Frederick Hoffman Editor

Combinatorics, Graph Theory and Computing

SEICCGTC 2020, Boca Raton, USA,
March 9-13

Springer Proceedings in Mathematics \& Statistics

Volume 388

This book series features volumes composed of selected contributions from workshops and conferences in all areas of current research in mathematics and statistics, including data science, operations research and optimization. In addition to an overall evaluation of the interest, scientific quality, and timeliness of each proposal at the hands of the publisher, individual contributions are all refereed to the high quality standards of leading journals in the field. Thus, this series provides the research community with well-edited, authoritative reports on developments in the most exciting areas of mathematical and statistical research today.

Frederick Hoffman
Editor

Combinatorics, Graph Theory and Computing

SEICCGTC 2020, Boca Raton, USA, March 9-13

Editor
Frederick Hoffman
Department of Mathematical Sciences
Florida Atlantic University
Boca Raton, FL, USA

ISSN 2194-1009
ISSN 2194-1017 (electronic)
Springer Proceedings in Mathematics \& Statistics
ISBN 978-3-031-05374-0
ISBN 978-3-031-05375-7 (eBook)
https://doi.org/10.1007/978-3-031-05375-7
Mathematics Subject Classification: 05-XX, 05-06, 05Cxx, 12-XX, 12-06, 68Rxx, 68R05, 52-XX, 52-06
© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2022
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface I

The Southeastern International Conference on Combinatorics, Graph Theory, and Computing (SEICCGTC) is an international meeting of mathematical scientists, held annually in March, during Spring Break at Florida Atlantic University (FAU) in Boca Raton, Florida. The conference includes a program with plenary lectures by invited speakers, as well as sessions of contributed papers each day. In addition, two or three invitational special sessions are offered each year. A valuable part of the conference is the opportunity afforded for informal conversations about the methods participants employ in their professional work in business, industry, and government and about their current research.

The 51 st meeting was held in the newly renovated Student Union building at FAU, March 9-13, 2020. Five distinguished researchers, at various stages of their careers, accepted invitations to attend as plenary speakers at this year's 51st SEICCGTC: Pierre Baldi, University of California, Irvine, USA; Pavol Hell, Simon Fraser University, Canada; Patricia Hersh, University of Oregon, USA; Panos M. Pardalos, University of Florida, USA; and Kai-Uwe Schmidt, Paderborn University, Germany. Dr. Pardalos had to cancel his talk at the last moment, due to illness and the pandemic. Each of the other plenary speakers gave two talks. There were two special sessions this year, one on Research by Women in Graph Theory and its Applications, organized by Leslie Hogben, and one on Extremal Graph Theory, organized by Neal Bushaw. Both were well attended and well received. Plenary and contributed talks covered a wide variety of topics including: new tools for counting and linear programming, using topological methods; graph homomorphism; graphs with loops; highly non-linear functions and coding theory; association schemes; deep learning and its mathematical foundations; extremal graph theory; posets; latin squares; combinatorial games; coloring, connectivity, domination, labeling, and partitioning of graphs; along with associated algorithms and applications.

The coronavirus pandemic of 2020 created some difficulties for our conference. One plenary speaker could not attend, and we experienced 20 cancellations due to the virus outbreak. Several participants had their return travel plans disrupted; a few were quite worried for a day or two. The FAU Department of Mathematical Sciences hosted approximately 150 conference participants and guests, marking another successful
meeting of the SEICCGTC! For the most part, the 51st meeting of the SEICCGTC was a great success and conference participants expressed their approval of the overall quality of speakers and programs and the continuous improvements in the technology provided. We have cause to celebrate!

On Tuesday, March 10, 2020, we celebrated the publication of the commemorative book entitled, " 50 Years of Combinatorics, Graph theory and Computing," published by CRC/Taylor \& Francis. Twenty-nine past plenary speakers and past conference participants contributed 21 chapters for the book, edited by Fan Chung, Ronald Graham, Ronald Mullin, Frederick Hoffman, Douglas West and Leslie Hogben. The Institute of Combinatorics and its Applications held its annual meeting on Wednesday, March 11.

The conference also featured an outdoor reception Monday evening on the Live Oak Pavilion Patio, a sumptuous beachfront banquet Wednesday evening at the Delray Sands Resort, as well an excursion Thursday afternoon to the Flagler Museum in Palm Beach, followed by an informal reception Thursday evening at the brand new Schmidt Family Complex. The social program was capped off by a wonderful Survivors' Party Friday evening, hosted by Aaron Meyerowitz and Andrea Schuver at their home!

This year, we took another step toward elevating the quality of the conference, by agreeing to publish our conference proceedings with Springer Nature, in their PROMS series of hardback conference proceedings. The purpose is to more effectively and efficiently continue to disseminate important advances in the represented disciplines and to ensure that the conference continues to promote better understanding of the roles of modern applied mathematics, combinatorics and computer science; demonstrate the contribution of each discipline to the others; and decrease gaps between the fields, as it did through fifty years of publishing in the journal, Congressus Numerantium.

The conference was supported by the Department chair and staff, with technical support by Andrew Gultz. Outside support came from the National Security Agency, Springer Nature, CRC Press/Taylor \& Francis, Algorithms, and The Institute of Combinatorics and its Applications. Conference coordination and organization was superbly provided by Dr. Maria Provost.

I gratefully acknowledge the support and assistance of Sara Heuss Holliday, Richard Low, Zvi Rosen, Farhad Shahrokhi, and John Wierman in the compilation and reviewing of these Proceedings. We also thank all our referees.

Preface II

Ratio balancing numbers, introduced here by Jeremy Bartz and his coauthors, are a generalization of balancing numbers, a concept from number theory involving triangular numbers. The authors define the concept and present examples, existence results, and conjectures.

Bohan Qu and Stephen J. Curran show that the number $\beta=\left(b^{b-1}-1\right) /(b-1)^{2}$, where $b \geq 3$, has several interesting multiplicative properties. In the base b number system, $\beta=(123 \cdots(b-4)(b-3)(b-1))_{b}$. They show that the digits of the number $K \beta$, for integers K such that $1 \leq K \leq(b-1)^{2}$, as a number in the base b number system can be generated from an arithmetic sequence reduced modulo $b-1$ with an appropriate adjustment.

Dennis Davenport and his coauthors report on recent results of their research group on Riordan arrays. They generalize a known row construction of Riordan arrays to a result on the determination of double Riordan arrays.

Timothy Myers constructs the Clifford graph algebra for any windmill graph $\mathrm{W}(\mathrm{r}$, m), which consists of m copies of the complete graph K_{r} adjoined at one common vertex; and for any Dutch windmill graph $D_{\mathrm{r}}{ }^{\mathrm{m}}$ which consists of m copies of the r-cycle graph C_{r} adjoined at one common vertex. He then applies the construction to give a new proof that these graphs, which possess the friendship property, are precisely the friendship graphs.

Paul Peart and Francois Ramaroson construct and find the values for certain character sums involving quadratic characters. The method is new and employs elliptic curves. Detailed proofs are provided.

In work that originated in an REU at Illinois State University, Joel Jeffries and his coauthors investigate a multigraph G with the underlying structure of a 4-cycle where each edge multiplicity in the set $\{1,2,3,4\}$ is represented. They refer to each of the three such multigraphs as a Stanton 4 -cycle. For each such G, they consider λ such that there exists a G-decomposition of ${ }^{\lambda} K_{n}$.

Brigitte Servatius considers the k-plane matroid, which is a matroid on the edge set, I, of a bipartite graph, $H=(A, B ; I)$, defined by a counting condition. She shows that $2 k$-connectivity of H implies that I is a spanning set for the k-plane matroid on
the edge set of the complete bipartite graph on (A, B). For $k=2$ she explains the connections to rigidity in the plane and to conjectures of Whiteley.

Farhad Shahrokhi derives an upper bound on the trace function of a hypergraph H and gives some applications. For instance, a new upper bound for the VC dimension of H, or $v c(H)$, follows as a consequence and can be used to compute $v c(H)$ in polynomial time provided that H has bounded degeneracy. This was not previously known, and improves computing time in some cases. Another consequence is a general lower bound on the distinguishing transversal number of H that gives rise to applications in domination theory of graphs.

Sarah Heuss Holliday continues work on a question raised in 2017 by Hedetniemi: For which graphs G does the indexed family of open neighborhoods have a system of distinct representatives? In earlier work with collaborators, that question was answered, and necessary conditions and associated parameters were explored. Haenel and Johnson looked over longest paths and cycles. The work here further generalizes and deepens their examinations.

Atif Abueida and Kenneth Roblee examine harmonious labelings of starlike trees. It has been shown using cyclic groups that the disjoint union of an odd cycle on s vertices and starlike trees with the central vertex adjacent to some even t many s-paths is harmonious. They consider the disjoint union of an odd cycle with at least two starlike trees with new notions of harmonious labelings to accommodate the case where $|V|>|E|$.

A mean coloring of a connected graph G of order 3 or more is an edge coloring of G with positive integers such that the mean of the colors of the edges incident with every vertex is an integer. The associated color of a vertex is its chromatic mean. If distinct vertices have distinct chromatic means, then the edge coloring is a rainbow mean coloring of G. In their paper, Ebrahim Salehi and his coauthors investigate rainbow mean colorings of trees.

Peg solitaire is a game in which pegs are placed in every hole but one, and the player jumps over pegs to remove them. In 2011, this game was generalized to graphs. Here, Robert A. Beeler and Aaron D. Gray examine graphs in which any single edge addition changes solvability. They provide necessary and sufficient conditions for solvability for a certain family. They show that infinite subsets of this family are edge critical and determine the maximum number of pegs that can be left on this family with the condition that a jump is made whenever possible. Finally, they give a list of graphs on eight vertices that are edge critical.

A set of vertices, S, in a strongly connected digraph D, is split dominating provided it is: (1) dominating and (2) $D-S$ is trivial or not strongly connected. The split domination number is the minimum cardinality of a split dominating set for that digraph. Sarah Merz and her coauthors show that for any k-regular tournament, the split domination number is at least $(2 k+3) / 3$ and this bound is tight. They explore properties of regular tournaments with split domination number equal to the lower bound, including sufficient conditions for $\{1\}$-extendability.

David R. Prier and his coauthors give independence and domination results for six chess-like pieces on triangular boards with triangular spaces and triangular boards
with hexagonal spaces. The question of independence and domination for these same boards on the surface of a tetrahedron is introduced, and some initial results are given.

A graph has an efficient dominating set if there exists a subset of vertices D such that every vertex in the graph is dominated by exactly one vertex in D. Lyle Paskowitz and his coauthors investigate efficient domination on the stacked versions of each of the eleven Archimedean Lattices, and determine the existence or non-existence of efficient dominating sets on each lattice through integer programming. The proofs of existence are constructive, and the proofs of non-existence are generated by integer programs. They find efficient dominating sets on seven of the stacked lattices and prove that no such sets exist on the other four stacked lattices.

Let G be a graph with vertex set $\mathrm{V}(\mathrm{G})$ and edge set $\mathrm{E}(\mathrm{G})$. A (p; q)-graph $\mathrm{G}=$ $(V ; E)$ is said to be $\mathrm{AL}(\mathrm{k})$-traversal if there exist a sequence of vertices $v_{1}, v_{2}, \ldots, v_{\mathrm{p}}$ such that for each $i=1,2, \ldots, p-1$, the distance for v_{i} and $\mathrm{v}_{\mathrm{i}+1}$ is equal to k . We call a graph G a k -steps Hamiltonian graph if it has a $\mathrm{AL}(\mathrm{k})$-traversal in G and the distance between v_{p} and v_{1} is k. A graph G is said to be hereditary k-steps hyperhamiltonian if it is k-steps Hamiltonian and for any v in G, the vertex-deleted subgraph $G \backslash\{v\}$ is also k-steps Hamiltonian. In this paper, Hsin-hao Su and his coauthors investigate subdivision graphs of a wheel graph and $C_{4} \times K_{2}$ to see which are 2-steps Hamiltonian and hereditary non 2-steps Hamiltonian.

Let G be a graph with average degree greater than $k-2$. Erdős and Sós conjectured that G contains every tree on k vertices as a subgraph. The circumference of the graph $\mathrm{G}, c(\mathrm{G})$, is the number of edges on a longest cycle. Gilbert and Tiner proved that if $c(\mathrm{G})$ is at most k , then G contains every tree on k vertices. Here A.M. Heissan and Gary Tiner improve this result and show that the Erdős-Sós conjecture holds for graphs whose circumference is at most $k+1$.

Yoshimi Egawa and Kenji Kimura consider a relationship between a regular graph and a regular factor of its vertex-deleted subgraph. Katerinis proved that if r is an even integer and k is an integer with $1 \leq k \leq r / 2$, and G is an r-regular, r-edgeconnected graph of odd order, then $G \backslash\{x\}$ has a k-factor for each $x \in V(G)$. When the result "for each $x \in V(G)$ " of Katerinis is replaced "for some $x \in V(G)$," they consider what condition can hold. One main result is: Let r and k be even integers such that $4 \leq k \leq r / 2$, and ℓ be a minimum integer such that $\ell \geq r /(r-2 k+4)$, and G be an r-regular, 2ℓ-edge-connected graph of odd order. Then, there is some $x \in V$ (G) such that $G \backslash\{x\}$ has a k-factor. Moreover, if $r \geq 4 k-8$, then we can replace 2ℓ-edge-connected with 2-edge-connected.

In his paper, LeRoy B. Beasley gives several definitions of connectedness and extendibility of paths and cycles in directed graphs. He defines sets of digraphs by various types of connectedness or extendibility and gives some containments as well as examples to show proper containment.

Extraconnectivity generalizes the concept of connectivity of a graph but it is more difficult to compute. In his paper, Eddie Cheng and his coauthors compute the g-extraconnectivity of the arrangement graph for small $g(g \leq 6)$ with the help of a computer program. In addition, they provide an asymptotic result for general g.

Alan Bickle defines a k-tree as a graph that can be formed by starting with $K_{\mathrm{k}+1}$ and iterating the operation of making a new vertex adjacent to all the vertices of a k clique of the existing graph. When the order $n>k+1$, a k-path graph is a k-tree with exactly two vertices of degree k. He states a forbidden subgraph characterization for k-paths as k-trees. He characterizes k-trees with diameter $d \geq 2$ based on the k-paths they contain.

In their paper, Marina Skyers and Lee I. Stanley look at representations of the simple random walk, S_{n}, and show how to effectively rearrange the sequence of terms S_{n} / \sqrt{n} in order to achieve almost sure convergence to the standard normal on the open interval $(0 ; 1)$. This is done via a suitable choice of permutation $F:\{0,1\}^{n} \rightarrow$ $\{0,1\}^{n}$. They are interested in optimal rearrangement of the simple random walk. They describe how to minimize the graph-theoretic complexity of these permutations.
M. R. DeDeo analyzes and compares properties of Cayley graphs of permutation groups called transposition graphs, as this family of graphs has better degree and diameter properties than other families of graphs. Cayley graphs of permutation groups generated by transpositions inherit almost all of the properties of the hypercube. In particular, she studies properties of the complete transportation, (transposition) star graph, bubble-sort graph, modified bubble-sort graph and the binary hypercube and uses these properties to determine bounds on the energy of these graphs.

John C. Wierman studies the $\left(4 ; 8^{2}\right)$ or "bathroom tile," lattice, one of the eleven Archimedean lattices, which are infinite vertex-transitive graphs with edges from the tilings of the plane by regular polygons. The site percolation model retains each vertex of an infinite graph independently with probability $p, 0 \leq p \leq 1$. The site percolation threshold is the critical probability $p_{c}^{s i t e}$, above which the subgraph induced by retained vertices contains an infinite connected component almost surely, and below which all components are finite almost surely. Using computational improvements for the substitution method, the upper bound for the site percolation threshold of the $(4 ; 82)$ lattice is reduced from 0.785661 to 0.749002 .

Boca Raton, USA
Frederick Hoffman

Contents

Ratio Balancing Numbers 1
Jeremiah Bartz, Bruce Dearden, Joel Iiams, and Jerry Metzger
An Unexpected Digit Permutation from Multiplying in Any Number Base 13
Bohan Qu and Stephen J. Curran
A \& Z Sequences for Double Riordan Arrays 33
Donovan Branch, Dennis Davenport, Shakuan Frankson, Jazmin T. Jones, and Geoffrey Thorpe
Constructing Clifford Algebras for Windmill and Dutch Windmill Graphs; A New Proof of the Friendship Theorem 47
Timothy Myers
Finding Exact Values of a Character Sum 83
Paul Peart and Francois Ramaroson
On Minimum Index Stanton 4-Cycle Designs 99
R. C. Bunge, A. Hakes, J. Jeffries, E. Mastalio, and J. Torf
k-Plane Matroids and Whiteley's Flattening Conjectures 109
Brigitte Servatius
Bounding the Trace Function of a Hypergraph with Applications 117
Farhad Shahrokhi
A Generalization on Neighborhood Representatives 127
Sarah Heuss Holliday
Harmonious Labelings of Disconnected Graphs Involving Cycles and Multiple Components Consisting of Starlike Trees 131
Atif Abueida and Kenneth Roblee
On Rainbow Mean Colorings of Trees 141
James Hallas, Ebrahim Salehi, and Ping Zhang
Examples of Edge Critical Graphs in Peg Solitaire 157
Robert A. Beeler and Aaron D. Gray
Regular Tournaments with Minimum Split Domination Number and Cycle Extendability 171
Kim A. S. Factor, Larry Langley, and Sarah Merz
Independence and Domination of Chess Pieces on Triangular Boards and on the Surface of a Tetrahedron 183
Krista Munger, Joseph Petrone, and David R. Prier
Efficient and Non-efficient Domination of \mathbb{Z}-stacked Archimedean Lattices 197
Lyle Paskowitz, Nathan Vallapureddy, and John Wierman
On Subdivision Graphs Which Are 2-steps Hamiltonian Graphs and Hereditary Non 2-steps Hamiltonian Graphs 215
Sin-Min Lee, Hsin-hao Su, and Yung-Chin Wang
On the Erdős-Sós Conjecture for Graphs with Circumference at Most $\boldsymbol{k}+1$ 229
A. M. Heissan and Gary Tiner
Regular Graph and Some Vertex-Deleted Subgraph 245
Yoshimi Egawa and Kenji Kimura
Connectivity and Extendability in Digraphs 261
LeRoy B. Beasley
On the Extraconnectivity of Arrangement Graphs 275
Eddie Cheng, László Lipták, and Daniel Tian
\boldsymbol{k}-Paths of \boldsymbol{k}-Trees 287
Allan Bickle
Rearrangements of the Simple Random Walk 293
Marina Skyers and Lee J. Stanley
On the Energy of Transposition Graphs 305
M. R. DeDeo
A Smaller Upper Bound for the (4, $\mathbf{8}^{\mathbf{2}}$) Lattice Site Percolation Threshold 317
John C. Wierman

Ratio Balancing Numbers

Jeremiah Bartz, Bruce Dearden, Joel Iiams, and Jerry Metzger

Abstract

Balancing numbers were introduced by Behera and Panda while investigating when the sum of two triangular numbers is a triangular number. We introduce a variation called ratio balancing numbers which generalizes the sums considered and involves an integral ratio condition. Often ratio balancing numbers retain the familiar properties of balancing numbers. However, a distinct feature of ratio balancing numbers is that they exist in finite numbers for certain choices of parameters. Computational evidence leads us to conjecture that for any integer d, there are choices of parameters which yield finitely many, but at least d, ratio balancing numbers.

Keywords Balancing numbers • Triangular numbers \cdot Recurrence relations

1 Introduction

Behera and Panda [5] defined balancing numbers as positive integers B satisfying

$$
1+2+\cdots+(B-1)=(B+1)+\cdots+(B+r)
$$

for some integer $r \geq 0$. The previous equation is equivalent to

$$
\begin{equation*}
T(B-1)+T(B)=T(B+r) \tag{1}
\end{equation*}
$$

[^0]where $T(i)=\frac{i(i+1)}{2}$ is the i th triangular number. The identity $T(5)+T(6)=T(8)$ shows that 6 is a balancing number. Traditionally, 1 is considered the initial balancing number since it satisfies (1). The collection of balancing numbers forms an infinite sequence which appears in The Online Encyclopedia of Integer Sequences [8] as A001109.

Many variations of balancing numbers have been studied [1, 2, 4, 9-13]. That being said, none so far have incorporated sums of the same type as the well known identity $3 T(B-1)+T(B)=T(2 B-1)$ [6, p. 13]. Motivated to include such sums, we introduce ratio balancing numbers which involve an integral ratio condition. We show that often ratio balancing numbers retain the familiar properties of balancing numbers. However, a distinct feature of ratio balancing numbers is that they exist in finite numbers for certain choices of parameters. Computational evidence leads us to conjecture that for any integer d, there are choices of parameters which yield finitely many, but at least d, ratio balancing numbers.

The paper is organized as follows. Definitions and examples of ratio balancing numbers and related quantities are given in Sect. 2. In Sect. 3, we prove that there are only finitely many ratio balancing numbers for certain choices of parameters and present our conjecture. We derive in Sect. 4 several familiar properties of balancing numbers for ratio balancing numbers when infinitely many exist. Additionally, we present the surprising restriction on jump sizes when generating an infinite class of ratio balancing numbers; the jump size is either 1 or 2 .

2 Ratio Balancing Numbers and Related Quantities

Let $p, q, k, w \in \mathbb{Z}$ with $p, q \geq 1$ and $k \geq 0$. We are interested in finding integers B with $B \geq k$ such that

$$
1+\cdots+(B-k):(B+1)+\cdots+(B+r):: p: q .
$$

This is equivalent to B satisfying

$$
\begin{equation*}
q T(B-k)+p T(B)=p T(B+r) \tag{2}
\end{equation*}
$$

where $T(i)=\frac{i(i+1)}{2}$ is the i th triangular number. We are also interested when the two sides of (2) differ by a fixed integer w. This leads to the following definition.

Definition 1 Let $p, q, k, w \in \mathbb{Z}$ with $p, q \geq 1$ and $k \geq 0$. An integer B is called a ratio balancing number with ratio $p: q$, gap k, and weight w, or more simply an $R(p, q, k, w)$-balancing number if $B \geq k$ and

$$
\begin{equation*}
q T(B-k)+p T(B)+w=p T(B+r) \tag{3}
\end{equation*}
$$

for some integer $r \geq 0$. We refer to r as the $R(p, q, k, w)$-balancer corresponding to the $R(p, q, k, w)$-balancing number B.

Solving (3) for r and B, respectively, gives

$$
\begin{equation*}
r=\frac{-p(2 B+1)+\sqrt{4 p(p+q) B^{2}+4 p(p+q-2 q k) B+4 p q k(k-1)+p^{2}+8 p w}}{2 p} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
B=\frac{2 p r+q(2 k-1)+\sqrt{4 p(p+q) r^{2}+8 p q k r+q^{2}-8 q w}}{2 q} \tag{5}
\end{equation*}
$$

where we take the positive square root so that $r \geq 0$ and $B \geq k$. Thus B is an $R(p, q, k, w)$-balancing number with $R(p, q, k, w)$-balancer r implies that the quantity $4 p(p+q) B^{2}+4 p(p+q-2 q k) B+4 p q k(k-1)+p^{2}+8 p w$ as well as $4 p(p+q) r^{2}+8 p q k r+q^{2}-8 q w$ are both perfect square. This motivates the next definitions.

Definition 2 Let B be an $R(p, q, k, w)$-balancing number with $R(p, q, k, w)$ balancer r. Define its $R(p, q, k, w)$-Lucas balancing number to be

$$
C=\sqrt{4 p(p+q) B^{2}+4 p(p+q-2 q k) B+4 p q k(k-1)+p^{2}+8 p w}
$$

and its $R(p, q, k, w)$-Lucas balancer \hat{r} to be

$$
\hat{r}=\sqrt{4 p(p+q) r^{2}+8 p q k r+q^{2}-8 q w}
$$

We say (B, C) is an $R(p, q, k, w)$-balancing pair and (r, \hat{r}) its $R(p, q, k, w)$-balancer pair.

The integral pair (B, C) is an $R(p, q, k, w)$-balancing pair if and only if the following three conditions hold:

1. $B \geq k$;
2. $4 p(p+q) B^{2}+4 p(p+q-2 q k) B+4 p q k(k-1)+p^{2}+8 p w$ is a perfect square;
3. $C \equiv p(\bmod 2 p)$.

The third condition follows from (4). The second condition implies that the $R(p, q$, $k, w)$-balancing pair (B, C) is a solution to the Pell like-equation

$$
\begin{equation*}
y^{2}=4 p(p+q) x^{2}+4 p(p+q-2 q k) x+4 p q k(k-1)+p^{2}+8 p w \tag{6}
\end{equation*}
$$

Multiplying by $p(p+q)$ we see (6) can be expressed as

$$
\begin{equation*}
z^{2}-p(p+q) y^{2}=N(p, q, k, w) \tag{7}
\end{equation*}
$$

where $z=2 p(p+q) x+p(p+q-2 q k)$ and

$$
N(p, q, k, w)=p^{2} q(p+q)-4 p^{3} q k^{2}-8 p^{2}(p+q) w .
$$

Equation (7) is useful for studying ratio balancing numbers and is referred to as the $R(p, q, k, w)$-companion equation. In particular, an integral solution (z, y) to the $R(p, q, k, w)$-companion equation corresponds to an $R(p, q, k, w)$-balancing pair (B, C) where

$$
B=\frac{z-p(p+q-2 q k)}{2 p(p+q)}
$$

and $C=y$ provided the following four conditions hold:

1. $z \geq p^{2}(2 k+1)+p q$;
2. $y>0$;
3. $y \equiv p(\bmod 2 p)$;
4. $z \equiv p(p+q-2 q k)(\bmod 2 p(p+q))$.

The first three conditions are analogues to those described above for integer pairs (B, C). The last condition is necessary for integral values of (z, y) to yield integral values of (B, C).

Similarly we note that the $R(p, q, k, w)$-balancer pair (r, \hat{r}) is a solution to the equation

$$
y^{2}=4 p(p+q) x^{2}+8 p q k x+q^{2}-8 q w .
$$

Multiplying by $p(p+q)$ and substituting $z=2 p(p+q) x+2 p q k$ yields the $R(p, q, k, w)$-balancer companion equation

$$
z^{2}-p(p+q) y^{2}=4 p^{2} q^{2} k^{2}-p q^{2}(p+q)+8 p q(p+q) w .
$$

We are also interested in the index of the triangular number appearing on the right hand side of (2) and make the following definition.

Definition 3 The counterbalancer m of an $R(p, q, k, w)$-balancing number B with $R(p, q, k, w)$-balancer r is defined to be $m=B+r$.

Several relationships between the quantities defined above are given in the next result. These follow quickly from applying the definitions to (4) and (5).

Proposition 1 Suppose (B, C) is an $R(p, q, k, w)$-balancing pair with (r, \hat{r}) its associated $R(p, q, k, w)$-balancer pair and m its counterbalancer. Then
(a) $r=\frac{-p(2 B+1)+C}{2 p}$;
(b) $\hat{r}=2 q B-2 p r-2 q k+q$;
(c) $\hat{r}=2(p+q) B-C+p+(1-2 k) q$;
(d) $m=\frac{c-p}{2 p}$.

Example 1 The identity 7 $\cdot T(3)+T(5)+9=T(11)$ shows that the number 5 is an $R(1,7,2,9)$-balancing number with balancer 6 and corresponding $R(1,7,2,9)$ Lucas balancing number 23 . Since $2 \cdot T(14)+3 \cdot T(15)=3 \cdot T(19)$, the number 15
is an $R(3,2,1,0)$-balancing number with balancer 4. Its corresponding $R(3,2,1,0)$ Lucas balancing number is 117 . Every positive integer B is an $R(1,3,1,0)$-balancing number with balancer $B-1$ since $3 \cdot T(B-1)+T(B)=T(2 B-1)$. The corresponding $R(1,3,1,0)$-Lucas balancing number is $4 B-1$. These last two examples are discussed further in Examples 7 and 6, respectively.

Example 2 If B is an $R(p, q, k, w)$-balancing number, multiplying (3) by any positive integer c shows B is also an $R(c p, c q, k, c w)$-balancing number.

Example 3 Ratio balancing numbers unify many variations of balancing numbers previously studied. The $R(1,1, k, w)$-balancing numbers are the almost k-gap balancing numbers [1]. In particular, the $R(1,1,0,0)-, R(1,1,1,0)-$, and $R(1,1, k, 0)$ balancing numbers are cobalancing [11], balancing numbers [5], and upper k-gap balancing numbers [2], respectively. The $R\left(1,1,1,-k^{2}\right)$-balancing numbers are the k-circular balancing numbers [10]. Lastly, the $R(1,1,1,1)$ - and $R(1,1,1,-1)$ balancing numbers are the almost balancing numbers of the first and second kind [9], respectively.

3 Counting Ratio Balancing Numbers

In this section, we establish that $R(p, q, k, w)$-balancing numbers, depending on the choice of parameter values, either do not exist, exist in a finite number, or exist in a finite number of infinite classes. The situation where a finite number of $R(p, q, k, w)$ balancing numbers exist is of particular interest; this case does not arise in other variations of balancing numbers previously studied.

From the discussion in Sect. 2, $R(p, q, k, w)$-balancing numbers can be derived from solutions to the $R(p, q, k, w)$-companion equation which satisfy four conditions. Recall that the $R(p, q, k, w)$-companion equation given in (7) is

$$
\begin{equation*}
z^{2}-D y^{2}=N \tag{8}
\end{equation*}
$$

where $D=p(p+q)$ and $N=N(p, q, k, w)$. From the theory of Pell equations [7], the existence of solutions to (8) depend on the values of D and N. If D is not a perfect square, then (8) either has no solutions or infinitely many solutions which appear in a finite number of infinite classes. The latter situation is explored further in Sect.4. If D is a perfect square and $N \neq 0$, then (8) has finitely many solutions (possibly none). Since each $R(p, q, k, w)$-balancing pair corresponds to one of these finitely many solutions, we obtain the following.

Theorem 1 Suppose $p(p+q)$ is a perfect square. If $N(p, q, k, w) \neq 0$, then there are finitely many (possibly none) $R(p, q, k, w)$-balancing numbers.

Example 4 The numbers 1 and 3 are the only two $R(1,24,1,0)$-balancing numbers. To see this, observe the $R(1,24,1,0)$-companion equation is $z^{2}-25 y^{2}=504$
whose solutions in the positive integers (z, y) are (23, 1), (27, 3), and (127, 25). Only the latter two solutions satisfy the four conditions required to yield ratio balancing numbers.

When there are finitely many $R(p, q, k, w)$-balancing numbers, experimental evidence shows that there are most often three or fewer $R(p, q, k, w)$-balancing numbers. There are four $R(1,2550408,1,0)$-balancing numbers, namely $1,2,200$, and 318801 . Moreover, four is the largest observed number of ratio balancing numbers so far for a fixed set of parameters in the finite case. Despite the perceived rarity of balancing numbers in the finite case, we make the following conjecture.

Conjecture 1 Let d be a positive integer. There exists values of p, q, k, and w with $p(p+q)$ a perfect square and $N(p, q, k, w) \neq 0$ which yield at least d $R(p, q, k, w)$-balancing numbers.

The search interval for ratio balancing numbers in the finite case can be made more efficient in some situations with the following theorem. This result provides an upper bound for B for a certain class of ratio balancing numbers. Observe that the condition that $p(p+q)$ is a perfect square is equivalent to p and $p+q$ each being square when $\operatorname{gcd}(p, q)=1$.

Theorem 2 Let $k, w \in \mathbb{Z}$ with $k \geq 0$. Suppose $p=a^{2}$ and $q=b^{2}-a^{2}$ for some positive integers a and b such that $a<b$ and $\operatorname{gcd}(p, q)=1$. If b does not divide $2 k$, then B is a $R(p, q, k, w)$-balancing number only if $B \leq \max \left\{M_{1}, M_{2}\right\}$ where

$$
\begin{gathered}
M_{1}=\frac{4 a^{2}\left(b^{2}-a^{2}\right) k(k-1)+a^{4}+8 a^{2} w-t^{2}}{4 a b t-4 a^{2}\left(2 a^{2} k+(1-2 k) b^{2}\right)}, \\
M_{2}=\frac{4 a^{2}\left(b^{2}-a^{2}\right) k(k-1)+a^{4}+8 a^{2} w-(t+1)^{2}}{4 a b(t+1)-4 a^{2}\left(2 a^{2} k+(1-2 k) b^{2}\right)},
\end{gathered}
$$

and

$$
\begin{equation*}
t=\left\lfloor\frac{a\left(2 a^{2} k+(1-2 k) b^{2}\right)}{b}\right\rfloor . \tag{9}
\end{equation*}
$$

Proof Recall that (B, C) is a $R(p, q, k, w)$-balancing pair only if (B, C) is a solution to (6) which after substitution becomes
$y^{2}=4 a^{2} b^{2} x^{2}+4 a^{2}\left(2 a^{2} k+(1-2 k) b^{2}\right) x+4 a^{2}\left(b^{2}-a^{2}\right) k(k-1)+a^{4}+8 a^{2} w$.
We determine a choice of t which depends on a, b, and k so that the quantity y^{2} lies strictly between the consecutive squares $(2 a b x+t)^{2}$ and $(2 a b x+t+1)^{2}$ for sufficiently large integers x, hence cannot be a square of an integer. Observe that the inequalities $(2 a b x+t)^{2}<y^{2}<(2 a b x+t+1)^{2}$ reduce to

$$
4 a b t x+t^{2}<y_{0}<4 a b(t+1) x+(t+1)^{2}
$$

where

$$
y_{0}=4 a^{2}\left(2 a^{2} k+(1-2 k) b^{2}\right) x+4 a^{2}\left(b^{2}-a^{2}\right) k(k-1)+a^{4}+8 a^{2} w
$$

We select t so that

$$
4 a b t<4 a^{2}\left(2 a^{2} k+(1-2 k) b^{2}\right)<4 a b(t+1)
$$

From a geometric viewpoint, this choice guarantees that the balance line

$$
y=4 a^{2}\left(2 a^{2} k+(1-2 k) b^{2}\right) x+4 a^{2}\left(b^{2}-a^{2}\right) k(k-1)+a^{4}+8 a^{2} w
$$

lies strictly between the bounding lines $y=4 a b t x+t^{2}$ and $y=4 a b(t+1) x+$ $(t+1)^{2}$ for sufficiently large x. In particular, the choice of t in (9) is sufficient under the given hypotheses unless $\frac{a\left(2 a^{2} k+(1-2 k) b^{2}\right)}{b}$ is an integer. This occurs exactly when $2 a^{3} k \equiv 0(\bmod b)$ or equivalently b divides $2 k$ under the assumptions above. The upper bound on B follows from observing that the balance line lies strictly between the two bounding lines for x greater than the largest x-coordinate of the intersection points obtained from the bounding lines with the balance line.

Remark 1 The argument made in the proof of Theorem 2 can be sharpened by considering divisibility conditions and the relative positioning of the balance and bounding lines at $x=0$. We omit these details for convenience of the reader since the emphasis of the result is demonstrate a technique to establish an upper bound for B.

Example 5 The unique $R(4,5,1,0)$-balancing number is 1 . Using the notation of Theorem 2, we have $t=-1$ and balance line is $y=-16 x+16$. The two bounding lines are $y=0$ and $y=-24 x+1$. From the intersection of the bounding lines with the balance line, we see that any $R(4,5,1,0)$-balancing number B satisfies $B \leq \max \{-15 / 8,1\}=1$. The statement follows since $B=k$ with $r=0$ always satisfies (3) when $w=0$.

Lastly we consider the degenerate case when $p(p+q)$ is a perfect square and $N(p, q, k, w)=0$. If additionally $w=0$, then $N=0$ exactly when $q=\left(4 k^{2}-1\right) p$. Consequently, this situation can be completely described combining the next example with comments given in Example 2. We remark that this case is more subtle for general w.

Example 6 Let $k \geq 1$. The $R\left(1,4 k^{2}-1, k, 0\right)$-balancing numbers consist of all integers $B \geq k$. To see this, observe that $z=8 k^{2} B-8 k^{3}+4 k^{2}+2 k$ and $y=$ $4 k B-4 k^{2}+2 k+1$ are solutions to the $R\left(1,4 k^{2}-1, k, 0\right)$-companion equation $z^{2}-4 k^{2} y^{2}=0$ for each integer $B \geq k$ and satisfy the four conditions described in Sect. 2. The corresponding identity in terms of triangular numbers is

$$
\left(4 k^{2}-1\right) T(B-k)+T(B)=T\left(2 k B-2 k^{2}+k\right)
$$

4 Functions Generating Ratio Balancing Numbers and Related Results

When $p(p+q)$ is not a perfect square, the standard balancing number techniques can be used to generate balancing numbers from known balancing numbers. From Pell equation theory, integral solutions to (7), if they exist, occur in a finite number of cyclic classes. That is, if $\left(z^{\prime}, y^{\prime}\right)$ is a solution corresponding to an $R(p, q, k, w)$ balancing number, then so is $\left(z^{\prime \prime}, y^{\prime \prime}\right)$ where

$$
z^{\prime \prime}+y^{\prime \prime} \sqrt{p(p+q)}=(\alpha+\beta \sqrt{p(p+q)})^{j}\left(z^{\prime}+y^{\prime} \sqrt{p(p+q)}\right)
$$

or equivalently in matrix form

$$
V^{j}:\left[\begin{array}{l}
z^{\prime \prime} \tag{10}\\
y^{\prime \prime}
\end{array}\right]=\left[\begin{array}{cc}
\alpha & p(p+q) \beta \\
\beta & \alpha
\end{array}\right]^{j}\left[\begin{array}{l}
z^{\prime} \\
y^{\prime}
\end{array}\right]
$$

Here $\alpha+\beta \sqrt{p(p+q)}$ is the fundamental solution to $z^{2}-p(p+q) y^{2}=1$ and j is the minimal positive integer such that $y^{\prime \prime} \equiv p(\bmod 2 p)$ and $z^{\prime \prime} \equiv p(p+q-2 q k)$ $(\bmod 2 p(p+q))$. We refer to $j=j(p, q, k, w)$ as the $j u m p$ size for $R(p, q, k, w)$ balancing numbers.

Almost balancing numbers, which include balancing numbers, always have a jump size of $j=1$. Replacing triangular numbers in (1) with general figurate numbers give the polygonal-balancing numbers [4]. Depending on the choice of parameters, polygonal balancing numbers can have arbitrarily large jump sizes [3]. The next theorem shows that the jump sizes for ratio balancing numbers satisfies $j \leq 2$, striking a middle ground between the results for almost and polygonal balancing numbers.

Theorem 3 Suppose $p(p+q)$ is not a perfect square and $\left(z^{\prime}, y^{\prime}\right)$ is a solution to the $R(p, q, k, w)$-companion equation corresponding to an $R(p, q, k, w)$-balancing number. Let $\alpha+\beta \sqrt{p(p+q)}$ be the fundamental solution to $z^{2}-p(p+q) y^{2}=1$. Then $\left(z^{\prime \prime}, y^{\prime \prime}\right)$ is also a solution corresponding to an $R(p, q, k, w)$-balancing number where

$$
\left[\begin{array}{l}
z^{\prime \prime} \tag{11}\\
y^{\prime \prime}
\end{array}\right]=\left[\begin{array}{cc}
\alpha & p(p+q) \beta \\
\beta & \alpha
\end{array}\right]^{2}\left[\begin{array}{l}
z^{\prime} \\
y^{\prime}
\end{array}\right]
$$

Hence, the jump size j is at most two.
Proof By assumption $z^{\prime} \geq p^{2}(2 k+1)+p q, y^{\prime}>0, y^{\prime} \equiv p(\bmod 2 p)$, and $z^{\prime} \equiv$ $p(p+q-2 q k)(\bmod 2 p(p+q))$. For $j=2$, we see that (11) becomes

$$
\left[\begin{array}{l}
z^{\prime \prime} \\
y^{\prime \prime}
\end{array}\right]=\left[\begin{array}{cc}
\alpha^{2}+p(p+q) \beta^{2} & 2 p(p+q) \alpha \beta \\
2 \alpha \beta & \alpha^{2}+p(p+q) \beta^{2}
\end{array}\right]\left[\begin{array}{l}
z^{\prime} \\
y^{\prime}
\end{array}\right] .
$$

Clearly, $z^{\prime \prime} \geq p^{2}(2 k+1)+p q$ and $y^{\prime \prime}>0$. Since $\alpha^{2}-p(p+q) \beta^{2}=1$ and $z^{\prime} \equiv$ $p(p+q)(\bmod 2 p)$, we see

$$
y^{\prime \prime} \equiv 2 \alpha \beta z^{\prime}+\left(2 \alpha^{2}-1\right) y^{\prime} \equiv p \quad(\bmod 2 p)
$$

Again using $\alpha^{2}-p(p+q) v \beta^{2}=1$, observe

$$
\begin{aligned}
z^{\prime \prime} & \equiv\left(2 \alpha^{2}-1\right) z^{\prime}+2 p(p+q) \alpha \beta y^{\prime} \quad(\bmod 2 p(p+q)) \\
& \equiv-4 \alpha^{2} p q k-p(p+q-2 q k) \quad(\bmod 2 p(p+q)) \\
& \equiv-4\left(1+p(p+q) \beta^{2}\right) p q k-p(p+q-2 q k) \quad(\bmod 2 p(p+q)) \\
& \equiv p(p+q-2 q k) \quad(\bmod 2 p(p+q))
\end{aligned}
$$

Thus ($z^{\prime \prime}, y^{\prime \prime}$) satisfies the four conditions given in Sect. 2.
Ratio balancing numbers with $j=1$ remain of particular interest and can be characterized as follows.

Theorem 4 Suppose $p(p+q)$ is not a perfect square and $\left(z^{\prime}, y^{\prime}\right)$ is a solution to the $R(p, q, k, w)$-companion equation corresponding to an $R(p, q, k, w)$-balancing number. Let $\alpha+\beta \sqrt{p(p+q)}$ be the fundamental solution to $z^{2}-p(p+q) y^{2}=1$. Then $\left(z^{\prime \prime}, y^{\prime \prime}\right)$ is also a solution corresponding to an $R(p, q, k, w)$-balancing number where

$$
\left[\begin{array}{l}
z^{\prime \prime} \tag{12}\\
y^{\prime \prime}
\end{array}\right]=\left[\begin{array}{cc}
\alpha & p(p+q) \beta \\
\beta & \alpha
\end{array}\right]^{j}\left[\begin{array}{l}
z^{\prime} \\
y^{\prime}
\end{array}\right]
$$

with $j=1$ if and only if the following conditions are satisfied:

1. $\alpha+\beta(p+q) \equiv 1(\bmod 2)$;
2. $(\alpha-1)(p+q-2 q k)+p(p+q) \beta \equiv 0(\bmod 2(p+q))$.

Proof It is immediate from the hypotheses that $z^{\prime \prime} \geq p^{2}(2 k+1)+p q$ and $y>0$. For ($z^{\prime \prime}, y^{\prime \prime}$) to corresponding to an $R(p, q, k, w)$-balancing number with $j=1$, we require $y^{\prime \prime} \equiv p(\bmod 2 p)$ and $z^{\prime \prime} \equiv p(p+q-2 q k)(\bmod 2 p(p+q))$. On the other hand, it follows from (12) and noting $z^{\prime} \equiv p(p+q)(\bmod 2 p)$ that $y^{\prime \prime} \equiv(\alpha+\beta(p+q)) p(\bmod 2 p) \quad$ and $\quad z^{\prime \prime} \equiv \alpha(p+q-2 q k)+p(p+q) \beta y^{\prime}$ $(\bmod 2 p(p+q))$. These observations reduce to the stated conditions.

Observe that the relations $y_{i}=C_{i}$ and $z_{i}=2 p(p+q) B_{i}+p(p+q-2 q k)$ can be expressed as

$$
S:\left[\begin{array}{l}
z_{i} \tag{13}\\
y_{i}
\end{array}\right]=\left[\begin{array}{cc}
2 p(p+q) & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
B_{i} \\
C_{i}
\end{array}\right]+\left[\begin{array}{c}
p(p+q)-2 p q k \\
0
\end{array}\right]
$$

and

$$
S^{-1}:\left[\begin{array}{c}
B_{i} \tag{14}\\
C_{i}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{2 p(p+q)} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
z_{i} \\
y_{i}
\end{array}\right]+\left[\begin{array}{c}
\frac{-p(p+q)+2 p q k}{2 p(p+q)} \\
0
\end{array}\right]
$$

Using (13) and (14), we can express (10) in terms of $R(p, q, k, w)$-balancing pairs as $J=S^{-1} V^{j} S$ where j is the jump size. Analogous expressions can be derived for
generating $R(p, q, k, w)$-balancer pairs from known ones. The next two subsections utilize the jump size and the maps above to obtain a collection of recurrence relations of $R(p, q, k, w)$-balancing numbers and related sequences.

4.1 One Jump Case

When $j=1$, it is straightforward to see that $J=S^{-1} V S$ is given by

$$
\left[\begin{array}{c}
B_{i+1} \\
C_{i+1}
\end{array}\right]=\left[\begin{array}{cc}
\alpha & \frac{\beta}{2} \\
2 p(p+q) \beta & \alpha
\end{array}\right]\left[\begin{array}{l}
B_{i} \\
C_{i}
\end{array}\right]+\left[\begin{array}{c}
\frac{(p(p+q)-2 p q k)(\alpha-1)}{2 p(p+q)} \\
(p(p+q)-2 p q k) \beta
\end{array}\right]
$$

and $J^{-1}=S^{-1} V^{-1} S$ by

$$
\left[\begin{array}{l}
B_{i-1} \\
C_{i-1}
\end{array}\right]=\left[\begin{array}{cc}
\alpha & -\frac{\beta}{2} \\
-2 p(p+q) \beta & \alpha
\end{array}\right]\left[\begin{array}{c}
B_{i} \\
C_{i}
\end{array}\right]+\left[\begin{array}{c}
\frac{(p(p+q)-2 p q k)(\alpha-1)}{2 p(p+q)} \\
-(p(p+q)-2 p q k) \beta
\end{array}\right] .
$$

Using the techniques used to prove analogous statements in [2, 5], we obtain the following results.

Proposition 2 Let $\left(\left(B_{i}, C_{i}\right)\right)_{i \geq 0}$ be a class of $R(p, q, k, w)$-balancing pairs with jump size $j=1,\left(\left(r_{i}, \hat{r}_{i}\right)\right)_{i \geq 0}$ its $R(p, q, k, w)$-balancer pairs, and $\left(m_{i}\right)_{i \geq 0}$ its associated counterbalancers. Then
(a) $B_{i+1}=2 \alpha B_{i}-B_{i-1}+\frac{(p(p+q)-2 p q k)(\alpha-1)}{p(p+q)}$;
(b) $C_{i+1}=2 \alpha C_{i}-C_{i-1}$;
(c) $r_{i+1}=2 \alpha r_{i}-r_{i-1}+\frac{2 q k(\alpha-1)}{p+q}$;
(d) $\hat{r}_{i+1}=2 \alpha \hat{r}_{i}-\hat{r}_{i-1}$;
(e) $m_{i+1}=2 \alpha m_{i}-m_{i-1}+\alpha-1$.

Moreover,

$$
\lim _{i \rightarrow \infty} \frac{B_{i+1}}{B_{i}}=\lim _{i \rightarrow \infty} \frac{r_{i+1}}{r_{i}}=\lim _{i \rightarrow \infty} \frac{m_{i+1}}{m_{i}}=\alpha+\sqrt{\alpha^{2}-1} .
$$

4.2 Two Jump Case

For $j=2$, the identity $\alpha^{2}+p(p+q) \beta^{2}=2 \alpha^{2}-1$ is used to simply the presentation. In this case, $J=S^{-1} V^{2} S$ is given by

$$
\left[\begin{array}{c}
B_{i+1} \\
C_{i+1}
\end{array}\right]=\left[\begin{array}{cc}
2 \alpha^{2}-1 & \alpha \beta \\
4 p(p+q) \alpha \beta & 2 \alpha^{2}-1
\end{array}\right]\left[\begin{array}{c}
B_{i} \\
C_{i}
\end{array}\right]+\left[\begin{array}{c}
(p(p+q)-2 p q k) \beta^{2} \\
2(p(p+q)-2 p q k) \alpha \beta
\end{array}\right]
$$

and $J^{-1}=S^{-1} V^{-2} S$ by

Table 1 Initial $R(3,2,1,0)$-balancing numbers and associated sequences.

1	0_{a}	0_{b}	1_{a}	1_{b}	$2{ }_{a}$	$2{ }_{b}$	$3{ }_{a}$	$3{ }_{b}$
B	1	15	70	936	4345	58023	269326	3596496
C	9	117	543	7251	33657	449445	2086191	27858339
r	0	4	20	272	1264	16884	78372	1046560
\hat{r}	2	34	158	2110	9794	130786	607070	8106622
m	1	19	90	1208	5609	74907	347698	4643056

$$
\left[\begin{array}{c}
B_{i-1} \\
C_{i-1}
\end{array}\right]=\left[\begin{array}{cc}
2 \alpha^{2}-1 & -\alpha \beta \\
-4 p(p+q) \alpha \beta & 2 \alpha^{2}-1
\end{array}\right]\left[\begin{array}{c}
B_{i} \\
C_{i}
\end{array}\right]+\left[\begin{array}{c}
(p(p+q)-2 p q k) \beta^{2} \\
-2(p(p+q)-2 p q k) \alpha \beta
\end{array}\right]
$$

Proceeding similarly as in the $j=1$ case, we obtain the following results.
Proposition 3 Let $\left(\left(B_{i}, C_{i}\right)\right)_{i \geq 0}$ be a class of $R(p, q, k, w)$-balancing pairs with jump size $j=2$, $\left(\left(r_{i}, \hat{r}_{i}\right)\right)_{i \geq 0}$ its $R(p, q, k, w)$-balancer pairs, and $\left(m_{i}\right)_{i \geq 0}$ its associated counterbalancers. Then
(a) $B_{i+1}=2\left(2 \alpha^{2}-1\right) B_{i}-B_{i-1}+2(p(p+q)-2 p q k) \beta^{2}$;
(b) $C_{i+1}=2\left(2 \alpha^{2}-1\right) C_{i}-C_{i-1}$;
(c) $r_{i+1}=2\left(2 \alpha^{2}-1\right) r_{i}-r_{i-1}+4 p q k \beta^{2}$;
(d) $\hat{r}_{i+1}=2\left(2 \alpha^{2}-1\right) \hat{r}_{i}-\hat{r}_{i-1}$;
(e) $m_{i+1}=2\left(2 \alpha^{2}-1\right) m_{i}-m_{i-1}+2 p(p+q) \beta^{2}$.

Moreover,

$$
\lim _{i \rightarrow \infty} \frac{B_{i+1}}{B_{i}}=\lim _{i \rightarrow \infty} \frac{r_{i+1}}{r_{i}}=\lim _{i \rightarrow \infty} \frac{m_{i+1}}{m_{i}}=2 \alpha^{2}-1+\sqrt{\left(2 \alpha^{2}-1\right)^{2}-1}
$$

Example 7 There are two classes of $R(3,2,1,0)$-balancing pairs whose initial terms are $(1,9)$ and $(15,117)$, respectively. The initial $R(3,2,1,0)$-balancing numbers and associated sequences are given in Table 1. Here $\alpha=4, \beta=1$, and $j=2$. From Proposition 3, we see that two of the recursive relations for each class are $B_{i+1}=62 B_{i}-B_{i-1}+6$ and $r_{i+1}=62 r_{i}-r_{i-1}+24$. None of these sequences or subsequences appear in The On-line Encyclopedia of Integer Sequences.

References

1. Bartz, J., Dearden, B., Iiams, J.: Almost gap balancing numbers. Integers 18(A79), 1-12 (2018).
2. Bartz, J., Dearden, B., Iiams, J.: Classes of gap balancing numbers. Rocky Mountain J. Math 51(2), 399-411 (2021).
3. Bartz, J., Dearden, B., Iiams, J.: Jump Sizes for Polygonal Balancing Numbers. Australas. J. Combin. (2022) Accepted and to appear.
4. Bartz, J., Dearden, B., Iiams, J.: Polygonal Balancing Numbers I. Integers 22(A54), 1-26 (2022).
5. Behera, A., Panda, G.K.: On the square roots of triangular numbers. Fibonacci Quart. 37, 98-105 (1999).
6. Deza, E., Deza, M.M.: Figurate Numbers. World Scientific, Singapore (2012).
7. Nagell, T.: Introduction to Number Theory. Wiley, New York (1951).
8. OEIS Foundation Inc., The On-Line Encyclopedia of Integer Sequences. http://oeis.org(2020)
9. Panda, G.K., Panda, A.K.: Almost balancing numbers. J. Indian Math. Soc. (N. S.) 82, 147-156 (2015)
10. Panda, G.K., Panda, A.K.: Circular balancing numbers. Fibonacci Quart. 55, 309-314 (2017).
11. Panda, G.K., Ray, P.K.: Cobalancing numbers and cobalancers. Int. J. Math. Math. Sci. 8, 1189-1200 (2005).
12. Panda, G.K., Rout, S.S.: Gap balancing numbers. Fibonacci Quart. 51, 239-249 (2013).
13. Rout, S.S., Panda, G.K.: k-Gap balancing numbers. Period. Math. Hungar. 70, 109-121 (2015).

An Unexpected Digit Permutation from Multiplying in Any Number Base

Bohan Qu and Stephen J. Curran

Abstract

We show that the number $\beta=\left(b^{b-1}-1\right) /(b-1)^{2}$, where $b \geq 3$, has several interesting multiplicative properties. In the base b number system, we have $\beta=(123 \cdots(b-4)(b-3)(b-1))_{b}$. We show that the digits of the number $K \beta$, for integers K such that $1 \leq K \leq(b-1)^{2}$, as a number in the base b number system can be generated from an arithmetic sequence reduced modulo $b-1$ with an appropriate adjustment. The proof of this result involves an interplay between multiplication of K with β in the base b number system and the formation of an arithmetic sequence associated with the digits of K expressed as a number in the base $b-1$ number system. We pose several questions related to this result as well.

Keywords Radix representation - Multiplicative properties • Multiplicative structure

1 Introduction

The number 12, 345, 679, whose digits are generated from the sequence of integers from 1 to 9 with the digit 8 omitted, has several interesting multiplicative properties [1-3]. These properties are a special case of the multiplicative properties of the number

$$
\beta=\frac{b^{b-1}-1}{(b-1)^{2}}
$$

expressed as a number in the base b number system. When we represent β in the base b number system, the digits of β are the sequence of integers from 1 to $b-1$ with

[^1]the digit $b-2$ omitted. For example, in the base $b=16$ number system, we have $\beta=12,345,678,9 A B, C D F_{16}$ where A through F represent the digits 10 through 15 , respectively. One surprising property involving the product $K \beta$ in the base b number system, where K is an integer satisfying $1 \leq K \leq(b-1)^{2}$, is the following result.

Theorem 1 Let $b \geq 3$ be an integer, let K be an integer such that $1 \leq K \leq(b-1)^{2}$, and let K and $b-1$ be relatively prime. Let d be the unique integer such that $0<$ $d<b$ and $K+d$ is divisible by $b-1$. Then the digits of the product $K \beta$ expressed in the base b number system includes each digit $0,1, \ldots, b-1$ exactly once, except the digit d which does not appear as a digit in $K \beta$.

The proof of Theorem 1 will be given at the end of this paper. As an example of Theorem 1, consider $b=10, K=41$ and $d=4$. We observe that $K=41$ and $b-1=9$ are relatively prime, and $K+d=45$ is divisible by $b-1=9$. Then $K \beta=41 \times 12,345,679=506,172,839$ contains each of the digits $0,1, \ldots, 9$ exactly once, except the digit $d=4$ which never appears. As another example, let $b=16, K=143$ and $d=7$. We observe that $K=143$ and $b-1=15$ are relatively prime, and $K+d=150$ is divisible by $b-1=15$. Then $K \beta=$ $8 F_{16} \times 12,345,678,9 A B, C D F_{16}=A 2 B, 3 C 4, D 5 E, 6 F 8,091_{16}$ contains each digit $0,1, \ldots, F$ exactly once, except the digit $d=7$ which never appears.

In fact, one can generate the digits of $K \beta$ by calculating the terms of an arithmetic sequence reduced modulo $b-1$ together with an appropriate adjustment. Let $K=$ $(b-1) j+k$, where j and k are integers such that $0 \leq j \leq b-2$ and $1 \leq k \leq b-1$. We calculate the digits of $K \beta$ in the base b number system by reducing the sequence of integers $\{k i+j: i=0,1, \ldots, b-2\}$ modulo $b-1$ and then adding 1 to those values that are greater than or equal to $b-k-1$. We first introduce some notation in order to state the main theorem of this paper. The proof of the main theorem involves an interplay between the multiplication of K with β in the base b number system and the terms in the sequence of integers $\{k i+j: i=0,1, \ldots, b-2\}$ after they are reduced modulo $b-1$. We discuss several questions related to this result at the end of this paper.

2 Main Theorem

We begin by introducing the notation needed to state our main theorem.
Definition 1 (1) Let b be an integer such that $b \geq 3$. Let K be an integer such that $1 \leq K \leq(b-1)^{2}$. Let j and k be the unique integers such that $0 \leq j \leq b-2$, $1 \leq k \leq b-1$ and $K=(b-1) j+k$. Let

$$
\beta=\frac{b^{b-1}-1}{(b-1)^{2}}=(123 \ldots(b-4)(b-3)(b-1))_{b}
$$

(2) For all integers i such that $0 \leq i \leq b-2$, let $a_{i, j, k}$ be the unique integers such that

$$
K \beta=((b-1) j+k) \beta=\sum_{i=0}^{b-2} a_{i, j, k} b^{b-2-i}
$$

and $0 \leq a_{i, j, k}<b$, for all i such that $0 \leq i \leq b-2$.
(3) Let $q_{i, j, k}$ and $r_{i, j, k}$ be the unique integers such that $k i+j=(b-1) q_{i, j, k}+r_{i, j, k}$ and $0 \leq r_{i, j, k}<b-1$.
(4) Let $q_{i, j, k}^{\prime}$ and $r_{i, j, k}^{\prime}$ be the unique integers such that $k i+j=b q_{i, j, k}^{\prime}+r_{i, j, k}^{\prime}$ and $0 \leq r_{i, j, k}^{\prime}<b$.
(5) We define the integers $c_{i, j, k}$ as follows:

$$
c_{i, j, k}= \begin{cases}r_{i, j, k}, & \text { if } r_{i, j, k}<b-k-1, \text { and } \\ r_{i, j, k}+1, & \text { if } r_{i, j, k} \geq b-k-1 .\end{cases}
$$

(6) We define the integers $\epsilon_{i, j, k}$ by letting $\epsilon_{i, j, k}=q_{i, j, k}-q_{i, j, k}^{\prime}$. Then

$$
\epsilon_{i, j, k}=\left\{\begin{array}{l}
0, \text { if } q_{i, j, k}=q_{i, j, k}^{\prime}, \text { and } \\
1, \text { if } q_{i, j, k}=q_{i, j, k}^{\prime}+1 .
\end{array}\right.
$$

The significance of the value of $\epsilon_{i, j, k}$ is that it determines when there is a carry 1 in the product $K \beta$ from the b^{b-2-i}, s digit to the $b^{b-2-(i-1)}$'s digit when the product is carried out in the base b number system. When there is a carry 1 from the b^{b-2-i},s digit to the $b^{b-2-(i-1)}$'s digit, $\epsilon_{i, j, k}$ represents that carry 1 . We state the main theorem of this paper.

Theorem 2 Let b and K be integers such that $b \geq 3$ and $1 \leq K \leq(b-1)^{2}$. For all integers i such that $0 \leq i \leq b-2$, let $j, k, a_{i, j, k}, r_{i, j, k}$ and $c_{i, j, k}$ be the integers defined in Definition 1. Then, for all $0 \leq i \leq b-2, a_{i, j, k}=c_{i, j, k}$; and thus

$$
K \beta=\sum_{i=0}^{b-2} c_{i, j, k} b^{b-2-i} .
$$

I.e., $K \beta=\left(c_{0, j, k} c_{1, j, k} \ldots c_{b-2, j, k}\right)_{b}$ is the representation of the integer $K \beta$ in the base b number system.

We illustrate Theorem2 with an example in the base 10 number system. We let $K=41$ and $b=10$. Then, by Definition 1, we have $K=41=(b-1) j+k=$ $9 \cdot 4+5$ where $j=4$ and $k=5$. We calculate the remainders $r_{i, 4,5}$ of the integers $k i+j=5 i+4$ upon division by 9 for $i=0,1, \ldots, 8$ I.e., $r_{i, 4,5} \equiv 5 i+4(\bmod 9)$ for $i=0,1, \ldots, 8$. See column 3 of Table 1. For those remainders $r_{i, 4,5}<b-k-$ $1=4$, we define $c_{i, 4,5}=r_{i, 4,5}$. Also, for the remainders $r_{i, 4,5} \geq b-k-1=4$, we define $c_{i, 3,4}=r_{i, 4,5}+1$. See column 5 of Table 1 .

We prove Theorem 2 for the special case when $(b-1) \mid K$ in Proposition 8. Then we prove Theorem 2 for the general case when $(b-1) \not \backslash K$ in Theorem 3 .

Table 1 The values of the digits in the product $K \beta=41 \times 12,345,679=506,172,839$

i	$5 i+4$	$r_{i, 4,5} \equiv 5 i+4$ $(\bmod 9)$	Is $r_{i, 4,5} \geq 4 ?$	
0	4	4	$c_{i, 4,5}$	
1	9	0	True	5
2	14	5	False	0
3	19	1	True	6
4	24	6	False	1
5	29	2	True	7
6	34	7	False	2
7	39	3	True	8
8	44	8	True	3

3 Other Interesting Results

When the integer k satisfies $1 \leq k \leq b-1$, we view $k \beta$ as a number with $b-1$ digits in the base b number system that begins with the digit 0 . This will allow us to generate all products $K \beta$ with $1 \leq K \leq(b-1)^{2}$ from the products $k \beta$ with $1 \leq k \leq(b-1) / 2$. For example, when $b=10$, we use Theorem 2 to calculate $k \beta$ for $1 \leq k \leq 9 / 2$. Thus

$$
\begin{array}{ll}
1 \beta=012,345,679 ; & 2 \beta=024,691,358 \\
3 \beta=037,037,037 ;
\end{array} \text { and } 4 \beta=049,382,716 .
$$

Proposition 1 Let k be an integer such that $1 \leq k \leq(b-1) / 2$ and $\operatorname{gcd}(b-1, k)=$ 1. Let $K=(b-1)^{2}-k=(b-1)(b-2)+(b-k-1)$. Then $a_{i, b-2, b-k-1}=(b-$ 1) $-a_{i, 0, k}$ for all integers i such that $0 \leq i \leq b-2$. I.e., $K \beta$ is the $(b-1)$'s complement of $k \beta$ in the base b number system.

From Proposition 1, we recognize $(81-k) \beta$ as the 9 's complement of $k \beta$ for $k=1,2$, and 4. Thus

$$
\begin{aligned}
& 80 \beta=81 \beta-1 \beta=999,999,999-012,345,679=987,654,320 \\
& 79 \beta=81 \beta-2 \beta=999,999,999-024,691,358=975,308,641 \text { and } \\
& 77 \beta=81 \beta-4 \beta=999,999,999-049,382,716=950,617,283 .
\end{aligned}
$$

Proposition 2 Let K be an integer such that $1 \leq K \leq(b-1)^{2}$ and $\operatorname{gcd}(b-$ $1, K)=1$. Let j and k be the unique integers such that $K=(b-1) j+k, 0 \leq$ $j \leq b-2$ and $1 \leq k \leq b-1$. Let j_{3} be the unique integer such that $k j_{3} \equiv j$ $(\bmod b-1)$ and $1 \leq j_{3} \leq b-2$. Then for all integers i such that $0 \leq i \leq b-2$, we have $a_{i, j, k}=a_{i+j_{3}, 0, k}$ where the indices i and $i+j_{3}$ are taken modulo $b-1$.

As a consequence of Proposition 2, in the decimal number system, the digits in the products $5 \beta, 7 \beta$ and 8β are cyclic permutations of the digits in the products 77β, 79β and 80β, respectively, that begin with the digit 0 .

From $77 \beta=950,617,283$, we obtain $5 \beta=061,728,395$.
From $79 \beta=975,308,641$, we obtain $7 \beta=086,419,753$.
From $80 \beta=987,654,320$, we obtain $8 \beta=098,765,432$.
Furthermore, as a consequence of Proposition 2, we can now generate all products $K \beta$ where $1 \leq K \leq 81$ and $\operatorname{gcd}(K, 9)=1$. For example, let $K=(b-1) j+k=$ $9 \cdot 7+5=68$ where $j=7$ and $k=5$. Then the digits of 68β are a cyclic permutation of the digits of $5 \beta=061,728,395$ that begin with the digit $c_{0,7,5}=r_{0,7,5}+1=$ $j+1=8$ since $r_{0,7,5}=j=7 \geq b-k-1=5$. Thus $68 \beta=839,506,172$.

Proposition 3 Let k be an integer such that $1 \leq k \leq(b-1) / 2$ and $d=\operatorname{gcd}(b-$ $1, k)>1$. Let $K=(b-1)(b-d)-k=(b-1)(b-d-1)+(b-k-1)$. Then for all integers i such that $0 \leq i \leq b-2$, we have $a_{i, b-d-1, b-k-1}=(b-d)-a_{i, 0, k}$. I.e., $K \beta$ is the $(b-d)$'s complement of $k \beta$ in the base b number system.

As an application of Proposition 3, we consider $60 \beta=(7 \cdot 9) \beta-3 \beta=777,777$, $777-037,037,037=740,740,740$.

Proposition 4 Let K be an integer such that $1 \leq K \leq(b-1)^{2}, d=\operatorname{gcd}(b-$ $1, K)>1$ and $(b-1) \backslash K$. Let j and k be the unique integers such that $K=$ $(b-1) j+k, 0 \leq j \leq b-2$ and $1 \leq k \leq b-1$. Let $k_{1}=k / d$ and $\ell=(b-1) / d$. Let j_{1} and j_{2} be the unique integers such that $j=d j_{2}+j_{1}, 0 \leq j_{1}<d$ and $0 \leq j_{2}<\ell$. Let j_{3} be the unique integer such that $k_{1} j_{3} \equiv j_{2}(\bmod \ell)$ and $0 \leq j_{3}<\ell$, Then for all integers i such that $0 \leq i \leq b-2$, we have $a_{i, j, k}=a_{i+j_{3}, j_{1}, k}$ where the indices i and $i+j_{3}$ are taken modulo $b-1$.

As a consequence of Proposition 4, the digits of 6β are a cyclic permutation of the digits of $60 \beta=(9 \cdot 6+6) \beta=740,740,740$ that begins with the digit 0 . Thus $6 \beta=074,074,074$.

Proposition 5 Let k be an integer such that $1 \leq k<b-1$ and $d=\operatorname{gcd}(b-1, k)>$ 1. Let $k_{1}=k / d$. Then, for all integers j_{1} such that $0 \leq j_{1}<d$, we have $a_{i, j_{1}, k}=$ $a_{i, 0, k}+j_{1}$. I.e., we add j_{1} to each digit of $k \beta=\left(a_{0,0, k} a_{1,0, k} \ldots a_{b-2,0, k}\right)_{b}$ in the base b number system to generate the digits of $\left((b-1) j_{1}+k\right) \beta=\left(a_{0, j_{1}, k} a_{1, j_{1}, k}\right.$ $\left.\ldots a_{b-2, j_{1}, k}\right)_{b}$.

As a consequence of Proposition 5, we have

$$
\begin{aligned}
& 12 \beta=9 \beta+3 \beta=111,111,111+037,037,037=148,148,148 \\
& 21 \beta=18 \beta+3 \beta=222,222,222+037,037,037=259,259,259 \\
& 15 \beta=9 \beta+6 \beta=111,111,111+074,074,074=185,185,185 \text { and } \\
& 24 \beta=18 \beta+6 \beta=222,222,222+074,074,074=296,296,296
\end{aligned}
$$

Furthermore, as a consequence of Proposition 4, we can generate the digits in all of the products $K \beta$ for integers K such that $1 \leq K \leq 81,3 \mid K$ and $9 \not \backslash K$. For example, let $K=48=9 j+k$ where $j=5$ and $k=3$. We write $j=5=3 j_{2}+j_{1}=3 \cdot 1+$ 2 where $j_{1}=2$ and $j_{2}=1$. Then the digits of 48β is a cyclic permutation on the digits of $\left((b-1) j_{1}+k\right) \beta=21 \beta=259,259,259$ that begins with the digit $a_{0,5,3}=$ $r_{0,5,3}=j=5$ since $r_{0,5,3}=5<b-k-1=6$. Thus $48 \beta=592,592,592$.

4 Demonstration of Results

We begin by showing that the digits of β in the base b number system from left to right are the terms in the sequence of integers $0,1, \ldots, b-1$ with the digit $b-2$ omitted from the list.

Proposition 6 Let b be an integer such that $b \geq 3$. Then

$$
\beta=\sum_{i=1}^{b-2} i b^{b-2-i}+1
$$

I.e., for all integers i such that $0 \leq i \leq b-3$, we have $a_{i, 0,1}=i$. In addition, we have $a_{b-2,0,1}=b-1$.

Proof We apply the summation formula

$$
\sum_{i=1}^{n} i x^{i}=\frac{n x^{n+2}-(n+1) x^{n+1}+x}{(x-1)^{2}}
$$

with $x=b^{-1}$ and $n=b-2$ to obtain

$$
\begin{aligned}
b^{b-2} \sum_{i=1}^{b-2} i b^{-i} & =b^{b-2}\left(\frac{(b-2) b^{-b}-(b-1) b^{-b+1}+b^{-1}}{\left(b^{-1}-1\right)^{2}}\right) \\
& =\frac{b^{b-1}-1-(b-1)^{2}}{(b-1)^{2}}=\beta-1
\end{aligned}
$$

Hence,

$$
\beta=\sum_{i=0}^{b-2} i b^{b-2-i}+1
$$

In the following proposition we determine a summation formula for the product $K \beta$ where K is an integer between 1 and $(b-1)^{2}$.

Proposition 7 Let b be an integer such that $b \geq 3$, and let K be an integer such that $1 \leq K \leq(b-1)^{2}$. Let j and k be the unique integers such that $K=(b-1) j+k$, $0 \leq j \leq b-2$ and $1 \leq k \leq b-1$. Then

$$
K \beta=\sum_{i=0}^{b-2}(k i+j) b^{b-2-i}+k
$$

Proof By Proposition 6, we have

$$
\beta=\sum_{i=0}^{b-2} i b^{b-2-i}+1
$$

Then

$$
\begin{aligned}
K \beta & =\sum_{i=1}^{b-2}(b j+(k-j)) i b^{b-2-i}+K \\
& =\sum_{i=0}^{b-3} j(i+1) b^{b-2-i}+\sum_{i=1}^{b-2}(k-j) i b^{b-2-i}+K \\
& =j b^{b-2}+\sum_{i=1}^{b-3}(k i+j) b^{b-2-i}+(k(b-2)+j)+k \\
& =\sum_{i=0}^{b-2}(k i+j) b^{b-2-i}+k
\end{aligned}
$$

We replace $k i+j$ in Proposition 7 with the quotients $q_{i, j, k}^{\prime}$ and remainders $r_{i, j, k}^{\prime}$ of $k i+j$ upon division by b in Lemma 1. See Definition 1.4.
Lemma 1 Let K be an integer such that $1 \leq K \leq(b-1)^{2}$. Let j and k be the unique integers such that $K=(b-1) j+k, 0 \leq j \leq b-2$ and $1 \leq k \leq b-1$. Let $q_{i, j, k}^{\prime}$ and $r_{i, j, k}^{\prime}$ be the unique integers such that $k i+j=b q_{i, j, k}^{\prime}+r_{i, j, k}^{\prime}$ and $0 \leq r_{i, j, k}^{\prime}<b$. Then

$$
K \beta=\sum_{i=0}^{b-3}\left(q_{i+1, j, k}^{\prime}+r_{i, j, k}^{\prime}\right) b^{b-2-i}+\left(r_{b-2, j, k}^{\prime}+k\right)
$$

Proof By Proposition 7, we have

$$
K \beta=\sum_{i=0}^{b-2}(k i+j) b^{b-2-i}+k
$$

By Definition 1.4, we have

$$
\begin{aligned}
K \beta & =\sum_{i=0}^{b-2}\left(b q_{i, j, k}^{\prime}+r_{i, j, k}^{\prime}\right) b^{b-2-i}+k \\
& =q_{0, j, k}^{\prime} b^{b-1}+\sum_{i=0}^{b-3} q_{i+1, j, k}^{\prime} b^{b-2-i}+\sum_{i=0}^{b-3} r_{i, j, k}^{\prime} b^{b-2-i}+r_{b-2, j, k}^{\prime}+k \\
& =q_{0, j, k}^{\prime} b^{b-1}+\sum_{i=0}^{b-3}\left(q_{i+1, j, k}^{\prime}+r_{i, j, k}^{\prime}\right) b^{b-2-i}+\left(r_{b-2, j, k}^{\prime}+k\right)
\end{aligned}
$$

Observe that $j=k \cdot 0+j=b q_{0, j k}^{\prime}+r_{0, j k}^{\prime}$ where $0 \leq r_{0, j, k}^{\prime}<b$. Since $0 \leq j \leq$ $b-2$, we have $q_{0, j, k}^{\prime}=0$ and $r_{0, j, k}^{\prime}=j$. Hence

$$
K \beta=\sum_{i=0}^{b-3}\left(q_{i+1, j, k}^{\prime}+r_{i, j, k}^{\prime}\right) b^{b-2-i}+\left(r_{b-2, j, k}^{\prime}+k\right)
$$

In Proposition 8, we prove the special case of Theorem 2 when $b-1$ divides K.
Proposition 8 Let K be an integer such that $1 \leq K \leq(b-1)^{2}$ and $(b-1) \mid K$. Let $K_{1}=K /(b-1)$. Then the unique integers j and k such that $K=(b-1) j+k$, $0 \leq j \leq b-2$ and $1 \leq k \leq b-1$ are $j=K_{1}-1$ and $k=b-1$. Furthermore, for all integers i such that $0 \leq i \leq b-2$, we have $a_{i, K_{1}-1, b-1}=K_{1}$. I.e., $K \beta=$ $\left(K_{1} K_{1} \ldots K_{1}\right)_{b}$ in the base b number system.

Proof Note that $k i+j=(b-1) i+\left(K_{1}-1\right)$. Thus the unique integers $q_{i, j, k}$ and $r_{i, j, k}$ such that $k i+j=(b-1) q_{i, j, k}+r_{i, j, k}$, and $0 \leq r_{i, j, k}<b-1$ are $q_{i, j, k}=$ $q_{i, K_{1}-1, b-1}=i$ and $r_{i, j, k}=r_{i, K_{1}-1, b-1}=K_{1}-1$. Since $r_{i, K_{1}-1, b-1}=K_{1}-1 \geq b-$ $k-1=0$, we have $c_{i, K_{1}-1, b-1}=r_{i, K_{1}-1, b-1}+1=K_{1}$ for all integers i such that $0 \leq i \leq b-2$. Next, we observe that

$$
(b-1) \beta=\frac{b^{b-1}-1}{b-1}=\sum_{i=0}^{b-2} b^{b-2-i}=(11 \ldots 1)_{b}
$$

Thus

$$
\begin{aligned}
K \beta=K_{1}(b-1) \beta & =K_{1}\left(\frac{b^{b-1}-1}{b-1}\right)=\sum_{i=0}^{b-2} K_{1} b^{b-2-i} \\
& =\left(K_{1} K_{1} \ldots K_{1}\right)_{b}=\sum_{i=0}^{b-2} c_{i, K_{1}-1, b-1} b^{b-2-i}
\end{aligned}
$$

Lemma 2 Let K be an integer such that $1 \leq K \leq(b-1)^{2}$ and $(b-1) \nmid K$. Let j and k be the unique integers such that $K=(b-1) j+k, 0 \leq j \leq b-2$ and $1 \leq k \leq b-2$. Let $q_{i, j, k}$ and $r_{i, j, k}$ be the unique integers such that $k i+j=(b-$ 1) $q_{i, j, k}+r_{i, j, k}$ and $0 \leq r_{i, j, k} \leq b-2$.
(1) If $r_{i, j, k}<b-k-1$, for some integer i such that $0 \leq i \leq b-3$, then $q_{i+1, j, k}=$ $q_{i, j, k}$ and $r_{i+1, j, k}=r_{i, j, k}+k$.
(2) If $r_{i, j, k} \geq b-k-1$, for some integer i such that $0 \leq i \leq b-3$, then $q_{i+1, j, k}=$ $q_{i, j, k}+1$ and $r_{i+1, j, k}=r_{i, j, k}+k-b+1$.
Proof Observe that $(b-1)\left(q_{i+1, j, k}-q_{i, j, k}\right)+\left(r_{i+1, j, k}-r_{i, j, k}\right)=(k(i+1)+j)-$ $(k i+j)=k$. We consider the two cases when either $r_{i, j, k}<b-k-1$ or $r_{i, j, k} \geq$ $b-k-1$.

Case 1 Suppose $r_{i, j, k}<b-k-1$. Since $(b-1)\left(q_{i+1, j, k}-q_{i, j, k}\right)=r_{i, j, k}-r_{i+1, j, k}$ $+k$ where $0 \leq r_{i, j, k}<b-k-1,0 \leq r_{i+1, j, k}<b-1$ and $1 \leq k \leq b-2$, we have $r_{i, j, k}-r_{i+1, j, k}+k \equiv 0(\bmod b-1)$ where $-(b-1)<r_{i, j, k}-r_{i+1, j, k}+k<b-$ 1. Then $(b-1)\left(q_{i+1, j, k}-q_{i, j, k}\right)=r_{i, j, k}-r_{i+1, j, k}+k=0$. Hence, $q_{i+1, j, k}=q_{i, j, k}$ and $r_{i+1, j, k}=r_{i, j, k}+k$.

Case 2 Suppose $r_{i, j, k} \geq b-k-1$. Since $(b-1)\left(q_{i+1, j, k}-q_{i, j, k}\right)=r_{i, j, k}-r_{i+1, j, k}$ $+k$ where $b-k-1 \leq r_{i, j, k}<b-1,0 \leq r_{i+1, j, k}<b-1$ and $0<k<b-1$, we have $r_{i, j, k}-r_{i+1, j, k}+k \equiv 0(\bmod b-1)$ where $0<r_{i, j, k}-r_{i+1, j, k}+k<2(b-$ 1). Then $(b-1)\left(q_{i+1, j, k}-q_{i, j, k}\right)=r_{i, j, k}-r_{i+1, j, k}+k=b-1$. Hence, $q_{i+1, j, k}=$ $q_{i, j, k}+1$ and $r_{i+1, j, k}=r_{i, j, k}+k-b+1$.

Lemma 3 Let i, j and k be integers such that $0 \leq j \leq b-2$ and $1 \leq k \leq b-2$. For all $1 \leq i \leq b-2$, let $q_{i, j, k}$ and $r_{i, j, k}$ be the unique integers such that $k i+j=$ $(b-1) q_{i, j, k}+r_{i, j, k}$ and $0 \leq r_{i, j, k}<b-1$. For all $1 \leq i \leq b-2$, let $q_{i, j, k}^{\prime}$ and $r_{i, j, k}^{\prime}$ be the unique integers such that $k i+j=b q_{i, j, k}^{\prime}+r_{i, j, k}^{\prime}$ and $0 \leq r_{i, j, k}^{\prime}<b$. Then either $q_{i, j, k}=q_{i, j, k}^{\prime}$ or $q_{i, j, k}=q_{i, j, k}^{\prime}+1$.
Proof From Definitions 1.3 and 1.4, we have $b q_{i, j, k}^{\prime}+r_{i, j, k}^{\prime}=k i+j=(b-1) q_{i, j, k}$ $+r_{i, j, k}$. Thus $(b-1)\left(q_{i, j, k}-q_{i, j, k}^{\prime}\right)=q_{i, j, k}^{\prime}+r_{i, j, k}^{\prime}-r_{i, j, k}$ where $0 \leq r_{i, j, k}^{\prime} \leq b-$ 1 and $0 \leq r_{i, j, k} \leq b-2$. Observe that $b q_{i, j, k}^{\prime} \leq b q_{i, j, k}^{\prime}+r_{i, j, k}^{\prime}=i k+j \leq(b-2)^{2}+$ $(b-2)=b^{2}-3 b+2$. Since $b \geq 3$, we have $q_{i, j, k}^{\prime} \leq b-3+2 / b<b-2$. Thus $0 \leq q_{i, j, k}^{\prime} \leq b-3$. Hence, $q_{i, j, k}^{\prime}+r_{i, j, k}^{\prime}-r_{i, j, k} \equiv 0(\bmod b-1)$ and $-(b-1)<$ $q_{i, j, k}^{\prime}+r_{i, j, k}^{\prime}-r_{i, j, k}<2(b-1)$. Therefore, either $(b-1)\left(q_{i, j, k}-q_{i, j, k}^{\prime}\right)=q_{i, j, k}^{\prime}+$ $r_{i, j, k}^{\prime}-r_{i, j, k}=0$ or $(b-1)\left(q_{i, j, k}-q_{i, j, k}^{\prime}\right)=q_{i, j, k}^{\prime}+r_{i, j, k}^{\prime}-r_{i, j, k}=b-1$. Thus, either $q_{i, j, k}=q_{i, j, k}^{\prime}$ and $q_{i, j, k}^{\prime}+r_{i, j, k}^{\prime}=r_{i, j, k}$, or $q_{i, j, k}=q_{i, j, k}^{\prime}+1$ and $q_{i, j, k}^{\prime}+r_{i, j, k}^{\prime}=$ $r_{i, j, k}+b-1$.

Lemma 4 Let $b, \beta, i, j, k, K, q_{i, j, k}, r_{i, j, k}, q_{i, j, k}^{\prime}, r_{i, j, k}^{\prime}, a_{i, j, k}, c_{i, j, k}$ and $\epsilon_{i, j, k}$ be the integers defined in Definition 1. Furthermore, suppose that $1 \leq k \leq b-2$ so that $(b-1) \chi$. Then $a_{b-2, j, k}=c_{b-2, j, k}$ and

$$
K \beta=\sum_{i=0}^{b-4}\left(q_{i+1, j, k}^{\prime}+r_{i, j, k}^{\prime}\right) b^{b-2-i}+\left(q_{b-2, j, k}^{\prime}+r_{b-3, j, k}^{\prime}+\epsilon_{b-2, j, k}\right) b+c_{b-2, j, k} .
$$

Furthermore, we have $\epsilon_{b-2, j, k}=q_{b-2, j, k}-q_{b-2, j, k}^{\prime}$.
Proof From Definition 1.3, $k(b-2)+j=(b-1) q_{b-2, j, k}+r_{b-2, j, k}$ where $0 \leq$ $r_{b-2, j, k}<b-1$. Thus $(b-1)\left(k-q_{b-2, j, k}\right)=r_{b-2, j, k}+k-j$ where $0 \leq j<b-$ $1,1 \leq k<b-1$ and $0 \leq r_{b-2, j, k}<b-1$. Hence, $r_{b-2, j, k}+k-j \equiv 0(\bmod b-$ 1) where $-(b-1)<r_{b-2, j, k}+k-j<2(b-1)$. Thus, either $(b-1)\left(k-q_{b-2, j, k}\right)$ $=r_{b-2, j, k}+k-j=0 \quad$ or $\quad(b-1)\left(k-q_{b-2, j, k}\right)=r_{b-2, j, k}+k-j=b-1$. Therefore, either $q_{b-2, j, k}=k$ and $r_{b-2, j, k}=j-k$, or $q_{b-2, j, k}=k-1$ and $r_{b-2, j, k}=$ $j-k+b-1$. First, suppose $q_{b-2, j, k}=k$. Since $r_{b-2, j, k}=j-k$ and $j<b-1$, we have $r_{b-2, j, k}<b-k-1$. Next, suppose $q_{b-2, j, k}=k-1$. Since $r_{b-2, j, k}=$ $j-k+b-1$ and $j \geq 0$, we have $r_{b-2, j, k} \geq b-k-1$.

Therefore, if $q_{b-2, j, k}=k$, then $r_{b-2, j, k}<b-k-1$. Also, if $q_{b-2, j, k}=k-1$, then $r_{b-2, j, k} \geq b-k-1$. Because the only two possible values for $q_{b-2, j, k}$ are k or $k-1$, these implications are equivalences. Therefore, $q_{b-2, j, k}=k$ is equivalent to $r_{b-2, j, k}<b-k-1$. Similarly, $q_{b-2, j, k}=k-1$ is equivalent to $r_{b-2, j, k} \geq b-k-$ 1.

By Lemma3, either $q_{b-2, j, k}=q_{b-2, j, k}^{\prime}$ or $q_{b-2, j, k}=q_{b-2, j, k}^{\prime}+1$. We will consider the four cases depending on which of the following two conditions are satisfied: Either $q_{b-2, j, k}=q_{b-2, j, k}^{\prime}$ or $q_{b-2, j, k}=q_{b-2, j, k}^{\prime}+1$, and either $r_{b-2, j, k}<b-k-1$ or $r_{b-2, j, k} \geq b-k-1$. We will deal with each case separately.

In each case, we begin by observing that from Lemma 1 we have

$$
\begin{equation*}
K \beta=\sum_{i=0}^{b-3}\left(q_{i+1, j, k}^{\prime}+r_{i, j, k}^{\prime}\right) b^{b-2-i}+\left(r_{b-2, j, k}^{\prime}+k\right) \tag{1}
\end{equation*}
$$

Then, in each case, we show that we have

$$
\begin{align*}
K \beta=\sum_{i=0}^{b-4}\left(q_{i+1, j, k}^{\prime}+r_{i, j, k}^{\prime}\right) b^{b-2-i} & +\left(q_{b-2, j, k}^{\prime}+r_{b-3, j, k}^{\prime}+\epsilon_{b-2, j, k}\right) b \tag{2}\\
& +c_{b-2, j, k}
\end{align*}
$$

Case 3 We assume $q_{b-2, j, k}=q_{b-2, j, k}^{\prime}$ and $r_{b-2, j, k}<b-k-1$. Since $r_{b-2, j, k}<$ $b-k-1$ is equivalent to $q_{b-2, j, k}=k$, we have $q_{b-2, j, k}=q_{b-2, j, k}^{\prime}=k$. From Definitions 1.3 and 1.4 , we have

$$
\begin{aligned}
& k(b-2)+j=b k+r_{b-2, j, k}^{\prime} \text { and } \\
& k(b-2)+j=(b-1) k+r_{b-2, j, k} .
\end{aligned}
$$

Thus $r_{b-2, j, k}^{\prime}+k=r_{b-2, j, k}$, where $0 \leq r_{b-2, j, k} \leq b-2$. By Lemma 1, (1) holds. Since $r_{b-2, j, k}^{\prime}+k=r_{b-2, j, k}$ where $0 \leq r_{b-2, j, k}<b$, we have $r_{b-2, j, k}^{\prime}+k=r_{b-2, j, k}$ $=a_{b-2, j, k}$. Also, because $r_{b-2, j, k}<b-k-1$, we have $c_{b-2, j, k}=r_{b-2, j, k}=a_{b-2, j, k}$. Since $r_{b-2, j, k}^{\prime}+k=a_{b-2, j, k}$, there is no carry 1 to the b^{1} s digit. Observe that $\epsilon_{b-2, j, k}=q_{b-2, j, k}-q_{b-2, j, k}^{\prime}=0$. Thus (2) holds.

Case 4 We assume $q_{b-2, j, k}=q_{b-2, j, k}^{\prime}$ and $r_{b-2, j, k} \geq b-k-1$. Since $r_{b-2, j, k} \geq$ $b-k-1$ is equivalent to $q_{b-2, j, k}=k-1$, we have $q_{b-2, j, k}=q_{b-2, j, k}^{\prime}=k-1$. From Definitions 1.3 and 1.4, we have

$$
\begin{aligned}
& k(b-2)+j=b(k-1)+r_{b-2, j, k}^{\prime} \text { and } \\
& k(b-2)+j=(b-1)(k-1)+r_{b-2, j, k} .
\end{aligned}
$$

Thus $r_{b-2, j, k}^{\prime}+k=r_{b-2, j, k}+1$, where $1 \leq r_{b-2, j, k}+1 \leq b-1$. By Lemma 1, (1) holds. Since $r_{b-2, j, k}^{\prime}+k=r_{b-2, j, k}+1$ where $1 \leq r_{b-2, j, k}+1<b$, we have $a_{b-2, j, k}$ $=r_{b-2, j, k}+1$. Also, because $r_{b-2, j, k} \geq b-k-1$, we have $c_{b-2, j, k}=r_{b-2, j, k}+$ $1=a_{b-2, j, k}$. Since $r_{b-2, j, k}^{\prime}+k=a_{b-2, j, k}$, there is no carry 1 to the b^{1} 's digit. Observe that $\epsilon_{b-2, j, k}=q_{b-2, j, k}-q_{b-2, j, k}^{\prime}=0$. Thus (2) holds.

Case 5 We assume $q_{b-2, j, k}=q_{b-2, j, k}^{\prime}+1$ and $r_{b-2, j, k}<b-k-1$. Since $r_{b-2, j, k}<$ $b-k-1$ is equivalent to $q_{b-2, j, k}=k$, we have $q_{b-2, j, k}=k$ and $q_{b-2, j, k}^{\prime}=k-1$. From Definitions 1.3 and 1.4, we have

$$
\begin{aligned}
& k(b-2)+j=b(k-1)+r_{b-2, j, k}^{\prime} \text { and } \\
& k(b-2)+j=(b-1) k+r_{b-2, j, k} .
\end{aligned}
$$

Thus $r_{b-2, j, k}^{\prime}+k=r_{b-2, j, k}+b$, where $b \leq r_{b-2, j, k}+b \leq 2 b-2$. By Lemma 1, (1) holds. Since $r_{b-2, j, k}^{\prime}+k=r_{b-2, j, k}+b$ where $0 \leq r_{b-2, j, k} \leq b-2$, we have $a_{b-2, j, k}=r_{b-2, j, k}$. Also, because $r_{b-2, j, k}<b-k-1$, we have $c_{b-2, j, k}=r_{b-2, j, k}=$ $a_{b-2, j, k}$. Since $r_{b-2, j, k}^{\prime}+k=a_{b-2, j, k}+b$, there is a carry 1 to the b^{1} 's digit. Observe that $\epsilon_{b-2, j, k}=q_{b-2, j, k}-q_{b-2, j, k}^{\prime}=1$. Thus (2) holds.

Case 6 We assume $q_{b-2, j, k}=q_{b-2, j, k}^{\prime}+1$ and $r_{b-2, j, k} \geq b-k-1$. Since $r_{b-2, j, k} \geq$ $b-k-1$ is equivalent to $q_{b-2, j, k}=k-1$, we have $q_{b-2, j, k}=k-1$ and $q_{b-2, j, k}^{\prime}=$ $k-2$. From Definitions 1.3 and 1.4, we have

$$
\begin{aligned}
& k(b-2)+j=b(k-2)+r_{b-2, j, k}^{\prime} \text { and } \\
& k(b-2)+j=(b-1)(k-1)+r_{b-2, j, k} .
\end{aligned}
$$

Thus $r_{b-2, j, k}^{\prime}+k=\left(r_{b-2, j, k}+1\right)+b$, where $b+1 \leq\left(r_{b-2, j, k}+1\right)+b \leq 2 b-1$. By Lemma 1, (1) holds. Since $r_{b-2, j, k}^{\prime}+k=\left(r_{b-2, j, k}+1\right)+b$ where $1 \leq r_{b-2, j, k}+$ $1 \leq b-1$, we have $a_{b-2, j, k}=r_{b-2, j, k}+1$. Also, because $r_{b-2, j, k} \geq b-k-1$, we have $c_{b-2, j, k}=r_{b-2, j, k}+1=a_{b-2, j, k}$. Since $r_{b-2, j, k}^{\prime}+k=a_{b-2, j, k}+b$, there is a carry 1 to the b^{1} 's digit. Observe that $\epsilon_{b-2, j, k}=q_{b-2, j, k}-q_{b-2, j, k}^{\prime}=1$. Thus (2) holds.

Theorem 3 Let $b, \beta, i, j, k, K, q_{i, j, k}, r_{i, j, k}, q_{i, j, k}^{\prime}, r_{i, j, k}^{\prime}, a_{i, j, k}, c_{i, j, k}$ and $\epsilon_{i, j, k}$ be the integers defined in Definition 1. Further assume that $(b-1) \chi K$ so that $k \neq b-1$. Then $a_{i, j, k}=c_{i, j, k}$ for all integers i such that $0 \leq i \leq b-2$. Furthermore,

$$
K \beta=\sum_{i=0}^{b-2} c_{i, j, k} b^{b-2-i}
$$

Note that in Theorem 3 we do not include the trivial case $(b-1) \mid K$ which is included in Theorem 2. By Proposition 8, the results of Theorem 2 hold for the case when $(b-1) \mid K$.

Proof Let n be an integer such that $0 \leq n \leq b-3$, and consider the equation

$$
\begin{aligned}
K \beta=\sum_{i=0}^{n-1}\left(q_{i+1, j, k}^{\prime}+r_{i, j, k}^{\prime}\right) b^{b-2-i} & +\left(q_{n+1, j, k}^{\prime}+r_{n, j, k}^{\prime}+\epsilon_{n+1, j, k}\right) b^{b-2-n} \\
& +\sum_{i=n+1}^{b-2} c_{i, j, k} b^{b-2-i}
\end{aligned}
$$

We apply Mathematical Induction to this equation on the values of n in reverse order. By Lemma 4, we have

$$
K \beta=\sum_{i=0}^{b-4}\left(q_{i+1, j, k}^{\prime}+r_{i, j, k}^{\prime}\right) b^{b-2-i}+\left(q_{b-2, j, k}^{\prime}+r_{b-3, j, k}^{\prime}+\epsilon_{b-2, j, k}\right) b+c_{b-2, j, k}
$$

This is the base step of the proof. Let n be an integer with $0 \leq n \leq b-3$ and suppose

$$
\begin{align*}
K \beta=\sum_{i=0}^{n-1}\left(q_{i+1, j, k}^{\prime}+r_{i, j, k}^{\prime}\right) b^{b-2-i} & +\left(q_{n+1, j, k}^{\prime}+r_{n, j, k}^{\prime}+\epsilon_{n+1, j, k}\right) b^{b-2-n} \tag{3}\\
& +\sum_{i=n+1}^{b-2} c_{i, j, k} b^{b-2-i}
\end{align*}
$$

is true. We want to show that

$$
\begin{align*}
K \beta=\sum_{i=0}^{n-2}\left(q_{i+1, j, k}^{\prime}+r_{i, j, k}^{\prime}\right) b^{b-2-i} & +\left(q_{n, j, k}^{\prime}+r_{n-1, j, k}^{\prime}+\epsilon_{n, j, k}\right) b^{b-2-(n-1)} \tag{4}\\
& +\sum_{i=n}^{b-2} c_{i, j, k} b^{b-2-i}
\end{align*}
$$

holds. When $n=0$, (3) becomes

$$
\begin{equation*}
K \beta=\left(q_{1, j, k}^{\prime}+r_{0, j, k}^{\prime}+\epsilon_{1, j, k}\right) b^{b-2}+\sum_{i=1}^{b-2} c_{i, j, k} b^{b-2-i} \tag{5}
\end{equation*}
$$

and (4) becomes

$$
\begin{equation*}
K \beta=\sum_{i=0}^{b-2} c_{i, j, k} b^{b-2-i} \tag{6}
\end{equation*}
$$

By Lemma 3, either $q_{n, j, k}=q_{n, j, k}^{\prime}$ or $q_{n, j, k}=q_{n, j, k}^{\prime}+1$, and either $q_{n+1, j, k}=q_{n+1, j, k}^{\prime}$ or $q_{n+1, j, k}=q_{n+1, j, k}^{\prime}+1$. We prove the inductive step by considering the eight cases depending on whether we have either $r_{n, j, k}<b-k-1$ or $r_{n, j, k} \geq b-k-1$, either $q_{n, j, k}=q_{n, j, k}^{\prime}$ or $q_{n, j, k}=q_{n, j, k}^{\prime}+1$, and either $q_{n+1, j, k}=q_{n+1, j, k}^{\prime}$ or $q_{n+1, j, k}=$ $q_{n+1, j, k}^{\prime}+1$. We first consider the argument for the values of n for which $1 \leq n \leq$ $b-3$. Then we show how to modify this argument to the case $n=0$.

By Lemma4, we have $\epsilon_{b-2, j, k}=q_{b-2, j, k}-q_{b-2, j, k}^{\prime}$. One of the 8 cases in the inductive step produces a contradiction. Of the remaining 7 legitimate cases, we assume that $\epsilon_{n+1, j, k}=q_{n+1, j, k}-q_{n+1, j, k}^{\prime}$. In each of the 7 legitimate cases, we show that $\epsilon_{n, j, k}=q_{n, j, k}-q_{n, j, k}^{\prime}$. This establishes the legitimacy of the assumption that $\epsilon_{n+1, j, k}=q_{n+1, j, k}-q_{n+1, j, k}^{\prime}$ in the 7 legitimate cases.
Case 7 We assume $r_{n, j, k}<b-k-1, q_{n, j, k}=q_{n, j, k}^{\prime}$ and $q_{n+1, j, k}=q_{n+1, j, k}^{\prime}$. By the inductive hypothesis, (3) holds. Note that $\epsilon_{n+1, j, k}=q_{n+1, j, k}-q_{n+1, j, k}^{\prime}=0$. By Lemma 2, we have $q_{n+1, j, k}=q_{n, j, k}$. Thus $q_{n, j, k}^{\prime}=q_{n, j, k}=q_{n+1, j, k}=q_{n+1, j, k}^{\prime}$. From Definitions 1.3 and 1.4, we have

$$
b q_{n+1, j, k}^{\prime}+r_{n, j, k}^{\prime}=k n+j=(b-1) q_{n+1, j, k}^{\prime}+r_{n, j, k}
$$

which, in turn, implies that

$$
q_{n+1, j, k}^{\prime}+r_{n, j, k}^{\prime}=r_{n, j, k} \quad \text { where } 0 \leq r_{n, j, k} \leq b-2
$$

Since $0 \leq q_{n+1, j, k}^{\prime}+r_{n, j, k}^{\prime}+\epsilon_{n+1, j, k} \leq b-2$, we have

$$
a_{n, j, k}=q_{n+1, j, k}^{\prime}+r_{n, j, k}^{\prime}+\epsilon_{n+1, j, k}=r_{n, j, k} .
$$

Because $r_{n, j, k}<b-k-1$, we have $c_{n, j, k}=r_{n, j, k}=a_{n, j, k}$. Also, since $q_{n+1, j, k}^{\prime}$ $+r_{n, j, k}^{\prime}+\epsilon_{n+1, j, k}=a_{n, j, k}$, there is no carry 1 to the $b^{b-2-(n-1)}$'s digit. Observe that $\epsilon_{n, j, k}=q_{n, j, k}-q_{n, j, k}^{\prime}=0$. Hence, (4) holds.

Case 8 We assume $r_{n, j, k}<b-k-1, q_{n, j, k}=q_{n, j, k}^{\prime}$ and $q_{n+1, j, k}=q_{n+1, j, k}^{\prime}+1$. Since

$$
q_{i, j, k}^{\prime}=\left\lfloor\frac{k i+j}{b}\right\rfloor
$$

increases as i increases, we have $q_{n+1, j, k}^{\prime} \geq q_{n, j, k}^{\prime}$. By Lemma 2, we have $q_{n+1, j, k}=$ $q_{n, j, k}$. Thus $q_{n+1, j, k}^{\prime}=q_{n, j, k}^{\prime}-1$. Hence, $q_{n+1, j, k}^{\prime}<q_{n, j, k}^{\prime}$. This contradicts the fact that $q_{n+1, j, k}^{\prime} \geq q_{n, j, k}^{\prime}$. Therefore, this case never occurs.
Case 9 We assume $r_{n, j, k} \geq b-k-1, q_{n, j, k}=q_{n, j, k}^{\prime}$ and $q_{n+1, j, k}=q_{n+1, j, k}^{\prime}$. By the inductive hypothesis, (3) holds. Note that $\epsilon_{n+1, j, k}=q_{n+1, j, k}-q_{n+1, j, k}^{\prime}=0$.

By Lemma 2, we have $q_{n+1, j, k}=q_{n, j, k}+1$. Thus $q_{n, j, k}^{\prime}=q_{n, j, k}=q_{n+1, j, k}-1=$ $q_{n+1, j, k}^{\prime}-1$. From Definitions 1.3 and 1.4, we have

$$
b\left(q_{n+1, j, k}^{\prime}-1\right)+r_{n, j, k}^{\prime}=k n+j=(b-1)\left(q_{n+1, j, k}^{\prime}-1\right)+r_{n, j, k}
$$

which, in turn, implies that

$$
q_{n+1, j, k}^{\prime}+r_{n, j, k}^{\prime}=r_{n, j, k}+1 \quad \text { where } 1 \leq r_{n, j, k}+1 \leq b-1
$$

Since $1 \leq q_{n+1, j, k}^{\prime}+r_{n, j, k}^{\prime}+\epsilon_{n+1, j, k} \leq b-1$, we have

$$
a_{n, j, k}=q_{n+1, j, k}^{\prime}+r_{n, j, k}^{\prime}+\epsilon_{n+1, j, k}=r_{n, j, k}+1
$$

Because $r_{n, j, k} \geq b-k-1$, we have $c_{n, j, k}=r_{n, j, k}+1=a_{n, j, k}$. Also, since $q_{n+1, j, k}^{\prime}$ $+r_{n, j, k}^{\prime}+\epsilon_{n+1, j, k}=a_{n, j, k}$, there is no carry 1 to the $b^{b-2-(n-1)}$'s digit. Observe that $\epsilon_{n, j, k}=q_{n, j, k}-q_{n, j, k}^{\prime}=0$. Hence, (4) holds.

Case 10 We assume $r_{n, j, k} \geq b-k-1, q_{n, j, k}=q_{n, j, k}^{\prime}$ and $q_{n+1, j, k}=q_{n+1, j, k}^{\prime}+1$. By the inductive hypothesis, (3) holds. Note that $\epsilon_{n+1, j, k}=q_{n+1, j, k}-q_{n+1, j, k}^{\prime}=1$. By Lemma2, we have $q_{n+1, j, k}=q_{n, j, k}+1$. Thus $q_{n, j, k}^{\prime}=q_{n, j, k}=q_{n+1, j, k}-1=$ $q_{n+1, j, k}^{\prime}$. From Definitions 1.3 and 1.4, we have

$$
b q_{n+1, j, k}^{\prime}+r_{n, j, k}^{\prime}=k n+j=(b-1) q_{n+1, j, k}^{\prime}+r_{n, j, k}
$$

which, in turn, implies that

$$
q_{n+1, j, k}^{\prime}+r_{n, j, k}^{\prime}=r_{n, j, k} \quad \text { where } 0 \leq r_{n, j, k} \leq b-2
$$

Since $1 \leq q_{n+1, j, k}^{\prime}+r_{n, j, k}^{\prime}+\epsilon_{n+1, j, k} \leq b-1$, we have

$$
a_{n, j, k}=q_{n+1, j, k}^{\prime}+r_{n, j, k}^{\prime}+\epsilon_{n+1, j, k}=r_{n, j, k}+1
$$

Because $r_{n, j, k} \geq b-k-1$, we have $c_{n, j, k}=r_{n, j, k}+1=a_{n, j, k}$. Also, since $q_{n+1, j, k}^{\prime}$ $+r_{n, j, k}^{\prime}+\epsilon_{n+1, j, k}=a_{n, j, k}$, there is no carry 1 to the $b^{b-2-(n-1)}$'s digit. Observe that $\epsilon_{n, j, k}=q_{n, j, k}-q_{n, j, k}^{\prime}=0$. Hence, (4) holds.

Case 11 We assume $r_{n, j, k}<b-k-1, q_{n, j, k}=q_{n, j, k}^{\prime}+1$ and $q_{n+1, j, k}=q_{n+1, j, k}^{\prime}$. By the inductive hypothesis, (3) holds. Note that $\epsilon_{n+1, j, k}=q_{n+1, j, k}-q_{n+1, j, k}^{\prime}=0$. By Lemma2, we have $q_{n+1, j, k}=q_{n, j, k}$. Thus $q_{n, j, k}^{\prime}=q_{n, j, k}-1=q_{n+1, j, k}-1=$ $q_{n+1, j, k}^{\prime}-1$ and $q_{n, j, k}=q_{n+1, j, k}^{\prime}$. From Definitions 1.3 and 1.4, we have

$$
b\left(q_{n+1, j, k}^{\prime}-1\right)+r_{n, j, k}^{\prime}=k n+j=(b-1) q_{n+1, j, k}^{\prime}+r_{n, j, k}
$$

which, in turn, implies that

$$
q_{n+1, j, k}^{\prime}+r_{n, j, k}^{\prime}=r_{n, j, k}+b \text { where } b \leq r_{n, j, k}+b \leq 2 b-2
$$

Since $b \leq q_{n+1, j, k}^{\prime}+r_{n, j, k}^{\prime}+\epsilon_{n+1, j, k} \leq 2 b-2$, we have

$$
a_{n, j, k}=q_{n+1, j, k}^{\prime}+r_{n, j, k}^{\prime}+\epsilon_{n+1, j, k}-b=r_{n, j, k}
$$

Because $r_{n, j, k}<b-k-1$, we have $c_{n, j, k}=r_{n, j, k}=a_{n, j, k}$. Also, since $q_{n+1, j, k}^{\prime}+$ $r_{n, j, k}^{\prime}+\epsilon_{n+1, j, k}=a_{n, j, k}+b$, there is a carry 1 to the $b^{b-2-(n-1)}$'s digit. Observe that $\epsilon_{n, j, k}=q_{n, j, k}-q_{n, j, k}^{\prime}=1$. Hence, (4) holds.

Case 12 We assume $r_{n, j, k}<b-k-1, q_{n, j, k}=q_{n, j, k}^{\prime}+1$ and $q_{n+1, j, k}=q_{n+1, j, k}^{\prime}+$ 1. By the inductive hypothesis, (3) holds. Note that $\epsilon_{n+1, j, k}=q_{n+1, j, k}-q_{n+1, j, k}^{\prime}=1$. By Lemma2, we have $q_{n+1, j, k}=q_{n, j, k}$. Thus $q_{n, j, k}^{\prime}=q_{n, j, k}-1=q_{n+1, j, k}-1=$ $q_{n+1, j, k}^{\prime}$ and $q_{n, j, k}=q_{n+1, j, k}^{\prime}+1$. From Definitions 1.3 and 1.4 , we have

$$
b q_{n+1, j, k}^{\prime}+r_{n, j, k}^{\prime}=k n+j=(b-1)\left(q_{n+1, j, k}^{\prime}+1\right)+r_{n, j, k}
$$

which, in turn, implies that

$$
q_{n+1, j, k}^{\prime}+r_{n, j, k}^{\prime}+1=r_{n, j, k}+b \text { where } b \leq r_{n, j, k}+b \leq 2 b-2 \text {. }
$$

Since $b \leq q_{n+1, j, k}^{\prime}+r_{n, j, k}^{\prime}+\epsilon_{n+1, j, k} \leq 2 b-2$, we have

$$
a_{n, j, k}=q_{n+1, j, k}^{\prime}+r_{n, j, k}^{\prime}+\epsilon_{n+1, j, k}-b=r_{n, j, k} .
$$

Because $r_{n, j, k}<b-k-1$, we have $c_{n, j, k}=r_{n, j, k}=a_{n, j, k}$. Also, since $q_{n+1, j, k}^{\prime}+$ $r_{n, j, k}^{\prime}+\epsilon_{n+1, j, k}=a_{n, j, k}+b$, there is a carry 1 to the $b^{b-2-(n-1)}$'s digit. Observe that $\epsilon_{n, j, k}=q_{n, j, k}-q_{n, j, k}^{\prime}=1$. Hence, (4) holds.

Case 13 We assume $r_{n, j, k} \geq b-k-1, q_{n, j, k}=q_{n, j, k}^{\prime}+1$ and $q_{n+1, j, k}=q_{n+1, j, k}^{\prime}$. By the inductive hypothesis, (3) holds. Note that $\epsilon_{n+1, j, k}=q_{n+1, j, k}-q_{n+1, j, k}^{\prime}=0$. By Lemma2, we have $q_{n+1, j, k}=q_{n, j, k}+1$. Thus $q_{n, j, k}^{\prime}=q_{n, j, k}-1=q_{n+1, j, k}-$ $2=q_{n+1, j, k}^{\prime}-2$ and $q_{n, j, k}=q_{n+1, j, k}^{\prime}-1$. From Definitions 1.3 and 1.4 , we have

$$
b\left(q_{n+1, j, k}^{\prime}-2\right)+r_{n, j, k}^{\prime}=k n+j=(b-1)\left(q_{n+1, j, k}^{\prime}-1\right)+r_{n, j, k}
$$

which, in turn, implies that

$$
q_{n+1, j, k}^{\prime}+r_{n, j, k}^{\prime}=\left(r_{n, j, k}+1\right)+b \text { where } b+1 \leq\left(r_{n, j, k}+1\right)+b \leq 2 b-1 .
$$

Since $b+1 \leq q_{n+1, j, k}^{\prime}+r_{n, j, k}^{\prime}+\epsilon_{n+1, j, k} \leq 2 b-1$, we have

$$
a_{n, j, k}=q_{n+1, j, k}^{\prime}+r_{n, j, k}^{\prime}+\epsilon_{n+1, j, k}-b=r_{n, j, k}+1
$$

Because $r_{n, j, k} \geq b-k-1$, we have $c_{n, j, k}=r_{n, j, k}+1=a_{n, j, k}$. Also, since $q_{n+1, j, k}^{\prime}$ $+r_{n, j, k}^{\prime}+\epsilon_{n+1, j, k}=a_{n, j, k}+b$, there is a carry 1 to the $b^{b-2-(n-1)}$'s digit. Observe that $\epsilon_{n, j, k}=q_{n, j, k}-q_{n, j, k}^{\prime}=1$. Hence, (4) holds.

Case 14 We assume $r_{n, j, k} \geq b-k-1, q_{n, j, k}=q_{n, j, k}^{\prime}+1$ and $q_{n+1, j, k}=q_{n+1, j, k}^{\prime}+$ 1. By the inductive hypothesis, (3) holds. Note that $\epsilon_{n+1, j, k}=q_{n+1, j, k}-q_{n+1, j, k}^{\prime}=1$. By Lemma2, we have $q_{n+1, j, k}=q_{n, j, k}+1$. Thus $q_{n, j, k}^{\prime}=q_{n, j, k}-1=q_{n+1, j, k}-$ $2=q_{n+1, j, k}^{\prime}-1$ and $q_{n, j, k}=q_{n+1, j, k}^{\prime}$. From Definitions 1.3 and 1.4, we have

$$
b\left(q_{n+1, j, k}^{\prime}-1\right)+r_{n, j, k}^{\prime}=k n+j=(b-1) q_{n+1, j, k}^{\prime}+r_{n, j, k}
$$

which, in turn, implies that

$$
q_{n+1, j, k}^{\prime}+r_{n, j, k}^{\prime}=r_{n, j, k}+b \text { where } b \leq r_{n, j, k}+b \leq 2 b-2
$$

Since $b+1 \leq q_{n+1, j, k}^{\prime}+r_{n, j, k}^{\prime}+\epsilon_{n+1, j, k} \leq 2 b-1$, we have

$$
a_{n, j, k}=q_{n+1, j, k}^{\prime}+r_{n, j, k}^{\prime}+\epsilon_{n+1, j, k}-b=r_{n, j, k}+1
$$

Because $r_{n, j, k} \geq b-k-1$, we have $c_{n, j, k}=r_{n, j, k}+1=a_{n, j, k}$. Also, since $q_{n+1, j, k}^{\prime}$ $+r_{n, j, k}^{\prime}+\epsilon_{n+1, j, k}=a_{n, j, k}+b$, there is a carry 1 to the $b^{b-2-(n-1)}$'s digit. Observe that $\epsilon_{n, j, k}=q_{n, j, k}-q_{n, j, k}^{\prime}=1$. Hence, (4) holds.

Lastly, we need to consider the case when $n=0$. From Definitions 1.3 and 1.4, we have

$$
b q_{0, j, k}^{\prime}+r_{0, j, k}^{\prime}=k \cdot 0+j=j=(b-1) q_{0, j, k}+r_{0, j, k} \quad \text { where } 0 \leq j \leq b-2
$$

Thus $q_{0, j, k}^{\prime}=q_{0, j, k}=0$ and $r_{0, j k}^{\prime}=r_{0, j, k}=j$. Hence, the only cases in which the assumption $q_{0, j, k}^{\prime}=q_{0, j, k}$ applies are to Cases 7,9 , and 10. One can easily adapt the arguments given in Cases 7, 9, and 10 to show that (5) implies (6) when $n=0$. We leave the details of these arguments to the reader. This completes the proof of Theorem 3.

We observe that Theorem 2 is a consequence of both Proposition 8 and Theorem 3; this completes the proof of Theorem 2. We need the following lemma in order to prove Propositions 1, 3 and 5. See Definition 1 for the definitions of $a_{i, j, k}, r_{i, j, k}$, and $c_{i, j, k}$.

