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Preface I

The Southeastern International Conference on Combinatorics, Graph Theory, and
Computing (SEICCGTC) is an international meeting of mathematical scientists,
held annually in March, during Spring Break at Florida Atlantic University (FAU)
in Boca Raton, Florida. The conference includes a program with plenary lectures by
invited speakers, as well as sessions of contributed papers each day. In addition, two
or three invitational special sessions are offered each year. A valuable part of the
conference is the opportunity afforded for informal conversations about the methods
participants employ in their professional work in business, industry, and government
and about their current research.

The 51st meeting was held in the newly renovated Student Union building at FAU,
March 9–13, 2020. Five distinguished researchers, at various stages of their careers,
accepted invitations to attend as plenary speakers at this year’s 51st SEICCGTC:
Pierre Baldi, University of California, Irvine, USA; Pavol Hell, Simon Fraser Univer-
sity, Canada; Patricia Hersh, University of Oregon, USA; PanosM. Pardalos, Univer-
sity of Florida, USA; and Kai-Uwe Schmidt, Paderborn University, Germany. Dr.
Pardalos had to cancel his talk at the last moment, due to illness and the pandemic.
Each of the other plenary speakers gave two talks. There were two special sessions
this year, one on Research by Women in Graph Theory and its Applications, orga-
nized by Leslie Hogben, and one on Extremal Graph Theory, organized by Neal
Bushaw. Both were well attended and well received. Plenary and contributed talks
covered awide variety of topics including: new tools for counting and linear program-
ming, using topological methods; graph homomorphism; graphs with loops; highly
non-linear functions and coding theory; association schemes; deep learning and its
mathematical foundations; extremal graph theory; posets; latin squares; combinato-
rial games; coloring, connectivity, domination, labeling, and partitioning of graphs;
along with associated algorithms and applications.

The coronavirus pandemic of 2020 created some difficulties for our conference.
One plenary speaker could not attend, andwe experienced 20 cancellations due to the
virus outbreak. Several participants had their return travel plans disrupted; a fewwere
quiteworried for a day or two. TheFAUDepartment ofMathematical Sciences hosted
approximately 150 conference participants and guests, marking another successful
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vi Preface I

meeting of the SEICCGTC! For the most part, the 51st meeting of the SEICCGTC
was a great success and conference participants expressed their approval of the overall
quality of speakers and programs and the continuous improvements in the technology
provided. We have cause to celebrate!

OnTuesday,March 10, 2020,we celebrated the publication of the commemorative
book entitled, “50 Years of Combinatorics, Graph theory and Computing,” published
by CRC/Taylor & Francis. Twenty-nine past plenary speakers and past conference
participants contributed 21 chapters for the book, edited by Fan Chung, Ronald
Graham, Ronald Mullin, Frederick Hoffman, Douglas West and Leslie Hogben.
The Institute of Combinatorics and its Applications held its annual meeting on
Wednesday, March 11.

The conference also featured an outdoor reception Monday evening on the Live
Oak Pavilion Patio, a sumptuous beachfront banquet Wednesday evening at the
Delray Sands Resort, as well an excursion Thursday afternoon to the FlaglerMuseum
in Palm Beach, followed by an informal reception Thursday evening at the brand
new Schmidt Family Complex. The social program was capped off by a wonderful
Survivors’ Party Friday evening, hosted by Aaron Meyerowitz and Andrea Schuver
at their home!

This year, we took another step toward elevating the quality of the conference,
by agreeing to publish our conference proceedings with Springer Nature, in their
PROMS series of hardback conference proceedings. The purpose is to more effec-
tively and efficiently continue to disseminate important advances in the represented
disciplines and to ensure that the conference continues to promote better under-
standing of the roles of modern applied mathematics, combinatorics and computer
science; demonstrate the contribution of each discipline to the others; and decrease
gaps between the fields, as it did through fifty years of publishing in the journal,
Congressus Numerantium.

The conference was supported by the Department chair and staff, with tech-
nical support by Andrew Gultz. Outside support came from the National Security
Agency, Springer Nature, CRCPress/Taylor& Francis,Algorithms, and The Institute
of Combinatorics and its Applications. Conference coordination and organization
was superbly provided by Dr. Maria Provost.

I gratefully acknowledge the support and assistance of Sara Heuss Holliday,
Richard Low, Zvi Rosen, Farhad Shahrokhi, and John Wierman in the compilation
and reviewing of these Proceedings. We also thank all our referees.

Boca Raton, USA Frederick Hoffman



Preface II

Ratio balancing numbers, introduced here by Jeremy Bartz and his coauthors, are
a generalization of balancing numbers, a concept from number theory involving
triangular numbers. The authors define the concept and present examples, existence
results, and conjectures.

Bohan Qu and Stephen J. Curran show that the number β = (bb−1 − 1)/ (b − 1)2,
where b ≥ 3, has several interesting multiplicative properties. In the base b number
system, β = (123···(b− 4)(b − 3)(b − 1))b. They show that the digits of the number
Kβ, for integers K such that 1 ≤ K ≤ (b − 1)2, as a number in the base b number
system can be generated from an arithmetic sequence reduced modulo b − 1 with
an appropriate adjustment.

DennisDavenport and his coauthors report on recent results of their research group
on Riordan arrays. They generalize a known row construction of Riordan arrays to
a result on the determination of double Riordan arrays.

TimothyMyers constructs the Clifford graph algebra for any windmill graphW(r,
m), which consists of m copies of the complete graph K r adjoined at one common
vertex; and for any Dutch windmill graph Dr

m which consists of m copies of the
r-cycle graph Cr adjoined at one common vertex. He then applies the construction
to give a new proof that these graphs, which possess the friendship property, are
precisely the friendship graphs.

Paul Peart and Francois Ramaroson construct and find the values for certain char-
acter sums involving quadratic characters. The method is new and employs elliptic
curves. Detailed proofs are provided.

In work that originated in an REU at Illinois State University, Joel Jeffries and
his coauthors investigate a multigraph G with the underlying structure of a 4-cycle
where each edge multiplicity in the set {1, 2, 3, 4} is represented. They refer to each
of the three such multigraphs as a Stanton 4-cycle. For each such G, they consider λ

such that there exists a G-decomposition of λKn.
Brigitte Servatius considers the k-plane matroid, which is a matroid on the edge

set, I, of a bipartite graph,H = (A, B; I), defined by a counting condition. She shows
that 2k-connectivity of H implies that I is a spanning set for the k-plane matroid on
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the edge set of the complete bipartite graph on (A, B). For k = 2 she explains the
connections to rigidity in the plane and to conjectures of Whiteley.

Farhad Shahrokhi derives an upper bound on the trace function of a hypergraphH
and gives some applications. For instance, a new upper bound for the VC dimension
of H, or vc(H), follows as a consequence and can be used to compute vc(H) in
polynomial time provided that H has bounded degeneracy. This was not previously
known, and improves computing time in some cases. Another consequence is a
general lower bound on the distinguishing transversal number of H that gives rise to
applications in domination theory of graphs.

SarahHeussHolliday continues work on a question raised in 2017 byHedetniemi:
For which graphs G does the indexed family of open neighborhoods have a system
of distinct representatives? In earlier work with collaborators, that question was
answered, andnecessary conditions and associated parameterswere explored.Haenel
and Johnson looked over longest paths and cycles. The work here further generalizes
and deepens their examinations.

Atif Abueida and Kenneth Roblee examine harmonious labelings of starlike trees.
It has been shown using cyclic groups that the disjoint union of an odd cycle on s
vertices and starlike treeswith the central vertex adjacent to some even tmany s-paths
is harmonious. They consider the disjoint union of an odd cycle with at least two
starlike trees with new notions of harmonious labelings to accommodate the case
where |V | > |E |.

A mean coloring of a connected graphG of order 3 or more is an edge coloring of
G with positive integers such that the mean of the colors of the edges incident with
every vertex is an integer. The associated color of a vertex is its chromatic mean. If
distinct vertices have distinct chromatic means, then the edge coloring is a rainbow
mean coloring of G. In their paper, Ebrahim Salehi and his coauthors investigate
rainbow mean colorings of trees.

Peg solitaire is a game in which pegs are placed in every hole but one, and the
player jumps over pegs to remove them. In 2011, this gamewas generalized to graphs.
Here, Robert A. Beeler and Aaron D. Gray examine graphs in which any single edge
addition changes solvability. They provide necessary and sufficient conditions for
solvability for a certain family. They show that infinite subsets of this family are edge
critical and determine the maximum number of pegs that can be left on this family
with the condition that a jump is made whenever possible. Finally, they give a list of
graphs on eight vertices that are edge critical.

A set of vertices, S, in a strongly connected digraphD, is split dominating provided
it is: (1) dominating and (2) D − S is trivial or not strongly connected. The split
domination number is the minimum cardinality of a split dominating set for that
digraph. Sarah Merz and her coauthors show that for any k-regular tournament, the
split domination number is at least (2k+3)/3 and this bound is tight. They explore
properties of regular tournaments with split domination number equal to the lower
bound, including sufficient conditions for {1}-extendability.

David R. Prier and his coauthors give independence and domination results for six
chess-like pieces on triangular boards with triangular spaces and triangular boards
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with hexagonal spaces. The question of independence and domination for these same
boards on the surface of a tetrahedron is introduced, and some initial results are given.

A graph has an efficient dominating set if there exists a subset of vertices D such
that every vertex in the graph is dominated by exactly one vertex in D. Lyle Paskowitz
and his coauthors investigate efficient domination on the stacked versions of each of
the eleven Archimedean Lattices, and determine the existence or non-existence of
efficient dominating sets on each lattice through integer programming. The proofs of
existence are constructive, and the proofs of non-existence are generated by integer
programs. They find efficient dominating sets on seven of the stacked lattices and
prove that no such sets exist on the other four stacked lattices.

Let G be a graph with vertex set V (G) and edge set E(G). A (p; q)-graph G =
(V;E) is said to be AL(k)-traversal if there exist a sequence of vertices v1, v2, ..., vp
such that for each i = 1, 2, ..., p–1, the distance for vi and vi+1 is equal to k. We call a
graph G a k-steps Hamiltonian graph if it has a AL(k)-traversal in G and the distance
between vp and v1 is k. A graph G is said to be hereditary k-steps hyperhamiltonian
if it is k-steps Hamiltonian and for any v in G, the vertex-deleted subgraph G \{v}
is also k-steps Hamiltonian. In this paper, Hsin-hao Su and his coauthors investigate
subdivision graphs of awheel graph andC4×K2 to seewhich are 2-stepsHamiltonian
and hereditary non 2-steps Hamiltonian.

Let G be a graph with average degree greater than k–2. Erdős and Sós conjectured
that G contains every tree on k vertices as a subgraph. The circumference of the
graph G, c(G), is the number of edges on a longest cycle. Gilbert and Tiner proved
that if c(G) is at most k, then G contains every tree on k vertices. Here A.M. Heissan
and Gary Tiner improve this result and show that the Erdős-Sós conjecture holds for
graphs whose circumference is at most k + 1.

Yoshimi Egawa andKenji Kimura consider a relationship between a regular graph
and a regular factor of its vertex-deleted subgraph. Katerinis proved that if r is an
even integer and k is an integer with 1 ≤ k ≤ r/2, and G is an r-regular, r-edge-
connected graph of odd order, then G \{x} has a k-factor for each x ∈V ( G). When
the result “for each x ∈V ( G)” of Katerinis is replaced “for some x ∈V ( G),” they
consider what condition can hold. One main result is: Let r and k be even integers
such that 4 ≤ k ≤ r/2, and � be a minimum integer such that � ≥ r/(r−2k+4), and
G be an r-regular, 2�-edge-connected graph of odd order. Then, there is some x∈V
(G) such that G \{x} has a k-factor. Moreover, if r ≥ 4k − 8, then we can replace
2�-edge-connected with 2-edge-connected.

In his paper, LeRoy B. Beasley gives several definitions of connectedness and
extendibility of paths and cycles in directed graphs. He defines sets of digraphs by
various types of connectedness or extendibility and gives some containments as well
as examples to show proper containment.

Extraconnectivity generalizes the concept of connectivity of a graph but it is
more difficult to compute. In his paper, Eddie Cheng and his coauthors compute the
g-extraconnectivity of the arrangement graph for small g (g ≤ 6) with the help of a
computer program. In addition, they provide an asymptotic result for general g.
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Alan Bickle defines a k-tree as a graph that can be formed by starting with Kk+1

and iterating the operation of making a new vertex adjacent to all the vertices of a k-
clique of the existing graph. When the order n > k + 1, a k-path graph is a k-tree with
exactly two vertices of degree k. He states a forbidden subgraph characterization for
k-paths as k-trees. He characterizes k-trees with diameter d ≥ 2 based on the k-paths
they contain.

In their paper, Marina Skyers and Lee I. Stanley look at representations of the
simple randomwalk, Sn, and show how to effectively rearrange the sequence of terms
Sn/

√
n in order to achieve almost sure convergence to the standard normal on the

open interval (0; 1). This is done via a suitable choice of permutation F : {0, 1}n →
{0, 1}n . They are interested in optimal rearrangement of the simple random walk.
They describe how tominimize the graph-theoretic complexity of these permutations.

M. R. DeDeo analyzes and compares properties of Cayley graphs of permuta-
tion groups called transposition graphs, as this family of graphs has better degree
and diameter properties than other families of graphs. Cayley graphs of permu-
tation groups generated by transpositions inherit almost all of the properties of the
hypercube. In particular, she studies properties of the complete transportation, (trans-
position) star graph, bubble-sort graph, modified bubble-sort graph and the binary
hypercube and uses these properties to determine bounds on the energy of these
graphs.

John C. Wierman studies the (4; 82) or “bathroom tile,” lattice, one of the eleven
Archimedean lattices, which are infinite vertex-transitive graphs with edges from the
tilings of the plane by regular polygons. The site percolationmodel retains each vertex
of an infinite graph independently with probability p, 0 ≤ p ≤ 1. The site percola-
tion threshold is the critical probability psitec , above which the subgraph induced by
retained vertices contains an infinite connected component almost surely, and below
which all components are finite almost surely. Using computational improvements
for the substitution method, the upper bound for the site percolation threshold of the
(4; 82) lattice is reduced from 0.785661 to 0.749002.

Boca Raton, USA Frederick Hoffman
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Ratio Balancing Numbers

Jeremiah Bartz, Bruce Dearden, Joel Iiams, and Jerry Metzger

Abstract Balancing numbers were introduced by Behera and Panda while investi-
gatingwhen the sumof two triangular numbers is a triangular number.We introduce a
variation called ratio balancing numbers which generalizes the sums considered and
involves an integral ratio condition. Often ratio balancing numbers retain the famil-
iar properties of balancing numbers. However, a distinct feature of ratio balancing
numbers is that they exist in finite numbers for certain choices of parameters. Com-
putational evidence leads us to conjecture that for any integer d, there are choices of
parameters which yield finitely many, but at least d, ratio balancing numbers.

Keywords Balancing numbers · Triangular numbers · Recurrence relations

1 Introduction

Behera and Panda [5] defined balancing numbers as positive integers B satisfying

1 + 2 + · · · + (B − 1) = (B + 1) + · · · + (B + r)

for some integer r ≥ 0. The previous equation is equivalent to

T (B − 1) + T (B) = T (B + r) (1)
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2 J. Bartz et al.

where T (i) = i(i+1)
2 is the i th triangular number. The identity T (5) + T (6) = T (8)

shows that 6 is a balancing number. Traditionally, 1 is considered the initial balancing
number since it satisfies (1). The collection of balancing numbers forms an infinite
sequence which appears in The Online Encyclopedia of Integer Sequences [8] as
A001109.

Many variations of balancing numbers have been studied [1, 2, 4, 9–13]. That
being said, none so far have incorporated sums of the same type as the well known
identity 3T (B − 1) + T (B) = T (2B − 1) [6, p. 13]. Motivated to include such
sums, we introduce ratio balancing numbers which involve an integral ratio con-
dition. We show that often ratio balancing numbers retain the familiar properties of
balancing numbers. However, a distinct feature of ratio balancing numbers is that
they exist in finite numbers for certain choices of parameters. Computational evi-
dence leads us to conjecture that for any integer d, there are choices of parameters
which yield finitely many, but at least d, ratio balancing numbers.

The paper is organized as follows. Definitions and examples of ratio balancing
numbers and related quantities are given in Sect. 2. In Sect. 3, we prove that there
are only finitely many ratio balancing numbers for certain choices of parameters and
present our conjecture. We derive in Sect. 4 several familiar properties of balancing
numbers for ratio balancing numbers when infinitely many exist. Additionally, we
present the surprising restriction on jump sizes when generating an infinite class of
ratio balancing numbers; the jump size is either 1 or 2.

2 Ratio Balancing Numbers and Related Quantities

Let p, q, k, w ∈ Z with p, q ≥ 1 and k ≥ 0. We are interested in finding integers B
with B ≥ k such that

1 + · · · + (B − k) : (B + 1) + · · · + (B + r) :: p : q.

This is equivalent to B satisfying

qT (B − k) + pT (B) = pT (B + r) (2)

where T (i) = i(i+1)
2 is the i th triangular number. We are also interested when the

two sides of (2) differ by a fixed integer w. This leads to the following definition.

Definition 1 Let p, q, k, w ∈ Z with p, q ≥ 1 and k ≥ 0. An integer B is called a
ratio balancing number with ratio p : q, gap k, and weight w, or more simply an
R(p, q, k, w)-balancing number if B ≥ k and

q T (B − k) + p T (B) + w = p T (B + r) (3)
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for some integer r ≥ 0. We refer to r as the R(p, q, k, w)-balancer corresponding
to the R(p, q, k, w)-balancing number B.

Solving (3) for r and B, respectively, gives

r = −p(2B + 1) +
√
4p(p + q)B2 + 4p(p + q − 2qk)B + 4pqk(k − 1) + p2 + 8pw

2p
(4)

and

B = 2pr + q(2k − 1) + √
4p(p + q)r2 + 8pqkr + q2 − 8qw

2q
(5)

where we take the positive square root so that r ≥ 0 and B ≥ k. Thus B is an
R(p, q, k, w)-balancing number with R(p, q, k, w)-balancer r implies that the
quantity 4p(p + q)B2 + 4p(p + q − 2qk)B + 4pqk(k − 1) + p2 + 8pw as well
as 4p(p + q)r2 + 8pqkr + q2 − 8qw are both perfect square. This motivates the
next definitions.

Definition 2 Let B be an R(p, q, k, w)-balancing number with R(p, q, k, w)-
balancer r . Define its R(p, q, k, w)-Lucas balancing number to be

C =
√
4p(p + q)B2 + 4p(p + q − 2qk)B + 4pqk(k − 1) + p2 + 8pw

and its R(p, q, k, w)-Lucas balancer r̂ to be

r̂ =
√
4p(p + q)r2 + 8pqkr + q2 − 8qw.

Wesay (B,C) is an R(p, q, k, w)-balancingpair and (r, r̂) its R(p, q, k, w)-balancer
pair.

The integral pair (B,C) is an R(p, q, k, w)-balancing pair if and only if the
following three conditions hold:

1. B ≥ k;
2. 4p(p + q)B2 + 4p(p + q − 2qk)B + 4pqk(k − 1) + p2 + 8pw is a perfect

square;
3. C ≡ p (mod 2p).

The third condition follows from (4). The second condition implies that the R(p, q,

k, w)-balancing pair (B,C) is a solution to the Pell like-equation

y2 = 4p(p + q)x2 + 4p(p + q − 2qk)x + 4pqk(k − 1) + p2 + 8pw. (6)

Multiplying by p(p + q) we see (6) can be expressed as

z2 − p(p + q)y2 = N (p, q, k, w) (7)

where z = 2p(p + q)x + p(p + q − 2qk) and
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N (p, q, k, w) = p2q(p + q) − 4p3qk2 − 8p2(p + q)w.

Equation (7) is useful for studying ratio balancing numbers and is referred to as the
R(p, q, k, w)-companion equation. In particular, an integral solution (z, y) to the
R(p, q, k, w)-companion equation corresponds to an R(p, q, k, w)-balancing pair
(B,C) where

B = z − p(p + q − 2qk)

2p(p + q)

and C = y provided the following four conditions hold:

1. z ≥ p2(2k + 1) + pq;
2. y > 0;
3. y ≡ p (mod 2p);
4. z ≡ p(p + q − 2qk) (mod 2p(p + q)).

The first three conditions are analogues to those described above for integer pairs
(B,C). The last condition is necessary for integral values of (z, y) to yield integral
values of (B,C).

Similarly we note that the R(p, q, k, w)-balancer pair (r, r̂) is a solution to the
equation

y2 = 4p(p + q)x2 + 8pqkx + q2 − 8qw.

Multiplying by p(p + q) and substituting z = 2p(p + q)x + 2pqk yields the
R(p, q, k, w)-balancer companion equation

z2 − p(p + q)y2 = 4p2q2k2 − pq2(p + q) + 8pq(p + q)w.

We are also interested in the index of the triangular number appearing on the right
hand side of (2) and make the following definition.

Definition 3 The counterbalancer m of an R(p, q, k, w)-balancing number B with
R(p, q, k, w)-balancer r is defined to be m = B + r .

Several relationships between the quantities defined above are given in the next
result. These follow quickly from applying the definitions to (4) and (5).

Proposition 1 Suppose (B,C) is an R(p, q, k, w)-balancing pair with (r, r̂) its
associated R(p, q, k, w)-balancer pair and m its counterbalancer. Then

(a) r = −p(2B+1)+C
2p ;

(b) r̂ = 2qB − 2pr − 2qk + q;
(c) r̂ = 2(p + q)B − C + p + (1 − 2k)q;
(d) m = C−p

2p .

Example 1 The identity 7 · T (3) + T (5) + 9 = T (11) shows that the number 5 is
an R(1, 7, 2, 9)-balancing number with balancer 6 and corresponding R(1, 7, 2, 9)-
Lucas balancing number 23. Since 2 · T (14) + 3 · T (15) = 3 · T (19), the number 15
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is an R(3, 2, 1, 0)-balancing numberwith balancer 4. Its corresponding R(3, 2, 1, 0)-
Lucas balancing number is 117. Every positive integer B is an R(1, 3, 1, 0)-balancing
number with balancer B − 1 since 3 · T (B − 1) + T (B) = T (2B − 1). The corre-
sponding R(1, 3, 1, 0)-Lucas balancing number is 4B − 1. These last two examples
are discussed further in Examples 7 and 6, respectively.

Example 2 If B is an R(p, q, k, w)-balancing number, multiplying (3) by any pos-
itive integer c shows B is also an R(cp, cq, k, cw)-balancing number.

Example 3 Ratio balancing numbers unify many variations of balancing numbers
previously studied. The R(1, 1, k, w)-balancing numbers are the almost k-gap bal-
ancing numbers [1]. In particular, the R(1, 1, 0, 0)-, R(1, 1, 1, 0)-, and R(1, 1, k, 0)-
balancing numbers are cobalancing [11], balancing numbers [5], and upper k-gap
balancing numbers [2], respectively. The R(1, 1, 1,−k2)-balancing numbers are
the k-circular balancing numbers [10]. Lastly, the R(1, 1, 1, 1)- and R(1, 1, 1,−1)-
balancing numbers are the almost balancing numbers of the first and second kind
[9], respectively.

3 Counting Ratio Balancing Numbers

In this section, we establish that R(p, q, k, w)-balancing numbers, depending on the
choice of parameter values, either do not exist, exist in a finite number, or exist in a
finite number of infinite classes. The situationwhere a finite number of R(p, q, k, w)-
balancing numbers exist is of particular interest; this case does not arise in other
variations of balancing numbers previously studied.

From the discussion in Sect. 2, R(p, q, k, w)-balancing numbers can be derived
from solutions to the R(p, q, k, w)-companion equation which satisfy four condi-
tions. Recall that the R(p, q, k, w)-companion equation given in (7) is

z2 − Dy2 = N (8)

where D = p(p + q) and N = N (p, q, k, w). From the theory of Pell equations [7],
the existence of solutions to (8) depend on the values of D and N . If D is not a perfect
square, then (8) either has no solutions or infinitely many solutions which appear in
a finite number of infinite classes. The latter situation is explored further in Sect. 4.
If D is a perfect square and N �= 0, then (8) has finitely many solutions (possibly
none). Since each R(p, q, k, w)-balancing pair corresponds to one of these finitely
many solutions, we obtain the following.

Theorem 1 Suppose p(p + q) is a perfect square. If N (p, q, k, w) �= 0, then there
are finitely many (possibly none) R(p, q, k, w)-balancing numbers.

Example 4 The numbers 1 and 3 are the only two R(1, 24, 1, 0)-balancing num-
bers. To see this, observe the R(1, 24, 1, 0)-companion equation is z2 − 25y2 = 504
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whose solutions in the positive integers (z, y) are (23, 1), (27, 3), and (127, 25). Only
the latter two solutions satisfy the four conditions required to yield ratio balancing
numbers.

When there are finitely many R(p, q, k, w)-balancing numbers, experimental
evidence shows that there are most often three or fewer R(p, q, k, w)-balancing
numbers. There are four R(1, 2550408, 1, 0)-balancing numbers, namely 1, 2, 200,
and 318801. Moreover, four is the largest observed number of ratio balancing num-
bers so far for a fixed set of parameters in the finite case. Despite the perceived rarity
of balancing numbers in the finite case, we make the following conjecture.

Conjecture 1 Let d be a positive integer. There exists values of p, q, k, and
w with p(p + q) a perfect square and N (p, q, k, w) �= 0 which yield at least d
R(p, q, k, w)-balancing numbers.

The search interval for ratio balancing numbers in the finite case can be made
more efficient in some situations with the following theorem. This result provides an
upper bound for B for a certain class of ratio balancing numbers. Observe that the
condition that p(p + q) is a perfect square is equivalent to p and p + q each being
square when gcd(p, q) = 1.

Theorem 2 Let k, w ∈ Z with k ≥ 0. Suppose p = a2 and q = b2 − a2 for some
positive integers a and b such that a < b and gcd(p, q) = 1. If b does not divide 2k,
then B is a R(p, q, k, w)-balancing number only if B ≤ max{M1, M2} where

M1 = 4a2(b2 − a2)k(k − 1) + a4 + 8a2w − t2

4abt − 4a2(2a2k + (1 − 2k)b2)
,

M2 = 4a2(b2 − a2)k(k − 1) + a4 + 8a2w − (t + 1)2

4ab(t + 1) − 4a2(2a2k + (1 − 2k)b2)
,

and

t =
⌊
a(2a2k + (1 − 2k)b2)

b

⌋
. (9)

Proof Recall that (B,C) is a R(p, q, k, w)-balancing pair only if (B,C) is a solution
to (6) which after substitution becomes

y2 = 4a2b2x2 + 4a2(2a2k + (1 − 2k)b2)x + 4a2(b2 − a2)k(k − 1) + a4 + 8a2w.

We determine a choice of t which depends on a, b, and k so that the quantity y2

lies strictly between the consecutive squares (2abx + t)2 and (2abx + t + 1)2 for
sufficiently large integers x , hence cannot be a square of an integer. Observe that the
inequalities (2abx + t)2 < y2 < (2abx + t + 1)2 reduce to

4abtx + t2 < y0 < 4ab(t + 1)x + (t + 1)2
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where

y0 = 4a2(2a2k + (1 − 2k)b2)x + 4a2(b2 − a2)k(k − 1) + a4 + 8a2w.

We select t so that

4abt < 4a2(2a2k + (1 − 2k)b2) < 4ab(t + 1).

From a geometric viewpoint, this choice guarantees that the balance line

y = 4a2(2a2k + (1 − 2k)b2)x + 4a2(b2 − a2)k(k − 1) + a4 + 8a2w

lies strictly between the bounding lines y = 4abtx + t2 and y = 4ab(t + 1)x +
(t + 1)2 for sufficiently large x . In particular, the choice of t in (9) is sufficient under
the given hypotheses unless a(2a2k+(1−2k)b2)

b is an integer. This occurs exactly when
2a3k ≡ 0 (mod b) or equivalently b divides 2k under the assumptions above. The
upper bound on B follows from observing that the balance line lies strictly between
the two bounding lines for x greater than the largest x-coordinate of the intersection
points obtained from the bounding lines with the balance line. �

Remark 1 The argument made in the proof of Theorem 2 can be sharpened by
considering divisibility conditions and the relative positioning of the balance and
bounding lines at x = 0. We omit these details for convenience of the reader since
the emphasis of the result is demonstrate a technique to establish an upper bound for
B.

Example 5 The unique R(4, 5, 1, 0)-balancing number is 1. Using the notation of
Theorem 2, we have t = −1 and balance line is y = −16x + 16. The two bounding
lines are y = 0 and y = −24x + 1. From the intersection of the bounding lines
with the balance line, we see that any R(4, 5, 1, 0)-balancing number B satisfies
B ≤ max{−15/8, 1} = 1. The statement follows since B = k with r = 0 always
satisfies (3) when w = 0.

Lastly we consider the degenerate case when p(p + q) is a perfect square and
N (p, q, k, w) = 0. If additionallyw = 0, then N = 0 exactlywhenq = (4k2 − 1)p.
Consequently, this situation can be completely described combining the next example
with comments given inExample 2.We remark that this case ismore subtle for general
w.

Example 6 Let k ≥ 1. The R(1, 4k2 − 1, k, 0)-balancing numbers consist of all
integers B ≥ k. To see this, observe that z = 8k2B − 8k3 + 4k2 + 2k and y =
4kB − 4k2 + 2k + 1 are solutions to the R(1, 4k2 − 1, k, 0)-companion equation
z2 − 4k2y2 = 0 for each integer B ≥ k and satisfy the four conditions described in
Sect. 2. The corresponding identity in terms of triangular numbers is

(4k2 − 1)T (B − k) + T (B) = T (2kB − 2k2 + k).
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4 Functions Generating Ratio Balancing Numbers
and Related Results

When p(p + q) is not a perfect square, the standard balancing number techniques
can be used to generate balancing numbers from known balancing numbers. From
Pell equation theory, integral solutions to (7), if they exist, occur in a finite number
of cyclic classes. That is, if (z′, y′) is a solution corresponding to an R(p, q, k, w)-
balancing number, then so is (z′′, y′′) where

z′′ + y′′√p(p + q) = (α + β
√
p(p + q)) j (z′ + y′√p(p + q))

or equivalently in matrix form

V j :
[
z′′
y′′

]
=

[
α p(p + q)β

β α

] j [
z′
y′

]
. (10)

Here α + β
√
p(p + q) is the fundamental solution to z2 − p(p + q)y2 = 1 and j is

the minimal positive integer such that y′′ ≡ p (mod 2p) and z′′ ≡ p(p + q − 2qk)
(mod 2p(p + q)). We refer to j = j (p, q, k, w) as the jump size for R(p, q, k, w)-
balancing numbers.

Almost balancing numbers,which include balancing numbers, always have a jump
size of j = 1. Replacing triangular numbers in (1) with general figurate numbers give
the polygonal-balancing numbers [4]. Depending on the choice of parameters, polyg-
onal balancing numbers can have arbitrarily large jump sizes [3]. The next theorem
shows that the jump sizes for ratio balancing numbers satisfies j ≤ 2, striking a
middle ground between the results for almost and polygonal balancing numbers.

Theorem 3 Suppose p(p + q) is not a perfect square and (z′, y′) is a solution to
the R(p, q, k, w)-companion equation corresponding to an R(p, q, k, w)-balancing
number. Let α + β

√
p(p + q) be the fundamental solution to z2 − p(p + q)y2 = 1.

Then (z′′, y′′) is also a solution corresponding to an R(p, q, k, w)-balancing number
where [

z′′
y′′

]
=

[
α p(p + q)β

β α

]2 [
z′
y′

]
. (11)

Hence, the jump size j is at most two.

Proof By assumption z′ ≥ p2(2k + 1) + pq, y′ > 0, y′ ≡ p (mod 2p), and z′ ≡
p(p + q − 2qk) (mod 2p(p + q)). For j = 2, we see that (11) becomes

[
z′′
y′′

]
=

[
α2 + p(p + q)β2 2p(p + q)αβ

2αβ α2 + p(p + q)β2

] [
z′
y′

]
.

Clearly, z′′ ≥ p2(2k + 1) + pq and y′′ > 0. Since α2 − p(p + q)β2 = 1 and z′ ≡
p(p + q) (mod 2p), we see
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y′′ ≡ 2αβz′ + (2α2 − 1)y′ ≡ p (mod 2p).

Again using α2 − p(p + q)vβ2 = 1, observe

z′′ ≡ (2α2 − 1)z′ + 2p(p + q)αβy′ (mod 2p(p + q))

≡ −4α2 pqk − p(p + q − 2qk) (mod 2p(p + q))

≡ −4(1 + p(p + q)β2)pqk − p(p + q − 2qk) (mod 2p(p + q))

≡ p(p + q − 2qk) (mod 2p(p + q)).

Thus (z′′, y′′) satisfies the four conditions given in Sect. 2. �

Ratio balancing numbers with j = 1 remain of particular interest and can be
characterized as follows.

Theorem 4 Suppose p(p + q) is not a perfect square and (z′, y′) is a solution to
the R(p, q, k, w)-companion equation corresponding to an R(p, q, k, w)-balancing
number. Let α + β

√
p(p + q) be the fundamental solution to z2 − p(p + q)y2 = 1.

Then (z′′, y′′) is also a solution corresponding to an R(p, q, k, w)-balancing number
where [

z′′
y′′

]
=

[
α p(p + q)β

β α

] j [
z′
y′

]
(12)

with j = 1 if and only if the following conditions are satisfied:

1. α + β(p + q) ≡ 1 (mod 2);
2. (α − 1)(p + q − 2qk) + p(p + q)β ≡ 0 (mod 2(p + q)).

Proof It is immediate from the hypotheses that z′′ ≥ p2(2k + 1) + pq and y > 0.
For (z′′, y′′) to corresponding to an R(p, q, k, w)-balancing number with j = 1,
we require y′′ ≡ p (mod 2p) and z′′ ≡ p(p + q − 2qk) (mod 2p(p + q)). On
the other hand, it follows from (12) and noting z′ ≡ p(p + q) (mod 2p) that
y′′ ≡ (α + β(p + q))p (mod 2p) and z′′ ≡ α(p + q − 2qk) + p(p + q)βy′
(mod 2p(p + q)). These observations reduce to the stated conditions. �

Observe that the relations yi = Ci and zi = 2p(p + q)Bi + p(p + q − 2qk) can
be expressed as

S :
[
zi
yi

]
=

[
2p(p + q) 0

0 1

] [
Bi

Ci

]
+

[
p(p + q) − 2pqk

0

]
(13)

and

S−1 :
[
Bi

Ci

]
=

[ 1
2p(p+q)

0
0 1

] [
zi
yi

]
+

[−p(p+q)+2pqk
2p(p+q)

0

]
. (14)

Using (13) and (14), we can express (10) in terms of R(p, q, k, w)-balancing pairs
as J = S−1V j S where j is the jump size. Analogous expressions can be derived for
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generating R(p, q, k, w)-balancer pairs from known ones. The next two subsections
utilize the jump size and the maps above to obtain a collection of recurrence relations
of R(p, q, k, w)-balancing numbers and related sequences.

4.1 One Jump Case

When j = 1, it is straightforward to see that J = S−1V S is given by

[
Bi+1

Ci+1

]
=

[
α

β

2
2p(p + q)β α

] [
Bi

Ci

]
+

[
(p(p+q)−2pqk)(α−1)

2p(p+q)

(p(p + q) − 2pqk)β

]

and J−1 = S−1V−1S by

[
Bi−1

Ci−1

]
=

[
α − β

2−2p(p + q)β α

] [
Bi

Ci

]
+

[
(p(p+q)−2pqk)(α−1)

2p(p+q)

−(p(p + q) − 2pqk)β

]
.

Using the techniques used to prove analogous statements in [2, 5], we obtain the
following results.

Proposition 2 Let ((Bi ,Ci ))i≥0 be a class of R(p, q, k, w)-balancing pairs with
jump size j = 1, ((ri , r̂i ))i≥0 its R(p, q, k, w)-balancer pairs, and (mi )i≥0 its asso-
ciated counterbalancers. Then

(a) Bi+1 = 2αBi − Bi−1 + (p(p+q)−2pqk)(α−1)
p(p+q)

;
(b) Ci+1 = 2αCi − Ci−1;
(c) ri+1 = 2αri − ri−1 + 2qk(α−1)

p+q ;
(d) r̂i+1 = 2αr̂i − r̂i−1;
(e) mi+1 = 2αmi − mi−1 + α − 1.

Moreover,

lim
i→∞

Bi+1

Bi
= lim

i→∞
ri+1

ri
= lim

i→∞
mi+1

mi
= α +

√
α2 − 1.

4.2 Two Jump Case

For j = 2, the identity α2 + p(p + q)β2 = 2α2 − 1 is used to simply the presenta-
tion. In this case, J = S−1V 2S is given by

[
Bi+1

Ci+1

]
=

[
2α2 − 1 αβ

4p(p + q)αβ 2α2 − 1

] [
Bi

Ci

]
+

[
(p(p + q) − 2pqk)β2

2(p(p + q) − 2pqk)αβ

]

and J−1 = S−1V−2S by
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Table 1 Initial R(3, 2, 1, 0)-balancing numbers and associated sequences.

i 0a 0b 1a 1b 2a 2b 3a 3b

B 1 15 70 936 4345 58023 269326 3596496

C 9 117 543 7251 33657 449445 2086191 27858339

r 0 4 20 272 1264 16884 78372 1046560

r̂ 2 34 158 2110 9794 130786 607070 8106622

m 1 19 90 1208 5609 74907 347698 4643056

[
Bi−1

Ci−1

]
=

[
2α2 − 1 −αβ

−4p(p + q)αβ 2α2 − 1

] [
Bi

Ci

]
+

[
(p(p + q) − 2pqk)β2

−2(p(p + q) − 2pqk)αβ

]
.

Proceeding similarly as in the j = 1 case, we obtain the following results.

Proposition 3 Let ((Bi ,Ci ))i≥0 be a class of R(p, q, k, w)-balancing pairs with
jump size j = 2, ((ri , r̂i ))i≥0 its R(p, q, k, w)-balancer pairs, and (mi )i≥0 its asso-
ciated counterbalancers. Then

(a) Bi+1 = 2(2α2 − 1)Bi − Bi−1 + 2(p(p + q) − 2pqk)β2;
(b) Ci+1 = 2(2α2 − 1)Ci − Ci−1;
(c) ri+1 = 2(2α2 − 1)ri − ri−1 + 4pqkβ2;
(d) r̂i+1 = 2(2α2 − 1)r̂i − r̂i−1;
(e) mi+1 = 2(2α2 − 1)mi − mi−1 + 2p(p + q)β2.

Moreover,

lim
i→∞

Bi+1

Bi
= lim

i→∞
ri+1

ri
= lim

i→∞
mi+1

mi
= 2α2 − 1 +

√
(2α2 − 1)2 − 1.

Example 7 There are two classes of R(3, 2, 1, 0)-balancing pairs whose initial
terms are (1, 9) and (15, 117), respectively. The initial R(3, 2, 1, 0)-balancing num-
bers and associated sequences are given in Table1. Here α = 4, β = 1, and j = 2.
From Proposition 3, we see that two of the recursive relations for each class are
Bi+1 = 62Bi − Bi−1 + 6 and ri+1 = 62ri − ri−1 + 24. None of these sequences or
subsequences appear in The On-line Encyclopedia of Integer Sequences.
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An Unexpected Digit Permutation from
Multiplying in Any Number Base

Bohan Qu and Stephen J. Curran

Abstract We show that the number β = (bb−1 − 1)/(b − 1)2, where b ≥ 3, has
several interesting multiplicative properties. In the base b number system, we have
β = (123 · · · (b − 4)(b − 3)(b − 1))b.We show that the digits of the number Kβ, for
integers K such that 1 ≤ K ≤ (b − 1)2, as a number in the base b number system can
be generated from an arithmetic sequence reduced modulo b − 1 with an appropriate
adjustment. The proof of this result involves an interplay between multiplication of
K with β in the base b number system and the formation of an arithmetic sequence
associated with the digits of K expressed as a number in the base b − 1 number
system. We pose several questions related to this result as well.

Keywords Radix representation · Multiplicative properties · Multiplicative
structure

1 Introduction

The number 12, 345, 679, whose digits are generated from the sequence of integers
from 1 to 9 with the digit 8 omitted, has several interesting multiplicative properties
[1–3]. These properties are a special case of the multiplicative properties of the
number

β = bb−1 − 1

(b − 1)2

expressed as a number in the base b number system.When we represent β in the base
b number system, the digits of β are the sequence of integers from 1 to b − 1 with
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the digit b − 2 omitted. For example, in the base b = 16 number system, we have
β = 12, 345, 678, 9AB,CDF16 where A through F represent the digits 10 through
15, respectively. One surprising property involving the product Kβ in the base b
number system, where K is an integer satisfying 1 ≤ K ≤ (b − 1)2, is the following
result.

Theorem 1 Let b ≥ 3 be an integer, let K be an integer such that 1 ≤ K ≤ (b − 1)2,
and let K and b − 1 be relatively prime. Let d be the unique integer such that 0 <

d < b and K + d is divisible by b − 1. Then the digits of the product Kβ expressed
in the base b number system includes each digit 0, 1, . . . , b − 1 exactly once, except
the digit d which does not appear as a digit in Kβ.

The proof of Theorem1 will be given at the end of this paper. As an exam-
ple of Theorem1, consider b = 10, K = 41 and d = 4. We observe that K = 41
and b − 1 = 9 are relatively prime, and K + d = 45 is divisible by b − 1 = 9.
Then Kβ = 41 × 12, 345, 679 = 506, 172, 839 contains each of the digits 0,1,…,9
exactly once, except the digit d = 4 which never appears. As another exam-
ple, let b = 16, K = 143 and d = 7. We observe that K = 143 and b − 1 = 15
are relatively prime, and K + d = 150 is divisible by b − 1 = 15. Then Kβ =
8F16 × 12, 345, 678, 9AB,CDF16 = A2B, 3C4, D5E, 6F8, 09116 contains each
digit 0, 1, . . . , F exactly once, except the digit d = 7 which never appears.

In fact, one can generate the digits of Kβ by calculating the terms of an arithmetic
sequence reduced modulo b − 1 together with an appropriate adjustment. Let K =
(b − 1) j + k, where j and k are integers such that 0 ≤ j ≤ b − 2 and 1 ≤ k ≤ b − 1.
We calculate the digits of Kβ in the base b number system by reducing the sequence
of integers {ki + j : i = 0, 1, . . . , b − 2} modulo b − 1 and then adding 1 to those
values that are greater than or equal to b − k − 1.We first introduce some notation in
order to state the main theorem of this paper. The proof of the main theorem involves
an interplay between the multiplication of K with β in the base b number system
and the terms in the sequence of integers {ki + j : i = 0, 1, . . . , b − 2} after they
are reduced modulo b − 1. We discuss several questions related to this result at the
end of this paper.

2 Main Theorem

We begin by introducing the notation needed to state our main theorem.

Definition 1 (1) Let b be an integer such that b ≥ 3. Let K be an integer such
that 1 ≤ K ≤ (b − 1)2. Let j and k be the unique integers such that 0 ≤ j ≤ b − 2,
1 ≤ k ≤ b − 1 and K = (b − 1) j + k. Let

β = bb−1 − 1

(b − 1)2
= (

1 2 3 . . . (b − 4)(b − 3)(b − 1)
)
b.
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(2) For all integers i such that 0 ≤ i ≤ b − 2, let ai, j,k be the unique integers such
that

Kβ = (
(b − 1) j + k

)
β =

b−2∑

i=0

ai, j,k b
b−2−i

and 0 ≤ ai, j,k < b, for all i such that 0 ≤ i ≤ b − 2.
(3) Let qi, j,k and ri, j,k be the unique integers such that ki + j = (b − 1)qi, j,k + ri, j,k
and 0 ≤ ri, j,k < b − 1.
(4) Let q ′

i, j,k and r ′
i, j,k be the unique integers such that ki + j = bq ′

i, j,k + r ′
i, j,k and

0 ≤ r ′
i, j,k < b.

(5) We define the integers ci, j,k as follows:

ci, j,k =
{
ri, j,k, if ri, j,k < b − k − 1, and
ri, j,k + 1, if ri, j,k ≥ b − k − 1.

(6) We define the integers εi, j,k by letting εi, j,k = qi, j,k − q ′
i, j,k . Then

εi, j,k =
{
0, if qi, j,k = q ′

i, j,k, and
1, if qi, j,k = q ′

i, j,k + 1.

The significance of the value of εi, j,k is that it determines when there is a carry 1
in the product Kβ from the bb−2−i ’s digit to the bb−2−(i−1)’s digit when the product
is carried out in the base b number system. When there is a carry 1 from the bb−2−i ’s
digit to the bb−2−(i−1)’s digit, εi, j,k represents that carry 1. We state the main theorem
of this paper.

Theorem 2 Let b and K be integers such that b ≥ 3 and 1 ≤ K ≤ (b − 1)2. For
all integers i such that 0 ≤ i ≤ b − 2, let j , k, ai, j,k , ri, j,k and ci, j,k be the integers
defined in Definition1. Then, for all 0 ≤ i ≤ b − 2, ai, j,k = ci, j,k; and thus

Kβ =
b−2∑

i=0

ci, j,k b
b−2−i .

I.e., Kβ = (c0, j,k c1, j,k . . . cb−2, j,k)b is the representation of the integer Kβ in the
base b number system.

We illustrate Theorem2 with an example in the base 10 number system. We
let K = 41 and b = 10. Then, by Definition1, we have K = 41 = (b − 1) j + k =
9 · 4 + 5 where j = 4 and k = 5. We calculate the remainders ri,4,5 of the integers
ki + j = 5i + 4 upon division by 9 for i = 0, 1, . . . , 8 I.e., ri,4,5 ≡ 5i + 4 (mod 9)
for i = 0, 1, . . . , 8. See column 3 of Table1. For those remainders ri,4,5 < b − k −
1 = 4, we define ci,4,5 = ri,4,5. Also, for the remainders ri,4,5 ≥ b − k − 1 = 4, we
define ci,3,4 = ri,4,5 + 1. See column 5 of Table1.

We prove Theorem2 for the special case when (b − 1)|K in Proposition8. Then
we prove Theorem2 for the general case when (b − 1) � |K in Theorem3.
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Table 1 The values of the digits in the product Kβ = 41 × 12, 345, 679 = 506, 172, 839

i 5i + 4 ri,4,5 ≡ 5i + 4
(mod 9)

Is ri,4,5 ≥ 4? ci,4,5

0 4 4 True 5

1 9 0 False 0

2 14 5 True 6

3 19 1 False 1

4 24 6 True 7

5 29 2 False 2

6 34 7 True 8

7 39 3 False 3

8 44 8 True 9

3 Other Interesting Results

When the integer k satisfies 1 ≤ k ≤ b − 1, we view kβ as a number with b − 1
digits in the base b number system that begins with the digit 0. This will allow
us to generate all products Kβ with 1 ≤ K ≤ (b − 1)2 from the products kβ with
1 ≤ k ≤ (b − 1)/2. For example, when b = 10, we use Theorem2 to calculate kβ
for 1 ≤ k ≤ 9/2. Thus

1β = 012, 345, 679; 2β = 024, 691, 358;
3β = 037, 037, 037; and 4β = 049, 382, 716.

Proposition 1 Let k be an integer such that 1 ≤ k ≤ (b − 1)/2 and gcd(b − 1, k) =
1. Let K = (b − 1)2 − k = (b − 1)(b − 2) + (b − k − 1). Thenai,b−2,b−k−1 = (b −
1) − ai,0,k for all integers i such that 0 ≤ i ≤ b − 2. I.e., Kβ is the (b − 1)’s com-
plement of kβ in the base b number system.

From Proposition1, we recognize (81 − k)β as the 9’s complement of kβ for
k = 1, 2, and 4. Thus

80β = 81β − 1β = 999, 999, 999 − 012, 345, 679 = 987, 654, 320;
79β = 81β − 2β = 999, 999, 999 − 024, 691, 358 = 975, 308, 641 and
77β = 81β − 4β = 999, 999, 999 − 049, 382, 716 = 950, 617, 283.

Proposition 2 Let K be an integer such that 1 ≤ K ≤ (b − 1)2 and gcd(b −
1, K ) = 1. Let j and k be the unique integers such that K = (b − 1) j + k, 0 ≤
j ≤ b − 2 and 1 ≤ k ≤ b − 1. Let j3 be the unique integer such that k j3 ≡ j
(mod b − 1) and 1 ≤ j3 ≤ b − 2. Then for all integers i such that 0 ≤ i ≤ b − 2,
we have ai, j,k = ai+ j3,0,k where the indices i and i + j3 are taken modulo b − 1.
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As a consequence of Proposition2, in the decimal number system, the digits in
the products 5β, 7β and 8β are cyclic permutations of the digits in the products 77β,
79β and 80β, respectively, that begin with the digit 0.

From 77β = 950, 617, 283, we obtain 5β = 061, 728, 395.
From 79β = 975, 308, 641, we obtain 7β = 086, 419, 753.
From 80β = 987, 654, 320, we obtain 8β = 098, 765, 432.

Furthermore, as a consequence of Proposition2, we can now generate all products
Kβ where 1 ≤ K ≤ 81 and gcd(K , 9) = 1. For example, let K = (b − 1) j + k =
9 · 7 + 5 = 68 where j = 7 and k = 5. Then the digits of 68β are a cyclic permuta-
tion of the digits of 5β = 061, 728, 395 that begin with the digit c0,7,5 = r0,7,5 + 1 =
j + 1 = 8 since r0,7,5 = j = 7 ≥ b − k − 1 = 5. Thus 68β = 839, 506, 172.

Proposition 3 Let k be an integer such that 1 ≤ k ≤ (b − 1)/2 and d = gcd(b −
1, k) > 1. Let K = (b − 1)(b − d) − k = (b − 1)(b − d − 1) + (b − k − 1). Then
for all integers i such that 0 ≤ i ≤ b − 2, we have ai,b−d−1,b−k−1 = (b − d) − ai,0,k .
I.e., Kβ is the (b − d)’s complement of kβ in the base b number system.

As an application of Proposition3,we consider 60β = (7 · 9)β − 3β = 777, 777,
777 − 037, 037, 037 = 740, 740, 740.

Proposition 4 Let K be an integer such that 1 ≤ K ≤ (b − 1)2, d = gcd(b −
1, K ) > 1 and (b − 1) � |K. Let j and k be the unique integers such that K =
(b − 1) j + k, 0 ≤ j ≤ b − 2 and 1 ≤ k ≤ b − 1. Let k1 = k/d and � = (b − 1)/d.
Let j1 and j2 be the unique integers such that j = d j2 + j1, 0 ≤ j1 < d and
0 ≤ j2 < �. Let j3 be the unique integer such that k1 j3 ≡ j2 (mod �)and0 ≤ j3 < �,
Then for all integers i such that 0 ≤ i ≤ b − 2, we have ai, j,k = ai+ j3, j1,k where the
indices i and i + j3 are taken modulo b − 1.

As a consequence of Proposition4, the digits of 6β are a cyclic permutation of
the digits of 60β = (9 · 6 + 6)β = 740, 740, 740 that begins with the digit 0. Thus
6β = 074, 074, 074.

Proposition 5 Let k be an integer such that1 ≤ k < b − 1andd = gcd(b − 1, k) >

1. Let k1 = k/d. Then, for all integers j1 such that 0 ≤ j1 < d, we have ai, j1,k =
ai,0,k + j1. I.e., we add j1 to each digit of kβ = (a0,0,ka1,0,k . . . ab−2,0,k)b in the
base b number system to generate the digits of

(
(b − 1) j1 + k

)
β = (a0, j1,ka1, j1,k

. . . ab−2, j1,k)b.

As a consequence of Proposition5, we have

12β = 9β + 3β = 111, 111, 111 + 037, 037, 037 = 148, 148, 148;
21β = 18β + 3β = 222, 222, 222 + 037, 037, 037 = 259, 259, 259;
15β = 9β + 6β = 111, 111, 111 + 074, 074, 074 = 185, 185, 185 and
24β = 18β + 6β = 222, 222, 222 + 074, 074, 074 = 296, 296, 296.
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Furthermore, as a consequence of Proposition4, we can generate the digits in all of
the products Kβ for integers K such that 1 ≤ K ≤ 81, 3|K and 9 � |K . For example,
let K = 48 = 9 j + k where j = 5 and k = 3. We write j = 5 = 3 j2 + j1 = 3 · 1 +
2 where j1 = 2 and j2 = 1. Then the digits of 48β is a cyclic permutation on the
digits of

(
(b − 1) j1 + k

)
β = 21β = 259, 259, 259 that begins with the digit a0,5,3 =

r0,5,3 = j = 5 since r0,5,3 = 5 < b − k − 1 = 6. Thus 48β = 592, 592, 592.

4 Demonstration of Results

We begin by showing that the digits of β in the base b number system from left to
right are the terms in the sequence of integers 0, 1, . . . , b − 1 with the digit b − 2
omitted from the list.

Proposition 6 Let b be an integer such that b ≥ 3. Then

β =
b−2∑

i=1

ibb−2−i + 1.

I.e., for all integers i such that 0 ≤ i ≤ b − 3, we have ai,0,1 = i . In addition, we
have ab−2,0,1 = b − 1.

Proof We apply the summation formula

n∑

i=1

i x i = nxn+2 − (n + 1)xn+1 + x

(x − 1)2

with x = b−1 and n = b − 2 to obtain

bb−2
b−2∑

i=1

ib−i = bb−2

(
(b − 2)b−b − (b − 1)b−b+1 + b−1

(b−1 − 1)2

)

= bb−1 − 1 − (b − 1)2

(b − 1)2
= β − 1

Hence,

β =
b−2∑

i=0

ibb−2−i + 1.

�

In the following proposition we determine a summation formula for the product
Kβ where K is an integer between 1 and (b − 1)2.
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Proposition 7 Let b be an integer such that b ≥ 3, and let K be an integer such that
1 ≤ K ≤ (b − 1)2. Let j and k be the unique integers such that K = (b − 1) j + k,
0 ≤ j ≤ b − 2 and 1 ≤ k ≤ b − 1. Then

Kβ =
b−2∑

i=0

(ki + j)bb−2−i + k.

Proof By Proposition6, we have

β =
b−2∑

i=0

ibb−2−i + 1.

Then

Kβ =
b−2∑

i=1

(
bj + (k − j)

)
ibb−2−i + K

=
b−3∑

i=0

j (i + 1)bb−2−i +
b−2∑

i=1

(k − j)ibb−2−i + K

= jbb−2 +
b−3∑

i=1

(ki + j)bb−2−i + (
k(b − 2) + j

) + k

=
b−2∑

i=0

(ki + j)bb−2−i + k.

�
We replace ki + j in Proposition7 with the quotients q ′

i, j,k and remainders r ′
i, j,k

of ki + j upon division by b in Lemma1. See Definition1.4.

Lemma 1 Let K be an integer such that1 ≤ K ≤ (b − 1)2. Let j and k be the unique
integers such that K = (b − 1) j + k, 0 ≤ j ≤ b − 2 and 1 ≤ k ≤ b − 1. Let q ′

i, j,k
and r ′

i, j,k be the unique integers such that ki + j = bq ′
i, j,k + r ′

i, j,k and 0 ≤ r ′
i, j,k < b.

Then

Kβ =
b−3∑

i=0

(q ′
i+1, j,k + r ′

i, j,k)b
b−2−i + (r ′

b−2, j,k + k).

Proof By Proposition7, we have

Kβ =
b−2∑

i=0

(ki + j)bb−2−i + k.

By Definition1.4, we have
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Kβ =
b−2∑

i=0

(
bq ′

i, j,k + r ′
i, j,k

)
bb−2−i + k

= q ′
0, j,kb

b−1 +
b−3∑

i=0

q ′
i+1, j,kb

b−2−i +
b−3∑

i=0

r ′
i, j,kb

b−2−i + r ′
b−2, j,k + k

= q ′
0, j,kb

b−1 +
b−3∑

i=0

(
q ′
i+1, j,k + r ′

i, j,k

)
bb−2−i + (r ′

b−2, j,k + k).

Observe that j = k · 0 + j = bq ′
0, jk + r ′

0, jk where 0 ≤ r ′
0, j,k < b. Since 0 ≤ j ≤

b − 2, we have q ′
0, j,k = 0 and r ′

0, j,k = j . Hence

Kβ =
b−3∑

i=0

(q ′
i+1, j,k + r ′

i, j,k)b
b−2−i + (r ′

b−2, j,k + k).

�

In Proposition8, we prove the special case of Theorem2 when b − 1 divides K .

Proposition 8 Let K be an integer such that 1 ≤ K ≤ (b − 1)2 and (b − 1)|K. Let
K1 = K/(b − 1). Then the unique integers j and k such that K = (b − 1) j + k,
0 ≤ j ≤ b − 2 and 1 ≤ k ≤ b − 1 are j = K1 − 1 and k = b − 1. Furthermore,
for all integers i such that 0 ≤ i ≤ b − 2, we have ai,K1−1,b−1 = K1. I.e., Kβ =
(K1K1 . . . K1)b in the base b number system.

Proof Note that ki + j = (b − 1)i + (K1 − 1). Thus the unique integers qi, j,k and
ri, j,k such that ki + j = (b − 1)qi, j,k + ri, j,k , and 0 ≤ ri, j,k < b − 1 are qi, j,k =
qi,K1−1,b−1 = i and ri, j,k = ri,K1−1,b−1 = K1 − 1. Since ri,K1−1,b−1 = K1 − 1 ≥ b −
k − 1 = 0, we have ci,K1−1,b−1 = ri,K1−1,b−1 + 1 = K1 for all integers i such that
0 ≤ i ≤ b − 2. Next, we observe that

(b − 1)β = bb−1 − 1

b − 1
=

b−2∑

i=0

bb−2−i = (11 . . . 1)b.

Thus

Kβ = K1(b − 1)β = K1

(
bb−1 − 1

b − 1

)
=

b−2∑

i=0

K1b
b−2−i

= (K1K1 . . . K1)b =
b−2∑

i=0

ci,K1−1,b−1b
b−2−i .

�
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Lemma 2 Let K be an integer such that 1 ≤ K ≤ (b − 1)2 and (b − 1) � |K. Let
j and k be the unique integers such that K = (b − 1) j + k, 0 ≤ j ≤ b − 2 and
1 ≤ k ≤ b − 2. Let qi, j,k and ri, j,k be the unique integers such that ki + j = (b −
1)qi, j,k + ri, j,k and 0 ≤ ri, j,k ≤ b − 2.

(1) If ri, j,k < b − k − 1, for some integer i such that 0 ≤ i ≤ b − 3, then qi+1, j,k =
qi, j,k and ri+1, j,k = ri, j,k + k.

(2) If ri, j,k ≥ b − k − 1, for some integer i such that 0 ≤ i ≤ b − 3, then qi+1, j,k =
qi, j,k + 1 and ri+1, j,k = ri, j,k + k − b + 1.

Proof Observe that (b − 1)(qi+1, j,k − qi, j,k) + (ri+1, j,k − ri, j,k)=
(
k(i + 1) + j

) −(
ki + j

) = k. We consider the two cases when either ri, j,k < b − k − 1 or ri, j,k ≥
b − k − 1.

Case 1 Suppose ri, j,k < b − k − 1. Since (b − 1)(qi+1, j,k − qi, j,k)=ri, j,k − ri+1, j,k

+ k where 0 ≤ ri, j,k < b − k − 1, 0 ≤ ri+1, j,k < b − 1 and 1 ≤ k ≤ b − 2, we have
ri, j,k − ri+1, j,k + k ≡ 0 (mod b − 1) where −(b − 1) < ri, j,k − ri+1, j,k + k < b −
1. Then (b − 1)(qi+1, j,k − qi, j,k) = ri, j,k − ri+1, j,k + k = 0. Hence, qi+1, j,k = qi, j,k
and ri+1, j,k = ri, j,k + k.

Case 2 Suppose ri, j,k ≥ b − k − 1. Since (b − 1)(qi+1, j,k − qi, j,k)=ri, j,k − ri+1, j,k

+ k where b − k − 1 ≤ ri, j,k < b − 1, 0 ≤ ri+1, j,k < b − 1 and 0 < k < b − 1, we
have ri, j,k − ri+1, j,k + k ≡ 0 (mod b − 1) where 0 < ri, j,k − ri+1, j,k + k < 2(b −
1). Then (b − 1)(qi+1, j,k − qi, j,k) = ri, j,k − ri+1, j,k + k = b − 1. Hence, qi+1, j,k =
qi, j,k + 1 and ri+1, j,k = ri, j,k + k − b + 1. �
Lemma 3 Let i , j and k be integers such that 0 ≤ j ≤ b − 2 and 1 ≤ k ≤ b − 2.
For all 1 ≤ i ≤ b − 2, let qi, j,k and ri, j,k be the unique integers such that ki + j =
(b − 1)qi, j,k + ri, j,k and 0 ≤ ri, j,k < b − 1. For all 1 ≤ i ≤ b − 2, let q ′

i, j,k and r
′
i, j,k

be the unique integers such that ki + j = bq ′
i, j,k + r ′

i, j,k and 0 ≤ r ′
i, j,k < b. Then

either qi, j,k = q ′
i, j,k or qi, j,k = q ′

i, j,k + 1.

Proof From Definitions1.3 and 1.4, we have bq ′
i, j,k + r ′

i, j,k=ki + j = (b − 1)qi, j,k
+ ri, j,k . Thus (b − 1)(qi, j,k − q ′

i, j,k) = q ′
i, j,k + r ′

i, j,k − ri, j,k where 0 ≤ r ′
i, j,k ≤ b −

1 and0 ≤ ri, j,k ≤ b − 2.Observe thatbq ′
i, j,k ≤ bq ′

i, j,k + r ′
i, j,k=ik + j ≤ (b − 2)2 +

(b − 2) = b2 − 3b + 2. Since b ≥ 3, we have q ′
i, j,k ≤ b − 3 + 2/b < b − 2. Thus

0 ≤ q ′
i, j,k ≤ b − 3. Hence, q ′

i, j,k + r ′
i, j,k − ri, j,k ≡ 0 (mod b − 1) and −(b − 1) <

q ′
i, j,k + r ′

i, j,k − ri, j,k < 2(b − 1). Therefore, either (b − 1)(qi, j,k − q ′
i, j,k) = q ′

i, j,k +
r ′
i, j,k − ri, j,k = 0 or (b − 1)(qi, j,k − q ′

i, j,k) = q ′
i, j,k + r ′

i, j,k − ri, j,k = b − 1. Thus,
eitherqi, j,k = q ′

i, j,k andq
′
i, j,k + r ′

i, j,k = ri, j,k , orqi, j,k = q ′
i, j,k + 1andq ′

i, j,k + r ′
i, j,k =

ri, j,k + b − 1. �
Lemma 4 Let b, β, i , j , k, K , qi, j,k , ri, j,k , q ′

i, j,k , r
′
i, j,k , ai, j,k , ci, j,k and εi, j,k be the

integers defined in Definition1. Furthermore, suppose that 1 ≤ k ≤ b − 2 so that
(b − 1) � |K. Then ab−2, j,k = cb−2, j,k and

Kβ =
b−4∑

i=0

(
q ′
i+1, j,k + r ′

i, j,k

)
bb−2−i + (q ′

b−2, j,k + r ′
b−3, j,k + εb−2, j,k)b + cb−2, j,k .
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Furthermore, we have εb−2, j,k = qb−2, j,k − q ′
b−2, j,k .

Proof From Definition1.3, k(b − 2) + j = (b − 1)qb−2, j,k + rb−2, j,k where 0 ≤
rb−2, j,k < b − 1. Thus (b − 1)(k − qb−2, j,k) = rb−2, j,k + k − j where 0 ≤ j < b −
1, 1 ≤ k < b − 1 and 0 ≤ rb−2, j,k < b − 1. Hence, rb−2, j,k + k − j ≡ 0 (mod b −
1)where−(b − 1) < rb−2, j,k + k − j < 2(b − 1). Thus, either (b − 1)(k − qb−2, j,k)

= rb−2, j,k + k − j = 0 or (b − 1)(k − qb−2, j,k) = rb−2, j,k + k − j = b − 1.
Therefore, eitherqb−2, j,k = k and rb−2, j,k = j − k, orqb−2, j,k = k − 1and rb−2, j,k =
j − k + b − 1. First, suppose qb−2, j,k = k. Since rb−2, j,k = j − k and j < b − 1,
we have rb−2, j,k < b − k − 1. Next, suppose qb−2, j,k = k − 1. Since rb−2, j,k =
j − k + b − 1 and j ≥ 0, we have rb−2, j,k ≥ b − k − 1.

Therefore, if qb−2, j,k = k, then rb−2, j,k < b − k − 1. Also, if qb−2, j,k = k − 1,
then rb−2, j,k ≥ b − k − 1. Because the only two possible values for qb−2, j,k are k or
k − 1, these implications are equivalences. Therefore, qb−2, j,k = k is equivalent to
rb−2, j,k < b − k − 1. Similarly, qb−2, j,k = k − 1 is equivalent to rb−2, j,k ≥ b − k −
1.

By Lemma3, either qb−2, j,k = q ′
b−2, j,k or qb−2, j,k = q ′

b−2, j,k + 1. We will con-
sider the four cases depending on which of the following two conditions are satisfied:
Either qb−2, j,k = q ′

b−2, j,k or qb−2, j,k = q ′
b−2, j,k + 1, and either rb−2, j,k < b − k − 1

or rb−2, j,k ≥ b − k − 1. We will deal with each case separately.
In each case, we begin by observing that from Lemma1 we have

Kβ =
b−3∑

i=0

(q ′
i+1, j,k + r ′

i, j,k)b
b−2−i + (r ′

b−2, j,k + k). (1)

Then, in each case, we show that we have

Kβ =
b−4∑

i=0

(q ′
i+1, j,k + r ′

i, j,k)b
b−2−i + (q ′

b−2, j,k + r ′
b−3, j,k + εb−2, j,k)b

+ cb−2, j,k .

(2)

Case 3 We assume qb−2, j,k = q ′
b−2, j,k and rb−2, j,k < b − k − 1. Since rb−2, j,k <

b − k − 1 is equivalent to qb−2, j,k = k, we have qb−2, j,k = q ′
b−2, j,k = k. From Defi-

nitions1.3 and 1.4, we have

k(b − 2) + j = bk + r ′
b−2, j,k and

k(b − 2) + j = (b − 1)k + rb−2, j,k .

Thus r ′
b−2, j,k + k = rb−2, j,k , where 0 ≤ rb−2, j,k ≤ b − 2. By Lemma1, (1) holds.

Since r ′
b−2, j,k + k = rb−2, j,k where 0 ≤ rb−2, j,k < b, we have r ′

b−2, j,k + k = rb−2, j,k

= ab−2, j,k .Also, because rb−2, j,k < b − k − 1,wehave cb−2, j,k = rb−2, j,k = ab−2, j,k .
Since r ′

b−2, j,k + k = ab−2, j,k , there is no carry 1 to the b1’s digit. Observe that
εb−2, j,k = qb−2, j,k − q ′

b−2, j,k = 0. Thus (2) holds.
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Case 4 We assume qb−2, j,k = q ′
b−2, j,k and rb−2, j,k ≥ b − k − 1. Since rb−2, j,k ≥

b − k − 1 is equivalent to qb−2, j,k = k − 1, we have qb−2, j,k = q ′
b−2, j,k = k − 1.

From Definitions1.3 and 1.4, we have

k(b − 2) + j = b(k − 1) + r ′
b−2, j,k and

k(b − 2) + j = (b − 1)(k − 1) + rb−2, j,k .

Thus r ′
b−2, j,k + k = rb−2, j,k + 1, where 1 ≤ rb−2, j,k + 1 ≤ b − 1. By Lemma1, (1)

holds. Since r ′
b−2, j,k + k = rb−2, j,k + 1where 1 ≤ rb−2, j,k + 1 < b, we have ab−2, j,k

= rb−2, j,k + 1. Also, because rb−2, j,k ≥ b − k − 1, we have cb−2, j,k = rb−2, j,k +
1 = ab−2, j,k . Since r ′

b−2, j,k + k = ab−2, j,k , there is no carry 1 to the b1’s digit.
Observe that εb−2, j,k = qb−2, j,k − q ′

b−2, j,k = 0. Thus (2) holds.

Case 5 Weassumeqb−2, j,k = q ′
b−2, j,k + 1and rb−2, j,k < b − k − 1. Since rb−2, j,k <

b − k − 1 is equivalent to qb−2, j,k = k, we have qb−2, j,k = k and q ′
b−2, j,k = k − 1.

From Definitions1.3 and 1.4, we have

k(b − 2) + j = b(k − 1) + r ′
b−2, j,k and

k(b − 2) + j = (b − 1)k + rb−2, j,k .

Thus r ′
b−2, j,k + k = rb−2, j,k + b, where b ≤ rb−2, j,k + b ≤ 2b − 2. By Lemma1,

(1) holds. Since r ′
b−2, j,k + k = rb−2, j,k + b where 0 ≤ rb−2, j,k ≤ b − 2, we have

ab−2, j,k = rb−2, j,k . Also, because rb−2, j,k < b − k − 1,we have cb−2, j,k = rb−2, j,k =
ab−2, j,k . Since r ′

b−2, j,k + k = ab−2, j,k + b, there is a carry 1 to the b1’s digit. Observe
that εb−2, j,k = qb−2, j,k − q ′

b−2, j,k = 1. Thus (2) holds.

Case 6 Weassumeqb−2, j,k = q ′
b−2, j,k + 1and rb−2, j,k ≥ b − k − 1. Since rb−2, j,k ≥

b − k − 1 is equivalent to qb−2, j,k = k − 1, we have qb−2, j,k = k − 1 and q ′
b−2, j,k =

k − 2. From Definitions1.3 and 1.4, we have

k(b − 2) + j = b(k − 2) + r ′
b−2, j,k and

k(b − 2) + j = (b − 1)(k − 1) + rb−2, j,k .

Thus r ′
b−2, j,k + k = (rb−2, j,k + 1) + b, where b + 1 ≤ (rb−2, j,k + 1) + b ≤ 2b − 1.

By Lemma1, (1) holds. Since r ′
b−2, j,k + k = (rb−2, j,k + 1) + bwhere 1 ≤ rb−2, j,k +

1 ≤ b − 1, we have ab−2, j,k = rb−2, j,k + 1. Also, because rb−2, j,k ≥ b − k − 1, we
have cb−2, j,k = rb−2, j,k + 1 = ab−2, j,k . Since r ′

b−2, j,k + k = ab−2, j,k + b, there is a
carry 1 to the b1’s digit. Observe that εb−2, j,k = qb−2, j,k − q ′

b−2, j,k = 1. Thus (2)
holds. �

Theorem 3 Let b, β, i , j , k, K , qi, j,k , ri, j,k , q ′
i, j,k , r

′
i, j,k , ai, j,k , ci, j,k and εi, j,k be the

integers defined in Definition1. Further assume that (b − 1) � |K so that k �= b − 1.
Then ai, j,k = ci, j,k for all integers i such that 0 ≤ i ≤ b − 2. Furthermore,
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Kβ =
b−2∑

i=0

ci, j,kb
b−2−i .

Note that in Theorem3 we do not include the trivial case (b − 1)|K which is
included in Theorem2. By Proposition8, the results of Theorem2 hold for the case
when (b − 1)|K .

Proof Let n be an integer such that 0 ≤ n ≤ b − 3, and consider the equation

Kβ =
n−1∑

i=0

(q ′
i+1, j,k + r ′

i, j,k)b
b−2−i + (q ′

n+1, j,k + r ′
n, j,k + εn+1, j,k)b

b−2−n

+
b−2∑

i=n+1

ci, j,kb
b−2−i .

We applyMathematical Induction to this equation on the values of n in reverse order.
By Lemma4, we have

Kβ =
b−4∑

i=0

(q ′
i+1, j,k + r ′

i, j,k)b
b−2−i + (q ′

b−2, j,k + r ′
b−3, j,k + εb−2, j,k)b + cb−2, j,k .

This is the base step of the proof. Let n be an integer with 0 ≤ n ≤ b − 3 and suppose

Kβ =
n−1∑

i=0

(q ′
i+1, j,k + r ′

i, j,k)b
b−2−i + (q ′

n+1, j,k + r ′
n, j,k + εn+1, j,k)b

b−2−n

+
b−2∑

i=n+1

ci, j,kb
b−2−i

(3)

is true. We want to show that

Kβ =
n−2∑

i=0

(q ′
i+1, j,k + r ′

i, j,k)b
b−2−i + (q ′

n, j,k + r ′
n−1, j,k + εn, j,k)b

b−2−(n−1)

+
b−2∑

i=n

ci, j,kb
b−2−i

(4)

holds. When n = 0, (3) becomes

Kβ = (q ′
1, j,k + r ′

0, j,k + ε1, j,k)b
b−2 +

b−2∑

i=1

ci, j,kb
b−2−i (5)
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and (4) becomes

Kβ =
b−2∑

i=0

ci, j,kb
b−2−i . (6)

ByLemma3, eitherqn, j,k = q ′
n, j,k orqn, j,k = q ′

n, j,k + 1, and eitherqn+1, j,k = q ′
n+1, j,k

or qn+1, j,k = q ′
n+1, j,k + 1. We prove the inductive step by considering the eight

cases depending on whether we have either rn, j,k < b − k − 1 or rn, j,k ≥ b − k − 1,
either qn, j,k = q ′

n, j,k or qn, j,k = q ′
n, j,k + 1, and either qn+1, j,k = q ′

n+1, j,k or qn+1, j,k =
q ′
n+1, j,k + 1. We first consider the argument for the values of n for which 1 ≤ n ≤
b − 3. Then we show how to modify this argument to the case n = 0.

By Lemma4, we have εb−2, j,k = qb−2, j,k − q ′
b−2, j,k . One of the 8 cases in the

inductive step produces a contradiction. Of the remaining 7 legitimate cases, we
assume that εn+1, j,k = qn+1, j,k − q ′

n+1, j,k . In each of the 7 legitimate cases, we show
that εn, j,k = qn, j,k − q ′

n, j,k . This establishes the legitimacy of the assumption that
εn+1, j,k = qn+1, j,k − q ′

n+1, j,k in the 7 legitimate cases.

Case 7 We assume rn, j,k < b − k − 1, qn, j,k = q ′
n, j,k and qn+1, j,k = q ′

n+1, j,k . By
the inductive hypothesis, (3) holds. Note that εn+1, j,k = qn+1, j,k − q ′

n+1, j,k = 0. By
Lemma2, we have qn+1, j,k = qn, j,k . Thus q ′

n, j,k = qn, j,k = qn+1, j,k = q ′
n+1, j,k . From

Definitions1.3 and 1.4, we have

bq ′
n+1, j,k + r ′

n, j,k = kn + j = (b − 1)q ′
n+1, j,k + rn, j,k

which, in turn, implies that

q ′
n+1, j,k + r ′

n, j,k = rn, j,k where 0 ≤ rn, j,k ≤ b − 2.

Since 0 ≤ q ′
n+1, j,k + r ′

n, j,k + εn+1, j,k ≤ b − 2, we have

an, j,k = q ′
n+1, j,k + r ′

n, j,k + εn+1, j,k = rn, j,k .

Because rn, j,k < b − k − 1, we have cn, j,k = rn, j,k = an, j,k . Also, since q ′
n+1, j,k

+ r ′
n, j,k + εn+1, j,k = an, j,k , there is no carry 1 to the bb−2−(n−1)’s digit. Observe

that εn, j,k = qn, j,k − q ′
n, j,k = 0. Hence, (4) holds.

Case 8 We assume rn, j,k < b − k − 1, qn, j,k = q ′
n, j,k and qn+1, j,k = q ′

n+1, j,k + 1.
Since

q ′
i, j,k =

⌊
ki + j

b

⌋

increases as i increases, we have q ′
n+1, j,k ≥ q ′

n, j,k . By Lemma2, we have qn+1, j,k =
qn, j,k . Thus q ′

n+1, j,k = q ′
n, j,k − 1. Hence, q ′

n+1, j,k < q ′
n, j,k . This contradicts the fact

that q ′
n+1, j,k ≥ q ′

n, j,k . Therefore, this case never occurs.

Case 9 We assume rn, j,k ≥ b − k − 1, qn, j,k = q ′
n, j,k and qn+1, j,k = q ′

n+1, j,k . By
the inductive hypothesis, (3) holds. Note that εn+1, j,k = qn+1, j,k − q ′

n+1, j,k = 0.
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By Lemma2, we have qn+1, j,k = qn, j,k + 1. Thus q ′
n, j,k = qn, j,k = qn+1, j,k − 1 =

q ′
n+1, j,k − 1. From Definitions1.3 and 1.4, we have

b(q ′
n+1, j,k − 1) + r ′

n, j,k = kn + j = (b − 1)(q ′
n+1, j,k − 1) + rn, j,k

which, in turn, implies that

q ′
n+1, j,k + r ′

n, j,k = rn, j,k + 1 where 1 ≤ rn, j,k + 1 ≤ b − 1.

Since 1 ≤ q ′
n+1, j,k + r ′

n, j,k + εn+1, j,k ≤ b − 1, we have

an, j,k = q ′
n+1, j,k + r ′

n, j,k + εn+1, j,k = rn, j,k + 1.

Because rn, j,k ≥ b − k − 1, we have cn, j,k = rn, j,k + 1 = an, j,k . Also, since q ′
n+1, j,k

+ r ′
n, j,k + εn+1, j,k = an, j,k , there is no carry 1 to the bb−2−(n−1)’s digit. Observe that

εn, j,k = qn, j,k − q ′
n, j,k = 0. Hence, (4) holds.

Case 10 We assume rn, j,k ≥ b − k − 1, qn, j,k = q ′
n, j,k and qn+1, j,k = q ′

n+1, j,k + 1.
By the inductive hypothesis, (3) holds. Note that εn+1, j,k = qn+1, j,k − q ′

n+1, j,k = 1.
By Lemma2, we have qn+1, j,k = qn, j,k + 1. Thus q ′

n, j,k = qn, j,k = qn+1, j,k − 1 =
q ′
n+1, j,k . From Definitions1.3 and 1.4, we have

bq ′
n+1, j,k + r ′

n, j,k = kn + j = (b − 1)q ′
n+1, j,k + rn, j,k

which, in turn, implies that

q ′
n+1, j,k + r ′

n, j,k = rn, j,k where 0 ≤ rn, j,k ≤ b − 2.

Since 1 ≤ q ′
n+1, j,k + r ′

n, j,k + εn+1, j,k ≤ b − 1, we have

an, j,k = q ′
n+1, j,k + r ′

n, j,k + εn+1, j,k = rn, j,k + 1.

Because rn, j,k ≥ b − k − 1, we have cn, j,k = rn, j,k + 1 = an, j,k . Also, since q ′
n+1, j,k

+ r ′
n, j,k + εn+1, j,k = an, j,k , there is no carry 1 to the bb−2−(n−1)’s digit. Observe that

εn, j,k = qn, j,k − q ′
n, j,k = 0. Hence, (4) holds.

Case 11 We assume rn, j,k < b − k − 1, qn, j,k = q ′
n, j,k + 1 and qn+1, j,k = q ′

n+1, j,k .
By the inductive hypothesis, (3) holds. Note that εn+1, j,k = qn+1, j,k − q ′

n+1, j,k = 0.
By Lemma2, we have qn+1, j,k = qn, j,k . Thus q ′

n, j,k = qn, j,k − 1 = qn+1, j,k − 1 =
q ′
n+1, j,k − 1 and qn, j,k = q ′

n+1, j,k . From Definitions1.3 and 1.4, we have

b(q ′
n+1, j,k − 1) + r ′

n, j,k = kn + j = (b − 1)q ′
n+1, j,k + rn, j,k

which, in turn, implies that
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q ′
n+1, j,k + r ′

n, j,k = rn, j,k + b where b ≤ rn, j,k + b ≤ 2b − 2.

Since b ≤ q ′
n+1, j,k + r ′

n, j,k + εn+1, j,k ≤ 2b − 2, we have

an, j,k = q ′
n+1, j,k + r ′

n, j,k + εn+1, j,k − b = rn, j,k .

Because rn, j,k < b − k − 1, we have cn, j,k = rn, j,k = an, j,k . Also, since q ′
n+1, j,k +

r ′
n, j,k + εn+1, j,k = an, j,k + b, there is a carry 1 to the bb−2−(n−1)’s digit. Observe that

εn, j,k = qn, j,k − q ′
n, j,k = 1. Hence, (4) holds.

Case 12 Weassume rn, j,k < b − k − 1,qn, j,k = q ′
n, j,k + 1andqn+1, j,k = q ′

n+1, j,k +
1.By the inductive hypothesis, (3) holds.Note that εn+1, j,k = qn+1, j,k − q ′

n+1, j,k = 1.
By Lemma2, we have qn+1, j,k = qn, j,k . Thus q ′

n, j,k = qn, j,k − 1 = qn+1, j,k − 1 =
q ′
n+1, j,k and qn, j,k = q ′

n+1, j,k + 1. From Definitions1.3 and 1.4, we have

bq ′
n+1, j,k + r ′

n, j,k = kn + j = (b − 1)(q ′
n+1, j,k + 1) + rn, j,k

which, in turn, implies that

q ′
n+1, j,k + r ′

n, j,k + 1 = rn, j,k + b where b ≤ rn, j,k + b ≤ 2b − 2.

Since b ≤ q ′
n+1, j,k + r ′

n, j,k + εn+1, j,k ≤ 2b − 2, we have

an, j,k = q ′
n+1, j,k + r ′

n, j,k + εn+1, j,k − b = rn, j,k .

Because rn, j,k < b − k − 1, we have cn, j,k = rn, j,k = an, j,k . Also, since q ′
n+1, j,k +

r ′
n, j,k + εn+1, j,k = an, j,k + b, there is a carry 1 to the bb−2−(n−1)’s digit. Observe that

εn, j,k = qn, j,k − q ′
n, j,k = 1. Hence, (4) holds.

Case 13 We assume rn, j,k ≥ b − k − 1, qn, j,k = q ′
n, j,k + 1 and qn+1, j,k = q ′

n+1, j,k .
By the inductive hypothesis, (3) holds. Note that εn+1, j,k = qn+1, j,k − q ′

n+1, j,k = 0.
By Lemma2, we have qn+1, j,k = qn, j,k + 1. Thus q ′

n, j,k = qn, j,k − 1 = qn+1, j,k −
2 = q ′

n+1, j,k − 2 and qn, j,k = q ′
n+1, j,k − 1. From Definitions1.3 and 1.4, we have

b(q ′
n+1, j,k − 2) + r ′

n, j,k = kn + j = (b − 1)(q ′
n+1, j,k − 1) + rn, j,k

which, in turn, implies that

q ′
n+1, j,k + r ′

n, j,k = (rn, j,k + 1) + b where b + 1 ≤ (rn, j,k + 1) + b ≤ 2b − 1.

Since b + 1 ≤ q ′
n+1, j,k + r ′

n, j,k + εn+1, j,k ≤ 2b − 1, we have

an, j,k = q ′
n+1, j,k + r ′

n, j,k + εn+1, j,k − b = rn, j,k + 1.
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Because rn, j,k ≥ b − k − 1, we have cn, j,k = rn, j,k + 1 = an, j,k . Also, since q ′
n+1, j,k

+ r ′
n, j,k + εn+1, j,k = an, j,k + b, there is a carry 1 to the bb−2−(n−1)’s digit. Observe

that εn, j,k = qn, j,k − q ′
n, j,k = 1. Hence, (4) holds.

