),C(1.20, 1.68) ∈ a′.

(AB, AB)= 1,

(A
′
B

′, A
′
B

′)= 0.60 ×2 0.60 +2 0.84 ×2 0.84 = 1,

(BC, BC)= 1,

(B
′
C

′, B
′
C

′)= (1.20 −2 0.60) ×2 (1.20 −2 0.60) +2 (1.68 −2 0.84) ×2 (1.68 −2 0.84) = 1.

(AC, AC) = 4,

(A
′
C

′, A
′
C

′) = 1.20 ×2 1.20 +2 1.68 ×2 1.68 = 4.16.

(AC, AC) ≠ (A
′
C

′, A
′
C

′)

AC ≢ A′C ′,

x = 0

A(0, 0),B(0, 1.46),C(0, 2.92) ∈ a.

x −2 y = 0

A′(0, 0),B′(1.02, 1.02),C ′(2.04, 2.04) ∈ a′.



We have

and

So

We get

but

This means that

that is, the answer to this question in this case is negative.

So we have proved the following:

Theorem 7.5.

In Mathematics with Observers geometry in the plane E2Wn , there are two segments AB and BC  on

a straight line a that have no common points aside from the point B, and there are two segments A′B′

and B′C ′
 of the same or another straight line a′

 having no common point other than B′
 with

AB ≡ A′B′
 and BC ≡ B′C ′

 such that AC ≢ A′C ′ .

Theorem 7.6.

In Mathematics with Observers geometry in the plane E2Wn , there are two segments AB and BC  on

a straight line a that have no points in common aside from the point B, and there are two segments

A′B′
 and B′C ′

 of the same or another straight line a′
 having no common point other than B′

 with

AB ≡ A′B′
 and BC ≡ B′C ′

 such that AC ≡ A′C ′ .

7.4  Angle in Observer’s geometry. First statement

Let us first consider the following classical geometry statement:

The half-rays h and k, taken together with the point O, divide the remaining points of the
plane into two regions having the following property: If A is a point of one region and B a

(AB, AB)= 2.08,

(A
′
B

′, A
′
B

′)= 1.02 ×2 1.02 +2 1.02 ×2 1.02 = 2.08

(BC, BC)= 2.08,

(B
′
C

′, B
′
C

′)= (2.04 −2 1.02) ×2 (2.04 −2 1.02) +2 (2.04 −2 1.02) ×2 (2.04 −2 1.02) = 2.0

AB≡ A′B′,

BC≡ B′C ′.

(AC, AC) = 8.49,

(A
′
C

′, A
′
C

′) = 2.04 ×2 2.04 +2 2.04 ×2 2.04 = 8.32.

AC ≢ A′C ′,



point of the other, then every broken line joining A and B either passes through O or has a
common point with one of the half-rays h and k.

Question: Is this statement correct in Mathematics with Observers geometry?

1) Let us take in the plane E2Wn  two straight lines

and

and two half-rays h ⊂ a and k ⊂ b, taken together with the point O(0, 0),

and

Then the interior region R∠(h,k)
i  of ∠(h, k) is

and the exterior region R∠(h,k)
o  of ∠(h, k) is

So half-rays h and k, taken together with the point O, in this case divide the remaining points of
the plane a into two regions.

If a. b ⊂ α are two lines on a plane and h ⊂ a and k ⊂ b, then two regions may be Ra
1 ∩ Rb

1 ,
Ra

2 ∩ Rb
1 , Ra

1 ∩ Rb
2 , or Ra

2 ∩ Rb
2  and may not cover full plane α in the case where Ra

3 ≠ Λ or
Rb

3 ≠ Λ.

2) Let us take in the plane E2Wn  two straight lines

and

and two half-rays h ⊂ a and k ⊂ b, taken together with the point
O(−99 … 9.99 … 9, 99 … 9.99 … 9):

Then the interior region R∠(h,k)
i  of ∠(h, k) is

a : x = 0

b : y = 0

h : y > 0

k : x > 0.

R
∠(h,k)
i = Ra

1 ∩ Rb
1,

R
∠(h,k)
o = E2Wn ∖ (R∠(h,k)

i ∪ h ∪ k).

a : x +n 99 … 9.99 … 9 = 0

b : y −n 99 … 9.99 … 9 = 0

h : y < 99 … 9.99 … 9,

k : x > −99 … 9.99 … 9.



and the exterior region R∠(h,k)
o  of ∠(h, k) is

So half-rays h and k, taken together with the point O, in this case transform the remaining points
of the plane a into one region.

3) Let’s take two straight lines a, b ⊂ E2Wn  with equations

and

Let h be a half-ray of the straight line a emanating from the point O(0, 0), and let k be a half-ray

of the straight line b emanating from the same point O(0, 0). Let the interior region R∠(h,k)
i  of

∠(h, k) be

and let the exterior region R∠(h,k)
o  of ∠(h, k) be

Let us take the points

and

Then segment AB does not intersect half-rays h, k:

because a ∩ c = Λ, where

and

because

So in this case the answer to the question is negative.

R
∠(h,k)
i = Ra

1 ∩ Rb
2,

R
∠(h,k)
o = E2Wn ∖ (R∠(h,k)

i ∪ h ∪ k) = Λ.

a : y = 0

b : 3 ×n x −n y = 0.

R
∠(h,k)
i = Ra

1 ∩ Rb
1,

R
∠(h,k)
o = E2Wn ∖ (R∠(h,k)

i ∪ h ∪ k).

A(1, 1) ∈ R
∠(h,k)
i

B(−1, 1) ∈ R
∠(h,k)
o .

AB ∩ h = Λ

c : y = 1,

AB ∩ k = Λ

3 ×n 0.33 … 33= 0.99 … 99,

3 ×n 0.33 … 34= 1.00 … 02.



4) Let us take two straight lines a, b ⊂ E2Wn  with equations

and

Let h be a half-ray of the straight line a emanating from the point O(0, 0), and let k be a half-ray

of the straight line b emanating from the same point O(0, 0). Let the interior region R∠(h,k)
i  be

given by the system

and let the exterior region R∠(h,k)
o  be given by the equality

Let us take the points

and

Then the segment AB intersects the half-ray k in point C(0, 1):

This means that in this case the answer to the question is positive.

So we have proved the following:

Theorem 7.7.

In Mathematics with Observers geometry in the plane E2Wn , there are two half-rays h and k, taken

together with the point O, such that the remaining points of the plane are transformed into one region.

Theorem 7.8.

In Mathematics with Observers geometry in the plane E2Wn , there are two half-rays h and k, taken

together with the point O, such that the remaining points of the plane are divided into two regions.

Theorem 7.9.

In Mathematics with Observers geometry in the plane E2Wn , there are two half-rays h and k, taken

together with the point O, such that the remaining points of the plane are divided into three regions.

Theorem 7.10.

In Mathematics with Observers geometry in the plane E2Wn , there are two half-rays h and k, taken

together with the point O, that divide the remaining points of the plane a into two regions, and point A

of one region and point B of the other such that there is a broken line joining A and B that neither

passes through O nor has a common point with one of the half-rays h, k.

Theorem 7.11.

a : y = 0

b : x = 0.

{
y > 0,

x > 0,

R
∠(h,k)
o = E2Wn ∖ (R∠(h,k)

i ∪ h ∪ k).

A(1, 1) ∈ R
∠(h,k)
i

B(−1, 1) ∈ R
∠(h,k)
o .

AB ∩ K = C.



In Mathematics with Observers geometry in the plane E2Wn , there are two half-rays h and k, taken

together with the point O, that divide the remaining points of the plane a into two regions, and point A

of one region and point B of the other such that there is a broken line joining A and B that either passes

through O or has a common point with one of the half-rays h, k.

7.5  Angle in Observer’s geometry. Second statement

Let us consider another classical geometry statement:

If points A, A′  both lie within the same region, then it is always possible to join these two
points by a broken line that neither passes through O nor has a common point with either of
the half-rays h, k.

Question: Is this statement correct in Mathematics with Observers geometry?

1) Let’s take two straight lines a, b ⊂ E2W2  with equations

and

Let h be a half-ray of the straight line a emanating from the point O(0, 0), and let k be a half-ray
of the straight line b emanating from the same point O(0, 0).

The interior region R∠(h,k)
i  is given by the system

This means that

Let us consider two points

Straight line a containing these points is

and the segment

a : 99.99 ×2 x −2 98.37 ×2 y = 0

b : 98.37 ×2 x −2 99.99 ×2 y = 0.

{
99.99 ×2 x −2 98.37 ×2 y > 0,

98.37 ×2 x −2 99.99 ×2 y < 0.

R
∠(h,k)
i = [(0.01, 0.01), (0.02, 0.02), …

… (0.62, 0.62), (0.63, 0.63), (0.63, 0.64), (0.64, 0.63), (0.64, 0.64), (0.64, 0.65) …

… , (0.89, 0.88), (0.89, 0.89), (0.89, 0.90), …

… (0.99, 0.98), (0.99, 0.99), (0.99, 1.00), (1.00, 1.00)].

A(0.01, 0.01),A′(0.62, 0.62).

a : x −2 y = 0,



So in this case the answer to the question is positive.

2) Let us consider the same lines as in the previous case and other two points

Straight line b containing these points is

and we have the system of equations

that is,

So

and the segment

So in this case the answer to the question is negative.

3) Let us take two straight lines a, b ⊂ E2W2  with equations

and

Let h be a half-ray of the straight line a emanating from the point O(0, 0), and let k be a half-ray

of the straight line b emanating from the same point O(0, 0). The exterior region R∠(h,k)
o  is

given by

Let us consider two points

AA′ ⊂ R
∠(h,k)
i .

A(0.89, 0.88),A′(1.00, 1.00).

b : a1 ×2 x +2 a2 ×2 y +2 a3 = 0,

{
a1 ×2 0.89 +2 a2 ×2 0.88 +2 a3 = 0,

a1 ×2 1 +2 a2 ×2 1 +2 a3 = 0,

{
a1 ×2 0.89 +2 a2 ×2 0.88 = a1 +2 a2,

a1 +2 a2 +2 a3 = 0.

a1 ∈ [±0.01, ±0.02, … , ±0.09],

a2 = −a1,

a3 = 0,

AA′ ⊄ R
∠(h,k)
i .

a : x = 0

b : y = 0.

R
∠(h,k)
o = E2Wn ∖ (R∠(h,k)

i ∪ h ∪ k).

A(−2, 3),A′(2, −3) ∈ R
∠(h,k)
o .



It is possible to join these two points by a broken line ACA′  that neither passes through O nor

has a common point with interior region R∠(h,k)
i  and either of the half-rays h, k, where

and R∠(h,k)
o  is the set of all points in E2W2  satisfying the system of inequalities

So in this case the answer to this question is positive.

4) Let us take two straight lines a, b ⊂ E2W2  with equations

and

Let h be a half-ray of the straight line a emanating from the point O(−99.99, 0), and let k be a
half-ray of the straight line b emanating from the same point O(−99.99, 0). In this case, we
have

and

The exterior region R∠(h,k)
o  is given by

where

and the interior region R∠(h,k)
i  is given by the system of inequalities

Let us consider two points

where

C(−2, −3),

{
x > 0,

y > 0.

a : y = 0

b : 0.01 ×2 x −2 y +2 0.99 = 0.

h = a

k = b.

R
∠(h,k)
o = Ra

2 ∪ Rb
2,

Ra
2= [(x, y) ∈ E2W2 : y < 0],

Rb
2= [(x, y) ∈ E2W2 : 0.01 ×2 x −2 y +2 0.99 < 0],

{
y > 0,

0.01 ×2 x −2 y +2 0.99 > 0.

A(x1, y1),A′(x2, y2) ∈ R
∠(h,k)
o ,

{
y1 < 0,

0.01 ×2 x2 −2 y2 +2 0.99 < 0.



Then it is impossible to join these two points by a broken line that neither passes through O nor
has a common point with the interior region R1  and either of the half-rays h, k.

If we consider the line

then

but

This means that in this case the answer to the question is negative.

So we have proved the following:

Theorem 7.12.

In Mathematics with Observers geometry in the plane E2Wn , there are two half-rays h and k, taken

together with the point O, that divide the remaining points of the plane a into two regions, and points A,

A′
 of the same region such that there is a broken line joining A and A′

 that neither passes through O

nor has a common point with either of the half-rays h, k.

Theorem 7.13.

In Mathematics with Observers geometry in the plane E2Wn , there are two half-rays h and k, taken

together with the point O, that divide the remaining points of the plane a into two regions, and points A,

A′
 of the same region such that there is a broken line joining A and A′

 that either passes through O or

has a common point with one of the half-rays h, k.

7.6  Fourth property of congruence

Classical geometry states:

Let an angle ∠(h, k) be given in a plane α, and let a straight line a′  be given in a plane α′ .
Suppose also that in α′  a definite side of the straight line a′  is assigned. Let h′  be a half-ray of
the straight line a′  emanating from a point O′  of this line. Then in the plane α′ , there is a
unique half-ray k′  such that the angle ∠(h, k), or ∠(k,h), is congruent to the angle ∠(h′, k′)

and at the same time, all interior points of the angle ∠(h′, k′) lie upon the given side of a′ ,
that is,

Every angle is congruent to itself, that is,

c : 3 ×2 x −2 y −2 1.00 = 0,

c ∩ h= Λ,

c ∩ k= Λ,

c ∩ R
∠(h,k)
i ≠ Λ.

∠(h, k) ≡ ∠(h′, k′).

∠(h, k) ≡ ∠(h, k)



or

Question: Is this statement correct in Mathematics with Observers geometry?

1) Let two straight lines in E2W2 ,

and

have a common point O(0, 0) and two distinct half-rays

and

emanating from the point O. So we get ∠(h, k) and ∠(k,h).

Direct calculations give us the following results:

that is, h contains only one point, and

that is, k contains only three points.

We have the vectors

and we get

So

∠(h, k) ≡ ∠(k,h).

a : 99.99 ×2 x −2 98.37 ×2 y = 0

b : 99.99 ×2 x −2 96.37 ×2 y = 0,

h ⊂ a,

h : [(x, y) ∈ a : x > 0],

k ⊂ b,

k : [(x, y) ∈ b : x > 0],

h = C(0.62, 0.63),

k = [E(0.28, 0.29),F(0.54, 0.56),G(0.80, 0.83)],

OC= (0.62, 0.63),

OE= (0.28, 0.29),

OF= (0.54, 0.56),

OG= (0.80, 0.83),

(OC, OC)= 0.72 > 0,

(OE, OE)= 0.08 > 0,

(OF, OF)= 0.50 > 0,

(OG, OG)= 1.28 > 0.



which means that

and

that is,

So in this case the answer to the question is negative.

2) Let two straight lines in E2W2 ,

and

have a common point O(0, 0) and two distinct half-rays

and

emanating from the point O. So we get ∠(h, k).

Now let us take a straight line in E2W2 ,

and any other straight line in E2W2 ,

having common point O(0, 0) with line a′ . We get two distinct half-rays

(OC, OC)≠ (OE, OE),

(OC, OC)≠ (OF, OF),

(OC, OC)≠ (OG, OG),

∠(h, k) ≡ ∠(h, k)

∠(Ch,Ek)≢ ∠(Ek,Ch),

∠(Ch,Fk)≢ ∠(Fk,Ch),

∠(Ch,Gk)≢ ∠(Gk,Ch),

∠(h, k) ≢ ∠(k,h).

a : 99.99 ×2 x −2 98.37 ×2 y = 0

b : y = 0,

h ⊂ a,

h : [(x, y) ∈ a : x > 0],

k ⊂ b,

k : [(x, y) ∈ b : x > 0],

a′ : 99.99 ×2 x −2 96.37 ×2 y = 0,

b′ : a1 ×2 x −2 a2 ×2 y = 0,

h′ ⊂ a′,

h : [(x, y) ∈ a : x > 0],



and

Direct calculations give us the following results:

that is, h contains only one point, and

that is, h′  contains only three points.

We have the vectors

and we get

So

This means that for any line b′  and any points D ∈ k and K,L,M ∈ b′ ,

So in this case the answer to the question is negative.

3) Let two straight lines in E2Wn ,

and

k′ ⊂ b′,

k′ : [(x, y) ∈ b′ : x > 0].

h = C(0.62, 0.63),

h′ = [E(0.28, 0.29),F(0.54, 0.56),G(0.80, 0.83)],

OC= (0.62, 0.63),

OE= (0.28, 0.29),

OF= (0.54, 0.56),

OG= (0.80, 0.83),

(OC, OC)= 0.72 > 0,

(OE, OE)= 0.08 > 0,

(OF, OF)= 0.50 > 0,

(OG, OG)= 1.28 > 0.

(OC, OC)≠ (OE, OE),

(OC, OC)≠ (OF, OF),

(OC, OC)≠ (OG, OG).

∠(Ch,Dk)≢ ∠(Eh′,Kk′),

∠(Ch,Dk)≢ ∠(Fh′,Lk′),

∠(Ch,Dk)≢ ∠(Gh′,Mk′).

a : y = 0



have a common point O(0, 0) and two distinct half-rays

and

emanating from the point O. So we get ∠(h, k).

Let us consider straight lines in E2Wn ,

and

having a common point O′(1, 1) with line a′ . Let h′ , k′  are any two distinct half-rays

and

emanating from the point O′ . So we get ∠(h′, k′).

Let us take points

and the corresponding vectors

We get

b : x = 0,

h ⊂ a,

h : [(x, y) ∈ a : x > 0],

k ⊂ b,

k : [(x, y) ∈ b : y > 0],

a′ : y = 1

b′ : x = 1,

h′ ⊂ a′,

h′ : [(x, y) ∈ a′ : x > 1],

k′ ⊂ b′,

k′ : [(x, y) ∈ b′ : y > 1],

A(1, 0)∈ h,

B(0, 1)∈ k,

A′(2, 1)∈ h′,

B′(1, 2)∈ k′

OA= (1, 0),

OB= (0, 1),

O
′
A

′= (1, 0),

O
′
B

′= (0, 1).



and thus

We have the scalar products

and their equality

that is,

Moreover, if we take points

and the corresponding vectors

then we get

Note that for the remaining possible points of h, k, h′ , k′ ,

(OA, OA)= 1 > 0,

(OB, OB)= 1 > 0,

(O
′
A

′, O
′
A

′)= 1 > 0,

(O
′
B

′, O
′
B

′)= 1 > 0,

OA≡ O′A′,

OB≡ O′B′.

(OA, OB)= 1 ×n 0 +n 0 ×n 1 = 0,

(O
′
A

′, O
′
B

′)= 1 ×n 0 +n 0 ×n 1 = 0,

(OA, OB) = (O
′
A

′, O
′
B

′) = 0,

∠(Ah,Bk) ≡ ∠(A′h′,B′k′).

A(x0, 0)∈ h, x0 ≥ 0.1,

B(0, y0)∈ k, y0 ≥ 0.1,

A′(x0 +n 1, 1)∈ h′,

B′(1, y0 +n 1)∈ k′,

OA= (x0, 0),

OB= (0, y0),

O
′
A

′= (x0, 0),

O
′
B

′= (0, y0),

(OA, OA)= x0 ×n x0 > 0,

(OB, OB)= y0 ×n y0 > 0,

(O
′
A

′, O
′
A

′)= x0 ×n x0 > 0,

(O
′
B

′, O
′
B

′)= y0 ×n y0 > 0.



we get

This means that

We have the scalar products

and their equality

that is,

which means that

This means that in this case the answer to the question is positive.

4) Let take three straight lines a, b, c ⊂ E2W2 :

These lines have a unique common point O(0, 0),

Denote by h the half-ray of the straight line a emanating from a point O,

by k the half-ray of the straight line b emanating from same point O,

A′′(x0, 0)∈ h, 0 < x0 < 0.1,

B′′(0, y0)∈ k, 0 < y0 < 0.1,

A′′′(x0 +n 1, 1)∈ h′,

B′′′(1, y0 +n 1)∈ k′,

(OA
′′, OA

′′)= x0 ×n x0 = 0,

(OB
′′, OB

′′)= y0 ×n y0 = 0,

(O
′
A

′′′, O
′
A

′′′)= x0 ×n x0 = 0,

(O
′
B

′′′, O
′
B

′′′)= y0 ×n y0 = 0.

OA≡ O′A′,

OB≡ O′B′.

(OA, OB)= x0 ×n 0 +n 0 ×n y0 = 0,

(O
′
A

′, O
′
B

′)= x0 ×n 0 +n 0 ×n y0 = 0,

(OA, OB) = (O
′
A

′, O
′
B

′) = 0,

∠(Ah,Bk) ≡ ∠(A′h′,B′k′),

∠(h, k) ≡ ∠(h′, k′).

a : 2 ×2 x −2 y = 0,

b : x −2 y = 0,

c : 0.50 ×2 x −2 y = 0.

a ∩ b ∩ c = O.

h = [(x, y) ∈ a,x > 0],



and by l the half-ray of the straight line c emanating from the same point O,

Let us take the points

Then we have

and we get

that is,

This means that the points A ∈ h, C ∈ k, B ∈ l satisfy the definition of congruence of angles
and

Let us now take the other points

We have

and we get

k = [(x, y) ∈ b,x > 0],

l = [(x, y) ∈ c,x > 0].

A(1, 2) ∈ h, C(1, 1) ∈ k, B(2, 1) ∈ l.

OA= (1, 2),

OC= (1, 1),

OB= (2, 1),

(OA, OA)= 1 ×2 1 +2 2 ×2 2 = 5,

(OB, OB)= 2 ×2 2 +2 1 ×2 1 = 5,

(OA, OC)= 1 ×2 1 +2 2 ×2 1 = 3,

(OB, OC)= 2 ×2 1 +2 1 ×2 1 = 3,

(OA, OA)= (OB, OB),

(OA, OC)= (OB, OC),

OA≡ OB,

OC≡ OC.

∠(Ah,Ck) ≡ ∠(Bl,Ck).

D(2.02, 4.04) ∈ h, F(2.29, 2.29) ∈ k, E(4.05, 2.00) ∈ l.

OD= (2.02, 4.04),

OF= (2.29, 2.29),

OE= (4.05, 2.00),



that is,

and

So

This means that in this case the answer to the question is negative.

5) Let us take two straight lines in E2W2 ,

and

which have a unique common point O(0, 0),

Denote by h a half-ray of the straight line a emanating from a point O,

and by k a half-ray of the straight line b emanating from the same point O,

Let us take two points A(0.61, 0.85),A′(0.63, 0.87) ∈ h and two points B(1, 1),B′(1, 1) ∈ k,
that is, B = B′ . We have

and we get

(OD, OD)= 2.02 ×2 2.02 +2 4.04 ×2 4.04 = 20.40,

(OE, OE)= 4.05 ×2 4.05 +2 2.00 ×2 2.00 = 20.40,

(OD, OF)= 2.02 ×2 2.29 +2 4.04 ×2 2.29 = 13.86,

(OE, OF)= 4.05 ×2 2.29 +2 2.00 ×2 2.29 = 13.84,

(OD, OD)= (OE, OE),

(OD, OF)≠ (OE, OF),

OD≡ OE,

OF≡ OF ,

(OD, OF) ≠ (OE, OF).

∠(Dh,Fk) ≢ ∠(El,Fk).

a : 1.40 ×2 x −2 y = 0

b : x −2 y = 0,

a ∩ b = O.

h = [(x, y) ∈ a,x > 0],

k = [(x, y) ∈ b,x > 0].

OA= (0.61, 0.85),

OA
′= (0.63, 0.87),

OB= (1, 1),

OB
′= (1, 1),



So we have

For the pairs of vectors

and

we have the scalar products

and their inequality

So

This means that in this case the answer to the question is negative.

So we have proved the following:

Theorem 7.14.

In Mathematics with Observers geometry in the plane E2Wn , there are an angle ∠(h, k) and a

straight line a′
 with a half-ray h′

 emanating from a point O′
 of this line such that there is no half-ray

k′
 such that

Theorem 7.15.

In Mathematics with Observers geometry in the plane E2Wn , there are an angle ∠(h, k) and a

straight line a′
 with a half-ray h′

 emanating from a point O′
 of this line such that there is a half-ray k′

such that

Theorem 7.16.

In Mathematics with Observers geometry in the plane E2Wn , there is an angle ∠(h, k) such that

Theorem 7.17.

(OA, OA)= 0.61 ×2 0.61 +2 0.85 ×2 0.85 = 1 > 0,

(OA
′, OA

′)= 0.63 ×2 0.63 +2 0.87 ×2 0.87 = 1 > 0,

(OB, OB)= 1 ×2 1 +2 1 ×2 1 = 2 > 0,

(OB
′, OB

′)= 1 ×2 1 +2 1 ×2 1 = 2 > 0.

OA≡ OA′,

OB≡ OB′.

OA, OB

OA
′, OB

′,

(OA, OB)= 0.61 ×2 1 +2 0.85 ×2 1 = 1.46,

(OA
′, OB

′)= 0.63 ×2 1 +2 0.87 ×2 1 = 1.50,

(OA, OB) ≠ (OA
′, OB

′).

∠(Ah,Bk) ≢ ∠(A′h,B′k).

∠(h, k) ≡ ∠(h′, k′).

∠(h, k) ≡ ∠(h′, k′).

∠(h, k) ≡ ∠(k,h).



In Mathematics with Observers geometry in the plane E2Wn , there is an angle ∠(h, k) such that

7.7  Fifth property of congruence

Classical geometry states:

If an angle ∠(h, k) is congruent to an angle ∠(h′, k′) and to an angle ∠(h′′, k′′), then the
angle ∠(h′, k′) is congruent to the angle ∠(h′′, k′′), that is, if

and

then

Question: Is this statement correct in Mathematics with Observers geometry?

Let us consider E2Wn . Let a, b ∈ E2Wn  be the straight lines

and

having a common point O(x0, y0).

Let h, k are two distinct half-rays

and

emanating from the point O. So we get ∠(h, k).

Also, let a′, b′ ∈ E2Wn  be the straight lines

and

having a common point O′(x′
0, y′

0).

Let h′ , k′  be any two distinct half-rays

∠(h, k) ≢ ∠(k,h).

∠(h, k) ≡ ∠(h′, k′)

∠(h, k) ≡ ∠(h′′, k′′),

∠(h′, k′) ≡ ∠(h′′, k′′).

a : a1 ×n x +n a2 ×n y +n a3 = 0

b : b1 ×n x +n b2 ×n y +n b3 = 0

h ⊂ a

k ⊂ b

a′ : a′
1 ×n x +n a

′
2 ×n y +n a

′
3 = 0

b′ : b′
1 ×n x +n b

′
2 ×n y +n b

′
3 = 0



and

emanating from the point O′ . So we get ∠(h′, k′).

Because

for some points

we have the corresponding vectors

such that

Again, let us consider ∠(h, k). We have two straight lines a, b ∈ E2Wn ,

and

having a common point O(x0, y0) and two distinct half-rays

h′ ⊂ a′

k′ ⊂ b′

∠(Ah,Bk) ≡ ∠(A′h′,B′k′)

A(x1, y1)∈ h,

B(x2, y2)∈ k,

A′(x′
1, y′

1)∈ h′,

B′(x′
2, y′

2)∈ k′,

OA= (x1 −n x0, y1 −n y0),

OB= (x2 −n x0, y2 −n y0),

O
′
A

′= (x′
1 −n x

′
0, y′

1 −n y
′
0),

O
′
B

′= (x′
2 −n x

′
0, y′

2 −n y
′
0)

(OA, OA)> 0,

(OB, OB)> 0,

(O
′
A

′, O
′
A

′)> 0,

(O
′
B

′, O
′
B

′)> 0,

OA≡ O′A′,

OB≡ O′B′,

(OA, OB)= (x1 −n x0) ×n (x2 −n x0) +n (y1 −n y0) ×n (y2 −n y0),

(O
′
A

′, O
′
B

′)= (x′
1 −n x

′
0) ×n (x′

2 −n x
′
0) +n (y′

1 −n y
′
0) ×n (y′

2 −n y
′
0),

(OA, OB)= (O
′
A

′, O
′
B

′).

a : a1 ×n x +n a2 ×n y +n a3 = 0

b : b1 ×n x +n b2 ×n y +n b3 = 0,



and

emanating from the point O. So we get ∠(h, k).

Let us consider ∠(h′′, k′′). We have two straight lines a′′, b′′ ∈ E2Wn ,

and

having a common point O′′(x′′
0 , y′′

0) and two distinct half-rays

and

emanating from the point O′′ . So we get ∠(h′′, k′′).

Because

for some points

we have the corresponding vectors

such that

h ⊂ a

k ⊂ b

a′′ : a′′
1 ×n x +n a

′′
2 ×n y +n a

′′
3 = 0

b′′ : b′′
1 ×n x +n b

′′
2 ×n y +n b

′′
3 = 0,

h′′ ⊂ a′′

k′′ ⊂ b′′

∠(Ch,Dk) ≡ ∠(C ′h′′,D′k′′)

C(x3, y3)∈ h,

D(x4, y4)∈ k,

C ′(x′′
1 , y′′

1)∈ h′′,

D′(x′′
2 , y′′

2)∈ k′′,

OC= (x3 −n x0, y3 −n y0),

OD= (x4 −n x0, y4 −n y0),

O
′′
C

′= (x′′
1 −n x

′′
0 , y′′

1 −n y
′′
0),

O
′′
D

′= (x′′
2 −n x

′′
0 , y′′

2 −n y
′′
0)



The question stated above means: is the statement

correct?

The answer does not follow automatically because two sets of points

and

are different.

1) Let two straight lines a, b ∈ E2Wn ,

and

have a common point O(0, 0) and two distinct half-rays

and

emanating from the point O. So we get ∠(h, k).

We also have two straight lines a′, b′ ∈ E2Wn ,

(OC, OC)> 0,

(OD, OD)> 0,

(O
′′
C

′, O
′′
C

′)> 0,

(O
′′
D

′, O
′′
D

′)> 0,

OC≡ O′′C ′,

OD≡ O′′D′,

(OC, OD)= (x3 −n x0) ×n (x4 −n x0) +n (y3 −n y0) ×n (y4 −n y0),

(O
′′
C

′, O
′′
D

′)= (x′′
1 −n x

′′
0) ×n (x′′

2 −n x
′′
0) +n (y′′

1 −n y
′′
0) ×n (y′′

2 −n y
′′
0),

(OC, OD)= (O
′′
C

′, O
′′
D

′).

∠(A′h′,B′k′) ≡ ∠(C ′h′′,D′k′′)

A ∈ h, B ∈ k, A′ ∈ h′, B′ ∈ k′

C ∈ h, D ∈ k, C ′ ∈ h′′, D′ ∈ k′′

a : y = 0

b : x = 0,

h ⊂ a,

h : [(x, y) ∈ E2Wn : x > 0],

k ⊂ b,

k : [(x, y) ∈ E2Wn : y > 0],

a′ : y = 0



and

having a common point O(0, 0), that is,

and

Let h′ , k′  be any two distinct half-rays

that is,

and

emanating from the point O. So we get ∠(h′, k′).

Also, we have two straight lines a′′, b′′ ∈ E2Wn ,

and

having a common point O(0, 0), that is,

and

and two distinct half-rays

and

b′ : x = 0,

a = a′

b = b′.

h′ ⊂ a′,

h′ : [(x, y) ∈ E2Wn : x > 0],

h′ = h,

k′ ⊂ b′,

k′ : [(x, y) ∈ E2Wn : y < 0],

a′′ : y = 0

b′′ : x = 0,

a = a′′

b = b′′,

h′′ ⊂ a′′,

h′′ : [(x, y) ∈ E2Wn : x < 0],

k′′ ⊂ b′′,

k′′ : [(x, y) ∈ E2Wn : y > 0],



that is,

emanating from the point O. So we get ∠(h′′, k′′).

Let us take the points

and the corresponding vectors

We get

and

We have the scalar products

and their equality

that is,

Let us take the points

k′′ = k,

A(1, 0)∈ h,

B(0, 1)∈ k,

A′(1, 0)∈ h′,

B′(0, −1)∈ k′,

OA= (1, 0),

OB= (0, 1),

OA
′= (1, 0),

OB
′= (0, −1).

(OA, OA)= 1 > 0,

(OB, OB)= 1 > 0,

(OA
′, OA

′)= 1 > 0,

(OB
′, OB

′)= 1 > 0,

OA≡ OA′,

OB≡ OB′.

(OA, OB)= 1 ×n 0 +n 0 ×n 1 = 0,

(OA
′, OB

′)= 1 ×n 0 +n 0 ×n (−1) = 0,

(OA, OB) = (OA
′, OB

′) = 0,

∠(Ah,Bk) ≡ ∠(A′h′,B′k′).



and the corresponding vectors

We get

and

We have the scalar products

and their equality

that is,

Let us take the points

and the corresponding vectors

A(1, 0)∈ h,

B(0, 1)∈ k,

A′′(−1, 0)∈ h′′,

B′′(0, 1)∈ k′′,

OA= (1, 0),

OB= (0, 1),

OA
′′= (−1, 0),

OB
′′= (0, 1).

(OA, OA)= 1 > 0,

(OB, OB)= 1 > 0,

(OA
′′, OA

′′)= 1 > 0,

(OB
′′, OB

′′)= 1 > 0,

OA≡ OA′′,

OB≡ OB′′.