Lemma 5 Let $b \geq 3$ be an integer, let k be an integer such that $1 \leq k \leq(b-1) / 2$, and let $d=\operatorname{gcd}(b-1, k)$. For all integers i such that $0 \leq i \leq b-2$, let $a_{i, 0, k}$ be the digits in the base b representation of $k \beta$. I.e., $k \beta=\left(a_{0,0, k} a_{1,0, k} \ldots a_{b-2,0, k}\right)_{b}$. Then, for all integers i such that $0 \leq i \leq b-2$, we have $a_{i, 0, k} \leq b-d$.

Proof By Theorem 2, we have $a_{i, 0, k}=c_{i, 0, k}$ for all integers i such that $0 \leq i \leq b-2$. Let $k=k_{1} d$ and $b-1=\ell d$ for some positive integers k_{1} and ℓ. Since $r_{i, 0, k} \equiv k i$ $(\bmod b-1)$, we have $r_{i, 0, k} \equiv\left(k_{1} i\right) d(\bmod \ell d)$. Since $r_{i, 0, k}<b-1=\ell d$ and d
divides $r_{i, 0, k}$, we have $r_{i, 0, k} \leq \ell d-d=b-1-d$. Thus $a_{i, 0, k}=c_{i, 0, k} \leq r_{i, 0, k}+$ $1 \leq b-d$.

Proposition 1 is a special case of Proposition 3 if we remove the restriction $d=$ $\operatorname{gcd}(b-1, k)>1$ and replace it with $d=\operatorname{gcd}(b-1, k) \geq 1$.

Proof of Propositions 1 and 3 By Lemma 5, we have $a_{i, j, k} \leq b-d$ for all integers i such that $0 \leq i \leq b-2$. Since $(b-d)(b-1) \beta=((b-d)(b-d) \ldots(b-d))_{b}$, $K \beta=((b-d)(b-1)-k) \beta=((b-d)(b-d) \ldots(b-d))_{b}-\left(a_{0,0, k} a_{1,0, k} \ldots\right.$ $\left.a_{b-2,0, k}\right)_{b}$. Thus $K \beta=\left(a_{0, b-d-1, b-k-1} a_{1, b-d-1, b-k-1} \ldots a_{b-2, b-d-1, b-k-1}\right)_{b}$ is the $(b-d)$'s complement of $k \beta=\left(a_{0,0, k} a_{1,0, k} \ldots a_{b-2,0, k}\right)_{b}$ in the base b number system.

Proof of Proposition 5 By Lemma 5, the digits of $k \beta$ are not larger than $b-d$. Since $0 \leq j_{1}<d$, we can add the digits of $j_{1}(b-1) \beta=\left(j_{1} j_{1} \ldots j_{1}\right)_{b}$ to the digits of $k \beta=$ $\left(a_{0,0, k} a_{1,0, k} \ldots a_{b-2,0, k}\right)_{b}$ to obtain the digits of $\left((b-1) j_{1}+k\right) \beta=\left(a_{0, j_{1}, k} a_{1, j_{1}, k}\right.$ $\left.\ldots a_{b-2, j_{1}, k}\right)_{b}$.

Propositions 2 and 4 are direct results of Theorem 2 applied to each particular case.

Proof of Proposition 2 We observe that $r_{i, j, k} \equiv k i+j(\bmod b-1)$ and $r_{i+j_{3}, 0, k}$ $\equiv k\left(i+j_{3}\right)+0(\bmod b-1) \equiv k i+j(\bmod b-1)$. Since $0 \leq r_{i, j, k}, r_{i+j_{3}, 0, k}<$ $b-1$, we have $r_{i, j, k}=r_{i+j_{3}, 0, k}$. On the one hand, if $r_{i, j, k}=r_{i+j_{3}, 0, k}<b-k-1$, then $c_{i, j, k}=r_{i, j, k}=r_{i+j_{3}, 0, k}=c_{i+j_{3}, 0, k}$. On the other hand, if $r_{i, j, k}=r_{i+j_{3}, 0, k} \geq b-$ $k-1$, then $c_{i, j, k}=r_{i, j, k}+1=r_{i+j_{3}, 0, k}+1=c_{i+j_{3}, 0, k}$. In either case, by Theorem 2, $a_{i, j, k}=c_{i, j, k}=c_{i+j_{3}, 0, k}=a_{i+j_{3}, 0, k}$.

Proof of Proposition 4 First, since $k_{1} j_{3} \equiv j_{2}(\bmod \ell)$, we have $k j_{3}=\left(k_{1} d\right) j_{3}$ $\equiv j_{2} d(\bmod \ell d)=j_{2} d(\bmod b-1)$. We observe that $r_{i, j, k} \equiv k i+j(\bmod b-$ 1) and $r_{i+j_{3}, j_{1}, k} \equiv k\left(i+j_{3}\right)+j_{1}(\bmod b-1) \equiv k i+j(\bmod b-1)$. Since $0 \leq$ $r_{i, j, k}, r_{i+j_{3}, j_{1}, k}<b-1$, we have $r_{i, j, k}=r_{i+j_{3}, j_{1}, k}$. On the one hand, if $r_{i, j, k}=$ $r_{i+j_{3}, j_{1}, k}<b-k-1$, then $c_{i, j, k}=r_{i, j, k}=r_{i+j_{3}, j_{1}, k}=c_{i+j_{3}, j_{1}, k}$. On the other hand, if $r_{i, j, k}=r_{i+j_{3}, j_{1}, k} \geq b-k-1$, then $c_{i, j, k}=r_{i, j, k}+1=r_{i+j_{3}, j_{1}, k}+1=c_{i+j_{3}, j_{1}, k}$. In either case, by Theorem $2, a_{i, j, k}=c_{i, j, k}=c_{i+j_{3}, j_{1}, k}=a_{i+j_{3}, j_{1}, k}$.

Proof of Theorem 1 Since $\operatorname{gcd}(K, b-1)=1$, we have $\operatorname{gcd}(k, b-1)=1$. Thus k is a generator of \mathbb{Z}_{b-1}. Hence, $\mathbb{Z}_{b-1}=\{k i(\bmod b-1): i=0,1, \ldots, b-2\}=$ $\{k i+j(\bmod b-1): i=0,1, \ldots, b-2\}=\left\{r_{i, j, k}: i=0,1, \ldots, b-2\right\}$. Thus $\left(r_{i, j, k}: i=0,1, \ldots, b-2\right)$ is a permutation on the set of integers $\{0,1, \ldots, b-$ 2\}. We also observe that $d=b-k-1$. Since $c_{i, j, k}=r_{i, j, k}$ if $r_{i, j, k}<b-k-1$ and $c_{i, j, k}=r_{i, j, k}+1$ if $r_{i, j, k} \geq b-k-1,\left(c_{i, j, k}: i=0,1, \ldots, b-2\right)$ is a permutation on the set of integers $\{0,1,2, \ldots, b-1\} \backslash\{d\}$. By Theorem $2, K \beta=$ $\sum_{i=0}^{b-2} c_{i, j, k} b^{b-2-i}$. Hence, $K \beta$ contains each digit $0,1,2, \ldots, b-1$ exactly once, except the digit d which does not appear as a digit in $K \beta$.

5 Questions for Further Investigation

We consider several questions related to the results in this paper. In order to ask our questions, we need to first state Theorem 2 in the following way.

Theorem 4 Let $b \geq 3$ be an integer, and let

$$
\beta=\frac{b^{b-1}-1}{(b-1)^{2}} .
$$

Let N be an integer such that $1 \leq N<(b-1)^{2}$. Let a_{0} and a_{1} be the digits of N expressed in the $(b-1)$-base number system. I.e., $N=\left(a_{1} a_{0}\right)_{b-1}=a_{1}(b-1)+a_{0}$ where $0 \leq a_{i}<b-1$ for $i=0$ and 1 . Then the digits of $N \beta$ can be constructed from the sequence $\left\{a_{1}+a_{0} j(\bmod b-1): 0 \leq j<b-1\right\}$ by adding 1 to those values in the sequence that are greater than or equal to $b-1-a_{0}$.

Hence, we may think of the digits of $N \beta$ as being formed indirectly from the sequence $\left\{a_{1}+a_{0} j(\bmod b-1): 0 \leq j<b-1\right\}$. This interpretation of Theorem 4 allows us to formulate the following questions. We first consider some questions related to the number $\beta_{2}=\left(b^{(b-1)^{2}}-1\right) /(b-1)^{3}$.

Question 1 Let $b \geq 3$ be an integer, and let

$$
\beta_{2}=\frac{b^{(b-1)^{2}}-1}{(b-1)^{3}}
$$

Let N be an integer such that $1 \leq N<(b-1)^{3}$. Let a_{0}, a_{1} and a_{2} be the digits of N expressed in the $(b-1)$-base number system. I.e., $N=\left(a_{2} a_{1} a_{0}\right)_{b-1}=a_{2}(b-$ $1)^{2}+a_{1}(b-1)+a_{0}$ where $0 \leq a_{i}<b-1$ for $i=0,1$, and 2 .

1. Can the digits of $N \beta_{2}$ be constructed (indirectly) from the sequence $\left\{a_{2}+a_{1} j+\right.$ $\left.a_{0} j^{2}(\bmod b-1): 0 \leq j<(b-1)^{2}\right\}$?
2. Is there a quadratic function $p(j)$ such that the digits of $N \beta_{2}$ can be constructed (indirectly) from the sequence $\left\{a_{2}+a_{1} j+a_{0} p(j)(\bmod b-1): 0 \leq j<(b-\right.$ 1) $\left.{ }^{2}\right\}$?

We next consider some questions related to the number $\beta_{k}=\left(b^{(b-1)^{k}}-1\right) /(b-$ $1)^{k+1}$.

Question 2 Let $b \geq 3$ and $k \geq 3$ be integers, and let

$$
\beta_{k}=\frac{b^{(b-1)^{k}}-1}{(b-1)^{k+1}}
$$

Let N be an integer such that $1 \leq N<(b-1)^{k+1}$. Let $a_{0}, a_{1}, \ldots, a_{k}$ be the digits of N expressed in the $(b-1)$-base number system. I.e., $N=\left(a_{k} a_{k-1} \ldots a_{1} a_{0}\right)_{b-1}$
$=a_{k}(b-1)^{k}+a_{k-1}(b-1)^{k-1}+\cdots+a_{1}(b-1)+a_{0}$ where $0 \leq a_{i}<b-1$ for each $0 \leq i \leq k$.

1. Can the digits of $N \beta_{k}$ be constructed (indirectly) from the sequence $\left\{\sum_{\ell=0}^{k} a_{k-\ell} j^{\ell}(\bmod b-1): 0 \leq j<(b-1)^{k}\right\}$?
2. For each integer $2 \leq \ell \leq k$, is there a polynomial function $p_{\ell}(j)$ of degree ℓ such that the digits of $N \beta_{k}$ can be constructed (indirectly) from the sequence $\left\{a_{k}+a_{k-1} j+\sum_{\ell=2}^{k} a_{k-\ell} p_{\ell}(j)(\bmod b-1): 0 \leq j<(b-1)^{k}\right\} ?$

References

1. Baidu Baike. http://baike.baidu.com/item/12345679
2. Morris, J.P.: Problem Solving with Calculators. The Arithmetic Teacher 25(7), 24-26 (1978)
3. Simon, W.: Mathematical Magic. Dover Publications, New York (1974)

A \& Z Sequences for Double Riordan Arrays

Donovan Branch, Dennis Davenport, Shakuan Frankson, Jazmin T. Jones, and Geoffrey Thorpe

Abstract

A Riordan array is an infinite lower triangular matrix that is defined by two generating functions, g and f. The coefficients of the generating function g give the zeroth column and the nth column of the matrix is defined by the generating function $g f^{n}$. We shall call f the multiplier function. Similarly, the Double Riordan array is an infinite lower triangular matrix that is defined by three generating functions, g, f_{1} and f_{2}. Where the zeroth column of the Double Riordan array is g, the next column is given by $g f_{1}$ and the following column will be defined by $g f_{1} f_{2}$. The remaining columns are found by multiplying f_{1} and f_{2} alternatively. Thus, for a double Riordan array there are two multiplier functions, f_{1} and f_{2}. It is well known that any Riordan array can be determined by a Z-sequence and an A-sequence. This is the row construction of the array. This is not the case for Double Riordan arrays. In this paper, we show that double Riordan arrays can be determined by two Z-sequences and one A-sequence.

Keywords Riordan array \cdot Double Riordan array $\cdot A$-sequence $\cdot Z$-sequence

[^2]
1 Introduction

In 1991, Shapiro, Getu, Woan, and Woodson introduced a group of infinite lower triangular matrices called the Riordan group, see [6]. The elements of the group are defined by two power series g and f, where the coefficients of g give the leftmost column and the i th column is given by the coefficients of $g \cdot f^{i}$, for $i=1,2,3, \ldots$

Explicitly, the following construction is used to build a Riordan array. Let $g(z)=$ $1+\sum_{k=1}^{\infty} g_{k} z^{k}$ and $f(z)=\sum_{k=1}^{\infty} f_{k} z^{k}$, where $f_{1} \neq 0$. Let $d_{n, k}$ be the coefficient of z^{n} in $g(z)(f(z))^{k}$. Then $D=\left(d_{n, k}\right)_{n, k \geq 0}$ is a Riordan array and an element of the Riordan group. We write $D=(g(z), f(z))$.

Before giving our new results, we will define the Riordan group, state the Fundamental Theorem of Riordan Arrays, and give some examples of elements in the Riordan group. In Sect. 2, we define the Double Riordan Group, state the Fundamental Theorem of Double Riordan Arrays, and prove a result about the A - and Z-sequences of a Double Riordan array. In Sect. 3, we will give new subgroups of the Double Riordan Group.

In our research several sequences were found which are in the Online Encyclopedia of Integer Sequences (OEIS) [7]; the A-numbers refer to this source.

Example 1 The identity matrix in the Riordan Group is

$$
(1, z)=\left[\begin{array}{lllll}
1 & & & & \\
0 & 1 & & & \\
0 & 0 & 1 & & \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & \\
& \cdots & &
\end{array}\right]
$$

Example 2 Pascal's matrix is

$$
\left(\frac{1}{1-\mathrm{z}}, \frac{\mathrm{z}}{1-\mathrm{z}}\right)=\left[\begin{array}{llll}
1 & & & \\
1 & 1 & & \\
1 & 2 & 1 & \\
1 & 3 & 3 & \\
1 & 4 & 6 & 4 \\
& \cdots &
\end{array}\right]
$$

Example 3 The Fibonacci matrix with Pascal-like columns and Fibonacci row sums is

$$
(1, z(1+z))=\left[\begin{array}{lllll}
1 & & & & \\
0 & 1 & & & \\
0 & 1 & 1 & & \\
0 & 0 & 2 & 1 \\
0 & 0 & 1 & 3 & 1 \\
& \cdots &
\end{array}\right]
$$

Theorem 1 (The Fundamental Theorem of Riordan Arrays) Let $A(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ and $B(z)=\sum_{k=0}^{\infty} b_{k} z^{k}$ and let A and B be the column vectors $A=\left(a_{0}, a_{1}, a_{2}, \ldots\right)^{T}$ and $B=\left(b_{0}, b_{1}, b_{2}, \ldots\right)^{T}$. Then $(g, f) A=B$, if and only if $B(z)=g(z) A(f(z))$.

Theorem 2 Let (g, f) and (G, F) be two Riordan arrays. Then the operation *, given by $(g, f) *(G, F)=(g(z) G(f(z)), F(f(z)))$ is matrix multiplication which is an associative binary operation, $(1, z)$ is the identity element, and the inverse of (g, f) is $\left(\frac{1}{g(\bar{f})}, \bar{f}\right)$, where \bar{f} is the compositional inverse of f.

Using the Fundamental Theorem of Riordan Arrays, we can easily prove many combinatorial identities and find ways to invert those identities. Given any Riordan array, every element of the array, except the element in the zeroth row and zeroth column, can be written as a linear combination of elements in the preceding row starting from the preceding column [5]. In addition, every element in the zeroth column other than the first element can be expressed as a linear combination of all elements of the preceding row [4]. Hence, a Riordan Array can be determined by a column construction (using generating functions) or by a row construction (using A - and Z-sequences). The following theorem tells us how to construct a Riordan array using the rows.

Theorem 3 Let $D=\left(d_{n, k}\right)$ be an infinite triangular matrix. Then D is a Riordan matrix if and only if there exists two sequences $A=a_{0}, a_{1}, a_{2}, \ldots$ and $B=$ $b_{0}, b_{1}, b_{2}, \ldots$ with $a_{0} \neq 0$ and $b_{0} \neq 0$ such that

$$
\begin{align*}
d_{n+1, k+1} & =\sum_{j=0}^{\infty} a_{j} d_{n, k+j} ; k, n=0,1,2, \ldots \tag{1}\\
d_{n+1,0} & =\sum_{j=0}^{\infty} b_{j} d_{n, j} ; n=0,1,2, \ldots \tag{2}
\end{align*}
$$

The sequences $a_{0}, a_{1}, a_{2}, \ldots$ and $b_{0}, b_{1}, b_{2}, \ldots$, respectively, are called the A sequence and Z-sequence of the Riordan matrix D.

Theorem 4 Let $D=(g(t), f(t))$ be a Riordan array. Let A be the generating function of the A-sequence and Z the generating function of the Z-sequence. Then

Fig. 1 Example of a Riordan matrix

$\left[\right.$| g | $g f$ | $g f^{2}$ | $g f^{3}$ | $g f^{4} g f^{5}$ | \cdots | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | | | | | | |
| 1 | 1 | | | | | |
| 2 | 3 | 1 | | | | |
| 5 | 9 | 5 | 1 | | | |
| 14 | 28 | 20 | 7 | 1 | | |
| 42 | 90 | 70 | 35 | 9 | 1 | |
| 132 | 297 | 275 | 154 | 54 | 11 | 1 |
| \cdots | | | | | | |
| | | | | | | |$]$

$$
A(t)=\frac{t}{(\bar{f}(t))} \text { and } Z(t)=\frac{1}{\bar{f}(t)} \cdot\left(1-\frac{1}{g(\bar{f}(t))}\right)
$$

where \bar{f} is the compositional inverse of f.
See [1] for more information about A - and Z-sequences of Riordan arrays. The following example shows how to construct a Riordan array using the A - and Z sequences. Note that for uniqueness the element g_{0} must be given and it cannot be 0 . Also, we assume that all other elements in the first row are 0 (Fig. 1).

Example 4

$$
Z:(1,1) \quad A:(1,2,1) \quad \text { first row }: 1,0,0, \ldots
$$

We get the following equations;

$$
\begin{aligned}
g & =1+t g+t g f \text { and } \\
g f & =t g+2 t g f+t g f^{2} \Longrightarrow f=t+2 t f+t f^{2} .
\end{aligned}
$$

Solving this set of equations we get the following for g and f;

$$
\begin{aligned}
g & =\frac{1-\sqrt{1-4 t}}{2 t} \\
& =1+t+2 t^{2}+5 t^{3}+14 t^{4}+42 t^{5}+\cdots
\end{aligned}
$$

and

$$
\begin{aligned}
f & =\frac{1-2 t-\sqrt{1-4 t}}{2 t} \\
& =t+2 t^{2}+5 t^{3}+14 t^{4}+42 t^{5}+132 t^{6}+\cdots
\end{aligned}
$$

2 Double Riordan: A \& Z Sequences

In a Riordan array, we use one multiplier function. Suppose alternating rules are used to generate an infinite matrix similar to a Riordan array. For example, suppose we are looking at Dyck paths with bicolored edges only at even heights. For this case, we have two rules; one for rows at even height and the other for rows at odd height.

In general, the set of double Riordan arrays is not closed under multiplication. However, if we require that g be an even function and f_{1} and f_{2} odd, then there is an analog of The Fundamental Theorem of Riordan Arrays, which gives us a binary operation, see [2].

Definition 1 Let $g(t)=1+\sum_{k=1}^{\infty} g_{2 k} t^{2 k}, f_{1}(t)=\sum_{k=0}^{\infty} f_{1,2 k+1} t^{2 k+1}$, and $f_{2}(t)=$ $\sum_{k=0}^{\infty} f_{2,2 k+1} z^{2 k+1}$, where $f_{1,1} \neq 0$ and $f_{2,1} \neq 0$. Then the double Riordan matrix (or array) of g, f_{1} and f_{2}, denoted by ($g ; f_{1}, f_{2}$), has column vectors

$$
\left(g, g f_{1}, g f_{1} f_{2}, g f_{1}^{2} f_{2}, g f_{1}^{2} f_{2}^{2}, \ldots\right)
$$

The set of all aerated double Riordan matrices is denoted as $\mathcal{D R}$.
Theorem 5 (The Fundamental Theorem of Double Riordan Arrays) Let $g(t)=$ $\sum_{k=0}^{\infty} g_{2 k} t^{2 k}, f_{1}(t)=\sum_{k=0}^{\infty} f_{1,2 k+1} t^{2 k+1}$, and $f_{2}(t)=\sum_{k=0}^{\infty} f_{2,2 k+1} t^{2 k+1}$.

Case 1: If $A(t)=\sum_{k=0}^{\infty} a_{2 k} t^{2 k}$ and $B(t)=\sum_{k=0}^{\infty} b_{2 k} t^{2 k}$, and $A=\left(a_{0}, 0, a_{2}, 0, \ldots\right)^{T}$ and $B=\left(b_{0}, 0, b_{2}, 0, \ldots\right)^{T}$ are column vectors. Then $\left(g, f_{1}, f_{2}\right) A=B$ if and only if $B(z)=g(z) A\left(\sqrt{f_{1}(z) f_{2}(z)}\right)$.

Case 2: If $A(t)=\sum_{k=0}^{\infty} a_{2 k+1} t^{2 k+1}$ and $B(t)=\sum_{k=0}^{\infty} b_{2 k+1} t^{2 k+1}$ with $\left(g, f_{1}, f_{2}\right) A=$ B, then $B(t)=g(t) \sqrt{f_{1} / f_{2}} A\left(\sqrt{f_{1}(t) f_{2}(t)}\right)$.

Using the Fundamental Theorem of Double Riordan Arrays, we can define a binary operation on $\mathcal{D R}$.

Definition 2 Let $\left(g, f_{1}, f_{2}\right)$ and $\left(G, F_{1}, F_{2}\right)$ be elements of $\mathcal{D R}$. Then: $\left(g ; f_{1}, f_{2}\right)$ $\left(G ; F_{1}, F_{2}\right)=\left(g G\left(\sqrt{f_{1} f_{2}}\right) ; \sqrt{f_{1} / f_{2}} F_{1}\left(\sqrt{f_{1} f_{2}}\right), \sqrt{f_{2} / f_{1}} F_{2}\left(\sqrt{f_{1} f_{2}}\right)\right)$.

The following theorem is analogous to Theorem 2.
Theorem $6(\mathcal{D R}, *)$ is a group. Where the matrix $(1 ; t, t)$ is the identity and $\left(\left(1 / g(\bar{h}) ; t \bar{h} / f_{1}(\bar{h}), t \bar{h} / f_{2}(\bar{h})\right)\right.$ is the inverse of $\left(g ; f_{1}, f_{2}\right)$, where $h=\sqrt{f_{1} f_{2}}$ and \bar{h} is the compositional inverse of h.

A Riordan array has one Z - and one A-sequence. In this section, we show that elements in $\mathcal{D R}$ can be written using two Z-sequences and one A-sequence. Our approach is different than the one found by He, see [3]. He's row construction of Double Riordan arrays has one Z-sequence and two A-sequences. For our approach,
we split the double Riordan array into two arrays and after compression, we get two Riordan arrays that have the same multiplier function. To show this we will use the following definition.

Definition 3 Let $f(z) \in \mathbb{R} \llbracket z^{2} \rrbracket$, where $\mathbb{R} \llbracket z^{2} \rrbracket$ is the set of even formal power series. Then $*: \mathbb{R} \llbracket z^{2} \rrbracket \rightarrow \mathbb{R} \llbracket z \rrbracket$ is called a compression of the power series if $*\left(\sum_{k=0}^{\infty} a_{k} z^{2 k}\right)=\sum_{k=0}^{\infty} a_{k} z^{k}$. If $f(z) \in \mathbb{R} \llbracket z^{2} \rrbracket$, we denote its compression as f^{*}. We will use f for f^{*}, when this causes no confusion. If $g(z)$ is odd, then a compression of $g(z)$ is $\left(\frac{g(z)}{z}\right)^{*}$.

Example 5 Let

$$
f(z)=1+2 z^{2}+6 z^{4}+22 z^{6}+\cdots[A 006318]
$$

Then

$$
f^{*}(z)=1+2 z+6 z^{2}+22 z^{3}+\cdots
$$

Theorem 7 Let $D=\left(d_{n, k}\right)=\left(g, g f_{1}, g f_{1} f_{2}, g f_{1}^{2} f_{2}, g f_{1}^{2} f_{2}^{2}, \ldots\right) \in \mathcal{D} \mathcal{R}$. Then D is uniquely determined by three sequences $A=\left(a_{0}, a_{1}, a_{2}, \ldots\right), Z_{0}=\left(b_{0}, b_{1}, b_{2}, \ldots\right)$, and $Z_{1}=\left(c_{0}, c_{1}, c_{2}, \ldots\right)$, where all elements in column g except $d_{0,0}$ are found by sequence Z_{0}, all elements in column $g f_{1}$ except $d_{1,1}$ are found by sequence Z_{1}, and the remaining internal entries are found by sequence A.

Proof To proceed we split D into two matrices, one made with the columns in the even positions and the other with those in the odd positions. So that,

$$
\begin{aligned}
\left(g, g f_{1}, g f_{1} f_{2}, g f_{1}^{2} f_{2}, g f_{1}^{2} f_{2}^{2}, \ldots\right) & =\left(g, g f_{1}, g\left(f_{1} f_{2}\right), g f_{1}\left(f_{1} f_{2}\right), g\left(f_{1} f_{2}\right)^{2}, \ldots\right) \\
& =D_{0}+D_{1}
\end{aligned}
$$

Where

$$
D_{0}=\left(g, \mathbf{0}, g\left(f_{1} f_{2}\right), \mathbf{0}, g\left(f_{1} f_{2}\right)^{2}, \mathbf{0}, g\left(f_{1} f_{2}\right)^{3}, \mathbf{0}, g\left(f_{1} f_{2}\right)^{4}, \ldots\right)
$$

and

$$
D_{1}=\left(\mathbf{0}, g f_{1}, \mathbf{0}, g f_{1}\left(f_{1} f_{2}\right), \mathbf{0}, g f_{1}\left(f_{1} f_{2}\right)^{2}, \mathbf{0}, g f_{1}\left(f_{1} f_{2}\right)^{3}, \mathbf{0}, g f_{1}\left(f_{1} f_{2}\right)^{4}, \ldots\right)
$$

We now compress the formal power series that determine the columns of both D_{0} and D_{1}, remove the $\mathbf{0}$ columns, and shift the rows of D_{1} up one. So that

$$
D_{1}^{*}=\left(\frac{g f_{1}}{x}, \frac{g f_{1}}{x}\left(f_{1} f_{2}\right), \frac{g f_{1}}{x}\left(f_{1} f_{2}\right)^{2}, \frac{g f_{1}}{x}\left(f_{1} f_{2}\right)^{3}, \frac{g f_{1}}{x}\left(f_{1} f_{2}\right)^{4}, \ldots\right)
$$

$\left[\begin{array}{cccccccc}g & g f_{1} & g f_{1} f_{2} g f_{1}\left(f_{1} f_{2}\right) g\left(f_{1} f_{2}\right)^{2} g f_{1}\left(f_{1} f_{2}\right)^{2} g\left(f_{1} f_{2}\right)^{3} g f_{1}\left(f_{1} f_{2}\right)^{3} \cdots \\ 1 & & & & & & & \\ 0 & 1 & & & & & & \\ 1 & 0 & 1 & & & & & \\ 0 & 3 & 0 & 1 & 1 & & & \\ 2 & 0 & 3 & 0 & 0 & 1 & & \\ 0 & 9 & 0 & 5 & 5 & 0 & 1 & \\ 5 & 0 & 9 & 0 & 0 & 7 & 0 & 1\end{array}\right]$

Fig. 2 Example of a Double Riordan matrix

Fig. 3 Even columns
$\left[\begin{array}{cccccc}g & g h g h^{2} g h^{3} g h^{4} \cdots \\ 1 & & & & \\ 0 & & & & & \\ 1 & 1 & & & & \\ 0 & 0 & & & & \\ 2 & 3 & 1 & & & \\ 0 & 0 & 0 & & & \\ 5 & 9 & 5 & 1 & & \\ 0 & 0 & 0 & 0 & & \\ 14 & 28 & 20 & 7 & 1 & \\ & & \cdots & & & \end{array}\right] \Longrightarrow\left[\begin{array}{cccccc}g & g h & g h^{2} g h^{3} & g h^{4} \cdots \\ 1 & & & & \\ 1 & 1 & & & & \\ 2 & 3 & 1 & & & \vdots \\ 5 & 9 & 5 & 1 & \\ 14 & 28 & 20 & 7 & 1 & \\ & & \cdots & & \end{array}\right]$

Note that with compression and shifting the rows of D_{0} and D_{1}, both D_{0}^{*} and D_{1}^{*} become simple Riordan arrays with the same multiplier function $f_{1} f_{2}$. Hence, they have the same A-sequence. And each Riordan array has a Z-sequence that determines the 0 th column.

Example 6 To illustrate this process, consider the following double Riordan array, where $C(x)=\frac{1-\sqrt{1-4 x}}{2 x}$ is the generating function for the Catalan numbers.

$$
\left(g, f_{1}, f_{2}\right)=\left(C\left(x^{2}\right), x C^{2}\left(x^{2}\right), x\right)
$$

We have two functions g and $g f_{1}$ alternating, with a multiplier $h=f_{1} f_{2}$, see Fig. 2. The matrix will be "split" into two matrices with the same multiplier function h. This results in two Z-sequences, Z_{0} and Z_{1}, and a single A-sequence. The Riordan array of the even columns is defined by the power series g and multiplier function $f_{1} f_{2}$, where the coefficients of g give the zeroth column, the first column is $g f_{1} f_{2}$, the second is $g\left(f_{1} f_{2}\right)^{2}$ and so on. Note that, when constructing the two Riordan matrices, we remove the aeration by compression (Fig.3).

Fig. 4 Odd columns

$$
\left[\begin{array}{cccc}
k & k h k h^{2} k h^{3} k h^{4} \\
0 & & & \\
1 & & & \\
0 & & \\
3 & 1 & & \\
0 & 0 & & \\
9 & 5 & 1 & \\
0 & 0 & 0 & \\
28 & 20 & 7 & 1
\end{array}\right] \Longrightarrow\left[\begin{array}{cccc}
\frac{k}{z} & \frac{k h}{z} & \frac{k h^{2}}{z} & \frac{k h^{3}}{z} \frac{k h^{4}}{z} \\
1 & & & \\
3 & 1 & & \\
9 & 5 & 1 & \\
28 & 20 & 7 & 1 \\
& \cdots & & \cdots \\
\end{array}\right]
$$

Similarly, when constructing the Riordan matrix for the odd columns, we divide by z to shift the rows up one making the constant term of $k=g f_{1}$ one (Fig.4).

Each Riordan array has $h^{*}=z C^{2}(z)$ as the multiplier function. Thus the $A-$ sequence of each array is

$$
\begin{aligned}
A(z) & =\frac{z}{\overline{h^{*}(z)}} \\
& =\frac{z}{\frac{z}{(1+z)^{2}}} \\
& =(1+z)^{2}=1+2 z+z^{2}
\end{aligned}
$$

Thus the A-sequence for each Riordan Array is $1,2,1$. When moving to the Double Riordan Array we aerate the sequence to get $(1,0,2,0,1)_{2}$ as the A-sequence, where the subscript 2 indicates we move up 2 rows instead of one row as we do with single Riordan Arrays.

Using similar calculations for the Z_{0} and Z_{1} sequences we get,

$$
\begin{aligned}
Z_{0}(z) & =\frac{1}{\overline{h^{*}}(z)}\left(1-\frac{1}{g^{*}\left(\overline{h^{*}}(z)\right.}\right) \\
& =1+z
\end{aligned}
$$

and

$$
\begin{aligned}
Z_{1}(z) & =\frac{1}{\overline{h^{*}}(z)}\left(1-\frac{1}{k^{*}\left(\overline{h^{*}}(z)\right.}\right) \\
& =\frac{z^{2}+3 z+3}{1+z} \\
& =3+\sum_{n=0}^{\infty}(-1)^{n} z^{n+2}
\end{aligned}
$$

Fig. 5 Schröder path with no level steps at even heights

Hence, the Z-sequences are 1,1 and $3,0,1,-1,1,-1,1,-1,1, \ldots$ So, for the given double Riordan array they are, $(1,0,1)_{2}$ for the 0 th column and $(3,0,0,0,1$, $0,-1,0,1,0,-1,0,1, \ldots)_{2}$ for the 1 st column.

Corollary 1 Let $\left(g, f_{1}, f_{2}\right)$ be a double Riordan array. Let A, Z_{0}, and Z_{1} be the generating functions for the A and Z sequences respectively. Let $h=f_{1} f_{2}$ and $k=g f_{1}$. Then

$$
\begin{aligned}
A(t) & =\frac{t^{2}}{(\bar{h}(t))^{2}} \\
Z_{0}(t) & =\frac{1}{(\bar{h}(t))^{2}}\left(1-\frac{1}{g(\bar{h}(t))}\right), \\
Z_{1}(t) & =\frac{1}{(\bar{h}(t))^{2}}\left(1-\frac{f_{1,1} \bar{h}(t)}{k(\bar{h}(t)}\right)
\end{aligned}
$$

Example 7 For the next combinatorial example, we look at Schröder paths with no level steps at even heights, see Fig. 5.

Using the grid, we get the following matrix (Figs. 6 and 7).
The equations are as follows;

$$
\begin{aligned}
g-1 & =z g+2 z g-z g h^{2}+z g h^{3}-z g h^{4}+\ldots \\
g h & =z g+3 z g h+z g h^{2} \Longrightarrow h=z+3 z h+z h^{2} .
\end{aligned}
$$

Solving these systems of equations we get the following for g and h;

Fig. 6 Example of $\mathcal{D} \mathcal{R}$ matrix for Schröder paths with no level steps at even heights, where $h=f_{1} f_{2}$ and $k=g f_{1}$

Fig. 7 Even columns

$$
\begin{aligned}
g & =\frac{1-z-\sqrt{5 z^{2}-6 z+1}}{2 z} \\
& =1+z+3 z^{2}+10 z^{3}+36 z^{4}+\cdots[A 002212] \\
h & =\frac{1-3 z-\sqrt{5 z^{2}-6 z+1}}{2 z} \\
& =z+3 z^{2}+10 z^{3}+36 z^{4}+137 z^{5}+543 z^{6}+\cdots \\
\bar{h} & =\frac{z}{z^{2}+3 z+1} \\
& =z-3 z^{2}+8 z^{z}-21 z^{4}+55 z^{2}+\cdots[A 001906] .
\end{aligned}
$$

Therefore, the A-sequence and Z-sequence for the matrix composed of the even columns are as follows (Fig. 8);

$$
\begin{aligned}
A(z) & =\frac{z}{\bar{h}(z)}=\frac{z}{\frac{z}{z^{2}+3 z+1}}=z^{2}+3 z+1 \\
Z(z) & =\frac{1}{\bar{h}}\left(1-\frac{1}{g(\bar{h})}\right)=\frac{z^{2}+3 z+1}{z}\left(1-\frac{1}{g\left(\frac{z}{z^{2}+3 z+1}\right)}\right)=\frac{z^{2}+3 z+1}{z(z+1)} \\
& =\frac{1}{z}\left(1+2 z-z^{2}+z^{3}-z^{4}+z^{5}-\cdots\right)
\end{aligned}
$$

Fig. 8 Odd columns

The equations are as follows;

$$
\begin{aligned}
k & =1+3 z k+z k h \\
k h & =z k+3 z k h+z k h^{2} \Longrightarrow h=z+3 z h+z h^{2}
\end{aligned}
$$

Solving these systems of equations we get the following for k and h;

$$
\begin{aligned}
k & =\frac{1-3 z-\sqrt{5 z^{2}-6 z+1}}{2 z^{2}} \\
& =1+3 z+10 z^{2}+36 z^{3}+137 z^{4}+\cdots[A 002212] \\
h & =\frac{1-3 z-\sqrt{5 z^{2}-6 z+1}}{2 z} \\
& =0+z+3 z^{2}+10 z^{3}+36 z^{4}+137 z^{5}+543 z^{6}+\cdots \\
\bar{h} & =\frac{z}{z^{2}+3 z+1} \\
& =z-3 z^{2}+8 z^{3}-21 z^{4}+55 z^{5}+\cdots[\text { A001906 }] .
\end{aligned}
$$

Therefore, the Z-sequence for the matrix composed of the odd columns is as follows;

$$
\begin{aligned}
Z(z) & =\frac{1}{\bar{h}}\left(1-\frac{1}{k(\bar{h})}\right) \\
& =\frac{z^{2}+3 z+1}{z}\left(1-\frac{1}{k\left(\frac{z}{z^{2}+3 z+1}\right)}\right) \\
& =\frac{3 z+1}{z}=\frac{1}{z}(3 z+1) .
\end{aligned}
$$

Hence, the Z_{0}-sequence of the Double Riordan matrix is $(1,0,2,0$, $-1,0,1,0,-1,0,1, \ldots)_{2}$, the Z_{1}-sequence of the Double Riordan matrix is $(3,0,1)_{2}$ and the A-sequence of the Double Riordan matrix is $(1,0,3,0,1)_{2}$.

3 New Subgroups

While studying the Double Riordan group, we found four new subgroups, that we call the Derivative subgroups and the C-Bell Subgroups. The Derivative subgroups are defined by $\left\{\left(f^{\prime}, f, c f\right) \in \mathcal{D R}: c \in \mathbb{R}, \mathrm{c}>0\right\}$ and $\left\{\left(f^{\prime}, c f, f\right) \in \mathcal{D R}: c \in \mathbb{R}, \mathrm{c}>\right.$ $0\}$. The C-Bell subgroups are defined by $\{(g, c z g, f) \in \mathcal{D} \mathcal{R}: c \in \mathbb{R}, \mathrm{c}>0\}$ and $\{(g, f, c z g) \in \mathcal{D R}: c \in \mathbb{R}, \mathrm{c}>0\}$.

Theorem 8 Let $\mathcal{A}=\left\{\left(f^{\prime}, f, c f\right) \in \mathcal{D R}: c \in \mathbb{R}, \mathrm{c}>0\right\}$. Then \mathcal{A} is a subgroup of $\mathcal{D R}$.

Proof The identity element is clearly in \mathcal{A}, simply let $f=z$ and $c=1$. Thus, $\left(f^{\prime}, f, c f\right)=(1, z, z)$. Now let $\left(f^{\prime}, f, c f\right)$ and $\left(g^{\prime}, g, d g\right)$ be elements of \mathcal{A}. Thus, by definition of multiplication in $\mathcal{D R}$,

$$
\left(f^{\prime}, f, c f\right) \cdot\left(g^{\prime}, g, d g\right)=\left(f^{\prime} g^{\prime}(f \sqrt{c}), \frac{1}{\sqrt{c}} g(f \sqrt{c}), \sqrt{c} d g(f \sqrt{c})\right)
$$

and since the derivative of $\frac{1}{\sqrt{c}} g(f \sqrt{c})$ is $f^{\prime} g^{\prime}(f \sqrt{c})$, we have that \mathcal{A} is closed under multiplication. Finally, we need to prove that \mathcal{A} is closed under inverses. Let $\left(f^{\prime}, f, c f\right) \in \mathcal{A}$. Then

$$
\left(f^{\prime}, f, c f\right)^{-1}=\left(\frac{1}{f^{\prime}(\bar{h})}, \frac{z \bar{h}}{f(\bar{h})}, \frac{z \bar{h}}{c f(\bar{h})}\right)
$$

where $h=\sqrt{c} f$.
Claim: The derivative of $\frac{z \bar{h}}{f(\bar{h})}$ is $\frac{1}{f^{\prime}(\bar{h})}$.
Note that,

$$
h=\sqrt{c} f \Longrightarrow f(\bar{h})=\frac{z}{\sqrt{c}} .
$$

So that,

$$
\frac{z \bar{h}}{f(\bar{h})}=\sqrt{c} \bar{h}
$$

Hence,

$$
\frac{d}{d z}(\sqrt{c} \bar{h})=\frac{\sqrt{c}}{h^{\prime}(\bar{h}(z))}=\frac{1}{f^{\prime}(\bar{h})} .
$$

The proof to show that $\left\{\left(f^{\prime}, c f, f\right) \in \mathcal{D R}: c \in \mathbb{R}, \mathrm{c}>0\right\}$ is a subgroup is similar.

Theorem 9 Let $B=\{(g, c z g, f) \in \mathcal{D R}: c \in \mathbb{R}, \mathrm{c}>0\}$. Then B is a subgroup of $\mathcal{D R}$.

Proof Clearly the identity element is in B. Take $g=1, c=1$ and $f=z$. Then $(g, c z g, f)=(1, z, z)$. Now let $(g, c z g, f)$ and $(G, d z G, F)$ be elements of B. Then, $(g, c z g, f) *(G, d z G, F)=\left(g G(\sqrt{c z g f}), \sqrt{\frac{c z g}{f}} d \sqrt{c z g f} G(\sqrt{c z g f}), L\right)$

$$
=(g G(\sqrt{c z g f}), c d z g G(\sqrt{c z g f}), L)
$$

Thus, B is closed under multiplication since the product is of the form $(h, c z h, k)$. Note that the second multiplier function can be any function which we write as L. We now prove that the set is closed under inverses. Let $(g, c z g, f)$ be an element of B and $h=\sqrt{c z g f}$.

$$
\text { Thus, }(g, c z g, f)^{-1}=\left(\frac{1}{g(\bar{h})}, \frac{z}{c g(\bar{h})}, L\right) \text {. }
$$

Hence, B is closed under inverses. Therefore, B is a subgroup of the Double Riordan array.

Similarly we get

$$
\{(g, f, c z g) \in \mathcal{D} \mathcal{R}: c \in \mathbb{R}, \mathrm{c} \neq 0\}
$$

is a subgroup of $\mathcal{D} \mathcal{R}$.

4 Conclusion

An obvious question is, can we have more than 2 multiplier functions? The answer is yes and we call the matrix with k multiplier functions a k-Riordan array. The k Riordan group is defined similar to the double Riordan group. In the k-Riordan group, we let $g(t)=\sum_{n=0}^{\infty} g_{k n} t^{k n}$ and for each $1 \leq i \leq k, f_{i}(t)=\sum_{n=0}^{\infty} f_{i, k n+1} t^{k n+1}$, see [3]. For k-Riordan arrays $\left(g, f_{1}, f_{2}, \ldots, f_{k}\right)$ and $\left(G, F_{1}, F_{2}, \ldots, F_{k}\right)$, multiplication is defined as follows. Let $h(t)=\prod_{i=1}^{k} f_{i}(t)$. Then

$$
\begin{gathered}
\left(g, f_{1}, f_{2}, \ldots, f_{k}\right) \cdot\left(G, F_{1}, F_{2}, \ldots, F_{k}\right)= \\
\left(g(t) \cdot G(\sqrt[k]{h(t)}), \sqrt[k]{\frac{f_{1}^{k}(t)}{h(t)}} \cdot F_{1}(\sqrt[k]{h(t)}), \ldots, \sqrt[k]{\frac{f_{k}^{k}(t)}{h(t)}} \cdot F_{k}(\sqrt[k]{h(t)})\right) \cdot
\end{gathered}
$$

Using our method we can easily find the A - and Z-sequences. Indeed, if D is a k-Riordan array, we split D into k matrices and after compression, we get k Riordan arrays. Columns whose location are congruent to $p \bmod k$, where $0 \leq p<k$ give
the p th matrix. We then compress the matrices. Each of the constructed Riordan arrays will have the same multiplier function $\prod_{i=1}^{k} f_{i}$. Hence, we get $k Z$-sequences and one A-sequence.

Acknowledgements This research was made possible by the generous support of the National Security Agency (NSA), Mathematical Association of America (MAA), and National Science Foundation (NSF) grant DUE-1356481.

References

1. Barry, P., Riordan Arrays: A Primer, Logic Press, Raleigh, 2016.
2. Davenport, D. E., Shapiro, L. W., and, Woodson, L. C., The Double Riordan Array. The Electronic Journal of Combinatorics 18 (2011), 1-16.
3. He, T.-X., Sequence Characterizations of Double Riordan Arrays and Their Compressions, Linear Algebra and Its Applications 549 (2018), 176-202.
4. Merlini, D., Rodgers, D. G., Sprugnoli, R., Verri, M. C., On some alternative characterizations of Riordan arrays. Can. J. Math 49 (1997), 301-320.
5. Rodgers, D. G., Pascal triangles, Catalan Numbers and renewal arrays. Discrete Math 22 (1978), 301-310.
6. Shapiro, L. W., Getu, S., Woan, W., and, Woodson, L. C., The Riordan Group. Discrete Applied Mathematics 34 (1991), 229-239.
7. Sloane's Online Encyclopedia of Integer Sequences, http://oeis.org/.

Constructing Clifford Algebras for Windmill and Dutch Windmill Graphs; A New Proof of the Friendship Theorem

Timothy Myers

Abstract

A Clifford graph algebra $G A(G)$ is a useful structure for studying a simple graph G with n vertices. Such an algebra associates each of its n generators with one of the n vertices of G in a way that depicts the connectivity of G in that any two generators anti-commute or commute depending on whether their corresponding vertices share or do not share an edge. We will construct the Clifford graph algebra for any windmill graph $W(r, m)$, which consist of m copies of the complete graph K_{r} adjoined at one common vertex; and for any Dutch windmill graph D_{r}^{m} which consists of m copies of the r-cycle graph C_{r} adjoined at one common vertex, then apply this algebraic theory to the class of 3-cycle graphs $F_{m}=D_{3}^{m}$ known as friendship graphs. Specifically, we will use the algebra $G A\left(F_{m}\right)$ to give a new proof of the fact that those simple graphs which posses the friendship property are precisely the friendship graphs.

Keywords Clifford algebra \cdot Windmill graph \cdot Dutch windmill graph \cdot Friendship graph

Mathematics Subject Classification (2010) Primary 15A66

1 Introduction

The broad goal of this paper is to continue developing applications of Clifford algebras to the subject of algebraic graph theory. This paper will be the third in a recent succession of independent works by Khovanova [11] and Myers [15] which establish some fundamental results in this potential area of study.

Specifically, we will first build a special algebra by selecting a subset of monomials from a basis for an appropriate Clifford algebra with signature so that these monomials will generate a sub-algebra that depicts the connectivity in a simple graph

[^3]such that each pair of generators anti-commute or commute depending on whether their corresponding vertices share or do not share an edge. We will call this subalgebra a Clifford graph algebra for the given graph G, and denote it as $G A(G)$. In this paper, the graphs of interest will be windmill $W(r, m)$ and Dutch windmill D_{m}^{r} graphs. After obtaining an explicit representation for $G A(W(r, m))$ and $G A\left(D_{m}^{r}\right)$ we will use the algebra $G A\left(F_{m}\right)$ to give a new proof of the Friendship Theorem.

To appreciate the evolution of the fundamental properties that define any $G A(G)$, we will briefly discuss the history of Clifford algebras and state some intrinsic definitions along the way. This chronicle reveals an ongoing extension of the real numbers to progressively larger embedding algebraic structures; an effort that to this day has spanned more than four centuries.

In 1545 Geralamo Cardano published Ars Magna, wherein he used the symbol $\sqrt{-1}$ so describe solutions to quadratic and cubic equations that are unsolvable over \mathbb{R} [20]. Mathematicians such as René Descartes in 1637 continually expressed some disenchantment with the use of the $\sqrt{-1}$ symbol up through the 17th century [6]. Using the notation which Leonard Euler introduced in 1748 [17], in 1831 Carl Gauss de-mystified the $\sqrt{-1}$ symbol by defining the two dimensional field of complex numbers \mathbb{C} as ordered pairs of real numbers subject to the addition and multiplication operations [3] :

$$
(a, b)+(c, d)=(a+c, b+d) \text { and }(a, b)(c, d)=(a c-b d, a d+b c),
$$

wherein the explicit representation $i=(0,1)$ satisfies $i^{2}=-1$, and i along with the real number $1=(1,0)$ form a basis which spans \mathbb{C}.

In 1843 William Hamilton extended the planar field \mathbb{C} to three dimensional Euclidean space by constructing the four-dimensional division ring \mathbb{H} of quaternions [12]. Similar to the basis for \mathbb{C}, the basis for \mathbb{H} consists of the real number 1 and three imaginary units i, j, and k which satisfy $i^{2}=j^{2}=k^{2}=-1$, but these units also anti-commute $i j=-j i, j k=-k j$, and $i k=-k i$. In 1876 William Clifford published a work wherein he discussed a class of algebras, called Clifford algebras in his honor, which embedded the exterior product in Grassman's algebra and established generators that posses the squaring and anti-commutativity properties of Hamilton's quaternions [5].

In this work we will define a Clifford algebra as in Definition 1 [2, 13, 14, 19] because it emphasizes the fundamental conditions that relate it to the embedded quaternions. Equipped with a quadratic form, a Clifford algebra with signature is defined as follows.

Definition 1 A real Clifford (geometric) algebra of signature (p, q), denoted $\mathbb{G}^{p, q}$, where $p+q=n$, is an associative \mathbb{R}-algebra which is generated by the set $S=$ $\left\{e_{1}, \ldots, e_{n}\right\}$ where the elements in S satisfy the fundamental conditions

$$
e_{k}^{2}= \begin{cases}1 & \text { if } 1 \leq k \leq p \\ -1 & \text { if } p+1 \leq k \leq p+q=n\end{cases}
$$

$$
e_{k} e_{j}=-e_{j} e_{k} \text { for } k \neq j
$$

In particular,
$\mathbb{G}^{(0, n)}$ denotes a geometric algebra where each generator squares to -1 , $\mathbb{G}^{n}=\mathbb{G}^{(n, 0)}$ denotes a geometric algebra where each generator squares to 1 .

After Clifford developed his geometric algebras, mathematicians and physicists; namely Sylvester [18], Cartan [4], Weil [22], and Schwinger [16] extended Clifford's algebra into a generalized Clifford algebra, defined as follows (see [9, 21]).

Definition 2 A generalized Clifford algebra is a \mathbb{C}-algebra which is generated by the set $S=\left\{e_{1}, \ldots, e_{n}\right\}$ where the elements in S satisfy the following relations for all $j, k, \ell, m=1,2, \ldots, n$
(i) $e_{j} e_{k}=\omega_{j k} e_{k} e_{j}, \omega_{j k} e_{\ell}=e_{\ell} \omega_{j k}, \omega_{j k} \omega_{\ell m}=\omega_{\ell m} \omega_{j k}$
(ii) $e_{j}^{N_{j}}=\omega_{j k}^{N_{j}}=\omega_{j k}^{N_{k}}=1$ for some $N_{j}, N_{k} \in \mathbb{N}$.

To distinguish them from the generalized Clifford algebras in Definition 2, we will refer to the Clifford algebra in Definition 1 as a classical Clifford algebra.

In 2008, T. Khovanova explains how the special case where $\omega_{j k}= \pm 1$ can be used to depict the connectivity between vertices in a finite, simple graph [11]. Hence, Khovanova refers to such a generalized Clifford algebra as a Clifford graph algebra. Although in [11] Khovanova defines a Clifford graph algebra over \mathbb{C}, we will alter our definition here from that in [11] by instead defining a Clifford graph algebra over \mathbb{R} with signature (p, q) where $p+q=n$. In this work all graphs will be simple (no multiple edges between any pair of vertices) and finite (finitely many edges and vertices).

Definition 3 A Clifford graph algebra for a simple graph G_{n} with n vertices $v_{1}, v_{2}, \ldots, v_{n}$, denoted $G A\left(G_{n}\right)$, is an \mathbb{R}-algebra with n generators $e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{n}^{\prime}$ such that each generator e_{i}^{\prime} is paired with exactly one vertex v_{i} so that the following rules hold
(i) $e_{i}^{\prime} e_{j}^{\prime}=-e_{j}^{\prime} e_{i}^{\prime} \quad$ if v_{i} and v_{j} are adjacent
$e_{i}^{\prime} e_{j}^{\prime}=e_{j}^{\prime} e_{i}^{\prime} \quad$ if v_{i} and v_{j} share no edge
(ii)

$$
\left(e_{k}^{\prime}\right)^{2}= \begin{cases}1 & \text { if } 1 \leq k \leq p \\ -1 & \text { if } p+1 \leq k \leq p+q=n\end{cases}
$$

An objective of this work is to construct a Clifford graph algebra for a given graph G_{n}, and in particular for windmill and Dutch windmill graphs in a way that is simpler than in the general case where $\omega_{j k}$ is an arbitrary complex number. As an additional advantage, the constructive proofs presented here are motivated primarily by the connectivity of G_{n}. As a first example, a classical Clifford algebra itself can serve as the Clifford graph algebra for the complete graph.

Fig. 1 Schematic depiction of $G A\left(K_{6}\right)$

Example 1 Consider the Clifford graph algebra $G A\left(K_{n}\right)$ for the complete graph K_{n}. Since by definition each pair of vertices in K_{n} are adjacent (see, for instance, K_{6} in Fig. 1), then each pair of distinct generators in the corresponding Clifford graph algebra anti-commute; so in this case any Clifford algebra $\mathbb{G}^{(p, q)}$ with signature (p, q) where $p+q=n$ can serve as the Clifford graph algebra for K_{n}. Occasionally in this article we will use the underlying graph G_{n} to illustrate a specific Clifford graph algebra $G A\left(G_{n}\right)$ schematically by labeling each vertex in G_{n} with its corresponding generator. In particular, the diagram below shows such a schematic representation for $G A\left(K_{6}\right)=\mathbb{G}^{(p, q)}$ such that $p+q=6$.

If the graph G_{n} is not complete, the generators in a Classical Clifford algebra will not be able to provide the needed property of commutativity for pairs of vertices that share no edge. As an alternative to constructing a generalized Clifford algebra to serve this purpose for G_{n} by the process explained in [9], in our case where each $\omega_{j k}=1$ or $\omega_{j k}=-1$ we will more efficiently prove that we may obtain $G A\left(G_{n}\right)$ directly from a classical Clifford algebra with signature. For convenience, we will choose this underlying algebra to be either \mathbb{G}^{m} or $\mathbb{G}^{(0, m)}$, where $m>n$. We will construct $G A\left(G_{n}\right)$ by selecting from the basis for either \mathbb{G}^{m} or $\mathbb{G}^{(0, m)}$ a subset of monomials which satisfies the connectivity conditions of G_{n} as prescribed in Definition 3; thereby establishing $G A\left(G_{n}\right)$ as a sub-algebra of \mathbb{G}^{m} or $\mathbb{G}^{(0, m)}$. This method of selection works because every pair of such monomials either commutes or anti-commutes.

As an example of selecting generators for a Clifford graph algebra from a parent algebra, we will construct $G A\left(G_{3}\right)$ from $\mathbb{G}^{(0,3)}$ for each of the four different configurations for G_{3} (as presented in [15]).

Example 2 If $n=3$, the basis B_{3} for $\mathbb{G}^{(0,3)}$ contains monomials which can serve as generators for any graph G_{3}, where
$B_{3}=\left\{\mathbf{1}, e_{1}, e_{2}, e_{3}, e_{1} e_{2}, e_{1} e_{3}, e_{2} e_{3}, e_{1} e_{2} e_{3}\right\}$.
The Table 1 lists the possible commutativity (c) and anti-commutativity (a) relations between the monomials in B_{3}.

Table 1 Relations between monomials in B_{3}

e_{2}	a							
e_{3}	a	a						
$e_{1} e_{2}$	a	a	c					
$e_{1} e_{3}$	a	c	a	a				
$e_{2} e_{3}$	c	a	a	a	a			
$e_{1} e_{2} e_{3}$	c	c	c	c	c			
	e_{1}	e_{2}	e_{3}	$e_{1} e_{2}$	$e_{1} e_{3}$	$e_{2} e_{3}$		

Reps for $G A\left(G_{3}\right)$

Generators :
$e_{1}^{\prime}=e_{1} e_{2} e_{3}$
$e_{2}^{\prime}=e_{2} e_{3}$
$p=1, q=2$
$e_{3}^{\prime}=e_{1}$
$e_{1}^{\prime}=e_{1} e_{2} e_{3}$
$e_{2}^{\prime}=e_{1} e_{2}$
$p=1, q=2$
$e_{3}^{\prime}=e_{1} e_{3}$
$e_{1}^{\prime}=e_{1}$
$e_{2}^{\prime}=e_{2}$
$e_{3}^{\prime}=e_{2} e_{3}$

$$
p=0, q=3
$$

$e_{1}^{\prime}=e_{1} e_{2}$
$e_{2}^{\prime}=e_{1} e_{3}$
$p=0, q=3$
$e_{3}^{\prime}=e_{2} e_{3}$
Signature :

Fig. 2 Schematic depictions for $G A\left(G_{3}\right)$

This table shows that the choice of the generators in each of the following possible graphs for G_{3} accurately depicts the connectivity of their associated vertices by conforming to property (i) in Definition 3. Also note that the choice of generators satisfies property (ii) in Definition 3. For instance, in the first in Fig. 2 we have that $\left(e_{1}^{\prime}\right)^{2}=1,\left(e_{2}^{\prime}\right)^{2}=\left(e_{3}^{\prime}\right)^{2}=-1$; hence the signature for this graph is $p=1, q=2$.

2 Preliminaries for a Clifford Graph Algebra

Throughout this work we will assume that the following notations satisfy the stated conditions. The following (i) through (iv) are excerpts from [15] which will be useful in this work.
(i) To avoid trivialities we will always assume that every graph and Clifford algebra considered has at least two vertices or generators.
(ii) The symbols e_{1}, \ldots, e_{n} will denote the generators for \mathbb{G}^{n} or $\mathbb{G}^{(0, n)}$. At times we will indicate this by the notation $\mathbb{G}^{n}=\left\langle e_{1}, \ldots, e_{n}\right\rangle$ or $\mathbb{G}^{(0, n)}=\left\langle e_{1}, \ldots, e_{n}\right\rangle$ [23].
(iii) Indices for vertices of G_{n} and generators of $G A\left(G_{n}\right)$ are natural numbers, denoted as $i_{1}, i_{2}, \ldots, i_{n}$, which we will assume to satisfy $1 \leq i_{1}<\cdots<i_{r} \leq n$ where $r \in \mathbb{N}$ and $1<r \leq n$.
(iv) A monomial of the form $e_{i_{1}} e_{i_{2}} \cdots e_{i_{r}}$ where $1 \leq i_{1}<\cdots<i_{r} \leq n$ is said to have grade r. We will tacitly assume that the symbol $e_{i_{1}} e_{i_{2}} \cdots e_{i_{r}}$ denotes monomial of grade r. We will use the convention that $\mathbf{1}$ has grade 0 .
(v) The monomial of grade n where $\mathbb{G}^{n}=\left\langle e_{1}, \ldots, e_{n}\right\rangle$, namely $e_{1} e_{2} \cdots e_{n}$ is called the pseudoscalar.
(vi) For convenience, the symbol 1 will denote the multiplicative unit for any classical Clifford algebra.

Proposition 1 ([15]) If two monomials $e_{j_{1}} \cdots e_{j_{s}}$ and $e_{i_{1}} \cdots e_{i_{r}}$ share no factor in common, where either r or s is even, they commute.

Proposition 2 ([15]) A monomial of even grade $e_{j_{1}} e_{j_{2}} \cdots e_{j_{2 m-1}} e_{j_{2 m}}$ and a monomial $e_{i_{1}} e_{i_{2}} \cdots e_{i_{r}}$ of grader with exactly one factor in common anti-commute; i.e.

$$
\begin{align*}
\left(e_{j_{1}} \cdots e_{j_{2 m-1}} e_{j_{2 m}}\right) & \left(e_{i_{1}} \cdots e_{i_{r}}\right) \\
& =-\left(e_{i_{1}} e_{i_{2}} \cdots e_{i_{r}}\right)\left(e_{j_{1}} e_{j_{2}} \cdots e_{j_{2 m-1}} e_{j_{2 m}}\right) \tag{1}
\end{align*}
$$

Definition 4 The symbol $\bar{e}_{2 m}$ will denote the monomial $\bar{e}_{2 m}=e_{2} e_{4} \cdots e_{2 m}$.
In [15], T. Myers proved the following existence theorem, which asserts that there exists a Clifford graph algebra for any simple graph.

Theorem 3 (Existence of a Clifford Graph Algebra) Let G_{n} be a simple graph with n vertices v_{1}, \ldots, v_{n}. We can always construct a Clifford graph algebra $G A\left(G_{n}\right)$ for G_{n} as a sub-algebra of $\mathbb{G}^{2^{n}}$ or $\mathbb{G}^{\left(0,2^{n}\right)}$ by selecting n generators $e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{n}^{\prime}$, from the basis of monomials

$$
\{\mathbf{1}\} \cup\left\{e_{i_{1}} \cdots e_{i_{r}} \mid 1 \leq i_{1}<\cdots<i_{r} \leq n\right\}
$$

for the including algebra $\mathbb{G}^{2^{n}}$ or $\mathbb{G}^{\left(0,2^{n}\right)}$.
The huge size of the parent algebra in Theorem 3, having 2^{n} generators, is a consequence of a brief but thorough proof of this theorem. To approach the question of how small the parent Clifford algebra for $G A\left(G_{n}\right)$ can be, we will find a considerably smaller representation for the parent Clifford algebra of particular classes of graphs; and in this paper we will do this for the class of windmill and Dutch windmill graphs. Thus, although Theorem 3 insures that a Clifford graph algebra exists for a given simple graph, the question of choosing the monomials for the generators optimally is still open in theory, and for now depends on the graph.

3 Clifford Algebras for Windmill and Dutch Windmill Graphs

We will now proceed to find and formulate a precise representation for the generators of the Clifford algebras for the windmill and Dutch windmill graphs. This representation will have a closed form and will be efficient in the sense that the monomials selected for generators will be as small in grade as possible; in fact, the generators for all non-central vertices in this formulation will be bivectors. Our exploration will start by defining these classes of graphs and considering some examples.

3.1 Windmill Graphs

Definition 5 ([7]) A windmill graph $W(r, m)$ is a simple graph which consist of m copies of the complete graph K_{r} adjoined at one common vertex.

Some examples of windmill graphs of the classes $W(4, m)$ and $W(5, m)$ are shown in Figs. 3 and 4.

Fig. 3 The class $W(4, m): m$ copies of K_{4} adjoined at one common vertex

Fig. 4 The class $W(5, m): m$ copies of K_{5} adjoined at one common vertex

Fig. 5 The class $D_{m}^{4}: m C_{4}$-cycles adjoined at exactly one vertex; $3 m+1$ vertices

3.2 Dutch Windmill Graphs

Definition 6 ([10]) A Dutch windmill graph D_{m}^{r} is a simple graph which consist of m copies of the C_{r} cycle adjoined at one common vertex.

Some examples of Dutch windmill graphs of the classes D_{m}^{4} and D_{m}^{5} are show in Figs. 5 and 6.

3.3 The Friendship Graph

Our search for $G A(W(r, m))$ and $G A\left(D_{m}^{r}\right)$ will begin with a graph that is the simplest case of both a windmill and Dutch windmill graph. As expected, the Clifford algebra for this graph will be the simplest considered. We will first mention a special property of this graph.

Definition 7 ([8]) A simple graph with at least 3 vertices has the friendship property if, for any two vertices v_{i} and v_{j}, there is exactly one vertex v_{k} with which each of v_{i} and v_{j} share an edge, and we will express this by stating that " v_{i} and v_{j} are friends with v_{k}."

Example 3 The following graph in Fig. 7, a C_{3}-cycle (triangle) has the friendship property.

Fig. 6 The class $D_{m}^{5}: m C_{5}$-cyles adjoined at exactly one vertex; $4 m+1$ vertices

v_{1}
v_{1} and v_{2} are
friends with v_{3}

v_{1}
v_{1} and v_{3} are
friends with v_{2}

v_{1}
v_{2} and v_{3} are
friends with v_{1}

Fig. 7 Illustration of the friendship property

The friendship property prompts the following definition.
Definition 8 ([8])
(i) A friendship graph consists of $m C_{3}$-cycles with exactly one common vertex.
(ii) By (i), a friendship graph contains $2 m+1$ vertices and $3 m$ edges.

Using standard notation, we will denote a friendship graph of m triangles as F_{m}. As mentioned, $F_{m}=W(3, m)=D_{3}^{m}$. Figure 8 shows the friendship graphs F_{1}, F_{2}, F_{3} and F_{4} and their notational connections to windmill and Dutch windmill graphs.

From examining any of the graphs in Fig. 8, the following proposition is clear.
$F_{1}=W(3,1)=D_{3}^{1}$

$F_{3}=W(3,3)=D_{3}^{3}$

$$
F_{4}=W(3,4)=D_{3}^{4}
$$

Fig. 8 The friendship graphs F_{1}, F_{2}, F_{3}, and F_{4}
Proposition 4 ([8]) Any friendship graph F_{m} has the friendship property (thus the name for this graph).

In section we will present a new proof of the converse to Proposition 4 that utilizes the Clifford algebra for the friendship graph.

3.4 The Clifford Algebra for the Friendship Graph

Consider the following schematic depictions of the Clifford algebras for F_{1}, F_{2}, and F_{3} in Fig. 9. The K_{3} subgraphs of the friendship graphs are labeled from 1 through 3 in a clockwise direction by increasing indices of the generators, and in Table 2 we denote the numerical label of each K_{3} subgraph as n. Note that the properties in Sect. 2 hold for each of these graphs.

Fig. 9 Schematic depictions of the Clifford graph algebras for F_{1}, F_{2}, and F_{3}

Table 2 Indices for the bivectors of K_{3} subgraphs in F_{1}, F_{2} and F_{3}

K_{3} subgraph	Even index	Odd indices	
n	$2 n$	$4(n-1)+1 \equiv 1$ $\bmod 4$	$4(n-1)+3 \equiv 3$ $\bmod 4$
1	2	1	3
2	4	5	7
3	6	9	11

We can obtain the following patterns for the indices of the bivectors in the schematic depictions in Fig. 9, as organized in Table 2, where n represents the numerical label of the K_{3} subgraph.

The patterns in table suggest the following formulation for $G A\left(F_{m}\right)$.
Proposition 5 As a sub-algebra of $\mathbb{G}^{(0,4 m-1)}$ the Clifford algebra for F_{m} can have the representation

$$
G A\left(F_{m}\right)=\left\langle e_{2} e_{4} \cdots e_{2 m} \text { and } e_{2 n} e_{4 n-3}, e_{2 n} e_{4 n-1} \text { for } n=1,2, \ldots, m\right\rangle .
$$

Since F_{m} is the windmill graph $W(3, m)$ we will establish the proof of Proposition 5 as a special case of a more rigorous development of $G A(W(r, m))$ in the proof of Theorem 8.

3.5 The Clifford Algebra for the Class of Windmill Graphs

We will next extend the pattern for labeling odd indexed generators from $G A\left(F_{m}\right)$ to $G A(W(r, m))$ by first considering schematic depictions of $W(4, m)$ and $W(5, m)$ for $m=2,3,4$ as shown in Figs. 10 and 11; organize the results in a table, and abstract representations for $G A(W(4, m))$ and $G A(W(5, m))$ from this information.

Although we will not explicitly number the complete subgraphs in each windmill graph in Figs. 10 and 11, the counter n that occurs in the tables in this subsection will denote the ordinal label of these subgraphs in a given sketch, which will start with 1 and increase clockwise in the direction of increasing indices of the generators.

Since the proof of Theorem 8 will establish Propositions 6 and 7 as special cases, we will omit their proofs here.

Fig. 10 Schematic depiction of the Clifford graph algebras for $W(4, m)$ for $m=1,2,3$

Fig. 11 Schematic depiction of $G A(W(5, m))$ for $m=1,2$, and 3

3.5.1 The Clifford Algebra for $W(4, m): G A(W(4, m)) \subset \mathbb{G}^{(0,6 m-1)}$

As in Fig. 9, let n denote the K_{4} subgraph in each $W(4, m)$ as shown in Fig. 10, with $n=1$ corresponding to $W(4,1)$, so that the patterns of the indices of the bivectors of these subgraphs are displayed in Table 3.

The patterns of these indices suggest the following representation for $G A(W(4, m))$.

Proposition 6 As a sub-algebra of $\mathbb{G}^{(0,6 m-1)}$ the Clifford algebra for $W(4, m)$ can have the representation

Table 3 Indices for the bivectors of K_{4} subgraphs in each $W(4, m)$ for $m=1,2,3$

K_{4} subgraph	Even index	Odd indices			
n	$2 n$	$6(n-1)+1$	$6(n-1)+3$	$6(n-1)+5$	
1	2	1	3	5	
2	4	7	9	11	
3	6	13	15	17	

Table 4 Indices for the bivectors of K_{5} subgraphs in each $W(5, m)$ for $m=1,2,3$

K_{5} subgraph	Even index	Odd indices			
n	$2 n$	$8(n-1)+1$	$8(n-1)+3$	$8(n-1)+5$	$8(n-1)+7$
1	2	1	3	5	7
2	4	9	11	13	15
3	6	17	19	21	23

$$
\begin{aligned}
& G A(W(4, m))=\left\langle e_{2} e_{4} \cdots e_{2 m} \text { and } e_{2 n} e_{6 n-5}, e_{2 n} e_{6 n-3}, e_{2 n} e_{6 n-1}\right. \\
& \qquad \text { for } n=1,2, \ldots, m\rangle
\end{aligned}
$$

3.5.2 The Clifford Algebra for $W(5, m): G A(W(5, m)) \subset \mathbb{G}^{(0,8 m-1)}$

With n playing the same role as in Figs. 9 and 10, the patterns of the indices of the bivectors in each $G A(W(5, m))$ can be displayed in Table 4, which prompts the formulation of $G A(W(5, m))$ in Proposition 7.

Proposition 7 As a sub-algebra of $\mathbb{G}^{(0,8 m-1)}, G A(W(5, m))$ can have the representation

$$
\left\langle e_{2} e_{4} \cdots e_{2 m} \text { and } e_{2 n} e_{8 n-7}, e_{2 n} e_{8 n-5}, e_{2 n} e_{8 n-3}, e_{2 n} e_{8 n-1} \text { for } n=1,2, \ldots, m\right\rangle
$$

3.5.3 The Clifford Graph Algebra for $W(r, m)$: $\boldsymbol{G A}(\boldsymbol{W}(r, m)) \subset \mathbb{G}^{(0,2 m(r-1)-1)}$

By combining the tabular information from each of the Tables 2, 3, and 4 we can obtain a formula for labeling in odd indices of the bivectors in the generators for the general class $G A(W(r, m))$ as shown in Table 5.

The previous examples for $F_{m}=W(3, m), W(4, m)$, and $W(5, m)$ motivate the formula for the odd index in each bivector corresponding to the non-central vertices. We can derive this formula

$$
\begin{equation*}
2(r-1)(n-1)+j, j=1,3, \ldots, 2(r-2)-1, n=1, \ldots, m \tag{2}
\end{equation*}
$$

by the following combinatorial argument.
Excluding the central vertex, which is colored black in Figs. 10 and 11, $r-1$ vertices remain. Thus, given any of the non-central $r-1$ vertices in the first complete K_{r} sub-graph with an associated bivector having j as the odd index value, to reach

Table 5 Indices for the bivectors of K_{r} subgraphs for $r=3,4,5$

K_{r} subgraph size	Number of odd indexed generators per subgraph	Odd indices for generators at cycle n for $n=1, \ldots, m$	Modular group for odd indices
3	2	$\begin{aligned} & 4(n-1)+1, \\ & 4(n-1)+3, \end{aligned}$	\mathbb{Z}_{4}
4	3	$\begin{aligned} & 6(n-1)+1, \\ & 6(n-1)+3, \\ & 6(n-1)+5 \end{aligned}$	\mathbb{Z}_{6}
5	4	$\begin{aligned} & 8(n-1)+1, \\ & 8(n-1)+3, \\ & 8(n-1)+5, \\ & 8(n-1)+7 \end{aligned},$	\mathbb{Z}_{8}
r	$r-1$	$\begin{aligned} & 2(r-1)(n-1)+j, \text { for } \\ & j=1,3, \ldots, 2(r-1)-1 \end{aligned}$	$\mathbb{Z}_{2(r-1)}$

the corresponding vertex in the next complete sub-graph we must skip over the next $r-1$ vertices. Since each vertex skipped increases the odd index by 2 , this skip to the next corresponding vertex is a size of $2(r-1)$, which implies that $2(r-1)-1$ is the highest odd index in the first subgraph. To reach the corresponding vertex in the n-th K_{r} subgraph for $n=2, \ldots, m$, this skip size of $2(r-1)$ is repeated $n-1$ times beyond the first complete K_{r} sub-graph. Therefore, the entire skip size to reach the corresponding vertex at the n-th K_{r} subgraph is $2(r-1)(n-1)$ beyond the vertex with bivector having a generator with odd index j; and the odd index in the associated bivector is therefore $2(r-2)(n-1)+j$.

Theorem 8 As a sub-algebra of $\mathbb{G}^{(0,2 m(r-1)-1)}$, the Clifford graph algebra $G A(W(r, m))$ for $W(r, m)$ can have the representation

$$
\begin{align*}
& \left\langle e_{2} \cdots e_{2 m} \quad \text { and } \quad e_{2 n} e_{2(r-1)(n-1)+j}\right. \\
& \text { for } \quad n=1,2, \ldots, m \quad \text { and } \quad j=1,3, \ldots, 2(r-1)-1 \quad\rangle \tag{3}
\end{align*}
$$

Proof Until we establish this proposition, we will refer to the graph and its associated Clifford algebra as G and $G A(G)$ respectively. We first need to show that the highest index in (3) is at least as large as the total number of generators needed for $G A(G)$. This highest index value will then serve as the number of generators in the parent Clifford algebra. Each complete sub-graph K_{r} in G contains the central vertex and $r-1$ additional vertices. Since there are m such complete graphs in all in G, then the total number of vertices in G is $m(r-1)+1$.

Note that we only need to compare the highest odd index in (3) with total number of vertices in G since the highest odd index

$$
2(r-1)(m-1)+2(r-1)-1=2 m(r-1)-1
$$

occurring in (3) exceeds the highest even index because $r \geq 3$ and $m \geq 1$ imply that $2 m(r-1)-1 \geq 2 m(2)-1>2 m$.

Since r and m are at least 3 and 1 respectively it follows that

$$
\begin{aligned}
r m & \geq 3 m \\
r m & \geq m+2 m \geq m+2 \\
2 m r-2 m-1 & \geq m(r-1)+1 \\
2 m(r-1)-1 & \geq m(r-1)+1,
\end{aligned}
$$

and the highest index occurring in (3) is large enough to allow the enumeration of indices in (3); hence the indices of the generators in $\mathbb{G}^{(0,2 m(r-1)-1)}$ are large enough for $G A(W(r, m))$ to be a sub-algebra of it. In particular, this insures that in Propositions 5, 6, and 7 that the containments $G A\left(F_{m}\right) \subset \mathbb{G}^{(0,4 m-1)}$, $G A(W(4, m)) \subset \mathbb{G}^{(0,6 m-1)}$ and $G A(W(5, m)) \subset \mathbb{G}^{(0,8 m-1)}$ are respectively valid.

To study the connectivity in G, we will partition the vertices $v_{1}, \ldots, v_{m(r-1)+1}$ of G into a singleton containing the central vertex and m subsets of $r-1$ vertices denoted $S_{r, 1}, S_{r, 2}, \ldots, S_{r, m}$, and enumerate each subset of the vertices contained in each such set as follows. Since there are $r-1$ vertices in each of the m complete graphs K_{r} excluding the central vertex, naming the central vertex v_{r} will permit an enumeration from 1 through $r-1$ for the remaining vertices in each set S_{r}. In this way, we shall enumerate each such set of $r-1$ non-central vertices as:

$S_{r, 1}$	$:$	v_{1},	v_{2},	\ldots,
$S_{r, 2}$	$:$	v_{r+1},	v_{r+2},	\ldots,
$S_{r, 3}$	\vdots	$v_{2 r+1}$,	$v_{2 r-1}$	
\vdots	\vdots	\vdots	\ldots,	$v_{3 r-1}$
$S_{r, m}$	$:$	$v_{(m-1) r+1}$,	$v_{(m-1) r+2}$,	\ldots,
\vdots				

In general, for each $n=1, \ldots, m$, the non-central vertices in the set $S_{r, n}$ are given by $v_{r(n-1)+i}$ for $i=1,2, \ldots, r-1$. In particular, note that the subscript of the final vertex in this list is $r(n-1)+(r-1)=r n-1$.

Using this enumeration for the vertices $v_{1}, \ldots, v_{m(r-1)+1}$, we can establish a correspondence between them and the monomials for $G A(G)$. The key to formulating this correspondence is the relationship $j=2 i-1$ between the counters i and j, as the following lists for these counters reveal for each cycle $n=1, \ldots, m$:

$$
\begin{aligned}
& \text { vertices : } v_{r(n-1)+i} \quad \text { for } i=1,2,3, \ldots, r-1 \\
& \text { odd indices }: e_{2(r-1)(n-1)+j} \text { for } j=1,3,5, \ldots, 2(r-1)-1 .
\end{aligned}
$$

Thus we arrive at the following correspondence between the vertices in G and the monomials in $G A(G)$ which holds for each for each $n=1, \ldots, m, i=1,2, \ldots, r-$ 1 and $j=1,3, \ldots, 2(r-1)-1$ such that $j=j(i)=2 i-1$:

$$
\begin{aligned}
& \text { central vertex } \quad v_{r} \quad \longleftrightarrow e_{2} \cdots e_{2 m} \\
& \text { remaining vertices } v_{(n-1) r+i} \longleftrightarrow e_{2 n} e_{2(r-1)(n-1)+j}
\end{aligned}
$$

The monomial $e_{2} \cdots e_{2 m}$ for the central vertex v_{r} will anti-commute with any bivector $e_{2 n} e_{2(r-1)(n-1)+j}$ for any non-central vertex $v_{(n-1) r+i}$ in any n-th subgraph K_{r} since these two monomials share precisely the single factor $e_{2 n}$ in common. Thus, there is an edge between v_{r} and any non-central vertex $v_{(n-1) r+i}$ in the n-th subgraph K_{r}. Since any two bivectors for distinct non-central vertices in the n-th subgraph K_{r} likewise share exactly the single factor $e_{2 n}$, these will likewise anti-commute, thereby conferring an edge between these vertices. Finally, any non-central vertex $v_{\left(n_{1}-1\right) r+i}$ in the subgraph $K_{n_{1}}$ with ordinal position n_{1} and any non-central vertex $v_{\left(n_{2}-1\right) r+i}$ in the subgraph $K_{n_{2}}$ with ordinal position n_{2} will have corresponding bivectors that commute, since they share no factor in common. Hence, there is no edge between such vertices, which means that $K_{n_{1}}$ and $K_{n_{2}}$ share only the central vertex v_{r}. Therefore $G=W(r, m)$ and the algebra in (3) is a representation for $G A(W(r, m))$.

3.6 The Clifford Algebra for the Class of Dutch Windmill Graphs

We will construct $G A\left(D_{m}^{r}\right)$ in a fashion similar to $G A(W(r, m))$ by first determining $G A\left(D_{m}^{4}\right)$ and $G A\left(D_{m}^{5}\right)$. Each of the sub-cycle graphs that occur in each Dutch windmill graph in Figs. 12 and 13 will be labeled sequentially by a counter n in a clockwise direction by increasing indices of the generators starting with $n=1$.

Since the proof of Theorem 11 will establish Propositions 9 and 10 as special cases, we will omit their proofs here.

3.6.1 The Clifford Graph Algebra for $D_{m}^{4}: G A\left(D_{m}^{4}\right) \subset \mathbb{G}^{(0,4 m)}$

By letting n denote the labeled number of the K_{4} subgraphs in Fig. 12, the indices of these subgraphs can be organized as in Table 6.
Proposition 9 As sub-algebra of $\mathbb{G}^{(0,4 m)}$, the Clifford graph algebra for D_{m}^{4} can have the representation

$$
\begin{align*}
& G A\left(D_{m}^{4}\right) \\
& =\left\langle e_{2} e_{4} \cdots e_{4 m} \text { and } e_{4(n-1)+2} e_{4(n-1)+1},\right. \tag{4}\\
& \left.\quad e_{4(n-1)+1} e_{4(n-1)+3}, \quad e_{4(n-1)+4} e_{4(n-1)+3} \quad \text { forn }=1,2, \ldots, m\right\rangle .
\end{align*}
$$

Fig. 12 Schematic depictions of $G A\left(D_{m}^{4}\right)$ for $m=1,2$ and 3

Fig. 13 Schematic depiction of $G A\left(D_{m}^{5}\right)$ for $m=1,2$ and 3

Table 6 Indices for the bivectors of K_{4} subgraphs in each D_{m}^{4} graph for $m=1,2$ and 3

Cycle	Odd indices	Even indices		
n	$4(n-1)+1$	$4(n-1)+3$	$4(n-1)+2$	$4(n-1)+4$
1	1	3	2	4
2	5	7	6	8
3	9	11	10	12

Note that the number of generators in $\mathbb{G}^{(0,4 m)}$ which is the same as the highest occurring index for a generator in (4) is sufficient for labeling the number of vertices $3 m+1$ in D_{m}^{4} since $m \geq 1$ implies $4 m \geq 3 m+1$. Thus $\mathbb{G}^{(0,4 m)}$ contains enough generators for the representation in (4) to be a sub-algebra of it.

Also note that the highest even index in (4) exceeds the highest odd index, which will not be the case for $G A\left(D_{m}^{r}\right)$ when $r \geq 5$.

Table 7 Indices for the bivectors of K_{5} subgraphs in each D_{m}^{5} graph for $m=1,2$ and 3

Cycle	Odd indices			Even indices		
n	$6(n-1)+1$	$6(n-1)+3$	$6(n-1)+5$	$4(n-1)+2$	$4(n-1)+4$	
1	1	3	5	2	4	
2	7	9	11	6	8	
3	13	15	17	10	12	

Table 8 Indices for the bivectors of D_{m}^{r} subgraphs for $r=3,4,5$

Cycle size	Number of odd indexed generators per cycle	Odd indices for generators at cycle n for $n=1, \ldots, m$	Modular group for odd indices
4	2	$4(n-1)+1$, $4(n-1)+3$	\mathbb{Z}_{4}
5	3	$6(n-1)+1, \quad 6(n-1$ $1)+3$, $6(n-1)+5$	\mathbb{Z}_{6}
		$2(r-2)(n-1)+j$, for $j=1,3, \ldots, 2(r-2)-$	$\mathbb{Z}_{2(r-2)}$
r	$r-2$	1	

3.6.2 The Clifford Graph Algebra for $\boldsymbol{D}_{m}^{\mathbf{5}}: \boldsymbol{G} \boldsymbol{A}\left(\boldsymbol{D}_{\boldsymbol{m}}^{\mathbf{5}}\right) \subset \mathbb{G}^{(0,6 m-1)}$

As in previous representations of windmill and Dutch windmill graphs, we will organize the patterns in the indices as in Table 6 (Table 7).

Proposition 10 As a sub-algebra of $\mathbb{G}^{(0,6 m-1)}$, the Clifford graph algebra for D_{m}^{5} has the representation

$$
\begin{aligned}
& G A\left(D_{m}^{5}\right) \\
& =\left\langle e_{2} e_{4} \cdots e_{4 m} \text { and } e_{4(n-1)+2} e_{6(n-1)+1}, e_{6(n-1)+1} e_{6(n-1)+3}\right. \\
& \left.\quad e_{6(n-1)+3} e_{6(n-1)+5}, e_{4(n-1)+4} e_{6(n-1)+5} \text { for } n=1,2, \ldots, m\right\rangle
\end{aligned}
$$

3.6.3 The Clifford Graph Algebra for $\boldsymbol{D}_{\boldsymbol{m}}^{r}$

The Clifford algebra for the general graph Dutch windmill graph D_{m}^{r} will become apparent when we arrange the Clifford algebras for D_{m}^{4} and D_{m}^{5} in Table 8.

The previous examples of $G A\left(D_{m}^{4}\right)$ and $G A\left(D_{m}^{5}\right)$ help to motivate the formula for the higher of two indices in the bivectors associated with the non-central vertices in each of the m adjoined C_{r} cycles. We can derive this formula

$$
\begin{equation*}
2(r-2)(n-1)+j, j=1,3, \ldots, 2(r-2)-1, n=1, \ldots, m \tag{5}
\end{equation*}
$$

combinatorially as follows. Excluding the central vertex and the final repeated vertex, which are colored black in Figs. 12 and 13, $r-2$ vertices remain. Thus, given any of the first $r-2$ vertices in the first C_{r} cycle with a bivector having the odd natural number j as the higher of two index values, to reach the corresponding vertex in the next cycle we must skip over the next $r-2$ vertices. Since each vertex skipped increases the odd index by 2 , this skip to the next corresponding vertex is a size of $2(r-2)$. To reach a corresponding vertex at cycle n for $n=2, \ldots, m$, this skip size of $2(r-2)$ is repeated $n-1$ times beyond the first C_{r} cycle. Therefore, the entire skip size to reach the corresponding vertex at C_{r} cycle n is $2(r-2)(n-1)$; and the highest odd index occurring in the bivector associated with the corresponding vertex in the n-th C_{r} cycle is $2(r-2)(n-1)+j$.

The largest odd index in the first C_{r} cycle obtains the value $2(r-2)-1$ by starting at the first vertex whose bivector has a generator with subscript 1 , increasing 1 by $2(r-2)$ to reach the odd index in the corresponding bivector in the second C_{r} cycle, then subtracting 2 to obtain the highest odd index that repeats in the bivector for the final vertex in the first C_{r} cycle. Thus, this highest large odd index is $1+$ $2(r-2)-2=2(r-2)-1$.

The formula (5) is the reason why the odd indices occurring in the monomials for $G A\left(D_{m}^{r}\right)$ are in $\mathbb{Z}_{2(r-2)}$.

Theorem 11 The Clifford graph algebra for D_{r}^{m} has the representation

$$
\left.\begin{array}{l}
G A\left(D_{m}^{r}\right) \\
=\left\langle e_{2} \cdots e_{4 m} \quad \text { and } \quad e_{4(n-1)+2} e_{2(r-2)(n-1)+1},\right. \tag{6}\\
\quad e_{2(r-2)(n-1)+j} e_{2(r-2)(n-1)+j+2}, \quad e_{4(n-1)+4} e_{2(r-2)(n-1)+2(r-2)-1}, \\
\quad \text { for } \quad n=1,2, \ldots, m \quad \text { and } \quad j=1,3, \ldots, 2(r-2)-3
\end{array}\right\rangle .
$$

and in general $G A\left(D_{m}^{r}\right) \subset \mathbb{G}^{(0,2 m(r-2)-1)}$ if $r \geq 5$, otherwise if $r=4$, then $G A\left(D_{m}^{r}\right) \subset \mathbb{G}^{(0,4 m)}$.

Proof Let us temporarily reference the graph and the associated algebra in (6) as G and $G A(G)$ respectively. We first need to show that the highest index in (6) surpasses the total number of vertices in G. We already established this for the case $r=4$ in Sect. 3.6.1, so assume that $r \geq 5$. Note that we only need to compare the highest odd index in (6) with total number of vertices in G since the highest odd index among the monomials in (6), namely $2(r-2)(m-1)+2(r-2)-1=2 m(r-2)-1$, exceeds $4(m-1)+4=4 m$, the highest even index, since

$$
\begin{aligned}
2(r-2)(m-1)+2(r-2)-1 & =2(r-2)[(m-1)+1] \\
& =2(r-2) m-1 \geq 2(5-2) m-1 \\
& =6 m-1>4 m .
\end{aligned}
$$

Like the complete graph K_{r}, each C_{r}-cycle contains the central vertex and $r-1$ additional vertices in each of m cycles, so the total number of vertices in G is
$m(r-1)+1$. Since $r \geq 5$, we have that

$$
\begin{align*}
r-3 & \geq 2 \\
m(r-3) & \geq 2 \\
3 m+m(r-3) & \geq 3 m+2 \\
r m & \geq 3 m+2 \\
2 r m-r m & \geq 4 m-m+2 \\
2 r m-4 m-1 & \geq r m-m+1 \\
2 m(r-2)-1 & \geq m(r-1)+1 . \tag{7}
\end{align*}
$$

Therefore this highest index is large enough to accommodate all of the monomials in (6), and the indices of the generators in $\mathbb{G}^{(0,2 m(r-2)-1)}$ are large enough for $G A\left(D_{m}^{r}\right)$ to be a sub-algebra of it. In particular, this insures that in Proposition 10 the containment $G A\left(D_{m}^{5}\right) \subset \mathbb{G}^{(0,6 m-1)}$ is valid. Note that (7) will not hold in the case where $r=4$ and $m=1$ since then $2 m(r-2)-1=3$ but $m(r-1)+1=4$, which is why we require $r \geq 5$ for the inclusion $G A\left(D_{m}^{r}\right) \subset \mathbb{G}^{(0,2(r-2) m-1)}$.

Now consider the connectivity in G. For each $n=1, . ., m$ we will denote a set of $r-1$ vertices as $C_{r, 1}, C_{r, 2}, \ldots, C_{r, m}$, and enumerate each subset of the vertices $v_{1}, \ldots, v_{m(r-1)+1}$ contained in each $C_{r, n}$ as follows. Since there are $r-1$ vertices in each such potential C_{r} cycle excluding the central vertex, naming the central vertex v_{r} will permit an enumeration from 1 through $r-1$ for the remaining vertices in each potential cycle. In this way, we shall enumerate each such set of $r-1$ non-central vertices as:

$$
\begin{array}{ccccc}
C_{r, 1}: & v_{1}, & v_{2}, & \ldots, & v_{r-1} \\
C_{r, 2}: & v_{r+1}, & v_{r+2}, & \ldots, & v_{2 r-1} \\
C_{r, 3} & : & v_{2 r+1}, & v_{2 r+2}, & \ldots, \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
C_{r, m} & : & v_{(m-1) r+1}, & v_{(m-1) r+2}, & \ldots,
\end{array} v_{m r-1}
$$

In general, for each $n=1, \ldots, m$, the non-central vertices in the cycle $C_{r, n}$ are given by $v_{r(n-1)+i}$ for $i=1,2, \ldots, r-1$. We shall also refer to the vertex $v_{r(n-1)+1}$ as the initial vertex, $v_{r(n-1)+i}$ for $i=2, \ldots, r-2$ as the middle vertices, and $v_{r(n-1)+(r-1)}$ as the final vertex. In particular, note that the subscript of the final vertex in this list is $r(n-1)+(r-1)=r n-1$.

Using this enumeration for the vertices $v_{1}, \ldots, v_{m(r-1)+1}$, we can establish a correspondence between them and the monomials for $G A(G)$. The key to formulating this correspondence is the relationship $j+2=2 i-1$ between the counters i and j for the middle vertices, as the following lists for these counters reveal for each cycle $n=1, \ldots, m$:

$$
\begin{aligned}
& \text { vertices : } v_{r(n-1)+i} \quad \text { for } \quad i=2,3,4, \ldots, r-2 \\
& \text { higher : } e_{2(r-1)(n-1)+j} \text { for } j+2=3,5,7, \ldots, 2(r-2)-1 \\
& \text { odd index }
\end{aligned}
$$

Thus we arrive at the following correspondence between the vertices in G and the monomials in $G A(G)$ which holds for each for each $n=1, \ldots, m, i=2, \ldots, r-2$ and $j=1,3, \ldots, 2(r-2)-3$ such that $j+2=2 i-1$; i.e. $j=j(i)=2 i-3$:

$$
\begin{aligned}
& \text { central vertex } v_{r} \quad \longleftrightarrow e_{2} \cdots e_{2 m} \\
& \text { initial vertex } \quad v_{(n-1) r+1} \longleftrightarrow e_{4(n-1)+2} e_{2(r-2)(n-1)+1} \\
& \text { middle vertices } v_{(n-1) r+i} \longleftrightarrow e_{2(r-2)(n-1)+j} e_{2(r-2)(n-1)+j+2} \\
& \text { final vertex } \quad v_{n r-1} \quad \longleftrightarrow e_{4(n-1)+4} e_{2(r-2)(n-1)+2(r-2)-1}
\end{aligned}
$$

Note that for each cycle $C_{r, n}$ the monomial $e_{2} \cdots e_{4 m}$ for v_{r} shares exactly one factor $e_{4(n-1)+2}$ with the bivector $e_{4(n-1)+2} e_{2(r-2)(n-1)+1}$ for the initial vertex $v_{(n-1) r+1}$, and it shares precisely one factor $e_{4(n-1)+4}$ with the bivector $e_{4(n-1)+4} e_{2(r-2)(n-1)+2(r-2)-1}$ for the final vertex $v_{n r-1}$. Thus the monomial for v_{r} anti-commutes with the bivector for $v_{(n-1) r+1}$ and the bivector for $v_{n r-1}$, so there is an edge from v_{r} to $v_{(n-1) r+1}$ and from v_{r} to $v_{n r-1}$.

Since the subscripts for the generators in each bivector corresponding to a middle vertex are all odd, whereas the subscripts of the generators in the monomial corresponding to the central vertex are all even, the monomial $e_{2} \cdots e_{4 m}$ commutes with each such bivector; so there is no edge between v_{r} and any middle vertex $v_{(n-1) r+i}$ for $i=1,3, \ldots, 2(r-2)-3$.

In addition to the monomial for v_{r}, the bivector $e_{4(n-1)+2} e_{2(r-2)(n-1)+1}$ for the initial vertex $v_{(n-1) r+1}$ can only anti-commute with the bivector $e_{2(r-2)(n-1)+j} e_{(n-1) r+j+2}$ for a middle vertex $v_{(n-1) r+i}$ when $j=1$ and consequently $i=2$; in this case they share the common factor of $e_{2(r-2)(n-1)+1}$. Thus, the initial vertex $v_{(n-1) r+1}$ shares an edge with the central vertex v_{r} and the single middle vertex $v_{(n-1) r+2}$.

Likewise the bivector $e_{4(n-1)+4} e_{2(r-2)(n-1)+2(r-2)-1}$ for the final vertex $v_{n r-1}$ can only commute with a bivector $e_{2(r-2)(n-1)+j} e_{(n-1) r+j+2}$ for a middle vertex $v_{(n-1) r+i}$ when $j=2(r-2)-3$ and subsequently $i=r-2$; and they commute due to the single common factor $e_{2(r-2)(n-1)+2(r-2)-1}$. Hence, the final vertex $v_{n r-1}$ shares an edge with the central vertex v_{r} and the middle vertex v_{r-2}.

The bivector $e_{2(r-2)(n-1)+j} e_{2(r-2)(n-1)+j+2}$ for the middle vertex $v_{(n-1) r+i}$ where $j=2 i-3$ can only anti-commute with the "adjacent" bivectors for middle vertices $v_{(n-1) r+(i-1)}$ and $v_{(n-1) r+(i+1)}$. For instance, the bivec-
tor $e_{2(r-2)(n-1)+j} e_{2(r-2)(n-1)+(j+2)}$ for $v_{(n-1) r+i}$ shares the common generator $e_{2(r-2)(n-1)+(j+2)}$ with the bivector $e_{2(r-2)(n-1)+(j+2)} e_{2(r-2)(n-1)+(j+4)}$ for the vertex $v_{(n-1) r+(i+1)}$.

Finally, note that for $1 \leq n_{1}<n_{2} \leq m$ each bivector corresponding to $v_{r\left(n_{1}-1\right)+i}$ for $i=1,2, \ldots, r-1$ must commute with the corresponding bivector for $v_{r\left(n_{2}-1\right)+i}$ because each pair of such bivectors share no common factor. Thus the cycles $C_{r, n_{1}}$ and $C_{r, n_{2}}$ share only the vertex v_{r}. Therefore, the graph associated with $G A(G)$ consists of $m C_{r}$-cycles which share exactly one vertex v_{r}, which is the Dutch windmill graph and so $G=D_{m}^{r}$, and $G A(G)=G A\left(D_{m}^{r}\right)$ as represented in (6).

Remark 1 Since F_{m} is the Dutch windmill graph D_{m}^{3}, we can also represent $G A\left(F_{m}\right)$ as the special case of $G A\left(D_{m}^{r}\right)$ where $r=3$. Note that each C_{3} cycle will contain only an initial vertex, final vertex, and the common central vertex; and therefore we can represent $G A\left(F_{m}\right)$ as a sub-algebra of $\mathbb{G}^{(0,4 m)}$ as

$$
\begin{align*}
& G A\left(F_{m}\right)=\left\langle e_{2} e_{4} \cdots e_{4 m} \text { and } e_{4(n-1)+2} e_{4(n-1)+1},\right. \\
& \tag{8}\\
& \left.\qquad e_{4(n-1)+4} e_{4(n-1)+3} \text { for } n=1,2, \ldots, m\right\rangle .
\end{align*}
$$

4 The Friendship Theorem

In this section we will present a new proof of the Friendship Theorem. As we do so we will establish, for the benefit of future research, results that explore relationships between $Z(G A(G))$ (the center of the algebra $G A(G)$), the adjacency matrix for G, and the parity of the cardinality of a graph with the friendship property. For the remainder of this work we will identify any $G A(G)$ abstractly by its generators using the notation

$$
G A(G)=\left\langle e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{n}^{\prime}\right\rangle,
$$

rather than by the monomials which can represent these generators.

4.1 Standard Preliminaries for the Friendship Theorem

The following are standard facts about graphs with the friendship property that will be useful in presenting a new proof of the friendship theorem that uses $G A\left(F_{m}\right)$. We will discuss the brief proofs of these known results because they will provide a theoretical context for and give insight into formulating a new proof of the Friendship Theorem.

Proposition 12 ([1]) If a simple graph G contains a C_{4}-cycle subgraph, then G cannot have the friendship property.

Fig. 14 A single C_{4} cycle

Proof Let the C_{4} cycle subgraph have vertices v_{1}, v_{2}, v_{3}, and v_{4}, as shown in Fig. 14. Since, for instance, v_{1} and v_{3} are friends with both v_{2} and v_{4} then G cannot have the friendship property.

Proposition 13 (i) Let G be a simple graph with the property that any two vertices are friends with at least one vertex. Then each vertex of G has degree of at least 2.
(ii) If a graph G with the friendship property has exactly three vertices, then G consists of one C_{3} cycle, and is a friendship graph.

Proof Let v_{i} be any vertex in this graph G, and let v_{j} be a vertex in G distinct from v_{i} as in Fig. 15. There is a vertex v_{k} distinct from v_{i} and v_{j} with which v_{i} and v_{j} are friends. Likewise, there is a vertex v_{ℓ} distinct from v_{i} and v_{k} which is friends with v_{i} and v_{k}. Thus v_{i} has a degree of at least 2 , and (i) holds. If G has exactly three vertices, then $v_{\ell}=v_{j}$. No additional edges are possible since G is simple. Thus (ii) holds.

Proposition 14 Let G be a simple graph consisting of one central vertex which shares an edge with an odd number of vertices such that any two vertices are friends with at least one vertex. Then G contains a C_{4} cycle.

Proof Let $v_{2 m+2}$ denote the central vertex, and denote the other vertices as $v_{1}, \ldots, v_{2 m}, v_{2 m+1}$ where $m \in \mathbb{N}$. For the sake of illustration, we will assume that the vertices of G are arranged as in Fig. 16. By Proposition 13 the degree of each non-central vertex in G is at least 2 , and by assumption each of them share an edge with $v_{2 m+2}$. The only way a C_{4} cycle could not occur among vertices $v_{2 m+2}$ and v_{1} through $v_{2 m}$ is if, as Fig. 16 shows, this subgraph consists of C_{3} cycles wherein each such cycle contains $v_{2 m}, v_{2 i-1}$, and $v_{2 i}$ for $i=1, \ldots, m$. Since $v_{2 m+1}$ must share an edge with another vertex other than $v_{2 m+2}$, it will connect with a vertex v_{j} for some

Fig. 15 Representation of a graph with a C_{3} cycle

Fig. 16 Representation of a graph with a C_{3} cycle

j among $\{1, \ldots, 2 m\}$, which will establish a C_{4} cycle, such as the cycle between $v_{2 m+2}, v_{2 m+1}, v_{2 m}$, and $v_{2 m-1}$ as in Fig. 16.

Proposition 15 Let G be a graph with the friendship property.
(i) If one vertex is adjoined to G, then this augmented graph cannot have the friendship property.
(ii) If two vertices can be adjoined to G by connecting edges so that the augmented graph has the friendship property; then this extension must be a C_{3} cycle which connects to G at one common vertex.

Proof Suppose we can adjoin only one new vertex v_{p} to G such that the friendship property still holds. By part (i) of Proposition 13, v_{p} shares an edge with each of at least two vertices v_{i} and v_{j} of G which are already friends with a vertex v_{k} in G, thereby forming a C_{4} cycle subgraph in this augmented graph as shown in Fig. 17, which therefore cannot have the friendship property by Proposition 12. Thus, it is not possible to preserve the friendship property by adjoining one vertex.

Now adjoin two new vertices v_{p} and v_{q} to G so that the friendship property still holds, and denote this enlarged graph as G^{\prime}. In order for G^{\prime} to have the friendship property each of v_{p} and v_{q} must share an edge with a vertex v_{j} in G, so insert these edges. By part (i) of Proposition 13 each of v_{p} and v_{q} must share an edge with another vertex. Without loss of generality, suppose that v_{p} shares an edge with a vertex v_{i} in G that is different from v_{j}. Since $v_{i} \cdot v_{j}$ are distinct vertices in G, they each share an edge with a vertex v_{k} of G by the friendship property; which establishes a C_{4} cycle subgraph in the enlarged graph between v_{p}, v_{i}, v_{k}, and v_{j}, thereby implying that G^{\prime} cannot have the friendship property (see Fig. 18).

Thus, v_{p} and v_{q} must share an edge with each other as in Fig. 18, and the augmented graph G^{\prime} has the friendship property.

Fig. 17 A graph which cannot have the friendship property

Fig. 18 Graphs which illustrate why v_{p} and v_{q} must share an edge with each other

Proposition 15 prompts the following definitions that will be instrumental in developing some properties for proving the Friendship Theorem.

Definition 9 (i) A simple graph G is said to have the quasi-friendship property if any two vertices in G are friends with at least one vertex in G but with the fewest number of common friends possible for this property to hold.
(ii) A simple graph G is friendship property extendable if G has the friendship property and the friendship property still holds when any finite number of disjoint C_{3} cycles are adjoined to G so that each such C_{3} cycle connects with G at one vertex.
(iii) A simple graph G with the quasi-friendship property is said to be quasifriendship property extendable if the quasi-friendship property still holds when any finite number of disjoint C_{3} cycles are adjoined to G; so that each C_{3} cycle connects to G at the one vertex.

Here are some examples and some non-examples of simple graphs with the properties described in Definition 9.

Example 4 (i) A graph with the friendship property has the quasi-friendship property.
(ii) A C_{4} cycle with one diagonal is an example of a simple graph which has the quasi-friendship property but not the friendship property. A C_{4} cycle with no diagonal does not have the quasi-friendship property since at least one pair of vertices has no common friend. Also, a C_{4} cycle with 2 diagonals (K_{4}) does not have the quasi-friendship property since it has at least one vertex pair that has more common friends than a C_{4} cycle with one diagonal.
(iii) The C_{3} cycle is the only graph with 3 vertices that is friendship property extendable, and in fact any friendship graph F_{m} is friendship property extendable by adjoining any finite number (n) of C_{3} cycles to the central vertex of F_{m} to form the enlarged friendship graph F_{m+n}.
(iv) A_{4} cycle with one diagonal is quasi-friendship property extendable by adding C_{3} cycles to either of the two vertices with degree 3 . Note that such a C_{4} cycle is the only graph with 4 vertices which has this property.

Proposition 16 Every simple graph G with the friendship property is quasifriendship property extendable.

Proof First add any finite number of disjoint C_{3} cycles to G so that each additional C_{3} cycle connects with G at one vertex. Let G^{\prime} denote this augmented graph. If G^{\prime} has the property that any two vertices have at least one common friend, then G is quasi-friendship extendable in this case. Otherwise, as a simple graph we will extend G^{\prime} into a complete graph K_{m} by adding edges, which has the property that any two vertices have at least one common friend. Therefore, K_{m} has a subgraph $G^{\prime \prime}$ which contains G^{\prime} having the property that every two vertices have at least one common friend, such that the number of common friends between each such vertex pair is as few as possible. In any case, G is quasi-friendship property extendable.

4.2 Clifford Algebra Preliminaries for the Friendship Theorem

In [11] T. Khovanova formulates the following result that relates the center of a Clifford Graph algebra with the vertices of the graph. We will present a proof of this fact.

Proposition 17 Let G_{n} contain vertices v_{1}, \ldots, v_{n}, and let the n corresponding generators for $G A\left(G_{n}\right)$ be $e_{1}^{\prime}, \ldots, e_{n}^{\prime}$. Then the following are equivalent.
(i) $e_{i_{1}}^{\prime} e_{i_{2}}^{\prime} \cdots e_{i_{r}}^{\prime} \in Z\left(G A\left(G_{n}\right)\right)$.
(ii) For each $i=1, \ldots, n, e_{i}^{\prime}$ anti-commutes with an even number of generators in $e_{i_{1}}^{\prime} e_{i_{2}}^{\prime} \cdots e_{i_{r}}^{\prime}$.
(iii) For each $i=1, \ldots, n, v_{i}$ shares an edge with an even number of vertices in $\left\{v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{r}}\right\}$.

Proof Let e_{i}^{\prime} be any generator of $G A\left(G_{n}\right)$. First assume that the monomial $e_{i_{1}}^{\prime} e_{i_{2}}^{\prime} \cdots e_{i_{r}}^{\prime} \in Z\left(G A\left(G_{n}\right)\right)$, so that in particular,

$$
\begin{equation*}
\left(e_{i}^{\prime}\right)\left(e_{i_{1}}^{\prime} e_{i_{2}}^{\prime} \cdots e_{i_{r}}^{\prime}\right)=\left(e_{i_{1}}^{\prime} e_{i_{2}}^{\prime} \cdots e_{i_{r}}^{\prime}\right)\left(e_{i}^{\prime}\right) . \tag{9}
\end{equation*}
$$

If e_{i}^{\prime} anti-commutes with an odd number k of generators in $e_{i_{1}}^{\prime} e_{i_{2}}^{\prime} \cdots e_{i_{r}}^{\prime}$, then

$$
\begin{align*}
\left(e_{i}^{\prime}\right)\left(e_{i_{1}}^{\prime} e_{i_{2}}^{\prime} \cdots e_{i_{r}}^{\prime}\right) & =(-1)^{k}\left(e_{i_{1}}^{\prime} e_{i_{2}}^{\prime} \cdots e_{i_{r}}^{\prime}\right)\left(e_{i}^{\prime}\right) \tag{10}\\
& =-\left(e_{i_{1}}^{\prime} e_{i_{2}}^{\prime} \cdots e_{i_{r}}^{\prime}\right)\left(e_{i}^{\prime}\right),
\end{align*}
$$

contrary to (9), so e_{i}^{\prime} must anti-commute with an even number of generators in $e_{i_{1}}^{\prime} e_{i_{2}}^{\prime} \cdots e_{i_{r}}^{\prime}$.

Conversely, suppose that e_{i}^{\prime} anti-commutes with an even number of k generators in $e_{i_{1}}^{\prime} e_{i_{2}}^{\prime} \cdots e_{i_{r}}^{\prime}$. Then the equations in (10) again hold. Since e_{i}^{\prime} is any generator of $G A\left(G_{n}\right)$, then any monomial $e_{j_{1}}^{\prime} e_{j_{2}}^{\prime} \cdots e_{j_{s}}^{\prime}$ in the basis for $G A\left(G_{n}\right)=$ $\left\langle e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{n}^{\prime}\right\rangle$ and hence any $u \in G A\left(G_{n}\right)$ commutes with $e_{i_{1}}^{\prime} e_{i_{2}}^{\prime} \cdots e_{i_{r}}^{\prime}$, which means that $e_{i_{1}}^{\prime} e_{i_{2}}^{\prime} \cdots e_{i_{r}}^{\prime} \in Z\left(G A\left(G_{n}\right)\right)$. Therefore $(i) \Leftrightarrow(i i)$.

To complete this proof, note that e_{i}^{\prime} anti-commutes with $e_{i_{k}}^{\prime}$ for $k \in\{1, \ldots, r\}$ iff v_{i} and $v_{i_{k}}$ share an edge. Thus, the number of generators among $e_{i_{1}}^{\prime}, e_{i_{2}}^{\prime}, \ldots, e_{i_{r}}^{\prime}$ which e_{i}^{\prime} anti-commutes with equals the number of vertices among $v_{i_{1}}^{\prime}, v_{i_{2}}^{\prime}, \ldots, v_{i_{r}}^{\prime}$ which v_{i} shares an edge with. Thus in particular e_{i}^{\prime} anti-commutes with an even number of generators in $e_{i_{1}}^{\prime} e_{i_{2}}^{\prime} \cdots e_{i_{r}}^{\prime}$ iff v_{i} shares an edge with each of an even number of vertices in $\left\{v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{r}}\right\}$, and so (ii) \Leftrightarrow (iii).

Definition 10 ([11]) A monomial $e_{i_{1}}^{\prime} e_{i_{2}}^{\prime} \cdots e_{i_{r}}^{\prime}$ in $G A(G)=\left\langle e_{1}^{\prime}, \ldots, e_{n}\right\rangle$ is central in $G A(G)$ if it satisfies condition (i) in Proposition 17.

The following proposition in [11] relates the notion of a monomial central to $G A(G)$ to the adjacency matrix for G. We will give a brief proof of this fact.

Proposition 18 Let $\left[a_{i j}\right]_{n \times n}$ be the adjacency matrix for G_{n}. If the monomial $e_{i_{1}}^{\prime} e_{i_{2}}^{\prime} \cdots e_{i_{r}}^{\prime}$ is central, then the row vectors in rows i_{1}, \ldots, i_{r} and column vectors in columns i_{1}, \ldots, i_{r} in $\left[a_{i j}\right]_{n \times n}$ must each sum to a vector whose components are even entries.

Proof Choose any $j \in\{1, \ldots, n\}$ in the adjacency matrix, and consider the j-th column in corresponding to v_{j} and e_{j}^{\prime}. Among each row i_{k} for $k=1, \ldots, r$ in this column there is a 1 iff there is an edge between v_{j} and $v_{i_{k}}$ iff e_{j} and $e_{i_{k}}$ anti-commute (by Proposition 17); otherwise there is a 0 . Since $e_{i_{1}}^{\prime} e_{i_{2}}^{\prime} \cdots e_{i_{r}}^{\prime}$ is central, e_{j} anticommutes with an even number of generators in this monomial, and so there are an even number of entries among the rows i_{k} for $k=1, \ldots, r$ that equal 1 , and the remaining entries in these rows are 0 . Since any column in $\left[a_{i j}\right]_{n \times n}$ has this property, then the row vectors of this matrix in rows i_{1}, \ldots, i_{r} must sum to a vector whose components are even entries.

We will now use these results of T. Khovanova to develop some properties about the pseudoscalar in Lemmas 19, 20, and Corollary 21 that are the key to proving The Friendship Theorem by means of a Clifford graph algebra.

Lemma 19 Let G be a simple graph with $2 m+1$ vertices for some $m \in \mathbb{N}$ which is friendship property extendable. The following are true.
(i) The pseudoscalar $e_{1}^{\prime} \cdots e_{2 m+1}^{\prime}$ is central in $G A(G)$ where $G A(G)=\left\langle e_{1}^{\prime}, \ldots, e_{2 m+1}^{\prime}\right\rangle$.
(ii) Each vertex in G has even degree of at least 2.

Proof We will proceed by induction on m. If $m=1$, Proposition 13 implies that $G=F_{3}$, and so $e_{1}^{\prime} e_{2}^{\prime} e_{3}^{\prime}$ is central since any arbitrary generator e_{i}^{\prime} among $e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}$ will anti-commute with the other two since the vertex corresponding to e_{i}^{\prime} shares exactly one edge with each of the other two vertices in F_{3}. As discussed in Example 4 this graph is the only friendship property extendable graph with 3 vertices.

Now assume that G is any arbitrary graph which is friendship property extendable. Denote the vertices of G as $v_{1}, \ldots, v_{2 m+1}$ and let $G A(G)=\left\langle e_{1}^{\prime}, \ldots, e_{2 m+1}^{\prime}\right\rangle$ for some $m \in \mathbb{N}$ such that v_{k} corresponds to e_{k}^{\prime}. Since G is friendship property extendable, we
will adjoin two new vertices $v_{2 m+2}$ and $v_{2 m+3}$ to G at a vertex v_{j} of G in a C_{3} cycle such that the friendship property still holds, and let G^{\prime} denote this augmented graph. Note that G^{\prime} is an arbitrary friendship extendable graph with $2(m+1)+1$ vertices.