Case 14 Weassume rn, j,k ≥ b − k − 1,qn, j,k = q ′
n, j,k + 1andqn+1, j,k = q ′

n+1, j,k +
1.By the inductive hypothesis, (3) holds.Note that εn+1, j,k = qn+1, j,k − q ′

n+1, j,k = 1.
By Lemma2, we have qn+1, j,k = qn, j,k + 1. Thus q ′

n, j,k = qn, j,k − 1 = qn+1, j,k −
2 = q ′

n+1, j,k − 1 and qn, j,k = q ′
n+1, j,k . From Definitions1.3 and 1.4, we have

b(q ′
n+1, j,k − 1) + r ′

n, j,k = kn + j = (b − 1)q ′
n+1, j,k + rn, j,k

which, in turn, implies that

q ′
n+1, j,k + r ′

n, j,k = rn, j,k + b where b ≤ rn, j,k + b ≤ 2b − 2.

Since b + 1 ≤ q ′
n+1, j,k + r ′

n, j,k + εn+1, j,k ≤ 2b − 1, we have

an, j,k = q ′
n+1, j,k + r ′

n, j,k + εn+1, j,k − b = rn, j,k + 1.

Because rn, j,k ≥ b − k − 1, we have cn, j,k = rn, j,k + 1 = an, j,k . Also, since q ′
n+1, j,k

+ r ′
n, j,k + εn+1, j,k = an, j,k + b, there is a carry 1 to the bb−2−(n−1)’s digit. Observe

that εn, j,k = qn, j,k − q ′
n, j,k = 1. Hence, (4) holds.

Lastly, we need to consider the case when n = 0. From Definitions1.3 and 1.4,
we have

bq ′
0, j,k + r ′

0, j,k = k · 0 + j = j = (b − 1)q0, j,k + r0, j,k where 0 ≤ j ≤ b − 2.

Thus q ′
0, j,k = q0, j,k = 0 and r ′

0, jk = r0, j,k = j . Hence, the only cases in which the
assumption q ′

0, j,k = q0, j,k applies are to Cases7, 9, and 10. One can easily adapt
the arguments given in Cases7, 9, and 10 to show that (5) implies (6) when n = 0.
We leave the details of these arguments to the reader. This completes the proof of
Theorem3. �

Weobserve that Theorem2 is a consequence of both Proposition8 and Theorem3;
this completes the proof of Theorem2.Weneed the following lemma in order to prove
Propositions1, 3 and 5. See Definition1 for the definitions of ai, j,k , ri, j,k , and ci, j,k .

Lemma 5 Let b ≥ 3 be an integer, let k be an integer such that 1 ≤ k ≤ (b − 1)/2,
and let d = gcd(b − 1, k). For all integers i such that 0 ≤ i ≤ b − 2, let ai,0,k be the
digits in the base b representation of kβ. I.e., kβ = (a0,0,ka1,0,k . . . ab−2,0,k)b. Then,
for all integers i such that 0 ≤ i ≤ b − 2, we have ai,0,k ≤ b − d.

Proof ByTheorem2,wehaveai,0,k = ci,0,k for all integers i such that 0 ≤ i ≤ b − 2.
Let k = k1d and b − 1 = �d for some positive integers k1 and �. Since ri,0,k ≡ ki
(mod b − 1), we have ri,0,k ≡ (k1i)d (mod �d). Since ri,0,k < b − 1 = �d and d
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divides ri,0,k , we have ri,0,k ≤ �d − d = b − 1 − d. Thus ai,0,k = ci,0,k ≤ ri,0,k +
1 ≤ b − d. �

Proposition1 is a special case of Proposition3 if we remove the restriction d =
gcd(b − 1, k) > 1 and replace it with d = gcd(b − 1, k) ≥ 1.

Proof of Propositions1 and 3 By Lemma5, we have ai, j,k ≤ b − d for all integers
i such that 0 ≤ i ≤ b − 2. Since (b − d)(b − 1)β = ((b − d)(b − d) . . . (b − d))b,
Kβ = (

(b − d)(b − 1) − k
)
β = (

(b − d)(b − d) . . . (b − d)
)
b − (

a0,0,k a1,0,k . . .

ab−2,0,k
)
b. Thus Kβ = (

a0,b−d−1,b−k−1 a1,b−d−1,b−k−1 . . . ab−2,b−d−1,b−k−1
)
b is the

(b − d)’s complement of kβ = (
a0,0,k a1,0,k . . . ab−2,0,k

)
b in the base b number sys-

tem. �
Proof of Proposition5 By Lemma5, the digits of kβ are not larger than b − d. Since
0 ≤ j1 < d, we can add the digits of j1(b − 1)β = (

j1 j1 . . . j1
)
b to the digits of kβ =(

a0,0,k a1,0,k . . . ab−2,0,k
)
b to obtain the digits of

(
(b − 1) j1 + k

)
β = (

a0, j1,k a1, j1,k
. . . ab−2, j1,k

)
b. �

Propositions2 and 4 are direct results of Theorem2 applied to each particular
case.

Proof of Proposition2 We observe that ri, j,k ≡ ki + j (mod b − 1) and ri+ j3,0,k

≡ k(i + j3) + 0 (mod b − 1) ≡ ki + j (mod b − 1). Since 0 ≤ ri, j,k, ri+ j3,0,k <

b − 1, we have ri, j,k = ri+ j3,0,k . On the one hand, if ri, j,k = ri+ j3,0,k < b − k − 1,
then ci, j,k = ri, j,k = ri+ j3,0,k = ci+ j3,0,k . On the other hand, if ri, j,k = ri+ j3,0,k ≥ b −
k − 1, then ci, j,k = ri, j,k + 1 = ri+ j3,0,k + 1 = ci+ j3,0,k . In either case, byTheorem2,
ai, j,k = ci, j,k = ci+ j3,0,k = ai+ j3,0,k . �
Proof of Proposition4 First, since k1 j3 ≡ j2 (mod �), we have k j3 = (k1d) j3
≡ j2d (mod �d) = j2d (mod b − 1). We observe that ri, j,k ≡ ki + j (mod b −
1) and ri+ j3, j1,k ≡ k(i + j3) + j1 (mod b − 1) ≡ ki + j (mod b − 1). Since 0 ≤
ri, j,k, ri+ j3, j1,k < b − 1, we have ri, j,k = ri+ j3, j1,k . On the one hand, if ri, j,k =
ri+ j3, j1,k < b − k − 1, then ci, j,k = ri, j,k = ri+ j3, j1,k = ci+ j3, j1,k . On the other hand,
if ri, j,k = ri+ j3, j1,k ≥ b − k − 1, then ci, j,k = ri, j,k + 1 = ri+ j3, j1,k + 1 = ci+ j3, j1,k .
In either case, by Theorem2, ai, j,k = ci, j,k = ci+ j3, j1,k = ai+ j3, j1,k . �
Proof of Theorem1 Since gcd(K , b − 1) = 1, we have gcd(k, b − 1) = 1. Thus k
is a generator of Zb−1. Hence, Zb−1 = {ki (mod b − 1) : i = 0, 1, . . . , b − 2} =
{ki + j (mod b − 1) : i = 0, 1, . . . , b − 2} = {ri, j,k : i = 0, 1, . . . , b − 2}. Thus
(ri, j,k : i = 0, 1, . . . , b − 2) is a permutation on the set of integers {0, 1, . . . , b −
2}. We also observe that d = b − k − 1. Since ci, j,k = ri, j,k if ri, j,k < b − k − 1
and ci, j,k = ri, j,k + 1 if ri, j,k ≥ b − k − 1, (ci, j,k : i = 0, 1, . . . , b − 2) is a per-
mutation on the set of integers {0, 1, 2, . . . , b − 1} \ {d}. By Theorem2, Kβ =∑b−2

i=0 ci, j,kb
b−2−i . Hence, Kβ contains each digit 0, 1, 2, . . . , b − 1 exactly once,

except the digit d which does not appear as a digit in Kβ. �
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5 Questions for Further Investigation

We consider several questions related to the results in this paper. In order to ask our
questions, we need to first state Theorem2 in the following way.

Theorem 4 Let b ≥ 3 be an integer, and let

β = bb−1 − 1

(b − 1)2
.

Let N be an integer such that 1 ≤ N < (b − 1)2. Let a0 and a1 be the digits of N
expressed in the (b − 1)-base number system. I.e., N = (a1 a0)b−1 = a1(b − 1) + a0
where 0 ≤ ai < b − 1 for i = 0 and 1. Then the digits of Nβ can be constructed from
the sequence {a1 + a0 j (mod b − 1) : 0 ≤ j < b − 1} by adding 1 to those values
in the sequence that are greater than or equal to b − 1 − a0.

Hence, we may think of the digits of Nβ as being formed indirectly from the
sequence {a1 + a0 j (mod b − 1) : 0 ≤ j < b − 1}. This interpretation of Theo-
rem4allowsus to formulate the followingquestions.Wefirst consider somequestions
related to the number β2 = (b(b−1)2 − 1)/(b − 1)3.

Question 1 Let b ≥ 3 be an integer, and let

β2 = b(b−1)2 − 1

(b − 1)3
.

Let N be an integer such that 1 ≤ N < (b − 1)3. Let a0, a1 and a2 be the digits of
N expressed in the (b − 1)-base number system. I.e., N = (a2 a1 a0)b−1 = a2(b −
1)2 + a1(b − 1) + a0 where 0 ≤ ai < b − 1 for i = 0, 1, and 2.

1. Can the digits of Nβ2 be constructed (indirectly) from the sequence {a2 + a1 j +
a0 j2 (mod b − 1) : 0 ≤ j < (b − 1)2}?

2. Is there a quadratic function p( j) such that the digits of Nβ2 can be constructed
(indirectly) from the sequence {a2 + a1 j + a0 p( j) (mod b − 1) : 0 ≤ j < (b −
1)2}?
We next consider some questions related to the number βk = (b(b−1)k − 1)/(b −

1)k+1.

Question 2 Let b ≥ 3 and k ≥ 3 be integers, and let

βk = b(b−1)k − 1

(b − 1)k+1
.

Let N be an integer such that 1 ≤ N < (b − 1)k+1. Let a0, a1, . . . , ak be the digits
of N expressed in the (b − 1)-base number system. I.e., N = (ak ak−1 . . . a1 a0)b−1
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= ak(b − 1)k + ak−1(b − 1)k−1 + · · · + a1(b − 1) + a0 where 0 ≤ ai < b − 1 for
each 0 ≤ i ≤ k.

1. Can the digits of Nβk be constructed (indirectly) from the sequence
{∑k

�=0 ak−� j� (mod b − 1) : 0 ≤ j < (b − 1)k}?
2. For each integer 2 ≤ � ≤ k, is there a polynomial function p�( j) of degree �

such that the digits of Nβk can be constructed (indirectly) from the sequence
{ak + ak−1 j + ∑k

�=2 ak−� p�( j) (mod b − 1) : 0 ≤ j < (b − 1)k}?
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A & Z Sequences for Double Riordan
Arrays
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Abstract ARiordan array is an infinite lower triangularmatrix that is defined by two
generating functions, g and f . The coefficients of the generating function g give the
zeroth column and the nth column of the matrix is defined by the generating function
g f n . We shall call f the multiplier function. Similarly, the Double Riordan array
is an infinite lower triangular matrix that is defined by three generating functions,
g, f1 and f2. Where the zeroth column of the Double Riordan array is g, the next
column is given by g f1 and the following column will be defined by g f1 f2. The
remaining columns are found by multiplying f1 and f2 alternatively. Thus, for a
double Riordan array there are two multiplier functions, f1 and f2. It is well known
that any Riordan array can be determined by a Z -sequence and an A-sequence.
This is the row construction of the array. This is not the case for Double Riordan
arrays. In this paper, we show that double Riordan arrays can be determined by two
Z -sequences and one A-sequence.
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1 Introduction

In 1991, Shapiro, Getu, Woan, and Woodson introduced a group of infinite lower
triangular matrices called the Riordan group, see [6]. The elements of the group are
defined by two power series g and f , where the coefficients of g give the leftmost
column and the i th column is given by the coefficients of g · f i , for i = 1, 2, 3, . . .

Explicitly, the following construction is used to build a Riordan array. Let g(z) =
1 + ∑∞

k=1 gk z
k and f (z) = ∑∞

k=1 fk zk , where f1 �= 0. Let dn,k be the coefficient of

zn in g(z)
(
f (z)

)k
. Then D = (dn,k)n,k≥0 is a Riordan array and an element of the

Riordan group. We write D = (
g(z), f (z)

)
.

Before giving our new results, we will define the Riordan group, state the Fun-
damental Theorem of Riordan Arrays, and give some examples of elements in the
Riordan group. In Sect. 2, we define the Double Riordan Group, state the Funda-
mental Theorem of Double Riordan Arrays, and prove a result about the A- and
Z -sequences of a Double Riordan array. In Sect. 3, we will give new subgroups of
the Double Riordan Group.

In our research several sequences were found which are in the Online Encyclo-
pedia of Integer Sequences (OEIS) [7]; the A-numbers refer to this source.

Example 1 The identity matrix in the Riordan Group is

(1, z) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0 1

0 0 1
...

0 0 0 1
0 0 0 0 1

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Example 2 Pascal’s matrix is

( 1

1 − z
,

z

1 − z

)
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1 1

1 2 1
...

1 3 3 1
1 4 6 4 1

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Example 3 The Fibonacci matrix with Pascal-like columns and Fibonacci row sums
is
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(
1, z(1 + z)

) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0 1

0 1 1
...

0 0 2 1
0 0 1 3 1

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Theorem 1 (The Fundamental Theorem of Riordan Arrays) Let A(z) = ∑∞
k=0 akz

k

and B(z) = ∑∞
k=0 bkz

k and let A and B be the column vectors A = (a0, a1, a2, . . .)
T

and B = (b0, b1, b2, . . .)
T . Then (g, f )A = B, if and only if B(z) = g(z)A( f (z)).

Theorem 2 Let (g, f ) and (G, F) be two Riordan arrays. Then the operation *,

given by (g, f ) ∗ (G, F) =
(
g(z)G

(
f (z)

)
, F

(
f (z)

))
is matrix multiplication which

is an associative binary operation, (1, z) is the identity element, and the inverse of

(g, f ) is
(

1
g( f )

, f
)
, where f is the compositional inverse of f .

Using the Fundamental Theorem of Riordan Arrays, we can easily prove many com-
binatorial identities and find ways to invert those identities. Given any Riordan array,
every element of the array, except the element in the zeroth row and zeroth column,
can be written as a linear combination of elements in the preceding row starting from
the preceding column [5]. In addition, every element in the zeroth column other than
the first element can be expressed as a linear combination of all elements of the pre-
ceding row [4]. Hence, a Riordan Array can be determined by a column construction
(using generating functions) or by a row construction (using A- and Z -sequences).
The following theorem tells us how to construct a Riordan array using the rows.

Theorem 3 Let D = (dn,k) be an infinite triangular matrix. Then D is a Rior-
dan matrix if and only if there exists two sequences A = a0, a1, a2, . . . and B =
b0, b1, b2, . . . with a0 �= 0 and b0 �= 0 such that

dn+1,k+1 =
∞∑

j=0

a jdn,k+ j ; k, n = 0, 1, 2, . . . (1)

dn+1,0 =
∞∑

j=0

b jdn, j ; n = 0, 1, 2, . . . (2)

The sequences a0, a1, a2, . . . and b0, b1, b2, . . ., respectively, are called the A-
sequence and Z -sequence of the Riordan matrix D.

Theorem 4 Let D = (
g(t), f (t)

)
be a Riordan array. Let A be the generating func-

tion of the A-sequence and Z the generating function of the Z-sequence. Then
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Fig. 1 Example of a
Riordan matrix

g gf gf2 gf 3 gf4 gf5

1
1 1
2 3 1

5 9 5 1
...

14 28 20 7 1
42 90 70 35 9 1
132 297 275 154 54 11 1

A(t) = t
(
f (t)

) and Z(t) = 1

f (t)
·
(

1 − 1

g
(
f (t)

)

)

,

where f is the compositional inverse of f .

See [1] for more information about A- and Z -sequences of Riordan arrays. The
following example shows how to construct a Riordan array using the A- and Z -
sequences. Note that for uniqueness the element g0 must be given and it cannot be
0. Also, we assume that all other elements in the first row are 0 (Fig. 1).

Example 4

Z : (1, 1) A : (1, 2, 1) first row : 1, 0, 0, . . .

We get the following equations;

g = 1 + tg + tg f and

g f = tg + 2tg f + tg f 2 =⇒ f = t + 2t f + t f 2.

Solving this set of equations we get the following for g and f ;

g = 1 − √
1 − 4t

2t
= 1 + t + 2t2 + 5t3 + 14t4 + 42t5 + · · ·
and

f = 1 − 2t − √
1 − 4t

2t
= t + 2t2 + 5t3 + 14t4 + 42t5 + 132t6 + · · ·
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2 Double Riordan: A & Z Sequences

In a Riordan array, we use one multiplier function. Suppose alternating rules are used
to generate an infinite matrix similar to a Riordan array. For example, suppose we
are looking at Dyck paths with bicolored edges only at even heights. For this case,
we have two rules; one for rows at even height and the other for rows at odd height.

In general, the set of double Riordan arrays is not closed under multiplication.
However, if we require that g be an even function and f1 and f2 odd, then there is
an analog of The Fundamental Theorem of Riordan Arrays, which gives us a binary
operation, see [2].

Definition 1 Let g(t) = 1 + ∑∞
k=1 g2k t

2k , f1(t) = ∑∞
k=0 f1,2k+1t2k+1, and f2(t) =∑∞

k=0 f2,2k+1z2k+1, where f1,1 �= 0 and f2,1 �= 0 . Then the double Riordan matrix
(or array) of g, f1 and f2, denoted by (g; f1, f2), has column vectors

(g, g f1, g f1 f2, g f 21 f2, g f 21 f 22 , . . .),

The set of all aerated double Riordan matrices is denoted as DR.

Theorem 5 (The Fundamental Theorem of Double Riordan Arrays) Let g(t) =∑∞
k=0 g2k t

2k , f1(t) = ∑∞
k=0 f1,2k+1t2k+1, and f2(t) = ∑∞

k=0 f2,2k+1t2k+1.

Case 1: If A(t) = ∑∞
k=0 a2k t

2k and B(t) = ∑∞
k=0 b2k t

2k , and A = (a0, 0, a2, 0, . . .)
T

and B = (b0, 0, b2, 0, . . .)
T are column vectors. Then

(g, f1, f2)A = B if and only if B(z) = g(z)A
(√

f1(z) f2(z)
)
.

Case 2: If A(t) = ∑∞
k=0 a2k+1t2k+1 and B(t) = ∑∞

k=0 b2k+1t2k+1 with (g, f1, f2)A =
B, then B(t) = g(t)

√
f1/ f2A(

√
f1(t) f2(t)).

Using the Fundamental Theorem of Double Riordan Arrays, we can define a
binary operation on DR.

Definition 2 Let (g, f1, f2) and (G, F1, F2) be elements of DR. Then: (g; f1, f2)
(G; F1, F2) = (gG(

√
f1 f2);√

f1/ f2F1(
√

f1 f2),
√

f2/ f1F2(
√

f1 f2)).

The following theorem is analogous to Theorem 2.

Theorem 6 (DR, ∗) is a group. Where the matrix (1; t, t) is the identity and
((1/g(h̄); t h̄/ f1(h̄), t h̄/ f2(h̄)) is the inverse of (g; f1, f2), where h = √

f1 f2 and
h̄ is the compositional inverse of h.

A Riordan array has one Z - and one A-sequence. In this section, we show that
elements in DR can be written using two Z -sequences and one A-sequence. Our
approach is different than the one found by He, see [3]. He’s row construction of
Double Riordan arrays has one Z -sequence and two A-sequences. For our approach,
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we split the double Riordan array into two arrays and after compression, we get two
Riordan arrays that have the same multiplier function. To show this we will use the
following definition.

Definition 3 Let f (z) ∈ R[[z2]], where R[[z2]] is the set of even formal power
series. Then ∗ : R[[z2]] → R[[z]] is called a compression of the power series if
∗(∑∞

k=0 akz
2k) = ∑∞

k=0 akz
k . If f (z) ∈ R[[z2]], we denote its compression as f ∗.

We will use f for f ∗, when this causes no confusion. If g(z) is odd, then a compres-

sion of g(z) is
(
g(z)
z

)∗
.

Example 5 Let

f (z) = 1 + 2z2 + 6z4 + 22z6 + · · · [A006318]

Then

f ∗(z) = 1 + 2z + 6z2 + 22z3 + · · ·

Theorem 7 Let D = (dn,k) = (g, g f1, g f1 f2, g f 21 f2, g f 21 f 22 , . . .) ∈ DR. Then D
is uniquely determinedby three sequences A = (a0, a1, a2, . . .), Z0=(b0, b1, b2, . . .),
and Z1 = (c0, c1, c2, . . .), where all elements in column g except d0,0 are found by
sequence Z0, all elements in column g f1 except d1,1 are found by sequence Z1, and
the remaining internal entries are found by sequence A.

Proof To proceed we split D into two matrices, one made with the columns in the
even positions and the other with those in the odd positions. So that,

(g, g f1, g f1 f2, g f
2
1 f2, g f

2
1 f 22 , . . .) = (g, g f1, g( f1 f2), g f1( f1 f2), g( f1 f2)

2, . . .)

= D0 + D1.

Where

D0 = (g, 0, g( f1 f2), 0, g( f1 f2)2, 0, g( f1 f2)3, 0, g( f1 f2)4, . . .)

and

D1 = (0, g f1, 0, g f1( f1 f2), 0, g f1( f1 f2)
2, 0, g f1( f1 f2)

3, 0, g f1( f1 f2)
4, . . .).

We now compress the formal power series that determine the columns of both D0

and D1, remove the 0 columns, and shift the rows of D1 up one. So that

D∗
1 =

(g f1
x

,
g f1
x

( f1 f2),
g f1
x

( f1 f2)
2,

g f1
x

( f1 f2)
3,

g f1
x

( f1 f2)
4, . . .

)
.
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g gf1 gf1f2 gf1(f1f2) g(f1f2)2 gf1(f1f2)2 g(f1f2)3 gf1(f1f2)3 · · ·
1
0 1
1 0 1
0 3 0 1

2 0 3 0 1
0 9 0 5 0 1
5 0 9 0 5 0 1
0 28 0 20 0 7 0 1
14 0 28 0 20 0 7 0 1

Fig. 2 Example of a Double Riordan matrix

Fig. 3 Even columns g gh gh2 gh3 gh4 · · ·
1
0
1 1
0 0

2 3 1
...

0 0 0
5 9 5 1
0 0 0 0
14 28 20 7 1

· · ·

g gh gh2 gh3 gh4 · · ·
1
1 1

2 3 1
...

5 9 5 1
14 28 20 7 1

· · ·

Note that with compression and shifting the rows of D0 and D1, both D∗
0 and D∗

1
become simple Riordan arrays with the same multiplier function f1 f2. Hence, they
have the same A-sequence. And eachRiordan array has a Z -sequence that determines
the 0th column.

Example 6 To illustrate this process, consider the following double Riordan array,
where C(x) = 1−√

1−4x
2x is the generating function for the Catalan numbers.

(g, f1, f2) =
(
C(x2), xC2(x2), x

)

We have two functions g and g f1 alternating, with a multiplier h = f1 f2, see
Fig. 2. The matrix will be “split” into two matrices with the same multiplier func-
tion h. This results in two Z -sequences, Z0 and Z1, and a single A-sequence. The
Riordan array of the even columns is defined by the power series g and multiplier
function f1 f2, where the coefficients of g give the zeroth column, the first column
is g f1 f2, the second is g( f1 f2)2 and so on. Note that, when constructing the two
Riordan matrices, we remove the aeration by compression (Fig. 3).
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Fig. 4 Odd columns k kh kh2 kh3 kh4

0
1
0
3 1

0 0
...

9 5 1
0 0 0
28 20 7 1

· · ·

k
z

kh
z

kh2

z
kh3

z
kh4

z
1

3 1
...

9 5 1
28 20 7 1

· · ·

Similarly, when constructing the Riordan matrix for the odd columns, we divide by
z to shift the rows up one making the constant term of k = g f1 one (Fig. 4).

Each Riordan array has h∗ = zC2(z) as the multiplier function. Thus the A-
sequence of each array is

A(z) = z

h̄∗(z)

= z
z

(1+z)2

= (1 + z)2 = 1 + 2z + z2

Thus the A-sequence for each Riordan Array is 1, 2, 1. When moving to the Double
Riordan Array we aerate the sequence to get (1, 0, 2, 0, 1)2 as the A-sequence, where
the subscript 2 indicates we move up 2 rows instead of one row as we do with single
Riordan Arrays.

Using similar calculations for the Z0 and Z1 sequences we get,

Z0(z) = 1

h̄∗(z)

(

1 − 1

g∗(h̄∗(z)

)

= 1 + z

and

Z1(z) = 1

h̄∗(z)

(

1 − 1

k∗(h̄∗(z)

)

= z2 + 3z + 3

1 + z

= 3 +
∞∑

n=0

(−1)nzn+2
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1

1

1

1

1

1

7

29

65

137

1371

3

4

6

16

36

363

10

10

Fig. 5 Schröder path with no level steps at even heights

Hence, the Z -sequences are 1, 1 and 3, 0, 1,−1, 1,−1, 1,−1, 1, . . .. So, for the
given double Riordan array they are, (1, 0, 1)2 for the 0th column and (3, 0, 0, 0, 1,
0,−1, 0, 1, 0,−1, 0, 1, . . .)2 for the 1st column.

Corollary 1 Let (g, f1, f2) be a double Riordan array. Let A, Z0, and Z1 be the
generating functions for the A and Z sequences respectively. Let h = f1 f2 and
k = g f1. Then

A(t) = t2

(h(t))2
,

Z0(t) = 1

(h(t))2

(

1 − 1

g(h(t))

)

,

Z1(t) = 1

(h(t))2

(

1 − f1,1h(t)

k(h(t)

)

.

Example 7 For the next combinatorial example, we look at Schröder paths with no
level steps at even heights, see Fig. 5.

Using the grid, we get the following matrix (Figs. 6 and 7).
The equations are as follows;

g − 1 = zg + 2zg − zgh2 + zgh3 − zgh4 + . . .

gh = zg + 3zgh + zgh2 =⇒ h = z + 3zh + zh2.

Solving these systems of equations we get the following for g and h;
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Fig. 6 Example of DR
matrix for Schröder paths
with no level steps at even
heights, where
h = f1 f2 andk = g f1

g k gh kh gh2 kh2 gh3 kh3 gh4

1
0 1
1 0 1
0 3 0 1

3 0 4 0 1
0 10 0 6 0 1
10 0 16 0 7 0 1
0 36 0 29 0 9 0 1
36 0 65 0 38 0 10 0 1

Fig. 7 Even columns g gh gh2 gh3 gh4

1
0
1 1
0 0
3 4 1
0 0 0
10 16 7 1
0 0 0 0
36 65 38 10 1

g gh gh2 gh3 gh4

1
1 1
3 4 1
10 16 7 1
36 65 38 10 1

g = 1 − z − √
5z2 − 6z + 1

2z
= 1 + z + 3z2 + 10z3 + 36z4 + · · · [A002212]

h = 1 − 3z − √
5z2 − 6z + 1

2z
= z + 3z2 + 10z3 + 36z4 + 137z5 + 543z6 + · · ·

h̄ = z

z2 + 3z + 1
= z − 3z2 + 8zz − 21z4 + 55zz + · · · [A001906].

Therefore, the A-sequence and Z -sequence for the matrix composed of the even
columns are as follows (Fig. 8);

A(z) = z

h̄(z)
= z

z
z2+3z+1

= z2 + 3z + 1

Z(z) = 1

h̄

(
1 − 1

g(h̄)

)
= z2 + 3z + 1

z

(

1 − 1

g( z
z2+3z+1 )

)

= z2 + 3z + 1

z(z + 1)

= 1

z
(1 + 2z − z2 + z3 − z4 + z5 − · · · ).
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Fig. 8 Odd columns k kh kh2 kh3 kh4

0
1
0
3 1
0 0
10 6 1
0 0 0
36 29 9 1

k
x

kh
x

kh2

x
kh3

x
kh4

x
1
3 1
10 6 1
36 29 9 1

The equations are as follows;

k = 1 + 3zk + zkh

kh = zk + 3zkh + zkh2 =⇒ h = z + 3zh + zh2.

Solving these systems of equations we get the following for k and h;

k = 1 − 3z − √
5z2 − 6z + 1

2z2

= 1 + 3z + 10z2 + 36z3 + 137z4 + · · · [A002212]
h = 1 − 3z − √

5z2 − 6z + 1

2z
= 0 + z + 3z2 + 10z3 + 36z4 + 137z5 + 543z6 + · · ·

h̄ = z

z2 + 3z + 1
= z − 3z2 + 8z3 − 21z4 + 55z5 + · · · [A001906].

Therefore, the Z -sequence for the matrix composed of the odd columns is as
follows;

Z(z) = 1

h̄

(
1 − 1

k(h̄)

)

= z2 + 3z + 1

z

(

1 − 1

k
(

z
z2+3z+1

)

)

= 3z + 1

z
= 1

z
(3z + 1).

Hence, the Z0-sequence of the Double Riordan matrix is (1, 0, 2, 0,
−1, 0, 1, 0,−1, 0, 1, . . .)2, the Z1-sequenceof theDoubleRiordanmatrix is (3, 0, 1)2
and the A-sequence of the Double Riordan matrix is (1, 0, 3, 0, 1)2.
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3 New Subgroups

While studying theDouble Riordan group, we found four new subgroups, that we call
the Derivative subgroups and the C-Bell Subgroups. The Derivative subgroups are
defined by {( f ′, f, c f ) ∈ DR : c ∈ IR, c > 0} and {( f ′, c f, f ) ∈ DR : c ∈ IR, c >
0}. The C-Bell subgroups are defined by {(g, czg, f ) ∈ DR : c ∈ IR, c > 0} and
{(g, f, czg) ∈ DR : c ∈ IR, c > 0}.
Theorem 8 Let A = {( f ′, f, c f ) ∈ DR : c ∈ IR, c > 0}. Then A is a subgroup of
DR.

Proof The identity element is clearly in A, simply let f = z and c = 1. Thus,
( f ′, f, c f ) = (1, z, z). Now let ( f ′, f, c f ) and (g′, g, dg) be elements of A. Thus,
by definition of multiplication in DR,

( f ′, f, c f ) · (g′, g, dg) = ( f ′g′( f
√
c),

1√
c
g( f

√
c),

√
cdg( f

√
c))

and since the derivative of 1√
c
g( f

√
c) is f ′g′( f

√
c), we have that A is closed

under multiplication. Finally, we need to prove that A is closed under inverses.
Let ( f ′, f, c f ) ∈ A. Then

( f ′, f, c f )−1 =
(

1

f ′(h̄)
,

zh̄

f (h̄)
,

zh̄

c f (h̄)

)

,

where h = √
c f.

Claim: The derivative of zh̄
f (h̄)

is 1

f ′
(
h̄
) .

Note that,

h = √
c f =⇒ f (h̄) = z√

c
.

So that,

zh̄

f (h̄)
= √

ch̄.

Hence,

d

dz

(√
ch̄

)
=

√
c

h′(h̄(z))
= 1

f ′(h̄)
.

The proof to show that {( f ′, c f, f ) ∈ DR : c ∈ IR, c > 0} is a subgroup is similar.
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Theorem 9 Let B = {(g, czg, f ) ∈ DR : c ∈ IR, c > 0}. Then B is a subgroup of
DR.

Proof Clearly the identity element is in B. Take g = 1, c = 1 and f = z. Then
(g, czg, f ) = (1, z, z). Now let (g, czg, f ) and (G, dzG, F) be elements of B. Then,

(g, czg, f ) ∗ (G, dzG, F) = (gG(
√
czg f ),

√
czg
f d

√
czg f G(

√
czg f ), L)

= (gG(
√
czg f ), cdzgG(

√
czg f ), L).

Thus, B is closed under multiplication since the product is of the form (h, czh, k).
Note that the second multiplier function can be any function which we write as L .
We now prove that the set is closed under inverses. Let (g, czg, f ) be an element of
B and h = √

czg f .

Thus, (g, czg, f )−1 =
(

1

g
(
h̄
) , z

cg
(
h̄
) , L

)

.

Hence, B is closed under inverses. Therefore, B is a subgroup of the Double Riordan
array.

Similarly we get
{(g, f, czg) ∈ DR : c ∈ IR, c �= 0}

is a subgroup of DR.

4 Conclusion

An obvious question is, can we have more than 2 multiplier functions? The answer
is yes and we call the matrix with k multiplier functions a k-Riordan array. The k-
Riordan group is defined similar to the double Riordan group. In the k-Riordan group,
we let g(t) = ∑∞

n=0 gknt
kn and for each 1 ≤ i ≤ k, fi (t) = ∑∞

n=0 fi,kn+1t kn+1, see
[3]. For k-Riordan arrays (g, f1, f2, . . . , fk) and (G, F1, F2, . . . , Fk), multiplication

is defined as follows. Let h(t) =
k∏

i=1
fi (t). Then

(g, f1, f2, . . . , fk) · (G, F1, F2, . . . , Fk) =
(

g(t) · G
(

k
√
h(t)

)
,

k

√
f k1 (t)

h(t)
· F1

(
k
√
h(t)

)
, . . . ,

k

√
f kk (t)

h(t)
· Fk

(
k
√
h(t)

))

.

Using our method we can easily find the A- and Z -sequences. Indeed, if D is a
k-Riordan array, we split D into k matrices and after compression, we get k Riordan
arrays. Columns whose location are congruent to p mod k, where 0 ≤ p < k give
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the pth matrix. We then compress the matrices. Each of the constructed Riordan

arrays will have the same multiplier function
k∏

i=1
fi . Hence, we get k Z -sequences

and one A-sequence.
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Constructing Clifford Algebras for
Windmill and Dutch Windmill Graphs;
A New Proof of the Friendship Theorem

Timothy Myers

Abstract AClifford graph algebraG A(G) is a useful structure for studying a simple
graph G with n vertices. Such an algebra associates each of its n generators with
one of the n vertices of G in a way that depicts the connectivity of G in that any
two generators anti-commute or commute depending onwhether their corresponding
vertices share or do not share an edge. We will construct the Clifford graph algebra
for any windmill graph W (r, m), which consist of m copies of the complete graph Kr

adjoined at one commonvertex; and for anyDutchwindmill graph Dm
r which consists

of m copies of the r -cycle graph Cr adjoined at one common vertex, then apply this
algebraic theory to the class of 3-cycle graphs Fm = Dm

3 known as friendship graphs.
Specifically, we will use the algebra G A

(
Fm

)
to give a new proof of the fact that

those simple graphs which posses the friendship property are precisely the friendship
graphs.

Keywords Clifford algebra ·Windmill graph · Dutch windmill graph · Friendship
graph

Mathematics Subject Classification (2010) Primary 15A66

1 Introduction

The broad goal of this paper is to continue developing applications of Clifford alge-
bras to the subject of algebraic graph theory. This paper will be the third in a recent
succession of independent works by Khovanova [11] andMyers [15] which establish
some fundamental results in this potential area of study.

Specifically, we will first build a special algebra by selecting a subset of mono-
mials from a basis for an appropriate Clifford algebra with signature so that these
monomials will generate a sub-algebra that depicts the connectivity in a simple graph
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such that each pair of generators anti-commute or commute depending on whether
their corresponding vertices share or do not share an edge. We will call this sub-
algebra a Clifford graph algebra for the given graph G, and denote it as G A(G). In
this paper, the graphs of interest will be windmill W (r, m) and Dutch windmill Dr

m
graphs. After obtaining an explicit representation for G A

(
W (r, m)

)
and G A

(
Dr

m

)

we will use the algebra G A
(
Fm

)
to give a new proof of the Friendship Theorem.

To appreciate the evolution of the fundamental properties that define any G A(G),
we will briefly discuss the history of Clifford algebras and state some intrinsic defini-
tions along the way. This chronicle reveals an ongoing extension of the real numbers
to progressively larger embedding algebraic structures; an effort that to this day has
spanned more than four centuries.

In 1545 Geralamo Cardano published Ars Magna, wherein he used the symbol√−1 so describe solutions to quadratic and cubic equations that are unsolvable over
R [20]. Mathematicians such as René Descartes in 1637 continually expressed some
disenchantment with the use of the

√−1 symbol up through the 17th century [6].
Using the notation which Leonard Euler introduced in 1748 [17], in 1831 Carl Gauss
de-mystified the

√−1 symbol by defining the two dimensional field of complex
numbersC as ordered pairs of real numbers subject to the addition andmultiplication
operations [3] :

(a, b) + (c, d) = (a + c, b + d) and (a, b)(c, d) = (ac − bd, ad + bc) ,

wherein the explicit representation i = (0, 1) satisfies i2 = −1, and i along with the
real number 1 = (1, 0) form a basis which spans C.

In 1843 William Hamilton extended the planar field C to three dimensional
Euclidean space by constructing the four-dimensional division ringH of quaternions
[12]. Similar to the basis for C, the basis for H consists of the real number 1 and
three imaginary units i, j , and k which satisfy i2 = j2 = k2 = −1, but these units
also anti-commute i j = − j i , jk = −k j , and ik = −ki . In 1876 William Clifford
published a work wherein he discussed a class of algebras, called Clifford alge-
bras in his honor, which embedded the exterior product in Grassman’s algebra and
established generators that posses the squaring and anti-commutativity properties of
Hamilton’s quaternions [5].

In this work we will define a Clifford algebra as in Definition 1 [2, 13, 14, 19]
because it emphasizes the fundamental conditions that relate it to the embedded
quaternions. Equipped with a quadratic form, a Clifford algebra with signature is
defined as follows.

Definition 1 A real Clifford (geometric) algebra of signature (p, q), denoted Gp,q ,
where p + q = n, is an associative R-algebra which is generated by the set S ={
e1, . . . , en

}
where the elements in S satisfy the fundamental conditions

e2k =
{
1 if 1 ≤ k ≤ p

−1 if p + 1 ≤ k ≤ p + q = n
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eke j = −e j ek for k �= j .
In particular,
G

(0,n) denotes a geometric algebra where each generator squares to −1,
G

n = G
(n,0) denotes a geometric algebra where each generator squares to 1.

After Clifford developed his geometric algebras, mathematicians and physicists;
namely Sylvester [18], Cartan [4],Weil [22], and Schwinger [16] extended Clifford’s
algebra into a generalized Clifford algebra, defined as follows (see [9, 21]).

Definition 2 A generalized Clifford algebra is a C-algebra which is generated by
the set S = {

e1, . . . , en
}
where the elements in S satisfy the following relations for

all j, k, �, m = 1, 2, . . . , n

(i) e j ek = ω jkeke j , ω jke� = e�ω jk , ω jkω�m = ω�mω jk

(ii) e
N j

j = ω
N j

jk = ω
Nk
jk = 1 for some N j , Nk ∈ N.

To distinguish them from the generalized Clifford algebras in Definition 2, we
will refer to the Clifford algebra in Definition 1 as a classical Clifford algebra.

In 2008, T. Khovanova explains how the special case where ω jk = ±1 can be used
to depict the connectivity between vertices in a finite, simple graph [11]. Hence,
Khovanova refers to such a generalized Clifford algebra as a Clifford graph algebra.
Although in [11] Khovanova defines a Clifford graph algebra over C, we will alter
our definition here from that in [11] by instead defining a Clifford graph algebra over
R with signature (p, q) where p + q = n. In this work all graphs will be simple
(no multiple edges between any pair of vertices) and finite (finitely many edges and
vertices).

Definition 3 A Clifford graph algebra for a simple graph Gn with n vertices
v1 , v2 , . . . , vn , denotedG A(Gn), is anR-algebrawithn generators e′

1 , e′
2 , . . . , e′

n
such that each generator e′

i is paired with exactly one vertex vi so that the following
rules hold

(i) e′
i e

′
j = −e′

j e
′
i if vi and v j are adjacent

e′
i e

′
j = e′

j e
′
i if vi and v j share no edge

(ii)

(e′
k)

2 =
{
1 if 1 ≤ k ≤ p

−1 if p + 1 ≤ k ≤ p + q = n.

An objective of this work is to construct a Clifford graph algebra for a given
graph Gn , and in particular for windmill and Dutch windmill graphs in a way that
is simpler than in the general case where ω jk is an arbitrary complex number. As an
additional advantage, the constructive proofs presented here are motivated primarily
by the connectivity of Gn . As a first example, a classical Clifford algebra itself can
serve as the Clifford graph algebra for the complete graph.
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Fig. 1 Schematic depiction
of G A(K6)

Example 1 Consider the Clifford graph algebra G A(Kn) for the complete graph
Kn . Since by definition each pair of vertices in Kn are adjacent (see, for instance, K6

in Fig. 1), then each pair of distinct generators in the corresponding Clifford graph
algebra anti-commute; so in this case anyClifford algebraG(p,q) with signature (p, q)

where p + q = n can serve as the Clifford graph algebra for Kn . Occasionally in
this article we will use the underlying graph Gn to illustrate a specific Clifford graph
algebra G A(Gn) schematically by labeling each vertex in Gn with its corresponding
generator. In particular, the diagram below shows such a schematic representation
for G A(K6) = G

(p,q) such that p + q = 6.

If the graph Gn is not complete, the generators in a Classical Clifford algebra
will not be able to provide the needed property of commutativity for pairs of vertices
that share no edge. As an alternative to constructing a generalized Clifford algebra
to serve this purpose for Gn by the process explained in [9], in our case where each
ω jk = 1 or ω jk = −1 we will more efficiently prove that we may obtain G A(Gn)

directly from a classical Clifford algebra with signature. For convenience, we will
choose this underlying algebra to be either Gm or G(0,m), where m > n. We will
construct G A(Gn) by selecting from the basis for either Gm or G(0,m) a subset
of monomials which satisfies the connectivity conditions of Gn as prescribed in
Definition 3; thereby establishing G A(Gn) as a sub-algebra of Gm or G(0,m). This
method of selection works because every pair of such monomials either commutes
or anti-commutes.

As an example of selecting generators for a Clifford graph algebra from a par-
ent algebra, we will construct G A(G3) from G

(0,3) for each of the four different
configurations for G3 (as presented in [15]).

Example 2 If n = 3, the basis B3 forG(0,3) contains monomials which can serve as
generators for any graph G3, where

B3 = {
1 , e1 , e2 , e3 , e1e2 , e1e3 , e2e3 , e1e2e3

}
.

The Table 1 lists the possible commutativity (c) and anti-commutativity (a) rela-
tions between the monomials in B3.
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Table 1 Relations between monomials in B3

e2 a

e3 a a

e1e2 a a c

e1e3 a c a a

e2e3 c a a a a

e1e2e3 c c c c c c

e1 e2 e3 e1e2 e1e3 e2e3

Fig. 2 Schematic depictions for G A(G3)
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This table shows that the choice of the generators in each of the following possi-
ble graphs for G3 accurately depicts the connectivity of their associated vertices by
conforming to property (i) in Definition 3. Also note that the choice of generators
satisfies property (ii) in Definition 3. For instance, in the first in Fig. 2 we have that
(e′

1)
2 = 1 , (e′

2)
2 = (e′

3)
2 = −1; hence the signature for this graph is p = 1, q = 2.

2 Preliminaries for a Clifford Graph Algebra

Throughout this work we will assume that the following notations satisfy the stated
conditions. The following (i) through (iv) are excerpts from [15] which will be useful
in this work.

(i) To avoid trivialities wewill always assume that every graph andClifford algebra
considered has at least two vertices or generators.

(ii) The symbols e1, . . . , en will denote the generators for Gn or G(0,n). At times
we will indicate this by the notationGn = 〈e1, . . . , en〉 orG(0,n) = 〈e1, . . . , en〉
[23].

(iii) Indices for vertices of Gn and generators of G A(Gn) are natural numbers,
denoted as i1, i2, . . . , in , whichwewill assume to satisfy 1 ≤ i1 < · · · < ir ≤ n
where r ∈ N and 1 < r ≤ n.

(iv) Amonomial of the form ei1ei2 · · · eir where 1 ≤ i1 < · · · < ir ≤ n is said to have
grade r . We will tacitly assume that the symbol ei1ei2 · · · eir denotes monomial
of grade r . We will use the convention that 1 has grade 0.

(v) The monomial of grade n whereGn = 〈e1, . . . , en〉, namely e1e2 · · · en is called
the pseudoscalar.

(vi) For convenience, the symbol 1 will denote the multiplicative unit for any clas-
sical Clifford algebra.

Proposition 1 ([15]) If two monomials e j1 · · · e js and ei1 · · · eir share no factor in
common, where either r or s is even, they commute.

Proposition 2 ([15]) A monomial of even grade e j1e j2 · · · e j2m−1e j2m and a monomial
ei1ei2 · · · eir of grade r with exactly one factor in common anti-commute; i.e.

(
e j1 · · · e j2m−1e j2m

)(
ei1 · · · eir

)

= −(
ei1ei2 · · · eir

)(
e j1e j2 · · · e j2m−1e j2m

)
.

(1)

Definition 4 The symbol e2m will denote the monomial e2m = e2e4 · · · e2m .

In [15], T. Myers proved the following existence theorem, which asserts that there
exists a Clifford graph algebra for any simple graph.
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Theorem 3 (Existence of a Clifford Graph Algebra) Let Gn be a simple graph with
n vertices v1, . . . , vn. We can always construct a Clifford graph algebra G A(Gn)

for Gn as a sub-algebra of G2n
or G(0,2n) by selecting n generators e′

1, e′
2, . . . , e′

n,
from the basis of monomials

{1} ∪ {
ei1 · · · eir

∣∣ 1 ≤ i1 < · · · < ir ≤ n
}

for the including algebra G
2n

or G(0,2n).

The huge size of the parent algebra in Theorem 3, having 2n generators, is a
consequence of a brief but thoroughproof of this theorem.To approach the question of
how small the parent Clifford algebra for G A(Gn) can be, wewill find a considerably
smaller representation for the parent Clifford algebra of particular classes of graphs;
and in this paper we will do this for the class of windmill and Dutch windmill graphs.
Thus, although Theorem 3 insures that a Clifford graph algebra exists for a given
simple graph, the question of choosing the monomials for the generators optimally
is still open in theory, and for now depends on the graph.

3 Clifford Algebras for Windmill and Dutch Windmill
Graphs

Wewill now proceed to find and formulate a precise representation for the generators
of the Clifford algebras for the windmill and Dutch windmill graphs. This represen-
tation will have a closed form and will be efficient in the sense that the monomials
selected for generators will be as small in grade as possible; in fact, the generators
for all non-central vertices in this formulation will be bivectors. Our exploration will
start by defining these classes of graphs and considering some examples.

3.1 Windmill Graphs

Definition 5 ([7]) A windmill graph W (r, m) is a simple graph which consist of m
copies of the complete graph Kr adjoined at one common vertex.

Some examples ofwindmill graphs of the classesW (4, m) andW (5, m) are shown
in Figs. 3 and 4.
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Fig. 3 The class W (4, m) : m copies of K4 adjoined at one common vertex

Fig. 4 The class W (5, m) : m copies of K5 adjoined at one common vertex
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Fig. 5 The class D4
m : m C4-cycles adjoined at exactly one vertex; 3m + 1 vertices

3.2 Dutch Windmill Graphs

Definition 6 ([10]) A Dutch windmill graph Dr
m is a simple graph which consist of

m copies of the Cr cycle adjoined at one common vertex.

Some examples of Dutch windmill graphs of the classes D4
m and D5

m are show in
Figs. 5 and 6.

3.3 The Friendship Graph

Our search forG A
(
W (r, m)

)
andG A

(
Dr

m

)
will beginwith a graph that is the simplest

case of both a windmill and Dutch windmill graph. As expected, the Clifford algebra
for this graphwill be the simplest considered.Wewill first mention a special property
of this graph.

Definition 7 ([8]) A simple graph with at least 3 vertices has the friendship property
if, for any two vertices vi and v j , there is exactly one vertex vk with which each of vi

and v j share an edge, and we will express this by stating that “vi and v j are friends
with vk .”

Example 3 The following graph in Fig. 7, a C3-cycle (triangle) has the friendship
property.



56 T. Myers

Fig. 6 The class D5
m : m C5-cyles adjoined at exactly one vertex; 4m + 1 vertices

Fig. 7 Illustration of the friendship property

The friendship property prompts the following definition.

Definition 8 ([8])

(i) A friendship graph consists of m C3-cycles with exactly one common vertex.
(ii) By (i), a friendship graph contains 2m + 1 vertices and 3m edges.

Using standard notation,wewill denote a friendship graph ofm triangles as Fm . As
mentioned, Fm = W (3, m) = Dm

3 . Figure 8 shows the friendship graphs F1, F2, F3

and F4 and their notational connections to windmill and Dutch windmill graphs.
From examining any of the graphs in Fig. 8, the following proposition is clear.
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Fig. 8 The friendship graphs F1, F2, F3, and F4

Proposition 4 ([8]) Any friendship graph Fm has the friendship property (thus the
name for this graph).

In section wewill present a new proof of the converse to Proposition 4 that utilizes
the Clifford algebra for the friendship graph.

3.4 The Clifford Algebra for the Friendship Graph

Consider the following schematic depictions of the Clifford algebras for F1, F2, and
F3 in Fig. 9. The K3 subgraphs of the friendship graphs are labeled from 1 through
3 in a clockwise direction by increasing indices of the generators, and in Table 2
we denote the numerical label of each K3 subgraph as n. Note that the properties in
Sect. 2 hold for each of these graphs.

Fig. 9 Schematic depictions of the Clifford graph algebras for F1, F2, and F3
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Table 2 Indices for the bivectors of K3 subgraphs in F1, F2 and F3

K3 subgraph Even index Odd indices

n 2n 4(n − 1) + 1 ≡ 1
mod 4

4(n − 1) + 3 ≡ 3
mod 4

1 2 1 3

2 4 5 7

3 6 9 11

We can obtain the following patterns for the indices of the bivectors in the
schematic depictions in Fig. 9, as organized in Table 2, where n represents the
numerical label of the K3 subgraph.

The patterns in table suggest the following formulation for G A(Fm).

Proposition 5 As a sub-algebra of G(0,4m−1) the Clifford algebra for Fm can have
the representation

G A(Fm) = 〈
e2e4 · · · e2m and e2ne4n−3 , e2ne4n−1 for n = 1, 2, . . . , m

〉
.

Since Fm is the windmill graph W (3, m) we will establish the proof of
Proposition 5 as a special case of a more rigorous development of G A

(
W (r, m)

)

in the proof of Theorem 8.

3.5 The Clifford Algebra for the Class of Windmill Graphs

Wewill next extend the pattern for labeling odd indexed generators from G A(Fm) to
G A

(
W (r, m)

)
by first considering schematic depictions of W (4, m) and W (5, m) for

m = 2, 3, 4 as shown in Figs. 10 and 11; organize the results in a table, and abstract
representations for G A

(
W (4, m)

)
and G A

(
W (5, m)

)
from this information.

Although we will not explicitly number the complete subgraphs in each windmill
graph in Figs. 10 and 11, the counter n that occurs in the tables in this subsection will
denote the ordinal label of these subgraphs in a given sketch, which will start with 1
and increase clockwise in the direction of increasing indices of the generators.

Since the proof of Theorem 8 will establish Propositions 6 and 7 as special cases,
we will omit their proofs here.
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Fig. 10 Schematic depiction of the Clifford graph algebras for W (4, m) for m = 1, 2, 3

Fig. 11 Schematic depiction of G A
(
W (5, m)

)
for m = 1, 2, and 3

3.5.1 The Clifford Algebra for W(4,m) : GA
(
W(4,m)

) ⊂ G
(0,6m−1)

As in Fig. 9, let n denote the K4 subgraph in each W (4, m) as shown in Fig. 10, with
n = 1 corresponding to W (4, 1), so that the patterns of the indices of the bivectors
of these subgraphs are displayed in Table 3.

The patterns of these indices suggest the following representation for
G A

(
W (4, m)

)
.

Proposition 6 As a sub-algebra of G(0,6m−1) the Clifford algebra for W (4, m) can
have the representation

Table 3 Indices for the bivectors of K4 subgraphs in each W (4, m) for m = 1, 2, 3

K4 subgraph Even index Odd indices

n 2n 6(n − 1) + 1 6(n − 1) + 3 6(n − 1) + 5

1 2 1 3 5

2 4 7 9 11

3 6 13 15 17
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Table 4 Indices for the bivectors of K5 subgraphs in each W (5, m) for m = 1, 2, 3

K5 subgraph Even index Odd indices

n 2n 8(n − 1) + 1 8(n − 1) + 3 8(n − 1) + 5 8(n − 1) + 7

1 2 1 3 5 7

2 4 9 11 13 15

3 6 17 19 21 23

G A
(
W (4, m)

) = 〈
e2e4 · · · e2m and e2ne6n−5 , e2ne6n−3 , e2ne6n−1

for n = 1, 2, . . . , m
〉
.

3.5.2 The Clifford Algebra for W(5,m) : GA
(
W(5,m)

) ⊂ G
(0,8m−1)

With n playing the same role as in Figs. 9 and 10, the patterns of the indices of the
bivectors in each G A

(
W (5, m)

)
can be displayed in Table 4, which prompts the

formulation of G A
(
W (5, m)

)
in Proposition 7.

Proposition 7 As a sub-algebra of G(0,8m−1), G A
(
W (5, m)

)
can have the represen-

tation

〈
e2e4 · · · e2m and e2ne8n−7 , e2ne8n−5 , e2ne8n−3 , e2ne8n−1 for n = 1, 2, . . . , m

〉
.

3.5.3 The Clifford Graph Algebra for W(r,m) :
GA

(
W(r,m)

) ⊂ G
(0,2m(r−1)−1)

By combining the tabular information from each of the Tables 2, 3, and 4 we can
obtain a formula for labeling in odd indices of the bivectors in the generators for the
general class G A

(
W (r, m)

)
as shown in Table 5.

The previous examples for Fm = W (3, m), W (4, m), and W (5, m) motivate the
formula for the odd index in each bivector corresponding to the non-central vertices.
We can derive this formula

2(r − 1)(n − 1) + j, j = 1, 3, . . . , 2(r − 2) − 1, n = 1, . . . , m (2)

by the following combinatorial argument.
Excluding the central vertex, which is colored black in Figs. 10 and 11, r − 1

vertices remain. Thus, given any of the non-central r − 1 vertices in the first complete
Kr sub-graph with an associated bivector having j as the odd index value, to reach
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Table 5 Indices for the bivectors of Kr subgraphs for r = 3, 4, 5

Kr subgraph size Number of odd
indexed generators per
subgraph

Odd indices for generators at
cycle n for n = 1, . . . , m

Modular group for
odd indices

3 2 4(n − 1) + 1 ,
4(n − 1) + 3,

Z4

4 3 6(n − 1) + 1 ,
6(n − 1) + 3,

Z6

6(n − 1) + 5

5 4 8(n − 1) + 1 ,
8(n − 1) + 3,

Z8

8(n − 1) + 5 ,
8(n − 1) + 7

r r − 1 2(r − 1)(n − 1) + j , for Z2(r−1)

j = 1, 3, . . . , 2(r − 1) − 1

the corresponding vertex in the next complete sub-graph we must skip over the next
r − 1 vertices. Since each vertex skipped increases the odd index by 2, this skip to
the next corresponding vertex is a size of 2(r − 1), which implies that 2(r − 1) − 1
is the highest odd index in the first subgraph. To reach the corresponding vertex in the
n-th Kr subgraph for n = 2, . . . , m, this skip size of 2(r − 1) is repeated n − 1 times
beyond the first complete Kr sub-graph. Therefore, the entire skip size to reach the
corresponding vertex at the n-th Kr subgraph is 2(r − 1)(n − 1) beyond the vertex
with bivector having a generator with odd index j ; and the odd index in the associated
bivector is therefore 2(r − 2)(n − 1) + j .

Theorem 8 As a sub-algebra of G
(0,2m(r−1)−1), the Clifford graph algebra

G A
(
W (r, m)

)
for W (r, m) can have the representation

〈
e2 · · · e2m and e2ne2(r−1)(n−1)+ j

for n = 1, 2, . . . , m and j = 1, 3, . . . , 2(r − 1) − 1
〉
.

(3)

Proof Until we establish this proposition, we will refer to the graph and its asso-
ciated Clifford algebra as G and G A(G) respectively. We first need to show that
the highest index in (3) is at least as large as the total number of generators needed
for G A(G). This highest index value will then serve as the number of generators in
the parent Clifford algebra. Each complete sub-graph Kr in G contains the central
vertex and r − 1 additional vertices. Since there are m such complete graphs in all
in G, then the total number of vertices in G is m(r − 1) + 1.

Note that we only need to compare the highest odd index in (3) with total
number of vertices in G since the highest odd index

2(r − 1)(m − 1) + 2(r − 1) − 1 = 2m(r − 1) − 1
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occurring in (3) exceeds the highest even index because r ≥ 3 and m ≥ 1 imply that
2m(r − 1) − 1 ≥ 2m(2) − 1 > 2m.

Since r and m are at least 3 and 1 respectively it follows that

rm ≥ 3m

rm ≥ m + 2m ≥ m + 2

2mr − 2m − 1 ≥ m(r − 1) + 1

2m(r − 1) − 1 ≥ m(r − 1) + 1,

and the highest index occurring in (3) is large enough to allow the enumeration
of indices in (3); hence the indices of the generators in G

(0,2m(r−1)−1) are large
enough for G A

(
W (r, m)

)
to be a sub-algebra of it. In particular, this insures

that in Propositions 5, 6, and 7 that the containments G A(Fm) ⊂ G
(0,4m−1),

G A
(
W (4, m)

) ⊂ G
(0,6m−1) and G A

(
W (5, m)

) ⊂ G
(0,8m−1) are respectively valid.

To study the connectivity in G, we will partition the vertices v1, . . . , vm(r−1)+1 of
G into a singleton containing the central vertex and m subsets of r − 1 vertices
denoted Sr,1, Sr,2, . . . , Sr,m , and enumerate each subset of the vertices contained in
each such set as follows. Since there are r − 1 vertices in each of the m complete
graphs Kr excluding the central vertex, naming the central vertex vr will permit an
enumeration from 1 through r − 1 for the remaining vertices in each set Sr . In this
way, we shall enumerate each such set of r − 1 non-central vertices as:

Sr,1 : v1, v2, . . . , vr−1

Sr,2 : vr+1, vr+2, . . . , v2r−1

Sr,3 : v2r+1, v2r+2, . . . , v3r−1
...

...
...

...
...

Sr,m : v(m−1)r+1, v(m−1)r+2, . . . , vmr−1

In general, for each n = 1, . . . , m, the non-central vertices in the set Sr,n are given
by vr(n−1)+i for i = 1, 2, . . . , r − 1. In particular, note that the subscript of the final
vertex in this list is r(n − 1) + (r − 1) = rn − 1.

Using this enumeration for the vertices v1, . . . , vm(r−1)+1, we can establish a
correspondence between themand themonomials forG A(G). The key to formulating
this correspondence is the relationship j = 2i − 1 between the counters i and j , as
the following lists for these counters reveal for each cycle n = 1, . . . , m :

vertices : vr(n−1)+i for i = 1, 2, 3, . . . , r − 1

odd indices : e2(r−1)(n−1)+ j for j = 1, 3, 5, . . . , 2(r − 1) − 1 .
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Thus we arrive at the following correspondence between the vertices in G and the
monomials inG A(G)which holds for each for each n = 1, . . . , m, i = 1, 2, . . . , r −
1 and j = 1, 3, . . . , 2(r − 1) − 1 such that j = j (i) = 2i − 1:

central vertex vr ←→ e2 · · · e2m

remaining vertices v(n−1)r+i ←→ e2ne2(r−1)(n−1)+ j

Themonomial e2 · · · e2m for the central vertex vr will anti-commutewith any bivector
e2ne2(r−1)(n−1)+ j for any non-central vertex v(n−1)r+i in any n-th subgraph Kr since
these two monomials share precisely the single factor e2n in common. Thus, there
is an edge between vr and any non-central vertex v(n−1)r+i in the n-th subgraph
Kr . Since any two bivectors for distinct non-central vertices in the n-th subgraph Kr

likewise share exactly the single factor e2n , these will likewise anti-commute, thereby
conferring an edge between these vertices. Finally, any non-central vertex v(n1−1)r+i

in the subgraph Kn1 with ordinal position n1 and any non-central vertex v(n2−1)r+i

in the subgraph Kn2 with ordinal position n2 will have corresponding bivectors that
commute, since they share no factor in common.Hence, there is no edge between such
vertices, which means that Kn1 and Kn2 share only the central vertex vr . Therefore
G = W (r, m) and the algebra in (3) is a representation for G A

(
W (r, m)

)
. �

3.6 The Clifford Algebra for the Class of Dutch Windmill
Graphs

Wewill constructG A(Dr
m) in a fashion similar toG A

(
W (r, m)

)
by first determining

G A(D4
m) and G A(D5

m). Each of the sub-cycle graphs that occur in each Dutch
windmill graph in Figs. 12 and 13 will be labeled sequentially by a counter n in
a clockwise direction by increasing indices of the generators starting with n = 1.

Since the proof of Theorem 11 will establish Propositions 9 and 10 as special
cases, we will omit their proofs here.

3.6.1 The Clifford Graph Algebra for D4
m : GA(D4

m) ⊂ G
(0,4m)

By letting n denote the labeled number of the K4 subgraphs in Fig. 12, the indices
of these subgraphs can be organized as in Table 6.

Proposition 9 As sub-algebra of G(0,4m), the Clifford graph algebra for D4
m can

have the representation

G A(D4
m)

= 〈
e2e4 · · · e4m and e4(n−1)+2e4(n−1)+1 ,

e4(n−1)+1e4(n−1)+3, e4(n−1)+4e4(n−1)+3 forn = 1, 2, . . . , m
〉
.

(4)
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Fig. 12 Schematic depictions of G A(D4
m) for m = 1, 2 and 3

Fig. 13 Schematic depiction of G A(D5
m) for m = 1, 2 and 3

Table 6 Indices for the bivectors of K4 subgraphs in each D4
m graph for m = 1, 2 and 3

Cycle Odd indices Even indices

n 4(n − 1) + 1 4(n − 1) + 3 4(n − 1) + 2 4(n − 1) + 4

1 1 3 2 4

2 5 7 6 8

3 9 11 10 12

Note that the number of generators in G
(0,4m) which is the same as the highest

occurring index for a generator in (4) is sufficient for labeling the number of vertices
3m + 1 in D4

m since m ≥ 1 implies 4m ≥ 3m + 1. Thus G(0,4m) contains enough
generators for the representation in (4) to be a sub-algebra of it.

Also note that the highest even index in (4) exceeds the highest odd index, which
will not be the case for G A(Dr

m) when r ≥ 5.
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Table 7 Indices for the bivectors of K5 subgraphs in each D5
m graph for m = 1, 2 and 3

Cycle Odd indices Even indices

n 6(n − 1) + 1 6(n − 1) + 3 6(n − 1) + 5 4(n − 1) + 2 4(n − 1) + 4

1 1 3 5 2 4

2 7 9 11 6 8

3 13 15 17 10 12

Table 8 Indices for the bivectors of Dr
m subgraphs for r = 3, 4, 5

Cycle size Number of odd indexed
generators per cycle

Odd indices for
generators at cycle n for
n = 1, . . . , m

Modular group for odd
indices

4 2 4(n − 1) + 1 ,
4(n − 1) + 3

Z4

5 3 6(n − 1) + 1 , 6(n −
1) + 3,
6(n − 1) + 5

Z6

r r − 2 2(r − 2)(n − 1) + j , for
j = 1, 3, . . . , 2(r − 2) −
1

Z2(r−2)

3.6.2 The Clifford Graph Algebra for D5
m : GA(D5

m) ⊂ G
(0,6m−1)

As in previous representations of windmill and Dutch windmill graphs, we will
organize the patterns in the indices as in Table 6 (Table 7).

Proposition 10 As a sub-algebra of G(0,6m−1), the Clifford graph algebra for D5
m

has the representation

G A(D5
m)

= 〈
e2e4 · · · e4m and e4(n−1)+2e6(n−1)+1 , e6(n−1)+1e6(n−1)+3 ,

e6(n−1)+3e6(n−1)+5 , e4(n−1)+4e6(n−1)+5 for n = 1, 2, . . . , m
〉
.

3.6.3 The Clifford Graph Algebra for Dr
m

The Clifford algebra for the general graph Dutch windmill graph Dr
m will become

apparent when we arrange the Clifford algebras for D4
m and D5

m in Table 8.
The previous examples of G A(D4

m) and G A(D5
m) help to motivate the formula

for the higher of two indices in the bivectors associated with the non-central vertices
in each of the m adjoined Cr cycles. We can derive this formula

2(r − 2)(n − 1) + j, j = 1, 3, . . . , 2(r − 2) − 1, n = 1, . . . , m (5)
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combinatorially as follows. Excluding the central vertex and the final repeated vertex,
which are colored black in Figs. 12 and 13, r − 2 vertices remain. Thus, given any
of the first r − 2 vertices in the first Cr cycle with a bivector having the odd natural
number j as the higher of two index values, to reach the corresponding vertex in
the next cycle we must skip over the next r − 2 vertices. Since each vertex skipped
increases the odd index by 2, this skip to the next corresponding vertex is a size of
2(r − 2). To reach a corresponding vertex at cycle n for n = 2, . . . , m, this skip size
of 2(r − 2) is repeated n − 1 times beyond the first Cr cycle. Therefore, the entire
skip size to reach the corresponding vertex at Cr cycle n is 2(r − 2)(n − 1); and the
highest odd index occurring in the bivector associated with the corresponding vertex
in the n-th Cr cycle is 2(r − 2)(n − 1) + j .

The largest odd index in the first Cr cycle obtains the value 2(r − 2) − 1 by
starting at the first vertex whose bivector has a generator with subscript 1, increasing
1 by 2(r − 2) to reach the odd index in the corresponding bivector in the second Cr

cycle, then subtracting 2 to obtain the highest odd index that repeats in the bivector
for the final vertex in the first Cr cycle. Thus, this highest large odd index is 1 +
2(r − 2) − 2 = 2(r − 2) − 1.

The formula (5) is the reason why the odd indices occurring in the monomials for
G A(Dr

m) are in Z2(r−2).

Theorem 11 The Clifford graph algebra for Dm
r has the representation

G A(Dr
m)

= 〈
e2 · · · e4m and e4(n−1)+2e2(r−2)(n−1)+1,

e2(r−2)(n−1)+ j e2(r−2)(n−1)+ j+2, e4(n−1)+4e2(r−2)(n−1)+2(r−2)−1,

for n = 1, 2, . . . , m and j = 1, 3, . . . , 2(r − 2) − 3
〉
.

(6)

and in general G A(Dr
m) ⊂ G

(0,2m(r−2)−1) if r ≥ 5, otherwise if r = 4, then
G A(Dr

m) ⊂ G
(0,4m).

Proof Let us temporarily reference the graph and the associated algebra in (6) as G
and G A(G) respectively.We first need to show that the highest index in (6) surpasses
the total number of vertices in G. We already established this for the case r = 4 in
Sect. 3.6.1, so assume that r ≥ 5. Note that we only need to compare the highest odd
index in (6) with total number of vertices in G since the highest odd index among
the monomials in (6), namely 2(r − 2)(m − 1) + 2(r − 2) − 1 = 2m(r − 2) − 1,
exceeds 4(m − 1) + 4 = 4m, the highest even index, since

2(r − 2)(m − 1) + 2(r − 2) − 1 = 2(r − 2)
[
(m − 1) + 1

]

= 2(r − 2)m − 1 ≥ 2(5 − 2)m − 1

= 6m − 1 > 4m.

Like the complete graph Kr , each Cr -cycle contains the central vertex and r − 1
additional vertices in each of m cycles, so the total number of vertices in G is
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m(r − 1) + 1. Since r ≥ 5, we have that

r − 3 ≥ 2

m(r − 3) ≥ 2

3m + m(r − 3) ≥ 3m + 2

rm ≥ 3m + 2

2rm − rm ≥ 4m − m + 2

2rm − 4m − 1 ≥ rm − m + 1

2m(r − 2) − 1 ≥ m(r − 1) + 1 . (7)

Therefore this highest index is large enough to accommodate all of the monomials in
(6), and the indices of the generators inG(0,2m(r−2)−1) are large enough forG A(Dr

m) to
be a sub-algebra of it. In particular, this insures that in Proposition 10 the containment
G A(D5

m) ⊂ G
(0,6m−1) is valid. Note that (7) will not hold in the case where r = 4

and m = 1 since then 2m(r − 2) − 1 = 3 but m(r − 1) + 1 = 4, which is why we
require r ≥ 5 for the inclusion G A(Dr

m) ⊂ G
(0,2(r−2)m−1).

Now consider the connectivity in G. For each n = 1, .., m we will denote a set
of r − 1 vertices as Cr,1, Cr,2, . . . , Cr,m , and enumerate each subset of the vertices
v1, . . . , vm(r−1)+1 contained in each Cr,n as follows. Since there are r − 1 vertices in
each such potential Cr cycle excluding the central vertex, naming the central vertex
vr will permit an enumeration from 1 through r − 1 for the remaining vertices in each
potential cycle. In this way, we shall enumerate each such set of r − 1 non-central
vertices as:

Cr,1 : v1, v2, . . . , vr−1

Cr,2 : vr+1, vr+2, . . . , v2r−1

Cr,3 : v2r+1, v2r+2, . . . , v3r−1
...

...
...

...
...

Cr,m : v(m−1)r+1, v(m−1)r+2, . . . , vmr−1

In general, for each n = 1, . . . , m, the non-central vertices in the cycle Cr,n are given
by vr(n−1)+i for i = 1, 2, . . . , r − 1. We shall also refer to the vertex vr(n−1)+1 as the
initial vertex, vr(n−1)+i for i = 2, . . . , r − 2 as the middle vertices, and vr(n−1)+(r−1)

as the final vertex. In particular, note that the subscript of the final vertex in this list
is r(n − 1) + (r − 1) = rn − 1.

Using this enumeration for the vertices v1, . . . , vm(r−1)+1, we can establish a
correspondence between themand themonomials forG A(G). The key to formulating
this correspondence is the relationship j + 2 = 2i − 1 between the counters i and j
for the middle vertices, as the following lists for these counters reveal for each cycle
n = 1, . . . , m :
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vertices : vr(n−1)+i for i = 2, 3, 4, . . . , r − 2

higher : e2(r−1)(n−1)+ j for j + 2 = 3, 5, 7, . . . , 2(r − 2) − 1.
odd index

Thus we arrive at the following correspondence between the vertices in G and the
monomials in G A(G)which holds for each for each n = 1, . . . , m, i = 2, . . . , r − 2
and j = 1, 3, . . . , 2(r − 2) − 3 such that j + 2 = 2i − 1; i.e. j = j (i) = 2i − 3:

central vertex vr ←→ e2 · · · e2m

initial vertex v(n−1)r+1 ←→ e4(n−1)+2e2(r−2)(n−1)+1

middle vertices v(n−1)r+i ←→ e2(r−2)(n−1)+ j e2(r−2)(n−1)+ j+2

final vertex vnr−1 ←→ e4(n−1)+4e2(r−2)(n−1)+2(r−2)−1

Note that for each cycle Cr,n the monomial e2 · · · e4m for vr shares exactly one factor
e4(n−1)+2 with the bivector e4(n−1)+2e2(r−2)(n−1)+1 for the initial vertex v(n−1)r+1, and
it shares precisely one factor e4(n−1)+4 with the bivector e4(n−1)+4e2(r−2)(n−1)+2(r−2)−1

for the final vertex vnr−1. Thus the monomial for vr anti-commutes with the bivector
for v(n−1)r+1 and the bivector for vnr−1, so there is an edge from vr to v(n−1)r+1 and
from vr to vnr−1.

Since the subscripts for the generators in each bivector corresponding to a middle
vertex are all odd, whereas the subscripts of the generators in the monomial corre-
sponding to the central vertex are all even, the monomial e2 · · · e4m commutes with
each such bivector; so there is no edge between vr and any middle vertex v(n−1)r+i

for i = 1, 3, . . . , 2(r − 2) − 3.
In addition to the monomial for vr , the bivector e4(n−1)+2e2(r−2)(n−1)+1

for the initial vertex v(n−1)r+1 can only anti-commute with the bivector
e2(r−2)(n−1)+ j e(n−1)r+ j+2 for a middle vertex v(n−1)r+i when j = 1 and consequently
i = 2; in this case they share the common factor of e2(r−2)(n−1)+1. Thus, the initial
vertex v(n−1)r+1 shares an edge with the central vertex vr and the single middle vertex
v(n−1)r+2.

Likewise the bivector e4(n−1)+4e2(r−2)(n−1)+2(r−2)−1 for the final vertex vnr−1 can
only commute with a bivector e2(r−2)(n−1)+ j e(n−1)r+ j+2 for a middle vertex v(n−1)r+i

when j = 2(r − 2) − 3 and subsequently i = r − 2; and they commute due to the
single common factor e2(r−2)(n−1)+2(r−2)−1. Hence, the final vertex vnr−1 shares an
edge with the central vertex vr and the middle vertex vr−2.

The bivector e2(r−2)(n−1)+ j e2(r−2)(n−1)+ j+2 for the middle vertex v(n−1)r+i

where j = 2i − 3 can only anti-commute with the “adjacent” bivectors
for middle vertices v(n−1)r+(i−1) and v(n−1)r+(i+1). For instance, the bivec-
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tor e2(r−2)(n−1)+ j e2(r−2)(n−1)+( j+2) for v(n−1)r+i shares the common generator
e2(r−2)(n−1)+( j+2) with the bivector e2(r−2)(n−1)+( j+2)e2(r−2)(n−1)+( j+4) for the vertex
v(n−1)r+(i+1).

Finally, note that for 1 ≤ n1 < n2 ≤ m each bivector corresponding to vr(n1−1)+i

for i = 1, 2, . . . , r − 1 must commute with the corresponding bivector for vr(n2−1)+i

because each pair of such bivectors share no common factor. Thus the cyclesCr,n1 and
Cr,n2 share only the vertex vr . Therefore, the graph associated with G A(G) consists
of m Cr -cycles which share exactly one vertex vr , which is the Dutch windmill graph
and so G = Dr

m , and G A(G) = G A(Dr
m) as represented in (6). �

Remark 1 Since Fm is theDutchwindmill graph D3
m , we can also representG A(Fm)

as the special case of G A(Dr
m) where r = 3. Note that each C3 cycle will contain

only an initial vertex, final vertex, and the common central vertex; and therefore we
can represent G A(Fm) as a sub-algebra of G(0,4m) as

G A(Fm) = 〈
e2e4 · · · e4m and e4(n−1)+2e4(n−1)+1,

e4(n−1)+4e4(n−1)+3 for n = 1, 2, . . . , m
〉
.

(8)

4 The Friendship Theorem

In this section we will present a new proof of the Friendship Theorem. As we do so
we will establish, for the benefit of future research, results that explore relationships
between Z

(
G A(G)

)
(the center of the algebra G A(G)), the adjacency matrix for

G, and the parity of the cardinality of a graph with the friendship property. For the
remainder of this work wewill identify any G A(G) abstractly by its generators using
the notation

G A(G) = 〈e′
1, e′

2, . . . , e′
n〉,

rather than by the monomials which can represent these generators.

4.1 Standard Preliminaries for the Friendship Theorem

The following are standard facts about graphs with the friendship property that will
be useful in presenting a new proof of the friendship theorem that uses G A(Fm).
We will discuss the brief proofs of these known results because they will provide a
theoretical context for and give insight into formulating a new proof of the Friendship
Theorem.

Proposition 12 ([1]) If a simple graph G contains a C4-cycle subgraph, then G
cannot have the friendship property.
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Fig. 14 A single C4 cycle

Proof Let theC4 cycle subgraph have vertices v1, v2, v3, and v4, as shown in Fig. 14.
Since, for instance, v1 and v3 are friends with both v2 and v4 then G cannot have the
friendship property. �

Proposition 13 (i) Let G be a simple graph with the property that any two vertices
are friends with at least one vertex. Then each vertex of G has degree of at least
2.

(ii) If a graph G with the friendship property has exactly three vertices, then G
consists of one C3 cycle, and is a friendship graph.

Proof Let vi be any vertex in this graph G, and let v j be a vertex in G distinct from
vi as in Fig. 15. There is a vertex vk distinct from vi and v j with which vi and v j are
friends. Likewise, there is a vertex v� distinct from vi and vk which is friends with
vi and vk . Thus vi has a degree of at least 2, and (i) holds. If G has exactly three
vertices, then v� = v j . No additional edges are possible since G is simple. Thus (ii)
holds. �

Proposition 14 Let G be a simple graph consisting of one central vertex which
shares an edge with an odd number of vertices such that any two vertices are friends
with at least one vertex. Then G contains a C4 cycle.

Proof Let v2m+2 denote the central vertex, and denote the other vertices as
v1, . . . , v2m, v2m+1 where m ∈ N. For the sake of illustration, we will assume that
the vertices of G are arranged as in Fig. 16. By Proposition 13 the degree of each
non-central vertex in G is at least 2, and by assumption each of them share an edge
with v2m+2. The only way a C4 cycle could not occur among vertices v2m+2 and v1
through v2m is if, as Fig. 16 shows, this subgraph consists of C3 cycles wherein each
such cycle contains v2m , v2i−1, and v2i for i = 1, . . . , m. Since v2m+1 must share an
edge with another vertex other than v2m+2, it will connect with a vertex v j for some

Fig. 15 Representation of a graph with a C3 cycle
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Fig. 16 Representation of a
graph with a C3 cycle

j among {1, . . . , 2m}, which will establish a C4 cycle, such as the cycle between
v2m+2, v2m+1, v2m , and v2m−1 as in Fig. 16. �

Proposition 15 Let G be a graph with the friendship property.

(i) If one vertex is adjoined to G, then this augmented graph cannot have the friend-
ship property.

(ii) If two vertices can be adjoined to G by connecting edges so that the augmented
graph has the friendship property; then this extension must be a C3 cycle which
connects to G at one common vertex.

Proof Suppose we can adjoin only one new vertex vp to G such that the friendship
property still holds. By part (i) of Proposition 13, vp shares an edge with each of at
least two vertices vi and v j of G which are already friends with a vertex vk in G,
thereby forming a C4 cycle subgraph in this augmented graph as shown in Fig. 17,
which therefore cannot have the friendship property by Proposition 12. Thus, it is
not possible to preserve the friendship property by adjoining one vertex.

Now adjoin two new vertices vp and vq to G so that the friendship property still
holds, and denote this enlarged graph as G ′. In order for G ′ to have the friendship
property each of vp and vq must share an edge with a vertex v j in G, so insert these
edges. By part (i) of Proposition 13 each of vp and vq must share an edgewith another
vertex. Without loss of generality, suppose that vp shares an edge with a vertex vi in
G that is different from v j . Since vi · v j are distinct vertices in G, they each share an
edge with a vertex vk of G by the friendship property; which establishes a C4 cycle
subgraph in the enlarged graph between vp, vi , vk , and v j , thereby implying that G ′
cannot have the friendship property (see Fig. 18).

Thus,vp andvq must share an edgewith eachother as inFig. 18, and the augmented
graph G ′ has the friendship property. �

Fig. 17 A graph which
cannot have the friendship
property
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Fig. 18 Graphs which
illustrate why vp and vq must
share an edge with each other

Proposition 15 prompts the following definitions thatwill be instrumental in devel-
oping some properties for proving the Friendship Theorem.

Definition 9 (i) A simple graph G is said to have the quasi-friendship property
if any two vertices in G are friends with at least one vertex in G but with the
fewest number of common friends possible for this property to hold.

(ii) A simple graph G is friendship property extendable if G has the friendship
property and the friendship property still holds when any finite number of
disjoint C3 cycles are adjoined to G so that each such C3 cycle connects with
G at one vertex.

(iii) A simple graph G with the quasi-friendship property is said to be quasi-
friendship property extendable if the quasi-friendship property still holds when
any finite number of disjoint C3 cycles are adjoined to G; so that each C3 cycle
connects to G at the one vertex.

Here are some examples and some non-examples of simple graphs with the prop-
erties described in Definition 9.

Example 4 (i) A graphwith the friendship property has the quasi-friendship prop-
erty.

(ii) A C4 cycle with one diagonal is an example of a simple graph which has the
quasi-friendship property but not the friendship property. A C4 cycle with no
diagonal does not have the quasi-friendship property since at least one pair of
vertices has no common friend. Also, a C4 cycle with 2 diagonals (K4) does
not have the quasi-friendship property since it has at least one vertex pair that
has more common friends than a C4 cycle with one diagonal.

(iii) TheC3 cycle is the only graph with 3 vertices that is friendship property extend-
able, and in fact any friendship graph Fm is friendship property extendable by
adjoining any finite number (n) of C3 cycles to the central vertex of Fm to form
the enlarged friendship graph Fm+n .

(iv) AC4 cycle with one diagonal is quasi-friendship property extendable by adding
C3 cycles to either of the two vertices with degree 3. Note that such a C4 cycle
is the only graph with 4 vertices which has this property.

Proposition 16 Every simple graph G with the friendship property is quasi-
friendship property extendable.
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Proof First add any finite number of disjoint C3 cycles to G so that each additional
C3 cycle connects with G at one vertex. Let G ′ denote this augmented graph. If G ′
has the property that any two vertices have at least one common friend, then G is
quasi-friendship extendable in this case. Otherwise, as a simple graph we will extend
G ′ into a complete graph Km by adding edges, which has the property that any two
vertices have at least one common friend. Therefore, Km has a subgraph G ′′ which
contains G ′ having the property that every two vertices have at least one common
friend, such that the number of common friends between each such vertex pair is as
few as possible. In any case, G is quasi-friendship property extendable. �

4.2 Clifford Algebra Preliminaries for the Friendship
Theorem

In [11] T. Khovanova formulates the following result that relates the center of a
Clifford Graph algebra with the vertices of the graph. We will present a proof of this
fact.

Proposition 17 Let Gn contain vertices v1, . . . , vn, and let the n corresponding
generators for G A(Gn) be e′

1, . . . , e′
n. Then the following are equivalent.

(i) e′
i1

e′
i2

· · · e′
ir

∈ Z
(
G A(Gn)

)
.

(ii) For each i = 1, . . . , n, e′
i anti-commutes with an even number of generators in

e′
i1

e′
i2

· · · e′
ir

.
(iii) For each i = 1, . . . , n, vi shares an edge with an even number of vertices in

{vi1 , vi2 , . . . , vir }.
Proof Let e′

i be any generator of G A(Gn). First assume that the monomial
e′

i1
e′

i2
· · · e′

ir
∈ Z

(
G A(Gn)

)
, so that in particular,

(
e′

i

)(
e′

i1e
′
i2 · · · e′

ir

) = (
e′

i1e
′
i2 · · · e′

ir

)(
e′

i

)
. (9)

If e′
i anti-commutes with an odd number k of generators in e′

i1
e′

i2
· · · e′

ir
, then

(
e′

i

)(
e′

i1e
′
i2 · · · e′

ir

) = (−1)k
(
e′

i1e
′
i2 · · · e′

ir

)(
e′

i

)

= −(
e′

i1e
′
i2 · · · e′

ir

)(
e′

i

)
,

(10)

contrary to (9), so e′
i must anti-commute with an even number of generators in

e′
i1

e′
i2

· · · e′
ir
.