(OA, OB)= 1 ×n 0 +n 0 ×n 1 = 0,

(OA
′′, OB

′′)= (−1) ×n 0 +n 0 ×n (1) = 0,

(OA, OB) = (OA
′′, OB

′′) = 0,

∠(Ah,Bk) ≡ ∠(A′′h′′,B′′k′′).

A′(1, 0)∈ h′,

B′(0, −1)∈ k′,

A′′(−1, 0)∈ h′′,

B′′(0, 1)∈ k′′,



We get

and

We have the scalar products

and their equality

that is,

This means that in this case the answer to the question is positive.

2) Let us consider E2W2 , and let two straight lines a, b ∈ E2W2 ,

and

have a common point O(0, 0).

Let h, k be any two distinct half-rays,

and

OA
′= (1, 0),

OB
′= (0, −1),

OA
′′= (−1, 0),

OB
′′= (0, 1).

(OA
′, OA

′)= 1 > 0,

(OB
′, OB

′)= 1 > 0,

(OA
′′, OA

′′)= 1 > 0,

(OB
′′, OB

′′)= 1 > 0,

OA′≡ OA′′,

OB′≡ OB′′.

(OA
′, OB

′)= 1 ×n 0 +n 0 ×n (−1) = 0,

(OA
′′, OB

′′)= (−1) ×n 0 +n 0 ×n (1) = 0,

(OA
′, OB

′) = (OA
′′, OB

′′) = 0,

∠(A′h′,B′k′) ≡ ∠(A′′h′′,B′′k′′).

a : x −2 a2y = 0

b : 1.01 ×2 x −2 y = 0,

h ⊂ a,

h : [(x, y) ∈ a : x > 0],



emanate from the point O. So we get ∠(h, k).

Also, let a′, b′ ∈ E2W2  be another second pair of straight lines

and

having a common point O(0, 0).

Let h′ , k′  are any two distinct half-rays

and

emanating from the point O. So we get ∠(h′, k′).

Let a′′, b′′ ∈ E2W2  be the third pair of straight lines

and

having the common point O(0, 0), and let two distinct half-rays

and

emanate from the point O. So, we get ∠(h′′, k′′).

Let us take the points

k ⊂ b,

k : [(x, y) ∈ b : x > 0],

a′ : 99.99 ×2 x −2 98.37 ×2 y = 0

b′ : 98.37 ×2 x −2 99.99 ×n y = 0

h′ ⊂ a′,

h′ : [(x, y) ∈ a′ : x > 0],

k′ ⊂ b′,

k′ : [(x, y) ∈ b′ : x > 0],

a′′ : 99.99 ×2 x −2 96.37 ×2 y = 0

b′′ : 96.37 ×2 x −2 99.99 ×2 y = 0

h′′ ⊂ a′′,

h′′ : [(x, y) ∈ a′′ : x > 0],

k′′ ⊂ b′′,

k′′ : [(x, y) ∈ b′′ : x > 0],



and the corresponding vectors

We get

and

We have the scalar products

and their equality

that is,

Let us take the points

and the corresponding vectors

A(0.62, 0.62)∈ h,

B(0.62, 0.62)∈ k,

A′(0.62, 0.63)∈ h′,

B′(0.63, 0.62)∈ k′,

OA= (0.62, 0.62),

OB= (0.62, 0.62),

OA
′= (0.62, 0.63),

OB
′= (0.63, 0.62).

(OA, OA)= 0.72 > 0,

(OB, OB)= 0.72 > 0,

(OA
′, OA

′)= 0.72 > 0,

(OB
′, OB

′)= 0.72 > 0,

OA≡ OA′,

OB≡ OB′.

(OA, OB)= 0.62 ×n 0.62 +n 0.62 ×n 0.62 = 0.72,

(OA
′, OB

′)= 0.62 ×n 0.63 +n 0.63 ×n 0.62 = 0.72,

(OA, OB) = (OA
′, OB

′) = 0.72,

∠(Ah,Bk) ≡ ∠(A′h′,B′k′)

A(0.55, 0.55)∈ h,

B(0.55, 0.55)∈ k,

A′′(0.54, 0.56)∈ h′′,

B′′(0.56, 0.54)∈ k′′,



We get

and

We have the scalar products

and their equality

that is,

Let us now consider ∠(h′, k′) and ∠(h′′, k′′). Direct calculations give us the following results:

that is, h′  contains only one point;

that is, k′  contains only one point;

that is, h′′  contains only three points;

that is, k′′  contains only three points.

We have the vectors

OA= (0.55, 0.55),

OB= (0.55, 0.55),

OA
′′= (0.54, 0.56),

OB
′′= (0.56, 0.54).

(OA, OA)= 0.50 > 0,

(OB, OB)= 0.50 > 0,

(OA
′′, OA

′′)= 0.50 > 0,

(OB
′′, OB

′′)= 0.50 > 0,

OA≡ OA′′,

OB≡ OB′′.

(OA, OB)= 0.55 ×n 0.55 +n 0.55 ×n 0.55 = 0.50,

(OA
′′, OB

′′)= 0.54 ×n 0. 0. 56 +n 0.56 ×n 0.54 = 0.50,

(OA, OB) = (OA
′′, OB

′′) = 0.50,

∠(Ah,Bk) ≡ ∠(A′′h′′,B′′k′′).

h′ = C ′(0.62, 0.63),

k′ = D′(0.63, 0.62),

h′′ = [E ′′(0.28, 0.29),F ′′(0.54, 0.56),G′′(0.80, 0.83)],

k′′ = [H ′′(0.29, 0.28), I ′′(0.56, 0.54), J ′′(0.83, 0.80)],



and we get

So

and

This means that

OC
′= (0.62, 0.63),

OD
′= (0.63, 0.62),

OE
′′= (0.28, 0.29),

OF
′′= (0.54, 0.56),

OG
′′= (0.80, 0.83),

OH
′′= (0.29, 0.28),

OI
′′= (0.56, 0.54),

OJ
′′= (0.83, 0.80),

(OC
′, OC

′)= 0.72 > 0,

(OD
′, OD

′)= 0.72 > 0,

(OE
′′, OE

′′)= 0.08 > 0,

(OF
′′, OF

′′)= 0.50 > 0,

(OG
′′, OG

′′)= 1.28 > 0,

(OH
′′, OH

′′)= 0.08 > 0,

(OI
′′, OI

′′)= 0.50 > 0,

(OJ
′′, OJ

′′)= 1.28 > 0.

(OC
′, OC

′)≠ (OE
′′, OE

′′),

(OC
′, OC

′)≠ (OF
′′, OF

′′),

(OC
′, OC

′)≠ (OG
′′, OG

′′),

(OD
′, OD

′)≠ (OH
′′, OH

′′),

(OD
′, OD

′)≠ (OI
′′, OI

′′)

(OD
′, OD

′)≠ (OJ
′′, OJ

′′).



so that in this case the answer to the question is negative.

So we have proved the following:

Theorem 7.18.

In Mathematics with Observers geometry in the plane E2Wn , there are three distinct angles ∠(h, k),

∠(h′, k′), ∠(h′′, k′′) with ∠(h, k) ≡ ∠(h′, k′) and ∠(h, k) ≡ ∠(h′′, k′′) such that

∠(h′, k′) ≡ ∠(h′′, k′′).

Theorem 7.19.

In Mathematics with Observers geometry in the plane E2Wn , there are three distinct angles ∠(h, k),

∠(h′, k′), ∠(h′′, k′′) with ∠(h, k) ≡ ∠(h′, k′) and ∠(h, k) ≡ ∠(h′′, k′′) such that

∠(h′, k′) ≢ ∠(h′′, k′′).

7.8  Sixth property of congruence

Let (h, k) be two half-rays emanating from a vertex A of a triangle ABC  and passing,
respectively, through B and C. The angle ∠(h, k) is then said to be the angle included by the
sides AB and AC  or the one opposite to the side BC  in the triangle ABC . It contains all the
interior points of the triangle ABC  and is denoted by the symbol ∠BAC  or ∠A.

Classical geometry states:

If in the two triangles ABC  and A′B′C ′ , we have the congruences

then we also have the congruences

Question: Is this statement correct in Mathematics with Observers geometry?

1) Let us consider E2W2 , and let a, b ∈ E2W2  be two straight lines

∠(C ′h′,D′k′)≢ ∠(E ′′h′′,H ′′k′′),

∠(C ′h′,D′k′)≢ ∠(E ′′h′′, I ′′k′′),

∠(C ′h′,D′k′)≢ ∠(E ′′h′′, J ′′k′′),

∠(C ′h′,D′k′)≢ ∠(F ′′h′′,H ′′k′′),

∠(C ′h′,D′k′)≢ ∠(F ′′h′′, I ′′k′′),

∠(C ′h′,D′k′)≢ ∠(F ′′h′′, J ′′k′′),

∠(C ′h′,D′k′)≢ ∠(G′′h′′,H ′′k′′),

∠(C ′h′,D′k′)≢ ∠(G′′h′′, I ′′k′′),

∠(C ′h′,D′k′)≢ ∠(G′′h′′, J ′′k′′),

AB ≡ A′B′, AC ≡ A′C ′, ∠A ≡ ∠A′,

∠B ≡ ∠B′, ∠C ≡ ∠C ′.



and

have a common point O(0, 0).

Let h, k are be two distinct half-rays

and

emanating from the point O. So we get ∠(h, k).

Let us take the points

and the corresponding vectors

We get

Let us build straight line c containing points A, B:

that is, we have

So

and

a : 99.99 ×2 x −2 98.37 ×2 y = 0

b : 98.37 ×2 x −2 99.99 ×n y = 0

h ⊂ a,

h : [(x, y) ∈ a : x > 0],

k ⊂ b,

k : [(x, y) ∈ b : x > 0],

A(0.62, 0.63)∈ h,

B(0.63, 0.62)∈ k,

OA= (0.62, 0.63),

OB= (0.63, 0.62).

(OA, OA)= 0.72 > 0,

(OB, OB)= 0.72 > 0.

c : c1 ×2 x +2 c2 ×2 y +2 c3 = 0

{
c1 ×2 0.62 +2 c2 ×2 0.63 +2 c3 = 0,

c1 ×2 0.63 +2 c2 ×2 0.62 +2 c3 = 0.

{
c1 ×2 0.62 +2 c2 ×2 0.63 = c1 ×2 0.63 +2 c2 ×2 0.62,

c1 ×2 0.63 +2 c2 ×2 0.62 +2 c3 = 0,

{
c1 ×2 0.62 −2 c1 ×2 0.63 = c2 ×2 0.62 −2 c2 ×2 0.63,

c1 ×2 0.63 +2 c2 ×2 0.62 +2 c3 = 0.



Let us consider two different solutions of this system:

and

that is, the first line c(1)  has the equation

and the second line c(2)  has the equation

So we get two half-rays

and

emanating from the point A. So we get ∠(l(11), g).

Also, we get two half-rays

and

emanating from the point B. So we get ∠(l(12), f).

So we get the triangle OAB with vertices O, A, B and two half-rays (h, k) emanating from the
vertex O, passing, respectively, through A and B, and forming

The half-rays (l(11), g) emanate from the vertex A, pass, respectively, through B and O, and form

c1 = 1,

c2 = 1,

c3 = −1.25,

c1 = 1.02,

c2 = 1.02,

c3 = −1.25,

c(1) : x +2 y −2 1.25 = 0,

c(2) : 1.02 ×2 x +2 1.02 ×2 y −2 1.25 = 0.

l(11) ⊂ c(1),

l(11) : [(x, y) ∈ c(1) : x > 0.62],

g ⊂ a,

g : [(x, y) ∈ a : x < 0.62],

l(12) ⊂ c(1),

l(12) : [(x, y) ∈ c(1) : x < 0.63],

f ⊂ b,

f : [(x, y) ∈ b : x < 0.63],

∠(h, k) = ∠O.



The half-rays (l(12), f) emanate from the vertex B, pass, respectively, through A and O, and form

Let us now go to line c(2) . In this case, we consider the same points O, A, B but mark them as O′ ,
A′ , B′ . We do that because in Mathematics with Observers geometry, two different points of any
plane do not define uniquely a straight line containing these points. Also, a triangle has to be
considered as the figure formed by the set of three segments of straight lines. In our case, the
triangle OAB is the figure formed by the set of three segments of lines a, b, c(1) , and the triangle
O′A′B′  is the figure formed by the set of three segments of lines a, b, c(2) .

So we get two half-rays

and

emanating from the point A′ . So we get ∠(l(21), g).

Also, we get two half-rays

and

emanating from the point B′ . So we get ∠(l(22), f).

So we get the triangle O′A′B′  with vertices O′ , A′ , B′  and two half-rays (h, k) emanating from
vertex O′ , passing, respectively, through A′  and B′ , and forming

Also, we get two half-rays (l(21), g) emanating from the vertex A′ , passing, respectively, through
B′  and O′ , and forming

∠(l(11), g) = ∠A.

∠(l(12), f) = ∠B.

l(21) ⊂ c(2),

l(21) : [(x, y) ∈ c(2) : x > 0.62],

g ⊂ a,

g : [(x, y) ∈ a : x < 0.62],

l(22) ⊂ c(2),

l(22) : [(x, y) ∈ c(2) : x < 0.63],

f ⊂ b,

f : [(x, y) ∈ b : x < 0.63],

∠(h, k) = ∠O′.

∠(l(21), g) = ∠A′,



and two half-rays (l(22), f) emanating from the vertex B′ , passing, respectively, through A′  and
O′ , and forming

So in two triangles OAB and O′A′B′ , we have the congruences

Let us take three points

and the corresponding vectors

We get

and

This means that

that is, in this case, we get the negative answer to the question.

2) Let us consider the same lines and half-rays as in case 1). Now we take three points

and the corresponding vectors

∠(l(22), f) = ∠B′.

OA ≡ O′A′, OB ≡ O′B′, ∠AOB ≡ ∠A′O′B′.

F(−0.62, −0.63)∈ g,

K(3.16, −1.91)∈ l(11),

K ′(3.14, −1.93)∈ l(21),

AF= (−1.24, −1.26),

A
′
F= (−1.24, −1.26),

AK= (2.54, −2.54),

A
′
K

′= (2.52, −2.56).

(AF, AF)= 3.08 > 0,

(A
′
F, A

′
F)= 3.08 > 0,

(AK, AK)= 12.82 > 0,

(A
′
K

′, A
′
K

′)= 12.82 > 0,

(AK, AF)= 0.04,

(A
′
K

′, A
′
F)= 0.08.

∠KAF ≢ ∠K ′A′F ,

O(0, 0)∈ g,

K(3.16, −1.91)∈ l(11),

K ′(3.14, −1.93)∈ l(21),



and we get

and

This means that

and so the answer to the question in this case is positive.

3) Instead of line c(2) , let us now consider line c(3) . It contains points A, B satisfying

that is, as in case 1) of this section,

So

and

Now we consider the third solution of this system:

that is, line c(3)  has the equation

A0= (−0.62, −0.63),

A
′
O

′= (−0.62, −0.63),

AK= (2.54, −2.54),

A
′
K

′= (2.52, −2.56),

(AO, A0)= 0.72 > 0,

(A
′
O

′, A
′
O

′)= 0.72 > 0,

(AK, AK)= 12.82 > 0,

(A
′
K

′, A
′
K

′)= 12.82 > 0,

(AK, A0)= 0.02,

(A
′
K

′, A
′
O

′)= 0.0.

∠OAK ≡ ∠O′A′K ′,

c(3) : c1 ×2 x +2 c2 ×2 y +2 c3 = 0,

{
c1 ×2 0.62 +2 c2 ×2 0.63 +2 c3 = 0,

c1 ×2 0.63 +2 c2 ×2 0.62 +2 c3 = 0.

{
c1 ×2 0.62 +2 c2 ×2 0.63 = c1 ×2 0.63 +2 c2 ×2 0.62,

c1 ×2 0.63 +2 c2 ×2 0.62 +2 c3 = 0,

{
c1 ×2 0.62 −2 c1 ×2 0.63 = c2 ×2 0.62 −2 c2 ×2 0.63,

c1 ×2 0.63 +2 c2 ×2 0.62 +2 c3 = 0.

c1 = 1.02,

c2 = 1.03,

c3 = −1.25,



So, as in case 1) of this section, we have the triangle OAB with vertices O, A, B and two half-rays
(h, k) emanating from vertex O, passing, respectively, through A and B, and forming

Also, (l(11), g) are two half-rays emanating from vertex A, passing, respectively, through B and O,
and forming

and (l(12), f) are two half-rays emanating from vertex B, passing, respectively, through A and O,
and forming

Let us now go to line c(3) . In this case, we consider the same points O, A, B but mark them as O′′ ,
A′′ , B′′ . Now we get two half-rays

and

emanating from the point A′′ . So we get ∠(l(31), g).

Also, we get two half-rays

and

emanating from the point B′′ . So we get ∠(l(32), f).

So we get the triangle O′′A′′B′′  with vertices O′′ , A′′ , B′′  and two half-rays (h, k) emanating
from vertex O′′ , passing, respectively, through A′′  and B′′ , and forming

Also, (l(31), g) are two half-rays emanating from vertex A′′ , passing, respectively, through B′′

and O′′ , and forming

c(3) : 1.02 ×2 x +2 1.03 ×2 y −2 1.25 = 0.

∠(h, k) = ∠O.

∠(l(11), g) = ∠A,

∠(l(12), f) = ∠B.

l(31) ⊂ c(3),

l(31) : [(x, y) ∈ c(3) : x > 0.62],

g ⊂ a,

g : [(x, y) ∈ a : x < 0.62],

l(32) ⊂ c(3),

l(32) : [(x, y) ∈ c(3) : x < 0.63],

f ⊂ b,

f : [(x, y) ∈ b : x < 0.63],

∠(h, k) = ∠O′′.



and (l(32), f) are two half-rays emanating from vertex B′′ , passing, respectively, through A′′

and O′′ , and forming

So in the triangles OAB and O′′A′′B′′ , we have the congruences

Let us take three points

and the corresponding vectors

We get

and

This means that these three points do not satisfy the conditions for

Now we can take the last possible points O,O′′ ∈ a, and instead of point F, we take again points
L, L′′ :

and the corresponding vectors

∠(l(31), g) = ∠A′′,

∠(l(32), f) = ∠B′′.

OA ≡ O′′A′′, OB ≡ O′′B′′, ∠AOB ≡ ∠A′′O′′B′′.

F(−0.62, −0.63)∈ g,

L(7.58, −6.33)∈ l(11),

L′′(7.60, −6.31)∈ l(31),

AF= (−1.24, −1.26),

A
′′
F= (−1.24, −1.26),

AL= (6.96, −6.96),

A
′′
L

′′= (6.98, −6.94).

(AF, AF)= 3.08 > 0,

(A
′′
F, A

′′
F)= 3.08 > 0,

(AL, AL)= 96.66 > 0,

(A
′′
L

′′, A
′′
L

′′)= 96.66 > 0,

(AL, AF)= 0.12,

(A
′′
L

′′, A
′′
F)= 0.08.

∠OAB ≡ ∠O′′A′′B′′.

O(0, 0)∈ g,

O′′(0, 0)∈ g,

L(7.58, −6.33)∈ l(11),

L′′(7.60, −6.31)∈ l(31),



We get

and

This means that there are three points with corresponding congruence

So the answer to the question in this case is positive.

4) Again let us consider E2W2  and two straight lines in E2W2 ,

and

having a common point O(0, 0).

Let h, k be two distinct half-rays

and

emanating from the point O. So we get ∠(h, k).

Let us take the points

A0= (−0.62, −0.63),

A
′′
O

′′= (−0.62, −0.63).

AL= (6.96, −6.96),

A
′′
L

′′= (6.98, −6.94).

(AO, A0)= 0.72 > 0,

(A
′′
O

′′, A
′
O

′)= 0.72 > 0,

(AL, AL)= 96.66 > 0,

(A
′′
L

′′, A
′′
L

′′)= 96.66 > 0,

(AL, A0)= 0.06,

(A
′′
L

′′, A
′′
O

′′)= 0.06.

∠OAL ≡ ∠O′′A′′L′′.

a : x = 0

b : y = 0,

h ⊂ a,

h : [(x, y) ∈ a : y > 0],

k ⊂ b,

k : [(x, y) ∈ b : x > 0],

A(0, 1)∈ h,

B(1, 0)∈ k



and the corresponding vectors

We get

Let us build straight line c containing points A, B that satisfy

that is,

So

Let us consider a solution of this system,

that is, straight line c satisfying the equation

So we get two half-rays

and

emanating from the point A. So we get ∠(l1, g).

Also, we get two half-rays

OA= (0, 1),

OB= (1, 0).

(OA, OA)= 1 > 0,

(OB, OB)= 1 > 0,

(OA, OB)= 0.

c : c1 ×2 x +2 c2 ×2 y +2 c3 = 0,

{
c1 ×2 0 +2 c2 ×2 1 +2 c3 = 0,

c1 ×2 1 +2 c2 ×2 0 +2 c3 = 0.

{
c2 = c1,

c1 +2 c3 = 0.

c1 = 1,

c2 = 1,

c3 = −1,

c : x +2 y −2 1 = 0.

l1 ⊂ c,

l1 : [(x, y) ∈ c : x > 0],

g ⊂ a,

g : [(x, y) ∈ a : y < 1],

l2 ⊂ c,

l2 : [(x, y) ∈ c : y > 0],



and

emanating from the point B. So we get ∠(l2, f).

So we get the triangle OAB with vertices O, A, B and two half-rays (h, k) emanating from vertex
O, passing, respectively, through A and B, and forming

Also, (l1, g) are two half-rays emanating from vertex A, passing, respectively, through B and O,
and forming

and (l2, f) are two half-rays emanating from vertex B, passing, respectively, through A and O,
and forming

We get the vectors

and

Let us now we consider two other straight lines a′, b′ ∈ E2W2 ,

and

having a common point O′(1, 1). Let h′ , k′  be two distinct half-rays,

and

emanating from the point O′ . So we get ∠(h′, k′). Let us take the points

f ⊂ b,

f : [(x, y) ∈ b : x < 1],

∠(h, k) = ∠AOB.

∠(l1, g) = ∠OAB,

∠(l2, f) = ∠OBA.

AB= (−1, 1),

BA= (1, −1),

(AO, AB)= −1,

(BO, BA)= −1.

a′ : x = 1

b′ : y = 1,

h′ ⊂ a′,

h′ : [(x, y) ∈ a′ : y > 1],

k′ ⊂ b′,

k′ : [(x, y) ∈ b′ : x > 1],



and the corresponding vectors

We get

Let us build straight line c′  containing points A′ , B′  satisfying

that is,

So

Let us consider a solution of this system,

that is, straight line c′  has the equation

So we get two half-rays

and

emanating from the point A′ . So we get ∠(l′ 1, g′).

Also, we get two half-rays

A′(1, 2)∈ h′,

B′(2, 1)∈ k′,

O
′
A

′= (0, 1),

O
′
B

′= (1, 0).

(O
′
A

′, O
′
A

′)= 1 > 0,

(O
′
B

′, O
′
B

′)= 1 > 0,

(O
′
A

′, O
′
B

′)= 0.

c : c′
1 ×2 x +2 c

′
2 ×2 y +2 c

′
3 = 0,

{
c′

1 ×2 0 +2 c
′
2 ×2 2 +2 c

′
3 = 0,

c′
1 ×2 2 +2 c

′
2 ×2 0 +2 c

′
3 = 0.

{
c′

2 = c′
1,

2 ×2 c
′
1 +2 c

′
3 = 0.

c′
1 = 1,

c′
2 = 1,

c′
3 = −2,

c′ : x +2 y −2 2 = 0.

l′ 1 ⊂ c′,

l′ 1 : [(x, y) ∈ c : x > 1],

g′ ⊂ a′,

g′ : [(x, y) ∈ a′ : y < 2],



and

emanating from the point B′ . So we get ∠(l′ 2, f ′).

So we get the triangle O′A′B′  with vertices O′ , A′ , B′  and two half-rays (h′, k′) emanating
from vertex O′ , passing, respectively, through A′  and B′ , and forming

Also, (l′ 1, g′) are two half-rays emanating from vertex A′ , passing, respectively, through B′  and
O′ , and forming

and (l′ 2, f ′) are two half-rays emanating from vertex B′ , passing, respectively, through A′  and
O′ , and forming

We get the vectors

and

So in the triangles OAB and O′A′B′ , we have the congruences

and as we proved above,

So the answer to the question in this case is positive.

So we have proved the following:

Theorem 7.20.

In Mathematics with Observers geometry in the plane E2Wn  there are two distinct triangles ABC

and A′B′C ′
 with

l′ 2 ⊂ c′,

l′ 2 : [(x, y) ∈ c′ : y > 1],

f ′ ⊂ b′,

f ′ : [(x, y) ∈ b′ : x < 2],

∠(h′, k′) = ∠A′O′B′.

∠(l′ 1, g′) = ∠O′A′B′,

∠(l′ 2, f ′) = ∠O′B′A′.

A
′
B

′= (−1, 1),

B
′
A

′= (1, −1),

(A
′
O

′, A
′
B

′)= −1,

(B
′
O

′, B
′
A

′)= −1.

OA ≡ O′A′, OB ≡ O′B′, ∠AOB ≡ ∠A′O′B′,

∠OAB ≡ ∠O′A′B′, ∠OBA ≡ ∠O′B′A′.



such that

Theorem 7.21.

In Mathematics with Observers geometry in the plane E2Wn , there are two distinct triangles ABC

and A′B′C ′
 with

such that

7.9  Right angles theorem

Classical geometry states:

“All right angles are congruent to one another.”

Question: Is this statement correct in Mathematics with Observers geometry?

1) Let us consider three straight lines a, b, c ∈ E2W2 ,

having a common point O(0, 0), and four distinct half-rays h, k, l, m:

emanating from the point O. So we get ∠(l,h), ∠(l, k), ∠(m,h), ∠(m, k).

For lines a, b, all possible positive x form the set

and we get

AB ≡ A′B′, AC ≡ A′C ′, ∠A ≡ ∠A′

∠B ≡ ∠B′, ∠C ≡ ∠C ′.

AB ≡ A′B′, AC ≡ A′C ′, ∠A ≡ ∠A′

∠B ≢ ∠B′, ∠C ≢ ∠C ′.

a : 99.99 ×2 x −2 98.37 ×2 y = 0,

b : 99.99 ×2 x +2 98.37 ×2 y = 0,

c : x +2 y = 0,

h ⊂ a,

h : [(x, y) ∈ a : x > 0],

k ⊂ a,

k : [(x, y) ∈ a : x < 0],

l ⊂ b,

l : [(x, y) ∈ b : x > 0],

m ⊂ c,

m : [(x, y) ∈ c : x > 0],

Φ = [0.01, 0.02, … , 0.99, 1.00],

99.99 ×2 Φ = [0.99, 1.98, … , 98.82, 99.99],



and all possible positive y form the set

and we get

Direct calculations show that

and we get only one point in the intersection of these two sets, that is,

That means that

We have the vectors

and we get

and

This means that ∠(Cl,Ah), ∠(Cl,Bk) are right angles and

So in this case the answer to the question is positive.

2) Let us now consider straight lines c, and take point D(0.62, 0.62) ∈ c. We have the vector

and we get

Ψ = [0.01, 0.02, … , 0.99, 1.00, 1.01],

98.37 ×2 Ψ = [0.98, 1.96, … , 97.29, 98.37, 99.35].

99.99 ×2 Φ ∩ 98.37 ×2 Ψ = 61.92,

x = 0.62; y = 0.63.

h= A(0.62, 0.63),

k= B(−0.62, −0.63),

l= C(0.62, −0.63).

OA= (0.62, 0.63),

OB= (−0.62, −0.63),

OC= (0.62, −0.63),

(OA, OA)= 0.72 > 0,

(OB, OB)= 0.72 > 0,

(OC, OC)= 0.72 > 0,

(OC, OA)= 0,

(OC, OB)= 0.

∠(Cl,Ah) ≡ ∠(Cl,Bk).

OD = (0.62, 0.62),

(OD, OD) = 0.72 > 0



and

This means that ∠(Dm,Ah), ∠(Dm,Bk) are right angles and

Note that

because

This means that we have two distinct straight lines b, c perpendicular to line a in one point O. So
in this case the answer to the question is positive.

3) Let us continue to consider straight lines c, and take another point E(1.00, −1.00) ∈ c. We
have the vector

We get

and

So ∠(Em,Ah), ∠(Em,Bk) are not right angles, and

This means that in this case the answer to the question is negative, and the rightness of an angle
depends not only on lines forming this angle but also on the points in these lines.

So we have proved the following:

Theorem 7.22.

In Mathematics with Observers geometry in the plane E2Wn , there are two distinct right angles that

are congruent to each other.

Theorem 7.23.

In Mathematics with Observers geometry in the plane E2Wn , there are two distinct right angles that

are not congruent to each other.

(OD, OA)= 0,

(OD, OB)= 0.

∠(Dm,Ah) ≡ ∠(Dm,Bk).

l ⊄ m,

C ∉ m.

OE = (1.00, −1.00).

(OE, OE) = 2.00 > 0

(OE, OA)= −0.01,

(OE, OB)= 0.01.

∠(Em,Ah) ≢ ∠(Em,Bk).



7.10  Alternate angles theorem

Classical geometry states:

“If two parallel lines are cut by a third straight line, then the alternate interior angles and also
the exterior–interior angles are congruent. Conversely, if the alternate–interior or the
exterior–interior angles are congruent, then the given lines are parallel.”

Question: Is this statement correct in Mathematics with Observers geometry?

1) Let us consider three straight lines a, b, c ∈ E2W2 ,

which have a common point O(0, 0); lines b, c are parallel in the Euclidean sense.

Let us take three points A,B,C ∈ E2W2 ,

and four distinct half-rays h, k, l, m:

Half-rays h, l emanate from the point O, and half-rays k, m emanate from the point A. So we get
the alternate interior angles ∠(h, l), ∠(k,m).

We have the vectors

a : 1.26 ×2 x −2 1.01 ×2 y = 0,

b : x −2 y = 0,

c : x −2 y +2 0.27 = 0,

A(1.12, 1.39)∈ a ∩ c,

B(0.58, 0.58)∈ b,

C(0.61, 0.88)∈ c,

h ⊂ a,

h : [(x, y) ∈ a : x > 0],

k ⊂ a,

k : [(x, y) ∈ a : x < 1.12],

l ⊂ b,

l : [(x, y) ∈ b : x > 0],

m ⊂ c,

m : [(x, y) ∈ c : x < 1.12].



We get

and

This means that

but

So in this case the answer to the question is negative.

2) Let us now we have three straight lines a, b, c ∈ E2W2 :

Lines a, b have a common point O(0, 0), and lines b, c are parallel in the Euclidean sense.

Let us take three points A,B,C ∈ E2W2 :

and four distinct half-rays h, k, l, m:

OA= (1.12, 1.39),

AO= (−1.12, −1.39),

OB= (0.58, 0.58),

AC= (−0.51, −0.51).

(OA, OA)= 3.12 > 0,

(AO, AO)= 3.12 > 0,

(OB, OB)= 0.50 > 0,

(AC, AC)= 0.50 > 0,

(OA, OB)= 1.36,

(AO, AC)= 1.22.

OA≡ AO,

OB≡ AC,

∠AOB ≢ ∠CAO.

a : x = 0,

b : y = 0,

c : y −2 1 = 0.

A(0.00, 1.00)∈ a ∩ c,

B(1.00, 0.00)∈ b,

C(−1.00, 1.00)∈ c,



Half-rays h, l emanate from the point O, and half-rays k, m emanate from the point A. So we get
the alternate interior angles ∠(h, l), ∠(k,m).

We have the vectors

and we get

and

This means that

and

So in this case the answer to the question is positive.

So we have proved the following:

Theorem 7.24.

In Mathematics with Observers geometry in the plane E2Wn , there are two parallel lines that are cut

by a third straight line such that the alternate interior angles and also the exterior–interior angles are

h ⊂ a,

h : [(x, y) ∈ a : y > 0],

k ⊂ a,

k : [(x, y) ∈ a : y < 1.00],

l ⊂ b,

l : [(x, y) ∈ b : x > 0],

m ⊂ c,

m : [(x, y) ∈ c : x < 0.00].

OA= (0.00, 1.00),

AO= (0.00, −1.00),

OB= (1.00, 0.00)

AC= (−1.00, 0.00),

(OA, OA)= 1.00 > 0,

(AO, AO)= 1.00 > 0,

(OB, OB)= 1.00 > 0,

(AC, AC)= 1.00 > 0,

(OA, OB)= 0.00,

(AO, AC)= 0.00.

OA≡ AO,

OB≡ AC,

∠AOB ≡ ∠CAO.



congruent.

Theorem 7.25.

In Mathematics with Observers geometry in the plane E2Wn , there are two parallel lines that are cut

by a third straight line such that the alternate interior angles and also the exterior–interior angles are

not congruent.

Conversely, if the alternate–interior or the exterior–interior angles are congruent, then the given
lines may be parallel or nonparallel.



8  Analysis of observability and
property of continuity (Archimedes’
axiom)

Classical geometry states:

Let A1 be a point upon a straight line between arbitrarily
chosen points A and B. Let A2, A3, A4, … be points such that
A1 lies between A and A2, A2 lies between A1 and A3, A3

lies between A2 and A4, etc. Moreover, let the segments

be all equal. Then, among this series of points, there always
exists a point An such that B lies between A and An.

Question: Is this statement correct in Mathematics with
Observers geometry?