Denote the generators in $G A\left(G^{\prime}\right)$ corresponding to $v_{2 m+2}$ and $v_{2 m+3}$ as $e_{2 m+2}^{\prime}$ and $e_{2 m+3}^{\prime}$. By the friendship property there is a vertex v_{j} in G with which each of $v_{2 m+2}$ and $v_{2 m+3}$ share an edge. Assume that $e_{1}^{\prime} \cdots e_{2 m+1}^{\prime}$ is central in $G A(G)$. Let $e_{i}^{\prime} \in\left\{e_{1}^{\prime}, \ldots, e_{2 m+1}^{\prime}, e_{2 m+2}^{\prime}, e_{2 m+3}^{\prime}\right\}$. If $e_{i}^{\prime} \in\left\{e_{1}^{\prime}, \ldots, e_{2 m+1}^{\prime}\right\}$, then

$$
\begin{equation*}
\left(e_{i}^{\prime}\right)\left(e_{1}^{\prime} \cdots e_{2 m+1}^{\prime}\right)=\left(e_{1}^{\prime} \cdots e_{2 m+1}^{\prime}\right)\left(e_{i}^{\prime}\right) \tag{11}
\end{equation*}
$$

since $e_{1}^{\prime} \cdots e_{2 m+1}^{\prime}$ is central in $G A(G)$. If $e_{i}^{\prime} \neq e_{j}^{\prime}$ then

$$
\begin{equation*}
\left(e_{i}^{\prime}\right)\left(e_{2 m+2}^{\prime} e_{2 m+3}^{\prime}\right)=\left(e_{2 m+2}^{\prime} e_{2 m+3}^{\prime}\right)\left(e_{i}^{\prime}\right) \tag{12}
\end{equation*}
$$

since in this case v_{i} shares no edge with v_{j}, and so in this case (11) and (12) imply

$$
\begin{equation*}
\left(e_{i}^{\prime}\right)\left(e_{1}^{\prime} \cdots e_{2 m+1}^{\prime} e_{2 m+2}^{\prime} e_{2 m+3}^{\prime}\right)=\left(e_{1}^{\prime} \cdots e_{2 m+1}^{\prime} e_{2 m+2}^{\prime} e_{2 m+3}^{\prime}\right)\left(e_{i}^{\prime}\right) . \tag{13}
\end{equation*}
$$

If $e_{i}^{\prime}=e_{j}^{\prime}$, then

$$
\left(e_{i}^{\prime}\right)\left(e_{2 m+2}^{\prime} e_{2 m+3}^{\prime}\right)=(-1)^{2}\left(e_{2 m+2}^{\prime} e_{2 m+3}^{\prime}\right)\left(e_{i}^{\prime}\right)=\left(e_{2 m+2}^{\prime} e_{2 m+3}^{\prime}\right)\left(e_{i}^{\prime}\right),
$$

and Eq. (13) holds in this case as well. Finally, if $e_{i}^{\prime}=e_{2 m+2}$ or $e_{i}^{\prime}=e_{2 m+3}^{\prime}$ then $\left(e_{i}^{\prime}\right)\left(e_{2 m+2}^{\prime} e_{2 m+3}^{\prime}\right)=-\left(e_{2 m+2}^{\prime} e_{2 m+3}^{\prime}\right)\left(e_{i}^{\prime}\right)$. Also, $e_{i}^{\prime} e_{j}^{\prime}=-e_{j}^{\prime} e_{i}^{\prime}$ since v_{i} and v_{j} share and edge. However, since e_{i}^{\prime} shares no edge with the remaining generators in $G A(G)$ (excluding e_{j}), then e_{i}^{\prime} commutes with the product of these remaining generators and so

$$
\begin{aligned}
\left(e_{i}^{\prime}\right)\left(e_{1}^{\prime} \cdots e_{2 m+1}^{\prime} e_{2 m+2}^{\prime} e_{2 m+3}^{\prime}\right) & =(-1)^{2}\left(e_{1}^{\prime} \cdots e_{2 m+1}^{\prime} e_{2 m+2}^{\prime} e_{2 m+3}^{\prime}\right)\left(e_{i}^{\prime}\right) \\
& =\left(e_{1}^{\prime} \cdots e_{2 m+1}^{\prime} e_{2 m+2}^{\prime} e_{2 m+3}^{\prime}\right)\left(e_{i}^{\prime}\right) .
\end{aligned}
$$

In any case, $e_{1}^{\prime} \cdots e_{2 m+1}^{\prime} e_{2 m+2}^{\prime} e_{2 m+3}^{\prime}=e_{1}^{\prime} \cdots e_{2 m+1}^{\prime} e_{2 m+2}^{\prime} e_{2(m+1)+1}^{\prime}$ is central in $G A\left(G^{\prime}\right)$; so by the principle of mathematical induction, (i) is true.

By Proposition 13 the degree of each vertex in G is at least 2, and part (ii) of Proposition 17 insures that each such degree must be even; and therefore (ii) holds.

Of course, Lemma 19 is only useful if a graph that is friendship property extendable has $2 m+1$ vertices. The following lemma and corollary will show that this is the case.

Lemma 20 Let G be a simple graph with an even number of at least 4 vertices that is quasi-friendship property extendable. Let $G A(G)=\left\langle e_{1}^{\prime}, \ldots, e_{2 m}^{\prime}\right\rangle$ be the Clifford algebra for G where e_{k}^{\prime} corresponds to v_{k} for $k=1, \ldots, 2 m$. Then the pseudoscalar $e_{1}^{\prime} \cdots e_{2 m}^{\prime}$ is not central in $G A(G)$.

Fig. 19 Initial step in the inductive proof that the Clifford algebra a graph prescribed by Lemma 20 cannot have a central pseudo-scalar

Fig. 20 General part of the inductive proof that the Clifford algebra a graph prescribed by Lemma 20 cannot have a central pseudoscalar

Proof We will proceed by induction on m where $2 m$ is the number of vertices in G such that $m \geq 2$. Let $m=2$, and let G be the C_{4} cycle with one diagonal as the schematic depiction of $G A(G)$ shown in Fig. 19. Recall from Example 4 that this C_{4} is the only quasi-friendship extendable graph with 4 vertices. Then

$$
e_{1}^{\prime}\left(e_{1}^{\prime} e_{2}^{\prime} e_{3}^{\prime} e_{4}^{\prime}\right)=-\left(e_{1}^{\prime} e_{2}^{\prime} e_{3}^{\prime} e_{4}^{\prime}\right) e_{1}^{\prime}
$$

Now let $m \in \mathbb{N}$ such that G is any quasi-friendship extend-able graph with $2 m$ vertices and assume that there is some $k \in \mathbb{N}$ such that

$$
\begin{equation*}
e_{k}^{\prime}\left(e_{1}^{\prime} \cdots e_{2 m}^{\prime}\right)=-\left(e_{1}^{\prime} \cdots e_{2 m}^{\prime}\right) e_{k}^{\prime} \tag{14}
\end{equation*}
$$

Since G is quasi-friendship extend-able we will adjoin two more vertices $v_{2 m+1}$ and $v_{2 m+2}$ to G such that this augmented graph G^{\prime} has the property that any two vertices in G^{\prime} are friends with the fewest possible number of other vertices in G^{\prime}. Thus by Definition 9 these additional vertices are only friends with exactly one vertex v_{i} in G, and in fact $v_{2 m+1}, v_{2 m+2}$, and v_{i} form a C_{3} cycle adjoined to G at v_{i}. Thus G^{\prime} is an arbitrary quasi-friendship property extend-able graph with $2(m+1)$ vertices. Let $e_{2 m+1}^{\prime}$ and $e_{2 m+2}^{\prime}$ correspond to $v_{2 m+1}$ and $v_{2 m+2}$ (see Fig. 20).

If $i \neq k$ then v_{k} shares no edge with $v_{2 m+1}$ or $v_{2 m+2}$ so that $e_{k}^{\prime} e_{2 m+1}^{\prime}=e_{2 m+1}^{\prime} e_{k}^{\prime}$ and $e_{k}^{\prime} e_{2 m+2}^{\prime}=e_{2 m+2}^{\prime} e_{k}^{\prime}$. If $i=k$ then $v_{2 m+1}$ and $v_{2 m+2}$ are friends with e_{k}^{\prime} so that $e_{k}^{\prime} e_{2 m+1}^{\prime}=-e_{2 m+1}^{\prime} e_{k}^{\prime}$ and $e_{k}^{\prime} e_{2 m+2}^{\prime}=-e_{2 m+2}^{\prime} e_{k}^{\prime}$. In any case,

$$
\begin{equation*}
e_{k}^{\prime}\left(e_{2 m+1}^{\prime} e_{2 m+2}^{\prime}\right)=\left(e_{2 m+1}^{\prime} e_{2 m+2}^{\prime}\right) e_{k}^{\prime} \tag{15}
\end{equation*}
$$

By combining (14) and (15) we obtain

$$
e_{k}^{\prime}\left(e_{1}^{\prime} \cdots e_{2 m}^{\prime} e_{2 m+1}^{\prime} e_{2(m+1)}^{\prime}\right)=-\left(e_{1}^{\prime} \cdots e_{2 m}^{\prime} e_{2 m+1}^{\prime} e_{2(m+1)}^{\prime}\right) e_{k}^{\prime}
$$

Therefore by the principle of mathematical induction (14) is true for all $m \in \mathbb{N}$; and so the pseudoscalar $e_{1}^{\prime} \cdots e_{2 m}^{\prime}$ is not central in $G A(G)$.

Corollary 21 A simple graph G with an even number of at least 4 vertices cannot have the friendship property.

Proof Suppose there is some $m_{0} \in \mathbb{N}$ for which some such graph G has the friendship property. By Proposition 16, G is quasi-friendship property extendable. By Lemma 20 the pseudoscalar $e_{1}^{\prime} \cdots e_{2 m_{0}}^{\prime}$ is not central in $G A(G)$ where $G A(G)=$ $\left\langle e_{1}^{\prime}, \ldots, e_{2 m_{0}}^{\prime}\right\rangle$. Thus by part (iii) of Proposition 17 there is some $j \in\left\{1, \ldots, 2 m_{0}\right\}$ for which v_{j} shares an edge with an odd number of vertices in G. By Proposition $14 G$ contains a C_{4} cycle subgraph, and thus cannot have the friendship theorem by Proposition 12, contrary to the assumption that G has the friendship property. Therefore every graph G with an even number of at least 4 vertices cannot have the friendship property.

4.3 Proof of the Friendship Theorem

Before proving a feature theorem in this work, we will summarizes the important properties, developed in the previous section, that hold for a graph with the friendship property.

Theorem 22 Let G be a graph with the friendship property. Then the following are true.
(i) G has $2 m+1$ vertices for some $m \in \mathbb{N}$.
(ii) Each vertex of G has even degree of at least 2.
(iii) Adjoining a C_{3} cycle to exactly one vertex of G is the only way to preserve the friendship property by adding 2 vertices (and necessary edges) to G.
(iv) By Proposition 18 all of the row vectors and all of the column vectors in the adjacency matrix for G must each sum respectively to a row vector and column vector with only even entries.

Proof Note that (iii) is true by Proposition 15. By Corollary 21 (i) is true since a graph G with the friendship property must have an odd number of edges, so there is some $m \in \mathbb{N}$ such that G has $2 m+1$ vertices. Condition (ii) is then true by Lemma 19.

Finally, (iv) holds by Proposition 18 since the pseudoscalar $e_{1}^{\prime} \cdots e_{2 m+1}^{\prime}$ in $G A(G)=\left\langle e_{1}^{\prime}, \ldots, e_{2 m+1}^{\prime}\right\rangle$ is central by Lemma 19.

Theorem 23 (The Friendship Theorem) Let G be a simple graph with the friendship property. Then G is a friendship graph.

Fig. 21 A graph satisfying the inductive assumption for the friendship theorem

Proof Recall from Corollary 21 that it is not possible for a graph with an even number of vertices to have the friendship property, so we will only consider graphs that have an odd number of vertices.

If G has 3 vertices, Proposition 13 implies G is a friendship graph in this case where $m=1$. We will proceed by induction on m. Assume that for any $m \in \mathbb{N}$ such a graph G having $2 m+1$ vertices is a friendship graph, which thus has $3 m$ edges. To simplify the notation, we will select $m=2$, since this choice will include all of the considerations in a proof with more formal statements. G then has the following graph and adjacency matrix (see Fig. 21).

As illustrated by the adjacency matrix for G in Fig. 21, the adjacency matrix $A=\left[a_{i j}\right]_{n \times n}(n$ is odd) for a friendship graph has the following features which follow directly form the definition of a friendship graph. We will keep these conditions in mind as an aid in detecting an inconsistency in the ensuing proof by contradiction.

Adjacency Matrix of a Friendship Graph.
(i) For each $i=1, \ldots, n, a_{i i}=0$.
(ii) Given any two row vectors $\mathbf{r}_{i_{1}}$ and $\mathbf{r}_{i_{2}}$ in A, there is exactly one value of $j \in\{1, \ldots, n\}$ for which the j-th column entry of $\mathbf{r}_{i_{1}}$ and $\mathbf{r}_{i_{2}}$ is a 1 . That is $a_{i_{1} j}=a_{i_{2} j}=1$ for exactly one $j \in\{1, \ldots, n\}$. Given any two column vectors $\mathbf{c}_{j_{1}}$ and $\mathbf{c}_{j_{2}}$ in A, there is exactly one value of $i \in\{1, \ldots, n\}$ for which the i-th row entry of $\mathbf{c}_{j_{1}}$ and $\mathbf{c}_{j_{2}}$ is a 1 . That is $a_{i j_{1}}=a_{i j_{2}}=1$ for exactly one $i \in\{1, \ldots, n\}$.
(iii) Each entry in \mathbf{r}_{1} is a 1 except for the first; that is $a_{1 j}=1$ for $j=2, \ldots, n$.

Each entry in \mathbf{c}_{1} is a 1 except for the first; that is $a_{i 1}=1$ for $i=2, \ldots, n$.

Fig. 22 A contradiction results if vertices v_{6} and v_{7} do not share one edge with the vertex v_{1}
(iv) For each $i=2, \ldots, n$ and each $j=2, \ldots, n, \mathbf{r}_{i}$ and \mathbf{c}_{j} can have only two entries that equal 1.

Condition (i) holds because a friendship graph is simple, condition (ii) is equivalent to the friendship property, and (iii) and (iv) hold because there is precisely one central vertex where the C_{3} cycles which comprise the friendship graph coincide.

For the inductive step in this proof, recall from Proposition 15 that we cannot preserve the friendship property by adjoining only one vertex to G, but we can adjoin 2 vertices to a vertex of G with a C_{3} cycle which, as mentioned in Example 4, makes a friendship graph friendship property extendable if this cycle adjoins to G at the central vertex. We will now prove that this must be the case.

Suppose that this C_{3} cycle adjoins at a vertex other than v_{1}, the central vertex of G. Without loss of generality, we will choose v_{5} to be the non-central vertex in G with which the pair of vertices v_{6} and v_{7} form a C_{3} cycle. The adjacency matrix and graph for this augmentation of G are as shown in Fig. 22.

Note that the column vectors \mathbf{c}_{2} and \mathbf{c}_{5} contradict property (ii) because there is no value of i for which the i-th row entry for each of these columns is a 1 , which means that v_{2} and v_{6} are friends with no vertex in the augmented graph, which thus does not have the friendship property. If we try to make v_{2} and v_{6} friends by adding an edge between any two vertices in this augmented graph, there will be at least one vertex with an odd degree, which will form a C_{4} cycle subgraph that cannot be eliminated by adding additional edges, as shown in Fig. 23; thereby violating the friendship property by Proposition 12.

Therefore, the adjoining C_{3} cycle cannot connect to G at a non-central vertex such as v_{5}, so the adjoining C_{3} cycle must adjoin with G at its central vertex v_{1} in order to preserve the friendship property as shown in Fig. 24, which is a friendship graph obtained by increasing m by 1 . Therefore by the principle of mathematical induction any simple graph with the friendship property is a friendship graph.

Fig. 23 A contradiction results if vertices v_{6} and v_{7} do not share one edge with the vertex v_{1}

Fig. 24 Vertices v_{6} and v_{7} must each share an edge with v_{1}

As part (iv) of Theorem 22 asserts, the sum of all the row vectors and column vectors of this adjacency matrix sums to a vector with only even entries.

5 Concluding Remarks

A generalized Clifford algebra in the case where $\omega_{j k}= \pm 1$ can serve as a useful tool for studying graphs. In this work, we demonstrated how to construct such an algebra for windmill and Dutch windmill graphs by selecting monomials from a parent Clifford algebra.

As discussed in Sect. 2, constructing a Clifford graph algebra by choosing monomials of minimal grade from a parent Clifford algebra may eventually suggest a way to generalize this construction process for large classes of graphs. Because decision trees are useful as a predictive tool in machine learning, developing a Clifford algebra for trees may be helpful in this endeavor.

References

1. A. Abdollahi, S. Janbaz, M. Oboudi, Graphs Cospectral with a Friendship Graph or its Complement, Transaction on Combinatorics, 2 No. 4, 37-52, 2013
2. E. Baylis, Clifford (Geometric) Algebras with Applications with applications in Physics, Mathematics, and Engineering, Birkhäuser, Boston, MA, 1996
3. E. Bell, The Development of Mathematics, McGraw-Hill Book Company, NY, 1945
4. E. Cartan, Les groupes bilinéaires et les Systèmes de nombers complexes, Annes de la faculté des sciences de Toulouse, 12 No. 1,1898
5. W. Clifford, Applications of Grassman's Extensive Algebra, American Journal of Mathematics, 1 No. 4 , 350-358, 1878
6. R. Descartes, La Géométrie, 1637. Rpt. in The Geometry of René Descartes with a Facsimilie of the First Edition, Dover Books, Inc., 1954
7. J.A. Gallian Dynamic Survey DS6 Graph Labeling, Electronic Journal of Combinatorics DS6, 1-58, January 2007,
8. C. Huneke The Friendship Theorem, The American Mathematical Monthly 109, No.2, 192-194, February 2002,
9. R. Jagannathan On Generalized Clifford Algebras and their Physical Applications, retrieved from arXiv:1005.4300v1 [math.ph], May 2010,
10. M. Kanna, R. Kumar, R. Jagadeesh Computation of Topological Indices of Dutch Windmill Graph, Open Journal of Discrete Mathematics, 6, 74-81, 2016,
11. T. Khovanova Clifford Algebras and Graphs, retrieved from arXiv:0810.3322v1 [math.CO], Oct. 2008,
12. E. Kramer The Nature and Growth of Modern Mathematics, Princeton University Press, Princeton, NJ, 1981,
13. A. Macdonald, An Elementary Construction of the Geometric Algebra, Advances in Applied Clifford Algebras, 12 No. $1,1-6,2002$
14. A. Macdonald, Linear and Geometric Algebra, Createspace Independent Publishing Platform, 2011
15. T. Myers, Constructing Clifford Graph Algebras from Classical Clifford Algebras, Congressus Numerantium, 233, 223-243, 2019
16. J. Schwinger, Unity Operator Bases, Proc. Natl Acad Sci USA Apr 46 No. 41, 578-579, 1960
17. I. Stewart, Significant Figures : The Lives and Works of Great Mathematicians, Basic Books, NY, 2017
18. J. Sylvester, The Collected Mathematics Papers of James Joseph Sylvester, Cambridge University Press, 5 No.3, 1909
19. R. Scott, S. Staples, Dynamic Random Walks on Clifford Algebras, Advances in Pure and Applied Mathematics, 1 No.1, 2010
20. B. Van der Waerden, A History of Algebra, Springer verlag, 1985,
21. A. Vourdas, Quantum Systems with Finite Hilbert Space, Reports on Progress in Physics 67 No. 267., 2004,
22. H. Weil, Quantenmachanik und Gruppentheorie, Zeitschrift für Physik, 46, 1-46, 1927
23. Y. wu, P. Hilton, A Course in Modern Algebra, John Wiley \& Sons, 1974

Finding Exact Values of a Character Sum

Paul Peart and Francois Ramaroson

Abstract

Let F_{p} be a field with p elements, where p is a positive prime. For x in F_{p} the quadratic character χ is defined as follows: If x is a nonzero square, then $\chi(x)=$ 1 ; if x is a non-square, then $\chi(x)=-1 ; \chi(0)=0$. Note that x is a square in F_{p} if and only if there exists a in F_{p} such that $x=a^{2}$. Let $f(x)=x^{2}+b x+c$ and $g(x)=$ $x^{2}+\widetilde{b} x+\widetilde{c}$ be two irreducible polynomials in $F_{p}[x]$. (That is, $\chi\left(b^{2}-4 c\right)=$ $\left.\chi\left(\widetilde{b}^{2}-4 \widetilde{c}\right)=-1\right)$. We will also assume that the resultant of $f(x)$ and $g(x)$ is nonzero in an algebraic closure of F_{p}. That is $\operatorname{Re} s(f, g)=\prod_{(\alpha, \beta): f(\alpha)=0 \text { and } g(\beta)=0}(\alpha-\beta) \neq 0$,

 where the product is taken over all α and β in the algebraic closure for which $f(\alpha)=0$ and $g(\beta)=0$. It is easy to show that the above no common roots condition is equivalent to $\operatorname{Re} s(f(x), g(x))=(c-\widetilde{c})^{2}+(b-\widetilde{b})(b \widetilde{c}-\widetilde{b} c) \neq 0$. We now form the character sum W_{p} given by $W_{p}=\sum_{x \in F_{p}} \chi(f(x) g(x))$. We present a new method for computing W_{p} when $b^{2}-4 c \neq \widetilde{b}^{2}-4 \widetilde{c} \bmod p$. Our method involves counting points from $F_{p} \times F_{p}$ that are on a specified elliptic curve.Keywords Quadratic character • Elliptic curve

1 Introduction

Let F_{p} be a field with p elements, where p is a positive prime. For x in F_{p} the quadratic character χ is defined by

$$
\chi(x)=\left\{\begin{array}{ll}
1, & \text { if } x \text { is a square in } F_{p} \text { and } x \neq 0 \\
-1, & \text { if } x \text { is not a square in } F_{p} \text { and } x \neq 0 \\
0, & \text { if } x=0
\end{array}\right\}
$$

[^4]Note that x is a square in F_{p} if and only if there exists a in F_{p} such that $x=a^{2}$. Throughout this paper, we will use F_{p}^{*} to denote the set of nonzero elements of F_{p}. That is, $F_{p}^{*}=F_{p}-\{0\}$.

Let $f(x)=x^{2}+b x+c$ and $g(x)=x^{2}+\widetilde{b} x+\widetilde{c}$ be two irreducible polynomials in $F_{p}[x]$. (That is, $\left.\chi\left(b^{2}-4 c\right)=\chi\left(\widetilde{b}^{2}-4 \widetilde{c}\right)=-1\right)$. We will also assume that the resultant of $f(x)$ and $g(x)$ is nonzero in an algebraic closure of F_{p}. That is

$$
\operatorname{Re} s(f, g)=\prod_{(\alpha, \beta): f(\alpha)=0 \text { and } g(\beta)=0}(\alpha-\beta) \neq 0
$$

where the product is taken over all α and β in the algebraic closure for which $f(\alpha)=0$ and $g(\beta)=0$. It is easy to show that the above no common roots condition is equivalent to

$$
\operatorname{Re} s(f(x), g(x))=(c-\widetilde{c})^{2}+(b-\widetilde{b})(b \widetilde{c}-\widetilde{b} c) \neq 0
$$

We now form the character sum W_{p} given by

$$
W_{p}=\sum_{x \in F_{p}} \chi(f(x) g(x))
$$

It is well known (see for example Perel'muter [4]) that W_{p} satisfies

$$
\left|W_{p}\right|<2 \sqrt{p}
$$

In this paper, we prove that $W_{p}=N_{p}-p-1$, where N_{p} is the number of points on a specified elliptic curve. Further, when the parameters in the elliptic curve satisfy certain conditions, we show how to obtain the exact numeric value of W_{p} for infinitely many primes. Let α be the cardinality of the set $\left\{x \in F_{p}: \chi(f(x))=\chi(g(x))=1\right\}$. This means that α is the number of times that $\chi(f(x))$ and $\chi(g(x))$ are simultaneously squares in F_{p}. We will prove that

$$
W_{p}=4 \alpha-p+2
$$

In general, a closed form expression for α in terms of p and the coefficients of $f(x)$ and $g(x)$, has not been determined. However, in this paper, we will show how to efficiently compute α in many cases.

We define the following sets.
$S=\left\{x \in F_{p}: \chi(f(x))=+1\right\}, \quad T=\left\{x \in F_{p}: \chi(f(x))=-1\right\}$,
$U=\left\{x \in F_{p}: \chi(g(x))=+1\right\}, \quad V=\left\{x \in F_{p}: \chi(g(x))=-1\right\}$.
The following facts result from the irreducibility of f and g.
(1) $\sum_{x \in F_{p}} \chi(f(x))=\sum_{x \in F_{p}} \chi(g(x))=-1$.
(2) $S \cup T=F_{p}$ and $S \cap T=\emptyset$, so $|S|+|T|=p$.
(3) $U \cup V=F_{p}$ and $U \cap V=\emptyset$, and so $|U|+|V|=p$.
(4) $|T|=|S|+1$ and $|V|=|U|+1$.
(5) $|S|=|U|=\frac{p-1}{2}$ and $|T|=|V|=\frac{p+1}{2}$.
(6) If $\alpha=|S \cap U|, \beta=|S \cap V|, \gamma=|T \cap U|$, and $\delta=|T \cap V|$, then $\alpha=\delta-1, \beta=\gamma=\frac{p+1-2 \delta}{2}$.
(7) $W_{p}=\sum_{x \in F_{p}} \chi(f(x) g(x))=4 \delta-p-2=4 \alpha-p+2$, and $W_{p}+p-2=$ $0 \bmod 4$.
(8) Let $f(x)=x^{2}+b x+c$ and $g(x)=x^{2}+\widetilde{b} x+\widetilde{c}$ with $k_{1}=b^{2}-4 c$ and $k_{2}=\widetilde{b}^{2}-4 \widetilde{c}$ non-squares in F_{p}. Also let $k_{3}=2(\tilde{b}-b)$, and let L_{p} be the number of points from $F_{p}^{*} \times F_{p}^{*}$ on the $u v-c u r v e$:
$u^{2} v-u v^{2}+k_{3} u v-k_{2} u+k_{1} v=0$. Then $\alpha=\frac{1}{4} L_{p}$.
(9) Assume that $k_{1} \neq k_{2}$ and let N_{p} be the number of points from $F_{p} \times F_{p}$ on the $x y-$ curve : $y^{2}=x^{3}+\left(8 k_{2}+k_{3}^{2}-4 k_{1}\right) x^{2}+8 k_{2}\left(2 k_{2}-2 k_{1}+k_{3}^{2}\right) x+$ $16 k_{2}^{2} k_{3}^{2}$.

Then this $x y$-curve is an elliptic curve over F_{p} and $N_{p}=L_{p}+3$.
(10) $W_{p}=N_{p}-3-p+2=N_{p}-p-1$.
(11) $\frac{p-2-2 \sqrt{p}}{4}<\alpha<\frac{p-2+2 \sqrt{p}}{4}$ and $\left|W_{p}\right|<2 \sqrt{p}$
(12) If $k_{3}=0$ and $k_{1}=2 k_{2}$, the elliptic curve in (9) becomes $y^{2}=x^{3}-16 k_{2}^{2} x$.

Let $a=-16 k_{2}^{2}(\bmod p)$, so that the elliptic curve becomes
$y^{2}=h(x)=x^{3}+a x$ with a nonzero. Note that the condition $k_{1}=2 k_{2}$ requires that $\chi(2)=1$. According to Theorem 6.2.1, p. 190 in [1],
$N_{p}=p+\sum_{x=0}^{p-1} \chi(h(x))$. Further, if $p \equiv 1(\bmod 4)$, we can take $p=m^{2}+n^{2}$, where m and n are integers with $m \equiv-\chi(2)(\bmod 4)$ and $n \equiv m g^{(p-1) / 4}(\bmod p)$, where g is a generator of F_{p}^{*}. Now we define $l(a)$ by $a \equiv g^{l(a)}(\bmod p)$ with $0 \leq l(a) \leq p-1$. Then
$\sum_{x=0}^{p-1} \chi(h(x))=\left\{\begin{array}{l}2 m(-1)^{(p-1) / 4}, \text { if } l(a) \equiv 0(\bmod 4) \\ 2 n(-1)^{(p-1) / 4}, \text { if } l(a) \equiv 1(\bmod 4) \\ 2 m(-1)^{(p+3) / 4}, \text { if } l(a) \equiv 2(\bmod 4) \\ 2 n(-1)^{(p+3) / 4}, \text { if } l(a) \equiv 3(\bmod 4)\end{array}\right\}$

2 Proofs

Proof (1): Fix θ in $F_{p}^{*}=\left\{x \in F_{p}: x \neq 0\right\}$ with θ non-square. Since $b^{2}-4 c$ is a non-square in F_{p}, then $b^{2}-4 c=\theta t^{2}$ for some t in F_{p}.
$\sum_{x \in F_{p}} \chi\left(x^{2}+b x+c\right)=\sum_{x \in F_{p}} \chi\left(\left(x+\frac{b}{2}\right)^{2}-\frac{b^{2}-4 c}{4}\right)=\sum_{y \in F_{p}} \chi\left(y^{2}-\theta t^{2}\right)$
$=\sum_{y \in F_{p}} \chi\left(t^{2}\right) \chi\left(\frac{y^{2}}{t^{2}}-\theta\right)=\sum_{z \in F_{p}} \chi\left(z^{2}-\theta\right)$, independent of t.
Consider the double sum:

$$
\begin{aligned}
& \sum_{w \in F_{p}} \sum_{z \in F_{p}} \chi\left(z^{2}-\theta w^{2}\right)=\sum_{z \in F_{p}} \chi\left(z^{2}\right)+\sum_{w \in F_{p}^{*}} \sum_{z \in F_{p}} \chi\left(z^{2}-\theta w^{2}\right) \\
& =p-1+\sum_{w \in F_{p}^{*}} \chi\left(-\theta w^{2}\right)+\sum_{w \in F_{p}^{*}} \sum_{z \in F_{p}^{*}} \chi\left(z^{2}-\theta w^{2}\right) \\
& =p-1+(p-1) \chi(-\theta)+\sum_{w \in F_{p}^{*}} \sum_{z \in F_{p}^{*}} \chi\left(z^{2}-\theta w^{2}\right) \\
& =p-1+(p-1) \chi(-\theta)+(p-1) \sum_{z \in F_{p}^{*}} \chi\left(z^{2}-\theta\right) \\
& =(p-1)\left(1+\chi(-\theta)+\sum_{z \in F_{p}^{*}} \chi\left(z^{2}-\theta\right)\right) \\
& =(p-1)\left(1+\chi(-\theta)+\sum_{z \in F_{p}} \chi\left(z^{2}-\theta\right)-\chi(-\theta)\right) \\
& =(p-1)\left(1+\sum_{z \in F_{p}} \chi\left(z^{2}-\theta\right)\right) .
\end{aligned}
$$

Here is another evaluation of the same double sum.

$$
\begin{aligned}
& \sum_{w \in F_{p}} \sum_{z \in F_{p}} \chi\left(z^{2}-\theta w^{2}\right)=\sum_{w \in F_{p}} \sum_{z \in F_{p}}\left(\chi \circ N_{F_{p^{2}} / F_{p}}\right)(z+w \sqrt{\theta}) \\
& \quad=\sum_{w \in F_{p}} \sum_{z \in F_{p}} \psi(z+w \sqrt{\theta})
\end{aligned}
$$

where $N_{F_{p^{2}} / F_{p}}: F_{p^{2}} \rightarrow F_{p}$ is the norm map, and $\psi=\chi \circ N_{F_{p^{2}} / F_{p}}$ is a non-trivial character of $F_{p^{2}}$. But the last sum is equal to $\sum_{y \in F_{p^{2}}} \psi(y)=0$. Comparing the two values of the same double sum, we get $(p-1)\left(1+\sum_{z \in F_{p}} \chi\left(z^{2}-\theta\right)\right)=0$. That is
$\sum_{z \in F_{p}} \chi\left(z^{2}-\theta\right)=-1$.
Proof (2) and Proof (3): Since f and g have no roots in F_{p}, for every $x \in F_{p}$, $\chi(f(x))=-1$ or +1.

Proof (4): This follows immediately from (1).

Proof (5): (5) follows from (2), (3), and (4).

Proof (6): From (2), (3), and (5), $\alpha+\beta=|S|=\frac{p-1}{2}, \gamma+\delta=|T|=\frac{p-1}{2}, \alpha+$ $\gamma=|U|=\frac{p-1}{2}, \beta+\delta=|V|=\frac{p+1}{2}$. In matrix form, we get the system of equations

$$
\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta \\
\gamma \\
\delta
\end{array}\right]=\left[\begin{array}{l}
(p-1) / 2 \\
(p+1) / 2 \\
(p-1) / 2 \\
(p+1) / 2
\end{array}\right] .
$$

After applying elementary row operations, the system becomes

$$
\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta \\
\gamma \\
\delta
\end{array}\right]=\left[\begin{array}{l}
(p-1) / 2 \\
(p+1) / 2 \\
(p+1) / 2 \\
0
\end{array}\right]
$$

Solving for α, β, and γ in terms of δ, we get $\alpha=\delta-1, \beta=\gamma=(p+1-2 \delta) / 2$. Based on the fact that α, β, γ, and δ are nonnegative integers, we see that δ is a positive integer in the set $\{1,2, \ldots,(p+1) / 2\}$.

Proof (7): With reference to (6), $\mathbf{W}_{p}=\alpha+\delta-\gamma-\beta=\alpha+(\alpha+1)-2 \frac{p+1-2 \delta}{2}=$ $2 \alpha+1-p-1+2 \delta=2 \alpha-p+2(\alpha+1)=4 \alpha-p+2=4(\delta-1)-p+2=$ $4 \delta-p-2$. α is a nonnegative integer, so $W_{p}+p-2$ is divisible by 4 .
Proof (8): Let $f(x)=x^{2}+b x+c=\gamma^{2}$ and $g(x)=x^{2}+\widetilde{b} x+\widetilde{c}=\phi^{2}$, that is, $\chi(f(x))=\chi(g(x))=1$. Then $\left(x+\frac{b}{2}\right)^{2}-\gamma^{2}=\frac{b^{2}}{4}-c \Leftrightarrow(2 x+b)^{2}-4 \gamma^{2}=$ $b^{2}-4 c=k_{1}$, and $(2 x+\widetilde{b})^{2}-4 \phi^{2}=\widetilde{b}^{2}-4 \widetilde{c}=k_{2}$. So, $(2 x+b-2 \gamma)(2 x+b+$ $2 \gamma)=k_{1}$ and $(2 x+\widetilde{b}-2 \phi)(2 x+\widetilde{b}+2 \phi)=k_{2}$. Let $\alpha_{1}=2 x+b-2 \gamma, \alpha_{2}=2 x$ $+b+2 \gamma, \beta_{1}=2 x+\widetilde{b}-2 \phi, \beta_{2}=2 x+\widetilde{b}+2 \phi$. The system of equations becomes

$$
\begin{aligned}
\alpha_{1} \alpha_{2} & =k_{1}, \quad \beta_{1} \beta_{2}=k_{2}, \quad \frac{\alpha_{1}+\alpha_{2}}{2}-b=\frac{\beta_{1}+\beta_{2}}{2}-\widetilde{b}=2 x \\
\alpha_{1} & \neq 0, \alpha_{2} \neq 0, \quad \beta_{1} \neq 0, \quad \beta_{2} \neq 0 .
\end{aligned}
$$

Substituting for $\alpha_{2}=\frac{k_{1}}{\alpha_{1}}$ and $\beta_{2}=\frac{k_{2}}{\alpha_{2}}$ in the last equation, we get

$$
\begin{aligned}
\frac{1}{2}\left(\alpha_{1}+\frac{k_{1}}{\alpha_{1}}\right)-b & =\frac{1}{2}\left(\beta_{1}+\frac{k_{2}}{\beta_{1}}\right)-\widetilde{b} \Leftrightarrow \\
\alpha_{1}^{2} \beta_{1}-\alpha_{1} \beta_{1}^{2}+2(\widetilde{b}-b) \alpha_{1} \beta_{1}-k_{2} \alpha_{1}+k_{1} \beta_{1} & =0
\end{aligned}
$$

With $u=\alpha_{1}$ and $v=\beta_{1}$, we get

$$
\begin{equation*}
u^{2} v-u v^{2}+k_{3} u v-k_{2} u+k_{1} v=0, \quad(u, v) \in F_{p}^{*} \times F_{p}^{*} \tag{*}
\end{equation*}
$$

This $u v$-equation when solved over $F_{p}^{*} \times F_{p}^{*}$ has the same number of solutions as the system $x^{2}+b x+c=\gamma^{2}, x^{2}+\widetilde{b} x+\widetilde{c}=\phi^{2}$ solved for (x, γ, ϕ) over $F_{p} \times$ $F_{p}^{*} \times F_{p}^{*}$. Also since $(-\gamma)^{2}=(p-\gamma)^{2}$ and $(-\phi)^{2}=(p-\phi)^{2}$, Whenever (x, γ, ϕ) is a solution to the system, so are $(x, \gamma,-\phi),(x,-\gamma, \phi),(x,-\gamma,-\phi)$. So, corresponding to every x in F_{p} for which $\chi(f(x))=\chi(g(x))=1$, there are exactly four solutions of the system. So,

$$
\begin{aligned}
\alpha & =\left|\left\{x \in K_{p}: \chi_{p}(x)=\chi_{p}(x)=1\right\}\right| \\
& =\frac{1}{4}\left|\left\{(u, v) \in F_{p}^{*} \times F_{p}^{*}: u^{2} v-u v^{2}+k_{3} u v-k_{2} u+k_{1} v=0\right\}\right|
\end{aligned}
$$

Proof (9): We will transform the equation

$$
u^{2} v-u v^{2}+k_{3} u v-k_{2} u+k_{1} v=0, \quad(u, v) \in F_{p} \times F_{p} \quad(* *)
$$

into Weierstrass form $y^{2}=x^{3}+A_{2} x^{2}+A_{1} x+A_{0}$ using Nagell's algorithm as described in Connell [2, p. 116]. We note that ($* *$) has exactly one additional solution namely $(0,0)$, over $(*)$. We begin by comparing $(* *)$ to

$$
s_{1} u^{3}+s_{2} u^{2} v+s_{3} u v^{2}+s_{4} v^{3}+s_{5} u^{2}+s_{6} u v+s_{7} v^{2}+s_{8} u+s_{9} v=0
$$

We get

$$
s_{1}=s_{4}=s_{5}=s_{7}=0, s_{2}=1, s_{3}=-1, s_{6}=k_{3}, s_{8}=-k_{2} \neq 0, s_{9}=k_{1} \neq 0
$$

Step 1: Since $s_{9} \neq 0$.
Step 2: We let $u=\frac{U}{W}, v=\frac{V}{W}$, and multiply through by W^{3}. We get the homogeneous equation $H_{3}+H_{2} W+H_{1} W^{2}=0$, where $H_{3}(U, V)=U^{2} V-U V^{2}, \quad H_{2}(U, V)$ $=k_{3} U V, \quad H_{1}(U, V)=-k_{2} U+k_{1} V$. The point P with (u, v)-coordinates $(0,0)$ has projective coordinates $(U, V, W)=(0,0,1)$. The tangent line at P given by $H_{1}=0 \Longleftrightarrow-k_{2} U+k_{1} V=0$, meets the curve in the point $Q=\left(-e_{2} s_{9}, e_{2} s_{8}, e_{3}\right)$, where $e_{i}=H_{i}\left(s_{9},-s_{8}\right), i=2,3 . e_{2}=H_{2}\left(k_{1}, k_{2}\right)=k_{1} k_{2} k_{3}$ and $e_{3}=H_{3}\left(k_{1}, k_{2}\right)=$ $k_{1}^{2} k_{2}-k_{1} k_{2}^{2}=k_{1} k_{2}\left(k_{1}-k_{2}\right)$. We note that e_{2}, and e_{3} are not both zero, since this would require that the two quadratics f and g are the same. We will consider the case in which $e_{3} \neq 0$ (that is $k_{1} \neq k_{2}$). This is the case in which the discriminants of the the two quadratic functions are unequal non-squares in F_{p}^{*}. Also in this case,
Q is not at infinity. With the following change of coordinates, Q goes to the origin $\left(\widetilde{U}, \widetilde{V}_{\tilde{U}} \widetilde{W}\right)=(0,0,1)$, and the tangent at P is $\tilde{\sim}_{2} \widetilde{W}_{\widetilde{U}}+k_{1} \widetilde{V}_{\tilde{W}}=0$: $U=\widetilde{U}-\frac{s_{g} e_{2}}{e_{3}} \widetilde{W}=\widetilde{U}-B \widetilde{W}, \quad V=\widetilde{V}+\frac{s_{s} e_{2}}{e_{3}} \widetilde{W}=\widetilde{V}-A \widetilde{W}, \quad W=\widetilde{W} \quad$ where $A=\frac{k_{2} k_{3}}{k_{1}-k_{2}}$, and $B=\frac{k_{1} k_{3}}{k_{1}-k_{2}}$.
Returning to affine coordinates, let $u^{\prime}=\frac{\widetilde{W}}{\tilde{W}}$, and $v^{\prime}=\frac{\widetilde{W}}{\tilde{W}}$.
Step 3: The equation in terms of u^{\prime} and v^{\prime} becomes $f_{3}^{\prime}+f_{2}^{\prime}+f_{1}^{\prime}=0$ where $f_{3}^{\prime}\left(u^{\prime}, v^{\prime}\right)=\left(u^{\prime}\right)^{2} v^{\prime}-u^{\prime}\left(v^{\prime}\right)^{2}, \quad f_{2}^{\prime}\left(u^{\prime}, v^{\prime}\right)=-A\left(u^{\prime}\right)^{2}+B\left(v^{\prime}\right)^{2}-k_{3} u^{\prime} v^{\prime}, f_{1}^{\prime}\left(u^{\prime}, v^{\prime}\right)=$ $\left(A B-k_{2}\right) u^{\prime}+\left(k_{1}-A B\right) v^{\prime}$. Setting $v^{\prime}=t u^{\prime}$, the equation $f_{3}^{\prime}+f_{2}^{\prime}+f_{1}^{\prime}=0$ becomes $\left(u^{\prime}\right)^{2} f_{3}^{\prime}(1, t)+u^{\prime} f_{2}^{\prime}(1, t)+f_{1}^{\prime}(1, t)=0$. Now let $\phi_{i}(t)=f_{i}^{\prime}(1, t)$. Then

$$
\phi_{1}(t)=\left(A B-k_{2}\right)+\left(k_{1}-A B\right) t, \quad \phi_{2}(t)=-A+B t^{2}-k_{3} t, \quad \phi_{3}(t)=t-t^{2}
$$

Therefore, the equation becomes $\phi_{3}\left(u^{\prime}\right)^{2}+\phi_{2} u^{\prime}+\phi_{1}=0$, and thus $u^{\prime}=\frac{-\phi_{2} \pm \sqrt{\delta}}{2 \phi_{3}}$, $v^{\prime}=t u^{\prime}$, where $\delta=\phi_{2}^{2}-4 \phi_{1} \phi_{3}$. We note that the values of t for which $\delta=0$, are the slopes of the tangent lines to the curve that pass through Q. One such slope is $t_{0}=\frac{k_{2}}{k_{1}}$. So, $t-t_{0}$ is a factor of δ, and if we let $t=t_{0}+\frac{1}{\tau}$, then $\rho=\tau^{4} \delta$ is a cubic polynomial in τ. In fact

$$
\begin{aligned}
\delta(t)= & \frac{k_{3}^{2}}{\left(1-t_{0}\right)^{2}}\left(t^{2}-\left(1-t_{0}\right) t-t_{0}\right)^{2} \\
& -4\left[\frac{k_{3}^{2} t_{0}}{\left(1-t_{0}\right)^{2}}-k_{1} t_{0}+\left(\frac{k_{2}}{t_{0}}-\frac{k_{3}^{2} t_{0}}{\left(1-t_{0}\right)^{2}}\right) t\right]\left(t-t^{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\rho= & \tau^{4} \delta\left(t_{0}+\frac{1}{\tau}\right)=4 t_{0}\left(k_{2}-k_{1}\right) \tau^{3}+\left(k_{3}^{2}+8 k_{2}-4 k_{1}\right) \tau^{2} \\
& +\frac{4 k_{1}^{2}-4 k_{1} k_{2}-2 k_{3}^{2} k_{1}}{k_{1}-k_{2}} \tau+\left(\frac{k_{1} k_{3}}{k_{1}-k_{2}}\right)^{2}
\end{aligned}
$$

Comparing to $\rho=c \tau^{3}+d \tau^{2}+e \tau+k$ in Connell [2, p. 117], we have $c=$ $4 t_{0}\left(k_{2}-k_{1}\right), \quad d=k_{3}^{2}+8 k_{2}-4 k_{1}, \quad e=\frac{4 k_{1}^{2}-4 k_{1} k_{2}-2 k_{3}^{2} k_{1}}{k_{1}-k_{2}}, \quad k=\left(\frac{k_{1} k_{3}}{k_{1}-k_{2}}\right)^{2}$. We note that $c \neq 0$, which is required for $(* *)$ to represent an elliptic curve. Finally, we make the substitutions $\tau=\frac{x}{c}$, and $\rho=\frac{y^{2}}{c^{2}}$ to get the Weierstrass equation

$$
\begin{aligned}
y^{2} & =x^{3}+d x^{2}+c e x+c^{2} k \\
& =x^{3}+\left(k_{3}^{2}+8 k_{2}-4 k_{1}\right) x^{2}+8 k_{2}\left(k_{3}^{2}+2 k_{2}-2 k_{1}\right) x+16 k_{2}^{2} k_{3}^{2} \quad(* * *)
\end{aligned}
$$

We note that the right side of $(* * *)$ can be factored, and we get

$$
y^{2}=\left(x+4 k_{2}\right)\left(x^{2}+\left(k_{3}^{2}+4 k_{2}-4 k_{1}\right) x+4 k_{2} k_{3}^{2}\right)
$$

We will now show that the elliptic curve $(* * *)$ has exactly two more points over $F_{p} \times F_{p}$ than $(* *)$. We note that on $(* *), u=0 \Leftrightarrow v=0$, so that $(0,0)$ is the only point with $u=0$ or $v=0$. Note also that the point $(u, v)=(-B,-A)$ is on $(* *)$. It is easily verified that $v-t_{0} u=0 \Leftrightarrow(u, v)=(0,0)$ or $(u, v)=(-B,-A)$.So, starting with a point (u, v) on $(* *)$ with $u \neq-B$ and $u \neq 0$, set $u^{\prime}=u+B$ and $v^{\prime}=v+A$ and $t=\frac{v^{\prime}}{u^{\prime}}=\frac{v+A}{u+B}$ and compute x from the equation

$$
t_{0}+\frac{c}{x}=t \Leftrightarrow x=\frac{c}{t-t_{0}}
$$

This gives

$$
x=\frac{(u+B) c}{v+A-t_{0} u-t_{0} B}=\frac{(u+B) c}{v-t_{0} u}
$$

We note that x is well defined since $t=t_{0}$ if and only if $u=0$. Also $x \neq 0$. Next, compute $\delta=\phi_{2}^{2}-4 \phi_{1} \phi_{3}$. Then $y^{2}=\frac{x^{4} \delta}{c^{2}} \Leftrightarrow y= \pm \frac{x^{2}}{c} \sqrt{\delta}$. If $\delta=0$, then (u, v) on $(* *)$ corresponds to $(x, 0)$ on $(* * *)$. If $\delta \neq 0$, then (u, v) corresponds to $\left(x, \frac{x^{2}}{c} \sqrt{\delta}\right)$ or $\left(x,-\frac{x^{2}}{c} \sqrt{\delta}\right)$. To make the correspondence one-to-one, note that if $t \neq 0$ and $t \neq 1$, then $u^{\prime}=\frac{-\phi_{2} \pm \sqrt{\delta}}{2 \phi_{3}}$, and $v^{\prime}=t u^{\prime}$. This means that the pair of points $\left(\frac{-\phi_{2}+\sqrt{\delta}}{2 \phi_{3}}-B, t \frac{-\phi_{2}+\sqrt{\delta}}{2 \phi_{3}}-A\right)$ and $\left(\frac{-\phi_{2}-\sqrt{\delta}}{2 \phi_{3}}-B, t \frac{-\phi_{2}-\sqrt{\delta}}{2 \phi_{3}}-A\right)$ are on $(* *)$ and corresponds to the pair $\left(x, \frac{x^{2}}{c} \sqrt{\delta}\right)$ and $\left(x,-\frac{x^{2}}{c} \sqrt{\delta}\right)$ on $(* * *)$. For the one-to-one correspondence, we take $\left(\frac{-\phi_{2}+\sqrt{\delta}}{2 \phi_{3}}-B, t \frac{-\phi_{2}+\sqrt{\delta}}{2 \phi_{3}}-A\right) \longleftrightarrow\left(x, \frac{x^{2}}{c} \sqrt{\delta}\right)$ and $\left(\frac{-\phi_{2}-\sqrt{\delta}}{2 \phi_{3}}-B, t \frac{-\phi_{2}-\sqrt{\delta}}{2 \phi_{3}}-A\right) \longleftrightarrow\left(x,-\frac{x^{2}}{c} \sqrt{\delta}\right)$. If $t=0$, then $x=4\left(k_{1}-k_{2}\right)$ and the equation $\phi_{3}\left(u^{\prime}\right)^{2}+\phi_{2} u^{\prime}+\phi_{1}=0$ for u^{\prime} becomes $-A u^{\prime}+A B-k_{2}=0$. If $A \neq 0$, then $u^{\prime}=B-\frac{k_{2}}{A}$. This gives one solution on $(* *)$, namely $(u, v)=$ $\left(-\frac{k_{2}}{A},-A\right)$, and two solutions $(x, y)=\left(4\left(k_{1}-k_{2}\right), \pm 4 k_{1} k_{3}\right)$ on $(* * *)$. Note that $A=0 \Leftrightarrow k_{3}=0 \Leftrightarrow B=0$. If $t=0$ and $A=0$, then there is no solution on $(* *)$ and one solution $\left(4\left(k_{1}-k_{2}\right), 0\right)$ on $(* * *)$. We note that when $k_{3}=0,(* * *)$ becomes $y^{2}=x\left(x+4 k_{2}\right)\left(x-4 k_{1}+4 k_{2}\right)$. Now $t=1 \Leftrightarrow x=\frac{c}{1-t_{0}} \Leftrightarrow x=-4 k_{2} \Rightarrow y=0$. So, $t=1$ gives one solution $\left(-4 k_{2}, 0\right)$ on $(* * *)$ When $t=1$, there is no solution on $(* *)$, since $\phi_{3}(1)=\theta_{2}(1)=0$ and $\theta_{1}(1)=k_{1}-k_{2} \neq 0$ We now consider the case when $t=t_{0}$. It is easily verified that $t=t_{0} \Leftrightarrow u^{\prime}=B \Leftrightarrow u=0$. So, $t=t_{0}$ gives one solution $(u, v)=(0,0)$ on $(* *)$ and none on $(* * *)$. Finally, when $u=-B \neq 0$, we have $u^{\prime}=0 \Rightarrow \theta_{1}=0 \Rightarrow t=\frac{k_{2}-A B}{k_{1}-A B}$. Let $t_{1}=\frac{k_{2}-A B}{k_{1}-A B}$. Then, since $k_{2} \neq k_{1}$, and k_{1} and k_{2} are non-squares, $t_{1} \neq 0,1$, and $t_{1}=t_{0} \Leftrightarrow A=B=0$. On ($* *$), when $u=-B \neq 0$, the resulting quadratic equation in v gives the distinct roots $v=-A$ and $v=-\frac{k_{1}}{B}$. So, for $t=t_{1}$, we get two solutions $(-B,-A)$ and $\left(-B,-\frac{k_{1}}{B}\right)$ on (**).

Let Λ be the set of all solutions on $(* *)$. We express Λ as the union of two disjoint sets Λ_{1} and Λ_{2}, where

$$
\begin{aligned}
& \Lambda_{1}=\left\{(u, v) \in \Lambda: u \neq 0,(u, v) \neq\left(-B, \frac{-k_{1}}{B}\right), t \neq 0, t \neq 1\right\}, \\
& \Lambda_{2}=\left\{\begin{array}{c}
(u, v) \in \Lambda: u=0,(u, v)=\left(-B, \frac{-k_{1}}{B}\right), t=0 \\
\text { (that is } \left.(u, v)=\left(-\frac{k_{2}}{A},-A\right)\right), t=1
\end{array}\right\}
\end{aligned}
$$

Also, let Ω be the set of all solutions on $(* * *)$, and express Ω as the union of the disjoint sets Ω_{1} and Ω_{2}, where

$$
\begin{aligned}
& \Omega_{1}=\{(x, y) \in \Omega: x \neq 0, t \neq 0, t \neq 1\} \\
& \Omega_{2}=\{(x, y) \in \Omega: x=0, t=0, t=1\}
\end{aligned}
$$

We will show that $\operatorname{card}\left(\Lambda_{1}\right)=\operatorname{card}\left(\Omega_{1}\right)$ by describing a bijection Ψ between Λ_{1} and Ω_{1}, and that $\operatorname{card}(\Omega)=\operatorname{card}(\Lambda)+2$. The bijection Ψ between Λ_{1} and Ω_{1} is given by

$$
\begin{aligned}
\Psi(u, v) & =\left(x, \frac{x^{2}}{c} \sqrt{\delta}\right), \text { if } u=\frac{-\phi_{2}+\sqrt{\delta}}{2 \phi_{3}}-B, \text { where } t=\frac{v+A}{u+B}, u \neq-B, \\
t & =t_{1} \text { when } u=-B, \text { and } x=\frac{c}{t-t_{0}} \\
\Psi(u, v) & =\left(x,-\frac{x^{2} \sqrt{\delta}}{c}\right), \text { if } u=\frac{-\phi_{2}-\sqrt{\delta}}{2 \phi_{3}}-B \\
\Psi^{-1}(x, y) & =\left(\frac{-\phi_{2}+\sqrt{\delta}}{2 \phi_{3}}-B, t\left(\frac{-\phi_{2}+\sqrt{\delta}}{2 \phi_{3}}\right)-A\right), \text { if } y=\frac{x^{2} \sqrt{\delta}}{c} . \\
\Psi^{-1}(x, y) & =\left(\frac{-\phi_{2}-\sqrt{\delta}}{2 \phi_{3}}-B, t\left(\frac{-\phi_{2}-\sqrt{\delta}}{2 \phi_{3}}\right)-A\right), \text { if } y=-\frac{x^{2} \sqrt{\delta}}{c} .
\end{aligned}
$$

$\sqrt{\delta}$ is the smallest integer l in F_{p} for which $\delta=l^{2}$. Note that, when $(u, v)=$ $(-B,-A)$, we take $t=t_{1}=\left(k_{2}-A B\right) /\left(k_{1}-A B\right)$, and then $\phi_{1}=0$ and exactly one of $-\phi_{2}+\sqrt{\delta}$ or $-\phi_{2}-\sqrt{\delta}$ is 0 . So, $\Psi(-B,-A)=\left(\frac{c}{t_{1}-t_{0}}, \frac{c \sqrt{\delta}}{\left(t_{1}-t_{0}\right)^{2}}\right)$ if $-\phi_{2}+$ $\sqrt{\delta}=0$ and $\Psi(-B,-A)=\left(\frac{c}{t_{1}-t_{0}}, \frac{-c \sqrt{\delta}}{\left(t_{1}-t_{0}\right)^{2}}\right)$ if $-\phi_{2}-\sqrt{\delta}=0$

Case(1): $k_{3}=0$.
In this case, $A=B=0, t_{1}=t_{0}=k_{2} / k_{1}$, and $\Lambda_{2}=\{(0,0)\}$, and $\Omega_{2}=\left\{(0,0),\left(4\left(k_{1}\right.\right.\right.$ $\left.\left.\left.-k_{2}\right), 0\right),\left(-4 k_{2}, 0\right)\right\}$.
Case(2): $k_{3} \neq 0$
In this case, $A \neq 0$ and $B \neq 0, t_{1} \neq t_{0}$,

$$
\Lambda_{2}=\left\{(0,0),\left(-B,-\frac{k_{1}}{B}\right),\left(-\frac{k_{2}}{A},-A\right)\right\},
$$

and

$$
\Omega_{2}=\left\{\left(0,4 k_{2} k_{3}\right),\left(0,-4 k_{2} k_{3}\right),\left(4\left(k_{1}-k_{2}\right), 4 k_{1} k_{3}\right),\left(4\left(k_{1}-k_{2}\right),-4 k_{1} k_{3}\right),\left(-4 k_{2}, 0\right)\right\}
$$

Proof (10): We have from (7) that $W_{p}=4 \alpha-p+2$. From (8), $L_{p}=4 \alpha$. From (9), $N_{p}=L_{p}+3$. So, $W_{p}=L_{p}-p+2=N_{p}-3-p+2=N_{p}-p-1$.

Proof (11): Let L_{p}, M_{p}, and N_{p} be the number of points on $(*),(* *),(* * *)$ respectively. We have proved that $L_{p}=4 \alpha, M_{p}=L_{p}+1$, and that $N_{p}=L_{p}+$ $3=M_{p}+2$. Now, according to Hasse's Theorem, (see Silverman [5, p. 138])

$$
\left|N_{p}-p-1\right|<2 \sqrt{p} \Leftrightarrow\left|W_{p}\right|<2 \sqrt{p}
$$

Since, $N_{p}=4 \alpha+3$, we get

$$
|4 \alpha+3-p-1|<2 \sqrt{p} \Leftrightarrow \frac{p-2-2 \sqrt{p}}{4}<\alpha<\frac{p-2+2 \sqrt{p}}{4}
$$

Proof (12): This follows immediately from Theorem 6.2.1, p. 190 in [1]. A proof that $p=m^{2}+n^{2}$ when $p \equiv 1(\bmod 4)$ can be found in $[3, \mathrm{p} .95]$

3 Counting Points on (***)

First, using the transformation

$$
x=X-\frac{A_{2}}{3}, \quad y=Y \quad \text { where } A_{2}=k_{3}^{2}+8 k_{2}-4 k_{1}
$$

we convert $(* * *)$ to the Weierstrass form

$$
Y^{2}=X^{3}+a_{1} X+a_{0}
$$

Let E be the set of points from $F_{p} \times F_{p}$ on this curve. Obviously, $|E|=N_{p}=$ the number of points on $(* * *)$. It is well known that the points in E together with the point at infinity O form an additive Abelian group in which O is the identity, and the inverse of $P=(X, Y)$ is $-P=(X,-Y)$. Addition is defined as follows: Let $P=\left(X_{1}, Y_{1}\right)$ and $Q=\left(X_{2}, Y_{2}\right)$ be two distinct points in E with $Q \neq-P$, then $P+Q=\left(X_{1}, Y_{1}\right)+\left(X_{2}, Y_{2}\right)=\left(X_{3}, Y_{3}\right)$, where $X_{3}=\lambda^{2}-X_{1}-$ $X_{2}, \quad Y_{3}=\lambda\left(X_{1}-X_{3}\right)-Y_{1}, \quad \lambda=\frac{Y_{2}-Y_{1}}{X_{2}-X_{1}}$. If $P=Q$, the operation is called point doubling and we write $2 P=\left(X_{3}, Y_{3}\right)$ with $X_{3}=\lambda^{2}-2 X_{1}, \quad Y_{3}=\lambda\left(X_{1}-X_{3}\right)-$ $Y_{1}, \quad \lambda=\frac{3 X_{1}^{2}+a_{1}}{2 Y_{1}}$. Of course, $2(X, 0)=O$. If $d \in K_{p}$, the point denoted by $d P$ is the point obtained by performing $d-1$ point additions of P. There is an efficient algorithm for computing $d P$. This algorithm is called the Double-and-Add Algorithm
(see Silverman, p. 364). Now, let $E^{\prime}=E \cup\{O\}$. According to Hasse's Theorem (see Silverman [5, p. 138])

$$
\left|\left|E^{\prime}\right|-1-p-1\right|<2 \sqrt{p}
$$

So, $\left|E^{\prime}\right|$ is in the Hasse interval $(p+2-2 \sqrt{p}, p+2+2 \sqrt{p})$. Also, from (8) and (9) above, $\left|E^{\prime}\right|=0 \bmod 4$. So, in our search for $\left|E^{\prime}\right|$, we only need to consider those integers in the Hasse interval that are divisible by 4 . Let m be such an integer and suppose that for a point P in E, m is the only integer for which $m P=O$. Then according to Hasse's theorem $\left|E^{\prime}\right|=m$, and then, we get $N_{p}=m-1$. There are several efficient algorithms for finding m. The basic algorithm is the so-called Baby-Step-Giant-Step (BSGS) algorithm (Silverman [6, p. 382]). Several improvements to BSGS have been reported in the literature. In [5], Schoof describes three algorithms for counting the points on an elliptic curve over a finite field.

4 Examples

We used Mathematica 10 as an aid in working out the following examples.
Example 1 This example concerns (8) above. Let $p=7, f(x)=x^{2}+5 x+3$, and $g(x)=x^{2}+6 x+3$. Then $k_{1}=6, k_{2}=3, k_{3}=2$. We solve the system $x^{2}+$ $5 x+3=\gamma^{2}, x^{2}+6 x+3=\phi^{2}$ for (x, γ, ϕ) over $F_{7} \times F_{7}^{*} \times F_{7}^{*}$. The corresponding $u v$ - equation is $u^{2} v-u v^{2}+2 u v-3 u+6 v=0$, which we solve over $F_{7}^{*} \times F_{7}^{*}$. The following table shows the one-to-one correspondence between the solutions of the system and the solutions of the $u v$-equation.

(u, v)	(x, γ, ϕ)

$(3,5)$	$(4,5,1)$
$(3,2)$	$(4,5,6)$
$(2,2)$	$(4,2,6)$
$(2,5)$	$(4,2,1)$
$(5,1)$	$(5,5,4)$
$(5,3)$	$(5,5,3)$
$(4,3)$	$(5,2,3)$
$(4,1)$	$(5,2,4)$

So, $\alpha=\frac{1}{4} \times 8=2$, and $W_{7}(f, g)=4 \alpha-p+2=3$.

Example 2 This example is about (9). As in Example 1, we take $p=7, f(x)=$ $x^{2}+5 x+3$, and $g(x)=x^{2}+6 x+3$. Then $k_{1}=6, k_{2}=3, k_{3}=2(\widetilde{b}-b)=2$, $\operatorname{Re} s(f(x), g(x))=(c-\widetilde{c})^{2}+(b-\widetilde{b})(b \widetilde{c}-\widetilde{b} c)=3 \bmod 7 \neq 0 t_{0}=k_{2} / k_{1}=4, t_{1}$ $=\left(k_{2}-A B\right) /\left(k_{1}-A B\right)=6, c=4 t_{0}\left(k_{2}-k_{1}\right)=1, A=k_{2} k_{3} /\left(k_{1}-k_{2}\right)=2, B=k_{1}$ $k_{3} /\left(k_{1}-k_{2}\right)=4, \phi_{1}(t)=A B-k_{2}+\left(k_{1}-A B\right) t=5 t-2, \phi_{2}(t)=B t^{2}-k_{3} t-$ $A=4 t^{2}-2 t-2, \phi_{3}(t)=t-t^{2}, \delta(t)=\phi_{2}^{2}-4 \phi_{1} \phi_{3}=2 t^{4}-3 t^{3}+2 t^{2}+2 t+4$. $(* *)$, the $u v$-equation is

$$
\begin{aligned}
u^{2} v-u v^{2}+k_{3} u v-k_{2} u+k_{1} v & =0 \Leftrightarrow \\
u^{2} v-u v^{2}+2 u v-3 u+6 v & =0
\end{aligned}
$$

$(* * *)$, the $x y$-equation is

$$
\begin{aligned}
& y^{2}=x^{3}+\left(k_{3}^{2}+8 k_{2}-4 k_{1}\right) x^{2}+8 k_{2}\left(k_{3}^{2}+2 k_{2}-2 k_{1}\right) x+16 k_{2}^{2} k_{3}^{2} \Leftrightarrow \\
& y^{2}=x^{3}+4 x^{2}+x+2 \quad(* * *)
\end{aligned}
$$

The 9 solutions of $(* *)$ and the 11 solutions of $(* * *)$ are contained in the following table.

$$
\begin{aligned}
& \begin{array}{llllllll}
x y & u v & & \delta \phi_{1} & \phi_{2} & \phi_{3} & \sqrt{\delta}
\end{array} \\
& 04 \quad N D \\
& 03 \quad N D \\
& \begin{array}{llllllll}
1151 & 5 & 12 & 4 & 1
\end{array} \\
& 16435 \quad 12 \quad 4 \quad 1 \quad 1 \\
& 20 \quad 1 \quad 03 \\
& 4135 \begin{array}{llllll}
4 & 3 & 20 & 4 & 5 & 3
\end{array} \\
& 46536 \quad 20 \quad 4 \quad 5 \quad 3 \\
& \begin{array}{llllll}
51 & 0 & 45 & 5 & 0 & 2
\end{array} \\
& 56 \quad 0 \quad 45 \quad 5 \quad 0 \quad 2 \\
& 62413 \quad 46 \\
& 65223046 \\
& 00 t_{0}=404 \quad 5 \quad 2 \quad 0 \\
& \begin{array}{llllll}
32 & 6 & 20 & 4 & 5 & 3
\end{array} \\
& 250 \quad 45 \quad 5 \quad 0 \quad 2 \\
& \Lambda_{1}=\left\{(u, v) \in \Lambda: u \neq 0,(u, v) \neq\left(-B, \frac{-k_{1}}{B}\right), t \neq 0, t \neq 1\right\} \\
& =\{(4,3),(5,1),(3,5),(5,3),(4,1),(2,2)\}
\end{aligned}
$$

$$
\begin{aligned}
\Lambda_{2} & \left.=\left\{(u, v) \in \Lambda: u=0,(u, v)=\left(-B, \frac{-k_{1}}{B}\right), t=0 \text { (that is }(u, v)=\left(-\frac{k_{2}}{A},-A\right)\right), t=1\right\} \\
& =\{(0,0),(3,2),(2,5)\}, \\
\Omega_{1} & =\{(x, y) \in \Omega: x \neq 0, t \neq 0, t \neq 1\}=\{(1,1),(1,6),(4,1),(4,6),(6,2),(6,5)\} \\
\Omega_{2} & =\left\{\left(0,4 k_{2} k_{3}\right),\left(0,-4 k_{2} k_{3}\right),\left(4\left(k_{1}-k_{2}\right), 4 k_{1} k_{3}\right),\left(4\left(k_{1}-k_{2}\right),-4 k_{1} k_{3}\right),\left(-4 k_{2}, 0\right)\right\} \\
& =\{(x, y) \in \Omega: x=0, t=0, t=1\}=\{(0,3),(0,4),(5,1),(5,6),(2,0)\}
\end{aligned}
$$

Example 3 This example is about (9) with $k_{3}=0$. Here, we take $p=13, f(x)=$ $x^{2}+x+12$, and $g(x)=x^{2}+x+4$. Then $k_{1}=5, k_{2}=11, k_{3}=2(\widetilde{b}-b)=0$, $\operatorname{Re} s(f(x), g(x))=(c-\widetilde{c})^{2}+(b-\widetilde{b})(b \widetilde{c}-\widetilde{b} c)=64 \bmod 13 \neq 0, t_{0}=k_{2} / k_{1}=10$, $t_{1}=\left(k_{2}-A B\right) /\left(k_{1}-A B\right)=10, c=4 t_{0}\left(k_{2}-k_{1}\right)=6, A=k_{2} k_{3} /\left(k_{1}-k_{2}\right)=0$, $B=k_{1} k_{3} /\left(k_{1}-k_{2}\right)=0, \phi_{1}(t)=A B-k_{2}+\left(k_{1}-A B\right) t=5 t+2, \phi_{2}(t)=B t^{2}$ $-k_{3} t-A=0, \phi_{3}(t)=t-t^{2}, \delta(t)=\phi_{2}^{2}-4 \phi_{1} \phi_{3}=9(5 t+2)\left(t-t^{2}\right) .(* *)$, the $u v$-equation is

$$
\begin{aligned}
u^{2} v-u v^{2}+k_{3} u v-k_{2} u+k_{1} v & =0 \Leftrightarrow \\
u^{2} v-u v^{2}+2 u+5 v & =0
\end{aligned}
$$

$(* * *)$, the $x y$-equation is

$$
\begin{aligned}
& y^{2}=x^{3}+\left(k_{3}^{2}+8 k_{2}-4 k_{1}\right) x^{2}+8 k_{2}\left(k_{3}^{2}+2 k_{2}-2 k_{1}\right) x+16 k_{2}^{2} k_{3}^{2} \Leftrightarrow \\
& y^{2}=x^{3}+3 x^{2}+3 x=x(x+5)(x-2) \quad(* * *)
\end{aligned}
$$

The 9 solutions of $(* *)$ and the 11 solutions of $(* * *)$ are contained in the following table.

$x \quad y$		v	t	$\delta \phi_{1}$	ϕ_{2}	ϕ_{3}	$\sqrt{\delta}$
00			$N D$				
20			0	02	0	0	0
62	9	8	11	35	0	7	9
611	4	5	11	35	0	7	9
72	4	10	9	38	0	6	9
711	9	3	9	38	0	6	9
80			1	07	0	0	0
102	2	3	8	93	0	9	3
1011		10	8	93	0	9	3
128	11	5	4	39	0	1	9
125	2	8	4	39	0	1	9
	0	0	$t_{0}=10$	00	0	1	0

$$
\begin{aligned}
\Lambda_{1} & =\{(u, v) \in \Lambda: u \neq 0, t \neq 0, t \neq 1\} \\
& =\{(9,8),(4,5),(4,10),(9,3),(2,3),(11,10),(11,5),(2,8)\}
\end{aligned}
$$

$$
\begin{aligned}
\Lambda_{2} & =\{(u, v) \in \Lambda: u=0, t=0, t=1\}=\{(0,0)\}, \\
\Omega_{1} & =\{(x, y) \in \Omega: x \neq 0, t \neq 0, t \neq 1\} \\
& =\{(6,2),(6,11),(7,2),(7,11),(10,2),(10,11),(12,8),(12,5)\} \\
\Omega_{2} & =\{(x, y) \in \Omega: x=0, t=0, t=1\}=\left\{(0,0),\left(4\left(k_{1}-k_{2}\right), 0\right),\left(-4 k_{2}, 0\right)\right\} \\
& ==\{(0,0),(2,0),(8,0)\}
\end{aligned}
$$

Example 4 The smallest positive prime for which the conditions in (12) are satisfied is $p=17=(\pm 4)^{2}+(\pm 1)^{2}$. We can take $f(x)=x^{2}+5 x+c$, and $g(x)=x^{2}+$ $5 x+\tilde{c}$. 6 and 3 are two non-squares in F_{17}. So, taking $k_{1}=6$ and $k_{2}=3$, we get, $5^{2}-4 c=6,5^{2}-4 \widetilde{c}=3, c=9, \widetilde{c}=14$. So, with $k_{3}=0$, the elliptic curve becomes $y^{2}=x^{3}-16 k_{2}^{2} x \Leftrightarrow y^{2}=x^{3}+9 x$. Now, 3 is a generator for $F_{17}^{*} . l(9)$ is given by $9=3^{l(9)} \bmod 17$. So, $l(9)=2$. Now, $\chi(2)=1$, since 2 is a square in F_{17}. $p=m^{2}+n^{2}$ with $m \equiv-\chi(2) \bmod 4$ and $n \equiv m 3^{(p-1) / 4} \bmod 17$, we get $m=-1$ and $n=4, N_{p}=p+2 m(-1)^{(p+3) / 4}=17+2=19, W_{p}=N_{p}-p-1=1$.

Example 5 Take $p=1217=(\pm 31)^{2}+(\pm 16)^{2}$. Then $\chi(2)=1,3$ is a generator for $F_{p}^{*}, m=31, n \equiv m 3^{(p-1) / 4} \bmod 1217=1201$, so, $n=-16$. We take $k_{1}=6$ and $k_{2}=3$. We get $f(x)=x^{2}+607$ and $g(x)=x^{2}+912$. The elliptic curve is $y^{2}=x^{3}+1073 x . l(1073)$ is given by $1073=3^{l(1073)} \bmod 1217$. This gives $l(1073)=258 \equiv 2 \bmod 4$. So, $N_{p}=p+2 m(-1)^{(p+3) / 4}=p-62=1155$, and $W_{p}=N_{p}-p-1=1155-1217-1=-63$.

Example 6 Let $p=1299721=(\pm 1140)^{2}+(\pm 11)^{2}$. Then 7 is a generator of $F_{p}^{*}, m \equiv-\chi(2) \bmod 4=-1 \bmod 4$. So, $m=11$, and $n \equiv m 7^{(p-1) / 4} \bmod p=1140$. We take $f(x)=x^{2}+c, g(x)=x^{2}+\widetilde{c}, k_{1}=14, k_{2}=7$. So, $c=649857, \widetilde{c}=$ 974789. The elliptic curve is $y^{2}=x^{3}-16 k_{2}^{2} x \Leftrightarrow y^{2}=x^{3}+1298937 x .1298937=$ $7^{l(1298937)} \bmod p$ gives $l(1298937)=873558 \equiv 2 \bmod 4$. So, $N_{p}=p+2 m(-1)^{(p+3) / 4}$ $=p-22=1299699, W_{p}=N_{p}-p-1=-23$.

5 Conclusion

We mention here that there are papers (see for example [7]) that are concerned with evaluating the character sum W_{p}. In [7], Williams gives a different elliptic curve with N_{p} rational points. However, his approach does not reveal the fact that $N_{p}-3$
is divisible by 4 . This fact can be used to significantly increase the efficiency of computing N_{p}. Also, we are hopeful that we may find a closed form expression for α and therefore a closed form expression for W_{p}.

References

1. Berndt, B, Evans, R and Williams, K. : Gauss and Jacobi Sums, 1998, Wiley.
2. Connell, I. : Elliptic Curve Handbook, 1999. Available at https://webs.ucm.es/BUCM/mat/ doc8354.pdf.
3. Ireland, K and Rosen, M. :A classical introduction to modern number theory, 2nd edition, Graduate Texts in Mathematics 84, Springer-Verlag.
4. Perel'muter, G.I. : On certain sums of characters, uspehi Mat. 18, 1963.
5. Schoof, R.: Counting points on elliptic curves over finite fields, Journal de Theorie des Nombres de Bordeaux, tome 7, no:1 (1995), p. 219-254.
6. Silverman, J. : The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, 2nd Edition, Springer.
7. Williams, K. S. : Evaluation of character sums connected with elliptic curves, Proceedings of the American Mathematical Society, Volume 73, Number 3, March 1979.

On Minimum Index Stanton 4-Cycle Designs

R. C. Bunge, A. Hakes, J. Jeffries, E. Mastalio, and J. Torf

Abstract

Let G be a multigraph with the underlying structure of a 4-cycle where each edge multiplicity in the set $\{1,2,3,4\}$ is represented. There are three such multigraphs, and we call each of these a Stanton 4-cycle. For each such multigraph G and integer $n \geq 4$, we consider the minimum λ such that there exists a G-decomposition of ${ }^{\lambda} K_{n}$.

Keywords Graph design theory • Graph decomposition • Stanton graph

1 Introduction

Throughout this paper, we use the term graph to refer to both simple graphs and multigraphs, but always without loops. For a graph G, we use $V(G)$ and $E(G)$ to denote the vertex set and edge set (or multiset) of G, respectively; the order and size of G are $|V(G)|$ and $|E(G)|$, respectively. For a positive integer λ and a set A, we use ${ }^{\lambda} A$ to refer to the multiset containing λ copies of each element of A. For a simple graph G, by ${ }^{\lambda} G$ we mean the graph with vertex set $V(G)$ and edge multiset ${ }^{\lambda} E(G)$. In particular, ${ }^{\lambda} K_{n}$ is the λ-fold complete graph on n vertices. For positive integers x, r, and s, we use $x G$ to denote the graph with x edge-disjoint copies of G, and we use $K_{r \times s}$ to denote the complete multipartite graph with r parts of size s.

For graphs G and H with G a subgraph of H, a G-decomposition of H (or (H, G)-design) is a set (or multiset) Δ of graphs isomorphic to G such that the edge

[^5]© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
sets (or multisets) of the graphs in Δ partition $E(H)$. The elements of Δ are called G-blocks. If there exists a G-decomposition of H, we say G divides H, or we may simply write $G \mid H$. In particular, a $\left({ }^{\lambda} K_{n}, G\right)$-design is called a G-design of order n and index λ. For results of G-designs of index 1 , see $[2,3]$.

More recently, G-designs of higher indices have been studied for multigraphs. For example, in [10] Carter determined the spectra for G-designs of any index λ for all connected cubic multigraphs G of order at most 6 . The G-designs of any order n and index λ have been investigated for various multigraphs of small order. Some examples include multigraphs with 5 edges (see [7, 13, 16]), 6 edges (see [1, 9]), 7 edges (see [4]), and 8 edges (see [5]).

2 Stanton 4-Cycles

The concept of a Stanton graph was first introduced by Chan and Sarvate in [11] as a multigraph S_{k} with the complete graph K_{k} as its underlying simple graph, but where each edge of K_{k} is replaced by parallel edges such that each edge multiplicity from 1 to $\binom{k}{2}$ is represented. In [6], the authors of this paper generalized this concept of a Stanton graph. Given a simple graph G with edge set $\left\{e_{1}, e_{2}, \ldots, e_{q}\right\}$, a Stanton graph $S G$ is formed by replacing edge e_{i}, for each $1 \leq i \leq q$, with i parallel edges. For example, the graph S_{3} can be considered as $S K_{3}$. However, for larger k, S_{k} is not unique, nor is $S G$ for most G of size larger than 3. For example, there are three non-isomorphic Stanton 4 -cycles, as seen in Fig. 1. The latter two of these graphs, G_{2} and G_{3}, are the focus of this paper.

Formally, we define $G_{2}[a, b, c, d]$ to be the multigraph with vertex set $\{a, b, c, d\}$ and edge multiset $\{\{a, b\},\{a, d\},\{a, d\},\{a, d\},\{c, d\},\{c, d\},\{b, c\},\{b, c\},\{b, c\}$, $\{b, c\}\}$, and we define $G_{3}[a, b, c, d]$ to be the multigraph with vertex set $\{a, b, c, d\}$ and edge multiset $\{\{a, b\},\{a, d\},\{a, d\},\{c, d\},\{c, d\},\{c, d\},\{c, d\},\{b, c\},\{b, c\}$, $\{b, c\}\}$.

In [11], Chan and Sarvate found S_{3}-designs for all order n and minimum index λ. In [12], El-Zanati et al. extended this result to find S_{3}-designs for all index λ. In [6],

Fig. 1 The three non-isomorphic Stanton 4-cycles
the authors of this paper found G_{1}-designs for minimum index λ, where G_{1} is the first Stanton 4 -cycle shown in Fig. 1. In [14, 15], Hein and Sarvate study G-designs for minimum index λ for several graphs G of order 4 and size 3 .

In this paper, we find G_{2}-designs and G_{3}-designs of minimum index λ. That is, we are interested in the following problems:

Problem 1 For each integer $n \geq 4$, find the minimum λ such that there exists a G_{2}-design of order n and index λ.

Problem 2 For each integer $n \geq 4$, find the minimum λ such that there exists a G_{3}-design of order n and index λ.

Some necessary conditions for a G-decomposition of ${ }^{\lambda} K_{n}$ are that n must be at least the order of G, λ must be at least the largest edge multiplicity in G, and $|E(G)|$ must divide $\left|E\left({ }^{\lambda} K_{n}\right)\right|=\lambda n(n-1) / 2$. Since both G_{2} and G_{3} are of order 4 and size 10 and both have a maximum edge multiplicity of 4 , we arrive at the following necessary conditions for $G_{2^{-}}$and G_{3}-designs.

Lemma 1 Let $n \geq 4$ and $G \in\left\{G_{1}, G_{2}\right\}$. The minimum λ for the existence of a G decomposition of ${ }^{\lambda} K_{n}$ is at least

- $\lambda=4$ if $n \equiv 0$ or $1(\bmod 5)$,
- $\lambda=5$ if $n \equiv 0$ or $1(\bmod 4)$ but $n \not \equiv 0$ or $1(\bmod 5)$,
- $\lambda=10$ otherwise

The task that remains is to provide sufficient conditions for G-designs for these indices, or argue the non-existence of such a design.

3 Small Decompositions

This section shows some decompositions of graphs that are used to construct larger ${ }^{\lambda} K_{n}$ in Sect. 5.

Example 1 Let $V\left({ }^{4} K_{5,5}\right)=\mathbb{Z}_{5} \times \mathbb{Z}_{2}$ with the obvious bipartition and let $\Delta=$ $\left\{G_{2}[(2+i, 0),(4+i, 1),(i, 0),(i, 1)]: i \in \mathbb{Z}_{5}\right\} \cup\left\{G_{2}[(3+i, 0),(1+i, 1),(i\right.$, $\left.0),(i, 1)]: i \in \mathbb{Z}_{5}\right\}$. Then Δ is a G_{2}-decomposition of ${ }^{4} K_{5,5}$.

Example 2 Let $V\left({ }^{6} K_{5}\right)=\mathbb{Z}_{5}$ and let $\Delta=\left\{G_{2}[1,4,3,2], G_{2}[4,2,3,0], G_{2}[0,1\right.$, $\left.3,4], G_{2}[2,0,3,1], G_{2}[4,2,0,1], G_{2}[0,2,4,1]\right\}$. Then Δ is a G_{2}-decomposition of ${ }^{6} K_{5}$.

Example 3 Let $V\left({ }^{5} K_{2,2}\right)=\mathbb{Z}_{4}$ with bipartition $\{\{0,1\},\{2,3\}\}$ and let $\Delta=\left\{G_{2}[0\right.$, $\left.2,1,3], G_{2}[1,2,0,3]\right\}$. Then Δ is a G_{2}-decomposition of ${ }^{5} K_{2,2}$.

Example 4 Let $V=V\left({ }^{5} K_{2,3}\right)=\mathbb{Z}_{5}$ with bipartition $\{\{0,1,2\},\{3,4\}\}$ and let $\Delta=\left\{G_{2}[1,4,0,3], G_{2}[0,4,2,3], G_{2}[2,4,1,3]\right\}$. Then Δ is a G_{2}-decomposition of ${ }^{5} K_{2,3}$.

Example 5 Let $V=V\left({ }^{5} K_{2,2}\right)=\mathbb{Z}_{4}$ with bipartition $\{\{0,1\},\{2,3\}\}$ and let $\Delta=$ $\left\{G_{3}[0,2,1,3], G_{3}[1,3,0,2]\right\}$. Then Δ is a G_{3}-decomposition of ${ }^{5} K_{2,2}$.

Example 6 Let $V\left({ }^{10} K_{2,3}\right)=\mathbb{Z}_{5}$ with bipartition $\{\{0,1\},\{2,3,4\}\}$ and let $\Delta=$ $\left\{G_{3}[0,2,1,4], G_{3}[0,2,1,3], G_{3}[1,3,0,4], G_{3}[1,3,0,2], G_{3}[0,4,1,3], G_{3}[1,4\right.$, $0,2]\}$. Then Δ is a G_{3}-decomposition of ${ }^{10} K_{2,3}$.

4 Decompositions via Graph Labellings

Let $V\left({ }^{\lambda} K_{n}\right)=\mathbb{Z}_{n}$ and let G be a subgraph of ${ }^{\lambda} K_{n}$. By clicking G, we mean applying the permutation $i \mapsto i+1$ to $V(G)$. Moreover in this case, if $j \in \mathbb{N}$, then $G+j$ is the graph obtained from G by successively clicking G a total of j times. Also note that $G+j$ is isomorphic to G for every $j \in \mathbb{N}$.

The length of an edge $\{i, j\}$ in ${ }^{\lambda} K_{n}$ is defined to be $\min \{|i-j|, n-|i-j|\}$. Note that if n is odd, then ${ }^{\lambda} K_{n}$ consists of λn edges of length i for $i \in\left\{1,2, \ldots, \frac{n-1}{2}\right\}$. If n is even, then ${ }^{\lambda} K_{n}$ consists of λn edges of length i for $i \in\left\{1,2, \ldots, \frac{n}{2}-1\right\}$, and $\lambda \frac{n}{2}$ edges of length $\frac{n}{2}$.

Alternatively, we may let $V\left({ }^{\lambda} K_{n}\right)=\mathbb{Z}_{n-1} \cup\{\infty\}$. Clicking a subgraph G of ${ }^{\lambda} K_{n}$ in this case continues to mean applying the permutation $i \mapsto i+1$ to $V(G)$, with the convention that $\infty+1=\infty$. If $i, j \in \mathbb{Z}_{n-1}$, then the length of the edge $\{i, j\}$ are defined as if $\{i, j\}$ were an edge in ${ }^{\lambda} K_{n-1}$. The length of an edge $\{i, \infty\}$ is defined to be ∞. In this case, if n is even, there are λn edges of length i for $i \in\left\{1,2, \ldots, \frac{n}{2}-1, \infty\right\}$ in ${ }^{\lambda} K_{n}$, and if n is odd, there are λn edges of length i for $i \in\left\{1,2, \ldots, \frac{n-1}{2}-1, \infty\right\}$ and $\lambda \frac{n}{2}$ edges of length $\frac{n-1}{2}$. As before, $G+j$ is defined as before, and clicking an edge does not change its length.

A G-decomposition Δ of ${ }^{\lambda} K_{n}$ is said to be cyclic if clicking preserves the G blocks in Δ. If $V\left({ }^{\lambda} K_{n}\right)=\mathbb{Z}_{n-1} \cup\{\infty\}$, then a cyclic $\left({ }^{\lambda} K_{n}, G\right)$-design is also called a 1-rotational $\left({ }^{\lambda} K_{n}, G\right)$-design. The preservation of edge lengths in these types of designs lends itself to the idea of graph labellings.

Let n, k, and λ be positive integers such that $n=\lambda k$ or such that λ is even and $n=$ $\lambda k+\frac{\lambda}{2}$. Let G be a multigraph of size n, order at most $\frac{2 n}{\lambda}+1$, and edge multiplicity at most λ. A λ-fold ρ-labeling of G is a one-to-one function $f: V(G) \rightarrow\left\{0,1, \ldots, \frac{2 n}{\lambda}\right\}$ such that the multiset

$$
\begin{aligned}
\left\{\operatorname { m i n } \left\{|f(u)-f(v)|, \frac{2 n}{\lambda}+1\right.\right. & -|f(u)-f(v)|\}:\{u, v\} \in E(G)\} \\
& = \begin{cases}\lambda^{\lambda}[1, k] & \text { if } n=\lambda k, \\
{ }^{\lambda}[1, k] \cup \frac{\lambda}{2}\{k+1\} & \text { if } n=\lambda k+\frac{\lambda}{2} .\end{cases}
\end{aligned}
$$

Thus a λ-fold ρ-labeling of such a G induces an embedding of G in ${ }^{\lambda} K_{\frac{2 n}{\lambda}+1}$ so that G has either (1) λ edges of length i for each $i \in[1, k]$ when $n=\lambda k$ or (2) λ edges of length i for each $i \in[1, k]$ and $\frac{\lambda}{2}$ edges of length $k+1$ when $n=\lambda k+\frac{\lambda}{2}$.

If f is a λ-fold ρ-labeling of a bipartite multigraph G with vertex bipartition $\{A, B\}$ and if for each $\{a, b\} \in E(G)$ with $a \in A$ and $b \in B$ we have $f(a)<f(b)$, then f is called an ordered λ-fold ρ-labeling, or λ-fold ρ^{+}-labeling.

Now, let G of size n be a subgraph of ${ }^{\lambda} K_{2 n}$. Let w be a vertex in $V(G)$ of degree λ and let y and z be the neighbors of w (y and z need not be distinct). A 1 -rotational λ-fold labeling of G is a one-to-one function $f: V(G) \rightarrow \mathbb{Z}_{\frac{2 n}{\lambda}-1} \cup\{\infty\}$ such that f restricted to $G-w$ is a λ-fold ρ-labeling, $f(w)=\infty, f(y) \stackrel{\lambda}{=} 0$, and $f(z) \in\{0,1\}$. If in addition G is bipartite and f restricted to $G-w$ is a λ-fold ρ^{+}-labeling, then f is ordered.

The next four theorems are proved in [8].
Theorem 1 Let G be a subgraph of ${ }^{\lambda} K_{\frac{2 n}{\lambda}+1}$ such that $|E(G)|=n$. There exists a cyclic $\left({ }^{\lambda} K_{\frac{2 n}{\lambda}+1}, G\right)$-design if and only if G admits a λ-fold ρ-labeling.

Theorem 2 Let G be a bipartite subgraph of ${ }^{\lambda} K_{\frac{2 n}{\lambda}+1}$ such that $|E(G)|=n$. If G admits a 2-fold ρ^{+}-labeling, then there exists a cyclic $\left({ }^{\lambda} K_{\frac{2 n}{\lambda} x+1}, G\right)$-design for each positive integer x.

Theorem 3 Let G be a subgraph of ${ }^{\lambda} K_{\frac{2 n}{\lambda}}$ such that $|E(G)|=n$. There exists a 1 rotational G-decomposition of ${ }^{\lambda} K_{\frac{2 n}{\lambda}}$ if and only if G admits a 1-rotational λ-fold labeling.

Theorem 4 Let G be a bipartite subgraph of ${ }^{\lambda} K_{\frac{2 n}{\lambda}}$ such that $|E(G)|=n$. If G admits an ordered 1-rotational λ-fold labeling, then there exists a 1-rotational G decomposition of ${ }^{\lambda} K_{\frac{2 n}{\lambda} x}$ for every positive integer x.

The idea behind Theorems 1 and 3 can be explained easily: a ρ-labeling embeds G into ${ }^{\lambda} K_{\frac{2 n}{\lambda}+1}$ such that there are λ edges of each length in ${ }^{\lambda} K_{\frac{2 n}{\lambda}+1}$. Since edge lengths are preserved, clicking produces $\frac{2 n}{\lambda}$ copies of G that provide a decomposition. The argument for 1-rotational labellings is similar.

We can also see how Theorems 2 and 4 work. Suppose we have a λ-fold ρ^{+}labeling of G with bipartition $\{A, B\}$. By taking x copies of G and "stretching" the labels of the vertices in B by $\frac{2 n}{\lambda}$ in each copy, we obtain a λ-fold ρ-labeling of $x G$. Then we get a cyclic $(x G)$-decomposition of ${ }^{\lambda} K_{\frac{2 n}{\lambda} x+1}$, where each copy of

Fig. 2 A 4-fold ρ^{+}-labeling of G_{3} and three G_{3}-blocks that can be used as starters for a cyclic G_{3}-decomposition of ${ }^{4} K_{16}$
the x copies of G in $x G$ are preserved by clicking. An example of this process is demonstrated in Fig. 2. A similar argument can be used for the ordered 1-rotational result. For a more formal explanation of this process, see [8] or [6].

5 Main Result

In this section, we aim to answer Problems 1 and 2 . We do so by providing sufficient conditions for the existence of a G_{2} or G_{3}-decomposition by construction. The constructions in this section rely heavily on four previous theorems. Another construction used throughout is to decompose ${ }^{\lambda} K_{n}$ into multiple copies of smaller complete graphs connected by complete bipartite graphs. By decomposing these smaller graphs, we get a decomposition of the larger graph.

Theorem 5 There exists a G_{2}-decomposition of ${ }^{4} K_{5 x}$ for every positive integer x.
Proof Note that $G_{2}[\infty, 1,0,2]$ is a 1-rotational 4-fold labeling of G_{2}. Then by Theorem 3, $G_{2} \mid{ }^{4} K_{5}$. Consider ${ }^{4} K_{5 x}$ as $x^{4} K_{5} \cup{ }^{4} K_{x \times 5}$. By Example $1, G_{2} \mid{ }^{4} K_{5,5}$. Then since ${ }^{4} K_{5,5} \mid{ }^{4} K_{x \times 5}$, we have $G_{2} \mid{ }^{4} K_{5 x}$.

Theorem 6 There exists a G_{2}-decomposition of ${ }^{4} K_{5 x+1}$ for every positive integer x.

Proof Note that $G_{2}[1,5,0,3]$ is a 4-fold ρ^{+}-labeling of G_{2}. Then by Theorem 2, $G_{2} \mid{ }^{4} K_{5 x+1}$.

Theorem 7 There exists a G_{2}-decomposition of ${ }^{5} K_{4 x}$ for every positive integer x.
Proof Note that $G_{2}[0, \infty, 1,2]$ is an ordered 1-rotational 5-fold labeling of G_{2}. Then by Theorem $4, G_{2} \mid{ }^{5} K_{4 x}$.

Note that $G_{2} \nmid{ }^{5} K_{5}$. This can be checked exhaustively.
Theorem 8 There exists a G_{2}-decomposition of ${ }^{5} K_{8 x+1}$ for every positive integer x.

Proof Let $G^{\prime}=2 G_{2}$. Note that $G_{2}[1,4,0,2] \cup G_{2}[0,4,1,2]$ is a 5 -fold ρ^{+}-labeling of G^{\prime}. Then by Theorem $2, G^{\prime} \mid{ }^{5} K_{8 x+1}$. But $G_{2} \mid G^{\prime}$, so $G_{2} \mid{ }^{5} K_{8 x+1}$.

Theorem 9 There exists a G_{2}-decomposition of ${ }^{5} K_{8 x+5}$ for every positive integer x.

Proof Let $G^{\prime}=3 G_{2}$. Note that $G_{2}[1,2,0,5] \cup G_{2}[1,3,0,6] \cup G_{2}[0,3,2,6]$ is a 5 -fold ρ-labeling of G^{\prime}. Then by Theorem $1, G^{\prime} \mid{ }^{5} K_{13}$. But $G_{2} \mid G^{\prime}$, so $G_{2} \mid{ }^{5} K_{13}$.

Consider ${ }^{5} K_{8 x+5}$ as ${ }^{5} K_{8(x-1)} \cup{ }^{5} K_{13} \cup{ }^{5} K_{8(x-1), 13}$. By Theorem 7, $G_{2} \mid{ }^{5} K_{4 x}$, and so $G_{2} \mid{ }^{5} K_{8(x-1)}$. By Examples 3 and $4, G_{2} \mid{ }^{5} K_{2,2}$ and $G_{2} \mid{ }^{5} K_{2,3}$. Then since ${ }^{5} K_{4 x, 13}$ can be decomposed into copies of ${ }^{5} K_{2,2}$ and ${ }^{5} K_{2,3}, G_{2} \mid{ }^{5} K_{8 x+5}$.

Theorem 10 There exists a G_{2}-decomposition of ${ }^{10} K_{2 x}$ for every integer $x \geq 2$.
Proof Note that ${ }^{5} K_{4 x} \mid{ }^{10} K_{4 x}$. Then since $G_{2} \mid{ }^{5} K_{4 x}$ by Theorem 7, we need only consider the ${ }^{10} K_{4 x+2}$ case.

Let $G^{\prime}=3 G_{2}$. Note that $G_{2}[1, \infty, 0,2] \cup G_{2}[0,2,1, \infty] \cup G_{2}[1,3,0,2]$ is a 1rotational 10 -fold labeling of G^{\prime}. Then by Theorem $3, G^{\prime} \mid{ }^{10} K_{6}$. But $G_{2} \mid G^{\prime}$, so $G_{2} \mid{ }^{10} K_{6}$.

Consider ${ }^{10} K_{4 x+2}$ as ${ }^{10} K_{4(x-1)} \cup{ }^{10} K_{6} \cup{ }^{10} K_{4(x-1), 6}$. By Example 4, $G_{2} \mid{ }^{5} K_{2,3}$. Then since ${ }^{5} K_{2,3}\left|{ }^{10} K_{2,3}\right|{ }^{10} K_{4(x-1), 6}, G_{2} \mid{ }^{10} K_{4 x+2}$.

Theorem 11 There exists a G_{2}-decomposition of ${ }^{10} K_{2 x+1}$ for every integer $x \geq 2$.
Proof Note that ${ }^{5} K_{4 x+1} \mid{ }^{10} K_{4 x+1}$. Then since $G_{2} \mid{ }^{5} K_{4 x+1}$ with one exception by Theorems 8 and 9 , we need only consider the ${ }^{10} K_{4 x+3}$ case. The exception is that $G_{2} \nmid{ }^{5} K_{5}$. In this case, by Theorem 5, $G_{2} \mid{ }^{4} K_{5}$ and by Example 2, $G_{2} \mid{ }^{6} K_{5}$, and so indeed $G_{2} \mid{ }^{10} K_{5}$.

Let $G^{\prime}=3 G_{2}$. Note that $G_{2}[0,4,1,2] \cup G_{2}[0,2,1,3] \cup G_{2}[3,2,0,4]$ is a 10 fold ρ-labeling of G^{\prime}. Then by Theorem $1, G^{\prime} \mid{ }^{10} K_{7}$. But $G_{2} \mid G^{\prime}$, so $G_{2} \mid{ }^{10} K_{7}$.

Consider ${ }^{10} K_{4 x+3}$ as ${ }^{10} K_{4(x-1)} \cup{ }^{10} K_{7} \cup{ }^{10} K_{4(x-1), 7}$. By Theorem $10, G_{2} \mid{ }^{10} K_{4 x}$. By Examples 3 and $4, G_{2} \mid{ }^{5} K_{2,2}$ and $G_{2} \mid{ }^{5} K_{2,3}$. Then since ${ }^{10} K_{4(x-1), 7}$ can be decomposed into copies of ${ }^{5} K_{2,2}$ and ${ }^{5} K_{2,3}, G_{2} \mid{ }^{10} K_{4(x-1), 7}$. Thus $G_{2} \mid{ }^{10} K_{4 x+3}$.

Theorem 12 There exists a G_{3}-decomposition of ${ }^{4} K_{5 x}$ for every positive integer x.
Proof Note that $G_{3}[0, \infty, 1,2]$ is an ordered 1-rotational 4-fold labeling of G_{3}. Then by Theorem $4, G_{3} \mid{ }^{4} K_{5 x}$.

Theorem 13 There exists a G_{3}-decomposition of ${ }^{4} K_{5 x+1}$ for every positive integer x.

Proof Note that $G_{3}[0,4,2,3]$ is a 4-fold ρ^{+}-labeling of G_{3}. Then by Theorem 2, $G_{3} \mid{ }^{4} K_{5 x+1}$.

Theorem 14 There does not exists a G_{3}-decomposition of ${ }^{5} K_{4 x}$ for any positive integer x.

Proof Assume there exists a G_{3}-decomposition of ${ }^{5} K_{4 x}$. Let Δ be such a set of G_{3}-blocks.

Consider $u, v \in V\left({ }^{5} K_{4 x}\right)$ and the 5 parallel edges incident with both u and v, each of which must appear in some G_{3}-block of Δ. If four copies of edge $\{u, v\}$ appear in one G_{3}-block, then the remaining copy must appear in a G_{3}-block as an edge with multiplicity 1 . Thus every edge of multiplicity 4 in a G_{3}-block of Δ must pair with an edge of multiplicity 1 in separate G_{3}-block. It similarly follows for the remaining edges of ${ }^{5} K_{4 x}$ that every edge of multiplicity 3 in a G_{3}-block must pair with an edge of multiplicity 2 in another G_{3}-block.

Now take a vertex v in ${ }^{5} K_{4 x}$. Let m be the number of G_{3}-blocks that contain v. By the structure of G_{3}, in each G_{3}-block v is incident with an edge with multiplicity 1
or multiplicity 4 and an edge with multiplicity 2 or multiplicity 3 . This means there are m edges with multiplicity 1 or multiplicity 4 and m edges with multiplicity 2 or multiplicity 3.

Furthermore, since in the edges with multiplicity 1 must pair with edges with multiplicity 4 and edges with multiplicity 2 must pair with edges with multiplicity 3 , there must be $2 m$ sets of 5 parallel edges in ${ }^{5} K_{4 x}$ incident with v. However, v is adjacent to $4 x-1$ other vertices, a contradiction in parity. Thus, there cannot exist a G_{3}-decomposition of ${ }^{5} K_{4 x}$.

Theorem 15 There exists a G_{3}-decomposition of ${ }^{5} K_{4 x+1}$ for every positive integer x.

Proof Note that $G_{3}[0,4,1,2]$ is a 4-fold ρ^{+}-labeling of G_{3}. Then by Theorem 2, $G_{3} \mid{ }^{5} K_{4 x+1}$.

Theorem 16 There exists a G_{3}-decomposition of ${ }^{10} K_{2 x}$ for every integer $x \geq 2$.
Proof Let $G^{\prime}=2 G_{3}$. Then $G_{3}[0,2,1, \infty] \cup G_{3}[0, \infty, 1,2]$ is an ordered 1-rotational 10 -fold labeling of G^{\prime}. Then by Theorem $4, G^{\prime} \mid{ }^{10} K_{4 x}$. But $G_{3} \mid G^{\prime}$, so $G_{3} \mid$ ${ }^{10} K_{4 x}$. With this, we need only consider the ${ }^{10} K_{4 x+2}$ case.

Let $G^{\prime \prime}=3 G_{3}$. Then $G_{3}[3, \infty, 0,1] \cup G_{3}[0,1,3, \infty] \cup G_{3}[0,2,1,4]$ is a 1 rotational 10 -fold labeling of G^{\prime}. Then by Theorem $3, G^{\prime \prime} \mid{ }^{10} K_{6}$. But $G_{3} \mid G^{\prime \prime}$, so $G_{3} \mid{ }^{10} K_{6}$.

Consider ${ }^{10} K_{4 x+2}$ as ${ }^{10} K_{4(x-1)} \cup{ }^{10} K_{6} \cup{ }^{10} K_{4(x-1), 6}$. By Example 5, $G_{3} \mid{ }^{5} K_{2,2}$. But ${ }^{5} K_{2,2} \mid{ }^{10} K_{4(x-1), 6}$, so $G_{3} \mid{ }^{10} K_{4(x-1), 6}$. Thus $G_{3} \mid{ }^{10} K_{4 x+2}$.

Theorem 17 There exists a G_{3}-decomposition of ${ }^{10} K_{2 x+1}$ for every integer $x \geq 2$.
Proof Note that ${ }^{5} K_{4 x+1} \mid{ }^{10} K_{4 x+1}$. Then since $G_{3} \mid{ }^{5} K_{4 x+1}$ by Theorem 15, we need only consider the ${ }^{10} K_{4 x+3}$ case.

Let $G^{\prime}=3 G_{3}$. Note that $G_{3}[1,3,0,2] \cup G_{3}[1,4,0,6] \cup G_{3}[0,4,2,3]$ is a 10 fold ρ-labeling of G^{\prime}. Then by Theorem $1, G_{3} \mid{ }^{10} K_{7}$. But $G_{3} \mid G^{\prime}$, so $G_{3} \mid{ }^{10} K_{7}$.

Consider ${ }^{10} K_{4 x+3}$ as ${ }^{10} K_{4(x-1)} \cup{ }^{10} K_{7} \cup{ }^{10} K_{4(x-1), 7}$. By Theorem 16, $G_{3} \mid$ ${ }^{10} K_{4(x-1)}$. By Examples 5 and $6, G_{3} \mid{ }^{5} K_{2,2}$ and $G_{3} \mid{ }^{10} K_{2,3}$. Then since ${ }^{10} K_{4(x-1), 7}$ can be decomposed into copies of ${ }^{5} K_{2,2}$ and ${ }^{10} K_{2,3}, G_{3} \mid{ }^{10} K_{4(x-1), 7}$. Thus $G_{3} \mid$ ${ }^{10} K_{4 x+3}$.

We can combine these results to answer the main problems of this paper, Problems 1 and 2.

Theorem 18 Given an integer $n \geq 4$, the minimum λ for which there is a G_{2} decomposition of ${ }^{\lambda} K_{n}$ are as follows:

- $\lambda=4$ for $n \equiv 0,1,5,6,10,11,15,16(\bmod 20)$,
- $\lambda=5$ for $n \equiv 4,8,9,12,13,17(\bmod 20)$,
- $\lambda=10$ for $n \equiv 2,3,7,14,18,19(\bmod 20)$,
with the exception that the minimum λ for $n=5$ is $\lambda=6$.

Proof The necessity of these conditions are established in Lemma 1. All of these conditions are shown to be sufficient in the above theorems, with the exception for $n=5$, where there is no G_{2}-decomposition of ${ }^{5} K_{5}$. Instead, Example 2 provides sufficient conditions when $n=5$.

Theorem 19 Given an integer $n \geq 4$, the minimum λ for which there is a G_{3} decomposition of ${ }^{\lambda} K_{n}$ are as follows:

- $\lambda=4$ for $n \equiv 0,1,5,6,10,11,15,16(\bmod 20)$,
- $\lambda=5$ for $n \equiv 9,13,17(\bmod 20)$,
- $\lambda=10$ for $n \equiv 2,3,4,7,8,12,14,18,19(\bmod 20)$.

Proof The necessity of these conditions are established in Lemma 1. All of these conditions are shown to be sufficient in the above theorems, with the exception for $n \equiv 4,8,12(\bmod 20)$, where there is no G_{3}-decomposition of ${ }^{5} K_{4 x}$ for any x as shown in Theorem 14. Then for $n \equiv 4,8,12(\bmod 20)$, the next value of λ such that $|E(G)|$ divides $\lambda \frac{n(n-1)}{2}$ is $\lambda=10$. The sufficiency for a G_{3}-decomposition of ${ }^{10} K_{n}$ for these value of n is shown in Theorem 16.

Acknowledgements This research is partially supported by grant number A1063038 from the Division of Mathematical Sciences at the National Science Foundation. This work was done in part while the last four authors were participants in REU Site: Mathematics Research Experience for Pre-service and for In-service Teachers at Illinois State University. In a forthcoming article, we plan to settle the spectrum for all n and λ for each of G_{1}, G_{2}, and G_{3}.

References

1. N. A. Avila Cervantes, R. C. Bunge, H. R. Bush, D. P. Roberts, A. E. Rocha, and K. M. Stilson, Spectrum for multigraph designs on four vertices and six edges, J. Combin. Math. Combin. Comput. 106 (2018), 69-81.
2. D. Bryant and S. El-Zanati, "Graph decompositions," in Handbook of Combinatorial Designs, C. J. Colbourn and J. H. Dinitz (Editors), 2nd ed., Chapman \& Hall/CRC, Boca Raton, 2007, 477-485.
3. D. E. Bryant and T. A. McCourt, Existence results for G-designs, http://wiki.smp.uq.edu.au/ G-designs/.
4. R. C. Bunge, M. K. Chwee, A. M. Cooper, S. I. El-Zanati, K. L. Kennedy, D. P. Roberts, and C. C. Wilson, The spectrum problem for a multigraph on 4 vertices and 7 edges, Congr. Numer., 231 (2018), 239-248.
5. R. C. Bunge, S. I. El-Zanati, D. J. Gibson, D. P. Roberts, A. L. Sickman, L. A. States, and J. T. Ward, The lambda-fold spectrum problem for a multigraph on four vertices and eight edges, Congr. Numer., 231 (2018), 249-257.
6. R. C. Bunge, S. I. El-Zanati, A. Hakes, J. Jeffries, E. Mastalio, and J. Torf, On decomposing lambda-fold complete graphs into the standard Stanton 4-cycle, Congr. Numer., 215 (2013), 7-16.
7. R. C. Bunge, S. I. El-Zanati, L. Febles Miranda, J. Guadarrama, D. Roberts, E. Song, and A. Zale, On the lambda-fold spectra of tripartite multigraphs of order 4 and size 5, Ars Combin. 144 (2019), 323-343.
8. R. C. Bunge, S. I. El-Zanati, J. Mudrock, C. Vanden Eynden, and W. Wannasit, On lambda-fold Rosa-type labelings of bipartite multigraphs, Electron. Notes Discrete Math. 60 (2017), 11-23.
9. R. C. Bunge, J. Jeffries, J. Kirkpatrick, D. P. Roberts, and A. Sickman, Spectrum for multigraph designs on four vertices and six edges, Congr. Numer. 228 (2017), 29-49.
10. J. E. Carter, Designs on cubic multigraphs, Ph.D. Thesis, Department of Mathematics and Statistics, McMaster University, Canada, (1989).
11. H. Chan and D. G. Sarvate, Stanton graph decompositions, Bull. Inst. Combin. Appl. 64 (2012), 21-29.
12. S. I. El-Zanati, W. Lapchinda, P. Tangsupphathawat, and W. Wannasit, The spectrum for the Stanton 3-cycle, Bull. Inst. Combin. Appl. 69 (2013), 79-88.
13. S. Faruqi, S. A. Katre, and D. G. Sarvate, Decomposition of λK_{v} into Multigraphs with Four Vertices and Five Edges, Ars Combin. 136, 287-316.
14. D. W. Hein, and D. Sarvate, Decompositions of λK_{n} using Stanton-type graphs. J. Combin. Math. Combin. Comput. 90 (2014), 185-195.
15. D. W. Hein, and D. Sarvate, Decompositions of λK_{n} into $S(4,3)$'s. J. Combin. Math. Combin. Comput. 94 (2015) 3-14.
16. S. Malick and D. G. Sarvate, Decomposition of λK_{v} into Multigraphs with Four Vertices and Five Edges, J. Combin. Math. Combin. Comput. 86 (2013), 221-237.

k-Plane Matroids and Whiteley's Flattening Conjectures

Brigitte Servatius

Abstract

In this short note we consider the k-plane matroid, which is a matroid on the edge set, I, of a bipartite graph, $H=(A, B ; I)$, defined by a counting condition. We show that $2 k$-connectivity of H implies that I is a spanning set for the k-plane matroid on the edge set of the complete bipartite graph on (A, B). For $k=2$ we explain the connections to rigidity in the plane.

$1 \boldsymbol{k}$-Plane Matroids

Given a bipartite graph $H=(A, B ; I)$, also called an incidence structure, we define the generic k-plane matroid $\mathbf{M}_{k}(H)$ on I by setting subsets $I^{\prime} \subseteq I$ independent in $\mathbf{M}_{k}(H)$ if

$$
\left|I^{\prime \prime}\right| \leq\left|A\left(I^{\prime \prime}\right)\right|+k\left|B\left(I^{\prime \prime}\right)\right|-k
$$

holds for all subsets $I^{\prime \prime} \subseteq I^{\prime}$, where $A\left(I^{\prime \prime}\right)$ and $B\left(I^{\prime \prime}\right)$ are the supports of $I^{\prime \prime}$ in A and B respectively. An independent set I is k-tight if $\left|I^{\prime}\right|=\left|A\left(I^{\prime}\right)\right|+k\left|B\left(I^{\prime}\right)\right|-k$.

Given an incidence structure $H=(A, B, I)$, we define its associated butterfly graph as follows. The vertex set consists of the spine vertex set A together with the set of wing vertices $B \times\{1, \ldots, k\}$. For each $(a, b) \in I$ there are k edges $(a,(b, i))$ in the butterfly graph.

Examples of butterfly graphs of 2-tight graphs, with vertices in A colored black, vertices in B colored white, are given in Figs. 1 and 2, where, after doubling one edge, a 2-tree decomposition of the butterfly graph is indicated by the edge colors to illustrate Theorem 1.

[^6]

Fig. $1|A|=2,|B|=3, k=2$; a butterfly graph and its wings

BRIGITTE SERVATIUS

Fig. $2|A|=3,|B|=2, k=2$, 2-tight

Theorem $1 I$ is k-tight in the k-plane matroid on $(A, B ; I)$ if and only if adding any $k-1$ incidences yields an incidence structure whose associated butterfly graph decomposes into k spanning trees.

Proof After adding $k-1$ incidences, we have $k(|A|+k|B|-1)$ edges in the butterfly graph. Consider any subset $A^{\prime} \bigcup B^{\prime}$ of its vertex set. By summing over the wings and using the fact that I is independent, we get, writing $B^{\prime}=\bigcup B_{i}$ that the number of edges induced on $A^{\prime} \bigcup B^{\prime}$ is at most $\sum\left(a^{\prime}+k b_{i}-1\right) \leq k\left(a^{\prime}+k b^{\prime}-1\right)$.

Components of k-plane matroids. A component of the k-plane matroid is a maximal subincidence structure $\left(A^{\prime}, B^{\prime} ; I^{\prime}\right)$ for which there is an independent subset $I^{\prime \prime} \subseteq I^{\prime}$ with

$$
\left|I^{\prime \prime}\right|=\left|A^{\prime}\right|+k\left|B^{\prime}\right|-k .
$$

Theorem 2 Two distinct components intersect in at most $k-1 a$-vertices.
Proof Independent sets for which equality holds are in one to one correspondence with subsets of the butterfly graph for which adding any $(k-1)$ edges yields the union of k spanning trees. If two trees intersect in more than one vertex, the union is not a tree.

Consider the k-plane matroid as a matroid on the edges of the complete bipartite graph, $\mathbf{M}_{k}\left(K_{|A|,|B|}\right)=\mathbf{M}_{k,(|A|,|B|)}$. We may characterize the bases as follows:

Theorem 3 A subset $I \leq E\left(K_{|A|,|B|}\right)$ is a basis of $\boldsymbol{M}_{k,(|A|,|B|)}$ if and only if doubling any edge of I yields the union of k spanning trees in the k-fold butterfly graph on I with A as the body, and B as the wings.

Proof The k-fold butterfly graph has $k|I|$ edges and vertex set of size $|A|+k|B|$.
Since $|I|=|A|+k|B|-k$ for a basis, doubling an edge gives and edge set of size $|I|=|A|=k|B|-(k-1)$ so in the k-fold butterfly graph we get $k(|A|+k|B|-1)$ edges, just enough for k spanning trees. Since the inequalities have to be met for all subsets, we know by Nash-Williams's [1] theorem that we have the edge disjoint union of k-spanning trees.

2 The 2-Plane Matroid and the Connectivity of the Incidence Graph

Whiteley conjectured in "Matroids from Discrete Geometry" [2] that a set of incidences will be 2-tight if the bipartite incidence graph is 4 -connected.

We first show that there are 3-connected incidence graphs whose incidences are not 2-tight.

Consider $2 n$ copies of $K_{3,4}$ where the black vertices of each copy i are $\left\{a_{i}, b_{i}, c_{i}\right\}$, $i=1,2, \ldots, 2 n$. Identify vertex a_{i+1} with c_{i}, and vertex b_{i} with b_{i+n} indices modulo $2 n$.