Conversely, suppose that e′
i anti-commutes with an even number of k genera-

tors in e′
i1

e′
i2

· · · e′
ir
. Then the equations in (10) again hold. Since e′

i is any gen-
erator of G A(Gn), then any monomial e′

j1
e′

j2
· · · e′

js
in the basis for G A(Gn) =

〈e′
1, e′

2, . . . , e′
n〉 and hence any u ∈ G A(Gn) commutes with e′

i1
e′

i2
· · · e′

ir
, which

means that e′
i1

e′
i2

· · · e′
ir

∈ Z
(
G A(Gn)

)
. Therefore (i) ⇔ (i i).
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To complete this proof, note that e′
i anti-commutes with e′

ik
for k ∈ {1, . . . , r} iff

vi and vik share an edge. Thus, the number of generators among e′
i1
, e′

i2
, . . . , e′

ir
which

e′
i anti-commutes with equals the number of vertices among v′

i1
, v′

i2
, . . . , v′

ir
which

vi shares an edge with. Thus in particular e′
i anti-commutes with an even number

of generators in e′
i1

e′
i2

· · · e′
ir
iff vi shares an edge with each of an even number of

vertices in {vi1 , vi2 , . . . , vir }, and so (i i) ⇔ (i i i). �

Definition 10 ([11]) A monomial e′
i1

e′
i2

· · · e′
ir
in G A(G) = 〈e′

1, . . . , en〉 is central
in G A(G) if it satisfies condition (i) in Proposition 17.

The following proposition in [11] relates the notion of a monomial central to
G A(G) to the adjacency matrix for G. We will give a brief proof of this fact.

Proposition 18 Let
[
ai j

]
n×n

be the adjacency matrix for Gn. If the monomial
e′

i1
e′

i2
· · · e′

ir
is central, then the row vectors in rows i1, . . . , ir and column vectors

in columns i1, . . . , ir in
[
ai j

]
n×n must each sum to a vector whose components are

even entries.

Proof Choose any j ∈ {1, . . . , n} in the adjacency matrix, and consider the j-th
column in corresponding to v j and e′

j . Among each row ik for k = 1, . . . , r in this
column there is a 1 iff there is an edge between v j and vik iff e j and eik anti-commute
(by Proposition 17); otherwise there is a 0. Since e′

i1
e′

i2
· · · e′

ir
is central, e j anti-

commutes with an even number of generators in this monomial, and so there are
an even number of entries among the rows ik for k = 1, . . . , r that equal 1, and the
remaining entries in these rows are 0. Since any column in

[
ai j

]
n×n has this property,

then the row vectors of this matrix in rows i1, . . . , ir must sum to a vector whose
components are even entries. �

We will now use these results of T. Khovanova to develop some properties about
the pseudoscalar in Lemmas 19, 20, and Corollary 21 that are the key to proving The
Friendship Theorem by means of a Clifford graph algebra.

Lemma 19 Let G be a simple graph with 2m + 1 vertices for some m ∈ N which is
friendship property extendable. The following are true.

(i) The pseudoscalar e′
1 · · · e′

2m+1 is central in G A(G) where
G A(G) = 〈e′

1, . . . , e′
2m+1〉.

(ii) Each vertex in G has even degree of at least 2.

Proof We will proceed by induction on m. If m = 1, Proposition 13 implies that
G = F3, and so e′

1e′
2e′

3 is central since any arbitrary generator e′
i among e′

1, e′
2, e′

3
will anti-commute with the other two since the vertex corresponding to e′

i shares
exactly one edge with each of the other two vertices in F3. As discussed in Example
4 this graph is the only friendship property extendable graph with 3 vertices.

Now assume thatG is any arbitrary graphwhich is friendship property extendable.
Denote the vertices ofG as v1, . . . , v2m+1 and letG A(G) = 〈e′

1, . . . , e′
2m+1〉 for some

m ∈ N such that vk corresponds to e′
k . Since G is friendship property extendable, we
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will adjoin two new vertices v2m+2 and v2m+3 to G at a vertex v j of G in a C3 cycle
such that the friendship property still holds, and let G ′ denote this augmented graph.
Note that G ′ is an arbitrary friendship extendable graph with 2(m + 1) + 1 vertices.

Denote the generators in G A(G ′) corresponding to v2m+2 and v2m+3 as e′
2m+2

and e′
2m+3. By the friendship property there is a vertex v j in G with which each of

v2m+2 and v2m+3 share an edge. Assume that e′
1 · · · e′

2m+1 is central in G A(G). Let
e′

i ∈ {e′
1, . . . , e′

2m+1, e′
2m+2, e′

2m+3}. If e′
i ∈ {e′

1, . . . , e′
2m+1}, then

(e′
i )(e

′
1 · · · e′

2m+1) = (e′
1 · · · e′

2m+1)(e
′
i ) (11)

since e′
1 · · · e′

2m+1 is central in G A(G). If e′
i �= e′

j then

(e′
i )(e

′
2m+2e′

2m+3) = (e′
2m+2e′

2m+3)(e
′
i ) (12)

since in this case vi shares no edge with v j , and so in this case (11) and (12) imply

(e′
i )(e

′
1 · · · e′

2m+1e′
2m+2e′

2m+3) = (e′
1 · · · e′

2m+1e′
2m+2e′

2m+3)(e
′
i ). (13)

If e′
i = e′

j , then

(e′
i )(e

′
2m+2e′

2m+3) = (−1)2(e′
2m+2e′

2m+3)(e
′
i ) = (e′

2m+2e′
2m+3)(e

′
i ),

and Eq. (13) holds in this case as well. Finally, if e′
i = e2m+2 or e′

i = e′
2m+3 then

(e′
i )(e

′
2m+2e′

2m+3) = −(e′
2m+2e′

2m+3)(e
′
i ). Also, e′

i e
′
j = −e′

j e
′
i since vi and v j share

and edge. However, since e′
i shares no edge with the remaining generators in G A(G)

(excluding e j ), then e′
i commutes with the product of these remaining generators and

so

(e′
i )(e

′
1 · · · e′

2m+1e′
2m+2e′

2m+3) = (−1)2(e′
1 · · · e′

2m+1e′
2m+2e′

2m+3)(e
′
i )

= (e′
1 · · · e′

2m+1e′
2m+2e′

2m+3)(e
′
i ).

In any case, e′
1 · · · e′

2m+1e′
2m+2e′

2m+3 = e′
1 · · · e′

2m+1e′
2m+2e′

2(m+1)+1 is central in
G A(G ′); so by the principle of mathematical induction, (i) is true.

By Proposition 13 the degree of each vertex in G is at least 2, and part (ii)
of Proposition 17 insures that each such degree must be even; and therefore (ii)
holds. �

Ofcourse,Lemma19 is onlyuseful if a graph that is friendship property extendable
has 2m + 1 vertices. The following lemma and corollary will show that this is the
case.

Lemma 20 Let G be a simple graph with an even number of at least 4 vertices that
is quasi-friendship property extendable. Let G A(G) = 〈e′

1, . . . , e′
2m〉 be the Clifford

algebra for G where e′
k corresponds to vk for k = 1, . . . , 2m. Then the pseudoscalar

e′
1 · · · e′

2m is not central in G A(G).
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Fig. 19 Initial step in the inductive proof that the Clifford algebra a graph prescribed by Lemma
20 cannot have a central pseudo-scalar

Fig. 20 General part of the inductive proof that the Clifford algebra a graph prescribed by Lemma
20 cannot have a central pseudoscalar

Proof We will proceed by induction on m where 2m is the number of vertices in
G such that m ≥ 2. Let m = 2, and let G be the C4 cycle with one diagonal as the
schematic depiction of G A(G) shown in Fig. 19. Recall from Example 4 that this
C4 is the only quasi-friendship extendable graph with 4 vertices. Then

e′
1(e

′
1e′

2e′
3e′

4) = −(e′
1e′

2e′
3e′

4)e
′
1 .

Now letm ∈ N such thatG is anyquasi-friendship extend-able graphwith 2m vertices
and assume that there is some k ∈ N such that

e′
k

(
e′
1 · · · e′

2m

) = −(
e′
1 · · · e′

2m

)
e′

k . (14)

Since G is quasi-friendship extend-able we will adjoin two more vertices v2m+1

and v2m+2 to G such that this augmented graph G ′ has the property that any two
vertices in G ′ are friends with the fewest possible number of other vertices in
G ′. Thus by Definition 9 these additional vertices are only friends with exactly
one vertex vi in G, and in fact v2m+1, v2m+2, and vi form a C3 cycle adjoined to
G at vi . Thus G ′ is an arbitrary quasi-friendship property extend-able graph with
2(m + 1) vertices. Let e′

2m+1 and e′
2m+2 correspond to v2m+1 and v2m+2 (see Fig. 20).

If i �= k then vk shares no edge with v2m+1 or v2m+2 so that e′
ke′

2m+1 = e′
2m+1e′

k
and e′

ke′
2m+2 = e′

2m+2e′
k . If i = k then v2m+1 and v2m+2 are friends with e′

k so that
e′

ke′
2m+1 = −e′

2m+1e′
k and e′

ke′
2m+2 = −e′

2m+2e′
k . In any case,

e′
k

(
e′
2m+1e′

2m+2

) = (
e′
2m+1e′

2m+2

)
e′

k . (15)

By combining (14) and (15) we obtain
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e′
k

(
e′
1 · · · e′

2me′
2m+1e′

2(m+1)

) = −(
e′
1 · · · e′

2me′
2m+1e′

2(m+1)

)
e′

k .

Therefore by the principle of mathematical induction (14) is true for all m ∈ N; and
so the pseudoscalar e′

1 · · · e′
2m is not central in G A(G). �

Corollary 21 A simple graph G with an even number of at least 4 vertices cannot
have the friendship property.

Proof Suppose there is some m0 ∈ N for which some such graph G has the friend-
ship property. By Proposition 16, G is quasi-friendship property extendable. By
Lemma 20 the pseudoscalar e′

1 · · · e′
2m0

is not central in G A(G) where G A(G) =
〈e′

1, . . . , e′
2m0

〉. Thus by part (iii) of Proposition 17 there is some j ∈ {1, . . . , 2m0}
for which v j shares an edge with an odd number of vertices in G. By Proposition
14 G contains a C4 cycle subgraph, and thus cannot have the friendship theorem
by Proposition 12, contrary to the assumption that G has the friendship property.
Therefore every graph G with an even number of at least 4 vertices cannot have the
friendship property. �

4.3 Proof of the Friendship Theorem

Before proving a feature theorem in this work, we will summarizes the important
properties, developed in the previous section, that hold for a graphwith the friendship
property.

Theorem 22 Let G be a graph with the friendship property. Then the following are
true.

(i) G has 2m + 1 vertices for some m ∈ N.
(ii) Each vertex of G has even degree of at least 2.

(iii) Adjoining a C3 cycle to exactly one vertex of G is the only way to preserve the
friendship property by adding 2 vertices (and necessary edges) to G.

(iv) By Proposition 18 all of the row vectors and all of the column vectors in the
adjacency matrix for G must each sum respectively to a row vector and column
vector with only even entries.

Proof Note that (iii) is true byProposition 15. ByCorollary 21 (i) is true since a graph
G with the friendship property must have an odd number of edges, so there is some
m ∈ N such that G has 2m + 1 vertices. Condition (ii) is then true by Lemma 19.

Finally, (iv) holds by Proposition 18 since the pseudoscalar e′
1 · · · e′

2m+1 in
G A(G) = 〈e′

1, . . . , e′
2m+1〉 is central by Lemma 19. �

Theorem 23 (The Friendship Theorem) Let G be a simple graph with the friendship
property. Then G is a friendship graph.
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Fig. 21 A graph satisfying the inductive assumption for the friendship theorem

Proof Recall from Corollary 21 that it is not possible for a graph with an even
number of vertices to have the friendship property, so we will only consider graphs
that have an odd number of vertices.

If G has 3 vertices, Proposition 13 implies G is a friendship graph in this case
where m = 1. We will proceed by induction on m. Assume that for any m ∈ N such
a graph G having 2m + 1 vertices is a friendship graph, which thus has 3m edges.
To simplify the notation, we will select m = 2, since this choice will include all of
the considerations in a proof with more formal statements. G then has the following
graph and adjacency matrix (see Fig. 21). �

As illustrated by the adjacency matrix for G in Fig. 21, the adjacency matrix
A = [ai j ]n×n (n is odd) for a friendship graph has the following featureswhich follow
directly form the definition of a friendship graph. We will keep these conditions in
mind as an aid in detecting an inconsistency in the ensuing proof by contradiction.

Adjacency Matrix of a Friendship Graph.

(i) For each i = 1, . . . , n, aii = 0.

(ii) Given any two row vectors ri1 and ri2 in A, there is exactly one value of
j ∈ {1, . . . , n} for which the j-th column entry of ri1 and ri2 is a 1. That is
ai1 j = ai2 j = 1 for exactly one j ∈ {1, . . . , n}. Given any two column vectors
c j1 and c j2 in A, there is exactly one value of i ∈ {1, . . . , n} for which the
i-th row entry of c j1 and c j2 is a 1. That is ai j1 = ai j2 = 1 for exactly one
i ∈ {1, . . . , n}.

(iii) Each entry in r1 is a 1 except for the first; that is a1 j = 1 for j = 2, . . . , n.

Each entry in c1 is a 1 except for the first; that is ai1 = 1 for i = 2, . . . , n.
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Fig. 22 A contradiction results if vertices v6 and v7 do not share one edge with the vertex v1

(iv) For each i = 2, . . . , n and each j = 2, . . . , n, ri and c j can have only two
entries that equal 1.

Condition (i) holds because a friendship graph is simple, condition (ii) is equiva-
lent to the friendship property, and (iii) and (iv) hold because there is precisely one
central vertex where the C3 cycles which comprise the friendship graph coincide.

For the inductive step in this proof, recall from Proposition 15 that we cannot
preserve the friendship property by adjoining only one vertex to G, but we can
adjoin 2 vertices to a vertex of G with a C3 cycle which, as mentioned in Example
4, makes a friendship graph friendship property extendable if this cycle adjoins to G
at the central vertex. We will now prove that this must be the case.

Suppose that this C3 cycle adjoins at a vertex other than v1, the central vertex of
G. Without loss of generality, we will choose v5 to be the non-central vertex in G
with which the pair of vertices v6 and v7 form a C3 cycle. The adjacency matrix and
graph for this augmentation of G are as shown in Fig. 22.

Note that the column vectors c2 and c5 contradict property (ii) because there is no
value of i for which the i-th row entry for each of these columns is a 1, which means
that v2 and v6 are friends with no vertex in the augmented graph, which thus does not
have the friendship property. If we try to make v2 and v6 friends by adding an edge
between any two vertices in this augmented graph, there will be at least one vertex
with an odd degree, which will form a C4 cycle subgraph that cannot be eliminated
by adding additional edges, as shown in Fig. 23; thereby violating the friendship
property by Proposition 12.

Therefore, the adjoiningC3 cycle cannot connect to G at a non-central vertex such
as v5, so the adjoining C3 cycle must adjoin with G at its central vertex v1 in order
to preserve the friendship property as shown in Fig. 24, which is a friendship graph
obtained by increasing m by 1. Therefore by the principle of mathematical induction
any simple graph with the friendship property is a friendship graph.
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Fig. 23 A contradiction results if vertices v6 and v7 do not share one edge with the vertex v1

Fig. 24 Vertices v6 and v7 must each share an edge with v1

As part (iv) of Theorem 22 asserts, the sum of all the row vectors and column
vectors of this adjacency matrix sums to a vector with only even entries.

5 Concluding Remarks

A generalized Clifford algebra in the case where ω jk = ±1 can serve as a useful
tool for studying graphs. In this work, we demonstrated how to construct such an
algebra for windmill and Dutch windmill graphs by selecting monomials from a
parent Clifford algebra.

As discussed in Sect. 2, constructing a Clifford graph algebra by choosing mono-
mials of minimal grade from a parent Clifford algebra may eventually suggest a way
to generalize this construction process for large classes of graphs. Because decision
trees are useful as a predictive tool inmachine learning, developing a Clifford algebra
for trees may be helpful in this endeavor.
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Finding Exact Values of a Character Sum

Paul Peart and Francois Ramaroson

Abstract Let Fp be a field with p elements, where p is a positive prime. For x in Fp

the quadratic characterχ is defined as follows: If x is a nonzero square, then χ(x) =
1; if x is a non-square, thenχ(x) = −1; χ(0) = 0.Note that x is a square in Fp if and
only if there exists a in Fp such that x = a2. Let f (x) = x2 + bx + c and g(x) =
x2 +˜bx + c̃ be two irreducible polynomials in Fp [x] . (That is, χ(b2 − 4c) =
χ(˜b2 − 4̃c) = −1).Wewill also assume that the resultant of f (x) and g(x) is nonzero
in an algebraic closure of Fp. That is Re s( f, g) = ∏

(α, β): f (α)=0 and g(β)=0
(α − β) �= 0,

where the product is taken over all α and β in the algebraic closure for which
f (α) = 0 and g(β) = 0. It is easy to show that the above no common roots condi-
tion is equivalent toRe s( f (x), g(x)) = (c − c̃)2 + (

b −˜b
) (

bc̃ −˜bc
) �= 0.Wenow

form the character sum Wp given by Wp = ∑

x∈Fp

χ ( f (x)g(x)) . We present a new

method for computing Wp when b2 − 4c �=˜b2 − 4̃c mod p. Our method involves
counting points from Fp × Fp that are on a specified elliptic curve.

Keywords Quadratic character · Elliptic curve

1 Introduction

Let Fp be a field with p elements, where p is a positive prime. For x in Fp the
quadratic characterχ is defined by

χ(x) =
⎧

⎨

⎩

1, if x is a square in Fp and x �= 0
−1, if x is not a square in Fp and x �= 0
0, if x = 0

⎫

⎬

⎭
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Note that x is a square in Fp if and only if there exists a in Fp such that x = a2.
Throughout this paper, we will use F∗

p to denote the set of nonzero elements of Fp.

That is, F∗
p = Fp − {0} .

Let f (x) = x2 + bx + c and g(x) = x2 +˜bx + c̃ be two irreducible polynomials
in Fp [x] . (That is, χ(b2 − 4c) = χ(˜b2 − 4̃c) = −1). We will also assume that the
resultant of f (x) and g(x) is nonzero in an algebraic closure of Fp. That is

Re s( f, g) =
∏

(α, β): f (α)=0 and g(β)=0

(α − β) �= 0

where the product is taken over all α and β in the algebraic closure for which
f (α) = 0 and g(β) = 0. It is easy to show that the above no common roots condition
is equivalent to

Re s( f (x), g(x)) = (c − c̃)2 + (

b −˜b
) (

bc̃ −˜bc
) �= 0

We now form the character sum Wp given by

Wp =
∑

x∈Fp

χ ( f (x)g(x))

It is well known (see for example Perel’muter [4]) that Wp satisfies

∣

∣Wp

∣

∣ < 2
√
p

In this paper, we prove thatWp = Np − p − 1,where Np is the number of points on
a specified elliptic curve. Further, when the parameters in the elliptic curve satisfy
certain conditions,we showhow to obtain the exact numeric value ofWp for infinitely
many primes. Letα be the cardinality of the set {x ∈ Fp : χ( f (x)) = χ(g(x)) = 1 }.
Thismeans thatα is the number of times thatχ( f (x)) andχ(g(x)) are simultaneously
squares in Fp. We will prove that

Wp = 4α − p + 2

In general, a closed form expression for α in terms of p and the coefficients of f (x)
and g(x), has not been determined. However, in this paper, we will show how to
efficiently compute α in many cases.

We define the following sets.
S = {

x ∈ Fp : χ( f (x)) = +1
}

, T = {

x ∈ Fp : χ( f (x)) = −1
}

,
U = {

x ∈ Fp : χ(g(x)) = +1
}

, V = {

x ∈ Fp : χ(g(x)) = −1
}

.

The following facts result from the irreducibility of f and g.

(1)
∑

x∈Fp

χ( f (x)) = ∑

x∈Fp

χ(g(x)) = −1.
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(2) S ∪ T = Fp and S ∩ T = Ø, so |S| + |T | = p.

(3) U ∪ V = Fp and U ∩ V = Ø, and so |U | + |V | = p.

(4) |T | = |S| + 1 and |V | = |U | + 1.

(5) |S| = |U | = p−1
2 and |T | = |V | = p+1

2 .

(6) If α = |S ∩U | , β = |S ∩ V | , γ = |T ∩U | , and δ = |T ∩ V | , then
α = δ − 1, β = γ = p+1−2δ

2 .

(7) Wp = ∑

x∈Fp

χ ( f (x)g(x)) = 4δ − p − 2 = 4α − p + 2, and Wp + p − 2 =

0mod 4.
(8) Let f (x) = x2 + bx + c and g(x) = x2 +˜bx + c̃ with k1 = b2 − 4c and

k2 =˜b2 − 4̃c non-squares in Fp. Also let k3 = 2(˜b − b), and let L p be the

number of points from F∗
p × F∗

p on the uv − curve :
u2v − uv2 + k3uv − k2u + k1v = 0. Then α = 1

4 L p .

(9) Assume that k1 �= k2 and let Np be the number of points from Fp × Fp on

the xy − curve : y2 = x3 + (8k2 + k23 − 4k1)x2 + 8k2(2k2 − 2k1 + k23)x +
16k22k

2
3 .

Then this xy − curve is an elliptic curve over Fp and Np = L p + 3 .

(10) Wp = Np − 3 − p + 2 = Np − p − 1.

(11) p−2−2
√
p

4 < α <
p−2+2

√
p

4 and
∣

∣Wp

∣

∣ < 2
√
p

(12) If k3 = 0 and k1 = 2k2, the elliptic curve in (9) becomes y2 = x3 − 16k22x .

Let a = −16k22(mod p), so that the elliptic curve becomes

y2 = h(x) = x3 + ax with a nonzero. Note that the condition k1 = 2k2
requires that χ(2) = 1. According to Theorem 6.2.1, p. 190 in [1],

Np = p +
p−1
∑

x=0
χ(h(x)). Further, if p ≡ 1(mod 4), we can take p = m2 + n2,

wherem and n are integerswithm ≡ −χ(2)(mod 4) and n ≡ mg(p−1)/4(mod p),

where g is a generator of F∗
p . Now we define l(a) by a ≡ gl(a)(mod p) with

0 ≤ l(a) ≤ p − 1. Then

p−1
∑

x=0
χ(h(x)) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2m(−1)(p−1)/4, if l(a) ≡ 0(mod 4)
2n(−1)(p−1)/4, if l(a) ≡ 1(mod 4)
2m(−1)(p+3)/4, if l(a) ≡ 2(mod 4)
2n(−1)(p+3)/4, if l(a) ≡ 3(mod 4)

⎫

⎪

⎪

⎬

⎪

⎪

⎭
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2 Proofs

Proof (1): Fix θ in F∗
p = {x ∈ Fp : x �= 0} with θ non-square. Since b2 − 4c is a

non-square in Fp, then b2 − 4c = θt2 for some t in Fp.
∑

x∈Fp

χ(x2 + bx + c) =
∑

x∈Fp

χ
(

(

x + b
2

)2 − b2−4c
4

)

=
∑

y∈Fp

χ
(

y2 − θt2
)

=
∑

y∈Fp

χ
(

t2
)

χ
(

y2

t2 − θ
)

=
∑

z∈Fp

χ
(

z2 − θ
)

, independent of t.

Consider the double sum:

∑

w∈Fp

∑

z∈Fp

χ
(

z2 − θw2
) =

∑

z∈Fp

χ
(

z2
)+

∑

w∈F∗
p

∑

z∈Fp

χ
(

z2 − θw2
)

= p − 1 +
∑

w∈F∗
p

χ
(−θw2

)+
∑

w∈F∗
p

∑

z∈F∗
p

χ
(

z2 − θw2
)

= p − 1 + (p − 1)χ (−θ) +
∑

w∈F∗
p

∑

z∈F∗
p

χ
(

z2 − θw2
)

= p − 1 + (p − 1)χ (−θ) + (p − 1)
∑

z∈F∗
p

χ
(

z2 − θ
)

= (p − 1)

⎛

⎝1 + χ(−θ) +
∑

z∈F∗
p

χ
(

z2 − θ
)

⎞

⎠

= (p − 1)

⎛

⎝1 + χ(−θ) +
∑

z∈Fp

χ
(

z2 − θ
)− χ(−θ)

⎞

⎠

= (p − 1)

⎛

⎝1 +
∑

z∈Fp

χ
(

z2 − θ
)

⎞

⎠ .

Here is another evaluation of the same double sum.
∑

w∈Fp

∑

z∈Fp

χ
(

z2 − θw2
) =

∑

w∈Fp

∑

z∈Fp

(

χ ◦ NFp2 /Fp

) (

z + w
√

θ
)

=
∑

w∈Fp

∑

z∈Fp

ψ
(

z + w
√

θ
)

where NFp2 /Fp : Fp2 → Fp is the norm map, and ψ = χ ◦ NFp2 /Fp is a non-trivial

character of Fp2 . But the last sum is equal to
∑

y∈Fp2

ψ(y) = 0. Comparing the two

values of the same double sum, we get (p − 1)

⎛

⎝1 +
∑

z∈Fp

χ
(

z2 − θ
)

⎞

⎠ = 0. That is
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∑

z∈Fp

χ
(

z2 − θ
) = −1.

Proof (2) and Proof (3): Since f and g have no roots in Fp, for every x ∈ Fp,

χ( f (x)) = −1 or +1.

Proof (4): This follows immediately from (1).

Proof (5): (5) follows from (2), (3), and (4).

Proof (6): From (2), (3), and (5), α + β = |S| = p−1
2 , γ + δ = |T | = p−1

2 , α +
γ = |U | = p−1

2 , β + δ = |V | = p+1
2 . In matrix form, we get the system of equa-

tions
⎡

⎢

⎢

⎣

1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

α
β
γ
δ

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

(p − 1)/2
(p + 1)/2
(p − 1)/2
(p + 1)/2

⎤

⎥

⎥

⎦

.

After applying elementary row operations, the system becomes

⎡

⎢

⎢

⎣

1 1 0 0
0 1 0 1
0 0 1 1
0 0 0 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

α
β
γ
δ

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

(p − 1)/2
(p + 1)/2
(p + 1)/2
0

⎤

⎥

⎥

⎦

Solving for α,β, and γ in terms of δ, we get α = δ − 1, β = γ = (p + 1 − 2δ)/2.
Based on the fact that α,β, γ,and δ are nonnegative integers, we see that δ is a pos-
itive integer in the set {1, 2, ..., (p + 1)/2}.

Proof (7):With reference to (6),Wp = α + δ − γ − β = α + (α + 1) − 2 p+1−2δ
2 =

2α + 1 − p − 1 + 2δ = 2α − p + 2(α + 1)= 4α − p + 2 = 4(δ − 1) − p + 2 =
4δ − p − 2. α is a nonnegative integer, so Wp + p − 2 is divisible by 4.

Proof (8): Let f (x) = x2 + bx + c = γ2 and g(x) = x2 +˜bx + c̃ = φ2, that is,
χ( f (x)) = χ(g(x)) = 1. Then (x + b

2 )
2 − γ2 = b2

4 − c ⇔ (2x + b)2 − 4γ2 =
b2 − 4c = k1, and (2x +˜b)2 − 4φ2 =˜b2 − 4̃c = k2. So, (2x + b − 2γ)(2x + b +
2γ) = k1 and (2x +˜b − 2φ)(2x +˜b + 2φ) = k2. Let α1 = 2x + b − 2γ, α2 = 2x
+ b + 2γ,β1 = 2x +˜b − 2φ,β2 = 2x +˜b + 2φ.The system of equations becomes

α1α2 = k1, β1β2 = k2,
α1 + α2

2
− b = β1 + β2

2
−˜b = 2x,

α1 �= 0,α2 �= 0, β1 �= 0, β2 �= 0.

Substituting for α2 = k1
α1

and β2 = k2
α2

in the last equation, we get
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1

2
(α1 + k1

α1
) − b = 1

2
(β1 + k2

β1
) −˜b ⇔

α2
1β1 − α1β

2
1 + 2(˜b − b)α1β1 − k2α1 + k1β1 = 0.

With u = α1 and v = β1, we get

u2v − uv2 + k3uv − k2u + k1v = 0, (u, v) ∈ F∗
p × F∗

p (∗)

This uv-equation when solved over F∗
p × F∗

p has the same number of solutions
as the system x2 + bx + c = γ2, x2 +˜bx + c̃ = φ2 solved for (x, γ,φ) over Fp ×
F∗
p × F∗

p .Also since (−γ)2 = (p − γ)2 and (−φ)2 = (p − φ)2,Whenever (x, γ,φ)

is a solution to the system, so are (x, γ,−φ) , (x,−γ,φ) , (x,−γ,−φ). So, corre-
sponding to every x in Fp for which χ( f (x)) = χ(g(x)) = 1, there are exactly four
solutions of the system. So,

α = ∣

∣{x ∈ Kp : χp(x) = χp(x) = 1}∣∣

= 1

4

∣

∣{(u, v) ∈ F∗
p × F∗

p : u2v − uv2 + k3uv − k2u + k1v = 0}∣∣

Proof (9): We will transform the equation

u2v − uv2 + k3uv − k2u + k1v = 0, (u, v) ∈ Fp × Fp (∗∗)

into Weierstrass form y2 = x3 + A2x2 + A1x + A0 using Nagell’s algorithm as
described in Connell [2, p. 116].We note that (∗∗) has exactly one additional solution
namely (0, 0),over (∗). We begin by comparing (∗∗) to

s1u
3 + s2u

2v + s3uv2 + s4v
3 + s5u

2 + s6uv + s7v
2 + s8u + s9v = 0

We get

s1 = s4 = s5 = s7 = 0, s2 = 1, s3 = −1, s6 = k3, s8 = −k2 �= 0, s9 = k1 �= 0

Step 1: Since s9 �= 0.
Step 2:We letu = U

W , v = V
W , andmultiply throughbyW 3.Weget the homogeneous

equation H3 + H2W + H1W 2 = 0, where H3(U, V ) = U 2V −UV 2, H2(U, V )

= k3UV, H1(U, V ) = −k2U + k1V . The point P with (u, v)-coordinates (0, 0)
has projective coordinates (U, V,W ) = (0, 0, 1). The tangent line at P given by
H1 = 0 ⇐⇒ −k2U + k1V = 0,meets the curve in the point Q = (−e2s9, e2s8, e3),
where ei = Hi (s9,−s8), i = 2, 3. e2 = H2(k1, k2) = k1k2k3 and e3 = H3(k1, k2) =
k21k2 − k1k22 = k1k2(k1 − k2). We note that e2, and e3 are not both zero, since this
would require that the two quadratics f and g are the same. We will consider the
case in which e3 �= 0 (that is k1 �= k2). This is the case in which the discriminants
of the the two quadratic functions are unequal non-squares in F∗

p . Also in this case,
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Q is not at infinity. With the following change of coordinates, Q goes to the origin
(˜U , ˜V , ˜W ) = (0, 0, 1), and the tangent at P is −k2˜U + k1˜V = 0 :
U = ˜U − s9e2

e3
˜W = ˜U − B ˜W , V = ˜V + s8e2

e3
˜W = ˜V − A˜W , W = ˜W where

A = k2k3
k1−k2

, and B = k1k3
k1−k2

.

Returning to affine coordinates, let u′ = ˜U
˜W

, and v′ = ˜V
˜W

.

Step 3: The equation in terms of u′ and v′ becomes f ′
3 + f ′

2 + f ′
1 = 0 where

f ′
3(u

′, v′)=(u′)2v′ − u′(v′)2, f ′
2(u

′, v′)= − A(u′)2 + B(v′)2 − k3u′v′, f ′
1(u

′, v′)=
(AB − k2)u′ + (k1 − AB)v′.Setting v′=tu′, the equation f ′

3 + f ′
2 + f ′

1=0 becomes
(u′)2 f ′

3(1, t) + u′ f ′
2(1, t) + f ′

1(1, t) = 0. Now let φi (t) = f ′
i (1, t). Then

φ1(t) = (AB − k2) + (k1 − AB)t, φ2(t) = −A + Bt2 − k3t, φ3(t) = t − t2

Therefore, the equation becomesφ3(u′)2 + φ2u′ + φ1 = 0, and thus u′ = −φ2±
√

δ
2φ3

,

v′ = tu′, where δ = φ2
2 − 4φ1φ3. We note that the values of t for which δ = 0, are

the slopes of the tangent lines to the curve that pass through Q. One such slope is
t0 = k2

k1
. So, t − t0 is a factor of δ, and if we let t = t0 + 1

τ
, then ρ = τ 4δ is a cubic

polynomial in τ . In fact

δ(t) = k23
(1 − t0)2

(t2 − (1 − t0)t − t0)
2

−4

[

k23 t0
(1 − t0)2

− k1t0 +
(

k2
t0

− k23 t0
(1 − t0)

2

)

t

]

(

t − t2
)

and

ρ = τ 4δ

(

t0 + 1

τ

)

= 4t0 (k2 − k1) τ 3 + (

k23 + 8k2 − 4k1
)

τ 2

+4k21 − 4k1k2 − 2k23k1
k1 − k2

τ +
(

k1k3
k1 − k2

)2

Comparing to ρ = cτ 3 + dτ 2 + eτ + k in Connell [2, p. 117], we have c =
4t0 (k2 − k1) , d=k23 + 8k2 − 4k1, e = 4k21−4k1k2−2k23k1

k1−k2
, k =

(

k1k3
k1−k2

)2
. We note

that c �= 0,which is required for (∗∗) to represent an elliptic curve. Finally, we make
the substitutions τ = x

c ,and ρ = y2

c2 to get the Weierstrass equation

y2 = x3 + dx2 + cex + c2k

= x3 + (

k23 + 8k2 − 4k1
)

x2 + 8k2
(

k23 + 2k2 − 2k1
)

x + 16k22k
2
3 (∗ ∗ ∗)

We note that the right side of (∗ ∗ ∗) can be factored, and we get

y2 = (x + 4k2)
(

x2 + (

k23 + 4k2 − 4k1
)

x + 4k2k
2
3

)
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We will now show that the elliptic curve (∗ ∗ ∗) has exactly two more points over
Fp × Fp than (∗∗) . We note that on (∗∗), u = 0 ⇔ v = 0, so that (0, 0) is the only
point with u = 0 or v = 0. Note also that the point (u, v) = (−B,−A) is on (∗∗).

It is easily verified that v − t0u = 0 ⇔ (u, v) = (0, 0) or (u, v) = (−B,−A) .So,
starting with a point (u, v) on (∗∗) with u �= −B and u �= 0, set u/ = u + B and
v/ = v + A and t = v/

u/ = v+A
u+B and compute x from the equation

t0 + c

x
= t ⇔ x = c

t − t0
.

This gives

x = (u + B) c

v + A − t0u − t0B
= (u + B) c

v − t0u

We note that x is well defined since t = t0 if and only if u = 0. Also x �= 0.
Next, compute δ = φ2

2 − 4φ1φ3. Then y2 = x4δ
c2 ⇔ y = ± x2

c

√
δ. If δ = 0, then

(u, v) on (∗∗) corresponds to (x, 0) on (∗ ∗ ∗) . If δ �= 0,then (u, v) corresponds

to
(

x, x2

c

√
δ
)

or
(

x,− x2

c

√
δ
)

. To make the correspondence one-to-one, note that

if t �= 0 and t �= 1,then u/ = −φ2±
√

δ
2φ3

, and v/ = tu/ . This means that the pair of

points
(

−φ2+
√

δ
2φ3

− B, t −φ2+
√

δ
2φ3

− A
)

and
(

−φ2−
√

δ
2φ3

− B, t −φ2−
√

δ
2φ3

− A
)

are on (∗∗)

and corresponds to the pair
(

x, x2

c

√
δ
)

and
(

x, − x2

c

√
δ
)

on (∗ ∗ ∗) . For the one-

to-one correspondence, we take
(−φ2+

√
δ

2φ3
− B, t −φ2+

√
δ

2φ3
− A

)

←→
(

x, x2

c

√
δ
)

and
(−φ2−

√
δ

2φ3
− B, t −φ2−

√
δ

2φ3
− A

)

←→
(

x, − x2

c

√
δ
)

. If t = 0, then x = 4 (k1 − k2)

and the equation φ3(u′)2 + φ2u′ + φ1 = 0 for u/ becomes −Au/ + AB − k2 = 0.
If A �= 0,then u/ = B − k2

A . This gives one solution on(∗∗) , namely (u, v) =
(− k2

A , −A
)

, and two solutions (x, y) = (4(k1 − k2), ±4k1k3) on (∗ ∗ ∗). Note that
A = 0 ⇔ k3 = 0 ⇔ B = 0. If t = 0 and A = 0, then there is no solution on (∗∗) and
one solution (4(k1 − k2), 0) on (∗ ∗ ∗). We note that when k3 = 0, (∗ ∗ ∗) becomes
y2 = x(x + 4k2)(x − 4k1 + 4k2). Now t = 1 ⇔ x = c

1−t0
⇔ x = −4k2 ⇒ y = 0.

So, t = 1 gives one solution (−4k2, 0) on (∗ ∗ ∗)When t = 1, there is no solution on
(∗∗) , since φ3(1) = θ2(1) = 0 and θ1(1) = k1 − k2 �= 0 We now consider the case
when t = t0. It is easily verified that t = t0 ⇔ u/ = B ⇔ u = 0.So, t = t0 gives one
solution (u, v) = (0, 0) on (∗∗) and none on (∗ ∗ ∗). Finally, when u = −B �= 0,
we have u/ = 0 ⇒ θ1 = 0 ⇒ t = k2−AB

k1−AB . Let t1 = k2−AB
k1−AB . Then, since k2 �= k1 , and

k1 and k2 are non-squares, t1 �= 0, 1, and t1 = t0 ⇔ A = B = 0. On (∗∗) , when
u = −B �= 0, the resulting quadratic equation in v gives the distinct roots v = −A
and v = − k1

B . So, for t = t1, we get two solutions (−B,−A) and
(−B,− k1

B

)

on
(∗∗) .

Let� be the set of all solutions on (∗∗) .We express� as the union of two disjoint
sets �1 and �2 , where
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�1 =
{

(u, v) ∈ � : u �= 0, (u, v) �=
(

−B,
−k1
B

)

, t �= 0, t �= 1

}

,

�2 =
{

(u, v) ∈ � : u = 0, (u, v) = (−B, −k1
B

)

, t = 0
(that is (u, v) = (− k2

A ,−A
)

), t = 1

}

Also, let � be the set of all solutions on (∗ ∗ ∗) , and express � as the union of the
disjoint sets �1 and �2, where

�1 = {(x, y) ∈ � : x �= 0, t �= 0, t �= 1}
�2 = {(x, y) ∈ � : x = 0, t = 0, t = 1}

We will show that card(�1) = card(�1) by describing a bijection � between �1

and �1, and that card(�) = card(�) + 2. The bijection � between �1 and �1 is
given by

�(u, v) =
(

x,
x2

c

√
δ

)

, if u = −φ2 + √
δ

2φ3
− B, where t = v + A

u + B
, u �= −B,

t = t1 when u = −B, and x = c

t − t0

�(u, v) =
(

x, − x2
√

δ

c

)

, if u = −φ2 − √
δ

2φ3
− B

�−1(x, y) =
(

−φ2 + √
δ

2φ3
− B, t

(

−φ2 + √
δ

2φ3

)

− A

)

, if y = x2
√

δ

c
.

�−1(x, y) =
(

−φ2 − √
δ

2φ3
− B, t

(

−φ2 − √
δ

2φ3

)

− A

)

, if y = − x2
√

δ

c
.

√
δ is the smallest integer l in Fp for which δ = l2. Note that, when (u, v) =

(−B,−A),we take t = t1 = (k2 − AB)/(k1 − AB), and then φ1 = 0 and exactly

one of −φ2 + √
δ or −φ2 − √

δ is 0. So, �(−B,−A) =
(

c
t1−t0

, c
√

δ
(t1−t0)2

)

if −φ2 +
√

δ = 0 and �(−B,−A) =
(

c
t1−t0

, −c
√

δ
(t1−t0)2

)

if −φ2 − √
δ = 0

Case(1): k3 = 0.
In this case, A = B = 0, t1 = t0=k2/k1, and�2 = {(0, 0)} , and�2 = {(0, 0), (4(k1
−k2), 0), (−4k2, 0)} .

Case(2): k3 �= 0
In this case, A �= 0 and B �= 0, t1 �= t0,

�2 =
{

(0, 0) ,

(

−B,−k1
B

)

,

(

−k2
A

,−A

)}

,
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and

�2 = {(0, 4k2k3) , (0,−4k2k3) , (4(k1 − k2), 4k1k3) , (4(k1 − k2),−4k1k3) , (−4k2, 0)}

Proof (10): We have from (7) thatWp = 4α − p + 2. From (8), L p = 4α. From (9),
Np = L p + 3. So, Wp = L p − p + 2 = Np − 3 − p + 2 = Np − p − 1.

Proof (11): Let L p, Mp, and Np be the number of points on (∗), (∗∗), (∗ ∗ ∗)

respectively. We have proved that L p = 4α, Mp = L p + 1, and that Np = L p +
3 = Mp + 2. Now, according to Hasse’s Theorem, (see Silverman [5, p. 138])

∣

∣Np − p − 1
∣

∣ < 2
√
p ⇔ ∣

∣Wp

∣

∣ < 2
√
p

Since, Np = 4α + 3, we get

|4α + 3 − p − 1| < 2
√
p ⇔ p − 2 − 2

√
p

4
< α <

p − 2 + 2
√
p

4

Proof (12): This follows immediately from Theorem 6.2.1, p. 190 in [1]. A proof
that p = m2 + n2 when p ≡ 1(mod 4) can be found in [3, p. 95]

3 Counting Points on (∗ ∗ ∗)

First, using the transformation

x = X − A2

3
, y = Y where A2 = k23 + 8k2 − 4k1

we convert (∗ ∗ ∗) to the Weierstrass form

Y 2 = X3 + a1X + a0

Let E be the set of points from Fp × Fp on this curve. Obviously, |E | = Np =
the number of points on (∗ ∗ ∗). It is well known that the points in E together
with the point at infinity O form an additive Abelian group in which O is the
identity, and the inverse of P = (X,Y ) is −P = (X,−Y ). Addition is defined
as follows: Let P = (X1,Y1) and Q = (X2,Y2) be two distinct points in E with
Q �= −P, then P + Q = (X1,Y1) + (X2,Y2) = (X3,Y3), where X3 = λ2 − X1 −
X2, Y3 = λ(X1 − X3) − Y1, λ = Y2−Y1

X2−X1
. If P = Q, the operation is called point

doubling and we write 2P = (X3,Y3) with X3 = λ2 − 2X1, Y3 = λ(X1 − X3) −
Y1, λ = 3X2

1+a1
2Y1

.Of course, 2(X, 0) = O. If d ∈ Kp, the point denoted by dP is the
point obtained by performing d − 1 point additions of P. There is an efficient algo-
rithm for computing dP. This algorithm is called the Double-and-Add Algorithm
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(see Silverman, p. 364). Now, let E ′ = E ∪ {O}. According to Hasse’s Theorem (see
Silverman [5, p. 138])

∣

∣

∣

∣E ′∣
∣− 1 − p − 1

∣

∣ < 2
√
p

So,
∣

∣E ′∣
∣ is in the Hasse interval

(

p + 2 − 2
√
p, p + 2 + 2

√
p
)

. Also, from (8) and
(9) above,

∣

∣E ′∣
∣ = 0mod 4. So, in our search for

∣

∣E ′∣
∣, we only need to consider those

integers in the Hasse interval that are divisible by 4. Let m be such an integer and
suppose that for a point P in E, m is the only integer for which mP = O. Then
according to Hasse’s theorem

∣

∣E ′∣
∣ = m, and then, we get Np = m − 1. There are

several efficient algorithms for findingm. The basic algorithm is the so-called Baby-
Step-Giant-Step (BSGS) algorithm (Silverman [6, p. 382]). Several improvements to
BSGS have been reported in the literature. In [5], Schoof describes three algorithms
for counting the points on an elliptic curve over a finite field.

4 Examples

We used Mathematica 10 as an aid in working out the following examples.

Example 1 This example concerns (8) above. Let p = 7, f (x) = x2 + 5x + 3,
and g(x) = x2 + 6x + 3. Then k1 = 6, k2 = 3, k3 = 2. We solve the system x2 +
5x + 3 = γ2, x2 + 6x + 3 = φ2 for (x, γ,φ) over F7 × F∗

7 × F∗
7 . The correspond-

ing uv- equation is u2v − uv2 + 2uv − 3u + 6v = 0,whichwe solve over F∗
7 × F∗

7 .

The following table shows the one-to-one correspondence between the solutions of
the system and the solutions of the uv-equation.

(u, v) | (x, γ,φ)

− − − − − − −−
(3, 5) | (4, 5, 1)

(3, 2) | (4, 5, 6)

(2, 2) | (4, 2, 6)

(2, 5) | (4, 2, 1)

(5, 1) | (5, 5, 4)

(5, 3) | (5, 5, 3)

(4, 3) | (5, 2, 3)

(4, 1) | (5, 2, 4)

So, α = 1
4 × 8 = 2, and W7( f, g) = 4α − p + 2 = 3.
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Example 2 This example is about (9). As in Example 1, we take p = 7, f (x) =
x2 + 5x + 3, and g(x) = x2 + 6x + 3. Then k1 = 6, k2 = 3, k3 = 2(˜b − b) = 2,
Re s( f (x), g(x)) = (c − c̃)2 + (

b −˜b
) (

bc̃ −˜bc
) = 3mod 7 �= 0 t0 = k2/k1=4, t1

= (k2 − AB)/(k1 − AB) = 6, c = 4t0(k2 − k1) = 1, A=k2k3/(k1 − k2)=2, B=k1
k3/(k1 − k2) = 4, φ1(t) = AB − k2 + (k1 − AB)t = 5t − 2, φ2(t)=Bt2 − k3t −
A = 4t2 − 2t − 2, φ3(t) = t − t2, δ(t)=φ2

2 − 4φ1φ3 = 2t4 − 3t3 + 2t2 + 2t + 4.
(∗∗), the uv-equation is

u2v − uv2 + k3uv − k2u + k1v = 0 ⇔
u2v − uv2 + 2uv − 3u + 6v = 0 (∗∗)

(∗ ∗ ∗), the xy-equation is

y2 = x3 + (

k23 + 8k2 − 4k1
)

x2 + 8k2
(

k23 + 2k2 − 2k1
)

x + 16k22k
2
3 ⇔

y2 = x3 + 4x2 + x + 2 (∗ ∗ ∗)

The 9 solutions of (∗∗) and the 11 solutions of (∗ ∗ ∗) are contained in the following
table.

x y u v t δ φ1 φ2 φ3

√
δ

0 4 ND
0 3 ND
1 1 5 1 5 1 2 4 1 1
1 6 4 3 5 1 2 4 1 1
2 0 1 0 3 0 0 0
4 1 3 5 6 2 0 4 5 3
4 6 5 3 6 2 0 4 5 3
5 1 0 4 5 5 0 2
5 6 0 4 5 5 0 2
6 2 4 1 3 4 6 0 1 2
6 5 2 2 3 4 6 0 1 2

0 0 t0 = 4 0 4 5 2 0
3 2 6 2 0 4 5 3
2 5 0 4 5 5 0 2

�1 =
{

(u, v) ∈ � : u �= 0, (u, v) �=
(

−B,
−k1
B

)

, t �= 0, t �= 1

}

= {(4, 3), (5, 1), (3, 5), (5, 3), (4, 1), (2, 2)}
,
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�2 =
{

(u, v) ∈ � : u = 0, (u, v) =
(

−B,
−k1
B

)

, t = 0 (that is (u, v) =
(

− k2
A

,−A

)

), t = 1

}

= {(0, 0), (3, 2), (2, 5)} ,

�1 = {(x, y) ∈ � : x �= 0, t �= 0, t �= 1} = {(1, 1), (1, 6), (4, 1), (4, 6), (6, 2), (6, 5)}
�2 = {(0, 4k2k3) , (0, −4k2k3) , (4(k1 − k2), 4k1k3) , (4(k1 − k2), −4k1k3) , (−4k2, 0)}

= {(x, y) ∈ � : x = 0, t = 0, t = 1} = {(0, 3), (0, 4), (5, 1), (5, 6), (2, 0)}

Example 3 This example is about (9) with k3 = 0. Here, we take p = 13, f (x) =
x2 + x + 12, and g(x) = x2 + x + 4. Then k1 = 5, k2 = 11, k3 = 2(˜b − b) = 0,
Re s( f (x), g(x))= (c − c̃)2 + (

b −˜b
) (

bc̃ −˜bc
)=64mod 13 �= 0, t0=k2/k1=10,

t1 = (k2 − AB)/(k1 − AB)=10, c = 4t0(k2 − k1) = 6, A = k2k3/(k1 − k2) = 0,
B = k1k3/(k1 − k2) = 0, φ1(t) = AB − k2 + (k1 − AB)t = 5t + 2, φ2(t) = Bt2

− k3t − A = 0, φ3(t) = t − t2, δ(t) = φ2
2 − 4φ1φ3=9(5t + 2)

(

t − t2
)

. (∗∗), the
uv-equation is

u2v − uv2 + k3uv − k2u + k1v = 0 ⇔
u2v − uv2 + 2u + 5v = 0 (∗∗)

(∗ ∗ ∗), the xy-equation is

y2 = x3 + (

k23 + 8k2 − 4k1
)

x2 + 8k2
(

k23 + 2k2 − 2k1
)

x + 16k22k
2
3 ⇔

y2 = x3 + 3x2 + 3x = x (x + 5) (x − 2) (∗ ∗ ∗)

The 9 solutions of (∗∗) and the 11 solutions of (∗ ∗ ∗) are contained in the following
table.

x y u v t δ φ1 φ2 φ3

√
δ

0 0 ND
2 0 0 0 2 0 0 0
6 2 9 8 11 3 5 0 7 9
6 11 4 5 11 3 5 0 7 9
7 2 4 10 9 3 8 0 6 9
7 11 9 3 9 3 8 0 6 9
8 0 1 0 7 0 0 0
10 2 2 3 8 9 3 0 9 3
10 11 11 10 8 9 3 0 9 3
12 8 11 5 4 3 9 0 1 9
12 5 2 8 4 3 9 0 1 9

0 0 t0 = 10 0 0 0 1 0



96 P. Peart and F. Ramaroson

�1 = {(u, v) ∈ � : u �= 0, t �= 0, t �= 1}
= {(9, 8), (4, 5), (4, 10), (9, 3), (2, 3), (11, 10), (11, 5), (2, 8)}

�2 = {(u, v) ∈ � : u = 0, t = 0, t = 1} = {(0, 0)} ,

�1 = {(x, y) ∈ � : x �= 0, t �= 0, t �= 1}
= {(6, 2), (6, 11), (7, 2), (7, 11), (10, 2), (10, 11), (12, 8), (12, 5)}

�2 = {(x, y) ∈ � : x = 0, t = 0, t = 1} = {(0, 0) , (4(k1 − k2), 0) , (−4k2, 0)}
= = {(0, 0), (2, 0), (8, 0)}

Example 4 The smallest positive prime for which the conditions in (12) are satisfied
is p = 17 = (±4)2 + (±1)2. We can take f (x) = x2 + 5x + c, and g(x) = x2 +
5x + c̃. 6 and 3 are two non-squares in F17. So, taking k1 = 6 and k2 = 3, we
get, 52 − 4c = 6 , 52 − 4̃c = 3, c = 9, c̃ = 14. So, with k3 = 0, the elliptic curve
becomes y2 = x3 − 16k22x ⇔ y2 = x3 + 9x . Now, 3 is a generator for F∗

17. l(9) is
given by 9 = 3l(9) mod 17. So, l(9) = 2. Now, χ(2) = 1, since 2 is a square in F17.

p = m2 + n2 with m ≡ −χ(2)mod 4 and n ≡ m3(p−1)/4 mod 17, we get m = −1
and n = 4, Np = p + 2m(−1)(p+3)/4 = 17 + 2 = 19, Wp = Np − p − 1 = 1.

Example 5 Take p = 1217 = (±31)2 + (±16)2. Then χ(2) = 1, 3 is a generator
for F∗

p , m = 31, n ≡ m3(p−1)/4 mod 1217 = 1201, so, n = −16. We take k1 = 6
and k2 = 3. We get f (x) = x2 + 607 and g(x) = x2 + 912. The elliptic curve
is y2 = x3 + 1073x . l(1073) is given by 1073 = 3l(1073) mod 1217. This gives
l(1073) = 258 ≡ 2mod 4. So, Np = p + 2m(−1)(p+3)/4 = p − 62 = 1155, and
Wp = Np − p − 1 = 1155 − 1217 − 1 = −63.

Example 6 Let p = 1299721 = (±1140)2 + (±11)2. Then 7 is a generator of
F∗
p , m ≡ −χ(2)mod 4 = −1mod 4. So, m=11, and n ≡ m7(p−1)/4 mod p=1140.

We take f (x) = x2 + c, g(x) = x2 + c̃, k1 = 14, k2 = 7. So, c = 649857, c̃ =
974789.Theelliptic curve is y2 = x3 − 16k22x ⇔ y2 = x3 + 1298937x . 1298937 =
7l(1298937) mod p gives l(1298937)=873558 ≡ 2mod 4.So, Np=p + 2m(−1)(p+3)/4

= p − 22 = 1299699, Wp = Np − p − 1 = −23.

5 Conclusion

We mention here that there are papers (see for example [7]) that are concerned with
evaluating the character sum Wp. In [7], Williams gives a different elliptic curve
with Np rational points. However, his approach does not reveal the fact that Np − 3
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is divisible by 4. This fact can be used to significantly increase the efficiency of
computing Np. Also, we are hopeful that we may find a closed form expression for
α and therefore a closed form expression for Wp.
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On Minimum Index Stanton 4-Cycle
Designs

R. C. Bunge, A. Hakes, J. Jeffries, E. Mastalio, and J. Torf

Abstract Let G be a multigraph with the underlying structure of a 4-cycle where
each edgemultiplicity in the set {1, 2, 3, 4} is represented. There are three suchmulti-
graphs, and we call each of these a Stanton 4-cycle. For each such multigraph G and
integer n ≥ 4, we consider the minimum λ such that there exists a G-decomposition
of λKn .

Keywords Graph design theory · Graph decomposition · Stanton graph

1 Introduction

Throughout this paper, we use the term graph to refer to both simple graphs and
multigraphs, but always without loops. For a graph G, we use V (G) and E(G) to
denote the vertex set and edge set (or multiset) of G, respectively; the order and size
of G are |V (G)| and |E(G)|, respectively. For a positive integer λ and a set A, we
use λA to refer to the multiset containing λ copies of each element of A. For a simple
graph G, by λG we mean the graph with vertex set V (G) and edge multiset λE(G).
In particular, λKn is the λ-fold complete graph on n vertices. For positive integers x ,
r , and s, we use xG to denote the graph with x edge-disjoint copies of G, and we
use Kr×s to denote the complete multipartite graph with r parts of size s.

For graphs G and H with G a subgraph of H , a G-decomposition of H (or
(H,G)-design) is a set (or multiset) Δ of graphs isomorphic to G such that the edge
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sets (or multisets) of the graphs in Δ partition E(H). The elements of Δ are called
G-blocks. If there exists a G-decomposition of H , we say G divides H , or we may
simply write G | H . In particular, a (λKn,G)-design is called a G-design of order n
and index λ. For results of G-designs of index 1, see [2, 3].

More recently, G-designs of higher indices have been studied for multigraphs.
For example, in [10] Carter determined the spectra for G-designs of any index λ for
all connected cubic multigraphs G of order at most 6. The G-designs of any order n
and index λ have been investigated for various multigraphs of small order. Some
examples include multigraphs with 5 edges (see [7, 13, 16]), 6 edges (see [1, 9]),
7 edges (see [4]), and 8 edges (see [5]).

2 Stanton 4-Cycles

The concept of a Stanton graph was first introduced by Chan and Sarvate in [11] as a
multigraph Sk with the complete graph Kk as its underlying simple graph, but where
each edge of Kk is replaced by parallel edges such that each edge multiplicity from
1 to

(k
2

)
is represented. In [6], the authors of this paper generalized this concept of

a Stanton graph. Given a simple graph G with edge set {e1, e2, . . . , eq}, a Stanton
graph SG is formed by replacing edge ei , for each 1 ≤ i ≤ q, with i parallel edges.
For example, the graph S3 can be considered as SK3. However, for larger k, Sk is
not unique, nor is SG for most G of size larger than 3. For example, there are three
non-isomorphic Stanton 4-cycles, as seen in Fig. 1. The latter two of these graphs,
G2 and G3, are the focus of this paper.

Formally, we defineG2[a, b, c, d] to be the multigraph with vertex set {a, b, c, d}
and edge multiset

{{a, b}, {a, d}, {a, d}, {a, d}, {c, d}, {c, d}, {b, c}, {b, c}, {b, c},
{b, c}}, and we define G3[a, b, c, d] to be the multigraph with vertex set {a, b, c, d}
and edge multiset

{{a, b}, {a, d}, {a, d}, {c, d}, {c, d}, {c, d}, {c, d}, {b, c}, {b, c},
{b, c}}.

In [11], Chan and Sarvate found S3-designs for all order n and minimum index λ.
In [12], El-Zanati et al. extended this result to find S3-designs for all index λ. In [6],

a c

db

a c

db

a c

db

G1[a, b, c, d] G2[a, b, c, d] G3[a, b, c, d]

Fig. 1 The three non-isomorphic Stanton 4-cycles
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the authors of this paper found G1-designs for minimum index λ, where G1 is the
first Stanton 4-cycle shown in Fig. 1. In [14, 15], Hein and Sarvate study G-designs
for minimum index λ for several graphs G of order 4 and size 3.

In this paper, we find G2-designs and G3-designs of minimum index λ. That is,
we are interested in the following problems:

Problem 1 For each integer n ≥ 4, find the minimum λ such that there exists a
G2-design of order n and index λ.

Problem 2 For each integer n ≥ 4, find the minimum λ such that there exists a
G3-design of order n and index λ.

Some necessary conditions for a G-decomposition of λKn are that n must be at
least the order of G, λ must be at least the largest edge multiplicity in G, and |E(G)|
must divide |E(λKn)| = λn(n − 1)/2. Since both G2 and G3 are of order 4 and
size 10 and both have a maximum edge multiplicity of 4, we arrive at the following
necessary conditions for G2- and G3-designs.

Lemma 1 Let n ≥ 4 and G ∈ {G1,G2}. The minimum λ for the existence of a G-
decomposition of λKn is at least

• λ = 4 if n ≡ 0 or 1 (mod 5),
• λ = 5 if n ≡ 0 or 1 (mod 4) but n �≡ 0 or 1 (mod 5),
• λ = 10 otherwise.

The task that remains is to provide sufficient conditions for G-designs for these
indices, or argue the non-existence of such a design.

3 Small Decompositions

This section shows some decompositions of graphs that are used to construct larger
λKn in Sect. 5.

Example 1 Let V (4K5,5) = Z5 × Z2 with the obvious bipartition and let Δ ={
G2

[
(2 + i, 0), (4 + i, 1), (i, 0), (i, 1)

] : i ∈ Z5
} ∪ {

G2
[
(3 + i, 0), (1 + i, 1), (i,

0), (i, 1)
] : i ∈ Z5

}
. Then Δ is a G2-decomposition of 4K5,5.

Example 2 Let V (6K5) = Z5 and let Δ = {
G2[1, 4, 3, 2], G2[4, 2, 3, 0], G2[0, 1,

3, 4], G2[2, 0, 3, 1], G2[4, 2, 0, 1], G2[0, 2, 4, 1]
}
. Then Δ is a G2-decomposition

of 6K5.

Example 3 Let V (5K2,2) = Z4 with bipartition
{{0, 1}, {2, 3}} and let Δ = {

G2[0,
2, 1, 3], G2[1, 2, 0, 3]

}
. Then Δ is a G2-decomposition of 5K2,2.

Example 4 Let V = V (5K2,3) = Z5 with bipartition
{{0, 1, 2}, {3, 4}} and let

Δ = {
G2[1, 4, 0, 3], G2[0, 4, 2, 3], G2[2, 4, 1, 3]

}
. Then Δ is a G2-decomposition

of 5K2,3.
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Example 5 Let V = V (5K2,2) = Z4 with bipartition
{{0, 1}, {2, 3}} and let Δ ={

G3[0, 2, 1, 3], G3[1, 3, 0, 2]
}
. Then Δ is a G3-decomposition of 5K2,2.

Example 6 Let V (10K2,3) = Z5 with bipartition
{{0, 1}, {2, 3, 4}} and let Δ ={

G3[0, 2, 1, 4],G3[0, 2, 1, 3],G3[1, 3, 0, 4],G3[1, 3, 0, 2],G3[0, 4, 1, 3],G3[1, 4,
0, 2]}. Then Δ is a G3-decomposition of 10K2,3.

4 Decompositions via Graph Labellings

Let V (λKn) = Zn and let G be a subgraph of λKn . By clicking G, we mean applying
the permutation i �→ i + 1 to V (G). Moreover in this case, if j ∈ N, then G + j is
the graph obtained from G by successively clicking G a total of j times. Also note
that G + j is isomorphic to G for every j ∈ N.

The length of an edge {i, j} in λKn is defined to be min{|i − j |, n − |i − j |}. Note
that if n is odd, then λKn consists of λn edges of length i for i ∈ {1, 2, . . . , n−1

2 }. If
n is even, then λKn consists of λn edges of length i for i ∈ {1, 2, . . . , n

2 − 1}, and
λ n

2 edges of length n
2 .

Alternatively, we may let V (λKn) = Zn−1 ∪ {∞}. Clicking a subgraph G of λKn

in this case continues to mean applying the permutation i �→ i + 1 to V (G), with
the convention that∞ + 1 = ∞. If i, j ∈ Zn−1, then the length of the edge {i, j} are
defined as if {i, j}were an edge in λKn−1. The length of an edge {i,∞} is defined to be
∞. In this case, ifn is even, there areλn edges of length i for i ∈ {1, 2, . . . , n

2 − 1,∞}
in λKn , and if n is odd, there are λn edges of length i for i ∈ {1, 2, . . . , n−1

2 − 1,∞}
and λ n

2 edges of length n−1
2 . As before, G + j is defined as before, and clicking an

edge does not change its length.
A G-decomposition Δ of λKn is said to be cyclic if clicking preserves the G-

blocks in Δ. If V (λKn) = Zn−1 ∪ {∞}, then a cyclic (λKn,G)-design is also called
a 1-rotational (λKn,G)-design. The preservation of edge lengths in these types of
designs lends itself to the idea of graph labellings.

Let n, k, and λ be positive integers such that n = λk or such that λ is even and n =
λk + λ

2 . LetG be amultigraph of size n, order atmost 2n
λ

+ 1, and edgemultiplicity at
mostλ. Aλ-fold ρ-labeling ofG is a one-to-one function f : V (G) → {0, 1, . . . , 2n

λ
}

such that the multiset
{
min

{| f (u) − f (v)|, 2n
λ

+ 1 − | f (u) − f (v)|} : {u, v} ∈ E(G)
}

=
{

λ[1, k] if n = λk,
λ[1, k] ∪ λ

2{k + 1} if n = λk + λ
2 .

Thus a λ-fold ρ-labeling of such a G induces an embedding of G in λK 2n
λ +1 so

that G has either (1) λ edges of length i for each i ∈ [1, k] when n = λk or (2) λ
edges of length i for each i ∈ [1, k] and λ

2 edges of length k + 1 when n = λk + λ
2 .
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If f is a λ-fold ρ-labeling of a bipartite multigraph G with vertex bipartition
{A, B} and if for each {a, b} ∈ E(G) with a ∈ A and b ∈ B we have f (a) < f (b),
then f is called an ordered λ-fold ρ-labeling, or λ-fold ρ+-labeling.

Now, let G of size n be a subgraph of λK 2n
λ
. Let w be a vertex in V (G) of degree

λ and let y and z be the neighbors of w (y and z need not be distinct). A 1-rotational
λ-fold labeling of G is a one-to-one function f : V (G) → Z 2n

λ −1 ∪ {∞} such that f
restricted to G − w is a λ-fold ρ-labeling, f (w) = ∞, f (y) = 0, and f (z) ∈ {0, 1}.
If in addition G is bipartite and f restricted to G − w is a λ-fold ρ+-labeling, then
f is ordered.
The next four theorems are proved in [8].

Theorem 1 Let G be a subgraph of λK 2n
λ +1 such that |E(G)| = n. There exists a

cyclic (λK 2n
λ +1,G)-design if and only if G admits a λ-fold ρ-labeling.

Theorem 2 Let G be a bipartite subgraph of λK 2n
λ +1 such that |E(G)| = n. If G

admits a 2-fold ρ+-labeling, then there exists a cyclic (λK 2n
λ x+1,G)-design for each

positive integer x.

Theorem 3 Let G be a subgraph of λK 2n
λ
such that |E(G)| = n. There exists a 1-

rotational G-decomposition of λK 2n
λ
if and only if G admits a 1-rotational λ-fold

labeling.

Theorem 4 Let G be a bipartite subgraph of λK 2n
λ
such that |E(G)| = n. If G

admits an ordered 1-rotational λ-fold labeling, then there exists a 1-rotational G-
decomposition of λK 2n

λ x for every positive integer x.

The idea behind Theorems 1 and 3 can be explained easily: a ρ-labeling embedsG
into λK 2n

λ +1 such that there are λ edges of each length in λK 2n
λ +1. Since edge lengths

are preserved, clicking produces 2n
λ
copies of G that provide a decomposition. The

argument for 1-rotational labellings is similar.
We can also see how Theorems 2 and 4 work. Suppose we have a λ-fold ρ+-

labeling of G with bipartition {A, B}. By taking x copies of G and “stretching”
the labels of the vertices in B by 2n

λ
in each copy, we obtain a λ-fold ρ-labeling

of xG. Then we get a cyclic (xG)-decomposition of λK 2n
λ x+1, where each copy of

0 2

34

=⇒

0 2

34

0 2

89

0 2

1314

Fig. 2 A 4-fold ρ+-labeling of G3 and three G3-blocks that can be used as starters for a cyclic
G3-decomposition of 4K16
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the x copies of G in xG are preserved by clicking. An example of this process is
demonstrated in Fig. 2. A similar argument can be used for the ordered 1-rotational
result. For a more formal explanation of this process, see [8] or [6].

5 Main Result

In this section, we aim to answer Problems 1 and 2. We do so by providing suf-
ficient conditions for the existence of a G2 or G3-decomposition by construction.
The constructions in this section rely heavily on four previous theorems. Another
construction used throughout is to decompose λKn into multiple copies of smaller
complete graphs connected by complete bipartite graphs. By decomposing these
smaller graphs, we get a decomposition of the larger graph.

Theorem 5 There exists a G2-decomposition of 4K5x for every positive integer x.

Proof Note that G2[∞, 1, 0, 2] is a 1-rotational 4-fold labeling of G2. Then by
Theorem 3, G2 | 4K5. Consider 4K5x as x4K5 ∪ 4Kx×5. By Example 1, G2 | 4K5,5.
Then since 4K5,5 | 4Kx×5, we have G2 | 4K5x .

Theorem 6 There exists a G2-decomposition of 4K5x+1 for every positive integer
x.

Proof Note that G2[1, 5, 0, 3] is a 4-fold ρ+-labeling of G2. Then by Theorem 2,
G2 | 4K5x+1.

Theorem 7 There exists a G2-decomposition of 5K4x for every positive integer x.

Proof Note thatG2[0,∞, 1, 2] is an ordered 1-rotational 5-fold labeling ofG2. Then
by Theorem 4, G2 | 5K4x .

Note that G2 �
5K5. This can be checked exhaustively.

Theorem 8 There exists a G2-decomposition of 5K8x+1 for every positive integer
x.

Proof LetG ′ = 2G2. Note thatG2[1, 4, 0, 2] ∪ G2[0, 4, 1, 2] is a 5-foldρ+-labeling
of G ′. Then by Theorem 2, G ′ | 5K8x+1. But G2 | G ′, so G2 | 5K8x+1.

Theorem 9 There exists a G2-decomposition of 5K8x+5 for every positive integer
x.

Proof Let G ′ = 3G2. Note that G2[1, 2, 0, 5] ∪ G2[1, 3, 0, 6] ∪ G2[0, 3, 2, 6] is a
5-fold ρ-labeling of G ′. Then by Theorem 1, G ′ | 5K13. But G2 | G ′, so G2 | 5K13.

Consider 5K8x+5 as 5K8(x−1) ∪ 5K13 ∪ 5K8(x−1),13. By Theorem 7, G2 | 5K4x , and
soG2 | 5K8(x−1). By Examples 3 and 4,G2 | 5K2,2 andG2 | 5K2,3. Then since 5K4x,13

can be decomposed into copies of 5K2,2 and 5K2,3, G2 | 5K8x+5.
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Theorem 10 There exists a G2-decomposition of 10K2x for every integer x ≥ 2.

Proof Note that 5K4x | 10K4x . Then since G2 | 5K4x by Theorem 7, we need only
consider the 10K4x+2 case.

Let G ′ = 3G2. Note that G2[1,∞, 0, 2] ∪ G2[0, 2, 1,∞] ∪ G2[1, 3, 0, 2] is a 1-
rotational 10-fold labeling of G ′. Then by Theorem 3, G ′ | 10K6. But G2 | G ′, so
G2 | 10K6.

Consider 10K4x+2 as 10K4(x−1) ∪ 10K6 ∪ 10K4(x−1),6. By Example 4, G2 | 5K2,3.
Then since 5K2,3 | 10K2,3 | 10K4(x−1),6, G2 | 10K4x+2.

Theorem 11 There exists a G2-decomposition of 10K2x+1 for every integer x ≥ 2.

Proof Note that 5K4x+1 | 10K4x+1. Then since G2 | 5K4x+1 with one exception by
Theorems 8 and 9, we need only consider the 10K4x+3 case. The exception is that
G2 �

5K5. In this case, by Theorem 5, G2 | 4K5 and by Example 2, G2 | 6K5, and so
indeed G2 | 10K5.

Let G ′ = 3G2. Note that G2[0, 4, 1, 2] ∪ G2[0, 2, 1, 3] ∪ G2[3, 2, 0, 4] is a 10-
fold ρ-labeling of G ′. Then by Theorem 1, G ′ | 10K7.But G2 | G ′, so G2 | 10K7.

Consider 10K4x+3 as 10K4(x−1) ∪ 10K7 ∪ 10K4(x−1),7. By Theorem 10, G2 | 10K4x .
By Examples 3 and 4, G2 | 5K2,2 and G2 | 5K2,3. Then since 10K4(x−1),7 can be
decomposed into copies of 5K2,2 and 5K2,3, G2 | 10K4(x−1),7. Thus G2 | 10K4x+3.

Theorem 12 There exists a G3-decomposition of 4K5x for every positive integer x.

Proof Note thatG3[0,∞, 1, 2] is an ordered 1-rotational 4-fold labeling ofG3. Then
by Theorem 4, G3 | 4K5x .

Theorem 13 There exists a G3-decomposition of 4K5x+1 for every positive integer
x.

Proof Note that G3[0, 4, 2, 3] is a 4-fold ρ+-labeling of G3. Then by Theorem 2,
G3 | 4K5x+1.

Theorem 14 There does not exists a G3-decomposition of 5K4x for any positive
integer x.

Proof Assume there exists a G3-decomposition of 5K4x . Let Δ be such a set of
G3-blocks.

Consider u, v ∈ V (5K4x ) and the 5 parallel edges incident with both u and v, each
of which must appear in some G3-block of Δ. If four copies of edge {u, v} appear in
one G3-block, then the remaining copy must appear in a G3-block as an edge with
multiplicity 1. Thus every edge of multiplicity 4 in a G3-block of Δ must pair with
an edge of multiplicity 1 in separate G3-block. It similarly follows for the remaining
edges of 5K4x that every edge of multiplicity 3 in a G3-block must pair with an edge
of multiplicity 2 in another G3-block.

Now take a vertex v in 5K4x . Letm be the number of G3-blocks that contain v. By
the structure of G3, in each G3-block v is incident with an edge with multiplicity 1
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or multiplicity 4 and an edge with multiplicity 2 or multiplicity 3. This means there
are m edges with multiplicity 1 or multiplicity 4 and m edges with multiplicity 2 or
multiplicity 3.

Furthermore, since in the edges with multiplicity 1 must pair with edges with
multiplicity 4 and edges with multiplicity 2 must pair with edges with multiplicity 3,
there must be 2m sets of 5 parallel edges in 5K4x incident with v. However, v is
adjacent to 4x − 1 other vertices, a contradiction in parity. Thus, there cannot exist
a G3-decomposition of 5K4x .

Theorem 15 There exists a G3-decomposition of 5K4x+1 for every positive integer
x.

Proof Note that G3[0, 4, 1, 2] is a 4-fold ρ+-labeling of G3. Then by Theorem 2,
G3 | 5K4x+1.

Theorem 16 There exists a G3-decomposition of 10K2x for every integer x ≥ 2.

Proof Let G ′ = 2G3. Then G3[0, 2, 1,∞] ∪ G3[0,∞, 1, 2] is an ordered 1-rota-
tional 10-fold labeling of G ′. Then by Theorem 4, G ′ | 10K4x . But G3 | G ′, so G3 |
10K4x . With this, we need only consider the 10K4x+2 case.

Let G ′′ = 3G3. Then G3[3,∞, 0, 1] ∪ G3[0, 1, 3,∞] ∪ G3[0, 2, 1, 4] is a 1-
rotational 10-fold labeling of G ′. Then by Theorem 3, G ′′ | 10K6. But G3 | G ′′, so
G3 | 10K6.

Consider 10K4x+2 as 10K4(x−1) ∪ 10K6 ∪ 10K4(x−1),6. By Example 5, G3 | 5K2,2.
But 5K2,2 | 10K4(x−1),6, so G3 | 10K4(x−1),6. Thus G3 | 10K4x+2.

Theorem 17 There exists a G3-decomposition of 10K2x+1 for every integer x ≥ 2.

Proof Note that 5K4x+1 | 10K4x+1. Then since G3 | 5K4x+1 by Theorem 15, we need
only consider the 10K4x+3 case.

Let G ′ = 3G3. Note that G3[1, 3, 0, 2] ∪ G3[1, 4, 0, 6] ∪ G3[0, 4, 2, 3] is a 10-
fold ρ-labeling of G ′. Then by Theorem 1, G3 | 10K7.But G3 | G ′, so G3 | 10K7.

Consider 10K4x+3 as 10K4(x−1) ∪ 10K7 ∪ 10K4(x−1),7. By Theorem 16, G3 |
10K4(x−1). By Examples 5 and 6, G3 | 5K2,2 and G3 | 10K2,3. Then since 10K4(x−1),7

can be decomposed into copies of 5K2,2 and 10K2,3, G3 | 10K4(x−1),7. Thus G3 |
10K4x+3.

We can combine these results to answer the main problems of this paper,
Problems 1 and 2.

Theorem 18 Given an integer n ≥ 4, the minimum λ for which there is a G2-
decomposition of λKn are as follows:

• λ = 4 for n ≡ 0, 1, 5, 6, 10, 11, 15, 16 (mod 20),
• λ = 5 for n ≡ 4, 8, 9, 12, 13, 17 (mod 20),
• λ = 10 for n ≡ 2, 3, 7, 14, 18, 19 (mod 20),

with the exception that the minimum λ for n = 5 is λ = 6.
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Proof The necessity of these conditions are established in Lemma 1. All of these
conditions are shown to be sufficient in the above theorems, with the exception for
n = 5, where there is no G2-decomposition of 5K5. Instead, Example 2 provides
sufficient conditions when n = 5.

Theorem 19 Given an integer n ≥ 4, the minimum λ for which there is a G3-
decomposition of λKn are as follows:

• λ = 4 for n ≡ 0, 1, 5, 6, 10, 11, 15, 16 (mod 20),
• λ = 5 for n ≡ 9, 13, 17 (mod 20),
• λ = 10 for n ≡ 2, 3, 4, 7, 8, 12, 14, 18, 19 (mod 20).

Proof The necessity of these conditions are established in Lemma 1. All of these
conditions are shown to be sufficient in the above theorems, with the exception for
n ≡ 4, 8, 12 (mod 20), where there is no G3-decomposition of 5K4x for any x as
shown in Theorem 14. Then for n ≡ 4, 8, 12 (mod 20), the next value of λ such that
|E(G)| divides λ n(n−1)

2 is λ = 10. The sufficiency for a G3-decomposition of 10Kn

for these value of n is shown in Theorem 16.
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k-Plane Matroids and Whiteley’s
Flattening Conjectures

Brigitte Servatius

Abstract In this short note we consider the k-plane matroid, which is a matroid on
the edge set, I , of a bipartite graph, H = (A, B; I ), defined by a counting condition.
We show that 2k-connectivity of H implies that I is a spanning set for the k-plane
matroid on the edge set of the complete bipartite graph on (A, B). For k = 2 we
explain the connections to rigidity in the plane.

1 k-Plane Matroids

Given a bipartite graph H = (A, B; I ), also called an incidence structure, we define
the generic k-plane matroid Mk(H) on I by setting subsets I ′ ⊆ I independent in
Mk(H) if

|I ′′| ≤ |A(I ′′)| + k|B(I ′′)| − k

holds for all subsets I ′′ ⊆ I ′, where A(I ′′) and B(I ′′) are the supports of I ′′ in A and
B respectively. An independent set I is k-tight if |I ′| = |A(I ′)| + k|B(I ′)| − k.

Given an incidence structure H = (A, B, I ), we define its associated butterfly
graph as follows. The vertex set consists of the spine vertex set A together with the
set of wing vertices B × {1, . . . , k}. For each (a, b) ∈ I there are k edges (a, (b, i))
in the butterfly graph.

Examples of butterfly graphs of 2-tight graphs, with vertices in A colored black,
vertices in B colored white, are given in Figs. 1 and 2, where, after doubling one
edge, a 2-tree decomposition of the butterfly graph is indicated by the edge colors to
illustrate Theorem1.
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Fig. 1 |A| = 2, |B| = 3, k = 2; a butterfly graph and its wings

SUITAVRESETTIGIRB

Fig. 2 |A| = 3, |B| = 2, k = 2, 2-tight

Theorem 1 I is k-tight in the k-plane matroid on (A, B; I ) if and only if adding
any k − 1 incidences yields an incidence structure whose associated butterfly graph
decomposes into k spanning trees.

Proof After adding k − 1 incidences, we have k(|A| + k|B| − 1) edges in the but-
terfly graph. Consider any subset A′ ⋃ B ′ of its vertex set. By summing over the
wings and using the fact that I is independent, we get, writing B ′ = ⋃

Bi that the
number of edges induced on A′ ⋃ B ′ is at most

∑
(a′ + kbi − 1) ≤ k(a′ + kb′ − 1).

�

Components of k-planematroids.A component of the k-planematroid is amaximal
subincidence structure (A′, B ′; I ′) for which there is an independent subset I ′′ ⊆ I ′
with

|I ′′| = |A′| + k|B ′| − k.

Theorem 2 Two distinct components intersect in at most k − 1 a-vertices.

Proof Independent sets for which equality holds are in one to one correspondence
with subsets of the butterfly graph for which adding any (k − 1) edges yields the
union of k spanning trees. If two trees intersect in more than one vertex, the union is
not a tree. �
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Consider the k-plane matroid as a matroid on the edges of the complete bipartite
graph, Mk(K|A|,|B|) = Mk,(|A|,|B|). We may characterize the bases as follows:

Theorem 3 A subset I ≤ E(K|A|,|B|) is a basis ofMk,(|A|,|B|) if and only if doubling
any edge of I yields the union of k spanning trees in the k-fold butterfly graph on I
with A as the body, and B as the wings.

Proof The k-fold butterfly graph has k|I | edges and vertex set of size |A| + k|B|.
Since |I | = |A| + k|B| − k for a basis, doubling an edge gives and edge set of size

|I | = |A| = k|B| − (k − 1) so in the k-fold butterfly graphwe get k(|A| + k|B| − 1)
edges, just enough for k spanning trees. Since the inequalities have to be met for all
subsets, we know by Nash-Williams’s [1] theorem that we have the edge disjoint
union of k-spanning trees. �

2 The 2-Plane Matroid and the Connectivity of the
Incidence Graph

Whiteley conjectured in “Matroids from Discrete Geometry” [2] that a set of inci-
dences will be 2-tight if the bipartite incidence graph is 4-connected.

We first show that there are 3-connected incidence graphs whose incidences are
not 2-tight.

Consider 2n copies of K3,4 where the black vertices of each copy i are {ai , bi , ci },
i = 1, 2, . . . , 2n. Identify vertex ai+1 with ci , and vertex bi with bi+n indices modulo
2n.

...... ......

The resulting graph is 3-connected since the removal of any vertex leaves a 2-
connected graph. It has 3n black vertices and 8n white vertices. It is tight if the rank
is 3n + 16n − 2 = 19n − 2, but each K3,4 has rank equal to 3 + 2 · 4 − 2 = 9, so
the rank of the whole graph can be at most 18n, and 18n < 19n − 2 for all n > 2.

For n = 3 we have
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In [3] Lovász and Yemini showed that 6-connectivity of a graph G implies that G
is generically rigid in the plane. We adapt their proof to bipartite graphs in the proof
of the following theorem.

Theorem 4 Let G = (A, B; I ) be an incidence graph. If G is vertex 4-connected
then I is 2-tight.

Proof Assume that there is a 4-connected graph which is not 2-tight. Among all
counterexamples, choose one with |A| minimal and among those one with |I | max-
imal. Since I has rank less than a + 2b − 2, we may decompose G into 2-tight
components G = G1 ∪ G2 ∪ · · · ∪ Gd , d ≥ 2, where Gi = Kai ,bi . A pair of compo-
nents can intersect in at most one a vertex. 2-tight components never intersect in a b
vertex. Moreover, each a vertex is contained in at least two of the Gi ’s:

Assume for contradiction that there is a vertex a ∈ G1 and a /∈ G2,G3, . . .Gd .
Then G − a is only 3-connected, since G is vertex minimal, and so there exist
vertices v1, v2 and v3 such thatG − a − v1 − v2 − v3 is disconnected,with connected
components H1 and H2. Since G is 4-connected, G − v1 − v2 − v3 is connected,
hence a has an edge to both components H1 and H2. Let b1 and b2 be vertex of H1

and H2 respectively, with (a, b1) and (a, b2) edges. Since b1 and b2 have degree at
least 4, they are in turn connected to a set S of at least 4 vertices. If S = {a, v1, v2, v3},
thenG is K4,m , which contradicts the assumption thatG is not 2-tight. If b1 and b2 are
incident to a vertex x not in S then, since a is only inG1, andG1 is complete bipartite,
there are edges from vertex x to b1 and b2, contradicting the fact that {v1, v2, v3} is
a separating set of G − a.

We have

rank(G) =
d∑

i=1

(ai + 2bi − 2) =
d∑

i=1

(ai − 2) + 2b

and now we want to show that

d∑

i=1

(ai − 2) ≥ a.