1) Let us take a straight line in E2W2,

and let us take the points

and the point A1(0, 0) ∈ a between A and B.

AA1, A1A2, A2A3, A3A4, …

a : 99.99 ×2 x −2 98.37 ×2 y = 0,

A(−0.62, −0.63), B(0.62, 0.63) ∈ a



As we can see from above, line a contains only three points A, B,
A1. So, among any series of points, there is no point An such
that B lies between A and An. This means that in this case the
answer to the question is negative.

2) Let us take a straight line in E2W2,

the points

and a point A1(0, 0) ∈ a between A and B. Let us take the
points

So A1 lies between A and A2, A2 lies between A1 and A3, and
A3 lies between A2 and A4. Moreover, the segments

are congruent to each other, and among this series of points,
there is a point

such that B lies between A and An.

This means in this case the answer to the question is positive.

a : y = 0,

A(−3, 0), B(3, 0) ∈ a,

A2(1, 0), A3(2, 0), A3(3, 0), A4(4, 0).

AA1, A1A2, A2A3, A3A4

An, n = 4,



So we have proved the following:

Theorem 8.1.

In Mathematics with Observers geometry in the plane E2Wn, there

are a straight line a, points A ∈ a, B ∈ a, and

A1, A2, A3, … ∈ a such that A1 lies between A and A2, A2 lies

between A1 and A3, A3 lies between A2 and A4, etc. Moreover,

the segments AA1, A1A2, A2A3, A3A4, … are equal to each

other, and among this series of points, there is a point An such that

B lies between A and An.

Theorem 8.2.

In Mathematics with Observers geometry in the plane E2Wn, there

are a straight line a, points A ∈ a, B ∈ a, and

A1, A2, A3, … ∈ a such that A1 lies between A and A2, A2 lies

between A1 and A3, A3 lies between A2 and A4, etc. Moreover,

the segments AA1, A1A2, A2A3, A3A4, … are equal to each

other, and that among this series of points, there is no point An

such that B lies between A and An.



9  Observability and triangle

In classical Euclidean geometry a triangle is a figure formed by set of three distinct points A, B, C
not belonging to one straight line in E2Wn  or E3Wn . These three points are called vertices of
the triangle. The segments connecting these three points are call the sides of the triangle. By
classical geometry definition two triangles ABC  and A′B′C ′  are said to be congruent if the
following congruences are fulfilled:

We have three classical Euclidean geometry statements.

Statement 1 (First theorem of congruence for triangles).

If for two triangles ABC  and A′B′C ′ , the congruences

hold, then the two triangles are congruent.

Statement 2 (Second theorem of congruence for triangles).

If in any two triangles, one side and two adjacent angles are respectively congruent, then the
triangles are congruent.

Statement 3 (Third theorem of congruence for triangles).

If two triangles have three sides of one triangle congruent to the corresponding three sides of
the other, then the triangles are congruent.

In this section, we consider this definition and these statements from Mathematics with
Observers point of view. Note that in Mathematics with Observers geometry, a straight line
containing points A, B or A, C or B, C may not exist. Moreover, even if these lines exist, then they

AB≡ A′B′,

AC≡ A′C ′,

BC≡ B′C ′,

∠A≡ ∠A′,

∠B≡ ∠B′,

∠C≡ ∠C ′.

AB≡ A′B′,

AC≡ A′C ′,

∠A≡ ∠A′,



are not unique. The segment of an existing line connecting any two points is called a side of the
triangle. So a triangle may not have one, two, or three sides, or may have several sides
connecting some pairs of vertices. This means that when we deal with triangle ABC , it is
necessary to know which sides we consider. Another situation is also possible: in Mathematics
with Observers geometry, three sides exist, but vertices do not. In general, in Mathematics with
Observers geometry, some sides exist, and some vertices exist too. We consider these situations
in the next section.

9.1  Definition of congruence of triangles in Mathematics with
Observers geometry: variant of vertices

For E2Wn , first, let us consider six points

where A, B, C are distinct points, A′ , B′ , C ′  are distinct points, and pairs of points

may be points of existing straight lines or may be not. For all these points, we have the
corresponding vectors

Let us consider the vectors in E2Wn

and the scalar products

A(x1, y1),B(x2, y2),C(x3, y3),A′(x4, y4),B′(x5, y5),C ′(x6, y6) ∈ E2Wn,

(A,B), (A,C), (B,C), (A′,B′), (A′,C ′), (B′,C ′)

a = (x1, y1),b = (x2, y2), c = (x3, y3),a′ = (x4, y4),b′ = (x5, y5), c′ = (x6, y6) ∈ E2Wn.

AB= b −n a = (x2 −n x1, y2 −n y1),

AC= c −n a = (x3 −n x1, y3 −n y1),

BC= c −n b = (x3 −n x2, y3 −n y2),

A′B′= b′ −n a′ = (x5 −n x4, y5 −n y4),

A′C′= c′ −n a′ = (x6 −n x4, y6 −n y4),

B′C′= c′ −n b′ = (x6 −n x5, y6 −n y5),



if

(AB,AB)= (x2 −n x1) ×n (x2 −n x1) +n (y2 −n y1) ×n (y2 −n y1),

(AC,AC)= (x3 −n x1) ×n (x3 −n x1) +n (y3 −n y1) ×n (y3 −n y1),

(BC,BC)= (x3 −n x2) ×n (x3 −n x2) +n (y3 −n y2) ×n (y3 −n y2),

(A′B′,A′B′)= (x5 −n x4) ×n (x5 −n x4) +n (y5 −n y4) ×n (y5 −n y4),

(A′C′,A′C′)= (x6 −n x4) ×n (x6 −n x4) +n (y6 −n y4) ×n (y6 −n y4),

(B′C′,B′C′)= (x6 −n x5) ×n (x6 −n x5) +n (y6 −n y5) ×n (y6 −n y5),

(AB,AC)= (x2 −n x1) ×n (x3 −n x1) +n (y2 −n y1) ×n (y3 −n y1),

(AB,BC)= (x2 −n x1) ×n (x3 −n x2) +n (y2 −n y1) ×n (y3 −n y2),

(AC,BC)= (x3 −n x1) ×n (x3 −n x2) +n (y3 −n y1) ×n (y3 −n y2),

(A′B′,A′C′)= (x5 −n x4) ×n (x6 −n x4) +n (y5 −n y4) ×n (y6 −n y4),

(A′B′,B′C′)= (x5 −n x4) ×n (x6 −n x5) +n (y5 −n y4) ×n (y6 −n y5),

(A′C′,B′C′)= (x6 −n x4) ×n (x6 −n x5) +n (y6 −n y4) ×n (y6 −n y5)



x2 −n x1 ∈ Wn,

y2 −n y1 ∈ Wn,

x3 −n x1 ∈ Wn,

y3 −n y1 ∈ Wn,

x3 −n x2 ∈ Wn,

y3 −n y2 ∈ Wn,

x5 −n x4 ∈ Wn,

y5 −n y4 ∈ Wn,

x6 −n x4 ∈ Wn,

y6 −n y4 ∈ Wn,

x6 −n x5 ∈ Wn,

y6 −n y5 ∈ Wn,

(x2 −n x1) ×n (x2 −n x1) ∈ Wn,

(y2 −n y1) ×n (y2 −n y1) ∈ Wn,

(x3 −n x1) ×n (x3 −n x1) ∈ Wn,

(y3 −n y1) ×n (y3 −n y1) ∈ Wn,

(x3 −n x2) ×n (x3 −n x2) ∈ Wn,

(y3 −n y2) ×n (y3 −n y2) ∈ Wn,

(x5 −n x4) ×n (x5 −n x4) ∈ Wn,

(y5 −n y4) ×n (y5 −n y4) ∈ Wn,

(x6 −n x4) ×n (x6 −n x4) ∈ Wn,

(y6 −n y4) ×n (y6 −n y4) ∈ Wn,

(x6 −n x5) ×n (x6 −n x5) ∈ Wn,

(y6 −n y5) ×n (y6 −n y5) ∈ Wn,

(x2 −n x1) ×n (x3 −n x1) ∈ Wn,

(y2 −n y1) ×n (y3 −n y1) ∈ Wn,

(x2 −n x1) ×n (x3 −n x2) ∈ Wn,

(y2 −n y1) ×n (y3 −n y2) ∈ Wn,

(x3 −n x1) ×n (x3 −n x2) ∈ Wn,



Now we give the definition of congruence of triangles in Mathematics with Observers geometry.
First of all, three points A, B, C form triangle △ABC , and three points A′ , B′ , C ′  form a triangle
△A′B′C ′  if

This means that there is no element α ∈ Wn  such that

or there is no element β ∈ Wn  such that

Likewise, this means that there is no element γ ∈ Wn  such that

or there is no element δ ∈ Wn  such that

We call two triangles △ABC  and △A′B′C ′  congruent in Mathematics with Observers if the
following conditions are satisfied:

(y3 −n y1) ×n (y3 −n y2) ∈ Wn,

(x5 −n x4) ×n (x6 −n x4) ∈ Wn,

(y5 −n y4) ×n (y6 −n y4) ∈ Wn,

(x5 −n x4) ×n (x6 −n x5) ∈ Wn,

(y5 −n y4) ×n (y6 −n y5),

(x6 −n x4) ×n (x6 −n x5) ∈ Wn,

(y6 −n y4) ×n (y6 −n y5) ∈ Wn,

(x2 −n x1) ×n (x2 −n x1) +n (y2 −n y1) ×n (y2 −n y1) ∈ Wn,

(x3 −n x1) ×n (x3 −n x1) +n (y3 −n y1) ×n (y3 −n y1) ∈ Wn,

(x3 −n x2) ×n (x3 −n x2) +n (y3 −n y2) ×n (y3 −n y2) ∈ Wn,

(x5 −n x4) ×n (x5 −n x4) +n (y5 −n y4) ×n (y5 −n y4) ∈ Wn,

(x6 −n x4) ×n (x6 −n x4) +n (y6 −n y4) ×n (y6 −n y4) ∈ Wn,

(x6 −n x5) ×n (x6 −n x5) +n (y6 −n y5) ×n (y6 −n y5) ∈ Wn,

(x2 −n x1) ×n (x3 −n x1) +n (y2 −n y1) ×n (y3 −n y1) ∈ Wn,

(x2 −n x1) ×n (x3 −n x2) +n (y2 −n y1) ×n (y3 −n y2) ∈ Wn,

(x3 −n x1) ×n (x3 −n x2) +n (y3 −n y1) ×n (y3 −n y2) ∈ Wn,

(x5 −n x4) ×n (x6 −n x4) +n (y5 −n y4) ×n (y6 −n y4) ∈ Wn,

(x5 −n x4) ×n (x6 −n x5) +n (y5 −n y4) ×n (y6 −n y5) ∈ Wn,

(x6 −n x4) ×n (x6 −n x5) +n (y6 −n y4) ×n (y6 −n y5) ∈ Wn.

AB ∦ AC, A′B′ ∦ A′C′.

AB = α×n AC

AC = β×n AB.

A′B′ = γ ×n A′C′,

A′C′ = δ×n A′B′.



Let us now go to the thee-dimensional case. For E3Wn , first, let us consider six points

where A, B, C are distinct points, A′ , B′ , C ′  are distinct points, and the pairs of points

may be the points of existing straight lines or may be not. For these points, we have the
corresponding vectors

Let us consider the vectors in E3Wn

and the scalar products

(AB,AB)= (A′B′,A′B′) > 0,

(AC,AC)= (A′C′,A′C′) > 0,

(BC,BC)= (B′C′,B′C′) > 0,

(AB,AC)= (A′B′,A′C′),

(BA,BC)= (B′A′,B′C′),

(CA,CB)= (C′A′,C′B′).

A(x1, y1, z1),B(x2, y2, z2),C(x3, y3, z3),A
′(x4, y4, z4),B

′(x5, y5, z5),C
′(x6, y6, z6) ∈ E3Wn

(A,B), (A,C), (B,C), (A′,B′), (A′,C ′), (B′,C ′)

a= (x1, y1, z1),b = (x2, y2, z2), c = (x3, y3, z3),

a′= (x4, y4, z4),b′ = (x5, y5, z5), c′ = (x6, y6, z6), ∈ E3Wn.

AB= b −n a = (x2 −n x1, y2 −n y1, z2 −n z1)

AC= c −n a = (x3 −n x1, y3 −n y1, z3 −n z1)

BC= c −n b = (x3 −n x2, y3 −n y2, z3 −n z2),

A′B′= b′ −n a′ = (x5 −n x4, y5 −n y4, z5 −n z4),

A′C′= c′ −n a′ = (x6 −n x4, y6 −n y4, z6 −n z4),

B′C′= c′ −n b′ = (x6 −n x5, y6 −n y5, z6 −n z5),



if

(AB,AB)= (x2 −n x1) ×n (x2 −n x1) +n (y2 −n y1) ×n (y2 −n y1) +n (z2 −n z1) ×

(AC,AC)= (x3 −n x1) ×n (x3 −n x1) +n (y3 −n y1) ×n (y3 −n y1) +n (z3 −n z1) ×

(BC,BC)= (x3 −n x2) ×n (x3 −n x2) +n (y3 −n y2) ×n (y3 −n y2) +n (z3 −n z2) ×

(A′B′,A′B′)= (x5 −n x4) ×n (x5 −n x4) +n (y5 −n y4) ×n (y5 −n y4) +n (z5 −n z4) ×

(A′C′,A′C′)= (x6 −n x4) ×n (x6 −n x4) +n (y6 −n y4) ×n (y6 −n y4) +n (z6 −n z4)

(B′C′,B′C′)= (x6 −n x5) ×n (x6 −n x5) +n (y6 −n y5) ×n (y6 −n y5) +n (z6 −n z5) ×

(AB,AC)= (x2 −n x1) ×n (x3 −n x1) +n (y2 −n y1) ×n (y3 −n y1) +n (z2 −n z1) ×

(AB,BC)= (x2 −n x1) ×n (x3 −n x2) +n (y2 −n y1) ×n (y3 −n y2) +n (z2 −n z1) ×

(AC,BC)= (x3 −n x1) ×n (x3 −n x2) +n (y3 −n y1) ×n (y3 −n y2) +n (z3 −n z1) ×

(A′B′,A′C′)= (x5 −n x4) ×n (x6 −n x4) +n (y5 −n y4) ×n (y6 −n y4) +n (z5 −n z4) ×

(A′B′,B′C′)= (x5 −n x4) ×n (x6 −n x5) +n (y5 −n y4) ×n (y6 −n y5) +n (z5 −n z4) ×

(A′C′,B′C′)= (x6 −n x4) ×n (x6 −n x5) +n (y6 −n y4) ×n (y6 −n y5) +n (z6 −n z4) ×

x2 −n x1 ∈ Wn,

y2 −n y1 ∈ Wn,

z2 −n z1 ∈ Wn,

x3 −n x1 ∈ Wn,

y3 −n y1 ∈ Wn,

z3 −n z1 ∈ Wn,

x3 −n x2 ∈ Wn,

y3 −n y2 ∈ Wn,

z3 −n z2 ∈ Wn,

x5 −n x4 ∈ Wn,

y5 −n y4 ∈ Wn,

z5 −n z4 ∈ Wn,

x6 −n x4 ∈ Wn,

y6 −n y4 ∈ Wn,

z6 −n z4 ∈ Wn,

x6 −n x5 ∈ Wn,

y6 −n y5 ∈ Wn,

z6 −n z5 ∈ Wn,

(x2 −n x1) ×n (x2 −n x1) ∈ Wn,

(y2 −n y1) ×n (y2 −n y1) ∈ Wn,

(z2 −n z1) ×n (z2 −n z1) ∈ Wn,

(x3 −n x1) ×n (x3 −n x1) ∈ Wn,

(y3 −n y1) ×n (y3 −n y1) ∈ Wn,



(z3 −n z1) ×n (z3 −n z1) ∈ Wn,

(x3 −n x2) ×n (x3 −n x2) ∈ Wn,

(y3 −n y2) ×n (y3 −n y2) ∈ Wn,

(z3 −n z2) ×n (z3 −n z2) ∈ Wn,

(x5 −n x4) ×n (x5 −n x4) ∈ Wn,

(y5 −n y4) ×n (y5 −n y4) ∈ Wn,

(z5 −n z4) ×n (z5 −n z4) ∈ Wn,

(x6 −n x4) ×n (x6 −n x4) ∈ Wn,

(y6 −n y4) ×n (y6 −n y4) ∈ Wn,

(z6 −n z4) ×n (z6 −n z4) ∈ Wn,

(x6 −n x5) ×n (x6 −n x5) ∈ Wn,

(y6 −n y5) ×n (y6 −n y5) ∈ Wn,

(z6 −n z5) ×n (z6 −n z5) ∈ Wn,

(x2 −n x1) ×n (x3 −n x1) ∈ Wn,

(y2 −n y1) ×n (y3 −n y1) ∈ Wn,

(z2 −n z1) ×n (z3 −n z1) ∈ Wn,

(x2 −n x1) ×n (x3 −n x2) ∈ Wn,

(y2 −n y1) ×n (y3 −n y2) ∈ Wn,

(z2 −n z1) ×n (z3 −n z2) ∈ Wn,

(x3 −n x1) ×n (x3 −n x2) ∈ Wn,

(y3 −n y1) ×n (y3 −n y2) ∈ Wn,

(z3 −n z1) ×n (z3 −n z2) ∈ Wn,

(x5 −n x4) ×n (x6 −n x4) ∈ Wn,

(y5 −n y4) ×n (y6 −n y4) ∈ Wn,

(z5 −n z4) ×n (z6 −n z4) ∈ Wn,

(x5 −n x4) ×n (x6 −n x5) ∈ Wn,

(y5 −n y4) ×n (y6 −n y5) ∈ Wn,

(z5 −n z4) ×n (z6 −n z5) ∈ Wn,

(x6 −n x4) ×n (x6 −n x5) ∈ Wn,

(y6 −n y4) ×n (y6 −n y5) ∈ Wn,

(z6 −n z4) ×n (z6 −n z5) ∈ Wn,

(x2 −n x1) ×n (x2 −n x1) +n (y2 −n y1) ×n (y2 −n y1) ∈ Wn,

(x3 −n x1) ×n (x3 −n x1) +n (y3 −n y1) ×n (y3 −n y1) ∈ Wn,

(x3 −n x2) ×n (x3 −n x2) +n (y3 −n y2) ×n (y3 −n y2) ∈ Wn,



As we did in the two-dimensional case, we give the definition of congruence of triangles in
Mathematics with Observers geometry. First, three points A, B, C form a triangle △ABC , and
three points A′ , B′ , C ′  form a triangle △A′B′C ′  if

Likewise, this means that there is no element γ ∈ Wn  such that

or there is no element δ ∈ Wn  such that

Also, as in the two-dimensional case, we call two triangles △ABC  and △A′B′C ′  congruent in
Mathematics with Observers if the following conditions are satisfied:

(x5 −n x4) ×n (x5 −n x4) +n (y5 −n y4) ×n (y5 −n y4) ∈ Wn,

(x6 −n x4) ×n (x6 −n x4) +n (y6 −n y4) ×n (y6 −n y4) ∈ Wn,

(x6 −n x5) ×n (x6 −n x5) +n (y6 −n y5) ×n (y6 −n y5) ∈ Wn,

(x2 −n x1) ×n (x3 −n x1) +n (y2 −n y1) ×n (y3 −n y1) ∈ Wn,

(x2 −n x1) ×n (x3 −n x2) +n (y2 −n y1) ×n (y3 −n y2) ∈ Wn,

(x3 −n x1) ×n (x3 −n x2) +n (y3 −n y1) ×n (y3 −n y2) ∈ Wn,

(x5 −n x4) ×n (x6 −n x4) +n (y5 −n y4) ×n (y6 −n y4) ∈ Wn,

(x5 −n x4) ×n (x6 −n x5) +n (y5 −n y4) ×n (y6 −n y5) ∈ Wn,

(x6 −n x4) ×n (x6 −n x5) +n (y6 −n y4) ×n (y6 −n y5) ∈ Wn,

(x2 −n x1) ×n (x2 −n x1) +n (y2 −n y1) ×n (y2 −n y1) +n (z2 −n z1) ×n (z2 −n z1) ∈ Wn,

(x3 −n x1) ×n (x3 −n x1) +n (y3 −n y1) ×n (y3 −n y1) +n (z3 −n z1) ×n (z3 −n z1) ∈ Wn,

(x3 −n x2) ×n (x3 −n x2) +n (y3 −n y2) ×n (y3 −n y2) +n (z3 −n z2) ×n (z3 −n z2) ∈ Wn,

(x5 −n x4) ×n (x5 −n x4) +n (y5 −n y4) ×n (y5 −n y4) +n (z5 −n z4) ×n (z5 −n z4) ∈ Wn,

(x6 −n x4) ×n (x6 −n x4) +n (y6 −n y4) ×n (y6 −n y4) +n (z6 −n z4) ×n (z6 −n z4) ∈ Wn,

(x6 −n x5) ×n (x6 −n x5) +n (y6 −n y5) ×n (y6 −n y5) +n (z6 −n z5) ×n (z6 −n z5) ∈ Wn,

(x2 −n x1) ×n (x3 −n x1) +n (y2 −n y1) ×n (y3 −n y1) +n (z2 −n z1) ×n (z3 −n z1) ∈ Wn,

(x2 −n x1) ×n (x3 −n x2) +n (y2 −n y1) ×n (y3 −n y2) +n (z2 −n z1) ×n (z3 −n z2) ∈ Wn,

(x3 −n x1) ×n (x3 −n x2) +n (y3 −n y1) ×n (y3 −n y2) +n (z3 −n z1) ×n (z3 −n z2) ∈ Wn,

(x5 −n x4) ×n (x6 −n x4) +n (y5 −n y4) ×n (y6 −n y4) +n (z5 −n z4) ×n (z6 −n z4) ∈ Wn

(x5 −n x4) ×n (x6 −n x5) +n (y5 −n y4) ×n (y6 −n y5) +n (z5 −n z4) ×n (z6 −n z5) ∈ Wn,

(x6 −n x4) ×n (x6 −n x5) +n (y6 −n y4) ×n (y6 −n y5) +n (z6 −n z4) ×n (z6 −n z5) ∈ Wn.

AB ∦ AC, A′B′ ∦ A′C′.

A′B′ = γ ×n A′C′,

A′C′ = δ×n A′B′.



Note that for a, b, c ∈ Wn , we assume that

9.2  Definition of congruence of triangles in Mathematics with
Observers geometry: variant of sides

For E2Wn  or E3Wn , first, let us consider six points A, B, C, A′ , B′ , C ′ , where A, B, C are distinct
points, and A′ , B′ , C ′  are distinct points, and the pairs of points (A,B), (A,C), (B,C),
(A′,B′), (A′,C ′), (B′,C ′) are points of existing straight lines:

Let us consider vectors in E2Wn  or E3Wn

and the scalar products

We get

(AB,AB)= (A′B′,A′B′) > 0,

(AC,AC)= (A′C′,A′C′) > 0,

(BC,BC)= (B′C′,B′C′) > 0,

(AB,AC)= (A′B′,A′C′),

(BA,BC)= (B′A′,B′C′),

(CA,CB)= (C′A′,C′B′).

a+n b+n c = (a+n b) +n c.

A,B∈ l,

A,C∈ m,

B,C∈ n

A′,B′∈ l′,

A′,C ′∈ m′,

B′,C ′∈ n′.

AB,AC,BC,A′B′,A′C′,B′C′

(AB,AB), (AC,AC), (BC,BC), (A′B′,A′B′), (A′C′,A′C′), (B′C′,B′C′).

A∈ l ∩m,

B∈ l ∩ n,

C∈ m ∩ n,

A′∈ l′ ∩m′,

B′∈ l′ ∩ n′,

C ′∈ m′ ∩ n′.



Note that, generally, such intersections of lines may have more than one point. Let h, k be any
two distinct half-rays

emanating from the point A, let p, q be any two distinct half-rays

emanating from the point B, and let r, s be any two distinct half-rays

emanating from the point C.

Let h′ , k′  be any two distinct half-rays

emanating from the point A′ , let p′ , q ′  be any two distinct half-rays

emanating from the point B′ , and let r′ , s′  be any two distinct half-rays

emanating from the point C ′ .

So we get six angles

Now we are ready to formulate the second definition of congruence of triangles, from the point
of view of sides. We write

if the following conditions are satisfied.

(1) The congruence of sides:

A,B∈ h ⊂ l,

A,C∈ k ⊂ m

B,A∈ p ⊂ l,

B,C∈ q ⊂ n

C,B∈ r ⊂ n,

C,A∈ s ⊂ m

A′,B′∈ h′ ⊂ l′,

A′,C ′∈ k′ ⊂ m′

B′,A′∈ p′ ⊂ l′,

B′,C ′∈ q ′ ⊂ n′

C ′,B′∈ r′ ⊂ n′,

C ′,A′∈ s′ ⊂ m′

∠(h, k), ∠(p, q), ∠(r, s), ∠(h′, k′), ∠(p′, q ′), ∠(r′, s′).

△ABC ≡ △A′B′C ′



(2) There are four points

such that

(3) There are four points

such that

(4) There are four points

such that

We assume that all elements participating in the previous equalities belong to Wn .

Note that in the situation where three points A, B, C lie by pairs on straight lines and the other
three points A′ , B′ , C ′  lie by pairs on straight lines, both variants (vertices and sides) work. If

by “vertex variant”, then the same holds by “side variant”. However, if

by “side variant”, then the same does not necessarily hold by “vertex variant”.

(AB,AB)= (A′B′,A′B′) > 0,

(AC,AC)= (A′C′,A′C′) > 0,

(BC,BC)= (B′C′,B′C′) > 0;

D ∈ h, E ∈ k, D′ ∈ h′, E ′ ∈ k′

(AD,AD)= (A′D′,A′D′) > 0,

(AE,AE)= (A′E′,A′E′) > 0,

(AD,AE)= (A′D′,A′E′);

F ∈ p, G ∈ q, F ′ ∈ p′, G′ ∈ q ′

(BF,BF)= (B′F′,B′F′) > 0,

(BG,BG)= (B′G′,B′G′) > 0,

(BF,BG)= (B′F′,B′G′).

H ∈ r, I ∈ s, H ′ ∈ r′, s′ ∈ q ′

(CH,CH)= (C′H′,C′H′) > 0,

(CI,CI)= (C′I′,C′I′) > 0,

(CH,CI)= (C′H′,C′I′).

△ABC ≡ △A′B′C ′

△ABC ≡ △A′B′C ′



9.3  Triangles formed by two perpendiculars to one line

Let us consider E2W2 . Suppose we have two straight lines in E2W2 ,

and

having a common point O(0, 0).

Let h, k be two distinct half-rays

and

emanating from the point O. So we get ∠(h, k).

Let us take the points

and the corresponding vectors

We get

Let us build a straight line c containing points A, B:

that is,

So

a : 99.99 ×2 x−2 98.37 ×2 y = 0

b : 98.37 ×2 x−2 99.99 ×n y = 0,

h ⊂ a,

h : [(x, y) ∈ a : x > 0],

k ⊂ b,

k : [(x, y) ∈ b : x > 0],

A(0.62, 0.63)∈ h,

B(0.63, 0.62)∈ k

OA= (0.62, 0.63),

OB= (0.63, 0.62).

(OA,OA)= 0.72 > 0,

(OB,OB)= 0.72 > 0.

c : c1 ×2 x+2 c2 ×2 y+2 c3 = 0,

{
c1 ×2 0.62 +2 c2 ×2 0.63 +2 c3 = 0,

c1 ×2 0.63 +2 c2 ×2 0.62 +2 c3 = 0.



and

Let us consider a solution of this system:

that is, line c has the equation

So we get two half-rays

and

emanating from the point A. So we get ∠(l(1), g).

Also, we get two half-rays

and

emanating from the point B. So we get ∠(l(2), f).

So we get a triangle OAB with vertices O, A, B and two half-rays (h, k) emanating from vertex
O, passing, respectively, through A and B, and forming

Also, (l(1), g) are two half-rays emanating from vertex A, passing, respectively, through B and O,
and forming

{
c1 ×2 0.62 +2 c2 ×2 0.63 = c1 ×2 0.63 +2 c2 ×2 0.62,

c1 ×2 0.63 +2 c2 ×2 0.62 +2 c3 = 0,

{
c1 ×2 0.62 −2 c1 ×2 0.63 = c2 ×2 0.62 −2 c2 ×2 0.63,

c1 ×2 0.63 +2 c2 ×2 0.62 +2 c3 = 0.

c1 = 1,

c2 = 1,

c3 = −1.25,

c : x+2 y−2 1.25 = 0.

l(1) ⊂ c,

l(1) : [(x, y) ∈ c : x > 0.62],

g ⊂ a,

g : [(x, y) ∈ a : x < 0.62],

l(2) ⊂ c,

l(2) : [(x, y) ∈ c : x < 0.63],

f ⊂ b,

f : [(x, y) ∈ b : x < 0.63],

∠(h, k) = ∠O.



and (l(2), f) are two half-rays emanating from vertex B, passing, respectively, through A and O,
and forming

Let us consider angles ∠A, ∠B and take points K,L ∈ c:

and the corresponding vectors

Also, we have

We get

and

This means that

and both these angles are right angles, that is, the half-rays f, g form right angles with
corresponding half-rays of line c and intersect in point O.

So we have proved the following:

Theorem 9.1.

In Mathematics with Observers geometry in the plane E2Wn , there is a triangle ABC  such that

∠B ∈ ABC  and ∠C ∈ ABC  are right angles.

Classical Euclidean geometry states:

“The sum of the angles of a triangle equals two right angles.”

∠(l(1), g) = ∠A,

∠(l(2), f) = ∠B.

K(3,−1.75)∈ l(1),

L(−1.75, 3)∈ l(2),

AK= (2.38,−2.38),

BL= (−2.38, 2.38).

AO= (−0.62,−0.63),

BO= (−0.63,−0.62).

(AK,AK)= 11.22 > 0,

(BL,BL)= 11.22 > 0,

(AO,AO)= 0.72 > 0,

(BO,BO)= 0.72 > 0,

(AK,AO)= 0,

(BL,BO)= 0.

∠OAK ≡ ∠OBL,



Question: Is this statement correct in Mathematics with Observers geometry?

The answer to this question in this case is negative because we have proved the following:

Theorem 9.2.

In Mathematics with Observers geometry in the plane E2Wn , there is a triangle ABC  such that the

sum of the angles of this triangle is greater than two right angles.

9.4  Statement →1. First theorem of congruence for triangles

Let us reformulate the first statement of congruence for triangles in Mathematics with
Observers geometry.

For E2Wn , let us consider six points

where A, B, C are distinct points, A′ , B′ , C ′  are distinct points, and the pairs of points

may or may not be the points of existing straight lines. For all these points, we have the
corresponding vectors

Let us consider the vectors in E2Wn

and the scalar products

A(x1, y1),B(x2, y2),C(x3, y3),A
′(x4, y4),B

′(x5, y5),C
′(x6, y6) ∈ E2Wn

(A,B), (A,C), (B,C), (A′,B′), (A′,C ′), (B′,C ′)

a = (x1, y1),b = (x2, y2), c = (x3, y3),a′ = (x4, y4),b′ = (x5, y5), c′ = (x6, y6) ∈ E2Wn.

AB= b −n a = (x2 −n x1, y2 −n y1),

AC= c −n a = (x3 −n x1, y3 −n y1),

BC= c −n b = (x3 −n x2, y3 −n y2),

A′B′= b′ −n a′ = (x5 −n x4, y5 −n y4),

A′C′= c′ −n a′ = (x6 −n x4, y6 −n y4),

B′C′= c′ −n b′ = (x6 −n x5, y6 −n y5),



So we get a question (analogue of first statement): If

then do we have

Let us consider several cases.

1) Let n = 2, and let

Then

We get

(AB,AB)= (x2 −n x1) ×n (x2 −n x1) +n (y2 −n y1) ×n (y2 −n y1),

(AC,AC)= (x3 −n x1) ×n (x3 −n x1) +n (y3 −n y1) ×n (y3 −n y1),

(BC,BC)= (x3 −n x2) ×n (x3 −n x2) +n (y3 −n y2) ×n (y3 −n y2),

(A′B′,A′B′)= (x5 −n x4) ×n (x5 −n x4) +n (y5 −n y4) ×n (y5 −n y4),

(A′C′,A′C′)= (x6 −n x4) ×n (x6 −n x4) +n (y6 −n y4) ×n (y6 −n y4),

(B′C′,B′C′)= (x6 −n x5) ×n (x6 −n x5) +n (y6 −n y5) ×n (y6 −n y5),

(AB,AC)= (x2 −n x1) ×n (x3 −n x1) +n (y2 −n y1) ×n (y3 −n y1),

(AB,BC)= (x2 −n x1) ×n (x3 −n x2) +n (y2 −n y1) ×n (y3 −n y2),

(AC,BC)= (x3 −n x1) ×n (x3 −n x2) +n (y3 −n y1) ×n (y3 −n y2),

(A′B′,A′C′)= (x5 −n x4) ×n (x6 −n x4) +n (y5 −n y4) ×n (y6 −n y4),

(A′B′,B′C′)= (x5 −n x4) ×n (x6 −n x5) +n (y5 −n y4) ×n (y6 −n y5),

(A′C′,B′C′)= (x6 −n x4) ×n (x6 −n x5) +n (y6 −n y4) ×n (y6 −n y5).