The resulting graph is 3-connected since the removal of any vertex leaves a 2connected graph. It has $3 n$ black vertices and $8 n$ white vertices. It is tight if the rank is $3 n+16 n-2=19 n-2$, but each $K_{3,4}$ has rank equal to $3+2 \cdot 4-2=9$, so the rank of the whole graph can be at most $18 n$, and $18 n<19 n-2$ for all $n>2$.

For $n=3$ we have

In [3] Lovász and Yemini showed that 6-connectivity of a graph G implies that G is generically rigid in the plane. We adapt their proof to bipartite graphs in the proof of the following theorem.

Theorem 4 Let $G=(A, B ; I)$ be an incidence graph. If G is vertex 4-connected then I is 2-tight.

Proof Assume that there is a 4-connected graph which is not 2-tight. Among all counterexamples, choose one with $|A|$ minimal and among those one with $|I|$ maximal. Since I has rank less than $a+2 b-2$, we may decompose G into 2-tight components $G=G_{1} \cup G_{2} \cup \cdots \cup G_{d}, d \geq 2$, where $G_{i}=K_{a_{i}, b_{i}}$. A pair of components can intersect in at most one a vertex. 2-tight components never intersect in a b vertex. Moreover, each a vertex is contained in at least two of the G_{i} 's:

Assume for contradiction that there is a vertex $a \in G_{1}$ and $a \notin G_{2}, G_{3}, \ldots G_{d}$. Then $G-a$ is only 3 -connected, since G is vertex minimal, and so there exist vertices v_{1}, v_{2} and v_{3} such that $G-a-v_{1}-v_{2}-v_{3}$ is disconnected, with connected components H_{1} and H_{2}. Since G is 4-connected, $G-v_{1}-v_{2}-v_{3}$ is connected, hence a has an edge to both components H_{1} and H_{2}. Let b_{1} and b_{2} be vertex of H_{1} and H_{2} respectively, with $\left(a, b_{1}\right)$ and $\left(a, b_{2}\right)$ edges. Since b_{1} and b_{2} have degree at least 4, they are in turn connected to a set S of at least 4 vertices. If $S=\left\{a, v_{1}, v_{2}, v_{3}\right\}$, then G is $K_{4, m}$, which contradicts the assumption that G is not 2 -tight. If b_{1} and b_{2} are incident to a vertex x not in S then, since a is only in G_{1}, and G_{1} is complete bipartite, there are edges from vertex x to b_{1} and b_{2}, contradicting the fact that $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a separating set of $G-a$.

We have

$$
\operatorname{rank}(G)=\sum_{i=1}^{d}\left(a_{i}+2 b_{i}-2\right)=\sum_{i=1}^{d}\left(a_{i}-2\right)+2 b
$$

and now we want to show that

$$
\sum_{i=1}^{d}\left(a_{i}-2\right) \geq a
$$

Since G is 4-connected, each component contains at least $4 a$-vertices and every a-vertex is in at least two components, we have

$$
\sum_{\left|A\left(G_{i}\right)\right| \ni a}\left(1-\frac{2}{\left|A\left(G_{i}\right)\right|}\right) \geq 1
$$

which gives

$$
\sum_{i=1}^{i=d}\left|A\left(G_{i}\right)\right|\left[1-\frac{2}{\left|A\left(G_{i}\right)\right|}\right]=\sum_{i=1}^{i=d}\left(a_{i}-2\right) \geq a
$$

We conclude that the rank of G,

$$
\operatorname{rank}(G)=\sum_{i=1}^{d}\left(a_{i}+2 b_{i}-2\right) \geq a+2 b
$$

which is impossible.
Note that the proof may easily be adapted to show that if $G=(A, B ; I)$ is vertex $2 k$-connected then I is k-tight.

3 Connection to 2-d Rigidity

A bar-and-joint framework realizes an incidence structure $H=(A, B ; I)$ if there is a joint for each vertex in B and each vertex $a \in A$ is replaced by a tree of collinear bars on the joints incident with a. Whiteley proved in [4] that an incidence graph $G(A, B ; I)$ has a realization as an isostatic (minimally infinitesimally) rigid bar-and-joint framework in the plane if and only if $|I|=a+2 b-3$ and for any proper subset $I^{\prime} \subseteq I,\left|I^{\prime}\right| \leq a^{\prime}+2 b^{\prime}-3$. Note that if every b vertex of G has degree 2, this is Laman's theorem.

In Fig. 3, we give an incidence structure and two realizations. For the realization on four vertices, the black vertices of the bipartite graph represent the set B, while the white vertices represent lines. Note that by cutting off the rays and considering the line segments between vertices as bars, we find that the graph is overbraced, in fact a circuit in the 2 dimensional generic rigidity matroid, while the 12 incidences are 2-tight, because $|A|=6$ and $|B|=4$ yields $6+2 \cdot 4-2=12$.

In the second representation, the black vertices are realized as the four lines intersecting in six vertices. We now have $|A|=4$ and $|B|=6$, so $4+2 \cdot 6-2=14$, so the 12 incidences are not enough for 2-tightness, in fact the second realization is not rigid as a bar and joint framework (Fig.4).

An older result of Whiteley, [4], showed that:
Theorem 5 A generically independent body and pinframework in the plane remains independent for realizations generic under the condition that all pins of each body are collinear.

Jackson and Jordán [5] have confirmed that the analog in the plane also holds:

Fig. 3 Two realizations of a bipartite graph

Fig. 4 Butterfly graphs for (A, B;I) and (B, A;I)

Theorem 6 (Jackson and Jordan) A generically rigid body pin framework, with two bodies at each pin, remains first-order rigid for realizations generic under the condition that all pins of each body are collinear.

Katoh and Tanigawa [6] proved that a graph can be realized as an infinitesimally rigid body-hinge framework in \mathbb{R}^{d} if and only if it can be realized as an infinitesimal panel-hinge framework in \mathbb{R}^{d}. For $d=2$ this is equivalent to the Jackson-Jordán result.

Whiteley's result is not restricted to two bodies at each pin, so a generalized conjecture remains open, even in the plane:

Conjecture 1 (Whiteley < 2007) A generically rigid body pin framework, remains first-order rigid for realizations generic under the condition that all pins of each body are collinear, without restriction of how many bodies a pin is incident to.

Acknowledgements Thanks go to Walter Whiteley for discussions at York University back in 2007 and to the AIM workshop on Rigidity and Flexibility of Micro-structures in 2019, during which the proofs were finally written down.

References

1. C. St. J. A. Nash-Williams. Decomposition of finite graphs into forests. J. London Math. Soc., 39:12, 1964.
2. Walter Whiteley. Some matroids from discrete applied geometry. In Matroid theory (Seattle, WA, 1995), volume 197 of Contemp. Math., pages 171-311. Amer. Math. Soc., Providence, RI, 1996.
3. L. Lovász and Y. Yemini. On generic rigidity in the plane. SIAM J. Algebraic Discrete Methods, 3(1):91-98, 0196-5212, 52A37 (51N99 73K99), 644960, Paul Bankston 1982. https://doi.org/ 10.1137/0603009.
4. Walter Whiteley. A matroid on hypergraphs, with applications in scene analysis and geometry. Discrete Comput. Geom., 4(1):75-95, 1989.
5. Bill Jackson and Tibor Jordán. Pin-collinear body-and-pin frameworks and the molecular conjecture. Discrete Comput. Geom., 40(2):258-278, 2008.
6. Naoki Katoh and Shin-ichi Tanigawa. A proof of the molecular conjecture. Discrete Comput. Geom., 45(4):647-700, 2011.

Bounding the Trace Function of a Hypergraph with Applications

Farhad Shahrokhi

Abstract

An upper bound on the trace function of a hypergraph H is derived and its applications are demonstrated. For instance, a new upper bound for the VC dimension of H, or $v c(H)$, follows as a consequence and can be used to compute $v c(H)$ in polynomial time provided that H has bounded degeneracy. This was not previously known. Particularly, when H is a hypergraph arising from closed neighborhoods of a graph, this approach asymptotically improves the time complexity of the previous result for computing $v c(H)$. Another consequence is a general lower bound on the distinguishing transversal number of H that gives rise to applications in domination theory of graphs. To effectively apply the methods developed here, one needs to have good estimates of the degeneracy of a hypergraph and its variation the reduced degeneracy which is introduced here.

1 Introduction and Summary

Many important combinatorial problems in computer science, mathematics, and operations research arise from the set systems or hypergraphs. We recommend [3] and thesis [4] as references on hypergraphs. Formally, a hypergraph $H=(V, E)$ has the vertex set V and the edge set E, where each $e \in E$ is a subset of V. We do not allow multiple edges in our definition of a hypergraph, unless explicitly stated. When multiple edges exist, we slightly modify the concept. Let $S \subseteq V$ and $e \in E$. The trace of e on S is $e \cap S$. The restriction of H to S, denoted by $H[S]$, is the hypergraph on vertex set S whose edges are the set of all distinct traces of edges in E on $S . H[S]$ is also referred to as the induced subhypergraph of H on S. A Pseudo induced subhypergraph on the vertex set S is obtained from H by removing the set

[^7]$V-S$ and the set of all edges of H that have non-empty intersection with $V-S$. Note that any edge of such hypergraph is an edge e of H if $e \subseteq S . S$ is shattered in H, if any $X \subseteq S$ is a trace. Thus if S is shattered, then it has $2^{|S|}$ traces, that is, $H[S]$ has $2^{|S|}$ edges. The Vapnik-Chervonenkis (VC) dimension of a hypergraph H, denoted by $v c(H)$, is the cardinality of the largest subset of V which is shattered in H. It was originally introduced for its applications in statistical learning theory [26] but has shown to be of crucial importance in combinatorics and discrete geometry [11]. Let $S \subseteq V$, then, S is a transversal, or a hitting set, if $e \cap S \neq \emptyset$, for all $e \in E$. A set S is a distinguishing set if any two distinct edges of H have different traces on (intersections with) S. Let $d t(H)$ denote the size of a smallest distinguishing transversal set in H. Note that if S is a smallest distinguishing transversal set, then it can not have an empty trace on it.

For any $x \in V$, let degree of x, denoted by $d_{H}(x)$, denote the number of edges that contain x. We denote by $\delta(H)$, the smallest degree of any vertex in H.

Any definition for a hypergraph readily extends to a subhypergraph. A hypergraph I is a subhypergraph of H if it can be obtained by deleting some edges in $H[S]$ for some $S \subseteq V$. (Note that there are subhypergraphs of H that may not be induced.) Particularly, for any $x \in S$, the degree of x in I is denoted by $d_{I}(x)$. Furthermore $\delta(I)$ denotes the minimum degree of I. The degeneracy of H, denoted by $\hat{\delta}(H)$, is the largest minimum degree of any subhypergraph of H. Observe that one can define $\hat{\delta}(H)$ as the largest minimum degree of any induced subhypergraph of H, since the addition of new edges to a hypergraph does not decrease the degrees of vertices. The pseudo degeneracy of H, denoted by $\delta^{*}(H)$, is the largest minimum degree of any pseudo induced subhypergraph of H. Finally, the reduced degeneracy of H, denoted by $\widetilde{\delta}(H)$ is the largest pseudo degeneracy of any induced subhypergraph of H.
Proposition 1 For any induced subhypergraph I of H, one has $\delta^{*}(I) \leq \widetilde{\delta}(I) \leq$ $\hat{\delta}(I)$, consequently, $\delta^{*}(H) \leq \widetilde{\delta}(H) \leq \hat{\delta}(H)$.

The trace function of H denoted by $T[H, k]$, is the largest number of traces of H on a set $S,|S|=k$. Unless otherwise stated, we assume that $T[H, k]$ counts the number of non empty traces only.

A powerful tool in studying hypergraph problems with a very broad range of applications is the Sauer Shelah Lemma [20, 23]. The Lemma asserts for any hypergraph H with $v c(H)=d$ and any $k \geq 0$, one has:

$$
\begin{equation*}
T[H, k] \leq \sum_{i=0}^{d}\binom{k}{i}=O\left(k^{d}\right) \tag{1}
\end{equation*}
$$

The concept of a trace function is also studied as the Max Partial VC Dimension [2]. Particularly, it was shown in [2] that

$$
\begin{equation*}
T[H, k] \leq k(\Delta(H)+1) / 2+1 \tag{2}
\end{equation*}
$$

Our main result in this paper is Lemma 1, which is an upper bound on $T[H, k]$. A simple consequence of this upper bound is

$$
\begin{equation*}
T[H, k] \leq k \widetilde{\delta}(H) \tag{3}
\end{equation*}
$$

This upper bound is within a multiplicative factor of $\widetilde{\delta}(H)$ from the lower bound of $L(H, k)=\min \{|E|, k+1\}$ (when H does not have multiple edges) that has also been recently constructed in [2]; Thereby, $T(H, k)$ is proportional to k, provided that reduced degeneracy of H is "small", and hence in light of our upper bound for $T(H, k)$, the lower bound $L(H, k)$ (constructed in [2]), actually approximates $T(H, k)$ (for any k) to within a factor of $\widetilde{\delta}(H)$ which is an improvement of the factor $(\Delta(H)+1) / 2+1$ as authors stated in [2].

This paper is organized as follows. Section two contains our main lemma as well as the lower bound on distinguishing transversal number. Section three contains the applications to VC dimension. Section four contains the applications to domination theory by deriving general lower bounds for several variations of domination number of a graph [12]. The bounds are derived using the lower bound on distinguishing transversal number. For trees, our bounds are shown to match some of the best known results, or come close to them.

We finish this section by stating two folklore results for computing degeneracy and pseudo degeneracy of a hypergraph. The properties of the output of algorithm will help to establish some of our claims more easily.

Theorem 1 Let $H=(V, E)$ be a hypergraph, then $\hat{\delta}(H)$ can be computed in $O\left(|V|+\sum_{e \in E}|e|\right)$ time.

Proof For $i=1,2, \ldots n$, let x_{i} be a vertex of degree $d_{i}=d_{H_{i}}\left(x_{i}\right)=\delta\left(H_{i}\right)$ in the induced subhypergraph $H_{i}=H\left[V_{i}\right]$ on the vertex set $V_{i}=V-\left\{x_{1}, x_{2}, \ldots, x_{i-1}\right\}$. Let $d=\max \left\{d_{i}, i=1,2, \ldots, n\right\}$. We claim that $\hat{\delta}(H)=d$. Clearly, $\hat{\delta}(H) \geq d$, and it suffices to show that $\hat{\delta}(H) \leq d$. Now let I be any (induced) subhypergraph of H, and let j be the smallest integer so that x_{j} is a vertex of I. Then $d_{I}\left(x_{j}\right) \leq$ $d_{j}=\delta\left(H_{j}\right) \leq d$. Thus, $\delta(I) \leq d$, and consequently, $\hat{\delta}(H) \leq d$ as stated. Details of deriving time complexity that include representation of H as a bipartite graph and utilization of elementary data structures are omitted.

For a subhypergraph $I=(U, F)$ of H, and any $x \in U$, let F_{x} denote the set of edges in F containing x. The next result almost copies Theorem 1 .

Theorem 2 Let $H=(V, E)$, be a hypergraph, then, $\delta^{*}(H)$ can be computed in $O\left(|V|+\sum_{e \in E}|e|\right)$ time.

Proof For $i=1, .2, \ldots n$, let x_{i} be a vertex of degree $d_{i}=d_{H_{i}}\left(x_{i}\right)=\delta\left(H_{i}\right)$ in the subhypergraph H_{i} on the vertex set $V_{i}=V-\left\{x_{1}, x_{2}, \ldots, x_{i-1}\right\}$ and edge set $E_{i}=$ $E-\left\{E_{x_{1}}, E_{x_{2}}, \ldots, E_{x_{i-1}}\right\}$. Let $d=\max \left\{d_{i}, i=1,2, \ldots, n\right\}$. Clearly, $\delta^{*}(H) \geq d$. Now let I be any pseudo induced subhypergraph of H, and let j be the smallest integer so that x_{j} is a vertex of I. Then, vertex set of I does note contain $x_{i}, i=$
$1,2, \ldots, j-1$; Consequently, the edge set of I is a subset of E_{j}. Then $d_{I}\left(x_{j}\right) \leq$ $d_{j}=\delta\left(H_{j}\right) \leq d$ proving the claim. Details of deriving time complexity that include representation of H as a bipartite graph and utilization of elementary data structures are omitted.

Remark 1 The sequences $d_{1}, d_{2}, \ldots, d_{n}$ generated in Theorems 1 and 2 are called the degeneracy sequence, and pseudo degeneracy sequence, respectively.

2 Main Results

For a subhypergraph $I=(U, F)$ of H, and any $x \in U$, let F_{x} denote the set of edges in F containing x.

Lemma 1 Let $H=(V, E)$, let $S \subseteq V,|S|=k$, and let $I=H[S]=(S, F)$ be the restriction of H to S. For $i=1, \ldots, k$, let x_{i} be a vertex in subhypergraph I_{i} on the vertex set $S_{i}=S-\left\{x_{1}, x_{2}, \ldots, x_{i-1}\right\}$ and edge set $F_{i}=F-\left\{F_{x_{1}}, F_{x_{2}}, \ldots, F_{x_{i-1}}\right\}$. and let $k, j, l \geq 0$ be integers with $k=l+j$. Then,

$$
\begin{align*}
|F| & =\sum_{i=1}^{k}\left|F_{x_{i}}\right|=\sum_{i=1}^{k} d_{I_{i}}\left(x_{i}\right) \tag{4}\\
& =\sum_{i=1}^{l} d_{I_{i}}\left(x_{i}\right)+\left|F_{l+1}\right| \tag{5}\\
& \leq \sum_{i=1}^{l} d_{I_{i}}\left(x_{i}\right)+T[H, j] \tag{6}
\end{align*}
$$

Consequently,

$$
\begin{align*}
T[H, k] & \leq \delta^{*}(I) \times l+T[H, j] \tag{7}\\
& \leq \delta^{*}(I) \times k \tag{8}\\
& \leq \widetilde{\delta}(H) \times k \tag{9}
\end{align*}
$$

Proof For (4) observe that $F=\cup_{i=1}^{k} F_{x_{i}}$, that for $i=1,2 \ldots, k, F_{x_{i}}$'s are disjoint and $\left|F_{x_{i}}\right|=d_{I_{i}}\left(x_{i}\right)$. For (5) note that $F_{l+1}=\cup_{i=l+1}^{k} F_{x_{i}}$. Next, note that the hypergraph I_{l+1} has the vertex set $S_{l+1}=\left\{x_{l}, x_{l+1}, \ldots, x_{k}\right\}$, thus, $\left|S_{l+1}\right|=k-l=j$. Consequently, (6) follows, since $\left|F_{l+1}\right| \leq T[H, j]$. For (7), for $i=1,2, \ldots, k$, let x_{i} to be a vertex of minimum degree in I_{i}, that is $d_{I_{i}}\left(x_{i}\right)=\delta\left(I_{i}\right)$, note that $\delta\left(I_{i}\right) \leq \delta^{*}(I)=\max \left\{\delta\left(I_{i}\right), i=1,2, \ldots, k\right\}$ (by Theorem2) and use (6); Now set $j=0$ to obtain (8) and note that $\delta^{*}(I) \leq \widetilde{\delta}(H)$ to obtain (9).

Remark 2 Note that $S_{1}=S-\left\{x_{0}\right\}=S-\emptyset=S$, and similarly $F_{1}=F$, in the above Lemma.

Theorem 3 For any hypergraph $H=(V, E)$, and any integer $0 \leq j \leq d t(H)$, one has

$$
d t(H) \geq \frac{|E|-T[H, j]}{\widetilde{\delta}(H)}+j .
$$

Consequently,

$$
d t(H) \geq \frac{|E|-2^{j}+1}{\widetilde{\delta}(H)}+j .
$$

Proof Let S with $|S|=d t(H)$ be the smallest cardinality distinguishing transversal set; Thus S must have exactly $|E|$ non empty distinct traces, that is, $T(H, d(H))=$ $|E|$. Now applying Lemma 1 , we have $|E| \leqq \delta^{*}(H[S])(d t(H)-j)+T[H, j]$ which proves the main claim, since $\delta^{*}(H[S]) \leq \widetilde{\delta}(H)$. To verify the second claim note that $T[H, j] \leq 2^{j}-1$.

3 Applications to VC Dimension

It is easy to verify that $v c(H) \leq \log (|E|)$ for any hypergraph H. It was previously known that when H has an explicit representation by an $m \times n$ incident matrix, $v c(H)$ can be computed in $n^{O(\log (n))}$ [16]. Also, the decision version of the problem is LOGNP-complete [17] and remains in this complexity class for neighborhood hypergraphs of graphs [15]. A simple and immediate consequence of our work is that $v c(H) \leq \log (\hat{\delta}(H))+1$ (which was not known before) and hence $v c(H)$ can be computed in $n^{O(\log (\hat{\delta}(H))}$. Consequently, $v c(H)$ can be computed in polynomial time for hypergraphs of bounded degeneracy, which had not been known. Moreover, these results give rise to an algorithm for computing $v c(H)$ in $n 2^{O\left(\log ^{2}(\Delta(G))\right)}$ time, when H is the set of all closed neighborhoods of vertices of a graph G with maximum degree $\Delta(G)$. This is an asymptotic improvement of the best known time complexity of $O\left(n 2^{\Delta(G)}\right)$ for solving the problem which was derived in [15].

Theorem 4 Let $H=(V, E),|V|=n$, then, $v c(H) \leq \log (\hat{\delta}(H))+1$. Consequently, for any n vertex hypergraph $H, v c(H)$ can be computed in $n^{O(\log (\hat{\delta}(H)))}$ time. Particularly, if H is the closed neighborhood hypergraph of an n vertex graph with maximum degree Δ, then $v c(H)$ can be computed in $n 2^{O\left(\log ^{2}(\Delta)\right)}$ time.

Proof Let S with $|S|=d$ be a largest shattered set in H. We apply Lemma 1 with $j=d-1$. Thus, $2^{d}-1=T(H, d) \leq \hat{\delta}(H)(d-d+1)+2^{d-1}-1$, which gives $d \leq \log (\hat{\delta}(H))+1$ as claimed.

To compute $v c(H)$, one can represent H in its incidence matrix form, requiring $O(n m)$ space, or in $O\left(n^{2} \hat{\delta}(H)\right)$ space, where m is the number of edges of H, since by Lemma 1 with $k=n$ one has $m \leq n \hat{\delta}(H)$. Now one can find $v c(H)$ by exhaustive enumeration. Note that the largest shattered subset has size $O(\log (\hat{\delta}))$; Hence in $n^{O(\log (\hat{\delta}(H)))}$ time, one can compute $v c(H)$. To prove the claim when H is the
closed neighborhood hypergraph, note that $\hat{\delta}(H) \leq \Delta(G)+1$, and hence $v c(H)=$ $O(\log (\Delta(G)))$. Since the largest shattered set must be contained in the closed neighborhood of one vertex of G, the enumeration algorithm takes $n \Delta(G)^{O(\log (\Delta(G)))}$ or in $n 2^{O\left(\log ^{2}(\Delta(G))\right)}$ time.

Remark 3 Note that the enumeration algorithm in Theorem 4 does not require knowing $\hat{\delta}(H)$, although $\hat{\delta}(H)$ can be computed in polynomial time. Also note that the run time of $n 2^{O\left(\log ^{2}(\Delta(G))\right)}$ for computing VC dimension of neighborhood system of graphs compares favorable with the time complexity of $O\left(n 2^{\Delta(G)}\right)$ derived in [15].

4 Applications to Domination Theory

We recommend [12] as a reference on domination theory. For a graph $G=(V, E)$ and a vertex $x, N(x)$ denotes the open neighborhood of x, that is the set of all vertices adjacent to x, not including x. The closed neighborhood of x is $N[x]=N(x) \cup\{x\}$. The closed (open) neighborhood hypergraph of an n vertex graph G is a hypergraph on the same vertices as G whose edges are all n closed (open) neighborhoods of G. A subset of vertices S in G is a dominating set [12], if for every vertex x in G, $N[x] \cap S \neq \emptyset$. S is a total or open domination set [6] if, $N(x) \cap S \neq \emptyset$. A subset of vertices S is locative in G, if for every two distinct vertices $x, y \in V-S$, one has $N(x) \cap S \neq N(y) \cap S$. S is totally locative in G, if for every two distinct vertices $x, y \in V$, one has $N(x) \cap S \neq N(y) \cap S$. A subset S of vertices in G is a locating dominative (locating total dominative) if it is a dominating (total dominating) set and it is also a locative set [24,25]. S is an identifying code if it is a dominating set and for every two distinct vertices $x, y \in V$, one has $N[x] \cap S \neq N[y] \cap S$ [14]. S is an open locating dominative set, if S is a totally domination set and also totally locative in G [22]. Let $\gamma^{L D}(G)$ and $\gamma^{I D}(G)$ denote the sizes of a smallest location domination and identifying code sets in G, respectively. Let $\gamma^{O L D}(G)$ denote the size of a smallest open location domination in G. Computing $\gamma^{L D}(G), \gamma^{I D}(G)$ and $\gamma^{O L D}(G)$ are known to be NP-hard problems and hence estimations of these parameters or their computational complexities have been an active area of research [1, 2, 5, 7-10, 18, 19, 21, 22]. Recall that the distinguishing transversal number of H, denote by $d t(H)$, is the minimum size of any distinguishing transversal set [13]. A consequence of our upper bound for $T[H, k]$, is that for any hypergraph $H=(V, E)$ and any integer $0 \leq j \leq d t(H)$ one has $d t(H) \geq \frac{|E|-T[H, j]}{\delta(H)}+j$. By properly applying this result to suitable neighborhood hypergraphs of a graph, one obtains some general lower bounds on $\gamma^{L D}(G), \gamma^{I D}(G)$ and $\gamma^{O L D}(G)$. For a specific application, one needs to determine the exact value or a good estimate for $\widetilde{\delta}(H)$ or $\hat{\delta}(H)$, and this can become a challenging task.
Theorem 5 Let G be an n vertex graph with closed and open neighborhood hypergraphs H and H^{o}, respectively, let $\delta^{* *}(H)=\min \left\{\tilde{\delta}(H), \widetilde{\delta}\left(H^{o}\right)\right\}$. Then the following hold for any $0 \leq j \leq \gamma^{I D}$ in (i), $0 \leq j \leq \gamma^{O L D}$ in (ii) and $0 \leq j \leq \gamma^{L D}$ in (iii), where H and H^{o} do not have multiple edges in (ii) and (iii), respectively.
(i) $\gamma^{L D}(G) \geq \frac{n+\delta^{* *}(H) . j-T[H, j]}{\delta^{* *}(H)+1}$.
(ii) $\gamma^{I D}(G) \geq \operatorname{Max}\left\{\frac{n-T[H, j]}{\tilde{\delta}(H)}+j, \frac{n+\delta^{* *}(H) \cdot j-T[H, j]}{\delta^{* *}(H)+1}\right\}$.
(iii) $\gamma^{O L D}(G) \geq \operatorname{Max}\left\{\frac{n-T[H, j]}{\delta\left(H^{o}\right)}+j, \frac{n+\delta^{* *}(H) \cdot j-T[H, j]}{\delta^{* *}(H)+1}\right\}$.

Proof For (i), let S be the smallest cardinality locative dominative set in G. Now, let $H^{1}=\left(V, E^{1}\right)$, where $E^{1}=\{N(x) \mid x \in V-S\}$ and $H^{2}=\left(V, E^{2}\right)$ where $E^{2}=$ $\{N[x] \mid x \in V-S\}$. Note that for $i=1,2, T\left(H^{i},|S|\right)=n-|S| \leq \widetilde{\delta}\left(H^{i}\right)(|S|-$ $j)+T\left[H^{i}, j\right]$ where last inequality is obtained by the application of Lemma 1. Furthermore, H^{1} is a subhypergraph of H^{\prime}, and H^{2} is a subhypergraph of H. Consequently, $\widetilde{\delta}\left(H^{1}\right) \leq \widetilde{\delta}\left(H^{\prime}\right)$ and $\widetilde{\delta}\left(H^{2}\right) \leq \widetilde{\delta}(H)$. It follows that $n-|S| \leq \delta^{* *}(H)(|S|-$ $j)+T[H, j]$. To finish the proof note that $L D(G)=|S|$, and do the algebra.

For (ii), note that $\gamma^{I D}(G) \geq \gamma^{L D}(G)$ and hence the lower bond in (i) is also a lower bound for $\gamma^{I D}(G)$. To complete the proof, observe that S is an identifying code set in G if and only if S is a distinguishing transversal in H. Thus, $d t(H)=\gamma^{I D}(G)$. Now apply Theorem 3.

Similarly for (iii) note that $\gamma^{O L D}(G) \geq \gamma^{L D}(G)$, and that, S is an totally dominative and totally locative set in G, if and only if, S is a distinguishing transversal set in H^{\prime} and thus $d t\left(H^{\prime}\right)=\gamma^{O L D}(G)$. Now apply Theorem 3 .

Remark 4 Let G be an n vertex graph of maximum degree $\Delta(G)$ with closed and open neighborhood hypergraphs H and H^{o}, respectively. Then clearly $\hat{\delta}(H) \leq$ $\Delta(G)+1$ and $\hat{\delta}\left(H^{o}\right) \leq \Delta(G)$, since the largest sets in H and H^{0} are of cardinalities $\Delta(G)+1$ and $\Delta(G)$, respectively. As we will see, one can get much stronger results in trees.

Remark 5 Let L denote the set of leaves in a tree T, and note that after removal of all vertices in L from T we obtain another tree T^{\prime}. Let S denote the set of all leaves of the tree T^{\prime}. Then each vertex in S is a support vertex in T and is called a canonical support vertex in T.

Theorem 6 If T is a $n \geq 2$ vertex tree with closed and open neighborhood hypergraphs H and H°, respectively, then the following hold.
(i) $\hat{\delta}(H) \leq 3$.
(ii) $\hat{\delta}\left(H^{o}\right) \leq 2$.
(iii) $\widetilde{\delta}\left(H^{o}\right) \leq 2$.
(iv) $\delta^{*}(H) \leq 2$.
(v) $\delta^{*}\left(H^{o}\right) \leq 2$.

Proof For $n \leq 2$ the claims are valid so let $n \geq 3$. For (i) note that for any vertex $x, d_{H}(x)$ equals degree of x in T plus one, and hence for any leaf x, one has $d_{H}(x)=\delta(H)=2$. Now apply Theorem 1 , and let $d_{1}, d_{2}, \ldots d_{n}$, be the sequence or minimum degrees generated by the algorithm associated with vertices $x_{1}, x_{2}, \ldots x_{n}$, in the subhypergraph $H_{1}, H_{2}, \ldots H_{n}$. Note that for any leaf of $x=x_{i}$ of T, we have $d_{H_{i}}\left(x_{i}\right)=d_{i} \leq 2$, where $1 \leq i \leq n$. Note further that by the previous remark any leaf in the new tree T^{\prime} is a canonical support vertex of T and will of degree at most 3 in
the hypergraph obtained after removing all leaves attached to it. Thus after removal of all leaves of T, we obtain a tree T^{\prime} whose leaves have degree at most three in the associated hypergraph. Now iterate on this process by removing all leaves of T^{\prime} to obtain a tree $T^{\prime \prime}$, and note that the degree of any leaf of $T^{\prime \prime}$ in the associate hypergraph is at most three. Consequently for $i=1,2, \ldots, n$ we have $d_{i} \leq 3$. For (ii), a similar argument is carried out, but we need to observe that initially $d_{H^{o}}(x)=\delta\left(H^{o}\right)=1$ and that after removal of leaves in T, any leaf of the resulting tree T^{\prime} has degree at most two in the corresponding hypergraph. (iii) follows from (ii). For (iv), we follow the arguments in (i), and note that degree of any leaf x of T is initially two in H. Now apply Theorem 2 and note that after removing any leaf x, the degree of all leaves with the same support vertex becomes one in the corresponding hypergraph, and after removing all leaves joined to a canonical support vertex s, the degree of s becomes one in the resulting hypergraph.

Finally, (iv) follows from (iii).
Remark 6 Corollary 1 summarizes some specific applications of our results in this section by eliminating past ad hoc approaches. Particularly, the lower bound in part (i) matches the best previously known lower bound of $\frac{n+1+2(L-S)}{3}$ in [22], however, is weaker (by a multiplicative factor of $3 / 2$) in part (ii) than a recent result in [18], and in part (iii) is weaker only by an additive factor of 1 when n is odd compared to the result in [22].

Corollary 1 Let T be an $n \geq 4$ vertex tree, with L leaves and S support vertices. Then the following hold. For (ii) assume that every support vertex is adjacent to only one leaf.
(i) $\gamma^{L D}(T) \geq \frac{n+1+2(L-S)}{3}$.
(ii) $\gamma^{I D}(T) \geq \frac{n+3}{3}$.
(iii) $\gamma^{O L D}(T) \geq \frac{n+1}{2}$.

Proof For (i) let D be an LD set and let s be a support vertex. We assume WLOG that $s \in D$, otherwise by placing s and all but one leaf attached to s in D, we obtain another $L D$ set of the same size. Now follow Theorem 5 and Lemma 1 and note that a total of $L-S$ leaves have degree zero in hypergraph H^{1} (defined in Theorem 5). Thus, we have

$$
\begin{align*}
n-|D| & \leq L^{*}+T\left[H^{1}, D-(L-S)\right] \tag{10}\\
& \leq T\left[H^{1}, D-\left(L+L^{*}-S\right)-1\right]+1 \tag{11}\\
& \left.\leq \widetilde{\delta}\left(H^{1}\right)(|D|-(L-S)-1)+1\right) \tag{12}\\
& \leq 2((|D|-(L-S)-1)+1 \tag{13}
\end{align*}
$$

where the last three inequalities are obtained by the application of Lemma 1, Theorem 6 and noting that $T\left[H^{1}, 1\right]=1$. Now (i) follows.

For (ii) use $j=2$, and $\delta^{*}(H) \leq 3$ from Theorem 6 and use Theorem 4.1. For (iii) use Theorem 5 with $j=1$ and $\widetilde{\delta}\left(H^{0}\right) \leq 2$ from Theorem 6.

Acknowledgements We thank N. Bousquet for pointing out an error on an earlier version of this paper and email discussions.

References

1. Auger D., Charon I., Hudry O., Lobstein A.: Complexity results for identifying codes in planar graphs. International Transactions in Operational Research 17(6), pp. 691-10 (2010).
2. Bazgan C., Foucaud F., Sikora F.: Parameterized and Approximation Complexity of Partial VC Dimension, Theoretical Computer Science 766(25), pp. 1-15 (2019).
3. Berge C..:Theory of Graphs and its Applications. Methuen, London (1962)). RI, 1962.
4. Bousquet N.: Hitting sets: VC-dimension and Multicuts. Université Montpellier II-Sciences et Techniques du Languedoc (2013).
5. Bousquet N., Lagoutte A., Li Z., Parreau A., Thomasse A.: Identifying codes in hereditary classes of graphs and VC-dimension. SIAM Journal on Discrete Mathematics 29(4), pp. 20472064 (2015).
6. Cockayne E.J., Dawes R.M., Hedetniemi S.T.: Total domination in graphs, Networks 10, pp. 211-219 (1980).
7. Foucaud F., Gravier S., Naserasr R.: A. Parreau and P. Valicov. Identifying codes in line graphs. Journal of Graph Theory 73(4), pp. 425-448 (2013).
8. Foucaud F., Mertzios G., Naserasr R., Parreau A., Valicov P.:Algorithms and complexity for metric dimension and location-domination on interval and permutation graphs. Proceedings of the 41st International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2015, 456-471 (2015).
9. Foucaud F.: Decision and approximation complexity for identifying codes and locatingdominating sets in restricted graph classes. Journal of Discrete Algorithms 31, pp. 48-68 (2015).
10. Foucaud F., Mertzios G., Naserasr R., Parreau A., Valicov P.: Identification, locationdomination and metric dimension on interval and permutation graphs. I. Bounds. Algorithmica 78, pp. 914-944 (2017).
11. Haussler D., and Welzl E.: ϵ-nets and simplex range queries. Discrete and Computational Geometry 2, pp. 127-151 (1987).
12. Haynes T.W., Hedetniemi S. T., Slater S.: Fundamentals of Domination in Graphs. CRC press (1988).
13. Henning M., Yeo A.: Distinguishing-transversal in hypergraphs and identifying open codes in cubic graphs. Graphs and Combinatorics 30(4), pp. 909-932 (2014).
14. Karpovsky M.G., Chakrabarty K., Levitin L.B.: On a new class of codes for identifying vertices in graphs. IEEE Transactions on Information Theory 44, pp. 599-611 (1998).
15. Kranakis E., Krizanc D., Ruf B., Urrutia J., Woeginger G., The VC-dimension of set systems defined by graphs, Discrete Appl. Math. 77, pp. 237-257 (1997).
16. Linial N., Mansour Y., Rivest R. L.: Results on learnability and the Vapnik-Cervonenkis dimension. In Proceedings of FOCS, pp. 120-129 (1988).
17. Papadimitriou C.H., Yannakakis M.: On limited nondeterminism and the complex- ity of the VC dimension. Journal of Computer and System Sciences 53(2), pp. 161-70 (1996).
18. Rahbani H., Jafari Rad N., MirRezaei S.M.: Bounds on the Identifying Codes in Trees, Graphs and Combinatorics 35, pp. 599-609 (2019).
19. Rall D. and Slater P.: On location-domination numbers for certain classes of graphs. Congressus Numerantium 45, pp. 97-106 (1984).
20. Sauer, N. On the density of families of sets, Journal of Combinatorial Theory, Series A 13, pp. 145-147 (1972).
21. S. J. Seo, Slater P.J.: Open neighborhood locating-dominating sets. The Australasian Journal of Combinatorics 46, pp. 109-120 (2010).
22. Seo S.J., Slater P.J.: Open neighborhood locating-dominating in trees. Disc. App. Math. 159, pp. 484-489 (2011).
23. Shelah, S. A combinatorial problem;.:stability and order for models and theories in infinitary languages, Pacific Journal of Mathematics 41, pp. 247-261 (1972).
24. Slater P.J.:Domination and location in acyclic graphs. Networks 17(1), pp. 55-64 (1987).
25. Slater P. J.: Dominating and reference sets in a graph. Journal of Mathematical and Physical Sciences 22(4), pp. 445-455 (1988).
26. Vapnik, V. N., Chervonenkis A.: On the Uniform Convergence of Relative Frequencies of Events to Their Probabilities. Theory of Probability and Its Applications. 16(2), pp. 264-279, Springer (1971).

A Generalization on Neighborhood Representatives

Sarah Heuss Holliday

Abstract

In 2017, Hedetniemi asked the question "for which graphs G does the indexed family $\left\{N_{G}(v) \mid V \in V(G)\right\}$ of open neighborhoods have a system of distinct representatives?" In [2,3] we answered that question, and explored necessary conditions and associated parameters. In [1], Haenel and Johnson looked over longest paths and cycles. We are now generalizing and deepening our examination.

Keywords SDR • Neighborhoods • Matchings • Independent set

All graphs will be finite and simple. In [2], we called a graph G SDR-good if the indexed collection $\mathcal{N}(G)=\left\{N_{G}(v) \mid v \in V(G)\right\}$ of open neighborhoods has a system of distinct representatives (SDR). An SDR for $\mathcal{N}(G)$ is a one-to-one function ϕ : $V(G) \rightarrow V(G)$ such that $\phi(v) \in N_{G}(v)$ for all $v \in V(G)$.

Theorem 1 ([2]) A graph G is SDR-good if and only if G has a spanning subgraph the components of which are either single edges or cycles.

In [3], we developed analogous results for sets of maximum matchings and maximum independent sets. Let $\mathcal{M}(G)$ be the set of all maximum matchings in G. We shall say that a graph is SDR- $\mathcal{M}(G)$-good if $\mathcal{M}(G)$ has a system of distinct representatives (SDR). An SDR for $\mathcal{M}(G)$ is a one-to-one function $\phi: \mathcal{M}(G) \rightarrow E(G)$ such that $\phi(M) \in M$ for all $M \in \mathcal{M}(G)$. Note that the existence of such a function requires $|E(G)| \geq|\mathcal{M}(G)|$. So, $|E(G)|<|\mathcal{M}(G)|$ implies that G is not SDR- $\mathcal{M}(G)$-good.

Theorem 2 ([3]) $|\mathcal{M}| \leq|E|$ is necessary but not sufficient for G to be $\operatorname{SDR}-\mathcal{M}(G)$ good.

We developed the following result for maximum independent sets: Let $\mathcal{I}(G)$ be the set of maximum independent sets in G. We shall say that a graph is $\operatorname{SDR}-\mathcal{I}(G)$-good if the set $\mathcal{I}(G)$ has a system of distinct representatives (SDR). An SDR for $\mathcal{I}(G)$ is a one-to-one function $\phi: \mathcal{I}(G) \rightarrow V(G)$ such that $\phi(I) \in I$ for all $I \in \mathcal{I}(G)$. Using

[^8]properties of line graphs and the preceding result, we're able to show the following result.

Theorem 3 ([3]) If G is $\operatorname{SDR}-\mathcal{M}(G)$-good, then $L(G)$ is $\operatorname{SDR}-\mathcal{I}(L(G)$)-good.
We were also able to individually sort the Beinecke graphs into those which are and aren't SDR-I (G)-good.

For a graph G, denote the set of maximum paths in G by $\mathcal{P}(G)$. Denote by $V^{*}(\mathcal{P}(G))$ the union of the vertex sets of the maximum paths of G; in other words, $V^{*}(\mathcal{P}(G))$ is the set of all vertices that have the good fortune of lying on a maximum path in G. G is SDR- \mathcal{P}-good if $\mathcal{P}(G)$ has a system of distinct vertex representatives (SDR). An SDR for $\mathcal{P} \overline{(G)}$ is a one-to-one function $\phi: \mathcal{P}(G) \rightarrow V(G)$ such that $\phi(P) \in V(P)$, for all $P \in \mathcal{P}(G)$.
Theorem 4 ([1]) $|\mathcal{P}| \leq\left|V^{*}(\mathcal{P}(G))\right|$ is necessary but not sufficient for G to be SDR-$\mathcal{P}(G)$-good.
Corollary 1 ([1]) Suppose that G is a graph in which the maximum paths have order q. If every vertex of G lies on no more than q maximum paths then G is SDR-P (G)-good.
Corollary 2 ([1]) Suppose that every maximum path in $\mathcal{P}(G)$ has order q and that every vertex in $V^{*}(\mathcal{P}(G))$ lies on at least q maximum paths in G. Suppose that at least one vertex of G lies on more than q maximum paths in G; then G is not SDR-P (G)-good.

For a graph G, denote the set of maximum cycles in G by $\mathcal{C}(G)$. Denote by $V^{*}(\mathcal{C}(G))$ the union of the vertex sets of the maximum cycles of G; in other words, $V^{*}(\mathcal{C}(G))$ is the set of all vertices that have the good fortune of lying on a maximum cycle in G. G is SDR- \mathcal{C}-good if $\mathcal{C}(G)$ has a system of distinct vertex representatives (SDR). An SDR for $\mathcal{C}(\bar{G})$ is a one-to-one function $\phi: \mathcal{C}(G) \rightarrow V(G)$ such that $\phi(C) \in V(C)$, for all $C \in \mathcal{C}(G)$.

Theorem 5 ([1]) $|\mathcal{C}| \leq\left|V^{*}(\mathcal{C}(G))\right|$ is necessary but not sufficient for G to be SDR-$\mathcal{C}(G)$-good.
Corollary 3 ([1]) Suppose that G is a graph in which the maximum cycles have order q. If every vertex of G lies on no more than q maximum cycles then G is SDR-C (G)-good.
Corollary 4 ([1]) Suppose that every maximum cycle in $\mathcal{C}(G)$ has order q and that every vertex in $V^{*}(\mathcal{C}(G))$ lies on at least q maximum cycles in G. Suppose that at least one vertex of G lies on more than q maximum cycles in G; then G is not $\operatorname{SDR}-\mathcal{C}(G)$-good.
G is a finite simple graph with no isolated vertices. $\mathbb{N}=\{0,1,2, \ldots\}$. Suppose $f: V(G) \rightarrow \mathbb{N}$ is a function $\mathcal{N}=\left[N_{G}(v) ; v \in V(G)\right]$, where ("[]" means it's an indexed collection, not a set).

An f-satisfying choice of subset representatives for $\mathcal{N}(G)$ is a function U : $V(G) \rightarrow \overline{2^{V(G)}}$ such that for all $v, w \in V(G)$:

1. $U(v) \subseteq N_{G}(v)$;
2. $|U(v)|=f(v)$; and
3. if $v \neq w$ then $U(v) \cap U(w)=\emptyset$.

Let $\mathcal{F}(G)=\{f: V(G) \rightarrow \mathbb{N} \mid$ there is a an f-satisfying choice of subset representatives for $\mathcal{N}(G)\}$.

Obviously, the constant function $f \equiv 0$ is in $\mathcal{F}(G)$. The assumption of no isolated vertices implies that, for each $v \in V(G)$, a function defined by $f(v)=k$, for any $1 \leq k \leq\left|N_{G}(v)\right|$, and $f=0$ on $V(G) \backslash\{v\}$, is in $\mathcal{F}(G)$. Theorem 1 characterizes the graphs such that the constant function $f \equiv 1$ (on $V(G)$) is an element of $\mathcal{F}(G)$.

Problem 1 If G and H are graphs on the same set of vertices, $V=V(H)=V(G)$, and $\mathcal{F}(G)=\mathcal{F}(H)$, does it follow that $G=H$?

In order for $\mathcal{F}(G)=\mathcal{F}(H)$, it is necessary that the degree sequences of G and H are also the same, so that the $[0,0, \ldots, 0, \operatorname{deg}(v), 0, \ldots, 0,0]$ element appears with the same largest possible value in the same position in both $\mathcal{F}(G)$ and $\mathcal{F}(H)$ for each $v \in V$.

Lemma 1 If G and H are graphs on the same set of vertices, $V=V(H)=V(G)$, and $G \neq H$, then $\mathcal{F}(G) \neq \mathcal{F}(H)$.

Proof Consider the following pair of graphs:

For the given graphs, they both include the $[0,0,0,0,0,0]$ and $[1,1,1,1,1,1]$ in their respective \mathcal{F}, as well as $[3,0,0,0,0,0]$, but only $\mathcal{F}(G)$ has $[3,0,1,0,0,0]$. This example can be quickly reproduced by any pair of graphs with the same vertex set and degree sequence by ensuring they have different shortest cycles.

Theorem 6 If G and H are graphs on the same set of vertices, $V=V(H)=V(G)$, and $\mathcal{F}(G)=\mathcal{F}(H)$, then $G=H$.

Proof We know that the two graphs have the same degree sequence, and each graph has a shortest cycle.

Suppose the shortest cycle in G has a different number of vertices than the shortest cycle in H. As in [2], the representative from each neighborhood can be defined by the orbit of a vertex along its cycle memberships. This means a vertex belonging to a cycle of length x will have an orbit of that length, and a cycle of length y respectively. Thus, the $f \in \mathcal{F}$ will have different representations when the vertices on a cycle of
length x and y are compared. Therefore, if the shortest cycle in G has length x and the shortest cycle in H has length $y, \mathcal{F}(G) \neq \mathcal{F}(H)$.

Having shown that the shortest cycles in G and H must be the same, it is now possible to induct on the remaining $v \in V$ and see $G=H$.

The proposer of the original problem that inspired this paper, S. Hedetniemi, now proposes looking at a large class of similar problems, in which the roles of the indexed collections of open neighborhoods, or closed neighborhoods, are replaced by other iconic collections of graph elements. For instance, we could ask: for which finite simple graphs G does the list of maximal cliques in G have a system of distinct vertex representatives, or a system of distinct edge representatives? As with the cases dealt with in this paper, the answers could be interesting, or not. The authors may also investigate whether it is satisfying to redefine \mathcal{F} using the matching or independent sets instead of neighborhoods.

References

1. Haenel, Johnson. On a Problem of Hedetniemi, Alabama Journal of Mathematics 43 (2019), 4.
2. Hedetniemi, Holliday, Johnson. Neighborhood Representatives, Congressus Numerantium 231 (2018), 117-119.
3. Hedetniemi, Holliday, Johnson. Distinct Representatives in Special Set Families in Graphs, Congressus Numerantium 233 (2019), 111-118.

Harmonious Labelings of Disconnected Graphs Involving Cycles and Multiple Components Consisting of Starlike Trees

Atif Abueida and Kenneth Roblee

Abstract

A harmonious labeling of a (simple) graph $G=(V, E)$ on $m>0$ edges is a one-to-one function $f: V \rightarrow \mathbf{Z}_{m}$ such that if $e_{1}, e_{2} \in E$ with respective endpoints u_{1}, v_{1} and u_{2}, v_{2}, then $f\left(u_{1}\right)+f\left(v_{1}\right) \not \equiv f\left(u_{2}\right)+f\left(v_{2}\right)(\bmod m)$. If such a function exists, then G is said to be harmonious. If G were a tree, then precisely one vertex label is allowed to be used twice. A starlike tree is a tree with a central vertex adjacent to one endpoint of some number of paths each with the same number of vertices. It has been shown using cyclic groups that the disjoint union of an odd cycle on s vertices and starlike trees with the central vertex adjacent to some even $t \geq 2$ many s-paths is harmonious. We now consider the disjoint union of an odd cycle with at least two starlike trees with new notions of harmonious labelings to accommodate the case where $|V|>|E|$, one of which is a basic generalization of harmonious labeling and the other of which is a stricter and more balanced harmonious labeling.

Keywords Cycle • Tree • Harmonious labelling

1 Introduction

Suppose that $G=(V, E)$ is a simple and non-edgeless graph with $|V|=n$ and $|E|=m$. A harmonious labeling of G is a one-to-one function $f: V \rightarrow \mathbf{Z}_{m}$ such that whenever $e_{1}=u_{1} v_{1}$ and $e_{2}=u_{2} v_{2}$ are distinct edges with their respective endpoints as indicated, we have that $f\left(u_{1}\right)+f\left(v_{1}\right) \not \equiv f\left(u_{2}\right)+f\left(v_{2}\right)(\bmod m)$. For $v \in V$, the value $f(v)$ is the (vertex) "label" of v. For an edge $e=u v$, the value $f(u)+$ $f(v)(\bmod m)$ is the (edge) label of e. Thus, in a harmonious labeling of G (if such a labeling exists), each vertex label occurs at most once and each edge label occurs

[^9]exactly once. In the case when G is a tree, we are permitted to use exactly one vertex label two times. If a harmonious labeling of G exists, then G is said to be harmonious.

Harmonious labelings of graphs were first introduced by Graham and Sloan in [6]. There are many fundamental results from that foundational paper. For example, the complete graph K_{n} is harmonious if and only if $n \neq 4$; the complete bipartite graph $K_{m, n}$ is harmonious if and only if $m=1$ or $n=1$; the cycle graph C_{n} is harmonious if and only if $n \geq 3$ is odd. Other results in [6] include that wheels W_{n} are harmonious for $n \geq 3$, ladders $L_{n}=P_{2} \times P_{n}$ are harmonious for $n \geq 3$ are harmonious, and the Petersen Graph is harmonious. For a comprehensive survey of results on harmonious and other types of graph labelings, please refer to [3].

It is not difficult to see that paths P_{n} and stars $S_{n}=K_{1, n}$ (referenced above) are harmonious. It has been shown that all trees with 31 or fewer vertices are harmonious in [2]. In [6], it was shown that all caterpillars are harmonious.

Relevant to the results here and regarding disjoint unions of graphs involving trees, it was shown in [7] that $C_{s} \cup P_{3}$ is harmonious for all odd $s \geq 3$. Additionally, one of the results by Gallian and Stewart implies that certain disjoint unions of odd cycles and paths are harmonious; see [5]. Abueida and Roblee re-proved this result (among other things) in [1]; namely, they showed that for odd $s \leq 3$ and even $t \geq 2$, the graph $C_{s} \cup P_{s t+1}$ is harmonious. The labeling there involved labeling the cycle with the elements of the cyclic subgroup H generated by $1+t$ of $\mathbf{Z}_{s(1+t)}$; different sections of the path were carefully labeled using the elements of the cosets of H. That labeling idea-which used the fact that $s \mid s(1+t)$ and fundamental results about finite cyclic groups and their subgroups-was extended in [1] to show that for the same values of s and t, the graph $C_{s} \cup T_{s t+1}$ is harmonious; here, $T_{s t+1}$ is a "starlike tree" consisting of a central vertex adjacent to one endpoint of each of t-many paths each on s vertices.

In these latter results, to accommodate the tree and to agree with how trees are permitted to be harmoniously labeled, exactly one vertex label was used twice. Moreover, by the method used in labeling these, one of the labels on the cycle was used again for a vertex label on the tree; hence, this was the one recycled label permitted.

Here, we consider how to approach harmonious labeling of and extension of the aforementioned problem of labeling a disjoint union of a tree and cycle. In particular, we propose a general definition of harmonious labeling of the disjoint union of a cycle with multiple trees and show how to extend labelings to new disjoint unions from the authors' previous work. Then we consider a more balanced version of this labeling, in the sense that the number of times each label is used on the vertices is as equitable as possible. Then we show how to extend labelings from previous work to these disjoint unions.

2 Main Results

The first definition we consider is one that allows disconnected graphs in which $|V|>|E|$.

Fig. 1 Two harmonious labelings of a forest

Definition 1 Let $G=(V, E)$ be a non-edgeless simple graph with $|V|=n>m=$ $|E|$. An onto function $f: V \rightarrow \mathbf{Z}_{m}$ is said to be a harmonious labeling of G provided that if $e_{1}=u_{1} v_{1}$ and $e_{2}=u_{2} v_{2}$ are distinct edges, then $f\left(u_{1}\right)+f\left(v_{1}\right) \not \equiv f\left(u_{2}\right)+$ $f\left(v_{2}\right)(\bmod m)$. If such a function exists, then G is said to be harmonious.

Observe that this agrees with the common usage of the term "harmonious labeling" when a single tree is considered. Moreover, it agrees with other works (such as the authors' previous works) when considering the disjoint union of a cycle and a tree. In particular, precisely one vertex label was used twice, and so the function was onto. The onto condition ensures that each vertex label is used at least once. However, it is rather permissive beyond this: For example, let G be the disjoint union of three copies of P_{2} and one isolated vertex; so $n=6$ and $m=3$, we could construct rather different harmonious labelings, such as using 0 to label both vertices of the first component; use 0 and 1 to label the second component; label 0 and 2 to label the third component; and label the isolated vertex 0 . This is clearly an onto function and the respective edge labels would be 0,1 , and 2 ; thus it is a harmonious labeling of the graph. Moreover, once you have cleared the onto hurdle of the labeling, you are not restricted as to how many more times you could use a particular vertex label, as long as you keep the edge labels distinct. See Fig. 1 for this labeling as well as another harmonious labeling of the same graph.

For the same graph G, we could alternatively label the first component's vertices using 0 and 1 ; label the second component's vertices with 1 and 2 ; and label the third component's vertices using 1 and 2 ; then label the isolated vertex with 0 . This is also an onto function and the respective edge labels would be 1,2 , and 3 . This labeling is more balanced in the sense that each label is used the same number of times. Of course, this may not always be possible, but something that Libras and others who

Fig. 2 Equitably harmonious labeling of a forest

Fig. 3 Harmonious labeling

0
0

2
of the disjoint union of two
P_{2} 's

Fig. 4 Two failed attempts

0
0

Fig. 5 Starlike tree consisting of a central vertex adjacent to $t=4$ paths each on $s=3$ vertices

For ease of notation, we denote the t-many paths each with s vertices in T by P_{s}^{i}, where $1 \leq i \leq t$. For convenience, we give the labeling of that graph again here.

For the cycle component, we label its vertices using the cyclic subgroup H of $\mathbf{Z}_{s+s t}$ generated by the element $1+t$; we denote this by writing $H=\langle 1+t\rangle$. Thus, $H=$ $\langle 1+t\rangle=\{0,1+t, 2(1+t), \ldots,(s-1)(1+t)\}$. In particular, choose a vertex and label it with an element (we will pick 0) of H; then proceed to consecutive vertices and label them with consecutive elements of H (so, $1+t, 2(1+t), \ldots(s-1)(1+t))$. See [4] for more on cyclic groups and other group-theoretic concepts.

Next, we denote the central vertex of the starlike tree T by v_{0} and label it 0 (observe this vertex label was already used on the cycle-it is our only repeated vertex label). Now, for all i, where $1 \leq i \leq t$, we label the vertices of P_{s}^{i} starting from one end to another consecutively with the elements (in order) of the coset $i+H=\{i, i+$ $(1+t), i+2(1+t), \ldots, i+(s-1)(1+t)\}$. For odd i, we connect the endpoint of P_{s}^{i} with the smallest label to v_{0}; for even i, we connect the endpoint of P_{s}^{i} with the largest label to v_{0}. This was shown to be a harmonious labeling in [1]; Fig. 6 gives an example from that paper shown again here.

Moving to a different family of disconnected graphs, consider the graph $G=$ $C_{s} \cup F_{r+s t+1}$ with s, t as indicated above. Here, $F=F_{r+s t+1}$ is a forest consisting

Fig. 6 Example of Odd Cycle Union Star-like tree
of some r-many components, namely, $T_{1}, T_{2}, \ldots, T_{r}$, where $1 \leq r \leq t$, and the structure of the T_{i} 's is described in the next paragraph. To facilitate the notation and description for the trees, we denote by $P=\left\{P_{s}^{1}, P_{s}^{2}, \ldots, P_{s}^{t}\right\}$ a collection of paths each with s vertices. Now, let $\mathcal{P}=\left\{S_{1}, S_{2}, \ldots, S_{r}\right\}$ be a partition of P consisting of r-many nonempty subsets of P; thus, each $S_{i} \in \mathcal{P}$, where $1 \leq i \leq r$ is a collection of paths each with s vertices. For each such i we could more precisely write $S_{i}=$ $\left\{P_{s}^{i_{1}}, P_{s}^{i_{2}}, \ldots, P_{s}^{k_{i}}\right\}$ for some $1 \leq k_{i} \leq t$ and such that $\sum_{i=1}^{r} k_{i}=t$.

With this notation, we specify the structure of the trees $T_{1}, T_{2}, \ldots, T_{r}$. Each of the tree components T_{i} is a starlike tree each with a central vertex v_{i} adjacent to an endpoint of each of the k_{i}-many paths taken from S_{i}. Now, we claim that G is harmonious.

To prove the claim, let us observe that the harmonious labeling of $C_{s} \cup T$ presented earlier can be extended to create a harmonious labeling of G. Let us note that $|V|=$ $s+r+s t>|E|=s+s t$ and the vertex labels will be elements of $\mathbb{Z}_{s(1+t)}$.

To see how the previous labeling extends to this case, we again label the vertices of C_{s} using the elements of the subgroup $H=\langle 1+t\rangle$ of $\mathbb{Z}_{s(1+t)}$. We label the central vertices $v_{1}, v_{2}, \ldots, v_{r}$ of $T_{1}, T_{2}, \ldots, T_{r}$ each with 0 . Observe that the vertex label 0 will then be used a total of $r+1$ times. As such, this will be the only repeated vertex label.

For each $1 \leq i \leq r$, we label the vertices of the paths $P_{s}^{i_{1}}, P_{s}^{i_{2}}, \ldots, P_{s}^{k_{i}}$ starting at one end of the path consecutively and in order with the elements of their respective cosets $i_{1}+H, i_{2}+H, \ldots, k_{i}+H$. Note these values $i_{1}, 1_{2}, \ldots, k_{i}$ will be all distinct and will be distinct for different values of i. This is due to the partitioning we did in advance. For all $1 \leq i \leq r$ and all $i_{1}, i_{2}, \ldots, k_{i}$, we connect the central vertex v_{i} to the least label of the paths labeled by the odd coset-labeled paths (odd values of i_{*} or k_{i} for labeling from $i_{*}+H$ or $\left.k_{i}+H\right)$ and by the greatest labeled element from the

Fig. 7 Example of a harmonious labeling of an odd cycle union two nonisomorphic starlike trees
even coset-labeled paths (even i_{*} or k_{i} for labeling from $i_{*}+H$ or $k_{i}+H$). As this just "splits" the labeling from [1], still no repeated edge labels exist. In Fig. 7, we have $G=C_{5} \cup F_{2+5 \cdot 6}$. Note how the vertices in the left-side path in T_{1} are labeled with elements (in order) of $1+H$, where $H=\langle 7\rangle \leq \mathbf{Z}_{35}$; the elements on the right-side path in T_{1} are labeled with elements (in reverse order) of $2+H$. The vertices in the 4 paths in T_{2} are labeled with elements of $3+H, 4+H, 5+H$, and $6+H$, where the "even cosets" label in reverse order and the "odd cosets" label in the natural order.

This is essentially "splitting" the starlike tree in $C_{s} \cup T_{s t+1}$ described earlier into some number of new starlike trees and keeping the same labeling, but just with the additional central vertices labels of 0. See Fig. 8 for another example. Thus, we have the following:

Theorem 2 Let $s \geq 3$ be odd, $t \geq 2$ be even, and $r \geq 1$. Let $F=F_{r+s t}$ be a forest of r-many starlike trees, with each central vertex v_{i} adjacent to an end of k_{i}-many paths each on s vertices. Then $C_{s} \cup F$ is harmonious.

Fig. 8 Example of a harmonious labeling of an odd cycle union two isomorphic starlike trees

Although the harmonious labeling procedure for the graph $C_{s} \cup F$ in the theorem is not an equitably harmonious labeling (unless $r=1$), we do ponder for the future whether for $C_{s} \cup F$ is equitably harmonious. In the meantime, we now focus on the specific case of this issue when $r=2$ and two starlike trees in the union are isomorphic. That is, for odd $s \geq 3$ and even $t \geq 2$, what would be an equitably harmonious labeling of $C_{s} \cup T_{1} \cup T_{2}$, where both T_{1} and T_{2} are both copies of the starlike tree $T_{s \cdot t / 2+1}$ consisting of a central vertex adjacent to one end of $\frac{t}{2}$-many paths each on s vertices. We show that this graph is equitably harmonious. For example, see Fig. 9 .

Thus, we have the following result.
Theorem 3 Let $s \geq 3$ be odd, $t \geq 2$ be even. Then the graph $C_{s} \cup T_{1} \cup T_{2}$, where $T_{1} \cong T_{2} \cong T_{s \cdot t / 2+1}$ is equitably harmonious.

Proof The vertex labels are elements of the group $\mathbf{Z}_{s(s+t)}$ and there are clearly $s(s+t)+2$ vertices. Thus, we would need the labeling function to be onto such that one pair of vertices use some label twice and exactly one more pair use a different label twice. As before, we label the vertices of the cycle (starting with any vertex, and consecutively around the cycle) with the elements of the subgroup $H=\langle 1+t\rangle$ of $\mathbf{Z}_{s(s+t)}$. As in the case of harmonious labelings of C_{s} a from [1], no edge labels on the cycle are repeated.

For T_{1}, we label its central vertex v_{1} with 0 . Let us denote the paths in T_{1} by $P_{s}^{1}, P_{s}^{2}, \ldots, P_{s}^{t / 2}$. For each $i=1,2, \ldots, \frac{t}{2}$, label the vertices of P_{s}^{i} from one end to another consecutively by the elements of $2 i-1+H$ in increasing order; then make the central vertex adjacent to the least-labeled vertex in each path.

Fig. 9 Example of an equitably harmonious labeling of an odd cycle union two starlike trees

For T_{2}, label its central vertex v_{2} with $(s-1)(1+t)$; denote the paths in T_{2} by $Q_{s}^{1}, Q_{s}^{2}, \ldots, Q_{s}^{t / 2}$. Then label the vertices of Q_{s}^{i} consecutively from one endpoint to another by the elements of $2 i+H$ in increasing order for all $i=1,2, \ldots, \frac{t}{2}$. Finally, we make v_{2} adjacent to the end with the greatest label in each path. Thus, we labeled the vertices of T_{2} so to not use the vertex label of 0 three times as in the harmonious labeling of the forest part of our previous theorem. With T_{2}, we changed the label of the central vertex v_{2} from the case of harmonious labelings to $(s-1)(1+t)$ and reversed the labeling of its paths from greatest to least labels in $2 i+H$ starting from the v_{2}-connected end. This gives label of the edge with endpoints v_{2} and its adjacent vertex in Q_{s}^{i} to be $(s-1)(1+t)+2 i(\bmod s(1+t))$ for $i=1,2, \ldots, \frac{t}{2}$.

The edge labels connecting v_{1} to the paths in T_{1} would clearly be $0+i=i$ for $i=$ $1,2, \ldots, \frac{t}{2}$. Clearly, $2 i-1 \not \equiv(s-1)(t+1)+2 j(\bmod s(s+t))$ for $1 \leq i, j \leq \frac{t}{2}$.

As the other edge labels coincide with the harmonious labeling in [1], then this is indeed a harmonious labeling. As only 0 and $(s-1)(1+t)$ are the only repeated vertex labels, then this is an equitably harmonious labeling.

The authors wish to thank Professor Peter Johnson, Jr. of Auburn University for his valuable questions as to how harmonious labelings extend to more severely disconnected graphs such as these.

References

1. Atif Abueida and Kenneth Roblee, Harmonious Labelings of Families of Disjoint Unions of an Odd Cycle and Certain Trees, Journal of Combinatorial Mathematics and Combinatorial Computing, to appear.
2. W. Fang, New computational result on harmonious trees, arXiv:1106.3490v1 [cs.DM] 17 June 2011.
3. J. A. Gallian, A dynamic survey of graph labeling, Electr. J. Combin., 20 (2017), p.\# DS6.
4. J. A. Gallian, Contemporary Abstract Algebra, Cengage Learning, 2012.
5. J. A. Gallian and D. Stewart, Properly even harmonious labelings of disjoint union with even sequnetial graphs, Journal of Graph Labeling, 1 No. 1 (2015), 1-10.
6. R. L. Graham and N. J. A. Sloane, On additive bases and harmonious graphs, SIAM J. Alg. Discrete Methods, 1 (1980) 382-404.
7. J. Renuka, P. Balaganesan, P. Selvaraju, On Harmonious Labeling, Internat. J. Advance in Math. Math. Sci., 1 No. 2 (2012), 65-70.

On Rainbow Mean Colorings of Trees

James Hallas, Ebrahim Salehi, and Ping Zhang

Abstract

A mean coloring of a connected graph G of order 3 or more is an edge coloring of G with positive integers such that the mean of the colors of the edges incident with every vertex is an integer. The associated color of a vertex is its chromatic mean. If distinct vertices have distinct chromatic means, then the edge coloring is a rainbow mean coloring of G. The maximum vertex color in a rainbow mean coloring c is the rainbow mean index of c, while the rainbow mean index of the graph G is the minimum rainbow mean index among all rainbow mean colorings of G. In this paper, rainbow mean colorings of trees are investigated.

Keywords Chromatic mean • Rainbow mean colorings • Rainbow chromatic mean index

AMS Subject Classification: 05C05, 05C07, 05C15, 05C78

1 Introduction

During the past several decades, there have been many studies of edge labelings or edge colorings of graphs that have given rise to vertex labelings or colorings where no two vertices have the same color (see [1, 3, 4, 6, 7], for example). One of the early examples of this occurred in 1986 when at the 250th Anniversary of Graph Theory Conference held at Indiana University-Purdue University Fort Wayne

[^10](now called Purdue University Fort Wayne), Chartrand introduced a concept, often called the irregularity strength of graphs. The irregularity strength of a graph G is the smallest positive integer k for which there exists a coloring of the edges of G from the set $[k]=\{1,2, \ldots, k\}$ resulting in a vertex coloring where the color of a vertex is the sum of the colors of its incident edges, such that no two vertices have the same color. The goal then was for the vertices to have distinct colors, regardless of how large these colors may be. For vertices of large degree, this requires some vertex colors to be large, possibly much larger than the order of the graph. However, in [2] an edge coloring of a graph was introduced in which each edge was colored with a positive integer in a manner so that each vertex is assigned a positive integer color that is the average of the colors of its incident edges and no two vertices have the same color. If the order of G is n, then the number of vertex colors must therefore be at least n. With all the conditions required for a graph to have such an edge coloring, one might anticipate that for some graphs at least, the largest vertex color may exceed the order of the graph, possibly by a large amount. The goal of this paper is to investigate this topic where the graphs in question are trees.

2 Rainbow Mean Colorings

A mean coloring of a connected graph G of order 3 or more is an edge coloring $c: E(G) \rightarrow \mathbb{N}$ of G such that for every vertex v of G, its vertex color

$$
\operatorname{cm}(v)=\frac{\sum_{e \in E_{v}} c(e)}{\operatorname{deg} v}, \text { where } E_{v} \text { is the set of edges incident with } v
$$

is an integer, called the chromatic mean of v. Clearly, every nontrivial connected graph G has mean colorings. For example, if every edge of G is assigned the same positive integer a, the resulting edge coloring is a mean coloring in which $\mathrm{cm}(v)=a$ for every vertex v of G. If distinct vertices have distinct chromatic means, then the edge coloring c is called a rainbow mean coloring of G. The following result was obtained in [2].

Theorem 1 Every connected graph of order 3 or more has a rainbow mean coloring.
For a rainbow mean coloring c of a graph G, the maximum vertex color is the rainbow chromatic mean index (or simply, the rainbow mean index) $\operatorname{rm}(c)$ of c. That is,

$$
\operatorname{rm}(c)=\max \{\mathrm{cm}(v): v \in V(G)\}
$$

The rainbow chromatic mean index (or the rainbow mean index) $\operatorname{rm}(G)$ of the graph G itself is defined as

$$
\operatorname{rm}(G)=\min \{\operatorname{rm}(c): c \text { is a rainbow mean coloring of } G\}
$$

Two immediate observations were also made in [2].

Observation 1 If G is a connected graph of order $n \geq 3$, then $\operatorname{rm}(G) \geq n$.
Observation 2 If c is a rainbow mean coloring of a connected graph G, then

$$
\sum_{v \in V(G)} \operatorname{deg} v \cdot \operatorname{cm}(v)=2 \sum_{e \in E(G)} c(e) .
$$

Furthermore, if the order of G is n and $\operatorname{rm}(c)=n$, then $\sum_{v \in V(G)} \mathrm{cm}(v)=\binom{n+1}{2}$.
The rainbow mean index was obtained in [2] for paths, cycles, and complete graphs.

Theorem 2 For an integer $n \geq 3$,

$$
\operatorname{rm}\left(P_{n}\right)= \begin{cases}n & \text { if } n \neq 4 \\ 5 & \text { if } n=4 .\end{cases}
$$

Theorem 3 For an integer $n \geq 3$,

$$
\operatorname{rm}\left(C_{n}\right)=\left\{\begin{array}{cl}
n & \text { if } n \equiv 0,1(\bmod 4) \\
n+1 & \text { if } n \equiv 2,3(\bmod 4)
\end{array}\right.
$$

Theorem 4 For an integer $n \geq 4$,

$$
\operatorname{rm}\left(K_{n}\right)=\left\{\begin{array}{cl}
n & \text { if } n \not \equiv 2(\bmod 4) \\
n+1 & \text { if } n \equiv 2(\bmod 4)
\end{array}\right.
$$

The rainbow mean index was determined for the complete bipartite graphs $K_{s, t}$, $1 \leq s \leq t$ and $s+t \geq 3$, in [5], with the case $s=1$ observed in [2].

Theorem 5 Let s and t be integers with $1 \leq s \leq t$ and $n=s+t \geq 3$. Then

$$
\operatorname{rm}\left(K_{s, t}\right)=\left\{\begin{array}{cl}
n & \text { if } s t \text { iseven } \\
n+1 & \text { if st is odd and } s \geq 3 \\
n+2 & \text { if } t \text { is odd and } s=1
\end{array}\right.
$$

In a rainbow mean coloring of a connected graph G of order at least 3, each edge of G is assigned a positive integer color in such a way that every vertex color is an integer and all vertex colors are distinct. Hence, it may be anticipated that at least in some cases, vertex colors would be considerably larger than the order of the graph. However, no such graph has yet been found. Indeed, from the results obtained on the rainbow mean index of many connected graphs G of order $n \geq 3$, the value of $\operatorname{rm}(G)$ has always been either n or $n+1$ with the one exception of stars of even order $n \geq 4$, which have rainbow mean index $n+2$. In fact, the following conjecture was stated in [2].

Conjecture 1 For every connected graph G of order $n \geq 3$,

$$
n \leq \operatorname{rm}(G) \leq n+2
$$

Since only stars of even order $n \geq 4$ have been shown to have rainbow mean index different from n or $n+1$, this suggests studying the rainbow mean index of trees related to stars in some manner. In this paper, we determine the rainbow mean index of three classes of trees, namely cubic caterpillars, subdivided stars, and double stars.

3 The Rainbow Mean Index of Trees

Let c be a rainbow mean coloring of a connected graph G. For a vertex v of G, the chromatic $\operatorname{sum} \operatorname{cs}(v)$ of v is defined as the sum of the colors of the edges incident with v. Hence, $\operatorname{cs}(v)=\sum_{e \in E_{v}} c(e)=\operatorname{deg} v \cdot \operatorname{cm}(v)$.

Observation 3 Let G be a connected bipartite graph with partite sets U and W. If c is an edge coloring of G, then $\sum_{u \in U} \operatorname{cs}(u)=\sum_{w \in W} \operatorname{cs}(w)$.

A connected graph of order 3 or more with a rainbow mean coloring is referred to as a mean colored-graph. A vertex v of a mean colored-graph G is called chromatically odd if $\operatorname{cs}(v)=\operatorname{deg} v \cdot \mathrm{~cm}(v)$ is an odd integer; otherwise, v is chromatically even. The following are consequences of Observation 2.

Corollary 1 Every mean colored-graph contains an even number of chromatically odd vertices.

Corollary 2 If G is a connected graph of order $n \geq 6$ with $n \equiv 2(\bmod 4)$ all of whose vertices are odd, then $\mathrm{rm}(G) \geq n+1$.

By Theorem 5, for each integer $n \geq 3$,

$$
\operatorname{rm}\left(K_{1, n-1}\right)= \begin{cases}n & \text { if } n \text { is odd } \tag{1}\\ n+2 & \text { if } n \text { is even }\end{cases}
$$

Consequently, if $n \not \equiv 0,2(\bmod 4)$, then $\mathrm{rm}\left(K_{1, n-1}\right)=n$. Of course, by Corollary 2, if $n \equiv 2(\bmod 4)$, then $\operatorname{rm}\left(K_{1, n-1}\right) \neq n$. This brings up the question of determining $\operatorname{rm}(T)$ for those trees of order 5 or more which is neither a path nor a star. Figure 1 shows trees T (that are not paths or stars) of order n where $n \in\{5,6\}$. With one exception, $\operatorname{rm}(T)=n$ for all these trees T. For this one exception, the tree T has order 6 and all vertices have odd degree. Of course, by Corollary 2, the rainbow mean index of this tree is at least 7. As shown in Fig. $1, \operatorname{rm}(T)=7$ for this tree T.

Figure 2 shows all trees T (that are not paths or stars) of order 7 together with a rainbow mean coloring for each of these trees. Thus, every tree of order 7 has rainbow mean index 7 .

Fig. 1 Rainbow mean colorings of trees of order 5 and 6

Fig. 2 Rainbow mean colorings of trees of order 7

Fig. 3 Trees of order 8 all of whose vertices are odd

There are three tree of order 8 all of whose vertices are odd, one of which is $K_{1,7}$. As we saw, $\operatorname{rm}\left(K_{1,7}\right)=10$. However, as shown in Fig. 3, the rainbow mean index of the two remaining such trees of order 8 is 8 .

These observations lead us to the following conjecture.
Conjecture 2 Let T be a tree of order $n \geq 5$ that is not a star. Then $\mathrm{rm}(T)=n$ if and only if $(i) n \not \equiv 2(\bmod 4)$ or $(i i) n \equiv 2(\bmod 4)$ and T has at least one even vertex; while $\operatorname{rm}(T)=n+1$ if $n \equiv 2(\bmod 4)$ and all vertices of T have odd degrees.

4 Cubic Caterpillars

A tree T is often referred to as r-regular for some integer $r \geq 2$ if every non-leaf of T has degree r. A caterpillar T is a tree of order 3 or more, the removal of whose leaves produces a path called the spine of T. A star is therefore a caterpillar with a trivial spine. A caterpillar T is cubic if $\operatorname{deg} v=3$ for every non-leaf v of T. We now consider the class of cubic caterpillars T_{n} of even order $n=2 \ell \geq 6$ consisting of the path $\left(u_{0}, u_{1}, \ldots, u_{\ell}\right)$ of order $\ell+1$ and $\ell-1$ additional pendant edges $u_{i} v_{i}$ where $1 \leq i \leq \ell-1$. The vertices $u_{i}, 1 \leq i \leq \ell-1$, thus have degree 3 and all other vertices of T_{n} are leaves. The spine of the caterpillar T_{n} is therefore ($u_{1}, u_{1}, \ldots, u_{\ell-1}$).

Theorem 6 For each integer $n \geq 6$,

$$
\operatorname{rm}\left(T_{n}\right)= \begin{cases}n & \text { if } n \equiv 0(\bmod 4) \\ n+1 & \text { if } n \equiv 2(\bmod 4)\end{cases}
$$

Proof Assume first that $n \equiv 0(\bmod 4)$. Then $n=4 k$ for some integer $k \geq 2$. To show that $\operatorname{rm}\left(T_{n}\right)=n$ in this case, it suffices to show that there is a rainbow mean coloring c of T_{n} with $\mathrm{rm}(c)=n$. Then T_{n} consists of the path $P=\left(u_{0}, u_{1}, \ldots, u_{2 k}\right)$ of order $2 k+1$ along with $2 k-1$ additional pendant edges $u_{i} v_{i}$ where $1 \leq i \leq$ $2 k-1$. Let c be the edge coloring of T_{n} defined by

$$
c(e)=\left\{\begin{array}{cl}
2 i & \text { if } e=u_{i} v_{i} \text { for } 1 \leq i \leq 2 k-2 \\
4 k-3 & \text { if } e=u_{2 k-1} v_{2 k-1} \\
1 & \text { if } e=u_{0} u_{1} \\
2 i+4 & \text { if } e=u_{i} u_{i+1} \text { where } 1 \leq i \leq 2 k-3 \text { and } i \text { is odd } \\
2 i+1 & \text { if } e=u_{i} u_{i+1} \text { where } 2 \leq i \leq 2 k-4 \text { and } i \text { is even } \\
4 k & \text { if } e=u_{2 k-2} u_{2 k-1}, u_{2 k-1} u_{2 k} .
\end{array}\right.
$$

Then the chromatic means of the vertices of T_{n} are given by

$$
\begin{aligned}
& \operatorname{cm}\left(u_{i}\right)=\left\{\begin{array}{cl}
2 i+1 & \text { if } 0 \leq i \leq 2 k-3 \text { or } i=2 k-1 \\
2 i+2 & \text { if } i=2 k-2 \\
2 i & \text { if } i=2 k
\end{array}\right. \\
& \operatorname{cm}\left(v_{i}\right)=\left\{\begin{array}{cl}
2 i & \text { if } 1 \leq i \leq 2 k-2 \\
2 i-1 & \text { if } i=2 k-1 .
\end{array}\right.
\end{aligned}
$$

Hence, c is a rainbow mean coloring with $\operatorname{rm}(c)=n$ and so $\operatorname{rm}\left(T_{n}\right)=n$ if $n \equiv$ $0(\bmod 4)$.

Next, suppose that $n \equiv 2(\bmod 4)$. Then $n=4 k+2$ for a positive integer k. Then T_{n} consists of the path $P=\left(u_{0}, u_{1}, \ldots, u_{2 k+1}\right)$ of order $2 k+2$ and $2 k$ additional pendant edges $u_{i} v_{i}$ where $1 \leq i \leq 2 k$. Since $n \equiv 2(\bmod 4)$ and each vertex of T_{n} is odd, it follows by Corollary 2 that $\operatorname{rm}\left(T_{n}\right) \geq n+1$. It therefore suffices to show that there is a rainbow mean coloring c of T_{n} with $\operatorname{rm}(c)=n+1$. Let c be the edge coloring of T_{n} defined by

$$
c(e)=\left\{\begin{array}{cl}
2 & \text { if } e=u_{1} v_{1} \\
2 i+1 & \text { if } e=u_{i} v_{i} \text { for } 2 \leq i \leq 2 k \\
1 & \text { if } e=u_{0} u_{1} \\
2 i+4 & \text { if } e=u_{i} u_{i+1} \text { where } 1 \leq i \leq 2 k-1 \text { and } i \text { is odd } \\
2 i+3 & \text { if } e=u_{i} u_{i+1} \text { where } 2 \leq i \leq 2 k \text { and } i \text { is even. }
\end{array}\right.
$$

Then the chromatic means of the vertices of T_{n} are given by

$$
\begin{aligned}
& \operatorname{cm}\left(u_{i}\right)= \begin{cases}2 i+1 & \text { if } i=0,1,2 k+1 \\
2 i+2 & \text { if } 2 \leq i \leq 2 k\end{cases} \\
& \operatorname{cm}\left(v_{i}\right)=\left\{\begin{array}{cl}
2 & \text { if } i=1 \\
2 i+1 & \text { if } 2 \leq i \leq 2 k
\end{array}\right.
\end{aligned}
$$

Hence, c is a rainbow mean coloring with $\operatorname{rm}(c)=n+1$ and so $\operatorname{rm}\left(T_{n}\right)=n+1$ if $n \equiv 2(\bmod 4)$.

5 Subdivided Stars

The subdivision graph $S(G)$ of a graph G is that graph obtained from G by subdividing each edge of G exactly once (that is, by replacing each edge $e=u v$ of G by a new vertex w_{e} and the two new edges $u w_{e}$ and $v w_{e}$, where w_{e} is called the subdivision vertex of e). If G is a graph of order n and size m, then the order of $S(G)$ is $n+m$ and its size is $2 m$.

Theorem 7 For each integer $t \geq 3, \operatorname{rm}\left(S\left(K_{1, t}\right)\right)=2 t+1$.
Proof Let $G=S\left(K_{1, t}\right)$ be the subdivision graph of the star $K_{1, t}$, where $t \geq 3$. Then the order of G is $n=2 t+1$. By Observation 1, it suffices to show that there is a rainbow mean coloring c of G with $\mathrm{rm}(c)=n$. We consider two cases, according to whether t is even or t is odd.

Case $1 . t \geq 4$ is even. Then $t=2 k$ for some integer $k \geq 2$. Let

$$
V\left(K_{1,2 k}\right)=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\} \cup\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \cup\{w\},
$$

where w is the central vertex of $K_{1,2 k}$. For each integer i with $1 \leq i \leq k$, let v_{i} be the subdivision vertex of $u_{i} w$ and let y_{i} be the subdivision vertex of $x_{i} w$. Define the edge coloring $c: E(G) \rightarrow[4 k+1]$ as follows: For $1 \leq i \leq k$,

$$
\begin{gathered}
c\left(u_{i} v_{i}\right)=2 i-1, c\left(v_{i} w\right)=2 i+1 \\
c\left(x_{i} y_{i}\right)=2 k+2 i+1, \text { and } c\left(y_{i} w\right)=2 k+2 i-1 .
\end{gathered}
$$

Then the chromatic means of the vertices of G are given by

$$
\begin{gathered}
\mathrm{cm}\left(u_{i}\right)=2 i-1 \text { and } \mathrm{cm}\left(v_{i}\right)=2 i \text { for } 1 \leq i \leq k, \\
\quad \mathrm{~cm}(w)=2 k+1, \\
\mathrm{~cm}\left(x_{i}\right)=2 k+2 i+1 \text { and } \mathrm{cm}\left(y_{i}\right)=2 k+2 i \text { for } 1 \leq i \leq k .
\end{gathered}
$$

Thus, c is a rainbow mean coloring of G with $\mathrm{rm}(c)=4 k+1$.
Case $2 . t \geq 3$ is odd. Then $t=2 k+1$ for some positive integer k. Let

$$
V\left(K_{1,2 k+1}\right)=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\} \cup\left\{x_{1}, x_{2}, \ldots, x_{k-1}\right\} \cup\left\{w_{1}, z_{1}\right\} \cup\{w\}
$$

where w is the central vertex of $K_{1,2 k+1}$. For each integer i with $1 \leq i \leq k$, let v_{i} be the subdivision vertex of $u_{i} w$ for $1 \leq i \leq k$, let y_{i} be the subdivision vertex of $x_{i} w$ for $1 \leq i \leq k-1$, let w_{2} be the subdivision vertex of $w_{1} w$, and let z_{2} be the subdivision vertex of $z_{1} w$. Define the edge coloring $c: E(G) \rightarrow[4 k+3]$ by

$$
\begin{gathered}
c\left(u_{i} v_{i}\right)=2 i-1 \text { and } c\left(v_{i} w\right)=2 i+1 \text { for } 1 \leq i \leq k \\
c\left(w_{1} w_{2}\right)=2 k+3, c\left(w_{2} w\right)=2 k-1, \\
c\left(z_{1} z_{2}\right)=2 k+4, c\left(z_{2} w\right)=2 k+6, \\
c\left(x_{i} y_{i}\right)=2 k+2 i+5, \text { and } c\left(y_{i} w\right)=2 k+2 i+3 \text { for } 1 \leq i \leq k-1
\end{gathered}
$$

Then the chromatic means of the vertices of G are given by

$$
\begin{gathered}
\mathrm{cm}\left(u_{i}\right)=2 i-1 \text { and } \mathrm{cm}\left(v_{i}\right)=2 i \text { for } 1 \leq i \leq k, \\
\mathrm{~cm}(w)=2 k+2, \mathrm{~cm}\left(w_{1}\right)=2 k+3, \mathrm{~cm}\left(w_{2}\right)=2 k+1, \\
\mathrm{~cm}\left(z_{1}\right)=2 k+4, \mathrm{~cm}\left(z_{2}\right)=2 k+5 \\
\mathrm{~cm}\left(x_{i}\right)=2 k+2 i+5 \text { and } \mathrm{cm}\left(y_{i}\right)=2 k+2 i+4 \text { for } 1 \leq i \leq k-1 .
\end{gathered}
$$

Thus, c is a rainbow mean coloring of G with $\mathrm{rm}(c)=4 k+3$.

6 Double Stars

We saw in Theorem 5 that the rainbow mean index of the star $K_{1, t}, t \geq 2$, is $t+1$ if t even and is $t+3$ if t is odd. In fact, the stars of even order 4 or more are the only connected graphs whose rainbow mean index has been shown to be neither the order nor one plus the order of the graph. This suggests investigating the rainbow mean index of the related double stars class of graphs. For integers a and b with $2 \leq a \leq b$, the double star $S_{a, b}$ is that tree of order $a+b$ (and size $a+b-1$) and diameter 3 whose central vertices u and v have degrees a and b, respectively. The vertex u is thus adjacent to $a-1$ end-vertices, denoted by $u_{1}, u_{2}, \ldots, u_{a-1}$, while v is adjacent to $b-1$ end-vertices, denoted by $v_{1}, v_{2}, \ldots, v_{b-1}$. First, we determine $\operatorname{rm}\left(S_{a, a}\right)$ where $a \geq 2$. Since $\operatorname{rm}\left(S_{2,2}\right)=\operatorname{rm}\left(P_{4}\right)=5$ by Theorem 2, we may assume that $a \geq 3$.

Theorem 8 For each integer $a \geq 3$,

$$
\operatorname{rm}\left(S_{a, a}\right)= \begin{cases}2 a & \text { if a is even } \\ 2 a+1 & \text { if } a \text { is odd } .\end{cases}
$$

Proof Suppose that u and v are the central vertices of $G=S_{a, a}$ where u is adjacent to the $a-1$ end-vertices $u_{1}, u_{2}, \ldots, u_{a-1}$ and v is adjacent to the $a-1$ endvertices $v_{1}, v_{2}, \ldots, v_{a-1}$. We consider two cases, according to whether a is even or a is odd.

Case 1. $a \geq 4$ is even. Then $a=2 k$ for some integer $k \geq 2$. Since the order of G is $4 k$, it suffices to show that there is a rainbow mean coloring c of G with $\mathrm{rm}(c)=4 k$ by Observation 1. Define the edge coloring c such that

$$
\begin{aligned}
\left\{c\left(u u_{i}\right): 1 \leq i \leq 2 k\right\} & =[k] \cup[3 k+1,4 k-1] \\
c(u v) & =k \\
\left\{c\left(v v_{i}\right): 1 \leq i \leq 2 k\right\} & =([k+1,3 k] \cup\{4 k\})-\{2 k-1,2 k+1\} .
\end{aligned}
$$

Then the chromatic means of the vertices of G are given by

$$
\begin{gathered}
\operatorname{cm}\left(u_{i}\right)=c\left(u u_{i}\right) \text { and } \mathrm{cm}\left(v_{i}\right)=c\left(v v_{i}\right) \text { for } 1 \leq i \leq 2 k, \\
\\
\mathrm{~cm}(u)=2 k-1 \text { and } \mathrm{cm}(v)=2 k+1
\end{gathered}
$$

Thus, c is a rainbow mean coloring of G with $\mathrm{rm}(c)=4 k$.
Case 2. $a \geq 3$ is odd. Then $a=2 k+1$ for some positive integer k. Since the order of G is $4 k+2$ and every vertex of G is odd, it follows by Corollary 2 that $\operatorname{rm}(G) \geq 4 k+3$. Thus, it remains to show that there is a rainbow mean coloring c of G with $\mathrm{rm}(c)=4 k+3$. An edge coloring c is defined as follows:

$$
\begin{gathered}
c\left(u_{i} u\right)=2 i-1 \text { for } 1 \leq i \leq k \text { and } c\left(u_{i} u\right)=2 i+1 \text { for } k+1 \leq i \leq 2 k \\
c\left(v_{i} v\right)=2 i \text { for } 1 \leq i \leq k \text { and } c\left(v_{i} v\right)=2 i+2 \text { for } k+1 \leq i \leq 2 k-1, \\
c(u v)=2 k+1 \text { and } c\left(v_{2 k} v\right)=4 k+3 .
\end{gathered}
$$

Then the chromatic means of the vertices of G are given by

$$
\begin{gathered}
\mathrm{cm}\left(u_{i}\right)=c\left(u_{i} u\right) \text { for } 1 \leq i \leq 2 k \text { and } \mathrm{cm}\left(v_{i}\right)=c\left(v_{i} v\right) \text { for } 1 \leq i \leq k \\
\operatorname{cm}(u)=2 k+1 \text { and } \mathrm{cm}(v)=2 k+2
\end{gathered}
$$

Thus, c is a rainbow mean coloring of G with $\mathrm{rm}(c)=4 k+3$.

If $a, b \geq 3$ are odd and $a \equiv b(\bmod 4)$, it then follows by Corollary 2 that $\operatorname{rm}\left(S_{a, b}\right) \geq a+b+1$. In fact, $\operatorname{rm}\left(S_{a, b}\right)=a+b+1$ as we show next.

Theorem 9 If a and b are odd integers with $a, b \geq 3$ and $a \equiv b(\bmod 4)$, then

$$
\operatorname{rm}\left(S_{a, b}\right)=a+b+1
$$

Proof By Theorem 8, we may assume that $a<b$. Since a and b are odd integers and $a \equiv b(\bmod 4)$, it follows that either a and b are both congruent to 1 modulo 4 or a and b are both congruent to 3 modulo 4 . In each case, $a+b \equiv 2(\bmod 4)$ and every vertex of G is odd. Hence, $\operatorname{rm}(G) \geq a+b+1$ by Corollary 2. Thus, it remains to show that there is a rainbow mean coloring c of G with $\operatorname{rm}(c)=a+b+1$. We consider these two cases.

Case 1. $a \equiv 1(\bmod 4)$ and $b \equiv 1(\bmod 4)$. Then $a=4 j+1$ and $b=4 k+1$ for some integers j, k with $1 \leq j<k$. Let u and v be the central vertices of $G=$ $S_{4 j+1,4 j+1}$ where u is adjacent to the $a-1=4 j$ end-vertices $u_{1}, u_{2}, \ldots u_{4 j}$ and v is adjacent to the $b-1=4 k$ end-vertices $v_{1}, v_{2}, \ldots, v_{4 k}$. Define the edge coloring c by

$$
\begin{gathered}
\left\{c\left(u u_{i}\right): 1 \leq i \leq 4 j\right\}=[4 j+1]-\{2 j+1\} \\
c(u v)=2 j+1 \\
\left\{c\left(v v_{i}\right): 1 \leq i \leq 4 k\right\}=[4 j+2,4 j+4 k+3]-\{2 k+2 j+2,2 k+4 j+2\}
\end{gathered}
$$

Then the chromatic means of the vertices of G are given by

$$
\begin{gathered}
\mathrm{cm}\left(u_{i}\right)=c\left(u u_{i}\right) \text { for } 1 \leq i \leq 4 j \\
\mathrm{~cm}(u)=2 j+1, \mathrm{~cm}(v)=2 k+4 j+2 \\
\mathrm{~cm}\left(v_{i}\right)=c\left(v v_{i}\right) \text { for } 1 \leq i \leq 4 k
\end{gathered}
$$

Thus, c is a rainbow mean coloring of G with $\mathrm{rm}(c)=4 j+4 k+3$.
Case 2. $a \equiv 3(\bmod 4)$ and $b \equiv 3(\bmod 4)$. Then $a=4 j+3$ and $b=4 k+3$ for some integers j, k with $0 \leq j<k$. Let u and v be the central vertices of $G=$ $S_{4 j+3,4 j+3}$ where u is adjacent to the $a-1=4 j+2$ end-vertices $u_{1}, u_{2}, \ldots u_{4 j+2}$ and v is adjacent to the $b-1=4 k+2$ end-vertices $v_{1}, v_{2}, \ldots, v_{4 k+2}$. Define the edge coloring c by

$$
\begin{gathered}
\left\{c\left(u u_{i}\right): 1 \leq i \leq 4 j+2\right\}=[4 j+3]-\{2 j+2\} \\
c(u v)=2 j+2 \\
\left\{c\left(v v_{i}\right): 1 \leq i \leq 4 k+2\right\}= \\
{[4 j+4,4 j+4 k+7]-\{2 k+2 j+4,2 k+4 j+5\}}
\end{gathered}
$$

Then the chromatic means of the vertices of G are given by

$$
\begin{gathered}
\mathrm{cm}\left(u_{i}\right)=c\left(u u_{i}\right) \text { for } 1 \leq i \leq 4 j+2 \\
\mathrm{~cm}(u)=2 j+2, \mathrm{~cm}(v)=2 k+4 j+5 \\
\mathrm{~cm}\left(v_{i}\right)=c\left(v v_{i}\right) \text { for } 1 \leq i \leq 4 k+2
\end{gathered}
$$

Thus, c is a rainbow mean coloring of G with $\mathrm{rm}(c)=4 j+4 k+7$.
We now turn our attention to the double stars $S_{a, b}$ where $2 \leq a<b$ and at least one of a and b is even.

Theorem 10 If a and b are integers with $2 \leq a<b$ such that $a b$ is even, then

$$
\operatorname{rm}\left(S_{a, b}\right)=a+b
$$

Proof Let $G=S_{a, b}$ where $2 \leq a<b$ and $a b$ is even. By Observation 1, it suffices to show that there is a rainbow mean coloring c of G with $\operatorname{rm}(c)=a+b$. We consider three cases, according to the parities of a and b.

Case 1. a and b are both even. Then $a=2 j$ and $b=2 k$ where j and k are integers and $1 \leq j<k$. Let u and v be the central vertices of $G=S_{2 j, 2 k}$ where u is adjacent to the $a-1=2 j-1$ end-vertices $u_{1}, u_{2}, \ldots u_{2 j-1}$ and v is adjacent to the $b-1=2 k-1$ end-vertices $v_{1}, v_{2}, \ldots, v_{2 k-1}$. It suffices to show that there exists a rainbow mean coloring c with $\operatorname{rm}(c)=a+b$. Define the edge coloring c by

$$
\begin{gathered}
\left\{c\left(u u_{i}\right): 1 \leq i \leq 2 j-1\right\}=[j+1,3 j-1] \\
c(u v)=2 j(j+1) \\
\left\{c\left(v v_{i}\right): 1 \leq i \leq 2 k-1\right\}=[j] \cup[3 j+1,2 j+2 k]-\{2 j+k\} .
\end{gathered}
$$

Then the chromatic means of the vertices of G are given by

$$
\begin{gathered}
\mathrm{cm}\left(u_{i}\right)=c\left(u u_{i}\right) \text { for } 1 \leq i \leq 2 j-1 \\
\mathrm{~cm}(u)=3 j, \operatorname{cm}(v)=2 j+k . \\
\mathrm{cm}\left(v_{i}\right)=c\left(v v_{i}\right) \text { for } 1 \leq i \leq 2 k-1 .
\end{gathered}
$$

Since $j+1 \leq k$, it follows that $\mathrm{cm}(u) \neq \mathrm{cm}(v)$. Thus, c is a rainbow mean coloring of G with $\mathrm{rm}(c)=2 j+2 k$.

Case 2. $a \geq 3$ is odd and $b \geq 4$ is even. Then $a=2 j+1$ and $b=2 k$ for some integers j, k with $1 \leq j<k$. Let u and v be the central vertices of G where u is adjacent to the $a-1=2 j$ end-vertices $u_{1}, u_{2}, \ldots, u_{2 j}$ and v is adjacent to the $b-1=2 k-1$ end-vertices $v_{1}, v_{2}, \ldots, v_{2 k-1}$. Define the edge coloring c by

$$
\begin{gathered}
c\left(u u_{i}\right)=i \text { for } 1 \leq i \leq 2 j, c(u v)=2 j k+2 j+k+1 \\
\left\{c\left(v v_{i}\right): 1 \leq i \leq 2 k-1\right\}=[2 j+1,2 k+2 j+1]-\{k+j+1, k+3 j+1\} .
\end{gathered}
$$

Then the chromatic means of the vertices of G are given by

$$
\begin{aligned}
\mathrm{cm}\left(u_{i}\right)=c\left(u u_{i}\right) \text { for } 1 \leq i & \leq 2 j, \mathrm{~cm}(u)=k+j+1, \mathrm{~cm}(v)=k+3 j+1 . \\
\operatorname{cm}\left(v_{i}\right) & =c\left(v v_{i}\right) \text { for } 1 \leq i \leq 2 k-1 .
\end{aligned}
$$

Thus, c is a rainbow mean coloring of G with $\mathrm{rm}(c)=2 j+2 k+1$.
Case 3. $a \geq 2$ is even, and $b \geq 3$ is odd. Then $a=2 j$ and $b=2 k+1$ where $1 \leq j \leq k$. Let u and v be the central vertices of G where u is adjacent to the $a-1=2 j-1$ end-vertices $u_{1}, u_{2}, \ldots u_{2 j-1}$ and v is adjacent to the $b-1=2 k$ end-vertices $v_{1}, v_{2}, \ldots, v_{2 k}$. Define the edge coloring c by

$$
\begin{gathered}
\left\{c\left(u u_{i}\right): 1 \leq i \leq 2 j-1\right\}=[j+k+2,3 j+k], \\
c(u v)=2 j(j+1)+k+1 \\
\left\{c\left(v v_{i}\right): 1 \leq i \leq 2 k\right\}=[j+k] \cup[3 j+k+2,2 j+2 k+1] .
\end{gathered}
$$

Then the chromatic means of the vertices of G are given by

$$
\begin{gathered}
\mathrm{cm}\left(u_{i}\right)=c\left(u u_{i}\right) \text { for } 1 \leq i \leq 2 j-1 \\
\operatorname{cm}(u)=3 j+k+1, \mathrm{~cm}(v)=j+k+1 \\
\mathrm{~cm}\left(v_{i}\right)=c\left(v v_{i}\right) \text { for } 1 \leq i \leq 2 k
\end{gathered}
$$

Thus, c is a rainbow mean coloring of G with $\mathrm{rm}(c)=2 j+2 k+1$.
The one remaining class of double stars $S_{a, b}$ for which the rainbow mean index has not yet been determined is that where a and b are both odd and $a \not \equiv b(\bmod 4)$. In order to present a result dealing with this class, it is convenient to establish the following two lemmas.

Lemma 1 For positive integers a and b with $a \leq b$ and the set

$$
X=[4 a+4 b+4]-\{2 a+2 b+1,2 a+2 b+3\}
$$

let $s_{1}=\sum_{i=1}^{4 a} i$ and $s_{2}=\sum_{i=1}^{4 a}(4 b+4+i)$. For every integer s with $s_{1} \leq s \leq s_{2}$, there exists $a(4 a)$-element subset S of X such that $\sum_{x \in S} x=s$.
Proof First, we show that there exists a (4a)-element subset $S \subseteq[4 a+4 b+4]$ such that $\sum_{x \in S} x=s$. If $s=s_{1}$ or $s=s_{2}$, then the result holds. Thus, we may assume that $s_{1}<s<s_{2}$. Let m be the minimum integer in $[4 b+4]$ such that

$$
\begin{gathered}
{[m+(m+1)+\cdots+(m+4 a-1)]<s<} \\
{[(m+1)+(m+2)+\cdots+(m+4 a)]}
\end{gathered}
$$

Let $t=(m+1)+(m+2)+\cdots+(m+4 a-1)$. Therefore, $m+t<s<t+$ $(m+4 a)$. Thus, $s=m+t+r$ for some integer r with $1 \leq r \leq 4 a-1$. Consequently, by adding 1 to the last r terms in the sum $m+(m+1)+\cdots+(m+4 a-$ $1)$, we obtain the ($4 a$)-element set

$$
\begin{gathered}
T=\{m, m+1, \ldots, m+4 a-r-1\} \cup\{m+4 a-r+1, m+4 a-r+ \\
2, \ldots, m+4 a\}
\end{gathered}
$$

such that $\sum_{x \in T} x=s$.
It remains to show that there are $4 a$ distinct integers in X whose sum is s. Of course, if neither $2 a+2 b+1$ nor $2 a+2 b+3$ belongs to T, then T has the desired property. Thus, we may assume that at least one of $2 a+2 b+1$ and $2 a+2 b+3$ belongs to T, say $2 a+2 b+1 \in T$.
\star If $2 a+2 b+3 \in T$ as well, then we remove $2 a+2 b+1$ and $2 a+2 b+3$ from T and replace them by 1 and $4 a+4 b+3$, obtaining the set $T_{1} \subseteq X$ such that the sum of elements in T_{1} is s.
\star If $2 a+2 b+3 \notin T$, then either $2 a+2 b \in T$ or $2 a+2 b+2 \in T$, say the former. Hence, we remove $2 a+2 b$ and $2 a+2 b+1$ from T and replace them by 1 and $4 a+4 b$, obtaining the set $T_{2} \subseteq X$ such that the sum of elements in T_{2} is s.

Lemma 2 For positive integers a and b with $a \leq b$ and the set

$$
X=[4 a+4 b+4]-\{2 a+2 b+1,2 a+2 b+3\}
$$

let $s_{1}=\sum_{i=1}^{4 a+2} i$ and $s_{2}=\sum_{i=1}^{4 a+2}(4 b+2+i)$. For every integer s with $s_{1} \leq s \leq s_{2}$, there exists $a(4 a+2)$-element subset S of X such that $\sum_{x \in S} x=s$.

Proof First, we show that there exists a $(4 a+2)$-element subset $S \subseteq[4 a+4 b+4]$ such that $\sum_{x \in S} x=s$. If $s=s_{1}$ or $s=s_{2}$, then the result holds. Thus, we may assume that $s_{1}<s<s_{2}$. Let m be the minimum integer in [4b+2] such that

$$
\begin{aligned}
& {[m+(m+1)+\cdots+(m+4 a+1)]<s<} \\
& {[(m+1)+(m+2)+\cdots+(m+4 a+2)] .}
\end{aligned}
$$

Let $t=(m+1)+(m+2)+\cdots+(m+4 a+1)$. Therefore, $m+t<s<t+$ $(m+4 a+2)$. Thus, $s=m+t+r$ for some integer r with $1 \leq r \leq 4 a+1$. Consequently, by adding 1 to the last r terms in the sum $m+(m+1)+\cdots+(m+4 a+$ 1), we obtain the $(4 a+2)$-element set

$$
\begin{gathered}
T=\{m, m+1, \ldots, m+4 a-r+1\} \cup\{m+4 a-r+3, m+4 a-r+ \\
4, \ldots, m+4 a+2\}
\end{gathered}
$$

such that $\sum_{x \in T} x=s$.
It remains to show that there are $4 a+2$ distinct integers in X whose sum is s. Of course, if neither $2 a+2 b+1$ nor $2 a+2 b+3$ belongs to T, then T has the desired property. Thus, we may assume that at least one of $2 a+2 b+1$ and $2 a+2 b+3$ belongs to T, say $2 a+2 b+1 \in T$.
\star If $2 a+2 b+3 \in T$ as well, then we remove $2 a+2 b+1$ and $2 a+2 b+3$ from T and replace them by 1 and $4 a+4 b+3$, obtaining the set $T_{1} \subseteq X$ such that the sum of elements in T_{1} is s.
\star If $2 a+2 b+3 \notin T$, then either $2 a+2 b \in T$ or $2 a+2 b+2 \in T$, say the former. Hence, we remove $2 a+2 b$ and $2 a+2 b+1$ from T and replace them by 1 and $4 a+4 b$, obtaining the set $T_{2} \subseteq X$ such that the sum of elements in T_{2} is s.

We are now prepared to present the following result.
Theorem 11 If a and b are odd integers with $3 \leq a<b$ such that $a \not \equiv b(\bmod 4)$, then $\operatorname{rm}\left(S_{a, b}\right)=a+b$.

Proof Let $G=S_{a, b}$. We show that there is a rainbow mean coloring $c: E(G) \rightarrow$ $[a+b]$ of G with $\mathrm{rm}(c)=a+b$ such that $\mathrm{cm}(u)$ and $\mathrm{cm}(v)$ have certain prescribed values. We consider two cases. In each case, we let

$$
\begin{aligned}
A & =\sum_{i=1}^{a-1} c\left(u u_{i}\right)=\sum_{i=1}^{a-1} \mathrm{~cm}\left(u_{i}\right) \\
B & =\sum_{i=1}^{b-1} c\left(v v_{i}\right)=\sum_{i=1}^{b-1} \mathrm{~cm}\left(v_{i}\right) \\
x & =c(u v)
\end{aligned}
$$

Observe that $A+x=\mathrm{cm}(u) \cdot a$ and $B+x=\mathrm{cm}(v) \cdot b$. Furthermore,

$$
A+B+\mathrm{cm}(u)+\mathrm{cm}(v)=1+2+\cdots+(a+b)=\binom{a+b+1}{2}
$$

Case 1. $a \equiv 3(\bmod 4)$ and $b \equiv 1(\bmod 4)$. Then $a=4 j+3$ and $b=4 k+$ 1 where $0 \leq j<k$. We show that there is a rainbow mean coloring $c: E(G) \rightarrow$ $[4 k+4 j+4]$ of G with $\operatorname{rm}(c)=4 j+4 k+4$ such that $\mathrm{cm}(u)=2 k+2 j+1$ and $\mathrm{cm}(v)=2 k+2 j+3$. For such an edge coloring c of G, we have

$$
\begin{aligned}
A+x & =(2 k+2 j+1)(4 j+3)=8 k j+8 j^{2}+6 k+10 j+3 \\
B+x & =(2 k+2 j+3)(4 k+1)=8 k j+8 j^{2}+14 k+2 j+3 \\
A+B & =1+2+\cdots+(4 k+4 j+5)-(\mathrm{cm}(u)+\mathrm{cm}(v)) \\
& =\left(16 k j+8 k^{2}+8 j^{2}+18 k+18 j+10\right)-(4 k+4 j+4) \\
& =16 k j+8 k^{2}+8 j^{2}+14 k+14 j+6 .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& A=8 k j+8 j^{2}+3 k+9 j+3 \\
& B=8 k j+8 k^{2}+11 k+3 j+3 \\
& x=3 k-j .
\end{aligned}
$$

Therefore, such an edge coloring c of G exists if there are $4 a+2$ distinct elements in the set $X=[4 k+4 j+4]-\{2 k+2 j+1,2 k+2 j+3\}$ whose sum is $A=8 k j+$ $8 j^{2}+3 k+9 j+3$. The sum of the $4 j+2$ smallest integers in the set $[4 k+4 j+4]$ is

$$
\binom{4 j+3}{2}=(2 j+1)(4 j+3)=8 j^{2}+10 j+3
$$

while the sum of the $4 j+2$ largest integers in the set $[4 k+4 j+4]$ is

$$
(2 j+1)(8 k+4 j+7)=16 k j+8 j^{2}+8 k+18 j+7
$$

Since

$$
8 j^{2}+10 j+3 \leq A \leq 16 k j+8 j^{2}+8 k+18 j+7
$$

it follows by Lemma 2 that there is a $(4 a+2)$-element subset S of X such that $\sum_{x \in S} x=S$. Observe that the sum of integers in $X-S$ is therefore B.

Case 2. $a \equiv 1(\bmod 4)$ and $b \equiv 3(\bmod 4)$. Then $a=4 j+1$ and $b=4 k+$ 3 where $1 \leq j \leq k$. We show that there is a rainbow mean coloring $c: E(G) \rightarrow$
$[4 k+4 j+4]$ of G with $\mathrm{rm}(c)=4 j+4 k+4$ such that $\mathrm{cm}(u)=2 k+2 j+1$ and $\mathrm{cm}(v)=2 k+2 j+3$. For such an edge coloring c of G, we have

$$
\begin{aligned}
A+x & =(2 k+2 j+1)(4 j+1)=8 k j+8 j^{2}+2 k+6 j+1 \\
B+x & =(2 k+2 j+3)(4 k+3)=8 k j+8 j^{2}+18 k+6 j+9 \\
A+B & =16 k j+8 k^{2}+8 j^{2}+14 k+14 j+6 .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& A=8 k j+8 j^{2}-k+7 j-1 \\
& B=8 k j+8 k^{2}+15 k+7 j+7 \\
& x=3 k-j+2
\end{aligned}
$$

Therefore, such an edge coloring c of G exists if there are $4 a$ distinct elements in the set $X=[4 k+4 j+4]-\{2 k+2 j+1,2 k+2 j+3\}$ whose sum is $A=8 k j+$ $8 j^{2}-k+7 j-1$. The sum of the $4 j$ smallest integers in the set $[4 k+4 j+4]$ is

$$
\binom{4 j+1}{2}=2 j(4 j+1)=8 j^{2}+2 j
$$

while the sum of the $4 j$ largest integers in the set $[4 k+4 j+4]$ is

$$
2 j(8 k+4 j+9)=16 k j+8 j^{2}+18 j
$$

Since $8 j^{2}+2 j \leq A \leq 16 k j+8 j^{2}+18 j$, it follows by Lemma 1 that there is a $4 a-$ element subset S of X such that $\sum_{x \in S} x=A$. Again, the sum of integers in $X-S$ is therefore B.

In summary, we have the following result.
Theorem 12 For integers a and b where $a, b \geq 2$,

$$
\operatorname{rm}\left(S_{a, b}\right)= \begin{cases}a+b & \text { if abis even orabis odd anda }+b \not \equiv 2(\bmod 4) \\ a+b+1 & \text { if abis odd anda }+b \equiv 2(\bmod 4)\end{cases}
$$

References

1. G. Chartrand, C. Egan, and P. Zhang, How to Label a Graph. Springer, New York (2019).
2. G. Chartrand, J. Hallas, E. Salehi, and P. Zhang, Rainbow mean colorings of graphs. Discrete Math. Lett. 3 (2020), 1-8.
3. G. Chartrand and P. Zhang, Chromatic Graph Theory. Second Edition. Chapman \& Hall/CRC Press, Boca Raton (2020).
4. J. Hallas, Extremal Theory on Induced Graph Colorings. Doctoral Dissertation, Western Michigan University (2020).
5. J. Hallas, E. Salehi, and P. Zhang, Rainbow mean colorings of bipartite graphs. Bull. Insti. Combin. Appl.. 88 (2020), 78-97.
6. P. Zhang, Color-Induced Graph Colorings. Springer, New York (2015).
7. P. Zhang, A Kaleidoscopic View of Graph Colorings. Springer, New York (2016).

Examples of Edge Critical Graphs in Peg Solitaire

Robert A. Beeler and Aaron D. Gray

Abstract

Peg solitaire is a game in which pegs are placed in every hole but one and the player jumps over pegs along rows or columns to remove them. Usually, the goal is to remove all but one peg. In a 2011 paper, this game is generalized to graphs. In this paper, we examine graphs in which any single edge addition changes solvability. In order to do this, we introduce a family of graphs and provide necessary and sufficient conditions for the solvability for this family. We show that infinite subsets of this family are edge critical. We also determine the maximum number of pegs that can be left on this family with the condition that a jump is made whenever possible. Finally, we give a list of graphs on eight vertices that are edge critical.

Keywords Games on graphs • Peg solitaire • Critical graphs
AMS Subject Classification 05C57 (91A43, 05C35)

1 Introduction

Peg solitaire is a table game which traditionally begins with "pegs" in every space except for one which is left empty (i.e., a "hole"). If in some row or column two adjacent pegs are next to a hole (as in Fig. 1), then the peg in x can jump over the peg in y into the hole in z. The peg in y is then removed. The goal is to remove every peg but one. If this is achieved, then the board is considered solved [1, 12].

[^11]Fig. 1 A Typical Jump in
Peg Solitaire, $x \cdot \vec{y} \cdot z$

In [6], this notion is generalized to graphs. A graph, $G=(V, E)$, is a set of vertices, V, and a set of edges, E. Because of the restrictions of peg solitaire, we will assume that all graphs are finite, undirected, connected graphs with no loops or multiple edges. For all undefined graph theory terminology, refer to West [18]. If there are pegs in vertices x and y and a hole in z, then we allow the peg in x to jump over the peg in y into the hole in z provided that $x y, y z \in E$. The peg in y is then removed. This jump is denoted $x \cdot \vec{y} \cdot z$.