Since G is 4-connected, each component contains at least 4 a-vertices and every
a-vertex is in at least two components, we have
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∑

|A(Gi )|�a

(

1 − 2

|A(Gi )|
)

≥ 1,

which gives
i=d∑

i=1

|A(Gi )|
[

1 − 2

|A(Gi )|
]

=
i=d∑

i=1

(ai − 2) ≥ a.

We conclude that the rank of G,

rank(G) =
d∑

i=1

(ai + 2bi − 2) ≥ a + 2b

which is impossible. �

Note that the proof may easily be adapted to show that if G = (A, B; I ) is vertex
2k-connected then I is k-tight.

3 Connection to 2-d Rigidity

A bar-and-joint framework realizes an incidence structure H = (A, B; I ) if there is
a joint for each vertex in B and each vertex a ∈ A is replaced by a tree of collinear
bars on the joints incident with a. Whiteley proved in [4] that an incidence graph
G(A, B; I ) has a realization as an isostatic (minimally infinitesimally) rigid bar-
and-joint framework in the plane if and only if |I | = a + 2b − 3 and for any proper
subset I ′ ⊆ I , |I ′| ≤ a′ + 2b′ − 3. Note that if every b vertex of G has degree 2, this
is Laman’s theorem.

In Fig. 3, we give an incidence structure and two realizations. For the realization
on four vertices, the black vertices of the bipartite graph represent the set B, while
the white vertices represent lines. Note that by cutting off the rays and considering
the line segments between vertices as bars, we find that the graph is overbraced, in
fact a circuit in the 2 dimensional generic rigidity matroid, while the 12 incidences
are 2-tight, because |A| = 6 and |B| = 4 yields 6 + 2 · 4 − 2 = 12.

In the second representation, the black vertices are realized as the four lines
intersecting in six vertices.We nowhave |A| = 4 and |B| = 6, so 4 + 2 · 6 − 2 = 14,
so the 12 incidences are not enough for 2-tightness, in fact the second realization is
not rigid as a bar and joint framework (Fig. 4).

An older result of Whiteley, [4], showed that:

Theorem 5 Agenerically independent body and pin framework in the plane remains
independent for realizations generic under the condition that all pins of each body
are collinear.

Jackson and Jordán [5] have confirmed that the analog in the plane also holds:
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Fig. 3 Two realizations of a bipartite graph

Fig. 4 Butterfly graphs for (A, B;I) and (B, A;I)

Theorem 6 (Jackson and Jordan) A generically rigid body pin framework, with
two bodies at each pin, remains first-order rigid for realizations generic under the
condition that all pins of each body are collinear.

Katoh and Tanigawa [6] proved that a graph can be realized as an infinitesimally
rigid body-hinge framework in Rd if and only if it can be realized as an infinitesimal
panel-hinge framework in R

d . For d = 2 this is equivalent to the Jackson-Jordán
result.

Whiteley’s result is not restricted to two bodies at each pin, so a generalized
conjecture remains open, even in the plane:

Conjecture 1 (Whiteley< 2007) A generically rigid body pin framework, remains
first-order rigid for realizations generic under the condition that all pins of each
body are collinear, without restriction of how many bodies a pin is incident to.

Acknowledgements Thanks go toWalterWhiteley for discussions at YorkUniversity back in 2007
and to the AIM workshop on Rigidity and Flexibility of Micro-structures in 2019, during which the
proofs were finally written down.
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Bounding the Trace Function of a
Hypergraph with Applications

Farhad Shahrokhi

Abstract An upper bound on the trace function of a hypergraph H is derived and its
applications are demonstrated. For instance, a newupper bound for theVCdimension
of H , or vc(H), follows as a consequence and can be used to compute vc(H) in
polynomial time provided that H has bounded degeneracy. This was not previously
known. Particularly, when H is a hypergraph arising from closed neighborhoods of
a graph, this approach asymptotically improves the time complexity of the previous
result for computing vc(H). Another consequence is a general lower bound on the
distinguishing transversal number of H that gives rise to applications in domination
theory of graphs. To effectively apply the methods developed here, one needs to
have good estimates of the degeneracy of a hypergraph and its variation the reduced
degeneracy which is introduced here.

1 Introduction and Summary

Many important combinatorial problems in computer science, mathematics, and
operations research arise from the set systems or hypergraphs. We recommend [3]
and thesis [4] as references on hypergraphs. Formally, a hypergraph H = (V, E)

has the vertex set V and the edge set E , where each e ∈ E is a subset of V . We do
not allow multiple edges in our definition of a hypergraph, unless explicitly stated.
When multiple edges exist, we slightly modify the concept. Let S ⊆ V and e ∈ E .
The trace of e on S is e ∩ S. The restriction of H to S, denoted by H [S], is the
hypergraph on vertex set S whose edges are the set of all distinct traces of edges in
E on S. H [S] is also referred to as the induced subhypergraph of H on S. A Pseudo
induced subhypergraph on the vertex set S is obtained from H by removing the set
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V − S and the set of all edges of H that have non-empty intersection with V − S.
Note that any edge of such hypergraph is an edge e of H if e ⊆ S. S is shattered
in H , if any X ⊆ S is a trace. Thus if S is shattered, then it has 2|S| traces, that is,
H [S] has 2|S| edges. The Vapnik–Chervonenkis (VC) dimension of a hypergraph H ,
denoted by vc(H), is the cardinality of the largest subset of V which is shattered in
H . It was originally introduced for its applications in statistical learning theory [26]
but has shown to be of crucial importance in combinatorics and discrete geometry
[11]. Let S ⊆ V , then, S is a transversal, or a hitting set, if e ∩ S �= ∅, for all e ∈ E .
A set S is a distinguishing set if any two distinct edges of H have different traces
on (intersections with) S. Let dt (H) denote the size of a smallest distinguishing
transversal set in H . Note that if S is a smallest distinguishing transversal set, then
it can not have an empty trace on it.

For any x ∈ V , let degree of x , denoted by dH (x), denote the number of edges
that contain x . We denote by δ(H), the smallest degree of any vertex in H .

Any definition for a hypergraph readily extends to a subhypergraph. A hypergraph
I is a subhypergraph of H if it can be obtained by deleting some edges in H [S] for
some S ⊆ V . (Note that there are subhypergraphs of H that may not be induced.)
Particularly, for any x ∈ S, the degree of x in I is denoted by dI (x). Furthermore
δ(I ) denotes the minimum degree of I . The degeneracy of H , denoted by δ̂(H), is
the largest minimum degree of any subhypergraph of H . Observe that one can define
δ̂(H) as the largest minimum degree of any induced subhypergraph of H , since the
addition of new edges to a hypergraph does not decrease the degrees of vertices. The
pseudo degeneracy of H , denoted by δ∗(H), is the largest minimum degree of any
pseudo induced subhypergraph of H . Finally, the reduced degeneracy of H , denoted
by˜δ(H) is the largest pseudo degeneracy of any induced subhypergraph of H .

Proposition 1 For any induced subhypergraph I of H, one has δ∗(I ) ≤ ˜δ(I ) ≤
δ̂(I ), consequently, δ∗(H) ≤ ˜δ(H) ≤ δ̂(H).

The trace function of H denoted by T [H, k], is the largest number of traces of
H on a set S, |S| = k. Unless otherwise stated, we assume that T [H, k] counts the
number of non empty traces only.

A powerful tool in studying hypergraph problemswith a very broad range of appli-
cations is the Sauer Shelah Lemma [20, 23]. The Lemma asserts for any hypergraph
H with vc(H) = d and any k ≥ 0, one has:

T [H, k] ≤
d

∑

i=0

(

k

i

)

= O(kd) (1)

The concept of a trace function is also studied as the Max Partial VC Dimension
[2]. Particularly, it was shown in [2] that

T [H, k] ≤ k(�(H) + 1)/2 + 1 (2)
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Our main result in this paper is Lemma1, which is an upper bound on T [H, k].
A simple consequence of this upper bound is

T [H, k] ≤ k˜δ(H) (3)

This upper bound is within a multiplicative factor of ˜δ(H) from the lower bound
of L(H, k) = min{|E |, k + 1} (when H does not have multiple edges) that has also
been recently constructed in [2]; Thereby, T (H, k) is proportional to k, provided
that reduced degeneracy of H is “small”, and hence in light of our upper bound
for T (H, k), the lower bound L(H, k) (constructed in [2]), actually approximates
T (H, k) (for any k) to within a factor of˜δ(H) which is an improvement of the factor
(�(H) + 1)/2 + 1 as authors stated in [2].

This paper is organized as follows. Section two contains our main lemma as well
as the lower bound on distinguishing transversal number. Section three contains the
applications to VC dimension. Section four contains the applications to domination
theory by deriving general lower bounds for several variations of domination number
of a graph [12]. The bounds are derived using the lower bound on distinguishing
transversal number. For trees, our bounds are shown to match some of the best
known results, or come close to them.

We finish this section by stating two folklore results for computing degeneracy
and pseudo degeneracy of a hypergraph. The properties of the output of algorithm
will help to establish some of our claims more easily.

Theorem 1 Let H = (V, E) be a hypergraph, then δ̂(H) can be computed in
O(|V | + ∑

e∈E |e|) time.
Proof For i = 1, 2, . . . n, let xi be a vertex of degree di = dHi (xi ) = δ(Hi ) in the
induced subhypergraph Hi = H [Vi ] on the vertex set Vi = V − {x1, x2, . . . , xi−1}.
Let d = max{di , i = 1, 2, . . . , n}. We claim that δ̂(H) = d. Clearly, δ̂(H) ≥ d, and
it suffices to show that δ̂(H) ≤ d. Now let I be any (induced) subhypergraph of
H , and let j be the smallest integer so that x j is a vertex of I . Then dI (x j ) ≤
d j = δ(Hj ) ≤ d. Thus, δ(I ) ≤ d, and consequently, δ̂(H) ≤ d as stated. Details of
deriving time complexity that include representation of H as a bipartite graph and
utilization of elementary data structures are omitted. �

For a subhypergraph I = (U, F) of H , and any x ∈ U , let Fx denote the set of
edges in F containing x . The next result almost copies Theorem1.

Theorem 2 Let H = (V, E), be a hypergraph, then, δ∗(H) can be computed in
O(|V | + ∑

e∈E |e|) time.
Proof For i = 1, .2, . . . n, let xi be a vertex of degree di = dHi (xi ) = δ(Hi ) in the
subhypergraph Hi on the vertex set Vi = V − {x1, x2, . . . , xi−1} and edge set Ei =
E − {Ex1 , Ex2 , . . . , Exi−1}. Let d = max{di , i = 1, 2, . . . , n}. Clearly, δ∗(H) ≥ d.
Now let I be any pseudo induced subhypergraph of H , and let j be the smallest
integer so that x j is a vertex of I . Then, vertex set of I does note contain xi , i =
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1, 2, . . . , j − 1; Consequently, the edge set of I is a subset of E j . Then dI (x j ) ≤
d j = δ(Hj ) ≤ d proving the claim. Details of deriving time complexity that include
representation of H as a bipartite graph and utilization of elementary data structures
are omitted. �

Remark 1 The sequences d1, d2, . . . , dn generated in Theorems1 and 2 are called
the degeneracy sequence, and pseudo degeneracy sequence, respectively.

2 Main Results

For a subhypergraph I = (U, F) of H , and any x ∈ U , let Fx denote the set of edges
in F containing x .

Lemma 1 Let H = (V, E), let S ⊆ V, |S| = k, and let I = H [S] = (S, F) be the
restriction of H to S. For i = 1, . . . , k, let xi be a vertex in subhypergraph Ii on the
vertex set Si = S − {x1, x2, . . . , xi−1} and edge set Fi = F − {Fx1 , Fx2 , . . . , Fxi−1}.
and let k, j, l ≥ 0 be integers with k = l + j . Then,

|F | =
k

∑

i=1

|Fxi | =
k

∑

i=1

dIi (xi ) (4)

=
l

∑

i=1

dIi (xi ) + |Fl+1| (5)

≤
l

∑

i=1

dIi (xi ) + T [H, j] (6)

Consequently,

T [H, k] ≤ δ∗(I ) × l + T [H, j] (7)

≤ δ∗(I ) × k (8)

≤ ˜δ(H) × k (9)

Proof For (4) observe that F = ∪k
i=1Fxi , that for i = 1, 2 . . . , k, Fxi ’s are disjoint

and |Fxi | = dIi (xi ). For (5) note that Fl+1 = ∪k
i=l+1Fxi . Next, note that the hyper-

graph Il+1 has the vertex set Sl+1 = {xl , xl+1, . . . , xk}, thus, |Sl+1| = k − l = j .
Consequently, (6) follows, since |Fl+1| ≤ T [H, j]. For (7), for i = 1, 2, . . . , k,
let xi to be a vertex of minimum degree in Ii , that is dIi (xi ) = δ(Ii ), note that
δ(Ii ) ≤ δ∗(I ) = max{δ(Ii ), i = 1, 2, . . . , k} (by Theorem2) and use (6); Now set
j = 0 to obtain (8) and note that δ∗(I ) ≤ ˜δ(H) to obtain (9). �

Remark 2 Note that S1 = S − {x0} = S − ∅ = S, and similarly F1 = F , in the
above Lemma.
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Theorem 3 For any hypergraph H = (V, E), and any integer 0 ≤ j ≤ dt (H), one
has

dt (H) ≥ |E | − T [H, j]
˜δ(H)

+ j.

Consequently,

dt (H) ≥ |E | − 2 j + 1
˜δ(H)

+ j.

Proof Let S with |S| = dt (H) be the smallest cardinality distinguishing transver-
sal set; Thus Smust have exactly |E | non empty distinct traces, that is, T (H, d(H)) =
|E |.NowapplyingLemma1,wehave |E | ≤ δ∗(H [S])(dt (H) − j) + T [H, j]which
proves the main claim, since δ∗(H [S]) ≤ ˜δ(H). To verify the second claim note that
T [H, j] ≤ 2 j − 1. �

3 Applications to VC Dimension

It is easy to verify that vc(H) ≤ log(|E |) for any hypergraph H . It was previously
known that when H has an explicit representation by an m × n incident matrix,
vc(H) can be computed in nO(log(n)) [16]. Also, the decision version of the problem
is LOGNP-complete [17] and remains in this complexity class for neighborhood
hypergraphs of graphs [15]. A simple and immediate consequence of our work is
that vc(H) ≤ log(δ̂(H)) + 1 (which was not known before) and hence vc(H) can be
computed in nO(log(δ̂(H)). Consequently, vc(H) can be computed in polynomial time
for hypergraphs of bounded degeneracy, which had not been known.Moreover, these
results give rise to an algorithm for computing vc(H) in n2O(log2(�(G))) time, when
H is the set of all closed neighborhoods of vertices of a graph G with maximum
degree�(G). This is an asymptotic improvement of the best known time complexity
of O(n2�(G)) for solving the problem which was derived in [15].

Theorem 4 Let H=(V, E), |V | = n, then, vc(H) ≤ log(δ̂(H)) + 1. Consequently,
for any n vertex hypergraph H, vc(H) can be computed in nO(log(δ̂(H))) time. Par-
ticularly, if H is the closed neighborhood hypergraph of an n vertex graph with
maximum degree �, then vc(H) can be computed in n2O(log2(�)) time.

Proof Let S with |S| = d be a largest shattered set in H . We apply Lemma1 with
j = d − 1. Thus, 2d − 1 = T (H, d) ≤ δ̂(H)(d − d + 1) + 2d−1 − 1, which gives
d ≤ log(δ̂(H)) + 1 as claimed.

To compute vc(H), one can represent H in its incidence matrix form, requiring
O(nm) space, or in O(n2δ̂(H)) space, where m is the number of edges of H , since
by Lemma1 with k = n one has m ≤ nδ̂(H). Now one can find vc(H) by exhaus-
tive enumeration. Note that the largest shattered subset has size O(log(δ̂)); Hence
in nO(log(δ̂(H))) time, one can compute vc(H). To prove the claim when H is the
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closed neighborhood hypergraph, note that δ̂(H) ≤ �(G) + 1, and hence vc(H) =
O(log(�(G))). Since the largest shattered set must be contained in the closed neigh-
borhood of one vertex of G, the enumeration algorithm takes n�(G)O(log(�(G))) or
in n2O(log2(�(G))) time. �
Remark 3 Note that the enumeration algorithm in Theorem4 does not require
knowing δ̂(H), although δ̂(H) can be computed in polynomial time. Also note that
the run time of n2O(log2(�(G))) for computing VC dimension of neighborhood system
of graphs compares favorable with the time complexity of O(n2�(G)) derived in [15].

4 Applications to Domination Theory

We recommend [12] as a reference on domination theory. For a graph G = (V, E)

and a vertex x , N (x) denotes the open neighborhood of x , that is the set of all vertices
adjacent to x , not including x . The closed neighborhood of x is N [x] = N (x) ∪ {x}.
The closed (open) neighborhood hypergraph of an n vertex graph G is a hypergraph
on the same vertices as G whose edges are all n closed (open) neighborhoods of
G. A subset of vertices S in G is a dominating set [12], if for every vertex x in G,
N [x] ∩ S �= ∅. S is a total or open domination set [6] if, N (x) ∩ S �= ∅. A subset of
vertices S is locative in G, if for every two distinct vertices x, y ∈ V − S, one has
N (x) ∩ S �= N (y) ∩ S. S is totally locative in G, if for every two distinct vertices
x, y ∈ V , one has N (x) ∩ S �= N (y) ∩ S. A subset S of vertices in G is a locating
dominative (locating total dominative) if it is a dominating (total dominating) set
and it is also a locative set [24, 25]. S is an identifying code if it is a dominating set
and for every two distinct vertices x, y ∈ V , one has N [x] ∩ S �= N [y] ∩ S [14]. S
is an open locating dominative set, if S is a totally domination set and also totally
locative in G [22]. Let γ LD(G) and γ I D(G) denote the sizes of a smallest location
domination and identifying code sets in G, respectively. Let γ OLD(G) denote the
size of a smallest open location domination in G. Computing γ LD(G), γ I D(G)

and γ OLD(G) are known to be NP-hard problems and hence estimations of these
parameters or their computational complexities have been an active area of research
[1, 2, 5, 7–10, 18, 19, 21, 22]. Recall that the distinguishing transversal number
of H , denote by dt (H), is the minimum size of any distinguishing transversal set
[13]. A consequence of our upper bound for T [H, k], is that for any hypergraph
H = (V, E) and any integer 0 ≤ j ≤ dt (H) one has dt (H) ≥ |E |−T [H, j]

˜δ(H)
+ j . By

properly applying this result to suitable neighborhood hypergraphs of a graph, one
obtains some general lower bounds on γ LD(G), γ I D(G) and γ OLD(G). For a specific
application, one needs to determine the exact value or a good estimate for˜δ(H) or
δ̂(H), and this can become a challenging task.

Theorem 5 Let G be an n vertex graph with closed and open neighborhood hyper-
graphs H and Ho, respectively, let δ∗∗(H) = min{˜δ(H),˜δ(Ho)}. Then the following
hold for any 0 ≤ j ≤ γ I D in (i), 0 ≤ j ≤ γ OLD in (i i) and 0 ≤ j ≤ γ LD in (i i i),
where H and Ho do not have multiple edges in (i i) and (i i i), respectively.
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(i) γ LD(G) ≥ n+δ∗∗(H). j−T [H, j]
δ∗∗(H)+1 .

(ii) γ I D(G) ≥ Max{ n−T [H, j]
˜δ(H)

+ j, n+δ∗∗(H). j−T [H, j]
δ∗∗(H)+1 }.

(iii) γ OLD(G) ≥ Max{ n−T [H, j]
˜δ(Ho)

+ j, n+δ∗∗(H). j−T [H, j]
δ∗∗(H)+1 }.

Proof For (i), let S be the smallest cardinality locative dominative set in G. Now,
let H 1 = (V, E1), where E1 = {N (x)|x ∈ V − S} and H 2 = (V, E2) where E2 =
{N [x]|x ∈ V − S}. Note that for i = 1, 2, T (Hi , |S|) = n − |S| ≤ ˜δ(Hi )(|S| −
j) + T [Hi , j] where last inequality is obtained by the application of Lemma1. Fur-
thermore, H 1 is a subhypergraph of H ′, and H 2 is a subhypergraph of H . Conse-
quently,˜δ(H 1) ≤ ˜δ(H ′) and˜δ(H 2) ≤ ˜δ(H). It follows that n − |S| ≤ δ∗∗(H)(|S| −
j) + T [H, j]. To finish the proof note that LD(G) = |S|, and do the algebra.

For (i i), note that γ I D(G) ≥ γ LD(G) and hence the lower bond in (i) is also a
lower bound for γ I D(G). To complete the proof, observe that S is an identifying code
set inG if and only if S is a distinguishing transversal in H . Thus, dt (H) = γ I D(G).
Now apply Theorem3.

Similarly for (i i i) note that γ OLD(G) ≥ γ LD(G), and that, S is an totally dom-
inative and totally locative set in G, if and only if, S is a distinguishing transversal
set in H ′ and thus dt (H ′) = γ OLD(G). Now apply Theorem3. �

Remark 4 Let G be an n vertex graph of maximum degree �(G) with closed
and open neighborhood hypergraphs H and Ho, respectively. Then clearly δ̂(H) ≤
�(G) + 1 and δ̂(Ho) ≤ �(G), since the largest sets in H and H 0 are of cardinalities
�(G) + 1 and�(G), respectively. As we will see, one can get much stronger results
in trees.

Remark 5 Let L denote the set of leaves in a tree T , and note that after removal of
all vertices in L from T we obtain another tree T ′. Let S denote the set of all leaves
of the tree T ′. Then each vertex in S is a support vertex in T and is called a canonical
support vertex in T .

Theorem 6 If T is a n ≥ 2 vertex tree with closed and open neighborhood hyper-
graphs H and Ho, respectively, then the following hold.

(i) δ̂(H) ≤ 3.
(ii) δ̂(Ho) ≤ 2.
(iii) ˜δ(Ho) ≤ 2.
(iv) δ∗(H) ≤ 2.
(v) δ∗(Ho) ≤ 2.

Proof For n ≤ 2 the claims are valid so let n ≥ 3. For (i) note that for any ver-
tex x , dH (x) equals degree of x in T plus one, and hence for any leaf x , one has
dH (x) = δ(H) = 2. Now apply Theorem1, and let d1, d2, . . . dn , be the sequence or
minimum degrees generated by the algorithm associated with vertices x1, x2, . . . xn ,
in the subhypergraph H1, H2, . . . Hn . Note that for any leaf of x = xi of T , we have
dHi (xi ) = di ≤ 2, where 1 ≤ i ≤ n. Note further that by the previous remark any leaf
in the new tree T ′ is a canonical support vertex of T and will of degree at most 3 in



124 F. Shahrokhi

the hypergraph obtained after removing all leaves attached to it. Thus after removal
of all leaves of T , we obtain a tree T ′ whose leaves have degree at most three in the
associated hypergraph. Now iterate on this process by removing all leaves of T ′ to
obtain a tree T ′′, and note that the degree of any leaf of T ′′ in the associate hypergraph
is at most three. Consequently for i = 1, 2, . . . , n we have di ≤ 3. For (i i), a similar
argument is carried out, but we need to observe that initially dHo(x) = δ(Ho) = 1
and that after removal of leaves in T , any leaf of the resulting tree T ′ has degree
at most two in the corresponding hypergraph. (i i i) follows from (i i). For (iv), we
follow the arguments in (i), and note that degree of any leaf x of T is initially two in
H . Now apply Theorem2 and note that after removing any leaf x , the degree of all
leaves with the same support vertex becomes one in the corresponding hypergraph,
and after removing all leaves joined to a canonical support vertex s, the degree of s
becomes one in the resulting hypergraph.

Finally, (iv) follows from (i i i). �

Remark 6 Corollary1 summarizes some specific applications of our results in this
section by eliminating past ad hoc approaches. Particularly, the lower bound in part
(i) matches the best previously known lower bound of n+1+2(L−S)

3 in [22], however,
is weaker (by a multiplicative factor of 3/2) in part (i i) than a recent result in [18],
and in part (i i i) is weaker only by an additive factor of 1 when n is odd compared
to the result in [22].

Corollary 1 Let T be an n ≥ 4 vertex tree, with L leaves and S support vertices.
Then the following hold. For (i i) assume that every support vertex is adjacent to
only one leaf.

(i) γ LD(T ) ≥ n+1+2(L−S)

3 .
(ii) γ I D(T ) ≥ n+3

3 .
(iii) γ OLD(T ) ≥ n+1

2 .

Proof For (i) let D be an LD set and let s be a support vertex. We assume WLOG
that s ∈ D, otherwise by placing s and all but one leaf attached to s in D, we obtain
another LD set of the same size. Now follow Theorem5 and Lemma1 and note that
a total of L − S leaves have degree zero in hypergraph H 1 (defined in Theorem5).
Thus, we have

n − |D| ≤ L∗ + T [H 1, D − (L − S)] (10)

≤ T [H 1, D − (L + L∗ − S) − 1] + 1 (11)

≤ ˜δ(H 1)(|D| − (L − S) − 1) + 1) (12)

≤ 2((|D| − (L − S) − 1) + 1 (13)

where the last three inequalities are obtained by the application of Lemma1,
Theorem6 and noting that T [H 1, 1] = 1. Now (i) follows.

For (i i) use j = 2, and δ∗(H) ≤ 3 from Theorem6 and use Theorem 4.1. For
(i i i) use Theorem5 with j = 1 and˜δ(H 0) ≤ 2 from Theorem6. �
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A Generalization on Neighborhood
Representatives

Sarah Heuss Holliday

Abstract In 2017, Hedetniemi asked the question “for which graphs G does the
indexed family {NG(v)|V ∈ V (G)} of open neighborhoods have a system of distinct
representatives?” In [2, 3] we answered that question, and explored necessary con-
ditions and associated parameters. In [1], Haenel and Johnson looked over longest
paths and cycles. We are now generalizing and deepening our examination.

Keywords SDR · Neighborhoods · Matchings · Independent set
All graphs will be finite and simple. In [2], we called a graph G SDR-good if the
indexed collectionN (G) = {NG(v)|v ∈ V (G)} of open neighborhoods has a system
of distinct representatives (SDR). An SDR for N (G) is a one-to-one function φ :
V (G) → V (G) such that φ(v) ∈ NG(v) for all v ∈ V (G).

Theorem 1 ([2]) A graph G is SDR-good if and only if G has a spanning subgraph
the components of which are either single edges or cycles.

In [3], we developed analogous results for sets of maximummatchings and maxi-
mum independent sets. LetM(G)be the set of allmaximummatchings inG.We shall
say that a graph is SDR-M(G)-good ifM(G) has a systemof distinct representatives
(SDR). An SDR for M(G) is a one-to-one function φ : M(G) → E(G) such that
φ(M) ∈ M for all M ∈ M(G). Note that the existence of such a function requires
|E(G)| ≥ |M(G)|. So, |E(G)| < |M(G)| implies that G is not SDR-M(G)-good.

Theorem 2 ([3]) |M| ≤ |E | is necessary but not sufficient for G to be SDR-M(G)-
good.

Wedeveloped the following result formaximum independent sets: LetI(G) be the
set of maximum independent sets in G. We shall say that a graph is SDR-I(G)-good
if the set I(G) has a system of distinct representatives (SDR). An SDR for I(G) is a
one-to-one function φ : I(G) → V (G) such that φ(I ) ∈ I for all I ∈ I(G). Using
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properties of line graphs and the preceding result, we’re able to show the following
result.

Theorem 3 ([3]) If G is SDR-M(G)-good, then L(G) is SDR-I(L(G))-good.

We were also able to individually sort the Beinecke graphs into those which are and
aren’t SDR-I(G)-good.

For a graph G, denote the set of maximum paths in G by P(G). Denote by
V ∗(P(G)) the union of the vertex sets of the maximum paths of G; in other words,
V ∗(P(G)) is the set of all vertices that have the good fortune of lying on a maximum
path in G. G is SDR-P-good if P(G) has a system of distinct vertex representatives
(SDR). An SDR for P(G) is a one-to-one function φ : P(G) → V (G) such that
φ(P) ∈ V (P), for all P ∈ P(G).

Theorem 4 ([1]) |P| ≤ |V ∗(P(G))| is necessary but not sufficient for G to be SDR-
P(G)-good.

Corollary 1 ([1]) Suppose that G is a graph in which the maximum paths have
order q. If every vertex of G lies on no more than q maximum paths then G is
SDR-P(G)-good.

Corollary 2 ([1]) Suppose that every maximum path in P(G) has order q and that
every vertex in V ∗(P(G)) lies on at least q maximum paths in G. Suppose that
at least one vertex of G lies on more than q maximum paths in G; then G is not
SDR-P(G)-good.

For a graph G, denote the set of maximum cycles in G by C(G). Denote by
V ∗(C(G)) the union of the vertex sets of the maximum cycles of G; in other words,
V ∗(C(G)) is the set of all vertices that have the good fortune of lying on a maximum
cycle in G. G is SDR-C-good if C(G) has a system of distinct vertex representatives
(SDR). An SDR for C(G) is a one-to-one function φ : C(G) → V (G) such that
φ(C) ∈ V (C), for all C ∈ C(G).

Theorem 5 ([1]) |C| ≤ |V ∗(C(G))| is necessary but not sufficient for G to be SDR-
C(G)-good.

Corollary 3 ([1]) Suppose that G is a graph in which the maximum cycles have
order q. If every vertex of G lies on no more than q maximum cycles then G is
SDR-C(G)-good.

Corollary 4 ([1]) Suppose that every maximum cycle in C(G) has order q and that
every vertex in V ∗(C(G)) lies on at least q maximum cycles in G. Suppose that
at least one vertex of G lies on more than q maximum cycles in G; then G is not
SDR-C(G)-good.

G is a finite simple graph with no isolated vertices. N = {0, 1, 2, . . .}. Suppose
f : V (G) → N is a function N = [NG(v); v ∈ V (G)], where (“[ ]” means it’s an
indexed collection, not a set).

An f -satisfying choice of subset representatives for N (G) is a function U :
V (G) → 2V (G) such that for all v,w ∈ V (G):
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1. U (v) ⊆ NG(v);
2. |U (v)| = f (v); and
3. if v �= w then U (v) ∩U (w) = ∅.
Let F(G) = { f : V (G) → N| there is a an f -satisfying choice of subset represen-
tatives for N (G)}.

Obviously, the constant function f ≡ 0 is inF(G). The assumption of no isolated
vertices implies that, for each v ∈ V (G), a function defined by f (v) = k, for any
1 ≤ k ≤ |NG(v)|, and f = 0 on V (G)\{v}, is inF(G). Theorem1 characterizes the
graphs such that the constant function f ≡ 1 (on V (G)) is an element of F(G).

Problem 1 If G and H are graphs on the same set of vertices, V = V (H) = V (G),
and F(G) = F(H), does it follow that G = H?

In order forF(G) = F(H), it is necessary that the degree sequences of G and H are
also the same, so that the [0, 0, . . . , 0, deg(v), 0, . . . , 0, 0] element appears with the
same largest possible value in the same position in both F(G) and F(H) for each
v ∈ V .

Lemma 1 If G and H are graphs on the same set of vertices, V = V (H) = V (G),
and G �= H, then F(G) �= F(H).

Proof Consider the following pair of graphs:

G:

a

b

c

d

e

f

a

b

c

d

e

f

:H
For the given graphs, they both include the [0, 0, 0, 0, 0, 0] and [1, 1, 1, 1, 1, 1]

in their respective F , as well as [3, 0, 0, 0, 0, 0], but only F(G) has [3, 0, 1, 0, 0, 0].
This example can be quickly reproduced by any pair of graphs with the same vertex
set and degree sequence by ensuring they have different shortest cycles. �

Theorem 6 If G and H are graphs on the same set of vertices, V = V (H) = V (G),
and F(G) = F(H), then G = H.

Proof We know that the two graphs have the same degree sequence, and each graph
has a shortest cycle.

Suppose the shortest cycle inG has a different number of vertices than the shortest
cycle in H . As in [2], the representative from each neighborhood can be defined by
the orbit of a vertex along its cycle memberships. This means a vertex belonging to a
cycle of length x will have an orbit of that length, and a cycle of length y respectively.
Thus, the f ∈ F will have different representations when the vertices on a cycle of
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length x and y are compared. Therefore, if the shortest cycle in G has length x and
the shortest cycle in H has length y, F(G) �= F(H).

Having shown that the shortest cycles in G and H must be the same, it is now
possible to induct on the remaining v ∈ V and see G = H . �

The proposer of the original problem that inspired this paper, S. Hedetniemi,
now proposes looking at a large class of similar problems, in which the roles of the
indexed collections of open neighborhoods, or closed neighborhoods, are replaced
by other iconic collections of graph elements. For instance, we could ask: for which
finite simple graphs G does the list of maximal cliques in G have a system of distinct
vertex representatives, or a system of distinct edge representatives? As with the cases
dealt with in this paper, the answers could be interesting, or not. The authors may also
investigate whether it is satisfying to redefine F using the matching or independent
sets instead of neighborhoods.
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Harmonious Labelings of Disconnected
Graphs Involving Cycles and Multiple
Components Consisting of Starlike Trees

Atif Abueida and Kenneth Roblee

Abstract A harmonious labeling of a (simple) graphG = (V, E) onm > 0 edges is
a one-to-one function f : V → Zm such that if e1, e2 ∈ E with respective endpoints
u1, v1 and u2, v2, then f (u1) + f (v1) �≡ f (u2) + f (v2)(mod m). If such a function
exists, then G is said to be harmonious. If G were a tree, then precisely one vertex
label is allowed to be used twice. A starlike tree is a tree with a central vertex adjacent
to one endpoint of some number of paths each with the same number of vertices.
It has been shown using cyclic groups that the disjoint union of an odd cycle on s
vertices and starlike trees with the central vertex adjacent to some even t ≥ 2 many
s-paths is harmonious. We now consider the disjoint union of an odd cycle with at
least two starlike trees with new notions of harmonious labelings to accommodate the
case where |V | > |E |, one of which is a basic generalization of harmonious labeling
and the other of which is a stricter and more balanced harmonious labeling.

Keywords Cycle · Tree · Harmonious labelling

1 Introduction

Suppose that G = (V, E) is a simple and non-edgeless graph with |V | = n and
|E | = m.Aharmonious labelingof G is a one-to-one function f : V → Zm such that
whenever e1 = u1v1 and e2 = u2v2 are distinct edges with their respective endpoints
as indicated, we have that f (u1) + f (v1) �≡ f (u2) + f (v2) (mod m). For v ∈ V ,
the value f (v) is the (vertex) “label” of v. For an edge e = uv, the value f (u) +
f (v) (mod m) is the (edge) label of e. Thus, in a harmonious labeling of G (if such
a labeling exists), each vertex label occurs at most once and each edge label occurs
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exactly once. In the case when G is a tree, we are permitted to use exactly one vertex
label two times. If a harmonious labeling ofG exists, thenG is said to be harmonious.

Harmonious labelings of graphs were first introduced byGraham and Sloan in [6].
There are many fundamental results from that foundational paper. For example, the
complete graph Kn is harmonious if and only if n �= 4; the complete bipartite graph
Km,n is harmonious if and only ifm = 1 or n = 1; the cycle graph Cn is harmonious
if and only if n ≥ 3 is odd. Other results in [6] include that wheelsWn are harmonious
for n ≥ 3, ladders Ln = P2 × Pn are harmonious for n ≥ 3 are harmonious, and the
Petersen Graph is harmonious. For a comprehensive survey of results on harmonious
and other types of graph labelings, please refer to [3].

It is not difficult to see that paths Pn and stars Sn = K1,n (referenced above) are
harmonious. It has been shown that all trees with 31 or fewer vertices are harmonious
in [2]. In [6], it was shown that all caterpillars are harmonious.

Relevant to the results here and regarding disjoint unions of graphs involving
trees, it was shown in [7] that Cs ∪ P3 is harmonious for all odd s ≥ 3. Additionally,
one of the results by Gallian and Stewart implies that certain disjoint unions of odd
cycles and paths are harmonious; see [5]. Abueida and Roblee re-proved this result
(among other things) in [1]; namely, they showed that for odd s ≤ 3 and even t ≥ 2,
the graph Cs ∪ Pst+1 is harmonious. The labeling there involved labeling the cycle
with the elements of the cyclic subgroup H generated by 1 + t of Zs(1+t); different
sections of the path were carefully labeled using the elements of the cosets of H . That
labeling idea—which used the fact that s | s(1 + t) and fundamental results about
finite cyclic groups and their subgroups—was extended in [1] to show that for the
same values of s and t , the graph Cs ∪ Tst+1 is harmonious; here, Tst+1 is a “starlike
tree” consisting of a central vertex adjacent to one endpoint of each of t-many paths
each on s vertices.

In these latter results, to accommodate the tree and to agree with how trees are
permitted to be harmoniously labeled, exactly one vertex label was used twice.More-
over, by the method used in labeling these, one of the labels on the cycle was used
again for a vertex label on the tree; hence, this was the one recycled label permitted.

Here, we consider how to approach harmonious labeling of and extension of the
aforementioned problem of labeling a disjoint union of a tree and cycle. In particular,
we propose a general definition of harmonious labeling of the disjoint union of a cycle
with multiple trees and show how to extend labelings to new disjoint unions from the
authors’ previous work. Then we consider a more balanced version of this labeling,
in the sense that the number of times each label is used on the vertices is as equitable
as possible. Then we show how to extend labelings from previous work to these
disjoint unions.

2 Main Results

The first definition we consider is one that allows disconnected graphs in which
|V | > |E |.
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Fig. 1 Two harmonious
labelings of a forest
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Definition 1 Let G = (V, E) be a non-edgeless simple graph with |V | = n > m =
|E |. An onto function f : V → Zm is said to be a harmonious labeling of G provided
that if e1 = u1v1 and e2 = u2v2 are distinct edges, then f (u1) + f (v1) �≡ f (u2) +
f (v2) (mod m). If such a function exists, then G is said to be harmonious.

Observe that this agreeswith the commonusage of the term“harmonious labeling”
when a single tree is considered. Moreover, it agrees with other works (such as the
authors’ previous works) when considering the disjoint union of a cycle and a tree.
In particular, precisely one vertex label was used twice, and so the function was onto.
The onto condition ensures that each vertex label is used at least once. However, it
is rather permissive beyond this: For example, let G be the disjoint union of three
copies of P2 and one isolated vertex; so n = 6 and m = 3, we could construct rather
different harmonious labelings, such as using 0 to label both vertices of the first
component; use 0 and 1 to label the second component; label 0 and 2 to label the
third component; and label the isolated vertex 0. This is clearly an onto function and
the respective edge labels would be 0, 1, and 2; thus it is a harmonious labeling of
the graph. Moreover, once you have cleared the onto hurdle of the labeling, you are
not restricted as to how many more times you could use a particular vertex label,
as long as you keep the edge labels distinct. See Fig. 1 for this labeling as well as
another harmonious labeling of the same graph.

For the same graph G, we could alternatively label the first component’s vertices
using 0 and 1; label the second component’s vertices with 1 and 2; and label the third
component’s vertices using 1 and 2; then label the isolated vertex with 0. This is also
an onto function and the respective edge labels would be 1, 2, and 3. This labeling
is more balanced in the sense that each label is used the same number of times. Of
course, this may not always be possible, but something that Libras and others who
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Fig. 2 Equitably
harmonious labeling of a
forest
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Fig. 3 Harmonious labeling
of the disjoint union of two
P2’s
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like balance would hope for. See Fig. 2 for a picture of this labeling. Thus, we present
a new definition.

Definition 2 Let G be as in the previous definition. An equitably harmonious label-
ing of G is a harmonious labeling of G such that for each i, j ∈ Zm , we have
|| f −1(i)| − | f −1( j)|| ≤ 1.

With this definition, the vertex labels must be used as close to the same number
of many times as possible. In Fig. 1, the labelings presented are not equitably harmo-
nious, whereas in Fig. 2 we see an example of the same disconnected graph together
with an equitably harmonious labeling of it. In Fig. 3, we have the disjoint union of
two P2’s, which is interestingly harmonious but not equitably harmonious. One can
refer to Fig. 4 to convince oneself that this is the case.

Now, we show how to extend some results in [1] to new graphs with harmonious
and equitably harmonious labelings.

We let s ≥ 3 be odd and t ≥ 2 be even. A “starlike tree” T = Tst+1 on st + 1
vertices consists of a central vertex adjacent to one endpoint of each of t-many paths
each on s ≥ 3 vertices, where 1 ≤ i ≤ t . Figure5 shows an example to illustrate with
t = 4 and s = 3; as in the definition, it is a central vertex adjacent to the ends of a
given number of fixed-length paths.

The authors showed in [1] that for such values of s and t , then Cs ∪ T is harmo-
nious, among other things. We re-state the result here formally as well as the method
of labeling; we re-use some of this method to prove our first theorem a little later.

Theorem 1 (Abueida,Roblee, 2019)Let s ≥ 3 be odd, t ≥ 2 be even, and T = Tst+1

be a starlike tree. Then Cs ∪ T is harmonious.



Harmonious Labelings of Disconnected Graphs Involving Cycles … 135

Fig. 4 Two failed attempts
at equitably harmonious
labelings of the disjoint
union of two P2’s
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Fig. 5 Starlike tree
consisting of a central vertex
adjacent to t = 4 paths each
on s = 3 vertices

For ease of notation, we denote the t-many paths each with s vertices in T by Pi
s ,

where 1 ≤ i ≤ t . For convenience, we give the labeling of that graph again here.
For the cycle component,we label its vertices using the cyclic subgroup H ofZs+st

generated by the element 1 + t ; we denote this by writing H = 〈1 + t〉. Thus, H =
〈1 + t〉 = {0, 1 + t, 2(1 + t), . . . , (s − 1)(1 + t)}. In particular, choose a vertex and
label itwith an element (wewill pick 0) of H ; then proceed to consecutive vertices and
label them with consecutive elements of H (so, 1 + t, 2(1 + t), . . . (s − 1)(1 + t)).
See [4] for more on cyclic groups and other group-theoretic concepts.

Next, we denote the central vertex of the starlike tree T by v0 and label it 0 (observe
this vertex label was already used on the cycle—it is our only repeated vertex label).
Now, for all i , where 1 ≤ i ≤ t , we label the vertices of Pi

s starting from one end
to another consecutively with the elements (in order) of the coset i + H = {i, i +
(1 + t), i + 2(1 + t), . . . , i + (s − 1)(1 + t)}. For odd i , we connect the endpoint
of Pi

s with the smallest label to v0; for even i , we connect the endpoint of Pi
s with the

largest label to v0. This was shown to be a harmonious labeling in [1]; Fig. 6 gives
an example from that paper shown again here.

Moving to a different family of disconnected graphs, consider the graph G =
Cs ∪ Fr+st+1 with s, t as indicated above. Here, F = Fr+st+1 is a forest consisting
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Fig. 6 Example of Odd Cycle Union Star-like tree

of some r -many components, namely, T1, T2, . . . , Tr , where 1 ≤ r ≤ t , and the
structure of the Ti ’s is described in the next paragraph. To facilitate the notation and
description for the trees, we denote by P = {P1

s , P
2
s , . . . , P

t
s } a collection of paths

each with s vertices. Now, let P = {S1, S2, . . . , Sr } be a partition of P consisting of
r -many nonempty subsets of P; thus, each Si ∈ P , where 1 ≤ i ≤ r is a collection
of paths each with s vertices. For each such i we could more precisely write Si =
{Pi1

s , Pi2
s , . . . , Pki

s } for some 1 ≤ ki ≤ t and such that
∑r

i=1 ki = t .
With this notation, we specify the structure of the trees T1, T2, . . . , Tr . Each of

the tree components Ti is a starlike tree each with a central vertex vi adjacent to
an endpoint of each of the ki -many paths taken from Si . Now, we claim that G is
harmonious.

Toprove the claim, let us observe that the harmonious labeling ofCs ∪ T presented
earlier can be extended to create a harmonious labeling of G. Let us note that |V | =
s + r + st > |E | = s + st and the vertex labels will be elements of Zs(1+t).

To see how the previous labeling extends to this case, we again label the vertices
ofCs using the elements of the subgroup H = 〈1 + t〉 ofZs(1+t). We label the central
vertices v1, v2, . . . , vr of T1, T2, . . . , Tr each with 0. Observe that the vertex label 0
will then be used a total of r + 1 times. As such, this will be the only repeated vertex
label.

For each 1 ≤ i ≤ r , we label the vertices of the paths Pi1
s , Pi2

s , . . . , Pki
s starting at

one end of the path consecutively and in order with the elements of their respective
cosets i1 + H, i2 + H, . . . , ki + H . Note these values i1, ı2, . . . , ki will be all distinct
and will be distinct for different values of i . This is due to the partitioning we did in
advance. For all 1 ≤ i ≤ r and all i1, i2, . . . , ki , we connect the central vertex vi to
the least label of the paths labeled by the odd coset-labeled paths (odd values of i∗ or
ki for labeling from i∗ + H or ki + H ) and by the greatest labeled element from the
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Fig. 7 Example of a harmonious labeling of an odd cycle union two nonisomorphic starlike trees

even coset-labeled paths (even i∗ or ki for labeling from i∗ + H or ki + H ). As this
just “splits” the labeling from [1], still no repeated edge labels exist. In Fig. 7, we have
G = C5 ∪ F2+5·6. Note how the vertices in the left-side path in T1 are labeled with
elements (in order) of 1 + H , where H = 〈7〉 ≤ Z35; the elements on the right-side
path in T1 are labeled with elements (in reverse order) of 2 + H . The vertices in the
4 paths in T2 are labeled with elements of 3 + H , 4 + H , 5 + H , and 6 + H , where
the “even cosets” label in reverse order and the “odd cosets” label in the natural order.

This is essentially “splitting” the starlike tree in Cs ∪ Tst+1 described earlier into
some number of new starlike trees and keeping the same labeling, but just with the
additional central vertices labels of 0. See Fig. 8 for another example. Thus, we have
the following:

Theorem 2 Let s ≥ 3 be odd, t ≥ 2 be even, and r ≥ 1. Let F = Fr+st be a forest
of r-many starlike trees, with each central vertex vi adjacent to an end of ki -many
paths each on s vertices. Then Cs ∪ F is harmonious.
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Fig. 8 Example of a harmonious labeling of an odd cycle union two isomorphic starlike trees

Although the harmonious labeling procedure for the graph Cs ∪ F in the theorem
is not an equitably harmonious labeling (unless r = 1), we do ponder for the future
whether for Cs ∪ F is equitably harmonious. In the meantime, we now focus on
the specific case of this issue when r = 2 and two starlike trees in the union are
isomorphic. That is, for odd s ≥ 3 and even t ≥ 2, what would be an equitably
harmonious labeling of Cs ∪ T1 ∪ T2, where both T1 and T2 are both copies of the
starlike tree Ts·t/2+1 consisting of a central vertex adjacent to one end of t

2 -many paths
each on s vertices. We show that this graph is equitably harmonious. For example,
see Fig. 9.

Thus, we have the following result.

Theorem 3 Let s ≥ 3 be odd, t ≥ 2 be even. Then the graph Cs ∪ T1 ∪ T2, where
T1 ∼= T2 ∼= Ts·t/2+1 is equitably harmonious.

Proof The vertex labels are elements of the group Zs(s+t) and there are clearly
s(s + t) + 2 vertices. Thus, we would need the labeling function to be onto such that
one pair of vertices use some label twice and exactly one more pair use a different
label twice. As before, we label the vertices of the cycle (starting with any vertex,
and consecutively around the cycle) with the elements of the subgroup H = 〈1 + t〉
of Zs(s+t). As in the case of harmonious labelings of Cs a from [1], no edge labels
on the cycle are repeated.

For T1, we label its central vertex v1 with 0. Let us denote the paths in T1 by
P1
s , P

2
s , . . . , P

t/2
s . For each i = 1, 2, . . . , t

2 , label the vertices of P
i
s from one end to

another consecutively by the elements of 2i − 1 + H in increasing order; then make
the central vertex adjacent to the least-labeled vertex in each path.
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Fig. 9 Example of an equitably harmonious labeling of an odd cycle union two starlike trees

For T2, label its central vertex v2 with (s − 1)(1 + t); denote the paths in T2 by
Q1

s , Q
2
s , . . . , Q

t/2
s . Then label the vertices of Qi

s consecutively from one endpoint to
another by the elements of 2i + H in increasing order for all i = 1, 2, . . . , t

2 . Finally,
we make v2 adjacent to the end with the greatest label in each path. Thus, we labeled
the vertices of T2 so to not use the vertex label of 0 three times as in the harmonious
labeling of the forest part of our previous theorem. With T2, we changed the label
of the central vertex v2 from the case of harmonious labelings to (s − 1)(1 + t) and
reversed the labeling of its paths from greatest to least labels in 2i + H starting from
the v2-connected end. This gives label of the edge with endpoints v2 and its adjacent
vertex in Qi

s to be (s − 1)(1 + t) + 2i (mod s(1 + t)) for i = 1, 2, . . . , t
2 .

The edge labels connecting v1 to the paths in T1 would clearly be 0 + i = i for i =
1, 2, . . . , t

2 . Clearly, 2i − 1 �≡ (s − 1)(t + 1) + 2 j (mod s(s + t)) for 1 ≤ i, j ≤ t
2 .

As the other edge labels coincide with the harmonious labeling in [1], then this
is indeed a harmonious labeling. As only 0 and (s − 1)(1 + t) are the only repeated
vertex labels, then this is an equitably harmonious labeling. �

The authors wish to thank Professor Peter Johnson, Jr. of Auburn University
for his valuable questions as to how harmonious labelings extend to more severely
disconnected graphs such as these.
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On Rainbow Mean Colorings of Trees

James Hallas, Ebrahim Salehi, and Ping Zhang

Abstract A mean coloring of a connected graph G of order 3 or more is an edge
coloring ofG with positive integers such that themean of the colors of the edges inci-
dent with every vertex is an integer. The associated color of a vertex is its chromatic
mean. If distinct vertices have distinct chromatic means, then the edge coloring is a
rainbow mean coloring of G. The maximum vertex color in a rainbow mean color-
ing c is the rainbow mean index of c, while the rainbow mean index of the graph G
is the minimum rainbowmean index among all rainbowmean colorings of G. In this
paper, rainbow mean colorings of trees are investigated.

Keywords Chromatic mean · Rainbow mean colorings · Rainbow chromatic
mean index

AMS Subject Classification: 05C05, 05C07, 05C15, 05C78

1 Introduction

During the past several decades, there have been many studies of edge labelings
or edge colorings of graphs that have given rise to vertex labelings or colorings
where no two vertices have the same color (see [1, 3, 4, 6, 7], for example). One
of the early examples of this occurred in 1986 when at the 250th Anniversary of
Graph Theory Conference held at Indiana University-Purdue University Fort Wayne
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(now called Purdue University Fort Wayne), Chartrand introduced a concept, often
called the irregularity strength of graphs. The irregularity strength of a graphG is the
smallest positive integer k for which there exists a coloring of the edges ofG from the
set [k] = {1, 2, . . . , k} resulting in a vertex coloring where the color of a vertex is the
sum of the colors of its incident edges, such that no two vertices have the same color.
The goal then was for the vertices to have distinct colors, regardless of how large
these colors may be. For vertices of large degree, this requires some vertex colors to
be large, possibly much larger than the order of the graph. However, in [2] an edge
coloring of a graph was introduced in which each edge was colored with a positive
integer in a manner so that each vertex is assigned a positive integer color that is the
average of the colors of its incident edges and no two vertices have the same color.
If the order of G is n, then the number of vertex colors must therefore be at least n.
With all the conditions required for a graph to have such an edge coloring, one might
anticipate that for some graphs at least, the largest vertex color may exceed the order
of the graph, possibly by a large amount. The goal of this paper is to investigate this
topic where the graphs in question are trees.

2 Rainbow Mean Colorings

A mean coloring of a connected graph G of order 3 or more is an edge coloring
c : E(G) → N of G such that for every vertex v of G, its vertex color

cm(v) =
∑

e∈Ev
c(e)

deg v
, where Ev is the set of edges incident with v,

is an integer, called the chromatic mean of v. Clearly, every nontrivial connected
graph G has mean colorings. For example, if every edge of G is assigned the same
positive integer a, the resulting edge coloring is a mean coloring in which cm(v) = a
for every vertex v of G. If distinct vertices have distinct chromatic means, then the
edge coloring c is called a rainbow mean coloring of G. The following result was
obtained in [2].

Theorem 1 Every connected graphof order 3ormore has a rainbowmean coloring.

For a rainbow mean coloring c of a graph G, the maximum vertex color is the
rainbow chromatic mean index (or simply, the rainbow mean index) rm(c) of c. That
is,

rm(c) = max{cm(v) : v ∈ V (G)}.
The rainbow chromatic mean index (or the rainbow mean index) rm(G) of the
graph G itself is defined as

rm(G) = min{rm(c) : cis a rainbow mean coloring of G}.
Two immediate observations were also made in [2].
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Observation 1 If G is a connected graph of order n ≥ 3, then rm(G) ≥ n.

Observation 2 If c is a rainbow mean coloring of a connected graph G, then

∑

v∈V (G)

deg v · cm(v) = 2
∑

e∈E(G)

c(e).

Furthermore, if the order of G is n and rm(c) = n, then
∑

v∈V (G) cm(v) = (n+1
2

)
.

The rainbow mean index was obtained in [2] for paths, cycles, and complete
graphs.

Theorem 2 For an integer n ≥ 3,

rm(Pn) =
{
n if n �= 4
5 if n = 4.

Theorem 3 For an integer n ≥ 3,

rm(Cn) =
{

n if n ≡ 0, 1 (mod 4)
n + 1 if n ≡ 2, 3 (mod 4)

Theorem 4 For an integer n ≥ 4,

rm(Kn) =
{

n if n �≡ 2 (mod 4)
n + 1 if n ≡ 2 (mod 4).

The rainbow mean index was determined for the complete bipartite graphs Ks,t ,
1 ≤ s ≤ t and s + t ≥ 3, in [5], with the case s = 1 observed in [2].

Theorem 5 Let s and t be integers with 1 ≤ s ≤ t and n = s + t ≥ 3. Then

rm(Ks,t ) =
⎧
⎨

⎩

n if st iseven
n + 1 if st is odd and s ≥ 3
n + 2 if t is odd and s = 1.

In a rainbow mean coloring of a connected graph G of order at least 3, each edge
of G is assigned a positive integer color in such a way that every vertex color is an
integer and all vertex colors are distinct. Hence, it may be anticipated that at least in
some cases, vertex colors would be considerably larger than the order of the graph.
However, no such graph has yet been found. Indeed, from the results obtained on the
rainbowmean index of many connected graphsG of order n ≥ 3, the value of rm(G)

has always been either n or n + 1 with the one exception of stars of even order n ≥ 4,
which have rainbow mean index n + 2. In fact, the following conjecture was stated
in [2].
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Conjecture 1 For every connected graph G of order n ≥ 3,

n ≤ rm(G) ≤ n + 2.

Since only stars of even order n ≥ 4 have been shown to have rainbowmean index
different from n or n + 1, this suggests studying the rainbow mean index of trees
related to stars in some manner. In this paper, we determine the rainbow mean index
of three classes of trees, namely cubic caterpillars, subdivided stars, and double stars.

3 The Rainbow Mean Index of Trees

Let c be a rainbow mean coloring of a connected graph G. For a vertex v of G, the
chromatic sum cs(v) of v is defined as the sum of the colors of the edges incident
with v. Hence, cs(v) = ∑

e∈Ev
c(e) = deg v · cm(v).

Observation 3 Let G be a connected bipartite graph with partite sets U and W . If
c is an edge coloring of G, then

∑
u∈U cs(u) = ∑

w∈W cs(w).

A connectedgraphof order 3 ormorewith a rainbowmean coloring is referred to as
amean colored-graph. A vertex v of a mean colored-graph G is called chromatically
odd if cs(v) = deg v · cm(v) is an odd integer; otherwise, v is chromatically even.
The following are consequences of Observation 2.

Corollary 1 Every mean colored-graph contains an even number of chromatically
odd vertices.

Corollary 2 If G is a connected graph of order n ≥ 6 with n ≡ 2 (mod 4) all of
whose vertices are odd, then rm(G) ≥ n + 1.

By Theorem 5, for each integer n ≥ 3,

rm(K1,n−1) =
{
n if n is odd
n + 2 if n is even.

(1)

Consequently, if n �≡ 0, 2 (mod 4), then rm(K1,n−1) = n. Of course, by Corollary 2,
if n ≡ 2 (mod 4), then rm(K1,n−1) �= n. This brings up the question of determining
rm(T ) for those trees of order 5 or more which is neither a path nor a star. Figure 1
shows trees T (that are not paths or stars) of order n where n ∈ {5, 6}. With one
exception, rm(T ) = n for all these trees T . For this one exception, the tree T has
order 6 and all vertices have odd degree. Of course, by Corollary 2, the rainbowmean
index of this tree is at least 7. As shown in Fig. 1, rm(T ) = 7 for this tree T .

Figure 2 shows all trees T (that are not paths or stars) of order 7 together with
a rainbow mean coloring for each of these trees. Thus, every tree of order 7 has
rainbow mean index 7.
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Fig. 3 Trees of order 8 all of whose vertices are odd

There are three tree of order 8 all of whose vertices are odd, one of which is K1,7.
As we saw, rm(K1,7) = 10. However, as shown in Fig. 3, the rainbow mean index
of the two remaining such trees of order 8 is 8.

These observations lead us to the following conjecture.

Conjecture 2 Let T be a tree of order n ≥ 5 that is not a star. Then rm(T ) = n if and
only if (i) n �≡ 2 (mod 4) or (i i) n ≡ 2 (mod 4) and T has at least one even vertex;
while rm(T ) = n + 1 if n ≡ 2 (mod 4) and all vertices of T have odd degrees.

4 Cubic Caterpillars

A tree T is often referred to as r -regular for some integer r ≥ 2 if every non-leaf
of T has degree r . A caterpillar T is a tree of order 3 or more, the removal of whose
leaves produces a path called the spine of T . A star is therefore a caterpillar with
a trivial spine. A caterpillar T is cubic if deg v = 3 for every non-leaf v of T . We
now consider the class of cubic caterpillars Tn of even order n = 2� ≥ 6 consisting
of the path (u0, u1, . . . , u�) of order � + 1 and � − 1 additional pendant edges uivi
where 1 ≤ i ≤ � − 1. The vertices ui , 1 ≤ i ≤ � − 1, thus have degree 3 and all other
vertices of Tn are leaves. The spine of the caterpillar Tn is therefore (u1, u1, . . . , u�−1).

Theorem 6 For each integer n ≥ 6,

rm(Tn) =
{
n if n ≡ 0 (mod 4)
n + 1 if n ≡ 2 (mod 4).

Proof Assume first that n ≡ 0 (mod 4). Then n = 4k for some integer k ≥ 2. To
show that rm(Tn) = n in this case, it suffices to show that there is a rainbow mean
coloring c of Tn with rm(c) = n. Then Tn consists of the path P = (u0, u1, . . . , u2k)
of order 2k + 1 along with 2k − 1 additional pendant edges uivi where 1 ≤ i ≤
2k − 1. Let c be the edge coloring of Tn defined by
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c(e) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2i if e = uivi for 1 ≤ i ≤ 2k − 2
4k − 3 if e = u2k−1v2k−1

1 if e = u0u1
2i + 4 if e = uiui+1 where1 ≤ i ≤ 2k − 3 and i is odd
2i + 1 if e = uiui+1 where2 ≤ i ≤ 2k − 4 and i is even
4k if e = u2k−2u2k−1, u2k−1u2k .

Then the chromatic means of the vertices of Tn are given by

cm(ui ) =
⎧
⎨

⎩

2i + 1 if 0 ≤ i ≤ 2k − 3 or i = 2k − 1
2i + 2 if i = 2k − 2
2i if i = 2k

cm(vi ) =
{

2i if 1 ≤ i ≤ 2k − 2
2i − 1 if i = 2k − 1.

Hence, c is a rainbow mean coloring with rm(c) = n and so rm(Tn) = n if n ≡
0 (mod 4).

Next, suppose that n ≡ 2 (mod 4). Then n = 4k + 2 for a positive integer k.
Then Tn consists of the path P = (u0, u1, . . . , u2k+1) of order 2k + 2 and 2k addi-
tional pendant edges uivi where 1 ≤ i ≤ 2k. Since n ≡ 2 (mod 4) and each vertex
of Tn is odd, it follows by Corollary 2 that rm(Tn) ≥ n + 1. It therefore suffices to
show that there is a rainbow mean coloring c of Tn with rm(c) = n + 1. Let c be the
edge coloring of Tn defined by

c(e) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2 if e = u1v1
2i + 1 if e = uivi for 2 ≤ i ≤ 2k

1 if e = u0u1
2i + 4 if e = uiui+1 where 1 ≤ i ≤ 2k − 1 and i is odd
2i + 3 if e = uiui+1 where 2 ≤ i ≤ 2k and i is even.

Then the chromatic means of the vertices of Tn are given by

cm(ui ) =
{
2i + 1 if i = 0, 1, 2k + 1
2i + 2 if 2 ≤ i ≤ 2k

cm(vi ) =
{

2 if i = 1
2i + 1 if 2 ≤ i ≤ 2k.

Hence, c is a rainbow mean coloring with rm(c) = n + 1 and so rm(Tn) = n + 1 if
n ≡ 2 (mod 4). �
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5 Subdivided Stars

The subdivision graph S(G) of a graph G is that graph obtained from G by subdi-
viding each edge of G exactly once (that is, by replacing each edge e = uv of G
by a new vertex we and the two new edges uwe and vwe, where we is called the
subdivision vertex of e). If G is a graph of order n and sizem, then the order of S(G)

is n + m and its size is 2m.

Theorem 7 For each integer t ≥ 3, rm(S(K1,t )) = 2t + 1.

Proof Let G = S(K1,t ) be the subdivision graph of the star K1,t , where t ≥ 3. Then
the order of G is n = 2t + 1. By Observation 1, it suffices to show that there is a
rainbow mean coloring c of G with rm(c) = n. We consider two cases, according to
whether t is even or t is odd.

Case 1. t ≥ 4 is even. Then t = 2k for some integer k ≥ 2. Let

V (K1,2k) = {u1, u2, . . . , uk} ∪ {x1, x2, . . . , xk} ∪ {w},
where w is the central vertex of K1,2k . For each integer i with 1 ≤ i ≤ k, let vi be
the subdivision vertex of uiw and let yi be the subdivision vertex of xiw. Define the
edge coloring c : E(G) → [4k + 1] as follows: For 1 ≤ i ≤ k,

c(uivi ) = 2i − 1, c(viw) = 2i + 1,
c(xi yi ) = 2k + 2i + 1, and c(yiw) = 2k + 2i − 1.

Then the chromatic means of the vertices of G are given by

cm(ui ) = 2i − 1 and cm(vi ) = 2i for 1 ≤ i ≤ k,
cm(w) = 2k + 1,

cm(xi ) = 2k + 2i + 1 and cm(yi ) = 2k + 2i for 1 ≤ i ≤ k.

Thus, c is a rainbow mean coloring of G with rm(c) = 4k + 1.

Case 2. t ≥ 3 is odd. Then t = 2k + 1 for some positive integer k. Let

V (K1,2k+1) = {u1, u2, . . . , uk} ∪ {x1, x2, . . . , xk−1} ∪ {w1, z1} ∪ {w},
where w is the central vertex of K1,2k+1. For each integer i with 1 ≤ i ≤ k, let vi
be the subdivision vertex of uiw for 1 ≤ i ≤ k, let yi be the subdivision vertex of
xiw for 1 ≤ i ≤ k − 1, let w2 be the subdivision vertex of w1w, and let z2 be the
subdivision vertex of z1w. Define the edge coloring c : E(G) → [4k + 3] by

c(uivi ) = 2i − 1 and c(viw) = 2i + 1 for 1 ≤ i ≤ k
c(w1w2) = 2k + 3, c(w2w) = 2k − 1,
c(z1z2) = 2k + 4, c(z2w) = 2k + 6,

c(xi yi ) = 2k + 2i + 5, and c(yiw) = 2k + 2i + 3 for 1 ≤ i ≤ k − 1.

Then the chromatic means of the vertices of G are given by

cm(ui ) = 2i − 1 and cm(vi ) = 2i for 1 ≤ i ≤ k,
cm(w) = 2k + 2, cm(w1) = 2k + 3, cm(w2) = 2k + 1,

cm(z1) = 2k + 4, cm(z2) = 2k + 5
cm(xi ) = 2k + 2i + 5 and cm(yi ) = 2k + 2i + 4 for 1 ≤ i ≤ k − 1.

Thus, c is a rainbow mean coloring of G with rm(c) = 4k + 3. �
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6 Double Stars

We saw in Theorem 5 that the rainbow mean index of the star K1,t , t ≥ 2, is t + 1
if t even and is t + 3 if t is odd. In fact, the stars of even order 4 or more are the only
connected graphs whose rainbow mean index has been shown to be neither the order
nor one plus the order of the graph. This suggests investigating the rainbow mean
index of the related double stars class of graphs. For integers a and bwith 2 ≤ a ≤ b,
the double star Sa,b is that tree of order a + b (and size a + b − 1) and diameter 3
whose central vertices u and v have degrees a and b, respectively. The vertex u is thus
adjacent to a − 1 end-vertices, denoted by u1, u2, . . . , ua−1, while v is adjacent to
b − 1 end-vertices, denoted by v1, v2, . . . , vb−1. First, we determine rm(Sa,a) where
a ≥ 2. Since rm(S2,2) = rm(P4) = 5 by Theorem 2, we may assume that a ≥ 3.

Theorem 8 For each integer a ≥ 3,

rm(Sa,a) =
{
2a if a is even
2a + 1 if a is odd.

Proof Suppose that u and v are the central vertices of G = Sa,a where u is adja-
cent to the a − 1 end-vertices u1, u2, . . . , ua−1 and v is adjacent to the a − 1 end-
vertices v1, v2, . . . , va−1. We consider two cases, according to whether a is even or
a is odd.

Case 1. a ≥ 4 is even. Then a = 2k for some integer k ≥ 2. Since the order of G
is 4k, it suffices to show that there is a rainbowmean coloring c ofG with rm(c) = 4k
by Observation 1. Define the edge coloring c such that

{c(uui ) : 1 ≤ i ≤ 2k} = [k] ∪ [3k + 1, 4k − 1]
c(uv) = k

{c(vvi ) : 1 ≤ i ≤ 2k} = ([k + 1, 3k] ∪ {4k}) − {2k − 1, 2k + 1}.

Then the chromatic means of the vertices of G are given by

cm(ui ) = c(uui ) and cm(vi ) = c(vvi ) for 1 ≤ i ≤ 2k,
cm(u) = 2k − 1 and cm(v) = 2k + 1.

Thus, c is a rainbow mean coloring of G with rm(c) = 4k.

Case 2. a ≥ 3 is odd. Then a = 2k + 1 for some positive integer k. Since the
order of G is 4k + 2 and every vertex of G is odd, it follows by Corollary 2 that
rm(G) ≥ 4k + 3. Thus, it remains to show that there is a rainbow mean coloring c
of G with rm(c) = 4k + 3. An edge coloring c is defined as follows:

c(uiu) = 2i − 1 for 1 ≤ i ≤ k and c(uiu) = 2i + 1 for k + 1 ≤ i ≤ 2k
c(viv) = 2i for 1 ≤ i ≤ k and c(viv) = 2i + 2 for k + 1 ≤ i ≤ 2k − 1,

c(uv) = 2k + 1 and c(v2kv) = 4k + 3.

Then the chromatic means of the vertices of G are given by
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cm(ui ) = c(uiu) for 1 ≤ i ≤ 2k and cm(vi ) = c(viv) for 1 ≤ i ≤ k,
cm(u) = 2k + 1 and cm(v) = 2k + 2.

Thus, c is a rainbow mean coloring of G with rm(c) = 4k + 3. �

If a, b ≥ 3 are odd and a ≡ b (mod 4), it then follows by Corollary 2 that
rm(Sa,b) ≥ a + b + 1. In fact, rm(Sa,b) = a + b + 1 as we show next.

Theorem 9 If a and b are odd integers with a, b ≥ 3 and a ≡ b (mod 4), then

rm(Sa,b) = a + b + 1.

Proof By Theorem 8, we may assume that a < b. Since a and b are odd integers and
a ≡ b (mod 4), it follows that either a and b are both congruent to 1 modulo 4 or a
and b are both congruent to 3 modulo 4. In each case, a + b ≡ 2 (mod 4) and every
vertex of G is odd. Hence, rm(G) ≥ a + b + 1 by Corollary 2. Thus, it remains to
show that there is a rainbow mean coloring c of G with rm(c) = a + b + 1. We
consider these two cases.

Case 1. a ≡ 1 (mod 4) and b ≡ 1 (mod 4). Then a = 4 j + 1 and b = 4k + 1
for some integers j, k with 1 ≤ j < k. Let u and v be the central vertices of G =
S4 j+1,4 j+1 where u is adjacent to the a − 1 = 4 j end-vertices u1, u2, . . . u4 j and v is
adjacent to the b − 1 = 4k end-vertices v1, v2, . . . , v4k . Define the edge coloring c
by

{c(uui ) : 1 ≤ i ≤ 4 j} = [4 j + 1] − {2 j + 1},
c(uv) = 2 j + 1

{c(vvi ) : 1 ≤ i ≤ 4k} = [4 j + 2, 4 j + 4k + 3] − {2k + 2 j + 2, 2k + 4 j + 2}.
Then the chromatic means of the vertices of G are given by

cm(ui ) = c(uui ) for 1 ≤ i ≤ 4 j ,
cm(u) = 2 j + 1, cm(v) = 2k + 4 j + 2.

cm(vi ) = c(vvi ) for 1 ≤ i ≤ 4k.

Thus, c is a rainbow mean coloring of G with rm(c) = 4 j + 4k + 3.

Case 2. a ≡ 3 (mod 4) and b ≡ 3 (mod 4). Then a = 4 j + 3 and b = 4k + 3
for some integers j, k with 0 ≤ j < k. Let u and v be the central vertices of G =
S4 j+3,4 j+3 where u is adjacent to the a − 1 = 4 j + 2 end-vertices u1, u2, . . . u4 j+2

and v is adjacent to the b − 1 = 4k + 2 end-vertices v1, v2, . . . , v4k+2. Define the
edge coloring c by

{c(uui ) : 1 ≤ i ≤ 4 j + 2} = [4 j + 3] − {2 j + 2},
c(uv) = 2 j + 2

{c(vvi ) : 1 ≤ i ≤ 4k + 2} =
[4 j + 4, 4 j + 4k + 7] − {2k + 2 j + 4, 2k + 4 j + 5}.

Then the chromatic means of the vertices of G are given by
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cm(ui ) = c(uui ) for 1 ≤ i ≤ 4 j + 2,
cm(u) = 2 j + 2, cm(v) = 2k + 4 j + 5.
cm(vi ) = c(vvi ) for 1 ≤ i ≤ 4k + 2.

Thus, c is a rainbow mean coloring of G with rm(c) = 4 j + 4k + 7. �
We now turn our attention to the double stars Sa,b where 2 ≤ a < b and at least

one of a and b is even.

Theorem 10 If a and b are integers with 2 ≤ a < b such that ab is even, then

rm(Sa,b) = a + b.

Proof LetG = Sa,b where 2 ≤ a < b and ab is even. ByObservation 1, it suffices to
show that there is a rainbow mean coloring c of G with rm(c) = a + b. We consider
three cases, according to the parities of a and b.

Case 1. a and b are both even. Then a = 2 j and b = 2k where j and k are
integers and 1 ≤ j < k. Let u and v be the central vertices of G = S2 j,2k where u is
adjacent to the a − 1 = 2 j − 1 end-vertices u1, u2, . . . u2 j−1 and v is adjacent to the
b − 1 = 2k − 1 end-vertices v1, v2, . . . , v2k−1. It suffices to show that there exists a
rainbow mean coloring c with rm(c) = a + b. Define the edge coloring c by

{c(uui ) : 1 ≤ i ≤ 2 j − 1} = [ j + 1, 3 j − 1],
c(uv) = 2 j ( j + 1)

{c(vvi ) : 1 ≤ i ≤ 2k − 1} = [ j] ∪ [3 j + 1, 2 j + 2k] − {2 j + k}.
Then the chromatic means of the vertices of G are given by

cm(ui ) = c(uui ) for 1 ≤ i ≤ 2 j − 1,
cm(u) = 3 j , cm(v) = 2 j + k.

cm(vi ) = c(vvi ) for 1 ≤ i ≤ 2k − 1.

Since j + 1 ≤ k, it follows that cm(u) �= cm(v). Thus, c is a rainbowmean coloring
of G with rm(c) = 2 j + 2k.

Case 2. a ≥ 3 is odd and b ≥ 4 is even. Then a = 2 j + 1 and b = 2k for some
integers j, k with 1 ≤ j < k. Let u and v be the central vertices of G where u
is adjacent to the a − 1 = 2 j end-vertices u1, u2, . . . , u2 j and v is adjacent to the
b − 1 = 2k − 1 end-vertices v1, v2, . . . , v2k−1. Define the edge coloring c by

c(uui ) = i for 1 ≤ i ≤ 2 j , c(uv) = 2 jk + 2 j + k + 1
{c(vvi ) : 1 ≤ i ≤ 2k − 1} = [2 j + 1, 2k + 2 j + 1] − {k + j + 1, k + 3 j + 1}.

Then the chromatic means of the vertices of G are given by

cm(ui ) = c(uui ) for 1 ≤ i ≤ 2 j , cm(u) = k + j + 1, cm(v) = k + 3 j + 1.
cm(vi ) = c(vvi ) for 1 ≤ i ≤ 2k − 1.

Thus, c is a rainbow mean coloring of G with rm(c) = 2 j + 2k + 1.

Case 3. a ≥ 2 is even, and b ≥ 3 is odd. Then a = 2 j and b = 2k + 1 where
1 ≤ j ≤ k. Let u and v be the central vertices of G where u is adjacent to the
a − 1 = 2 j − 1 end-vertices u1, u2, . . . u2 j−1 and v is adjacent to the b − 1 = 2k
end-vertices v1, v2, . . . , v2k . Define the edge coloring c by
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{c(uui ) : 1 ≤ i ≤ 2 j − 1} = [ j + k + 2, 3 j + k],
c(uv) = 2 j ( j + 1) + k + 1

{c(vvi ) : 1 ≤ i ≤ 2k} = [ j + k] ∪ [3 j + k + 2, 2 j + 2k + 1].
Then the chromatic means of the vertices of G are given by

cm(ui ) = c(uui ) for 1 ≤ i ≤ 2 j − 1,
cm(u) = 3 j + k + 1, cm(v) = j + k + 1.

cm(vi ) = c(vvi ) for 1 ≤ i ≤ 2k.

Thus, c is a rainbow mean coloring of G with rm(c) = 2 j + 2k + 1. �

The one remaining class of double stars Sa,b for which the rainbow mean index
has not yet been determined is that where a and b are both odd and a �≡ b (mod 4).
In order to present a result dealing with this class, it is convenient to establish the
following two lemmas.

Lemma 1 For positive integers a and b with a ≤ b and the set

X = [4a + 4b + 4] − {2a + 2b + 1, 2a + 2b + 3},

let s1 =
4a∑

i=1

i and s2 =
4a∑

i=1

(4b + 4 + i). For every integer s with s1 ≤ s ≤ s2, there

exists a (4a)-element subset S of X such that
∑

x∈S
x = s.

Proof First, we show that there exists a (4a)-element subset S ⊆ [4a + 4b + 4] such
that

∑
x∈S x = s. If s = s1 or s = s2, then the result holds. Thus, we may assume

that s1 < s < s2. Let m be the minimum integer in [4b + 4] such that

[m + (m + 1) + · · · + (m + 4a − 1)] < s <

[(m + 1) + (m + 2) + · · · + (m + 4a)].
Let t = (m + 1) + (m + 2) + · · · + (m + 4a − 1). Therefore, m + t < s < t +
(m + 4a). Thus, s = m + t + r for some integer r with 1 ≤ r ≤ 4a − 1. Conse-
quently, by adding 1 to the last r terms in the sum m + (m + 1) + · · · + (m + 4a −
1), we obtain the (4a)-element set

T = {m,m + 1, . . . ,m + 4a − r − 1} ∪ {m + 4a − r + 1,m + 4a − r +
2, . . . ,m + 4a}

such that
∑

x∈T x = s.
It remains to show that there are 4a distinct integers in X whose sum is s. Of

course, if neither 2a + 2b + 1 nor 2a + 2b + 3 belongs to T , then T has the desired
property. Thus, we may assume that at least one of 2a + 2b + 1 and 2a + 2b + 3
belongs to T , say 2a + 2b + 1 ∈ T .

� If 2a + 2b + 3 ∈ T as well, then we remove 2a + 2b + 1 and 2a + 2b + 3
from T and replace them by 1 and 4a + 4b + 3, obtaining the set T1 ⊆ X such
that the sum of elements in T1 is s.
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� If 2a + 2b + 3 /∈ T , then either 2a + 2b ∈ T or 2a + 2b + 2 ∈ T , say the for-
mer. Hence, we remove 2a + 2b and 2a + 2b + 1 from T and replace them by 1
and 4a + 4b, obtaining the set T2 ⊆ X such that the sum of elements in T2 is s.�

Lemma 2 For positive integers a and b with a ≤ b and the set

X = [4a + 4b + 4] − {2a + 2b + 1, 2a + 2b + 3},

let s1 =
4a+2∑

i=1

i and s2 =
4a+2∑

i=1

(4b + 2 + i). For every integer s with s1 ≤ s ≤ s2, there

exists a (4a + 2)-element subset S of X such that
∑

x∈S
x = s.

Proof First, we show that there exists a (4a + 2)-element subset S ⊆ [4a + 4b + 4]
such that

∑
x∈S x = s. If s = s1 or s = s2, then the result holds. Thus, wemay assume

that s1 < s < s2. Let m be the minimum integer in [4b + 2] such that

[m + (m + 1) + · · · + (m + 4a + 1)] < s <

[(m + 1) + (m + 2) + · · · + (m + 4a + 2)].
Let t = (m + 1) + (m + 2) + · · · + (m + 4a + 1). Therefore, m + t < s < t +
(m + 4a + 2). Thus, s = m + t + r for some integer r with 1 ≤ r ≤ 4a + 1. Conse-
quently, by adding 1 to the last r terms in the sum m + (m + 1) + · · · + (m + 4a +
1), we obtain the (4a + 2)-element set

T = {m,m + 1, . . . ,m + 4a − r + 1} ∪ {m + 4a − r + 3,m + 4a − r +
4, . . . ,m + 4a + 2}

such that
∑

x∈T x = s.
It remains to show that there are 4a + 2 distinct integers in X whose sum is s. Of

course, if neither 2a + 2b + 1 nor 2a + 2b + 3 belongs to T , then T has the desired
property. Thus, we may assume that at least one of 2a + 2b + 1 and 2a + 2b + 3
belongs to T , say 2a + 2b + 1 ∈ T .

� If 2a + 2b + 3 ∈ T as well, then we remove 2a + 2b + 1 and 2a + 2b + 3
from T and replace them by 1 and 4a + 4b + 3, obtaining the set T1 ⊆ X such
that the sum of elements in T1 is s.

� If 2a + 2b + 3 /∈ T , then either 2a + 2b ∈ T or 2a + 2b + 2 ∈ T , say the for-
mer. Hence, we remove 2a + 2b and 2a + 2b + 1 from T and replace them by 1
and 4a + 4b, obtaining the set T2 ⊆ X such that the sum of elements in T2 is s.�

We are now prepared to present the following result.

Theorem 11 If a and b are odd integers with 3 ≤ a < b such that a �≡ b (mod 4),
then rm(Sa,b) = a + b.

Proof Let G = Sa,b. We show that there is a rainbow mean coloring c : E(G) →
[a + b] ofG with rm(c) = a + b such that cm(u) and cm(v) have certain prescribed
values. We consider two cases. In each case, we let
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A =
a−1∑

i=1

c(uui ) =
a−1∑

i=1

cm(ui )

B =
b−1∑

i=1

c(vvi ) =
b−1∑

i=1

cm(vi )

x = c(uv).

Observe that A + x = cm(u) · a and B + x = cm(v) · b. Furthermore,

A + B + cm(u) + cm(v) = 1 + 2 + · · · + (a + b) = (a+b+1
2

)
.

Case 1. a ≡ 3 (mod 4) and b ≡ 1 (mod 4). Then a = 4 j + 3 and b = 4k +
1 where 0 ≤ j < k. We show that there is a rainbow mean coloring c : E(G) →
[4k + 4 j + 4] of G with rm(c) = 4 j + 4k + 4 such that cm(u) = 2k + 2 j + 1 and
cm(v) = 2k + 2 j + 3. For such an edge coloring c of G, we have

A + x = (2k + 2 j + 1)(4 j + 3) = 8k j + 8 j2 + 6k + 10 j + 3

B + x = (2k + 2 j + 3)(4k + 1) = 8k j + 8 j2 + 14k + 2 j + 3

A + B = 1 + 2 + · · · + (4k + 4 j + 5) − (cm(u) + cm(v))

= (16k j + 8k2 + 8 j2 + 18k + 18 j + 10) − (4k + 4 j + 4)

= 16k j + 8k2 + 8 j2 + 14k + 14 j + 6.

Hence,

A = 8k j + 8 j2 + 3k + 9 j + 3

B = 8k j + 8k2 + 11k + 3 j + 3

x = 3k − j.

Therefore, such an edge coloring c ofG exists if there are 4a + 2 distinct elements in
the set X = [4k + 4 j + 4] − {2k + 2 j + 1, 2k + 2 j + 3} whose sum is A = 8k j +
8 j2 + 3k + 9 j + 3. The sum of the 4 j + 2 smallest integers in the set [4k + 4 j + 4]
is

(4 j+3
2

) = (2 j + 1)(4 j + 3) = 8 j2 + 10 j + 3;

while the sum of the 4 j + 2 largest integers in the set [4k + 4 j + 4] is
(2 j + 1)(8k + 4 j + 7) = 16k j + 8 j2 + 8k + 18 j + 7.

Since

8 j2 + 10 j + 3 ≤ A ≤ 16k j + 8 j2 + 8k + 18 j + 7,

it follows by Lemma 2 that there is a (4a + 2)-element subset S of X such that∑
x∈S x = S. Observe that the sum of integers in X − S is therefore B.

Case 2. a ≡ 1 (mod 4) and b ≡ 3 (mod 4). Then a = 4 j + 1 and b = 4k +
3 where 1 ≤ j ≤ k. We show that there is a rainbow mean coloring c : E(G) →
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[4k + 4 j + 4] of G with rm(c) = 4 j + 4k + 4 such that cm(u) = 2k + 2 j + 1 and
cm(v) = 2k + 2 j + 3. For such an edge coloring c of G, we have

A + x = (2k + 2 j + 1)(4 j + 1) = 8k j + 8 j2 + 2k + 6 j + 1

B + x = (2k + 2 j + 3)(4k + 3) = 8k j + 8 j2 + 18k + 6 j + 9

A + B = 16k j + 8k2 + 8 j2 + 14k + 14 j + 6.

Hence,

A = 8k j + 8 j2 − k + 7 j − 1

B = 8k j + 8k2 + 15k + 7 j + 7

x = 3k − j + 2.