(AB,AB)= (A′B′,A′B′) > 0,

(AC,AC)= (A′C′,A′C′) > 0,

(AB,AC)= (A′B′,A′C′),

(BC,BC)= (B′C′,B′C′) > 0,

(BA,BC)= (B′A′,B′C′),

(CA,CB)= (C′A′,C′B′)?

A(0, 0),B(0.98,−0.03),C(−0.02, 0.97),A′(0, 0),B′(−0.04, 0.99),C ′(0.96,−0.01).

a= (0, 0),b = (1,−0.03), c = (−0.02, 1),a′ = (0, 0),b′ = (−0.04, 1), c′ = (1,−0.01)

AB= b −n a = (1,−0.03),

AC= c −n a = (−0.02, 1),

BC= c −n b = (−1.02, 1.03),

A′B′= b′ −n a′ = (−0.04, 1),

A′C′= c′ −n a′ = (1,−0.01),

B′C′= c′ −n b′ = (1.04,−1.01).



and

So we get

by both “vertex variant” and “side variant”. This means that the answer to the question in this
case is positive.

2) Let n = 2, and let

Then

We get

that is,

and we have

(AB,AB)= (A′B′,A′B′) = 1 > 0,

(AC,AC)= (A′C′,A′C′) = 1 > 0,

(AB,AC)= (A′B′,A′C′) = −0.05

(BC,BC)= (B′C′,B′C′) = 2.10 > 0,

(BA,BC)= (B′A′,B′C′) = 1.05,

(CA,CB)= (C′A′,C′B′) = 1.05.

△ABC ≡ △A′B′C ′

A(0, 0),P(0, 1.36),Q(1.50, 0),A′(0, 2.14),P ′(−1.00, 1.23),Q′(1.00, 1.02).

a= (0, 0),p = (0, 1.36),q = (1.50, 0),a′ = (0, 2.14),p′ = (−1.00, 1.23),q′ = (1.00, 1.02

AP= p −n a = (0, 1.36),

AQ= q −n a = (1.50, 0),

PQ= q −n p = (1.50,−1.36),

A′P′= p′ −n a′ = (−1.00,−0.91),

A′Q′= q′ −n a′ = (1.00,−1.12),

P′Q′= q′ −n p′ = (2.00,−0.21).

(AP,AP)= (A′P′,A′P′) = 1.81 > 0,

(AQ,AQ)= (A′Q′,A′Q′) = 2.25 > 0,

(AP,AQ)= (A′P′,A′Q′) = 0,

AP≡ A′P′,

AQ≡ A′Q′,

∠(PAQ)≡ ∠(P ′A′Q′),



that is,

So we get

by both “vertex variant” and “side variant”. This means that the answer to the question in this
case is negative.

So we have proved th following:

Theorem 9.3.

In Mathematics with Observers geometry in the plane E2Wn , there are two distinct triangles ABC

and A′B′C ′
 with congruences AB ≡ A′B′ , AC ≡ A′C ′ , ∠A ≡ ∠A′

 such that these triangles are

congruent, that is, AB ≡ A′B′ , AC ≡ A′C ′ , BC ≡ B′C ′ , ∠A ≡ ∠A′ , ∠B ≡ ∠B′ ,

∠C ≡ ∠C ′ .

Theorem 9.4.

In Mathematics with Observers geometry in the plane E2Wn , there are two distinct triangles ABC

and A′B′C ′
 with congruences AB ≡ A′B′ , AC ≡ A′C ′ , ∠A ≡ ∠A′

 such that these triangles are

not congruent.

9.5  Statement →2. Second theorem of congruence for triangles

Let us reformulate the second statement of congruence for triangles in Mathematics with
Observers geometry.

For E2Wn , let us consider six points

where A, B, C are distinct points, A′ , B′ , C ′  are distinct points, and pairs of points

may or may not be the points of existing straight lines. For these points, we have the
corresponding vectors

Let us consider the vectors in E2Wn

(PQ,PQ)= 4.06,

(P′Q′,P′Q′)= 4.04,

(PQ,PQ) ≠ (P′Q′,P′Q′).

△APQ ≢ △A′P ′Q′

A(x1, y1),B(x2, y2),C(x3, y3),A
′(x4, y4),B

′(x5, y5),C
′(x6, y6) ∈ E2Wn,

(A,B), (A,C), (B,C), (A′,B′), (A′,C ′), (B′,C ′)

a = (x1, y1),b = (x2, y2), c = (x3, y3),a′ = (x4, y4),b′ = (x5, y5), c′ = (x6, y6) ∈ E2Wn.



and the scalar products

So we get a question (analogue of the second statement): If

then do we have

Let us consider several cases.

1) Let n = 2, and let

Then

AB= b −n a = (x2 −n x1, y2 −n y1),

AC= c −n a = (x3 −n x1, y3 −n y1),

BC= c −n b = (x3 −n x2, y3 −n y2),

A′B′= b′ −n a′ = (x5 −n x4, y5 −n y4),

A′C′= c′ −n a′ = (x6 −n x4, y6 −n y4),

B′C′= c′ −n b′ = (x6 −n x5, y6 −n y5),

(AB,AB)= (x2 −n x1) ×n (x2 −n x1) +n (y2 −n y1) ×n (y2 −n y1),

(AC,AC)= (x3 −n x1) ×n (x3 −n x1) +n (y3 −n y1) ×n (y3 −n y1),

(BC,BC)= (x3 −n x2) ×n (x3 −n x2) +n (y3 −n y2) ×n (y3 −n y2),

(A′B′,A′B′)= (x5 −n x4) ×n (x5 −n x4) +n (y5 −n y4) ×n (y5 −n y4),

(A′C′,A′C′)= (x6 −n x4) ×n (x6 −n x4) +n (y6 −n y4) ×n (y6 −n y4),

(B′C′,B′C′)= (x6 −n x5) ×n (x6 −n x5) +n (y6 −n y5) ×n (y6 −n y5),

(AB,AC)= (x2 −n x1) ×n (x3 −n x1) +n (y2 −n y1) ×n (y3 −n y1),

(AB,BC)= (x2 −n x1) ×n (x3 −n x2) +n (y2 −n y1) ×n (y3 −n y2),

(AC,BC)= (x3 −n x1) ×n (x3 −n x2) +n (y3 −n y1) ×n (y3 −n y2),

(A′B′,A′C′)= (x5 −n x4) ×n (x6 −n x4) +n (y5 −n y4) ×n (y6 −n y4),

(A′B′,B′C′)= (x5 −n x4) ×n (x6 −n x5) +n (y5 −n y4) ×n (y6 −n y5),

(A′C′,B′C′)= (x6 −n x4) ×n (x6 −n x5) +n (y6 −n y4) ×n (y6 −n y5).

(AB,AB)= (A′B′,A′B′) > 0,

(AB,AC)= (A′B′,A′C′),

(BA,BC)= (B′A′,B′C′),

(AC,AC)= (A′C′,A′C′) > 0,

(BC,BC)= (B′C′,B′C′) > 0,

(CA,CB)= (C′A′,C′B′)?

A(0, 0),B(0.98,−0.03),C(−0.02, 0.97),A′(0, 0),B′(−0.04, 0.99),C ′(0.96,−0.01).



We get

and

This means that the answer to the question in this case is positive.

2) Let n = 2, and let

Then

We get

that is,

a= (0, 0),b = (1,−0.03), c = (−0.02, 1),a′ = (0, 0),b′ = (−0.04, 1), c′ = (1,−0.01)

AB= b −n a = (1,−0.03),

AC= c −n a = (−0.02, 1),

BC= c −n b = (−1.02, 1.03),

A′B′= b′ −n a′ = (−0.04, 1),

A′C′= c′ −n a′ = (1,−0.01),

B′C′= c′ −n b′ = (1.04,−1.01).

(AB,AB)= (A′B′,A′B′) = 1 > 0,

(AB,AC)= (A′B′,A′C′) = −0.05,

(BA,BC)= (B′A′,B′C′) = 1.05,

(AC,AC)= (A′C′,A′C′) = 1 > 0,

(BC,BC)= (B′C′,B′C′) = 2.10 > 0,

(CA,CB)= (C′A′,C′B′) = 1.05.

A(0, 0),B(2.38, 0),C(1.40, 2.59),A′(3.17, 1.66),B′(5.55, 1.66),C ′(4.59, 4.27).

a= (0, 0),b = (2.38, 0), c = (1.40, 2.59),

a′== (3.17, 1.66),b′ = (5.55, 1.66), c′ = (4.59, 4.27) ∈ E2W2,

AB= b −n a = (2.38, 0),

AC= c −n a = (1.40, 2.59),

BC= c −n b = (−0.98, 2.59),

A′B′= b′ −n a′ = (2.38, 0),

A′C′= c′ −n a′ = (1.42, 2.61),

B′C′= c′ −n b′ = (−0.96, 2.61).

(AB,AB)= (A′B′,A′B′) = 5.61 > 0,

(AC,AC)= 8.57,

(A′C′,A′C′)= 8.80,



and

that is,

and

that is,

and

that is,

So we get

by “vertex variant”.

Let us now consider the “side variant”. First of all, we have to clarify the situation here:

are A, B points of an existing straight line?
are A, C points of an existing straight line?
are B, C points of an existing straight line?
are A′ , B′  points of an existing straight line?
are A′ , C ′  points of an existing straight line?
are B′ , C ′  points of an existing straight line?

We get

A, B are points of the existing straight line in E2W2  with equation

A, C are points of the existing straight line in E2W2  with equation

(AC,AC) ≠ (A′C′,A′C′),

(AB,AC)= 3.30,

(A′B′,A′C′)= 3.34,

(AB,AC) ≠ (A′B′,A′C′),

(BC,BC)= 7.42,

(B′C′,B′C′)= 7.61,

(BC,BC) ≠ (B′C′,B′C′),

(AB,BC)= −2.23,

(A′B′,B′C′)= −2.19,

(AB,BC) ≠ (A′B′,B′C′).

△ABC ≢ △A′B′C ′

l : y = 0;



B, C are points of the existing straight line in E2W2  with equation

A′ , B′  are points of the existing straight line in E2W2  with equation

A′ , C ′  are points of the existing straight line in E2W2  with equation

B′ , C ′  are points of the existing straight line in E2W2  with equation

We have

Let h, k be two distinct half-rays

and

emanating from the point A. The system formed by these two half-rays h, k is an angle and is
represented by the symbol ∠(h, k) or ∠(k,h).

Also, let h′ , k′  are two distinct half-rays

and

emanating from the point A′ . The system formed by these two half-rays h′ , k′  is an angle and is
represented by the symbol ∠(h′, k′) or ∠(k′,h′).

We also have

Let q, r be two distinct half-rays

m : y = 1.87 ×2 x;

p : y = −2.69 ×2 x+2 6.32;

l′ : y = 1.66;

m′ : y = 1.87 ×2 x−2 4.20;

p′ : y = −2.69 ×2 x+2 16.51.

A∈ l ∩m,

A′∈ l′ ∩m′.

h ⊂ l,

h : (x, y) ∈ l, x ≥ 0,

k ⊂ m,

k : (x, y) ∈ m, x ≥ 0,

h′ ⊂ l′,

h′ : (x, y) ∈ l′, x ≥ 3.17,

k′ ⊂ m′,

k′ : (x, y) ∈ m′, x ≥ 3.17,

B∈ l ∩ p,

B′∈ l′ ∩ p′.



and

emanating from the point B. The system formed by these two half-rays q, r is an angle and is
represented by the symbol ∠(q, r) or ∠(r, q).

Also, let q ′ , r′  be two distinct half-rays

and

emanating from the point B′ . The system formed by these two half-rays q ′ , r′  is an angle and is
represented by the symbol ∠(q ′, r′) or ∠(r′, q ′).

Let us take the points

Then

and we get

that is,

In this case, we say that

is congruent to

and write

q ⊂ l,

q : (x, y) ∈ l, x ≤ 2.38,

r ⊂ p,

r : (x, y) ∈ p, x ≤ 2.38,

q ′ ⊂ l′,

q ′ : (x, y) ∈ l′, x ≤ 5.55,

r′ ⊂ p′,

r′ : (x, y) ∈ p′, x ≤ 5.55,

P(1, 1.87)∈ k,

P ′(4.17, 3.53)∈ k′.

AP = A′P′ = (1, 1.87),

(AP,AP)= (A′P′,A′P′) = 4.38 > 0,

(AB,AP)= (A′B′,A′P′),

∠(Bh,Pk) ≡ ∠(B′h′,P ′k′).

∠BAC = ∠(Bh,Pk)

∠B′A′C ′ = ∠(B′h′,P ′k′)



This means that in Mathematics with Observers geometry, we do not define the congruence of
the angles ∠(h, k) and ∠(h′, k′). We can define it only in the case where for any points P, Q, P ′ ,
Q′  satisfying the above conditions, we have

Then

Now let us consider the angles ∠ABC  and ∠A′B′C ′ . Let us take the points

Then

and we get

that is,

In this case, we say that

is congruent to

and write

So in this case, in “side variant”, we have

that is,

but

∠BAC ≡ ∠B′A′C ′.

∠(Ph,Qk) ≡ ∠(P ′h′,Q′k′).

∠(h, k) ≡ ∠(h′, k′).

Q(1.38, 2.69)∈ r,

Q′(4.55, 4.35)∈ r′.

QB = Q′B′ = (1,−2.69),

(QB,QB)= (Q′B′,Q′B′) = 8.12 > 0,

(AB,QB)= (A′B′,Q′B′),

∠(Aq,Qr) ≡ ∠(A′q ′,Q′r′).

∠ABC = ∠(Aq,Qr)

∠A′B′C ′ = ∠(A′q ′,Q′r′)

∠ABC ≡ ∠A′B′C ′.

AB = A′B′,

AB≡ A′B′,

∠BAC≡ ∠B′A′C ′,

∠ABC≡ ∠A′B′C ′,



This means that in this case,

by “side variant”, that is, the answer to the question in this case is negative.

So, we proved

Theorem 9.5.

In Mathematics with Observers geometry in the plane E2Wn , there are two distinct triangles ABC

and A′B′C ′
 with congruences BC ≡ B′C ′ , ∠B ≡ ∠B′ , ∠C ≡ ∠C ′

 such that these triangles are

congruent, that is, AB ≡ A′B′ , AC ≡ A′C ′ , BC ≡ B′C ′ , ∠A ≡ ∠A′ , ∠B ≡ ∠B′ ,

∠C ≡ ∠C ′ .

Theorem 9.6.

In Mathematics with Observers geometry in the plane E2Wn , there are two distinct triangles ABC

and A′B′C ′
 with congruences BC ≡ B′C ′ , ∠B ≡ ∠B′ , ∠C ≡ ∠C ′

 such that these triangles are

not congruent.

9.6  Statement →3. Third theorem of congruence for triangles

Let us reformulate the third statement of congruence for triangles in Mathematics with
Observers geometry.

For E2Wn , first, let us consider six points

where A, B, C are distinct points, A′ , B′ , C ′  are distinct points, and pairs of points

may or may not be points of existing straight lines. For these points, we have the corresponding
vectors

Let us consider the vectors in E2Wn

AC≢ A′C ′,

BC≢ B′C ′.

△ABC ≢ △A′B′C ′

A(x1, y1),B(x2, y2),C(x3, y3),A
′(x4, y4),B

′(x5, y5),C
′(x6, y6) ∈ E2Wn

(A,B), (A,C), (B,C), (A′,B′), (A′,C ′), (B′,C ′)

a = (x1, y1),b = (x2, y2), c = (x3, y3),a′ = (x4, y4),b′ = (x5, y5), c′ = (x6, y6) ∈ E2Wn.

AB= b −n a = (x2 −n x1, y2 −n y1),

AC= c −n a = (x3 −n x1, y3 −n y1),

BC= c −n b = (x3 −n x2, y3 −n y2),

A′B′= b′ −n a′ = (x5 −n x4, y5 −n y4),

A′C′= c′ −n a′ = (x6 −n x4, y6 −n y4),

B′C′= c′ −n b′ = (x6 −n x5, y6 −n y5),



and the scalar products

So we get the following question (analogue of third statement): If

then is it correct that

Let us consider several cases.

1) Let n = 2, and let

Then

(AB,AB)= (x2 −n x1) ×n (x2 −n x1) +n (y2 −n y1) ×n (y2 −n y1),

(AC,AC)= (x3 −n x1) ×n (x3 −n x1) +n (y3 −n y1) ×n (y3 −n y1),

(BC,BC)= (x3 −n x2) ×n (x3 −n x2) +n (y3 −n y2) ×n (y3 −n y2),

(A′B′,A′B′)= (x5 −n x4) ×n (x5 −n x4) +n (y5 −n y4) ×n (y5 −n y4),

(A′C′,A′C′)= (x6 −n x4) ×n (x6 −n x4) +n (y6 −n y4) ×n (y6 −n y4),

(B′C′,B′C′)= (x6 −n x5) ×n (x6 −n x5) +n (y6 −n y5) ×n (y6 −n y5),

(AB,AC)= (x2 −n x1) ×n (x3 −n x1) +n (y2 −n y1) ×n (y3 −n y1),

(AB,BC)= (x2 −n x1) ×n (x3 −n x2) +n (y2 −n y1) ×n (y3 −n y2),

(AC,BC)= (x3 −n x1) ×n (x3 −n x2) +n (y3 −n y1) ×n (y3 −n y2),

(A′B′,A′C′)= (x5 −n x4) ×n (x6 −n x4) +n (y5 −n y4) ×n (y6 −n y4),

(A′B′,B′C′)= (x5 −n x4) ×n (x6 −n x5) +n (y5 −n y4) ×n (y6 −n y5),

(A′C′,B′C′)= (x6 −n x4) ×n (x6 −n x5) +n (y6 −n y4) ×n (y6 −n y5).

(AB,AB)= (A′B′,A′B′) > 0,

(AC,AC)= (A′C′,A′C′) > 0,

(BC,BC)= (B′C′,B′C′) > 0,

(AB,AC)= (A′B′,A′C′),

(BA,BC)= (B′A′,B′C′),

(CA,CB)= (C′A′,C′B′)?

A(0, 0),B(0.98,−0.03),C(−0.02, 0.97),A′(0, 0),B′(−0.04, 0.99),C ′(0.96,−0.01).

a= (0, 0),b = (1,−0.03), c = (−0.02, 1),a′ = (0, 0),b′ = (−0.04, 1), c′ = (1,−0.01)

AB= b −n a = (1,−0.03),

AC= c −n a = (−0.02, 1),

BC= c −n b = (−1.02, 1.03),

A′B′= b′ −n a′ = (−0.04, 1),

A′C′= c′ −n a′ = (1,−0.01),

B′C′= c′ −n b′ = (1.04,−1.01),



and we get

and

This means that the answer to the question in this case is positive.

2) Let n = 2, and let

Then

and we get

and

that is,

that is,

(AB,AB)= (A′B′,A′B′) = 1 > 0,

(AC,AC)= (A′C′,A′C′) = 1 > 0,

(BC,BC)= (B′C′,B′C′) = 2.10 > 0,

(AB,AC)= (A′B′,A′C′) = −0.05,

(BA,BC)= (B′A′,B′C′) = 1.05,

(CA,CB)= (C′A′,C′B′) = 1.05.

A(0, 0),B(0, 1),C(0.82, 0.53),A′(0, 0),B′(0, 1),C ′(0.85, 0.56).

a= (0, 0),b = (1, 0), c = (0.82, 0.53),a′ = (0, 0),b′ = (1, 0), c′ = (0.85, 0.56) ∈ E2Wn,

AB= b −n a = (1, 0),

AC= c −n a = (0.82, 0.53),

BC= c −n b = (−0.18, 0.53),

A′B′= b′ −n a′ = (1, 0),

A′C′= c′ −n a′ = (0.85, 0.56),

B′C′= c′ −n b′ = (−0.15, 0.56),

(AB,AB)= (A′B′,A′B′) = 1 > 0,

(AC,AC)= (A′C′,A′C′) = 0.89 > 0,

(BC,BC)= (B′C′,B′C′) = 0.26 > 0,

(AB,AC)= 0.82,

(A′B′,A′C′)= 0.86

(AB,AC)≠ (A′B′,A′C′),

(BA,BC)= 0.18,

(B′A′,B′C′)= 0.15,



This means that the answer to this question in this case is negative by “vertex variant”.

So we have proved the following:

Theorem 9.7.

In Mathematics with Observers geometry in the plane E2Wn , there are two distinct triangles ABC

and A′B′C ′
 with congruences AB ≡ A′B′ , AC ≡ A′C ′ , BC ≡ B′C ′

 such that these triangles

are congruent, that is, AB ≡ A′B′ , AC ≡ A′C ′ , BC ≡ B′C ′ , ∠A ≡ ∠A′ , ∠B ≡ ∠B′ ,

∠C ≡ ∠C ′ .

Theorem 9.8.

In Mathematics with Observers geometry in the plane E2Wn , there are two distinct triangles ABC

and A′B′C ′
 with congruences AB ≡ A′B′ , AC ≡ A′C ′ , BC ≡ B′C ′

 such that these triangles

are not congruent.

9.7  Isosceles triangles

A triangle ABC  we call an isosceles triangle if two of its sides are congruent, for example, if

In this case, the point B is called a vertex of the triangle, the side AC  is called a base of the
triangle, and the sides AB and BC  are called lateral sides of the triangle.

In this section, we consider the question: In an isosceles triangle ABC  with base AC , is it
correct that

1) First we consider a triangle given by its vertices, not by its sides. Let us take three points as the
vertices of a triangle OAB,

and the corresponding vectors

We get

(BA,BC)≠ (B′A′,B′C′),

(CA,CB)= (C′A′,C′B′) = 0.33.

AB ≡ BC.

∠BAC ≡ ∠BCA?

O(0, 0),A(0.66, 0.84),B(1, 0) ∈ E2W2,

OA= (0.66, 0.84),

AO= (−0.66,−0.84),

OB= (1, 0),

BO= (−1, 0)

AB= (0.34,−0.16),

BA= (−0.34, 0.16).



We have

and

that is,

This means that the answer to the question in this case is negative.

2) Let us take two straight lines in E2W2 ,

and

and points O,A ∈ a,O, B ∈ b:

Let us take these three points as the vertices of the triangle OAB and, as we did in part 1) of this
section, forget straight lines a and b.

We consider the corresponding vectors

and we get

(OA,OA)= 1 > 0,

(AO,AO)= 1 > 0,

(OB,OB)= 1 > 0,

(BO,BO)= 1 > 0,

(AB,AB)= 0.10 > 0,

(BA,BA)= 0.10 > 0.

AO≡ BO,

AB≡ BA,

(AO,AB)= −0.10,

(BO,BA)= 0.34,

∠OAB ≢ ∠OBA.

a : 1.14 ×2 x−2 y = 0

b : 1.28 ×2 x−2 y = 0,

O(0, 0),A(1.71, 1.92),B(1.60, 2.00).

OA= (1.71, 1.92),

AO= (−1.71,−1.92),

OB= (1.60, 2.00),

BO= (−1.60,−2.00),

AB= (−0.11, 0.08),

BA= (0.11,−0.08),



We have

and

that is,

This means that the answer to this question in this case is negative.

3) Let us consider straight line a containing points O, A,

that is,

One possible solution is

that is, straight line a has the equation

Let straight line b containing points O, B have the equation

Let us build strait line c containing points A, B,

that is,

(OA,OA)= 1.56 > 0,

(AO,AO)= 1.56 > 0,

(OB,OB)= 1.56 > 0,

(BO,BO)= 1.56 > 0,

(AB,AB)= 0.01 > 0,

(BA,BA)= 0.01 > 0.

AO≡ BO,

AB≡ BA,

(AO,AB)= 0.10,

(BO,BA)= −0.01,

∠OAB ≢ ∠OBA.

a : a1 ×2 x+2 a2 ×2 y+2 a3 = 0,

{
a1 ×2 0 +2 a2 ×2 0 +2 a3 = 0,

a1 ×2 0.66 +2 a2 ×2 0.84 +2 a3 = 0.

a3 = 0,

a1 = 1.34,

a2 = −1,

a : 1.34 ×2 x−2 y = 0

b : y = 0.

c : c1 ×2 x+2 c2 ×2 y+2 c3 = 0,



One possible solution is

that is, straight line c has the equation

This means that the triangle OAB has vertices and sides.

Let us now take the points

and consider these three points as vertices of the triangle O′A′B′ . Let us take the corresponding
vectors

We get

We have

and

{
c1 ×2 0.66 +2 c2 ×2 0.84 +2 c3 = 0,

c1 ×2 1 +2 c2 ×2 0 +2 c3 = 0.

c1 = 2.40,

c2 = 1,

c3 = −2.40,

c : 2.40 ×2 x+2 y−2 2.40 = 0.

O′(0, 0) ∈ a ∩ b, A′(1.23, 1.63) ∈ a, B′(2.03, 0) ∈ b

O′A′= (1.23, 1.63),

A′O′= (−1.23,−1.63),

O′B′= (2.03, 0),

B′O′= (−2.03, 0),

A′B′= (0.80,−1.63),

B′A′= (−0.80, 1.63).

(O′A′,O′A′)= 4.12 > 0,

(A′O′,A′O′)= 4.12 > 0,

(O′B′,O′B′)= 4.12 > 0,

(B′O′,B′O′)= 4.12 > 0,

(A′B′,A′B′)= 3.26 > 0,

(B′A′,B′A′)= 3.26 > 0.

A′O′≡ B′O′,

A′B′≡ B′A′,

(A′O′,A′B′)= −1.31,

(B′O′,B′A′)= −1.60,



that is,

Lets now take other points

and consider these three points as vertices of the triangle O′′A′′B′′ . Let us take the
corresponding vectors

We get

We have

and

that is,

This means that the answer to this question in this case is negative.

4) Again, let us consider E2W2  and two straight lines in E2W2 ,

and

∠O′A′B′ ≢ ∠O′B′A′.

O′′(0, 0) ∈ a ∩ b, A′′(2.25, 2.99) ∈ a, B′′(3.72, 0) ∈ b

O′′A′′= (2.25, 2.99),

A′′O′′= (−2.25,−2.99),

O′′B′′= (3.72, 0),

B′′O′′= (−3.72, 0),

A′′B′′= (1.47,−2.99),

B′′A′′= (−1.47, 2.99).

(O′′A′′,O′′A′′)= 13.81 > 0,

(A′′O′′,A′′O′′)= 13.81 > 0,

(O′′B′′,O′′B′′)= 13.81 > 0,

(B′′O′′,B′′O′′)= 13.81 > 0,

(A′′B′′,A′′B′′)= 8.33 > 0,

(B′′A′′,B′′A′′)= 8.33 > 0.

A′′O′′≡ B′′O′′,

A′′B′′≡ B′′A′′,

(A′′O′′,A′′B′′)= 5.50,

(B′′O′′,B′′A′′)= 5.41

∠O′′A′′B′′ ≢ ∠O′′B′′A′′.

a : x = 0



having a common point O(0, 0).

Let h, k be two distinct half-rays

and

emanating from the point O. So we get ∠(h, k).

Let us take the points

and the corresponding vectors

We get

Let us build strait line c containing points A, B:

that is,

and so

Let us consider a solution of this system,

b : y = 0,

h ⊂ a,

h : [(x, y) ∈ a : y > 0],

k ⊂ b,

k : [(x, y) ∈ b : x > 0],

A(0, 1)∈ h,

B(1, 0)∈ k,

OA= (0, 1),

OB= (1, 0),

AB= OB −2 OA = (1,−1).

(OA,OA)= 1 > 0,

(OB,OB)= 1 > 0,

(AB,AB)= 2,

(OA,OB)= 0.

c : c1 ×2 x+2 c2 ×2 y+2 c3 = 0,

{
c1 ×2 0 +2 c2 ×2 1 +2 c3 = 0,

c1 ×2 1 +2 c2 ×2 0 +2 c3 = 0,

{
c2 = c1,

c1 +2 c3 = 0.



that is, straight line c has the equation

So we get two half-rays

and

emanating from the point A. So we get ∠(l1, g).

Also, we get two half-rays

and

emanating from the point B. So we get ∠(l2, f).

So we get a triangle OAB with vertices O, A, B and two half-rays (h, k) emanating from vertex
O, passing, respectively, through A and B, and forming

Also, (l1, g) are two half-rays emanating from vertex A, passing, respectively, through B and O,
and forming

and (l2, f) are two half-rays emanating from vertex B, passing, respectively, through A and O,
and forming

and we get the vectors

c1 = 1,

c2 = 1,

c3 = −1,

c : x+2 y−2 1 = 0.

l1 ⊂ c,

l1 : [(x, y) ∈ c : x > 0],

g ⊂ a,

g : [(x, y) ∈ a : y < 1],

l2 ⊂ c,

l2 : [(x, y) ∈ c : y > 0],

f ⊂ b,

f : [(x, y) ∈ b : x < 1],

∠(h, k) = ∠AOB.

∠(l1, g) = ∠OAB,

∠(l2, f) = ∠OBA,



and

This means that the triangle AOB is an isosceles triangle with lateral sides

and base AB, and we get

that is, in this case the answer to this question is positive.

So we have proved the following:

Theorem 9.9.

In Mathematics with Observers geometry in the plane E2Wn , there is an isosceles triangle ABC  with

AB ≡ BC  such that ∠BAC ≡ ∠BCA.

Theorem 9.10.

In Mathematics with Observers geometry in the plane E2Wn , there is an isosceles triangle ABC  with

AB ≡ BC  such that ∠BAC ≢ ∠BCA.

9.8  Similar triangles

1) Let us take two straight lines in E2W2 ,

and

and the points

Also, let us consider three straight lines c, d, e ∈ E2W2 ,

AB= (1,−1),

BA= (−1, 1),

AO= (−1, 0),

BO= (0,−1),

(AO,AB)= −1,

(BO,BA)= −1.

AO ≡ OB

∠OAB ≡ ∠OBA,

a : x−2 y = 0

b : y = 0,

O,A1,A2,A3 ∈ a; O,B1,B2,B3 ∈ b :

O(0, 0),A1(1.00, 1.00),A2(2.00, 2.00),A3(3.00, 3.00),B1(1.00, 0.00),B2(2.00, 0.00),

B3(3.00, 0.00).



These three vertical lines are parallel in the Euclidean sense. We have

Now let us consider the triangles OA1B1 , OA2B2 , OA3B3 . We consider the corresponding
vectors

We have

We get in Mathematics with Observers

c : x = 1,

d : x = 2,

e : x = 3.

A1,B1 ∈ c; A2,B2 ∈ d; A3,B3 ∈ e.

OA1= (1.00, 1.00),

OA2= (2.00, 2.00),

OA3= (3.00, 3.00),

OB1= (1.00, 0.00),

OB2= (2.00, 0.00),

OB3= (3.00, 0.00)

A1B1= (0.00, 1.00),

A2B2= (0.00, 2.00),

A3B3= (0.00, 3.00).

(OA1,OA1)= 2,

(OA2,OA2)= 8,

(OA3,OA3)= 18,

(OB1,OB1)= 1,

(OB2,OB2)= 4,

(OB3,OB3)= 9,

(A1B1,A1B1)= 1,

(A2B2,A2B2)= 4

(A3B3,A3B3)= 9.



Note that

and so √18 does not exist, that is, NA.

In classical geometry, triangles OA1B1 , OA2B2 , OA3B3  are similar, and we have the following
equalities:

and

Let us first consider two triangles OA1B1  and OA2B2  and check these equalities. We get in
Mathematics with Observers

|OA1|= √2 = 1.42,

|OA2|= √8 = 2.84,

|OA3|= √18 = NA,

|OB1|= √1 = 1.00,

|OB2|= √4 = 2.00,

|OB3|= √9 = 3.00,

|A1B1|= √1 = 1.00,

|A2B2|= √4 = 2.00,

|A3B3|= √9 = 3.00.

4.24 ×2 4.24 = 17.96; 4.25 ×2 4.25 = 18.04,

|OA3|

|OB3|
=

|OA2|

|OB2|
=

|OA1|

|OB1|
,

|OA3|

|OA2|
=

|OB3|

|OB2|
=

|A3B3|

|A2B2|
,

|OA3|

|OA1|
=

|OB3|

|OB1|
=

|A3B3|

|A1B1|
,

|OA2|

|OA1|
=

|OB2|

|OB1|
=

|A2B2|

|A1B1|
.



that is, in this case the classical geometry equalities are satisfied in Mathematics with Observers
geometry. Note that if we take the inverse classical geometry equalities

and

we get in Mathematics with Observers

that is, in this case the classical geometry equalities are not satisfied in Mathematics with
Observers geometry.

Let us continue to consider the same two triangles OA1B1  and OA2B2 , and instead of the
previous equalities, consider the following:

Let us check these equalities:

|OA2|

|OB2|
=

2.84

2.00
= 1.42,

|OA1|

|OB1|
=

1.42

1
= 1.42,

|OA2|

|OA1|
=

2.84

1.42
= 2,

|OB2|

|OB1|
=

2

1
= 2,

|A2B2|

|A1B1|
=

2

1
= 2,

|OB2|

|OA2|
=

|OB1|

|OA1|

|OA1|

|OA2|
=

|OB1|

|OB2|
=

|A1B1|

|A2B2|
,

|OB2|

|OA2|
=

2.00

2.84
= 0.72,

|OB1|

|OA1|
=

1.00

1.42
= 0.72,

|OA1|

|OA2|
=

1.42

2.84
= 0.51,

|OB1|

|OB2|
=

1

2
= 0.50,

|A1B1|

|A2B2|
=

1

2
= 0.50,

(OA2,OA2) ×2 (OB1,OB1)= (OA1,OA1) ×2 (OB2,OB2),

(OA2,OA2) ×2 (A1B1,A1B1)= (OA1,OA1) ×2 (A2B2,A2B2).



that is, in this case the classical geometry equalities are satisfied in Mathematics with Observers
geometry.