In general, the game begins with a starting state $S \subset V$ which is a set of vertices with holes. A terminal state $T \subset V$ is a set of vertices that have pegs at the end of the game. A terminal state T is associated with starting state S if T can be obtained from S by a series of jumps. Unless otherwise noted, we will assume that S consists of a single vertex. A graph G is solvable if there exists some vertex s so that, starting with $S=\{s\}$, there exists an associated terminal state consisting of a single peg. A graph G is freely solvable if for all vertices s so that, starting with $S=\{s\}$, there exists an associated terminal state consisting of a single peg. A graph G is k-solvable if there exists some vertex s so that, starting with $S=\{s\}$, there exists an associated terminal state consisting of k nonadjacent pegs. In particular, a graph is distance 2 -solvable if there exists some vertex s so that, starting with $S=\{s\}$, there exists an associated terminal state consisting of two pegs that are distance 2 apart.

We now include several results from previous studies of peg solitaire on graphs that will aid us in our results.

Theorem 1 ([6, 7])

(i) The cycle C_{n} is freely solvable if and only if n is even or $n=3 ; C_{n}$ is distance 2-solvable in all other cases.
(ii) For $n \geq 2$, the complete graph K_{n} is freely solvable.
(iii) For $n \geq 2$ and $m \geq 2$, the complete bipartite graph $K_{n, m}$ is freely solvable.
(iv) The double star $K_{1,1}\left(a_{1} ; b_{1}\right)$ is freely solvable if and only if $a_{1}=b_{1}$ and $b_{1} \neq 1$. It is solvable if and only if $a_{1} \leq b_{1}+1$. It is distance 2 -solvable if and only if $a_{1}=b_{1}+2$. It is $\left(a_{1}-b_{1}\right)$-solvable if $a_{1} \geq b_{1}+3$.

The following proposition from [6] is also useful.

Proposition 1 ([6])

(i) If a graph G is k-solvable with the initial hole in s and a jump is possible, then there is a first jump; say $s^{\prime \prime} \cdot \overrightarrow{s^{\prime}} \cdot s$. Hence, if there are holes in $s^{\prime \prime}$ and s^{\prime} and pegs elsewhere, then G can be k-solved from this configuration.
(ii) (Inheritance Principle) Suppose that H is a k-solvable graph and G is a spanning subgraph of H, then G is (at best) k-solvable.

The following theorem allows the completion of the game in reverse by exchanging the roles of pegs and holes. Beeler and Rodriguez [9] define the dual of a configuration of pegs on a graph as the arrangement of pegs obtained by reversing the roles of pegs and holes. The dual of a configuration is particularly useful in determining which initial holes can be used to solve the graph.

Theorem 2 (Duality Principle [6, 9]) Suppose that S is a starting state of G with associated terminal state T. Let S^{\prime} and T^{\prime} be the duals of S and T, respectively. It follows that T^{\prime} is a starting state of G with associated terminal state S^{\prime}.

2 The Hairy Complete Bipartite Graph

In this section, we consider a family of graphs that generalize both the complete bipartite graph and the double star. The hairy complete bipartite graph is the graph on $n+m+a_{1}+\cdots+a_{n}+b_{1}+\cdots+b_{m}$ vertices obtained from the complete bipartite graph $K_{n, m}$ by appending a_{i} pendant vertices to x_{i} for $i=1, \ldots, n$ and appending b_{j} pendant vertices to y_{j} for $j=1, \ldots, m$. We denote this graph $K_{n, m}\left(a_{1}, \ldots, a_{n} ; b_{1}, \ldots, b_{m}\right)$. Note that if $n=m=1$, then the graph is the double star. If $n=1$ and $m \geq 2$, then the graph is a tree of diameter four. As the solvability of double stars and trees of diameter four has already been determined [7, 11], we assume that $n \geq 2$ and $m \geq 2$. Further, we will assume that $a_{1} \geq \cdots \geq a_{n}$, $b_{1} \geq \cdots \geq b_{m}, a_{1} \geq 1$, and $\sum_{i=1}^{n} a_{i} \geq \sum_{j=1}^{m} b_{j}$. We denote the a_{i} pendants adjacent to x_{i} by $x_{i, 1}, \ldots, x_{i, a_{i}}$. We denote the b_{j} pendants adjacent to y_{j} by $y_{j, 1}, \ldots, y_{j, b_{j}}$. Let $X_{i}=\left\{x_{i, 1}, \ldots, x_{i, a_{i}}\right\}$, let $Y_{j}=\left\{y_{j, 1}, \ldots, y_{j, b_{j}}\right\}$, let $X=\left\{x_{1}, \ldots, x_{n}\right\}$, and let $Y=\left\{y_{1}, \ldots, y_{m}\right\}$. For $S \subset V(G)$, the function $\rho(S)$ gives the current number of pegs in the set S. Figure 2 shows an example of the hairy complete bipartite graph.

Berlekamp, Conway, and Guy [12] explore a helpful device for the elimination of pegs. They define a package as a known configuration of pegs that may be eliminated with a predetermined series of jumps. The elimination of these pegs is called a purge. A purge acts as a type of "shortcut" that can be used to efficiently solve the game. While not explicitly stated in [7], a proof in that paper extends the notion of a purge to peg solitaire on graphs. In addition, [10] also discusses packages and purges in peg solitaire on graphs.

Fig. 2 The hairy complete bipartite graph $K_{3,4}(3,1,1 ; 2,1,1,0)$

We will use packages and purges to aid in our results. Suppose that the graph G has a double star subgraph, $K_{1,1}\left(a_{1} ; b_{1}\right)$, with a peg in x_{1} and a hole in y_{1}. Assume that $\rho\left(X_{1}\right) \geq d$ and $\rho\left(Y_{1}\right) \geq d$. We can remove d pegs from both X_{1} and Y_{1} by performing the jumps $x_{1, i} \cdot \overrightarrow{x_{1}} \cdot y_{1}$ and $y_{1, i} \cdot \overrightarrow{y_{1}} \cdot x_{1}$ for $i=1, \ldots, d$. Note that both before and after this sequence there is a peg in x_{1} and a hole in y_{1}. This sequence is called a double star purge and is denoted $\operatorname{DS}\left(X_{1}, Y_{1}, d\right)$.

With this purge in mind, we now give necessary and sufficient conditions for the solvability of the hairy complete bipartite graph. These conditions will be dependent on a property \mathcal{P} defined as: (i) $n=2, m$ is even, $a_{1} \geq 2$, and $a_{2} \leq \sum_{j=1}^{m} b_{j}$ or (ii) $n=2, m$ is odd, $a_{1}=a_{2}=1$, and $\sum_{j=1}^{m} b_{j}=0$. We define $(\sim \mathcal{P})$ as the negation of property \mathcal{P}.

Theorem 3 For the hairy complete bipartite graph $G=K_{n, m}\left(a_{1}, \ldots, a_{n} ; b_{1}, \ldots\right.$, b_{m}):
(i) If \mathcal{P}, then the graph G is solvable if and only if $\sum_{i=1}^{n} a_{i} \leq \sum_{j=1}^{m} b_{j}+n-1$. If $(\sim \mathcal{P})$, then the graph G is solvable if and only if $\sum_{i=1}^{n} a_{i} \leq \sum_{j=1}^{m} b_{j}+n$.
(ii) If \mathcal{P}, then the graph G is freely solvable if and only if $\sum_{i=1}^{n} a_{i} \leq \sum_{j=1}^{m} b_{j}+$ $n-2$. If $(\sim \mathcal{P})$, then the graph G is freely solvable if and only if $\sum_{i=1}^{n} a_{i} \leq$ $\sum_{j=1}^{m} b_{j}+n-1$.
(iii) If \mathcal{P}, then the graph G is distance 2-solvable if and only if $\sum_{i=1}^{n} a_{i}=\sum_{j=1}^{m} b_{j}+$ n. If $(\sim \mathcal{P})$, then the graph G is distance 2 -solvable if and only if $\sum_{i=1}^{n} a_{i}=$ $\sum_{j=1}^{m} b_{j}+n+1$.
(iv) If \mathcal{P}, then graph G is $\left(\sum_{i=1}^{n} a_{i}-\sum_{j=1}^{m} b_{j}-n+2\right)$-solvable if $\sum_{i=1}^{n} a_{i} \geq$ $\sum_{j=1}^{m} b_{j}+n$. If $(\sim \mathcal{P})$, then the graph G is $\left(\sum_{i=1}^{n} a_{i}-\sum_{j=1}^{m} b_{j}-n+1\right)$ solvable if $\sum_{i=1}^{n} a_{i} \geq \sum_{j=1}^{m} b_{j}+n+1$.

Proof We begin by establishing the necessary conditions for (i), (iii), and (iv). We first examine the optimal method for solving the graph. The pegs in each cluster must be eliminated. Hence all pegs in each X_{i} must be removed. To do so, a peg must first be in x_{i}. For this to occur, one of two jumps must be made, namely, $y_{j, k} \cdot \overrightarrow{y_{j}} \cdot x_{i}$ or $x_{\ell} \cdot \overrightarrow{y_{j}} \cdot x_{i}$, where $\ell \neq i$. Therefore, one of two double star purges is necessary, namely $\mathcal{D S}\left(X_{i}, Y_{j}, d\right)$ or $\mathcal{D} \mathcal{S}\left(X_{i}, X-\left\{x_{i}\right\}, d\right)$. In the first, each Y_{j} can "exchange" b_{j} pegs with X_{i}. In the second, each x_{ℓ}, where $\ell \in\{1, \ldots, i-1, i+1, \ldots, n\}$, can "exchange" one peg with X_{i}. Hence $\sum_{i=1}^{n} a_{i} \leq \sum_{j=1}^{m} b_{j}+n$ is necessary for the graph to be solvable (and also freely solvable). Moreover, if $\sum_{i=1}^{n} a_{i} \geq \sum_{j=1}^{m} b_{j}+$ $n+1$, then, at best, $\sum_{i=1}^{n} a_{i}-\sum_{j=1}^{m} b_{j}-n$ pegs remain in the graph. Note that this bound is only achievable in the $(\sim \mathcal{P})$ case, as we will show in the coming paragraphs. Adjustments for the case of \mathcal{P} will be discussed at the end of the proof.

We now show that the conditions given in (i), (iii), and (iv) are sufficient. Our strategy will be to reduce the number of pegs in X_{1}, \ldots, X_{n} by exchanging pegs with Y_{1}, \ldots, Y_{m} and, if necessary, X. To this end, we define a graph homomor$\operatorname{phism} \phi: G \rightarrow G^{\prime}$, where $G^{\prime}=K_{n, 1}\left(a_{1}, \ldots, a_{n} ; \sum_{j=1}^{m} b_{j}\right)$. The homomorphism ϕ is defined by $\phi\left(y_{j}\right)=y^{\prime}, \phi\left(y_{j, \ell}\right)=y_{s_{j}+\ell}^{\prime}$, with $s_{j}=\sum_{k=1}^{j-1} b_{k}$, and $\phi(v)=v$ for all other vertices. Let Y^{\prime} denote the set of all $y_{s_{j}+\ell}^{\prime}$.

This homomorphism has the effect of collapsing the support vertices of Y_{1}, \ldots, Y_{m}. In addition, it allows the movement of a hole along each of the y_{j}. This occurs because as each Y_{j} empties, the jumps $x_{i, 1} \cdot \overrightarrow{x_{i}} \cdot y_{j}$ and $y_{j-1,1} \cdot \overrightarrow{y_{j}} \cdot x_{i}$, for $k \neq j$, results in the hole in y_{j} being moved to y_{j-1}.

Begin with the initial hole in y^{\prime}. This corresponds to beginning with the initial hole in y_{j} for some j. Perform the double star purge $\mathcal{D S}\left(X_{n-i+1}, Y^{\prime}, \min \left\{\rho\left(Y^{\prime}\right), a_{n-i+1}\right\}\right)$, for $i=1, \ldots, n$. Now $\rho\left(Y_{j}\right)=0$ for $j=1, \ldots, m, \rho(X)=n, \rho(Y)=m-1$, and $\rho\left(X_{1} \cup \cdots \cup X_{n}\right)=\sum_{i=1}^{n} a_{i}-\sum_{j=1}^{m} b_{j}$. Without loss of generality, assume that the hole in Y is in y_{m}.

If $\sum_{i=1}^{n} a_{i}=\sum_{j=1}^{m} b_{j}$, then this reduces G to the complete bipartite graph with a hole in a single vertex. This is solvable with the final two pegs in x_{i} and y_{j}, for any i and j. Thus, the graph may be solved with the final peg in $x_{i}, y_{j}, x_{i, 1}$, or $y_{j, 1}$ for any i and j. Hence, G is freely solvable by the Duality Principle. This provides part of the sufficient conditions in (ii).

If $\sum_{i=1}^{n} a_{i} \geq \sum_{j=1}^{m} b_{j}+1$, then let ℓ be the greatest integer such that $\rho\left(X_{\ell}\right) \geq 1$. If $\ell=1$, then perform the double star purge $\mathcal{D S}\left(X_{1}, X-\left\{x_{1}, x_{2}\right\}, \min \left\{\rho\left(X_{1}\right), \rho(X-\right.\right.$ $\left.\left.\left\{x_{1}, x_{2}\right\}\right)\right\}$). If $\ell \geq 2$, then for $i=1, \ldots, \ell$, perform the double star purge $\mathcal{D S}\left(X_{\ell-i+1}, X-\left\{x_{\ell-i+1}, x_{1}\right\}, \min \left\{\rho\left(X_{\ell-i+1}\right), \rho\left(X-\left\{x_{\ell-i+1, x_{1}}\right\}\right)\right\}\right)$ until two pegs remain in X. We note that if $n=2$, then we omit these purges. In any case, we then jump $x_{1,1} \cdot \overrightarrow{x_{1}} \cdot y_{m}$. If $\sum_{i=1}^{n} a_{i} \geq \sum_{j=1}^{m} b_{j}+n$, then $\rho\left(X_{1} \cup \cdots \cup X_{n}\right)=\sum_{i=1}^{n} a_{i}-$ $\sum_{j=1}^{m} b_{j}-n+1, \rho\left(Y_{j}\right)=0$ for $j=1, \ldots, m, \rho(X)=1$, and $\rho(Y)=m$.

If $\sum_{j=1}^{m} b_{j}+1 \leq \sum_{i=1}^{n} a_{i} \leq \sum_{j=1}^{m} b_{j}+n-1$, then this reduces the graph to the complete bipartite graph with a hole in x_{1}. This is solvable with the final two pegs in x_{i} and y_{j}, for any i and j. Thus, the graph may be solved with the final peg in x_{i}, $y_{j}, x_{i, 1}$, or $y_{j, 1}$ for any i and j. Hence, G is freely solvable by the Duality Principle. This provides part of the sufficient conditions in (ii).

If $\sum_{i=1}^{n} a_{i} \geq \sum_{j=1}^{m} b_{j}+n$, then let x_{q} be the vertex in X with a peg and let q^{\prime} be an integer in $\{1, \ldots, n\}$ such that $q^{\prime} \neq q$. For $k=1, \ldots,\left\lfloor\frac{m-2}{2}\right\rfloor$, jump $x_{q} \cdot \overrightarrow{y_{2 k-1}} \cdot x_{q^{\prime}}$ and $x_{q^{\prime}} \cdot \overrightarrow{y_{2 k}} \cdot x_{q}$. We note that if $m=2$ or $m=3$, then we omit these jumps. Let ℓ be the greatest integer such that $\rho\left(X_{\ell}\right) \geq 1$

Assume that m is even. Then $\rho\left(\bar{X}_{1} \cup \cdots \cup X_{n}\right)=\sum_{i=1}^{n} a_{i}-\sum_{j=1}^{m} b_{j}-n+1$, $\rho\left(Y_{j}\right)=0$ for $j=1, \ldots, m, \rho(X)=1$, and $\rho(Y)=2$. If $\ell \neq q$ and $n=2$ (we note that this occurs if $a_{1} \geq 2$ and $a_{2} \leq \sum_{j=1}^{m} b_{j}$), then jump $x_{q} \cdot \overrightarrow{y_{m}} \cdot x_{\ell}$ and $y_{m-1} \cdot \overrightarrow{x_{\ell}} \cdot y_{m}$ to end the game with $\rho\left(X_{1} \cup \cdots \cup X_{n}\right)=\sum_{i=1}^{n} a_{i}-\sum_{j=1}^{m} b_{j}-n+1, \rho(X)=0$, and $\rho(Y)=1$. In particular if $\sum_{i=1}^{n} a_{i}=\sum_{j=1}^{m} b_{j}+n$, then the graph is distance 2solvable since one peg remains in $X_{1} \cup \cdots \cup X_{n}$ and one peg remains in Y. If $\ell \neq q$ and $n \geq 3$, then let $q^{\prime \prime}$ be an integer in $\{1, \ldots, n\}$ such that $q^{\prime \prime} \neq q$ and $q^{\prime \prime} \neq \ell$. Jump $x_{q} \cdot \overrightarrow{y_{m-1}} \cdot x_{q^{\prime \prime}}, x_{q^{\prime \prime}} \cdot \overrightarrow{y_{m}} \cdot x_{\ell}$, and $x_{\ell, 1} \cdot \overrightarrow{x_{\ell}} \cdot y_{m}$ to end the game with $\rho\left(X_{1} \cup \cdots \cup X_{n}\right)=$ $\sum_{i=1}^{n} a_{i}-\sum_{j=1}^{m} b_{j}-n, \rho(X)=0$, and $\rho(Y)=1$. If $\ell=q$, then jump $x_{\ell} \cdot \overrightarrow{y_{m}} \cdot x_{q^{\prime}}$, $x_{q^{\prime}} \cdot \overrightarrow{y_{m-1}} \cdot x_{\ell}$, and $x_{\ell, 1} \cdot \overrightarrow{x_{\ell}} \cdot y_{m}$ to end the game with $\rho\left(X_{1} \cup \cdots \cup X_{n}\right)=\sum_{i=1}^{n} a_{i}-$ $\sum_{j=1}^{m} b_{j}-n, \rho(X)=0$, and $\rho(Y)=1$. We note that in the two previous cases if $\sum_{i=1}^{n} a_{i}=\sum_{j=1}^{m} b_{j}+n+1$, then the graph is distance 2 -solvable since one peg remains in $X_{1} \cup \cdots \cup X_{n}$ and one peg remains in Y.

Assume that m is odd. Then $\rho\left(X_{1} \cup \cdots \cup X_{n}\right)=\sum_{i=1}^{n} a_{i}-\sum_{j=1}^{m} b_{j}-n+1$, $\rho\left(Y_{j}\right)=0$ for $j=1, \ldots, m, \rho(X)=1$, and $\rho(Y)=3$. If $\ell=q, n=2$, and $\rho\left(X_{q^{\prime}}\right)=$ 0 (we note that this occurs if $a_{1}=a_{2}=1$, and $\sum_{j=1}^{m} b_{j}=0$), then jump $x_{\ell} \cdot y_{m-2} \cdot x_{q^{\prime}}$, $x_{q^{\prime}} \cdot \overrightarrow{y_{m}} \cdot x_{\ell}$, and $y_{m-1} \cdot \overrightarrow{x_{\ell}} \cdot y_{m}$ to end the game with $\rho\left(X_{1} \cup \cdots \cup X_{n}\right)=\sum_{i=1}^{n} a_{i}-$ $\sum_{j=1}^{m} b_{j}-n+1, \rho(X)=0$, and $\rho(Y)=1$. In particular if $\sum_{i=1}^{n} a_{i}=\sum_{j=1}^{m} b_{j}+n$, then the graph is distance 2 -solvable since one peg remains in $X_{1} \cup \cdots \cup X_{n}$ and one peg remains in Y. If $\ell=q, n=2$, and $\rho\left(X_{q^{\prime}}\right) \geq 1$, then jump $x_{\ell} \cdot \overrightarrow{y_{m-2}} \cdot x_{q^{\prime}}$, $x_{q^{\prime}} \cdot \overrightarrow{y_{m-1}} \cdot x_{\ell}, x_{\ell} \cdot \overrightarrow{y_{m}} \cdot x_{q^{\prime}}$, and $x_{q^{\prime}, 1} \cdot \overrightarrow{x_{q^{\prime}}} \cdot y_{m}$ to end the game with $\rho\left(X_{1} \cup \cdots \cup X_{n}\right)=$ $\sum_{i=1}^{n} a_{i}-\sum_{j=1}^{m} b_{j}-n, \rho(X)=0$, and $\rho(Y)=1$. If $\ell=q$ and $n \geq 3$, then let ℓ^{\prime} and $\ell^{\prime \prime}$ be integers in $\{1, \ldots, n\}$ such that ℓ, ℓ^{\prime}, and $\ell^{\prime \prime}$ are distinct. Jump $x_{\ell} \cdot \overrightarrow{y_{m-2}} \cdot x_{\ell^{\prime}}$, $x_{\ell^{\prime}} \cdot \overrightarrow{y_{m-1}} \cdot x_{\ell^{\prime \prime}}, x_{\ell^{\prime \prime}} \cdot \overrightarrow{y_{m}} \cdot x_{\ell}$, and $x_{\ell, 1} \cdot \overrightarrow{x_{\ell}} \cdot y_{m}$ to end the game with $\rho\left(X_{1} \cup \cdots \cup X_{n}\right)=$ $\sum_{i=1}^{n} a_{i}-\sum_{j=1}^{m} b_{j}-n, \rho(X)=0$, and $\rho(Y)=1$. If $\ell \neq q$, then jump $x_{q} \cdot \overrightarrow{y_{m-2}} \cdot x_{\ell}$, $x_{\ell} \cdot \overrightarrow{y_{m-1}} \cdot x_{q}, x_{q} \cdot \overrightarrow{y_{m}} \cdot x_{\ell}$, and $x_{\ell, 1} \cdot \overrightarrow{x_{\ell}} \cdot y_{m}$ to end the game with $\rho\left(X_{1} \cup \cdots \cup X_{n}\right)=$ $\sum_{i=1}^{n} a_{i}-\sum_{j=1}^{m} b_{j}-n, \rho(X)=0$, and $\rho(Y)=1$. We note that in the three previous cases if $\sum_{i=1}^{n} a_{i}=\sum_{j=1}^{m} b_{j}+n+1$, then the graph is distance 2 -solvable since one peg remains in $X_{1} \cup \cdots \cup X_{n}$ and one peg remains in Y.

In the above arguments we have established the necessary conditions for (i), (iii), and (iv), as well as the sufficient conditions for (i), (ii), (iii), and (iv). We now establish the necessary conditions for (ii). Note that any graph that is not solvable is also not freely solvable. For this reason, and because if \mathcal{P} and $\sum_{i=1}^{n} a_{i} \leq \sum_{j=1}^{m} b_{j}+n-2$, then $G=K_{n, m}\left(a_{1}, \ldots, a_{n} ; b_{1}, \ldots, b_{m}\right)$ is solvable by (i), we need only show that if \mathcal{P} and $\sum_{i=1}^{n} a_{i} \leq \sum_{j=1}^{m} b_{j}+n-1$, then G is not freely solvable. To do so we need only show that such a graph cannot be solved for a particular choice of the initial hole.

Assume that the initial hole is in x_{i} for some $i \in\{1, \ldots, n\}$, and let $j \in\{1, \ldots, m\}$ and $k \in\{1, \ldots, i-1, i+1, \ldots, n\}$. Without loss of generality, one of two first jumps may occur. If we jump $y_{j, 1} \cdot \overrightarrow{y_{j}} \cdot x_{i}$ (which is only possible if $\sum_{j=1}^{m} b_{j} \geq 1$), then $\rho\left(X_{1}, \ldots, X_{n}\right)=\sum_{i=1}^{n} a_{i}$ but $\rho\left(Y_{1} \cup \cdots \cup Y_{m}\right)=\sum_{j=1}^{m} b_{j}-1$. Since one fewer peg in Y_{1}, \ldots, Y_{m} can be used to purge the pegs in X_{1}, \ldots, X_{n}, the graph is not solvable by (i). If we jump $x_{k} \cdot \overrightarrow{y_{j}} \cdot x_{i}$, then $\rho\left(X_{1}, \ldots, X_{n}\right)=\sum_{i=1}^{n} a_{i}$ but $\rho(X)=n-1$. Since one fewer peg in X can be used to purge the pegs in X_{1}, \ldots, X_{n}, the graph is not solvable by (i). Similar arguments are used to show that if $(\sim \mathcal{P})$ and $\sum_{i=1}^{n} a_{i} \leq \sum_{j=1}^{m} b_{j}+n$, then G is not freely solvable. Note the effect of property \mathcal{P} is that it allows the removal of one fewer peg from $X_{1} \cup \cdots \cup X_{n}$ than in the $(\sim \mathcal{P})$ case, as described in the previous paragraph. For this reason, the remaining cases follow analogously.

There are several variants of peg solitaire on graphs [4, 5, 13-15]. One notable variant is fool's solitaire. In fool's solitaire, the objective of the game is to leave the maximum number of pegs on the graph G under the caveat that a jump must be made whenever possible. This maximum number of pegs is the fool's solitaire number of G and is denoted $F s(G)$. For completeness, we include the fool's solitaire number for the hairy complete bipartite graph. A sharp upper bound on $F s(G)$ is $\alpha(G)$, the independence number of G. For this reason, our strategy will be to attempt to solve
the dual of the maximum independent set. If this is possible, then $F s(G)=\alpha(G)$ by Theorem 2. More information on the fool's solitaire problem can be found in [9, 17]. Note that for this theorem, we ignore the assumption that $\sum_{i=1}^{n} a_{i} \geq \sum_{j=1}^{m} b_{j}$.

Theorem 4 For $G=K_{n, m}\left(a_{1}, \ldots, a_{n} ; b_{1}, \ldots, b_{m}\right)$ with $a_{i}=0$ for $i \geq n-\ell+1$ and $b_{j}=0$, where $j \geq m-\lambda+1$ and $\ell \geq \lambda$:
(i) If $\ell=0$, then $F s(G)=\sum_{i=1}^{n} a_{i}+\sum_{j=1}^{m} b_{j}=\alpha(G)$;
(ii) If $1 \leq \ell \leq n-1$, then $F s(G)=\sum_{i=1}^{n} a_{i}+\sum_{j=1}^{m} b_{j}+\ell=\alpha(G)$;
(iii) If $\ell=n$, then $F s(G)=\sum_{i=1}^{n} a_{i}+\sum_{j=1}^{m} b_{j}+\ell-1=\alpha(G)-1$.

Proof (i) Suppose that $\ell=0$. This implies that $\lambda=0$. Therefore $a_{i} \geq 1$ for all i and $b_{j} \geq 1$ for all j. A maximum independent set is $A=X_{1} \cup \cdots \cup X_{n} \cup Y_{1} \cup \cdots \cup Y_{m}$. The dual of A is $X \cup Y$. Jump $y_{1} \cdot \overrightarrow{x_{1}} \cdot x_{1,1}, x_{2} \cdot \overrightarrow{y_{2}} \cdot x_{1}$, and $x_{1,1} \cdot \overrightarrow{x_{1}} \cdot y_{2}$. If $n=2$ and $m=2$, then the dual is solved with the final peg in y_{2}. If $n=3$ and $m=2$, then jump $x_{3} \cdot \overrightarrow{y_{2}} \cdot x_{1}$ to solve the dual. If $n \geq 4$ and $m \geq 2$, then the subgraph induced by $\left(X-\left\{x_{1}, x_{2}\right\}\right) \cup Y$ is isomorphic to $K_{n-2, m}$ with a hole in y_{1}. Hence it is solvable.
(ii) Suppose that $1 \leq \ell \leq n-1$. A maximum independent set is $A=X_{1} \cup \cdots \cup$ $X_{n} \cup Y_{1} \cup \cdots \cup Y_{m} \cup\left\{x_{n-\ell+1}, \ldots, x_{n}\right\}$. The dual of A is $\left\{x_{1}, \ldots, x_{n-\ell}\right\} \cup Y$. The subgraph induced by $\left\{x_{1}, \ldots, x_{n-\ell+1}\right\} \cup Y \cup\left\{x_{n-\ell+1}\right\}$ is isomorphic to $K_{n-\ell+1, m}$ with a hole in $x_{n-\ell+1}$. Hence it is solvable.
(iii) Suppose that $\ell=n$. A maximum independent set is $A=X \cup Y_{1} \cup \cdots \cup Y_{m}$. The dual of A is Y. Since no pegs are adjacent in the dual, it is not solvable. Thus at least one peg must be added to the dual. We add x_{1} to the dual to obtain $Y \cup\left\{x_{1}\right\}$. The subgraph induced by $Y \cup\left\{x_{1}, x_{2}\right\}$ is isomorphic to $K_{2, m}$ with a hole in x_{2}. Hence it is solvable.

3 Edge Critical Results

In [6], Beeler and Hoilman present an open problem considering the set of connected graphs on n vertices and k edges, which they denote $G_{n, k}$. The problem is, given a fixed n, determine the minimum k such that all graphs in $G_{n, k}$ are solvable. In [3], Beeler and Gray explore this problem by considering edge critical graphs. A graph G is edge critical if the addition of any single edge to G changes the solvability of G. We are particularly interested in the case when the addition of any single edge to an unsolvable (solvable but not freely solvable) graph results in a solvable (freely solvable) graph. An example of an edge critical graph is the cycle on an odd number of vertices [2]. The odd cycle $C_{2 k+1}$ is distance 2 -solvable by Theorem 1. However, the addition of a single edge results in a solvable graph as shown in [2]. An additional family of edge critical graphs is explored in [3]. We now present families of edge
critical hairy complete bipartite graphs. We denote the addition of edge $u v$ to graph G by $G+u v$. As a reminder, property \mathcal{P} is when either: (i) $n=2, m$ is even, $a_{1} \geq 2$, and $a_{2} \leq \sum_{j=1}^{m} b_{j}$ or (ii) $n=2, m$ is odd, $a_{1}=a_{2}=1$, and $\sum_{j=1}^{m} b_{j}=0$. When $n \geq 3$, the analogous property Q is: (i) $n \geq 3, a_{1} \geq n$ and $\sum_{i=2}^{n} a_{i} \leq \sum_{j=1}^{m} b_{j}$ or (ii) $n \geq 3, a_{1}=\cdots=a_{n}=1$, and $\sum_{j=1}^{m} b_{j}=0$.

Theorem 5 The hairy complete bipartite graph $G=K_{2, m}\left(a_{1}, a_{2} ; 0, \ldots, 0\right)$ is an edge critical graph if \mathcal{P}. For $n \geq 3$, the hairy complete bipartite graph $H=$ $K_{n, m}\left(a_{1}, \ldots, a_{n} ; 0, \ldots, 0\right)$ is edge critical if \mathcal{Q} (ii).

Proof By Theorem 3 if \mathcal{P}, then G is $\left(a_{1}+a_{2}\right)$-solvable with $a_{1}+a_{2}-1$ pegs remaining in $X_{1} \cup X_{2}$ and one peg remaining in Y. We now show that if \mathcal{P}, then any single edge addition to G allows the removal of at least one additional peg. Likewise, if \mathcal{Q} (ii), then H is solvable, but not freely solvable. Among these cases, an additional edge can be inserted in one of six places (up to automorphism on the vertices):
(1) An edge is inserted between $x_{1,1}$ and $x_{1,2}$. We note that this is only possible if $\mathcal{P}(\mathrm{i})$. With the initial hole in x_{1}, jump $x_{1,1} \cdot \overrightarrow{x_{1,2}} \cdot x_{1}, y_{m} \cdot \overrightarrow{x_{1}} \cdot x_{1,2}$, and $x_{2} \cdot \overrightarrow{y_{m-1}} \cdot x_{1}$. For $k=1, \ldots, \frac{m-2}{2}$, jump $x_{1} \cdot y_{2 k-1} \cdot x_{2}$ and $x_{2} \cdot \overrightarrow{y_{2 k}} \cdot x_{1}$. Then jump $x_{1,2} \cdot \overrightarrow{x_{1}} \cdot y_{m}$ to end the game with $\rho\left(X_{1}\right)=a_{1}-2$ and $\rho(Y)=1$.
(2) An edge is inserted between $x_{1,1}$ and $x_{2,1}$. We note that this is only possible if $\mathcal{P}(i i)$ or \mathcal{Q} (ii). With the initial hole in $x_{2,1}$, jump $y_{m} \cdot \overrightarrow{x_{2}} \cdot x_{2,1}$ and $x_{1,1} \cdot \overrightarrow{x_{2,1}} \cdot x_{2}$. If $\mathcal{P}(i i)$, then we end the game by solving the $K_{2, m}$ subgraph with a hole in y_{m}. If Q(ii), then we solve the $K_{n, m}(1, \ldots, 1,0,0 ; 0, \ldots, 0)$ subgraph with a hole in y_{m}, which is solvable with the final two pegs in x_{1} and y_{1} by Theorem 3. Hence, it is freely solvable.
(3) An edge is inserted between $x_{1,1}$ and x_{2}. We relabel $x_{1,1}$ as y_{m+1}. If \mathcal{P}, then the graph is isomorphic to $K_{2, m+1}\left(a_{1}+a_{2}-1,0 ; 0, \ldots, 0\right)$, which is ($a_{1}+a_{2}-2$)-solvable by Theorem 3. If Q (ii), then the graph is isomorphic to $K_{n, m+1}(1, \ldots, 1,0 ; 0, \ldots, 0)$ which is freely solvable.
(4) An edge is inserted between x_{1} and x_{2}. Place the initial hole in x_{1}. Assume $\mathcal{P}(\mathrm{i})$. Jump $y_{m} \cdot \overrightarrow{x_{2}} \cdot x_{1}, x_{1,1} \cdot \overrightarrow{x_{1}} \cdot x_{2}, y_{m-1} \cdot \overrightarrow{x_{2}} \cdot x_{1}$, and $x_{1,2} \cdot \overrightarrow{x_{1}} \cdot x_{2}$. Then for $k=$ $1, \ldots, \frac{m-2}{2}$, jump $x_{2} \cdot y_{2 k-1} \cdot x_{1}$ and $x_{1} \cdot \overrightarrow{y_{2 k}} \cdot x_{2}$ to end the game with $\rho\left(X_{1}\right)=a_{1}-2$ and a peg in x_{2}.
Assume \mathcal{P} (ii) or $\mathcal{Q}(i i)$. Jump $x_{2,1} \cdot \overrightarrow{x_{2}} \cdot x_{1}$ and $x_{1,1} \cdot \overrightarrow{x_{1}} \cdot x_{2}$. If $\mathcal{P}(i i)$, then we finish the game by solving the $K_{2, m}$ subgraph with a hole in x_{1}. If $Q($ ii), then we finish the game by solving the $K_{n, m}(1, \ldots, 1,0,0 ; 0, \ldots, 0)$ subgraph with a hole in x_{1}, which is freely solvable.
(5) An edge is inserted between y_{1} and y_{2}. Place the initial hole in y_{m}. Assume $\mathcal{P}(i)$. Jump $x_{1,1} \cdot \overrightarrow{x_{1}} \cdot y_{m}, y_{1} \cdot \overrightarrow{y_{2}} \cdot x_{1}$, and $x_{1,2} \cdot \overrightarrow{x_{1}} \cdot y_{2}$. If $n=m=2$ and $a_{1}=2$, then jump $x_{2} \cdot \overrightarrow{y_{2}} \cdot x_{1}$ to end the game with a single peg in x_{1}. If $n=m=2$ and $a_{1} \geq 3$, then jump $x_{2} \cdot \overrightarrow{y_{2}} \cdot x_{1}$ and $x_{1,3} \cdot \overrightarrow{x_{1}} \cdot y_{2}$ to end the game with $\rho\left(X_{1}\right)=a_{1}-3$ and $\rho(Y)=1$. If $n=2$ and $m \geq 3$, then finish the game by solving the remaining $K_{2, m-1}\left(a_{1}-2,0 ; 0, \ldots, 0\right)$ subgraph after the first jump, which results in at most $a_{1}+a_{2}-2$ pegs remaining in the graph at the end of the game.

Assume \mathcal{P} (ii) or \mathcal{Q} (ii). Jump $x_{2,1} \cdot \overrightarrow{x_{2}} \cdot y_{m}, y_{1} \cdot \overrightarrow{y_{2}} \cdot x_{2}$, and $x_{1,1} \cdot \overrightarrow{x_{1}} \cdot y_{2}$. If $n=2$, then we finish the game by solving the $K_{2, m-1}$ subgraph with a hole in x_{1}. If $n \geq 3$, then we finish the game by solving the $K_{n-1, m}(1, \ldots, 1,0,0 ; 0, \ldots, 0)$ subgraph with a hole in y_{1}, which is solvable by Theorem 3 .
(6) An edge is inserted between $x_{1,1}$ and y_{1}. Assume $\mathcal{P}(i)$. With the initial hole in y_{1}, jump $x_{1,2} \cdot \overrightarrow{x_{1}} \cdot y_{1}$ and $y_{1} \cdot \overrightarrow{x_{1,1}} \cdot x_{1}$. We finish the game by solving the $K_{2, m}\left(a_{1}-\right.$ $2,0 ; 0, \ldots, 0)$ subgraph with a hole in y_{1}, which results in at most $a_{1}+a_{2}-2$ pegs remaining in the graph at the end of the game.
Assume \mathcal{P} (ii) or \mathcal{Q} (ii). With the initial hole in x_{1}, jump $x_{1,1} \cdot \overrightarrow{y_{1}} \cdot x_{1}$ and $x_{2,1} \cdot \overrightarrow{x_{2}} \cdot y_{1}$. If $n=2$, then we finish the game by solving the $K_{2, m}$ subgraph with a hole in x_{2}. If $n \geq 3$, then we finish the game by solving the $K_{n, m}(1, \ldots, 1,0,0 ; 0, \ldots, 0)$ subgraph with a hole in x_{2}, which is freely solvable.

The arguments are similar for when G is solvable, but not freely solvable, and the addition of a single edge results in a freely solvable graph.

Note that graphs in the family $Q(i)$ are not edge critical. To see this, consider $G=$ $K_{n, m}\left(a_{1}, 0, \ldots, 0 ; 0, \ldots, 0\right)+x_{2} x_{3}$, where $n \geq 3$ and $a_{1} \geq n$. This graph is $\left(a_{1}-\right.$ $n+1$)-solvable by Theorem 3. Essentially, the only jumps that utilize the "new" edge $x_{2} x_{3}$ are $x_{2} \cdot \overrightarrow{x_{3}} \cdot y_{j}$ and $y_{j} \cdot \overrightarrow{x_{2}} \cdot x_{3}$. Because neither of these jumps result in an additional peg in X, neither jump will allow us to remove an additional peg from X_{1}. By adapting the $\mathcal{P}(\mathrm{i})$ jumps, it is easy to see that adding any other edge to $K_{n, m}\left(a_{1}, 0, \ldots, 0 ; 0, \ldots, 0\right)$ for $n \geq 3$ and $a_{1} \geq n$ will improve its solvability. The existence of additional edge critical hairy complete bipartite graph families is left as an open problem.

4 Graphs on Eight Vertices

The solvability of all 996 non-isomorphic connected graphs with at most seven vertices is given in [2]. We now extend that catalog by giving the solvability of all 11,117 non-isomorphic connected graphs with eight vertices. The graphs are from [16] and an exhaustive computer search [8] is used to determine solvability. Note that all connected graphs on eight vertices and at least 12 edges are freely solvable. Of the remaining 11,117 non-isomorphic graphs on eight vertices and at most eleven edges, 94 are not freely solvable. In the interest of space, Figs. 3, 4, and 5 list only those graphs that are not freely solvable.

Fig. 3 Graphs with eight vertices and seven edges that are not freely solvable

In each figure, a black vertex indicates that the graph can be solved with the initial hole in that vertex. If the graph is not solvable, then we list the minimum number of pegs that can be obtained in a terminal state associated with a single vertex starting state. If the graph is distance 2 -solvable, then this is indicated with a ' D ', and a black vertex indicates that the graph can be distance 2 -solved with the initial hole in that vertex.

If the graph is edge critical, then we denote the maximum solvability after any single edge addition with a superscript, where ' D ' indicates distance 2 -solvable, ' S ' indicates solvable, but not freely solvable, and ' F ' indicates freely solvable. If none of these three apply, then we use the minimum number of pegs that can be obtained in a terminal state associated with a single vertex starting state instead.

Fig. 4 Graphs with eight vertices and eight edges that are not freely solvable

Fig. 5 Graphs with eight vertices and at least nine edges that are not freely solvable

References

1. John D. Beasley. The ins and outs of peg solitaire, volume 2 of Recreations in Mathematics. Oxford University Press, Eynsham, 1985.
2. Robert A. Beeler and Aaron D. Gray. Peg solitaire on graphs with seven vertices or less. Congr. Numer., 211:151-159, 2012.
3. Robert A. Beeler and Aaron D. Gray. Extremal results for peg solitaire on graphs. Bull. Inst. Combin. Appl., 77:30-42, 2016.
4. Robert A. Beeler and Aaron D. Gray. An introduction to peg duotaire on graphs. J. Combin. Math. Combin. Comput., 104:171-186, 2018.
5. Robert A. Beeler and Aaron D. Gray. Double jump peg solitaire on graphs. The Bulletin of the ICA, 91:80-93, 2021.
6. Robert A. Beeler and D. Paul Hoilman. Peg solitaire on graphs. Discrete Math., 311(20):21982202, 2011.
7. Robert A. Beeler and D. Paul Hoilman. Peg solitaire on the windmill and the double star. Australas. J. Combin., 52:127-134, 2012.
8. Robert A. Beeler and Hal Norwood. Peg solitaire on graphs solver applet. http://faculty.etsu. edu/BEELERR/solitaire/.
9. Robert A. Beeler and Tony K. Rodriguez. Fool's solitaire on graphs. Involve, 5(4):473-480, 2012.
10. Robert A. Beeler and Clayton A. Walvoort. Packages and purges for peg solitaire on graphs. Congr. Numer., 218:33-42, 2013.
11. Robert A. Beeler and Clayton A. Walvoort. Peg solitaire on trees with diameter four. Australas. J. Combin., 63:321-332, 2015.
12. Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy. Winning ways for your mathematical plays. Vol. 2. A K Peters Ltd., Natick, MA, second edition, 2003.
13. Grady D. Bullington. Peg solitaire: "burn two bridges, build one". Congr. Numer., 223:187-191, 2015.
14. John Engbers and Christopher Stocker. Reversible peg solitaire on graphs. Discrete Math., 338(11):2014-2019, 2015.
15. John Engbers and Ryan Weber. Merging peg solitaire on graphs. Involve, 11(1):53-66, 2018.
16. Jason Grout. Small graph database. http://artsci.drake.edu/grout/graphs/.
17. Sarah Loeb and Jennifer Wise. Fool's solitaire on joins and Cartesian products of graphs. Discrete Math., 338(3):66-71, 2015.
18. Douglas B. West. Introduction to graph theory. Prentice Hall Inc., Upper Saddle River, NJ, 1996.

Regular Tournaments with Minimum Split Domination Number and Cycle Extendability

Kim A. S. Factor, Larry Langley, and Sarah Merz

Abstract

A set of vertices, S, in a strongly connected digraph D, is split dominating provided it is: (1) dominating and (2) $D-S$ is trivial or not strongly connected. The split domination number of a strongly connected digraph is the minimum cardinality of a split dominating set for that digraph. We show that for any k-regular tournament, the split domination number is at least $\left\lceil\frac{2 k+3}{3}\right\rceil$ and this bound is tight. We explore properties of regular tournaments with split domination number equal to the lower bound, including sufficient conditions for $\{1\}$-extendability.

Keywords Domination \cdot Separating set \cdot Tournament \cdot Split domination \cdot Cycle extendability

A set of vertices, S, in a graph is considered dominating when, for each vertex v in the graph, either $v \in S$ or there is an edge $\{s, v\}$ in the graph for some $s \in S$. In a digraph, a set of vertices, S, is considered dominating provided every vertex v in the digraph is either an element of S, or there is an $\operatorname{arc}(s, v)$ in the digraph for some $s \in S$. For a thorough introduction to graph theoretic domination, see [7]. For more advanced topics, including an overview of domination in digraphs, see [6].

Variations on domination in both graphs and digraphs are well-studied. In this paper, the variation considered is split domination. In a digraph D, a set of vertices S is split dominating provided the following two conditions hold. First, S is a dominating set. Second, removal of S results in a digraph, denoted by $D-S$, that is either trivial or has a reduced level of connectedness. In this paper, we focus on strongly connected digraphs. So S will be split dominating provided S is dominating and $D-S$ is either trivial or not strongly connected. Split domination was introduced in a (non-directed) graph context in 1979 by Kulli and Janakiram [10]. More recently, this problem was

[^12]Fig. 1 A 2-regular tournament with split domination number equal to three

explored in graphs by Hedetniemi, Knoll, and Laskar [8] and in digraphs by Factor and Merz [5] and Factor, Langley, and Merz [4].

A tournament is a directed graph with the property that for each pair of vertices u and v, either (u, v) or (v, u) is an arc, but not both. Domination in tournaments has been considered in [11-13]. The split domination number of a tournament T is the minimum integer, denoted $\gamma_{s}(T)$, such that there is a split dominating set of size $\gamma_{s}(T)$. For example, the tournament shown in Fig. 1 has split domination number three. Dominating pairs occur in the tournament (any consecutive pair around the outer cycle is dominating), but no such pair is separating. Add any third vertex to a dominating pair and we have a split dominating set of size three. For more on this particular example and its generalization to a tournament with any odd number of vertices, see [5].

In a directed graph $D, V(D)$ and $A(D)$ denote the vertex and arc sets respectively. If $v \in V(D)$, the out-set of v and in-set of v are respectively

$$
N^{+}(v)=\{u:(v, u) \in A(D)\} \text { and } N^{-}(v)=\{u:(u, v) \in A(D)\}
$$

If $S \subseteq V(D)$, then $N_{S}^{+}(v)=N^{+}(v) \cap S$ and $N_{S}^{-}(v)=N^{-}(v) \cap S$.
A regular tournament is a tournament such that $\left|N^{+}(v)\right|=\left|N^{+}(u)\right|$ for all vertices v and u. A k-regular tournament is one in which $\left|N^{+}(v)\right|=k$ for each vertex v. It is well-known that k-regular tournaments are strongly connected. The consideration of the split domination number of a k-regular tournament is a natural consequence. In [5], Factor and Merz prove the following.

Proposition 1 If T is a k-regular tournament, then $\gamma_{s}(T) \leq k+1$.
Furthermore, for all $k \geq 1$, they provide a k-regular tournament T with $\gamma_{s}(T)=$ $k+1$. Their example for $k=2$ is shown in Fig. 1. In Sect. 1, we provide a tight lower bound for the split domination number of a regular tournament. In Sect. 2, we discuss properties of k-regular tournaments with split domination number equal to the lower bound.

1 The Lower Bound

Since a tournament on n vertices has $n(n-1) / 2$ arcs, the average out-degree (and average in-degree) of the vertices is $(n-1) / 2$. This means there is at least one vertex of out-degree greater than or equal to $(n-1) / 2$ in any tournament, and that relationship is strict if n is even. Likewise, in any tournament with n vertices, there is a vertex with in-degree greater than or equal to $(n-1) / 2$ and if n is even we know that there is a vertex with in-degree at least $n / 2$.

Lemma 1 If T is a k-regular tournament, then $\gamma_{s}(T) \geq \frac{2 k+1}{3}$.
Proof Let V be the vertex set of T. Assume S is a minimum size split dominating set of T. Since the induced tournament on $V-S$ is not strong, we may partition the vertices of $V-S$ into X and Y such that (x, y) is an arc for all $x \in X$ and all $y \in Y$. Observe that $|S|+|X|+|Y|=2 k+1$.

Consider the subtournament induced by X. There must be at least one vertex x^{\prime} in X with $\left|N_{X}^{+}\left(x^{\prime}\right)\right| \geq(|X|-1) / 2$. Since x^{\prime} is directed toward every vertex in $Y, k=$ $\left|N^{+}\left(x^{\prime}\right)\right| \geq \frac{|X|-1}{2}+|Y|$. Therefore, $(|X|-1) / 2+|Y| \leq k$. By a similar argument, there is some vertex y^{\prime} in Y such that $k=\left|N^{-}\left(y^{\prime}\right)\right| \geq \frac{|Y|-1}{2}+|X|$ so $(|Y|-1) / 2+$ $|X| \leq k$. Adding the two inequalities yields $|X|+|Y| \leq 2(2 k+1) / 3$. Since $|S|+$ $|X|+|Y|=2 k+1$, we conclude that $|S| \geq(2 k+1) / 3$.

Theorem 1 If T is a k-regular tournament, then $\gamma_{s}(T) \geq\left\lceil\frac{2 k+3}{3}\right\rceil$.
Proof By Lemma 1, we know that $\gamma_{s}(T) \geq(2 k+1) / 3$. We will show that $\gamma_{s}(T)=$ $(2 k+1) / 3$ and $\gamma_{s}(T)=(2 k+2) / 3$ are impossible. Let S be a split dominating set of minimum size. As in Lemma 1, partition the vertices of $T-S$ into X and Y so every vertex in X has an arc to every vertex in Y.

Case one: suppose $\gamma_{s}(T)=|S|=(2 k+1) / 3$. Since $|S|+|X|+|Y|=2 k+1$, $|X|+|Y|=2(2 k+1) / 3$. Suppose $|X|<|Y|$. That is,

$$
|X|=\frac{2 k+1}{3}-w \text { and }|Y|=\frac{2 k+1}{3}+w, \text { for some integer } w>0 .
$$

Since T is a tournament, there exists $x^{\prime} \in X$ such that

$$
\left|N^{+}\left(x^{\prime}\right)\right| \geq \frac{|X|-1}{2}+|Y|=\frac{(2 k+1) / 3-w-1}{2}+\frac{2 k+1}{3}+w=k+\frac{w}{2} .
$$

This is a contradiction since T is k-regular. An analogous argument with insets rules out the possibility that $|Y|<|X|$. Therefore, we know $|X|=|Y|=(2 k+1) / 3$.

Since S is dominating, for all $y \in Y, N_{S}^{-}(y) \neq \emptyset$. Furthermore, there must be a vertex y^{\prime} in Y such that $\left|N_{Y}^{-}\left(y^{\prime}\right)\right| \geq(|Y|-1) / 2$. Thus,

$$
\left|N^{-}\left(y^{\prime}\right)\right| \geq\left|N_{S}^{-}\left(y^{\prime}\right)\right|+\frac{|Y|-1}{2}+|X| \geq 1+\frac{(2 k+1) / 3-1}{2}+\frac{2 k+1}{3}=k+1 .
$$

This is a contradiction since T is k-regular. Thus, $\gamma_{s}(T)>(2 k+1) / 3$.
Case two: suppose $\gamma_{s}(T)=(2 k+2) / 3$. Observe that $|X|+|Y|=(4 k+1) / 3$ and this is odd. Consequently, either $|X|$ or $|Y|$ is odd and the other is even. Thus $|X|$ and $|Y|$ differ by at least one. Since regular tournaments have an odd number of vertices, it follows that $|S|$ is even. Suppose $|X|<|Y|-1$. Then $|X|=\frac{2 k-1}{3}-$ w and $|Y|=\frac{2 k+2}{3}+w$. Again, there must be some vertex x^{\prime} in X such that

$$
\left|N^{+}\left(x^{\prime}\right)\right| \geq \frac{|X|-1}{2}+|Y|=\frac{(2 k-1) / 3-w-1}{2}+\frac{2 k+2}{3}+w=\frac{2 k}{2}+\frac{w}{2}>k
$$

a contradiction since T is k regular. Similar arguments result in a contradiction when $|Y|<|X|-1$. Thus $|X|$ and $|Y|$ differ by exactly 1 .

Suppose $|X|=|Y|-1$. Then

$$
\frac{4 k+1}{3}=|X|+|Y|=2|Y|-1 \Rightarrow|Y|=\frac{2 k+2}{3}=|S| \Rightarrow|X|=\frac{2 k-1}{3}
$$

On the other hand, suppose $|Y|=|X|-1$. Then

$$
|X|=\frac{2 k+2}{3}=|S| \text { and }|Y|=\frac{2 k-1}{3} .
$$

In either case, observe that the larger of the two sets is even. Since S is dominating, for each vertex $v \notin S, N^{-}(v) \cap S \neq \emptyset$. If $|Y|$ is odd, then there is some vertex y^{\prime} in Y such that
$\left|N^{-}\left(y^{\prime}\right)\right| \geq\left|N_{S}^{-}\left(y^{\prime}\right)\right|+\frac{|Y|-1}{2}+|X| \geq 1+\frac{(2 k-1) / 3-1}{2}+\frac{2 k+2}{3}=1+k$,
a contradiction since T is k-regular. On the other hand, if $|Y|$ is even, then there is some vertex y^{\prime} in Y such that

$$
\left|N^{-}\left(y^{\prime}\right)\right| \geq\left|N_{S}^{-}\left(y^{\prime}\right)\right|+\frac{|Y|}{2}+|X|=1+\frac{2 k+2}{6}+\frac{2 k-1}{3}=1+k
$$

a contradiction making case two impossible. So $\gamma_{s}(T) \geq\lceil(2 k+3) / 3\rceil$.
Observe that the tournament shown in Fig. 1 is k-regular with split domination number equal to $\lceil(2 k+3) / 3\rceil$. Indeed, the bound in Theorem 1 is tight. When every vertex in set X has an arc to every vertex in set Y, we write $X \rightarrow Y$. If S is a set of vertices in digraph $D, D[S]$ is the subdigraph of D induced by S.

Theorem 2 For all natural numbers $k \geq 1$, there is a k-regular tournament such that $\gamma_{s}(T)=\left\lceil\frac{2 k+3}{3}\right\rceil$.
Proof A 3-cycle is an example for $k=1$. The tournament in Fig. 1 is an example for $k=2$. So assume $k \geq 3$. Observe that either $2 k+3,2 k+4$ or $2 k+5$ must be a multiple of 3 . We consider each of these three cases.

(any regular tournament
with $(2 k+3) / 3$ vertices)
(any regular tournament with $(2 k+3) / 3$ vertices)

Fig. 2 An example of the construction when $3 \mid(2 k+3)$

Suppose $\left\lceil\frac{2 k+3}{3}\right\rceil=\frac{2 k+3}{3}$. Then k is a multiple of 3 . Construct T as follows. Let X and Y be sets of vertices of size $(2 k+3) / 3$. Let W be a set of

$$
(2 k+1)-\frac{2(2 k+3)}{3}=\frac{2 k-3}{3}
$$

vertices. Note that $2 k+3$ and $2 k-3$ are both odd, so $(2 k+3) / 3$ and $(2 k-3) / 3$ are also odd.

Create tournament T so that $T[W], T[X]$ and $T[Y]$ are regular, $W \rightarrow X$, and $Y \rightarrow W$. It may be that W is a single vertex. Arcs between X and Y are oriented as follows. Label the vertices of X and Y by $x_{0}, x_{1}, \ldots, x_{2 r}$ and $y_{0}, y_{1}, \ldots, y_{2 r}$ respectively. Orient an arc from y_{i} toward x_{i} and, if $i \neq j$ orient an arc from x_{j} toward y_{i}. Figure 2 shows an example with $k=6$.

Since T must be a regular tournament, every vertex must have in-degree of size k and out-degree of size k. By our construction, for all w in W,

$$
\left|N^{+}(w)\right|=\left|N^{-}(w)\right|=|Y|+\frac{|W-1|}{2}=\frac{2 k+3}{3}+\frac{(2 k-3) / 3-1}{2}=k .
$$

Then the out-degree of each vertex of Y is

$$
\frac{|Y-1|}{2}+|W|+1=\frac{(2 k+3) / 3-1}{2}+\frac{2 k-3}{3}+1=k .
$$

Because T is a tournament with $2 k+1$ vertices in total, the in-degree of each vertex in Y must also equal k, so the tournament is k-regular. Analogous reasoning shows $\left|N^{+}(x)\right|=\left|N^{-}(x)\right|=k$ for all $x \in X$. Observe that Y is dominating and that $T-Y$ is not strong, since all vertices of W are directed toward all vertices of X. Since $|Y|=(2 k+3) / 3$, by Theorem $1, \gamma_{s}(T)=(2 k+3) / 3$.

Fig. 3 An example of the construction when $3 \mid(2 k+4)$

Next, suppose $2 k+4$ is a multiple of 3 with $k \geq 4$. Let $r=(2 k+1) / 3$. Let T consist of three regular r-tournaments W, X, and Y with $W \rightarrow X, X \rightarrow Y$, and $Y \rightarrow W$. For every vertex $v,\left|N^{+}(v)\right|=\left|N^{-}(v)\right|=(r-1) / 2+r=k, T$ is regular. Figure 3 shows an example with $k=7$.

Consider $S=W \cup\{x\}$ for some $x \in X$. Since S is a split dominating set size $r+1=(2 k+4) / 3$, by Theorem $1, \gamma_{s}(T)=(2 k+4) / 3=\left\lceil\frac{2 k+3}{3}\right\rceil$.

The final case to consider is when $2 k+5$ is a multiple of 3 . So $k \geq 5$. Partition the $2 k+1$ vertices of T into sets W, X and Y where $|X|=|Y|=(2 k+5) / 3$ and

$$
|W|=2 k+1-\frac{2(2 k+5)}{3}=\frac{2 k-7}{3} .
$$

Let each of the three sets induce a regular tournament, $W \rightarrow X$ and $Y \rightarrow W$. Let $r=$ $(2 k+5) / 3$. Let x_{0}, \ldots, x_{r} and y_{0}, \ldots, y_{r} denote the vertices of X and Y respectively. For $i \in\{0, \ldots, r\}$, orient an arc from y_{i} to x_{i} and from y_{i} to x_{i+1}. All other arcs between X and Y are oriented from the vertex in X toward the vertex in Y. See Fig. 4.

Observe that for each w in W,

$$
\left|N^{+}(w)\right|=\left|N^{-}(w)\right|=|Y|+\frac{|W-1|}{2}=\frac{2 k+5}{3}+\frac{\frac{2 k-7}{3}-1}{2}=k
$$

Label the vertices of X and Y by $x_{0}, x_{1}, \ldots, x_{2 r}$ and $y_{0}, y_{1}, \ldots, y_{2 r}$ respectively. Orient an arc from y_{i} toward x_{i} and x_{i+1}. If $i \neq j$ and $i \neq j-1$, orient an arc from x_{j} toward y_{i}. Then the out-degree of each vertex of Y is

$$
\frac{|Y-1|}{2}+|W|+2=\frac{(2 k+5) / 3-1}{2}+\frac{2 k-7}{3}+2=k .
$$

Fig. 4 An example of the construction when $3 \mid(2 k+5)$

An analogous calculation shows that $\left|N^{-}(x)\right|=k$ for all $x \in X$. Thus, T is regular. Observe that Y is a split dominating set of size $(2 k+5) / 3$. So by Theorem $1, \gamma_{s}(T)=$ $(2 k+5) / 3=\left\lceil\frac{2 k+3}{3}\right\rceil$.

2 Properties of Tournaments That Meet the Bound

The examples given in Theorem 2 share several common properties, yielding the result that each of these tournaments is not $\{1\}$-extendable. In this paper, a cycle in a digraph is assumed to be directed. If D is a digraph with n vertices, we say a cycle C of length $m<n$ is $\{1\}$-extendable if there is a single vertex x such that the m vertices of C, together with x, induce a digraph that contains a cycle of length $m+1$. Cycle extendability has been considered in digraphs [1] and tournaments [2]. The connection between split domination and cycle extendability was introduced in [3]. A digraph is $\{1\}$-extendable if every cycle in D is $\{1\}$-extendable. The following result, due to Hendry, is relevant.

Proposition 2 [9] If T is a regular tournament, then T is not $\{1\}$-extendable if and only if its vertex set can be partitioned into three non-empty sets W, X, and Y such that $T[W]$ is a nontrivial regular tournament, $W \rightarrow X, Y \rightarrow W$, and $|X|=|Y|$.

Observe that each of the three constructions in Theorem 2 meets the conditions of Proposition 2, proving that the tournaments constructed are not $\{1\}$-extendable. This prompts us to wonder if there is any k-regular tournament satisfying the lower bound of Theorem 1 that is $\{1\}$-extendable. The tournament in Fig. 5a is such an example, where S is a split dominating set. You can see this tournament is $\{1\}$-extendable by inspection using the fact that any strongly connected subtournament will have a cycle containing all its vertices.

Fig. 5 Tournament (a) and \mathbf{b} are 5-regular. Not all arcs are shown. Any arc not shown within sets X and S is directed from higher vertex to lower vertex. Any arc not shown between sets X and S is directed from X to S. In tournament \mathbf{b}, arcs not shown between V and S are directed from S to V. $T[X]$ in tournament a and $T[V]$ in tournament \mathbf{b} are not regular even though $|X|$ and $|V|$ are odd

A split dominating set in a tournament suggests a partition of the vertices, but what are the properties of this partition and what are the similarities to the partition of Proposition 2? Let S denote a split dominating set of size $\gamma_{s}(T)$. Let (V, X) denote the partition of $T-S$ into sets so that $V \rightarrow X$ and $T[X]$ is strong. Furthermore, assume that $\gamma_{s}(T)$ satisfies the lower bound of Theorem 1. For the examples in Figs. 2 and $4, S=Y, V=W$, and X is as labeled. For the example in Fig. 3, let $w \in W$. Then $S=Y \cup\{w\}, V=W-\{w\}$, and X is as labeled. In each of these examples, if $|X|$ is odd, then $T[X]$ is regular. The same can be said for V. This is not always the case, as illustrated by the examples in Fig. 5. In a way, the examples of Fig. 5 are the only exceptions. In order to prove this, we use the following lemma.

Lemma 2 Let T be a k-regular tournament with $\gamma_{s}(T)=\left\lceil\frac{2 k+3}{3}\right\rceil, k \geq 3$. Let S be a minimum split dominating set and (V, X) the partition of $T-S$ so that $V \rightarrow X$ and X is strong. Then

1. if $\gamma_{s}(T)=\frac{2 k+3}{3}$, then $|V|=\frac{2 k}{3}-1$,
2. if $\gamma_{s}(T)=\frac{2 k+4}{3}$, then $|V|=\frac{2 k-5}{3}$ or $\frac{2 k-5}{3}+1$, and
3. if $\gamma_{s}(T)=\frac{2 k+5}{3}$, then $|V|=\frac{2 k-7}{3}, \frac{2 k-7}{3}+1$, or $\frac{2 k-7}{3}+2$.

Proof Let S be a split dominating set of size $\gamma_{s}(T)$. Then $|V|+|X|=2 k+1-$ $\gamma_{s}(T)$. Since for all $x \in X,\left|N^{-}(x)\right|=k$ and $V \subseteq N^{-}(x)$, the fact that S dominates T, means that $|V| \leq k-1$. Thus

$$
|X| \geq 2 k+1-\gamma_{s}(T)-(k-1)=k+2-\gamma_{s}(T) .
$$

Furthermore, for all $v \in V, X \subseteq N^{+}(v)$ so $|X| \leq k$. Therefore

$$
|V| \geq 2 k+1-\gamma_{s}(T)-k=k+1-\gamma_{s}(T)
$$

This gives us the following bounds:

$$
\begin{equation*}
k+1-\gamma_{s}(T) \leq|V| \leq k-1 \text { and } k+2-\gamma_{s}(T) \leq|X| \leq k \tag{1}
\end{equation*}
$$

For the smallest cases, $k=3,4$, and $5, \gamma_{s}(T)=3,4$, and 5 respectively. When we observe that $T[X]$ strong implies that $|X| \neq 2$, the bounds of (1) prove the lemma for these values of k. Thus, we can assume that $k \geq 6$. There are three cases to consider: $\left\lceil\frac{2 k+3}{3}\right\rceil=\frac{2 k+3}{3}, \frac{2 k+4}{3}$, or $\frac{2 k+5}{3}$.

In each case, since $k \geq 6,7$, and 8 , respectively, $|V| \geq 2$ and $|X| \geq 3$. Thus, there exists $v \in V$ with $N_{V}^{+}(v) \geq 1$ and since $X \subseteq N^{+}(v)$, we conclude that $|X| \leq k-1$. Thus,

$$
|V|=2 k+1-\gamma_{s}(T)-|X| \Rightarrow|V| \geq k+2-\gamma_{s}(T)
$$

Since $|X| \geq 3$, for all $x \in X,\left|N_{X}^{-}(x)\right| \geq 1$, making $|V| \leq k-2$. Thus,

$$
|X|=2 k+1-\gamma_{s}(T)-|V| \Rightarrow|X| \geq k+3-\gamma_{s}(T)
$$

Thus the bounds in (1) are tightened to

$$
\begin{equation*}
k+2-\gamma_{s}(T) \leq|V| \leq k-2 \text { and } k+3-\gamma_{s}(T) \leq|X| \leq k-1 \tag{2}
\end{equation*}
$$

Assume $\gamma_{s}(T)=(2 k+3) / 3$. Then (2), along with the fact that $|V|+|X|=2 k+$ $1-\gamma_{s}(T)$, means that

$$
\begin{equation*}
|V|=\frac{k}{3}+w \text { and }|X|=k-w \text { where } 1 \leq w \leq \gamma_{s}(T)-3 \tag{3}
\end{equation*}
$$

There is a vertex $x \in X$ with arcs from at least half the other vertices in X, all of V, and at least one vertex in S. So

$$
\begin{equation*}
k=\left|N^{-}(x)\right| \geq|V|+\frac{|X|-1}{2}+1=\frac{5 k}{6}+\frac{w}{2}+\frac{1}{2} . \tag{4}
\end{equation*}
$$

Then

$$
k \geq \frac{5 k}{6}+\frac{w}{2}+\frac{1}{2} \Rightarrow w \leq \frac{k-3}{3}
$$

So $|V|=k / 3+w \leq(2 k / 3)-1$. Similarly, there exists $v \in V$ such that

$$
\begin{equation*}
k=\left|N^{+}(v)\right| \geq \frac{|V|-1}{2}+|X|=\frac{7 k}{6}-\frac{w}{2}-\frac{1}{2} \Rightarrow w \geq \frac{k-3}{3} . \tag{5}
\end{equation*}
$$

Thus, $|V|=\frac{k}{3}+w \geq \frac{2 k}{3}-1$. Therefore, $|V|=\frac{2 k}{3}-1$ if $\gamma_{s}(T)=\frac{2 k+3}{3}$.
Next, assume $\gamma_{s}(T)=(2 k+4) / 3$. In this case, instead of (3), we have

$$
|V|=\frac{k-1}{3}+w \text { and }|X|=k-w \text { where } 1 \leq w \leq \gamma_{s}(T)-3 .
$$

Repeating the calculations in (4) and (5) yields $\frac{2 k-5}{3} \leq|V| \leq \frac{2 k-2}{3}$, thereby finishing case two.

Finally, assume $\gamma_{s}(T)=(2 k+5) / 5$. Then (3) becomes

$$
|V|=\frac{k-2}{3}+w \text { and }|X|=k-w \text { where } 1 \leq w \leq \gamma_{s}(T)-3
$$

Repeating the calculations in (4) and (5) yields $\frac{2 k-7}{3} \leq|V| \leq \frac{2 k-1}{3}$.
Finally, we show that the instances shown in Fig. 5 are the only cases where either $|V|$ is odd and $T[V]$ is not regular or $|X|$ is odd and $T[X]$ is not regular.

Theorem 3 Let T be a k-regular tournament with $\gamma_{s}(T)=\left\lceil\frac{2 k+3}{3}\right\rceil, k \geq 3$. Let S be a minimum split dominating set and (V, X) the partition of $T-S$ so that $V \rightarrow X$ and X is strong. Then

1. if $|V|$ is odd and $|V| \neq \frac{2 k-7}{3}+2$ then $T[V]$ is regular, and
2. if $|X|$ is odd and $|X| \neq \frac{2 k+5}{3}$, then $T[X]$ is regular.

Proof We consider the three cases, $\left\lceil\frac{2 k+3}{3}\right\rceil=\frac{2 k+3}{3}, \frac{2 k+4}{3}$, or $\frac{2 k+5}{3}$. First assume $\gamma_{s}(T)=(2 k+3) / 3$. By Lemma $2,|V|=(2 k-3) / 3$. Thus,

$$
|X|=2 k+1-\gamma_{s}(T)-|V|=(2 k+3) / 3
$$

Since $3 \mid(2 k+3),(2 k-3) / 3$ is odd so we must show that $T[V]$ is regular. Suppose not. Then there must be a vertex $v \in V$ with arcs to more than half the other vertices in V. Since $X \subseteq N^{+}(v)$, we find that

$$
\begin{equation*}
k=\left|N^{+}(v)\right| \geq \frac{|V|-1}{2}+1+|X|=\frac{(2 k-3) / 3-1}{2}+1+\frac{2 k+3}{3}=k+1 \tag{6}
\end{equation*}
$$

a contradiction. Therefore, $T[V]$ is regular.
Note $|X|$ is also odd. Suppose $T[X]$ is not regular. Then some vertex $x \in X$ has arcs from more than half the other vertices in X, in addition to arcs from every vertex in V and at least one vertex in S. That is,

$$
\begin{equation*}
k=\left|N^{+}(x)\right| \geq|V|+\frac{|X|-1}{2}+1+1 \geq=k+1 \tag{7}
\end{equation*}
$$

a contradiction. Thus $T[X]$ is regular.
Next, assume that $\gamma_{s}(T)=(2 k+4) / 3$. By Lemma 2, $|V|=(2 k-8) / 3+w$ where $w \in\{1,2\}$. Since $|X|=2 k+1-\gamma_{s}(T)-|V|$, if $|V|=(2 k-8) / 3+w$, then $|X|=(2 k+7) / 3-w$ for $w \in\{1,2\}$.

Suppose, analogous to (6), that $|V|$ is odd and there is a vertex $v \in V$ with arcs to more than half the other vertices in V. Then

$$
k=\left|N^{+}(v)\right|>\frac{|V|-1}{2}+1+|X|=k+\frac{3}{2}-\frac{w}{2} \text { for } w \in\{1,2\},
$$

a contradiction. Thus, if $|V|$ is odd, then $T[V]$ is regular.
Suppose, analogous to (7), $|X|$ is odd and there is a vertex $x \in X$ such that

$$
\left|N^{-}(x)\right| \geq|V|+\frac{|X|-1}{2}+1+1 \geq k+\frac{w}{2} \text { for } w \in\{1,2\},
$$

a contradiction. Thus, if $|X|$ is odd, then $T[X]$ is regular.
Lastly, suppose that $\gamma_{s}(T)=\frac{2 k+5}{3}$. By Lemma $2,|V|=(2 k-10) / 3+w$ for $w \in\{1,2,3\}$. Since $|X|=2 k+1-\gamma_{s}(T)-|V|$, if $|V|=(2 k-10) / 3+w$ where $w \in\{1,2,3\}$, then $|X|=(2 k+8) / 3-w$. Suppose, analogous to (6), $|V|$ is odd and there is a vertex $v \in V$ with arcs to more than half the other vertices in V. Then

$$
k=\left|N^{+}(v)\right| \geq \frac{|V|-1}{2}+1+|X|=k+\frac{3}{2}-\frac{w}{2} \text { for } w \in\{1,2,3\} .
$$

This is a contradiction so long as $w \neq 3(|V| \neq(2 k-7) / 3+2)$. Thus, if $|V|$ is odd and $|V| \neq(2 k-7) / 3+2$, then $T[V]$ is regular.

Suppose, analogous to (7), $|X|$ is odd and there is a vertex $x \in X$ with arcs from more than half the other vertices in X. Then

$$
k=\left|N^{-}(x)\right| \geq|V|+\frac{|X|-1}{2}+1+1 \geq k-\frac{1}{2}+\frac{w}{2} \text { for } w \in\{1,2,3\} .
$$

If $w \neq 1$ then we have a contradiction. So if $|X|$ is odd and $|X| \neq(2 k+5) / 3$, then $T[X]$ is regular.

Corollary 1 Let $k \geq 6$ and T be a k-regular tournament with $\gamma_{s}(T)=\left\lceil\frac{2 k+3}{3}\right\rceil$. Let S be a minimum split dominating set and (V, X) the partition of $T-S$ so that $V \rightarrow X$ and X is strong. If

1. $3 \mid(2 k+3)$, or
2. $3 \mid(2 k+4)$ and $|V|$ is odd, or
3. $3 \mid(2 k+5)$ and $|V|=\frac{2 k-7}{3}$,
then T is not $\{1\}$-extendable.
Proof Assume $3 \mid(2 k+3)$. Then $|W|=(2 k-3) / 3$ and $|S|=|X|$. Since $|V|>1$, by Theorem 3 and Proposition 2, T is not $\{1\}$-extendable. Assume $3 \mid(2 k+4)$ and $|V|$ is odd. Then by Lemma $2,|V|=(2 k-5) / 3$. So $|S|=|X|$. Since $|V|>1$, the result follows from Theorem 3 and Proposition 2. Finally, assume $3 \mid(2 k+5)$ and $|V|=(2 k-7) / 3$. Then $|V|$ is odd and $|S|=|X|$. Again, $|V|>1$ so the result follows from Theorem 3 and Proposition 2.

References

1. L. B. Beasley and D. E. Brown. Cycle extendability in graphs and digraphs. Linear Algebra Appl., 435(7):1513-1519, 2011.
2. L. B. Beasley, S. K. Merz, D. E. Brown, and B. Thomas. Cycle extendability in tournaments. Congr. Numer, 233:95-101, 2019.
3. D. E. Brown, K. A. S. Factor, L. J. Langley, and S. K. Merz. Cycle extendability and split domination in tournaments. Congr. Numer, 230:239-247, 2018.
4. K. A. S. Factor, L. J. Langley, and S. K. Merz. A tight lower bound for the split domination number of a nearly regular tournament. Congr. Numer., 234:153-160, 2019.
5. K. A. S. Factor and S. K. Merz. Split domination in digraphs. Congr. Numer, 229:275-283, 2017.
6. T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, editors. Domination in graphs, volume 209 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., New York, 1998. Advanced topics.
7. T. W. Haynes, S. T. Hedetniemi, and P. J. Slater. Fundamentals of domination in graphs, volume 208 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., New York, 1998.
8. S. Hedetniemi, F. Knoll, and R. Laskar. Split domination, independence, and irredundance in graphs. Congr. Numer, 227:231-239, 2016.
9. G. R. T. Hendry. Extending cycles in directed graphs. J. Combin. Theory Ser. B, 46(2):162-172, 1989.
10. V. Kulli and B. Janakiram. The split domination number of a graph. Graph Theory Notes N. Y., XXXII:16-19, 1997.
11. X. Lu, D.-W. Wang, and C. K. Wong. On the bounded domination number of tournaments. Discrete Math., 220(1-3):257-261, 2000.
12. N. Megiddo and U. Vishkin. On finding a minimum dominating set in a tournament. Theoret. Comput. Sci., 61(2-3):307-316, 1988.
13. K. B. Reid, A. A. McRae, S. M. Hedetniemi, and S. T. Hedetniemi. Domination and irredundance in tournaments. Australas. J. Combin., 29:157-172, 2004.

Independence and Domination of Chess Pieces on Triangular Boards and on the Surface of a Tetrahedron

Krista Munger, Joseph Petrone, and David R. Prier

Abstract

Independence and domination results are given for six chess-like pieces on triangular boards with triangular spaces and triangular boards with hexagonal spaces. The question of independence and domination on for these same boards on the surface of a tetrahedron is introduced, and some initial results are given. .

Keywords Independence • Domination • Graph theory • Triangular chess boards
MSC Code 05C69

1 Introduction

Independence and domination on chessboards is a well-known topic of study. A graph $B P$ can be made from a board B and a piece P where each space of the board is a vertex and there is an edge from vertex u to vertex v if and only if piece P can move from u to v. An independent set of vertices on $B P$ is a set such that no two vertices share an edge. The independence number, denoted $\beta(B P)$, is the maximum size of an independent set of vertices. A dominating set of vertices on $B P$ is one in which every vertex of the graph is either in the set or adjacent to some member of the set. The domination number, denoted $\gamma(B P)$, is the minimum size of a dominating set of vertices. For an undirected simple graph G, it is a well known fact that $\gamma(G) \leq \beta(G)$.

In this paper, two types of triangular chess boards are considered. Section 2 will examine T_{n}, a triangular board with n^{2} triangular spaces as shown in Fig. 1. Section 3 will examine H_{n}, a triangular board with $\binom{n+1}{2}$ hexagonal spaces as shown in Fig. 2. Chess pieces that move analogously to those in standard chess have been defined in

[^13]

Fig. $1 T_{n}$, triangular boards with triangular spaces

H_{1}

H_{2}

H_{3}

H_{4}

Fig. $2 H_{n}$, triangular boards with hexagonal spaces
many papers, and six will be studied here. See [1]; and [2]; for examples. Section 4 will utilize the results from Sects. 2 and 3 and apply them to boards constructed by placing T_{n} or H_{n} on the four surfaces of a tetrahedron.

2 Triangular Boards with Triangular Spaces

In Fig. 3 we define the moves of six pieces on the triangular board with triangular spaces. The board with hexagonal spaces will be discussed in Sect. 3. The six pieces are the King denoted K, the Queen denoted Q, the Rook denoted R, the Bishop denoted B, the Knight denoted N, and the Grid denoted G. The Grid is similar to a pawn in that it can move only one space in some direction, however is is not limited in the direction that it can move.

2.1 Independence on T_{n}

Results were found concerning the independence numbers associated with these six pieces on T_{n}. After presenting some of this work at a conference, it was found

Fig. 3 The six pieces and their moves defined on a board with triangular spaces
that many of these results had already appeared in a German Mathematics Journal titled Abhandlungen der Braunschweigischen Wissenschaftlichen Gesellschaft. The pertinent results will be summarized here, and the full journal article can be found at [1].

Piece P	$\beta\left(T_{n} P\right)$	Conditions
K	$\frac{1}{3}\binom{n+2}{2}-1$	$n \equiv 2,4,5,7($ mod 12$)$
K	$\left.\left\lfloor\frac{1}{3} \begin{array}{l}n+2 \\ 2\end{array}\right)\right\rfloor$	otherwise
Q	$\beta\left(T_{n} Q\right) \leq \beta\left(T_{n} R\right) \leq\left\lfloor\frac{2 n+1}{3}\right\rfloor$	
R	$\left\lfloor\frac{2 n+1}{3}\right\rfloor$	
B	$2 n-3$	$n \equiv 0($ mod 3$)$
B	$2 n-1$	$n=\frac{3^{k}+1}{2}$ for k a nonnegative integer
B	$2 n-3 \leq \beta\left(T_{n} B\right) \leq 2 n-1$	otherwise
N	$\binom{n+1}{2}$	$n \neq 2$
N	4	$n=2$
G	$\binom{n+1}{2}$	

Note that though many of these independence questions have been solved, there is still room for further work. The Bishop, B, is still not completely settled, and the Queen, Q, has only the trivial inequality that its independence number is less than the Rook's. This must be true since the Rook's moves are a subset of the Queen's.

2.2 Domination on $\boldsymbol{T}_{\boldsymbol{n}}$

Domination questions on T_{n} will be addressed next. In order to aid this explanation, it is useful to have a way to identify each space on a particular board. The following definition will do this.

Let T_{n} be a board. Then $T_{n}(i, j)$ is the triangular space (or vertex) on T_{n} that is in row i and is j spaces from the left. For example, on the board, T_{4} in Fig. 4, $T_{4}(4,3)$ is the space marked with an X .

Fig. $4 T_{4}(4,3)$ is marked with an X

Grid

Theorem $1 \gamma\left(T_{n} G\right)=\frac{n^{2}}{4}$ if n is even. $\left\lceil\frac{n^{2}}{4}\right\rceil \leq \gamma\left(T_{n} G\right) \leq \frac{(n-1)^{2}}{4}+\left\lfloor\frac{2 n}{3}\right\rfloor$ if n is odd. Proof The Grid, G, dominates at most 4 spaces. Since T_{n} has n^{2} vertices $\gamma\left(T_{n} G\right) \geq$ $\left\lceil\frac{n^{2}}{4}\right\rceil$. If n is even then the set of vertices $\left\{T_{n}(i, j): i\right.$ is even and $\left.j \equiv 2(\bmod 4)\right\} \cup$ $\left\{T_{n}(i, j): i\right.$ is odd and $\left.j \equiv 3(\bmod 4)\right\}$ is a minimum dominating set of size $\frac{n^{2}}{4}$. If n is odd, then the minimum dominating set for T_{n-1} of size $\frac{(n-1)^{2}}{4}$ along with the set $\left[T_{n}(n, j): j \equiv 2(\bmod 3)\right]$ of size $\left\lfloor\frac{2 n}{3}\right\rfloor$ is dominating.

Rook

Theorem $2\left\lceil\frac{n^{2}}{4(n-1)}\right\rceil \leq \gamma\left(T_{n} R\right) \leq\left\lceil\frac{n}{2}\right\rceil$.
Proof Any one Rook, R, dominates at most $4(n-1)$ spaces, so $\left\lceil\frac{n^{2}}{4(n-1)}\right\rceil \leq \gamma\left(T_{n} R\right)$. A dominating set for T_{n} of size $\left\lceil\frac{n}{2}\right\rceil$ is $\left\{T_{n}(i, j): i \equiv 0(\bmod 2)\right.$ and $\left.j=\frac{i}{2}\right\}$. The above inequality seems to have a lot of room for improvement. The authors of this paper, however, have found no values of n where $\gamma\left(T_{n} R\right)<\frac{n}{2}$. It is conjectured that $\gamma\left(T_{n} R\right)=\frac{n}{2}$.

Queen

Theorem $3\left\lceil\frac{n^{2}}{7(n-2)}\right\rceil \leq \gamma\left(T_{n} Q\right) \leq \gamma\left(T_{n} R\right) \leq\left\lceil\frac{n}{2}\right\rceil$.
Proof Any one Queen, Q, dominates at most $7(n-2)$ spaces, so $\left\lceil\frac{n^{2}}{7(n-2)}\right\rceil \leq$ $\gamma\left(T_{n} Q\right)$. Because the Rook's moves are a subset of the Queen's, $\gamma\left(T_{n} Q\right) \leq \gamma\left(T_{n} R\right)$. However, as in the Rook's case, the authors of this paper have found no values of n where $\gamma\left(T_{n} Q\right)<\frac{n}{2}$.

Bishop

Theorem $4\left\lceil\frac{n^{2}}{3 n-2}\right\rceil \leq \gamma\left(T_{n} B\right) \leq 2 n-1$ ifn is even, and $\left\lceil\frac{n^{2}}{3 n-4}\right\rceil \leq \gamma\left(T_{n} B\right) \leq 2 n-$ 1 if n is odd.

Proof The maximum number of spaces of T_{n} dominated by one Bishop, B, is $3 n-2$ if n is even and $3 n-4$ if n is odd. The upper bound of $2 n-1$ comes from the fact that the set $\left\{T_{n}(i, j): i=n\right\}$ is a rather trivial dominating set of size $2 n-1$. To see that this upper bound is far from sharp, one can notice that $\gamma\left(T_{6} B\right)=3$ with minimum dominating set $\left\{T_{6}(4,4), T_{6}(5,4), T_{6}(5,6)\right\}$.

King

Theorem $5\left\lceil\frac{n^{2}}{13}\right\rceil \leq \gamma\left(T_{n} K\right) \leq\left\lceil\frac{n^{2}+3 n}{10}\right\rceil$.
Proof The maximum number of spaces one King, K, can dominate is 13 , so this fact accounts for the lower bound. Now define the bottom five rows of T_{n} to be a new graph called D_{n} for all $n \geq 6$. It will be shown that $\gamma\left(D_{n} K\right) \leq n-1$ for all $n \geq 6$. Consider the set of vertices, S, defined as the following:
$S=\left\{T_{n}(n-1, j): j \equiv 1(\bmod 4)\right\} \cup\left\{T_{n}(n-4, j): j \equiv 3(\bmod 8)\right\} \cup\left\{T_{n}(n-5\right.$, $j): j \equiv 6(\bmod 8)\}$ If $n \equiv 2(\bmod 4)$, then S has $n-2$ vertices and dominates D_{n}. If $n \equiv 3(\bmod 4)$, then S has $n-3$ vertices. S along with the vertices $T_{n}(n, 2 n-1)$ and $T_{n}(n-5,2 n-9)$ dominates D_{n} with $n-1$ total vertices. If $n \equiv 0(\bmod 4)$, then S has $n-2$ vertices. S along with the vertex $T_{n}(n-4,2 n-7)$ dominates D_{n} with $n-1$ total vertices. If $n \equiv 1(\bmod 4)$, then S has $n-2$ vertices. S along with the vertex $T_{n}(n, 2 n-1)$ dominates D_{n} with $n-1$ total vertices. In all four cases, $\gamma\left(D_{n} K\right) \leq n-1$.

Using the fact that $\gamma\left(D_{n} K\right) \leq n-1, T_{n}$ can be dominated by dominating its subgraphs $D_{n} K, D_{n-5} K, D_{n-2.5} K$, and so on.

If $n \equiv 0(\bmod 5)$, then $\gamma\left(T_{n} K\right) \leq \gamma\left(D_{n} K\right)+\gamma\left(D_{n-5} K\right)+\gamma\left(D_{n-2.5} K\right)+\cdots+$ $\gamma\left(D_{5} K\right) \leq(n-1)+(n-5-1)+(n-2 \cdot 5-1)+\cdots+(5-1)=\frac{n^{2}+3 n}{10}$. And thus $\gamma\left(T_{n} K\right) \leq \frac{n^{2}+3}{10}=\left\lceil\frac{n^{2}+3 n}{10}\right\rceil$.

If $n \equiv 1(\bmod 5)$, then $\gamma\left(T_{n} K\right) \leq \gamma\left(D_{n} K\right)+\gamma\left(D_{n-5} K\right)+\gamma\left(D_{n-2.5} K\right)+\cdots+$ $\gamma\left(D_{6} K\right)+\gamma\left(T_{1} K\right) \leq(n-1)+(n-5-1)+(n-2 \cdot 5-1)+\cdots+(6-1)+1$
$=\frac{n^{2}+3 n+6}{10}$. Note here that the fact $\gamma\left(T_{1} K\right)=1$ is used, and thus $\gamma\left(T_{n} K\right) \leq \frac{n^{2}+3+6}{10}=$ $\left\lceil\frac{n^{2}+3 n}{10}\right\rceil$.

If $n \equiv 2(\bmod 5)$, then $\gamma\left(T_{n} K\right) \leq \gamma\left(D_{n} K\right)+\gamma\left(D_{n-5} K\right)+\gamma\left(D_{n-2.5} K\right)+\cdots+$ $\gamma\left(D_{7} K\right)+\gamma\left(T_{2} K\right) \leq(n-1)+(n-5-1)+(n-2 \cdot 5-1)+\cdots+(7-1)+1$ $=\frac{n^{2}+3 n}{10}$. Here the fact $\gamma\left(T_{2} K\right)=1$ is used, and therefore $\gamma\left(T_{n} K\right) \leq \frac{n^{2}+3}{10}=\left\lceil\frac{n^{2}+3 n}{10}\right\rceil$.

If $n \equiv 3(\bmod 5)$, then $\gamma\left(T_{n} K\right) \leq \gamma\left(D_{n} K\right)+\gamma\left(D_{n-5} K\right)+\gamma\left(D_{n-2.5} K\right)+\cdots+$ $\gamma\left(D_{8} K\right)+\gamma\left(T_{3} K\right) \leq(n-1)+(n-5-1)+(n-2 \cdot 5-1)+\cdots+(8-1)+$ $2=\frac{n^{2}+3 n+2}{10}$. Here the fact $\gamma\left(T_{3} K\right)=2$ is used, and therefore $\gamma\left(T_{n} K\right) \leq \frac{n^{2}+3+2}{10}=$ $\left\lceil\frac{n^{2}+3 n}{10}\right\rceil$.

If $n \equiv 4(\bmod 5)$, then $\gamma\left(T_{n} K\right) \leq \gamma\left(D_{n} K\right)+\gamma\left(D_{n-5} K\right)+\gamma\left(D_{n-2.5} K\right)+\cdots+$ $\gamma\left(D_{9} K\right)+\gamma\left(T_{4} K\right) \leq(n-1)+(n-5-1)+(n-2 \cdot 5-1)+\cdots+(9-1)+3$ $=\frac{n^{2}+3 n+2}{10}$. Here the fact $\gamma\left(T_{4} K\right)=3$ is used, and therefore $\gamma\left(T_{n} K\right) \leq \frac{n^{2}+3+2}{10}=$ $\left\lceil\frac{n^{2}+3 n}{10}\right\rceil$.

Knight

Theorem $6\left\lceil\frac{n^{2}}{10}\right\rceil \leq \gamma\left(T_{n} N\right) \leq \frac{n^{2}}{4}$ if $n \equiv 0(\bmod 4)$.
$\left\lceil\frac{n^{2}}{10}\right\rceil \leq \gamma\left(T_{n} N\right) \leq \frac{n^{2}+7}{4}$ if $n \equiv 1(\bmod 4)$.
$\left\lceil\frac{n^{2}}{10}\right\rceil \leq \gamma\left(T_{n} N\right) \leq \frac{n^{2}+n+2}{4}$ if $n \equiv 2(\bmod 4)$.
$\left\lceil\frac{n^{2}}{10}\right\rceil \leq \gamma\left(T_{n} N\right) \leq \frac{n^{2}+2 n+1}{4}$ if $n \equiv 3(\bmod 4)$.
Proof The maximum number of spaces on Knight, N, can dominate is 10 , so this fact accounts for the lower bound of $\left\lceil\frac{n^{2}}{10}\right\rceil$. The upper bound for $n \equiv 0(\bmod 4)$ relies on the fact that $\gamma\left(T_{4} N\right)=4$ with minimum dominating $\left\{T_{4}(3,2), T_{4}(3,3), T_{4}(3,4)\right.$, $\left.T_{4}(4,4)\right\}$ and that a board of size $n \equiv 0(\bmod 4)$ can be tiled with $\left(\frac{n}{4}\right)^{2}$ copies of $T_{4} N$. For the other three cases, the upper bounds are achieved by using this same tiling and then dominating the last one, two, or three rows.

If $n \equiv 1(\bmod 4)$, then after a tiling of the first $n-1$ rows of $T_{n} N$ with $\left(\frac{n-1}{4}\right)^{2}$ copies of $T_{4} N$, the $\operatorname{set}\left\{T_{n}(n, j): j \equiv 1(\bmod 8)\right\} \cup\left\{T_{n}(n-2, j): j \equiv 7(\bmod 8)\right\} \cup$ $\left\{T_{n}(n, 2), T_{n}(n, 2 n-2)\right\}$ of size $\frac{n+3}{2}$ finishes dominating the $n^{\text {th }}$ row. The total size of this dominating set is then $\frac{(n-1)^{2}}{4}+\frac{n+3}{2}=\frac{n^{2}+7}{4}$.

If $n \equiv 2(\bmod 4)$, then after a tiling of the first $n-2$ rows of $T_{n} N$ with $\left(\frac{n-2}{4}\right)^{2}$ copies of $T_{4} N$, the set $\left\{T_{n}(n, j): j \equiv 2,6(\bmod 8)\right\} \cup\left\{T_{n}(n-1, j): j \equiv 0,1,2\right.$ $(\bmod 8)\}$ of size $\frac{5 n-2}{4}$ finishes dominating the last two rows. The total size of this dominating set is then $\frac{(n-2)^{2}}{4}+\frac{5 n-2}{4}=\frac{n^{2}+n+2}{4}$.

If $n \equiv 3(\bmod 4)$, then after a tiling of the first $n-3$ rows of $T_{n} N$ with $\left(\frac{n-3}{4}\right)^{2}$ copies of $T_{4} N$, the set $S=\left\{T_{n}(n, j): j \equiv 4(\bmod 8)\right\} \cup\left\{T_{n}(n-1, j): j \equiv 2,3,4\right.$ $(\bmod 8)\} \cup\left\{T_{n}(n-2, j): j \equiv 5,6,7(\bmod 8)\right\} \cup\left\{T_{n}(n-1,2 n-5), T_{n}(n-1\right.$, $2 n-6)\}-\left\{T_{n}(n, 2 n-2), T_{n}(n-1,2 n-3)\right\}$ of size $2 n-2$ finishes dominating the last three rows. The total size of this dominating set is then $\frac{(n-3)^{2}}{4}+(2 n-$ $2)=\frac{n^{2}+2 n+1}{4}$. It is worth mentioning that the set S, while always dominating, is not always the dominating set of smallest size. One instance to note is when
$n \equiv 7,11(\bmod 28)$ the set $S_{0}=\left\{T_{n}(n, j): j \equiv 4(\bmod 14)\right\} \cup\left\{T_{n}(n-1, j): j \equiv\right.$ $2,3,4,9,10,11(\bmod 14)\} \cup\left\{T_{n}(n-2, j): j \equiv 9(\bmod 14)\right\}$ dominates the last three rows of T_{n}. And, for example, in the case where $n \equiv 11(\bmod 28),\left|S_{0}\right|=\frac{8 n-4}{7}$ implying that $\gamma\left(T_{n} N\right) \leq \frac{(n-3)^{2}}{4}+\frac{8 n-4}{7}=\frac{7 n^{2}-10 n+47}{28}$. This upper bound is much less than $\frac{n^{2}+2 n+1}{4}$ achieved by using S to dominate the last three rows.

3 Triangular Boards with Hexagonal Spaces

In Fig. 5 we define the moves of six pieces on the triangular board with hexagonal spaces, H_{n}. As in Sect. 2, there are six pieces defined; the King denoted K, the Queen denoted Q, the Rook denoted R, the Bishop denoted B, the Knight denoted N, and the Grid denoted G. As with T_{n}, many results were found concerning the independence numbers associated with these six pieces on H_{n}. But, as before, a more complete list of independence results was found in [2]. These results are summarized here.

Fig. 5 The six pieces and their moves defined on a board with hexagonal spaces

3.1 Independence on $\boldsymbol{H}_{\boldsymbol{n}}$

Piece P	$\beta\left(H_{n} P\right)$	Conditions
K	$\left\lfloor\frac{n+2}{2}\right\rfloor\left\lfloor\frac{n+3}{2}\right\rfloor / 2$	
Q	$\beta\left(H_{n} Q\right) \leq \beta\left(H_{n} R\right)=\left\lfloor\frac{2 n+1}{3}\right\rfloor$	
R	$\left\lfloor\frac{2 n+1}{3}\right\rfloor$	
B	$2 n-3,2 n-6$, or $2 n-9$	$n \equiv 0(\bmod 3)$
B	$2 n-i$ for $3 \leq i \leq 9$	$n \equiv 1(\bmod 3)$
B	$2 n-1,2 n-4$, or $2 n-7$	$n \equiv 2(\bmod 3)$
N	$\left\lfloor\frac{n^{2}+3 n+2}{6}\right\rfloor$	$n \equiv 0,1(\bmod 3)$
N	$\frac{n^{2}+5 n+4}{6}$	$n \equiv 2(\bmod 3)$
G	$\left\lfloor\frac{n(n+1)+4}{6}\right\rfloor$	$n \neq 3,5$
G	3 and 6	$n=3$ and 5 respectively

Note that there is still work that could be done to complete this list. The Queen's independence number, for example, only has the rather trivial restriction that it is less than the Rook's. Harborth et al. in [2] noted that for $1 \leq n \leq 31, \beta\left(H_{n} Q\right)=\beta\left(H_{n} R\right)$ or $\beta\left(H_{n} R\right)-1$.

3.2 Domination on $\boldsymbol{H}_{\boldsymbol{n}}$

Domination questions on H_{n} will be addressed next. Similar to the definition in Sect.3, we will define $H_{n}(i, j)$ be the hexagonal space (or vertex) on H_{n} that is in row i and j spaces from the left.

King

Theorem $7\left\lceil\frac{n(n+1)}{26}\right\rceil \leq \gamma\left(H_{n} K\right) \leq \frac{n(n+3)}{18}$ if $n \equiv 0(\bmod 3)$,

$$
\begin{aligned}
& \left\lceil\frac{n(n+1)}{26}\right\rceil \leq \gamma\left(H_{n} K\right) \leq \frac{(n-1)(n+2)}{18} \text { if } n \equiv 1(\bmod 3), n \geq 4, \\
& \left\lceil\frac{n(n+1)}{26}\right\rceil \leq \gamma\left(H_{n} K\right) \leq \frac{(n+1)(n+4)}{18} \text { if } n \equiv 2(\bmod 3) .
\end{aligned}
$$

Proof The lower bound of $\left\lceil\frac{n(n+1)}{26}\right\rceil$ in all three cases comes from the fact that an individual King dominates at most 13 spaces while H_{n} has $\frac{n(n+1)}{2}$ total spaces. If $n \equiv 1(\bmod 3)$ and $n \geq 4$ then $S=\left\{H_{n}(i, j): i \equiv 0(\bmod 3)\right.$ and $\left.j \equiv 2(\bmod 3)\right\}$ is a dominating set of size $\frac{(n-1)(n+2)}{18}$. If $n \equiv 0(\bmod 3)$, then S is a dominating set of size $\frac{(n)(n+3)}{18}$. And Finally, if $n \equiv 2(\bmod 3)$, then $S \cup\left\{H_{n}(n, j): j \equiv 2(\bmod 3)\right\}$ is a dominating set of size $\frac{(n+1)(n+4)}{18}$.

Rook

Theorem $8\left\lceil\frac{n(n+1)}{4 n-2}\right\rceil \leq \gamma\left(H_{n} R\right) \leq\left\lceil\frac{n}{2}\right\rceil$.
Proof Any one Rook dominates exactly $2 n-1$ of the $\frac{n(n+1)}{2}$ spaces of H_{n}, thus giving the lower bound. $S=\left\{H_{n}(i, j): i \equiv 1(\bmod 2)\right.$ and $\left.j=\frac{i+1}{2}\right\}$ is a dominating set of size $\left\lceil\frac{n}{2}\right\rceil$ giving the upper bound.

Queen

Theorem $9\left\lceil\frac{n(n+1)}{7 n-8}\right\rceil \leq \gamma\left(H_{n} Q\right) \leq\left\lceil\frac{n}{2}\right\rceil$.
Proof If n is odd, then a Queen dominates at most $\frac{n(n+1)}{7 n-9}$ spaces of H_{n}. If n is even, then the maximum number is $\frac{n(n+1)}{7 n-8}$. Since $\frac{n(n+1)}{7 n-8}$ is the lesser number, this gives the lower bound. Since the Rook's moves are a subset of the Queens, trivially $\gamma\left(H_{n} Q\right) \leq \gamma\left(H_{n} R\right)$ giving the upper bound.

Bishop

Theorem $10\left\lceil\frac{n(n+1)}{3 n-4}\right\rceil \leq \gamma\left(H_{n} B\right) \leq 2 n-9$ for $n \geq 6, \gamma\left(H_{1} B\right)=1$, and $\gamma\left(H_{k}\right.$ $(B))=3$ for $2 \leq k<6$.

Proof If $n>1$ is odd, then a Bishop dominates at most $\frac{3 n-5}{2}$ spaces of H_{n}. If n is even, then the maximum number is $\frac{3 n-4}{2}$. These facts give the lower bound. If $n \geq 6$ then $S=\left\{H_{n}(n-1, j): 3 \leq j \leq n-3\right\} \cup\left\{H_{n}(n-2, j): 2 \leq j \leq n-3\right\}$ is a dominating set of size $2 n-9$ giving the upper bound. If $n=6$, then $|S|=3$. Sets of size 3 similar to this are minimum dominating sets for $H_{k}(B)$ for $2 \leq k<6$.

Knight

Theorem $11\left\lceil\frac{n(n+1)}{14}\right\rceil \leq \gamma\left(H_{n} N\right) \leq \frac{2 n^{2}+5 n}{25}$ if $n \equiv 0(\bmod 5)$,
$\left\lceil\frac{n(n+1)}{14}\right\rceil \leq \gamma\left(H_{n} N\right) \leq \frac{2 n^{2}+11 n+12}{25}$ if $n \equiv 1(\bmod 5), n>5$,
$\left\lceil\frac{n(n+1)}{14}\right\rceil \leq \gamma\left(H_{n} N\right) \leq \frac{2 n^{2}+17 n+8}{25}$ if $n \equiv 2(\bmod 5), n>5$,
$\left\lceil\frac{n(n+1)}{14}\right\rceil \leq \gamma\left(H_{n} N\right) \leq \frac{2 n^{2}+13 n+18}{25}$ if $n \equiv 3(\bmod 5), n>5$,
$\left\lceil\frac{n(n+1)}{14}\right\rceil \leq \gamma\left(H_{n} N\right) \leq \frac{2 n^{2}+9 n-93}{25}$ if $n \equiv 4(\bmod 5), n>5$, $\gamma\left(H_{1} N\right)=1$, and $\gamma\left(H_{2} N\right)=\gamma\left(H_{3} N\right)=\gamma\left(H_{4} N\right)=3$.

Proof A Knight dominates at most seven spaces of H_{n} giving the lower bounds in all five cases.

If $n \equiv 0(\bmod 5)$, then $S=\left\{H_{n}(i, j): i \equiv 2(\bmod 5), j \equiv 4(\bmod 5)\right\} \cup\left\{H_{n}(i, j):\right.$ $i \equiv 3(\bmod 5), j \equiv 2(\bmod 5)\} \cup\left\{H_{n}(i, j): i \equiv 4(\bmod 5), j \equiv 2,3(\bmod 5)\right\}$ is a
dominating set of size $\frac{2 n^{2}+5 n}{25}$. If $n=5$, this set of size 3 is minimum dominating, and similar sets of size three dominate $H_{2} N, H_{3} N$, and $H_{4} N$.

If $n \equiv 1(\bmod 5)$, then $S \cup\left\{H_{n}(n-1, j): j \equiv 3(\bmod 5)\right\} \cup\left\{H_{n}(n, j): j \equiv 1\right.$ $(\bmod 5)\}$ is a dominating set of size $\frac{2 n^{2}+11 n+12}{25}$.

If $n \equiv 2(\bmod 5)$, then $S \cup\left\{H_{n}(n-1, j): j \equiv 2(\bmod 5)\right\} \cup\left\{H_{n}(n, j): j \equiv 0\right.$, $2,3(\bmod 5)\} \cup\left\{H_{n}(n, n-1)\right\}$ is a dominating set of size $\frac{2 n^{2}+17 n+8}{25}$.

If $n \equiv 3(\bmod 5)$, then $S \cup\left\{H_{n}(n-1, j): j \equiv 1,2,4(\bmod 5)\right\} \cup\left\{H_{n}(n, j)\right.$: $j \equiv 2(\bmod 5)\}$ is a dominating set of size $\frac{2 n^{2}+13 n+18}{25}$.

If $n \equiv 4(\bmod 5)$, then S is a dominating set of size $\frac{2 n^{2}+9 n-93}{25}$.

Grid

Theorem $12\left\lceil\frac{n(n+1)}{14}\right\rceil \leq \gamma\left(H_{n} G\right) \leq \frac{n^{2}+5 n}{14}$ if $n \equiv 0(\bmod 7)$,

$$
\begin{aligned}
& \left\lceil\frac{n(n+1)}{14}\right\rceil \leq \gamma\left(H_{n} G\right) \leq\left\lfloor\frac{n^{2}+7 n}{14}\right\rfloor \text { if } n \equiv 1,2,3,4,6(\bmod 7), n>7, \\
& \left\lceil\frac{n(n+1)}{14}\right\rceil \leq \gamma\left(H_{n} G\right) \leq\left\lfloor\frac{n^{2}+7 n}{14}\right\rfloor+1 \text { if } n \equiv 5(\bmod 7), n>7, \\
& \gamma\left(H_{1} G\right)=\gamma\left(H_{2} G\right)=1, \gamma\left(H_{3} G\right)=2, \gamma\left(H_{4} G\right)=\gamma\left(H_{5} G\right)=3 \text {, and } \gamma\left(H_{6} G\right) \\
= & 5 .
\end{aligned}
$$

Proof A Grid dominates at most seven spaces of H_{n} giving the lower bounds in all five cases.

Define the set $S=\left\{H_{n}(i, j): i \equiv 1(\bmod 7)\right.$ and $\left.j \equiv 3(\bmod 7)\right\} \cup\left\{H_{n}(i, j):\right.$ $i \equiv 2(\bmod 7)$ and $j \equiv 1(\bmod 7)\} \cup\left\{H_{n}(i, j): i \equiv 3(\bmod 7)\right.$ and $\left.j \equiv 6(\bmod 7)\right\} \cup$ $\left\{H_{n}(i, j): i \equiv 4(\bmod 7)\right.$ and $\left.j \equiv 4(\bmod 7)\right\} \cup\left\{H_{n}(i, j): i \equiv 5(\bmod 7)\right.$ and $j \equiv$ $2(\bmod 7)\} \cup\left\{H_{n}(i, j): i \equiv 6(\bmod 7)\right.$ and $\left.j \equiv 0(\bmod 7)\right\} \cup\left\{H_{n}(i, j): i \equiv 0(\bmod \right.$ 7) and $j \equiv 5(\bmod 7)\} \cup\left\{H_{n}(i, 1), H_{n}(i, i): i \equiv 0(\bmod 7)\right\}$. S uses one space out of every seven in each row except for those rows which are $\equiv 0(\bmod 7)$. In these rows which are multiples of seven, S uses the two additional spaces that are the leftmost and the rightmost. This seems like an efficient construction of S since a single Grid dominates at most seven spaces. A picture of S for $H_{14} G$ is in Figure 6.

If $n \equiv 0(\bmod 7)$, then S is a dominating set of size $\frac{n^{2}+5 n}{14}$.
If $n \equiv 1(\bmod 7)$, then $S \cup\left\{H_{n}(n, j): j \equiv 0(\bmod 7)\right.$ and $\left.j \neq n-1\right\}$ is a dominating set of size $\frac{n^{2}+7 n-9}{14}=\left\lfloor\frac{n^{2}+7 n}{14}\right\rfloor$.

If $n \equiv 2(\bmod 7)$, then $S \cup\left\{H_{n}(n, j): j \equiv 5(\bmod 7)\right\}$ is a dominating set of size $\frac{n^{2}+7 n-4}{14}=\left\lfloor\frac{n^{2}+7 n}{14}\right\rfloor$.

If $n \equiv 3(\bmod 7)$, then $S \cup\left\{H_{n}(n, j): j \equiv 4(\bmod 7)\right\} \cup\left\{H_{n}(n, n)\right\}$ is a dominating set of size $\frac{n^{2}+7 n-2}{14}=\left\lfloor\frac{n^{2}+7 n}{14}\right\rfloor$.

If $n \equiv 4(\bmod 7)$, then $S \cup\left\{H_{n}(n, j): j \equiv 1(\bmod 7)\right\}$ is a dominating set of size $\frac{n^{2}+7 n-2}{14}=\left\lfloor\frac{n^{2}+7 n}{14}\right\rfloor$.

If $n \equiv 5(\bmod 7)$, then $S \cup\left\{H_{n}(n, j): j \equiv 6(\bmod 7)\right\}$ is a dominating set of size $\frac{n^{2}+7 n-18}{14}=\left\lfloor\frac{n^{2}+7 n}{14}\right\rfloor+1$.

If $n \equiv 6(\bmod 7)$, then $S \cup\left\{H_{n}(n, j): j \equiv 4(\bmod 7)\right\} \cup\left\{H_{n}(n, 1), H_{n}(n, n-1)\right\}$ is a dominating set of size $\frac{n^{2}+7 n-8}{14}=\left\lfloor\frac{n^{2}+7 n}{14}\right\rfloor$.

If $1 \leq n \leq 6$, then finding $\gamma\left(H_{n} G\right)$ is a simple exercise.

Fig. $6 S$ defined on $H_{14} G$

4 Triangular Boards on the Surface of a Tetrahedron

Questions of independence and domination can also be asked on 3-dimensional triangular boards that tile the surface of a tetrahedron.

4.1 Independence and Domination on $T^{\boldsymbol{n}}$

The board T^{n} is defined to be the four-sided tetrahedron where each of the sides is tiled with one copy of T_{n}. See Fig. 7 for the boards T^{1}, T^{2}, and T^{3}.

Since T_{n} has n^{2} spaces, T^{n} has $4 n^{2}$ spaces. Rather than defining the moves of all six chess pieces on these new boards, this paper will focus only on one piece, the Grid, and leave the others for future work.

Grid

Just as in the two-dimensional case, the Grid on T^{n} can move to any space for which it shares a boarder of more than one point. It is often easier to think of T^{n} as a two-dimensional map as in Fig. 8. It shows the moves of Grids on T^{3} in two different situations.

Define $T^{n}(i, j)$ to be the triangular space (or vertex) on T^{n} that is in row i and j spaces from the left using the two-dimensional map of T^{n} show in Fig. 8. For

T^{1}

T^{2}

T^{3}

Fig. $7 T^{n}$ for $n=1,2,3$

Fig. 8 The Grid G on T^{3}
example, the Grid on the left board is in space $T^{3}(2,4)$ while the Grid on the right board is in space $T^{3}(6,1)$.

Theorem $132 n^{2}-n \leq \beta\left(T^{n} G\right) \leq 2 n^{2}$, and $\gamma\left(T^{n} G\right)=n^{2}$.
Proof $\beta\left(T_{2 n} G\right) \geq \beta\left(T^{n} G\right)$ because $T_{2 n} G$ can be thought of as a subgraph of $T^{n} G$ on the same vertex set with fewer edges. For the same reason, $\gamma\left(T_{2 n} G\right) \geq \gamma\left(T^{n} G\right)$. From [1], therefore $\beta\left(T^{n} G\right) \leq \beta\left(T_{2 n} G\right)=\binom{2 n+1}{2}=2 n^{2}+n$. However, T^{n} can be decomposed into $2 n^{2}$ disjoint copies of two adjacent triangular spaces, each which has an independence number of one. Therefore, $\beta\left(T^{n} G\right) \leq \frac{4 n^{2}}{2}=2 n^{2}$. The set $I=$ $\left\{T^{n}(i, j): j \equiv 0(\bmod 2)\right\}$ is an independent set of size $2 n^{2}-n$, so $\beta\left(T^{n} G\right) \geq 2 n^{2}-$ n.

In Section 2, it was shown that if n is even, then $\gamma\left(T_{n}\right)=\frac{n^{2}}{4}$. Therefore $\gamma\left(T^{n} G\right) \leq$ $\gamma\left(T_{2 n} G\right)=\frac{(2 n)^{2}}{4}=n^{2}$. However, it is still the case that a single Grid dominates at most 4 spaces. Since T^{n} has $4 n^{2}$ total spaces, $\gamma\left(T^{n} G\right) \geq \frac{4 n^{2}}{4}=n^{2}$. Therefore $\gamma\left(T^{n} G\right)=n^{2}$.

4.2 Independence and Domination on $\boldsymbol{H}^{\boldsymbol{n}}$

The board H^{n} is defined to be the four-sided tetrahedron where each of the sides is tiled with a single copy of $H_{n} . H^{n}$ would then have $4\binom{n+1}{2}=2(n+1)(n+2)$ hexagonal spaces. Rather than defining all six chess pieces on H^{n}, this paper will consider only the Rook, R, and leave others for future work.

Rook

In the two-dimensional H_{n}, the Rook is able to travel in either direction along three straight lines starting with a space with which it shared an edge. For the three-dimensional H^{n}, this same rule applies recognizing that "lines" on the twodimensional board will equate to "latitudinal lines" on H^{n}. Figure 9 shows the possible moves for a Rook on a map of H^{6}. The three different latitudinal lines are differentiated in this figure.

Fig. 9 The Rook, R, on the map of H^{6}

Theorem $14\left\lfloor\frac{2 n+1}{3}\right\rfloor \leq \beta\left(H^{n} R\right)$, and $\gamma\left(H^{n} R\right) \leq n$.
Proof In [3], another proof attributed to Harborth is given to show that $\beta\left(H_{n} R\right)=$ $\left\lfloor\frac{2 n+1}{3}\right\rfloor$. The maximal independent sets given on H_{n} are still independent in H^{n} when placed on a single copy of H_{n} on one of the sides of the tetrahedron. Therefore $\beta\left(H^{n}\right) \geq\left\lfloor\frac{2 n+1}{3}\right\rfloor$.

It is clear that if a Rook were placed in each of the n spaces along a single edge of H^{n}, then this would form a dominating set. Therefore $\gamma\left(H^{n}\right) \leq n$. This bound is
not sharp. For example it true that $\gamma\left(H^{3} R\right)=2$, and $\gamma\left(H^{4} R\right)=3$. It is also known that $\gamma\left(H^{1} R\right)=1$ and $\gamma\left(H^{2} R\right)=2$.

References

1. Heiko Dietrich and Heiko Harborth, Independence on Triangular Triangle Boards, Abhandlungen der Braunschweigischen Wissenschaftlichen Gesellschaft 54 (2004), 73-84.
2. Heiko Harborth and Vincent Kultan, Independence on Triangular Hexagon Boards, Congressus Numerantium 160 (2003), 215-222.
3. Joseph D. E. Konhauser, Dan Velleman, Stan Wagon: Which Way Did the Bicycle Go? Mathematical Association of America (MAA), 1996.

Efficient and Non-efficient Domination of \mathbb{Z}-stacked Archimedean Lattices

Lyle Paskowitz, Nathan Vallapureddy, and John Wierman

Abstract

On a graph, a vertex v dominates vertex v^{\prime} if $v=v^{\prime}$ or v is adjacent to v^{\prime}. A graph has an efficient dominating set if there exists a subset of vertices D such that every vertex in the graph is dominated by exactly one vertex in D. We investigate efficient domination on the stacked versions of each of the eleven Archimedean Lattices, and determine the existence or non-existence of efficient dominating sets on each lattice through integer programming. The proofs of existence are constructive, and the proofs of non-existence are generated by integer programs. We find efficient dominating sets on seven of the stacked lattices and prove that no such sets exist on the other four stacked lattices.