Therefore, such an edge coloring c of G exists if there are 4a distinct elements in
the set X = [4k + 4 j + 4] − {2k + 2 j + 1, 2k + 2 j + 3} whose sum is A = 8k j +
8 j2 − k + 7 j − 1. The sum of the 4 j smallest integers in the set [4k + 4 j + 4] is

(4 j+1
2

) = 2 j (4 j + 1) = 8 j2 + 2 j ;

while the sum of the 4 j largest integers in the set [4k + 4 j + 4] is
2 j (8k + 4 j + 9) = 16k j + 8 j2 + 18 j .

Since 8 j2 + 2 j ≤ A ≤ 16k j + 8 j2 + 18 j , it follows by Lemma 1 that there is a 4a-
element subset S of X such that

∑
x∈S x = A. Again, the sum of integers in X − S

is therefore B. �

In summary, we have the following result.

Theorem 12 For integers a and b where a, b ≥ 2,

rm(Sa,b) =
{
a + b if abis even orabis odd anda + b �≡ 2 (mod 4)
a + b + 1 if abis odd anda + b ≡ 2 (mod 4).
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Examples of Edge Critical Graphs in Peg
Solitaire

Robert A. Beeler and Aaron D. Gray

Abstract Peg solitaire is a game in which pegs are placed in every hole but one and
the player jumps over pegs along rows or columns to remove them. Usually, the goal
is to remove all but one peg. In a 2011 paper, this game is generalized to graphs. In this
paper, we examine graphs in which any single edge addition changes solvability. In
order to do this, we introduce a family of graphs and provide necessary and sufficient
conditions for the solvability for this family. We show that infinite subsets of this
family are edge critical. We also determine the maximum number of pegs that can be
left on this family with the condition that a jump is made whenever possible. Finally,
we give a list of graphs on eight vertices that are edge critical.

Keywords Games on graphs · Peg solitaire · Critical graphs
AMS Subject Classification 05C57 (91A43, 05C35)

1 Introduction

Peg solitaire is a table game which traditionally begins with “pegs” in every space
except for one which is left empty (i.e., a “hole”). If in some row or column two
adjacent pegs are next to a hole (as in Fig. 1), then the peg in x can jump over the
peg in y into the hole in z. The peg in y is then removed. The goal is to remove every
peg but one. If this is achieved, then the board is considered solved [1, 12].
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Fig. 1 A Typical Jump in

Peg Solitaire, x ·−→
y ·z

1

x y z

2

x y z

3

x y z

In [6], this notion is generalized to graphs. A graph, G = (V, E), is a set of
vertices, V , and a set of edges, E . Because of the restrictions of peg solitaire, we
will assume that all graphs are finite, undirected, connected graphs with no loops
or multiple edges. For all undefined graph theory terminology, refer to West [18]. If
there are pegs in vertices x and y and a hole in z, then we allow the peg in x to jump
over the peg in y into the hole in z provided that xy, yz ∈ E . The peg in y is then
removed. This jump is denoted x ·−→

y ·z.
In general, the game begins with a starting state S ⊂ V which is a set of vertices

with holes. A terminal state T ⊂ V is a set of vertices that have pegs at the end of the
game. A terminal state T is associated with starting state S if T can be obtained from
S by a series of jumps. Unless otherwise noted, we will assume that S consists of a
single vertex. A graphG is solvable if there exists some vertex s so that, starting with
S = {s}, there exists an associated terminal state consisting of a single peg. A graph
G is freely solvable if for all vertices s so that, starting with S = {s}, there exists an
associated terminal state consisting of a single peg. A graph G is k-solvable if there
exists some vertex s so that, starting with S = {s}, there exists an associated terminal
state consisting of k nonadjacent pegs. In particular, a graph is distance 2-solvable
if there exists some vertex s so that, starting with S = {s}, there exists an associated
terminal state consisting of two pegs that are distance 2 apart.

We now include several results from previous studies of peg solitaire on graphs
that will aid us in our results.

Theorem 1 ([6, 7])

(i) The cycle Cn is freely solvable if and only if n is even or n = 3; Cn is distance
2-solvable in all other cases.

(ii) For n ≥ 2, the complete graph Kn is freely solvable.
(iii) For n ≥ 2 and m ≥ 2, the complete bipartite graph Kn,m is freely solvable.
(iv) The double star K1,1(a1; b1) is freely solvable if and only if a1 = b1 and b1 �= 1.

It is solvable if and only if a1 ≤ b1 + 1. It is distance 2-solvable if and only if
a1 = b1 + 2. It is (a1 − b1)-solvable if a1 ≥ b1 + 3.

The following proposition from [6] is also useful.

Proposition 1 ([6])

(i) If a graph G is k-solvable with the initial hole in s and a jump is possible, then

there is a first jump; say s ′′·−→
s′ ·s. Hence, if there are holes in s ′′ and s ′ and pegs

elsewhere, then G can be k-solved from this configuration.
(ii) (Inheritance Principle) Suppose that H is a k-solvable graph and G is a spanning

subgraph of H, then G is (at best) k-solvable.
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The following theorem allows the completion of the game in reverse by exchang-
ing the roles of pegs and holes. Beeler and Rodriguez [9] define the dual of a config-
uration of pegs on a graph as the arrangement of pegs obtained by reversing the roles
of pegs and holes. The dual of a configuration is particularly useful in determining
which initial holes can be used to solve the graph.

Theorem 2 (Duality Principle [6, 9]) Suppose that S is a starting state of G with
associated terminal state T . Let S′ and T ′ be the duals of S and T , respectively. It
follows that T ′ is a starting state of G with associated terminal state S′.

2 The Hairy Complete Bipartite Graph

In this section, we consider a family of graphs that generalize both the complete
bipartite graph and the double star. The hairy complete bipartite graph is the
graph on n + m + a1 + · · · + an + b1 + · · · + bm vertices obtained from the com-
plete bipartite graph Kn,m by appending ai pendant vertices to xi for i = 1, . . . , n
and appending b j pendant vertices to y j for j = 1, . . . ,m. We denote this graph
Kn,m(a1, . . . , an; b1, . . . , bm). Note that if n = m = 1, then the graph is the double
star. If n = 1 and m ≥ 2, then the graph is a tree of diameter four. As the solv-
ability of double stars and trees of diameter four has already been determined [7,
11], we assume that n ≥ 2 and m ≥ 2. Further, we will assume that a1 ≥ · · · ≥ an ,
b1 ≥ · · · ≥ bm , a1 ≥ 1, and

∑n
i=1 ai ≥ ∑m

j=1 b j . We denote the ai pendants adjacent
to xi by xi,1, . . . , xi,ai . We denote the b j pendants adjacent to y j by y j,1, . . . , y j,b j .
Let Xi = {xi,1, . . . , xi,ai }, let Y j = {y j,1, . . . , y j,b j }, let X = {x1, . . . , xn}, and let
Y = {y1, . . . , ym}. For S ⊂ V (G), the function ρ(S) gives the current number of
pegs in the set S. Figure2 shows an example of the hairy complete bipartite graph.

Berlekamp, Conway, and Guy [12] explore a helpful device for the elimination of
pegs. They define a package as a known configuration of pegs that may be eliminated
with a predetermined series of jumps. The elimination of these pegs is called a purge.
A purge acts as a type of “shortcut” that can be used to efficiently solve the game.
While not explicitly stated in [7], a proof in that paper extends the notion of a purge
to peg solitaire on graphs. In addition, [10] also discusses packages and purges in
peg solitaire on graphs.

Fig. 2 The hairy complete
bipartite graph
K3,4(3, 1, 1; 2, 1, 1, 0)
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Wewill use packages and purges to aid in our results. Suppose that the graphG has
a double star subgraph, K1,1(a1; b1), with a peg in x1 and a hole in y1. Assume that
ρ(X1) ≥ d and ρ(Y1) ≥ d.We can remove d pegs from both X1 and Y1 by performing
the jumps x1,i ·−→

x1 ·y1 and y1,i ·−→
y1 ·x1 for i = 1, . . . , d. Note that both before and after

this sequence there is a peg in x1 and a hole in y1. This sequence is called a double
star purge and is denoted DS(X1,Y1, d).

With this purge in mind, we now give necessary and sufficient conditions for the
solvability of the hairy complete bipartite graph. These conditions will be dependent
on a property P defined as: (i) n = 2, m is even, a1 ≥ 2, and a2 ≤ ∑m

j=1 b j or (ii)
n = 2, m is odd, a1 = a2 = 1, and

∑m
j=1 b j = 0. We define (∼P) as the negation of

property P.

Theorem 3 For the hairy complete bipartite graph G = Kn,m(a1, . . . , an; b1,…,
bm):

(i) If P, then the graph G is solvable if and only if
∑n

i=1 ai ≤ ∑m
j=1 b j + n − 1.

If (∼P), then the graph G is solvable if and only if
∑n

i=1 ai ≤ ∑m
j=1 b j + n.

(ii) If P, then the graph G is freely solvable if and only if
∑n

i=1 ai ≤ ∑m
j=1 b j +

n − 2. If (∼P), then the graph G is freely solvable if and only if
∑n

i=1 ai ≤∑m
j=1 b j + n − 1.

(iii) IfP, then the graphG is distance 2-solvable if and only if
∑n

i=1 ai = ∑m
j=1 b j +

n. If (∼P), then the graph G is distance 2-solvable if and only if
∑n

i=1 ai =∑m
j=1 b j + n + 1.

(iv) If P, then graph G is (
∑n

i=1 ai − ∑m
j=1 b j − n + 2)-solvable if

∑n
i=1 ai ≥

∑m
j=1 b j + n. If (∼P), then the graph G is (

∑n
i=1 ai − ∑m

j=1 b j − n + 1)-
solvable if

∑n
i=1 ai ≥ ∑m

j=1 b j + n + 1.

Proof We begin by establishing the necessary conditions for (i), (iii), and (iv). We
first examine the optimal method for solving the graph. The pegs in each cluster must
be eliminated. Hence all pegs in each Xi must be removed. To do so, a peg must
first be in xi . For this to occur, one of two jumps must be made, namely, y j,k ·−→

y j ·xi
or x�·−→

y j ·xi , where � �= i . Therefore, one of two double star purges is necessary,
namely DS(Xi ,Y j , d)or DS(Xi , X − {xi }, d). In the first, each Y j can “exchange”
b j pegs with Xi . In the second, each x�, where � ∈ {1, . . . , i − 1, i + 1, . . . , n}, can
“exchange” one peg with Xi . Hence

∑n
i=1 ai ≤ ∑m

j=1 b j + n is necessary for the
graph to be solvable (and also freely solvable). Moreover, if

∑n
i=1 ai ≥ ∑m

j=1 b j +
n + 1, then, at best,

∑n
i=1 ai − ∑m

j=1 b j − n pegs remain in the graph. Note that this
bound is only achievable in the (∼ P) case, aswewill show in the coming paragraphs.
Adjustments for the case of P will be discussed at the end of the proof.

We now show that the conditions given in (i), (iii), and (iv) are sufficient. Our
strategy will be to reduce the number of pegs in X1, . . . , Xn by exchanging pegs
with Y1, . . . ,Ym and, if necessary, X . To this end, we define a graph homomor-
phism φ : G → G ′, where G ′ = Kn,1(a1, . . . , an;∑m

j=1 b j ). The homomorphism φ

is defined by φ(y j ) = y′, φ(y j,�) = y′
s j+�, with s j = ∑ j−1

k=1 bk , and φ(v) = v for all
other vertices. Let Y ′ denote the set of all y′

s j+�.
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This homomorphism has the effect of collapsing the support vertices of Y1,…,
Ym . In addition, it allows the movement of a hole along each of the y j . This occurs
because as each Y j empties, the jumps xi,1·−→

xi ·y j and y j−1,1·−→
y j ·xi , for k �= j , results

in the hole in y j being moved to y j−1.
Beginwith the initial hole in y′. This corresponds to beginningwith the initial hole

in y j for some j . Perform the double star purge DS(Xn−i+1,Y ′, min{ρ(Y ′), an−i+1}),
for i = 1, . . . , n. Now ρ(Y j ) = 0 for j = 1, . . . ,m, ρ(X) = n, ρ(Y ) = m − 1, and
ρ(X1 ∪ · · · ∪ Xn) = ∑n

i=1 ai − ∑m
j=1 b j . Without loss of generality, assume that the

hole in Y is in ym .
If

∑n
i=1 ai = ∑m

j=1 b j , then this reduces G to the complete bipartite graph with a
hole in a single vertex. This is solvable with the final two pegs in xi and y j , for any
i and j . Thus, the graph may be solved with the final peg in xi , y j , xi,1, or y j,1 for
any i and j . Hence, G is freely solvable by the Duality Principle. This provides part
of the sufficient conditions in (ii).

If
∑n

i=1 ai ≥ ∑m
j=1 b j + 1, then let �be the greatest integer such thatρ(X�) ≥ 1. If

� = 1, then perform the double star purge DS(X1, X − {x1, x2},min{ρ(X1), ρ(X −
{x1, x2})}). If � ≥ 2, then for i = 1, . . . , �, perform the double star purge
DS(X�−i+1, X − {x�−i+1, x1},min{ρ(X�−i+1), ρ(X − {x�−i+1,x1})}) until two pegs
remain in X . We note that if n = 2, then we omit these purges. In any case, we then
jump x1,1·−→

x1 ·ym . If ∑n
i=1 ai ≥ ∑m

j=1 b j + n, then ρ(X1 ∪ · · · ∪ Xn) = ∑n
i=1 ai −

∑m
j=1 b j − n + 1, ρ(Y j ) = 0 for j = 1, . . . ,m, ρ(X) = 1, and ρ(Y ) = m.
If

∑m
j=1 b j + 1 ≤ ∑n

i=1 ai ≤ ∑m
j=1 b j + n − 1, then this reduces the graph to the

complete bipartite graph with a hole in x1. This is solvable with the final two pegs
in xi and y j , for any i and j . Thus, the graph may be solved with the final peg in xi ,
y j , xi,1, or y j,1 for any i and j . Hence, G is freely solvable by the Duality Principle.
This provides part of the sufficient conditions in (ii).

If
∑n

i=1 ai ≥ ∑m
j=1 b j + n, then let xq be the vertex in X with a peg and let q ′ be

an integer in {1, . . . , n} such that q ′ �= q. For k = 1, . . . , �m−2
2 �, jump xq · −→

y2k−1·xq ′

and xq ′ ·−→
y2k ·xq . We note that if m = 2 or m = 3, then we omit these jumps. Let � be

the greatest integer such that ρ(X�) ≥ 1
Assume that m is even. Then ρ(X1 ∪ · · · ∪ Xn) = ∑n

i=1 ai − ∑m
j=1 b j − n + 1,

ρ(Y j ) = 0 for j = 1, . . . ,m, ρ(X) = 1, and ρ(Y ) = 2. If � �= q and n = 2 (we note
that this occurs if a1 ≥ 2 and a2 ≤ ∑m

j=1 b j ), then jump xq ·−→
ym ·x� and ym−1·−→

x� ·ym
to end the game with ρ(X1 ∪ · · · ∪ Xn) = ∑n

i=1 ai − ∑m
j=1 b j − n + 1, ρ(X) = 0,

and ρ(Y ) = 1. In particular if
∑n

i=1 ai = ∑m
j=1 b j + n, then the graph is distance 2-

solvable since one peg remains in X1 ∪ · · · ∪ Xn and one peg remains in Y . If � �= q
and n ≥ 3, then let q ′′ be an integer in {1, . . . , n} such that q ′′ �= q and q ′′ �= �. Jump
xq · −→

ym−1·xq ′′ , xq ′′ ·−→
ym ·x�, and x�,1·−→

x� ·ym to end the game with ρ(X1 ∪ · · · ∪ Xn) =
∑n

i=1 ai − ∑m
j=1 b j − n, ρ(X) = 0, and ρ(Y ) = 1. If � = q, then jump x�·−→

ym ·xq ′ ,

xq ′ · −→
ym−1·x�, and x�,1·−→

x� ·ym to end the game with ρ(X1 ∪ · · · ∪ Xn) = ∑n
i=1 ai −∑m

j=1 b j − n, ρ(X) = 0, and ρ(Y ) = 1. We note that in the two previous cases if
∑n

i=1 ai = ∑m
j=1 b j + n + 1, then the graph is distance 2-solvable since one peg

remains in X1 ∪ · · · ∪ Xn and one peg remains in Y .
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Assume that m is odd. Then ρ(X1 ∪ · · · ∪ Xn) = ∑n
i=1 ai − ∑m

j=1 b j − n + 1,
ρ(Y j ) = 0 for j = 1, . . . ,m, ρ(X) = 1, and ρ(Y ) = 3. If � = q, n = 2, and ρ(Xq ′) =
0 (we note that this occurs if a1 = a2 = 1, and

∑m
j=1 b j = 0), then jump x�· −→

ym−2·xq ′ ,

xq ′ ·−→
ym ·x�, and ym−1·−→

x� ·ym to end the game with ρ(X1 ∪ · · · ∪ Xn) = ∑n
i=1 ai −∑m

j=1 b j − n + 1, ρ(X) = 0, and ρ(Y ) = 1. In particular if
∑n

i=1 ai = ∑m
j=1 b j + n,

then the graph is distance 2-solvable since one peg remains in X1 ∪ · · · ∪ Xn and
one peg remains in Y . If � = q, n = 2, and ρ(Xq ′) ≥ 1, then jump x�· −→

ym−2·xq ′ ,
xq ′ · −→

ym−1·x�, x�·−→
ym ·xq ′ , and xq ′,1·−→

xq ′ ·ym to end the game with ρ(X1 ∪ · · · ∪ Xn) =∑n
i=1 ai − ∑m

j=1 b j − n, ρ(X) = 0, and ρ(Y ) = 1. If � = q and n ≥ 3, then let �′

and �′′ be integers in {1, . . . , n} such that �, �′, and �′′ are distinct. Jump x�· −→
ym−2·x�′ ,

x�′ · −→
ym−1·x�′′ , x�′′ ·−→

ym ·x�, and x�,1·−→
x� ·ym to end the game with ρ(X1 ∪ · · · ∪ Xn) =∑n

i=1 ai − ∑m
j=1 b j − n, ρ(X) = 0, and ρ(Y ) = 1. If � �= q, then jump xq · −→

ym−2·x�,

x�· −→
ym−1·xq , xq ·−→

ym ·x�, and x�,1·−→
x� ·ym to end the game with ρ(X1 ∪ · · · ∪ Xn) =∑n

i=1 ai − ∑m
j=1 b j − n, ρ(X) = 0, and ρ(Y ) = 1. We note that in the three pre-

vious cases if
∑n

i=1 ai = ∑m
j=1 b j + n + 1, then the graph is distance 2-solvable

since one peg remains in X1 ∪ · · · ∪ Xn and one peg remains in Y .
In the above arguments we have established the necessary conditions for (i), (iii),

and (iv), aswell as the sufficient conditions for (i), (ii), (iii), and (iv).We nowestablish
the necessary conditions for (ii). Note that any graph that is not solvable is also not
freely solvable. For this reason, and because if P and

∑n
i=1 ai ≤ ∑m

j=1 b j + n − 2,
then G = Kn,m(a1, . . . , an; b1, . . . , bm) is solvable by (i), we need only show that if
P and

∑n
i=1 ai ≤ ∑m

j=1 b j + n − 1, then G is not freely solvable. To do so we need
only show that such a graph cannot be solved for a particular choice of the initial
hole.

Assume that the initial hole is in xi for some i ∈ {1, . . . , n}, and let j ∈ {1, . . . ,m}
and k ∈ {1, . . . , i − 1, i + 1, . . . , n}. Without loss of generality, one of two first
jumpsmay occur. If we jump y j,1·−→

y j ·xi (which is only possible if∑m
j=1 b j ≥ 1), then

ρ(X1, . . . , Xn) = ∑n
i=1 ai but ρ(Y1 ∪ · · · ∪ Ym) = ∑m

j=1 b j − 1. Since one fewer
peg in Y1, . . . ,Ym can be used to purge the pegs in X1, . . . , Xn , the graph is not solv-
able by (i). If we jump xk ·−→

y j ·xi , then ρ(X1, . . . , Xn) = ∑n
i=1 ai but ρ(X) = n − 1.

Since one fewer peg in X can be used to purge the pegs in X1, . . . , Xn , the
graph is not solvable by (i). Similar arguments are used to show that if (∼P) and∑n

i=1 ai ≤ ∑m
j=1 b j + n, then G is not freely solvable. Note the effect of property P

is that it allows the removal of one fewer peg from X1 ∪ · · · ∪ Xn than in the (∼P)

case, as described in the previous paragraph. For this reason, the remaining cases
follow analogously. �

There are several variants of peg solitaire on graphs [4, 5, 13–15]. One notable
variant is fool’s solitaire. In fool’s solitaire, the objective of the game is to leave the
maximum number of pegs on the graph G under the caveat that a jumpmust be made
whenever possible. This maximum number of pegs is the fool’s solitaire number of
G and is denoted Fs(G). For completeness, we include the fool’s solitaire number
for the hairy complete bipartite graph. A sharp upper bound on Fs(G) is α(G), the
independence number of G. For this reason, our strategy will be to attempt to solve
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the dual of the maximum independent set. If this is possible, then Fs(G) = α(G)

by Theorem2. More information on the fool’s solitaire problem can be found in [9,
17]. Note that for this theorem, we ignore the assumption that

∑n
i=1 ai ≥ ∑m

j=1 b j .

Theorem 4 For G = Kn,m(a1, . . . , an; b1, . . . , bm) with ai = 0 for i ≥ n − � + 1
and b j = 0, where j ≥ m − λ + 1 and � ≥ λ:

(i) If � = 0, then Fs(G) = ∑n
i=1 ai + ∑m

j=1 b j = α(G);
(ii) If 1 ≤ � ≤ n − 1, then Fs(G) = ∑n

i=1 ai + ∑m
j=1 b j + � = α(G);

(iii) If � = n, then Fs(G) = ∑n
i=1 ai + ∑m

j=1 b j + � − 1 = α(G) − 1.

Proof (i) Suppose that � = 0. This implies that λ = 0. Therefore ai ≥ 1 for all i and
b j ≥ 1 for all j . Amaximum independent set is A = X1 ∪ · · · ∪ Xn ∪ Y1 ∪ · · · ∪ Ym .
The dual of A is X ∪ Y . Jump y1·−→

x1 ·x1,1, x2·−→
y2 ·x1, and x1,1·−→

x1 ·y2. If n = 2 and
m = 2, then the dual is solved with the final peg in y2. If n = 3 and m = 2, then
jump x3·−→

y2 ·x1 to solve the dual. If n ≥ 4 and m ≥ 2, then the subgraph induced by
(X − {x1, x2}) ∪ Y is isomorphic to Kn−2,m with a hole in y1. Hence it is solvable.

(ii) Suppose that 1 ≤ � ≤ n − 1. A maximum independent set is A = X1 ∪ · · · ∪
Xn ∪ Y1 ∪ · · · ∪ Ym ∪ {xn−�+1, . . . , xn}. The dual of A is {x1, . . . , xn−�} ∪ Y . The
subgraph induced by {x1, . . . , xn−�+1} ∪ Y ∪ {xn−�+1} is isomorphic to Kn−�+1,m

with a hole in xn−�+1. Hence it is solvable.
(iii) Suppose that � = n. A maximum independent set is A = X ∪ Y1 ∪ · · · ∪ Ym .

The dual of A is Y . Since no pegs are adjacent in the dual, it is not solvable. Thus
at least one peg must be added to the dual. We add x1 to the dual to obtain Y ∪ {x1}.
The subgraph induced by Y ∪ {x1, x2} is isomorphic to K2,m with a hole in x2. Hence
it is solvable. �

3 Edge Critical Results

In [6], Beeler and Hoilman present an open problem considering the set of connected
graphs on n vertices and k edges, which they denote Gn,k . The problem is, given a
fixed n, determine the minimum k such that all graphs in Gn,k are solvable. In [3],
Beeler and Gray explore this problem by considering edge critical graphs. A graph
G is edge critical if the addition of any single edge to G changes the solvability of
G. We are particularly interested in the case when the addition of any single edge
to an unsolvable (solvable but not freely solvable) graph results in a solvable (freely
solvable) graph. An example of an edge critical graph is the cycle on an odd number
of vertices [2]. The odd cycle C2k+1 is distance 2-solvable by Theorem1. However,
the addition of a single edge results in a solvable graph as shown in [2]. An additional
family of edge critical graphs is explored in [3]. We now present families of edge
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critical hairy complete bipartite graphs. We denote the addition of edge uv to graph
G by G + uv. As a reminder, property P is when either: (i) n = 2,m is even, a1 ≥ 2,
and a2 ≤ ∑m

j=1 b j or (ii) n = 2, m is odd, a1 = a2 = 1, and
∑m

j=1 b j = 0. When
n ≥ 3, the analogous property Q is: (i) n ≥ 3, a1 ≥ n and

∑n
i=2 ai ≤ ∑m

j=1 b j or (ii)
n ≥ 3, a1 = · · · = an = 1, and

∑m
j=1 b j = 0.

Theorem 5 The hairy complete bipartite graph G = K2,m(a1, a2; 0, . . . , 0) is an
edge critical graph if P. For n ≥ 3, the hairy complete bipartite graph H =
Kn,m(a1, . . . , an; 0, . . . , 0) is edge critical if Q(ii).
Proof By Theorem3 if P, then G is (a1 + a2)-solvable with a1 + a2 − 1 pegs
remaining in X1 ∪ X2 and one peg remaining in Y . We now show that if P, then
any single edge addition to G allows the removal of at least one additional peg.
Likewise, if Q(ii), then H is solvable, but not freely solvable. Among these cases,
an additional edge can be inserted in one of six places (up to automorphism on the
vertices):

(1) An edge is inserted between x1,1 and x1,2. We note that this is only possible if
P(i). With the initial hole in x1, jump x1,1·−→

x1,2·x1, ym ·−→
x1 ·x1,2, and x2· −→

ym−1·x1.
For k = 1, . . . , m−2

2 , jump x1· −→
y2k−1·x2 and x2·−→

y2k ·x1. Then jump x1,2·−→
x1 ·ym to

end the game with ρ(X1) = a1 − 2 and ρ(Y ) = 1.
(2) An edge is inserted between x1,1 and x2,1. We note that this is only possible if

P(ii) or Q(ii). With the initial hole in x2,1, jump ym ·−→
x2 ·x2,1 and x1,1·−→

x2,1·x2. If
P(ii), then we end the game by solving the K2,m subgraph with a hole in ym . If
Q(ii), then we solve the Kn,m(1, . . . , 1, 0, 0; 0, . . . , 0) subgraph with a hole in
ym , which is solvable with the final two pegs in x1 and y1 by Theorem3. Hence,
it is freely solvable.

(3) An edge is inserted between x1,1 and x2. We relabel x1,1 as ym+1. If P,
then the graph is isomorphic to K2,m+1(a1 + a2 − 1, 0; 0, . . . , 0), which is
(a1 + a2 − 2)-solvable by Theorem3. If Q(ii), then the graph is isomorphic to
Kn,m+1(1, . . . , 1, 0; 0, . . . , 0) which is freely solvable.

(4) An edge is inserted between x1 and x2. Place the initial hole in x1. Assume
P(i). Jump ym ·−→

x2 ·x1, x1,1·−→
x1 ·x2, ym−1·−→

x2 ·x1, and x1,2·−→
x1 ·x2. Then for k =

1, . . . , m−2
2 , jump x2· −→

y2k−1·x1 and x1·−→
y2k ·x2 to end the gamewith ρ(X1) = a1 − 2

and a peg in x2.
Assume P(ii) or Q(ii). Jump x2,1·−→

x2 ·x1 and x1,1·−→
x1 ·x2. If P(ii), then we finish

the game by solving the K2,m subgraph with a hole in x1. If Q(ii), then we finish
the game by solving the Kn,m(1, . . . , 1, 0, 0; 0, . . . , 0) subgraph with a hole in
x1, which is freely solvable.

(5) An edge is inserted between y1 and y2. Place the initial hole in ym . Assume P(i).
Jump x1,1·−→

x1 ·ym , y1·−→
y2 ·x1, and x1,2·−→

x1 ·y2. If n = m = 2 and a1 = 2, then jump
x2·−→

y2 ·x1 to end the game with a single peg in x1. If n = m = 2 and a1 ≥ 3,
then jump x2·−→

y2 ·x1 and x1,3·−→
x1 ·y2 to end the game with ρ(X1) = a1 − 3 and

ρ(Y ) = 1. If n = 2 and m ≥ 3, then finish the game by solving the remaining
K2,m−1(a1 − 2, 0; 0, . . . , 0) subgraph after the first jump, which results in at
most a1 + a2 − 2 pegs remaining in the graph at the end of the game.
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Assume P(ii) or Q(ii). Jump x2,1·−→
x2 ·ym , y1·−→

y2 ·x2, and x1,1·−→
x1 ·y2. If n = 2, then

we finish the game by solving the K2,m−1 subgraph with a hole in x1. If n ≥ 3,
thenwefinish the game by solving the Kn−1,m(1, . . . , 1, 0, 0; 0, . . . , 0) subgraph
with a hole in y1, which is solvable by Theorem3.

(6) An edge is inserted between x1,1 and y1. Assume P(i). With the initial hole in
y1, jump x1,2·−→

x1 ·y1 and y1·−→
x1,1·x1. We finish the game by solving the K2,m(a1 −

2, 0; 0, . . . , 0) subgraph with a hole in y1, which results in at most a1 + a2 − 2
pegs remaining in the graph at the end of the game.
AssumeP(ii) orQ(ii). With the initial hole in x1, jump x1,1·−→

y1 ·x1 and x2,1·−→
x2 ·y1.

If n = 2, then we finish the game by solving the K2,m subgraph with a hole in x2.
If n ≥ 3, then we finish the game by solving the Kn,m(1, . . . , 1, 0, 0; 0, . . . , 0)
subgraph with a hole in x2, which is freely solvable.

The arguments are similar for when G is solvable, but not freely solvable, and the
addition of a single edge results in a freely solvable graph. �

Note that graphs in the family Q(i) are not edge critical. To see this, consider G =
Kn,m(a1, 0, . . . , 0; 0, . . . , 0) + x2x3, where n ≥ 3 and a1 ≥ n. This graph is (a1 −
n + 1)-solvable by Theorem3. Essentially, the only jumps that utilize the “new”
edge x2x3 are x2·−→

x3 ·y j and y j ·−→
x2 ·x3. Because neither of these jumps result in an

additional peg in X , neither jump will allow us to remove an additional peg from
X1. By adapting the P(i) jumps, it is easy to see that adding any other edge to
Kn,m(a1, 0, . . . , 0; 0, . . . , 0) for n ≥ 3 and a1 ≥ n will improve its solvability. The
existence of additional edge critical hairy complete bipartite graph families is left as
an open problem.

4 Graphs on Eight Vertices

The solvability of all 996 non-isomorphic connected graphs with at most seven
vertices is given in [2]. We now extend that catalog by giving the solvability of all
11,117 non-isomorphic connected graphs with eight vertices. The graphs are from
[16] and an exhaustive computer search [8] is used to determine solvability. Note
that all connected graphs on eight vertices and at least 12 edges are freely solvable.
Of the remaining 11,117 non-isomorphic graphs on eight vertices and at most eleven
edges, 94 are not freely solvable. In the interest of space, Figs. 3, 4, and 5 list only
those graphs that are not freely solvable.
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D 2

D DS DS

D DS D DS D 4

64

Fig. 3 Graphs with eight vertices and seven edges that are not freely solvable

In each figure, a black vertex indicates that the graph can be solved with the initial
hole in that vertex. If the graph is not solvable, then we list the minimum number of
pegs that can be obtained in a terminal state associated with a single vertex starting
state. If the graph is distance 2-solvable, then this is indicated with a ‘D’, and a black
vertex indicates that the graph can be distance 2-solved with the initial hole in that
vertex.

If the graph is edge critical, then we denote the maximum solvability after any
single edge addition with a superscript, where ‘D’ indicates distance 2-solvable, ‘S’
indicates solvable, but not freely solvable, and ‘F’ indicates freely solvable. If none
of these three apply, then we use the minimum number of pegs that can be obtained
in a terminal state associated with a single vertex starting state instead.
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4D D 4D
3D

D

DS DS

SF SF DS

SF SF

SF SF

SF

SF

Fig. 4 Graphs with eight vertices and eight edges that are not freely solvable
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D D D D SF

SF SF

SF

SF SF
SF

SF SF
SF

SF

SF

SF
DS DF SF SF

SF SF

Fig. 5 Graphs with eight vertices and at least nine edges that are not freely solvable
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Regular Tournaments with Minimum
Split Domination Number and Cycle
Extendability

Kim A. S. Factor, Larry Langley, and Sarah Merz

Abstract A set of vertices, S, in a strongly connected digraph D, is split dominating
provided it is: (1) dominating and (2) D − S is trivial or not strongly connected. The
split domination number of a strongly connected digraph is the minimum cardinality
of a split dominating set for that digraph.We show that for any k-regular tournament,
the split domination number is at least � 2k+3

3 � and this bound is tight. We explore
properties of regular tournaments with split domination number equal to the lower
bound, including sufficient conditions for {1}-extendability.

Keywords Domination · Separating set · Tournament · Split domination · Cycle
extendability

A set of vertices, S, in a graph is considered dominating when, for each vertex v in
the graph, either v ∈ S or there is an edge {s, v} in the graph for some s ∈ S. In a
digraph, a set of vertices, S, is considered dominating provided every vertex v in the
digraph is either an element of S, or there is an arc (s, v) in the digraph for some
s ∈ S. For a thorough introduction to graph theoretic domination, see [7]. For more
advanced topics, including an overview of domination in digraphs, see [6].

Variations on domination in both graphs and digraphs are well-studied. In this
paper, the variation considered is split domination. In a digraph D, a set of vertices S is
split dominating provided the following two conditions hold. First, S is a dominating
set. Second, removal of S results in a digraph, denoted by D − S, that is either trivial
or has a reduced level of connectedness. In this paper, we focus on strongly connected
digraphs. So S will be split dominating provided S is dominating and D − S is either
trivial or not strongly connected. Split domination was introduced in a (non-directed)
graph context in 1979 by Kulli and Janakiram [10]. More recently, this problem was
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Fig. 1 A 2-regular
tournament with split
domination number equal to
three

explored in graphs by Hedetniemi, Knoll, and Laskar [8] and in digraphs by Factor
and Merz [5] and Factor, Langley, and Merz [4].

A tournament is a directed graph with the property that for each pair of vertices
u and v, either (u, v) or (v, u) is an arc, but not both. Domination in tournaments
has been considered in [11–13]. The split domination number of a tournament T is
the minimum integer, denoted γs(T ), such that there is a split dominating set of size
γs(T ). For example, the tournament shown in Fig. 1 has split domination number
three. Dominating pairs occur in the tournament (any consecutive pair around the
outer cycle is dominating), but no such pair is separating. Add any third vertex to a
dominating pair and we have a split dominating set of size three. For more on this
particular example and its generalization to a tournament with any odd number of
vertices, see [5].

In a directed graph D, V (D) and A(D) denote the vertex and arc sets respectively.
If v ∈ V (D), the out-set of v and in-set of v are respectively

N+(v) = {u : (v, u) ∈ A(D)} and N−(v) = {u : (u, v) ∈ A(D)}.

If S ⊆ V (D), then N+
S (v) = N+(v) ∩ S and N−

S (v) = N−(v) ∩ S.
A regular tournament is a tournament such that |N+(v)| = |N+(u)| for all vertices

v and u. A k-regular tournament is one in which |N+(v)| = k for each vertex v. It
is well-known that k-regular tournaments are strongly connected. The consideration
of the split domination number of a k-regular tournament is a natural consequence.
In [5], Factor and Merz prove the following.

Proposition 1 If T is a k-regular tournament, then γs(T ) ≤ k + 1.

Furthermore, for all k ≥ 1, they provide a k-regular tournament T with γs(T ) =
k + 1. Their example for k = 2 is shown in Fig. 1. In Sect. 1, we provide a tight
lower bound for the split domination number of a regular tournament. In Sect. 2, we
discuss properties of k-regular tournaments with split domination number equal to
the lower bound.
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1 The Lower Bound

Since a tournament on n vertices has n(n − 1)/2 arcs, the average out-degree (and
average in-degree) of the vertices is (n − 1)/2. This means there is at least one
vertex of out-degree greater than or equal to (n − 1)/2 in any tournament, and that
relationship is strict if n is even. Likewise, in any tournament with n vertices, there
is a vertex with in-degree greater than or equal to (n − 1)/2 and if n is even we know
that there is a vertex with in-degree at least n/2.

Lemma 1 If T is a k-regular tournament, then γs(T ) ≥ 2k+1
3 .

Proof Let V be the vertex set of T . Assume S is a minimum size split dominating
set of T . Since the induced tournament on V − S is not strong, we may partition the
vertices of V − S into X and Y such that (x, y) is an arc for all x ∈ X and all y ∈ Y .
Observe that |S| + |X | + |Y | = 2k + 1.

Consider the subtournament induced by X . There must be at least one vertex x ′ in
X with |N+

X (x
′)| ≥ (|X | − 1)/2. Since x ′ is directed toward every vertex in Y , k =

|N+(x ′)| ≥ |X |−1
2 + |Y |. Therefore, (|X | − 1)/2 + |Y | ≤ k. By a similar argument,

there is some vertex y′ in Y such that k = |N−(y′)| ≥ |Y |−1
2 + |X | so (|Y | − 1)/2 +

|X | ≤ k. Adding the two inequalities yields |X | + |Y | ≤ 2(2k + 1)/3. Since |S| +
|X | + |Y | = 2k + 1, we conclude that |S| ≥ (2k + 1)/3. 
�
Theorem 1 If T is a k-regular tournament, then γs(T ) ≥ � 2k+3

3 �.
Proof By Lemma 1, we know that γs(T ) ≥ (2k + 1)/3. We will show that γs(T ) =
(2k + 1)/3 and γs(T ) = (2k + 2)/3 are impossible. Let S be a split dominating set
of minimum size. As in Lemma 1, partition the vertices of T − S into X and Y so
every vertex in X has an arc to every vertex in Y .

Case one: suppose γs(T ) = |S| = (2k + 1)/3. Since |S| + |X | + |Y | = 2k + 1,
|X | + |Y | = 2(2k + 1)/3. Suppose |X | < |Y |. That is,

|X | = 2k + 1

3
− w and |Y | = 2k + 1

3
+ w, for some integer w > 0.

Since T is a tournament, there exists x ′ ∈ X such that

|N+(x ′)| ≥ |X | − 1

2
+ |Y | = (2k + 1)/3 − w − 1

2
+ 2k + 1

3
+ w = k + w

2
.

This is a contradiction since T is k-regular. An analogous argument with insets rules
out the possibility that |Y | < |X |. Therefore, we know |X | = |Y | = (2k + 1)/3.

Since S is dominating, for all y ∈ Y , N−
S (y) �= ∅. Furthermore, there must be a

vertex y′ in Y such that |N−
Y (y

′)| ≥ (|Y | − 1)/2. Thus,

|N−(y′)| ≥ |N−
S (y

′)| + |Y | − 1

2
+ |X | ≥ 1 + (2k + 1)/3 − 1

2
+ 2k + 1

3
= k + 1.
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This is a contradiction since T is k-regular. Thus, γs(T ) > (2k + 1)/3.
Case two: suppose γs(T ) = (2k + 2)/3. Observe that |X | + |Y | = (4k + 1)/3

and this is odd. Consequently, either |X | or |Y | is odd and the other is even. Thus
|X | and |Y | differ by at least one. Since regular tournaments have an odd number
of vertices, it follows that |S| is even. Suppose |X | < |Y | − 1. Then |X | = 2k−1

3 −
w and |Y | = 2k+2

3 + w. Again, there must be some vertex x ′ in X such that

|N+(x ′)| ≥ |X | − 1

2
+ |Y | = (2k − 1)/3 − w − 1

2
+ 2k + 2

3
+ w = 2k

2
+ w

2
> k,

a contradiction since T is k regular. Similar arguments result in a contradiction when
|Y | < |X | − 1. Thus |X | and |Y | differ by exactly 1.

Suppose |X | = |Y | − 1. Then

4k + 1

3
= |X | + |Y | = 2|Y | − 1 ⇒ |Y | = 2k + 2

3
= |S| ⇒ |X | = 2k − 1

3
.

On the other hand, suppose |Y | = |X | − 1. Then

|X | = 2k + 2

3
= |S| and |Y | = 2k − 1

3
.

In either case, observe that the larger of the two sets is even. Since S is dominating,
for each vertex v /∈ S, N−(v) ∩ S �= ∅. If |Y | is odd, then there is some vertex y′ in
Y such that

|N−(y′)| ≥ |N−
S (y

′)| + |Y | − 1

2
+ |X | ≥ 1 + (2k − 1)/3 − 1

2
+ 2k + 2

3
= 1 + k,

a contradiction since T is k-regular. On the other hand, if |Y | is even, then there is
some vertex y′ in Y such that

|N−(y′)| ≥ |N−
S (y

′)| + |Y |
2

+ |X | = 1 + 2k + 2

6
+ 2k − 1

3
= 1 + k,

a contradiction making case two impossible. So γs(T ) ≥ �(2k + 3)/3�. 
�
Observe that the tournament shown in Fig. 1 is k-regular with split domination

number equal to �(2k + 3)/3�. Indeed, the bound in Theorem 1 is tight. When every
vertex in set X has an arc to every vertex in set Y , we write X → Y . If S is a set of
vertices in digraph D, D[S] is the subdigraph of D induced by S.

Theorem 2 For all natural numbers k ≥ 1, there is a k-regular tournament such
that γs(T ) = � 2k+3

3 �.
Proof A 3-cycle is an example for k = 1. The tournament in Fig. 1 is an example
for k = 2. So assume k ≥ 3. Observe that either 2k + 3, 2k + 4 or 2k + 5 must be a
multiple of 3. We consider each of these three cases.
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Fig. 2 An example of the construction when 3|(2k + 3)

Suppose
⌈
2k+3
3

⌉ = 2k+3
3 . Then k is a multiple of 3. Construct T as follows. Let

X and Y be sets of vertices of size (2k + 3)/3. Let W be a set of

(2k + 1) − 2(2k + 3)

3
= 2k − 3

3

vertices. Note that 2k + 3 and 2k − 3 are both odd, so (2k + 3)/3 and (2k − 3)/3
are also odd.

Create tournament T so that T [W ], T [X ] and T [Y ] are regular, W → X , and
Y → W . It may be that W is a single vertex. Arcs between X and Y are oriented
as follows. Label the vertices of X and Y by x0, x1, . . . , x2r and y0, y1, . . . , y2r
respectively. Orient an arc from yi toward xi and, if i �= j orient an arc from x j

toward yi . Figure 2 shows an example with k = 6.
Since T must be a regular tournament, every vertex must have in-degree of size

k and out-degree of size k. By our construction, for all w in W ,

|N+(w)| = |N−(w)| = |Y | + |W − 1|
2

= 2k + 3

3
+ (2k − 3)/3 − 1

2
= k.

Then the out-degree of each vertex of Y is

|Y − 1|
2

+ |W | + 1 = (2k + 3)/3 − 1

2
+ 2k − 3

3
+ 1 = k.

Because T is a tournament with 2k + 1 vertices in total, the in-degree of each vertex
in Y must also equal k, so the tournament is k-regular. Analogous reasoning shows
|N+(x)| = |N−(x)| = k for all x ∈ X . Observe that Y is dominating and that T − Y
is not strong, since all vertices of W are directed toward all vertices of X . Since
|Y | = (2k + 3)/3, by Theorem 1, γs(T ) = (2k + 3)/3.
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Fig. 3 An example of the construction when 3|(2k + 4)

Next, suppose 2k + 4 is a multiple of 3 with k ≥ 4. Let r = (2k + 1)/3. Let
T consist of three regular r -tournaments W , X , and Y with W → X , X → Y , and
Y → W . For every vertex v, |N+(v)| = |N−(v)| = (r − 1)/2 + r = k, T is regular.
Figure 3 shows an example with k = 7.

Consider S = W ∪ {x} for some x ∈ X . Since S is a split dominating set size
r + 1 = (2k + 4)/3, by Theorem 1, γs(T ) = (2k + 4)/3 = � 2k+3

3 �.
The final case to consider is when 2k + 5 is a multiple of 3. So k ≥ 5. Partition

the 2k + 1 vertices of T into sets W , X and Y where |X | = |Y | = (2k + 5)/3 and

|W | = 2k + 1 − 2(2k + 5)

3
= 2k − 7

3
.

Let each of the three sets induce a regular tournament,W → X and Y → W . Let r =
(2k + 5)/3. Let x0, . . . , xr and y0, . . . , yr denote the vertices of X andY respectively.
For i ∈ {0, . . . , r}, orient an arc from yi to xi and from yi to xi+1. All other arcs
between X and Y are oriented from the vertex in X toward the vertex in Y . See
Fig. 4.

Observe that for each w in W ,

|N+(w)| = |N−(w)| = |Y | + |W − 1|
2

= 2k + 5

3
+

2k−7
3 − 1

2
= k.

Label the vertices of X and Y by x0, x1, . . . , x2r and y0, y1, . . . , y2r respectively.
Orient an arc from yi toward xi and xi+1. If i �= j and i �= j − 1, orient an arc from
x j toward yi . Then the out-degree of each vertex of Y is

|Y − 1|
2

+ |W | + 2 = (2k + 5)/3 − 1

2
+ 2k − 7

3
+ 2 = k.
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Fig. 4 An example of the construction when 3|(2k + 5)

An analogous calculation shows that |N−(x)| = k for all x ∈ X . Thus, T is regular.
Observe thatY is a split dominating set of size (2k + 5)/3. So byTheorem1, γs(T ) =
(2k + 5)/3 = � 2k+3

3 �. 
�

2 Properties of Tournaments That Meet the Bound

The examples given in Theorem 2 share several common properties, yielding the
result that each of these tournaments is not {1}-extendable. In this paper, a cycle
in a digraph is assumed to be directed. If D is a digraph with n vertices, we say a
cycle C of length m < n is {1}-extendable if there is a single vertex x such that the
m vertices of C , together with x , induce a digraph that contains a cycle of length
m + 1. Cycle extendability has been considered in digraphs [1] and tournaments [2].
The connection between split domination and cycle extendability was introduced in
[3]. A digraph is {1}-extendable if every cycle in D is {1}-extendable. The following
result, due to Hendry, is relevant.

Proposition 2 [9] If T is a regular tournament, then T is not {1}-extendable if and
only if its vertex set can be partitioned into three non-empty sets W, X, and Y such
that T [W ] is a nontrivial regular tournament, W → X, Y → W, and |X | = |Y |.

Observe that each of the three constructions in Theorem 2 meets the conditions of
Proposition 2, proving that the tournaments constructed are not {1}-extendable. This
prompts us to wonder if there is any k-regular tournament satisfying the lower bound
of Theorem 1 that is {1}-extendable. The tournament in Fig. 5a is such an example,
where S is a split dominating set. You can see this tournament is {1}-extendable by
inspection using the fact that any strongly connected subtournament will have a cycle
containing all its vertices.
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Fig. 5 Tournament (a) and b are 5-regular. Not all arcs are shown. Any arc not shown within sets
X and S is directed from higher vertex to lower vertex. Any arc not shown between sets X and S is
directed from X to S. In tournament b, arcs not shown between V and S are directed from S to V .
T [X ] in tournament a and T [V ] in tournament b are not regular even though |X | and |V | are odd

A split dominating set in a tournament suggests a partition of the vertices, but
what are the properties of this partition and what are the similarities to the partition of
Proposition 2?Let S denote a split dominating set of sizeγs(T ). Let (V, X) denote the
partition of T − S into sets so that V → X and T [X ] is strong. Furthermore, assume
that γs(T ) satisfies the lower bound of Theorem 1. For the examples in Figs. 2 and
4, S = Y , V = W , and X is as labeled. For the example in Fig. 3, let w ∈ W . Then
S = Y ∪ {w}, V = W − {w}, and X is as labeled. In each of these examples, if |X |
is odd, then T [X ] is regular. The same can be said for V . This is not always the case,
as illustrated by the examples in Fig. 5. In a way, the examples of Fig. 5 are the only
exceptions. In order to prove this, we use the following lemma.

Lemma 2 Let T be a k-regular tournament with γs(T ) = � 2k+3
3 �, k ≥ 3. Let S be

a minimum split dominating set and (V, X) the partition of T − S so that V → X
and X is strong. Then

1. if γs(T ) = 2k+3
3 , then |V | = 2k

3 − 1,
2. if γs(T ) = 2k+4

3 , then |V | = 2k−5
3 or 2k−5

3 + 1, and
3. if γs(T ) = 2k+5

3 , then |V | = 2k−7
3 , 2k−7

3 + 1, or 2k−7
3 + 2.

Proof Let S be a split dominating set of size γs(T ). Then |V | + |X | = 2k + 1 −
γs(T ). Since for all x ∈ X , |N−(x)| = k and V ⊆ N−(x), the fact that S dominates
T , means that |V | ≤ k − 1. Thus

|X | ≥ 2k + 1 − γs(T ) − (k − 1) = k + 2 − γs(T ).

Furthermore, for all v ∈ V , X ⊆ N+(v) so |X | ≤ k. Therefore
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|V | ≥ 2k + 1 − γs(T ) − k = k + 1 − γs(T ).

This gives us the following bounds:

k + 1 − γs(T ) ≤ |V | ≤ k − 1 and k + 2 − γs(T ) ≤ |X | ≤ k. (1)

For the smallest cases, k = 3, 4, and 5, γs(T ) = 3, 4, and 5 respectively.Whenwe
observe that T [X ] strong implies that |X | �= 2, the bounds of (1) prove the lemma for
these values of k. Thus, we can assume that k ≥ 6. There are three cases to consider:
� 2k+3

3 � = 2k+3
3 , 2k+4

3 , or 2k+5
3 .

In each case, since k ≥ 6, 7, and 8, respectively, |V | ≥ 2 and |X | ≥ 3. Thus, there
exists v ∈ V with N+

V (v) ≥ 1 and since X ⊆ N+(v), we conclude that |X | ≤ k − 1.
Thus,

|V | = 2k + 1 − γs(T ) − |X | ⇒ |V | ≥ k + 2 − γs(T ).

Since |X | ≥ 3, for all x ∈ X , |N−
X (x)| ≥ 1, making |V | ≤ k − 2. Thus,

|X | = 2k + 1 − γs(T ) − |V | ⇒ |X | ≥ k + 3 − γs(T ).

Thus the bounds in (1) are tightened to

k + 2 − γs(T ) ≤ |V | ≤ k − 2 and k + 3 − γs(T ) ≤ |X | ≤ k − 1. (2)

Assume γs(T ) = (2k + 3)/3. Then (2), along with the fact that |V | + |X | = 2k +
1 − γs(T ), means that

|V | = k

3
+ w and |X | = k − w where 1 ≤ w ≤ γs(T ) − 3. (3)

There is a vertex x ∈ X with arcs from at least half the other vertices in X , all of V ,
and at least one vertex in S. So

k = |N−(x)| ≥ |V | + |X | − 1

2
+ 1 = 5k

6
+ w

2
+ 1

2
. (4)

Then

k ≥ 5k

6
+ w

2
+ 1

2
⇒ w ≤ k − 3

3
.

So |V | = k/3 + w ≤ (2k/3) − 1. Similarly, there exists v ∈ V such that

k = |N+(v)| ≥ |V | − 1

2
+ |X | = 7k

6
− w

2
− 1

2
⇒ w ≥ k − 3

3
. (5)

Thus, |V | = k
3 + w ≥ 2k

3 − 1. Therefore, |V | = 2k
3 − 1 if γs(T ) = 2k+3

3 .
Next, assume γs(T ) = (2k + 4)/3. In this case, instead of (3), we have
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|V | = k − 1

3
+ w and |X | = k − w where 1 ≤ w ≤ γs(T ) − 3.

Repeating the calculations in (4) and (5) yields 2k−5
3 ≤ |V | ≤ 2k−2

3 , thereby finishing
case two.

Finally, assume γs(T ) = (2k + 5)/5. Then (3) becomes

|V | = k − 2

3
+ w and |X | = k − w where 1 ≤ w ≤ γs(T ) − 3.

Repeating the calculations in (4) and (5) yields 2k−7
3 ≤ |V | ≤ 2k−1

3 . 
�
Finally, we show that the instances shown in Fig. 5 are the only cases where either

|V | is odd and T [V ] is not regular or |X | is odd and T [X ] is not regular.
Theorem 3 Let T be a k-regular tournament with γs(T ) = � 2k+3

3 �, k ≥ 3. Let S be
a minimum split dominating set and (V, X) the partition of T − S so that V → X
and X is strong. Then

1. if |V | is odd and |V | �= 2k−7
3 + 2 then T [V ] is regular, and

2. if |X | is odd and |X | �= 2k+5
3 , then T [X ] is regular.

Proof We consider the three cases, � 2k+3
3 � = 2k+3

3 , 2k+4
3 , or 2k+5

3 . First assume
γs(T ) = (2k + 3)/3. By Lemma 2, |V | = (2k − 3)/3. Thus,

|X | = 2k + 1 − γs(T ) − |V | = (2k + 3)/3.

Since 3|(2k + 3), (2k − 3)/3 is odd so we must show that T [V ] is regular. Suppose
not. Then there must be a vertex v ∈ V with arcs to more than half the other vertices
in V . Since X ⊆ N+(v), we find that

k = |N+(v)| ≥ |V | − 1

2
+ 1 + |X | = (2k − 3)/3 − 1

2
+ 1 + 2k + 3

3
= k + 1,

(6)
a contradiction. Therefore, T [V ] is regular.

Note |X | is also odd. Suppose T [X ] is not regular. Then some vertex x ∈ X has
arcs frommore than half the other vertices in X , in addition to arcs from every vertex
in V and at least one vertex in S. That is,

k = |N+(x)| ≥ |V | + |X | − 1

2
+ 1 + 1 ≥= k + 1, (7)

a contradiction. Thus T [X ] is regular.
Next, assume that γs(T ) = (2k + 4)/3. By Lemma 2, |V | = (2k − 8)/3 + w

where w ∈ {1, 2}. Since |X | = 2k + 1 − γs(T ) − |V |, if |V | = (2k − 8)/3 + w,
then |X | = (2k + 7)/3 − w for w ∈ {1, 2}.

Suppose, analogous to (6), that |V | is odd and there is a vertex v ∈ V with arcs
to more than half the other vertices in V . Then



Regular Tournaments with Minimum Split … 181

k = |N+(v)| > |V | − 1

2
+ 1 + |X | = k + 3

2
− w

2
for w ∈ {1, 2},

a contradiction. Thus, if |V | is odd, then T [V ] is regular.
Suppose, analogous to (7), |X | is odd and there is a vertex x ∈ X such that

|N−(x)| ≥ |V | + |X | − 1

2
+ 1 + 1 ≥ k + w

2
for w ∈ {1, 2},

a contradiction. Thus, if |X | is odd, then T [X ] is regular.
Lastly, suppose that γs(T ) = 2k+5

3 . By Lemma 2, |V | = (2k − 10)/3 + w for
w ∈ {1, 2, 3}. Since |X | = 2k + 1 − γs(T ) − |V |, if |V | = (2k − 10)/3 + w where
w ∈ {1, 2, 3}, then |X | = (2k + 8)/3 − w. Suppose, analogous to (6), |V | is odd and
there is a vertex v ∈ V with arcs to more than half the other vertices in V . Then

k = |N+(v)| ≥ |V | − 1

2
+ 1 + |X | = k + 3

2
− w

2
for w ∈ {1, 2, 3}.

This is a contradiction so long asw �= 3 (|V | �= (2k − 7)/3 + 2). Thus, if |V | is odd
and |V | �= (2k − 7)/3 + 2, then T [V ] is regular.

Suppose, analogous to (7),|X | is odd and there is a vertex x ∈ X with arcs from
more than half the other vertices in X . Then

k = |N−(x)| ≥ |V | + |X | − 1

2
+ 1 + 1 ≥ k − 1

2
+ w

2
for w ∈ {1, 2, 3}.

If w �= 1 then we have a contradiction. So if |X | is odd and |X | �= (2k + 5)/3, then
T [X ] is regular. 
�
Corollary 1 Let k ≥ 6 and T be a k-regular tournament with γs(T ) = � 2k+3

3 �. Let S
be a minimum split dominating set and (V, X) the partition of T − S so that V → X
and X is strong. If

1. 3|(2k + 3), or
2. 3|(2k + 4) and |V | is odd, or
3. 3|(2k + 5) and |V | = 2k−7

3 ,

then T is not {1}-extendable.
Proof Assume 3|(2k + 3). Then |W | = (2k − 3)/3 and |S| = |X |. Since |V | > 1,
by Theorem 3 and Proposition 2, T is not {1}-extendable. Assume 3|(2k + 4) and
|V | is odd. Then by Lemma 2, |V | = (2k − 5)/3. So |S| = |X |. Since |V | > 1,
the result follows from Theorem 3 and Proposition 2. Finally, assume 3|(2k + 5)
and |V | = (2k − 7)/3. Then |V | is odd and |S| = |X |. Again, |V | > 1 so the result
follows from Theorem 3 and Proposition 2. 
�
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Independence and Domination of Chess
Pieces on Triangular Boards and on the
Surface of a Tetrahedron

Krista Munger, Joseph Petrone, and David R. Prier

Abstract Independence and domination results are given for six chess-like pieces
on triangular boards with triangular spaces and triangular boards with hexagonal
spaces. The question of independence and domination on for these same boards on
the surface of a tetrahedron is introduced, and some initial results are given. …

Keywords Independence · Domination · Graph theory · Triangular chess boards
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1 Introduction

Independence and domination on chessboards is a well-known topic of study. A
graph BP can be made from a board B and a piece P where each space of the
board is a vertex and there is an edge from vertex u to vertex v if and only if piece
P can move from u to v. An independent set of vertices on BP is a set such that
no two vertices share an edge. The independence number, denoted β(BP), is the
maximum size of an independent set of vertices. A dominating set of vertices on
BP is one in which every vertex of the graph is either in the set or adjacent to some
member of the set. The domination number, denoted γ(BP), is the minimum size of
a dominating set of vertices. For an undirected simple graph G, it is a well known
fact that γ(G) ≤ β(G).

In this paper, two types of triangular chess boards are considered. Section 2 will
examine Tn , a triangular board with n2 triangular spaces as shown in Fig. 1. Section 3
will examine Hn , a triangular board with

(n+1
2

)
hexagonal spaces as shown in Fig. 2.

Chess pieces that move analogously to those in standard chess have been defined in
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Fig. 1 Tn , triangular boards with triangular spaces

Fig. 2 Hn , triangular boards with hexagonal spaces

many papers, and six will be studied here. See [1]; and [2]; for examples. Section 4
will utilize the results from Sects. 2 and 3 and apply them to boards constructed by
placing Tn or Hn on the four surfaces of a tetrahedron.

2 Triangular Boards with Triangular Spaces

In Fig. 3 we define the moves of six pieces on the triangular board with triangular
spaces. The board with hexagonal spaces will be discussed in Sect. 3. The six pieces
are the King denoted K , the Queen denoted Q, the Rook denoted R, the Bishop
denoted B, the Knight denoted N , and the Grid denoted G. The Grid is similar to a
pawn in that it can move only one space in some direction, however is is not limited
in the direction that it can move.

2.1 Independence on Tn

Results were found concerning the independence numbers associated with these
six pieces on Tn . After presenting some of this work at a conference, it was found
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Fig. 3 The six pieces and their moves defined on a board with triangular spaces

that many of these results had already appeared in a German Mathematics Journal
titled Abhandlungen der Braunschweigischen Wissenschaftlichen Gesellschaft. The
pertinent results will be summarized here, and the full journal article can be found
at [1].

Piece P β(Tn P) Conditions

K 1
3

(n+2
2

) − 1 n ≡ 2, 4, 5, 7(mod 12)
K � 1

3

(n+2
2

)� otherwise
Q β(TnQ) ≤ β(Tn R) ≤ � 2n+1

3 �
R � 2n+1

3 �
B 2n − 3 n ≡ 0(mod3)

B 2n − 1 n = 3k+1
2 for k a nonnegative integer

B 2n − 3 ≤ β(Tn B) ≤ 2n − 1 otherwise
N

(n+1
2

)
n �= 2

N 4 n = 2
G

(n+1
2

)

Note that though many of these independence questions have been solved, there
is still room for further work. The Bishop, B, is still not completely settled, and the
Queen, Q, has only the trivial inequality that its independence number is less than
the Rook’s. This must be true since the Rook’s moves are a subset of the Queen’s.
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2.2 Domination on Tn

Domination questions on Tn will be addressed next. In order to aid this explanation,
it is useful to have a way to identify each space on a particular board. The following
definition will do this.

Let Tn be a board. Then Tn(i, j) is the triangular space (or vertex) on Tn that is in
row i and is j spaces from the left. For example, on the board, T4 in Fig. 4, T4(4, 3)
is the space marked with an X.

Fig. 4 T4(4, 3) is marked with an X

Grid

Theorem 1 γ(TnG) = n2

4 if n is even. � n2

4 � ≤ γ(TnG) ≤ (n−1)2

4 + � 2n
3 � if n is odd.

Proof The Grid, G, dominates at most 4 spaces. Since Tn has n2 vertices γ(TnG) ≥
� n2

4 �. If n is even then the set of vertices {Tn(i, j) : i is even and j ≡ 2(mod 4)} ∪
{Tn(i, j) : i is odd and j ≡ 3(mod 4)} is a minimum dominating set of size n2

4 . If n

is odd, then the minimum dominating set for Tn−1 of size
(n−1)2

4 along with the set
[Tn(n, j) : j ≡ 2(mod 3)] of size � 2n

3 � is dominating. �

Rook

Theorem 2 � n2

4(n−1)� ≤ γ(Tn R) ≤ � n
2 �.

Proof Any one Rook, R, dominates at most 4(n − 1) spaces, so � n2

4(n−1)� ≤ γ(Tn R).

A dominating set for Tn of size � n
2 � is {Tn(i, j) : i ≡ 0(mod 2) and j = i

2}. The
above inequality seems to have a lot of room for improvement. The authors of this
paper, however, have found no values of n where γ(Tn R) <

n
2 . It is conjectured that

γ(Tn R) = n
2 . �
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Queen

Theorem 3 � n2

7(n−2)� ≤ γ(TnQ) ≤ γ(Tn R) ≤ � n
2 �.

Proof Any one Queen, Q, dominates at most 7(n − 2) spaces, so � n2

7(n−2)� ≤
γ(TnQ). Because the Rook’s moves are a subset of the Queen’s, γ(TnQ) ≤ γ(Tn R).
However, as in the Rook’s case, the authors of this paper have found no values of n
where γ(TnQ) < n

2 . �

Bishop

Theorem 4 � n2

3n−2� ≤ γ(TnB) ≤ 2n − 1 if n is even, and � n2

3n−4� ≤ γ(TnB) ≤ 2n −
1 if n is odd.

Proof Themaximum number of spaces of Tn dominated by one Bishop, B, is 3n − 2
if n is even and 3n − 4 if n is odd. The upper bound of 2n − 1 comes from the fact
that the set {Tn(i, j) : i = n} is a rather trivial dominating set of size 2n − 1. To
see that this upper bound is far from sharp, one can notice that γ(T6B) = 3 with
minimum dominating set {T6(4, 4), T6(5, 4), T6(5, 6)}. �

King

Theorem 5 � n2

13� ≤ γ(TnK ) ≤ � n2+3n
10 �.

Proof The maximum number of spaces one King, K , can dominate is 13, so this
fact accounts for the lower bound. Now define the bottom five rows of Tn to be a new
graph called Dn for all n ≥ 6. It will be shown that γ(DnK ) ≤ n − 1 for all n ≥ 6.
Consider the set of vertices, S, defined as the following:
S = {Tn(n − 1, j) : j ≡ 1(mod 4)} ∪ {Tn(n − 4, j) : j ≡ 3(mod 8)} ∪ {Tn(n − 5,
j) : j ≡ 6(mod 8)} If n ≡ 2(mod 4), then S has n − 2 vertices and dominates Dn .
If n ≡ 3(mod 4), then S has n − 3 vertices. S along with the vertices Tn(n, 2n − 1)
and Tn(n − 5, 2n − 9) dominates Dn with n − 1 total vertices. If n ≡ 0(mod 4),
then S has n − 2 vertices. S along with the vertex Tn(n − 4, 2n − 7) dominates Dn

with n − 1 total vertices. If n ≡ 1(mod 4), then S has n − 2 vertices. S along with
the vertex Tn(n, 2n − 1) dominates Dn with n − 1 total vertices. In all four cases,
γ(DnK ) ≤ n − 1.

Using the fact that γ(DnK ) ≤ n − 1, Tn can be dominated by dominating its
subgraphs DnK , Dn−5K , Dn−2·5K , and so on.

If n ≡ 0(mod 5), then γ(TnK ) ≤ γ(DnK ) + γ(Dn−5K ) + γ(Dn−2·5K ) + · · · +
γ(D5K ) ≤ (n − 1) + (n − 5 − 1) + (n − 2 · 5 − 1) + · · · + (5 − 1) = n2+3n

10 . And

thus γ(TnK ) ≤ n2+3
10 = � n2+3n

10 �.
If n ≡ 1(mod 5), then γ(TnK ) ≤ γ(DnK ) + γ(Dn−5K ) + γ(Dn−2·5K ) + · · · +

γ(D6K ) + γ(T1K ) ≤ (n − 1) + (n − 5 − 1) + (n − 2 · 5 − 1) + · · · + (6 − 1) + 1
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= n2+3n+6
10 . Note here that the fact γ(T1K ) = 1 is used, and thus γ(TnK ) ≤ n2+3+6

10 =
� n2+3n

10 �.
If n ≡ 2(mod 5), then γ(TnK ) ≤ γ(DnK ) + γ(Dn−5K ) + γ(Dn−2·5K ) + · · · +

γ(D7K ) + γ(T2K ) ≤ (n − 1) + (n − 5 − 1) + (n − 2 · 5 − 1) + · · · + (7 − 1) + 1
= n2+3n

10 . Here the fact γ(T2K ) = 1 is used, and thereforeγ(TnK ) ≤ n2+3
10 = � n2+3n

10 �.
If n ≡ 3(mod 5), then γ(TnK ) ≤ γ(DnK ) + γ(Dn−5K ) + γ(Dn−2·5K ) + · · · +

γ(D8K ) + γ(T3K ) ≤ (n − 1) + (n − 5 − 1) + (n − 2 · 5 − 1) + · · · + (8 − 1)+
2 = n2+3n+2

10 . Here the fact γ(T3K ) = 2 is used, and therefore γ(TnK ) ≤ n2+3+2
10 =

� n2+3n
10 �.
If n ≡ 4(mod 5), then γ(TnK ) ≤ γ(DnK ) + γ(Dn−5K ) + γ(Dn−2·5K ) + · · · +

γ(D9K ) + γ(T4K ) ≤ (n − 1) + (n − 5 − 1) + (n − 2 · 5 − 1) + · · · + (9 − 1) + 3
= n2+3n+2

10 . Here the fact γ(T4K ) = 3 is used, and therefore γ(TnK ) ≤ n2+3+2
10 =

� n2+3n
10 �. �

Knight

Theorem 6 � n2

10� ≤ γ(TnN ) ≤ n2

4 if n ≡ 0(mod 4).

� n2

10� ≤ γ(TnN ) ≤ n2+7
4 if n ≡ 1(mod 4).

� n2

10� ≤ γ(TnN ) ≤ n2+n+2
4 if n ≡ 2(mod 4).

� n2

10� ≤ γ(TnN ) ≤ n2+2n+1
4 if n ≡ 3(mod 4).

Proof The maximum number of spaces on Knight, N , can dominate is 10, so this
fact accounts for the lower bound of � n2

10�. The upper bound for n ≡ 0(mod 4) relies
on the fact that γ(T4N ) = 4 with minimum dominating {T4(3, 2), T4(3, 3), T4(3, 4),
T4(4, 4)} and that a board of size n ≡ 0(mod 4) can be tiled with ( n4 )

2 copies of T4N .
For the other three cases, the upper bounds are achieved by using this same tiling
and then dominating the last one, two, or three rows.

If n ≡ 1(mod 4), then after a tiling of the first n − 1 rows of TnN with ( n−1
4 )2

copies of T4N , the set {Tn(n, j) : j ≡ 1(mod 8)} ∪ {Tn(n − 2, j) : j ≡ 7(mod 8)} ∪
{Tn(n, 2), Tn(n, 2n − 2)} of size n+3

2 finishes dominating the nth row. The total size

of this dominating set is then (n−1)2

4 + n+3
2 = n2+7

4 .
If n ≡ 2(mod 4), then after a tiling of the first n − 2 rows of TnN with ( n−2

4 )2

copies of T4N , the set {Tn(n, j) : j ≡ 2, 6(mod 8)} ∪ {Tn(n − 1, j) : j ≡ 0, 1, 2
(mod 8)} of size 5n−2

4 finishes dominating the last two rows. The total size of this

dominating set is then (n−2)2

4 + 5n−2
4 = n2+n+2

4 .
If n ≡ 3(mod 4), then after a tiling of the first n − 3 rows of TnN with ( n−3

4 )2

copies of T4N , the set S = {Tn(n, j) : j ≡ 4(mod 8)} ∪ {Tn(n − 1, j) : j ≡ 2, 3, 4
(mod 8)} ∪ {Tn(n − 2, j) : j ≡ 5, 6, 7(mod 8)} ∪ {Tn(n − 1, 2n − 5), Tn(n − 1,
2n − 6)} − {Tn(n, 2n − 2), Tn(n − 1, 2n − 3)} of size 2n − 2 finishes dominating
the last three rows. The total size of this dominating set is then (n−3)2

4 + (2n −
2) = n2+2n+1

4 . It is worth mentioning that the set S, while always dominating,
is not always the dominating set of smallest size. One instance to note is when



Independence and Domination of Chess Pieces on Triangular Boards … 189

n ≡ 7, 11(mod 28) the set S0 = {Tn(n, j) : j ≡ 4(mod 14)} ∪ {Tn(n − 1, j) : j ≡
2, 3, 4, 9, 10, 11(mod 14)} ∪ {Tn(n − 2, j) : j ≡ 9(mod 14)} dominates the last
three rows of Tn . And, for example, in the case where n ≡ 11(mod 28), |S0| = 8n−4

7

implying that γ(TnN ) ≤ (n−3)2

4 + 8n−4
7 = 7n2−10n+47

28 . This upper bound is much less

than n2+2n+1
4 achieved by using S to dominate the last three rows. �

3 Triangular Boards with Hexagonal Spaces

In Fig. 5 we define the moves of six pieces on the triangular board with hexagonal
spaces, Hn . As in Sect. 2, there are six pieces defined; the King denoted K , the Queen
denoted Q, theRook denoted R, theBishop denoted B, theKnight denoted N , and the
Grid denoted G. As with Tn , many results were found concerning the independence
numbers associated with these six pieces on Hn . But, as before, a more complete list
of independence results was found in [2]. These results are summarized here.

Fig. 5 The six pieces and their moves defined on a board with hexagonal spaces
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3.1 Independence on Hn

Piece P β(Hn P) Conditions
K � n+2

2 �� n+3
2 �/2

Q β(HnQ) ≤ β(HnR) = � 2n+1
3 �

R � 2n+1
3 �

B 2n − 3, 2n − 6, or 2n − 9 n ≡ 0(mod3)
B 2n − i for 3 ≤ i ≤ 9 n ≡ 1(mod3)
B 2n − 1, 2n − 4, or 2n − 7 n ≡ 2(mod3)

N � n2+3n+2
6 � n ≡ 0, 1(mod3)

N n2+5n+4
6 n ≡ 2(mod3)

G � n(n+1)+4
6 � n �= 3, 5

G 3 and 6 n = 3 and 5 respectively

Note that there is still work that could be done to complete this list. The Queen’s
independence number, for example, only has the rather trivial restriction that it is less
than the Rook’s. Harborth et al. in [2] noted that for 1 ≤ n ≤ 31, β(HnQ) = β(HnR)
or β(HnR) − 1.

3.2 Domination on Hn

Domination questions on Hn will be addressed next. Similar to the definition in
Sect. 3, we will define Hn(i, j) be the hexagonal space (or vertex) on Hn that is in
row i and j spaces from the left.

King

Theorem 7 � n(n+1)
26 � ≤ γ(HnK ) ≤ n(n+3)

18 if n ≡ 0(mod 3),
� n(n+1)

26 � ≤ γ(HnK ) ≤ (n−1)(n+2)
18 if n ≡ 1(mod 3), n ≥ 4,

� n(n+1)
26 � ≤ γ(HnK ) ≤ (n+1)(n+4)

18 if n ≡ 2(mod 3).

Proof The lower bound of � n(n+1)
26 � in all three cases comes from the fact that an

individual King dominates at most 13 spaces while Hn has n(n+1)
2 total spaces. If

n ≡ 1(mod 3) and n ≥ 4 then S = {Hn(i, j) : i ≡ 0(mod 3) and j ≡ 2(mod 3)} is
a dominating set of size (n−1)(n+2)

18 . If n ≡ 0(mod 3), then S is a dominating set of
size (n)(n+3)

18 . And Finally, if n ≡ 2(mod 3), then S ∪ {Hn(n, j) : j ≡ 2(mod 3)} is a
dominating set of size (n+1)(n+4)

18 . �



Independence and Domination of Chess Pieces on Triangular Boards … 191

Rook

Theorem 8 � n(n+1)
4n−2 � ≤ γ(HnR) ≤ � n

2 �.
Proof Any one Rook dominates exactly 2n − 1 of the n(n+1)

2 spaces of Hn , thus
giving the lower bound. S = {Hn(i, j) : i ≡ 1(mod 2) and j = i+1

2 } is a dominating
set of size � n

2 � giving the upper bound. �

Queen

Theorem 9 � n(n+1)
7n−8 � ≤ γ(HnQ) ≤ � n

2 �.
Proof If n is odd, then a Queen dominates at most n(n+1)

7n−9 spaces of Hn . If n is

even, then the maximum number is n(n+1)
7n−8 . Since n(n+1)

7n−8 is the lesser number, this
gives the lower bound. Since the Rook’s moves are a subset of the Queens, trivially
γ(HnQ) ≤ γ(HnR) giving the upper bound. �

Bishop

Theorem 10 � n(n+1)
3n−4 � ≤ γ(HnB) ≤ 2n − 9 for n ≥ 6, γ(H1B) = 1, and γ(Hk

(B)) = 3 for 2 ≤ k < 6.

Proof If n > 1 is odd, then a Bishop dominates at most 3n−5
2 spaces of Hn . If n

is even, then the maximum number is 3n−4
2 . These facts give the lower bound. If

n ≥ 6 then S = {Hn(n − 1, j) : 3 ≤ j ≤ n − 3} ∪ {Hn(n − 2, j) : 2 ≤ j ≤ n − 3}
is a dominating set of size 2n − 9 giving the upper bound. If n = 6, then |S| = 3.
Sets of size 3 similar to this are minimum dominating sets for Hk(B) for 2 ≤ k < 6.
�

Knight

Theorem 11 � n(n+1)
14 � ≤ γ(HnN ) ≤ 2n2+5n

25 if n ≡ 0(mod 5),

� n(n+1)
14 � ≤ γ(HnN ) ≤ 2n2+11n+12

25 if n ≡ 1(mod 5), n > 5,

� n(n+1)
14 � ≤ γ(HnN ) ≤ 2n2+17n+8

25 if n ≡ 2(mod 5), n > 5,

� n(n+1)
14 � ≤ γ(HnN ) ≤ 2n2+13n+18

25 if n ≡ 3(mod 5), n > 5,

� n(n+1)
14 � ≤ γ(HnN ) ≤ 2n2+9n−93

25 if n ≡ 4(mod 5), n > 5,
γ(H1N ) = 1, and γ(H2N ) = γ(H3N ) = γ(H4N ) = 3.

Proof A Knight dominates at most seven spaces of Hn giving the lower bounds in
all five cases.

Ifn ≡ 0(mod5), then S = {Hn(i, j) : i ≡ 2(mod5), j ≡ 4(mod5)} ∪ {Hn(i, j) :
i ≡ 3(mod 5), j ≡ 2(mod 5)} ∪ {Hn(i, j) : i ≡ 4(mod 5), j ≡ 2, 3(mod 5)} is a
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dominating set of size 2n2+5n
25 . If n = 5, this set of size 3 is minimum dominating,

and similar sets of size three dominate H2N , H3N , and H4N .
If n ≡ 1(mod 5), then S ∪ {Hn(n − 1, j) : j ≡ 3(mod 5)} ∪ {Hn(n, j) : j ≡ 1

(mod 5)} is a dominating set of size 2n2+11n+12
25 .

If n ≡ 2(mod 5), then S ∪ {Hn(n − 1, j) : j ≡ 2(mod 5)} ∪ {Hn(n, j) : j ≡ 0,
2, 3(mod 5)} ∪ {Hn(n, n − 1)} is a dominating set of size 2n2+17n+8

25 .
If n ≡ 3(mod 5), then S ∪ {Hn(n − 1, j) : j ≡ 1, 2, 4(mod 5)} ∪ {Hn(n, j) :

j ≡ 2(mod 5)} is a dominating set of size 2n2+13n+18
25 .

If n ≡ 4(mod 5), then S is a dominating set of size 2n2+9n−93
25 . �

Grid

Theorem 12 � n(n+1)
14 � ≤ γ(HnG) ≤ n2+5n

14 if n ≡ 0(mod 7),

� n(n+1)
14 � ≤ γ(HnG) ≤ � n2+7n

14 � if n ≡ 1, 2, 3, 4, 6(mod 7), n > 7,

� n(n+1)
14 � ≤ γ(HnG) ≤ � n2+7n

14 � + 1 if n ≡ 5(mod 7), n > 7,
γ(H1G) = γ(H2G) = 1, γ(H3G) = 2, γ(H4G) = γ(H5G) = 3, and γ(H6G)

= 5.

Proof A Grid dominates at most seven spaces of Hn giving the lower bounds in all
five cases.

Define the set S = {Hn(i, j) : i ≡ 1( mod 7) and j ≡ 3(mod 7)} ∪ {Hn(i, j) :
i ≡ 2(mod 7) and j ≡ 1(mod 7)} ∪ {Hn(i, j) : i ≡ 3(mod 7) and j ≡ 6(mod 7)} ∪
{Hn(i, j) : i ≡ 4( mod 7) and j ≡ 4(mod 7)} ∪ {Hn(i, j) : i ≡ 5( mod 7) and j ≡
2(mod 7)} ∪ {Hn(i, j) : i ≡ 6(mod 7) and j ≡ 0(mod 7)} ∪ {Hn(i, j) : i ≡ 0(mod
7) and j ≡ 5(mod 7)} ∪ {Hn(i, 1), Hn(i, i) : i ≡ 0(mod 7)}. S uses one space out of
every seven in each row except for those rows which are ≡ 0(mod 7). In these rows
which are multiples of seven, S uses the two additional spaces that are the leftmost
and the rightmost. This seems like an efficient construction of S since a single Grid
dominates at most seven spaces. A picture of S for H14G is in Figure 6.

If n ≡ 0(mod 7), then S is a dominating set of size n2+5n
14 .

If n ≡ 1(mod 7), then S ∪ {Hn(n, j) : j ≡ 0(mod 7) and j �= n − 1} is a domi-
nating set of size n2+7n−9

14 = � n2+7n
14 �.

If n ≡ 2(mod 7), then S ∪ {Hn(n, j) : j ≡ 5(mod 7)} is a dominating set of size
n2+7n−4

14 = � n2+7n
14 �.

If n ≡ 3(mod 7), then S ∪ {Hn(n, j) : j ≡ 4(mod 7)} ∪ {Hn(n, n)} is a dominat-
ing set of size n2+7n−2

14 = � n2+7n
14 �.

If n ≡ 4(mod 7), then S ∪ {Hn(n, j) : j ≡ 1(mod 7)} is a dominating set of size
n2+7n−2

14 = � n2+7n
14 �.

If n ≡ 5(mod 7), then S ∪ {Hn(n, j) : j ≡ 6(mod 7)} is a dominating set of size
n2+7n−18

14 = � n2+7n
14 � + 1.

Ifn ≡ 6(mod7), then S ∪ {Hn(n, j) : j ≡ 4(mod7)} ∪ {Hn(n, 1), Hn(n, n − 1)}
is a dominating set of size n2+7n−8

14 = � n2+7n
14 �.

If 1 ≤ n ≤ 6, then finding γ(HnG) is a simple exercise. �
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Fig. 6 S defined on H14G

4 Triangular Boards on the Surface of a Tetrahedron

Questions of independence and domination can also be asked on 3-dimensional
triangular boards that tile the surface of a tetrahedron.

4.1 Independence and Domination on Tn

The board T n is defined to be the four-sided tetrahedron where each of the sides is
tiled with one copy of Tn . See Fig. 7 for the boards T 1, T 2, and T 3.

Since Tn has n2 spaces, T n has 4n2 spaces. Rather than defining the moves of all
six chess pieces on these new boards, this paper will focus only on one piece, the
Grid, and leave the others for future work.

Grid

Just as in the two-dimensional case, the Grid on T n can move to any space for which
it shares a boarder of more than one point. It is often easier to think of T n as a
two-dimensional map as in Fig. 8. It shows the moves of Grids on T 3 in two different
situations.

Define T n(i, j) to be the triangular space (or vertex) on T n that is in row i and
j spaces from the left using the two-dimensional map of T n show in Fig. 8. For
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Fig. 7 T n for n = 1, 2, 3

Fig. 8 The Grid G on T 3

example, the Grid on the left board is in space T 3(2, 4) while the Grid on the right
board is in space T 3(6, 1).

Theorem 13 2n2 − n ≤ β(T nG) ≤ 2n2, and γ(T nG) = n2.

Proof β(T2nG) ≥ β(T nG) because T2nG can be thought of as a subgraph of T nG
on the same vertex set with fewer edges. For the same reason, γ(T2nG) ≥ γ(T nG).
From [1], therefore β(T nG) ≤ β(T2nG) = (2n+1

2

) = 2n2 + n. However, T n can be
decomposed into 2n2 disjoint copies of two adjacent triangular spaces, each which
has an independence number of one. Therefore, β(T nG) ≤ 4n2

2 = 2n2. The set I =
{T n(i, j) : j ≡ 0(mod2)} is an independent set of size 2n2 − n, soβ(T nG) ≥ 2n2 −
n.

In Section 2, it was shown that if n is even, then γ(Tn) = n2

4 . Therefore γ(T nG) ≤
γ(T2nG) = (2n)2

4 = n2. However, it is still the case that a single Grid dominates

at most 4 spaces. Since T n has 4n2 total spaces, γ(T nG) ≥ 4n2

4 = n2. Therefore
γ(T nG) = n2. �
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4.2 Independence and Domination on Hn

The board Hn is defined to be the four-sided tetrahedron where each of the sides
is tiled with a single copy of Hn . Hn would then have 4

(n+1
2

) = 2(n + 1)(n + 2)
hexagonal spaces. Rather than defining all six chess pieces on Hn , this paper will
consider only the Rook, R, and leave others for future work.

Rook

In the two-dimensional Hn , the Rook is able to travel in either direction along
three straight lines starting with a space with which it shared an edge. For the
three-dimensional Hn , this same rule applies recognizing that “lines” on the two-
dimensional board will equate to “latitudinal lines” on Hn . Figure 9 shows the pos-
sible moves for a Rook on a map of H 6. The three different latitudinal lines are
differentiated in this figure.

Fig. 9 The Rook, R, on the map of H6

Theorem 14 � 2n+1
3 � ≤ β(HnR), and γ(HnR) ≤ n.