Let us consider now the triangles OA1B1  and OA3B3 . Because the length of OA3  does not
exist,

we can consider the following equalities:

Let us check them:

that is, in this case the classical geometry equalities are satisfied in Mathematics with Observers
geometry.

Finally, let us consider the triangles OA2B2  and OA3B3 . We consider the following equalities:

Let us check them:

that is, in this case the classical geometry equalities are satisfied in Mathematics with Observers
geometry.

2) Let us take again two straight lines in E2W2 ,

and

(OA2,OA2) ×2 (OB1,OB1)= 8 ×2 1 = 8,

(OA1,OA1) ×2 (OB2,OB2)= 2 ×2 4 = 8,

(OA2,OA2) ×2 (A1B1,A1B1)= 8 ×2 1 = 8,

(OA1,OA1) ×2 (A2B2,A2B2)= 2 ×2 4 = 8,

|OA3| = √18 = NA,

(OA3,OA3) ×2 (OB1,OB1)= (OA1,OA1) ×2 (OB3,OB3),

(OA3,OA3) ×2 (A1B1,A1B1)= (OA1,OA1) ×2 (A3B3,A3B3).

(OA3,OA3) ×2 (OB1,OB1)= 18 ×2 1 = 18,

(OA1,OA1) ×2 (OB3,OB3)= 2 ×2 9 = 18,

(OA3,OA3) ×2 (A1B1,A1B1)= 18 ×2 1 = 18,

(OA1,OA1) ×2 (A3B3,A3B3)= 2 ×2 9 = 18,

(OA3,OA3) ×2 (OB2,OB2)= (OA2,OA2) ×2 (OB3,OB3),

(OA3,OA3) ×2 (A2B2,A2B)= (OA2,OA2) ×2 (A3B3,A3B3).

(OA3,OA3) ×2 (OB2,OB2)= 18 ×2 4 = 72,

(OA2,OA2) ×2 (OB3,OB3)= 8 ×2 9 = 72,

(OA3,OA3) ×2 (A2B2,A2B2)= 18 ×2 4 = 72,

(OA2,OA2) ×2 (A3B3,A3B3)= 8 ×2 9 = 72,

a : x−2 y = 0



and the points

Let us also consider three straight lines in E2W2 ,

and

These three vertical lines are parallel in the Euclidean sense, and we have

Now let us consider the triangles OA1B1 , OA2B2 , and OA3B3 . We consider the corresponding
vectors

and we have

We get

b : y = 0,

O,A1,A2,A3 ∈ a; O,B1,B2,B3 ∈ b :

O(0, 0),A1(1.83, 1.83),A2(2.79, 2.79),A3(3.14, 3.14),B1(1.83, 0.00),B2(2.79, 0.00),

B3(3.14, 0.00).

c : x = 1.83,

d : x = 2.79,

e : x = 3.14.

A1,B1 ∈ c; A2,B2 ∈ d; A3,B3 ∈ e.

OA1= (1.83, 1.83),

OA2= (2.79, 2.79),

OA3= (3.14, 3.14),

OB1= (1.83, 0.00),

OB2= (2.79, 0.00),

OB3= (3.14, 0.00),

A1B1= (0.00, 1.83),

A2B2= (0.00, 2.79),

A3B3= (0.00, 3.14),

(OA1,OA1)= 6.60,

(OA2,OA2)= 15.30,

(OA3,OA3)= 19.70,

(OB1,OB1)= 3.30,

(OB2,OB2)= 7.65,

(OB3,OB3)= 9.85,

(A1B1,A1B1)= 3.30,

(A2B2,A2B2)= 7.65,

(A3B3,A3B3)= 9.85.



Note that

So √6.60, √15.30, and √19.70 do not exist, that is, NA.

In classical geometry the triangles OA1B1 , OA2B2 , OA3B3  are similar. Let us first consider
the triangles OA1B1  and OA3B3 . Because the lengths of OA1 , OA2  and OA3  do not exist,
we can consider the following equalities:

Let us check them:

that is, in this case the classical geometry equalities are not satisfied in Mathematics with
Observers geometry.

Let us now consider the triangles OA1B1  and OA2B2 . We consider the following equalities:

Let us check them:

|OA1|= √6.60 = NA,

|OA2|= √15.30 = NA,

|OA3|= √19.70 = NA,

|OB1|= √3.30 = 1.83,

|OB2|= √7.65 = 2.79,

|OB3|= √9.85 = 3.14,

|A1B1|= √3.30 = 1.83,

|A2B2|= √7.65 = 2.79,

|A3B3|= √9.85 = 3.14.

2.58 ×2 2.58= 6.57; 2.59 ×2 2.59 = 6.61,

3.91 ×2 3.91= 15.27; 3.92 ×2 3.92 = 15.33,

4.44 ×2 4.44= 19.68; 4.45 ×2 4.45 = 19.76.

(OA3,OA3) ×2 (OB1,OB1)= (OA1,OA1) ×2 (OB3,OB3),

(OA3,OA3) ×2 (A1B1,A1B1)= (OA1,OA1) ×2 (A3B3,A3B3).

(OA3,OA3) ×2 (OB1,OB1)= 19.70 ×2 3.30 = 65.01,

(OA1,OA1) ×2 (OB3,OB3)= 6.60 ×2 9.85 = 64.98,

(OA3,OA3) ×2 (A1B1,A1B1)= 19.70 ×2 3.30 = 65.01,

(OA1,OA1) ×2 (A3B3,A3B3)= 6.60 ×2 9.85 = 64.98,

(OA2,OA2) ×2 (OB1,OB1)= (OA1,OA1) ×2 (OB2,OB2),

(OA2,OA2) ×2 (A1B1,A1B1)= (OA1,OA1) ×2 (A2B2,A2B2).



that is, in this case the classical geometry equalities are not satisfied in Mathematics with
Observers geometry.

Let us finally consider the triangles OA2B2  and OA3B3 . We consider the following equalities:

Let us check them:

Note that

So

that is, in this case the classical geometry equalities are not satisfied in Mathematics with
Observers geometry.

So we have proved the following:

Theorem 9.11.

In Mathematics with Observers geometry in the plane E2Wn , there are two distinct similar in

Euclidean geometry triangles ABC  and A′B′C ′
 such that they are similar in Mathematics with

Observers geometry.

Theorem 9.12.

In Mathematics with Observers geometry in the plane E2Wn , there are two distinct similar in

Euclidean geometry triangles ABC  and A′B′C ′
 such that they are not similar in Mathematics with

Observers geometry.

(OA2,OA2) ×2 (OB1,OB1)= 15.30 ×2 3.30 = 50.49,

(OA1,OA1) ×2 (OB2,OB2)= 6.60 ×2 7.65 = 50.46,

(OA2,OA2) ×2 (A1B1,A1B1)= 15.30 ×2 3.30 = 50.49,

(OA1,OA1) ×2 (A2B2,A2B2)= 6.60 ×2 7.65 = 50.46,

(OA3,OA3) ×2 (OB2,OB2)= (OA2,OA2) ×2 (OB3,OB3),

(OA3,OA3) ×2 (A2B2,A2B2)= (OA2,OA2) ×2 (A3B3,A3B3).

(OA3,OA3) ×2 (OB2,OB2)= 19.70 ×2 7.65 = NA,

(OA2,OA2) ×2 (OB3,OB3)= 15.30 ×2 9.85 = NA,

(OA3,OA3) ×2 (A2B2,A2B2)= 19.70 ×2 7.65 = NA,

(OA2,OA2) ×2 (A3B3,A3B3)= 15.30 ×2 9.85 = NA.

19.70 ×2 7.65∉ W2,

15.30 ×2 9.85∉ W2.

(OA3,OA3) ×2 (OB2,OB2)= NA,

(OA2,OA2) ×2 (OB3,OB3)= NA,

(OA3,OA3) ×2 (A2B2,A2B2)= NA,

(OA2,OA2) ×2 (A3B3,A3B3)= NA,



9.9  Pascal’s theorem

In classical geometry the following Pascal theorem takes place:

Given two sets of points A, B, C and A′ , B′ , C ′  situated upon two intersecting straight lines
such that none falls at the intersection of these lines. If CB′  is parallel to BC ′  and CA′  is
parallel to AC ′ , then BA′  is parallel to AB′ .

Of course, “parallel” here is understood in the Euclidean sense.

Question: Is this theorem correct Mathematics with Observers geometry?

1) Let us take two straight lines in E2W2 ,

and

and points A,B,C ∈ a and A′,B′,C ′ ∈ a′ :

Let us also consider four straight lines b, c, d, e ∈ E2W2 :

We have

Line A′C  is parallel to line AC ′ , and line B′C  is parallel to line BC ′  in the Euclidean sense.

Let us consider straight line f containing points A′ , B and straight line g containing points A, B′

if they exist:

We have

that is,

a : y = 0

a′ : x−2 y = 0,

A(8.00, 0.00),B(4.00, 0.00),C(2.00, 0.00),A′(1.00, 1.00),B′(2.00, 2.00),C ′(4.00, 4.00).

b : x+2 y−2 2 = 0,

c : x = 2.00,

d : x = 4.00,

e : x+2 y−2 8 = 0.

A′,C ∈ b; B′,C ∈ c; B,C ′ ∈ d; A,C ′ ∈ e.

f : f1 ×2 x+2 f2 ×2 y+2 f3 = 0,

g : g1 ×2 x+2 g2 ×2 y+2 g3 = 0.

{
f1 ×2 1 +2 f2 ×2 1 +2 f3 = 0,

f1 ×2 4 +2 f2 ×2 0 +2 f3 = 0,



that is,

One possible solution of this system is

So one of possible straight lines f containing points A′ , B is

Now we go to line g. We have

that is,

that is,

One possible solution of this system is

So one of possible straight lines g containing points A, B′  is

We see that lines f and g are parallel in the Euclidean sense. This means that in this case the
answer to the question is positive.

2) Let us take the same two straight lines in E2W2 ,

and

{
f1 +2 f2 = f1 ×2 4,

f1 ×2 4 +2 f3 = 0,

{
f2 = f1 ×2 3,

−f1 ×2 4 = f3.

f1 = 1,

f2 = 3,

f3 = −4.

f : x+2 3 ×2 y−2 4 = 0.

{
g1 ×2 2 +2 g2 ×2 2 +2 g3 = 0,

g1 ×2 8 +2 g2 ×2 0 +2 g3 = 0,

{
g1 ×2 2 +2 g2 ×2 2 = g1 ×2 8,

g1 ×2 8 +2 g3 = 0,

{
g2 ×2 2 = g1 ×2 6,

−g1 ×2 8 = g3.

g1 = 1,

g2 = 3,

g3 = −8.

g : x+2 3 ×2 y−2 8 = 0.

a : y = 0



and the points A,B,C ∈ a and A′,B′,C ′ ∈ a′ :

Let us also consider four straight lines b, c, d, e ∈ E2W2 :

We have

Line A′C  is parallel to line AC ′ , and line B′C  is parallel to line BC ′  in the Euclidean sense.

Let us consider straight line f containing points A′ , B and straight line g containing points A, B′

if they exist:

We have

that is,

that is,

One possible solution of this system is

So one of possible straight lines f containing points A′ , B is

Now we go to line g. We have

a′ : x−2 y = 0,

A(9.72, 0.00),B(4.86, 0.00),C(2.14, 0.00),A′(1.07, 1.07),B′(2.14, 2.14),C ′(4.86, 4.86).

b : x+2 y−2 2.14 = 0,

c : x = 2.14,

d : x = 4.86,

e : x+2 y−2 9.72 = 0.

A′,C ∈ b; B′,C ∈ c; B,C ′ ∈ d; A,C ′ ∈ e.

f : f1 ×2 x+2 f2 ×2 y+2 f3 = 0,

g : g1 ×2 x+2 g2 ×2 y+2 g3 = 0

{
f1 ×2 1.07 +2 f2 ×2 1.07 +2 f3 = 0,

f1 ×2 4.86 +2 f2 ×2 0 +2 f3 = 0,

{
f1 ×2 1.07 +2 f2 ×2 1.07 = f1 ×2 4.86,

f1 ×2 4.86 +2 f3 = 0,

{
f2 ×2 1.07 = f1 ×2 4.86 −2 f1 ×2 1.07,

−f1 ×2 4.86 = f3.

f1 = 1,

f2 = 3.58,

f3 = −4.86.

f : x+2 3.58 ×2 y−2 4.86 = 0.



that is,

that is,

One possible solution of this system is

So one of possible straight lines g containing points A, B′  is

Lines f and g are not parallel in the Euclid sense because straight line g′  containing point A and
parallel to line f has the equation

and lines g and g′  are different ( B′ ∈ g, but B′ ∉ g′ ).

This means that in this case the answer to the question is negative.

So we have proved the following:

Theorem 9.13.

In Mathematics with Observers geometry in the plane E2Wn , there are two sets of points A, B, C and

A′ , B′ , C ′
 situated upon two intersecting straight lines so that none falls at the intersection of these

lines, CB′
 is parallel in the Euclidean sense to BC ′ , CA′

 is parallel in the Euclidean sense to AC ′ ,

and BA′
 is parallel in the Euclidean sense to AB′ .

Theorem 9.14.

In Mathematics with Observers geometry in the plane E2Wn , there are two sets of points A, B, C and

A′ , B′ , C ′
 situated upon two intersecting straight lines so that none falls at the intersection of these

lines, CB′
 is parallel in the Euclidean sense to BC ′ , CA′

 is parallel in the Euclidean sense to AC ′ ,

but BA′
 is not parallel in the Euclidean sense to AB′ .

9.10  Desargues’s theorem

In classical geometry the following Desargues theorem takes place:

{
g1 ×2 2.14 +2 g2 ×2 2.14 +2 g3 = 0,

g1 ×2 9.72 +2 g2 ×2 0 +2 g3 = 0,

{
g1 ×2 2.14 +2 g2 ×2 2.14 = g1 ×2 9.72,

g1 ×2 9.72 +2 g3 = 0,

{
g2 ×2 2.14 = g1 ×2 9.72 −2 g1 ×2 2.14,

−g1 ×2 9.72 = g3.

g1 = 1.01,

g2 = 3.59,

g3 = −9.81.

g : 1.01 ×2 x+2 3.59 ×2 y−2 9.81 = 0.

g′ : x+2 3.58 ×2 y−2 9.72 = 0,



If two triangles are situated in a plane so that their homologous sides are respectively parallel,
then the lines joining the homologous vertices pass through a unique point or are parallel.

Of course, “parallel” here is understood in the Euclidean sense.

Question: Is this theorem correct in Mathematics with Observers geometry?

1) Let us take six points A,B,C,A′,B′,C ′ ∈ E2W2 :

Let us consider six straight lines a, b, c, d, e, f ∈ E2W2 :

We have

and

Let us consider straight lines

if they exist:

For line g, we get

that is,

One possible solution of this system is

A(0, 0),B(1, 0),C(0, 2),A′(2, 1),B′(4, 1),C ′(2, 5).

a : y = 0,

b : x = 0,

c : 2 ×2 x+2 y−2 2 = 0,

d : y = 1,

e : x = 2,

f : 2 ×2 x+2 y−2 9 = 0.

A,B ∈ a; A,C ∈ b; B,C ∈ c; A′,B′ ∈ d; A′,C ′ ∈ e; B′,C ′ ∈ f

a ∥ d; b ∥ e; c ∥ f.

g ⊃ [A,A′]; h ⊃ [B,B′]; i ⊃ [C,C ′]

g : g1 ×2 x+2 g2 ×2 y+2 g3 = 0,

h : h1 ×2 x+2 h2 ×2 y+2 h3 = 0,

i : i1 ×2 x+2 i2 ×2 y+2 i3 = 0.

{
g1 ×2 0.00 +2 g2 ×2 0.00 +2 g3 = 0,

g1 ×2 2.00 +2 g2 ×2 1.00 +2 g3 = 0,

{
g3 = 0,

g1 ×2 2.00 +2 g2 = 0.



and thus line g has the equation

For line h, we get

that is,

One possible solution of this system is

and thus line h has the equation

For line i, we get

that is,

One possible solution of this system is

and thus line i has the equation

Let us now find the intersection of lines g, h, i:

g1 = −1.00,

g2 = 2,

g3 = 0,

g : −x+2 2 ×2 y = 0.

{
h1 ×2 1.00 +2 h2 ×2 0.00 +2 h3 = 0,

h1 ×2 4.00 +2 h2 ×2 1.00 +2 h3 = 0,

{
h3 = −h1,

−h1 ×2 3.00 = h2.

h1 = −1.00,

h2 = 3,

h3 = 1,

h : −x+2 3 ×2 y−2 1 = 0.

{
i1 ×2 0.00 +2 i2 ×2 2.00 +2 i3 = 0,

i1 ×2 2.00 +2 i2 ×2 5.00 +2 i3 = 0,

{
i3 = −i2 ×2 2.00,

−i1 ×2 2.00 = i2 ×2 3.00.

i1 = −3.00,

i2 = 2.00,

i3 = −4.00,

i : −3.00 ×2 x+2 2.00 ×2 y−2 4.00 = 0.



that is,

that is,

that is, the lines joining the homologous vertices of the triangles ABC  and A′B′C ′  pass
through a unique point. This means that in this case the answer to the question is positive.

2) Let us take six points A,B,C,A′,B′,C ′ ∈ E2W2 :

Let us consider six straight lines a, b, c, d, e, f ∈ E2W2 :

We have

and

Let us consider straight lines

if they exist:

For line g, we get

−x+2 2 ×2 y = 0,

−x+2 3 ×2 y+2 1 = 0,

−3.00 ×2 x+2 2.00 ×2 y−2 4.00 = 0,

x = 2 ×2 y,

−x+2 3 ×2 y+2 1 = 0,

−3.00 ×2 x+2 2.00 ×2 y−2 4.00 = 0,

{
x = −2.00,

y = −1.00,

A(1.12, 1.12),B(2.12, 1.12),C(1.12, 3.12),A′(2, 1),B′(4, 1),C ′(2, 5).

a : y = 1.12,

b : x = 1.12,

c : 2 ×2 x+2 y−2 5.36 = 0,

d : y = 1,

e : x = 2,

f : 2 ×2 x+2 y−2 9 = 0.

A,B ∈ a; A,C ∈ b; B,C ∈ c; A′,B′ ∈ d; A′,C ′ ∈ e; B′,C ′ ∈ f

a ∥ d; b ∥ e; c ∥ f.

g ⊃ [A,A′]; h ⊃ [B,B′]; i ⊃ [C,C ′]

g : g1 ×2 x+2 g2 ×2 y+2 g3 = 0,

h : h1 ×2 x+2 h2 ×2 y+2 h3 = 0,

i : i1 ×2 x+2 i2 ×2 y+2 i3 = 0.



that is,

One possible solution of this system is

and line g has the equation

For line h, we get

that is,

A possible solution of this system is

and line h has the equation

For line i, we get

that is,

One possible solution of this system is

{
g1 ×2 1.12 +2 g2 ×2 1.12 +2 g3 = 0,

g1 ×2 2.00 +2 g2 ×2 1.00 +2 g3 = 0,

{
−g3 = g1 ×2 2.00 +2 g2 ×2 1.00,

g1 ×2 1.12 −2 g1 ×2 2.00 = g2 ×2 1.00 −2 g2 ×2 1.12.

g1 = 1.00,

g2 = 7.40,

g3 = −9.40,

g : x+2 7.40 ×2 y−2 9.40 = 0.

{
h1 ×2 2.12 +2 h2 ×2 1.12 +2 h3 = 0,

h1 ×2 4.00 +2 h2 ×2 1.00 +2 h3 = 0,

{
−h3 = h1 ×2 4.00 +2 h2 ×2 1.00,

h1 ×2 2.12 −2 h1 ×2 4.00 = h2 ×2 1.00 −2 h2 ×2 1.12.

h1 = 1.00,

h2 = 15.80,

h3 = −19.80,

h : x+2 15.80 ×2 y−2 19.80 = 0.

{
i1 ×2 1.12 +2 i2 ×2 3.12 +2 i3 = 0,

i1 ×2 2.00 +2 i2 ×2 5.00 +2 i3 = 0,

{
−i3 = i1 ×2 2.00 +2 i2 ×2 5.00,

i1 ×2 1.12 −2 i1 ×2 2.00 = i2 ×2 5.00 −2 i2 ×2 3.12.



and line i has the equation

Let us now find now the intersection of lines g, h, i:

that is,

that is,

that is,

that is, the lines joining the homologous vertices of the triangles ABC  and A′B′C ′  pass
through a unique point. This means that in this case the answer to the question is positive.

3) Let us take six points A,B,C,A′,B′,C ′ ∈ E2W2 :

Let us consider six straight lines a, b, c, d, e, f ∈ E2W2 :

We have

i1 = −2.13,

i2 = 1.00,

i3 = −0.74,

i : −2.13 ×2 x+2 y−2 0.74 = 0.

x+2 7.40 ×2 y−2 9.40 = 0,

x+2 15.80 ×2 y−2 19.80 = 0,

−2.13 ×2 x+2 y−2 0.74 = 0,

x = −7.40 ×2 y+2 9.40,

−7.40 ×2 y+2 9.40 +2 15.80 ×2 y−2 19.80 = 0,

−2.13 ×2 (−7.40 ×2 y+2 9.40) +2 y−2 0.74 = 0,

x = −7.40 ×2 y+2 9.40,

−7.40 ×2 y+2 15.80 ×2 y−2 10.40 = 0,

−2.13 ×2 (−7.40 ×2 y+2 9.40) +2 y−2 0.74 = 0,

{
x = 0.24,

y = 1.24,

A(0.23, 0.98),B(1.11, 2.65),C(1.39, 2.65),A′(2.74, 3.14),B′(8.01, 13.07),C ′(8.95, 13.07).

a : 1.47 ×2 x−2 y+2 0.67 = 0,

b : 1.87 ×2 x−2 y+2 0.59 = 0,

c : y−2 2.65 = 0,

d : 1.47 ×2 x−2 y−2 0.82 = 0,

e : 1.87 ×2 x−2 y−2 1.90 = 0,

f : y−2 13.07 = 0.



and

in the Euclidean sense.

Let us consider straight lines

if they exist:

For line g, we get

that is,

One possible solution of this system is

and line g has the equation

For line h, we get

that is,

One possible solution of this system is

A,C ∈ a; A,B ∈ b; B,C ∈ c; A′,C ′ ∈ d; A′,B′ ∈ e; B′,C ′ ∈ f

a ∥ d; b ∥ e; c ∥ f

g ⊃ [A,A′]; h ⊃ [B,B′]; i ⊃ [C,C ′]

g : g1 ×2 x+2 g2 ×2 y+2 g3 = 0,

h : h1 ×2 x+2 h2 ×2 y+2 h3 = 0,

i : i1 ×2 x+2 i2 ×2 y+2 i3 = 0.

{
g1 ×2 0.23 +2 g2 ×2 0.98 +2 g3 = 0,

g1 ×2 2.74 +2 g2 ×2 3.14 +2 g3 = 0,

{
−g3 = g1 ×2 0.23 +2 g2 ×2 0.98,

g1 ×2 0.23 −2 g1 ×2 2.74 = g2 ×2 3.14 −2 g2 ×2 0.98.

g1 = −0.88,

g2 = 1.00,

g3 = −0.82,

g : −0.88 ×2 x+2 y−2 0.82 = 0.

{
h1 ×2 1.11 +2 h2 ×2 2.65 +2 h3 = 0,

h1 ×2 8.01 +2 h2 ×2 13.07 +2 h3 = 0,

{
−h3 = h1 ×2 1.11 +2 h2 ×2 2.65,

h1 ×2 1.11 −2 h1 ×2 8.01 = h2 ×2 13.07 −2 h2 ×2 2.65.



and line h has the equation

For line i, we get

that is,

One possible solution of this system is

and line i has the equation

Let us now find the intersection of lines g, h, i:

that is,

that is

that is, the lines joining the homologous vertexes of the triangles ABC  and A′B′C ′  do not pass
through a unique point. This means that in this case the answer to the question is negative.

So we have proved the following:

h1 = −1.51,

h2 = 1,

h3 = −0.98,

h : −1.51 ×2 x+2 y−2 0.98 = 0.

{
i1 ×2 1.39 +2 i2 ×2 2.65 +2 i3 = 0,

i1 ×2 8.95 +2 i2 ×2 13.07 +2 i3 = 0,

{
−i3 = i1 ×2 1.39 +2 i2 ×2 2.65,

i1 ×2 1.39 −2 i1 ×2 8.95 = i2 ×2 13.07 −2 i2 ×2 2.65.

i1 = −1.31,

i2 = 0.95,

i3 = −0.65,

i : −1.31 ×2 x+2 0.95 ×2 y−2 0.65 = 0.

−0.88 ×2 x+2 y−2 0.82 = 0,

−1.51 ×2 x+2 y−2 0.98 = 0,

−1.31 ×2 x+2 0.95 ×2 y−2 0.65 = 0,

−0.88 ×2 x−2 0.82 = −y,

0.88 ×2 x+2 0.82 = 1.51 ×2 x+2 0.98,

−1.31 ×2 x+2 0.95 ×2 y−2 0.65 = 0,

x = −0.22,

y = 0.66,

−1.31 ×2 (−0.22) +2 0.95 ×2 0.66 −2 0.65 = 0.17 ≠ 0,



Theorem 9.15.

In Mathematics with Observers geometry in the plane E2Wn , there are two triangles situated in a

plane so that their homologous sides are parallel in the Euclidean sense, and the lines joining the

homologous vertices pass through a unique point or are parallel in the Euclidean sense.

Theorem 9.16.

In Mathematics with Observers geometry in the plane E2Wn , there are two triangles situated in a

plane so that their homologous sides are parallel in the Euclidean sense, and the lines joining the

homologous vertices neither pass through a unique point nor are parallel in the Euclidean sense.



10  Observability and triangles. Special cases

In this chapter, we consider the straight lines with equations

or

where x, y,m, b,m ×n x +n b ∈ Wn .

10.1  Angle bisector of triangle theorem

In classical geometry, we have the following statement:

In the angle C of a triangle △ABC , the bisector CD divides the side AB proportionally to the
corresponding sides:

Let us now consider the situation in Mathematics with Observers geometry. First, let us give the
definition of the angle bisector line. Let us take a point E on the half-ray AB, a point F on the
half-ray AC , and a point G on the half-ray AD and the corresponding three vectors AE, AF,
AG. Let

We say that the half-ray AD is an angle A bisector line if

Note that if we take any △AB′C ′  with points

then AD is still an angle A bisector.

Let n = 2. We would like to check if the following equality is correct:

For this, let us consider several cases.

y = m ×n x +n b

m ×n x +n b = 0,

AC

AD
=

BC

BD
.

(AE, AE)> 0,

(AF, AF)> 0,

(AG, AG)> 0,

(AE, AE)= (AF, AF).

(AE, AG) = (AG, AF).

B′ ∈ AB, C ′ ∈ AC,

(AB, AB) ×n (DC, DC) = (AC, AC) ×n (BD, BD).



1. Let us consider △ABC  with sides

Let us determine the coordinates of the vertices of △ABC . The coordinates of the point A are
the solution of the system

and we get A(0, 2).

The coordinates of the point B are the solution of the system

and we get B(−1, 0).

The coordinates of the point C are the solution of the system

and we get C(1, 0).

The coordinates of the point D (base of the angle A bisector AD) satisfy

and we get D(0, 0).

Let us check that the line AD is an angle A bisector. Let us consider in this case

AB : y = 2 ×2 x +2 2,

AC : y = −2 ×2 x +2 2,

BC : y = 0.

{
y = 2 ×2 x +2 2,

y = −2 ×2 x +2 2,

{
y = 2 ×2 x +2 2,

y = 0,

{
y = −2 ×2 x +2 2,

y = 0,

{
x = 0,

y = 0,

E= B,

F= C,

D= G,

AE= (−1, −2),

(AE, AE)= −1 ×2 −1 +2 −2 ×2 −2 = 5 > 0,

AF= (1, −2),

(AF, AF)= 1 ×2 1 +2 −2 ×2 −2 = 5 > 0,

AG= (0, −2),

(AG, AG)= 0 ×2 0 +2 −2 ×2 −2 = 4 > 0,



that is,

So we have proved that in this case, the line AD is an angle A bisector. To get the answer to the
question above, let us calculate

and, finally,

that is,

This means that the answer to this question is positive.

2. Let us consider △ABC ′  with the same points A and B and C ′ ∈ AC  where C is as in the
previous case. So we have

and AD is an angle A bisector. Let

The coordinates of the point C ′  are the solution of the system

and we get C ′(0.33, 1.34).

Let D′  be the intersection of the angle A bisector AD and line BC ′ . The coordinates of the point
D′  are the solution of the system

and we get D′(0, 1.01).

We get

(AE, AE) = (AF, AF).

BD= (1, 0),

(BD, BD)= 1 ×2 1 +2 0 ×2 0 = 1 > 0,

DC= (−1, 0),

(DC, DC)= −1 ×2 −1 +2 0 ×2 0 = 1 > 0,

(AB, AB) ×n (DC, DC)= 5 ×2 1 = 5,

(AC, AC) ×n (BD, BD)= 5 ×2 1 = 5,

(AB, AB) ×n (DC, DC) = (AC, AC) ×n (BD, BD).

A(0, 2),B(−1, 0),C(1, 0),

BC ′ : y = 1.01 ×2 x +2 1.01.

{
y = −2 ×2 x +2 2,

y = 1.01 ×2 x +2 1.01,

{
x = 0,

y = 1.01 ×2 x +2 1.01,



and, finally,

So

This means that the answer to the question is positive.

3. Let us consider △ABC  with sides

Let us determine the coordinates of the vertices of △ABC . The coordinates of the point A are
the solution of the system

and we get A(0, 8).

The coordinates of the point B are the solution of the system

and we get B(−2, 0).

The coordinates of the point C are the solution of the system

and we get C(2, 0).

The coordinates of the point D (base of the angle A bisector AD) are

(AB, AB)= 1 ×2 1 +2 2 ×2 2 = 5 > 0,

(AC′, AC′)= 0.33 ×2 0.33 +2 0.66 ×2 0.66 = 0.45 > 0,

(BD′, BD′)= 1 ×2 1 +2 1.01 ×2 1.01 = 2.02 > 0,

(D′C′, D′C′)= 0.33 ×2 0.33 +2 0.33 ×2 0.33 = 0.18 > 0,

(AB, AB) ×2 (D′C′, D′C′)= 0.9,

(AC
′, AC

′) ×2 (BD′, BD′)= 0.9

(AB, AB) ×2 (D′C′, D′C′) = (AC′, AC′) ×2 (BD′, BD′).

AB : y = 4 ×2 x +2 8,

AC : y = −4 ×2 x +2 8,

BC : y = 0.

{
y = 4 ×2 x +2 8,

y = −4 ×2 x +2 8,

{
y = 4 ×2 x +2 8,

y = 0,

{
y = −4 ×2 x +2 8,

y = 0,

{
x = 0,

y = 0,



and we get D(0, 0).

Let us check that line AD is an angle A bisector. Let us consider in this case

that is,

So we have proved that in this case line AD is an angle A bisector. To get the answer to the
question above, let us calculate

and, finally,

Let

The coordinates of the point C ′  are the solution of the system

and we get C ′(0.66, 5.36).

Let D′  be the intersection of the angle A bisector AD and line BC ′ . The coordinates of the point
D′  are the solution of the system

E= B,

F= C,

D= G,

AE= (−2, −8),

(AE, AE)= −2 ×2 −2 +2 −8 ×2 −8 = 68 > 0,

AF= (2, −8),

(AF, AF)= 2 ×2 2 +2 −8 ×2 −8 = 68 > 0,

AG= (0, −8),

(AG, AG)= 0 ×2 0 +2 −8 ×2 −8 = 64 > 0,

(AE, AE) = (AF, AF).

BD= (2, 0),

(BD, BD)= 2 ×2 2 +2 0 ×2 0 = 4 > 0,

DC= (−2, 0),

(DC, DC)= −2 ×2 −2 +2 0 ×2 0 = 4 > 0,

(AB, AB) ×n (DC, DC)= 68 ×2 4 ∉ W2,

(AC, AC) ×n (BD, BD)= 68 ×2 4 ∉ W2.

BC ′ : y = 2.02 ×2 x +2 4.04.

{
y = −4 ×2 x +2 8,

y = 2.02 ×2 x +2 4.04,

{
x = 0,

y = 2.02 ×2 x +2 4.04,



and we get D′(0, 4.04).

We get

and, finally,

This means that the answer to the question in this case is negative because the element of this
equality that we checked does not exist in W2 .

4. Let us consider △ABC  with sides

Let us determine the coordinates of the vertices of △ABC . The coordinates of the point A are
the solution of the system

and we get A(0, 6).

The coordinates of the point B are the solution of the system

and we get B(−2, 0).