Keywords Efficient domination • Archimedean lattices • Integer programming
MSC Classification: 05C69, 05B35, 90C10

1 Introduction

1.1 Efficient Domination

Consider a simple undirected graph $G=\left(V_{G}, E_{G}\right)$, where V_{G} is the set of vertices and E_{G} the set of undirected edges on V_{G}. We define the closed neighborhood $N: V_{G} \rightarrow 2^{V_{G}}$ as $N[v]=\left\{v^{\prime}:\left(v, v^{\prime}\right) \in E_{G}\right\} \cup\{v\}$, that is, the set of vertices either adjacent to v or v itself. A vertex v dominates vertex v^{\prime} if and only if $v^{\prime} \in N[v]$. Note of course that on a simple undirected graph, this relation is symmetric, so $v^{\prime} \in N[v]$ if and only if $v \in N\left[v^{\prime}\right]$.

An efficient dominating set $D \subseteq V_{G}$ of G is a set such that $|N[v] \cap D|=1$ for all $v \in V_{G}$, that is, every vertex in V_{G} is dominated by exactly one vertex in D. More

[^14]generally, D is a dominating set of G if every vertex in V_{G} is dominated by at least one vertex in D.

1.2 \mathbb{Z}-stacked Archimedean Lattices

We consider efficient domination on a set of graphs related to the Archimedean Lattices. An Archimedean lattice is a two-dimensional lattice that is vertex-transitive and has regular polygons as faces. There are eleven such lattices, which include the recognizable square, triangular, hexagonal, and bathroom tile tessellations of the plane. In the typical naming convention, the numbers of edges of the polygons incident to a vertex are listed in the order they appear around the vertex, with exponents indicating the number of successive polygons of a given size. In this convention, the four previously mentioned lattices are denoted as the $\left(4^{4}\right),\left(3^{6}\right),\left(6^{3}\right)$, and $\left(4,8^{2}\right)$ lattices, respectively. Refer to Grünbaum and Shephard [4] for a discussion on the lattices.

Marge et al. [6] found efficient dominating sets on seven of the Archimedean lattices and proved that no efficient dominating sets can exist on the other four. Inspired by them, we consider efficient domination on the \mathbb{Z}-stacked Archimedean lattices [7].

A \mathbb{Z}-stacked Archimedean lattice is constructed as follows: take an embedding of the lattice L in the plane $z=0$. Construct a copy of L in each plane $k \in \mathbb{Z}$, such that for each vertex $(i, j, 0)$ and every edge $\left\{(i, j, 0),\left(i^{\prime}, j^{\prime}, 0\right)\right\}$ in the original embedding, there is a corresponding vertex (i, j, k) and edge $\left\{(i, j, k),\left(i^{\prime}, j^{\prime}, k\right)\right\}$. Lastly, for each vertex (i, j, k) and layer $k \in \mathbb{Z}$, add a vertical edge $\{(i, j, k),(i, j, k+1)\}$.

1.3 Domination Ratio and Periodic Graph

Define a periodic graph G as a locally-finite connected simple graph with a countably-infinite vertex set, which can be embedded in \mathbb{R}^{d} for some $d<\infty$ such that G is invariant under translation by the unit vector in each coordinate axis direction in \mathbb{R}^{d} and each compact set of \mathbb{R}^{d} intersects only finitely many vertices of G. Note that it is actually the embedding which is periodic. Each of the eleven Archimedean lattices is a periodic graph in \mathbb{R}^{2}. Suding and Ziff [8] provide figures showing periodic embeddings, which we will call grid representations, of the Archimedean lattices. The stacked Archimedean lattices are periodic graphs in \mathbb{R}^{3}. Figures of the Archimedean lattices in both the original and grid representations are shown throughout this article.

For a periodic embedding in three dimensions of a periodic graph G, denote the subgraph of G induced by the vertices in the rectangle $\left[i_{1}, i_{2}\right) \times\left[j_{1}, j_{2}\right) \times\left[k_{1}, k_{2}\right) \subset$ \mathbb{R}^{3} by $R_{G}\left(i_{1}, i_{2} ; j_{1}, j_{2} ; k_{1}, k_{2}\right)$, where $i_{1}<i_{2}, j_{1}<j_{2}, k_{1}<k_{2}$, and $i_{1}, i_{2}, j_{1}, j_{2}, k_{1}$,
$k_{2} \in \mathbb{Z}$. We will refer to $R_{G}\left(i_{1}, i_{2} ; j_{1}, j_{2} ; k_{1}, k_{2}\right)$ as an $\left(i_{2}-i_{1}\right) \times\left(j_{2}-j_{1}\right) \times\left(k_{2}-\right.$ k_{1}) block of G.

Denote the minimum size of a dominating set for an $i \times j \times k$ block of G, known as its domination number, by $\gamma_{i, j, k}(G)$, and its number of vertices by $N_{i, j, k}(G)$. The domination ratio of G is defined by

$$
\lim _{i, j, k \rightarrow \infty} \frac{\gamma_{i, j, k}(G)}{N_{i, j, k}(G)}=\inf _{i, j, k} \frac{\gamma_{i, j, k}(G)}{N_{i, j, k}(G)} .
$$

For two-dimensional periodic graphs, Zhao [6] proved that the corresponding limit exists and is equal to the infimum, relying on subadditivity of the function $\gamma_{i, j, k}(G)$, and proved that it does not depend on the choice of periodic embedding of the periodic graph G. The proof is easily generalized to three or more dimensions.

1.4 Overview of Results

For each \mathbb{Z}-stacked Archimedean lattice, a construction of the efficient dominating set is shown in Sect. 3 if it exists. Archimedean lattices without efficient dominating sets are discussed in Sect. 4 and listed in the table below.

Efficiently dominated	Not efficiently dominated
$\left(4^{4}\right) \times \mathbb{Z}, \mathbb{Z}^{n}$	$\left(3,12^{2}\right) \times \mathbb{Z}$
$\left(3^{6}\right) \times \mathbb{Z}$	$(3,4,6,4) \times \mathbb{Z}$
$\left(6^{3}\right) \times \mathbb{Z}$	$\left(3^{4}, 6\right) \times \mathbb{Z}$
$\left(4,8^{2}\right) \times \mathbb{Z}$	$(3,6,3,6) \times \mathbb{Z}$
$(4,6,12) \times \mathbb{Z}$	
$\left(3^{2}, 4,3,4\right) \times \mathbb{Z}$	
$\left(3^{3}, 4^{2}\right) \times \mathbb{Z}$	

2 Proving Efficient Domination

2.1 Simplification of Criteria for Efficient Domination

First, we introduce a technique to simplify the proof of efficient domination, which we will use extensively later.

Let G be a d_{G}-regular vertex-transitive graph. Note that if there exists D efficiently dominating G, then the domination ratio $\frac{|D|}{\left|V_{G}\right|}$ must be $\frac{1}{d_{G}+1}$ since each vertex in D dominates exactly $d_{G}+1$ vertices.

Proposition 1 Let G be a finite vertex-transitive graph with degree d_{G}. For any $D \subseteq V_{G}$, consider the following three criteria:

1. $N[v] \cap D \geq 1$ for all $v \in V_{G}$
2. $N[v] \cap D \leq 1$ for all $v \in V_{G}$
3. $\frac{|D|}{\left|V_{G}\right|}=\frac{1}{d_{G}+1}$

If any two of these criteria are satisfied, the third must also be satisfied.
We prove the Proposition in the following three lemmas. We discuss the application of the Proposition to blocks in the Archimedean lattices at the beginning of Sect. 3.

Lemma 1 If criteria 1 and $\mathbf{2}$ are satisfied, then criterion $\mathbf{3}$ is also satisfied.
Proof We have $N[v] \cap D=1$ for all $v \in V_{G}$, so D is an efficient dominating set. Therefore, we must have $\frac{|D|}{\left|V_{G}\right|}=\frac{1}{d_{G}+1}$ as discussed earlier.
Lemma 2 If criteria 1 and $\mathbf{3}$ are satisfied, then criterion 2 is also satisfied.
Proof Let 1 be an indicator function, i.e. $\mathbf{1}_{x}=1$ if x is true and $\mathbf{1}_{x}=0$ otherwise. Since $\frac{|D|}{\left|V_{G}\right|}=\frac{1}{d_{G}+1}$, we have $\left|V_{G}\right|=|D|\left(d_{G}+1\right)$. Now, suppose that there were some $v \in V_{G}$ such that $|N[v] \cap D|>1$. Then

$$
\begin{aligned}
\left|V_{G}\right| & =\sum_{v \in V_{G}} 1<\sum_{v \in V_{G}}|N[v] \cap D|=\sum_{v \in V_{G}} \sum_{d \in D} \mathbf{1}_{d \in N[v]} \\
& =\sum_{d \in D} \sum_{v \in V_{G}} \mathbf{1}_{v \in N[d]}=\sum_{d \in D}\left|N[d] \cap V_{G}\right|=\sum_{d \in D} d_{G}+1=|D|\left(d_{G}+1\right)
\end{aligned}
$$

forming a contradiction. Therefore $N[v] \cap D=1$ for all $v \in V_{G}$.

Lemma 3 If criteria $\mathbf{2}$ and $\mathbf{3}$ are satisfied, then criterion $\mathbf{1}$ is also satisfied.

Proof We again have $\left|V_{G}\right|=|D|\left(d_{G}+1\right)$. Now, suppose that there were some $v \in$ V_{G} such that $|N[v] \cap D|<1$. However,

$$
\begin{aligned}
\left|V_{G}\right| & =\sum_{v \in V_{G}} 1>\sum_{v \in V_{G}}|N[v] \cap D|=\sum_{v \in V_{G}} \sum_{d \in D} \mathbf{1}_{d \in N[v]} \\
& =\sum_{d \in D} \sum_{v \in V_{G}} \mathbf{1}_{v \in N[d]}=\sum_{d \in D}\left|N[d] \cap V_{G}\right|=\sum_{d \in D} d_{G}+1=|D|\left(d_{G}+1\right)
\end{aligned}
$$

which is a contradiction. Therefore $N[v] \cap D=1$ for all $v \in V_{G}$.
In each case, we ended up with $|N[v] \cap D|=1$ for all $v \in V_{G}$, which is exactly the criteria for efficient domination. So one method of proving efficient domination is to prove two of the above criteria.

2.2 Additional Conditions

Consider criterion 2 above, that is, $|N[v] \cap D| \leq 1$ for all $v \in V_{G}$. Define the distance metric $d: V_{G} \times V_{G} \rightarrow \mathbb{Z}$ by letting $d\left(v_{1}, v_{2}\right)$ be the minimum length of a path connecting vertex v_{1} to v_{2}. Since we focus only on undirected graphs, this is also the minimum number of edges needed in a path connecting v_{2} to v_{1}. Then we have the following lemma:

Lemma 4

$$
\max _{v \in V_{G}}|N[v] \cap D| \leq 1 \Longleftrightarrow \min _{v_{i} \neq v_{j} \in D} d\left(v_{i}, v_{j}\right) \geq 3
$$

Proof First, consider the forward direction, which we prove by contrapositive. Let's suppose that

$$
\min _{v_{i} \neq v_{j} \in D} d\left(v_{i}, v_{j}\right) \leq 2,
$$

i.e. there exist vertices, say v_{1} and v_{2}, with either $d\left(v_{1}, v_{2}\right)=1$ or $d\left(v_{1}, v_{2}\right)=2$. In the first case, we have $\left|N\left[v_{1}\right] \cap D\right| \geq\left|N\left[v_{1}\right] \cap\left\{v_{1}, v_{2}\right\}\right|=2$. In the second case, there exists a vertex v_{12} such that v_{12} lies on the length-2 path between v_{1} and v_{2}, so v_{12} is adjacent to both v_{1} and v_{2}, so $\left|N\left[v_{12}\right] \cap D\right| \geq\left|N\left[v_{12}\right] \cap\left\{v_{1}, v_{2}\right\}\right|=2$.

Now, consider the reverse direction, which we prove via contradiction. Suppose $\min _{v_{i} \neq v_{j} \in D} d\left(v_{i}, v_{j}\right) \geqslant 3$ and there exists some v such that $|N[v] \cap D|>1$. Then v is simultaneously adjacent to at least two vertices from the dominating set; so there exists a length-2 path between those two vertices (taken through v), a contradiction.

The following theorem is a useful tool that enables us to extend proofs of efficient domination over a subset with a number of \mathbb{Z}-layers to efficient domination over the infinite lattice. For a set $A \subseteq \mathbb{Z}^{3}$, denote the nth \mathbb{Z}-layer of A as

$$
\begin{equation*}
A_{n}=\{(i, j, k) \in A: k=n\} \tag{1}
\end{equation*}
$$

Let $t: \mathbb{Z}^{3} \times \mathbb{Z} \rightarrow \mathbb{Z}^{3}$ be a simple translation function, where

$$
\begin{equation*}
t(A, z)=\{(i, j, k+z):(i, j, k) \in A\} \tag{2}
\end{equation*}
$$

We say two \mathbb{Z}-layers A_{m} and A_{n} are equivalent, or $A_{m} \equiv A_{n}$, if $t\left(A_{m}, n-m\right)=$ $A_{n}\left(\right.$ which also implies that $\left.t\left(A_{n}, m-n\right)=A_{m}\right)$.

Theorem 1 (Repeatibility of \mathbb{Z}-layers) Let D be a subset of vertices in a \mathbb{Z}-stacked Archimedean lattice L. Consider three consecutive \mathbb{Z}-layers $L^{(3)}:=L_{1} \cup L_{2} \cup L_{3}$ of L. Suppose each vertex in $L^{(3)}$ is efficiently dominated by the set $D_{\text {rep }}=t\left(D_{3},-3\right) \cup$ $D_{1} \cup D_{2} \cup D_{3} \cup t\left(D_{1}, 3\right)$. Then the repetition set

$$
\begin{equation*}
D^{\prime}=\bigcup_{z=-\infty}^{\infty} t\left(D_{1}, 3 z\right) \cup t\left(D_{2}, 3 z\right) \cup t\left(D_{3}, 3 z\right) \tag{3}
\end{equation*}
$$

is an efficient dominating set for L.
Proof Note that by construction of a \mathbb{Z}-stacked Archimedean lattice, $t\left(L_{z}, z^{\prime}\right)=$ $L_{z+z^{\prime}}$. Consider $L_{z} \in L$ for any $z \in \mathbb{Z}$. By the first statement, $L_{z(\bmod 3)}=t\left(L_{z}\right.$, $[z(\bmod 3)]-z)$. Moreover, also by construction, $D_{z}^{\prime}=t\left(D_{z(\bmod 3)}^{\prime}\right)$ for any $z \in \mathbb{Z}$. Then for all $v \in L_{z}$,

$$
\begin{aligned}
\left|N[v] \cap D^{\prime}\right| & =\left|N[v] \cap\left(D_{z-1}^{\prime} \cup D_{z}^{\prime} \cup D_{z+1}^{\prime}\right)\right| \\
=\mid t(N[v],[z(\bmod 3)]-z) & \cap t\left(\left(D_{z-1}^{\prime} \cup D_{z}^{\prime} \cup D_{z+1}^{\prime}\right),[z(\bmod 3)]-z\right) \mid \\
& =1
\end{aligned}
$$

since $t(N[v],[z(\bmod 3)]-z) \subset L^{(3)}$ and $t\left(\left(D_{z-1}^{\prime} \cup D_{z}^{\prime} \cup D_{z+1}^{\prime}\right),[z(\bmod 3)]-\right.$ $z) \subset D_{\text {rep }}$. The equality in the last line follows by the assumption of the theorem. Since this holds for all $L_{z} \subset L$, the entire lattice L is efficiently dominated by the repeated set D^{\prime}.

3 Efficiently Dominated Lattices

In this section, we exhibit dominating sets for seven of the stacked Archimedean lattices and prove that they are efficient dominating sets. An important tool in the proofs is Proposition 1 from Sect. 2, which is valid for finite graphs. We wish to apply Proposition 1 to blocks of the stacked Archimedean lattices. However, a block in an Archimedean lattice is not a vertex-transitive graph, because vertices on the boundary have smaller degrees than vertices in the interior of the block. To obtain a vertex-transitive finite graph, in the proofs in this section, we consider a block with periodic boundary conditions: Each lattice has a periodic dominating set in a block of size $a \times b \times c$ for some positive integers a, b, and c. A block of size $a i \times b j \times c k$ for positive integers i, j, and k with periodic boundary conditions is constructed by considering the edges leaving any face to be connected to the vertices on the opposite face, instead of connecting to the next layer outside the block. Since the number of vertices on the boundary is of smaller order than the volume of the block, the difference in the domination ratios of the original block and the block with periodic boundary conditions is negligible in the limit as i, j, and k tend to infinity.

$3.1 \quad\left(4^{4}\right) \times \mathbb{Z}$ Lattice and \mathbb{Z}^{n}

Denote by \mathbb{Z}^{n} the space of integer n-tuples, and consider that the \mathbb{Z}-stacked $\left(4^{4}\right) \times \mathbb{Z}$ lattice is simply the $n=3$ subcase of \mathbb{Z}^{n}.

Definition 1 Consider the n-dimensional lattice $L_{\mathbb{Z}^{n}}$ defined by

$$
L_{\mathbb{Z}^{n}}=\left(V_{L_{\mathbb{Z}^{n}}}, E_{L_{\mathbb{Z}^{n}}}\right)=\left(\mathbb{Z}^{n},\left\{\left(v_{1}, v_{2}\right): v_{1} \in \mathbb{Z}^{n}, v_{2} \in \mathbb{Z}^{n}, d\left(v_{1}, v_{2}\right)=1\right\}\right)
$$

where d is the Manhattan distance, so $d\left(v_{1}, v_{2}\right)=1$ implies that v_{1} and v_{2} differ by exactly 1 in only one coordinate. Define the helper function $f: \mathbb{Z}^{n} \rightarrow \mathbb{Z}$ by

$$
\begin{equation*}
f\left(z_{1}, z_{2}, \ldots, z_{n}\right)=\sum_{i=1}^{n} i z_{i} \tag{4}
\end{equation*}
$$

Let \mid denote divides, i.e. $k \mid n$ if and only if $n \equiv 0(\bmod k)$.
Theorem $2 L_{\mathbb{Z}^{n}}$ has efficient dominating set

$$
\begin{equation*}
D=\left\{\left(z_{1}, \ldots, z_{n}\right):(2 n+1) \mid f\left(z_{1}, \ldots, z_{n}\right)\right\} \tag{5}
\end{equation*}
$$

Proof First, find the domination ratio of D. If an efficient dominating set of $L_{\mathbb{Z}^{n}}$ exists, it must have domination ratio $\frac{1}{2 n+1}$ since each vertex is adjacent to $2 n$ other vertices. Then, consider a chain of $2 n+1$ vertices

$$
\left\{\left(z_{1}, z_{2}, \ldots z_{n}\right),\left(z_{1}+1, z_{2}, \ldots z_{n}\right), \ldots,\left(z_{1}+2 n, z_{2}, \ldots, z_{n}\right)\right\}
$$

Suppose $f\left(z_{1}, z_{2}, \ldots, z_{n}\right)=k$, so that

$$
f\left(z_{1}, z_{2}, \ldots z_{n}\right)=k, f\left(z_{1}+1, z_{2}, \ldots z_{n}\right)=k+1, \ldots, f\left(z_{1}+2 n, z_{2}, \ldots, z_{n}\right)=k+2 n
$$

so exactly one vertex in the chain $\left(z_{1}+a, z_{2}, \ldots, z_{n}\right)$ will have $(2 n+1)$ dividing $f\left(z_{1}+a, z_{2}, \ldots, z_{n}\right)$, so exactly one of the $2 n+1$ vertices will lie in the dominating set. Partition \mathbb{Z}^{n} into disjoint chains of length $2 n+1$, where each chain has exactly one vertex in D. Then

$$
\begin{equation*}
\frac{|D|}{\left|V_{L_{\mathbb{Z}^{n}}}\right|}=\frac{1}{2 n+1} \tag{6}
\end{equation*}
$$

as desired.
Next, we show that $|N[v] \cap D| \geq 1$ for all $v \in V_{L_{\mathbb{Z}^{n}}}$. Consider an arbitrary point $v=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in V_{L_{\mathbb{Z}^{n}}}$, and let $m=f(v)(\bmod 2 n+1)$. There are three cases to consider:

Fig. 1 Dominating set and stacked $\left(4^{4}\right)$ lattice projected into a single \mathbb{Z}-layer. Numbered vertices are in the dominating set, with \mathbb{Z}-coordinate given by their number

1. If $m=0$, then $v \in D$, so v is dominated.
2. If $1 \leq m \leq n$, the point $\left(z_{1}, \ldots, z_{m}-1, \ldots, z_{n}\right)$ is in D and adjacent to v, so v is dominated.
3. If $n+1 \leq m \leq 2 n$, the point $\left(z_{1}, \ldots, z_{2 n+1-m}+1, \ldots, z_{n}\right)$ is in D and adjacent to v, so v is dominated.

In every case, v is dominated by some vertex in D, so $|N[v] \cap D| \geq 1$ for all $v \in V_{L_{\mathbb{Z}^{n}}}$ as desired. Apply Lemma 2 to conclude that D is an efficient dominating set.

In particular, this pattern repeats every $2 n+1 \mathbb{Z}$-stacked layers. Figure 1 is a graphical representation of the dominating set on $n=3$ after a translation. The number associated with each vertex is the layers $(\bmod 7)$ for which the vertex is present in the dominating set, i.e. vertices numbered 0 are in the dominating set in layers $z_{3} \equiv 0(\bmod 7)$, vertices numbered 1 are in the dominating set in layers $z_{3} \equiv 1(\bmod 7)$, and so on.

$3.2 \quad\left(\mathbf{3}^{6}\right) \times \mathbb{Z}$ Lattice

Definition 2 (Grid representation of the \mathbb{Z}-stacked $\left(3^{6}\right)$ lattice) Let $L_{\left(3^{6}\right)}=(V, E)$ be the $\mathbb{Z}^{2} \times \mathbb{Z}$ lattice with additional undirected edges

$$
\begin{equation*}
E=\left\{\left(\left(u_{1}, v_{1}, z\right),\left(u_{2}, v_{2}, z\right)\right):\left(u_{1}-v_{1}, u_{2},-v_{2}\right)=(\pm 1, \mp 1)\right\} \tag{7}
\end{equation*}
$$

The stacked triangular lattice $L_{\left(3^{6}\right)}$ can be considered as a cubic graph augmented by diagonal edges between the bottom-left and upper-right corner of each square within each \mathbb{Z}-layer.

Theorem 3 The $\left(3^{6}\right) \times \mathbb{Z}$ lattice has an efficient dominating set

$$
\begin{equation*}
D=\{(x, y, z):(x, y) \equiv(z, z)(\bmod 3)\} \tag{8}
\end{equation*}
$$

Proof Consider an arbitrary $v=(x, y, z) \in L_{\left(3^{6}\right)}$. Without loss of generality show that $u \equiv v(\bmod 3)$ is efficiently dominated by vertices in the proposed efficient dominating set.

Let $u=(i, j, 0)=v(\bmod 3)$. Note that $(0,0) \preceq(i, j) \preceq(2,2)$. We case-wise show $|N[u] \cap D| \geqslant 1$.

If $u=(0,0,0)$ then $u \in D$. If $u=(1,0,0)$ or $u=(0,1,0)$ then it is dominated by $(0,0,0) \in D$. If $u=(1,1,0)$ then it is dominated by $(1,1,1) \in D$. If $u=(2,2,0)$ then it is dominated by $(2,2,-1) \in D$. If $u=(1,2,0)$ or $u=(0,2,0)$ then it is dominated by $(0,3,0) \in D$. If $u=(2,1,0)$ or $u=(2,0,0)$ then it is dominated by $(3,0,0) \in D$.

By definition of $L_{\left(3^{6}\right)}$, in each case, the difference between the vertex and its dominator is a valid edge connection. For example, $(1,2)-(0,3)=(1,-1)$. Thus, $|N[u] \cap D| \geqslant 1$ if and only if $|N[v] \cap D| \geqslant 1$.

Consider a $3 \times 3 \times 3$ block B of vertices with $|B|=27$. For any $B_{z} \subset B$ by definition $(x, y, z) \in D$ if and only if $(x+3 i, y+3 j, z+3 k) \in D$ for all $i \in \mathbb{N}, j \in$ \mathbb{N} and $(x, y, z+3 k) \in D$ for all $k \in \mathbb{N}$. Thus in each z-layer there exists exactly one vertex in D. The domination ratio of B is $\frac{|B \cap D|}{|B|}=\frac{3}{27}=\frac{1}{9}$.

The domination ratio of $\frac{1}{9}$ combined with $|N[v] \cap D| \geqslant 1$ fulfill criteria 1 and 3, and thus by Lemma 2, D is an efficient dominating set.

$3.3 \quad\left(\mathbf{6}^{\mathbf{3}}\right) \times \mathbb{Z}$ Lattice

The $\left(6^{3}\right)$, or hexagonal lattice, is a subgraph of the the $\left(3^{6}\right)$ lattice.
Definition 3 (Grid representation of the \mathbb{Z}-stacked (6^{3}) lattice) Let the lattice be the $\left(3^{6}\right) \times \mathbb{Z}$ lattice with the following vertices and their edges removed (Fig. 2):

$$
V^{\prime}=\left\{(i, j, k) \in L_{\left(3^{6}\right)}:(i, j) \equiv\left\{\begin{array}{ll}
(0,1) & \tag{9}\\
(1,2) & (\bmod 3,3) \\
(2,0) &
\end{array}\right\}\right.
$$

Theorem 4 The efficient dominating set $D_{\left(6^{3}\right)}$ is the same as the dominating set for $D_{\left(3^{6}\right)}$.

(a) The triangular $\left(3^{6}\right)$ lattice.

(b) The hexagonal $\left(6^{3}\right)$ lattice.

Fig. 2 A shared efficient dominating set for the stacked triangular and hexagonal lattices

Proof The removed vertices have empty intersection with the dominating set. For any (i, j, k) with $(i, j)(\bmod 3,3) \in\{(0,1) \cup(1,2) \cup(2,0)\}$, by definition $(i, j) \not \equiv$ $(k, k)(\bmod 3)$. Thus $(i, j, k) \notin D_{\left(3^{6}\right)}$. Because the vertices in the $\left(3^{6}\right) \times \mathbb{Z}$ lattice are dominated by $D_{\left(3^{6}\right)}$, the remaining vertices in the $\left(6^{3}\right) \times \mathbb{Z}$ lattice are also dominated by $D_{\left(3^{6}\right)}$.

$3.4\left(4, \mathbf{8}^{2}\right) \times \mathbb{Z}$ Lattice

Definition 4 (Grid representation of the \mathbb{Z}-stacked ($4,8^{2}$) lattice)
The \mathbb{Z}-stacked $\left(4,8^{2}\right) \times \mathbb{Z}$ lattice $L_{\left(4,8^{2}\right)}$ has vertex set \mathbb{Z}^{3} and edge set which is the union of the following three sets:

$$
\begin{gathered}
\{((x, y, z),(x, y, z+1)): x, y, z \in \mathbb{Z}\} \\
\{((x, y, z),(x+1, y, z)): x, y, z \in \mathbb{Z}\} \\
\{(4 x+2 a+b, 2 y+a, z),(4 x+2 a+b, 2 y+a+1, z): x, y, z \in \mathbb{Z} ; a, b \in\{0,1\}\}
\end{gathered}
$$

Then $L_{\left(4,8^{2}\right)}=\left(\mathbb{Z}^{3}, E_{L_{\left(4,8^{2}\right)}}\right)$.
The first set comprises of edges that provide the \mathbb{Z}-stacking. The second set comprises of horizontal connections within a single layer. The third set contains vertical connections within a layer, initialized with a minimal set of vertices.

Theorem 5 The following set $D \subset \mathbb{Z}^{3}$ efficiently dominates $L_{\left(4,8^{2}\right)}$:

(a) The grid representation.

(b) The original lattice.

Fig. 3 The dominating set of the stacked $\left(4,8^{2}\right)$ lattice

$$
\begin{equation*}
D=\{(6,0,0) k+(3,1,0) m+(2,0,1) n: k, m, n \in \mathbb{Z}\} \tag{10}
\end{equation*}
$$

Proof First, note that if a point $(x, y, z) \in D$ then

$$
(x, y, z)=(6,0,0) k+(3,1,0) y+(2,0,1) z \Longrightarrow k=\frac{x-3 y-2 z}{6}
$$

so x must be congruent to $3 y+2 z(\bmod 6)$. Thus, in every chain of points $\{(x, y, z),(x+1, y, z), \ldots,(x+5, y, z)\}$, exactly one point will be in D. Since we can decompose \mathbb{Z}^{3} into disjoint chains of 6 vertices, each with one vertex in D, the domination ratio of D is $\frac{1}{6}$ as desired.

Next, we will show $|N[v] \cap D| \leq 1$ for all $v \in \mathbb{Z}^{3}$ by using Lemma 4. For a fixed Manhattan distance b between two points in the dominating set, with vertical distance of 0 , the minimum distance is 4 , achieved both between points in adjacent rows ($\Delta x= \pm 3, \Delta y= \pm 1$) and points in the same column ($\Delta x=0, \Delta y= \pm 2$). The first case is distance 4 because no edge covers a Manhattan distance of more than 1 , while the second case is not distance 2 since there are no two incident vertical edges. Note that between two layers with the same value of b but absolute value of z differing by 1 , the vertical distance is 3 , so the total distance is at least 3 .

For vertices in different \mathbb{Z}-layers with vertical distance 1 , the intra-layer distance is at least 2 for a total distance of 3 . Therefore, $|N[v] \cap D| \leq 1$ for all $v \in \mathbb{Z}$, so D is efficiently dominating by Lemma 1.

In particular, this pattern repeats every $3 \mathbb{Z}$-stacked layers. Figure 3 is a graphical representation of the dominating set. The numbering of the vertices again represents the layers for which the vertices are present in the dominating set.

Fig. 4 Projected dominating set of three repeating layers for the stacked $(4,6,12)$ lattice

$3.5(4,6,12) \times \mathbb{Z}$ Lattice

We present a 3-repeatable construction on the $(4,6,12)$ lattice, again numbered to represent the layers for which the vertices are present in the dominating set. Consider the projection of the dominating set in these three layers onto one layer. Along each dodecagon, representing 36 vertices, there are six vertices in the dominating set. The domination ratio of the set on a dodecagon is thus $\frac{1}{6}$, and since the dodecagons provide a periodic subset of the $(4,6,12)$ lattice, the domination ratio of the set on the graph is also $\frac{1}{6}$ (Fig.4).

Moreover $|N[v] \cap D| \leqslant 1$ for all $v \in L_{(4,6,12)}$. Note that the distance between any two vertices on the projected dominating set is at least 2 (or at least 4 if they're in the same layer), and since they have a vertical distance of at least 1 , the distance between any two points in the dominating set is at least 3 , which is equivalent to $|N[v] \cap D| \leqslant$ 1. We can then conclude that our construction is an efficient dominating set by Lemma 3.

$3.6\left(3^{2}, 4,3,4\right) \times \mathbb{Z}$ Lattice

Definition 5 (Grid representation of the \mathbb{Z}-stacked $\left(3^{2}, 4,3,4\right)$ lattice)
The \mathbb{Z}-stacked $\left(3^{2}, 4,3,4\right) \times \mathbb{Z}$ lattice $L_{\left(3^{2}, 4,3,4\right)}$ is isomorphic to \mathbb{Z}^{3} with additional edges connecting $(2 k-1,2 l, m)$ to $(2 k, 2 l-1, m)$ for all $k, l, m \in \mathbb{Z}$, and additional edges connecting $(2 k, 2 l, m)$ to $(2 k+1,2 l+1, m)$ for all $k, l, m \in \mathbb{Z}$.

Note: The additional edges of the $\left(3^{2}, 4,3,4\right)$ lattice, compared to those of the cubic lattice, comprise of alternating diagonal connections in every other square, within each layer (Fig. 5).

(a) The grid representation.

(b) The original lattice.

Fig. 5 The dominating set of the $\left(3^{2}, 4,3,4\right)$ lattice

Theorem 6 The following set $D \subset \mathbb{Z}^{3}$ efficiently dominates $L_{\left(3^{2}, 4,3,4\right)}$:

$$
\begin{aligned}
D= & \{(2 k+1,2 k+1+4 l, 4 m): k, l, m \in \mathbb{Z}\} \\
& \cup\{(2 k+1,2 k-1+4 l, 4 m+1): k, l, m \in \mathbb{Z}\} \\
& \cup\{(2 k, 2 k+4 l, 4 m+2): k, l, m \in \mathbb{Z}\} \\
& \cup\{2 k, 2 k-2+4 l, 4 m+3): k, l, m \in \mathbb{Z}\}
\end{aligned}
$$

Observe that this pattern repeats every 4 layers. A graphical representation of the dominating set is portrayed in Fig. 5. Again, numbering represents the layers for which the vertices are present in the dominating set.

Proof First consider the domination ratio $\frac{|D|}{|B|}$ over a $2 \times 4 \times 4$ block $B \subset L_{\left(3^{2}, 4,3,4\right)}$ induced by vertices in the rectangle $[0,2) \times[0,4) \times[0,4) \subseteq \mathbb{R}^{3}$. Note that there are 32 vertices in this block, of which 8 are in the dominating set. Since blocks are regular by definition, the domination ratio is $\frac{1}{8}$ as desired.

Moreover, no vertex is dominated more than once, i.e. $|N[v] \cap D| \leq 1$ for all $v \in V_{L_{\left(3^{2}, 4,3,4\right)}}$, or equivalently, no two vertices in D are less than distance 3 away. Unfortunately, there are ten cases, four for vertices in the same layer and $6=\binom{4}{2}$ for vertices in different layers. Each refers to the value of the layer taken mod 4 from which they come.

First, the four cases of two vertices in the same layer:

1. $(0 \rightarrow 0)$
2. $(1 \rightarrow 1)$
3. $(2 \rightarrow 2)$
4. $(3 \rightarrow 3)$

These cases may be solved simultaneously. Note that the Manhattan distance between any two points in the same layer is at least 4 , which is achieved in one of three cases:

$$
(\Delta x= \pm 4, \Delta y=0),(\Delta x=0, \Delta y= \pm 4),(\Delta x= \pm 2, \Delta y= \pm 2)
$$

The distance between any vertices in the first two cases is 4 . The distance between any pair of vertices in the last case is 3 . It cannot be less than 2 since no diagonal edges achieve a Manhattan distance of more than 2, and the distance cannot be exactly 2 because no edges achieving a Manhattan distance of 2 are incident.

Next, the two cases of two vertices two layers apart:
5. $(0 \rightarrow 2)$
6. $(1 \rightarrow 3)$

These two cases can also be solved at the same time. For either, the vertical distance is 2 , and travelling between \mathbb{Z}-layers can only be done with an edge preserving the x and y coordinates. Note that no points in those layers $(0 \rightarrow 2$ and $1 \rightarrow 3$) are repeated between vertical layers, so it would require at least 1 intra-layer edge in addition to the 2 inter-layer edges to create such a path.

Finally, the four adjacent layer cases:
7. $(0 \rightarrow 1)$
8. $(2 \rightarrow 3)$

Note that in cases (7) and (8), vertices have a vertical distance of 1 and an intralayer gap of $(\Delta x= \pm 2, \Delta y=0)$ or $(\Delta x=0, \Delta y= \pm 2)$. These require at least 2 edges to achieve the same (x, y) values, for a total minimum distance of 3 .
9. $(0 \rightarrow 3)$
10. $(1 \rightarrow 2)$

Note that in cases (9) and (10), vertices have a vertical distance of 1 and an intralayer gap of $(\Delta x=1, \Delta y=1)$ or $(\Delta x=-1, \Delta y=-1)$. No single edges span this gap, so the minimum intra-layer distance is 2 , and the shortest path between any vertices is 3 .

Thus the minimum distance between any two points in the dominating set is 3 , that is, $|N[v] \cap D| \leq 1$ for all $v \in V_{L_{\left(3^{2}, 4,3,4\right)}}$. Lemma 3 concludes that D is an efficient dominating set.

$3.7\left(3^{3}, 4^{2}\right) \times \mathbb{Z}$ Lattice

Definition 6 (Grid representation of the $\left(3^{3}, 4^{2}\right)$ lattice) Let $L_{\left(3^{3}, 4^{2}\right)}$ be the the \mathbb{Z} stacked $\left(3^{3}, 4^{2}\right)$ lattice. $L_{\left(3^{3}, 4^{2}\right)}$ is isomorphic to the cubic lattice \mathbb{Z}^{3} with additional edges $(x, 4 l+1, z)$ to $(x+1,4 l, z)$ for all $x, l, z \in \mathbb{Z}$ as well as $(x, 4 l+2, z)$ to $(x+1,4 l+3, z)$ for all $x, l, z \in \mathbb{Z}$.

Theorem 7 The following set $D \subset \mathbb{Z}^{3}$ efficiently dominates $L_{\left(3^{3}, 4^{2}\right)}$:

(a) The grid representation.

(b) The original lattice.

Fig. 6 The dominating set of the $\left(3^{3}, 4^{2}\right)$ lattice

$$
\begin{aligned}
D= & \{(4 k+l+2,4 l+2,4 m): k, l, m \in \mathbb{Z}\} \\
& \cup\{(4 k+l, 4 l+2,4 m+1): k, l, m \in \mathbb{Z}\} \\
& \cup\{(4 k+l+2,4 l+3,4 m+2): k, l, m \in \mathbb{Z}\} \\
& \cup\{(4 k+l, 4 l+3,4 m+3): k, l, m \in \mathbb{Z}\} \\
& \cup\{(4 k+l, 4 l, 4 m): k, l, m \in \mathbb{Z}\} \\
& \cup\{(4 k+l+2,4 l, 4 m+1): k, l, m \in \mathbb{Z}\} \\
& \cup\{(4 k+l+3,4 l+1,4 m+2): k, l, m \in \mathbb{Z}\} \\
& \cup\{(4 k+l+1,4 l+1,4 m+3): k, l, m \in \mathbb{Z}\}
\end{aligned}
$$

Remark Observe that this pattern repeats every four \mathbb{Z}-layers. Figure 6 shows a projection of the dominating set from the \mathbb{Z}-axis. Again, the numbering indicates the layers for which vertices are present in the dominating set (Fig. 6).

Proof Note that in the $4 \times 4 \times 4$ block induced by the rectangle $[0,4) \times[0,4) \times$ $[0,4) \subset \mathbb{R}^{3}$, there are 8 vertices in the dominating set. By regularity of the blocks, the domination ratio of D to the lattice is $\frac{8}{4 \cdot 4 \cdot 4}=\frac{1}{8}$ as desired. We show that $|N[v] \cap D| \leq$ 1 for all $v \in \mathbb{Z}^{3}$. Observe that any points in the same \mathbb{Z}-layer have a minimum Manhattan distance of 4 with either $\Delta x=4, \Delta y=0$ or $\Delta x= \pm 2, \Delta y= \pm 2$. Neither yields a distance of 2 since there are no two incident edges in the lattice both with a distance of 2 . No points of vertical distance 2 from each other have the same x and y-coordinates, so the minimum distance between any two is 3 . Any points in adjacent \mathbb{Z}-layers either have a distance of 3 , or are distance 2 away from each other with no edge in between. Thus the minimum distance between any two points of D is 3. Therefore, $|N[v] \cap D| \leq 1$ for all $v \in \mathbb{Z}$. Then D is an efficient dominating set by Lemma 3.

4 Non-efficiently-dominatable \mathbb{Z}-stacked Archimedean Lattices

Theorem 8 No efficient dominating sets exist for the $\left(3,12^{2}\right),(3,4,6,4),\left(3^{4}, 6\right)$, and $(3,6,3,6) \mathbb{Z}$-stacked lattices.
We utilize integer programming to disprove the existence of efficient dominating sets on these lattices. First, we classify the entities in our constraints:
Definition 7 Let $B \subset L$ be a block of a lattice L. For any $v \in B$, let $N_{B}[v]=$ $N[v] \cap B$ denote the neighborhood of v in the block. We say $v \in B \subset L$ is interior with respect to B if $N_{B}[v]=N[v]$, and denote the set of such interior vertices as B^{0}.

We construct a binary integer linear program (IP) whose variables correspond to the vertices of a block $B \subset L$ in the lattice.

Definition 8 (Integer Program for Efficient Domination on a Block) Let L be a \mathbb{Z} stacked Archimedean lattice with block $B \subset L$. For each v interior with respect to B, let $x_{v} \in\{0,1\}$ be a corresponding binary variable. An integer program for efficient domination of L over B is thus defined as

$$
\begin{array}{cl}
\min \sum_{v \in B} x_{v} & \tag{11}\\
\text { s.t. } \sum_{x_{v^{\prime}}: v^{\prime} \in N_{B}[v]} x_{v^{\prime}}=1 & \forall v \in B^{0} \\
x_{v} \in\{0,1\} & \forall v \in B
\end{array}
$$

For exterior vertices, i.e. v for which $N[v] \not \subset B$, we do not place any domination constraints in the IP. The above integer program has a useful property for showing non-existence of dominating set. Since the domination constraint is removed for non-interior vertices, a solution to the integer program is not bijective with (a subset of) the true efficient dominating set D_{L} for the lattice L. However, infeasibility of a solution suffices to prove non-existence of the dominating set.
Proposition 2 If there does not exist a feasible solution to the integer linear program (11) for lattice L over any block $B \subset L$, then L does not have an efficient dominating set.
Proof The IP constraint $\sum_{x_{v^{\prime}}: v^{\prime} \in N_{B}[v]} x_{v^{\prime}}=1$ occurs if and only if $|N[v] \cap D|=1$ for each x_{v} corresponding to an interior vertex $v \in B^{0}$.

For sake of contradiction, assume D is an efficient dominating set for L. Then $D \cap B$ would give the feasible solution $\left\{x_{v}=\nVdash\{v \in D \cap B\}\right\}$ to (11), which is impossible.

Note that an instance of the integer program is specified by a lattice and a block. Some integer programs may have feasible solutions, but the existence of any infeasible integer program for a single lattice suffices to show non-existence. Thus, to eliminate such false positives, integer programs for different block sizes were checked
for each of the lattices. Intuitively, as blocks grow larger, both the solution space and number of constraints increase, making the integer programs less likely to have a feasible solution. The following table shows that infeasible solutions were found at block sizes $6 \times 7 \times 7$ or larger.

\mathbb{Z}-Stacked lattice	Infeasible block size
$(3,6,3,6)$	$8 \times 8 \times 7$
$(3,4,6,4)$	$8 \times 8 \times 8$
$\left(3^{4}, 6\right)$	$8 \times 8 \times 8$
$\left(3,12^{2}\right)$	$6 \times 7 \times 7$

Interestingly, despite significantly different grid representations, each of the lattices listed above had a similar minimal block size for which solutions to the IP became infeasible. The \mathbb{Z}-stacked lattice $L_{\left(3,12^{2}\right)}$ with the smallest domination ratio of $1 / 6$ also had the smallest infeasible block size.

The integer program for each of the lattices was written in MATLAB.

5 Future Research

While it has been shown that no efficient domination set can exist on the ($3,12^{2}$), $(3,4,6,4),(3,6,3,6)$, and $\left(3^{4}, 6\right) \mathbb{Z}$-stacked lattices, the question of the minimum domination ratio for each of these lattices remains undecided.

Efficient domination could be considered over other vertex-transitive lattices in $3 D$. The Bravais lattices, in particular, are closely related to such lattices. Of their four main categories (primitive, base-centered, body-centered, and face-centered), only primitive has been analyzed. However, the other three categories are not necessarily vertex-transitive, which would significantly increase the difficulty of determining the efficient domination set.

Finally, many other forms of domination exist-perfect domination [5], power domination [9], exponential domination [1], Roman domination [2], eternal domination [3], and many more. However, to our knowledge, no other forms of domination have been studied on the \mathbb{Z}-stacked Archimedean lattices.

References

1. Dankelmann, Peter; Day, David; Erwin, David; Mukwembi, Simon; and Swart, Henda, Domination with exponential decay, Discrete Mathematics, 309, 5877-5883, 2009, https://doi.org/ 10.1016/j.disc.2008.06.040".
2. Dreyer, Paul Andrew, Applications and Variations of Domination in Graphs, thesis, Rutgers University, 2000.
3. Goldwasser, John L. and Klostermeyer, William F. Tight bounds for eternal dominating sets in graphs, Discrete Mathematics, 308, 2589-2593, 2008, https://doi.org/10.1016/j.disc.2007.06. 005.
4. Grünbaum, Branko and Shephard, G C, Tilings and Patterns,W. H. Freeman \& Co., 1986, isbn $=0716711931$.
5. Livingston, Marilynn and Stout, Quentin F. Perfect dominating sets. Congressus Numerantium, 79, 187-203, 1990.
6. Marge, Thomas; Zhao, Yunfan;and Wierman, John C. Efficient and non-efficient domination of Archimedean lattices, Congressus Numerantium, 231, 39-61, 2018.
7. Schrenk, K. J. and Araújo, N. A. M. and Herrmann, H. J. Stacked triangular lattice: Percolation properties, Physical Review E, 87, https://doi.org/10.1103/physreve.87.032123, 2013.
8. Suding, Paul N. and Ziff, Robert M. Site percolation thresholds for Archimedean lattices, Phys. Rev. E, 60, 275-283, 1999, https://doi.org/10.1103/PhysRevE.60.275.
9. Zhao, Min; Kang, Liying; and Chang, Gerard J. Power domination in graphs, Discrete Mathematics, 306, 1812-1816, 2006, https://doi.org/10.1016/j.disc.2006.03.037.

On Subdivision Graphs Which Are 2-steps Hamiltonian Graphs and Hereditary Non 2-steps Hamiltonian Graphs

Sin-Min Lee, Hsin-hao Su, and Yung-Chin Wang

Abstract

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. A (p, q) graph $G=(V, E)$ is said to be $\operatorname{AL}(k)$-traversal if there exist a sequence of vertices $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ such that for each $i=1,2, \ldots, p-1$, the distance for v_{i} and v_{i+1} is equal to k. We call a graph G a k-steps Hamiltonian graph if it has a AL (k)-traversal in G and the distance between v_{p} and v_{1} is k. A graph G is said to be hereditary k-steps hyperhamiltonian if it is k-steps Hamiltonian and for any v in G, the vertexdeleted subgraph $G-\{v\}$ is also k-steps Hamiltonian. Dually, a graph G is said to be hereditary non k-steps Hamiltonian if it is not k-steps Hamiltonian and for any v in G, the vertex-deleted subgraph $G-\{v\}$ is also not k-steps Hamiltonian. In this paper, we investigate subdivision graphs of a wheel graph and $C_{4} \times K_{2}$ to see which are 2 -steps Hamiltonian and hereditary non 2-steps Hamiltonian.

Keywords k-step traversal $\cdot \mathrm{AL}(k)$-traversal $\cdot k$-steps Hamiltonian $\cdot k$-steps hyperhamiltonian • Hereditary non 2-steps Hamiltonian • Subdivision

1 Introduction

In this paper we consider graphs with no loops.
The Hamiltonicity of a graph is the problem of determining for a given graph whether it contains a path or a cycle that visits every vertex exactly once. Hamiltonian graphs are related to the traveling salesman problem. Thus, it has been a well-studied

[^15]Fig. 1 An AL(2)-traversal graph

Fig. 2 An $D_{2}(G)$ graph from the graph in Fig. 1

topic in graph theory. However, we know very little about Hamiltonian graphs. A good reference for recent development and open problems is [3].

Inspired by Wallis's Magic Graph [13], Lee in [9] initiated the study of AL(k)traversal graphs and 2-steps Hamiltonian graphs defined as follows:

Definition 1 For $k>2$, a (p, q)-graph $G=(V, E)$ is said to have k-steps traversal if there exist a sequence of vertices, $v_{1}, v_{2}, \ldots, v_{p}$, such that, for each $i=$ $1,2, \ldots, p-1$, the distance between v_{i} and v_{i+1} is equal to k. A graph admits a k-steps traversal is called the $\mathrm{AL}(\mathrm{k})$-traversal graph.

Example 1 The graph showed in the Fig. 1 is AL(2)-traversal, but not AL(k)traversal for all $k \geq 3$.

We can construct a new graph to study $\operatorname{AL}(\mathrm{k})$-traversal graphs:
Definition 2 For integer $k \geq 2$, and a graph G, we construct a new graph $D_{k}(G)$ as follows: $V\left(D_{k}(G)\right)=V(G)$ and $(u, v) \in E\left(D_{k}(G)\right)$ if and only if $d(u, v)=k$ in G. We call $D_{k}(G)$ as the distance k graph of G.

Example 2 The graph showed in the Fig. 2 is a $D_{2}(G)$ graph from the graph in Fig. 1.

Definition 3 We name a $\operatorname{AL}(\mathrm{k})$-traversal in a graph G with the distance between vertices v_{p} and v_{1} is k a k-steps Hamiltonian cycle.

Definition 4 We call a graph G a k-steps Hamiltonian graph if it has a k-steps Hamiltonian cycle.

Note here that in Fig. 1 the distance between the vertices labeled 1 and 7 is not 2. Thus, it is not a 2 -steps Hamiltonion cycle. Moreover, after an exhaustive search, there is no labeling to make this graph 2-steps Hamiltonian.

Example 3 Figure 3 demonstrates a 2 -steps Hamiltonian cubic graph.
The following observation which would be useful in this paper was recorded in [8].

Fig. 3 A 2-steps
Hamiltonian cubic graph

Proposition 1 The cycle C_{n} is k-steps Hamiltonian if and only if $\operatorname{gcd}(n, k)=1$.
Proposition 2 The graph G is k-steps Hamiltonian if and only if its distance k-graph is Hamiltonian.

Proposition 3 A bipartite graph is not AL(2)-traversal, thus, not 2-steps Hamiltonian.

A Hamiltonian graph need not be k-steps Hamiltonian. One example is a cycle C_{n} with $n=0(\bmod k)$ is Hamiltonian but not AL(k)-traversal, hence cannot be k-steps Hamiltonian.

A graph property is called hereditary if it is closed with respect to deleting vertices. We define

Definition 5 A graph G is said to be k-steps hyperhamiltonian if it is k-steps Hamiltonian and for any v in G, the vertex-deleted subgraph $G-\{v\}$ is also k-steps Hamiltonian.

Example 4 The Möbius ladder M_{8} is 2-steps hyperhamiltonian (Fig.4).
The generalized Petersen graphs which are hyperhamiltonian had been studied in [11].

A graph is bipartite, or two-colorable, if it can be decomposed into two independent sets. It was shown in [5] that

Proposition 4 If G is bipartite then G is not k-steps Hamiltonian for any even k.

Fig. $4 M_{8}, M_{8}-\left\{v_{1}\right\}$ and $M_{8}-\left\{v_{2}\right\}$ are all 2-steps Hamiltonian

Thus, it is impossible to have bipartite graphs which are hereditary 2-steps Hamiltonian. The following result showed that there exists an abundance bipartite graphs which are hereditary non 2-steps Hamiltonian.

Proposition 5 For any tree T, it is hereditary non 2-steps Hamiltonian.

Proposition 6 For any integer $n>2$, the 2-regular graph $C_{2 n}$ is hereditary non 2-steps Hamiltonian.

For graphs G and H, the vertex gluing of G and H is the identifying of a vertex of G and H. It was shown in [4] that

Proposition 7 The vertex-gluing of two cycles is not k-step Hamiltonian for all $k>2$.

We have the following obvious result
Proposition 8 For any vertex-gluing of two cyclesT, it is hereditary non 2-steps Hamiltonian.

We also have the following for bipartite cubic graphs
Proposition 9 For any integer $n>2$, the prism graph $C_{2 n} \times K_{2}$ is hereditary non 2-steps Hamiltonian.

Dually, we can define
Definition 6 A graph G is said to be hereditary non k-steps Hamiltonian if it is not k-steps Hamiltonian and for any v in G, the vertex-deleted subgraph $G-\{v\}$ is also not k-steps Hamiltonian.

Definition 7 Let G be a graph, and $S \subseteq E(G)$, and $f: S \rightarrow N$. The subdivision $\operatorname{graph} \operatorname{Sub}(\mathrm{G}, \mathrm{S}, \mathrm{f})$ is the graph obtained by for any e in S, if $f(e)=m$, then we insert m new m vertices along in e.

In literature, if $f: E(G) \rightarrow N$ with $f=1$ for each $e \in E(G)$, then the subdivision graph $\operatorname{Sub}(\mathrm{G}, \mathrm{E}(\mathrm{G}), \mathrm{f})$ is called the barycentric subdivision graph. We denote barycentric subdivision graph of G by $\operatorname{BCSub}(\mathrm{G})$.

We observe that $C_{2 k+1}$ is 2-steps Hamiltonian, however, $\operatorname{BCSub}(\mathrm{G})$ is isomorphic to $C_{4 k+2}$ which is not 2 -steps Hamiltonian. It is natural to ask for what G in Gph, $\mathrm{BCSub}(\mathrm{G})$ is 2-steps Hamiltonian.

However, we have
Proposition 10 For any graph $G, \operatorname{BCSub}(\mathrm{G})$ is not 2-steps Hamiltonian.
Proof It is easy to see that we can group all original vertices as a group and all inserted vertices into another group to see that $\operatorname{BCSub}(\mathrm{G})$ is a bipartite graph. By Proposition 4, it is not 2-steps Hamiltonian.

Fig. $5 \mathrm{Sub}\left(\mathrm{C}_{3} \times \mathrm{K}_{2}, \mathrm{~S}, \mathrm{f}\right)$ is AL(2)-traversal but not 2-steps Hamiltonian

Example 5 Let $G=C_{3} \times K_{2}$, and $S=\left\{\left(x_{0}, y_{0}\right),\left(x_{2}, y_{2}\right)\right\}$ and $f: S \rightarrow \mathbb{N}$ be defined by $f\left(\left(x_{0}, y_{0}\right)\right)=f\left(\left(x_{2}, y_{2}\right)\right)=1$. We see in Fig. 5 that $\operatorname{Sub}(G, S, f)$ is AL(2)-traversal but not 2-steps Hamiltonian while the original graph $G=C_{3} \times K_{2}$ is 2 -steps Hamiltonian.

For a cycle of order n, we denote its vertices by $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. If it has a chord between $\left\{v_{1}, v_{c}\right\}$, we denote this graph by $C_{n}(c)$. In [10], we investigated the subdivision graph $\operatorname{Sub}\left(\left(\mathrm{C}_{\mathrm{n}}(\mathrm{c}),\left\{\mathrm{v}_{1}, \mathrm{v}_{\mathrm{c}}\right\}, \mathrm{f}\left(\left\{\mathrm{v}_{1}, \mathrm{v}_{\mathrm{c}}\right\}\right)=\mathrm{h}\right)\right.$ to see under what conditions the graph is 2 -steps Hamiltonian. The reason we were interested in the Subdivision graph of a cycle with a chord is that some of them they are non-Hamiltonian.

In general, it is easy to see that when inserting too many vertices on an edge, it does not change it's Hamiltonicity,

Lemma 1 A graph G with a subgraph P of a path of length 5 or more is 2-steps Hamiltonian if and only if the induced graph H from G by removing two middle vertices from the path P is 2-steps Hamiltonian.

In this paper, we investigate subdivision graphs of a wheel graph and $C_{4} \times K_{2}$ to see which are 2-steps Hamiltonian and hereditary non 2-steps Hamiltonian.

2 Subdivision Graphs of a Wheel Graph

A wheel graph $W(n)$ is a graph with n vertices where $n \geq 4$, formed by connecting a single vertex c to all vertices of an $(n-1)$-cycle $\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$. In a wheel graph, the hub c has degree $n-1$, and other vertices have degree 3 .

Let us denote $X=\left\{\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right), \ldots,\left(v_{n-2}, v_{n-1}\right),\left(v_{n-1}, v_{1}\right)\right\}$ be the set of the cycle edges and be given a function $f: X \rightarrow N$ with $f\left(\left(v_{i}, v_{i+1}\right)\right)=h_{i}$. We can construct the graph $\operatorname{Sub}(\mathrm{W}(\mathrm{n}), \mathrm{X}, \mathrm{f})$ and name the vertices between v_{i} and v_{i+1} by $v_{i, 1}, v_{i, 2}, \ldots, v_{i, h_{i}}$ for all $i=1,2, \ldots, n-1$.

Theorem 1 The graph $\operatorname{Sub}(\mathrm{W}(\mathrm{n}), \mathrm{X}, \mathrm{f})$ is 2-steps Hamiltonian if and only if one of the following conditions is satisfied:

1. n is even and $h_{1}+h_{2}+\cdots+h_{n-1}$ is even;
2. n is odd and $h_{1}+h_{2}+\cdots+h_{n-1}$ is odd;
3. n and $h_{1}+h_{2}+\cdots+h_{n-1}$ have different parity and there is a h_{i} for some i which equals to 2 .

Proof When all h_{i} are odd, it is easy to see that the graph $\operatorname{Sub}(\mathrm{W}(\mathrm{n}), \mathrm{X}, \mathrm{f})$ is bipartite. Thus, by Proposition 4, they are not 2-steps Hamiltonian.

Now, we assume that there are some h_{i} which are even.
If n is even and $h_{1}+h_{2}+\cdots+h_{n-1}$ is even, then the cycle part of the graph $\operatorname{Sub}(\mathrm{W}(\mathrm{n}), \mathrm{X}, \mathrm{f})$ has $h_{1}+h_{2}+\cdots+h_{n-1}+(n-1)$ vertices. In this case, we have $h_{1}+h_{2}+\cdots+h_{n-1}+(n-1)$ is odd. Thus, when start from any vertex and travel 2-steps on the cycle, it will go through all vertices and back to the first vertex. So, the labeling starting with c and then goes to $v_{1,1}$ following by every vertices in the cycle counterclockwise (can be done because of odd number vertices on the cycle) ending at $v_{n-1, h_{n-1}}$ to go back to c is a 2 -steps Hamiltonian cycle. Thus, the graph $\operatorname{Sub}(\mathrm{W}(\mathrm{n}), \mathrm{X}, \mathrm{f})$ is 2 -steps Hamiltonian. (See Fig. 7 for an example.)

Similarly, when n is odd and $h_{1}+h_{2}+\cdots+h_{n-1}$ is odd, the cycle part of the $\operatorname{graph} \operatorname{Sub}(\mathrm{W}(\mathrm{n}), \mathrm{X}, \mathrm{f})$ has $h_{1}+h_{2}+\cdots+h_{n-1}+(n-1)$, which is odd, vertices. The same labeling applys and it is 2 -steps Hamiltonian.

Thus, we only need to consider the case where one of the n and $h_{1}+h_{2}+\cdots+$ h_{n-1} is odd and another is even. Note that in this case, there are even number of vertices in the cycle part of the graph $\operatorname{Sub}(W(n), X, f)$.

Next, we assume that there is an h_{i} which is equal to 2 , w.l.o.g., we can assume that $h_{1}=2$. We would start labeling from c and then $v_{1,1}$ following by $v_{n-1, h_{n-1}}$ and travel clockwise through the cycle by every other vertices until reaching v_{2}. It is possible because the number of vertices in the cycle part is even and $h_{1}=2$. After that, we continue the labeling by jumping to v_{1} following by $v_{n-1, h_{n-1}-1}$ (or v_{n-1} if $h_{n-1}=1$) and travel clockwise again through the cycle by every other vertices until reaching $v_{1,2}$. Again, it is possible because the number of vertices in the cycle part is even and $h_{1}=2$. Since we have labeled every vertex and the distance between $v_{1,2}$ and c is 2, the graph $\operatorname{Sub}(\mathrm{W}(\mathrm{n}), \mathrm{X}, \mathrm{f})$ is 2-steps Hamiltonian. (See Fig. 6 for an example.)

Finally, there is only one case left, that is, all even h_{i} are greater or equal to 4 . By the Lemma 1, we know that if we insert 6 vertices or more on an edge then we can remove even vertices to keep the 2 -steps Hamiltoniancy. Thus, we only need to consider then all even h_{i} are equal to 4 .

If n is even and $h_{1}+h_{2}+\cdots+h_{n-1}$ is odd, then since $n-1$ is odd, there must be at least two adjacent h_{i} and h_{i+1} (subscripts are module $n-1$) to be 4 , otherwise, there would be half of h_{i} are even and the other half are odd which makes the sum to be odd. Similarly, if n is odd and $h_{1}+h_{2}+\cdots+h_{n-1}$ is even, there must also be at least two adjacent h_{i} and h_{i+1} to be 4 . With a pair of adjacent h_{i} and h_{i+1} to be 4 , its D_{2} graph would have a cycle of length 6 that have 4 consective order 2 vertices following with two order 4 vertices from the vertices v_{i} and v_{i+2}. By the Proposition 11 from [10] (for the completeness, we copy the Lemma we used from [10] right after the end of the proof), it cannot be Hamiltonian. Thus, the graph $\operatorname{Sub}(W(n), X, f)$ is not 2-steps Hamiltonian.

Fig. 6 Two subdivision graphs of $W(4)$ with $\sum_{i=1}^{n-1} h_{i}$ is odd

$h_{1}+h_{2}+h_{3}=1+2+1=4$

$h_{1}+h_{2}+h_{3}=2+2+2=5$

Fig. 7 Two subdivision graphs of W (4) with $\sum_{i=1}^{n-1} h_{i}$ is even

With all possible cases classified, the proof is complete.
Proposition 11 (Lemma 1.4. in [10]) If a distance 2-graph contains a subgraph H consisted with all order 2 vertices and two order 3 vertices where the distance between two order 3 vertices is greater than 1, then it is not Hamiltonian. Moreover, if H consists with 3 or more order 3 vertices and those order 3 vertices are adjacent to each other in two paths, then it is not Hamiltonian as well.

Proof For a labeling cycle, it must enter the subgraph H through one of the two order 3 vertices. But, since the distance between two order 3 vertices is greater than 1, it is obvious that this cycle cannot be Hamiltonian.

Similarly, a path of adjacent order 3 vertices can be considered as one order 3 vertex in the purpose of our proof.

Example 6 The following subdivision graphs of W (4) with two different f and sum h_{i} are odd, one is bipartite another is not. However, they are not 2 -steps hamiltonian.

Example 7 The following subdivision graphs of W (4) with two different f and sum of h_{i} are even. They are 2 -steps hamiltonian (Fig. 7).

With all $\operatorname{Sub}(W(n), X, f)$ graphs classified, we want to know if it has the hereditary peoperty. To consider whether $\operatorname{Sub}(\mathrm{W}(\mathrm{n}), \mathrm{X}, \mathrm{f})$ is hereditary 2-steps Hamiltonian or not, we need to start with a 2 -steps Hamiltonian $\operatorname{Sub}(W(n), X, f)$ graph. Thus, by Theorem 1, $\operatorname{Sub}(\mathbf{W}(\mathrm{n}), \mathrm{X}, \mathrm{f})$ is 2-steps Hamiltonian only if n and $h_{1}+h_{2}+\cdots+$ h_{n-1} have the same parity or n and $h_{1}+h_{2}+\cdots+h_{n-1}$ have the different parity with some $h_{i}=2$. These two cases lead to

Theorem 2 The graph $\operatorname{Sub}(\mathrm{W}(\mathrm{n}), \mathrm{X}, \mathrm{f})$ is hereditary non 2-steps Hamiltonian.
Proof There are three kinds of vertices to remove in $\operatorname{Sub}(W(n), X, f)$:

1. removing the hub c;
2. removing the inserted vertex $v_{i, j}$;
3. removing the vertex on the circle v_{i}.

When removing the hub c, the graph becomes a cycle of order $h_{1}+h_{2}+\cdots+$ $h_{n-1}+(n-1)$. By Proposition 1, it is hereditary non 2-steps Hamiltonian if $h_{1}+$ $h_{2}+\cdots+h_{n-1}+(n-1)$ is even. When n and $h_{1}+h_{2}+\cdots+h_{n-1}$ have the same parity, $h_{1}+h_{2}+\cdots+h_{n-1}+(n-1)$ is odd. By Theorem $1, \operatorname{Sub}(\mathrm{~W}(\mathrm{n}), \mathrm{X}, \mathrm{f})$ is hereditary non 2 -steps Hamiltonian. When n and $h_{1}+h_{2}+\cdots+h_{n-1}$ have different parity, $h_{1}+h_{2}+\cdots+h_{n-1}+(n-1)$ is even. Thus, we need to check other vertex deleting subgrpahs.

Now, we know that we only need to focus on the case when n and $h_{1}+h_{2}+$ $\cdots+h_{n-1}$ have different parity and there is a h_{i} for some i which equals to 2 by removing a $v_{i, j}$ vertex or a v_{i} vertex. By Theorem 1 , for $\operatorname{Sub}(\mathrm{W}(\mathrm{n}), \mathrm{X}, \mathrm{f})$ to be 2-steps Hamiltonian when n and $h_{1}+h_{2}+\cdots+h_{n-1}$ have different parity, it requires that there is a h_{i} for some i which equals to 2 . But, no mater you remove a vertex $v_{i, 1}$ or $v_{i, 2}$, you have a subgraph with an order 1 vertex. Obviously, any grpah with an order 1 vertex cannot be k-steps Hamiltonian. Therefore, even when n and $h_{1}+h_{2}+\cdots+h_{n-1}$ have different parity, $\operatorname{Sub}(\mathrm{W}(\mathrm{n}), \mathrm{X}, \mathrm{f})$ is hereditary non 2-steps Hamiltonian.

Note that even though we can determine whether a $\operatorname{Sub}(W(n), X, f)$ graph is hereditary 2-steps Hamiltonian or not, we still have no clue what happen if we remove a vertex on the circle v_{i}. As far as we know, if we remove a vertex v_{i} where $h_{i} \geq 1$, then it will create an order 1 vertex $v_{i, 1}$ which tells that it is not 2steps Hamiltonian. But, when you remove a vertex v_{i} where $h_{i-1}=h_{i}=h_{i+1} \geq 0$ (subscripts are module $n-1$), then it becomes a broken fan graph, which is stil open to determine whether a broken fan is a 2 -steps Hamiltonian or not.

3 Subdivision Graphs of $\boldsymbol{C}_{\mathbf{4}} \times \boldsymbol{K}_{\mathbf{2}}$ on Its Perfect Matching

After looking at the wheel graphs, it is natural to extend the study to a graph with a circle on the outside. So, we turn our attention to $C_{n} \times K_{2}$ where $n \geq 4$. (The condition $n \geq 4$ comes from wheel graphs. The $C_{3} \times K_{2}$ is studied in our next

Fig. 8 Nine perfect matchings of the $C_{4} \times K_{2}$

Fig. 9 Four up-to-isomorphic perfect matchings of the $C_{4} \times K_{2}$
project.) Due to many edges to choose from and a AL(2)-traversal path needs to visit all vertices, we decide to start with $C_{4} \times K_{2}$ with its perfect matchings (see Fig. 8).

Up to isomorphism there are four types of perfect matchings. (See Fig. 9 with the name for each perfect matching we are using in this paper.)

Theorem 3 If $f(e)=k$ for any e in P_{1} where k is a fixed positive integer, then $\operatorname{Sub}\left(\mathrm{C}_{4} \times \mathrm{K}_{2}, \mathrm{P}_{1}, \mathrm{f}\right)$ is not 2 -steps Hamiltonian for any k.

Proof Name the vertices on the outside cycle by $v_{1}, v_{2}, v_{3}, v_{4}$ and the vertices on the inside cycle by $w_{1}, w_{2}, w_{3}, w_{4}$ where v_{1} is adjacent to w_{1} in $C_{4} \times K_{2}$. We also name the inserted vertices in P_{1} are on the edge between v_{i} and w_{i} for $i=1,2,3,4$ by $v_{i, 1}, v_{i, 2}, \ldots, v_{i, k}$ where v_{i} is adjacent $v_{i, 1}$.

If k is odd, then we group $v_{1}, w_{1}, v_{3}, w_{3}$ and $v_{1, t}, v_{3, t}, v_{2, s}, v_{4, s}$ where $2 \leq t \leq k$ is even and $1 \leq s \leq k$ is odd in a set and others in another set to see that the graph is bipartite. Thus, by Proposition 4, it is not 2-steps Hamiltonian.

If k is even, then we group $v_{1}, w_{2}, v_{3}, w_{4}$ and $v_{1, t}, v_{3, t}, v_{2, s}, v_{4, s}$ where $2 \leq t \leq k$ is even and $1 \leq s \leq k$ is odd in a set and others in another set to see that the graph is bipartite. Thus, by Proposition 4, it is not 2-steps Hamiltonian.

This completes the proof.
The proof in Theorem 3 can be easily applied to $C_{2 n} \times K_{2}$ where the perfect matching containing edges between v_{i} and w_{i} for all i. Thus, we have

Corollary 1 Let P be the perfect matching in $C_{2 n} \times K_{2}$ containing edges between v_{i} and w_{i} for all i. If $f(e)=k$ for any e in P, then $\operatorname{Sub}\left(\mathrm{C}_{2 \mathrm{n}} \times \mathrm{K}_{2}, \mathrm{P}, \mathrm{f}\right)$ is not 2 -steps Hamiltonian for any k.

Theorem 4 If $f(e)=k$ for any e in P_{3} where k is a fixed positive integer, then $\operatorname{Sub}\left(\mathrm{C}_{4} \times \mathrm{K}_{2}, \mathrm{P}_{3}, \mathrm{f}\right)$ is not 2 -steps Hamiltonian for any k.

Proof Name the vertices on the outside cycle by $v_{1}, v_{2}, v_{3}, v_{4}$ and the vertices on the inside cycle by $w_{1}, w_{2}, w_{3}, w_{4}$ where v_{1} is adjacent w_{1} to in $C_{4} \times K_{2}$. We also name the inserted vertices in the edge between v_{i} and v_{i+1} for $i=1,3$ by $v_{i, j}$ where $1 \leq j \leq k$ and v_{i} is adjacent $v_{i, 1}$ and the inserted vertices in the edge between w_{i} and w_{i+1} for $i=1,3$ by $w_{i, j}$ where $1 \leq j \leq k$ and w_{i} is adjacent $w_{i, 1}$.

If k is odd, then group $v_{1}, v_{2}, w_{3}, w_{4}$ and $v_{1, t}, w_{3, t}, v_{3, s}, w_{1, s}$ where $2 \leq t \leq k$ is even and $1 \leq s \leq k$ is odd in a set and others in another set to see that the graph is bipartite. Thus, by Proposition 4, it is not 2 -steps Hamiltonian.

If k is even, then group $v_{1}, w_{2}, v_{3}, w_{4}$ and $v_{1, t}, v_{3, t}, w_{1, s}, w_{3, s}$ where $2 \leq t \leq k$ is even and $1 \leq s \leq k$ is odd in a set and others in another set to see that the graph is bipartite. Thus, by Proposition 4, it is not 2 -steps Hamiltonian.

This completes the proof.
The proof in Theorem 4 can be easily applied to $C_{2 n} \times K_{2}$ where the perfect matching containing edges between $v_{2 i-1}$ and $v_{2 i}$ and between $w_{2 i-1}$ and $w_{2 i}$ for all $1 \leq i \leq n$. Thus, we have

Corollary 2 Let P be the perfect matching in $C_{2 n} \times K_{2}$ containing edges between $v_{2 i-1}$ and $v_{2 i}$ and between $w_{2 i-1}$ and $w_{2 i}$ for all $1 \leq i \leq n$. If $f(e)=k$ for any e in P, then $\operatorname{Sub}\left(\mathrm{C}_{2 \mathrm{n}} \times \mathrm{K}_{2}, \mathrm{P}, \mathrm{f}: \mathrm{P} \rightarrow \mathrm{N}\right)$ is not 2-steps Hamiltonian for any k.

While we investigate the subdivision graphs of $C_{n} \times K_{2}$ with perfectly matchings, we realize that if you insert too many vertices, then it would be impossible to be 2 steps Hamiltonian.

Theorem 5 Let P be a perfect matching in $C_{n} \times K_{2}$. For any $k \geq 3$, if $f(e)=k$ for any e in P where k is a fixed positive integer, then $\operatorname{Sub}\left(\mathrm{C}_{\mathrm{n}} \times \mathrm{K}_{2}, \mathrm{P}, \mathrm{f}\right)$ is not 2-steps Hamiltonian.

Proof Name the vertices on the outside cycle by $v_{1}, v_{2}, \ldots, v_{n}$ and the vertices on the inside cycle by $w_{1}, w_{2}, \ldots, w_{n}$ where v_{1} is adjacent w_{1} to in $C_{n} \times K_{2}$. Since there are n edges in P, we name the inserted vertices in an edge by $u_{i, j}$ where $1 \leq i \leq n$ and $1 \leq j \leq k$.

For any edge in the perfect matching, to reach the vertices in the middle of the path, i.e., $u_{i, j}$ where $2 \leq j \leq k-1$, we need to travel from and through two end vertices on the cycle part. Therefore, all v_{i} and w_{i} where $1 \leq i \leq n$ would be visited in any 2 -steps Hamiltonian labeling. But, at the same time, since there are only three distance 2 vertices to any $u_{i, 1}$ are $u_{i, 3}, v_{i+1}$ and v_{i-1}, to label $u_{i, 1}$, we need to come from or go through v_{i+1} or v_{i-1}. Similarly, since there are only three distance 2 vertices to any $u_{i, k}$ are $u_{i, k-2}, w_{i+1}$ and w_{i-1}, to label $u_{i, k}$, we need to come from or go through w_{i+1} or w_{i-1}. Thus, since there are $2 n$ vertices in this kind of position, we would visit all v_{i} and $w_{i} 2 n$ times. Totally, we would visit all v_{i} and $w_{i} 4 n$ times. It is impossible. This completes the proof.

Theorem 5 reduces the amount of the subdivision graphs, $\operatorname{Sub}\left(\mathrm{C}_{\mathrm{n}} \times \mathrm{K}_{2}, \mathrm{P}, \mathrm{f}\right)$ for any n, we need to check from infinity to finite. Thus, from now on, we can only focus on $k=1$ or 2 .

Theorem 6 If $f(e)=k$ for any e in P_{2} where k is a fixed positive integer, then $\operatorname{Sub}\left(\mathrm{C}_{4} \times \mathrm{K}_{2}, \mathrm{P}_{2}, \mathrm{f}\right)$ is 2-steps Hamiltonian if and only if k is 1 .

Proof By Theorem 5, $\operatorname{Sub}\left(\mathrm{C}_{4} \times \mathrm{K}_{2}, \mathrm{P}_{2}, \mathrm{f}\right)$ is not 2-steps Hamiltonian when $k \geq 3$.
When $k=2$, we name the vertices on the outside cycle by v_{1}, v_{2}, v_{3} and v_{4} and the vertices on the inside cycle by w_{1}, w_{2}, w_{3} and w_{4} where v_{1} is adjacent w_{1} to in $C_{4} \times K_{2}$. We also name the inserted vertices in the edge between v_{i} and w_{i} for $i=1,2$ by $u_{i, j}$ where $1 \leq j \leq 2$ and v_{i} is adjacent $u_{i, 1}$, the inserted vertices in the edge between w_{3} and w_{4} by $u_{3, j}$ where $1 \leq j \leq 2$ and w_{3} is adjacent $u_{3,1}$, and the inserted vertices in the edge between v_{3} and v_{4} by $u_{4, j}$ where $1 \leq j \leq 2$ and v_{3} is adjacent $u_{4,1}$. If we group $v_{1}, u_{1,2}, u_{2,1}, w_{4}, w_{2}, u_{4,2}, u_{3,1}, v_{3}$ and others in another set to see that the graph is bipartite. Thus, by Proposition 4, it is not 2-steps Hamiltonian.

When $k=1$, the following graph shows that it is 2-steps Hamiltonian.

This completes the proof.

Theorem 7 If $f(e)=k$ for any e in P_{4} where k is a fixed positive integer, then $\operatorname{Sub}\left(\mathrm{C}_{4} \times \mathrm{K}_{2}, \mathrm{P}_{4}, \mathrm{f}\right)$ is 2-steps Hamiltonian if and only if k is 1 .

Proof By Theorem 5, $\operatorname{Sub}\left(\mathrm{C}_{4} \times \mathrm{K}_{2}, \mathrm{P}_{2}, \mathrm{f}\right)$ is not 2-steps Hamiltonian when $k \geq 3$.
When $k=2$, we name the vertices on the outside cycle by v_{1}, v_{2}, v_{3} and v_{4} and the vertices on the inside cycle by w_{1}, w_{2}, w_{3} and w_{4} where v_{1} is adjacent w_{1} to in $C_{4} \times K_{2}$. We also name the inserted vertices in the edge between v_{i} and v_{5-i} for $i=1,2$ by $v_{i, j}$ where $1 \leq j \leq 2$ and v_{i} is adjacent $v_{i, 1}$ and the inserted vertices in the edge between w_{i} and w_{i+1} for $i=1,3$ by $w_{i, j}$ where $1 \leq j \leq 2$ and w_{i} is adjacent $w_{i, 1}$. If we group $v_{1}, v_{1,2}, v_{2,1}, w_{4}, v_{3}, w_{3,1}, w_{1,1}, w_{2}$ and others in another set to see that the graph is bipartite. Thus, by Proposition 4, it is not 2 -steps Hamiltonian.

When $k=1$, the following graph shows that it is 2 -steps Hamiltonian.

This completes the proof.
Since we only insert vertices on the perfect matching of $C_{4} \times K_{2}$, when we remove a vertex, it removes an edge on one of the perfect matching edge. It creates an order 1 vertex in the vertex deleting graph. Obviously, any grpah with an order 1 vertex cannot be k-steps Hamiltonian.

Theorem 8 Let P be a perfect matching in $C_{n} \times K_{2}$. For any $k \geq 3$, if $f(e)=k$ for any e in P where k is a fixed positive integer, then $\operatorname{Sub}\left(\mathrm{C}_{\mathrm{n}} \times \mathrm{K}_{2}, \mathrm{P}, \mathrm{f}\right)$ is hereditary non 2-steps Hamiltonian.

References

1. J.C. Bermond, Hamiltonian Graphs. In Selected Topics in Graph Theory. Edited by L. W. Beineke and R. J. Wilson. Academic, London (1978), 127-167.
2. M.N. Ellingham and J.D. Horton, Non-Hamiltonian 3-connected Cubic Bipartite Graphs, J. of Comb. Theory B 34(3) (1983), 350-353.
3. R. Gould, Advances on the Hamiltonian Problem, A Survey, Graphs and Combinatorics, 19 (2003), 7-52.
4. R.K. Guy and F. Harary, On the Möbius Ladders. Canad. Math. Bulletin, 10 (1967), 493-496.
5. Y.S. Ho, S.M. Lee and S.P.B. Lo, On 2-steps Hamiltonian Cubic Graphs, J. Combin. Math. Combin. Comput., 98 (2016), 185-199.
6. D. Holton and R.E.L. Aldred, Planar Graphs, Regular Graphs, Bipartite Graphs and Hamiltonicity, Austral. J. Combin., 20 (1999), 111-131.
7. G.C. Lau, S.M. Lee, K. Schaffer and S.M. Tong, On k-step Hamiltonian Bipartite and Tripartite Graphs, Malaya J. Mat., 2(3) (2014), 180-187.
8. G.C. Lau, S.M. Lee, K. Schaffer, S.M. Tong and S. Lui, On k-step Hamiltonian Graphs, J. Combin. Math. Combin. Comput., 90 (2014), 145-158.
9. A.N.T. Lee and S.M. Lee, On super edge-magic graphs with many odd cycles, Congr. Numer., 163 (2003), 65-80.
10. S.M. Lee and H.H. Su, The 2-steps Hamiltonian Subdivision Graphs of Cycles with a Chord, J. Combin. Math. Combin. Comput., 98 (2016), 109-123.
11. T.C. Mai, J.J. Wang and L.H. Hsu, Hyper-Hamiltonian generalized Petersen graphs, Computers \& Mathematics with Applications, 55 (2008), 2076-2085.
12. J. Moon and L. Moser, On Hamiltonian Bipartite Graphs, Israel J. Math., 1 (1963),163-165.
13. W.D. Wallis, Magic Graphs. Birkhäuser, 2001, Boston, MA.

On the Erdős-Sós Conjecture for Graphs with Circumference at Most $k+1$

A. M. Heissan and Gary Tiner

Abstract

Let G be a graph with average degree $\bar{d}(G)$ greater than $k-2$. Erdős and Sós conjectured that G contains every tree on k vertices as a subgraph. The circumference of the graph $G, c(G)$, is the number of edges on a longest cycle. Gilbert and Tiner proved that if $c(G)$ is at most k, then G contains every tree on k vertices. In this paper, we improve this result and show that the Erdős-Sós conjecture holds for graphs whose circumference is at most $k+1$.

1 Introduction

The average degree of the graph G is $\bar{d}(G)$, where $\bar{d}(G)=2 e(G) /|V(G)|$. Erdős and Sós conjectured the following:

Erdős-Sós Conjecture. If G is a graph with $\bar{d}(G)>k-2$, then G contains every tree on k vertices.

Various special cases of the conjecture have been proven, some of which place restrictions on the graph G. The cases where the graph G has number of vertices $k, k+1, k+2$, or $k+3$ were proved by Zhou [11], Slater, Teo, and Yap [6], Woźniak [9], and Tiner [8], respectively. The case where G has $k+4$ vertices was proved by Yuan and Zhang [10]. We state these results in a single theorem.
Theorem 1 If G is a graph with $\bar{d}(G)>k-2$ on at most $k+4$ vertices, then G contains every tree on k vertices.

The number of edges on a longest path in a tree T is the diameter of T, or simply $\operatorname{diam}(T)$. McLennan [5] proved the following:

[^16]Theorem 2 If G is a graph with $\bar{d}(G)>k-2$ then G contains every tree on k vertices that has diameter at most 4 .

If a tree T is made up of a path a_{1}, \ldots, a_{r}, where $r \geq 2$, and all of the remaining vertices $V(T)-\left\{a_{1}, \ldots, a_{r}\right\}$ are neighbors of a_{r}, then the tree T is a broom. If each remaining vertex is either a neighbor of a_{1} or a_{r}, then the tree T is a double-broom. Notice that a path is a broom, and a broom is a double-broom. Tiner [7] proved the following theorem:

Theorem 3 If G is a graph with $\bar{d}(G)>k-2$, then the graph G contains every double-broom on k vertices.

Eaton and Tiner [1] showed that the Erdős-Sós conjecture holds for values of k at most 8. Tiner and Tomlin proved the conjecture holds for $k=9$ (see acknowledgments). We state this as a theorem.
Theorem 4 For k at most 9 , if G is a graph with $\bar{d}(G)>k-2$, then G contains every tree on k vertices.

Eaton and Tiner [2] proved the following theorem:
Theorem 5 If G is a graph with $\bar{d}(G)>k-2$ that has no path on $k+4$ vertices, then G contains every tree on k vertices.

For a subgraph W of G, the subgraph $G-W$ is obtained from G by removing $V(W)$ and each edge with an endpoint in W. The set of natural numbers is \mathbb{N}, and for $m \in \mathbb{N}$, the set $[m]$ is $\{1, \ldots, m\}$. Let G be a graph, and let u and v be two vertices in $V(G)$. The set of neighbors of v is $N(v)$, where $N(v)=\{w \in V(G): v w \in E(G)\}$. The degree of v is $d_{G}(v)$, or simply $d(v)$, and $d(v)=|N(v)|$. The minimum degree among all vertices in $V(G)$ is $\delta(G)$, and the maximum degree is $\Delta(G)$. If $U \subseteq V(G)$, then $N(U)=\{w: w \in N(u)$ for some $u \in U\}$.

For two disjoint subgraphs $C, D \subseteq G$, the set of edges with one end-point in $V(C)$ and one in $V(D)$ is $E(C, D)$; the number of edges in $E(C, D)$ is $e(C, D)$. The subgraph induced by $V(C)$ is $G[C]$. The edge-set of $G[C]$ is $E(C, C)$ or simply $E(C)$, and $e(C)$ is the number of edges in $E(C)$.

Choose $A, B \subseteq V(G)$ and let $a \in A$ and $b \in B$. If $a b \in E(G)$, then the vertex a hits B and the subset B hits A. If no vertex in A hits B, then A misses B. If A and B are disjoint sets, then the bipartite subgraph of G with bipartition A, B is $G[A, B]$, and $e(A, B)=e(G[A, B])$.

The circumference of the graph $G, c(G)$, is the number of edges on a longest cycle. Gilbert and Tiner [4] proved the following:

Theorem 6 If G is a graph with $\bar{d}(G)>k-2$ and circumference at most k, then G contains every tree on k vertices.

Let P be an r-path in a graph G, where $P=v_{1}, \ldots, v_{r}$. A path on the vertex set $V(P)$, or simply a path on $V(P)$, is an r-path in G whose vertex set is $V(P)$. For distinct vertices v_{i} and v_{j} on the path P, if there is a path (in G) on $V(P)$ whose
end-vertices are v_{i} and v_{j}, then it is a v_{i}, v_{j}-path on $V(P)$. For a vertex v_{t} on the path P,

$$
\alpha\left(P, v_{t}\right)=\left\{v_{s} \in V(P): \text { there is a } v_{s}, v_{t} \text {-path on } V(P)\right\} .
$$

For each $v_{i} \in N_{P}\left(v_{1}\right)$, the path $v_{i-1}, \ldots, v_{1}, v_{i}, \ldots, v_{r}$ is a v_{i-1}, v_{r}-path on $V(P)$. It follows that $v_{i-1} \in \alpha\left(P, v_{r}\right)$, and $e\left(v_{1}, P\right) \leq\left|\alpha\left(P, v_{r}\right)\right|$. We state this more generally in the following lemma:

Lemma 7 If P is a path in a graph G, where $P=v_{1}, \ldots, v_{r}$, then $e\left(v_{i}, P\right) \leq$ $\left|\alpha\left(P, v_{r}\right)\right|$ for all $v_{i} \in \alpha\left(P, v_{r}\right)$.

Gilbert and Tiner [3, 4] proved the following two lemmas, respectively:
Lemma 8 Let G be a graph that is minimal with $\bar{d}(G)>k-2$, and let P be a path in G, where $P=v_{1}, \ldots, v_{r}$. If $r \leq k-2$, then a vertex in $\alpha\left(P, v_{1}\right)$ hits $\left\lfloor\frac{1}{2}(k-r)\right\rfloor$ vertices outside of $V(P)$.

Lemma 9 Let G be a graph that is minimal with $\bar{d}(G)>k-2$, and let Q be a path in G, where $Q=v_{1}, \ldots, v_{r}$. For $W=\alpha\left(Q, v_{r}\right)$, assume $N(W) \subseteq V(Q)$. If $r \leq k$, then G contains every tree on k vertices.

Notice that in Lemma 9, if Q is a longest path having v_{r} as one end-vertex, then it must be that $N(W) \subseteq V(Q)$. In this paper, we use Lemma 9 to prove our main theorem (Theorem 10), a special case of the Erdős-Sós Conjecture.

Theorem 10 If G is a graph with $\bar{d}(G)>k-2$ and $c(G) \leq k+1$, then G contains every tree on k vertices.

Notice that in Theorem 10, no upper bound is imposed on the number of vertices in G, or on the length of a longest path in G.

2 Supporting Lemmas

The number of edges with at least one endpoint in A is $e_{G}^{*}(A)$ or simply $e^{*}(A)$. Note that

$$
e^{*}(A)=\sum_{v \in A} d(v)-e(A)=e(A)+e(A, G-A) .
$$

A proof of the following lemma is in [1]:
Lemma 11 Let G be a graph with $\bar{d}(G)>k-2$. Let $W \subsetneq V(G)$ and $G^{\prime}=G-W$. If $e^{*}(W) \leq \frac{1}{2}(k-2)|W|$, then $\bar{d}\left(G^{\prime}\right)>k-2$.

The following two corollaries follow from Lemma 11:

Corollary 12 If a graph G is minimal with $\bar{d}(G)>k-2$ and $W \subsetneq V(G)$, then $e_{G}^{*}(W)>\frac{1}{2} \cdot|W|(k-2)$. In particular,
i. $\quad \delta(G) \geq\left\lfloor\frac{k}{2}\right\rfloor$, and
ii. if k is odd and $u v \in E(G)$, then one of $\{u, v\}$ has degree at least $\left\lfloor\frac{k}{2}\right\rfloor+1$, and
iii. if (w, x, y) is a 3-cycle in G, then one of $\{w, x, y\}$ has degree at least $\left\lfloor\frac{k}{2}\right\rfloor+1$.
Corollary 13 Let G be a graph that is minimal with $e(G)>\bar{d}(G)>k-2$, and let W be a subset of $V(G)$. If $1 \leq|W| \leq k-1$,

$$
\begin{equation*}
e(W, G-W)>\frac{1}{2}|W|(k-2)-\binom{|W|}{2}=\frac{1}{2}|W|(k-|W|-1), \tag{1}
\end{equation*}
$$

and a vertex v in W hits at least $\frac{1}{2}(k-|W|)$ vertices in $G-W$.
A proof of Lemma 14 is in [7].
Lemma 14 Let G be a graph that is minimal with $\bar{d}(G)>k-2$. Let Q be a path in G, where $Q=v_{1}, \ldots, v_{r}$, and let $W=\alpha\left(Q, v_{r}\right)$. If $N(W) \subseteq V(Q)$, then W hits a vertex in $\left\{v_{k-1}, \ldots, v_{r}\right\}$ and $r \geq k-1$.

Gilbert and Tiner [4] proved the following:
Lemma 15 Let G be a graph on k vertices. If $e(G)=\binom{k-1}{2}+1$, then G contains every tree on k vertices that is not a star.

Let T be a tree and let t be a vertex in T. The set of leaf neighbors of t is $L(t)$, and $L[t]=L(t) \cup\{t\}$. An embedding f of a tree T into a graph G is an injective map $f: V(T) \rightarrow V(G)$ that preserves edges, that is, if $a b \in E(T)$, then $f(a) f(b) \in E(f(T))$. Let $T^{\prime} \subseteq T$ be a tree. If an embedding of T^{\prime} into a graph G can be extended to an embedding of T into G, then the graph G is T-extensible.
Lemma 16 Let G be a graph G on n vertices with more than $\frac{1}{2}(n-1)(k-2)$ edges, where $k \leq n \leq k+3$, and let T be a tree on k vertices. If G has a vertex v of degree $n-1$, then G contains T.

Proof If T is a star, then G contains T since $d(v) \geq k-1$. Otherwise T is not a star. Let a_{0}, \ldots, a_{r} be a longest path in T. If a_{1} has two or more leaf neighbors in T, then let T^{\prime} be obtained from T by removing two of the leaf neighbors or a_{1}. Otherwise a_{1} has exactly one leaf neighbor, and let $T^{\prime}=T-L\left[a_{1}\right]$. Let $k^{\prime}=k-2$ and notice that T^{\prime} has exactly k^{\prime} vertices. Let $G^{\prime}=G-v$, and for $n^{\prime}=n-1$, notice that G^{\prime} has n^{\prime} vertices, and $n^{\prime} \leq k^{\prime}+4$. It follows that

$$
e\left(G^{\prime}\right)>\frac{1}{2}(n-1)(k-2)-(n-1)=\frac{1}{2}(n-1)(k-4)=\frac{1}{2}\left(n^{\prime}\right)\left(k^{\prime}-2\right),
$$

and G^{\prime} contains T^{\prime} (by Theorem 1). Since v hits every vertex in G^{\prime}, the embedding of T^{\prime} into G^{\prime} is T-extensible.

If a vertex t in a tree T has at least one leaf neighbor, and exactly one non-leaf neighbor, then the vertex t is a penultimate vertex.

Theorem 17 Let G be an n vertex graph, where $n=k+1$, and $k \geq 4$. If

$$
e(G)>\frac{1}{2} k(k-2)
$$

then G contains every non-star tree on k vertices.
Proof Let T be a non-star tree on k vertices, and assume the graph G has exactly $\left\lfloor\frac{1}{2} k(k-2)+1\right\rfloor$ edges. If a vertex u in G has degree less than $\left\lfloor\frac{k}{2}\right\rfloor$, then $G-u$ contains T (by Lemma 15).

Otherwise $\delta(G) \geq\left\lfloor\frac{k}{2}\right\rfloor$. It is worth noting that the statement holds for $k=1$ and $k=2$, but not for $k=3$. The case for $k=3$ fails only when the graph G consists of two vertex disjoint edges.

If $k=4$, then T is P_{4}, the graph G has five vertices and five edges. Since each vertex has degree at least 2 , the graph G is C_{5}, and G contains T.

Otherwise $k \geq 5$. If $k=5$, the graph G has six vertices, eight edges, minimum degree 2, and the tree T is either a path or a broom. By the ES-conjecture, the graph G contains P_{4}. Let v_{1}, \ldots, v_{4} be P_{4} in G, and let v_{5} and v_{6} be the other two edges. Since there are five additional edges, and both v_{5} and v_{6} have minimum degree 2 , it is easy to see that G contains T.

Otherwise $k \geq 6$. Notice that $k-2 \leq \Delta(G) \leq k$. Let $V(G)=\left\{v_{1}, \ldots, v_{k}\right\}$, where the vertices are listed in non-increasing order. If $d\left(v_{1}\right)=k$, then G contains T (by Lemma 16). Otherwise $d\left(v_{1}\right)$ is either $k-1$ or $k-2$.

Case $1 d\left(v_{1}\right)=k-1$
If T has a vertex t with at least two leaf neighbors, then let $T^{\prime}=T-L(t)$ (and notice that the sub-tree T^{\prime} has at most $k-2$ vertices). Let $N_{T^{\prime}}(t)=\left\{t_{1}, \ldots, t_{s}\right\}$. Let $\left\{H_{1}, \ldots, H_{s}\right\}$ be the components of $T^{\prime}-t_{i}$, where t_{i} is a vertex in H_{i} for $1 \leq i \leq s$. Notice that each H_{i} is a tree and that the disjoint union of the trees in $\left\{H_{1}, \ldots, H_{s}\right\}$ is a forest. Let $T^{\prime \prime}$ be the tree on $V(T)-L[t]$ obtained from the s trees in forest by adding the $s-1$ edges $\left\{t_{1} t_{2}, \ldots, t_{s-1} t_{s}\right\}$. Notice that the tree $T^{\prime \prime}$ has $\left|V\left(T^{\prime}\right)\right|-1$ vertices (i.e., at most $k-3$ vertices).

Let $G^{\prime}=G-\left\{v_{1}, v_{j}\right\}$, where v_{j} is the single vertex in $V\left(G-v_{1}\right)$ that is missed by v_{1}. Notice that G^{\prime} has $k-1$ vertices, and

$$
e\left(G^{\prime}\right) \geq e(G)-(2 k-2)>\frac{1}{2} k(k-2)-(2 k-2)>\frac{1}{2}(k-1)(k-5)
$$

and G^{\prime} contains $T^{\prime \prime}$ (by Lemma 16). Since the vertex v_{1} hits each vertex in $\left\{t_{1}, \ldots, t_{s}\right\}$, and since $d\left(v_{1}\right)$ has degree $k-1$, we see that G contains T.

If $\operatorname{diam}(T)=3$, then let $v_{j} \in N\left(v_{1}\right)$, and consider the edge $v_{1} v_{j}$ in G. Since v_{1} and v_{j} have degrees $k-1$ and at least m, respectively, the edge $v_{1} v_{j}$ is T-extensible.

Otherwise $\operatorname{diam}(T) \geq 4$ (and $k \geq 5$). If T is a broom (which could be a path), then let $G^{\prime}=G-v_{1}$. Notice that G^{\prime} has k vertices, and

$$
e\left(G^{\prime}\right) \geq e(G)-(k-1)>\frac{1}{2} k(k-2)-(k-1)>\frac{1}{2} k(k-4) .
$$

Thus G^{\prime} contains the path u_{1}, \ldots, u_{k-2} (by Theorem 1). Since v_{1} hits one of $\left\{u_{1}, u_{k-2}\right\}$ (and since $d\left(v_{1}\right)=k-1$), it is easy to see that the graph G contains T.

Otherwise T is not a broom (or a path). If $k=6$, then the only non-broom tree of diameter at least four is the 4-path a_{0}, \ldots, a_{4} along with the edge $a_{2} x$. Define G^{\prime} and the path u_{1}, \ldots, u_{k-2} as in the previous paragraph, where $k-2=4$. If the vertex v_{1} hits both u_{1} and u_{4}, then the path $u_{2}, u_{1}, v_{1}, u_{4}, u_{3}$ it T-extensible. Otherwise the vertex v_{1} misses one of u_{1} and u_{4}, and thus hits both u_{2} and u_{3}. It follows that the path $u_{1}, u_{2}, v_{1}, u_{3}, u_{4}$ is T-extensible in G.

Otherwise $k \geq 7$. If $d\left(v_{j}\right) \leq k-4$, then let $T^{\prime}=T-L\left[a_{1}\right]$, and let $G^{\prime}=G-$ $\left\{v_{1}, v_{j}\right\}$. Notice that T^{\prime} has $k-2$ vertices, the graph G has $k-1$ vertices, and

$$
\begin{equation*}
e\left(G^{\prime}\right)>\frac{1}{2} k(k-2)-(2 k-5) \geq \frac{1}{2}(k-1)(k-4) . \tag{2}
\end{equation*}
$$

The latter inequality holds since $k \geq 5$. By Theorem 1 , the graph G^{\prime} contains T^{\prime}. Since v_{1} hits every vertex in G^{\prime}, we see that G contains T.

Otherwise $k-3 \leq d\left(v_{j}\right) \leq k-1$. If $d\left(v_{k-1}\right) \geq k-2$, then the degree sum S of G is such that

$$
k(k-2)>S \geq 1(k-1)+(k-2)(k-2)+2 m \geq k(k-2)
$$

a contradiction.
Otherwise $d\left(v_{k-1}\right) \leq k-3$. Since v_{j} misses v_{1} and at most two other vertices in G, it must hit one of $\left\{v_{k-1}, v_{k}, v_{k+1}\right\}$, each of which has degree at most $k-3$. Assume $d\left(v_{k}\right) \leq k-3$ (and notice that v_{1} hits v_{k}). Let $T^{\prime}=T-L\left[a_{1}\right]$, let $G^{\prime}=$ $G-\left\{v_{1}, v_{k}\right\}$, and notice that $e^{*}\left(\left\{v_{1}, v_{k}\right\}\right) \leq(2 k-5)$. Thus G^{\prime} contains T^{\prime} (see the paragraph containing Inequality (2) above). Since $N\left(\left\{v_{1}, v_{k}\right\}\right)=V(G)$, we see that G contains T.

Case $2 d\left(v_{1}\right)=k-2$
Let $B \subseteq V(G)$ be the set of degree $k-2$ vertices. Let S be the sum of the degrees of the vertices in G, and notice that $S \geq k(k-2)+1$. If $|B| \leq 3$, then

$$
S \leq 3(k-2)+(k+1-3)(k-3) \leq k(k-2)<S
$$

a contradiction.
Otherwise $|B| \geq 4$. If a vertex v in G misses B, then $d(v)$ vertices in G have degree at most $k-3$, and

$$
S \leq d(v)+d(v)(k-3)+(k+1-(d(v)+1))(k-2) \leq k(k-2)<S,
$$

a contradiction.
Otherwise every vertex in G hits a vertex in B. If $\operatorname{diam}(T)=3$, then T is a double-broom. Let $v \in B$, and let $\alpha \in \overline{N[v]}$. Let $w \in B$ be a neighbor of α. Since α has degree at least $\left\lfloor\frac{k}{2}\right\rfloor$, and since v has degree $k-2$ (and v misses w), the 3-path v, α, w is T-extensible.

Otherwise $\operatorname{diam}(T) \geq 4$ (and $k \geq 6$). If two vertices $u, v \in B$ miss each other, then G contains T. Let $G^{\prime}=G-\{u, v\}$ and let $T^{\prime}=T-\left\{a_{0}, a_{r}\right\}$. Notice that T^{\prime} has $k-2$ vertices, and the subgraph G^{\prime} has $k-1$ vertices. Since

$$
\begin{equation*}
e\left(G^{\prime}\right)>\frac{1}{2} k(k-2)-2(k-2)=\frac{1}{2}(k-2)(k-4), \tag{3}
\end{equation*}
$$

the graph G^{\prime} contains T^{\prime} (by the induction hypothesis).
If $N(u)=N(v)$, then let q be the single vertex in $V(G)-\{u, v\}$ that misses $\{u, v\}$. Since one of $\{u, v\}$ hits $f\left(a_{r-1}\right)$, suppose v hits it, and set $f\left(a_{r}\right)=v$. If u hits $f\left(a_{1}\right)$, then set $f\left(a_{0}\right)=u$, and f is an embedding of T into G. Otherwise u misses $f\left(a_{1}\right)$ and hits $f\left(a_{2}\right)$. Set $f\left(a_{1}\right)=u$ and f is T-extensible.

Otherwise $N(u) \neq N(v)$ (so $N[u] \cup N[v]=V(G)$). Since one of $\{u, v\}$ hits $f\left(a_{r-1}\right)$, suppose v hits it, and set $f\left(a_{r}\right)=v$. If u hits $f\left(a_{1}\right)$, then set $f\left(a_{0}\right)=u$, and f is an embedding of T into G. Otherwise u misses $f\left(a_{1}\right)$ and hits $f\left(a_{2}\right)$. Set $f\left(a_{1}\right)=u$, and we see that f is T-extensible.

Otherwise, no two vertices $u, v \in B$ miss each other. Thus B is a clique in G. If $k=6$, then $3 \leq d(v) \leq 4$ for each $v \in V(G)$, and the degree sequence is $(4,4,4,4,4,3,3)$. Since B is a 5 -clique in G, no vertex in B hits a vertex in $G-B$, a contradiction (since the two vertices in $V(G)-B$ have degree 3).

Otherwise $k \geq 7$. Since every vertex has a neighbor in B, it is easy to see that all of the vertices in B cannot have the same closed neighborhoods. Let $u, v \in B$ have different closed neighborhoods.

If $N(u) \cup N(v)=V(G)$, then let $G^{\prime}=G-\{u, v\}$ and let $T^{\prime}=T-\left\{a_{0}, a_{r}\right\}$. By Inequality (3) above, G^{\prime} contains T^{\prime}.

Since one of $\{u, v\}$ hits $f\left(a_{r-1}\right)$, suppose v hits it, and set $f\left(a_{r}\right)=v$. If u hits $f\left(a_{1}\right)$, then set $f\left(a_{0}\right)=u$, and f is an embedding of T into G. Otherwise u misses $f\left(a_{1}\right)$ and hits $f\left(a_{2}\right)$. Set $f\left(a_{1}\right)=u$ and f is T-extensible.

Otherwise, $N(u) \cup N(v) \neq V(G)$. Let q be the single vertex that both u and v miss. Let $G^{\prime}=G-\{u, v, q\}$ and let $T^{\prime}=T-L\left[a_{r-1}\right]-\left\{a_{r}\right\}$. Notice that T^{\prime} has $k-3$ vertices, the subgraph G^{\prime} has $k-2$ vertices, and

$$
e\left(G^{\prime}\right)>\frac{1}{2} k(k-2)-(3 k-6)=\frac{1}{2}(k-3)(k-4),
$$

and G^{\prime} contains T^{\prime} (by the induction hypothesis).

Since one of $\{u, v\}$ hits $f\left(a_{2}\right)$, suppose v does. Set $f\left(a_{r}\right)=v$. If v hits $f\left(a_{1}\right)$, then set $f\left(a_{0}\right)=v$ and f is an embedding of T into G. Otherwise v misses $f\left(a_{1}\right)$, and it hits $f\left(a_{2}\right)$. Set $f\left(a_{1}\right)=v$ and the embedding f is T-extensible.

The set of bipartite graphs with bipartition sizes of m and n, respectively, is $\mathcal{B}_{m, n}$. The following is an implication of a lemma proved by Eaton and Tiner [2] (see Lemma 2.5 in [2]).

Lemma 18 Let T be a tree on k vertices with $\operatorname{diam}(T) \geq 5$, and let $m=\left\lfloor\frac{k}{2}\right\rfloor$. For non-negative integers m_{1} and m_{2}, let $B \in \mathcal{B}_{m+m_{1}},(k-3)+m_{2}$. If $\delta(B) \geq m$, and

$$
e(B) \geq\left(m+m_{1}\right)\left(k-3+m_{2}\right)-\left[(m-1)+\left(m_{1}+m_{2}\right)\right] .
$$

then G contains T.
The set of trees having bipartition sizes of m and n is $\mathcal{T}_{m, n}$; clearly each tree T in $\mathcal{T}_{m, n}$ is also in $\mathcal{B}_{m, n}$. We state the following folklore lemma without proof.

Lemma 19 Let A, B be the bipartition of the bipartite graph $H \in \mathcal{B}_{m, n}$, where A and B have numbers of vertices m and n, respectively, and let $T \in \mathcal{T}_{r, s}$. If $d(a) \geq s$ for each $a \in A$, and $d(b) \geq r$ for each $b \in B$, then the graph H contains T.

Lemma 20 For $k=2 m+1$, where $m \geq 5$, let T be a tree on k vertices with $\operatorname{diam}(T) \geq 5$. Let G be a graph on n vertices and more than $\frac{1}{2}(n-1)(k-2)$ edges, and let Y, Z be a vertex bipartition of $V(G)$. If $|Y|=m+1$ and $|Z| \geq|Y|+2$, and $e(Z)=0$, then G contains T.

Proof Let $s=|Z|$ and notice that $n=m+1+s \geq 2 m+3$. Since $\delta(G) \geq m$, we see that $e(Y, Z) \geq m s$.

If $k=11$, then $n \geq 13, y=6$ and $z \geq 7$. If $z=7$, then $n=13$, and $e=55$. Thus $d\left(y_{1}\right)=12$, and G contains T (by Lemma 16). Similarly, for $k=13$, if $z=8$ or 9 , then $d\left(y_{1}\right)=n-1$, and G contains T (by Lemma 16).

Otherwise, for $k=11$ or 13 , we have $z \geq k-3$. For $k \geq 15$, we see that $e(G) \leq$ $\binom{|Y|}{2}+|Y||Z|$. It follows that

$$
\left.\begin{array}{rl}
\binom{m+1}{2}+(m+1) z & \geq e(G)
\end{array}\right) \frac{1}{2}(n-1)(k-2)=\frac{1}{2}(m+z)(2 m-1),
$$

and $z \geq k-3$.
Let $Z=\left\{z_{1}, \ldots, z_{s}\right\}$, and let $Y=\left\{y_{1}, \ldots, y_{m+1}\right\}$, where the vertices in each set are listed in non-increasing order. If at least $m-2$ vertices in Z have degree $m+1$, then at most $s-m+2$ have degree m, and

$$
\begin{align*}
e(Y, Z) & \geq(m-2)(m+1)+(s-m+2)(m) \\
& =(m+1)(s)-[(m-1)+(1+(s-(k-3))] \tag{5}
\end{align*}
$$

and G contains T (by Lemma 18).
Otherwise at most $m-3$ vertices in Z have degree $m+1$. Since $e(G)>\frac{1}{2}(m+$ s) $(2 m-1)$, it follows that

$$
\begin{gather*}
\frac{1}{2}(m+s)(2 m-1)<\binom{m+1}{2}+(m-3)(m+1)+(s-m+3)(m) \\
\Longrightarrow s \geq m^{2}-4 m+7 \geq 3 m-4 \tag{6}
\end{gather*}
$$

Assume that $s=3 m-4$ and that $d(z)=m$ for each $z \in Z$. It follows that $e(Y, Z)=m(3 m-4)$. If $d\left(y_{m+1}\right) \geq k-3=2 m-2$, then G contains T (by Lemma 19). Otherwise $d\left(y_{m+1}\right) \leq k-4=2 m-3$. Therefore,

$$
\begin{align*}
e\left(Y-y_{m+1}, Z\right) & \geq m(3 m-4)-(2 m-3) \\
& =m(3 m-4)-[(m-1)+(s-(k-3))] \tag{7}
\end{align*}
$$

and G contains T (by Lemma 18).

3 Proof of the Main Theorem

In this section, we prove the main theorem (Theorem 10). The following is an implication of a theorem by Gilbert and Tiner [3] (see Lemma 8 in [3]):

Lemma 21 Let C be an r-cycle in a graph G, let Q be an s-cycle in $G-C$, and assume C is a longest cycle in G. If $e(C, Q)=j s+1$ for $j \in \mathbb{N}$, then

$$
r \geq(j+1)(s+1) .
$$

As evident in the proof of the above lemma, the result holds when the term s-cycle is replaced with edge, and s is replaced with 2 . We state this as a lemma.

Lemma 22 Let C be an r-cycle in a graph G, let uv be an edge in $G-C$, and assume C is a longest cycle in G. If $e(C, Q) \geq 2 j+1$ for $j \in \mathbb{N}$, then

$$
r \geq 3(j+1) .
$$

We now restate and prove Theorem 10.
Theorem 10. Let T be a tree on k vertices. If G is a graph with $\bar{d}(G)>k-2$ and $c(G) \leq k+1$, then G contains T.

Proof If a subgraph G^{\prime} of G that is minimal with $\bar{d}\left(G^{\prime}\right)>k-2$ contains every tree on k vertices, then so does G. Since G has circumference at most $k+1$, so does G^{\prime}. For these reasons, we will simply assume that G is minimal with $\bar{d}(G)>k-2$, and has circumference at most $k+1$.

Let $m=\left\lfloor\frac{k}{2}\right\rfloor$. By Corollary 12, we see that $\delta(G) \geq m$. Let T be at tree on k vertices. If $k \leq 9$, then G contains T (by Theorem 4).

Otherwise $k \geq 10$. If $\operatorname{diam}(T) \leq 4$, then the graph G contains T (by Theorem 2).
Otherwise $\operatorname{diam}(T) \geq 5$. Let Q be a longest path in G, where $Q=v_{1}, \ldots, v_{t}$. If $t \leq k+3$, then G contains every tree on k vertices (by Theorem 5).

Otherwise $t \geq k+4$. Let $v_{r} \in V(Q)$ be a neighbor of v_{1} in G, and choose the path Q on t vertices so that r is as large as possible. If $r \leq k$, then G contains T (by Theorem 9). Otherwise $r \geq k+1$. If $r \geq k+2$, then the cycle (v_{1}, \ldots, v_{r}) has more than $k+1$ edges, and $c(G)>k+1$, a contradiction.

Otherwise $r=k+1$. Let C be the cycle $\left(v_{1}, \ldots, v_{k+1}\right)$. Let \mathcal{K} be the collection of components of $G-C$. We partition \mathcal{K} as follows.
$Z \in \mathcal{K}$ is the component that contains vertices v_{k+2} and v_{k+3}.
$\mathcal{X} \subseteq \mathcal{K}-Z$ is the set of components that hit a vertex on $C-x_{k+1}$.
$\mathcal{Y} \subseteq \mathcal{K}-Z$ is the set of components that hit only x_{k+1} on C.
Claim 3 No vertex in $Z-v_{k+2}$ hits a vertex in $C-v_{k+1}$.
To the contrary, suppose a vertex w in $V\left(Z-v_{k+2}\right)$ hits a vertex v_{s} on $C-v_{k+1}$. For simplicity, since there is a w, v_{k+2}-path in component Z, assume $w=v_{k+3}$, and so v_{k+3} hits v_{s}. Assume that $s \leq \frac{1}{2}(k+1)$ (otherwise, we could simply reverse the labels on the vertices on v_{1}, \ldots, v_{k}). Let R be the path v_{1}, \ldots, v_{k+1} chosen so that s is as small as possible. By our choice of R, note that v_{1} may no longer hit v_{k+1}.

If $1 \leq s \leq 2$, then the cycle $\left(v_{s}, \ldots, v_{k+3}\right)$ has more than $k+1$ vertices, a contradiction.

Otherwise $3 \leq s \leq \frac{1}{2}(k+1)$. If v_{1} hits $v_{i} \in\left\{v_{s+1}, \ldots, v_{2 s-1}\right\}$, then the path $v_{s}, \ldots, v_{1}, v_{s+1}, \ldots, v_{k+1}$ contradicts our choice of R (since v_{k+3} hits v_{s}).

Otherwise v_{1} misses $\left\{v_{s+1}, \ldots, v_{2 s-1}\right\}$. If v_{1} hits two consecutive vertices v_{i}, v_{i+1} on the $(k+2 s+2)$-path $v_{2 s}, \ldots, v_{k+1}$, then the path $v_{2}, \ldots, v_{i}, v_{1}, v_{i+1}, \ldots, v_{k+1}$ contradicts our choice of R (since v_{k+3} hits v_{s}).

Otherwise v_{1} does not hit two consecutive vertices v_{i}, v_{i+1} on the path $v_{2 s}, \ldots$, v_{k+1}. Thus we see that the vertex v_{1} hits at $\operatorname{most}\left\lceil\frac{1}{2}(k-2 s+2)\right\rceil$ vertices on $\left\{v_{s+1}, \ldots, v_{k+1}\right\}$. Let $S=v_{1}, \ldots, v_{s}$. For $W=\alpha\left(S, v_{s}\right)$, we see that $1 \leq|W| \leq$ $s-1$.