Proof In [3], another proof attributed to Harborth is given to show that β(HnR) =
� 2n+1

3 �. The maximal independent sets given on Hn are still independent in Hn when
placed on a single copy of Hn on one of the sides of the tetrahedron. Therefore
β(Hn) ≥ � 2n+1

3 �.
It is clear that if a Rook were placed in each of the n spaces along a single edge

of Hn , then this would form a dominating set. Therefore γ(Hn) ≤ n. This bound is
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not sharp. For example it true that γ(H 3R) = 2, and γ(H 4R) = 3. It is also known
that γ(H 1R) = 1 and γ(H 2R) = 2. �
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Efficient and Non-efficient Domination
of Z-stacked Archimedean Lattices

Lyle Paskowitz, Nathan Vallapureddy, and John Wierman

Abstract On a graph, a vertex v dominates vertex v′ if v = v′ or v is adjacent to v′.
A graph has an efficient dominating set if there exists a subset of vertices D such that
every vertex in the graph is dominated by exactly one vertex in D. We investigate
efficient domination on the stacked versions of each of the eleven Archimedean
Lattices, and determine the existence or non-existence of efficient dominating sets on
each lattice through integer programming. The proofs of existence are constructive,
and the proofs of non-existence are generated by integer programs. We find efficient
dominating sets on seven of the stacked lattices and prove that no such sets exist on
the other four stacked lattices.

Keywords Efficient domination · Archimedean lattices · Integer programming

MSC Classification: 05C69, 05B35, 90C10

1 Introduction

1.1 Efficient Domination

Consider a simple undirected graph G = (VG, EG), where VG is the set of vertices
and EG the set of undirected edges on VG . We define the closed neighborhood
N : VG → 2VG as N [v] = {v′ : (v, v′) ∈ EG} ∪ {v}, that is, the set of vertices either
adjacent to v or v itself. A vertex v dominates vertex v′ if and only if v′ ∈ N [v]. Note
of course that on a simple undirected graph, this relation is symmetric, so v′ ∈ N [v]
if and only if v ∈ N [v′].

An efficient dominating set D ⊆ VG of G is a set such that |N [v] ∩ D| = 1 for all
v ∈ VG , that is, every vertex in VG is dominated by exactly one vertex in D. More
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generally, D is a dominating set of G if every vertex in VG is dominated by at least
one vertex in D.

1.2 Z-stacked Archimedean Lattices

We consider efficient domination on a set of graphs related to the Archimedean Lat-
tices. An Archimedean lattice is a two-dimensional lattice that is vertex-transitive
and has regular polygons as faces. There are eleven such lattices, which include
the recognizable square, triangular, hexagonal, and bathroom tile tessellations of the
plane. In the typical naming convention, the numbers of edges of the polygons inci-
dent to a vertex are listed in the order they appear around the vertex, with exponents
indicating the number of successive polygons of a given size. In this convention, the
four previously mentioned lattices are denoted as the (44), (36), (63), and (4, 82)
lattices, respectively. Refer to Grünbaum and Shephard [4] for a discussion on the
lattices.

Marge et al. [6] found efficient dominating sets on seven of the Archimedean
lattices and proved that no efficient dominating sets can exist on the other four.
Inspired by them, we consider efficient domination on the Z-stacked Archimedean
lattices [7].

A Z-stacked Archimedean lattice is constructed as follows: take an embedding of
the lattice L in the plane z = 0.Construct a copyof L in eachplane k ∈ Z, such that for
each vertex (i, j, 0) and every edge {(i, j, 0), (i ′, j ′, 0)} in the original embedding,
there is a corresponding vertex (i, j, k) and edge {(i, j, k), (i ′, j ′, k)}. Lastly, for
each vertex (i, j, k) and layer k ∈ Z, add a vertical edge {(i, j, k), (i, j, k + 1)}.

1.3 Domination Ratio and Periodic Graph

Define a periodic graph G as a locally-finite connected simple graph with a
countably-infinite vertex set, which can be embedded in R

d for some d < ∞ such
that G is invariant under translation by the unit vector in each coordinate axis direc-
tion in R

d and each compact set of R
d intersects only finitely many vertices of

G. Note that it is actually the embedding which is periodic. Each of the eleven
Archimedean lattices is a periodic graph in R

2. Suding and Ziff [8] provide fig-
ures showing periodic embeddings, which we will call grid representations, of the
Archimedean lattices. The stacked Archimedean lattices are periodic graphs in R

3.
Figures of the Archimedean lattices in both the original and grid representations are
shown throughout this article.

For a periodic embedding in three dimensions of a periodic graph G, denote the
subgraph ofG induced by the vertices in the rectangle [i1, i2) × [ j1, j2) × [k1, k2) ⊂
R

3 by RG(i1, i2; j1, j2; k1, k2), where i1 < i2, j1 < j2, k1 < k2, and i1, i2, j1, j2, k1,
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k2 ∈ Z. We will refer to RG(i1, i2; j1, j2; k1, k2) as an (i2 − i1) × ( j2 − j1) × (k2 −
k1) block of G.

Denote the minimum size of a dominating set for an i × j × k block of G, known
as its domination number, by γi, j,k(G), and its number of vertices by Ni, j,k(G). The
domination ratio of G is defined by

lim
i, j,k→∞

γi, j,k(G)

Ni, j,k(G)
= inf

i, j,k

γi, j,k(G)

Ni, j,k(G)
.

For two-dimensional periodic graphs, Zhao [6] proved that the corresponding limit
exists and is equal to the infimum, relying on subadditivity of the function γi, j,k(G),

and proved that it does not depend on the choice of periodic embedding of the periodic
graph G. The proof is easily generalized to three or more dimensions.

1.4 Overview of Results

For each Z-stacked Archimedean lattice, a construction of the efficient dominating
set is shown in Sect. 3 if it exists. Archimedean lattices without efficient dominating
sets are discussed in Sect. 4 and listed in the table below.

Efficiently dominated Not efficiently dominated
(44) × Z, Z

n (3, 122) × Z

(36) × Z (3, 4, 6, 4) × Z

(63) × Z (34, 6) × Z

(4, 82) × Z (3, 6, 3, 6) × Z

(4, 6, 12) × Z

(32, 4, 3, 4) × Z

(33, 42) × Z

2 Proving Efficient Domination

2.1 Simplification of Criteria for Efficient Domination

First, we introduce a technique to simplify the proof of efficient domination, which
we will use extensively later.

LetG be a dG-regular vertex-transitive graph.Note that if there exists D efficiently
dominating G, then the domination ratio |D|

|VG | must be 1
dG+1 since each vertex in D

dominates exactly dG + 1 vertices.

Proposition 1 Let G be a finite vertex-transitive graph with degree dG. For any
D ⊆ VG, consider the following three criteria:
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1. N [v] ∩ D ≥ 1 for all v ∈ VG

2. N [v] ∩ D ≤ 1 for all v ∈ VG

3. |D|
|VG | = 1

dG+1

If any two of these criteria are satisfied, the third must also be satisfied.

We prove the Proposition in the following three lemmas. We discuss the application
of the Proposition to blocks in the Archimedean lattices at the beginning of Sect. 3.

Lemma 1 If criteria 1 and 2 are satisfied, then criterion 3 is also satisfied.

Proof We have N [v] ∩ D = 1 for all v ∈ VG , so D is an efficient dominating set.
Therefore, we must have |D|

|VG | = 1
dG+1 as discussed earlier.

Lemma 2 If criteria 1 and 3 are satisfied, then criterion 2 is also satisfied.

Proof Let 1 be an indicator function, i.e. 1x = 1 if x is true and 1x = 0 otherwise.
Since |D|

|VG | = 1
dG+1 , we have |VG | = |D|(dG + 1). Now, suppose that there were some

v ∈ VG such that |N [v] ∩ D| > 1. Then

|VG | =
∑

v∈VG

1 <
∑

v∈VG

|N [v] ∩ D| =
∑

v∈VG

∑

d∈D
1d∈N [v]

=
∑

d∈D

∑

v∈VG

1v∈N [d] =
∑

d∈D
|N [d] ∩ VG | =

∑

d∈D
dG + 1 = |D|(dG + 1)

forming a contradiction. Therefore N [v] ∩ D = 1 for all v ∈ VG . �

Lemma 3 If criteria 2 and 3 are satisfied, then criterion 1 is also satisfied.

Proof We again have |VG | = |D|(dG + 1). Now, suppose that there were some v ∈
VG such that |N [v] ∩ D| < 1. However,

|VG | =
∑

v∈VG

1 >
∑

v∈VG

|N [v] ∩ D| =
∑

v∈VG

∑

d∈D
1d∈N [v]

=
∑

d∈D

∑

v∈VG

1v∈N [d] =
∑

d∈D
|N [d] ∩ VG | =

∑

d∈D
dG + 1 = |D|(dG + 1)

which is a contradiction. Therefore N [v] ∩ D = 1 for all v ∈ VG . �

In each case, we ended up with |N [v] ∩ D| = 1 for all v ∈ VG , which is exactly the
criteria for efficient domination. So one method of proving efficient domination is
to prove two of the above criteria.



Efficient and Non-efficient Domination … 201

2.2 Additional Conditions

Consider criterion 2 above, that is, |N [v] ∩ D| ≤ 1 for all v ∈ VG . Define the dis-
tance metric d : VG × VG → Z by letting d(v1, v2) be the minimum length of a path
connecting vertex v1 to v2. Since we focus only on undirected graphs, this is also the
minimum number of edges needed in a path connecting v2 to v1. Then we have the
following lemma:

Lemma 4

max
v∈VG

|N [v] ∩ D| ≤ 1 ⇐⇒ min
vi �=v j∈D

d(vi , v j ) ≥ 3.

Proof First, consider the forward direction, which we prove by contrapositive. Let’s
suppose that

min
vi �=v j∈D

d(vi , v j ) ≤ 2,

i.e. there exist vertices, say v1 and v2, with either d(v1, v2) = 1 or d(v1, v2) = 2.
In the first case, we have |N [v1] ∩ D| ≥ |N [v1] ∩ {v1, v2}| = 2. In the second case,
there exists a vertex v12 such that v12 lies on the length-2 path between v1 and v2, so
v12 is adjacent to both v1 and v2, so |N [v12] ∩ D| ≥ |N [v12] ∩ {v1, v2}| = 2.

Now, consider the reverse direction, which we prove via contradiction. Sup-
pose minvi �=v j∈D d(vi , v j ) � 3 and there exists some v such that |N [v] ∩ D| > 1.
Then v is simultaneously adjacent to at least two vertices from the dominating
set; so there exists a length-2 path between those two vertices (taken through v), a
contradiction. �

The following theorem is a useful tool that enables us to extend proofs of efficient
domination over a subset with a number of Z-layers to efficient domination over the
infinite lattice. For a set A ⊆ Z

3, denote the nth Z-layer of A as

An = {(i, j, k) ∈ A : k = n} (1)

Let t : Z
3 × Z → Z

3 be a simple translation function, where

t (A, z) = {(i, j, k + z) : (i, j, k) ∈ A} (2)

We say two Z-layers Am and An are equivalent, or Am ≡ An , if t (Am, n − m) =
An (which also implies that t (An,m − n) = Am).

Theorem 1 (Repeatibility of Z-layers) Let D be a subset of vertices in a Z-stacked
Archimedean lattice L. Consider three consecutiveZ-layers L(3) := L1 ∪ L2 ∪ L3 of
L. Suppose each vertex in L(3) is efficiently dominated by the set Drep = t (D3,−3) ∪
D1 ∪ D2 ∪ D3 ∪ t (D1, 3). Then the repetition set
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D′ =
∞⋃

z=−∞
t (D1, 3z) ∪ t (D2, 3z) ∪ t (D3, 3z) (3)

is an efficient dominating set for L.

Proof Note that by construction of a Z-stacked Archimedean lattice, t (Lz, z′) =
Lz+z′ . Consider Lz ∈ L for any z ∈ Z. By the first statement, Lz (mod 3) = t

(
Lz,

[z (mod 3)] − z
)
. Moreover, also by construction, D′

z = t (D′
z (mod 3)) for any z ∈ Z.

Then for all v ∈ Lz ,

∣∣N [v] ∩ D′∣∣ = ∣∣N [v] ∩ (
D′

z−1 ∪ D′
z ∪ D′

z+1

)∣∣

=
∣∣∣t (N [v], [z (mod 3)] − z) ∩ t

((
D′

z−1 ∪ D′
z ∪ D′

z+1

)
, [z (mod 3)] − z

)∣∣∣

= 1

since t
(
N [v], [z (mod 3)] − z

)
⊂ L(3) and t

((
D′

z−1 ∪ D′
z ∪ D′

z+1

)
, [z (mod 3)] −

z
)

⊂ Drep. The equality in the last line follows by the assumption of the theorem.

Since this holds for all Lz ⊂ L , the entire lattice L is efficiently dominated by the
repeated set D′. �

3 Efficiently Dominated Lattices

In this section, we exhibit dominating sets for seven of the stacked Archimedean
lattices and prove that they are efficient dominating sets. An important tool in the
proofs is Proposition 1 from Sect. 2, which is valid for finite graphs. We wish to
apply Proposition 1 to blocks of the stacked Archimedean lattices. However, a block
in an Archimedean lattice is not a vertex-transitive graph, because vertices on the
boundary have smaller degrees than vertices in the interior of the block. To obtain
a vertex-transitive finite graph, in the proofs in this section, we consider a block
with periodic boundary conditions: Each lattice has a periodic dominating set in
a block of size a × b × c for some positive integers a, b, and c. A block of size
ai × bj × ck for positive integers i , j , and k with periodic boundary conditions is
constructed by considering the edges leaving any face to be connected to the vertices
on the opposite face, instead of connecting to the next layer outside the block. Since
the number of vertices on the boundary is of smaller order than the volume of the
block, the difference in the domination ratios of the original block and the block with
periodic boundary conditions is negligible in the limit as i , j , and k tend to infinity.
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3.1 (44)× Z Lattice and Z
n

Denote by Z
n the space of integer n-tuples, and consider that the Z-stacked (44) × Z

lattice is simply the n = 3 subcase of Z
n .

Definition 1 Consider the n-dimensional lattice LZn defined by

LZn = (VLZn , ELZn ) =
(
Z
n, {(v1, v2) : v1 ∈ Z

n, v2 ∈ Z
n, d(v1, v2) = 1}

)

where d is the Manhattan distance, so d(v1, v2) = 1 implies that v1 and v2 differ by
exactly 1 in only one coordinate. Define the helper function f : Z

n → Z by

f (z1, z2, . . . , zn) =
n∑

i=1

i zi (4)

Let | denote divides, i.e. k | n if and only if n ≡ 0 (mod k).

Theorem 2 LZn has efficient dominating set

D =
{
(z1, . . . , zn) : (2n + 1) | f (z1, . . . , zn)

}
(5)

Proof First, find the domination ratio of D. If an efficient dominating set of LZn

exists, it must have domination ratio 1
2n+1 since each vertex is adjacent to 2n other

vertices. Then, consider a chain of 2n + 1 vertices

{
(z1, z2, . . . zn), (z1 + 1, z2, . . . zn), . . . , (z1 + 2n, z2, . . . , zn)

}

Suppose f (z1, z2, . . . , zn) = k, so that

f (z1, z2, . . . zn) = k, f (z1 + 1, z2, . . . zn) = k + 1, . . . , f (z1 + 2n, z2, . . . , zn) = k + 2n

so exactly one vertex in the chain (z1 + a, z2, . . . , zn) will have (2n + 1) dividing
f (z1 + a, z2, . . . , zn), so exactly one of the 2n + 1 vertices will lie in the dominating
set. Partition Z

n into disjoint chains of length 2n + 1, where each chain has exactly
one vertex in D. Then |D|

|VLZn |
= 1

2n + 1
(6)

as desired. �

Next, we show that |N [v] ∩ D| ≥ 1 for all v ∈ VLZn . Consider an arbitrary point
v = (z1, z2, . . . , zn) ∈ VLZn , and let m = f (v) (mod 2n + 1). There are three cases
to consider:
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Fig. 1 Dominating set and stacked (44) lattice projected into a single Z-layer. Numbered vertices
are in the dominating set, with Z-coordinate given by their number

1. If m = 0, then v ∈ D, so v is dominated.
2. If 1 ≤ m ≤ n, the point (z1, . . . , zm − 1, . . . , zn) is in D and adjacent to v, so v

is dominated.
3. If n + 1 ≤ m ≤ 2n, the point (z1, . . . , z2n+1−m + 1, . . . , zn) is in D and adjacent

to v, so v is dominated.

In every case, v is dominated by some vertex in D, so |N [v] ∩ D| ≥ 1 for all v ∈ VLZn

as desired. Apply Lemma 2 to conclude that D is an efficient dominating set. �

In particular, this pattern repeats every 2n + 1 Z-stacked layers. Figure1 is a
graphical representation of the dominating set on n = 3 after a translation. The
number associated with each vertex is the layers (mod 7) for which the vertex is
present in the dominating set, i.e. vertices numbered 0 are in the dominating set
in layers z3 ≡ 0 (mod 7), vertices numbered 1 are in the dominating set in layers
z3 ≡ 1 (mod 7), and so on.

3.2 (36)× Z Lattice

Definition 2 (Grid representation of the Z-stacked (36) lattice) Let L(36) = (V, E)

be the Z
2 × Z lattice with additional undirected edges

E = {((u1, v1, z), (u2, v2, z)) : (u1 − v1, u2,−v2) = (±1,∓1)} (7)
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The stacked triangular lattice L(36) can be considered as a cubic graph augmented by
diagonal edges between the bottom-left and upper-right corner of each square within
each Z-layer.

Theorem 3 The (36) × Z lattice has an efficient dominating set

D =
{
(x, y, z) : (x, y) ≡ (z, z) (mod 3)

}
(8)

Proof Consider an arbitrary v = (x, y, z) ∈ L(36). Without loss of generality show
that u ≡ v (mod 3) is efficiently dominated by vertices in the proposed efficient
dominating set.

Let u = (i, j, 0) = v (mod 3). Note that (0, 0) � (i, j) � (2, 2). We case-wise
show |N [u] ∩ D| � 1.

Ifu = (0, 0, 0) thenu ∈ D. Ifu = (1, 0, 0)oru = (0, 1, 0) then it is dominated by
(0, 0, 0) ∈ D. If u = (1, 1, 0) then it is dominated by (1, 1, 1) ∈ D. If u = (2, 2, 0)
then it is dominated by (2, 2,−1) ∈ D. If u = (1, 2, 0) or u = (0, 2, 0) then it is
dominated by (0, 3, 0) ∈ D. If u = (2, 1, 0) or u = (2, 0, 0) then it is dominated by
(3, 0, 0) ∈ D.

By definition of L(36), in each case, the difference between the vertex and its
dominator is a valid edge connection. For example, (1, 2) − (0, 3) = (1,−1). Thus,
|N [u] ∩ D| � 1 if and only if |N [v] ∩ D| � 1.

Consider a 3 × 3 × 3 block B of vertices with |B| = 27. For any Bz ⊂ B by
definition (x, y, z) ∈ D if and only if (x + 3i, y + 3 j, z + 3k) ∈ D for all i ∈ N, j ∈
N and (x, y, z + 3k) ∈ D for all k ∈ N. Thus in each z-layer there exists exactly one
vertex in D. The domination ratio of B is |B∩D|

|B| = 3
27 = 1

9 .

The domination ratio of 1
9 combined with |N [v] ∩ D| � 1 fulfill criteria 1 and 3,

and thus by Lemma 2, D is an efficient dominating set. �

3.3 (63)× Z Lattice

The (63), or hexagonal lattice, is a subgraph of the the (36) lattice.

Definition 3 (Grid representation of theZ-stacked (63) lattice) Let the lattice be the
(36) × Z lattice with the following vertices and their edges removed (Fig. 2):

V ′ =

⎧
⎪⎨

⎪⎩
(i, j, k) ∈ L(36) : (i, j) ≡

⎧
⎪⎨

⎪⎩

(0, 1)

(1, 2)

(2, 0)

(mod 3, 3)

⎫
⎪⎬

⎪⎭
(9)

Theorem 4 The efficient dominating set D(63) is the same as the dominating set for
D(36).
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(a) The triangular 36 lattice. (b) The hexagonal 63 lattice.

Fig. 2 A shared efficient dominating set for the stacked triangular and hexagonal lattices

Proof The removed vertices have empty intersection with the dominating set. For
any (i, j, k) with (i, j) (mod 3, 3) ∈ {(0, 1) ∪ (1, 2) ∪ (2, 0)}, by definition (i, j) �≡
(k, k) (mod 3). Thus (i, j, k) /∈ D(36). Because the vertices in the (36) × Z lattice are
dominated by D(36), the remaining vertices in the (63) × Z lattice are also dominated
by D(36). �

3.4 (4, 82)× Z Lattice

Definition 4 (Grid representation of the Z-stacked (4, 82) lattice)
The Z-stacked (4, 82) × Z lattice L(4,82) has vertex set Z

3 and edge set which is the
union of the following three sets:

{
((x, y, z), (x, y, z + 1)) : x, y, z ∈ Z

}

{
((x, y, z), (x + 1, y, z)) : x, y, z ∈ Z

}

{
(4x + 2a + b, 2y + a, z), (4x + 2a + b, 2y + a + 1, z) : x, y, z ∈ Z; a, b ∈ {0, 1}

}

Then L(4,82) = (Z3, EL
(4,82)

).

The first set comprises of edges that provide the Z-stacking. The second set
comprises of horizontal connections within a single layer. The third set contains
vertical connections within a layer, initialized with a minimal set of vertices.

Theorem 5 The following set D ⊂ Z
3 efficiently dominates L(4,82):
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(a) The grid representation. (b) The original lattice.

Fig. 3 The dominating set of the stacked (4, 82) lattice

D =
{
(6, 0, 0)k + (3, 1, 0)m + (2, 0, 1)n : k,m, n ∈ Z

}
(10)

Proof First, note that if a point (x, y, z) ∈ D then

(x, y, z) = (6, 0, 0)k + (3, 1, 0)y + (2, 0, 1)z =⇒ k = x − 3y − 2z

6
,

so x must be congruent to 3y + 2z (mod 6). Thus, in every chain of points
{(x, y, z), (x + 1, y, z), . . . , (x + 5, y, z)}, exactly one point will be in D. Since
we can decompose Z

3 into disjoint chains of 6 vertices, each with one vertex in D,
the domination ratio of D is 1

6 as desired.
Next, we will show |N [v] ∩ D| ≤ 1 for all v ∈ Z

3 by using Lemma 4. For a
fixed Manhattan distance b between two points in the dominating set, with vertical
distance of 0, the minimum distance is 4, achieved both between points in adjacent
rows (Δx = ±3,Δy = ±1) and points in the same column (Δx = 0,Δy = ±2).
The first case is distance 4 because no edge covers a Manhattan distance of more
than 1, while the second case is not distance 2 since there are no two incident vertical
edges. Note that between two layers with the same value of b but absolute value of
z differing by 1, the vertical distance is 3, so the total distance is at least 3.

For vertices in different Z-layers with vertical distance 1, the intra-layer distance
is at least 2 for a total distance of 3. Therefore, |N [v] ∩ D| ≤ 1 for all v ∈ Z, so D
is efficiently dominating by Lemma 1. �

In particular, this pattern repeats every 3 Z-stacked layers. Figure3 is a graphical
representation of the dominating set. The numbering of the vertices again represents
the layers for which the vertices are present in the dominating set.
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Fig. 4 Projected dominating
set of three repeating layers
for the stacked (4, 6, 12)
lattice

3.5 (4, 6, 12)× Z Lattice

We present a 3-repeatable construction on the (4, 6, 12) lattice, again numbered to
represent the layers for which the vertices are present in the dominating set. Consider
the projection of the dominating set in these three layers onto one layer. Along each
dodecagon, representing 36 vertices, there are six vertices in the dominating set.
The domination ratio of the set on a dodecagon is thus 1

6 , and since the dodecagons
provide a periodic subset of the (4, 6, 12) lattice, the domination ratio of the set on
the graph is also 1

6 (Fig. 4).
Moreover |N [v] ∩ D| � 1 for all v ∈ L(4,6,12). Note that the distance between any

two vertices on the projected dominating set is at least 2 (or at least 4 if they’re in the
same layer), and since they have a vertical distance of at least 1, the distance between
any two points in the dominating set is at least 3, which is equivalent to |N [v] ∩ D| �
1.We can then conclude that our construction is an efficient dominating set byLemma
3. �

3.6 (32, 4, 3, 4)× Z Lattice

Definition 5 (Grid representation of the Z-stacked (32, 4, 3, 4) lattice)
The Z-stacked (32, 4, 3, 4) × Z lattice L(32,4,3,4) is isomorphic to Z

3 with additional
edges connecting (2k − 1, 2l,m) to (2k, 2l − 1,m) for all k, l,m ∈ Z, and additional
edges connecting (2k, 2l,m) to (2k + 1, 2l + 1,m) for all k, l,m ∈ Z.

Note: The additional edges of the (32, 4, 3, 4) lattice, compared to those of the cubic
lattice, comprise of alternating diagonal connections in every other square, within
each layer (Fig. 5).
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(a) The grid representation. (b) The original lattice.

Fig. 5 The dominating set of the (32, 4, 3, 4) lattice

Theorem 6 The following set D ⊂ Z
3 efficiently dominates L(32,4,3,4):

D = {(2k + 1, 2k + 1 + 4l, 4m) : k, l,m ∈ Z}
∪ {(2k + 1, 2k − 1 + 4l, 4m + 1) : k, l,m ∈ Z}
∪ {(2k, 2k + 4l, 4m + 2) : k, l,m ∈ Z}
∪ {2k, 2k − 2 + 4l, 4m + 3) : k, l,m ∈ Z}

Observe that this pattern repeats every 4 layers. A graphical representation of the
dominating set is portrayed in Fig. 5. Again, numbering represents the layers for
which the vertices are present in the dominating set.

Proof First consider the domination ratio |D|
|B| over a 2 × 4 × 4 block B ⊂ L(32,4,3,4)

induced by vertices in the rectangle [0, 2) × [0, 4) × [0, 4) ⊆ R
3. Note that there

are 32 vertices in this block, of which 8 are in the dominating set. Since blocks are
regular by definition, the domination ratio is 1

8 as desired.
Moreover, no vertex is dominated more than once, i.e. |N [v] ∩ D| ≤ 1 for all

v ∈ VL(32 ,4,3,4)
, or equivalently, no two vertices in D are less than distance 3 away.

Unfortunately, there are ten cases, four for vertices in the same layer and 6 = (4
2

)
for

vertices in different layers. Each refers to the value of the layer taken mod 4 from
which they come.

First, the four cases of two vertices in the same layer:

1. (0 → 0)
2. (1 → 1)
3. (2 → 2)
4. (3 → 3)

These cases may be solved simultaneously. Note that the Manhattan distance
between any two points in the same layer is at least 4, which is achieved in one
of three cases:



210 L. Paskowitz et al.

(Δx = ±4,Δy = 0), (Δx = 0,Δy = ±4), (Δx = ±2,Δy = ±2)

The distance between any vertices in the first two cases is 4. The distance between
any pair of vertices in the last case is 3. It cannot be less than 2 since no diagonal
edges achieve a Manhattan distance of more than 2, and the distance cannot be
exactly 2 because no edges achieving a Manhattan distance of 2 are incident.

Next, the two cases of two vertices two layers apart:
5. (0 → 2)
6. (1 → 3)

These two cases can also be solved at the same time. For either, the vertical
distance is 2, and travelling between Z-layers can only be done with an edge
preserving the x and y coordinates. Note that no points in those layers (0 → 2
and 1 → 3) are repeated between vertical layers, so it would require at least 1
intra-layer edge in addition to the 2 inter-layer edges to create such a path.

Finally, the four adjacent layer cases:
7. (0 → 1)
8. (2 → 3)

Note that in cases (7) and (8), vertices have a vertical distance of 1 and an intra-
layer gap of (Δx = ±2,Δy = 0) or (Δx = 0,Δy = ±2). These require at least
2 edges to achieve the same (x, y) values, for a total minimum distance of 3.

9. (0 → 3)
10. (1 → 2)

Note that in cases (9) and (10), vertices have a vertical distance of 1 and an intra-
layer gap of (Δx = 1,Δy = 1) or (Δx = −1,Δy = −1). No single edges span
this gap, so the minimum intra-layer distance is 2, and the shortest path between
any vertices is 3.

Thus the minimum distance between any two points in the dominating set is 3, that
is, |N [v] ∩ D| ≤ 1 for all v ∈ VL(32 ,4,3,4)

. Lemma 3 concludes that D is an efficient
dominating set. �

3.7 (33, 42)× Z Lattice

Definition 6 (Grid representation of the (33, 42) lattice) Let L(33,42) be the the Z-
stacked (33, 42) lattice. L(33,42) is isomorphic to the cubic lattice Z

3 with additional
edges (x, 4l + 1, z) to (x + 1, 4l, z) for all x, l, z ∈ Z as well as (x, 4l + 2, z) to
(x + 1, 4l + 3, z) for all x, l, z ∈ Z.

Theorem 7 The following set D ⊂ Z
3 efficiently dominates L(33,42):



Efficient and Non-efficient Domination … 211

(a) The grid representation. (b) The original lattice.

Fig. 6 The dominating set of the (33, 42) lattice

D = {(4k + l + 2, 4l + 2, 4m) : k, l,m ∈ Z}
∪ {(4k + l, 4l + 2, 4m + 1) : k, l,m ∈ Z}
∪ {(4k + l + 2, 4l + 3, 4m + 2) : k, l,m ∈ Z}
∪ {(4k + l, 4l + 3, 4m + 3) : k, l,m ∈ Z}
∪ {(4k + l, 4l, 4m) : k, l,m ∈ Z}
∪ {(4k + l + 2, 4l, 4m + 1) : k, l,m ∈ Z}
∪ {(4k + l + 3, 4l + 1, 4m + 2) : k, l,m ∈ Z}
∪ {(4k + l + 1, 4l + 1, 4m + 3) : k, l,m ∈ Z}

Remark Observe that this pattern repeats every four Z-layers. Figure6 shows a pro-
jection of the dominating set from the Z-axis. Again, the numbering indicates the
layers for which vertices are present in the dominating set (Fig. 6).

Proof Note that in the 4 × 4 × 4 block induced by the rectangle [0, 4) × [0, 4) ×
[0, 4) ⊂ R

3, there are 8 vertices in the dominating set. By regularity of the blocks, the
domination ratio of D to the lattice is 8

4·4·4 = 1
8 as desired.We show that |N [v] ∩ D| ≤

1 for all v ∈ Z
3. Observe that any points in the same Z-layer have a minimum Man-

hattan distance of 4 with either Δx = 4,Δy = 0 or Δx = ±2,Δy = ±2. Neither
yields a distance of 2 since there are no two incident edges in the lattice both with
a distance of 2. No points of vertical distance 2 from each other have the same x
and y-coordinates, so the minimum distance between any two is 3. Any points in
adjacent Z-layers either have a distance of 3, or are distance 2 away from each other
with no edge in between. Thus the minimum distance between any two points of D
is 3. Therefore, |N [v] ∩ D| ≤ 1 for all v ∈ Z. Then D is an efficient dominating set
by Lemma 3. �
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4 Non-efficiently-dominatable Z-stacked Archimedean
Lattices

Theorem 8 No efficient dominating sets exist for the (3, 122), (3, 4, 6, 4), (34, 6),
and (3, 6, 3, 6) Z-stacked lattices.

We utilize integer programming to disprove the existence of efficient dominating sets
on these lattices. First, we classify the entities in our constraints:

Definition 7 Let B ⊂ L be a block of a lattice L . For any v ∈ B, let NB[v] =
N [v] ∩ B denote the neighborhood of v in the block. We say v ∈ B ⊂ L is interior
with respect to B if NB[v] = N [v], and denote the set of such interior vertices as B0.

We construct a binary integer linear program (IP) whose variables correspond to
the vertices of a block B ⊂ L in the lattice.

Definition 8 (Integer Program for Efficient Domination on a Block) Let L be a Z-
stacked Archimedean lattice with block B ⊂ L . For each v interior with respect to B,
let xv ∈ {0, 1} be a corresponding binary variable. An integer program for efficient
domination of L over B is thus defined as

min
∑

v∈B
xv (11)

s.t.
∑

xv′ :v′∈NB [v]
xv′ = 1 ∀v ∈ B0

xv ∈{0, 1} ∀v ∈ B

For exterior vertices, i.e. v for which N [v] �⊂ B, we do not place any domination
constraints in the IP. The above integer program has a useful property for showing
non-existence of dominating set. Since the domination constraint is removed for
non-interior vertices, a solution to the integer program is not bijective with (a subset
of) the true efficient dominating set DL for the lattice L . However, infeasibility of a
solution suffices to prove non-existence of the dominating set.

Proposition 2 If there does not exist a feasible solution to the integer linear program
(11) for lattice L over any block B ⊂ L, then L does not have an efficient dominating
set.

Proof The IP constraint
∑

xv′ :v′∈NB [v] xv′ = 1 occurs if and only if |N [v] ∩ D| = 1
for each xv corresponding to an interior vertex v ∈ B0.

For sake of contradiction, assume D is an efficient dominating set for L . Then
D ∩ B would give the feasible solution

{
xv = � {v ∈ D ∩ B}} to (11), which is

impossible. �
Note that an instance of the integer program is specified by a lattice and a block.

Some integer programs may have feasible solutions, but the existence of any infeasi-
ble integer program for a single lattice suffices to show non-existence. Thus, to elim-
inate such false positives, integer programs for different block sizes were checked
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for each of the lattices. Intuitively, as blocks grow larger, both the solution space and
number of constraints increase, making the integer programs less likely to have a
feasible solution. The following table shows that infeasible solutions were found at
block sizes 6 × 7 × 7 or larger.

Z-Stacked lattice Infeasible block size
(3, 6, 3, 6) 8 × 8 × 7
(3, 4, 6, 4) 8 × 8 × 8
(34, 6) 8 × 8 × 8
(3, 122) 6 × 7 × 7

Interestingly, despite significantly different grid representations, each of the lattices
listed above had a similar minimal block size for which solutions to the IP became
infeasible. The Z-stacked lattice L(3,122) with the smallest domination ratio of 1/6
also had the smallest infeasible block size.

The integer program for each of the lattices was written in MATLAB.

5 Future Research

While it has been shown that no efficient domination set can exist on the (3, 122),
(3, 4, 6, 4), (3, 6, 3, 6), and (34, 6) Z-stacked lattices, the question of the minimum
domination ratio for each of these lattices remains undecided.

Efficient domination could be considered over other vertex-transitive lattices in
3D. TheBravais lattices, in particular, are closely related to such lattices. Of their four
main categories (primitive, base-centered, body-centered, and face-centered), only
primitive has been analyzed. However, the other three categories are not necessarily
vertex-transitive, which would significantly increase the difficulty of determining the
efficient domination set.

Finally, many other forms of domination exist—perfect domination [5], power
domination [9], exponential domination [1], Roman domination [2], eternal domina-
tion [3], and many more. However, to our knowledge, no other forms of domination
have been studied on the Z-stacked Archimedean lattices.
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On Subdivision Graphs Which Are
2-steps Hamiltonian Graphs
and Hereditary Non 2-steps Hamiltonian
Graphs

Sin-Min Lee, Hsin-hao Su, and Yung-Chin Wang

Abstract Let G be a graph with vertex set V (G) and edge set E(G). A (p, q)-
graph G = (V, E) is said to be AL(k)-traversal if there exist a sequence of vertices
{v1, v2, . . . , vp} such that for each i = 1, 2, . . . , p − 1, the distance for vi and vi+1 is
equal to k. We call a graph G a k-steps Hamiltonian graph if it has a AL(k)-traversal
in G and the distance between vp and v1 is k. A graph G is said to be hereditary
k-steps hyperhamiltonian if it is k-steps Hamiltonian and for any v in G, the vertex-
deleted subgraph G − {v} is also k-steps Hamiltonian. Dually, a graph G is said to
be hereditary non k-steps Hamiltonian if it is not k-steps Hamiltonian and for any v
in G, the vertex-deleted subgraph G − {v} is also not k-steps Hamiltonian. In this
paper, we investigate subdivision graphs of a wheel graph and C4 × K2 to see which
are 2-steps Hamiltonian and hereditary non 2-steps Hamiltonian.

Keywords k-step traversal · AL(k)-traversal · k-steps Hamiltonian · k-steps
hyperhamiltonian · Hereditary non 2-steps Hamiltonian · Subdivision

1 Introduction

In this paper we consider graphs with no loops.
The Hamiltonicity of a graph is the problem of determining for a given graph

whether it contains a path or a cycle that visits every vertex exactly once. Hamiltonian
graphs are related to the traveling salesman problem. Thus, it has been a well-studied
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Fig. 1 An AL(2)-traversal
graph

Fig. 2 An D2(G) graph
from the graph in Fig. 1

topic in graph theory. However, we know very little about Hamiltonian graphs. A
good reference for recent development and open problems is [3].

Inspired by Wallis’s Magic Graph [13], Lee in [9] initiated the study of AL(k)-
traversal graphs and 2-steps Hamiltonian graphs defined as follows:

Definition 1 For k > 2, a (p, q)-graph G = (V, E) is said to have k-steps traver-
sal if there exist a sequence of vertices, v1, v2, . . . , vp, such that, for each i =
1, 2, . . . , p − 1, the distance between vi and vi+1 is equal to k. A graph admits
a k-steps traversal is called the AL(k)-traversal graph.

Example 1 The graph showed in the Fig. 1 is AL(2)-traversal, but not AL(k)-
traversal for all k ≥ 3.

We can construct a new graph to study AL(k)-traversal graphs:

Definition 2 For integer k ≥ 2, and a graph G, we construct a new graph Dk(G) as
follows: V (Dk(G)) = V (G) and (u, v) ∈ E (Dk(G)) if and only if d(u, v) = k in
G. We call Dk(G) as the distance k graph of G.

Example 2 The graph showed in the Fig. 2 is a D2(G) graph from the graph in
Fig. 1.

Definition 3 We name a AL(k)-traversal in a graph G with the distance between
vertices vp and v1 is k a k-steps Hamiltonian cycle.

Definition 4 We call a graph G a k-steps Hamiltonian graph if it has a k-steps
Hamiltonian cycle.

Note here that in Fig. 1 the distance between the vertices labeled 1 and 7 is not
2. Thus, it is not a 2-steps Hamiltonion cycle. Moreover, after an exhaustive search,
there is no labeling to make this graph 2-steps Hamiltonian.

Example 3 Figure3 demonstrates a 2-steps Hamiltonian cubic graph.

The following observation which would be useful in this paper was recorded in
[8].
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Fig. 3 A 2-steps
Hamiltonian cubic graph

Proposition 1 The cycle Cn is k-steps Hamiltonian if and only if gcd(n, k) = 1.

Proposition 2 The graphG is k-stepsHamiltonian if and only if its distance k-graph
is Hamiltonian.

Proposition 3 A bipartite graph is not AL(2)-traversal, thus, not 2-steps Hamilto-
nian.

A Hamiltonian graph need not be k-steps Hamiltonian. One example is a cycle
Cn with n = 0 (mod k) is Hamiltonian but not AL(k)-traversal, hence cannot be
k-steps Hamiltonian.

A graph property is called hereditary if it is closedwith respect to deleting vertices.
We define

Definition 5 A graphG is said to be k-steps hyperhamiltonian if it is k-steps Hamil-
tonian and for any v in G, the vertex-deleted subgraphG − {v} is also k-steps Hamil-
tonian.

Example 4 The Möbius ladder M8 is 2-steps hyperhamiltonian (Fig. 4).

The generalized Petersen graphs which are hyperhamiltonian had been studied in
[11].

A graph is bipartite, or two-colorable, if it can be decomposed into two indepen-
dent sets. It was shown in [5] that

Proposition 4 If G is bipartite then G is not k-steps Hamiltonian for any even k.

Fig. 4 M8, M8 − {v1} and M8 − {v2} are all 2-steps Hamiltonian
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Thus, it is impossible to have bipartite graphs which are hereditary 2-steps Hamil-
tonian. The following result showed that there exists an abundance bipartite graphs
which are hereditary non 2-steps Hamiltonian.

Proposition 5 For any tree T , it is hereditary non 2-steps Hamiltonian.

Proposition 6 For any integer n > 2, the 2-regular graph C2n is hereditary non
2-steps Hamiltonian.

For graphs G and H , the vertex gluing of G and H is the identifying of a vertex
of G and H . It was shown in [4] that

Proposition 7 The vertex-gluing of two cycles is not k-step Hamiltonian for all
k > 2.

We have the following obvious result

Proposition 8 For any vertex-gluing of two cyclesT , it is hereditary non 2-steps
Hamiltonian.

We also have the following for bipartite cubic graphs

Proposition 9 For any integer n > 2, the prism graph C2n × K2 is hereditary non
2-steps Hamiltonian.

Dually, we can define

Definition 6 A graph G is said to be hereditary non k-steps Hamiltonian if it is not
k-steps Hamiltonian and for any v in G, the vertex-deleted subgraph G − {v} is also
not k-steps Hamiltonian.

Definition 7 Let G be a graph, and S ⊆ E(G), and f : S → N . The subdivision
graph Sub(G,S, f) is the graph obtained by for any e in S, if f (e) = m, then we
insert m new m vertices along in e.

In literature, if f : E(G) → N with f = 1 for each e ∈ E(G), then the subdivi-
sion graph Sub(G,E(G), f) is called the barycentric subdivision graph. We denote
barycentric subdivision graph of G by BCSub(G).

We observe thatC2k+1 is 2-steps Hamiltonian, however, BCSub(G) is isomorphic
to C4k+2 which is not 2-steps Hamiltonian. It is natural to ask for what G in Gph,
BCSub(G) is 2-steps Hamiltonian.

However, we have

Proposition 10 For any graph G, BCSub(G) is not 2-steps Hamiltonian.

Proof It is easy to see that we can group all original vertices as a group and all
inserted vertices into another group to see that BCSub(G) is a bipartite graph. By
Proposition 4, it is not 2-steps Hamiltonian. �
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Fig. 5 Sub(C3 × K2,S, f) is
AL(2)-traversal but not
2-steps Hamiltonian

Example 5 Let G = C3 × K2, and S = {(x0, y0), (x2, y2)} and f : S → N be
defined by f ((x0, y0)) = f ((x2, y2)) = 1. We see in Fig. 5 that Sub(G, S, f ) is
AL(2)-traversal but not 2-steps Hamiltonian while the original graph G = C3 × K2

is 2-steps Hamiltonian.

For a cycle of order n, we denote its vertices by {v1, v2, . . . , vn}. If it has a
chord between {v1, vc}, we denote this graph by Cn(c). In [10], we investigated the
subdivision graphSub((Cn(c), {v1, vc}, f({v1, vc}) = h) to see underwhat conditions
the graph is 2-steps Hamiltonian. The reason we were interested in the Subdivision
graph of a cycle with a chord is that some of them they are non-Hamiltonian.

In general, it is easy to see that when inserting too many vertices on an edge, it
does not change it’s Hamiltonicity,

Lemma 1 A graph G with a subgraph P of a path of length 5 or more is 2-steps
Hamiltonian if and only if the induced graph H from G by removing two middle
vertices from the path P is 2-steps Hamiltonian.

In this paper, we investigate subdivision graphs of a wheel graph and C4 × K2 to
see which are 2-steps Hamiltonian and hereditary non 2-steps Hamiltonian.

2 Subdivision Graphs of a Wheel Graph

A wheel graph W (n) is a graph with n vertices where n ≥ 4, formed by connecting
a single vertex c to all vertices of an (n − 1)-cycle {v1, v2, . . . , vn−1}. In a wheel
graph, the hub c has degree n − 1, and other vertices have degree 3.

Let us denote X = {(v1, v2), (v2, v3), . . . , (vn−2, vn−1), (vn−1, v1)} be the set of
the cycle edges and be given a function f : X → N with f ((vi , vi+1)) = hi . We can
construct the graph Sub(W(n),X, f) and name the vertices between vi and vi+1 by
vi,1, vi,2, . . . , vi,hi for all i = 1, 2, . . . , n − 1.

Theorem 1 The graph Sub(W(n),X, f) is 2-steps Hamiltonian if and only if one of
the following conditions is satisfied:

1. n is even and h1 + h2 + · · · + hn−1 is even;
2. n is odd and h1 + h2 + · · · + hn−1 is odd;
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3. n and h1 + h2 + · · · + hn−1 have different parity and there is a hi for some i
which equals to 2.

Proof When all hi are odd, it is easy to see that the graphSub(W(n),X, f) is bipartite.
Thus, by Proposition 4, they are not 2-steps Hamiltonian.

Now, we assume that there are some hi which are even.
If n is even and h1 + h2 + · · · + hn−1 is even, then the cycle part of the graph

Sub(W(n),X, f) has h1 + h2 + · · · + hn−1 + (n − 1) vertices. In this case, we have
h1 + h2 + · · · + hn−1 + (n − 1) is odd. Thus, when start from any vertex and travel
2-steps on the cycle, it will go through all vertices and back to the first vertex. So,
the labeling starting with c and then goes to v1,1 following by every vertices in the
cycle counterclockwise (can be done because of odd number vertices on the cycle)
ending at vn−1,hn−1 to go back to c is a 2-steps Hamiltonian cycle. Thus, the graph
Sub(W(n),X, f) is 2-steps Hamiltonian. (See Fig. 7 for an example.)

Similarly, when n is odd and h1 + h2 + · · · + hn−1 is odd, the cycle part of the
graph Sub(W(n),X, f) has h1 + h2 + · · · + hn−1 + (n − 1), which is odd, vertices.
The same labeling applys and it is 2-steps Hamiltonian.

Thus, we only need to consider the case where one of the n and h1 + h2 + · · · +
hn−1 is odd and another is even. Note that in this case, there are even number of
vertices in the cycle part of the graph Sub(W(n),X, f).

Next, we assume that there is an hi which is equal to 2, w.l.o.g., we can assume
that h1 = 2. We would start labeling from c and then v1,1 following by vn−1,hn−1 and
travel clockwise through the cycle by every other vertices until reaching v2. It is
possible because the number of vertices in the cycle part is even and h1 = 2. After
that, we continue the labeling by jumping to v1 following by vn−1,hn−1−1 (or vn−1 if
hn−1 = 1) and travel clockwise again through the cycle by every other vertices until
reaching v1,2. Again, it is possible because the number of vertices in the cycle part
is even and h1 = 2. Since we have labeled every vertex and the distance between
v1,2 and c is 2, the graph Sub(W(n),X, f) is 2-steps Hamiltonian. (See Fig. 6 for an
example.)

Finally, there is only one case left, that is, all even hi are greater or equal to 4.
By the Lemma 1, we know that if we insert 6 vertices or more on an edge then we
can remove even vertices to keep the 2-steps Hamiltoniancy. Thus, we only need to
consider then all even hi are equal to 4.

If n is even and h1 + h2 + · · · + hn−1 is odd, then since n − 1 is odd, there must
be at least two adjacent hi and hi+1 (subscripts are module n − 1) to be 4, otherwise,
there would be half of hi are even and the other half are odd which makes the sum
to be odd. Similarly, if n is odd and h1 + h2 + · · · + hn−1 is even, there must also
be at least two adjacent hi and hi+1 to be 4. With a pair of adjacent hi and hi+1 to
be 4, its D2 graph would have a cycle of length 6 that have 4 consective order 2
vertices following with two order 4 vertices from the vertices vi and vi+2. By the
Proposition 11 from [10] (for the completeness, we copy the Lemma we used from
[10] right after the end of the proof), it cannot be Hamiltonian. Thus, the graph
Sub(W(n),X, f) is not 2-steps Hamiltonian.
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Fig. 6 Two subdivision graphs of W (4) with
n−1∑

i=1

hi is odd

Fig. 7 Two subdivision graphs of W (4) with
n−1∑

i=1

hi is even

With all possible cases classified, the proof is complete. �

Proposition 11 (Lemma 1.4. in [10]) If a distance 2-graph contains a subgraph
H consisted with all order 2 vertices and two order 3 vertices where the distance
between two order 3 vertices is greater than 1, then it is not Hamiltonian. Moreover,
if H consists with 3 or more order 3 vertices and those order 3 vertices are adjacent
to each other in two paths, then it is not Hamiltonian as well.

Proof For a labeling cycle, it must enter the subgraph H through one of the two
order 3 vertices. But, since the distance between two order 3 vertices is greater than
1, it is obvious that this cycle cannot be Hamiltonian.

Similarly, a path of adjacent order 3 vertices can be considered as one order 3
vertex in the purpose of our proof. �

Example 6 The following subdivision graphs ofW (4)with two different f and sum
hi are odd, one is bipartite another is not. However, they are not 2-steps hamiltonian.

Example 7 The following subdivision graphs of W (4) with two different f and
sum of hi are even. They are 2-steps hamiltonian (Fig. 7).
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With all Sub(W(n),X, f) graphs classified,wewant to know if it has the hereditary
peoperty. To consider whether Sub(W(n),X, f) is hereditary 2-steps Hamiltonian or
not, we need to start with a 2-steps Hamiltonian Sub(W(n),X, f) graph. Thus, by
Theorem 1, Sub(W(n),X, f) is 2-steps Hamiltonian only if n and h1 + h2 + · · · +
hn−1 have the same parity or n and h1 + h2 + · · · + hn−1 have the different parity
with some hi = 2. These two cases lead to

Theorem 2 The graph Sub(W(n),X, f) is hereditary non 2-steps Hamiltonian.

Proof There are three kinds of vertices to remove in Sub(W(n),X, f):

1. removing the hub c;
2. removing the inserted vertex vi, j ;
3. removing the vertex on the circle vi .

When removing the hub c, the graph becomes a cycle of order h1 + h2 + · · · +
hn−1 + (n − 1). By Proposition 1, it is hereditary non 2-steps Hamiltonian if h1 +
h2 + · · · + hn−1 + (n − 1) is even.When n and h1 + h2 + · · · + hn−1 have the same
parity, h1 + h2 + · · · + hn−1 + (n − 1) is odd. By Theorem 1, Sub(W(n),X, f) is
hereditary non 2-stepsHamiltonian.When n and h1 + h2 + · · · + hn−1 have different
parity, h1 + h2 + · · · + hn−1 + (n − 1) is even. Thus, we need to check other vertex
deleting subgrpahs.

Now, we know that we only need to focus on the case when n and h1 + h2 +
· · · + hn−1 have different parity and there is a hi for some i which equals to 2
by removing a vi, j vertex or a vi vertex. By Theorem 1, for Sub(W(n),X, f) to
be 2-steps Hamiltonian when n and h1 + h2 + · · · + hn−1 have different parity, it
requires that there is a hi for some i which equals to 2. But, no mater you remove
a vertex vi,1 or vi,2, you have a subgraph with an order 1 vertex. Obviously, any
grpah with an order 1 vertex cannot be k-steps Hamiltonian. Therefore, even when
n and h1 + h2 + · · · + hn−1 have different parity, Sub(W(n),X, f) is hereditary non
2-steps Hamiltonian. �

Note that even though we can determine whether a Sub(W(n),X, f) graph is
hereditary 2-steps Hamiltonian or not, we still have no clue what happen if we
remove a vertex on the circle vi . As far as we know, if we remove a vertex vi
where hi ≥ 1, then it will create an order 1 vertex vi,1 which tells that it is not 2-
steps Hamiltonian. But, when you remove a vertex vi where hi−1 = hi = hi+1 ≥ 0
(subscripts are module n − 1), then it becomes a broken fan graph, which is stil open
to determine whether a broken fan is a 2-steps Hamiltonian or not.

3 Subdivision Graphs of C4 × K2 on Its Perfect Matching

After looking at the wheel graphs, it is natural to extend the study to a graph with
a circle on the outside. So, we turn our attention to Cn × K2 where n ≥ 4. (The
condition n ≥ 4 comes from wheel graphs. The C3 × K2 is studied in our next
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Fig. 8 Nine perfect matchings of the C4 × K2

Fig. 9 Four up-to-isomorphic perfect matchings of the C4 × K2

project.) Due to many edges to choose from and a AL(2)-traversal path needs to visit
all vertices, we decide to start with C4 × K2 with its perfect matchings (see Fig. 8).

Up to isomorphism there are four types of perfect matchings. (See Fig. 9 with the
name for each perfect matching we are using in this paper.)

Theorem 3 If f (e) = k for any e in P1 where k is a fixed positive integer, then
Sub(C4 × K2,P1, f) is not 2-steps Hamiltonian for any k.

Proof Name the vertices on the outside cycle by v1, v2, v3, v4 and the vertices on
the inside cycle by w1, w2, w3, w4 where v1 is adjacent to w1 in C4 × K2. We also
name the inserted vertices in P1 are on the edge between vi and wi for i = 1, 2, 3, 4
by vi,1, vi,2, . . . , vi,k where vi is adjacent vi,1.
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If k is odd, then we group v1, w1, v3, w3 and v1,t , v3,t , v2,s , v4,s where 2 ≤ t ≤ k
is even and 1 ≤ s ≤ k is odd in a set and others in another set to see that the graph
is bipartite. Thus, by Proposition 4, it is not 2-steps Hamiltonian.

If k is even, then we group v1, w2, v3, w4 and v1,t , v3,t , v2,s , v4,s where 2 ≤ t ≤ k
is even and 1 ≤ s ≤ k is odd in a set and others in another set to see that the graph
is bipartite. Thus, by Proposition 4, it is not 2-steps Hamiltonian.

This completes the proof. �

The proof in Theorem 3 can be easily applied to C2n × K2 where the perfect
matching containing edges between vi and wi for all i . Thus, we have

Corollary 1 Let P be the perfect matching in C2n × K2 containing edges between
vi andwi for all i . If f (e) = k for any e in P, then Sub(C2n × K2,P, f) is not 2-steps
Hamiltonian for any k.

Theorem 4 If f (e) = k for any e in P3 where k is a fixed positive integer, then
Sub(C4 × K2,P3, f) is not 2-steps Hamiltonian for any k.

Proof Name the vertices on the outside cycle by v1, v2, v3, v4 and the vertices on
the inside cycle by w1, w2, w3, w4 where v1 is adjacent w1 to in C4 × K2. We also
name the inserted vertices in the edge between vi and vi+1 for i = 1, 3 by vi, j where
1 ≤ j ≤ k and vi is adjacent vi,1 and the inserted vertices in the edge between wi

and wi+1 for i = 1, 3 by wi, j where 1 ≤ j ≤ k and wi is adjacent wi,1.
If k is odd, then group v1, v2, w3, w4 and v1,t , w3,t , v3,s , w1,s where 2 ≤ t ≤ k is

even and 1 ≤ s ≤ k is odd in a set and others in another set to see that the graph is
bipartite. Thus, by Proposition 4, it is not 2-steps Hamiltonian.

If k is even, then group v1, w2, v3, w4 and v1,t , v3,t , w1,s , w3,s where 2 ≤ t ≤ k is
even and 1 ≤ s ≤ k is odd in a set and others in another set to see that the graph is
bipartite. Thus, by Proposition 4, it is not 2-steps Hamiltonian.

This completes the proof. �

The proof in Theorem 4 can be easily applied to C2n × K2 where the perfect
matching containing edges between v2i−1 and v2i and between w2i−1 and w2i for all
1 ≤ i ≤ n. Thus, we have

Corollary 2 Let P be the perfect matching in C2n × K2 containing edges between
v2i−1 and v2i and between w2i−1 and w2i for all 1 ≤ i ≤ n. If f (e) = k for any e in
P, then Sub(C2n × K2,P, f : P → N) is not 2-steps Hamiltonian for any k.

Whilewe investigate the subdivision graphs ofCn × K2 with perfectlymatchings,
we realize that if you insert too many vertices, then it would be impossible to be 2-
steps Hamiltonian.

Theorem 5 Let P be a perfect matching in Cn × K2. For any k ≥ 3, if f (e) = k for
any e in P where k is a fixed positive integer, then Sub(Cn × K2,P, f) is not 2-steps
Hamiltonian.
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Proof Name the vertices on the outside cycle by v1, v2, . . . , vn and the vertices on
the inside cycle byw1, w2, . . . , wn where v1 is adjacentw1 to inCn × K2. Since there
are n edges in P , we name the inserted vertices in an edge by ui, j where 1 ≤ i ≤ n
and 1 ≤ j ≤ k.

For any edge in the perfect matching, to reach the vertices in the middle of the
path, i.e., ui, j where 2 ≤ j ≤ k − 1, we need to travel from and through two end
vertices on the cycle part. Therefore, all vi andwi where 1 ≤ i ≤ n would be visited
in any 2-steps Hamiltonian labeling. But, at the same time, since there are only three
distance 2 vertices to any ui,1 are ui,3, vi+1 and vi−1, to label ui,1, we need to come
from or go through vi+1 or vi−1. Similarly, since there are only three distance 2
vertices to any ui,k are ui,k−2, wi+1 and wi−1, to label ui,k , we need to come from or
go through wi+1 or wi−1. Thus, since there are 2n vertices in this kind of position,
we would visit all vi and wi 2n times. Totally, we would visit all vi and wi 4n times.
It is impossible. This completes the proof. �

Theorem 5 reduces the amount of the subdivision graphs, Sub(Cn × K2,P, f) for
any n, we need to check from infinity to finite. Thus, from now on, we can only focus
on k = 1 or 2.

Theorem 6 If f (e) = k for any e in P2 where k is a fixed positive integer, then
Sub(C4 × K2,P2, f) is 2-steps Hamiltonian if and only if k is 1.

Proof By Theorem 5, Sub(C4 × K2,P2, f) is not 2-steps Hamiltonian when k ≥ 3.
When k = 2, we name the vertices on the outside cycle by v1, v2, v3 and v4 and

the vertices on the inside cycle by w1, w2, w3 and w4 where v1 is adjacent w1 to
in C4 × K2. We also name the inserted vertices in the edge between vi and wi for
i = 1, 2 by ui, j where 1 ≤ j ≤ 2 and vi is adjacent ui,1, the inserted vertices in the
edge between w3 and w4 by u3, j where 1 ≤ j ≤ 2 and w3 is adjacent u3,1, and the
inserted vertices in the edge between v3 and v4 by u4, j where 1 ≤ j ≤ 2 and v3 is
adjacent u4,1. If we group v1, u1,2, u2,1,w4,w2, u4,2, u3,1, v3 and others in another set
to see that the graph is bipartite. Thus, by Proposition 4, it is not 2-steps Hamiltonian.

When k = 1, the following graph shows that it is 2-steps Hamiltonian.

This completes the proof. �
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Theorem 7 If f (e) = k for any e in P4 where k is a fixed positive integer, then
Sub(C4 × K2,P4, f) is 2-steps Hamiltonian if and only if k is 1.

Proof By Theorem 5, Sub(C4 × K2,P2, f) is not 2-steps Hamiltonian when k ≥ 3.
When k = 2, we name the vertices on the outside cycle by v1, v2, v3 and v4 and

the vertices on the inside cycle by w1, w2, w3 and w4 where v1 is adjacent w1 to
in C4 × K2. We also name the inserted vertices in the edge between vi and v5−i for
i = 1, 2 by vi, j where 1 ≤ j ≤ 2 and vi is adjacent vi,1 and the inserted vertices in the
edge between wi and wi+1 for i = 1, 3 by wi, j where 1 ≤ j ≤ 2 and wi is adjacent
wi,1. If we group v1, v1,2, v2,1, w4, v3, w3,1, w1,1, w2 and others in another set to see
that the graph is bipartite. Thus, by Proposition 4, it is not 2-steps Hamiltonian.

When k = 1, the following graph shows that it is 2-steps Hamiltonian.

This completes the proof. �

Sincewe only insert vertices on the perfectmatching ofC4 × K2, whenwe remove
a vertex, it removes an edge on one of the perfect matching edge. It creates an order
1 vertex in the vertex deleting graph. Obviously, any grpah with an order 1 vertex
cannot be k-steps Hamiltonian.

Theorem 8 Let P be a perfect matching in Cn × K2. For any k ≥ 3, if f (e) = k for
any e in P where k is a fixed positive integer, then Sub(Cn × K2,P, f) is hereditary
non 2-steps Hamiltonian.
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On the Erdős-Sós Conjecture for Graphs
with Circumference at Most k + 1

A. M. Heissan and Gary Tiner

Abstract Let G be a graph with average degree d̄(G) greater than k − 2. Erdős
and Sós conjectured that G contains every tree on k vertices as a subgraph. The
circumference of the graph G, c(G), is the number of edges on a longest cycle.
Gilbert and Tiner proved that if c(G) is at most k, then G contains every tree on k
vertices. In this paper, we improve this result and show that the Erdős-Sós conjecture
holds for graphs whose circumference is at most k + 1.

1 Introduction

The average degree of the graph G is d̄(G), where d̄(G) = 2e(G)/|V (G)|. Erdős
and Sós conjectured the following:

Erdős-Sós Conjecture. If G is a graph with d̄(G) > k − 2, then G contains every
tree on k vertices.

Various special cases of the conjecture have been proven, some of which place
restrictions on the graph G. The cases where the graph G has number of ver-
tices k, k + 1, k + 2, or k + 3 were proved by Zhou [11], Slater, Teo, and Yap [6],
Woźniak [9], and Tiner [8], respectively. The case where G has k + 4 vertices was
proved by Yuan and Zhang [10]. We state these results in a single theorem.

Theorem 1 If G is a graph with d̄(G) > k − 2 on at most k + 4 vertices, then G
contains every tree on k vertices.

The number of edges on a longest path in a tree T is the diameter of T , or simply
diam(T ). McLennan [5] proved the following:
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Theorem 2 If G is a graph with d̄(G) > k − 2 then G contains every tree on k
vertices that has diameter at most 4.

If a tree T is made up of a path a1, . . . , ar , where r ≥ 2, and all of the remaining
vertices V (T ) − {a1, . . . , ar } are neighbors of ar , then the tree T is a broom. If each
remaining vertex is either a neighbor of a1 or ar , then the tree T is a double-broom.
Notice that a path is a broom, and a broom is a double-broom. Tiner [7] proved the
following theorem:

Theorem 3 If G is a graph with d̄(G) > k − 2, then the graph G contains every
double-broom on k vertices.

Eaton andTiner [1] showed that theErdős-Sós conjecture holds for values of k atmost
8. Tiner and Tomlin proved the conjecture holds for k = 9 (see acknowledgments).
We state this as a theorem.

Theorem 4 For k at most 9, if G is a graph with d̄(G) > k − 2, then G contains
every tree on k vertices.

Eaton and Tiner [2] proved the following theorem:

Theorem 5 If G is a graph with d̄(G) > k − 2 that has no path on k + 4 vertices,
then G contains every tree on k vertices.

For a subgraph W of G, the subgraph G − W is obtained from G by removing
V (W ) and each edge with an endpoint inW . The set of natural numbers isN, and for
m ∈ N, the set [m] is {1, . . . ,m}. Let G be a graph, and let u and v be two vertices in
V (G). The set of neighbors of v is N (v), where N (v) = {w ∈ V (G) : vw ∈ E(G)}.
The degree of v is dG(v), or simply d(v), and d(v) = |N (v)|. The minimum degree
among all vertices in V (G) is δ(G), and themaximumdegree is�(G). IfU ⊆ V (G),
then N (U ) = {w : w ∈ N (u) for some u ∈ U }.

For two disjoint subgraphs C, D ⊆ G, the set of edges with one end-point in
V (C) and one in V (D) is E(C, D); the number of edges in E(C, D) is e(C, D).
The subgraph induced by V (C) is G[C]. The edge-set of G[C] is E(C,C) or simply
E(C), and e(C) is the number of edges in E(C).

Choose A, B ⊆ V (G) and let a ∈ A and b ∈ B. If ab ∈ E(G), then the vertex
a hits B and the subset B hits A. If no vertex in A hits B, then A misses B. If
A and B are disjoint sets, then the bipartite subgraph of G with bipartition A, B is
G[A, B], and e(A, B) = e(G[A, B]).

The circum f erence of the graph G, c(G), is the number of edges on a longest
cycle. Gilbert and Tiner [4] proved the following:

Theorem 6 If G is a graph with d̄(G) > k − 2 and circumference at most k, then
G contains every tree on k vertices.

Let P be an r -path in a graph G, where P = v1, . . . , vr . A path on the vertex
set V(P), or simply a path on V(P), is an r -path in G whose vertex set is V (P). For
distinct vertices vi and v j on the path P , if there is a path (in G) on V (P) whose
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end-vertices are vi and v j , then it is a vi ,v j -path on V (P). For a vertex vt on the path
P ,

α(P, vt ) = {vs ∈ V (P) : there is a vs, vt -path on V (P)}.

For each vi ∈ NP(v1), the path vi−1, . . . , v1, vi , . . . , vr is a vi−1, vr -path on V (P). It
follows that vi−1 ∈ α(P, vr ), and e(v1, P) ≤ |α(P, vr )|.We state thismore generally
in the following lemma:

Lemma 7 If P is a path in a graph G, where P = v1, . . . , vr , then e(vi , P) ≤
|α(P, vr )| for all vi ∈ α(P, vr ).

Gilbert and Tiner [3, 4] proved the following two lemmas, respectively:

Lemma 8 Let G be a graph that is minimal with d̄(G) > k − 2, and let P be a path
in G, where P = v1, . . . , vr . If r ≤ k − 2, then a vertex in α(P, v1) hits � 1

2 (k − r)�
vertices outside of V (P).

Lemma 9 Let G be a graph that is minimal with d̄(G) > k − 2, and let Q be a path
in G, where Q = v1, . . . , vr . For W = α(Q, vr ), assume N (W ) ⊆ V (Q). If r ≤ k,
then G contains every tree on k vertices.

Notice that in Lemma 9, if Q is a longest path having vr as one end-vertex, then
it must be that N (W ) ⊆ V (Q). In this paper, we use Lemma 9 to prove our main
theorem (Theorem 10), a special case of the Erdős-Sós Conjecture.

Theorem 10 If G is a graph with d̄(G) > k − 2 and c(G) ≤ k + 1, then G contains
every tree on k vertices.

Notice that in Theorem 10, no upper bound is imposed on the number of vertices in
G, or on the length of a longest path in G.

2 Supporting Lemmas

The number of edges with at least one endpoint in A is e∗
G(A) or simply e∗(A). Note

that

e∗(A) =
∑

v∈A

d(v) − e(A) = e(A) + e(A,G − A).

A proof of the following lemma is in [1]:

Lemma 11 Let G be a graphwith d̄(G) > k − 2. LetW � V (G) andG ′ = G − W.
If e∗(W ) ≤ 1

2 (k − 2)|W |, then d̄(G ′) > k − 2.

The following two corollaries follow from Lemma 11:
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Corollary 12 If a graph G is minimal with d̄(G) > k − 2 and W � V (G), then
e∗
G(W ) > 1

2 · |W |(k − 2). In particular,
i. δ(G) ≥ � k

2�, and
ii. if k is odd and uv ∈ E(G), then one of {u, v} has degree at least

� k
2� + 1, and

iii. if (w, x, y) is a 3-cycle in G, then one of {w, x, y} has degree at
least � k

2� + 1.

Corollary 13 Let G be a graph that is minimal with e(G) > d̄(G) > k − 2, and let
W be a subset of V (G). If 1 ≤ |W | ≤ k − 1,

e(W,G − W ) >
1

2
|W |(k − 2) −

(|W |
2

)
= 1

2
|W |(k − |W | − 1), (1)

and a vertex v in W hits at least 1
2 (k − |W |) vertices in G − W.

A proof of Lemma 14 is in [7].

Lemma 14 Let G be a graph that is minimal with d̄(G) > k − 2. Let Q be a path
in G, where Q = v1, . . . , vr , and let W = α(Q, vr ). If N (W ) ⊆ V (Q), then W hits
a vertex in {vk−1, . . . , vr } and r ≥ k − 1.

Gilbert and Tiner [4] proved the following:

Lemma 15 Let G be a graph on k vertices. If e(G) = (k−1
2

) + 1, then G contains
every tree on k vertices that is not a star.

Let T be a tree and let t be a vertex in T . The set of leaf neighbors of t is
L(t), and L[t] = L(t) ∪ {t}. An embedding f of a tree T into a graph G is an
injective map f : V (T ) → V (G) that preserves edges, that is, if ab ∈ E(T ), then
f (a) f (b) ∈ E( f (T )). Let T ′ ⊆ T be a tree. If an embedding of T ′ into a graph G
can be extended to an embedding of T into G, then the graph G is T -extensible.

Lemma 16 Let G be a graph G on n vertices withmore than 1
2 (n − 1)(k − 2) edges,

where k ≤ n ≤ k + 3, and let T be a tree on k vertices. If G has a vertex v of degree
n − 1, then G contains T .

Proof If T is a star, thenG contains T since d(v) ≥ k − 1. Otherwise T is not a star.
Let a0, . . . , ar be a longest path in T . If a1 has two or more leaf neighbors in T , then
let T ′ be obtained from T by removing two of the leaf neighbors or a1. Otherwise
a1 has exactly one leaf neighbor, and let T ′ = T − L[a1]. Let k ′ = k − 2 and notice
that T ′ has exactly k ′ vertices. Let G ′ = G − v, and for n′ = n − 1, notice that G ′
has n′ vertices, and n′ ≤ k ′ + 4. It follows that

e(G ′) >
1

2
(n − 1)(k − 2) − (n − 1) = 1

2
(n − 1)(k − 4) = 1

2
(n′)(k ′ − 2),

and G ′ contains T ′ (by Theorem 1). Since v hits every vertex in G ′, the embedding
of T ′ into G ′ is T -extensible.
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If a vertex t in a tree T has at least one leaf neighbor, and exactly one non-leaf
neighbor, then the vertex t is a penultimate vertex.

Theorem 17 Let G be an n vertex graph, where n = k + 1, and k ≥ 4. If

e(G) >
1

2
k(k − 2)

then G contains every non-star tree on k vertices.

Proof Let T be a non-star tree on k vertices, and assume the graph G has exactly
� 1
2k(k − 2) + 1� edges. If a vertex u in G has degree less than � k

2�, then G − u
contains T (by Lemma 15).

Otherwise δ(G) ≥ � k
2�. It is worth noting that the statement holds for k = 1 and

k = 2, but not for k = 3. The case for k = 3 fails only when the graph G consists of
two vertex disjoint edges.

If k = 4, then T is P4, the graph G has five vertices and five edges. Since each
vertex has degree at least 2, the graph G is C5, and G contains T .

Otherwise k ≥ 5. If k = 5, the graph G has six vertices, eight edges, minimum
degree 2, and the tree T is either a path or a broom. By the ES-conjecture, the graph
G contains P4. Let v1, . . . , v4 be P4 in G, and let v5 and v6 be the other two edges.
Since there are five additional edges, and both v5 and v6 have minimum degree 2, it
is easy to see that G contains T .

Otherwise k ≥ 6. Notice that k − 2 ≤ �(G) ≤ k. Let V (G) = {v1, . . . , vk},
where the vertices are listed in non-increasing order. If d(v1) = k, then G contains
T (by Lemma 16). Otherwise d(v1) is either k − 1 or k − 2.

Case 1 d(v1) = k − 1

If T has a vertex t with at least two leaf neighbors, then let T ′ = T − L(t) (and
notice that the sub-tree T ′ has at most k − 2 vertices). Let NT ′(t) = {t1, . . . , ts}. Let
{H1, . . . , Hs} be the components of T ′ − ti , where ti is a vertex in Hi for 1 ≤ i ≤ s.
Notice that each Hi is a tree and that the disjoint union of the trees in {H1, . . . , Hs}
is a forest. Let T ′′ be the tree on V (T ) − L[t] obtained from the s trees in forest
by adding the s − 1 edges {t1t2, . . . , ts−1ts}. Notice that the tree T ′′ has |V (T ′)| − 1
vertices (i.e., at most k − 3 vertices).

Let G ′ = G − {v1, v j }, where v j is the single vertex in V (G − v1) that is missed
by v1. Notice that G ′ has k − 1 vertices, and

e(G ′) ≥ e(G) − (2k − 2) >
1

2
k(k − 2) − (2k − 2) >

1

2
(k − 1)(k − 5),

andG ′ contains T ′′ (byLemma16). Since the vertex v1 hits each vertex in {t1, . . . , ts},
and since d(v1) has degree k − 1, we see that G contains T .

If diam(T ) = 3, then let v j ∈ N (v1), and consider the edge v1v j in G. Since v1
and v j have degrees k − 1 and at leastm, respectively, the edge v1v j is T -extensible.
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Otherwise diam(T ) ≥ 4 (and k ≥ 5). If T is a broom (which could be a path),
then let G ′ = G − v1. Notice that G ′ has k vertices, and

e(G ′) ≥ e(G) − (k − 1) >
1

2
k(k − 2) − (k − 1) >

1

2
k(k − 4).

Thus G ′ contains the path u1, . . . , uk−2 (by Theorem 1). Since v1 hits one of
{u1, uk−2} (and since d(v1) = k − 1), it is easy to see that the graph G contains
T .

Otherwise T is not a broom (or a path). If k = 6, then the only non-broom tree of
diameter at least four is the 4-path a0, . . . , a4 along with the edge a2x . Define G ′ and
the path u1, . . . , uk−2 as in the previous paragraph, where k − 2 = 4. If the vertex
v1 hits both u1 and u4, then the path u2, u1, v1, u4, u3 it T -extensible. Otherwise the
vertex v1 misses one of u1 and u4, and thus hits both u2 and u3. It follows that the
path u1, u2, v1, u3, u4 is T -extensible in G.

Otherwise k ≥ 7. If d(v j ) ≤ k − 4, then let T ′ = T − L[a1], and let G ′ = G −
{v1, v j }. Notice that T ′ has k − 2 vertices, the graph G has k − 1 vertices, and

e(G ′) >
1

2
k(k − 2) − (2k − 5) ≥ 1

2
(k − 1)(k − 4). (2)

The latter inequality holds since k ≥ 5. By Theorem 1, the graph G ′ contains T ′.
Since v1 hits every vertex in G ′, we see that G contains T .

Otherwise k − 3 ≤ d(v j ) ≤ k − 1. If d(vk−1) ≥ k − 2, then the degree sum S of
G is such that

k(k − 2) > S ≥ 1(k − 1) + (k − 2)(k − 2) + 2m ≥ k(k − 2),

a contradiction.
Otherwise d(vk−1) ≤ k − 3. Since v j misses v1 and at most two other vertices

in G, it must hit one of {vk−1, vk, vk+1}, each of which has degree at most k − 3.
Assume d(vk) ≤ k − 3 (and notice that v1 hits vk). Let T ′ = T − L[a1], let G ′ =
G − {v1, vk}, and notice that e∗({v1, vk}) ≤ (2k − 5). Thus G ′ contains T ′ (see the
paragraph containing Inequality (2) above). Since N ({v1, vk}) = V (G), we see that
G contains T .

Case 2 d(v1) = k − 2

Let B ⊆ V (G) be the set of degree k − 2 vertices. Let S be the sum of the degrees
of the vertices in G, and notice that S ≥ k(k − 2) + 1. If |B| ≤ 3, then

S ≤ 3(k − 2) + (k + 1 − 3)(k − 3) ≤ k(k − 2) < S,

a contradiction.
Otherwise |B| ≥ 4. If a vertex v in G misses B, then d(v) vertices in G have

degree at most k − 3, and
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S ≤ d(v) + d(v)(k − 3) + (k + 1 − (d(v) + 1))(k − 2) ≤ k(k − 2) < S,

a contradiction.
Otherwise every vertex in G hits a vertex in B. If diam(T ) = 3, then T is a

double-broom. Let v ∈ B, and let α ∈ N [v]. Let w ∈ B be a neighbor of α. Since α

has degree at least � k
2�, and since v has degree k − 2 (and v misses w), the 3-path

v, α,w is T -extensible.
Otherwise diam(T ) ≥ 4 (and k ≥ 6). If two vertices u, v ∈ B miss each other,

then G contains T . Let G ′ = G − {u, v} and let T ′ = T − {a0, ar }. Notice that T ′
has k − 2 vertices, and the subgraph G ′ has k − 1 vertices. Since

e(G ′) >
1

2
k(k − 2) − 2(k − 2) = 1

2
(k − 2)(k − 4), (3)

the graph G ′ contains T ′ (by the induction hypothesis).
If N (u) = N (v), then let q be the single vertex in V (G) − {u, v} that misses

{u, v}. Since one of {u, v} hits f (ar−1), suppose v hits it, and set f (ar ) = v. If u hits
f (a1), then set f (a0) = u, and f is an embedding of T into G. Otherwise u misses
f (a1) and hits f (a2). Set f (a1) = u and f is T -extensible.
Otherwise N (u) �= N (v) (so N [u] ∪ N [v] = V (G)). Since one of {u, v} hits

f (ar−1), suppose v hits it, and set f (ar ) = v. If u hits f (a1), then set f (a0) = u,
and f is an embedding of T into G. Otherwise u misses f (a1) and hits f (a2). Set
f (a1) = u, and we see that f is T -extensible.
Otherwise, no two vertices u, v ∈ B miss each other. Thus B is a clique in

G. If k = 6, then 3 ≤ d(v) ≤ 4 for each v ∈ V (G), and the degree sequence is
(4, 4, 4, 4, 4, 3, 3). Since B is a 5-clique in G, no vertex in B hits a vertex in G − B,
a contradiction (since the two vertices in V (G) − B have degree 3).

Otherwise k ≥ 7. Since every vertex has a neighbor in B, it is easy to see that all
of the vertices in B cannot have the same closed neighborhoods. Let u, v ∈ B have
different closed neighborhoods.

If N (u) ∪ N (v) = V (G), then letG ′ = G − {u, v} and let T ′ = T − {a0, ar }. By
Inequality (3) above, G ′ contains T ′.

Since one of {u, v} hits f (ar−1), suppose v hits it, and set f (ar ) = v. If u hits
f (a1), then set f (a0) = u, and f is an embedding of T into G. Otherwise u misses
f (a1) and hits f (a2). Set f (a1) = u and f is T -extensible.
Otherwise, N (u) ∪ N (v) �= V (G). Let q be the single vertex that both u and v

miss. Let G ′ = G − {u, v, q} and let T ′ = T − L[ar−1] − {ar }. Notice that T ′ has
k − 3 vertices, the subgraph G ′ has k − 2 vertices, and

e(G ′) >
1

2
k(k − 2) − (3k − 6) = 1

2
(k − 3)(k − 4),

and G ′ contains T ′ (by the induction hypothesis).
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Since one of {u, v} hits f (a2), suppose v does. Set f (ar ) = v. If v hits f (a1),
then set f (a0) = v and f is an embedding of T into G. Otherwise v misses f (a1),
and it hits f (a2). Set f (a1) = v and the embedding f is T -extensible.

The set of bipartite graphs with bipartition sizes of m and n, respectively, is Bm,n .
The following is an implication of a lemma proved by Eaton and Tiner [2] (see
Lemma 2.5 in [2]).

Lemma 18 Let T be a tree on k vertices with diam(T ) ≥ 5, and let m = � k
2�. For

non-negative integers m1 and m2, let B ∈ Bm+m1 ,(k−3)+m2 . If δ(B) ≥ m, and

e(B) ≥ (m + m1)(k − 3 + m2) − [(m − 1) + (m1 + m2)].

then G contains T .

The set of trees having bipartition sizes of m and n is Tm,n; clearly each tree T in
Tm,n is also in Bm,n . We state the following folklore lemma without proof.

Lemma 19 Let A, B be the bipartition of the bipartite graph H ∈ Bm,n, where A
and B have numbers of vertices m and n, respectively, and let T ∈ Tr,s . If d(a) ≥ s
for each a ∈ A, and d(b) ≥ r for each b ∈ B, then the graph H contains T .

Lemma 20 For k = 2m + 1, where m ≥ 5, let T be a tree on k vertices with
diam(T ) ≥ 5. Let G be a graph on n vertices and more than 1

2 (n − 1)(k − 2) edges,
and let Y, Z be a vertex bipartition of V (G). If |Y | = m + 1 and |Z | ≥ |Y | + 2, and
e(Z) = 0, then G contains T .

Proof Let s = |Z | and notice that n = m + 1 + s ≥ 2m + 3. Since δ(G) ≥ m, we
see that e(Y, Z) ≥ ms.

If k = 11, then n ≥ 13, y = 6 and z ≥ 7. If z = 7, then n = 13, and e = 55. Thus
d(y1) = 12, and G contains T (by Lemma 16). Similarly, for k = 13, if z = 8 or 9,
then d(y1) = n − 1, and G contains T (by Lemma 16).

Otherwise, for k = 11 or 13, we have z ≥ k − 3. For k ≥ 15, we see that e(G) ≤(|Y |
2

) + |Y ||Z |. It follows that
(
m + 1

2

)
+ (m + 1)z ≥ e(G) >

1

2
(n − 1)(k − 2) = 1

2
(m + z)(2m − 1)

=⇒ z >
1

3
m(m − 2) > 2m − 3 = k − 4, (4)

and z ≥ k − 3.
Let Z = {z1, . . . , zs}, and let Y = {y1, . . . , ym+1}, where the vertices in each set

are listed in non-increasing order. If at least m − 2 vertices in Z have degree m + 1,
then at most s − m + 2 have degree m, and

e(Y, Z) ≥ (m − 2)(m + 1) + (s − m + 2)(m)

= (m + 1)(s) − [(m − 1) + (1 + (s − (k − 3))], (5)



On the Erdős-Sós Conjecture for Graphs … 237

and G contains T (by Lemma 18).
Otherwise at most m − 3 vertices in Z have degree m + 1. Since e(G) > 1

2 (m +
s)(2m − 1), it follows that

1

2
(m + s)(2m − 1) <

(
m + 1

2

)
+ (m − 3)(m + 1) + (s − m + 3)(m)

=⇒ s ≥ m2 − 4m + 7 ≥ 3m − 4. (6)

Assume that s = 3m − 4 and that d(z) = m for each z ∈ Z . It follows that
e(Y, Z) = m(3m − 4). Ifd(ym+1) ≥ k − 3 = 2m − 2, thenG containsT (byLemma
19). Otherwise d(ym+1) ≤ k − 4 = 2m − 3. Therefore,

e(Y − ym+1, Z) ≥ m(3m − 4) − (2m − 3)

= m(3m − 4) − [(m − 1) + (s − (k − 3))] (7)

and G contains T (by Lemma 18).

3 Proof of the Main Theorem

In this section, we prove the main theorem (Theorem 10). The following is an impli-
cation of a theorem by Gilbert and Tiner [3] (see Lemma 8 in [3]):

Lemma 21 Let C be an r-cycle in a graph G, let Q be an s-cycle in G − C, and
assume C is a longest cycle in G. If e(C, Q) = js + 1 for j ∈ N, then

r ≥ ( j + 1)(s + 1).

As evident in the proof of the above lemma, the result holds when the term s-cycle
is replaced with edge, and s is replaced with 2. We state this as a lemma.

Lemma 22 Let C be an r-cycle in a graph G, let uv be an edge in G − C, and
assume C is a longest cycle in G. If e(C, Q) ≥ 2 j + 1 for j ∈ N, then

r ≥ 3( j + 1).

We now restate and prove Theorem 10.
Theorem 10. Let T be a tree on k vertices. If G is a graph with d̄(G) > k − 2 and
c(G) ≤ k + 1, then G contains T .