The coordinates of the point C are the solution of the system

and we get C(2, 0).

The coordinates of the point D (base of the angle A bisector AD) are

(AB, AB)= 68 > 0,

(AC′, AC′)= 7.28 > 0,

(BD′, BD′)= 20.32 > 0,

(D′C′, D′C′)= 2.09 > 0,

(AB, AB) ×2 (D′C′, D′C′) = 68 ×2 2.09 ∉ W2.

AB : y = 3 ×2 x +2 6,

AC : y = −3 ×2 x +2 6,

BC : y = 0.

{
y = 3 ×2 x +2 6,

y = −3 ×2 x +2 6,

{
y = 3 ×2 x +2 6,

y = 0,

{
y = −3 ×2 x +2 6,

y = 0,

{
x = 0,

y = 0,



and we get D(0, 0).

Let us check that line AD is an angle A bisector. Let u consider in this case

that is,

So we have proved that in this case, line AD is an angle A bisector. To get the answer to the
question above, let us calculate

and, finally,

that is,

Let

The coordinates of the point C ′  are the solution of the system

and we get C ′(0.67, 3.99).

Let D′  be the intersection of the angle A bisector AD and line BC ′ . The coordinates of the point
D′  are the solution of the system

E= B,

F= C,

D= G,

AE= (−2, −6),

(AE, AE)= −2 ×2 −2 +2 −6 ×2 −6 = 40 > 0,

AF= (2, −6),

(AF, AF)= 2 ×2 2 +2 −6 ×2 −6 = 40 > 0,

AG= (0, −6),

(AG, AG)= 0 ×2 0 +2 −6 ×2 −6 = 36 > 0,

(AE, AE) = (AF, AF).

BD= (2, 0),

(BD, BD)= 2 ×2 2 +2 0 ×2 0 = 4 > 0,

DC= (−2, 0),

(DC, DC)= −2 ×2 −2 +2 0 ×2 0 = 4 > 0,

(AB, AB) ×n (DC, DC)= 40 ×2 4 ∉ W2,

(AC, AC) ×n (BD, BD)= 40 ×2 4 ∉ W2,

(AB, AB) ×n (DC, DC) = (AC, AC) ×n (BD, BD).

BC ′ : y = 1.51 ×2 x +2 3.02.

{
y = −3 ×2 x +2 6,

y = 1.51 ×2 x +2 3.02,



and we get D′(0, 3.02).

We get

and, finally,

So

This means that the answer to this question in this case is negative.

So we have proved the following:

Theorem 10.1.

In Mathematics with Observers geometry on the plane, there are triangles where the classical angle

bisector theorem adopted for Observers’ case is correct, and there are triangles where this statement is

wrong.

10.2  Middle of segment, median, gravitation center of triangle

Before developing the main theorem of this topic, we need to consider several situations.

1. Let n = 2, and let us consider △(OAB) with

Let L, M, and N be the midpoints of OA, AB, and OB, respectively:

Let us find the equation of median BL:

{
x = 0,

y = 1.51 ×2 x +2 3.02,

(AB, AB)= 40 > 0,

(AC′, AC′)= 4.4 > 0,

(BD′, BD′)= 13.12 > 0,

(D′C′, D′C′)= 1.17 > 0,

(AB, AB) ×2 (D′C′, D′C′)= 40 ×2 1.17 = 46.8,

(AC
′, AC

′) ×2 (BD′, BD′)= 4.4 ×2 13.12 = 57.72.

46.8 ≠ 57.72.

O(0, 0); A(1, 6); B(1.5, 4.5).

L(0.5, 3); M(1.25, 5.25); N(0.75, 2.25).

y = k ×2 x +2 b,

{
4.5 = 1.5 ×2 k +2 b,

3 = 0.5 ×2 k +2 b.



So

and thus the equation of median BL is

Let us find the equation of median OM :

So

and, finally, the equation of median OM  is

Let us find the equation of the median AN :

So

and, finally, the equation of median AN  is

The centroid of △(OAB) is the point of intersection of all three medians BL, OM , AN , that is,
a solution of the following system of equations:

First, let us find the solution of the system

{
k = 1.5,

b = 2.25,

y = 1.5 ×2 x +2 2.25.

y = k ×2 x +2 b,

{
0 = 0 ×2 k +2 b,

5.25 = 1.25 ×2 k +2 b.

{
k = 4.21,

b = 0,

y = 4.21 ×2 x.

y = k ×2 x +2 b,

{
6 = 1 ×2 k +2 b,

2.25 = 0.75 ×2 k +2 b.

{
k = 15,

b = −9,

y = 15 ×2 x −2 9.

y = 1.5 ×2 x +2 2.25,

y = 4.21 ×2 x,

y = 15 ×2 x −2 9.

{

0 = 15 ×2 x −2 1.5 ×2 x −2 11.25,

y = 1.5 ×2 x +2 2.25,

y = 15 ×2 x −2 9,



or

When x = 0.83, we get

When x = 0.84, we get

This means that this system has no solution, that is, the medians BL and AN  do not intersect.

Let us find the solution of the system

When x = 0.83, we get

This means that this system has a solution: the medians BL and OM  intersect at the point

Let us find the solution of the system

When x = 0.83, we get

When x = 0.84, we get

This means that this system has no solution, that is, the medians AN  and OM  do not intersect.

This means that △(OAB) does not have a centroid, so a very important conclusion to classical
mechanics is that there are some homogeneous planes of the form of △(OAB) that have no
center of gravity.

2. Let n = 2, and consider △(OAB) with

11.25 = 15 ×2 x −2 1.5 ×2 x.

15 ×2 0.83 −2 1.5 ×2 0.83 = 11.22 ≠ 11.25.

15 ×2 0.84 −2 1.5 ×2 0.84 = 11.36 ≠ 11.25.

{

2.25 = 4.21 ×2 x −2 1.5 ×2 x.

y = 1.5 ×2 x +2 2.25,

y = 4.21 ×2 x,

4.25 ×2 0.83 −2 1.5 ×2 0.83 = 3.48 −2 1.23 = 2.25.

D(0.83, 3.48).

{

15 ×2 x −2 4.21 ×2 x = 9.

y = 15 ×2 x −2 9,

y = 4.21 ×2 x,

15 ×2 0.83 −2 4.21 ×2 0.83 = 8.97 < 9.

15 ×2 0.84 −2 4.21 ×2 0.84 = 9.08 > 9.

O(0, 0); A(0, 4); B(2, 0).



Let K, C, and L be the midpoints of OA, AB, and OB, respectively. We get

Let us find the equation of the median OC :

So

and, finally, the equation of median OC  is

Let us find the equation of median AL:

So

and, finally, the equation of median AL is

Let us find the equation of median BK :

So

and, finally, the equation of median AN  is

The centroid of △(OAB) is the point of intersection of all three medians OC , AL, BK , that is,
is the solution of the system of equations

K(0, 2); C(1, 2); L(1, 0).

y = k ×2 x +2 b,

{
0 = 0 ×2 k +2 b,

2 = 1 ×2 k +2 b.

{
k = 2,

b = 0,

y = 2 ×2 x.

y = k ×2 x +2 b,

{
4 = 0 ×2 k +2 b,

0 = 1 ×2 k +2 b.

{
k = −4,

b = 4,

y = −4 ×2 x +2 4.

y = k ×2 x +2 b,

{
2 = 0 ×2 k +2 b,

0 = 2 ×2 k +2 b.

{
k = −1,

b = 2,

y = −x +2 2.



First, let us find the solution of the system

or

When x = 0.66, we get

When x = 0.67, we get

This means that this system has no solution, that is, the medians OC  and AL do not intersect.

Let us find the solution of the system

When x = 0.66, we get

When x = 0.67 we get

This means that this system has no solution, that is, the medians OC  and BK  do not intersect.

Let us find the solution of the system

When x = 0.66, we get

When x = 0.67, we get

y = 2 ×2 x,

y = −4 ×2 x +2 4,

y = −x +2 2.

{

2 ×2 x = −4 ×2 x +2 4,

y = 2 ×2 x,

y = −4 ×2 x +2 4,

4 = 4 ×2 x +2 2 ×2 x.

4 ×2 0.66 +2 2 ×2 0.66 = 3.96 < 4.

4 ×2 0.67 +2 2 ×2 0.67 = 4.02 > 4.

{

2 = 2 ×2 x +2 x.

y = 2 ×2 x,

y = −x +2 2,

2 ×2 0.66 +2 0.66 = 1.98 < 2.

2 ×2 0.67 +2 0.67 = 2.01 > 2.

{

2 = 4 ×2 x −2 x.

y = −4 ×2 x +2 4,

y = −x +2 2,

4 ×2 0.66 −2 0.66 = 1.98 < 2.



This means that this system has no solution, that is, the medians AL and BK  do not intersect.
So we have showed that each pair of medians does not intersect. This means that △(OAB) does
not have a centroid, and again it is a very important conclusion to classical mechanics: we get
some homogeneous planes of the form △(OAB) having no center of gravity.

3. Let n = 3, and consider △(OAB) with

Let K, C, and L be the midpoints of OA, AB, and OB, respectively. We get

Let us find the equation of median OC :

So

and, finally, the equation of median OC  is

The equation of median AL is

Let us find the equation of median BK :

So

The centroid of △(OAB) is the point of intersection of all three medians OC , AL, BK , the
solution of the system of equations

4 ×2 0.67 −2 0.67 = 2.01 > 2.

O(0, 0); A(2, 1.734); B(4, 0).

K(1, 0.867); C(3, 0.867); L(2, 0).

y = k ×3 x +3 b,

{
0 = 0 ×3 k +3 b,

0.867 = 3 ×3 k +3 b.

{
k = 0.289,

b = 0,

y = 0.289 ×3 x.

x = 2.

y = k ×3 x +3 b,

{
0 = 4 ×3 k +3 b,

0.867 = 1 ×3 k +3 b.

{
k = −0.289,

b = 1.156.

y = 0.289 ×3 x,

x = 2,

y = −0.289 ×3 x +3 1.156.



First, let us find the solution of the system

So

Let us find the solution of the system

So

This means that the system of equations

has the solution

So we have showed that three medians of △(OAB) intersect, and thus △(OAB) has a
centroid. We have proved the following:

Theorem 10.2.

In Mathematics with Observers geometry on the planes, there are triangles having a centroid and

triangles having no centroid.

4. Let us continue to consider △(OAB) with vertices

and the midpoints K, C, and L of OA, AB, and OB, respectively:

from the W3 -observer point of view.

As we showed above, the △(OAB) has the centroid F(2, 0.528).

Classical geometry states the following theorem:

{
y = 0.289 ×3 x,

x = 2.

{
x = 2,

y = 0.578.

{
y = −0.289 ×3 x +3 1.156,

x = 2.

{
x = 2,

y = 0.578.

y = 0.289 ×3 x,

x = 2,

y = −0.289 ×3 x +3 1.156

{
x = 2,

y = 0.578.

O(0, 0); A(2, 1.734); B(4, 0)

K(1, 0.867); C(3, 0.867); L(2, 0)



“Three medians of any triangle intersect in one point (called the centroid), and this point
divides each median in the ratio 1:2.”

So in our case, from the classical geometry point of view, we must have

Let us check this 1:2 property in our case. Because |OF |, |FC|, |AF |, |FL|, |BF |, |FK| do not
necessarily exist in W3 , we will check this as follows. First, we have to introduce the vectors

Now we calculate the scalar products of all vectors to themselves:

and we see that

because 4.27 ≠ 4 ×3 1.108 = 4.432,

because 1.452 ≠ 4 ×3 0.27 = 1.08, and

because 4.27 ≠ 4 ×3 1.108 = 4.432.

5. Let again n = 3. Let us consider the △(OAB) with

Let K, C, and L be the midpoints of OA, AB, and OB, respectively. We get

Let us find the equation of the median OC :

|OF | = 2|FC|, |AF | = 2|FL|, |BF | = 2|FK|.

OF= (2, 0.528),

FC= (1, 0.339),

AF= (0, −1.206),

FL= (0, −0.528),

BF= (−2, 0.528),

FK= (−1, 0.339).

(OF, OF)= 2 ×3 2 +3 0.528 ×3 0.528 = 4 +3 0.27 = 4.27,

(FC, FC)= 1 ×3 1 +3 0.339 ×3 0.339 = 1 +3 0.108 = 1.108,

(AF, AF)= 0 ×3 0 +3 (−1.206) ×3 (−1.206) = 0 +3 1.452 = 1.452,

(FL, FL)= 0 ×3 0 +3 (−0.528) ×3 (−0.528) = 0 +3 0.27 = 0.27,

(BF, BF)= (−2) ×3 (−2) +3 0.528 ×3 0.528 = 4 +3 0.27 = 4.27,

(FK, FK)= (−1) ×3 (−1) +3 0.339 ×3 0.339 = 1 +3 0.108 = 1.108,

(OF, OF) ≠ 4 ×3 (FC, FC),

(AF, AF) ≠ 4 ×3 (FL, FL),

(BF, BF) ≠ 4 ×3 (FK, FK),

O(0, 0); A(2, 3.468); B(4, 0).

K(1, 1.734); C(3, 1.734); L(2, 0).



and so

Finally, the equation of median OC  is

and the equation of the median AL is

Let us find the equation of the median BK :

and so

Finally, the equation of the median BK  is

The centroid of △(OAB) is the point of the intersection of all three medians OC , AL, BK ,
that is, the solution of the system of equations

First, let us find the solution of the system

So

Now let us find the solution of the system

y = k ×3 x +3 b,

{
0 = 0 ×3 k +3 b,

1.734 = 3 ×3 k +3 b,

{
k = 0.578,

b = 0.

y = 0.578 ×3 x,

x = 2.

y = k ×3 x +3 b,

{
0 = 4 ×3 k +3 b,

1.734 = 1 ×3 k +3 b,

{
k = −0.578,

b = 2.312.

y = −0.578 ×3 x +3 2.312.

y = 0.578 ×3 x,

x = 2,

y = −0.578 ×3 x +3 2.312.

{
y = 0.578 ×3 x,

x = 2.

{
x = 2,

y = 1.156.



So

This means that the system of equations

has the solution

So we have showed that three medians of △(OAB) intersect, which means that △(OAB) has
the centroid point F(2, 1.156).

Let us go back to the classical geometry theorem:

“Three medians of any triangle intersect in one point (called the centroid), and this point
divides each median in the ratio 1:2.”

So in our case, from the classical geometry point of view, we must have

Let us check this 1:2 property in our case. Because |OF |, |FC|, |AF |, |FL|, |BF |, |FK| do not
necessarily exist in W3 , we will check this as follows. First, we introduce the vectors

Now we calculate the scalar products of all vectors to themselves:

{
y = −0.578 ×3 x +3 2.312,

x = 2.

{
x = 2,

y = 1.156.

y = 0.578 ×3 x,

x = 2,

y = −0.578 ×3 x +3 2.312

{
x = 2,

y = 1.156.

|OF | = 2|FC|, |AF | = 2|FL|, |BF | = 2|FK|.

OF= (2, 1.156),

FC= (1, 0.578),

AF= (0, −2.312),

FL= (0, −1.156),

BF= (−2, 1.156),

FK= (−1, 0.578).



and we see that

because 5.332 ≠ 4 ×3 1.32 = 5.28,

because 5.344 ≠ 4 ×3 1.332 = 5.328, and

because 5.332 ≠ 4 ×3 1.32 = 5.28.

6. Let now n = 6. Let us consider the △(OAB) with

Let K, C, and L be the midpoints of OA, AB, and OB, respectively. We get

Let us find the equation of the median OC :

So

Finally, the equation of the median OC  is

and the equation of the median AL is

Let us find the equation of the median BK :

(OF, OF)= 2 ×3 2 +3 1.156 ×3 1.156 = 4 +3 1.332 = 5.332,

(FC, FC)= 1 ×3 1 +3 0.578 ×3 0.578 = 1 +3 0.32 = 1.32,

(AF, AF)= 0 ×3 0 +3 (−2.312) ×3 (−2.312) = 0 +3 5.344 = 5.344,

(FL, FL)= 0 ×3 0 +3 (−1.156) ×3 (−1.156) = 0 +3 1.332 = 1.332,

(BF, BF)= (−2) ×3 (−2) +3 1.156 ×3 1.156 = 4 +3 1.332 = 5.332,

(FK, FK)= (−1) ×3 (−1) +3 0.578 ×3 0.578 = 1 +3 0.32 = 1.32,

(OF, OF) ≠ 4 ×3 (FC, FC),

(AF, AF) ≠ 4 ×3 (FL, FL),

(BF, BF) ≠ 4 ×3 (FK, FK),

O(0, 0); A(2, 3.464106); B(4, 0).

K(1, 1.732053); C(3, 1.732053); L(2, 0).

y = k ×6 x +6 b,

{
0 = 0 ×6 k +6 b,

1.732053 = 3 ×6 k +6 b.

{
k = 0.577351,

b = 0.

y = 0.577351 ×6 x,

x = 2.



So

and, finally, the equation of the median BK  is

The centroid of △(OAB) is the point of intersection of all three medians OC , AL, BK , that is,
a solution of the system of equations

First, let us find the solution of the system

So

Now let us find the solution of the system

So

This means that the system of equations

has the solution

y = k ×6 x +6 b,

{
0 = 4 ×6 k +6 b,

1.732053 = 1 ×6 k +6 b.

{
k = −0.577351,

b = 2.309404,

y = −0.577351 ×6 x +6 2.309404.

y = 0.577351 ×6 x,

x = 2,

y = −0.577351 ×6 x +6 2.309404.

{
y = 0.577351 ×6 x,

x = 2.

{
x = 2,

y = 1.154702.

{
y = −0.577351 ×6 x +6 2.309404,

x = 2.

{
x = 2,

y = 1.154702.

y = 0.577351 ×6 x,

x = 2,

y = −0.577351 ×6 x +6 2.309404

{
x = 2,

y = 1.154702.



So we have showed that three medians of △(OAB) intersect, and this means that △(OAB)

has the centroid point F(2, 1.154702).

Let us go back to the classical geometry theorem:

“Three medians of any triangle intersect in one point (called the centroid), and this point
divides each median in the ratio 1:2.”

In our case, from classical geometry point of view, we must have

Let us check this 1:2 property in our case. Because |OF |, |FC|, |AF |, |FL|, |BF |, |FK| do not
necessarily exist in W6 , we will check this as follows. First, we introduce the vectors

Now we calculate the scalar products of all vectors to themselves:

and we see that

because 5.33333 ≠ 4 ×6 1.333321 = 5.333284,

because 5.333337 ≠ 4 ×6 1.33333 = 5.33332, and

because 5.33333 ≠ 4 ×6 1.333321 = 5.333284.

So we have proved the following:

|OF | = 2|FC|, |AF | = 2|FL|, |BF | = 2|FK|.

OF= (2, 1.154702),

FC= (1, 0.577351),

AF= (0, −2.309404),

FL= (0, −1.154702),

BF= (−2, 1.154702),

FK= (−1, 0.577351).

(OF, OF)= 2 ×6 2 +6 1.154702 ×6 1.154702 = 4 +6 1.33333 = 5.33333,

(FC, FC)= 1 ×6 1 +6 0.577351 ×6 0.577351 = 1 +6 0.333321 = 1.333321,

(AF, AF)= 0 ×6 0 +6 (−2.309404) ×6 (−2.309404) = 0 +6 5.333337 = 5.333337,

(FL, FL)= 0 ×6 0 +6 (−1.154702) ×6 (−1.154702) = 0 +6 1.33333 = 1.33333,

(BF, BF)= (−2) ×6 (−2) +6 1.154702 ×6 1.154702 = 4 +6 1.33333 = 5.33333,

(FK, FK)= (−1) ×6 (−1) +6 0.577351 ×6 0.577351 = 1 +6 0.333321 = 1.333321,

(OF, OF) ≠ 4 ×6 (FC, FC),

(AF, AF) ≠ 4 ×6 (FL, FL),

(BF, BF) ≠ 4 ×6 (FK, FK),



Theorem 10.3.

In Mathematics with Observers geometry on the planes, there are triangles having a centroid that does

not divide each median in the ratio 1:2.

7. Let now n = 6. Let us consider the △(OAB) with

We have

because

that is, △(OAB) is an equilateral triangle.

Let K, C, and L be the midpoints of OA, AB, and OB, respectively. We get

Let us find the equation of the median OC :

So we get

but k does not exist, because

and

So the median OC  does not exist.

The equation of the median AL is

Let us find the equation of the median BK :

So

O(0, 0); A(2, 3.464102); B(4, 0).

|OA| = |AB| = |OB| = 4,

2 ×6 2 +6 3.464102 ×6 3.464102 = 4 +6 12 = 16,

K(1, 1.732051); C(3, 1.732051); L(2, 0)

y = k ×6 x +6 b,

{
0 = 0 ×6 k +6 b,

1.732051 = 3 ×6 k +6 b.

b = 0,

3 ×6 0.577350 = 1.732050 < 1.732051

3 ×6 0.577351 = 1.732053 > 1.732051.

x = 2.

y = k ×6 x +6 b,

{
0 = 4 ×6 k +6 b,

1.732051 = 1 ×6 k +6 b.



but k does not exist, because

and

So the median BK  does not exist. This means that the centroid of △(OAB) does not exist.

So we have proved the following:

Theorem 10.4.

In Mathematics with Observers geometry on the plane, there is an equilateral triangle having only one

median and having no centroid.

10.3  Vertices and sides of triangle

Let us consider a triangle with sides ( n = 2)

This triangle has the vertices

In this case the triangle has three sides and three vertices. So, in this situation, we can denote the
triangle by Δabc or ΔABC

Let us consider the triangle with vertices (again, n = 2)

Let us prove that this triangle has no sides. We will use the formula

The line

{
b = −4 ×6 k,

1.732051 = 1 ×6 k −6 4 ×6 k,

1 ×6 (−0.577350) −6 4 ×6 (−0.577350) = 1.732050 < 1.732051

1 ×6 (−0.577351) −6 4 ×6 (−0.577351) = 1.732053 > 1.732051.

a : x = 0,

b : y = 0,

c : y = −x +2 1.

A(1, 0),

B(0, 1),

C(0, 0).

A(6.01, 2.01),

B(−4, 4),

C(2, −6).

y = m ×n x +n b.

BC = a



has to contain the points B and C, that is, we have the system of equations

We have the new system

that is,

The second equation of this system has no solution, because if

then

and if

then

So

does not exist.

The line

has to contain the points A and B, that is, we have the system of equations

We have the new system

that is,

{
4 = −4 ×2 m +2 b,

−6 = 2 ×2 m +2 b.

{
b = 4 +2 4 ×2 m,

−6 = 2 ×2 m +2 4 +2 4 ×2 m,

{
b = 4 +2 4 ×2 m,

−10 = 2 ×2 m +2 4 ×2 m.

m = 1.66,

2 ×2 m +2 4 ×2 m = 9.96,

m = 1.6,

2 ×2 m +2 4 ×2 m = 10.02.

a = BC

AB = c

{
2.01 = 6.01 ×2 m +2 b,

4 = −4 ×2 m +2 b.

{
b = 2.01 −2 6.01 ×2 m,

4 = −4 ×2 m +2 2.01 −2 6.01 ×2 m,



The second equation of this system has no solution, because if

then

and if

then

So

does not exist.

The line

has to contain the points A and C, that is, we have the system of equations

We have the new system

that is,

The second equation of this system has no solution, because if

then

and if

{
b = 2.01 −2 6.01 ×2 m,

1.99 = −4 ×2 m −2 6.01 ×2 m.

m = −0.19,

−4 ×2 m −2 6.01 ×2 m = 1.9,

m = −0.2,

−4 ×2 m −2 6.01 ×2 m = 2.

c = AB

AC = b

{
2.01 = 6.01 ×2 m +2 b,

−6 = 2 ×2 m +2 b.

{
b = 2.01 −2 6.01 ×2 m,

−6 = 2 ×2 m +2 2.01 −2 6.01 ×2 m,

{
b = 2.01 −2 6.01 ×2 m,

−8.01 = 2 ×2 m −2 6.01 ×2 m.

m = 2,

2 ×2 m −2 6.01 ×2 m = −8.02,

m = 1.99,



then

So

does not exist.

In this case the triangle has no sides and has three vertices. So, in this situation, we can denote
the triangle as ΔABC  but not as Δabc.

Let us consider three straight lines

Let us try to find a vertex A opposed to line a, which means that

that is, we have the system

So we have

and thus

The second equation of this system has no solution, because if

then

and if

then

2 ×2 m −2 6.01 ×2 m = −7.97.

b = AC

a : y = 1,

b : y = 3 ×2 x,

c : y = −6 ×2 x +2 11.

A = b ∩ c

{
y = 3 ×2 x,

y = −6 ×2 x +2 11.

{
y = 3 ×2 x,

3 ×2 x = −6 ×2 x +2 11,

{
y = 3 ×2 x,

3 ×2 x +2 6 ×2 x = 11.

x = 1.22,

3 ×2 x +2 6 ×2 x = 10.98,

x = 1.23,

3 ×2 x +2 6 ×2 x = 11.07.



So the point A does not exist.

Let us try to find a vertex B opposed to line b, which means that

that is, we have the system

So we have

and thus

The second equation of this system has no solution, because if

then

and if

then

So the point B does not exist.

Let us try to find a vertex C opposed to line c, which means that

that is, we have the system

or

The second equation of this system has no solution, because if

B = a ∩ c,

{
y = 1,

y = −6 ×2 x +2 11.

{
y = 1,

1 = −6 ×2 x +2 11,

{
y = 1,

−17 = −6 ×2 x.

x = 2.83,

−6 ×2 x = −16.98,

x = 2.84,

−6 ×2 x = −17.04.

C = a ∩ b,

{
y = 3 ×2 x,

y = 1,

{
y = 3 ×2 x,

1 = 3 ×2 x.



then

and if

then

So the point C does not exist.

In this case the triangle has three sides and no vertices. So, in this situation, we can denote the
triangle as Δabc but not as ΔABC .

Theorem 10.5.

In Mathematics with Observers geometry, there are triangles with three sides and three vertices, with

three vertices and no sides, and with three sides and no vertices.

10.4  The center of a circumscribed circle of a triangle

Problem: Find the center of a circumscribed circle around a triangle ABC  in E2W2 .

Points:

Equation of straight line containing segment AB:

Equation of straight line containing segment BC : does not exist.

Equation of straight line containing segment AC :

Center of segment AB: D(1, 3)

Despite the nonexistence of the straight line containing segment BC , the center F of BC  does
exist: F(−1, −1). The center of segment AC : E(4, −2). Now we find the perpendicular
bisectors of AB and AC . The perpendicular bisector of AB has a slope 5. The perpendicular
bisector of AC  has a slope −0.5. The equation of perpendicular bisector of AB:

x = 0.33,

3 ×2 x = 0.99,

x = 0.34,

3 ×2 x = 1.02.

A(6, 2),B(−4, 4),C(2, −6).

y = −0.2 ×2 x +2 3.2.

y = 2 ×2 x −2 10.

y = 5 ×2 x +2 b.



We have

Then

So the equation of perpendicular bisector of AB is

and the equation of perpendicular bisector of AC  is

We have

Then

So the equation of perpendicular bisector of AC  is

Despite the nonexistence of the straight line containing segment BC , vector BC does exist:

and we can consider straight line f containing the point F(−1, −1) and perpendicular to vector
BC. We are looking for the equation of line f as

and we get

and thus

that is, the equation of straight line f containing point F and perpendicular to vector BC is

The intersection point of the two perpendicular bisectors of AB and AC :

3 = 5 ×2 1 +2 b.

b = −2.

y = 5 ×2 x −2 2,

y = −0.5 ×2 x +2 b.

−2 = −0.5 ×2 4 +2 b.

b = 0.

y = −0.5 ×2 x.

BC = (6, −10),

y = k ×2 x +2 b,

{
−1 = k ×2 (−1) +2 b,

6 ×2 1 −2 10 ×2 k = 0,

{
k = 0.6,

b = −0.4,

y = 0.6 ×2 x −2 0.4.

{
y = 5 ×2 x −2 2,

y = −0.5 ×2 x.



So the point of intersection is O(0.37, −0.15).

Now we find the squares of distances from this point to the vertices of the triangle:

So we get that

and thus the point O is not the circumcenter of the triangle ABC .

The intersection point of the perpendicular bisector of AB and line f:

So the point of intersection does not exist because we must have

but

if x = 0.36, and

if x = 0.35.

The intersection point of the perpendicular bisector of AC  and line f:

So the point of intersection does not exist because we must have

but

if x = 0.3⋆, and

|OA| ×2 |OA|= (6 −2 0.37) × (6 −2 0.37) +2 (2 +2 0.15) × (2 +2 0.15) = 36.27,

|OB| ×2 |OB|= (−4 −2 0.37) × (−4 −2 0.37) +2 (4 +2 0.15) × (4 +2 0.15) = 36.26,

|OC| ×2 |OC|= (2 −2 0.37) × (2 −2 0.37) +2 (−6 +2 0.15) × (−6 +2 0.15) = 36.76.

|OA|2≠ |OB|2,

|OA|2≠ |OC|2,

|OB|2≠ |OC|2,

{
y = 5 ×2 x −2 2,

y = 0.6 ×2 x −2 0.4.

5 ×2 x −2 2 = 0.6 ×2 x −2 0.4,

5 ×2 x −2 0.6 ×2 x = 1.62

5 ×2 x −2 0.6 ×2 x = 1.57

{
y = −0.5 ×2 x,

y = 0.6 ×2 x −2 0.4.

−0.5 ×2 x = 0.6 ×2 x −2 0.4,

−0.5 ×2 x −2 0.6 ×2 x = −0.33

−0.5 ×2 x −2 0.6 ×2 x = −0.44



if x = 0.4⋆, where ⋆=0,1,…,9.

Finally, we can say that the circumcenter of the triangle ABC  does not exist.

Now let us try to find the center of circumscribed circle around the triangle ABC  in E2W2  with

Equation of straight line containing segment AB:

Equation of straight line containing segment BC :

Equation of straight line containing segment AC :

Center of segment AB:

Center of segment AC :

Center of segment BC :

Now we find equations of the perpendicular bisectors of segments AB, AC , and BC . The
equation of perpendicular bisectors of segment AB is

The equation of perpendicular bisectors of segment AC  is

The equation of perpendicular bisectors of segment BC  is

The intersection point of these three perpendicular bisectors is

Now we find the distance from this point to the vertices of the triangle:

So the point O is the circumcenter of triangle ABC .

A(0, 0),B(2, 0),C(0, 2).

y = 0.

y = −x +2 2.

x = 0.

D(1, 0).

E(0, 1).

F(1, 1).

x = 1.

y = 1.

y = x

O(1, 1).

|OA| = |OB| = |AB| = √2 = 1.42.



We can formulate a final theorem.

Theorem 10.6.

In Mathematics with Observers geometry for n = 2, there are triangles with existing circumcenter, and

there are triangles with nonexisting circumcenter.

Note that the theorem is correct for all n ≥ 2.

10.5  The orthocenter of a triangle

Problem: Find the orthocenter of a triangle ABC  in E2W2 .

Let’s try to find the orthocenter of triangle ABC  in E2W2  with

Equation of straight line containing segment AB:

Equation of straight line containing segment BC :

Equation of straight line containing segment AC :

Now we find the perpendiculars from vertex C to side AB, from vertex B to side AC , and from
vertex A to side BC :

Perpendicular from vertex C to side AB has the equation

Perpendicular from vertex B to side AC  has the equation

Perpendicular from vertex A to side BC  has the equation

The intersection point of the three perpendiculars is

So the point A is the orthocenter of the triangle ABC .

Now let us try to find the orthocenter of triangle ABC  in E2W2  with

A(0, 0),B(2, 0),C(0, 2).

y = 0.

y = −x +2 2.

x = 0.

x = 0.

y = 0.

y = x.

A(0, 0).

A(0, 0),B(0, 2),C(0.72, −0.72).



Equation of straight line containing segment AB:

Equation of straight line containing segment BC :

Equation of straight line containing segment AC :

Now we find the heights from vertex C to side AB, from vertex B to side AC , and from vertex A
to side BC .

Height hC  from vertex C to side AB has the equation

Height hB  from vertex B to side AC  has the equation

Height hA  from vertex A to side BC  has the equation

The intersection points of these heights are

So this triangle has no orthocenter.

Let us consider the triangle with vertex points

We have proved above (see section “Vertices and sides of triangle”) that this triangle has no
sides. However, we can consider the vectors AB, AC, BC and instead of standard heights,
consider straight lines a, b, c such that

We get

x = 0.

y = −3.80 ×2 x +2 2.

y = −x.

y = −0.72.

y = x +2 2.

y = 0.28 ×2 x.

hA ∩ hB= (−2.70, −0.70),

hA ∩ hC= (−2.80, −0.72).

hB ∩ hC= (−2.72, −0.72).

A(6.01, 2.01),

B(−4, 4),

C(2, −6).

A∈ a, a ⊥ BC,

B∈ b, b ⊥ AC,

C∈ c, c ⊥ AB



Let straight line a have the equation

We have

and we get

that is, straight line a has the equation

Let straight line b have the equation

We have

and we get

if k = −0.50, and

if k = −0.51. This means that line b does not exist.

Let straight line c have the equation

We have

and we get

BC= (6, −10),

AC= (−4.01, −8.01),

AB= (−10.01, 1.99).

y = k ×2 x +2 d.