Recall (by Lemma 7), that $e(w, S) \leq|W|$ for each $w \in W$. By Corollary 13, a vertex in W hits $\frac{1}{2}(k-|W|)$ outside of W; assume it is v_{1}. Since v_{1} hits at least $\frac{1}{2}(k-|W|)$ vertices outside of W (and outside of $S-v_{s}$), it might hit v_{s}, and it must hit $\frac{1}{2}(k-|W|)-1$ vertices on the path $v_{2 s}, \ldots, v_{k+1}$, no two of which are consecutive. Since the subpath has $k-2 s+2$ vertices, and since v_{1} does not hit two consecutive vertices on it, the vertex v_{1} hits at most $\left\lceil\frac{1}{2}(k-2 s+2)\right\rceil$ vertices on the subpath. This implies

$$
\left\lceil\frac{1}{2}(k-|W|)\right\rceil-1<\left\lceil\frac{1}{2}(k-2 s+2)\right\rceil .
$$

Since $|W|$ is at most $s-1$, this is a contradiction for $s \geq 4$ when k is even, and for $s \geq 5$ when k is odd.

Otherwise either $s=3$, or $s=4$ and k is odd. If $s=3$, then for even k we see that v_{1} must hit both v_{2} and v_{3}, and $\frac{1}{2}(k-2)-2$ vertices on v_{6}, \ldots, v_{k+1}. If k is odd, then one of v_{1} and v_{2} has degree $m+1$ (by Corollary 12.ii). Thus if the vertex v_{1} hits v_{3}, we will assume $d\left(v_{1}\right) \geq m+1$. This implies that $N\left(v_{1}\right)=\left\{v_{2}, v_{3}, v_{6}, v_{8}, \ldots, v_{k+1}\right\}$. If v_{1} misses v_{3}, then $N\left(v_{1}\right)=\left\{v_{2}, v_{6}, v_{8}, \ldots, v_{k+1}\right\}$. Whether even or odd k, every vertex v_{j} on the path v_{5}, \ldots, v_{k+1} is distance either 1 or 2 (on the path) away from a neighbor v_{i} of v_{1}. Thus if the vertex v_{2} hits v_{j}, then suppose that v_{1} hits v_{j+2}. It follows that the cycle $\left(v_{3}, \ldots, v_{j}, v_{1}, v_{j+2}, \ldots, v_{k+3}\right)$ has more than k_{1} vertices, a contradiction.

Otherwise the vertex v_{2} misses the path v_{5}, \ldots, v_{k+1}. Since k is at least 10 , the vertex v_{2} must hit a vertex x that is not on the cycle C. Since x, v_{2}, \ldots, v_{t} is also a longest path, the neighborhood of x is similar to the neighborhood of v_{1}. In fact it is easy to see that the neighbors of x on the path $v_{6}, v_{8}, \ldots, v_{k+1}$ are identical to the neighbors on v_{1} on the path. Suppose v_{1} and x both hit v_{i} and v_{i+1} on the path v_{6}, \ldots, v_{k+1}. It follows that the cycle $\left(v_{3}, \ldots, v_{i}, v_{1}, v_{2}, v_{i+2}, \ldots, v_{k+3}\right)$ has more than $k+1$ vertices, a contradiction.

Otherwise $s=4$ (and k is odd). Since v_{1} hits at least $\frac{1}{2}(k-3)$ vertices in v_{8}, \ldots, v_{k+1}, no two of which are consecutive, we reach the same conclusions as in the previous paragraph for $s=3$. Therefore, Claim 3 holds true.

If no component of $G-C$ hits $C-v_{k+1}$, then v_{k+1} is a cut-vertex. Since $G[C]$ has $k+1$ vertices and more than $\frac{1}{2} k(k-2)$ edges, the graph G contains T (by Lemma 17).

Otherwise at least one component of $G-C$ hits a vertex on $C-v_{k+1}$. Let H_{1}, \ldots, H_{ℓ} be the components of $G-C$ that hit a vertex on $C-v_{k+1}$.

Claim 4 Each component in \mathcal{X} is a vertex.
To the contrary, suppose the component $X \in \mathcal{X}$ has more than one vertex. If X is an edge $u v$, then $e(u v, C) \geq k-2$ (by Corollary 12). Let $j=\left\lfloor\frac{1}{2}(k-1)\right\rfloor$. Since $e(u v, C) \geq 2 j+1$ we see that $|V(C)| \geq 3(j+1)>k+1$ (by Lemma 22), a contradiction.

Otherwise X is not an edge, and X contains a path on at least three vertices. Let H be a longest path in X, where $H=h_{1}, \ldots, h_{b}$, and h_{1} hits a vertex v_{s} on $C-v_{k+1}$. Assume that $s \leq \frac{1}{2}(k+1)$ (otherwise, we could simply reverse the labels on the vertices on $\left.v_{1}, \ldots, v_{k}\right)$. Among all $(k+1)$-paths on $V(C)$ having v_{k+1} as one endpoint, choose the path v_{1}, \ldots, v_{k+1} so that s is as small as possible. (Note that v_{1} may no longer hit v_{k+1}.)

Both h_{1} and h_{b} might hit v_{k+1}, but if either hits a vertex in the $2 b$-set $\left\{v_{k+1-b}, \ldots\right.$, $\left.v_{b}\right\}-v_{k+1}$, then we easily find a path on more than t vertices, a contradiction.

Otherwise each of h_{1} and h_{b} hits at most one vertex (namely v_{k+1}) on the path v_{k-b+1}, \ldots, v_{b}. If either h_{1} or h_{b} hits two consecutive vertices on the cycle C, then we easily find a cycle on $k+2$ vertices, a contradiction.

Since both h_{1} and h_{b} hit the cycle C, suppose that h_{1} hits v_{b+1}. If the vertex h_{b} hits a vertex in $\left\{v_{b+2}, \ldots, v_{2 b}\right\}$, then the cycle $\left(v_{1}, \ldots, v_{b+1}, h_{1}, \ldots, h_{b}, v_{2 b}, \ldots, v_{k+1}\right)$ has more than $k+1$ vertices, a contradiction.

Otherwise, the vertex h_{b} misses $\left\{v_{b+2}, \ldots, v_{2 b}\right\}$. Since the vertex h_{1} hits at least $\left\lfloor\frac{1}{2}(k-b)\right\rfloor$ vertices on C, it hits at least $\left\lfloor\frac{1}{2}(k-b)\right\rfloor-2$ on the $(k-3 b-1)$-path $v_{2 b+2}, \ldots, v_{k-b}$, no two of which are consecutive. Thus h_{1} hits at most $\left\lfloor\frac{1}{2}(k-3 b)\right\rfloor$ vertices on the path. Since $b>2$, we see that $\left\lfloor\frac{1}{2}(k-b)\right\rfloor-2>\left\lfloor\frac{1}{2}(k-3 b)\right\rfloor$, a contradiction. Therefore Claim 4 holds true.

Claim 5 If $x_{k+2} \in Z$ hits a vertex v_{i} on $C-x_{k+1}$, then $\mathcal{Y}=\emptyset$.
To the contrary, suppose the vertex v_{k+1} hits v_{i} on $C-x_{k+1}$, and Y is a component in \mathcal{Y}. Let P be a longest path in $G\left[Y+v_{x+1}\right]$ that has v_{k+1} as one endpoint, where $P=$ $v_{k+1}, y_{2}, \ldots, y_{r}$. Let $W=\alpha\left(P, v_{k+1}\right)$ and notice that $N(W) \subseteq V(P)$. If $r \leq k-2$, then a vertex in W hits a vertex on v_{j} on $C-v_{k+1}$ (by Lemma 8), a contradiction.

Otherwise $r \geq k-1$. This implies that one of the paths

$$
\begin{aligned}
& y_{r}, \ldots, v_{1}, v_{k+1}, v_{k}, \ldots, v_{i}, v_{k+2}, \ldots, v_{t} \text {, or } \\
& y_{r}, \ldots, v_{1}, v_{k+1}, v_{1}, \ldots, v_{i}, v_{k+2}, \ldots, v_{t}
\end{aligned}
$$

has more than t vertices, a contradiction. Therefore Claim 5 holds true.
By Claims 1,2 , and 3 , it is easy to see that either v_{k+1} or v_{k+2} is a cut-vertex of G. Let $G^{\prime} \subseteq G$ be the (2 -connected) block of G that contains the cycle C.

If v_{k+1} is cut-vertex, then notice that $V\left(G^{\prime}\right)=V(C) \cup \mathcal{X}$. Otherwise, v_{k+1} is not a cut-vertex, but v_{k+2} is a cut-vertex, and $V\left(G^{\prime}\right)=V(C) \cup \mathcal{X} \cup\left\{v_{k+2}\right\}$.

Let $n^{\prime}=\left|v\left(G^{\prime}\right)\right|$, and notice that the subgraph G^{\prime} has more than $\frac{1}{2}\left(n^{\prime}-1\right)(k-2)$ edges. If $v_{k+2} \in V\left(G^{\prime}\right)$, and $d_{G^{\prime}}\left(v_{k+2}\right)<m$, then $G^{\prime}-v_{k_{2}}$ has more then $\frac{1}{2}\left(n^{\prime}-\right.$ 2) ($k-2$) edges. For this reason, we will assume that $d_{G^{\prime}}\left(v_{k+2}\right) \geq m$.

Let x be a vertex in \mathcal{X}. If the vertex x hits v_{i} and v_{i+2}, then the vertex v_{i} is a Terminal- P_{1}. If x hits v_{i} and v_{i+3}, then the 2 -path v_{i+1}, v_{i+2} is a Terminal- P_{2}. Finally, if x hits v_{i} and v_{i+4} (and misses v_{i+2}), then the 3 -path $v_{i+1}, v_{i+2}, v_{i+3}$ is a Terminal- P_{3}.

We now state and prove five claims that help characterize the subgraph G^{\prime}.
Claim 6 No vertex in \mathcal{X} hits two consecutive vertices on the cycle C.
If $x \in \mathcal{X}$ hits both v_{i} and v_{i+1}, then the cycle ($v_{1}, \ldots, v_{i}, x, v_{i+1}, \ldots, v_{k+1}$) has $k+2$ vertices, a contradiction.

The proof of the Claim 7 follows from Claim 6.
Claim 7 Each vertex $x \in \mathcal{X}$ has degree m or $m+1$.
Claim 8 For $x \in \mathcal{X}$ hits the vertex v_{i} on C, then no vertex in \mathcal{X} hits either v_{i-1} or v_{i+1}.

By Claim 6, we know x misses $\left\{v_{i-1}, v_{i+1}\right\}$. Suppose $x^{\prime} \in \mathcal{X}$ hits v_{i+1} (if x^{\prime} hits v_{i-1}, the proof is similar). For $v_{j} \in N(x)-v_{i}$, if x^{\prime} hits $v_{\ell} \in\left\{v_{j+1}, v_{j+2}\right\}$, then the cycle $\left(x^{\prime}, v_{\ell}, \ldots, v_{i}, x, v_{j}, \ldots, v_{i+1}\right)$ has more than $k+1$ vertices, a contradiction. It follows that there are $2(m-1)$ vertices on the cycle C for which x^{\prime} does not hit. Since $d\left(x^{\prime}\right) \geq m$, we reach a contradiction.

Claim 9 If v_{i} and v_{j} on C are two neighbors of $x \in \mathcal{X}$, where $j \geq i+2$, then the vertex v_{i+1} misses v_{j+1}, and the vertex v_{i-1} hits v_{j-1}.

If the vertex v_{i+1} hits v_{j+1}, then the cycle $\left(v_{1}, \ldots, v_{i}, x, v_{j}, \ldots, v_{i+1}, v_{j_{1}}, \ldots, v_{k+1}\right)$ has $k+2$ vertices, a contradiction. The proof is similar if the vertex v_{i-1} misses v_{j-1}.

Claim 10 The set of Terminal- P_{1} 's on C are an independent set, neither vertex in a Terminal- P_{2} hits a Terminal- P_{1}, and there is at most one edge connecting one Terminal- P_{2} to another Terminal- P_{2}.

The first two of the three statements follow from Claim 9. Consider two Terminal- P_{2} 's v_{i}, v_{i+1} and v_{j}, v_{j+1} on C. By Claim 9 , we know that v_{i} misses v_{j}, and the vertex v_{i+1} misses v_{j+1}. If $v_{i} v_{j+1}, v_{i+1} v_{j} \in E(G)$, then the cycle $\left(v_{1}, \ldots, v_{j}, v_{j+1}, v_{j}, v_{i+1}, \ldots\right.$, $\left.v_{j-1}, x, v_{j+2}, \ldots, v_{k+1}\right)$ has $k+2$ vertices, a contradiction.

Let $X=\mathcal{X}$, let $Y=N(X)$, and let $Z=V(C)-Y$. Notice that the three sets form a disjoint union of $V\left(G^{\prime}\right)$.

Case $1 k$ is even.
Notice that $k=2 m$, and the cycle C has $2 m+1$ vertices. Thus Z consists of $m-1$ Terminal- P_{1} 's and one Terminal- P_{2}, and $e(Z)=1$ (by Claim 9). For $x \in X$, we see that $N(X)=N(x)$ by claim 9 . Let $Z^{\prime}=Z \cup X$ and we see that $e\left(Z^{\prime}\right)=1$. It follows that $|Y|=m,|Z| \geq m+2$, and $e(G) \leq\binom{|Y|}{2}+|Y||Z|+1$. For $s=|Z|$, we see that

$$
\begin{aligned}
\frac{1}{2}(m+s-1)(2 m-2) & <e(G) \leq\binom{ m}{2}+m s+1 \\
& \Longrightarrow s>\frac{1}{2}\left(m^{2}-3 m-2\right)
\end{aligned}
$$

For $k=10$, we have $s \geq 7=k-3$. For $k \geq 12$, we see that $s \geq k-3$. Since $e(Y, Z) \geq m s-2$, the graph G^{\prime} contains T (by Lemma 18).

Case $2 k$ is odd.
Notice that $k=2 m+1$, and the cycle C has $2 m+2$ vertices. We have three cases to cover:
(a) The cycle C has $m+1$ Terminal $-P_{1}$'s (and $|Y|=m+1$),
(b) The cycle C has two Terminal- P_{2} 's and $m-1$ Terminal- P_{1} 's (and $|Y|=m$), and
(c) The cycle C has one Terminal- P_{3} and $m-1$ Terminal- P_{1} 's (and $|Y|=m$).

Case 21 The cycle C has $m+1$ Terminal- P_{1} 's (and $|Y|=m+1$)
For $Z^{\prime}=Z \cup X$, we see that $e\left(Z^{\prime}\right)=0$. Since there is at least one vertex in X, we see that $\left|Z^{\prime}\right| \geq m+2$, and the graph G contains T (by Lemma 20).

Case 22 The cycle C has two Terminal- P_{2} 's and $m-2$ Terminal- P_{1} 's (and $|Y|=$ m).

Since $|Y|=m$ and Z has two Terminal- P_{2} 's, we see that $|Z|=m+2, e(Z) \leq 3$ (by Claim 9), and for $Z^{\prime}=Z \cup X$, we have $e\left(Z^{\prime}\right)=e(Z) \leq 3$. Let $s=\left|Z^{\prime}\right|$. It follows that $e\left(Y, Z^{\prime}\right) \geq m s-3$. Since $e(G) \leq\binom{|Y|}{2}+|Y||Z|+3$, and

$$
\begin{aligned}
& \frac{1}{2}(m+s)(2 m-1)<e(G) \leq\binom{ m}{2}+m s+3 \\
& \quad \Longrightarrow s>\frac{1}{2}\left(m^{2}-2 m-6\right) \geq 2 m=k-1
\end{aligned}
$$

Since $\left|Z^{\prime}\right| \geq k-1$ and $e\left(Y, Z^{\prime}\right) \geq m s-6 \geq m s-[(m-1)+2]$, the graph G^{\prime} contains T (by Lemma 20).

Case 23 The cycle C has one Terminal- P_{3} and $m-1$ Terminal- P_{1} 's $($ and $|Y|=m)$.
Notice that $Y=N(X)$ and $N(x)=Y$ for each $x \in X$. Let v_{i}, v_{i+1}, v_{i+2} be the Terminal- P_{3} on the cycle C. For each $x \in X$, notice that $N(x)=Y=\left\{v_{i+3}, v_{i+5}, \ldots\right.$, $\left.v_{i-1}\right\}$.

If v_{j} is a Terminal- P_{1}, then we have $N\left(v_{j}\right) \subseteq Y \cup\left\{v_{i+1}\right\}$ (by Claims 9 and 10). Suppose v_{j} hits v_{i+1}. If the vertex v_{i} hits v_{i+1}, then the cycle $\left(v_{1}, \ldots, v_{i}, v_{i+2}, v_{i+1}\right.$, $\left.v_{j}, \ldots, v_{i+3}, x, v_{j+1}, \ldots, v_{k+3}\right)$ has $k+2$ vertices, a contradiction.

Otherwise the vertex v_{i} misses v_{i+1}. Thus for $Y^{\prime}=Y \cup v_{v_{i}}$ and $Z^{\prime}=(V(C)-$ $Y) \cup X$, we see that $e\left(Z^{\prime}\right)=0$. This case was proven in Case 1 .

Otherwise, no Terminal- P_{1} hits v_{i+1}. Thus the neighborhood of each $x \in X$ and of each Terminal- P_{1} is Y, and each vertex on the Terminal- P_{3} misses X and misses each Terminal- P_{1}. For $Z^{\prime}=Z \cup X$, we see that $e\left(Z^{\prime}\right)=e\left(\left\{v_{i}, v_{i+1}, v_{i+2}\right\}\right) \leq 3$. For $s=\left|Z^{\prime}\right|$, it follows that $e\left(Y, Z^{\prime}\right) \geq m s-3$. By the same argument in Case 2.2, the graph G contains T.

Acknowledgements The authors thank our undergraduate student Zachary Tomlin (ztomlin@faulkner.edu) for proving the Erdős-Sós Conjecture for $k=9$. This required 13 individual proofs, one for each of the 13 trees on nine vertices for which the conjecture was not known to hold.

References

1. N. Eaton and G. Tiner, On the Erdős-Sós Conjecture and Graphs with large minimum degree, Ars Combinatoria 95 (2010), pp. 373-382.
2. N. Eaton and G. Tiner, On the Erdős-Sós Conjecture for graphs having no path with $\mathrm{k}+4$ vertices, Discrete Mathematics 313(16) (2013), pp. 1621-1629.
3. A. Gilbert and G. Tiner, On the Erdős-Sós Conjecture for spiders in graphs having no path with 2k+1 vertices, Ars Combinatoria 139 (2013), pp. 297-313.
4. A. Gilbert and G. Tiner, On the Erdős-Sós Conjecture for Graphs with Circumference at most k, Congressus Numerantium 223 (2015), pp. 127-137.
5. A. McLennan, The Erdős-Sós Conjecture for Trees of Diameter Four, J. of Graph Theory 49 (2005), pp. 291-301.
6. P. Slater, S. Teo and H. Yap, Packing a Tree with a Graph of the Same Size, J. of Graph Theory 9 (1985), pp. 213-216.
7. G. Tiner, On the Erdős-Sós Conjecture and double-brooms, JCMCC 93 (2015), pp. 291-296.
8. G. Tiner, On the Erdős-Sós Conjecture for Graphs on $n=k+3$ Vertices, Ars Combinatoria 95 (2010), pp. 143-150.
9. M. Woźniak, On the Erdős-Sós Conjecture, J. of Graph Theory 21 (1996), pp. 229-234.
10. L. Yuan, X. Zhang, On the Erdős-Sós Conjecture for Graphs on $n=k+4$ Vertices, arXiv preprint arXiv:1403.5430, (2014).
11. B. Zhou, A note on the Erdős-Sós Conjecture, Acta Math. Sci. 4 (1984), pp. 287-289.

Regular Graph and Some Vertex-Deleted Subgraph

Yoshimi Egawa and Kenji Kimura

Abstract

In this paper, we consider a relationship between a regular graph and a regular factor of its vertex-deleted subgraph. Katerinis proved that if r is even integer and k is integer with $1 \leq k \leq \frac{r}{2}$, and G is an r-regular, r-edge-connected graph of odd order, then $G-x$ has a k-factor for each $x \in V(G)$. When the result "for each $x \in V(G)$ " of Katerinis is replaced "for some $x \in V(G)$ ", we consider what condition can be followed. One of our main results is that let r and k be an even integer such that $4 \leq k \leq \frac{r}{2}$, and ℓ be a minimum integer such that $\ell \geq \frac{r}{r-2 k+4}$, and G be an r-regular, 2ℓ-edge-connected graph of odd order. Then, there is some $x \in V(G)$ such that $G-x$ has a k-factor. Moreover, if $r \geq 4 k-8$, then we can replace 2ℓ-edge-connected with 2 -edge-connected.

Keywords Regular graph • Regular factor • Vertex-deleted subgraph

1 Introduction

We consider finite undirected graphs that may have loops and multiple edges. Let G be a graph. For $x \in V(G)$, we denote by $\operatorname{deg}_{G}(x)$ the degree of x in G. The set of neighbours of $x \in V(G)$ is denoted by $N_{G}(x)$ and let $N_{G}(X)=\bigcup_{x \in X} N_{G}(x)$ for $X \subseteq V(G)$. We denote by $G[X]$ the subgraph of G induced by X for a subset X of $V(G)$. The number of components of a graph G is denoted by $\omega(G)$. If $\operatorname{deg}_{G}(x)=r$ for any $x \in V(G)$, we call the graph r-regular graph. For subsets S and T of $V(G)$, we denote by $e_{G}(S, T)$ the number of the edges joining S and T. If S is a singleton $\{x\}$, we write $S=x$ instead of $S=\{x\}$. For example, we write $e_{G}(x, T)$ instead of

[^17]$e_{G}(\{x\}, T)$. Let k be a constant. A spanning subgraph F of G such that $\operatorname{deg}_{F}(x)=k$ for each $x \in V(G)$ is called a k-factor of G. We denote by $r G, r$ copies of G for constant r and graph G. When no fear of confusion arises, we often introduce the definition of $v[i, j]=v_{i j}$ for vertex $v_{i j}$. Furthermore, we define $X\left[i_{j}\right]=X_{i_{j}}$ and $X\left[i^{j}\right]=X_{i j}$ for subscript i and subsubscript j of set X and for subscript i and subsuperscript j of set X, respectively.

Petersen proved the next theorem in 1891.
Theorem A (Petersen [1]) Let r be an even integer. Then every r-regular graph can be decomposed into $\frac{r}{2}$ disjoint 2-factors.

This theorem implies that if r and k are even integers, and G is an r-regular graph, then G has a k-factor for every k such that $2 \leq k \leq r$.

Katerinis showed the next theorem in 1985.
Theorem B (Katerinis [3]) Let a, b, and c be odd integers such that $1 \leq a<b<c$, and let G be a connected graph of even order. If G has both a-factor and c-factor, then G has a b-factor.

Assume r is even integer. If an r-regular graph G has a 1-factor, we can obtain an $(r-1)$-factor by excluding the 1 -factor from G. By the 1 -factor and the $(r-1)$ factor of G and by Theorem B, G has a k-factor for any odd integer k such that $1 \leq k \leq r-1$. Thus, by the above two theorems, if an r-regular graph G has a 1factor, then G has a k-factor for every integer k such that $1 \leq k \leq r$. Note that the order of G is even. For the case that the order of G is odd, Katerinis proved the next theorem in 1994.

Theorem C (Katerinis [4]) Let r be an even integer, and let k be an integer such that $1 \leq k \leq \frac{r}{2}$, and let G be an r-regular, r-edge-connected graph of odd order. Then for every $x \in V(G), G-x$ has a k-factor.

Lu , Wang and Bai generalized Theorem C.
Theorem D (Lu, Wang and Bai [5]) Let r and ℓ be an even integer with $4 \leq \ell \leq r$, and let k be an integer such that $2 \leq k \leq \frac{r}{2}$, and let G be an r-regular, ℓ-edgeconnected graph of odd order. Then for every $x \in V(G), G-x$ has a k-factor in the following cases:

1. k is even, and $\ell \geq 2 k$;
2. k is odd, and $\ell \geq 2 k$ and $\ell>\frac{r}{2}$;

Let r be an even integer and k be an integer. In [4], if $k=1$ or $k=\frac{r}{2}$, then Katerinis showed that the condition of Theorem C is the best possible. In [5], Lu, Wang and Bai showed that the condition of Theorem D is the best possible. Now, we consider other cases. If k is odd and $1<k<r$, then the condition of r-edge-connected can be substituted by $\max \left\{2 k, \frac{r}{2}+1\right\}$-edge-connected. Moreover, we consider the case that $|V(G)|$ is even. If k is odd, then $G-x$ clearly has no k-factor for every $x \in$ $V(G)$. Thus, we consider the case that k is even. We now define the graph H_{F} as
the following. First, we consider a bipartite graph F with bipartition (A, B). Let H_{F} be a graph obtained from F, adding edges subject to $|E(F[A])| \leq \frac{k}{2}-1$ and $|E(F[B])| \leq \frac{k}{2}-1$. Then, if r, k are even integers with $2 \leq k \leq \frac{r}{2}$ and $G \neq H_{F}$ is an r-regular, $2 k$-edge-connected, then $G-x$ has a k-factor for every $x \in V(G)$. Furthermore, if r is odd and k is even with $2 \leq k \leq \frac{r}{2}$, and $G \neq H_{F}$ is an r-regular, ($2 k-1$)-edge-connected, then we can conclude that the graph $G-x$ has a k-factor for every $x \in V(G)$. We summarize above results as the remark following.

Remark 1 Let r, ℓ and k be integers with $2 \leq k \leq \frac{r}{2}$ and let G be an r-regular, ℓ-edge-connected graph. Then, for every $x \in V(G), G-x$ has a k-factor in the following cases:

1. $|V(G)|$ is odd, and k and r are even, and $\ell=2 k$;
2. $|V(G)|$ and $k \neq \frac{r}{2}$ are odd, and r is even, and $\ell=\max \left\{2 k, \frac{r}{2}+1\right\}$;
3. $G \neq H_{F}$ and $|V(G)|, k$ and r are even, and $\ell=2 k$;
4. $G \neq H_{F}$ and $|V(G)|$ and k are even, and r is odd, and $\ell=2 k-1$.

We show that we cannot replace the edge-connectivity of Remark 1 with weaker condition. Let r, ℓ and k be as stated in the hypotheses of Remark 1. We consider r-regular and ℓ-edge-connected bipartite graph H_{1} with bipartition (A, B) and $|A|=$ $|B|$. Let G_{1} be a graph obtained from H_{1} after a deletion of $\left\lceil\frac{\ell}{2}-1\right\rceil$ independent edges such that G_{1} remains ℓ-edge-connected. Suppose H_{2} is an r-regular, ℓ-edgeconnected graph. Let also G_{2} be a graph obtained from H_{2} after a deletion of $\left\lceil\frac{\ell}{2}-1\right\rceil$ independent edges such that G_{2} remains ℓ-edge-connected. We form G as follows. We add $2\left\lceil\frac{\ell}{2}-1\right\rceil$ independent edges having one end-vertex in G_{1} that have degree $r-1$ and the another in G_{2} that have degree $r-1$. Such a graph G is r-regular, and $(\ell-1)$ or $(\ell-2)$-edge-connected. Now suppose that $x \in A$. Let $S=A$ and $T=B$. If $\ell=2 k$ or $2 k-1$, then we have $\delta_{G-x}(S-x, T ; k)=-k+\left(\left\lceil\frac{\ell}{2}-1\right\rceil\right)-1 \leq-2$ (see the following for the definition of $\delta_{G}(S, T ; k)$). Thus, G has no k-factor.

Next, we consider the case with $\ell=\frac{r}{2}+1$. Let also r, ℓ and k be as the above and we consider r-regular and ℓ-edge-connected graph H_{3} of odd order. Assume that $\frac{r}{2}$ is even, and G_{3} is a graph obtained from H_{3} after a deletion of $\frac{r}{4}$ independent edges such that G_{3} remains ℓ-edge-connected. We form G as follows. We start from $2 G_{3}$. We add vertex x, and r edges joining x to each vertex $v \in V\left(2 G_{3}\right)$ with $\operatorname{deg}_{2 G_{3}}(v)=r-1$. The resulting graph G is r-regular, $\frac{r}{2}$-edge-connected and has an odd number of vertices. On the other hand, when $\frac{r}{2}$ is odd, G_{3}^{\prime} also is a graph obtained from H_{3} after a deletion of $\left\lfloor\frac{r}{4}\right\rfloor$ independent edges, such that G_{3}^{\prime} remains ℓ-edge-connected. We form G^{\prime} as follows. We start from $2 G_{3}^{\prime}$. We add vertex x^{\prime} with one loop and $r-2$ edges joining x^{\prime} to every vertex $v \in V\left(2 G_{3}^{\prime}\right)$ with $\operatorname{deg}_{2 G_{3}^{\prime}}(v)=r-1$. The resulting graph G^{\prime} is r-regular, $\left(\frac{r}{2}-1\right)$-edge-connected and has an odd number of vertices. First, we consider G. Let $S=\{x\}$ and $T=\emptyset$. Now $k\left|V\left(G_{3}\right)\right|+e_{G}\left(V\left(G_{3}\right), T\right)$ is an odd number since $\left|V\left(G_{3}\right)\right|$ and k are odd and $e_{G}\left(V\left(G_{3}\right), T\right)=0$. Thus $h_{G-x}(S-x, T ; k)=2$ (see also the following for the definition of $h_{G}(S, T ; k)$). Hence $\delta_{G-x}(S-x, T ; k)=-2$. Therefore $G-x$ has no k-factor. Similarly, $G^{\prime}-x^{\prime}$ has no k-factor.

The above examples show that the assumption of edge-connectivity in Remark 1 is sharp. Let us focus our attention that the result "for each $x \in V(G)$ " of statements is replaced by "for some $x \in V(G)$ ". What condition can be followed under the weakened result? Now we will present our theorems.

Theorem 1 Let r be an integer such that $r \geq 4$, let G be an r-regular, 2-edgeconnected graph. If G is not bipartite, then there is some $x \in V(G)$ such that $G-x$ has a 2-factor.

Moreover, if $k \geq 4$, then following result holds.
Theorem 2 Letr and k be even integers such that $4 \leq k \leq \frac{r}{2}$, and let ℓ be a minimum integer such that $\ell \geq \frac{r}{r-2 k+4}$, and let G be an r-regular, 2ℓ-edge-connected graph of odd order. Then, there is some $x \in V(G)$ such that $G-x$ has a k-factor. In particular, if $r \geq 4 k-8$, then we can replace 2ℓ-edge-connected with 4 -edge-connected.

Furthermore, we shall prove next theorem.
Theorem 3 Let r be an integer and k be an even integer such that $2 \leq k \leq \frac{r}{2}$, and let G be an r-regular, 2-edge-connected graph having a 2-edge cut. If either $|V(G)|$ is odd, or $k=2$ and G is not bipartite, then there is some $x \in V(G)$ such that $G-x$ has a k-factor.

2 Prepare for Proofs

In order to prove Theorems 1, 2 and Remark 1, we use the following Tutte's Theorem. Let G be a graph. For disjoint subsets S and T of $V(G)$, we define $\delta_{G}(S, T ; k)$ by

$$
\delta_{G}(S, T ; k)=k|S|-\sum_{y \in T}\left(k-\operatorname{deg}_{G}(y)\right)-e_{G}(S, T)-h_{G}(S, T ; k),
$$

where $h_{G}(S, T ; k)$ is the number of components C of $G-(S \cup T)$ such that $k|V(C)|+e_{G}(V(C), T)$ is odd. These components are called odd components.

Theorem E (Tutte [6]) Let G be a graph, and let k be a positive integer. Then

1. $\delta_{G}(S, T ; k) \equiv k|V(G)|(\bmod 2)$ for each pair of disjoint subsets S and T of $V(G)$, and
2. G has a k-factor if and only if $\delta_{G}(S, T ; k) \geq 0$ for each pair of disjoint subsets S and T of $V(G)$.

Proposition 1 Let r and k be non-negative integers, let G be an r-regular graph and let S and T be disjoint subsets of $V(G)$. Define $U=V(G)-(S \cup T), \theta=\frac{k}{r}$,

$$
\begin{aligned}
& m_{S}=2 e_{G}(S, S)+e_{G}(S, U) \text { and } \\
& m_{T}=2 e_{G}(T, T)+e_{G}(T, U)
\end{aligned}
$$

Then,

$$
\delta_{G}(S, T ; k)=\theta m_{S}+(1-\theta) m_{T}-h_{G}(S, T ; k) .
$$

Proof

$$
\begin{aligned}
\delta_{G}(S, T ; k) & =k|S|-\theta e_{G}(S, T)+(r-k)|T|-(1-\theta) e_{G}(S, T)-h_{G}(S, T ; k) \\
& =\theta\left(r|S|-e_{G}(S, T)\right)+(1-\theta)\left(r|T|-e_{G}(S, T)\right)-h_{G}(S, T ; k) \\
& =\theta m_{S}+(1-\theta) m_{T}-h_{G}(S, T ; k) .
\end{aligned}
$$

Katerinis dealt with the idea of calculation of following Lemma 1 in [4]. Now, we recalculate for our proofs.

Lemma 1 Let r, ℓ and k be integers and let G be an r-regular, ℓ-edge-connected graph. Suppose $G-x$ has no k-factor for some $x \in V(G)$. Then, we have following results such that $S, T \subseteq V(G)$ with $S \neq T$.

$$
(r-2 k)(|S|-|T|) \geq \ell \omega(G[U])-2 h_{G-x}(S-x, T ; k)-2 k+4+2 e_{G}(S, S)+2 e_{G}(T, T)
$$

Proof Since $G-x$ has no k-factor, by Theorem E, there are $S^{\prime}, T \subseteq V(G)-x$ with $S^{\prime} \cap T=\emptyset$ such that $\delta_{G-x}\left(S^{\prime}, T\right) \leq-2$. Let $S=S^{\prime} \cup\{x\}$ and $U=V(G)-(S \cup$ $T)$. Then, we have

$$
\delta_{G-x}(S-x, T ; k)=k|S|-k-\sum_{y \in T}\left(k-\operatorname{deg}_{G}(y)\right)-e_{G}(S, T)-h_{G-x}(S-x, T ; k) \leq-2 .
$$

Then, we have

$$
\begin{equation*}
k|S|-k|T|+\sum_{y \in T} \operatorname{deg}_{G-S}(y)-h_{G-x}(S-x, T ; k) \leq k-2 . \tag{1}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\sum_{y \in T} \operatorname{deg}_{G-S}(y) \leq k-2+h_{G-x}(S-x, T ; k)-k|S|+k|T| . \tag{2}
\end{equation*}
$$

On the other hand, since G is r-regular,

$$
\begin{equation*}
r|S|=2 e_{G}(S, S)+e_{G}(S, T)+e_{G}(S, U) \tag{3}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
r|T|=2 e_{G}(T, T)+e_{G}(S, T)+e_{G}(T, U) . \tag{4}
\end{equation*}
$$

By (3) and (4), we have

$$
\begin{aligned}
r|S| & =2 e_{G}(S, S)+r|T|-2 e_{G}(T, T)-e_{G}(T, U)+e_{G}(S, U) \\
& =r|T|-2 e_{G}(T, T)-2 e_{G}(T, U)+e_{G}(T, U)+e_{G}(S, U)+2 e_{G}(S, S) .(5)
\end{aligned}
$$

Since G is ℓ-edge-connected,

$$
\begin{equation*}
e_{G}(T, U)+e_{G}(S, U) \geq \ell \omega(G[U]) \tag{6}
\end{equation*}
$$

Combining (5) with (6),

$$
\begin{align*}
r|S| & \geq r|T|-2 e_{G}(T, T)-2 e_{G}(T, U)+\ell \omega(G[U])+2 e_{G}(S, S) \\
& =r|T|-4 e_{G}(T, T)-2 e_{G}(T, U)+\ell \omega(G[U])+2 e_{G}(S, S)+2 e_{G}(T, T) \\
& =r|T|-2 \sum_{y \in T}\left(\operatorname{deg}_{G-S}(x)\right)+\ell \omega(G[U])+2 e_{G}(S, S)+2 e_{G}(T, T) \tag{7}
\end{align*}
$$

Now using (2), (7) implies,

$$
\begin{aligned}
r|S| \geq & r|T|-2\left(k-2+h_{G-x}(S-x, T ; k)-k|S|+k|T|\right)+\ell \omega(G[U]) \\
& +2 e_{G}(S, S)+2 e_{G}(T, T) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
(r-2 k)(|S|-|T|) \geq & \ell \omega(G[U])-2 h_{G-x}(S-x, T ; k)-2 k+4 \\
& +2 e_{G}(S, S)+2 e_{G}(T, T) .
\end{aligned}
$$

We use the following Kano's theorem to prove Theorem 3. We remark that Kano actually proved a stronger statement than Theorem F.

Theorem \mathbf{F} (Kano [2]) Let r be an integer, and let k be an even integer such that $2 \leq k \leq \frac{r}{2}$, and let G be an r-regular, 2-edge-connected graph. Then, G has a k factor containing e and another k-factor avoiding e for every edge $e \in E(G)$.

2.1 Proof of Theorem 3

Let r and k be as stated in the hypotheses of Theorem 3. Suppose the Theorem is false and choose a counterexample G such that $|V(G)|$ is as small as possible. Since G has a 2-edge cut, there are edges $f_{1}, f_{2} \in E(G)$ such that $G-f_{1}-f_{2}$ has two components C_{1}, C_{2}. Define the graph $D_{i}=C_{i} \cup\left\{e_{i}\right\}$, where e_{i} is edge such that D_{i} becomes r-regular with $1 \leq i \leq 2$. Note that D_{i} is a 2-edge-connected graph. We consider two cases.
Case 1. $|V(G)|$ is odd.

Then since either $\left|V\left(D_{1}\right)\right|$ is odd or $\left|V\left(D_{2}\right)\right|$ is odd, without loss of generality we may assume that $\left|V\left(D_{1}\right)\right|$ is odd. By the induction hypothesis, there is a vertex $x \in V\left(D_{1}\right)$ such that $D_{1}-x$ has a k-factor F_{1} since $\left|V\left(D_{1}\right)\right|$ is odd. If $F_{1} \cap\left\{e_{1}\right\}=\emptyset$, we obtain a k-factor F_{2} from D_{2} such that $F_{2} \cap\left\{e_{2}\right\}=\emptyset$ by Theorem F. Thus, since $F_{1} \cup F_{2}$ is a k-factor in G, this is a contradiction. If $F_{1} \cap\left\{e_{1}\right\} \neq \emptyset$, we obtain a k factor F_{2} from D_{2} such that $F_{2} \cap\left\{e_{2}\right\} \neq \emptyset$ by Theorem F. Thus, since $F_{1} \cup F_{2}-$ $\left\{e_{1}, e_{2}\right\} \cup\left\{f_{1}, f_{2}\right\}$ is a k-factor in G, this is a contradiction.

Case 2. $|V(G)|$ is even.
Then, we have $k=2$. If $\left|V\left(D_{i}\right)\right| \equiv 1(\bmod 2)$ with $i \in\{1,2\}$, then we can conclude that $G-x$ has a 2 -factor as in the case 1 since there is a vertex x such that $D_{i}-x$ has a 2-factor by the induction hypothesis. Therefore, this is a contradiction. Thus we may assume $\left|V\left(D_{i}\right)\right| \equiv 0(\bmod 2)$ with $i \in\{1,2\}$. If both of D_{1} and D_{2} are bipartite, G becomes a bipartite graph and this is a contradiction. Thus we may assume that D_{1} is not bipartite. Hence, as above, we can conclude that $G-x$ has a 2 -factor, contradicting our assumption that $G-x$ has no 2-factor.

3 Proof of Theorem 2

Suppose G is a graph of counterexample. Let S and T be disjoint subsets of $V(G)$. Define $U=V(G)-(S \cup T), \delta_{G}(S, T)=\delta_{G}(S, T ; k)$ and $h_{G}(S, T)=h_{G}(S, T ; k)$. First, we prove some basic properties of G.

Claim 1 For every $x \in V(G)$, there are some disjoint subsets S and T of $V(G)$ with $S \ni x$ such that $\delta_{G}(S, T) \leq k-2$.

Proof Since $G-x$ has no k-factor, by Theorem E, there are disjoint subsets $S^{\prime}, T \subset$ $V(G)-\{x\}$ such that $\delta_{G-x}\left(S^{\prime}, T\right) \leq-2$. Let $S=S^{\prime} \cup\{x\}$. Then, $\delta_{G}(S, T) \leq$ $k-2$.

Claim $2|S|=|T|$.
Proof Assume $|S|>|T|$. Since $m_{S}-m_{T}=r(|S|-|T|)$ by Proposition 1, we have $m_{S} \geq m_{T}+r$. By the definition of the odd component and k is even, $m_{T} \geq h_{G}(S, T)$. Therefore,

$$
k-2 \geq \delta_{G}(S, T) \geq \theta\left(m_{T}+r\right)+(1-\theta) m_{T}-h_{G}(S, T) \geq \theta r=k .
$$

This is a contradiction.
Assume $|S|<|T|$. Then, $m_{T} \geq m_{S}+r$. For every component C of U, if e_{G} $(V(C), T)$ is odd, then $e_{G}(V(C), S)$ is odd since r is even. Thus, $m_{S} \geq h_{G}(S, T)$ by the definition of the odd component and k is even. Hence,

$$
k-2 \geq h_{G}(S, T) \geq \theta m_{S}+(1-\theta)\left(m_{S}+r\right)-h_{G}(S, T) \geq r-\theta r=r-k .
$$

Therefore, $k-1 \geq \frac{r}{2}$. This contradicts $\frac{r}{2} \geq k$.
By Claim 2, we have $m_{S}=m_{T}$ and $\delta_{G}(S, T)=m_{T}-h_{G}(S, T)$. Since G is a 2ℓ-edge-connected, $m_{S}+m_{T}=2 m_{T} \geq 2 \ell h_{G}(S, T)$. Thus, $\frac{m_{T}}{\ell} \geq h_{G}(S, T)$. Then by Claim 1,

$$
k-2 \geq \delta_{G}(S, T) \geq m_{T}-\frac{m_{T}}{\ell} \geq m_{T}\left(1-\frac{r-2 k+4}{r}\right)=\frac{2(k-2)}{r} m_{T}
$$

Therefore, we have $m_{T} \leq \frac{r}{2}$.
Define a pair $\{S, T\}$ such that $S \cap T=\emptyset,|S|=|T|$ and $m_{S}<\frac{r}{2}$. We call these pairs Tutte pair of 1st kind. Define a pair $\{S, T\}$ such that $S \cap T=\emptyset,|S|=|T|$, $m_{S}=m_{T}=\frac{r}{2}$, and $G-(S \cup T)$ consists of h components and these h components are odd components. We call these pairs Tutte pair of $2 n d$ kind. Then, $\ell=\frac{r}{r-2 k+4}, h=$ $\frac{r}{2}-k+2, E(G[S])=\emptyset$ and $E(G[T])=\emptyset$ hold. By Claim 1, we can select Tutte pairs $\left\{S_{1}, T_{1}\right\}, \ldots,\left\{S_{p}, T_{p}\right\}$ such that $V(G)=\bigcup_{1 \leq i \leq p}\left(S_{i} \cup T_{i}\right)$ and $\sum_{i=1}^{p}\left|S_{i} \cup T_{i}\right|$ is as small as possible. Let $\left\{S_{i}, T_{i}\right\}$ be a Tutte pair of 2 nd kind for $1 \leq i \leq q$ and $\left\{S_{i}, T_{i}\right\}$ be a Tutte pair of 1 st kind for $q+1 \leq i \leq p$. For $1 \leq i, j \leq p$, suppose

$$
\begin{aligned}
S_{i}^{\prime} & =S_{i} \cap U_{j} \\
T_{i}^{\prime} & =T_{i} \cap U_{j} \\
S_{j}^{\prime} & =S_{j} \cap U_{i} \\
T_{j}^{\prime} & =T_{j} \cap U_{i}, \\
U_{i}^{\prime} & =V(G)-\left(S_{i}^{\prime} \cup T_{i}^{\prime}\right) \text { and } \\
U_{j}^{\prime} & =V(G)-\left(S_{j}^{\prime} \cup T_{j}^{\prime}\right)
\end{aligned}
$$

Now, we prove following claims.
Claim 3 If $i \neq j$ and $\left(S_{i} \cup T_{i}\right) \cap\left(S_{j} \cup T_{j}\right) \neq \emptyset$, then $1 \leq i, j \leq q$.
Proof Assume the contrary. Without loss of generality, we may assume $i \geq q+1$. Then, $m_{S_{i}}<\frac{r}{2}$. Then,

$$
e_{G}\left(S_{i}^{\prime} \cup T_{i}^{\prime}, U_{i}^{\prime}\right)+e_{G}\left(S_{j}^{\prime} \cup T_{j}^{\prime}, U_{j}^{\prime}\right) \leq e_{G}\left(S_{i} \cup T_{i}, U_{i}\right)+e_{G}\left(S_{j} \cup T_{j}, U_{j}\right)
$$

On the other hand,

$$
\begin{aligned}
m_{S_{i}^{\prime}}+m_{T_{i}^{\prime}}+m_{S_{j}^{\prime}}+m_{T_{j}^{\prime}}= & e_{G}\left(S_{i}^{\prime} \cup T_{i}^{\prime}, U_{i}^{\prime}\right)+e_{G}\left(S_{j}^{\prime} \cup T_{j}^{\prime}, U_{j}^{\prime}\right) \\
& +2\left(e_{G}\left(S_{i}^{\prime}, S_{i}^{\prime}\right)+e_{G}\left(T_{i}^{\prime}, T_{i}^{\prime}\right)+e_{G}\left(S_{j}^{\prime}, S_{j}^{\prime}\right)+e_{G}\left(T_{j}^{\prime}, T_{j}^{\prime}\right)\right) \\
\leq & e_{G}\left(S_{i} \cup T_{i}, U_{i}\right)+e_{G}\left(S_{j} \cup T_{j}, U_{j}\right) \\
& +2\left(e_{G}\left(S_{i}, S_{i}\right)+e_{G}\left(T_{i}, T_{i}\right)+e_{G}\left(S_{j}, S_{j}\right)+e_{G}\left(T_{j}, T_{j}\right)\right) \\
= & m_{S_{i}}+m_{T_{i}}+m_{S_{j}}+m_{T_{j}} \\
< & 2 r .
\end{aligned}
$$

We may assume $m_{S_{i}^{\prime}}+m_{T_{i}^{\prime}}<r$. Then, $\left|S_{i}^{\prime}\right|=\left|T_{i}^{\prime}\right|$ by $m_{S_{i}^{\prime}}-m_{T_{i p}^{\prime}}=r\left(\left|S_{i}^{\prime}\right|-\left|T_{i}^{\prime}\right|\right)$. Thus, $\left\{S_{i}^{\prime}, T_{i}^{\prime}\right\}$ is a Tutte pair. This contradicts minimality of $\sum_{i=1}^{p}\left|S_{i} \cup T_{i}\right|$ if we replace $\left\{S_{i}, T_{i}\right\}$ with $\left\{S_{i}^{\prime}, T_{i}^{\prime}\right\}$.

Claim $4\left|\left(S_{i} \cup T_{i}\right) \cap\left(S_{j} \cup T_{j}\right)\right| \equiv 0(\bmod 2)$ for $1 \leq i, j \leq p$.
Proof First we note that $r=2 \ell h$ since $\left\{S_{i}, T_{i}\right\}$ is a Tutte pair of 2 nd kind with $1 \leq i \leq p$. Suppose $\left|\left(S_{i} \cup T_{i}\right) \cap\left(S_{j} \cup T_{j}\right)\right| \equiv 1(\bmod 2)$ for $1 \leq i, j \leq p$ and $i \neq$ j. Without loss of generality, we may assume $i=1$ and $j=2$. Suppose that $C_{1}, C_{2}, \ldots, C_{h}$ are odd components of $G-\left(S_{1} \cup T_{1}\right)$ and that $D_{1}, D_{2}, \ldots, D_{h}$ are odd components of $G-\left(S_{2} \cup T_{2}\right)$. Note that $h \geq 2$. Thus we may assume $\left|\left(S_{1} \cup T_{1}\right) \cap V\left(D_{1}\right)\right| \equiv 1(\bmod 2)$ and $\left|\left(S_{2} \cup T_{2}\right) \cap V\left(C_{1}\right)\right| \equiv 1(\bmod 2)$. Then, by the proof of Claim 3, we obtain

$$
m_{S_{1}^{\prime}}+m_{T_{1}^{\prime}}=r \text { and } \mathrm{m}_{\mathrm{S}_{2}^{\prime}}+\mathrm{m}_{\mathrm{T}_{2}^{\prime}}=\mathrm{r} .
$$

On the other hand, since $\left|\left(S_{1} \cup T_{1}\right) \cap V\left(D_{1}\right)\right|$ is odd, $m_{S_{1} \cap V\left(D_{1}\right)}+m_{T_{1} \cap V\left(D_{1}\right)} \geq r$. Then, for $2 \leq a \leq h$

$$
e_{G}\left(\left(S_{1} \cup T_{1}\right) \cap V\left(D_{a}\right), V(G)-\left(\left(S_{1} \cup T_{1}\right) \cap V\left(D_{a}\right)\right)\right)=0
$$

since $e_{G}\left(\left(S_{1} \cup T_{1}\right) \cap V\left(D_{1}\right),\left(S_{1} \cup T_{1}\right) \cap V\left(D_{a}\right)\right)=0$. Thus, $\left(S_{1} \cup T_{1}\right) \cap V\left(D_{a}\right)=$ \emptyset with $2 \leq a \leq h$. Similarly, $\left(S_{2} \cup T_{2}\right) \cap V\left(C_{a}\right)=\emptyset$ with $2 \leq a \leq h$. Note that

$$
e_{G}\left(\left(S_{1} \cup T_{1}\right) \cap\left(S_{2} \cup T_{2}\right), V\left(C_{a}\right) \cap V\left(D_{b}\right)\right)=0
$$

for $1 \leq a, b \leq h$ since $m_{S_{1}}+m_{T_{1}}=r, m_{S_{2}}+m_{T_{2}}=r, m_{S_{1} \cap V\left(D_{1}\right)}+m_{T_{1} \cap V\left(D_{1}\right)}=$ r and $m_{S_{1} \cap V\left(C_{1}\right)}+m_{T_{1} \cap V\left(C_{1}\right)}=r$. Thus, for any component C_{a} with $2 \leq a \leq h$, $e_{G}\left(V\left(C_{a}\right), S_{1} \cup T_{1}\right)=e_{G}\left(V\left(C_{a}\right),\left(S_{1} \cup T_{1}\right) \cap V\left(D_{1}\right)\right)=2 \ell$. However C_{a} joins either S_{1} or T_{1} for any component C_{a} with $2 \leq a \leq h$ since $\left|\left(S_{1} \cup T_{1}\right) \cap V\left(D_{1}\right)\right|$ is odd. This contradicts that C_{a} is a odd component with $2 \leq a \leq h$ since $2 \ell h=r$.

From now on, we use definition of $X\left[i_{j}\right]=X_{i_{j}}$ and $X\left[i^{j}\right]=X_{i^{j}}$. We consider $q^{\prime} \leq q$ such that $i_{1}, i_{2}, \ldots, i_{q^{\prime}}$ is as small as possible and subject to $\left|\left(S\left[i_{1}\right] \cup T\left[i_{1}\right]\right) \cap\left(S\left[i_{2}\right] \cup T\left[i_{2}\right]\right) \cap, \ldots, \cap\left(S\left[i_{q^{\prime}}\right] \cup T\left[i_{q^{\prime}}\right]\right)\right| \equiv 1(\bmod 2)$.

Define $j_{a} \in\{0,1\}$ and

$$
X\left[j_{q^{\prime}} j_{q^{\prime}-1} \ldots j_{1}\right]=\bigcap_{j_{a}=1}\left(S\left[i_{a}\right] \cup T\left[i_{a}\right]\right) \bigcap_{j_{a}=0} U\left[i_{a}\right]
$$

with $1 \leq a \leq q^{\prime}$. For example, when $q^{\prime}=4, j_{4}=1, j_{3}=1, j_{2}=0$ and $j_{1}=1$, we have

$$
X_{1101}=\left(S\left[i_{4}\right] \cup T\left[i_{4}\right]\right) \cap\left(S\left[i_{3}\right] \cup T\left[i_{3}\right]\right) \cap\left(S\left[i_{1}\right] \cup T\left[i_{1}\right]\right) \cap U\left[i_{2}\right] .
$$

Since $j_{q^{\prime}} j_{q^{\prime}-1} \ldots j_{1}$ is a sequence of 0 and 1 , we can consider this sequence as a binary number. Then, we reconstruct decimal b from binary number $j_{q^{\prime}} j_{q^{\prime}-1} \ldots j_{1}$ and we define

$$
Y_{b}=X\left[j_{q^{\prime}} j_{q^{\prime}-1} \ldots j_{1}\right]
$$

for $0 \leq b \leq 2^{q^{\prime}}-1$. Note that $\left|Y\left[2^{q^{\prime}}-1\right]\right|$ is odd since $\left|\left(S\left[i_{1}\right] \cup T\left[i_{1}\right]\right) \cap\left(S\left[i_{2}\right] \cup T\left[i_{2}\right]\right) \cap, \ldots, \cap\left(S\left[i_{q^{\prime}}\right] \cup T\left[i_{q^{\prime}}\right]\right)\right| \equiv 1(\bmod 2)$. Now we have $Y\left[2^{a}\right]=\left(S\left[i_{a+1}\right] \cup T\left[i_{a+1}\right]\right) \bigcap_{b \neq a} U\left[i_{b+1}\right]$ with $0 \leq a, b \leq q^{\prime}-1$. Then, since $\left|Y\left[2^{a}\right]\right|$ is odd by Claim $4,\left|Y\left[2^{q^{\prime}}-1\right]\right| \equiv 1(\bmod 2)$ and the minimality of q^{\prime}, we have

$$
\begin{equation*}
\sum_{0 \leq a \leq q^{\prime}-1} e_{G}\left(Y\left[2^{a}\right], V(G)-Y\left[2^{a}\right]\right)=r q^{\prime} \tag{8}
\end{equation*}
$$

On the other hand, as there are h odd components for $\left\{S\left[i_{a}\right], T\left[i_{a}\right]\right\}$ with $1 \leq a \leq q^{\prime}$, and $\left\{S\left[i_{a}\right], T\left[i_{a}\right]\right\}$ is a Tutte pair of 2 nd kind, and G is 2ℓ-edge-connected, then certainly

$$
2 \ell h q^{\prime}=\sum_{1 \leq a \leq q^{\prime}} e_{G}\left(S\left[i_{a}\right] \cup T\left[i_{a}\right], V(G)-\left(S\left[i_{a}\right] \cup T\left[i_{a}\right]\right)\right)
$$

Thus, by (8) and the definition of Y_{b} we have

$$
\begin{aligned}
2 \ell h q^{\prime} & =\sum_{1 \leq a \leq q^{\prime}} e_{G}\left(S\left[i_{a}\right] \cup T\left[i_{a}\right], V(G)-\left(S\left[i_{a}\right] \cup T\left[i_{a}\right]\right)\right) \\
& \geq \sum_{0 \leq a \leq q^{\prime}-1} e_{G}\left(Y\left[2^{a}\right], V(G)-Y\left[2^{a}\right]\right) \\
& =r q^{\prime}
\end{aligned}
$$

Now, since $2 \ell h=r$, we have

$$
\begin{align*}
\sum_{1 \leq a \leq q^{\prime}} e_{G}\left(S\left[i_{a}\right] \cup T\left[i_{a}\right], V(G)-\right. & \left.\left(S\left[i_{a}\right] \cup T\left[i_{a}\right]\right)\right) \\
& =\sum_{0 \leq a \leq q^{\prime}-1} e_{G}\left(Y\left[2^{a}\right], V(G)-Y\left[2^{a}\right]\right) \tag{9}
\end{align*}
$$

We rewrite both sides of (9) by using summation of $e_{G}\left(Y_{i}, Y_{j}\right)$. Then, we have

$$
\sum_{1 \leq a \leq q^{\prime}} e_{G}\left(S\left[i_{a}\right] \cup T\left[i_{a}\right], V(G)-\left(S\left[i_{a}\right] \cup T\left[i_{a}\right]\right)\right)=\sum_{0 \leq i<j \leq 2^{q^{\prime}}-1} b_{i j} e_{G}\left(Y_{i}, Y_{j}\right)
$$

and

$$
\sum_{0 \leq a \leq q^{\prime}-1} e_{G}\left(Y\left[2^{a}\right], V(G)-Y\left[2^{a}\right]\right)=\sum_{0 \leq i<j \leq 2^{q^{\prime}}-1} c_{i j} e_{G}\left(Y_{i}, Y_{j}\right),
$$

Then, $b_{i j} \geq c_{i j}$ for $0 \leq i<j \leq 2^{q^{\prime}}$. Moreover, $b_{0 j}>c_{0 j}$ for $1 \leq j \leq 2^{q^{\prime}}$. Thus, $e_{G}\left(Y\left[2^{q^{\prime}}-1\right], V(G)-Y\left[2^{q^{\prime}}-1\right]\right)=0$. Therefore, $Y\left[2^{q^{\prime}}-1\right]=\emptyset$. However, this contradicts $\left|Y\left[2^{q^{\prime}}-1\right]\right|$ is odd.

4 Proof of Remark 1 and Theorem 1

Proof of Remark 1 Let r, k, ℓ and G be as stated in the hypotheses of Remark 1. Assume on the contrary that $G-x$ has no k-factor for some $x \in V(G)$. Then by Theorem E and Lemma 1, there are some disjoint subsets $S, T \subseteq V(G)$ such that

$$
\begin{align*}
(r-2 k)(|S|-|T|) \geq & \ell \omega(G[U])-2 h_{G-x}(S-x, T ; k)-2 k+4 \\
& +2 e_{G}(S, S)+2 e_{G}(T, T) . \tag{10}
\end{align*}
$$

We consider the cases $\omega(G[U]) \geq 1$ and $\omega(G[U])=0$ separately.
Case 1. $\omega(G[U]) \geq 1$.
Without loss of generality, we may assume $\ell \geq 2 k-1 \geq 1$. Then, by (10),

$$
(r-2 k)(|S|-|T|) \geq 1
$$

Thus, we have

$$
\begin{equation*}
|S|>|T| . \tag{11}
\end{equation*}
$$

If $h_{G-x}(S-x, T ; k)=0$, by (1) and (11),

$$
1 \leq|S|-|T| \leq 1-\frac{2}{k}
$$

This is a contradiction. Thus, we may assume $h_{G-x}(S-x, T ; k) \geq 1$. Now, we consider two cases.

Case 1-1. k is even.
Then by the definition of the odd component, $\sum_{x \in T} \operatorname{deg}_{G-S} \geq h_{G-x}(S-x, T ; k)$. Hence (1) implies $|T| \geq|S|$. However, this contradict (11).

Case 1-2. k is odd.
We now consider the case of Remark 1 (2). Let $h=h_{G-x}(S-x, T ; k)$. By (1) and (11),

$$
\begin{equation*}
1 \leq|S|-|T| \leq 1+\frac{h-2}{k}<h \tag{12}
\end{equation*}
$$

since if $1+\frac{h-2}{k} \geq h$, then we have $1>\frac{k-2}{k-1} \geq h$ and this contradicts $h \geq 1$. Note that (12) implies $h \geq 2$.

By (10) and (12),

$$
\begin{align*}
(r-2 k)\left(1+\frac{h-2}{k}\right) & \geq(r-2 k)(|S|-|T|) \geq(\ell-2) h-2 k+4 \\
(r-2 k)(k+h-2) & \geq(\ell-2) k h-2 k^{2}+4 k \\
r k+r h-2 r & \geq \ell k h \\
r(k+h-2) & \geq \ell k h \tag{13}
\end{align*}
$$

Since $h \geq 2, k+h-2 \geq 0$. Assume $\ell=2 k \geq \frac{r}{2}+1$. Then, we have $4 k-2 \geq r$. Thus, by (13), we have

$$
\begin{aligned}
(4 k-2)(k+h-2)-2 k^{2} h & \geq 0 \\
4 k^{2}+4 k h-10 k-2 h+4-2 k^{2} h & \geq 0 \\
2 h\left(2 k-1-k^{2}\right)+4 k^{2}-10 k+4 & \geq 0
\end{aligned}
$$

Now since $k \geq 3,2 k-1-k^{2} \leq 0$. Recall that $h \geq 2$. Hence, we have

$$
4\left(2 k-1-k^{2}\right)+4 k^{2}-10 k+4=-2 k \geq 0
$$

This is a contradiction.
Assume $\ell=\frac{r}{2}+1$. From (13),

$$
\begin{gathered}
r(k+h-2) \geq\left(\frac{r}{2}+1\right) k h \\
2 r(k+h-2) \geq(r+2) k h \\
2 r k+2 r h-4 r-r k h-2 k h \geq 0 \\
k(2 r-r h-2 h)+2 r h-4 r \geq 0 .
\end{gathered}
$$

Since $h \geq 2,2 r-r h-2 h<0$. Recall that $k \geq 3$. Hence, we have

$$
\begin{gathered}
3(2 r-r h-2 h)+2 r h-4 r \geq 0 \\
6 r-3 r h-6 h)+2 r h-4 r \geq 0 \\
2 r-r h-6 h \geq 0 .
\end{gathered}
$$

However, since $h \geq 2,2 r-r h-6 h<0$ and this is a contradiction.
Case 2. $\omega(G[U])=0$.
By the definition of $h_{G}(S, T ; r), \omega(G[U]) \geq h_{G}(S, T ; r)$, i.e. $h_{G}(S, T ; r)=0$. Since G is r-regular, by Theorem E,

$$
\begin{equation*}
\delta_{G}(S, T ; r)=r|S|-\sum_{y \in T}\left(r-\operatorname{deg}_{G}(y)\right)-e_{G}(S, T) \geq 0 \tag{14}
\end{equation*}
$$

Subtracting (1) from (14), we have

$$
\begin{equation*}
(r-k)(|S|-|T|)+k \geq 2 \tag{15}
\end{equation*}
$$

Thus, $|S| \geq|T|$. We now consider two cases.
Case 2-1. $|V(G)|$ is odd.
Then, we obtain $|S|>|T|$. However, by (1), we have

$$
\sum_{y \in T} \operatorname{deg}_{G-S}(y) \leq-2
$$

This is a contradiction.
Case 2-2. $|V(G)|$ is even.
We may assume $|S|=|T|$. Then by (1),

$$
\sum_{y \in T} \operatorname{deg}_{G-S}(y)=2 e_{G}(T, T) \leq k-2
$$

Since $e_{G}(S, S)=e_{G}(T, T)$ by $|S|=|T|$ and $\omega(G[U])=0$, we have

$$
2 e_{G}(S, S) \leq k-2
$$

Thus, G becomes H_{F}. This is a contradiction.
Proof of Theorem 1 Choose a counterexample G. Let $h_{\text {even }}=h_{G}(S, T ; r)$ if r is even and $h_{\text {odd }}=h_{G}(S, T ; r)$ if r is odd. Note that $h_{\text {even }}=h_{G}(S, T ; r)=h_{G-x}(S-$ $x, T ; 2$). Now, since $k=2$ and $\ell=2$ in Lemma 1, we have

$$
\begin{align*}
(r-4)(|S|-|T|) & \geq 2 \omega(G[U])-2 h_{\text {even }}+2 e_{G}(S, S)+2 e_{G}(T, T) \\
& \geq 0 \tag{16}
\end{align*}
$$

On the other hand, from (1), we have

$$
\begin{equation*}
2 S|-2 T|+\sum_{y \in T} \operatorname{deg}_{G-S}(y)-h_{\text {even }} \leq 0 \tag{17}
\end{equation*}
$$

Then by the definition of an odd component, $\sum_{y \in T} \operatorname{deg}_{G-S}(y) \geq h_{\text {even }}$. Thus, by (17), we have

$$
\begin{equation*}
|S| \leq|T| \tag{18}
\end{equation*}
$$

Assume $r=4$. Now, since G is 4-regular, by Theorem E,

$$
\begin{equation*}
4 S|-4 T|+\sum_{y \in T} \operatorname{deg}_{G-S}(y)-h_{\text {even }} \geq 0 \tag{19}
\end{equation*}
$$

Subtracting (17) from (19),

$$
\begin{array}{r}
2 S|-2 T| \geq 0 \\
|S| \geq|T| . \tag{20}
\end{array}
$$

By (18) and (20),

$$
|S|=|T| .
$$

Assume $r \geq 5$. Then by (16) and (18),

$$
\begin{equation*}
|S|=|T| . \tag{21}
\end{equation*}
$$

Thus, we may assume $|S|=|T|$ if $r \geq 4$.
By (16) and (21),

$$
\begin{align*}
& \omega(G[U])=h_{\text {even }}, e_{G}(S, S)=e_{G}(T, T)=0, \text { and hence } \\
& \sum_{y \in T} \operatorname{deg}_{G-S}(y)=h_{\text {even }}=e_{G}(S, U)=e_{G}(T, U) . \tag{22}
\end{align*}
$$

If $\omega(G[U])=0, G$ becomes bipartite graph by (21) and (22). This contradicts that G is not bipartite. Thus we may assume $\omega(G[U]) \geq 1$. Furthermore, (22) implies $E_{G}\left(V(G)-V\left(C_{i}\right), V\left(C_{i}\right)\right)=\left\{e_{i 1}, e_{i 2}\right\}$ for every component C_{i} of $G[U]$ and $\left\{e_{i 1}, e_{i 2}\right\}$ becomes 2-edge cut. Then by Theorem 3, there is a vertex $x \in V(G)$ such that $G-x$ has a 2 -factor. This is a contradiction.

5 Sharpness

First, we show that we cannot replace the 2-edge-connected of Theorem 1 with edgeconnected. We consider a graph H such that $\operatorname{deg}_{G}\left(x_{1}\right)=r-1$ for some $x_{1} \in V(H)$ and $\operatorname{deg}_{G}(x)=r$ for every $x \in V(H)-\left\{x_{1}\right\}$. Define $W=(r-1) H$. We form G_{1} as follows. We add vertex y and join y to $(r-1)$ vertices of degree $r-1$ in W. The resulting graph G_{1} contains one vertex of degree $r-1$ and others vertices of degree r. Let G be as follows. We consider $2 G_{1}$ and join the vertex of degree $r-1$ to the vertex of degree $r-1$. Such a graph is r-regular and connected. It is easily checked that $G-x$ has no 2-factor for every $x \in G$.

Next, we show that the condition of Theorem $2,|V(G)|$ is odd, cannot be dropped. Let m, r be integers and k be an even integer such that $4 \leq k \leq \frac{r}{2}$ and $m \geq 3$. We will describe a graph G such that G is r-regular and ($2 k-2$)-edge-connected of an even order. We form G as follows. We start from a complete bipartite graph $K_{r, r}^{i}$ with bipartition $\left(A_{i}, B_{i}\right)$ where $A_{i}=\left\{a_{i 1}, a_{i 2}, \ldots, a_{i r}\right\}$ and $B_{i}=\left\{b_{i 1}, b_{i 2}, \ldots, b_{i r}\right\}$ with $1 \leq$ $i \leq m$. Now we use the definition of $a[i, j]=a_{i j}$. Remove the edges $a[i, 1] b[i, 1]$, $a[i, 2] b[i, 2], \ldots, a[i, k-1] b[i, k-1]$ from $K_{r, r}^{i}$ with $1 \leq i \leq m$. We add the edges

Fig. 1 Counterexample when $|V(G)|$ is even
$a[i, 1] a[i-1, r], a[i, 2] a[i-1, r-1], \ldots, a\left[i, \frac{k}{2}-1\right] a\left[i-1, r-\left(\frac{k}{2}-2\right)\right]$ with $2 \leq i \leq m$ and let $i-1=r$ if $i=1$. Similarly, we add the edges $b[i, 1] b[i-$ $1, r], b[i, 2] b[i-1, r-1], \ldots, b\left[i, \frac{k}{2}-1\right] b\left[i-1, r-\left(\frac{k}{2}-2\right)\right]$ with $2 \leq i \leq m$ and let $i-1=r$ if $i=1$. Moreover we add the edges $a\left[i, \frac{k}{2}\right] b\left[i-1, \frac{k}{2}\right]$ and $b\left[i, \frac{k}{2}\right] a\left[i+1, \frac{k}{2}\right]$ with $2 \leq i \leq m-1$, and $a\left[1, \frac{k}{2}\right] b\left[m, \frac{k}{2}\right], b\left[1, \frac{k}{2}\right] a\left[2, \frac{k}{2}\right]$ and $a\left[m, \frac{k}{2}\right] b\left[m-1, \frac{k}{2}\right]$. The resulting graph G is r-regular, $(2 k-2)$-edge-connected and has an even order. (Note that G is not also H_{F}, where we defined H_{F} in introduction.) We can easily check that $G-x$ has no k-factor for any $x \in G$. This graph G is shown in Fig. 1.

Finally, we present the following conjecture.
Conjecture 1 Let r and k be even integers such that $2 \leq k \leq \frac{r}{2}$, and G be an r regular, 2-edge-connected graph of odd order. Then there is some $x \in V(G)$ such that $G-x$ has a k-factor.

References

1. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications, North Holland, Amsterdam, (1976).
2. Kano, M.: Sufficient conditions for a graph to have factors, Discrete Math. 80, 159-165 (1990).
3. Katerinis, P.: Some conditions for the existence of f-factors, J. Graph Theory. 9, 513-521 (1985).
4. Katerinis, P.: Regular factors in vertex-deleted subgraphs of regular graphs, Discrete Math. 131, 357-361 (1994).
5. Lu, H., Wang W., Bai, B.: Vertex-deleted subgraphs and regular factors from regular graph, Discrete Math. 311, 2044-2048 (2011).
6. Tutte, W.T.: The factors of graphs, Canad. J. Math. 4, 314-328 (1952).

Connectivity and Extendability in Digraphs

LeRoy B. Beasley

Abstract

In this article we give several definitions of connectedness and extendability of paths and cycles in directed graphs. We define sets of digraphs by various types of connectedness or extendability and give some containments as well as give examples to show proper containment.

1 Introduction

The study of path and cycle extendability in graphs and digraphs began with articles by J. W. Moon in 1969 [13] and later by G. R. T. Hendry in 1989-1990 [8-10]. In [9] the question was asked: Is every Hamiltonian chordal graph cycle extendable? That is, given a Hamiltonian chordal graph and a cycle in that graph of length k, is there a cycle in the graph of length $k+1$ with the same incident vertex set, plus one vertex? This question was studied by several researchers and was shown to be "yes" in several subsets of Hamiltonian chordal graphs, like interval graphs [7]. However, in 2013, Lafond and Seamone [11, Theorem 2.2] showed that not all Hamiltonian chordal graphs are cycle extendable. In Sect. 3 we shall return to chordal Hamiltonian graphs and extendability. For an excellent review of pancyclicity and cycle extendability in undirected graphs see Deborah Arangno's Ph.D. thesis [2].

The situation for connectivity and extendability of directed graphs is more complex than for undirected graphs and hence we shall address directed graph connectivity and extendability after relative definitions are presented. Few articles have appeared lately about path or cycle extendability. A few exceptions are [2-5, 7, 14].

For graph theoretical background see [6] and for background on tournaments see [12].

[^18]
2 Preliminaries

The length of a directed or undirected path or cycle in a digraph or graph is the number of edges/arcs in that path or cycle. Since our graphs are loopless, there are no cycles of length one, and a path of length one is an edge or arc. Throughout we shall reserve the symbol n to represent the number of vertices in a graph or digraph and let the vertex set be $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, so given a graph $G, G=(V, E(G))$ where $E(G)$ is the edge set of G.

Definition 1 Let G be an undirected graph. If u and v are two vertices in G, then $d(u, v)$ is the length of the shortest path connecting u to v. It is called the distance from u to v.

Definition 2 Let D be a directed graph. If u and v are two vertices in D, then $d(u, v)$ is the length of the shortest directed path from u to v or from v to u. It is also called the distance from u to v.

Definition 3 A path in an undirected graph is called a Hamilton path if it is of length $n-1$, the longest possible path. In a directed graph, a Hamilton path is a directed path of length $n-1$.

Definition 4 An undirected graph is pan-connected if every two distinct vertices is connected by a path of every possible length greater than or equal to the distance between them.

3 Connectivity

One of the basic properties that a graph may or may not possess is that of being connected. For undirected graphs, we say a graph is connected if given any two vertices, there is a path between them. For directed graphs, the situation is more complex. Let \mathcal{D}_{n} denote the set of all simple, loopless digraphs on the n vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$,

There are several basic concepts of connectedness for directed graphs:
Definition 5 A directed graph in \mathcal{D}_{n} is:

1. connected if the underlying undirected graph is connected.
2. (weakly) path connected if given any two distinct vertices u and v there is a directed path from u to v, or from v to u.
3. strongly (path) connected if given any two distinct vertices u and v there are directed paths, one from u to v and one from v to u.
4. weakly-Hamilton connected if given any two distinct vertices u and v there is a Hamilton path connecting either u to v or v to u.
5. (strongly)-Hamilton connected if given any two distinct vertices u and v there is are Hamilton paths, one connecting u to v and one connecting v to u.

Graph A

Graph B

Graph C

Fig. 1 Connected digraphs
6. weakly-pan-connected if given any two distinct vertices, u and v, and any $k \in$ $\{d(u, v), \ldots, n\}$, there is a directed path of length k from vertex u to vertex v or from vertex v to vertex u.
7. strongly-pan-connected if given any two distinct vertices, u and v, and any $k \in$ $\{d(u, v), \ldots, n\}$, there is a directed path of length k from vertex u to vertex v and one from vertex v to vertex u.

Definition 3 part 4 and Definition 3 part 5 above are the directed version of a Hamilton connected undirected graph which is an undirected graph for which there is a Hamilton path between any two distinct vertices.

Consider the three graphs on four vertices in Fig. 1. Graph A is connected but not path connected nor strongly connected, there is no path between vertex 2 and vertex 3. Graph B is weakly path connected but not strongly connected, there is no path from vertex 2^{\prime} to vertex 3^{\prime}. Graph C is strongly connected.

Let $\mathcal{C} \mathcal{D}_{n}$ denote the set of all connected digraphs in \mathcal{D}_{n}, let $\mathcal{P} \mathcal{C}_{n}$ denote the set of all (weakly) path connected digraphs in \mathcal{D}_{n}, and let $\mathcal{S C}_{n}$ denote the set of all strongly connected digraphs in \mathcal{D}_{n}. Then clearly, $\mathcal{S C}_{n} \subseteq \mathcal{P} \mathcal{C}_{n} \subseteq \mathcal{C} \mathcal{D}_{n} \subseteq \mathcal{D}_{n}$. The digraphs in Fig. 1 together with any digraph with an isolated vertex show that these containments are all strict. The subscript n is usually omitted if the order of the graph is obvious from the context.

Let $\mathcal{H C}_{w}$ denote the set of digraphs in \mathcal{D}_{n} that are weakly-Hamilton connected and let $\mathcal{H C}_{s}$ denote the set of digraphs in \mathcal{D}_{n} that are strongly-Hamilton connected.

Let the set of all weakly-pan-connected digraphs in \mathcal{D}_{n} be denoted $\mathcal{P a n} n_{w}$ and the set of all strongly-pan-connected digraphs in \mathcal{D}_{n} be denoted $\mathcal{P a n}{ }_{s}$.

As noted above, all our graphs have the same vertex set, so the union of two graphs G and H is the graph $G \cup H=(V, E(G) \cup E(H))$.

3.1 Examples and Containment

Note that any two vertices in a strongly-pan-connected digraph are either not adjacent or are connected by arcs in both directions, forming a digon.

Fig. 2 Graphs $\mathcal{C} h_{8}$ (left) and $\mathcal{C} h_{8, d}$ (right)

Example 1 See [1]. Let G be an undirected graph. Define G^{2} to be the graph whose edge set is the set of all edges $u v$ such that there is a path of length 2 from u to v. It was shown in [1, Theorem 2] that if C_{n} is an undirected Hamilton cycle, then $C^{[2]}=C_{n} \cup C_{n}^{2}$ is pan-connected, so replacing all the edges in $C^{[2]}$ with arcs in both directions to get $\overrightarrow{C^{[2]}}$, we have a strongly-pan-connected digraph. By deleting one arc from this digraph, we have a digraph, $C^{[2, d]}=\overrightarrow{C^{[2]}} \backslash\{(u, v)\}$, that is weakly-pan-connected. It is not strongly-pan-connected since $d(u, v)=1$ but there is no arc from u to v.

In [6, p. 191] an example of a Hamilton connected graph was presented. For $n=8$ it is the graph $\mathcal{C} h_{8}$ on the left in Fig. 2. If all the edges of $\mathcal{C} h_{8}$ are replaced by two arcs, one in each direction we get the digraph $\overrightarrow{\mathcal{C} h_{8}}$ which is an example of a strongly-Hamilton connected digraph. If all the edges except the one connecting vertex 1 and vertex 8 are replaced by two arcs, one in each direction, and the edge between vertex 1 and vertex 8 replaced by a single arc from vertex 1 to vertex 8 , we have a weakly-Hamilton connected digraph since there is no directed Hamilton path from vertex 6 to vertex 2. This digraph is the digraph $\mathcal{C} h_{8, d}$ on the right in Fig. 2. Note that the digraph $\mathcal{C} h_{8, d}$ is not weakly-pan-connected.

The following containments are easily established:
Proposition 1 For $n \geq 3$,

- Pan $_{s} \varsubsetneqq$ Pan $_{w}$, not equal by $C^{[2, d]}$;
- $\operatorname{Pan}_{w} \nsubseteq \mathcal{H C}_{w}$, not equal by $\mathrm{Ch}_{8 . d}$;
- Pan $\nexists \mathcal{H C}$, not equal by $\overrightarrow{C h_{8}}$,
- $\mathcal{H C}_{s} \neq \mathcal{H C}_{w}$, not equal by $\mathrm{Ch}_{8, d}$.

Motivated by the above discussion of connectedness, we shall proceed to investigate concepts of path and cycle extendability in digraphs. In the next section we shall define several concepts of extendability and end the section with a table showing relations between the various sets defined above and in Sect. 4.2.

4 Extendability

We begin by giving several definitions of extendability in digraphs. We divide this section into three subsections. In the first subsection we give the traditional definitions of extendability; in the second subsection we give notation for sets of graphs defined by extendability conditions. We end with a subsection summarizing the results of this section and Sect. 2.

4.1 Definitions-Path- and Cycle-Extendability

1. A digraph $D \in \mathcal{D}_{n}$ is said to be path dense if given any set of vertices $V^{\prime} \subseteq V$ with $\left|V^{\prime}\right| \in\{2,3, \ldots, n\}$ there is a directed path in D whose set of incident vertices is V^{\prime}.
2. A digraph $D \in \mathcal{D}_{n}$ is said to be k-path dense if given any set of vertices $V^{\prime} \subseteq V$ with $\left|V^{\prime}\right| \in\{k, k+1, \ldots, n\}$ there is a directed path in D whose set of incident vertices is V^{\prime}.
The digraph $C h_{8, d}$ is 6-path dense, but not 5-path dense, there is no path with incident vertex set $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{6}\right\}$.
3. A path in D whose incidence vertex set is $V^{\prime},\left(\left|V^{\prime}\right| \leq n-1\right)$, is weakly extendable if there is some vertex w in $V \backslash V^{\prime}$ such that D contains a path whose set of incident vertices is $V^{\prime} \cup\{w\}$.
4. A digraph in \mathcal{D}_{n} is said to be weakly-path-extendable if every path of length 1 through $n-2$ is weakly extendable.
5. A path in D whose incidence vertex set is $V^{\prime},\left(\left|V^{\prime}\right| \leq n-1\right)$, with initial vertex v_{I} and terminal vertex v_{T} is strongly extendable if there is some vertex w in $V \backslash V^{\prime}$ such that D contains a path whose incidence vertices is $V^{\prime} \cup\{w\}$ and whose initial vertex is v_{I} and whose terminal vertex is v_{T}.
6. A digraph in \mathcal{D}_{n} is said to be strongly-path-extendable if every path of length 1 through $n-2$ is strongly extendable.
A slight generalization of the concept of strongly extendable requires that the endpoints of the path be the same but not necessarily that the initial vertex be the initial vertex, etc.
7. A path in D whose incidence vertex set is $V^{\prime},\left(\left|V^{\prime}\right| \leq n-1\right)$, with initial vertex v_{I} and terminal vertex v_{T} is almost strongly extendable if there is some vertex w in $V \backslash V^{\prime}$ such that D contains a path whose incidence vertices is $V^{\prime} \cup\{w\}$ and whose initial vertex is either v_{I} or v_{T} and whose terminal vertex is either v_{T} or v_{I}, respectively.
8. A digraph in \mathcal{D}_{n} is said to be almost-strongly-path-extendable if every path of length 1 through $n-2$ is almost strongly extendable.
9. A directed cycle in D whose incidence vertex set is $V^{\prime},\left(\left|V^{\prime}\right| \leq n-1\right)$, is extendable if there is some vertex w in $V \backslash V^{\prime}$ such that D contains a directed cycle whose set of incident vertices is $V^{\prime} \cup\{w\}$.
10. A digraph in \mathcal{D}_{n} is said to be cycle-extendable if every cycle of length 2 through $n-1$ is extendable. Note that a 2 -cycle is called a digon.

4.2 Definitions—Sets of Graphs Defined by Extendability

1. Let $\mathcal{P} \mathcal{D}_{n}$ denote the set of all digraphs in \mathcal{D}_{n} that are path dense.
2. Let $\mathcal{P} \mathcal{E}_{w, n}$ denote the set of all digraphs in \mathcal{D}_{n} that are weakly path extendable.
3. Let $\mathcal{P} \mathcal{E}_{s, n}$ denote the set of all digraphs in \mathcal{D}_{n} that are strongly path extendable.
4. Let $\mathcal{P} \mathcal{E}_{a s, n}$ denote the set of all digraphs in \mathcal{D}_{n} that are almost strongly path extendable.
5. Let $\mathcal{C} \mathcal{E}_{n}$ denote the set of all digraphs in \mathcal{D}_{n} that are cycle extendable.

Any acyclic digraph is cycle extendable and any digraph that dominates a cycle dominates a Hamilton cycle. Thus we define:
6. Let $\mathcal{C} \mathcal{E}_{H, n}$ denote the set of all digraphs in \mathcal{D}_{n} that are cycle extendable and are not acyclic.

Note that the empty graph $\overline{K_{n}}$ is (vacuously) a member of all of the above sets except $\mathcal{P} \mathcal{D}_{n}$. Further, we will omit the subscript n if the order is obvious from the context.

4.3 Examples and Containment

Some obvious containments are:
Theorem 1 Let $n>3$ then $\mathcal{P} \mathcal{E}_{s} \varsubsetneqq \mathcal{P} \mathcal{E}_{a s} \varsubsetneqq \mathcal{P} \mathcal{E}_{w}$;
Definition 6 A tournament on n vertices is a directed graph which is an orientation of the complete simple undirected graph. That is a tournament is a loopless digraph in which any two distinct vertices are connected by exactly one arc.

Let $T_{t, k}$ denote the digraph whose vertex set is $V=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ and whose arc set is $A=\left\{\left(v_{i}, v_{j}\right) \mid 1 \leq i<j \leq k\right\}$. That is, $T_{t, k}$ is a transitive tournament (a cycle free tournament) on k vertices.

For digraphs A and B let $A \Rightarrow B$ denote the digraph consisting of the vertices of A together with the vertices of B, the arc set consisting of the arc set of A together with the arc set of B and arcs from every vertex of A to every vertex of B.
Proposition $2 \mathcal{P} \mathcal{D} \varsubsetneqq \mathcal{P} \mathcal{E}_{w}$.
Proof Let $D \in \mathcal{P D}$ and let \mathbf{p} be a directed path in D with incident vertex set V^{\prime}. Let w be any vertex not in V^{\prime}. Since $D \in \mathcal{P D}$ there is a path \mathbf{p}^{\prime} in D with vertex set $V^{\prime} \cup\{w\}$. Thus, $D \in \mathcal{P} \mathcal{E}_{w}$.

For $n \geq 5$ and $2 \leq k \leq n-2$ and w a vertex, the digraph $D=T_{t, k} \Rightarrow w \Rightarrow$ $T_{t .(n-k-1)}$ is in $\mathcal{P} \mathcal{E}_{w}$, but not in $\mathcal{P D}$ since $\left\{v_{1}, v_{2}, v_{n}\right\}$ is not the vertex set of any path in D but any path in D is weakly extendable.

Proposition $3 \mathcal{P} \mathcal{E}_{s} \varsubsetneqq \mathcal{P} \mathcal{E}_{w}$.
Proof Clearly, if a path is strongly extendable, it is weakly extendable. Thus, $\mathcal{P} \mathcal{E}_{s} \subseteq$ $\mathcal{P} \mathcal{E}_{w}$. But, the path $v_{2} \rightarrow v_{3} \rightarrow \cdots \rightarrow v_{n}$ in $T_{t, n}$ is extendable to $v_{1} \rightarrow v_{2} \rightarrow v_{3} \rightarrow$ $\cdots \rightarrow v_{n}$ which is the only possible extension, and the initial vertex must change, thus it is not strongly extendable, and consequently $T_{t, n} \in \mathcal{P} \mathcal{E}_{w}$ but $T_{t, n} \notin \mathcal{P} \mathcal{E}_{s}$. That is $\mathcal{P} \mathcal{E}_{s} \neq \mathcal{P} \mathcal{E}_{w}$.

Let $T_{s, n}$ denote the tournament on vertices $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and arc set $A=$ $\left\{\left(v_{i}, v_{j}\right) \mid 1 \leq i<j \leq n\right\} \cup\left\{\left(v_{n}, v_{1}\right)\right\} \backslash\left\{\left(v_{1}, v_{n}\right)\right\}$. That is $T_{s, n}$ is the tournament $T_{t, n}$ with the one $\operatorname{arc}\left(v_{1}, v_{n}\right)$ reversed.
Proposition $4 \mathcal{P} \mathcal{E}_{s} \varsubsetneqq \mathcal{C} \mathcal{E}$.
Proof Let D be a digraph in $\mathcal{P} \mathcal{E}_{s}$ and C a non Hamiltonian cycle in D. By reordering the vertices we may assume that the cycle is $v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{k} \rightarrow v_{1}$, so that $v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{k}$ is a non Hamiltonian path in D. Since $D \in \mathcal{P} \mathcal{E}_{s}$ there is a path $v_{1} \rightarrow u_{2} \rightarrow \cdots \rightarrow u_{k} \rightarrow v_{k}$ in D for some vertices $u_{i}, i=2, \ldots, k$. But then $v_{1} \rightarrow u_{2} \rightarrow \cdots \rightarrow u_{k} \rightarrow v_{k} \rightarrow v_{1}$ is a cycle extending C. That is $D \in \mathcal{C E}$.

Note that $v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{n-1}$ is a path that is not strongly extendable in $T_{s, n}$, thus $T_{s, n}$ is in $\mathcal{C E}$ but not in $\mathcal{P} \mathcal{E}_{s}$. That is $\mathcal{C} \mathcal{E} \neq \mathcal{P} \mathcal{E}_{s}$.
Proposition 5 If a directed graph dominates a directed Hamilton cycle then it is strongly connected.

Proof Let D be a digraph that dominates a Hamilton cycle and let u and v be any two vertices in D. Then, u and v partition the cycle into two arc disjoint paths, one from u to v the other from v to u.

Corollary 1 All the digraphs in $\mathcal{C} \mathcal{E}_{H}, \mathcal{P} \mathcal{E}_{s}$. and $\mathcal{H C}_{s}$ are strongly connected.
Proposition 6 If a digraph dominates a directed Hamilton path then it is path connected.

Proof Let D be a digraph that dominates a Hamilton path and let u and v be any two vertices in D. Then, that path is incident with both u and v so there is either a path from u to v or from v to u.
Corollary 2 All of the digraphs in $\mathcal{C E}_{H}, \mathcal{P} \mathcal{E}_{s} . \mathcal{P} \mathcal{E}_{w} . \mathcal{P} \mathcal{E}_{\text {as }}, \mathcal{P D}, \mathcal{H C}_{w}$, and $\mathcal{H C}$, are path connected.
Proposition $7 \mathcal{P} \mathcal{E}_{a s} \varsubsetneqq \mathcal{H} \mathcal{C}_{w}$.
Proof Let D be a digraph in $\mathcal{P} \mathcal{E}_{a s}$ and u and v any two vertices. Then, D dominates a Hamilton path, and since u and v must be on this path, there is either a path from u to v or from v to u. In either case there is Hamilton path from u to v or from v to u by the definition of $\mathcal{P} \mathcal{E}_{a s}$.

Example 2 Let D be the digraph in \mathcal{D}_{n} with arc set $\left\{\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}.\right)\left(v_{3}, v_{1}\right)\right.$, $\left.\left(v_{3}, v_{4}\right),\left(v_{4}, v_{3}\right),\left(v_{4}, v_{5}\right),\left(v_{5}, v_{4}\right) \cdots,\left(v_{n-1}, v_{n}\right),\left(v_{n}, v_{n-1}\right)\right\} . D$ is a directed three cycle appended to a path of digons from vertex 3 to n. Then the path $v_{n} \rightarrow v_{n-1} \rightarrow$ $\cdots \rightarrow v_{3} \rightarrow v_{1}$ is extendable but only to one beginning at v_{1} and ending at v_{n}, not the other way. Thus, $\mathcal{P} \mathcal{E}_{a s} \neq \mathcal{P} \mathcal{E}_{s}$.

Sets	why	why \neq	Sets	why	why \neq
$\mathcal{C E} \mathcal{E}_{H} \varsubsetneqq \mathcal{S C}$	Cor 1	$C_{n, 4}$	$\mathcal{C E} \mathcal{E}_{H} \varsubsetneqq \mathcal{C E}$	def	$T_{t, n}$
$\mathcal{P} \mathcal{E}_{s} \varsubsetneqq \mathcal{S C}$	trans	$C_{n, 4}$	$\mathcal{P E} \mathcal{E}_{\text {as }} \varsubsetneqq \mathcal{C E}$	Prop 4	$P_{n}(\mathrm{vac})$
$\mathcal{P} \mathcal{E}_{\text {as }} \varsubsetneqq \mathcal{S C}$	trans	$C_{n, 4}$	$\mathcal{P} \mathcal{E}_{w} \varsubsetneqq \mathcal{P} \mathcal{E}_{a s}$	Def.	$C_{n, 4}$
$\mathcal{P} a n_{w} \varsubsetneqq \mathcal{S C}$	trans	$C^{[2, d]}$	$\mathcal{P E} \mathcal{E}_{s} \varsubsetneqq \mathcal{C} \mathcal{E}_{H}$	Prop 4	$P_{n}(\mathrm{vac})$
$\mathcal{H C}_{s} \varsubsetneqq \mathcal{S C}$	Cor 1	C	$\mathcal{P} \mathcal{E}_{s} \varsubsetneqq \mathcal{P} \mathcal{E}_{a s}$	Def.	Ex. 2
$\mathcal{S C} \varsubsetneqq \mathcal{P C}$	Def.	P_{n}	$\mathcal{P} \mathcal{E}_{s} \varsubsetneqq \mathcal{P} \mathcal{E}_{w}$	Def.	$C_{n, 4}$
$\mathcal{C E} \mathcal{E}_{H} \varsubsetneqq \mathcal{P C}$	trans	$C_{n, 4}$	$\mathcal{P D} \varsubsetneqq \mathcal{P} \mathcal{E}_{w}$	Prop 2	Prop 2
$\mathcal{P} \mathcal{E}_{s} \varsubsetneqq \mathcal{P C}$	trans	C_{n}	$\mathcal{P E}^{\text {as }} \varsubsetneqq \mathcal{H C}_{w}$	Prop 7	$C h_{8, d}$
$\mathcal{P} \mathcal{E}_{\text {as }} \varsubsetneqq \mathcal{P C}$	trans	C_{n}	$\mathcal{P E} \mathcal{E}_{s} \varsubsetneqq \mathcal{H C}_{w}$	trans	$C h_{8, d}$
$\mathcal{P} \mathcal{E}_{w} \varsubsetneqq \mathcal{P C}$	trans	dbl-star	$\mathcal{H C}_{s} \varsubsetneqq \mathcal{H C}_{w}$	Def.	$C h_{8, d}$
$\mathcal{H C}_{w} \nsupseteq \mathcal{P C}$	trans	$C_{n, 4}$	$\mathcal{P} a n_{s} \varsubsetneqq \mathcal{P} \mathcal{E}_{s}$	Def.	$C^{[2, d]}$
$\mathcal{H C}_{s} \varsubsetneqq \mathcal{P C}$	trans	$C_{n, 4}$	$\mathcal{P} a n_{s} \varsubsetneqq \mathcal{H C}_{s}$	Prop 1	$\overrightarrow{C h_{8}}$
$\mathcal{P D} \varsubsetneqq \mathcal{P C}$	Cor 2	C_{n}	$\mathcal{P} a n_{w} \varsubsetneqq \mathcal{P C}$	Def.	C_{n}

Fig. 3 Subset containment table

4.4 Summary

Figure 3 shows the set containments that we have established in the previous sections.
In Fig. 6 we have a table of directed graphs across the top and sets along the side. A check indicates that the digraph in that column is a member of the set in that row. An \mathbf{x} indicates that is is not. The subscript "vac" indicates that the inclusion is vacuously true since there are no cycles to extend. The subscript " 2 -cyc" indicates that the only non extendable cycles are digons. the sets across the top are:
$C_{n, 4}, n \geq 7$, the directed n-cycle $\left(v_{1} \rightarrow v_{2} \rightarrow v_{3} \rightarrow \cdots \rightarrow v_{n-1} \rightarrow v_{n} \rightarrow v_{1}\right)$ plus the arc $v_{4} \rightarrow v_{n}$;
$T_{t, n}$, the transitive n-tournament;
$T_{s, n}$, the strong n-tournament;
$C h_{8}$ and $C h_{8, d}$, See Fig. 2;
C_{n}, a directed n-cycle and $C_{n, d}$ an n-cycle with every edge replaced by an arc in both directions;
P_{n}, a directed Hamilton path;
$K^{[+]}, K_{n-1}$ on vertices $\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$ plus a 2-path through vertex v_{n};
Star, a double star, or the union of an out-star and an in-star both centered at the same vertex;

Heavy arrows are justified in the text.
Medium arrows are easily established, some justified in the text.
Light arrows follow by transitivity.
Each arrow represents \varsubsetneqq.
Fig. 4 Set containment graph
$C^{[2]}$ and $C^{[2, d]}$, See Example 2.1.
The sets in the first column are those defined above.

5 Set Connectivity and Extendability

Some graphs or digraphs are not cycle extendable, but each cycle is extendable to cycles of length one or two more. Example 3 is an example of this. It is not cycle

Fig. 59 vertex example
extendable, the 3 -cycle $\left(v_{1}, v_{2}, v_{3}\right)$ is not extendable to a 4 -cycle, but it is extendable to a 5 -cycle. This section gives definitions and examples to further investigate this type of extendability.

5.1 Definitions-S-Path- and S-Cycle-Extendability

We can further refine the concept of connectedness by limiting the length of the path connecting two vertices:

1. Let S be a subset of $\{1,2, \ldots, n-1\}$. A digraph is weakly-S-path connected if given any two distinct vertices u and v there is a path whose length is in S connecting either u to v or v to u.
2. Let S be a subset of $\{1,2, \ldots, n-1\}$. A digraph is strongly-S-path connected if given any two distinct vertices u and v there is are paths whose lengths are in S, one connecting u to v and the other connecting v to u.
Note that being weakly/strongly-Hamilton-connected is equivalent to being weakly/strongly-\{ $n\}$-path-connected.
3. Let $S \subseteq\{2,3, \ldots, n\}$. A digraph $D \in \mathcal{D}_{n}$ is said to be S-path dense if given any set of vertices $V^{\prime} \subseteq V$ with $\left|V^{\prime}\right| \in S$ there is a directed path in D whose set of incident vertices is V^{\prime}.
Note that if $S=\{k, k+1, \ldots, n\}$ then S-path dense is the same as k-path dense.

subset	$\mathrm{C}_{\mathrm{n}, 4}$	$\mathrm{T}_{\mathrm{t}, \mathrm{n}}$	$\mathrm{T}_{\text {s.n }}$	Ch_{8}	$\mathrm{Ch}_{8, \mathrm{~d}}$	C_{n}	$\mathrm{C}_{\mathrm{n}, \mathrm{d}}$	P_{n}	$\mathrm{K}^{[+]}$	Star	$\mathrm{C}^{[2]}$	$\mathrm{C}^{[2, \mathrm{~d}]}$
SC	$\sqrt{ }$	X	$\sqrt{ }$	X	$\sqrt{ }$	X	$\sqrt{ }$	$\sqrt{ }$				
$\mathscr{P} C$	$\sqrt{ }$	X	$\sqrt{ }$	$\sqrt{ }$								
CE	X	$V_{\text {vac }}$	$\sqrt{ }$	X	X	V_{vac}	$\mathrm{X}_{2 \mathrm{cyc}}$	V_{vac}	$\sqrt{ }$	$\mathrm{X}_{2 \mathrm{cyc}}$	$\sqrt{ }$	$\sqrt{ }$
$C \mathcal{E}_{\mathrm{H}}$	X	X	$\sqrt{ }$	X	X	V_{vac}	X	X	$\sqrt{ }$	X	$\sqrt{ }$	$\sqrt{ }$
$\mathscr{P} \mathcal{E}_{\text {s }}$	X	X	X	X	X	X	X	X	X	X	$\sqrt{ }$	$\sqrt{ }$
$\mathscr{P} \mathcal{E}_{\text {as }}$	X	X	X	X	X	X	X	X	$\sqrt{ }$	X	$\sqrt{ }$	$\sqrt{ }$
$\mathscr{P} \mathcal{E}_{\mathrm{w}}$	$\sqrt{ }$	X	$\sqrt{ }$	$\sqrt{ }$								
$\mathscr{P} \mathfrak{D}$	X	$\sqrt{ }$	$\sqrt{ }$	X	X	X	X	X	$\sqrt{ }$	X	X	X
$\mathscr{H} \mathrm{C}_{\mathrm{w}}$	X	X	X	$\sqrt{ }$	$\sqrt{ }$	X	X	X	$\sqrt{ }$	X	$\sqrt{ }$	$\sqrt{ }$
$\mathcal{H C}_{\mathrm{s}}$	X	X	X	X	X	X	X	X	X	X	$\sqrt{ }$	$\sqrt{ }$
$\mathscr{P a} n_{\text {w }}$	X	X	X	X	X	X	X	X	X	X	$\sqrt{ }$	$\sqrt{ }$
$\mathscr{P}_{a} n_{\text {s }}$	X	X	X	X	X	X	X	X	X	X	$\sqrt{ }$	X

Note 1: A check indicates that the test graph is in the set, and a bold x that it is not.
Note 2: The subscript " 2 cyc" indicates that a digon is not extendable to a three cycle but otherwise is extendable.
Note 3: The subscrpt " $v a c$ " refers to the fact that there are no cycles in the graph and hence are cycle extendable.

Fig. 6 Inclusion of test graphs
4. Let $S \subseteq\{1,2, \ldots, n\}$. A path in D whose incidence vertex set is V^{\prime} is weakly S-extendable if there is some subset $W \subseteq\left(V \backslash V^{\prime}\right)$ with $|W| \in S$ such that D contains a path whose set of incident vertices is $V^{\prime} \cup W$.
5. Let $S \subseteq\{1,2, \ldots, n\}$. A digraph in \mathcal{D}_{n} is said to be weakly-S-path-extendable if every path of length 1 through $n-a$ is weakly S-extendable where a is the smallest element of S.
6. Let $S \subseteq\{1,2, \ldots, n\}$. A path in D whose incidence vertex set is V^{\prime} with initial vertex v_{I} and terminal vertex v_{T} is strongly S-extendable if there is some subset $W \subseteq\left(V \backslash V^{\prime}\right)$ such that D contains a path whose set of incident vertices is $V^{\prime} \cup W$ and whose initial vertex is v_{I} and whose terminal vertex is v_{T}.
7. Let $S \subseteq\{1,2, \ldots, n\}$. A digraph in \mathcal{D}_{n} is said to be strongly- S-path-extendable if every path of length 1 through $n-a$ is strongly S-extendable where a is the smallest element of S.
8. Let $S \subseteq\{1,2, \ldots, n\}$. A path in D whose incidence vertex set is V^{\prime} with initial vertex v_{I} and terminal vertex v_{T} is almost strongly S-extendable if there is some subset $W \subseteq\left(V \backslash V^{\prime}\right)$ such that D contains a path whose incident vertex set is $V^{\prime} \cup W$ and whose initial vertex is v_{I} or v_{T} and whose terminal vertex is v_{T} or v_{I}, respectively.
9. Let $S \subseteq\{1,2, \ldots, n\}$. A digraph in \mathcal{D}_{n} is said to be almost strongly- S-pathextendable if every path of length 1 through $n-a$ is almost strongly S-extendable where a is the smallest element of S.
10. Let $S \subseteq\{1,2, \ldots, n\}$. A cycle in D whose incidence vertex set is V^{\prime} is S extendable if there is some subset $W \subseteq\left(V \backslash V^{\prime}\right)$ with $|W| \in S$ such that D contains a cycle whose set of incident vertices is $V^{\prime} \cup W$.
11. Let $S \subseteq\{1,2, \ldots, n\}$. A digraph in \mathcal{D}_{n} is said to be S-cycle-extendable if every cycle of length 2 through $n-a$ is S-extendable where a is the smallest element of S.

In [13, Theorem 1] J. W. Moon showed that any strongly connected orientation of the complete loopless graph is $\{1,2\}$-cycle extendable. The digraph in Fig. 5 is a strongly connected orientation of the complete graph on nine vertices, and hence shows that Moon's theorem can not be improved to cycle extendable. In fact, the digraph in Fig. 5 is not only Hamiltonian, and Hamilton connected, but also weakly-pan-connected.

5.2 Sets Defined by Set-Continuity and Set-Extendability

1. Let $S \subseteq\{1,2, \ldots, n\}$ and let $\mathcal{P} \mathcal{D}_{S, n}$ denote the set of all digraphs in \mathcal{D}_{n} that are S-path dense.
2. Let $S \subseteq\{1,2, \ldots, n\}$ and let $\mathcal{P} \mathcal{E}_{w, S, n}$ denote the set of all digraphs in \mathcal{D}_{n} that are weakly S-path extendable.
3. Let $S \subseteq\{1,2, \ldots, n\}$ and let $\mathcal{P} \mathcal{E}_{s, S, n}$ denote the set of all digraphs in \mathcal{D}_{n} that are strongly S-path extendable.
4. Let $S \subseteq\{1,2, \ldots, n\}$ and let $\mathcal{P} \mathcal{E}_{a s, S, n}$ denote the set of all digraphs in \mathcal{D}_{n} that are almost strongly S-path extendable.
5. Let $\mathcal{C} \mathcal{E}_{S, n}$ denote the set of all digraphs in \mathcal{D}_{n} that are S-cycle-extendable.

Note that the empty graph $\overline{K_{n}}$ is (vacuously) a member of all of the above sets except $\mathcal{P} \mathcal{D}_{S, n}$.

Example 3 (See Fig. 5.) Let D be the digraph on 9 vertices, $v_{1}, v_{2}, \ldots, v_{9}$ such that v_{1}, v_{2}, v_{3} induces a 3 -cycle, v_{4}, v_{5}, v_{6} induces a 3 -cycle, v_{7}, v_{8}, v_{9} induces a 3 -cycle, and there is an arc from each vertex of the first 3-cycle to each vertex of the second

3-cycle, an arc from each vertex of the second 3-cycle to each vertex of the third 3 -cycle, and an arc from each vertex of the third 3-cycle to each vertex of the first 3 -cycle. Then the 3 -cycle on v_{1}, v_{2}, v_{3} cannot be extended to a 4 -cycle containing v_{1}, v_{2}, v_{3}, but every cycle in D is $\{1,2\}$-extendable. It should be noted that this graph is path dense, weakly-pan-connected, and strongly Hamilton connected.

Note that in the above example, each 3-cycle can be replaced with any strongly connected digraph on at least 3 vertices. The analysis will remain the same.

We end with some obvious containments.
Theorem 2 Let $n>3$ and $T \varsubsetneqq S \subseteq\{1,2, \ldots, n-1\}$,

1. $\mathcal{P} \mathcal{D}_{n} \varsubsetneqq \mathcal{P} \mathcal{D}_{S, n}$.
2. $\mathcal{P} \mathcal{E}_{s, S, n} \varsubsetneqq \mathcal{P} \mathcal{E}_{a s, S, n} \varsubsetneqq \mathcal{P} \mathcal{E}_{w, S, n}$.
3. $\mathcal{P} \mathcal{E}_{s} \subseteq \mathcal{P} \mathcal{E}_{s, T, n} \varsubsetneqq \mathcal{P} \mathcal{E}_{s, S, n}$.
4. $\mathcal{P} \mathcal{E}_{a s} \subseteq \mathcal{P} \mathcal{E}_{a s, T, n} \varsubsetneqq \mathcal{P} \mathcal{E}_{a s, S, n}$.
5. $\mathcal{P} \mathcal{E}_{w} \subseteq \mathcal{P} \mathcal{E}_{w, T, n} \varsubsetneqq \mathcal{P} \mathcal{E}_{w, S, n}$.
6. $\mathcal{C} \mathcal{E}_{n} \varsubsetneqq \mathcal{C} \mathcal{E}_{T, n} \varsubsetneqq \mathcal{P} \mathcal{E}_{S, n}$.

Most containments involving only S and not T or only T and not S are parallel to the containments above and are not verified here. Containments involving $T \varsubsetneqq S$ follow solely from that containment. Further note that $\mathcal{C} \mathcal{E}_{n}=\mathcal{C} \mathcal{E}_{\{1\}, n}$, etc.

References

1. Alavi, Y., Williamson, J. E., "Panconnected graphs", Studia Scientiarum Mathematicarum Hungarica, 10 (1975) Nos. 1-2: 19-22.
2. Arangno, D. C., "Hamiltonicity, Pancyclicity, and Cycle Extendability in Graphs", Utah State University (2014). All Graduate Theses and Dissertations. 3295. https://digitalcommons.usu. edu/etd/3295
3. Beasley, L. B. and Brown, D. E., "On cycle and bi-cycle extendability in chordal and chordal bipartite graphs", Congressus Numerantium. 174(2005)41-47.
4. Beasley, L. B. and Brown, D. E., "Cycle extendability in graphs and digraphs". Linear Algebra Appl. 435 (2011), no. 7, 1513-1519.
5. Beasley, L. B., Merz, S. K., Brown, D. E., and Thomas, B. J., "Cycle extendability in tournamendts". Congressus Numerantium. 233 (2019), pp.95-101.
6. Chartrand, G. and Lesniak, L., Graphs and Digraphs, $2^{\text {nd }}$ Ed., Wadswoth \& Brooks/Cole, Monterey, CA, 1986
7. G. Chen, R.J. Faudree, R.J. Gould, M.S. Jacobson, "Cycle extendability of Hamiltonian interval graphs", SIAM J. Discrete Math. 20(3) (2006) 682-689.
8. Hendry, G.R.T., "Extending Cycles in Directed Graphs", J. Comb. Th. B., 46(1989) 162-172.
9. Hendry, G. R. T., "Extending cycles in graphs", Discrete Math. 85 (1990) no. 1, $59-72$.
10. Hendry, G. R. T., "Path extendable graphs", Per. Math. Hungarica, 21(3, (1990), $205-219$.
11. Lafond, M. and Seamone, B., "Hamiltonian chordal graphs are not cycle extendible", SIAM J. Discrete Math. 29(2), (2015) 877-887.
12. J. W. Moon, Topics in Tournaments, Holt, New York, 1968.
13. J. W. Moon, "On cycles in Tournaments", Matematicky Časopsis, 19(1969, No. 2, 121-125.
14. Zhang, Z.-B., Zhang, X., Broersma, H., and Lou, D., "Extremal and degree conditions for path extendability in digraphs". SIAM J. Discrete Math. 31 (2017), no. 3, 1990-2014.

On the Extraconnectivity of Arrangement Graphs

Eddie Cheng, László Lipták, and Daniel Tian

Abstract

Extraconnectivity generalizes the concept of connectivity of a graph but it is more difficult to compute. In this note, we compute the g-extraconnectivity of the arrangement graph for small g (with $g \leq 6$) with the help of a computer program. In addition, we provide an asymptotic result for general g.

1 Introduction

The study of multiprocessor systems is an important aspect of parallel computing. The underlying topology of such a multiprocessor system is an interconnection network. Such an interconnection network is usually described and studied in terms of graph theory. One can view the vertices as processors in which the resulting system is a multiprocessor supercomputer (with edges being the links between processors), or they can be viewed as computers (with edges being the links between computers) in which the resulting system is a computer network. Using the example of a multiprocessor supercomputer, since processors and/or links can fail, it is important to come up with fault resiliency measurements.

The (vertex) connectivity of a connected non-complete graph is the minimum number of vertices whose deletion disconnects the graph. The vertex connectivity of a complete graph on n vertices is defined to be $n-1$. Moreover, a connected noncomplete graph is k (-vertex)-connected if with at most $k-1$ vertices being deleted, the resulting graph is connected, that is, the vertex connectivity is at least k. There is

[^19][^20]a corresponding edge version if edges are deleted. However, such measures are quite simplistic, thus researchers have proposed a number of more advanced parameters.

A set of vertices T in a connected non-complete graph G is called a restricted vertex-cut of order m or an ($m-1$)-extra-vertex-cut (or ($m-1$)-extra-cut for short) if $G-T$ is disconnected and every component in $G-T$ has at least m vertices. The restricted vertex connectivity of order m or the ($m-1$)-extraconnectivity is the size of a smallest restricted vertex-cut of order m. Thus a restricted vertex-cut of order 1 is a vertex-cut and the restricted vertex connectivity of order 1 (or 0 extraconnectivity) is the vertex connectivity. A similar definition can be made for the case when deleting edges. We remark that the term restricted connectivity have been used to mean different concepts by different authors.

Another way to generalize the concept of connectivity is the following. A graph G is super m-vertex-connected of order q if with at most m vertices being deleted, the resulting graph is either connected or it has one large component and the small components collectively have at most q vertices in total, that is, the resulting graph has a component of size at least $|V(G-T)|-q$, where T is the set of deleted vertices. Although this measurement is not as refined and somewhat raw, it is flexible. There is a connection between the two concepts as shown in the next result.

Proposition 1 If G is super p-vertex-connected of order q, then the restricted vertex connectivity of order $q+1$ is at least $p+1$, that is the q-extraconnectivity of G is at least $p+1$.

Proof By contradiction, assume that the q-extraconnectivity of G is at most p. So there exists a set of vertices F with $|F| \leq p$ such that $G-F$ is disconnected and each of its components has at least $q+1$ vertices. This is a contradiction as $G-F$ has one large component, and its small components have at most q vertices in total.

The arrangement graph, denoted by $A_{n, k}$, is defined for positive integers n and k such that $n>k \geq 1$. The vertex set of the graph is all permutations of k elements of the set $\{1,2, \ldots, n\}$. Two vertices corresponding to the permutations $\left[a_{1}, a_{2}, \ldots, a_{k}\right]$ and $\left[b_{1}, b_{2}, \ldots, b_{k}\right]$ are adjacent if and only if there exists exactly one integer $1 \leq i \leq k$ such that $a_{i} \neq b_{i}$. Figure 1 shows $A_{4,2}$. (For convenience, we write the (n, k)-permutation $[i, j]$ as $i j$ in this figure, for example [1] as 14.) There have been much research on this class of interconnection networks including embeddings, Hamiltonicity and surface area. See [1] for a list of references. It is easy to see that the connectivity of $A_{n, k}$ is $k(n-k)$.

Let H_{i} be the set of vertices representing permutations whose k th element is i for $1 \leq i \leq n$, and let T denote a set of vertices to be deleted. Define $T \cap H_{i}=T_{i}$ and $\left|T_{i}\right|=t_{i}$ for $1 \leq i \leq n$. Clearly $A_{n, k}$ is $k(n-k)$-regular because for any vertex, all of its neighbors differ in one of the k positions in the permutation, and for each position there are $n-k$ other choices for the number in that position. Let us first note some other preliminary facts about $A_{n, k}$, which are easy to check.

1. H_{i} is isomorphic to $A_{n-1, k-1}$ when $n>k \geq 2$. This is because removing i from all the permutations in H_{i} results in permutations of $k-1$ elements from

Fig. $1 A_{4,2}$

$\{1,2, \ldots, n\}-\{i\}$. This fact is highly useful in the inductive proofs of the paper, as we can often use the induction hypothesis on H_{i}.
2. $A_{n, k}$ has $\frac{n!}{(n-k)!}$ vertices, which is the number of permutations of k elements from an n-element set. It follows that H_{i} has $\frac{(n-1)!}{(n-k)!}$ vertices for all $1 \leq i \leq n$.
3. For any j vertices in H_{i}, there are exactly $j(n-k)$ distinct vertices outside H_{i} that are adjacent to at least one of the j vertices. This follows from the fact that each vertex in H_{i} has $n-k$ neighbors outside H_{i} and that no two vertices share a common neighbor outside H_{i}.
4. For each pair H_{i} and H_{j} with $i \neq j$, there are exactly $\frac{(n-2)!}{(n-k-1)!}$ independent edges (that is, edges such that no two are incident to a common vertex) between them. Note that every edge between H_{i} and H_{j} must be between vertices whose permutations differ in their k th element. Thus the number of edges between H_{i} and H_{j} is just the number of permutations of $k-1$ elements from $\{1,2, \ldots, n\}-\{i, j\}$.

The diagnosability of interconnection networks is an important concept and [2] gave diagnosability results for the arrangement graphs. In the process, they established the following results.

Theorem 1 ([2]) Let $k \geq 3$ and $n \geq k+2$. Then the 1 -extraconnectivity of $A_{n, k}$ is $(2 k-1)(n-k)-1$.