Proof If a subgraph G ′ of G that is minimal with d̄(G ′) > k − 2 contains every tree
on k vertices, then so does G. Since G has circumference at most k + 1, so does G ′.
For these reasons, we will simply assume that G is minimal with d̄(G) > k − 2, and
has circumference at most k + 1.
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Let m = � k
2�. By Corollary 12, we see that δ(G) ≥ m. Let T be at tree on k

vertices. If k ≤ 9, then G contains T (by Theorem 4).
Otherwise k ≥ 10. If diam(T ) ≤ 4, then the graph G contains T (by Theorem 2).
Otherwise diam(T ) ≥ 5. Let Q be a longest path in G, where Q = v1, . . . , vt . If

t ≤ k + 3, then G contains every tree on k vertices (by Theorem 5).
Otherwise t ≥ k + 4. Let vr ∈ V (Q) be a neighbor of v1 in G, and choose the

path Q on t vertices so that r is as large as possible. If r ≤ k, then G contains T
(by Theorem 9). Otherwise r ≥ k + 1. If r ≥ k + 2, then the cycle (v1, . . . , vr ) has
more than k + 1 edges, and c(G) > k + 1, a contradiction.

Otherwise r = k + 1. Let C be the cycle (v1, . . . , vk+1). Let K be the collection
of components of G − C . We partition K as follows.

Z ∈ K is the component that contains vertices vk+2 and vk+3.
X ⊆ K − Z is the set of components that hit a vertex on C − xk+1.
Y ⊆ K − Z is the set of components that hit only xk+1 on C .

Claim 3 No vertex in Z − vk+2 hits a vertex in C − vk+1.

To the contrary, suppose a vertex w in V (Z − vk+2) hits a vertex vs on C − vk+1.
For simplicity, since there is a w, vk+2-path in component Z , assume w = vk+3, and
so vk+3 hits vs . Assume that s ≤ 1

2 (k + 1) (otherwise, we could simply reverse the
labels on the vertices on v1, . . . , vk). Let R be the path v1, . . . , vk+1 chosen so that
s is as small as possible. By our choice of R, note that v1 may no longer hit vk+1.

If 1 ≤ s ≤ 2, then the cycle (vs, . . . , vk+3) has more than k + 1 vertices, a con-
tradiction.

Otherwise 3 ≤ s ≤ 1
2 (k + 1). If v1 hits vi ∈ {vs+1, . . . , v2s−1}, then the path

vs, . . . , v1, vs+1, . . . , vk+1 contradicts our choice of R (since vk+3 hits vs).
Otherwise v1 misses {vs+1, . . . , v2s−1}. If v1 hits two consecutive vertices vi , vi+1

on the (k + 2s + 2)-path v2s, . . . , vk+1, then the path v2, . . . , vi , v1, vi+1, . . . , vk+1

contradicts our choice of R (since vk+3 hits vs).
Otherwise v1 does not hit two consecutive vertices vi , vi+1 on the path v2s, . . . ,

vk+1. Thus we see that the vertex v1 hits at most � 1
2 (k − 2s + 2)� vertices on

{vs+1, . . . , vk+1}. Let S = v1, . . . , vs . For W = α(S, vs), we see that 1 ≤ |W | ≤
s − 1.

Recall (by Lemma 7), that e(w, S) ≤ |W | for each w ∈ W . By Corollary 13, a
vertex in W hits 1

2 (k − |W |) outside of W ; assume it is v1. Since v1 hits at least
1
2 (k − |W |) vertices outside of W (and outside of S − vs), it might hit vs , and it
must hit 1

2 (k − |W |) − 1 vertices on the path v2s, . . . , vk+1, no two of which are
consecutive. Since the subpath has k − 2s + 2 vertices, and since v1 does not hit two
consecutive vertices on it, the vertex v1 hits at most � 1

2 (k − 2s + 2)� vertices on the
subpath. This implies

�1
2
(k − |W |)� − 1 < �1

2
(k − 2s + 2)�.

Since |W | is at most s − 1, this is a contradiction for s ≥ 4 when k is even, and for
s ≥ 5 when k is odd.
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Otherwise either s = 3, or s = 4 and k is odd. If s = 3, then for even k we see that
v1 must hit both v2 and v3, and 1

2 (k − 2) − 2 vertices on v6, . . . , vk+1. If k is odd, then
one of v1 and v2 has degree m + 1 (by Corollary 12.i i). Thus if the vertex v1 hits v3,
wewill assume d(v1) ≥ m + 1. This implies that N (v1) = {v2, v3, v6, v8, . . . , vk+1}.
If v1 misses v3, then N (v1) = {v2, v6, v8, . . . , vk+1}. Whether even or odd k, every
vertex v j on the path v5, . . . , vk+1 is distance either 1 or 2 (on the path) away from
a neighbor vi of v1. Thus if the vertex v2 hits v j , then suppose that v1 hits v j+2. It
follows that the cycle (v3, . . . , v j , v1, v j+2, . . . , vk+3) has more than k1 vertices, a
contradiction.

Otherwise the vertex v2 misses the path v5, . . . , vk+1. Since k is at least 10, the
vertex v2 must hit a vertex x that is not on the cycle C . Since x, v2, . . . , vt is also
a longest path, the neighborhood of x is similar to the neighborhood of v1. In fact
it is easy to see that the neighbors of x on the path v6, v8, . . . , vk+1 are identical to
the neighbors on v1 on the path. Suppose v1 and x both hit vi and vi+1 on the path
v6, . . . , vk+1. It follows that the cycle (v3, . . . , vi , v1, v2, vi+2, . . . , vk+3) has more
than k + 1 vertices, a contradiction.

Otherwise s = 4 (and k is odd). Since v1 hits at least 1
2 (k − 3) vertices in

v8, . . . , vk+1, no two of which are consecutive, we reach the same conclusions as
in the previous paragraph for s = 3. Therefore, Claim 3 holds true.

If no component ofG − C hitsC − vk+1, then vk+1 is a cut-vertex. SinceG[C] has
k + 1 vertices and more than 1

2k(k − 2) edges, the graph G contains T (by Lemma
17).

Otherwise at least one component of G − C hits a vertex on C − vk+1. Let
H1, . . . , H� be the components of G − C that hit a vertex on C − vk+1.

Claim 4 Each component in X is a vertex.

To the contrary, suppose the component X ∈ X has more than one vertex. If X is
an edge uv, then e(uv,C) ≥ k − 2 (by Corollary 12). Let j = � 1

2 (k − 1)�. Since
e(uv,C) ≥ 2 j + 1 we see that |V (C)| ≥ 3( j + 1) > k + 1 (by Lemma 22), a con-
tradiction.

Otherwise X is not an edge, and X contains a path on at least three vertices.
Let H be a longest path in X , where H = h1, . . . , hb, and h1 hits a vertex vs on
C − vk+1. Assume that s ≤ 1

2 (k + 1) (otherwise, we could simply reverse the labels
on the vertices on v1, . . . , vk). Among all (k + 1)-paths on V (C) having vk+1 as one
endpoint, choose the path v1, . . . , vk+1 so that s is as small as possible. (Note that v1
may no longer hit vk+1.)

Both h1 and hb might hit vk+1, but if either hits a vertex in the 2b-set {vk+1−b, . . . ,

vb} − vk+1, then we easily find a path on more than t vertices, a contradiction.
Otherwise each of h1 and hb hits at most one vertex (namely vk+1) on the path

vk−b+1, . . . , vb. If either h1 or hb hits two consecutive vertices on the cycle C , then
we easily find a cycle on k + 2 vertices, a contradiction.

Since both h1 and hb hit the cycleC , suppose that h1 hits vb+1. If the vertex hb hits
a vertex in {vb+2, . . . , v2b}, then the cycle (v1, . . . , vb+1, h1, . . . , hb, v2b, . . . , vk+1)

has more than k + 1 vertices, a contradiction.
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Otherwise, the vertex hb misses {vb+2, . . . , v2b}. Since the vertex h1 hits at least
� 1
2 (k − b)� vertices on C , it hits at least � 1

2 (k − b)� − 2 on the (k − 3b − 1)-path
v2b+2, . . . , vk−b, no two of which are consecutive. Thus h1 hits at most � 1

2 (k − 3b)�
vertices on the path. Since b > 2, we see that � 1

2 (k − b)� − 2 > � 1
2 (k − 3b)�, a

contradiction. Therefore Claim 4 holds true.

Claim 5 If xk+2 ∈ Z hits a vertex vi on C − xk+1, then Y = ∅.
To the contrary, suppose the vertex vk+1 hits vi onC − xk+1, and Y is a component in
Y . Let P be a longest path in G[Y + vx+1] that has vk+1 as one endpoint, where P =
vk+1, y2, . . . , yr . Let W = α(P, vk+1) and notice that N (W ) ⊆ V (P). If r ≤ k − 2,
then a vertex in W hits a vertex on v j on C − vk+1 (by Lemma 8), a contradiction.

Otherwise r ≥ k − 1. This implies that one of the paths
yr , . . . , v1, vk+1, vk, . . . , vi , vk+2, . . . , vt , or
yr , . . . , v1, vk+1, v1, . . . , vi , vk+2, . . . , vt

has more than t vertices, a contradiction. Therefore Claim 5 holds true.

By Claims 1, 2, and 3, it is easy to see that either vk+1 or vk+2 is a cut-vertex of
G. Let G ′ ⊆ G be the (2-connected) block of G that contains the cycle C .

If vk+1 is cut-vertex, then notice that V (G ′) = V (C) ∪ X . Otherwise, vk+1 is not
a cut-vertex, but vk+2 is a cut-vertex, and V (G ′) = V (C) ∪ X ∪ {vk+2}.

Let n′ = |v(G ′)|, and notice that the subgraph G ′ has more than 1
2 (n

′ − 1)(k − 2)
edges. If vk+2 ∈ V (G ′), and dG ′(vk+2) < m, then G ′ − vk2 has more then 1

2 (n
′ −

2)(k − 2) edges. For this reason, we will assume that dG ′(vk+2) ≥ m.
Let x be a vertex in X . If the vertex x hits vi and vi+2, then the vertex vi is a

T erminal-P1. If x hits vi and vi+3, then the 2-path vi+1, vi+2 is a T erminal-P2.
Finally, if x hits vi and vi+4 (and misses vi+2), then the 3-path vi+1, vi+2, vi+3 is a
T erminal-P3.

We now state and prove five claims that help characterize the subgraph G ′.

Claim 6 No vertex in X hits two consecutive vertices on the cycle C.

If x ∈ X hits both vi and vi+1, then the cycle (v1, . . . , vi , x, vi+1, . . . , vk+1) has
k + 2 vertices, a contradiction.

The proof of the Claim 7 follows from Claim 6.

Claim 7 Each vertex x ∈ X has degree m or m + 1.

Claim 8 For x ∈ X hits the vertex vi on C, then no vertex in X hits either vi−1 or
vi+1.

By Claim 6, we know x misses {vi−1, vi+1}. Suppose x ′ ∈ X hits vi+1 (if x ′ hits
vi−1, the proof is similar). For v j ∈ N (x) − vi , if x ′ hits v� ∈ {v j+1, v j+2}, then the
cycle (x ′, v�, . . . , vi , x, v j , . . . , vi+1) has more than k + 1 vertices, a contradiction.
It follows that there are 2(m − 1) vertices on the cycle C for which x ′ does not hit.
Since d(x ′) ≥ m, we reach a contradiction.
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Claim 9 If vi and v j on C are two neighbors of x ∈ X , where j ≥ i + 2, then the
vertex vi+1 misses v j+1, and the vertex vi−1 hits v j−1.

If the vertex vi+1 hits v j+1, then the cycle (v1, . . . , vi , x, v j , . . . , vi+1, v j1 , . . . , vk+1)

has k + 2 vertices, a contradiction. The proof is similar if the vertex vi−1 misses v j−1.

Claim 10 The set of Terminal-P1’s on C are an independent set, neither vertex in
a Terminal-P2 hits a Terminal-P1, and there is at most one edge connecting one
Terminal-P2 to another Terminal-P2.

Thefirst twoof the three statements follow fromClaim9.Consider twoTerminal-P2’s
vi , vi+1 and v j , v j+1 onC . By Claim 9, we know that vi misses v j , and the vertex vi+1

missesv j+1. Ifviv j+1, vi+1v j ∈ E(G), then the cycle (v1, . . . , v j , v j+1, v j , vi+1, . . . ,

v j−1, x, v j+2, . . . , vk+1) has k + 2 vertices, a contradiction.

Let X = X , let Y = N (X), and let Z = V (C) − Y . Notice that the three sets
form a disjoint union of V (G ′).

Case 1 k is even.

Notice that k = 2m, and the cycle C has 2m + 1 vertices. Thus Z consists of
m − 1 Terminal-P1’s and one Terminal-P2, and e(Z) = 1 (by Claim 9). For x ∈ X ,
we see that N (X) = N (x) by claim 9. Let Z ′ = Z ∪ X and we see that e(Z ′) = 1.
It follows that |Y | = m, |Z | ≥ m + 2, and e(G) ≤ (|Y |

2

) + |Y ||Z | + 1. For s = |Z |,
we see that

1

2
(m + s − 1)(2m − 2) < e(G) ≤

(
m

2

)
+ ms + 1

=⇒ s >
1

2
(m2 − 3m − 2).

For k = 10, we have s ≥ 7 = k − 3. For k ≥ 12, we see that s ≥ k − 3. Since
e(Y, Z) ≥ ms − 2, the graph G ′ contains T (by Lemma 18).

Case 2 k is odd.

Notice that k = 2m + 1, and the cycle C has 2m + 2 vertices. We have three cases
to cover:

(a) The cycle C has m + 1 Terminal-P1’s (and |Y | = m + 1),
(b) The cycle C has two Terminal-P2’s and m − 1 Terminal-P1’s (and |Y | = m),

and
(c) The cycle C has one Terminal-P3 and m − 1 Terminal-P1’s (and |Y | = m).

Case 21 The cycle C has m + 1 Terminal-P1’s (and |Y | = m + 1)

For Z ′ = Z ∪ X , we see that e(Z ′) = 0. Since there is at least one vertex in X , we
see that |Z ′| ≥ m + 2, and the graph G contains T (by Lemma 20).
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Case 22 The cycle C has two Terminal-P2’s and m − 2 Terminal-P1’s (and |Y | =
m).

Since |Y | = m and Z has two Terminal-P2’s, we see that |Z | = m + 2, e(Z) ≤ 3 (by
Claim 9), and for Z ′ = Z ∪ X , we have e(Z ′) = e(Z) ≤ 3. Let s = |Z ′|. It follows
that e(Y, Z ′) ≥ ms − 3. Since e(G) ≤ (|Y |

2

) + |Y ||Z | + 3, and

1

2
(m + s)(2m − 1) < e(G) ≤

(
m

2

)
+ ms + 3

=⇒ s >
1

2
(m2 − 2m − 6) ≥ 2m = k − 1.

Since |Z ′| ≥ k − 1 and e(Y, Z ′) ≥ ms − 6 ≥ ms − [(m − 1) + 2], the graphG ′ con-
tains T (by Lemma 20).

Case 23 The cycle C has one Terminal-P3 and m − 1 Terminal-P1’s (and |Y | = m).

Notice that Y = N (X) and N (x) = Y for each x ∈ X . Let vi , vi+1, vi+2 be the
Terminal-P3 on the cycleC . For each x ∈ X , notice that N (x) = Y = {vi+3, vi+5, . . . ,

vi−1}.
If v j is a Terminal-P1, then we have N (v j ) ⊆ Y ∪ {vi+1} (by Claims 9 and 10).

Suppose v j hits vi+1. If the vertex vi hits vi+1, then the cycle (v1, . . . , vi , vi+2, vi+1,

v j , . . . , vi+3, x, v j+1, . . . , vk+3) has k + 2 vertices, a contradiction.
Otherwise the vertex vi misses vi+1. Thus for Y ′ = Y ∪ vvi and Z ′ = (V (C) −

Y ) ∪ X , we see that e(Z ′) = 0. This case was proven in Case 1.
Otherwise, no Terminal-P1 hits vi+1. Thus the neighborhood of each x ∈ X and

of each Terminal-P1 is Y , and each vertex on the Terminal-P3 misses X and misses
each Terminal-P1. For Z ′ = Z ∪ X , we see that e(Z ′) = e({vi , vi+1, vi+2}) ≤ 3. For
s = |Z ′|, it follows that e(Y, Z ′) ≥ ms − 3. By the same argument in Case 2.2, the
graph G contains T .
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2. N. Eaton and G. Tiner, On the Erdős-Sós Conjecture for graphs having no path with k+4
vertices, Discrete Mathematics 313(16) (2013), pp. 1621–1629.
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Regular Graph and Some Vertex-Deleted
Subgraph

Yoshimi Egawa and Kenji Kimura

Abstract In this paper, we consider a relationship between a regular graph and
a regular factor of its vertex-deleted subgraph. Katerinis proved that if r is even
integer and k is integer with 1 ≤ k ≤ r

2 , and G is an r -regular, r -edge-connected
graph of odd order, then G − x has a k-factor for each x ∈ V (G). When the result
“for each x ∈ V (G)” of Katerinis is replaced “for some x ∈ V (G)”, we consider
what condition can be followed. One of our main results is that let r and k be an
even integer such that 4 ≤ k ≤ r

2 , and � be a minimum integer such that � ≥ r
r−2k+4 ,

and G be an r -regular, 2�-edge-connected graph of odd order. Then, there is some
x ∈ V (G) such that G − x has a k-factor. Moreover, if r ≥ 4k − 8, then we can
replace 2�-edge-connected with 2-edge-connected.

Keywords Regular graph · Regular factor · Vertex-deleted subgraph

1 Introduction

We consider finite undirected graphs that may have loops and multiple edges. Let
G be a graph. For x ∈ V (G), we denote by degG(x) the degree of x in G. The set
of neighbours of x ∈ V (G) is denoted by NG(x) and let NG(X) = ⋃

x∈X NG(x) for
X ⊆ V (G). We denote by G[X ] the subgraph of G induced by X for a subset X of
V (G). The number of components of a graph G is denoted by ω(G). If degG(x) = r
for any x ∈ V (G), we call the graph r-regular graph. For subsets S and T of V (G),
we denote by eG(S, T ) the number of the edges joining S and T . If S is a singleton
{x}, we write S = x instead of S = {x}. For example, we write eG(x, T ) instead of
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eG({x}, T ). Let k be a constant. A spanning subgraph F of G such that degF (x) = k
for each x ∈ V (G) is called a k-factor of G. We denote by rG, r copies of G for
constant r and graph G. When no fear of confusion arises, we often introduce the
definition of v[i, j] = vi j for vertex vi j . Furthermore, we define X

[
i j

] = Xi j and
X

[
i j

] = Xi j for subscript i and subsubscript j of set X and for subscript i and
subsuperscript j of set X , respectively.

Petersen proved the next theorem in 1891.

Theorem A (Petersen [1]) Let r be an even integer. Then every r-regular graph
can be decomposed into r

2 disjoint 2-factors.

This theorem implies that if r and k are even integers, andG is an r -regular graph,
then G has a k-factor for every k such that 2 ≤ k ≤ r .

Katerinis showed the next theorem in 1985.

Theorem B (Katerinis [3]) Let a, b, and c be odd integers such that 1 ≤ a < b < c,
and let G be a connected graph of even order. If G has both a-factor and c-factor,
then G has a b-factor.

Assume r is even integer. If an r -regular graph G has a 1-factor, we can obtain
an (r − 1)-factor by excluding the 1-factor from G. By the 1-factor and the (r − 1)-
factor of G and by Theorem B, G has a k-factor for any odd integer k such that
1 ≤ k ≤ r − 1. Thus, by the above two theorems, if an r -regular graph G has a 1-
factor, then G has a k-factor for every integer k such that 1 ≤ k ≤ r . Note that the
order of G is even. For the case that the order of G is odd, Katerinis proved the next
theorem in 1994.

Theorem C (Katerinis [4]) Let r be an even integer, and let k be an integer such
that 1 ≤ k ≤ r

2 , and let G be an r-regular, r-edge-connected graph of odd order.
Then for every x ∈ V (G), G − x has a k-factor.

Lu, Wang and Bai generalized Theorem C.

Theorem D (Lu, Wang and Bai [5]) Let r and � be an even integer with 4 ≤ � ≤ r ,
and let k be an integer such that 2 ≤ k ≤ r

2 , and let G be an r-regular, �-edge-
connected graph of odd order. Then for every x ∈ V (G), G − x has a k-factor in the
following cases:

1. k is even, and � ≥ 2k;
2. k is odd, and � ≥ 2k and � > r

2 ;

Let r be an even integer and k be an integer. In [4], if k = 1 or k = r
2 , thenKaterinis

showed that the condition of Theorem C is the best possible. In [5], Lu, Wang and
Bai showed that the condition of Theorem D is the best possible. Now, we consider
other cases. If k is odd and 1 < k < r , then the condition of r -edge-connected can
be substituted by max{2k, r

2 + 1}-edge-connected. Moreover, we consider the case
that |V (G)| is even. If k is odd, then G − x clearly has no k-factor for every x ∈
V (G). Thus, we consider the case that k is even. We now define the graph HF as
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the following. First, we consider a bipartite graph F with bipartition (A, B). Let
HF be a graph obtained from F , adding edges subject to |E(F[A])| ≤ k

2 − 1 and
|E(F[B])| ≤ k

2 − 1. Then, if r , k are even integers with 2 ≤ k ≤ r
2 and G �= HF

is an r -regular, 2k-edge-connected, then G − x has a k-factor for every x ∈ V (G).
Furthermore, if r is odd and k is even with 2 ≤ k ≤ r

2 , and G �= HF is an r -regular,
(2k − 1)-edge-connected, then we can conclude that the graph G − x has a k-factor
for every x ∈ V (G). We summarize above results as the remark following.

Remark 1 Let r , � and k be integers with 2 ≤ k ≤ r
2 and let G be an r -regular,

�-edge-connected graph. Then, for every x ∈ V (G), G − x has a k-factor in the
following cases:

1. |V (G)| is odd, and k and r are even, and � = 2k;
2. |V (G)| and k �= r

2 are odd, and r is even, and � = max{2k, r
2 + 1};

3. G �= HF and |V (G)|, k and r are even, and � = 2k;
4. G �= HF and |V (G)| and k are even, and r is odd, and � = 2k − 1.

We show that we cannot replace the edge-connectivity of Remark 1 with weaker
condition. Let r , � and k be as stated in the hypotheses of Remark 1. We consider
r -regular and �-edge-connected bipartite graph H1 with bipartition (A, B) and |A| =
|B|. Let G1 be a graph obtained from H1 after a deletion of � �

2 − 1� independent
edges such that G1 remains �-edge-connected. Suppose H2 is an r -regular, �-edge-
connected graph. Let alsoG2 be a graph obtained from H2 after a deletion of � �

2 − 1�
independent edges such that G2 remains �-edge-connected. We form G as follows.
We add 2� �

2 − 1� independent edges having one end-vertex in G1 that have degree
r − 1 and the another in G2 that have degree r − 1. Such a graph G is r -regular, and
(� − 1) or (� − 2)-edge-connected. Now suppose that x ∈ A. Let S = A and T = B.
If � = 2k or 2k − 1, then we have δG−x (S − x, T ; k) = −k + (� �

2 − 1�) − 1 ≤ −2
(see the following for the definition of δG(S, T ; k)). Thus, G has no k-factor.

Next, we consider the case with � = r
2 + 1. Let also r , � and k be as the above

and we consider r -regular and �-edge-connected graph H3 of odd order. Assume
that r

2 is even, and G3 is a graph obtained from H3 after a deletion of r
4 independent

edges such that G3 remains �-edge-connected. We form G as follows. We start
from 2G3. We add vertex x , and r edges joining x to each vertex v ∈ V (2G3)

with deg2G3
(v) = r − 1. The resulting graph G is r -regular, r

2 -edge-connected and
has an odd number of vertices. On the other hand, when r

2 is odd, G ′
3 also is a

graph obtained from H3 after a deletion of 
 r
4� independent edges, such that G ′

3
remains �-edge-connected. We form G ′ as follows. We start from 2G ′

3. We add
vertex x ′ with one loop and r − 2 edges joining x ′ to every vertex v ∈ V (2G ′

3)

with deg2G ′
3
(v) = r − 1. The resulting graphG ′ is r -regular, ( r2 − 1)-edge-connected

and has an odd number of vertices. First, we consider G. Let S = {x} and T = ∅.
Now k|V (G3)| + eG(V (G3), T ) is an odd number since |V (G3)| and k are odd
and eG(V (G3), T ) = 0. Thus hG−x (S − x, T ; k) = 2 (see also the following for the
definition of hG(S, T ; k)). Hence δG−x (S − x, T ; k) = −2. Therefore G − x has no
k-factor. Similarly, G ′ − x ′ has no k-factor.
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The above examples show that the assumption of edge-connectivity in Remark 1
is sharp. Let us focus our attention that the result “for each x ∈ V (G)” of statements
is replaced by “for some x ∈ V (G)”. What condition can be followed under the
weakened result? Now we will present our theorems.

Theorem 1 Let r be an integer such that r ≥ 4, let G be an r-regular, 2-edge-
connected graph. If G is not bipartite, then there is some x ∈ V (G) such that G − x
has a 2-factor.

Moreover, if k ≥ 4, then following result holds.

Theorem 2 Let r and k be even integers such that 4 ≤ k ≤ r
2 , and let � be aminimum

integer such that � ≥ r
r−2k+4 , and let G be an r-regular, 2�-edge-connected graph of

odd order. Then, there is some x ∈ V (G) such that G − x has a k-factor. In particular,
if r ≥ 4k − 8, then we can replace 2�-edge-connected with 4-edge-connected.

Furthermore, we shall prove next theorem.

Theorem 3 Let r be an integer and k be an even integer such that 2 ≤ k ≤ r
2 , and

let G be an r-regular, 2-edge-connected graph having a 2-edge cut. If either |V (G)|
is odd, or k = 2 and G is not bipartite, then there is some x ∈ V (G) such that G − x
has a k-factor.

2 Prepare for Proofs

In order to prove Theorems 1, 2 andRemark 1, we use the following Tutte’s Theorem.
Let G be a graph. For disjoint subsets S and T of V (G), we define δG(S, T ; k) by

δG(S, T ; k) = k|S| −
∑

y∈T
(k − degG(y)) − eG(S, T ) − hG(S, T ; k),

where hG(S, T ; k) is the number of components C of G − (S ∪ T ) such that
k|V (C)| + eG(V (C), T ) is odd. These components are called odd components.

Theorem E (Tutte [6]) Let G be a graph, and let k be a positive integer. Then

1. δG(S, T ; k) ≡ k|V (G)| (mod 2) for each pair of disjoint subsets S and T of
V (G), and

2. G has a k-factor if and only if δG(S, T ; k) ≥ 0 for each pair of disjoint subsets
S and T of V (G).

Proposition 1 Let r and k be non-negative integers, let G be an r-regular graph
and let S and T be disjoint subsets of V (G). Define U = V (G) − (S ∪ T ), θ = k

r ,

mS = 2eG(S, S) + eG(S,U ) and

mT = 2eG(T, T ) + eG(T,U ).
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Then,
δG(S, T ; k) = θmS + (1 − θ)mT − hG(S, T ; k).

Proof

δG(S, T ; k) = k|S| − θeG(S, T ) + (r − k)|T | − (1 − θ)eG(S, T ) − hG(S, T ; k)
= θ(r |S| − eG(S, T )) + (1 − θ)(r |T | − eG(S, T )) − hG(S, T ; k)
= θmS + (1 − θ)mT − hG(S, T ; k).

�

Katerinis dealt with the idea of calculation of following Lemma 1 in [4]. Now,
we recalculate for our proofs.

Lemma 1 Let r , � and k be integers and let G be an r-regular, �-edge-connected
graph. Suppose G − x has no k-factor for some x ∈ V (G). Then, we have following
results such that S, T ⊆ V (G) with S �= T .

(r − 2k)(|S| − |T |) ≥ �ω(G[U ]) − 2hG−x (S − x, T ; k) − 2k + 4 + 2eG (S, S) + 2eG (T, T ).

Proof SinceG − x has no k-factor, by TheoremE, there are S′, T ⊆ V (G) − x with
S′ ∩ T = ∅ such that δG−x (S′, T ) ≤ −2. Let S = S′ ∪ {x} and U = V (G) − (S ∪
T ). Then, we have

δG−x (S − x, T ; k) = k|S| − k −
∑

y∈T
(k − degG(y)) − eG(S, T ) − hG−x (S − x, T ; k) ≤ −2.

Then, we have

k|S| − k|T | +
∑

y∈T
degG−S(y) − hG−x (S − x, T ; k) ≤ k − 2. (1)

Thus, ∑

y∈T
degG−S(y) ≤ k − 2 + hG−x (S − x, T ; k) − k|S| + k|T |. (2)

On the other hand, since G is r -regular,

r |S| = 2eG(S, S) + eG(S, T ) + eG(S,U ). (3)

Similarly,
r |T | = 2eG(T, T ) + eG(S, T ) + eG(T,U ). (4)

By (3) and (4), we have
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r |S| = 2eG(S, S) + r |T | − 2eG(T, T ) − eG(T,U ) + eG(S,U )

= r |T | − 2eG(T, T ) − 2eG(T,U ) + eG(T,U ) + eG(S,U ) + 2eG(S, S).(5)

Since G is �-edge-connected,

eG(T,U ) + eG(S,U ) ≥ �ω(G[U ]). (6)

Combining (5) with (6),

r |S| ≥ r |T | − 2eG(T, T ) − 2eG(T,U ) + �ω(G[U ]) + 2eG(S, S)

= r |T | − 4eG(T, T ) − 2eG(T,U ) + �ω(G[U ]) + 2eG(S, S) + 2eG(T, T )

= r |T | − 2
∑

y∈T
(degG−S(x)) + �ω(G[U ]) + 2eG(S, S) + 2eG(T, T ). (7)

Now using (2), (7) implies,

r |S| ≥ r |T | − 2(k − 2 + hG−x (S − x, T ; k) − k|S| + k|T |) + �ω(G[U ])
+2eG(S, S) + 2eG(T, T ).

Thus,

(r − 2k)(|S| − |T |) ≥ �ω(G[U ]) − 2hG−x (S − x, T ; k) − 2k + 4

+2eG(S, S) + 2eG(T, T ).

�

We use the following Kano’s theorem to prove Theorem 3. We remark that Kano
actually proved a stronger statement than Theorem F.

Theorem F (Kano [2]) Let r be an integer, and let k be an even integer such that
2 ≤ k ≤ r

2 , and let G be an r-regular, 2-edge-connected graph. Then, G has a k-
factor containing e and another k-factor avoiding e for every edge e ∈ E(G).

2.1 Proof of Theorem 3

Let r and k be as stated in the hypotheses of Theorem 3. Suppose the Theorem is
false and choose a counterexample G such that |V (G)| is as small as possible. Since
G has a 2-edge cut, there are edges f1, f2 ∈ E(G) such that G − f1 − f2 has two
components C1,C2. Define the graph Di=Ci ∪ {ei }, where ei is edge such that Di

becomes r -regular with 1 ≤ i ≤ 2. Note that Di is a 2-edge-connected graph. We
consider two cases.

Case 1. |V (G)| is odd.
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Then since either |V (D1)| is odd or |V (D2)| is odd, without loss of generality
we may assume that |V (D1)| is odd. By the induction hypothesis, there is a vertex
x ∈ V (D1) such that D1 − x has a k-factor F1 since |V (D1)| is odd. If F1 ∩ {e1} = ∅,
we obtain a k-factor F2 from D2 such that F2 ∩ {e2} = ∅ by Theorem F. Thus, since
F1 ∪ F2 is a k-factor in G, this is a contradiction. If F1 ∩ {e1} �= ∅, we obtain a k-
factor F2 from D2 such that F2 ∩ {e2} �= ∅ by Theorem F. Thus, since F1 ∪ F2 −
{e1, e2} ∪ { f1, f2} is a k-factor in G, this is a contradiction.

Case 2. |V (G)| is even.
Then, we have k = 2. If |V (Di )| ≡ 1 (mod 2) with i ∈ {1, 2}, then we can con-

clude that G − x has a 2-factor as in the case 1 since there is a vertex x such that
Di − x has a 2-factor by the induction hypothesis. Therefore, this is a contradiction.
Thus we may assume |V (Di )| ≡ 0 (mod 2) with i ∈ {1, 2}. If both of D1 and D2

are bipartite, G becomes a bipartite graph and this is a contradiction. Thus we may
assume that D1 is not bipartite. Hence, as above, we can conclude that G − x has a
2-factor, contradicting our assumption that G − x has no 2-factor. �

3 Proof of Theorem 2

Suppose G is a graph of counterexample. Let S and T be disjoint subsets of V (G).
DefineU = V (G) − (S ∪ T ), δG(S, T ) = δG(S, T ; k) andhG(S, T ) = hG(S, T ; k).
First, we prove some basic properties of G.

Claim 1 For every x ∈ V (G), there are some disjoint subsets S and T of V (G)with
S � x such that δG(S, T ) ≤ k − 2.

Proof SinceG − x has no k-factor, by Theorem E, there are disjoint subsets S′, T ⊂
V (G) − {x} such that δG−x (S′, T ) ≤ −2. Let S = S′ ∪ {x}. Then, δG(S, T ) ≤
k − 2. �

Claim 2 |S| = |T |.
Proof Assume |S| > |T |. SincemS − mT = r(|S| − |T |) by Proposition 1, we have
mS ≥ mT + r . By the definition of the odd component and k is even,mT ≥ hG(S, T ).
Therefore,

k − 2 ≥ δG(S, T ) ≥ θ(mT + r) + (1 − θ)mT − hG(S, T ) ≥ θr = k.

This is a contradiction.
Assume |S| < |T |. Then, mT ≥ mS + r . For every component C of U , if eG

(V (C), T ) is odd, then eG(V (C), S) is odd since r is even. Thus, mS ≥ hG(S, T )

by the definition of the odd component and k is even. Hence,

k − 2 ≥ hG(S, T ) ≥ θmS + (1 − θ)(mS + r) − hG(S, T ) ≥ r − θr = r − k.
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Therefore, k − 1 ≥ r
2 . This contradicts

r
2 ≥ k. �

By Claim 2, we have mS = mT and δG(S, T ) = mT − hG(S, T ). Since G is a
2�-edge-connected, mS + mT = 2mT ≥ 2�hG(S, T ). Thus, mT

�
≥ hG(S, T ). Then

by Claim 1,

k − 2 ≥ δG(S, T ) ≥ mT − mT

�
≥ mT

(

1 − r − 2k + 4

r

)

= 2(k − 2)

r
mT .

Therefore, we have mT ≤ r
2 .

Define a pair {S, T } such that S ∩ T = ∅, |S| = |T | and mS < r
2 . We call these

pairs Tutte pair of 1st kind. Define a pair {S, T } such that S ∩ T = ∅, |S| = |T |,
mS = mT = r

2 , and G − (S ∪ T ) consists of h components and these h components
are odd components.We call these pairsTutte pair of 2nd kind. Then, � = r

r−2k+4 , h =
r
2 − k + 2, E(G[S]) = ∅ and E(G[T ]) = ∅ hold. By Claim 1, we can select Tutte
pairs {S1, T1}, . . . , {Sp, Tp} such that V (G) = ⋃

1≤i≤p(Si ∪ Ti ) and
∑p

i=1 |Si ∪ Ti |
is as small as possible. Let {Si , Ti } be a Tutte pair of 2nd kind for 1 ≤ i ≤ q and
{Si , Ti } be a Tutte pair of 1st kind for q + 1 ≤ i ≤ p. For 1 ≤ i, j ≤ p, suppose

S′
i = Si ∩Uj ,

T ′
i = Ti ∩Uj ,

S′
j = Sj ∩Ui ,

T ′
j = Tj ∩Ui ,

U ′
i = V (G) − (S′

i ∪ T ′
i ) and

U ′
j = V (G) − (S′

j ∪ T ′
j ).

Now, we prove following claims.

Claim 3 If i �= j and (Si ∪ Ti ) ∩ (Sj ∪ Tj ) �= ∅, then 1 ≤ i, j ≤ q.

Proof Assume the contrary. Without loss of generality, we may assume i ≥ q + 1.
Then, mSi < r

2 . Then,

eG(S′
i ∪ T ′

i ,U
′
i ) + eG(S′

j ∪ T ′
j ,U

′
j ) ≤ eG(Si ∪ Ti ,Ui ) + eG(Sj ∪ Tj ,Uj ).

On the other hand,

mS′
i
+ mT ′

i
+ mS′

j
+ mT ′

j
= eG(S′

i ∪ T ′
i ,U

′
i ) + eG(S′

j ∪ T ′
j ,U

′
j )

+2
(
eG(S′

i , S
′
i ) + eG(T ′

i , T
′
i ) + eG(S′

j , S
′
j ) + eG(T ′

j , T
′
j )

)

≤ eG(Si ∪ Ti ,Ui ) + eG(Sj ∪ Tj ,Uj )

+2
(
eG(Si , Si ) + eG(Ti , Ti ) + eG(Sj , Sj ) + eG(Tj , Tj )

)

= mSi + mTi + mSj + mTj

< 2r.
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Wemay assumemS′
i
+ mT ′

i
< r . Then, |S′

i | = |T ′
i | bymS′

i
− mT ′

i
= r(|S′

i | − |T ′
i |).

Thus, {S′
i , T

′
i } is a Tutte pair. This contradicts minimality of

∑p
i=1 |Si ∪ Ti | if we

replace {Si , Ti } with {S′
i , T

′
i }. �

Claim 4 |(Si ∪ Ti ) ∩ (Sj ∪ Tj )| ≡ 0 (mod 2) for 1 ≤ i, j ≤ p.

Proof First we note that r = 2�h since {Si , Ti } is a Tutte pair of 2nd kind with
1 ≤ i ≤ p. Suppose |(Si ∪ Ti ) ∩ (Sj ∪ Tj )| ≡ 1 (mod 2) for 1 ≤ i, j ≤ p and i �=
j . Without loss of generality, we may assume i = 1 and j = 2. Suppose that
C1,C2, . . . ,Ch are odd components of G − (S1 ∪ T1) and that D1, D2, . . . , Dh

are odd components of G − (S2 ∪ T2). Note that h ≥ 2. Thus we may assume
|(S1 ∪ T1) ∩ V (D1)| ≡ 1 (mod 2) and |(S2 ∪ T2) ∩ V (C1)| ≡ 1 (mod 2). Then, by
the proof of Claim 3, we obtain

mS′
1
+ mT ′

1
= r and mS′

2
+ mT′

2
= r.

On the other hand, since |(S1 ∪ T1) ∩ V (D1)| is odd,mS1∩V (D1) + mT1∩V (D1) ≥ r .
Then, for 2 ≤ a ≤ h

eG((S1 ∪ T1) ∩ V (Da), V (G) − ((S1 ∪ T1) ∩ V (Da))) = 0

since eG((S1 ∪ T1) ∩ V (D1), (S1 ∪ T1) ∩ V (Da)) = 0. Thus, (S1 ∪ T1) ∩ V (Da) =
∅ with 2 ≤ a ≤ h. Similarly, (S2 ∪ T2) ∩ V (Ca) = ∅ with 2 ≤ a ≤ h. Note that

eG((S1 ∪ T1) ∩ (S2 ∪ T2), V (Ca) ∩ V (Db)) = 0

for 1 ≤ a, b ≤ h since mS1 + mT1 = r , mS2 + mT2 = r , mS1∩V (D1) + mT1∩V (D1) =
r and mS1∩V (C1) + mT1∩V (C1) = r . Thus, for any component Ca with 2 ≤ a ≤ h,
eG(V (Ca), S1 ∪ T1) = eG(V (Ca), (S1 ∪ T1) ∩ V (D1))=2�.HoweverCa joins either
S1 or T1 for any component Ca with 2 ≤ a ≤ h since |(S1 ∪ T1) ∩ V (D1)| is odd.
This contradicts that Ca is a odd component with 2 ≤ a ≤ h since 2�h = r . �

From now on, we use definition of X
[
i j

] = Xi j and X
[
i j

] = Xi j . We consider
q ′ ≤ q such that i1, i2, . . . , iq ′ is as small as possible and subject to∣
∣(S [i1] ∪ T [i1]) ∩ (S [i2] ∪ T [i2])∩, . . . ,∩ (

S
[
iq ′

] ∪ T
[
iq ′

])∣
∣ ≡ 1 (mod 2).

Define ja ∈ {0, 1} and

X
[
jq ′ jq ′−1 . . . j1

] =
⋂

ja=1

(S [ia] ∪ T [ia])
⋂

ja=0

U [ia]

with 1 ≤ a ≤ q ′. For example, when q ′ = 4, j4 = 1, j3 = 1, j2 = 0 and j1 = 1, we
have

X1101 = (S [i4] ∪ T [i4]) ∩ (S [i3] ∪ T [i3]) ∩ (S [i1] ∪ T [i1]) ∩U [i2] .
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Since jq ′ jq ′−1 . . . j1 is a sequence of 0 and 1, we can consider this sequence as a
binary number. Then, we reconstruct decimal b from binary number jq ′ jq ′−1 . . . j1
and we define

Yb = X
[
jq ′ jq ′−1 . . . j1

]

for 0 ≤ b ≤ 2q
′ − 1. Note that

∣
∣Y

[
2q

′ − 1
]∣
∣ is odd since∣

∣(S [i1] ∪ T [i1]) ∩ (S [i2] ∪ T [i2])∩, . . . ,∩ (
S

[
iq ′

] ∪ T
[
iq ′

])∣
∣ ≡ 1 (mod 2).Now

wehaveY [2a] = (S
[
ia+1

] ∪ T
[
ia+1

]
)
⋂

b �=a U
[
ib+1

]
with0 ≤ a, b ≤ q ′ − 1.Then,

since |Y [2a]| is odd by Claim 4,
∣
∣Y

[
2q

′ − 1
]∣
∣ ≡ 1 (mod 2) and the minimality of

q ′, we have ∑

0≤a≤q ′−1

eG(Y
[
2a

]
, V (G) − Y

[
2a

]
) = rq ′. (8)

On the other hand, as there are h odd components for {S [ia] , T [ia]}with 1 ≤ a ≤ q ′,
and {S [ia] , T [ia]} is a Tutte pair of 2nd kind, and G is 2�-edge-connected, then
certainly

2�hq ′ =
∑

1≤a≤q ′
eG(S [ia] ∪ T [ia] , V (G) − (S [ia] ∪ T [ia])).

Thus, by (8) and the definition of Yb we have

2�hq ′ =
∑

1≤a≤q ′
eG(S [ia] ∪ T [ia] , V (G) − (S [ia] ∪ T [ia]))

≥
∑

0≤a≤q ′−1

eG(Y
[
2a

]
, V (G) − Y

[
2a

]
)

= rq ′.

Now, since 2�h = r , we have

∑

1≤a≤q ′
eG(S [ia] ∪ T [ia] , V (G) − (S [ia] ∪ T [ia]))

=
∑

0≤a≤q ′−1

eG(Y
[
2a

]
, V (G) − Y

[
2a

]
). (9)

We rewrite both sides of (9) by using summation of eG(Yi ,Y j ). Then, we have

∑

1≤a≤q ′
eG(S [ia] ∪ T [ia] , V (G) − (S [ia] ∪ T [ia])) =

∑

0≤i< j≤2q′ −1

bi j eG(Yi ,Y j )

and ∑

0≤a≤q ′−1

eG(Y
[
2a

]
, V (G) − Y

[
2a

]
) =

∑

0≤i< j≤2q′ −1

ci j eG(Yi ,Y j ),
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Then, bi j ≥ ci j for 0 ≤ i < j ≤ 2q
′
. Moreover, b0 j > c0 j for 1 ≤ j ≤ 2q

′
. Thus,

eG
(
Y

[
2q

′ − 1
]
, V (G) − Y

[
2q

′ − 1
]) = 0. Therefore, Y

[
2q

′ − 1
] = ∅. However,

this contradicts
∣
∣Y

[
2q

′ − 1
]∣
∣ is odd. �

4 Proof of Remark 1 and Theorem 1

Proof of Remark 1 Let r, k, � and G be as stated in the hypotheses of Remark 1.
Assume on the contrary that G − x has no k-factor for some x ∈ V (G). Then by
Theorem E and Lemma 1, there are some disjoint subsets S, T ⊆ V (G) such that

(r − 2k)(|S| − |T |) ≥ �ω(G[U ]) − 2hG−x (S − x, T ; k) − 2k + 4

+2eG(S, S) + 2eG(T, T ). (10)

We consider the cases ω(G[U ]) ≥ 1 and ω(G[U ]) = 0 separately.

Case 1. ω(G[U ]) ≥ 1.
Without loss of generality, we may assume � ≥ 2k − 1 ≥ 1. Then, by (10),

(r − 2k)(|S| − |T |) ≥ 1.

Thus, we have
|S| > |T |. (11)

If hG−x (S − x, T ; k) = 0, by (1) and (11),

1 ≤ |S| − |T | ≤ 1 − 2

k
.

This is a contradiction. Thus, we may assume hG−x (S − x, T ; k) ≥ 1. Now, we
consider two cases.

Case 1–1. k is even.
Thenby thedefinitionof theoddcomponent,

∑
x∈T degG−S ≥ hG−x (S − x, T ; k).

Hence (1) implies |T | ≥ |S|. However, this contradict (11).
Case 1–2. k is odd.

We now consider the case of Remark 1 (2). Let h = hG−x (S − x, T ; k). By (1)
and (11),

1 ≤ |S| − |T | ≤ 1 + h − 2

k
< h (12)

since if 1 + h−2
k ≥ h, then we have 1 > k−2

k−1 ≥ h and this contradicts h ≥ 1. Note
that (12) implies h ≥ 2.

By (10) and (12),



256 Y. Egawa and K. Kimura

(r − 2k)

(

1 + h − 2

k

)

≥ (r − 2k)(|S| − |T |) ≥ (� − 2)h − 2k + 4

(r − 2k)(k + h − 2) ≥ (� − 2)kh − 2k2 + 4k

rk + rh − 2r ≥ �kh

r(k + h − 2) ≥ �kh (13)

Since h ≥ 2, k + h − 2 ≥ 0. Assume � = 2k ≥ r
2 + 1. Then, we have 4k − 2 ≥ r .

Thus, by (13), we have

(4k − 2)(k + h − 2) − 2k2h ≥ 0

4k2 + 4kh − 10k − 2h + 4 − 2k2h ≥ 0

2h(2k − 1 − k2) + 4k2 − 10k + 4 ≥ 0

Now since k ≥ 3, 2k − 1 − k2 ≤ 0. Recall that h ≥ 2. Hence, we have

4(2k − 1 − k2) + 4k2 − 10k + 4 = −2k ≥ 0.

This is a contradiction.
Assume � = r

2 + 1. From (13),

r(k + h − 2) ≥
( r

2
+ 1

)
kh

2r(k + h − 2) ≥ (r + 2)kh

2rk + 2rh − 4r − rkh − 2kh ≥ 0

k(2r − rh − 2h) + 2rh − 4r ≥ 0.

Since h ≥ 2, 2r − rh − 2h < 0. Recall that k ≥ 3. Hence, we have

3(2r − rh − 2h) + 2rh − 4r ≥ 0

6r − 3rh − 6h) + 2rh − 4r ≥ 0

2r − rh − 6h ≥ 0.

However, since h ≥ 2, 2r − rh − 6h < 0 and this is a contradiction.

Case 2. ω(G[U ]) = 0.
By the definition of hG(S, T ; r), ω(G[U ]) ≥ hG(S, T ; r), i.e. hG(S, T ; r) = 0.

Since G is r -regular, by Theorem E,

δG(S, T ; r) = r |S| −
∑

y∈T
(r − degG(y)) − eG(S, T ) ≥ 0. (14)

Subtracting (1) from (14), we have
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(r − k)(|S| − |T |) + k ≥ 2. (15)

Thus, |S| ≥ |T |. We now consider two cases.

Case 2–1. |V (G)| is odd.
Then, we obtain |S| > |T |. However, by (1), we have

∑

y∈T
degG−S(y) ≤ −2.

This is a contradiction.

Case 2–2. |V (G)| is even.
We may assume |S| = |T |. Then by (1),

∑

y∈T
degG−S(y) = 2eG(T, T ) ≤ k − 2.

Since eG(S, S) = eG(T, T ) by |S| = |T | and ω(G[U ]) = 0, we have

2eG(S, S) ≤ k − 2.

Thus, G becomes HF . This is a contradiction. �

Proof of Theorem 1 Choose a counterexample G. Let heven = hG(S, T ; r) if r is
even and hodd = hG(S, T ; r) if r is odd. Note that heven = hG(S, T ; r) = hG−x (S −
x, T ; 2). Now, since k = 2 and � = 2 in Lemma 1, we have

(r − 4)(|S| − |T |) ≥ 2ω(G[U ]) − 2heven + 2eG(S, S) + 2eG(T, T )

≥ 0. (16)

On the other hand, from (1), we have

2 S| − 2 T | +
∑

y∈T
degG−S(y) − heven ≤ 0. (17)

Then by the definition of an odd component,
∑

y∈T degG−S(y) ≥ heven . Thus, by
(17), we have

|S| ≤ |T |. (18)

Assume r = 4. Now, since G is 4-regular, by Theorem E,

4 S| − 4 T | +
∑

y∈T
degG−S(y) − heven ≥ 0. (19)
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Subtracting (17) from (19),

2 S| − 2 T | ≥ 0

|S| ≥ |T |. (20)

By (18) and (20),
|S| = |T |.

Assume r ≥ 5. Then by (16) and (18),

|S| = |T |. (21)

Thus, we may assume |S| = |T | if r ≥ 4.
By (16) and (21),

ω(G[U ]) = heven , eG(S, S) = eG(T, T ) = 0, and hence
∑

y∈T
degG−S(y) = heven = eG(S,U ) = eG(T,U ). (22)

If ω(G[U ]) = 0, G becomes bipartite graph by (21) and (22). This contradicts
that G is not bipartite. Thus we may assume ω(G[U ]) ≥ 1. Furthermore, (22)
implies EG(V (G) − V (Ci ), V (Ci )) = {ei1, ei2} for every component Ci of G[U ]
and {ei1, ei2} becomes 2-edge cut. Then by Theorem 3, there is a vertex x ∈ V (G)

such that G − x has a 2-factor. This is a contradiction. �

5 Sharpness

First, we show that we cannot replace the 2-edge-connected of Theorem 1with edge-
connected. We consider a graph H such that degG(x1) = r − 1 for some x1 ∈ V (H)

and degG(x) = r for every x ∈ V (H) − {x1}. Define W = (r − 1)H . We form G1

as follows. We add vertex y and join y to (r − 1) vertices of degree r − 1 in W . The
resulting graph G1 contains one vertex of degree r − 1 and others vertices of degree
r . Let G be as follows. We consider 2G1 and join the vertex of degree r − 1 to the
vertex of degree r − 1. Such a graph is r -regular and connected. It is easily checked
that G − x has no 2-factor for every x ∈ G.

Next, we show that the condition of Theorem 2, |V (G)| is odd, cannot be dropped.
Letm, r be integers and k be an even integer such that 4 ≤ k ≤ r

2 andm ≥ 3.Wewill
describe a graph G such that G is r -regular and (2k − 2)-edge-connected of an even
order.We formG as follows.We start from a complete bipartite graph K i

r,r with bipar-
tition (Ai , Bi ) where Ai = {ai1, ai2, . . . , air } and Bi = {bi1, bi2, . . . , bir } with 1 ≤
i ≤ m. Now we use the definition of a[i, j] = ai j . Remove the edges a[i, 1]b[i, 1],
a[i, 2]b[i, 2], . . . , a[i, k − 1]b[i, k − 1] from K i

r,r with 1 ≤ i ≤ m. We add the edges
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Fig. 1 Counterexample when |V (G)| is even

a[i, 1]a[i − 1, r ], a[i, 2]a[i − 1, r − 1], . . . , a
[
i, k

2 − 1
]
a

[
i − 1, r −

(
k
2 − 2

)]
with

2 ≤ i ≤ m and let i − 1 = r if i = 1. Similarly, we add the edges b[i, 1]b[i −
1, r ], b[i, 2]b[i − 1, r − 1], . . . , b [

i, k
2 − 1

]
b

[
i − 1, r − (

k
2 − 2

)]
with 2 ≤ i ≤ m

and let i − 1 = r if i = 1. Moreover we add the edges a
[
i, k

2

]
b

[
i − 1, k

2

]
and

b
[
i, k

2

]
a

[
i + 1, k

2

]
with 2 ≤ i ≤ m − 1, and a

[
1, k

2

]
b

[
m, k

2

]
, b

[
1, k

2

]
a

[
2, k

2

]
and

a
[
m, k

2

]
b

[
m − 1, k

2

]
. The resulting graph G is r -regular, (2k − 2)-edge-connected

and has an even order. (Note that G is not also HF , where we defined HF in intro-
duction.) We can easily check that G − x has no k-factor for any x ∈ G. This graph
G is shown in Fig. 1.

Finally, we present the following conjecture.

Conjecture 1 Let r and k be even integers such that 2 ≤ k ≤ r
2 , and G be an r -

regular, 2-edge-connected graph of odd order. Then there is some x ∈ V (G) such
that G − x has a k-factor.
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Connectivity and Extendability
in Digraphs

LeRoy B. Beasley

Abstract In this article we give several definitions of connectedness and extend-
ability of paths and cycles in directed graphs. We define sets of digraphs by various
types of connectedness or extendability and give some containments as well as give
examples to show proper containment.

1 Introduction

The study of path and cycle extendability in graphs and digraphs began with articles
by J. W. Moon in 1969 [13] and later by G. R. T. Hendry in 1989–1990 [8–10]. In [9]
the question was asked: Is every Hamiltonian chordal graph cycle extendable? That
is, given a Hamiltonian chordal graph and a cycle in that graph of length k, is there a
cycle in the graph of length k + 1 with the same incident vertex set, plus one vertex?
This questionwas studied by several researchers andwas shown to be “yes” in several
subsets of Hamiltonian chordal graphs, like interval graphs [7]. However, in 2013,
Lafond and Seamone [11, Theorem 2.2] showed that not all Hamiltonian chordal
graphs are cycle extendable. In Sect. 3 we shall return to chordal Hamiltonian graphs
and extendability. For an excellent review of pancyclicity and cycle extendability in
undirected graphs see Deborah Arangno’s Ph.D. thesis [2].

The situation for connectivity and extendability of directed graphs is more com-
plex than for undirected graphs and hence we shall address directed graph connec-
tivity and extendability after relative definitions are presented. Few articles have
appeared lately about path or cycle extendability. A few exceptions are [2–5, 7, 14].

For graph theoretical background see [6] and for background on tournaments see
[12].
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2 Preliminaries

The length of a directed or undirected path or cycle in a digraph or graph is the
number of edges/arcs in that path or cycle. Since our graphs are loopless, there are
no cycles of length one, and a path of length one is an edge or arc. Throughout we
shall reserve the symbol n to represent the number of vertices in a graph or digraph
and let the vertex set be V = {v1, v2, . . . , vn}, so given a graph G, G = (V, E(G))

where E(G) is the edge set of G.

Definition 1 Let G be an undirected graph. If u and v are two vertices in G, then
d(u, v) is the length of the shortest path connecting u to v. It is called the distance
from u to v.

Definition 2 Let D be a directed graph. If u and v are two vertices in D, then d(u, v)
is the length of the shortest directed path from u to v or from v to u. It is also called
the distance from u to v.

Definition 3 A path in an undirected graph is called aHamilton path if it is of length
n − 1, the longest possible path. In a directed graph, a Hamilton path is a directed
path of length n − 1.

Definition 4 An undirected graph is pan-connected if every two distinct vertices is
connected by a path of every possible length greater than or equal to the distance
between them.

3 Connectivity

One of the basic properties that a graph may or may not possess is that of being
connected. For undirected graphs, we say a graph is connected if given any two
vertices, there is a path between them. For directed graphs, the situation is more
complex. Let Dn denote the set of all simple, loopless digraphs on the n vertex set
V = {v1, v2, . . . , vn},

There are several basic concepts of connectedness for directed graphs:

Definition 5 A directed graph in Dn is:

1. connected if the underlying undirected graph is connected.
2. (weakly) path connected if given any two distinct vertices u and v there is a

directed path from u to v, or from v to u.
3. strongly (path) connected if given any two distinct vertices u and v there are

directed paths, one from u to v and one from v to u.
4. weakly-Hamilton connected if given any two distinct vertices u and v there is a

Hamilton path connecting either u to v or v to u.
5. (strongly)-Hamilton connected if given any two distinct vertices u and v there is

are Hamilton paths, one connecting u to v and one connecting v to u.
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1 2

3 4

1′

Graph A

2′

3′ 4′

Graph B

1′′ 2′′

3′′ 4′′

Graph C

Fig. 1 Connected digraphs

6. weakly-pan-connected if given any two distinct vertices, u and v, and any k ∈
{d(u, v), . . . , n}, there is a directed path of length k from vertex u to vertex v or
from vertex v to vertex u.

7. strongly-pan-connected if given any two distinct vertices, u and v, and any k ∈
{d(u, v), . . . , n}, there is a directed path of length k from vertex u to vertex v and
one from vertex v to vertex u.

Definition 3 part 4 and Definition 3 part 5 above are the directed version of a
Hamilton connected undirected graph which is an undirected graph for which there
is a Hamilton path between any two distinct vertices.

Consider the three graphs on four vertices in Fig. 1. Graph A is connected but not
path connected nor strongly connected, there is no path between vertex 2 and vertex
3. Graph B is weakly path connected but not strongly connected, there is no path
from vertex 2′ to vertex 3′. Graph C is strongly connected.

Let CDn denote the set of all connected digraphs in Dn , let PCn denote the set of
all (weakly) path connected digraphs inDn , and let SCn denote the set of all strongly
connected digraphs in Dn . Then clearly, SCn ⊆ PCn ⊆ CDn ⊆ Dn . The digraphs in
Fig. 1 together with any digraph with an isolated vertex show that these containments
are all strict. The subscript n is usually omitted if the order of the graph is obvious
from the context.

Let HCw denote the set of digraphs in Dn that are weakly-Hamilton connected
and let HCs denote the set of digraphs in Dn that are strongly-Hamilton connected.

Let the set of all weakly-pan-connected digraphs in Dn be denoted Panw and the
set of all strongly-pan-connected digraphs in Dn be denoted Pans .

As noted above, all our graphs have the same vertex set, so the union of two graphs
G and H is the graph G ∪ H = (V, E(G) ∪ E(H)).

3.1 Examples and Containment

Note that any two vertices in a strongly-pan-connected digraph are either not adjacent
or are connected by arcs in both directions, forming a digon.
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Fig. 2 Graphs Ch8 (left) and Ch8,d (right)

Example 1 See [1]. Let G be an undirected graph. Define G2 to be the graph whose
edge set is the set of all edges uv such that there is a path of length 2 from u to
v. It was shown in [1, Theorem 2] that if Cn is an undirected Hamilton cycle, then
C [2] = Cn ∪ C2

n is pan-connected, so replacing all the edges in C
[2] with arcs in both

directions to get
−→
C [2], we have a strongly-pan-connected digraph. By deleting one

arc from this digraph, we have a digraph, C [2,d] = −→
C [2] \ {(u, v)}, that is weakly-

pan-connected. It is not strongly-pan-connected since d(u, v) = 1 but there is no arc
from u to v.

In [6, p. 191] an example of a Hamilton connected graph was presented. For
n = 8 it is the graph Ch8 on the left in Fig. 2. If all the edges of Ch8 are replaced

by two arcs, one in each direction we get the digraph
−→Ch8 which is an example of

a strongly-Hamilton connected digraph. If all the edges except the one connecting
vertex 1 and vertex 8 are replaced by two arcs, one in each direction, and the edge
between vertex 1 and vertex 8 replaced by a single arc from vertex 1 to vertex 8, we
have a weakly-Hamilton connected digraph since there is no directed Hamilton path
from vertex 6 to vertex 2. This digraph is the digraph Ch8,d on the right in Fig. 2.
Note that the digraph Ch8,d is not weakly-pan-connected.

The following containments are easily established:

Proposition 1 For n ≥ 3,

• Pans � Panw, not equal by C [2,d];
• Panw � HCw, not equal by Ch8.d ;

• Pans � HCs , not equal by −−→
Ch8;

• HCs � HCw, not equal by Ch8,d .

Motivated by the above discussion of connectedness, we shall proceed to investigate
concepts of path and cycle extendability in digraphs. In the next section we shall
define several concepts of extendability and end the section with a table showing
relations between the various sets defined above and in Sect. 4.2.
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4 Extendability

We begin by giving several definitions of extendability in digraphs. We divide this
section into three subsections. In the first subsectionwegive the traditional definitions
of extendability; in the second subsection we give notation for sets of graphs defined
by extendability conditions. We end with a subsection summarizing the results of
this section and Sect. 2.

4.1 Definitions—Path- and Cycle-Extendability

1. A digraph D ∈ Dn is said to be path dense if given any set of vertices V ′ ⊆ V
with |V ′| ∈ {2, 3, . . . , n} there is a directed path in D whose set of incident
vertices is V ′.

2. A digraph D ∈ Dn is said to be k-path dense if given any set of vertices V ′ ⊆ V
with |V ′| ∈ {k, k + 1, . . . , n} there is a directed path in D whose set of incident
vertices is V ′.
The digraph Ch8,d is 6-path dense, but not 5-path dense, there is no path with
incident vertex set {v1, v2, v3, v4, v6}.

3. A path in D whose incidence vertex set is V ′, (|V ′| ≤ n − 1), is weakly extend-
able if there is some vertex w in V \ V ′ such that D contains a path whose set
of incident vertices is V ′ ∪ {w}.

4. A digraph in Dn is said to be weakly-path-extendable if every path of length 1
through n − 2 is weakly extendable.

5. A path in D whose incidence vertex set is V ′, (|V ′| ≤ n − 1),with initial vertex
vI and terminal vertex vT is strongly extendable if there is some vertex w in
V \ V ′ such that D contains a path whose incidence vertices is V ′ ∪ {w} and
whose initial vertex is vI and whose terminal vertex is vT .

6. A digraph in Dn is said to be strongly-path-extendable if every path of length 1
through n − 2 is strongly extendable.
A slight generalization of the concept of strongly extendable requires that the
endpoints of the path be the same but not necessarily that the initial vertex be
the initial vertex, etc.

7. A path in D whose incidence vertex set is V ′, (|V ′| ≤ n − 1),with initial vertex
vI and terminal vertex vT is almost strongly extendable if there is some vertexw
in V \ V ′ such that D contains a path whose incidence vertices is V ′ ∪ {w} and
whose initial vertex is either vI or vT and whose terminal vertex is either vT or
vI , respectively.

8. A digraph in Dn is said to be almost-strongly-path-extendable if every path of
length 1 through n − 2 is almost strongly extendable.

9. A directed cycle in Dwhose incidence vertex set is V ′, (|V ′| ≤ n − 1), is extend-
able if there is some vertex w in V \ V ′ such that D contains a directed cycle
whose set of incident vertices is V ′ ∪ {w}.



266 L. B. Beasley

10. A digraph inDn is said to be cycle-extendable if every cycle of length 2 through
n − 1 is extendable. Note that a 2-cycle is called a digon.

4.2 Definitions—Sets of Graphs Defined by Extendability

1. Let PDn denote the set of all digraphs in Dn that are path dense.
2. Let PEw,n denote the set of all digraphs in Dn that are weakly path extendable.
3. Let PEs,n denote the set of all digraphs in Dn that are strongly path extendable.
4. Let PEas,n denote the set of all digraphs in Dn that are almost strongly path

extendable.
5. Let CEn denote the set of all digraphs in Dn that are cycle extendable.

Any acyclic digraph is cycle extendable and any digraph that dominates a cycle
dominates a Hamilton cycle. Thus we define:

6. Let CEH,n denote the set of all digraphs in Dn that are cycle extendable and are
not acyclic.

Note that the empty graph Kn is (vacuously) a member of all of the above sets except
PDn . Further, we will omit the subscript n if the order is obvious from the context.

4.3 Examples and Containment

Some obvious containments are:

Theorem 1 Let n > 3 then PEs � PEas � PEw;
Definition 6 A tournament on n vertices is a directed graph which is an orientation
of the complete simple undirected graph. That is a tournament is a loopless digraph
in which any two distinct vertices are connected by exactly one arc.

Let Tt,k denote the digraph whose vertex set is V = {v1, v2, . . . , vk} and whose
arc set is A = {(vi , v j )|1 ≤ i < j ≤ k}. That is, Tt,k is a transitive tournament (a
cycle free tournament) on k vertices.

For digraphs A and B let A ⇒ B denote the digraph consisting of the vertices of
A together with the vertices of B, the arc set consisting of the arc set of A together
with the arc set of B and arcs from every vertex of A to every vertex of B.

Proposition 2 PD � PEw.
Proof Let D ∈ PD and let p be a directed path in D with incident vertex set V ′.
Let w be any vertex not in V ′. Since D ∈ PD there is a path p′ in D with vertex set
V ′ ∪ {w}. Thus, D ∈ PEw.

For n ≥ 5 and 2 ≤ k ≤ n − 2 and w a vertex, the digraph D = Tt,k ⇒ w ⇒
Tt.(n−k−1) is in PEw, but not in PD since {v1, v2, vn} is not the vertex set of any path
in D but any path in D is weakly extendable. �
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Proposition 3 PEs � PEw.
Proof Clearly, if a path is strongly extendable, it is weakly extendable. Thus,PEs ⊆
PEw. But, the path v2 → v3 → · · · → vn in Tt,n is extendable to v1 → v2 → v3 →
· · · → vn which is the only possible extension, and the initial vertex must change,
thus it is not strongly extendable, and consequently Tt,n ∈ PEw but Tt,n /∈ PEs . That
is PEs 
= PEw. �

Let Ts,n denote the tournament on vertices V = {v1, v2, . . . , vn} and arc set A =
{(vi , v j )|1 ≤ i < j ≤ n} ∪ {(vn, v1)} \ {(v1, vn)}. That is Ts,n is the tournament Tt,n
with the one arc (v1, vn) reversed.

Proposition 4 PEs � CE .
Proof Let D be a digraph inPEs andC a non Hamiltonian cycle in D. By reordering
the vertices we may assume that the cycle is v1 → v2 → · · · → vk → v1, so that
v1 → v2 → · · · → vk is a non Hamiltonian path in D. Since D ∈ PEs there is a
path v1 → u2 → · · · → uk → vk in D for some vertices ui , i = 2, . . . , k. But then
v1 → u2 → · · · → uk → vk → v1 is a cycle extending C . That is D ∈ CE .

Note that v1 → v2 → · · · → vn−1 is a path that is not strongly extendable in Ts,n ,
thus Ts,n is in CE but not in PEs . That is CE 
= PEs . �
Proposition 5 If a directed graph dominates a directed Hamilton cycle then it is
strongly connected.

Proof Let D be a digraph that dominates a Hamilton cycle and let u and v be any
two vertices in D. Then, u and v partition the cycle into two arc disjoint paths, one
from u to v the other from v to u. �
Corollary 1 All the digraphs in CEH , PEs . and HCs are strongly connected.
Proposition 6 If a digraph dominates a directed Hamilton path then it is path con-
nected.

Proof Let D be a digraph that dominates a Hamilton path and let u and v be any
two vertices in D. Then, that path is incident with both u and v so there is either a
path from u to v or from v to u. �
Corollary 2 All of the digraphs in CEH , PEs . PEw. PEas , PD, HCw, and HCs are
path connected.

Proposition 7 PEas � HCw.
Proof Let D be a digraph in PEas and u and v any two vertices. Then, D dominates
a Hamilton path, and since u and v must be on this path, there is either a path from
u to v or from v to u. In either case there is Hamilton path from u to v or from v to
u by the definition of PEas . �
Example 2 Let D be the digraph in Dn with arc set {(v1, v2), (v2, v3.)(v3, v1),
(v3, v4), (v4, v3), (v4, v5), (v5, v4) · · · , (vn−1, vn), (vn, vn−1)}. D is a directed three
cycle appended to a path of digons from vertex 3 to n. Then the path vn → vn−1 →
· · · → v3 → v1 is extendable but only to one beginning at v1 and ending at vn , not
the other way. Thus, PEas 
= PEs .
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Sets why why �= Sets why why �=
CEH � SC Cor 1 Cn,4 CEH � CE def Tt,n

PEs � SC trans Cn,4 PEas � CE Prop 4 Pn(vac)

PEas � SC trans Cn,4 PEw � PEas Def. Cn,4

Panw � SC trans C [2,d] PEs � CEH Prop 4 Pn(vac)

HCs � SC Cor 1 Cn,4 PEs � PEas Def. Ex. 2

SC � PC Def. Pn PEs � PEw Def. Cn,4

CEH � PC trans Cn,4 PD � PEw Prop 2 Prop 2

PEs � PC trans Cn PEas � HCw Prop 7 Ch8,d

PEas � PC trans Cn PEs � HCw trans Ch8,d

PEw � PC trans dbl-star HCs � HCw Def. Ch8,d

HCw � PC trans Cn,4 Pans � PEs Def. C [2,d]

HCs � PC trans Cn,4 Pans � HCs Prop 1 −−→
Ch8

PD � PC Cor 2 Cn Panw � PC Def. Cn

Fig. 3 Subset containment table

4.4 Summary

Figure3 shows the set containments that we have established in the previous sections.
In Fig. 6 we have a table of directed graphs across the top and sets along the side.

A check indicates that the digraph in that column is a member of the set in that
row. An x indicates that is is not. The subscript “vac” indicates that the inclusion is
vacuously true since there are no cycles to extend. The subscript “2-cyc” indicates
that the only non extendable cycles are digons. the sets across the top are:
Cn,4, n ≥ 7, the directed n-cycle (v1 → v2 → v3 → · · · → vn−1 → vn → v1) plus
the arc v4 → vn;
Tt,n , the transitive n-tournament;
Ts,n , the strong n-tournament;
Ch8 and Ch8,d , See Fig. 2;
Cn , a directed n-cycle andCn,d an n-cycle with every edge replaced by an arc in both
directions;
Pn , a directed Hamilton path;
K [+], Kn−1 on vertices {v1, v2, . . . , vn−1} plus a 2-path through vertex vn;
Star, a double star, or the union of an out-star and an in-star both centered at the same
vertex;



Connectivity and Extendability in Digraphs 269

CE

CEH

PC

SC HCs

PD

Panw

Pans

PEwPEas

PEs

HCw

Heavy arrows are justified in the text.

Medium arrows are easily established, some justified in the text.

Light arrows follow by transitivity.

Each arrow represents �.

Fig. 4 Set containment graph

C [2] and C [2,d], See Example 2.1.
The sets in the first column are those defined above.

5 Set Connectivity and Extendability

Some graphs or digraphs are not cycle extendable, but each cycle is extendable to
cycles of length one or two more. Example 3 is an example of this. It is not cycle
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v1 v2

v3

v4 v5⇒
⇒

⇒
v6

v7 v8

v9

Fig. 5 9 vertex example

extendable, the 3-cycle (v1, v2, v3) is not extendable to a 4-cycle, but it is extendable
to a 5-cycle. This section gives definitions and examples to further investigate this
type of extendability.

5.1 Definitions—S-Path- and S-Cycle-Extendability

We can further refine the concept of connectedness by limiting the length of the path
connecting two vertices:

1. Let S be a subset of {1, 2, . . . , n − 1}. A digraph is weakly-S-path connected
if given any two distinct vertices u and v there is a path whose length is in S
connecting either u to v or v to u.

2. Let S be a subset of {1, 2, . . . , n − 1}. A digraph is strongly-S-path connected if
given any two distinct vertices u and v there is are paths whose lengths are in S,
one connecting u to v and the other connecting v to u.
Note that being weakly/strongly-Hamilton-connected is equivalent to being
weakly/strongly-{n}-path-connected.

3. Let S ⊆ {2, 3, . . . , n}. A digraph D ∈ Dn is said to be S-path dense if given any
set of vertices V ′ ⊆ V with |V ′| ∈ S there is a directed path in D whose set of
incident vertices is V ′.
Note that if S = {k, k + 1, . . . , n} then S-path dense is the same as k-path dense.
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Fig. 6 Inclusion of test graphs

4. Let S ⊆ {1, 2, . . . , n}. A path in D whose incidence vertex set is V ′ is weakly
S-extendable if there is some subset W ⊆ (V \ V ′) with |W | ∈ S such that D
contains a path whose set of incident vertices is V ′ ∪ W .

5. Let S ⊆ {1, 2, . . . , n}. A digraph in Dn is said to be weakly-S-path-extendable
if every path of length 1 through n − a is weakly S-extendable where a is the
smallest element of S.

6. Let S ⊆ {1, 2, . . . , n}. A path in D whose incidence vertex set is V ′ with initial
vertex vI and terminal vertex vT is strongly S-extendable if there is some subset
W ⊆ (V \ V ′) such that D contains a pathwhose set of incident vertices isV ′ ∪ W
and whose initial vertex is vI and whose terminal vertex is vT .
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7. Let S ⊆ {1, 2, . . . , n}. A digraph in Dn is said to be strongly-S-path-extendable
if every path of length 1 through n − a is strongly S-extendable where a is the
smallest element of S.

8. Let S ⊆ {1, 2, . . . , n}. A path in D whose incidence vertex set is V ′ with initial
vertex vI and terminal vertex vT is almost strongly S-extendable if there is some
subset W ⊆ (V \ V ′) such that D contains a path whose incident vertex set is
V ′ ∪ W and whose initial vertex is vI or vT and whose terminal vertex is vT or
vI , respectively.

9. Let S ⊆ {1, 2, . . . , n}. A digraph in Dn is said to be almost strongly-S-path-
extendable if every path of length 1 through n − a is almost strongly S-extendable
where a is the smallest element of S.

10. Let S ⊆ {1, 2, . . . , n}. A cycle in D whose incidence vertex set is V ′ is S-
extendable if there is some subset W ⊆ (V \ V ′) with |W | ∈ S such that D con-
tains a cycle whose set of incident vertices is V ′ ∪ W .

11. Let S ⊆ {1, 2, . . . , n}. A digraph in Dn is said to be S-cycle-extendable if every
cycle of length 2 through n − a is S-extendable where a is the smallest element
of S.

In [13, Theorem 1] J. W. Moon showed that any strongly connected orientation
of the complete loopless graph is {1, 2}-cycle extendable. The digraph in Fig. 5 is
a strongly connected orientation of the complete graph on nine vertices, and hence
shows that Moon’s theorem can not be improved to cycle extendable. In fact, the
digraph in Fig. 5 is not only Hamiltonian, and Hamilton connected, but also weakly-
pan-connected.

5.2 Sets Defined by Set-Continuity and Set-Extendability

1. Let S ⊆ {1, 2, . . . , n} and let PDS,n denote the set of all digraphs in Dn that are
S-path dense.

2. Let S ⊆ {1, 2, . . . , n} and let PEw,S,n denote the set of all digraphs inDn that are
weakly S-path extendable.

3. Let S ⊆ {1, 2, . . . , n} and let PEs,S,n denote the set of all digraphs in Dn that are
strongly S-path extendable.

4. Let S ⊆ {1, 2, . . . , n} and let PEas,S,n denote the set of all digraphs inDn that are
almost strongly S-path extendable.

5. Let CES,n denote the set of all digraphs in Dn that are S-cycle-extendable.

Note that the empty graph Kn is (vacuously) a member of all of the above sets
except PDS,n .

Example 3 (See Fig. 5.) Let D be the digraph on 9 vertices, v1, v2, . . . , v9 such that
v1, v2, v3 induces a 3-cycle, v4, v5, v6 induces a 3-cycle, v7, v8, v9 induces a 3-cycle,
and there is an arc from each vertex of the first 3-cycle to each vertex of the second
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3-cycle, an arc from each vertex of the second 3-cycle to each vertex of the third
3-cycle, and an arc from each vertex of the third 3-cycle to each vertex of the first
3-cycle. Then the 3-cycle on v1, v2, v3 cannot be extended to a 4-cycle containing
v1, v2, v3, but every cycle in D is {1, 2}-extendable. It should be noted that this graph
is path dense, weakly-pan-connected, and strongly Hamilton connected.

Note that in the above example, each 3-cycle can be replaced with any strongly
connected digraph on at least 3 vertices. The analysis will remain the same.

We end with some obvious containments.

Theorem 2 Let n > 3 and T � S ⊆ {1, 2, . . . , n − 1},
1. PDn � PDS,n.
2. PEs,S,n � PEas,S,n � PEw,S,n.
3. PEs ⊆ PEs,T,n � PEs,S,n.
4. PEas ⊆ PEas,T,n � PEas,S,n.
5. PEw ⊆ PEw,T,n � PEw,S,n.
6. CEn � CET,n � PES,n.

Most containments involving only S and not T or only T and not S are parallel
to the containments above and are not verified here. Containments involving T � S
follow solely from that containment. Further note that CEn = CE{1},n , etc.
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On the Extraconnectivity of
Arrangement Graphs

Eddie Cheng, László Lipták, and Daniel Tian

Abstract Extraconnectivity generalizes the concept of connectivity of a graph but
it is more difficult to compute. In this note, we compute the g-extraconnectivity of
the arrangement graph for small g (with g ≤ 6) with the help of a computer program.
In addition, we provide an asymptotic result for general g.

1 Introduction

The study of multiprocessor systems is an important aspect of parallel computing.
The underlying topology of such a multiprocessor system is an interconnection net-
work. Such an interconnection network is usually described and studied in terms of
graph theory. One can view the vertices as processors in which the resulting system
is a multiprocessor supercomputer (with edges being the links between processors),
or they can be viewed as computers (with edges being the links between computers)
in which the resulting system is a computer network. Using the example of a mul-
tiprocessor supercomputer, since processors and/or links can fail, it is important to
come up with fault resiliency measurements.

The (vertex) connectivity of a connected non-complete graph is the minimum
number of vertices whose deletion disconnects the graph. The vertex connectivity of
a complete graph on n vertices is defined to be n − 1. Moreover, a connected non-
complete graph is k(-vertex)-connected if with at most k − 1 vertices being deleted,
the resulting graph is connected, that is, the vertex connectivity is at least k. There is
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a corresponding edge version if edges are deleted. However, such measures are quite
simplistic, thus researchers have proposed a number of more advanced parameters.

A set of vertices T in a connected non-complete graph G is called a restricted
vertex-cut of order m or an (m − 1)-extra-vertex-cut (or (m − 1)-extra-cut for short)
if G − T is disconnected and every component in G − T has at least m vertices.
The restricted vertex connectivity of order m or the (m − 1)-extraconnectivity is
the size of a smallest restricted vertex-cut of order m. Thus a restricted vertex-cut
of order 1 is a vertex-cut and the restricted vertex connectivity of order 1 (or 0-
extraconnectivity) is the vertex connectivity. A similar definition can be made for
the case when deleting edges. We remark that the term restricted connectivity have
been used to mean different concepts by different authors.

Another way to generalize the concept of connectivity is the following. A graph
G is super m-vertex-connected of order q if with at most m vertices being deleted,
the resulting graph is either connected or it has one large component and the small
components collectively have atmostq vertices in total, that is, the resulting graph has
a component of size at least |V (G − T )| − q, where T is the set of deleted vertices.
Although this measurement is not as refined and somewhat raw, it is flexible. There
is a connection between the two concepts as shown in the next result.

Proposition 1 If G is super p-vertex-connected of order q, then the restricted vertex
connectivity of order q + 1 is at least p + 1, that is the q-extraconnectivity of G is
at least p + 1.

Proof By contradiction, assume that the q-extraconnectivity of G is at most p. So
there exists a set of vertices F with |F | ≤ p such that G − F is disconnected and
each of its components has at least q + 1 vertices. This is a contradiction as G − F
has one large component, and its small components have at most q vertices in total.

��
The arrangement graph, denoted by An,k , is defined for positive integers n and

k such that n > k ≥ 1. The vertex set of the graph is all permutations of k ele-
ments of the set {1, 2, . . . , n}. Two vertices corresponding to the permutations
[a1, a2, . . . , ak] and [b1, b2, . . . , bk] are adjacent if and only if there exists exactly
one integer 1 ≤ i ≤ k such that ai �= bi . Figure 1 shows A4,2. (For convenience, we
write the (n, k)-permutation [i, j] as i j in this figure, for example [1] as 14.) There
have been much research on this class of interconnection networks including embed-
dings, Hamiltonicity and surface area. See [1] for a list of references. It is easy to see
that the connectivity of An,k is k(n − k).

Let Hi be the set of vertices representing permutations whose kth element is i
for 1 ≤ i ≤ n, and let T denote a set of vertices to be deleted. Define T ∩ Hi = Ti
and |Ti | = ti for 1 ≤ i ≤ n. Clearly An,k is k(n − k)-regular because for any vertex,
all of its neighbors differ in one of the k positions in the permutation, and for each
position there are n − k other choices for the number in that position. Let us first
note some other preliminary facts about An,k , which are easy to check.

1. Hi is isomorphic to An−1,k−1 when n > k ≥ 2. This is because removing i
from all the permutations in Hi results in permutations of k − 1 elements from
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Fig. 1 A4,2
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{1, 2, . . . , n} − {i}. This fact is highly useful in the inductive proofs of the paper,
as we can often use the induction hypothesis on Hi .

2. An,k has n!
(n−k)! vertices, which is the number of permutations of k elements from

an n-element set. It follows that Hi has
(n−1)!
(n−k)! vertices for all 1 ≤ i ≤ n.

3. For any j vertices in Hi , there are exactly j (n − k) distinct vertices outside Hi

that are adjacent to at least one of the j vertices. This follows from the fact that
each vertex in Hi has n − k neighbors outside Hi and that no two vertices share
a common neighbor outside Hi .

4. For each pair Hi and Hj with i �= j , there are exactly (n−2)!
(n−k−1)! independent edges

(that is, edges such that no two are incident to a common vertex) between them.
Note that every edge between Hi and Hj must be between vertices whose permu-
tations differ in their kth element. Thus the number of edges between Hi and Hj

is just the number of permutations of k − 1 elements from {1, 2, . . . , n} − {i, j}.
The diagnosability of interconnection networks is an important concept and [2]

gave diagnosability results for the arrangement graphs. In the process, they estab-
lished the following results.

Theorem 1 ([2]) Let k ≥ 3 and n ≥ k + 2. Then the 1-extraconnectivity of An,k is
(2k − 1)(n − k) − 1.

Theorem 2 ([2]) Let k ≥ 4 and n ≥ k + 2. Then the 2-extraconnectivity of An,k is
(3k − 2)(n − k) − 3.

Theorem 3 ([2]) Suppose either k ≥ 4 and n ≥ k + 2, or k ≥ 3 and n ≥ k + 3.
Then the 3-extraconnectivity of An,k is (4k − 4)(n − k) − 4.

In this note, we make use of existing results together with Proposition 1 to turn
finding g-extraconnectivity of the arrangement graph into an automated process. We
need the following result.

Theorem 4 ([3]) Let n, k, s be positive integers such that n − 1 > k ≥ 2, s ≥ 1.

If T is a subset of the vertices of An,k such that |T | ≤
(
s(k − 2) + 2 − s2

2

)
(n − k),
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then An,k − T is either connected or has a large component and small components
with at most s − 1 vertices in total.

We note that Theorem 4 is an asymptotic result, thus our result for extraconnec-
tivity may miss some small cases. We remark that for s ≤ 3 more precise results than
Theorem 4 are known.

2 {4, 5, 6}-Extraconnectivities

As expected, our process produces results already given in Theorems 1–3. Based
on existing results, our guess is that in most cases, there exists a minimum r -extra-
vertex-cut F of An,k such that the resulting graph has exactly two components, one
large component and one small component with exactly r + 1 vertices. If our guess
is correct, then one can search for a connected subgraph of An,k with the smallest
neighbor set. This procedure gives the following result.