{
2.01 = k ×2 6.01 +2 d,

6 ×2 1 −2 10 ×2 k = 0,

{
k = 0.6,

d = −1.59,

y = 0.6 ×2 x −2 1.59.

y = k ×2 x +2 d.

{
4 = k ×2 (−4) +2 d,

−4.01 ×2 1 −2 8.01 ×2 k = 0,

−4.01 ×2 1 −2 8.01 ×2 k = −0.01

−4.01 ×2 1 −2 8.01 ×2 k = 0.08

y = k ×2 x +2 d.

{
−6 = k ×2 2 +2 d,

−10.01 ×2 1 +2 1.99 ×2 k = 0,

{
k = 5.06,

d = −16.12,



that is, straight line c has the equation

So this triangle has no orthocenter.

We can formulate the final theorem.

Theorem 10.7.

In Mathematics with Observers geometry for n = 2, there are triangles with existing orthocenter, and

there are triangles with nonexisting orthocenter.

Note that the theorem is correct for all n ≥ 2.

10.6  The center of inscribed circle of triangle

In classical geometry the center of inscribed circle of a triangle is the point intersection of the
angle bisectors.

Let us first consider several cases.

A. Let n = 2. Consider two straight lines

and

Then

Let us take the point P(1, 1), and consider the straight line

The equation of circle Ω with center in point P with radius 1 is

Let us find the intersection of line OP  and circle Ω:

Taking x −2 1 = 0.7⋆, where ⋆ means any digit from the set 0,1,…,9, we get

Taking x −2 1 = 0.8⋆, we get

y = 5.06 ×2 x −2 16.12.

a : y = 0

b : x = 0.

a ∩ b = O(0, 0).

OP : y = x.

Ω : (x −2 1) ×2 (x −2 1) +2 (y −2 1) ×2 (y −2 1) = 1.

OP ∩ Ω : 2 ×2 ((x −2 1) ×2 (x −2 1)) = 1.

2 ×2 0.49 = 0.98 < 1.

2 ×2 0.64 = 1.28 > 1,



that is,

where Λ is the empty set.

This means that there is no triangle with sides a and b and inscribed circle Ω such that the third
side of this triangle is perpendicular to line OP  and tangent to Ω.

B. Let n = 2. Consider two straight lines

and

Then

Let us take the point P(1.29, 1.29) and consider the straight line

The equation of circle Ω with center in point P with radius 1.29 is

Let us find the intersection of line OP  and circle Ω:

Taking x −2 1.29 = 0.9⋆, where ⋆ means any digit from the set 0,1,…,9, we get

that is,

or

OP ∩ Ω = Λ,

a : y = 0

b : x = 0.

a ∩ b = O(0, 0).

OP : y = x.

Ω : (x −2 1.29) ×2 (x −2 1.29) +2 (y −2 1.29) ×2 (y −2 1.29) = 1.29 ×2 1.29 = 1.62.

OP ∩ Ω : 2 ×2 ((x −2 1.29) ×2 (x −2 1.29)) = 1.62.

2 ×2 (0.9 ⋆ ×20.9⋆) = 2 ×2 0.81 = 1.62,

x −2 1.29 = ±0.9⋆



or

This means that in the first case, we have

and in the second case, we have

x −2 1.29= 0.90,

x −2 1.29= 0.91,

x −2 1.29= 0.92,

x −2 1.29= 0.93,

x −2 1.29= 0.94,

x −2 1.29= 0.95,

x −2 1.29= 0.96,

x −2 1.29= 0.97,

x −2 1.29= 0.98,

x −2 1.29= 0.99

x −2 1.29= −0.90,

x −2 1.29= −0.91,

x −2 1.29= −0.92,

x −2 1.29= −0.93,

x −2 1.29= −0.94,

x −2 1.29= −0.95,

x −2 1.29= −0.96,

x −2 1.29= −0.97,

x −2 1.29= −0.98,

x −2 1.29= −0.99.

x1= 2.19,

x2= 2.20,

x3= 2.21,

x4= 2.22,

x5= 2.23,

x6= 2.24,

x7= 2.25,

x8= 2.26,

x9= 2.27,

x10= 2.28,



This means that in the first case, we have ten points L = OP ∩ Ω:

This means that in the second case, we have ten points M = OP ∩ Ω

Let us consider the straight lines ci  ( i = 1, 2, … , 10) containing points Li  and perpendicular
to line OP :

So

x11= 0.39,

x12= 0.38,

x13= 0.37,

x14= 0.36,

x15= 0.35,

x16= 0.34,

x17= 0.33,

x18= 0.32,

x19= 0.31,

x20= 0.30.

L1(2.19, 2.19),

L2(2.20, 2.20),

L3(2.21, 2.21),

L4(2.22, 2.22),

L5(2.23, 2.23),

L6(2.24, 2.24),

L7(2.25, 2.25),

L8(2.26, 2.26),

L9(2.27, 2.27),

L10(2.28, 2.28).

M1(0.39, 0.39),

M2(0.38, 0.38),

M3(0.37, 0.37),

M4(0.36, 0.36),

M5(0.35, 0.35),

M6(0.34, 0.34),

M7(0.33, 0.33),

M8(0.32, 0.32),

M9(0.31, 0.31),

M10(0.30, 0.30).

ci : y = −x +2 di.



Let us consider the straight lines ci  ( i = 11, 12, … , 20) containing point Mi  and
perpendicular to line OP :

So

Note that all straight lines ci, i = 1, 2, … , 20, are parallel to each other and tangent to one
circle Ω.

So we have obtained an intermediate theorem.

Theorem 10.8.

In Mathematics with Observers geometry, there is a circle with more than two parallel lines tangent to

this circle.

Let us now consider intersections of lines ci, i = 1, 2, … , 10, with lines a and b. We get

c1 : y= −x +2 4.38,

c2 : y= −x +2 4.40,

c3 : y= −x +2 4.42,

c4 : y= −x +2 4.44,

c5 : y= −x +2 4.46,

c6 : y= −x +2 4.48,

c7 : y= −x +2 4.50,

c8 : y= −x +2 4.52,

c9 : y= −x +2 4.54,

c10 : y= −x +2 4.56.

ci : y = −x +2 ei.

c11 : y= −x +2 0.78,

c12 : y= −x +2 0.76,

c13 : y= −x +2 0.74,

c14 : y= −x +2 0.72,

c15 : y= −x +2 0.70,

c16 : y= −x +2 0.68,

c17 : y= −x +2 0.66,

c18 : y= −x +2 0.64,

c19 : y= −x +2 0.62,

c20 : y= −x +2 0.60.



1. Let us take three points O(0, 0), B1(0, 4.38), and C1(4.38, 0). The straight line
B1C1 = c1  has the equation

Now taking the points

and

we get

Now we are interested in whether the line B1P  exists or not. Let us find the equation of the
straight line B1P :

a ∩ c1= C1(4.38, 0),

a ∩ c2= C2(4.40, 0),

a ∩ c3= C3(4.42, 0),

a ∩ c4= C4(4.44, 0),

a ∩ c5= C5(4.46, 0),

a ∩ c6= C6(4.48, 0),

a ∩ c7= C7(4.50, 0),

a ∩ c8= C8(4.52, 0),

a ∩ c9= C9(4.54, 0),

a ∩ c10= C10(4.56, 0),

b ∩ c1= B1(0, 4.38),

b ∩ c2= B2(0, 4.40),

b ∩ c3= B3(0, 4.42),

b ∩ c4= B4(0, 4.44),

b ∩ c5= B5(0, 4.46),

b ∩ c6= B6(0, 4.48),

b ∩ c7= B7(0, 4.50),

b ∩ c8= B8(0, 4.52),

b ∩ c9= B9(0, 4.54),

b ∩ c10= B10(0, 4.56).

B1C1 : y = −x +2 4.38

K(0, 1.29) ∈ b

N(1.29, 0) ∈ a,

PK = PN = PL1 = 1.29.

y = k ×2 x +2 b,

{
4.38 = 0 ×2 k +2 b,

1.29 = 1.29 ×2 k +2 b.



2.

So

and, finally, the equation of the straight line B1P  is

Let us consider three vectors

We get

that is,

Now let us consider

that is,

This means that the straight line B1P  is an angle B1  bisector and that the point P is the
intersection of the bisectors of angles O and B1 .

So we have obtained an intermediate theorem.

Theorem 10.9.

In Mathematics with Observers geometry on the plane, there are a circle and a point out of this circle

such that there are two tangent lines to this circle through this point with equal segments between

this point and touch points.

Let us take three points O(0, 0), B2(0, 4.40), and C3(4.40, 0). The straight line
B2C2 = c2  has the equation

We get

{
k = −2.43,

b = 4.38,

y = −2.43 ×2 x +2 4.38.

B1K= (0, −3.09),

B1L1= (2.19, −2.19),

B1P= (1.29, −3.09).

(B1K,B1K)= 0 ×2 0 +2 (−3.09) ×2 (−3.09) = 9.54 > 0,

(B1L1,B1L1)= 2.19 ×2 2.19 +2 (−2.19) ×2 (−2.19) = 9.54 > 0,

(B1K,B1K) = (B1L1,B1L1).

(B1K,B1P)= 0 ×2 1.29 +2 (−3.09) ×2 (−3.09) = 9.54 > 0,

(B1L1,B1P)= 2.19 ×2 1.29 +2 (−2.19) ×2 (−3.09) = 2.79 +2 6.75 = 9.54 > 0,

(B1K,B1P) = (B1L1,B1P).

B2C2 : y = −x +2 4.40.

PK = PN = PL2 = 1.29.



3.

We are interested whether the line B2P  exists or not.

Let us find the equation of the straight line B2P :

So

and, finally, the equation of the straight line B2P  is

Let us now consider three vectors

We get

that is,

We have

that is,

This means that with chosen vectors B2K , B2L2 , B2P , the straight line B2P  is not an angle
B2  bisector and the point P is not an intersection of the bisectors of angles O and B2 .

Let us take three points O(0, 0), B3(0, 4.42), and C3(4.42, 0). The straight line
B3C3 = c3  has the equation

We get

y = k ×2 x +2 b,

{
4.40 = 0 ×2 k +2 b,

1.29 = 1.29 ×2 k +2 b.

{
k = −2.45,

b = 4.40,

y = −2.45 ×2 x +2 4.40.

B2K= (0, −3.11),

B2L2= (2.20, −2.20),

B2P= (1.29, −3.11).

(B2K,B2K)= 0 ×2 0 +2 (−3.11) ×2 (−3.11) = 9.67 > 0,

(B2L2,B2L2)= 2.20 ×2 2.20 +2 (−2.20) ×2 (−2.20) = 9.68 > 0,

(B2K,B2K) ≠ (B2L2,B2L2).

(B2K,B2P)= 0 ×2 1.29 +2 (−3.11) ×2 (−3.11) = 9.67 > 0,

(B2L2,B2P)= 2.20 ×2 1.29 +2 (−2.20) ×2 (−3.11) = 2.82 +2 6.84 = 9.66 > 0,

(B2K,B2P) ≠ (B2L2,B2P).

B3C3 : y = −x +2 4.42.

PK = PN = PL3 = 1.29.



4.

We are interested in whether the line B3P  exists or not.

Let us find the equation of the straight line B3P :

So

and, finally, the equation of the straight line B3P  is

Let us consider three vectors

Then

that is,

We have

that is,

This means that with chosen vectors B3K , B3L3 , B3P , the straight line B3P  is not an angle
B3  bisector and the point P is not an intersection of bisectors of angles O and B3 .

Let us take three points O(0, 0), B4(0, 4.44), and C4(4.44, 0). The straight line
B4C4 = c4  has the equation

Then

y = k ×2 x +2 b,

{
4.42 = 0 ×2 k +2 b,

1.29 = 1.29 ×2 k +2 b.

{
k = −2.47,

b = 4.42,

y = −2.47 ×2 x +2 4.42.

B3K= (0, −3.13),

B3L3= (2.21, −2.21),

B3P= (1.29, −3.13).

(B3K,B3K)= 0 ×2 0 +2 (−3.13) ×2 (−3.13) = 9.79 > 0,

(B3L3,B3L3)= 2.21 ×2 2.21 +2 (−2.21) ×2 (−2.21) = 9.76 > 0,

(B3K,B3K) ≠ (B3L3,B3L3).

(B3K,B3P)= 0 ×2 1.29 +2 (−3.13) ×2 (−3.13) = 9.79 > 0,

(B3L3,B3P)= 2.21 ×2 1.29 +2 (−2.21) ×2 (−3.13) = 2.82 +2 6.84 = 9.74 > 0,

(B3K,B3P) ≠ (B3L3,B3P).

B4C4 : y = −x +2 4.44.

PK = PN = PL4 = 1.29.



5.

We are interested in whether the line B4P  exists or not.

Let us find the equation of the straight line B4P :

So

and, finally, the equation of the straight line B4P  is

Let us consider three vectors

Then

that is,

and

that is,

This means that with chosen vectors B4K , B4L4 , B4P , the straight line B4P  is not an angle
B4  bisector and the point P is not an intersection of bisectors of angles O and B4 .

Let us take three points O(0, 0), B5(0, 4.46), and C5(4.46, 0). The straight line
B5C5 = c5  has the equation

Then

y = k ×2 x +2 b,

{
4.44 = 0 ×2 k +2 b,

1.29 = 1.29 ×2 k +2 b.

{
k = −2.49,

b = 4.44,

y = −2.49 ×2 x +2 4.44.

B4K= (0, −3.15),

B4L4= (2.22, −2.22),

B4P= (1.29, −3.15).

(B4K,B4K)= 0 ×2 0 +2 (−3.15) ×2 (−3.15) = 9.91 > 0,

(B4L4,B4L4)= 2.22 ×2 2.22 +2 (−2.22) ×2 (−2.22) = 9.84 > 0,

(B4K,B4K) ≠ (B4L4,B4L4),

(B4K,B4P)= 0 ×2 1.29 +2 (−3.15) ×2 (−3.15) = 9.91 > 0,

(B4L4,B4P)= 2.22 ×2 1.29 +2 (−2.22) ×2 (−3.15) = 2.84 +2 6.98 = 9.82 > 0,

(B4K,B4P) ≠ (B4L4,B4P).

B5C5 : y = −x +2 4.46.

PK = PN = PL5 = 1.29.



6.

We are now interested in whether the line B5P  exists or not.

Let us find the equation of the straight line B5P :

Taking k = −2.49, we get

whereas taking k = −2.50, we get

So the line B5P  does not exist.
Let us take three points O(0, 0), B6(0, 4.48), and C6(4.48, 0). The straight line

B6C6 = c6  has the equation

We get

We are now interested whether the line B6P  exists or not.

Let us find the equation of the straight line B6P :

Taking k = −2.51, we get

and, finally, the equation of the straight line B6P  is

Let us consider three vectors

Then

y = k ×2 x +2 b,

{
4.46 = 0 ×2 k +2 b,

1.29 = 1.29 ×2 k +2 b.

1.29 + 3.15 = 4.44 < 4.46,

1.29 + 3.18 = 4.47 > 4.46.

B6C6 : y = −x +2 4.48.

PK = PN = PL6 = 1.29.

y = k ×2 x +2 b,

{
4.48 = 0 ×2 k +2 b,

1.29 = 1.29 ×2 k +2 b.

1.29 + 3.19 = 4.48,

y = −2.51 ×2 x +2 4.48.

B6K= (0, −3.19),

B6L6= (2.24, −2.24),

B6P= (1.29, −3.19).



7.

that is,

and

that is,

This means that with chosen vectors B6K , B6L6 , B6P , the straight line B6P  is not an angle
B6  bisector and the point P is not an intersection of bisectors of angles O and B6 .

Let us take three points O(0, 0), B7(0, 4.50), and C7(4.50, 0). The straight line
B7C7 = c7  has the equation

Then

We are now interested in whether the line B7P  exists or not.

Let us find the equation of the straight line B7P :

Taking k = −2.53, we get

and, finally, the equation of the straight line B7P  is

Let us consider three vectors

We have

(B6K,B6K)= 0 ×2 0 +2 (−3.19) ×2 (−3.19) = 10.15 > 0,

(B6L6,B6L6)= 2.24 ×2 2.24 +2 (−2.24) ×2 (−2.24) = 10.00 > 0,

(B6K,B6K) ≠ (B6L6,B6L6),

(B6K,B6P)= 0 ×2 1.29 +2 (−3.19) ×2 (−3.19) = 10.15 > 0,

(B6L6,B6P)= 2.24 ×2 1.29 +2 (−2.24) ×2 (−3.19) = 2.86 +2 7.12 = 9.98 > 0,

(B6K,B6P) ≠ (B6L6,B6P).

B7C7 : y = −x +2 4.50.

PK = PN = PL7 = 1.29.

y = k ×2 x +2 b,

{
4.50 = 0 ×2 k +2 b,

1.29 = 1.29 ×2 k +2 b.

1.29 + 3.21 = 4.50,

y = −2.53 ×2 x +2 4.50.

B7K= (0, −3.21),

B7L7= (2.25, −2.25),

B7P= (1.29, −3.21).



8.

that is,

and

that is,

This means that with chosen vectors B7K , B7L7 , B7P , the straight line B7P  is not an angle
B7  bisector and the point P is not an intersection of bisectors of angles O and B7 .

Let us take three points O(0, 0), B8(0, 4.52), and C8(4.52, 0). The straight line
B8C8 = c8  has the equation

We have

We are now interested in whether the line B8P  exists or not.

Let us find the equation of the straight line B8P :

Taking k = −2.55, we get

and, finally, the equation of the straight line B7P  is

Let us consider three vectors

We get

(B7K,B7K)= 0 ×2 0 +2 (−3.21) ×2 (−3.21) = 10.30 > 0,

(B7L7,B7L7)= 2.25 ×2 2.25 +2 (−2.25) ×2 (−2.25) = 10.08 > 0,

(B7K,B7K) ≠ (B7L7,B7L7),

(B7K,B7P)= 0 ×2 1.29 +2 (−3.21) ×2 (−3.21) = 10.30 > 0,

(B7L7,B7P)= 2.25 ×2 1.29 +2 (−2.25) ×2 (−3.21) = 2.87 +2 7.21 = 10.08 > 0,

(B7K,B7P) ≠ (B7L7,B7P).

B8C8 : y = −x +2 4.52.

PK = PN = PL8 = 1.29.

y = k ×2 x +2 b,

{
4.52 = 0 ×2 k +2 b,

1.29 = 1.29 ×2 k +2 b.

1.29 + 3.23 = 4.52,

y = −2.55 ×2 x +2 4.52.

B8K= (0, −3.23),

B8L8= (2.26, −2.26),

B8P= (1.29, −3.23).



9.

that is,

and

that is,

This means that with chosen vectors B8K , B8L8 , B8P , the straight line B8P  is not an angle
B8  bisector and the point P is not an intersection of bisectors of angles O and B8 .

Let us take three points O(0, 0), B9(0, 4.54), and C9(4.54, 0). The straight line
B9C9 = c9  has the equation

We have

We are now interested in whether the line B9P  exists or no.

Let us find the equation of the straight line B9P :

Taking k = −2.57, we get

and, finally, the equation of the straight line B9P  is

Let us consider three vectors

We have

(B8K,B8K)= 0 ×2 0 +2 (−3.23) ×2 (−3.23) = 10.42 > 0,

(B8L8,B8L8)= 2.26 ×2 2.26 +2 (−2.26) ×2 (−2.26) = 10.16 > 0,

(B8K,B8K) ≠ (B8L8,B8L8),

(B8K,B8P)= 0 ×2 1.29 +2 (−3.23) ×2 (−3.23) = 10.42 > 0,

(B8L8,B8P)= 2.26 ×2 1.29 +2 (−2.26) ×2 (−3.23) = 2.88 +2 7.28 = 10.16 > 0,

(B8K,B8P) ≠ (B8L8,B8P).

B9C9 : y = −x +2 4.54.

PK = PN = PL9 = 1.29.

y = k ×2 x +2 b,

{
4.54 = 0 ×2 k +2 b,

1.29 = 1.29 ×2 k +2 b.

1.29 + 3.25 = 4.54,

y = −2.57 ×2 x +2 4.54.

B9K= (0, −3.25),

B9L9= (2.27, −2.27),

B9P= (1.29, −3.25).



10.

that is,

and

that is,

This means that with chosen vectors B9K , B9L9 , B9P , the straight line B9P  is not an angle
B9  bisector and the point P is not an intersection of bisectors of angles O and B9 .

Let us take three points O(0, 0), B10(0, 4.56), and C10(4.56, 0). The straight
line B10C10 = c10  has the equation

We have

We are interested in whether the line B10P  exists or not.

Let us find the equation of the straight line B10P :

Taking k = −2.59, we get

and, finally, the equation of the straight line B10P  is

Let us consider three vectors

We get

(B9K,B9K)= 0 ×2 0 +2 (−3.25) ×2 (−3.25) = 10.54 > 0,

(B9L9,B9L9)= 2.27 ×2 2.27 +2 (−2.27) ×2 (−2.27) = 10.24 > 0,

(B9K,B9K) ≠ (B9L9,B9L9),

(B9K,B9P)= 0 ×2 1.29 +2 (−3.25) ×2 (−3.25) = 10.54 > 0,

(B9L9,B9P)= 2.27 ×2 1.29 +2 (−2.27) ×2 (−3.25) = 2.89 +2 7.35 = 10.24 > 0,

(B9K,B9P) ≠ (B9L9,B9P).

B10C10 : y = −x +2 4.56.

PK = PN = PL10 = 1.29.

y = k ×2 x +2 b,

{
4.56 = 0 ×2 k +2 b,

1.29 = 1.29 ×2 k +2 b.

1.29 + 3.27 = 4.56,

y = −2.59 ×2 x +2 4.56.

B10K= (0, −3.27),

B10L10= (2.28, −2.28),

B10P= (1.29, −3.27).



1.

that is,

and

that is,

This means that with chosen vectors B10K , B10L10 , B10P , the straight line B10P  is not an
angle B10  bisector and the point P is not an intersection of bisectors of angles O and B10 .

So we have obtained an intermediate theorem.

Theorem 10.10.

In Mathematics with Observers geometry on the plane, there are a circle and a point out of this circle

such that there are two tangent lines to this circle through this point with not equal segments

between this point and touch points.

Let us now consider vertices Ci  in triangles OBiCi, i = 1, 2, … , 10.

Now we have to check whether the straight line C1P  exists or not.

Let us find the equation of the straight line C1P :

So

For k = −0.40, we get

and for k = −0.39, we get

that is, the straight line C1P  in the class of straight lines

(B10K,B10K)= 0 ×2 0 +2 (−3.27) ×2 (−3.27) = 10.66 > 0,

(B10L10,B10L10)= 2.28 ×2 2.28 +2 (−2.28) ×2 (−2.28) = 10.32 > 0,

(B10K,B10K) ≠ (B10L10,B10L10),

(B10K,B10P)= 0 ×2 1.29 +2 (−3.27) ×2 (−3.27) = 10.66 > 0,

(B10L10,B10P)= 2.28 ×2 1.29 +2 (−2.28) ×2 (−3.27) = 2.90 +2 7.42 = 10.32 > 0,

(B10K,B10P) ≠ (B10L10,B10P).

y = k ×2 x +2 b,

{
0 = 4.38 ×2 k +2 b,

1.29 = 1.29 ×2 k +2 b.

{
b = −4.38 ×2 k,

1.29 = 1.29 ×2 k −2 4.38 ×2 k.

1.29 < 1.34,

1.29 > 1.20,



2.

3.

does not exist.
Now we have to check whether the straight line C2P  exists or not in this class of

straight lines.

Let us find the equation of the straight line C2P :

So

For k = −0.40, we get

and for k = −0.41, we get

that is, the straight line C2P  in the class of straight lines

does not exist.

Now we have to check whether the straight line C3P  exists or not in this class of
straight lines.

Let us find the equation of the straight line C3P :

So

For k = −0.40, we get

and for k = −0.41, we get

y = k ×2 x +2 b

y = k ×2 x +2 b,

{
0 = 4.40 ×2 k +2 b,

1.29 = 1.29 ×2 k +2 b.

{
b = −4.40 ×2 k,

1.29 = 1.29 ×2 k −2 4.40 ×2 k.

1.29 > 1.28,

1.29 < 1.31,

y = k ×2 x +2 b

y = k ×2 x +2 b,

{
0 = 4.42 ×2 k +2 b,

1.29 = 1.29 ×2 k +2 b.

{
b = −4.42 ×2 k,

1.29 = 1.29 ×2 k −2 4.42 ×2 k.

1.29 > 1.28,



4.

5.

that is, the straight line C3P  in the class of straight lines

does not exist.
Now we have to check whether the straight line C4P  exists or not in this class of

straight lines.

Let us find the equation of the straight line C4P :

So

For k = −0.40, we get

and for k = −0.41, we get

that is, the straight line C4P  in the class of straight lines

does not exist.

Now we have to check whether the straight line C5P  exists or not in this class of
straight lines.

Let us find the equation of the straight line C5P :

So

For k = −0.40, we get

1.29 < 1.31,

y = k ×2 x +2 b

y = k ×2 x +2 b,

{
0 = 4.44 ×2 k +2 b,

1.29 = 1.29 ×2 k +2 b.

{
b = −4.44 ×2 k,

1.29 = 1.29 ×2 k −2 4.44 ×2 k.

1.29 > 1.28,

1.29 < 1.31,

y = k ×2 x +2 b

y = k ×2 x +2 b,

{
0 = 4.46 ×2 k +2 b,

1.29 = 1.29 ×2 k +2 b.

{
b = −4.46 ×2 k,

1.29 = 1.29 ×2 k −2 4.46 ×2 k.



6.

7.

and for k = −0.41, we get

that is, the straight line C5P  in the class of straight lines

does not exist.
Now we have to check whether the straight line C6P  exists or not in this class of

straight lines.

Let us find the equation of the straight line C6P :

So

For k = −0.40, we get

and for k = −0.41, we get

that is, the straight line C6P  in the class of straight lines

does not exist.

Now we have to check whether the straight line C7P  exists or not in this class of
straight lines.

Let us find the equation of the straight line C7P :

So

1.29 > 1.28,

1.29 < 1.31,

y = k ×2 x +2 b

y = k ×2 x +2 b,

{
0 = 4.48 ×2 k +2 b,

1.29 = 1.29 ×2 k +2 b.

{
b = −4.48 ×2 k,

1.29 = 1.29 ×2 k −2 4.48 ×2 k.

1.29 > 1.28,

1.29 < 1.31,

y = k ×2 x +2 b

y = k ×2 x +2 b,

{
0 = 4.50 ×2 k +2 b,

1.29 = 1.29 ×2 k +2 b.



8.

9.

For k = −0.39, we get

and for k = −0.40, we get

that is, the straight line C7P  in the class of straight lines

does not exist.
Now we have to check whether the straight line C8P  exists or not in this class of

straight lines.

Let us find the equation of the straight line C8P :

So

For k = −0.39, we get

and for k = −0.40, we get

that is, the straight line C8P  in the class of straight lines

does not exist.

Now we have to check whether the straight line C9P  exists or not in this class of
straight lines.

Let us find the equation of the straight line C9P :

{
b = −4.50 ×2 k,

1.29 = 1.29 ×2 k −2 4.50 ×2 k.

1.29 > 1.26,

1.29 < 1.32,

y = k ×2 x +2 b

y = k ×2 x +2 b,

{
0 = 4.52 ×2 k +2 b,

1.29 = 1.29 ×2 k +2 b.

{
b = −4.52 ×2 k,

1.29 = 1.29 ×2 k −2 4.52 ×2 k.

1.29 > 1.26,

1.29 < 1.32,

y = k ×2 x +2 b



10.

So

For k = −0.39, we get

and for k = −0.40, we get

that is, the straight line C9P  in the class of straight lines

does not exist.
Finally, we have to check whether the straight line C10P  exists or not in this

class of straight lines.

Let us find the equation of the straight line C10P :

So

For k = −0.39, we get

and for k = −0.40, we get

that is, the straight line C10P  in the class of straight lines

does not exist.

So the lines

y = k ×2 x +2 b,

{
0 = 4.54 ×2 k +2 b,

1.29 = 1.29 ×2 k +2 b.

{
b = −4.54 ×2 k,

1.29 = 1.29 ×2 k −2 4.54 ×2 k.

1.29 > 1.26,

1.29 < 1.32,

y = k ×2 x +2 b

y = k ×2 x +2 b,

{
0 = 4.56 ×2 k +2 b,

1.29 = 1.29 ×2 k +2 b.

{
b = −4.56 ×2 k,

1.29 = 1.29 ×2 k −2 4.56 ×2 k.

1.29 > 1.26,

1.29 < 1.32,

y = k ×2 x +2 b



1.

do not exist in the considered class of lines

However, let us consider the lines CiP  in the general class of straight lines

with

Let us check the existence for line C1P  ( i = 1). So let us find the equation of
the straight line C1P  in the general class of straight lines

So

that is, the straight line C1P  in the general class of straight lines

exists and has the equation

We get

So we now know that the line C1P  exists. Let us consider three vectors

We get

that is,

CiP , i = 1, 2, … , 10,

y = k ×2 x +2 b, 0 = k ×2 x +2 b.

e ×2 x +2 f ×2 y +2 g = 0

n = 2, e, f, g, e ×2 x, f ×2 y, e ×2 x +2 f ×2 y ∈ W2.

e ×2 x +2 f ×2 y +2 g = 0,

{
e ×2 4.38 +2 f ×2 0 +2 g = 0,

e ×2 1.29 +2 f ×2 1.29 +2 g = 0.

e = 0.50,

f = 1.22,

g = −2.15,

e ×2 x +2 f ×2 y +2 g = 0

0.50 ×2 x +2 1.22 ×2 y −2 2.15 = 0.

PK = PN = PL1 = 1.29.

C1N= (−3.09, 0),

C1L1= (−2.19, 2.19),

C1P= (−3.09, 1.29).

(C1N ,C1N)= (−3.09) ×2 (−3.09) +2 0 ×2 0 = 9.54 > 0,

(C1L1,C1L1)= (−2.19) ×2 (−2.19) +2 2.19 ×2 2.19 = 9.54 > 0,

(C1N ,C1N) = (C1L1,C1L1),



2.

and

that is,

This means that with chosen vectors C1N , C1L1 , C1P , the straight line C1P  in the general
class of straight lines is an angle C1  bisector and the point P is an intersection of three
bisectors of angles O, B1 , and C1 .

Let us check that for line C2P  ( i = 2). Let us find the equation of the straight
line C2P  in the general class of straight lines

So

that is, the straight line C2P  in the general class of straight lines

exists and has the equation

Let us take three points O(0, 0), B2(0, 4.40), and C2(4.40, 0). The straight line B2C2 = c2

has the equation

We get

So we now know that the line C2P  exists. Let us consider three vectors

We get

(C1N ,C1P)= (−3.09) ×2 (−3.09) +2 0 ×2 1.29 = 9.54 > 0,

(C1L1,C1P)= (−2.19) ×2 (−3.09) +2 2.19 ×2 1.29 = 6.75 +2 2.79 = 9.54 > 0,

(C1N ,C1P) = (C1L1,C1P).

e ×2 x +2 f ×2 y +2 g = 0,

{
e ×2 4.40 +2 f ×2 0 +2 g = 0,

e ×2 1.29 +2 f ×2 1.29 +2 g = 0.

e = 0.50,

f = 1.27,

g = −2.20,

e ×2 x +2 f ×2 y +2 g = 0

0.50 ×2 x +2 1.27 ×2 y −2 2.20 = 0.

B2C2 : y = −x +2 4.40.

PK = PN = PL2 = 1.29.

C2N= (−3.11, 0),

C2L2= (−2.20, 2.20),

C2P= (−3.11, 1.29).



that is,

and

that is,

This means that with chosen vectors C2N , C2L2 , C2P , the straight line C2P  in the general
class of straight lines is not an angle C2  bisector and the point P is not an intersection of
bisectors of angles O and C2 .

We can formulate final theorems.

Theorem 10.11.

In Mathematics with Observers geometry, there are triangles with existing inscribed circle with center in

the intersection of three angle bisectors.

Theorem 10.12.

In Mathematics with Observers geometry, there are triangles with nonexisting three angle bisectors but

with an existing inscribed circle.

10.7  Special equilateral triangle

Let n = 6. Let us consider the △(OAB) with

Then

because

that is, △(OAB) is the equilateral triangle with sides 4.

Let us find the equation of the side OA:

(C2N ,C2N)= (−3.11) ×2 (−3.11) +2 0 ×2 0 = 9.67 > 0,

(C2L2,C2L2)= (−2.20) ×2 (−2.20) +2 2.20 ×2 2.20 = 9.68 > 0,

(C2N ,C2N) ≠ (C2L2,C2L2),

(C2N ,C2P)= (−3.11) ×2 (−3.11) +2 0 ×2 1.29 = 9.67 > 0,

(C2L2,C2P)= (−2.20) ×2 (−3.11) +2 2.20 ×2 1.29 = 6.84 +2 2.80 = 9.64 > 0,

(C2N ,C2P) ≠ (C2L2,C2P).