Theorem 2 ([2]) Let $k \geq 4$ and $n \geq k+2$. Then the 2-extraconnectivity of $A_{n, k}$ is $(3 k-2)(n-k)-3$.

Theorem 3 ([2]) Suppose either $k \geq 4$ and $n \geq k+2$, or $k \geq 3$ and $n \geq k+3$. Then the 3-extraconnectivity of $A_{n, k}$ is $(4 k-4)(n-k)-4$.

In this note, we make use of existing results together with Proposition 1 to turn finding g-extraconnectivity of the arrangement graph into an automated process. We need the following result.

Theorem 4 ([3]) Let n, k, s be positive integers such that $n-1>k \geq 2, s \geq 1$. If T is a subset of the vertices of $A_{n, k}$ such that $|T| \leq\left(s(k-2)+2-\frac{s^{2}}{2}\right)(n-k)$,
then $A_{n, k}-T$ is either connected or has a large component and small components with at most $s-1$ vertices in total.

We note that Theorem 4 is an asymptotic result, thus our result for extraconnectivity may miss some small cases. We remark that for $s \leq 3$ more precise results than Theorem 4 are known.

2 \{4, 5, 6\}-Extraconnectivities

As expected, our process produces results already given in Theorems 1-3. Based on existing results, our guess is that in most cases, there exists a minimum r-extra-vertex-cut F of $A_{n, k}$ such that the resulting graph has exactly two components, one large component and one small component with exactly $r+1$ vertices. If our guess is correct, then one can search for a connected subgraph of $A_{n, k}$ with the smallest neighbor set. This procedure gives the following result.

Theorem 5 Let $k \geq 23$ and $n-k \geq 3$. Then the 4 -extraconnectivity of $A_{n, k}$ is $(5 k-$ 5) $(n-k)-7$.

Theorem 6 Let $k \geq 30$ and $n-k \geq 3$. Then the 5 -extraconnectivity of $A_{n, k}$ is $(6 k-$ 7) $(n-k)-9$.

Theorem 7 Let $k \geq 37$ and $n-k \geq 3$. Then the 6 -extraconnectivity of $A_{n, k}$ is $(7 k-$ 9) $(n-k)-11$.

To prove Theorem 5, one may first want to show that the 4-extraconnectivity of $A_{n, k}$ is at least $(5 k-5)(n-k)-7$. Suppose not. Then there exists a set of vertices F with $|F|<(5 k-5)(n-k)-7$ such that every component in $G-F$ has at least 5 vertices. We let $s=6$ in Theorem 4. Then we have that $A_{n, k}$ is super $\left(6(k-2)+2-\frac{6^{2}}{2}\right)(n-k)$-vertex connected of order 5 . Note that for $k \geq 23$, $\left(6(k-2)+2-\frac{6^{2}}{2}\right)(n-k)=(6 k-28)(n-k) \geq(5 k-5)(n-k)-7$. Thus we can conclude that for such k the graph $G-F$ has one large component and a total of at most 5 vertices in the small components. But we also know that every component has at least 5 vertices. Therefore, $G-F$ has exactly two components, one large component and a small component with exactly 5 vertices, and hence F contains the neighborhood of these 5 vertices. This will give a contradiction if we can show that the neighborhood of every connected subgraph of 5 vertices has at least $(5 k-5)(n-k)-7$ vertices. If one can find such a subgraph whose neighborhood is of size exactly $(5 k-5)(n-k)-7$ and its deletion gives every component of size at least 5 (or perhaps even two components), then this shows that $(5 k-5)(n-k)-7$ is also an upper bound. Indeed, if we can find a connected subgraph on 5 vertices whose neighborhood F is of size exactly $(5 k-5)(n-k)-7$, then we know that $G-F$ has exactly two components since $A_{n, k}$ is super $((5 k-5)(n-k)-7)$-vertex-connected
of order 5 for $k \geq 23$. Thus we have reduced the problem to looking for all connected subgraphs on 5 vertices in $A_{n, k}$. The analysis for 5-extraconnectivity and 6 -extraconnectivity can be done in a similar way and we have the following results.

Proposition 2 Let H be a connected subgraph of $A_{n, k}$ and $n-k>0$.

1. If $k \geq 23, H$ has 5 vertices, and $|N(V(H))| \leq(5 k-5)(n-k)-7$, then $N(V(H))$ is a 4 -extra-cut.
2. If $k \geq 30, H$ has 6 vertices, and $|N(V(H))| \leq(6 k-7)(n-k)-9$, then $N(V(H))$ is a 5 -extra-cut.
3. If $k \geq 37$, H has 7 vertices, and $|N(V(H))| \leq(7 k-9)(n-k)-11$, then $N(V(H))$ is a 6-extra-cut.

Proof The idea of this proof was given above as part of the overall scheme but we will reproduce and formalize it here for easy reference. We will prove (1) and the others can be done similarly. Clearly $A_{n, k}-N(V(H)$ is disconnected, so we need to show every component has at least 5 vertices. We let $s=6$ in Theorem 4. Then we have that $A_{n, k}$ is super $\left(6(k-2)+2-\frac{6^{2}}{2}\right)(n-k)$-vertex connected of order 5. Note that for $k \geq 23,\left(6(k-2)+2-\frac{6^{2}}{2}\right)(n-k)=(6 k-28)(n-k) \geq(5 k-$ $5)(n-k)-7$. Thus we can conclude that $A_{n, k}-N(V(H)$ has one large component and a total of at most 5 vertices in the small components. But H is connected so it must be a component in $A_{n, k}-N\left(V(H)\right.$. Thus $A_{n, k}-N(V(H)$ has exactly two components, one of which is H, and both components have at least 5 vertices.

We remark that exhibiting one such admissible neighborhood of size $(5 k-5)(n-$ k) -7 for (1) shows that it is an upper bound, but we need to check all such neighborhoods to establish it as a lower bound. We further remark that there is a weaker lower bound that we have immediately: Letting $s=5$ in Theorem 4, we have that $A_{n, k}$ is super $\left(5(k-2)+2-\frac{5^{2}}{2}\right)(n-k)$-vertex-connected of order 4. Since $5(k-2)+2-\frac{5^{2}}{2}=5 k-20.5$, we can apply Proposition 1 to conclude that the 4extraconnectivity of $A_{n, k}$ is at least $(5 k-20.5)(n-k)+1$. So by exhibiting just one such 4-extra-vertex cut, we know that the 4-extraconnectivity of $A_{n, k}$ is asymptotically equal to $5 k(n-k)$ as k and $n-k$ tend to infinity. The other two theorems can be treated in a similar way. So we have the following corollary.

Corollary 1 As k and $n-k$ tend to infinity, the r-extraconnectivity of $A_{n, k}$ is asymptotically $(r+1) k(n-k)$ for $r=4,5,6$.

Proposition 3 Let $k \geq 23$ and $n-k \geq 3$. Let

$$
S=\{1234 B, 5234 B, 1634 B, 1274 B, 5634 B\}
$$

Then $N(S)$ is a 4-extra-cut in $A_{n, k}$ of size $(5 k-5)(n-k)-7$, where B is a fixed permutation of length $k-4$ and $1234 B$ is a vertex of $A_{n, k}$.

Proof We remark that we require $n-k \geq 3$ as we require 7 symbols $1,2,3,4,5,6,7$ and a block of length 4 . Now the subgraph induced by S is connected, and it is a 4-cycle with a leaf-edge. More precisely, the 4-cycle is given by $1234 B-5234 B-$ $5634 B-1634 B-1234 B$ and the leaf edge is given by $1234 B-1274 B$. Now each vertex of S has $k(n-k)$ neighbors, giving a total of $5 k(n-k)$ vertices. However, three of the neighbors of $1234 B$ are already in S, each of $5234 B, 5634 B, 1634 B$ already has two neighbors in S, and $1274 B$ has one neighbor in S. Thus we have counted $5 k(n-k)-10$ vertices. However some of the vertices have been counted multiple times. We will systemically consider them

1. $1234 B$ and $1634 B$ share $(n-k)-1$ common neighbors outside of S.
2. $1234 B$ and $1274 B$ share $(n-k)-1$ common neighbors outside of S.
3. $1234 B$ and $5234 B$ share $(n-k)-1$ common neighbors outside of S.
4. $1234 B$ and $5634 B$ share 0 common neighbor outside of S.
5. $5234 B$ and $1634 B$ share 0 common neighbor outside of S.
6. $5234 B$ and $1274 B$ share 1 common neighbor outside of S.
7. $5234 B$ and $5634 B$ share $(n-k)-1$ common neighbors outside of S.
8. $1634 B$ and $1274 B$ share 1 common neighbor outside of S.
9. $1634 B$ and $5634 B$ share $(n-k)-1$ common neighbors outside of S.
10. $1274 B$ and $5634 B$ share 0 common neighbor outside of S. (In fact, they share no common neighbor in $A_{n, k}$.)
Thus $|N(S)|=5 k(n-k)-10-5((n-k)-1)-2=(5 k-5)(n-k)-7$. It now follows from Proposition 2 that $N(S)$ is a 4-extra-cut.

Thus we have now proved that the 4-extraconnectivity of $A_{n, k}$ is in the interval $[5 k-20.5)(n-k)+1,(5 k-5)(n-k)-7]$. To show that it is $(5 k-5)(n-k)-$ 7 , we will need to show that $(5 k-5)(n-k)-7$ is the smallest neighbor set of a connected subgraph of size 5 , which we will use a computer for. The following propositions can be proved in a similar way.

Proposition 4 Let $k \geq 30$ and $n-k \geq 3$. Let

$$
S=\{12345 B, 62345 B, 17345 B, 12845 B, 67345 B, 62845 B\}
$$

Then $N(S)$ is a 5-extra-cut in $A_{n, k}$ of size $(6 k-7)(n-k)-9$, where B is a fixed permutation of length $k-5$ and $12345 B$ is a vertex of $A_{n, k}$.

Proposition 5 Let $k \geq 37$ and $n-k \geq 3$. Let

$$
S=\{123456 B, 723456 B, 183456 B, 129456 B, 783456 B, 729456 B, 189456 B\}
$$

Then $N(S)$ is a 6 -extra-cut in $A_{n, k}$ of size $(7 k-9)(n-k)-11$, where B is a fixed permutation of length $k-6$ and $12346 B$ is a vertex of $A_{n, k}$.

Hence Corollary 1 is proved. We remark that finding such a "good" extra-cut is not necessary to prove Corollary 1 . Let r be fixed and suppose $n-k$ is large.

Then consider the $(r+1)$-clique generated by $i 23 \ldots k$ for all $i \in\{1, k+1, k+$ $2, \ldots, k+r\}$. This is part of an $(n-k+1)$-clique. Each vertex generates $(k-$ 1) $(n-k)$ neighbors via positions 2 to k, giving $(r+1)(k-1)(n-k)$ neighbors, which are all distinct. In addition, they share the remaining $(n-k+1)-(r+1)=$ $n-k-r$ vertices in the $(n-k+1)$-clique via position 1 as common neighbors. Thus the neighbor set F of this $(r+1)$-clique has size $(r+1)(k-1)(n-k)+$ $(n-k-r)=((r+1) k-r)(n-k)-r$. Letting $s=r+2$ in Theorem 4, we have that $A_{n, k}$ is super $\left((r+2)(k-2)+2-\frac{(r+2)^{2}}{2}\right)(n-k)$-vertex-connected of order $r+1$. But $\left((r+2)(k-2)+2-\frac{(r+2)^{2}}{2}\right)(n-k) \geq((r+1) k-r)(n-k)-r$ if k and $n-k$ are sufficiently large. Thus for sufficiently large k and $n-k, A_{n, k}-F$ has exactly two components, a large component and a small component that is an $(r+1)$ clique. So the r-extraconnectivity of $A_{n, k}$ is at most $((r+1) k-r)(n-k)-r$. We now let $s=r+1$ in Theorem 4, and we have that $A_{n, k}$ is super $((r+1)(k-2)+$ $\left.2-\frac{(r+1)^{2}}{2}\right)(n-k)$-vertex-connected of order r. Thus we can apply Proposition 1 to conclude that the r-extraconnectivity of $A_{n, k}$ is at least $((r+1)(k-2)+2-$ $\left.\frac{(r+1)^{2}}{2}\right)(n-k)+1$. Therefore the r-extraconnectivity of $A_{n, k}$ is in the interval $[((r+$ 1) $\left.(k-2)+2-\frac{(r+1)^{2}}{2}\right)(n-k)+1,((r+1) k-r)(n-k)-r$] for large k and $n-$ k. (Yes! This is the same type of argument that we have used before.) Thus we have the following result that generalizes Corollary 1.

Proposition 6 Let $r \geq 1$. As k and $n-k$ tend to infinity, the r-extraconnectivity of $A_{n, k}$ is asymptotically $(r+1) k(n-k)$.

To finish the proof of Theorems 5-7, we need to show that the extra-cuts given in the above results are the best among all such cuts generated by a connected subgraph. For this, we use a computer search. Suppose we are looking for an r -extra-cut where $r \in\{4,5,6\}$. We note that since $A_{n, k}$ is vertex-transitive, we may assume that $123 \ldots k$ is in the desired subgraph. Since this subgraph has exactly $r+1$ vertices, the distance between two of its vertices is at most r, thus they can differ in at most r positions. Thus we can assume that every vertex in the desired subgraph is of the form $a_{1} a_{2} \ldots a_{r} B$, where B is fixed. We note that when two vertices differ in exactly one position, then they are part of an $(n-k+1)$-clique, and hence they share $(n-k)-1$ common neighbors. If they differ in exactly two positions, then they share exactly 2 common neighbors. If they differ in more than two positions, then they share no common neighbors. Using these observations, we can grow a search tree from $123 \ldots n$. Use $r=4$ as an example. We can decide how many neighbors of $1234 B$ should be included in the subgraph. Suppose the answer is 4 , then we need to decide how many of the first 4 positions will be used to generate such 4 neighbors. Suppose the answer is 2 . Then without loss of generality, we may assume that it is via the first two positions. Now suppose 1 neighbor is via the first position and 3 neighbors are via the second position. Then we may assume that the 4 neighbors are either $5234 B, 1534 B, 1634 B, 1734 B$ or $5234 B, 1634 B, 1734 B, 1834 B$. We note that there are two cases rather than a number involving n and k. This type of case analysis is suitable for a computer program. The program shows that the extra-cuts given in the above propositions are optimal. A sample code is given in the Appendix.

On a typical computer it took a few seconds to get the answer for $r=4$ and a few minutes to get the answer for $r=6$.

Acknowledgements We thank the anonymous referee for a number of helpful comments and suggestions.

A. Computer Code

```
import java.util.ArrayList;
3
public class Arrangement {
    public static String[] ver;
    public static int R;
    public static ArrayList<Integer> nk1ans;
    public static ArrayList<Integer> consans;
    public static ArrayList<String> ex;
        //We use R as number of vertices and K - as if K>R,
/WLOG let the last
/K-R be the same for all vertices
    public static void main(String[]args) {
        R = 5;
        ver = new String[R];
        nklans = new ArrayList<Integer>();
        consans = new ArrayList<Integer>();
        ex = new ArrayList<String>();
        String a = "";
        String b = " ";
        a+=(char) ('A'+0);
        b+=(char)('A'+R);
        for(int i = 1;i<R;i++) {
            a+=(char) ('A'+i);
            b+=(char)('A'+i);
        }
        ver[0] = a;
        ver[1] = b;
        solve(2,R+1,0);
        for(int i = 0; i<nklans.size();i++) {
            System.out.println("("+R+"nk-" +nklans.get (i)+")
n-k) -"+(nklans.get(i)+consans.get(i))+", EX: "+ex.get(i));
            }
        }
        //Recursive function for brute force solution
        public static void solve(int point, int nodl,int largchg) {
//nodl: number of different letters used,largchg is the
//largest index such that the for some vert at that
//index that char is different from ABCDEF.
35 if(point!=R) {
36 ArrayList<String> newVerts = new ArrayList<String>();
37 for(int i = 0; i<=point-1;i++) {
3 8 ~ n e w V e r t s . a d d ( v e r [ i ] ) ; / / T h i s ~ i s ~ s u c h ~ t h a t ~ w e \ \ \
//don't add the previous vertices as new vertices - we
```

```
//will ignore the first few
39 }
40 for(int i = 0; i<=point-1;i++) {
41 for(int j = 0; j<=nodl;j++) {
42 char cur = (char)('A'+j);
43 if(ver[i].indexOf(cur)!=-1) {
4 4 ~ c o n t i n u e ;
45 }
46 else {
47 for(int k = 0; k<=largchg+1;k++) {
48 String temp =
ver[i].substring(0,k)+cur+ver[i].substring(k+1);
49 if(!newVerts.contains(temp)) {
50 newVerts.add(temp);
51 ver[point] = temp;
5 2 ~ s o l v e ( p o i n t + 1 , M a t h . m a x ( n o d l , ~ j + 1 ) ,
Math.max(largchg, k));
53 }
54
55 }
56
5 7
58 }
59 }
60 else {
61 String ans = calc();
62 StringTokenizer st = new StringTokenizer(ans);
63 int nk1 = Integer.parseInt(st.nextToken());
64 int cons = Integer.parseInt(st.nextToken());
65 if(!nk1ans.contains(nk1)) {
66 nk1ans.add(nk1);
67 consans.add(cons);
68 String exa = "";
6 9
7 0
7 1
72
7 3
7 4
75
76
77
78
79
8 0
8 1
82
8
84
85
86
87
88 }
89
90
91
```

92
93 //Calculates neighbor set of given set of vertices
94
95
96
97
98
99
100
101
102
103
104
104
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
public static String calc() \{
int nklcoef $=0$;
int cons $=0$;
for(int $i=1 ; i<R ; i++)\{$
String cur $=$ ver[i];
ArrayList<String> dcverts = new ArrayList<String>();
ArrayList<Integer> chgs = new ArrayList<Integer>();
boolean[] isShared = new boolean[R];
int isSharednum $=0$;
for(int $j=0 ; j<i ; j++)$ \{
String cur2 = ver[j];
int differs $=0$;
int diff1 $=0$;
int diff2 $=0$;
for (int $k=0 ; k<R ; k++$) \{
if(cur.charAt (k)!=cur2.charAt (k)) \{
if(differs == 0) \{
diff1 $=k ;$
differs++;
\}
else if(differs == 1) \{
diff2=k;
differs++;
\}
else if(differs==2) \{
differs++;
break;
\}
\}
\}
if(differs == 1) \{
if(!isShared[diff1]) \{
isShared[diff1] = true;
isSharednum++;
nk1coef++;
\}
\}
if(differs == 2) \{
if(diff1>diff2) \{
int temp = diff1;
diff1 = diff2;
diff2 = temp;
\}
if((cur.charAt(diff1)!=cur2.charAt(diff2))) \{
String $v=$ cur.substring(0, diff1) +
cur2. charAt (diff1) +cur.substring (diff1+1);
144
145 if(!dcverts.contains(v)) \{
146 dcverts.add(v);

```
147
148
149
150 if((cur.charAt(diff2)!=cur2.charAt(diff1))) {
151 String v = cur.substring(0,
diff2)+cur2.charAt(diff2)+cur.substring(diff2+1);
152 if(!dcverts.contains(v)) {
153
154
                                    chgs.add(diff2);
155
156
157
158
159 for(int n = 0; n<chgs.size(); n++) {
160 if(isShared[chgs.get(n)]) {
161 chgs.remove(n);
162 dcverts.remove(0);
163 n--;
164 }
165 else if(dcverts.get(n).indexOf(dcverts.get(n).
charAt(chgs.get(n)),chgs.get(n)+1)!=-1) {
166 chgs.remove(n);
167 dcverts.remove(0);
168 n--;
1 6 9
170
1 7 1
172
173
174
175
cons+=dcverts.size();
176 cons= (cons - isSharednum)+1;
1 7 7
    }
    return nk1coef+" "+cons;
178
179 }
180}
1 8 1
```


References

1. Cheng, E., Qiu, K., Shen, Z.: On the restricted connectivity of the arrangement graph. Journal of Supercomputing 73, 3669-3682 (2017).
2. Xu, L., Lin, L., Zhou, S., Hsieh, S.-Y.: The extra connectivity, extra conditional diagnosability, and t / m-diagnosability of arrangement graphs. IEEE Transactions on reliability 65, 1248-1262 (2016).
3. Cheng, E., Lipták, L., Yuen, A.: Linearly many faults in arrangement graphs. Networks 61, 281-289 (2013).

\boldsymbol{k}-Paths of \boldsymbol{k}-Trees

Abstract

Allan Bickle

Abstract A k-tree is a graph that can be formed by starting with K_{k+1} and iterating the operation of making a new vertex adjacent to all the vertices of a k-clique of the existing graph. When the order $n>k+1$, a k-path graph is a k-tree with exactly two vertices of degree k. We state a forbidden subgraph characterization for k-paths as k-trees. We characterize k-trees with diameter $d \geq 2$ based on the k-paths they contain.

Keywords k-Tree $\cdot k$-Path • Diameter

1 Introduction

In this paper, we seek to describe the structure of k-trees using k-paths, particularly focusing on the diameter of k-trees. Undefined notation and terminology will follow [2].

This work builds on previous papers on the Wiener index of maximal k-degenerate graphs [4] (with Zhongyuan Che) and on maximal k-degenerate graphs with diameter 2 [3].

Definition 1 A k-tree is a graph that can be formed by starting with K_{k+1} and iterating the operation of making a new vertex adjacent to all the vertices of a k clique of the existing graph. The clique used to start the construction is called the root of the k-tree.

A k-leaf is a degree k vertex of a k-tree.
A k-path graph G is an alternating sequence of distinct k - and $k+1$-cliques $e_{0}, t_{1}, e_{1}, t_{2}, \ldots, t_{p}, e_{p}$, starting and ending with a k-clique and such that t_{i} contains exactly two k-cliques e_{i-1} and e_{i}.

[^21]An example of a 2-path (which is also a 2-tree) is shown below left. A 2-tree that is not a 2-path (the triangular grid $T r_{2}$) is below right.

Note that k-paths are also known as linear k-trees [1]. They are closely related to pathwidth [6]; in particular, they are the maximal graphs with proper pathwidth k. There is a simple characterization of these graphs.

Theorem 1 [5] Let G be a k-tree with $n>k+1$ vertices. Then G is a k-path graph if and only if G has exactly two k-leaves.

This leads to a forbidden subgraph characterization for k-paths as k-trees.
Theorem 2 A k-tree is a k-path if and only if it does not contain $K_{k}+\bar{K}_{3}$ or for $k \geq 2, T r_{2}+K_{k-2}$.

Proof (\Rightarrow) (contrapositive) These graphs contain three k-leaves, so they are not k-paths.
(\Leftarrow) (contrapositive) A k-tree that is not a k-path must have at least three k-leaves. Then it must contain a subgraph G that is minimal with respect to this property. It will have exactly three k-leaves, and deleting any of them results in a k-path. Let H be the graph formed by deleting all k-leaves from G. If H is not a clique, then it has two k-leaves, one of which has only one k-leaf of G neighboring it, so G is not minimal.

If $H=K_{k}, G=K_{k}+\bar{K}_{3}$. If $H=K_{k+1}$, each of its vertices are adjacent to a k-leaf of G. If two k-leaves of G have the same neighborhood, then G is not minimal. Thus there are $k-2$ vertices of H adjacent to all three k-leaves of G, and deleting them produces $T r_{2}$.

2 Diameter of k-Trees

A tree is minimal with respect to diameter d if and only if it is P_{d+1}. In [3], I found a characterization of k-trees minimal with respect to diameter 3 .

Definition 2 A dominating vertex of a graph is a vertex adjacent to all other vertices.

Algorithm 1 Let P be a $k-2$-path, $k \geq 3$, of order $n-4$ with k-leaves w and x. Join dominating vertices y and z to P, forming $P+K_{2}$. Add u with neighborhood $N(w) \cup\{w, y\}$, and v with neighborhood $N(x) \cup\{x, z\}$. Let \mathbb{G}_{k} be the class of all graphs formed this way.

Theorem 3 [3] A graph G is a k-tree minimal with respect to diameter 3 if and only if $G \in \mathbb{G}_{k}$.

Equivalently, a k-tree has diameter at most 2 if and only if it does not contain any graph in \mathbb{G}_{k}.

The graphs in \mathbb{G}_{k} are all k-paths. A generalization also holds.
Lemma 1 A k-tree minimal with respect to diameter $d \geq 2$ is a k-path.
Proof A k-tree with diameter at least d must contain a pair of vertices distance d apart. Now adding a vertex to a k-tree cannot change any existing distances. Thus in a minimal k-tree with diameter d, the vertices at distance d must be k-leaves, and no other vertices are k-leaves.

The 2-paths with diameter d cannot be characterized solely by their degree sequences, as there are two 2-paths with degree sequence $5,4,4,3,3,3,2,2$ which have diameters 3 and 4 (see below). A characterization based on the arrangement of the degree 4 vertices is possible.

Definition 3 A hub is a vertex of degree at least 5 of a 2-path. A truss is a subgraph induced by vertices of degree 4 in a 2-path. An external truss has a vertex neighboring a 2-leaf, an internal truss does not.

In the 2-path below, the black vertex is an internal truss and the gray vertices induce an external truss.

Theorem 4 Let G be a 2-tree minimal with respect to diameter d. Then G is a 2path, and if $G \neq P_{2 d}^{2}$, the 2-leaves are adjacent to external trusses with odd order. If h is the number of hubs, t_{i} is the order of the ith internal truss, and t^{\prime} and $t^{\prime \prime}$ are the orders of the external trusses, then $d=h+\sum\left\lfloor\frac{t_{i}}{2}\right\rfloor+\left\lceil\frac{t^{\prime}}{2}\right\rceil+\left\lceil\frac{t^{\prime \prime}}{2}\right\rceil+1$.

Proof By Lemma 1, a minimal 2-tree with diameter d is a 2-path. To show the formula holds, we use induction on n. Since $G \neq P_{2 d}^{2}$, it contains a hub. We start with the fan induced by its closed neighborhood. This has $h=1, d=2$, and all other quantities 0 . We add vertices one at a time, checking that the formula holds in each case.

There are only two choices how to add a new 2-leaf next to an existing 2-leaf. In one choice, the other neighbor had degree at least 4 . If it is already a hub, the diameter does not increase. If it is part of a truss of odd order, one vertex of the truss becomes a hub, the rest of the truss (if any) becomes internal, the sum does not change, and the diameter does not increase. If it is part of a truss of positive even order, one vertex of the truss becomes a hub, the rest of the truss becomes internal, the sum does not change, and the diameter does not increase.

In the other choice, the other neighbor had degree 3 , so we create an external truss or add one vertex to an existing external truss. If the truss had odd order, adding this vertex does not change the diameter. If the truss is new or had even order, adding this vertex increases the diameter by 1 .

Since only the last case increases the diameter, in a 2-path minimal with respect to d, the 2-leaves are adjacent to external trusses with odd order.

Thus a 2-tree with order $n \geq 5$ has diameter at least d if any only if it contains a 2-path with the properties described in the theorem. This implies that a 2-tree has diameter at least 3 if any only if it contains P_{6}^{2}.

To characterize k-trees with diameter d, we need a way to describe the construction of k-paths.

A k-path can be constructed from $K_{k}+\bar{K}_{2}$ with k-leaves u and v by maintaining u as a k-leaf and adding a new k-leaf adjacent to v and $k-1$ of its k neighbors. Label the k neighbors of $u 1$ through k (in any way). Each time a k-leaf x is added adjacent to (old) k-leaf w, label w with the label of its neighbor that does not neighbor x.

Define a string of length $n-k-2$ with the labels added after the first k. Call this a construction string of the k-path.

Definition 4 A string of numbers contains a pattern if the numbers in the pattern occur in order (not necessarily consecutively) in the string.

For example, the pattern 321 is contained in 312213 but not 132233.
Theorem 5 A k-tree has diameter $d \geq 2$ if and only if it contains a k-path whose construction string contains at least $d-2$ consecutive permutations of $\{1, \ldots, k\}$.

Proof By Lemma 1, a k-tree with diameter d contains a k-path with diameter d. Let G be a k-path with diameter d and k-leaves (say) u and v. We show that the number of consecutive permutations of $\{1, \ldots, k\}$ in the string is always $d-2$. Certainly this is true for $K_{k}+\bar{K}_{2}$, which is minimal with diameter 2 and has an empty string.

Let H be a minimal k-path contained in G with k-leaves u and w. The vertices in $N(w)$ have labels $1, \ldots, k$. Each vertex added to form G removes one vertex from the neighborhood of the k-leaf it replaces, so at most one vertex from $N_{H}(w)$. To increase the diameter, each vertex in $N_{H}(w)$ must be removed, and each will be replaced with another vertex with the same label. The diameter increases by one exactly when the string contains one more permutation of $\{1, \ldots, k\}$.

References

1. A. Abiad, B. Brimkov, A. Erey, L. Leshock, X. Martinez-Rivera, S. O, S. Song, J. Williford (2017) On the Wiener index, distance cospectrality and transmission regular graphs, Discrete Appl. Math. 230:1-10.
2. A. Bickle (2020) Fundamentals of Graph Theory, AMS.
3. A. Bickle (2021) Maximal k-degenerate Graphs with Diameter 2, International Journal of Mathematical Combinatorics 2:67-78.
4. A. Bickle, Z. Che (2021) Wiener Indices of Maximal k-Degenerate Graphs, Graphs and Combinatorics, 37 2:581-589.
5. L. Markenzon, C. M. Justel, N. Paciornik (2006) Subclasses of k-trees: Characterization and recognition, Discrete Appl. Math. 154 5:818-825.
6. A. Proskurowski, J. Telle (1999) Classes of graphs with restricted interval models, Discrete Math. Theoret. Comput. Sci. 3:167-176.

Rearrangements of the Simple Random Walk

Marina Skyers and Lee J. Stanley

Abstract

In this paper we will look at representations of the simple random walk, S_{n}, and show how to effectively rearrange the sequence of terms $\frac{S_{n}}{\sqrt{n}}$ in order to achieve almost sure convergence to the standard normal on the open interval $(0,1)$. This is done via a suitable choice of permutation $F:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$. We are interested in how much rearranging of the simple random walk is optimal. We will describe how to minimize the graph-theoretic complexity of these permutations and also show that they satisfy some additional nice properties.

Keywords Simple random walk \cdot Permutations \cdot Complexity

1 Introduction

Let S_{n} be the random walk on $(0,1)$. In 1733, de Moivre postulated the first version of the central limit theorem for independent random variables that take on values ± 1. It is an important special case of the central limit theorem that the S_{n} converge in distribution to the standard normal on $(0,1)$. Well-known results ($[4,6-8]$) show this cannot possibly be improved to almost sure convergence. The random walk has been the subject of intense study (see the work of Erdös and Revesz [5] and Shi and Toth [9]). Indeed, the definition of the S_{n} is immediately accessible and intuitive and each S_{n} is readily representable as the sum of an i.i.d. family (of size n) of irreducibly simpler random variables. While immediately intuitive, the S_{n} are quite disorderly. This disorder is mirrored by the fact that, for almost all $x,\left\{\left.\frac{S_{n}(x)}{\sqrt{n}} \right\rvert\, n \in \mathbb{N}^{+}\right\}$diverges.

[^22]Definition 1 Let λ will denote Lebesgue measure on [0, 1] (or on one of the variants with either endpoint or both excluded). As usual, a probability space is a triple (Ω, \mathscr{S}, P), where Ω is the set of points, \mathscr{S} is the σ-algebra of Borel subsets of Ω, and $P: \mathscr{S} \rightarrow[0,1]$ is the (σ-additive) probability measure. In this paper we will have $\Omega=[0,1), \mathscr{S}$ will be the σ-algebra of Borel subsets of Ω, and P will be the restriction of Lebesgue measure to the Borel sets.

We will use card (x) to denote the cardinality of the set $x . C$ will denote Cantor space, $\{0,1\}^{\mathbb{N}^{+}}$.
Definition 2 For $x \in C:=\{0,1\}^{\mathbb{N}^{+}}$excluding the two constant sequences, identify x with $\sum_{i=1}^{\infty} \frac{x_{i}}{2^{i}} \in(0,1)$. For dyadic rationals, choose the representation with a tale of zeros. For $x \in C$ and for finite binary sequences \boldsymbol{r} of length n, we will use the notation $x \supseteq \boldsymbol{r}$ to mean x extends \boldsymbol{r}, i.e., x agrees with \boldsymbol{r} for the first n terms of its dyadic expansion. Define for $1 \leq i \leq n, R_{i}(x):=(-1)^{1+x_{i}}$ and $S_{n}(x):=\sum_{i=1}^{n} R_{i}(x)$. Define Weight $_{n}(x)$ as the sum of the first n coordinates of x. Notice that $S_{n}(x)=-n+2 \operatorname{Weight}_{n}(x)$. Obviously, $S_{n}(x)$ and Weight ${ }_{n}(x)$ depend only on the first n coordinates of x. So, for binary sequences \boldsymbol{r} of length n, we can define

$$
S_{n}(\boldsymbol{r}):=S_{n}(x) \text { for any } x \in C \text { such that } x \supseteq \boldsymbol{r}
$$

Weight $(\boldsymbol{r}):=\operatorname{Weight}_{n}(x)$ for any $x \in C$ such that $x \supseteq \boldsymbol{r}$.
Observe that $S_{n}(\boldsymbol{r})=-n+2$ Weight (\boldsymbol{r}). We can see this in the graph of $S_{n}(x)$, at each level n. The graphs of $S_{n}(x)$, for $n=5,6,7$, will be illustrated below.

We will see that the quantile of S_{n} turns out to be a very orderly, non-decreasing step function, which we will call S_{n}^{*}, and it can be explicitly defined as follows. Define steps $A_{n, i}, i=0, \ldots, n$, where

$$
A_{n, i}=\left(\frac{1}{2^{n}} \sum_{j=0}^{i-1}\binom{n}{j}, \frac{1}{2^{n}} \sum_{j=0}^{i}\binom{n}{j}\right]
$$

For such i, and for all $x \in A_{n, i}$ we define $S_{n}^{*}=-n+2 i$. For $n \in \mathbb{N}^{+}$, let $\kappa=\kappa_{n}=$ $\kappa_{n}(x)$ be the following integer: $\kappa=\sum_{i=1}^{n} x_{i} 2^{n-i}$. Then $x \in\left[\frac{\kappa_{n}(x)}{2^{n}}, \frac{\kappa_{n}(x)+1}{2^{n}}\right)$. So we can compute $S_{n}^{*}(x)$ by identifying the step $A_{n, i}$ that includes the interval $\kappa_{n}(x)$. Note that, for each $n \in \mathbb{N}^{+}$and for $\kappa \in\left[0,2^{n}\right) \cap \mathbb{N}$,

$$
-n \leq S_{n}(\kappa), S_{n}^{*}(\kappa) \leq n
$$

and S_{n}, S_{n}^{*} satisfy the dualization equations

$$
S_{n}(\kappa)=-S_{n}\left(2^{n}-1-\kappa\right),
$$

$$
S_{n}^{*}(\kappa)=-S_{n}^{*}\left(2^{n}-1-\kappa\right)
$$

Below are the graphs for S_{n} and $S_{n}^{*}(x)$ when $n=5,6,7$.

In this paper we will investigate representations of S_{n}^{*} that are as close as possible to the canonical representation for S_{n}, via permutations $F:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ such that $S_{n}^{*}=S_{n} \circ F$. In fact, it turns out that $\left(F_{n} \mid n \in \mathbb{N}^{+}\right)$is uniformly primitive recursive ($[1,3]$). Our results on the representability of S_{n}^{*} are proved in Sect.2. In fact,
somewhat surprisingly, Theorem 6 shows there are a large number of such representations of each S_{n}^{*}. In Sect. 3, we provide an explicit, highly effective construction of a preferred sequence of such representations, uniformly and highly effectively, in n. In Sect.4, we discuss how much rearranging of the simple random walk is optimal from the point of view of minimizing the graph-theoretic complexity of the function F, and look ahead to future work.

2 Representation Results

Skorokhod proved the following in [10].
Theorem 3 Suppose that on a probability space, we have random variables X_{n}, $n \in \mathbb{N}^{+}$, and suppose the X_{n} converge weakly to X. Then on $([0,1], B([0,1]), \lambda)$, there are random variables $Y_{n}, n \in \mathbb{N}^{+}$, and Y, with the same distributions as the X_{n} and X, respectively, and such that the Y_{n} converge almost surely to Y.

If in Skorokhod's Theorem, we start from $X_{n}=\frac{S_{n}}{\sqrt{n}}$, then, the Y_{n} that result are exactly $\frac{S_{n}^{*}}{\sqrt{n}}$. Now we will look closely at Skorokhod's construction so as to obtain an explicit characterization of S_{n}^{*}. Let $A_{t}:=\left\{y \in(0,1) \mid S_{n}(y) \leq t \sqrt{n}\right\}$. So $\lambda(A(t))=$ $P\left(\frac{S_{n}}{\sqrt{n}} \leq t\right)=P\left(X_{n} \leq t\right)$ (see Definition 1). Then $A_{t}=\emptyset$ for $t<-\sqrt{n}$, and $A_{t}=$ $(0,1)$ for $t \geq \sqrt{n}$. More generally, A_{t} will be constant on these intervals of t :

$$
(-\infty,-\sqrt{n}),\left[-\sqrt{n}, \frac{2-n}{\sqrt{n}}\right), \ldots,\left[\frac{-n+2 k}{\sqrt{n}}, \frac{-n+2(k+1)}{\sqrt{n}}\right), \ldots,\left[\frac{n-2}{\sqrt{n}}, \sqrt{n}\right),[\sqrt{n}, \infty)
$$

for $0 \leq k<n$. For $x \in(0,1]$, define $X_{n}^{*}(x):=\inf \left\{t \in \mathbb{R} \mid \lambda\left(A_{t}\right) \geq x\right\}$. A straightforward computation shows that X_{n}^{*} is a non-decreasing step function with steps $A_{n, i}$, $i=0, \ldots, n$, where

$$
A_{n, i}=\left(\frac{1}{2^{n}} \sum_{j=0}^{i-1}\binom{n}{j}, \frac{1}{2^{n}} \sum_{j=0}^{i}\binom{n}{j}\right]
$$

Definition 4 For such i, and for all $x \in A_{n, i}$, we define

$$
X_{n}^{*}(x):=\frac{-n+2 i}{\sqrt{n}}
$$

and

$$
S_{n}^{*}(x):=-n+2 i
$$

This sequence of definitions, culminating in the definition of S_{n}^{*}, carries out Skorokhod's construction starting from the sequence $\left(\left.\frac{S_{n}}{\sqrt{n}} \right\rvert\, n \in \mathbb{N}^{+}\right)$. Therefore the "Sko-
rokhod sequence" $\left(\left.\frac{S_{n}^{*}}{\sqrt{n}} \right\rvert\, n \in \mathbb{N}^{+}\right)$converges almost surely to the standard normal, this time on $(0,1]$, but the fact that $S_{n}^{*}(1)$ happens to be defined turns out to be more of an annoyance than a feature, so we'll view S_{n}^{*} as defined only on $(0,1)$. Note that the definition of $S_{n}^{*}(x)$ requires only that we identify the step $A_{n, i}$ to which x belongs. This depends only on the first n coordinates of x, and so the same holds for $S_{n}^{*}(x)$ (as indeed it does for $S_{n}(x)$). This, in turn, means that we can view S_{n}^{*} as being defined on $\{0,1\}^{n}$ just as we did for S_{n} in Definition 2:

$$
S_{n}^{*}(\boldsymbol{r}):=S_{n}^{*}(x) \text { for any } x \in C^{\prime} \text { such that } x \supseteq \boldsymbol{r}
$$

So we have shown that if in Skorokhod's Theorem, we start from $X_{n}=\frac{S_{n}}{\sqrt{n}}$, then, the Y_{n} that result are exactly $\frac{S_{n}^{*}}{\sqrt{n}}$. So for each $n \in \mathbb{N}^{+}, \frac{S_{n}^{*}}{\sqrt{n}}$ has the same distribution as $\frac{S_{n}}{\sqrt{n}}$ and, more importantly, the $\frac{S_{n}^{*}}{\sqrt{n}}$ converge almost surely to the standard normal on $(0,1)$. An important question that arises here is, are there representations of S_{n}^{*} similar to the canonical representation for S_{n} ? And if so, how close can they be to the canonical representation for S_{n} ? We can answer these questions as follows. (For additional work related to the following results, see [2].)

Theorem 5 For any n, there is a canonical one to one correspondence between permutations $F:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ such that $S_{n}^{*}=S_{n} \circ F$, and representations $S_{n}^{*}=$ $\sum_{i=1}^{n} R_{n, i}^{*}$, where $\left(R_{n, i}^{*} \mid 1 \leq i \leq n\right)$ is an i.i.d. family of random variables on $(0,1)$ such that each $R_{n, i}^{*}$ depends only on the first n coordinates of x and takes on values $-1,1$ with equal probability.

Proof Let balanced mean takes on values $-1,1$ each with probability $\frac{1}{2}$. Suppose $S_{n}^{*}=S_{n} \circ F$. Define

$$
R_{n, i}^{*}(x):=(-1)^{1+\left(F\left(x_{1}, \ldots, x_{n}\right)\right)_{i}}
$$

Since $S_{n}(x)=\sum_{i=1}^{n}(-1)^{1+x_{i}}, S_{n}(F(x))=\sum_{i=1}^{n} R_{n, i}^{*}(x)$. To show the $R_{n, i}^{*}$ are balanced, it suffices to show for all $i=1, \ldots, n$ and $\varepsilon \in\{0,1\}$,

$$
\lambda\left(\left\{x \mid\left(F\left(x_{1}, \ldots, x_{n}\right)\right)_{i}=\varepsilon\right\}\right)=\frac{1}{2}
$$

Let $A=\left\{t \in\{0,1\}^{n} \mid t_{i}=\varepsilon\right\}$. So $\operatorname{card}(A)=\frac{2^{n}}{2}=2^{n-1}$. Since F is $1-1$, card $\left(F^{-1}[A]\right)=2^{n-1}$. Now, $F^{-1}[A]=\left\{\boldsymbol{r} \in\{0,1\}^{n} \mid(F(\boldsymbol{r}))_{i}=\varepsilon\right\} \quad$ and $\quad\{x \mid$ $\left.\left(F\left(x_{1}, \ldots, x_{n}\right)\right)_{i}=\varepsilon\right\}=\bigsqcup_{r \in F^{-1}[A]} N_{r}$. So, $\lambda\left(\left\{x \mid\left(F\left(x_{1}, \ldots, x_{n}\right)\right)_{i}=\varepsilon\right\}\right)=\lambda$ $\left(\bigcup_{r \in F^{-1}[A]} N_{r}\right)=2^{n-1} \cdot \frac{1}{2^{n}}=\frac{1}{2}$.

To show the $R_{n, i}^{*}$ are independent, it suffices to show for all $s \in\{-1,1\}^{n}$,

$$
p\left(s_{1}, \ldots, s_{n}\right)=p_{1}\left(s_{1}\right) \cdot \ldots \cdot p_{n}\left(s_{n}\right)
$$

where p is the joint pmf of the $R_{n, i}^{*}$ and p_{i} is the pmf of $R_{n, i}^{*}$ alone. We showed the right hand side is simply $\left(\frac{1}{2}\right)^{n}$, so it suffices to show $p\left(s_{1}, \ldots, s_{n}\right)=\frac{1}{2^{n}}$. Recall that $p\left(s_{1}, \ldots, s_{n}\right)=P\left(R_{n, 1}^{*}=s_{1}, \ldots, R_{n, n}^{*}=s_{n}\right)$. Let $t \in\{0,1\}^{n}$ be such that $t_{i}= \begin{cases}0 & \text { if } s_{i}=-1 \\ 1 & \text { if } s_{i}=1 .\end{cases}$
F is one-to-one, so there is a unique $\boldsymbol{r} \in\{0,1\}^{n}$ such that $F(\boldsymbol{r})=\boldsymbol{t}$. Then the probability of the event $E_{s}=\left(R_{n, 1}^{*}=s_{1}, \ldots, R_{n, n}^{*}=s_{n}\right)$ is exactly

$$
\begin{aligned}
\lambda\left(\left\{x \mid\left(F\left(x_{1}, \ldots, x_{n}\right)\right)_{1}=t_{1}, \ldots,\left(F\left(x_{1}, \ldots, x_{n}\right)\right)_{n}=t_{n}\right\}\right) & =\lambda\left(\left\{x \mid F\left(x_{1}, \ldots, x_{n}\right)=\boldsymbol{t}\right\}\right) \\
& =\lambda\left(\left\{x \mid\left(x_{1}, \ldots, x_{n}\right)=\boldsymbol{r}\right\}\right) \\
& =\lambda\left(N_{\boldsymbol{r}}\right) \\
& =\frac{1}{2^{n}} .
\end{aligned}
$$

Now suppose $\left(R_{n, i}^{*} \mid 1 \leq i \leq n\right)$ is as above. Fix $r \in\{0,1\}^{n}$. $\left(R_{n, 1}^{*}\right.$ $\left.(x), \ldots, R_{n, n}^{*}(x)\right)$ is constant on N_{r}. Denote that constant value by $G(\boldsymbol{r})$. So G : $\{0,1\}^{n} \rightarrow\{-1,1\}^{n}$. G is one-to-one since if $\boldsymbol{u} \in\{0,1\}^{n}, \boldsymbol{u} \neq \boldsymbol{r}$, and $G(\boldsymbol{u})=G(\boldsymbol{r})$, then

$$
P\left(R_{n, 1}^{*}=(G(\boldsymbol{r}))_{1}, \ldots, R_{n, n}^{*}=(G(\boldsymbol{r}))_{n}\right) \geq \lambda\left(N_{\boldsymbol{r}}\right)+\lambda\left(N_{\boldsymbol{u}}\right)=\frac{1}{2^{n-1}}
$$

but by our hypotheses of balanced and independent, $P\left(R_{n, 1}^{*}=\right.$ $\left.(G(\boldsymbol{r}))_{1}, \ldots, R_{n, n}^{*}=(G(\boldsymbol{r}))_{n}\right)=\frac{1}{2^{n}}$. Since $G:\{0,1\}^{n} \rightarrow\{-1,1\}^{n}$, and since the domain and target of G are finite sets of the same cardinality, G is one-to-one if and only if it is onto. So we have that G is both one-to-one and onto. Define $F(\boldsymbol{r})=\boldsymbol{t}$, where $t_{i}=\left\{\begin{array}{ll}0 & \text { if }(G(\boldsymbol{r}))_{i}=-1 \\ 1 & \text { if }(G(\boldsymbol{r}))_{i}=1 .\end{array}\right.$ Then $S_{n}(F(x))=\sum_{i=1}^{n}(-1)^{1+t_{i}}$ $=\sum_{i=1}^{n} R_{n, i}^{*}(x)=S_{n}^{*}(x)$, i.e., F is as required.

In addition, the following theorem shows there are many such permutations.
Theorem 6 For each n, there are exactly $\prod_{i=0}^{n}\left(\binom{n}{i}!\right)$ permutations $F:\{0,1\}^{n} \rightarrow$ $\{0,1\}^{n}$ such that $S_{n}^{*}=S_{n} \circ F$.

Proof Recall that

$$
A_{n, i}=\left\{s \in\{0,1\}^{n} \mid S_{n}^{*}(x)=-n+2 i \text { for all } x \supseteq s\right\},
$$

and let

$$
B_{n, i}=\left\{s \in\{0,1\}^{n} \mid S_{n}(s)=-n+2 i\right\} .
$$

Let f be a permutation of $\{0,1\}^{n}$. Then $S_{n}^{*}=S_{n} \circ f$ if and only if for all $0 \leq i \leq n$, $f\left[A_{n, i}\right]=B_{n, i}$, i.e., if and only if $f \upharpoonright A_{n, i}$ is a bijection from $A_{n, i}$ to $B_{n, i}$, and of course there are $\binom{n}{i}$! such bijections. Since $f=\bigcup_{i=0}^{n}\left(f \upharpoonright A_{n, i}\right)$ and since the $A_{n, i}$ (respectively $B_{n, i}$) are pairwise disjoint, the conclusion is clear.

Corollary 7 For each n, there are exactly $\prod_{i=0}^{n}\left(\binom{n}{i}!\right)$ families $\left(R_{n, i}^{*} \mid i=1, \ldots, n\right)$ as above.

Additional criteria make some of these permutations more natural than (and therefore preferable to) others. We say $\left(F_{n} \mid n \in \mathbb{N}^{+}\right)$is suitable if and only if for all n, F_{n} is a permutation of $\{0,1\}^{n}$ satisfying $S_{n}^{*}=S_{n} \circ F$ and such that:
(a) $\left(F_{n} \mid n \in \mathbb{N}^{+}\right)$is explicitly and naturally definable, uniformly and highly effectively in n,
(b) if $\boldsymbol{r} \in\{0,1\}^{n}$ and $S_{n}^{*}(\boldsymbol{r})=S_{n}(\boldsymbol{r})$, then $F_{n}(\boldsymbol{r})=\boldsymbol{r}$,
(c) F_{n} is as close as possible to being self-inverse (even for fairly small n (such as $n=5,6,7$), it is impossible for F_{n} to literally be self-inverse).

3 Rearrangements of the Random Walk

We first look at a variant, $\left(G_{n} \mid n \in \mathbb{N}^{+}\right)$, satisfying only the first two criteria, (a) and (b), as well as the composition equation, $S_{n}^{*}=S_{n} \circ G_{n}$. So each G_{n} will map Step to Weight $\left(\operatorname{Step}_{n}(\kappa)=\right.$ Weight $\left._{n}\left(G_{n}(\kappa)\right)\right)$, and further, the mapping will be in an order-preserving fashion (except as ruled out by criterion (b)). This means that for all $0 \leq \kappa<2^{n}$,
(i) If $\operatorname{Step}_{n}(\kappa)=$ Weight $_{n}(\kappa)$, then $G_{n}(\kappa)=\kappa$,
(ii) If $\operatorname{Step}_{n}(\kappa) \neq \operatorname{Weight}_{n}(\kappa)$, and, if further, $\kappa<m<2^{n}$ and Step_{n} $(\kappa)=\operatorname{Step}_{n}(m) \neq \operatorname{Weight}_{n}(m)$, then $G_{n}(\kappa)<G_{n}(m)$.

Lemma 8 (i) and (ii) define a unique sequence $\left(G_{n} \mid n \in \mathbb{N}^{+}\right)$satisfying the composition equations $S_{n} \circ G_{n}=S_{n}^{*}$.

Proof We have $A_{n, i}=\left\{\kappa \mid \operatorname{Step}_{n}(\kappa)=i\right\}$ and we define $B_{n, i}:=\left\{\kappa \mid \operatorname{Weight}_{n}(\kappa)=i\right\}$. Further, let

$$
\begin{aligned}
& A_{n, i}^{1}:=A_{n, i} \backslash B_{n, i}=A_{n, i} \backslash\left(A_{n, i} \cap B_{n, i}\right), \\
& B_{n, i}^{1}:=B_{n, i} \backslash A_{n, i}=B_{n, i} \backslash\left(A_{n, i} \cap B_{n, i}\right) .
\end{aligned}
$$

These are the sets of things that are out of place on the i th step, or of the i th weight, respectively. We have the following equation:

$$
\operatorname{card}\left(A_{n, i}^{1}\right)=\binom{n}{i}-\operatorname{card}\left(A_{n, i} \cap B_{n, i}\right)=\operatorname{card}\left(B_{n, i}^{1}\right) .
$$

$G_{n} \upharpoonright A_{n, i}^{1}$ is simply the order-preserving bijection between $A_{n, i}^{1}$ and $B_{n, i}^{1}$.
In fact $\left(G_{n} \mid n \in \mathbb{N}^{+}\right)$is uniformly primitive recursive in the following precise sense: there exists a single primitive recursive function $G(n, \kappa)$ such that for all n, $G(n, \cdot) \upharpoonright\left\{0, \ldots, 2^{n}-1\right\}=G_{n}$. Simply take $G(n, \kappa)$ to be equal to $G_{n}(\kappa)$, when $0 \leq \kappa<2^{n}$, and supply a suitable default value (e.g., $G(n, \kappa)=0$, or $G(n, \kappa)=\kappa$), when $\kappa \geq 2^{n}$ or $n=0$, then we have defined a unique function $G: \mathbb{N}^{2} \rightarrow \mathbb{N}$. It is not very difficult to show that G primitive recursive. Each G_{n} satisfies the dualization equation $G_{n}\left(2^{n}-1-\kappa\right)=2^{n}-1-G_{n}(\kappa)$.

For $n=3,4,5,6,7$ and each κ such that $\operatorname{Step}(n, \kappa) \neq \operatorname{Weight}(\kappa)$ (i.e., κ is out of place at level n), the orbit of κ under G_{n} is given in the following table.

n	Orbits under G_{n}
3	$\{3,4\}$
4	$\{7,3,8,12\}$
5	$\{16,7,3,8,5\},\{15,24,28,23,26\},\{11,17\},\{13,18\},\{14,20\}$
6	$\{32,42,15,34,49,30,19,40,56,60,55,58,47,27,13,24,11,6\}$,
	$\{31,21,48,29,14,33,44,23,7,3,8,5,16,36,50,39,52,57\}$
	$\{64,15,34,21,48,73,46,69,39,25,68,30,11,5,16,36,22,65,23,66$,
	$27,80,57,84,99,31,13,6,32,14,33,19,40,26,72,45,67,29,7\}$,
	$61,100,47,70,43,28,96,114,121,95,113,94,108,87,101,55,82,60,98,120\}$,
	$\{3,8\},\{51,74\},\{53,76\},\{124,119\}$

Our construction of $\left(F_{n} \mid n \in \mathbb{N}^{+}\right)$, which will satisfy all three criteria (a), (b) and (c), takes place within the general framework implicit in the construction of
$\left(G_{n} \mid n \in \mathbb{N}^{+}\right)$. While G was implicitly constructed in two stages, F will be built in three. As before, the first stage is that F is the identity on the κ 's that are in place: $F_{n}(\kappa)=\kappa$ if $\operatorname{Step}_{n}(\kappa)=\operatorname{Weight}_{n}(\kappa)$. Then identify which κ 's are part of a twocycle and pair them up. After we have maximized two-cycles (this satisfies criterion (c)), removing those from $A_{n, i}^{1}, B_{n, i}^{1}$ leaves us with sets $A_{n, i}^{2}, B_{n, i}^{2}$ of equal cardinality and we map $A_{n, i}^{2} \rightarrow B_{n, i}^{2}$ in an order-preserving fashion.

Just as we noted for $\left(G_{n} \mid n \in \mathbb{N}^{+}\right)$, it is not very difficult to show $\left(F_{n} \mid n \in \mathbb{N}^{+}\right)$ is uniformly primitive recursive in the following precise sense: there exists a single primitive recursive function $F(n, \kappa)$ such that for all $n, F(n, \cdot) \upharpoonright\left\{0, \ldots, 2^{n}-1\right\}=$ F_{n}. As before, if we simply take $F(n, \kappa)$ to be equal to $F_{n}(\kappa)$, when $0 \leq \kappa<2^{n}$, and supply a suitable default value (e.g., $F(n, \kappa)=0$, or $F(n, \kappa)=\kappa$), when $\kappa \geq 2^{n}$ or $n=0$, then we have defined a unique function $F: \mathbb{N}^{2} \rightarrow \mathbb{N}$. As before, each F_{n} satisfies $F_{n}\left(2^{n}-1-\kappa\right)=2^{n}-1-F_{n}(\kappa)$.

As noted in the table above, the first time there are values of κ that are out of place is when $n=3$. Below are the graphs of F_{n} for $n=3$ and $n=4$.

The first time there are values of κ that are not part of a two-cycle is when $n=5$. For $n=5,6,7$, the table below presents the orbits under F_{n} for those values of κ at level n.

n	Orbits under F_{n}
5	$\{16,28,15,3\}$
6	$\{32,56,60,31,7,3\}$
7	$\{64,108,31,11,3\},\{13,72,113,47\}$, $\{14,80,114,55\},\{63,19,96,116,124\}$

The resulting cycles of these values of κ, corresponding to each of the rows of the table, are illustrated in the graphs below. We have a single four-cycle at $n=5$ and a single six-cycle at $n=6$.

At $n=7$ we have two four-cycles and two five-cycles. Because the graph of F_{n} is rather complicated by $n=7$, we will leave out the two-cycles from the graph and
only illustrate the four-cycles and five-cycles. The four-cycles are highlighted in the figure below.

4 Graph-Theoretic Complexity of the Permutations

The results we have presented do indeed narrow the distance between the S_{n} and the S_{n}^{*} with respect to the important issue of representation. The form of the composition equation that we have used so far, $S_{n}^{*}=S_{n} \circ F$, emphasizes the point of view of providing suitable representations of the S_{n}^{*}. But this equation could just as well be written in the form $S_{n}=S_{n}^{*} \circ F^{-1}$, which would emphasize the point of view of seeking to tame the disorder of the S_{n}. This is related to the rearrangement idea that is illustrated in the above graphs of F_{n} : we rearrange S_{n} to get S_{n}^{*}, and thus achieve almost sure convergence. The question remains how much rearranging of the S_{n} is optimal. One direction involves attempting to minimize the graph-theoretic complexity of the function F. As described in the construction of F above, F maximizes the number of two-cycles (with the proper choice of the two-cycles), but then will act just as the function G on the remaining κ 's which are not part of a two-cycle. Of course we know by Theorem 3 that there are many other possible variants for the function F. One may add some additional stages to the construction of F. In stage three (which might no longer be the terminal stage), we would seek to maximize the number of three-cycles just as we maximized the number of two-cycles in stage two, and fixed all the κ 's which were in place (thereby maximizing the number of one-cycles) in stage one. If some κ remain outside the domain, proceed to stage four and continue. The goal would be to minimize lengths of cycles which could be viewed as one way of seeking to minimize the graph-theoretic complexity of the permutations. This idea is illustrated below for $n=6$.

The existence of values of κ that are not part of two-cycles at level n, starting at $n=5$, is the last phenomenon to create complications in the definition of the function F. It is conceivable that further interesting phenomenon (which do not create additional complications for the definition of F) first occur for some n larger than 5 , and it is far from certain whether there are finitely many such n.

References

1. Nigel Cutland. Computability. Cambridge University Press (1980).
2. V. Dobric, P. Garmirian, M. Skyers and L. Stanley, Polynomial time relatively computable triangular arrays for almost sure convergence, Illinois J. Math. vol. 63, (2019), no. 2, pp 219257.
3. Herbert B. Enderton. Computability Theory. Academic Press (2010).
4. P. Erdos. On the Law of the Iterated Logarithm. Annals of Mathematics, vol. 43 (1942) pp 419-436.
5. P. Erdös and P. Revesz. On the favourite points of a random walk. Mathematical Structures, Computational Mathematics, Mathematical Modelling 2, (1984) pp 152-157.
6. W. Feller. The general form of the so-called Law of the Iterated Logarithm. Transactions of the American Mathematical Society, vol. 54 (1943) pp 373-402.
7. A. Khintchine. Uber dyadische bruche. Math. Zeit., vol. 18 (1923) pp 109-116.
8. Kolmogoro, A. Über das gesetz des iterierten logarithmus, Math. Ann., 101 (1929) pp 126-135.
9. Z. Shi and B. Tóth. Favourite sites of simple random walk. Periodica Mathematica Hungarica, 41 (2000) pp 237-249.
10. A. V. Skorokhod. Limit theorems for stochastic processes. Theory of Probability and its Applications, vol. 1 (1956) pp 261-290.

On the Energy of Transposition Graphs

M. R. DeDeo

Abstract

We analyze and compare properties of Cayley graphs of permutation graphs called transposition graphs as this family of graphs has better degree and diameter properties than other families of graphs. Cayley graphs are directly related to the properties of its generator set and thus Cayley graphs of permutation groups generated by transpositions inherit almost all of the properties of the hypercube. In particular, we study properties of the complete transportation, (transposition) star graph, bubble-sort graph, modified bubble-sort graph and the binary hypercube and use these properties to determine bounds on the energy of these graphs.

Keywords Transposition graphs • Permutation groups • Network computing

1 Introduction

1.1 Definitions

Parallel computing is largely dependent on the properties of the interconnection network that connects processors amongst themselves and/or to memory. The interconnections also affect the network operating system (OS) and the effectiveness of the system software. Many of the schemes used to model these interconnections can be classified into two types of networks: dynamic and static. In this paper we study the design and properties of a particular type of static network modeled by transposition graphs.

Static networks can be modeled by their corresponding graphs with at most two of the following properties: (1) if all processors are connected by the same number of edges, the network is called regular or k-regular where k is the number of edges emanating from each processor; (2) if not, the graph is not regular; (3) if the proces-

[^23]sors can be grouped into m subsets where each processor within each subset is not connected to another with the subset, but is connected to a processor in each other subset, the network is called m-partite. In particular, if the processors can be divided into two subsets where processors within each subset are not connected to another within its subset, but only to processors within the other subset (and vice versa), then the network is called bipartite. We now refer to each processor as a vertex and each connection as an edge.

The degree of each vertex is the number of edges emanating from it. As no processor will be connected to itself, and hence have no loops, the graph is called simple. The degree relates to the port capacity of the processors and thus relates to the hardware cost of the network. A path is the routing from one vertex to another. The length of a path is the number of edges a signal traverses from a given vertex to reach another vertex. The distribution of parallel paths is the number of paths of a given length and is crucial to the design of the routing table for an operating system. This also relates to the fault-tolerance of a network as the number of parallel paths between two vertices is limited by the degree of the network.

The diameter of the graph is the maximum eccentricity of any vertex in a graph. That is, it is the greatest distance between any pair of vertices. To find the diameter of a graph, first find the shortest path between each pair of vertices. The greatest length of any of these paths is the diameter of the graph. The diameter relates to the maximum communication delay and hence the running cost of the network.

1.2 Symmetry and Recursive Scalability

The study of several other, more complex properties is crucial for the understanding of the effectiveness of a network. These include symmetry and recursive scalability. Symmetry in graphs can be analyzed using graph theory and finite group theory. A symmetric graph is a graph that is both vertex-transitive and edge-transitive. In a vertex-transitive graph, its automorphism group acts transitively upon its vertices. In other words, the graph looks the same through the lens of any vertex. In addition, every symmetric graph without isolated vertices is vertex-transitive, and every vertextransitive graph is regular. However, not all vertex-transitive graphs are symmetric (for example, the edges of the truncated tetrahedron), and not all regular graphs are vertex-transitive. In a vertex-transitive graph, the structure embedded in one region of the network can be readily translated into another region without affecting the quality of the original embedding. Vertex transitivity also enables the design of efficient distributed routing algorithms.

An edge-transitive graph is analogously defined. In particular, the number of vertex-disjoint paths between any two vertices is maximum and hence has a maximum fault-tolerance capacity. Recursive scalability refers to the ability to build larger networks from smaller subnetworks. These networks then possess naturally occurring symmetry that is often used in the design of routing tables, fault-tolerance and more.

A distance-transitive graph is a graph such that, given any two vertices at any distance, and any other two vertices at the same distance, there is an automorphism of the graph that carries the pairs of vertices to each other. Distance transitivity ensures good fault-tolerance, translations of embedded substructures from one region to another and decentralizes routing algorithms for packet communication. Thus distance transitivity is one of the most important of the symmetric properties.

A Cayley graph is a graph that encodes the abstract structure of a group using a specified, usually finite, set of generators for the group. Cayley graphs provide a unified framework for the design of interconnection networks for parallel computing. In particular, linear groups which are automorphism groups of finite dimensional vector spaces and semi-direct products of groups, such as degree 4 super-toroids and Borel Cayley graphs, provide classes of graphs with "good" routing algorithms where "good" is a multi-faceted decision problem based on the analysis of trade-offs in the symmetry and topology of the networks.

In this paper, we analyze and compare properties of Cayley graphs of permutation graphs called transposition graphs. The conjugacy class of its permutation group combined with its generators dictates the type of the symmetry possessed by their respective Cayley graphs. In addition, the family of transposition graphs has better degree and diameter properties than the hypercube. We note that the base- $b(b \geq 2)$ hypercube of dimension n is a class of networks known to possess virtually every known notion of symmetry. Next, properties of the transposition graphs are given.

Fig. 1 Star transposition graph $S T_{4}$ [13, p. 65]

Lastly, the spectra of this class of graphs is discussed and formulas for the energy of these graphs is given as they are dependent on these properties (Fig. 1).

2 Transposition Graphs

A permutation of $\{1,2, \ldots, n\}$ is a bijection onto itself. Let

$$
p=\left(\begin{array}{cccccc}
1 & 2 & \cdots & i & \cdots & n \\
p_{1} & p_{2} & \cdots & p_{i} & \cdots & p_{n}
\end{array}\right)
$$

where $p_{i} \leq p_{j}$ for all i, j where p_{i} denotes the object at position i. For simplicity, we write $p=p_{1} p_{2} \cdots p_{n}$. Let S_{n} denote the set of all permutations of p. For any permutation $p \in S, p$ can be represented as a product of k disjoint cycles and l invariants. For convenience, the invariants are deleted when p is represented in terms of its cycle structure. Cycles of length two are called transpositions.

Let $T_{i j}$ denote the permutations that swap objects in positions i and j such that $T_{i j}=(i, j)$. For permutations p, if $p_{i}<p_{j}$ for $i<j$, then the pair p_{i} and p_{i} is said to be an inversion in p. Thus, a permutation is said to be an odd (or even) permutation if the number of inversions in p is odd (or even). We note that transpositions are odd permutations as the number of inversions is odd.

Let Γ be a finite group under multiplication with identity I. Let $S \subseteq \Gamma$ be a generating set for Γ such that (i) if $g \in S$, then $g^{-1} \in S$ and (ii) $I \notin S$. Given (Γ, S), let $G=(V, E)$ such that the vertex set is $V=\Gamma$ and the edge set is $E=\left\{(x, y)_{g} \mid x, y \in V\right.$ and $g \in S$ such that $\left.x g=y\right\}$. Note that an edge is undirected if both $(x, y)_{g}$ and $(y, x)_{g}^{-1}$ are in E. Also, since S is a generating set for Γ, then G is a connected Cayley graph and $|S|$ is both the degree and the diameter of the graph.

If A and B are sets then, let $A-B$ denote the set of all elements in A that are not in B. An element $h \in S$ said to be redundant if it can be expressed as a product of the elements in $S-\{h\}$. If every element in S is non-redundant, then S is called a minimal generating set. In addition, any set that contains S is also a generating set.

Given these definitions, we now consider simple, undirected Cayley graphs of permutation groups generated by transpositions. Let Ω be the set of transpositions generating Γ. Let the transposition graph be defined as $T G=(<n\rangle, \Gamma)$ with $<n>$ as the vertex set with two vertices i and j connected by an edge if and only if $(i, j) \in \Gamma$. We note that Ω refers both to the set of all edges in G and the generating set of Γ as there exists an automorphism between the two. We can now study several important transportation graphs that correspond to different generating sets S. In particular, we study the sets of transposition graphs defined by:

1. $C T_{n}$, the complete transportation graph generated by Ω_{0};
2. $S T_{n}$, the (transposition) star graph ${ }^{1}$ generated by Ω_{1};
3. $B S_{n}$, the bubble-sort graph generated by Ω_{2};

[^24]4. $M B_{n}$, the modified bubble-sort graph generated by $\Omega_{2^{\prime}}$; and
5. $B C_{n}$, the binary hypercube generated by Ω_{3}
where
\[

$$
\begin{aligned}
& \Omega_{0}=\{(i j) \mid 1 \leq i \leq j \leq n\} ; \\
& \Omega_{1}=\{(1 i) \mid 2 \leq i \leq n\} ; \\
& \Omega_{2}=\{(i i+1) \mid 1 \leq i<n\} ; \\
& \Omega_{2^{\prime}}=\Omega_{2} \cup\{(1 n)\} ; \text { and } \\
& \Omega_{3}=\{(2 i-12 i) \mid 1 \leq i \leq n\} .
\end{aligned}
$$
\]

We call this family of transposition graphs \mathcal{T}. It can be verified that both $S T_{n}$, the star graph, and $B S_{n}$, the bubble-sort graph, can be built recursively, but not $M B_{n}$, the modified bubble-sort graph. In addition, Ω_{1}, Ω_{2} and Ω_{3} are minimal generating sets, but Ω_{0} and $\Omega_{2^{\prime}}$ are not as they have redundant elements. In particular, the bubble-sort graph is the Cayley graph corresponding to the case where the transposition graph is the path graph on n vertices. The reason it is called the bubble-sort graph is that this Cayley graph is closely related to the (inefficient) bubble-sort algorithm for sorting an array. Many of the properties in Table 1 can be found in [1, 2, 6, 11, 14]. The values in Table 2 will not be presented here as they can be found using counting arguments on the generating sets (see [16] for a few of them).

Given a permutation in S_{n}, the array swaps elements in consecutive positions of the array. Observe that the minimum number of swaps of elements in consecutive positions required to sort a given array p is exactly the distance in the Cayley graph between the permutation p and the identity vertex e. The modified bubble-sort graph

Table 1 Symmetrical properties of transposition graphs in \mathcal{T}

	Vertex transitive	Edge transitive	Distance transitive	Shortest path distance	Hamiltonian cycle
$C T_{n}$	Yes	Yes	No	Yes	Known
$S T_{n}$	Yes	Yes	No	Yes	Known
$B S_{n}$	Yes	No 2	No	Yes	Known
$M B_{n}$	Yes	Yes	No	Yes	Known
$B C_{n}$	Yes	Yes	Yes	Yes	Known

Some literature incorrectly assumes that the bubble-sort graph is edge transitive [14]
Table 2 Computational properties of transposition graphs in \mathcal{T}

	No. of vertices	Degree	Diameter	Bipartite	Recursive
$C T_{n}$	$n!$	$n(n-1) / 2$	$n-1$	Yes	Yes
$S T_{n}$	$n!$	$n-1$	$\lfloor 3(n-1) / 2\rfloor$	Yes	Yes
$B S_{n}$	$n!$	$n-1$	$n(n-1) / 2$	Yes	Yes
$M B_{n}$	$n!$	n	Unknown	Yes	No
$B C_{n}$	2^{n}	n	n	Yes	Yes

is obtained by modifying the bubble-sort graph by adding another generator (and hence, by adding extra edges) to the bubble-sort graph, thereby reducing its diameter. Additionally, Cayley graphs are directly related to the properties of its generator set. In particular, Cayley graphs of permutation groups generated by transpositions inherit almost all of the properties of the hypercube.

3 Energy and Spectra of Graphs

3.1 Energy of Graphs

In the 1940s, a close correspondence between the graph eigenvalues and the molecular orbital energy levels of π-electrons in conjugated hydrocarbons was realized [7, 9]. In particular,

$$
E_{\pi}=n \alpha+\beta \sum_{i=1}^{n}\left|\lambda_{i}\right|
$$

where $\mathrm{n}, \alpha, \beta$ are constants. In addition, the energy is related to several other concepts in analysis, linear algebra and spectral graph theory. The general theory and chemical applications can be found in [8]. After it was recognized that spectral graph theory can be used more broadly than just in orbital theory, the notion of the energy of a graph was defined [8]. Given the eigenvalues of the adjacency matrix of a graph, λ_{1}, $\lambda_{2}, \ldots, \lambda_{n}$, the energy of a graph is defined to be

$$
E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right| .
$$

This is a natural extension of this property as crystallographic groups tell us about the structure of matter and graphs based on groups are used to model individual molecules as well as a variety of chemical systems. Broader study of the energy of graphs began in the 2000s and has expanded the field of spectral analysis. Not only does this newer graph invariant allow for a new relation on all graphs, the energy of a graph is related to several other concepts in analysis, linear algebra and spectral graph theory (Fig. 2).

3.2 Spectra of \mathcal{T}

Let G be a simple (no loops or repeated edges), undirected, and connected graph with vertices v_{i} for $i=1, \ldots, n$ and m edges. Let $A(G)$ be the $n \times n$ adjacency

Fig. 2 Bubble sort graph $B S_{4}$ [5]
matrix associated with G such that

$$
A(G)=\left\{\begin{array}{l}
1 \text { if } v_{i} \text { is connected to } v_{j} \text { for } i \neq j \text { by an edge; } \\
0 \text { otherwise. }
\end{array}\right.
$$

Let $\lambda_{1}, \lambda_{1}, \ldots, \lambda_{n}$ denote the n eigenvalues of $A(G)$ and $\operatorname{Spec}(A)=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$. Let $m\left(\lambda_{i}\right)$ denote the multiplicity of λ_{i}.

Lemma 1 All graphs in the family \mathcal{T} of transposition graphs are regular and bipartite.

Proof By counting arguments, all graphs in \mathcal{T} are regular with fixed degree (see Table 1). Transposition graphs are odd permutations as the number of inversions is always odd. It can also be easily verified that Cayley graphs defined using permutations are necessarily bipartite graphs. Thus, all graphs in the family \mathcal{T} of transposition graphs are necessarily bipartite.

The spectra of these graphs are of interest for their own sake, as well as for various applications such as card shuffling and random walks on the symmetric group. We
now present a few well-known theorems regarding the spectra of Cayley graphs. The next three lemmas are from Biggs [4]:

Lemma 2 If a Cayley graph G is bipartite, the eigenvalues of its adjacency matrix $A(G)$ is symmetric in the interval $[-k, k]$ where k is the largest degree of the set.

Lemma 3 If a Cayley graph G is k-regular, then k is the largest eigenvalue in $\operatorname{Spec}(A)$.

Lemma 4 If a Cayley graph G is connected, then the multiplicity of its largest eigenvalue, k, is one.

We now focus on determining the spectra of the graphs within \mathcal{T}. We note that the spectra of $S T_{n}$ is integral, i.e. its spectra consists of integers. In 1974, Harary and Schwenk initiated the study of graphs with integral spectra [10]. The following was proved in [11]:

Lemma 5 The spectra of $S T_{n}$ is integral with eigenvalues $\pm(n-j)$ with

$$
m(\pm(n-j)) \geq\binom{ n-2}{j-1}\binom{n-1}{j} \text { for } j \in\{1, \ldots, n-1\}
$$

and $m(0) \geq\binom{ n-1}{2}$ for $n>3$.
Unfortunately, the same cannot be said for bubble-sort graphs:

Lemma 6 The spectra of $B S_{n}$ is not integral.

Proof By counterexample, $\operatorname{Spec}\left(B S_{4}\right)$ is in the subset of rational numbers in the interval $(\sqrt{2}, \sqrt{3})$ which is not integral.

Moreover, $B S_{n}$ is not a family of expander graphs. Expanders are sparse graphs (few edges relative to the number of vertices) that are highly connected. Thus expanders model efficient communication networks as they exhibit few edges while retaining high connectivity. We can prove a graph is an expander (or not) by finding its isoperimetric number which is a numerical measure of whether or not a graph has a "bottleneck". For a collection of vertices $V^{\prime} \subseteq V(G)$, let ∂V^{\prime} denote the collection of all edges going from a vertex in V^{\prime} to a vertex outside of V^{\prime} (also called the edge boundary of V^{\prime}) and let $|V|$ denote the number of elements in the set. Then the isoperimetric number $h(G)$ is

$$
h(G):=\min \left\{\left.\frac{\left|\partial V^{\prime}\right|}{\left|V^{\prime}\right|} \right\rvert\, V^{\prime} \subseteq V(G) \text { and } 0<\left|V^{\prime}\right| \leq \frac{1}{2}|V(G)|\right\}
$$

An expander family is one that satisfies $h\left(G_{\alpha}\right) \geq \varepsilon$ for a fixed ε and all α.
Lemma 7 Bubble-sort graphs $B S_{n}$ do not form a family of expander graphs.

Proof For $n=3$, let $S=\{p, p-1,(12)\} \subset S$. Consider the set $P_{m}=\{\pi \in S \mid 1 \leq$ $\left.\pi^{-1} \leq m\right\}$ where $m=\left\lfloor\frac{n}{2}\right\rfloor$. Then $\left|P_{m}\right|=m(n-1)!$. We know that $\rho \notin P_{m}$ and $\pi \in$ P_{m} are adjacent if and only if $\pi=\rho \theta=\rho \circ \theta$ for some $\theta \in P_{m}$. Assume $\rho \notin P_{m}$, $\pi \in P_{m}$, and $\pi=\rho \theta$. Then:

Case (i). Suppose $\theta=p$. Since $\rho \notin P_{m}$, the permutation ρ cannot map any element in the interval 1 through m to 1 . Because $\pi \in P_{m}$, we must have $\rho(m+1)=1$. There are ($n-1$)! such π 's. Thus there is one edge from p that leaves P_{m} for each such π.

Case (ii). Suppose $\theta=p^{-1}$. Then $\rho(n)=1$ and $\pi(1)=1$. Thus we also have $(n-1)$! such π 's giving $(n-1)$! edges with one extreme in P_{m} and one in $B S_{n}-P_{m}$.

Case (iii). The case where $\theta=\left(\begin{array}{ll}12\end{array}\right)$ cannot happen. Thus

$$
h\left(B S_{n}\right) \leq \frac{\left|\partial P_{m}\right|}{\left|P_{m}\right|}=\frac{2(n-1)!}{m(n-1)!}=\frac{2}{m} .
$$

By an analogous argument, for any change in size $n, h\left(B S_{n}\right)$ is never bounded below. Thus the set of bubble-sort graphs $B S_{n}$ do not create an expander family.

This observation could be helpful in the future to either determining the eigenvalues of $B S_{n}$ or in creating a better upper bound on the energy of $B S_{n}$.

4 Bounds on the Energy of Transposition Graphs

Using the fact that all of the graphs in \mathcal{T} are regular, bipartite, and connected, we have the following bounds for the energy of the graphs in \mathcal{T} :

Theorem 1 An upper bound for the energy of $C T_{n}$ is $n!n(n-1)$.
Proof By its definition and Table 2, $C T_{n}$ is regular, bipartite, and connected. The eigenvalues of $C T_{n}$ occur in $[-n(n-1) / 2, n(n-1) / 2]$ where the multiplicity of both $\pm n(n-1) / 2$ is one. Thus

$$
E\left(C T_{n}\right)=\sum_{i=1}^{n!}\left|\lambda_{i}\right|<n!n(n-1) .
$$

Theorem 2 The graph energy bounds of the family of graphs $S T_{n}$ are

$$
2(n-1)+2 \sum_{i=1}^{n-1}(n-j)\binom{n-2}{j-1}\binom{n-1}{j} \leq E\left(S T_{n}\right) \leq 2 n!(n-1)
$$

Proof By its definition and Table 2, $S T_{n}$ is regular, bipartite, and connected. The eigenvalues the eigenvalues of $S T_{n}$ occur in $[-(n-1),(n-1)]$ where the multiplicity of both $\pm n(n-1)$ is one. Thus the upper bound is $2 n!(n-1)$.

In addition, by Lemma 5 we have that the eigenvalues of $S T_{n}$ are $\pm(n-j)$ with

$$
m(\pm(n-j)) \geq\binom{ n-2}{j-1}\binom{n-1}{j} \text { for } j \in\{1, \ldots, n-1\}
$$

and $m(0) \geq\binom{ n-1}{2}$ for $n>3$. Thus

$$
2(n-1)+2 \sum_{i=1}^{n-1}(n-j)\binom{n-2}{j-1}\binom{n-1}{j} \leq E\left(S T_{n}\right)
$$

Theorem 3 An upper bound for the energy of $B S_{n}$ is

$$
E\left(B S_{n}\right) \leq 2(n-1)\{(n+2)!+1\}
$$

Proof By its definition and Table 2, $B S_{n}$ is regular, bipartite, and connected. The eigenvalues of $B S_{n}$ occur in $[-(n-1),(n-1)]$ where the multiplicity of both $\pm(n-1)$ is one. By [3], the second largest eigenvalue is at least $n-2$ with multiplicity $n-1$. Thus we have

$$
E\left(B S_{n}\right)=\sum_{i=1}^{n!}\left|\lambda_{i}\right|<2(n-1)+2(n-2)!(n-1)
$$

By combining like terms, the inequality is produced.
Theorem 4 An upper bound for the energy of $M B_{n}$ is $n(n!)$.
Proof By its definition and Table 2, $M B_{n}$ is regular, bipartite, and connected. The eigenvalues of $M B_{n}$ occur in $[-n, n]$ where the multiplicity of both $\pm n$ is one. Thus

$$
E\left(M B_{n}\right)=\sum_{i=1}^{n!}\left|\lambda_{i}\right|<n(n!)
$$

Theorem 5 The $\operatorname{Spec}\left(B C_{n}\right)$ is $(-n,-n+2,-n+4, \ldots, n-4, n-2, n)$ with the jth eigenvalue having multiplicity $\binom{n}{j}$.
Proof For simplicity, let $B C_{n}=Q_{n}$. Let $A_{Q_{n}}$ be the adjacency matrix of the binary hypercube Q_{n}. Then

$$
A_{Q_{n}}=\left(\begin{array}{cc}
A_{Q_{n-1}} & I_{Q_{n-1}} \\
I_{Q_{n-1}} & A_{Q_{n-1}}
\end{array}\right)
$$

where $I_{Q_{n-1}}$ is the $2^{n} \times 2^{n}$ identity matrix corresponding to Q_{n-1}. Its spectra follows recursively from the characteristic polynomial for the binary hypercube as

$$
\begin{array}{r}
\operatorname{det}\left(A_{Q_{n}}-\lambda I_{Q_{n}}\right)=\operatorname{det}\left[\left(A_{Q_{n-1}}-\lambda I_{Q_{n-1}}\right)^{2}-I_{Q_{n-1}}\right] \\
=\operatorname{det}\left(A_{Q_{n-1}}-\lambda I_{Q_{n-1}}\right) *\left(\operatorname{det}\left(A_{Q_{n-1}}+\lambda I_{Q_{n-1}}\right)\right. \\
\left.=\operatorname{det}\left(A_{Q_{n-1}}-(\lambda+1) I_{Q_{n-1}}\right) * \operatorname{det}\left(A_{Q_{n-1}}-(\lambda-1) I_{Q_{n-1}}\right)\right)
\end{array}
$$

The solutions for λ in this equation are $(-n,-n+2,-n+4, \ldots, n-4, n-2, n)$.

Theorem 6 The graph energy of the binary hypercube defined above is

$$
E\left(B C_{n}\right)=2 \sum_{j=0}^{\lfloor n / 2\rfloor}\binom{n}{j}(n-2 j)
$$

Proof From Theorem 5, the $\operatorname{Spec}\left(B C_{n}\right)$ is $(-n,-n+2,-n+4, \ldots, n-4, n-$ $2, n)$ with the $j^{\text {th }}$ eigenvalue having multiplicity $\binom{n}{j}$. Using counting arguments, the formula is attained.

It is hoped that better bounds on the energy of this family of graphs are revealed with further study into the spectra of these graphs.

References

1. Akers, S.B., Harel, D., Krishnamurthy, B.: The star graph: An attractive alternative to the n-cube. Proc. Int. Conf. Parallel Process, 393-400 (1987).
2. Akers S. B., Krishnamurthy, B.: A group-theoretic model for symmetric interconnection networks, IEEE Trans. Comput. 38, 555-566 (1989). https://doi.org/10.1109/12.21148
3. Bacher, R.: Valeur propre minimale du laplacien de Coxeter pour le groupe symétrique. J. Algebra, 167(2), 460-472 (1994).
4. Biggs, N.: Algebraic Graph Theory. Cambridge University Press, England (2001).
5. Cheng, E., Liptak, L., Shawash, N.: Orienting Cayley graphs generated by transposition trees. Computers and Mathematics with App 55 (11) 2662-2672 (2008).
6. Day, K., Tripathi, A.: A comparative study of topological properties of hypercubes and star graphs. IEEE Trans. Comput., 5(1), 31-38 (1994).
7. Graovac, A., Gutman, I., Trinajsti, N., Topological Approach to the Chemistry of Conjugated Molecules, Springer, Berlin (1977).
8. Gutman, I., Polansky, O.E.: Mathematical Concepts in Organic Chemistry, Springer, Berlin (1986).
9. Gutman, I., Trinajstic N., Graph theory and molecular orbitals. Topics Curr. Chem. 42(49), (1973).
10. Harary, F., Schwenk, A.J.: Which graphs have integral spectra? In: Graphs and Combinatorics (Lecture Notes in Mathematics 406, ed. R. Bari, F. Harary), Springer-Verlag, Berlin-Heidelberg-New York pp. 45-51 (1974).
11. Heydemann, M.C., Ducourthial, B.: Cayley graphs and interconnection networks. In: G. Hahn, G. Sabidussi, Graph Symmetry, NATO Advanced Science Institutes Series C. In: Mathematica and Physical Sciences, Kluwer Academic Publishers, Dordrecht, 497, 167-224 (1997).
12. Krakovski R., Mohar B.: Spectrum of Cayley graphs on the symmetric group generated by transpositions. arXiv: 1201.2167, 201
13. Labarre, A.: Combinatorial Aspects of Genome Rearrangements and Haplotype Networks/Aspects (Combinatoires Des Réarrangements Génomiques Et Des Réseaux D'haplotypes). Ph.D. Thesis, Université Libre De Bruxelles (2008).
14. Lakshmivarahan, S., Jwo, J.S., Dhall, S.: Symmetry in interconnection networks based on Cayley graphs of permutation groups: a survey. Parallel Computing, 19, 361-407 (1993).
15. Latifi, S., Srimani, P.K.: Transposition networks as a class of fault-tolerant robust networks, IEEE Trans. Comput. 230-238 (1996). https://doi.org/10.1109/12.485375
16. Shi, Ling-Sheng, and Peng Wu. Conditional Connectivity of Bubble Sort Graphs. Acta Mathematicae Applicatae Sinica, English Series, 33(4), 933-944 (2017). https://doi.org/10.1007/ s10255-017-0708-8.

A Smaller Upper Bound for the (4, $\mathbf{8}^{\mathbf{2}}$) Lattice Site Percolation Threshold

John C. Wierman (ㅁ)

Abstract

The (4, 8^{2}), or "bathroom tile," lattice is one of the eleven Archimedean lattices, which are infinite vertex-transitive graphs with edges from the tilings of plane by regular polygons. The site percolation model retains each vertex of an infinite graph independently with probability $p, 0 \leq p \leq 1$. The site percolation threshold is the critical probability $p_{c}^{s i t e}$ above which the subgraph induced by retained vertices contains an infinite connected component almost surely, and below which all components are finite almost surely. Using computational improvements for the substitution method, the upper bound for the site percolation threshold of the $\left(4,8^{2}\right)$ lattice is reduced from 0.785661 to 0.749002 .

Keywords Site percolation • Percolation threshold • Set partitions • Non-crossing partitions

MSC Primary 60K35; Secondary 05C80, 05A18, 82B43

1 Introduction

Percolation theory studies connectivity of infinite random graph models, with particular emphasis on the existence or non-existence of an infinite connected component. Its popularity in the engineering and physical sciences is due to the behavior that occurs as the random graph becomes more richly connected, making a drastic qualitative change as an infinite cluster forms. As a result, applications of percolation models are widespread, concentrating on modeling critical phenomena where some type of phase transition occurs. Examples are thermal transitions of a liquid freezing into a solid, an infectious disease spreading only locally versus becoming epidemic, or a conductor-insulator alloy becoming a conductor as the proportion of conducting

[^25]atoms increases. Since the introduction of percolation models in the 1950s, they have provided explanations of many phenomena that could not be explained satisfactorily before.

Given an infinite graph G, the site percolation model on G creates a random subgraph by retaining each vertex independently with probability $p, 0 \leq p \leq 1$, deleting it otherwise, and constructing the random subgraph G_{p} of G induced by the set of retained vertices. Retained vertices are often referred to as "open" or "occupied," and deleted vertices as "closed" or "vacant." (Another classic percolation model is the bond percolation model in which the edges of G are retained or deleted independently at random with probability p.)

Due to the interest in modeling a phase transition, the emergence of infinite connectivity as the parameter p increases is the principal focus, with particular interest on the critical value of p at which the transition occurs. For an infinite graph G, this quantity, the site percolation threshold $p_{c}^{\text {site }}(G)$, satisfies the following two conditions: (1) If $p<p_{c}^{\text {site }}(G)$, all connected components of G_{p} are finite, with probability one. (2) If $p>p_{c}^{\text {site }}(G)$, there exists an infinite connected component of G_{p} with probability one. (The fact that these events have probability one is a consequence of Kolmogorov's Zero-One Law and independent retention of the vertices of G.)

Although the main interest in percolation theory is in the phase transition point, little progress has been made toward determining the value of the site percolation threshold of common infinite lattice graphs, such as the square and hexagonal lattices. One highlight is that the site percolation threshold of the triangular lattice was proved by Kesten [4] to be $1 / 2$. The value of the site percolation threshold is highly dependent upon the structure of the infinite graph, but the nature of that dependence is not well understood. Most knowledge of the threshold values are from extensive simulation studies, which produce values claiming 5 or 6 digit accuracy. However, it is not very unusual for the interval estimates from different studies to be disjoint.

Due to the lack of exact solutions, it is of mathematical interest to provide rigorous bounds for the site percolation thresholds of common lattices that are as accurate as possible, and to develop bounding techniques which may eventually help determine exact solutions. Table 1 in Sect. 4 provides a compilation of rigorous bounds for the eleven Archimedean lattices, which are vertex-transitive graphs constructed with the vertices and edges of a tiling of the plane by regular polygons. (See the beautiful monograph by Grünbaum and Shephard [2] for discussion and illustrations.) Note that the bounds are typically rather poor, providing intervals of width $0.10-0.20$ for most lattices.

This article substantially reduces the upper bound for the site percolation threshold of one of the Archimedean lattices, known as the $\left(4,8^{2}\right)$ or "bathroom tile" lattice. The $\left(4,8^{2}\right)$ lattice is illustrated in Fig. 1. The name reflects the fact that each vertex is incident to a square and two octagons.

Fig. 1 A subgraph of the $\left(4,8^{2}\right)$ or "bathroom tile" lattice

2 Bounds for the (4, $\mathbf{8}^{\mathbf{2}}$) Lattice Site Percolation Threshold

As for many infinite lattice graphs, there is a long history of improving rigorous bounds for the $\left(4,8^{2}\right)$ lattice, yet the bounds are still not satisfyingly accurate.

In 1988, Luczak and Wierman [5] applied a grouping method to show that

$$
0.707106 \approx \sqrt{p_{c}^{\text {bond }}(\text { Square })} \leq p_{c}^{\text {site }}\left(4,8^{2}\right) \leq \sqrt{p_{c}^{\text {site }}(\text { Square })},
$$

when there was only a very crude upper bound for the site percolation threshold of the square lattice.

In 1995, Wierman [13] adapted the substitution method to a site model for the first time, obtaining an upper bound of 0.679492 for the site percolation threshold of the square lattice, establishing

$$
0.707106 \leq p_{c}^{\text {site }}\left(4,8^{2}\right) \leq \sqrt{p_{c}^{\text {site }}(\text { Square })}<0.824313 .
$$

In 2001 a substitution method comparison of the $\left(4,8^{2}\right)$ lattice to the line graph of the 2 -subdivided square lattice, using a four-vertex substitution region, further improved the upper bound [14]:

$$
p_{c}^{\text {site }}\left(4,8^{2}\right) \leq 0.79970 .
$$

A different substitution method comparison, in 2019, produced the upper bound [17]

$$
p_{c}^{\text {site }}\left(4,8^{2}\right) \leq 0.785661
$$

In this article, we return to a comparison with the line graph of the 2 -subdivided square lattice, adapting a collection of more efficient computational methods that were developed for bond percolation models for use on site percolation models. The
computational reductions involve graph-welding, non-crossing partitions, and symmetry groups, which allow the substitution region to be applied to a larger substitution region containing 24 vertices. We obtain the upper bound

$$
p_{c}^{\text {site }}\left(4,8^{2}\right) \leq 0.749002
$$

The new upper bound reduces the length of the bounding interval by 46%. However, applying the methods of this article does not improve the lower bound. Note that the lower bound has not been increased since 1988, so that the upper bound is now closer to the consensus of simulation estimates in the physical sciences literature (See, e.g. [10].), which is 0.729724 . Improving the lower bound remains a challenge.

3 Derivation of the Upper Bound

The new upper bound established in this article was derived using the substitution method, and was made possible by combining several previous computational advances, involving graph-welding, non-crossing partitions, symmetry reduction, and conversion to a network flow model. Descriptions of the general substitution method appear in [16, 18], while details of the computational reduction methods may be found in $[7,8]$. The following description of the derivation of the bound focuses on specific items involved in the application to the $\left(4,8^{2}\right)$ lattice and issues that had to be overcome, but only provides a sketch rather than complete details.

3.1 Substitution Method

The substitution method derives percolation threshold bounds for an unsolved percolation model by comparing it to a solved percolation model. It has produced most of the best current bounds for bond percolation thresholds. In particular, it derived bounds that determined the three leading digits of the bond percolation threshold of the $\left(3,12^{2}\right)$ lattice [16] and the two leading digits of the bond percolation threshold of the kagome lattice [18], disproving long-standing conjectured exact values by Tsallis [11]. However, there are complications in adapting the substitution method to site percolation models, so bounds for site percolation thresholds are generally much less accurate than bounds for bond percolation thresholds.

3.2 Substitution Regions

To apply the substitution method to site percolation models, both the unsolved and solved lattices must be decomposed into vertex-disjoint isomorphic subgraphs, called
substitution regions so that the random retentions and deletions associated with the sets of vertices in different regions are stochastically independent. Since no vertex of the original lattice can be on the boundary between two substitution regions, each edge that connects two substitution regions must be subdivided by inserting a new boundary vertex which is open with probability one. Since the substitution method compares the probabilities of connections between the boundary vertices of the substitution regions, the substitution regions of the two lattices must have the same number of boundary vertices. For bond percolation models, substitution method calculations have been completed for some substitution regions with eight boundary vertices, but not for nine or more.

3.3 The Comparison Lattice

The small number of exactly-solved site percolation models, and the constraints on the substitution regions, constrain the choice of comparison lattice. Yet, it is still more of an art than a science to choose a comparison lattice and a substitution region that provides an accurate bound and for which the necessary computations are manageable. A natural goal is to find a solved lattice graph that has relatively similar structure to the unsolved lattice.

The comparison lattice used here is obtained by two transformations from a solved bond percolation model. Kesten [3] proved that the bond percolation threshold of the square lattice is one-half. If every edge of the square lattice is subdivided into two edges, the bond percolation threshold of the resulting lattice is $\sqrt{1 / 2}$. Since a bond percolation model is equivalent to the site model on its line graph, the site percolation threshold of the line graph of the subdivided square lattice is exactly $\sqrt{1 / 2}$. For convenience, we will call this lattice the reference lattice and denote it by R. A substitution region of R with ten boundary vertices is illustrated in Fig. 2. Note

Fig. 2 Substitution regions with ten boundary vertices for the $\left(4,8^{2}\right)$ lattice (on the left) and the line graph of the subdivided square lattice (on the right). Filled circles represent vertices of the original lattice. Empty circles represent boundary vertices introduced by subdividing edges, and are always open
that R is a super-graph of the $\left(4,8^{2}\right)$ lattice with diagonals inserted in every square face.

3.4 Set Partitions of the Boundary Vertices

The two percolation models are compared on the basis of the probabilities of connections between the boundary vertices of the substitution regions. A configuration is a designation of every vertex as open or closed. Note that for each substitution region, since there are 24 vertices with independent randomness, the probability of each configuration is a 24 degree polynomial function of p. Every configuration partitions the set of boundary vertices into blocks of boundary vertices which are in a common connected component of open vertices. For example, if the boundary vertices are labeled $1,2,3, \ldots, 10$, then $\{1,4,5,6\}\{2,3\}\{7,8,9,10\}$ denotes the partition in which vertices $1,4,5$, and 6 are in one connected component, 2 and 3 are in a different one, and $7,8,9$, and 10 are in a third one. There may be many configurations which produce the same partition, so the probability of a partition is the sum of all configurations which produce it, which is also a 24 degree polynomial in the parameter p.

The number of set partitions of n objects is an extremely rapidly-increasing function of n, given by the Bell numbers. In our case, there are $\operatorname{Bell}(10)=115975$ partitions, and we must compute the probabilities of each partition for both models. While this could be done by calculating the probabilities of each of the 2^{24} configurations and summing to obtain partition probabilities, this is extremely inefficient. A more efficient graph-welding approach [6] applies the configuration approach to a small subgraph of the substitution region, then builds partition probability functions for increasingly larger graphs.

3.5 The Partition Lattice and Stochastic Ordering

The set partitions of the boundary vertices form a partially ordered set under refinement: A partition π_{1} is a refinement of partition π_{2} if every block of partition π_{1} is a subset of some block in π_{2}. In fact, the set partitions with the refinement ordering are a combinatorial lattice, called the partition lattice.

Since the two substitution regions have the same number of boundary vertices, the partition probability functions on them provide two probability measures on the same partition lattice. Bounds for the site percolation threshold are derived using stochastic ordering of the two probability measures, defined in this context as follows: An upset is a set U of partitions such that if partition $\pi_{1} \in U$ and $\pi_{1} \leq \pi_{2}$, then partition $\pi_{2} \in U$. For two probability measures P_{1} and P_{2} on the partition lattice, P_{1} is stochastically smaller than P_{2}, denoted $P_{1} \leq_{s t} P_{2}$, if $P_{1}(U) \leq P_{2}(U)$ for every upset U. (In this case, we also say that P_{2} is stochastically larger than P_{1}.)

The partition lattice on ten boundary vertices is a ranked poset, with the largest rank containing 42525 partitions. Since this subset is an anti-chain, any of its subsets (along with the top element) generates a different upset. Thus, a crude lower bound on the number of upset probability inequalities that need to be checked to determine stochastic ordering is 2^{42525}. Without major computational reductions, checking stochastic ordering would be impossible.

3.6 "Finding Two Needles in a Haystack"

We compare the probability measure $P_{\left(4,8^{2}\right), p}$ from the $\left(4,8^{2}\right)$ lattice substitution region with parameter p to the reference probability measure P_{R} from the line graph of the subdivided square lattice with parameter $\sqrt{1 / 2}$, which is its site percolation threshold. For values of p for which $P_{\left(4,8^{2}\right), p} \geq_{s t} P_{R}$, the parameter $p \geq p_{c}\left(4,8^{2}\right)$, while if $P_{\left(4,8^{2}\right), p} \leq_{s t} P_{R}$, then $p \leq p_{c}\left(4,8^{2}\right)$.

Rather than treating upset inequalities, the inequalities can be converted to equations in p, with the lower and upper bounds for the percolation threshold of the $\left(4,8^{2}\right)$ lattice site model being the smallest and largest solutions, respectively.

To use a colloquial expression, the derivation of the site percolation threshold bound is like the problem of finding a needle in a haystack, except that we need to find two needles! The needles are the largest and smallest solutions, while the haystack is the set of solutions to the more than 2^{42525} upset equations. Our strategy is to avoid searching large parts of the haystack, by proving that the needles are not there. The following summarizes the nature of the reductions employed.

3.7 Non-crossing Partitions

One reduction makes use of non-crossing partitions. Suppose that the boundary vertices are labeled from 1 to 10 clockwise around both substitution regions, starting from the left side of the top in Fig. 2. A partition is a non-crossing partition if $i<j<k<l$, with vertices i and k in the same block and vertices j and l in the same block, implies that all four vertices are in the same block. A partition that is not a non-crossing partition is called a crossing partition. Since the $\left(4,8^{2}\right)$ lattice is planar, any crossing partition has probability zero. Although the reference lattice R is not planar, since two open paths crossing via diagonals of a square face implies that all four vertices of the face are open, any crossing partition in it also has probability zero. Thus, only non-crossing partitions contribute to the upset probability functions. Since the non-crossing partitions are counted by the Catalan numbers, there are only $\operatorname{Catalan}(10)=16796$ non-crossing partitions to be considered, rather than all $\operatorname{Bell}(10)=115975$, which greatly reduces the number of relevant upsets. For further details, see [8].

3.8 Symmetry Reduction

A second reduction uses rotational and reflection symmetry to find equivalence classes of partitions, and reduces the problem to checking stochastic ordering on a partially ordered set of classes. Partitions which are rotations or reflections of each other have identical probability functions, so can be combined into classes. The classes form a partially ordered set under refinement, where one class is a refinement of another if any of its partitions is refinement of any partition of the other. May and Wierman [7] show that the upper and lower bounds must be solutions of equations for upsets which are unions of classes. For the comparison in this article, the number of classes is 4388, a significant reduction from Catalan $(10)=16796$.

3.9 Network Flow Model

The third major computational savings are from converting the problem to a network flow problem, based on a proof of Preston [9] of the equivalence of stochastic ordering and coupling for probability measures on a finite partially ordered set. Intuitively, a probability measure P_{1} is stochastically larger than a probability measure P_{2} if probability from P_{1} can flow down in the partially ordered set to produce P_{2}. The network flow problem was solved symbolically in MATLAB using the augmented path algorithm, to obtain a rational number for the upper bound, avoiding any roundoff error except in converting the final rational number to a decimal.

The entire computation, from calculating partition probablities through solving the network flow problem, took slightly less than two weeks on a 2.90 GHz Dell XPS 159570 laptop with 32 GB RAM, producing the upper bound $p_{c}\left(4,8^{2}\right) \leq$ 0.749001747369766 . This is the first substitution method comparison that has been completed for substitution regions with ten boundary vertices, for either bond or site percolation models.

4 Future Research

Future research will focus on improving site percolation threshold bounds for other Archimedean lattices. Table 1 summarizes the current bounds, exact values, and consensus of simulation estimates. Although the site percolation threshold is exactly known for three of the lattices, only the triangular lattice solution was derived using the site model, with the other two obtained by transformations of bond model solutions: The kagome lattice is the line graph of the hexagonal lattice, so its site percolation threshold equals $1-2 \sin (\pi / 18)$, the bond percolation threshold of the hexagonal lattice. The ($3,12^{2}$) lattice is the line graph of the 2 -subdivided hexagonal lattice, so its site percolation threshold is $\sqrt{1-2 \sin (\pi / 18)}$. The upper bound

Table 1 Site percolation threshold bounds and values for the archimedean lattices

Lattice name	Lower bound	Exact value or estimate	Upper bound
$\left(3,12^{2}\right)$		$=0.807900 \ldots$	
$(4,6,12)$	0.721730	0.747806	0.770935
$\left(4,8^{2}\right)$	0.707106	0.729724	0.749002
Hexagonal	0.652703	0.697043	0.74335
$(3,4,6,4)$	0.522394	0.621819	0.652704
Kagome		$=0.652703 \ldots$	
Square	0.556000	0.592746	0.679492
$\left(3^{4}, 6\right)$	0.500000	0.579498	0.652704
$\left(3^{3}, 4^{2}\right)$	0.500000	0.550213	0.679492
$\left(3^{2}, 4,3,4\right)$	0.500000	0.550806	0.679492
Triangular		$=0.500000 \ldots$	

for the $\left(4,8^{2}\right)$ lattice site percolation threshold obtained in this article produces the shortest bounding interval for any of the unsolved lattices. The bounding interval lengths for three of the other lattices are almost 0.18 .

The most important and challenging cases are the square and hexagonal lattices. For the square lattice, the lower bound was proved by van den Berg and Ermakov [1] in 1996, while the upper bound was derived in 1995 by Wierman [13], with no improvements since. For the hexagonal lattice, the lower bound is the bond percolation threshold of the hexagonal lattice, established [12] in 1981 while the upper bound was proved [8] in 2007 using the substitution method. Despite repeated attempts, these bounds have not been improved.

To make progress on these problems with the substitution method, substantial adaptations must be made to augment the partition lattice as in [17] and then adapt the graph-welding, non-crossing partition, symmetry reduction, and network flow model accordingly.

Acknowledgements This research was supported by the Aceheson J. Duncan Fund for the Advancement of Research in Statistics.

References

1. van den Berg, J. and Ermakov, A. (1996) A new lower bound for the critical probability of site percolation on the square lattice. Random Structures \& Algorithms 8, 199-212. https://doi.org/ 10.1002/(SICI)1098-2418(199605)8:3<199::AID-RSA4>3.0.CO;2-T
2. Grünbaum, B. and Shephard, G. C. (1987) Patterns and Tilings, W. H. Freeman.
3. Kesten, H. (1980) The critical probability of bond percolation on the square lattice equals $1 / 2$. Communications in Mathematical Physics 74, 41-59. https://doi.org/10.1007/BF01197577
4. Kesten, H. (1982) Percolation Theory for Mathematicians, Birkhäuser.
5. Łuczak, T. and Wierman, J. C. (1988) Critical probability bounds for two-dimensional site percolation models, Journal of Physics A: Mathematical and General 21, 3131-3138. https:// doi.org/10.1088/0305-4470/21/14/014
6. May, W. D. and Wierman, J. C. (2003) Recent improvements to the substitution method for bounding percolation thresholds. Congressus Numerantium 162, 5-25.
7. May, W. D. and Wierman, J. C. (2005) Using symmetry to improve percolation threshold bounds. Combinatorics, Probability and Computing 14, 549-566. https://doi.org/10.1017/ S0963548305006802
8. May, W. D. and Wierman, J. C. (2007) The application of non-crossing partitions to improving percolation threshold bounds. Combinatorics, Probability and Computing 17, 285-307. https:// doi.org/10.1017/S0963548306007905
9. Preston, C. J. (1974) A generalization of the FKG inequalities. Communications in Mathematical Physics 36, 233-241. https://doi.org/10.1007/BF01645981
10. Suding, P. N. and Ziff, R. M. (1999) Site percolation thresholds for Archimedean lattices. Physical Review E 60, 275-283. https://doi.org/10.1103/PhysRevE.60.275
11. Tsallis, C. (1982) Phase diagram of anisotropic planar Potts ferromagnets: A new conjecture. Journal of Physics C 15, L757-L764. https://doi.org/10.1088/0022-3719/15/23/007
12. Wierman, J. C. (1981) Bond percolation on honeycomb and triangular lattices, Advances in Applied Probability 13, 293-313. https://doi.org/10.2307/1426685
13. Wierman, J. C. (1995) Substitution method critical probability bounds for the square lattice site percolation model. Combinatorics, Probability and Computing 4, 181-188. doi: https:// doi.org/10.1017/S0963548300001565
14. Wierman, J. C. (2001) Site percolation critical probability bounds for the $\left(4,8^{2}\right)$ and $(4,6,12)$ lattices. Congressus Numerantium 150, 117-128.
15. Wierman, J. C. (2002) An improved upper bound for the hexagonal lattice site percolation critical probability. Combinatorics, Probability and Computing 11, 629-643. https://doi.org/ 10.1017/S0963548302005345
16. Wierman, J. C. (2016) Tight bounds for the bond percolation threshold of the ($3,12^{2}$) lattice, Journal of Physics A: Mathematical and Theoretical 49, 475002. https://doi.org/10.1088/17518113/49/47/475002
17. Wierman, J. C. (2019) An improved upper bound for the site percolation threshold of the $\left(4,8^{2}\right)$ Archimedean lattice. Congressus Numerantium 232, 139-152.
18. Wierman, J. C.; Yu, G.; and Huang, T. (2015) A disproof of Tsallis' bond percolation threshold conjecture for the kagome lattice. Electronic Journal of Combinatorics 22, P2.52. https://doi. org/10.37236/5117

[^0]: J. Bartz (\boxtimes) • B. Dearden • J. Iiams • J. Metzger

 University of North Dakota, Grand Forks, ND 58202, USA
 e-mail: jeremiah.bartz@und.edu
 B. Dearden
 e-mail: bruce.dearden@und.edu
 J. Iiams
 e-mail: joel.iiams@und.edu
 J. Metzger
 e-mail: jerry.metzger@und.edu

[^1]: B. Qu

 Columbia University, New York, NY 10027, USA
 e-mail: b.qu@columbia.edu
 S. J. Curran (\triangle)

 University of Pittsburgh at Johnstown, Johnstown, PA 15904, USA
 e-mail: sjcurran@pitt.edu

[^2]: D. Branch - G. Thorpe

 Morehouse College, Atlanta, GA, USA
 e-mail: donovan.branch@morehouse.edu
 G. Thorpe
 e-mail: geoffrey.thorpe@morehouse.edu
 D. Davenport (\boxtimes) • S. Frankson

 Howard University, Washington, DC, USA
 e-mail: dennis.davenport@howard.edu
 S. Frankson
 e-mail: shakuan.frankson@bison.howard.edu
 J. T. Jones

 Clark Atlanta University, Atlanta, GA, USA
 e-mail: jazmin.jones@students.cau.edu

[^3]: T. Myers (\triangle)

 Howard University, Washington DC, WA 20059, USA
 e-mail: Timyers@howard.edu

[^4]: P. Peart (\boxtimes) •. Ramaroson

 Department of Mathematics, Howard University, Washington D.C. 20059, USA
 e-mail: ppeart@howard.edu

[^5]: R. C. Bunge • J. Torf

 Department of Mathematics, Illinois State University, Normal, IL 61790-4520, USA
 A. Hakes

 Department of Mathematics, Purdue University, West Lafayette, IN 47907-2067, USA
 J. Jeffries (\boxtimes)

 Department of Mathematics, Iowa State University, Ames, IA 50011, USA
 e-mail: joel.a.jeffries@gmail.com
 E. Mastalio

 Mathematics Department, University of Northern Iowa, Cedar Falls, IA 50614-0506, USA

[^6]: B. Servatius (\boxtimes)

 Worcester Polytechnic Institute, Worcester, MA, USA
 e-mail: bservat@wpi.edu

[^7]: F. Shahrokhi (\triangle)

 UNT, P.O.Box 13886, Denton, TX 76203-3886, USA
 e-mail: Farhad.Shahrokhi@unt.edu

[^8]: S. H. Holliday (\boxtimes)

 Kennesaw State University, Kennesaw, GA, USA
 e-mail: shollid4@kennesaw.edu

[^9]: A. Abueida (\triangle)

 University of Dayton, Dayton, OH 45469-2316, USA
 e-mail: aabueida1 @udayton.edu
 K. Roblee

 Troy University, Troy, AL 36082, USA
 e-mail: kroblee@troy.edu

[^10]: J. Hallas

 Department of Mathematics and Computer Science, Concord University, Athens, WV 24712, USA
 E. Salehi (\triangle)

 Department of Mathematical Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154-4020, USA
 e-mail: ebrahim.salehi@univ.edu
 P. Zhang

 Department of Mathematics, Western Michigan University, Kalamazoo, MI 49008-5248, USA

[^11]: R. A. Beeler

 Department of Mathematics and Statistics, East Tennessee State University, Johnson City, TN 37614-1700, USA
 e-mail: beelerr@etsu.edu
 A. D. Gray (\triangle)

 Mathematics Division, Northeast State Community College, Blountville, TN 37617-0246, USA
 e-mail: adgray@northeaststate.edu

[^12]: K. A. S. Factor

 Department of Mathematical and Statistical Sciences, Marquette University, Milwaukee WI 53233, USA
 L. Langley • S. Merz (\boxtimes)

 Department of Mathematics, University of the Pacific, Stockton CA, 95211, USA
 e-mail: smerz@pacific.edu

[^13]: K. Munger • J. Petrone • D. R. Prier (\triangle)

 Gannon University, Erie PA, USA
 e-mail: prier001@gannon.edu

[^14]: L. Paskowitz • N. Vallapureddy • J. Wierman (\boxtimes)

 Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21218, USA
 e-mail: jwierma1@jhu.edu

[^15]: S.-M. Lee

 1786 Plan Tree Drive, Upland 91784, USA
 H. Su (\boxtimes)

 Department of Mathematics, Stonehill College, Easton 02357, USA
 e-mail: hsu@stonehill.edu
 Y.-C. Wang

 Department of Digital Media Design, Tzu-Hui Institute of Technology, Nanzhou, Pingtung, Taiwan

[^16]: A. M. Heissan (\boxtimes)

 Manhattanville College, Purchase, NY 10577, USA
 e-mail: a.heissan@mville.edu
 G. Tiner

 Faulkner University, Montgomery, AL 36109, USA
 e-mail: gtiner@faulkner.edu

[^17]: Y. Egawa

 Department of Applied Mathematics, Tokyo University of Science, Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
 K. Kimura (\triangle)

 Department of Information Technology and Electronics, Ishinomaki Senshu University, Shinmito 1, Minamizakai, Ishinomaki-Shi, Miyagi 986-8580, Japan
 e-mail: kimura@isenshu-u.ac.jp

[^18]: L. B. Beasley (\boxtimes)

 Utah State University, Logan, UT 84322, USA
 e-mail: leroy.b.beasley1 @ gmail.com

[^19]: Daniel Tian started this project at the 2019 Oakland University Summer Mathematics Institute.

[^20]: E. Cheng (\triangle) • L. Lipták

 Department of Mathematics and Statistics, Oakland University, Rochester, MI 48309, USA
 e-mail: echeng@oakland.edu
 L. Lipták
 e-mail: liptak@oakland.edu
 D. Tian

 Northville High School, 45700 Six Mile Rd, Northville, MI 48168, USA

[^21]: A. Bickle (\boxtimes)

 Penn State Altoona, Altoona, PA, USA
 e-mail: remove@mail.com
 URL: https://allanbickle.wordpress.com/

[^22]: M. Skyers (\boxtimes)

 Penn State Brandywine, Media, PA, USA
 e-mail: mus61@psu.edu
 L. J. Stanley

 Lehigh University, Bethlehem, PA, USA
 e-mail: ljs4@lehigh.edu

[^23]: M. R. DeDeo (\boxtimes)

 University of North Florida, Jacksonville 32224, USA
 e-mail: mdedeo@unf.edu
 URL: http://www.unf.edu/~mdedeo

[^24]: ${ }^{1} S T_{n}$ should not be confused with the Star Graph $S_{k}=K_{1, k}$.

[^25]: J. C. Wierman (\boxtimes)

 Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21218, USA
 e-mail: jwierma1@jhu.edu