Theorem 5 Let k ≥ 23 and n − k ≥ 3. Then the 4-extraconnectivity of An,k is (5k −
5)(n − k) − 7.

Theorem 6 Let k ≥ 30 and n − k ≥ 3. Then the 5-extraconnectivity of An,k is (6k −
7)(n − k) − 9.

Theorem 7 Let k ≥ 37 and n − k ≥ 3. Then the 6-extraconnectivity of An,k is (7k −
9)(n − k) − 11.

To prove Theorem 5, one may first want to show that the 4-extraconnectivity of
An,k is at least (5k − 5)(n − k) − 7. Suppose not. Then there exists a set of ver-
tices F with |F | < (5k − 5)(n − k) − 7 such that every component in G − F has
at least 5 vertices. We let s = 6 in Theorem 4. Then we have that An,k is super(
6(k − 2) + 2 − 62

2

)
(n − k)-vertex connected of order 5. Note that for k ≥ 23,

(6(k − 2) + 2 − 62

2 )(n − k) = (6k − 28)(n − k) ≥ (5k − 5)(n − k) − 7. Thus we
can conclude that for such k the graph G − F has one large component and a total
of at most 5 vertices in the small components. But we also know that every com-
ponent has at least 5 vertices. Therefore, G − F has exactly two components, one
large component and a small component with exactly 5 vertices, and hence F con-
tains the neighborhood of these 5 vertices. This will give a contradiction if we can
show that the neighborhood of every connected subgraph of 5 vertices has at least
(5k − 5)(n − k) − 7 vertices. If one can find such a subgraphwhose neighborhood is
of size exactly (5k − 5)(n − k) − 7 and its deletion gives every component of size at
least 5 (or perhaps even two components), then this shows that (5k − 5)(n − k) − 7 is
also an upper bound. Indeed, if we can find a connected subgraph on 5 vertices whose
neighborhood F is of size exactly (5k − 5)(n − k) − 7, thenwe know thatG − F has
exactly two components since An,k is super ((5k − 5)(n − k) − 7)-vertex-connected



On the Extraconnectivity of Arrangement Graphs 279

of order 5 for k ≥ 23. Thus we have reduced the problem to looking for all con-
nected subgraphs on 5 vertices in An,k . The analysis for 5-extraconnectivity and
6-extraconnectivity can be done in a similar way and we have the following results.

Proposition 2 Let H be a connected subgraph of An,k and n − k > 0.

1. If k ≥ 23, H has 5 vertices, and |N (V (H))| ≤ (5k − 5)(n − k) − 7, then
N (V (H)) is a 4-extra-cut.

2. If k ≥ 30, H has 6 vertices, and |N (V (H))| ≤ (6k − 7)(n − k) − 9, then
N (V (H)) is a 5-extra-cut.

3. If k ≥ 37, H has 7 vertices, and |N (V (H))| ≤ (7k − 9)(n − k) − 11, then
N (V (H)) is a 6-extra-cut.

Proof The idea of this proof was given above as part of the overall scheme but we
will reproduce and formalize it here for easy reference. We will prove (1) and the
others can be done similarly. Clearly An,k − N (V (H) is disconnected, so we need
to show every component has at least 5 vertices. We let s = 6 in Theorem 4. Then

we have that An,k is super
(
6(k − 2) + 2 − 62

2

)
(n − k)-vertex connected of order

5. Note that for k ≥ 23, (6(k − 2) + 2 − 62

2 )(n − k) = (6k − 28)(n − k) ≥ (5k −
5)(n − k) − 7. Thus we can conclude that An,k − N (V (H) has one large component
and a total of at most 5 vertices in the small components. But H is connected so it
must be a component in An,k − N (V (H). Thus An,k − N (V (H) has exactly two
components, one of which is H , and both components have at least 5 vertices. ��

Weremark that exhibiting one such admissible neighborhood of size (5k − 5)(n −
k) − 7 for (1) shows that it is an upper bound, but we need to check all such
neighborhoods to establish it as a lower bound. We further remark that there is a
weaker lower bound that we have immediately: Letting s = 5 in Theorem 4, we have
that An,k is super (5(k − 2) + 2 − 52

2 )(n − k)-vertex-connected of order 4. Since

5(k − 2) + 2 − 52

2 = 5k − 20.5, we can apply Proposition 1 to conclude that the 4-
extraconnectivity of An,k is at least (5k − 20.5)(n − k) + 1. So by exhibiting just
one such 4-extra-vertex cut, we know that the 4-extraconnectivity of An,k is asymp-
totically equal to 5k(n − k) as k and n − k tend to infinity. The other two theorems
can be treated in a similar way. So we have the following corollary.

Corollary 1 As k and n − k tend to infinity, the r-extraconnectivity of An,k is asymp-
totically (r + 1)k(n − k) for r = 4, 5, 6.

Proposition 3 Let k ≥ 23 and n − k ≥ 3. Let

S = {1234B, 5234B, 1634B, 1274B, 5634B}.

Then N (S) is a 4-extra-cut in An,k of size (5k − 5)(n − k) − 7, where B is a fixed
permutation of length k − 4 and 1234B is a vertex of An,k .
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Proof Weremark thatwe requiren − k ≥ 3 aswe require 7 symbols 1, 2, 3, 4, 5, 6, 7
and a block of length 4. Now the subgraph induced by S is connected, and it is a
4-cycle with a leaf-edge. More precisely, the 4-cycle is given by 1234B − 5234B −
5634B − 1634B − 1234B and the leaf edge is given by 1234B − 1274B. Now each
vertex of S has k(n − k) neighbors, giving a total of 5k(n − k) vertices. However,
three of the neighbors of 1234B are already in S, each of 5234B, 5634B, 1634B
already has two neighbors in S, and 1274B has one neighbor in S. Thus we have
counted 5k(n − k) − 10 vertices. However some of the vertices have been counted
multiple times. We will systemically consider them

1. 1234B and 1634B share (n − k) − 1 common neighbors outside of S.
2. 1234B and 1274B share (n − k) − 1 common neighbors outside of S.
3. 1234B and 5234B share (n − k) − 1 common neighbors outside of S.
4. 1234B and 5634B share 0 common neighbor outside of S.
5. 5234B and 1634B share 0 common neighbor outside of S.
6. 5234B and 1274B share 1 common neighbor outside of S.
7. 5234B and 5634B share (n − k) − 1 common neighbors outside of S.
8. 1634B and 1274B share 1 common neighbor outside of S.
9. 1634B and 5634B share (n − k) − 1 common neighbors outside of S.

10. 1274B and 5634B share 0 common neighbor outside of S. (In fact, they share
no common neighbor in An,k .)

Thus |N (S)| = 5k(n − k) − 10 − 5((n − k) − 1) − 2 = (5k − 5)(n − k) − 7. It
now follows from Proposition 2 that N (S) is a 4-extra-cut. ��

Thus we have now proved that the 4-extraconnectivity of An,k is in the interval
[5k − 20.5)(n − k) + 1, (5k − 5)(n − k) − 7]. To show that it is (5k − 5)(n − k) −
7, we will need to show that (5k − 5)(n − k) − 7 is the smallest neighbor set of
a connected subgraph of size 5, which we will use a computer for. The following
propositions can be proved in a similar way.

Proposition 4 Let k ≥ 30 and n − k ≥ 3. Let

S = {12345B, 62345B, 17345B, 12845B, 67345B, 62845B}.

Then N (S) is a 5-extra-cut in An,k of size (6k − 7)(n − k) − 9, where B is a fixed
permutation of length k − 5 and 12345B is a vertex of An,k .

Proposition 5 Let k ≥ 37 and n − k ≥ 3. Let

S = {123456B, 723456B, 183456B, 129456B, 783456B, 729456B, 189456B}.

Then N (S) is a 6-extra-cut in An,k of size (7k − 9)(n − k) − 11, where B is a fixed
permutation of length k − 6 and 12346B is a vertex of An,k .

Hence Corollary 1 is proved. We remark that finding such a “good” extra-cut
is not necessary to prove Corollary 1. Let r be fixed and suppose n − k is large.
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Then consider the (r + 1)-clique generated by i23 . . . k for all i ∈ {1, k + 1, k +
2, . . . , k + r}. This is part of an (n − k + 1)-clique. Each vertex generates (k −
1)(n − k) neighbors via positions 2 to k, giving (r + 1)(k − 1)(n − k) neighbors,
which are all distinct. In addition, they share the remaining (n − k + 1) − (r + 1) =
n − k − r vertices in the (n − k + 1)-clique via position 1 as common neighbors.
Thus the neighbor set F of this (r + 1)-clique has size (r + 1)(k − 1)(n − k) +
(n − k − r) = ((r + 1)k − r)(n − k) − r . Letting s = r + 2 in Theorem 4, we have
that An,k is super ((r + 2)(k − 2) + 2 − (r+2)2

2 )(n − k)-vertex-connected of order

r + 1. But ((r + 2)(k − 2) + 2 − (r+2)2

2 )(n − k) ≥ ((r + 1)k − r)(n − k) − r if k
and n − k are sufficiently large. Thus for sufficiently large k and n − k, An,k − F has
exactly two components, a large component and a small component that is an (r + 1)-
clique. So the r -extraconnectivity of An,k is at most ((r + 1)k − r)(n − k) − r . We
now let s = r + 1 in Theorem 4, and we have that An,k is super ((r + 1)(k − 2) +
2 − (r+1)2

2 )(n − k)-vertex-connected of order r . Thus we can apply Proposition 1
to conclude that the r -extraconnectivity of An,k is at least ((r + 1)(k − 2) + 2 −
(r+1)2

2 )(n − k) + 1. Therefore the r -extraconnectivity of An,k is in the interval [((r +
1)(k − 2) + 2 − (r+1)2

2 )(n − k) + 1, ((r + 1)k − r)(n − k) − r ] for large k and n −
k. (Yes! This is the same type of argument that we have used before.) Thus we have
the following result that generalizes Corollary 1.

Proposition 6 Let r ≥ 1. As k and n − k tend to infinity, the r-extraconnectivity of
An,k is asymptotically (r + 1)k(n − k).

To finish the proof of Theorems 5–7, we need to show that the extra-cuts given
in the above results are the best among all such cuts generated by a connected
subgraph. For this, we use a computer search. Suppose we are looking for an r -
extra-cut where r ∈ {4, 5, 6}. We note that since An,k is vertex-transitive, we may
assume that 123 . . . k is in the desired subgraph. Since this subgraph has exactly r + 1
vertices, the distance between two of its vertices is at most r , thus they can differ in
at most r positions. Thus we can assume that every vertex in the desired subgraph
is of the form a1a2 . . . ar B, where B is fixed. We note that when two vertices differ
in exactly one position, then they are part of an (n − k + 1)-clique, and hence they
share (n − k) − 1 common neighbors. If they differ in exactly two positions, then
they share exactly 2 common neighbors. If they differ inmore than two positions, then
they share no common neighbors. Using these observations, we can grow a search
tree from 123 . . . n. Use r = 4 as an example. We can decide howmany neighbors of
1234B should be included in the subgraph. Suppose the answer is 4, then we need to
decide how many of the first 4 positions will be used to generate such 4 neighbors.
Suppose the answer is 2. Then without loss of generality, we may assume that it is
via the first two positions. Now suppose 1 neighbor is via the first position and 3
neighbors are via the second position. Then we may assume that the 4 neighbors are
either 5234B, 1534B, 1634B, 1734B or 5234B, 1634B, 1734B, 1834B. We note
that there are two cases rather than a number involving n and k. This type of case
analysis is suitable for a computer program. The program shows that the extra-cuts
given in the above propositions are optimal. A sample code is given in the Appendix.
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On a typical computer it took a few seconds to get the answer for r = 4 and a few
minutes to get the answer for r = 6.

Acknowledgements We thank the anonymous referee for a number of helpful comments and
suggestions.

A. Computer Code

1 import java.util.ArrayList;
3
4 public class Arrangement {
5 public static String[] ver;
6 public static int R;
7 public static ArrayList<Integer> nk1ans;
8 public static ArrayList<Integer> consans;
9 public static ArrayList<String> ex;
10 //We use R as number of vertices and K - as if K>R,
//WLOG let the last
//K-R be the same for all vertices
11 public static void main(String[]args) {
12 R = 5;
13 ver = new String[R];
14 nk1ans = new ArrayList<Integer>();
15 consans = new ArrayList<Integer>();
16 ex = new ArrayList<String>();
17 String a = "";
18 String b = "";
19 a+=(char)(’A’+0);
20 b+=(char)(’A’+R);
21 for(int i = 1;i<R;i++) {
22 a+=(char)(’A’+i);
23 b+=(char)(’A’+i);
24 }
25 ver[0] = a;
26 ver[1] = b;
27 solve(2,R+1,0);
28 for(int i = 0; i<nk1ans.size();i++) {
29 System.out.println("("+R+"nk-"+nk1ans.get(i)+")
(n-k)-"+(nk1ans.get(i)+consans.get(i))+", EX: "+ex.get(i));
30 }
31 }
32
33 //Recursive function for brute force solution
34 public static void solve(int point, int nodl,int largchg) {
//nodl: number of different letters used,largchg is the
//largest index such that the for some vert at that
//index that char is different from ABCDEF.
35 if(point!=R) {
36 ArrayList<String> newVerts = new ArrayList<String>();
37 for(int i = 0; i<=point-1;i++) {
38 newVerts.add(ver[i]);//This is such that we\\
//don’t add the previous vertices as new vertices - we
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//will ignore the first few
39 }
40 for(int i = 0; i<=point-1;i++) {
41 for(int j = 0; j<=nodl;j++) {
42 char cur = (char)(’A’+j);
43 if(ver[i].indexOf(cur)!=-1) {
44 continue;
45 }
46 else {
47 for(int k = 0; k<=largchg+1;k++) {
48 String temp =
ver[i].substring(0,k)+cur+ver[i].substring(k+1);
49 if(!newVerts.contains(temp)) {
50 newVerts.add(temp);
51 ver[point] = temp;
52 solve(point+1,Math.max(nodl, j+1),
Math.max(largchg, k));
53 }
54
55 }
56 }
57 }
58 }
59 }
60 else {
61 String ans = calc();
62 StringTokenizer st = new StringTokenizer(ans);
63 int nk1 = Integer.parseInt(st.nextToken());
64 int cons = Integer.parseInt(st.nextToken());
65 if(!nk1ans.contains(nk1)) {
66 nk1ans.add(nk1);
67 consans.add(cons);
68 String exa = "";
69 for(int i = 0;i<R;i++) {
70 exa+=ver[i]+" ";
71 }
72 ex.add(exa);
73 }
74 else {
75 int poi = nk1ans.indexOf(nk1);
76 if(consans.get(poi)<cons) {
77 consans.remove(poi);
78 consans.add(poi,cons);
79 String exa = "";
80 for(int i = 0;i<R;i++) {
81 exa+=ver[i]+" ";
82 }
83 ex.remove(poi);
84 ex.add(poi,exa);
85 }
86 }
87 }
88 }
89
90
91
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92
93 //Calculates neighbor set of given set of vertices
94 public static String calc() {
95 int nk1coef = 0;
96 int cons = 0;
97
98 for(int i = 1; i<R;i++) {
99 String cur = ver[i];
100 ArrayList<String> dcverts = new ArrayList<String>();
101 ArrayList<Integer> chgs = new ArrayList<Integer>();
102
103 boolean[] isShared = new boolean[R];
104 int isSharednum = 0;
104 for(int j = 0; j<i;j++) {
106 String cur2 = ver[j];
107 int differs = 0;
108 int diff1 = 0;
109 int diff2 = 0;
110 for(int k = 0; k<R;k++) {
111 if(cur.charAt(k)!=cur2.charAt(k)) {
112 if(differs == 0) {
113 diff1 = k;
114 differs++;
115
116 }
117 else if(differs == 1) {
118 diff2=k;
119 differs++;
120
121 }
122 else if(differs==2) {
123 differs++;
124 break;
125 }
126 }
127 }
128 if(differs == 1) {
129 if(!isShared[diff1]) {
130 isShared[diff1] = true;
131 isSharednum++;
132 nk1coef++;
133 }
134 }
135 if(differs == 2) {
136 if(diff1>diff2){
137 int temp = diff1;
138 diff1 = diff2;
139 diff2 = temp;
140 }
141 if((cur.charAt(diff1)!=cur2.charAt(diff2))) {
142
143 String v = cur.substring(0,diff1)+
cur2.charAt(diff1)+cur.substring(diff1+1);
144
145 if(!dcverts.contains(v)) {
146 dcverts.add(v);
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147 chgs.add(diff1);
148 }
149 }
150 if((cur.charAt(diff2)!=cur2.charAt(diff1))) {
151 String v = cur.substring(0,
diff2)+cur2.charAt(diff2)+cur.substring(diff2+1);
152 if(!dcverts.contains(v)) {
153 dcverts.add(v);
154 chgs.add(diff2);
155 }
156 }
157 }
158 }
159 for(int n = 0; n<chgs.size();n++) {
160 if(isShared[chgs.get(n)]) {
161 chgs.remove(n);
162 dcverts.remove(0);
163 n--;
164 }
165 else if(dcverts.get(n).indexOf(dcverts.get(n).
charAt(chgs.get(n)),chgs.get(n)+1)!=-1) {
166 chgs.remove(n);
167 dcverts.remove(0);
168 n--;
169 }
170 }
171 if(i==2) {
172 for(int n = 0;n<3;n++) {
173 }
174 }
175 cons+=dcverts.size();
176 cons= (cons - isSharednum)+1;
177 }
178 return nk1coef+" "+cons;
179 }
180}
181
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k-Paths of k-Trees

Allan Bickle

Abstract A k-tree is a graph that can be formed by starting with Kk+1 and iterating
the operation of making a new vertex adjacent to all the vertices of a k-clique of the
existing graph. When the order n > k + 1, a k-path graph is a k-tree with exactly
two vertices of degree k. We state a forbidden subgraph characterization for k-paths
as k-trees. We characterize k-trees with diameter d ≥ 2 based on the k-paths they
contain.

Keywords k-Tree · k-Path · Diameter

1 Introduction

In this paper, we seek to describe the structure of k-trees using k-paths, particularly
focusing on the diameter of k-trees. Undefined notation and terminology will follow
[2].

This work builds on previous papers on theWiener index ofmaximal k-degenerate
graphs [4] (with ZhongyuanChe) and onmaximal k-degenerate graphswith diameter
2 [3].

Definition 1 A k-tree is a graph that can be formed by starting with Kk+1 and
iterating the operation of making a new vertex adjacent to all the vertices of a k-
clique of the existing graph. The clique used to start the construction is called the
root of the k-tree.

A k-leaf is a degree k vertex of a k-tree.
A k-path graph G is an alternating sequence of distinct k- and k + 1-cliques

e0, t1, e1, t2, . . . , tp, ep, starting and ending with a k-clique and such that ti contains
exactly two k-cliques ei−1 and ei .
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An example of a 2-path (which is also a 2-tree) is shown below left. A 2-tree that
is not a 2-path (the triangular grid Tr2) is below right.

Tr2

Note that k-paths are also known as linear k-trees [1]. They are closely related to
pathwidth [6]; in particular, they are the maximal graphs with proper pathwidth k.
There is a simple characterization of these graphs.

Theorem 1 [5] Let G be a k-tree with n > k + 1 vertices. Then G is a k-path graph
if and only if G has exactly two k-leaves.

This leads to a forbidden subgraph characterization for k-paths as k-trees.

Theorem 2 A k-tree is a k-path if and only if it does not contain Kk + K 3 or for
k ≥ 2, T r2 + Kk−2.

Proof (⇒) (contrapositive) These graphs contain three k-leaves, so they are not
k-paths.

(⇐) (contrapositive) A k-tree that is not a k-path must have at least three k-leaves.
Then it must contain a subgraph G that is minimal with respect to this property. It
will have exactly three k-leaves, and deleting any of them results in a k-path. Let H
be the graph formed by deleting all k-leaves from G. If H is not a clique, then it
has two k-leaves, one of which has only one k-leaf of G neighboring it, so G is not
minimal.

If H = Kk , G = Kk + K 3. If H = Kk+1, each of its vertices are adjacent to a
k-leaf ofG. If two k-leaves ofG have the same neighborhood, thenG is not minimal.
Thus there are k − 2 vertices of H adjacent to all three k-leaves of G, and deleting
them produces Tr2. �

2 Diameter of k-Trees

A tree is minimal with respect to diameter d if and only if it is Pd+1. In [3], I found
a characterization of k-trees minimal with respect to diameter 3.

Definition 2 A dominating vertex of a graph is a vertex adjacent to all other ver-
tices.

Algorithm 1 Let P be a k − 2-path, k ≥ 3, of order n − 4 with k-leaves w and x.
Join dominating vertices y and z to P, forming P + K2. Add u with neighborhood
N (w) ∪ {w, y}, and v with neighborhood N (x) ∪ {x, z}. Let Gk be the class of all
graphs formed this way.
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P
w x

y

z

u

v

Theorem 3 [3] A graph G is a k-tree minimal with respect to diameter 3 if and only
if G ∈ Gk .

Equivalently, a k-tree has diameter at most 2 if and only if it does not contain any
graph in Gk .

The graphs in Gk are all k-paths. A generalization also holds.

Lemma 1 A k-tree minimal with respect to diameter d ≥ 2 is a k-path.

Proof A k-tree with diameter at least d must contain a pair of vertices distance d
apart. Now adding a vertex to a k-tree cannot change any existing distances. Thus in
a minimal k-tree with diameter d, the vertices at distance d must be k-leaves, and no
other vertices are k-leaves. �

The 2-paths with diameter d cannot be characterized solely by their degree
sequences, as there are two 2-paths with degree sequence 5, 4, 4, 3, 3, 3, 2, 2 which
have diameters 3 and 4 (see below). A characterization based on the arrangement of
the degree 4 vertices is possible.

Definition 3 A hub is a vertex of degree at least 5 of a 2-path. A truss is a subgraph
inducedbyvertices of degree4 in a2-path.An external trusshas avertexneighboring
a 2-leaf, an internal truss does not.

In the 2-path below, the black vertex is an internal truss and the gray vertices
induce an external truss.
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Theorem 4 Let G be a 2-tree minimal with respect to diameter d. Then G is a 2-
path, and if G �= P2

2d , the 2-leaves are adjacent to external trusses with odd order.
If h is the number of hubs, ti is the order of the i th internal truss, and t ′ and t ′′ are
the orders of the external trusses, then d = h + ∑⌊ ti

2

⌋ +
⌈
t ′
2

⌉
+

⌈
t ′′
2

⌉
+ 1.

Proof By Lemma 1, a minimal 2-tree with diameter d is a 2-path. To show the
formula holds, we use induction on n. Since G �= P2

2d , it contains a hub. We start
with the fan induced by its closed neighborhood. This has h = 1, d = 2, and all other
quantities 0. We add vertices one at a time, checking that the formula holds in each
case.

There are only two choices how to add a new 2-leaf next to an existing 2-leaf.
In one choice, the other neighbor had degree at least 4. If it is already a hub, the
diameter does not increase. If it is part of a truss of odd order, one vertex of the
truss becomes a hub, the rest of the truss (if any) becomes internal, the sum does not
change, and the diameter does not increase. If it is part of a truss of positive even
order, one vertex of the truss becomes a hub, the rest of the truss becomes internal,
the sum does not change, and the diameter does not increase.

In the other choice, the other neighbor had degree 3, so we create an external truss
or add one vertex to an existing external truss. If the truss had odd order, adding this
vertex does not change the diameter. If the truss is new or had even order, adding
this vertex increases the diameter by 1.

Since only the last case increases the diameter, in a 2-path minimal with respect
to d, the 2-leaves are adjacent to external trusses with odd order. �

Thus a 2-tree with order n ≥ 5 has diameter at least d if any only if it contains
a 2-path with the properties described in the theorem. This implies that a 2-tree has
diameter at least 3 if any only if it contains P2

6 .
To characterize k-treeswith diameter d, we need away to describe the construction

of k-paths.
A k-path can be constructed from Kk + K 2 with k-leaves u and v by maintaining

u as a k-leaf and adding a new k-leaf adjacent to v and k − 1 of its k neighbors. Label
the k neighbors of u 1 through k (in any way). Each time a k-leaf x is added adjacent
to (old) k-leaf w, label w with the label of its neighbor that does not neighbor x .

u

1

2

v
→

2

u

1

2 2

→

21

u

1

2

1

2

→

211

u

1

2

1

2

1

Define a string of length n − k − 2 with the labels added after the first k. Call this
a construction string of the k-path.

Definition 4 A string of numbers contains a pattern if the numbers in the pattern
occur in order (not necessarily consecutively) in the string.
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For example, the pattern 321 is contained in 312213 but not 132233.

Theorem 5 A k-tree has diameter d ≥ 2 if and only if it contains a k-path whose
construction string contains at least d − 2 consecutive permutations of {1, . . . , k}.
Proof By Lemma 1, a k-tree with diameter d contains a k-path with diameter d. Let
G be a k-path with diameter d and k-leaves (say) u and v. We show that the number
of consecutive permutations of {1, . . . , k} in the string is always d − 2. Certainly
this is true for Kk + K 2, which is minimal with diameter 2 and has an empty string.

Let H be a minimal k-path contained in G with k-leaves u and w. The vertices
in N (w) have labels 1, …, k. Each vertex added to form G removes one vertex
from the neighborhood of the k-leaf it replaces, so at most one vertex from NH (w).
To increase the diameter, each vertex in NH (w) must be removed, and each will
be replaced with another vertex with the same label. The diameter increases by one
exactly when the string contains one more permutation of {1, . . . , k}. �
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Rearrangements of the Simple Random
Walk

Marina Skyers and Lee J. Stanley

Abstract In this paperwewill look at representations of the simple randomwalk, Sn ,
and show how to effectively rearrange the sequence of terms Sn√

n
in order to achieve

almost sure convergence to the standard normal on the open interval (0, 1). This is
done via a suitable choice of permutation F : {0, 1}n → {0, 1}n . We are interested in
how much rearranging of the simple random walk is optimal. We will describe how
to minimize the graph-theoretic complexity of these permutations and also show that
they satisfy some additional nice properties.

Keywords Simple random walk · Permutations · Complexity

1 Introduction

Let Sn be the random walk on (0, 1). In 1733, de Moivre postulated the first version
of the central limit theorem for independent random variables that take on values
±1. It is an important special case of the central limit theorem that the Sn converge
in distribution to the standard normal on (0, 1). Well-known results ([4, 6–8]) show
this cannot possibly be improved to almost sure convergence. The random walk has
been the subject of intense study (see the work of Erdös and Revesz [5] and Shi and
Toth [9]). Indeed, the definition of the Sn is immediately accessible and intuitive and
each Sn is readily representable as the sum of an i.i.d. family (of size n) of irreducibly
simpler random variables. While immediately intuitive, the Sn are quite disorderly.

This disorder is mirrored by the fact that, for almost all x ,
{

Sn(x)√
n

∣∣n ∈ N
+
}
diverges.
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Definition 1 Let λwill denote Lebesgue measure on [0, 1] (or on one of the variants
with either endpoint or both excluded). As usual, a probability space is a triple
(�,S , P), where � is the set of points, S is the σ-algebra of Borel subsets of �,
and P : S → [0, 1] is the (σ-additive) probability measure. In this paper we will
have � = [0, 1), S will be the σ-algebra of Borel subsets of �, and P will be the
restriction of Lebesgue measure to the Borel sets.

We will use card (x) to denote the cardinality of the set x . C will denote Cantor
space, {0, 1}N+

.

Definition 2 For x ∈ C := {0, 1}N+
excluding the two constant sequences, iden-

tify x with
∑∞

i=1
xi
2i ∈ (0, 1). For dyadic rationals, choose the representation with

a tale of zeros. For x ∈ C and for finite binary sequences r of length n, we will
use the notation x ⊇ r to mean x extends r , i.e., x agrees with r for the first
n terms of its dyadic expansion. Define for 1 ≤ i ≤ n, Ri (x) := (−1)1+xi and
Sn (x) := ∑n

i=1 Ri (x). DefineWeightn (x) as the sum of the first n coordinates of x .
Notice that Sn (x) = −n + 2Weightn (x). Obviously, Sn (x) andWeightn (x) depend
only on the first n coordinates of x . So, for binary sequences r of length n, we can
define

Sn (r) := Sn (x) for any x ∈ C such that x ⊇ r .

Weight (r) := Weightn (x) for any x ∈ C such that x ⊇ r .

Observe that Sn (r) = −n + 2Weight (r). We can see this in the graph of Sn (x), at
each level n. The graphs of Sn (x), for n = 5, 6, 7, will be illustrated below.

We will see that the quantile of Sn turns out to be a very orderly, non-decreasing
step function, which we will call S∗

n , and it can be explicitly defined as follows.
Define steps An,i , i = 0, . . . , n, where

An,i =
⎛
⎝ 1

2n

i−1∑
j=0

(
n
j

)
,
1

2n

i∑
j=0

(
n
j

)⎤
⎦ .

For such i , and for all x ∈ An,i we define S∗
n = −n + 2i . For n ∈ N

+, let κ = κn =
κn (x) be the following integer: κ = ∑n

i=1 xi2
n−i . Then x ∈

[
κn(x)
2n , κn(x)+1

2n

)
. So we

can compute S∗
n (x) by identifying the step An,i that includes the interval κn (x). Note

that, for each n ∈ N
+ and for κ ∈ [0, 2n) ∩ N,

−n ≤ Sn (κ) , S∗
n (κ) ≤ n

and Sn, S∗
n satisfy the dualization equations

Sn (κ) = −Sn
(
2n − 1 − κ

)
,
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S∗
n (κ) = −S∗

n

(
2n − 1 − κ

)
.

Below are the graphs for Sn and S∗
n (x) when n = 5, 6, 7.

In this paper we will investigate representations of S∗
n that are as close as possible

to the canonical representation for Sn , via permutations F : {0, 1}n → {0, 1}n such
that S∗

n = Sn ◦ F . In fact, it turns out that
(
Fn|n ∈ N

+)
is uniformly primitive recur-

sive ([1, 3]). Our results on the representability of S∗
n are proved in Sect. 2. In fact,
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somewhat surprisingly, Theorem 6 shows there are a large number of such represen-
tations of each S∗

n . In Sect. 3, we provide an explicit, highly effective construction of
a preferred sequence of such representations, uniformly and highly effectively, in n.
In Sect. 4, we discuss how much rearranging of the simple random walk is optimal
from the point of view of minimizing the graph-theoretic complexity of the function
F , and look ahead to future work.

2 Representation Results

Skorokhod proved the following in [10].

Theorem 3 Suppose that on a probability space, we have random variables Xn,
n ∈ N

+, and suppose the Xn converge weakly to X. Then on ([0, 1] , B ([0, 1]) ,λ),
there are random variables Yn, n ∈ N

+, and Y , with the same distributions as the
Xn and X, respectively, and such that the Yn converge almost surely to Y .

If in Skorokhod’s Theorem, we start from Xn = Sn√
n
, then, the Yn that result are

exactly S∗
n√
n
. Now we will look closely at Skorokhod’s construction so as to obtain an

explicit characterization of S∗
n . Let At := {

y ∈ (0, 1) |Sn (y) ≤ t
√
n
}
. Soλ (A (t)) =

P
(

Sn√
n

≤ t
)

= P (Xn ≤ t) (see Definition 1). Then At = ∅ for t < −√
n, and At =

(0, 1) for t ≥ √
n. More generally, At will be constant on these intervals of t :

(−∞, −√
n
)
,

[
−√

n,
2 − n√

n

)
, . . . ,

[−n + 2k√
n

,
−n + 2 (k + 1)√

n

)
, . . . ,

[
n − 2√

n
,
√
n

)
,
[√

n, ∞)
,

for 0 ≤ k < n. For x ∈ (0, 1], define X∗
n (x) := inf {t ∈ R|λ (At ) ≥ x}. A straight-

forward computation shows that X∗
n is a non-decreasing step functionwith steps An,i ,

i = 0, . . . , n, where

An,i =
⎛
⎝ 1

2n

i−1∑
j=0

(
n
j

)
,
1

2n

i∑
j=0

(
n
j

)⎤
⎦ .

Definition 4 For such i , and for all x ∈ An,i , we define

X∗
n (x) := −n + 2i√

n
,

and
S∗
n (x) := −n + 2i .

This sequence of definitions, culminating in the definition of S∗
n , carries out Sko-

rokhod’s construction starting from the sequence
(

Sn√
n

∣∣n ∈ N
+
)
. Therefore the “Sko-
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rokhod sequence”
(

S∗
n√
n

∣∣n ∈ N
+
)
converges almost surely to the standard normal, this

time on (0, 1], but the fact that S∗
n (1) happens to be defined turns out to be more of

an annoyance than a feature, so we’ll view S∗
n as defined only on (0, 1). Note that the

definition of S∗
n (x) requires only that we identify the step An,i to which x belongs.

This depends only on the first n coordinates of x , and so the same holds for S∗
n (x) (as

indeed it does for Sn (x)). This, in turn, means that we can view S∗
n as being defined

on {0, 1}n just as we did for Sn in Definition 2:

S∗
n (r) := S∗

n (x) for any x ∈ C ′ such that x ⊇ r .

So we have shown that if in Skorokhod’s Theorem, we start from Xn = Sn√
n
, then,

the Yn that result are exactly
S∗
n√
n
. So for each n ∈ N

+, S∗
n√
n
has the same distribution

as Sn√
n
and, more importantly, the S∗

n√
n
converge almost surely to the standard normal

on (0, 1). An important question that arises here is, are there representations of S∗
n

similar to the canonical representation for Sn? And if so, how close can they be to
the canonical representation for Sn? We can answer these questions as follows. (For
additional work related to the following results, see [2].)

Theorem 5 For any n, there is a canonical one to one correspondence between
permutations F : {0, 1}n → {0, 1}n such that S∗

n = Sn ◦ F, and representations S∗
n =∑n

i=1 R
∗
n,i , where

(
R∗
n,i

∣∣1 ≤ i ≤ n
)
is an i.i.d. family of random variables on (0, 1)

such that each R∗
n,i depends only on the first n coordinates of x and takes on values

−1, 1 with equal probability.

Proof Let balanced mean takes on values −1, 1 each with probability 1
2 . Suppose

S∗
n = Sn ◦ F . Define

R∗
n,i (x) := (−1)1+(F(x1,...,xn))i .

Since Sn (x) = ∑n
i=1 (−1)1+xi , Sn (F (x)) = ∑n

i=1 R
∗
n,i (x). To show the R∗

n,i are
balanced, it suffices to show for all i = 1, . . . , n and ε ∈ {0, 1},

λ
({
x
∣∣ (F (x1, . . . , xn))i = ε

}) = 1

2
.

Let A = {
t ∈ {0, 1}n ∣∣ti = ε

}
. So card (A) = 2n

2 = 2n−1. Since F is 1–1, card(
F−1 [A]

) = 2n−1. Now, F−1 [A] = {
r ∈ {0, 1}n ∣∣ (F (r))i = ε

}
and {x |

(F (x1, . . . , xn))i = ε} = ⊔
r∈F−1[A] Nr . So, λ ({x | (F (x1, . . . , xn))i = ε}) = λ(⋃

r∈F−1[A] Nr
) = 2n−1 · 1

2n = 1
2 .

To show the R∗
n,i are independent, it suffices to show for all s ∈ {−1, 1}n ,

p (s1, . . . , sn) = p1 (s1) · . . . · pn (sn) ,
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where p is the joint pmf of the R∗
n,i and pi is the pmf of R∗

n,i alone. We showed

the right hand side is simply
(
1
2

)n
, so it suffices to show p (s1, . . . , sn) = 1

2n .
Recall that p (s1, . . . , sn) = P

(
R∗
n,1 = s1, . . . , R∗

n,n = sn
)
. Let t ∈ {0, 1}n be such

that ti =
{
0 if si = −1
1 if si = 1.

F is one-to-one, so there is a unique r ∈ {0, 1}n such that F (r) = t . Then the prob-
ability of the event Es = (

R∗
n,1 = s1, . . . , R∗

n,n = sn
)
is exactly

λ
({
x | (F (x1, . . . , xn))1 = t1, . . . , (F (x1, . . . , xn))n = tn

}) = λ
({
x
∣∣F (x1, . . . , xn) = t

})

= λ ({x | (x1, . . . , xn) = r})
= λ (Nr )

= 1

2n
.

Now suppose
(
R∗
n,i

∣∣1 ≤ i ≤ n
)

is as above. Fix r ∈ {0, 1}n . (
R∗
n,1

(x) , . . . , R∗
n,n (x)

)
is constant on Nr . Denote that constant value by G (r). So G :

{0, 1}n → {−1, 1}n . G is one-to-one since if u ∈ {0, 1}n , u �= r , and G (u) = G (r),
then

P
(
R∗
n,1 = (G (r))1 , . . . , R∗

n,n = (G (r))n
) ≥ λ (Nr) + λ (Nu) = 1

2n−1
,

but by our hypotheses of balanced and independent, P
(
R∗
n,1 =

(G (r))1 , . . . , R∗
n,n = (G (r))n

) = 1
2n . Since G : {0, 1}n → {−1, 1}n , and since the

domain and target of G are finite sets of the same cardinality, G is one-to-one if
and only if it is onto. So we have that G is both one-to-one and onto. Define

F (r) = t , where ti =
{
0 if (G (r))i = −1
1 if (G (r))i = 1.

Then Sn (F (x)) = ∑n
i=1 (−1)1+ti

= ∑n
i=1 R

∗
n,i (x) = S∗

n (x), i.e., F is as required. �
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In addition, the following theorem shows there are many such permutations.

Theorem 6 For each n, there are exactly
∏n

i=0

((n
i

)!) permutations F : {0, 1}n →
{0, 1}n such that S∗

n = Sn ◦ F.

Proof Recall that

An,i = {
s ∈ {0, 1}n ∣∣S∗

n (x) = −n + 2i for all x ⊇ s
}
,

and let
Bn,i = {

s ∈ {0, 1}n ∣∣Sn (s) = −n + 2i
}
.

Let f be a permutation of {0, 1} n . Then S∗
n = Sn ◦ f if and only if for all 0 ≤ i ≤ n,

f
[
An,i

] = Bn,i , i.e., if and only if f � An,i is a bijection from An,i to Bn,i , and of
course there are

(n
i

)! such bijections. Since f = ⋃n
i=0

(
f � An,i

)
and since the An,i

(respectively Bn,i ) are pairwise disjoint, the conclusion is clear. �

Corollary 7 For each n, there are exactly
∏n

i=0

((n
i

)!) families (
R∗
n,i

∣∣i = 1, . . . , n
)

as above.

Additional criteria make some of these permutationsmore natural than (and there-
fore preferable to) others. We say

(
Fn|n ∈ N

+)
is suitable if and only if for all n, Fn

is a permutation of {0, 1}n satisfying S∗
n = Sn ◦ F and such that:

(a)
(
Fn|n ∈ N

+)
is explicitly andnaturally definable, uniformly andhighly effectively

in n,
(b) if r ∈ {0, 1}n and S∗

n (r) = Sn (r), then Fn (r) = r ,
(c) Fn is as close as possible to being self-inverse (even for fairly small n (such as
n = 5, 6, 7), it is impossible for Fn to literally be self-inverse).

3 Rearrangements of the RandomWalk

We first look at a variant,
(
Gn|n ∈ N

+)
, satisfying only the first two criteria, (a) and

(b), as well as the composition equation, S∗
n = Sn ◦ Gn . So each Gn will map Step

to Weight (Stepn (κ) = Weightn (Gn (κ))), and further, the mapping will be in an
order-preserving fashion (except as ruled out by criterion (b)). This means that for
all 0 ≤ κ < 2n ,
(i) If Stepn (κ) = Weightn (κ), then Gn (κ) = κ,
(ii) If Stepn (κ) �= Weightn (κ), and, if further, κ < m < 2n and Stepn
(κ) = Stepn (m) �= Weightn (m), then Gn (κ) < Gn (m).

Lemma 8 (i) and (ii) define a unique sequence
(
Gn|n ∈ N

+)
satisfying the compo-

sition equations Sn ◦ Gn = S∗
n .
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Proof Wehave An,i=
{
κ|Stepn (κ)=i

}
andwedefine Bn,i := {

κ|Weightn (κ) = i
}
.

Further, let
A1
n,i := An,i � Bn,i = An,i �

(
An,i ∩ Bn,i

)
,

B1
n,i := Bn,i � An,i = Bn,i �

(
An,i ∩ Bn,i

)
.

These are the sets of things that are out of place on the i th step, or of the i th weight,
respectively. We have the following equation:

card
(
A1
n,i

) =
(
n

i

)
− card

(
An,i ∩ Bn,i

) = card
(
B1
n,i

)
.

Gn � A1
n,i is simply the order-preserving bijection between A1

n,i and B1
n,i . �

In fact
(
Gn|n ∈ N

+)
is uniformly primitive recursive in the following precise

sense: there exists a single primitive recursive function G (n,κ) such that for all n,
G (n, ·) � {0, . . . , 2n − 1} = Gn . Simply take G (n,κ) to be equal to Gn (κ), when
0 ≤ κ < 2n , and supply a suitable default value (e.g.,G (n,κ) = 0, orG (n,κ) = κ),
when κ ≥ 2n or n = 0, then we have defined a unique functionG : N

2 → N. It is not
very difficult to show that G primitive recursive. Each Gn satisfies the dualization
equation Gn (2n − 1 − κ) = 2n − 1 − Gn (κ).

For n = 3, 4, 5, 6, 7 and each κ such that Step (n,κ) �= Weight (κ) (i.e., κ is out

of place at level n), the orbit of κ under Gn is given in the following table.

n Orbits under Gn

3 {3, 4}
4 {7, 3, 8, 12}
5 {16, 7, 3, 8, 5} , {15, 24, 28, 23, 26} , {11, 17} , {13, 18} , {14, 20}

6
{32, 42, 15, 34, 49, 30, 19, 40, 56, 60, 55, 58, 47, 27, 13, 24, 11, 6} ,

{31, 21, 48, 29, 14, 33, 44, 23, 7, 3, 8, 5, 16, 36, 50, 39, 52, 57}

7

{64, 15, 34, 21, 48, 73, 46, 69, 39, 25, 68, 30, 11, 5, 16, 36, 22, 65, 23, 66,
27, 80, 57, 84, 99, 31, 13, 6, 32, 14, 33, 19, 40, 26, 72, 45, 67, 29, 7} ,

{63, 112, 93, 106, 79, 54, 81, 58, 88, 102, 59, 97, 116, 122, 111, 91, 105, 62, 104,
61, 100, 47, 70, 43, 28, 96, 114, 121, 95, 113, 94, 108, 87, 101, 55, 82, 60, 98, 120} ,

{3, 8} , {51, 74} , {53, 76} , {124, 119}

Our construction of
(
Fn|n ∈ N

+)
, which will satisfy all three criteria (a), (b)

and (c), takes place within the general framework implicit in the construction of
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(
Gn|n ∈ N

+)
. While G was implicitly constructed in two stages, F will be built in

three. As before, the first stage is that F is the identity on the κ’s that are in place:
Fn (κ) = κ if Stepn (κ) = Weightn (κ). Then identify which κ’s are part of a two-
cycle and pair them up. After we have maximized two-cycles (this satisfies criterion
(c)), removing those from A1

n,i , B
1
n,i leaves us with sets A

2
n,i , B

2
n,i of equal cardinality

and we map A2
n,i → B2

n,i in an order-preserving fashion.
Just as we noted for

(
Gn|n ∈ N

+)
, it is not very difficult to show

(
Fn|n ∈ N

+)
is uniformly primitive recursive in the following precise sense: there exists a single
primitive recursive function F (n,κ) such that for all n, F (n, ·) � {0, . . . , 2n − 1} =
Fn . As before, if we simply take F (n,κ) to be equal to Fn (κ), when 0 ≤ κ < 2n , and
supply a suitable default value (e.g., F (n,κ) = 0, or F (n,κ) = κ), when κ ≥ 2n

or n = 0, then we have defined a unique function F : N
2 → N. As before, each Fn

satisfies Fn (2n − 1 − κ) = 2n − 1 − Fn (κ).
As noted in the table above, the first time there are values of κ that are out of place

is when n = 3. Below are the graphs of Fn for n = 3 and n = 4.
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The first time there are values of κ that are not part of a two-cycle is when n = 5.

For n = 5, 6, 7, the table below presents the orbits under Fn for those values of κ at

level n.

n Orbits under Fn

5 {16, 28, 15, 3}
6 {32, 56, 60, 31, 7, 3}

7
{64, 108, 31, 11, 3} , {13, 72, 113, 47} ,

{14, 80, 114, 55} , {63, 19, 96, 116, 124}

The resulting cycles of these values of κ, corresponding to each of the rows of the
table, are illustrated in the graphs below. We have a single four-cycle at n = 5 and a
single six-cycle at n = 6.

At n = 7 we have two four-cycles and two five-cycles. Because the graph of Fn

is rather complicated by n = 7, we will leave out the two-cycles from the graph and
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only illustrate the four-cycles and five-cycles. The four-cycles are highlighted in the
figure below.

4 Graph-Theoretic Complexity of the Permutations

The results we have presented do indeed narrow the distance between the Sn and the
S∗
n with respect to the important issue of representation. The form of the composi-

tion equation that we have used so far, S∗
n = Sn ◦ F , emphasizes the point of view

of providing suitable representations of the S∗
n . But this equation could just as well

be written in the form Sn = S∗
n ◦ F−1, which would emphasize the point of view of

seeking to tame the disorder of the Sn . This is related to the rearrangement idea that
is illustrated in the above graphs of Fn: we rearrange Sn to get S∗

n , and thus achieve
almost sure convergence. The question remains how much rearranging of the Sn is
optimal. One direction involves attempting to minimize the graph-theoretic com-
plexity of the function F . As described in the construction of F above, F maximizes
the number of two-cycles (with the proper choice of the two-cycles), but then will
act just as the function G on the remaining κ’s which are not part of a two-cycle.
Of course we know by Theorem 3 that there are many other possible variants for the
function F . One may add some additional stages to the construction of F . In stage
three (which might no longer be the terminal stage), we would seek to maximize
the number of three-cycles just as we maximized the number of two-cycles in stage
two, and fixed all the κ’s which were in place (thereby maximizing the number of
one-cycles) in stage one. If some κ remain outside the domain, proceed to stage
four and continue. The goal would be to minimize lengths of cycles which could
be viewed as one way of seeking to minimize the graph-theoretic complexity of the
permutations. This idea is illustrated below for n = 6.
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The existence of values of κ that are not part of two-cycles at level n, starting
at n = 5, is the last phenomenon to create complications in the definition of the
function F . It is conceivable that further interesting phenomenon (which do not
create additional complications for the definition of F) first occur for some n larger
than 5, and it is far from certain whether there are finitely many such n.
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On the Energy of Transposition Graphs

M. R. DeDeo

Abstract We analyze and compare properties of Cayley graphs of permutation
graphs called transposition graphs as this family of graphs has better degree and
diameter properties than other families of graphs. Cayley graphs are directly related
to the properties of its generator set and thus Cayley graphs of permutation groups
generated by transpositions inherit almost all of the properties of the hypercube. In
particular, we study properties of the complete transportation, (transposition) star
graph, bubble-sort graph, modified bubble-sort graph and the binary hypercube and
use these properties to determine bounds on the energy of these graphs.

Keywords Transposition graphs · Permutation groups · Network computing

1 Introduction

1.1 Definitions

Parallel computing is largely dependent on the properties of the interconnection
network that connects processors amongst themselves and/or to memory. The inter-
connections also affect the network operating system (OS) and the effectiveness of
the system software. Many of the schemes used to model these interconnections
can be classified into two types of networks: dynamic and static. In this paper we
study the design and properties of a particular type of static network modeled by
transposition graphs.

Static networks can be modeled by their corresponding graphs with at most two
of the following properties: (1) if all processors are connected by the same number
of edges, the network is called regular or k-regular where k is the number of edges
emanating from each processor; (2) if not, the graph is not regular; (3) if the proces-
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sors can be grouped into m subsets where each processor within each subset is not
connected to another with the subset, but is connected to a processor in each other
subset, the network is calledm-partite. In particular, if the processors can be divided
into two subsets where processors within each subset are not connected to another
within its subset, but only to processors within the other subset (and vice versa), then
the network is called bipartite. We now refer to each processor as a vertex and each
connection as an edge.

The degree of each vertex is the number of edges emanating from it. As no
processor will be connected to itself, and hence have no loops, the graph is called
simple. The degree relates to the port capacity of the processors and thus relates to
the hardware cost of the network. A path is the routing from one vertex to another.
The length of a path is the number of edges a signal traverses from a given vertex to
reach another vertex. The distribution of parallel paths is the number of paths of a
given length and is crucial to the design of the routing table for an operating system.
This also relates to the fault-tolerance of a network as the number of parallel paths
between two vertices is limited by the degree of the network.

The diameter of the graph is the maximum eccentricity of any vertex in a graph.
That is, it is the greatest distance between any pair of vertices. To find the diameter
of a graph, first find the shortest path between each pair of vertices. The greatest
length of any of these paths is the diameter of the graph. The diameter relates to the
maximum communication delay and hence the running cost of the network.

1.2 Symmetry and Recursive Scalability

The study of several other, more complex properties is crucial for the understanding
of the effectiveness of a network. These include symmetry and recursive scalability.
Symmetry in graphs can be analyzed using graph theory and finite group theory. A
symmetric graph is a graph that is both vertex-transitive and edge-transitive. In a
vertex-transitive graph, its automorphism group acts transitively upon its vertices.
In other words, the graph looks the same through the lens of any vertex. In addition,
every symmetric graphwithout isolated vertices is vertex-transitive, and every vertex-
transitive graph is regular. However, not all vertex-transitive graphs are symmetric
(for example, the edges of the truncated tetrahedron), and not all regular graphs are
vertex-transitive. In a vertex-transitive graph, the structure embedded in one region
of the network can be readily translated into another region without affecting the
quality of the original embedding. Vertex transitivity also enables the design of
efficient distributed routing algorithms.

An edge-transitive graph is analogously defined. In particular, the number of
vertex-disjoint paths between any twovertices ismaximumandhencehas amaximum
fault-tolerance capacity. Recursive scalability refers to the ability to build larger
networks fromsmaller subnetworks. These networks thenpossess naturally occurring
symmetry that is often used in the design of routing tables, fault-tolerance and more.
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A distance-transitive graph is a graph such that, given any two vertices at any
distance, and any other two vertices at the same distance, there is an automorphism
of the graph that carries the pairs of vertices to each other. Distance transitivity
ensures good fault-tolerance, translations of embedded substructures fromone region
to another and decentralizes routing algorithms for packet communication. Thus
distance transitivity is one of the most important of the symmetric properties.

A Cayley graph is a graph that encodes the abstract structure of a group using
a specified, usually finite, set of generators for the group. Cayley graphs provide a
unified framework for the design of interconnection networks for parallel computing.
In particular, linear groups which are automorphism groups of finite dimensional
vector spaces and semi-direct products of groups, such as degree 4 super-toroids
and Borel Cayley graphs, provide classes of graphs with “good” routing algorithms
where “good” is a multi-faceted decision problem based on the analysis of trade-offs
in the symmetry and topology of the networks.

In this paper, we analyze and compare properties of Cayley graphs of permutation
graphs called transposition graphs. The conjugacy class of its permutation group
combined with its generators dictates the type of the symmetry possessed by their
respective Cayley graphs. In addition, the family of transposition graphs has better
degree and diameter properties than the hypercube. We note that the base-b (b ≥ 2)
hypercube of dimension n is a class of networks known to possess virtually every
known notion of symmetry. Next, properties of the transposition graphs are given.

Fig. 1 Star transposition graph ST4 [13, p. 65]
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Lastly, the spectra of this class of graphs is discussed and formulas for the energy of
these graphs is given as they are dependent on these properties (Fig. 1).

2 Transposition Graphs

A permutation of {1, 2, . . . , n} is a bijection onto itself. Let

p =
(
1 2 · · · i · · · n
p1 p2 · · · pi · · · pn

)

where pi ≤ p j for all i, j where pi denotes the object at position i . For simplicity,
we write p = p1 p2 · · · pn . Let Sn denote the set of all permutations of p. For any
permutation p ∈ S, p can be represented as a product of k disjoint cycles and l
invariants. For convenience, the invariants are deleted when p is represented in terms
of its cycle structure. Cycles of length two are called transpositions.

Let Ti j denote the permutations that swap objects in positions i and j such that
Ti j = (i, j). For permutations p, if pi < p j for i < j , then the pair pi and pi is said
to be an inversion in p. Thus, a permutation is said to be an odd (or even) permutation
if the number of inversions in p is odd (or even). We note that transpositions are odd
permutations as the number of inversions is odd.

Let Γ be a finite group under multiplication with identity I . Let S ⊆ Γ be a
generating set for Γ such that (i) if g ∈ S, then g−1 ∈ S and (ii) I /∈ S. Given
(Γ, S), let G = (V, E) such that the vertex set is V = Γ and the edge set is
E = {(x, y)g|x, y ∈ V and g ∈ S such that xg = y}. Note that an edge is undirected
if both (x, y)g and (y, x)−1

g are in E . Also, since S is a generating set for Γ , then G
is a connected Cayley graph and |S| is both the degree and the diameter of the graph.

If A and B are sets then, let A − B denote the set of all elements in A that are not
in B. An element h ∈ S said to be redundant if it can be expressed as a product of
the elements in S − {h}. If every element in S is non-redundant, then S is called a
minimal generating set. In addition, any set that contains S is also a generating set.

Given these definitions, we now consider simple, undirected Cayley graphs of
permutation groups generated by transpositions. Let Ω be the set of transpositions
generating Γ . Let the transposition graph be defined as TG = (< n >,Γ ) with
< n > as the vertex set with two vertices i and j connected by an edge if and only if
(i, j) ∈ Γ . We note that Ω refers both to the set of all edges in G and the generating
set of Γ as there exists an automorphism between the two. We can now study several
important transportation graphs that correspond to different generating sets S. In
particular, we study the sets of transposition graphs defined by:

1. CTn , the complete transportation graph generated by Ω0;
2. STn , the (transposition) star graph1 generated by Ω1 ;
3. BSn , the bubble-sort graph generated by Ω2;

1 STn should not be confused with the Star Graph Sk = K1,k .
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4. MBn , the modified bubble-sort graph generated by Ω2′ ; and
5. BCn , the binary hypercube generated by Ω3

where

Ω0 = {(i j)|1 ≤ i ≤ j ≤ n};
Ω1 = {(1 i)|2 ≤ i ≤ n};
Ω2 = {(i i + 1)|1 ≤ i < n};
Ω2′ = Ω2 ∪ {(1 n)}; and
Ω3 = {(2i − 1 2i)|1 ≤ i ≤ n}.

We call this family of transposition graphs T . It can be verified that both STn , the
star graph, and BSn , the bubble-sort graph, can be built recursively, but not MBn , the
modified bubble-sort graph. In addition,Ω1,Ω2 andΩ3 are minimal generating sets,
butΩ0 andΩ2′ are not as they have redundant elements. In particular, the bubble-sort
graph is the Cayley graph corresponding to the case where the transposition graph is
the path graph on n vertices. The reason it is called the bubble-sort graph is that this
Cayley graph is closely related to the (inefficient) bubble-sort algorithm for sorting
an array. Many of the properties in Table1 can be found in [1, 2, 6, 11, 14]. The
values in Table2 will not be presented here as they can be found using counting
arguments on the generating sets (see [16] for a few of them).

Given a permutation in Sn , the array swaps elements in consecutive positions of
the array. Observe that the minimum number of swaps of elements in consecutive
positions required to sort a given array p is exactly the distance in the Cayley graph
between the permutation p and the identity vertex e. The modified bubble-sort graph

Table 1 Symmetrical properties of transposition graphs in T
Vertex
transitive

Edge
transitive

Distance
transitive

Shortest path
distance

Hamiltonian
cycle

CTn Yes Yes No Yes Known

STn Yes Yes No Yes Known

BSn Yes No2 No Yes Known

MBn Yes Yes No Yes Known

BCn Yes Yes Yes Yes Known

Some literature incorrectly assumes that the bubble-sort graph is edge transitive [14]

Table 2 Computational properties of transposition graphs in T
No. of vertices Degree Diameter Bipartite Recursive

CTn n! n(n − 1)/2 n − 1 Yes Yes

STn n! n − 1 �3(n − 1)/2	 Yes Yes

BSn n! n − 1 n(n − 1)/2 Yes Yes

MBn n! n Unknown Yes No

BCn 2n n n Yes Yes
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is obtained by modifying the bubble-sort graph by adding another generator (and
hence, by adding extra edges) to the bubble-sort graph, thereby reducing its diameter.
Additionally, Cayley graphs are directly related to the properties of its generator set.
In particular, Cayley graphs of permutation groups generated by transpositions inherit
almost all of the properties of the hypercube.

3 Energy and Spectra of Graphs

3.1 Energy of Graphs

In the 1940s, a close correspondence between the graph eigenvalues and the molec-
ular orbital energy levels of π-electrons in conjugated hydrocarbons was realized [7,
9]. In particular,

Eπ = nα + β

n∑
i=1

|λi |

where n,α, β are constants. In addition, the energy is related to several other concepts
in analysis, linear algebra and spectral graph theory. The general theory and chemical
applications can be found in [8]. After it was recognized that spectral graph theory
can be used more broadly than just in orbital theory, the notion of the energy of a
graph was defined [8]. Given the eigenvalues of the adjacency matrix of a graph, λ1,
λ2,…, λn , the energy of a graph is defined to be

E(G) =
n∑

i=1

|λi |.

This is a natural extension of this property as crystallographic groups tell us about
the structure of matter and graphs based on groups are used to model individual
molecules as well as a variety of chemical systems. Broader study of the energy of
graphs began in the 2000s and has expanded the field of spectral analysis. Not only
does this newer graph invariant allow for a new relation on all graphs, the energy of
a graph is related to several other concepts in analysis, linear algebra and spectral
graph theory (Fig. 2).

3.2 Spectra of T

Let G be a simple (no loops or repeated edges), undirected, and connected graph
with vertices vi for i = 1, . . . , n and m edges. Let A(G) be the n × n adjacency
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Fig. 2 Bubble sort graph BS4 [5]

matrix associated with G such that

A(G) =
{
1 if vi is connected to v j for i 
= j by an edge;
0 otherwise.

Letλ1 ,λ1 ,…,λn denote then eigenvalues of A(G) and Spec(A) = {λ1,λ2, . . . ,λn}.
Let m(λi ) denote the multiplicity of λi .

Lemma 1 All graphs in the family T of transposition graphs are regular and bipar-
tite.

Proof By counting arguments, all graphs in T are regular with fixed degree (see
Table1). Transposition graphs are odd permutations as the number of inversions
is always odd. It can also be easily verified that Cayley graphs defined using per-
mutations are necessarily bipartite graphs. Thus, all graphs in the family T of trans-
position graphs are necessarily bipartite. ��
The spectra of these graphs are of interest for their own sake, as well as for various
applications such as card shuffling and random walks on the symmetric group. We
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now present a few well-known theorems regarding the spectra of Cayley graphs. The
next three lemmas are from Biggs [4]:

Lemma 2 If a Cayley graph G is bipartite, the eigenvalues of its adjacency matrix
A(G) is symmetric in the interval [−k, k] where k is the largest degree of the set.

Lemma 3 If a Cayley graph G is k-regular, then k is the largest eigenvalue in
Spec(A).

Lemma 4 If a Cayley graph G is connected, then the multiplicity of its largest
eigenvalue, k, is one.

We now focus on determining the spectra of the graphs within T . We note that
the spectra of STn is integral, i.e. its spectra consists of integers. In 1974, Harary and
Schwenk initiated the study of graphs with integral spectra [10]. The following was
proved in [11]:

Lemma 5 The spectra of STn is integral with eigenvalues ±(n − j) with

m(±(n − j)) ≥
(
n − 2

j − 1

)(
n − 1

j

)
for j ∈ {1, . . . , n − 1}

and m(0) ≥ (n−1
2

)
for n > 3.

Unfortunately, the same cannot be said for bubble-sort graphs:

Lemma 6 The spectra of BSn is not integral.

Proof By counterexample, Spec(BS4) is in the subset of rational numbers in the
interval (

√
2,

√
3) which is not integral. ��

Moreover, BSn is not a family of expander graphs. Expanders are sparse graphs (few
edges relative to the number of vertices) that are highly connected. Thus expanders
model efficient communication networks as they exhibit few edges while retain-
ing high connectivity. We can prove a graph is an expander (or not) by finding its
isoperimetric number which is a numerical measure of whether or not a graph has a
“bottleneck”. For a collection of vertices V ′ ⊆ V (G), let ∂V ′ denote the collection
of all edges going from a vertex in V ′ to a vertex outside of V ′ (also called the
edge boundary of V ′) and let |V | denote the number of elements in the set. Then the
isoperimetric number h(G) is

h(G) := min

{ |∂V ′|
|V ′| |V ′ ⊆ V (G) and 0 < |V ′| ≤ 1

2
|V (G)|

}

An expander family is one that satisfies h(Gα) ≥ ε for a fixed ε and all α.

Lemma 7 Bubble-sort graphs BSn do not form a family of expander graphs.
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Proof For n = 3, let S = {p, p − 1, (1 2)} ⊂ S. Consider the set Pm = {π ∈ S|1 ≤
π−1 ≤ m} where m = � n

2 	. Then |Pm | = m(n − 1)!. We know that ρ /∈ Pm and π ∈
Pm are adjacent if and only if π = ρθ = ρ ◦ θ for some θ ∈ Pm . Assume ρ /∈ Pm ,
π ∈ Pm , and π = ρθ. Then:

Case (i). Suppose θ = p. Since ρ /∈ Pm , the permutation ρ cannotmap any element
in the interval 1 throughm to 1. Because π ∈ Pm , wemust have ρ(m + 1) = 1. There
are (n − 1)! such π’s. Thus there is one edge from p that leaves Pm for each such π.

Case (ii). Suppose θ = p−1. Then ρ(n) = 1 and π(1) = 1. Thus we also have
(n − 1)! suchπ’s giving (n − 1)! edgeswith one extreme in Pm and one in BSn − Pm .

Case (iii). The case where θ = (1 2) cannot happen. Thus

h(BSn) ≤ |∂Pm |
|Pm | = 2(n − 1)!

m(n − 1)! = 2

m
.

By an analogous argument, for any change in size n, h(BSn) is never bounded below.
Thus the set of bubble-sort graphs BSn do not create an expander family. ��
This observation could be helpful in the future to either determining the eigenvalues
of BSn or in creating a better upper bound on the energy of BSn .

4 Bounds on the Energy of Transposition Graphs

Using the fact that all of the graphs in T are regular, bipartite, and connected, we
have the following bounds for the energy of the graphs in T :

Theorem 1 An upper bound for the energy of CTn is n!n(n − 1).

Proof By its definition and Table2, CTn is regular, bipartite, and connected. The
eigenvalues of CTn occur in [−n(n − 1)/2, n(n − 1)/2] where the multiplicity of
both ±n(n − 1)/2 is one. Thus

E(CTn) =
n!∑
i=1

|λi | < n!n(n − 1).

��
Theorem 2 The graph energy bounds of the family of graphs STn are

2(n − 1) + 2
n−1∑
i=1

(n − j)

(
n − 2

j − 1

)(
n − 1

j

)
≤ E(STn) ≤ 2n!(n − 1).

Proof By its definition and Table2, STn is regular, bipartite, and connected. The
eigenvalues the eigenvalues of STn occur in [−(n − 1), (n − 1)] where the multi-
plicity of both ±n(n − 1) is one. Thus the upper bound is 2n!(n − 1).
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In addition, by Lemma 5 we have that the eigenvalues of STn are ±(n − j) with

m(±(n − j)) ≥
(
n − 2

j − 1

)(
n − 1

j

)
for j ∈ {1, . . . , n − 1}

and m(0) ≥ (n−1
2

)
for n > 3. Thus

2(n − 1) + 2
n−1∑
i=1

(n − j)

(
n − 2

j − 1

)(
n − 1

j

)
≤ E(STn).

��
Theorem 3 An upper bound for the energy of BSn is

E(BSn) ≤ 2(n − 1){(n + 2)! + 1}.

Proof By its definition and Table2, BSn is regular, bipartite, and connected. The
eigenvalues of BSn occur in [−(n − 1), (n − 1)] where the multiplicity of both
±(n − 1) is one. By [3], the second largest eigenvalue is at least n − 2 with multi-
plicity n − 1. Thus we have

E(BSn) =
n!∑
i=1

|λi | < 2(n − 1) + 2(n − 2)!(n − 1).

By combining like terms, the inequality is produced. ��
Theorem 4 An upper bound for the energy of MBn is n(n!).
Proof By its definition and Table2, MBn is regular, bipartite, and connected. The
eigenvalues of MBn occur in [−n, n] where the multiplicity of both ±n is one. Thus

E(MBn) =
n!∑
i=1

|λi | < n(n!)

��
Theorem 5 The Spec(BCn) is (−n,−n + 2,−n + 4, . . . , n − 4, n − 2, n) with
the j th eigenvalue having multiplicity

(n
j

)
.

Proof For simplicity, let BCn = Qn . Let AQn be the adjacency matrix of the binary
hypercube Qn . Then

AQn =
(
AQn−1 IQn−1

IQn−1 AQn−1

)

where IQn−1 is the 2
n × 2n identity matrix corresponding to Qn−1. Its spectra follows

recursively from the characteristic polynomial for the binary hypercube as
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det (AQn − λIQn ) = det[(AQn−1 − λIQn−1)
2 − IQn−1]

= det (AQn−1 − λIQn−1) ∗ (det (AQn−1 + λIQn−1)

= det (AQn−1 − (λ + 1)IQn−1) ∗ det (AQn−1 − (λ − 1)IQn−1)).

The solutions for λ in this equation are (−n,−n + 2,−n + 4, . . . , n − 4, n − 2, n).
��

Theorem 6 The graph energy of the binary hypercube defined above is

E(BCn) = 2
�n/2	∑
j=0

(
n

j

)
(n − 2 j).

Proof From Theorem 5, the Spec(BCn) is (−n,−n + 2,−n + 4, . . . , n − 4, n −
2, n) with the j th eigenvalue having multiplicity

(n
j

)
. Using counting arguments, the

formula is attained. ��
It is hoped that better bounds on the energy of this family of graphs are revealed with
further study into the spectra of these graphs.
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A Smaller Upper Bound for the (4, 82)
Lattice Site Percolation Threshold

John C. Wierman

Abstract The (4, 82), or “bathroom tile,” lattice is one of the eleven Archimedean
lattices, which are infinite vertex-transitive graphs with edges from the tilings of
plane by regular polygons. The site percolation model retains each vertex of an infi-
nite graph independently with probability p, 0 ≤ p ≤ 1. The site percolation thresh-
old is the critical probability psitec above which the subgraph induced by retained
vertices contains an infinite connected component almost surely, and below which
all components are finite almost surely. Using computational improvements for the
substitution method, the upper bound for the site percolation threshold of the (4, 82)
lattice is reduced from 0.785661 to 0.749002.

Keywords Site percolation · Percolation threshold · Set partitions · Non-crossing
partitions

MSC Primary 60K35; Secondary 05C80, 05A18, 82B43

1 Introduction

Percolation theory studies connectivity of infinite random graph models, with partic-
ular emphasis on the existence or non-existence of an infinite connected component.
Its popularity in the engineering and physical sciences is due to the behavior that
occurs as the random graph becomes more richly connected, making a drastic qual-
itative change as an infinite cluster forms. As a result, applications of percolation
models are widespread, concentrating on modeling critical phenomena where some
type of phase transition occurs. Examples are thermal transitions of a liquid freezing
into a solid, an infectious disease spreading only locally versus becoming epidemic,
or a conductor-insulator alloy becoming a conductor as the proportion of conducting
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atoms increases. Since the introduction of percolation models in the 1950s, they have
provided explanations of many phenomena that could not be explained satisfactorily
before.

Given an infinite graph G, the site percolation model on G creates a random
subgraph by retaining each vertex independently with probability p, 0 ≤ p ≤ 1,
deleting it otherwise, and constructing the random subgraph Gp of G induced by
the set of retained vertices. Retained vertices are often referred to as “open” or
“occupied,” and deleted vertices as “closed” or “vacant.” (Another classic percolation
model is the bond percolation model in which the edges of G are retained or deleted
independently at random with probability p.)

Due to the interest in modeling a phase transition, the emergence of infinite con-
nectivity as the parameter p increases is the principal focus, with particular interest
on the critical value of p at which the transition occurs. For an infinite graph G, this
quantity, the site percolation threshold psitec (G), satisfies the following two condi-
tions: (1) If p < psitec (G), all connected components ofGp are finite, with probability
one. (2) If p > psitec (G), there exists an infinite connected component of Gp with
probability one. (The fact that these events have probability one is a consequence of
Kolmogorov’s Zero-One Law and independent retention of the vertices of G.)

Although the main interest in percolation theory is in the phase transition point,
little progress has been made toward determining the value of the site percolation
threshold of common infinite lattice graphs, such as the square and hexagonal lattices.
One highlight is that the site percolation threshold of the triangular lattice was proved
byKesten [4] to be 1/2.Thevalue of the site percolation threshold is highly dependent
upon the structure of the infinite graph, but the nature of that dependence is not well
understood. Most knowledge of the threshold values are from extensive simulation
studies, which produce values claiming 5 or 6 digit accuracy. However, it is not very
unusual for the interval estimates from different studies to be disjoint.

Due to the lack of exact solutions, it is of mathematical interest to provide rigorous
bounds for the site percolation thresholds of common lattices that are as accurate as
possible, and to develop bounding techniques which may eventually help determine
exact solutions. Table1 in Sect. 4 provides a compilation of rigorous bounds for the
eleven Archimedean lattices, which are vertex-transitive graphs constructed with the
vertices and edges of a tiling of the plane by regular polygons. (See the beautiful
monograph by Grünbaum and Shephard [2] for discussion and illustrations.) Note
that the bounds are typically rather poor, providing intervals of width 0.10–0.20 for
most lattices.

This article substantially reduces the upper bound for the site percolation threshold
of one of the Archimedean lattices, known as the (4, 82) or “bathroom tile” lattice.
The (4, 82) lattice is illustrated in Fig. 1. The name reflects the fact that each vertex
is incident to a square and two octagons.
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Fig. 1 A subgraph of the
(4, 82) or “bathroom tile”
lattice

2 Bounds for the (4, 82) Lattice Site Percolation Threshold

As for many infinite lattice graphs, there is a long history of improving rigorous
bounds for the (4, 82) lattice, yet the bounds are still not satisfyingly accurate.

In 1988, Luczak and Wierman [5] applied a grouping method to show that

0.707106 ≈
√
pbondc (Square) ≤ psitec (4, 82) ≤

√
psitec (Square),

when there was only a very crude upper bound for the site percolation threshold of
the square lattice.

In 1995, Wierman [13] adapted the substitution method to a site model for the
first time, obtaining an upper bound of 0.679492 for the site percolation threshold of
the square lattice, establishing

0.707106 ≤ psitec (4, 82) ≤
√
psitec (Square) < 0.824313.

In 2001 a substitution method comparison of the (4, 82) lattice to the line graph
of the 2-subdivided square lattice, using a four-vertex substitution region, further
improved the upper bound [14]:

psitec (4, 82) ≤ 0.79970.

A different substitution method comparison, in 2019, produced the upper bound
[17]

psitec (4, 82) ≤ 0.785661.

In this article, we return to a comparison with the line graph of the 2-subdivided
square lattice, adapting a collection of more efficient computational methods that
were developed for bond percolation models for use on site percolation models. The
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computational reductions involve graph-welding, non-crossing partitions, and sym-
metry groups,which allow the substitution region to be applied to a larger substitution
region containing 24 vertices. We obtain the upper bound

psitec (4, 82) ≤ 0.749002.

The new upper bound reduces the length of the bounding interval by 46%. However,
applying the methods of this article does not improve the lower bound. Note that the
lower bound has not been increased since 1988, so that the upper bound is now closer
to the consensus of simulation estimates in the physical sciences literature (See, e.g.
[10].), which is 0.729724. Improving the lower bound remains a challenge.

3 Derivation of the Upper Bound

The new upper bound established in this article was derived using the substitu-
tion method, and was made possible by combining several previous computational
advances, involving graph-welding, non-crossing partitions, symmetry reduction,
and conversion to a network flow model. Descriptions of the general substitution
method appear in [16, 18], while details of the computational reduction methods
may be found in [7, 8]. The following description of the derivation of the bound
focuses on specific items involved in the application to the (4, 82) lattice and issues
that had to be overcome, but only provides a sketch rather than complete details.

3.1 Substitution Method

The substitution method derives percolation threshold bounds for an unsolved per-
colation model by comparing it to a solved percolation model. It has produced most
of the best current bounds for bond percolation thresholds. In particular, it derived
bounds that determined the three leading digits of the bond percolation threshold of
the (3, 122) lattice [16] and the two leading digits of the bond percolation threshold
of the kagome lattice [18], disproving long-standing conjectured exact values by
Tsallis [11]. However, there are complications in adapting the substitution method
to site percolation models, so bounds for site percolation thresholds are generally
much less accurate than bounds for bond percolation thresholds.

3.2 Substitution Regions

To apply the substitution method to site percolation models, both the unsolved and
solved latticesmust be decomposed into vertex-disjoint isomorphic subgraphs, called



A Smaller Upper Bound for the (4, 82) Lattice Site Percolation Threshold 321

substitution regions so that the random retentions and deletions associated with the
sets of vertices in different regions are stochastically independent. Since no vertex
of the original lattice can be on the boundary between two substitution regions,
each edge that connects two substitution regions must be subdivided by inserting
a new boundary vertex which is open with probability one. Since the substitution
method compares the probabilities of connections between the boundary vertices
of the substitution regions, the substitution regions of the two lattices must have
the same number of boundary vertices. For bond percolation models, substitution
method calculations have been completed for some substitution regions with eight
boundary vertices, but not for nine or more.

3.3 The Comparison Lattice

The small number of exactly-solved site percolation models, and the constraints on
the substitution regions, constrain the choice of comparison lattice. Yet, it is still
more of an art than a science to choose a comparison lattice and a substitution
region that provides an accurate bound and for which the necessary computations
are manageable. A natural goal is to find a solved lattice graph that has relatively
similar structure to the unsolved lattice.

The comparison lattice used here is obtained by two transformations from a solved
bond percolation model. Kesten [3] proved that the bond percolation threshold of
the square lattice is one-half. If every edge of the square lattice is subdivided into
two edges, the bond percolation threshold of the resulting lattice is

√
1/2. Since a

bond percolation model is equivalent to the site model on its line graph, the site
percolation threshold of the line graph of the subdivided square lattice is exactly√
1/2. For convenience, we will call this lattice the reference lattice and denote it by

R. A substitution region of R with ten boundary vertices is illustrated in Fig. 2. Note

Fig. 2 Substitution regions with ten boundary vertices for the (4, 82) lattice (on the left) and the
line graph of the subdivided square lattice (on the right). Filled circles represent vertices of the
original lattice. Empty circles represent boundary vertices introduced by subdividing edges, and are
always open
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that R is a super-graph of the (4, 82) lattice with diagonals inserted in every square
face.

3.4 Set Partitions of the Boundary Vertices

The two percolation models are compared on the basis of the probabilities of connec-
tions between the boundary vertices of the substitution regions. A configuration is a
designation of every vertex as open or closed. Note that for each substitution region,
since there are 24 vertices with independent randomness, the probability of each con-
figuration is a 24 degree polynomial function of p. Every configuration partitions
the set of boundary vertices into blocks of boundary vertices which are in a com-
mon connected component of open vertices. For example, if the boundary vertices
are labeled 1, 2, 3, . . . , 10, then {1, 4, 5, 6}{2, 3}{7, 8, 9, 10} denotes the partition
in which vertices 1, 4, 5, and 6 are in one connected component, 2 and 3 are in a
different one, and 7, 8, 9, and 10 are in a third one. There may be many configura-
tions which produce the same partition, so the probability of a partition is the sum
of all configurations which produce it, which is also a 24 degree polynomial in the
parameter p.

The number of set partitions of n objects is an extremely rapidly-increasing func-
tion of n, given by the Bell numbers. In our case, there are Bell(10) = 115975
partitions, and we must compute the probabilities of each partition for both models.
While this could be done by calculating the probabilities of each of the 224 config-
urations and summing to obtain partition probabilities, this is extremely inefficient.
A more efficient graph-welding approach [6] applies the configuration approach to a
small subgraph of the substitution region, then builds partition probability functions
for increasingly larger graphs.

3.5 The Partition Lattice and Stochastic Ordering

The set partitions of the boundary vertices form a partially ordered set under refine-
ment: A partition π1 is a refinement of partition π2 if every block of partition π1 is
a subset of some block in π2. In fact, the set partitions with the refinement ordering
are a combinatorial lattice, called the partition lattice.

Since the two substitution regions have the same number of boundary vertices,
the partition probability functions on them provide two probability measures on
the same partition lattice. Bounds for the site percolation threshold are derived using
stochastic orderingof the twoprobabilitymeasures, defined in this context as follows:
An upset is a set U of partitions such that if partition π1 ∈ U and π1 ≤ π2, then
partition π2 ∈ U . For two probability measures P1 and P2 on the partition lattice, P1
is stochastically smaller than P2, denoted P1 ≤st P2, if P1(U ) ≤ P2(U ) for every
upset U . (In this case, we also say that P2 is stochastically larger than P1.)
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The partition lattice on ten boundary vertices is a ranked poset, with the largest
rank containing 42525 partitions. Since this subset is an anti-chain, any of its sub-
sets (along with the top element) generates a different upset. Thus, a crude lower
bound on the number of upset probability inequalities that need to be checked to
determine stochastic ordering is 242525. Without major computational reductions,
checking stochastic ordering would be impossible.

3.6 “Finding Two Needles in a Haystack”

We compare the probability measure P(4,82),p from the (4, 82) lattice substitution
region with parameter p to the reference probability measure PR from the line graph
of the subdivided square lattice with parameter

√
1/2, which is its site percolation

threshold. For values of p for which P(4,82),p ≥st PR , the parameter p ≥ pc(4, 82),
while if P(4,82),p ≤st PR , then p ≤ pc(4, 82).

Rather than treating upset inequalities, the inequalities can be converted to equa-
tions in p, with the lower and upper bounds for the percolation threshold of the
(4, 82) lattice site model being the smallest and largest solutions, respectively.

To use a colloquial expression, the derivation of the site percolation threshold
bound is like the problem of finding a needle in a haystack, except that we need
to find two needles! The needles are the largest and smallest solutions, while the
haystack is the set of solutions to the more than 242525 upset equations. Our strategy
is to avoid searching large parts of the haystack, by proving that the needles are not
there. The following summarizes the nature of the reductions employed.

3.7 Non-crossing Partitions

One reduction makes use of non-crossing partitions. Suppose that the boundary
vertices are labeled from 1 to 10 clockwise around both substitution regions, starting
from the left side of the top in Fig. 2. A partition is a non-crossing partition if
i < j < k < l, with vertices i and k in the same block and vertices j and l in the
same block, implies that all four vertices are in the same block. A partition that is
not a non-crossing partition is called a crossing partition. Since the (4, 82) lattice is
planar, any crossing partition has probability zero. Although the reference lattice R is
not planar, since two open paths crossing via diagonals of a square face implies that
all four vertices of the face are open, any crossing partition in it also has probability
zero. Thus, only non-crossing partitions contribute to the upset probability functions.
Since the non-crossing partitions are counted by the Catalan numbers, there are
only Catalan(10) = 16796 non-crossing partitions to be considered, rather than all
Bell(10) = 115975, which greatly reduces the number of relevant upsets. For further
details, see [8].
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3.8 Symmetry Reduction

A second reduction uses rotational and reflection symmetry to find equivalence
classes of partitions, and reduces the problem to checking stochastic ordering on
a partially ordered set of classes. Partitions which are rotations or reflections of each
other have identical probability functions, so can be combined into classes. The
classes form a partially ordered set under refinement, where one class is a refinement
of another if any of its partitions is refinement of any partition of the other. May and
Wierman [7] show that the upper and lower bounds must be solutions of equations
for upsets which are unions of classes. For the comparison in this article, the number
of classes is 4388, a significant reduction from Catalan(10) = 16796.

3.9 Network Flow Model

The third major computational savings are from converting the problem to a network
flowproblem, based on a proof of Preston [9] of the equivalence of stochastic ordering
and coupling for probability measures on a finite partially ordered set. Intuitively,
a probability measure P1 is stochastically larger than a probability measure P2 if
probability from P1 can flow down in the partially ordered set to produce P2. The
network flow problem was solved symbolically in MATLAB using the augmented
path algorithm, to obtain a rational number for the upper bound, avoiding any round-
off error except in converting the final rational number to a decimal.

The entire computation, from calculating partition probablities through solving
the network flow problem, took slightly less than two weeks on a 2.90GHz Dell
XPS 15 9570 laptop with 32 GB RAM, producing the upper bound pc(4, 82) ≤
0.749001747369766. This is the first substitution method comparison that has been
completed for substitution regions with ten boundary vertices, for either bond or site
percolation models.

4 Future Research

Future research will focus on improving site percolation threshold bounds for other
Archimedean lattices. Table1 summarizes the current bounds, exact values, and con-
sensus of simulation estimates. Although the site percolation threshold is exactly
known for three of the lattices, only the triangular lattice solution was derived using
the site model, with the other two obtained by transformations of bond model solu-
tions: The kagome lattice is the line graph of the hexagonal lattice, so its site per-
colation threshold equals 1 − 2 sin(π/18), the bond percolation threshold of the
hexagonal lattice. The (3, 122) lattice is the line graph of the 2-subdivided hexag-
onal lattice, so its site percolation threshold is

√
1 − 2 sin(π/18). The upper bound
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Table 1 Site percolation threshold bounds and values for the archimedean lattices

Lattice name Lower bound Exact value or
estimate

Upper bound

(3, 122) = 0.807900...

(4, 6, 12) 0.721730 0.747806 0.770935

(4, 82) 0.707106 0.729724 0.749002

Hexagonal 0.652703 0.697043 0.74335

(3, 4, 6, 4) 0.522394 0.621819 0.652704

Kagome = 0.652703...

Square 0.556000 0.592746 0.679492

(34, 6) 0.500000 0.579498 0.652704

(33, 42) 0.500000 0.550213 0.679492

(32, 4, 3, 4) 0.500000 0.550806 0.679492

Triangular = 0.500000...

for the (4, 82) lattice site percolation threshold obtained in this article produces the
shortest bounding interval for any of the unsolved lattices. The bounding interval
lengths for three of the other lattices are almost 0.18.

The most important and challenging cases are the square and hexagonal lattices.
For the square lattice, the lower bound was proved by van den Berg and Ermakov
[1] in 1996, while the upper bound was derived in 1995 by Wierman [13], with no
improvements since. For the hexagonal lattice, the lower bound is the bond percola-
tion threshold of the hexagonal lattice, established [12] in 1981while the upper bound
was proved [8] in 2007 using the substitution method. Despite repeated attempts,
these bounds have not been improved.

To make progress on these problems with the substitution method, substantial
adaptations must be made to augment the partition lattice as in [17] and then adapt
the graph-welding, non-crossing partition, symmetry reduction, and network flow
model accordingly.
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