O(0, 0); A(2, 3.464102); B(4, 0).

|OA| = |AB| = |OB| = 4,

2 ×6 2 +6 3.464102 ×6 3.464102 = 4 +6 12 = 16,



We get

So the equation of side OA is

Let us find the equation of the side OB:

We get

So the equation of side OB is

Let us find the equation of the side AB:

We get

So the equation of side AB is

Let K, C, and L be the midpoints of OA, AB, and OB, respectively. We get

Let us now consider the vector

and find the equation of straight line f containing the point K(1, 1.732051) and perpendicular
to the vector OA:

y = k ×6 x +6 b,

{
0 = 0 ×6 k +6 b,

3.464102 = 2 ×6 k +6 b.

b = 0, k = 1.732051.

y = 1.732051 ×6 x.

y = k ×6 x +6 b,

{
0 = 0 ×6 k +6 b,

0 = 4 ×6 k +6 b.

b = 0, k = 0.

y = 0.

y = k ×6 x +6 b,

{

{

3.464102 = 2 ×6 k +6 b,

0 = 4 ×6 k +6 b,

3.464102 −6 2 ×6 k = b,

0 = 4 ×6 k +6 3.464102 −6 2 ×6 k.

b = 6.928204, k = −1.732051.

y = −1.732051 ×6 x +6 6.928204.

K(1, 1.732051); C(3, 1.732051); L(2, 0).

OA = (2, 3.464102)



We get

So line f does not exist, because

and

The equation of straight line g containing the point L(2, 0) and perpendicular to the straight
line OB is

Let us now consider the vector

and find the equation of straight line h containing the point C(3, 1.732051) and perpendicular
to the vector AB:

We get

So line h does not exist, because

and

This means that △(OAB) has only one side bisector and only one height and has no center of
circumscribed circle and no orthocenter.

Let us find the equation of the median OC :

y = k ×6 x +6 b.

{

{

1.732051 = k ×6 1 +6 b,

2 ×6 1 +6 3.464102 ×6 k = 0,

1.732051 −6 k ×6 1 = b,

2 ×6 1 +6 3.464102 ×6 k = 0.

2 ×6 1 +6 3.464102 ×6 (−0.577352) = 0.000001 > 0

2 ×6 1 +6 3.464102 ×6 (−0.577353) = −0.000002 < 0.

x = 2.

AB = (2, −3.464102)

y = k ×6 x +6 b.

{

{

1.732051 = k ×6 3 +6 b,

2 ×6 1 −6 3.464102 ×6 k = 0,

1.732051 −6 k ×6 3 = b,

2 ×6 1 −6 3.464102 ×6 k = 0.

2 ×6 1 −6 3.464102 ×6 0.577352 = 0.000001 > 0

2 ×6 1 −6 3.464102 ×6 0.577353 = −0.000002 < 0.



So we get

but k does not exist, because

and

So the median OC  does not exist.

The equation of the median AL is

Let us find the equation of the median BK :

So

but k does not exist, because

and

So the median BK  does not exist. This means that the centroid of △(OAB) does not exist.

Let us now find the bisectors of angles O, A, B if they exist. Let us start from angle AOB. First,
we have the vectors

and

Moreover,

y = k ×6 x +6 b,

{
0 = 0 ×6 k +6 b,

1.732051 = 3 ×6 k +6 b.

b = 0,

3 ×6 0.577350 = 1.732050 < 1.732051

3 ×6 0.577351 = 1.732053 > 1.732051.

x = 2.

y = k ×6 x +6 b,

{
0 = 4 ×6 k +6 b,

1.732051 = 1 ×6 k +6 b.

{
b = −4 ×6 k,

1.732051 = 1 ×6 k −6 4 ×6 k,

1 ×6 (−0.577350) −6 4 ×6 (−0.577350) = 1.732050 < 1.732051

1 ×6 (−0.577351) −6 4 ×6 (−0.577351) = 1.732053 > 1.732051.

OA = (2, 3.464102)

OB = (4, 0)



and thus

The equation of the straight line l, angle AOB bisector is

Since O ∈ l, we get

that is, the equation of straight line l is

and the direction vector l of line l is

We must have

that is,

However, k does not exist, because

and

So an angle AOB bisector does not exist.

The equation of straight line m, angle OAB bisector is

Let us now find the angle B bisector. We have

(OA, OA)= 16 > 0,

(OB, OB)= 16 > 0,

(OA, OA) = (OB, OB).

y = k ×6 x +6 b.

b = 0,

y = k ×6 x,

l = (1, k).

(OA, l) = (OB, l),

2 ×6 1 +6 3.464102 ×6 k= 4 ×6 1 +6 0 ×6 k,

3.464102 ×6 k= 2.

3.464102 ×6 0.577352 = 1.999999 < 2

3.464102 ×6 0.577353 = 2.000002 > 2.

x = 2.

BA= (−2, 3.464102),

BO= (−4, 0),

(BA, BA)= 16 > 0,

(BO, BO)= 16 > 0

(BA, BA)= (BO, BO).



The equation of straight line p, angle OBA bisector is

The direction vector p of line p is

We must have

that is,

However, k does not exist, because

and

So the angle OBA bisector does not exist.

So we have proved the following:

Theorem 10.13.

The special equilateral triangle has only one side bisector, only one height, only one median, and only

one angle bisector, and thus this triangle does not have the center of a circumscribed circle,

orthocenter, centroid, and center of an inscribed circle.

10.8  Amazing triangle

Let us consider the triangle OAB with sides

Then O(0, 0).

A:

y = k ×6 x +6 b.

p = (1, k).

(BA, p) = (BO, p),

(−2) ×6 1 +6 3.464102 ×6 k= (−4) ×6 1 +6 0 ×6 k,

3.464102 ×6 k= −2.

3.464102 ×6 (−0.577352) = −1.999999 > −2

3.464102 ×6 (−0.577353) = −2.000002 < −2.

OA : y = 6 ×n x; OB : y = 3 ×n x; AB : y = −3 ×n x +n 9.



that is, A(1, 6).

B:

that is, B(1.5, 4.5).

Let us consider all these lines and points in E2W2 , that is, n = 2.

Theorem 10.14.

There are no lines perpendicular to sides AO, BO, and AB.

Proof.

Let us find k that satisfies the condition

So k does not exist. This means that there are no lines perpendicular to AO.

Let us find k that satisfies the condition

So k does not exist. This means that there are no lines perpendicular to BO.

{

6 ×n x = −3 ×n x +n 9,

9 ×n x = 9,

x = 1,

y = 6,

y = 6 ×n x,

y = −3 ×n x +n 9,

{

3 ×n x = −3 ×n x +n 9,

6 ×n x = 9,

x = 1.5,

y = 4.5,

y = 3 ×n x,

y = −3 ×n x +n 9,

6 ×2 k= −1,

k= −0.16,

6 ×2 −0.16= −0.96 > −1,

k= −0.17,

6 ×2 −0.17= −1.02 < −1.

3 ×2 k= −1,

k= −0.33,

3 ×2 −0.33= −0.99 > −1,

k= −0.34,

3 ×2 −0.34= −1.02 < −1.



Let us find k that satisfies the condition

So k does not exist. This means that there are no lines perpendicular to AB.  □
Theorem 10.15.

The triangle OAB has no perpendicular bisector for each side.

Theorem 10.16.

The triangle OAB has no center of a circumscribed circle.

Theorem 10.17.

The triangle OAB has no center of an inscribed circle.

Theorem 10.18.

The triangle OAB has no heights.

Theorem 10.19.

The triangle OAB has no orthocenter.

Theorem 10.20.

The triangle OAB has three medians but has no centroid.

Proof of the last theorem.

Let L, M and N be the midpoints of OA, AB, and OB:

Median BL:

Median OM :

Median AN :

Let us first find BL ∩ AN  and consider the system

Let us try to solve this system:

If

−3 ×2 k= −1,

k= 0.33,

6 ×2 0.33= 0.96 > −1,

k= 0.34,

−3 ×2 0.34= −1.02 < −1.

L(O.5, 3); M(1.25, 5.25); N(0.75, 2.25).

y = 1.5 ×2 x +2 2.25.

y = 4.21 ×2 x.

y = 15 ×2 x −2 9.

{
y = 1.5 ×2 x +2 2.25,

y = 15 ×2 x −2 9.

0 = 15 ×2 x −2 1.5 ×2 x −2 11.25.



then

and if

then

So this system has no solution, and

Let us find BL ∩ OM  and consider the system

Let us try to solve this system

The solution of this system is

and

Let us find AN ∩ OM  and consider the system

Let us try to solve this system:

If

then

and if

then

x = 0.84,

12.6 −2 1.24 −2 11.25 > 0,

x = 0.83,

12.45 −2 1.23 −2 11.25 < 0.

BL ∩ AN = Λ.

{
y = 1.5 ×2 x +2 2.25,

y = 4.21 ×2 x.

0 = 1.5 ×2 x −2 4.21 ×2 x +2 2.25.

x = 0.83,

BL ∩ OM = (0.83, 3.48).

{
y = 15 ×2 x −2 9,

y = 4.21 ×2 x.

0 = 15 ×2 x −2 4.21 ×2 x −2 9.

x = 0.83,

12.45 −2 3.48 −2 9 = −0.03 < 0,

x = 0.84,



So this system has no solution, and

Thus the triangle OAB has no centroid.  □

10.9  The length of segment

Let us consider the segment

with middle point

The same situation takes a place in Mathematics with Observers geometry. So we have n = 2.
Let us consider the segment

This segment does not have a middle point because if

then

and

and if

then

and

Let us consider the segment AB on the plane with

Then the length of the segment AB can be calculated by the formula

12.6 −2 3.52 −2 9 = 0.08 > 0.

AN ∩ OM = Λ.

AB = [0, 1]

x = 0.50.

AB = [0, 1.01].

x = 0.5,

0.5 −2 0= 0.5,

1.01 −2 0.5= 0.51,

0.5 < 0.51,

x = 0.51,

0.51 −2 0= 0.51,

1.01 −2 0.51= 0.5,

0.51 > 0.5.

A = (0.08, 0.01), B = (0.06, 0.03).



So the length of the segment AB is

Let us consider the segment AB on the plane with A = (0, 1) and B = (1, 0). This segment
AB is a part of straight line

Since C(0.01, 0.99) ∈ a, we have

that is,

We have

that is,

We have

that is,

We have the following question: is the equality

correct? We have

that is, the length of the segment in this case is greater than the sum of lengths of its parts. Note
that

Let C be the midpoint of segment AB. Then C(0.5, 0.5). Let us find the lengths of AC  and CB.
We have

|AB| = √(0.06 −2 0.08) ×2 (0.06 −2 0.08) +2 (0.03 −2 0.01) ×2 (0.03 −2 0.01) = √0 +2

|AB| = 0.00, 0.01, … , 0.09.

a : y = −x +2 1.

|AC| = √(0 −2 0.01) ×2 (0 −2 0.01) +2 (1 −2 0.99) ×2 (1 −2 0.99) = √0,

|AC| = 0.00, 0.01, … , 0.09.

|BC| = √(1 −2 0.01) ×2 (1 −2 0.01) +2 (0 −2 0.99) ×2 (0 −2 0.99) = √0.81 +2 0.81 = √1

|BC| = 1.29.

|AB| = √(0 −2 1) ×2 (0 −2 1) +2 (1 −2 0) ×2 (1 −2 0) = √1 +2 1 = √2,

|AB| = 1.42.

|AB| = |AC| +2 |BC|

1.42 > 1.29 +2 [0.00, 0.01, … , 0.09] = [1.29, 1.3, … , 1.38],

AB = AC ∪ CB.

|AC| = √(0 −2 0.5) ×2 (0 −2 0.5) +2 (1 −2 0.5) ×2 (1 −2 0.5) = √0.25 +2 0.25 = √0.5.



Suppose

However,

If

then

and so on. If

then

If

then

So |AC| does not exist.

We have

Suppose

However,

If

then

and so on. If

√0.5 = 0.7.

0.7 ×2 0.7 = 0.49 ≠ 0.5.

√0.5 = 0.71,

0.71 ×2 0.71 = 0.49 ≠ 0.5,

√0.5 = 0.79,

0.79 ×2 0.79 = 0.49 ≠ 0.5.

√0.5 = 0.8,

0.8 ×2 0.8 = 0.64 > 0.5.

|CB| = √(1 −2 0.5) ×2 (1 −2 0.5) +2 (0 −2 0.5) ×2 (0 −2 0.5) = √0.25 +2 0.25 = √0.5.

√0.5 = 0.7.

0.7 ×2 0.7 = 0.49 ≠ 0.5.

√0.5 = 0.71,

0.71 ×2 0.71 = 0.49 ≠ 0.5,



then

If

then

So |BC| does not exist. Let us find the length of AB:

So |AB| = 1.42, and thus

However, |AB| is defined and equals 1.42, but |AC| and |BC| are not defined.

Let us consider the straight line

and take the intersection of this line with positive half-axis x, y: A(0, 2) and B(2, 0), and then
C(1, 1) is the middle point of segment AB. Let us find the lengths of AC  and CB:

Let us find the length of AB:

We have

So we get the situation where

and

Let us consider the straight line

√0.5 = 0.79,

0.79 ×2 0.79 = 0.49 ≠ 0.5.

√0.5 = 0.8,

0.8 ×2 0.8 = 0.64 > 0.5.

|AB| = √(0 −2 1) ×2 (0 −2 1) +2 (1 −2 0) ×2 (1 −2 0) = √1 +2 1 = √2 = 1.42.

AB = AC ∪ CB.

y = −x +2 2

|AC|= √(2 −2 1) ×2 (2 −2 1) +2 (0 −2 1) ×2 (0 −2 1) = √1 +2 1 = √2 = 1.42,

|CB|= √(0 −2 1) ×2 (0 −2 1) +2 (2 −2 1) ×2 (2 −2 1) = √1 +2 1 = √2 = 1.42.

|AB| = √(2 −2 0) ×2 (2 −2 0) +2 (0 −2 2) ×2 (0 −2 2) = √4 +2 4 = √8 = 2.84.

2.84 = 1.42 +2 1.42.

AB = AC ∪ CB

|AB| = |AC| +2 |CB|.



and intersection of this line with positive half-axis x, y, that is, the points A(0, 3) and B(3, 0).
Then C(1.5, 1.5) is the middle point of segment |AB|. Let us find the lengths of AC  and CB.
We have

If

then

and if

then

Thus |AC| does not exist. We have

and so |CB| also does not exist.

Let us find the length of AB:

If

then

and if

then

and so |AB| does not exist. We get the situation where

y = −x +2 3

|AC| = √(3 −2 1.5) ×2 (3 −2 1.5) +2 (0 −2 1.5) ×2 (0 −2 1.5) = √2.25 +2 2.25 = √4.5.

√4.5 = 2.12,

2.12 ×2 2.12 = 4.49 < 4.5,

√4.5 = 2.13,

2.13 ×2 2.13 = 4.53 > 4.5.

|CB| = √(0 −2 1.5) ×2 (0 −2 1.5) +2 (3 −2 1.5) ×2 (3 −2 1.5) = √2.25 +2 2.25 = √4.5,

|AB| = √(3 −2 0) ×2 (3 −2 0) +2 (0 −2 3) ×2 (0 −2 3) = √9 +2 9 = √18.

√18 = 4.24,

4.24 ×2 4.24 = 17.96 < 18,

√18 = 4.25,

4.25 ×2 4.25 = 18.04 > 18,

AB = AC ∪ CB,



but the lengths of AB, AC , and CB do not exist.

Let us consider the straight line

and the intersection of this line with positive half-axis x, y, that is, the points A(0, 4) and B(4, 0)

. Then C(2, 2) is the middle point of segment AB. Let us find the lengths of AC  and CB:

Let us find the length of AB:

If

then

and if

then

and so |AB| does not exist. So we get the situation where

but the length of AB does not exist, and

Let us consider the straight line

and the intersection of this line with positive half-axis x, y, that is, the points A(0, 0.09) and
B(0.09, 0). The segment AB has 10 points. So the middle point of segment AB does not exist.
Let us take the point C(0.05, 0.04) and find the lengths of AC  and CB:

y = −x +2 4

|AC|= √(4 −2 2) ×2 (4 −2 2) +2 (0 −2 2) ×2 (0 −2 2) = √4 +2 4 = √8 = 2.84,

|CB|= √(0 −2 2) ×2 (0 −2 2) +2 (4 −2 2) ×2 (4 −2 2) = √4 +2 4 = √8 = 2.84

|AB| = √(4 −2 0) ×2 (4 −2 0) +2 (0 −2 4) ×2 (0 −2 4) = √16 +2 16 = √32

√32 = 5.66,

5.66 ×2 5.66 = 31.96 < 32,

√32 = 5.67,

5.67 ×2 5.67 = 32.06 > 32,

AB = AC ∪ CB,

|AC| + |CB| = 5.68.

y = −x +2 0.09



Let us find the length of AB:

So we get the situation where

and we have three different possibilities:

for example,

for example,

and

for example,

Let us consider the straight line

and three points on this line: A(0, 2), B(2, 0), and C(0.82, 1.18). Let us find the lengths of AC
and CB. We have

If

then

|AC|= √(0.09 −2 0.04) ×2 (0.09 −2 0.04) +2 (0 −2 0.05) ×2 (0 −2 0.05) = √0 +2 0 = √0,

|AC|= 0, 0.01, … , 0.09,

|CB|= √(0 −2 0.05) ×2 (0 −2 0.05) +2 (0.04 −2 0.09) ×2 (0.04 −2 0.09) = √0 +2 0 = √0,

|CB|= 0, 0.01, … , 0.09.

|AB|= √(0.09 −2 0) ×2 (0.09 −2 0) +2 (0 −2 0.09) ×2 (0 −2 0.09) = √0 +2 0 = √0,

|AB|= 0, 0.01, … , 0.09.

AB = AC ∪ CB,

|AB| = |AC| + |CB|,

0.04= 0.03 + 0.01;

|AB|> |AC| + |CB|,

0.04 > 0.02 + 0.01;

|AB| < |AC| + |CB|,

0.04 < 0.05 + 0.05.

y = −x +2 2

|AC| = √(2 −2 1.18) ×2 (2 −2 1.18) +2 (0 −2 0.82) ×2 (0 −2 0.82) = √0.64 +2 0.64 = √(

√(1.28) = 1.13,



and if

then

and so |AC| does not exist. Also,

Let us find the length of AB:

So we get the situation where

|AB| and |CB| both exist, but |AC| does not exist.

Let us consider the straight line

and its three points A(0.15, 1.85), B(2, 0), and C(1, 1). Let us find the lengths of AC  and CB:

and thus |AC| does not exist,

Let us find the length of AB:

If

then

and if

1.13 ×2 1.13 = 1.27 < 1.28,

√(1.28) = 1.14,

1.14 ×2 1.14 = 1.29 > 1.28,

|CB|= √(0 −2 1.18) ×2 (0 −2 1.18) +2 (2 −2 0.82) ×2 (2 −2 0.82)

= √1.37 +2 1.37 = √2.74 = 1.69.

|AB| = √(2 −2 0) ×2 (2 −2 0) +2 (0 −2 2) ×2 (0 −2 2) = √4 +2 4 = √8 = 2.84.

AB = AC ∪ CB,

y = −x +2 2

|AC| = √(0.15 −2 1) ×2 (0.15 −2 1) +2 (1 −2 1.85) ×2 (1 −2 1.85) = √0.64 +2 0.64 = √(

|CB| = √(1 −2 2) ×2 (1 −2 2) +2 (1 −2 0) ×2 (1 −2 0) = √1 +2 1 = √(2) = 1.42.

|AB| = √(0.15 −2 2) ×2 (0.15 −2 2) +2 (1.85 −2 0) ×2 (1.85 −2 0) = √3.34 +2 3.34 = √(

√6.68 = 2.59,

2.59 ×2 2.58 = 6.61 < 6.68,



1.

2.

3.

4.

5.

6.

(6.1)

(6.2)

(6.3)

1.

2.

then

and so |AB| does not exist. So we get the situation where

|CB| does exist, but |AC| and |AB| do not.

From the previous examples we have the following:

Theorem 10.21.

Segments on the plane E2Wn  may have unique lengths, several lengths, or no lengths. If

then we have several possibilities:

|AB|, |AC|, and |CB| do not exist.

|AB| does not exist, but |AC| and |CB| do exist.

|AB| does exist, but |AC| and |CB| do not exist.

|AB| and |BC| exist, but |AC| does not exist.

|AB| and |AC| do not exist, but |CB| does exist.

|AB|, |AC|, and |CB| exist, and

|AB| = |AC| + |CB|,

|AB| > |AC| + |CB|, or

|AB| < |AC| + |CB|.

Notes.

In the case where the length of segment is not unique, then we have to consider
different ways of comparison and summation.

We have illustrated these statements for n = 2, that is, for E2W2 . However, the
theorem is correct for all n.

√6.68 = 2.6,

2.6 ×2 2.6 = 6.76 > 6.68,

AB = AC ∪ CB,

AB = AC ∪ CB,



10.10  Midsegments of a triangle

Let us consider triangle ABC  with A(xA, yA), B(xB, yB), C(xC, yC), and the midpoints
L(xL, yL), M(xM , yM), N(xN , yN) of segments AB, AC , and BC , respectively.

Suppose we know L, M, N and we have to find A, B, C. For the x-coordinates, we have

For the y-coordinates, we have

that is, the coordinates of the vertices of the triangle ABC  are

These formulas coincide with the formulas of classical Euclidean geometry.

{

2 ×n xL = xA +n xB,

2 ×n xM = xA +n xC,

2 ×n xN = xB +n xC,

xB = 2 ×n xL −n xA,

2 ×n xM = xA +n xC,

xC = 2 ×n xN −n 2 ×n xL +n xA,

xB = 2 ×n xL −n xA,

xC = 2 ×n xM −n xA,

xC = 2 ×n xN −n 2 ×n xL +n xA,

xC = 2 ×n xN −n 2 ×n xL +n xA,

xC = 2 ×n xM −n xA,

xC = 2 ×n xN −n 2 ×n xL +n xA,

2 ×n xL +n 2 ×n xM −n 2 ×n xN = 2 ×n xA,

xC = 2 ×n xM −n xA,

xA = xL +n xM −n xN ,

xB = 2 ×n xL −n xL −n xM +n xN ,

xC = 2 ×n xM −n xL −n xA,

xA = xL +n xM −n xN ,

xB = xL +n xN −n xM ,

xC = xM +n xN −n xL.

yA = yL +n yM −n yN ,

yB = yL +n yN −n yM ,

yC = yM +n yN −n yL,

A(xL +n xM −n xN , yL +n yM −n yN),

B(xL +n xN −n xM , yL +n yN −n yM),

C(xM +n xN −n xL, yM +n yN −n yL).



a:

b:

Let us consider several examples with n = 2.

Example 1.

L(−1, 0), M(0, 1), N(1, −1). In this case, A(−2, 2), B(0, −2), C(2, 0).

Let us check two classic statements:

2 ×2 |MN | = |AB|, 2 ×2 |LN | = |AC|, 2 ×2 |LM| = |BC|;

MN ∥ AB, LN ∥ AC , LM ∥ BC .

Let us start from a:

that is,

Let us go to b:

that is,

Example 2.

L(−1.08, 0.24), M(−0.14, 1.22), N(1.16 − 1.28). In this case, A(−2.38, 2.74),
B(0.22, −2.26), C(2.1, −0.30).

Let us check two classic statements:

|MN |= √12 +2 22 = √5 = 2.24,

|AB|= √22 +2 42 = √20 = 4.48,

|NL|= √22 +2 12 = √5 = 2.24,

|AC|= √42 +2 22 = √5 = 4.48,

|ML|= √12 +2 12 = √5 = 1.42,

|BC|= √22 +2 22 = √5 = 2.84,

2 ×2 |MN | = |AB|, 2 ×2 |LN | = |AC|, 2 ×2 |LM| = |BC|.

MN : y = −2 ×2 x +2 1,

AB : y = −2 ×2 x −2 2,

NL : y = −0.5 ×2 x −2 0.5,

AC : y = −0.5 ×2 x +2 1,

ML : y = x +2 1,

BC : y = x +2 1,

MN ∥ AB, LN ∥ AC, LM ∥ BC.



a:

b:

2 ×2 |MN | = |AB|, 2 ×2 |LN | = |AC|, 2 ×2 |LM| = |BC|;

MN ∥ AB, LN ∥ AC , LM ∥ BC .

Let us start from a:

that is, |MN | does not exist,

that is, |AC| does not exist,

that is, |BC| does not exist. So statement a is not true in this case.

Let us go to b: the lines MN  and AB do not exist, that is, statement b is not true in this case.

So we have proved the following theorem for n = 2, but it is correct for all n.
Theorem 10.22.

In Mathematics with Observers geometry, for all n ≥ 2, the statements

are correct for some triangles and incorrect for some other triangles.

|MN | = √1. 32 +2 2. 52 = √7.94,

|AB|= √2. 62 +2 52 = √31.76 = 5.64,

|NL|= √2.242 +2 −1.542 = √7.33 = 2.71,

|AC|= √−4.482 +2 3.042 = √29.24,

|ML|= √0.942 +2 0.982 = √1.62 = 1.29,

|BC|= √−1.882 +2 −1.962 = √7.13,

2 ×2 |MN | = |AB|, 2 ×2 |LN | = |AC|, 2 ×2 |LM| = |BC|,

MN ∥ AB, LN ∥ AC, LM ∥ BC



11  Observability and planes, lines, and vectors

11.1  Plane and vectors

1) Let us consider plane α ∈ E3Wn containing the origin point O(0, 0, 0):

with

Let us take any point A(x, y, z) ∈ α and consider two vectors

Since the scalar product

we have that

for all points A(x, y, z) ∈ α.

Now take two points B(x1, y1, z1),C(x2, y2, z2) ∈ α and the corresponding vectors

Let us assume that

We have the scalar products

and the vector product

Question: Is it true that

(Here ∥ is understood in the Euclidean sense.)

2) Let n = 2, and we are in E3W2. Let us plane α have the equation

α : a1 ×2 x +2 a2 ×2 y +2 a3 ×2 z = 0

(a1, a2, a3) ≠ (0, 0, 0).

a = (a1, a2, a3); OA = (x, y, z).

(a,OA) = 0,

a ⊥ OA

OB = (x1, y1, z1); OC = (x2, y2, z2).

OB ∦ OC.

(a,OB)= 0,

(a,OC)= 0

OB × OC = (y1 ×n z2 −n z1 ×n y2, −x1 ×n z2 +n z1 ×n x2,x1 ×n y2 −n y1 ×n x2).

a ∥ OB × OC?

α : x +2 y +2 z = 0.



So

Let us take two points B(1, 1,−2),C(−1,−3, 4) ∈ α and the corresponding vectors

We get

In this case, we have the positive answer,

because

3) Let n = 2, and we are again in E3W2. Let plane α have the equation

and so

Let us take two points B(0.73, 0.34,−0.74),C(0.26, 0.91,−0.70) ∈ α and the corresponding
vectors

We get

So in this case, we have the negative answer,

because

a = (1, 1, 1).

OB = (1, 1,−2); OC = (−1,−3, 4).

OB × OC= (1 ×2 4 −2 (−2) ×2 (−3),−1 ×2 4 +2 (−2) ×2 (−1), 1 ×2 (−3) −2 1 ×2

= (−2,−2,−2),

(OB,OB × OC)= 1 ×2 (−2) +2 1 ×2 (−2) +2 (−2) ×2 (−2) = 0,

(OC,OB × OC)= (−1) ×2 (−2) +2 (−3) ×2 (−2) +2 4 ×2 (−2) = 0.

a ∥ OB × OC,

−2 ×2 a = OB × OC.

α : 0.81 ×2 x +2 0.63 ×2 y +2 z = 0,

a = (0.81, 0.63, 1).

OB = (0.73, 0.34,−0.74); OC = (0.26, 0.91,−0.70).

OB × OC

= (0.34 ×2 (−0.70) −2 (−0.74) ×2 0.91,

−0.73 ×2 (−0.70) +2 (−0.74) ×2 0.26,

0.73 ×2 0.91 −2 0.34 ×2 0.26)

= (0.42, 0.35, 0.57),

(OB,OB × OC) = 0.73 ×2 0.42 +2 0.34 ×2 0.35 +2 (−0.74) ×2 0.57 = 0.02 ≠ 0,

(OC,OB × OC) = 0.26 ×2 0.42 +2 0.91 ×2 0.35 +2 (−0.70) ×2 0.57 = 0.

a ∦ OB × OC,



and

So we have proved the following theorem for n = 2, but it is correct for all n.

Theorem 11.1.

In Mathematics with Observers geometry, for all n ≥ 2, the statement

is correct for some situations and incorrect for some other situations.

11.2  Line and vectors

1) Let us consider straight line a ∈ E3Wn containing the origin point O(0, 0, 0) with the system
of equations

with planes in E3Wn,

such that

Now let us take any two points A(x1, y1, z1),B(x2, y2, z2) ∈ a;A ≠ B, and consider the vectors

Since the scalar products

2 ×2 OB × OC= (0.84, 0.70, 1.14) ≠ a,

1.99 ×2 OB × OC= (0.78, 0.62, 1.02) ≠ a,

0.50 ×2 a= (0.40, 0.30, 0.50) ≠ OB × OC,

0.51 ×2 a= 0.50 ×2 a,

…

0.59 ×2 a= 0.50 ×2 a,

0.60 ×2 a= (0.48, 0.36, 0.60) ≠ OB × OC,

0.61 ×2 a= 0.60 ×2 a,

…

0.69 ×2 a= 0.60 ×2 a.

a ∥ OB × OC

{
a1 ×n x +n a2 ×n y +n a3 ×n z = 0,

b1 ×n x +n b2 ×n y +n b3 ×n z = 0,

α : a1 ×n x +n a2 ×n y +n a3 ×n z = 0,

(a1, a2, a3) ≠ (0, 0, 0),

β : b1 ×n x +n b2 ×n y +n b3 ×n z = 0,

(b1, b2, b3) ≠ (0, 0, 0),

α ∩ β ≠ α; α ∩ β ≠ β.

a = (a1, a2, a3); b = (b1, b2, b3); OA = (x1, y1, z1); OB = (x2, y2, z2).



we have

for all points A,B ∈ a.

We also have the vector product

Questions: a) OA ∥ a × b?

b) OB ∥ OA?

2) Let n = 2, and we are in E3W2. Let plane α have the equation

and let plane β have the equation

So

Let us take two points A(1, 0,−1),B(−2, 0, 2) ∈ a and the corresponding vectors

We get

and in this case, we have the positive answers to questions a) and b):

and

(a,OA)= 0,

(b,OA)= 0,

(a,OB)= 0,

(b,OB)= 0,

a⊥ OA,

b⊥ OA,

a⊥ OB,

b⊥ OB

a × b = (a2 ×n b3 −n a3 ×n b2, −a1 ×n b3 +n a3 ×n b1, a1 ×n b2 −n b1 ×n a2).

α : x +2 y +2 z = 0,

β : x −2 y +2 z = 0.

a= (1, 1, 1),

b= (1,−1, 1).

OA = (1, 0,−1); OB = (−2, 0, 2).

a × b= (1 ×2 1 −2 1 ×2 (−1), 1 ×2 1 −2 1 ×2 1, 1 ×2 (−1) −2 1 ×2 1) = (2, 0,−2),

2 ×2 OA= a × b,

−2 ×2 OA= OB,

OA ∥ a × b,



3) Let n = 2, and we are again in E3W2. Let plane α have the equation

and let plane β have the equation

So

Let us take two points A(0.73, 0.34,−0.74),B(0.70, 0.39,−0.74) ∈ a and the corresponding
vectors

We get

We have

and

This means that

We also have

and

OB ∥ OA.

α : 0.81 ×2 x +2 0.63 ×2 y +2 z = 0,

β : 0.51 ×2 x +2 0.08 ×2 y +2 0.59 ×2 z = 0.

a= (0.81, 0.63, 1),

b= (0.51, 0.08, 0.59).

OA = (0.73, 0.34,−0.74); OB = (0.70, 0.39,−0.74).

a × b= (0.63 ×2 0.59 −2 1 ×2 0.08, 1 ×2 0.51 −2 0.81 ×2 0.59, 0.81 ×2 0.08 −2 0.63 ×2 0.51)

= (0.22, 0.11,−0.30).

0.49 ×2 OA= (0.28, 0.12,−0.28) ≠ a × b,

0.50 ×2 OA= (0.35, 0.15,−0.35) ≠ a × b,

3.39 ×2 a × b= (0.72, 0.36,−0.99) ≠ OA,

3.40 ×2 a × b= (0.74, 0.37,−1.02) ≠ OA.

OA ∦ a × b.

0.49 ×2 OB= (0.28, 0.12,−0.28) ≠ a × b,

0.50 ×2 OB= (0.35, 0.15,−0.35) ≠ a × b,



This means that

We also get

This means that

and in this case, we have the negative answers for questions a) and b).

So we have proved the following theorem for n = 2, but it is correct for all n.

Theorem 11.2.

In Mathematics with Observers geometry, for all n ≥ 2, the statements

and

are correct for some situations and incorrect for some other situations.
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OB ∦ a × b.

1.00 ×2 OA= (0.73, 0.34,−0.74) ≠ OB,

0.99 ×2 OA= (0.63, 0.27,−0.63) ≠ OB,

1.10 ×2 OB= (0.77, 0.42,−0.81) ≠ OA,

1.09 ×2 OB= (0.70, 0.39,−0.74) ≠ OA.

OB ∦ OA,

OA ∥ a × b

OB ∥ OA
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